Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_blenderbot_small.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_flax_blenderbot_small.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/configuration_blenderbot_small.py +389 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py +1526 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/__init__.py +134 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/configuration_funnel.py +166 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/convert_funnel_original_tf_checkpoint_to_pytorch.py +65 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/modeling_funnel.py +1599 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/modeling_tf_funnel.py +1871 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/tokenization_funnel_fast.py +200 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/convert_gptsan_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/modeling_gptsan_japanese.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/tokenization_gptsan_japanese.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__init__.py +119 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/configuration_openai.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/convert_openai_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/modeling_openai.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/modeling_tf_openai.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/tokenization_openai.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/tokenization_openai_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/openai/configuration_openai.py +156 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/openai/convert_openai_original_tf_checkpoint_to_pytorch.py +75 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/openai/modeling_openai.py +859 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/openai/modeling_tf_openai.py +940 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/openai/tokenization_openai.py +394 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/openai/tokenization_openai_fast.py +64 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__init__.py +62 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/configuration_qwen2_moe.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/modeling_qwen2_moe.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/configuration_qwen2_moe.py +175 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py +1595 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/seamless_m4t_v2/convert_fairseq2_to_hf.py +405 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__init__.py +108 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/configuration_speech_to_text.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/convert_s2t_fairseq_to_tfms.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/feature_extraction_speech_to_text.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/modeling_speech_to_text.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/modeling_tf_speech_to_text.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/processing_speech_to_text.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/tokenization_speech_to_text.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/configuration_speech_to_text.py +199 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/convert_s2t_fairseq_to_tfms.py +121 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/feature_extraction_speech_to_text.py +297 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/modeling_speech_to_text.py +1370 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/modeling_tf_speech_to_text.py +1607 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/processing_speech_to_text.py +116 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_blenderbot_small.cpython-310.pyc
ADDED
Binary file (52.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_flax_blenderbot_small.cpython-310.pyc
ADDED
Binary file (43.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/configuration_blenderbot_small.py
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" BlenderbotSmall model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Any, Mapping, Optional
|
19 |
+
|
20 |
+
from ... import PreTrainedTokenizer
|
21 |
+
from ...configuration_utils import PretrainedConfig
|
22 |
+
from ...file_utils import TensorType, is_torch_available
|
23 |
+
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
|
24 |
+
from ...onnx.utils import compute_effective_axis_dimension
|
25 |
+
from ...utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
from ..deprecated._archive_maps import BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
31 |
+
|
32 |
+
|
33 |
+
class BlenderbotSmallConfig(PretrainedConfig):
|
34 |
+
r"""
|
35 |
+
This is the configuration class to store the configuration of a [`BlenderbotSmallModel`]. It is used to instantiate
|
36 |
+
an BlenderbotSmall model according to the specified arguments, defining the model architecture. Instantiating a
|
37 |
+
configuration with the defaults will yield a similar configuration to that of the BlenderbotSmall
|
38 |
+
[facebook/blenderbot_small-90M](https://huggingface.co/facebook/blenderbot_small-90M) architecture.
|
39 |
+
|
40 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
41 |
+
documentation from [`PretrainedConfig`] for more information.
|
42 |
+
|
43 |
+
|
44 |
+
Args:
|
45 |
+
vocab_size (`int`, *optional*, defaults to 50265):
|
46 |
+
Vocabulary size of the BlenderbotSmall model. Defines the number of different tokens that can be
|
47 |
+
represented by the `inputs_ids` passed when calling [`BlenderbotSmallModel`] or [`TFBlenderbotSmallModel`].
|
48 |
+
d_model (`int`, *optional*, defaults to 512):
|
49 |
+
Dimensionality of the layers and the pooler layer.
|
50 |
+
encoder_layers (`int`, *optional*, defaults to 8):
|
51 |
+
Number of encoder layers.
|
52 |
+
decoder_layers (`int`, *optional*, defaults to 8):
|
53 |
+
Number of decoder layers.
|
54 |
+
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
55 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
56 |
+
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
57 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
58 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 2048):
|
59 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
60 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 2048):
|
61 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
62 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
63 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
64 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
65 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
66 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
67 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
68 |
+
The dropout ratio for the attention probabilities.
|
69 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
70 |
+
The dropout ratio for activations inside the fully connected layer.
|
71 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
72 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
73 |
+
just in case (e.g., 512 or 1024 or 2048).
|
74 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
75 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
76 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
77 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
78 |
+
for more details.
|
79 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
80 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
81 |
+
for more details.
|
82 |
+
scale_embedding (`bool`, *optional*, defaults to `False`):
|
83 |
+
Scale embeddings by diving by sqrt(d_model).
|
84 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
85 |
+
Whether or not the model should return the last key/values attentions (not used by all models)
|
86 |
+
forced_eos_token_id (`int`, *optional*, defaults to 2):
|
87 |
+
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
88 |
+
`eos_token_id`.
|
89 |
+
|
90 |
+
Example:
|
91 |
+
|
92 |
+
```python
|
93 |
+
>>> from transformers import BlenderbotSmallConfig, BlenderbotSmallModel
|
94 |
+
|
95 |
+
>>> # Initializing a BlenderbotSmall facebook/blenderbot_small-90M style configuration
|
96 |
+
>>> configuration = BlenderbotSmallConfig()
|
97 |
+
|
98 |
+
>>> # Initializing a model (with random weights) from the facebook/blenderbot_small-90M style configuration
|
99 |
+
>>> model = BlenderbotSmallModel(configuration)
|
100 |
+
|
101 |
+
>>> # Accessing the model configuration
|
102 |
+
>>> configuration = model.config
|
103 |
+
```"""
|
104 |
+
|
105 |
+
model_type = "blenderbot-small"
|
106 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
107 |
+
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
vocab_size=50265,
|
112 |
+
max_position_embeddings=512,
|
113 |
+
encoder_layers=8,
|
114 |
+
encoder_ffn_dim=2048,
|
115 |
+
encoder_attention_heads=16,
|
116 |
+
decoder_layers=8,
|
117 |
+
decoder_ffn_dim=2048,
|
118 |
+
decoder_attention_heads=16,
|
119 |
+
encoder_layerdrop=0.0,
|
120 |
+
decoder_layerdrop=0.0,
|
121 |
+
use_cache=True,
|
122 |
+
is_encoder_decoder=True,
|
123 |
+
activation_function="gelu",
|
124 |
+
d_model=512,
|
125 |
+
dropout=0.1,
|
126 |
+
attention_dropout=0.0,
|
127 |
+
activation_dropout=0.0,
|
128 |
+
init_std=0.02,
|
129 |
+
decoder_start_token_id=1,
|
130 |
+
scale_embedding=False,
|
131 |
+
pad_token_id=0,
|
132 |
+
bos_token_id=1,
|
133 |
+
eos_token_id=2,
|
134 |
+
forced_eos_token_id=2,
|
135 |
+
**kwargs,
|
136 |
+
):
|
137 |
+
self.vocab_size = vocab_size
|
138 |
+
self.max_position_embeddings = max_position_embeddings
|
139 |
+
self.d_model = d_model
|
140 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
141 |
+
self.encoder_layers = encoder_layers
|
142 |
+
self.encoder_attention_heads = encoder_attention_heads
|
143 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
144 |
+
self.decoder_layers = decoder_layers
|
145 |
+
self.decoder_attention_heads = decoder_attention_heads
|
146 |
+
self.dropout = dropout
|
147 |
+
self.attention_dropout = attention_dropout
|
148 |
+
self.activation_dropout = activation_dropout
|
149 |
+
self.activation_function = activation_function
|
150 |
+
self.init_std = init_std
|
151 |
+
self.encoder_layerdrop = encoder_layerdrop
|
152 |
+
self.decoder_layerdrop = decoder_layerdrop
|
153 |
+
self.use_cache = use_cache
|
154 |
+
self.num_hidden_layers = encoder_layers
|
155 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
156 |
+
|
157 |
+
super().__init__(
|
158 |
+
pad_token_id=pad_token_id,
|
159 |
+
bos_token_id=bos_token_id,
|
160 |
+
eos_token_id=eos_token_id,
|
161 |
+
is_encoder_decoder=is_encoder_decoder,
|
162 |
+
decoder_start_token_id=decoder_start_token_id,
|
163 |
+
forced_eos_token_id=forced_eos_token_id,
|
164 |
+
**kwargs,
|
165 |
+
)
|
166 |
+
|
167 |
+
|
168 |
+
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig
|
169 |
+
class BlenderbotSmallOnnxConfig(OnnxSeq2SeqConfigWithPast):
|
170 |
+
@property
|
171 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
172 |
+
if self.task in ["default", "seq2seq-lm"]:
|
173 |
+
common_inputs = OrderedDict(
|
174 |
+
[
|
175 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
176 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
177 |
+
]
|
178 |
+
)
|
179 |
+
|
180 |
+
if self.use_past:
|
181 |
+
common_inputs["decoder_input_ids"] = {0: "batch"}
|
182 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
|
183 |
+
else:
|
184 |
+
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
185 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
|
186 |
+
|
187 |
+
if self.use_past:
|
188 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
189 |
+
elif self.task == "causal-lm":
|
190 |
+
# TODO: figure this case out.
|
191 |
+
common_inputs = OrderedDict(
|
192 |
+
[
|
193 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
194 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
195 |
+
]
|
196 |
+
)
|
197 |
+
if self.use_past:
|
198 |
+
num_encoder_layers, _ = self.num_layers
|
199 |
+
for i in range(num_encoder_layers):
|
200 |
+
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
|
201 |
+
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
|
202 |
+
else:
|
203 |
+
common_inputs = OrderedDict(
|
204 |
+
[
|
205 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
206 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
207 |
+
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
|
208 |
+
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
|
209 |
+
]
|
210 |
+
)
|
211 |
+
|
212 |
+
return common_inputs
|
213 |
+
|
214 |
+
@property
|
215 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
216 |
+
if self.task in ["default", "seq2seq-lm"]:
|
217 |
+
common_outputs = super().outputs
|
218 |
+
else:
|
219 |
+
common_outputs = super(OnnxConfigWithPast, self).outputs
|
220 |
+
if self.use_past:
|
221 |
+
num_encoder_layers, _ = self.num_layers
|
222 |
+
for i in range(num_encoder_layers):
|
223 |
+
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
|
224 |
+
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
|
225 |
+
return common_outputs
|
226 |
+
|
227 |
+
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
|
228 |
+
self,
|
229 |
+
tokenizer: PreTrainedTokenizer,
|
230 |
+
batch_size: int = -1,
|
231 |
+
seq_length: int = -1,
|
232 |
+
is_pair: bool = False,
|
233 |
+
framework: Optional[TensorType] = None,
|
234 |
+
) -> Mapping[str, Any]:
|
235 |
+
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
236 |
+
tokenizer, batch_size, seq_length, is_pair, framework
|
237 |
+
)
|
238 |
+
|
239 |
+
# Generate decoder inputs
|
240 |
+
decoder_seq_length = seq_length if not self.use_past else 1
|
241 |
+
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
242 |
+
tokenizer, batch_size, decoder_seq_length, is_pair, framework
|
243 |
+
)
|
244 |
+
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
|
245 |
+
common_inputs = dict(**encoder_inputs, **decoder_inputs)
|
246 |
+
|
247 |
+
if self.use_past:
|
248 |
+
if not is_torch_available():
|
249 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
250 |
+
else:
|
251 |
+
import torch
|
252 |
+
batch, encoder_seq_length = common_inputs["input_ids"].shape
|
253 |
+
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
|
254 |
+
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
|
255 |
+
encoder_shape = (
|
256 |
+
batch,
|
257 |
+
num_encoder_attention_heads,
|
258 |
+
encoder_seq_length,
|
259 |
+
self._config.hidden_size // num_encoder_attention_heads,
|
260 |
+
)
|
261 |
+
decoder_past_length = decoder_seq_length + 3
|
262 |
+
decoder_shape = (
|
263 |
+
batch,
|
264 |
+
num_decoder_attention_heads,
|
265 |
+
decoder_past_length,
|
266 |
+
self._config.hidden_size // num_decoder_attention_heads,
|
267 |
+
)
|
268 |
+
|
269 |
+
common_inputs["decoder_attention_mask"] = torch.cat(
|
270 |
+
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
|
271 |
+
)
|
272 |
+
|
273 |
+
common_inputs["past_key_values"] = []
|
274 |
+
# If the number of encoder and decoder layers are present in the model configuration, both are considered
|
275 |
+
num_encoder_layers, num_decoder_layers = self.num_layers
|
276 |
+
min_num_layers = min(num_encoder_layers, num_decoder_layers)
|
277 |
+
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
|
278 |
+
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
|
279 |
+
|
280 |
+
for _ in range(min_num_layers):
|
281 |
+
common_inputs["past_key_values"].append(
|
282 |
+
(
|
283 |
+
torch.zeros(decoder_shape),
|
284 |
+
torch.zeros(decoder_shape),
|
285 |
+
torch.zeros(encoder_shape),
|
286 |
+
torch.zeros(encoder_shape),
|
287 |
+
)
|
288 |
+
)
|
289 |
+
# TODO: test this.
|
290 |
+
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
|
291 |
+
for _ in range(min_num_layers, max_num_layers):
|
292 |
+
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
|
293 |
+
return common_inputs
|
294 |
+
|
295 |
+
def _generate_dummy_inputs_for_causal_lm(
|
296 |
+
self,
|
297 |
+
tokenizer: PreTrainedTokenizer,
|
298 |
+
batch_size: int = -1,
|
299 |
+
seq_length: int = -1,
|
300 |
+
is_pair: bool = False,
|
301 |
+
framework: Optional[TensorType] = None,
|
302 |
+
) -> Mapping[str, Any]:
|
303 |
+
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
304 |
+
tokenizer, batch_size, seq_length, is_pair, framework
|
305 |
+
)
|
306 |
+
|
307 |
+
if self.use_past:
|
308 |
+
if not is_torch_available():
|
309 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
310 |
+
else:
|
311 |
+
import torch
|
312 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
313 |
+
# Not using the same length for past_key_values
|
314 |
+
past_key_values_length = seqlen + 2
|
315 |
+
num_encoder_layers, _ = self.num_layers
|
316 |
+
num_encoder_attention_heads, _ = self.num_attention_heads
|
317 |
+
past_shape = (
|
318 |
+
batch,
|
319 |
+
num_encoder_attention_heads,
|
320 |
+
past_key_values_length,
|
321 |
+
self._config.hidden_size // num_encoder_attention_heads,
|
322 |
+
)
|
323 |
+
|
324 |
+
mask_dtype = common_inputs["attention_mask"].dtype
|
325 |
+
common_inputs["attention_mask"] = torch.cat(
|
326 |
+
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
327 |
+
)
|
328 |
+
common_inputs["past_key_values"] = [
|
329 |
+
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
|
330 |
+
]
|
331 |
+
return common_inputs
|
332 |
+
|
333 |
+
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
334 |
+
self,
|
335 |
+
tokenizer: PreTrainedTokenizer,
|
336 |
+
batch_size: int = -1,
|
337 |
+
seq_length: int = -1,
|
338 |
+
is_pair: bool = False,
|
339 |
+
framework: Optional[TensorType] = None,
|
340 |
+
) -> Mapping[str, Any]:
|
341 |
+
# Copied from OnnxConfig.generate_dummy_inputs
|
342 |
+
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
|
343 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
344 |
+
batch_size = compute_effective_axis_dimension(
|
345 |
+
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
|
346 |
+
)
|
347 |
+
|
348 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
|
349 |
+
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
|
350 |
+
seq_length = compute_effective_axis_dimension(
|
351 |
+
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
|
352 |
+
)
|
353 |
+
|
354 |
+
# Generate dummy inputs according to compute batch and sequence
|
355 |
+
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
|
356 |
+
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
|
357 |
+
return common_inputs
|
358 |
+
|
359 |
+
def generate_dummy_inputs(
|
360 |
+
self,
|
361 |
+
tokenizer: PreTrainedTokenizer,
|
362 |
+
batch_size: int = -1,
|
363 |
+
seq_length: int = -1,
|
364 |
+
is_pair: bool = False,
|
365 |
+
framework: Optional[TensorType] = None,
|
366 |
+
) -> Mapping[str, Any]:
|
367 |
+
if self.task in ["default", "seq2seq-lm"]:
|
368 |
+
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
|
369 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
370 |
+
)
|
371 |
+
|
372 |
+
elif self.task == "causal-lm":
|
373 |
+
common_inputs = self._generate_dummy_inputs_for_causal_lm(
|
374 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
375 |
+
)
|
376 |
+
else:
|
377 |
+
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
378 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
379 |
+
)
|
380 |
+
|
381 |
+
return common_inputs
|
382 |
+
|
383 |
+
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
|
384 |
+
if self.task in ["default", "seq2seq-lm"]:
|
385 |
+
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
|
386 |
+
else:
|
387 |
+
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
|
388 |
+
flattened_output, name, idx, t
|
389 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
ADDED
@@ -0,0 +1,1526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Facebook, Inc and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 BlenderbotSmall model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import random
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import tensorflow as tf
|
25 |
+
|
26 |
+
from ...activations_tf import get_tf_activation
|
27 |
+
from ...modeling_tf_outputs import (
|
28 |
+
TFBaseModelOutput,
|
29 |
+
TFBaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
TFSeq2SeqLMOutput,
|
31 |
+
TFSeq2SeqModelOutput,
|
32 |
+
)
|
33 |
+
|
34 |
+
# Public API
|
35 |
+
from ...modeling_tf_utils import (
|
36 |
+
TFCausalLanguageModelingLoss,
|
37 |
+
TFPreTrainedModel,
|
38 |
+
keras,
|
39 |
+
keras_serializable,
|
40 |
+
unpack_inputs,
|
41 |
+
)
|
42 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
43 |
+
from ...utils import (
|
44 |
+
add_code_sample_docstrings,
|
45 |
+
add_end_docstrings,
|
46 |
+
add_start_docstrings,
|
47 |
+
add_start_docstrings_to_model_forward,
|
48 |
+
logging,
|
49 |
+
replace_return_docstrings,
|
50 |
+
)
|
51 |
+
from .configuration_blenderbot_small import BlenderbotSmallConfig
|
52 |
+
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__)
|
55 |
+
|
56 |
+
_CHECKPOINT_FOR_DOC = "facebook/blenderbot_small-90M"
|
57 |
+
_CONFIG_FOR_DOC = "BlenderbotSmallConfig"
|
58 |
+
|
59 |
+
|
60 |
+
LARGE_NEGATIVE = -1e8
|
61 |
+
|
62 |
+
|
63 |
+
# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
|
64 |
+
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
65 |
+
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
|
66 |
+
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
|
67 |
+
start_tokens = tf.fill(
|
68 |
+
(shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
|
69 |
+
)
|
70 |
+
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
|
71 |
+
# replace possible -100 values in labels by `pad_token_id`
|
72 |
+
shifted_input_ids = tf.where(
|
73 |
+
shifted_input_ids == -100,
|
74 |
+
tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
|
75 |
+
shifted_input_ids,
|
76 |
+
)
|
77 |
+
|
78 |
+
# "Verify that `labels` has only positive values and -100"
|
79 |
+
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
|
80 |
+
|
81 |
+
# Make sure the assertion op is called by wrapping the result in an identity no-op
|
82 |
+
with tf.control_dependencies([assert_gte0]):
|
83 |
+
shifted_input_ids = tf.identity(shifted_input_ids)
|
84 |
+
|
85 |
+
return shifted_input_ids
|
86 |
+
|
87 |
+
|
88 |
+
# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
|
89 |
+
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
|
90 |
+
"""
|
91 |
+
Make causal mask used for bi-directional self-attention.
|
92 |
+
"""
|
93 |
+
bsz = input_ids_shape[0]
|
94 |
+
tgt_len = input_ids_shape[1]
|
95 |
+
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
|
96 |
+
mask_cond = tf.range(shape_list(mask)[-1])
|
97 |
+
|
98 |
+
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
|
99 |
+
|
100 |
+
if past_key_values_length > 0:
|
101 |
+
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
|
102 |
+
|
103 |
+
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
|
104 |
+
|
105 |
+
|
106 |
+
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
|
107 |
+
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
|
108 |
+
"""
|
109 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
110 |
+
"""
|
111 |
+
src_len = shape_list(mask)[1]
|
112 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
113 |
+
one_cst = tf.constant(1.0)
|
114 |
+
mask = tf.cast(mask, dtype=one_cst.dtype)
|
115 |
+
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
|
116 |
+
|
117 |
+
return (one_cst - expanded_mask) * LARGE_NEGATIVE
|
118 |
+
|
119 |
+
|
120 |
+
# Copied from transformers.models.blenderbot.modeling_tf_blenderbot.TFBlenderbotLearnedPositionalEmbedding with Blenderbot->BlenderbotSmall
|
121 |
+
class TFBlenderbotSmallLearnedPositionalEmbedding(keras.layers.Embedding):
|
122 |
+
"""
|
123 |
+
This module learns positional embeddings up to a fixed maximum size.
|
124 |
+
"""
|
125 |
+
|
126 |
+
def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
|
127 |
+
super().__init__(num_embeddings, embedding_dim, **kwargs)
|
128 |
+
|
129 |
+
def call(
|
130 |
+
self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None
|
131 |
+
):
|
132 |
+
"""Input is expected to be of size [bsz x seqlen]."""
|
133 |
+
if position_ids is None:
|
134 |
+
seq_len = input_shape[1]
|
135 |
+
position_ids = tf.range(seq_len, delta=1, name="range")
|
136 |
+
position_ids += past_key_values_length
|
137 |
+
|
138 |
+
return super().call(tf.cast(position_ids, dtype=tf.int32))
|
139 |
+
|
140 |
+
|
141 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->BlenderbotSmall
|
142 |
+
class TFBlenderbotSmallAttention(keras.layers.Layer):
|
143 |
+
"""Multi-headed attention from "Attention Is All You Need"""
|
144 |
+
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
embed_dim: int,
|
148 |
+
num_heads: int,
|
149 |
+
dropout: float = 0.0,
|
150 |
+
is_decoder: bool = False,
|
151 |
+
bias: bool = True,
|
152 |
+
**kwargs,
|
153 |
+
):
|
154 |
+
super().__init__(**kwargs)
|
155 |
+
self.embed_dim = embed_dim
|
156 |
+
|
157 |
+
self.num_heads = num_heads
|
158 |
+
self.dropout = keras.layers.Dropout(dropout)
|
159 |
+
self.head_dim = embed_dim // num_heads
|
160 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
161 |
+
raise ValueError(
|
162 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
163 |
+
f" and `num_heads`: {num_heads})."
|
164 |
+
)
|
165 |
+
self.scaling = self.head_dim**-0.5
|
166 |
+
self.is_decoder = is_decoder
|
167 |
+
|
168 |
+
self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
|
169 |
+
self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
|
170 |
+
self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
|
171 |
+
self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
|
172 |
+
|
173 |
+
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
|
174 |
+
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
|
175 |
+
|
176 |
+
def call(
|
177 |
+
self,
|
178 |
+
hidden_states: tf.Tensor,
|
179 |
+
key_value_states: tf.Tensor | None = None,
|
180 |
+
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
|
181 |
+
attention_mask: tf.Tensor | None = None,
|
182 |
+
layer_head_mask: tf.Tensor | None = None,
|
183 |
+
training: Optional[bool] = False,
|
184 |
+
) -> Tuple[tf.Tensor, tf.Tensor | None]:
|
185 |
+
"""Input shape: Batch x Time x Channel"""
|
186 |
+
|
187 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
188 |
+
# for the decoder
|
189 |
+
is_cross_attention = key_value_states is not None
|
190 |
+
bsz, tgt_len, embed_dim = shape_list(hidden_states)
|
191 |
+
|
192 |
+
# get query proj
|
193 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
194 |
+
# get key, value proj
|
195 |
+
if is_cross_attention and past_key_value is not None:
|
196 |
+
# reuse k,v, cross_attentions
|
197 |
+
key_states = past_key_value[0]
|
198 |
+
value_states = past_key_value[1]
|
199 |
+
elif is_cross_attention:
|
200 |
+
# cross_attentions
|
201 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
202 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
203 |
+
elif past_key_value is not None:
|
204 |
+
# reuse k, v, self_attention
|
205 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
206 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
207 |
+
key_states = tf.concat([past_key_value[0], key_states], axis=2)
|
208 |
+
value_states = tf.concat([past_key_value[1], value_states], axis=2)
|
209 |
+
else:
|
210 |
+
# self_attention
|
211 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
212 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
213 |
+
|
214 |
+
if self.is_decoder:
|
215 |
+
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
|
216 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
217 |
+
# key/value_states (first "if" case)
|
218 |
+
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
|
219 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
220 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
221 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
222 |
+
past_key_value = (key_states, value_states)
|
223 |
+
|
224 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
225 |
+
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
|
226 |
+
key_states = tf.reshape(key_states, proj_shape)
|
227 |
+
value_states = tf.reshape(value_states, proj_shape)
|
228 |
+
|
229 |
+
src_len = shape_list(key_states)[1]
|
230 |
+
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
|
231 |
+
|
232 |
+
tf.debugging.assert_equal(
|
233 |
+
shape_list(attn_weights),
|
234 |
+
[bsz * self.num_heads, tgt_len, src_len],
|
235 |
+
message=(
|
236 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
237 |
+
f" {shape_list(attn_weights)}"
|
238 |
+
),
|
239 |
+
)
|
240 |
+
|
241 |
+
if attention_mask is not None:
|
242 |
+
tf.debugging.assert_equal(
|
243 |
+
shape_list(attention_mask),
|
244 |
+
[bsz, 1, tgt_len, src_len],
|
245 |
+
message=(
|
246 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
247 |
+
f" {shape_list(attention_mask)}"
|
248 |
+
),
|
249 |
+
)
|
250 |
+
|
251 |
+
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
|
252 |
+
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
|
253 |
+
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
|
254 |
+
|
255 |
+
attn_weights = stable_softmax(attn_weights, axis=-1)
|
256 |
+
|
257 |
+
if layer_head_mask is not None:
|
258 |
+
tf.debugging.assert_equal(
|
259 |
+
shape_list(layer_head_mask),
|
260 |
+
[self.num_heads],
|
261 |
+
message=(
|
262 |
+
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
|
263 |
+
f" {shape_list(layer_head_mask)}"
|
264 |
+
),
|
265 |
+
)
|
266 |
+
|
267 |
+
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
|
268 |
+
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
|
269 |
+
)
|
270 |
+
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
|
271 |
+
|
272 |
+
attn_probs = self.dropout(attn_weights, training=training)
|
273 |
+
attn_output = tf.matmul(attn_probs, value_states)
|
274 |
+
|
275 |
+
tf.debugging.assert_equal(
|
276 |
+
shape_list(attn_output),
|
277 |
+
[bsz * self.num_heads, tgt_len, self.head_dim],
|
278 |
+
message=(
|
279 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
280 |
+
f" {shape_list(attn_output)}"
|
281 |
+
),
|
282 |
+
)
|
283 |
+
|
284 |
+
attn_output = tf.transpose(
|
285 |
+
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
|
286 |
+
)
|
287 |
+
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
|
288 |
+
|
289 |
+
attn_output = self.out_proj(attn_output)
|
290 |
+
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
|
291 |
+
|
292 |
+
return attn_output, attn_weights, past_key_value
|
293 |
+
|
294 |
+
def build(self, input_shape=None):
|
295 |
+
if self.built:
|
296 |
+
return
|
297 |
+
self.built = True
|
298 |
+
if getattr(self, "k_proj", None) is not None:
|
299 |
+
with tf.name_scope(self.k_proj.name):
|
300 |
+
self.k_proj.build([None, None, self.embed_dim])
|
301 |
+
if getattr(self, "q_proj", None) is not None:
|
302 |
+
with tf.name_scope(self.q_proj.name):
|
303 |
+
self.q_proj.build([None, None, self.embed_dim])
|
304 |
+
if getattr(self, "v_proj", None) is not None:
|
305 |
+
with tf.name_scope(self.v_proj.name):
|
306 |
+
self.v_proj.build([None, None, self.embed_dim])
|
307 |
+
if getattr(self, "out_proj", None) is not None:
|
308 |
+
with tf.name_scope(self.out_proj.name):
|
309 |
+
self.out_proj.build([None, None, self.embed_dim])
|
310 |
+
|
311 |
+
|
312 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartEncoderLayer with Bart->BlenderbotSmall
|
313 |
+
class TFBlenderbotSmallEncoderLayer(keras.layers.Layer):
|
314 |
+
def __init__(self, config: BlenderbotSmallConfig, **kwargs):
|
315 |
+
super().__init__(**kwargs)
|
316 |
+
self.embed_dim = config.d_model
|
317 |
+
self.self_attn = TFBlenderbotSmallAttention(
|
318 |
+
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
|
319 |
+
)
|
320 |
+
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
|
321 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
322 |
+
self.activation_fn = get_tf_activation(config.activation_function)
|
323 |
+
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
|
324 |
+
self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
|
325 |
+
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
|
326 |
+
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
|
327 |
+
self.config = config
|
328 |
+
|
329 |
+
def call(
|
330 |
+
self,
|
331 |
+
hidden_states: tf.Tensor,
|
332 |
+
attention_mask: np.ndarray | tf.Tensor | None,
|
333 |
+
layer_head_mask: tf.Tensor | None,
|
334 |
+
training: Optional[bool] = False,
|
335 |
+
) -> tf.Tensor:
|
336 |
+
"""
|
337 |
+
Args:
|
338 |
+
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
339 |
+
attention_mask (`tf.Tensor`): attention mask of size
|
340 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
341 |
+
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
|
342 |
+
`(encoder_attention_heads,)`
|
343 |
+
"""
|
344 |
+
residual = hidden_states
|
345 |
+
hidden_states, self_attn_weights, _ = self.self_attn(
|
346 |
+
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
|
347 |
+
)
|
348 |
+
|
349 |
+
tf.debugging.assert_equal(
|
350 |
+
shape_list(hidden_states),
|
351 |
+
shape_list(residual),
|
352 |
+
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
|
353 |
+
)
|
354 |
+
|
355 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
356 |
+
hidden_states = residual + hidden_states
|
357 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
358 |
+
|
359 |
+
residual = hidden_states
|
360 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
361 |
+
hidden_states = self.activation_dropout(hidden_states, training=training)
|
362 |
+
hidden_states = self.fc2(hidden_states)
|
363 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
364 |
+
hidden_states = residual + hidden_states
|
365 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
366 |
+
|
367 |
+
return hidden_states, self_attn_weights
|
368 |
+
|
369 |
+
def build(self, input_shape=None):
|
370 |
+
if self.built:
|
371 |
+
return
|
372 |
+
self.built = True
|
373 |
+
if getattr(self, "self_attn", None) is not None:
|
374 |
+
with tf.name_scope(self.self_attn.name):
|
375 |
+
self.self_attn.build(None)
|
376 |
+
if getattr(self, "self_attn_layer_norm", None) is not None:
|
377 |
+
with tf.name_scope(self.self_attn_layer_norm.name):
|
378 |
+
self.self_attn_layer_norm.build([None, None, self.embed_dim])
|
379 |
+
if getattr(self, "fc1", None) is not None:
|
380 |
+
with tf.name_scope(self.fc1.name):
|
381 |
+
self.fc1.build([None, None, self.embed_dim])
|
382 |
+
if getattr(self, "fc2", None) is not None:
|
383 |
+
with tf.name_scope(self.fc2.name):
|
384 |
+
self.fc2.build([None, None, self.config.encoder_ffn_dim])
|
385 |
+
if getattr(self, "final_layer_norm", None) is not None:
|
386 |
+
with tf.name_scope(self.final_layer_norm.name):
|
387 |
+
self.final_layer_norm.build([None, None, self.embed_dim])
|
388 |
+
|
389 |
+
|
390 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartDecoderLayer with Bart->BlenderbotSmall
|
391 |
+
class TFBlenderbotSmallDecoderLayer(keras.layers.Layer):
|
392 |
+
def __init__(self, config: BlenderbotSmallConfig, **kwargs):
|
393 |
+
super().__init__(**kwargs)
|
394 |
+
self.embed_dim = config.d_model
|
395 |
+
self.self_attn = TFBlenderbotSmallAttention(
|
396 |
+
embed_dim=self.embed_dim,
|
397 |
+
num_heads=config.decoder_attention_heads,
|
398 |
+
dropout=config.attention_dropout,
|
399 |
+
name="self_attn",
|
400 |
+
is_decoder=True,
|
401 |
+
)
|
402 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
403 |
+
self.activation_fn = get_tf_activation(config.activation_function)
|
404 |
+
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
|
405 |
+
|
406 |
+
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
|
407 |
+
self.encoder_attn = TFBlenderbotSmallAttention(
|
408 |
+
self.embed_dim,
|
409 |
+
config.decoder_attention_heads,
|
410 |
+
dropout=config.attention_dropout,
|
411 |
+
name="encoder_attn",
|
412 |
+
is_decoder=True,
|
413 |
+
)
|
414 |
+
self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
|
415 |
+
self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
|
416 |
+
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
|
417 |
+
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
|
418 |
+
self.config = config
|
419 |
+
|
420 |
+
def call(
|
421 |
+
self,
|
422 |
+
hidden_states: tf.Tensor,
|
423 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
424 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
425 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
426 |
+
layer_head_mask: tf.Tensor | None = None,
|
427 |
+
cross_attn_layer_head_mask: tf.Tensor | None = None,
|
428 |
+
past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
429 |
+
training: Optional[bool] = False,
|
430 |
+
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
|
431 |
+
"""
|
432 |
+
Args:
|
433 |
+
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
434 |
+
attention_mask (`tf.Tensor`): attention mask of size
|
435 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
436 |
+
encoder_hidden_states (`tf.Tensor`):
|
437 |
+
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
|
438 |
+
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
|
439 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
440 |
+
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
|
441 |
+
`(decoder_attention_heads,)`
|
442 |
+
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
|
443 |
+
`(decoder_attention_heads,)`
|
444 |
+
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
|
445 |
+
"""
|
446 |
+
residual = hidden_states
|
447 |
+
|
448 |
+
# Self Attention
|
449 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
450 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
451 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
452 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
453 |
+
hidden_states=hidden_states,
|
454 |
+
past_key_value=self_attn_past_key_value,
|
455 |
+
attention_mask=attention_mask,
|
456 |
+
layer_head_mask=layer_head_mask,
|
457 |
+
)
|
458 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
459 |
+
hidden_states = residual + hidden_states
|
460 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
461 |
+
|
462 |
+
# Cross-Attention Block
|
463 |
+
cross_attn_present_key_value = None
|
464 |
+
cross_attn_weights = None
|
465 |
+
if encoder_hidden_states is not None:
|
466 |
+
residual = hidden_states
|
467 |
+
|
468 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
469 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
470 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
471 |
+
hidden_states=hidden_states,
|
472 |
+
key_value_states=encoder_hidden_states,
|
473 |
+
attention_mask=encoder_attention_mask,
|
474 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
475 |
+
past_key_value=cross_attn_past_key_value,
|
476 |
+
)
|
477 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
478 |
+
hidden_states = residual + hidden_states
|
479 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
480 |
+
|
481 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
482 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
483 |
+
|
484 |
+
# Fully Connected
|
485 |
+
residual = hidden_states
|
486 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
487 |
+
hidden_states = self.activation_dropout(hidden_states, training=training)
|
488 |
+
hidden_states = self.fc2(hidden_states)
|
489 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
490 |
+
hidden_states = residual + hidden_states
|
491 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
492 |
+
|
493 |
+
return (
|
494 |
+
hidden_states,
|
495 |
+
self_attn_weights,
|
496 |
+
cross_attn_weights,
|
497 |
+
present_key_value,
|
498 |
+
)
|
499 |
+
|
500 |
+
def build(self, input_shape=None):
|
501 |
+
if self.built:
|
502 |
+
return
|
503 |
+
self.built = True
|
504 |
+
if getattr(self, "self_attn", None) is not None:
|
505 |
+
with tf.name_scope(self.self_attn.name):
|
506 |
+
self.self_attn.build(None)
|
507 |
+
if getattr(self, "self_attn_layer_norm", None) is not None:
|
508 |
+
with tf.name_scope(self.self_attn_layer_norm.name):
|
509 |
+
self.self_attn_layer_norm.build([None, None, self.embed_dim])
|
510 |
+
if getattr(self, "encoder_attn", None) is not None:
|
511 |
+
with tf.name_scope(self.encoder_attn.name):
|
512 |
+
self.encoder_attn.build(None)
|
513 |
+
if getattr(self, "encoder_attn_layer_norm", None) is not None:
|
514 |
+
with tf.name_scope(self.encoder_attn_layer_norm.name):
|
515 |
+
self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
|
516 |
+
if getattr(self, "fc1", None) is not None:
|
517 |
+
with tf.name_scope(self.fc1.name):
|
518 |
+
self.fc1.build([None, None, self.embed_dim])
|
519 |
+
if getattr(self, "fc2", None) is not None:
|
520 |
+
with tf.name_scope(self.fc2.name):
|
521 |
+
self.fc2.build([None, None, self.config.decoder_ffn_dim])
|
522 |
+
if getattr(self, "final_layer_norm", None) is not None:
|
523 |
+
with tf.name_scope(self.final_layer_norm.name):
|
524 |
+
self.final_layer_norm.build([None, None, self.embed_dim])
|
525 |
+
|
526 |
+
|
527 |
+
class TFBlenderbotSmallPreTrainedModel(TFPreTrainedModel):
|
528 |
+
config_class = BlenderbotSmallConfig
|
529 |
+
base_model_prefix = "model"
|
530 |
+
|
531 |
+
|
532 |
+
BLENDERBOT_SMALL_START_DOCSTRING = r"""
|
533 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
534 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
535 |
+
etc.)
|
536 |
+
|
537 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
538 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
539 |
+
behavior.
|
540 |
+
|
541 |
+
<Tip>
|
542 |
+
|
543 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
544 |
+
|
545 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
546 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
547 |
+
|
548 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
549 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
550 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
551 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
552 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
553 |
+
positional argument:
|
554 |
+
|
555 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
556 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
557 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
558 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
559 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
560 |
+
|
561 |
+
Note that when creating models and layers with
|
562 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
563 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
564 |
+
|
565 |
+
</Tip>
|
566 |
+
|
567 |
+
Args:
|
568 |
+
config ([`BlenderbotSmallConfig`]): Model configuration class with all the parameters of the model.
|
569 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
570 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
571 |
+
"""
|
572 |
+
|
573 |
+
BLENDERBOT_SMALL_GENERATION_EXAMPLE = r"""
|
574 |
+
Conversation example::
|
575 |
+
|
576 |
+
```py
|
577 |
+
>>> from transformers import AutoTokenizer, TFBlenderbotSmallForConditionalGeneration
|
578 |
+
|
579 |
+
>>> mname = "facebook/blenderbot_small-90M"
|
580 |
+
>>> model = BlenderbotSmallForConditionalGeneration.from_pretrained(mname)
|
581 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(mname)
|
582 |
+
|
583 |
+
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
|
584 |
+
>>> print("Human: ", UTTERANCE)
|
585 |
+
>>> inputs = tokenizer([UTTERANCE], return_tensors="tf")
|
586 |
+
|
587 |
+
>>> reply_ids = model.generate(**inputs)
|
588 |
+
>>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
|
589 |
+
what kind of carbs do they eat? i don't know much about carbs.
|
590 |
+
|
591 |
+
>>> REPLY = "I'm not sure"
|
592 |
+
>>> print("Human: ", REPLY)
|
593 |
+
>>> NEXT_UTTERANCE = (
|
594 |
+
... "My friends are cool but they eat too many carbs.</s> "
|
595 |
+
... "<s>what kind of carbs do they eat? i don't know much about carbs.</s> "
|
596 |
+
... "<s>I'm not sure."
|
597 |
+
... )
|
598 |
+
|
599 |
+
>>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="tf")
|
600 |
+
>>> inputs.pop("token_type_ids")
|
601 |
+
>>> next_reply_ids = model.generate(**inputs)
|
602 |
+
>>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
|
603 |
+
```
|
604 |
+
"""
|
605 |
+
|
606 |
+
BLENDERBOT_SMALL_INPUTS_DOCSTRING = r"""
|
607 |
+
Args:
|
608 |
+
input_ids (`tf.Tensor` of shape `({0})`):
|
609 |
+
Indices of input sequence tokens in the vocabulary.
|
610 |
+
|
611 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
612 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
613 |
+
|
614 |
+
[What are input IDs?](../glossary#input-ids)
|
615 |
+
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
|
616 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
617 |
+
|
618 |
+
- 1 for tokens that are **not masked**,
|
619 |
+
- 0 for tokens that are **masked**.
|
620 |
+
|
621 |
+
[What are attention masks?](../glossary#attention-mask)
|
622 |
+
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
623 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
624 |
+
|
625 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
626 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
627 |
+
|
628 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
629 |
+
|
630 |
+
BlenderbotSmall uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
|
631 |
+
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
632 |
+
`past_key_values`).
|
633 |
+
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
634 |
+
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
|
635 |
+
decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
636 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
637 |
+
range `[0, config.max_position_embeddings - 1]`.
|
638 |
+
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
639 |
+
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
640 |
+
|
641 |
+
- 1 indicates the head is **not masked**,
|
642 |
+
- 0 indicates the head is **masked**.
|
643 |
+
|
644 |
+
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
645 |
+
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
646 |
+
|
647 |
+
- 1 indicates the head is **not masked**,
|
648 |
+
- 0 indicates the head is **masked**.
|
649 |
+
|
650 |
+
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
651 |
+
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
652 |
+
|
653 |
+
- 1 indicates the head is **not masked**,
|
654 |
+
- 0 indicates the head is **masked**.
|
655 |
+
|
656 |
+
encoder_outputs (`tf.FloatTensor`, *optional*):
|
657 |
+
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
658 |
+
of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
|
659 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
660 |
+
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
661 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
662 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
663 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
664 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
665 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
666 |
+
`past_key_values`). Set to `False` during training, `True` during generation
|
667 |
+
output_attentions (`bool`, *optional*):
|
668 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
669 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
670 |
+
config will be used instead.
|
671 |
+
output_hidden_states (`bool`, *optional*):
|
672 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
673 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
674 |
+
used instead.
|
675 |
+
return_dict (`bool`, *optional*):
|
676 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
677 |
+
eager mode, in graph mode the value will always be set to True.
|
678 |
+
training (`bool`, *optional*, defaults to `False`):
|
679 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
680 |
+
behaviors between training and evaluation).
|
681 |
+
"""
|
682 |
+
|
683 |
+
|
684 |
+
@keras_serializable
|
685 |
+
class TFBlenderbotSmallEncoder(keras.layers.Layer):
|
686 |
+
config_class = BlenderbotSmallConfig
|
687 |
+
"""
|
688 |
+
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
689 |
+
[`TFBlenderbotSmallEncoderLayer`].
|
690 |
+
|
691 |
+
Args:
|
692 |
+
config: BlenderbotSmallConfig
|
693 |
+
"""
|
694 |
+
|
695 |
+
def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
|
696 |
+
super().__init__(**kwargs)
|
697 |
+
self.config = config
|
698 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
699 |
+
self.layerdrop = config.encoder_layerdrop
|
700 |
+
self.padding_idx = config.pad_token_id
|
701 |
+
self.max_source_positions = config.max_position_embeddings
|
702 |
+
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
|
703 |
+
|
704 |
+
self.embed_tokens = embed_tokens
|
705 |
+
self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding(
|
706 |
+
config.max_position_embeddings,
|
707 |
+
config.d_model,
|
708 |
+
name="embed_positions",
|
709 |
+
)
|
710 |
+
self.layers = [TFBlenderbotSmallEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
|
711 |
+
self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
|
712 |
+
self.embed_dim = config.d_model
|
713 |
+
|
714 |
+
def get_embed_tokens(self):
|
715 |
+
return self.embed_tokens
|
716 |
+
|
717 |
+
def set_embed_tokens(self, embed_tokens):
|
718 |
+
self.embed_tokens = embed_tokens
|
719 |
+
|
720 |
+
@unpack_inputs
|
721 |
+
def call(
|
722 |
+
self,
|
723 |
+
input_ids=None,
|
724 |
+
inputs_embeds=None,
|
725 |
+
attention_mask=None,
|
726 |
+
head_mask=None,
|
727 |
+
output_attentions=None,
|
728 |
+
output_hidden_states=None,
|
729 |
+
return_dict=None,
|
730 |
+
training=False,
|
731 |
+
):
|
732 |
+
"""
|
733 |
+
Args:
|
734 |
+
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
735 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
736 |
+
provide it.
|
737 |
+
|
738 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
739 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
740 |
+
|
741 |
+
[What are input IDs?](../glossary#input-ids)
|
742 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
743 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
744 |
+
|
745 |
+
- 1 for tokens that are **not masked**,
|
746 |
+
- 0 for tokens that are **masked**.
|
747 |
+
|
748 |
+
[What are attention masks?](../glossary#attention-mask)
|
749 |
+
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
|
750 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
751 |
+
|
752 |
+
- 1 indicates the head is **not masked**,
|
753 |
+
- 0 indicates the head is **masked**.
|
754 |
+
|
755 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
756 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
757 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
758 |
+
than the model's internal embedding lookup matrix.
|
759 |
+
output_attentions (`bool`, *optional*):
|
760 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
761 |
+
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
|
762 |
+
in the config will be used instead.
|
763 |
+
output_hidden_states (`bool`, *optional*):
|
764 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
765 |
+
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
|
766 |
+
will be used instead.
|
767 |
+
return_dict (`bool`, *optional*):
|
768 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
|
769 |
+
in eager mode, in graph mode the value will always be set to True.
|
770 |
+
training (`bool`, *optional*, defaults to `False`):
|
771 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
772 |
+
behaviors between training and evaluation).
|
773 |
+
"""
|
774 |
+
if input_ids is not None and inputs_embeds is not None:
|
775 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
776 |
+
elif input_ids is not None:
|
777 |
+
input_shape = shape_list(input_ids)
|
778 |
+
elif inputs_embeds is not None:
|
779 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
780 |
+
else:
|
781 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
782 |
+
|
783 |
+
if inputs_embeds is None:
|
784 |
+
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
|
785 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
786 |
+
|
787 |
+
embed_pos = self.embed_positions(input_shape)
|
788 |
+
hidden_states = inputs_embeds + embed_pos
|
789 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
790 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
791 |
+
|
792 |
+
# check attention mask and invert
|
793 |
+
if attention_mask is not None:
|
794 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
795 |
+
attention_mask = _expand_mask(attention_mask)
|
796 |
+
else:
|
797 |
+
attention_mask = None
|
798 |
+
|
799 |
+
encoder_states = () if output_hidden_states else None
|
800 |
+
all_attentions = () if output_attentions else None
|
801 |
+
|
802 |
+
# check if head_mask has a correct number of layers specified if desired
|
803 |
+
if head_mask is not None:
|
804 |
+
tf.debugging.assert_equal(
|
805 |
+
shape_list(head_mask)[0],
|
806 |
+
len(self.layers),
|
807 |
+
message=(
|
808 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
|
809 |
+
f" {shape_list(head_mask)[0]}."
|
810 |
+
),
|
811 |
+
)
|
812 |
+
|
813 |
+
# encoder layers
|
814 |
+
for idx, encoder_layer in enumerate(self.layers):
|
815 |
+
if output_hidden_states:
|
816 |
+
encoder_states = encoder_states + (hidden_states,)
|
817 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
818 |
+
dropout_probability = random.uniform(0, 1)
|
819 |
+
if training and (dropout_probability < self.layerdrop): # skip the layer
|
820 |
+
continue
|
821 |
+
|
822 |
+
hidden_states, attn = encoder_layer(
|
823 |
+
hidden_states,
|
824 |
+
attention_mask,
|
825 |
+
head_mask[idx] if head_mask is not None else None,
|
826 |
+
)
|
827 |
+
|
828 |
+
if output_attentions:
|
829 |
+
all_attentions += (attn,)
|
830 |
+
|
831 |
+
if output_hidden_states:
|
832 |
+
encoder_states = encoder_states + (hidden_states,)
|
833 |
+
|
834 |
+
if not return_dict:
|
835 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
836 |
+
return TFBaseModelOutput(
|
837 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
838 |
+
)
|
839 |
+
|
840 |
+
def build(self, input_shape=None):
|
841 |
+
if self.built:
|
842 |
+
return
|
843 |
+
self.built = True
|
844 |
+
if getattr(self, "embed_positions", None) is not None:
|
845 |
+
with tf.name_scope(self.embed_positions.name):
|
846 |
+
self.embed_positions.build(None)
|
847 |
+
if getattr(self, "layernorm_embedding", None) is not None:
|
848 |
+
with tf.name_scope(self.layernorm_embedding.name):
|
849 |
+
self.layernorm_embedding.build([None, None, self.embed_dim])
|
850 |
+
if getattr(self, "layers", None) is not None:
|
851 |
+
for layer in self.layers:
|
852 |
+
with tf.name_scope(layer.name):
|
853 |
+
layer.build(None)
|
854 |
+
|
855 |
+
|
856 |
+
@keras_serializable
|
857 |
+
class TFBlenderbotSmallDecoder(keras.layers.Layer):
|
858 |
+
config_class = BlenderbotSmallConfig
|
859 |
+
"""
|
860 |
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBlenderbotSmallDecoderLayer`]
|
861 |
+
|
862 |
+
Args:
|
863 |
+
config: BlenderbotSmallConfig
|
864 |
+
embed_tokens: output embedding
|
865 |
+
"""
|
866 |
+
|
867 |
+
def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
|
868 |
+
super().__init__(**kwargs)
|
869 |
+
self.config = config
|
870 |
+
self.padding_idx = config.pad_token_id
|
871 |
+
self.embed_tokens = embed_tokens
|
872 |
+
self.layerdrop = config.decoder_layerdrop
|
873 |
+
self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding(
|
874 |
+
config.max_position_embeddings,
|
875 |
+
config.d_model,
|
876 |
+
name="embed_positions",
|
877 |
+
)
|
878 |
+
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
|
879 |
+
self.layers = [TFBlenderbotSmallDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
|
880 |
+
self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
|
881 |
+
|
882 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
883 |
+
|
884 |
+
def get_embed_tokens(self):
|
885 |
+
return self.embed_tokens
|
886 |
+
|
887 |
+
def set_embed_tokens(self, embed_tokens):
|
888 |
+
self.embed_tokens = embed_tokens
|
889 |
+
|
890 |
+
@unpack_inputs
|
891 |
+
def call(
|
892 |
+
self,
|
893 |
+
input_ids=None,
|
894 |
+
inputs_embeds=None,
|
895 |
+
attention_mask=None,
|
896 |
+
position_ids=None,
|
897 |
+
encoder_hidden_states=None,
|
898 |
+
encoder_attention_mask=None,
|
899 |
+
head_mask=None,
|
900 |
+
cross_attn_head_mask=None,
|
901 |
+
past_key_values=None,
|
902 |
+
use_cache=None,
|
903 |
+
output_attentions=None,
|
904 |
+
output_hidden_states=None,
|
905 |
+
return_dict=None,
|
906 |
+
training=False,
|
907 |
+
):
|
908 |
+
r"""
|
909 |
+
Args:
|
910 |
+
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
911 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
912 |
+
provide it.
|
913 |
+
|
914 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
915 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
916 |
+
|
917 |
+
[What are input IDs?](../glossary#input-ids)
|
918 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
919 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
920 |
+
|
921 |
+
- 1 for tokens that are **not masked**,
|
922 |
+
- 0 for tokens that are **masked**.
|
923 |
+
|
924 |
+
[What are attention masks?](../glossary#attention-mask)
|
925 |
+
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
926 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
927 |
+
range `[0, config.max_position_embeddings - 1]`.
|
928 |
+
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
929 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
930 |
+
of the decoder.
|
931 |
+
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
932 |
+
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
933 |
+
selected in `[0, 1]`:
|
934 |
+
|
935 |
+
- 1 for tokens that are **not masked**,
|
936 |
+
- 0 for tokens that are **masked**.
|
937 |
+
|
938 |
+
[What are attention masks?](../glossary#attention-mask)
|
939 |
+
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
940 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
941 |
+
|
942 |
+
- 1 indicates the head is **not masked**,
|
943 |
+
- 0 indicates the head is **masked**.
|
944 |
+
|
945 |
+
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
946 |
+
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
947 |
+
|
948 |
+
- 1 indicates the head is **not masked**,
|
949 |
+
- 0 indicates the head is **masked**.
|
950 |
+
|
951 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
952 |
+
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
|
953 |
+
decoding.
|
954 |
+
|
955 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
956 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
957 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
958 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
959 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
960 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
961 |
+
than the model's internal embedding lookup matrix.
|
962 |
+
output_attentions (`bool`, *optional*):
|
963 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
964 |
+
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
|
965 |
+
in the config will be used instead.
|
966 |
+
output_hidden_states (`bool`, *optional*):
|
967 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
968 |
+
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
|
969 |
+
will be used instead.
|
970 |
+
return_dict (`bool`, *optional*):
|
971 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
|
972 |
+
in eager mode, in graph mode the value will always be set to True.
|
973 |
+
training (`bool`, *optional*, defaults to `False`):
|
974 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
975 |
+
behaviors between training and evaluation).
|
976 |
+
"""
|
977 |
+
if input_ids is not None and inputs_embeds is not None:
|
978 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
979 |
+
elif input_ids is not None:
|
980 |
+
input_shape = shape_list(input_ids)
|
981 |
+
elif inputs_embeds is not None:
|
982 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
983 |
+
else:
|
984 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
985 |
+
|
986 |
+
past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
|
987 |
+
|
988 |
+
if inputs_embeds is None:
|
989 |
+
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
|
990 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
991 |
+
|
992 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
993 |
+
if input_shape[-1] > 1:
|
994 |
+
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
|
995 |
+
else:
|
996 |
+
combined_attention_mask = _expand_mask(
|
997 |
+
tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
|
998 |
+
)
|
999 |
+
|
1000 |
+
if attention_mask is not None:
|
1001 |
+
combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
|
1002 |
+
|
1003 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1004 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1005 |
+
encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
|
1006 |
+
|
1007 |
+
# embed positions
|
1008 |
+
if position_ids is None:
|
1009 |
+
positions = self.embed_positions(input_shape, past_key_values_length)
|
1010 |
+
else:
|
1011 |
+
positions = self.embed_positions(input_shape, position_ids=position_ids)
|
1012 |
+
|
1013 |
+
hidden_states = self.layernorm_embedding(inputs_embeds) + positions
|
1014 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
1015 |
+
|
1016 |
+
# decoder layers
|
1017 |
+
all_hidden_states = () if output_hidden_states else None
|
1018 |
+
all_self_attns = () if output_attentions else None
|
1019 |
+
all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
|
1020 |
+
present_key_values = () if use_cache else None
|
1021 |
+
|
1022 |
+
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
|
1023 |
+
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
|
1024 |
+
if attn_mask is not None:
|
1025 |
+
tf.debugging.assert_equal(
|
1026 |
+
shape_list(attn_mask)[0],
|
1027 |
+
len(self.layers),
|
1028 |
+
message=(
|
1029 |
+
f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
|
1030 |
+
f" {shape_list(attn_mask)[0]}."
|
1031 |
+
),
|
1032 |
+
)
|
1033 |
+
|
1034 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1035 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1036 |
+
if output_hidden_states:
|
1037 |
+
all_hidden_states += (hidden_states,)
|
1038 |
+
dropout_probability = random.uniform(0, 1)
|
1039 |
+
|
1040 |
+
if training and (dropout_probability < self.layerdrop):
|
1041 |
+
continue
|
1042 |
+
|
1043 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1044 |
+
|
1045 |
+
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
|
1046 |
+
hidden_states,
|
1047 |
+
attention_mask=combined_attention_mask,
|
1048 |
+
encoder_hidden_states=encoder_hidden_states,
|
1049 |
+
encoder_attention_mask=encoder_attention_mask,
|
1050 |
+
layer_head_mask=head_mask[idx] if head_mask is not None else None,
|
1051 |
+
cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
1052 |
+
past_key_value=past_key_value,
|
1053 |
+
)
|
1054 |
+
|
1055 |
+
if use_cache:
|
1056 |
+
present_key_values += (present_key_value,)
|
1057 |
+
|
1058 |
+
if output_attentions:
|
1059 |
+
all_self_attns += (layer_self_attn,)
|
1060 |
+
|
1061 |
+
if encoder_hidden_states is not None:
|
1062 |
+
all_cross_attns += (layer_cross_attn,)
|
1063 |
+
|
1064 |
+
if output_hidden_states:
|
1065 |
+
all_hidden_states += (hidden_states,)
|
1066 |
+
|
1067 |
+
if not return_dict:
|
1068 |
+
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
|
1069 |
+
else:
|
1070 |
+
return TFBaseModelOutputWithPastAndCrossAttentions(
|
1071 |
+
last_hidden_state=hidden_states,
|
1072 |
+
past_key_values=present_key_values,
|
1073 |
+
hidden_states=all_hidden_states,
|
1074 |
+
attentions=all_self_attns,
|
1075 |
+
cross_attentions=all_cross_attns,
|
1076 |
+
)
|
1077 |
+
|
1078 |
+
def build(self, input_shape=None):
|
1079 |
+
if self.built:
|
1080 |
+
return
|
1081 |
+
self.built = True
|
1082 |
+
if getattr(self, "embed_positions", None) is not None:
|
1083 |
+
with tf.name_scope(self.embed_positions.name):
|
1084 |
+
self.embed_positions.build(None)
|
1085 |
+
if getattr(self, "layernorm_embedding", None) is not None:
|
1086 |
+
with tf.name_scope(self.layernorm_embedding.name):
|
1087 |
+
self.layernorm_embedding.build([None, None, self.config.d_model])
|
1088 |
+
if getattr(self, "layers", None) is not None:
|
1089 |
+
for layer in self.layers:
|
1090 |
+
with tf.name_scope(layer.name):
|
1091 |
+
layer.build(None)
|
1092 |
+
|
1093 |
+
|
1094 |
+
@keras_serializable
|
1095 |
+
class TFBlenderbotSmallMainLayer(keras.layers.Layer):
|
1096 |
+
config_class = BlenderbotSmallConfig
|
1097 |
+
|
1098 |
+
def __init__(self, config: BlenderbotSmallConfig, **kwargs):
|
1099 |
+
super().__init__(**kwargs)
|
1100 |
+
|
1101 |
+
self.config = config
|
1102 |
+
self.shared = keras.layers.Embedding(
|
1103 |
+
input_dim=config.vocab_size,
|
1104 |
+
output_dim=config.d_model,
|
1105 |
+
embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std),
|
1106 |
+
name="model.shared",
|
1107 |
+
)
|
1108 |
+
# Additional attribute to specify the expected name scope of the layer (for loading/storing weights)
|
1109 |
+
self.shared.load_weight_prefix = "model.shared"
|
1110 |
+
|
1111 |
+
self.encoder = TFBlenderbotSmallEncoder(config, self.shared, name="encoder")
|
1112 |
+
self.decoder = TFBlenderbotSmallDecoder(config, self.shared, name="decoder")
|
1113 |
+
|
1114 |
+
def get_input_embeddings(self):
|
1115 |
+
return self.shared
|
1116 |
+
|
1117 |
+
def set_input_embeddings(self, new_embeddings):
|
1118 |
+
self.shared = new_embeddings
|
1119 |
+
self.encoder.embed_tokens = self.shared
|
1120 |
+
self.decoder.embed_tokens = self.shared
|
1121 |
+
|
1122 |
+
@unpack_inputs
|
1123 |
+
def call(
|
1124 |
+
self,
|
1125 |
+
input_ids=None,
|
1126 |
+
attention_mask=None,
|
1127 |
+
decoder_input_ids=None,
|
1128 |
+
decoder_attention_mask=None,
|
1129 |
+
decoder_position_ids=None,
|
1130 |
+
head_mask=None,
|
1131 |
+
decoder_head_mask=None,
|
1132 |
+
cross_attn_head_mask=None,
|
1133 |
+
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
|
1134 |
+
past_key_values=None,
|
1135 |
+
inputs_embeds=None,
|
1136 |
+
decoder_inputs_embeds=None,
|
1137 |
+
use_cache=None,
|
1138 |
+
output_attentions=None,
|
1139 |
+
output_hidden_states=None,
|
1140 |
+
return_dict=None,
|
1141 |
+
training=False,
|
1142 |
+
**kwargs,
|
1143 |
+
):
|
1144 |
+
output_hidden_states = (
|
1145 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1146 |
+
)
|
1147 |
+
|
1148 |
+
if encoder_outputs is None:
|
1149 |
+
encoder_outputs = self.encoder(
|
1150 |
+
input_ids=input_ids,
|
1151 |
+
attention_mask=attention_mask,
|
1152 |
+
head_mask=head_mask,
|
1153 |
+
inputs_embeds=inputs_embeds,
|
1154 |
+
output_attentions=output_attentions,
|
1155 |
+
output_hidden_states=output_hidden_states,
|
1156 |
+
return_dict=return_dict,
|
1157 |
+
training=training,
|
1158 |
+
)
|
1159 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
|
1160 |
+
elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
|
1161 |
+
encoder_outputs = TFBaseModelOutput(
|
1162 |
+
last_hidden_state=encoder_outputs[0],
|
1163 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1164 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1165 |
+
)
|
1166 |
+
# If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
|
1167 |
+
elif not return_dict and not isinstance(encoder_outputs, tuple):
|
1168 |
+
encoder_outputs = encoder_outputs.to_tuple()
|
1169 |
+
|
1170 |
+
decoder_outputs = self.decoder(
|
1171 |
+
decoder_input_ids,
|
1172 |
+
attention_mask=decoder_attention_mask,
|
1173 |
+
position_ids=decoder_position_ids,
|
1174 |
+
encoder_hidden_states=encoder_outputs[0],
|
1175 |
+
encoder_attention_mask=attention_mask,
|
1176 |
+
head_mask=decoder_head_mask,
|
1177 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1178 |
+
past_key_values=past_key_values,
|
1179 |
+
inputs_embeds=decoder_inputs_embeds,
|
1180 |
+
use_cache=use_cache,
|
1181 |
+
output_attentions=output_attentions,
|
1182 |
+
output_hidden_states=output_hidden_states,
|
1183 |
+
return_dict=return_dict,
|
1184 |
+
training=training,
|
1185 |
+
)
|
1186 |
+
|
1187 |
+
if not return_dict:
|
1188 |
+
return decoder_outputs + encoder_outputs
|
1189 |
+
|
1190 |
+
return TFSeq2SeqModelOutput(
|
1191 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1192 |
+
past_key_values=decoder_outputs.past_key_values,
|
1193 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1194 |
+
decoder_attentions=decoder_outputs.attentions,
|
1195 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1196 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1197 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1198 |
+
encoder_attentions=encoder_outputs.attentions,
|
1199 |
+
)
|
1200 |
+
|
1201 |
+
def build(self, input_shape=None):
|
1202 |
+
if self.built:
|
1203 |
+
return
|
1204 |
+
self.built = True
|
1205 |
+
# The shared/tied weights expect to be in the model base namespace
|
1206 |
+
# Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than
|
1207 |
+
# the current one.
|
1208 |
+
with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"):
|
1209 |
+
self.shared.build(None)
|
1210 |
+
if getattr(self, "encoder", None) is not None:
|
1211 |
+
with tf.name_scope(self.encoder.name):
|
1212 |
+
self.encoder.build(None)
|
1213 |
+
if getattr(self, "decoder", None) is not None:
|
1214 |
+
with tf.name_scope(self.decoder.name):
|
1215 |
+
self.decoder.build(None)
|
1216 |
+
|
1217 |
+
|
1218 |
+
@add_start_docstrings(
|
1219 |
+
"The bare BLENDERBOT_SMALL Model outputting raw hidden-states without any specific head on top.",
|
1220 |
+
BLENDERBOT_SMALL_START_DOCSTRING,
|
1221 |
+
)
|
1222 |
+
class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel):
|
1223 |
+
def __init__(self, config: BlenderbotSmallConfig, *inputs, **kwargs):
|
1224 |
+
super().__init__(config, *inputs, **kwargs)
|
1225 |
+
|
1226 |
+
self.model = TFBlenderbotSmallMainLayer(config, name="model")
|
1227 |
+
|
1228 |
+
def get_encoder(self):
|
1229 |
+
return self.model.encoder
|
1230 |
+
|
1231 |
+
def get_decoder(self):
|
1232 |
+
return self.model.decoder
|
1233 |
+
|
1234 |
+
@unpack_inputs
|
1235 |
+
@add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1236 |
+
@add_code_sample_docstrings(
|
1237 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1238 |
+
output_type=TFSeq2SeqModelOutput,
|
1239 |
+
config_class=_CONFIG_FOR_DOC,
|
1240 |
+
)
|
1241 |
+
def call(
|
1242 |
+
self,
|
1243 |
+
input_ids: tf.Tensor | None = None,
|
1244 |
+
attention_mask: tf.Tensor | None = None,
|
1245 |
+
decoder_input_ids: tf.Tensor | None = None,
|
1246 |
+
decoder_attention_mask: tf.Tensor | None = None,
|
1247 |
+
decoder_position_ids: tf.Tensor | None = None,
|
1248 |
+
head_mask: tf.Tensor | None = None,
|
1249 |
+
decoder_head_mask: tf.Tensor | None = None,
|
1250 |
+
cross_attn_head_mask: tf.Tensor | None = None,
|
1251 |
+
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
|
1252 |
+
past_key_values: List[tf.Tensor] | None = None,
|
1253 |
+
inputs_embeds: tf.Tensor | None = None,
|
1254 |
+
decoder_inputs_embeds: tf.Tensor | None = None,
|
1255 |
+
use_cache: Optional[bool] = None,
|
1256 |
+
output_attentions: Optional[bool] = None,
|
1257 |
+
output_hidden_states: Optional[bool] = None,
|
1258 |
+
return_dict: Optional[bool] = None,
|
1259 |
+
training: Optional[bool] = False,
|
1260 |
+
**kwargs,
|
1261 |
+
) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]:
|
1262 |
+
outputs = self.model(
|
1263 |
+
input_ids=input_ids,
|
1264 |
+
attention_mask=attention_mask,
|
1265 |
+
decoder_input_ids=decoder_input_ids,
|
1266 |
+
decoder_attention_mask=decoder_attention_mask,
|
1267 |
+
decoder_position_ids=decoder_position_ids,
|
1268 |
+
head_mask=head_mask,
|
1269 |
+
decoder_head_mask=decoder_head_mask,
|
1270 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1271 |
+
encoder_outputs=encoder_outputs,
|
1272 |
+
past_key_values=past_key_values,
|
1273 |
+
inputs_embeds=inputs_embeds,
|
1274 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1275 |
+
use_cache=use_cache,
|
1276 |
+
output_attentions=output_attentions,
|
1277 |
+
output_hidden_states=output_hidden_states,
|
1278 |
+
return_dict=return_dict,
|
1279 |
+
training=training,
|
1280 |
+
)
|
1281 |
+
|
1282 |
+
return outputs
|
1283 |
+
|
1284 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output
|
1285 |
+
def serving_output(self, output):
|
1286 |
+
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
|
1287 |
+
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
|
1288 |
+
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
|
1289 |
+
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
|
1290 |
+
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
|
1291 |
+
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
|
1292 |
+
|
1293 |
+
return TFSeq2SeqModelOutput(
|
1294 |
+
last_hidden_state=output.last_hidden_state,
|
1295 |
+
past_key_values=pkv,
|
1296 |
+
decoder_hidden_states=dec_hs,
|
1297 |
+
decoder_attentions=dec_attns,
|
1298 |
+
cross_attentions=cross_attns,
|
1299 |
+
encoder_last_hidden_state=output.encoder_last_hidden_state,
|
1300 |
+
encoder_hidden_states=enc_hs,
|
1301 |
+
encoder_attentions=enc_attns,
|
1302 |
+
)
|
1303 |
+
|
1304 |
+
def build(self, input_shape=None):
|
1305 |
+
if self.built:
|
1306 |
+
return
|
1307 |
+
self.built = True
|
1308 |
+
if getattr(self, "model", None) is not None:
|
1309 |
+
with tf.name_scope(self.model.name):
|
1310 |
+
self.model.build(None)
|
1311 |
+
|
1312 |
+
|
1313 |
+
# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer
|
1314 |
+
class BiasLayer(keras.layers.Layer):
|
1315 |
+
"""
|
1316 |
+
Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis,
|
1317 |
+
so all weights have to be registered in a layer.
|
1318 |
+
"""
|
1319 |
+
|
1320 |
+
def __init__(self, shape, initializer, trainable, name, **kwargs):
|
1321 |
+
super().__init__(name=name, **kwargs)
|
1322 |
+
# Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
|
1323 |
+
# "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
|
1324 |
+
# https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
|
1325 |
+
self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
|
1326 |
+
|
1327 |
+
def call(self, x):
|
1328 |
+
return x + self.bias
|
1329 |
+
|
1330 |
+
|
1331 |
+
@add_start_docstrings(
|
1332 |
+
"The BLENDERBOT_SMALL Model with a language modeling head. Can be used for summarization.",
|
1333 |
+
BLENDERBOT_SMALL_START_DOCSTRING,
|
1334 |
+
)
|
1335 |
+
class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel, TFCausalLanguageModelingLoss):
|
1336 |
+
_keys_to_ignore_on_load_unexpected = [
|
1337 |
+
r"model.encoder.embed_tokens.weight",
|
1338 |
+
r"model.decoder.embed_tokens.weight",
|
1339 |
+
]
|
1340 |
+
|
1341 |
+
def __init__(self, config, *inputs, **kwargs):
|
1342 |
+
super().__init__(config, *inputs, **kwargs)
|
1343 |
+
self.model = TFBlenderbotSmallMainLayer(config, name="model")
|
1344 |
+
self.use_cache = config.use_cache
|
1345 |
+
# final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
|
1346 |
+
self.bias_layer = BiasLayer(
|
1347 |
+
name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
|
1348 |
+
)
|
1349 |
+
|
1350 |
+
def get_decoder(self):
|
1351 |
+
return self.model.decoder
|
1352 |
+
|
1353 |
+
def get_encoder(self):
|
1354 |
+
return self.model.encoder
|
1355 |
+
|
1356 |
+
def get_output_embeddings(self):
|
1357 |
+
return self.get_input_embeddings()
|
1358 |
+
|
1359 |
+
def set_output_embeddings(self, value):
|
1360 |
+
self.set_input_embeddings(value)
|
1361 |
+
|
1362 |
+
def get_bias(self):
|
1363 |
+
return {"final_logits_bias": self.bias_layer.bias}
|
1364 |
+
|
1365 |
+
def set_bias(self, value):
|
1366 |
+
# Replaces the existing layers containing bias for correct (de)serialization.
|
1367 |
+
vocab_size = value["final_logits_bias"].shape[-1]
|
1368 |
+
self.bias_layer = BiasLayer(
|
1369 |
+
name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False
|
1370 |
+
)
|
1371 |
+
self.bias_layer.bias.assign(value["final_logits_bias"])
|
1372 |
+
|
1373 |
+
@unpack_inputs
|
1374 |
+
@add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING)
|
1375 |
+
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
1376 |
+
@add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE)
|
1377 |
+
def call(
|
1378 |
+
self,
|
1379 |
+
input_ids: tf.Tensor | None = None,
|
1380 |
+
attention_mask: tf.Tensor | None = None,
|
1381 |
+
decoder_input_ids: tf.Tensor | None = None,
|
1382 |
+
decoder_attention_mask: tf.Tensor | None = None,
|
1383 |
+
decoder_position_ids: tf.Tensor | None = None,
|
1384 |
+
head_mask: tf.Tensor | None = None,
|
1385 |
+
decoder_head_mask: tf.Tensor | None = None,
|
1386 |
+
cross_attn_head_mask: tf.Tensor | None = None,
|
1387 |
+
encoder_outputs: Optional[TFBaseModelOutput] = None,
|
1388 |
+
past_key_values: List[tf.Tensor] | None = None,
|
1389 |
+
inputs_embeds: tf.Tensor | None = None,
|
1390 |
+
decoder_inputs_embeds: tf.Tensor | None = None,
|
1391 |
+
use_cache: Optional[bool] = None,
|
1392 |
+
output_attentions: Optional[bool] = None,
|
1393 |
+
output_hidden_states: Optional[bool] = None,
|
1394 |
+
return_dict: Optional[bool] = None,
|
1395 |
+
labels: tf.Tensor | None = None,
|
1396 |
+
training: Optional[bool] = False,
|
1397 |
+
) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
|
1398 |
+
r"""
|
1399 |
+
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1400 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1401 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1402 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1403 |
+
|
1404 |
+
Returns:
|
1405 |
+
|
1406 |
+
"""
|
1407 |
+
|
1408 |
+
if labels is not None:
|
1409 |
+
labels = tf.where(
|
1410 |
+
labels == self.config.pad_token_id,
|
1411 |
+
tf.cast(tf.fill(shape_list(labels), -100), labels.dtype),
|
1412 |
+
labels,
|
1413 |
+
)
|
1414 |
+
use_cache = False
|
1415 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1416 |
+
decoder_input_ids = shift_tokens_right(
|
1417 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
1418 |
+
)
|
1419 |
+
|
1420 |
+
outputs = self.model(
|
1421 |
+
input_ids,
|
1422 |
+
attention_mask=attention_mask,
|
1423 |
+
decoder_input_ids=decoder_input_ids,
|
1424 |
+
decoder_attention_mask=decoder_attention_mask,
|
1425 |
+
decoder_position_ids=decoder_position_ids,
|
1426 |
+
head_mask=head_mask,
|
1427 |
+
decoder_head_mask=decoder_head_mask,
|
1428 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1429 |
+
encoder_outputs=encoder_outputs,
|
1430 |
+
past_key_values=past_key_values,
|
1431 |
+
inputs_embeds=inputs_embeds,
|
1432 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1433 |
+
use_cache=use_cache,
|
1434 |
+
output_attentions=output_attentions,
|
1435 |
+
output_hidden_states=output_hidden_states,
|
1436 |
+
return_dict=return_dict,
|
1437 |
+
training=training,
|
1438 |
+
)
|
1439 |
+
lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
|
1440 |
+
lm_logits = self.bias_layer(lm_logits)
|
1441 |
+
masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
|
1442 |
+
|
1443 |
+
if not return_dict:
|
1444 |
+
output = (lm_logits,) + outputs[1:]
|
1445 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1446 |
+
return TFSeq2SeqLMOutput(
|
1447 |
+
loss=masked_lm_loss,
|
1448 |
+
logits=lm_logits,
|
1449 |
+
past_key_values=outputs.past_key_values, # index 1 of d outputs
|
1450 |
+
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
|
1451 |
+
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
|
1452 |
+
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
|
1453 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
|
1454 |
+
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
|
1455 |
+
encoder_attentions=outputs.encoder_attentions, # 2 of e out
|
1456 |
+
)
|
1457 |
+
|
1458 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output
|
1459 |
+
def serving_output(self, output):
|
1460 |
+
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
|
1461 |
+
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
|
1462 |
+
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
|
1463 |
+
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
|
1464 |
+
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
|
1465 |
+
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
|
1466 |
+
|
1467 |
+
return TFSeq2SeqLMOutput(
|
1468 |
+
logits=output.logits,
|
1469 |
+
past_key_values=pkv,
|
1470 |
+
decoder_hidden_states=dec_hs,
|
1471 |
+
decoder_attentions=dec_attns,
|
1472 |
+
cross_attentions=cross_attns,
|
1473 |
+
encoder_last_hidden_state=output.encoder_last_hidden_state,
|
1474 |
+
encoder_hidden_states=enc_hs,
|
1475 |
+
encoder_attentions=enc_attns,
|
1476 |
+
)
|
1477 |
+
|
1478 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation
|
1479 |
+
def prepare_inputs_for_generation(
|
1480 |
+
self,
|
1481 |
+
decoder_input_ids,
|
1482 |
+
past_key_values=None,
|
1483 |
+
attention_mask=None,
|
1484 |
+
decoder_attention_mask=None,
|
1485 |
+
head_mask=None,
|
1486 |
+
decoder_head_mask=None,
|
1487 |
+
cross_attn_head_mask=None,
|
1488 |
+
use_cache=None,
|
1489 |
+
encoder_outputs=None,
|
1490 |
+
**kwargs,
|
1491 |
+
):
|
1492 |
+
# cut decoder_input_ids if past_key_values is used
|
1493 |
+
if past_key_values is not None:
|
1494 |
+
decoder_input_ids = decoder_input_ids[:, -1:]
|
1495 |
+
|
1496 |
+
if decoder_attention_mask is not None: # xla
|
1497 |
+
decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
|
1498 |
+
elif past_key_values is not None: # no xla + past_key_values
|
1499 |
+
decoder_position_ids = past_key_values[0][0].shape[2]
|
1500 |
+
else: # no xla + no past_key_values
|
1501 |
+
decoder_position_ids = tf.range(decoder_input_ids.shape[1])
|
1502 |
+
|
1503 |
+
return {
|
1504 |
+
"input_ids": None, # encoder_outputs is defined. input_ids not needed
|
1505 |
+
"encoder_outputs": encoder_outputs,
|
1506 |
+
"past_key_values": past_key_values,
|
1507 |
+
"decoder_input_ids": decoder_input_ids,
|
1508 |
+
"attention_mask": attention_mask,
|
1509 |
+
"decoder_attention_mask": decoder_attention_mask,
|
1510 |
+
"decoder_position_ids": decoder_position_ids,
|
1511 |
+
"head_mask": head_mask,
|
1512 |
+
"decoder_head_mask": decoder_head_mask,
|
1513 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1514 |
+
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
1515 |
+
}
|
1516 |
+
|
1517 |
+
def build(self, input_shape=None):
|
1518 |
+
if self.built:
|
1519 |
+
return
|
1520 |
+
self.built = True
|
1521 |
+
if getattr(self, "model", None) is not None:
|
1522 |
+
with tf.name_scope(self.model.name):
|
1523 |
+
self.model.build(None)
|
1524 |
+
if getattr(self, "bias_layer", None) is not None:
|
1525 |
+
with tf.name_scope(self.bias_layer.name):
|
1526 |
+
self.bias_layer.build(None)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/__init__.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_tf_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {
|
27 |
+
"configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"],
|
28 |
+
"convert_funnel_original_tf_checkpoint_to_pytorch": [],
|
29 |
+
"tokenization_funnel": ["FunnelTokenizer"],
|
30 |
+
}
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_tokenizers_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["tokenization_funnel_fast"] = ["FunnelTokenizerFast"]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_torch_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["modeling_funnel"] = [
|
47 |
+
"FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
48 |
+
"FunnelBaseModel",
|
49 |
+
"FunnelForMaskedLM",
|
50 |
+
"FunnelForMultipleChoice",
|
51 |
+
"FunnelForPreTraining",
|
52 |
+
"FunnelForQuestionAnswering",
|
53 |
+
"FunnelForSequenceClassification",
|
54 |
+
"FunnelForTokenClassification",
|
55 |
+
"FunnelModel",
|
56 |
+
"FunnelPreTrainedModel",
|
57 |
+
"load_tf_weights_in_funnel",
|
58 |
+
]
|
59 |
+
|
60 |
+
try:
|
61 |
+
if not is_tf_available():
|
62 |
+
raise OptionalDependencyNotAvailable()
|
63 |
+
except OptionalDependencyNotAvailable:
|
64 |
+
pass
|
65 |
+
else:
|
66 |
+
_import_structure["modeling_tf_funnel"] = [
|
67 |
+
"TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
|
68 |
+
"TFFunnelBaseModel",
|
69 |
+
"TFFunnelForMaskedLM",
|
70 |
+
"TFFunnelForMultipleChoice",
|
71 |
+
"TFFunnelForPreTraining",
|
72 |
+
"TFFunnelForQuestionAnswering",
|
73 |
+
"TFFunnelForSequenceClassification",
|
74 |
+
"TFFunnelForTokenClassification",
|
75 |
+
"TFFunnelModel",
|
76 |
+
"TFFunnelPreTrainedModel",
|
77 |
+
]
|
78 |
+
|
79 |
+
|
80 |
+
if TYPE_CHECKING:
|
81 |
+
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
|
82 |
+
from .tokenization_funnel import FunnelTokenizer
|
83 |
+
|
84 |
+
try:
|
85 |
+
if not is_tokenizers_available():
|
86 |
+
raise OptionalDependencyNotAvailable()
|
87 |
+
except OptionalDependencyNotAvailable:
|
88 |
+
pass
|
89 |
+
else:
|
90 |
+
from .tokenization_funnel_fast import FunnelTokenizerFast
|
91 |
+
|
92 |
+
try:
|
93 |
+
if not is_torch_available():
|
94 |
+
raise OptionalDependencyNotAvailable()
|
95 |
+
except OptionalDependencyNotAvailable:
|
96 |
+
pass
|
97 |
+
else:
|
98 |
+
from .modeling_funnel import (
|
99 |
+
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
100 |
+
FunnelBaseModel,
|
101 |
+
FunnelForMaskedLM,
|
102 |
+
FunnelForMultipleChoice,
|
103 |
+
FunnelForPreTraining,
|
104 |
+
FunnelForQuestionAnswering,
|
105 |
+
FunnelForSequenceClassification,
|
106 |
+
FunnelForTokenClassification,
|
107 |
+
FunnelModel,
|
108 |
+
FunnelPreTrainedModel,
|
109 |
+
load_tf_weights_in_funnel,
|
110 |
+
)
|
111 |
+
|
112 |
+
try:
|
113 |
+
if not is_tf_available():
|
114 |
+
raise OptionalDependencyNotAvailable()
|
115 |
+
except OptionalDependencyNotAvailable:
|
116 |
+
pass
|
117 |
+
else:
|
118 |
+
from .modeling_tf_funnel import (
|
119 |
+
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
|
120 |
+
TFFunnelBaseModel,
|
121 |
+
TFFunnelForMaskedLM,
|
122 |
+
TFFunnelForMultipleChoice,
|
123 |
+
TFFunnelForPreTraining,
|
124 |
+
TFFunnelForQuestionAnswering,
|
125 |
+
TFFunnelForSequenceClassification,
|
126 |
+
TFFunnelForTokenClassification,
|
127 |
+
TFFunnelModel,
|
128 |
+
TFFunnelPreTrainedModel,
|
129 |
+
)
|
130 |
+
|
131 |
+
else:
|
132 |
+
import sys
|
133 |
+
|
134 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/configuration_funnel.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020, Hugging Face
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Funnel Transformer model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class FunnelConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`FunnelModel`] or a [`TFBertModel`]. It is used to
|
30 |
+
instantiate a Funnel Transformer model according to the specified arguments, defining the model architecture.
|
31 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the Funnel
|
32 |
+
Transformer [funnel-transformer/small](https://huggingface.co/funnel-transformer/small) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
39 |
+
Vocabulary size of the Funnel transformer. Defines the number of different tokens that can be represented
|
40 |
+
by the `inputs_ids` passed when calling [`FunnelModel`] or [`TFFunnelModel`].
|
41 |
+
block_sizes (`List[int]`, *optional*, defaults to `[4, 4, 4]`):
|
42 |
+
The sizes of the blocks used in the model.
|
43 |
+
block_repeats (`List[int]`, *optional*):
|
44 |
+
If passed along, each layer of each block is repeated the number of times indicated.
|
45 |
+
num_decoder_layers (`int`, *optional*, defaults to 2):
|
46 |
+
The number of layers in the decoder (when not using the base model).
|
47 |
+
d_model (`int`, *optional*, defaults to 768):
|
48 |
+
Dimensionality of the model's hidden states.
|
49 |
+
n_head (`int`, *optional*, defaults to 12):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
d_head (`int`, *optional*, defaults to 64):
|
52 |
+
Dimensionality of the model's heads.
|
53 |
+
d_inner (`int`, *optional*, defaults to 3072):
|
54 |
+
Inner dimension in the feed-forward blocks.
|
55 |
+
hidden_act (`str` or `callable`, *optional*, defaults to `"gelu_new"`):
|
56 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
57 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
58 |
+
hidden_dropout (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
60 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for the attention probabilities.
|
62 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
63 |
+
The dropout probability used between the two layers of the feed-forward blocks.
