Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/__init__.py +133 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/boundary.py +167 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/bridges.py +205 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/chordal.py +442 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/clique.py +754 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/cluster.py +609 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/communicability_alg.py +162 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/core.py +648 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/covering.py +142 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/cuts.py +400 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/dag.py +1259 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/dominance.py +135 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/dominating.py +94 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/efficiency_measures.py +168 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/hierarchy.py +48 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/isolate.py +107 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/link_prediction.py +688 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/lowest_common_ancestors.py +268 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/matching.py +1151 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/mis.py +77 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/moral.py +59 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/non_randomness.py +96 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/planar_drawing.py +464 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/reciprocity.py +97 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/regular.py +214 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/__init__.py +5 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/astar.py +239 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/dense.py +256 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/generic.py +729 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_generic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_unweighted.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_weighted.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/test_astar.py +248 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/test_dense.py +212 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/test_dense_numpy.py +89 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/test_generic.py +450 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/test_unweighted.py +149 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/test_weighted.py +972 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/unweighted.py +576 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/weighted.py +2517 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/smallworld.py +403 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/smetric.py +60 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/sparsifiers.py +295 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/summarization.py +563 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/swap.py +407 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/tournament.py +406 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/triads.py +604 -0
- env-llmeval/lib/python3.10/site-packages/networkx/algorithms/vitality.py +76 -0
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/__init__.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from networkx.algorithms.assortativity import *
|
2 |
+
from networkx.algorithms.asteroidal import *
|
3 |
+
from networkx.algorithms.boundary import *
|
4 |
+
from networkx.algorithms.broadcasting import *
|
5 |
+
from networkx.algorithms.bridges import *
|
6 |
+
from networkx.algorithms.chains import *
|
7 |
+
from networkx.algorithms.centrality import *
|
8 |
+
from networkx.algorithms.chordal import *
|
9 |
+
from networkx.algorithms.cluster import *
|
10 |
+
from networkx.algorithms.clique import *
|
11 |
+
from networkx.algorithms.communicability_alg import *
|
12 |
+
from networkx.algorithms.components import *
|
13 |
+
from networkx.algorithms.coloring import *
|
14 |
+
from networkx.algorithms.core import *
|
15 |
+
from networkx.algorithms.covering import *
|
16 |
+
from networkx.algorithms.cycles import *
|
17 |
+
from networkx.algorithms.cuts import *
|
18 |
+
from networkx.algorithms.d_separation import *
|
19 |
+
from networkx.algorithms.dag import *
|
20 |
+
from networkx.algorithms.distance_measures import *
|
21 |
+
from networkx.algorithms.distance_regular import *
|
22 |
+
from networkx.algorithms.dominance import *
|
23 |
+
from networkx.algorithms.dominating import *
|
24 |
+
from networkx.algorithms.efficiency_measures import *
|
25 |
+
from networkx.algorithms.euler import *
|
26 |
+
from networkx.algorithms.graphical import *
|
27 |
+
from networkx.algorithms.hierarchy import *
|
28 |
+
from networkx.algorithms.hybrid import *
|
29 |
+
from networkx.algorithms.link_analysis import *
|
30 |
+
from networkx.algorithms.link_prediction import *
|
31 |
+
from networkx.algorithms.lowest_common_ancestors import *
|
32 |
+
from networkx.algorithms.isolate import *
|
33 |
+
from networkx.algorithms.matching import *
|
34 |
+
from networkx.algorithms.minors import *
|
35 |
+
from networkx.algorithms.mis import *
|
36 |
+
from networkx.algorithms.moral import *
|
37 |
+
from networkx.algorithms.non_randomness import *
|
38 |
+
from networkx.algorithms.operators import *
|
39 |
+
from networkx.algorithms.planarity import *
|
40 |
+
from networkx.algorithms.planar_drawing import *
|
41 |
+
from networkx.algorithms.polynomials import *
|
42 |
+
from networkx.algorithms.reciprocity import *
|
43 |
+
from networkx.algorithms.regular import *
|
44 |
+
from networkx.algorithms.richclub import *
|
45 |
+
from networkx.algorithms.shortest_paths import *
|
46 |
+
from networkx.algorithms.similarity import *
|
47 |
+
from networkx.algorithms.graph_hashing import *
|
48 |
+
from networkx.algorithms.simple_paths import *
|
49 |
+
from networkx.algorithms.smallworld import *
|
50 |
+
from networkx.algorithms.smetric import *
|
51 |
+
from networkx.algorithms.structuralholes import *
|
52 |
+
from networkx.algorithms.sparsifiers import *
|
53 |
+
from networkx.algorithms.summarization import *
|
54 |
+
from networkx.algorithms.swap import *
|
55 |
+
from networkx.algorithms.time_dependent import *
|
56 |
+
from networkx.algorithms.traversal import *
|
57 |
+
from networkx.algorithms.triads import *
|
58 |
+
from networkx.algorithms.vitality import *
|
59 |
+
from networkx.algorithms.voronoi import *
|
60 |
+
from networkx.algorithms.walks import *
|
61 |
+
from networkx.algorithms.wiener import *
|
62 |
+
|
63 |
+
# Make certain subpackages available to the user as direct imports from
|
64 |
+
# the `networkx` namespace.
|
65 |
+
from networkx.algorithms import approximation
|
66 |
+
from networkx.algorithms import assortativity
|
67 |
+
from networkx.algorithms import bipartite
|
68 |
+
from networkx.algorithms import node_classification
|
69 |
+
from networkx.algorithms import centrality
|
70 |
+
from networkx.algorithms import chordal
|
71 |
+
from networkx.algorithms import cluster
|
72 |
+
from networkx.algorithms import clique
|
73 |
+
from networkx.algorithms import components
|
74 |
+
from networkx.algorithms import connectivity
|
75 |
+
from networkx.algorithms import community
|
76 |
+
from networkx.algorithms import coloring
|
77 |
+
from networkx.algorithms import flow
|
78 |
+
from networkx.algorithms import isomorphism
|
79 |
+
from networkx.algorithms import link_analysis
|
80 |
+
from networkx.algorithms import lowest_common_ancestors
|
81 |
+
from networkx.algorithms import operators
|
82 |
+
from networkx.algorithms import shortest_paths
|
83 |
+
from networkx.algorithms import tournament
|
84 |
+
from networkx.algorithms import traversal
|
85 |
+
from networkx.algorithms import tree
|
86 |
+
|
87 |
+
# Make certain functions from some of the previous subpackages available
|
88 |
+
# to the user as direct imports from the `networkx` namespace.
|
89 |
+
from networkx.algorithms.bipartite import complete_bipartite_graph
|
90 |
+
from networkx.algorithms.bipartite import is_bipartite
|
91 |
+
from networkx.algorithms.bipartite import projected_graph
|
92 |
+
from networkx.algorithms.connectivity import all_pairs_node_connectivity
|
93 |
+
from networkx.algorithms.connectivity import all_node_cuts
|
94 |
+
from networkx.algorithms.connectivity import average_node_connectivity
|
95 |
+
from networkx.algorithms.connectivity import edge_connectivity
|
96 |
+
from networkx.algorithms.connectivity import edge_disjoint_paths
|
97 |
+
from networkx.algorithms.connectivity import k_components
|
98 |
+
from networkx.algorithms.connectivity import k_edge_components
|
99 |
+
from networkx.algorithms.connectivity import k_edge_subgraphs
|
100 |
+
from networkx.algorithms.connectivity import k_edge_augmentation
|
101 |
+
from networkx.algorithms.connectivity import is_k_edge_connected
|
102 |
+
from networkx.algorithms.connectivity import minimum_edge_cut
|
103 |
+
from networkx.algorithms.connectivity import minimum_node_cut
|
104 |
+
from networkx.algorithms.connectivity import node_connectivity
|
105 |
+
from networkx.algorithms.connectivity import node_disjoint_paths
|
106 |
+
from networkx.algorithms.connectivity import stoer_wagner
|
107 |
+
from networkx.algorithms.flow import capacity_scaling
|
108 |
+
from networkx.algorithms.flow import cost_of_flow
|
109 |
+
from networkx.algorithms.flow import gomory_hu_tree
|
110 |
+
from networkx.algorithms.flow import max_flow_min_cost
|
111 |
+
from networkx.algorithms.flow import maximum_flow
|
112 |
+
from networkx.algorithms.flow import maximum_flow_value
|
113 |
+
from networkx.algorithms.flow import min_cost_flow
|
114 |
+
from networkx.algorithms.flow import min_cost_flow_cost
|
115 |
+
from networkx.algorithms.flow import minimum_cut
|
116 |
+
from networkx.algorithms.flow import minimum_cut_value
|
117 |
+
from networkx.algorithms.flow import network_simplex
|
118 |
+
from networkx.algorithms.isomorphism import could_be_isomorphic
|
119 |
+
from networkx.algorithms.isomorphism import fast_could_be_isomorphic
|
120 |
+
from networkx.algorithms.isomorphism import faster_could_be_isomorphic
|
121 |
+
from networkx.algorithms.isomorphism import is_isomorphic
|
122 |
+
from networkx.algorithms.isomorphism.vf2pp import *
|
123 |
+
from networkx.algorithms.tree.branchings import maximum_branching
|
124 |
+
from networkx.algorithms.tree.branchings import maximum_spanning_arborescence
|
125 |
+
from networkx.algorithms.tree.branchings import minimum_branching
|
126 |
+
from networkx.algorithms.tree.branchings import minimum_spanning_arborescence
|
127 |
+
from networkx.algorithms.tree.branchings import ArborescenceIterator
|
128 |
+
from networkx.algorithms.tree.coding import *
|
129 |
+
from networkx.algorithms.tree.decomposition import *
|
130 |
+
from networkx.algorithms.tree.mst import *
|
131 |
+
from networkx.algorithms.tree.operations import *
|
132 |
+
from networkx.algorithms.tree.recognition import *
|
133 |
+
from networkx.algorithms.tournament import is_tournament
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/boundary.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Routines to find the boundary of a set of nodes.
|
2 |
+
|
3 |
+
An edge boundary is a set of edges, each of which has exactly one
|
4 |
+
endpoint in a given set of nodes (or, in the case of directed graphs,
|
5 |
+
the set of edges whose source node is in the set).
|
6 |
+
|
7 |
+
A node boundary of a set *S* of nodes is the set of (out-)neighbors of
|
8 |
+
nodes in *S* that are outside *S*.
|
9 |
+
|
10 |
+
"""
|
11 |
+
from itertools import chain
|
12 |
+
|
13 |
+
import networkx as nx
|
14 |
+
|
15 |
+
__all__ = ["edge_boundary", "node_boundary"]
|
16 |
+
|
17 |
+
|
18 |
+
@nx._dispatchable(edge_attrs={"data": "default"}, preserve_edge_attrs="data")
|
19 |
+
def edge_boundary(G, nbunch1, nbunch2=None, data=False, keys=False, default=None):
|
20 |
+
"""Returns the edge boundary of `nbunch1`.
|
21 |
+
|
22 |
+
The *edge boundary* of a set *S* with respect to a set *T* is the
|
23 |
+
set of edges (*u*, *v*) such that *u* is in *S* and *v* is in *T*.
|
24 |
+
If *T* is not specified, it is assumed to be the set of all nodes
|
25 |
+
not in *S*.
|
26 |
+
|
27 |
+
Parameters
|
28 |
+
----------
|
29 |
+
G : NetworkX graph
|
30 |
+
|
31 |
+
nbunch1 : iterable
|
32 |
+
Iterable of nodes in the graph representing the set of nodes
|
33 |
+
whose edge boundary will be returned. (This is the set *S* from
|
34 |
+
the definition above.)
|
35 |
+
|
36 |
+
nbunch2 : iterable
|
37 |
+
Iterable of nodes representing the target (or "exterior") set of
|
38 |
+
nodes. (This is the set *T* from the definition above.) If not
|
39 |
+
specified, this is assumed to be the set of all nodes in `G`
|
40 |
+
not in `nbunch1`.
|
41 |
+
|
42 |
+
keys : bool
|
43 |
+
This parameter has the same meaning as in
|
44 |
+
:meth:`MultiGraph.edges`.
|
45 |
+
|
46 |
+
data : bool or object
|
47 |
+
This parameter has the same meaning as in
|
48 |
+
:meth:`MultiGraph.edges`.
|
49 |
+
|
50 |
+
default : object
|
51 |
+
This parameter has the same meaning as in
|
52 |
+
:meth:`MultiGraph.edges`.
|
53 |
+
|
54 |
+
Returns
|
55 |
+
-------
|
56 |
+
iterator
|
57 |
+
An iterator over the edges in the boundary of `nbunch1` with
|
58 |
+
respect to `nbunch2`. If `keys`, `data`, or `default`
|
59 |
+
are specified and `G` is a multigraph, then edges are returned
|
60 |
+
with keys and/or data, as in :meth:`MultiGraph.edges`.
|
61 |
+
|
62 |
+
Examples
|
63 |
+
--------
|
64 |
+
>>> G = nx.wheel_graph(6)
|
65 |
+
|
66 |
+
When nbunch2=None:
|
67 |
+
|
68 |
+
>>> list(nx.edge_boundary(G, (1, 3)))
|
69 |
+
[(1, 0), (1, 2), (1, 5), (3, 0), (3, 2), (3, 4)]
|
70 |
+
|
71 |
+
When nbunch2 is given:
|
72 |
+
|
73 |
+
>>> list(nx.edge_boundary(G, (1, 3), (2, 0)))
|
74 |
+
[(1, 0), (1, 2), (3, 0), (3, 2)]
|
75 |
+
|
76 |
+
Notes
|
77 |
+
-----
|
78 |
+
Any element of `nbunch` that is not in the graph `G` will be
|
79 |
+
ignored.
|
80 |
+
|
81 |
+
`nbunch1` and `nbunch2` are usually meant to be disjoint, but in
|
82 |
+
the interest of speed and generality, that is not required here.
|
83 |
+
|
84 |
+
"""
|
85 |
+
nset1 = {n for n in nbunch1 if n in G}
|
86 |
+
# Here we create an iterator over edges incident to nodes in the set
|
87 |
+
# `nset1`. The `Graph.edges()` method does not provide a guarantee
|
88 |
+
# on the orientation of the edges, so our algorithm below must
|
89 |
+
# handle the case in which exactly one orientation, either (u, v) or
|
90 |
+
# (v, u), appears in this iterable.
|
91 |
+
if G.is_multigraph():
|
92 |
+
edges = G.edges(nset1, data=data, keys=keys, default=default)
|
93 |
+
else:
|
94 |
+
edges = G.edges(nset1, data=data, default=default)
|
95 |
+
# If `nbunch2` is not provided, then it is assumed to be the set
|
96 |
+
# complement of `nbunch1`. For the sake of efficiency, this is
|
97 |
+
# implemented by using the `not in` operator, instead of by creating
|
98 |
+
# an additional set and using the `in` operator.
|
99 |
+
if nbunch2 is None:
|
100 |
+
return (e for e in edges if (e[0] in nset1) ^ (e[1] in nset1))
|
101 |
+
nset2 = set(nbunch2)
|
102 |
+
return (
|
103 |
+
e
|
104 |
+
for e in edges
|
105 |
+
if (e[0] in nset1 and e[1] in nset2) or (e[1] in nset1 and e[0] in nset2)
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
@nx._dispatchable
|
110 |
+
def node_boundary(G, nbunch1, nbunch2=None):
|
111 |
+
"""Returns the node boundary of `nbunch1`.
|
112 |
+
|
113 |
+
The *node boundary* of a set *S* with respect to a set *T* is the
|
114 |
+
set of nodes *v* in *T* such that for some *u* in *S*, there is an
|
115 |
+
edge joining *u* to *v*. If *T* is not specified, it is assumed to
|
116 |
+
be the set of all nodes not in *S*.
|
117 |
+
|
118 |
+
Parameters
|
119 |
+
----------
|
120 |
+
G : NetworkX graph
|
121 |
+
|
122 |
+
nbunch1 : iterable
|
123 |
+
Iterable of nodes in the graph representing the set of nodes
|
124 |
+
whose node boundary will be returned. (This is the set *S* from
|
125 |
+
the definition above.)
|
126 |
+
|
127 |
+
nbunch2 : iterable
|
128 |
+
Iterable of nodes representing the target (or "exterior") set of
|
129 |
+
nodes. (This is the set *T* from the definition above.) If not
|
130 |
+
specified, this is assumed to be the set of all nodes in `G`
|
131 |
+
not in `nbunch1`.
|
132 |
+
|
133 |
+
Returns
|
134 |
+
-------
|
135 |
+
set
|
136 |
+
The node boundary of `nbunch1` with respect to `nbunch2`.
|
137 |
+
|
138 |
+
Examples
|
139 |
+
--------
|
140 |
+
>>> G = nx.wheel_graph(6)
|
141 |
+
|
142 |
+
When nbunch2=None:
|
143 |
+
|
144 |
+
>>> list(nx.node_boundary(G, (3, 4)))
|
145 |
+
[0, 2, 5]
|
146 |
+
|
147 |
+
When nbunch2 is given:
|
148 |
+
|
149 |
+
>>> list(nx.node_boundary(G, (3, 4), (0, 1, 5)))
|
150 |
+
[0, 5]
|
151 |
+
|
152 |
+
Notes
|
153 |
+
-----
|
154 |
+
Any element of `nbunch` that is not in the graph `G` will be
|
155 |
+
ignored.
|
156 |
+
|
157 |
+
`nbunch1` and `nbunch2` are usually meant to be disjoint, but in
|
158 |
+
the interest of speed and generality, that is not required here.
|
159 |
+
|
160 |
+
"""
|
161 |
+
nset1 = {n for n in nbunch1 if n in G}
|
162 |
+
bdy = set(chain.from_iterable(G[v] for v in nset1)) - nset1
|
163 |
+
# If `nbunch2` is not specified, it is assumed to be the set
|
164 |
+
# complement of `nbunch1`.
|
165 |
+
if nbunch2 is not None:
|
166 |
+
bdy &= set(nbunch2)
|
167 |
+
return bdy
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/bridges.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Bridge-finding algorithms."""
|
2 |
+
from itertools import chain
|
3 |
+
|
4 |
+
import networkx as nx
|
5 |
+
from networkx.utils import not_implemented_for
|
6 |
+
|
7 |
+
__all__ = ["bridges", "has_bridges", "local_bridges"]
|
8 |
+
|
9 |
+
|
10 |
+
@not_implemented_for("directed")
|
11 |
+
@nx._dispatchable
|
12 |
+
def bridges(G, root=None):
|
13 |
+
"""Generate all bridges in a graph.
|
14 |
+
|
15 |
+
A *bridge* in a graph is an edge whose removal causes the number of
|
16 |
+
connected components of the graph to increase. Equivalently, a bridge is an
|
17 |
+
edge that does not belong to any cycle. Bridges are also known as cut-edges,
|
18 |
+
isthmuses, or cut arcs.
|
19 |
+
|
20 |
+
Parameters
|
21 |
+
----------
|
22 |
+
G : undirected graph
|
23 |
+
|
24 |
+
root : node (optional)
|
25 |
+
A node in the graph `G`. If specified, only the bridges in the
|
26 |
+
connected component containing this node will be returned.
|
27 |
+
|
28 |
+
Yields
|
29 |
+
------
|
30 |
+
e : edge
|
31 |
+
An edge in the graph whose removal disconnects the graph (or
|
32 |
+
causes the number of connected components to increase).
|
33 |
+
|
34 |
+
Raises
|
35 |
+
------
|
36 |
+
NodeNotFound
|
37 |
+
If `root` is not in the graph `G`.
|
38 |
+
|
39 |
+
NetworkXNotImplemented
|
40 |
+
If `G` is a directed graph.
|
41 |
+
|
42 |
+
Examples
|
43 |
+
--------
|
44 |
+
The barbell graph with parameter zero has a single bridge:
|
45 |
+
|
46 |
+
>>> G = nx.barbell_graph(10, 0)
|
47 |
+
>>> list(nx.bridges(G))
|
48 |
+
[(9, 10)]
|
49 |
+
|
50 |
+
Notes
|
51 |
+
-----
|
52 |
+
This is an implementation of the algorithm described in [1]_. An edge is a
|
53 |
+
bridge if and only if it is not contained in any chain. Chains are found
|
54 |
+
using the :func:`networkx.chain_decomposition` function.
|
55 |
+
|
56 |
+
The algorithm described in [1]_ requires a simple graph. If the provided
|
57 |
+
graph is a multigraph, we convert it to a simple graph and verify that any
|
58 |
+
bridges discovered by the chain decomposition algorithm are not multi-edges.
|
59 |
+
|
60 |
+
Ignoring polylogarithmic factors, the worst-case time complexity is the
|
61 |
+
same as the :func:`networkx.chain_decomposition` function,
|
62 |
+
$O(m + n)$, where $n$ is the number of nodes in the graph and $m$ is
|
63 |
+
the number of edges.
|
64 |
+
|
65 |
+
References
|
66 |
+
----------
|
67 |
+
.. [1] https://en.wikipedia.org/wiki/Bridge_%28graph_theory%29#Bridge-Finding_with_Chain_Decompositions
|
68 |
+
"""
|
69 |
+
multigraph = G.is_multigraph()
|
70 |
+
H = nx.Graph(G) if multigraph else G
|
71 |
+
chains = nx.chain_decomposition(H, root=root)
|
72 |
+
chain_edges = set(chain.from_iterable(chains))
|
73 |
+
H_copy = H.copy()
|
74 |
+
if root is not None:
|
75 |
+
H = H.subgraph(nx.node_connected_component(H, root)).copy()
|
76 |
+
for u, v in H.edges():
|
77 |
+
if (u, v) not in chain_edges and (v, u) not in chain_edges:
|
78 |
+
if multigraph and len(G[u][v]) > 1:
|
79 |
+
continue
|
80 |
+
yield u, v
|
81 |
+
|
82 |
+
|
83 |
+
@not_implemented_for("directed")
|
84 |
+
@nx._dispatchable
|
85 |
+
def has_bridges(G, root=None):
|
86 |
+
"""Decide whether a graph has any bridges.
|
87 |
+
|
88 |
+
A *bridge* in a graph is an edge whose removal causes the number of
|
89 |
+
connected components of the graph to increase.
|
90 |
+
|
91 |
+
Parameters
|
92 |
+
----------
|
93 |
+
G : undirected graph
|
94 |
+
|
95 |
+
root : node (optional)
|
96 |
+
A node in the graph `G`. If specified, only the bridges in the
|
97 |
+
connected component containing this node will be considered.
|
98 |
+
|
99 |
+
Returns
|
100 |
+
-------
|
101 |
+
bool
|
102 |
+
Whether the graph (or the connected component containing `root`)
|
103 |
+
has any bridges.
|
104 |
+
|
105 |
+
Raises
|
106 |
+
------
|
107 |
+
NodeNotFound
|
108 |
+
If `root` is not in the graph `G`.
|
109 |
+
|
110 |
+
NetworkXNotImplemented
|
111 |
+
If `G` is a directed graph.
|
112 |
+
|
113 |
+
Examples
|
114 |
+
--------
|
115 |
+
The barbell graph with parameter zero has a single bridge::
|
116 |
+
|
117 |
+
>>> G = nx.barbell_graph(10, 0)
|
118 |
+
>>> nx.has_bridges(G)
|
119 |
+
True
|
120 |
+
|
121 |
+
On the other hand, the cycle graph has no bridges::
|
122 |
+
|
123 |
+
>>> G = nx.cycle_graph(5)
|
124 |
+
>>> nx.has_bridges(G)
|
125 |
+
False
|
126 |
+
|
127 |
+
Notes
|
128 |
+
-----
|
129 |
+
This implementation uses the :func:`networkx.bridges` function, so
|
130 |
+
it shares its worst-case time complexity, $O(m + n)$, ignoring
|
131 |
+
polylogarithmic factors, where $n$ is the number of nodes in the
|
132 |
+
graph and $m$ is the number of edges.
|
133 |
+
|
134 |
+
"""
|
135 |
+
try:
|
136 |
+
next(bridges(G, root=root))
|
137 |
+
except StopIteration:
|
138 |
+
return False
|
139 |
+
else:
|
140 |
+
return True
|
141 |
+
|
142 |
+
|
143 |
+
@not_implemented_for("multigraph")
|
144 |
+
@not_implemented_for("directed")
|
145 |
+
@nx._dispatchable(edge_attrs="weight")
|
146 |
+
def local_bridges(G, with_span=True, weight=None):
|
147 |
+
"""Iterate over local bridges of `G` optionally computing the span
|
148 |
+
|
149 |
+
A *local bridge* is an edge whose endpoints have no common neighbors.
|
150 |
+
That is, the edge is not part of a triangle in the graph.
|
151 |
+
|
152 |
+
The *span* of a *local bridge* is the shortest path length between
|
153 |
+
the endpoints if the local bridge is removed.
|
154 |
+
|
155 |
+
Parameters
|
156 |
+
----------
|
157 |
+
G : undirected graph
|
158 |
+
|
159 |
+
with_span : bool
|
160 |
+
If True, yield a 3-tuple `(u, v, span)`
|
161 |
+
|
162 |
+
weight : function, string or None (default: None)
|
163 |
+
If function, used to compute edge weights for the span.
|
164 |
+
If string, the edge data attribute used in calculating span.
|
165 |
+
If None, all edges have weight 1.
|
166 |
+
|
167 |
+
Yields
|
168 |
+
------
|
169 |
+
e : edge
|
170 |
+
The local bridges as an edge 2-tuple of nodes `(u, v)` or
|
171 |
+
as a 3-tuple `(u, v, span)` when `with_span is True`.
|
172 |
+
|
173 |
+
Raises
|
174 |
+
------
|
175 |
+
NetworkXNotImplemented
|
176 |
+
If `G` is a directed graph or multigraph.
|
177 |
+
|
178 |
+
Examples
|
179 |
+
--------
|
180 |
+
A cycle graph has every edge a local bridge with span N-1.
|
181 |
+
|
182 |
+
>>> G = nx.cycle_graph(9)
|
183 |
+
>>> (0, 8, 8) in set(nx.local_bridges(G))
|
184 |
+
True
|
185 |
+
"""
|
186 |
+
if with_span is not True:
|
187 |
+
for u, v in G.edges:
|
188 |
+
if not (set(G[u]) & set(G[v])):
|
189 |
+
yield u, v
|
190 |
+
else:
|
191 |
+
wt = nx.weighted._weight_function(G, weight)
|
192 |
+
for u, v in G.edges:
|
193 |
+
if not (set(G[u]) & set(G[v])):
|
194 |
+
enodes = {u, v}
|
195 |
+
|
196 |
+
def hide_edge(n, nbr, d):
|
197 |
+
if n not in enodes or nbr not in enodes:
|
198 |
+
return wt(n, nbr, d)
|
199 |
+
return None
|
200 |
+
|
201 |
+
try:
|
202 |
+
span = nx.shortest_path_length(G, u, v, weight=hide_edge)
|
203 |
+
yield u, v, span
|
204 |
+
except nx.NetworkXNoPath:
|
205 |
+
yield u, v, float("inf")
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/chordal.py
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Algorithms for chordal graphs.
|
3 |
+
|
4 |
+
A graph is chordal if every cycle of length at least 4 has a chord
|
5 |
+
(an edge joining two nodes not adjacent in the cycle).
|
6 |
+
https://en.wikipedia.org/wiki/Chordal_graph
|
7 |
+
"""
|
8 |
+
import sys
|
9 |
+
|
10 |
+
import networkx as nx
|
11 |
+
from networkx.algorithms.components import connected_components
|
12 |
+
from networkx.utils import arbitrary_element, not_implemented_for
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
"is_chordal",
|
16 |
+
"find_induced_nodes",
|
17 |
+
"chordal_graph_cliques",
|
18 |
+
"chordal_graph_treewidth",
|
19 |
+
"NetworkXTreewidthBoundExceeded",
|
20 |
+
"complete_to_chordal_graph",
|
21 |
+
]
|
22 |
+
|
23 |
+
|
24 |
+
class NetworkXTreewidthBoundExceeded(nx.NetworkXException):
|
25 |
+
"""Exception raised when a treewidth bound has been provided and it has
|
26 |
+
been exceeded"""
|
27 |
+
|
28 |
+
|
29 |
+
@not_implemented_for("directed")
|
30 |
+
@not_implemented_for("multigraph")
|
31 |
+
@nx._dispatchable
|
32 |
+
def is_chordal(G):
|
33 |
+
"""Checks whether G is a chordal graph.
|
34 |
+
|
35 |
+
A graph is chordal if every cycle of length at least 4 has a chord
|
36 |
+
(an edge joining two nodes not adjacent in the cycle).
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
G : graph
|
41 |
+
A NetworkX graph.
|
42 |
+
|
43 |
+
Returns
|
44 |
+
-------
|
45 |
+
chordal : bool
|
46 |
+
True if G is a chordal graph and False otherwise.
|
47 |
+
|
48 |
+
Raises
|
49 |
+
------
|
50 |
+
NetworkXNotImplemented
|
51 |
+
The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
|
52 |
+
|
53 |
+
Examples
|
54 |
+
--------
|
55 |
+
>>> e = [
|
56 |
+
... (1, 2),
|
57 |
+
... (1, 3),
|
58 |
+
... (2, 3),
|
59 |
+
... (2, 4),
|
60 |
+
... (3, 4),
|
61 |
+
... (3, 5),
|
62 |
+
... (3, 6),
|
63 |
+
... (4, 5),
|
64 |
+
... (4, 6),
|
65 |
+
... (5, 6),
|
66 |
+
... ]
|
67 |
+
>>> G = nx.Graph(e)
|
68 |
+
>>> nx.is_chordal(G)
|
69 |
+
True
|
70 |
+
|
71 |
+
Notes
|
72 |
+
-----
|
73 |
+
The routine tries to go through every node following maximum cardinality
|
74 |
+
search. It returns False when it finds that the separator for any node
|
75 |
+
is not a clique. Based on the algorithms in [1]_.
|
76 |
+
|
77 |
+
Self loops are ignored.
|
78 |
+
|
79 |
+
References
|
80 |
+
----------
|
81 |
+
.. [1] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms
|
82 |
+
to test chordality of graphs, test acyclicity of hypergraphs, and
|
83 |
+
selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984),
|
84 |
+
pp. 566–579.
|
85 |
+
"""
|
86 |
+
if len(G.nodes) <= 3:
|
87 |
+
return True
|
88 |
+
return len(_find_chordality_breaker(G)) == 0
|
89 |
+
|
90 |
+
|
91 |
+
@nx._dispatchable
|
92 |
+
def find_induced_nodes(G, s, t, treewidth_bound=sys.maxsize):
|
93 |
+
"""Returns the set of induced nodes in the path from s to t.
|
94 |
+
|
95 |
+
Parameters
|
96 |
+
----------
|
97 |
+
G : graph
|
98 |
+
A chordal NetworkX graph
|
99 |
+
s : node
|
100 |
+
Source node to look for induced nodes
|
101 |
+
t : node
|
102 |
+
Destination node to look for induced nodes
|
103 |
+
treewidth_bound: float
|
104 |
+
Maximum treewidth acceptable for the graph H. The search
|
105 |
+
for induced nodes will end as soon as the treewidth_bound is exceeded.
|
106 |
+
|
107 |
+
Returns
|
108 |
+
-------
|
109 |
+
induced_nodes : Set of nodes
|
110 |
+
The set of induced nodes in the path from s to t in G
|
111 |
+
|
112 |
+
Raises
|
113 |
+
------
|
114 |
+
NetworkXError
|
115 |
+
The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
|
116 |
+
If the input graph is an instance of one of these classes, a
|
117 |
+
:exc:`NetworkXError` is raised.
|
118 |
+
The algorithm can only be applied to chordal graphs. If the input
|
119 |
+
graph is found to be non-chordal, a :exc:`NetworkXError` is raised.
|
120 |
+
|
121 |
+
Examples
|
122 |
+
--------
|
123 |
+
>>> G = nx.Graph()
|
124 |
+
>>> G = nx.generators.classic.path_graph(10)
|
125 |
+
>>> induced_nodes = nx.find_induced_nodes(G, 1, 9, 2)
|
126 |
+
>>> sorted(induced_nodes)
|
127 |
+
[1, 2, 3, 4, 5, 6, 7, 8, 9]
|
128 |
+
|
129 |
+
Notes
|
130 |
+
-----
|
131 |
+
G must be a chordal graph and (s,t) an edge that is not in G.
|
132 |
+
|
133 |
+
If a treewidth_bound is provided, the search for induced nodes will end
|
134 |
+
as soon as the treewidth_bound is exceeded.
|
135 |
+
|
136 |
+
The algorithm is inspired by Algorithm 4 in [1]_.
|
137 |
+
A formal definition of induced node can also be found on that reference.
|
138 |
+
|
139 |
+
Self Loops are ignored
|
140 |
+
|
141 |
+
References
|
142 |
+
----------
|
143 |
+
.. [1] Learning Bounded Treewidth Bayesian Networks.
|
144 |
+
Gal Elidan, Stephen Gould; JMLR, 9(Dec):2699--2731, 2008.
|
145 |
+
http://jmlr.csail.mit.edu/papers/volume9/elidan08a/elidan08a.pdf
|
146 |
+
"""
|
147 |
+
if not is_chordal(G):
|
148 |
+
raise nx.NetworkXError("Input graph is not chordal.")
|
149 |
+
|
150 |
+
H = nx.Graph(G)
|
151 |
+
H.add_edge(s, t)
|
152 |
+
induced_nodes = set()
|
153 |
+
triplet = _find_chordality_breaker(H, s, treewidth_bound)
|
154 |
+
while triplet:
|
155 |
+
(u, v, w) = triplet
|
156 |
+
induced_nodes.update(triplet)
|
157 |
+
for n in triplet:
|
158 |
+
if n != s:
|
159 |
+
H.add_edge(s, n)
|
160 |
+
triplet = _find_chordality_breaker(H, s, treewidth_bound)
|
161 |
+
if induced_nodes:
|
162 |
+
# Add t and the second node in the induced path from s to t.
|
163 |
+
induced_nodes.add(t)
|
164 |
+
for u in G[s]:
|
165 |
+
if len(induced_nodes & set(G[u])) == 2:
|
166 |
+
induced_nodes.add(u)
|
167 |
+
break
|
168 |
+
return induced_nodes
|
169 |
+
|
170 |
+
|
171 |
+
@nx._dispatchable
|
172 |
+
def chordal_graph_cliques(G):
|
173 |
+
"""Returns all maximal cliques of a chordal graph.
|
174 |
+
|
175 |
+
The algorithm breaks the graph in connected components and performs a
|
176 |
+
maximum cardinality search in each component to get the cliques.
|
177 |
+
|
178 |
+
Parameters
|
179 |
+
----------
|
180 |
+
G : graph
|
181 |
+
A NetworkX graph
|
182 |
+
|
183 |
+
Yields
|
184 |
+
------
|
185 |
+
frozenset of nodes
|
186 |
+
Maximal cliques, each of which is a frozenset of
|
187 |
+
nodes in `G`. The order of cliques is arbitrary.
|
188 |
+
|
189 |
+
Raises
|
190 |
+
------
|
191 |
+
NetworkXError
|
192 |
+
The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
|
193 |
+
The algorithm can only be applied to chordal graphs. If the input
|
194 |
+
graph is found to be non-chordal, a :exc:`NetworkXError` is raised.
|
195 |
+
|
196 |
+
Examples
|
197 |
+
--------
|
198 |
+
>>> e = [
|
199 |
+
... (1, 2),
|
200 |
+
... (1, 3),
|
201 |
+
... (2, 3),
|
202 |
+
... (2, 4),
|
203 |
+
... (3, 4),
|
204 |
+
... (3, 5),
|
205 |
+
... (3, 6),
|
206 |
+
... (4, 5),
|
207 |
+
... (4, 6),
|
208 |
+
... (5, 6),
|
209 |
+
... (7, 8),
|
210 |
+
... ]
|
211 |
+
>>> G = nx.Graph(e)
|
212 |
+
>>> G.add_node(9)
|
213 |
+
>>> cliques = [c for c in chordal_graph_cliques(G)]
|
214 |
+
>>> cliques[0]
|
215 |
+
frozenset({1, 2, 3})
|
216 |
+
"""
|
217 |
+
for C in (G.subgraph(c).copy() for c in connected_components(G)):
|
218 |
+
if C.number_of_nodes() == 1:
|
219 |
+
if nx.number_of_selfloops(C) > 0:
|
220 |
+
raise nx.NetworkXError("Input graph is not chordal.")
|
221 |
+
yield frozenset(C.nodes())
|
222 |
+
else:
|
223 |
+
unnumbered = set(C.nodes())
|
224 |
+
v = arbitrary_element(C)
|
225 |
+
unnumbered.remove(v)
|
226 |
+
numbered = {v}
|
227 |
+
clique_wanna_be = {v}
|
228 |
+
while unnumbered:
|
229 |
+
v = _max_cardinality_node(C, unnumbered, numbered)
|
230 |
+
unnumbered.remove(v)
|
231 |
+
numbered.add(v)
|
232 |
+
new_clique_wanna_be = set(C.neighbors(v)) & numbered
|
233 |
+
sg = C.subgraph(clique_wanna_be)
|
234 |
+
if _is_complete_graph(sg):
|
235 |
+
new_clique_wanna_be.add(v)
|
236 |
+
if not new_clique_wanna_be >= clique_wanna_be:
|
237 |
+
yield frozenset(clique_wanna_be)
|
238 |
+
clique_wanna_be = new_clique_wanna_be
|
239 |
+
else:
|
240 |
+
raise nx.NetworkXError("Input graph is not chordal.")
|
241 |
+
yield frozenset(clique_wanna_be)
|
242 |
+
|
243 |
+
|
244 |
+
@nx._dispatchable
|
245 |
+
def chordal_graph_treewidth(G):
|
246 |
+
"""Returns the treewidth of the chordal graph G.
|
247 |
+
|
248 |
+
Parameters
|
249 |
+
----------
|
250 |
+
G : graph
|
251 |
+
A NetworkX graph
|
252 |
+
|
253 |
+
Returns
|
254 |
+
-------
|
255 |
+
treewidth : int
|
256 |
+
The size of the largest clique in the graph minus one.
|
257 |
+
|
258 |
+
Raises
|
259 |
+
------
|
260 |
+
NetworkXError
|
261 |
+
The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
|
262 |
+
The algorithm can only be applied to chordal graphs. If the input
|
263 |
+
graph is found to be non-chordal, a :exc:`NetworkXError` is raised.
|
264 |
+
|
265 |
+
Examples
|
266 |
+
--------
|
267 |
+
>>> e = [
|
268 |
+
... (1, 2),
|
269 |
+
... (1, 3),
|
270 |
+
... (2, 3),
|
271 |
+
... (2, 4),
|
272 |
+
... (3, 4),
|
273 |
+
... (3, 5),
|
274 |
+
... (3, 6),
|
275 |
+
... (4, 5),
|
276 |
+
... (4, 6),
|
277 |
+
... (5, 6),
|
278 |
+
... (7, 8),
|
279 |
+
... ]
|
280 |
+
>>> G = nx.Graph(e)
|
281 |
+
>>> G.add_node(9)
|
282 |
+
>>> nx.chordal_graph_treewidth(G)
|
283 |
+
3
|
284 |
+
|
285 |
+
References
|
286 |
+
----------
|
287 |
+
.. [1] https://en.wikipedia.org/wiki/Tree_decomposition#Treewidth
|
288 |
+
"""
|
289 |
+
if not is_chordal(G):
|
290 |
+
raise nx.NetworkXError("Input graph is not chordal.")
|
291 |
+
|
292 |
+
max_clique = -1
|
293 |
+
for clique in nx.chordal_graph_cliques(G):
|
294 |
+
max_clique = max(max_clique, len(clique))
|
295 |
+
return max_clique - 1
|
296 |
+
|
297 |
+
|
298 |
+
def _is_complete_graph(G):
|
299 |
+
"""Returns True if G is a complete graph."""
|
300 |
+
if nx.number_of_selfloops(G) > 0:
|
301 |
+
raise nx.NetworkXError("Self loop found in _is_complete_graph()")
|
302 |
+
n = G.number_of_nodes()
|
303 |
+
if n < 2:
|
304 |
+
return True
|
305 |
+
e = G.number_of_edges()
|
306 |
+
max_edges = (n * (n - 1)) / 2
|
307 |
+
return e == max_edges
|
308 |
+
|
309 |
+
|
310 |
+
def _find_missing_edge(G):
|
311 |
+
"""Given a non-complete graph G, returns a missing edge."""
|
312 |
+
nodes = set(G)
|
313 |
+
for u in G:
|
314 |
+
missing = nodes - set(list(G[u].keys()) + [u])
|
315 |
+
if missing:
|
316 |
+
return (u, missing.pop())
|
317 |
+
|
318 |
+
|
319 |
+
def _max_cardinality_node(G, choices, wanna_connect):
|
320 |
+
"""Returns a the node in choices that has more connections in G
|
321 |
+
to nodes in wanna_connect.
|
322 |
+
"""
|
323 |
+
max_number = -1
|
324 |
+
for x in choices:
|
325 |
+
number = len([y for y in G[x] if y in wanna_connect])
|
326 |
+
if number > max_number:
|
327 |
+
max_number = number
|
328 |
+
max_cardinality_node = x
|
329 |
+
return max_cardinality_node
|
330 |
+
|
331 |
+
|
332 |
+
def _find_chordality_breaker(G, s=None, treewidth_bound=sys.maxsize):
|
333 |
+
"""Given a graph G, starts a max cardinality search
|
334 |
+
(starting from s if s is given and from an arbitrary node otherwise)
|
335 |
+
trying to find a non-chordal cycle.
|
336 |
+
|
337 |
+
If it does find one, it returns (u,v,w) where u,v,w are the three
|
338 |
+
nodes that together with s are involved in the cycle.
|
339 |
+
|
340 |
+
It ignores any self loops.
|
341 |
+
"""
|
342 |
+
if len(G) == 0:
|
343 |
+
raise nx.NetworkXPointlessConcept("Graph has no nodes.")
|
344 |
+
unnumbered = set(G)
|
345 |
+
if s is None:
|
346 |
+
s = arbitrary_element(G)
|
347 |
+
unnumbered.remove(s)
|
348 |
+
numbered = {s}
|
349 |
+
current_treewidth = -1
|
350 |
+
while unnumbered: # and current_treewidth <= treewidth_bound:
|
351 |
+
v = _max_cardinality_node(G, unnumbered, numbered)
|
352 |
+
unnumbered.remove(v)
|
353 |
+
numbered.add(v)
|
354 |
+
clique_wanna_be = set(G[v]) & numbered
|
355 |
+
sg = G.subgraph(clique_wanna_be)
|
356 |
+
if _is_complete_graph(sg):
|
357 |
+
# The graph seems to be chordal by now. We update the treewidth
|
358 |
+
current_treewidth = max(current_treewidth, len(clique_wanna_be))
|
359 |
+
if current_treewidth > treewidth_bound:
|
360 |
+
raise nx.NetworkXTreewidthBoundExceeded(
|
361 |
+
f"treewidth_bound exceeded: {current_treewidth}"
|
362 |
+
)
|
363 |
+
else:
|
364 |
+
# sg is not a clique,
|
365 |
+
# look for an edge that is not included in sg
|
366 |
+
(u, w) = _find_missing_edge(sg)
|
367 |
+
return (u, v, w)
|
368 |
+
return ()
|
369 |
+
|
370 |
+
|
371 |
+
@not_implemented_for("directed")
|
372 |
+
@nx._dispatchable(returns_graph=True)
|
373 |
+
def complete_to_chordal_graph(G):
|
374 |
+
"""Return a copy of G completed to a chordal graph
|
375 |
+
|
376 |
+
Adds edges to a copy of G to create a chordal graph. A graph G=(V,E) is
|
377 |
+
called chordal if for each cycle with length bigger than 3, there exist
|
378 |
+
two non-adjacent nodes connected by an edge (called a chord).
|
379 |
+
|
380 |
+
Parameters
|
381 |
+
----------
|
382 |
+
G : NetworkX graph
|
383 |
+
Undirected graph
|
384 |
+
|
385 |
+
Returns
|
386 |
+
-------
|
387 |
+
H : NetworkX graph
|
388 |
+
The chordal enhancement of G
|
389 |
+
alpha : Dictionary
|
390 |
+
The elimination ordering of nodes of G
|
391 |
+
|
392 |
+
Notes
|
393 |
+
-----
|
394 |
+
There are different approaches to calculate the chordal
|
395 |
+
enhancement of a graph. The algorithm used here is called
|
396 |
+
MCS-M and gives at least minimal (local) triangulation of graph. Note
|
397 |
+
that this triangulation is not necessarily a global minimum.
|
398 |
+
|
399 |
+
https://en.wikipedia.org/wiki/Chordal_graph
|
400 |
+
|
401 |
+
References
|
402 |
+
----------
|
403 |
+
.. [1] Berry, Anne & Blair, Jean & Heggernes, Pinar & Peyton, Barry. (2004)
|
404 |
+
Maximum Cardinality Search for Computing Minimal Triangulations of
|
405 |
+
Graphs. Algorithmica. 39. 287-298. 10.1007/s00453-004-1084-3.
|
406 |
+
|
407 |
+
Examples
|
408 |
+
--------
|
409 |
+
>>> from networkx.algorithms.chordal import complete_to_chordal_graph
|
410 |
+
>>> G = nx.wheel_graph(10)
|
411 |
+
>>> H, alpha = complete_to_chordal_graph(G)
|
412 |
+
"""
|
413 |
+
H = G.copy()
|
414 |
+
alpha = {node: 0 for node in H}
|
415 |
+
if nx.is_chordal(H):
|
416 |
+
return H, alpha
|
417 |
+
chords = set()
|
418 |
+
weight = {node: 0 for node in H.nodes()}
|
419 |
+
unnumbered_nodes = list(H.nodes())
|
420 |
+
for i in range(len(H.nodes()), 0, -1):
|
421 |
+
# get the node in unnumbered_nodes with the maximum weight
|
422 |
+
z = max(unnumbered_nodes, key=lambda node: weight[node])
|
423 |
+
unnumbered_nodes.remove(z)
|
424 |
+
alpha[z] = i
|
425 |
+
update_nodes = []
|
426 |
+
for y in unnumbered_nodes:
|
427 |
+
if G.has_edge(y, z):
|
428 |
+
update_nodes.append(y)
|
429 |
+
else:
|
430 |
+
# y_weight will be bigger than node weights between y and z
|
431 |
+
y_weight = weight[y]
|
432 |
+
lower_nodes = [
|
433 |
+
node for node in unnumbered_nodes if weight[node] < y_weight
|
434 |
+
]
|
435 |
+
if nx.has_path(H.subgraph(lower_nodes + [z, y]), y, z):
|
436 |
+
update_nodes.append(y)
|
437 |
+
chords.add((z, y))
|
438 |
+
# during calculation of paths the weights should not be updated
|
439 |
+
for node in update_nodes:
|
440 |
+
weight[node] += 1
|
441 |
+
H.add_edges_from(chords)
|
442 |
+
return H, alpha
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/clique.py
ADDED
@@ -0,0 +1,754 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for finding and manipulating cliques.
|
2 |
+
|
3 |
+
Finding the largest clique in a graph is NP-complete problem, so most of
|
4 |
+
these algorithms have an exponential running time; for more information,
|
5 |
+
see the Wikipedia article on the clique problem [1]_.
|
6 |
+
|
7 |
+
.. [1] clique problem:: https://en.wikipedia.org/wiki/Clique_problem
|
8 |
+
|
9 |
+
"""
|
10 |
+
from collections import defaultdict, deque
|
11 |
+
from itertools import chain, combinations, islice
|
12 |
+
|
13 |
+
import networkx as nx
|
14 |
+
from networkx.utils import not_implemented_for
|
15 |
+
|
16 |
+
__all__ = [
|
17 |
+
"find_cliques",
|
18 |
+
"find_cliques_recursive",
|
19 |
+
"make_max_clique_graph",
|
20 |
+
"make_clique_bipartite",
|
21 |
+
"node_clique_number",
|
22 |
+
"number_of_cliques",
|
23 |
+
"enumerate_all_cliques",
|
24 |
+
"max_weight_clique",
|
25 |
+
]
|
26 |
+
|
27 |
+
|
28 |
+
@not_implemented_for("directed")
|
29 |
+
@nx._dispatchable
|
30 |
+
def enumerate_all_cliques(G):
|
31 |
+
"""Returns all cliques in an undirected graph.
|
32 |
+
|
33 |
+
This function returns an iterator over cliques, each of which is a
|
34 |
+
list of nodes. The iteration is ordered by cardinality of the
|
35 |
+
cliques: first all cliques of size one, then all cliques of size
|
36 |
+
two, etc.
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
G : NetworkX graph
|
41 |
+
An undirected graph.
|
42 |
+
|
43 |
+
Returns
|
44 |
+
-------
|
45 |
+
iterator
|
46 |
+
An iterator over cliques, each of which is a list of nodes in
|
47 |
+
`G`. The cliques are ordered according to size.
|
48 |
+
|
49 |
+
Notes
|
50 |
+
-----
|
51 |
+
To obtain a list of all cliques, use
|
52 |
+
`list(enumerate_all_cliques(G))`. However, be aware that in the
|
53 |
+
worst-case, the length of this list can be exponential in the number
|
54 |
+
of nodes in the graph (for example, when the graph is the complete
|
55 |
+
graph). This function avoids storing all cliques in memory by only
|
56 |
+
keeping current candidate node lists in memory during its search.
|
57 |
+
|
58 |
+
The implementation is adapted from the algorithm by Zhang, et
|
59 |
+
al. (2005) [1]_ to output all cliques discovered.
|
60 |
+
|
61 |
+
This algorithm ignores self-loops and parallel edges, since cliques
|
62 |
+
are not conventionally defined with such edges.
|
63 |
+
|
64 |
+
References
|
65 |
+
----------
|
66 |
+
.. [1] Yun Zhang, Abu-Khzam, F.N., Baldwin, N.E., Chesler, E.J.,
|
67 |
+
Langston, M.A., Samatova, N.F.,
|
68 |
+
"Genome-Scale Computational Approaches to Memory-Intensive
|
69 |
+
Applications in Systems Biology".
|
70 |
+
*Supercomputing*, 2005. Proceedings of the ACM/IEEE SC 2005
|
71 |
+
Conference, pp. 12, 12--18 Nov. 2005.
|
72 |
+
<https://doi.org/10.1109/SC.2005.29>.
|
73 |
+
|
74 |
+
"""
|
75 |
+
index = {}
|
76 |
+
nbrs = {}
|
77 |
+
for u in G:
|
78 |
+
index[u] = len(index)
|
79 |
+
# Neighbors of u that appear after u in the iteration order of G.
|
80 |
+
nbrs[u] = {v for v in G[u] if v not in index}
|
81 |
+
|
82 |
+
queue = deque(([u], sorted(nbrs[u], key=index.__getitem__)) for u in G)
|
83 |
+
# Loop invariants:
|
84 |
+
# 1. len(base) is nondecreasing.
|
85 |
+
# 2. (base + cnbrs) is sorted with respect to the iteration order of G.
|
86 |
+
# 3. cnbrs is a set of common neighbors of nodes in base.
|
87 |
+
while queue:
|
88 |
+
base, cnbrs = map(list, queue.popleft())
|
89 |
+
yield base
|
90 |
+
for i, u in enumerate(cnbrs):
|
91 |
+
# Use generators to reduce memory consumption.
|
92 |
+
queue.append(
|
93 |
+
(
|
94 |
+
chain(base, [u]),
|
95 |
+
filter(nbrs[u].__contains__, islice(cnbrs, i + 1, None)),
|
96 |
+
)
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
@not_implemented_for("directed")
|
101 |
+
@nx._dispatchable
|
102 |
+
def find_cliques(G, nodes=None):
|
103 |
+
"""Returns all maximal cliques in an undirected graph.
|
104 |
+
|
105 |
+
For each node *n*, a *maximal clique for n* is a largest complete
|
106 |
+
subgraph containing *n*. The largest maximal clique is sometimes
|
107 |
+
called the *maximum clique*.
|
108 |
+
|
109 |
+
This function returns an iterator over cliques, each of which is a
|
110 |
+
list of nodes. It is an iterative implementation, so should not
|
111 |
+
suffer from recursion depth issues.
|
112 |
+
|
113 |
+
This function accepts a list of `nodes` and only the maximal cliques
|
114 |
+
containing all of these `nodes` are returned. It can considerably speed up
|
115 |
+
the running time if some specific cliques are desired.
|
116 |
+
|
117 |
+
Parameters
|
118 |
+
----------
|
119 |
+
G : NetworkX graph
|
120 |
+
An undirected graph.
|
121 |
+
|
122 |
+
nodes : list, optional (default=None)
|
123 |
+
If provided, only yield *maximal cliques* containing all nodes in `nodes`.
|
124 |
+
If `nodes` isn't a clique itself, a ValueError is raised.
|
125 |
+
|
126 |
+
Returns
|
127 |
+
-------
|
128 |
+
iterator
|
129 |
+
An iterator over maximal cliques, each of which is a list of
|
130 |
+
nodes in `G`. If `nodes` is provided, only the maximal cliques
|
131 |
+
containing all the nodes in `nodes` are returned. The order of
|
132 |
+
cliques is arbitrary.
|
133 |
+
|
134 |
+
Raises
|
135 |
+
------
|
136 |
+
ValueError
|
137 |
+
If `nodes` is not a clique.
|
138 |
+
|
139 |
+
Examples
|
140 |
+
--------
|
141 |
+
>>> from pprint import pprint # For nice dict formatting
|
142 |
+
>>> G = nx.karate_club_graph()
|
143 |
+
>>> sum(1 for c in nx.find_cliques(G)) # The number of maximal cliques in G
|
144 |
+
36
|
145 |
+
>>> max(nx.find_cliques(G), key=len) # The largest maximal clique in G
|
146 |
+
[0, 1, 2, 3, 13]
|
147 |
+
|
148 |
+
The size of the largest maximal clique is known as the *clique number* of
|
149 |
+
the graph, which can be found directly with:
|
150 |
+
|
151 |
+
>>> max(len(c) for c in nx.find_cliques(G))
|
152 |
+
5
|
153 |
+
|
154 |
+
One can also compute the number of maximal cliques in `G` that contain a given
|
155 |
+
node. The following produces a dictionary keyed by node whose
|
156 |
+
values are the number of maximal cliques in `G` that contain the node:
|
157 |
+
|
158 |
+
>>> pprint({n: sum(1 for c in nx.find_cliques(G) if n in c) for n in G})
|
159 |
+
{0: 13,
|
160 |
+
1: 6,
|
161 |
+
2: 7,
|
162 |
+
3: 3,
|
163 |
+
4: 2,
|
164 |
+
5: 3,
|
165 |
+
6: 3,
|
166 |
+
7: 1,
|
167 |
+
8: 3,
|
168 |
+
9: 2,
|
169 |
+
10: 2,
|
170 |
+
11: 1,
|
171 |
+
12: 1,
|
172 |
+
13: 2,
|
173 |
+
14: 1,
|
174 |
+
15: 1,
|
175 |
+
16: 1,
|
176 |
+
17: 1,
|
177 |
+
18: 1,
|
178 |
+
19: 2,
|
179 |
+
20: 1,
|
180 |
+
21: 1,
|
181 |
+
22: 1,
|
182 |
+
23: 3,
|
183 |
+
24: 2,
|
184 |
+
25: 2,
|
185 |
+
26: 1,
|
186 |
+
27: 3,
|
187 |
+
28: 2,
|
188 |
+
29: 2,
|
189 |
+
30: 2,
|
190 |
+
31: 4,
|
191 |
+
32: 9,
|
192 |
+
33: 14}
|
193 |
+
|
194 |
+
Or, similarly, the maximal cliques in `G` that contain a given node.
|
195 |
+
For example, the 4 maximal cliques that contain node 31:
|
196 |
+
|
197 |
+
>>> [c for c in nx.find_cliques(G) if 31 in c]
|
198 |
+
[[0, 31], [33, 32, 31], [33, 28, 31], [24, 25, 31]]
|
199 |
+
|
200 |
+
See Also
|
201 |
+
--------
|
202 |
+
find_cliques_recursive
|
203 |
+
A recursive version of the same algorithm.
|
204 |
+
|
205 |
+
Notes
|
206 |
+
-----
|
207 |
+
To obtain a list of all maximal cliques, use
|
208 |
+
`list(find_cliques(G))`. However, be aware that in the worst-case,
|
209 |
+
the length of this list can be exponential in the number of nodes in
|
210 |
+
the graph. This function avoids storing all cliques in memory by
|
211 |
+
only keeping current candidate node lists in memory during its search.
|
212 |
+
|
213 |
+
This implementation is based on the algorithm published by Bron and
|
214 |
+
Kerbosch (1973) [1]_, as adapted by Tomita, Tanaka and Takahashi
|
215 |
+
(2006) [2]_ and discussed in Cazals and Karande (2008) [3]_. It
|
216 |
+
essentially unrolls the recursion used in the references to avoid
|
217 |
+
issues of recursion stack depth (for a recursive implementation, see
|
218 |
+
:func:`find_cliques_recursive`).
|
219 |
+
|
220 |
+
This algorithm ignores self-loops and parallel edges, since cliques
|
221 |
+
are not conventionally defined with such edges.
|
222 |
+
|
223 |
+
References
|
224 |
+
----------
|
225 |
+
.. [1] Bron, C. and Kerbosch, J.
|
226 |
+
"Algorithm 457: finding all cliques of an undirected graph".
|
227 |
+
*Communications of the ACM* 16, 9 (Sep. 1973), 575--577.
|
228 |
+
<http://portal.acm.org/citation.cfm?doid=362342.362367>
|
229 |
+
|
230 |
+
.. [2] Etsuji Tomita, Akira Tanaka, Haruhisa Takahashi,
|
231 |
+
"The worst-case time complexity for generating all maximal
|
232 |
+
cliques and computational experiments",
|
233 |
+
*Theoretical Computer Science*, Volume 363, Issue 1,
|
234 |
+
Computing and Combinatorics,
|
235 |
+
10th Annual International Conference on
|
236 |
+
Computing and Combinatorics (COCOON 2004), 25 October 2006, Pages 28--42
|
237 |
+
<https://doi.org/10.1016/j.tcs.2006.06.015>
|
238 |
+
|
239 |
+
.. [3] F. Cazals, C. Karande,
|
240 |
+
"A note on the problem of reporting maximal cliques",
|
241 |
+
*Theoretical Computer Science*,
|
242 |
+
Volume 407, Issues 1--3, 6 November 2008, Pages 564--568,
|
243 |
+
<https://doi.org/10.1016/j.tcs.2008.05.010>
|
244 |
+
|
245 |
+
"""
|
246 |
+
if len(G) == 0:
|
247 |
+
return
|
248 |
+
|
249 |
+
adj = {u: {v for v in G[u] if v != u} for u in G}
|
250 |
+
|
251 |
+
# Initialize Q with the given nodes and subg, cand with their nbrs
|
252 |
+
Q = nodes[:] if nodes is not None else []
|
253 |
+
cand = set(G)
|
254 |
+
for node in Q:
|
255 |
+
if node not in cand:
|
256 |
+
raise ValueError(f"The given `nodes` {nodes} do not form a clique")
|
257 |
+
cand &= adj[node]
|
258 |
+
|
259 |
+
if not cand:
|
260 |
+
yield Q[:]
|
261 |
+
return
|
262 |
+
|
263 |
+
subg = cand.copy()
|
264 |
+
stack = []
|
265 |
+
Q.append(None)
|
266 |
+
|
267 |
+
u = max(subg, key=lambda u: len(cand & adj[u]))
|
268 |
+
ext_u = cand - adj[u]
|
269 |
+
|
270 |
+
try:
|
271 |
+
while True:
|
272 |
+
if ext_u:
|
273 |
+
q = ext_u.pop()
|
274 |
+
cand.remove(q)
|
275 |
+
Q[-1] = q
|
276 |
+
adj_q = adj[q]
|
277 |
+
subg_q = subg & adj_q
|
278 |
+
if not subg_q:
|
279 |
+
yield Q[:]
|
280 |
+
else:
|
281 |
+
cand_q = cand & adj_q
|
282 |
+
if cand_q:
|
283 |
+
stack.append((subg, cand, ext_u))
|
284 |
+
Q.append(None)
|
285 |
+
subg = subg_q
|
286 |
+
cand = cand_q
|
287 |
+
u = max(subg, key=lambda u: len(cand & adj[u]))
|
288 |
+
ext_u = cand - adj[u]
|
289 |
+
else:
|
290 |
+
Q.pop()
|
291 |
+
subg, cand, ext_u = stack.pop()
|
292 |
+
except IndexError:
|
293 |
+
pass
|
294 |
+
|
295 |
+
|
296 |
+
# TODO Should this also be not implemented for directed graphs?
|
297 |
+
@nx._dispatchable
|
298 |
+
def find_cliques_recursive(G, nodes=None):
|
299 |
+
"""Returns all maximal cliques in a graph.
|
300 |
+
|
301 |
+
For each node *v*, a *maximal clique for v* is a largest complete
|
302 |
+
subgraph containing *v*. The largest maximal clique is sometimes
|
303 |
+
called the *maximum clique*.
|
304 |
+
|
305 |
+
This function returns an iterator over cliques, each of which is a
|
306 |
+
list of nodes. It is a recursive implementation, so may suffer from
|
307 |
+
recursion depth issues, but is included for pedagogical reasons.
|
308 |
+
For a non-recursive implementation, see :func:`find_cliques`.
|
309 |
+
|
310 |
+
This function accepts a list of `nodes` and only the maximal cliques
|
311 |
+
containing all of these `nodes` are returned. It can considerably speed up
|
312 |
+
the running time if some specific cliques are desired.
|
313 |
+
|
314 |
+
Parameters
|
315 |
+
----------
|
316 |
+
G : NetworkX graph
|
317 |
+
|
318 |
+
nodes : list, optional (default=None)
|
319 |
+
If provided, only yield *maximal cliques* containing all nodes in `nodes`.
|
320 |
+
If `nodes` isn't a clique itself, a ValueError is raised.
|
321 |
+
|
322 |
+
Returns
|
323 |
+
-------
|
324 |
+
iterator
|
325 |
+
An iterator over maximal cliques, each of which is a list of
|
326 |
+
nodes in `G`. If `nodes` is provided, only the maximal cliques
|
327 |
+
containing all the nodes in `nodes` are yielded. The order of
|
328 |
+
cliques is arbitrary.
|
329 |
+
|
330 |
+
Raises
|
331 |
+
------
|
332 |
+
ValueError
|
333 |
+
If `nodes` is not a clique.
|
334 |
+
|
335 |
+
See Also
|
336 |
+
--------
|
337 |
+
find_cliques
|
338 |
+
An iterative version of the same algorithm. See docstring for examples.
|
339 |
+
|
340 |
+
Notes
|
341 |
+
-----
|
342 |
+
To obtain a list of all maximal cliques, use
|
343 |
+
`list(find_cliques_recursive(G))`. However, be aware that in the
|
344 |
+
worst-case, the length of this list can be exponential in the number
|
345 |
+
of nodes in the graph. This function avoids storing all cliques in memory
|
346 |
+
by only keeping current candidate node lists in memory during its search.
|
347 |
+
|
348 |
+
This implementation is based on the algorithm published by Bron and
|
349 |
+
Kerbosch (1973) [1]_, as adapted by Tomita, Tanaka and Takahashi
|
350 |
+
(2006) [2]_ and discussed in Cazals and Karande (2008) [3]_. For a
|
351 |
+
non-recursive implementation, see :func:`find_cliques`.
|
352 |
+
|
353 |
+
This algorithm ignores self-loops and parallel edges, since cliques
|
354 |
+
are not conventionally defined with such edges.
|
355 |
+
|
356 |
+
References
|
357 |
+
----------
|
358 |
+
.. [1] Bron, C. and Kerbosch, J.
|
359 |
+
"Algorithm 457: finding all cliques of an undirected graph".
|
360 |
+
*Communications of the ACM* 16, 9 (Sep. 1973), 575--577.
|
361 |
+
<http://portal.acm.org/citation.cfm?doid=362342.362367>
|
362 |
+
|
363 |
+
.. [2] Etsuji Tomita, Akira Tanaka, Haruhisa Takahashi,
|
364 |
+
"The worst-case time complexity for generating all maximal
|
365 |
+
cliques and computational experiments",
|
366 |
+
*Theoretical Computer Science*, Volume 363, Issue 1,
|
367 |
+
Computing and Combinatorics,
|
368 |
+
10th Annual International Conference on
|
369 |
+
Computing and Combinatorics (COCOON 2004), 25 October 2006, Pages 28--42
|
370 |
+
<https://doi.org/10.1016/j.tcs.2006.06.015>
|
371 |
+
|
372 |
+
.. [3] F. Cazals, C. Karande,
|
373 |
+
"A note on the problem of reporting maximal cliques",
|
374 |
+
*Theoretical Computer Science*,
|
375 |
+
Volume 407, Issues 1--3, 6 November 2008, Pages 564--568,
|
376 |
+
<https://doi.org/10.1016/j.tcs.2008.05.010>
|
377 |
+
|
378 |
+
"""
|
379 |
+
if len(G) == 0:
|
380 |
+
return iter([])
|
381 |
+
|
382 |
+
adj = {u: {v for v in G[u] if v != u} for u in G}
|
383 |
+
|
384 |
+
# Initialize Q with the given nodes and subg, cand with their nbrs
|
385 |
+
Q = nodes[:] if nodes is not None else []
|
386 |
+
cand_init = set(G)
|
387 |
+
for node in Q:
|
388 |
+
if node not in cand_init:
|
389 |
+
raise ValueError(f"The given `nodes` {nodes} do not form a clique")
|
390 |
+
cand_init &= adj[node]
|
391 |
+
|
392 |
+
if not cand_init:
|
393 |
+
return iter([Q])
|
394 |
+
|
395 |
+
subg_init = cand_init.copy()
|
396 |
+
|
397 |
+
def expand(subg, cand):
|
398 |
+
u = max(subg, key=lambda u: len(cand & adj[u]))
|
399 |
+
for q in cand - adj[u]:
|
400 |
+
cand.remove(q)
|
401 |
+
Q.append(q)
|
402 |
+
adj_q = adj[q]
|
403 |
+
subg_q = subg & adj_q
|
404 |
+
if not subg_q:
|
405 |
+
yield Q[:]
|
406 |
+
else:
|
407 |
+
cand_q = cand & adj_q
|
408 |
+
if cand_q:
|
409 |
+
yield from expand(subg_q, cand_q)
|
410 |
+
Q.pop()
|
411 |
+
|
412 |
+
return expand(subg_init, cand_init)
|
413 |
+
|
414 |
+
|
415 |
+
@nx._dispatchable(returns_graph=True)
|
416 |
+
def make_max_clique_graph(G, create_using=None):
|
417 |
+
"""Returns the maximal clique graph of the given graph.