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.1):
|
65 |
+
The upper bound of the *uniform initializer* for initializing all weight matrices in attention layers.
|
66 |
+
initializer_std (`float`, *optional*):
|
67 |
+
The standard deviation of the *normal initializer* for initializing the embedding matrix and the weight of
|
68 |
+
linear layers. Will default to 1 for the embedding matrix and the value given by Xavier initialization for
|
69 |
+
linear layers.
|
70 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-09):
|
71 |
+
The epsilon used by the layer normalization layers.
|
72 |
+
pooling_type (`str`, *optional*, defaults to `"mean"`):
|
73 |
+
Possible values are `"mean"` or `"max"`. The way pooling is performed at the beginning of each block.
|
74 |
+
attention_type (`str`, *optional*, defaults to `"relative_shift"`):
|
75 |
+
Possible values are `"relative_shift"` or `"factorized"`. The former is faster on CPU/GPU while the latter
|
76 |
+
is faster on TPU.
|
77 |
+
separate_cls (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether or not to separate the cls token when applying pooling.
|
79 |
+
truncate_seq (`bool`, *optional*, defaults to `True`):
|
80 |
+
When using `separate_cls`, whether or not to truncate the last token when pooling, to avoid getting a
|
81 |
+
sequence length that is not a multiple of 2.
|
82 |
+
pool_q_only (`bool`, *optional*, defaults to `True`):
|
83 |
+
Whether or not to apply the pooling only to the query or to query, key and values for the attention layers.
|
84 |
+
"""
|
85 |
+
|
86 |
+
model_type = "funnel"
|
87 |
+
attribute_map = {
|
88 |
+
"hidden_size": "d_model",
|
89 |
+
"num_attention_heads": "n_head",
|
90 |
+
}
|
91 |
+
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
vocab_size=30522,
|
95 |
+
block_sizes=[4, 4, 4],
|
96 |
+
block_repeats=None,
|
97 |
+
num_decoder_layers=2,
|
98 |
+
d_model=768,
|
99 |
+
n_head=12,
|
100 |
+
d_head=64,
|
101 |
+
d_inner=3072,
|
102 |
+
hidden_act="gelu_new",
|
103 |
+
hidden_dropout=0.1,
|
104 |
+
attention_dropout=0.1,
|
105 |
+
activation_dropout=0.0,
|
106 |
+
initializer_range=0.1,
|
107 |
+
initializer_std=None,
|
108 |
+
layer_norm_eps=1e-9,
|
109 |
+
pooling_type="mean",
|
110 |
+
attention_type="relative_shift",
|
111 |
+
separate_cls=True,
|
112 |
+
truncate_seq=True,
|
113 |
+
pool_q_only=True,
|
114 |
+
**kwargs,
|
115 |
+
):
|
116 |
+
self.vocab_size = vocab_size
|
117 |
+
self.block_sizes = block_sizes
|
118 |
+
self.block_repeats = [1] * len(block_sizes) if block_repeats is None else block_repeats
|
119 |
+
assert len(block_sizes) == len(
|
120 |
+
self.block_repeats
|
121 |
+
), "`block_sizes` and `block_repeats` should have the same length."
|
122 |
+
self.num_decoder_layers = num_decoder_layers
|
123 |
+
self.d_model = d_model
|
124 |
+
self.n_head = n_head
|
125 |
+
self.d_head = d_head
|
126 |
+
self.d_inner = d_inner
|
127 |
+
self.hidden_act = hidden_act
|
128 |
+
self.hidden_dropout = hidden_dropout
|
129 |
+
self.attention_dropout = attention_dropout
|
130 |
+
self.activation_dropout = activation_dropout
|
131 |
+
self.initializer_range = initializer_range
|
132 |
+
self.initializer_std = initializer_std
|
133 |
+
self.layer_norm_eps = layer_norm_eps
|
134 |
+
assert pooling_type in [
|
135 |
+
"mean",
|
136 |
+
"max",
|
137 |
+
], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported."
|
138 |
+
self.pooling_type = pooling_type
|
139 |
+
assert attention_type in [
|
140 |
+
"relative_shift",
|
141 |
+
"factorized",
|
142 |
+
], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported."
|
143 |
+
self.attention_type = attention_type
|
144 |
+
self.separate_cls = separate_cls
|
145 |
+
self.truncate_seq = truncate_seq
|
146 |
+
self.pool_q_only = pool_q_only
|
147 |
+
|
148 |
+
super().__init__(**kwargs)
|
149 |
+
|
150 |
+
@property
|
151 |
+
def num_hidden_layers(self):
|
152 |
+
return sum(self.block_sizes)
|
153 |
+
|
154 |
+
@num_hidden_layers.setter
|
155 |
+
def num_hidden_layers(self, value):
|
156 |
+
raise NotImplementedError(
|
157 |
+
"This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`."
|
158 |
+
)
|
159 |
+
|
160 |
+
@property
|
161 |
+
def num_blocks(self):
|
162 |
+
return len(self.block_sizes)
|
163 |
+
|
164 |
+
@num_blocks.setter
|
165 |
+
def num_blocks(self, value):
|
166 |
+
raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`.")
|
llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/convert_funnel_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert Funnel checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logging.set_verbosity_info()
|
27 |
+
|
28 |
+
|
29 |
+
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, base_model):
|
30 |
+
# Initialise PyTorch model
|
31 |
+
config = FunnelConfig.from_json_file(config_file)
|
32 |
+
print(f"Building PyTorch model from configuration: {config}")
|
33 |
+
model = FunnelBaseModel(config) if base_model else FunnelModel(config)
|
34 |
+
|
35 |
+
# Load weights from tf checkpoint
|
36 |
+
load_tf_weights_in_funnel(model, config, tf_checkpoint_path)
|
37 |
+
|
38 |
+
# Save pytorch-model
|
39 |
+
print(f"Save PyTorch model to {pytorch_dump_path}")
|
40 |
+
torch.save(model.state_dict(), pytorch_dump_path)
|
41 |
+
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
parser = argparse.ArgumentParser()
|
45 |
+
# Required parameters
|
46 |
+
parser.add_argument(
|
47 |
+
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
48 |
+
)
|
49 |
+
parser.add_argument(
|
50 |
+
"--config_file",
|
51 |
+
default=None,
|
52 |
+
type=str,
|
53 |
+
required=True,
|
54 |
+
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
|
55 |
+
)
|
56 |
+
parser.add_argument(
|
57 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
58 |
+
)
|
59 |
+
parser.add_argument(
|
60 |
+
"--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not."
|
61 |
+
)
|
62 |
+
args = parser.parse_args()
|
63 |
+
convert_tf_checkpoint_to_pytorch(
|
64 |
+
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
|
65 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/modeling_funnel.py
ADDED
@@ -0,0 +1,1599 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Funnel Transformer model."""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from ...activations import ACT2FN
|
27 |
+
from ...modeling_outputs import (
|
28 |
+
BaseModelOutput,
|
29 |
+
MaskedLMOutput,
|
30 |
+
MultipleChoiceModelOutput,
|
31 |
+
QuestionAnsweringModelOutput,
|
32 |
+
SequenceClassifierOutput,
|
33 |
+
TokenClassifierOutput,
|
34 |
+
)
|
35 |
+
from ...modeling_utils import PreTrainedModel
|
36 |
+
from ...utils import (
|
37 |
+
ModelOutput,
|
38 |
+
add_code_sample_docstrings,
|
39 |
+
add_start_docstrings,
|
40 |
+
add_start_docstrings_to_model_forward,
|
41 |
+
logging,
|
42 |
+
replace_return_docstrings,
|
43 |
+
)
|
44 |
+
from .configuration_funnel import FunnelConfig
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
_CONFIG_FOR_DOC = "FunnelConfig"
|
50 |
+
_CHECKPOINT_FOR_DOC = "funnel-transformer/small"
|
51 |
+
|
52 |
+
|
53 |
+
from ..deprecated._archive_maps import FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
54 |
+
|
55 |
+
|
56 |
+
INF = 1e6
|
57 |
+
|
58 |
+
|
59 |
+
def load_tf_weights_in_funnel(model, config, tf_checkpoint_path):
|
60 |
+
"""Load tf checkpoints in a pytorch model."""
|
61 |
+
try:
|
62 |
+
import re
|
63 |
+
|
64 |
+
import numpy as np
|
65 |
+
import tensorflow as tf
|
66 |
+
except ImportError:
|
67 |
+
logger.error(
|
68 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
69 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
70 |
+
)
|
71 |
+
raise
|
72 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
73 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
74 |
+
# Load weights from TF model
|
75 |
+
init_vars = tf.train.list_variables(tf_path)
|
76 |
+
names = []
|
77 |
+
arrays = []
|
78 |
+
for name, shape in init_vars:
|
79 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
80 |
+
array = tf.train.load_variable(tf_path, name)
|
81 |
+
names.append(name)
|
82 |
+
arrays.append(array)
|
83 |
+
|
84 |
+
_layer_map = {
|
85 |
+
"k": "k_head",
|
86 |
+
"q": "q_head",
|
87 |
+
"v": "v_head",
|
88 |
+
"o": "post_proj",
|
89 |
+
"layer_1": "linear_1",
|
90 |
+
"layer_2": "linear_2",
|
91 |
+
"rel_attn": "attention",
|
92 |
+
"ff": "ffn",
|
93 |
+
"kernel": "weight",
|
94 |
+
"gamma": "weight",
|
95 |
+
"beta": "bias",
|
96 |
+
"lookup_table": "weight",
|
97 |
+
"word_embedding": "word_embeddings",
|
98 |
+
"input": "embeddings",
|
99 |
+
}
|
100 |
+
|
101 |
+
for name, array in zip(names, arrays):
|
102 |
+
name = name.split("/")
|
103 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
104 |
+
# which are not required for using pretrained model
|
105 |
+
if any(
|
106 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
107 |
+
for n in name
|
108 |
+
):
|
109 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
110 |
+
continue
|
111 |
+
if name[0] == "generator":
|
112 |
+
continue
|
113 |
+
pointer = model
|
114 |
+
skipped = False
|
115 |
+
for m_name in name[1:]:
|
116 |
+
if not isinstance(pointer, FunnelPositionwiseFFN) and re.fullmatch(r"layer_\d+", m_name):
|
117 |
+
layer_index = int(re.search(r"layer_(\d+)", m_name).groups()[0])
|
118 |
+
if layer_index < config.num_hidden_layers:
|
119 |
+
block_idx = 0
|
120 |
+
while layer_index >= config.block_sizes[block_idx]:
|
121 |
+
layer_index -= config.block_sizes[block_idx]
|
122 |
+
block_idx += 1
|
123 |
+
pointer = pointer.blocks[block_idx][layer_index]
|
124 |
+
else:
|
125 |
+
layer_index -= config.num_hidden_layers
|
126 |
+
pointer = pointer.layers[layer_index]
|
127 |
+
elif m_name == "r" and isinstance(pointer, FunnelRelMultiheadAttention):
|
128 |
+
pointer = pointer.r_kernel
|
129 |
+
break
|
130 |
+
elif m_name in _layer_map:
|
131 |
+
pointer = getattr(pointer, _layer_map[m_name])
|
132 |
+
else:
|
133 |
+
try:
|
134 |
+
pointer = getattr(pointer, m_name)
|
135 |
+
except AttributeError:
|
136 |
+
print(f"Skipping {'/'.join(name)}", array.shape)
|
137 |
+
skipped = True
|
138 |
+
break
|
139 |
+
if not skipped:
|
140 |
+
if len(pointer.shape) != len(array.shape):
|
141 |
+
array = array.reshape(pointer.shape)
|
142 |
+
if m_name == "kernel":
|
143 |
+
array = np.transpose(array)
|
144 |
+
pointer.data = torch.from_numpy(array)
|
145 |
+
|
146 |
+
return model
|
147 |
+
|
148 |
+
|
149 |
+
class FunnelEmbeddings(nn.Module):
|
150 |
+
def __init__(self, config: FunnelConfig) -> None:
|
151 |
+
super().__init__()
|
152 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
153 |
+
self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
|
154 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
155 |
+
|
156 |
+
def forward(
|
157 |
+
self, input_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None
|
158 |
+
) -> torch.Tensor:
|
159 |
+
if inputs_embeds is None:
|
160 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
161 |
+
embeddings = self.layer_norm(inputs_embeds)
|
162 |
+
embeddings = self.dropout(embeddings)
|
163 |
+
return embeddings
|
164 |
+
|
165 |
+
|
166 |
+
class FunnelAttentionStructure(nn.Module):
|
167 |
+
"""
|
168 |
+
Contains helpers for `FunnelRelMultiheadAttention `.
|
169 |
+
"""
|
170 |
+
|
171 |
+
cls_token_type_id: int = 2
|
172 |
+
|
173 |
+
def __init__(self, config: FunnelConfig) -> None:
|
174 |
+
super().__init__()
|
175 |
+
self.config = config
|
176 |
+
self.sin_dropout = nn.Dropout(config.hidden_dropout)
|
177 |
+
self.cos_dropout = nn.Dropout(config.hidden_dropout)
|
178 |
+
# Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was
|
179 |
+
# divided.
|
180 |
+
self.pooling_mult = None
|
181 |
+
|
182 |
+
def init_attention_inputs(
|
183 |
+
self,
|
184 |
+
inputs_embeds: torch.Tensor,
|
185 |
+
attention_mask: Optional[torch.Tensor] = None,
|
186 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
187 |
+
) -> Tuple[torch.Tensor]:
|
188 |
+
"""Returns the attention inputs associated to the inputs of the model."""
|
189 |
+
# inputs_embeds has shape batch_size x seq_len x d_model
|
190 |
+
# attention_mask and token_type_ids have shape batch_size x seq_len
|
191 |
+
self.pooling_mult = 1
|
192 |
+
self.seq_len = seq_len = inputs_embeds.size(1)
|
193 |
+
position_embeds = self.get_position_embeds(seq_len, inputs_embeds.dtype, inputs_embeds.device)
|
194 |
+
token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None
|
195 |
+
cls_mask = (
|
196 |
+
nn.functional.pad(inputs_embeds.new_ones([seq_len - 1, seq_len - 1]), (1, 0, 1, 0))
|
197 |
+
if self.config.separate_cls
|
198 |
+
else None
|
199 |
+
)
|
200 |
+
return (position_embeds, token_type_mat, attention_mask, cls_mask)
|
201 |
+
|
202 |
+
def token_type_ids_to_mat(self, token_type_ids: torch.Tensor) -> torch.Tensor:
|
203 |
+
"""Convert `token_type_ids` to `token_type_mat`."""
|
204 |
+
token_type_mat = token_type_ids[:, :, None] == token_type_ids[:, None]
|
205 |
+
# Treat <cls> as in the same segment as both A & B
|
206 |
+
cls_ids = token_type_ids == self.cls_token_type_id
|
207 |
+
cls_mat = cls_ids[:, :, None] | cls_ids[:, None]
|
208 |
+
return cls_mat | token_type_mat
|
209 |
+
|
210 |
+
def get_position_embeds(
|
211 |
+
self, seq_len: int, dtype: torch.dtype, device: torch.device
|
212 |
+
) -> Union[Tuple[torch.Tensor], List[List[torch.Tensor]]]:
|
213 |
+
"""
|
214 |
+
Create and cache inputs related to relative position encoding. Those are very different depending on whether we
|
215 |
+
are using the factorized or the relative shift attention:
|
216 |
+
|
217 |
+
For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2,
|
218 |
+
final formula.
|
219 |
+
|
220 |
+
For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final
|
221 |
+
formula.
|
222 |
+
|
223 |
+
Paper link: https://arxiv.org/abs/2006.03236
|
224 |
+
"""
|
225 |
+
d_model = self.config.d_model
|
226 |
+
if self.config.attention_type == "factorized":
|
227 |
+
# Notations from the paper, appending A.2.2, final formula.
|
228 |
+
# We need to create and return the matrices phi, psi, pi and omega.
|
229 |
+
pos_seq = torch.arange(0, seq_len, 1.0, dtype=torch.int64, device=device).to(dtype)
|
230 |
+
freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=torch.int64, device=device).to(dtype)
|
231 |
+
inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2)))
|
232 |
+
sinusoid = pos_seq[:, None] * inv_freq[None]
|
233 |
+
sin_embed = torch.sin(sinusoid)
|
234 |
+
sin_embed_d = self.sin_dropout(sin_embed)
|
235 |
+
cos_embed = torch.cos(sinusoid)
|
236 |
+
cos_embed_d = self.cos_dropout(cos_embed)
|
237 |
+
# This is different from the formula on the paper...
|
238 |
+
phi = torch.cat([sin_embed_d, sin_embed_d], dim=-1)
|
239 |
+
psi = torch.cat([cos_embed, sin_embed], dim=-1)
|
240 |
+
pi = torch.cat([cos_embed_d, cos_embed_d], dim=-1)
|
241 |
+
omega = torch.cat([-sin_embed, cos_embed], dim=-1)
|
242 |
+
return (phi, pi, psi, omega)
|
243 |
+
else:
|
244 |
+
# Notations from the paper, appending A.2.1, final formula.
|
245 |
+
# We need to create and return all the possible vectors R for all blocks and shifts.
|
246 |
+
freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=torch.int64, device=device).to(dtype)
|
247 |
+
inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2)))
|
248 |
+
# Maximum relative positions for the first input
|
249 |
+
rel_pos_id = torch.arange(-seq_len * 2, seq_len * 2, 1.0, dtype=torch.int64, device=device).to(dtype)
|
250 |
+
zero_offset = seq_len * 2
|
251 |
+
sinusoid = rel_pos_id[:, None] * inv_freq[None]
|
252 |
+
sin_embed = self.sin_dropout(torch.sin(sinusoid))
|
253 |
+
cos_embed = self.cos_dropout(torch.cos(sinusoid))
|
254 |
+
pos_embed = torch.cat([sin_embed, cos_embed], dim=-1)
|
255 |
+
|
256 |
+
pos = torch.arange(0, seq_len, dtype=torch.int64, device=device).to(dtype)
|
257 |
+
pooled_pos = pos
|
258 |
+
position_embeds_list = []
|
259 |
+
for block_index in range(0, self.config.num_blocks):
|
260 |
+
# For each block with block_index > 0, we need two types position embeddings:
|
261 |
+
# - Attention(pooled-q, unpooled-kv)
|
262 |
+
# - Attention(pooled-q, pooled-kv)
|
263 |
+
# For block_index = 0 we only need the second one and leave the first one as None.
|
264 |
+
|
265 |
+
# First type
|
266 |
+
if block_index == 0:
|
267 |
+
position_embeds_pooling = None
|
268 |
+
else:
|
269 |
+
pooled_pos = self.stride_pool_pos(pos, block_index)
|
270 |
+
|
271 |
+
# construct rel_pos_id
|
272 |
+
stride = 2 ** (block_index - 1)
|
273 |
+
rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2)
|
274 |
+
rel_pos = rel_pos[:, None] + zero_offset
|
275 |
+
rel_pos = rel_pos.expand(rel_pos.size(0), d_model)
|
276 |
+
position_embeds_pooling = torch.gather(pos_embed, 0, rel_pos)
|
277 |
+
|
278 |
+
# Second type
|
279 |
+
pos = pooled_pos
|
280 |
+
stride = 2**block_index
|
281 |
+
rel_pos = self.relative_pos(pos, stride)
|
282 |
+
|
283 |
+
rel_pos = rel_pos[:, None] + zero_offset
|
284 |
+
rel_pos = rel_pos.expand(rel_pos.size(0), d_model)
|
285 |
+
position_embeds_no_pooling = torch.gather(pos_embed, 0, rel_pos)
|
286 |
+
|
287 |
+
position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling])
|
288 |
+
return position_embeds_list
|
289 |
+
|
290 |
+
def stride_pool_pos(self, pos_id: torch.Tensor, block_index: int):
|
291 |
+
"""
|
292 |
+
Pool `pos_id` while keeping the cls token separate (if `config.separate_cls=True`).
|
293 |
+
"""
|
294 |
+
if self.config.separate_cls:
|
295 |
+
# Under separate <cls>, we treat the <cls> as the first token in
|
296 |
+
# the previous block of the 1st real block. Since the 1st real
|
297 |
+
# block always has position 1, the position of the previous block
|
298 |
+
# will be at `1 - 2 ** block_index`.
|
299 |
+
cls_pos = pos_id.new_tensor([-(2**block_index) + 1])
|
300 |
+
pooled_pos_id = pos_id[1:-1] if self.config.truncate_seq else pos_id[1:]
|
301 |
+
return torch.cat([cls_pos, pooled_pos_id[::2]], 0)
|
302 |
+
else:
|
303 |
+
return pos_id[::2]
|
304 |
+
|
305 |
+
def relative_pos(self, pos: torch.Tensor, stride: int, pooled_pos=None, shift: int = 1) -> torch.Tensor:
|
306 |
+
"""
|
307 |
+
Build the relative positional vector between `pos` and `pooled_pos`.
|
308 |
+
"""
|
309 |
+
if pooled_pos is None:
|
310 |
+
pooled_pos = pos
|
311 |
+
|
312 |
+
ref_point = pooled_pos[0] - pos[0]
|
313 |
+
num_remove = shift * len(pooled_pos)
|
314 |
+
max_dist = ref_point + num_remove * stride
|
315 |
+
min_dist = pooled_pos[0] - pos[-1]
|
316 |
+
|
317 |
+
return torch.arange(max_dist, min_dist - 1, -stride, dtype=torch.long, device=pos.device)
|
318 |
+
|
319 |
+
def stride_pool(
|
320 |
+
self,
|
321 |
+
tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]],
|
322 |
+
axis: Union[int, Tuple[int], List[int]],
|
323 |
+
) -> torch.Tensor:
|
324 |
+
"""
|
325 |
+
Perform pooling by stride slicing the tensor along the given axis.
|
326 |
+
"""
|
327 |
+
if tensor is None:
|
328 |
+
return None
|
329 |
+
|
330 |
+
# Do the stride pool recursively if axis is a list or a tuple of ints.
|
331 |
+
if isinstance(axis, (list, tuple)):
|
332 |
+
for ax in axis:
|
333 |
+
tensor = self.stride_pool(tensor, ax)
|
334 |
+
return tensor
|
335 |
+
|
336 |
+
# Do the stride pool recursively if tensor is a list or tuple of tensors.
|
337 |
+
if isinstance(tensor, (tuple, list)):
|
338 |
+
return type(tensor)(self.stride_pool(x, axis) for x in tensor)
|
339 |
+
|
340 |
+
# Deal with negative axis
|
341 |
+
axis %= tensor.ndim
|
342 |
+
|
343 |
+
axis_slice = (
|
344 |
+
slice(None, -1, 2) if self.config.separate_cls and self.config.truncate_seq else slice(None, None, 2)
|
345 |
+
)
|
346 |
+
enc_slice = [slice(None)] * axis + [axis_slice]
|
347 |
+
if self.config.separate_cls:
|
348 |
+
cls_slice = [slice(None)] * axis + [slice(None, 1)]
|
349 |
+
tensor = torch.cat([tensor[cls_slice], tensor], axis=axis)
|
350 |
+
return tensor[enc_slice]
|
351 |
+
|
352 |
+
def pool_tensor(
|
353 |
+
self, tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]], mode: str = "mean", stride: int = 2
|
354 |
+
) -> torch.Tensor:
|
355 |
+
"""Apply 1D pooling to a tensor of size [B x T (x H)]."""
|
356 |
+
if tensor is None:
|
357 |
+
return None
|
358 |
+
|
359 |
+
# Do the pool recursively if tensor is a list or tuple of tensors.
|
360 |
+
if isinstance(tensor, (tuple, list)):
|
361 |
+
return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor)
|
362 |
+
|
363 |
+
if self.config.separate_cls:
|
364 |
+
suffix = tensor[:, :-1] if self.config.truncate_seq else tensor
|
365 |
+
tensor = torch.cat([tensor[:, :1], suffix], dim=1)
|
366 |
+
|
367 |
+
ndim = tensor.ndim
|
368 |
+
if ndim == 2:
|
369 |
+
tensor = tensor[:, None, :, None]
|
370 |
+
elif ndim == 3:
|
371 |
+
tensor = tensor[:, None, :, :]
|
372 |
+
# Stride is applied on the second-to-last dimension.
|
373 |
+
stride = (stride, 1)
|
374 |
+
|
375 |
+
if mode == "mean":
|
376 |
+
tensor = nn.functional.avg_pool2d(tensor, stride, stride=stride, ceil_mode=True)
|
377 |
+
elif mode == "max":
|
378 |
+
tensor = nn.functional.max_pool2d(tensor, stride, stride=stride, ceil_mode=True)
|
379 |
+
elif mode == "min":
|
380 |
+
tensor = -nn.functional.max_pool2d(-tensor, stride, stride=stride, ceil_mode=True)
|
381 |
+
else:
|
382 |
+
raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.")
|
383 |
+
|
384 |
+
if ndim == 2:
|
385 |
+
return tensor[:, 0, :, 0]
|
386 |
+
elif ndim == 3:
|
387 |
+
return tensor[:, 0]
|
388 |
+
return tensor
|
389 |
+
|
390 |
+
def pre_attention_pooling(
|
391 |
+
self, output, attention_inputs: Tuple[torch.Tensor]
|
392 |
+
) -> Tuple[torch.Tensor, Tuple[torch.Tensor]]:
|
393 |
+
"""Pool `output` and the proper parts of `attention_inputs` before the attention layer."""
|
394 |
+
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
|
395 |
+
if self.config.pool_q_only:
|
396 |
+
if self.config.attention_type == "factorized":
|
397 |
+
position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:]
|
398 |
+
token_type_mat = self.stride_pool(token_type_mat, 1)
|
399 |
+
cls_mask = self.stride_pool(cls_mask, 0)
|
400 |
+
output = self.pool_tensor(output, mode=self.config.pooling_type)
|
401 |
+
else:
|
402 |
+
self.pooling_mult *= 2
|
403 |
+
if self.config.attention_type == "factorized":
|
404 |
+
position_embeds = self.stride_pool(position_embeds, 0)
|
405 |
+
token_type_mat = self.stride_pool(token_type_mat, [1, 2])
|
406 |
+
cls_mask = self.stride_pool(cls_mask, [1, 2])
|
407 |
+
attention_mask = self.pool_tensor(attention_mask, mode="min")
|
408 |
+
output = self.pool_tensor(output, mode=self.config.pooling_type)
|
409 |
+
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
|
410 |
+
return output, attention_inputs
|
411 |
+
|
412 |
+
def post_attention_pooling(self, attention_inputs: Tuple[torch.Tensor]) -> Tuple[torch.Tensor]:
|
413 |
+
"""Pool the proper parts of `attention_inputs` after the attention layer."""
|
414 |
+
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
|
415 |
+
if self.config.pool_q_only:
|
416 |
+
self.pooling_mult *= 2
|
417 |
+
if self.config.attention_type == "factorized":
|
418 |
+
position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0)
|
419 |
+
token_type_mat = self.stride_pool(token_type_mat, 2)
|
420 |
+
cls_mask = self.stride_pool(cls_mask, 1)
|
421 |
+
attention_mask = self.pool_tensor(attention_mask, mode="min")
|
422 |
+
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
|
423 |
+
return attention_inputs
|
424 |
+
|
425 |
+
|
426 |
+
def _relative_shift_gather(positional_attn: torch.Tensor, context_len: int, shift: int) -> torch.Tensor:
|
427 |
+
batch_size, n_head, seq_len, max_rel_len = positional_attn.shape
|
428 |
+
# max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j
|
429 |
+
|
430 |
+
# What's next is the same as doing the following gather, which might be clearer code but less efficient.
|
431 |
+
# idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1)
|
432 |
+
# # matrix of context_len + i-j
|
433 |
+
# return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len]))
|
434 |
+
|
435 |
+
positional_attn = torch.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len])
|
436 |
+
positional_attn = positional_attn[:, :, shift:, :]
|
437 |
+
positional_attn = torch.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift])
|
438 |
+
positional_attn = positional_attn[..., :context_len]
|
439 |
+
return positional_attn
|
440 |
+
|
441 |
+
|
442 |
+
class FunnelRelMultiheadAttention(nn.Module):
|
443 |
+
def __init__(self, config: FunnelConfig, block_index: int) -> None:
|
444 |
+
super().__init__()
|
445 |
+
self.config = config
|
446 |
+
self.block_index = block_index
|
447 |
+
d_model, n_head, d_head = config.d_model, config.n_head, config.d_head
|
448 |
+
|
449 |
+
self.hidden_dropout = nn.Dropout(config.hidden_dropout)
|
450 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
451 |
+
|
452 |
+
self.q_head = nn.Linear(d_model, n_head * d_head, bias=False)
|
453 |
+
self.k_head = nn.Linear(d_model, n_head * d_head)
|
454 |
+
self.v_head = nn.Linear(d_model, n_head * d_head)
|
455 |
+
|
456 |
+
self.r_w_bias = nn.Parameter(torch.zeros([n_head, d_head]))
|
457 |
+
self.r_r_bias = nn.Parameter(torch.zeros([n_head, d_head]))
|
458 |
+
self.r_kernel = nn.Parameter(torch.zeros([d_model, n_head, d_head]))
|
459 |
+
self.r_s_bias = nn.Parameter(torch.zeros([n_head, d_head]))
|
460 |
+
self.seg_embed = nn.Parameter(torch.zeros([2, n_head, d_head]))
|
461 |
+
|
462 |
+
self.post_proj = nn.Linear(n_head * d_head, d_model)
|
463 |
+
self.layer_norm = nn.LayerNorm(d_model, eps=config.layer_norm_eps)
|
464 |
+
self.scale = 1.0 / (d_head**0.5)
|
465 |
+
|
466 |
+
def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None):
|
467 |
+
"""Relative attention score for the positional encodings"""
|
468 |
+
# q_head has shape batch_size x sea_len x n_head x d_head
|
469 |
+
if self.config.attention_type == "factorized":
|
470 |
+
# Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236)
|
471 |
+
# phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model
|
472 |
+
phi, pi, psi, omega = position_embeds
|
473 |
+
# Shape n_head x d_head
|
474 |
+
u = self.r_r_bias * self.scale
|
475 |
+
# Shape d_model x n_head x d_head
|
476 |
+
w_r = self.r_kernel
|
477 |
+
|
478 |
+
# Shape batch_size x sea_len x n_head x d_model
|
479 |
+
q_r_attention = torch.einsum("binh,dnh->bind", q_head + u, w_r)
|
480 |
+
q_r_attention_1 = q_r_attention * phi[:, None]
|
481 |
+
q_r_attention_2 = q_r_attention * pi[:, None]
|
482 |
+
|
483 |
+
# Shape batch_size x n_head x seq_len x context_len
|
484 |
+
positional_attn = torch.einsum("bind,jd->bnij", q_r_attention_1, psi) + torch.einsum(
|
485 |
+
"bind,jd->bnij", q_r_attention_2, omega
|
486 |
+
)
|
487 |
+
else:
|
488 |
+
shift = 2 if q_head.shape[1] != context_len else 1
|
489 |
+
# Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236)
|
490 |
+
# Grab the proper positional encoding, shape max_rel_len x d_model
|
491 |
+
r = position_embeds[self.block_index][shift - 1]
|
492 |
+
# Shape n_head x d_head
|
493 |
+
v = self.r_r_bias * self.scale
|
494 |
+
# Shape d_model x n_head x d_head
|
495 |
+
w_r = self.r_kernel
|
496 |
+
|
497 |
+
# Shape max_rel_len x n_head x d_model
|
498 |
+
r_head = torch.einsum("td,dnh->tnh", r, w_r)
|
499 |
+
# Shape batch_size x n_head x seq_len x max_rel_len
|
500 |
+
positional_attn = torch.einsum("binh,tnh->bnit", q_head + v, r_head)
|
501 |
+
# Shape batch_size x n_head x seq_len x context_len
|
502 |
+
positional_attn = _relative_shift_gather(positional_attn, context_len, shift)
|
503 |
+
|
504 |
+
if cls_mask is not None:
|
505 |
+
positional_attn *= cls_mask
|
506 |
+
return positional_attn
|
507 |
+
|
508 |
+
def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None):
|
509 |
+
"""Relative attention score for the token_type_ids"""
|
510 |
+
if token_type_mat is None:
|
511 |
+
return 0
|
512 |
+
batch_size, seq_len, context_len = token_type_mat.shape
|
513 |
+
# q_head has shape batch_size x seq_len x n_head x d_head
|
514 |
+
# Shape n_head x d_head
|
515 |
+
r_s_bias = self.r_s_bias * self.scale
|
516 |
+
|
517 |
+
# Shape batch_size x n_head x seq_len x 2
|
518 |
+
token_type_bias = torch.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed)
|
519 |
+
# Shape batch_size x n_head x seq_len x context_len
|
520 |
+
token_type_mat = token_type_mat[:, None].expand([batch_size, q_head.shape[2], seq_len, context_len])
|
521 |
+
# Shapes batch_size x n_head x seq_len
|
522 |
+
diff_token_type, same_token_type = torch.split(token_type_bias, 1, dim=-1)
|
523 |
+
# Shape batch_size x n_head x seq_len x context_len
|
524 |
+
token_type_attn = torch.where(
|
525 |
+
token_type_mat, same_token_type.expand(token_type_mat.shape), diff_token_type.expand(token_type_mat.shape)
|
526 |
+
)
|
527 |
+
|
528 |
+
if cls_mask is not None:
|
529 |
+
token_type_attn *= cls_mask
|
530 |
+
return token_type_attn
|
531 |
+
|
532 |
+
def forward(
|
533 |
+
self,
|
534 |
+
query: torch.Tensor,
|
535 |
+
key: torch.Tensor,
|
536 |
+
value: torch.Tensor,
|
537 |
+
attention_inputs: Tuple[torch.Tensor],
|
538 |
+
output_attentions: bool = False,
|
539 |
+
) -> Tuple[torch.Tensor, ...]:
|
540 |
+
# query has shape batch_size x seq_len x d_model
|
541 |
+
# key and value have shapes batch_size x context_len x d_model
|
542 |
+
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
|
543 |
+
|
544 |
+
batch_size, seq_len, _ = query.shape
|
545 |
+
context_len = key.shape[1]
|
546 |
+
n_head, d_head = self.config.n_head, self.config.d_head
|
547 |
+
|
548 |
+
# Shape batch_size x seq_len x n_head x d_head
|
549 |
+
q_head = self.q_head(query).view(batch_size, seq_len, n_head, d_head)
|
550 |
+
# Shapes batch_size x context_len x n_head x d_head
|
551 |
+
k_head = self.k_head(key).view(batch_size, context_len, n_head, d_head)
|
552 |
+
v_head = self.v_head(value).view(batch_size, context_len, n_head, d_head)
|
553 |
+
|
554 |
+
q_head = q_head * self.scale
|
555 |
+
# Shape n_head x d_head
|
556 |
+
r_w_bias = self.r_w_bias * self.scale
|
557 |
+
# Shapes batch_size x n_head x seq_len x context_len
|
558 |
+
content_score = torch.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head)
|
559 |
+
positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask)
|
560 |
+
token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask)
|
561 |
+
|
562 |
+
# merge attention scores
|
563 |
+
attn_score = content_score + positional_attn + token_type_attn
|
564 |
+
|
565 |
+
# precision safe in case of mixed precision training
|
566 |
+
dtype = attn_score.dtype
|
567 |
+
attn_score = attn_score.float()
|
568 |
+
# perform masking
|
569 |
+
if attention_mask is not None:
|
570 |
+
attn_score = attn_score - INF * (1 - attention_mask[:, None, None].float())
|
571 |
+
# attention probability
|
572 |
+
attn_prob = torch.softmax(attn_score, dim=-1, dtype=dtype)
|
573 |
+
attn_prob = self.attention_dropout(attn_prob)
|
574 |
+
|
575 |
+
# attention output, shape batch_size x seq_len x n_head x d_head
|
576 |
+
attn_vec = torch.einsum("bnij,bjnd->bind", attn_prob, v_head)
|
577 |
+
|
578 |
+
# Shape shape batch_size x seq_len x d_model
|
579 |
+
attn_out = self.post_proj(attn_vec.reshape(batch_size, seq_len, n_head * d_head))
|
580 |
+
attn_out = self.hidden_dropout(attn_out)
|
581 |
+
|
582 |
+
output = self.layer_norm(query + attn_out)
|
583 |
+
return (output, attn_prob) if output_attentions else (output,)
|
584 |
+
|
585 |
+
|
586 |
+
class FunnelPositionwiseFFN(nn.Module):
|
587 |
+
def __init__(self, config: FunnelConfig) -> None:
|
588 |
+
super().__init__()
|
589 |
+
self.linear_1 = nn.Linear(config.d_model, config.d_inner)
|
590 |
+
self.activation_function = ACT2FN[config.hidden_act]
|
591 |
+
self.activation_dropout = nn.Dropout(config.activation_dropout)
|
592 |
+
self.linear_2 = nn.Linear(config.d_inner, config.d_model)
|
593 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
594 |
+
self.layer_norm = nn.LayerNorm(config.d_model, config.layer_norm_eps)
|
595 |
+
|
596 |
+
def forward(self, hidden: torch.Tensor) -> torch.Tensor:
|
597 |
+
h = self.linear_1(hidden)
|
598 |
+
h = self.activation_function(h)
|
599 |
+
h = self.activation_dropout(h)
|
600 |
+
h = self.linear_2(h)
|
601 |
+
h = self.dropout(h)
|
602 |
+
return self.layer_norm(hidden + h)
|
603 |
+
|
604 |
+
|
605 |
+
class FunnelLayer(nn.Module):
|
606 |
+
def __init__(self, config: FunnelConfig, block_index: int) -> None:
|
607 |
+
super().__init__()
|
608 |
+
self.attention = FunnelRelMultiheadAttention(config, block_index)
|
609 |
+
self.ffn = FunnelPositionwiseFFN(config)
|
610 |
+
|
611 |
+
def forward(
|
612 |
+
self,
|
613 |
+
query: torch.Tensor,
|
614 |
+
key: torch.Tensor,
|
615 |
+
value: torch.Tensor,
|
616 |
+
attention_inputs,
|
617 |
+
output_attentions: bool = False,
|
618 |
+
) -> Tuple:
|
619 |
+
attn = self.attention(query, key, value, attention_inputs, output_attentions=output_attentions)
|
620 |
+
output = self.ffn(attn[0])
|
621 |
+
return (output, attn[1]) if output_attentions else (output,)
|
622 |
+
|
623 |
+
|
624 |
+
class FunnelEncoder(nn.Module):
|
625 |
+
def __init__(self, config: FunnelConfig) -> None:
|
626 |
+
super().__init__()
|
627 |
+
self.config = config
|
628 |
+
self.attention_structure = FunnelAttentionStructure(config)
|
629 |
+
self.blocks = nn.ModuleList(
|
630 |
+
[
|
631 |
+
nn.ModuleList([FunnelLayer(config, block_index) for _ in range(block_size)])
|
632 |
+
for block_index, block_size in enumerate(config.block_sizes)
|
633 |
+
]
|
634 |
+
)
|
635 |
+
|
636 |
+
def forward(
|
637 |
+
self,
|
638 |
+
inputs_embeds: torch.Tensor,
|
639 |
+
attention_mask: Optional[torch.Tensor] = None,
|
640 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
641 |
+
output_attentions: bool = False,
|
642 |
+
output_hidden_states: bool = False,
|
643 |
+
return_dict: bool = True,
|
644 |
+
) -> Union[Tuple, BaseModelOutput]:
|
645 |
+
# The pooling is not implemented on long tensors, so we convert this mask.
|
646 |
+
attention_mask = attention_mask.type_as(inputs_embeds)
|
647 |
+
attention_inputs = self.attention_structure.init_attention_inputs(
|
648 |
+
inputs_embeds,
|
649 |
+
attention_mask=attention_mask,
|
650 |
+
token_type_ids=token_type_ids,
|
651 |
+
)
|
652 |
+
hidden = inputs_embeds
|
653 |
+
|
654 |
+
all_hidden_states = (inputs_embeds,) if output_hidden_states else None
|
655 |
+
all_attentions = () if output_attentions else None
|
656 |
+
|
657 |
+
for block_index, block in enumerate(self.blocks):
|
658 |
+
pooling_flag = hidden.size(1) > (2 if self.config.separate_cls else 1)
|
659 |
+
pooling_flag = pooling_flag and block_index > 0
|
660 |
+
if pooling_flag:
|
661 |
+
pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling(
|
662 |
+
hidden, attention_inputs
|
663 |
+
)
|
664 |
+
for layer_index, layer in enumerate(block):
|
665 |
+
for repeat_index in range(self.config.block_repeats[block_index]):
|
666 |
+
do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag
|
667 |
+
if do_pooling:
|
668 |
+
query = pooled_hidden
|
669 |
+
key = value = hidden if self.config.pool_q_only else pooled_hidden
|
670 |
+
else:
|
671 |
+
query = key = value = hidden
|
672 |
+
layer_output = layer(query, key, value, attention_inputs, output_attentions=output_attentions)
|
673 |
+
hidden = layer_output[0]
|
674 |
+
if do_pooling:
|
675 |
+
attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs)
|
676 |
+
|
677 |
+
if output_attentions:
|
678 |
+
all_attentions = all_attentions + layer_output[1:]
|
679 |
+
if output_hidden_states:
|
680 |
+
all_hidden_states = all_hidden_states + (hidden,)
|
681 |
+
|
682 |
+
if not return_dict:
|
683 |
+
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
|
684 |
+
return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
|
685 |
+
|
686 |
+
|
687 |
+
def upsample(
|
688 |
+
x: torch.Tensor, stride: int, target_len: int, separate_cls: bool = True, truncate_seq: bool = False
|
689 |
+
) -> torch.Tensor:
|
690 |
+
"""
|
691 |
+
Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension.
|
692 |
+
"""
|
693 |
+
if stride == 1:
|
694 |
+
return x
|
695 |
+
if separate_cls:
|
696 |
+
cls = x[:, :1]
|
697 |
+
x = x[:, 1:]
|
698 |
+
output = torch.repeat_interleave(x, repeats=stride, dim=1)
|
699 |
+
if separate_cls:
|
700 |
+
if truncate_seq:
|
701 |
+
output = nn.functional.pad(output, (0, 0, 0, stride - 1, 0, 0))
|
702 |
+
output = output[:, : target_len - 1]
|
703 |
+
output = torch.cat([cls, output], dim=1)
|
704 |
+
else:
|
705 |
+
output = output[:, :target_len]
|
706 |
+
return output
|
707 |
+
|
708 |
+
|
709 |
+
class FunnelDecoder(nn.Module):
|
710 |
+
def __init__(self, config: FunnelConfig) -> None:
|
711 |
+
super().__init__()
|
712 |
+
self.config = config
|
713 |
+
self.attention_structure = FunnelAttentionStructure(config)
|
714 |
+
self.layers = nn.ModuleList([FunnelLayer(config, 0) for _ in range(config.num_decoder_layers)])
|
715 |
+
|
716 |
+
def forward(
|
717 |
+
self,
|
718 |
+
final_hidden: torch.Tensor,
|
719 |
+
first_block_hidden: torch.Tensor,
|
720 |
+
attention_mask: Optional[torch.Tensor] = None,
|
721 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
722 |
+
output_attentions: bool = False,
|
723 |
+
output_hidden_states: bool = False,
|
724 |
+
return_dict: bool = True,
|
725 |
+
) -> Union[Tuple, BaseModelOutput]:
|
726 |
+
upsampled_hidden = upsample(
|
727 |
+
final_hidden,
|
728 |
+
stride=2 ** (len(self.config.block_sizes) - 1),
|
729 |
+
target_len=first_block_hidden.shape[1],
|
730 |
+
separate_cls=self.config.separate_cls,
|
731 |
+
truncate_seq=self.config.truncate_seq,
|
732 |
+
)
|
733 |
+
|
734 |
+
hidden = upsampled_hidden + first_block_hidden
|
735 |
+
all_hidden_states = (hidden,) if output_hidden_states else None
|
736 |
+
all_attentions = () if output_attentions else None
|
737 |
+
|
738 |
+
attention_inputs = self.attention_structure.init_attention_inputs(
|
739 |
+
hidden,
|
740 |
+
attention_mask=attention_mask,
|
741 |
+
token_type_ids=token_type_ids,
|
742 |
+
)
|
743 |
+
|
744 |
+
for layer in self.layers:
|
745 |
+
layer_output = layer(hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions)
|
746 |
+
hidden = layer_output[0]
|
747 |
+
|
748 |
+
if output_attentions:
|
749 |
+
all_attentions = all_attentions + layer_output[1:]
|
750 |
+
if output_hidden_states:
|
751 |
+
all_hidden_states = all_hidden_states + (hidden,)
|
752 |
+
|
753 |
+
if not return_dict:
|
754 |
+
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
|
755 |
+
return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
|
756 |
+
|
757 |
+
|
758 |
+
class FunnelDiscriminatorPredictions(nn.Module):
|
759 |
+
"""Prediction module for the discriminator, made up of two dense layers."""
|
760 |
+
|
761 |
+
def __init__(self, config: FunnelConfig) -> None:
|
762 |
+
super().__init__()
|
763 |
+
self.config = config
|
764 |
+
self.dense = nn.Linear(config.d_model, config.d_model)
|
765 |
+
self.dense_prediction = nn.Linear(config.d_model, 1)
|
766 |
+
|
767 |
+
def forward(self, discriminator_hidden_states: torch.Tensor) -> torch.Tensor:
|
768 |
+
hidden_states = self.dense(discriminator_hidden_states)
|
769 |
+
hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
|
770 |
+
logits = self.dense_prediction(hidden_states).squeeze(-1)
|
771 |
+
return logits
|
772 |
+
|
773 |
+
|
774 |
+
class FunnelPreTrainedModel(PreTrainedModel):
|
775 |
+
"""
|
776 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
777 |
+
models.
|
778 |
+
"""
|
779 |
+
|
780 |
+
config_class = FunnelConfig
|
781 |
+
load_tf_weights = load_tf_weights_in_funnel
|
782 |
+
base_model_prefix = "funnel"
|
783 |
+
|
784 |
+
def _init_weights(self, module):
|
785 |
+
classname = module.__class__.__name__
|
786 |
+
if classname.find("Linear") != -1:
|
787 |
+
if getattr(module, "weight", None) is not None:
|
788 |
+
if self.config.initializer_std is None:
|
789 |
+
fan_out, fan_in = module.weight.shape
|
790 |
+
std = np.sqrt(1.0 / float(fan_in + fan_out))
|
791 |
+
else:
|
792 |
+
std = self.config.initializer_std
|
793 |
+
nn.init.normal_(module.weight, std=std)
|
794 |
+
if getattr(module, "bias", None) is not None:
|
795 |
+
nn.init.constant_(module.bias, 0.0)
|
796 |
+
elif classname == "FunnelRelMultiheadAttention":
|
797 |
+
nn.init.uniform_(module.r_w_bias, b=self.config.initializer_range)
|
798 |
+
nn.init.uniform_(module.r_r_bias, b=self.config.initializer_range)
|
799 |
+
nn.init.uniform_(module.r_kernel, b=self.config.initializer_range)
|
800 |
+
nn.init.uniform_(module.r_s_bias, b=self.config.initializer_range)
|
801 |
+
nn.init.uniform_(module.seg_embed, b=self.config.initializer_range)
|
802 |
+
elif classname == "FunnelEmbeddings":
|
803 |
+
std = 1.0 if self.config.initializer_std is None else self.config.initializer_std
|
804 |
+
nn.init.normal_(module.word_embeddings.weight, std=std)
|
805 |
+
if module.word_embeddings.padding_idx is not None:
|
806 |
+
module.word_embeddings.weight.data[module.padding_idx].zero_()
|
807 |
+
|
808 |
+
|
809 |
+
class FunnelClassificationHead(nn.Module):
|
810 |
+
def __init__(self, config: FunnelConfig, n_labels: int) -> None:
|
811 |
+
super().__init__()
|
812 |
+
self.linear_hidden = nn.Linear(config.d_model, config.d_model)
|
813 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
814 |
+
self.linear_out = nn.Linear(config.d_model, n_labels)
|
815 |
+
|
816 |
+
def forward(self, hidden: torch.Tensor) -> torch.Tensor:
|
817 |
+
hidden = self.linear_hidden(hidden)
|
818 |
+
hidden = torch.tanh(hidden)
|
819 |
+
hidden = self.dropout(hidden)
|
820 |
+
return self.linear_out(hidden)
|
821 |
+
|
822 |
+
|
823 |
+
@dataclass
|
824 |
+
class FunnelForPreTrainingOutput(ModelOutput):
|
825 |
+
"""
|
826 |
+
Output type of [`FunnelForPreTraining`].
|
827 |
+
|
828 |
+
Args:
|
829 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
830 |
+
Total loss of the ELECTRA-style objective.
|
831 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
832 |
+
Prediction scores of the head (scores for each token before SoftMax).
|
833 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
834 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
835 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
836 |
+
|
837 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
838 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
839 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
840 |
+
sequence_length)`.
|
841 |
+
|
842 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
843 |
+
heads.
|
844 |
+
"""
|
845 |
+
|
846 |
+
loss: Optional[torch.FloatTensor] = None
|
847 |
+
logits: torch.FloatTensor = None
|
848 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
849 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
850 |
+
|
851 |
+
|
852 |
+
FUNNEL_START_DOCSTRING = r"""
|
853 |
+
|
854 |
+
The Funnel Transformer model was proposed in [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient
|
855 |
+
Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
|
856 |
+
|
857 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
858 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
859 |
+
etc.)
|
860 |
+
|
861 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
862 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
863 |
+
and behavior.
|
864 |
+
|
865 |
+
Parameters:
|
866 |
+
config ([`FunnelConfig`]): Model configuration class with all the parameters of the model.
|
867 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
868 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
869 |
+
"""
|
870 |
+
|
871 |
+
FUNNEL_INPUTS_DOCSTRING = r"""
|
872 |
+
Args:
|
873 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
874 |
+
Indices of input sequence tokens in the vocabulary.
|
875 |
+
|
876 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
877 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
878 |
+
|
879 |
+
[What are input IDs?](../glossary#input-ids)
|
880 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
881 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
882 |
+
|
883 |
+
- 1 for tokens that are **not masked**,
|
884 |
+
- 0 for tokens that are **masked**.
|
885 |
+
|
886 |
+
[What are attention masks?](../glossary#attention-mask)
|
887 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
888 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
889 |
+
1]`:
|
890 |
+
|
891 |
+
- 0 corresponds to a *sentence A* token,
|
892 |
+
- 1 corresponds to a *sentence B* token.
|
893 |
+
|
894 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
895 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
896 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
897 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
898 |
+
model's internal embedding lookup matrix.
|
899 |
+
output_attentions (`bool`, *optional*):
|
900 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
901 |
+
tensors for more detail.
|
902 |
+
output_hidden_states (`bool`, *optional*):
|
903 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
904 |
+
more detail.
|
905 |
+
return_dict (`bool`, *optional*):
|
906 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
907 |
+
"""
|
908 |
+
|
909 |
+
|
910 |
+
@add_start_docstrings(
|
911 |
+
"""
|
912 |
+
The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called
|
913 |
+
decoder) or any task-specific head on top.
|
914 |
+
""",
|
915 |
+
FUNNEL_START_DOCSTRING,
|
916 |
+
)
|
917 |
+
class FunnelBaseModel(FunnelPreTrainedModel):
|
918 |
+
def __init__(self, config: FunnelConfig) -> None:
|
919 |
+
super().__init__(config)
|
920 |
+
|
921 |
+
self.embeddings = FunnelEmbeddings(config)
|
922 |
+
self.encoder = FunnelEncoder(config)
|
923 |
+
|
924 |
+
# Initialize weights and apply final processing
|
925 |
+
self.post_init()
|
926 |
+
|
927 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
928 |
+
return self.embeddings.word_embeddings
|
929 |
+
|
930 |
+
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
931 |
+
self.embeddings.word_embeddings = new_embeddings
|
932 |
+
|
933 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
934 |
+
@add_code_sample_docstrings(
|
935 |
+
checkpoint="funnel-transformer/small-base",
|
936 |
+
output_type=BaseModelOutput,
|
937 |
+
config_class=_CONFIG_FOR_DOC,
|
938 |
+
)
|
939 |
+
def forward(
|
940 |
+
self,
|
941 |
+
input_ids: Optional[torch.Tensor] = None,
|
942 |
+
attention_mask: Optional[torch.Tensor] = None,
|
943 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
944 |
+
position_ids: Optional[torch.Tensor] = None,
|
945 |
+
head_mask: Optional[torch.Tensor] = None,
|
946 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
947 |
+
output_attentions: Optional[bool] = None,
|
948 |
+
output_hidden_states: Optional[bool] = None,
|
949 |
+
return_dict: Optional[bool] = None,
|
950 |
+
) -> Union[Tuple, BaseModelOutput]:
|
951 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
952 |
+
output_hidden_states = (
|
953 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
954 |
+
)
|
955 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
956 |
+
|
957 |
+
if input_ids is not None and inputs_embeds is not None:
|
958 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
959 |
+
elif input_ids is not None:
|
960 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
961 |
+
input_shape = input_ids.size()
|
962 |
+
elif inputs_embeds is not None:
|
963 |
+
input_shape = inputs_embeds.size()[:-1]
|
964 |
+
else:
|
965 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
966 |
+
|
967 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
968 |
+
|
969 |
+
if attention_mask is None:
|
970 |
+
attention_mask = torch.ones(input_shape, device=device)
|
971 |
+
if token_type_ids is None:
|
972 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
973 |
+
|
974 |
+
# TODO: deal with head_mask
|
975 |
+
if inputs_embeds is None:
|
976 |
+
inputs_embeds = self.embeddings(input_ids)
|
977 |
+
|
978 |
+
encoder_outputs = self.encoder(
|
979 |
+
inputs_embeds,
|
980 |
+
attention_mask=attention_mask,
|
981 |
+
token_type_ids=token_type_ids,
|
982 |
+
output_attentions=output_attentions,
|
983 |
+
output_hidden_states=output_hidden_states,
|
984 |
+
return_dict=return_dict,
|
985 |
+
)
|
986 |
+
|
987 |
+
return encoder_outputs
|
988 |
+
|
989 |
+
|
990 |
+
@add_start_docstrings(
|
991 |
+
"The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.",
|
992 |
+
FUNNEL_START_DOCSTRING,
|
993 |
+
)
|
994 |
+
class FunnelModel(FunnelPreTrainedModel):
|
995 |
+
def __init__(self, config: FunnelConfig) -> None:
|
996 |
+
super().__init__(config)
|
997 |
+
self.config = config
|
998 |
+
self.embeddings = FunnelEmbeddings(config)
|
999 |
+
self.encoder = FunnelEncoder(config)
|
1000 |
+
self.decoder = FunnelDecoder(config)
|
1001 |
+
|
1002 |
+
# Initialize weights and apply final processing
|
1003 |
+
self.post_init()
|
1004 |
+
|
1005 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
1006 |
+
return self.embeddings.word_embeddings
|
1007 |
+
|
1008 |
+
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
1009 |
+
self.embeddings.word_embeddings = new_embeddings
|
1010 |
+
|
1011 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1012 |
+
@add_code_sample_docstrings(
|
1013 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1014 |
+
output_type=BaseModelOutput,
|
1015 |
+
config_class=_CONFIG_FOR_DOC,
|
1016 |
+
)
|
1017 |
+
def forward(
|
1018 |
+
self,
|
1019 |
+
input_ids: Optional[torch.Tensor] = None,
|
1020 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1021 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1022 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1023 |
+
output_attentions: Optional[bool] = None,
|
1024 |
+
output_hidden_states: Optional[bool] = None,
|
1025 |
+
return_dict: Optional[bool] = None,
|
1026 |
+
) -> Union[Tuple, BaseModelOutput]:
|
1027 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1028 |
+
output_hidden_states = (
|
1029 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1030 |
+
)
|
1031 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1032 |
+
|
1033 |
+
if input_ids is not None and inputs_embeds is not None:
|
1034 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1035 |
+
elif input_ids is not None:
|
1036 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
1037 |
+
input_shape = input_ids.size()
|
1038 |
+
elif inputs_embeds is not None:
|
1039 |
+
input_shape = inputs_embeds.size()[:-1]
|
1040 |
+
else:
|
1041 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1042 |
+
|
1043 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1044 |
+
|
1045 |
+
if attention_mask is None:
|
1046 |
+
attention_mask = torch.ones(input_shape, device=device)
|
1047 |
+
if token_type_ids is None:
|
1048 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
1049 |
+
|
1050 |
+
# TODO: deal with head_mask
|
1051 |
+
if inputs_embeds is None:
|
1052 |
+
inputs_embeds = self.embeddings(input_ids)
|
1053 |
+
|
1054 |
+
encoder_outputs = self.encoder(
|
1055 |
+
inputs_embeds,
|
1056 |
+
attention_mask=attention_mask,
|
1057 |
+
token_type_ids=token_type_ids,
|
1058 |
+
output_attentions=output_attentions,
|
1059 |
+
output_hidden_states=True,
|
1060 |
+
return_dict=return_dict,
|
1061 |
+
)
|
1062 |
+
|
1063 |
+
decoder_outputs = self.decoder(
|
1064 |
+
final_hidden=encoder_outputs[0],
|
1065 |
+
first_block_hidden=encoder_outputs[1][self.config.block_sizes[0]],
|
1066 |
+
attention_mask=attention_mask,
|
1067 |
+
token_type_ids=token_type_ids,
|
1068 |
+
output_attentions=output_attentions,
|
1069 |
+
output_hidden_states=output_hidden_states,
|
1070 |
+
return_dict=return_dict,
|
1071 |
+
)
|
1072 |
+
|
1073 |
+
if not return_dict:
|
1074 |
+
idx = 0
|
1075 |
+
outputs = (decoder_outputs[0],)
|
1076 |
+
if output_hidden_states:
|
1077 |
+
idx += 1
|
1078 |
+
outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],)
|
1079 |
+
if output_attentions:
|
1080 |
+
idx += 1
|
1081 |
+
outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],)
|
1082 |
+
return outputs
|
1083 |
+
|
1084 |
+
return BaseModelOutput(
|
1085 |
+
last_hidden_state=decoder_outputs[0],
|
1086 |
+
hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states)
|
1087 |
+
if output_hidden_states
|
1088 |
+
else None,
|
1089 |
+
attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None,
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
|
1093 |
+
add_start_docstrings(
|
1094 |
+
"""
|
1095 |
+
Funnel Transformer model with a binary classification head on top as used during pretraining for identifying
|
1096 |
+
generated tokens.
|
1097 |
+
""",
|
1098 |
+
FUNNEL_START_DOCSTRING,
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
|
1102 |
+
class FunnelForPreTraining(FunnelPreTrainedModel):
|
1103 |
+
def __init__(self, config: FunnelConfig) -> None:
|
1104 |
+
super().__init__(config)
|
1105 |
+
|
1106 |
+
self.funnel = FunnelModel(config)
|
1107 |
+
self.discriminator_predictions = FunnelDiscriminatorPredictions(config)
|
1108 |
+
# Initialize weights and apply final processing
|
1109 |
+
self.post_init()
|
1110 |
+
|
1111 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1112 |
+
@replace_return_docstrings(output_type=FunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1113 |
+
def forward(
|
1114 |
+
self,
|
1115 |
+
input_ids: Optional[torch.Tensor] = None,
|
1116 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1117 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1118 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1119 |
+
labels: Optional[torch.Tensor] = None,
|
1120 |
+
output_attentions: Optional[bool] = None,
|
1121 |
+
output_hidden_states: Optional[bool] = None,
|
1122 |
+
return_dict: Optional[bool] = None,
|
1123 |
+
) -> Union[Tuple, FunnelForPreTrainingOutput]:
|
1124 |
+
r"""
|
1125 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1126 |
+
Labels for computing the ELECTRA-style loss. Input should be a sequence of tokens (see `input_ids`
|
1127 |
+
docstring) Indices should be in `[0, 1]`:
|
1128 |
+
|
1129 |
+
- 0 indicates the token is an original token,
|
1130 |
+
- 1 indicates the token was replaced.
|
1131 |
+
|
1132 |
+
Returns:
|
1133 |
+
|
1134 |
+
Examples:
|
1135 |
+
|
1136 |
+
```python
|
1137 |
+
>>> from transformers import AutoTokenizer, FunnelForPreTraining
|
1138 |
+
>>> import torch
|
1139 |
+
|
1140 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
|
1141 |
+
>>> model = FunnelForPreTraining.from_pretrained("funnel-transformer/small")
|
1142 |
+
|
1143 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1144 |
+
>>> logits = model(**inputs).logits
|
1145 |
+
```"""
|
1146 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1147 |
+
|
1148 |
+
discriminator_hidden_states = self.funnel(
|
1149 |
+
input_ids,
|
1150 |
+
attention_mask=attention_mask,
|
1151 |
+
token_type_ids=token_type_ids,
|
1152 |
+
inputs_embeds=inputs_embeds,
|
1153 |
+
output_attentions=output_attentions,
|
1154 |
+
output_hidden_states=output_hidden_states,
|
1155 |
+
return_dict=return_dict,
|
1156 |
+
)
|
1157 |
+
discriminator_sequence_output = discriminator_hidden_states[0]
|
1158 |
+
|
1159 |
+
logits = self.discriminator_predictions(discriminator_sequence_output)
|
1160 |
+
|
1161 |
+
loss = None
|
1162 |
+
if labels is not None:
|
1163 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
1164 |
+
if attention_mask is not None:
|
1165 |
+
active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1
|
1166 |
+
active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss]
|
1167 |
+
active_labels = labels[active_loss]
|
1168 |
+
loss = loss_fct(active_logits, active_labels.float())
|
1169 |
+
else:
|
1170 |
+
loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float())
|
1171 |
+
|
1172 |
+
if not return_dict:
|
1173 |
+
output = (logits,) + discriminator_hidden_states[1:]
|
1174 |
+
return ((loss,) + output) if loss is not None else output
|
1175 |
+
|
1176 |
+
return FunnelForPreTrainingOutput(
|
1177 |
+
loss=loss,
|
1178 |
+
logits=logits,
|
1179 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1180 |
+
attentions=discriminator_hidden_states.attentions,
|
1181 |
+
)
|
1182 |
+
|
1183 |
+
|
1184 |
+
@add_start_docstrings("""Funnel Transformer Model with a `language modeling` head on top.""", FUNNEL_START_DOCSTRING)
|
1185 |
+
class FunnelForMaskedLM(FunnelPreTrainedModel):
|
1186 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1187 |
+
|
1188 |
+
def __init__(self, config: FunnelConfig) -> None:
|
1189 |
+
super().__init__(config)
|
1190 |
+
|
1191 |
+
self.funnel = FunnelModel(config)
|
1192 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size)
|
1193 |
+
|
1194 |
+
# Initialize weights and apply final processing
|
1195 |
+
self.post_init()
|
1196 |
+
|
1197 |
+
def get_output_embeddings(self) -> nn.Linear:
|
1198 |
+
return self.lm_head
|
1199 |
+
|
1200 |
+
def set_output_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
1201 |
+
self.lm_head = new_embeddings
|
1202 |
+
|
1203 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1204 |
+
@add_code_sample_docstrings(
|
1205 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1206 |
+
output_type=MaskedLMOutput,
|
1207 |
+
config_class=_CONFIG_FOR_DOC,
|
1208 |
+
mask="<mask>",
|
1209 |
+
)
|
1210 |
+
def forward(
|
1211 |
+
self,
|
1212 |
+
input_ids: Optional[torch.Tensor] = None,
|
1213 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1214 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1215 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1216 |
+
labels: Optional[torch.Tensor] = None,
|
1217 |
+
output_attentions: Optional[bool] = None,
|
1218 |
+
output_hidden_states: Optional[bool] = None,
|
1219 |
+
return_dict: Optional[bool] = None,
|
1220 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
1221 |
+
r"""
|
1222 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1223 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1224 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1225 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1226 |
+
"""
|
1227 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1228 |
+
|
1229 |
+
outputs = self.funnel(
|
1230 |
+
input_ids,
|
1231 |
+
attention_mask=attention_mask,
|
1232 |
+
token_type_ids=token_type_ids,
|
1233 |
+
inputs_embeds=inputs_embeds,
|
1234 |
+
output_attentions=output_attentions,
|
1235 |
+
output_hidden_states=output_hidden_states,
|
1236 |
+
return_dict=return_dict,
|
1237 |
+
)
|
1238 |
+
|
1239 |
+
last_hidden_state = outputs[0]
|
1240 |
+
prediction_logits = self.lm_head(last_hidden_state)
|
1241 |
+
|
1242 |
+
masked_lm_loss = None
|
1243 |
+
if labels is not None:
|
1244 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1245 |
+
masked_lm_loss = loss_fct(prediction_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
1246 |
+
|
1247 |
+
if not return_dict:
|
1248 |
+
output = (prediction_logits,) + outputs[1:]
|
1249 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1250 |
+
|
1251 |
+
return MaskedLMOutput(
|
1252 |
+
loss=masked_lm_loss,
|
1253 |
+
logits=prediction_logits,
|
1254 |
+
hidden_states=outputs.hidden_states,
|
1255 |
+
attentions=outputs.attentions,
|
1256 |
+
)
|
1257 |
+
|
1258 |
+
|
1259 |
+
@add_start_docstrings(
|
1260 |
+
"""
|
1261 |
+
Funnel Transformer Model with a sequence classification/regression head on top (two linear layer on top of the
|
1262 |
+
first timestep of the last hidden state) e.g. for GLUE tasks.
|
1263 |
+
""",
|
1264 |
+
FUNNEL_START_DOCSTRING,
|
1265 |
+
)
|
1266 |
+
class FunnelForSequenceClassification(FunnelPreTrainedModel):
|
1267 |
+
def __init__(self, config: FunnelConfig) -> None:
|
1268 |
+
super().__init__(config)
|
1269 |
+
self.num_labels = config.num_labels
|
1270 |
+
self.config = config
|
1271 |
+
|
1272 |
+
self.funnel = FunnelBaseModel(config)
|
1273 |
+
self.classifier = FunnelClassificationHead(config, config.num_labels)
|
1274 |
+
# Initialize weights and apply final processing
|
1275 |
+
self.post_init()
|
1276 |
+
|
1277 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1278 |
+
@add_code_sample_docstrings(
|
1279 |
+
checkpoint="funnel-transformer/small-base",
|
1280 |
+
output_type=SequenceClassifierOutput,
|
1281 |
+
config_class=_CONFIG_FOR_DOC,
|
1282 |
+
)
|
1283 |
+
def forward(
|
1284 |
+
self,
|
1285 |
+
input_ids: Optional[torch.Tensor] = None,
|
1286 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1287 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1288 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1289 |
+
labels: Optional[torch.Tensor] = None,
|
1290 |
+
output_attentions: Optional[bool] = None,
|
1291 |
+
output_hidden_states: Optional[bool] = None,
|
1292 |
+
return_dict: Optional[bool] = None,
|
1293 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1294 |
+
r"""
|
1295 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1296 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1297 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1298 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1299 |
+
"""
|
1300 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1301 |
+
|
1302 |
+
outputs = self.funnel(
|
1303 |
+
input_ids,
|
1304 |
+
attention_mask=attention_mask,
|
1305 |
+
token_type_ids=token_type_ids,
|
1306 |
+
inputs_embeds=inputs_embeds,
|
1307 |
+
output_attentions=output_attentions,
|
1308 |
+
output_hidden_states=output_hidden_states,
|
1309 |
+
return_dict=return_dict,
|
1310 |
+
)
|
1311 |
+
|
1312 |
+
last_hidden_state = outputs[0]
|
1313 |
+
pooled_output = last_hidden_state[:, 0]
|
1314 |
+
logits = self.classifier(pooled_output)
|
1315 |
+
|
1316 |
+
loss = None
|
1317 |
+
if labels is not None:
|
1318 |
+
if self.config.problem_type is None:
|
1319 |
+
if self.num_labels == 1:
|
1320 |
+
self.config.problem_type = "regression"
|
1321 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1322 |
+
self.config.problem_type = "single_label_classification"
|
1323 |
+
else:
|
1324 |
+
self.config.problem_type = "multi_label_classification"
|
1325 |
+
|
1326 |
+
if self.config.problem_type == "regression":
|
1327 |
+
loss_fct = MSELoss()
|
1328 |
+
if self.num_labels == 1:
|
1329 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1330 |
+
else:
|
1331 |
+
loss = loss_fct(logits, labels)
|
1332 |
+
elif self.config.problem_type == "single_label_classification":
|
1333 |
+
loss_fct = CrossEntropyLoss()
|
1334 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1335 |
+
elif self.config.problem_type == "multi_label_classification":
|
1336 |
+
loss_fct = BCEWithLogitsLoss()
|
1337 |
+
loss = loss_fct(logits, labels)
|
1338 |
+
|
1339 |
+
if not return_dict:
|
1340 |
+
output = (logits,) + outputs[1:]
|
1341 |
+
return ((loss,) + output) if loss is not None else output
|
1342 |
+
|
1343 |
+
return SequenceClassifierOutput(
|
1344 |
+
loss=loss,
|
1345 |
+
logits=logits,
|
1346 |
+
hidden_states=outputs.hidden_states,
|
1347 |
+
attentions=outputs.attentions,
|
1348 |
+
)
|
1349 |
+
|
1350 |
+
|
1351 |
+
@add_start_docstrings(
|
1352 |
+
"""
|
1353 |
+
Funnel Transformer Model with a multiple choice classification head on top (two linear layer on top of the first
|
1354 |
+
timestep of the last hidden state, and a softmax) e.g. for RocStories/SWAG tasks.
|
1355 |
+
""",
|
1356 |
+
FUNNEL_START_DOCSTRING,
|
1357 |
+
)
|
1358 |
+
class FunnelForMultipleChoice(FunnelPreTrainedModel):
|
1359 |
+
def __init__(self, config: FunnelConfig) -> None:
|
1360 |
+
super().__init__(config)
|
1361 |
+
|
1362 |
+
self.funnel = FunnelBaseModel(config)
|
1363 |
+
self.classifier = FunnelClassificationHead(config, 1)
|
1364 |
+
# Initialize weights and apply final processing
|
1365 |
+
self.post_init()
|
1366 |
+
|
1367 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1368 |
+
@add_code_sample_docstrings(
|
1369 |
+
checkpoint="funnel-transformer/small-base",
|
1370 |
+
output_type=MultipleChoiceModelOutput,
|
1371 |
+
config_class=_CONFIG_FOR_DOC,
|
1372 |
+
)
|
1373 |
+
def forward(
|
1374 |
+
self,
|
1375 |
+
input_ids: Optional[torch.Tensor] = None,
|
1376 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1377 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1378 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1379 |
+
labels: Optional[torch.Tensor] = None,
|
1380 |
+
output_attentions: Optional[bool] = None,
|
1381 |
+
output_hidden_states: Optional[bool] = None,
|
1382 |
+
return_dict: Optional[bool] = None,
|
1383 |
+
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
1384 |
+
r"""
|
1385 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1386 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1387 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1388 |
+
`input_ids` above)
|
1389 |
+
"""
|
1390 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1391 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1392 |
+
|
1393 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1394 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1395 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1396 |
+
inputs_embeds = (
|
1397 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1398 |
+
if inputs_embeds is not None
|
1399 |
+
else None
|
1400 |
+
)
|
1401 |
+
|
1402 |
+
outputs = self.funnel(
|
1403 |
+
input_ids,
|
1404 |
+
attention_mask=attention_mask,
|
1405 |
+
token_type_ids=token_type_ids,
|
1406 |
+
inputs_embeds=inputs_embeds,
|
1407 |
+
output_attentions=output_attentions,
|
1408 |
+
output_hidden_states=output_hidden_states,
|
1409 |
+
return_dict=return_dict,
|
1410 |
+
)
|
1411 |
+
|
1412 |
+
last_hidden_state = outputs[0]
|
1413 |
+
pooled_output = last_hidden_state[:, 0]
|
1414 |
+
logits = self.classifier(pooled_output)
|
1415 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1416 |
+
|
1417 |
+
loss = None
|
1418 |
+
if labels is not None:
|
1419 |
+
loss_fct = CrossEntropyLoss()
|
1420 |
+
loss = loss_fct(reshaped_logits, labels)
|
1421 |
+
|
1422 |
+
if not return_dict:
|
1423 |
+
output = (reshaped_logits,) + outputs[1:]
|
1424 |
+
return ((loss,) + output) if loss is not None else output
|
1425 |
+
|
1426 |
+
return MultipleChoiceModelOutput(
|
1427 |
+
loss=loss,
|
1428 |
+
logits=reshaped_logits,
|
1429 |
+
hidden_states=outputs.hidden_states,
|
1430 |
+
attentions=outputs.attentions,
|
1431 |
+
)
|
1432 |
+
|
1433 |
+
|
1434 |
+
@add_start_docstrings(
|
1435 |
+
"""
|
1436 |
+
Funnel Transformer Model with a token classification head on top (a linear layer on top of the hidden-states
|
1437 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1438 |
+
""",
|
1439 |
+
FUNNEL_START_DOCSTRING,
|
1440 |
+
)
|
1441 |
+
class FunnelForTokenClassification(FunnelPreTrainedModel):
|
1442 |
+
def __init__(self, config: FunnelConfig) -> None:
|
1443 |
+
super().__init__(config)
|
1444 |
+
self.num_labels = config.num_labels
|
1445 |
+
|
1446 |
+
self.funnel = FunnelModel(config)
|
1447 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
1448 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1449 |
+
|
1450 |
+
# Initialize weights and apply final processing
|
1451 |
+
self.post_init()
|
1452 |
+
|
1453 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1454 |
+
@add_code_sample_docstrings(
|
1455 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1456 |
+
output_type=TokenClassifierOutput,
|
1457 |
+
config_class=_CONFIG_FOR_DOC,
|
1458 |
+
)
|
1459 |
+
def forward(
|
1460 |
+
self,
|
1461 |
+
input_ids: Optional[torch.Tensor] = None,
|
1462 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1463 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1464 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1465 |
+
labels: Optional[torch.Tensor] = None,
|
1466 |
+
output_attentions: Optional[bool] = None,
|
1467 |
+
output_hidden_states: Optional[bool] = None,
|
1468 |
+
return_dict: Optional[bool] = None,
|
1469 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1470 |
+
r"""
|
1471 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1472 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1473 |
+
"""
|
1474 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1475 |
+
|
1476 |
+
outputs = self.funnel(
|
1477 |
+
input_ids,
|
1478 |
+
attention_mask=attention_mask,
|
1479 |
+
token_type_ids=token_type_ids,
|
1480 |
+
inputs_embeds=inputs_embeds,
|
1481 |
+
output_attentions=output_attentions,
|
1482 |
+
output_hidden_states=output_hidden_states,
|
1483 |
+
return_dict=return_dict,
|
1484 |
+
)
|
1485 |
+
|
1486 |
+
last_hidden_state = outputs[0]
|
1487 |
+
last_hidden_state = self.dropout(last_hidden_state)
|
1488 |
+
logits = self.classifier(last_hidden_state)
|
1489 |
+
|
1490 |
+
loss = None
|
1491 |
+
if labels is not None:
|
1492 |
+
loss_fct = CrossEntropyLoss()
|
1493 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1494 |
+
|
1495 |
+
if not return_dict:
|
1496 |
+
output = (logits,) + outputs[1:]
|
1497 |
+
return ((loss,) + output) if loss is not None else output
|
1498 |
+
|
1499 |
+
return TokenClassifierOutput(
|
1500 |
+
loss=loss,
|
1501 |
+
logits=logits,
|
1502 |
+
hidden_states=outputs.hidden_states,
|
1503 |
+
attentions=outputs.attentions,
|
1504 |
+
)
|
1505 |
+
|
1506 |
+
|
1507 |
+
@add_start_docstrings(
|
1508 |
+
"""
|
1509 |
+
Funnel Transformer Model with a span classification head on top for extractive question-answering tasks like SQuAD
|
1510 |
+
(a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1511 |
+
""",
|
1512 |
+
FUNNEL_START_DOCSTRING,
|
1513 |
+
)
|
1514 |
+
class FunnelForQuestionAnswering(FunnelPreTrainedModel):
|
1515 |
+
def __init__(self, config: FunnelConfig) -> None:
|
1516 |
+
super().__init__(config)
|
1517 |
+
self.num_labels = config.num_labels
|
1518 |
+
|
1519 |
+
self.funnel = FunnelModel(config)
|
1520 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1521 |
+
|
1522 |
+
# Initialize weights and apply final processing
|
1523 |
+
self.post_init()
|
1524 |
+
|
1525 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1526 |
+
@add_code_sample_docstrings(
|
1527 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1528 |
+
output_type=QuestionAnsweringModelOutput,
|
1529 |
+
config_class=_CONFIG_FOR_DOC,
|
1530 |
+
)
|
1531 |
+
def forward(
|
1532 |
+
self,
|
1533 |
+
input_ids: Optional[torch.Tensor] = None,
|
1534 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1535 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1536 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1537 |
+
start_positions: Optional[torch.Tensor] = None,
|
1538 |
+
end_positions: Optional[torch.Tensor] = None,
|
1539 |
+
output_attentions: Optional[bool] = None,
|
1540 |
+
output_hidden_states: Optional[bool] = None,
|
1541 |
+
return_dict: Optional[bool] = None,
|
1542 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1543 |
+
r"""
|
1544 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1545 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1546 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1547 |
+
are not taken into account for computing the loss.
|
1548 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1549 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1550 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1551 |
+
are not taken into account for computing the loss.
|
1552 |
+
"""
|
1553 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1554 |
+
|
1555 |
+
outputs = self.funnel(
|
1556 |
+
input_ids,
|
1557 |
+
attention_mask=attention_mask,
|
1558 |
+
token_type_ids=token_type_ids,
|
1559 |
+
inputs_embeds=inputs_embeds,
|
1560 |
+
output_attentions=output_attentions,
|
1561 |
+
output_hidden_states=output_hidden_states,
|
1562 |
+
return_dict=return_dict,
|
1563 |
+
)
|
1564 |
+
|
1565 |
+
last_hidden_state = outputs[0]
|
1566 |
+
|
1567 |
+
logits = self.qa_outputs(last_hidden_state)
|
1568 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1569 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1570 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1571 |
+
|
1572 |
+
total_loss = None
|
1573 |
+
if start_positions is not None and end_positions is not None:
|
1574 |
+
# If we are on multi-GPU, split add a dimension
|
1575 |
+
if len(start_positions.size()) > 1:
|
1576 |
+
start_positions = start_positions.squeze(-1)
|
1577 |
+
if len(end_positions.size()) > 1:
|
1578 |
+
end_positions = end_positions.squeeze(-1)
|
1579 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1580 |
+
ignored_index = start_logits.size(1)
|
1581 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1582 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1583 |
+
|
1584 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1585 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1586 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1587 |
+
total_loss = (start_loss + end_loss) / 2
|
1588 |
+
|
1589 |
+
if not return_dict:
|
1590 |
+
output = (start_logits, end_logits) + outputs[1:]
|
1591 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1592 |
+
|
1593 |
+
return QuestionAnsweringModelOutput(
|
1594 |
+
loss=total_loss,
|
1595 |
+
start_logits=start_logits,
|
1596 |
+
end_logits=end_logits,
|
1597 |
+
hidden_states=outputs.hidden_states,
|
1598 |
+
attentions=outputs.attentions,
|
1599 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/modeling_tf_funnel.py
ADDED
@@ -0,0 +1,1871 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 Funnel model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import warnings
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import Optional, Tuple, Union
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
import tensorflow as tf
|
26 |
+
|
27 |
+
from ...activations_tf import get_tf_activation
|
28 |
+
from ...modeling_tf_outputs import (
|
29 |
+
TFBaseModelOutput,
|
30 |
+
TFMaskedLMOutput,
|
31 |
+
TFMultipleChoiceModelOutput,
|
32 |
+
TFQuestionAnsweringModelOutput,
|
33 |
+
TFSequenceClassifierOutput,
|
34 |
+
TFTokenClassifierOutput,
|
35 |
+
)
|
36 |
+
from ...modeling_tf_utils import (
|
37 |
+
TFMaskedLanguageModelingLoss,
|
38 |
+
TFModelInputType,
|
39 |
+
TFMultipleChoiceLoss,
|
40 |
+
TFPreTrainedModel,
|
41 |
+
TFQuestionAnsweringLoss,
|
42 |
+
TFSequenceClassificationLoss,
|
43 |
+
TFTokenClassificationLoss,
|
44 |
+
get_initializer,
|
45 |
+
keras,
|
46 |
+
keras_serializable,
|
47 |
+
unpack_inputs,
|
48 |
+
)
|
49 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
50 |
+
from ...utils import (
|
51 |
+
ModelOutput,
|
52 |
+
add_code_sample_docstrings,
|
53 |
+
add_start_docstrings,
|
54 |
+
add_start_docstrings_to_model_forward,
|
55 |
+
logging,
|
56 |
+
replace_return_docstrings,
|
57 |
+
)
|
58 |
+
from .configuration_funnel import FunnelConfig
|
59 |
+
|
60 |
+
|
61 |
+
logger = logging.get_logger(__name__)
|
62 |
+
|
63 |
+
_CONFIG_FOR_DOC = "FunnelConfig"
|
64 |
+
|
65 |
+
|
66 |
+
from ..deprecated._archive_maps import TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
67 |
+
|
68 |
+
|
69 |
+
INF = 1e6
|
70 |
+
|
71 |
+
|
72 |
+
class TFFunnelEmbeddings(keras.layers.Layer):
|
73 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
74 |
+
|
75 |
+
def __init__(self, config, **kwargs):
|
76 |
+
super().__init__(**kwargs)
|
77 |
+
|
78 |
+
self.config = config
|
79 |
+
self.hidden_size = config.hidden_size
|
80 |
+
self.initializer_std = 1.0 if config.initializer_std is None else config.initializer_std
|
81 |
+
|
82 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
|
83 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout)
|
84 |
+
|
85 |
+
def build(self, input_shape=None):
|
86 |
+
with tf.name_scope("word_embeddings"):
|
87 |
+
self.weight = self.add_weight(
|
88 |
+
name="weight",
|
89 |
+
shape=[self.config.vocab_size, self.hidden_size],
|
90 |
+
initializer=get_initializer(initializer_range=self.initializer_std),
|
91 |
+
)
|
92 |
+
|
93 |
+
if self.built:
|
94 |
+
return
|
95 |
+
self.built = True
|
96 |
+
if getattr(self, "LayerNorm", None) is not None:
|
97 |
+
with tf.name_scope(self.LayerNorm.name):
|
98 |
+
self.LayerNorm.build([None, None, self.config.d_model])
|
99 |
+
|
100 |
+
def call(self, input_ids=None, inputs_embeds=None, training=False):
|
101 |
+
"""
|
102 |
+
Applies embedding based on inputs tensor.
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
final_embeddings (`tf.Tensor`): output embedding tensor.
|
106 |
+
"""
|
107 |
+
assert not (input_ids is None and inputs_embeds is None)
|
108 |
+
assert not (input_ids is not None and inputs_embeds is not None)
|
109 |
+
|
110 |
+
if input_ids is not None:
|
111 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
112 |
+
inputs_embeds = tf.gather(self.weight, input_ids)
|
113 |
+
|
114 |
+
final_embeddings = self.LayerNorm(inputs=inputs_embeds)
|
115 |
+
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
|
116 |
+
|
117 |
+
return final_embeddings
|
118 |
+
|
119 |
+
|
120 |
+
class TFFunnelAttentionStructure:
|
121 |
+
"""
|
122 |
+
Contains helpers for `TFFunnelRelMultiheadAttention `.
|
123 |
+
"""
|
124 |
+
|
125 |
+
cls_token_type_id: int = 2
|
126 |
+
|
127 |
+
def __init__(self, config):
|
128 |
+
self.d_model = config.d_model
|
129 |
+
self.attention_type = config.attention_type
|
130 |
+
self.num_blocks = config.num_blocks
|
131 |
+
self.separate_cls = config.separate_cls
|
132 |
+
self.truncate_seq = config.truncate_seq
|
133 |
+
self.pool_q_only = config.pool_q_only
|
134 |
+
self.pooling_type = config.pooling_type
|
135 |
+
|
136 |
+
self.sin_dropout = keras.layers.Dropout(config.hidden_dropout)
|
137 |
+
self.cos_dropout = keras.layers.Dropout(config.hidden_dropout)
|
138 |
+
# Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was
|
139 |
+
# divided.
|
140 |
+
self.pooling_mult = None
|
141 |
+
|
142 |
+
def init_attention_inputs(self, inputs_embeds, attention_mask=None, token_type_ids=None, training=False):
|
143 |
+
"""Returns the attention inputs associated to the inputs of the model."""
|
144 |
+
# inputs_embeds has shape batch_size x seq_len x d_model
|
145 |
+
# attention_mask and token_type_ids have shape batch_size x seq_len
|
146 |
+
self.pooling_mult = 1
|
147 |
+
self.seq_len = seq_len = shape_list(inputs_embeds)[1]
|
148 |
+
position_embeds = self.get_position_embeds(seq_len, training=training)
|
149 |
+
token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None
|
150 |
+
cls_mask = (
|
151 |
+
tf.pad(tf.ones([seq_len - 1, seq_len - 1], dtype=inputs_embeds.dtype), [[1, 0], [1, 0]])
|
152 |
+
if self.separate_cls
|
153 |
+
else None
|
154 |
+
)
|
155 |
+
return (position_embeds, token_type_mat, attention_mask, cls_mask)
|
156 |
+
|
157 |
+
def token_type_ids_to_mat(self, token_type_ids):
|
158 |
+
"""Convert `token_type_ids` to `token_type_mat`."""
|
159 |
+
token_type_mat = tf.equal(tf.expand_dims(token_type_ids, -1), tf.expand_dims(token_type_ids, -2))
|
160 |
+
# Treat <cls> as in the same segment as both A & B
|
161 |
+
cls_ids = tf.equal(token_type_ids, tf.constant([self.cls_token_type_id], dtype=token_type_ids.dtype))
|
162 |
+
cls_mat = tf.logical_or(tf.expand_dims(cls_ids, -1), tf.expand_dims(cls_ids, -2))
|
163 |
+
return tf.logical_or(cls_mat, token_type_mat)
|
164 |
+
|
165 |
+
def get_position_embeds(self, seq_len, training=False):
|
166 |
+
"""
|
167 |
+
Create and cache inputs related to relative position encoding. Those are very different depending on whether we
|
168 |
+
are using the factorized or the relative shift attention:
|
169 |
+
|
170 |
+
For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2,
|
171 |
+
final formula.
|
172 |
+
|
173 |
+
For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final
|
174 |
+
formula.
|
175 |
+
|
176 |
+
Paper link: https://arxiv.org/abs/2006.03236
|
177 |
+
"""
|
178 |
+
if self.attention_type == "factorized":
|
179 |
+
# Notations from the paper, appending A.2.2, final formula.
|
180 |
+
# We need to create and return the matrices phi, psi, pi and omega.
|
181 |
+
pos_seq = tf.range(0, seq_len, 1.0)
|
182 |
+
freq_seq = tf.range(0, self.d_model // 2, 1.0)
|
183 |
+
inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2)))
|
184 |
+
sinusoid = tf.einsum("i,d->id", pos_seq, inv_freq)
|
185 |
+
|
186 |
+
sin_embed = tf.sin(sinusoid)
|
187 |
+
sin_embed_d = self.sin_dropout(sin_embed, training=training)
|
188 |
+
cos_embed = tf.cos(sinusoid)
|
189 |
+
cos_embed_d = self.cos_dropout(cos_embed, training=training)
|
190 |
+
# This is different from the formula on the paper...
|
191 |
+
phi = tf.concat([sin_embed_d, sin_embed_d], axis=-1)
|
192 |
+
psi = tf.concat([cos_embed, sin_embed], axis=-1)
|
193 |
+
pi = tf.concat([cos_embed_d, cos_embed_d], axis=-1)
|
194 |
+
omega = tf.concat([-sin_embed, cos_embed], axis=-1)
|
195 |
+
return (phi, pi, psi, omega)
|
196 |
+
else:
|
197 |
+
# Notations from the paper, appending A.2.1, final formula.
|
198 |
+
# We need to create and return all the possible vectors R for all blocks and shifts.
|
199 |
+
freq_seq = tf.range(0, self.d_model // 2, 1.0)
|
200 |
+
inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2)))
|
201 |
+
# Maximum relative positions for the first input
|
202 |
+
rel_pos_id = tf.range(-seq_len * 2, seq_len * 2, 1.0)
|
203 |
+
zero_offset = seq_len * tf.constant(2)
|
204 |
+
sinusoid = tf.einsum("i,d->id", rel_pos_id, inv_freq)
|
205 |
+
sin_embed = self.sin_dropout(tf.sin(sinusoid), training=training)
|
206 |
+
cos_embed = self.cos_dropout(tf.cos(sinusoid), training=training)
|
207 |
+
pos_embed = tf.concat([sin_embed, cos_embed], axis=-1)
|
208 |
+
|
209 |
+
pos = tf.range(0, seq_len)
|
210 |
+
pooled_pos = pos
|
211 |
+
position_embeds_list = []
|
212 |
+
for block_index in range(0, self.num_blocks):
|
213 |
+
# For each block with block_index > 0, we need two types position embeddings:
|
214 |
+
# - Attention(pooled-q, unpooled-kv)
|
215 |
+
# - Attention(pooled-q, pooled-kv)
|
216 |
+
# For block_index = 0 we only need the second one and leave the first one as None.
|
217 |
+
|
218 |
+
# First type
|
219 |
+
position_embeds_pooling = tf.fill([1], value=-1.0)
|
220 |
+
|
221 |
+
if block_index != 0:
|
222 |
+
pooled_pos = self.stride_pool_pos(pos, block_index)
|
223 |
+
|
224 |
+
# construct rel_pos_id
|
225 |
+
stride = 2 ** (block_index - 1)
|
226 |
+
rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2)
|
227 |
+
# rel_pos = tf.expand_dims(rel_pos,1) + zero_offset
|
228 |
+
# rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model))
|
229 |
+
rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype)
|
230 |
+
rel_pos = rel_pos + zero_offset
|
231 |
+
position_embeds_pooling = tf.gather(pos_embed, rel_pos, axis=0)
|
232 |
+
|
233 |
+
# Second type
|
234 |
+
pos = pooled_pos
|
235 |
+
stride = 2**block_index
|
236 |
+
rel_pos = self.relative_pos(pos, stride)
|
237 |
+
|
238 |
+
# rel_pos = tf.expand_dims(rel_pos,1) + zero_offset
|
239 |
+
# rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model))
|
240 |
+
rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype)
|
241 |
+
rel_pos = rel_pos + zero_offset
|
242 |
+
tf.debugging.assert_less(rel_pos, tf.shape(pos_embed)[0])
|
243 |
+
position_embeds_no_pooling = tf.gather(pos_embed, rel_pos, axis=0)
|
244 |
+
|
245 |
+
position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling])
|
246 |
+
return position_embeds_list
|
247 |
+
|
248 |
+
def stride_pool_pos(self, pos_id, block_index):
|
249 |
+
"""
|
250 |
+
Pool `pos_id` while keeping the cls token separate (if `self.separate_cls=True`).
|
251 |
+
"""
|
252 |
+
if self.separate_cls:
|
253 |
+
# Under separate <cls>, we treat the <cls> as the first token in
|
254 |
+
# the previous block of the 1st real block. Since the 1st real
|
255 |
+
# block always has position 1, the position of the previous block
|
256 |
+
# will be at `1 - 2 ** block_index`.
|
257 |
+
cls_pos = tf.constant([-(2**block_index) + 1], dtype=pos_id.dtype)
|
258 |
+
pooled_pos_id = pos_id[1:-1] if self.truncate_seq else pos_id[1:]
|
259 |
+
return tf.concat([cls_pos, pooled_pos_id[::2]], 0)
|
260 |
+
else:
|
261 |
+
return pos_id[::2]
|
262 |
+
|
263 |
+
def relative_pos(self, pos, stride, pooled_pos=None, shift=1):
|
264 |
+
"""
|
265 |
+
Build the relative positional vector between `pos` and `pooled_pos`.
|
266 |
+
"""
|
267 |
+
if pooled_pos is None:
|
268 |
+
pooled_pos = pos
|
269 |
+
|
270 |
+
ref_point = pooled_pos[0] - pos[0]
|
271 |
+
num_remove = shift * shape_list(pooled_pos)[0]
|
272 |
+
max_dist = ref_point + num_remove * stride
|
273 |
+
min_dist = pooled_pos[0] - pos[-1]
|
274 |
+
|
275 |
+
return tf.range(max_dist, min_dist - 1, -stride)
|
276 |
+
|
277 |
+
def stride_pool(self, tensor, axis):
|
278 |
+
"""
|
279 |
+
Perform pooling by stride slicing the tensor along the given axis.
|
280 |
+
"""
|
281 |
+
if tensor is None:
|
282 |
+
return None
|
283 |
+
|
284 |
+
# Do the stride pool recursively if axis is a list or a tuple of ints.
|
285 |
+
if isinstance(axis, (list, tuple)):
|
286 |
+
for ax in axis:
|
287 |
+
tensor = self.stride_pool(tensor, ax)
|
288 |
+
return tensor
|
289 |
+
|
290 |
+
# Do the stride pool recursively if tensor is a list or tuple of tensors.
|
291 |
+
if isinstance(tensor, (tuple, list)):
|
292 |
+
return type(tensor)(self.stride_pool(x, axis) for x in tensor)
|
293 |
+
|
294 |
+
# Deal with negative axis
|
295 |
+
axis %= len(shape_list(tensor))
|
296 |
+
|
297 |
+
axis_slice = slice(None, -1, 2) if self.separate_cls and self.truncate_seq else slice(None, None, 2)
|
298 |
+
enc_slice = [slice(None)] * axis + [axis_slice]
|
299 |
+
if self.separate_cls:
|
300 |
+
cls_slice = [slice(None)] * axis + [slice(None, 1)]
|
301 |
+
tensor = tf.concat([tensor[cls_slice], tensor], axis)
|
302 |
+
return tensor[enc_slice]
|
303 |
+
|
304 |
+
def pool_tensor(self, tensor, mode="mean", stride=2):
|
305 |
+
"""Apply 1D pooling to a tensor of size [B x T (x H)]."""
|
306 |
+
if tensor is None:
|
307 |
+
return None
|
308 |
+
|
309 |
+
# Do the pool recursively if tensor is a list or tuple of tensors.
|
310 |
+
if isinstance(tensor, (tuple, list)):
|
311 |
+
return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor)
|
312 |
+
|
313 |
+
if self.separate_cls:
|
314 |
+
suffix = tensor[:, :-1] if self.truncate_seq else tensor
|
315 |
+
tensor = tf.concat([tensor[:, :1], suffix], axis=1)
|
316 |
+
|
317 |
+
ndim = len(shape_list(tensor))
|
318 |
+
if ndim == 2:
|
319 |
+
tensor = tensor[:, :, None]
|
320 |
+
|
321 |
+
if mode == "mean":
|
322 |
+
tensor = tf.nn.avg_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME")
|
323 |
+
elif mode == "max":
|
324 |
+
tensor = tf.nn.max_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME")
|
325 |
+
elif mode == "min":
|
326 |
+
tensor = -tf.nn.max_pool1d(-tensor, stride, strides=stride, data_format="NWC", padding="SAME")
|
327 |
+
else:
|
328 |
+
raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.")
|
329 |
+
|
330 |
+
return tf.squeeze(tensor, 2) if ndim == 2 else tensor
|
331 |
+
|
332 |
+
def pre_attention_pooling(self, output, attention_inputs):
|
333 |
+
"""Pool `output` and the proper parts of `attention_inputs` before the attention layer."""
|
334 |
+
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
|
335 |
+
if self.pool_q_only:
|
336 |
+
if self.attention_type == "factorized":
|
337 |
+
position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:]
|
338 |
+
token_type_mat = self.stride_pool(token_type_mat, 1)
|
339 |
+
cls_mask = self.stride_pool(cls_mask, 0)
|
340 |
+
output = self.pool_tensor(output, mode=self.pooling_type)
|
341 |
+
else:
|
342 |
+
self.pooling_mult *= 2
|
343 |
+
if self.attention_type == "factorized":
|
344 |
+
position_embeds = self.stride_pool(position_embeds, 0)
|
345 |
+
token_type_mat = self.stride_pool(token_type_mat, [1, 2])
|
346 |
+
cls_mask = self.stride_pool(cls_mask, [1, 2])
|
347 |
+
attention_mask = self.pool_tensor(attention_mask, mode="min")
|
348 |
+
output = self.pool_tensor(output, mode=self.pooling_type)
|
349 |
+
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
|
350 |
+
return output, attention_inputs
|
351 |
+
|
352 |
+
def post_attention_pooling(self, attention_inputs):
|
353 |
+
"""Pool the proper parts of `attention_inputs` after the attention layer."""
|
354 |
+
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
|
355 |
+
if self.pool_q_only:
|
356 |
+
self.pooling_mult *= 2
|
357 |
+
if self.attention_type == "factorized":
|
358 |
+
position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0)
|
359 |
+
token_type_mat = self.stride_pool(token_type_mat, 2)
|
360 |
+
cls_mask = self.stride_pool(cls_mask, 1)
|
361 |
+
attention_mask = self.pool_tensor(attention_mask, mode="min")
|
362 |
+
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
|
363 |
+
return attention_inputs
|
364 |
+
|
365 |
+
|
366 |
+
def _relative_shift_gather(positional_attn, context_len, shift):
|
367 |
+
batch_size, n_head, seq_len, max_rel_len = shape_list(positional_attn)
|
368 |
+
# max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j
|
369 |
+
|
370 |
+
# What's next is the same as doing the following gather in PyTorch, which might be clearer code but less efficient.
|
371 |
+
# idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1)
|
372 |
+
# # matrix of context_len + i-j
|
373 |
+
# return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len]))
|
374 |
+
|
375 |
+
positional_attn = tf.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len])
|
376 |
+
positional_attn = positional_attn[:, :, shift:, :]
|
377 |
+
positional_attn = tf.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift])
|
378 |
+
positional_attn = positional_attn[..., :context_len]
|
379 |
+
return positional_attn
|
380 |
+
|
381 |
+
|
382 |
+
class TFFunnelRelMultiheadAttention(keras.layers.Layer):
|
383 |
+
def __init__(self, config, block_index, **kwargs):
|
384 |
+
super().__init__(**kwargs)
|
385 |
+
self.attention_type = config.attention_type
|
386 |
+
self.n_head = n_head = config.n_head
|
387 |
+
self.d_head = d_head = config.d_head
|
388 |
+
self.d_model = d_model = config.d_model
|
389 |
+
self.initializer_range = config.initializer_range
|
390 |
+
self.block_index = block_index
|
391 |
+
|
392 |
+
self.hidden_dropout = keras.layers.Dropout(config.hidden_dropout)
|
393 |
+
self.attention_dropout = keras.layers.Dropout(config.attention_dropout)
|
394 |
+
|
395 |
+
initializer = get_initializer(config.initializer_range)
|
396 |
+
|
397 |
+
self.q_head = keras.layers.Dense(
|
398 |
+
n_head * d_head, use_bias=False, kernel_initializer=initializer, name="q_head"
|
399 |
+
)
|
400 |
+
self.k_head = keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="k_head")
|
401 |
+
self.v_head = keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="v_head")
|
402 |
+
|
403 |
+
self.post_proj = keras.layers.Dense(d_model, kernel_initializer=initializer, name="post_proj")
|
404 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
|
405 |
+
self.scale = 1.0 / (d_head**0.5)
|
406 |
+
|
407 |
+
def build(self, input_shape=None):
|
408 |
+
n_head, d_head, d_model = self.n_head, self.d_head, self.d_model
|
409 |
+
initializer = get_initializer(self.initializer_range)
|
410 |
+
|
411 |
+
self.r_w_bias = self.add_weight(
|
412 |
+
shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_w_bias"
|
413 |
+
)
|
414 |
+
self.r_r_bias = self.add_weight(
|
415 |
+
shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_r_bias"
|
416 |
+
)
|
417 |
+
self.r_kernel = self.add_weight(
|
418 |
+
shape=(d_model, n_head, d_head), initializer=initializer, trainable=True, name="r_kernel"
|
419 |
+
)
|
420 |
+
self.r_s_bias = self.add_weight(
|
421 |
+
shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_s_bias"
|
422 |
+
)
|
423 |
+
self.seg_embed = self.add_weight(
|
424 |
+
shape=(2, n_head, d_head), initializer=initializer, trainable=True, name="seg_embed"
|
425 |
+
)
|
426 |
+
|
427 |
+
if self.built:
|
428 |
+
return
|
429 |
+
self.built = True
|
430 |
+
if getattr(self, "q_head", None) is not None:
|
431 |
+
with tf.name_scope(self.q_head.name):
|
432 |
+
self.q_head.build([None, None, d_model])
|
433 |
+
if getattr(self, "k_head", None) is not None:
|
434 |
+
with tf.name_scope(self.k_head.name):
|
435 |
+
self.k_head.build([None, None, d_model])
|
436 |
+
if getattr(self, "v_head", None) is not None:
|
437 |
+
with tf.name_scope(self.v_head.name):
|
438 |
+
self.v_head.build([None, None, d_model])
|
439 |
+
if getattr(self, "post_proj", None) is not None:
|
440 |
+
with tf.name_scope(self.post_proj.name):
|
441 |
+
self.post_proj.build([None, None, n_head * d_head])
|
442 |
+
if getattr(self, "layer_norm", None) is not None:
|
443 |
+
with tf.name_scope(self.layer_norm.name):
|
444 |
+
self.layer_norm.build([None, None, d_model])
|
445 |
+
|
446 |
+
def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None):
|
447 |
+
"""Relative attention score for the positional encodings"""
|
448 |
+
# q_head has shape batch_size x sea_len x n_head x d_head
|
449 |
+
if self.attention_type == "factorized":
|
450 |
+
# Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236)
|
451 |
+
# phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model
|
452 |
+
phi, pi, psi, omega = position_embeds
|
453 |
+
# Shape n_head x d_head
|
454 |
+
u = self.r_r_bias * self.scale
|
455 |
+
# Shape d_model x n_head x d_head
|
456 |
+
w_r = self.r_kernel
|
457 |
+
|
458 |
+
# Shape batch_size x sea_len x n_head x d_model
|
459 |
+
q_r_attention = tf.einsum("binh,dnh->bind", q_head + u, w_r)
|
460 |
+
q_r_attention_1 = q_r_attention * phi[:, None]
|
461 |
+
q_r_attention_2 = q_r_attention * pi[:, None]
|
462 |
+
|
463 |
+
# Shape batch_size x n_head x seq_len x context_len
|
464 |
+
positional_attn = tf.einsum("bind,jd->bnij", q_r_attention_1, psi) + tf.einsum(
|
465 |
+
"bind,jd->bnij", q_r_attention_2, omega
|
466 |
+
)
|
467 |
+
else:
|
468 |
+
# Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236)
|
469 |
+
# Grab the proper positional encoding, shape max_rel_len x d_model
|
470 |
+
if shape_list(q_head)[1] != context_len:
|
471 |
+
shift = 2
|
472 |
+
r = position_embeds[self.block_index][1]
|
473 |
+
else:
|
474 |
+
shift = 1
|
475 |
+
r = position_embeds[self.block_index][0]
|
476 |
+
# Shape n_head x d_head
|
477 |
+
v = self.r_r_bias * self.scale
|
478 |
+
# Shape d_model x n_head x d_head
|
479 |
+
w_r = self.r_kernel
|
480 |
+
|
481 |
+
# Shape max_rel_len x n_head x d_model
|
482 |
+
r_head = tf.einsum("td,dnh->tnh", r, w_r)
|
483 |
+
# Shape batch_size x n_head x seq_len x max_rel_len
|
484 |
+
positional_attn = tf.einsum("binh,tnh->bnit", q_head + v, r_head)
|
485 |
+
# Shape batch_size x n_head x seq_len x context_len
|
486 |
+
positional_attn = _relative_shift_gather(positional_attn, context_len, shift)
|
487 |
+
|
488 |
+
if cls_mask is not None:
|
489 |
+
positional_attn *= cls_mask
|
490 |
+
return positional_attn
|
491 |
+
|
492 |
+
def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None):
|
493 |
+
"""Relative attention score for the token_type_ids"""
|
494 |
+
if token_type_mat is None:
|
495 |
+
return 0
|
496 |
+
batch_size, seq_len, context_len = shape_list(token_type_mat)
|
497 |
+
# q_head has shape batch_size x seq_len x n_head x d_head
|
498 |
+
# Shape n_head x d_head
|
499 |
+
r_s_bias = self.r_s_bias * self.scale
|
500 |
+
|
501 |
+
# Shape batch_size x n_head x seq_len x 2
|
502 |
+
token_type_bias = tf.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed)
|
503 |
+
# Shape batch_size x n_head x seq_len x context_len
|
504 |
+
token_type_mat = tf.tile(token_type_mat[:, None], [1, shape_list(q_head)[2], 1, 1])
|
505 |
+
# token_type_mat = tf.broadcast_to(token_type_mat[:, None], new_shape)
|
506 |
+
# Shapes batch_size x n_head x seq_len
|
507 |
+
diff_token_type, same_token_type = tf.split(token_type_bias, 2, axis=-1)
|
508 |
+
# Shape batch_size x n_head x seq_len x context_len
|
509 |
+
token_type_attn = tf.where(
|
510 |
+
token_type_mat,
|
511 |
+
tf.tile(same_token_type, [1, 1, 1, context_len]),
|
512 |
+
tf.tile(diff_token_type, [1, 1, 1, context_len]),
|
513 |
+
)
|
514 |
+
|
515 |
+
if cls_mask is not None:
|
516 |
+
token_type_attn *= cls_mask
|
517 |
+
return token_type_attn
|
518 |
+
|
519 |
+
def call(self, query, key, value, attention_inputs, output_attentions=False, training=False):
|
520 |
+
# query has shape batch_size x seq_len x d_model
|
521 |
+
# key and value have shapes batch_size x context_len x d_model
|
522 |
+
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
|
523 |
+
|
524 |
+
batch_size, seq_len, _ = shape_list(query)
|
525 |
+
context_len = shape_list(key)[1]
|
526 |
+
n_head, d_head = self.n_head, self.d_head
|
527 |
+
|
528 |
+
# Shape batch_size x seq_len x n_head x d_head
|
529 |
+
q_head = tf.reshape(self.q_head(query), [batch_size, seq_len, n_head, d_head])
|
530 |
+
# Shapes batch_size x context_len x n_head x d_head
|
531 |
+
k_head = tf.reshape(self.k_head(key), [batch_size, context_len, n_head, d_head])
|
532 |
+
v_head = tf.reshape(self.v_head(value), [batch_size, context_len, n_head, d_head])
|
533 |
+
|
534 |
+
q_head = q_head * self.scale
|
535 |
+
# Shape n_head x d_head
|
536 |
+
r_w_bias = self.r_w_bias * self.scale
|
537 |
+
# Shapes batch_size x n_head x seq_len x context_len
|
538 |
+
content_score = tf.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head)
|
539 |
+
positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask)
|
540 |
+
token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask)
|
541 |
+
|
542 |
+
# merge attention scores
|
543 |
+
attn_score = content_score + positional_attn + token_type_attn
|
544 |
+
|
545 |
+
# perform masking
|
546 |
+
if attention_mask is not None:
|
547 |
+
attention_mask = tf.cast(attention_mask, dtype=attn_score.dtype)
|
548 |
+
attn_score = attn_score - (INF * (1 - attention_mask[:, None, None]))
|
549 |
+
|
550 |
+
# attention probability
|
551 |
+
attn_prob = stable_softmax(attn_score, axis=-1)
|
552 |
+
attn_prob = self.attention_dropout(attn_prob, training=training)
|
553 |
+
|
554 |
+
# attention output, shape batch_size x seq_len x n_head x d_head
|
555 |
+
attn_vec = tf.einsum("bnij,bjnd->bind", attn_prob, v_head)
|
556 |
+
|
557 |
+
# Shape shape batch_size x seq_len x d_model
|
558 |
+
attn_out = self.post_proj(tf.reshape(attn_vec, [batch_size, seq_len, n_head * d_head]))
|
559 |
+
attn_out = self.hidden_dropout(attn_out, training=training)
|
560 |
+
|
561 |
+
output = self.layer_norm(query + attn_out)
|
562 |
+
return (output, attn_prob) if output_attentions else (output,)
|
563 |
+
|
564 |
+
|
565 |
+
class TFFunnelPositionwiseFFN(keras.layers.Layer):
|
566 |
+
def __init__(self, config, **kwargs):
|
567 |
+
super().__init__(**kwargs)
|
568 |
+
initializer = get_initializer(config.initializer_range)
|
569 |
+
self.linear_1 = keras.layers.Dense(config.d_inner, kernel_initializer=initializer, name="linear_1")
|
570 |
+
self.activation_function = get_tf_activation(config.hidden_act)
|
571 |
+
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
|
572 |
+
self.linear_2 = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_2")
|
573 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout)
|
574 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
|
575 |
+
self.config = config
|
576 |
+
|
577 |
+
def call(self, hidden, training=False):
|
578 |
+
h = self.linear_1(hidden)
|
579 |
+
h = self.activation_function(h)
|
580 |
+
h = self.activation_dropout(h, training=training)
|
581 |
+
h = self.linear_2(h)
|
582 |
+
h = self.dropout(h, training=training)
|
583 |
+
return self.layer_norm(hidden + h)
|
584 |
+
|
585 |
+
def build(self, input_shape=None):
|
586 |
+
if self.built:
|
587 |
+
return
|
588 |
+
self.built = True
|
589 |
+
if getattr(self, "linear_1", None) is not None:
|
590 |
+
with tf.name_scope(self.linear_1.name):
|
591 |
+
self.linear_1.build([None, None, self.config.d_model])
|
592 |
+
if getattr(self, "linear_2", None) is not None:
|
593 |
+
with tf.name_scope(self.linear_2.name):
|
594 |
+
self.linear_2.build([None, None, self.config.d_inner])
|
595 |
+
if getattr(self, "layer_norm", None) is not None:
|
596 |
+
with tf.name_scope(self.layer_norm.name):
|
597 |
+
self.layer_norm.build([None, None, self.config.d_model])
|
598 |
+
|
599 |
+
|
600 |
+
class TFFunnelLayer(keras.layers.Layer):
|
601 |
+
def __init__(self, config, block_index, **kwargs):
|
602 |
+
super().__init__(**kwargs)
|
603 |
+
self.attention = TFFunnelRelMultiheadAttention(config, block_index, name="attention")
|
604 |
+
self.ffn = TFFunnelPositionwiseFFN(config, name="ffn")
|
605 |
+
|
606 |
+
def call(self, query, key, value, attention_inputs, output_attentions=False, training=False):
|
607 |
+
attn = self.attention(
|
608 |
+
query, key, value, attention_inputs, output_attentions=output_attentions, training=training
|
609 |
+
)
|
610 |
+
output = self.ffn(attn[0], training=training)
|
611 |
+
return (output, attn[1]) if output_attentions else (output,)
|
612 |
+
|
613 |
+
def build(self, input_shape=None):
|
614 |
+
if self.built:
|
615 |
+
return
|
616 |
+
self.built = True
|
617 |
+
if getattr(self, "attention", None) is not None:
|
618 |
+
with tf.name_scope(self.attention.name):
|
619 |
+
self.attention.build(None)
|
620 |
+
if getattr(self, "ffn", None) is not None:
|
621 |
+
with tf.name_scope(self.ffn.name):
|
622 |
+
self.ffn.build(None)
|
623 |
+
|
624 |
+
|
625 |
+
class TFFunnelEncoder(keras.layers.Layer):
|
626 |
+
def __init__(self, config, **kwargs):
|
627 |
+
super().__init__(**kwargs)
|
628 |
+
self.separate_cls = config.separate_cls
|
629 |
+
self.pool_q_only = config.pool_q_only
|
630 |
+
self.block_repeats = config.block_repeats
|
631 |
+
self.attention_structure = TFFunnelAttentionStructure(config)
|
632 |
+
self.blocks = [
|
633 |
+
[TFFunnelLayer(config, block_index, name=f"blocks_._{block_index}_._{i}") for i in range(block_size)]
|
634 |
+
for block_index, block_size in enumerate(config.block_sizes)
|
635 |
+
]
|
636 |
+
|
637 |
+
def call(
|
638 |
+
self,
|
639 |
+
inputs_embeds,
|
640 |
+
attention_mask=None,
|
641 |
+
token_type_ids=None,
|
642 |
+
output_attentions=False,
|
643 |
+
output_hidden_states=False,
|
644 |
+
return_dict=True,
|
645 |
+
training=False,
|
646 |
+
):
|
647 |
+
# The pooling is not implemented on long tensors, so we convert this mask.
|
648 |
+
# attention_mask = tf.cast(attention_mask, inputs_embeds.dtype)
|
649 |
+
attention_inputs = self.attention_structure.init_attention_inputs(
|
650 |
+
inputs_embeds,
|
651 |
+
attention_mask=attention_mask,
|
652 |
+
token_type_ids=token_type_ids,
|
653 |
+
training=training,
|
654 |
+
)
|
655 |
+
hidden = inputs_embeds
|
656 |
+
|
657 |
+
all_hidden_states = (inputs_embeds,) if output_hidden_states else None
|
658 |
+
all_attentions = () if output_attentions else None
|
659 |
+
|
660 |
+
for block_index, block in enumerate(self.blocks):
|
661 |
+
pooling_flag = shape_list(hidden)[1] > (2 if self.separate_cls else 1)
|
662 |
+
pooling_flag = pooling_flag and block_index > 0
|
663 |
+
pooled_hidden = tf.zeros(shape_list(hidden))
|
664 |
+
|
665 |
+
if pooling_flag:
|
666 |
+
pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling(
|
667 |
+
hidden, attention_inputs
|
668 |
+
)
|
669 |
+
|
670 |
+
for layer_index, layer in enumerate(block):
|
671 |
+
for repeat_index in range(self.block_repeats[block_index]):
|
672 |
+
do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag
|
673 |
+
if do_pooling:
|
674 |
+
query = pooled_hidden
|
675 |
+
key = value = hidden if self.pool_q_only else pooled_hidden
|
676 |
+
else:
|
677 |
+
query = key = value = hidden
|
678 |
+
layer_output = layer(
|
679 |
+
query, key, value, attention_inputs, output_attentions=output_attentions, training=training
|
680 |
+
)
|
681 |
+
hidden = layer_output[0]
|
682 |
+
if do_pooling:
|
683 |
+
attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs)
|
684 |
+
|
685 |
+
if output_attentions:
|
686 |
+
all_attentions = all_attentions + layer_output[1:]
|
687 |
+
if output_hidden_states:
|
688 |
+
all_hidden_states = all_hidden_states + (hidden,)
|
689 |
+
|
690 |
+
if not return_dict:
|
691 |
+
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
|
692 |
+
return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
|
693 |
+
|
694 |
+
def build(self, input_shape=None):
|
695 |
+
if self.built:
|
696 |
+
return
|
697 |
+
self.built = True
|
698 |
+
for block in self.blocks:
|
699 |
+
for layer in block:
|
700 |
+
with tf.name_scope(layer.name):
|
701 |
+
layer.build(None)
|
702 |
+
|
703 |
+
|
704 |
+
def upsample(x, stride, target_len, separate_cls=True, truncate_seq=False):
|
705 |
+
"""
|
706 |
+
Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension.
|
707 |
+
"""
|
708 |
+
if stride == 1:
|
709 |
+
return x
|
710 |
+
if separate_cls:
|
711 |
+
cls = x[:, :1]
|
712 |
+
x = x[:, 1:]
|
713 |
+
output = tf.repeat(x, repeats=stride, axis=1)
|
714 |
+
if separate_cls:
|
715 |
+
if truncate_seq:
|
716 |
+
output = tf.pad(output, [[0, 0], [0, stride - 1], [0, 0]])
|
717 |
+
output = output[:, : target_len - 1]
|
718 |
+
output = tf.concat([cls, output], axis=1)
|
719 |
+
else:
|
720 |
+
output = output[:, :target_len]
|
721 |
+
return output
|
722 |
+
|
723 |
+
|
724 |
+
class TFFunnelDecoder(keras.layers.Layer):
|
725 |
+
def __init__(self, config, **kwargs):
|
726 |
+
super().__init__(**kwargs)
|
727 |
+
self.separate_cls = config.separate_cls
|
728 |
+
self.truncate_seq = config.truncate_seq
|
729 |
+
self.stride = 2 ** (len(config.block_sizes) - 1)
|
730 |
+
self.attention_structure = TFFunnelAttentionStructure(config)
|
731 |
+
self.layers = [TFFunnelLayer(config, 0, name=f"layers_._{i}") for i in range(config.num_decoder_layers)]
|
732 |
+
|
733 |
+
def call(
|
734 |
+
self,
|
735 |
+
final_hidden,
|
736 |
+
first_block_hidden,
|
737 |
+
attention_mask=None,
|
738 |
+
token_type_ids=None,
|
739 |
+
output_attentions=False,
|
740 |
+
output_hidden_states=False,
|
741 |
+
return_dict=True,
|
742 |
+
training=False,
|
743 |
+
):
|
744 |
+
upsampled_hidden = upsample(
|
745 |
+
final_hidden,
|
746 |
+
stride=self.stride,
|
747 |
+
target_len=shape_list(first_block_hidden)[1],
|
748 |
+
separate_cls=self.separate_cls,
|
749 |
+
truncate_seq=self.truncate_seq,
|
750 |
+
)
|
751 |
+
|
752 |
+
hidden = upsampled_hidden + first_block_hidden
|
753 |
+
all_hidden_states = (hidden,) if output_hidden_states else None
|
754 |
+
all_attentions = () if output_attentions else None
|
755 |
+
|
756 |
+
attention_inputs = self.attention_structure.init_attention_inputs(
|
757 |
+
hidden,
|
758 |
+
attention_mask=attention_mask,
|
759 |
+
token_type_ids=token_type_ids,
|
760 |
+
training=training,
|
761 |
+
)
|
762 |
+
|
763 |
+
for layer in self.layers:
|
764 |
+
layer_output = layer(
|
765 |
+
hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions, training=training
|
766 |
+
)
|
767 |
+
hidden = layer_output[0]
|
768 |
+
|
769 |
+
if output_attentions:
|
770 |
+
all_attentions = all_attentions + layer_output[1:]
|
771 |
+
if output_hidden_states:
|
772 |
+
all_hidden_states = all_hidden_states + (hidden,)
|
773 |
+
|
774 |
+
if not return_dict:
|
775 |
+
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
|
776 |
+
return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
|
777 |
+
|
778 |
+
def build(self, input_shape=None):
|
779 |
+
if self.built:
|
780 |
+
return
|
781 |
+
self.built = True
|
782 |
+
if getattr(self, "layers", None) is not None:
|
783 |
+
for layer in self.layers:
|
784 |
+
with tf.name_scope(layer.name):
|
785 |
+
layer.build(None)
|
786 |
+
|
787 |
+
|
788 |
+
@keras_serializable
|
789 |
+
class TFFunnelBaseLayer(keras.layers.Layer):
|
790 |
+
"""Base model without decoder"""
|
791 |
+
|
792 |
+
config_class = FunnelConfig
|
793 |
+
|
794 |
+
def __init__(self, config, **kwargs):
|
795 |
+
super().__init__(**kwargs)
|
796 |
+
|
797 |
+
self.config = config
|
798 |
+
self.output_attentions = config.output_attentions
|
799 |
+
self.output_hidden_states = config.output_hidden_states
|
800 |
+
self.return_dict = config.use_return_dict
|
801 |
+
|
802 |
+
self.embeddings = TFFunnelEmbeddings(config, name="embeddings")
|
803 |
+
self.encoder = TFFunnelEncoder(config, name="encoder")
|
804 |
+
|
805 |
+
def get_input_embeddings(self):
|
806 |
+
return self.embeddings
|
807 |
+
|
808 |
+
def set_input_embeddings(self, value):
|
809 |
+
self.embeddings.weight = value
|
810 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
811 |
+
|
812 |
+
def _prune_heads(self, heads_to_prune):
|
813 |
+
raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models
|
814 |
+
|
815 |
+
@unpack_inputs
|
816 |
+
def call(
|
817 |
+
self,
|
818 |
+
input_ids=None,
|
819 |
+
attention_mask=None,
|
820 |
+
token_type_ids=None,
|
821 |
+
inputs_embeds=None,
|
822 |
+
output_attentions=None,
|
823 |
+
output_hidden_states=None,
|
824 |
+
return_dict=None,
|
825 |
+
training=False,
|
826 |
+
):
|
827 |
+
if input_ids is not None and inputs_embeds is not None:
|
828 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
829 |
+
elif input_ids is not None:
|
830 |
+
input_shape = shape_list(input_ids)
|
831 |
+
elif inputs_embeds is not None:
|
832 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
833 |
+
else:
|
834 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
835 |
+
|
836 |
+
if attention_mask is None:
|
837 |
+
attention_mask = tf.fill(input_shape, 1)
|
838 |
+
|
839 |
+
if token_type_ids is None:
|
840 |
+
token_type_ids = tf.fill(input_shape, 0)
|
841 |
+
|
842 |
+
if inputs_embeds is None:
|
843 |
+
inputs_embeds = self.embeddings(input_ids, training=training)
|
844 |
+
|
845 |
+
encoder_outputs = self.encoder(
|
846 |
+
inputs_embeds,
|
847 |
+
attention_mask=attention_mask,
|
848 |
+
token_type_ids=token_type_ids,
|
849 |
+
output_attentions=output_attentions,
|
850 |
+
output_hidden_states=output_hidden_states,
|
851 |
+
return_dict=return_dict,
|
852 |
+
training=training,
|
853 |
+
)
|
854 |
+
|
855 |
+
return encoder_outputs
|
856 |
+
|
857 |
+
def build(self, input_shape=None):
|
858 |
+
if self.built:
|
859 |
+
return
|
860 |
+
self.built = True
|
861 |
+
if getattr(self, "embeddings", None) is not None:
|
862 |
+
with tf.name_scope(self.embeddings.name):
|
863 |
+
self.embeddings.build(None)
|
864 |
+
if getattr(self, "encoder", None) is not None:
|
865 |
+
with tf.name_scope(self.encoder.name):
|
866 |
+
self.encoder.build(None)
|
867 |
+
|
868 |
+
|
869 |
+
@keras_serializable
|
870 |
+
class TFFunnelMainLayer(keras.layers.Layer):
|
871 |
+
"""Base model with decoder"""
|
872 |
+
|
873 |
+
config_class = FunnelConfig
|
874 |
+
|
875 |
+
def __init__(self, config, **kwargs):
|
876 |
+
super().__init__(**kwargs)
|
877 |
+
|
878 |
+
self.config = config
|
879 |
+
self.block_sizes = config.block_sizes
|
880 |
+
self.output_attentions = config.output_attentions
|
881 |
+
self.output_hidden_states = config.output_hidden_states
|
882 |
+
self.return_dict = config.use_return_dict
|
883 |
+
|
884 |
+
self.embeddings = TFFunnelEmbeddings(config, name="embeddings")
|
885 |
+
self.encoder = TFFunnelEncoder(config, name="encoder")
|
886 |
+
self.decoder = TFFunnelDecoder(config, name="decoder")
|
887 |
+
|
888 |
+
def get_input_embeddings(self):
|
889 |
+
return self.embeddings
|
890 |
+
|
891 |
+
def set_input_embeddings(self, value):
|
892 |
+
self.embeddings.weight = value
|
893 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
894 |
+
|
895 |
+
def _prune_heads(self, heads_to_prune):
|
896 |
+
raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models
|
897 |
+
|
898 |
+
@unpack_inputs
|
899 |
+
def call(
|
900 |
+
self,
|
901 |
+
input_ids=None,
|
902 |
+
attention_mask=None,
|
903 |
+
token_type_ids=None,
|
904 |
+
inputs_embeds=None,
|
905 |
+
output_attentions=None,
|
906 |
+
output_hidden_states=None,
|
907 |
+
return_dict=None,
|
908 |
+
training=False,
|
909 |
+
):
|
910 |
+
if input_ids is not None and inputs_embeds is not None:
|
911 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
912 |
+
elif input_ids is not None:
|
913 |
+
input_shape = shape_list(input_ids)
|
914 |
+
elif inputs_embeds is not None:
|
915 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
916 |
+
else:
|
917 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
918 |
+
|
919 |
+
if attention_mask is None:
|
920 |
+
attention_mask = tf.fill(input_shape, 1)
|
921 |
+
|
922 |
+
if token_type_ids is None:
|
923 |
+
token_type_ids = tf.fill(input_shape, 0)
|
924 |
+
|
925 |
+
if inputs_embeds is None:
|
926 |
+
inputs_embeds = self.embeddings(input_ids, training=training)
|
927 |
+
|
928 |
+
encoder_outputs = self.encoder(
|
929 |
+
inputs_embeds,
|
930 |
+
attention_mask=attention_mask,
|
931 |
+
token_type_ids=token_type_ids,
|
932 |
+
output_attentions=output_attentions,
|
933 |
+
output_hidden_states=True,
|
934 |
+
return_dict=return_dict,
|
935 |
+
training=training,
|
936 |
+
)
|
937 |
+
|
938 |
+
decoder_outputs = self.decoder(
|
939 |
+
final_hidden=encoder_outputs[0],
|
940 |
+
first_block_hidden=encoder_outputs[1][self.block_sizes[0]],
|
941 |
+
attention_mask=attention_mask,
|
942 |
+
token_type_ids=token_type_ids,
|
943 |
+
output_attentions=output_attentions,
|
944 |
+
output_hidden_states=output_hidden_states,
|
945 |
+
return_dict=return_dict,
|
946 |
+
training=training,
|
947 |
+
)
|
948 |
+
|
949 |
+
if not return_dict:
|
950 |
+
idx = 0
|
951 |
+
outputs = (decoder_outputs[0],)
|
952 |
+
if output_hidden_states:
|
953 |
+
idx += 1
|
954 |
+
outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],)
|
955 |
+
if output_attentions:
|
956 |
+
idx += 1
|
957 |
+
outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],)
|
958 |
+
return outputs
|
959 |
+
|
960 |
+
return TFBaseModelOutput(
|
961 |
+
last_hidden_state=decoder_outputs[0],
|
962 |
+
hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states)
|
963 |
+
if output_hidden_states
|
964 |
+
else None,
|
965 |
+
attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None,
|
966 |
+
)
|
967 |
+
|
968 |
+
def build(self, input_shape=None):
|
969 |
+
if self.built:
|
970 |
+
return
|
971 |
+
self.built = True
|
972 |
+
if getattr(self, "embeddings", None) is not None:
|
973 |
+
with tf.name_scope(self.embeddings.name):
|
974 |
+
self.embeddings.build(None)
|
975 |
+
if getattr(self, "encoder", None) is not None:
|
976 |
+
with tf.name_scope(self.encoder.name):
|
977 |
+
self.encoder.build(None)
|
978 |
+
if getattr(self, "decoder", None) is not None:
|
979 |
+
with tf.name_scope(self.decoder.name):
|
980 |
+
self.decoder.build(None)
|
981 |
+
|
982 |
+
|
983 |
+
class TFFunnelDiscriminatorPredictions(keras.layers.Layer):
|
984 |
+
"""Prediction module for the discriminator, made up of two dense layers."""
|
985 |
+
|
986 |
+
def __init__(self, config, **kwargs):
|
987 |
+
super().__init__(**kwargs)
|
988 |
+
initializer = get_initializer(config.initializer_range)
|
989 |
+
self.dense = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="dense")
|
990 |
+
self.activation_function = get_tf_activation(config.hidden_act)
|
991 |
+
self.dense_prediction = keras.layers.Dense(1, kernel_initializer=initializer, name="dense_prediction")
|
992 |
+
self.config = config
|
993 |
+
|
994 |
+
def call(self, discriminator_hidden_states):
|
995 |
+
hidden_states = self.dense(discriminator_hidden_states)
|
996 |
+
hidden_states = self.activation_function(hidden_states)
|
997 |
+
logits = tf.squeeze(self.dense_prediction(hidden_states))
|
998 |
+
return logits
|
999 |
+
|
1000 |
+
def build(self, input_shape=None):
|
1001 |
+
if self.built:
|
1002 |
+
return
|
1003 |
+
self.built = True
|
1004 |
+
if getattr(self, "dense", None) is not None:
|
1005 |
+
with tf.name_scope(self.dense.name):
|
1006 |
+
self.dense.build([None, None, self.config.d_model])
|
1007 |
+
if getattr(self, "dense_prediction", None) is not None:
|
1008 |
+
with tf.name_scope(self.dense_prediction.name):
|
1009 |
+
self.dense_prediction.build([None, None, self.config.d_model])
|
1010 |
+
|
1011 |
+
|
1012 |
+
class TFFunnelMaskedLMHead(keras.layers.Layer):
|
1013 |
+
def __init__(self, config, input_embeddings, **kwargs):
|
1014 |
+
super().__init__(**kwargs)
|
1015 |
+
self.config = config
|
1016 |
+
self.hidden_size = config.hidden_size
|
1017 |
+
self.input_embeddings = input_embeddings
|
1018 |
+
|
1019 |
+
def build(self, input_shape):
|
1020 |
+
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
|
1021 |
+
|
1022 |
+
super().build(input_shape)
|
1023 |
+
|
1024 |
+
def get_output_embeddings(self):
|
1025 |
+
return self.input_embeddings
|
1026 |
+
|
1027 |
+
def set_output_embeddings(self, value):
|
1028 |
+
self.input_embeddings.weight = value
|
1029 |
+
self.input_embeddings.vocab_size = shape_list(value)[0]
|
1030 |
+
|
1031 |
+
def get_bias(self):
|
1032 |
+
return {"bias": self.bias}
|
1033 |
+
|
1034 |
+
def set_bias(self, value):
|
1035 |
+
self.bias = value["bias"]
|
1036 |
+
self.config.vocab_size = shape_list(value["bias"])[0]
|
1037 |
+
|
1038 |
+
def call(self, hidden_states, training=False):
|
1039 |
+
seq_length = shape_list(tensor=hidden_states)[1]
|
1040 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
|
1041 |
+
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
|
1042 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
|
1043 |
+
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
|
1044 |
+
|
1045 |
+
return hidden_states
|
1046 |
+
|
1047 |
+
|
1048 |
+
class TFFunnelClassificationHead(keras.layers.Layer):
|
1049 |
+
def __init__(self, config, n_labels, **kwargs):
|
1050 |
+
super().__init__(**kwargs)
|
1051 |
+
initializer = get_initializer(config.initializer_range)
|
1052 |
+
self.linear_hidden = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_hidden")
|
1053 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout)
|
1054 |
+
self.linear_out = keras.layers.Dense(n_labels, kernel_initializer=initializer, name="linear_out")
|
1055 |
+
self.config = config
|
1056 |
+
|
1057 |
+
def call(self, hidden, training=False):
|
1058 |
+
hidden = self.linear_hidden(hidden)
|
1059 |
+
hidden = keras.activations.tanh(hidden)
|
1060 |
+
hidden = self.dropout(hidden, training=training)
|
1061 |
+
return self.linear_out(hidden)
|
1062 |
+
|
1063 |
+
def build(self, input_shape=None):
|
1064 |
+
if self.built:
|
1065 |
+
return
|
1066 |
+
self.built = True
|
1067 |
+
if getattr(self, "linear_hidden", None) is not None:
|
1068 |
+
with tf.name_scope(self.linear_hidden.name):
|
1069 |
+
self.linear_hidden.build([None, None, self.config.d_model])
|
1070 |
+
if getattr(self, "linear_out", None) is not None:
|
1071 |
+
with tf.name_scope(self.linear_out.name):
|
1072 |
+
self.linear_out.build([None, None, self.config.d_model])
|
1073 |
+
|
1074 |
+
|
1075 |
+
class TFFunnelPreTrainedModel(TFPreTrainedModel):
|
1076 |
+
"""
|
1077 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
1078 |
+
models.
|
1079 |
+
"""
|
1080 |
+
|
1081 |
+
config_class = FunnelConfig
|
1082 |
+
base_model_prefix = "funnel"
|
1083 |
+
|
1084 |
+
@property
|
1085 |
+
def dummy_inputs(self):
|
1086 |
+
# Funnel misbehaves with very small inputs, so we override and make them a bit bigger
|
1087 |
+
return {"input_ids": tf.ones((1, 3), dtype=tf.int32)}
|
1088 |
+
|
1089 |
+
|
1090 |
+
@dataclass
|
1091 |
+
class TFFunnelForPreTrainingOutput(ModelOutput):
|
1092 |
+
"""
|
1093 |
+
Output type of [`FunnelForPreTraining`].
|
1094 |
+
|
1095 |
+
Args:
|
1096 |
+
logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
1097 |
+
Prediction scores of the head (scores for each token before SoftMax).
|
1098 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
1099 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
1100 |
+
`(batch_size, sequence_length, hidden_size)`.
|
1101 |
+
|
1102 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
1103 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
1104 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
1105 |
+
sequence_length)`.
|
1106 |
+
|
1107 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
1108 |
+
heads.
|
1109 |
+
"""
|
1110 |
+
|
1111 |
+
logits: tf.Tensor = None
|
1112 |
+
hidden_states: Tuple[tf.Tensor] | None = None
|
1113 |
+
attentions: Tuple[tf.Tensor] | None = None
|
1114 |
+
|
1115 |
+
|
1116 |
+
FUNNEL_START_DOCSTRING = r"""
|
1117 |
+
|
1118 |
+
The Funnel Transformer model was proposed in [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient
|
1119 |
+
Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
|
1120 |
+
|
1121 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1122 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1123 |
+
etc.)
|
1124 |
+
|
1125 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
1126 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
1127 |
+
behavior.
|
1128 |
+
|
1129 |
+
<Tip>
|
1130 |
+
|
1131 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
1132 |
+
|
1133 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
1134 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
1135 |
+
|
1136 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
1137 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
1138 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
1139 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
1140 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
1141 |
+
positional argument:
|
1142 |
+
|
1143 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
1144 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
1145 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
1146 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
1147 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
1148 |
+
|
1149 |
+
Note that when creating models and layers with
|
1150 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
1151 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
1152 |
+
|
1153 |
+
</Tip>
|
1154 |
+
|
1155 |
+
Parameters:
|
1156 |
+
config ([`XxxConfig`]): Model configuration class with all the parameters of the model.
|
1157 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1158 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1159 |
+
"""
|
1160 |
+
|
1161 |
+
FUNNEL_INPUTS_DOCSTRING = r"""
|
1162 |
+
Args:
|
1163 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
|
1164 |
+
Indices of input sequence tokens in the vocabulary.
|
1165 |
+
|
1166 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
1167 |
+
[`PreTrainedTokenizer.encode`] for details.
|
1168 |
+
|
1169 |
+
[What are input IDs?](../glossary#input-ids)
|
1170 |
+
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
1171 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1172 |
+
|
1173 |
+
- 1 for tokens that are **not masked**,
|
1174 |
+
- 0 for tokens that are **masked**.
|
1175 |
+
|
1176 |
+
[What are attention masks?](../glossary#attention-mask)
|
1177 |
+
token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
1178 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
1179 |
+
1]`:
|
1180 |
+
|
1181 |
+
- 0 corresponds to a *sentence A* token,
|
1182 |
+
- 1 corresponds to a *sentence B* token.
|
1183 |
+
|
1184 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
1185 |
+
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
|
1186 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1187 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1188 |
+
model's internal embedding lookup matrix.
|
1189 |
+
output_attentions (`bool`, *optional*):
|
1190 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1191 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
1192 |
+
config will be used instead.
|
1193 |
+
output_hidden_states (`bool`, *optional*):
|
1194 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1195 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
1196 |
+
used instead.
|
1197 |
+
return_dict (`bool`, *optional*):
|
1198 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
1199 |
+
eager mode, in graph mode the value will always be set to True.
|
1200 |
+
training (`bool`, *optional*, defaults to `False`):
|
1201 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
1202 |
+
behaviors between training and evaluation).
|
1203 |
+
"""
|
1204 |
+
|
1205 |
+
|
1206 |
+
@add_start_docstrings(
|
1207 |
+
"""
|
1208 |
+
The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called
|
1209 |
+
decoder) or any task-specific head on top.