|
418 |
+
|
419 |
+
The nodes of the maximal clique graph of `G` are the cliques of
|
420 |
+
`G` and an edge joins two cliques if the cliques are not disjoint.
|
421 |
+
|
422 |
+
Parameters
|
423 |
+
----------
|
424 |
+
G : NetworkX graph
|
425 |
+
|
426 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
427 |
+
Graph type to create. If graph instance, then cleared before populated.
|
428 |
+
|
429 |
+
Returns
|
430 |
+
-------
|
431 |
+
NetworkX graph
|
432 |
+
A graph whose nodes are the cliques of `G` and whose edges
|
433 |
+
join two cliques if they are not disjoint.
|
434 |
+
|
435 |
+
Notes
|
436 |
+
-----
|
437 |
+
This function behaves like the following code::
|
438 |
+
|
439 |
+
import networkx as nx
|
440 |
+
|
441 |
+
G = nx.make_clique_bipartite(G)
|
442 |
+
cliques = [v for v in G.nodes() if G.nodes[v]["bipartite"] == 0]
|
443 |
+
G = nx.bipartite.projected_graph(G, cliques)
|
444 |
+
G = nx.relabel_nodes(G, {-v: v - 1 for v in G})
|
445 |
+
|
446 |
+
It should be faster, though, since it skips all the intermediate
|
447 |
+
steps.
|
448 |
+
|
449 |
+
"""
|
450 |
+
if create_using is None:
|
451 |
+
B = G.__class__()
|
452 |
+
else:
|
453 |
+
B = nx.empty_graph(0, create_using)
|
454 |
+
cliques = list(enumerate(set(c) for c in find_cliques(G)))
|
455 |
+
# Add a numbered node for each clique.
|
456 |
+
B.add_nodes_from(i for i, c in cliques)
|
457 |
+
# Join cliques by an edge if they share a node.
|
458 |
+
clique_pairs = combinations(cliques, 2)
|
459 |
+
B.add_edges_from((i, j) for (i, c1), (j, c2) in clique_pairs if c1 & c2)
|
460 |
+
return B
|
461 |
+
|
462 |
+
|
463 |
+
@nx._dispatchable(returns_graph=True)
|
464 |
+
def make_clique_bipartite(G, fpos=None, create_using=None, name=None):
|
465 |
+
"""Returns the bipartite clique graph corresponding to `G`.
|
466 |
+
|
467 |
+
In the returned bipartite graph, the "bottom" nodes are the nodes of
|
468 |
+
`G` and the "top" nodes represent the maximal cliques of `G`.
|
469 |
+
There is an edge from node *v* to clique *C* in the returned graph
|
470 |
+
if and only if *v* is an element of *C*.
|
471 |
+
|
472 |
+
Parameters
|
473 |
+
----------
|
474 |
+
G : NetworkX graph
|
475 |
+
An undirected graph.
|
476 |
+
|
477 |
+
fpos : bool
|
478 |
+
If True or not None, the returned graph will have an
|
479 |
+
additional attribute, `pos`, a dictionary mapping node to
|
480 |
+
position in the Euclidean plane.
|
481 |
+
|
482 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
483 |
+
Graph type to create. If graph instance, then cleared before populated.
|
484 |
+
|
485 |
+
Returns
|
486 |
+
-------
|
487 |
+
NetworkX graph
|
488 |
+
A bipartite graph whose "bottom" set is the nodes of the graph
|
489 |
+
`G`, whose "top" set is the cliques of `G`, and whose edges
|
490 |
+
join nodes of `G` to the cliques that contain them.
|
491 |
+
|
492 |
+
The nodes of the graph `G` have the node attribute
|
493 |
+
'bipartite' set to 1 and the nodes representing cliques
|
494 |
+
have the node attribute 'bipartite' set to 0, as is the
|
495 |
+
convention for bipartite graphs in NetworkX.
|
496 |
+
|
497 |
+
"""
|
498 |
+
B = nx.empty_graph(0, create_using)
|
499 |
+
B.clear()
|
500 |
+
# The "bottom" nodes in the bipartite graph are the nodes of the
|
501 |
+
# original graph, G.
|
502 |
+
B.add_nodes_from(G, bipartite=1)
|
503 |
+
for i, cl in enumerate(find_cliques(G)):
|
504 |
+
# The "top" nodes in the bipartite graph are the cliques. These
|
505 |
+
# nodes get negative numbers as labels.
|
506 |
+
name = -i - 1
|
507 |
+
B.add_node(name, bipartite=0)
|
508 |
+
B.add_edges_from((v, name) for v in cl)
|
509 |
+
return B
|
510 |
+
|
511 |
+
|
512 |
+
@nx._dispatchable
|
513 |
+
def node_clique_number(G, nodes=None, cliques=None, separate_nodes=False):
|
514 |
+
"""Returns the size of the largest maximal clique containing each given node.
|
515 |
+
|
516 |
+
Returns a single or list depending on input nodes.
|
517 |
+
An optional list of cliques can be input if already computed.
|
518 |
+
|
519 |
+
Parameters
|
520 |
+
----------
|
521 |
+
G : NetworkX graph
|
522 |
+
An undirected graph.
|
523 |
+
|
524 |
+
cliques : list, optional (default=None)
|
525 |
+
A list of cliques, each of which is itself a list of nodes.
|
526 |
+
If not specified, the list of all cliques will be computed
|
527 |
+
using :func:`find_cliques`.
|
528 |
+
|
529 |
+
Returns
|
530 |
+
-------
|
531 |
+
int or dict
|
532 |
+
If `nodes` is a single node, returns the size of the
|
533 |
+
largest maximal clique in `G` containing that node.
|
534 |
+
Otherwise return a dict keyed by node to the size
|
535 |
+
of the largest maximal clique containing that node.
|
536 |
+
|
537 |
+
See Also
|
538 |
+
--------
|
539 |
+
find_cliques
|
540 |
+
find_cliques yields the maximal cliques of G.
|
541 |
+
It accepts a `nodes` argument which restricts consideration to
|
542 |
+
maximal cliques containing all the given `nodes`.
|
543 |
+
The search for the cliques is optimized for `nodes`.
|
544 |
+
"""
|
545 |
+
if cliques is None:
|
546 |
+
if nodes is not None:
|
547 |
+
# Use ego_graph to decrease size of graph
|
548 |
+
# check for single node
|
549 |
+
if nodes in G:
|
550 |
+
return max(len(c) for c in find_cliques(nx.ego_graph(G, nodes)))
|
551 |
+
# handle multiple nodes
|
552 |
+
return {
|
553 |
+
n: max(len(c) for c in find_cliques(nx.ego_graph(G, n))) for n in nodes
|
554 |
+
}
|
555 |
+
|
556 |
+
# nodes is None--find all cliques
|
557 |
+
cliques = list(find_cliques(G))
|
558 |
+
|
559 |
+
# single node requested
|
560 |
+
if nodes in G:
|
561 |
+
return max(len(c) for c in cliques if nodes in c)
|
562 |
+
|
563 |
+
# multiple nodes requested
|
564 |
+
# preprocess all nodes (faster than one at a time for even 2 nodes)
|
565 |
+
size_for_n = defaultdict(int)
|
566 |
+
for c in cliques:
|
567 |
+
size_of_c = len(c)
|
568 |
+
for n in c:
|
569 |
+
if size_for_n[n] < size_of_c:
|
570 |
+
size_for_n[n] = size_of_c
|
571 |
+
if nodes is None:
|
572 |
+
return size_for_n
|
573 |
+
return {n: size_for_n[n] for n in nodes}
|
574 |
+
|
575 |
+
|
576 |
+
def number_of_cliques(G, nodes=None, cliques=None):
|
577 |
+
"""Returns the number of maximal cliques for each node.
|
578 |
+
|
579 |
+
Returns a single or list depending on input nodes.
|
580 |
+
Optional list of cliques can be input if already computed.
|
581 |
+
"""
|
582 |
+
if cliques is None:
|
583 |
+
cliques = list(find_cliques(G))
|
584 |
+
|
585 |
+
if nodes is None:
|
586 |
+
nodes = list(G.nodes()) # none, get entire graph
|
587 |
+
|
588 |
+
if not isinstance(nodes, list): # check for a list
|
589 |
+
v = nodes
|
590 |
+
# assume it is a single value
|
591 |
+
numcliq = len([1 for c in cliques if v in c])
|
592 |
+
else:
|
593 |
+
numcliq = {}
|
594 |
+
for v in nodes:
|
595 |
+
numcliq[v] = len([1 for c in cliques if v in c])
|
596 |
+
return numcliq
|
597 |
+
|
598 |
+
|
599 |
+
class MaxWeightClique:
|
600 |
+
"""A class for the maximum weight clique algorithm.
|
601 |
+
|
602 |
+
This class is a helper for the `max_weight_clique` function. The class
|
603 |
+
should not normally be used directly.
|
604 |
+
|
605 |
+
Parameters
|
606 |
+
----------
|
607 |
+
G : NetworkX graph
|
608 |
+
The undirected graph for which a maximum weight clique is sought
|
609 |
+
weight : string or None, optional (default='weight')
|
610 |
+
The node attribute that holds the integer value used as a weight.
|
611 |
+
If None, then each node has weight 1.
|
612 |
+
|
613 |
+
Attributes
|
614 |
+
----------
|
615 |
+
G : NetworkX graph
|
616 |
+
The undirected graph for which a maximum weight clique is sought
|
617 |
+
node_weights: dict
|
618 |
+
The weight of each node
|
619 |
+
incumbent_nodes : list
|
620 |
+
The nodes of the incumbent clique (the best clique found so far)
|
621 |
+
incumbent_weight: int
|
622 |
+
The weight of the incumbent clique
|
623 |
+
"""
|
624 |
+
|
625 |
+
def __init__(self, G, weight):
|
626 |
+
self.G = G
|
627 |
+
self.incumbent_nodes = []
|
628 |
+
self.incumbent_weight = 0
|
629 |
+
|
630 |
+
if weight is None:
|
631 |
+
self.node_weights = {v: 1 for v in G.nodes()}
|
632 |
+
else:
|
633 |
+
for v in G.nodes():
|
634 |
+
if weight not in G.nodes[v]:
|
635 |
+
errmsg = f"Node {v!r} does not have the requested weight field."
|
636 |
+
raise KeyError(errmsg)
|
637 |
+
if not isinstance(G.nodes[v][weight], int):
|
638 |
+
errmsg = f"The {weight!r} field of node {v!r} is not an integer."
|
639 |
+
raise ValueError(errmsg)
|
640 |
+
self.node_weights = {v: G.nodes[v][weight] for v in G.nodes()}
|
641 |
+
|
642 |
+
def update_incumbent_if_improved(self, C, C_weight):
|
643 |
+
"""Update the incumbent if the node set C has greater weight.
|
644 |
+
|
645 |
+
C is assumed to be a clique.
|
646 |
+
"""
|
647 |
+
if C_weight > self.incumbent_weight:
|
648 |
+
self.incumbent_nodes = C[:]
|
649 |
+
self.incumbent_weight = C_weight
|
650 |
+
|
651 |
+
def greedily_find_independent_set(self, P):
|
652 |
+
"""Greedily find an independent set of nodes from a set of
|
653 |
+
nodes P."""
|
654 |
+
independent_set = []
|
655 |
+
P = P[:]
|
656 |
+
while P:
|
657 |
+
v = P[0]
|
658 |
+
independent_set.append(v)
|
659 |
+
P = [w for w in P if v != w and not self.G.has_edge(v, w)]
|
660 |
+
return independent_set
|
661 |
+
|
662 |
+
def find_branching_nodes(self, P, target):
|
663 |
+
"""Find a set of nodes to branch on."""
|
664 |
+
residual_wt = {v: self.node_weights[v] for v in P}
|
665 |
+
total_wt = 0
|
666 |
+
P = P[:]
|
667 |
+
while P:
|
668 |
+
independent_set = self.greedily_find_independent_set(P)
|
669 |
+
min_wt_in_class = min(residual_wt[v] for v in independent_set)
|
670 |
+
total_wt += min_wt_in_class
|
671 |
+
if total_wt > target:
|
672 |
+
break
|
673 |
+
for v in independent_set:
|
674 |
+
residual_wt[v] -= min_wt_in_class
|
675 |
+
P = [v for v in P if residual_wt[v] != 0]
|
676 |
+
return P
|
677 |
+
|
678 |
+
def expand(self, C, C_weight, P):
|
679 |
+
"""Look for the best clique that contains all the nodes in C and zero or
|
680 |
+
more of the nodes in P, backtracking if it can be shown that no such
|
681 |
+
clique has greater weight than the incumbent.
|
682 |
+
"""
|
683 |
+
self.update_incumbent_if_improved(C, C_weight)
|
684 |
+
branching_nodes = self.find_branching_nodes(P, self.incumbent_weight - C_weight)
|
685 |
+
while branching_nodes:
|
686 |
+
v = branching_nodes.pop()
|
687 |
+
P.remove(v)
|
688 |
+
new_C = C + [v]
|
689 |
+
new_C_weight = C_weight + self.node_weights[v]
|
690 |
+
new_P = [w for w in P if self.G.has_edge(v, w)]
|
691 |
+
self.expand(new_C, new_C_weight, new_P)
|
692 |
+
|
693 |
+
def find_max_weight_clique(self):
|
694 |
+
"""Find a maximum weight clique."""
|
695 |
+
# Sort nodes in reverse order of degree for speed
|
696 |
+
nodes = sorted(self.G.nodes(), key=lambda v: self.G.degree(v), reverse=True)
|
697 |
+
nodes = [v for v in nodes if self.node_weights[v] > 0]
|
698 |
+
self.expand([], 0, nodes)
|
699 |
+
|
700 |
+
|
701 |
+
@not_implemented_for("directed")
|
702 |
+
@nx._dispatchable(node_attrs="weight")
|
703 |
+
def max_weight_clique(G, weight="weight"):
|
704 |
+
"""Find a maximum weight clique in G.
|
705 |
+
|
706 |
+
A *clique* in a graph is a set of nodes such that every two distinct nodes
|
707 |
+
are adjacent. The *weight* of a clique is the sum of the weights of its
|
708 |
+
nodes. A *maximum weight clique* of graph G is a clique C in G such that
|
709 |
+
no clique in G has weight greater than the weight of C.
|
710 |
+
|
711 |
+
Parameters
|
712 |
+
----------
|
713 |
+
G : NetworkX graph
|
714 |
+
Undirected graph
|
715 |
+
weight : string or None, optional (default='weight')
|
716 |
+
The node attribute that holds the integer value used as a weight.
|
717 |
+
If None, then each node has weight 1.
|
718 |
+
|
719 |
+
Returns
|
720 |
+
-------
|
721 |
+
clique : list
|
722 |
+
the nodes of a maximum weight clique
|
723 |
+
weight : int
|
724 |
+
the weight of a maximum weight clique
|
725 |
+
|
726 |
+
Notes
|
727 |
+
-----
|
728 |
+
The implementation is recursive, and therefore it may run into recursion
|
729 |
+
depth issues if G contains a clique whose number of nodes is close to the
|
730 |
+
recursion depth limit.
|
731 |
+
|
732 |
+
At each search node, the algorithm greedily constructs a weighted
|
733 |
+
independent set cover of part of the graph in order to find a small set of
|
734 |
+
nodes on which to branch. The algorithm is very similar to the algorithm
|
735 |
+
of Tavares et al. [1]_, other than the fact that the NetworkX version does
|
736 |
+
not use bitsets. This style of algorithm for maximum weight clique (and
|
737 |
+
maximum weight independent set, which is the same problem but on the
|
738 |
+
complement graph) has a decades-long history. See Algorithm B of Warren
|
739 |
+
and Hicks [2]_ and the references in that paper.
|
740 |
+
|
741 |
+
References
|
742 |
+
----------
|
743 |
+
.. [1] Tavares, W.A., Neto, M.B.C., Rodrigues, C.D., Michelon, P.: Um
|
744 |
+
algoritmo de branch and bound para o problema da clique máxima
|
745 |
+
ponderada. Proceedings of XLVII SBPO 1 (2015).
|
746 |
+
|
747 |
+
.. [2] Warren, Jeffrey S, Hicks, Illya V.: Combinatorial Branch-and-Bound
|
748 |
+
for the Maximum Weight Independent Set Problem. Technical Report,
|
749 |
+
Texas A&M University (2016).
|
750 |
+
"""
|
751 |
+
|
752 |
+
mwc = MaxWeightClique(G, weight)
|
753 |
+
mwc.find_max_weight_clique()
|
754 |
+
return mwc.incumbent_nodes, mwc.incumbent_weight
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/cluster.py
ADDED
@@ -0,0 +1,609 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Algorithms to characterize the number of triangles in a graph."""
|
2 |
+
|
3 |
+
from collections import Counter
|
4 |
+
from itertools import chain, combinations
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.utils import not_implemented_for
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
"triangles",
|
11 |
+
"average_clustering",
|
12 |
+
"clustering",
|
13 |
+
"transitivity",
|
14 |
+
"square_clustering",
|
15 |
+
"generalized_degree",
|
16 |
+
]
|
17 |
+
|
18 |
+
|
19 |
+
@not_implemented_for("directed")
|
20 |
+
@nx._dispatchable
|
21 |
+
def triangles(G, nodes=None):
|
22 |
+
"""Compute the number of triangles.
|
23 |
+
|
24 |
+
Finds the number of triangles that include a node as one vertex.
|
25 |
+
|
26 |
+
Parameters
|
27 |
+
----------
|
28 |
+
G : graph
|
29 |
+
A networkx graph
|
30 |
+
|
31 |
+
nodes : node, iterable of nodes, or None (default=None)
|
32 |
+
If a singleton node, return the number of triangles for that node.
|
33 |
+
If an iterable, compute the number of triangles for each of those nodes.
|
34 |
+
If `None` (the default) compute the number of triangles for all nodes in `G`.
|
35 |
+
|
36 |
+
Returns
|
37 |
+
-------
|
38 |
+
out : dict or int
|
39 |
+
If `nodes` is a container of nodes, returns number of triangles keyed by node (dict).
|
40 |
+
If `nodes` is a specific node, returns number of triangles for the node (int).
|
41 |
+
|
42 |
+
Examples
|
43 |
+
--------
|
44 |
+
>>> G = nx.complete_graph(5)
|
45 |
+
>>> print(nx.triangles(G, 0))
|
46 |
+
6
|
47 |
+
>>> print(nx.triangles(G))
|
48 |
+
{0: 6, 1: 6, 2: 6, 3: 6, 4: 6}
|
49 |
+
>>> print(list(nx.triangles(G, [0, 1]).values()))
|
50 |
+
[6, 6]
|
51 |
+
|
52 |
+
Notes
|
53 |
+
-----
|
54 |
+
Self loops are ignored.
|
55 |
+
|
56 |
+
"""
|
57 |
+
if nodes is not None:
|
58 |
+
# If `nodes` represents a single node, return only its number of triangles
|
59 |
+
if nodes in G:
|
60 |
+
return next(_triangles_and_degree_iter(G, nodes))[2] // 2
|
61 |
+
|
62 |
+
# if `nodes` is a container of nodes, then return a
|
63 |
+
# dictionary mapping node to number of triangles.
|
64 |
+
return {v: t // 2 for v, d, t, _ in _triangles_and_degree_iter(G, nodes)}
|
65 |
+
|
66 |
+
# if nodes is None, then compute triangles for the complete graph
|
67 |
+
|
68 |
+
# dict used to avoid visiting the same nodes twice
|
69 |
+
# this allows calculating/counting each triangle only once
|
70 |
+
later_nbrs = {}
|
71 |
+
|
72 |
+
# iterate over the nodes in a graph
|
73 |
+
for node, neighbors in G.adjacency():
|
74 |
+
later_nbrs[node] = {n for n in neighbors if n not in later_nbrs and n != node}
|
75 |
+
|
76 |
+
# instantiate Counter for each node to include isolated nodes
|
77 |
+
# add 1 to the count if a nodes neighbor's neighbor is also a neighbor
|
78 |
+
triangle_counts = Counter(dict.fromkeys(G, 0))
|
79 |
+
for node1, neighbors in later_nbrs.items():
|
80 |
+
for node2 in neighbors:
|
81 |
+
third_nodes = neighbors & later_nbrs[node2]
|
82 |
+
m = len(third_nodes)
|
83 |
+
triangle_counts[node1] += m
|
84 |
+
triangle_counts[node2] += m
|
85 |
+
triangle_counts.update(third_nodes)
|
86 |
+
|
87 |
+
return dict(triangle_counts)
|
88 |
+
|
89 |
+
|
90 |
+
@not_implemented_for("multigraph")
|
91 |
+
def _triangles_and_degree_iter(G, nodes=None):
|
92 |
+
"""Return an iterator of (node, degree, triangles, generalized degree).
|
93 |
+
|
94 |
+
This double counts triangles so you may want to divide by 2.
|
95 |
+
See degree(), triangles() and generalized_degree() for definitions
|
96 |
+
and details.
|
97 |
+
|
98 |
+
"""
|
99 |
+
if nodes is None:
|
100 |
+
nodes_nbrs = G.adj.items()
|
101 |
+
else:
|
102 |
+
nodes_nbrs = ((n, G[n]) for n in G.nbunch_iter(nodes))
|
103 |
+
|
104 |
+
for v, v_nbrs in nodes_nbrs:
|
105 |
+
vs = set(v_nbrs) - {v}
|
106 |
+
gen_degree = Counter(len(vs & (set(G[w]) - {w})) for w in vs)
|
107 |
+
ntriangles = sum(k * val for k, val in gen_degree.items())
|
108 |
+
yield (v, len(vs), ntriangles, gen_degree)
|
109 |
+
|
110 |
+
|
111 |
+
@not_implemented_for("multigraph")
|
112 |
+
def _weighted_triangles_and_degree_iter(G, nodes=None, weight="weight"):
|
113 |
+
"""Return an iterator of (node, degree, weighted_triangles).
|
114 |
+
|
115 |
+
Used for weighted clustering.
|
116 |
+
Note: this returns the geometric average weight of edges in the triangle.
|
117 |
+
Also, each triangle is counted twice (each direction).
|
118 |
+
So you may want to divide by 2.
|
119 |
+
|
120 |
+
"""
|
121 |
+
import numpy as np
|
122 |
+
|
123 |
+
if weight is None or G.number_of_edges() == 0:
|
124 |
+
max_weight = 1
|
125 |
+
else:
|
126 |
+
max_weight = max(d.get(weight, 1) for u, v, d in G.edges(data=True))
|
127 |
+
if nodes is None:
|
128 |
+
nodes_nbrs = G.adj.items()
|
129 |
+
else:
|
130 |
+
nodes_nbrs = ((n, G[n]) for n in G.nbunch_iter(nodes))
|
131 |
+
|
132 |
+
def wt(u, v):
|
133 |
+
return G[u][v].get(weight, 1) / max_weight
|
134 |
+
|
135 |
+
for i, nbrs in nodes_nbrs:
|
136 |
+
inbrs = set(nbrs) - {i}
|
137 |
+
weighted_triangles = 0
|
138 |
+
seen = set()
|
139 |
+
for j in inbrs:
|
140 |
+
seen.add(j)
|
141 |
+
# This avoids counting twice -- we double at the end.
|
142 |
+
jnbrs = set(G[j]) - seen
|
143 |
+
# Only compute the edge weight once, before the inner inner
|
144 |
+
# loop.
|
145 |
+
wij = wt(i, j)
|
146 |
+
weighted_triangles += np.cbrt(
|
147 |
+
[(wij * wt(j, k) * wt(k, i)) for k in inbrs & jnbrs]
|
148 |
+
).sum()
|
149 |
+
yield (i, len(inbrs), 2 * float(weighted_triangles))
|
150 |
+
|
151 |
+
|
152 |
+
@not_implemented_for("multigraph")
|
153 |
+
def _directed_triangles_and_degree_iter(G, nodes=None):
|
154 |
+
"""Return an iterator of
|
155 |
+
(node, total_degree, reciprocal_degree, directed_triangles).
|
156 |
+
|
157 |
+
Used for directed clustering.
|
158 |
+
Note that unlike `_triangles_and_degree_iter()`, this function counts
|
159 |
+
directed triangles so does not count triangles twice.
|
160 |
+
|
161 |
+
"""
|
162 |
+
nodes_nbrs = ((n, G._pred[n], G._succ[n]) for n in G.nbunch_iter(nodes))
|
163 |
+
|
164 |
+
for i, preds, succs in nodes_nbrs:
|
165 |
+
ipreds = set(preds) - {i}
|
166 |
+
isuccs = set(succs) - {i}
|
167 |
+
|
168 |
+
directed_triangles = 0
|
169 |
+
for j in chain(ipreds, isuccs):
|
170 |
+
jpreds = set(G._pred[j]) - {j}
|
171 |
+
jsuccs = set(G._succ[j]) - {j}
|
172 |
+
directed_triangles += sum(
|
173 |
+
1
|
174 |
+
for k in chain(
|
175 |
+
(ipreds & jpreds),
|
176 |
+
(ipreds & jsuccs),
|
177 |
+
(isuccs & jpreds),
|
178 |
+
(isuccs & jsuccs),
|
179 |
+
)
|
180 |
+
)
|
181 |
+
dtotal = len(ipreds) + len(isuccs)
|
182 |
+
dbidirectional = len(ipreds & isuccs)
|
183 |
+
yield (i, dtotal, dbidirectional, directed_triangles)
|
184 |
+
|
185 |
+
|
186 |
+
@not_implemented_for("multigraph")
|
187 |
+
def _directed_weighted_triangles_and_degree_iter(G, nodes=None, weight="weight"):
|
188 |
+
"""Return an iterator of
|
189 |
+
(node, total_degree, reciprocal_degree, directed_weighted_triangles).
|
190 |
+
|
191 |
+
Used for directed weighted clustering.
|
192 |
+
Note that unlike `_weighted_triangles_and_degree_iter()`, this function counts
|
193 |
+
directed triangles so does not count triangles twice.
|
194 |
+
|
195 |
+
"""
|
196 |
+
import numpy as np
|
197 |
+
|
198 |
+
if weight is None or G.number_of_edges() == 0:
|
199 |
+
max_weight = 1
|
200 |
+
else:
|
201 |
+
max_weight = max(d.get(weight, 1) for u, v, d in G.edges(data=True))
|
202 |
+
|
203 |
+
nodes_nbrs = ((n, G._pred[n], G._succ[n]) for n in G.nbunch_iter(nodes))
|
204 |
+
|
205 |
+
def wt(u, v):
|
206 |
+
return G[u][v].get(weight, 1) / max_weight
|
207 |
+
|
208 |
+
for i, preds, succs in nodes_nbrs:
|
209 |
+
ipreds = set(preds) - {i}
|
210 |
+
isuccs = set(succs) - {i}
|
211 |
+
|
212 |
+
directed_triangles = 0
|
213 |
+
for j in ipreds:
|
214 |
+
jpreds = set(G._pred[j]) - {j}
|
215 |
+
jsuccs = set(G._succ[j]) - {j}
|
216 |
+
directed_triangles += np.cbrt(
|
217 |
+
[(wt(j, i) * wt(k, i) * wt(k, j)) for k in ipreds & jpreds]
|
218 |
+
).sum()
|
219 |
+
directed_triangles += np.cbrt(
|
220 |
+
[(wt(j, i) * wt(k, i) * wt(j, k)) for k in ipreds & jsuccs]
|
221 |
+
).sum()
|
222 |
+
directed_triangles += np.cbrt(
|
223 |
+
[(wt(j, i) * wt(i, k) * wt(k, j)) for k in isuccs & jpreds]
|
224 |
+
).sum()
|
225 |
+
directed_triangles += np.cbrt(
|
226 |
+
[(wt(j, i) * wt(i, k) * wt(j, k)) for k in isuccs & jsuccs]
|
227 |
+
).sum()
|
228 |
+
|
229 |
+
for j in isuccs:
|
230 |
+
jpreds = set(G._pred[j]) - {j}
|
231 |
+
jsuccs = set(G._succ[j]) - {j}
|
232 |
+
directed_triangles += np.cbrt(
|
233 |
+
[(wt(i, j) * wt(k, i) * wt(k, j)) for k in ipreds & jpreds]
|
234 |
+
).sum()
|
235 |
+
directed_triangles += np.cbrt(
|
236 |
+
[(wt(i, j) * wt(k, i) * wt(j, k)) for k in ipreds & jsuccs]
|
237 |
+
).sum()
|
238 |
+
directed_triangles += np.cbrt(
|
239 |
+
[(wt(i, j) * wt(i, k) * wt(k, j)) for k in isuccs & jpreds]
|
240 |
+
).sum()
|
241 |
+
directed_triangles += np.cbrt(
|
242 |
+
[(wt(i, j) * wt(i, k) * wt(j, k)) for k in isuccs & jsuccs]
|
243 |
+
).sum()
|
244 |
+
|
245 |
+
dtotal = len(ipreds) + len(isuccs)
|
246 |
+
dbidirectional = len(ipreds & isuccs)
|
247 |
+
yield (i, dtotal, dbidirectional, float(directed_triangles))
|
248 |
+
|
249 |
+
|
250 |
+
@nx._dispatchable(edge_attrs="weight")
|
251 |
+
def average_clustering(G, nodes=None, weight=None, count_zeros=True):
|
252 |
+
r"""Compute the average clustering coefficient for the graph G.
|
253 |
+
|
254 |
+
The clustering coefficient for the graph is the average,
|
255 |
+
|
256 |
+
.. math::
|
257 |
+
|
258 |
+
C = \frac{1}{n}\sum_{v \in G} c_v,
|
259 |
+
|
260 |
+
where :math:`n` is the number of nodes in `G`.
|
261 |
+
|
262 |
+
Parameters
|
263 |
+
----------
|
264 |
+
G : graph
|
265 |
+
|
266 |
+
nodes : container of nodes, optional (default=all nodes in G)
|
267 |
+
Compute average clustering for nodes in this container.
|
268 |
+
|
269 |
+
weight : string or None, optional (default=None)
|
270 |
+
The edge attribute that holds the numerical value used as a weight.
|
271 |
+
If None, then each edge has weight 1.
|
272 |
+
|
273 |
+
count_zeros : bool
|
274 |
+
If False include only the nodes with nonzero clustering in the average.
|
275 |
+
|
276 |
+
Returns
|
277 |
+
-------
|
278 |
+
avg : float
|
279 |
+
Average clustering
|
280 |
+
|
281 |
+
Examples
|
282 |
+
--------
|
283 |
+
>>> G = nx.complete_graph(5)
|
284 |
+
>>> print(nx.average_clustering(G))
|
285 |
+
1.0
|
286 |
+
|
287 |
+
Notes
|
288 |
+
-----
|
289 |
+
This is a space saving routine; it might be faster
|
290 |
+
to use the clustering function to get a list and then take the average.
|
291 |
+
|
292 |
+
Self loops are ignored.
|
293 |
+
|
294 |
+
References
|
295 |
+
----------
|
296 |
+
.. [1] Generalizations of the clustering coefficient to weighted
|
297 |
+
complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela,
|
298 |
+
K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007).
|
299 |
+
http://jponnela.com/web_documents/a9.pdf
|
300 |
+
.. [2] Marcus Kaiser, Mean clustering coefficients: the role of isolated
|
301 |
+
nodes and leafs on clustering measures for small-world networks.
|
302 |
+
https://arxiv.org/abs/0802.2512
|
303 |
+
"""
|
304 |
+
c = clustering(G, nodes, weight=weight).values()
|
305 |
+
if not count_zeros:
|
306 |
+
c = [v for v in c if abs(v) > 0]
|
307 |
+
return sum(c) / len(c)
|
308 |
+
|
309 |
+
|
310 |
+
@nx._dispatchable(edge_attrs="weight")
|
311 |
+
def clustering(G, nodes=None, weight=None):
|
312 |
+
r"""Compute the clustering coefficient for nodes.
|
313 |
+
|
314 |
+
For unweighted graphs, the clustering of a node :math:`u`
|
315 |
+
is the fraction of possible triangles through that node that exist,
|
316 |
+
|
317 |
+
.. math::
|
318 |
+
|
319 |
+
c_u = \frac{2 T(u)}{deg(u)(deg(u)-1)},
|
320 |
+
|
321 |
+
where :math:`T(u)` is the number of triangles through node :math:`u` and
|
322 |
+
:math:`deg(u)` is the degree of :math:`u`.
|
323 |
+
|
324 |
+
For weighted graphs, there are several ways to define clustering [1]_.
|
325 |
+
the one used here is defined
|
326 |
+
as the geometric average of the subgraph edge weights [2]_,
|
327 |
+
|
328 |
+
.. math::
|
329 |
+
|
330 |
+
c_u = \frac{1}{deg(u)(deg(u)-1))}
|
331 |
+
\sum_{vw} (\hat{w}_{uv} \hat{w}_{uw} \hat{w}_{vw})^{1/3}.
|
332 |
+
|
333 |
+
The edge weights :math:`\hat{w}_{uv}` are normalized by the maximum weight
|
334 |
+
in the network :math:`\hat{w}_{uv} = w_{uv}/\max(w)`.
|
335 |
+
|
336 |
+
The value of :math:`c_u` is assigned to 0 if :math:`deg(u) < 2`.
|
337 |
+
|
338 |
+
Additionally, this weighted definition has been generalized to support negative edge weights [3]_.
|
339 |
+
|
340 |
+
For directed graphs, the clustering is similarly defined as the fraction
|
341 |
+
of all possible directed triangles or geometric average of the subgraph
|
342 |
+
edge weights for unweighted and weighted directed graph respectively [4]_.
|
343 |
+
|
344 |
+
.. math::
|
345 |
+
|
346 |
+
c_u = \frac{T(u)}{2(deg^{tot}(u)(deg^{tot}(u)-1) - 2deg^{\leftrightarrow}(u))},
|
347 |
+
|
348 |
+
where :math:`T(u)` is the number of directed triangles through node
|
349 |
+
:math:`u`, :math:`deg^{tot}(u)` is the sum of in degree and out degree of
|
350 |
+
:math:`u` and :math:`deg^{\leftrightarrow}(u)` is the reciprocal degree of
|
351 |
+
:math:`u`.
|
352 |
+
|
353 |
+
|
354 |
+
Parameters
|
355 |
+
----------
|
356 |
+
G : graph
|
357 |
+
|
358 |
+
nodes : node, iterable of nodes, or None (default=None)
|
359 |
+
If a singleton node, return the number of triangles for that node.
|
360 |
+
If an iterable, compute the number of triangles for each of those nodes.
|
361 |
+
If `None` (the default) compute the number of triangles for all nodes in `G`.
|
362 |
+
|
363 |
+
weight : string or None, optional (default=None)
|
364 |
+
The edge attribute that holds the numerical value used as a weight.
|
365 |
+
If None, then each edge has weight 1.
|
366 |
+
|
367 |
+
Returns
|
368 |
+
-------
|
369 |
+
out : float, or dictionary
|
370 |
+
Clustering coefficient at specified nodes
|
371 |
+
|
372 |
+
Examples
|
373 |
+
--------
|
374 |
+
>>> G = nx.complete_graph(5)
|
375 |
+
>>> print(nx.clustering(G, 0))
|
376 |
+
1.0
|
377 |
+
>>> print(nx.clustering(G))
|
378 |
+
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}
|
379 |
+
|
380 |
+
Notes
|
381 |
+
-----
|
382 |
+
Self loops are ignored.
|
383 |
+
|
384 |
+
References
|
385 |
+
----------
|
386 |
+
.. [1] Generalizations of the clustering coefficient to weighted
|
387 |
+
complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela,
|
388 |
+
K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007).
|
389 |
+
http://jponnela.com/web_documents/a9.pdf
|
390 |
+
.. [2] Intensity and coherence of motifs in weighted complex
|
391 |
+
networks by J. P. Onnela, J. Saramäki, J. Kertész, and K. Kaski,
|
392 |
+
Physical Review E, 71(6), 065103 (2005).
|
393 |
+
.. [3] Generalization of Clustering Coefficients to Signed Correlation Networks
|
394 |
+
by G. Costantini and M. Perugini, PloS one, 9(2), e88669 (2014).
|
395 |
+
.. [4] Clustering in complex directed networks by G. Fagiolo,
|
396 |
+
Physical Review E, 76(2), 026107 (2007).
|
397 |
+
"""
|
398 |
+
if G.is_directed():
|
399 |
+
if weight is not None:
|
400 |
+
td_iter = _directed_weighted_triangles_and_degree_iter(G, nodes, weight)
|
401 |
+
clusterc = {
|
402 |
+
v: 0 if t == 0 else t / ((dt * (dt - 1) - 2 * db) * 2)
|
403 |
+
for v, dt, db, t in td_iter
|
404 |
+
}
|
405 |
+
else:
|
406 |
+
td_iter = _directed_triangles_and_degree_iter(G, nodes)
|
407 |
+
clusterc = {
|
408 |
+
v: 0 if t == 0 else t / ((dt * (dt - 1) - 2 * db) * 2)
|
409 |
+
for v, dt, db, t in td_iter
|
410 |
+
}
|
411 |
+
else:
|
412 |
+
# The formula 2*T/(d*(d-1)) from docs is t/(d*(d-1)) here b/c t==2*T
|
413 |
+
if weight is not None:
|
414 |
+
td_iter = _weighted_triangles_and_degree_iter(G, nodes, weight)
|
415 |
+
clusterc = {v: 0 if t == 0 else t / (d * (d - 1)) for v, d, t in td_iter}
|
416 |
+
else:
|
417 |
+
td_iter = _triangles_and_degree_iter(G, nodes)
|
418 |
+
clusterc = {v: 0 if t == 0 else t / (d * (d - 1)) for v, d, t, _ in td_iter}
|
419 |
+
if nodes in G:
|
420 |
+
# Return the value of the sole entry in the dictionary.
|
421 |
+
return clusterc[nodes]
|
422 |
+
return clusterc
|
423 |
+
|
424 |
+
|
425 |
+
@nx._dispatchable
|
426 |
+
def transitivity(G):
|
427 |
+
r"""Compute graph transitivity, the fraction of all possible triangles
|
428 |
+
present in G.
|
429 |
+
|
430 |
+
Possible triangles are identified by the number of "triads"
|
431 |
+
(two edges with a shared vertex).
|
432 |
+
|
433 |
+
The transitivity is
|
434 |
+
|
435 |
+
.. math::
|
436 |
+
|
437 |
+
T = 3\frac{\#triangles}{\#triads}.
|
438 |
+
|
439 |
+
Parameters
|
440 |
+
----------
|
441 |
+
G : graph
|
442 |
+
|
443 |
+
Returns
|
444 |
+
-------
|
445 |
+
out : float
|
446 |
+
Transitivity
|
447 |
+
|
448 |
+
Notes
|
449 |
+
-----
|
450 |
+
Self loops are ignored.
|
451 |
+
|
452 |
+
Examples
|
453 |
+
--------
|
454 |
+
>>> G = nx.complete_graph(5)
|
455 |
+
>>> print(nx.transitivity(G))
|
456 |
+
1.0
|
457 |
+
"""
|
458 |
+
triangles_contri = [
|
459 |
+
(t, d * (d - 1)) for v, d, t, _ in _triangles_and_degree_iter(G)
|
460 |
+
]
|
461 |
+
# If the graph is empty
|
462 |
+
if len(triangles_contri) == 0:
|
463 |
+
return 0
|
464 |
+
triangles, contri = map(sum, zip(*triangles_contri))
|
465 |
+
return 0 if triangles == 0 else triangles / contri
|
466 |
+
|
467 |
+
|
468 |
+
@nx._dispatchable
|
469 |
+
def square_clustering(G, nodes=None):
|
470 |
+
r"""Compute the squares clustering coefficient for nodes.
|
471 |
+
|
472 |
+
For each node return the fraction of possible squares that exist at
|
473 |
+
the node [1]_
|
474 |
+
|
475 |
+
.. math::
|
476 |
+
C_4(v) = \frac{ \sum_{u=1}^{k_v}
|
477 |
+
\sum_{w=u+1}^{k_v} q_v(u,w) }{ \sum_{u=1}^{k_v}
|
478 |
+
\sum_{w=u+1}^{k_v} [a_v(u,w) + q_v(u,w)]},
|
479 |
+
|
480 |
+
where :math:`q_v(u,w)` are the number of common neighbors of :math:`u` and
|
481 |
+
:math:`w` other than :math:`v` (ie squares), and :math:`a_v(u,w) = (k_u -
|
482 |
+
(1+q_v(u,w)+\theta_{uv})) + (k_w - (1+q_v(u,w)+\theta_{uw}))`, where
|
483 |
+
:math:`\theta_{uw} = 1` if :math:`u` and :math:`w` are connected and 0
|
484 |
+
otherwise. [2]_
|
485 |
+
|
486 |
+
Parameters
|
487 |
+
----------
|
488 |
+
G : graph
|
489 |
+
|
490 |
+
nodes : container of nodes, optional (default=all nodes in G)
|
491 |
+
Compute clustering for nodes in this container.
|
492 |
+
|
493 |
+
Returns
|
494 |
+
-------
|
495 |
+
c4 : dictionary
|
496 |
+
A dictionary keyed by node with the square clustering coefficient value.
|
497 |
+
|
498 |
+
Examples
|
499 |
+
--------
|
500 |
+
>>> G = nx.complete_graph(5)
|
501 |
+
>>> print(nx.square_clustering(G, 0))
|
502 |
+
1.0
|
503 |
+
>>> print(nx.square_clustering(G))
|
504 |
+
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}
|
505 |
+
|
506 |
+
Notes
|
507 |
+
-----
|
508 |
+
While :math:`C_3(v)` (triangle clustering) gives the probability that
|
509 |
+
two neighbors of node v are connected with each other, :math:`C_4(v)` is
|
510 |
+
the probability that two neighbors of node v share a common
|
511 |
+
neighbor different from v. This algorithm can be applied to both
|
512 |
+
bipartite and unipartite networks.
|
513 |
+
|
514 |
+
References
|
515 |
+
----------
|
516 |
+
.. [1] Pedro G. Lind, Marta C. González, and Hans J. Herrmann. 2005
|
517 |
+
Cycles and clustering in bipartite networks.
|
518 |
+
Physical Review E (72) 056127.
|
519 |
+
.. [2] Zhang, Peng et al. Clustering Coefficient and Community Structure of
|
520 |
+
Bipartite Networks. Physica A: Statistical Mechanics and its Applications 387.27 (2008): 6869–6875.
|
521 |
+
https://arxiv.org/abs/0710.0117v1
|
522 |
+
"""
|
523 |
+
if nodes is None:
|
524 |
+
node_iter = G
|
525 |
+
else:
|
526 |
+
node_iter = G.nbunch_iter(nodes)
|
527 |
+
clustering = {}
|
528 |
+
for v in node_iter:
|
529 |
+
clustering[v] = 0
|
530 |
+
potential = 0
|
531 |
+
for u, w in combinations(G[v], 2):
|
532 |
+
squares = len((set(G[u]) & set(G[w])) - {v})
|
533 |
+
clustering[v] += squares
|
534 |
+
degm = squares + 1
|
535 |
+
if w in G[u]:
|
536 |
+
degm += 1
|
537 |
+
potential += (len(G[u]) - degm) + (len(G[w]) - degm) + squares
|
538 |
+
if potential > 0:
|
539 |
+
clustering[v] /= potential
|
540 |
+
if nodes in G:
|
541 |
+
# Return the value of the sole entry in the dictionary.
|
542 |
+
return clustering[nodes]
|
543 |
+
return clustering
|
544 |
+
|
545 |
+
|
546 |
+
@not_implemented_for("directed")
|
547 |
+
@nx._dispatchable
|
548 |
+
def generalized_degree(G, nodes=None):
|
549 |
+
r"""Compute the generalized degree for nodes.
|
550 |
+
|
551 |
+
For each node, the generalized degree shows how many edges of given
|
552 |
+
triangle multiplicity the node is connected to. The triangle multiplicity
|
553 |
+
of an edge is the number of triangles an edge participates in. The
|
554 |
+
generalized degree of node :math:`i` can be written as a vector
|
555 |
+
:math:`\mathbf{k}_i=(k_i^{(0)}, \dotsc, k_i^{(N-2)})` where
|
556 |
+
:math:`k_i^{(j)}` is the number of edges attached to node :math:`i` that
|
557 |
+
participate in :math:`j` triangles.
|
558 |
+
|
559 |
+
Parameters
|
560 |
+
----------
|
561 |
+
G : graph
|
562 |
+
|
563 |
+
nodes : container of nodes, optional (default=all nodes in G)
|
564 |
+
Compute the generalized degree for nodes in this container.
|
565 |
+
|
566 |
+
Returns
|
567 |
+
-------
|
568 |
+
out : Counter, or dictionary of Counters
|
569 |
+
Generalized degree of specified nodes. The Counter is keyed by edge
|
570 |
+
triangle multiplicity.
|
571 |
+
|
572 |
+
Examples
|
573 |
+
--------
|
574 |
+
>>> G = nx.complete_graph(5)
|
575 |
+
>>> print(nx.generalized_degree(G, 0))
|
576 |
+
Counter({3: 4})
|
577 |
+
>>> print(nx.generalized_degree(G))
|
578 |
+
{0: Counter({3: 4}), 1: Counter({3: 4}), 2: Counter({3: 4}), 3: Counter({3: 4}), 4: Counter({3: 4})}
|
579 |
+
|
580 |
+
To recover the number of triangles attached to a node:
|
581 |
+
|
582 |
+
>>> k1 = nx.generalized_degree(G, 0)
|
583 |
+
>>> sum([k * v for k, v in k1.items()]) / 2 == nx.triangles(G, 0)
|
584 |
+
True
|
585 |
+
|
586 |
+
Notes
|
587 |
+
-----
|
588 |
+
Self loops are ignored.
|
589 |
+
|
590 |
+
In a network of N nodes, the highest triangle multiplicity an edge can have
|
591 |
+
is N-2.
|
592 |
+
|
593 |
+
The return value does not include a `zero` entry if no edges of a
|
594 |
+
particular triangle multiplicity are present.
|
595 |
+
|
596 |
+
The number of triangles node :math:`i` is attached to can be recovered from
|
597 |
+
the generalized degree :math:`\mathbf{k}_i=(k_i^{(0)}, \dotsc,
|
598 |
+
k_i^{(N-2)})` by :math:`(k_i^{(1)}+2k_i^{(2)}+\dotsc +(N-2)k_i^{(N-2)})/2`.
|
599 |
+
|
600 |
+
References
|
601 |
+
----------
|
602 |
+
.. [1] Networks with arbitrary edge multiplicities by V. Zlatić,
|
603 |
+
D. Garlaschelli and G. Caldarelli, EPL (Europhysics Letters),
|
604 |
+
Volume 97, Number 2 (2012).
|
605 |
+
https://iopscience.iop.org/article/10.1209/0295-5075/97/28005
|
606 |
+
"""
|
607 |
+
if nodes in G:
|
608 |
+
return next(_triangles_and_degree_iter(G, nodes))[3]
|
609 |
+
return {v: gd for v, d, t, gd in _triangles_and_degree_iter(G, nodes)}
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/communicability_alg.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Communicability.
|
3 |
+
"""
|
4 |
+
import networkx as nx
|
5 |
+
from networkx.utils import not_implemented_for
|
6 |
+
|
7 |
+
__all__ = ["communicability", "communicability_exp"]
|
8 |
+
|
9 |
+
|
10 |
+
@not_implemented_for("directed")
|
11 |
+
@not_implemented_for("multigraph")
|
12 |
+
@nx._dispatchable
|
13 |
+
def communicability(G):
|
14 |
+
r"""Returns communicability between all pairs of nodes in G.
|
15 |
+
|
16 |
+
The communicability between pairs of nodes in G is the sum of
|
17 |
+
walks of different lengths starting at node u and ending at node v.
|
18 |
+
|
19 |
+
Parameters
|
20 |
+
----------
|
21 |
+
G: graph
|
22 |
+
|
23 |
+
Returns
|
24 |
+
-------
|
25 |
+
comm: dictionary of dictionaries
|
26 |
+
Dictionary of dictionaries keyed by nodes with communicability
|
27 |
+
as the value.
|
28 |
+
|
29 |
+
Raises
|
30 |
+
------
|
31 |
+
NetworkXError
|
32 |
+
If the graph is not undirected and simple.
|
33 |
+
|
34 |
+
See Also
|
35 |
+
--------
|
36 |
+
communicability_exp:
|
37 |
+
Communicability between all pairs of nodes in G using spectral
|
38 |
+
decomposition.
|
39 |
+
communicability_betweenness_centrality:
|
40 |
+
Communicability betweenness centrality for each node in G.
|
41 |
+
|
42 |
+
Notes
|
43 |
+
-----
|
44 |
+
This algorithm uses a spectral decomposition of the adjacency matrix.
|
45 |
+
Let G=(V,E) be a simple undirected graph. Using the connection between
|
46 |
+
the powers of the adjacency matrix and the number of walks in the graph,
|
47 |
+
the communicability between nodes `u` and `v` based on the graph spectrum
|
48 |
+
is [1]_
|
49 |
+
|
50 |
+
.. math::
|
51 |
+
C(u,v)=\sum_{j=1}^{n}\phi_{j}(u)\phi_{j}(v)e^{\lambda_{j}},
|
52 |
+
|
53 |
+
where `\phi_{j}(u)` is the `u\rm{th}` element of the `j\rm{th}` orthonormal
|
54 |
+
eigenvector of the adjacency matrix associated with the eigenvalue
|
55 |
+
`\lambda_{j}`.
|
56 |
+
|
57 |
+
References
|
58 |
+
----------
|
59 |
+
.. [1] Ernesto Estrada, Naomichi Hatano,
|
60 |
+
"Communicability in complex networks",
|
61 |
+
Phys. Rev. E 77, 036111 (2008).
|
62 |
+
https://arxiv.org/abs/0707.0756
|
63 |
+
|
64 |
+
Examples
|
65 |
+
--------
|
66 |
+
>>> G = nx.Graph([(0, 1), (1, 2), (1, 5), (5, 4), (2, 4), (2, 3), (4, 3), (3, 6)])
|
67 |
+
>>> c = nx.communicability(G)
|
68 |
+
"""
|
69 |
+
import numpy as np
|
70 |
+
|
71 |
+
nodelist = list(G) # ordering of nodes in matrix
|
72 |
+
A = nx.to_numpy_array(G, nodelist)
|
73 |
+
# convert to 0-1 matrix
|
74 |
+
A[A != 0.0] = 1
|
75 |
+
w, vec = np.linalg.eigh(A)
|
76 |
+
expw = np.exp(w)
|
77 |
+
mapping = dict(zip(nodelist, range(len(nodelist))))
|
78 |
+
c = {}
|
79 |
+
# computing communicabilities
|
80 |
+
for u in G:
|
81 |
+
c[u] = {}
|
82 |
+
for v in G:
|
83 |
+
s = 0
|
84 |
+
p = mapping[u]
|
85 |
+
q = mapping[v]
|
86 |
+
for j in range(len(nodelist)):
|
87 |
+
s += vec[:, j][p] * vec[:, j][q] * expw[j]
|
88 |
+
c[u][v] = float(s)
|
89 |
+
return c
|
90 |
+
|
91 |
+
|
92 |
+
@not_implemented_for("directed")
|
93 |
+
@not_implemented_for("multigraph")
|
94 |
+
@nx._dispatchable
|
95 |
+
def communicability_exp(G):
|
96 |
+
r"""Returns communicability between all pairs of nodes in G.
|
97 |
+
|
98 |
+
Communicability between pair of node (u,v) of node in G is the sum of
|
99 |
+
walks of different lengths starting at node u and ending at node v.
|
100 |
+
|
101 |
+
Parameters
|
102 |
+
----------
|
103 |
+
G: graph
|
104 |
+
|
105 |
+
Returns
|
106 |
+
-------
|
107 |
+
comm: dictionary of dictionaries
|
108 |
+
Dictionary of dictionaries keyed by nodes with communicability
|
109 |
+
as the value.
|
110 |
+
|
111 |
+
Raises
|
112 |
+
------
|
113 |
+
NetworkXError
|
114 |
+
If the graph is not undirected and simple.
|
115 |
+
|
116 |
+
See Also
|
117 |
+
--------
|
118 |
+
communicability:
|
119 |
+
Communicability between pairs of nodes in G.
|
120 |
+
communicability_betweenness_centrality:
|
121 |
+
Communicability betweenness centrality for each node in G.
|
122 |
+
|
123 |
+
Notes
|
124 |
+
-----
|
125 |
+
This algorithm uses matrix exponentiation of the adjacency matrix.
|
126 |
+
|
127 |
+
Let G=(V,E) be a simple undirected graph. Using the connection between
|
128 |
+
the powers of the adjacency matrix and the number of walks in the graph,
|
129 |
+
the communicability between nodes u and v is [1]_,
|
130 |
+
|
131 |
+
.. math::
|
132 |
+
C(u,v) = (e^A)_{uv},
|
133 |
+
|
134 |
+
where `A` is the adjacency matrix of G.
|
135 |
+
|
136 |
+
References
|
137 |
+
----------
|
138 |
+
.. [1] Ernesto Estrada, Naomichi Hatano,
|
139 |
+
"Communicability in complex networks",
|
140 |
+
Phys. Rev. E 77, 036111 (2008).
|
141 |
+
https://arxiv.org/abs/0707.0756
|
142 |
+
|
143 |
+
Examples
|
144 |
+
--------
|
145 |
+
>>> G = nx.Graph([(0, 1), (1, 2), (1, 5), (5, 4), (2, 4), (2, 3), (4, 3), (3, 6)])
|
146 |
+
>>> c = nx.communicability_exp(G)
|
147 |
+
"""
|
148 |
+
import scipy as sp
|
149 |
+
|
150 |
+
nodelist = list(G) # ordering of nodes in matrix
|
151 |
+
A = nx.to_numpy_array(G, nodelist)
|
152 |
+
# convert to 0-1 matrix
|
153 |
+
A[A != 0.0] = 1
|
154 |
+
# communicability matrix
|
155 |
+
expA = sp.linalg.expm(A)
|
156 |
+
mapping = dict(zip(nodelist, range(len(nodelist))))
|
157 |
+
c = {}
|
158 |
+
for u in G:
|
159 |
+
c[u] = {}
|
160 |
+
for v in G:
|
161 |
+
c[u][v] = float(expA[mapping[u], mapping[v]])
|
162 |
+
return c
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/core.py
ADDED
@@ -0,0 +1,648 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Find the k-cores of a graph.
|
3 |
+
|
4 |
+
The k-core is found by recursively pruning nodes with degrees less than k.
|
5 |
+
|
6 |
+
See the following references for details:
|
7 |
+
|
8 |
+
An O(m) Algorithm for Cores Decomposition of Networks
|
9 |
+
Vladimir Batagelj and Matjaz Zaversnik, 2003.
|
10 |
+
https://arxiv.org/abs/cs.DS/0310049
|
11 |
+
|
12 |
+
Generalized Cores
|
13 |
+
Vladimir Batagelj and Matjaz Zaversnik, 2002.
|
14 |
+
https://arxiv.org/pdf/cs/0202039
|
15 |
+
|
16 |
+
For directed graphs a more general notion is that of D-cores which
|
17 |
+
looks at (k, l) restrictions on (in, out) degree. The (k, k) D-core
|
18 |
+
is the k-core.
|
19 |
+
|
20 |
+
D-cores: Measuring Collaboration of Directed Graphs Based on Degeneracy
|
21 |
+
Christos Giatsidis, Dimitrios M. Thilikos, Michalis Vazirgiannis, ICDM 2011.
|
22 |
+
http://www.graphdegeneracy.org/dcores_ICDM_2011.pdf
|
23 |
+
|
24 |
+
Multi-scale structure and topological anomaly detection via a new network \
|
25 |
+
statistic: The onion decomposition
|
26 |
+
L. Hébert-Dufresne, J. A. Grochow, and A. Allard
|
27 |
+
Scientific Reports 6, 31708 (2016)
|
28 |
+
http://doi.org/10.1038/srep31708
|
29 |
+
|
30 |
+
"""
|
31 |
+
import networkx as nx
|
32 |
+
|
33 |
+
__all__ = [
|
34 |
+
"core_number",
|
35 |
+
"k_core",
|
36 |
+
"k_shell",
|
37 |
+
"k_crust",
|
38 |
+
"k_corona",
|
39 |
+
"k_truss",
|
40 |
+
"onion_layers",
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
@nx.utils.not_implemented_for("multigraph")
|
45 |
+
@nx._dispatchable
|
46 |
+
def core_number(G):
|
47 |
+
"""Returns the core number for each node.
|
48 |
+
|
49 |
+
A k-core is a maximal subgraph that contains nodes of degree k or more.
|
50 |
+
|
51 |
+
The core number of a node is the largest value k of a k-core containing
|
52 |
+
that node.
|
53 |
+
|
54 |
+
Parameters
|
55 |
+
----------
|
56 |
+
G : NetworkX graph
|
57 |
+
An undirected or directed graph
|
58 |
+
|
59 |
+
Returns
|
60 |
+
-------
|
61 |
+
core_number : dictionary
|
62 |
+
A dictionary keyed by node to the core number.
|
63 |
+
|
64 |
+
Raises
|
65 |
+
------
|
66 |
+
NetworkXNotImplemented
|
67 |
+
If `G` is a multigraph or contains self loops.
|
68 |
+
|
69 |
+
Notes
|
70 |
+
-----
|
71 |
+
For directed graphs the node degree is defined to be the
|
72 |
+
in-degree + out-degree.
|
73 |
+
|
74 |
+
Examples
|
75 |
+
--------
|
76 |
+
>>> degrees = [0, 1, 2, 2, 2, 2, 3]
|
77 |
+
>>> H = nx.havel_hakimi_graph(degrees)
|
78 |
+
>>> nx.core_number(H)
|
79 |
+
{0: 1, 1: 2, 2: 2, 3: 2, 4: 1, 5: 2, 6: 0}
|
80 |
+
>>> G = nx.DiGraph()
|
81 |
+
>>> G.add_edges_from([(1, 2), (2, 1), (2, 3), (2, 4), (3, 4), (4, 3)])
|
82 |
+
>>> nx.core_number(G)
|
83 |
+
{1: 2, 2: 2, 3: 2, 4: 2}
|
84 |
+
|
85 |
+
References
|
86 |
+
----------
|
87 |
+
.. [1] An O(m) Algorithm for Cores Decomposition of Networks
|
88 |
+
Vladimir Batagelj and Matjaz Zaversnik, 2003.
|
89 |
+
https://arxiv.org/abs/cs.DS/0310049
|
90 |
+
"""
|
91 |
+
if nx.number_of_selfloops(G) > 0:
|
92 |
+
msg = (
|
93 |
+
"Input graph has self loops which is not permitted; "
|
94 |
+
"Consider using G.remove_edges_from(nx.selfloop_edges(G))."
|
95 |
+
)
|
96 |
+
raise nx.NetworkXNotImplemented(msg)
|
97 |
+
degrees = dict(G.degree())
|
98 |
+
# Sort nodes by degree.
|
99 |
+
nodes = sorted(degrees, key=degrees.get)
|
100 |
+
bin_boundaries = [0]
|
101 |
+
curr_degree = 0
|
102 |
+
for i, v in enumerate(nodes):
|
103 |
+
if degrees[v] > curr_degree:
|
104 |
+
bin_boundaries.extend([i] * (degrees[v] - curr_degree))
|
105 |
+
curr_degree = degrees[v]
|
106 |
+
node_pos = {v: pos for pos, v in enumerate(nodes)}
|
107 |
+
# The initial guess for the core number of a node is its degree.
|
108 |
+
core = degrees
|
109 |
+
nbrs = {v: list(nx.all_neighbors(G, v)) for v in G}
|
110 |
+
for v in nodes:
|
111 |
+
for u in nbrs[v]:
|
112 |
+
if core[u] > core[v]:
|
113 |
+
nbrs[u].remove(v)
|
114 |
+
pos = node_pos[u]
|
115 |
+
bin_start = bin_boundaries[core[u]]
|
116 |
+
node_pos[u] = bin_start
|
117 |
+
node_pos[nodes[bin_start]] = pos
|
118 |
+
nodes[bin_start], nodes[pos] = nodes[pos], nodes[bin_start]
|
119 |
+
bin_boundaries[core[u]] += 1
|
120 |
+
core[u] -= 1
|
121 |
+
return core
|
122 |
+
|
123 |
+
|
124 |
+
def _core_subgraph(G, k_filter, k=None, core=None):
|
125 |
+
"""Returns the subgraph induced by nodes passing filter `k_filter`.
|
126 |
+
|
127 |
+
Parameters
|
128 |
+
----------
|
129 |
+
G : NetworkX graph
|
130 |
+
The graph or directed graph to process
|
131 |
+
k_filter : filter function
|
132 |
+
This function filters the nodes chosen. It takes three inputs:
|
133 |
+
A node of G, the filter's cutoff, and the core dict of the graph.
|
134 |
+
The function should return a Boolean value.
|
135 |
+
k : int, optional
|
136 |
+
The order of the core. If not specified use the max core number.
|
137 |
+
This value is used as the cutoff for the filter.
|
138 |
+
core : dict, optional
|
139 |
+
Precomputed core numbers keyed by node for the graph `G`.
|
140 |
+
If not specified, the core numbers will be computed from `G`.
|
141 |
+
|
142 |
+
"""
|
143 |
+
if core is None:
|
144 |
+
core = core_number(G)
|
145 |
+
if k is None:
|
146 |
+
k = max(core.values())
|
147 |
+
nodes = (v for v in core if k_filter(v, k, core))
|
148 |
+
return G.subgraph(nodes).copy()
|
149 |
+
|
150 |
+
|
151 |
+
@nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
|
152 |
+
def k_core(G, k=None, core_number=None):
|
153 |
+
"""Returns the k-core of G.
|
154 |
+
|
155 |
+
A k-core is a maximal subgraph that contains nodes of degree `k` or more.
|
156 |
+
|
157 |
+
.. deprecated:: 3.3
|
158 |
+
`k_core` will not accept `MultiGraph` objects in version 3.5.
|
159 |
+
|
160 |
+
Parameters
|
161 |
+
----------
|
162 |
+
G : NetworkX graph
|
163 |
+
A graph or directed graph
|
164 |
+
k : int, optional
|
165 |
+
The order of the core. If not specified return the main core.
|
166 |
+
core_number : dictionary, optional
|
167 |
+
Precomputed core numbers for the graph G.
|
168 |
+
|
169 |
+
Returns
|
170 |
+
-------
|
171 |
+
G : NetworkX graph
|
172 |
+
The k-core subgraph
|
173 |
+
|
174 |
+
Raises
|
175 |
+
------
|
176 |
+
NetworkXNotImplemented
|
177 |
+
The k-core is not defined for multigraphs or graphs with self loops.
|
178 |
+
|
179 |
+
Notes
|
180 |
+
-----
|
181 |
+
The main core is the core with `k` as the largest core_number.
|
182 |
+
|
183 |
+
For directed graphs the node degree is defined to be the
|
184 |
+
in-degree + out-degree.
|
185 |
+
|
186 |
+
Graph, node, and edge attributes are copied to the subgraph.
|
187 |
+
|
188 |
+
Examples
|
189 |
+
--------
|
190 |
+
>>> degrees = [0, 1, 2, 2, 2, 2, 3]
|
191 |
+
>>> H = nx.havel_hakimi_graph(degrees)
|
192 |
+
>>> H.degree
|
193 |
+
DegreeView({0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 3, 6: 0})
|
194 |
+
>>> nx.k_core(H).nodes
|
195 |
+
NodeView((1, 2, 3, 5))
|
196 |
+
|
197 |
+
See Also
|
198 |
+
--------
|
199 |
+
core_number
|
200 |
+
|
201 |
+
References
|
202 |
+
----------
|
203 |
+
.. [1] An O(m) Algorithm for Cores Decomposition of Networks
|
204 |
+
Vladimir Batagelj and Matjaz Zaversnik, 2003.
|
205 |
+
https://arxiv.org/abs/cs.DS/0310049
|
206 |
+
"""
|
207 |
+
|
208 |
+
import warnings
|
209 |
+
|
210 |
+
if G.is_multigraph():
|
211 |
+
warnings.warn(
|
212 |
+
(
|
213 |
+
"\n\n`k_core` will not accept `MultiGraph` objects in version 3.5.\n"
|
214 |
+
"Convert it to an undirected graph instead, using::\n\n"
|
215 |
+
"\tG = nx.Graph(G)\n"
|
216 |
+
),
|
217 |
+
category=DeprecationWarning,
|
218 |
+
stacklevel=5,
|
219 |
+
)
|
220 |
+
|
221 |
+
def k_filter(v, k, c):
|
222 |
+
return c[v] >= k
|
223 |
+
|
224 |
+
return _core_subgraph(G, k_filter, k, core_number)
|
225 |
+
|
226 |
+
|
227 |
+
@nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
|
228 |
+
def k_shell(G, k=None, core_number=None):
|
229 |
+
"""Returns the k-shell of G.
|
230 |
+
|
231 |
+
The k-shell is the subgraph induced by nodes with core number k.
|
232 |
+
That is, nodes in the k-core that are not in the (k+1)-core.
|
233 |
+
|
234 |
+
.. deprecated:: 3.3
|
235 |
+
`k_shell` will not accept `MultiGraph` objects in version 3.5.
|
236 |
+
|
237 |
+
Parameters
|
238 |
+
----------
|
239 |
+
G : NetworkX graph
|
240 |
+
A graph or directed graph.