|
1210 |
+
""",
|
1211 |
+
FUNNEL_START_DOCSTRING,
|
1212 |
+
)
|
1213 |
+
class TFFunnelBaseModel(TFFunnelPreTrainedModel):
|
1214 |
+
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
|
1215 |
+
super().__init__(config, *inputs, **kwargs)
|
1216 |
+
self.funnel = TFFunnelBaseLayer(config, name="funnel")
|
1217 |
+
|
1218 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1219 |
+
@add_code_sample_docstrings(
|
1220 |
+
checkpoint="funnel-transformer/small-base",
|
1221 |
+
output_type=TFBaseModelOutput,
|
1222 |
+
config_class=_CONFIG_FOR_DOC,
|
1223 |
+
)
|
1224 |
+
@unpack_inputs
|
1225 |
+
def call(
|
1226 |
+
self,
|
1227 |
+
input_ids: TFModelInputType | None = None,
|
1228 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1229 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1230 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1231 |
+
output_attentions: Optional[bool] = None,
|
1232 |
+
output_hidden_states: Optional[bool] = None,
|
1233 |
+
return_dict: Optional[bool] = None,
|
1234 |
+
training: bool = False,
|
1235 |
+
) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]:
|
1236 |
+
return self.funnel(
|
1237 |
+
input_ids=input_ids,
|
1238 |
+
attention_mask=attention_mask,
|
1239 |
+
token_type_ids=token_type_ids,
|
1240 |
+
inputs_embeds=inputs_embeds,
|
1241 |
+
output_attentions=output_attentions,
|
1242 |
+
output_hidden_states=output_hidden_states,
|
1243 |
+
return_dict=return_dict,
|
1244 |
+
training=training,
|
1245 |
+
)
|
1246 |
+
|
1247 |
+
def serving_output(self, output):
|
1248 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1249 |
+
# different dimensions
|
1250 |
+
return TFBaseModelOutput(
|
1251 |
+
last_hidden_state=output.last_hidden_state,
|
1252 |
+
hidden_states=output.hidden_states,
|
1253 |
+
attentions=output.attentions,
|
1254 |
+
)
|
1255 |
+
|
1256 |
+
def build(self, input_shape=None):
|
1257 |
+
if self.built:
|
1258 |
+
return
|
1259 |
+
self.built = True
|
1260 |
+
if getattr(self, "funnel", None) is not None:
|
1261 |
+
with tf.name_scope(self.funnel.name):
|
1262 |
+
self.funnel.build(None)
|
1263 |
+
|
1264 |
+
|
1265 |
+
@add_start_docstrings(
|
1266 |
+
"The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.",
|
1267 |
+
FUNNEL_START_DOCSTRING,
|
1268 |
+
)
|
1269 |
+
class TFFunnelModel(TFFunnelPreTrainedModel):
|
1270 |
+
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
|
1271 |
+
super().__init__(config, *inputs, **kwargs)
|
1272 |
+
self.funnel = TFFunnelMainLayer(config, name="funnel")
|
1273 |
+
|
1274 |
+
@unpack_inputs
|
1275 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1276 |
+
@add_code_sample_docstrings(
|
1277 |
+
checkpoint="funnel-transformer/small",
|
1278 |
+
output_type=TFBaseModelOutput,
|
1279 |
+
config_class=_CONFIG_FOR_DOC,
|
1280 |
+
)
|
1281 |
+
def call(
|
1282 |
+
self,
|
1283 |
+
input_ids: TFModelInputType | None = None,
|
1284 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1285 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1286 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1287 |
+
output_attentions: Optional[bool] = None,
|
1288 |
+
output_hidden_states: Optional[bool] = None,
|
1289 |
+
return_dict: Optional[bool] = None,
|
1290 |
+
training: bool = False,
|
1291 |
+
) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]:
|
1292 |
+
return self.funnel(
|
1293 |
+
input_ids=input_ids,
|
1294 |
+
attention_mask=attention_mask,
|
1295 |
+
token_type_ids=token_type_ids,
|
1296 |
+
inputs_embeds=inputs_embeds,
|
1297 |
+
output_attentions=output_attentions,
|
1298 |
+
output_hidden_states=output_hidden_states,
|
1299 |
+
return_dict=return_dict,
|
1300 |
+
training=training,
|
1301 |
+
)
|
1302 |
+
|
1303 |
+
def serving_output(self, output):
|
1304 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1305 |
+
# different dimensions
|
1306 |
+
return TFBaseModelOutput(
|
1307 |
+
last_hidden_state=output.last_hidden_state,
|
1308 |
+
hidden_states=output.hidden_states,
|
1309 |
+
attentions=output.attentions,
|
1310 |
+
)
|
1311 |
+
|
1312 |
+
def build(self, input_shape=None):
|
1313 |
+
if self.built:
|
1314 |
+
return
|
1315 |
+
self.built = True
|
1316 |
+
if getattr(self, "funnel", None) is not None:
|
1317 |
+
with tf.name_scope(self.funnel.name):
|
1318 |
+
self.funnel.build(None)
|
1319 |
+
|
1320 |
+
|
1321 |
+
@add_start_docstrings(
|
1322 |
+
"""
|
1323 |
+
Funnel model with a binary classification head on top as used during pretraining for identifying generated tokens.
|
1324 |
+
""",
|
1325 |
+
FUNNEL_START_DOCSTRING,
|
1326 |
+
)
|
1327 |
+
class TFFunnelForPreTraining(TFFunnelPreTrainedModel):
|
1328 |
+
def __init__(self, config: FunnelConfig, **kwargs) -> None:
|
1329 |
+
super().__init__(config, **kwargs)
|
1330 |
+
|
1331 |
+
self.funnel = TFFunnelMainLayer(config, name="funnel")
|
1332 |
+
self.discriminator_predictions = TFFunnelDiscriminatorPredictions(config, name="discriminator_predictions")
|
1333 |
+
|
1334 |
+
@unpack_inputs
|
1335 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1336 |
+
@replace_return_docstrings(output_type=TFFunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1337 |
+
def call(
|
1338 |
+
self,
|
1339 |
+
input_ids: TFModelInputType | None = None,
|
1340 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1341 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1342 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1343 |
+
output_attentions: Optional[bool] = None,
|
1344 |
+
output_hidden_states: Optional[bool] = None,
|
1345 |
+
return_dict: Optional[bool] = None,
|
1346 |
+
training: bool = False,
|
1347 |
+
**kwargs,
|
1348 |
+
) -> Union[Tuple[tf.Tensor], TFFunnelForPreTrainingOutput]:
|
1349 |
+
r"""
|
1350 |
+
Returns:
|
1351 |
+
|
1352 |
+
Examples:
|
1353 |
+
|
1354 |
+
```python
|
1355 |
+
>>> from transformers import AutoTokenizer, TFFunnelForPreTraining
|
1356 |
+
>>> import torch
|
1357 |
+
|
1358 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
|
1359 |
+
>>> model = TFFunnelForPreTraining.from_pretrained("funnel-transformer/small")
|
1360 |
+
|
1361 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
|
1362 |
+
>>> logits = model(inputs).logits
|
1363 |
+
```"""
|
1364 |
+
discriminator_hidden_states = self.funnel(
|
1365 |
+
input_ids,
|
1366 |
+
attention_mask,
|
1367 |
+
token_type_ids,
|
1368 |
+
inputs_embeds,
|
1369 |
+
output_attentions,
|
1370 |
+
output_hidden_states,
|
1371 |
+
return_dict=return_dict,
|
1372 |
+
training=training,
|
1373 |
+
)
|
1374 |
+
discriminator_sequence_output = discriminator_hidden_states[0]
|
1375 |
+
logits = self.discriminator_predictions(discriminator_sequence_output)
|
1376 |
+
|
1377 |
+
if not return_dict:
|
1378 |
+
return (logits,) + discriminator_hidden_states[1:]
|
1379 |
+
|
1380 |
+
return TFFunnelForPreTrainingOutput(
|
1381 |
+
logits=logits,
|
1382 |
+
hidden_states=discriminator_hidden_states.hidden_states,
|
1383 |
+
attentions=discriminator_hidden_states.attentions,
|
1384 |
+
)
|
1385 |
+
|
1386 |
+
def serving_output(self, output):
|
1387 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1388 |
+
# different dimensions
|
1389 |
+
return TFFunnelForPreTrainingOutput(
|
1390 |
+
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
def build(self, input_shape=None):
|
1394 |
+
if self.built:
|
1395 |
+
return
|
1396 |
+
self.built = True
|
1397 |
+
if getattr(self, "funnel", None) is not None:
|
1398 |
+
with tf.name_scope(self.funnel.name):
|
1399 |
+
self.funnel.build(None)
|
1400 |
+
if getattr(self, "discriminator_predictions", None) is not None:
|
1401 |
+
with tf.name_scope(self.discriminator_predictions.name):
|
1402 |
+
self.discriminator_predictions.build(None)
|
1403 |
+
|
1404 |
+
|
1405 |
+
@add_start_docstrings("""Funnel Model with a `language modeling` head on top.""", FUNNEL_START_DOCSTRING)
|
1406 |
+
class TFFunnelForMaskedLM(TFFunnelPreTrainedModel, TFMaskedLanguageModelingLoss):
|
1407 |
+
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
|
1408 |
+
super().__init__(config, *inputs, **kwargs)
|
1409 |
+
|
1410 |
+
self.funnel = TFFunnelMainLayer(config, name="funnel")
|
1411 |
+
self.lm_head = TFFunnelMaskedLMHead(config, self.funnel.embeddings, name="lm_head")
|
1412 |
+
|
1413 |
+
def get_lm_head(self) -> TFFunnelMaskedLMHead:
|
1414 |
+
return self.lm_head
|
1415 |
+
|
1416 |
+
def get_prefix_bias_name(self) -> str:
|
1417 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
1418 |
+
return self.name + "/" + self.lm_head.name
|
1419 |
+
|
1420 |
+
@unpack_inputs
|
1421 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1422 |
+
@add_code_sample_docstrings(
|
1423 |
+
checkpoint="funnel-transformer/small",
|
1424 |
+
output_type=TFMaskedLMOutput,
|
1425 |
+
config_class=_CONFIG_FOR_DOC,
|
1426 |
+
)
|
1427 |
+
def call(
|
1428 |
+
self,
|
1429 |
+
input_ids: TFModelInputType | None = None,
|
1430 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1431 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1432 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1433 |
+
output_attentions: Optional[bool] = None,
|
1434 |
+
output_hidden_states: Optional[bool] = None,
|
1435 |
+
return_dict: Optional[bool] = None,
|
1436 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1437 |
+
training: bool = False,
|
1438 |
+
) -> Union[Tuple[tf.Tensor], TFMaskedLMOutput]:
|
1439 |
+
r"""
|
1440 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1441 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1442 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1443 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1444 |
+
"""
|
1445 |
+
outputs = self.funnel(
|
1446 |
+
input_ids,
|
1447 |
+
attention_mask,
|
1448 |
+
token_type_ids,
|
1449 |
+
inputs_embeds,
|
1450 |
+
output_attentions,
|
1451 |
+
output_hidden_states,
|
1452 |
+
return_dict=return_dict,
|
1453 |
+
training=training,
|
1454 |
+
)
|
1455 |
+
sequence_output = outputs[0]
|
1456 |
+
prediction_scores = self.lm_head(sequence_output, training=training)
|
1457 |
+
|
1458 |
+
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
|
1459 |
+
|
1460 |
+
if not return_dict:
|
1461 |
+
output = (prediction_scores,) + outputs[1:]
|
1462 |
+
return ((loss,) + output) if loss is not None else output
|
1463 |
+
|
1464 |
+
return TFMaskedLMOutput(
|
1465 |
+
loss=loss,
|
1466 |
+
logits=prediction_scores,
|
1467 |
+
hidden_states=outputs.hidden_states,
|
1468 |
+
attentions=outputs.attentions,
|
1469 |
+
)
|
1470 |
+
|
1471 |
+
def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput:
|
1472 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1473 |
+
# different dimensions
|
1474 |
+
return TFMaskedLMOutput(logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions)
|
1475 |
+
|
1476 |
+
def build(self, input_shape=None):
|
1477 |
+
if self.built:
|
1478 |
+
return
|
1479 |
+
self.built = True
|
1480 |
+
if getattr(self, "funnel", None) is not None:
|
1481 |
+
with tf.name_scope(self.funnel.name):
|
1482 |
+
self.funnel.build(None)
|
1483 |
+
if getattr(self, "lm_head", None) is not None:
|
1484 |
+
with tf.name_scope(self.lm_head.name):
|
1485 |
+
self.lm_head.build(None)
|
1486 |
+
|
1487 |
+
|
1488 |
+
@add_start_docstrings(
|
1489 |
+
"""
|
1490 |
+
Funnel Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1491 |
+
output) e.g. for GLUE tasks.
|
1492 |
+
""",
|
1493 |
+
FUNNEL_START_DOCSTRING,
|
1494 |
+
)
|
1495 |
+
class TFFunnelForSequenceClassification(TFFunnelPreTrainedModel, TFSequenceClassificationLoss):
|
1496 |
+
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
|
1497 |
+
super().__init__(config, *inputs, **kwargs)
|
1498 |
+
self.num_labels = config.num_labels
|
1499 |
+
|
1500 |
+
self.funnel = TFFunnelBaseLayer(config, name="funnel")
|
1501 |
+
self.classifier = TFFunnelClassificationHead(config, config.num_labels, name="classifier")
|
1502 |
+
|
1503 |
+
@unpack_inputs
|
1504 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1505 |
+
@add_code_sample_docstrings(
|
1506 |
+
checkpoint="funnel-transformer/small-base",
|
1507 |
+
output_type=TFSequenceClassifierOutput,
|
1508 |
+
config_class=_CONFIG_FOR_DOC,
|
1509 |
+
)
|
1510 |
+
def call(
|
1511 |
+
self,
|
1512 |
+
input_ids: TFModelInputType | None = None,
|
1513 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1514 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1515 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1516 |
+
output_attentions: Optional[bool] = None,
|
1517 |
+
output_hidden_states: Optional[bool] = None,
|
1518 |
+
return_dict: Optional[bool] = None,
|
1519 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1520 |
+
training: bool = False,
|
1521 |
+
) -> Union[Tuple[tf.Tensor], TFSequenceClassifierOutput]:
|
1522 |
+
r"""
|
1523 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1524 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1525 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1526 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1527 |
+
"""
|
1528 |
+
outputs = self.funnel(
|
1529 |
+
input_ids,
|
1530 |
+
attention_mask,
|
1531 |
+
token_type_ids,
|
1532 |
+
inputs_embeds,
|
1533 |
+
output_attentions,
|
1534 |
+
output_hidden_states,
|
1535 |
+
return_dict=return_dict,
|
1536 |
+
training=training,
|
1537 |
+
)
|
1538 |
+
last_hidden_state = outputs[0]
|
1539 |
+
pooled_output = last_hidden_state[:, 0]
|
1540 |
+
logits = self.classifier(pooled_output, training=training)
|
1541 |
+
|
1542 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1543 |
+
|
1544 |
+
if not return_dict:
|
1545 |
+
output = (logits,) + outputs[1:]
|
1546 |
+
return ((loss,) + output) if loss is not None else output
|
1547 |
+
|
1548 |
+
return TFSequenceClassifierOutput(
|
1549 |
+
loss=loss,
|
1550 |
+
logits=logits,
|
1551 |
+
hidden_states=outputs.hidden_states,
|
1552 |
+
attentions=outputs.attentions,
|
1553 |
+
)
|
1554 |
+
|
1555 |
+
def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput:
|
1556 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1557 |
+
# different dimensions
|
1558 |
+
return TFSequenceClassifierOutput(
|
1559 |
+
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
|
1560 |
+
)
|
1561 |
+
|
1562 |
+
def build(self, input_shape=None):
|
1563 |
+
if self.built:
|
1564 |
+
return
|
1565 |
+
self.built = True
|
1566 |
+
if getattr(self, "funnel", None) is not None:
|
1567 |
+
with tf.name_scope(self.funnel.name):
|
1568 |
+
self.funnel.build(None)
|
1569 |
+
if getattr(self, "classifier", None) is not None:
|
1570 |
+
with tf.name_scope(self.classifier.name):
|
1571 |
+
self.classifier.build(None)
|
1572 |
+
|
1573 |
+
|
1574 |
+
@add_start_docstrings(
|
1575 |
+
"""
|
1576 |
+
Funnel Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1577 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1578 |
+
""",
|
1579 |
+
FUNNEL_START_DOCSTRING,
|
1580 |
+
)
|
1581 |
+
class TFFunnelForMultipleChoice(TFFunnelPreTrainedModel, TFMultipleChoiceLoss):
|
1582 |
+
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
|
1583 |
+
super().__init__(config, *inputs, **kwargs)
|
1584 |
+
|
1585 |
+
self.funnel = TFFunnelBaseLayer(config, name="funnel")
|
1586 |
+
self.classifier = TFFunnelClassificationHead(config, 1, name="classifier")
|
1587 |
+
|
1588 |
+
@property
|
1589 |
+
def dummy_inputs(self):
|
1590 |
+
return {"input_ids": tf.ones((3, 3, 4), dtype=tf.int32)}
|
1591 |
+
|
1592 |
+
@unpack_inputs
|
1593 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1594 |
+
@add_code_sample_docstrings(
|
1595 |
+
checkpoint="funnel-transformer/small-base",
|
1596 |
+
output_type=TFMultipleChoiceModelOutput,
|
1597 |
+
config_class=_CONFIG_FOR_DOC,
|
1598 |
+
)
|
1599 |
+
def call(
|
1600 |
+
self,
|
1601 |
+
input_ids: TFModelInputType | None = None,
|
1602 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1603 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1604 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1605 |
+
output_attentions: Optional[bool] = None,
|
1606 |
+
output_hidden_states: Optional[bool] = None,
|
1607 |
+
return_dict: Optional[bool] = None,
|
1608 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1609 |
+
training: bool = False,
|
1610 |
+
) -> Union[Tuple[tf.Tensor], TFMultipleChoiceModelOutput]:
|
1611 |
+
r"""
|
1612 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1613 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
1614 |
+
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
|
1615 |
+
"""
|
1616 |
+
if input_ids is not None:
|
1617 |
+
num_choices = shape_list(input_ids)[1]
|
1618 |
+
seq_length = shape_list(input_ids)[2]
|
1619 |
+
else:
|
1620 |
+
num_choices = shape_list(inputs_embeds)[1]
|
1621 |
+
seq_length = shape_list(inputs_embeds)[2]
|
1622 |
+
|
1623 |
+
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
|
1624 |
+
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
|
1625 |
+
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
|
1626 |
+
flat_inputs_embeds = (
|
1627 |
+
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
|
1628 |
+
if inputs_embeds is not None
|
1629 |
+
else None
|
1630 |
+
)
|
1631 |
+
|
1632 |
+
outputs = self.funnel(
|
1633 |
+
flat_input_ids,
|
1634 |
+
attention_mask=flat_attention_mask,
|
1635 |
+
token_type_ids=flat_token_type_ids,
|
1636 |
+
inputs_embeds=flat_inputs_embeds,
|
1637 |
+
output_attentions=output_attentions,
|
1638 |
+
output_hidden_states=output_hidden_states,
|
1639 |
+
return_dict=return_dict,
|
1640 |
+
training=training,
|
1641 |
+
)
|
1642 |
+
|
1643 |
+
last_hidden_state = outputs[0]
|
1644 |
+
pooled_output = last_hidden_state[:, 0]
|
1645 |
+
logits = self.classifier(pooled_output, training=training)
|
1646 |
+
reshaped_logits = tf.reshape(logits, (-1, num_choices))
|
1647 |
+
|
1648 |
+
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
|
1649 |
+
|
1650 |
+
if not return_dict:
|
1651 |
+
output = (reshaped_logits,) + outputs[1:]
|
1652 |
+
return ((loss,) + output) if loss is not None else output
|
1653 |
+
|
1654 |
+
return TFMultipleChoiceModelOutput(
|
1655 |
+
loss=loss,
|
1656 |
+
logits=reshaped_logits,
|
1657 |
+
hidden_states=outputs.hidden_states,
|
1658 |
+
attentions=outputs.attentions,
|
1659 |
+
)
|
1660 |
+
|
1661 |
+
def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput:
|
1662 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1663 |
+
# different dimensions
|
1664 |
+
return TFMultipleChoiceModelOutput(
|
1665 |
+
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
|
1666 |
+
)
|
1667 |
+
|
1668 |
+
def build(self, input_shape=None):
|
1669 |
+
if self.built:
|
1670 |
+
return
|
1671 |
+
self.built = True
|
1672 |
+
if getattr(self, "funnel", None) is not None:
|
1673 |
+
with tf.name_scope(self.funnel.name):
|
1674 |
+
self.funnel.build(None)
|
1675 |
+
if getattr(self, "classifier", None) is not None:
|
1676 |
+
with tf.name_scope(self.classifier.name):
|
1677 |
+
self.classifier.build(None)
|
1678 |
+
|
1679 |
+
|
1680 |
+
@add_start_docstrings(
|
1681 |
+
"""
|
1682 |
+
Funnel Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1683 |
+
Named-Entity-Recognition (NER) tasks.
|
1684 |
+
""",
|
1685 |
+
FUNNEL_START_DOCSTRING,
|
1686 |
+
)
|
1687 |
+
class TFFunnelForTokenClassification(TFFunnelPreTrainedModel, TFTokenClassificationLoss):
|
1688 |
+
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
|
1689 |
+
super().__init__(config, *inputs, **kwargs)
|
1690 |
+
self.num_labels = config.num_labels
|
1691 |
+
|
1692 |
+
self.funnel = TFFunnelMainLayer(config, name="funnel")
|
1693 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout)
|
1694 |
+
self.classifier = keras.layers.Dense(
|
1695 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
1696 |
+
)
|
1697 |
+
self.config = config
|
1698 |
+
|
1699 |
+
@unpack_inputs
|
1700 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1701 |
+
@add_code_sample_docstrings(
|
1702 |
+
checkpoint="funnel-transformer/small",
|
1703 |
+
output_type=TFTokenClassifierOutput,
|
1704 |
+
config_class=_CONFIG_FOR_DOC,
|
1705 |
+
)
|
1706 |
+
def call(
|
1707 |
+
self,
|
1708 |
+
input_ids: TFModelInputType | None = None,
|
1709 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1710 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1711 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1712 |
+
output_attentions: Optional[bool] = None,
|
1713 |
+
output_hidden_states: Optional[bool] = None,
|
1714 |
+
return_dict: Optional[bool] = None,
|
1715 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1716 |
+
training: bool = False,
|
1717 |
+
) -> Union[Tuple[tf.Tensor], TFTokenClassifierOutput]:
|
1718 |
+
r"""
|
1719 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1720 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1721 |
+
"""
|
1722 |
+
outputs = self.funnel(
|
1723 |
+
input_ids,
|
1724 |
+
attention_mask,
|
1725 |
+
token_type_ids,
|
1726 |
+
inputs_embeds,
|
1727 |
+
output_attentions,
|
1728 |
+
output_hidden_states,
|
1729 |
+
return_dict=return_dict,
|
1730 |
+
training=training,
|
1731 |
+
)
|
1732 |
+
sequence_output = outputs[0]
|
1733 |
+
|
1734 |
+
sequence_output = self.dropout(sequence_output, training=training)
|
1735 |
+
logits = self.classifier(sequence_output)
|
1736 |
+
|
1737 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1738 |
+
|
1739 |
+
if not return_dict:
|
1740 |
+
output = (logits,) + outputs[1:]
|
1741 |
+
return ((loss,) + output) if loss is not None else output
|
1742 |
+
|
1743 |
+
return TFTokenClassifierOutput(
|
1744 |
+
loss=loss,
|
1745 |
+
logits=logits,
|
1746 |
+
hidden_states=outputs.hidden_states,
|
1747 |
+
attentions=outputs.attentions,
|
1748 |
+
)
|
1749 |
+
|
1750 |
+
def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput:
|
1751 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1752 |
+
# different dimensions
|
1753 |
+
return TFTokenClassifierOutput(
|
1754 |
+
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
|
1755 |
+
)
|
1756 |
+
|
1757 |
+
def build(self, input_shape=None):
|
1758 |
+
if self.built:
|
1759 |
+
return
|
1760 |
+
self.built = True
|
1761 |
+
if getattr(self, "funnel", None) is not None:
|
1762 |
+
with tf.name_scope(self.funnel.name):
|
1763 |
+
self.funnel.build(None)
|
1764 |
+
if getattr(self, "classifier", None) is not None:
|
1765 |
+
with tf.name_scope(self.classifier.name):
|
1766 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1767 |
+
|
1768 |
+
|
1769 |
+
@add_start_docstrings(
|
1770 |
+
"""
|
1771 |
+
Funnel Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1772 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1773 |
+
""",
|
1774 |
+
FUNNEL_START_DOCSTRING,
|
1775 |
+
)
|
1776 |
+
class TFFunnelForQuestionAnswering(TFFunnelPreTrainedModel, TFQuestionAnsweringLoss):
|
1777 |
+
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
|
1778 |
+
super().__init__(config, *inputs, **kwargs)
|
1779 |
+
self.num_labels = config.num_labels
|
1780 |
+
|
1781 |
+
self.funnel = TFFunnelMainLayer(config, name="funnel")
|
1782 |
+
self.qa_outputs = keras.layers.Dense(
|
1783 |
+
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
|
1784 |
+
)
|
1785 |
+
self.config = config
|
1786 |
+
|
1787 |
+
@unpack_inputs
|
1788 |
+
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1789 |
+
@add_code_sample_docstrings(
|
1790 |
+
checkpoint="funnel-transformer/small",
|
1791 |
+
output_type=TFQuestionAnsweringModelOutput,
|
1792 |
+
config_class=_CONFIG_FOR_DOC,
|
1793 |
+
)
|
1794 |
+
def call(
|
1795 |
+
self,
|
1796 |
+
input_ids: TFModelInputType | None = None,
|
1797 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1798 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1799 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1800 |
+
output_attentions: Optional[bool] = None,
|
1801 |
+
output_hidden_states: Optional[bool] = None,
|
1802 |
+
return_dict: Optional[bool] = None,
|
1803 |
+
start_positions: np.ndarray | tf.Tensor | None = None,
|
1804 |
+
end_positions: np.ndarray | tf.Tensor | None = None,
|
1805 |
+
training: bool = False,
|
1806 |
+
) -> Union[Tuple[tf.Tensor], TFQuestionAnsweringModelOutput]:
|
1807 |
+
r"""
|
1808 |
+
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1809 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1810 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1811 |
+
are not taken into account for computing the loss.
|
1812 |
+
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1813 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1814 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1815 |
+
are not taken into account for computing the loss.
|
1816 |
+
"""
|
1817 |
+
|
1818 |
+
outputs = self.funnel(
|
1819 |
+
input_ids,
|
1820 |
+
attention_mask,
|
1821 |
+
token_type_ids,
|
1822 |
+
inputs_embeds,
|
1823 |
+
output_attentions,
|
1824 |
+
output_hidden_states,
|
1825 |
+
return_dict=return_dict,
|
1826 |
+
training=training,
|
1827 |
+
)
|
1828 |
+
sequence_output = outputs[0]
|
1829 |
+
|
1830 |
+
logits = self.qa_outputs(sequence_output)
|
1831 |
+
start_logits, end_logits = tf.split(logits, 2, axis=-1)
|
1832 |
+
start_logits = tf.squeeze(start_logits, axis=-1)
|
1833 |
+
end_logits = tf.squeeze(end_logits, axis=-1)
|
1834 |
+
|
1835 |
+
loss = None
|
1836 |
+
if start_positions is not None and end_positions is not None:
|
1837 |
+
labels = {"start_position": start_positions, "end_position": end_positions}
|
1838 |
+
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
|
1839 |
+
|
1840 |
+
if not return_dict:
|
1841 |
+
output = (start_logits, end_logits) + outputs[1:]
|
1842 |
+
return ((loss,) + output) if loss is not None else output
|
1843 |
+
|
1844 |
+
return TFQuestionAnsweringModelOutput(
|
1845 |
+
loss=loss,
|
1846 |
+
start_logits=start_logits,
|
1847 |
+
end_logits=end_logits,
|
1848 |
+
hidden_states=outputs.hidden_states,
|
1849 |
+
attentions=outputs.attentions,
|
1850 |
+
)
|
1851 |
+
|
1852 |
+
def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput:
|
1853 |
+
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
|
1854 |
+
# different dimensions
|
1855 |
+
return TFQuestionAnsweringModelOutput(
|
1856 |
+
start_logits=output.start_logits,
|
1857 |
+
end_logits=output.end_logits,
|
1858 |
+
hidden_states=output.hidden_states,
|
1859 |
+
attentions=output.attentions,
|
1860 |
+
)
|
1861 |
+
|
1862 |
+
def build(self, input_shape=None):
|
1863 |
+
if self.built:
|
1864 |
+
return
|
1865 |
+
self.built = True
|
1866 |
+
if getattr(self, "funnel", None) is not None:
|
1867 |
+
with tf.name_scope(self.funnel.name):
|
1868 |
+
self.funnel.build(None)
|
1869 |
+
if getattr(self, "qa_outputs", None) is not None:
|
1870 |
+
with tf.name_scope(self.qa_outputs.name):
|
1871 |
+
self.qa_outputs.build([None, None, self.config.hidden_size])
|
llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/tokenization_funnel_fast.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization class for Funnel Transformer."""
|
16 |
+
|
17 |
+
import json
|
18 |
+
from typing import List, Optional, Tuple
|
19 |
+
|
20 |
+
from tokenizers import normalizers
|
21 |
+
|
22 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
23 |
+
from ...utils import logging
|
24 |
+
from .tokenization_funnel import FunnelTokenizer
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
30 |
+
|
31 |
+
_model_names = [
|
32 |
+
"small",
|
33 |
+
"small-base",
|
34 |
+
"medium",
|
35 |
+
"medium-base",
|
36 |
+
"intermediate",
|
37 |
+
"intermediate-base",
|
38 |
+
"large",
|
39 |
+
"large-base",
|
40 |
+
"xlarge",
|
41 |
+
"xlarge-base",
|
42 |
+
]
|
43 |
+
|
44 |
+
|
45 |
+
class FunnelTokenizerFast(PreTrainedTokenizerFast):
|
46 |
+
r"""
|
47 |
+
Construct a "fast" Funnel Transformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
|
48 |
+
|
49 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
50 |
+
refer to this superclass for more information regarding those methods.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
vocab_file (`str`):
|
54 |
+
File containing the vocabulary.
|
55 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
56 |
+
Whether or not to lowercase the input when tokenizing.
|
57 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
58 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
59 |
+
token instead.
|
60 |
+
sep_token (`str`, *optional*, defaults to `"<sep>"`):
|
61 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
62 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
63 |
+
token of a sequence built with special tokens.
|
64 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
65 |
+
The token used for padding, for example when batching sequences of different lengths.
|
66 |
+
cls_token (`str`, *optional*, defaults to `"<cls>"`):
|
67 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
68 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
69 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
70 |
+
The token used for masking values. This is the token used when training this model with masked language
|
71 |
+
modeling. This is the token which the model will try to predict.
|
72 |
+
clean_text (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether or not to clean the text before tokenization by removing any control characters and replacing all
|
74 |
+
whitespaces by the classic one.
|
75 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
76 |
+
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
|
77 |
+
issue](https://github.com/huggingface/transformers/issues/328)).
|
78 |
+
bos_token (`str`, `optional`, defaults to `"<s>"`):
|
79 |
+
The beginning of sentence token.
|
80 |
+
eos_token (`str`, `optional`, defaults to `"</s>"`):
|
81 |
+
The end of sentence token.
|
82 |
+
strip_accents (`bool`, *optional*):
|
83 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
84 |
+
value for `lowercase` (as in the original BERT).
|
85 |
+
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
|
86 |
+
The prefix for subwords.
|
87 |
+
"""
|
88 |
+
|
89 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
90 |
+
slow_tokenizer_class = FunnelTokenizer
|
91 |
+
cls_token_type_id: int = 2
|
92 |
+
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
vocab_file=None,
|
96 |
+
tokenizer_file=None,
|
97 |
+
do_lower_case=True,
|
98 |
+
unk_token="<unk>",
|
99 |
+
sep_token="<sep>",
|
100 |
+
pad_token="<pad>",
|
101 |
+
cls_token="<cls>",
|
102 |
+
mask_token="<mask>",
|
103 |
+
bos_token="<s>",
|
104 |
+
eos_token="</s>",
|
105 |
+
clean_text=True,
|
106 |
+
tokenize_chinese_chars=True,
|
107 |
+
strip_accents=None,
|
108 |
+
wordpieces_prefix="##",
|
109 |
+
**kwargs,
|
110 |
+
):
|
111 |
+
super().__init__(
|
112 |
+
vocab_file,
|
113 |
+
tokenizer_file=tokenizer_file,
|
114 |
+
do_lower_case=do_lower_case,
|
115 |
+
unk_token=unk_token,
|
116 |
+
sep_token=sep_token,
|
117 |
+
pad_token=pad_token,
|
118 |
+
cls_token=cls_token,
|
119 |
+
mask_token=mask_token,
|
120 |
+
bos_token=bos_token,
|
121 |
+
eos_token=eos_token,
|
122 |
+
clean_text=clean_text,
|
123 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
124 |
+
strip_accents=strip_accents,
|
125 |
+
wordpieces_prefix=wordpieces_prefix,
|
126 |
+
**kwargs,
|
127 |
+
)
|
128 |
+
|
129 |
+
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
|
130 |
+
if (
|
131 |
+
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
|
132 |
+
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
|
133 |
+
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
|
134 |
+
):
|
135 |
+
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
|
136 |
+
normalizer_state["lowercase"] = do_lower_case
|
137 |
+
normalizer_state["strip_accents"] = strip_accents
|
138 |
+
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
|
139 |
+
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
|
140 |
+
|
141 |
+
self.do_lower_case = do_lower_case
|
142 |
+
|
143 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens with BERT->Funnel
|
144 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
145 |
+
"""
|
146 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
147 |
+
adding special tokens. A Funnel sequence has the following format:
|
148 |
+
|
149 |
+
- single sequence: `[CLS] X [SEP]`
|
150 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
151 |
+
|
152 |
+
Args:
|
153 |
+
token_ids_0 (`List[int]`):
|
154 |
+
List of IDs to which the special tokens will be added.
|
155 |
+
token_ids_1 (`List[int]`, *optional*):
|
156 |
+
Optional second list of IDs for sequence pairs.
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
160 |
+
"""
|
161 |
+
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
162 |
+
|
163 |
+
if token_ids_1 is not None:
|
164 |
+
output += token_ids_1 + [self.sep_token_id]
|
165 |
+
|
166 |
+
return output
|
167 |
+
|
168 |
+
def create_token_type_ids_from_sequences(
|
169 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
170 |
+
) -> List[int]:
|
171 |
+
"""
|
172 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel
|
173 |
+
Transformer sequence pair mask has the following format:
|
174 |
+
|
175 |
+
```
|
176 |
+
2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
177 |
+
| first sequence | second sequence |
|
178 |
+
```
|
179 |
+
|
180 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
181 |
+
|
182 |
+
Args:
|
183 |
+
token_ids_0 (`List[int]`):
|
184 |
+
List of IDs.
|
185 |
+
token_ids_1 (`List[int]`, *optional*):
|
186 |
+
Optional second list of IDs for sequence pairs.
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
190 |
+
"""
|
191 |
+
sep = [self.sep_token_id]
|
192 |
+
cls = [self.cls_token_id]
|
193 |
+
if token_ids_1 is None:
|
194 |
+
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0]
|
195 |
+
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
196 |
+
|
197 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary
|
198 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
199 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
200 |
+
return tuple(files)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.19 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/convert_gptsan_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (4.84 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/modeling_gptsan_japanese.cpython-310.pyc
ADDED
Binary file (45.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/tokenization_gptsan_japanese.cpython-310.pyc
ADDED
Binary file (20.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__init__.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_tf_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {
|
27 |
+
"configuration_openai": ["OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OpenAIGPTConfig"],
|
28 |
+
"tokenization_openai": ["OpenAIGPTTokenizer"],
|
29 |
+
}
|
30 |
+
|
31 |
+
try:
|
32 |
+
if not is_tokenizers_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
_import_structure["tokenization_openai_fast"] = ["OpenAIGPTTokenizerFast"]
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_torch_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
_import_structure["modeling_openai"] = [
|
46 |
+
"OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
47 |
+
"OpenAIGPTDoubleHeadsModel",
|
48 |
+
"OpenAIGPTForSequenceClassification",
|
49 |
+
"OpenAIGPTLMHeadModel",
|
50 |
+
"OpenAIGPTModel",
|
51 |
+
"OpenAIGPTPreTrainedModel",
|
52 |
+
"load_tf_weights_in_openai_gpt",
|
53 |
+
]
|
54 |
+
|
55 |
+
try:
|
56 |
+
if not is_tf_available():
|
57 |
+
raise OptionalDependencyNotAvailable()
|
58 |
+
except OptionalDependencyNotAvailable:
|
59 |
+
pass
|
60 |
+
else:
|
61 |
+
_import_structure["modeling_tf_openai"] = [
|
62 |
+
"TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
63 |
+
"TFOpenAIGPTDoubleHeadsModel",
|
64 |
+
"TFOpenAIGPTForSequenceClassification",
|
65 |
+
"TFOpenAIGPTLMHeadModel",
|
66 |
+
"TFOpenAIGPTMainLayer",
|
67 |
+
"TFOpenAIGPTModel",
|
68 |
+
"TFOpenAIGPTPreTrainedModel",
|
69 |
+
]
|
70 |
+
|
71 |
+
|
72 |
+
if TYPE_CHECKING:
|
73 |
+
from .configuration_openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig
|
74 |
+
from .tokenization_openai import OpenAIGPTTokenizer
|
75 |
+
|
76 |
+
try:
|
77 |
+
if not is_tokenizers_available():
|
78 |
+
raise OptionalDependencyNotAvailable()
|
79 |
+
except OptionalDependencyNotAvailable:
|
80 |
+
pass
|
81 |
+
else:
|
82 |
+
from .tokenization_openai_fast import OpenAIGPTTokenizerFast
|
83 |
+
|
84 |
+
try:
|
85 |
+
if not is_torch_available():
|
86 |
+
raise OptionalDependencyNotAvailable()
|
87 |
+
except OptionalDependencyNotAvailable:
|
88 |
+
pass
|
89 |
+
else:
|
90 |
+
from .modeling_openai import (
|
91 |
+
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
92 |
+
OpenAIGPTDoubleHeadsModel,
|
93 |
+
OpenAIGPTForSequenceClassification,
|
94 |
+
OpenAIGPTLMHeadModel,
|
95 |
+
OpenAIGPTModel,
|
96 |
+
OpenAIGPTPreTrainedModel,
|
97 |
+
load_tf_weights_in_openai_gpt,
|
98 |
+
)
|
99 |
+
|
100 |
+
try:
|
101 |
+
if not is_tf_available():
|
102 |
+
raise OptionalDependencyNotAvailable()
|
103 |
+
except OptionalDependencyNotAvailable:
|
104 |
+
pass
|
105 |
+
else:
|
106 |
+
from .modeling_tf_openai import (
|
107 |
+
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
108 |
+
TFOpenAIGPTDoubleHeadsModel,
|
109 |
+
TFOpenAIGPTForSequenceClassification,
|
110 |
+
TFOpenAIGPTLMHeadModel,
|
111 |
+
TFOpenAIGPTMainLayer,
|
112 |
+
TFOpenAIGPTModel,
|
113 |
+
TFOpenAIGPTPreTrainedModel,
|
114 |
+
)
|
115 |
+
|
116 |
+
else:
|
117 |
+
import sys
|
118 |
+
|
119 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.81 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/configuration_openai.cpython-310.pyc
ADDED
Binary file (6.42 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/convert_openai_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (1.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/modeling_openai.cpython-310.pyc
ADDED
Binary file (28.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/modeling_tf_openai.cpython-310.pyc
ADDED
Binary file (30.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/tokenization_openai.cpython-310.pyc
ADDED
Binary file (12.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/tokenization_openai_fast.cpython-310.pyc
ADDED
Binary file (2.49 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/openai/configuration_openai.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" OpenAI GPT configuration"""
|
17 |
+
|
18 |
+
from ...configuration_utils import PretrainedConfig
|
19 |
+
from ...utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
from ..deprecated._archive_maps import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
26 |
+
|
27 |
+
|
28 |
+
class OpenAIGPTConfig(PretrainedConfig):
|
29 |
+
"""
|
30 |
+
This is the configuration class to store the configuration of a [`OpenAIGPTModel`] or a [`TFOpenAIGPTModel`]. It is
|
31 |
+
used to instantiate a GPT model according to the specified arguments, defining the model architecture.
|
32 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT
|
33 |
+
[openai-community/openai-gpt](https://huggingface.co/openai-community/openai-gpt) architecture from OpenAI.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 40478):
|
40 |
+
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`OpenAIGPTModel`] or [`TFOpenAIGPTModel`].
|
42 |
+
n_positions (`int`, *optional*, defaults to 512):
|
43 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
44 |
+
just in case (e.g., 512 or 1024 or 2048).
|
45 |
+
n_embd (`int`, *optional*, defaults to 768):
|
46 |
+
Dimensionality of the embeddings and hidden states.
|
47 |
+
n_layer (`int`, *optional*, defaults to 12):
|
48 |
+
Number of hidden layers in the Transformer encoder.
|
49 |
+
n_head (`int`, *optional*, defaults to 12):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
afn (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
52 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
53 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
54 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
55 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
56 |
+
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
57 |
+
The dropout ratio for the embeddings.
|
58 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout ratio for the attention.
|
60 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
61 |
+
The epsilon to use in the layer normalization layers
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
summary_type (`str`, *optional*, defaults to `"cls_index"`):
|
65 |
+
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
|
66 |
+
[`OpenAIGPTDoubleHeadsModel`].
|
67 |
+
|
68 |
+
Has to be one of the following options:
|
69 |
+
|
70 |
+
- `"last"`: Take the last token hidden state (like XLNet).
|
71 |
+
- `"first"`: Take the first token hidden state (like BERT).
|
72 |
+
- `"mean"`: Take the mean of all tokens hidden states.
|
73 |
+
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
|
74 |
+
- `"attn"`: Not implemented now, use multi-head attention.
|
75 |
+
summary_use_proj (`bool`, *optional*, defaults to `True`):
|
76 |
+
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
|
77 |
+
[`OpenAIGPTDoubleHeadsModel`].
|
78 |
+
|
79 |
+
Whether or not to add a projection after the vector extraction.
|
80 |
+
summary_activation (`str`, *optional*):
|
81 |
+
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
|
82 |
+
[`OpenAIGPTDoubleHeadsModel`].
|
83 |
+
|
84 |
+
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
|
85 |
+
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
|
86 |
+
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
|
87 |
+
[`OpenAIGPTDoubleHeadsModel`].
|
88 |
+
|
89 |
+
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
|
90 |
+
summary_first_dropout (`float`, *optional*, defaults to 0.1):
|
91 |
+
Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and
|
92 |
+
[`OpenAIGPTDoubleHeadsModel`].
|
93 |
+
|
94 |
+
The dropout ratio to be used after the projection and activation.
|
95 |
+
|
96 |
+
|
97 |
+
Examples:
|
98 |
+
|
99 |
+
```python
|
100 |
+
>>> from transformers import OpenAIGPTConfig, OpenAIGPTModel
|
101 |
+
|
102 |
+
>>> # Initializing a GPT configuration
|
103 |
+
>>> configuration = OpenAIGPTConfig()
|
104 |
+
|
105 |
+
>>> # Initializing a model (with random weights) from the configuration
|
106 |
+
>>> model = OpenAIGPTModel(configuration)
|
107 |
+
|
108 |
+
>>> # Accessing the model configuration
|
109 |
+
>>> configuration = model.config
|
110 |
+
```"""
|
111 |
+
|
112 |
+
model_type = "openai-gpt"
|
113 |
+
attribute_map = {
|
114 |
+
"max_position_embeddings": "n_positions",
|
115 |
+
"hidden_size": "n_embd",
|
116 |
+
"num_attention_heads": "n_head",
|
117 |
+
"num_hidden_layers": "n_layer",
|
118 |
+
}
|
119 |
+
|
120 |
+
def __init__(
|
121 |
+
self,
|
122 |
+
vocab_size=40478,
|
123 |
+
n_positions=512,
|
124 |
+
n_embd=768,
|
125 |
+
n_layer=12,
|
126 |
+
n_head=12,
|
127 |
+
afn="gelu",
|
128 |
+
resid_pdrop=0.1,
|
129 |
+
embd_pdrop=0.1,
|
130 |
+
attn_pdrop=0.1,
|
131 |
+
layer_norm_epsilon=1e-5,
|
132 |
+
initializer_range=0.02,
|
133 |
+
summary_type="cls_index",
|
134 |
+
summary_use_proj=True,
|
135 |
+
summary_activation=None,
|
136 |
+
summary_proj_to_labels=True,
|
137 |
+
summary_first_dropout=0.1,
|
138 |
+
**kwargs,
|
139 |
+
):
|
140 |
+
self.vocab_size = vocab_size
|
141 |
+
self.n_positions = n_positions
|
142 |
+
self.n_embd = n_embd
|
143 |
+
self.n_layer = n_layer
|
144 |
+
self.n_head = n_head
|
145 |
+
self.afn = afn
|
146 |
+
self.resid_pdrop = resid_pdrop
|
147 |
+
self.embd_pdrop = embd_pdrop
|
148 |
+
self.attn_pdrop = attn_pdrop
|
149 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
150 |
+
self.initializer_range = initializer_range
|
151 |
+
self.summary_type = summary_type
|
152 |
+
self.summary_use_proj = summary_use_proj
|
153 |
+
self.summary_activation = summary_activation
|
154 |
+
self.summary_first_dropout = summary_first_dropout
|
155 |
+
self.summary_proj_to_labels = summary_proj_to_labels
|
156 |
+
super().__init__(**kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/openai/convert_openai_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert OpenAI GPT checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt
|
23 |
+
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
|
24 |
+
|
25 |
+
|
26 |
+
logging.set_verbosity_info()
|
27 |
+
|
28 |
+
|
29 |
+
def convert_openai_checkpoint_to_pytorch(openai_checkpoint_folder_path, openai_config_file, pytorch_dump_folder_path):
|
30 |
+
# Construct model
|
31 |
+
if openai_config_file == "":
|
32 |
+
config = OpenAIGPTConfig()
|
33 |
+
else:
|
34 |
+
config = OpenAIGPTConfig.from_json_file(openai_config_file)
|
35 |
+
model = OpenAIGPTModel(config)
|
36 |
+
|
37 |
+
# Load weights from numpy
|
38 |
+
load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path)
|
39 |
+
|
40 |
+
# Save pytorch-model
|
41 |
+
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
|
42 |
+
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
|
43 |
+
print(f"Save PyTorch model to {pytorch_weights_dump_path}")
|
44 |
+
torch.save(model.state_dict(), pytorch_weights_dump_path)
|
45 |
+
print(f"Save configuration file to {pytorch_config_dump_path}")
|
46 |
+
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
|
47 |
+
f.write(config.to_json_string())
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == "__main__":
|
51 |
+
parser = argparse.ArgumentParser()
|
52 |
+
# Required parameters
|
53 |
+
parser.add_argument(
|
54 |
+
"--openai_checkpoint_folder_path",
|
55 |
+
default=None,
|
56 |
+
type=str,
|
57 |
+
required=True,
|
58 |
+
help="Path to the TensorFlow checkpoint path.",
|
59 |
+
)
|
60 |
+
parser.add_argument(
|
61 |
+
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
62 |
+
)
|
63 |
+
parser.add_argument(
|
64 |
+
"--openai_config_file",
|
65 |
+
default="",
|
66 |
+
type=str,
|
67 |
+
help=(
|
68 |
+
"An optional config json file corresponding to the pre-trained OpenAI model. \n"
|
69 |
+
"This specifies the model architecture."
|
70 |
+
),
|
71 |
+
)
|
72 |
+
args = parser.parse_args()
|
73 |
+
convert_openai_checkpoint_to_pytorch(
|
74 |
+
args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path
|
75 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/openai/modeling_openai.py
ADDED
@@ -0,0 +1,859 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch OpenAI GPT model."""
|
17 |
+
|
18 |
+
|
19 |
+
import json
|
20 |
+
import math
|
21 |
+
import os
|
22 |
+
from dataclasses import dataclass
|
23 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
|
29 |
+
from ...activations import gelu_new, silu
|
30 |
+
from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput
|
31 |
+
from ...modeling_utils import PreTrainedModel, SequenceSummary
|
32 |
+
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
|
33 |
+
from ...utils import (
|
34 |
+
ModelOutput,
|
35 |
+
add_code_sample_docstrings,
|
36 |
+
add_start_docstrings,
|
37 |
+
add_start_docstrings_to_model_forward,
|
38 |
+
logging,
|
39 |
+
replace_return_docstrings,
|
40 |
+
)
|
41 |
+
from .configuration_openai import OpenAIGPTConfig
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
_CHECKPOINT_FOR_DOC = "openai-community/openai-gpt"
|
47 |
+
_CONFIG_FOR_DOC = "OpenAIGPTConfig"
|
48 |
+
|
49 |
+
|
50 |
+
from ..deprecated._archive_maps import OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
51 |
+
|
52 |
+
|
53 |
+
def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
|
54 |
+
"""Load tf pre-trained weights in a pytorch model (from NumPy arrays here)"""
|
55 |
+
import re
|
56 |
+
|
57 |
+
import numpy as np
|
58 |
+
|
59 |
+
if ".ckpt" in openai_checkpoint_folder_path:
|
60 |
+
openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path)
|
61 |
+
|
62 |
+
logger.info(f"Loading weights from {openai_checkpoint_folder_path}")
|
63 |
+
|
64 |
+
with open(openai_checkpoint_folder_path + "/parameters_names.json", "r", encoding="utf-8") as names_handle:
|
65 |
+
names = json.load(names_handle)
|
66 |
+
with open(openai_checkpoint_folder_path + "/params_shapes.json", "r", encoding="utf-8") as shapes_handle:
|
67 |
+
shapes = json.load(shapes_handle)
|
68 |
+
offsets = np.cumsum([np.prod(shape) for shape in shapes])
|
69 |
+
init_params = [np.load(openai_checkpoint_folder_path + f"/params_{n}.npy") for n in range(10)]
|
70 |
+
init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
|
71 |
+
init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]
|
72 |
+
|
73 |
+
# This was used when we had a single embedding matrix for positions and tokens
|
74 |
+
# init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
|
75 |
+
# del init_params[1]
|
76 |
+
init_params = [arr.squeeze() for arr in init_params]
|
77 |
+
|
78 |
+
# Check that the token and position embeddings weight dimensions map those of the init parameters.
|
79 |
+
if model.tokens_embed.weight.shape != init_params[1].shape:
|
80 |
+
raise ValueError(
|
81 |
+
f"tokens_embed.weight.shape: {model.tokens_embed.weight.shape} does not match init_param[1].shape:"
|
82 |
+
f" {init_params[1].shape}"
|
83 |
+
)
|
84 |
+
|
85 |
+
if model.positions_embed.weight.shape != init_params[0].shape:
|
86 |
+
raise ValueError(
|
87 |
+
f"positions_embed.weight.shape: {model.positions_embed.weight.shape} does not match init_param[0].shape:"
|
88 |
+
f" {init_params[0].shape}"
|
89 |
+
)
|
90 |
+
|
91 |
+
model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
|
92 |
+
model.positions_embed.weight.data = torch.from_numpy(init_params[0])
|
93 |
+
names.pop(0)
|
94 |
+
# Pop position and token embedding arrays
|
95 |
+
init_params.pop(0)
|
96 |
+
init_params.pop(0)
|
97 |
+
|
98 |
+
for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
|
99 |
+
name = name[6:] # skip "model/"
|
100 |
+
if name[-2:] != ":0":
|
101 |
+
raise ValueError(f"Layer {name} does not end with :0")
|
102 |
+
name = name[:-2]
|
103 |
+
name = name.split("/")
|
104 |
+
pointer = model
|
105 |
+
for m_name in name:
|
106 |
+
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
|
107 |
+
scope_names = re.split(r"(\d+)", m_name)
|
108 |
+
else:
|
109 |
+
scope_names = [m_name]
|
110 |
+
if scope_names[0] == "g":
|
111 |
+
pointer = getattr(pointer, "weight")
|
112 |
+
elif scope_names[0] == "b":
|
113 |
+
pointer = getattr(pointer, "bias")
|
114 |
+
elif scope_names[0] == "w":
|
115 |
+
pointer = getattr(pointer, "weight")
|
116 |
+
else:
|
117 |
+
pointer = getattr(pointer, scope_names[0])
|
118 |
+
if len(scope_names) >= 2:
|
119 |
+
num = int(scope_names[1])
|
120 |
+
pointer = pointer[num]
|
121 |
+
|
122 |
+
# Ensure that the pointer and array have compatible shapes.
|
123 |
+
if pointer.shape != array.shape:
|
124 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
125 |
+
|
126 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
127 |
+
pointer.data = torch.from_numpy(array)
|
128 |
+
return model
|
129 |
+
|
130 |
+
|
131 |
+
ACT_FNS = {"relu": nn.ReLU(), "silu": silu, "gelu": gelu_new, "swish": silu}
|
132 |
+
|
133 |
+
|
134 |
+
class Attention(nn.Module):
|
135 |
+
def __init__(self, nx, n_positions, config, scale=False):
|
136 |
+
super().__init__()
|
137 |
+
n_state = nx # in Attention: n_state=768 (nx=n_embd)
|
138 |
+
# [switch nx => n_state from Block to Attention to keep identical to TF implementation]
|
139 |
+
if n_state % config.n_head != 0:
|
140 |
+
raise ValueError(f"Attention n_state shape: {n_state} must be divisible by config.n_head {config.n_head}")
|
141 |
+
self.register_buffer(
|
142 |
+
"bias",
|
143 |
+
torch.tril(torch.ones(n_positions, n_positions)).view(1, 1, n_positions, n_positions),
|
144 |
+
persistent=False,
|
145 |
+
)
|
146 |
+
self.n_head = config.n_head
|
147 |
+
self.split_size = n_state
|
148 |
+
self.scale = scale
|
149 |
+
|
150 |
+
self.c_attn = Conv1D(n_state * 3, nx)
|
151 |
+
self.c_proj = Conv1D(n_state, nx)
|
152 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
153 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
154 |
+
self.pruned_heads = set()
|
155 |
+
|
156 |
+
def prune_heads(self, heads):
|
157 |
+
if len(heads) == 0:
|
158 |
+
return
|
159 |
+
heads, index = find_pruneable_heads_and_indices(
|
160 |
+
heads, self.n_head, self.split_size // self.n_head, self.pruned_heads
|
161 |
+
)
|
162 |
+
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
|
163 |
+
# Prune conv1d layers
|
164 |
+
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
165 |
+
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
166 |
+
# Update hyper params
|
167 |
+
self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
|
168 |
+
self.n_head = self.n_head - len(heads)
|
169 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
170 |
+
|
171 |
+
def _attn(self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False):
|
172 |
+
w = torch.matmul(q, k)
|
173 |
+
if self.scale:
|
174 |
+
w = w / math.sqrt(v.size(-1))
|
175 |
+
# w = w * self.bias + -1e9 * (1 - self.bias) # TF implementation method: mask_attn_weights
|
176 |
+
# XD: self.b may be larger than w, so we need to crop it
|
177 |
+
b = self.bias[:, :, : w.size(-2), : w.size(-1)]
|
178 |
+
w = w * b + -1e4 * (1 - b)
|
179 |
+
|
180 |
+
if attention_mask is not None:
|
181 |
+
# Apply the attention mask
|
182 |
+
w = w + attention_mask
|
183 |
+
|
184 |
+
w = nn.functional.softmax(w, dim=-1)
|
185 |
+
w = self.attn_dropout(w)
|
186 |
+
|
187 |
+
# Mask heads if we want to
|
188 |
+
if head_mask is not None:
|
189 |
+
w = w * head_mask
|
190 |
+
|
191 |
+
outputs = [torch.matmul(w, v)]
|
192 |
+
if output_attentions:
|
193 |
+
outputs.append(w)
|
194 |
+
return outputs
|
195 |
+
|
196 |
+
def merge_heads(self, x):
|
197 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
198 |
+
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
|
199 |
+
return x.view(*new_x_shape) # in Tensorflow implementation: fct merge_states
|
200 |
+
|
201 |
+
def split_heads(self, x, k=False):
|
202 |
+
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
|
203 |
+
x = x.view(*new_x_shape) # in Tensorflow implementation: fct split_states
|
204 |
+
if k:
|
205 |
+
return x.permute(0, 2, 3, 1)
|
206 |
+
else:
|
207 |
+
return x.permute(0, 2, 1, 3)
|
208 |
+
|
209 |
+
def forward(self, x, attention_mask=None, head_mask=None, output_attentions=False):
|
210 |
+
x = self.c_attn(x)
|
211 |
+
query, key, value = x.split(self.split_size, dim=2)
|
212 |
+
query = self.split_heads(query)
|
213 |
+
key = self.split_heads(key, k=True)
|
214 |
+
value = self.split_heads(value)
|
215 |
+
|
216 |
+
attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions)
|
217 |
+
a = attn_outputs[0]
|
218 |
+
|
219 |
+
a = self.merge_heads(a)
|
220 |
+
a = self.c_proj(a)
|
221 |
+
a = self.resid_dropout(a)
|
222 |
+
|
223 |
+
outputs = [a] + attn_outputs[1:]
|
224 |
+
return outputs # a, (attentions)
|
225 |
+
|
226 |
+
|
227 |
+
class MLP(nn.Module):
|
228 |
+
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
|
229 |
+
super().__init__()
|
230 |
+
nx = config.n_embd
|
231 |
+
self.c_fc = Conv1D(n_state, nx)
|
232 |
+
self.c_proj = Conv1D(nx, n_state)
|
233 |
+
self.act = ACT_FNS[config.afn]
|
234 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
235 |
+
|
236 |
+
def forward(self, x):
|
237 |
+
h = self.act(self.c_fc(x))
|
238 |
+
h2 = self.c_proj(h)
|
239 |
+
return self.dropout(h2)
|
240 |
+
|
241 |
+
|
242 |
+
class Block(nn.Module):
|
243 |
+
def __init__(self, n_positions, config, scale=False):
|
244 |
+
super().__init__()
|
245 |
+
nx = config.n_embd
|
246 |
+
self.attn = Attention(nx, n_positions, config, scale)
|
247 |
+
self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
|
248 |
+
self.mlp = MLP(4 * nx, config)
|
249 |
+
self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
|
250 |
+
|
251 |
+
def forward(self, x, attention_mask=None, head_mask=None, output_attentions=False):
|
252 |
+
attn_outputs = self.attn(
|
253 |
+
x,
|
254 |
+
attention_mask=attention_mask,
|
255 |
+
head_mask=head_mask,
|
256 |
+
output_attentions=output_attentions,
|
257 |
+
)
|
258 |
+
a = attn_outputs[0]
|
259 |
+
|
260 |
+
n = self.ln_1(x + a)
|
261 |
+
m = self.mlp(n)
|
262 |
+
h = self.ln_2(n + m)
|
263 |
+
|
264 |
+
outputs = [h] + attn_outputs[1:]
|
265 |
+
return outputs
|
266 |
+
|
267 |
+
|
268 |
+
class OpenAIGPTPreTrainedModel(PreTrainedModel):
|
269 |
+
"""
|
270 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
271 |
+
models.
|
272 |
+
"""
|
273 |
+
|
274 |
+
config_class = OpenAIGPTConfig
|
275 |
+
load_tf_weights = load_tf_weights_in_openai_gpt
|
276 |
+
base_model_prefix = "transformer"
|
277 |
+
|
278 |
+
def _init_weights(self, module):
|
279 |
+
"""Initialize the weights."""
|
280 |
+
if isinstance(module, (nn.Linear, Conv1D)):
|
281 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
282 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
283 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
284 |
+
if module.bias is not None:
|
285 |
+
module.bias.data.zero_()
|
286 |
+
elif isinstance(module, nn.Embedding):
|
287 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
288 |
+
if module.padding_idx is not None:
|
289 |
+
module.weight.data[module.padding_idx].zero_()
|
290 |
+
elif isinstance(module, nn.LayerNorm):
|
291 |
+
module.bias.data.zero_()
|
292 |
+
module.weight.data.fill_(1.0)
|
293 |
+
|
294 |
+
|
295 |
+
@dataclass
|
296 |
+
class OpenAIGPTDoubleHeadsModelOutput(ModelOutput):
|
297 |
+
"""
|
298 |
+
Base class for outputs of models predicting if two sentences are consecutive or not.
|
299 |
+
|
300 |
+
Args:
|
301 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
302 |
+
Language modeling loss.
|
303 |
+
mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided):
|
304 |
+
Multiple choice classification loss.
|
305 |
+
logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
|
306 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
307 |
+
mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
|
308 |
+
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
|
309 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
310 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
311 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
312 |
+
|
313 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
314 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
315 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
316 |
+
sequence_length)`.
|
317 |
+
|
318 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
319 |
+
heads.
|
320 |
+
"""
|
321 |
+
|
322 |
+
loss: Optional[torch.FloatTensor] = None
|
323 |
+
mc_loss: Optional[torch.FloatTensor] = None
|
324 |
+
logits: torch.FloatTensor = None
|
325 |
+
mc_logits: torch.FloatTensor = None
|
326 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
327 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
328 |
+
|
329 |
+
|
330 |
+
OPENAI_GPT_START_DOCSTRING = r"""
|
331 |
+
|
332 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
333 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
334 |
+
etc.)
|
335 |
+
|
336 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
337 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
338 |
+
and behavior.
|
339 |
+
|
340 |
+
Parameters:
|
341 |
+
config ([`OpenAIGPTConfig`]): Model configuration class with all the parameters of the model.
|
342 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
343 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
344 |
+
"""
|
345 |
+
|
346 |
+
OPENAI_GPT_INPUTS_DOCSTRING = r"""
|
347 |
+
Args:
|
348 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
349 |
+
Indices of input sequence tokens in the vocabulary.
|
350 |
+
|
351 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
352 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
353 |
+
|
354 |
+
[What are input IDs?](../glossary#input-ids)
|
355 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
356 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
357 |
+
|
358 |
+
- 1 for tokens that are **not masked**,
|
359 |
+
- 0 for tokens that are **masked**.
|
360 |
+
|
361 |
+
[What are attention masks?](../glossary#attention-mask)
|
362 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
363 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
364 |
+
1]`:
|
365 |
+
|
366 |
+
- 0 corresponds to a *sentence A* token,
|
367 |
+
- 1 corresponds to a *sentence B* token.
|
368 |
+
|
369 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
370 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
371 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
372 |
+
config.max_position_embeddings - 1]`.
|
373 |
+
|
374 |
+
[What are position IDs?](../glossary#position-ids)
|
375 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
376 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
377 |
+
|
378 |
+
- 1 indicates the head is **not masked**,
|
379 |
+
- 0 indicates the head is **masked**.
|
380 |
+
|
381 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
382 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
383 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
384 |
+
model's internal embedding lookup matrix.
|
385 |
+
output_attentions (`bool`, *optional*):
|
386 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
387 |
+
tensors for more detail.
|
388 |
+
output_hidden_states (`bool`, *optional*):
|
389 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
390 |
+
more detail.
|
391 |
+
return_dict (`bool`, *optional*):
|
392 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
393 |
+
"""
|
394 |
+
|
395 |
+
|
396 |
+
@add_start_docstrings(
|
397 |
+
"The bare OpenAI GPT transformer model outputting raw hidden-states without any specific head on top.",
|
398 |
+
OPENAI_GPT_START_DOCSTRING,
|
399 |
+
)
|
400 |
+
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
|
401 |
+
def __init__(self, config):
|
402 |
+
super().__init__(config)
|
403 |
+
|
404 |
+
self.tokens_embed = nn.Embedding(config.vocab_size, config.n_embd)
|
405 |
+
self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
|
406 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
407 |
+
self.h = nn.ModuleList([Block(config.n_positions, config, scale=True) for _ in range(config.n_layer)])
|
408 |
+
|
409 |
+
self.register_buffer("position_ids", torch.arange(config.n_positions), persistent=False)
|
410 |
+
# Initialize weights and apply final processing
|
411 |
+
self.post_init()
|
412 |
+
|
413 |
+
def get_input_embeddings(self):
|
414 |
+
return self.tokens_embed
|
415 |
+
|
416 |
+
def set_input_embeddings(self, new_embeddings):
|
417 |
+
self.tokens_embed = new_embeddings
|
418 |
+
|
419 |
+
def _prune_heads(self, heads_to_prune):
|
420 |
+
"""
|
421 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
422 |
+
"""
|
423 |
+
for layer, heads in heads_to_prune.items():
|
424 |
+
self.h[layer].attn.prune_heads(heads)
|
425 |
+
|
426 |
+
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
|
427 |
+
@add_code_sample_docstrings(
|
428 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
429 |
+
output_type=BaseModelOutput,
|
430 |
+
config_class=_CONFIG_FOR_DOC,
|
431 |
+
)
|
432 |
+
def forward(
|
433 |
+
self,
|
434 |
+
input_ids: Optional[torch.LongTensor] = None,
|
435 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
436 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
437 |
+
position_ids: Optional[torch.LongTensor] = None,
|
438 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
439 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
440 |
+
output_attentions: Optional[bool] = None,
|
441 |
+
output_hidden_states: Optional[bool] = None,
|
442 |
+
return_dict: Optional[bool] = None,
|
443 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
444 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
445 |
+
output_hidden_states = (
|
446 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
447 |
+
)
|
448 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
449 |
+
|
450 |
+
if input_ids is not None and inputs_embeds is not None:
|
451 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
452 |
+
elif input_ids is not None:
|
453 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
454 |
+
input_shape = input_ids.size()
|
455 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
456 |
+
elif inputs_embeds is not None:
|
457 |
+
input_shape = inputs_embeds.size()[:-1]
|
458 |
+
else:
|
459 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
460 |
+
|
461 |
+
if position_ids is None:
|
462 |
+
# Code is different from when we had a single embedding matrix from position and token embeddings
|
463 |
+
position_ids = self.position_ids[None, : input_shape[-1]]
|
464 |
+
|
465 |
+
# Attention mask.
|
466 |
+
if attention_mask is not None:
|
467 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
468 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
469 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
470 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
471 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
472 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
473 |
+
|
474 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
475 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
476 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
477 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
478 |
+
# effectively the same as removing these entirely.
|
479 |
+
attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
|
480 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
481 |
+
|
482 |
+
# Prepare head mask if needed
|
483 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
484 |
+
|
485 |
+
if inputs_embeds is None:
|
486 |
+
inputs_embeds = self.tokens_embed(input_ids)
|
487 |
+
position_embeds = self.positions_embed(position_ids)
|
488 |
+
if token_type_ids is not None:
|
489 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
|
490 |
+
token_type_embeds = self.tokens_embed(token_type_ids)
|
491 |
+
else:
|
492 |
+
token_type_embeds = 0
|
493 |
+
hidden_states = inputs_embeds + position_embeds + token_type_embeds
|
494 |
+
hidden_states = self.drop(hidden_states)
|
495 |
+
|
496 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
497 |
+
|
498 |
+
all_attentions = () if output_attentions else None
|
499 |
+
all_hidden_states = () if output_hidden_states else None
|
500 |
+
for i, block in enumerate(self.h):
|
501 |
+
if output_hidden_states:
|
502 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
503 |
+
|
504 |
+
outputs = block(hidden_states, attention_mask, head_mask[i], output_attentions=output_attentions)
|
505 |
+
hidden_states = outputs[0]
|
506 |
+
if output_attentions:
|
507 |
+
all_attentions = all_attentions + (outputs[1],)
|
508 |
+
|
509 |
+
hidden_states = hidden_states.view(*output_shape)
|
510 |
+
# Add last layer
|
511 |
+
if output_hidden_states:
|
512 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
513 |
+
|
514 |
+
if not return_dict:
|
515 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
516 |
+
|
517 |
+
return BaseModelOutput(
|
518 |
+
last_hidden_state=hidden_states,
|
519 |
+
hidden_states=all_hidden_states,
|
520 |
+
attentions=all_attentions,
|
521 |
+
)
|
522 |
+
|
523 |
+
|
524 |
+
@add_start_docstrings(
|
525 |
+
"""
|
526 |
+
OpenAI GPT Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
527 |
+
embeddings).
|
528 |
+
""",
|
529 |
+
OPENAI_GPT_START_DOCSTRING,
|
530 |
+
)
|
531 |
+
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
|
532 |
+
_tied_weights_keys = ["lm_head.weight"]
|
533 |
+
|
534 |
+
def __init__(self, config):
|
535 |
+
super().__init__(config)
|
536 |
+
self.transformer = OpenAIGPTModel(config)
|
537 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
538 |
+
|
539 |
+
# Initialize weights and apply final processing
|
540 |
+
self.post_init()
|
541 |
+
|
542 |
+
def get_output_embeddings(self):
|
543 |
+
return self.lm_head
|
544 |
+
|
545 |
+
def set_output_embeddings(self, new_embeddings):
|
546 |
+
self.lm_head = new_embeddings
|
547 |
+
|
548 |
+
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
|
549 |
+
@add_code_sample_docstrings(
|
550 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
551 |
+
output_type=CausalLMOutput,
|
552 |
+
config_class=_CONFIG_FOR_DOC,
|
553 |
+
)
|
554 |
+
def forward(
|
555 |
+
self,
|
556 |
+
input_ids: Optional[torch.LongTensor] = None,
|
557 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
558 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
559 |
+
position_ids: Optional[torch.LongTensor] = None,
|
560 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
561 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
562 |
+
labels: Optional[torch.LongTensor] = None,
|
563 |
+
output_attentions: Optional[bool] = None,
|
564 |
+
output_hidden_states: Optional[bool] = None,
|
565 |
+
return_dict: Optional[bool] = None,
|
566 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutput]:
|
567 |
+
r"""
|
568 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
569 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
570 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
571 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
572 |
+
"""
|
573 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
574 |
+
|
575 |
+
transformer_outputs = self.transformer(
|
576 |
+
input_ids,
|
577 |
+
attention_mask=attention_mask,
|
578 |
+
token_type_ids=token_type_ids,
|
579 |
+
position_ids=position_ids,
|
580 |
+
head_mask=head_mask,
|
581 |
+
inputs_embeds=inputs_embeds,
|
582 |
+
output_attentions=output_attentions,
|
583 |
+
output_hidden_states=output_hidden_states,
|
584 |
+
return_dict=return_dict,
|
585 |
+
)
|
586 |
+
hidden_states = transformer_outputs[0]
|
587 |
+
lm_logits = self.lm_head(hidden_states)
|
588 |
+
|
589 |
+
loss = None
|
590 |
+
if labels is not None:
|
591 |
+
# Shift so that tokens < n predict n
|
592 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
593 |
+
shift_labels = labels[..., 1:].contiguous()
|
594 |
+
# Flatten the tokens
|
595 |
+
loss_fct = CrossEntropyLoss()
|
596 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
597 |
+
|
598 |
+
if not return_dict:
|
599 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
600 |
+
return ((loss,) + output) if loss is not None else output
|
601 |
+
|
602 |
+
return CausalLMOutput(
|
603 |
+
loss=loss,
|
604 |
+
logits=lm_logits,
|
605 |
+
hidden_states=transformer_outputs.hidden_states,
|
606 |
+
attentions=transformer_outputs.attentions,
|
607 |
+
)
|
608 |
+
|
609 |
+
def prepare_inputs_for_generation(self, input_ids: torch.LongTensor, **kwargs) -> Dict[str, Any]:
|
610 |
+
return {"input_ids": input_ids}
|
611 |
+
|
612 |
+
|
613 |
+
@add_start_docstrings(
|
614 |
+
"""
|
615 |
+
OpenAI GPT Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
|
616 |
+
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
|
617 |
+
input embeddings, the classification head takes as input the input of a specified classification token index in the
|
618 |
+
input sequence).
|
619 |
+
""",
|
620 |
+
OPENAI_GPT_START_DOCSTRING,
|
621 |
+
)
|
622 |
+
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
|
623 |
+
_tied_weights_keys = ["lm_head.weight"]
|
624 |
+
|
625 |
+
def __init__(self, config):
|
626 |
+
super().__init__(config)
|
627 |
+
|
628 |
+
config.num_labels = 1
|
629 |
+
self.transformer = OpenAIGPTModel(config)
|
630 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
631 |
+
self.multiple_choice_head = SequenceSummary(config)
|
632 |
+
|
633 |
+
# Initialize weights and apply final processing
|
634 |
+
self.post_init()
|
635 |
+
|
636 |
+
def get_output_embeddings(self):
|
637 |
+
return self.lm_head
|
638 |
+
|
639 |
+
def set_output_embeddings(self, new_embeddings):
|
640 |
+
self.lm_head = new_embeddings
|
641 |
+
|
642 |
+
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
|
643 |
+
@replace_return_docstrings(output_type=OpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
|
644 |
+
def forward(
|
645 |
+
self,
|
646 |
+
input_ids: Optional[torch.LongTensor] = None,
|
647 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
648 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
649 |
+
position_ids: Optional[torch.LongTensor] = None,
|
650 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
651 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
652 |
+
mc_token_ids: Optional[torch.LongTensor] = None,
|
653 |
+
labels: Optional[torch.LongTensor] = None,
|
654 |
+
mc_labels: Optional[torch.LongTensor] = None,
|
655 |
+
output_attentions: Optional[bool] = None,
|
656 |
+
output_hidden_states: Optional[bool] = None,
|
657 |
+
return_dict: Optional[bool] = None,
|
658 |
+
) -> Union[Tuple[torch.Tensor], OpenAIGPTDoubleHeadsModelOutput]:
|
659 |
+
r"""
|
660 |
+
mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
|
661 |
+
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
|
662 |
+
1]`.
|
663 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
664 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
665 |
+
`labels = input_ids` Indices are selected in `[-1, 0, ..., config.vocab_size]` All labels set to `-100` are
|
666 |
+
ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
667 |
+
mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*):
|
668 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
669 |
+
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
|
670 |
+
|
671 |
+
Return:
|
672 |
+
|
673 |
+
Examples:
|
674 |
+
|
675 |
+
```python
|
676 |
+
>>> from transformers import AutoTokenizer, OpenAIGPTDoubleHeadsModel
|
677 |
+
>>> import torch
|
678 |
+
|
679 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt")
|
680 |
+
>>> model = OpenAIGPTDoubleHeadsModel.from_pretrained("openai-community/openai-gpt")
|
681 |
+
>>> tokenizer.add_special_tokens(
|
682 |
+
... {"cls_token": "[CLS]"}
|
683 |
+
... ) # Add a [CLS] to the vocabulary (we should train it also!)
|
684 |
+
>>> model.resize_token_embeddings(len(tokenizer))
|
685 |
+
|
686 |
+
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
|
687 |
+
>>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
|
688 |
+
>>> mc_token_ids = torch.tensor([input_ids.size(-1) - 1, input_ids.size(-1) - 1]).unsqueeze(0) # Batch size 1
|
689 |
+
|
690 |
+
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
|
691 |
+
>>> lm_logits = outputs.logits
|
692 |
+
>>> mc_logits = outputs.mc_logits
|
693 |
+
```"""
|
694 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
695 |
+
|
696 |
+
transformer_outputs = self.transformer(
|
697 |
+
input_ids,
|
698 |
+
attention_mask=attention_mask,
|
699 |
+
token_type_ids=token_type_ids,
|
700 |
+
position_ids=position_ids,
|
701 |
+
head_mask=head_mask,
|
702 |
+
inputs_embeds=inputs_embeds,
|
703 |
+
output_attentions=output_attentions,
|
704 |
+
output_hidden_states=output_hidden_states,
|
705 |
+
return_dict=return_dict,
|
706 |
+
)
|
707 |
+
hidden_states = transformer_outputs[0]
|
708 |
+
|
709 |
+
lm_logits = self.lm_head(hidden_states)
|
710 |
+
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
|
711 |
+
|
712 |
+
lm_loss, mc_loss = None, None
|
713 |
+
if mc_labels is not None:
|
714 |
+
loss_fct = CrossEntropyLoss()
|
715 |
+
mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
|
716 |
+
if labels is not None:
|
717 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
718 |
+
shift_labels = labels[..., 1:].contiguous()
|
719 |
+
loss_fct = CrossEntropyLoss()
|
720 |
+
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
721 |
+
|
722 |
+
if not return_dict:
|
723 |
+
output = (lm_logits, mc_logits) + transformer_outputs[1:]
|
724 |
+
if mc_loss is not None:
|
725 |
+
output = (mc_loss,) + output
|
726 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
727 |
+
|
728 |
+
return OpenAIGPTDoubleHeadsModelOutput(
|
729 |
+
loss=lm_loss,
|
730 |
+
mc_loss=mc_loss,
|
731 |
+
logits=lm_logits,
|
732 |
+
mc_logits=mc_logits,
|
733 |
+
hidden_states=transformer_outputs.hidden_states,
|
734 |
+
attentions=transformer_outputs.attentions,
|
735 |
+
)
|
736 |
+
|
737 |
+
|
738 |
+
@add_start_docstrings(
|
739 |
+
"""
|
740 |
+
The Original OpenAI GPT Model transformer with a sequence classification head on top (linear layer).
|
741 |
+
[`OpenAIGPTForSequenceClassification`] uses the last token in order to do the classification, as other causal
|
742 |
+
models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the
|
743 |
+
last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding
|
744 |
+
token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since
|
745 |
+
it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take
|
746 |
+
the last value in each row of the batch).
|
747 |
+
""",
|
748 |
+
OPENAI_GPT_START_DOCSTRING,
|
749 |
+
)
|
750 |
+
class OpenAIGPTForSequenceClassification(OpenAIGPTPreTrainedModel):
|
751 |
+
def __init__(self, config):
|
752 |
+
super().__init__(config)
|
753 |
+
self.num_labels = config.num_labels
|
754 |
+
self.transformer = OpenAIGPTModel(config)
|
755 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
756 |
+
|
757 |
+
# Initialize weights and apply final processing
|
758 |
+
self.post_init()
|
759 |
+
|
760 |
+
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
|
761 |
+
@add_code_sample_docstrings(
|
762 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
763 |
+
output_type=SequenceClassifierOutput,
|
764 |
+
config_class=_CONFIG_FOR_DOC,
|
765 |
+
)
|
766 |
+
def forward(
|
767 |
+
self,
|
768 |
+
input_ids: Optional[torch.LongTensor] = None,
|
769 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
770 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
771 |
+
position_ids: Optional[torch.LongTensor] = None,
|
772 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
773 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
774 |
+
labels: Optional[torch.LongTensor] = None,
|
775 |
+
output_attentions: Optional[bool] = None,
|
776 |
+
output_hidden_states: Optional[bool] = None,
|
777 |
+
return_dict: Optional[bool] = None,
|
778 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
779 |
+
r"""
|
780 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
781 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
782 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
783 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
784 |
+
"""
|
785 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
786 |
+
|
787 |
+
transformer_outputs = self.transformer(
|
788 |
+
input_ids,
|
789 |
+
attention_mask=attention_mask,
|
790 |
+
token_type_ids=token_type_ids,
|
791 |
+
position_ids=position_ids,
|
792 |
+
head_mask=head_mask,
|
793 |
+
inputs_embeds=inputs_embeds,
|
794 |
+
output_attentions=output_attentions,
|
795 |
+
output_hidden_states=output_hidden_states,
|
796 |
+
return_dict=return_dict,
|
797 |
+
)
|
798 |
+
|
799 |
+
hidden_states = transformer_outputs[0]
|
800 |
+
logits = self.score(hidden_states)
|
801 |
+
|
802 |
+
if input_ids is not None:
|
803 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
804 |
+
else:
|
805 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
806 |
+
|
807 |
+
# Ensure the batch size is > 1 if there is no padding.
|
808 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
809 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
810 |
+
|
811 |
+
if self.config.pad_token_id is None:
|
812 |
+
sequence_lengths = -1
|
813 |
+
else:
|
814 |
+
if input_ids is not None:
|
815 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
816 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
817 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
818 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
819 |
+
else:
|
820 |
+
sequence_lengths = -1
|
821 |
+
logger.warning(
|
822 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
823 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
824 |
+
)
|
825 |
+
|
826 |
+
pooled_logits = logits[range(batch_size), sequence_lengths]
|
827 |
+
|
828 |
+
loss = None
|
829 |
+
if labels is not None:
|
830 |
+
if self.config.problem_type is None:
|
831 |
+
if self.num_labels == 1:
|
832 |
+
self.config.problem_type = "regression"
|
833 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
834 |
+
self.config.problem_type = "single_label_classification"
|
835 |
+
else:
|
836 |
+
self.config.problem_type = "multi_label_classification"
|
837 |
+
|
838 |
+
if self.config.problem_type == "regression":
|
839 |
+
loss_fct = MSELoss()
|
840 |
+
if self.num_labels == 1:
|
841 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
842 |
+
else:
|
843 |
+
loss = loss_fct(pooled_logits, labels)
|
844 |
+
elif self.config.problem_type == "single_label_classification":
|
845 |
+
loss_fct = CrossEntropyLoss()
|
846 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
847 |
+
elif self.config.problem_type == "multi_label_classification":
|
848 |
+
loss_fct = BCEWithLogitsLoss()
|
849 |
+
loss = loss_fct(pooled_logits, labels)
|
850 |
+
if not return_dict:
|
851 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
852 |
+
return ((loss,) + output) if loss is not None else output
|
853 |
+
|
854 |
+
return SequenceClassifierOutput(
|
855 |
+
loss=loss,
|
856 |
+
logits=pooled_logits,
|
857 |
+
hidden_states=transformer_outputs.hidden_states,
|
858 |
+
attentions=transformer_outputs.attentions,
|
859 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/openai/modeling_tf_openai.py
ADDED
@@ -0,0 +1,940 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" TF 2.0 OpenAI GPT model."""
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import tensorflow as tf
|
25 |
+
|
26 |
+
from ...activations_tf import get_tf_activation
|
27 |
+
from ...modeling_tf_outputs import TFBaseModelOutput, TFCausalLMOutput, TFSequenceClassifierOutput
|
28 |
+
from ...modeling_tf_utils import (
|
29 |
+
TFCausalLanguageModelingLoss,
|
30 |
+
TFConv1D,
|
31 |
+
TFModelInputType,
|
32 |
+
TFPreTrainedModel,
|
33 |
+
TFSequenceClassificationLoss,
|
34 |
+
TFSequenceSummary,
|
35 |
+
TFSharedEmbeddings,
|
36 |
+
get_initializer,
|
37 |
+
keras,
|
38 |
+
keras_serializable,
|
39 |
+
unpack_inputs,
|
40 |
+
)
|
41 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
42 |
+
from ...utils import (
|
43 |
+
ModelOutput,
|
44 |
+
add_code_sample_docstrings,
|
45 |
+
add_start_docstrings,
|
46 |
+
add_start_docstrings_to_model_forward,
|
47 |
+
logging,
|
48 |
+
replace_return_docstrings,
|
49 |
+
)
|
50 |
+
from .configuration_openai import OpenAIGPTConfig
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CHECKPOINT_FOR_DOC = "openai-community/openai-gpt"
|
56 |
+
_CONFIG_FOR_DOC = "OpenAIGPTConfig"
|
57 |
+
|
58 |
+
|
59 |
+
from ..deprecated._archive_maps import TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
60 |
+
|
61 |
+
|
62 |
+
class TFAttention(keras.layers.Layer):
|
63 |
+
def __init__(self, nx, config, scale=False, **kwargs):
|
64 |
+
super().__init__(**kwargs)
|
65 |
+
|
66 |
+
n_state = nx # in Attention: n_state=768 (nx=n_embd)
|
67 |
+
# [switch nx => n_state from Block to Attention to keep identical to TF implementation]
|
68 |
+
assert (
|
69 |
+
n_state % config.n_head == 0
|
70 |
+
), f"Hidden dimension {n_state} not dividable by number of heads {config.n_head}"
|
71 |
+
self.n_head = config.n_head
|
72 |
+
self.split_size = n_state
|
73 |
+
self.scale = scale
|
74 |
+
self.output_attentions = config.output_attentions
|
75 |
+
|
76 |
+
self.c_attn = TFConv1D(n_state * 3, nx, initializer_range=config.initializer_range, name="c_attn")
|
77 |
+
self.c_proj = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_proj")
|
78 |
+
self.attn_dropout = keras.layers.Dropout(config.attn_pdrop)
|
79 |
+
self.resid_dropout = keras.layers.Dropout(config.resid_pdrop)
|
80 |
+
self.n_state = n_state
|
81 |
+
self.pruned_heads = set()
|
82 |
+
|
83 |
+
def prune_heads(self, heads):
|
84 |
+
pass
|
85 |
+
|
86 |
+
@staticmethod
|
87 |
+
def causal_attention_mask(nd, ns):
|
88 |
+
"""
|
89 |
+
1's in the lower triangle, counting from the lower right corner. Same as tf.matrix_band_part(tf.ones([nd, ns]),
|
90 |
+
-1, ns-nd), but doesn't produce garbage on TPUs.
|
91 |
+
"""
|
92 |
+
i = tf.range(nd)[:, None]
|
93 |
+
j = tf.range(ns)
|
94 |
+
m = i >= j - ns + nd
|
95 |
+
return m
|
96 |
+
|
97 |
+
def _attn(self, q, k, v, attention_mask, head_mask, output_attentions, training=False):
|
98 |
+
# q, k, v have shape [batch, heads, sequence, features]
|
99 |
+
w = tf.matmul(q, k, transpose_b=True)
|
100 |
+
if self.scale:
|
101 |
+
dk = tf.cast(shape_list(k)[-1], dtype=w.dtype) # scale attention_scores
|
102 |
+
w = w / tf.math.sqrt(dk)
|
103 |
+
|
104 |
+
# w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst.
|
105 |
+
_, _, nd, ns = shape_list(w)
|
106 |
+
b = tf.cast(self.causal_attention_mask(nd, ns), dtype=w.dtype)
|
107 |
+
b = tf.reshape(b, [1, 1, nd, ns])
|
108 |
+
w = w * b - 1e4 * (1 - b)
|
109 |
+
|
110 |
+
if attention_mask is not None:
|
111 |
+
# Apply the attention mask
|
112 |
+
attention_mask = tf.cast(attention_mask, dtype=w.dtype)
|
113 |
+
w = w + attention_mask
|
114 |
+
|
115 |
+
w = stable_softmax(w, axis=-1)
|
116 |
+
w = self.attn_dropout(w, training=training)
|
117 |
+
|
118 |
+
# Mask heads if we want to
|
119 |
+
if head_mask is not None:
|
120 |
+
w = w * head_mask
|
121 |
+
|
122 |
+
outputs = [tf.matmul(w, v)]
|
123 |
+
if output_attentions:
|
124 |
+
outputs.append(w)
|
125 |
+
return outputs
|
126 |
+
|
127 |
+
def merge_heads(self, x):
|
128 |
+
x = tf.transpose(x, [0, 2, 1, 3])
|
129 |
+
x_shape = shape_list(x)
|
130 |
+
new_x_shape = x_shape[:-2] + [x_shape[-2] * x_shape[-1]]
|
131 |
+
return tf.reshape(x, new_x_shape)
|
132 |
+
|
133 |
+
def split_heads(self, x):
|
134 |
+
x_shape = shape_list(x)
|
135 |
+
new_x_shape = x_shape[:-1] + [self.n_head, x_shape[-1] // self.n_head]
|
136 |
+
x = tf.reshape(x, new_x_shape)
|
137 |
+
return tf.transpose(x, (0, 2, 1, 3)) # (batch, head, seq_length, head_features)
|
138 |
+
|
139 |
+
def call(self, x, attention_mask, head_mask, output_attentions, training=False):
|
140 |
+
x = self.c_attn(x)
|
141 |
+
query, key, value = tf.split(x, 3, axis=2)
|
142 |
+
query = self.split_heads(query)
|
143 |
+
key = self.split_heads(key)
|
144 |
+
value = self.split_heads(value)
|
145 |
+
|
146 |
+
attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions, training=training)
|
147 |
+
a = attn_outputs[0]
|
148 |
+
|
149 |
+
a = self.merge_heads(a)
|
150 |
+
a = self.c_proj(a)
|
151 |
+
a = self.resid_dropout(a, training=training)
|
152 |
+
|
153 |
+
outputs = [a] + attn_outputs[1:]
|
154 |
+
return outputs # a, (attentions)
|
155 |
+
|
156 |
+
def build(self, input_shape=None):
|
157 |
+
if self.built:
|
158 |
+
return
|
159 |
+
self.built = True
|
160 |
+
if getattr(self, "c_attn", None) is not None:
|
161 |
+
with tf.name_scope(self.c_attn.name):
|
162 |
+
self.c_attn.build([None, None, self.n_state * 3])
|
163 |
+
if getattr(self, "c_proj", None) is not None:
|
164 |
+
with tf.name_scope(self.c_proj.name):
|
165 |
+
self.c_proj.build([None, None, self.n_state])
|
166 |
+
|
167 |
+
|
168 |
+
class TFMLP(keras.layers.Layer):
|
169 |
+
def __init__(self, n_state, config, **kwargs):
|
170 |
+
super().__init__(**kwargs)
|
171 |
+
nx = config.n_embd
|
172 |
+
self.c_fc = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_fc")
|
173 |
+
self.c_proj = TFConv1D(nx, n_state, initializer_range=config.initializer_range, name="c_proj")
|
174 |
+
self.act = get_tf_activation("gelu")
|
175 |
+
self.dropout = keras.layers.Dropout(config.resid_pdrop)
|
176 |
+
self.nx = nx
|
177 |
+
self.n_state = n_state
|
178 |
+
|
179 |
+
def call(self, x, training=False):
|
180 |
+
h = self.act(self.c_fc(x))
|
181 |
+
h2 = self.c_proj(h)
|
182 |
+
h2 = self.dropout(h2, training=training)
|
183 |
+
return h2
|
184 |
+
|
185 |
+
def build(self, input_shape=None):
|
186 |
+
if self.built:
|
187 |
+
return
|
188 |
+
self.built = True
|
189 |
+
if getattr(self, "c_fc", None) is not None:
|
190 |
+
with tf.name_scope(self.c_fc.name):
|
191 |
+
self.c_fc.build([None, None, self.n_state])
|
192 |
+
if getattr(self, "c_proj", None) is not None:
|
193 |
+
with tf.name_scope(self.c_proj.name):
|
194 |
+
self.c_proj.build([None, None, self.nx])
|
195 |
+
|
196 |
+
|
197 |
+
class TFBlock(keras.layers.Layer):
|
198 |
+
def __init__(self, config, scale=False, **kwargs):
|
199 |
+
super().__init__(**kwargs)
|
200 |
+
nx = config.n_embd
|
201 |
+
self.attn = TFAttention(nx, config, scale, name="attn")
|
202 |
+
self.ln_1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1")
|
203 |
+
self.mlp = TFMLP(4 * nx, config, name="mlp")
|
204 |
+
self.ln_2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_2")
|
205 |
+
self.nx = nx
|
206 |
+
|
207 |
+
def call(self, x, attention_mask, head_mask, output_attentions, training=False):
|
208 |
+
output_attn = self.attn(x, attention_mask, head_mask, output_attentions, training=training)
|
209 |
+
a = output_attn[0] # output_attn: a, (attentions)
|
210 |
+
|
211 |
+
n = self.ln_1(x + a)
|
212 |
+
m = self.mlp(n, training=training)
|
213 |
+
h = self.ln_2(n + m)
|
214 |
+
|
215 |
+
outputs = [h] + output_attn[1:]
|
216 |
+
return outputs # x, (attentions)
|
217 |
+
|
218 |
+
def build(self, input_shape=None):
|
219 |
+
if self.built:
|
220 |
+
return
|
221 |
+
self.built = True
|
222 |
+
if getattr(self, "attn", None) is not None:
|
223 |
+
with tf.name_scope(self.attn.name):
|
224 |
+
self.attn.build(None)
|
225 |
+
if getattr(self, "ln_1", None) is not None:
|
226 |
+
with tf.name_scope(self.ln_1.name):
|
227 |
+
self.ln_1.build([None, None, self.nx])
|
228 |
+
if getattr(self, "mlp", None) is not None:
|
229 |
+
with tf.name_scope(self.mlp.name):
|
230 |
+
self.mlp.build(None)
|
231 |
+
if getattr(self, "ln_2", None) is not None:
|
232 |
+
with tf.name_scope(self.ln_2.name):
|
233 |
+
self.ln_2.build([None, None, self.nx])
|
234 |
+
|
235 |
+
|
236 |
+
@keras_serializable
|
237 |
+
class TFOpenAIGPTMainLayer(keras.layers.Layer):
|
238 |
+
config_class = OpenAIGPTConfig
|
239 |
+
|
240 |
+
def __init__(self, config, *inputs, **kwargs):
|
241 |
+
super().__init__(*inputs, **kwargs)
|
242 |
+
|
243 |
+
self.config = config
|
244 |
+
self.output_hidden_states = config.output_hidden_states
|
245 |
+
self.output_attentions = config.output_attentions
|
246 |
+
self.return_dict = config.use_return_dict
|
247 |
+
self.num_hidden_layers = config.n_layer
|
248 |
+
self.n_embd = config.n_embd
|
249 |
+
self.n_positions = config.n_positions
|
250 |
+
self.initializer_range = config.initializer_range
|
251 |
+
|
252 |
+
self.tokens_embed = TFSharedEmbeddings(
|
253 |
+
config.vocab_size, config.n_embd, initializer_range=config.initializer_range, name="tokens_embed"
|
254 |
+
)
|
255 |
+
self.drop = keras.layers.Dropout(config.embd_pdrop)
|
256 |
+
self.h = [TFBlock(config, scale=True, name=f"h_._{i}") for i in range(config.n_layer)]
|
257 |
+
|
258 |
+
def build(self, input_shape=None):
|
259 |
+
with tf.name_scope("positions_embed"):
|
260 |
+
self.positions_embed = self.add_weight(
|
261 |
+
name="embeddings",
|
262 |
+
shape=[self.n_positions, self.n_embd],
|
263 |
+
initializer=get_initializer(self.initializer_range),
|
264 |
+
)
|
265 |
+
|
266 |
+
if self.built:
|
267 |
+
return
|
268 |
+
self.built = True
|
269 |
+
if getattr(self, "tokens_embed", None) is not None:
|
270 |
+
with tf.name_scope(self.tokens_embed.name):
|
271 |
+
self.tokens_embed.build(None)
|
272 |
+
if getattr(self, "h", None) is not None:
|
273 |
+
for layer in self.h:
|
274 |
+
with tf.name_scope(layer.name):
|
275 |
+
layer.build(None)
|
276 |
+
|
277 |
+
def get_input_embeddings(self):
|
278 |
+
return self.tokens_embed
|
279 |
+
|
280 |
+
def set_input_embeddings(self, value):
|
281 |
+
self.tokens_embed.weight = value
|
282 |
+
self.tokens_embed.vocab_size = shape_list(value)[0]
|
283 |
+
|
284 |
+
def _prune_heads(self, heads_to_prune):
|
285 |
+
"""
|
286 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
287 |
+
"""
|
288 |
+
raise NotImplementedError
|
289 |
+
|
290 |
+
@unpack_inputs
|
291 |
+
def call(
|
292 |
+
self,
|
293 |
+
input_ids: TFModelInputType | None = None,
|
294 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
295 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
296 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
297 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
298 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
299 |
+
output_attentions: Optional[bool] = None,
|
300 |
+
output_hidden_states: Optional[bool] = None,
|
301 |
+
return_dict: Optional[bool] = None,
|
302 |
+
training: Optional[bool] = False,
|
303 |
+
) -> Union[Tuple, TFBaseModelOutput]:
|
304 |
+
if input_ids is not None and inputs_embeds is not None:
|
305 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
306 |
+
elif input_ids is not None:
|
307 |
+
input_shape = shape_list(input_ids)
|
308 |
+
input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
|
309 |
+
elif inputs_embeds is not None:
|
310 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
311 |
+
else:
|
312 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
313 |
+
|
314 |
+
if position_ids is None:
|
315 |
+
position_ids = tf.expand_dims(tf.range(input_shape[-1]), axis=0)
|
316 |
+
|
317 |
+
if attention_mask is not None:
|
318 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
319 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
320 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
321 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
322 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
323 |
+
attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
|
324 |
+
|
325 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
326 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
327 |
+
# positions we want to attend and -10000.0 for masked positions.
|
328 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
329 |
+
# effectively the same as removing these entirely.
|
330 |
+
|
331 |
+
one_cst = tf.constant(1.0)
|
332 |
+
attention_mask = tf.cast(attention_mask, dtype=one_cst.dtype)
|
333 |
+
attention_mask = tf.multiply(tf.subtract(one_cst, attention_mask), tf.constant(-10000.0))
|
334 |
+
else:
|
335 |
+
attention_mask = None
|
336 |
+
|
337 |
+
# Prepare head mask if needed
|
338 |
+
# 1.0 in head_mask indicate we keep the head
|
339 |
+
# attention_probs has shape bsz x n_heads x N x N
|
340 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
341 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
342 |
+
if head_mask is not None:
|
343 |
+
raise NotImplementedError
|
344 |
+
else:
|
345 |
+
head_mask = [None] * self.num_hidden_layers
|
346 |
+
# head_mask = tf.constant([0] * self.num_hidden_layers)
|
347 |
+
|
348 |
+
position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
|
349 |
+
|
350 |
+
if inputs_embeds is None:
|
351 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
352 |
+
inputs_embeds = self.tokens_embed(input_ids, mode="embedding")
|
353 |
+
position_embeds = tf.gather(self.positions_embed, position_ids)
|
354 |
+
if token_type_ids is not None:
|
355 |
+
token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
|
356 |
+
check_embeddings_within_bounds(token_type_ids, self.config.vocab_size, "token_type_ids")
|
357 |
+
token_type_embeds = self.tokens_embed(token_type_ids, mode="embedding")
|
358 |
+
else:
|
359 |
+
token_type_embeds = 0
|
360 |
+
hidden_states = inputs_embeds + position_embeds + token_type_embeds
|
361 |
+
hidden_states = self.drop(hidden_states, training=training)
|
362 |
+
|
363 |
+
output_shape = input_shape + [shape_list(hidden_states)[-1]]
|
364 |
+
|
365 |
+
all_attentions = () if output_attentions else None
|
366 |
+
all_hidden_states = () if output_hidden_states else None
|
367 |
+
for i, block in enumerate(self.h):
|
368 |
+
if output_hidden_states:
|
369 |
+
all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),)
|
370 |
+
|
371 |
+
outputs = block(
|
372 |
+
hidden_states,
|
373 |
+
attention_mask,
|
374 |
+
head_mask[i],
|
375 |
+
output_attentions,
|
376 |
+
training=training,
|
377 |
+
)
|
378 |
+
hidden_states = outputs[0]
|
379 |
+
if output_attentions:
|
380 |
+
all_attentions = all_attentions + (outputs[1],)
|
381 |
+
|
382 |
+
hidden_states = tf.reshape(hidden_states, output_shape)
|
383 |
+
# Add last hidden state
|
384 |
+
if output_hidden_states:
|
385 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
386 |
+
|
387 |
+
if output_attentions:
|
388 |
+
# let the number of heads free (-1) so we can extract attention even after head pruning
|
389 |
+
attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:]
|
390 |
+
all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions)
|
391 |
+
|
392 |
+
if not return_dict:
|
393 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
394 |
+
|
395 |
+
return TFBaseModelOutput(
|
396 |
+
last_hidden_state=hidden_states,
|
397 |
+
hidden_states=all_hidden_states,
|
398 |
+
attentions=all_attentions,
|
399 |
+
)
|
400 |
+
|
401 |
+
|
402 |
+
class TFOpenAIGPTPreTrainedModel(TFPreTrainedModel):
|
403 |
+
"""
|
404 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
405 |
+
models.
|
406 |
+
"""
|
407 |
+
|
408 |
+
config_class = OpenAIGPTConfig
|
409 |
+
base_model_prefix = "transformer"
|
410 |
+
|
411 |
+
|
412 |
+
@dataclass
|
413 |
+
class TFOpenAIGPTDoubleHeadsModelOutput(ModelOutput):
|
414 |
+
"""
|
415 |
+
Base class for outputs of models predicting if two sentences are consecutive or not.
|
416 |
+
|
417 |
+
Args:
|
418 |
+
logits (`tf.Tensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
|
419 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
420 |
+
mc_logits (`tf.Tensor` of shape `(batch_size, num_choices)`):
|
421 |
+
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
|
422 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
423 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
424 |
+
`(batch_size, sequence_length, hidden_size)`.
|
425 |
+
|
426 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
427 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
428 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
429 |
+
sequence_length)`.
|
430 |
+
|
431 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
432 |
+
heads.
|
433 |
+
"""
|
434 |
+
|
435 |
+
logits: tf.Tensor = None
|
436 |
+
mc_logits: tf.Tensor = None
|
437 |
+
hidden_states: Tuple[tf.Tensor] | None = None
|
438 |
+
attentions: Tuple[tf.Tensor] | None = None
|
439 |
+
|
440 |
+
|
441 |
+
OPENAI_GPT_START_DOCSTRING = r"""
|
442 |
+
|
443 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
444 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
445 |
+
etc.)
|
446 |
+
|
447 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
448 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
449 |
+
behavior.
|
450 |
+
|
451 |
+
<Tip>
|
452 |
+
|
453 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
454 |
+
|
455 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
456 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
457 |
+
|
458 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
459 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
460 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
461 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
462 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
463 |
+
positional argument:
|
464 |
+
|
465 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
466 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
467 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
468 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
469 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
470 |
+
|
471 |
+
Note that when creating models and layers with
|
472 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
473 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
474 |
+
|
475 |
+
</Tip>
|
476 |
+
|
477 |
+
Parameters:
|
478 |
+
config ([`OpenAIGPTConfig`]): Model configuration class with all the parameters of the model.
|
479 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
480 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
481 |
+
"""
|
482 |
+
|
483 |
+
OPENAI_GPT_INPUTS_DOCSTRING = r"""
|
484 |
+
Args:
|
485 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`):
|
486 |
+
Indices of input sequence tokens in the vocabulary.
|
487 |
+
|
488 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
489 |
+
[`PreTrainedTokenizer.encode`] for details.
|
490 |
+
|
491 |
+
[What are input IDs?](../glossary#input-ids)
|
492 |
+
attention_mask (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
493 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
494 |
+
|
495 |
+
- 1 for tokens that are **not masked**,
|
496 |
+
- 0 for tokens that are **masked**.
|
497 |
+
|
498 |
+
[What are attention masks?](../glossary#attention-mask)
|
499 |
+
token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
500 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
501 |
+
1]`:
|
502 |
+
|
503 |
+
- 0 corresponds to a *sentence A* token,
|
504 |
+
- 1 corresponds to a *sentence B* token.
|
505 |
+
|
506 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
507 |
+
position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
508 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
509 |
+
config.max_position_embeddings - 1]`.
|
510 |
+
|
511 |
+
[What are position IDs?](../glossary#position-ids)
|
512 |
+
head_mask (`tf.Tensor` or `Numpy array` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
513 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
514 |
+
|
515 |
+
- 1 indicates the head is **not masked**,
|
516 |
+
- 0 indicates the head is **masked**.
|
517 |
+
|
518 |
+
inputs_embeds (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
519 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
520 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
521 |
+
model's internal embedding lookup matrix.
|
522 |
+
output_attentions (`bool`, *optional*):
|
523 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
524 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
525 |
+
config will be used instead.
|
526 |
+
output_hidden_states (`bool`, *optional*):
|
527 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
528 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
529 |
+
used instead.
|
530 |
+
return_dict (`bool`, *optional*):
|
531 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
532 |
+
eager mode, in graph mode the value will always be set to True.
|
533 |
+
training (`bool`, *optional*, defaults to `False`):
|
534 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
535 |
+
behaviors between training and evaluation).
|
536 |
+
"""
|
537 |
+
|
538 |
+
|
539 |
+
@add_start_docstrings(
|
540 |
+
"The bare OpenAI GPT transformer model outputting raw hidden-states without any specific head on top.",
|
541 |
+
OPENAI_GPT_START_DOCSTRING,
|
542 |
+
)
|
543 |
+
class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel):
|
544 |
+
def __init__(self, config, *inputs, **kwargs):
|
545 |
+
super().__init__(config, *inputs, **kwargs)
|
546 |
+
self.transformer = TFOpenAIGPTMainLayer(config, name="transformer")
|
547 |
+
|
548 |
+
@unpack_inputs
|
549 |
+
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
|
550 |
+
@add_code_sample_docstrings(
|
551 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
552 |
+
output_type=TFBaseModelOutput,
|
553 |
+
config_class=_CONFIG_FOR_DOC,
|
554 |
+
)
|
555 |
+
def call(
|
556 |
+
self,
|
557 |
+
input_ids: TFModelInputType | None = None,
|
558 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
559 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
560 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
561 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
562 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
563 |
+
output_attentions: Optional[bool] = None,
|
564 |
+
output_hidden_states: Optional[bool] = None,
|
565 |
+
return_dict: Optional[bool] = None,
|
566 |
+
training: Optional[bool] = False,
|
567 |
+
) -> Union[Tuple, TFBaseModelOutput]:
|
568 |
+
outputs = self.transformer(
|
569 |
+
input_ids=input_ids,
|
570 |
+
attention_mask=attention_mask,
|
571 |
+
token_type_ids=token_type_ids,
|
572 |
+
position_ids=position_ids,
|
573 |
+
head_mask=head_mask,
|
574 |
+
inputs_embeds=inputs_embeds,
|
575 |
+
output_attentions=output_attentions,
|
576 |
+
output_hidden_states=output_hidden_states,
|
577 |
+
return_dict=return_dict,
|
578 |
+
training=training,
|
579 |
+
)
|
580 |
+
return outputs
|
581 |
+
|
582 |
+
def build(self, input_shape=None):
|
583 |
+
if self.built:
|
584 |
+
return
|
585 |
+
self.built = True
|
586 |
+
if getattr(self, "transformer", None) is not None:
|
587 |
+
with tf.name_scope(self.transformer.name):
|
588 |
+
self.transformer.build(None)
|
589 |
+
|
590 |
+
|
591 |
+
@add_start_docstrings(
|
592 |
+
"""
|
593 |
+
OpenAI GPT Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
594 |
+
embeddings).
|
595 |
+
""",
|
596 |
+
OPENAI_GPT_START_DOCSTRING,
|
597 |
+
)
|
598 |
+
class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel, TFCausalLanguageModelingLoss):
|
599 |
+
def __init__(self, config, *inputs, **kwargs):
|
600 |
+
super().__init__(config, *inputs, **kwargs)
|
601 |
+
self.transformer = TFOpenAIGPTMainLayer(config, name="transformer")
|
602 |
+
# OpenAIGPT does not have past caching features
|
603 |
+
self.supports_xla_generation = False
|
604 |
+
|
605 |
+
def get_output_embeddings(self):
|
606 |
+
return self.get_input_embeddings()
|
607 |
+
|
608 |
+
def set_output_embeddings(self, value):
|
609 |
+
self.set_input_embeddings(value)
|
610 |
+
|
611 |
+
@unpack_inputs
|
612 |
+
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
|
613 |
+
@add_code_sample_docstrings(
|
614 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
615 |
+
output_type=TFCausalLMOutput,
|
616 |
+
config_class=_CONFIG_FOR_DOC,
|
617 |
+
)
|
618 |
+
def call(
|
619 |
+
self,
|
620 |
+
input_ids: TFModelInputType | None = None,
|
621 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
622 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
623 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
624 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
625 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
626 |
+
output_attentions: Optional[bool] = None,
|
627 |
+
output_hidden_states: Optional[bool] = None,
|
628 |
+
return_dict: Optional[bool] = None,
|
629 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
630 |
+
training: Optional[bool] = False,
|
631 |
+
) -> Union[Tuple, TFCausalLMOutput]:
|
632 |
+
r"""
|
633 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
634 |
+
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
|
635 |
+
config.vocab_size - 1]`.
|
636 |
+
"""
|
637 |
+
|
638 |
+
transformer_outputs = self.transformer(
|
639 |
+
input_ids=input_ids,
|
640 |
+
attention_mask=attention_mask,
|
641 |
+
token_type_ids=token_type_ids,
|
642 |
+
position_ids=position_ids,
|
643 |
+
head_mask=head_mask,
|
644 |
+
inputs_embeds=inputs_embeds,
|
645 |
+
output_attentions=output_attentions,
|
646 |
+
output_hidden_states=output_hidden_states,
|
647 |
+
return_dict=return_dict,
|
648 |
+
training=training,
|
649 |
+
)
|
650 |
+
hidden_states = transformer_outputs[0]
|
651 |
+
|
652 |
+
logits = self.transformer.tokens_embed(hidden_states, mode="linear")
|
653 |
+
|
654 |
+
loss = None
|
655 |
+
if labels is not None:
|
656 |
+
# shift labels to the left and cut last logit token
|
657 |
+
shifted_logits = logits[:, :-1]
|
658 |
+
labels = labels[:, 1:]
|
659 |
+
loss = self.hf_compute_loss(labels, shifted_logits)
|
660 |
+
|
661 |
+
if not return_dict:
|
662 |
+
output = (logits,) + transformer_outputs[1:]
|
663 |
+
return ((loss,) + output) if loss is not None else output
|
664 |
+
|
665 |
+
return TFCausalLMOutput(
|
666 |
+
loss=loss,
|
667 |
+
logits=logits,
|
668 |
+
hidden_states=transformer_outputs.hidden_states,
|
669 |
+
attentions=transformer_outputs.attentions,
|
670 |
+
)
|
671 |
+
|
672 |
+
def prepare_inputs_for_generation(self, inputs, **kwargs):
|
673 |
+
return {"input_ids": inputs}
|
674 |
+
|
675 |
+
def build(self, input_shape=None):
|
676 |
+
if self.built:
|
677 |
+
return
|
678 |
+
self.built = True
|
679 |
+
if getattr(self, "transformer", None) is not None:
|
680 |
+
with tf.name_scope(self.transformer.name):
|
681 |
+
self.transformer.build(None)
|
682 |
+
|
683 |
+
|
684 |
+
@add_start_docstrings(
|
685 |
+
"""
|
686 |
+
OpenAI GPT Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
|
687 |
+
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
|
688 |
+
input embeddings, the classification head takes as input the input of a specified classification token index in the
|
689 |
+
input sequence).
|
690 |
+
""",
|
691 |
+
OPENAI_GPT_START_DOCSTRING,
|
692 |
+
)
|
693 |
+
class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel):
|
694 |
+
def __init__(self, config, *inputs, **kwargs):
|
695 |
+
super().__init__(config, *inputs, **kwargs)
|
696 |
+
config.num_labels = 1
|
697 |
+
self.transformer = TFOpenAIGPTMainLayer(config, name="transformer")
|
698 |
+
self.multiple_choice_head = TFSequenceSummary(
|
699 |
+
config, initializer_range=config.initializer_range, name="multiple_choice_head"
|
700 |
+
)
|
701 |
+
|
702 |
+
@unpack_inputs
|
703 |
+
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
|
704 |
+
@replace_return_docstrings(output_type=TFOpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
|
705 |
+
def call(
|
706 |
+
self,
|
707 |
+
input_ids: TFModelInputType | None = None,
|
708 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
709 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
710 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
711 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
712 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
713 |
+
mc_token_ids: np.ndarray | tf.Tensor | None = None,
|
714 |
+
output_attentions: Optional[bool] = None,
|
715 |
+
output_hidden_states: Optional[bool] = None,
|
716 |
+
return_dict: Optional[bool] = None,
|
717 |
+
training: Optional[bool] = False,
|
718 |
+
) -> Union[Tuple, TFOpenAIGPTDoubleHeadsModelOutput]:
|
719 |
+
r"""
|
720 |
+
mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
|
721 |
+
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
|
722 |
+
1]`.
|
723 |
+
|
724 |
+
Return:
|
725 |
+
|
726 |
+
Examples:
|
727 |
+
|
728 |
+
```python
|
729 |
+
>>> import tensorflow as tf
|
730 |
+
>>> from transformers import AutoTokenizer, TFOpenAIGPTDoubleHeadsModel
|
731 |
+
|
732 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt")
|
733 |
+
>>> model = TFOpenAIGPTDoubleHeadsModel.from_pretrained("openai-community/openai-gpt")
|
734 |
+
|
735 |
+
>>> # Add a [CLS] to the vocabulary (we should train it also!)
|
736 |
+
>>> tokenizer.add_special_tokens({"cls_token": "[CLS]"})
|
737 |
+
>>> model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size
|
738 |
+
>>> print(tokenizer.cls_token_id, len(tokenizer)) # The newly token the last token of the vocabulary
|
739 |
+
|
740 |
+
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
|
741 |
+
>>> encoding = tokenizer(choices, return_tensors="tf")
|
742 |
+
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
|
743 |
+
>>> inputs["mc_token_ids"] = tf.constant(
|
744 |
+
... [inputs["input_ids"].shape[-1] - 1, inputs["input_ids"].shape[-1] - 1]
|
745 |
+
... )[
|
746 |
+
... None, :
|
747 |
+
... ] # Batch size 1
|
748 |
+
>>> outputs = model(inputs)
|
749 |
+
>>> lm_prediction_scores, mc_prediction_scores = outputs[:2]
|
750 |
+
```"""
|
751 |
+
|
752 |
+
if input_ids is not None:
|
753 |
+
input_shapes = shape_list(input_ids)
|
754 |
+
else:
|
755 |
+
input_shapes = shape_list(inputs_embeds)[:-1]
|
756 |
+
|
757 |
+
seq_length = input_shapes[-1]
|
758 |
+
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
|
759 |
+
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
|
760 |
+
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
|
761 |
+
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
|
762 |
+
transformer_outputs = self.transformer(
|
763 |
+
flat_input_ids,
|
764 |
+
flat_attention_mask,
|
765 |
+
flat_token_type_ids,
|
766 |
+
flat_position_ids,
|
767 |
+
head_mask,
|
768 |
+
inputs_embeds,
|
769 |
+
output_attentions,
|
770 |
+
output_hidden_states,
|
771 |
+
return_dict=return_dict,
|
772 |
+
training=training,
|
773 |
+
)
|
774 |
+
hidden_states = transformer_outputs[0]
|
775 |
+
hidden_states = tf.reshape(hidden_states, input_shapes + shape_list(hidden_states)[-1:])
|
776 |
+
if return_dict and output_hidden_states:
|
777 |
+
# We do this to match the slightly odd PT behaviour - the final hidden state is reshaped to rank 4 when the
|
778 |
+
# input is rank 3, but all other hidden states remain at rank-3 (with the first 2 dims merged)
|
779 |
+
all_hidden_states = transformer_outputs.hidden_states[:-1] + (hidden_states,)
|
780 |
+
else:
|
781 |
+
all_hidden_states = None
|
782 |
+
lm_logits = self.transformer.tokens_embed(hidden_states, mode="linear")
|
783 |
+
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids, training=training)
|
784 |
+
mc_logits = tf.squeeze(mc_logits, axis=-1)
|
785 |
+
|
786 |
+
if not return_dict:
|
787 |
+
return (lm_logits, mc_logits) + transformer_outputs[1:]
|
788 |
+
|
789 |
+
return TFOpenAIGPTDoubleHeadsModelOutput(
|
790 |
+
logits=lm_logits,
|
791 |
+
mc_logits=mc_logits,
|
792 |
+
hidden_states=all_hidden_states,
|
793 |
+
attentions=transformer_outputs.attentions,
|
794 |
+
)
|
795 |
+
|
796 |
+
@property
|
797 |
+
def input_signature(self):
|
798 |
+
return {
|
799 |
+
"input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"),
|
800 |
+
"attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"),
|
801 |
+
"mc_token_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"),
|
802 |
+
}
|
803 |
+
|
804 |
+
def build(self, input_shape=None):
|
805 |
+
if self.built:
|
806 |
+
return
|
807 |
+
self.built = True
|
808 |
+
if getattr(self, "transformer", None) is not None:
|
809 |
+
with tf.name_scope(self.transformer.name):
|
810 |
+
self.transformer.build(None)
|
811 |
+
if getattr(self, "multiple_choice_head", None) is not None:
|
812 |
+
with tf.name_scope(self.multiple_choice_head.name):
|
813 |
+
self.multiple_choice_head.build(None)
|
814 |
+
|
815 |
+
|
816 |
+
@add_start_docstrings(
|
817 |
+
"""
|
818 |
+
The OpenAI GPT Model transformer with a sequence classification head on top (linear layer).
|
819 |
+
|
820 |
+
[`TFOpenAIGPTForSequenceClassification`] uses the last token in order to do the classification, as other causal
|
821 |
+
models (e.g. GPT-2) do.
|
822 |
+
|
823 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
824 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
825 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
826 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
827 |
+
each row of the batch).
|
828 |
+
""",
|
829 |
+
OPENAI_GPT_START_DOCSTRING,
|
830 |
+
)
|
831 |
+
class TFOpenAIGPTForSequenceClassification(TFOpenAIGPTPreTrainedModel, TFSequenceClassificationLoss):
|
832 |
+
def __init__(self, config, *inputs, **kwargs):
|
833 |
+
super().__init__(config, *inputs, **kwargs)
|
834 |
+
self.num_labels = config.num_labels
|
835 |
+
self.score = keras.layers.Dense(
|
836 |
+
config.num_labels,
|
837 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
838 |
+
name="score",
|
839 |
+
use_bias=False,
|
840 |
+
)
|
841 |
+
self.transformer = TFOpenAIGPTMainLayer(config, name="transformer")
|
842 |
+
self.config = config
|
843 |
+
|
844 |
+
@unpack_inputs
|
845 |
+
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
|
846 |
+
@add_code_sample_docstrings(
|
847 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
848 |
+
output_type=TFSequenceClassifierOutput,
|
849 |
+
config_class=_CONFIG_FOR_DOC,
|
850 |
+
)
|
851 |
+
def call(
|
852 |
+
self,
|
853 |
+
input_ids: TFModelInputType | None = None,
|
854 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
855 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
856 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
857 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
858 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
859 |
+
output_attentions: Optional[bool] = None,
|
860 |
+
output_hidden_states: Optional[bool] = None,
|
861 |
+
return_dict: Optional[bool] = None,
|
862 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
863 |
+
training: Optional[bool] = False,
|
864 |
+
) -> Union[Tuple, TFSequenceClassifierOutput]:
|
865 |
+
r"""
|
866 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
867 |
+
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
|
868 |
+
config.vocab_size - 1]`.
|
869 |
+
"""
|
870 |
+
transformer_outputs = self.transformer(
|
871 |
+
input_ids=input_ids,
|
872 |
+
attention_mask=attention_mask,
|
873 |
+
token_type_ids=token_type_ids,
|
874 |
+
position_ids=position_ids,
|
875 |
+
head_mask=head_mask,
|
876 |
+
inputs_embeds=inputs_embeds,
|
877 |
+
output_attentions=output_attentions,
|
878 |
+
output_hidden_states=output_hidden_states,
|
879 |
+
return_dict=return_dict,
|
880 |
+
training=training,
|
881 |
+
)
|
882 |
+
|
883 |
+
hidden_states = transformer_outputs[0]
|
884 |
+
logits = self.score(hidden_states)
|
885 |
+
in_logits = None
|
886 |
+
if self.config.pad_token_id is None:
|
887 |
+
sequence_lengths = -1
|
888 |
+
else:
|
889 |
+
if input_ids is not None:
|
890 |
+
sequence_lengths = (
|
891 |
+
tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1)
|
892 |
+
- 1
|
893 |
+
)
|
894 |
+
sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1)
|
895 |
+
in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1)
|
896 |
+
else:
|
897 |
+
sequence_lengths = -1
|
898 |
+
logger.warning(
|
899 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
900 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
901 |
+
)
|
902 |
+
loss = None
|
903 |
+
|
904 |
+
if labels is not None:
|
905 |
+
if input_ids is not None:
|
906 |
+
batch_size, sequence_length = shape_list(input_ids)[:2]
|
907 |
+
else:
|
908 |
+
batch_size, sequence_length = shape_list(inputs_embeds)[:2]
|
909 |
+
assert (
|
910 |
+
self.config.pad_token_id is not None or batch_size == 1
|
911 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
912 |
+
|
913 |
+
if not tf.is_tensor(sequence_lengths):
|
914 |
+
in_logits = logits[0:batch_size, sequence_lengths]
|
915 |
+
|
916 |
+
loss = self.hf_compute_loss(tf.reshape(labels, [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels]))
|
917 |
+
|
918 |
+
pooled_logits = in_logits if in_logits is not None else logits
|
919 |
+
|
920 |
+
if not return_dict:
|
921 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
922 |
+
return ((loss,) + output) if loss is not None else output
|
923 |
+
|
924 |
+
return TFSequenceClassifierOutput(
|
925 |
+
loss=loss,
|
926 |
+
logits=pooled_logits,
|
927 |
+
hidden_states=transformer_outputs.hidden_states,
|
928 |
+
attentions=transformer_outputs.attentions,
|
929 |
+
)
|
930 |
+
|
931 |
+
def build(self, input_shape=None):
|
932 |
+
if self.built:
|
933 |
+
return
|
934 |
+
self.built = True
|
935 |
+
if getattr(self, "score", None) is not None:
|
936 |
+
with tf.name_scope(self.score.name):
|
937 |
+
self.score.build([None, None, self.config.n_embd])
|
938 |
+
if getattr(self, "transformer", None) is not None:
|
939 |
+
with tf.name_scope(self.transformer.name):
|
940 |
+
self.transformer.build(None)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/openai/tokenization_openai.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for OpenAI GPT."""
|
16 |
+
|
17 |
+
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
import unicodedata
|
22 |
+
from typing import Optional, Tuple
|
23 |
+
|
24 |
+
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
25 |
+
from ...utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {
|
31 |
+
"vocab_file": "vocab.json",
|
32 |
+
"merges_file": "merges.txt",
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
|
37 |
+
def whitespace_tokenize(text):
|
38 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
39 |
+
text = text.strip()
|
40 |
+
if not text:
|
41 |
+
return []
|
42 |
+
tokens = text.split()
|
43 |
+
return tokens
|
44 |
+
|
45 |
+
|
46 |
+
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
|
47 |
+
class BasicTokenizer(object):
|
48 |
+
"""
|
49 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
50 |
+
|
51 |
+
Args:
|
52 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
53 |
+
Whether or not to lowercase the input when tokenizing.
|
54 |
+
never_split (`Iterable`, *optional*):
|
55 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
56 |
+
`do_basic_tokenize=True`
|
57 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
58 |
+
Whether or not to tokenize Chinese characters.
|
59 |
+
|
60 |
+
This should likely be deactivated for Japanese (see this
|
61 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
62 |
+
strip_accents (`bool`, *optional*):
|
63 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
64 |
+
value for `lowercase` (as in the original BERT).
|
65 |
+
do_split_on_punc (`bool`, *optional*, defaults to `True`):
|
66 |
+
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
|
67 |
+
the full context of the words, such as contractions.
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __init__(
|
71 |
+
self,
|
72 |
+
do_lower_case=True,
|
73 |
+
never_split=None,
|
74 |
+
tokenize_chinese_chars=True,
|
75 |
+
strip_accents=None,
|
76 |
+
do_split_on_punc=True,
|
77 |
+
):
|
78 |
+
if never_split is None:
|
79 |
+
never_split = []
|
80 |
+
self.do_lower_case = do_lower_case
|
81 |
+
self.never_split = set(never_split)
|
82 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
83 |
+
self.strip_accents = strip_accents
|
84 |
+
self.do_split_on_punc = do_split_on_punc
|
85 |
+
|
86 |
+
def tokenize(self, text, never_split=None):
|
87 |
+
"""
|
88 |
+
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
never_split (`List[str]`, *optional*)
|
92 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
93 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
94 |
+
"""
|
95 |
+
# union() returns a new set by concatenating the two sets.
|
96 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
97 |
+
text = self._clean_text(text)
|
98 |
+
|
99 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
100 |
+
# models. This is also applied to the English models now, but it doesn't
|
101 |
+
# matter since the English models were not trained on any Chinese data
|
102 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
103 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
104 |
+
# words in the English Wikipedia.).
|
105 |
+
if self.tokenize_chinese_chars:
|
106 |
+
text = self._tokenize_chinese_chars(text)
|
107 |
+
# prevents treating the same character with different unicode codepoints as different characters
|
108 |
+
unicode_normalized_text = unicodedata.normalize("NFC", text)
|
109 |
+
orig_tokens = whitespace_tokenize(unicode_normalized_text)
|
110 |
+
split_tokens = []
|
111 |
+
for token in orig_tokens:
|
112 |
+
if token not in never_split:
|
113 |
+
if self.do_lower_case:
|
114 |
+
token = token.lower()
|
115 |
+
if self.strip_accents is not False:
|
116 |
+
token = self._run_strip_accents(token)
|
117 |
+
elif self.strip_accents:
|
118 |
+
token = self._run_strip_accents(token)
|
119 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
120 |
+
|
121 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
122 |
+
return output_tokens
|
123 |
+
|
124 |
+
def _run_strip_accents(self, text):
|
125 |
+
"""Strips accents from a piece of text."""
|
126 |
+
text = unicodedata.normalize("NFD", text)
|
127 |
+
output = []
|
128 |
+
for char in text:
|
129 |
+
cat = unicodedata.category(char)
|
130 |
+
if cat == "Mn":
|
131 |
+
continue
|
132 |
+
output.append(char)
|
133 |
+
return "".join(output)
|
134 |
+
|
135 |
+
def _run_split_on_punc(self, text, never_split=None):
|
136 |
+
"""Splits punctuation on a piece of text."""
|
137 |
+
if not self.do_split_on_punc or (never_split is not None and text in never_split):
|
138 |
+
return [text]
|
139 |
+
chars = list(text)
|
140 |
+
i = 0
|
141 |
+
start_new_word = True
|
142 |
+
output = []
|
143 |
+
while i < len(chars):
|
144 |
+
char = chars[i]
|
145 |
+
if _is_punctuation(char):
|
146 |
+
output.append([char])
|
147 |
+
start_new_word = True
|
148 |
+
else:
|
149 |
+
if start_new_word:
|
150 |
+
output.append([])
|
151 |
+
start_new_word = False
|
152 |
+
output[-1].append(char)
|
153 |
+
i += 1
|
154 |
+
|
155 |
+
return ["".join(x) for x in output]
|
156 |
+
|
157 |
+
def _tokenize_chinese_chars(self, text):
|
158 |
+
"""Adds whitespace around any CJK character."""
|
159 |
+
output = []
|
160 |
+
for char in text:
|
161 |
+
cp = ord(char)
|
162 |
+
if self._is_chinese_char(cp):
|
163 |
+
output.append(" ")
|
164 |
+
output.append(char)
|
165 |
+
output.append(" ")
|
166 |
+
else:
|
167 |
+
output.append(char)
|
168 |
+
return "".join(output)
|
169 |
+
|
170 |
+
def _is_chinese_char(self, cp):
|
171 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
172 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
173 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
174 |
+
#
|
175 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
176 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
177 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
178 |
+
# space-separated words, so they are not treated specially and handled
|
179 |
+
# like the all of the other languages.
|
180 |
+
if (
|
181 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
182 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
183 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
184 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
185 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
186 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
187 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
188 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
189 |
+
): #
|
190 |
+
return True
|
191 |
+
|
192 |
+
return False
|
193 |
+
|
194 |
+
def _clean_text(self, text):
|
195 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
196 |
+
output = []
|
197 |
+
for char in text:
|
198 |
+
cp = ord(char)
|
199 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
200 |
+
continue
|
201 |
+
if _is_whitespace(char):
|
202 |
+
output.append(" ")
|
203 |
+
else:
|
204 |
+
output.append(char)
|
205 |
+
return "".join(output)
|
206 |
+
|
207 |
+
|
208 |
+
def get_pairs(word):
|
209 |
+
"""
|
210 |
+
Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length
|
211 |
+
strings)
|
212 |
+
"""
|
213 |
+
pairs = set()
|
214 |
+
prev_char = word[0]
|
215 |
+
for char in word[1:]:
|
216 |
+
pairs.add((prev_char, char))
|
217 |
+
prev_char = char
|
218 |
+
return pairs
|
219 |
+
|
220 |
+
|
221 |
+
def text_standardize(text):
|
222 |
+
"""
|
223 |
+
fixes some issues the spacy tokenizer had on books corpus also does some whitespace standardization
|
224 |
+
"""
|
225 |
+
text = text.replace("—", "-")
|
226 |
+
text = text.replace("–", "-")
|
227 |
+
text = text.replace("―", "-")
|
228 |
+
text = text.replace("…", "...")
|
229 |
+
text = text.replace("´", "'")
|
230 |
+
text = re.sub(r"""(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)""", r" \1 ", text)
|
231 |
+
text = re.sub(r"\s*\n\s*", " \n ", text)
|
232 |
+
text = re.sub(r"[^\S\n]+", " ", text)
|
233 |
+
return text.strip()
|
234 |
+
|
235 |
+
|
236 |
+
class OpenAIGPTTokenizer(PreTrainedTokenizer):
|
237 |
+
"""
|
238 |
+
Construct a GPT Tokenizer. Based on Byte-Pair-Encoding with the following peculiarities:
|
239 |
+
|
240 |
+
- lowercases all inputs,
|
241 |
+
- uses `SpaCy` tokenizer and `ftfy` for pre-BPE tokenization if they are installed, fallback to BERT's
|
242 |
+
`BasicTokenizer` if not.
|
243 |
+
|
244 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
245 |
+
this superclass for more information regarding those methods.
|
246 |
+
|
247 |
+
Args:
|
248 |
+
vocab_file (`str`):
|
249 |
+
Path to the vocabulary file.
|
250 |
+
merges_file (`str`):
|
251 |
+
Path to the merges file.
|
252 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
253 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
254 |
+
token instead.
|
255 |
+
"""
|
256 |
+
|
257 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
258 |
+
model_input_names = ["input_ids", "attention_mask"]
|
259 |
+
|
260 |
+
def __init__(self, vocab_file, merges_file, unk_token="<unk>", **kwargs):
|
261 |
+
try:
|
262 |
+
import ftfy
|
263 |
+
from spacy.lang.en import English
|
264 |
+
|
265 |
+
_nlp = English()
|
266 |
+
self.nlp = _nlp.tokenizer
|
267 |
+
self.fix_text = ftfy.fix_text
|
268 |
+
except ImportError:
|
269 |
+
logger.warning("ftfy or spacy is not installed using BERT BasicTokenizer instead of SpaCy & ftfy.")
|
270 |
+
self.nlp = BasicTokenizer(do_lower_case=True)
|
271 |
+
self.fix_text = None
|
272 |
+
|
273 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
274 |
+
self.encoder = json.load(vocab_handle)
|
275 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
276 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
277 |
+
merges = merges_handle.read().split("\n")[1:-1]
|
278 |
+
merges = [tuple(merge.split()) for merge in merges]
|
279 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
280 |
+
self.cache = {}
|
281 |
+
|
282 |
+
super().__init__(unk_token=unk_token, **kwargs)
|
283 |
+
|
284 |
+
@property
|
285 |
+
def do_lower_case(self):
|
286 |
+
return True
|
287 |
+
|
288 |
+
@property
|
289 |
+
def vocab_size(self):
|
290 |
+
return len(self.encoder)
|
291 |
+
|
292 |
+
def get_vocab(self):
|
293 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
294 |
+
|
295 |
+
def bpe(self, token):
|
296 |
+
word = tuple(token[:-1]) + (token[-1] + "</w>",)
|
297 |
+
if token in self.cache:
|
298 |
+
return self.cache[token]
|
299 |
+
pairs = get_pairs(word)
|
300 |
+
|
301 |
+
if not pairs:
|
302 |
+
return token + "</w>"
|
303 |
+
|
304 |
+
while True:
|
305 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
306 |
+
if bigram not in self.bpe_ranks:
|
307 |
+
break
|
308 |
+
first, second = bigram
|
309 |
+
new_word = []
|
310 |
+
i = 0
|
311 |
+
while i < len(word):
|
312 |
+
try:
|
313 |
+
j = word.index(first, i)
|
314 |
+
except ValueError:
|
315 |
+
new_word.extend(word[i:])
|
316 |
+
break
|
317 |
+
else:
|
318 |
+
new_word.extend(word[i:j])
|
319 |
+
i = j
|
320 |
+
|
321 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
322 |
+
new_word.append(first + second)
|
323 |
+
i += 2
|
324 |
+
else:
|
325 |
+
new_word.append(word[i])
|
326 |
+
i += 1
|
327 |
+
new_word = tuple(new_word)
|
328 |
+
word = new_word
|
329 |
+
if len(word) == 1:
|
330 |
+
break
|
331 |
+
else:
|
332 |
+
pairs = get_pairs(word)
|
333 |
+
word = " ".join(word)
|
334 |
+
if word == "\n </w>":
|
335 |
+
word = "\n</w>"
|
336 |
+
self.cache[token] = word
|
337 |
+
return word
|
338 |
+
|
339 |
+
def _tokenize(self, text):
|
340 |
+
"""Tokenize a string."""
|
341 |
+
split_tokens = []
|
342 |
+
if self.fix_text is None:
|
343 |
+
# Using BERT's BasicTokenizer
|
344 |
+
text = self.nlp.tokenize(text)
|
345 |
+
for token in text:
|
346 |
+
split_tokens.extend(list(self.bpe(token).split(" ")))
|
347 |
+
else:
|
348 |
+
# Using SpaCy & ftfy (original tokenization process of OpenAI GPT)
|
349 |
+
text = self.nlp(text_standardize(self.fix_text(text)))
|
350 |
+
for token in text:
|
351 |
+
split_tokens.extend(list(self.bpe(token.text.lower()).split(" ")))
|
352 |
+
return split_tokens
|
353 |
+
|
354 |
+
def _convert_token_to_id(self, token):
|
355 |
+
"""Converts a token (str) in an id using the vocab."""
|
356 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
357 |
+
|
358 |
+
def _convert_id_to_token(self, index):
|
359 |
+
"""Converts an id in a token (BPE) using the vocab."""
|
360 |
+
return self.decoder.get(index, self.unk_token)
|
361 |
+
|
362 |
+
def convert_tokens_to_string(self, tokens):
|
363 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
364 |
+
out_string = "".join(tokens).replace("</w>", " ").strip()
|
365 |
+
return out_string
|
366 |
+
|
367 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
368 |
+
if not os.path.isdir(save_directory):
|
369 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
370 |
+
return
|
371 |
+
vocab_file = os.path.join(
|
372 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
373 |
+
)
|
374 |
+
merge_file = os.path.join(
|
375 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
376 |
+
)
|
377 |
+
|
378 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
379 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
380 |
+
|
381 |
+
index = 0
|
382 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
383 |
+
writer.write("#version: 0.2\n")
|
384 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
385 |
+
if index != token_index:
|
386 |
+
logger.warning(
|
387 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
388 |
+
" Please check that the tokenizer is not corrupted!"
|
389 |
+
)
|
390 |
+
index = token_index
|
391 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
392 |
+
index += 1
|
393 |
+
|
394 |
+
return vocab_file, merge_file
|
llmeval-env/lib/python3.10/site-packages/transformers/models/openai/tokenization_openai_fast.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Fast Tokenization classes for OpenAI GPT."""
|
16 |
+
|
17 |
+
|
18 |
+
from typing import Optional, Tuple
|
19 |
+
|
20 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
21 |
+
from ...utils import logging
|
22 |
+
from .tokenization_openai import OpenAIGPTTokenizer
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
|
28 |
+
|
29 |
+
|
30 |
+
class OpenAIGPTTokenizerFast(PreTrainedTokenizerFast):
|
31 |
+
"""
|
32 |
+
Construct a "fast" GPT Tokenizer (backed by HuggingFace's *tokenizers* library). Based on Byte-Pair-Encoding with
|
33 |
+
the following peculiarities:
|
34 |
+
|
35 |
+
- lower case all inputs
|
36 |
+
- uses BERT's BasicTokenizer for pre-BPE tokenization
|
37 |
+
|
38 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
39 |
+
refer to this superclass for more information regarding those methods.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_file (`str`):
|
43 |
+
Path to the vocabulary file.
|
44 |
+
merges_file (`str`):
|
45 |
+
Path to the merges file.
|
46 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
47 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
48 |
+
token instead.
|
49 |
+
"""
|
50 |
+
|
51 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
52 |
+
model_input_names = ["input_ids", "attention_mask"]
|
53 |
+
slow_tokenizer_class = OpenAIGPTTokenizer
|
54 |
+
|
55 |
+
def __init__(self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<unk>", **kwargs):
|
56 |
+
super().__init__(vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, **kwargs)
|
57 |
+
|
58 |
+
@property
|
59 |
+
def do_lower_case(self):
|
60 |
+
return True
|
61 |
+
|
62 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
63 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
64 |
+
return tuple(files)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__init__.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_torch_available,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
_import_structure = {
|
24 |
+
"configuration_qwen2_moe": ["QWEN2MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "Qwen2MoeConfig"],
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
try:
|
29 |
+
if not is_torch_available():
|
30 |
+
raise OptionalDependencyNotAvailable()
|
31 |
+
except OptionalDependencyNotAvailable:
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
_import_structure["modeling_qwen2_moe"] = [
|
35 |
+
"Qwen2MoeForCausalLM",
|
36 |
+
"Qwen2MoeModel",
|
37 |
+
"Qwen2MoePreTrainedModel",
|
38 |
+
"Qwen2MoeForSequenceClassification",
|
39 |
+
]
|
40 |
+
|
41 |
+
|
42 |
+
if TYPE_CHECKING:
|
43 |
+
from .configuration_qwen2_moe import QWEN2MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, Qwen2MoeConfig
|
44 |
+
|
45 |
+
try:
|
46 |
+
if not is_torch_available():
|
47 |
+
raise OptionalDependencyNotAvailable()
|
48 |
+
except OptionalDependencyNotAvailable:
|
49 |
+
pass
|
50 |
+
else:
|
51 |
+
from .modeling_qwen2_moe import (
|
52 |
+
Qwen2MoeForCausalLM,
|
53 |
+
Qwen2MoeForSequenceClassification,
|
54 |
+
Qwen2MoeModel,
|
55 |
+
Qwen2MoePreTrainedModel,
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
else:
|
60 |
+
import sys
|
61 |
+
|
62 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (953 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/configuration_qwen2_moe.cpython-310.pyc
ADDED
Binary file (7.37 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/modeling_qwen2_moe.cpython-310.pyc
ADDED
Binary file (43.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/configuration_qwen2_moe.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Qwen2MoE model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
QWEN2MOE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"Qwen/Qwen1.5-MoE-A2.7B": "https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B/resolve/main/config.json",
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class Qwen2MoeConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`Qwen2MoeModel`]. It is used to instantiate a
|
31 |
+
Qwen2MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
32 |
+
with the defaults will yield a similar configuration to that of
|
33 |
+
Qwen1.5-MoE-A2.7B" [Qwen/Qwen1.5-MoE-A2.7B"](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B").
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
41 |
+
Vocabulary size of the Qwen2MoE model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`Qwen2MoeModel`]
|
43 |
+
hidden_size (`int`, *optional*, defaults to 2048):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 5632):
|
46 |
+
Dimension of the MLP representations.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
48 |
+
Number of hidden layers in the Transformer encoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 16):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
num_key_value_heads (`int`, *optional*, defaults to 16):
|
52 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
53 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
54 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
55 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
56 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
57 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
58 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
59 |
+
The non-linear activation function (function or string) in the decoder.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
61 |
+
The maximum sequence length that this model might ever be used with.