|
241 |
+
k : int, optional
|
242 |
+
The order of the shell. If not specified return the outer shell.
|
243 |
+
core_number : dictionary, optional
|
244 |
+
Precomputed core numbers for the graph G.
|
245 |
+
|
246 |
+
|
247 |
+
Returns
|
248 |
+
-------
|
249 |
+
G : NetworkX graph
|
250 |
+
The k-shell subgraph
|
251 |
+
|
252 |
+
Raises
|
253 |
+
------
|
254 |
+
NetworkXNotImplemented
|
255 |
+
The k-shell is not implemented for multigraphs or graphs with self loops.
|
256 |
+
|
257 |
+
Notes
|
258 |
+
-----
|
259 |
+
This is similar to k_corona but in that case only neighbors in the
|
260 |
+
k-core are considered.
|
261 |
+
|
262 |
+
For directed graphs the node degree is defined to be the
|
263 |
+
in-degree + out-degree.
|
264 |
+
|
265 |
+
Graph, node, and edge attributes are copied to the subgraph.
|
266 |
+
|
267 |
+
Examples
|
268 |
+
--------
|
269 |
+
>>> degrees = [0, 1, 2, 2, 2, 2, 3]
|
270 |
+
>>> H = nx.havel_hakimi_graph(degrees)
|
271 |
+
>>> H.degree
|
272 |
+
DegreeView({0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 3, 6: 0})
|
273 |
+
>>> nx.k_shell(H, k=1).nodes
|
274 |
+
NodeView((0, 4))
|
275 |
+
|
276 |
+
See Also
|
277 |
+
--------
|
278 |
+
core_number
|
279 |
+
k_corona
|
280 |
+
|
281 |
+
|
282 |
+
References
|
283 |
+
----------
|
284 |
+
.. [1] A model of Internet topology using k-shell decomposition
|
285 |
+
Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt,
|
286 |
+
and Eran Shir, PNAS July 3, 2007 vol. 104 no. 27 11150-11154
|
287 |
+
http://www.pnas.org/content/104/27/11150.full
|
288 |
+
"""
|
289 |
+
|
290 |
+
import warnings
|
291 |
+
|
292 |
+
if G.is_multigraph():
|
293 |
+
warnings.warn(
|
294 |
+
(
|
295 |
+
"\n\n`k_shell` will not accept `MultiGraph` objects in version 3.5.\n"
|
296 |
+
"Convert it to an undirected graph instead, using::\n\n"
|
297 |
+
"\tG = nx.Graph(G)\n"
|
298 |
+
),
|
299 |
+
category=DeprecationWarning,
|
300 |
+
stacklevel=5,
|
301 |
+
)
|
302 |
+
|
303 |
+
def k_filter(v, k, c):
|
304 |
+
return c[v] == k
|
305 |
+
|
306 |
+
return _core_subgraph(G, k_filter, k, core_number)
|
307 |
+
|
308 |
+
|
309 |
+
@nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
|
310 |
+
def k_crust(G, k=None, core_number=None):
|
311 |
+
"""Returns the k-crust of G.
|
312 |
+
|
313 |
+
The k-crust is the graph G with the edges of the k-core removed
|
314 |
+
and isolated nodes found after the removal of edges are also removed.
|
315 |
+
|
316 |
+
.. deprecated:: 3.3
|
317 |
+
`k_crust` will not accept `MultiGraph` objects in version 3.5.
|
318 |
+
|
319 |
+
Parameters
|
320 |
+
----------
|
321 |
+
G : NetworkX graph
|
322 |
+
A graph or directed graph.
|
323 |
+
k : int, optional
|
324 |
+
The order of the shell. If not specified return the main crust.
|
325 |
+
core_number : dictionary, optional
|
326 |
+
Precomputed core numbers for the graph G.
|
327 |
+
|
328 |
+
Returns
|
329 |
+
-------
|
330 |
+
G : NetworkX graph
|
331 |
+
The k-crust subgraph
|
332 |
+
|
333 |
+
Raises
|
334 |
+
------
|
335 |
+
NetworkXNotImplemented
|
336 |
+
The k-crust is not implemented for multigraphs or graphs with self loops.
|
337 |
+
|
338 |
+
Notes
|
339 |
+
-----
|
340 |
+
This definition of k-crust is different than the definition in [1]_.
|
341 |
+
The k-crust in [1]_ is equivalent to the k+1 crust of this algorithm.
|
342 |
+
|
343 |
+
For directed graphs the node degree is defined to be the
|
344 |
+
in-degree + out-degree.
|
345 |
+
|
346 |
+
Graph, node, and edge attributes are copied to the subgraph.
|
347 |
+
|
348 |
+
Examples
|
349 |
+
--------
|
350 |
+
>>> degrees = [0, 1, 2, 2, 2, 2, 3]
|
351 |
+
>>> H = nx.havel_hakimi_graph(degrees)
|
352 |
+
>>> H.degree
|
353 |
+
DegreeView({0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 3, 6: 0})
|
354 |
+
>>> nx.k_crust(H, k=1).nodes
|
355 |
+
NodeView((0, 4, 6))
|
356 |
+
|
357 |
+
See Also
|
358 |
+
--------
|
359 |
+
core_number
|
360 |
+
|
361 |
+
References
|
362 |
+
----------
|
363 |
+
.. [1] A model of Internet topology using k-shell decomposition
|
364 |
+
Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt,
|
365 |
+
and Eran Shir, PNAS July 3, 2007 vol. 104 no. 27 11150-11154
|
366 |
+
http://www.pnas.org/content/104/27/11150.full
|
367 |
+
"""
|
368 |
+
|
369 |
+
import warnings
|
370 |
+
|
371 |
+
if G.is_multigraph():
|
372 |
+
warnings.warn(
|
373 |
+
(
|
374 |
+
"\n\n`k_crust` will not accept `MultiGraph` objects in version 3.5.\n"
|
375 |
+
"Convert it to an undirected graph instead, using::\n\n"
|
376 |
+
"\tG = nx.Graph(G)\n"
|
377 |
+
),
|
378 |
+
category=DeprecationWarning,
|
379 |
+
stacklevel=5,
|
380 |
+
)
|
381 |
+
|
382 |
+
# Default for k is one less than in _core_subgraph, so just inline.
|
383 |
+
# Filter is c[v] <= k
|
384 |
+
if core_number is None:
|
385 |
+
core_number = nx.core_number(G)
|
386 |
+
if k is None:
|
387 |
+
k = max(core_number.values()) - 1
|
388 |
+
nodes = (v for v in core_number if core_number[v] <= k)
|
389 |
+
return G.subgraph(nodes).copy()
|
390 |
+
|
391 |
+
|
392 |
+
@nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
|
393 |
+
def k_corona(G, k, core_number=None):
|
394 |
+
"""Returns the k-corona of G.
|
395 |
+
|
396 |
+
The k-corona is the subgraph of nodes in the k-core which have
|
397 |
+
exactly k neighbors in the k-core.
|
398 |
+
|
399 |
+
.. deprecated:: 3.3
|
400 |
+
`k_corona` will not accept `MultiGraph` objects in version 3.5.
|
401 |
+
|
402 |
+
Parameters
|
403 |
+
----------
|
404 |
+
G : NetworkX graph
|
405 |
+
A graph or directed graph
|
406 |
+
k : int
|
407 |
+
The order of the corona.
|
408 |
+
core_number : dictionary, optional
|
409 |
+
Precomputed core numbers for the graph G.
|
410 |
+
|
411 |
+
Returns
|
412 |
+
-------
|
413 |
+
G : NetworkX graph
|
414 |
+
The k-corona subgraph
|
415 |
+
|
416 |
+
Raises
|
417 |
+
------
|
418 |
+
NetworkXNotImplemented
|
419 |
+
The k-corona is not defined for multigraphs or graphs with self loops.
|
420 |
+
|
421 |
+
Notes
|
422 |
+
-----
|
423 |
+
For directed graphs the node degree is defined to be the
|
424 |
+
in-degree + out-degree.
|
425 |
+
|
426 |
+
Graph, node, and edge attributes are copied to the subgraph.
|
427 |
+
|
428 |
+
Examples
|
429 |
+
--------
|
430 |
+
>>> degrees = [0, 1, 2, 2, 2, 2, 3]
|
431 |
+
>>> H = nx.havel_hakimi_graph(degrees)
|
432 |
+
>>> H.degree
|
433 |
+
DegreeView({0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 3, 6: 0})
|
434 |
+
>>> nx.k_corona(H, k=2).nodes
|
435 |
+
NodeView((1, 2, 3, 5))
|
436 |
+
|
437 |
+
See Also
|
438 |
+
--------
|
439 |
+
core_number
|
440 |
+
|
441 |
+
References
|
442 |
+
----------
|
443 |
+
.. [1] k -core (bootstrap) percolation on complex networks:
|
444 |
+
Critical phenomena and nonlocal effects,
|
445 |
+
A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes,
|
446 |
+
Phys. Rev. E 73, 056101 (2006)
|
447 |
+
http://link.aps.org/doi/10.1103/PhysRevE.73.056101
|
448 |
+
"""
|
449 |
+
|
450 |
+
import warnings
|
451 |
+
|
452 |
+
if G.is_multigraph():
|
453 |
+
warnings.warn(
|
454 |
+
(
|
455 |
+
"\n\n`k_corona` will not accept `MultiGraph` objects in version 3.5.\n"
|
456 |
+
"Convert it to an undirected graph instead, using::\n\n"
|
457 |
+
"\tG = nx.Graph(G)\n"
|
458 |
+
),
|
459 |
+
category=DeprecationWarning,
|
460 |
+
stacklevel=5,
|
461 |
+
)
|
462 |
+
|
463 |
+
def func(v, k, c):
|
464 |
+
return c[v] == k and k == sum(1 for w in G[v] if c[w] >= k)
|
465 |
+
|
466 |
+
return _core_subgraph(G, func, k, core_number)
|
467 |
+
|
468 |
+
|
469 |
+
@nx.utils.not_implemented_for("directed")
|
470 |
+
@nx.utils.not_implemented_for("multigraph")
|
471 |
+
@nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
|
472 |
+
def k_truss(G, k):
|
473 |
+
"""Returns the k-truss of `G`.
|
474 |
+
|
475 |
+
The k-truss is the maximal induced subgraph of `G` which contains at least
|
476 |
+
three vertices where every edge is incident to at least `k-2` triangles.
|
477 |
+
|
478 |
+
Parameters
|
479 |
+
----------
|
480 |
+
G : NetworkX graph
|
481 |
+
An undirected graph
|
482 |
+
k : int
|
483 |
+
The order of the truss
|
484 |
+
|
485 |
+
Returns
|
486 |
+
-------
|
487 |
+
H : NetworkX graph
|
488 |
+
The k-truss subgraph
|
489 |
+
|
490 |
+
Raises
|
491 |
+
------
|
492 |
+
NetworkXNotImplemented
|
493 |
+
If `G` is a multigraph or directed graph or if it contains self loops.
|
494 |
+
|
495 |
+
Notes
|
496 |
+
-----
|
497 |
+
A k-clique is a (k-2)-truss and a k-truss is a (k+1)-core.
|
498 |
+
|
499 |
+
Graph, node, and edge attributes are copied to the subgraph.
|
500 |
+
|
501 |
+
K-trusses were originally defined in [2] which states that the k-truss
|
502 |
+
is the maximal induced subgraph where each edge belongs to at least
|
503 |
+
`k-2` triangles. A more recent paper, [1], uses a slightly different
|
504 |
+
definition requiring that each edge belong to at least `k` triangles.
|
505 |
+
This implementation uses the original definition of `k-2` triangles.
|
506 |
+
|
507 |
+
Examples
|
508 |
+
--------
|
509 |
+
>>> degrees = [0, 1, 2, 2, 2, 2, 3]
|
510 |
+
>>> H = nx.havel_hakimi_graph(degrees)
|
511 |
+
>>> H.degree
|
512 |
+
DegreeView({0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 3, 6: 0})
|
513 |
+
>>> nx.k_truss(H, k=2).nodes
|
514 |
+
NodeView((0, 1, 2, 3, 4, 5))
|
515 |
+
|
516 |
+
References
|
517 |
+
----------
|
518 |
+
.. [1] Bounds and Algorithms for k-truss. Paul Burkhardt, Vance Faber,
|
519 |
+
David G. Harris, 2018. https://arxiv.org/abs/1806.05523v2
|
520 |
+
.. [2] Trusses: Cohesive Subgraphs for Social Network Analysis. Jonathan
|
521 |
+
Cohen, 2005.
|
522 |
+
"""
|
523 |
+
if nx.number_of_selfloops(G) > 0:
|
524 |
+
msg = (
|
525 |
+
"Input graph has self loops which is not permitted; "
|
526 |
+
"Consider using G.remove_edges_from(nx.selfloop_edges(G))."
|
527 |
+
)
|
528 |
+
raise nx.NetworkXNotImplemented(msg)
|
529 |
+
|
530 |
+
H = G.copy()
|
531 |
+
|
532 |
+
n_dropped = 1
|
533 |
+
while n_dropped > 0:
|
534 |
+
n_dropped = 0
|
535 |
+
to_drop = []
|
536 |
+
seen = set()
|
537 |
+
for u in H:
|
538 |
+
nbrs_u = set(H[u])
|
539 |
+
seen.add(u)
|
540 |
+
new_nbrs = [v for v in nbrs_u if v not in seen]
|
541 |
+
for v in new_nbrs:
|
542 |
+
if len(nbrs_u & set(H[v])) < (k - 2):
|
543 |
+
to_drop.append((u, v))
|
544 |
+
H.remove_edges_from(to_drop)
|
545 |
+
n_dropped = len(to_drop)
|
546 |
+
H.remove_nodes_from(list(nx.isolates(H)))
|
547 |
+
|
548 |
+
return H
|
549 |
+
|
550 |
+
|
551 |
+
@nx.utils.not_implemented_for("multigraph")
|
552 |
+
@nx.utils.not_implemented_for("directed")
|
553 |
+
@nx._dispatchable
|
554 |
+
def onion_layers(G):
|
555 |
+
"""Returns the layer of each vertex in an onion decomposition of the graph.
|
556 |
+
|
557 |
+
The onion decomposition refines the k-core decomposition by providing
|
558 |
+
information on the internal organization of each k-shell. It is usually
|
559 |
+
used alongside the `core numbers`.
|
560 |
+
|
561 |
+
Parameters
|
562 |
+
----------
|
563 |
+
G : NetworkX graph
|
564 |
+
An undirected graph without self loops.
|
565 |
+
|
566 |
+
Returns
|
567 |
+
-------
|
568 |
+
od_layers : dictionary
|
569 |
+
A dictionary keyed by node to the onion layer. The layers are
|
570 |
+
contiguous integers starting at 1.
|
571 |
+
|
572 |
+
Raises
|
573 |
+
------
|
574 |
+
NetworkXNotImplemented
|
575 |
+
If `G` is a multigraph or directed graph or if it contains self loops.
|
576 |
+
|
577 |
+
Examples
|
578 |
+
--------
|
579 |
+
>>> degrees = [0, 1, 2, 2, 2, 2, 3]
|
580 |
+
>>> H = nx.havel_hakimi_graph(degrees)
|
581 |
+
>>> H.degree
|
582 |
+
DegreeView({0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 3, 6: 0})
|
583 |
+
>>> nx.onion_layers(H)
|
584 |
+
{6: 1, 0: 2, 4: 3, 1: 4, 2: 4, 3: 4, 5: 4}
|
585 |
+
|
586 |
+
See Also
|
587 |
+
--------
|
588 |
+
core_number
|
589 |
+
|
590 |
+
References
|
591 |
+
----------
|
592 |
+
.. [1] Multi-scale structure and topological anomaly detection via a new
|
593 |
+
network statistic: The onion decomposition
|
594 |
+
L. Hébert-Dufresne, J. A. Grochow, and A. Allard
|
595 |
+
Scientific Reports 6, 31708 (2016)
|
596 |
+
http://doi.org/10.1038/srep31708
|
597 |
+
.. [2] Percolation and the effective structure of complex networks
|
598 |
+
A. Allard and L. Hébert-Dufresne
|
599 |
+
Physical Review X 9, 011023 (2019)
|
600 |
+
http://doi.org/10.1103/PhysRevX.9.011023
|
601 |
+
"""
|
602 |
+
if nx.number_of_selfloops(G) > 0:
|
603 |
+
msg = (
|
604 |
+
"Input graph contains self loops which is not permitted; "
|
605 |
+
"Consider using G.remove_edges_from(nx.selfloop_edges(G))."
|
606 |
+
)
|
607 |
+
raise nx.NetworkXNotImplemented(msg)
|
608 |
+
# Dictionaries to register the k-core/onion decompositions.
|
609 |
+
od_layers = {}
|
610 |
+
# Adjacency list
|
611 |
+
neighbors = {v: list(nx.all_neighbors(G, v)) for v in G}
|
612 |
+
# Effective degree of nodes.
|
613 |
+
degrees = dict(G.degree())
|
614 |
+
# Performs the onion decomposition.
|
615 |
+
current_core = 1
|
616 |
+
current_layer = 1
|
617 |
+
# Sets vertices of degree 0 to layer 1, if any.
|
618 |
+
isolated_nodes = list(nx.isolates(G))
|
619 |
+
if len(isolated_nodes) > 0:
|
620 |
+
for v in isolated_nodes:
|
621 |
+
od_layers[v] = current_layer
|
622 |
+
degrees.pop(v)
|
623 |
+
current_layer = 2
|
624 |
+
# Finds the layer for the remaining nodes.
|
625 |
+
while len(degrees) > 0:
|
626 |
+
# Sets the order for looking at nodes.
|
627 |
+
nodes = sorted(degrees, key=degrees.get)
|
628 |
+
# Sets properly the current core.
|
629 |
+
min_degree = degrees[nodes[0]]
|
630 |
+
if min_degree > current_core:
|
631 |
+
current_core = min_degree
|
632 |
+
# Identifies vertices in the current layer.
|
633 |
+
this_layer = []
|
634 |
+
for n in nodes:
|
635 |
+
if degrees[n] > current_core:
|
636 |
+
break
|
637 |
+
this_layer.append(n)
|
638 |
+
# Identifies the core/layer of the vertices in the current layer.
|
639 |
+
for v in this_layer:
|
640 |
+
od_layers[v] = current_layer
|
641 |
+
for n in neighbors[v]:
|
642 |
+
neighbors[n].remove(v)
|
643 |
+
degrees[n] = degrees[n] - 1
|
644 |
+
degrees.pop(v)
|
645 |
+
# Updates the layer count.
|
646 |
+
current_layer = current_layer + 1
|
647 |
+
# Returns the dictionaries containing the onion layer of each vertices.
|
648 |
+
return od_layers
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/covering.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Functions related to graph covers."""
|
2 |
+
|
3 |
+
from functools import partial
|
4 |
+
from itertools import chain
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.utils import arbitrary_element, not_implemented_for
|
8 |
+
|
9 |
+
__all__ = ["min_edge_cover", "is_edge_cover"]
|
10 |
+
|
11 |
+
|
12 |
+
@not_implemented_for("directed")
|
13 |
+
@not_implemented_for("multigraph")
|
14 |
+
@nx._dispatchable
|
15 |
+
def min_edge_cover(G, matching_algorithm=None):
|
16 |
+
"""Returns the min cardinality edge cover of the graph as a set of edges.
|
17 |
+
|
18 |
+
A smallest edge cover can be found in polynomial time by finding
|
19 |
+
a maximum matching and extending it greedily so that all nodes
|
20 |
+
are covered. This function follows that process. A maximum matching
|
21 |
+
algorithm can be specified for the first step of the algorithm.
|
22 |
+
The resulting set may return a set with one 2-tuple for each edge,
|
23 |
+
(the usual case) or with both 2-tuples `(u, v)` and `(v, u)` for
|
24 |
+
each edge. The latter is only done when a bipartite matching algorithm
|
25 |
+
is specified as `matching_algorithm`.
|
26 |
+
|
27 |
+
Parameters
|
28 |
+
----------
|
29 |
+
G : NetworkX graph
|
30 |
+
An undirected graph.
|
31 |
+
|
32 |
+
matching_algorithm : function
|
33 |
+
A function that returns a maximum cardinality matching for `G`.
|
34 |
+
The function must take one input, the graph `G`, and return
|
35 |
+
either a set of edges (with only one direction for the pair of nodes)
|
36 |
+
or a dictionary mapping each node to its mate. If not specified,
|
37 |
+
:func:`~networkx.algorithms.matching.max_weight_matching` is used.
|
38 |
+
Common bipartite matching functions include
|
39 |
+
:func:`~networkx.algorithms.bipartite.matching.hopcroft_karp_matching`
|
40 |
+
or
|
41 |
+
:func:`~networkx.algorithms.bipartite.matching.eppstein_matching`.
|
42 |
+
|
43 |
+
Returns
|
44 |
+
-------
|
45 |
+
min_cover : set
|
46 |
+
|
47 |
+
A set of the edges in a minimum edge cover in the form of tuples.
|
48 |
+
It contains only one of the equivalent 2-tuples `(u, v)` and `(v, u)`
|
49 |
+
for each edge. If a bipartite method is used to compute the matching,
|
50 |
+
the returned set contains both the 2-tuples `(u, v)` and `(v, u)`
|
51 |
+
for each edge of a minimum edge cover.
|
52 |
+
|
53 |
+
Examples
|
54 |
+
--------
|
55 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
|
56 |
+
>>> sorted(nx.min_edge_cover(G))
|
57 |
+
[(2, 1), (3, 0)]
|
58 |
+
|
59 |
+
Notes
|
60 |
+
-----
|
61 |
+
An edge cover of a graph is a set of edges such that every node of
|
62 |
+
the graph is incident to at least one edge of the set.
|
63 |
+
The minimum edge cover is an edge covering of smallest cardinality.
|
64 |
+
|
65 |
+
Due to its implementation, the worst-case running time of this algorithm
|
66 |
+
is bounded by the worst-case running time of the function
|
67 |
+
``matching_algorithm``.
|
68 |
+
|
69 |
+
Minimum edge cover for `G` can also be found using the `min_edge_covering`
|
70 |
+
function in :mod:`networkx.algorithms.bipartite.covering` which is
|
71 |
+
simply this function with a default matching algorithm of
|
72 |
+
:func:`~networkx.algorithms.bipartite.matching.hopcraft_karp_matching`
|
73 |
+
"""
|
74 |
+
if len(G) == 0:
|
75 |
+
return set()
|
76 |
+
if nx.number_of_isolates(G) > 0:
|
77 |
+
# ``min_cover`` does not exist as there is an isolated node
|
78 |
+
raise nx.NetworkXException(
|
79 |
+
"Graph has a node with no edge incident on it, so no edge cover exists."
|
80 |
+
)
|
81 |
+
if matching_algorithm is None:
|
82 |
+
matching_algorithm = partial(nx.max_weight_matching, maxcardinality=True)
|
83 |
+
maximum_matching = matching_algorithm(G)
|
84 |
+
# ``min_cover`` is superset of ``maximum_matching``
|
85 |
+
try:
|
86 |
+
# bipartite matching algs return dict so convert if needed
|
87 |
+
min_cover = set(maximum_matching.items())
|
88 |
+
bipartite_cover = True
|
89 |
+
except AttributeError:
|
90 |
+
min_cover = maximum_matching
|
91 |
+
bipartite_cover = False
|
92 |
+
# iterate for uncovered nodes
|
93 |
+
uncovered_nodes = set(G) - {v for u, v in min_cover} - {u for u, v in min_cover}
|
94 |
+
for v in uncovered_nodes:
|
95 |
+
# Since `v` is uncovered, each edge incident to `v` will join it
|
96 |
+
# with a covered node (otherwise, if there were an edge joining
|
97 |
+
# uncovered nodes `u` and `v`, the maximum matching algorithm
|
98 |
+
# would have found it), so we can choose an arbitrary edge
|
99 |
+
# incident to `v`. (This applies only in a simple graph, not a
|
100 |
+
# multigraph.)
|
101 |
+
u = arbitrary_element(G[v])
|
102 |
+
min_cover.add((u, v))
|
103 |
+
if bipartite_cover:
|
104 |
+
min_cover.add((v, u))
|
105 |
+
return min_cover
|
106 |
+
|
107 |
+
|
108 |
+
@not_implemented_for("directed")
|
109 |
+
@nx._dispatchable
|
110 |
+
def is_edge_cover(G, cover):
|
111 |
+
"""Decides whether a set of edges is a valid edge cover of the graph.
|
112 |
+
|
113 |
+
Given a set of edges, whether it is an edge covering can
|
114 |
+
be decided if we just check whether all nodes of the graph
|
115 |
+
has an edge from the set, incident on it.
|
116 |
+
|
117 |
+
Parameters
|
118 |
+
----------
|
119 |
+
G : NetworkX graph
|
120 |
+
An undirected bipartite graph.
|
121 |
+
|
122 |
+
cover : set
|
123 |
+
Set of edges to be checked.
|
124 |
+
|
125 |
+
Returns
|
126 |
+
-------
|
127 |
+
bool
|
128 |
+
Whether the set of edges is a valid edge cover of the graph.
|
129 |
+
|
130 |
+
Examples
|
131 |
+
--------
|
132 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
|
133 |
+
>>> cover = {(2, 1), (3, 0)}
|
134 |
+
>>> nx.is_edge_cover(G, cover)
|
135 |
+
True
|
136 |
+
|
137 |
+
Notes
|
138 |
+
-----
|
139 |
+
An edge cover of a graph is a set of edges such that every node of
|
140 |
+
the graph is incident to at least one edge of the set.
|
141 |
+
"""
|
142 |
+
return set(G) <= set(chain.from_iterable(cover))
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/cuts.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for finding and evaluating cuts in a graph.
|
2 |
+
|
3 |
+
"""
|
4 |
+
|
5 |
+
from itertools import chain
|
6 |
+
|
7 |
+
import networkx as nx
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
"boundary_expansion",
|
11 |
+
"conductance",
|
12 |
+
"cut_size",
|
13 |
+
"edge_expansion",
|
14 |
+
"mixing_expansion",
|
15 |
+
"node_expansion",
|
16 |
+
"normalized_cut_size",
|
17 |
+
"volume",
|
18 |
+
]
|
19 |
+
|
20 |
+
|
21 |
+
# TODO STILL NEED TO UPDATE ALL THE DOCUMENTATION!
|
22 |
+
|
23 |
+
|
24 |
+
@nx._dispatchable(edge_attrs="weight")
|
25 |
+
def cut_size(G, S, T=None, weight=None):
|
26 |
+
"""Returns the size of the cut between two sets of nodes.
|
27 |
+
|
28 |
+
A *cut* is a partition of the nodes of a graph into two sets. The
|
29 |
+
*cut size* is the sum of the weights of the edges "between" the two
|
30 |
+
sets of nodes.
|
31 |
+
|
32 |
+
Parameters
|
33 |
+
----------
|
34 |
+
G : NetworkX graph
|
35 |
+
|
36 |
+
S : collection
|
37 |
+
A collection of nodes in `G`.
|
38 |
+
|
39 |
+
T : collection
|
40 |
+
A collection of nodes in `G`. If not specified, this is taken to
|
41 |
+
be the set complement of `S`.
|
42 |
+
|
43 |
+
weight : object
|
44 |
+
Edge attribute key to use as weight. If not specified, edges
|
45 |
+
have weight one.
|
46 |
+
|
47 |
+
Returns
|
48 |
+
-------
|
49 |
+
number
|
50 |
+
Total weight of all edges from nodes in set `S` to nodes in
|
51 |
+
set `T` (and, in the case of directed graphs, all edges from
|
52 |
+
nodes in `T` to nodes in `S`).
|
53 |
+
|
54 |
+
Examples
|
55 |
+
--------
|
56 |
+
In the graph with two cliques joined by a single edges, the natural
|
57 |
+
bipartition of the graph into two blocks, one for each clique,
|
58 |
+
yields a cut of weight one::
|
59 |
+
|
60 |
+
>>> G = nx.barbell_graph(3, 0)
|
61 |
+
>>> S = {0, 1, 2}
|
62 |
+
>>> T = {3, 4, 5}
|
63 |
+
>>> nx.cut_size(G, S, T)
|
64 |
+
1
|
65 |
+
|
66 |
+
Each parallel edge in a multigraph is counted when determining the
|
67 |
+
cut size::
|
68 |
+
|
69 |
+
>>> G = nx.MultiGraph(["ab", "ab"])
|
70 |
+
>>> S = {"a"}
|
71 |
+
>>> T = {"b"}
|
72 |
+
>>> nx.cut_size(G, S, T)
|
73 |
+
2
|
74 |
+
|
75 |
+
Notes
|
76 |
+
-----
|
77 |
+
In a multigraph, the cut size is the total weight of edges including
|
78 |
+
multiplicity.
|
79 |
+
|
80 |
+
"""
|
81 |
+
edges = nx.edge_boundary(G, S, T, data=weight, default=1)
|
82 |
+
if G.is_directed():
|
83 |
+
edges = chain(edges, nx.edge_boundary(G, T, S, data=weight, default=1))
|
84 |
+
return sum(weight for u, v, weight in edges)
|
85 |
+
|
86 |
+
|
87 |
+
@nx._dispatchable(edge_attrs="weight")
|
88 |
+
def volume(G, S, weight=None):
|
89 |
+
"""Returns the volume of a set of nodes.
|
90 |
+
|
91 |
+
The *volume* of a set *S* is the sum of the (out-)degrees of nodes
|
92 |
+
in *S* (taking into account parallel edges in multigraphs). [1]
|
93 |
+
|
94 |
+
Parameters
|
95 |
+
----------
|
96 |
+
G : NetworkX graph
|
97 |
+
|
98 |
+
S : collection
|
99 |
+
A collection of nodes in `G`.
|
100 |
+
|
101 |
+
weight : object
|
102 |
+
Edge attribute key to use as weight. If not specified, edges
|
103 |
+
have weight one.
|
104 |
+
|
105 |
+
Returns
|
106 |
+
-------
|
107 |
+
number
|
108 |
+
The volume of the set of nodes represented by `S` in the graph
|
109 |
+
`G`.
|
110 |
+
|
111 |
+
See also
|
112 |
+
--------
|
113 |
+
conductance
|
114 |
+
cut_size
|
115 |
+
edge_expansion
|
116 |
+
edge_boundary
|
117 |
+
normalized_cut_size
|
118 |
+
|
119 |
+
References
|
120 |
+
----------
|
121 |
+
.. [1] David Gleich.
|
122 |
+
*Hierarchical Directed Spectral Graph Partitioning*.
|
123 |
+
<https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202005%20-%20hierarchical%20directed%20spectral.pdf>
|
124 |
+
|
125 |
+
"""
|
126 |
+
degree = G.out_degree if G.is_directed() else G.degree
|
127 |
+
return sum(d for v, d in degree(S, weight=weight))
|
128 |
+
|
129 |
+
|
130 |
+
@nx._dispatchable(edge_attrs="weight")
|
131 |
+
def normalized_cut_size(G, S, T=None, weight=None):
|
132 |
+
"""Returns the normalized size of the cut between two sets of nodes.
|
133 |
+
|
134 |
+
The *normalized cut size* is the cut size times the sum of the
|
135 |
+
reciprocal sizes of the volumes of the two sets. [1]
|
136 |
+
|
137 |
+
Parameters
|
138 |
+
----------
|
139 |
+
G : NetworkX graph
|
140 |
+
|
141 |
+
S : collection
|
142 |
+
A collection of nodes in `G`.
|
143 |
+
|
144 |
+
T : collection
|
145 |
+
A collection of nodes in `G`.
|
146 |
+
|
147 |
+
weight : object
|
148 |
+
Edge attribute key to use as weight. If not specified, edges
|
149 |
+
have weight one.
|
150 |
+
|
151 |
+
Returns
|
152 |
+
-------
|
153 |
+
number
|
154 |
+
The normalized cut size between the two sets `S` and `T`.
|
155 |
+
|
156 |
+
Notes
|
157 |
+
-----
|
158 |
+
In a multigraph, the cut size is the total weight of edges including
|
159 |
+
multiplicity.
|
160 |
+
|
161 |
+
See also
|
162 |
+
--------
|
163 |
+
conductance
|
164 |
+
cut_size
|
165 |
+
edge_expansion
|
166 |
+
volume
|
167 |
+
|
168 |
+
References
|
169 |
+
----------
|
170 |
+
.. [1] David Gleich.
|
171 |
+
*Hierarchical Directed Spectral Graph Partitioning*.
|
172 |
+
<https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202005%20-%20hierarchical%20directed%20spectral.pdf>
|
173 |
+
|
174 |
+
"""
|
175 |
+
if T is None:
|
176 |
+
T = set(G) - set(S)
|
177 |
+
num_cut_edges = cut_size(G, S, T=T, weight=weight)
|
178 |
+
volume_S = volume(G, S, weight=weight)
|
179 |
+
volume_T = volume(G, T, weight=weight)
|
180 |
+
return num_cut_edges * ((1 / volume_S) + (1 / volume_T))
|
181 |
+
|
182 |
+
|
183 |
+
@nx._dispatchable(edge_attrs="weight")
|
184 |
+
def conductance(G, S, T=None, weight=None):
|
185 |
+
"""Returns the conductance of two sets of nodes.
|
186 |
+
|
187 |
+
The *conductance* is the quotient of the cut size and the smaller of
|
188 |
+
the volumes of the two sets. [1]
|
189 |
+
|
190 |
+
Parameters
|
191 |
+
----------
|
192 |
+
G : NetworkX graph
|
193 |
+
|
194 |
+
S : collection
|
195 |
+
A collection of nodes in `G`.
|
196 |
+
|
197 |
+
T : collection
|
198 |
+
A collection of nodes in `G`.
|
199 |
+
|
200 |
+
weight : object
|
201 |
+
Edge attribute key to use as weight. If not specified, edges
|
202 |
+
have weight one.
|
203 |
+
|
204 |
+
Returns
|
205 |
+
-------
|
206 |
+
number
|
207 |
+
The conductance between the two sets `S` and `T`.
|
208 |
+
|
209 |
+
See also
|
210 |
+
--------
|
211 |
+
cut_size
|
212 |
+
edge_expansion
|
213 |
+
normalized_cut_size
|
214 |
+
volume
|
215 |
+
|
216 |
+
References
|
217 |
+
----------
|
218 |
+
.. [1] David Gleich.
|
219 |
+
*Hierarchical Directed Spectral Graph Partitioning*.
|
220 |
+
<https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202005%20-%20hierarchical%20directed%20spectral.pdf>
|
221 |
+
|
222 |
+
"""
|
223 |
+
if T is None:
|
224 |
+
T = set(G) - set(S)
|
225 |
+
num_cut_edges = cut_size(G, S, T, weight=weight)
|
226 |
+
volume_S = volume(G, S, weight=weight)
|
227 |
+
volume_T = volume(G, T, weight=weight)
|
228 |
+
return num_cut_edges / min(volume_S, volume_T)
|
229 |
+
|
230 |
+
|
231 |
+
@nx._dispatchable(edge_attrs="weight")
|
232 |
+
def edge_expansion(G, S, T=None, weight=None):
|
233 |
+
"""Returns the edge expansion between two node sets.
|
234 |
+
|
235 |
+
The *edge expansion* is the quotient of the cut size and the smaller
|
236 |
+
of the cardinalities of the two sets. [1]
|
237 |
+
|
238 |
+
Parameters
|
239 |
+
----------
|
240 |
+
G : NetworkX graph
|
241 |
+
|
242 |
+
S : collection
|
243 |
+
A collection of nodes in `G`.
|
244 |
+
|
245 |
+
T : collection
|
246 |
+
A collection of nodes in `G`.
|
247 |
+
|
248 |
+
weight : object
|
249 |
+
Edge attribute key to use as weight. If not specified, edges
|
250 |
+
have weight one.
|
251 |
+
|
252 |
+
Returns
|
253 |
+
-------
|
254 |
+
number
|
255 |
+
The edge expansion between the two sets `S` and `T`.
|
256 |
+
|
257 |
+
See also
|
258 |
+
--------
|
259 |
+
boundary_expansion
|
260 |
+
mixing_expansion
|
261 |
+
node_expansion
|
262 |
+
|
263 |
+
References
|
264 |
+
----------
|
265 |
+
.. [1] Fan Chung.
|
266 |
+
*Spectral Graph Theory*.
|
267 |
+
(CBMS Regional Conference Series in Mathematics, No. 92),
|
268 |
+
American Mathematical Society, 1997, ISBN 0-8218-0315-8
|
269 |
+
<http://www.math.ucsd.edu/~fan/research/revised.html>
|
270 |
+
|
271 |
+
"""
|
272 |
+
if T is None:
|
273 |
+
T = set(G) - set(S)
|
274 |
+
num_cut_edges = cut_size(G, S, T=T, weight=weight)
|
275 |
+
return num_cut_edges / min(len(S), len(T))
|
276 |
+
|
277 |
+
|
278 |
+
@nx._dispatchable(edge_attrs="weight")
|
279 |
+
def mixing_expansion(G, S, T=None, weight=None):
|
280 |
+
"""Returns the mixing expansion between two node sets.
|
281 |
+
|
282 |
+
The *mixing expansion* is the quotient of the cut size and twice the
|
283 |
+
number of edges in the graph. [1]
|
284 |
+
|
285 |
+
Parameters
|
286 |
+
----------
|
287 |
+
G : NetworkX graph
|
288 |
+
|
289 |
+
S : collection
|
290 |
+
A collection of nodes in `G`.
|
291 |
+
|
292 |
+
T : collection
|
293 |
+
A collection of nodes in `G`.
|
294 |
+
|
295 |
+
weight : object
|
296 |
+
Edge attribute key to use as weight. If not specified, edges
|
297 |
+
have weight one.
|
298 |
+
|
299 |
+
Returns
|
300 |
+
-------
|
301 |
+
number
|
302 |
+
The mixing expansion between the two sets `S` and `T`.
|
303 |
+
|
304 |
+
See also
|
305 |
+
--------
|
306 |
+
boundary_expansion
|
307 |
+
edge_expansion
|
308 |
+
node_expansion
|
309 |
+
|
310 |
+
References
|
311 |
+
----------
|
312 |
+
.. [1] Vadhan, Salil P.
|
313 |
+
"Pseudorandomness."
|
314 |
+
*Foundations and Trends
|
315 |
+
in Theoretical Computer Science* 7.1–3 (2011): 1–336.
|
316 |
+
<https://doi.org/10.1561/0400000010>
|
317 |
+
|
318 |
+
"""
|
319 |
+
num_cut_edges = cut_size(G, S, T=T, weight=weight)
|
320 |
+
num_total_edges = G.number_of_edges()
|
321 |
+
return num_cut_edges / (2 * num_total_edges)
|
322 |
+
|
323 |
+
|
324 |
+
# TODO What is the generalization to two arguments, S and T? Does the
|
325 |
+
# denominator become `min(len(S), len(T))`?
|
326 |
+
@nx._dispatchable
|
327 |
+
def node_expansion(G, S):
|
328 |
+
"""Returns the node expansion of the set `S`.
|
329 |
+
|
330 |
+
The *node expansion* is the quotient of the size of the node
|
331 |
+
boundary of *S* and the cardinality of *S*. [1]
|
332 |
+
|
333 |
+
Parameters
|
334 |
+
----------
|
335 |
+
G : NetworkX graph
|
336 |
+
|
337 |
+
S : collection
|
338 |
+
A collection of nodes in `G`.
|
339 |
+
|
340 |
+
Returns
|
341 |
+
-------
|
342 |
+
number
|
343 |
+
The node expansion of the set `S`.
|
344 |
+
|
345 |
+
See also
|
346 |
+
--------
|
347 |
+
boundary_expansion
|
348 |
+
edge_expansion
|
349 |
+
mixing_expansion
|
350 |
+
|
351 |
+
References
|
352 |
+
----------
|
353 |
+
.. [1] Vadhan, Salil P.
|
354 |
+
"Pseudorandomness."
|
355 |
+
*Foundations and Trends
|
356 |
+
in Theoretical Computer Science* 7.1–3 (2011): 1–336.
|
357 |
+
<https://doi.org/10.1561/0400000010>
|
358 |
+
|
359 |
+
"""
|
360 |
+
neighborhood = set(chain.from_iterable(G.neighbors(v) for v in S))
|
361 |
+
return len(neighborhood) / len(S)
|
362 |
+
|
363 |
+
|
364 |
+
# TODO What is the generalization to two arguments, S and T? Does the
|
365 |
+
# denominator become `min(len(S), len(T))`?
|
366 |
+
@nx._dispatchable
|
367 |
+
def boundary_expansion(G, S):
|
368 |
+
"""Returns the boundary expansion of the set `S`.
|
369 |
+
|
370 |
+
The *boundary expansion* is the quotient of the size
|
371 |
+
of the node boundary and the cardinality of *S*. [1]
|
372 |
+
|
373 |
+
Parameters
|
374 |
+
----------
|
375 |
+
G : NetworkX graph
|
376 |
+
|
377 |
+
S : collection
|
378 |
+
A collection of nodes in `G`.
|
379 |
+
|
380 |
+
Returns
|
381 |
+
-------
|
382 |
+
number
|
383 |
+
The boundary expansion of the set `S`.
|
384 |
+
|
385 |
+
See also
|
386 |
+
--------
|
387 |
+
edge_expansion
|
388 |
+
mixing_expansion
|
389 |
+
node_expansion
|
390 |
+
|
391 |
+
References
|
392 |
+
----------
|
393 |
+
.. [1] Vadhan, Salil P.
|
394 |
+
"Pseudorandomness."
|
395 |
+
*Foundations and Trends in Theoretical Computer Science*
|
396 |
+
7.1–3 (2011): 1–336.
|
397 |
+
<https://doi.org/10.1561/0400000010>
|
398 |
+
|
399 |
+
"""
|
400 |
+
return len(nx.node_boundary(G, S)) / len(S)
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/dag.py
ADDED
@@ -0,0 +1,1259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Algorithms for directed acyclic graphs (DAGs).
|
2 |
+
|
3 |
+
Note that most of these functions are only guaranteed to work for DAGs.
|
4 |
+
In general, these functions do not check for acyclic-ness, so it is up
|
5 |
+
to the user to check for that.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import heapq
|
9 |
+
from collections import deque
|
10 |
+
from functools import partial
|
11 |
+
from itertools import chain, combinations, product, starmap
|
12 |
+
from math import gcd
|
13 |
+
|
14 |
+
import networkx as nx
|
15 |
+
from networkx.utils import arbitrary_element, not_implemented_for, pairwise
|
16 |
+
|
17 |
+
__all__ = [
|
18 |
+
"descendants",
|
19 |
+
"ancestors",
|
20 |
+
"topological_sort",
|
21 |
+
"lexicographical_topological_sort",
|
22 |
+
"all_topological_sorts",
|
23 |
+
"topological_generations",
|
24 |
+
"is_directed_acyclic_graph",
|
25 |
+
"is_aperiodic",
|
26 |
+
"transitive_closure",
|
27 |
+
"transitive_closure_dag",
|
28 |
+
"transitive_reduction",
|
29 |
+
"antichains",
|
30 |
+
"dag_longest_path",
|
31 |
+
"dag_longest_path_length",
|
32 |
+
"dag_to_branching",
|
33 |
+
"compute_v_structures",
|
34 |
+
]
|
35 |
+
|
36 |
+
chaini = chain.from_iterable
|
37 |
+
|
38 |
+
|
39 |
+
@nx._dispatchable
|
40 |
+
def descendants(G, source):
|
41 |
+
"""Returns all nodes reachable from `source` in `G`.
|
42 |
+
|
43 |
+
Parameters
|
44 |
+
----------
|
45 |
+
G : NetworkX Graph
|
46 |
+
source : node in `G`
|
47 |
+
|
48 |
+
Returns
|
49 |
+
-------
|
50 |
+
set()
|
51 |
+
The descendants of `source` in `G`
|
52 |
+
|
53 |
+
Raises
|
54 |
+
------
|
55 |
+
NetworkXError
|
56 |
+
If node `source` is not in `G`.
|
57 |
+
|
58 |
+
Examples
|
59 |
+
--------
|
60 |
+
>>> DG = nx.path_graph(5, create_using=nx.DiGraph)
|
61 |
+
>>> sorted(nx.descendants(DG, 2))
|
62 |
+
[3, 4]
|
63 |
+
|
64 |
+
The `source` node is not a descendant of itself, but can be included manually:
|
65 |
+
|
66 |
+
>>> sorted(nx.descendants(DG, 2) | {2})
|
67 |
+
[2, 3, 4]
|
68 |
+
|
69 |
+
See also
|
70 |
+
--------
|
71 |
+
ancestors
|
72 |
+
"""
|
73 |
+
return {child for parent, child in nx.bfs_edges(G, source)}
|
74 |
+
|
75 |
+
|
76 |
+
@nx._dispatchable
|
77 |
+
def ancestors(G, source):
|
78 |
+
"""Returns all nodes having a path to `source` in `G`.
|
79 |
+
|
80 |
+
Parameters
|
81 |
+
----------
|
82 |
+
G : NetworkX Graph
|
83 |
+
source : node in `G`
|
84 |
+
|
85 |
+
Returns
|
86 |
+
-------
|
87 |
+
set()
|
88 |
+
The ancestors of `source` in `G`
|
89 |
+
|
90 |
+
Raises
|
91 |
+
------
|
92 |
+
NetworkXError
|
93 |
+
If node `source` is not in `G`.
|
94 |
+
|
95 |
+
Examples
|
96 |
+
--------
|
97 |
+
>>> DG = nx.path_graph(5, create_using=nx.DiGraph)
|
98 |
+
>>> sorted(nx.ancestors(DG, 2))
|
99 |
+
[0, 1]
|
100 |
+
|
101 |
+
The `source` node is not an ancestor of itself, but can be included manually:
|
102 |
+
|
103 |
+
>>> sorted(nx.ancestors(DG, 2) | {2})
|
104 |
+
[0, 1, 2]
|
105 |
+
|
106 |
+
See also
|
107 |
+
--------
|
108 |
+
descendants
|
109 |
+
"""
|
110 |
+
return {child for parent, child in nx.bfs_edges(G, source, reverse=True)}
|
111 |
+
|
112 |
+
|
113 |
+
@nx._dispatchable
|
114 |
+
def has_cycle(G):
|
115 |
+
"""Decides whether the directed graph has a cycle."""
|
116 |
+
try:
|
117 |
+
# Feed the entire iterator into a zero-length deque.
|
118 |
+
deque(topological_sort(G), maxlen=0)
|
119 |
+
except nx.NetworkXUnfeasible:
|
120 |
+
return True
|
121 |
+
else:
|
122 |
+
return False
|
123 |
+
|
124 |
+
|
125 |
+
@nx._dispatchable
|
126 |
+
def is_directed_acyclic_graph(G):
|
127 |
+
"""Returns True if the graph `G` is a directed acyclic graph (DAG) or
|
128 |
+
False if not.
|
129 |
+
|
130 |
+
Parameters
|
131 |
+
----------
|
132 |
+
G : NetworkX graph
|
133 |
+
|
134 |
+
Returns
|
135 |
+
-------
|
136 |
+
bool
|
137 |
+
True if `G` is a DAG, False otherwise
|
138 |
+
|
139 |
+
Examples
|
140 |
+
--------
|
141 |
+
Undirected graph::
|
142 |
+
|
143 |
+
>>> G = nx.Graph([(1, 2), (2, 3)])
|
144 |
+
>>> nx.is_directed_acyclic_graph(G)
|
145 |
+
False
|
146 |
+
|
147 |
+
Directed graph with cycle::
|
148 |
+
|
149 |
+
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
|
150 |
+
>>> nx.is_directed_acyclic_graph(G)
|
151 |
+
False
|
152 |
+
|
153 |
+
Directed acyclic graph::
|
154 |
+
|
155 |
+
>>> G = nx.DiGraph([(1, 2), (2, 3)])
|
156 |
+
>>> nx.is_directed_acyclic_graph(G)
|
157 |
+
True
|
158 |
+
|
159 |
+
See also
|
160 |
+
--------
|
161 |
+
topological_sort
|
162 |
+
"""
|
163 |
+
return G.is_directed() and not has_cycle(G)
|
164 |
+
|
165 |
+
|
166 |
+
@nx._dispatchable
|
167 |
+
def topological_generations(G):
|
168 |
+
"""Stratifies a DAG into generations.
|
169 |
+
|
170 |
+
A topological generation is node collection in which ancestors of a node in each
|
171 |
+
generation are guaranteed to be in a previous generation, and any descendants of
|
172 |
+
a node are guaranteed to be in a following generation. Nodes are guaranteed to
|
173 |
+
be in the earliest possible generation that they can belong to.
|
174 |
+
|
175 |
+
Parameters
|
176 |
+
----------
|
177 |
+
G : NetworkX digraph
|
178 |
+
A directed acyclic graph (DAG)
|
179 |
+
|
180 |
+
Yields
|
181 |
+
------
|
182 |
+
sets of nodes
|
183 |
+
Yields sets of nodes representing each generation.
|
184 |
+
|
185 |
+
Raises
|
186 |
+
------
|
187 |
+
NetworkXError
|
188 |
+
Generations are defined for directed graphs only. If the graph
|
189 |
+
`G` is undirected, a :exc:`NetworkXError` is raised.
|
190 |
+
|
191 |
+
NetworkXUnfeasible
|
192 |
+
If `G` is not a directed acyclic graph (DAG) no topological generations
|
193 |
+
exist and a :exc:`NetworkXUnfeasible` exception is raised. This can also
|
194 |
+
be raised if `G` is changed while the returned iterator is being processed
|
195 |
+
|
196 |
+
RuntimeError
|
197 |
+
If `G` is changed while the returned iterator is being processed.
|
198 |
+
|
199 |
+
Examples
|
200 |
+
--------
|
201 |
+
>>> DG = nx.DiGraph([(2, 1), (3, 1)])
|
202 |
+
>>> [sorted(generation) for generation in nx.topological_generations(DG)]
|
203 |
+
[[2, 3], [1]]
|
204 |
+
|
205 |
+
Notes
|
206 |
+
-----
|
207 |
+
The generation in which a node resides can also be determined by taking the
|
208 |
+
max-path-distance from the node to the farthest leaf node. That value can
|
209 |
+
be obtained with this function using `enumerate(topological_generations(G))`.
|
210 |
+
|
211 |
+
See also
|
212 |
+
--------
|
213 |
+
topological_sort
|
214 |
+
"""
|
215 |
+
if not G.is_directed():
|
216 |
+
raise nx.NetworkXError("Topological sort not defined on undirected graphs.")
|
217 |
+
|
218 |
+
multigraph = G.is_multigraph()
|
219 |
+
indegree_map = {v: d for v, d in G.in_degree() if d > 0}
|
220 |
+
zero_indegree = [v for v, d in G.in_degree() if d == 0]
|
221 |
+
|
222 |
+
while zero_indegree:
|
223 |
+
this_generation = zero_indegree
|
224 |
+
zero_indegree = []
|
225 |
+
for node in this_generation:
|
226 |
+
if node not in G:
|
227 |
+
raise RuntimeError("Graph changed during iteration")
|
228 |
+
for child in G.neighbors(node):
|
229 |
+
try:
|
230 |
+
indegree_map[child] -= len(G[node][child]) if multigraph else 1
|
231 |
+
except KeyError as err:
|
232 |
+
raise RuntimeError("Graph changed during iteration") from err
|
233 |
+
if indegree_map[child] == 0:
|
234 |
+
zero_indegree.append(child)
|
235 |
+
del indegree_map[child]
|
236 |
+
yield this_generation
|
237 |
+
|
238 |
+
if indegree_map:
|
239 |
+
raise nx.NetworkXUnfeasible(
|
240 |
+
"Graph contains a cycle or graph changed during iteration"
|
241 |
+
)
|
242 |
+
|
243 |
+
|
244 |
+
@nx._dispatchable
|
245 |
+
def topological_sort(G):
|
246 |
+
"""Returns a generator of nodes in topologically sorted order.
|
247 |
+
|
248 |
+
A topological sort is a nonunique permutation of the nodes of a
|
249 |
+
directed graph such that an edge from u to v implies that u
|
250 |
+
appears before v in the topological sort order. This ordering is
|
251 |
+
valid only if the graph has no directed cycles.
|
252 |
+
|
253 |
+
Parameters
|
254 |
+
----------
|
255 |
+
G : NetworkX digraph
|
256 |
+
A directed acyclic graph (DAG)
|
257 |
+
|
258 |
+
Yields
|
259 |
+
------
|
260 |
+
nodes
|
261 |
+
Yields the nodes in topological sorted order.
|
262 |
+
|
263 |
+
Raises
|
264 |
+
------
|
265 |
+
NetworkXError
|
266 |
+
Topological sort is defined for directed graphs only. If the graph `G`
|
267 |
+
is undirected, a :exc:`NetworkXError` is raised.
|
268 |
+
|
269 |
+
NetworkXUnfeasible
|
270 |
+
If `G` is not a directed acyclic graph (DAG) no topological sort exists
|
271 |
+
and a :exc:`NetworkXUnfeasible` exception is raised. This can also be
|
272 |
+
raised if `G` is changed while the returned iterator is being processed
|
273 |
+
|
274 |
+
RuntimeError
|
275 |
+
If `G` is changed while the returned iterator is being processed.
|
276 |
+
|
277 |
+
Examples
|
278 |
+
--------
|
279 |
+
To get the reverse order of the topological sort:
|
280 |
+
|
281 |
+
>>> DG = nx.DiGraph([(1, 2), (2, 3)])
|
282 |
+
>>> list(reversed(list(nx.topological_sort(DG))))
|
283 |
+
[3, 2, 1]
|
284 |
+
|
285 |
+
If your DiGraph naturally has the edges representing tasks/inputs
|
286 |
+
and nodes representing people/processes that initiate tasks, then
|
287 |
+
topological_sort is not quite what you need. You will have to change
|
288 |
+
the tasks to nodes with dependence reflected by edges. The result is
|
289 |
+
a kind of topological sort of the edges. This can be done
|
290 |
+
with :func:`networkx.line_graph` as follows:
|
291 |
+
|
292 |
+
>>> list(nx.topological_sort(nx.line_graph(DG)))
|
293 |
+
[(1, 2), (2, 3)]
|
294 |
+
|
295 |
+
Notes
|
296 |
+
-----
|
297 |
+
This algorithm is based on a description and proof in
|
298 |
+
"Introduction to Algorithms: A Creative Approach" [1]_ .
|
299 |
+
|
300 |
+
See also
|
301 |
+
--------
|
302 |
+
is_directed_acyclic_graph, lexicographical_topological_sort
|
303 |
+
|
304 |
+
References
|
305 |
+
----------
|
306 |
+
.. [1] Manber, U. (1989).
|
307 |
+
*Introduction to Algorithms - A Creative Approach.* Addison-Wesley.
|
308 |
+
"""
|
309 |
+
for generation in nx.topological_generations(G):
|
310 |
+
yield from generation
|
311 |
+
|
312 |
+
|
313 |
+
@nx._dispatchable
|
314 |
+
def lexicographical_topological_sort(G, key=None):
|
315 |
+
"""Generate the nodes in the unique lexicographical topological sort order.
|
316 |
+
|
317 |
+
Generates a unique ordering of nodes by first sorting topologically (for which there are often
|
318 |
+
multiple valid orderings) and then additionally by sorting lexicographically.
|
319 |
+
|
320 |
+
A topological sort arranges the nodes of a directed graph so that the
|
321 |
+
upstream node of each directed edge precedes the downstream node.
|
322 |
+
It is always possible to find a solution for directed graphs that have no cycles.
|
323 |
+
There may be more than one valid solution.
|
324 |
+
|
325 |
+
Lexicographical sorting is just sorting alphabetically. It is used here to break ties in the
|
326 |
+
topological sort and to determine a single, unique ordering. This can be useful in comparing
|
327 |
+
sort results.
|
328 |
+
|
329 |
+
The lexicographical order can be customized by providing a function to the `key=` parameter.
|
330 |
+
The definition of the key function is the same as used in python's built-in `sort()`.
|
331 |
+
The function takes a single argument and returns a key to use for sorting purposes.
|
332 |
+
|
333 |
+
Lexicographical sorting can fail if the node names are un-sortable. See the example below.
|
334 |
+
The solution is to provide a function to the `key=` argument that returns sortable keys.
|
335 |
+
|
336 |
+
|
337 |
+
Parameters
|
338 |
+
----------
|
339 |
+
G : NetworkX digraph
|
340 |
+
A directed acyclic graph (DAG)
|
341 |
+
|
342 |
+
key : function, optional
|
343 |
+
A function of one argument that converts a node name to a comparison key.
|
344 |
+
It defines and resolves ambiguities in the sort order. Defaults to the identity function.
|
345 |
+
|
346 |
+
Yields
|
347 |
+
------
|
348 |
+
nodes
|
349 |
+
Yields the nodes of G in lexicographical topological sort order.
|
350 |
+
|
351 |
+
Raises
|
352 |
+
------
|
353 |
+
NetworkXError
|
354 |
+
Topological sort is defined for directed graphs only. If the graph `G`
|
355 |
+
is undirected, a :exc:`NetworkXError` is raised.
|
356 |
+
|
357 |
+
NetworkXUnfeasible
|
358 |
+
If `G` is not a directed acyclic graph (DAG) no topological sort exists
|
359 |
+
and a :exc:`NetworkXUnfeasible` exception is raised. This can also be
|
360 |
+
raised if `G` is changed while the returned iterator is being processed
|
361 |
+
|
362 |
+
RuntimeError
|
363 |
+
If `G` is changed while the returned iterator is being processed.
|
364 |
+
|
365 |
+
TypeError
|
366 |
+
Results from un-sortable node names.
|
367 |
+
Consider using `key=` parameter to resolve ambiguities in the sort order.
|
368 |
+
|
369 |
+
Examples
|
370 |
+
--------
|
371 |
+
>>> DG = nx.DiGraph([(2, 1), (2, 5), (1, 3), (1, 4), (5, 4)])
|
372 |
+
>>> list(nx.lexicographical_topological_sort(DG))
|
373 |
+
[2, 1, 3, 5, 4]
|
374 |
+
>>> list(nx.lexicographical_topological_sort(DG, key=lambda x: -x))
|
375 |
+
[2, 5, 1, 4, 3]
|
376 |
+
|
377 |
+
The sort will fail for any graph with integer and string nodes. Comparison of integer to strings
|
378 |
+
is not defined in python. Is 3 greater or less than 'red'?
|
379 |
+
|
380 |
+
>>> DG = nx.DiGraph([(1, "red"), (3, "red"), (1, "green"), (2, "blue")])
|
381 |
+
>>> list(nx.lexicographical_topological_sort(DG))
|
382 |
+
Traceback (most recent call last):
|
383 |
+
...
|
384 |
+
TypeError: '<' not supported between instances of 'str' and 'int'
|
385 |
+
...
|
386 |
+
|
387 |
+
Incomparable nodes can be resolved using a `key` function. This example function
|
388 |
+
allows comparison of integers and strings by returning a tuple where the first
|
389 |
+
element is True for `str`, False otherwise. The second element is the node name.
|
390 |
+
This groups the strings and integers separately so they can be compared only among themselves.
|
391 |
+
|
392 |
+
>>> key = lambda node: (isinstance(node, str), node)
|
393 |
+
>>> list(nx.lexicographical_topological_sort(DG, key=key))
|
394 |
+
[1, 2, 3, 'blue', 'green', 'red']
|
395 |
+
|
396 |
+
Notes
|
397 |
+
-----
|
398 |
+
This algorithm is based on a description and proof in
|
399 |
+
"Introduction to Algorithms: A Creative Approach" [1]_ .
|
400 |
+
|
401 |
+
See also
|
402 |
+
--------
|
403 |
+
topological_sort
|
404 |
+
|
405 |
+
References
|
406 |
+
----------
|
407 |
+
.. [1] Manber, U. (1989).
|
408 |
+
*Introduction to Algorithms - A Creative Approach.* Addison-Wesley.
|
409 |
+
"""
|
410 |
+
if not G.is_directed():
|
411 |
+
msg = "Topological sort not defined on undirected graphs."
|
412 |
+
raise nx.NetworkXError(msg)
|
413 |
+
|
414 |
+
if key is None:
|
415 |
+
|
416 |
+
def key(node):
|
417 |
+
return node
|
418 |
+
|
419 |
+
nodeid_map = {n: i for i, n in enumerate(G)}
|
420 |
+
|
421 |
+
def create_tuple(node):
|
422 |
+
return key(node), nodeid_map[node], node
|
423 |
+
|
424 |
+
indegree_map = {v: d for v, d in G.in_degree() if d > 0}
|
425 |
+
# These nodes have zero indegree and ready to be returned.
|
426 |
+
zero_indegree = [create_tuple(v) for v, d in G.in_degree() if d == 0]
|
427 |
+
heapq.heapify(zero_indegree)
|
428 |
+
|
429 |
+
while zero_indegree:
|
430 |
+
_, _, node = heapq.heappop(zero_indegree)
|
431 |
+
|
432 |
+
if node not in G:
|
433 |
+
raise RuntimeError("Graph changed during iteration")
|
434 |
+
for _, child in G.edges(node):
|
435 |
+
try:
|
436 |
+
indegree_map[child] -= 1
|
437 |
+
except KeyError as err:
|
438 |
+
raise RuntimeError("Graph changed during iteration") from err
|
439 |
+
if indegree_map[child] == 0:
|
440 |
+
try:
|
441 |
+
heapq.heappush(zero_indegree, create_tuple(child))
|
442 |
+
except TypeError as err:
|
443 |
+
raise TypeError(
|
444 |
+
f"{err}\nConsider using `key=` parameter to resolve ambiguities in the sort order."
|
445 |
+
)
|
446 |
+
del indegree_map[child]
|
447 |
+
|
448 |
+
yield node
|
449 |
+
|
450 |
+
if indegree_map:
|
451 |
+
msg = "Graph contains a cycle or graph changed during iteration"
|
452 |
+
raise nx.NetworkXUnfeasible(msg)
|
453 |
+
|
454 |
+
|
455 |
+
@not_implemented_for("undirected")
|
456 |
+
@nx._dispatchable
|
457 |
+
def all_topological_sorts(G):
|
458 |
+
"""Returns a generator of _all_ topological sorts of the directed graph G.
|
459 |
+
|
460 |
+
A topological sort is a nonunique permutation of the nodes such that an
|
461 |
+
edge from u to v implies that u appears before v in the topological sort
|
462 |
+
order.
|
463 |
+
|
464 |
+
Parameters
|
465 |
+
----------
|
466 |
+
G : NetworkX DiGraph
|
467 |
+
A directed graph
|
468 |
+
|
469 |
+
Yields
|
470 |
+
------
|
471 |
+
topological_sort_order : list
|
472 |
+
a list of nodes in `G`, representing one of the topological sort orders
|
473 |
+
|
474 |
+
Raises
|
475 |
+
------
|
476 |
+
NetworkXNotImplemented
|
477 |
+
If `G` is not directed
|
478 |
+
NetworkXUnfeasible
|
479 |
+
If `G` is not acyclic
|
480 |
+
|
481 |
+
Examples
|
482 |
+
--------
|
483 |
+
To enumerate all topological sorts of directed graph:
|
484 |
+
|
485 |
+
>>> DG = nx.DiGraph([(1, 2), (2, 3), (2, 4)])
|
486 |
+
>>> list(nx.all_topological_sorts(DG))
|
487 |
+
[[1, 2, 4, 3], [1, 2, 3, 4]]
|
488 |
+
|
489 |
+
Notes
|
490 |
+
-----
|
491 |
+
Implements an iterative version of the algorithm given in [1].
|
492 |
+
|
493 |
+
References
|
494 |
+
----------
|
495 |
+
.. [1] Knuth, Donald E., Szwarcfiter, Jayme L. (1974).
|
496 |
+
"A Structured Program to Generate All Topological Sorting Arrangements"
|
497 |
+
Information Processing Letters, Volume 2, Issue 6, 1974, Pages 153-157,
|
498 |
+
ISSN 0020-0190,
|
499 |
+
https://doi.org/10.1016/0020-0190(74)90001-5.
|
500 |
+
Elsevier (North-Holland), Amsterdam
|
501 |
+
"""
|
502 |
+
if not G.is_directed():
|
503 |
+
raise nx.NetworkXError("Topological sort not defined on undirected graphs.")
|
504 |
+
|
505 |
+
# the names of count and D are chosen to match the global variables in [1]
|
506 |
+
# number of edges originating in a vertex v
|
507 |
+
count = dict(G.in_degree())
|
508 |
+
# vertices with indegree 0
|
509 |
+
D = deque([v for v, d in G.in_degree() if d == 0])
|
510 |
+
# stack of first value chosen at a position k in the topological sort
|
511 |
+
bases = []
|
512 |
+
current_sort = []
|
513 |
+
|
514 |
+
# do-while construct
|
515 |
+
while True:
|
516 |
+
assert all(count[v] == 0 for v in D)
|
517 |
+
|
518 |
+
if len(current_sort) == len(G):
|
519 |
+
yield list(current_sort)
|
520 |
+
|
521 |
+
# clean-up stack
|
522 |
+
while len(current_sort) > 0:
|
523 |
+
assert len(bases) == len(current_sort)
|
524 |
+
q = current_sort.pop()
|
525 |
+
|
526 |
+
# "restores" all edges (q, x)
|
527 |
+
# NOTE: it is important to iterate over edges instead
|
528 |
+
# of successors, so count is updated correctly in multigraphs
|
529 |
+
for _, j in G.out_edges(q):
|
530 |
+
count[j] += 1
|
531 |
+
assert count[j] >= 0
|
532 |
+
# remove entries from D
|
533 |
+
while len(D) > 0 and count[D[-1]] > 0:
|
534 |
+
D.pop()
|
535 |
+
|
536 |
+
# corresponds to a circular shift of the values in D
|
537 |
+
# if the first value chosen (the base) is in the first
|
538 |
+
# position of D again, we are done and need to consider the
|
539 |
+
# previous condition
|
540 |
+
D.appendleft(q)
|
541 |
+
if D[-1] == bases[-1]:
|
542 |
+
# all possible values have been chosen at current position
|
543 |
+
# remove corresponding marker
|
544 |
+
bases.pop()
|
545 |
+
else:
|
546 |
+
# there are still elements that have not been fixed
|
547 |
+
# at the current position in the topological sort
|
548 |
+
# stop removing elements, escape inner loop
|
549 |
+
break
|
550 |
+
|
551 |
+
else:
|
552 |
+
if len(D) == 0:
|
553 |
+
raise nx.NetworkXUnfeasible("Graph contains a cycle.")