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
65 |
+
The epsilon used by the rms normalization layers.
|
66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
+
relevant if `config.is_decoder=True`.
|
69 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
70 |
+
Whether the model's input and output word embeddings should be tied.
|
71 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
72 |
+
The base period of the RoPE embeddings.
|
73 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
74 |
+
Whether to use sliding window attention.
|
75 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
76 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
77 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
78 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
79 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
80 |
+
The dropout ratio for the attention probabilities.
|
81 |
+
decoder_sparse_step (`int`, *optional*, defaults to 1):
|
82 |
+
The frequency of the MoE layer.
|
83 |
+
moe_intermediate_size (`int`, *optional*, defaults to 1408):
|
84 |
+
Intermediate size of the routed expert.
|
85 |
+
shared_expert_intermediate_size (`int`, *optional*, defaults to 5632):
|
86 |
+
Intermediate size of the shared expert.
|
87 |
+
num_experts_per_tok (`int`, *optional*, defaults to 4):
|
88 |
+
Number of selected experts.
|
89 |
+
num_experts (`int`, *optional*, defaults to 60):
|
90 |
+
Number of routed experts.
|
91 |
+
norm_topk_prob (`bool`, *optional*, defaults to `False`):
|
92 |
+
Whether to normalize the topk probabilities.
|
93 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
94 |
+
Whether or not the router logits should be returned by the model. Enabeling this will also
|
95 |
+
allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
|
96 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
97 |
+
The aux loss factor for the total loss.
|
98 |
+
|
99 |
+
```python
|
100 |
+
>>> from transformers import Qwen2MoeModel, Qwen2MoeConfig
|
101 |
+
|
102 |
+
>>> # Initializing a Qwen2MoE style configuration
|
103 |
+
>>> configuration = Qwen2MoeConfig()
|
104 |
+
|
105 |
+
>>> # Initializing a model from the Qwen1.5-MoE-A2.7B" style configuration
|
106 |
+
>>> model = Qwen2MoeModel(configuration)
|
107 |
+
|
108 |
+
>>> # Accessing the model configuration
|
109 |
+
>>> configuration = model.config
|
110 |
+
```"""
|
111 |
+
|
112 |
+
model_type = "qwen2_moe"
|
113 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
vocab_size=151936,
|
118 |
+
hidden_size=2048,
|
119 |
+
intermediate_size=5632,
|
120 |
+
num_hidden_layers=24,
|
121 |
+
num_attention_heads=16,
|
122 |
+
num_key_value_heads=16,
|
123 |
+
hidden_act="silu",
|
124 |
+
max_position_embeddings=32768,
|
125 |
+
initializer_range=0.02,
|
126 |
+
rms_norm_eps=1e-6,
|
127 |
+
use_cache=True,
|
128 |
+
tie_word_embeddings=False,
|
129 |
+
rope_theta=10000.0,
|
130 |
+
use_sliding_window=False,
|
131 |
+
sliding_window=4096,
|
132 |
+
max_window_layers=28,
|
133 |
+
attention_dropout=0.0,
|
134 |
+
decoder_sparse_step=1,
|
135 |
+
moe_intermediate_size=1408,
|
136 |
+
shared_expert_intermediate_size=5632,
|
137 |
+
num_experts_per_tok=4,
|
138 |
+
num_experts=60,
|
139 |
+
norm_topk_prob=False,
|
140 |
+
output_router_logits=False,
|
141 |
+
router_aux_loss_coef=0.001,
|
142 |
+
**kwargs,
|
143 |
+
):
|
144 |
+
self.vocab_size = vocab_size
|
145 |
+
self.max_position_embeddings = max_position_embeddings
|
146 |
+
self.hidden_size = hidden_size
|
147 |
+
self.intermediate_size = intermediate_size
|
148 |
+
self.num_hidden_layers = num_hidden_layers
|
149 |
+
self.num_attention_heads = num_attention_heads
|
150 |
+
self.use_sliding_window = use_sliding_window
|
151 |
+
self.sliding_window = sliding_window
|
152 |
+
self.max_window_layers = max_window_layers
|
153 |
+
|
154 |
+
self.num_key_value_heads = num_key_value_heads
|
155 |
+
self.hidden_act = hidden_act
|
156 |
+
self.initializer_range = initializer_range
|
157 |
+
self.rms_norm_eps = rms_norm_eps
|
158 |
+
self.use_cache = use_cache
|
159 |
+
self.rope_theta = rope_theta
|
160 |
+
self.attention_dropout = attention_dropout
|
161 |
+
|
162 |
+
# MoE arguments
|
163 |
+
self.decoder_sparse_step = decoder_sparse_step
|
164 |
+
self.moe_intermediate_size = moe_intermediate_size
|
165 |
+
self.shared_expert_intermediate_size = shared_expert_intermediate_size
|
166 |
+
self.num_experts_per_tok = num_experts_per_tok
|
167 |
+
self.num_experts = num_experts
|
168 |
+
self.norm_topk_prob = norm_topk_prob
|
169 |
+
self.output_router_logits = output_router_logits
|
170 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
171 |
+
|
172 |
+
super().__init__(
|
173 |
+
tie_word_embeddings=tie_word_embeddings,
|
174 |
+
**kwargs,
|
175 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py
ADDED
@@ -0,0 +1,1595 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch Qwen2MoE model."""
|
21 |
+
import inspect
|
22 |
+
import math
|
23 |
+
import warnings
|
24 |
+
from typing import List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
|
32 |
+
from ...activations import ACT2FN
|
33 |
+
from ...cache_utils import Cache, DynamicCache
|
34 |
+
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
|
35 |
+
from ...modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast, SequenceClassifierOutputWithPast
|
36 |
+
from ...modeling_utils import PreTrainedModel
|
37 |
+
from ...utils import (
|
38 |
+
add_start_docstrings,
|
39 |
+
add_start_docstrings_to_model_forward,
|
40 |
+
is_flash_attn_2_available,
|
41 |
+
is_flash_attn_greater_or_equal_2_10,
|
42 |
+
logging,
|
43 |
+
replace_return_docstrings,
|
44 |
+
)
|
45 |
+
from .configuration_qwen2_moe import Qwen2MoeConfig
|
46 |
+
|
47 |
+
|
48 |
+
if is_flash_attn_2_available():
|
49 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
50 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
51 |
+
|
52 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__)
|
55 |
+
|
56 |
+
_CHECKPOINT_FOR_DOC = "Qwen/Qwen1.5-MoE-A2.7B"
|
57 |
+
_CONFIG_FOR_DOC = "Qwen2MoeConfig"
|
58 |
+
|
59 |
+
QWEN2MOE_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
60 |
+
"Qwen/Qwen1.5-MoE-A2.7B",
|
61 |
+
# See all Qwen2 models at https://huggingface.co/models?filter=qwen2
|
62 |
+
]
|
63 |
+
|
64 |
+
|
65 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func
|
66 |
+
def load_balancing_loss_func(
|
67 |
+
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
|
68 |
+
) -> float:
|
69 |
+
r"""
|
70 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
71 |
+
|
72 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
73 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
74 |
+
experts is too unbalanced.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
78 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
79 |
+
shape [batch_size X sequence_length, num_experts].
|
80 |
+
attention_mask (`torch.Tensor`, None):
|
81 |
+
The attention_mask used in forward function
|
82 |
+
shape [batch_size X sequence_length] if not None.
|
83 |
+
num_experts (`int`, *optional*):
|
84 |
+
Number of experts
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
The auxiliary loss.
|
88 |
+
"""
|
89 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
90 |
+
return 0
|
91 |
+
|
92 |
+
if isinstance(gate_logits, tuple):
|
93 |
+
compute_device = gate_logits[0].device
|
94 |
+
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
95 |
+
|
96 |
+
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
97 |
+
|
98 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
99 |
+
|
100 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
101 |
+
|
102 |
+
if attention_mask is None:
|
103 |
+
# Compute the percentage of tokens routed to each experts
|
104 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
105 |
+
|
106 |
+
# Compute the average probability of routing to these experts
|
107 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
108 |
+
else:
|
109 |
+
batch_size, sequence_length = attention_mask.shape
|
110 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
111 |
+
|
112 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
113 |
+
expert_attention_mask = (
|
114 |
+
attention_mask[None, :, :, None, None]
|
115 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
116 |
+
.reshape(-1, top_k, num_experts)
|
117 |
+
.to(compute_device)
|
118 |
+
)
|
119 |
+
|
120 |
+
# Compute the percentage of tokens routed to each experts
|
121 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
122 |
+
expert_attention_mask, dim=0
|
123 |
+
)
|
124 |
+
|
125 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
126 |
+
router_per_expert_attention_mask = (
|
127 |
+
attention_mask[None, :, :, None]
|
128 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
129 |
+
.reshape(-1, num_experts)
|
130 |
+
.to(compute_device)
|
131 |
+
)
|
132 |
+
|
133 |
+
# Compute the average probability of routing to these experts
|
134 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
135 |
+
router_per_expert_attention_mask, dim=0
|
136 |
+
)
|
137 |
+
|
138 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
139 |
+
return overall_loss * num_experts
|
140 |
+
|
141 |
+
|
142 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
143 |
+
def _get_unpad_data(attention_mask):
|
144 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
145 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
146 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
147 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
148 |
+
return (
|
149 |
+
indices,
|
150 |
+
cu_seqlens,
|
151 |
+
max_seqlen_in_batch,
|
152 |
+
)
|
153 |
+
|
154 |
+
|
155 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2Moe
|
156 |
+
class Qwen2MoeRMSNorm(nn.Module):
|
157 |
+
def __init__(self, hidden_size, eps=1e-6):
|
158 |
+
"""
|
159 |
+
Qwen2MoeRMSNorm is equivalent to T5LayerNorm
|
160 |
+
"""
|
161 |
+
super().__init__()
|
162 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
163 |
+
self.variance_epsilon = eps
|
164 |
+
|
165 |
+
def forward(self, hidden_states):
|
166 |
+
input_dtype = hidden_states.dtype
|
167 |
+
hidden_states = hidden_states.to(torch.float32)
|
168 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
169 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
170 |
+
return self.weight * hidden_states.to(input_dtype)
|
171 |
+
|
172 |
+
|
173 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Qwen2Moe
|
174 |
+
class Qwen2MoeRotaryEmbedding(nn.Module):
|
175 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
176 |
+
super().__init__()
|
177 |
+
|
178 |
+
self.dim = dim
|
179 |
+
self.max_position_embeddings = max_position_embeddings
|
180 |
+
self.base = base
|
181 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
182 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
183 |
+
|
184 |
+
# Build here to make `torch.jit.trace` work.
|
185 |
+
self._set_cos_sin_cache(
|
186 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
187 |
+
)
|
188 |
+
|
189 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
190 |
+
self.max_seq_len_cached = seq_len
|
191 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
192 |
+
|
193 |
+
freqs = torch.outer(t, self.inv_freq)
|
194 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
195 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
196 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
197 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
198 |
+
|
199 |
+
def forward(self, x, seq_len=None):
|
200 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
201 |
+
if seq_len > self.max_seq_len_cached:
|
202 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
203 |
+
|
204 |
+
return (
|
205 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
206 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
207 |
+
)
|
208 |
+
|
209 |
+
|
210 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
211 |
+
def rotate_half(x):
|
212 |
+
"""Rotates half the hidden dims of the input."""
|
213 |
+
x1 = x[..., : x.shape[-1] // 2]
|
214 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
215 |
+
return torch.cat((-x2, x1), dim=-1)
|
216 |
+
|
217 |
+
|
218 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
219 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
220 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
q (`torch.Tensor`): The query tensor.
|
224 |
+
k (`torch.Tensor`): The key tensor.
|
225 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
226 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
227 |
+
position_ids (`torch.Tensor`):
|
228 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
229 |
+
used to pass offsetted position ids when working with a KV-cache.
|
230 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
231 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
232 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
233 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
234 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
235 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
236 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
237 |
+
Returns:
|
238 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
239 |
+
"""
|
240 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
241 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
242 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
243 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
244 |
+
return q_embed, k_embed
|
245 |
+
|
246 |
+
|
247 |
+
# Modified from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2Moe
|
248 |
+
class Qwen2MoeMLP(nn.Module):
|
249 |
+
def __init__(self, config, intermediate_size=None):
|
250 |
+
super().__init__()
|
251 |
+
self.config = config
|
252 |
+
self.hidden_size = config.hidden_size
|
253 |
+
self.intermediate_size = intermediate_size
|
254 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
255 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
256 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
257 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
258 |
+
|
259 |
+
def forward(self, x):
|
260 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
261 |
+
|
262 |
+
|
263 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
264 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
265 |
+
"""
|
266 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
267 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
268 |
+
"""
|
269 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
270 |
+
if n_rep == 1:
|
271 |
+
return hidden_states
|
272 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
273 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
274 |
+
|
275 |
+
|
276 |
+
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2Attention with Qwen2->Qwen2Moe
|
277 |
+
class Qwen2MoeAttention(nn.Module):
|
278 |
+
"""
|
279 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
280 |
+
and "Generating Long Sequences with Sparse Transformers".
|
281 |
+
"""
|
282 |
+
|
283 |
+
def __init__(self, config: Qwen2MoeConfig, layer_idx: Optional[int] = None):
|
284 |
+
super().__init__()
|
285 |
+
self.config = config
|
286 |
+
self.layer_idx = layer_idx
|
287 |
+
if layer_idx is None:
|
288 |
+
logger.warning_once(
|
289 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
290 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
291 |
+
"when creating this class."
|
292 |
+
)
|
293 |
+
|
294 |
+
self.hidden_size = config.hidden_size
|
295 |
+
self.num_heads = config.num_attention_heads
|
296 |
+
self.head_dim = self.hidden_size // self.num_heads
|
297 |
+
self.num_key_value_heads = config.num_key_value_heads
|
298 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
299 |
+
self.max_position_embeddings = config.max_position_embeddings
|
300 |
+
self.rope_theta = config.rope_theta
|
301 |
+
self.is_causal = True
|
302 |
+
self.attention_dropout = config.attention_dropout
|
303 |
+
|
304 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
305 |
+
raise ValueError(
|
306 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
307 |
+
f" and `num_heads`: {self.num_heads})."
|
308 |
+
)
|
309 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
310 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
311 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
312 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
313 |
+
|
314 |
+
self.rotary_emb = Qwen2MoeRotaryEmbedding(
|
315 |
+
self.head_dim,
|
316 |
+
max_position_embeddings=self.max_position_embeddings,
|
317 |
+
base=self.rope_theta,
|
318 |
+
)
|
319 |
+
|
320 |
+
def forward(
|
321 |
+
self,
|
322 |
+
hidden_states: torch.Tensor,
|
323 |
+
attention_mask: Optional[torch.Tensor] = None,
|
324 |
+
position_ids: Optional[torch.LongTensor] = None,
|
325 |
+
past_key_value: Optional[Cache] = None,
|
326 |
+
output_attentions: bool = False,
|
327 |
+
use_cache: bool = False,
|
328 |
+
**kwargs,
|
329 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
330 |
+
if "padding_mask" in kwargs:
|
331 |
+
warnings.warn(
|
332 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
333 |
+
)
|
334 |
+
bsz, q_len, _ = hidden_states.size()
|
335 |
+
|
336 |
+
query_states = self.q_proj(hidden_states)
|
337 |
+
key_states = self.k_proj(hidden_states)
|
338 |
+
value_states = self.v_proj(hidden_states)
|
339 |
+
|
340 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
341 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
342 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
343 |
+
|
344 |
+
kv_seq_len = key_states.shape[-2]
|
345 |
+
if past_key_value is not None:
|
346 |
+
if self.layer_idx is None:
|
347 |
+
raise ValueError(
|
348 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
349 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
350 |
+
"with a layer index."
|
351 |
+
)
|
352 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
353 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
354 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
355 |
+
|
356 |
+
if past_key_value is not None:
|
357 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
358 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
359 |
+
|
360 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
361 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
362 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
363 |
+
|
364 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
365 |
+
|
366 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
367 |
+
raise ValueError(
|
368 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
369 |
+
f" {attn_weights.size()}"
|
370 |
+
)
|
371 |
+
|
372 |
+
if attention_mask is not None:
|
373 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
374 |
+
raise ValueError(
|
375 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
376 |
+
)
|
377 |
+
|
378 |
+
attn_weights = attn_weights + attention_mask
|
379 |
+
|
380 |
+
# upcast attention to fp32
|
381 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
382 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
383 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
384 |
+
|
385 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
386 |
+
raise ValueError(
|
387 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
388 |
+
f" {attn_output.size()}"
|
389 |
+
)
|
390 |
+
|
391 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
392 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
393 |
+
|
394 |
+
attn_output = self.o_proj(attn_output)
|
395 |
+
|
396 |
+
if not output_attentions:
|
397 |
+
attn_weights = None
|
398 |
+
|
399 |
+
return attn_output, attn_weights, past_key_value
|
400 |
+
|
401 |
+
|
402 |
+
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2FlashAttention2 with Qwen2->Qwen2Moe
|
403 |
+
class Qwen2MoeFlashAttention2(Qwen2MoeAttention):
|
404 |
+
"""
|
405 |
+
Qwen2Moe flash attention module, following Qwen2Moe attention module. This module inherits from `Qwen2MoeAttention`
|
406 |
+
as the weights of the module stays untouched. The only required change would be on the forward pass
|
407 |
+
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
408 |
+
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
|
409 |
+
config.max_window_layers layers.
|
410 |
+
"""
|
411 |
+
|
412 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
413 |
+
def __init__(self, *args, **kwargs):
|
414 |
+
super().__init__(*args, **kwargs)
|
415 |
+
|
416 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
417 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
418 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
419 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
420 |
+
|
421 |
+
def forward(
|
422 |
+
self,
|
423 |
+
hidden_states: torch.Tensor,
|
424 |
+
attention_mask: Optional[torch.Tensor] = None,
|
425 |
+
position_ids: Optional[torch.LongTensor] = None,
|
426 |
+
past_key_value: Optional[Cache] = None,
|
427 |
+
output_attentions: bool = False,
|
428 |
+
use_cache: bool = False,
|
429 |
+
**kwargs,
|
430 |
+
):
|
431 |
+
if "padding_mask" in kwargs:
|
432 |
+
warnings.warn(
|
433 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
434 |
+
)
|
435 |
+
|
436 |
+
# overwrite attention_mask with padding_mask
|
437 |
+
attention_mask = kwargs.pop("padding_mask")
|
438 |
+
bsz, q_len, _ = hidden_states.size()
|
439 |
+
|
440 |
+
query_states = self.q_proj(hidden_states)
|
441 |
+
key_states = self.k_proj(hidden_states)
|
442 |
+
value_states = self.v_proj(hidden_states)
|
443 |
+
|
444 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
445 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
446 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
447 |
+
|
448 |
+
kv_seq_len = key_states.shape[-2]
|
449 |
+
if past_key_value is not None:
|
450 |
+
if self.layer_idx is None:
|
451 |
+
raise ValueError(
|
452 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
453 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
454 |
+
"with a layer index."
|
455 |
+
)
|
456 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
457 |
+
|
458 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
459 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
460 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
461 |
+
|
462 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
463 |
+
|
464 |
+
use_sliding_windows = (
|
465 |
+
_flash_supports_window_size
|
466 |
+
and getattr(self.config, "sliding_window", None) is not None
|
467 |
+
and kv_seq_len > self.config.sliding_window
|
468 |
+
and self.config.use_sliding_window
|
469 |
+
)
|
470 |
+
|
471 |
+
if not _flash_supports_window_size:
|
472 |
+
logger.warning_once(
|
473 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
474 |
+
" make sure to upgrade flash-attn library."
|
475 |
+
)
|
476 |
+
|
477 |
+
if past_key_value is not None:
|
478 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
479 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
480 |
+
if (
|
481 |
+
getattr(self.config, "sliding_window", None) is not None
|
482 |
+
and kv_seq_len > self.config.sliding_window
|
483 |
+
and cache_has_contents
|
484 |
+
):
|
485 |
+
slicing_tokens = 1 - self.config.sliding_window
|
486 |
+
|
487 |
+
past_key = past_key_value[self.layer_idx][0]
|
488 |
+
past_value = past_key_value[self.layer_idx][1]
|
489 |
+
|
490 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
491 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
492 |
+
|
493 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
494 |
+
raise ValueError(
|
495 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
496 |
+
f" {past_key.shape}"
|
497 |
+
)
|
498 |
+
|
499 |
+
if attention_mask is not None:
|
500 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
501 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
502 |
+
|
503 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
504 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
505 |
+
|
506 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
507 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
508 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
509 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
510 |
+
|
511 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
512 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
513 |
+
# cast them back in float16 just to be sure everything works as expected.
|
514 |
+
input_dtype = query_states.dtype
|
515 |
+
if input_dtype == torch.float32:
|
516 |
+
if torch.is_autocast_enabled():
|
517 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
518 |
+
# Handle the case where the model is quantized
|
519 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
520 |
+
target_dtype = self.config._pre_quantization_dtype
|
521 |
+
else:
|
522 |
+
target_dtype = self.q_proj.weight.dtype
|
523 |
+
|
524 |
+
logger.warning_once(
|
525 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
526 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
527 |
+
f" {target_dtype}."
|
528 |
+
)
|
529 |
+
|
530 |
+
query_states = query_states.to(target_dtype)
|
531 |
+
key_states = key_states.to(target_dtype)
|
532 |
+
value_states = value_states.to(target_dtype)
|
533 |
+
|
534 |
+
# Reashape to the expected shape for Flash Attention
|
535 |
+
query_states = query_states.transpose(1, 2)
|
536 |
+
key_states = key_states.transpose(1, 2)
|
537 |
+
value_states = value_states.transpose(1, 2)
|
538 |
+
|
539 |
+
attn_output = self._flash_attention_forward(
|
540 |
+
query_states,
|
541 |
+
key_states,
|
542 |
+
value_states,
|
543 |
+
attention_mask,
|
544 |
+
q_len,
|
545 |
+
dropout=dropout_rate,
|
546 |
+
use_sliding_windows=use_sliding_windows,
|
547 |
+
)
|
548 |
+
|
549 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
550 |
+
attn_output = self.o_proj(attn_output)
|
551 |
+
|
552 |
+
if not output_attentions:
|
553 |
+
attn_weights = None
|
554 |
+
|
555 |
+
return attn_output, attn_weights, past_key_value
|
556 |
+
|
557 |
+
def _flash_attention_forward(
|
558 |
+
self,
|
559 |
+
query_states,
|
560 |
+
key_states,
|
561 |
+
value_states,
|
562 |
+
attention_mask,
|
563 |
+
query_length,
|
564 |
+
dropout=0.0,
|
565 |
+
softmax_scale=None,
|
566 |
+
use_sliding_windows=False,
|
567 |
+
):
|
568 |
+
"""
|
569 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
570 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
571 |
+
|
572 |
+
Args:
|
573 |
+
query_states (`torch.Tensor`):
|
574 |
+
Input query states to be passed to Flash Attention API
|
575 |
+
key_states (`torch.Tensor`):
|
576 |
+
Input key states to be passed to Flash Attention API
|
577 |
+
value_states (`torch.Tensor`):
|
578 |
+
Input value states to be passed to Flash Attention API
|
579 |
+
attention_mask (`torch.Tensor`):
|
580 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
581 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
582 |
+
dropout (`float`):
|
583 |
+
Attention dropout
|
584 |
+
softmax_scale (`float`, *optional*):
|
585 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
586 |
+
use_sliding_windows (`bool`, *optional*):
|
587 |
+
Whether to activate sliding window attention.
|
588 |
+
"""
|
589 |
+
if not self._flash_attn_uses_top_left_mask:
|
590 |
+
causal = self.is_causal
|
591 |
+
else:
|
592 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
593 |
+
causal = self.is_causal and query_length != 1
|
594 |
+
|
595 |
+
# Decide whether to use SWA or not by layer index.
|
596 |
+
if use_sliding_windows and self.layer_idx >= self.config.max_window_layers:
|
597 |
+
use_sliding_windows = False
|
598 |
+
|
599 |
+
# Contains at least one padding token in the sequence
|
600 |
+
if attention_mask is not None:
|
601 |
+
batch_size = query_states.shape[0]
|
602 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
603 |
+
query_states, key_states, value_states, attention_mask, query_length
|
604 |
+
)
|
605 |
+
|
606 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
607 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
608 |
+
|
609 |
+
if not use_sliding_windows:
|
610 |
+
attn_output_unpad = flash_attn_varlen_func(
|
611 |
+
query_states,
|
612 |
+
key_states,
|
613 |
+
value_states,
|
614 |
+
cu_seqlens_q=cu_seqlens_q,
|
615 |
+
cu_seqlens_k=cu_seqlens_k,
|
616 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
617 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
618 |
+
dropout_p=dropout,
|
619 |
+
softmax_scale=softmax_scale,
|
620 |
+
causal=causal,
|
621 |
+
)
|
622 |
+
else:
|
623 |
+
attn_output_unpad = flash_attn_varlen_func(
|
624 |
+
query_states,
|
625 |
+
key_states,
|
626 |
+
value_states,
|
627 |
+
cu_seqlens_q=cu_seqlens_q,
|
628 |
+
cu_seqlens_k=cu_seqlens_k,
|
629 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
630 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
631 |
+
dropout_p=dropout,
|
632 |
+
softmax_scale=softmax_scale,
|
633 |
+
causal=causal,
|
634 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
635 |
+
)
|
636 |
+
|
637 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
638 |
+
else:
|
639 |
+
if not use_sliding_windows:
|
640 |
+
attn_output = flash_attn_func(
|
641 |
+
query_states,
|
642 |
+
key_states,
|
643 |
+
value_states,
|
644 |
+
dropout,
|
645 |
+
softmax_scale=softmax_scale,
|
646 |
+
causal=causal,
|
647 |
+
)
|
648 |
+
else:
|
649 |
+
attn_output = flash_attn_func(
|
650 |
+
query_states,
|
651 |
+
key_states,
|
652 |
+
value_states,
|
653 |
+
dropout,
|
654 |
+
softmax_scale=softmax_scale,
|
655 |
+
causal=causal,
|
656 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
657 |
+
)
|
658 |
+
|
659 |
+
return attn_output
|
660 |
+
|
661 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
|
662 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
663 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
664 |
+
|
665 |
+
# On the first iteration we need to properly re-create the padding mask
|
666 |
+
# by slicing it on the proper place
|
667 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
668 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
669 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
670 |
+
|
671 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
672 |
+
|
673 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
674 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
675 |
+
|
676 |
+
if query_length == kv_seq_len:
|
677 |
+
query_layer = index_first_axis(
|
678 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
679 |
+
)
|
680 |
+
cu_seqlens_q = cu_seqlens_k
|
681 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
682 |
+
indices_q = indices_k
|
683 |
+
elif query_length == 1:
|
684 |
+
max_seqlen_in_batch_q = 1
|
685 |
+
cu_seqlens_q = torch.arange(
|
686 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
687 |
+
) # There is a memcpy here, that is very bad.
|
688 |
+
indices_q = cu_seqlens_q[:-1]
|
689 |
+
query_layer = query_layer.squeeze(1)
|
690 |
+
else:
|
691 |
+
# The -q_len: slice assumes left padding.
|
692 |
+
attention_mask = attention_mask[:, -query_length:]
|
693 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
694 |
+
|
695 |
+
return (
|
696 |
+
query_layer,
|
697 |
+
key_layer,
|
698 |
+
value_layer,
|
699 |
+
indices_q,
|
700 |
+
(cu_seqlens_q, cu_seqlens_k),
|
701 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
702 |
+
)
|
703 |
+
|
704 |
+
|
705 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Qwen2Moe
|
706 |
+
class Qwen2MoeSdpaAttention(Qwen2MoeAttention):
|
707 |
+
"""
|
708 |
+
Qwen2Moe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
709 |
+
`Qwen2MoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
710 |
+
SDPA API.
|
711 |
+
"""
|
712 |
+
|
713 |
+
# Adapted from Qwen2MoeAttention.forward
|
714 |
+
def forward(
|
715 |
+
self,
|
716 |
+
hidden_states: torch.Tensor,
|
717 |
+
attention_mask: Optional[torch.Tensor] = None,
|
718 |
+
position_ids: Optional[torch.LongTensor] = None,
|
719 |
+
past_key_value: Optional[Cache] = None,
|
720 |
+
output_attentions: bool = False,
|
721 |
+
use_cache: bool = False,
|
722 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
723 |
+
if output_attentions:
|
724 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
725 |
+
logger.warning_once(
|
726 |
+
"Qwen2MoeModel is using Qwen2MoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
727 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
728 |
+
)
|
729 |
+
return super().forward(
|
730 |
+
hidden_states=hidden_states,
|
731 |
+
attention_mask=attention_mask,
|
732 |
+
position_ids=position_ids,
|
733 |
+
past_key_value=past_key_value,
|
734 |
+
output_attentions=output_attentions,
|
735 |
+
use_cache=use_cache,
|
736 |
+
)
|
737 |
+
|
738 |
+
bsz, q_len, _ = hidden_states.size()
|
739 |
+
|
740 |
+
query_states = self.q_proj(hidden_states)
|
741 |
+
key_states = self.k_proj(hidden_states)
|
742 |
+
value_states = self.v_proj(hidden_states)
|
743 |
+
|
744 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
745 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
746 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
747 |
+
|
748 |
+
kv_seq_len = key_states.shape[-2]
|
749 |
+
if past_key_value is not None:
|
750 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
751 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
752 |
+
|
753 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
754 |
+
|
755 |
+
if past_key_value is not None:
|
756 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
757 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
758 |
+
|
759 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
760 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
761 |
+
|
762 |
+
if attention_mask is not None:
|
763 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
764 |
+
raise ValueError(
|
765 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
766 |
+
)
|
767 |
+
|
768 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
769 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
770 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
771 |
+
query_states = query_states.contiguous()
|
772 |
+
key_states = key_states.contiguous()
|
773 |
+
value_states = value_states.contiguous()
|
774 |
+
|
775 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
776 |
+
query_states,
|
777 |
+
key_states,
|
778 |
+
value_states,
|
779 |
+
attn_mask=attention_mask,
|
780 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
781 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
782 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
783 |
+
)
|
784 |
+
|
785 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
786 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
787 |
+
|
788 |
+
attn_output = self.o_proj(attn_output)
|
789 |
+
|
790 |
+
return attn_output, None, past_key_value
|
791 |
+
|
792 |
+
|
793 |
+
QWEN2MOE_ATTENTION_CLASSES = {
|
794 |
+
"eager": Qwen2MoeAttention,
|
795 |
+
"flash_attention_2": Qwen2MoeFlashAttention2,
|
796 |
+
"sdpa": Qwen2MoeSdpaAttention,
|
797 |
+
}
|
798 |
+
|
799 |
+
|
800 |
+
class Qwen2MoeSparseMoeBlock(nn.Module):
|
801 |
+
def __init__(self, config):
|
802 |
+
super().__init__()
|
803 |
+
self.num_experts = config.num_experts
|
804 |
+
self.top_k = config.num_experts_per_tok
|
805 |
+
self.norm_topk_prob = config.norm_topk_prob
|
806 |
+
|
807 |
+
# gating
|
808 |
+
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
|
809 |
+
self.experts = nn.ModuleList(
|
810 |
+
[Qwen2MoeMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(self.num_experts)]
|
811 |
+
)
|
812 |
+
|
813 |
+
self.shared_expert = Qwen2MoeMLP(config, intermediate_size=config.shared_expert_intermediate_size)
|
814 |
+
self.shared_expert_gate = torch.nn.Linear(config.hidden_size, 1, bias=False)
|
815 |
+
|
816 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
817 |
+
""" """
|
818 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
819 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
820 |
+
# router_logits: (batch * sequence_length, n_experts)
|
821 |
+
router_logits = self.gate(hidden_states)
|
822 |
+
|
823 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
824 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
825 |
+
if self.norm_topk_prob:
|
826 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
827 |
+
# we cast back to the input dtype
|
828 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
829 |
+
|
830 |
+
final_hidden_states = torch.zeros(
|
831 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
832 |
+
)
|
833 |
+
|
834 |
+
# One hot encode the selected experts to create an expert mask
|
835 |
+
# this will be used to easily index which expert is going to be sollicitated
|
836 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
837 |
+
|
838 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
839 |
+
for expert_idx in range(self.num_experts):
|
840 |
+
expert_layer = self.experts[expert_idx]
|
841 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
842 |
+
|
843 |
+
# Index the correct hidden states and compute the expert hidden state for
|
844 |
+
# the current expert. We need to make sure to multiply the output hidden
|
845 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
846 |
+
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
847 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
848 |
+
|
849 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
850 |
+
# the `top_x` tensor here.
|
851 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
852 |
+
|
853 |
+
shared_expert_output = self.shared_expert(hidden_states)
|
854 |
+
shared_expert_output = F.sigmoid(self.shared_expert_gate(hidden_states)) * shared_expert_output
|
855 |
+
|
856 |
+
final_hidden_states = final_hidden_states + shared_expert_output
|
857 |
+
|
858 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
859 |
+
return final_hidden_states, router_logits
|
860 |
+
|
861 |
+
|
862 |
+
class Qwen2MoeDecoderLayer(nn.Module):
|
863 |
+
def __init__(self, config: Qwen2MoeConfig, layer_idx: int):
|
864 |
+
super().__init__()
|
865 |
+
self.hidden_size = config.hidden_size
|
866 |
+
|
867 |
+
self.self_attn = QWEN2MOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
868 |
+
|
869 |
+
if config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0:
|
870 |
+
self.mlp = Qwen2MoeSparseMoeBlock(config)
|
871 |
+
else:
|
872 |
+
self.mlp = Qwen2MoeMLP(config, intermediate_size=config.intermediate_size)
|
873 |
+
|
874 |
+
self.input_layernorm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
875 |
+
self.post_attention_layernorm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
876 |
+
|
877 |
+
def forward(
|
878 |
+
self,
|
879 |
+
hidden_states: torch.Tensor,
|
880 |
+
attention_mask: Optional[torch.Tensor] = None,
|
881 |
+
position_ids: Optional[torch.LongTensor] = None,
|
882 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
883 |
+
output_attentions: Optional[bool] = False,
|
884 |
+
output_router_logits: Optional[bool] = False,
|
885 |
+
use_cache: Optional[bool] = False,
|
886 |
+
**kwargs,
|
887 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
888 |
+
if "padding_mask" in kwargs:
|
889 |
+
warnings.warn(
|
890 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
891 |
+
"Please make sure use `attention_mask` instead.`"
|
892 |
+
)
|
893 |
+
"""
|
894 |
+
Args:
|
895 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
896 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
897 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
898 |
+
output_attentions (`bool`, *optional*):
|
899 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
900 |
+
returned tensors for more detail.
|
901 |
+
output_router_logits (`bool`, *optional*):
|
902 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss,
|
903 |
+
and should not be returned during inference.
|
904 |
+
use_cache (`bool`, *optional*):
|
905 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
906 |
+
(see `past_key_values`).
|
907 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
908 |
+
"""
|
909 |
+
|
910 |
+
residual = hidden_states
|
911 |
+
|
912 |
+
hidden_states = self.input_layernorm(hidden_states)
|
913 |
+
|
914 |
+
# Self Attention
|
915 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
916 |
+
hidden_states=hidden_states,
|
917 |
+
attention_mask=attention_mask,
|
918 |
+
position_ids=position_ids,
|
919 |
+
past_key_value=past_key_value,
|
920 |
+
output_attentions=output_attentions,
|
921 |
+
use_cache=use_cache,
|
922 |
+
)
|
923 |
+
hidden_states = residual + hidden_states
|
924 |
+
|
925 |
+
# Fully Connected
|
926 |
+
residual = hidden_states
|
927 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
928 |
+
|
929 |
+
hidden_states = self.mlp(hidden_states)
|
930 |
+
if isinstance(hidden_states, tuple):
|
931 |
+
hidden_states, router_logits = hidden_states
|
932 |
+
else:
|
933 |
+
router_logits = None
|
934 |
+
|
935 |
+
hidden_states = residual + hidden_states
|
936 |
+
|
937 |
+
outputs = (hidden_states,)
|
938 |
+
|
939 |
+
if output_attentions:
|
940 |
+
outputs += (self_attn_weights,)
|
941 |
+
|
942 |
+
if use_cache:
|
943 |
+
outputs += (present_key_value,)
|
944 |
+
|
945 |
+
if output_router_logits:
|
946 |
+
outputs += (router_logits,)
|
947 |
+
|
948 |
+
return outputs
|
949 |
+
|
950 |
+
|
951 |
+
QWEN2MOE_START_DOCSTRING = r"""
|
952 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
953 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
954 |
+
etc.)
|
955 |
+
|
956 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
957 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
958 |
+
and behavior.
|
959 |
+
|
960 |
+
Parameters:
|
961 |
+
config ([`Qwen2MoeConfig`]):
|
962 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
963 |
+
load the weights associated with the model, only the configuration. Check out the
|
964 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
965 |
+
"""
|
966 |
+
|
967 |
+
|
968 |
+
@add_start_docstrings(
|
969 |
+
"The bare Qwen2MoE Model outputting raw hidden-states without any specific head on top.",
|
970 |
+
QWEN2MOE_START_DOCSTRING,
|
971 |
+
)
|
972 |
+
class Qwen2MoePreTrainedModel(PreTrainedModel):
|
973 |
+
config_class = Qwen2MoeConfig
|
974 |
+
base_model_prefix = "model"
|
975 |
+
supports_gradient_checkpointing = True
|
976 |
+
_no_split_modules = ["Qwen2MoeDecoderLayer"]
|
977 |
+
_skip_keys_device_placement = "past_key_values"
|
978 |
+
_supports_flash_attn_2 = True
|
979 |
+
_supports_sdpa = True
|
980 |
+
_supports_cache_class = True
|
981 |
+
|
982 |
+
def _init_weights(self, module):
|
983 |
+
std = self.config.initializer_range
|
984 |
+
if isinstance(module, nn.Linear):
|
985 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
986 |
+
if module.bias is not None:
|
987 |
+
module.bias.data.zero_()
|
988 |
+
elif isinstance(module, nn.Embedding):
|
989 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
990 |
+
if module.padding_idx is not None:
|
991 |
+
module.weight.data[module.padding_idx].zero_()
|
992 |
+
|
993 |
+
|
994 |
+
QWEN2MOE_INPUTS_DOCSTRING = r"""
|
995 |
+
Args:
|
996 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
997 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
998 |
+
it.
|
999 |
+
|
1000 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1001 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1002 |
+
|
1003 |
+
[What are input IDs?](../glossary#input-ids)
|
1004 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1005 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1006 |
+
|
1007 |
+
- 1 for tokens that are **not masked**,
|
1008 |
+
- 0 for tokens that are **masked**.
|
1009 |
+
|
1010 |
+
[What are attention masks?](../glossary#attention-mask)
|
1011 |
+
|
1012 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1013 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1014 |
+
|
1015 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
1016 |
+
`past_key_values`).
|
1017 |
+
|
1018 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1019 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1020 |
+
information on the default strategy.
|
1021 |
+
|
1022 |
+
- 1 indicates the head is **not masked**,
|
1023 |
+
- 0 indicates the head is **masked**.
|
1024 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1025 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1026 |
+
config.n_positions - 1]`.
|
1027 |
+
|
1028 |
+
[What are position IDs?](../glossary#position-ids)
|
1029 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
1030 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1031 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
1032 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
1033 |
+
|
1034 |
+
Two formats are allowed:
|
1035 |
+
- a [`~cache_utils.Cache`] instance;
|
1036 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1037 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1038 |
+
cache format.
|
1039 |
+
|
1040 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1041 |
+
legacy cache format will be returned.
|
1042 |
+
|
1043 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1044 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1045 |
+
of shape `(batch_size, sequence_length)`.
|
1046 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1047 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1048 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1049 |
+
model's internal embedding lookup matrix.
|
1050 |
+
use_cache (`bool`, *optional*):
|
1051 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1052 |
+
`past_key_values`).
|
1053 |
+
output_attentions (`bool`, *optional*):
|
1054 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1055 |
+
tensors for more detail.
|
1056 |
+
output_hidden_states (`bool`, *optional*):
|
1057 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1058 |
+
more detail.
|
1059 |
+
output_router_logits (`bool`, *optional*):
|
1060 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
1061 |
+
should not be returned during inference.
|
1062 |
+
return_dict (`bool`, *optional*):
|
1063 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1064 |
+
"""
|
1065 |
+
|
1066 |
+
|
1067 |
+
@add_start_docstrings(
|
1068 |
+
"The bare Qwen2MoE Model outputting raw hidden-states without any specific head on top.",
|
1069 |
+
QWEN2MOE_START_DOCSTRING,
|
1070 |
+
)
|
1071 |
+
class Qwen2MoeModel(Qwen2MoePreTrainedModel):
|
1072 |
+
"""
|
1073 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2MoeDecoderLayer`]
|
1074 |
+
|
1075 |
+
Args:
|
1076 |
+
config: Qwen2MoeConfig
|
1077 |
+
"""
|
1078 |
+
|
1079 |
+
def __init__(self, config: Qwen2MoeConfig):
|
1080 |
+
super().__init__(config)
|
1081 |
+
self.padding_idx = config.pad_token_id
|
1082 |
+
self.vocab_size = config.vocab_size
|
1083 |
+
|
1084 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1085 |
+
self.layers = nn.ModuleList(
|
1086 |
+
[Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1087 |
+
)
|
1088 |
+
self._attn_implementation = config._attn_implementation
|
1089 |
+
self.norm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1090 |
+
|
1091 |
+
self.gradient_checkpointing = False
|
1092 |
+
# Initialize weights and apply final processing
|
1093 |
+
self.post_init()
|
1094 |
+
|
1095 |
+
def get_input_embeddings(self):
|
1096 |
+
return self.embed_tokens
|
1097 |
+
|
1098 |
+
def set_input_embeddings(self, value):
|
1099 |
+
self.embed_tokens = value
|
1100 |
+
|
1101 |
+
@add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING)
|
1102 |
+
def forward(
|
1103 |
+
self,
|
1104 |
+
input_ids: torch.LongTensor = None,
|
1105 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1106 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1107 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1108 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1109 |
+
use_cache: Optional[bool] = None,
|
1110 |
+
output_attentions: Optional[bool] = None,
|
1111 |
+
output_hidden_states: Optional[bool] = None,
|
1112 |
+
output_router_logits: Optional[bool] = None,
|
1113 |
+
return_dict: Optional[bool] = None,
|
1114 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
1115 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1116 |
+
output_router_logits = (
|
1117 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1118 |
+
)
|
1119 |
+
output_hidden_states = (
|
1120 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1121 |
+
)
|
1122 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1123 |
+
|
1124 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1125 |
+
|
1126 |
+
# retrieve input_ids and inputs_embeds
|
1127 |
+
if input_ids is not None and inputs_embeds is not None:
|
1128 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1129 |
+
elif input_ids is not None:
|
1130 |
+
batch_size, seq_length = input_ids.shape
|
1131 |
+
elif inputs_embeds is not None:
|
1132 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1133 |
+
else:
|
1134 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1135 |
+
|
1136 |
+
if self.gradient_checkpointing and self.training:
|
1137 |
+
if use_cache:
|
1138 |
+
logger.warning_once(
|
1139 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1140 |
+
)
|
1141 |
+
use_cache = False
|
1142 |
+
|
1143 |
+
past_key_values_length = 0
|
1144 |
+
|
1145 |
+
if use_cache:
|
1146 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1147 |
+
if use_legacy_cache:
|
1148 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1149 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1150 |
+
|
1151 |
+
if position_ids is None:
|
1152 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1153 |
+
position_ids = torch.arange(
|
1154 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1155 |
+
)
|
1156 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1157 |
+
else:
|
1158 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1159 |
+
|
1160 |
+
if inputs_embeds is None:
|
1161 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1162 |
+
|
1163 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
1164 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
1165 |
+
if is_padding_right:
|
1166 |
+
raise ValueError(
|
1167 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1168 |
+
" this may lead to unexpected behaviour for Flash Attention version of Qwen2MoE. Make sure to "
|
1169 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1170 |
+
)
|
1171 |
+
|
1172 |
+
if self._attn_implementation == "flash_attention_2":
|
1173 |
+
# 2d mask is passed through the layers
|
1174 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1175 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
1176 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1177 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1178 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1179 |
+
attention_mask,
|
1180 |
+
(batch_size, seq_length),
|
1181 |
+
inputs_embeds,
|
1182 |
+
past_key_values_length,
|
1183 |
+
sliding_window=self.config.sliding_window,
|
1184 |
+
)
|
1185 |
+
else:
|
1186 |
+
# 4d mask is passed through the layers
|
1187 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1188 |
+
attention_mask,
|
1189 |
+
(batch_size, seq_length),
|
1190 |
+
inputs_embeds,
|
1191 |
+
past_key_values_length,
|
1192 |
+
sliding_window=self.config.sliding_window,
|
1193 |
+
)
|
1194 |
+
|
1195 |
+
hidden_states = inputs_embeds
|
1196 |
+
|
1197 |
+
# decoder layers
|
1198 |
+
all_hidden_states = () if output_hidden_states else None
|
1199 |
+
all_self_attns = () if output_attentions else None
|
1200 |
+
all_router_logits = () if output_router_logits else None
|
1201 |
+
next_decoder_cache = None
|
1202 |
+
|
1203 |
+
for decoder_layer in self.layers:
|
1204 |
+
if output_hidden_states:
|
1205 |
+
all_hidden_states += (hidden_states,)
|
1206 |
+
|
1207 |
+
if self.gradient_checkpointing and self.training:
|
1208 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1209 |
+
decoder_layer.__call__,
|
1210 |
+
hidden_states,
|
1211 |
+
attention_mask,
|
1212 |
+
position_ids,
|
1213 |
+
past_key_values,
|
1214 |
+
output_attentions,
|
1215 |
+
output_router_logits,
|
1216 |
+
use_cache,
|
1217 |
+
)
|
1218 |
+
else:
|
1219 |
+
layer_outputs = decoder_layer(
|
1220 |
+
hidden_states,
|
1221 |
+
attention_mask=attention_mask,
|
1222 |
+
position_ids=position_ids,
|
1223 |
+
past_key_value=past_key_values,
|
1224 |
+
output_attentions=output_attentions,
|
1225 |
+
output_router_logits=output_router_logits,
|
1226 |
+
use_cache=use_cache,
|
1227 |
+
)
|
1228 |
+
|
1229 |
+
hidden_states = layer_outputs[0]
|
1230 |
+
|
1231 |
+
if use_cache:
|
1232 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1233 |
+
|
1234 |
+
if output_attentions:
|
1235 |
+
all_self_attns += (layer_outputs[1],)
|
1236 |
+
|
1237 |
+
if output_router_logits and layer_outputs[-1] is not None:
|
1238 |
+
all_router_logits += (layer_outputs[-1],)
|
1239 |
+
|
1240 |
+
hidden_states = self.norm(hidden_states)
|
1241 |
+
|
1242 |
+
# add hidden states from the last decoder layer
|
1243 |
+
if output_hidden_states:
|
1244 |
+
all_hidden_states += (hidden_states,)
|
1245 |
+
|
1246 |
+
next_cache = None
|
1247 |
+
if use_cache:
|
1248 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1249 |
+
|
1250 |
+
if not return_dict:
|
1251 |
+
return tuple(
|
1252 |
+
v
|
1253 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
1254 |
+
if v is not None
|
1255 |
+
)
|
1256 |
+
return MoeModelOutputWithPast(
|
1257 |
+
last_hidden_state=hidden_states,
|
1258 |
+
past_key_values=next_cache,
|
1259 |
+
hidden_states=all_hidden_states,
|
1260 |
+
attentions=all_self_attns,
|
1261 |
+
router_logits=all_router_logits,
|
1262 |
+
)
|
1263 |
+
|
1264 |
+
|
1265 |
+
class Qwen2MoeForCausalLM(Qwen2MoePreTrainedModel):
|
1266 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1267 |
+
|
1268 |
+
def __init__(self, config):
|
1269 |
+
super().__init__(config)
|
1270 |
+
self.model = Qwen2MoeModel(config)
|
1271 |
+
self.vocab_size = config.vocab_size
|
1272 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1273 |
+
|
1274 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
1275 |
+
self.num_experts = config.num_experts
|
1276 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
1277 |
+
# Initialize weights and apply final processing
|
1278 |
+
self.post_init()
|
1279 |
+
|
1280 |
+
def get_input_embeddings(self):
|
1281 |
+
return self.model.embed_tokens
|
1282 |
+
|
1283 |
+
def set_input_embeddings(self, value):
|
1284 |
+
self.model.embed_tokens = value
|
1285 |
+
|
1286 |
+
def get_output_embeddings(self):
|
1287 |
+
return self.lm_head
|
1288 |
+
|
1289 |
+
def set_output_embeddings(self, new_embeddings):
|
1290 |
+
self.lm_head = new_embeddings
|
1291 |
+
|
1292 |
+
def set_decoder(self, decoder):
|
1293 |
+
self.model = decoder
|
1294 |
+
|
1295 |
+
def get_decoder(self):
|
1296 |
+
return self.model
|
1297 |
+
|
1298 |
+
@add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING)
|
1299 |
+
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1300 |
+
def forward(
|
1301 |
+
self,
|
1302 |
+
input_ids: torch.LongTensor = None,
|
1303 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1304 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1305 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1306 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1307 |
+
labels: Optional[torch.LongTensor] = None,
|
1308 |
+
use_cache: Optional[bool] = None,
|
1309 |
+
output_attentions: Optional[bool] = None,
|
1310 |
+
output_hidden_states: Optional[bool] = None,
|
1311 |
+
output_router_logits: Optional[bool] = None,
|
1312 |
+
return_dict: Optional[bool] = None,
|
1313 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
1314 |
+
r"""
|
1315 |
+
Args:
|
1316 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1317 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1318 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1319 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1320 |
+
|
1321 |
+
Returns:
|
1322 |
+
|
1323 |
+
Example:
|
1324 |
+
|
1325 |
+
```python
|
1326 |
+
>>> from transformers import AutoTokenizer, Qwen2MoeForCausalLM
|
1327 |
+
|
1328 |
+
>>> model = Qwen2MoeForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1329 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1330 |
+
|
1331 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1332 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1333 |
+
|
1334 |
+
>>> # Generate
|
1335 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1336 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1337 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1338 |
+
```"""
|
1339 |
+
|
1340 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1341 |
+
output_router_logits = (
|
1342 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1343 |
+
)
|
1344 |
+
output_hidden_states = (
|
1345 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1346 |
+
)
|
1347 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1348 |
+
|
1349 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1350 |
+
outputs = self.model(
|
1351 |
+
input_ids=input_ids,
|
1352 |
+
attention_mask=attention_mask,
|
1353 |
+
position_ids=position_ids,
|
1354 |
+
past_key_values=past_key_values,
|
1355 |
+
inputs_embeds=inputs_embeds,
|
1356 |
+
use_cache=use_cache,
|
1357 |
+
output_attentions=output_attentions,
|
1358 |
+
output_hidden_states=output_hidden_states,
|
1359 |
+
output_router_logits=output_router_logits,
|
1360 |
+
return_dict=return_dict,
|
1361 |
+
)
|
1362 |
+
|
1363 |
+
hidden_states = outputs[0]
|
1364 |
+
logits = self.lm_head(hidden_states)
|
1365 |
+
logits = logits.float()
|
1366 |
+
|
1367 |
+
loss = None
|
1368 |
+
if labels is not None:
|
1369 |
+
# Shift so that tokens < n predict n
|
1370 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1371 |
+
shift_labels = labels[..., 1:].contiguous()
|
1372 |
+
# Flatten the tokens
|
1373 |
+
loss_fct = CrossEntropyLoss()
|
1374 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1375 |
+
shift_labels = shift_labels.view(-1)
|
1376 |
+
# Enable model parallelism
|
1377 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1378 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1379 |
+
|
1380 |
+
aux_loss = None
|
1381 |
+
if output_router_logits:
|
1382 |
+
aux_loss = load_balancing_loss_func(
|
1383 |
+
outputs.router_logits if return_dict else outputs[-1],
|
1384 |
+
self.num_experts,
|
1385 |
+
self.num_experts_per_tok,
|
1386 |
+
attention_mask,
|
1387 |
+
)
|
1388 |
+
if labels is not None:
|
1389 |
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
1390 |
+
|
1391 |
+
if not return_dict:
|
1392 |
+
output = (logits,) + outputs[1:]
|
1393 |
+
if output_router_logits:
|
1394 |
+
output = (aux_loss,) + output
|
1395 |
+
return (loss,) + output if loss is not None else output
|
1396 |
+
|
1397 |
+
return MoeCausalLMOutputWithPast(
|
1398 |
+
loss=loss,
|
1399 |
+
aux_loss=aux_loss,
|
1400 |
+
logits=logits,
|
1401 |
+
past_key_values=outputs.past_key_values,
|
1402 |
+
hidden_states=outputs.hidden_states,
|
1403 |
+
attentions=outputs.attentions,
|
1404 |
+
router_logits=outputs.router_logits,
|
1405 |
+
)
|
1406 |
+
|
1407 |
+
def prepare_inputs_for_generation(
|
1408 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1409 |
+
):
|
1410 |
+
# Omit tokens covered by past_key_values
|
1411 |
+
if past_key_values is not None:
|
1412 |
+
if isinstance(past_key_values, Cache):
|
1413 |
+
cache_length = past_key_values.get_seq_length()
|
1414 |
+
past_length = past_key_values.seen_tokens
|
1415 |
+
max_cache_length = past_key_values.get_max_length()
|
1416 |
+
else:
|
1417 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1418 |
+
max_cache_length = None
|
1419 |
+
|
1420 |
+
# Keep only the unprocessed tokens:
|
1421 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1422 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1423 |
+
# input)
|
1424 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1425 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1426 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1427 |
+
# input_ids based on the past_length.
|
1428 |
+
elif past_length < input_ids.shape[1]:
|
1429 |
+
input_ids = input_ids[:, past_length:]
|
1430 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1431 |
+
|
1432 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1433 |
+
if (
|
1434 |
+
max_cache_length is not None
|
1435 |
+
and attention_mask is not None
|
1436 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1437 |
+
):
|
1438 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1439 |
+
|
1440 |
+
position_ids = kwargs.get("position_ids", None)
|
1441 |
+
if attention_mask is not None and position_ids is None:
|
1442 |
+
# create position_ids on the fly for batch generation
|
1443 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1444 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1445 |
+
if past_key_values:
|
1446 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1447 |
+
|
1448 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1449 |
+
if inputs_embeds is not None and past_key_values is None:
|
1450 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1451 |
+
else:
|
1452 |
+
model_inputs = {"input_ids": input_ids}
|
1453 |
+
|
1454 |
+
model_inputs.update(
|
1455 |
+
{
|
1456 |
+
"position_ids": position_ids,
|
1457 |
+
"past_key_values": past_key_values,
|
1458 |
+
"use_cache": kwargs.get("use_cache"),
|
1459 |
+
"attention_mask": attention_mask,
|
1460 |
+
}
|
1461 |
+
)
|
1462 |
+
return model_inputs
|
1463 |
+
|
1464 |
+
@staticmethod
|
1465 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1466 |
+
reordered_past = ()
|
1467 |
+
for layer_past in past_key_values:
|
1468 |
+
reordered_past += (
|
1469 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1470 |
+
)
|
1471 |
+
return reordered_past
|
1472 |
+
|
1473 |
+
|
1474 |
+
@add_start_docstrings(
|
1475 |
+
"""
|
1476 |
+
The Qwen2MoE Model transformer with a sequence classification head on top (linear layer).
|
1477 |
+
|
1478 |
+
[`Qwen2MoeForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1479 |
+
(e.g. GPT-2) do.
|
1480 |
+
|
1481 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1482 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1483 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1484 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1485 |
+
each row of the batch).
|
1486 |
+
""",
|
1487 |
+
QWEN2MOE_START_DOCSTRING,
|
1488 |
+
)
|
1489 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Qwen2Moe, LLAMA->QWEN2MOE
|
1490 |
+
class Qwen2MoeForSequenceClassification(Qwen2MoePreTrainedModel):
|
1491 |
+
def __init__(self, config):
|
1492 |
+
super().__init__(config)
|
1493 |
+
self.num_labels = config.num_labels
|
1494 |
+
self.model = Qwen2MoeModel(config)
|
1495 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1496 |
+
|
1497 |
+
# Initialize weights and apply final processing
|
1498 |
+
self.post_init()
|
1499 |
+
|
1500 |
+
def get_input_embeddings(self):
|
1501 |
+
return self.model.embed_tokens
|
1502 |
+
|
1503 |
+
def set_input_embeddings(self, value):
|
1504 |
+
self.model.embed_tokens = value
|
1505 |
+
|
1506 |
+
@add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING)
|
1507 |
+
def forward(
|
1508 |
+
self,
|
1509 |
+
input_ids: torch.LongTensor = None,
|
1510 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1511 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1512 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1513 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1514 |
+
labels: Optional[torch.LongTensor] = None,
|
1515 |
+
use_cache: Optional[bool] = None,
|
1516 |
+
output_attentions: Optional[bool] = None,
|
1517 |
+
output_hidden_states: Optional[bool] = None,
|
1518 |
+
return_dict: Optional[bool] = None,
|
1519 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1520 |
+
r"""
|
1521 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1522 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1523 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1524 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1525 |
+
"""
|
1526 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1527 |
+
|
1528 |
+
transformer_outputs = self.model(
|
1529 |
+
input_ids,
|
1530 |
+
attention_mask=attention_mask,
|
1531 |
+
position_ids=position_ids,
|
1532 |
+
past_key_values=past_key_values,
|
1533 |
+
inputs_embeds=inputs_embeds,
|
1534 |
+
use_cache=use_cache,
|
1535 |
+
output_attentions=output_attentions,
|
1536 |
+
output_hidden_states=output_hidden_states,
|
1537 |
+
return_dict=return_dict,
|
1538 |
+
)
|
1539 |
+
hidden_states = transformer_outputs[0]
|
1540 |
+
logits = self.score(hidden_states)
|
1541 |
+
|
1542 |
+
if input_ids is not None:
|
1543 |
+
batch_size = input_ids.shape[0]
|
1544 |
+
else:
|
1545 |
+
batch_size = inputs_embeds.shape[0]
|
1546 |
+
|
1547 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1548 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1549 |
+
if self.config.pad_token_id is None:
|
1550 |
+
sequence_lengths = -1
|
1551 |
+
else:
|
1552 |
+
if input_ids is not None:
|
1553 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1554 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1555 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1556 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1557 |
+
else:
|
1558 |
+
sequence_lengths = -1
|
1559 |
+
|
1560 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1561 |
+
|
1562 |
+
loss = None
|
1563 |
+
if labels is not None:
|
1564 |
+
labels = labels.to(logits.device)
|
1565 |
+
if self.config.problem_type is None:
|
1566 |
+
if self.num_labels == 1:
|
1567 |
+
self.config.problem_type = "regression"
|
1568 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1569 |
+
self.config.problem_type = "single_label_classification"
|
1570 |
+
else:
|
1571 |
+
self.config.problem_type = "multi_label_classification"
|
1572 |
+
|
1573 |
+
if self.config.problem_type == "regression":
|
1574 |
+
loss_fct = MSELoss()
|
1575 |
+
if self.num_labels == 1:
|
1576 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1577 |
+
else:
|
1578 |
+
loss = loss_fct(pooled_logits, labels)
|
1579 |
+
elif self.config.problem_type == "single_label_classification":
|
1580 |
+
loss_fct = CrossEntropyLoss()
|
1581 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1582 |
+
elif self.config.problem_type == "multi_label_classification":
|
1583 |
+
loss_fct = BCEWithLogitsLoss()
|
1584 |
+
loss = loss_fct(pooled_logits, labels)
|
1585 |
+
if not return_dict:
|
1586 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1587 |
+
return ((loss,) + output) if loss is not None else output
|
1588 |
+
|
1589 |
+
return SequenceClassifierOutputWithPast(
|
1590 |
+
loss=loss,
|
1591 |
+
logits=pooled_logits,
|
1592 |
+
past_key_values=transformer_outputs.past_key_values,
|
1593 |
+
hidden_states=transformer_outputs.hidden_states,
|
1594 |
+
attentions=transformer_outputs.attentions,
|
1595 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/seamless_m4t_v2/convert_fairseq2_to_hf.py
ADDED
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Converting Meta SeamlessM4Tv2 checkpoints from seamless_communication to HF."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import os
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from accelerate.utils.modeling import find_tied_parameters
|
24 |
+
from seamless_communication.inference import Translator
|
25 |
+
|
26 |
+
from transformers import (
|
27 |
+
SeamlessM4TFeatureExtractor,
|
28 |
+
SeamlessM4TProcessor,
|
29 |
+
SeamlessM4TTokenizer,
|
30 |
+
SeamlessM4Tv2Config,
|
31 |
+
SeamlessM4Tv2Model,
|
32 |
+
)
|
33 |
+
from transformers.utils import logging
|
34 |
+
|
35 |
+
|
36 |
+
# fmt: off
|
37 |
+
UNIT_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kan__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tam__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__", ]
|
38 |
+
# fmt: on
|
39 |
+
|
40 |
+
# fmt: off
|
41 |
+
VOCODER_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__",]
|
42 |
+
# fmt: on
|
43 |
+
|
44 |
+
# fmt: off
|
45 |
+
LARGE_SUPPORTED_LANGUAGES = ["afr","amh","arb","ary","arz","asm","azj","bel","ben","bos","bul","cat","ceb","ces","ckb","cmn","cmn_Hant","cym","dan","deu","ell","eng","est","eus","fin","fra","fuv","gaz","gle","glg","guj","heb","hin","hrv","hun","hye","ibo","ind","isl","ita","jav","jpn","kan","kat","kaz","khk","khm","kir","kor","lao","lit","lug","luo","lvs","mai","mal","mar","mkd","mlt","mni","mya","nld","nno","nob","npi","nya","ory","pan","pbt","pes","pol","por","ron","rus","sat","slk","slv","sna","snd","som","spa","srp","swe","swh","tam","tel","tgk","tgl","tha","tur","ukr","urd","uzn","vie","yor","yue","zlm","zul",]
|
46 |
+
# fmt: on
|
47 |
+
|
48 |
+
|
49 |
+
def assert_param_count(model_1, model_2):
|
50 |
+
count_1 = sum(p[1].numel() for p in model_1.named_parameters() if "final_proj" not in p[0])
|
51 |
+
count_2 = sum(p[1].numel() for p in model_2.named_parameters() if "final_proj" not in p[0])
|
52 |
+
assert count_1 == count_2, f"{model_1.__class__}: {count_1} != {model_2.__class__}: {count_2}"
|
53 |
+
|
54 |
+
|
55 |
+
def param_count(model):
|
56 |
+
return sum(p[1].numel() for p in model.named_parameters() if "final_proj" not in p[0])
|
57 |
+
|
58 |
+
|
59 |
+
def _grab_best_device(use_gpu=True):
|
60 |
+
if torch.cuda.device_count() > 0 and use_gpu:
|
61 |
+
device = "cuda"
|
62 |
+
else:
|
63 |
+
device = "cpu"
|
64 |
+
return torch.device(device)
|
65 |
+
|
66 |
+
|
67 |
+
logging.set_verbosity_info()
|
68 |
+
logger = logging.get_logger(__name__)
|
69 |
+
|
70 |
+
vocoder_convert_list = [
|
71 |
+
("ups", "hifi_gan.upsampler"),
|
72 |
+
("conv_pre", "hifi_gan.conv_pre"),
|
73 |
+
("resblocks", "hifi_gan.resblocks"),
|
74 |
+
("conv_post", "hifi_gan.conv_post"),
|
75 |
+
("lang", "language_embedding"),
|
76 |
+
("spkr", "speaker_embedding"),
|
77 |
+
("dict.", "unit_embedding."),
|
78 |
+
("dur_predictor.conv1.0", "dur_predictor.conv1"),
|
79 |
+
("dur_predictor.conv2.0", "dur_predictor.conv2"),
|
80 |
+
]
|
81 |
+
|
82 |
+
# order is important
|
83 |
+
wav2vec_convert_list = [
|
84 |
+
("speech_encoder_frontend.model_dim_proj", "feature_projection.projection"),
|
85 |
+
("speech_encoder_frontend.post_extract_layer_norm", "feature_projection.layer_norm"),
|
86 |
+
("speech_encoder_frontend.pos_encoder.conv", "encoder.pos_conv_embed.conv"),
|
87 |
+
("speech_encoder.inner.layers", "encoder.layers"),
|
88 |
+
("speech_encoder.inner_layer_norm", "encoder.layer_norm"),
|
89 |
+
("speech_encoder.adaptor_layers", "adapter.layers"),
|
90 |
+
("inner_proj", "intermediate_dense"),
|
91 |
+
("self_attn.output_proj", "self_attn.linear_out"),
|
92 |
+
("output_proj", "output_dense"),
|
93 |
+
("self_attn.k_proj", "self_attn.linear_k"),
|
94 |
+
("self_attn.v_proj", "self_attn.linear_v"),
|
95 |
+
("self_attn.q_proj", "self_attn.linear_q"),
|
96 |
+
("self_attn.sdpa.u_bias", "self_attn.pos_bias_u"),
|
97 |
+
("self_attn.sdpa.v_bias", "self_attn.pos_bias_v"),
|
98 |
+
("self_attn.sdpa.rel_k_embed", "self_attn.distance_embedding"),
|
99 |
+
("self_attn.sdpa.r_proj", "self_attn.linear_pos"),
|
100 |
+
("conv.pointwise_conv1", "conv_module.pointwise_conv1"),
|
101 |
+
("conv.pointwise_conv2", "conv_module.pointwise_conv2"),
|
102 |
+
("conv.depthwise_conv", "conv_module.depthwise_conv"),
|
103 |
+
("conv.batch_norm", "conv_module.batch_norm"),
|
104 |
+
("conv.layer_norm", "conv_module.depthwise_layer_norm"),
|
105 |
+
("conv_layer_norm", "conv_module.layer_norm"),
|
106 |
+
("speech_encoder.proj1", "intermediate_ffn.intermediate_dense"),
|
107 |
+
("speech_encoder.proj2", "intermediate_ffn.output_dense"),
|
108 |
+
("speech_encoder.layer_norm", "inner_layer_norm"),
|
109 |
+
]
|
110 |
+
|
111 |
+
t2u_convert_list = [
|
112 |
+
("t2u_model.final_proj", "lm_head"),
|
113 |
+
("t2u_model.", "model."),
|
114 |
+
("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"),
|
115 |
+
("encoder_decoder_attn", "cross_attention"),
|
116 |
+
("linear_k", "k_proj"),
|
117 |
+
("linear_v", "v_proj"),
|
118 |
+
("linear_q", "q_proj"),
|
119 |
+
("ffn.inner_proj", "ffn.fc1"),
|
120 |
+
("ffn.output_proj", "ffn.fc2"),
|
121 |
+
("output_proj", "out_proj"),
|
122 |
+
("decoder_frontend.embed_char", "decoder.embed_char"),
|
123 |
+
("decoder_frontend.pos_emb_alpha_char", "decoder.pos_emb_alpha_char"),
|
124 |
+
("decoder_frontend.embed", "decoder.embed_tokens"),
|
125 |
+
("decoder_frontend.pos_emb_alpha", "decoder.pos_emb_alpha"),
|
126 |
+
("conv1d.conv", "conv"),
|
127 |
+
("conv1d_layer_norm", "conv_layer_norm"),
|
128 |
+
("decoder_frontend.variance_adaptor", "decoder"),
|
129 |
+
("duration_predictor.conv1.0", "duration_predictor.conv1"),
|
130 |
+
("duration_predictor.conv2.0", "duration_predictor.conv2"),
|
131 |
+
]
|
132 |
+
|
133 |
+
text_convert_list = [
|
134 |
+
("text_encoder.", ""),
|
135 |
+
("text_decoder.", ""),
|
136 |
+
("text_encoder_frontend.embed", "embed_tokens"),
|
137 |
+
("text_decoder_frontend.embed", "embed_tokens"),
|
138 |
+
("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"),
|
139 |
+
("encoder_decoder_attn", "cross_attention"),
|
140 |
+
("linear_k", "k_proj"),
|
141 |
+
("linear_v", "v_proj"),
|
142 |
+
("linear_q", "q_proj"),
|
143 |
+
("ffn.inner_proj", "ffn.fc1"),
|
144 |
+
("ffn.output_proj", "ffn.fc2"),
|
145 |
+
("output_proj", "out_proj"),
|
146 |
+
("final_proj", "lm_head"),
|
147 |
+
]
|
148 |
+
|
149 |
+
CUR_PATH = os.path.dirname(os.path.abspath(__file__))
|
150 |
+
default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache")
|
151 |
+
CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "huggingface", "hub")
|
152 |
+
|
153 |
+
|
154 |
+
def _load_hf_config():
|
155 |
+
return SeamlessM4Tv2Config()
|
156 |
+
|
157 |
+
|
158 |
+
def _convert_model(
|
159 |
+
original_model,
|
160 |
+
hf_model,
|
161 |
+
convert_list,
|
162 |
+
device,
|
163 |
+
unwanted_prefix="model.",
|
164 |
+
filter_state_dict="speech",
|
165 |
+
exclude_state_dict=None,
|
166 |
+
):
|
167 |
+
state_dict = original_model.state_dict()
|
168 |
+
|
169 |
+
# filter func
|
170 |
+
if isinstance(filter_state_dict, str):
|
171 |
+
|
172 |
+
def filter_func(x):
|
173 |
+
return filter_state_dict in x[0]
|
174 |
+
|
175 |
+
else:
|
176 |
+
|
177 |
+
def filter_func(item):
|
178 |
+
if exclude_state_dict is not None and exclude_state_dict in item[0]:
|
179 |
+
return False
|
180 |
+
for filter_el in filter_state_dict:
|
181 |
+
if filter_el in item[0]:
|
182 |
+
return True
|
183 |
+
|
184 |
+
return False
|
185 |
+
|
186 |
+
state_dict = dict(filter(filter_func, state_dict.items()))
|
187 |
+
|
188 |
+
for k, v in list(state_dict.items()):
|
189 |
+
new_k = k[len(unwanted_prefix) :]
|
190 |
+
for old_layer_name, new_layer_name in convert_list:
|
191 |
+
if old_layer_name in new_k:
|
192 |
+
new_k = new_k.replace(old_layer_name, new_layer_name)
|
193 |
+
|
194 |
+
# must do it by hand
|
195 |
+
if ".layer_norm" in new_k and new_k.split(".layer_norm")[0][-1].isnumeric():
|
196 |
+
new_k = new_k.replace("layer_norm", "final_layer_norm")
|
197 |
+
|
198 |
+
state_dict[new_k] = state_dict.pop(k)
|
199 |
+
|
200 |
+
extra_keys = set(state_dict.keys()) - set(hf_model.state_dict().keys())
|
201 |
+
extra_keys = set(extra_keys)
|
202 |
+
missing_keys = set(hf_model.state_dict().keys()) - set(state_dict.keys())
|
203 |
+
missing_keys = set({k for k in missing_keys if "final_logits_bias" not in k})
|
204 |
+
if len(extra_keys) != 0:
|
205 |
+
raise ValueError(f"extra keys found: {extra_keys}")
|
206 |
+
if len(missing_keys) != 0:
|
207 |
+
raise ValueError(f"missing keys: {missing_keys}")
|
208 |
+
hf_model.load_state_dict(state_dict, strict=False)
|
209 |
+
n_params = param_count(hf_model)
|
210 |
+
|
211 |
+
logger.info(f"model loaded: {round(n_params/1e6,1)}M params")
|
212 |
+
|
213 |
+
hf_model.eval()
|
214 |
+
hf_model.to(device)
|
215 |
+
del state_dict
|
216 |
+
|
217 |
+
return hf_model
|
218 |
+
|
219 |
+
|
220 |
+
def load_model(save_dir, model_type, repo_id):
|
221 |
+
"""
|
222 |
+
Meta SeamlessM4Tv2 is made of 8 main components:
|
223 |
+
- speech_encoder (#1) and speech_encoder_frontend (#2)
|
224 |
+
- t2u_model (#3)
|
225 |
+
- text_encoder (#4) and text_encoder_frontend (#5)
|
226 |
+
- text_decoder (#6) [and text_decoder_frontend (#5) = equals to text_encoder_frontend]
|
227 |
+
- final_proj (#7)
|
228 |
+
- vocoder (#8)
|
229 |
+
"""
|
230 |
+
device = _grab_best_device()
|
231 |
+
name = "seamlessM4T_v2_large"
|
232 |
+
|
233 |
+
original_model = Translator(name, "vocoder_v2", device, dtype=torch.float32)
|
234 |
+
|
235 |
+
######### TOKENIZER
|
236 |
+
|
237 |
+
langs = LARGE_SUPPORTED_LANGUAGES
|
238 |
+
langs = [f"__{lang}__" for lang in langs]
|
239 |
+
vocab_file = os.path.join(os.path.expanduser("~"), "tokenizer", model_type, "tokenizer.model")
|
240 |
+
|
241 |
+
save_dir = os.path.join(save_dir, name)
|
242 |
+
Path(save_dir).mkdir(exist_ok=True)
|
243 |
+
|
244 |
+
tokenizer = SeamlessM4TTokenizer(vocab_file, additional_special_tokens=langs)
|
245 |
+
|
246 |
+
sanity_check_lang_id = tokenizer.convert_tokens_to_ids("__fra__")
|
247 |
+
|
248 |
+
tokenizer.save_pretrained(save_dir)
|
249 |
+
tokenizer = SeamlessM4TTokenizer.from_pretrained(save_dir)
|
250 |
+
|
251 |
+
if sanity_check_lang_id != tokenizer.convert_tokens_to_ids("__fra__"):
|
252 |
+
raise ValueError(
|
253 |
+
f"Error in tokenizer saving/loading - __fra__ lang id is not coherent: {sanity_check_lang_id} vs {tokenizer.convert_tokens_to_ids('__fra__')}"
|
254 |
+
)
|
255 |
+
|
256 |
+
####### get language to ids dict
|
257 |
+
text_decoder_lang_code_to_id = {lang.replace("__", ""): tokenizer.convert_tokens_to_ids(lang) for lang in langs}
|
258 |
+
# offset: vocoder unit vocab size + 5 (for EOS/PAD/BOS/UNK/MSK) + len(supported_languages)
|
259 |
+
t2u_lang_code_to_id = {
|
260 |
+
code.replace("__", ""): i + 10005 + len(UNIT_SUPPORTED_LANGUAGES)
|
261 |
+
for i, code in enumerate(UNIT_SUPPORTED_LANGUAGES)
|
262 |
+
}
|
263 |
+
vocoder_lang_code_to_id = {code.replace("__", ""): i for i, code in enumerate(VOCODER_SUPPORTED_LANGUAGES)}
|
264 |
+
|
265 |
+
######### FE
|
266 |
+
|
267 |
+
fe = SeamlessM4TFeatureExtractor(language_code=langs)
|
268 |
+
|
269 |
+
fe.save_pretrained(save_dir)
|
270 |
+
fe = SeamlessM4TFeatureExtractor.from_pretrained(save_dir)
|
271 |
+
|
272 |
+
processor = SeamlessM4TProcessor(feature_extractor=fe, tokenizer=tokenizer)
|
273 |
+
processor.save_pretrained(save_dir)
|
274 |
+
processor.push_to_hub(repo_id=repo_id, create_pr=True)
|
275 |
+
|
276 |
+
processor = SeamlessM4TProcessor.from_pretrained(save_dir)
|
277 |
+
|
278 |
+
######## Model
|
279 |
+
|
280 |
+
# init config
|
281 |
+
hf_config = _load_hf_config()
|
282 |
+
|
283 |
+
######## get id_to_text and char_to_id from original model tokenizers
|
284 |
+
id_to_text = {i: original_model.text_tokenizer.model.index_to_token(i) for i in range(hf_config.vocab_size)}
|
285 |
+
char_to_id = {
|
286 |
+
original_model.model.t2u_model.decoder_frontend.char_tokenizer.model.index_to_token(i): i for i in range(10904)
|
287 |
+
}
|
288 |
+
|
289 |
+
# init model
|
290 |
+
hf_model = SeamlessM4Tv2Model(hf_config)
|
291 |
+
|
292 |
+
hf_model.generation_config.__setattr__("text_decoder_lang_to_code_id", text_decoder_lang_code_to_id)
|
293 |
+
hf_model.generation_config.__setattr__("t2u_lang_code_to_id", t2u_lang_code_to_id)
|
294 |
+
hf_model.generation_config.__setattr__("vocoder_lang_code_to_id", vocoder_lang_code_to_id)
|
295 |
+
hf_model.generation_config.__setattr__("id_to_text", id_to_text)
|
296 |
+
hf_model.generation_config.__setattr__("char_to_id", char_to_id)
|
297 |
+
|
298 |
+
# -1. take care of vocoder
|
299 |
+
# similarly to speech T5 must apply and remove weight norm
|
300 |
+
hf_model.vocoder.apply_weight_norm()
|
301 |
+
hf_model.vocoder = _convert_model(
|
302 |
+
original_model,
|
303 |
+
hf_model.vocoder,
|
304 |
+
vocoder_convert_list,
|
305 |
+
device,
|
306 |
+
unwanted_prefix="vocoder.code_generator.",
|
307 |
+
filter_state_dict="vocoder",
|
308 |
+
)
|
309 |
+
hf_model.vocoder.remove_weight_norm()
|
310 |
+
|
311 |
+
# 1. take care of speech encoder
|
312 |
+
wav2vec = hf_model.speech_encoder
|
313 |
+
hf_model.speech_encoder = _convert_model(
|
314 |
+
original_model, wav2vec, wav2vec_convert_list, device, unwanted_prefix="model.", filter_state_dict="speech"
|
315 |
+
)
|
316 |
+
|
317 |
+
# 2. take care of t2u
|
318 |
+
|
319 |
+
hf_model.t2u_model = _convert_model(
|
320 |
+
original_model,
|
321 |
+
hf_model.t2u_model,
|
322 |
+
t2u_convert_list,
|
323 |
+
device,
|
324 |
+
unwanted_prefix="model.",
|
325 |
+
filter_state_dict="t2u_model",
|
326 |
+
)
|
327 |
+
|
328 |
+
# 3. take care of text encoder
|
329 |
+
hf_model.text_encoder = _convert_model(
|
330 |
+
original_model,
|
331 |
+
hf_model.text_encoder,
|
332 |
+
text_convert_list,
|
333 |
+
device,
|
334 |
+
unwanted_prefix="model.",
|
335 |
+
filter_state_dict=["model.text_encoder"],
|
336 |
+
exclude_state_dict="t2u_model",
|
337 |
+
)
|
338 |
+
|
339 |
+
# 4. take care of text decoder
|
340 |
+
hf_model.text_decoder = _convert_model(
|
341 |
+
original_model,
|
342 |
+
hf_model.text_decoder,
|
343 |
+
text_convert_list,
|
344 |
+
device,
|
345 |
+
unwanted_prefix="model.",
|
346 |
+
filter_state_dict=["model.text_decoder"],
|
347 |
+
exclude_state_dict="t2u_model",
|
348 |
+
)
|
349 |
+
|
350 |
+
# 5. take care of final proj
|
351 |
+
hf_model.lm_head = _convert_model(
|
352 |
+
original_model,
|
353 |
+
hf_model.lm_head,
|
354 |
+
[("final_proj.", "")],
|
355 |
+
device,
|
356 |
+
unwanted_prefix="model.",
|
357 |
+
filter_state_dict=["model.final_proj"],
|
358 |
+
exclude_state_dict="t2u_model",
|
359 |
+
)
|
360 |
+
|
361 |
+
# sanity check
|
362 |
+
print(find_tied_parameters(hf_model))
|
363 |
+
|
364 |
+
count_1 = param_count(hf_model)
|
365 |
+
count_2 = param_count(original_model)
|
366 |
+
|
367 |
+
print(f"HF MODEL:{count_1}, ORIGINAL_MODEL: {count_2}, diff:{count_1 - count_2}")
|
368 |
+
print(f"HF MODEL excluding embeddings:{hf_model.num_parameters(exclude_embeddings=True)}")
|
369 |
+
|
370 |
+
del original_model
|
371 |
+
|
372 |
+
hf_model.generation_config._from_model_config = False
|
373 |
+
hf_model.save_pretrained(save_dir)
|
374 |
+
hf_model.push_to_hub(repo_id=repo_id, create_pr=True)
|
375 |
+
hf_model = SeamlessM4Tv2Model.from_pretrained(save_dir)
|
376 |
+
|
377 |
+
|
378 |
+
if __name__ == "__main__":
|
379 |
+
parser = argparse.ArgumentParser()
|
380 |
+
# Required parameters
|
381 |
+
|
382 |
+
parser.add_argument(
|
383 |
+
"--model_type",
|
384 |
+
default="large",
|
385 |
+
type=str,
|
386 |
+
help="Model type.",
|
387 |
+
)
|
388 |
+
|
389 |
+
parser.add_argument(
|
390 |
+
"--save_dir",
|
391 |
+
default="/home/ubuntu/weights_v2",
|
392 |
+
type=str,
|
393 |
+
help="Path to the output PyTorch model.",
|
394 |
+
)
|
395 |
+
|
396 |
+
parser.add_argument(
|
397 |
+
"--repo_id",
|
398 |
+
default="facebook/seamless-m4t-v2-large",
|
399 |
+
type=str,
|
400 |
+
help="Repo ID.",
|
401 |
+
)
|
402 |
+
|
403 |
+
args = parser.parse_args()
|
404 |
+
|
405 |
+
load_model(args.save_dir, args.model_type, args.repo_id)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__init__.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_sentencepiece_available,
|
20 |
+
is_tf_available,
|
21 |
+
is_torch_available,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
_import_structure = {
|
26 |
+
"configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"],
|
27 |
+
"feature_extraction_speech_to_text": ["Speech2TextFeatureExtractor"],
|
28 |
+
"processing_speech_to_text": ["Speech2TextProcessor"],
|
29 |
+
}
|
30 |
+
|
31 |
+
try:
|
32 |
+
if not is_sentencepiece_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
_import_structure["tokenization_speech_to_text"] = ["Speech2TextTokenizer"]
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_tf_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
_import_structure["modeling_tf_speech_to_text"] = [
|
46 |
+
"TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
47 |
+
"TFSpeech2TextForConditionalGeneration",
|
48 |
+
"TFSpeech2TextModel",
|
49 |
+
"TFSpeech2TextPreTrainedModel",
|
50 |
+
]
|
51 |
+
|
52 |
+
try:
|
53 |
+
if not is_torch_available():
|
54 |
+
raise OptionalDependencyNotAvailable()
|
55 |
+
except OptionalDependencyNotAvailable:
|
56 |
+
pass
|
57 |
+
else:
|
58 |
+
_import_structure["modeling_speech_to_text"] = [
|
59 |
+
"SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
60 |
+
"Speech2TextForConditionalGeneration",
|
61 |
+
"Speech2TextModel",
|
62 |
+
"Speech2TextPreTrainedModel",
|
63 |
+
]
|
64 |
+
|
65 |
+
|
66 |
+
if TYPE_CHECKING:
|
67 |
+
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, Speech2TextConfig
|
68 |
+
from .feature_extraction_speech_to_text import Speech2TextFeatureExtractor
|
69 |
+
from .processing_speech_to_text import Speech2TextProcessor
|
70 |
+
|
71 |
+
try:
|
72 |
+
if not is_sentencepiece_available():
|
73 |
+
raise OptionalDependencyNotAvailable()
|
74 |
+
except OptionalDependencyNotAvailable:
|
75 |
+
pass
|
76 |
+
else:
|
77 |
+
from .tokenization_speech_to_text import Speech2TextTokenizer
|
78 |
+
|
79 |
+
try:
|
80 |
+
if not is_tf_available():
|
81 |
+
raise OptionalDependencyNotAvailable()
|
82 |
+
except OptionalDependencyNotAvailable:
|
83 |
+
pass
|
84 |
+
else:
|
85 |
+
from .modeling_tf_speech_to_text import (
|
86 |
+
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
87 |
+
TFSpeech2TextForConditionalGeneration,
|
88 |
+
TFSpeech2TextModel,
|
89 |
+
TFSpeech2TextPreTrainedModel,
|
90 |
+
)
|
91 |
+
|
92 |
+
try:
|
93 |
+
if not is_torch_available():
|
94 |
+
raise OptionalDependencyNotAvailable()
|
95 |
+
except OptionalDependencyNotAvailable:
|
96 |
+
pass
|
97 |
+
else:
|
98 |
+
from .modeling_speech_to_text import (
|
99 |
+
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
100 |
+
Speech2TextForConditionalGeneration,
|
101 |
+
Speech2TextModel,
|
102 |
+
Speech2TextPreTrainedModel,
|
103 |
+
)
|
104 |
+
|
105 |
+
else:
|
106 |
+
import sys
|
107 |
+
|
108 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.77 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/configuration_speech_to_text.cpython-310.pyc
ADDED
Binary file (8.47 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/convert_s2t_fairseq_to_tfms.cpython-310.pyc
ADDED
Binary file (3.69 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/feature_extraction_speech_to_text.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/modeling_speech_to_text.cpython-310.pyc
ADDED
Binary file (44.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/modeling_tf_speech_to_text.cpython-310.pyc
ADDED
Binary file (51.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/processing_speech_to_text.cpython-310.pyc
ADDED
Binary file (4.19 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/tokenization_speech_to_text.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/configuration_speech_to_text.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Speech2Text model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class Speech2TextConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`Speech2TextModel`]. It is used to instantiate a
|
30 |
+
Speech2Text model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
+
configuration with the defaults will yield a similar configuration to that of the Speech2Text
|
32 |
+
[facebook/s2t-small-librispeech-asr](https://huggingface.co/facebook/s2t-small-librispeech-asr) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 10000):
|
40 |
+
Vocabulary size of the Speech2Text model. Defines the number of different tokens that can be represented by
|
41 |
+
the `inputs_ids` passed when calling [`Speech2TextModel`]
|
42 |
+
encoder_layers (`int`, *optional*, defaults to 12):
|
43 |
+
Number of encoder layers.