|
554 |
+
|
555 |
+
# choose next node
|
556 |
+
q = D.pop()
|
557 |
+
# "erase" all edges (q, x)
|
558 |
+
# NOTE: it is important to iterate over edges instead
|
559 |
+
# of successors, so count is updated correctly in multigraphs
|
560 |
+
for _, j in G.out_edges(q):
|
561 |
+
count[j] -= 1
|
562 |
+
assert count[j] >= 0
|
563 |
+
if count[j] == 0:
|
564 |
+
D.append(j)
|
565 |
+
current_sort.append(q)
|
566 |
+
|
567 |
+
# base for current position might _not_ be fixed yet
|
568 |
+
if len(bases) < len(current_sort):
|
569 |
+
bases.append(q)
|
570 |
+
|
571 |
+
if len(bases) == 0:
|
572 |
+
break
|
573 |
+
|
574 |
+
|
575 |
+
@nx._dispatchable
|
576 |
+
def is_aperiodic(G):
|
577 |
+
"""Returns True if `G` is aperiodic.
|
578 |
+
|
579 |
+
A directed graph is aperiodic if there is no integer k > 1 that
|
580 |
+
divides the length of every cycle in the graph.
|
581 |
+
|
582 |
+
Parameters
|
583 |
+
----------
|
584 |
+
G : NetworkX DiGraph
|
585 |
+
A directed graph
|
586 |
+
|
587 |
+
Returns
|
588 |
+
-------
|
589 |
+
bool
|
590 |
+
True if the graph is aperiodic False otherwise
|
591 |
+
|
592 |
+
Raises
|
593 |
+
------
|
594 |
+
NetworkXError
|
595 |
+
If `G` is not directed
|
596 |
+
|
597 |
+
Examples
|
598 |
+
--------
|
599 |
+
A graph consisting of one cycle, the length of which is 2. Therefore ``k = 2``
|
600 |
+
divides the length of every cycle in the graph and thus the graph
|
601 |
+
is *not aperiodic*::
|
602 |
+
|
603 |
+
>>> DG = nx.DiGraph([(1, 2), (2, 1)])
|
604 |
+
>>> nx.is_aperiodic(DG)
|
605 |
+
False
|
606 |
+
|
607 |
+
A graph consisting of two cycles: one of length 2 and the other of length 3.
|
608 |
+
The cycle lengths are coprime, so there is no single value of k where ``k > 1``
|
609 |
+
that divides each cycle length and therefore the graph is *aperiodic*::
|
610 |
+
|
611 |
+
>>> DG = nx.DiGraph([(1, 2), (2, 3), (3, 1), (1, 4), (4, 1)])
|
612 |
+
>>> nx.is_aperiodic(DG)
|
613 |
+
True
|
614 |
+
|
615 |
+
A graph consisting of two cycles: one of length 2 and the other of length 4.
|
616 |
+
The lengths of the cycles share a common factor ``k = 2``, and therefore
|
617 |
+
the graph is *not aperiodic*::
|
618 |
+
|
619 |
+
>>> DG = nx.DiGraph([(1, 2), (2, 1), (3, 4), (4, 5), (5, 6), (6, 3)])
|
620 |
+
>>> nx.is_aperiodic(DG)
|
621 |
+
False
|
622 |
+
|
623 |
+
An acyclic graph, therefore the graph is *not aperiodic*::
|
624 |
+
|
625 |
+
>>> DG = nx.DiGraph([(1, 2), (2, 3)])
|
626 |
+
>>> nx.is_aperiodic(DG)
|
627 |
+
False
|
628 |
+
|
629 |
+
Notes
|
630 |
+
-----
|
631 |
+
This uses the method outlined in [1]_, which runs in $O(m)$ time
|
632 |
+
given $m$ edges in `G`. Note that a graph is not aperiodic if it is
|
633 |
+
acyclic as every integer trivial divides length 0 cycles.
|
634 |
+
|
635 |
+
References
|
636 |
+
----------
|
637 |
+
.. [1] Jarvis, J. P.; Shier, D. R. (1996),
|
638 |
+
"Graph-theoretic analysis of finite Markov chains,"
|
639 |
+
in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling:
|
640 |
+
A Multidisciplinary Approach, CRC Press.
|
641 |
+
"""
|
642 |
+
if not G.is_directed():
|
643 |
+
raise nx.NetworkXError("is_aperiodic not defined for undirected graphs")
|
644 |
+
if len(G) == 0:
|
645 |
+
raise nx.NetworkXPointlessConcept("Graph has no nodes.")
|
646 |
+
s = arbitrary_element(G)
|
647 |
+
levels = {s: 0}
|
648 |
+
this_level = [s]
|
649 |
+
g = 0
|
650 |
+
lev = 1
|
651 |
+
while this_level:
|
652 |
+
next_level = []
|
653 |
+
for u in this_level:
|
654 |
+
for v in G[u]:
|
655 |
+
if v in levels: # Non-Tree Edge
|
656 |
+
g = gcd(g, levels[u] - levels[v] + 1)
|
657 |
+
else: # Tree Edge
|
658 |
+
next_level.append(v)
|
659 |
+
levels[v] = lev
|
660 |
+
this_level = next_level
|
661 |
+
lev += 1
|
662 |
+
if len(levels) == len(G): # All nodes in tree
|
663 |
+
return g == 1
|
664 |
+
else:
|
665 |
+
return g == 1 and nx.is_aperiodic(G.subgraph(set(G) - set(levels)))
|
666 |
+
|
667 |
+
|
668 |
+
@nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
|
669 |
+
def transitive_closure(G, reflexive=False):
|
670 |
+
"""Returns transitive closure of a graph
|
671 |
+
|
672 |
+
The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that
|
673 |
+
for all v, w in V there is an edge (v, w) in E+ if and only if there
|
674 |
+
is a path from v to w in G.
|
675 |
+
|
676 |
+
Handling of paths from v to v has some flexibility within this definition.
|
677 |
+
A reflexive transitive closure creates a self-loop for the path
|
678 |
+
from v to v of length 0. The usual transitive closure creates a
|
679 |
+
self-loop only if a cycle exists (a path from v to v with length > 0).
|
680 |
+
We also allow an option for no self-loops.
|
681 |
+
|
682 |
+
Parameters
|
683 |
+
----------
|
684 |
+
G : NetworkX Graph
|
685 |
+
A directed/undirected graph/multigraph.
|
686 |
+
reflexive : Bool or None, optional (default: False)
|
687 |
+
Determines when cycles create self-loops in the Transitive Closure.
|
688 |
+
If True, trivial cycles (length 0) create self-loops. The result
|
689 |
+
is a reflexive transitive closure of G.
|
690 |
+
If False (the default) non-trivial cycles create self-loops.
|
691 |
+
If None, self-loops are not created.
|
692 |
+
|
693 |
+
Returns
|
694 |
+
-------
|
695 |
+
NetworkX graph
|
696 |
+
The transitive closure of `G`
|
697 |
+
|
698 |
+
Raises
|
699 |
+
------
|
700 |
+
NetworkXError
|
701 |
+
If `reflexive` not in `{None, True, False}`
|
702 |
+
|
703 |
+
Examples
|
704 |
+
--------
|
705 |
+
The treatment of trivial (i.e. length 0) cycles is controlled by the
|
706 |
+
`reflexive` parameter.
|
707 |
+
|
708 |
+
Trivial (i.e. length 0) cycles do not create self-loops when
|
709 |
+
``reflexive=False`` (the default)::
|
710 |
+
|
711 |
+
>>> DG = nx.DiGraph([(1, 2), (2, 3)])
|
712 |
+
>>> TC = nx.transitive_closure(DG, reflexive=False)
|
713 |
+
>>> TC.edges()
|
714 |
+
OutEdgeView([(1, 2), (1, 3), (2, 3)])
|
715 |
+
|
716 |
+
However, nontrivial (i.e. length greater than 0) cycles create self-loops
|
717 |
+
when ``reflexive=False`` (the default)::
|
718 |
+
|
719 |
+
>>> DG = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
|
720 |
+
>>> TC = nx.transitive_closure(DG, reflexive=False)
|
721 |
+
>>> TC.edges()
|
722 |
+
OutEdgeView([(1, 2), (1, 3), (1, 1), (2, 3), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)])
|
723 |
+
|
724 |
+
Trivial cycles (length 0) create self-loops when ``reflexive=True``::
|
725 |
+
|
726 |
+
>>> DG = nx.DiGraph([(1, 2), (2, 3)])
|
727 |
+
>>> TC = nx.transitive_closure(DG, reflexive=True)
|
728 |
+
>>> TC.edges()
|
729 |
+
OutEdgeView([(1, 2), (1, 1), (1, 3), (2, 3), (2, 2), (3, 3)])
|
730 |
+
|
731 |
+
And the third option is not to create self-loops at all when ``reflexive=None``::
|
732 |
+
|
733 |
+
>>> DG = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
|
734 |
+
>>> TC = nx.transitive_closure(DG, reflexive=None)
|
735 |
+
>>> TC.edges()
|
736 |
+
OutEdgeView([(1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2)])
|
737 |
+
|
738 |
+
References
|
739 |
+
----------
|
740 |
+
.. [1] https://www.ics.uci.edu/~eppstein/PADS/PartialOrder.py
|
741 |
+
"""
|
742 |
+
TC = G.copy()
|
743 |
+
|
744 |
+
if reflexive not in {None, True, False}:
|
745 |
+
raise nx.NetworkXError("Incorrect value for the parameter `reflexive`")
|
746 |
+
|
747 |
+
for v in G:
|
748 |
+
if reflexive is None:
|
749 |
+
TC.add_edges_from((v, u) for u in nx.descendants(G, v) if u not in TC[v])
|
750 |
+
elif reflexive is True:
|
751 |
+
TC.add_edges_from(
|
752 |
+
(v, u) for u in nx.descendants(G, v) | {v} if u not in TC[v]
|
753 |
+
)
|
754 |
+
elif reflexive is False:
|
755 |
+
TC.add_edges_from((v, e[1]) for e in nx.edge_bfs(G, v) if e[1] not in TC[v])
|
756 |
+
|
757 |
+
return TC
|
758 |
+
|
759 |
+
|
760 |
+
@not_implemented_for("undirected")
|
761 |
+
@nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
|
762 |
+
def transitive_closure_dag(G, topo_order=None):
|
763 |
+
"""Returns the transitive closure of a directed acyclic graph.
|
764 |
+
|
765 |
+
This function is faster than the function `transitive_closure`, but fails
|
766 |
+
if the graph has a cycle.
|
767 |
+
|
768 |
+
The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that
|
769 |
+
for all v, w in V there is an edge (v, w) in E+ if and only if there
|
770 |
+
is a non-null path from v to w in G.
|
771 |
+
|
772 |
+
Parameters
|
773 |
+
----------
|
774 |
+
G : NetworkX DiGraph
|
775 |
+
A directed acyclic graph (DAG)
|
776 |
+
|
777 |
+
topo_order: list or tuple, optional
|
778 |
+
A topological order for G (if None, the function will compute one)
|
779 |
+
|
780 |
+
Returns
|
781 |
+
-------
|
782 |
+
NetworkX DiGraph
|
783 |
+
The transitive closure of `G`
|
784 |
+
|
785 |
+
Raises
|
786 |
+
------
|
787 |
+
NetworkXNotImplemented
|
788 |
+
If `G` is not directed
|
789 |
+
NetworkXUnfeasible
|
790 |
+
If `G` has a cycle
|
791 |
+
|
792 |
+
Examples
|
793 |
+
--------
|
794 |
+
>>> DG = nx.DiGraph([(1, 2), (2, 3)])
|
795 |
+
>>> TC = nx.transitive_closure_dag(DG)
|
796 |
+
>>> TC.edges()
|
797 |
+
OutEdgeView([(1, 2), (1, 3), (2, 3)])
|
798 |
+
|
799 |
+
Notes
|
800 |
+
-----
|
801 |
+
This algorithm is probably simple enough to be well-known but I didn't find
|
802 |
+
a mention in the literature.
|
803 |
+
"""
|
804 |
+
if topo_order is None:
|
805 |
+
topo_order = list(topological_sort(G))
|
806 |
+
|
807 |
+
TC = G.copy()
|
808 |
+
|
809 |
+
# idea: traverse vertices following a reverse topological order, connecting
|
810 |
+
# each vertex to its descendants at distance 2 as we go
|
811 |
+
for v in reversed(topo_order):
|
812 |
+
TC.add_edges_from((v, u) for u in nx.descendants_at_distance(TC, v, 2))
|
813 |
+
|
814 |
+
return TC
|
815 |
+
|
816 |
+
|
817 |
+
@not_implemented_for("undirected")
|
818 |
+
@nx._dispatchable(returns_graph=True)
|
819 |
+
def transitive_reduction(G):
|
820 |
+
"""Returns transitive reduction of a directed graph
|
821 |
+
|
822 |
+
The transitive reduction of G = (V,E) is a graph G- = (V,E-) such that
|
823 |
+
for all v,w in V there is an edge (v,w) in E- if and only if (v,w) is
|
824 |
+
in E and there is no path from v to w in G with length greater than 1.
|
825 |
+
|
826 |
+
Parameters
|
827 |
+
----------
|
828 |
+
G : NetworkX DiGraph
|
829 |
+
A directed acyclic graph (DAG)
|
830 |
+
|
831 |
+
Returns
|
832 |
+
-------
|
833 |
+
NetworkX DiGraph
|
834 |
+
The transitive reduction of `G`
|
835 |
+
|
836 |
+
Raises
|
837 |
+
------
|
838 |
+
NetworkXError
|
839 |
+
If `G` is not a directed acyclic graph (DAG) transitive reduction is
|
840 |
+
not uniquely defined and a :exc:`NetworkXError` exception is raised.
|
841 |
+
|
842 |
+
Examples
|
843 |
+
--------
|
844 |
+
To perform transitive reduction on a DiGraph:
|
845 |
+
|
846 |
+
>>> DG = nx.DiGraph([(1, 2), (2, 3), (1, 3)])
|
847 |
+
>>> TR = nx.transitive_reduction(DG)
|
848 |
+
>>> list(TR.edges)
|
849 |
+
[(1, 2), (2, 3)]
|
850 |
+
|
851 |
+
To avoid unnecessary data copies, this implementation does not return a
|
852 |
+
DiGraph with node/edge data.
|
853 |
+
To perform transitive reduction on a DiGraph and transfer node/edge data:
|
854 |
+
|
855 |
+
>>> DG = nx.DiGraph()
|
856 |
+
>>> DG.add_edges_from([(1, 2), (2, 3), (1, 3)], color="red")
|
857 |
+
>>> TR = nx.transitive_reduction(DG)
|
858 |
+
>>> TR.add_nodes_from(DG.nodes(data=True))
|
859 |
+
>>> TR.add_edges_from((u, v, DG.edges[u, v]) for u, v in TR.edges)
|
860 |
+
>>> list(TR.edges(data=True))
|
861 |
+
[(1, 2, {'color': 'red'}), (2, 3, {'color': 'red'})]
|
862 |
+
|
863 |
+
References
|
864 |
+
----------
|
865 |
+
https://en.wikipedia.org/wiki/Transitive_reduction
|
866 |
+
|
867 |
+
"""
|
868 |
+
if not is_directed_acyclic_graph(G):
|
869 |
+
msg = "Directed Acyclic Graph required for transitive_reduction"
|
870 |
+
raise nx.NetworkXError(msg)
|
871 |
+
TR = nx.DiGraph()
|
872 |
+
TR.add_nodes_from(G.nodes())
|
873 |
+
descendants = {}
|
874 |
+
# count before removing set stored in descendants
|
875 |
+
check_count = dict(G.in_degree)
|
876 |
+
for u in G:
|
877 |
+
u_nbrs = set(G[u])
|
878 |
+
for v in G[u]:
|
879 |
+
if v in u_nbrs:
|
880 |
+
if v not in descendants:
|
881 |
+
descendants[v] = {y for x, y in nx.dfs_edges(G, v)}
|
882 |
+
u_nbrs -= descendants[v]
|
883 |
+
check_count[v] -= 1
|
884 |
+
if check_count[v] == 0:
|
885 |
+
del descendants[v]
|
886 |
+
TR.add_edges_from((u, v) for v in u_nbrs)
|
887 |
+
return TR
|
888 |
+
|
889 |
+
|
890 |
+
@not_implemented_for("undirected")
|
891 |
+
@nx._dispatchable
|
892 |
+
def antichains(G, topo_order=None):
|
893 |
+
"""Generates antichains from a directed acyclic graph (DAG).
|
894 |
+
|
895 |
+
An antichain is a subset of a partially ordered set such that any
|
896 |
+
two elements in the subset are incomparable.
|
897 |
+
|
898 |
+
Parameters
|
899 |
+
----------
|
900 |
+
G : NetworkX DiGraph
|
901 |
+
A directed acyclic graph (DAG)
|
902 |
+
|
903 |
+
topo_order: list or tuple, optional
|
904 |
+
A topological order for G (if None, the function will compute one)
|
905 |
+
|
906 |
+
Yields
|
907 |
+
------
|
908 |
+
antichain : list
|
909 |
+
a list of nodes in `G` representing an antichain
|
910 |
+
|
911 |
+
Raises
|
912 |
+
------
|
913 |
+
NetworkXNotImplemented
|
914 |
+
If `G` is not directed
|
915 |
+
|
916 |
+
NetworkXUnfeasible
|
917 |
+
If `G` contains a cycle
|
918 |
+
|
919 |
+
Examples
|
920 |
+
--------
|
921 |
+
>>> DG = nx.DiGraph([(1, 2), (1, 3)])
|
922 |
+
>>> list(nx.antichains(DG))
|
923 |
+
[[], [3], [2], [2, 3], [1]]
|
924 |
+
|
925 |
+
Notes
|
926 |
+
-----
|
927 |
+
This function was originally developed by Peter Jipsen and Franco Saliola
|
928 |
+
for the SAGE project. It's included in NetworkX with permission from the
|
929 |
+
authors. Original SAGE code at:
|
930 |
+
|
931 |
+
https://github.com/sagemath/sage/blob/master/src/sage/combinat/posets/hasse_diagram.py
|
932 |
+
|
933 |
+
References
|
934 |
+
----------
|
935 |
+
.. [1] Free Lattices, by R. Freese, J. Jezek and J. B. Nation,
|
936 |
+
AMS, Vol 42, 1995, p. 226.
|
937 |
+
"""
|
938 |
+
if topo_order is None:
|
939 |
+
topo_order = list(nx.topological_sort(G))
|
940 |
+
|
941 |
+
TC = nx.transitive_closure_dag(G, topo_order)
|
942 |
+
antichains_stacks = [([], list(reversed(topo_order)))]
|
943 |
+
|
944 |
+
while antichains_stacks:
|
945 |
+
(antichain, stack) = antichains_stacks.pop()
|
946 |
+
# Invariant:
|
947 |
+
# - the elements of antichain are independent
|
948 |
+
# - the elements of stack are independent from those of antichain
|
949 |
+
yield antichain
|
950 |
+
while stack:
|
951 |
+
x = stack.pop()
|
952 |
+
new_antichain = antichain + [x]
|
953 |
+
new_stack = [t for t in stack if not ((t in TC[x]) or (x in TC[t]))]
|
954 |
+
antichains_stacks.append((new_antichain, new_stack))
|
955 |
+
|
956 |
+
|
957 |
+
@not_implemented_for("undirected")
|
958 |
+
@nx._dispatchable(edge_attrs={"weight": "default_weight"})
|
959 |
+
def dag_longest_path(G, weight="weight", default_weight=1, topo_order=None):
|
960 |
+
"""Returns the longest path in a directed acyclic graph (DAG).
|
961 |
+
|
962 |
+
If `G` has edges with `weight` attribute the edge data are used as
|
963 |
+
weight values.
|
964 |
+
|
965 |
+
Parameters
|
966 |
+
----------
|
967 |
+
G : NetworkX DiGraph
|
968 |
+
A directed acyclic graph (DAG)
|
969 |
+
|
970 |
+
weight : str, optional
|
971 |
+
Edge data key to use for weight
|
972 |
+
|
973 |
+
default_weight : int, optional
|
974 |
+
The weight of edges that do not have a weight attribute
|
975 |
+
|
976 |
+
topo_order: list or tuple, optional
|
977 |
+
A topological order for `G` (if None, the function will compute one)
|
978 |
+
|
979 |
+
Returns
|
980 |
+
-------
|
981 |
+
list
|
982 |
+
Longest path
|
983 |
+
|
984 |
+
Raises
|
985 |
+
------
|
986 |
+
NetworkXNotImplemented
|
987 |
+
If `G` is not directed
|
988 |
+
|
989 |
+
Examples
|
990 |
+
--------
|
991 |
+
>>> DG = nx.DiGraph([(0, 1, {"cost": 1}), (1, 2, {"cost": 1}), (0, 2, {"cost": 42})])
|
992 |
+
>>> list(nx.all_simple_paths(DG, 0, 2))
|
993 |
+
[[0, 1, 2], [0, 2]]
|
994 |
+
>>> nx.dag_longest_path(DG)
|
995 |
+
[0, 1, 2]
|
996 |
+
>>> nx.dag_longest_path(DG, weight="cost")
|
997 |
+
[0, 2]
|
998 |
+
|
999 |
+
In the case where multiple valid topological orderings exist, `topo_order`
|
1000 |
+
can be used to specify a specific ordering:
|
1001 |
+
|
1002 |
+
>>> DG = nx.DiGraph([(0, 1), (0, 2)])
|
1003 |
+
>>> sorted(nx.all_topological_sorts(DG)) # Valid topological orderings
|
1004 |
+
[[0, 1, 2], [0, 2, 1]]
|
1005 |
+
>>> nx.dag_longest_path(DG, topo_order=[0, 1, 2])
|
1006 |
+
[0, 1]
|
1007 |
+
>>> nx.dag_longest_path(DG, topo_order=[0, 2, 1])
|
1008 |
+
[0, 2]
|
1009 |
+
|
1010 |
+
See also
|
1011 |
+
--------
|
1012 |
+
dag_longest_path_length
|
1013 |
+
|
1014 |
+
"""
|
1015 |
+
if not G:
|
1016 |
+
return []
|
1017 |
+
|
1018 |
+
if topo_order is None:
|
1019 |
+
topo_order = nx.topological_sort(G)
|
1020 |
+
|
1021 |
+
dist = {} # stores {v : (length, u)}
|
1022 |
+
for v in topo_order:
|
1023 |
+
us = [
|
1024 |
+
(
|
1025 |
+
dist[u][0]
|
1026 |
+
+ (
|
1027 |
+
max(data.values(), key=lambda x: x.get(weight, default_weight))
|
1028 |
+
if G.is_multigraph()
|
1029 |
+
else data
|
1030 |
+
).get(weight, default_weight),
|
1031 |
+
u,
|
1032 |
+
)
|
1033 |
+
for u, data in G.pred[v].items()
|
1034 |
+
]
|
1035 |
+
|
1036 |
+
# Use the best predecessor if there is one and its distance is
|
1037 |
+
# non-negative, otherwise terminate.
|
1038 |
+
maxu = max(us, key=lambda x: x[0]) if us else (0, v)
|
1039 |
+
dist[v] = maxu if maxu[0] >= 0 else (0, v)
|
1040 |
+
|
1041 |
+
u = None
|
1042 |
+
v = max(dist, key=lambda x: dist[x][0])
|
1043 |
+
path = []
|
1044 |
+
while u != v:
|
1045 |
+
path.append(v)
|
1046 |
+
u = v
|
1047 |
+
v = dist[v][1]
|
1048 |
+
|
1049 |
+
path.reverse()
|
1050 |
+
return path
|
1051 |
+
|
1052 |
+
|
1053 |
+
@not_implemented_for("undirected")
|
1054 |
+
@nx._dispatchable(edge_attrs={"weight": "default_weight"})
|
1055 |
+
def dag_longest_path_length(G, weight="weight", default_weight=1):
|
1056 |
+
"""Returns the longest path length in a DAG
|
1057 |
+
|
1058 |
+
Parameters
|
1059 |
+
----------
|
1060 |
+
G : NetworkX DiGraph
|
1061 |
+
A directed acyclic graph (DAG)
|
1062 |
+
|
1063 |
+
weight : string, optional
|
1064 |
+
Edge data key to use for weight
|
1065 |
+
|
1066 |
+
default_weight : int, optional
|
1067 |
+
The weight of edges that do not have a weight attribute
|
1068 |
+
|
1069 |
+
Returns
|
1070 |
+
-------
|
1071 |
+
int
|
1072 |
+
Longest path length
|
1073 |
+
|
1074 |
+
Raises
|
1075 |
+
------
|
1076 |
+
NetworkXNotImplemented
|
1077 |
+
If `G` is not directed
|
1078 |
+
|
1079 |
+
Examples
|
1080 |
+
--------
|
1081 |
+
>>> DG = nx.DiGraph([(0, 1, {"cost": 1}), (1, 2, {"cost": 1}), (0, 2, {"cost": 42})])
|
1082 |
+
>>> list(nx.all_simple_paths(DG, 0, 2))
|
1083 |
+
[[0, 1, 2], [0, 2]]
|
1084 |
+
>>> nx.dag_longest_path_length(DG)
|
1085 |
+
2
|
1086 |
+
>>> nx.dag_longest_path_length(DG, weight="cost")
|
1087 |
+
42
|
1088 |
+
|
1089 |
+
See also
|
1090 |
+
--------
|
1091 |
+
dag_longest_path
|
1092 |
+
"""
|
1093 |
+
path = nx.dag_longest_path(G, weight, default_weight)
|
1094 |
+
path_length = 0
|
1095 |
+
if G.is_multigraph():
|
1096 |
+
for u, v in pairwise(path):
|
1097 |
+
i = max(G[u][v], key=lambda x: G[u][v][x].get(weight, default_weight))
|
1098 |
+
path_length += G[u][v][i].get(weight, default_weight)
|
1099 |
+
else:
|
1100 |
+
for u, v in pairwise(path):
|
1101 |
+
path_length += G[u][v].get(weight, default_weight)
|
1102 |
+
|
1103 |
+
return path_length
|
1104 |
+
|
1105 |
+
|
1106 |
+
@nx._dispatchable
|
1107 |
+
def root_to_leaf_paths(G):
|
1108 |
+
"""Yields root-to-leaf paths in a directed acyclic graph.
|
1109 |
+
|
1110 |
+
`G` must be a directed acyclic graph. If not, the behavior of this
|
1111 |
+
function is undefined. A "root" in this graph is a node of in-degree
|
1112 |
+
zero and a "leaf" a node of out-degree zero.
|
1113 |
+
|
1114 |
+
When invoked, this function iterates over each path from any root to
|
1115 |
+
any leaf. A path is a list of nodes.
|
1116 |
+
|
1117 |
+
"""
|
1118 |
+
roots = (v for v, d in G.in_degree() if d == 0)
|
1119 |
+
leaves = (v for v, d in G.out_degree() if d == 0)
|
1120 |
+
all_paths = partial(nx.all_simple_paths, G)
|
1121 |
+
# TODO In Python 3, this would be better as `yield from ...`.
|
1122 |
+
return chaini(starmap(all_paths, product(roots, leaves)))
|
1123 |
+
|
1124 |
+
|
1125 |
+
@not_implemented_for("multigraph")
|
1126 |
+
@not_implemented_for("undirected")
|
1127 |
+
@nx._dispatchable(returns_graph=True)
|
1128 |
+
def dag_to_branching(G):
|
1129 |
+
"""Returns a branching representing all (overlapping) paths from
|
1130 |
+
root nodes to leaf nodes in the given directed acyclic graph.
|
1131 |
+
|
1132 |
+
As described in :mod:`networkx.algorithms.tree.recognition`, a
|
1133 |
+
*branching* is a directed forest in which each node has at most one
|
1134 |
+
parent. In other words, a branching is a disjoint union of
|
1135 |
+
*arborescences*. For this function, each node of in-degree zero in
|
1136 |
+
`G` becomes a root of one of the arborescences, and there will be
|
1137 |
+
one leaf node for each distinct path from that root to a leaf node
|
1138 |
+
in `G`.
|
1139 |
+
|
1140 |
+
Each node `v` in `G` with *k* parents becomes *k* distinct nodes in
|
1141 |
+
the returned branching, one for each parent, and the sub-DAG rooted
|
1142 |
+
at `v` is duplicated for each copy. The algorithm then recurses on
|
1143 |
+
the children of each copy of `v`.
|
1144 |
+
|
1145 |
+
Parameters
|
1146 |
+
----------
|
1147 |
+
G : NetworkX graph
|
1148 |
+
A directed acyclic graph.
|
1149 |
+
|
1150 |
+
Returns
|
1151 |
+
-------
|
1152 |
+
DiGraph
|
1153 |
+
The branching in which there is a bijection between root-to-leaf
|
1154 |
+
paths in `G` (in which multiple paths may share the same leaf)
|
1155 |
+
and root-to-leaf paths in the branching (in which there is a
|
1156 |
+
unique path from a root to a leaf).
|
1157 |
+
|
1158 |
+
Each node has an attribute 'source' whose value is the original
|
1159 |
+
node to which this node corresponds. No other graph, node, or
|
1160 |
+
edge attributes are copied into this new graph.
|
1161 |
+
|
1162 |
+
Raises
|
1163 |
+
------
|
1164 |
+
NetworkXNotImplemented
|
1165 |
+
If `G` is not directed, or if `G` is a multigraph.
|
1166 |
+
|
1167 |
+
HasACycle
|
1168 |
+
If `G` is not acyclic.
|
1169 |
+
|
1170 |
+
Examples
|
1171 |
+
--------
|
1172 |
+
To examine which nodes in the returned branching were produced by
|
1173 |
+
which original node in the directed acyclic graph, we can collect
|
1174 |
+
the mapping from source node to new nodes into a dictionary. For
|
1175 |
+
example, consider the directed diamond graph::
|
1176 |
+
|
1177 |
+
>>> from collections import defaultdict
|
1178 |
+
>>> from operator import itemgetter
|
1179 |
+
>>>
|
1180 |
+
>>> G = nx.DiGraph(nx.utils.pairwise("abd"))
|
1181 |
+
>>> G.add_edges_from(nx.utils.pairwise("acd"))
|
1182 |
+
>>> B = nx.dag_to_branching(G)
|
1183 |
+
>>>
|
1184 |
+
>>> sources = defaultdict(set)
|
1185 |
+
>>> for v, source in B.nodes(data="source"):
|
1186 |
+
... sources[source].add(v)
|
1187 |
+
>>> len(sources["a"])
|
1188 |
+
1
|
1189 |
+
>>> len(sources["d"])
|
1190 |
+
2
|
1191 |
+
|
1192 |
+
To copy node attributes from the original graph to the new graph,
|
1193 |
+
you can use a dictionary like the one constructed in the above
|
1194 |
+
example::
|
1195 |
+
|
1196 |
+
>>> for source, nodes in sources.items():
|
1197 |
+
... for v in nodes:
|
1198 |
+
... B.nodes[v].update(G.nodes[source])
|
1199 |
+
|
1200 |
+
Notes
|
1201 |
+
-----
|
1202 |
+
This function is not idempotent in the sense that the node labels in
|
1203 |
+
the returned branching may be uniquely generated each time the
|
1204 |
+
function is invoked. In fact, the node labels may not be integers;
|
1205 |
+
in order to relabel the nodes to be more readable, you can use the
|
1206 |
+
:func:`networkx.convert_node_labels_to_integers` function.
|
1207 |
+
|
1208 |
+
The current implementation of this function uses
|
1209 |
+
:func:`networkx.prefix_tree`, so it is subject to the limitations of
|
1210 |
+
that function.
|
1211 |
+
|
1212 |
+
"""
|
1213 |
+
if has_cycle(G):
|
1214 |
+
msg = "dag_to_branching is only defined for acyclic graphs"
|
1215 |
+
raise nx.HasACycle(msg)
|
1216 |
+
paths = root_to_leaf_paths(G)
|
1217 |
+
B = nx.prefix_tree(paths)
|
1218 |
+
# Remove the synthetic `root`(0) and `NIL`(-1) nodes from the tree
|
1219 |
+
B.remove_node(0)
|
1220 |
+
B.remove_node(-1)
|
1221 |
+
return B
|
1222 |
+
|
1223 |
+
|
1224 |
+
@not_implemented_for("undirected")
|
1225 |
+
@nx._dispatchable
|
1226 |
+
def compute_v_structures(G):
|
1227 |
+
"""Iterate through the graph to compute all v-structures.
|
1228 |
+
|
1229 |
+
V-structures are triples in the directed graph where
|
1230 |
+
two parent nodes point to the same child and the two parent nodes
|
1231 |
+
are not adjacent.
|
1232 |
+
|
1233 |
+
Parameters
|
1234 |
+
----------
|
1235 |
+
G : graph
|
1236 |
+
A networkx DiGraph.
|
1237 |
+
|
1238 |
+
Returns
|
1239 |
+
-------
|
1240 |
+
vstructs : iterator of tuples
|
1241 |
+
The v structures within the graph. Each v structure is a 3-tuple with the
|
1242 |
+
parent, collider, and other parent.
|
1243 |
+
|
1244 |
+
Examples
|
1245 |
+
--------
|
1246 |
+
>>> G = nx.DiGraph()
|
1247 |
+
>>> G.add_edges_from([(1, 2), (0, 5), (3, 1), (2, 4), (3, 1), (4, 5), (1, 5)])
|
1248 |
+
>>> sorted(nx.compute_v_structures(G))
|
1249 |
+
[(0, 5, 1), (0, 5, 4), (1, 5, 4)]
|
1250 |
+
|
1251 |
+
Notes
|
1252 |
+
-----
|
1253 |
+
`Wikipedia: Collider in causal graphs <https://en.wikipedia.org/wiki/Collider_(statistics)>`_
|
1254 |
+
"""
|
1255 |
+
for collider, preds in G.pred.items():
|
1256 |
+
for common_parents in combinations(preds, r=2):
|
1257 |
+
# ensure that the colliders are the same
|
1258 |
+
common_parents = sorted(common_parents)
|
1259 |
+
yield (common_parents[0], collider, common_parents[1])
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/dominance.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Dominance algorithms.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from functools import reduce
|
6 |
+
|
7 |
+
import networkx as nx
|
8 |
+
from networkx.utils import not_implemented_for
|
9 |
+
|
10 |
+
__all__ = ["immediate_dominators", "dominance_frontiers"]
|
11 |
+
|
12 |
+
|
13 |
+
@not_implemented_for("undirected")
|
14 |
+
@nx._dispatchable
|
15 |
+
def immediate_dominators(G, start):
|
16 |
+
"""Returns the immediate dominators of all nodes of a directed graph.
|
17 |
+
|
18 |
+
Parameters
|
19 |
+
----------
|
20 |
+
G : a DiGraph or MultiDiGraph
|
21 |
+
The graph where dominance is to be computed.
|
22 |
+
|
23 |
+
start : node
|
24 |
+
The start node of dominance computation.
|
25 |
+
|
26 |
+
Returns
|
27 |
+
-------
|
28 |
+
idom : dict keyed by nodes
|
29 |
+
A dict containing the immediate dominators of each node reachable from
|
30 |
+
`start`.
|
31 |
+
|
32 |
+
Raises
|
33 |
+
------
|
34 |
+
NetworkXNotImplemented
|
35 |
+
If `G` is undirected.
|
36 |
+
|
37 |
+
NetworkXError
|
38 |
+
If `start` is not in `G`.
|
39 |
+
|
40 |
+
Notes
|
41 |
+
-----
|
42 |
+
Except for `start`, the immediate dominators are the parents of their
|
43 |
+
corresponding nodes in the dominator tree.
|
44 |
+
|
45 |
+
Examples
|
46 |
+
--------
|
47 |
+
>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
|
48 |
+
>>> sorted(nx.immediate_dominators(G, 1).items())
|
49 |
+
[(1, 1), (2, 1), (3, 1), (4, 3), (5, 1)]
|
50 |
+
|
51 |
+
References
|
52 |
+
----------
|
53 |
+
.. [1] K. D. Cooper, T. J. Harvey, and K. Kennedy.
|
54 |
+
A simple, fast dominance algorithm.
|
55 |
+
Software Practice & Experience, 4:110, 2001.
|
56 |
+
"""
|
57 |
+
if start not in G:
|
58 |
+
raise nx.NetworkXError("start is not in G")
|
59 |
+
|
60 |
+
idom = {start: start}
|
61 |
+
|
62 |
+
order = list(nx.dfs_postorder_nodes(G, start))
|
63 |
+
dfn = {u: i for i, u in enumerate(order)}
|
64 |
+
order.pop()
|
65 |
+
order.reverse()
|
66 |
+
|
67 |
+
def intersect(u, v):
|
68 |
+
while u != v:
|
69 |
+
while dfn[u] < dfn[v]:
|
70 |
+
u = idom[u]
|
71 |
+
while dfn[u] > dfn[v]:
|
72 |
+
v = idom[v]
|
73 |
+
return u
|
74 |
+
|
75 |
+
changed = True
|
76 |
+
while changed:
|
77 |
+
changed = False
|
78 |
+
for u in order:
|
79 |
+
new_idom = reduce(intersect, (v for v in G.pred[u] if v in idom))
|
80 |
+
if u not in idom or idom[u] != new_idom:
|
81 |
+
idom[u] = new_idom
|
82 |
+
changed = True
|
83 |
+
|
84 |
+
return idom
|
85 |
+
|
86 |
+
|
87 |
+
@nx._dispatchable
|
88 |
+
def dominance_frontiers(G, start):
|
89 |
+
"""Returns the dominance frontiers of all nodes of a directed graph.
|
90 |
+
|
91 |
+
Parameters
|
92 |
+
----------
|
93 |
+
G : a DiGraph or MultiDiGraph
|
94 |
+
The graph where dominance is to be computed.
|
95 |
+
|
96 |
+
start : node
|
97 |
+
The start node of dominance computation.
|
98 |
+
|
99 |
+
Returns
|
100 |
+
-------
|
101 |
+
df : dict keyed by nodes
|
102 |
+
A dict containing the dominance frontiers of each node reachable from
|
103 |
+
`start` as lists.
|
104 |
+
|
105 |
+
Raises
|
106 |
+
------
|
107 |
+
NetworkXNotImplemented
|
108 |
+
If `G` is undirected.
|
109 |
+
|
110 |
+
NetworkXError
|
111 |
+
If `start` is not in `G`.
|
112 |
+
|
113 |
+
Examples
|
114 |
+
--------
|
115 |
+
>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
|
116 |
+
>>> sorted((u, sorted(df)) for u, df in nx.dominance_frontiers(G, 1).items())
|
117 |
+
[(1, []), (2, [5]), (3, [5]), (4, [5]), (5, [])]
|
118 |
+
|
119 |
+
References
|
120 |
+
----------
|
121 |
+
.. [1] K. D. Cooper, T. J. Harvey, and K. Kennedy.
|
122 |
+
A simple, fast dominance algorithm.
|
123 |
+
Software Practice & Experience, 4:110, 2001.
|
124 |
+
"""
|
125 |
+
idom = nx.immediate_dominators(G, start)
|
126 |
+
|
127 |
+
df = {u: set() for u in idom}
|
128 |
+
for u in idom:
|
129 |
+
if len(G.pred[u]) >= 2:
|
130 |
+
for v in G.pred[u]:
|
131 |
+
if v in idom:
|
132 |
+
while v != idom[u]:
|
133 |
+
df[v].add(u)
|
134 |
+
v = idom[v]
|
135 |
+
return df
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/dominating.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for computing dominating sets in a graph."""
|
2 |
+
from itertools import chain
|
3 |
+
|
4 |
+
import networkx as nx
|
5 |
+
from networkx.utils import arbitrary_element
|
6 |
+
|
7 |
+
__all__ = ["dominating_set", "is_dominating_set"]
|
8 |
+
|
9 |
+
|
10 |
+
@nx._dispatchable
|
11 |
+
def dominating_set(G, start_with=None):
|
12 |
+
r"""Finds a dominating set for the graph G.
|
13 |
+
|
14 |
+
A *dominating set* for a graph with node set *V* is a subset *D* of
|
15 |
+
*V* such that every node not in *D* is adjacent to at least one
|
16 |
+
member of *D* [1]_.
|
17 |
+
|
18 |
+
Parameters
|
19 |
+
----------
|
20 |
+
G : NetworkX graph
|
21 |
+
|
22 |
+
start_with : node (default=None)
|
23 |
+
Node to use as a starting point for the algorithm.
|
24 |
+
|
25 |
+
Returns
|
26 |
+
-------
|
27 |
+
D : set
|
28 |
+
A dominating set for G.
|
29 |
+
|
30 |
+
Notes
|
31 |
+
-----
|
32 |
+
This function is an implementation of algorithm 7 in [2]_ which
|
33 |
+
finds some dominating set, not necessarily the smallest one.
|
34 |
+
|
35 |
+
See also
|
36 |
+
--------
|
37 |
+
is_dominating_set
|
38 |
+
|
39 |
+
References
|
40 |
+
----------
|
41 |
+
.. [1] https://en.wikipedia.org/wiki/Dominating_set
|
42 |
+
|
43 |
+
.. [2] Abdol-Hossein Esfahanian. Connectivity Algorithms.
|
44 |
+
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
|
45 |
+
|
46 |
+
"""
|
47 |
+
all_nodes = set(G)
|
48 |
+
if start_with is None:
|
49 |
+
start_with = arbitrary_element(all_nodes)
|
50 |
+
if start_with not in G:
|
51 |
+
raise nx.NetworkXError(f"node {start_with} is not in G")
|
52 |
+
dominating_set = {start_with}
|
53 |
+
dominated_nodes = set(G[start_with])
|
54 |
+
remaining_nodes = all_nodes - dominated_nodes - dominating_set
|
55 |
+
while remaining_nodes:
|
56 |
+
# Choose an arbitrary node and determine its undominated neighbors.
|
57 |
+
v = remaining_nodes.pop()
|
58 |
+
undominated_nbrs = set(G[v]) - dominating_set
|
59 |
+
# Add the node to the dominating set and the neighbors to the
|
60 |
+
# dominated set. Finally, remove all of those nodes from the set
|
61 |
+
# of remaining nodes.
|
62 |
+
dominating_set.add(v)
|
63 |
+
dominated_nodes |= undominated_nbrs
|
64 |
+
remaining_nodes -= undominated_nbrs
|
65 |
+
return dominating_set
|
66 |
+
|
67 |
+
|
68 |
+
@nx._dispatchable
|
69 |
+
def is_dominating_set(G, nbunch):
|
70 |
+
"""Checks if `nbunch` is a dominating set for `G`.
|
71 |
+
|
72 |
+
A *dominating set* for a graph with node set *V* is a subset *D* of
|
73 |
+
*V* such that every node not in *D* is adjacent to at least one
|
74 |
+
member of *D* [1]_.
|
75 |
+
|
76 |
+
Parameters
|
77 |
+
----------
|
78 |
+
G : NetworkX graph
|
79 |
+
|
80 |
+
nbunch : iterable
|
81 |
+
An iterable of nodes in the graph `G`.
|
82 |
+
|
83 |
+
See also
|
84 |
+
--------
|
85 |
+
dominating_set
|
86 |
+
|
87 |
+
References
|
88 |
+
----------
|
89 |
+
.. [1] https://en.wikipedia.org/wiki/Dominating_set
|
90 |
+
|
91 |
+
"""
|
92 |
+
testset = {n for n in nbunch if n in G}
|
93 |
+
nbrs = set(chain.from_iterable(G[n] for n in testset))
|
94 |
+
return len(set(G) - testset - nbrs) == 0
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/efficiency_measures.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Provides functions for computing the efficiency of nodes and graphs."""
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
from networkx.exception import NetworkXNoPath
|
5 |
+
|
6 |
+
from ..utils import not_implemented_for
|
7 |
+
|
8 |
+
__all__ = ["efficiency", "local_efficiency", "global_efficiency"]
|
9 |
+
|
10 |
+
|
11 |
+
@not_implemented_for("directed")
|
12 |
+
@nx._dispatchable
|
13 |
+
def efficiency(G, u, v):
|
14 |
+
"""Returns the efficiency of a pair of nodes in a graph.
|
15 |
+
|
16 |
+
The *efficiency* of a pair of nodes is the multiplicative inverse of the
|
17 |
+
shortest path distance between the nodes [1]_. Returns 0 if no path
|
18 |
+
between nodes.
|
19 |
+
|
20 |
+
Parameters
|
21 |
+
----------
|
22 |
+
G : :class:`networkx.Graph`
|
23 |
+
An undirected graph for which to compute the average local efficiency.
|
24 |
+
u, v : node
|
25 |
+
Nodes in the graph ``G``.
|
26 |
+
|
27 |
+
Returns
|
28 |
+
-------
|
29 |
+
float
|
30 |
+
Multiplicative inverse of the shortest path distance between the nodes.
|
31 |
+
|
32 |
+
Examples
|
33 |
+
--------
|
34 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
|
35 |
+
>>> nx.efficiency(G, 2, 3) # this gives efficiency for node 2 and 3
|
36 |
+
0.5
|
37 |
+
|
38 |
+
Notes
|
39 |
+
-----
|
40 |
+
Edge weights are ignored when computing the shortest path distances.
|
41 |
+
|
42 |
+
See also
|
43 |
+
--------
|
44 |
+
local_efficiency
|
45 |
+
global_efficiency
|
46 |
+
|
47 |
+
References
|
48 |
+
----------
|
49 |
+
.. [1] Latora, Vito, and Massimo Marchiori.
|
50 |
+
"Efficient behavior of small-world networks."
|
51 |
+
*Physical Review Letters* 87.19 (2001): 198701.
|
52 |
+
<https://doi.org/10.1103/PhysRevLett.87.198701>
|
53 |
+
|
54 |
+
"""
|
55 |
+
try:
|
56 |
+
eff = 1 / nx.shortest_path_length(G, u, v)
|
57 |
+
except NetworkXNoPath:
|
58 |
+
eff = 0
|
59 |
+
return eff
|
60 |
+
|
61 |
+
|
62 |
+
@not_implemented_for("directed")
|
63 |
+
@nx._dispatchable
|
64 |
+
def global_efficiency(G):
|
65 |
+
"""Returns the average global efficiency of the graph.
|
66 |
+
|
67 |
+
The *efficiency* of a pair of nodes in a graph is the multiplicative
|
68 |
+
inverse of the shortest path distance between the nodes. The *average
|
69 |
+
global efficiency* of a graph is the average efficiency of all pairs of
|
70 |
+
nodes [1]_.
|
71 |
+
|
72 |
+
Parameters
|
73 |
+
----------
|
74 |
+
G : :class:`networkx.Graph`
|
75 |
+
An undirected graph for which to compute the average global efficiency.
|
76 |
+
|
77 |
+
Returns
|
78 |
+
-------
|
79 |
+
float
|
80 |
+
The average global efficiency of the graph.
|
81 |
+
|
82 |
+
Examples
|
83 |
+
--------
|
84 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
|
85 |
+
>>> round(nx.global_efficiency(G), 12)
|
86 |
+
0.916666666667
|
87 |
+
|
88 |
+
Notes
|
89 |
+
-----
|
90 |
+
Edge weights are ignored when computing the shortest path distances.
|
91 |
+
|
92 |
+
See also
|
93 |
+
--------
|
94 |
+
local_efficiency
|
95 |
+
|
96 |
+
References
|
97 |
+
----------
|
98 |
+
.. [1] Latora, Vito, and Massimo Marchiori.
|
99 |
+
"Efficient behavior of small-world networks."
|
100 |
+
*Physical Review Letters* 87.19 (2001): 198701.
|
101 |
+
<https://doi.org/10.1103/PhysRevLett.87.198701>
|
102 |
+
|
103 |
+
"""
|
104 |
+
n = len(G)
|
105 |
+
denom = n * (n - 1)
|
106 |
+
if denom != 0:
|
107 |
+
lengths = nx.all_pairs_shortest_path_length(G)
|
108 |
+
g_eff = 0
|
109 |
+
for source, targets in lengths:
|
110 |
+
for target, distance in targets.items():
|
111 |
+
if distance > 0:
|
112 |
+
g_eff += 1 / distance
|
113 |
+
g_eff /= denom
|
114 |
+
# g_eff = sum(1 / d for s, tgts in lengths
|
115 |
+
# for t, d in tgts.items() if d > 0) / denom
|
116 |
+
else:
|
117 |
+
g_eff = 0
|
118 |
+
# TODO This can be made more efficient by computing all pairs shortest
|
119 |
+
# path lengths in parallel.
|
120 |
+
return g_eff
|
121 |
+
|
122 |
+
|
123 |
+
@not_implemented_for("directed")
|
124 |
+
@nx._dispatchable
|
125 |
+
def local_efficiency(G):
|
126 |
+
"""Returns the average local efficiency of the graph.
|
127 |
+
|
128 |
+
The *efficiency* of a pair of nodes in a graph is the multiplicative
|
129 |
+
inverse of the shortest path distance between the nodes. The *local
|
130 |
+
efficiency* of a node in the graph is the average global efficiency of the
|
131 |
+
subgraph induced by the neighbors of the node. The *average local
|
132 |
+
efficiency* is the average of the local efficiencies of each node [1]_.
|
133 |
+
|
134 |
+
Parameters
|
135 |
+
----------
|
136 |
+
G : :class:`networkx.Graph`
|
137 |
+
An undirected graph for which to compute the average local efficiency.
|
138 |
+
|
139 |
+
Returns
|
140 |
+
-------
|
141 |
+
float
|
142 |
+
The average local efficiency of the graph.
|
143 |
+
|
144 |
+
Examples
|
145 |
+
--------
|
146 |
+
>>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
|
147 |
+
>>> nx.local_efficiency(G)
|
148 |
+
0.9166666666666667
|
149 |
+
|
150 |
+
Notes
|
151 |
+
-----
|
152 |
+
Edge weights are ignored when computing the shortest path distances.
|
153 |
+
|
154 |
+
See also
|
155 |
+
--------
|
156 |
+
global_efficiency
|
157 |
+
|
158 |
+
References
|
159 |
+
----------
|
160 |
+
.. [1] Latora, Vito, and Massimo Marchiori.
|
161 |
+
"Efficient behavior of small-world networks."
|
162 |
+
*Physical Review Letters* 87.19 (2001): 198701.
|
163 |
+
<https://doi.org/10.1103/PhysRevLett.87.198701>
|
164 |
+
|
165 |
+
"""
|
166 |
+
# TODO This summation can be trivially parallelized.
|
167 |
+
efficiency_list = (global_efficiency(G.subgraph(G[v])) for v in G)
|
168 |
+
return sum(efficiency_list) / len(G)
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/hierarchy.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Flow Hierarchy.
|
3 |
+
"""
|
4 |
+
import networkx as nx
|
5 |
+
|
6 |
+
__all__ = ["flow_hierarchy"]
|
7 |
+
|
8 |
+
|
9 |
+
@nx._dispatchable(edge_attrs="weight")
|
10 |
+
def flow_hierarchy(G, weight=None):
|
11 |
+
"""Returns the flow hierarchy of a directed network.
|
12 |
+
|
13 |
+
Flow hierarchy is defined as the fraction of edges not participating
|
14 |
+
in cycles in a directed graph [1]_.
|
15 |
+
|
16 |
+
Parameters
|
17 |
+
----------
|
18 |
+
G : DiGraph or MultiDiGraph
|
19 |
+
A directed graph
|
20 |
+
|
21 |
+
weight : string, optional (default=None)
|
22 |
+
Attribute to use for edge weights. If None the weight defaults to 1.
|
23 |
+
|
24 |
+
Returns
|
25 |
+
-------
|
26 |
+
h : float
|
27 |
+
Flow hierarchy value
|
28 |
+
|
29 |
+
Notes
|
30 |
+
-----
|
31 |
+
The algorithm described in [1]_ computes the flow hierarchy through
|
32 |
+
exponentiation of the adjacency matrix. This function implements an
|
33 |
+
alternative approach that finds strongly connected components.
|
34 |
+
An edge is in a cycle if and only if it is in a strongly connected
|
35 |
+
component, which can be found in $O(m)$ time using Tarjan's algorithm.
|
36 |
+
|
37 |
+
References
|
38 |
+
----------
|
39 |
+
.. [1] Luo, J.; Magee, C.L. (2011),
|
40 |
+
Detecting evolving patterns of self-organizing networks by flow
|
41 |
+
hierarchy measurement, Complexity, Volume 16 Issue 6 53-61.
|
42 |
+
DOI: 10.1002/cplx.20368
|
43 |
+
http://web.mit.edu/~cmagee/www/documents/28-DetectingEvolvingPatterns_FlowHierarchy.pdf
|
44 |
+
"""
|
45 |
+
if not G.is_directed():
|
46 |
+
raise nx.NetworkXError("G must be a digraph in flow_hierarchy")
|
47 |
+
scc = nx.strongly_connected_components(G)
|
48 |
+
return 1 - sum(G.subgraph(c).size(weight) for c in scc) / G.size(weight)
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/isolate.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Functions for identifying isolate (degree zero) nodes.
|
3 |
+
"""
|
4 |
+
import networkx as nx
|
5 |
+
|
6 |
+
__all__ = ["is_isolate", "isolates", "number_of_isolates"]
|
7 |
+
|
8 |
+
|
9 |
+
@nx._dispatchable
|
10 |
+
def is_isolate(G, n):
|
11 |
+
"""Determines whether a node is an isolate.
|
12 |
+
|
13 |
+
An *isolate* is a node with no neighbors (that is, with degree
|
14 |
+
zero). For directed graphs, this means no in-neighbors and no
|
15 |
+
out-neighbors.
|
16 |
+
|
17 |
+
Parameters
|
18 |
+
----------
|
19 |
+
G : NetworkX graph
|
20 |
+
|
21 |
+
n : node
|
22 |
+
A node in `G`.
|
23 |
+
|
24 |
+
Returns
|
25 |
+
-------
|
26 |
+
is_isolate : bool
|
27 |
+
True if and only if `n` has no neighbors.
|
28 |
+
|
29 |
+
Examples
|
30 |
+
--------
|
31 |
+
>>> G = nx.Graph()
|
32 |
+
>>> G.add_edge(1, 2)
|
33 |
+
>>> G.add_node(3)
|
34 |
+
>>> nx.is_isolate(G, 2)
|
35 |
+
False
|
36 |
+
>>> nx.is_isolate(G, 3)
|
37 |
+
True
|
38 |
+
"""
|
39 |
+
return G.degree(n) == 0
|
40 |
+
|
41 |
+
|
42 |
+
@nx._dispatchable
|
43 |
+
def isolates(G):
|
44 |
+
"""Iterator over isolates in the graph.
|
45 |
+
|
46 |
+
An *isolate* is a node with no neighbors (that is, with degree
|
47 |
+
zero). For directed graphs, this means no in-neighbors and no
|
48 |
+
out-neighbors.
|
49 |
+
|
50 |
+
Parameters
|
51 |
+
----------
|
52 |
+
G : NetworkX graph
|
53 |
+
|
54 |
+
Returns
|
55 |
+
-------
|
56 |
+
iterator
|
57 |
+
An iterator over the isolates of `G`.
|
58 |
+
|
59 |
+
Examples
|
60 |
+
--------
|
61 |
+
To get a list of all isolates of a graph, use the :class:`list`
|
62 |
+
constructor::
|
63 |
+
|
64 |
+
>>> G = nx.Graph()
|
65 |
+
>>> G.add_edge(1, 2)
|
66 |
+
>>> G.add_node(3)
|
67 |
+
>>> list(nx.isolates(G))
|
68 |
+
[3]
|
69 |
+
|
70 |
+
To remove all isolates in the graph, first create a list of the
|
71 |
+
isolates, then use :meth:`Graph.remove_nodes_from`::
|
72 |
+
|
73 |
+
>>> G.remove_nodes_from(list(nx.isolates(G)))
|
74 |
+
>>> list(G)
|
75 |
+
[1, 2]
|
76 |
+
|
77 |
+
For digraphs, isolates have zero in-degree and zero out_degre::
|
78 |
+
|
79 |
+
>>> G = nx.DiGraph([(0, 1), (1, 2)])
|
80 |
+
>>> G.add_node(3)
|
81 |
+
>>> list(nx.isolates(G))
|
82 |
+
[3]
|
83 |
+
|
84 |
+
"""
|
85 |
+
return (n for n, d in G.degree() if d == 0)
|
86 |
+
|
87 |
+
|
88 |
+
@nx._dispatchable
|
89 |
+
def number_of_isolates(G):
|
90 |
+
"""Returns the number of isolates in the graph.
|
91 |
+
|
92 |
+
An *isolate* is a node with no neighbors (that is, with degree
|
93 |
+
zero). For directed graphs, this means no in-neighbors and no
|
94 |
+
out-neighbors.
|
95 |
+
|
96 |
+
Parameters
|
97 |
+
----------
|
98 |
+
G : NetworkX graph
|
99 |
+
|
100 |
+
Returns
|
101 |
+
-------
|
102 |
+
int
|
103 |
+
The number of degree zero nodes in the graph `G`.
|
104 |
+
|
105 |
+
"""
|
106 |
+
# TODO This can be parallelized.
|
107 |
+
return sum(1 for v in isolates(G))
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/link_prediction.py
ADDED
@@ -0,0 +1,688 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Link prediction algorithms.
|
3 |
+
"""
|
4 |
+
|
5 |
+
|
6 |
+
from math import log
|
7 |
+
|
8 |
+
import networkx as nx
|
9 |
+
from networkx.utils import not_implemented_for
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
"resource_allocation_index",
|
13 |
+
"jaccard_coefficient",
|
14 |
+
"adamic_adar_index",
|
15 |
+
"preferential_attachment",
|
16 |
+
"cn_soundarajan_hopcroft",
|
17 |
+
"ra_index_soundarajan_hopcroft",
|
18 |
+
"within_inter_cluster",
|
19 |
+
"common_neighbor_centrality",
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
def _apply_prediction(G, func, ebunch=None):
|
24 |
+
"""Applies the given function to each edge in the specified iterable
|
25 |
+
of edges.
|
26 |
+
|
27 |
+
`G` is an instance of :class:`networkx.Graph`.
|
28 |
+
|
29 |
+
`func` is a function on two inputs, each of which is a node in the
|
30 |
+
graph. The function can return anything, but it should return a
|
31 |
+
value representing a prediction of the likelihood of a "link"
|
32 |
+
joining the two nodes.
|
33 |
+
|
34 |
+
`ebunch` is an iterable of pairs of nodes. If not specified, all
|
35 |
+
non-edges in the graph `G` will be used.
|
36 |
+
|
37 |
+
"""
|
38 |
+
if ebunch is None:
|
39 |
+
ebunch = nx.non_edges(G)
|
40 |
+
else:
|
41 |
+
for u, v in ebunch:
|
42 |
+
if u not in G:
|
43 |
+
raise nx.NodeNotFound(f"Node {u} not in G.")
|
44 |
+
if v not in G:
|
45 |
+
raise nx.NodeNotFound(f"Node {v} not in G.")
|
46 |
+
return ((u, v, func(u, v)) for u, v in ebunch)
|
47 |
+
|
48 |
+
|
49 |
+
@not_implemented_for("directed")
|
50 |
+
@not_implemented_for("multigraph")
|
51 |
+
@nx._dispatchable
|
52 |
+
def resource_allocation_index(G, ebunch=None):
|
53 |
+
r"""Compute the resource allocation index of all node pairs in ebunch.
|
54 |
+
|
55 |
+
Resource allocation index of `u` and `v` is defined as
|
56 |
+
|
57 |
+
.. math::
|
58 |
+
|
59 |
+
\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|\Gamma(w)|}
|
60 |
+
|
61 |
+
where $\Gamma(u)$ denotes the set of neighbors of $u$.
|
62 |
+
|
63 |
+
Parameters
|
64 |
+
----------
|
65 |
+
G : graph
|
66 |
+
A NetworkX undirected graph.
|
67 |
+
|
68 |
+
ebunch : iterable of node pairs, optional (default = None)
|
69 |
+
Resource allocation index will be computed for each pair of
|
70 |
+
nodes given in the iterable. The pairs must be given as
|
71 |
+
2-tuples (u, v) where u and v are nodes in the graph. If ebunch
|
72 |
+
is None then all nonexistent edges in the graph will be used.
|
73 |
+
Default value: None.
|
74 |
+
|
75 |
+
Returns
|
76 |
+
-------
|
77 |
+
piter : iterator
|
78 |
+
An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
|
79 |
+
pair of nodes and p is their resource allocation index.
|
80 |
+
|
81 |
+
Raises
|
82 |
+
------
|
83 |
+
NetworkXNotImplemented
|
84 |
+
If `G` is a `DiGraph`, a `Multigraph` or a `MultiDiGraph`.
|
85 |
+
|
86 |
+
NodeNotFound
|
87 |
+
If `ebunch` has a node that is not in `G`.
|
88 |
+
|
89 |
+
Examples
|
90 |
+
--------
|
91 |
+
>>> G = nx.complete_graph(5)
|
92 |
+
>>> preds = nx.resource_allocation_index(G, [(0, 1), (2, 3)])
|
93 |
+
>>> for u, v, p in preds:
|
94 |
+
... print(f"({u}, {v}) -> {p:.8f}")
|
95 |
+
(0, 1) -> 0.75000000
|
96 |
+
(2, 3) -> 0.75000000
|
97 |
+
|
98 |
+
References
|
99 |
+
----------
|
100 |
+
.. [1] T. Zhou, L. Lu, Y.-C. Zhang.
|
101 |
+
Predicting missing links via local information.
|
102 |
+
Eur. Phys. J. B 71 (2009) 623.
|
103 |
+
https://arxiv.org/pdf/0901.0553.pdf
|
104 |
+
"""
|
105 |
+
|
106 |
+
def predict(u, v):
|
107 |
+
return sum(1 / G.degree(w) for w in nx.common_neighbors(G, u, v))
|
108 |
+
|
109 |
+
return _apply_prediction(G, predict, ebunch)
|
110 |
+
|
111 |
+
|
112 |
+
@not_implemented_for("directed")
|
113 |
+
@not_implemented_for("multigraph")
|
114 |
+
@nx._dispatchable
|
115 |
+
def jaccard_coefficient(G, ebunch=None):
|
116 |
+
r"""Compute the Jaccard coefficient of all node pairs in ebunch.
|
117 |
+
|
118 |
+
Jaccard coefficient of nodes `u` and `v` is defined as
|
119 |
+
|
120 |
+
.. math::
|
121 |
+
|
122 |
+
\frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|}
|
123 |
+
|
124 |
+
where $\Gamma(u)$ denotes the set of neighbors of $u$.
|
125 |
+
|
126 |
+
Parameters
|
127 |
+
----------
|
128 |
+
G : graph
|
129 |
+
A NetworkX undirected graph.
|
130 |
+
|
131 |
+
ebunch : iterable of node pairs, optional (default = None)
|
132 |
+
Jaccard coefficient will be computed for each pair of nodes
|
133 |
+
given in the iterable. The pairs must be given as 2-tuples
|
134 |
+
(u, v) where u and v are nodes in the graph. If ebunch is None
|
135 |
+
then all nonexistent edges in the graph will be used.
|
136 |
+
Default value: None.
|
137 |
+
|
138 |
+
Returns
|
139 |
+
-------
|
140 |
+
piter : iterator
|
141 |
+
An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
|
142 |
+
pair of nodes and p is their Jaccard coefficient.
|
143 |
+
|
144 |
+
Raises
|
145 |
+
------
|
146 |
+
NetworkXNotImplemented
|
147 |
+
If `G` is a `DiGraph`, a `Multigraph` or a `MultiDiGraph`.
|
148 |
+
|
149 |
+
NodeNotFound
|
150 |
+
If `ebunch` has a node that is not in `G`.
|
151 |
+
|
152 |
+
Examples
|
153 |
+
--------
|
154 |
+
>>> G = nx.complete_graph(5)
|
155 |
+
>>> preds = nx.jaccard_coefficient(G, [(0, 1), (2, 3)])
|
156 |
+
>>> for u, v, p in preds:
|
157 |
+
... print(f"({u}, {v}) -> {p:.8f}")
|
158 |
+
(0, 1) -> 0.60000000
|
159 |
+
(2, 3) -> 0.60000000
|
160 |
+
|
161 |
+
References
|
162 |
+
----------
|
163 |
+
.. [1] D. Liben-Nowell, J. Kleinberg.
|
164 |
+
The Link Prediction Problem for Social Networks (2004).
|
165 |
+
http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
|
166 |
+
"""
|
167 |
+
|
168 |
+
def predict(u, v):
|
169 |
+
union_size = len(set(G[u]) | set(G[v]))
|
170 |
+
if union_size == 0:
|
171 |
+
return 0
|
172 |
+
return len(nx.common_neighbors(G, u, v)) / union_size
|
173 |
+
|
174 |
+
return _apply_prediction(G, predict, ebunch)
|
175 |
+
|
176 |
+
|
177 |
+
@not_implemented_for("directed")
|
178 |
+
@not_implemented_for("multigraph")
|
179 |
+
@nx._dispatchable
|
180 |
+
def adamic_adar_index(G, ebunch=None):
|
181 |
+
r"""Compute the Adamic-Adar index of all node pairs in ebunch.
|
182 |
+
|
183 |
+
Adamic-Adar index of `u` and `v` is defined as
|
184 |
+
|
185 |
+
.. math::
|
186 |
+
|
187 |
+
\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(w)|}
|
188 |
+
|
189 |
+
where $\Gamma(u)$ denotes the set of neighbors of $u$.
|
190 |
+
This index leads to zero-division for nodes only connected via self-loops.
|
191 |
+
It is intended to be used when no self-loops are present.
|
192 |
+
|
193 |
+
Parameters
|
194 |
+
----------
|
195 |
+
G : graph
|
196 |
+
NetworkX undirected graph.
|
197 |
+
|
198 |
+
ebunch : iterable of node pairs, optional (default = None)
|
199 |
+
Adamic-Adar index will be computed for each pair of nodes given
|
200 |
+
in the iterable. The pairs must be given as 2-tuples (u, v)
|
201 |
+
where u and v are nodes in the graph. If ebunch is None then all
|
202 |
+
nonexistent edges in the graph will be used.
|
203 |
+
Default value: None.
|
204 |
+
|
205 |
+
Returns
|
206 |
+
-------
|
207 |
+
piter : iterator
|
208 |
+
An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
|
209 |
+
pair of nodes and p is their Adamic-Adar index.
|
210 |
+
|
211 |
+
Raises
|
212 |
+
------
|
213 |
+
NetworkXNotImplemented
|
214 |
+
If `G` is a `DiGraph`, a `Multigraph` or a `MultiDiGraph`.
|
215 |
+
|
216 |
+
NodeNotFound
|
217 |
+
If `ebunch` has a node that is not in `G`.
|
218 |
+
|
219 |
+
Examples
|
220 |
+
--------
|
221 |
+
>>> G = nx.complete_graph(5)
|
222 |
+
>>> preds = nx.adamic_adar_index(G, [(0, 1), (2, 3)])
|
223 |
+
>>> for u, v, p in preds:
|
224 |
+
... print(f"({u}, {v}) -> {p:.8f}")
|
225 |
+
(0, 1) -> 2.16404256
|
226 |
+
(2, 3) -> 2.16404256
|
227 |
+
|
228 |
+
References
|
229 |
+
----------
|
230 |
+
.. [1] D. Liben-Nowell, J. Kleinberg.
|
231 |
+
The Link Prediction Problem for Social Networks (2004).
|
232 |
+
http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
|
233 |
+
"""
|
234 |
+
|
235 |
+
def predict(u, v):
|
236 |
+
return sum(1 / log(G.degree(w)) for w in nx.common_neighbors(G, u, v))
|
237 |
+
|
238 |
+
return _apply_prediction(G, predict, ebunch)
|
239 |
+
|
240 |
+
|
241 |
+
@not_implemented_for("directed")
|
242 |
+
@not_implemented_for("multigraph")
|
243 |
+
@nx._dispatchable
|
244 |
+
def common_neighbor_centrality(G, ebunch=None, alpha=0.8):
|
245 |
+
r"""Return the CCPA score for each pair of nodes.
|
246 |
+
|
247 |
+
Compute the Common Neighbor and Centrality based Parameterized Algorithm(CCPA)
|
248 |
+
score of all node pairs in ebunch.
|
249 |
+
|
250 |
+
CCPA score of `u` and `v` is defined as
|
251 |
+
|
252 |
+
.. math::
|
253 |
+
|
254 |
+
\alpha \cdot (|\Gamma (u){\cap }^{}\Gamma (v)|)+(1-\alpha )\cdot \frac{N}{{d}_{uv}}
|
255 |
+
|
256 |
+
where $\Gamma(u)$ denotes the set of neighbors of $u$, $\Gamma(v)$ denotes the
|
257 |
+
set of neighbors of $v$, $\alpha$ is parameter varies between [0,1], $N$ denotes
|
258 |
+
total number of nodes in the Graph and ${d}_{uv}$ denotes shortest distance
|
259 |
+
between $u$ and $v$.
|
260 |
+
|
261 |
+
This algorithm is based on two vital properties of nodes, namely the number
|
262 |
+
of common neighbors and their centrality. Common neighbor refers to the common
|
263 |
+
nodes between two nodes. Centrality refers to the prestige that a node enjoys
|
264 |
+
in a network.
|
265 |
+
|
266 |
+
.. seealso::
|
267 |
+
|
268 |
+
:func:`common_neighbors`
|
269 |
+
|
270 |
+
Parameters
|
271 |
+
----------
|
272 |
+
G : graph
|
273 |
+
NetworkX undirected graph.
|
274 |
+
|
275 |
+
ebunch : iterable of node pairs, optional (default = None)
|
276 |
+
Preferential attachment score will be computed for each pair of
|
277 |
+
nodes given in the iterable. The pairs must be given as
|
278 |
+
2-tuples (u, v) where u and v are nodes in the graph. If ebunch
|
279 |
+
is None then all nonexistent edges in the graph will be used.
|
280 |
+
Default value: None.
|
281 |
+
|
282 |
+
alpha : Parameter defined for participation of Common Neighbor
|
283 |
+
and Centrality Algorithm share. Values for alpha should
|
284 |
+
normally be between 0 and 1. Default value set to 0.8
|
285 |
+
because author found better performance at 0.8 for all the
|
286 |
+
dataset.
|
287 |
+
Default value: 0.8
|
288 |
+
|
289 |
+
|
290 |
+
Returns
|
291 |
+
-------
|
292 |
+
piter : iterator
|
293 |
+
An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
|
294 |
+
pair of nodes and p is their Common Neighbor and Centrality based
|
295 |
+
Parameterized Algorithm(CCPA) score.
|
296 |
+
|
297 |
+
Raises
|
298 |
+
------
|
299 |
+
NetworkXNotImplemented
|
300 |
+
If `G` is a `DiGraph`, a `Multigraph` or a `MultiDiGraph`.
|
301 |
+
|
302 |
+
NetworkXAlgorithmError
|
303 |
+
If self loops exsists in `ebunch` or in `G` (if `ebunch` is `None`).
|
304 |
+
|
305 |
+
NodeNotFound
|
306 |
+
If `ebunch` has a node that is not in `G`.
|
307 |
+
|
308 |
+
Examples
|
309 |
+
--------
|
310 |
+
>>> G = nx.complete_graph(5)
|
311 |
+
>>> preds = nx.common_neighbor_centrality(G, [(0, 1), (2, 3)])
|
312 |
+
>>> for u, v, p in preds:
|
313 |
+
... print(f"({u}, {v}) -> {p}")
|
314 |
+
(0, 1) -> 3.4000000000000004
|
315 |
+
(2, 3) -> 3.4000000000000004
|
316 |
+
|
317 |
+
References
|
318 |
+
----------
|
319 |
+
.. [1] Ahmad, I., Akhtar, M.U., Noor, S. et al.
|
320 |
+
Missing Link Prediction using Common Neighbor and Centrality based Parameterized Algorithm.
|
321 |
+
Sci Rep 10, 364 (2020).
|
322 |
+
https://doi.org/10.1038/s41598-019-57304-y
|
323 |
+
"""
|
324 |
+
|
325 |
+
# When alpha == 1, the CCPA score simplifies to the number of common neighbors.
|
326 |
+
if alpha == 1:
|
327 |
+
|
328 |
+
def predict(u, v):
|
329 |
+
if u == v:
|
330 |
+
raise nx.NetworkXAlgorithmError("Self loops are not supported")
|
331 |
+
|
332 |
+
return len(nx.common_neighbors(G, u, v))
|
333 |
+
|
334 |
+
else:
|
335 |
+
spl = dict(nx.shortest_path_length(G))
|
336 |
+
inf = float("inf")
|
337 |
+
|
338 |
+
def predict(u, v):
|
339 |
+
if u == v:
|
340 |
+
raise nx.NetworkXAlgorithmError("Self loops are not supported")
|
341 |
+
path_len = spl[u].get(v, inf)
|
342 |
+
|
343 |
+
n_nbrs = len(nx.common_neighbors(G, u, v))
|
344 |
+
return alpha * n_nbrs + (1 - alpha) * len(G) / path_len
|
345 |
+
|
346 |
+
return _apply_prediction(G, predict, ebunch)
|
347 |
+
|
348 |
+
|
349 |
+
@not_implemented_for("directed")
|
350 |
+
@not_implemented_for("multigraph")
|
351 |
+
@nx._dispatchable
|
352 |
+
def preferential_attachment(G, ebunch=None):
|
353 |
+
r"""Compute the preferential attachment score of all node pairs in ebunch.
|
354 |
+
|
355 |
+
Preferential attachment score of `u` and `v` is defined as
|
356 |
+
|
357 |
+
.. math::
|
358 |
+
|
359 |
+
|\Gamma(u)| |\Gamma(v)|
|
360 |
+
|
361 |
+
where $\Gamma(u)$ denotes the set of neighbors of $u$.
|
362 |
+
|
363 |
+
Parameters
|
364 |
+
----------
|
365 |
+
G : graph
|
366 |
+
NetworkX undirected graph.
|
367 |
+
|
368 |
+
ebunch : iterable of node pairs, optional (default = None)
|
369 |
+
Preferential attachment score will be computed for each pair of
|
370 |
+
nodes given in the iterable. The pairs must be given as
|
371 |
+
2-tuples (u, v) where u and v are nodes in the graph. If ebunch
|
372 |
+
is None then all nonexistent edges in the graph will be used.
|
373 |
+
Default value: None.
|
374 |
+
|
375 |
+
Returns
|
376 |
+
-------
|
377 |
+
piter : iterator
|
378 |
+
An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
|
379 |
+
pair of nodes and p is their preferential attachment score.
|
380 |
+
|
381 |
+
Raises
|
382 |
+
------
|
383 |
+
NetworkXNotImplemented
|
384 |
+
If `G` is a `DiGraph`, a `Multigraph` or a `MultiDiGraph`.
|
385 |
+
|
386 |
+
NodeNotFound
|
387 |
+
If `ebunch` has a node that is not in `G`.
|
388 |
+
|
389 |
+
Examples
|
390 |
+
--------
|
391 |
+
>>> G = nx.complete_graph(5)
|
392 |
+
>>> preds = nx.preferential_attachment(G, [(0, 1), (2, 3)])
|
393 |
+
>>> for u, v, p in preds:
|
394 |
+
... print(f"({u}, {v}) -> {p}")
|
395 |
+
(0, 1) -> 16
|
396 |
+
(2, 3) -> 16
|
397 |
+
|
398 |
+
References
|
399 |
+
----------
|
400 |
+
.. [1] D. Liben-Nowell, J. Kleinberg.
|
401 |
+
The Link Prediction Problem for Social Networks (2004).
|
402 |
+
http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
|
403 |
+
"""
|
404 |
+
|
405 |
+
def predict(u, v):
|
406 |
+
return G.degree(u) * G.degree(v)
|
407 |
+
|
408 |
+
return _apply_prediction(G, predict, ebunch)
|
409 |
+
|
410 |
+
|
411 |
+
@not_implemented_for("directed")
|
412 |
+
@not_implemented_for("multigraph")
|
413 |
+
@nx._dispatchable(node_attrs="community")
|
414 |
+
def cn_soundarajan_hopcroft(G, ebunch=None, community="community"):
|
415 |
+
r"""Count the number of common neighbors of all node pairs in ebunch
|
416 |
+
using community information.
|
417 |
+
|
418 |
+
For two nodes $u$ and $v$, this function computes the number of
|
419 |
+
common neighbors and bonus one for each common neighbor belonging to
|
420 |
+
the same community as $u$ and $v$. Mathematically,
|
421 |
+
|
422 |
+
.. math::
|
423 |
+
|
424 |
+
|\Gamma(u) \cap \Gamma(v)| + \sum_{w \in \Gamma(u) \cap \Gamma(v)} f(w)
|
425 |
+
|
426 |
+
where $f(w)$ equals 1 if $w$ belongs to the same community as $u$
|
427 |
+
and $v$ or 0 otherwise and $\Gamma(u)$ denotes the set of
|
428 |
+
neighbors of $u$.
|
429 |
+
|
430 |
+
Parameters
|
431 |
+
----------
|
432 |
+
G : graph
|
433 |
+
A NetworkX undirected graph.
|
434 |
+
|
435 |
+
ebunch : iterable of node pairs, optional (default = None)
|
436 |
+
The score will be computed for each pair of nodes given in the
|
437 |
+
iterable. The pairs must be given as 2-tuples (u, v) where u
|
438 |
+
and v are nodes in the graph. If ebunch is None then all
|
439 |
+
nonexistent edges in the graph will be used.
|
440 |
+
Default value: None.
|
441 |
+
|
442 |
+
community : string, optional (default = 'community')
|
443 |
+
Nodes attribute name containing the community information.
|
444 |
+
G[u][community] identifies which community u belongs to. Each
|
445 |
+
node belongs to at most one community. Default value: 'community'.
|
446 |
+
|
447 |
+
Returns
|
448 |
+
-------
|
449 |
+
piter : iterator
|
450 |
+
An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
|
451 |
+
pair of nodes and p is their score.
|
452 |
+
|
453 |
+
Raises
|
454 |
+
------
|
455 |
+
NetworkXNotImplemented
|
456 |
+
If `G` is a `DiGraph`, a `Multigraph` or a `MultiDiGraph`.
|
457 |
+
|
458 |
+
NetworkXAlgorithmError
|
459 |
+
If no community information is available for a node in `ebunch` or in `G` (if `ebunch` is `None`).
|
460 |
+
|
461 |
+
NodeNotFound
|
462 |
+
If `ebunch` has a node that is not in `G`.
|
463 |
+
|
464 |
+
Examples
|
465 |
+
--------
|
466 |
+
>>> G = nx.path_graph(3)
|
467 |
+
>>> G.nodes[0]["community"] = 0
|
468 |
+
>>> G.nodes[1]["community"] = 0
|
469 |
+
>>> G.nodes[2]["community"] = 0
|
470 |
+
>>> preds = nx.cn_soundarajan_hopcroft(G, [(0, 2)])
|
471 |
+
>>> for u, v, p in preds:
|
472 |
+
... print(f"({u}, {v}) -> {p}")
|
473 |
+
(0, 2) -> 2
|
474 |
+
|
475 |
+
References
|
476 |
+
----------
|
477 |
+
.. [1] Sucheta Soundarajan and John Hopcroft.
|
478 |
+
Using community information to improve the precision of link
|
479 |
+
prediction methods.
|
480 |
+
In Proceedings of the 21st international conference companion on
|
481 |
+
World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608.
|
482 |
+
http://doi.acm.org/10.1145/2187980.2188150
|
483 |
+
"""
|
484 |
+
|
485 |
+
def predict(u, v):
|
486 |
+
Cu = _community(G, u, community)
|
487 |
+
Cv = _community(G, v, community)
|
488 |
+
cnbors = nx.common_neighbors(G, u, v)
|
489 |
+
neighbors = (
|
490 |
+
sum(_community(G, w, community) == Cu for w in cnbors) if Cu == Cv else 0
|
491 |
+
)
|
492 |
+
return len(cnbors) + neighbors
|
493 |
+
|
494 |
+
return _apply_prediction(G, predict, ebunch)
|
495 |
+
|
496 |
+
|
497 |
+
@not_implemented_for("directed")
|
498 |
+
@not_implemented_for("multigraph")
|
499 |
+
@nx._dispatchable(node_attrs="community")
|
500 |
+
def ra_index_soundarajan_hopcroft(G, ebunch=None, community="community"):
|
501 |
+
r"""Compute the resource allocation index of all node pairs in
|
502 |
+
ebunch using community information.
|
503 |
+
|
504 |
+
For two nodes $u$ and $v$, this function computes the resource
|
505 |
+
allocation index considering only common neighbors belonging to the
|
506 |
+
same community as $u$ and $v$. Mathematically,
|
507 |
+
|
508 |
+
.. math::
|
509 |
+
|
510 |
+
\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{f(w)}{|\Gamma(w)|}
|
511 |
+
|
512 |
+
where $f(w)$ equals 1 if $w$ belongs to the same community as $u$
|
513 |
+
and $v$ or 0 otherwise and $\Gamma(u)$ denotes the set of
|
514 |
+
neighbors of $u$.
|
515 |
+
|
516 |
+
Parameters
|
517 |
+
----------
|
518 |
+
G : graph
|
519 |
+
A NetworkX undirected graph.
|
520 |
+
|
521 |
+
ebunch : iterable of node pairs, optional (default = None)
|
522 |
+
The score will be computed for each pair of nodes given in the
|
523 |
+
iterable. The pairs must be given as 2-tuples (u, v) where u
|
524 |
+
and v are nodes in the graph. If ebunch is None then all
|
525 |
+
nonexistent edges in the graph will be used.
|
526 |
+
Default value: None.
|
527 |
+
|
528 |
+
community : string, optional (default = 'community')
|
529 |
+
Nodes attribute name containing the community information.
|
530 |
+
G[u][community] identifies which community u belongs to. Each
|
531 |
+
node belongs to at most one community. Default value: 'community'.
|
532 |
+
|
533 |
+
Returns
|
534 |
+
-------
|
535 |
+
piter : iterator
|
536 |
+
An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
|
537 |
+
pair of nodes and p is their score.
|
538 |
+
|
539 |
+
Raises
|
540 |
+
------
|
541 |
+
NetworkXNotImplemented
|
542 |
+
If `G` is a `DiGraph`, a `Multigraph` or a `MultiDiGraph`.
|
543 |
+
|
544 |
+
NetworkXAlgorithmError
|
545 |
+
If no community information is available for a node in `ebunch` or in `G` (if `ebunch` is `None`).
|
546 |
+
|
547 |
+
NodeNotFound
|
548 |
+
If `ebunch` has a node that is not in `G`.
|
549 |
+
|
550 |
+
Examples
|
551 |
+
--------
|
552 |
+
>>> G = nx.Graph()
|
553 |
+
>>> G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
|
554 |
+
>>> G.nodes[0]["community"] = 0
|
555 |
+
>>> G.nodes[1]["community"] = 0
|
556 |
+
>>> G.nodes[2]["community"] = 1
|
557 |
+
>>> G.nodes[3]["community"] = 0
|
558 |
+
>>> preds = nx.ra_index_soundarajan_hopcroft(G, [(0, 3)])
|
559 |
+
>>> for u, v, p in preds:
|
560 |
+
... print(f"({u}, {v}) -> {p:.8f}")
|
561 |
+
(0, 3) -> 0.50000000
|
562 |
+
|
563 |
+
References
|
564 |
+
----------
|
565 |
+
.. [1] Sucheta Soundarajan and John Hopcroft.
|
566 |
+
Using community information to improve the precision of link
|
567 |
+
prediction methods.
|
568 |
+
In Proceedings of the 21st international conference companion on
|
569 |
+
World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608.
|
570 |
+
http://doi.acm.org/10.1145/2187980.2188150
|
571 |
+
"""
|
572 |
+
|
573 |
+
def predict(u, v):
|
574 |
+
Cu = _community(G, u, community)
|
575 |
+
Cv = _community(G, v, community)
|
576 |
+
if Cu != Cv:
|
577 |
+
return 0
|
578 |
+
cnbors = nx.common_neighbors(G, u, v)
|
579 |
+
return sum(1 / G.degree(w) for w in cnbors if _community(G, w, community) == Cu)
|
580 |
+
|
581 |
+
return _apply_prediction(G, predict, ebunch)
|
582 |
+
|
583 |
+
|
584 |
+
@not_implemented_for("directed")
|
585 |
+
@not_implemented_for("multigraph")
|
586 |
+
@nx._dispatchable(node_attrs="community")
|
587 |
+
def within_inter_cluster(G, ebunch=None, delta=0.001, community="community"):
|
588 |
+
"""Compute the ratio of within- and inter-cluster common neighbors
|
589 |
+
of all node pairs in ebunch.
|
590 |
+
|
591 |
+
For two nodes `u` and `v`, if a common neighbor `w` belongs to the
|
592 |
+
same community as them, `w` is considered as within-cluster common
|
593 |
+
neighbor of `u` and `v`. Otherwise, it is considered as
|
594 |
+
inter-cluster common neighbor of `u` and `v`. The ratio between the
|
595 |
+
size of the set of within- and inter-cluster common neighbors is
|
596 |
+
defined as the WIC measure. [1]_
|
597 |
+
|
598 |
+
Parameters
|
599 |
+
----------
|
600 |
+
G : graph
|
601 |
+
A NetworkX undirected graph.
|
602 |
+
|
603 |
+
ebunch : iterable of node pairs, optional (default = None)
|
604 |
+
The WIC measure will be computed for each pair of nodes given in
|
605 |
+
the iterable. The pairs must be given as 2-tuples (u, v) where
|
606 |
+
u and v are nodes in the graph. If ebunch is None then all
|
607 |
+
nonexistent edges in the graph will be used.
|
608 |
+
Default value: None.
|
609 |
+
|
610 |
+
delta : float, optional (default = 0.001)
|
611 |
+
Value to prevent division by zero in case there is no
|
612 |
+
inter-cluster common neighbor between two nodes. See [1]_ for
|
613 |
+
details. Default value: 0.001.
|
614 |
+
|
615 |
+
community : string, optional (default = 'community')
|
616 |
+
Nodes attribute name containing the community information.
|
617 |
+
G[u][community] identifies which community u belongs to. Each
|
618 |
+
node belongs to at most one community. Default value: 'community'.
|
619 |
+
|
620 |
+
Returns
|
621 |
+
-------
|
622 |
+
piter : iterator
|
623 |
+
An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
|
624 |
+
pair of nodes and p is their WIC measure.
|
625 |
+
|
626 |
+
Raises
|
627 |
+
------
|
628 |
+
NetworkXNotImplemented
|
629 |
+
If `G` is a `DiGraph`, a `Multigraph` or a `MultiDiGraph`.
|
630 |
+
|
631 |
+
NetworkXAlgorithmError
|
632 |
+
- If `delta` is less than or equal to zero.
|
633 |
+
- If no community information is available for a node in `ebunch` or in `G` (if `ebunch` is `None`).
|
634 |
+
|
635 |
+
NodeNotFound
|
636 |
+
If `ebunch` has a node that is not in `G`.
|
637 |
+
|
638 |
+
Examples
|
639 |
+
--------
|
640 |
+
>>> G = nx.Graph()
|
641 |
+
>>> G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4)])
|
642 |
+
>>> G.nodes[0]["community"] = 0
|
643 |
+
>>> G.nodes[1]["community"] = 1
|
644 |
+
>>> G.nodes[2]["community"] = 0
|
645 |
+
>>> G.nodes[3]["community"] = 0
|
646 |
+
>>> G.nodes[4]["community"] = 0
|
647 |
+
>>> preds = nx.within_inter_cluster(G, [(0, 4)])
|
648 |
+
>>> for u, v, p in preds:
|
649 |
+
... print(f"({u}, {v}) -> {p:.8f}")
|
650 |
+
(0, 4) -> 1.99800200
|
651 |
+
>>> preds = nx.within_inter_cluster(G, [(0, 4)], delta=0.5)
|
652 |
+
>>> for u, v, p in preds:
|
653 |
+
... print(f"({u}, {v}) -> {p:.8f}")
|
654 |
+
(0, 4) -> 1.33333333
|
655 |
+
|
656 |
+
References
|
657 |
+
----------
|
658 |
+
.. [1] Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes.
|
659 |
+
Link prediction in complex networks based on cluster information.
|
660 |
+
In Proceedings of the 21st Brazilian conference on Advances in
|
661 |
+
Artificial Intelligence (SBIA'12)
|
662 |
+
https://doi.org/10.1007/978-3-642-34459-6_10
|
663 |
+
"""
|
664 |
+
if delta <= 0:
|
665 |
+
raise nx.NetworkXAlgorithmError("Delta must be greater than zero")
|
666 |
+
|
667 |
+
def predict(u, v):
|
668 |
+
Cu = _community(G, u, community)
|
669 |
+
Cv = _community(G, v, community)
|
670 |
+
if Cu != Cv:
|
671 |
+
return 0
|
672 |
+
cnbors = nx.common_neighbors(G, u, v)
|
673 |
+
within = {w for w in cnbors if _community(G, w, community) == Cu}
|
674 |
+
inter = cnbors - within
|
675 |
+
return len(within) / (len(inter) + delta)
|
676 |
+
|
677 |
+
return _apply_prediction(G, predict, ebunch)
|
678 |
+
|
679 |
+
|
680 |
+
def _community(G, u, community):
|
681 |
+
"""Get the community of the given node."""
|
682 |
+
node_u = G.nodes[u]
|
683 |
+
try:
|
684 |
+
return node_u[community]
|
685 |
+
except KeyError as err:
|
686 |
+
raise nx.NetworkXAlgorithmError(
|
687 |
+
f"No community information available for Node {u}"
|
688 |
+
) from err
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/lowest_common_ancestors.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Algorithms for finding the lowest common ancestor of trees and DAGs."""
|
2 |
+
from collections import defaultdict
|
3 |
+
from collections.abc import Mapping, Set
|
4 |
+
from itertools import combinations_with_replacement
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.utils import UnionFind, arbitrary_element, not_implemented_for
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
"all_pairs_lowest_common_ancestor",
|
11 |
+
"tree_all_pairs_lowest_common_ancestor",
|
12 |
+
"lowest_common_ancestor",
|
13 |
+
]
|
14 |
+
|
15 |
+
|
16 |
+
@not_implemented_for("undirected")
|
17 |
+
@nx._dispatchable
|
18 |
+
def all_pairs_lowest_common_ancestor(G, pairs=None):
|
19 |
+
"""Return the lowest common ancestor of all pairs or the provided pairs
|
20 |
+
|
21 |
+
Parameters
|
22 |
+
----------
|
23 |
+
G : NetworkX directed graph
|
24 |
+
|
25 |
+
pairs : iterable of pairs of nodes, optional (default: all pairs)
|
26 |
+
The pairs of nodes of interest.
|
27 |
+
If None, will find the LCA of all pairs of nodes.
|
28 |
+
|
29 |
+
Yields
|
30 |
+
------
|
31 |
+
((node1, node2), lca) : 2-tuple
|
32 |
+
Where lca is least common ancestor of node1 and node2.
|
33 |
+
Note that for the default case, the order of the node pair is not considered,
|
34 |
+
e.g. you will not get both ``(a, b)`` and ``(b, a)``
|
35 |
+
|
36 |
+
Raises
|
37 |
+
------
|
38 |
+
NetworkXPointlessConcept
|
39 |
+
If `G` is null.
|
40 |
+
NetworkXError
|
41 |
+
If `G` is not a DAG.
|
42 |
+
|
43 |
+
Examples
|
44 |
+
--------
|
45 |
+
The default behavior is to yield the lowest common ancestor for all
|
46 |
+
possible combinations of nodes in `G`, including self-pairings:
|
47 |
+
|
48 |
+
>>> G = nx.DiGraph([(0, 1), (0, 3), (1, 2)])
|
49 |
+
>>> dict(nx.all_pairs_lowest_common_ancestor(G))
|
50 |
+
{(0, 0): 0, (0, 1): 0, (0, 3): 0, (0, 2): 0, (1, 1): 1, (1, 3): 0, (1, 2): 1, (3, 3): 3, (3, 2): 0, (2, 2): 2}
|
51 |
+
|
52 |
+
The pairs argument can be used to limit the output to only the
|
53 |
+
specified node pairings:
|
54 |
+
|
55 |
+
>>> dict(nx.all_pairs_lowest_common_ancestor(G, pairs=[(1, 2), (2, 3)]))
|
56 |
+
{(1, 2): 1, (2, 3): 0}
|
57 |
+
|
58 |
+
Notes
|
59 |
+
-----
|
60 |
+
Only defined on non-null directed acyclic graphs.
|
61 |
+
|
62 |
+
See Also
|
63 |
+
--------
|
64 |
+
lowest_common_ancestor
|
65 |
+
"""
|
66 |
+
if not nx.is_directed_acyclic_graph(G):
|
67 |
+
raise nx.NetworkXError("LCA only defined on directed acyclic graphs.")
|
68 |
+
if len(G) == 0:
|
69 |
+
raise nx.NetworkXPointlessConcept("LCA meaningless on null graphs.")
|
70 |
+
|
71 |
+
if pairs is None:
|
72 |
+
pairs = combinations_with_replacement(G, 2)
|
73 |
+
else:
|
74 |
+
# Convert iterator to iterable, if necessary. Trim duplicates.
|
75 |
+
pairs = dict.fromkeys(pairs)
|
76 |
+
# Verify that each of the nodes in the provided pairs is in G
|
77 |
+
nodeset = set(G)
|
78 |
+
for pair in pairs:
|
79 |
+
if set(pair) - nodeset:
|
80 |
+
raise nx.NodeNotFound(
|
81 |
+
f"Node(s) {set(pair) - nodeset} from pair {pair} not in G."
|
82 |
+
)
|
83 |
+
|
84 |
+
# Once input validation is done, construct the generator
|
85 |
+
def generate_lca_from_pairs(G, pairs):
|
86 |
+
ancestor_cache = {}
|
87 |
+
|
88 |
+
for v, w in pairs:
|
89 |
+
if v not in ancestor_cache:
|
90 |
+
ancestor_cache[v] = nx.ancestors(G, v)
|
91 |
+
ancestor_cache[v].add(v)
|
92 |
+
if w not in ancestor_cache:
|
93 |
+
ancestor_cache[w] = nx.ancestors(G, w)
|
94 |
+
ancestor_cache[w].add(w)
|
95 |
+
|
96 |
+
common_ancestors = ancestor_cache[v] & ancestor_cache[w]
|
97 |
+
|
98 |
+
if common_ancestors:
|
99 |
+
common_ancestor = next(iter(common_ancestors))
|
100 |
+
while True:
|
101 |
+
successor = None
|
102 |
+
for lower_ancestor in G.successors(common_ancestor):
|
103 |
+
if lower_ancestor in common_ancestors:
|
104 |
+
successor = lower_ancestor
|
105 |
+
break
|
106 |
+
if successor is None:
|
107 |
+
break
|
108 |
+
common_ancestor = successor
|
109 |
+
yield ((v, w), common_ancestor)
|
110 |
+
|
111 |
+
return generate_lca_from_pairs(G, pairs)
|
112 |
+
|
113 |
+
|
114 |
+
@not_implemented_for("undirected")
|
115 |
+
@nx._dispatchable
|
116 |
+
def lowest_common_ancestor(G, node1, node2, default=None):
|
117 |
+
"""Compute the lowest common ancestor of the given pair of nodes.
|
118 |
+
|
119 |
+
Parameters
|
120 |
+
----------
|
121 |
+
G : NetworkX directed graph
|
122 |
+
|
123 |
+
node1, node2 : nodes in the graph.
|
124 |
+
|
125 |
+
default : object
|
126 |
+
Returned if no common ancestor between `node1` and `node2`
|
127 |
+
|
128 |
+
Returns
|
129 |
+
-------
|
130 |
+
The lowest common ancestor of node1 and node2,
|
131 |
+
or default if they have no common ancestors.
|
132 |
+
|
133 |
+
Examples
|
134 |
+
--------
|
135 |
+
>>> G = nx.DiGraph()
|
136 |
+
>>> nx.add_path(G, (0, 1, 2, 3))
|
137 |
+
>>> nx.add_path(G, (0, 4, 3))
|
138 |
+
>>> nx.lowest_common_ancestor(G, 2, 4)
|
139 |
+
0
|
140 |
+
|
141 |
+
See Also
|
142 |
+
--------
|
143 |
+
all_pairs_lowest_common_ancestor"""
|
144 |
+
|
145 |
+
ans = list(all_pairs_lowest_common_ancestor(G, pairs=[(node1, node2)]))
|
146 |
+
if ans:
|
147 |
+
assert len(ans) == 1
|
148 |
+
return ans[0][1]
|
149 |
+
return default
|
150 |
+
|
151 |
+
|
152 |
+
@not_implemented_for("undirected")
|
153 |
+
@nx._dispatchable
|
154 |
+
def tree_all_pairs_lowest_common_ancestor(G, root=None, pairs=None):
|
155 |
+
r"""Yield the lowest common ancestor for sets of pairs in a tree.
|
156 |
+
|
157 |
+
Parameters
|
158 |
+
----------
|
159 |
+
G : NetworkX directed graph (must be a tree)
|
160 |
+
|
161 |
+
root : node, optional (default: None)
|
162 |
+
The root of the subtree to operate on.
|
163 |
+
If None, assume the entire graph has exactly one source and use that.
|
164 |
+
|
165 |
+
pairs : iterable or iterator of pairs of nodes, optional (default: None)
|
166 |
+
The pairs of interest. If None, Defaults to all pairs of nodes
|
167 |
+
under `root` that have a lowest common ancestor.
|
168 |
+
|
169 |
+
Returns
|
170 |
+
-------
|
171 |
+
lcas : generator of tuples `((u, v), lca)` where `u` and `v` are nodes
|
172 |
+
in `pairs` and `lca` is their lowest common ancestor.
|
173 |
+
|
174 |
+
Examples
|
175 |
+
--------
|
176 |
+
>>> import pprint
|
177 |
+
>>> G = nx.DiGraph([(1, 3), (2, 4), (1, 2)])
|
178 |
+
>>> pprint.pprint(dict(nx.tree_all_pairs_lowest_common_ancestor(G)))
|
179 |
+
{(1, 1): 1,
|
180 |
+
(2, 1): 1,
|
181 |
+
(2, 2): 2,
|
182 |
+
(3, 1): 1,
|
183 |
+
(3, 2): 1,
|
184 |
+
(3, 3): 3,
|
185 |
+
(3, 4): 1,
|
186 |
+
(4, 1): 1,
|
187 |
+
(4, 2): 2,
|
188 |
+
(4, 4): 4}
|
189 |
+
|
190 |
+
We can also use `pairs` argument to specify the pairs of nodes for which we
|
191 |
+
want to compute lowest common ancestors. Here is an example:
|
192 |
+
|
193 |
+
>>> dict(nx.tree_all_pairs_lowest_common_ancestor(G, pairs=[(1, 4), (2, 3)]))
|
194 |
+
{(2, 3): 1, (1, 4): 1}
|
195 |
+
|
196 |
+
Notes
|
197 |
+
-----
|
198 |
+
Only defined on non-null trees represented with directed edges from
|
199 |
+
parents to children. Uses Tarjan's off-line lowest-common-ancestors
|
200 |
+
algorithm. Runs in time $O(4 \times (V + E + P))$ time, where 4 is the largest
|
201 |
+
value of the inverse Ackermann function likely to ever come up in actual
|
202 |
+
use, and $P$ is the number of pairs requested (or $V^2$ if all are needed).
|
203 |
+
|
204 |
+
Tarjan, R. E. (1979), "Applications of path compression on balanced trees",
|
205 |
+
Journal of the ACM 26 (4): 690-715, doi:10.1145/322154.322161.
|
206 |
+
|
207 |
+
See Also
|
208 |
+
--------
|
209 |
+
all_pairs_lowest_common_ancestor: similar routine for general DAGs
|
210 |
+
lowest_common_ancestor: just a single pair for general DAGs
|
211 |
+
"""
|
212 |
+
if len(G) == 0:
|
213 |
+
raise nx.NetworkXPointlessConcept("LCA meaningless on null graphs.")
|
214 |
+
|
215 |
+
# Index pairs of interest for efficient lookup from either side.
|
216 |
+
if pairs is not None:
|
217 |
+
pair_dict = defaultdict(set)
|
218 |
+
# See note on all_pairs_lowest_common_ancestor.
|
219 |
+
if not isinstance(pairs, Mapping | Set):
|
220 |
+
pairs = set(pairs)
|
221 |
+
for u, v in pairs:
|
222 |
+
for n in (u, v):
|
223 |
+
if n not in G:
|
224 |
+
msg = f"The node {str(n)} is not in the digraph."
|
225 |
+
raise nx.NodeNotFound(msg)
|
226 |
+
pair_dict[u].add(v)
|
227 |
+
pair_dict[v].add(u)
|
228 |
+
|
229 |
+
# If root is not specified, find the exactly one node with in degree 0 and
|
230 |
+
# use it. Raise an error if none are found, or more than one is. Also check
|
231 |
+
# for any nodes with in degree larger than 1, which would imply G is not a
|
232 |
+
# tree.
|
233 |
+
if root is None:
|
234 |
+
for n, deg in G.in_degree:
|
235 |
+
if deg == 0:
|
236 |
+
if root is not None:
|
237 |
+
msg = "No root specified and tree has multiple sources."
|
238 |
+
raise nx.NetworkXError(msg)
|
239 |
+
root = n
|
240 |
+
# checking deg>1 is not sufficient for MultiDiGraphs
|
241 |
+
elif deg > 1 and len(G.pred[n]) > 1:
|
242 |
+
msg = "Tree LCA only defined on trees; use DAG routine."
|
243 |
+
raise nx.NetworkXError(msg)
|
244 |
+
if root is None:
|
245 |
+
raise nx.NetworkXError("Graph contains a cycle.")
|
246 |
+
|
247 |
+
# Iterative implementation of Tarjan's offline lca algorithm
|
248 |
+
# as described in CLRS on page 521 (2nd edition)/page 584 (3rd edition)
|
249 |
+
uf = UnionFind()
|
250 |
+
ancestors = {}
|
251 |
+
for node in G:
|
252 |
+
ancestors[node] = uf[node]
|
253 |
+
|
254 |
+
colors = defaultdict(bool)
|
255 |
+
for node in nx.dfs_postorder_nodes(G, root):
|
256 |
+
colors[node] = True
|
257 |
+
for v in pair_dict[node] if pairs is not None else G:
|
258 |
+
if colors[v]:
|
259 |
+
# If the user requested both directions of a pair, give it.
|
260 |
+
# Otherwise, just give one.
|
261 |
+
if pairs is not None and (node, v) in pairs:
|
262 |
+
yield (node, v), ancestors[uf[v]]
|
263 |
+
if pairs is None or (v, node) in pairs:
|
264 |
+
yield (v, node), ancestors[uf[v]]
|
265 |
+
if node != root:
|
266 |
+
parent = arbitrary_element(G.pred[node])
|
267 |
+
uf.union(parent, node)
|
268 |
+
ancestors[uf[parent]] = parent
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/matching.py
ADDED
@@ -0,0 +1,1151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for computing and verifying matchings in a graph."""
|
2 |
+
from collections import Counter
|
3 |
+
from itertools import combinations, repeat
|
4 |
+
|
5 |
+
import networkx as nx
|
6 |
+
from networkx.utils import not_implemented_for
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
"is_matching",
|
10 |
+
"is_maximal_matching",
|
11 |
+
"is_perfect_matching",
|
12 |
+
"max_weight_matching",
|
13 |
+
"min_weight_matching",
|
14 |
+
"maximal_matching",
|
15 |
+
]
|
16 |
+
|
17 |
+
|
18 |
+
@not_implemented_for("multigraph")
|
19 |
+
@not_implemented_for("directed")
|
20 |
+
@nx._dispatchable
|
21 |
+
def maximal_matching(G):
|
22 |
+
r"""Find a maximal matching in the graph.
|
23 |
+
|
24 |
+
A matching is a subset of edges in which no node occurs more than once.
|
25 |
+
A maximal matching cannot add more edges and still be a matching.
|
26 |
+
|
27 |
+
Parameters
|
28 |
+
----------
|
29 |
+
G : NetworkX graph
|
30 |
+
Undirected graph
|
31 |
+
|
32 |
+
Returns
|
33 |
+
-------
|
34 |
+
matching : set
|
35 |
+
A maximal matching of the graph.
|
36 |
+
|
37 |
+
Examples
|
38 |
+
--------
|
39 |
+
>>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5)])
|
40 |
+
>>> sorted(nx.maximal_matching(G))
|
41 |
+
[(1, 2), (3, 5)]
|
42 |
+
|
43 |
+
Notes
|
44 |
+
-----
|
45 |
+
The algorithm greedily selects a maximal matching M of the graph G
|
46 |
+
(i.e. no superset of M exists). It runs in $O(|E|)$ time.
|
47 |
+
"""
|
48 |
+
matching = set()
|
49 |
+
nodes = set()
|
50 |
+
for edge in G.edges():
|
51 |
+
# If the edge isn't covered, add it to the matching
|
52 |
+
# then remove neighborhood of u and v from consideration.
|
53 |
+
u, v = edge
|
54 |
+
if u not in nodes and v not in nodes and u != v:
|
55 |
+
matching.add(edge)
|
56 |
+
nodes.update(edge)
|
57 |
+
return matching
|
58 |
+
|
59 |
+
|
60 |
+
def matching_dict_to_set(matching):
|
61 |
+
"""Converts matching dict format to matching set format
|
62 |
+
|
63 |
+
Converts a dictionary representing a matching (as returned by
|
64 |
+
:func:`max_weight_matching`) to a set representing a matching (as
|
65 |
+
returned by :func:`maximal_matching`).
|
66 |
+
|
67 |
+
In the definition of maximal matching adopted by NetworkX,
|
68 |
+
self-loops are not allowed, so the provided dictionary is expected
|
69 |
+
to never have any mapping from a key to itself. However, the
|
70 |
+
dictionary is expected to have mirrored key/value pairs, for
|
71 |
+
example, key ``u`` with value ``v`` and key ``v`` with value ``u``.
|
72 |
+
|
73 |
+
"""
|
74 |
+
edges = set()
|
75 |
+
for edge in matching.items():
|
76 |
+
u, v = edge
|
77 |
+
if (v, u) in edges or edge in edges:
|
78 |
+
continue
|
79 |
+
if u == v:
|
80 |
+
raise nx.NetworkXError(f"Selfloops cannot appear in matchings {edge}")
|
81 |
+
edges.add(edge)
|
82 |
+
return edges
|
83 |
+
|
84 |
+
|
85 |
+
@nx._dispatchable
|
86 |
+
def is_matching(G, matching):
|
87 |
+
"""Return True if ``matching`` is a valid matching of ``G``
|
88 |
+
|
89 |
+
A *matching* in a graph is a set of edges in which no two distinct
|
90 |
+
edges share a common endpoint. Each node is incident to at most one
|
91 |
+
edge in the matching. The edges are said to be independent.
|
92 |
+
|
93 |
+
Parameters
|
94 |
+
----------
|
95 |
+
G : NetworkX graph
|
96 |
+
|
97 |
+
matching : dict or set
|
98 |
+
A dictionary or set representing a matching. If a dictionary, it
|
99 |
+
must have ``matching[u] == v`` and ``matching[v] == u`` for each
|
100 |
+
edge ``(u, v)`` in the matching. If a set, it must have elements
|
101 |
+
of the form ``(u, v)``, where ``(u, v)`` is an edge in the
|
102 |
+
matching.
|
103 |
+
|
104 |
+
Returns
|
105 |
+
-------
|
106 |
+
bool
|
107 |
+
Whether the given set or dictionary represents a valid matching
|
108 |
+
in the graph.
|
109 |
+
|
110 |
+
Raises
|
111 |
+
------
|
112 |
+
NetworkXError
|
113 |
+
If the proposed matching has an edge to a node not in G.
|
114 |
+
Or if the matching is not a collection of 2-tuple edges.
|
115 |
+
|
116 |
+
Examples
|
117 |
+
--------
|
118 |
+
>>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5)])
|
119 |
+
>>> nx.is_maximal_matching(G, {1: 3, 2: 4}) # using dict to represent matching
|
120 |
+
True
|
121 |
+
|
122 |
+
>>> nx.is_matching(G, {(1, 3), (2, 4)}) # using set to represent matching
|
123 |
+
True
|
124 |
+
|
125 |
+
"""
|
126 |
+
if isinstance(matching, dict):
|
127 |
+
matching = matching_dict_to_set(matching)
|
128 |
+
|
129 |
+
nodes = set()
|
130 |
+
for edge in matching:
|
131 |
+
if len(edge) != 2:
|
132 |
+
raise nx.NetworkXError(f"matching has non-2-tuple edge {edge}")
|
133 |
+
u, v = edge
|
134 |
+
if u not in G or v not in G:
|
135 |
+
raise nx.NetworkXError(f"matching contains edge {edge} with node not in G")
|
136 |
+
if u == v:
|
137 |
+
return False
|
138 |
+
if not G.has_edge(u, v):
|
139 |
+
return False
|
140 |
+
if u in nodes or v in nodes:
|
141 |
+
return False
|
142 |
+
nodes.update(edge)
|
143 |
+
return True
|
144 |
+
|
145 |
+
|
146 |
+
@nx._dispatchable
|
147 |
+
def is_maximal_matching(G, matching):
|
148 |
+
"""Return True if ``matching`` is a maximal matching of ``G``
|
149 |
+
|
150 |
+
A *maximal matching* in a graph is a matching in which adding any
|
151 |
+
edge would cause the set to no longer be a valid matching.
|
152 |
+
|
153 |
+
Parameters
|
154 |
+
----------
|
155 |
+
G : NetworkX graph
|
156 |
+
|
157 |
+
matching : dict or set
|
158 |
+
A dictionary or set representing a matching. If a dictionary, it
|
159 |
+
must have ``matching[u] == v`` and ``matching[v] == u`` for each
|
160 |
+
edge ``(u, v)`` in the matching. If a set, it must have elements
|
161 |
+
of the form ``(u, v)``, where ``(u, v)`` is an edge in the
|
162 |
+
matching.
|
163 |
+
|
164 |
+
Returns
|
165 |
+
-------
|
166 |
+
bool
|
167 |
+
Whether the given set or dictionary represents a valid maximal
|
168 |
+
matching in the graph.
|
169 |
+
|
170 |
+
Examples
|
171 |
+
--------
|
172 |
+
>>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5)])
|
173 |
+
>>> nx.is_maximal_matching(G, {(1, 2), (3, 4)})
|
174 |
+
True
|
175 |
+
|
176 |
+
"""
|
177 |
+
if isinstance(matching, dict):
|
178 |
+
matching = matching_dict_to_set(matching)
|
179 |
+
# If the given set is not a matching, then it is not a maximal matching.
|
180 |
+
edges = set()
|
181 |
+
nodes = set()
|
182 |
+
for edge in matching:
|
183 |
+
if len(edge) != 2:
|
184 |
+
raise nx.NetworkXError(f"matching has non-2-tuple edge {edge}")
|
185 |
+
u, v = edge
|
186 |
+
if u not in G or v not in G:
|
187 |
+
raise nx.NetworkXError(f"matching contains edge {edge} with node not in G")
|
188 |
+
if u == v:
|
189 |
+
return False
|
190 |
+
if not G.has_edge(u, v):
|
191 |
+
return False
|
192 |
+
if u in nodes or v in nodes:
|
193 |
+
return False
|
194 |
+
nodes.update(edge)
|
195 |
+
edges.add(edge)
|
196 |
+
edges.add((v, u))
|
197 |
+
# A matching is maximal if adding any new edge from G to it
|
198 |
+
# causes the resulting set to match some node twice.
|
199 |
+
# Be careful to check for adding selfloops
|
200 |
+
for u, v in G.edges:
|
201 |
+
if (u, v) not in edges:
|
202 |
+
# could add edge (u, v) to edges and have a bigger matching
|
203 |
+
if u not in nodes and v not in nodes and u != v:
|
204 |
+
return False
|
205 |
+
return True
|
206 |
+
|
207 |
+
|
208 |
+
@nx._dispatchable
|
209 |
+
def is_perfect_matching(G, matching):
|
210 |
+
"""Return True if ``matching`` is a perfect matching for ``G``
|
211 |
+
|
212 |
+
A *perfect matching* in a graph is a matching in which exactly one edge
|
213 |
+
is incident upon each vertex.
|
214 |
+
|
215 |
+
Parameters
|
216 |
+
----------
|
217 |
+
G : NetworkX graph
|
218 |
+
|
219 |
+
matching : dict or set
|
220 |
+
A dictionary or set representing a matching. If a dictionary, it
|
221 |
+
must have ``matching[u] == v`` and ``matching[v] == u`` for each
|
222 |
+
edge ``(u, v)`` in the matching. If a set, it must have elements
|
223 |
+
of the form ``(u, v)``, where ``(u, v)`` is an edge in the
|
224 |
+
matching.
|
225 |
+
|
226 |
+
Returns
|
227 |
+
-------
|
228 |
+
bool
|
229 |
+
Whether the given set or dictionary represents a valid perfect
|
230 |
+
matching in the graph.
|
231 |
+
|
232 |
+
Examples
|
233 |
+
--------
|
234 |
+
>>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5), (4, 6)])
|
235 |
+
>>> my_match = {1: 2, 3: 5, 4: 6}
|
236 |
+
>>> nx.is_perfect_matching(G, my_match)
|
237 |
+
True
|
238 |
+
|
239 |
+
"""
|
240 |
+
if isinstance(matching, dict):
|
241 |
+
matching = matching_dict_to_set(matching)
|
242 |
+
|
243 |
+
nodes = set()
|
244 |
+
for edge in matching:
|
245 |
+
if len(edge) != 2:
|
246 |
+
raise nx.NetworkXError(f"matching has non-2-tuple edge {edge}")
|
247 |
+
u, v = edge
|
248 |
+
if u not in G or v not in G:
|
249 |
+
raise nx.NetworkXError(f"matching contains edge {edge} with node not in G")
|
250 |
+
if u == v:
|
251 |
+
return False
|
252 |
+
if not G.has_edge(u, v):
|
253 |
+
return False
|
254 |
+
if u in nodes or v in nodes:
|
255 |
+
return False
|
256 |
+
nodes.update(edge)
|
257 |
+
return len(nodes) == len(G)
|
258 |
+
|
259 |
+
|
260 |
+
@not_implemented_for("multigraph")
|
261 |
+
@not_implemented_for("directed")
|
262 |
+
@nx._dispatchable(edge_attrs="weight")
|
263 |
+
def min_weight_matching(G, weight="weight"):
|
264 |
+
"""Computing a minimum-weight maximal matching of G.
|
265 |
+
|
266 |
+
Use the maximum-weight algorithm with edge weights subtracted
|
267 |
+
from the maximum weight of all edges.
|
268 |
+
|
269 |
+
A matching is a subset of edges in which no node occurs more than once.
|
270 |
+
The weight of a matching is the sum of the weights of its edges.
|
271 |
+
A maximal matching cannot add more edges and still be a matching.
|
272 |
+
The cardinality of a matching is the number of matched edges.
|
273 |
+
|
274 |
+
This method replaces the edge weights with 1 plus the maximum edge weight
|
275 |
+
minus the original edge weight.
|
276 |
+
|
277 |
+
new_weight = (max_weight + 1) - edge_weight
|
278 |
+
|
279 |
+
then runs :func:`max_weight_matching` with the new weights.
|
280 |
+
The max weight matching with these new weights corresponds
|
281 |
+
to the min weight matching using the original weights.
|
282 |
+
Adding 1 to the max edge weight keeps all edge weights positive
|
283 |
+
and as integers if they started as integers.
|
284 |
+
|
285 |
+
You might worry that adding 1 to each weight would make the algorithm
|
286 |
+
favor matchings with more edges. But we use the parameter
|
287 |
+
`maxcardinality=True` in `max_weight_matching` to ensure that the
|
288 |
+
number of edges in the competing matchings are the same and thus
|
289 |
+
the optimum does not change due to changes in the number of edges.
|
290 |
+
|
291 |
+
Read the documentation of `max_weight_matching` for more information.
|
292 |
+
|
293 |
+
Parameters
|
294 |
+
----------
|
295 |
+
G : NetworkX graph
|
296 |
+
Undirected graph
|
297 |
+
|
298 |
+
weight: string, optional (default='weight')
|
299 |
+
Edge data key corresponding to the edge weight.
|
300 |
+
If key not found, uses 1 as weight.
|
301 |
+
|
302 |
+
Returns
|
303 |
+
-------
|
304 |
+
matching : set
|
305 |
+
A minimal weight matching of the graph.
|
306 |
+
|
307 |
+
See Also
|
308 |
+
--------
|
309 |
+
max_weight_matching
|
310 |
+
"""
|
311 |
+
if len(G.edges) == 0:
|
312 |
+
return max_weight_matching(G, maxcardinality=True, weight=weight)
|
313 |
+
G_edges = G.edges(data=weight, default=1)
|
314 |
+
max_weight = 1 + max(w for _, _, w in G_edges)
|
315 |
+
InvG = nx.Graph()
|
316 |
+
edges = ((u, v, max_weight - w) for u, v, w in G_edges)
|
317 |
+
InvG.add_weighted_edges_from(edges, weight=weight)
|
318 |
+
return max_weight_matching(InvG, maxcardinality=True, weight=weight)
|
319 |
+
|
320 |
+
|
321 |
+
@not_implemented_for("multigraph")
|
322 |
+
@not_implemented_for("directed")
|
323 |
+
@nx._dispatchable(edge_attrs="weight")
|
324 |
+
def max_weight_matching(G, maxcardinality=False, weight="weight"):
|
325 |
+
"""Compute a maximum-weighted matching of G.
|
326 |
+
|
327 |
+
A matching is a subset of edges in which no node occurs more than once.
|
328 |
+
The weight of a matching is the sum of the weights of its edges.
|
329 |
+
A maximal matching cannot add more edges and still be a matching.
|
330 |
+
The cardinality of a matching is the number of matched edges.
|
331 |
+
|
332 |
+
Parameters
|
333 |
+
----------
|
334 |
+
G : NetworkX graph
|
335 |
+
Undirected graph
|
336 |
+
|
337 |
+
maxcardinality: bool, optional (default=False)
|
338 |
+
If maxcardinality is True, compute the maximum-cardinality matching
|
339 |
+
with maximum weight among all maximum-cardinality matchings.
|
340 |
+
|
341 |
+
weight: string, optional (default='weight')
|
342 |
+
Edge data key corresponding to the edge weight.
|
343 |
+
If key not found, uses 1 as weight.
|
344 |
+
|
345 |
+
|
346 |
+
Returns
|
347 |
+
-------
|
348 |
+
matching : set
|
349 |
+
A maximal matching of the graph.
|
350 |
+
|
351 |
+
Examples
|
352 |
+
--------
|
353 |
+
>>> G = nx.Graph()
|
354 |
+
>>> edges = [(1, 2, 6), (1, 3, 2), (2, 3, 1), (2, 4, 7), (3, 5, 9), (4, 5, 3)]
|
355 |
+
>>> G.add_weighted_edges_from(edges)
|
356 |
+
>>> sorted(nx.max_weight_matching(G))
|
357 |
+
[(2, 4), (5, 3)]
|
358 |
+
|
359 |
+
Notes
|
360 |
+
-----
|
361 |
+
If G has edges with weight attributes the edge data are used as
|
362 |
+
weight values else the weights are assumed to be 1.
|
363 |
+
|
364 |
+
This function takes time O(number_of_nodes ** 3).
|
365 |
+
|
366 |
+
If all edge weights are integers, the algorithm uses only integer
|
367 |
+
computations. If floating point weights are used, the algorithm
|
368 |
+
could return a slightly suboptimal matching due to numeric
|
369 |
+
precision errors.
|
370 |
+
|
371 |
+
This method is based on the "blossom" method for finding augmenting
|
372 |
+
paths and the "primal-dual" method for finding a matching of maximum
|
373 |
+
weight, both methods invented by Jack Edmonds [1]_.
|
374 |
+
|
375 |
+
Bipartite graphs can also be matched using the functions present in
|
376 |
+
:mod:`networkx.algorithms.bipartite.matching`.
|
377 |
+
|
378 |
+
References
|
379 |
+
----------
|
380 |
+
.. [1] "Efficient Algorithms for Finding Maximum Matching in Graphs",
|
381 |
+
Zvi Galil, ACM Computing Surveys, 1986.
|
382 |
+
"""
|
383 |
+
#
|
384 |
+
# The algorithm is taken from "Efficient Algorithms for Finding Maximum
|
385 |
+
# Matching in Graphs" by Zvi Galil, ACM Computing Surveys, 1986.
|
386 |
+
# It is based on the "blossom" method for finding augmenting paths and
|
387 |
+
# the "primal-dual" method for finding a matching of maximum weight, both
|
388 |
+
# methods invented by Jack Edmonds.
|
389 |
+
#
|
390 |
+
# A C program for maximum weight matching by Ed Rothberg was used
|
391 |
+
# extensively to validate this new code.
|
392 |
+
#
|
393 |
+
# Many terms used in the code comments are explained in the paper
|
394 |
+
# by Galil. You will probably need the paper to make sense of this code.
|
395 |
+
#
|
396 |
+
|
397 |
+
class NoNode:
|
398 |
+
"""Dummy value which is different from any node."""
|
399 |
+
|
400 |
+
class Blossom:
|
401 |
+
"""Representation of a non-trivial blossom or sub-blossom."""
|
402 |
+
|
403 |
+
__slots__ = ["childs", "edges", "mybestedges"]
|
404 |
+
|
405 |
+
# b.childs is an ordered list of b's sub-blossoms, starting with
|
406 |
+
# the base and going round the blossom.
|
407 |
+
|
408 |
+
# b.edges is the list of b's connecting edges, such that
|
409 |
+
# b.edges[i] = (v, w) where v is a vertex in b.childs[i]
|
410 |
+
# and w is a vertex in b.childs[wrap(i+1)].
|
411 |
+
|
412 |
+
# If b is a top-level S-blossom,
|
413 |
+
# b.mybestedges is a list of least-slack edges to neighboring
|
414 |
+
# S-blossoms, or None if no such list has been computed yet.
|
415 |
+
# This is used for efficient computation of delta3.
|
416 |
+
|
417 |
+
# Generate the blossom's leaf vertices.
|
418 |
+
def leaves(self):
|
419 |
+
stack = [*self.childs]
|
420 |
+
while stack:
|
421 |
+
t = stack.pop()
|
422 |
+
if isinstance(t, Blossom):
|
423 |
+
stack.extend(t.childs)
|
424 |
+
else:
|
425 |
+
yield t
|
426 |
+
|
427 |
+
# Get a list of vertices.
|
428 |
+
gnodes = list(G)
|
429 |
+
if not gnodes:
|
430 |
+
return set() # don't bother with empty graphs
|
431 |
+
|
432 |
+
# Find the maximum edge weight.
|
433 |
+
maxweight = 0
|
434 |
+
allinteger = True
|
435 |
+
for i, j, d in G.edges(data=True):
|
436 |
+
wt = d.get(weight, 1)
|
437 |
+
if i != j and wt > maxweight:
|
438 |
+
maxweight = wt
|
439 |
+
allinteger = allinteger and (str(type(wt)).split("'")[1] in ("int", "long"))
|
440 |
+
|
441 |
+
# If v is a matched vertex, mate[v] is its partner vertex.
|
442 |
+
# If v is a single vertex, v does not occur as a key in mate.
|
443 |
+
# Initially all vertices are single; updated during augmentation.
|
444 |
+
mate = {}
|
445 |
+
|
446 |
+
# If b is a top-level blossom,
|
447 |
+
# label.get(b) is None if b is unlabeled (free),
|
448 |
+
# 1 if b is an S-blossom,
|
449 |
+
# 2 if b is a T-blossom.
|
450 |
+
# The label of a vertex is found by looking at the label of its top-level
|
451 |
+
# containing blossom.
|
452 |
+
# If v is a vertex inside a T-blossom, label[v] is 2 iff v is reachable
|
453 |
+
# from an S-vertex outside the blossom.
|
454 |
+
# Labels are assigned during a stage and reset after each augmentation.
|
455 |
+
label = {}
|
456 |
+
|
457 |
+
# If b is a labeled top-level blossom,
|
458 |
+
# labeledge[b] = (v, w) is the edge through which b obtained its label
|
459 |
+
# such that w is a vertex in b, or None if b's base vertex is single.
|
460 |
+
# If w is a vertex inside a T-blossom and label[w] == 2,
|
461 |
+
# labeledge[w] = (v, w) is an edge through which w is reachable from
|
462 |
+
# outside the blossom.
|
463 |
+
labeledge = {}
|
464 |
+
|
465 |
+
# If v is a vertex, inblossom[v] is the top-level blossom to which v
|
466 |
+
# belongs.
|
467 |
+
# If v is a top-level vertex, inblossom[v] == v since v is itself
|
468 |
+
# a (trivial) top-level blossom.
|
469 |
+
# Initially all vertices are top-level trivial blossoms.
|
470 |
+
inblossom = dict(zip(gnodes, gnodes))
|
471 |
+
|
472 |
+
# If b is a sub-blossom,
|
473 |
+
# blossomparent[b] is its immediate parent (sub-)blossom.
|
474 |
+
# If b is a top-level blossom, blossomparent[b] is None.
|
475 |
+
blossomparent = dict(zip(gnodes, repeat(None)))
|
476 |
+
|
477 |
+
# If b is a (sub-)blossom,
|
478 |
+
# blossombase[b] is its base VERTEX (i.e. recursive sub-blossom).
|
479 |
+
blossombase = dict(zip(gnodes, gnodes))
|
480 |
+
|
481 |
+
# If w is a free vertex (or an unreached vertex inside a T-blossom),
|
482 |
+
# bestedge[w] = (v, w) is the least-slack edge from an S-vertex,
|
483 |
+
# or None if there is no such edge.
|
484 |
+
# If b is a (possibly trivial) top-level S-blossom,
|
485 |
+
# bestedge[b] = (v, w) is the least-slack edge to a different S-blossom
|
486 |
+
# (v inside b), or None if there is no such edge.
|
487 |
+
# This is used for efficient computation of delta2 and delta3.
|
488 |
+
bestedge = {}
|
489 |
+
|
490 |
+
# If v is a vertex,
|
491 |
+
# dualvar[v] = 2 * u(v) where u(v) is the v's variable in the dual
|
492 |
+
# optimization problem (if all edge weights are integers, multiplication
|
493 |
+
# by two ensures that all values remain integers throughout the algorithm).
|
494 |
+
# Initially, u(v) = maxweight / 2.
|
495 |
+
dualvar = dict(zip(gnodes, repeat(maxweight)))
|
496 |
+
|
497 |
+
# If b is a non-trivial blossom,
|
498 |
+
# blossomdual[b] = z(b) where z(b) is b's variable in the dual
|
499 |
+
# optimization problem.
|
500 |
+
blossomdual = {}
|
501 |
+
|
502 |
+
# If (v, w) in allowedge or (w, v) in allowedg, then the edge
|
503 |
+
# (v, w) is known to have zero slack in the optimization problem;
|
504 |
+
# otherwise the edge may or may not have zero slack.
|
505 |
+
allowedge = {}
|
506 |
+
|
507 |
+
# Queue of newly discovered S-vertices.
|
508 |
+
queue = []
|
509 |
+
|
510 |
+
# Return 2 * slack of edge (v, w) (does not work inside blossoms).
|
511 |
+
def slack(v, w):
|
512 |
+
return dualvar[v] + dualvar[w] - 2 * G[v][w].get(weight, 1)
|
513 |
+
|
514 |
+
# Assign label t to the top-level blossom containing vertex w,
|
515 |
+
# coming through an edge from vertex v.
|
516 |
+
def assignLabel(w, t, v):
|
517 |
+
b = inblossom[w]
|
518 |
+
assert label.get(w) is None and label.get(b) is None
|
519 |
+
label[w] = label[b] = t
|
520 |
+
if v is not None:
|
521 |
+
labeledge[w] = labeledge[b] = (v, w)
|
522 |
+
else:
|
523 |
+
labeledge[w] = labeledge[b] = None
|
524 |
+
bestedge[w] = bestedge[b] = None
|
525 |
+
if t == 1:
|
526 |
+
# b became an S-vertex/blossom; add it(s vertices) to the queue.
|
527 |
+
if isinstance(b, Blossom):
|
528 |
+
queue.extend(b.leaves())
|
529 |
+
else:
|
530 |
+
queue.append(b)
|
531 |
+
elif t == 2:
|
532 |
+
# b became a T-vertex/blossom; assign label S to its mate.
|
533 |
+
# (If b is a non-trivial blossom, its base is the only vertex
|
534 |
+
# with an external mate.)
|
535 |
+
base = blossombase[b]
|
536 |
+
assignLabel(mate[base], 1, base)
|
537 |
+
|
538 |
+
# Trace back from vertices v and w to discover either a new blossom
|
539 |
+
# or an augmenting path. Return the base vertex of the new blossom,
|
540 |
+
# or NoNode if an augmenting path was found.
|
541 |
+
def scanBlossom(v, w):
|
542 |
+
# Trace back from v and w, placing breadcrumbs as we go.
|
543 |
+
path = []
|
544 |
+
base = NoNode
|
545 |
+
while v is not NoNode:
|
546 |
+
# Look for a breadcrumb in v's blossom or put a new breadcrumb.
|
547 |
+
b = inblossom[v]
|
548 |
+
if label[b] & 4:
|
549 |
+
base = blossombase[b]
|
550 |
+
break
|
551 |
+
assert label[b] == 1
|
552 |
+
path.append(b)
|
553 |
+
label[b] = 5
|
554 |
+
# Trace one step back.
|
555 |
+
if labeledge[b] is None:
|
556 |
+
# The base of blossom b is single; stop tracing this path.
|
557 |
+
assert blossombase[b] not in mate
|
558 |
+
v = NoNode
|
559 |
+
else:
|
560 |
+
assert labeledge[b][0] == mate[blossombase[b]]
|
561 |
+
v = labeledge[b][0]
|
562 |
+
b = inblossom[v]
|
563 |
+
assert label[b] == 2
|
564 |
+
# b is a T-blossom; trace one more step back.
|
565 |
+
v = labeledge[b][0]
|
566 |
+
# Swap v and w so that we alternate between both paths.
|
567 |
+
if w is not NoNode:
|
568 |
+
v, w = w, v
|
569 |
+
# Remove breadcrumbs.
|
570 |
+
for b in path:
|
571 |
+
label[b] = 1
|
572 |
+
# Return base vertex, if we found one.
|
573 |
+
return base
|
574 |
+
|
575 |
+
# Construct a new blossom with given base, through S-vertices v and w.
|
576 |
+
# Label the new blossom as S; set its dual variable to zero;
|
577 |
+
# relabel its T-vertices to S and add them to the queue.
|
578 |
+
def addBlossom(base, v, w):
|
579 |
+
bb = inblossom[base]
|
580 |
+
bv = inblossom[v]
|
581 |
+
bw = inblossom[w]
|
582 |
+
# Create blossom.
|
583 |
+
b = Blossom()
|
584 |
+
blossombase[b] = base
|
585 |
+
blossomparent[b] = None
|
586 |
+
blossomparent[bb] = b
|
587 |
+
# Make list of sub-blossoms and their interconnecting edge endpoints.
|
588 |
+
b.childs = path = []
|
589 |
+
b.edges = edgs = [(v, w)]
|
590 |
+
# Trace back from v to base.
|
591 |
+
while bv != bb:
|
592 |
+
# Add bv to the new blossom.
|
593 |
+
blossomparent[bv] = b
|
594 |
+
path.append(bv)
|
595 |
+
edgs.append(labeledge[bv])
|
596 |
+
assert label[bv] == 2 or (
|
597 |
+
label[bv] == 1 and labeledge[bv][0] == mate[blossombase[bv]]
|
598 |
+
)