|
44 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 2048):
|
45 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
|
46 |
+
encoder_attention_heads (`int`, *optional*, defaults to 4):
|
47 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
48 |
+
decoder_layers (`int`, *optional*, defaults to 6):
|
49 |
+
Number of decoder layers.
|
50 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 2048):
|
51 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
52 |
+
decoder_attention_heads (`int`, *optional*, defaults to 4):
|
53 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
54 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
55 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](https://arxiv.org/abs/1909.11556) for
|
56 |
+
more details.
|
57 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
58 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](https://arxiv.org/abs/1909.11556) for
|
59 |
+
more details.
|
60 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
61 |
+
Whether the model should return the last key/values attentions (not used by all models).
|
62 |
+
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether the model is set up as an encoder-decoder architecture for sequence-to-sequence tasks.
|
64 |
+
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
|
65 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
66 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
67 |
+
d_model (`int`, *optional*, defaults to 256):
|
68 |
+
Dimensionality of the layers and the pooler layer.
|
69 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
70 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
71 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
72 |
+
The dropout ratio for the attention probabilities.
|
73 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
74 |
+
The dropout ratio for activations inside the fully connected layer.
|
75 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
76 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
77 |
+
decoder_start_token_id (`int`, *optional*, defaults to 2):
|
78 |
+
The initial token ID of the decoder when decoding sequences.
|
79 |
+
scale_embedding (`bool`, *optional*, defaults to `True`):
|
80 |
+
Whether the embeddings are scaled by the square root of `d_model`.
|
81 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
82 |
+
Padding token id.
|
83 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
84 |
+
The id of the beginning-of-sequence token.
|
85 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
86 |
+
The id of the end-of-sequence token.
|
87 |
+
max_source_positions (`int`, *optional*, defaults to 6000):
|
88 |
+
The maximum sequence length of log-mel filter-bank features that this model might ever be used with.
|
89 |
+
max_target_positions (`int`, *optional*, defaults to 1024):
|
90 |
+
The maximum sequence length that this model might ever be used with. Typically, set this to something large
|
91 |
+
just in case (e.g., 512 or 1024 or 2048).
|
92 |
+
num_conv_layers (`int`, *optional*, defaults to 2):
|
93 |
+
Number of 1D convolutional layers in the conv module.
|
94 |
+
conv_kernel_sizes (`Tuple[int]`, *optional*, defaults to `(5, 5)`):
|
95 |
+
A tuple of integers defining the kernel size of each 1D convolutional layer in the conv module. The length
|
96 |
+
of `conv_kernel_sizes` has to match `num_conv_layers`.
|
97 |
+
conv_channels (`int`, *optional*, defaults to 1024):
|
98 |
+
An integer defining the number of output channels of each convolution layers except the final one in the
|
99 |
+
conv module.
|
100 |
+
input_feat_per_channel (`int`, *optional*, defaults to 80):
|
101 |
+
An integer specifying the size of feature vector. This is also the dimensions of log-mel filter-bank
|
102 |
+
features.
|
103 |
+
input_channels (`int`, *optional*, defaults to 1):
|
104 |
+
An integer specifying number of input channels of the input feature vector.
|
105 |
+
|
106 |
+
Example:
|
107 |
+
|
108 |
+
```python
|
109 |
+
>>> from transformers import Speech2TextConfig, Speech2TextModel
|
110 |
+
|
111 |
+
>>> # Initializing a Speech2Text s2t_transformer_s style configuration
|
112 |
+
>>> configuration = Speech2TextConfig()
|
113 |
+
|
114 |
+
>>> # Initializing a model (with random weights) from the s2t_transformer_s style configuration
|
115 |
+
>>> model = Speech2TextModel(configuration)
|
116 |
+
|
117 |
+
>>> # Accessing the model configuration
|
118 |
+
>>> configuration = model.config
|
119 |
+
```"""
|
120 |
+
|
121 |
+
model_type = "speech_to_text"
|
122 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
123 |
+
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
124 |
+
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
vocab_size=10000,
|
128 |
+
encoder_layers=12,
|
129 |
+
encoder_ffn_dim=2048,
|
130 |
+
encoder_attention_heads=4,
|
131 |
+
decoder_layers=6,
|
132 |
+
decoder_ffn_dim=2048,
|
133 |
+
decoder_attention_heads=4,
|
134 |
+
encoder_layerdrop=0.0,
|
135 |
+
decoder_layerdrop=0.0,
|
136 |
+
use_cache=True,
|
137 |
+
is_encoder_decoder=True,
|
138 |
+
activation_function="relu",
|
139 |
+
d_model=256,
|
140 |
+
dropout=0.1,
|
141 |
+
attention_dropout=0.0,
|
142 |
+
activation_dropout=0.0,
|
143 |
+
init_std=0.02,
|
144 |
+
decoder_start_token_id=2,
|
145 |
+
scale_embedding=True,
|
146 |
+
pad_token_id=1,
|
147 |
+
bos_token_id=0,
|
148 |
+
eos_token_id=2,
|
149 |
+
max_source_positions=6000,
|
150 |
+
max_target_positions=1024,
|
151 |
+
num_conv_layers=2,
|
152 |
+
conv_kernel_sizes=(5, 5),
|
153 |
+
conv_channels=1024,
|
154 |
+
input_feat_per_channel=80,
|
155 |
+
input_channels=1,
|
156 |
+
**kwargs,
|
157 |
+
):
|
158 |
+
self.vocab_size = vocab_size
|
159 |
+
self.d_model = d_model
|
160 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
161 |
+
self.encoder_layers = encoder_layers
|
162 |
+
self.encoder_attention_heads = encoder_attention_heads
|
163 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
164 |
+
self.decoder_layers = decoder_layers
|
165 |
+
self.decoder_attention_heads = decoder_attention_heads
|
166 |
+
self.dropout = dropout
|
167 |
+
self.attention_dropout = attention_dropout
|
168 |
+
self.activation_dropout = activation_dropout
|
169 |
+
self.activation_function = activation_function
|
170 |
+
self.init_std = init_std
|
171 |
+
self.encoder_layerdrop = encoder_layerdrop
|
172 |
+
self.decoder_layerdrop = decoder_layerdrop
|
173 |
+
self.use_cache = use_cache
|
174 |
+
self.num_hidden_layers = encoder_layers
|
175 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
176 |
+
self.max_source_positions = max_source_positions
|
177 |
+
self.max_target_positions = max_target_positions
|
178 |
+
self.num_conv_layers = num_conv_layers
|
179 |
+
self.conv_kernel_sizes = list(conv_kernel_sizes)
|
180 |
+
self.conv_channels = conv_channels
|
181 |
+
self.input_feat_per_channel = input_feat_per_channel
|
182 |
+
self.input_channels = input_channels
|
183 |
+
|
184 |
+
if len(self.conv_kernel_sizes) != self.num_conv_layers:
|
185 |
+
raise ValueError(
|
186 |
+
"Configuration for convolutional module is incorrect. "
|
187 |
+
"It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` "
|
188 |
+
f"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, "
|
189 |
+
f"`config.num_conv_layers = {self.num_conv_layers}`."
|
190 |
+
)
|
191 |
+
|
192 |
+
super().__init__(
|
193 |
+
pad_token_id=pad_token_id,
|
194 |
+
bos_token_id=bos_token_id,
|
195 |
+
eos_token_id=eos_token_id,
|
196 |
+
is_encoder_decoder=is_encoder_decoder,
|
197 |
+
decoder_start_token_id=decoder_start_token_id,
|
198 |
+
**kwargs,
|
199 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/convert_s2t_fairseq_to_tfms.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from transformers import Speech2TextConfig, Speech2TextForConditionalGeneration
|
21 |
+
|
22 |
+
|
23 |
+
def remove_ignore_keys_(state_dict):
|
24 |
+
ignore_keys = [
|
25 |
+
"encoder.version",
|
26 |
+
"decoder.version",
|
27 |
+
"model.encoder.version",
|
28 |
+
"model.decoder.version",
|
29 |
+
"decoder.output_projection.weight",
|
30 |
+
"_float_tensor",
|
31 |
+
"encoder.embed_positions._float_tensor",
|
32 |
+
"decoder.embed_positions._float_tensor",
|
33 |
+
]
|
34 |
+
for k in ignore_keys:
|
35 |
+
state_dict.pop(k, None)
|
36 |
+
|
37 |
+
|
38 |
+
def rename_keys(s_dict):
|
39 |
+
keys = list(s_dict.keys())
|
40 |
+
for key in keys:
|
41 |
+
if "transformer_layers" in key:
|
42 |
+
s_dict[key.replace("transformer_layers", "layers")] = s_dict.pop(key)
|
43 |
+
elif "subsample" in key:
|
44 |
+
s_dict[key.replace("subsample", "conv")] = s_dict.pop(key)
|
45 |
+
|
46 |
+
|
47 |
+
def make_linear_from_emb(emb):
|
48 |
+
vocab_size, emb_size = emb.weight.shape
|
49 |
+
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
|
50 |
+
lin_layer.weight.data = emb.weight.data
|
51 |
+
return lin_layer
|
52 |
+
|
53 |
+
|
54 |
+
def convert_fairseq_s2t_checkpoint_to_tfms(checkpoint_path, pytorch_dump_folder_path):
|
55 |
+
m2m_100 = torch.load(checkpoint_path, map_location="cpu")
|
56 |
+
args = m2m_100["args"]
|
57 |
+
state_dict = m2m_100["model"]
|
58 |
+
lm_head_weights = state_dict["decoder.output_projection.weight"]
|
59 |
+
|
60 |
+
remove_ignore_keys_(state_dict)
|
61 |
+
rename_keys(state_dict)
|
62 |
+
|
63 |
+
vocab_size = state_dict["decoder.embed_tokens.weight"].shape[0]
|
64 |
+
|
65 |
+
tie_embeds = args.share_decoder_input_output_embed
|
66 |
+
|
67 |
+
conv_kernel_sizes = [int(i) for i in args.conv_kernel_sizes.split(",")]
|
68 |
+
config = Speech2TextConfig(
|
69 |
+
vocab_size=vocab_size,
|
70 |
+
max_source_positions=args.max_source_positions,
|
71 |
+
max_target_positions=args.max_target_positions,
|
72 |
+
encoder_layers=args.encoder_layers,
|
73 |
+
decoder_layers=args.decoder_layers,
|
74 |
+
encoder_attention_heads=args.encoder_attention_heads,
|
75 |
+
decoder_attention_heads=args.decoder_attention_heads,
|
76 |
+
encoder_ffn_dim=args.encoder_ffn_embed_dim,
|
77 |
+
decoder_ffn_dim=args.decoder_ffn_embed_dim,
|
78 |
+
d_model=args.encoder_embed_dim,
|
79 |
+
dropout=args.dropout,
|
80 |
+
attention_dropout=args.attention_dropout,
|
81 |
+
activation_dropout=args.activation_dropout,
|
82 |
+
activation_function="relu",
|
83 |
+
num_conv_layers=len(conv_kernel_sizes),
|
84 |
+
conv_channels=args.conv_channels,
|
85 |
+
conv_kernel_sizes=conv_kernel_sizes,
|
86 |
+
input_feat_per_channel=args.input_feat_per_channel,
|
87 |
+
input_channels=args.input_channels,
|
88 |
+
tie_word_embeddings=tie_embeds,
|
89 |
+
num_beams=5,
|
90 |
+
max_length=200,
|
91 |
+
use_cache=True,
|
92 |
+
decoder_start_token_id=2,
|
93 |
+
early_stopping=True,
|
94 |
+
)
|
95 |
+
|
96 |
+
model = Speech2TextForConditionalGeneration(config)
|
97 |
+
missing, unexpected = model.model.load_state_dict(state_dict, strict=False)
|
98 |
+
if len(missing) > 0 and not set(missing) <= {
|
99 |
+
"encoder.embed_positions.weights",
|
100 |
+
"decoder.embed_positions.weights",
|
101 |
+
}:
|
102 |
+
raise ValueError(
|
103 |
+
"Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"
|
104 |
+
f" but all the following weights are missing {missing}"
|
105 |
+
)
|
106 |
+
|
107 |
+
if tie_embeds:
|
108 |
+
model.lm_head = make_linear_from_emb(model.model.decoder.embed_tokens)
|
109 |
+
else:
|
110 |
+
model.lm_head.weight.data = lm_head_weights
|
111 |
+
|
112 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
113 |
+
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
parser = argparse.ArgumentParser()
|
117 |
+
# Required parameters
|
118 |
+
parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.")
|
119 |
+
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
|
120 |
+
args = parser.parse_args()
|
121 |
+
convert_fairseq_s2t_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/feature_extraction_speech_to_text.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Feature extractor class for Speech2Text
|
17 |
+
"""
|
18 |
+
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
from ...audio_utils import mel_filter_bank, spectrogram, window_function
|
24 |
+
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
|
25 |
+
from ...feature_extraction_utils import BatchFeature
|
26 |
+
from ...utils import PaddingStrategy, TensorType, is_speech_available, logging
|
27 |
+
|
28 |
+
|
29 |
+
if is_speech_available():
|
30 |
+
import torch
|
31 |
+
import torchaudio.compliance.kaldi as ta_kaldi
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
class Speech2TextFeatureExtractor(SequenceFeatureExtractor):
|
37 |
+
r"""
|
38 |
+
Constructs a Speech2Text feature extractor.
|
39 |
+
|
40 |
+
This feature extractor inherits from [`Speech2TextFeatureExtractor`] which contains most of the main methods. Users
|
41 |
+
should refer to this superclass for more information regarding those methods.
|
42 |
+
|
43 |
+
This class extracts mel-filter bank features from raw speech using TorchAudio if installed or using numpy
|
44 |
+
otherwise, and applies utterance-level cepstral mean and variance normalization to the extracted features.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
feature_size (`int`, *optional*, defaults to 80):
|
48 |
+
The feature dimension of the extracted features.
|
49 |
+
sampling_rate (`int`, *optional*, defaults to 16000):
|
50 |
+
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
|
51 |
+
num_mel_bins (`int`, *optional*, defaults to 80):
|
52 |
+
Number of Mel-frequency bins.
|
53 |
+
padding_value (`float`, *optional*, defaults to 0.0):
|
54 |
+
The value that is used to fill the padding vectors.
|
55 |
+
do_ceptral_normalize (`bool`, *optional*, defaults to `True`):
|
56 |
+
Whether or not to apply utterance-level cepstral mean and variance normalization to extracted features.
|
57 |
+
normalize_means (`bool`, *optional*, defaults to `True`):
|
58 |
+
Whether or not to zero-mean normalize the extracted features.
|
59 |
+
normalize_vars (`bool`, *optional*, defaults to `True`):
|
60 |
+
Whether or not to unit-variance normalize the extracted features.
|
61 |
+
"""
|
62 |
+
|
63 |
+
model_input_names = ["input_features", "attention_mask"]
|
64 |
+
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
feature_size=80,
|
68 |
+
sampling_rate=16000,
|
69 |
+
num_mel_bins=80,
|
70 |
+
padding_value=0.0,
|
71 |
+
do_ceptral_normalize=True,
|
72 |
+
normalize_means=True,
|
73 |
+
normalize_vars=True,
|
74 |
+
**kwargs,
|
75 |
+
):
|
76 |
+
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
|
77 |
+
self.num_mel_bins = num_mel_bins
|
78 |
+
self.do_ceptral_normalize = do_ceptral_normalize
|
79 |
+
self.normalize_means = normalize_means
|
80 |
+
self.normalize_vars = normalize_vars
|
81 |
+
self.return_attention_mask = True
|
82 |
+
|
83 |
+
if not is_speech_available():
|
84 |
+
mel_filters = mel_filter_bank(
|
85 |
+
num_frequency_bins=256,
|
86 |
+
num_mel_filters=self.num_mel_bins,
|
87 |
+
min_frequency=20,
|
88 |
+
max_frequency=sampling_rate // 2,
|
89 |
+
sampling_rate=sampling_rate,
|
90 |
+
norm=None,
|
91 |
+
mel_scale="kaldi",
|
92 |
+
triangularize_in_mel_space=True,
|
93 |
+
)
|
94 |
+
|
95 |
+
self.mel_filters = np.pad(mel_filters, ((0, 1), (0, 0)))
|
96 |
+
self.window = window_function(400, "povey", periodic=False)
|
97 |
+
|
98 |
+
def _extract_fbank_features(
|
99 |
+
self,
|
100 |
+
waveform: np.ndarray,
|
101 |
+
) -> np.ndarray:
|
102 |
+
"""
|
103 |
+
Get mel-filter bank features using TorchAudio. Note that TorchAudio requires 16-bit signed integers as inputs
|
104 |
+
and hence the waveform should not be normalized before feature extraction.
|
105 |
+
"""
|
106 |
+
waveform = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
|
107 |
+
if is_speech_available():
|
108 |
+
waveform = torch.from_numpy(waveform).unsqueeze(0)
|
109 |
+
features = ta_kaldi.fbank(waveform, num_mel_bins=self.num_mel_bins, sample_frequency=self.sampling_rate)
|
110 |
+
features = features.numpy()
|
111 |
+
else:
|
112 |
+
waveform = np.squeeze(waveform)
|
113 |
+
features = spectrogram(
|
114 |
+
waveform,
|
115 |
+
self.window,
|
116 |
+
frame_length=400,
|
117 |
+
hop_length=160,
|
118 |
+
fft_length=512,
|
119 |
+
power=2.0,
|
120 |
+
center=False,
|
121 |
+
preemphasis=0.97,
|
122 |
+
mel_filters=self.mel_filters,
|
123 |
+
log_mel="log",
|
124 |
+
mel_floor=1.192092955078125e-07,
|
125 |
+
remove_dc_offset=True,
|
126 |
+
).T
|
127 |
+
return features
|
128 |
+
|
129 |
+
@staticmethod
|
130 |
+
def utterance_cmvn(
|
131 |
+
x: np.ndarray,
|
132 |
+
input_length: int,
|
133 |
+
normalize_means: Optional[bool] = True,
|
134 |
+
normalize_vars: Optional[bool] = True,
|
135 |
+
padding_value: float = 0.0,
|
136 |
+
) -> np.ndarray:
|
137 |
+
# make sure we normalize float32 arrays
|
138 |
+
if normalize_means:
|
139 |
+
mean = x[:input_length].mean(axis=0)
|
140 |
+
x = np.subtract(x, mean)
|
141 |
+
if normalize_vars:
|
142 |
+
std = x[:input_length].std(axis=0)
|
143 |
+
x = np.divide(x, std)
|
144 |
+
|
145 |
+
if input_length < x.shape[0]:
|
146 |
+
x[input_length:] = padding_value
|
147 |
+
|
148 |
+
# make sure array is in float32
|
149 |
+
x = x.astype(np.float32)
|
150 |
+
|
151 |
+
return x
|
152 |
+
|
153 |
+
def normalize(
|
154 |
+
self, input_features: List[np.ndarray], attention_mask: Optional[np.ndarray] = None
|
155 |
+
) -> List[np.ndarray]:
|
156 |
+
lengths = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features]
|
157 |
+
return [
|
158 |
+
self.utterance_cmvn(x, n, self.normalize_means, self.normalize_vars, self.padding_value)
|
159 |
+
for x, n in zip(input_features, lengths)
|
160 |
+
]
|
161 |
+
|
162 |
+
def __call__(
|
163 |
+
self,
|
164 |
+
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
|
165 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
166 |
+
max_length: Optional[int] = None,
|
167 |
+
truncation: bool = False,
|
168 |
+
pad_to_multiple_of: Optional[int] = None,
|
169 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
170 |
+
sampling_rate: Optional[int] = None,
|
171 |
+
return_attention_mask: Optional[bool] = None,
|
172 |
+
**kwargs,
|
173 |
+
) -> BatchFeature:
|
174 |
+
"""
|
175 |
+
Main method to featurize and prepare for the model one or several sequence(s).
|
176 |
+
|
177 |
+
Args:
|
178 |
+
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
|
179 |
+
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
|
180 |
+
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
|
181 |
+
stereo, i.e. single float per timestep.
|
182 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
183 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
184 |
+
index) among:
|
185 |
+
|
186 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
187 |
+
sequence if provided).
|
188 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
189 |
+
acceptable input length for the model if that argument is not provided.
|
190 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
191 |
+
lengths).
|
192 |
+
max_length (`int`, *optional*):
|
193 |
+
Maximum length of the returned list and optionally padding length (see above).
|
194 |
+
truncation (`bool`):
|
195 |
+
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
|
196 |
+
pad_to_multiple_of (`int`, *optional*):
|
197 |
+
If set will pad the sequence to a multiple of the provided value.
|
198 |
+
|
199 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
200 |
+
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
|
201 |
+
return_attention_mask (`bool`, *optional*):
|
202 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
203 |
+
to the specific feature_extractor's default.
|
204 |
+
|
205 |
+
[What are attention masks?](../glossary#attention-mask)
|
206 |
+
|
207 |
+
<Tip>
|
208 |
+
|
209 |
+
For Speech2TextTransformer models, `attention_mask` should always be passed for batched inference, to
|
210 |
+
avoid subtle bugs.
|
211 |
+
|
212 |
+
</Tip>
|
213 |
+
|
214 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
215 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
216 |
+
|
217 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
218 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
219 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
220 |
+
sampling_rate (`int`, *optional*):
|
221 |
+
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
|
222 |
+
`sampling_rate` at the forward call to prevent silent errors.
|
223 |
+
padding_value (`float`, defaults to 0.0):
|
224 |
+
The value that is used to fill the padding values / vectors.
|
225 |
+
"""
|
226 |
+
|
227 |
+
if sampling_rate is not None:
|
228 |
+
if sampling_rate != self.sampling_rate:
|
229 |
+
raise ValueError(
|
230 |
+
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
|
231 |
+
f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
|
232 |
+
f" {self.sampling_rate} and not {sampling_rate}."
|
233 |
+
)
|
234 |
+
else:
|
235 |
+
logger.warning(
|
236 |
+
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
|
237 |
+
"Failing to do so can result in silent errors that might be hard to debug."
|
238 |
+
)
|
239 |
+
|
240 |
+
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
|
241 |
+
if is_batched_numpy and len(raw_speech.shape) > 2:
|
242 |
+
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
|
243 |
+
is_batched = is_batched_numpy or (
|
244 |
+
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
|
245 |
+
)
|
246 |
+
|
247 |
+
if is_batched:
|
248 |
+
raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech]
|
249 |
+
elif not is_batched and not isinstance(raw_speech, np.ndarray):
|
250 |
+
raw_speech = np.asarray(raw_speech, dtype=np.float32)
|
251 |
+
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
|
252 |
+
raw_speech = raw_speech.astype(np.float32)
|
253 |
+
|
254 |
+
# always return batch
|
255 |
+
if not is_batched:
|
256 |
+
raw_speech = [raw_speech]
|
257 |
+
|
258 |
+
# extract fbank features
|
259 |
+
features = [self._extract_fbank_features(waveform) for waveform in raw_speech]
|
260 |
+
|
261 |
+
# convert into correct format for padding
|
262 |
+
encoded_inputs = BatchFeature({"input_features": features})
|
263 |
+
|
264 |
+
padded_inputs = self.pad(
|
265 |
+
encoded_inputs,
|
266 |
+
padding=padding,
|
267 |
+
max_length=max_length,
|
268 |
+
truncation=truncation,
|
269 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
270 |
+
return_attention_mask=return_attention_mask,
|
271 |
+
**kwargs,
|
272 |
+
)
|
273 |
+
|
274 |
+
# make sure list is in array format
|
275 |
+
input_features = padded_inputs.get("input_features")
|
276 |
+
if isinstance(input_features[0], list):
|
277 |
+
padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features]
|
278 |
+
|
279 |
+
attention_mask = padded_inputs.get("attention_mask")
|
280 |
+
if attention_mask is not None:
|
281 |
+
padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask]
|
282 |
+
|
283 |
+
# Utterance-level cepstral mean and variance normalization
|
284 |
+
if self.do_ceptral_normalize:
|
285 |
+
attention_mask = (
|
286 |
+
np.array(attention_mask, dtype=np.int32)
|
287 |
+
if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD
|
288 |
+
else None
|
289 |
+
)
|
290 |
+
padded_inputs["input_features"] = self.normalize(
|
291 |
+
padded_inputs["input_features"], attention_mask=attention_mask
|
292 |
+
)
|
293 |
+
|
294 |
+
if return_tensors is not None:
|
295 |
+
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
|
296 |
+
|
297 |
+
return padded_inputs
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/modeling_speech_to_text.py
ADDED
@@ -0,0 +1,1370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Speech2Text model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
from torch.nn import CrossEntropyLoss
|
23 |
+
|
24 |
+
from ...activations import ACT2FN
|
25 |
+
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
|
26 |
+
from ...modeling_outputs import (
|
27 |
+
BaseModelOutput,
|
28 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
29 |
+
Seq2SeqLMOutput,
|
30 |
+
Seq2SeqModelOutput,
|
31 |
+
)
|
32 |
+
from ...modeling_utils import PreTrainedModel
|
33 |
+
from ...utils import (
|
34 |
+
add_start_docstrings,
|
35 |
+
add_start_docstrings_to_model_forward,
|
36 |
+
logging,
|
37 |
+
replace_return_docstrings,
|
38 |
+
)
|
39 |
+
from .configuration_speech_to_text import Speech2TextConfig
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__)
|
43 |
+
|
44 |
+
_CONFIG_FOR_DOC = "Speech2TextConfig"
|
45 |
+
|
46 |
+
|
47 |
+
from ..deprecated._archive_maps import SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
48 |
+
|
49 |
+
|
50 |
+
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
|
51 |
+
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
52 |
+
"""
|
53 |
+
Shift input ids one token to the right.
|
54 |
+
"""
|
55 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
56 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
57 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
58 |
+
|
59 |
+
if pad_token_id is None:
|
60 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
61 |
+
# replace possible -100 values in labels by `pad_token_id`
|
62 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
63 |
+
|
64 |
+
return shifted_input_ids
|
65 |
+
|
66 |
+
|
67 |
+
class Conv1dSubsampler(nn.Module):
|
68 |
+
"""
|
69 |
+
Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation
|
70 |
+
via gated linear units (https://arxiv.org/abs/1911.08460)
|
71 |
+
"""
|
72 |
+
|
73 |
+
def __init__(self, config):
|
74 |
+
super(Conv1dSubsampler, self).__init__()
|
75 |
+
self.config = config
|
76 |
+
self.num_layers = config.num_conv_layers
|
77 |
+
self.in_channels = config.input_feat_per_channel * config.input_channels
|
78 |
+
self.mid_channels = config.conv_channels
|
79 |
+
self.out_channels = config.d_model
|
80 |
+
self.kernel_sizes = config.conv_kernel_sizes
|
81 |
+
|
82 |
+
self.conv_layers = nn.ModuleList(
|
83 |
+
nn.Conv1d(
|
84 |
+
self.in_channels if i == 0 else self.mid_channels // 2,
|
85 |
+
self.mid_channels if i < self.num_layers - 1 else self.out_channels * 2,
|
86 |
+
kernel_size=k,
|
87 |
+
stride=2,
|
88 |
+
padding=k // 2,
|
89 |
+
)
|
90 |
+
for i, k in enumerate(self.kernel_sizes)
|
91 |
+
)
|
92 |
+
|
93 |
+
def forward(self, input_features):
|
94 |
+
hidden_states = input_features.transpose(1, 2).contiguous() # -> B x (C x D) x T
|
95 |
+
for conv in self.conv_layers:
|
96 |
+
hidden_states = conv(hidden_states)
|
97 |
+
hidden_states = nn.functional.glu(hidden_states, dim=1)
|
98 |
+
hidden_states = hidden_states.transpose(1, 2).contiguous() # -> T x B x (C x D)
|
99 |
+
return hidden_states
|
100 |
+
|
101 |
+
|
102 |
+
class Speech2TextSinusoidalPositionalEmbedding(nn.Module):
|
103 |
+
"""This module produces sinusoidal positional embeddings of any length."""
|
104 |
+
|
105 |
+
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
106 |
+
super().__init__()
|
107 |
+
self.offset = 2
|
108 |
+
self.embedding_dim = embedding_dim
|
109 |
+
self.padding_idx = padding_idx
|
110 |
+
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
|
111 |
+
|
112 |
+
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
113 |
+
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
|
114 |
+
if hasattr(self, "weights"):
|
115 |
+
# in forward put the weights on the correct dtype and device of the param
|
116 |
+
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
|
117 |
+
|
118 |
+
self.weights = nn.Parameter(emb_weights)
|
119 |
+
self.weights.requires_grad = False
|
120 |
+
self.weights.detach_()
|
121 |
+
|
122 |
+
@staticmethod
|
123 |
+
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
124 |
+
"""
|
125 |
+
Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the
|
126 |
+
description in Section 3.5 of "Attention Is All You Need".
|
127 |
+
"""
|
128 |
+
half_dim = embedding_dim // 2
|
129 |
+
emb = math.log(10000) / (half_dim - 1)
|
130 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
|
131 |
+
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
|
132 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
|
133 |
+
if embedding_dim % 2 == 1:
|
134 |
+
# zero pad
|
135 |
+
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
|
136 |
+
if padding_idx is not None:
|
137 |
+
emb[padding_idx, :] = 0
|
138 |
+
return emb.to(torch.get_default_dtype())
|
139 |
+
|
140 |
+
@torch.no_grad()
|
141 |
+
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
|
142 |
+
bsz, seq_len = input_ids.size()
|
143 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
144 |
+
position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
|
145 |
+
input_ids.device
|
146 |
+
)
|
147 |
+
|
148 |
+
# expand embeddings if needed
|
149 |
+
max_pos = self.padding_idx + 1 + seq_len
|
150 |
+
if max_pos > self.weights.size(0):
|
151 |
+
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
|
152 |
+
|
153 |
+
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach()
|
154 |
+
|
155 |
+
def create_position_ids_from_input_ids(
|
156 |
+
self, input_ids: torch.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0
|
157 |
+
):
|
158 |
+
"""
|
159 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
|
160 |
+
symbols are ignored. This is modified from fairseq's `utils.make_positions`.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
x: torch.Tensor x:
|
164 |
+
Returns: torch.Tensor
|
165 |
+
"""
|
166 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
167 |
+
mask = input_ids.ne(padding_idx).int()
|
168 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
169 |
+
return incremental_indices.long() + padding_idx
|
170 |
+
|
171 |
+
|
172 |
+
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Speech2Text
|
173 |
+
class Speech2TextAttention(nn.Module):
|
174 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
175 |
+
|
176 |
+
def __init__(
|
177 |
+
self,
|
178 |
+
embed_dim: int,
|
179 |
+
num_heads: int,
|
180 |
+
dropout: float = 0.0,
|
181 |
+
is_decoder: bool = False,
|
182 |
+
bias: bool = True,
|
183 |
+
is_causal: bool = False,
|
184 |
+
config: Optional[Speech2TextConfig] = None,
|
185 |
+
):
|
186 |
+
super().__init__()
|
187 |
+
self.embed_dim = embed_dim
|
188 |
+
self.num_heads = num_heads
|
189 |
+
self.dropout = dropout
|
190 |
+
self.head_dim = embed_dim // num_heads
|
191 |
+
self.config = config
|
192 |
+
|
193 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
194 |
+
raise ValueError(
|
195 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
196 |
+
f" and `num_heads`: {num_heads})."
|
197 |
+
)
|
198 |
+
self.scaling = self.head_dim**-0.5
|
199 |
+
self.is_decoder = is_decoder
|
200 |
+
self.is_causal = is_causal
|
201 |
+
|
202 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
203 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
204 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
205 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
206 |
+
|
207 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
208 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
209 |
+
|
210 |
+
def forward(
|
211 |
+
self,
|
212 |
+
hidden_states: torch.Tensor,
|
213 |
+
key_value_states: Optional[torch.Tensor] = None,
|
214 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
215 |
+
attention_mask: Optional[torch.Tensor] = None,
|
216 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
217 |
+
output_attentions: bool = False,
|
218 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
219 |
+
"""Input shape: Batch x Time x Channel"""
|
220 |
+
|
221 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
222 |
+
# for the decoder
|
223 |
+
is_cross_attention = key_value_states is not None
|
224 |
+
|
225 |
+
bsz, tgt_len, _ = hidden_states.size()
|
226 |
+
|
227 |
+
# get query proj
|
228 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
229 |
+
# get key, value proj
|
230 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
231 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
232 |
+
# the provided `key_value_states` to support prefix tuning
|
233 |
+
if (
|
234 |
+
is_cross_attention
|
235 |
+
and past_key_value is not None
|
236 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
237 |
+
):
|
238 |
+
# reuse k,v, cross_attentions
|
239 |
+
key_states = past_key_value[0]
|
240 |
+
value_states = past_key_value[1]
|
241 |
+
elif is_cross_attention:
|
242 |
+
# cross_attentions
|
243 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
244 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
245 |
+
elif past_key_value is not None:
|
246 |
+
# reuse k, v, self_attention
|
247 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
248 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
249 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
250 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
251 |
+
else:
|
252 |
+
# self_attention
|
253 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
254 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
255 |
+
|
256 |
+
if self.is_decoder:
|
257 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
258 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
259 |
+
# key/value_states (first "if" case)
|
260 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
261 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
262 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
263 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
264 |
+
past_key_value = (key_states, value_states)
|
265 |
+
|
266 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
267 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
268 |
+
key_states = key_states.reshape(*proj_shape)
|
269 |
+
value_states = value_states.reshape(*proj_shape)
|
270 |
+
|
271 |
+
src_len = key_states.size(1)
|
272 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
273 |
+
|
274 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
275 |
+
raise ValueError(
|
276 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
277 |
+
f" {attn_weights.size()}"
|
278 |
+
)
|
279 |
+
|
280 |
+
if attention_mask is not None:
|
281 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
282 |
+
raise ValueError(
|
283 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
284 |
+
)
|
285 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
286 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
287 |
+
|
288 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
289 |
+
|
290 |
+
if layer_head_mask is not None:
|
291 |
+
if layer_head_mask.size() != (self.num_heads,):
|
292 |
+
raise ValueError(
|
293 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
294 |
+
f" {layer_head_mask.size()}"
|
295 |
+
)
|
296 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
297 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
298 |
+
|
299 |
+
if output_attentions:
|
300 |
+
# this operation is a bit awkward, but it's required to
|
301 |
+
# make sure that attn_weights keeps its gradient.
|
302 |
+
# In order to do so, attn_weights have to be reshaped
|
303 |
+
# twice and have to be reused in the following
|
304 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
305 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
306 |
+
else:
|
307 |
+
attn_weights_reshaped = None
|
308 |
+
|
309 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
310 |
+
|
311 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
312 |
+
|
313 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
314 |
+
raise ValueError(
|
315 |
+
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
|
316 |
+
f" {attn_output.size()}"
|
317 |
+
)
|
318 |
+
|
319 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
320 |
+
attn_output = attn_output.transpose(1, 2)
|
321 |
+
|
322 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
323 |
+
# partitioned across GPUs when using tensor-parallelism.
|
324 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
325 |
+
|
326 |
+
attn_output = self.out_proj(attn_output)
|
327 |
+
|
328 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
329 |
+
|
330 |
+
|
331 |
+
SPEECH_TO_TEXT_ATTENTION_CLASSES = {"eager": Speech2TextAttention}
|
332 |
+
|
333 |
+
|
334 |
+
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Speech2Text, MBART->SPEECH_TO_TEXT
|
335 |
+
class Speech2TextEncoderLayer(nn.Module):
|
336 |
+
def __init__(self, config: Speech2TextConfig):
|
337 |
+
super().__init__()
|
338 |
+
self.embed_dim = config.d_model
|
339 |
+
|
340 |
+
self.self_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation](
|
341 |
+
embed_dim=self.embed_dim,
|
342 |
+
num_heads=config.encoder_attention_heads,
|
343 |
+
dropout=config.attention_dropout,
|
344 |
+
config=config,
|
345 |
+
)
|
346 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
347 |
+
self.dropout = config.dropout
|
348 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
349 |
+
self.activation_dropout = config.activation_dropout
|
350 |
+
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
351 |
+
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
352 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
353 |
+
|
354 |
+
def forward(
|
355 |
+
self,
|
356 |
+
hidden_states: torch.Tensor,
|
357 |
+
attention_mask: torch.Tensor,
|
358 |
+
layer_head_mask: torch.Tensor,
|
359 |
+
output_attentions: bool = False,
|
360 |
+
) -> torch.Tensor:
|
361 |
+
"""
|
362 |
+
Args:
|
363 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
364 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
365 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
366 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
367 |
+
`(encoder_attention_heads,)`.
|
368 |
+
output_attentions (`bool`, *optional*):
|
369 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
370 |
+
returned tensors for more detail.
|
371 |
+
"""
|
372 |
+
residual = hidden_states
|
373 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
374 |
+
hidden_states, attn_weights, _ = self.self_attn(
|
375 |
+
hidden_states=hidden_states,
|
376 |
+
attention_mask=attention_mask,
|
377 |
+
layer_head_mask=layer_head_mask,
|
378 |
+
output_attentions=output_attentions,
|
379 |
+
)
|
380 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
381 |
+
hidden_states = residual + hidden_states
|
382 |
+
|
383 |
+
residual = hidden_states
|
384 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
385 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
386 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
387 |
+
hidden_states = self.fc2(hidden_states)
|
388 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
389 |
+
hidden_states = residual + hidden_states
|
390 |
+
|
391 |
+
if hidden_states.dtype == torch.float16 and (
|
392 |
+
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
|
393 |
+
):
|
394 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
395 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
396 |
+
|
397 |
+
outputs = (hidden_states,)
|
398 |
+
|
399 |
+
if output_attentions:
|
400 |
+
outputs += (attn_weights,)
|
401 |
+
|
402 |
+
return outputs
|
403 |
+
|
404 |
+
|
405 |
+
# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Speech2Text, MBART->SPEECH_TO_TEXT
|
406 |
+
class Speech2TextDecoderLayer(nn.Module):
|
407 |
+
def __init__(self, config: Speech2TextConfig):
|
408 |
+
super().__init__()
|
409 |
+
self.embed_dim = config.d_model
|
410 |
+
|
411 |
+
self.self_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation](
|
412 |
+
embed_dim=self.embed_dim,
|
413 |
+
num_heads=config.decoder_attention_heads,
|
414 |
+
dropout=config.attention_dropout,
|
415 |
+
is_decoder=True,
|
416 |
+
is_causal=True,
|
417 |
+
config=config,
|
418 |
+
)
|
419 |
+
self.dropout = config.dropout
|
420 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
421 |
+
self.activation_dropout = config.activation_dropout
|
422 |
+
|
423 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
424 |
+
self.encoder_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation](
|
425 |
+
self.embed_dim,
|
426 |
+
config.decoder_attention_heads,
|
427 |
+
dropout=config.attention_dropout,
|
428 |
+
is_decoder=True,
|
429 |
+
config=config,
|
430 |
+
)
|
431 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
432 |
+
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
433 |
+
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
|
434 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
435 |
+
|
436 |
+
def forward(
|
437 |
+
self,
|
438 |
+
hidden_states: torch.Tensor,
|
439 |
+
attention_mask: Optional[torch.Tensor] = None,
|
440 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
441 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
442 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
443 |
+
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
|
444 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
445 |
+
output_attentions: Optional[bool] = False,
|
446 |
+
use_cache: Optional[bool] = True,
|
447 |
+
) -> torch.Tensor:
|
448 |
+
"""
|
449 |
+
Args:
|
450 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
451 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
452 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
453 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
454 |
+
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
|
455 |
+
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
|
456 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
457 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
458 |
+
`(encoder_attention_heads,)`.
|
459 |
+
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
|
460 |
+
size `(decoder_attention_heads,)`.
|
461 |
+
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
|
462 |
+
output_attentions (`bool`, *optional*):
|
463 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
464 |
+
returned tensors for more detail.
|
465 |
+
"""
|
466 |
+
residual = hidden_states
|
467 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
468 |
+
|
469 |
+
# Self Attention
|
470 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
471 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
472 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
473 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
474 |
+
hidden_states=hidden_states,
|
475 |
+
past_key_value=self_attn_past_key_value,
|
476 |
+
attention_mask=attention_mask,
|
477 |
+
layer_head_mask=layer_head_mask,
|
478 |
+
output_attentions=output_attentions,
|
479 |
+
)
|
480 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
481 |
+
hidden_states = residual + hidden_states
|
482 |
+
|
483 |
+
# Cross-Attention Block
|
484 |
+
cross_attn_present_key_value = None
|
485 |
+
cross_attn_weights = None
|
486 |
+
if encoder_hidden_states is not None:
|
487 |
+
residual = hidden_states
|
488 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
489 |
+
|
490 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
491 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
492 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
493 |
+
hidden_states=hidden_states,
|
494 |
+
key_value_states=encoder_hidden_states,
|
495 |
+
attention_mask=encoder_attention_mask,
|
496 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
497 |
+
past_key_value=cross_attn_past_key_value,
|
498 |
+
output_attentions=output_attentions,
|
499 |
+
)
|
500 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
501 |
+
hidden_states = residual + hidden_states
|
502 |
+
|
503 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
504 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
505 |
+
|
506 |
+
# Fully Connected
|
507 |
+
residual = hidden_states
|
508 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
509 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
510 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
511 |
+
hidden_states = self.fc2(hidden_states)
|
512 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
513 |
+
hidden_states = residual + hidden_states
|
514 |
+
|
515 |
+
outputs = (hidden_states,)
|
516 |
+
|
517 |
+
if output_attentions:
|
518 |
+
outputs += (self_attn_weights, cross_attn_weights)
|
519 |
+
|
520 |
+
if use_cache:
|
521 |
+
outputs += (present_key_value,)
|
522 |
+
|
523 |
+
return outputs
|
524 |
+
|
525 |
+
|
526 |
+
class Speech2TextPreTrainedModel(PreTrainedModel):
|
527 |
+
config_class = Speech2TextConfig
|
528 |
+
base_model_prefix = "model"
|
529 |
+
main_input_name = "input_features"
|
530 |
+
supports_gradient_checkpointing = True
|
531 |
+
|
532 |
+
def _init_weights(self, module):
|
533 |
+
std = self.config.init_std
|
534 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
535 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
536 |
+
if module.bias is not None:
|
537 |
+
module.bias.data.zero_()
|
538 |
+
elif isinstance(module, nn.Embedding):
|
539 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
540 |
+
if module.padding_idx is not None:
|
541 |
+
module.weight.data[module.padding_idx].zero_()
|
542 |
+
|
543 |
+
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
|
544 |
+
"""
|
545 |
+
Computes the output length of the convolutional layers
|
546 |
+
"""
|
547 |
+
for i in range(self.config.num_conv_layers):
|
548 |
+
input_lengths = (input_lengths - 1) // 2 + 1
|
549 |
+
|
550 |
+
return input_lengths
|
551 |
+
|
552 |
+
def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask):
|
553 |
+
# generate creates 3D attention mask, because of the shape of input_features
|
554 |
+
# convert it to 2D if thats the case
|
555 |
+
if len(attention_mask.shape) > 2:
|
556 |
+
attention_mask = attention_mask[:, :, -1]
|
557 |
+
|
558 |
+
subsampled_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1))
|
559 |
+
bsz = attention_mask.size()[0]
|
560 |
+
attention_mask = torch.zeros(
|
561 |
+
(bsz, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
|
562 |
+
)
|
563 |
+
|
564 |
+
# these two operations makes sure that all values
|
565 |
+
# before the output lengths indices are attended to
|
566 |
+
attention_mask[(torch.arange(bsz, device=attention_mask.device), subsampled_lengths - 1)] = 1
|
567 |
+
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).long()
|
568 |
+
return attention_mask
|
569 |
+
|
570 |
+
|
571 |
+
SPEECH_TO_TEXT_START_DOCSTRING = r"""
|
572 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
573 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
574 |
+
etc.)
|
575 |
+
|
576 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
577 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
578 |
+
and behavior.
|
579 |
+
|
580 |
+
Parameters:
|
581 |
+
config ([`Speech2TextConfig`]):
|
582 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
583 |
+
load the weights associated with the model, only the configuration. Check out the
|
584 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
585 |
+
"""
|
586 |
+
|
587 |
+
SPEECH_TO_TEXT_INPUTS_DOCSTRING = r"""
|
588 |
+
Args:
|
589 |
+
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`):
|
590 |
+
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained
|
591 |
+
by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.*
|
592 |
+
via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
593 |
+
[`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a
|
594 |
+
tensor of type `torch.FloatTensor`. See [`~Speech2TextFeatureExtractor.__call__`]
|
595 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
596 |
+
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
|
597 |
+
1]`:
|
598 |
+
|
599 |
+
- 1 for tokens that are **not masked**,
|
600 |
+
- 0 for tokens that are **masked**.
|
601 |
+
|
602 |
+
[What are attention masks?](../glossary#attention-mask)
|
603 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
604 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
605 |
+
|
606 |
+
Indices can be obtained using [`SpeechToTextTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
607 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
608 |
+
|
609 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
610 |
+
|
611 |
+
SpeechToText uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
|
612 |
+
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
613 |
+
`past_key_values`).
|
614 |
+
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
615 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
616 |
+
be used by default.
|
617 |
+
|
618 |
+
If you want to change padding behavior, you should read
|
619 |
+
[`modeling_speech_to_text._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the
|
620 |
+
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
|
621 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
622 |
+
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
623 |
+
|
624 |
+
- 1 indicates the head is **not masked**,
|
625 |
+
- 0 indicates the head is **masked**.
|
626 |
+
|
627 |
+
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
628 |
+
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
629 |
+
|
630 |
+
- 1 indicates the head is **not masked**,
|
631 |
+
- 0 indicates the head is **masked**.
|
632 |
+
|
633 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
634 |
+
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
635 |
+
|
636 |
+
- 1 indicates the head is **not masked**,
|
637 |
+
- 0 indicates the head is **masked**.
|
638 |
+
|
639 |
+
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
640 |
+
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
641 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
642 |
+
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
643 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
644 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
645 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
646 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
647 |
+
|
648 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
649 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
650 |
+
|
651 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
652 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
653 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
654 |
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
655 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
656 |
+
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
657 |
+
input (see `past_key_values`). This is useful if you want more control over how to convert
|
658 |
+
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
659 |
+
use_cache (`bool`, *optional*):
|
660 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
661 |
+
`past_key_values`).
|
662 |
+
output_attentions (`bool`, *optional*):
|
663 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
664 |
+
tensors for more detail.
|
665 |
+
output_hidden_states (`bool`, *optional*):
|
666 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
667 |
+
more detail.
|
668 |
+
return_dict (`bool`, *optional*):
|
669 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
670 |
+
"""
|
671 |
+
|
672 |
+
|
673 |
+
class Speech2TextEncoder(Speech2TextPreTrainedModel):
|
674 |
+
"""
|
675 |
+
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
676 |
+
[`Speech2TextEncoderLayer`].
|
677 |
+
|
678 |
+
Args:
|
679 |
+
config: Speech2TextConfig
|
680 |
+
embed_tokens (nn.Embedding): output embedding
|
681 |
+
"""
|
682 |
+
|
683 |
+
def __init__(self, config: Speech2TextConfig):
|
684 |
+
super().__init__(config)
|
685 |
+
|
686 |
+
self.dropout = config.dropout
|
687 |
+
self.layerdrop = config.encoder_layerdrop
|
688 |
+
|
689 |
+
embed_dim = config.d_model
|
690 |
+
self.padding_idx = config.pad_token_id
|
691 |
+
self.max_source_positions = config.max_source_positions
|
692 |
+
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
693 |
+
|
694 |
+
self.conv = Conv1dSubsampler(config)
|
695 |
+
|
696 |
+
self.embed_positions = Speech2TextSinusoidalPositionalEmbedding(
|
697 |
+
self.max_source_positions,
|
698 |
+
embed_dim,
|
699 |
+
self.padding_idx,
|
700 |
+
)
|
701 |
+
self.layers = nn.ModuleList([Speech2TextEncoderLayer(config) for _ in range(config.encoder_layers)])
|
702 |
+
self.layer_norm = nn.LayerNorm(config.d_model)
|
703 |
+
|
704 |
+
self.gradient_checkpointing = False
|
705 |
+
# Initialize weights and apply final processing
|
706 |
+
self.post_init()
|
707 |
+
|
708 |
+
def forward(
|
709 |
+
self,
|
710 |
+
input_features,
|
711 |
+
attention_mask=None,
|
712 |
+
head_mask=None,
|
713 |
+
output_attentions=None,
|
714 |
+
output_hidden_states=None,
|
715 |
+
return_dict=None,
|
716 |
+
):
|
717 |
+
r"""
|
718 |
+
Args:
|
719 |
+
input_features (`torch.LongTensor` of shape `(batch_size, sequence_length, feature_size)`):
|
720 |
+
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be
|
721 |
+
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
|
722 |
+
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
723 |
+
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features,
|
724 |
+
padding and conversion into a tensor of type `torch.FloatTensor`. See
|
725 |
+
[`~Speech2TextFeatureExtractor.__call__`]
|
726 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
727 |
+
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
|
728 |
+
`[0, 1]`:
|
729 |
+
|
730 |
+
- 1 for tokens that are **not masked**,
|
731 |
+
- 0 for tokens that are **masked**.
|
732 |
+
|
733 |
+
[What are attention masks?](../glossary#attention-mask)
|
734 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
735 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
736 |
+
|
737 |
+
- 1 indicates the head is **not masked**,
|
738 |
+
- 0 indicates the head is **masked**.
|
739 |
+
|
740 |
+
output_attentions (`bool`, *optional*):
|
741 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
742 |
+
returned tensors for more detail.
|
743 |
+
output_hidden_states (`bool`, *optional*):
|
744 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
745 |
+
for more detail.
|
746 |
+
return_dict (`bool`, *optional*):
|
747 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
748 |
+
"""
|
749 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
750 |
+
output_hidden_states = (
|
751 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
752 |
+
)
|
753 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
754 |
+
inputs_embeds = self.conv(input_features)
|
755 |
+
inputs_embeds = self.embed_scale * inputs_embeds
|
756 |
+
|
757 |
+
# subsample attention mask if necessary
|
758 |
+
if attention_mask is not None:
|
759 |
+
attention_mask = self._get_feature_vector_attention_mask(inputs_embeds.shape[1], attention_mask)
|
760 |
+
padding_mask = attention_mask.ne(1).long()
|
761 |
+
else:
|
762 |
+
padding_mask = torch.zeros(inputs_embeds.shape[:2], dtype=torch.long, device=inputs_embeds.device)
|
763 |
+
|
764 |
+
embed_pos = self.embed_positions(padding_mask)
|
765 |
+
|
766 |
+
hidden_states = inputs_embeds + embed_pos
|
767 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
768 |
+
|
769 |
+
# expand attention_mask
|
770 |
+
if attention_mask is not None:
|
771 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
772 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
|
773 |
+
|
774 |
+
encoder_states = () if output_hidden_states else None
|
775 |
+
all_attentions = () if output_attentions else None
|
776 |
+
|
777 |
+
# check if head_mask has a correct number of layers specified if desired
|
778 |
+
if head_mask is not None:
|
779 |
+
assert head_mask.size()[0] == (
|
780 |
+
len(self.layers)
|
781 |
+
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
782 |
+
|
783 |
+
for idx, encoder_layer in enumerate(self.layers):
|
784 |
+
if output_hidden_states:
|
785 |
+
encoder_states = encoder_states + (hidden_states,)
|
786 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
787 |
+
to_drop = False
|
788 |
+
if self.training:
|
789 |
+
dropout_probability = torch.rand([])
|
790 |
+
if dropout_probability < self.layerdrop: # skip the layer
|
791 |
+
to_drop = True
|
792 |
+
|
793 |
+
if to_drop:
|
794 |
+
layer_outputs = (None, None)
|
795 |
+
else:
|
796 |
+
if self.gradient_checkpointing and self.training:
|
797 |
+
layer_outputs = self._gradient_checkpointing_func(
|
798 |
+
encoder_layer.__call__,
|
799 |
+
hidden_states,
|
800 |
+
attention_mask,
|
801 |
+
(head_mask[idx] if head_mask is not None else None),
|
802 |
+
output_attentions,
|
803 |
+
)
|
804 |
+
else:
|
805 |
+
layer_outputs = encoder_layer(
|
806 |
+
hidden_states,
|
807 |
+
attention_mask,
|
808 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
809 |
+
output_attentions=output_attentions,
|
810 |
+
)
|
811 |
+
|
812 |
+
hidden_states = layer_outputs[0]
|
813 |
+
|
814 |
+
if output_attentions:
|
815 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
816 |
+
|
817 |
+
hidden_states = self.layer_norm(hidden_states)
|
818 |
+
if output_hidden_states:
|
819 |
+
encoder_states = encoder_states + (hidden_states,)
|
820 |
+
|
821 |
+
if not return_dict:
|
822 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
823 |
+
return BaseModelOutput(
|
824 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
825 |
+
)
|
826 |
+
|
827 |
+
|
828 |
+
class Speech2TextDecoder(Speech2TextPreTrainedModel):
|
829 |
+
"""
|
830 |
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`Speech2TextDecoderLayer`]
|
831 |
+
|
832 |
+
Args:
|
833 |
+
config: Speech2TextConfig
|
834 |
+
embed_tokens (nn.Embedding): output embedding
|
835 |
+
"""
|
836 |
+
|
837 |
+
def __init__(self, config: Speech2TextConfig):
|
838 |
+
super().__init__(config)
|
839 |
+
self.dropout = config.dropout
|
840 |
+
self.layerdrop = config.decoder_layerdrop
|
841 |
+
self.padding_idx = config.pad_token_id
|
842 |
+
self.max_target_positions = config.max_target_positions
|
843 |
+
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
|
844 |
+
|
845 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
|
846 |
+
|
847 |
+
self.embed_positions = Speech2TextSinusoidalPositionalEmbedding(
|
848 |
+
self.max_target_positions,
|
849 |
+
config.d_model,
|
850 |
+
self.padding_idx,
|
851 |
+
)
|
852 |
+
|
853 |
+
self.layers = nn.ModuleList([Speech2TextDecoderLayer(config) for _ in range(config.decoder_layers)])
|
854 |
+
|
855 |
+
self.layer_norm = nn.LayerNorm(config.d_model)
|
856 |
+
|
857 |
+
self.gradient_checkpointing = False
|
858 |
+
# Initialize weights and apply final processing
|
859 |
+
self.post_init()
|
860 |
+
|
861 |
+
def get_input_embeddings(self):
|
862 |
+
return self.embed_tokens
|
863 |
+
|
864 |
+
def set_input_embeddings(self, value):
|
865 |
+
self.embed_tokens = value
|
866 |
+
|
867 |
+
def forward(
|
868 |
+
self,
|
869 |
+
input_ids=None,
|
870 |
+
attention_mask=None,
|
871 |
+
encoder_hidden_states=None,
|
872 |
+
encoder_attention_mask=None,
|
873 |
+
head_mask=None,
|
874 |
+
cross_attn_head_mask=None,
|
875 |
+
past_key_values=None,
|
876 |
+
inputs_embeds=None,
|
877 |
+
use_cache=None,
|
878 |
+
output_attentions=None,
|
879 |
+
output_hidden_states=None,
|
880 |
+
return_dict=None,
|
881 |
+
):
|
882 |
+
r"""
|
883 |
+
Args:
|
884 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
885 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
886 |
+
provide it.
|
887 |
+
|
888 |
+
Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
889 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
890 |
+
|
891 |
+
[What are input IDs?](../glossary#input-ids)
|
892 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
893 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
894 |
+
|
895 |
+
- 1 for tokens that are **not masked**,
|
896 |
+
- 0 for tokens that are **masked**.
|
897 |
+
|
898 |
+
[What are attention masks?](../glossary#attention-mask)
|
899 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
900 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
901 |
+
of the decoder.
|
902 |
+
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
903 |
+
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
904 |
+
selected in `[0, 1]`:
|
905 |
+
|
906 |
+
- 1 for tokens that are **not masked**,
|
907 |
+
- 0 for tokens that are **masked**.
|
908 |
+
|
909 |
+
[What are attention masks?](../glossary#attention-mask)
|
910 |
+
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
911 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
912 |
+
|
913 |
+
- 1 indicates the head is **not masked**,
|
914 |
+
- 0 indicates the head is **masked**.
|
915 |
+
|
916 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
917 |
+
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
|
918 |
+
on hidden heads. Mask values selected in `[0, 1]`:
|
919 |
+
|
920 |
+
- 1 indicates the head is **not masked**,
|
921 |
+
- 0 indicates the head is **masked**.
|
922 |
+
|
923 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
924 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
925 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
926 |
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
927 |
+
|
928 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
929 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
930 |
+
|
931 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
932 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
933 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
934 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
935 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
936 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
937 |
+
than the model's internal embedding lookup matrix.
|
938 |
+
output_attentions (`bool`, *optional*):
|
939 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
940 |
+
returned tensors for more detail.
|
941 |
+
output_hidden_states (`bool`, *optional*):
|
942 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
943 |
+
for more detail.
|
944 |
+
return_dict (`bool`, *optional*):
|
945 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
946 |
+
"""
|
947 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
948 |
+
output_hidden_states = (
|
949 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
950 |
+
)
|
951 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
952 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
953 |
+
|
954 |
+
# retrieve input_ids and inputs_embeds
|
955 |
+
if input_ids is not None and inputs_embeds is not None:
|
956 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
957 |
+
elif input_ids is not None:
|
958 |
+
input_shape = input_ids.size()
|
959 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
960 |
+
elif inputs_embeds is not None:
|
961 |
+
input_shape = inputs_embeds.size()[:-1]
|
962 |
+
else:
|
963 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
964 |
+
|
965 |
+
# past_key_values_length
|
966 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
967 |
+
|
968 |
+
if inputs_embeds is None:
|
969 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
970 |
+
|
971 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
972 |
+
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
973 |
+
)
|
974 |
+
|
975 |
+
# expand encoder attention mask
|
976 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
977 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
978 |
+
encoder_attention_mask = _prepare_4d_attention_mask(
|
979 |
+
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
980 |
+
)
|
981 |
+
|
982 |
+
# embed positions
|
983 |
+
positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length)
|
984 |
+
|
985 |
+
hidden_states = inputs_embeds + positions
|
986 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
987 |
+
|
988 |
+
if self.gradient_checkpointing and self.training:
|
989 |
+
if use_cache:
|
990 |
+
logger.warning_once(
|
991 |
+
"`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..."
|
992 |
+
)
|
993 |
+
use_cache = False
|
994 |
+
|
995 |
+
# decoder layers
|
996 |
+
all_hidden_states = () if output_hidden_states else None
|
997 |
+
all_self_attns = () if output_attentions else None
|
998 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
999 |
+
next_decoder_cache = () if use_cache else None
|
1000 |
+
|
1001 |
+
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
|
1002 |
+
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
|
1003 |
+
if attn_mask is not None:
|
1004 |
+
assert attn_mask.size()[0] == (len(self.layers)), (
|
1005 |
+
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
1006 |
+
f" {head_mask.size()[0]}."
|
1007 |
+
)
|
1008 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1009 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1010 |
+
if output_hidden_states:
|
1011 |
+
all_hidden_states += (hidden_states,)
|
1012 |
+
if self.training:
|
1013 |
+
dropout_probability = torch.rand([])
|
1014 |
+
if dropout_probability < self.layerdrop:
|
1015 |
+
continue
|
1016 |
+
|
1017 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1018 |
+
|
1019 |
+
if self.gradient_checkpointing and self.training:
|
1020 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1021 |
+
decoder_layer.__call__,
|
1022 |
+
hidden_states,
|
1023 |
+
attention_mask,
|
1024 |
+
encoder_hidden_states,
|
1025 |
+
encoder_attention_mask,
|
1026 |
+
head_mask[idx] if head_mask is not None else None,
|
1027 |
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
1028 |
+
None,
|
1029 |
+
output_attentions,
|
1030 |
+
use_cache,
|
1031 |
+
)
|
1032 |
+
else:
|
1033 |
+
layer_outputs = decoder_layer(
|
1034 |
+
hidden_states,
|
1035 |
+
attention_mask=attention_mask,
|
1036 |
+
encoder_hidden_states=encoder_hidden_states,
|
1037 |
+
encoder_attention_mask=encoder_attention_mask,
|
1038 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
1039 |
+
cross_attn_layer_head_mask=(
|
1040 |
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
|
1041 |
+
),
|
1042 |
+
past_key_value=past_key_value,
|
1043 |
+
output_attentions=output_attentions,
|
1044 |
+
use_cache=use_cache,
|
1045 |
+
)
|
1046 |
+
hidden_states = layer_outputs[0]
|
1047 |
+
|
1048 |
+
if use_cache:
|
1049 |
+
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
|
1050 |
+
|
1051 |
+
if output_attentions:
|
1052 |
+
all_self_attns += (layer_outputs[1],)
|
1053 |
+
|
1054 |
+
if encoder_hidden_states is not None:
|
1055 |
+
all_cross_attentions += (layer_outputs[2],)
|
1056 |
+
|
1057 |
+
hidden_states = self.layer_norm(hidden_states)
|
1058 |
+
# add hidden states from the last decoder layer
|
1059 |
+
if output_hidden_states:
|
1060 |
+
all_hidden_states += (hidden_states,)
|
1061 |
+
|
1062 |
+
next_cache = next_decoder_cache if use_cache else None
|
1063 |
+
if not return_dict:
|
1064 |
+
return tuple(
|
1065 |
+
v
|
1066 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
|
1067 |
+
if v is not None
|
1068 |
+
)
|
1069 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1070 |
+
last_hidden_state=hidden_states,
|
1071 |
+
past_key_values=next_cache,
|
1072 |
+
hidden_states=all_hidden_states,
|
1073 |
+
attentions=all_self_attns,
|
1074 |
+
cross_attentions=all_cross_attentions,
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
|
1078 |
+
@add_start_docstrings(
|
1079 |
+
"The bare Speech2Text Model outputting raw hidden-states without any specific head on top.",
|
1080 |
+
SPEECH_TO_TEXT_START_DOCSTRING,
|
1081 |
+
)
|
1082 |
+
class Speech2TextModel(Speech2TextPreTrainedModel):
|
1083 |
+
def __init__(self, config: Speech2TextConfig):
|
1084 |
+
super().__init__(config)
|
1085 |
+
|
1086 |
+
self.encoder = Speech2TextEncoder(config)
|
1087 |
+
self.decoder = Speech2TextDecoder(config)
|
1088 |
+
|
1089 |
+
# Initialize weights and apply final processing
|
1090 |
+
self.post_init()
|
1091 |
+
|
1092 |
+
def get_input_embeddings(self):
|
1093 |
+
return self.decoder.embed_tokens
|
1094 |
+
|
1095 |
+
def set_input_embeddings(self, value):
|
1096 |
+
self.decoder.embed_tokens = value
|
1097 |
+
|
1098 |
+
def get_encoder(self):
|
1099 |
+
return self.encoder
|
1100 |
+
|
1101 |
+
def get_decoder(self):
|
1102 |
+
return self.decoder
|
1103 |
+
|
1104 |
+
@add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING)
|
1105 |
+
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
1106 |
+
def forward(
|
1107 |
+
self,
|
1108 |
+
input_features: Optional[torch.LongTensor] = None,
|
1109 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1110 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1111 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1112 |
+
head_mask: Optional[torch.Tensor] = None,
|
1113 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1114 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1115 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1116 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1117 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1118 |
+
use_cache: Optional[bool] = None,
|
1119 |
+
output_attentions: Optional[bool] = None,
|
1120 |
+
output_hidden_states: Optional[bool] = None,
|
1121 |
+
return_dict: Optional[bool] = None,
|
1122 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
1123 |
+
r"""
|
1124 |
+
Returns:
|
1125 |
+
|
1126 |
+
Example:
|
1127 |
+
|
1128 |
+
```python
|
1129 |
+
>>> import torch
|
1130 |
+
>>> from transformers import Speech2TextModel, AutoFeatureExtractor
|
1131 |
+
>>> from datasets import load_dataset
|
1132 |
+
|
1133 |
+
>>> model = Speech2TextModel.from_pretrained("facebook/s2t-small-librispeech-asr")
|
1134 |
+
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-librispeech-asr")
|
1135 |
+
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
1136 |
+
>>> inputs = feature_extractor(
|
1137 |
+
... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt"
|
1138 |
+
... )
|
1139 |
+
>>> input_features = inputs.input_features
|
1140 |
+
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
|
1141 |
+
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
|
1142 |
+
>>> list(last_hidden_state.shape)
|
1143 |
+
[1, 2, 256]
|
1144 |
+
```"""
|
1145 |
+
|
1146 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1147 |
+
output_hidden_states = (
|
1148 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1149 |
+
)
|
1150 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1151 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1152 |
+
|
1153 |
+
if encoder_outputs is None:
|
1154 |
+
encoder_outputs = self.encoder(
|
1155 |
+
input_features,
|
1156 |
+
attention_mask=attention_mask,
|
1157 |
+
head_mask=head_mask,
|
1158 |
+
output_attentions=output_attentions,
|
1159 |
+
output_hidden_states=output_hidden_states,
|
1160 |
+
return_dict=return_dict,
|
1161 |
+
)
|
1162 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
1163 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1164 |
+
encoder_outputs = BaseModelOutput(
|
1165 |
+
last_hidden_state=encoder_outputs[0],
|
1166 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1167 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
# downsample encoder attention mask
|
1171 |
+
if attention_mask is not None:
|
1172 |
+
encoder_attention_mask = self._get_feature_vector_attention_mask(
|
1173 |
+
encoder_outputs[0].shape[1], attention_mask
|
1174 |
+
)
|
1175 |
+
else:
|
1176 |
+
encoder_attention_mask = None
|
1177 |
+
|
1178 |
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
1179 |
+
decoder_outputs = self.decoder(
|
1180 |
+
input_ids=decoder_input_ids,
|
1181 |
+
attention_mask=decoder_attention_mask,
|
1182 |
+
encoder_hidden_states=encoder_outputs[0],
|
1183 |
+
encoder_attention_mask=encoder_attention_mask,
|
1184 |
+
head_mask=decoder_head_mask,
|
1185 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1186 |
+
past_key_values=past_key_values,
|
1187 |
+
inputs_embeds=decoder_inputs_embeds,
|
1188 |
+
use_cache=use_cache,
|
1189 |
+
output_attentions=output_attentions,
|
1190 |
+
output_hidden_states=output_hidden_states,
|
1191 |
+
return_dict=return_dict,
|
1192 |
+
)
|
1193 |
+
|
1194 |
+
if not return_dict:
|
1195 |
+
return decoder_outputs + encoder_outputs
|
1196 |
+
|
1197 |
+
return Seq2SeqModelOutput(
|
1198 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1199 |
+
past_key_values=decoder_outputs.past_key_values,
|
1200 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1201 |
+
decoder_attentions=decoder_outputs.attentions,
|
1202 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1203 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1204 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1205 |
+
encoder_attentions=encoder_outputs.attentions,
|
1206 |
+
)
|
1207 |
+
|
1208 |
+
|
1209 |
+
@add_start_docstrings(
|
1210 |
+
"The Speech2Text Model with a language modeling head. Can be used for summarization.",
|
1211 |
+
SPEECH_TO_TEXT_START_DOCSTRING,
|
1212 |
+
)
|
1213 |
+
class Speech2TextForConditionalGeneration(Speech2TextPreTrainedModel):
|
1214 |
+
base_model_prefix = "model"
|
1215 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1216 |
+
|
1217 |
+
def __init__(self, config: Speech2TextConfig):
|
1218 |
+
super().__init__(config)
|
1219 |
+
self.model = Speech2TextModel(config)
|
1220 |
+
self.lm_head = nn.Linear(config.d_model, self.config.vocab_size, bias=False)
|
1221 |
+
|
1222 |
+
# Initialize weights and apply final processing
|
1223 |
+
self.post_init()
|
1224 |
+
|
1225 |
+
def get_encoder(self):
|
1226 |
+
return self.model.get_encoder()
|
1227 |
+
|
1228 |
+
def get_decoder(self):
|
1229 |
+
return self.model.get_decoder()
|
1230 |
+
|
1231 |
+
def get_output_embeddings(self):
|
1232 |
+
return self.lm_head
|
1233 |
+
|
1234 |
+
def set_output_embeddings(self, new_embeddings):
|
1235 |
+
self.lm_head = new_embeddings
|
1236 |
+
|
1237 |
+
@add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING)
|
1238 |
+
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
1239 |
+
def forward(
|
1240 |
+
self,
|
1241 |
+
input_features: Optional[torch.LongTensor] = None,
|
1242 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1243 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1244 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1245 |
+
head_mask: Optional[torch.Tensor] = None,
|
1246 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1247 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1248 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1249 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1250 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1251 |
+
labels: Optional[torch.LongTensor] = None,
|
1252 |
+
use_cache: Optional[bool] = None,
|
1253 |
+
output_attentions: Optional[bool] = None,
|
1254 |
+
output_hidden_states: Optional[bool] = None,
|
1255 |
+
return_dict: Optional[bool] = None,
|
1256 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
1257 |
+
r"""
|
1258 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1259 |
+
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
|
1260 |
+
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
|
1261 |
+
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1262 |
+
|
1263 |
+
Returns:
|
1264 |
+
|
1265 |
+
Example:
|
1266 |
+
|
1267 |
+
```python
|
1268 |
+
>>> import torch
|
1269 |
+
>>> from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
|
1270 |
+
>>> from datasets import load_dataset
|
1271 |
+
|
1272 |
+
>>> model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr")
|
1273 |
+
>>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
|
1274 |
+
|
1275 |
+
|
1276 |
+
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
1277 |
+
|
1278 |
+
>>> inputs = processor(
|
1279 |
+
... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt"
|
1280 |
+
... )
|
1281 |
+
>>> input_features = inputs.input_features
|
1282 |
+
|
1283 |
+
>>> generated_ids = model.generate(inputs=input_features)
|
1284 |
+
|
1285 |
+
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
1286 |
+
>>> transcription
|
1287 |
+
'mister quilter is the apostle of the middle classes and we are glad to welcome his gospel'
|
1288 |
+
```"""
|
1289 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1290 |
+
|
1291 |
+
if labels is not None:
|
1292 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1293 |
+
decoder_input_ids = shift_tokens_right(
|
1294 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
1295 |
+
)
|
1296 |
+
|
1297 |
+
outputs = self.model(
|
1298 |
+
input_features,
|
1299 |
+
attention_mask=attention_mask,
|
1300 |
+
decoder_input_ids=decoder_input_ids,
|
1301 |
+
encoder_outputs=encoder_outputs,
|
1302 |
+
decoder_attention_mask=decoder_attention_mask,
|
1303 |
+
head_mask=head_mask,
|
1304 |
+
decoder_head_mask=decoder_head_mask,
|
1305 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1306 |
+
past_key_values=past_key_values,
|
1307 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1308 |
+
use_cache=use_cache,
|
1309 |
+
output_attentions=output_attentions,
|
1310 |
+
output_hidden_states=output_hidden_states,
|
1311 |
+
return_dict=return_dict,
|
1312 |
+
)
|
1313 |
+
lm_logits = self.lm_head(outputs[0])
|
1314 |
+
|
1315 |
+
loss = None
|
1316 |
+
if labels is not None:
|
1317 |
+
loss_fct = CrossEntropyLoss()
|
1318 |
+
loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
1319 |
+
|
1320 |
+
if not return_dict:
|
1321 |
+
output = (lm_logits,) + outputs[1:]
|
1322 |
+
return ((loss,) + output) if loss is not None else output
|
1323 |
+
|
1324 |
+
return Seq2SeqLMOutput(
|
1325 |
+
loss=loss,
|
1326 |
+
logits=lm_logits,
|
1327 |
+
past_key_values=outputs.past_key_values,
|
1328 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1329 |
+
decoder_attentions=outputs.decoder_attentions,
|
1330 |
+
cross_attentions=outputs.cross_attentions,
|
1331 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1332 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1333 |
+
encoder_attentions=outputs.encoder_attentions,
|
1334 |
+
)
|
1335 |
+
|
1336 |
+
def prepare_inputs_for_generation(
|
1337 |
+
self,
|
1338 |
+
decoder_input_ids,
|
1339 |
+
past_key_values=None,
|
1340 |
+
attention_mask=None,
|
1341 |
+
head_mask=None,
|
1342 |
+
decoder_head_mask=None,
|
1343 |
+
cross_attn_head_mask=None,
|
1344 |
+
use_cache=None,
|
1345 |
+
encoder_outputs=None,
|
1346 |
+
**kwargs,
|
1347 |
+
):
|
1348 |
+
# cut decoder_input_ids if past is used
|
1349 |
+
if past_key_values is not None:
|
1350 |
+
decoder_input_ids = decoder_input_ids[:, -1:]
|
1351 |
+
|
1352 |
+
return {
|
1353 |
+
"encoder_outputs": encoder_outputs,
|
1354 |
+
"past_key_values": past_key_values,
|
1355 |
+
"decoder_input_ids": decoder_input_ids,
|
1356 |
+
"attention_mask": attention_mask,
|
1357 |
+
"head_mask": head_mask,
|
1358 |
+
"decoder_head_mask": decoder_head_mask,
|
1359 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1360 |
+
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
1361 |
+
}
|
1362 |
+
|
1363 |
+
@staticmethod
|
1364 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1365 |
+
reordered_past = ()
|
1366 |
+
for layer_past in past_key_values:
|
1367 |
+
reordered_past += (
|
1368 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1369 |
+
)
|
1370 |
+
return reordered_past
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/modeling_tf_speech_to_text.py
ADDED
@@ -0,0 +1,1607 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TensorFlow Speech2Text model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import random
|
21 |
+
from typing import Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import tensorflow as tf
|
25 |
+
|
26 |
+
from ...activations_tf import get_tf_activation, glu
|
27 |
+
from ...modeling_tf_outputs import (
|
28 |
+
TFBaseModelOutput,
|
29 |
+
TFBaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
TFSeq2SeqLMOutput,
|
31 |
+
TFSeq2SeqModelOutput,
|
32 |
+
)
|
33 |
+
from ...modeling_tf_utils import (
|
34 |
+
TFCausalLanguageModelingLoss,
|
35 |
+
TFModelInputType,
|
36 |
+
TFPreTrainedModel,
|
37 |
+
TFSharedEmbeddings,
|
38 |
+
keras,
|
39 |
+
keras_serializable,
|
40 |
+
unpack_inputs,
|
41 |
+
)
|
42 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
43 |
+
from ...utils import (
|
44 |
+
add_code_sample_docstrings,
|
45 |
+
add_start_docstrings,
|
46 |
+
add_start_docstrings_to_model_forward,
|
47 |
+
logging,
|
48 |
+
replace_return_docstrings,
|
49 |
+
)
|
50 |
+
from .configuration_speech_to_text import Speech2TextConfig
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CONFIG_FOR_DOC = "Speech2TextConfig"
|
56 |
+
_CHECKPOINT_FOR_DOC = "facebook/s2t-small-librispeech-asr"
|
57 |
+
|
58 |
+
|
59 |
+
from ..deprecated._archive_maps import TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
60 |
+
|
61 |
+
|
62 |
+
LARGE_NEGATIVE = -1e8
|
63 |
+
|
64 |
+
|
65 |
+
# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
|
66 |
+
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
67 |
+
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
|
68 |
+
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
|
69 |
+
start_tokens = tf.fill(
|
70 |
+
(shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
|
71 |
+
)
|
72 |
+
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
|
73 |
+
# replace possible -100 values in labels by `pad_token_id`
|
74 |
+
shifted_input_ids = tf.where(
|
75 |
+
shifted_input_ids == -100,
|
76 |
+
tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
|
77 |
+
shifted_input_ids,
|
78 |
+
)
|
79 |
+
|
80 |
+
# "Verify that `labels` has only positive values and -100"
|
81 |
+
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
|
82 |
+
|
83 |
+
# Make sure the assertion op is called by wrapping the result in an identity no-op
|
84 |
+
with tf.control_dependencies([assert_gte0]):
|
85 |
+
shifted_input_ids = tf.identity(shifted_input_ids)
|
86 |
+
|
87 |
+
return shifted_input_ids
|
88 |
+
|
89 |
+
|
90 |
+
# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
|
91 |
+
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
|
92 |
+
"""
|
93 |
+
Make causal mask used for bi-directional self-attention.