|
599 |
+
# Trace one step back.
|
600 |
+
v = labeledge[bv][0]
|
601 |
+
bv = inblossom[v]
|
602 |
+
# Add base sub-blossom; reverse lists.
|
603 |
+
path.append(bb)
|
604 |
+
path.reverse()
|
605 |
+
edgs.reverse()
|
606 |
+
# Trace back from w to base.
|
607 |
+
while bw != bb:
|
608 |
+
# Add bw to the new blossom.
|
609 |
+
blossomparent[bw] = b
|
610 |
+
path.append(bw)
|
611 |
+
edgs.append((labeledge[bw][1], labeledge[bw][0]))
|
612 |
+
assert label[bw] == 2 or (
|
613 |
+
label[bw] == 1 and labeledge[bw][0] == mate[blossombase[bw]]
|
614 |
+
)
|
615 |
+
# Trace one step back.
|
616 |
+
w = labeledge[bw][0]
|
617 |
+
bw = inblossom[w]
|
618 |
+
# Set label to S.
|
619 |
+
assert label[bb] == 1
|
620 |
+
label[b] = 1
|
621 |
+
labeledge[b] = labeledge[bb]
|
622 |
+
# Set dual variable to zero.
|
623 |
+
blossomdual[b] = 0
|
624 |
+
# Relabel vertices.
|
625 |
+
for v in b.leaves():
|
626 |
+
if label[inblossom[v]] == 2:
|
627 |
+
# This T-vertex now turns into an S-vertex because it becomes
|
628 |
+
# part of an S-blossom; add it to the queue.
|
629 |
+
queue.append(v)
|
630 |
+
inblossom[v] = b
|
631 |
+
# Compute b.mybestedges.
|
632 |
+
bestedgeto = {}
|
633 |
+
for bv in path:
|
634 |
+
if isinstance(bv, Blossom):
|
635 |
+
if bv.mybestedges is not None:
|
636 |
+
# Walk this subblossom's least-slack edges.
|
637 |
+
nblist = bv.mybestedges
|
638 |
+
# The sub-blossom won't need this data again.
|
639 |
+
bv.mybestedges = None
|
640 |
+
else:
|
641 |
+
# This subblossom does not have a list of least-slack
|
642 |
+
# edges; get the information from the vertices.
|
643 |
+
nblist = [
|
644 |
+
(v, w) for v in bv.leaves() for w in G.neighbors(v) if v != w
|
645 |
+
]
|
646 |
+
else:
|
647 |
+
nblist = [(bv, w) for w in G.neighbors(bv) if bv != w]
|
648 |
+
for k in nblist:
|
649 |
+
(i, j) = k
|
650 |
+
if inblossom[j] == b:
|
651 |
+
i, j = j, i
|
652 |
+
bj = inblossom[j]
|
653 |
+
if (
|
654 |
+
bj != b
|
655 |
+
and label.get(bj) == 1
|
656 |
+
and ((bj not in bestedgeto) or slack(i, j) < slack(*bestedgeto[bj]))
|
657 |
+
):
|
658 |
+
bestedgeto[bj] = k
|
659 |
+
# Forget about least-slack edge of the subblossom.
|
660 |
+
bestedge[bv] = None
|
661 |
+
b.mybestedges = list(bestedgeto.values())
|
662 |
+
# Select bestedge[b].
|
663 |
+
mybestedge = None
|
664 |
+
bestedge[b] = None
|
665 |
+
for k in b.mybestedges:
|
666 |
+
kslack = slack(*k)
|
667 |
+
if mybestedge is None or kslack < mybestslack:
|
668 |
+
mybestedge = k
|
669 |
+
mybestslack = kslack
|
670 |
+
bestedge[b] = mybestedge
|
671 |
+
|
672 |
+
# Expand the given top-level blossom.
|
673 |
+
def expandBlossom(b, endstage):
|
674 |
+
# This is an obnoxiously complicated recursive function for the sake of
|
675 |
+
# a stack-transformation. So, we hack around the complexity by using
|
676 |
+
# a trampoline pattern. By yielding the arguments to each recursive
|
677 |
+
# call, we keep the actual callstack flat.
|
678 |
+
|
679 |
+
def _recurse(b, endstage):
|
680 |
+
# Convert sub-blossoms into top-level blossoms.
|
681 |
+
for s in b.childs:
|
682 |
+
blossomparent[s] = None
|
683 |
+
if isinstance(s, Blossom):
|
684 |
+
if endstage and blossomdual[s] == 0:
|
685 |
+
# Recursively expand this sub-blossom.
|
686 |
+
yield s
|
687 |
+
else:
|
688 |
+
for v in s.leaves():
|
689 |
+
inblossom[v] = s
|
690 |
+
else:
|
691 |
+
inblossom[s] = s
|
692 |
+
# If we expand a T-blossom during a stage, its sub-blossoms must be
|
693 |
+
# relabeled.
|
694 |
+
if (not endstage) and label.get(b) == 2:
|
695 |
+
# Start at the sub-blossom through which the expanding
|
696 |
+
# blossom obtained its label, and relabel sub-blossoms untili
|
697 |
+
# we reach the base.
|
698 |
+
# Figure out through which sub-blossom the expanding blossom
|
699 |
+
# obtained its label initially.
|
700 |
+
entrychild = inblossom[labeledge[b][1]]
|
701 |
+
# Decide in which direction we will go round the blossom.
|
702 |
+
j = b.childs.index(entrychild)
|
703 |
+
if j & 1:
|
704 |
+
# Start index is odd; go forward and wrap.
|
705 |
+
j -= len(b.childs)
|
706 |
+
jstep = 1
|
707 |
+
else:
|
708 |
+
# Start index is even; go backward.
|
709 |
+
jstep = -1
|
710 |
+
# Move along the blossom until we get to the base.
|
711 |
+
v, w = labeledge[b]
|
712 |
+
while j != 0:
|
713 |
+
# Relabel the T-sub-blossom.
|
714 |
+
if jstep == 1:
|
715 |
+
p, q = b.edges[j]
|
716 |
+
else:
|
717 |
+
q, p = b.edges[j - 1]
|
718 |
+
label[w] = None
|
719 |
+
label[q] = None
|
720 |
+
assignLabel(w, 2, v)
|
721 |
+
# Step to the next S-sub-blossom and note its forward edge.
|
722 |
+
allowedge[(p, q)] = allowedge[(q, p)] = True
|
723 |
+
j += jstep
|
724 |
+
if jstep == 1:
|
725 |
+
v, w = b.edges[j]
|
726 |
+
else:
|
727 |
+
w, v = b.edges[j - 1]
|
728 |
+
# Step to the next T-sub-blossom.
|
729 |
+
allowedge[(v, w)] = allowedge[(w, v)] = True
|
730 |
+
j += jstep
|
731 |
+
# Relabel the base T-sub-blossom WITHOUT stepping through to
|
732 |
+
# its mate (so don't call assignLabel).
|
733 |
+
bw = b.childs[j]
|
734 |
+
label[w] = label[bw] = 2
|
735 |
+
labeledge[w] = labeledge[bw] = (v, w)
|
736 |
+
bestedge[bw] = None
|
737 |
+
# Continue along the blossom until we get back to entrychild.
|
738 |
+
j += jstep
|
739 |
+
while b.childs[j] != entrychild:
|
740 |
+
# Examine the vertices of the sub-blossom to see whether
|
741 |
+
# it is reachable from a neighboring S-vertex outside the
|
742 |
+
# expanding blossom.
|
743 |
+
bv = b.childs[j]
|
744 |
+
if label.get(bv) == 1:
|
745 |
+
# This sub-blossom just got label S through one of its
|
746 |
+
# neighbors; leave it be.
|
747 |
+
j += jstep
|
748 |
+
continue
|
749 |
+
if isinstance(bv, Blossom):
|
750 |
+
for v in bv.leaves():
|
751 |
+
if label.get(v):
|
752 |
+
break
|
753 |
+
else:
|
754 |
+
v = bv
|
755 |
+
# If the sub-blossom contains a reachable vertex, assign
|
756 |
+
# label T to the sub-blossom.
|
757 |
+
if label.get(v):
|
758 |
+
assert label[v] == 2
|
759 |
+
assert inblossom[v] == bv
|
760 |
+
label[v] = None
|
761 |
+
label[mate[blossombase[bv]]] = None
|
762 |
+
assignLabel(v, 2, labeledge[v][0])
|
763 |
+
j += jstep
|
764 |
+
# Remove the expanded blossom entirely.
|
765 |
+
label.pop(b, None)
|
766 |
+
labeledge.pop(b, None)
|
767 |
+
bestedge.pop(b, None)
|
768 |
+
del blossomparent[b]
|
769 |
+
del blossombase[b]
|
770 |
+
del blossomdual[b]
|
771 |
+
|
772 |
+
# Now, we apply the trampoline pattern. We simulate a recursive
|
773 |
+
# callstack by maintaining a stack of generators, each yielding a
|
774 |
+
# sequence of function arguments. We grow the stack by appending a call
|
775 |
+
# to _recurse on each argument tuple, and shrink the stack whenever a
|
776 |
+
# generator is exhausted.
|
777 |
+
stack = [_recurse(b, endstage)]
|
778 |
+
while stack:
|
779 |
+
top = stack[-1]
|
780 |
+
for s in top:
|
781 |
+
stack.append(_recurse(s, endstage))
|
782 |
+
break
|
783 |
+
else:
|
784 |
+
stack.pop()
|
785 |
+
|
786 |
+
# Swap matched/unmatched edges over an alternating path through blossom b
|
787 |
+
# between vertex v and the base vertex. Keep blossom bookkeeping
|
788 |
+
# consistent.
|
789 |
+
def augmentBlossom(b, v):
|
790 |
+
# This is an obnoxiously complicated recursive function for the sake of
|
791 |
+
# a stack-transformation. So, we hack around the complexity by using
|
792 |
+
# a trampoline pattern. By yielding the arguments to each recursive
|
793 |
+
# call, we keep the actual callstack flat.
|
794 |
+
|
795 |
+
def _recurse(b, v):
|
796 |
+
# Bubble up through the blossom tree from vertex v to an immediate
|
797 |
+
# sub-blossom of b.
|
798 |
+
t = v
|
799 |
+
while blossomparent[t] != b:
|
800 |
+
t = blossomparent[t]
|
801 |
+
# Recursively deal with the first sub-blossom.
|
802 |
+
if isinstance(t, Blossom):
|
803 |
+
yield (t, v)
|
804 |
+
# Decide in which direction we will go round the blossom.
|
805 |
+
i = j = b.childs.index(t)
|
806 |
+
if i & 1:
|
807 |
+
# Start index is odd; go forward and wrap.
|
808 |
+
j -= len(b.childs)
|
809 |
+
jstep = 1
|
810 |
+
else:
|
811 |
+
# Start index is even; go backward.
|
812 |
+
jstep = -1
|
813 |
+
# Move along the blossom until we get to the base.
|
814 |
+
while j != 0:
|
815 |
+
# Step to the next sub-blossom and augment it recursively.
|
816 |
+
j += jstep
|
817 |
+
t = b.childs[j]
|
818 |
+
if jstep == 1:
|
819 |
+
w, x = b.edges[j]
|
820 |
+
else:
|
821 |
+
x, w = b.edges[j - 1]
|
822 |
+
if isinstance(t, Blossom):
|
823 |
+
yield (t, w)
|
824 |
+
# Step to the next sub-blossom and augment it recursively.
|
825 |
+
j += jstep
|
826 |
+
t = b.childs[j]
|
827 |
+
if isinstance(t, Blossom):
|
828 |
+
yield (t, x)
|
829 |
+
# Match the edge connecting those sub-blossoms.
|
830 |
+
mate[w] = x
|
831 |
+
mate[x] = w
|
832 |
+
# Rotate the list of sub-blossoms to put the new base at the front.
|
833 |
+
b.childs = b.childs[i:] + b.childs[:i]
|
834 |
+
b.edges = b.edges[i:] + b.edges[:i]
|
835 |
+
blossombase[b] = blossombase[b.childs[0]]
|
836 |
+
assert blossombase[b] == v
|
837 |
+
|
838 |
+
# Now, we apply the trampoline pattern. We simulate a recursive
|
839 |
+
# callstack by maintaining a stack of generators, each yielding a
|
840 |
+
# sequence of function arguments. We grow the stack by appending a call
|
841 |
+
# to _recurse on each argument tuple, and shrink the stack whenever a
|
842 |
+
# generator is exhausted.
|
843 |
+
stack = [_recurse(b, v)]
|
844 |
+
while stack:
|
845 |
+
top = stack[-1]
|
846 |
+
for args in top:
|
847 |
+
stack.append(_recurse(*args))
|
848 |
+
break
|
849 |
+
else:
|
850 |
+
stack.pop()
|
851 |
+
|
852 |
+
# Swap matched/unmatched edges over an alternating path between two
|
853 |
+
# single vertices. The augmenting path runs through S-vertices v and w.
|
854 |
+
def augmentMatching(v, w):
|
855 |
+
for s, j in ((v, w), (w, v)):
|
856 |
+
# Match vertex s to vertex j. Then trace back from s
|
857 |
+
# until we find a single vertex, swapping matched and unmatched
|
858 |
+
# edges as we go.
|
859 |
+
while 1:
|
860 |
+
bs = inblossom[s]
|
861 |
+
assert label[bs] == 1
|
862 |
+
assert (labeledge[bs] is None and blossombase[bs] not in mate) or (
|
863 |
+
labeledge[bs][0] == mate[blossombase[bs]]
|
864 |
+
)
|
865 |
+
# Augment through the S-blossom from s to base.
|
866 |
+
if isinstance(bs, Blossom):
|
867 |
+
augmentBlossom(bs, s)
|
868 |
+
# Update mate[s]
|
869 |
+
mate[s] = j
|
870 |
+
# Trace one step back.
|
871 |
+
if labeledge[bs] is None:
|
872 |
+
# Reached single vertex; stop.
|
873 |
+
break
|
874 |
+
t = labeledge[bs][0]
|
875 |
+
bt = inblossom[t]
|
876 |
+
assert label[bt] == 2
|
877 |
+
# Trace one more step back.
|
878 |
+
s, j = labeledge[bt]
|
879 |
+
# Augment through the T-blossom from j to base.
|
880 |
+
assert blossombase[bt] == t
|
881 |
+
if isinstance(bt, Blossom):
|
882 |
+
augmentBlossom(bt, j)
|
883 |
+
# Update mate[j]
|
884 |
+
mate[j] = s
|
885 |
+
|
886 |
+
# Verify that the optimum solution has been reached.
|
887 |
+
def verifyOptimum():
|
888 |
+
if maxcardinality:
|
889 |
+
# Vertices may have negative dual;
|
890 |
+
# find a constant non-negative number to add to all vertex duals.
|
891 |
+
vdualoffset = max(0, -min(dualvar.values()))
|
892 |
+
else:
|
893 |
+
vdualoffset = 0
|
894 |
+
# 0. all dual variables are non-negative
|
895 |
+
assert min(dualvar.values()) + vdualoffset >= 0
|
896 |
+
assert len(blossomdual) == 0 or min(blossomdual.values()) >= 0
|
897 |
+
# 0. all edges have non-negative slack and
|
898 |
+
# 1. all matched edges have zero slack;
|
899 |
+
for i, j, d in G.edges(data=True):
|
900 |
+
wt = d.get(weight, 1)
|
901 |
+
if i == j:
|
902 |
+
continue # ignore self-loops
|
903 |
+
s = dualvar[i] + dualvar[j] - 2 * wt
|
904 |
+
iblossoms = [i]
|
905 |
+
jblossoms = [j]
|
906 |
+
while blossomparent[iblossoms[-1]] is not None:
|
907 |
+
iblossoms.append(blossomparent[iblossoms[-1]])
|
908 |
+
while blossomparent[jblossoms[-1]] is not None:
|
909 |
+
jblossoms.append(blossomparent[jblossoms[-1]])
|
910 |
+
iblossoms.reverse()
|
911 |
+
jblossoms.reverse()
|
912 |
+
for bi, bj in zip(iblossoms, jblossoms):
|
913 |
+
if bi != bj:
|
914 |
+
break
|
915 |
+
s += 2 * blossomdual[bi]
|
916 |
+
assert s >= 0
|
917 |
+
if mate.get(i) == j or mate.get(j) == i:
|
918 |
+
assert mate[i] == j and mate[j] == i
|
919 |
+
assert s == 0
|
920 |
+
# 2. all single vertices have zero dual value;
|
921 |
+
for v in gnodes:
|
922 |
+
assert (v in mate) or dualvar[v] + vdualoffset == 0
|
923 |
+
# 3. all blossoms with positive dual value are full.
|
924 |
+
for b in blossomdual:
|
925 |
+
if blossomdual[b] > 0:
|
926 |
+
assert len(b.edges) % 2 == 1
|
927 |
+
for i, j in b.edges[1::2]:
|
928 |
+
assert mate[i] == j and mate[j] == i
|
929 |
+
# Ok.
|
930 |
+
|
931 |
+
# Main loop: continue until no further improvement is possible.
|
932 |
+
while 1:
|
933 |
+
# Each iteration of this loop is a "stage".
|
934 |
+
# A stage finds an augmenting path and uses that to improve
|
935 |
+
# the matching.
|
936 |
+
|
937 |
+
# Remove labels from top-level blossoms/vertices.
|
938 |
+
label.clear()
|
939 |
+
labeledge.clear()
|
940 |
+
|
941 |
+
# Forget all about least-slack edges.
|
942 |
+
bestedge.clear()
|
943 |
+
for b in blossomdual:
|
944 |
+
b.mybestedges = None
|
945 |
+
|
946 |
+
# Loss of labeling means that we can not be sure that currently
|
947 |
+
# allowable edges remain allowable throughout this stage.
|
948 |
+
allowedge.clear()
|
949 |
+
|
950 |
+
# Make queue empty.
|
951 |
+
queue[:] = []
|
952 |
+
|
953 |
+
# Label single blossoms/vertices with S and put them in the queue.
|
954 |
+
for v in gnodes:
|
955 |
+
if (v not in mate) and label.get(inblossom[v]) is None:
|
956 |
+
assignLabel(v, 1, None)
|
957 |
+
|
958 |
+
# Loop until we succeed in augmenting the matching.
|
959 |
+
augmented = 0
|
960 |
+
while 1:
|
961 |
+
# Each iteration of this loop is a "substage".
|
962 |
+
# A substage tries to find an augmenting path;
|
963 |
+
# if found, the path is used to improve the matching and
|
964 |
+
# the stage ends. If there is no augmenting path, the
|
965 |
+
# primal-dual method is used to pump some slack out of
|
966 |
+
# the dual variables.
|
967 |
+
|
968 |
+
# Continue labeling until all vertices which are reachable
|
969 |
+
# through an alternating path have got a label.
|
970 |
+
while queue and not augmented:
|
971 |
+
# Take an S vertex from the queue.
|
972 |
+
v = queue.pop()
|
973 |
+
assert label[inblossom[v]] == 1
|
974 |
+
|
975 |
+
# Scan its neighbors:
|
976 |
+
for w in G.neighbors(v):
|
977 |
+
if w == v:
|
978 |
+
continue # ignore self-loops
|
979 |
+
# w is a neighbor to v
|
980 |
+
bv = inblossom[v]
|
981 |
+
bw = inblossom[w]
|
982 |
+
if bv == bw:
|
983 |
+
# this edge is internal to a blossom; ignore it
|
984 |
+
continue
|
985 |
+
if (v, w) not in allowedge:
|
986 |
+
kslack = slack(v, w)
|
987 |
+
if kslack <= 0:
|
988 |
+
# edge k has zero slack => it is allowable
|
989 |
+
allowedge[(v, w)] = allowedge[(w, v)] = True
|
990 |
+
if (v, w) in allowedge:
|
991 |
+
if label.get(bw) is None:
|
992 |
+
# (C1) w is a free vertex;
|
993 |
+
# label w with T and label its mate with S (R12).
|
994 |
+
assignLabel(w, 2, v)
|
995 |
+
elif label.get(bw) == 1:
|
996 |
+
# (C2) w is an S-vertex (not in the same blossom);
|
997 |
+
# follow back-links to discover either an
|
998 |
+
# augmenting path or a new blossom.
|
999 |
+
base = scanBlossom(v, w)
|
1000 |
+
if base is not NoNode:
|
1001 |
+
# Found a new blossom; add it to the blossom
|
1002 |
+
# bookkeeping and turn it into an S-blossom.
|
1003 |
+
addBlossom(base, v, w)
|
1004 |
+
else:
|
1005 |
+
# Found an augmenting path; augment the
|
1006 |
+
# matching and end this stage.
|
1007 |
+
augmentMatching(v, w)
|
1008 |
+
augmented = 1
|
1009 |
+
break
|
1010 |
+
elif label.get(w) is None:
|
1011 |
+
# w is inside a T-blossom, but w itself has not
|
1012 |
+
# yet been reached from outside the blossom;
|
1013 |
+
# mark it as reached (we need this to relabel
|
1014 |
+
# during T-blossom expansion).
|
1015 |
+
assert label[bw] == 2
|
1016 |
+
label[w] = 2
|
1017 |
+
labeledge[w] = (v, w)
|
1018 |
+
elif label.get(bw) == 1:
|
1019 |
+
# keep track of the least-slack non-allowable edge to
|
1020 |
+
# a different S-blossom.
|
1021 |
+
if bestedge.get(bv) is None or kslack < slack(*bestedge[bv]):
|
1022 |
+
bestedge[bv] = (v, w)
|
1023 |
+
elif label.get(w) is None:
|
1024 |
+
# w is a free vertex (or an unreached vertex inside
|
1025 |
+
# a T-blossom) but we can not reach it yet;
|
1026 |
+
# keep track of the least-slack edge that reaches w.
|
1027 |
+
if bestedge.get(w) is None or kslack < slack(*bestedge[w]):
|
1028 |
+
bestedge[w] = (v, w)
|
1029 |
+
|
1030 |
+
if augmented:
|
1031 |
+
break
|
1032 |
+
|
1033 |
+
# There is no augmenting path under these constraints;
|
1034 |
+
# compute delta and reduce slack in the optimization problem.
|
1035 |
+
# (Note that our vertex dual variables, edge slacks and delta's
|
1036 |
+
# are pre-multiplied by two.)
|
1037 |
+
deltatype = -1
|
1038 |
+
delta = deltaedge = deltablossom = None
|
1039 |
+
|
1040 |
+
# Compute delta1: the minimum value of any vertex dual.
|
1041 |
+
if not maxcardinality:
|
1042 |
+
deltatype = 1
|
1043 |
+
delta = min(dualvar.values())
|
1044 |
+
|
1045 |
+
# Compute delta2: the minimum slack on any edge between
|
1046 |
+
# an S-vertex and a free vertex.
|
1047 |
+
for v in G.nodes():
|
1048 |
+
if label.get(inblossom[v]) is None and bestedge.get(v) is not None:
|
1049 |
+
d = slack(*bestedge[v])
|
1050 |
+
if deltatype == -1 or d < delta:
|
1051 |
+
delta = d
|
1052 |
+
deltatype = 2
|
1053 |
+
deltaedge = bestedge[v]
|
1054 |
+
|
1055 |
+
# Compute delta3: half the minimum slack on any edge between
|
1056 |
+
# a pair of S-blossoms.
|
1057 |
+
for b in blossomparent:
|
1058 |
+
if (
|
1059 |
+
blossomparent[b] is None
|
1060 |
+
and label.get(b) == 1
|
1061 |
+
and bestedge.get(b) is not None
|
1062 |
+
):
|
1063 |
+
kslack = slack(*bestedge[b])
|
1064 |
+
if allinteger:
|
1065 |
+
assert (kslack % 2) == 0
|
1066 |
+
d = kslack // 2
|
1067 |
+
else:
|
1068 |
+
d = kslack / 2.0
|
1069 |
+
if deltatype == -1 or d < delta:
|
1070 |
+
delta = d
|
1071 |
+
deltatype = 3
|
1072 |
+
deltaedge = bestedge[b]
|
1073 |
+
|
1074 |
+
# Compute delta4: minimum z variable of any T-blossom.
|
1075 |
+
for b in blossomdual:
|
1076 |
+
if (
|
1077 |
+
blossomparent[b] is None
|
1078 |
+
and label.get(b) == 2
|
1079 |
+
and (deltatype == -1 or blossomdual[b] < delta)
|
1080 |
+
):
|
1081 |
+
delta = blossomdual[b]
|
1082 |
+
deltatype = 4
|
1083 |
+
deltablossom = b
|
1084 |
+
|
1085 |
+
if deltatype == -1:
|
1086 |
+
# No further improvement possible; max-cardinality optimum
|
1087 |
+
# reached. Do a final delta update to make the optimum
|
1088 |
+
# verifiable.
|
1089 |
+
assert maxcardinality
|
1090 |
+
deltatype = 1
|
1091 |
+
delta = max(0, min(dualvar.values()))
|
1092 |
+
|
1093 |
+
# Update dual variables according to delta.
|
1094 |
+
for v in gnodes:
|
1095 |
+
if label.get(inblossom[v]) == 1:
|
1096 |
+
# S-vertex: 2*u = 2*u - 2*delta
|
1097 |
+
dualvar[v] -= delta
|
1098 |
+
elif label.get(inblossom[v]) == 2:
|
1099 |
+
# T-vertex: 2*u = 2*u + 2*delta
|
1100 |
+
dualvar[v] += delta
|
1101 |
+
for b in blossomdual:
|
1102 |
+
if blossomparent[b] is None:
|
1103 |
+
if label.get(b) == 1:
|
1104 |
+
# top-level S-blossom: z = z + 2*delta
|
1105 |
+
blossomdual[b] += delta
|
1106 |
+
elif label.get(b) == 2:
|
1107 |
+
# top-level T-blossom: z = z - 2*delta
|
1108 |
+
blossomdual[b] -= delta
|
1109 |
+
|
1110 |
+
# Take action at the point where minimum delta occurred.
|
1111 |
+
if deltatype == 1:
|
1112 |
+
# No further improvement possible; optimum reached.
|
1113 |
+
break
|
1114 |
+
elif deltatype == 2:
|
1115 |
+
# Use the least-slack edge to continue the search.
|
1116 |
+
(v, w) = deltaedge
|
1117 |
+
assert label[inblossom[v]] == 1
|
1118 |
+
allowedge[(v, w)] = allowedge[(w, v)] = True
|
1119 |
+
queue.append(v)
|
1120 |
+
elif deltatype == 3:
|
1121 |
+
# Use the least-slack edge to continue the search.
|
1122 |
+
(v, w) = deltaedge
|
1123 |
+
allowedge[(v, w)] = allowedge[(w, v)] = True
|
1124 |
+
assert label[inblossom[v]] == 1
|
1125 |
+
queue.append(v)
|
1126 |
+
elif deltatype == 4:
|
1127 |
+
# Expand the least-z blossom.
|
1128 |
+
expandBlossom(deltablossom, False)
|
1129 |
+
|
1130 |
+
# End of a this substage.
|
1131 |
+
|
1132 |
+
# Paranoia check that the matching is symmetric.
|
1133 |
+
for v in mate:
|
1134 |
+
assert mate[mate[v]] == v
|
1135 |
+
|
1136 |
+
# Stop when no more augmenting path can be found.
|
1137 |
+
if not augmented:
|
1138 |
+
break
|
1139 |
+
|
1140 |
+
# End of a stage; expand all S-blossoms which have zero dual.
|
1141 |
+
for b in list(blossomdual.keys()):
|
1142 |
+
if b not in blossomdual:
|
1143 |
+
continue # already expanded
|
1144 |
+
if blossomparent[b] is None and label.get(b) == 1 and blossomdual[b] == 0:
|
1145 |
+
expandBlossom(b, True)
|
1146 |
+
|
1147 |
+
# Verify that we reached the optimum solution (only for integer weights).
|
1148 |
+
if allinteger:
|
1149 |
+
verifyOptimum()
|
1150 |
+
|
1151 |
+
return matching_dict_to_set(mate)
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/mis.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Algorithm to find a maximal (not maximum) independent set.
|
3 |
+
|
4 |
+
"""
|
5 |
+
import networkx as nx
|
6 |
+
from networkx.utils import not_implemented_for, py_random_state
|
7 |
+
|
8 |
+
__all__ = ["maximal_independent_set"]
|
9 |
+
|
10 |
+
|
11 |
+
@not_implemented_for("directed")
|
12 |
+
@py_random_state(2)
|
13 |
+
@nx._dispatchable
|
14 |
+
def maximal_independent_set(G, nodes=None, seed=None):
|
15 |
+
"""Returns a random maximal independent set guaranteed to contain
|
16 |
+
a given set of nodes.
|
17 |
+
|
18 |
+
An independent set is a set of nodes such that the subgraph
|
19 |
+
of G induced by these nodes contains no edges. A maximal
|
20 |
+
independent set is an independent set such that it is not possible
|
21 |
+
to add a new node and still get an independent set.
|
22 |
+
|
23 |
+
Parameters
|
24 |
+
----------
|
25 |
+
G : NetworkX graph
|
26 |
+
|
27 |
+
nodes : list or iterable
|
28 |
+
Nodes that must be part of the independent set. This set of nodes
|
29 |
+
must be independent.
|
30 |
+
|
31 |
+
seed : integer, random_state, or None (default)
|
32 |
+
Indicator of random number generation state.
|
33 |
+
See :ref:`Randomness<randomness>`.
|
34 |
+
|
35 |
+
Returns
|
36 |
+
-------
|
37 |
+
indep_nodes : list
|
38 |
+
List of nodes that are part of a maximal independent set.
|
39 |
+
|
40 |
+
Raises
|
41 |
+
------
|
42 |
+
NetworkXUnfeasible
|
43 |
+
If the nodes in the provided list are not part of the graph or
|
44 |
+
do not form an independent set, an exception is raised.
|
45 |
+
|
46 |
+
NetworkXNotImplemented
|
47 |
+
If `G` is directed.
|
48 |
+
|
49 |
+
Examples
|
50 |
+
--------
|
51 |
+
>>> G = nx.path_graph(5)
|
52 |
+
>>> nx.maximal_independent_set(G) # doctest: +SKIP
|
53 |
+
[4, 0, 2]
|
54 |
+
>>> nx.maximal_independent_set(G, [1]) # doctest: +SKIP
|
55 |
+
[1, 3]
|
56 |
+
|
57 |
+
Notes
|
58 |
+
-----
|
59 |
+
This algorithm does not solve the maximum independent set problem.
|
60 |
+
|
61 |
+
"""
|
62 |
+
if not nodes:
|
63 |
+
nodes = {seed.choice(list(G))}
|
64 |
+
else:
|
65 |
+
nodes = set(nodes)
|
66 |
+
if not nodes.issubset(G):
|
67 |
+
raise nx.NetworkXUnfeasible(f"{nodes} is not a subset of the nodes of G")
|
68 |
+
neighbors = set.union(*[set(G.adj[v]) for v in nodes])
|
69 |
+
if set.intersection(neighbors, nodes):
|
70 |
+
raise nx.NetworkXUnfeasible(f"{nodes} is not an independent set of G")
|
71 |
+
indep_nodes = list(nodes)
|
72 |
+
available_nodes = set(G.nodes()).difference(neighbors.union(nodes))
|
73 |
+
while available_nodes:
|
74 |
+
node = seed.choice(list(available_nodes))
|
75 |
+
indep_nodes.append(node)
|
76 |
+
available_nodes.difference_update(list(G.adj[node]) + [node])
|
77 |
+
return indep_nodes
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/moral.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""Function for computing the moral graph of a directed graph."""
|
2 |
+
|
3 |
+
import itertools
|
4 |
+
|
5 |
+
import networkx as nx
|
6 |
+
from networkx.utils import not_implemented_for
|
7 |
+
|
8 |
+
__all__ = ["moral_graph"]
|
9 |
+
|
10 |
+
|
11 |
+
@not_implemented_for("undirected")
|
12 |
+
@nx._dispatchable(returns_graph=True)
|
13 |
+
def moral_graph(G):
|
14 |
+
r"""Return the Moral Graph
|
15 |
+
|
16 |
+
Returns the moralized graph of a given directed graph.
|
17 |
+
|
18 |
+
Parameters
|
19 |
+
----------
|
20 |
+
G : NetworkX graph
|
21 |
+
Directed graph
|
22 |
+
|
23 |
+
Returns
|
24 |
+
-------
|
25 |
+
H : NetworkX graph
|
26 |
+
The undirected moralized graph of G
|
27 |
+
|
28 |
+
Raises
|
29 |
+
------
|
30 |
+
NetworkXNotImplemented
|
31 |
+
If `G` is undirected.
|
32 |
+
|
33 |
+
Examples
|
34 |
+
--------
|
35 |
+
>>> G = nx.DiGraph([(1, 2), (2, 3), (2, 5), (3, 4), (4, 3)])
|
36 |
+
>>> G_moral = nx.moral_graph(G)
|
37 |
+
>>> G_moral.edges()
|
38 |
+
EdgeView([(1, 2), (2, 3), (2, 5), (2, 4), (3, 4)])
|
39 |
+
|
40 |
+
Notes
|
41 |
+
-----
|
42 |
+
A moral graph is an undirected graph H = (V, E) generated from a
|
43 |
+
directed Graph, where if a node has more than one parent node, edges
|
44 |
+
between these parent nodes are inserted and all directed edges become
|
45 |
+
undirected.
|
46 |
+
|
47 |
+
https://en.wikipedia.org/wiki/Moral_graph
|
48 |
+
|
49 |
+
References
|
50 |
+
----------
|
51 |
+
.. [1] Wray L. Buntine. 1995. Chain graphs for learning.
|
52 |
+
In Proceedings of the Eleventh conference on Uncertainty
|
53 |
+
in artificial intelligence (UAI'95)
|
54 |
+
"""
|
55 |
+
H = G.to_undirected()
|
56 |
+
for preds in G.pred.values():
|
57 |
+
predecessors_combinations = itertools.combinations(preds, r=2)
|
58 |
+
H.add_edges_from(predecessors_combinations)
|
59 |
+
return H
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/non_randomness.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r""" Computation of graph non-randomness
|
2 |
+
"""
|
3 |
+
|
4 |
+
import math
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.utils import not_implemented_for
|
8 |
+
|
9 |
+
__all__ = ["non_randomness"]
|
10 |
+
|
11 |
+
|
12 |
+
@not_implemented_for("directed")
|
13 |
+
@not_implemented_for("multigraph")
|
14 |
+
@nx._dispatchable(edge_attrs="weight")
|
15 |
+
def non_randomness(G, k=None, weight="weight"):
|
16 |
+
"""Compute the non-randomness of graph G.
|
17 |
+
|
18 |
+
The first returned value nr is the sum of non-randomness values of all
|
19 |
+
edges within the graph (where the non-randomness of an edge tends to be
|
20 |
+
small when the two nodes linked by that edge are from two different
|
21 |
+
communities).
|
22 |
+
|
23 |
+
The second computed value nr_rd is a relative measure that indicates
|
24 |
+
to what extent graph G is different from random graphs in terms
|
25 |
+
of probability. When it is close to 0, the graph tends to be more
|
26 |
+
likely generated by an Erdos Renyi model.
|
27 |
+
|
28 |
+
Parameters
|
29 |
+
----------
|
30 |
+
G : NetworkX graph
|
31 |
+
Graph must be symmetric, connected, and without self-loops.
|
32 |
+
|
33 |
+
k : int
|
34 |
+
The number of communities in G.
|
35 |
+
If k is not set, the function will use a default community
|
36 |
+
detection algorithm to set it.
|
37 |
+
|
38 |
+
weight : string or None, optional (default=None)
|
39 |
+
The name of an edge attribute that holds the numerical value used
|
40 |
+
as a weight. If None, then each edge has weight 1, i.e., the graph is
|
41 |
+
binary.
|
42 |
+
|
43 |
+
Returns
|
44 |
+
-------
|
45 |
+
non-randomness : (float, float) tuple
|
46 |
+
Non-randomness, Relative non-randomness w.r.t.
|
47 |
+
Erdos Renyi random graphs.
|
48 |
+
|
49 |
+
Raises
|
50 |
+
------
|
51 |
+
NetworkXException
|
52 |
+
if the input graph is not connected.
|
53 |
+
NetworkXError
|
54 |
+
if the input graph contains self-loops.
|
55 |
+
|
56 |
+
Examples
|
57 |
+
--------
|
58 |
+
>>> G = nx.karate_club_graph()
|
59 |
+
>>> nr, nr_rd = nx.non_randomness(G, 2)
|
60 |
+
>>> nr, nr_rd = nx.non_randomness(G, 2, "weight")
|
61 |
+
|
62 |
+
Notes
|
63 |
+
-----
|
64 |
+
This computes Eq. (4.4) and (4.5) in Ref. [1]_.
|
65 |
+
|
66 |
+
If a weight field is passed, this algorithm will use the eigenvalues
|
67 |
+
of the weighted adjacency matrix to compute Eq. (4.4) and (4.5).
|
68 |
+
|
69 |
+
References
|
70 |
+
----------
|
71 |
+
.. [1] Xiaowei Ying and Xintao Wu,
|
72 |
+
On Randomness Measures for Social Networks,
|
73 |
+
SIAM International Conference on Data Mining. 2009
|
74 |
+
"""
|
75 |
+
import numpy as np
|
76 |
+
|
77 |
+
if not nx.is_connected(G):
|
78 |
+
raise nx.NetworkXException("Non connected graph.")
|
79 |
+
if len(list(nx.selfloop_edges(G))) > 0:
|
80 |
+
raise nx.NetworkXError("Graph must not contain self-loops")
|
81 |
+
|
82 |
+
if k is None:
|
83 |
+
k = len(tuple(nx.community.label_propagation_communities(G)))
|
84 |
+
|
85 |
+
# eq. 4.4
|
86 |
+
eigenvalues = np.linalg.eigvals(nx.to_numpy_array(G, weight=weight))
|
87 |
+
nr = float(np.real(np.sum(eigenvalues[:k])))
|
88 |
+
|
89 |
+
n = G.number_of_nodes()
|
90 |
+
m = G.number_of_edges()
|
91 |
+
p = (2 * k * m) / (n * (n - k))
|
92 |
+
|
93 |
+
# eq. 4.5
|
94 |
+
nr_rd = (nr - ((n - 2 * k) * p + k)) / math.sqrt(2 * k * p * (1 - p))
|
95 |
+
|
96 |
+
return nr, nr_rd
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/planar_drawing.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
|
5 |
+
__all__ = ["combinatorial_embedding_to_pos"]
|
6 |
+
|
7 |
+
|
8 |
+
def combinatorial_embedding_to_pos(embedding, fully_triangulate=False):
|
9 |
+
"""Assigns every node a (x, y) position based on the given embedding
|
10 |
+
|
11 |
+
The algorithm iteratively inserts nodes of the input graph in a certain
|
12 |
+
order and rearranges previously inserted nodes so that the planar drawing
|
13 |
+
stays valid. This is done efficiently by only maintaining relative
|
14 |
+
positions during the node placements and calculating the absolute positions
|
15 |
+
at the end. For more information see [1]_.
|
16 |
+
|
17 |
+
Parameters
|
18 |
+
----------
|
19 |
+
embedding : nx.PlanarEmbedding
|
20 |
+
This defines the order of the edges
|
21 |
+
|
22 |
+
fully_triangulate : bool
|
23 |
+
If set to True the algorithm adds edges to a copy of the input
|
24 |
+
embedding and makes it chordal.
|
25 |
+
|
26 |
+
Returns
|
27 |
+
-------
|
28 |
+
pos : dict
|
29 |
+
Maps each node to a tuple that defines the (x, y) position
|
30 |
+
|
31 |
+
References
|
32 |
+
----------
|
33 |
+
.. [1] M. Chrobak and T.H. Payne:
|
34 |
+
A Linear-time Algorithm for Drawing a Planar Graph on a Grid 1989
|
35 |
+
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.6677
|
36 |
+
|
37 |
+
"""
|
38 |
+
if len(embedding.nodes()) < 4:
|
39 |
+
# Position the node in any triangle
|
40 |
+
default_positions = [(0, 0), (2, 0), (1, 1)]
|
41 |
+
pos = {}
|
42 |
+
for i, v in enumerate(embedding.nodes()):
|
43 |
+
pos[v] = default_positions[i]
|
44 |
+
return pos
|
45 |
+
|
46 |
+
embedding, outer_face = triangulate_embedding(embedding, fully_triangulate)
|
47 |
+
|
48 |
+
# The following dicts map a node to another node
|
49 |
+
# If a node is not in the key set it means that the node is not yet in G_k
|
50 |
+
# If a node maps to None then the corresponding subtree does not exist
|
51 |
+
left_t_child = {}
|
52 |
+
right_t_child = {}
|
53 |
+
|
54 |
+
# The following dicts map a node to an integer
|
55 |
+
delta_x = {}
|
56 |
+
y_coordinate = {}
|
57 |
+
|
58 |
+
node_list = get_canonical_ordering(embedding, outer_face)
|
59 |
+
|
60 |
+
# 1. Phase: Compute relative positions
|
61 |
+
|
62 |
+
# Initialization
|
63 |
+
v1, v2, v3 = node_list[0][0], node_list[1][0], node_list[2][0]
|
64 |
+
|
65 |
+
delta_x[v1] = 0
|
66 |
+
y_coordinate[v1] = 0
|
67 |
+
right_t_child[v1] = v3
|
68 |
+
left_t_child[v1] = None
|
69 |
+
|
70 |
+
delta_x[v2] = 1
|
71 |
+
y_coordinate[v2] = 0
|
72 |
+
right_t_child[v2] = None
|
73 |
+
left_t_child[v2] = None
|
74 |
+
|
75 |
+
delta_x[v3] = 1
|
76 |
+
y_coordinate[v3] = 1
|
77 |
+
right_t_child[v3] = v2
|
78 |
+
left_t_child[v3] = None
|
79 |
+
|
80 |
+
for k in range(3, len(node_list)):
|
81 |
+
vk, contour_nbrs = node_list[k]
|
82 |
+
wp = contour_nbrs[0]
|
83 |
+
wp1 = contour_nbrs[1]
|
84 |
+
wq = contour_nbrs[-1]
|
85 |
+
wq1 = contour_nbrs[-2]
|
86 |
+
adds_mult_tri = len(contour_nbrs) > 2
|
87 |
+
|
88 |
+
# Stretch gaps:
|
89 |
+
delta_x[wp1] += 1
|
90 |
+
delta_x[wq] += 1
|
91 |
+
|
92 |
+
delta_x_wp_wq = sum(delta_x[x] for x in contour_nbrs[1:])
|
93 |
+
|
94 |
+
# Adjust offsets
|
95 |
+
delta_x[vk] = (-y_coordinate[wp] + delta_x_wp_wq + y_coordinate[wq]) // 2
|
96 |
+
y_coordinate[vk] = (y_coordinate[wp] + delta_x_wp_wq + y_coordinate[wq]) // 2
|
97 |
+
delta_x[wq] = delta_x_wp_wq - delta_x[vk]
|
98 |
+
if adds_mult_tri:
|
99 |
+
delta_x[wp1] -= delta_x[vk]
|
100 |
+
|
101 |
+
# Install v_k:
|
102 |
+
right_t_child[wp] = vk
|
103 |
+
right_t_child[vk] = wq
|
104 |
+
if adds_mult_tri:
|
105 |
+
left_t_child[vk] = wp1
|
106 |
+
right_t_child[wq1] = None
|
107 |
+
else:
|
108 |
+
left_t_child[vk] = None
|
109 |
+
|
110 |
+
# 2. Phase: Set absolute positions
|
111 |
+
pos = {}
|
112 |
+
pos[v1] = (0, y_coordinate[v1])
|
113 |
+
remaining_nodes = [v1]
|
114 |
+
while remaining_nodes:
|
115 |
+
parent_node = remaining_nodes.pop()
|
116 |
+
|
117 |
+
# Calculate position for left child
|
118 |
+
set_position(
|
119 |
+
parent_node, left_t_child, remaining_nodes, delta_x, y_coordinate, pos
|
120 |
+
)
|
121 |
+
# Calculate position for right child
|
122 |
+
set_position(
|
123 |
+
parent_node, right_t_child, remaining_nodes, delta_x, y_coordinate, pos
|
124 |
+
)
|
125 |
+
return pos
|
126 |
+
|
127 |
+
|
128 |
+
def set_position(parent, tree, remaining_nodes, delta_x, y_coordinate, pos):
|
129 |
+
"""Helper method to calculate the absolute position of nodes."""
|
130 |
+
child = tree[parent]
|
131 |
+
parent_node_x = pos[parent][0]
|
132 |
+
if child is not None:
|
133 |
+
# Calculate pos of child
|
134 |
+
child_x = parent_node_x + delta_x[child]
|
135 |
+
pos[child] = (child_x, y_coordinate[child])
|
136 |
+
# Remember to calculate pos of its children
|
137 |
+
remaining_nodes.append(child)
|
138 |
+
|
139 |
+
|
140 |
+
def get_canonical_ordering(embedding, outer_face):
|
141 |
+
"""Returns a canonical ordering of the nodes
|
142 |
+
|
143 |
+
The canonical ordering of nodes (v1, ..., vn) must fulfill the following
|
144 |
+
conditions:
|
145 |
+
(See Lemma 1 in [2]_)
|
146 |
+
|
147 |
+
- For the subgraph G_k of the input graph induced by v1, ..., vk it holds:
|
148 |
+
- 2-connected
|
149 |
+
- internally triangulated
|
150 |
+
- the edge (v1, v2) is part of the outer face
|
151 |
+
- For a node v(k+1) the following holds:
|
152 |
+
- The node v(k+1) is part of the outer face of G_k
|
153 |
+
- It has at least two neighbors in G_k
|
154 |
+
- All neighbors of v(k+1) in G_k lie consecutively on the outer face of
|
155 |
+
G_k (excluding the edge (v1, v2)).
|
156 |
+
|
157 |
+
The algorithm used here starts with G_n (containing all nodes). It first
|
158 |
+
selects the nodes v1 and v2. And then tries to find the order of the other
|
159 |
+
nodes by checking which node can be removed in order to fulfill the
|
160 |
+
conditions mentioned above. This is done by calculating the number of
|
161 |
+
chords of nodes on the outer face. For more information see [1]_.
|
162 |
+
|
163 |
+
Parameters
|
164 |
+
----------
|
165 |
+
embedding : nx.PlanarEmbedding
|
166 |
+
The embedding must be triangulated
|
167 |
+
outer_face : list
|
168 |
+
The nodes on the outer face of the graph
|
169 |
+
|
170 |
+
Returns
|
171 |
+
-------
|
172 |
+
ordering : list
|
173 |
+
A list of tuples `(vk, wp_wq)`. Here `vk` is the node at this position
|
174 |
+
in the canonical ordering. The element `wp_wq` is a list of nodes that
|
175 |
+
make up the outer face of G_k.
|
176 |
+
|
177 |
+
References
|
178 |
+
----------
|
179 |
+
.. [1] Steven Chaplick.
|
180 |
+
Canonical Orders of Planar Graphs and (some of) Their Applications 2015
|
181 |
+
https://wuecampus2.uni-wuerzburg.de/moodle/pluginfile.php/545727/mod_resource/content/0/vg-ss15-vl03-canonical-orders-druckversion.pdf
|
182 |
+
.. [2] M. Chrobak and T.H. Payne:
|
183 |
+
A Linear-time Algorithm for Drawing a Planar Graph on a Grid 1989
|
184 |
+
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.6677
|
185 |
+
|
186 |
+
"""
|
187 |
+
v1 = outer_face[0]
|
188 |
+
v2 = outer_face[1]
|
189 |
+
chords = defaultdict(int) # Maps nodes to the number of their chords
|
190 |
+
marked_nodes = set()
|
191 |
+
ready_to_pick = set(outer_face)
|
192 |
+
|
193 |
+
# Initialize outer_face_ccw_nbr (do not include v1 -> v2)
|
194 |
+
outer_face_ccw_nbr = {}
|
195 |
+
prev_nbr = v2
|
196 |
+
for idx in range(2, len(outer_face)):
|
197 |
+
outer_face_ccw_nbr[prev_nbr] = outer_face[idx]
|
198 |
+
prev_nbr = outer_face[idx]
|
199 |
+
outer_face_ccw_nbr[prev_nbr] = v1
|
200 |
+
|
201 |
+
# Initialize outer_face_cw_nbr (do not include v2 -> v1)
|
202 |
+
outer_face_cw_nbr = {}
|
203 |
+
prev_nbr = v1
|
204 |
+
for idx in range(len(outer_face) - 1, 0, -1):
|
205 |
+
outer_face_cw_nbr[prev_nbr] = outer_face[idx]
|
206 |
+
prev_nbr = outer_face[idx]
|
207 |
+
|
208 |
+
def is_outer_face_nbr(x, y):
|
209 |
+
if x not in outer_face_ccw_nbr:
|
210 |
+
return outer_face_cw_nbr[x] == y
|
211 |
+
if x not in outer_face_cw_nbr:
|
212 |
+
return outer_face_ccw_nbr[x] == y
|
213 |
+
return outer_face_ccw_nbr[x] == y or outer_face_cw_nbr[x] == y
|
214 |
+
|
215 |
+
def is_on_outer_face(x):
|
216 |
+
return x not in marked_nodes and (x in outer_face_ccw_nbr or x == v1)
|
217 |
+
|
218 |
+
# Initialize number of chords
|
219 |
+
for v in outer_face:
|
220 |
+
for nbr in embedding.neighbors_cw_order(v):
|
221 |
+
if is_on_outer_face(nbr) and not is_outer_face_nbr(v, nbr):
|
222 |
+
chords[v] += 1
|
223 |
+
ready_to_pick.discard(v)
|
224 |
+
|
225 |
+
# Initialize canonical_ordering
|
226 |
+
canonical_ordering = [None] * len(embedding.nodes())
|
227 |
+
canonical_ordering[0] = (v1, [])
|
228 |
+
canonical_ordering[1] = (v2, [])
|
229 |
+
ready_to_pick.discard(v1)
|
230 |
+
ready_to_pick.discard(v2)
|
231 |
+
|
232 |
+
for k in range(len(embedding.nodes()) - 1, 1, -1):
|
233 |
+
# 1. Pick v from ready_to_pick
|
234 |
+
v = ready_to_pick.pop()
|
235 |
+
marked_nodes.add(v)
|
236 |
+
|
237 |
+
# v has exactly two neighbors on the outer face (wp and wq)
|
238 |
+
wp = None
|
239 |
+
wq = None
|
240 |
+
# Iterate over neighbors of v to find wp and wq
|
241 |
+
nbr_iterator = iter(embedding.neighbors_cw_order(v))
|
242 |
+
while True:
|
243 |
+
nbr = next(nbr_iterator)
|
244 |
+
if nbr in marked_nodes:
|
245 |
+
# Only consider nodes that are not yet removed
|
246 |
+
continue
|
247 |
+
if is_on_outer_face(nbr):
|
248 |
+
# nbr is either wp or wq
|
249 |
+
if nbr == v1:
|
250 |
+
wp = v1
|
251 |
+
elif nbr == v2:
|
252 |
+
wq = v2
|
253 |
+
else:
|
254 |
+
if outer_face_cw_nbr[nbr] == v:
|
255 |
+
# nbr is wp
|
256 |
+
wp = nbr
|
257 |
+
else:
|
258 |
+
# nbr is wq
|
259 |
+
wq = nbr
|
260 |
+
if wp is not None and wq is not None:
|
261 |
+
# We don't need to iterate any further
|
262 |
+
break
|
263 |
+
|
264 |
+
# Obtain new nodes on outer face (neighbors of v from wp to wq)
|
265 |
+
wp_wq = [wp]
|
266 |
+
nbr = wp
|
267 |
+
while nbr != wq:
|
268 |
+
# Get next neighbor (clockwise on the outer face)
|
269 |
+
next_nbr = embedding[v][nbr]["ccw"]
|
270 |
+
wp_wq.append(next_nbr)
|
271 |
+
# Update outer face
|
272 |
+
outer_face_cw_nbr[nbr] = next_nbr
|
273 |
+
outer_face_ccw_nbr[next_nbr] = nbr
|
274 |
+
# Move to next neighbor of v
|
275 |
+
nbr = next_nbr
|
276 |
+
|
277 |
+
if len(wp_wq) == 2:
|
278 |
+
# There was a chord between wp and wq, decrease number of chords
|
279 |
+
chords[wp] -= 1
|
280 |
+
if chords[wp] == 0:
|
281 |
+
ready_to_pick.add(wp)
|
282 |
+
chords[wq] -= 1
|
283 |
+
if chords[wq] == 0:
|
284 |
+
ready_to_pick.add(wq)
|
285 |
+
else:
|
286 |
+
# Update all chords involving w_(p+1) to w_(q-1)
|
287 |
+
new_face_nodes = set(wp_wq[1:-1])
|
288 |
+
for w in new_face_nodes:
|
289 |
+
# If we do not find a chord for w later we can pick it next
|
290 |
+
ready_to_pick.add(w)
|
291 |
+
for nbr in embedding.neighbors_cw_order(w):
|
292 |
+
if is_on_outer_face(nbr) and not is_outer_face_nbr(w, nbr):
|
293 |
+
# There is a chord involving w
|
294 |
+
chords[w] += 1
|
295 |
+
ready_to_pick.discard(w)
|
296 |
+
if nbr not in new_face_nodes:
|
297 |
+
# Also increase chord for the neighbor
|
298 |
+
# We only iterator over new_face_nodes
|
299 |
+
chords[nbr] += 1
|
300 |
+
ready_to_pick.discard(nbr)
|
301 |
+
# Set the canonical ordering node and the list of contour neighbors
|
302 |
+
canonical_ordering[k] = (v, wp_wq)
|
303 |
+
|
304 |
+
return canonical_ordering
|
305 |
+
|
306 |
+
|
307 |
+
def triangulate_face(embedding, v1, v2):
|
308 |
+
"""Triangulates the face given by half edge (v, w)
|
309 |
+
|
310 |
+
Parameters
|
311 |
+
----------
|
312 |
+
embedding : nx.PlanarEmbedding
|
313 |
+
v1 : node
|
314 |
+
The half-edge (v1, v2) belongs to the face that gets triangulated
|
315 |
+
v2 : node
|
316 |
+
"""
|
317 |
+
_, v3 = embedding.next_face_half_edge(v1, v2)
|
318 |
+
_, v4 = embedding.next_face_half_edge(v2, v3)
|
319 |
+
if v1 in (v2, v3):
|
320 |
+
# The component has less than 3 nodes
|
321 |
+
return
|
322 |
+
while v1 != v4:
|
323 |
+
# Add edge if not already present on other side
|
324 |
+
if embedding.has_edge(v1, v3):
|
325 |
+
# Cannot triangulate at this position
|
326 |
+
v1, v2, v3 = v2, v3, v4
|
327 |
+
else:
|
328 |
+
# Add edge for triangulation
|
329 |
+
embedding.add_half_edge(v1, v3, ccw=v2)
|
330 |
+
embedding.add_half_edge(v3, v1, cw=v2)
|
331 |
+
v1, v2, v3 = v1, v3, v4
|
332 |
+
# Get next node
|
333 |
+
_, v4 = embedding.next_face_half_edge(v2, v3)
|
334 |
+
|
335 |
+
|
336 |
+
def triangulate_embedding(embedding, fully_triangulate=True):
|
337 |
+
"""Triangulates the embedding.
|
338 |
+
|
339 |
+
Traverses faces of the embedding and adds edges to a copy of the
|
340 |
+
embedding to triangulate it.
|
341 |
+
The method also ensures that the resulting graph is 2-connected by adding
|
342 |
+
edges if the same vertex is contained twice on a path around a face.
|
343 |
+
|
344 |
+
Parameters
|
345 |
+
----------
|
346 |
+
embedding : nx.PlanarEmbedding
|
347 |
+
The input graph must contain at least 3 nodes.
|
348 |
+
|
349 |
+
fully_triangulate : bool
|
350 |
+
If set to False the face with the most nodes is chooses as outer face.
|
351 |
+
This outer face does not get triangulated.
|
352 |
+
|
353 |
+
Returns
|
354 |
+
-------
|
355 |
+
(embedding, outer_face) : (nx.PlanarEmbedding, list) tuple
|
356 |
+
The element `embedding` is a new embedding containing all edges from
|
357 |
+
the input embedding and the additional edges to triangulate the graph.
|
358 |
+
The element `outer_face` is a list of nodes that lie on the outer face.
|
359 |
+
If the graph is fully triangulated these are three arbitrary connected
|
360 |
+
nodes.
|
361 |
+
|
362 |
+
"""
|
363 |
+
if len(embedding.nodes) <= 1:
|
364 |
+
return embedding, list(embedding.nodes)
|
365 |
+
embedding = nx.PlanarEmbedding(embedding)
|
366 |
+
|
367 |
+
# Get a list with a node for each connected component
|
368 |
+
component_nodes = [next(iter(x)) for x in nx.connected_components(embedding)]
|
369 |
+
|
370 |
+
# 1. Make graph a single component (add edge between components)
|
371 |
+
for i in range(len(component_nodes) - 1):
|
372 |
+
v1 = component_nodes[i]
|
373 |
+
v2 = component_nodes[i + 1]
|
374 |
+
embedding.connect_components(v1, v2)
|
375 |
+
|
376 |
+
# 2. Calculate faces, ensure 2-connectedness and determine outer face
|
377 |
+
outer_face = [] # A face with the most number of nodes
|
378 |
+
face_list = []
|
379 |
+
edges_visited = set() # Used to keep track of already visited faces
|
380 |
+
for v in embedding.nodes():
|
381 |
+
for w in embedding.neighbors_cw_order(v):
|
382 |
+
new_face = make_bi_connected(embedding, v, w, edges_visited)
|
383 |
+
if new_face:
|
384 |
+
# Found a new face
|
385 |
+
face_list.append(new_face)
|
386 |
+
if len(new_face) > len(outer_face):
|
387 |
+
# The face is a candidate to be the outer face
|
388 |
+
outer_face = new_face
|
389 |
+
|
390 |
+
# 3. Triangulate (internal) faces
|
391 |
+
for face in face_list:
|
392 |
+
if face is not outer_face or fully_triangulate:
|
393 |
+
# Triangulate this face
|
394 |
+
triangulate_face(embedding, face[0], face[1])
|
395 |
+
|
396 |
+
if fully_triangulate:
|
397 |
+
v1 = outer_face[0]
|
398 |
+
v2 = outer_face[1]
|
399 |
+
v3 = embedding[v2][v1]["ccw"]
|
400 |
+
outer_face = [v1, v2, v3]
|
401 |
+
|
402 |
+
return embedding, outer_face
|
403 |
+
|
404 |
+
|
405 |
+
def make_bi_connected(embedding, starting_node, outgoing_node, edges_counted):
|
406 |
+
"""Triangulate a face and make it 2-connected
|
407 |
+
|
408 |
+
This method also adds all edges on the face to `edges_counted`.
|
409 |
+
|
410 |
+
Parameters
|
411 |
+
----------
|
412 |
+
embedding: nx.PlanarEmbedding
|
413 |
+
The embedding that defines the faces
|
414 |
+
starting_node : node
|
415 |
+
A node on the face
|
416 |
+
outgoing_node : node
|
417 |
+
A node such that the half edge (starting_node, outgoing_node) belongs
|
418 |
+
to the face
|
419 |
+
edges_counted: set
|
420 |
+
Set of all half-edges that belong to a face that have been visited
|
421 |
+
|
422 |
+
Returns
|
423 |
+
-------
|
424 |
+
face_nodes: list
|
425 |
+
A list of all nodes at the border of this face
|
426 |
+
"""
|
427 |
+
|
428 |
+
# Check if the face has already been calculated
|
429 |
+
if (starting_node, outgoing_node) in edges_counted:
|
430 |
+
# This face was already counted
|
431 |
+
return []
|
432 |
+
edges_counted.add((starting_node, outgoing_node))
|
433 |
+
|
434 |
+
# Add all edges to edges_counted which have this face to their left
|
435 |
+
v1 = starting_node
|
436 |
+
v2 = outgoing_node
|
437 |
+
face_list = [starting_node] # List of nodes around the face
|
438 |
+
face_set = set(face_list) # Set for faster queries
|
439 |
+
_, v3 = embedding.next_face_half_edge(v1, v2)
|
440 |
+
|
441 |
+
# Move the nodes v1, v2, v3 around the face:
|
442 |
+
while v2 != starting_node or v3 != outgoing_node:
|
443 |
+
if v1 == v2:
|
444 |
+
raise nx.NetworkXException("Invalid half-edge")
|
445 |
+
# cycle is not completed yet
|
446 |
+
if v2 in face_set:
|
447 |
+
# v2 encountered twice: Add edge to ensure 2-connectedness
|
448 |
+
embedding.add_half_edge(v1, v3, ccw=v2)
|
449 |
+
embedding.add_half_edge(v3, v1, cw=v2)
|
450 |
+
edges_counted.add((v2, v3))
|
451 |
+
edges_counted.add((v3, v1))
|
452 |
+
v2 = v1
|
453 |
+
else:
|
454 |
+
face_set.add(v2)
|
455 |
+
face_list.append(v2)
|
456 |
+
|
457 |
+
# set next edge
|
458 |
+
v1 = v2
|
459 |
+
v2, v3 = embedding.next_face_half_edge(v2, v3)
|
460 |
+
|
461 |
+
# remember that this edge has been counted
|
462 |
+
edges_counted.add((v1, v2))
|
463 |
+
|
464 |
+
return face_list
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/reciprocity.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Algorithms to calculate reciprocity in a directed graph."""
|
2 |
+
import networkx as nx
|
3 |
+
from networkx import NetworkXError
|
4 |
+
|
5 |
+
from ..utils import not_implemented_for
|
6 |
+
|
7 |
+
__all__ = ["reciprocity", "overall_reciprocity"]
|
8 |
+
|
9 |
+
|
10 |
+
@not_implemented_for("undirected", "multigraph")
|
11 |
+
@nx._dispatchable
|
12 |
+
def reciprocity(G, nodes=None):
|
13 |
+
r"""Compute the reciprocity in a directed graph.
|
14 |
+
|
15 |
+
The reciprocity of a directed graph is defined as the ratio
|
16 |
+
of the number of edges pointing in both directions to the total
|
17 |
+
number of edges in the graph.
|
18 |
+
Formally, $r = |{(u,v) \in G|(v,u) \in G}| / |{(u,v) \in G}|$.
|
19 |
+
|
20 |
+
The reciprocity of a single node u is defined similarly,
|
21 |
+
it is the ratio of the number of edges in both directions to
|
22 |
+
the total number of edges attached to node u.
|
23 |
+
|
24 |
+
Parameters
|
25 |
+
----------
|
26 |
+
G : graph
|
27 |
+
A networkx directed graph
|
28 |
+
nodes : container of nodes, optional (default=whole graph)
|
29 |
+
Compute reciprocity for nodes in this container.
|
30 |
+
|
31 |
+
Returns
|
32 |
+
-------
|
33 |
+
out : dictionary
|
34 |
+
Reciprocity keyed by node label.
|
35 |
+
|
36 |
+
Notes
|
37 |
+
-----
|
38 |
+
The reciprocity is not defined for isolated nodes.
|
39 |
+
In such cases this function will return None.
|
40 |
+
|
41 |
+
"""
|
42 |
+
# If `nodes` is not specified, calculate the reciprocity of the graph.
|
43 |
+
if nodes is None:
|
44 |
+
return overall_reciprocity(G)
|
45 |
+
|
46 |
+
# If `nodes` represents a single node in the graph, return only its
|
47 |
+
# reciprocity.
|
48 |
+
if nodes in G:
|
49 |
+
reciprocity = next(_reciprocity_iter(G, nodes))[1]
|
50 |
+
if reciprocity is None:
|
51 |
+
raise NetworkXError("Not defined for isolated nodes.")
|
52 |
+
else:
|
53 |
+
return reciprocity
|
54 |
+
|
55 |
+
# Otherwise, `nodes` represents an iterable of nodes, so return a
|
56 |
+
# dictionary mapping node to its reciprocity.
|
57 |
+
return dict(_reciprocity_iter(G, nodes))
|
58 |
+
|
59 |
+
|
60 |
+
def _reciprocity_iter(G, nodes):
|
61 |
+
"""Return an iterator of (node, reciprocity)."""
|
62 |
+
n = G.nbunch_iter(nodes)
|
63 |
+
for node in n:
|
64 |
+
pred = set(G.predecessors(node))
|
65 |
+
succ = set(G.successors(node))
|
66 |
+
overlap = pred & succ
|
67 |
+
n_total = len(pred) + len(succ)
|
68 |
+
|
69 |
+
# Reciprocity is not defined for isolated nodes.
|
70 |
+
# Return None.
|
71 |
+
if n_total == 0:
|
72 |
+
yield (node, None)
|
73 |
+
else:
|
74 |
+
reciprocity = 2 * len(overlap) / n_total
|
75 |
+
yield (node, reciprocity)
|
76 |
+
|
77 |
+
|
78 |
+
@not_implemented_for("undirected", "multigraph")
|
79 |
+
@nx._dispatchable
|
80 |
+
def overall_reciprocity(G):
|
81 |
+
"""Compute the reciprocity for the whole graph.
|
82 |
+
|
83 |
+
See the doc of reciprocity for the definition.
|
84 |
+
|
85 |
+
Parameters
|
86 |
+
----------
|
87 |
+
G : graph
|
88 |
+
A networkx graph
|
89 |
+
|
90 |
+
"""
|
91 |
+
n_all_edge = G.number_of_edges()
|
92 |
+
n_overlap_edge = (n_all_edge - G.to_undirected().number_of_edges()) * 2
|
93 |
+
|
94 |
+
if n_all_edge == 0:
|
95 |
+
raise NetworkXError("Not defined for empty graphs")
|
96 |
+
|
97 |
+
return n_overlap_edge / n_all_edge
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/regular.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for computing and verifying regular graphs."""
|
2 |
+
import networkx as nx
|
3 |
+
from networkx.utils import not_implemented_for
|
4 |
+
|
5 |
+
__all__ = ["is_regular", "is_k_regular", "k_factor"]
|
6 |
+
|
7 |
+
|
8 |
+
@nx._dispatchable
|
9 |
+
def is_regular(G):
|
10 |
+
"""Determines whether the graph ``G`` is a regular graph.
|
11 |
+
|
12 |
+
A regular graph is a graph where each vertex has the same degree. A
|
13 |
+
regular digraph is a graph where the indegree and outdegree of each
|
14 |
+
vertex are equal.
|
15 |
+
|
16 |
+
Parameters
|
17 |
+
----------
|
18 |
+
G : NetworkX graph
|
19 |
+
|
20 |
+
Returns
|
21 |
+
-------
|
22 |
+
bool
|
23 |
+
Whether the given graph or digraph is regular.
|
24 |
+
|
25 |
+
Examples
|
26 |
+
--------
|
27 |
+
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 1)])
|
28 |
+
>>> nx.is_regular(G)
|
29 |
+
True
|
30 |
+
|
31 |
+
"""
|
32 |
+
if len(G) == 0:
|
33 |
+
raise nx.NetworkXPointlessConcept("Graph has no nodes.")
|
34 |
+
n1 = nx.utils.arbitrary_element(G)
|
35 |
+
if not G.is_directed():
|
36 |
+
d1 = G.degree(n1)
|
37 |
+
return all(d1 == d for _, d in G.degree)
|
38 |
+
else:
|
39 |
+
d_in = G.in_degree(n1)
|
40 |
+
in_regular = all(d_in == d for _, d in G.in_degree)
|
41 |
+
d_out = G.out_degree(n1)
|
42 |
+
out_regular = all(d_out == d for _, d in G.out_degree)
|
43 |
+
return in_regular and out_regular
|
44 |
+
|
45 |
+
|
46 |
+
@not_implemented_for("directed")
|
47 |
+
@nx._dispatchable
|
48 |
+
def is_k_regular(G, k):
|
49 |
+
"""Determines whether the graph ``G`` is a k-regular graph.
|
50 |
+
|
51 |
+
A k-regular graph is a graph where each vertex has degree k.
|
52 |
+
|
53 |
+
Parameters
|
54 |
+
----------
|
55 |
+
G : NetworkX graph
|
56 |
+
|
57 |
+
Returns
|
58 |
+
-------
|
59 |
+
bool
|
60 |
+
Whether the given graph is k-regular.
|
61 |
+
|
62 |
+
Examples
|
63 |
+
--------
|
64 |
+
>>> G = nx.Graph([(1, 2), (2, 3), (3, 4), (4, 1)])
|
65 |
+
>>> nx.is_k_regular(G, k=3)
|
66 |
+
False
|
67 |
+
|
68 |
+
"""
|
69 |
+
return all(d == k for n, d in G.degree)
|
70 |
+
|
71 |
+
|
72 |
+
@not_implemented_for("directed")
|
73 |
+
@not_implemented_for("multigraph")
|
74 |
+
@nx._dispatchable(preserve_edge_attrs=True, returns_graph=True)
|
75 |
+
def k_factor(G, k, matching_weight="weight"):
|
76 |
+
"""Compute a k-factor of G
|
77 |
+
|
78 |
+
A k-factor of a graph is a spanning k-regular subgraph.
|
79 |
+
A spanning k-regular subgraph of G is a subgraph that contains
|
80 |
+
each vertex of G and a subset of the edges of G such that each
|
81 |
+
vertex has degree k.
|
82 |
+
|
83 |
+
Parameters
|
84 |
+
----------
|
85 |
+
G : NetworkX graph
|
86 |
+
Undirected graph
|
87 |
+
|
88 |
+
matching_weight: string, optional (default='weight')
|
89 |
+
Edge data key corresponding to the edge weight.
|
90 |
+
Used for finding the max-weighted perfect matching.
|
91 |
+
If key not found, uses 1 as weight.
|
92 |
+
|
93 |
+
Returns
|
94 |
+
-------
|
95 |
+
G2 : NetworkX graph
|
96 |
+
A k-factor of G
|
97 |
+
|
98 |
+
Examples
|
99 |
+
--------
|
100 |
+
>>> G = nx.Graph([(1, 2), (2, 3), (3, 4), (4, 1)])
|
101 |
+
>>> G2 = nx.k_factor(G, k=1)
|
102 |
+
>>> G2.edges()
|
103 |
+
EdgeView([(1, 2), (3, 4)])
|
104 |
+
|
105 |
+
References
|
106 |
+
----------
|
107 |
+
.. [1] "An algorithm for computing simple k-factors.",
|
108 |
+
Meijer, Henk, Yurai Núñez-Rodríguez, and David Rappaport,
|
109 |
+
Information processing letters, 2009.
|
110 |
+
"""
|
111 |
+
|
112 |
+
from networkx.algorithms.matching import is_perfect_matching, max_weight_matching
|
113 |
+
|
114 |
+
class LargeKGadget:
|
115 |
+
def __init__(self, k, degree, node, g):
|
116 |
+
self.original = node
|
117 |
+
self.g = g
|
118 |
+
self.k = k
|
119 |
+
self.degree = degree
|
120 |
+
|
121 |
+
self.outer_vertices = [(node, x) for x in range(degree)]
|
122 |
+
self.core_vertices = [(node, x + degree) for x in range(degree - k)]
|
123 |
+
|
124 |
+
def replace_node(self):
|
125 |
+
adj_view = self.g[self.original]
|
126 |
+
neighbors = list(adj_view.keys())
|
127 |
+
edge_attrs = list(adj_view.values())
|
128 |
+
for outer, neighbor, edge_attrs in zip(
|
129 |
+
self.outer_vertices, neighbors, edge_attrs
|
130 |
+
):
|
131 |
+
self.g.add_edge(outer, neighbor, **edge_attrs)
|
132 |
+
for core in self.core_vertices:
|
133 |
+
for outer in self.outer_vertices:
|
134 |
+
self.g.add_edge(core, outer)
|
135 |
+
self.g.remove_node(self.original)
|
136 |
+
|
137 |
+
def restore_node(self):
|
138 |
+
self.g.add_node(self.original)
|
139 |
+
for outer in self.outer_vertices:
|
140 |
+
adj_view = self.g[outer]
|
141 |
+
for neighbor, edge_attrs in list(adj_view.items()):
|
142 |
+
if neighbor not in self.core_vertices:
|
143 |
+
self.g.add_edge(self.original, neighbor, **edge_attrs)
|
144 |
+
break
|
145 |
+
g.remove_nodes_from(self.outer_vertices)
|
146 |
+
g.remove_nodes_from(self.core_vertices)
|
147 |
+
|
148 |
+
class SmallKGadget:
|
149 |
+
def __init__(self, k, degree, node, g):
|
150 |
+
self.original = node
|
151 |
+
self.k = k
|
152 |
+
self.degree = degree
|
153 |
+
self.g = g
|
154 |
+
|
155 |
+
self.outer_vertices = [(node, x) for x in range(degree)]
|
156 |
+
self.inner_vertices = [(node, x + degree) for x in range(degree)]
|
157 |
+
self.core_vertices = [(node, x + 2 * degree) for x in range(k)]
|
158 |
+
|
159 |
+
def replace_node(self):
|
160 |
+
adj_view = self.g[self.original]
|
161 |
+
for outer, inner, (neighbor, edge_attrs) in zip(
|
162 |
+
self.outer_vertices, self.inner_vertices, list(adj_view.items())
|
163 |
+
):
|
164 |
+
self.g.add_edge(outer, inner)
|
165 |
+
self.g.add_edge(outer, neighbor, **edge_attrs)
|
166 |
+
for core in self.core_vertices:
|
167 |
+
for inner in self.inner_vertices:
|
168 |
+
self.g.add_edge(core, inner)
|
169 |
+
self.g.remove_node(self.original)
|
170 |
+
|
171 |
+
def restore_node(self):
|
172 |
+
self.g.add_node(self.original)
|
173 |
+
for outer in self.outer_vertices:
|
174 |
+
adj_view = self.g[outer]
|
175 |
+
for neighbor, edge_attrs in adj_view.items():
|
176 |
+
if neighbor not in self.core_vertices:
|
177 |
+
self.g.add_edge(self.original, neighbor, **edge_attrs)
|
178 |
+
break
|
179 |
+
self.g.remove_nodes_from(self.outer_vertices)
|
180 |
+
self.g.remove_nodes_from(self.inner_vertices)
|
181 |
+
self.g.remove_nodes_from(self.core_vertices)
|
182 |
+
|
183 |
+
# Step 1
|
184 |
+
if any(d < k for _, d in G.degree):
|
185 |
+
raise nx.NetworkXUnfeasible("Graph contains a vertex with degree less than k")
|
186 |
+
g = G.copy()
|
187 |
+
|
188 |
+
# Step 2
|
189 |
+
gadgets = []
|
190 |
+
for node, degree in list(g.degree):
|
191 |
+
if k < degree / 2.0:
|
192 |
+
gadget = SmallKGadget(k, degree, node, g)
|
193 |
+
else:
|
194 |
+
gadget = LargeKGadget(k, degree, node, g)
|
195 |
+
gadget.replace_node()
|
196 |
+
gadgets.append(gadget)
|
197 |
+
|
198 |
+
# Step 3
|
199 |
+
matching = max_weight_matching(g, maxcardinality=True, weight=matching_weight)
|
200 |
+
|
201 |
+
# Step 4
|
202 |
+
if not is_perfect_matching(g, matching):
|
203 |
+
raise nx.NetworkXUnfeasible(
|
204 |
+
"Cannot find k-factor because no perfect matching exists"
|
205 |
+
)
|
206 |
+
|
207 |
+
for edge in g.edges():
|
208 |
+
if edge not in matching and (edge[1], edge[0]) not in matching:
|
209 |
+
g.remove_edge(edge[0], edge[1])
|
210 |
+
|
211 |
+
for gadget in gadgets:
|
212 |
+
gadget.restore_node()
|
213 |
+
|
214 |
+
return g
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from networkx.algorithms.shortest_paths.generic import *
|
2 |
+
from networkx.algorithms.shortest_paths.unweighted import *
|
3 |
+
from networkx.algorithms.shortest_paths.weighted import *
|
4 |
+
from networkx.algorithms.shortest_paths.astar import *
|
5 |
+
from networkx.algorithms.shortest_paths.dense import *
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/astar.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Shortest paths and path lengths using the A* ("A star") algorithm.
|
2 |
+
"""
|
3 |
+
from heapq import heappop, heappush
|
4 |
+
from itertools import count
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.algorithms.shortest_paths.weighted import _weight_function
|
8 |
+
|
9 |
+
__all__ = ["astar_path", "astar_path_length"]
|
10 |
+
|
11 |
+
|
12 |
+
@nx._dispatchable(edge_attrs="weight", preserve_node_attrs="heuristic")
|
13 |
+
def astar_path(G, source, target, heuristic=None, weight="weight", *, cutoff=None):
|
14 |
+
"""Returns a list of nodes in a shortest path between source and target
|
15 |
+
using the A* ("A-star") algorithm.
|
16 |
+
|
17 |
+
There may be more than one shortest path. This returns only one.
|
18 |
+
|
19 |
+
Parameters
|
20 |
+
----------
|
21 |
+
G : NetworkX graph
|
22 |
+
|
23 |
+
source : node
|
24 |
+
Starting node for path
|
25 |
+
|
26 |
+
target : node
|
27 |
+
Ending node for path
|
28 |
+
|
29 |
+
heuristic : function
|
30 |
+
A function to evaluate the estimate of the distance
|
31 |
+
from the a node to the target. The function takes
|
32 |
+
two nodes arguments and must return a number.
|
33 |
+
If the heuristic is inadmissible (if it might
|
34 |
+
overestimate the cost of reaching the goal from a node),
|
35 |
+
the result may not be a shortest path.
|
36 |
+
The algorithm does not support updating heuristic
|
37 |
+
values for the same node due to caching the first
|
38 |
+
heuristic calculation per node.
|
39 |
+
|
40 |
+
weight : string or function
|
41 |
+
If this is a string, then edge weights will be accessed via the
|
42 |
+
edge attribute with this key (that is, the weight of the edge
|
43 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
44 |
+
such edge attribute exists, the weight of the edge is assumed to
|
45 |
+
be one.
|
46 |
+
If this is a function, the weight of an edge is the value
|
47 |
+
returned by the function. The function must accept exactly three
|
48 |
+
positional arguments: the two endpoints of an edge and the
|
49 |
+
dictionary of edge attributes for that edge. The function must
|
50 |
+
return a number or None to indicate a hidden edge.
|
51 |
+
|
52 |
+
cutoff : float, optional
|
53 |
+
If this is provided, the search will be bounded to this value. I.e. if
|
54 |
+
the evaluation function surpasses this value for a node n, the node will not
|
55 |
+
be expanded further and will be ignored. More formally, let h'(n) be the
|
56 |
+
heuristic function, and g(n) be the cost of reaching n from the source node. Then,
|
57 |
+
if g(n) + h'(n) > cutoff, the node will not be explored further.
|
58 |
+
Note that if the heuristic is inadmissible, it is possible that paths
|
59 |
+
are ignored even though they satisfy the cutoff.
|
60 |
+
|
61 |
+
Raises
|
62 |
+
------
|
63 |
+
NetworkXNoPath
|
64 |
+
If no path exists between source and target.
|
65 |
+
|
66 |
+
Examples
|
67 |
+
--------
|
68 |
+
>>> G = nx.path_graph(5)
|
69 |
+
>>> print(nx.astar_path(G, 0, 4))
|
70 |
+
[0, 1, 2, 3, 4]
|
71 |
+
>>> G = nx.grid_graph(dim=[3, 3]) # nodes are two-tuples (x,y)
|
72 |
+
>>> nx.set_edge_attributes(G, {e: e[1][0] * 2 for e in G.edges()}, "cost")
|
73 |
+
>>> def dist(a, b):
|
74 |
+
... (x1, y1) = a
|
75 |
+
... (x2, y2) = b
|
76 |
+
... return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
|
77 |
+
>>> print(nx.astar_path(G, (0, 0), (2, 2), heuristic=dist, weight="cost"))
|
78 |
+
[(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)]
|
79 |
+
|
80 |
+
Notes
|
81 |
+
-----
|
82 |
+
Edge weight attributes must be numerical.
|
83 |
+
Distances are calculated as sums of weighted edges traversed.
|
84 |
+
|
85 |
+
The weight function can be used to hide edges by returning None.
|
86 |
+
So ``weight = lambda u, v, d: 1 if d['color']=="red" else None``
|
87 |
+
will find the shortest red path.
|
88 |
+
|
89 |
+
See Also
|
90 |
+
--------
|
91 |
+
shortest_path, dijkstra_path
|
92 |
+
|
93 |
+
"""
|
94 |
+
if source not in G or target not in G:
|
95 |
+
msg = f"Either source {source} or target {target} is not in G"
|
96 |
+
raise nx.NodeNotFound(msg)
|
97 |
+
|
98 |
+
if heuristic is None:
|
99 |
+
# The default heuristic is h=0 - same as Dijkstra's algorithm
|
100 |
+
def heuristic(u, v):
|
101 |
+
return 0
|
102 |
+
|
103 |
+
push = heappush
|
104 |
+
pop = heappop
|
105 |
+
weight = _weight_function(G, weight)
|
106 |
+
|
107 |
+
G_succ = G._adj # For speed-up (and works for both directed and undirected graphs)
|
108 |
+
|
109 |
+
# The queue stores priority, node, cost to reach, and parent.
|
110 |
+
# Uses Python heapq to keep in priority order.
|
111 |
+
# Add a counter to the queue to prevent the underlying heap from
|
112 |
+
# attempting to compare the nodes themselves. The hash breaks ties in the
|
113 |
+
# priority and is guaranteed unique for all nodes in the graph.
|
114 |
+
c = count()
|
115 |
+
queue = [(0, next(c), source, 0, None)]
|
116 |
+
|
117 |
+
# Maps enqueued nodes to distance of discovered paths and the
|
118 |
+
# computed heuristics to target. We avoid computing the heuristics
|
119 |
+
# more than once and inserting the node into the queue too many times.
|
120 |
+
enqueued = {}
|
121 |
+
# Maps explored nodes to parent closest to the source.
|
122 |
+
explored = {}
|
123 |
+
|
124 |
+
while queue:
|
125 |
+
# Pop the smallest item from queue.
|
126 |
+
_, __, curnode, dist, parent = pop(queue)
|
127 |
+
|
128 |
+
if curnode == target:
|
129 |
+
path = [curnode]
|
130 |
+
node = parent
|
131 |
+
while node is not None:
|
132 |
+
path.append(node)
|
133 |
+
node = explored[node]
|
134 |
+
path.reverse()
|
135 |
+
return path
|
136 |
+
|
137 |
+
if curnode in explored:
|
138 |
+
# Do not override the parent of starting node
|
139 |
+
if explored[curnode] is None:
|
140 |
+
continue
|
141 |
+
|
142 |
+
# Skip bad paths that were enqueued before finding a better one
|
143 |
+
qcost, h = enqueued[curnode]
|
144 |
+
if qcost < dist:
|
145 |
+
continue
|
146 |
+
|
147 |
+
explored[curnode] = parent
|
148 |
+
|
149 |
+
for neighbor, w in G_succ[curnode].items():
|
150 |
+
cost = weight(curnode, neighbor, w)
|
151 |
+
if cost is None:
|
152 |
+
continue
|
153 |
+
ncost = dist + cost
|
154 |
+
if neighbor in enqueued:
|
155 |
+
qcost, h = enqueued[neighbor]
|
156 |
+
# if qcost <= ncost, a less costly path from the
|
157 |
+
# neighbor to the source was already determined.
|
158 |
+
# Therefore, we won't attempt to push this neighbor
|
159 |
+
# to the queue
|
160 |
+
if qcost <= ncost:
|
161 |
+
continue
|
162 |
+
else:
|
163 |
+
h = heuristic(neighbor, target)
|
164 |
+
|
165 |
+
if cutoff and ncost + h > cutoff:
|
166 |
+
continue
|
167 |
+
|
168 |
+
enqueued[neighbor] = ncost, h
|
169 |
+
push(queue, (ncost + h, next(c), neighbor, ncost, curnode))
|
170 |
+
|
171 |
+
raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}")
|
172 |
+
|
173 |
+
|
174 |
+
@nx._dispatchable(edge_attrs="weight", preserve_node_attrs="heuristic")
|
175 |
+
def astar_path_length(
|
176 |
+
G, source, target, heuristic=None, weight="weight", *, cutoff=None
|
177 |
+
):
|
178 |
+
"""Returns the length of the shortest path between source and target using
|
179 |
+
the A* ("A-star") algorithm.
|
180 |
+
|
181 |
+
Parameters
|
182 |
+
----------
|
183 |
+
G : NetworkX graph
|
184 |
+
|
185 |
+
source : node
|
186 |
+
Starting node for path
|
187 |
+
|
188 |
+
target : node
|
189 |
+
Ending node for path
|
190 |
+
|
191 |
+
heuristic : function
|
192 |
+
A function to evaluate the estimate of the distance
|
193 |
+
from the a node to the target. The function takes
|
194 |
+
two nodes arguments and must return a number.
|
195 |
+
If the heuristic is inadmissible (if it might
|
196 |
+
overestimate the cost of reaching the goal from a node),
|
197 |
+
the result may not be a shortest path.
|
198 |
+
The algorithm does not support updating heuristic
|
199 |
+
values for the same node due to caching the first
|
200 |
+
heuristic calculation per node.
|
201 |
+
|
202 |
+
weight : string or function
|
203 |
+
If this is a string, then edge weights will be accessed via the
|
204 |
+
edge attribute with this key (that is, the weight of the edge
|
205 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
206 |
+
such edge attribute exists, the weight of the edge is assumed to
|
207 |
+
be one.
|
208 |
+
If this is a function, the weight of an edge is the value
|
209 |
+
returned by the function. The function must accept exactly three
|
210 |
+
positional arguments: the two endpoints of an edge and the
|
211 |
+
dictionary of edge attributes for that edge. The function must
|
212 |
+
return a number or None to indicate a hidden edge.
|
213 |
+
|
214 |
+
cutoff : float, optional
|
215 |
+
If this is provided, the search will be bounded to this value. I.e. if
|
216 |
+
the evaluation function surpasses this value for a node n, the node will not
|
217 |
+
be expanded further and will be ignored. More formally, let h'(n) be the
|
218 |
+
heuristic function, and g(n) be the cost of reaching n from the source node. Then,
|
219 |
+
if g(n) + h'(n) > cutoff, the node will not be explored further.
|
220 |
+
Note that if the heuristic is inadmissible, it is possible that paths
|
221 |
+
are ignored even though they satisfy the cutoff.
|
222 |
+
|
223 |
+
Raises
|
224 |
+
------
|
225 |
+
NetworkXNoPath
|
226 |
+
If no path exists between source and target.
|
227 |
+
|
228 |
+
See Also
|
229 |
+
--------
|
230 |
+
astar_path
|
231 |
+
|
232 |
+
"""
|
233 |
+
if source not in G or target not in G:
|
234 |
+
msg = f"Either source {source} or target {target} is not in G"
|
235 |
+
raise nx.NodeNotFound(msg)
|
236 |
+
|
237 |
+
weight = _weight_function(G, weight)
|
238 |
+
path = astar_path(G, source, target, heuristic, weight, cutoff=cutoff)
|
239 |
+
return sum(weight(u, v, G[u][v]) for u, v in zip(path[:-1], path[1:]))
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/dense.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Floyd-Warshall algorithm for shortest paths.
|
2 |
+
"""
|
3 |
+
import networkx as nx
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
"floyd_warshall",
|
7 |
+
"floyd_warshall_predecessor_and_distance",
|
8 |
+
"reconstruct_path",
|
9 |
+
"floyd_warshall_numpy",
|
10 |
+
]
|
11 |
+
|
12 |
+
|
13 |
+
@nx._dispatchable(edge_attrs="weight")
|
14 |
+
def floyd_warshall_numpy(G, nodelist=None, weight="weight"):
|
15 |
+
"""Find all-pairs shortest path lengths using Floyd's algorithm.
|
16 |
+
|
17 |
+
This algorithm for finding shortest paths takes advantage of
|
18 |
+
matrix representations of a graph and works well for dense
|
19 |
+
graphs where all-pairs shortest path lengths are desired.
|
20 |
+
The results are returned as a NumPy array, distance[i, j],
|
21 |
+
where i and j are the indexes of two nodes in nodelist.
|
22 |
+
The entry distance[i, j] is the distance along a shortest
|
23 |
+
path from i to j. If no path exists the distance is Inf.
|
24 |
+
|
25 |
+
Parameters
|
26 |
+
----------
|
27 |
+
G : NetworkX graph
|
28 |
+
|
29 |
+
nodelist : list, optional (default=G.nodes)
|
30 |
+
The rows and columns are ordered by the nodes in nodelist.
|
31 |
+
If nodelist is None then the ordering is produced by G.nodes.
|
32 |
+
Nodelist should include all nodes in G.
|
33 |
+
|
34 |
+
weight: string, optional (default='weight')
|
35 |
+
Edge data key corresponding to the edge weight.
|
36 |
+
|
37 |
+
Returns
|
38 |
+
-------
|
39 |
+
distance : 2D numpy.ndarray
|
40 |
+
A numpy array of shortest path distances between nodes.
|
41 |
+
If there is no path between two nodes the value is Inf.
|
42 |
+
|
43 |
+
Examples
|
44 |
+
--------
|
45 |
+
>>> G = nx.DiGraph()
|
46 |
+
>>> G.add_weighted_edges_from([(0, 1, 5), (1, 2, 2), (2, 3, -3), (1, 3, 10), (3, 2, 8)])
|
47 |
+
>>> nx.floyd_warshall_numpy(G)
|
48 |
+
array([[ 0., 5., 7., 4.],
|
49 |
+
[inf, 0., 2., -1.],
|
50 |
+
[inf, inf, 0., -3.],
|
51 |
+
[inf, inf, 8., 0.]])
|
52 |
+
|
53 |
+
Notes
|
54 |
+
-----
|
55 |
+
Floyd's algorithm is appropriate for finding shortest paths in
|
56 |
+
dense graphs or graphs with negative weights when Dijkstra's
|
57 |
+
algorithm fails. This algorithm can still fail if there are negative
|
58 |
+
cycles. It has running time $O(n^3)$ with running space of $O(n^2)$.
|
59 |
+
|
60 |
+
Raises
|
61 |
+
------
|
62 |
+
NetworkXError
|
63 |
+
If nodelist is not a list of the nodes in G.
|
64 |
+
"""
|
65 |
+
import numpy as np
|
66 |
+
|
67 |
+
if nodelist is not None:
|
68 |
+
if not (len(nodelist) == len(G) == len(set(nodelist))):
|
69 |
+
raise nx.NetworkXError(
|
70 |
+
"nodelist must contain every node in G with no repeats."
|
71 |
+
"If you wanted a subgraph of G use G.subgraph(nodelist)"
|
72 |
+
)
|
73 |
+
|
74 |
+
# To handle cases when an edge has weight=0, we must make sure that
|
75 |
+
# nonedges are not given the value 0 as well.
|
76 |
+
A = nx.to_numpy_array(
|
77 |
+
G, nodelist, multigraph_weight=min, weight=weight, nonedge=np.inf
|
78 |
+
)
|
79 |
+
n, m = A.shape
|
80 |
+
np.fill_diagonal(A, 0) # diagonal elements should be zero
|
81 |
+
for i in range(n):
|
82 |
+
# The second term has the same shape as A due to broadcasting
|
83 |
+
A = np.minimum(A, A[i, :][np.newaxis, :] + A[:, i][:, np.newaxis])
|
84 |
+
return A
|
85 |
+
|
86 |
+
|
87 |
+
@nx._dispatchable(edge_attrs="weight")
|
88 |
+
def floyd_warshall_predecessor_and_distance(G, weight="weight"):
|
89 |
+
"""Find all-pairs shortest path lengths using Floyd's algorithm.
|
90 |
+
|
91 |
+
Parameters
|
92 |
+
----------
|
93 |
+
G : NetworkX graph
|
94 |
+
|
95 |
+
weight: string, optional (default= 'weight')
|
96 |
+
Edge data key corresponding to the edge weight.
|
97 |
+
|
98 |
+
Returns
|
99 |
+
-------
|
100 |
+
predecessor,distance : dictionaries
|
101 |
+
Dictionaries, keyed by source and target, of predecessors and distances
|
102 |
+
in the shortest path.
|
103 |
+
|
104 |
+
Examples
|
105 |
+
--------
|
106 |
+
>>> G = nx.DiGraph()
|
107 |
+
>>> G.add_weighted_edges_from(
|
108 |
+
... [
|
109 |
+
... ("s", "u", 10),
|
110 |
+
... ("s", "x", 5),
|
111 |
+
... ("u", "v", 1),
|
112 |
+
... ("u", "x", 2),
|
113 |
+
... ("v", "y", 1),
|
114 |
+
... ("x", "u", 3),
|
115 |
+
... ("x", "v", 5),
|
116 |
+
... ("x", "y", 2),
|
117 |
+
... ("y", "s", 7),
|
118 |
+
... ("y", "v", 6),
|
119 |
+
... ]
|
120 |
+
... )
|
121 |
+
>>> predecessors, _ = nx.floyd_warshall_predecessor_and_distance(G)
|
122 |
+
>>> print(nx.reconstruct_path("s", "v", predecessors))
|
123 |
+
['s', 'x', 'u', 'v']
|
124 |
+
|
125 |
+
Notes
|
126 |
+
-----
|
127 |
+
Floyd's algorithm is appropriate for finding shortest paths
|
128 |
+
in dense graphs or graphs with negative weights when Dijkstra's algorithm
|
129 |
+
fails. This algorithm can still fail if there are negative cycles.
|
130 |
+
It has running time $O(n^3)$ with running space of $O(n^2)$.
|
131 |
+
|
132 |
+
See Also
|
133 |
+
--------
|
134 |
+
floyd_warshall
|
135 |
+
floyd_warshall_numpy
|
136 |
+
all_pairs_shortest_path
|
137 |
+
all_pairs_shortest_path_length
|
138 |
+
"""
|
139 |
+
from collections import defaultdict
|
140 |
+
|
141 |
+
# dictionary-of-dictionaries representation for dist and pred
|
142 |
+
# use some defaultdict magick here
|
143 |
+
# for dist the default is the floating point inf value
|
144 |
+
dist = defaultdict(lambda: defaultdict(lambda: float("inf")))
|
145 |
+
for u in G:
|
146 |
+
dist[u][u] = 0
|
147 |
+
pred = defaultdict(dict)
|
148 |
+
# initialize path distance dictionary to be the adjacency matrix
|
149 |
+
# also set the distance to self to 0 (zero diagonal)
|
150 |
+
undirected = not G.is_directed()
|
151 |
+
for u, v, d in G.edges(data=True):
|
152 |
+
e_weight = d.get(weight, 1.0)
|
153 |
+
dist[u][v] = min(e_weight, dist[u][v])
|
154 |
+
pred[u][v] = u
|
155 |
+
if undirected:
|
156 |
+
dist[v][u] = min(e_weight, dist[v][u])
|
157 |
+
pred[v][u] = v
|
158 |
+
for w in G:
|
159 |
+
dist_w = dist[w] # save recomputation
|
160 |
+
for u in G:
|
161 |
+
dist_u = dist[u] # save recomputation
|
162 |
+
for v in G:
|
163 |
+
d = dist_u[w] + dist_w[v]
|
164 |
+
if dist_u[v] > d:
|
165 |
+
dist_u[v] = d
|
166 |
+
pred[u][v] = pred[w][v]
|
167 |
+
return dict(pred), dict(dist)
|
168 |
+
|
169 |
+
|
170 |
+
@nx._dispatchable(graphs=None)
|
171 |
+
def reconstruct_path(source, target, predecessors):
|
172 |
+
"""Reconstruct a path from source to target using the predecessors
|
173 |
+
dict as returned by floyd_warshall_predecessor_and_distance
|
174 |
+
|
175 |
+
Parameters
|
176 |
+
----------
|
177 |
+
source : node
|
178 |
+
Starting node for path
|
179 |
+
|
180 |
+
target : node
|
181 |
+
Ending node for path
|
182 |
+
|
183 |
+
predecessors: dictionary
|
184 |
+
Dictionary, keyed by source and target, of predecessors in the
|
185 |
+
shortest path, as returned by floyd_warshall_predecessor_and_distance
|
186 |
+
|
187 |
+
Returns
|
188 |
+
-------
|
189 |
+
path : list
|
190 |
+
A list of nodes containing the shortest path from source to target
|
191 |
+
|
192 |
+
If source and target are the same, an empty list is returned
|
193 |
+
|
194 |
+
Notes
|
195 |
+
-----
|
196 |
+
This function is meant to give more applicability to the
|
197 |
+
floyd_warshall_predecessor_and_distance function
|
198 |
+
|
199 |
+
See Also
|
200 |
+
--------
|
201 |
+
floyd_warshall_predecessor_and_distance
|
202 |
+
"""
|
203 |
+
if source == target:
|
204 |
+
return []
|
205 |
+
prev = predecessors[source]
|
206 |
+
curr = prev[target]
|
207 |
+
path = [target, curr]
|
208 |
+
while curr != source:
|
209 |
+
curr = prev[curr]
|
210 |
+
path.append(curr)
|
211 |
+
return list(reversed(path))
|
212 |
+
|
213 |
+
|
214 |
+
@nx._dispatchable(edge_attrs="weight")
|
215 |
+
def floyd_warshall(G, weight="weight"):
|
216 |
+
"""Find all-pairs shortest path lengths using Floyd's algorithm.
|
217 |
+
|
218 |
+
Parameters
|
219 |
+
----------
|
220 |
+
G : NetworkX graph
|
221 |
+
|
222 |
+
weight: string, optional (default= 'weight')
|
223 |
+
Edge data key corresponding to the edge weight.
|
224 |
+
|
225 |
+
|
226 |
+
Returns
|
227 |
+
-------
|
228 |
+
distance : dict
|
229 |
+
A dictionary, keyed by source and target, of shortest paths distances
|
230 |
+
between nodes.
|
231 |
+
|
232 |
+
Examples
|
233 |
+
--------
|
234 |
+
>>> G = nx.DiGraph()
|
235 |
+
>>> G.add_weighted_edges_from([(0, 1, 5), (1, 2, 2), (2, 3, -3), (1, 3, 10), (3, 2, 8)])
|
236 |
+
>>> fw = nx.floyd_warshall(G, weight="weight")
|
237 |
+
>>> results = {a: dict(b) for a, b in fw.items()}
|
238 |
+
>>> print(results)
|
239 |
+
{0: {0: 0, 1: 5, 2: 7, 3: 4}, 1: {1: 0, 2: 2, 3: -1, 0: inf}, 2: {2: 0, 3: -3, 0: inf, 1: inf}, 3: {3: 0, 2: 8, 0: inf, 1: inf}}
|
240 |
+
|
241 |
+
Notes
|
242 |
+
-----
|
243 |
+
Floyd's algorithm is appropriate for finding shortest paths
|
244 |
+
in dense graphs or graphs with negative weights when Dijkstra's algorithm
|
245 |
+
fails. This algorithm can still fail if there are negative cycles.
|
246 |
+
It has running time $O(n^3)$ with running space of $O(n^2)$.
|
247 |
+
|
248 |
+
See Also
|
249 |
+
--------
|
250 |
+
floyd_warshall_predecessor_and_distance
|
251 |
+
floyd_warshall_numpy
|
252 |
+
all_pairs_shortest_path
|
253 |
+
all_pairs_shortest_path_length
|
254 |
+
"""
|
255 |
+
# could make this its own function to reduce memory costs
|
256 |
+
return floyd_warshall_predecessor_and_distance(G, weight=weight)[1]
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/generic.py
ADDED
@@ -0,0 +1,729 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Compute the shortest paths and path lengths between nodes in the graph.
|
3 |
+
|
4 |
+
These algorithms work with undirected and directed graphs.
|
5 |
+
|
6 |
+
"""
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
import networkx as nx
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
"shortest_path",
|
13 |
+
"all_shortest_paths",
|
14 |
+
"single_source_all_shortest_paths",
|
15 |
+
"all_pairs_all_shortest_paths",
|
16 |
+
"shortest_path_length",
|
17 |
+
"average_shortest_path_length",
|
18 |
+
"has_path",
|
19 |
+
]
|
20 |
+
|
21 |
+
|
22 |
+
@nx._dispatchable
|
23 |
+
def has_path(G, source, target):
|
24 |
+
"""Returns *True* if *G* has a path from *source* to *target*.
|
25 |
+
|
26 |
+
Parameters
|
27 |
+
----------
|
28 |
+
G : NetworkX graph
|
29 |
+
|
30 |
+
source : node
|
31 |
+
Starting node for path
|
32 |
+
|
33 |
+
target : node
|
34 |
+
Ending node for path
|
35 |
+
"""
|
36 |
+
try:
|
37 |
+
nx.shortest_path(G, source, target)
|
38 |
+
except nx.NetworkXNoPath:
|
39 |
+
return False
|
40 |
+
return True
|
41 |
+
|
42 |
+
|
43 |
+
@nx._dispatchable(edge_attrs="weight")
|
44 |
+
def shortest_path(G, source=None, target=None, weight=None, method="dijkstra"):
|
45 |
+
"""Compute shortest paths in the graph.
|
46 |
+
|
47 |
+
Parameters
|
48 |
+
----------
|
49 |
+
G : NetworkX graph
|
50 |
+
|
51 |
+
source : node, optional
|
52 |
+
Starting node for path. If not specified, compute shortest
|
53 |
+
paths for each possible starting node.
|
54 |
+
|
55 |
+
target : node, optional
|
56 |
+
Ending node for path. If not specified, compute shortest
|
57 |
+
paths to all possible nodes.
|
58 |
+
|
59 |
+
weight : None, string or function, optional (default = None)
|
60 |
+
If None, every edge has weight/distance/cost 1.
|
61 |
+
If a string, use this edge attribute as the edge weight.
|
62 |
+
Any edge attribute not present defaults to 1.
|
63 |
+
If this is a function, the weight of an edge is the value
|
64 |
+
returned by the function. The function must accept exactly
|
65 |
+
three positional arguments: the two endpoints of an edge and
|
66 |
+
the dictionary of edge attributes for that edge.
|
67 |
+
The function must return a number.
|
68 |
+
|
69 |
+
method : string, optional (default = 'dijkstra')
|
70 |
+
The algorithm to use to compute the path.
|
71 |
+
Supported options: 'dijkstra', 'bellman-ford'.
|
72 |
+
Other inputs produce a ValueError.
|
73 |
+
If `weight` is None, unweighted graph methods are used, and this
|
74 |
+
suggestion is ignored.
|
75 |
+
|
76 |
+
Returns
|
77 |
+
-------
|
78 |
+
path: list or dictionary
|
79 |
+
All returned paths include both the source and target in the path.
|
80 |
+
|
81 |
+
If the source and target are both specified, return a single list
|
82 |
+
of nodes in a shortest path from the source to the target.
|
83 |
+
|
84 |
+
If only the source is specified, return a dictionary keyed by
|
85 |
+
targets with a list of nodes in a shortest path from the source
|
86 |
+
to one of the targets.
|
87 |
+
|
88 |
+
If only the target is specified, return a dictionary keyed by
|
89 |
+
sources with a list of nodes in a shortest path from one of the
|
90 |
+
sources to the target.
|
91 |
+
|
92 |
+
If neither the source nor target are specified return a dictionary
|
93 |
+
of dictionaries with path[source][target]=[list of nodes in path].
|
94 |
+
|
95 |
+
Raises
|
96 |
+
------
|
97 |
+
NodeNotFound
|
98 |
+
If `source` is not in `G`.
|
99 |
+
|
100 |
+
ValueError
|
101 |
+
If `method` is not among the supported options.
|
102 |
+
|
103 |
+
Examples
|
104 |
+
--------
|
105 |
+
>>> G = nx.path_graph(5)
|
106 |
+
>>> print(nx.shortest_path(G, source=0, target=4))
|
107 |
+
[0, 1, 2, 3, 4]
|
108 |
+
>>> p = nx.shortest_path(G, source=0) # target not specified
|
109 |
+
>>> p[3] # shortest path from source=0 to target=3
|
110 |
+
[0, 1, 2, 3]
|
111 |
+
>>> p = nx.shortest_path(G, target=4) # source not specified
|
112 |
+
>>> p[1] # shortest path from source=1 to target=4
|
113 |
+
[1, 2, 3, 4]
|
114 |
+
>>> p = dict(nx.shortest_path(G)) # source, target not specified
|
115 |
+
>>> p[2][4] # shortest path from source=2 to target=4
|
116 |
+
[2, 3, 4]
|
117 |
+
|
118 |
+
Notes
|
119 |
+
-----
|
120 |
+
There may be more than one shortest path between a source and target.
|
121 |
+
This returns only one of them.
|
122 |
+
|
123 |
+
See Also
|
124 |
+
--------
|
125 |
+
all_pairs_shortest_path
|
126 |
+
all_pairs_dijkstra_path
|
127 |
+
all_pairs_bellman_ford_path
|
128 |
+
single_source_shortest_path
|
129 |
+
single_source_dijkstra_path
|
130 |
+
single_source_bellman_ford_path
|
131 |
+
"""
|
132 |
+
if method not in ("dijkstra", "bellman-ford"):
|
133 |
+
# so we don't need to check in each branch later
|
134 |
+
raise ValueError(f"method not supported: {method}")
|
135 |
+
method = "unweighted" if weight is None else method
|
136 |
+
if source is None:
|
137 |
+
if target is None:
|
138 |
+
warnings.warn(
|
139 |
+
(
|
140 |
+
"\n\nshortest_path will return an iterator that yields\n"
|
141 |
+
"(node, path) pairs instead of a dictionary when source\n"
|
142 |
+
"and target are unspecified beginning in version 3.5\n\n"
|
143 |
+
"To keep the current behavior, use:\n\n"
|
144 |
+
"\tdict(nx.shortest_path(G))"
|
145 |
+
),
|
146 |
+
FutureWarning,
|
147 |
+
stacklevel=3,
|
148 |
+
)
|
149 |
+
|
150 |
+
# Find paths between all pairs.
|
151 |
+
if method == "unweighted":
|
152 |
+
paths = dict(nx.all_pairs_shortest_path(G))
|
153 |
+
elif method == "dijkstra":
|
154 |
+
paths = dict(nx.all_pairs_dijkstra_path(G, weight=weight))
|
155 |
+
else: # method == 'bellman-ford':
|
156 |
+
paths = dict(nx.all_pairs_bellman_ford_path(G, weight=weight))
|
157 |
+
else:
|
158 |
+
# Find paths from all nodes co-accessible to the target.
|
159 |
+
if G.is_directed():
|
160 |
+
G = G.reverse(copy=False)
|
161 |
+
if method == "unweighted":
|
162 |
+
paths = nx.single_source_shortest_path(G, target)
|
163 |
+
elif method == "dijkstra":
|
164 |
+
paths = nx.single_source_dijkstra_path(G, target, weight=weight)
|
165 |
+
else: # method == 'bellman-ford':
|
166 |
+
paths = nx.single_source_bellman_ford_path(G, target, weight=weight)
|
167 |
+
# Now flip the paths so they go from a source to the target.
|
168 |
+
for target in paths:
|
169 |
+
paths[target] = list(reversed(paths[target]))
|
170 |
+
else:
|
171 |
+
if target is None:
|
172 |
+
# Find paths to all nodes accessible from the source.
|
173 |
+
if method == "unweighted":
|
174 |
+
paths = nx.single_source_shortest_path(G, source)
|
175 |
+
elif method == "dijkstra":
|
176 |
+
paths = nx.single_source_dijkstra_path(G, source, weight=weight)
|
177 |
+
else: # method == 'bellman-ford':
|
178 |
+
paths = nx.single_source_bellman_ford_path(G, source, weight=weight)
|
179 |
+
else:
|
180 |
+
# Find shortest source-target path.
|
181 |
+
if method == "unweighted":
|
182 |
+
paths = nx.bidirectional_shortest_path(G, source, target)
|
183 |
+
elif method == "dijkstra":
|
184 |
+
_, paths = nx.bidirectional_dijkstra(G, source, target, weight)
|
185 |
+
else: # method == 'bellman-ford':
|
186 |
+
paths = nx.bellman_ford_path(G, source, target, weight)
|
187 |
+
return paths
|
188 |
+
|
189 |
+
|
190 |
+
@nx._dispatchable(edge_attrs="weight")
|
191 |
+
def shortest_path_length(G, source=None, target=None, weight=None, method="dijkstra"):
|
192 |
+
"""Compute shortest path lengths in the graph.
|
193 |
+
|
194 |
+
Parameters
|
195 |
+
----------
|
196 |
+
G : NetworkX graph
|
197 |
+
|
198 |
+
source : node, optional
|
199 |
+
Starting node for path.
|
200 |
+
If not specified, compute shortest path lengths using all nodes as
|
201 |
+
source nodes.
|
202 |
+
|
203 |
+
target : node, optional
|
204 |
+
Ending node for path.
|
205 |
+
If not specified, compute shortest path lengths using all nodes as
|
206 |
+
target nodes.
|
207 |
+
|
208 |
+
weight : None, string or function, optional (default = None)
|
209 |
+
If None, every edge has weight/distance/cost 1.
|
210 |
+
If a string, use this edge attribute as the edge weight.
|
211 |
+
Any edge attribute not present defaults to 1.
|
212 |
+
If this is a function, the weight of an edge is the value
|
213 |
+
returned by the function. The function must accept exactly
|
214 |
+
three positional arguments: the two endpoints of an edge and
|
215 |
+
the dictionary of edge attributes for that edge.
|
216 |
+
The function must return a number.
|
217 |
+
|
218 |
+
method : string, optional (default = 'dijkstra')
|
219 |
+
The algorithm to use to compute the path length.
|
220 |
+
Supported options: 'dijkstra', 'bellman-ford'.
|
221 |
+
Other inputs produce a ValueError.
|
222 |
+
If `weight` is None, unweighted graph methods are used, and this
|
223 |
+
suggestion is ignored.
|
224 |
+
|
225 |
+
Returns
|
226 |
+
-------
|
227 |
+
length: int or iterator
|
228 |
+
If the source and target are both specified, return the length of
|
229 |
+
the shortest path from the source to the target.
|
230 |
+
|
231 |
+
If only the source is specified, return a dict keyed by target
|
232 |
+
to the shortest path length from the source to that target.
|
233 |
+
|
234 |
+
If only the target is specified, return a dict keyed by source
|
235 |
+
to the shortest path length from that source to the target.
|
236 |
+
|
237 |
+
If neither the source nor target are specified, return an iterator
|
238 |
+
over (source, dictionary) where dictionary is keyed by target to
|
239 |
+
shortest path length from source to that target.
|
240 |
+
|
241 |
+
Raises
|
242 |
+
------
|
243 |
+
NodeNotFound
|
244 |
+
If `source` is not in `G`.
|
245 |
+
|
246 |
+
NetworkXNoPath
|
247 |
+
If no path exists between source and target.
|
248 |
+
|
249 |
+
ValueError
|
250 |
+
If `method` is not among the supported options.
|
251 |
+
|
252 |
+
Examples
|
253 |
+
--------
|
254 |
+
>>> G = nx.path_graph(5)
|
255 |
+
>>> nx.shortest_path_length(G, source=0, target=4)
|
256 |
+
4
|
257 |
+
>>> p = nx.shortest_path_length(G, source=0) # target not specified
|
258 |
+
>>> p[4]
|
259 |
+
4
|
260 |
+
>>> p = nx.shortest_path_length(G, target=4) # source not specified
|
261 |
+
>>> p[0]
|
262 |
+
4
|
263 |
+
>>> p = dict(nx.shortest_path_length(G)) # source,target not specified
|
264 |
+
>>> p[0][4]
|
265 |
+
4
|
266 |
+
|
267 |
+
Notes
|
268 |
+
-----
|
269 |
+
The length of the path is always 1 less than the number of nodes involved
|
270 |
+
in the path since the length measures the number of edges followed.
|
271 |
+
|
272 |
+
For digraphs this returns the shortest directed path length. To find path
|
273 |
+
lengths in the reverse direction use G.reverse(copy=False) first to flip
|
274 |
+
the edge orientation.
|
275 |
+
|
276 |
+
See Also
|
277 |
+
--------
|
278 |
+
all_pairs_shortest_path_length
|
279 |
+
all_pairs_dijkstra_path_length
|
280 |
+
all_pairs_bellman_ford_path_length
|
281 |
+
single_source_shortest_path_length
|
282 |
+
single_source_dijkstra_path_length
|
283 |
+
single_source_bellman_ford_path_length
|
284 |
+
"""
|
285 |
+
if method not in ("dijkstra", "bellman-ford"):
|
286 |
+
# so we don't need to check in each branch later
|
287 |
+
raise ValueError(f"method not supported: {method}")
|
288 |
+
method = "unweighted" if weight is None else method
|
289 |
+
if source is None:
|
290 |
+
if target is None:
|
291 |
+
# Find paths between all pairs.
|
292 |
+
if method == "unweighted":
|
293 |
+
paths = nx.all_pairs_shortest_path_length(G)
|
294 |
+
elif method == "dijkstra":
|
295 |
+
paths = nx.all_pairs_dijkstra_path_length(G, weight=weight)
|
296 |
+
else: # method == 'bellman-ford':
|
297 |
+
paths = nx.all_pairs_bellman_ford_path_length(G, weight=weight)
|
298 |
+
else:
|
299 |
+
# Find paths from all nodes co-accessible to the target.
|
300 |
+
if G.is_directed():
|
301 |
+
G = G.reverse(copy=False)
|
302 |
+
if method == "unweighted":
|
303 |
+
path_length = nx.single_source_shortest_path_length
|
304 |
+
paths = path_length(G, target)
|
305 |
+
elif method == "dijkstra":
|
306 |
+
path_length = nx.single_source_dijkstra_path_length
|
307 |
+
paths = path_length(G, target, weight=weight)
|
308 |
+
else: # method == 'bellman-ford':
|
309 |
+
path_length = nx.single_source_bellman_ford_path_length
|
310 |
+
paths = path_length(G, target, weight=weight)
|
311 |
+
else:
|
312 |
+
if target is None:
|
313 |
+
# Find paths to all nodes accessible from the source.
|
314 |
+
if method == "unweighted":
|
315 |
+
paths = nx.single_source_shortest_path_length(G, source)
|
316 |
+
elif method == "dijkstra":
|
317 |
+
path_length = nx.single_source_dijkstra_path_length
|
318 |
+
paths = path_length(G, source, weight=weight)
|
319 |
+
else: # method == 'bellman-ford':
|
320 |
+
path_length = nx.single_source_bellman_ford_path_length
|
321 |
+
paths = path_length(G, source, weight=weight)
|
322 |
+
else:
|
323 |
+
# Find shortest source-target path.
|
324 |
+
if method == "unweighted":
|
325 |
+
p = nx.bidirectional_shortest_path(G, source, target)
|
326 |
+
paths = len(p) - 1
|
327 |
+
elif method == "dijkstra":
|
328 |
+
paths = nx.dijkstra_path_length(G, source, target, weight)
|
329 |
+
else: # method == 'bellman-ford':
|
330 |
+
paths = nx.bellman_ford_path_length(G, source, target, weight)
|
331 |
+
return paths
|
332 |
+
|
333 |
+
|
334 |
+
@nx._dispatchable(edge_attrs="weight")
|
335 |
+
def average_shortest_path_length(G, weight=None, method=None):
|
336 |
+
r"""Returns the average shortest path length.
|
337 |
+
|
338 |
+
The average shortest path length is
|
339 |
+
|
340 |
+
.. math::
|
341 |
+
|
342 |
+
a =\sum_{\substack{s,t \in V \\ s\neq t}} \frac{d(s, t)}{n(n-1)}
|
343 |
+
|
344 |
+
where `V` is the set of nodes in `G`,
|
345 |
+
`d(s, t)` is the shortest path from `s` to `t`,
|
346 |
+
and `n` is the number of nodes in `G`.
|
347 |
+
|
348 |
+
.. versionchanged:: 3.0
|
349 |
+
An exception is raised for directed graphs that are not strongly
|
350 |
+
connected.
|
351 |
+
|
352 |
+
Parameters
|
353 |
+
----------
|
354 |
+
G : NetworkX graph
|
355 |
+
|
356 |
+
weight : None, string or function, optional (default = None)
|
357 |
+
If None, every edge has weight/distance/cost 1.
|
358 |
+
If a string, use this edge attribute as the edge weight.
|
359 |
+
Any edge attribute not present defaults to 1.
|
360 |
+
If this is a function, the weight of an edge is the value
|
361 |
+
returned by the function. The function must accept exactly
|
362 |
+
three positional arguments: the two endpoints of an edge and
|
363 |
+
the dictionary of edge attributes for that edge.
|
364 |
+
The function must return a number.
|
365 |
+
|
366 |
+
method : string, optional (default = 'unweighted' or 'dijkstra')
|
367 |
+
The algorithm to use to compute the path lengths.
|
368 |
+
Supported options are 'unweighted', 'dijkstra', 'bellman-ford',
|
369 |
+
'floyd-warshall' and 'floyd-warshall-numpy'.
|
370 |
+
Other method values produce a ValueError.
|
371 |
+
The default method is 'unweighted' if `weight` is None,
|
372 |
+
otherwise the default method is 'dijkstra'.
|
373 |
+
|
374 |
+
Raises
|
375 |
+
------
|
376 |
+
NetworkXPointlessConcept
|
377 |
+
If `G` is the null graph (that is, the graph on zero nodes).
|
378 |
+
|
379 |
+
NetworkXError
|
380 |
+
If `G` is not connected (or not strongly connected, in the case
|
381 |
+
of a directed graph).
|
382 |
+
|
383 |
+
ValueError
|
384 |
+
If `method` is not among the supported options.
|
385 |
+
|
386 |
+
Examples
|
387 |
+
--------
|
388 |
+
>>> G = nx.path_graph(5)
|
389 |
+
>>> nx.average_shortest_path_length(G)
|
390 |
+
2.0
|
391 |
+
|
392 |
+
For disconnected graphs, you can compute the average shortest path
|
393 |
+
length for each component
|
394 |
+
|
395 |
+
>>> G = nx.Graph([(1, 2), (3, 4)])
|
396 |
+
>>> for C in (G.subgraph(c).copy() for c in nx.connected_components(G)):
|
397 |
+
... print(nx.average_shortest_path_length(C))
|
398 |
+
1.0
|
399 |
+
1.0
|
400 |
+
|
401 |
+
"""
|
402 |
+
single_source_methods = ["unweighted", "dijkstra", "bellman-ford"]
|
403 |
+
all_pairs_methods = ["floyd-warshall", "floyd-warshall-numpy"]
|
404 |
+
supported_methods = single_source_methods + all_pairs_methods
|
405 |
+
|
406 |
+
if method is None:
|
407 |
+
method = "unweighted" if weight is None else "dijkstra"
|
408 |
+
if method not in supported_methods:
|
409 |
+
raise ValueError(f"method not supported: {method}")
|
410 |
+
|
411 |
+
n = len(G)
|
412 |
+
# For the special case of the null graph, raise an exception, since
|
413 |
+
# there are no paths in the null graph.
|
414 |
+
if n == 0:
|
415 |
+
msg = (
|
416 |
+
"the null graph has no paths, thus there is no average "
|
417 |
+
"shortest path length"
|
418 |
+
)
|
419 |
+
raise nx.NetworkXPointlessConcept(msg)
|
420 |
+
# For the special case of the trivial graph, return zero immediately.
|
421 |
+
if n == 1:
|
422 |
+
return 0
|
423 |
+
# Shortest path length is undefined if the graph is not strongly connected.
|
424 |
+
if G.is_directed() and not nx.is_strongly_connected(G):
|
425 |
+
raise nx.NetworkXError("Graph is not strongly connected.")
|
426 |
+
# Shortest path length is undefined if the graph is not connected.
|
427 |
+
if not G.is_directed() and not nx.is_connected(G):
|
428 |
+
raise nx.NetworkXError("Graph is not connected.")
|
429 |
+
|
430 |
+
# Compute all-pairs shortest paths.
|
431 |
+
def path_length(v):
|
432 |
+
if method == "unweighted":
|
433 |
+
return nx.single_source_shortest_path_length(G, v)
|
434 |
+
elif method == "dijkstra":
|
435 |
+
return nx.single_source_dijkstra_path_length(G, v, weight=weight)
|
436 |
+
elif method == "bellman-ford":
|
437 |
+
return nx.single_source_bellman_ford_path_length(G, v, weight=weight)
|
438 |
+
|
439 |
+
if method in single_source_methods:
|
440 |
+
# Sum the distances for each (ordered) pair of source and target node.
|
441 |
+
s = sum(l for u in G for l in path_length(u).values())
|
442 |
+
else:
|
443 |
+
if method == "floyd-warshall":
|
444 |
+
all_pairs = nx.floyd_warshall(G, weight=weight)
|
445 |
+
s = sum(sum(t.values()) for t in all_pairs.values())
|
446 |
+
elif method == "floyd-warshall-numpy":
|
447 |
+
s = float(nx.floyd_warshall_numpy(G, weight=weight).sum())
|
448 |
+
return s / (n * (n - 1))
|
449 |
+
|
450 |
+
|
451 |
+
@nx._dispatchable(edge_attrs="weight")
|
452 |
+
def all_shortest_paths(G, source, target, weight=None, method="dijkstra"):
|
453 |
+
"""Compute all shortest simple paths in the graph.
|
454 |
+
|
455 |
+
Parameters
|
456 |
+
----------
|
457 |
+
G : NetworkX graph
|
458 |
+
|
459 |
+
source : node
|
460 |
+
Starting node for path.
|
461 |
+
|
462 |
+
target : node
|
463 |
+
Ending node for path.
|
464 |
+
|
465 |
+
weight : None, string or function, optional (default = None)
|
466 |
+
If None, every edge has weight/distance/cost 1.
|
467 |
+
If a string, use this edge attribute as the edge weight.
|
468 |
+
Any edge attribute not present defaults to 1.
|
469 |
+
If this is a function, the weight of an edge is the value
|
470 |
+
returned by the function. The function must accept exactly
|
471 |
+
three positional arguments: the two endpoints of an edge and
|
472 |
+
the dictionary of edge attributes for that edge.
|
473 |
+
The function must return a number.
|
474 |
+
|
475 |
+
method : string, optional (default = 'dijkstra')
|
476 |
+
The algorithm to use to compute the path lengths.
|
477 |
+
Supported options: 'dijkstra', 'bellman-ford'.
|
478 |
+
Other inputs produce a ValueError.
|
479 |
+
If `weight` is None, unweighted graph methods are used, and this
|
480 |
+
suggestion is ignored.
|
481 |
+
|
482 |
+
Returns
|
483 |
+
-------
|
484 |
+
paths : generator of lists
|
485 |
+
A generator of all paths between source and target.
|
486 |
+
|
487 |
+
Raises
|
488 |
+
------
|
489 |
+
ValueError
|
490 |
+
If `method` is not among the supported options.
|
491 |
+
|
492 |
+
NetworkXNoPath
|
493 |
+
If `target` cannot be reached from `source`.
|
494 |
+
|
495 |
+
Examples
|
496 |
+
--------
|
497 |
+
>>> G = nx.Graph()
|
498 |
+
>>> nx.add_path(G, [0, 1, 2])
|
499 |
+
>>> nx.add_path(G, [0, 10, 2])
|
500 |
+
>>> print([p for p in nx.all_shortest_paths(G, source=0, target=2)])
|
501 |
+
[[0, 1, 2], [0, 10, 2]]
|
502 |
+
|
503 |
+
Notes
|
504 |
+
-----
|
505 |
+
There may be many shortest paths between the source and target. If G
|
506 |
+
contains zero-weight cycles, this function will not produce all shortest
|
507 |
+
paths because doing so would produce infinitely many paths of unbounded
|
508 |
+
length -- instead, we only produce the shortest simple paths.
|
509 |
+
|
510 |
+
See Also
|
511 |
+
--------
|
512 |
+
shortest_path
|
513 |
+
single_source_shortest_path
|
514 |
+
all_pairs_shortest_path
|
515 |
+
"""
|
516 |
+
method = "unweighted" if weight is None else method
|
517 |
+
if method == "unweighted":
|
518 |
+
pred = nx.predecessor(G, source)
|
519 |
+
elif method == "dijkstra":
|
520 |
+
pred, dist = nx.dijkstra_predecessor_and_distance(G, source, weight=weight)
|
521 |
+
elif method == "bellman-ford":
|
522 |
+
pred, dist = nx.bellman_ford_predecessor_and_distance(G, source, weight=weight)
|
523 |
+
else:
|
524 |
+
raise ValueError(f"method not supported: {method}")
|
525 |
+
|
526 |
+
return _build_paths_from_predecessors({source}, target, pred)
|
527 |
+
|
528 |
+
|
529 |
+
@nx._dispatchable(edge_attrs="weight")
|
530 |
+
def single_source_all_shortest_paths(G, source, weight=None, method="dijkstra"):
|
531 |
+
"""Compute all shortest simple paths from the given source in the graph.
|
532 |
+
|
533 |
+
Parameters
|
534 |
+
----------
|
535 |
+
G : NetworkX graph
|
536 |
+
|
537 |
+
source : node
|
538 |
+
Starting node for path.
|
539 |
+
|
540 |
+
weight : None, string or function, optional (default = None)
|
541 |
+
If None, every edge has weight/distance/cost 1.
|
542 |
+
If a string, use this edge attribute as the edge weight.
|
543 |
+
Any edge attribute not present defaults to 1.
|
544 |
+
If this is a function, the weight of an edge is the value
|
545 |
+
returned by the function. The function must accept exactly
|
546 |
+
three positional arguments: the two endpoints of an edge and
|
547 |
+
the dictionary of edge attributes for that edge.
|
548 |
+
The function must return a number.
|
549 |
+
|
550 |
+
method : string, optional (default = 'dijkstra')
|
551 |
+
The algorithm to use to compute the path lengths.
|
552 |
+
Supported options: 'dijkstra', 'bellman-ford'.
|
553 |
+
Other inputs produce a ValueError.
|
554 |
+
If `weight` is None, unweighted graph methods are used, and this
|
555 |
+
suggestion is ignored.
|
556 |
+
|
557 |
+
Returns
|
558 |
+
-------
|
559 |
+
paths : generator of dictionary
|
560 |
+
A generator of all paths between source and all nodes in the graph.
|
561 |
+
|
562 |
+
Raises
|
563 |
+
------
|
564 |
+
ValueError
|
565 |
+
If `method` is not among the supported options.
|
566 |
+
|
567 |
+
Examples
|
568 |
+
--------
|
569 |
+
>>> G = nx.Graph()
|
570 |
+
>>> nx.add_path(G, [0, 1, 2, 3, 0])
|
571 |
+
>>> dict(nx.single_source_all_shortest_paths(G, source=0))
|
572 |
+
{0: [[0]], 1: [[0, 1]], 2: [[0, 1, 2], [0, 3, 2]], 3: [[0, 3]]}
|
573 |
+
|
574 |
+
Notes
|
575 |
+
-----
|
576 |
+
There may be many shortest paths between the source and target. If G
|
577 |
+
contains zero-weight cycles, this function will not produce all shortest
|
578 |
+
paths because doing so would produce infinitely many paths of unbounded
|
579 |
+
length -- instead, we only produce the shortest simple paths.
|
580 |
+
|
581 |
+
See Also
|
582 |
+
--------
|
583 |
+
shortest_path
|
584 |
+
all_shortest_paths
|
585 |
+
single_source_shortest_path
|
586 |
+
all_pairs_shortest_path
|
587 |
+
all_pairs_all_shortest_paths
|
588 |
+
"""
|
589 |
+
method = "unweighted" if weight is None else method
|
590 |
+
if method == "unweighted":
|
591 |
+
pred = nx.predecessor(G, source)
|
592 |
+
elif method == "dijkstra":
|
593 |
+
pred, dist = nx.dijkstra_predecessor_and_distance(G, source, weight=weight)
|
594 |
+
elif method == "bellman-ford":
|
595 |
+
pred, dist = nx.bellman_ford_predecessor_and_distance(G, source, weight=weight)
|
596 |
+
else:
|
597 |
+
raise ValueError(f"method not supported: {method}")
|
598 |
+
for n in G:
|
599 |
+
try:
|
600 |
+
yield n, list(_build_paths_from_predecessors({source}, n, pred))
|
601 |
+
except nx.NetworkXNoPath:
|
602 |
+
pass
|
603 |
+
|
604 |
+
|
605 |
+
@nx._dispatchable(edge_attrs="weight")
|
606 |
+
def all_pairs_all_shortest_paths(G, weight=None, method="dijkstra"):
|
607 |
+
"""Compute all shortest paths between all nodes.
|
608 |
+
|
609 |
+
Parameters
|
610 |
+
----------
|
611 |
+
G : NetworkX graph
|
612 |
+
|
613 |
+
weight : None, string or function, optional (default = None)
|
614 |
+
If None, every edge has weight/distance/cost 1.
|
615 |
+
If a string, use this edge attribute as the edge weight.
|
616 |
+
Any edge attribute not present defaults to 1.
|
617 |
+
If this is a function, the weight of an edge is the value
|
618 |
+
returned by the function. The function must accept exactly
|
619 |
+
three positional arguments: the two endpoints of an edge and
|
620 |
+
the dictionary of edge attributes for that edge.
|
621 |
+
The function must return a number.
|
622 |
+
|
623 |
+
method : string, optional (default = 'dijkstra')
|
624 |
+
The algorithm to use to compute the path lengths.
|
625 |
+
Supported options: 'dijkstra', 'bellman-ford'.
|
626 |
+
Other inputs produce a ValueError.
|
627 |
+
If `weight` is None, unweighted graph methods are used, and this
|
628 |
+
suggestion is ignored.
|
629 |
+
|
630 |
+
Returns
|
631 |
+
-------
|
632 |
+
paths : generator of dictionary
|
633 |
+
Dictionary of arrays, keyed by source and target, of all shortest paths.
|
634 |
+
|
635 |
+
Raises
|
636 |
+
------
|
637 |
+
ValueError
|
638 |
+
If `method` is not among the supported options.
|
639 |
+
|
640 |
+
Examples
|
641 |
+
--------
|
642 |
+
>>> G = nx.cycle_graph(4)
|
643 |
+
>>> dict(nx.all_pairs_all_shortest_paths(G))[0][2]
|
644 |
+
[[0, 1, 2], [0, 3, 2]]
|
645 |
+
>>> dict(nx.all_pairs_all_shortest_paths(G))[0][3]
|
646 |
+
[[0, 3]]
|
647 |
+
|
648 |
+
Notes
|
649 |
+
-----
|
650 |
+
There may be multiple shortest paths with equal lengths. Unlike
|
651 |
+
all_pairs_shortest_path, this method returns all shortest paths.
|
652 |
+
|
653 |
+
See Also
|
654 |
+
--------
|
655 |
+
all_pairs_shortest_path
|
656 |
+
single_source_all_shortest_paths
|
657 |
+
"""
|
658 |
+
for n in G:
|
659 |
+
yield (
|
660 |
+
n,
|
661 |
+
dict(single_source_all_shortest_paths(G, n, weight=weight, method=method)),
|
662 |
+
)
|
663 |
+
|
664 |
+
|
665 |
+
def _build_paths_from_predecessors(sources, target, pred):
|
666 |
+
"""Compute all simple paths to target, given the predecessors found in
|
667 |
+
pred, terminating when any source in sources is found.
|
668 |
+
|
669 |
+
Parameters
|
670 |
+
----------
|
671 |
+
sources : set
|
672 |
+
Starting nodes for path.
|
673 |
+
|
674 |
+
target : node
|
675 |
+
Ending node for path.
|
676 |
+
|
677 |
+
pred : dict
|
678 |
+
A dictionary of predecessor lists, keyed by node
|
679 |
+
|
680 |
+
Returns
|
681 |
+
-------
|
682 |
+
paths : generator of lists
|
683 |
+
A generator of all paths between source and target.
|
684 |
+
|
685 |
+
Raises
|
686 |
+
------
|
687 |
+
NetworkXNoPath
|
688 |
+
If `target` cannot be reached from `source`.