|
94 |
+
"""
|
95 |
+
bsz = input_ids_shape[0]
|
96 |
+
tgt_len = input_ids_shape[1]
|
97 |
+
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
|
98 |
+
mask_cond = tf.range(shape_list(mask)[-1])
|
99 |
+
|
100 |
+
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
|
101 |
+
|
102 |
+
if past_key_values_length > 0:
|
103 |
+
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
|
104 |
+
|
105 |
+
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
|
106 |
+
|
107 |
+
|
108 |
+
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
|
109 |
+
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
|
110 |
+
"""
|
111 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
112 |
+
"""
|
113 |
+
src_len = shape_list(mask)[1]
|
114 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
115 |
+
one_cst = tf.constant(1.0)
|
116 |
+
mask = tf.cast(mask, dtype=one_cst.dtype)
|
117 |
+
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
|
118 |
+
|
119 |
+
return (one_cst - expanded_mask) * LARGE_NEGATIVE
|
120 |
+
|
121 |
+
|
122 |
+
class TFConv1dSubsampler(keras.layers.Layer):
|
123 |
+
"""
|
124 |
+
Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation
|
125 |
+
via gated linear units (https://arxiv.org/abs/1911.08460)
|
126 |
+
"""
|
127 |
+
|
128 |
+
def __init__(self, config: Speech2TextConfig, **kwargs):
|
129 |
+
super().__init__(**kwargs)
|
130 |
+
self.config = config
|
131 |
+
self.num_layers = config.num_conv_layers
|
132 |
+
self.in_channels = config.input_feat_per_channel * config.input_channels
|
133 |
+
self.mid_channels = config.conv_channels
|
134 |
+
self.out_channels = config.d_model
|
135 |
+
self.kernel_sizes = config.conv_kernel_sizes
|
136 |
+
|
137 |
+
self.conv_layers = [
|
138 |
+
keras.layers.Conv1D(
|
139 |
+
filters=self.mid_channels if i < self.num_layers - 1 else self.out_channels * 2,
|
140 |
+
kernel_size=k,
|
141 |
+
strides=2,
|
142 |
+
name=f"conv_layers.{i}",
|
143 |
+
)
|
144 |
+
for i, k in enumerate(self.kernel_sizes)
|
145 |
+
]
|
146 |
+
|
147 |
+
def call(self, input_features: tf.Tensor) -> tf.Tensor:
|
148 |
+
# TF Conv1D assumes Batch x Time x Channels, same as the input
|
149 |
+
hidden_states = tf.cast(input_features, tf.float32)
|
150 |
+
for i, conv in enumerate(self.conv_layers):
|
151 |
+
# equivalent to `padding=k // 2` on PT's `nn.Conv1d`
|
152 |
+
pad_len = self.kernel_sizes[i] // 2
|
153 |
+
hidden_shapes = shape_list(hidden_states)
|
154 |
+
hidden_states = tf.concat(
|
155 |
+
(
|
156 |
+
tf.zeros((hidden_shapes[0], pad_len, hidden_shapes[2])),
|
157 |
+
hidden_states,
|
158 |
+
tf.zeros((hidden_shapes[0], pad_len, hidden_shapes[2])),
|
159 |
+
),
|
160 |
+
axis=1,
|
161 |
+
)
|
162 |
+
|
163 |
+
hidden_states = conv(hidden_states)
|
164 |
+
hidden_states = glu(hidden_states, axis=2) # GLU over the Channel dimension
|
165 |
+
return hidden_states
|
166 |
+
|
167 |
+
def build(self, input_shape=None):
|
168 |
+
if self.built:
|
169 |
+
return
|
170 |
+
self.built = True
|
171 |
+
if getattr(self, "conv_layers", None) is not None:
|
172 |
+
for i, layer in enumerate(self.conv_layers):
|
173 |
+
with tf.name_scope(layer.name):
|
174 |
+
layer.build([None, None, self.in_channels] if i == 0 else [None, None, self.mid_channels // 2])
|
175 |
+
|
176 |
+
|
177 |
+
class TFSpeech2TextSinusoidalPositionalEmbedding(keras.layers.Layer):
|
178 |
+
"""This module produces sinusoidal positional embeddings of any length."""
|
179 |
+
|
180 |
+
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None, **kwargs):
|
181 |
+
super().__init__(**kwargs)
|
182 |
+
self.offset = 2
|
183 |
+
self.embedding_dim = embedding_dim
|
184 |
+
self.padding_idx = padding_idx
|
185 |
+
self.embedding_weights = self._get_embedding(num_positions + self.offset, embedding_dim, padding_idx)
|
186 |
+
|
187 |
+
@staticmethod
|
188 |
+
def _get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None) -> tf.Tensor:
|
189 |
+
"""
|
190 |
+
Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the
|
191 |
+
description in Section 3.5 of "Attention Is All You Need".
|
192 |
+
"""
|
193 |
+
half_dim = embedding_dim // 2
|
194 |
+
emb = tf.math.log(10000.0) / (half_dim - 1)
|
195 |
+
emb = tf.math.exp(tf.range(half_dim, dtype=tf.float32) * -emb)
|
196 |
+
emb = tf.expand_dims(tf.range(num_embeddings, dtype=tf.float32), axis=1) * tf.expand_dims(emb, axis=0)
|
197 |
+
emb = tf.reshape(tf.concat([tf.math.sin(emb), tf.math.cos(emb)], axis=1), shape=[num_embeddings, -1])
|
198 |
+
if embedding_dim % 2 == 1:
|
199 |
+
# zero pad
|
200 |
+
emb = tf.concat([emb, tf.zeros(num_embeddings, 1)], axis=1)
|
201 |
+
if padding_idx is not None:
|
202 |
+
emb = tf.concat([emb[:padding_idx, :], tf.zeros((1, tf.shape(emb)[1])), emb[padding_idx + 1 :, :]], axis=0)
|
203 |
+
return emb
|
204 |
+
|
205 |
+
def call(self, input_ids: tf.Tensor, past_key_values_length: int = 0) -> tf.Tensor:
|
206 |
+
bsz, seq_len = shape_list(input_ids)
|
207 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
208 |
+
position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
209 |
+
|
210 |
+
# Matt: The PyTorch code does a lot of work to cache the embeddings, setting the cached values as a
|
211 |
+
# model attribute in the forward pass. This is extremely forbidden in TF, which wants forward calls to be
|
212 |
+
# idempotent. TF doesn't need that caching anyway, since it can just store constants during compilation,
|
213 |
+
# so we just remove all of that code.
|
214 |
+
embeddings = self._get_embedding(
|
215 |
+
self.padding_idx + 1 + seq_len + self.offset + past_key_values_length, self.embedding_dim, self.padding_idx
|
216 |
+
)
|
217 |
+
return tf.reshape(tf.gather(embeddings, tf.reshape(position_ids, (-1,)), axis=0), (bsz, seq_len, -1))
|
218 |
+
|
219 |
+
@staticmethod
|
220 |
+
def create_position_ids_from_input_ids(
|
221 |
+
input_ids: tf.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0
|
222 |
+
) -> tf.Tensor:
|
223 |
+
"""
|
224 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
|
225 |
+
symbols are ignored. This is modified from fairseq's `utils.make_positions`.
|
226 |
+
|
227 |
+
Args:
|
228 |
+
x: tf.Tensor x:
|
229 |
+
Returns: tf.Tensor
|
230 |
+
"""
|
231 |
+
mask = tf.cast(tf.math.not_equal(input_ids, padding_idx), dtype=tf.int32)
|
232 |
+
incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask
|
233 |
+
return tf.cast(incremental_indices, dtype=tf.int64) + padding_idx
|
234 |
+
|
235 |
+
|
236 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Speech2Text
|
237 |
+
class TFSpeech2TextAttention(keras.layers.Layer):
|
238 |
+
"""Multi-headed attention from "Attention Is All You Need"""
|
239 |
+
|
240 |
+
def __init__(
|
241 |
+
self,
|
242 |
+
embed_dim: int,
|
243 |
+
num_heads: int,
|
244 |
+
dropout: float = 0.0,
|
245 |
+
is_decoder: bool = False,
|
246 |
+
bias: bool = True,
|
247 |
+
**kwargs,
|
248 |
+
):
|
249 |
+
super().__init__(**kwargs)
|
250 |
+
self.embed_dim = embed_dim
|
251 |
+
|
252 |
+
self.num_heads = num_heads
|
253 |
+
self.dropout = keras.layers.Dropout(dropout)
|
254 |
+
self.head_dim = embed_dim // num_heads
|
255 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
256 |
+
raise ValueError(
|
257 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
258 |
+
f" and `num_heads`: {num_heads})."
|
259 |
+
)
|
260 |
+
self.scaling = self.head_dim**-0.5
|
261 |
+
self.is_decoder = is_decoder
|
262 |
+
|
263 |
+
self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
|
264 |
+
self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
|
265 |
+
self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
|
266 |
+
self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
|
267 |
+
|
268 |
+
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
|
269 |
+
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
|
270 |
+
|
271 |
+
def call(
|
272 |
+
self,
|
273 |
+
hidden_states: tf.Tensor,
|
274 |
+
key_value_states: tf.Tensor | None = None,
|
275 |
+
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
|
276 |
+
attention_mask: tf.Tensor | None = None,
|
277 |
+
layer_head_mask: tf.Tensor | None = None,
|
278 |
+
training: Optional[bool] = False,
|
279 |
+
) -> Tuple[tf.Tensor, tf.Tensor | None]:
|
280 |
+
"""Input shape: Batch x Time x Channel"""
|
281 |
+
|
282 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
283 |
+
# for the decoder
|
284 |
+
is_cross_attention = key_value_states is not None
|
285 |
+
bsz, tgt_len, embed_dim = shape_list(hidden_states)
|
286 |
+
|
287 |
+
# get query proj
|
288 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
289 |
+
# get key, value proj
|
290 |
+
if is_cross_attention and past_key_value is not None:
|
291 |
+
# reuse k,v, cross_attentions
|
292 |
+
key_states = past_key_value[0]
|
293 |
+
value_states = past_key_value[1]
|
294 |
+
elif is_cross_attention:
|
295 |
+
# cross_attentions
|
296 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
297 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
298 |
+
elif past_key_value is not None:
|
299 |
+
# reuse k, v, self_attention
|
300 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
301 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
302 |
+
key_states = tf.concat([past_key_value[0], key_states], axis=2)
|
303 |
+
value_states = tf.concat([past_key_value[1], value_states], axis=2)
|
304 |
+
else:
|
305 |
+
# self_attention
|
306 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
307 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
308 |
+
|
309 |
+
if self.is_decoder:
|
310 |
+
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
|
311 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
312 |
+
# key/value_states (first "if" case)
|
313 |
+
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
|
314 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
315 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
316 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
317 |
+
past_key_value = (key_states, value_states)
|
318 |
+
|
319 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
320 |
+
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
|
321 |
+
key_states = tf.reshape(key_states, proj_shape)
|
322 |
+
value_states = tf.reshape(value_states, proj_shape)
|
323 |
+
|
324 |
+
src_len = shape_list(key_states)[1]
|
325 |
+
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
|
326 |
+
|
327 |
+
tf.debugging.assert_equal(
|
328 |
+
shape_list(attn_weights),
|
329 |
+
[bsz * self.num_heads, tgt_len, src_len],
|
330 |
+
message=(
|
331 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
332 |
+
f" {shape_list(attn_weights)}"
|
333 |
+
),
|
334 |
+
)
|
335 |
+
|
336 |
+
if attention_mask is not None:
|
337 |
+
tf.debugging.assert_equal(
|
338 |
+
shape_list(attention_mask),
|
339 |
+
[bsz, 1, tgt_len, src_len],
|
340 |
+
message=(
|
341 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
342 |
+
f" {shape_list(attention_mask)}"
|
343 |
+
),
|
344 |
+
)
|
345 |
+
|
346 |
+
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
|
347 |
+
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
|
348 |
+
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
|
349 |
+
|
350 |
+
attn_weights = stable_softmax(attn_weights, axis=-1)
|
351 |
+
|
352 |
+
if layer_head_mask is not None:
|
353 |
+
tf.debugging.assert_equal(
|
354 |
+
shape_list(layer_head_mask),
|
355 |
+
[self.num_heads],
|
356 |
+
message=(
|
357 |
+
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
|
358 |
+
f" {shape_list(layer_head_mask)}"
|
359 |
+
),
|
360 |
+
)
|
361 |
+
|
362 |
+
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
|
363 |
+
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
|
364 |
+
)
|
365 |
+
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
|
366 |
+
|
367 |
+
attn_probs = self.dropout(attn_weights, training=training)
|
368 |
+
attn_output = tf.matmul(attn_probs, value_states)
|
369 |
+
|
370 |
+
tf.debugging.assert_equal(
|
371 |
+
shape_list(attn_output),
|
372 |
+
[bsz * self.num_heads, tgt_len, self.head_dim],
|
373 |
+
message=(
|
374 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
375 |
+
f" {shape_list(attn_output)}"
|
376 |
+
),
|
377 |
+
)
|
378 |
+
|
379 |
+
attn_output = tf.transpose(
|
380 |
+
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
|
381 |
+
)
|
382 |
+
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
|
383 |
+
|
384 |
+
attn_output = self.out_proj(attn_output)
|
385 |
+
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
|
386 |
+
|
387 |
+
return attn_output, attn_weights, past_key_value
|
388 |
+
|
389 |
+
def build(self, input_shape=None):
|
390 |
+
if self.built:
|
391 |
+
return
|
392 |
+
self.built = True
|
393 |
+
if getattr(self, "k_proj", None) is not None:
|
394 |
+
with tf.name_scope(self.k_proj.name):
|
395 |
+
self.k_proj.build([None, None, self.embed_dim])
|
396 |
+
if getattr(self, "q_proj", None) is not None:
|
397 |
+
with tf.name_scope(self.q_proj.name):
|
398 |
+
self.q_proj.build([None, None, self.embed_dim])
|
399 |
+
if getattr(self, "v_proj", None) is not None:
|
400 |
+
with tf.name_scope(self.v_proj.name):
|
401 |
+
self.v_proj.build([None, None, self.embed_dim])
|
402 |
+
if getattr(self, "out_proj", None) is not None:
|
403 |
+
with tf.name_scope(self.out_proj.name):
|
404 |
+
self.out_proj.build([None, None, self.embed_dim])
|
405 |
+
|
406 |
+
|
407 |
+
class TFSpeech2TextEncoderLayer(keras.layers.Layer):
|
408 |
+
def __init__(self, config: Speech2TextConfig, **kwargs):
|
409 |
+
super().__init__(**kwargs)
|
410 |
+
self.embed_dim = config.d_model
|
411 |
+
self.self_attn = TFSpeech2TextAttention(
|
412 |
+
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
|
413 |
+
)
|
414 |
+
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
|
415 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
416 |
+
self.activation_fn = get_tf_activation(config.activation_function)
|
417 |
+
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
|
418 |
+
self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
|
419 |
+
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
|
420 |
+
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
|
421 |
+
self.config = config
|
422 |
+
|
423 |
+
def call(
|
424 |
+
self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: bool = False
|
425 |
+
):
|
426 |
+
"""
|
427 |
+
Args:
|
428 |
+
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
429 |
+
attention_mask (`tf.Tensor`): attention mask of size
|
430 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
431 |
+
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
|
432 |
+
`(encoder_attention_heads,)`
|
433 |
+
"""
|
434 |
+
residual = hidden_states
|
435 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
436 |
+
hidden_states, self_attn_weights, _ = self.self_attn(
|
437 |
+
hidden_states=hidden_states,
|
438 |
+
attention_mask=attention_mask,
|
439 |
+
layer_head_mask=layer_head_mask,
|
440 |
+
training=training,
|
441 |
+
)
|
442 |
+
|
443 |
+
tf.debugging.assert_equal(
|
444 |
+
shape_list(hidden_states),
|
445 |
+
shape_list(residual),
|
446 |
+
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
|
447 |
+
)
|
448 |
+
|
449 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
450 |
+
hidden_states = residual + hidden_states
|
451 |
+
|
452 |
+
residual = hidden_states
|
453 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
454 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
455 |
+
hidden_states = self.activation_dropout(hidden_states, training=training)
|
456 |
+
hidden_states = self.fc2(hidden_states)
|
457 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
458 |
+
hidden_states = residual + hidden_states
|
459 |
+
|
460 |
+
return hidden_states, self_attn_weights
|
461 |
+
|
462 |
+
def build(self, input_shape=None):
|
463 |
+
if self.built:
|
464 |
+
return
|
465 |
+
self.built = True
|
466 |
+
if getattr(self, "self_attn", None) is not None:
|
467 |
+
with tf.name_scope(self.self_attn.name):
|
468 |
+
self.self_attn.build(None)
|
469 |
+
if getattr(self, "self_attn_layer_norm", None) is not None:
|
470 |
+
with tf.name_scope(self.self_attn_layer_norm.name):
|
471 |
+
self.self_attn_layer_norm.build([None, None, self.embed_dim])
|
472 |
+
if getattr(self, "fc1", None) is not None:
|
473 |
+
with tf.name_scope(self.fc1.name):
|
474 |
+
self.fc1.build([None, None, self.embed_dim])
|
475 |
+
if getattr(self, "fc2", None) is not None:
|
476 |
+
with tf.name_scope(self.fc2.name):
|
477 |
+
self.fc2.build([None, None, self.config.encoder_ffn_dim])
|
478 |
+
if getattr(self, "final_layer_norm", None) is not None:
|
479 |
+
with tf.name_scope(self.final_layer_norm.name):
|
480 |
+
self.final_layer_norm.build([None, None, self.embed_dim])
|
481 |
+
|
482 |
+
|
483 |
+
class TFSpeech2TextDecoderLayer(keras.layers.Layer):
|
484 |
+
def __init__(self, config: Speech2TextConfig, **kwargs):
|
485 |
+
super().__init__(**kwargs)
|
486 |
+
self.embed_dim = config.d_model
|
487 |
+
|
488 |
+
self.self_attn = TFSpeech2TextAttention(
|
489 |
+
embed_dim=self.embed_dim,
|
490 |
+
num_heads=config.decoder_attention_heads,
|
491 |
+
dropout=config.attention_dropout,
|
492 |
+
name="self_attn",
|
493 |
+
is_decoder=True,
|
494 |
+
)
|
495 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
496 |
+
self.activation_fn = get_tf_activation(config.activation_function)
|
497 |
+
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
|
498 |
+
|
499 |
+
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
|
500 |
+
self.encoder_attn = TFSpeech2TextAttention(
|
501 |
+
self.embed_dim,
|
502 |
+
config.decoder_attention_heads,
|
503 |
+
dropout=config.attention_dropout,
|
504 |
+
name="encoder_attn",
|
505 |
+
is_decoder=True,
|
506 |
+
)
|
507 |
+
self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
|
508 |
+
self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
|
509 |
+
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
|
510 |
+
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
|
511 |
+
self.config = config
|
512 |
+
|
513 |
+
def call(
|
514 |
+
self,
|
515 |
+
hidden_states,
|
516 |
+
attention_mask: tf.Tensor | None = None,
|
517 |
+
encoder_hidden_states: tf.Tensor | None = None,
|
518 |
+
encoder_attention_mask: tf.Tensor | None = None,
|
519 |
+
layer_head_mask: tf.Tensor | None = None,
|
520 |
+
cross_attn_layer_head_mask: tf.Tensor | None = None,
|
521 |
+
past_key_value: Tuple[tf.Tensor] | None = None,
|
522 |
+
training=False,
|
523 |
+
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
|
524 |
+
"""
|
525 |
+
Args:
|
526 |
+
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
527 |
+
attention_mask (`tf.Tensor`): attention mask of size
|
528 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
529 |
+
encoder_hidden_states (`tf.Tensor`):
|
530 |
+
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
|
531 |
+
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
|
532 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
533 |
+
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
|
534 |
+
`(decoder_attention_heads,)`
|
535 |
+
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
|
536 |
+
`(decoder_attention_heads,)`
|
537 |
+
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
|
538 |
+
"""
|
539 |
+
residual = hidden_states
|
540 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
541 |
+
|
542 |
+
# Self Attention
|
543 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
544 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
545 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
546 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
547 |
+
hidden_states=hidden_states,
|
548 |
+
past_key_value=self_attn_past_key_value,
|
549 |
+
attention_mask=attention_mask,
|
550 |
+
layer_head_mask=layer_head_mask,
|
551 |
+
training=training,
|
552 |
+
)
|
553 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
554 |
+
hidden_states = residual + hidden_states
|
555 |
+
|
556 |
+
# Cross-Attention Block
|
557 |
+
cross_attn_present_key_value = None
|
558 |
+
cross_attn_weights = None
|
559 |
+
if encoder_hidden_states is not None:
|
560 |
+
residual = hidden_states
|
561 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
562 |
+
|
563 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
564 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
565 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
566 |
+
hidden_states=hidden_states,
|
567 |
+
key_value_states=encoder_hidden_states,
|
568 |
+
attention_mask=encoder_attention_mask,
|
569 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
570 |
+
past_key_value=cross_attn_past_key_value,
|
571 |
+
training=training,
|
572 |
+
)
|
573 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
574 |
+
hidden_states = residual + hidden_states
|
575 |
+
|
576 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
577 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
578 |
+
|
579 |
+
# Fully Connected
|
580 |
+
residual = hidden_states
|
581 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
582 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
583 |
+
hidden_states = self.activation_dropout(hidden_states, training=training)
|
584 |
+
hidden_states = self.fc2(hidden_states)
|
585 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
586 |
+
hidden_states = residual + hidden_states
|
587 |
+
|
588 |
+
return (
|
589 |
+
hidden_states,
|
590 |
+
self_attn_weights,
|
591 |
+
cross_attn_weights,
|
592 |
+
present_key_value,
|
593 |
+
)
|
594 |
+
|
595 |
+
def build(self, input_shape=None):
|
596 |
+
if self.built:
|
597 |
+
return
|
598 |
+
self.built = True
|
599 |
+
if getattr(self, "self_attn", None) is not None:
|
600 |
+
with tf.name_scope(self.self_attn.name):
|
601 |
+
self.self_attn.build(None)
|
602 |
+
if getattr(self, "self_attn_layer_norm", None) is not None:
|
603 |
+
with tf.name_scope(self.self_attn_layer_norm.name):
|
604 |
+
self.self_attn_layer_norm.build([None, None, self.embed_dim])
|
605 |
+
if getattr(self, "encoder_attn", None) is not None:
|
606 |
+
with tf.name_scope(self.encoder_attn.name):
|
607 |
+
self.encoder_attn.build(None)
|
608 |
+
if getattr(self, "encoder_attn_layer_norm", None) is not None:
|
609 |
+
with tf.name_scope(self.encoder_attn_layer_norm.name):
|
610 |
+
self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
|
611 |
+
if getattr(self, "fc1", None) is not None:
|
612 |
+
with tf.name_scope(self.fc1.name):
|
613 |
+
self.fc1.build([None, None, self.embed_dim])
|
614 |
+
if getattr(self, "fc2", None) is not None:
|
615 |
+
with tf.name_scope(self.fc2.name):
|
616 |
+
self.fc2.build([None, None, self.config.decoder_ffn_dim])
|
617 |
+
if getattr(self, "final_layer_norm", None) is not None:
|
618 |
+
with tf.name_scope(self.final_layer_norm.name):
|
619 |
+
self.final_layer_norm.build([None, None, self.embed_dim])
|
620 |
+
|
621 |
+
|
622 |
+
class TFSpeech2TextPreTrainedModel(TFPreTrainedModel):
|
623 |
+
config_class = Speech2TextConfig
|
624 |
+
base_model_prefix = "model"
|
625 |
+
main_input_name = "input_features"
|
626 |
+
_keys_to_ignore_on_load_unexpected = [r"encoder.embed_positions.weights"]
|
627 |
+
|
628 |
+
def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor):
|
629 |
+
"""
|
630 |
+
Computes the output length of the convolutional layers
|
631 |
+
"""
|
632 |
+
for _ in range(self.config.num_conv_layers):
|
633 |
+
input_lengths = (input_lengths - 1) // 2 + 1
|
634 |
+
|
635 |
+
return input_lengths
|
636 |
+
|
637 |
+
@property
|
638 |
+
def input_signature(self):
|
639 |
+
return {
|
640 |
+
"input_features": tf.TensorSpec(
|
641 |
+
(None, None, self.config.input_feat_per_channel * self.config.input_channels),
|
642 |
+
tf.float32,
|
643 |
+
name="input_features",
|
644 |
+
),
|
645 |
+
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
|
646 |
+
"decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"),
|
647 |
+
"decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"),
|
648 |
+
}
|
649 |
+
|
650 |
+
|
651 |
+
SPEECH_TO_TEXT_START_DOCSTRING = r"""
|
652 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
653 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
654 |
+
etc.)
|
655 |
+
|
656 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
657 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
658 |
+
behavior.
|
659 |
+
|
660 |
+
<Tip>
|
661 |
+
|
662 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
663 |
+
|
664 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
665 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
666 |
+
|
667 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
668 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
669 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
670 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
671 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
672 |
+
positional argument:
|
673 |
+
|
674 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
675 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
676 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
677 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
678 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
679 |
+
|
680 |
+
Note that when creating models and layers with
|
681 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
682 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
683 |
+
|
684 |
+
</Tip>
|
685 |
+
|
686 |
+
Parameters:
|
687 |
+
config ([`Speech2TextConfig`]):
|
688 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
689 |
+
load the weights associated with the model, only the configuration. Check out the
|
690 |
+
[`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
691 |
+
"""
|
692 |
+
|
693 |
+
|
694 |
+
SPEECH_TO_TEXT_INPUTS_DOCSTRING = r"""
|
695 |
+
Args:
|
696 |
+
input_features (`tf.Tensor` of shape `(batch_size, sequence_length, feature_size)`):
|
697 |
+
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained
|
698 |
+
by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.*
|
699 |
+
via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
700 |
+
[`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a
|
701 |
+
tensor of floats. See [`~Speech2TextFeatureExtractor.__call__`]
|
702 |
+
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
|
703 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
704 |
+
|
705 |
+
- 1 for tokens that are **not masked**,
|
706 |
+
- 0 for tokens that are **masked**.
|
707 |
+
|
708 |
+
[What are attention masks?](../glossary#attention-mask)
|
709 |
+
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
710 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
711 |
+
|
712 |
+
Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
713 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
714 |
+
|
715 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
716 |
+
|
717 |
+
SpeechToText uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
|
718 |
+
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
719 |
+
`past_key_values`).
|
720 |
+
|
721 |
+
For translation and summarization training, `decoder_input_ids` should be provided. If no
|
722 |
+
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
|
723 |
+
for denoising pre-training following the paper.
|
724 |
+
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
725 |
+
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
|
726 |
+
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
727 |
+
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
728 |
+
|
729 |
+
- 1 indicates the head is **not masked**,
|
730 |
+
- 0 indicates the head is **masked**.
|
731 |
+
|
732 |
+
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
733 |
+
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
734 |
+
|
735 |
+
- 1 indicates the head is **not masked**,
|
736 |
+
- 0 indicates the head is **masked**.
|
737 |
+
|
738 |
+
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
739 |
+
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
740 |
+
|
741 |
+
- 1 indicates the head is **not masked**,
|
742 |
+
- 0 indicates the head is **masked**.
|
743 |
+
|
744 |
+
encoder_outputs (`tf.FloatTensor`, *optional*):
|
745 |
+
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
746 |
+
of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
|
747 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
748 |
+
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
749 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
750 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
751 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
752 |
+
decoder_inputs_embeds (`tf.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
753 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
754 |
+
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
755 |
+
input (see `past_key_values`). This is useful if you want more control over how to convert
|
756 |
+
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
757 |
+
use_cache (`bool`, *optional*):
|
758 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
759 |
+
`past_key_values`).
|
760 |
+
output_attentions (`bool`, *optional*):
|
761 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
762 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
763 |
+
config will be used instead.
|
764 |
+
output_hidden_states (`bool`, *optional*):
|
765 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
766 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
767 |
+
used instead.
|
768 |
+
return_dict (`bool`, *optional*):
|
769 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
770 |
+
eager mode, in graph mode the value will always be set to True.
|
771 |
+
training (`bool`, *optional*, defaults to `False`):
|
772 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
773 |
+
behaviors between training and evaluation).
|
774 |
+
"""
|
775 |
+
|
776 |
+
|
777 |
+
@keras_serializable
|
778 |
+
class TFSpeech2TextEncoder(keras.layers.Layer):
|
779 |
+
config_class = Speech2TextConfig
|
780 |
+
"""
|
781 |
+
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
782 |
+
[`TFSpeech2TextEncoderLayer`].
|
783 |
+
|
784 |
+
Args:
|
785 |
+
config: Speech2TextConfig
|
786 |
+
"""
|
787 |
+
|
788 |
+
def __init__(self, config: Speech2TextConfig, **kwargs):
|
789 |
+
super().__init__(**kwargs)
|
790 |
+
self.config = config
|
791 |
+
|
792 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
793 |
+
self.layerdrop = config.encoder_layerdrop
|
794 |
+
|
795 |
+
embed_dim = config.d_model
|
796 |
+
self.padding_idx = config.pad_token_id
|
797 |
+
self.max_source_positions = config.max_source_positions
|
798 |
+
self.embed_scale = tf.math.sqrt(float(embed_dim)) if config.scale_embedding else 1.0
|
799 |
+
|
800 |
+
self.conv = TFConv1dSubsampler(config, name="conv")
|
801 |
+
|
802 |
+
self.embed_positions = TFSpeech2TextSinusoidalPositionalEmbedding(
|
803 |
+
num_positions=config.max_source_positions,
|
804 |
+
embedding_dim=embed_dim,
|
805 |
+
padding_idx=self.padding_idx,
|
806 |
+
name="embed_positions",
|
807 |
+
)
|
808 |
+
self.layers = [TFSpeech2TextEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
|
809 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
|
810 |
+
|
811 |
+
def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor):
|
812 |
+
"""
|
813 |
+
Computes the output length of the convolutional layers
|
814 |
+
"""
|
815 |
+
for _ in range(self.config.num_conv_layers):
|
816 |
+
input_lengths = (input_lengths - 1) // 2 + 1
|
817 |
+
|
818 |
+
return input_lengths
|
819 |
+
|
820 |
+
def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask):
|
821 |
+
# generate creates 3D attention mask, because of the shape of input_features
|
822 |
+
# convert it to 2D if thats the case
|
823 |
+
if len(attention_mask.shape) > 2:
|
824 |
+
attention_mask = attention_mask[:, :, -1]
|
825 |
+
|
826 |
+
subsampled_lengths = self._get_feat_extract_output_lengths(tf.math.reduce_sum(attention_mask, -1))
|
827 |
+
bsz = shape_list(attention_mask)[0]
|
828 |
+
indices = tf.concat(
|
829 |
+
(
|
830 |
+
tf.expand_dims(tf.range(bsz, dtype=attention_mask.dtype), -1),
|
831 |
+
tf.expand_dims(subsampled_lengths - 1, -1),
|
832 |
+
),
|
833 |
+
axis=-1,
|
834 |
+
)
|
835 |
+
attention_mask = tf.scatter_nd(indices=indices, updates=tf.ones(bsz), shape=[bsz, feature_vector_length])
|
836 |
+
attention_mask = tf.cast(tf.reverse(tf.math.cumsum(tf.reverse(attention_mask, [-1]), -1), [-1]), tf.int64)
|
837 |
+
return attention_mask
|
838 |
+
|
839 |
+
@unpack_inputs
|
840 |
+
def call(
|
841 |
+
self,
|
842 |
+
input_features=None,
|
843 |
+
attention_mask=None,
|
844 |
+
head_mask=None,
|
845 |
+
output_attentions=None,
|
846 |
+
output_hidden_states=None,
|
847 |
+
return_dict=None,
|
848 |
+
training=False,
|
849 |
+
):
|
850 |
+
"""
|
851 |
+
Args:
|
852 |
+
input_features (`tf.Tensor` of shape `(batch_size, sequence_length, feature_size)`):
|
853 |
+
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be
|
854 |
+
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
|
855 |
+
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
856 |
+
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features,
|
857 |
+
padding and conversion into a tensor of floats. See [`~Speech2TextFeatureExtractor.__call__`]
|
858 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
859 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
860 |
+
|
861 |
+
- 1 for tokens that are **not masked**,
|
862 |
+
- 0 for tokens that are **masked**.
|
863 |
+
|
864 |
+
[What are attention masks?](../glossary#attention-mask)
|
865 |
+
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
|
866 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
867 |
+
|
868 |
+
- 1 indicates the head is **not masked**,
|
869 |
+
- 0 indicates the head is **masked**.
|
870 |
+
|
871 |
+
output_attentions (`bool`, *optional*):
|
872 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
873 |
+
returned tensors for more detail.
|
874 |
+
output_hidden_states (`bool`, *optional*):
|
875 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
876 |
+
for more detail.
|
877 |
+
return_dict (`bool`, *optional*):
|
878 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
879 |
+
"""
|
880 |
+
if input_features is None:
|
881 |
+
raise ValueError("You have to specify input_features")
|
882 |
+
|
883 |
+
inputs_embeds = self.conv(input_features)
|
884 |
+
inputs_embeds = self.embed_scale * inputs_embeds
|
885 |
+
|
886 |
+
# subsample attention mask if necessary
|
887 |
+
if attention_mask is not None:
|
888 |
+
attention_mask = self._get_feature_vector_attention_mask(tf.shape(inputs_embeds)[1], attention_mask)
|
889 |
+
padding_mask = tf.cast(tf.math.not_equal(attention_mask, 1), tf.int64)
|
890 |
+
else:
|
891 |
+
padding_mask = tf.zeros(tf.shape(inputs_embeds)[:-1], dtype=tf.int64)
|
892 |
+
|
893 |
+
embed_pos = self.embed_positions(padding_mask)
|
894 |
+
|
895 |
+
hidden_states = inputs_embeds + embed_pos
|
896 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
897 |
+
|
898 |
+
# check attention mask and invert
|
899 |
+
if attention_mask is not None:
|
900 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
901 |
+
attention_mask = _expand_mask(attention_mask)
|
902 |
+
|
903 |
+
encoder_states = () if output_hidden_states else None
|
904 |
+
all_attentions = () if output_attentions else None
|
905 |
+
|
906 |
+
# check if head_mask has a correct number of layers specified if desired
|
907 |
+
if head_mask is not None:
|
908 |
+
tf.debugging.assert_equal(
|
909 |
+
shape_list(head_mask)[0],
|
910 |
+
len(self.layers),
|
911 |
+
message=(
|
912 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
|
913 |
+
f" {shape_list(head_mask)[0]}."
|
914 |
+
),
|
915 |
+
)
|
916 |
+
|
917 |
+
for idx, encoder_layer in enumerate(self.layers):
|
918 |
+
if output_hidden_states:
|
919 |
+
encoder_states = encoder_states + (hidden_states,)
|
920 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
921 |
+
dropout_probability = random.uniform(0, 1)
|
922 |
+
if training and (dropout_probability < self.layerdrop): # skip the layer
|
923 |
+
continue
|
924 |
+
|
925 |
+
hidden_states, attn = encoder_layer(
|
926 |
+
hidden_states,
|
927 |
+
attention_mask,
|
928 |
+
head_mask[idx] if head_mask is not None else None,
|
929 |
+
training=training,
|
930 |
+
)
|
931 |
+
|
932 |
+
if output_attentions:
|
933 |
+
all_attentions += (attn,)
|
934 |
+
|
935 |
+
hidden_states = self.layer_norm(hidden_states)
|
936 |
+
if output_hidden_states:
|
937 |
+
encoder_states = encoder_states + (hidden_states,)
|
938 |
+
|
939 |
+
if not return_dict:
|
940 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
941 |
+
return TFBaseModelOutput(
|
942 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
943 |
+
)
|
944 |
+
|
945 |
+
def build(self, input_shape=None):
|
946 |
+
if self.built:
|
947 |
+
return
|
948 |
+
self.built = True
|
949 |
+
if getattr(self, "conv", None) is not None:
|
950 |
+
with tf.name_scope(self.conv.name):
|
951 |
+
self.conv.build(None)
|
952 |
+
if getattr(self, "embed_positions", None) is not None:
|
953 |
+
with tf.name_scope(self.embed_positions.name):
|
954 |
+
self.embed_positions.build(None)
|
955 |
+
if getattr(self, "layer_norm", None) is not None:
|
956 |
+
with tf.name_scope(self.layer_norm.name):
|
957 |
+
self.layer_norm.build([None, None, self.config.d_model])
|
958 |
+
if getattr(self, "layers", None) is not None:
|
959 |
+
for layer in self.layers:
|
960 |
+
with tf.name_scope(layer.name):
|
961 |
+
layer.build(None)
|
962 |
+
|
963 |
+
|
964 |
+
@keras_serializable
|
965 |
+
class TFSpeech2TextDecoder(keras.layers.Layer):
|
966 |
+
config_class = Speech2TextConfig
|
967 |
+
"""
|
968 |
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFSpeech2TextDecoderLayer`]
|
969 |
+
|
970 |
+
Args:
|
971 |
+
config: Speech2TextConfig
|
972 |
+
"""
|
973 |
+
|
974 |
+
def __init__(self, config: Speech2TextConfig, **kwargs):
|
975 |
+
super().__init__(**kwargs)
|
976 |
+
self.config = config
|
977 |
+
self.layerdrop = config.decoder_layerdrop
|
978 |
+
self.padding_idx = config.pad_token_id
|
979 |
+
self.max_target_positions = config.max_target_positions
|
980 |
+
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
|
981 |
+
|
982 |
+
self.embed_tokens = TFSharedEmbeddings(config.vocab_size, config.d_model, name="embed_tokens")
|
983 |
+
|
984 |
+
self.embed_positions = TFSpeech2TextSinusoidalPositionalEmbedding(
|
985 |
+
num_positions=config.max_target_positions,
|
986 |
+
embedding_dim=config.d_model,
|
987 |
+
padding_idx=self.padding_idx,
|
988 |
+
name="embed_positions",
|
989 |
+
)
|
990 |
+
|
991 |
+
self.layers = [TFSpeech2TextDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
|
992 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
|
993 |
+
|
994 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
995 |
+
|
996 |
+
def get_embed_tokens(self):
|
997 |
+
return self.embed_tokens
|
998 |
+
|
999 |
+
def set_embed_tokens(self, embed_tokens):
|
1000 |
+
self.embed_tokens = embed_tokens
|
1001 |
+
|
1002 |
+
@unpack_inputs
|
1003 |
+
def call(
|
1004 |
+
self,
|
1005 |
+
input_ids=None,
|
1006 |
+
inputs_embeds=None,
|
1007 |
+
attention_mask=None,
|
1008 |
+
encoder_hidden_states=None,
|
1009 |
+
encoder_attention_mask=None,
|
1010 |
+
head_mask=None,
|
1011 |
+
cross_attn_head_mask=None,
|
1012 |
+
past_key_values=None,
|
1013 |
+
use_cache=None,
|
1014 |
+
output_attentions=None,
|
1015 |
+
output_hidden_states=None,
|
1016 |
+
return_dict=None,
|
1017 |
+
training=False,
|
1018 |
+
):
|
1019 |
+
r"""
|
1020 |
+
Args:
|
1021 |
+
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
1022 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
1023 |
+
provide it.
|
1024 |
+
|
1025 |
+
Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1026 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1027 |
+
|
1028 |
+
[What are input IDs?](../glossary#input-ids)
|
1029 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1030 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1031 |
+
|
1032 |
+
- 1 for tokens that are **not masked**,
|
1033 |
+
- 0 for tokens that are **masked**.
|
1034 |
+
|
1035 |
+
[What are attention masks?](../glossary#attention-mask)
|
1036 |
+
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
1037 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
1038 |
+
of the decoder.
|
1039 |
+
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
1040 |
+
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
1041 |
+
selected in `[0, 1]`:
|
1042 |
+
|
1043 |
+
- 1 for tokens that are **not masked**,
|
1044 |
+
- 0 for tokens that are **masked**.
|
1045 |
+
|
1046 |
+
[What are attention masks?](../glossary#attention-mask)
|
1047 |
+
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1048 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
1049 |
+
|
1050 |
+
- 1 indicates the head is **not masked**,
|
1051 |
+
- 0 indicates the head is **masked**.
|
1052 |
+
|
1053 |
+
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1054 |
+
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
1055 |
+
|
1056 |
+
- 1 indicates the head is **not masked**,
|
1057 |
+
- 0 indicates the head is **masked**.
|
1058 |
+
|
1059 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1060 |
+
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
|
1061 |
+
decoding.
|
1062 |
+
|
1063 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
1064 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
1065 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1066 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1067 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
1068 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
1069 |
+
than the model's internal embedding lookup matrix.
|
1070 |
+
output_attentions (`bool`, *optional*):
|
1071 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1072 |
+
returned tensors for more detail.
|
1073 |
+
output_hidden_states (`bool`, *optional*):
|
1074 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1075 |
+
for more detail.
|
1076 |
+
return_dict (`bool`, *optional*):
|
1077 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1078 |
+
"""
|
1079 |
+
|
1080 |
+
if input_ids is not None and inputs_embeds is not None:
|
1081 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1082 |
+
elif input_ids is not None:
|
1083 |
+
input_shape = shape_list(input_ids)
|
1084 |
+
elif inputs_embeds is not None:
|
1085 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
1086 |
+
else:
|
1087 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1088 |
+
|
1089 |
+
# past_key_values_length
|
1090 |
+
past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
|
1091 |
+
|
1092 |
+
if inputs_embeds is None:
|
1093 |
+
check_embeddings_within_bounds(input_ids, self.embed_tokens.vocab_size)
|
1094 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
1095 |
+
else:
|
1096 |
+
inputs_embeds = inputs_embeds
|
1097 |
+
|
1098 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1099 |
+
if input_shape[-1] > 1:
|
1100 |
+
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
|
1101 |
+
else:
|
1102 |
+
combined_attention_mask = _expand_mask(
|
1103 |
+
tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
if attention_mask is not None:
|
1107 |
+
combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
|
1108 |
+
|
1109 |
+
# expand encoder attention mask
|
1110 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1111 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1112 |
+
encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
|
1113 |
+
|
1114 |
+
# embed positions
|
1115 |
+
positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length)
|
1116 |
+
|
1117 |
+
hidden_states = inputs_embeds + positions
|
1118 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
1119 |
+
|
1120 |
+
# decoder layers
|
1121 |
+
all_hidden_states = () if output_hidden_states else None
|
1122 |
+
all_self_attns = () if output_attentions else None
|
1123 |
+
all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
|
1124 |
+
next_decoder_cache = () if use_cache else None
|
1125 |
+
|
1126 |
+
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
|
1127 |
+
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
|
1128 |
+
if attn_mask is not None:
|
1129 |
+
tf.debugging.assert_equal(
|
1130 |
+
shape_list(attn_mask)[0],
|
1131 |
+
len(self.layers),
|
1132 |
+
message=(
|
1133 |
+
f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
|
1134 |
+
f" {shape_list(attn_mask)[0]}."
|
1135 |
+
),
|
1136 |
+
)
|
1137 |
+
|
1138 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1139 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1140 |
+
if output_hidden_states:
|
1141 |
+
all_hidden_states += (hidden_states,)
|
1142 |
+
dropout_probability = random.uniform(0, 1)
|
1143 |
+
if training and (dropout_probability < self.layerdrop):
|
1144 |
+
continue
|
1145 |
+
|
1146 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1147 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
|
1148 |
+
|
1149 |
+
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
|
1150 |
+
hidden_states,
|
1151 |
+
attention_mask=combined_attention_mask,
|
1152 |
+
encoder_hidden_states=encoder_hidden_states,
|
1153 |
+
encoder_attention_mask=encoder_attention_mask,
|
1154 |
+
layer_head_mask=head_mask[idx] if head_mask is not None else None,
|
1155 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
1156 |
+
past_key_value=past_key_value,
|
1157 |
+
)
|
1158 |
+
|
1159 |
+
if use_cache:
|
1160 |
+
next_decoder_cache += (present_key_value,)
|
1161 |
+
|
1162 |
+
if output_attentions:
|
1163 |
+
all_self_attns += (layer_self_attn,)
|
1164 |
+
|
1165 |
+
if encoder_hidden_states is not None:
|
1166 |
+
all_cross_attns += (layer_cross_attn,)
|
1167 |
+
|
1168 |
+
hidden_states = self.layer_norm(hidden_states)
|
1169 |
+
if output_hidden_states:
|
1170 |
+
all_hidden_states += (hidden_states,)
|
1171 |
+
|
1172 |
+
next_cache = next_decoder_cache if use_cache else None
|
1173 |
+
|
1174 |
+
if not return_dict:
|
1175 |
+
return hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attns
|
1176 |
+
else:
|
1177 |
+
return TFBaseModelOutputWithPastAndCrossAttentions(
|
1178 |
+
last_hidden_state=hidden_states,
|
1179 |
+
past_key_values=next_cache,
|
1180 |
+
hidden_states=all_hidden_states,
|
1181 |
+
attentions=all_self_attns,
|
1182 |
+
cross_attentions=all_cross_attns,
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
def build(self, input_shape=None):
|
1186 |
+
if self.built:
|
1187 |
+
return
|
1188 |
+
self.built = True
|
1189 |
+
if getattr(self, "embed_tokens", None) is not None:
|
1190 |
+
with tf.name_scope(self.embed_tokens.name):
|
1191 |
+
self.embed_tokens.build(None)
|
1192 |
+
if getattr(self, "embed_positions", None) is not None:
|
1193 |
+
with tf.name_scope(self.embed_positions.name):
|
1194 |
+
self.embed_positions.build(None)
|
1195 |
+
if getattr(self, "layer_norm", None) is not None:
|
1196 |
+
with tf.name_scope(self.layer_norm.name):
|
1197 |
+
self.layer_norm.build([None, None, self.config.d_model])
|
1198 |
+
if getattr(self, "layers", None) is not None:
|
1199 |
+
for layer in self.layers:
|
1200 |
+
with tf.name_scope(layer.name):
|
1201 |
+
layer.build(None)
|
1202 |
+
|
1203 |
+
|
1204 |
+
@keras_serializable
|
1205 |
+
class TFSpeech2TextMainLayer(keras.layers.Layer):
|
1206 |
+
config_class = Speech2TextConfig
|
1207 |
+
|
1208 |
+
def __init__(self, config: Speech2TextConfig, **kwargs):
|
1209 |
+
super().__init__(**kwargs)
|
1210 |
+
self.config = config
|
1211 |
+
|
1212 |
+
self.encoder = TFSpeech2TextEncoder(config, name="encoder")
|
1213 |
+
self.decoder = TFSpeech2TextDecoder(config, name="decoder")
|
1214 |
+
|
1215 |
+
def get_input_embeddings(self):
|
1216 |
+
return self.decoder.embed_tokens
|
1217 |
+
|
1218 |
+
def set_input_embeddings(self, new_embeddings):
|
1219 |
+
self.decoder.embed_tokens = new_embeddings
|
1220 |
+
|
1221 |
+
@unpack_inputs
|
1222 |
+
def call(
|
1223 |
+
self,
|
1224 |
+
input_features=None,
|
1225 |
+
attention_mask=None,
|
1226 |
+
decoder_input_ids=None,
|
1227 |
+
decoder_attention_mask=None,
|
1228 |
+
head_mask=None,
|
1229 |
+
decoder_head_mask=None,
|
1230 |
+
cross_attn_head_mask=None,
|
1231 |
+
encoder_outputs=None,
|
1232 |
+
past_key_values=None,
|
1233 |
+
decoder_inputs_embeds=None,
|
1234 |
+
use_cache=None,
|
1235 |
+
output_attentions=None,
|
1236 |
+
output_hidden_states=None,
|
1237 |
+
return_dict=None,
|
1238 |
+
training=False,
|
1239 |
+
**kwargs,
|
1240 |
+
):
|
1241 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1242 |
+
output_hidden_states = (
|
1243 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1244 |
+
)
|
1245 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1246 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1247 |
+
|
1248 |
+
if encoder_outputs is None:
|
1249 |
+
encoder_outputs = self.encoder(
|
1250 |
+
input_features=input_features,
|
1251 |
+
attention_mask=attention_mask,
|
1252 |
+
head_mask=head_mask,
|
1253 |
+
output_attentions=output_attentions,
|
1254 |
+
output_hidden_states=output_hidden_states,
|
1255 |
+
return_dict=return_dict,
|
1256 |
+
training=training,
|
1257 |
+
)
|
1258 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
|
1259 |
+
elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
|
1260 |
+
encoder_outputs = TFBaseModelOutput(
|
1261 |
+
last_hidden_state=encoder_outputs[0],
|
1262 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1263 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1264 |
+
)
|
1265 |
+
# If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
|
1266 |
+
elif not return_dict and not isinstance(encoder_outputs, tuple):
|
1267 |
+
encoder_outputs = encoder_outputs.to_tuple()
|
1268 |
+
|
1269 |
+
# downsample encoder attention mask
|
1270 |
+
if attention_mask is not None:
|
1271 |
+
encoder_attention_mask = self.encoder._get_feature_vector_attention_mask(
|
1272 |
+
tf.shape(encoder_outputs[0])[1], attention_mask
|
1273 |
+
)
|
1274 |
+
else:
|
1275 |
+
encoder_attention_mask = None
|
1276 |
+
|
1277 |
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
1278 |
+
decoder_outputs = self.decoder(
|
1279 |
+
input_ids=decoder_input_ids,
|
1280 |
+
attention_mask=decoder_attention_mask,
|
1281 |
+
encoder_hidden_states=encoder_outputs[0],
|
1282 |
+
encoder_attention_mask=encoder_attention_mask,
|
1283 |
+
head_mask=decoder_head_mask,
|
1284 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1285 |
+
past_key_values=past_key_values,
|
1286 |
+
inputs_embeds=decoder_inputs_embeds,
|
1287 |
+
use_cache=use_cache,
|
1288 |
+
output_attentions=output_attentions,
|
1289 |
+
output_hidden_states=output_hidden_states,
|
1290 |
+
return_dict=return_dict,
|
1291 |
+
training=training,
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
if not return_dict:
|
1295 |
+
return decoder_outputs + encoder_outputs
|
1296 |
+
|
1297 |
+
return TFSeq2SeqModelOutput(
|
1298 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1299 |
+
past_key_values=decoder_outputs.past_key_values,
|
1300 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1301 |
+
decoder_attentions=decoder_outputs.attentions,
|
1302 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1303 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1304 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1305 |
+
encoder_attentions=encoder_outputs.attentions,
|
1306 |
+
)
|
1307 |
+
|
1308 |
+
def build(self, input_shape=None):
|
1309 |
+
if self.built:
|
1310 |
+
return
|
1311 |
+
self.built = True
|
1312 |
+
if getattr(self, "encoder", None) is not None:
|
1313 |
+
with tf.name_scope(self.encoder.name):
|
1314 |
+
self.encoder.build(None)
|
1315 |
+
if getattr(self, "decoder", None) is not None:
|
1316 |
+
with tf.name_scope(self.decoder.name):
|
1317 |
+
self.decoder.build(None)
|
1318 |
+
|
1319 |
+
|
1320 |
+
@add_start_docstrings(
|
1321 |
+
"The bare Speech2Text Model outputting raw hidden-states without any specific head on top.",
|
1322 |
+
SPEECH_TO_TEXT_START_DOCSTRING,
|
1323 |
+
)
|
1324 |
+
class TFSpeech2TextModel(TFSpeech2TextPreTrainedModel):
|
1325 |
+
def __init__(self, config: Speech2TextConfig, *inputs, **kwargs):
|
1326 |
+
super().__init__(config, *inputs, **kwargs)
|
1327 |
+
|
1328 |
+
self.model = TFSpeech2TextMainLayer(config, name="model")
|
1329 |
+
|
1330 |
+
def get_encoder(self):
|
1331 |
+
return self.model.encoder
|
1332 |
+
|
1333 |
+
def get_decoder(self):
|
1334 |
+
return self.model.decoder
|
1335 |
+
|
1336 |
+
@unpack_inputs
|
1337 |
+
@add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING)
|
1338 |
+
@add_code_sample_docstrings(
|
1339 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1340 |
+
output_type=TFSeq2SeqModelOutput,
|
1341 |
+
config_class=_CONFIG_FOR_DOC,
|
1342 |
+
)
|
1343 |
+
def call(
|
1344 |
+
self,
|
1345 |
+
input_features: TFModelInputType | None = None,
|
1346 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1347 |
+
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
|
1348 |
+
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1349 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1350 |
+
decoder_head_mask: np.ndarray | tf.Tensor | None = None,
|
1351 |
+
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
|
1352 |
+
encoder_outputs: np.ndarray | tf.Tensor | None = None,
|
1353 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1354 |
+
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1355 |
+
use_cache: Optional[bool] = None,
|
1356 |
+
output_attentions: Optional[bool] = None,
|
1357 |
+
output_hidden_states: Optional[bool] = None,
|
1358 |
+
return_dict: Optional[bool] = None,
|
1359 |
+
training: bool = False,
|
1360 |
+
**kwargs,
|
1361 |
+
) -> Union[Tuple, TFSeq2SeqModelOutput]:
|
1362 |
+
outputs = self.model(
|
1363 |
+
input_features=input_features,
|
1364 |
+
attention_mask=attention_mask,
|
1365 |
+
decoder_input_ids=decoder_input_ids,
|
1366 |
+
decoder_attention_mask=decoder_attention_mask,
|
1367 |
+
head_mask=head_mask,
|
1368 |
+
decoder_head_mask=decoder_head_mask,
|
1369 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1370 |
+
encoder_outputs=encoder_outputs,
|
1371 |
+
past_key_values=past_key_values,
|
1372 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1373 |
+
use_cache=use_cache,
|
1374 |
+
output_attentions=output_attentions,
|
1375 |
+
output_hidden_states=output_hidden_states,
|
1376 |
+
return_dict=return_dict,
|
1377 |
+
training=training,
|
1378 |
+
)
|
1379 |
+
|
1380 |
+
return outputs
|
1381 |
+
|
1382 |
+
def serving_output(self, output):
|
1383 |
+
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
|
1384 |
+
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
|
1385 |
+
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
|
1386 |
+
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
|
1387 |
+
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
|
1388 |
+
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
|
1389 |
+
|
1390 |
+
return TFSeq2SeqModelOutput(
|
1391 |
+
last_hidden_state=output.last_hidden_state,
|
1392 |
+
past_key_values=pkv,
|
1393 |
+
decoder_hidden_states=dec_hs,
|
1394 |
+
decoder_attentions=dec_attns,
|
1395 |
+
cross_attentions=cross_attns,
|
1396 |
+
encoder_last_hidden_state=output.encoder_last_hidden_state,
|
1397 |
+
encoder_hidden_states=enc_hs,
|
1398 |
+
encoder_attentions=enc_attns,
|
1399 |
+
)
|
1400 |
+
|
1401 |
+
def build(self, input_shape=None):
|
1402 |
+
if self.built:
|
1403 |
+
return
|
1404 |
+
self.built = True
|
1405 |
+
if getattr(self, "model", None) is not None:
|
1406 |
+
with tf.name_scope(self.model.name):
|
1407 |
+
self.model.build(None)
|
1408 |
+
|
1409 |
+
|
1410 |
+
@add_start_docstrings(
|
1411 |
+
"The Speech2Text Model with a language modeling head. Can be used for summarization.",
|
1412 |
+
SPEECH_TO_TEXT_START_DOCSTRING,
|
1413 |
+
)
|
1414 |
+
class TFSpeech2TextForConditionalGeneration(TFSpeech2TextPreTrainedModel, TFCausalLanguageModelingLoss):
|
1415 |
+
def __init__(self, config: Speech2TextConfig):
|
1416 |
+
super().__init__(config)
|
1417 |
+
self.model = TFSpeech2TextMainLayer(config, name="model")
|
1418 |
+
self.lm_head = keras.layers.Dense(self.config.vocab_size, use_bias=False, name="lm_head")
|
1419 |
+
# TODO (Joao): investigate why Speech2Text has numerical issues in XLA generate
|
1420 |
+
self.supports_xla_generation = False
|
1421 |
+
self.config = config
|
1422 |
+
|
1423 |
+
def get_encoder(self):
|
1424 |
+
return self.model.encoder
|
1425 |
+
|
1426 |
+
def get_decoder(self):
|
1427 |
+
return self.model.decoder
|
1428 |
+
|
1429 |
+
def resize_token_embeddings(self, new_num_tokens: int) -> tf.Variable:
|
1430 |
+
new_embeddings = super().resize_token_embeddings(new_num_tokens)
|
1431 |
+
return new_embeddings
|
1432 |
+
|
1433 |
+
def get_output_embeddings(self):
|
1434 |
+
return self.lm_head
|
1435 |
+
|
1436 |
+
def set_output_embeddings(self, new_embeddings):
|
1437 |
+
self.lm_head = new_embeddings
|
1438 |
+
|
1439 |
+
@unpack_inputs
|
1440 |
+
@add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING)
|
1441 |
+
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
1442 |
+
def call(
|
1443 |
+
self,
|
1444 |
+
input_features: TFModelInputType | None = None,
|
1445 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1446 |
+
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
|
1447 |
+
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1448 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1449 |
+
decoder_head_mask: np.ndarray | tf.Tensor | None = None,
|
1450 |
+
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
|
1451 |
+
encoder_outputs: np.ndarray | tf.Tensor | None = None,
|
1452 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1453 |
+
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1454 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1455 |
+
use_cache: Optional[bool] = None,
|
1456 |
+
output_attentions: Optional[bool] = None,
|
1457 |
+
output_hidden_states: Optional[bool] = None,
|
1458 |
+
return_dict: Optional[bool] = None,
|
1459 |
+
training: Optional[bool] = False,
|
1460 |
+
**kwargs,
|
1461 |
+
) -> Union[Tuple, TFSeq2SeqLMOutput]:
|
1462 |
+
r"""
|
1463 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1464 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1465 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1466 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1467 |
+
|
1468 |
+
Returns:
|
1469 |
+
|
1470 |
+
Example:
|
1471 |
+
|
1472 |
+
```python
|
1473 |
+
>>> import tensorflow as tf
|
1474 |
+
>>> from transformers import Speech2TextProcessor, TFSpeech2TextForConditionalGeneration
|
1475 |
+
>>> from datasets import load_dataset
|
1476 |
+
>>> import soundfile as sf
|
1477 |
+
|
1478 |
+
>>> model = TFSpeech2TextForConditionalGeneration.from_pretrained(
|
1479 |
+
... "facebook/s2t-small-librispeech-asr", from_pt=True
|
1480 |
+
... )
|
1481 |
+
>>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
|
1482 |
+
|
1483 |
+
|
1484 |
+
>>> def map_to_array(batch):
|
1485 |
+
... speech, _ = sf.read(batch["file"])
|
1486 |
+
... batch["speech"] = speech
|
1487 |
+
... return batch
|
1488 |
+
|
1489 |
+
|
1490 |
+
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
1491 |
+
>>> ds = ds.map(map_to_array)
|
1492 |
+
>>> ds.set_format(type="tf")
|
1493 |
+
|
1494 |
+
>>> input_features = processor(
|
1495 |
+
... ds["speech"][0], sampling_rate=16000, return_tensors="tf"
|
1496 |
+
... ).input_features # Batch size 1
|
1497 |
+
>>> generated_ids = model.generate(input_features)
|
1498 |
+
|
1499 |
+
>>> transcription = processor.batch_decode(generated_ids)
|
1500 |
+
```"""
|
1501 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1502 |
+
|
1503 |
+
if labels is not None:
|
1504 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1505 |
+
decoder_input_ids = shift_tokens_right(
|
1506 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
1507 |
+
)
|
1508 |
+
|
1509 |
+
outputs = self.model(
|
1510 |
+
input_features=input_features,
|
1511 |
+
attention_mask=attention_mask,
|
1512 |
+
decoder_input_ids=decoder_input_ids,
|
1513 |
+
encoder_outputs=encoder_outputs,
|
1514 |
+
decoder_attention_mask=decoder_attention_mask,
|
1515 |
+
head_mask=head_mask,
|
1516 |
+
decoder_head_mask=decoder_head_mask,
|
1517 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1518 |
+
past_key_values=past_key_values,
|
1519 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1520 |
+
use_cache=use_cache,
|
1521 |
+
output_attentions=output_attentions,
|
1522 |
+
output_hidden_states=output_hidden_states,
|
1523 |
+
return_dict=return_dict,
|
1524 |
+
training=training,
|
1525 |
+
)
|
1526 |
+
lm_logits = self.lm_head(outputs[0])
|
1527 |
+
masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
|
1528 |
+
|
1529 |
+
if not return_dict:
|
1530 |
+
output = (lm_logits,) + outputs[1:]
|
1531 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1532 |
+
|
1533 |
+
return TFSeq2SeqLMOutput(
|
1534 |
+
loss=masked_lm_loss,
|
1535 |
+
logits=lm_logits,
|
1536 |
+
past_key_values=outputs.past_key_values,
|
1537 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1538 |
+
decoder_attentions=outputs.decoder_attentions,
|
1539 |
+
cross_attentions=outputs.cross_attentions,
|
1540 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1541 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1542 |
+
encoder_attentions=outputs.encoder_attentions,
|
1543 |
+
)
|
1544 |
+
|
1545 |
+
def serving_output(self, output):
|
1546 |
+
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
|
1547 |
+
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
|
1548 |
+
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
|
1549 |
+
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
|
1550 |
+
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
|
1551 |
+
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
|
1552 |
+
|
1553 |
+
return TFSeq2SeqLMOutput(
|
1554 |
+
logits=output.logits,
|
1555 |
+
past_key_values=pkv,
|
1556 |
+
decoder_hidden_states=dec_hs,
|
1557 |
+
decoder_attentions=dec_attns,
|
1558 |
+
cross_attentions=cross_attns,
|
1559 |
+
encoder_last_hidden_state=output.encoder_last_hidden_state,
|
1560 |
+
encoder_hidden_states=enc_hs,
|
1561 |
+
encoder_attentions=enc_attns,
|
1562 |
+
)
|
1563 |
+
|
1564 |
+
def prepare_inputs_for_generation(
|
1565 |
+
self,
|
1566 |
+
decoder_input_ids,
|
1567 |
+
past_key_values=None,
|
1568 |
+
attention_mask=None,
|
1569 |
+
head_mask=None,
|
1570 |
+
decoder_head_mask=None,
|
1571 |
+
cross_attn_head_mask=None,
|
1572 |
+
use_cache=None,
|
1573 |
+
encoder_outputs=None,
|
1574 |
+
**kwargs,
|
1575 |
+
):
|
1576 |
+
# cut decoder_input_ids if past is used
|
1577 |
+
if past_key_values is not None:
|
1578 |
+
decoder_input_ids = decoder_input_ids[:, -1:]
|
1579 |
+
|
1580 |
+
return {
|
1581 |
+
"input_features": None, # needs to be passed to make Keras.layer.__call__ happy
|
1582 |
+
"encoder_outputs": encoder_outputs,
|
1583 |
+
"past_key_values": past_key_values,
|
1584 |
+
"decoder_input_ids": decoder_input_ids,
|
1585 |
+
"attention_mask": attention_mask,
|
1586 |
+
"head_mask": head_mask,
|
1587 |
+
"decoder_head_mask": decoder_head_mask,
|
1588 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1589 |
+
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
1590 |
+
}
|
1591 |
+
|
1592 |
+
def build(self, input_shape=None):
|
1593 |
+
if self.built:
|
1594 |
+
return
|
1595 |
+
self.built = True
|
1596 |
+
if getattr(self, "model", None) is not None:
|
1597 |
+
with tf.name_scope(self.model.name):
|
1598 |
+
self.model.build(None)
|
1599 |
+
if getattr(self, "lm_head", None) is not None:
|
1600 |
+
with tf.name_scope(self.lm_head.name):
|
1601 |
+
self.lm_head.build([None, None, self.config.d_model])
|
1602 |
+
|
1603 |
+
def tf_to_pt_weight_rename(self, tf_weight):
|
1604 |
+
if tf_weight == "lm_head.weight":
|
1605 |
+
return tf_weight, "model.decoder.embed_tokens.weight"
|
1606 |
+
else:
|
1607 |
+
return (tf_weight,)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/processing_speech_to_text.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Speech processor class for Speech2Text
|
17 |
+
"""
|
18 |
+
import warnings
|
19 |
+
from contextlib import contextmanager
|
20 |
+
|
21 |
+
from ...processing_utils import ProcessorMixin
|
22 |
+
|
23 |
+
|
24 |
+
class Speech2TextProcessor(ProcessorMixin):
|
25 |
+
r"""
|
26 |
+
Constructs a Speech2Text processor which wraps a Speech2Text feature extractor and a Speech2Text tokenizer into a
|
27 |
+
single processor.
|
28 |
+
|
29 |
+
[`Speech2TextProcessor`] offers all the functionalities of [`Speech2TextFeatureExtractor`] and
|
30 |
+
[`Speech2TextTokenizer`]. See the [`~Speech2TextProcessor.__call__`] and [`~Speech2TextProcessor.decode`] for more
|
31 |
+
information.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
feature_extractor (`Speech2TextFeatureExtractor`):
|
35 |
+
An instance of [`Speech2TextFeatureExtractor`]. The feature extractor is a required input.
|
36 |
+
tokenizer (`Speech2TextTokenizer`):
|
37 |
+
An instance of [`Speech2TextTokenizer`]. The tokenizer is a required input.
|
38 |
+
"""
|
39 |
+
|
40 |
+
feature_extractor_class = "Speech2TextFeatureExtractor"
|
41 |
+
tokenizer_class = "Speech2TextTokenizer"
|
42 |
+
|
43 |
+
def __init__(self, feature_extractor, tokenizer):
|
44 |
+
super().__init__(feature_extractor, tokenizer)
|
45 |
+
self.current_processor = self.feature_extractor
|
46 |
+
self._in_target_context_manager = False
|
47 |
+
|
48 |
+
def __call__(self, *args, **kwargs):
|
49 |
+
"""
|
50 |
+
When used in normal mode, this method forwards all its arguments to Speech2TextFeatureExtractor's
|
51 |
+
[`~Speech2TextFeatureExtractor.__call__`] and returns its output. If used in the context
|
52 |
+
[`~Speech2TextProcessor.as_target_processor`] this method forwards all its arguments to Speech2TextTokenizer's
|
53 |
+
[`~Speech2TextTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
|
54 |
+
information.
|
55 |
+
"""
|
56 |
+
# For backward compatibility
|
57 |
+
if self._in_target_context_manager:
|
58 |
+
return self.current_processor(*args, **kwargs)
|
59 |
+
|
60 |
+
if "raw_speech" in kwargs:
|
61 |
+
warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.")
|
62 |
+
audio = kwargs.pop("raw_speech")
|
63 |
+
else:
|
64 |
+
audio = kwargs.pop("audio", None)
|
65 |
+
sampling_rate = kwargs.pop("sampling_rate", None)
|
66 |
+
text = kwargs.pop("text", None)
|
67 |
+
if len(args) > 0:
|
68 |
+
audio = args[0]
|
69 |
+
args = args[1:]
|
70 |
+
|
71 |
+
if audio is None and text is None:
|
72 |
+
raise ValueError("You need to specify either an `audio` or `text` input to process.")
|
73 |
+
|
74 |
+
if audio is not None:
|
75 |
+
inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
|
76 |
+
if text is not None:
|
77 |
+
encodings = self.tokenizer(text, **kwargs)
|
78 |
+
|
79 |
+
if text is None:
|
80 |
+
return inputs
|
81 |
+
elif audio is None:
|
82 |
+
return encodings
|
83 |
+
else:
|
84 |
+
inputs["labels"] = encodings["input_ids"]
|
85 |
+
return inputs
|
86 |
+
|
87 |
+
def batch_decode(self, *args, **kwargs):
|
88 |
+
"""
|
89 |
+
This method forwards all its arguments to Speech2TextTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
90 |
+
refer to the docstring of this method for more information.
|
91 |
+
"""
|
92 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
93 |
+
|
94 |
+
def decode(self, *args, **kwargs):
|
95 |
+
"""
|
96 |
+
This method forwards all its arguments to Speech2TextTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
|
97 |
+
to the docstring of this method for more information.
|
98 |
+
"""
|
99 |
+
return self.tokenizer.decode(*args, **kwargs)
|
100 |
+
|
101 |
+
@contextmanager
|
102 |
+
def as_target_processor(self):
|
103 |
+
"""
|
104 |
+
Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning
|
105 |
+
Speech2Text.
|
106 |
+
"""
|
107 |
+
warnings.warn(
|
108 |
+
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
|
109 |
+
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
|
110 |
+
"your audio inputs, or in a separate call."
|
111 |
+
)
|
112 |
+
self._in_target_context_manager = True
|
113 |
+
self.current_processor = self.tokenizer
|
114 |
+
yield
|
115 |
+
self.current_processor = self.feature_extractor
|
116 |
+
self._in_target_context_manager = False
|