|
689 |
+
|
690 |
+
Notes
|
691 |
+
-----
|
692 |
+
There may be many paths between the sources and target. If there are
|
693 |
+
cycles among the predecessors, this function will not produce all
|
694 |
+
possible paths because doing so would produce infinitely many paths
|
695 |
+
of unbounded length -- instead, we only produce simple paths.
|
696 |
+
|
697 |
+
See Also
|
698 |
+
--------
|
699 |
+
shortest_path
|
700 |
+
single_source_shortest_path
|
701 |
+
all_pairs_shortest_path
|
702 |
+
all_shortest_paths
|
703 |
+
bellman_ford_path
|
704 |
+
"""
|
705 |
+
if target not in pred:
|
706 |
+
raise nx.NetworkXNoPath(f"Target {target} cannot be reached from given sources")
|
707 |
+
|
708 |
+
seen = {target}
|
709 |
+
stack = [[target, 0]]
|
710 |
+
top = 0
|
711 |
+
while top >= 0:
|
712 |
+
node, i = stack[top]
|
713 |
+
if node in sources:
|
714 |
+
yield [p for p, n in reversed(stack[: top + 1])]
|
715 |
+
if len(pred[node]) > i:
|
716 |
+
stack[top][1] = i + 1
|
717 |
+
next = pred[node][i]
|
718 |
+
if next in seen:
|
719 |
+
continue
|
720 |
+
else:
|
721 |
+
seen.add(next)
|
722 |
+
top += 1
|
723 |
+
if top == len(stack):
|
724 |
+
stack.append([next, 0])
|
725 |
+
else:
|
726 |
+
stack[top][:] = [next, 0]
|
727 |
+
else:
|
728 |
+
seen.discard(node)
|
729 |
+
top -= 1
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (205 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_generic.cpython-310.pyc
ADDED
Binary file (15.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_unweighted.cpython-310.pyc
ADDED
Binary file (7.04 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/__pycache__/test_weighted.cpython-310.pyc
ADDED
Binary file (30 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/test_astar.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
from networkx.utils import pairwise
|
5 |
+
|
6 |
+
|
7 |
+
class TestAStar:
|
8 |
+
@classmethod
|
9 |
+
def setup_class(cls):
|
10 |
+
edges = [
|
11 |
+
("s", "u", 10),
|
12 |
+
("s", "x", 5),
|
13 |
+
("u", "v", 1),
|
14 |
+
("u", "x", 2),
|
15 |
+
("v", "y", 1),
|
16 |
+
("x", "u", 3),
|
17 |
+
("x", "v", 5),
|
18 |
+
("x", "y", 2),
|
19 |
+
("y", "s", 7),
|
20 |
+
("y", "v", 6),
|
21 |
+
]
|
22 |
+
cls.XG = nx.DiGraph()
|
23 |
+
cls.XG.add_weighted_edges_from(edges)
|
24 |
+
|
25 |
+
def test_multiple_optimal_paths(self):
|
26 |
+
"""Tests that A* algorithm finds any of multiple optimal paths"""
|
27 |
+
heuristic_values = {"a": 1.35, "b": 1.18, "c": 0.67, "d": 0}
|
28 |
+
|
29 |
+
def h(u, v):
|
30 |
+
return heuristic_values[u]
|
31 |
+
|
32 |
+
graph = nx.Graph()
|
33 |
+
points = ["a", "b", "c", "d"]
|
34 |
+
edges = [("a", "b", 0.18), ("a", "c", 0.68), ("b", "c", 0.50), ("c", "d", 0.67)]
|
35 |
+
|
36 |
+
graph.add_nodes_from(points)
|
37 |
+
graph.add_weighted_edges_from(edges)
|
38 |
+
|
39 |
+
path1 = ["a", "c", "d"]
|
40 |
+
path2 = ["a", "b", "c", "d"]
|
41 |
+
assert nx.astar_path(graph, "a", "d", h) in (path1, path2)
|
42 |
+
|
43 |
+
def test_astar_directed(self):
|
44 |
+
assert nx.astar_path(self.XG, "s", "v") == ["s", "x", "u", "v"]
|
45 |
+
assert nx.astar_path_length(self.XG, "s", "v") == 9
|
46 |
+
|
47 |
+
def test_astar_directed_weight_function(self):
|
48 |
+
w1 = lambda u, v, d: d["weight"]
|
49 |
+
assert nx.astar_path(self.XG, "x", "u", weight=w1) == ["x", "u"]
|
50 |
+
assert nx.astar_path_length(self.XG, "x", "u", weight=w1) == 3
|
51 |
+
assert nx.astar_path(self.XG, "s", "v", weight=w1) == ["s", "x", "u", "v"]
|
52 |
+
assert nx.astar_path_length(self.XG, "s", "v", weight=w1) == 9
|
53 |
+
|
54 |
+
w2 = lambda u, v, d: None if (u, v) == ("x", "u") else d["weight"]
|
55 |
+
assert nx.astar_path(self.XG, "x", "u", weight=w2) == ["x", "y", "s", "u"]
|
56 |
+
assert nx.astar_path_length(self.XG, "x", "u", weight=w2) == 19
|
57 |
+
assert nx.astar_path(self.XG, "s", "v", weight=w2) == ["s", "x", "v"]
|
58 |
+
assert nx.astar_path_length(self.XG, "s", "v", weight=w2) == 10
|
59 |
+
|
60 |
+
w3 = lambda u, v, d: d["weight"] + 10
|
61 |
+
assert nx.astar_path(self.XG, "x", "u", weight=w3) == ["x", "u"]
|
62 |
+
assert nx.astar_path_length(self.XG, "x", "u", weight=w3) == 13
|
63 |
+
assert nx.astar_path(self.XG, "s", "v", weight=w3) == ["s", "x", "v"]
|
64 |
+
assert nx.astar_path_length(self.XG, "s", "v", weight=w3) == 30
|
65 |
+
|
66 |
+
def test_astar_multigraph(self):
|
67 |
+
G = nx.MultiDiGraph(self.XG)
|
68 |
+
G.add_weighted_edges_from((u, v, 1000) for (u, v) in list(G.edges()))
|
69 |
+
assert nx.astar_path(G, "s", "v") == ["s", "x", "u", "v"]
|
70 |
+
assert nx.astar_path_length(G, "s", "v") == 9
|
71 |
+
|
72 |
+
def test_astar_undirected(self):
|
73 |
+
GG = self.XG.to_undirected()
|
74 |
+
# make sure we get lower weight
|
75 |
+
# to_undirected might choose either edge with weight 2 or weight 3
|
76 |
+
GG["u"]["x"]["weight"] = 2
|
77 |
+
GG["y"]["v"]["weight"] = 2
|
78 |
+
assert nx.astar_path(GG, "s", "v") == ["s", "x", "u", "v"]
|
79 |
+
assert nx.astar_path_length(GG, "s", "v") == 8
|
80 |
+
|
81 |
+
def test_astar_directed2(self):
|
82 |
+
XG2 = nx.DiGraph()
|
83 |
+
edges = [
|
84 |
+
(1, 4, 1),
|
85 |
+
(4, 5, 1),
|
86 |
+
(5, 6, 1),
|
87 |
+
(6, 3, 1),
|
88 |
+
(1, 3, 50),
|
89 |
+
(1, 2, 100),
|
90 |
+
(2, 3, 100),
|
91 |
+
]
|
92 |
+
XG2.add_weighted_edges_from(edges)
|
93 |
+
assert nx.astar_path(XG2, 1, 3) == [1, 4, 5, 6, 3]
|
94 |
+
|
95 |
+
def test_astar_undirected2(self):
|
96 |
+
XG3 = nx.Graph()
|
97 |
+
edges = [(0, 1, 2), (1, 2, 12), (2, 3, 1), (3, 4, 5), (4, 5, 1), (5, 0, 10)]
|
98 |
+
XG3.add_weighted_edges_from(edges)
|
99 |
+
assert nx.astar_path(XG3, 0, 3) == [0, 1, 2, 3]
|
100 |
+
assert nx.astar_path_length(XG3, 0, 3) == 15
|
101 |
+
|
102 |
+
def test_astar_undirected3(self):
|
103 |
+
XG4 = nx.Graph()
|
104 |
+
edges = [
|
105 |
+
(0, 1, 2),
|
106 |
+
(1, 2, 2),
|
107 |
+
(2, 3, 1),
|
108 |
+
(3, 4, 1),
|
109 |
+
(4, 5, 1),
|
110 |
+
(5, 6, 1),
|
111 |
+
(6, 7, 1),
|
112 |
+
(7, 0, 1),
|
113 |
+
]
|
114 |
+
XG4.add_weighted_edges_from(edges)
|
115 |
+
assert nx.astar_path(XG4, 0, 2) == [0, 1, 2]
|
116 |
+
assert nx.astar_path_length(XG4, 0, 2) == 4
|
117 |
+
|
118 |
+
""" Tests that A* finds correct path when multiple paths exist
|
119 |
+
and the best one is not expanded first (GH issue #3464)
|
120 |
+
"""
|
121 |
+
|
122 |
+
def test_astar_directed3(self):
|
123 |
+
heuristic_values = {"n5": 36, "n2": 4, "n1": 0, "n0": 0}
|
124 |
+
|
125 |
+
def h(u, v):
|
126 |
+
return heuristic_values[u]
|
127 |
+
|
128 |
+
edges = [("n5", "n1", 11), ("n5", "n2", 9), ("n2", "n1", 1), ("n1", "n0", 32)]
|
129 |
+
graph = nx.DiGraph()
|
130 |
+
graph.add_weighted_edges_from(edges)
|
131 |
+
answer = ["n5", "n2", "n1", "n0"]
|
132 |
+
assert nx.astar_path(graph, "n5", "n0", h) == answer
|
133 |
+
|
134 |
+
""" Tests that parent is not wrongly overridden when a node
|
135 |
+
is re-explored multiple times.
|
136 |
+
"""
|
137 |
+
|
138 |
+
def test_astar_directed4(self):
|
139 |
+
edges = [
|
140 |
+
("a", "b", 1),
|
141 |
+
("a", "c", 1),
|
142 |
+
("b", "d", 2),
|
143 |
+
("c", "d", 1),
|
144 |
+
("d", "e", 1),
|
145 |
+
]
|
146 |
+
graph = nx.DiGraph()
|
147 |
+
graph.add_weighted_edges_from(edges)
|
148 |
+
assert nx.astar_path(graph, "a", "e") == ["a", "c", "d", "e"]
|
149 |
+
|
150 |
+
# >>> MXG4=NX.MultiGraph(XG4)
|
151 |
+
# >>> MXG4.add_edge(0,1,3)
|
152 |
+
# >>> NX.dijkstra_path(MXG4,0,2)
|
153 |
+
# [0, 1, 2]
|
154 |
+
|
155 |
+
def test_astar_w1(self):
|
156 |
+
G = nx.DiGraph()
|
157 |
+
G.add_edges_from(
|
158 |
+
[
|
159 |
+
("s", "u"),
|
160 |
+
("s", "x"),
|
161 |
+
("u", "v"),
|
162 |
+
("u", "x"),
|
163 |
+
("v", "y"),
|
164 |
+
("x", "u"),
|
165 |
+
("x", "w"),
|
166 |
+
("w", "v"),
|
167 |
+
("x", "y"),
|
168 |
+
("y", "s"),
|
169 |
+
("y", "v"),
|
170 |
+
]
|
171 |
+
)
|
172 |
+
assert nx.astar_path(G, "s", "v") == ["s", "u", "v"]
|
173 |
+
assert nx.astar_path_length(G, "s", "v") == 2
|
174 |
+
|
175 |
+
def test_astar_nopath(self):
|
176 |
+
with pytest.raises(nx.NodeNotFound):
|
177 |
+
nx.astar_path(self.XG, "s", "moon")
|
178 |
+
|
179 |
+
def test_astar_cutoff(self):
|
180 |
+
with pytest.raises(nx.NetworkXNoPath):
|
181 |
+
# optimal path_length in XG is 9
|
182 |
+
nx.astar_path(self.XG, "s", "v", cutoff=8.0)
|
183 |
+
with pytest.raises(nx.NetworkXNoPath):
|
184 |
+
nx.astar_path_length(self.XG, "s", "v", cutoff=8.0)
|
185 |
+
|
186 |
+
def test_astar_admissible_heuristic_with_cutoff(self):
|
187 |
+
heuristic_values = {"s": 36, "y": 4, "x": 0, "u": 0, "v": 0}
|
188 |
+
|
189 |
+
def h(u, v):
|
190 |
+
return heuristic_values[u]
|
191 |
+
|
192 |
+
assert nx.astar_path_length(self.XG, "s", "v") == 9
|
193 |
+
assert nx.astar_path_length(self.XG, "s", "v", heuristic=h) == 9
|
194 |
+
assert nx.astar_path_length(self.XG, "s", "v", heuristic=h, cutoff=12) == 9
|
195 |
+
assert nx.astar_path_length(self.XG, "s", "v", heuristic=h, cutoff=9) == 9
|
196 |
+
with pytest.raises(nx.NetworkXNoPath):
|
197 |
+
nx.astar_path_length(self.XG, "s", "v", heuristic=h, cutoff=8)
|
198 |
+
|
199 |
+
def test_astar_inadmissible_heuristic_with_cutoff(self):
|
200 |
+
heuristic_values = {"s": 36, "y": 14, "x": 10, "u": 10, "v": 0}
|
201 |
+
|
202 |
+
def h(u, v):
|
203 |
+
return heuristic_values[u]
|
204 |
+
|
205 |
+
# optimal path_length in XG is 9. This heuristic gives over-estimate.
|
206 |
+
assert nx.astar_path_length(self.XG, "s", "v", heuristic=h) == 10
|
207 |
+
assert nx.astar_path_length(self.XG, "s", "v", heuristic=h, cutoff=15) == 10
|
208 |
+
with pytest.raises(nx.NetworkXNoPath):
|
209 |
+
nx.astar_path_length(self.XG, "s", "v", heuristic=h, cutoff=9)
|
210 |
+
with pytest.raises(nx.NetworkXNoPath):
|
211 |
+
nx.astar_path_length(self.XG, "s", "v", heuristic=h, cutoff=12)
|
212 |
+
|
213 |
+
def test_astar_cutoff2(self):
|
214 |
+
assert nx.astar_path(self.XG, "s", "v", cutoff=10.0) == ["s", "x", "u", "v"]
|
215 |
+
assert nx.astar_path_length(self.XG, "s", "v") == 9
|
216 |
+
|
217 |
+
def test_cycle(self):
|
218 |
+
C = nx.cycle_graph(7)
|
219 |
+
assert nx.astar_path(C, 0, 3) == [0, 1, 2, 3]
|
220 |
+
assert nx.dijkstra_path(C, 0, 4) == [0, 6, 5, 4]
|
221 |
+
|
222 |
+
def test_unorderable_nodes(self):
|
223 |
+
"""Tests that A* accommodates nodes that are not orderable.
|
224 |
+
|
225 |
+
For more information, see issue #554.
|
226 |
+
|
227 |
+
"""
|
228 |
+
# Create the cycle graph on four nodes, with nodes represented
|
229 |
+
# as (unorderable) Python objects.
|
230 |
+
nodes = [object() for n in range(4)]
|
231 |
+
G = nx.Graph()
|
232 |
+
G.add_edges_from(pairwise(nodes, cyclic=True))
|
233 |
+
path = nx.astar_path(G, nodes[0], nodes[2])
|
234 |
+
assert len(path) == 3
|
235 |
+
|
236 |
+
def test_astar_NetworkXNoPath(self):
|
237 |
+
"""Tests that exception is raised when there exists no
|
238 |
+
path between source and target"""
|
239 |
+
G = nx.gnp_random_graph(10, 0.2, seed=10)
|
240 |
+
with pytest.raises(nx.NetworkXNoPath):
|
241 |
+
nx.astar_path(G, 4, 9)
|
242 |
+
|
243 |
+
def test_astar_NodeNotFound(self):
|
244 |
+
"""Tests that exception is raised when either
|
245 |
+
source or target is not in graph"""
|
246 |
+
G = nx.gnp_random_graph(10, 0.2, seed=10)
|
247 |
+
with pytest.raises(nx.NodeNotFound):
|
248 |
+
nx.astar_path_length(G, 11, 9)
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/test_dense.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
|
5 |
+
|
6 |
+
class TestFloyd:
|
7 |
+
@classmethod
|
8 |
+
def setup_class(cls):
|
9 |
+
pass
|
10 |
+
|
11 |
+
def test_floyd_warshall_predecessor_and_distance(self):
|
12 |
+
XG = nx.DiGraph()
|
13 |
+
XG.add_weighted_edges_from(
|
14 |
+
[
|
15 |
+
("s", "u", 10),
|
16 |
+
("s", "x", 5),
|
17 |
+
("u", "v", 1),
|
18 |
+
("u", "x", 2),
|
19 |
+
("v", "y", 1),
|
20 |
+
("x", "u", 3),
|
21 |
+
("x", "v", 5),
|
22 |
+
("x", "y", 2),
|
23 |
+
("y", "s", 7),
|
24 |
+
("y", "v", 6),
|
25 |
+
]
|
26 |
+
)
|
27 |
+
path, dist = nx.floyd_warshall_predecessor_and_distance(XG)
|
28 |
+
assert dist["s"]["v"] == 9
|
29 |
+
assert path["s"]["v"] == "u"
|
30 |
+
assert dist == {
|
31 |
+
"y": {"y": 0, "x": 12, "s": 7, "u": 15, "v": 6},
|
32 |
+
"x": {"y": 2, "x": 0, "s": 9, "u": 3, "v": 4},
|
33 |
+
"s": {"y": 7, "x": 5, "s": 0, "u": 8, "v": 9},
|
34 |
+
"u": {"y": 2, "x": 2, "s": 9, "u": 0, "v": 1},
|
35 |
+
"v": {"y": 1, "x": 13, "s": 8, "u": 16, "v": 0},
|
36 |
+
}
|
37 |
+
|
38 |
+
GG = XG.to_undirected()
|
39 |
+
# make sure we get lower weight
|
40 |
+
# to_undirected might choose either edge with weight 2 or weight 3
|
41 |
+
GG["u"]["x"]["weight"] = 2
|
42 |
+
path, dist = nx.floyd_warshall_predecessor_and_distance(GG)
|
43 |
+
assert dist["s"]["v"] == 8
|
44 |
+
# skip this test, could be alternate path s-u-v
|
45 |
+
# assert_equal(path['s']['v'],'y')
|
46 |
+
|
47 |
+
G = nx.DiGraph() # no weights
|
48 |
+
G.add_edges_from(
|
49 |
+
[
|
50 |
+
("s", "u"),
|
51 |
+
("s", "x"),
|
52 |
+
("u", "v"),
|
53 |
+
("u", "x"),
|
54 |
+
("v", "y"),
|
55 |
+
("x", "u"),
|
56 |
+
("x", "v"),
|
57 |
+
("x", "y"),
|
58 |
+
("y", "s"),
|
59 |
+
("y", "v"),
|
60 |
+
]
|
61 |
+
)
|
62 |
+
path, dist = nx.floyd_warshall_predecessor_and_distance(G)
|
63 |
+
assert dist["s"]["v"] == 2
|
64 |
+
# skip this test, could be alternate path s-u-v
|
65 |
+
# assert_equal(path['s']['v'],'x')
|
66 |
+
|
67 |
+
# alternate interface
|
68 |
+
dist = nx.floyd_warshall(G)
|
69 |
+
assert dist["s"]["v"] == 2
|
70 |
+
|
71 |
+
# floyd_warshall_predecessor_and_distance returns
|
72 |
+
# dicts-of-defautdicts
|
73 |
+
# make sure we don't get empty dictionary
|
74 |
+
XG = nx.DiGraph()
|
75 |
+
XG.add_weighted_edges_from(
|
76 |
+
[("v", "x", 5.0), ("y", "x", 5.0), ("v", "y", 6.0), ("x", "u", 2.0)]
|
77 |
+
)
|
78 |
+
path, dist = nx.floyd_warshall_predecessor_and_distance(XG)
|
79 |
+
inf = float("inf")
|
80 |
+
assert dist == {
|
81 |
+
"v": {"v": 0, "x": 5.0, "y": 6.0, "u": 7.0},
|
82 |
+
"x": {"x": 0, "u": 2.0, "v": inf, "y": inf},
|
83 |
+
"y": {"y": 0, "x": 5.0, "v": inf, "u": 7.0},
|
84 |
+
"u": {"u": 0, "v": inf, "x": inf, "y": inf},
|
85 |
+
}
|
86 |
+
assert path == {
|
87 |
+
"v": {"x": "v", "y": "v", "u": "x"},
|
88 |
+
"x": {"u": "x"},
|
89 |
+
"y": {"x": "y", "u": "x"},
|
90 |
+
}
|
91 |
+
|
92 |
+
def test_reconstruct_path(self):
|
93 |
+
with pytest.raises(KeyError):
|
94 |
+
XG = nx.DiGraph()
|
95 |
+
XG.add_weighted_edges_from(
|
96 |
+
[
|
97 |
+
("s", "u", 10),
|
98 |
+
("s", "x", 5),
|
99 |
+
("u", "v", 1),
|
100 |
+
("u", "x", 2),
|
101 |
+
("v", "y", 1),
|
102 |
+
("x", "u", 3),
|
103 |
+
("x", "v", 5),
|
104 |
+
("x", "y", 2),
|
105 |
+
("y", "s", 7),
|
106 |
+
("y", "v", 6),
|
107 |
+
]
|
108 |
+
)
|
109 |
+
predecessors, _ = nx.floyd_warshall_predecessor_and_distance(XG)
|
110 |
+
|
111 |
+
path = nx.reconstruct_path("s", "v", predecessors)
|
112 |
+
assert path == ["s", "x", "u", "v"]
|
113 |
+
|
114 |
+
path = nx.reconstruct_path("s", "s", predecessors)
|
115 |
+
assert path == []
|
116 |
+
|
117 |
+
# this part raises the keyError
|
118 |
+
nx.reconstruct_path("1", "2", predecessors)
|
119 |
+
|
120 |
+
def test_cycle(self):
|
121 |
+
path, dist = nx.floyd_warshall_predecessor_and_distance(nx.cycle_graph(7))
|
122 |
+
assert dist[0][3] == 3
|
123 |
+
assert path[0][3] == 2
|
124 |
+
assert dist[0][4] == 3
|
125 |
+
|
126 |
+
def test_weighted(self):
|
127 |
+
XG3 = nx.Graph()
|
128 |
+
XG3.add_weighted_edges_from(
|
129 |
+
[[0, 1, 2], [1, 2, 12], [2, 3, 1], [3, 4, 5], [4, 5, 1], [5, 0, 10]]
|
130 |
+
)
|
131 |
+
path, dist = nx.floyd_warshall_predecessor_and_distance(XG3)
|
132 |
+
assert dist[0][3] == 15
|
133 |
+
assert path[0][3] == 2
|
134 |
+
|
135 |
+
def test_weighted2(self):
|
136 |
+
XG4 = nx.Graph()
|
137 |
+
XG4.add_weighted_edges_from(
|
138 |
+
[
|
139 |
+
[0, 1, 2],
|
140 |
+
[1, 2, 2],
|
141 |
+
[2, 3, 1],
|
142 |
+
[3, 4, 1],
|
143 |
+
[4, 5, 1],
|
144 |
+
[5, 6, 1],
|
145 |
+
[6, 7, 1],
|
146 |
+
[7, 0, 1],
|
147 |
+
]
|
148 |
+
)
|
149 |
+
path, dist = nx.floyd_warshall_predecessor_and_distance(XG4)
|
150 |
+
assert dist[0][2] == 4
|
151 |
+
assert path[0][2] == 1
|
152 |
+
|
153 |
+
def test_weight_parameter(self):
|
154 |
+
XG4 = nx.Graph()
|
155 |
+
XG4.add_edges_from(
|
156 |
+
[
|
157 |
+
(0, 1, {"heavy": 2}),
|
158 |
+
(1, 2, {"heavy": 2}),
|
159 |
+
(2, 3, {"heavy": 1}),
|
160 |
+
(3, 4, {"heavy": 1}),
|
161 |
+
(4, 5, {"heavy": 1}),
|
162 |
+
(5, 6, {"heavy": 1}),
|
163 |
+
(6, 7, {"heavy": 1}),
|
164 |
+
(7, 0, {"heavy": 1}),
|
165 |
+
]
|
166 |
+
)
|
167 |
+
path, dist = nx.floyd_warshall_predecessor_and_distance(XG4, weight="heavy")
|
168 |
+
assert dist[0][2] == 4
|
169 |
+
assert path[0][2] == 1
|
170 |
+
|
171 |
+
def test_zero_distance(self):
|
172 |
+
XG = nx.DiGraph()
|
173 |
+
XG.add_weighted_edges_from(
|
174 |
+
[
|
175 |
+
("s", "u", 10),
|
176 |
+
("s", "x", 5),
|
177 |
+
("u", "v", 1),
|
178 |
+
("u", "x", 2),
|
179 |
+
("v", "y", 1),
|
180 |
+
("x", "u", 3),
|
181 |
+
("x", "v", 5),
|
182 |
+
("x", "y", 2),
|
183 |
+
("y", "s", 7),
|
184 |
+
("y", "v", 6),
|
185 |
+
]
|
186 |
+
)
|
187 |
+
path, dist = nx.floyd_warshall_predecessor_and_distance(XG)
|
188 |
+
|
189 |
+
for u in XG:
|
190 |
+
assert dist[u][u] == 0
|
191 |
+
|
192 |
+
GG = XG.to_undirected()
|
193 |
+
# make sure we get lower weight
|
194 |
+
# to_undirected might choose either edge with weight 2 or weight 3
|
195 |
+
GG["u"]["x"]["weight"] = 2
|
196 |
+
path, dist = nx.floyd_warshall_predecessor_and_distance(GG)
|
197 |
+
|
198 |
+
for u in GG:
|
199 |
+
dist[u][u] = 0
|
200 |
+
|
201 |
+
def test_zero_weight(self):
|
202 |
+
G = nx.DiGraph()
|
203 |
+
edges = [(1, 2, -2), (2, 3, -4), (1, 5, 1), (5, 4, 0), (4, 3, -5), (2, 5, -7)]
|
204 |
+
G.add_weighted_edges_from(edges)
|
205 |
+
dist = nx.floyd_warshall(G)
|
206 |
+
assert dist[1][3] == -14
|
207 |
+
|
208 |
+
G = nx.MultiDiGraph()
|
209 |
+
edges.append((2, 5, -7))
|
210 |
+
G.add_weighted_edges_from(edges)
|
211 |
+
dist = nx.floyd_warshall(G)
|
212 |
+
assert dist[1][3] == -14
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/test_dense_numpy.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
np = pytest.importorskip("numpy")
|
4 |
+
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
|
8 |
+
|
9 |
+
def test_cycle_numpy():
|
10 |
+
dist = nx.floyd_warshall_numpy(nx.cycle_graph(7))
|
11 |
+
assert dist[0, 3] == 3
|
12 |
+
assert dist[0, 4] == 3
|
13 |
+
|
14 |
+
|
15 |
+
def test_weighted_numpy_three_edges():
|
16 |
+
XG3 = nx.Graph()
|
17 |
+
XG3.add_weighted_edges_from(
|
18 |
+
[[0, 1, 2], [1, 2, 12], [2, 3, 1], [3, 4, 5], [4, 5, 1], [5, 0, 10]]
|
19 |
+
)
|
20 |
+
dist = nx.floyd_warshall_numpy(XG3)
|
21 |
+
assert dist[0, 3] == 15
|
22 |
+
|
23 |
+
|
24 |
+
def test_weighted_numpy_two_edges():
|
25 |
+
XG4 = nx.Graph()
|
26 |
+
XG4.add_weighted_edges_from(
|
27 |
+
[
|
28 |
+
[0, 1, 2],
|
29 |
+
[1, 2, 2],
|
30 |
+
[2, 3, 1],
|
31 |
+
[3, 4, 1],
|
32 |
+
[4, 5, 1],
|
33 |
+
[5, 6, 1],
|
34 |
+
[6, 7, 1],
|
35 |
+
[7, 0, 1],
|
36 |
+
]
|
37 |
+
)
|
38 |
+
dist = nx.floyd_warshall_numpy(XG4)
|
39 |
+
assert dist[0, 2] == 4
|
40 |
+
|
41 |
+
|
42 |
+
def test_weight_parameter_numpy():
|
43 |
+
XG4 = nx.Graph()
|
44 |
+
XG4.add_edges_from(
|
45 |
+
[
|
46 |
+
(0, 1, {"heavy": 2}),
|
47 |
+
(1, 2, {"heavy": 2}),
|
48 |
+
(2, 3, {"heavy": 1}),
|
49 |
+
(3, 4, {"heavy": 1}),
|
50 |
+
(4, 5, {"heavy": 1}),
|
51 |
+
(5, 6, {"heavy": 1}),
|
52 |
+
(6, 7, {"heavy": 1}),
|
53 |
+
(7, 0, {"heavy": 1}),
|
54 |
+
]
|
55 |
+
)
|
56 |
+
dist = nx.floyd_warshall_numpy(XG4, weight="heavy")
|
57 |
+
assert dist[0, 2] == 4
|
58 |
+
|
59 |
+
|
60 |
+
def test_directed_cycle_numpy():
|
61 |
+
G = nx.DiGraph()
|
62 |
+
nx.add_cycle(G, [0, 1, 2, 3])
|
63 |
+
pred, dist = nx.floyd_warshall_predecessor_and_distance(G)
|
64 |
+
D = nx.utils.dict_to_numpy_array(dist)
|
65 |
+
np.testing.assert_equal(nx.floyd_warshall_numpy(G), D)
|
66 |
+
|
67 |
+
|
68 |
+
def test_zero_weight():
|
69 |
+
G = nx.DiGraph()
|
70 |
+
edges = [(1, 2, -2), (2, 3, -4), (1, 5, 1), (5, 4, 0), (4, 3, -5), (2, 5, -7)]
|
71 |
+
G.add_weighted_edges_from(edges)
|
72 |
+
dist = nx.floyd_warshall_numpy(G)
|
73 |
+
assert int(np.min(dist)) == -14
|
74 |
+
|
75 |
+
G = nx.MultiDiGraph()
|
76 |
+
edges.append((2, 5, -7))
|
77 |
+
G.add_weighted_edges_from(edges)
|
78 |
+
dist = nx.floyd_warshall_numpy(G)
|
79 |
+
assert int(np.min(dist)) == -14
|
80 |
+
|
81 |
+
|
82 |
+
def test_nodelist():
|
83 |
+
G = nx.path_graph(7)
|
84 |
+
dist = nx.floyd_warshall_numpy(G, nodelist=[3, 5, 4, 6, 2, 1, 0])
|
85 |
+
assert dist[0, 3] == 3
|
86 |
+
assert dist[0, 1] == 2
|
87 |
+
assert dist[6, 2] == 4
|
88 |
+
pytest.raises(nx.NetworkXError, nx.floyd_warshall_numpy, G, [1, 3])
|
89 |
+
pytest.raises(nx.NetworkXError, nx.floyd_warshall_numpy, G, list(range(9)))
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/test_generic.py
ADDED
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
|
5 |
+
|
6 |
+
def validate_grid_path(r, c, s, t, p):
|
7 |
+
assert isinstance(p, list)
|
8 |
+
assert p[0] == s
|
9 |
+
assert p[-1] == t
|
10 |
+
s = ((s - 1) // c, (s - 1) % c)
|
11 |
+
t = ((t - 1) // c, (t - 1) % c)
|
12 |
+
assert len(p) == abs(t[0] - s[0]) + abs(t[1] - s[1]) + 1
|
13 |
+
p = [((u - 1) // c, (u - 1) % c) for u in p]
|
14 |
+
for u in p:
|
15 |
+
assert 0 <= u[0] < r
|
16 |
+
assert 0 <= u[1] < c
|
17 |
+
for u, v in zip(p[:-1], p[1:]):
|
18 |
+
assert (abs(v[0] - u[0]), abs(v[1] - u[1])) in [(0, 1), (1, 0)]
|
19 |
+
|
20 |
+
|
21 |
+
class TestGenericPath:
|
22 |
+
@classmethod
|
23 |
+
def setup_class(cls):
|
24 |
+
from networkx import convert_node_labels_to_integers as cnlti
|
25 |
+
|
26 |
+
cls.grid = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted")
|
27 |
+
cls.cycle = nx.cycle_graph(7)
|
28 |
+
cls.directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph())
|
29 |
+
cls.neg_weights = nx.DiGraph()
|
30 |
+
cls.neg_weights.add_edge(0, 1, weight=1)
|
31 |
+
cls.neg_weights.add_edge(0, 2, weight=3)
|
32 |
+
cls.neg_weights.add_edge(1, 3, weight=1)
|
33 |
+
cls.neg_weights.add_edge(2, 3, weight=-2)
|
34 |
+
|
35 |
+
def test_shortest_path(self):
|
36 |
+
assert nx.shortest_path(self.cycle, 0, 3) == [0, 1, 2, 3]
|
37 |
+
assert nx.shortest_path(self.cycle, 0, 4) == [0, 6, 5, 4]
|
38 |
+
validate_grid_path(4, 4, 1, 12, nx.shortest_path(self.grid, 1, 12))
|
39 |
+
assert nx.shortest_path(self.directed_cycle, 0, 3) == [0, 1, 2, 3]
|
40 |
+
# now with weights
|
41 |
+
assert nx.shortest_path(self.cycle, 0, 3, weight="weight") == [0, 1, 2, 3]
|
42 |
+
assert nx.shortest_path(self.cycle, 0, 4, weight="weight") == [0, 6, 5, 4]
|
43 |
+
validate_grid_path(
|
44 |
+
4, 4, 1, 12, nx.shortest_path(self.grid, 1, 12, weight="weight")
|
45 |
+
)
|
46 |
+
assert nx.shortest_path(self.directed_cycle, 0, 3, weight="weight") == [
|
47 |
+
0,
|
48 |
+
1,
|
49 |
+
2,
|
50 |
+
3,
|
51 |
+
]
|
52 |
+
# weights and method specified
|
53 |
+
assert nx.shortest_path(
|
54 |
+
self.directed_cycle, 0, 3, weight="weight", method="dijkstra"
|
55 |
+
) == [0, 1, 2, 3]
|
56 |
+
assert nx.shortest_path(
|
57 |
+
self.directed_cycle, 0, 3, weight="weight", method="bellman-ford"
|
58 |
+
) == [0, 1, 2, 3]
|
59 |
+
# when Dijkstra's will probably (depending on precise implementation)
|
60 |
+
# incorrectly return [0, 1, 3] instead
|
61 |
+
assert nx.shortest_path(
|
62 |
+
self.neg_weights, 0, 3, weight="weight", method="bellman-ford"
|
63 |
+
) == [0, 2, 3]
|
64 |
+
# confirm bad method rejection
|
65 |
+
pytest.raises(ValueError, nx.shortest_path, self.cycle, method="SPAM")
|
66 |
+
# confirm absent source rejection
|
67 |
+
pytest.raises(nx.NodeNotFound, nx.shortest_path, self.cycle, 8)
|
68 |
+
|
69 |
+
def test_shortest_path_target(self):
|
70 |
+
answer = {0: [0, 1], 1: [1], 2: [2, 1]}
|
71 |
+
sp = nx.shortest_path(nx.path_graph(3), target=1)
|
72 |
+
assert sp == answer
|
73 |
+
# with weights
|
74 |
+
sp = nx.shortest_path(nx.path_graph(3), target=1, weight="weight")
|
75 |
+
assert sp == answer
|
76 |
+
# weights and method specified
|
77 |
+
sp = nx.shortest_path(
|
78 |
+
nx.path_graph(3), target=1, weight="weight", method="dijkstra"
|
79 |
+
)
|
80 |
+
assert sp == answer
|
81 |
+
sp = nx.shortest_path(
|
82 |
+
nx.path_graph(3), target=1, weight="weight", method="bellman-ford"
|
83 |
+
)
|
84 |
+
assert sp == answer
|
85 |
+
|
86 |
+
def test_shortest_path_length(self):
|
87 |
+
assert nx.shortest_path_length(self.cycle, 0, 3) == 3
|
88 |
+
assert nx.shortest_path_length(self.grid, 1, 12) == 5
|
89 |
+
assert nx.shortest_path_length(self.directed_cycle, 0, 4) == 4
|
90 |
+
# now with weights
|
91 |
+
assert nx.shortest_path_length(self.cycle, 0, 3, weight="weight") == 3
|
92 |
+
assert nx.shortest_path_length(self.grid, 1, 12, weight="weight") == 5
|
93 |
+
assert nx.shortest_path_length(self.directed_cycle, 0, 4, weight="weight") == 4
|
94 |
+
# weights and method specified
|
95 |
+
assert (
|
96 |
+
nx.shortest_path_length(
|
97 |
+
self.cycle, 0, 3, weight="weight", method="dijkstra"
|
98 |
+
)
|
99 |
+
== 3
|
100 |
+
)
|
101 |
+
assert (
|
102 |
+
nx.shortest_path_length(
|
103 |
+
self.cycle, 0, 3, weight="weight", method="bellman-ford"
|
104 |
+
)
|
105 |
+
== 3
|
106 |
+
)
|
107 |
+
# confirm bad method rejection
|
108 |
+
pytest.raises(ValueError, nx.shortest_path_length, self.cycle, method="SPAM")
|
109 |
+
# confirm absent source rejection
|
110 |
+
pytest.raises(nx.NodeNotFound, nx.shortest_path_length, self.cycle, 8)
|
111 |
+
|
112 |
+
def test_shortest_path_length_target(self):
|
113 |
+
answer = {0: 1, 1: 0, 2: 1}
|
114 |
+
sp = dict(nx.shortest_path_length(nx.path_graph(3), target=1))
|
115 |
+
assert sp == answer
|
116 |
+
# with weights
|
117 |
+
sp = nx.shortest_path_length(nx.path_graph(3), target=1, weight="weight")
|
118 |
+
assert sp == answer
|
119 |
+
# weights and method specified
|
120 |
+
sp = nx.shortest_path_length(
|
121 |
+
nx.path_graph(3), target=1, weight="weight", method="dijkstra"
|
122 |
+
)
|
123 |
+
assert sp == answer
|
124 |
+
sp = nx.shortest_path_length(
|
125 |
+
nx.path_graph(3), target=1, weight="weight", method="bellman-ford"
|
126 |
+
)
|
127 |
+
assert sp == answer
|
128 |
+
|
129 |
+
def test_single_source_shortest_path(self):
|
130 |
+
p = nx.shortest_path(self.cycle, 0)
|
131 |
+
assert p[3] == [0, 1, 2, 3]
|
132 |
+
assert p == nx.single_source_shortest_path(self.cycle, 0)
|
133 |
+
p = nx.shortest_path(self.grid, 1)
|
134 |
+
validate_grid_path(4, 4, 1, 12, p[12])
|
135 |
+
# now with weights
|
136 |
+
p = nx.shortest_path(self.cycle, 0, weight="weight")
|
137 |
+
assert p[3] == [0, 1, 2, 3]
|
138 |
+
assert p == nx.single_source_dijkstra_path(self.cycle, 0)
|
139 |
+
p = nx.shortest_path(self.grid, 1, weight="weight")
|
140 |
+
validate_grid_path(4, 4, 1, 12, p[12])
|
141 |
+
# weights and method specified
|
142 |
+
p = nx.shortest_path(self.cycle, 0, method="dijkstra", weight="weight")
|
143 |
+
assert p[3] == [0, 1, 2, 3]
|
144 |
+
assert p == nx.single_source_shortest_path(self.cycle, 0)
|
145 |
+
p = nx.shortest_path(self.cycle, 0, method="bellman-ford", weight="weight")
|
146 |
+
assert p[3] == [0, 1, 2, 3]
|
147 |
+
assert p == nx.single_source_shortest_path(self.cycle, 0)
|
148 |
+
|
149 |
+
def test_single_source_shortest_path_length(self):
|
150 |
+
ans = dict(nx.shortest_path_length(self.cycle, 0))
|
151 |
+
assert ans == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1}
|
152 |
+
assert ans == dict(nx.single_source_shortest_path_length(self.cycle, 0))
|
153 |
+
ans = dict(nx.shortest_path_length(self.grid, 1))
|
154 |
+
assert ans[16] == 6
|
155 |
+
# now with weights
|
156 |
+
ans = dict(nx.shortest_path_length(self.cycle, 0, weight="weight"))
|
157 |
+
assert ans == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1}
|
158 |
+
assert ans == dict(nx.single_source_dijkstra_path_length(self.cycle, 0))
|
159 |
+
ans = dict(nx.shortest_path_length(self.grid, 1, weight="weight"))
|
160 |
+
assert ans[16] == 6
|
161 |
+
# weights and method specified
|
162 |
+
ans = dict(
|
163 |
+
nx.shortest_path_length(self.cycle, 0, weight="weight", method="dijkstra")
|
164 |
+
)
|
165 |
+
assert ans == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1}
|
166 |
+
assert ans == dict(nx.single_source_dijkstra_path_length(self.cycle, 0))
|
167 |
+
ans = dict(
|
168 |
+
nx.shortest_path_length(
|
169 |
+
self.cycle, 0, weight="weight", method="bellman-ford"
|
170 |
+
)
|
171 |
+
)
|
172 |
+
assert ans == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1}
|
173 |
+
assert ans == dict(nx.single_source_bellman_ford_path_length(self.cycle, 0))
|
174 |
+
|
175 |
+
def test_single_source_all_shortest_paths(self):
|
176 |
+
cycle_ans = {0: [[0]], 1: [[0, 1]], 2: [[0, 1, 2], [0, 3, 2]], 3: [[0, 3]]}
|
177 |
+
ans = dict(nx.single_source_all_shortest_paths(nx.cycle_graph(4), 0))
|
178 |
+
assert sorted(ans[2]) == cycle_ans[2]
|
179 |
+
ans = dict(nx.single_source_all_shortest_paths(self.grid, 1))
|
180 |
+
grid_ans = [
|
181 |
+
[1, 2, 3, 7, 11],
|
182 |
+
[1, 2, 6, 7, 11],
|
183 |
+
[1, 2, 6, 10, 11],
|
184 |
+
[1, 5, 6, 7, 11],
|
185 |
+
[1, 5, 6, 10, 11],
|
186 |
+
[1, 5, 9, 10, 11],
|
187 |
+
]
|
188 |
+
assert sorted(ans[11]) == grid_ans
|
189 |
+
ans = dict(
|
190 |
+
nx.single_source_all_shortest_paths(nx.cycle_graph(4), 0, weight="weight")
|
191 |
+
)
|
192 |
+
assert sorted(ans[2]) == cycle_ans[2]
|
193 |
+
ans = dict(
|
194 |
+
nx.single_source_all_shortest_paths(
|
195 |
+
nx.cycle_graph(4), 0, method="bellman-ford", weight="weight"
|
196 |
+
)
|
197 |
+
)
|
198 |
+
assert sorted(ans[2]) == cycle_ans[2]
|
199 |
+
ans = dict(nx.single_source_all_shortest_paths(self.grid, 1, weight="weight"))
|
200 |
+
assert sorted(ans[11]) == grid_ans
|
201 |
+
ans = dict(
|
202 |
+
nx.single_source_all_shortest_paths(
|
203 |
+
self.grid, 1, method="bellman-ford", weight="weight"
|
204 |
+
)
|
205 |
+
)
|
206 |
+
assert sorted(ans[11]) == grid_ans
|
207 |
+
G = nx.cycle_graph(4)
|
208 |
+
G.add_node(4)
|
209 |
+
ans = dict(nx.single_source_all_shortest_paths(G, 0))
|
210 |
+
assert sorted(ans[2]) == [[0, 1, 2], [0, 3, 2]]
|
211 |
+
ans = dict(nx.single_source_all_shortest_paths(G, 4))
|
212 |
+
assert sorted(ans[4]) == [[4]]
|
213 |
+
|
214 |
+
def test_all_pairs_shortest_path(self):
|
215 |
+
# shortest_path w/o source and target will return a generator instead of
|
216 |
+
# a dict beginning in version 3.5. Only the first call needs changed here.
|
217 |
+
p = nx.shortest_path(self.cycle)
|
218 |
+
assert p[0][3] == [0, 1, 2, 3]
|
219 |
+
assert p == dict(nx.all_pairs_shortest_path(self.cycle))
|
220 |
+
p = dict(nx.shortest_path(self.grid))
|
221 |
+
validate_grid_path(4, 4, 1, 12, p[1][12])
|
222 |
+
# now with weights
|
223 |
+
p = dict(nx.shortest_path(self.cycle, weight="weight"))
|
224 |
+
assert p[0][3] == [0, 1, 2, 3]
|
225 |
+
assert p == dict(nx.all_pairs_dijkstra_path(self.cycle))
|
226 |
+
p = dict(nx.shortest_path(self.grid, weight="weight"))
|
227 |
+
validate_grid_path(4, 4, 1, 12, p[1][12])
|
228 |
+
# weights and method specified
|
229 |
+
p = dict(nx.shortest_path(self.cycle, weight="weight", method="dijkstra"))
|
230 |
+
assert p[0][3] == [0, 1, 2, 3]
|
231 |
+
assert p == dict(nx.all_pairs_dijkstra_path(self.cycle))
|
232 |
+
p = dict(nx.shortest_path(self.cycle, weight="weight", method="bellman-ford"))
|
233 |
+
assert p[0][3] == [0, 1, 2, 3]
|
234 |
+
assert p == dict(nx.all_pairs_bellman_ford_path(self.cycle))
|
235 |
+
|
236 |
+
def test_all_pairs_shortest_path_length(self):
|
237 |
+
ans = dict(nx.shortest_path_length(self.cycle))
|
238 |
+
assert ans[0] == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1}
|
239 |
+
assert ans == dict(nx.all_pairs_shortest_path_length(self.cycle))
|
240 |
+
ans = dict(nx.shortest_path_length(self.grid))
|
241 |
+
assert ans[1][16] == 6
|
242 |
+
# now with weights
|
243 |
+
ans = dict(nx.shortest_path_length(self.cycle, weight="weight"))
|
244 |
+
assert ans[0] == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1}
|
245 |
+
assert ans == dict(nx.all_pairs_dijkstra_path_length(self.cycle))
|
246 |
+
ans = dict(nx.shortest_path_length(self.grid, weight="weight"))
|
247 |
+
assert ans[1][16] == 6
|
248 |
+
# weights and method specified
|
249 |
+
ans = dict(
|
250 |
+
nx.shortest_path_length(self.cycle, weight="weight", method="dijkstra")
|
251 |
+
)
|
252 |
+
assert ans[0] == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1}
|
253 |
+
assert ans == dict(nx.all_pairs_dijkstra_path_length(self.cycle))
|
254 |
+
ans = dict(
|
255 |
+
nx.shortest_path_length(self.cycle, weight="weight", method="bellman-ford")
|
256 |
+
)
|
257 |
+
assert ans[0] == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1}
|
258 |
+
assert ans == dict(nx.all_pairs_bellman_ford_path_length(self.cycle))
|
259 |
+
|
260 |
+
def test_all_pairs_all_shortest_paths(self):
|
261 |
+
ans = dict(nx.all_pairs_all_shortest_paths(nx.cycle_graph(4)))
|
262 |
+
assert sorted(ans[1][3]) == [[1, 0, 3], [1, 2, 3]]
|
263 |
+
ans = dict(nx.all_pairs_all_shortest_paths(nx.cycle_graph(4)), weight="weight")
|
264 |
+
assert sorted(ans[1][3]) == [[1, 0, 3], [1, 2, 3]]
|
265 |
+
ans = dict(
|
266 |
+
nx.all_pairs_all_shortest_paths(nx.cycle_graph(4)),
|
267 |
+
method="bellman-ford",
|
268 |
+
weight="weight",
|
269 |
+
)
|
270 |
+
assert sorted(ans[1][3]) == [[1, 0, 3], [1, 2, 3]]
|
271 |
+
G = nx.cycle_graph(4)
|
272 |
+
G.add_node(4)
|
273 |
+
ans = dict(nx.all_pairs_all_shortest_paths(G))
|
274 |
+
assert sorted(ans[4][4]) == [[4]]
|
275 |
+
|
276 |
+
def test_has_path(self):
|
277 |
+
G = nx.Graph()
|
278 |
+
nx.add_path(G, range(3))
|
279 |
+
nx.add_path(G, range(3, 5))
|
280 |
+
assert nx.has_path(G, 0, 2)
|
281 |
+
assert not nx.has_path(G, 0, 4)
|
282 |
+
|
283 |
+
def test_has_path_singleton(self):
|
284 |
+
G = nx.empty_graph(1)
|
285 |
+
assert nx.has_path(G, 0, 0)
|
286 |
+
|
287 |
+
def test_all_shortest_paths(self):
|
288 |
+
G = nx.Graph()
|
289 |
+
nx.add_path(G, [0, 1, 2, 3])
|
290 |
+
nx.add_path(G, [0, 10, 20, 3])
|
291 |
+
assert [[0, 1, 2, 3], [0, 10, 20, 3]] == sorted(nx.all_shortest_paths(G, 0, 3))
|
292 |
+
# with weights
|
293 |
+
G = nx.Graph()
|
294 |
+
nx.add_path(G, [0, 1, 2, 3])
|
295 |
+
nx.add_path(G, [0, 10, 20, 3])
|
296 |
+
assert [[0, 1, 2, 3], [0, 10, 20, 3]] == sorted(
|
297 |
+
nx.all_shortest_paths(G, 0, 3, weight="weight")
|
298 |
+
)
|
299 |
+
# weights and method specified
|
300 |
+
G = nx.Graph()
|
301 |
+
nx.add_path(G, [0, 1, 2, 3])
|
302 |
+
nx.add_path(G, [0, 10, 20, 3])
|
303 |
+
assert [[0, 1, 2, 3], [0, 10, 20, 3]] == sorted(
|
304 |
+
nx.all_shortest_paths(G, 0, 3, weight="weight", method="dijkstra")
|
305 |
+
)
|
306 |
+
G = nx.Graph()
|
307 |
+
nx.add_path(G, [0, 1, 2, 3])
|
308 |
+
nx.add_path(G, [0, 10, 20, 3])
|
309 |
+
assert [[0, 1, 2, 3], [0, 10, 20, 3]] == sorted(
|
310 |
+
nx.all_shortest_paths(G, 0, 3, weight="weight", method="bellman-ford")
|
311 |
+
)
|
312 |
+
|
313 |
+
def test_all_shortest_paths_raise(self):
|
314 |
+
with pytest.raises(nx.NetworkXNoPath):
|
315 |
+
G = nx.path_graph(4)
|
316 |
+
G.add_node(4)
|
317 |
+
list(nx.all_shortest_paths(G, 0, 4))
|
318 |
+
|
319 |
+
def test_bad_method(self):
|
320 |
+
with pytest.raises(ValueError):
|
321 |
+
G = nx.path_graph(2)
|
322 |
+
list(nx.all_shortest_paths(G, 0, 1, weight="weight", method="SPAM"))
|
323 |
+
|
324 |
+
def test_single_source_all_shortest_paths_bad_method(self):
|
325 |
+
with pytest.raises(ValueError):
|
326 |
+
G = nx.path_graph(2)
|
327 |
+
dict(
|
328 |
+
nx.single_source_all_shortest_paths(
|
329 |
+
G, 0, weight="weight", method="SPAM"
|
330 |
+
)
|
331 |
+
)
|
332 |
+
|
333 |
+
def test_all_shortest_paths_zero_weight_edge(self):
|
334 |
+
g = nx.Graph()
|
335 |
+
nx.add_path(g, [0, 1, 3])
|
336 |
+
nx.add_path(g, [0, 1, 2, 3])
|
337 |
+
g.edges[1, 2]["weight"] = 0
|
338 |
+
paths30d = list(
|
339 |
+
nx.all_shortest_paths(g, 3, 0, weight="weight", method="dijkstra")
|
340 |
+
)
|
341 |
+
paths03d = list(
|
342 |
+
nx.all_shortest_paths(g, 0, 3, weight="weight", method="dijkstra")
|
343 |
+
)
|
344 |
+
paths30b = list(
|
345 |
+
nx.all_shortest_paths(g, 3, 0, weight="weight", method="bellman-ford")
|
346 |
+
)
|
347 |
+
paths03b = list(
|
348 |
+
nx.all_shortest_paths(g, 0, 3, weight="weight", method="bellman-ford")
|
349 |
+
)
|
350 |
+
assert sorted(paths03d) == sorted(p[::-1] for p in paths30d)
|
351 |
+
assert sorted(paths03d) == sorted(p[::-1] for p in paths30b)
|
352 |
+
assert sorted(paths03b) == sorted(p[::-1] for p in paths30b)
|
353 |
+
|
354 |
+
|
355 |
+
class TestAverageShortestPathLength:
|
356 |
+
def test_cycle_graph(self):
|
357 |
+
ans = nx.average_shortest_path_length(nx.cycle_graph(7))
|
358 |
+
assert ans == pytest.approx(2, abs=1e-7)
|
359 |
+
|
360 |
+
def test_path_graph(self):
|
361 |
+
ans = nx.average_shortest_path_length(nx.path_graph(5))
|
362 |
+
assert ans == pytest.approx(2, abs=1e-7)
|
363 |
+
|
364 |
+
def test_weighted(self):
|
365 |
+
G = nx.Graph()
|
366 |
+
nx.add_cycle(G, range(7), weight=2)
|
367 |
+
ans = nx.average_shortest_path_length(G, weight="weight")
|
368 |
+
assert ans == pytest.approx(4, abs=1e-7)
|
369 |
+
G = nx.Graph()
|
370 |
+
nx.add_path(G, range(5), weight=2)
|
371 |
+
ans = nx.average_shortest_path_length(G, weight="weight")
|
372 |
+
assert ans == pytest.approx(4, abs=1e-7)
|
373 |
+
|
374 |
+
def test_specified_methods(self):
|
375 |
+
G = nx.Graph()
|
376 |
+
nx.add_cycle(G, range(7), weight=2)
|
377 |
+
ans = nx.average_shortest_path_length(G, weight="weight", method="dijkstra")
|
378 |
+
assert ans == pytest.approx(4, abs=1e-7)
|
379 |
+
ans = nx.average_shortest_path_length(G, weight="weight", method="bellman-ford")
|
380 |
+
assert ans == pytest.approx(4, abs=1e-7)
|
381 |
+
ans = nx.average_shortest_path_length(
|
382 |
+
G, weight="weight", method="floyd-warshall"
|
383 |
+
)
|
384 |
+
assert ans == pytest.approx(4, abs=1e-7)
|
385 |
+
|
386 |
+
G = nx.Graph()
|
387 |
+
nx.add_path(G, range(5), weight=2)
|
388 |
+
ans = nx.average_shortest_path_length(G, weight="weight", method="dijkstra")
|
389 |
+
assert ans == pytest.approx(4, abs=1e-7)
|
390 |
+
ans = nx.average_shortest_path_length(G, weight="weight", method="bellman-ford")
|
391 |
+
assert ans == pytest.approx(4, abs=1e-7)
|
392 |
+
ans = nx.average_shortest_path_length(
|
393 |
+
G, weight="weight", method="floyd-warshall"
|
394 |
+
)
|
395 |
+
assert ans == pytest.approx(4, abs=1e-7)
|
396 |
+
|
397 |
+
def test_directed_not_strongly_connected(self):
|
398 |
+
G = nx.DiGraph([(0, 1)])
|
399 |
+
with pytest.raises(nx.NetworkXError, match="Graph is not strongly connected"):
|
400 |
+
nx.average_shortest_path_length(G)
|
401 |
+
|
402 |
+
def test_undirected_not_connected(self):
|
403 |
+
g = nx.Graph()
|
404 |
+
g.add_nodes_from(range(3))
|
405 |
+
g.add_edge(0, 1)
|
406 |
+
pytest.raises(nx.NetworkXError, nx.average_shortest_path_length, g)
|
407 |
+
|
408 |
+
def test_trivial_graph(self):
|
409 |
+
"""Tests that the trivial graph has average path length zero,
|
410 |
+
since there is exactly one path of length zero in the trivial
|
411 |
+
graph.
|
412 |
+
|
413 |
+
For more information, see issue #1960.
|
414 |
+
|
415 |
+
"""
|
416 |
+
G = nx.trivial_graph()
|
417 |
+
assert nx.average_shortest_path_length(G) == 0
|
418 |
+
|
419 |
+
def test_null_graph(self):
|
420 |
+
with pytest.raises(nx.NetworkXPointlessConcept):
|
421 |
+
nx.average_shortest_path_length(nx.null_graph())
|
422 |
+
|
423 |
+
def test_bad_method(self):
|
424 |
+
with pytest.raises(ValueError):
|
425 |
+
G = nx.path_graph(2)
|
426 |
+
nx.average_shortest_path_length(G, weight="weight", method="SPAM")
|
427 |
+
|
428 |
+
|
429 |
+
class TestAverageShortestPathLengthNumpy:
|
430 |
+
@classmethod
|
431 |
+
def setup_class(cls):
|
432 |
+
global np
|
433 |
+
import pytest
|
434 |
+
|
435 |
+
np = pytest.importorskip("numpy")
|
436 |
+
|
437 |
+
def test_specified_methods_numpy(self):
|
438 |
+
G = nx.Graph()
|
439 |
+
nx.add_cycle(G, range(7), weight=2)
|
440 |
+
ans = nx.average_shortest_path_length(
|
441 |
+
G, weight="weight", method="floyd-warshall-numpy"
|
442 |
+
)
|
443 |
+
np.testing.assert_almost_equal(ans, 4)
|
444 |
+
|
445 |
+
G = nx.Graph()
|
446 |
+
nx.add_path(G, range(5), weight=2)
|
447 |
+
ans = nx.average_shortest_path_length(
|
448 |
+
G, weight="weight", method="floyd-warshall-numpy"
|
449 |
+
)
|
450 |
+
np.testing.assert_almost_equal(ans, 4)
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/test_unweighted.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
|
5 |
+
|
6 |
+
def validate_grid_path(r, c, s, t, p):
|
7 |
+
assert isinstance(p, list)
|
8 |
+
assert p[0] == s
|
9 |
+
assert p[-1] == t
|
10 |
+
s = ((s - 1) // c, (s - 1) % c)
|
11 |
+
t = ((t - 1) // c, (t - 1) % c)
|
12 |
+
assert len(p) == abs(t[0] - s[0]) + abs(t[1] - s[1]) + 1
|
13 |
+
p = [((u - 1) // c, (u - 1) % c) for u in p]
|
14 |
+
for u in p:
|
15 |
+
assert 0 <= u[0] < r
|
16 |
+
assert 0 <= u[1] < c
|
17 |
+
for u, v in zip(p[:-1], p[1:]):
|
18 |
+
assert (abs(v[0] - u[0]), abs(v[1] - u[1])) in [(0, 1), (1, 0)]
|
19 |
+
|
20 |
+
|
21 |
+
class TestUnweightedPath:
|
22 |
+
@classmethod
|
23 |
+
def setup_class(cls):
|
24 |
+
from networkx import convert_node_labels_to_integers as cnlti
|
25 |
+
|
26 |
+
cls.grid = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted")
|
27 |
+
cls.cycle = nx.cycle_graph(7)
|
28 |
+
cls.directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph())
|
29 |
+
|
30 |
+
def test_bidirectional_shortest_path(self):
|
31 |
+
assert nx.bidirectional_shortest_path(self.cycle, 0, 3) == [0, 1, 2, 3]
|
32 |
+
assert nx.bidirectional_shortest_path(self.cycle, 0, 4) == [0, 6, 5, 4]
|
33 |
+
validate_grid_path(
|
34 |
+
4, 4, 1, 12, nx.bidirectional_shortest_path(self.grid, 1, 12)
|
35 |
+
)
|
36 |
+
assert nx.bidirectional_shortest_path(self.directed_cycle, 0, 3) == [0, 1, 2, 3]
|
37 |
+
# test source = target
|
38 |
+
assert nx.bidirectional_shortest_path(self.cycle, 3, 3) == [3]
|
39 |
+
|
40 |
+
@pytest.mark.parametrize(
|
41 |
+
("src", "tgt"),
|
42 |
+
(
|
43 |
+
(8, 3), # source not in graph
|
44 |
+
(3, 8), # target not in graph
|
45 |
+
(8, 10), # neither source nor target in graph
|
46 |
+
(8, 8), # src == tgt, neither in graph - tests order of input checks
|
47 |
+
),
|
48 |
+
)
|
49 |
+
def test_bidirectional_shortest_path_src_tgt_not_in_graph(self, src, tgt):
|
50 |
+
with pytest.raises(
|
51 |
+
nx.NodeNotFound,
|
52 |
+
match=f"Either source {src} or target {tgt} is not in G",
|
53 |
+
):
|
54 |
+
nx.bidirectional_shortest_path(self.cycle, src, tgt)
|
55 |
+
|
56 |
+
def test_shortest_path_length(self):
|
57 |
+
assert nx.shortest_path_length(self.cycle, 0, 3) == 3
|
58 |
+
assert nx.shortest_path_length(self.grid, 1, 12) == 5
|
59 |
+
assert nx.shortest_path_length(self.directed_cycle, 0, 4) == 4
|
60 |
+
# now with weights
|
61 |
+
assert nx.shortest_path_length(self.cycle, 0, 3, weight=True) == 3
|
62 |
+
assert nx.shortest_path_length(self.grid, 1, 12, weight=True) == 5
|
63 |
+
assert nx.shortest_path_length(self.directed_cycle, 0, 4, weight=True) == 4
|
64 |
+
|
65 |
+
def test_single_source_shortest_path(self):
|
66 |
+
p = nx.single_source_shortest_path(self.directed_cycle, 3)
|
67 |
+
assert p[0] == [3, 4, 5, 6, 0]
|
68 |
+
p = nx.single_source_shortest_path(self.cycle, 0)
|
69 |
+
assert p[3] == [0, 1, 2, 3]
|
70 |
+
p = nx.single_source_shortest_path(self.cycle, 0, cutoff=0)
|
71 |
+
assert p == {0: [0]}
|
72 |
+
|
73 |
+
def test_single_source_shortest_path_length(self):
|
74 |
+
pl = nx.single_source_shortest_path_length
|
75 |
+
lengths = {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1}
|
76 |
+
assert dict(pl(self.cycle, 0)) == lengths
|
77 |
+
lengths = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6}
|
78 |
+
assert dict(pl(self.directed_cycle, 0)) == lengths
|
79 |
+
|
80 |
+
def test_single_target_shortest_path(self):
|
81 |
+
p = nx.single_target_shortest_path(self.directed_cycle, 0)
|
82 |
+
assert p[3] == [3, 4, 5, 6, 0]
|
83 |
+
p = nx.single_target_shortest_path(self.cycle, 0)
|
84 |
+
assert p[3] == [3, 2, 1, 0]
|
85 |
+
p = nx.single_target_shortest_path(self.cycle, 0, cutoff=0)
|
86 |
+
assert p == {0: [0]}
|
87 |
+
# test missing targets
|
88 |
+
target = 8
|
89 |
+
with pytest.raises(nx.NodeNotFound, match=f"Target {target} not in G"):
|
90 |
+
nx.single_target_shortest_path(self.cycle, target)
|
91 |
+
|
92 |
+
def test_single_target_shortest_path_length(self):
|
93 |
+
pl = nx.single_target_shortest_path_length
|
94 |
+
lengths = {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1}
|
95 |
+
assert dict(pl(self.cycle, 0)) == lengths
|
96 |
+
lengths = {0: 0, 1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1}
|
97 |
+
assert dict(pl(self.directed_cycle, 0)) == lengths
|
98 |
+
# test missing targets
|
99 |
+
target = 8
|
100 |
+
with pytest.raises(nx.NodeNotFound, match=f"Target {target} is not in G"):
|
101 |
+
nx.single_target_shortest_path_length(self.cycle, target)
|
102 |
+
|
103 |
+
def test_all_pairs_shortest_path(self):
|
104 |
+
p = dict(nx.all_pairs_shortest_path(self.cycle))
|
105 |
+
assert p[0][3] == [0, 1, 2, 3]
|
106 |
+
p = dict(nx.all_pairs_shortest_path(self.grid))
|
107 |
+
validate_grid_path(4, 4, 1, 12, p[1][12])
|
108 |
+
|
109 |
+
def test_all_pairs_shortest_path_length(self):
|
110 |
+
l = dict(nx.all_pairs_shortest_path_length(self.cycle))
|
111 |
+
assert l[0] == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1}
|
112 |
+
l = dict(nx.all_pairs_shortest_path_length(self.grid))
|
113 |
+
assert l[1][16] == 6
|
114 |
+
|
115 |
+
def test_predecessor_path(self):
|
116 |
+
G = nx.path_graph(4)
|
117 |
+
assert nx.predecessor(G, 0) == {0: [], 1: [0], 2: [1], 3: [2]}
|
118 |
+
assert nx.predecessor(G, 0, 3) == [2]
|
119 |
+
|
120 |
+
def test_predecessor_cycle(self):
|
121 |
+
G = nx.cycle_graph(4)
|
122 |
+
pred = nx.predecessor(G, 0)
|
123 |
+
assert pred[0] == []
|
124 |
+
assert pred[1] == [0]
|
125 |
+
assert pred[2] in [[1, 3], [3, 1]]
|
126 |
+
assert pred[3] == [0]
|
127 |
+
|
128 |
+
def test_predecessor_cutoff(self):
|
129 |
+
G = nx.path_graph(4)
|
130 |
+
p = nx.predecessor(G, 0, 3)
|
131 |
+
assert 4 not in p
|
132 |
+
|
133 |
+
def test_predecessor_target(self):
|
134 |
+
G = nx.path_graph(4)
|
135 |
+
p = nx.predecessor(G, 0, 3)
|
136 |
+
assert p == [2]
|
137 |
+
p = nx.predecessor(G, 0, 3, cutoff=2)
|
138 |
+
assert p == []
|
139 |
+
p, s = nx.predecessor(G, 0, 3, return_seen=True)
|
140 |
+
assert p == [2]
|
141 |
+
assert s == 3
|
142 |
+
p, s = nx.predecessor(G, 0, 3, cutoff=2, return_seen=True)
|
143 |
+
assert p == []
|
144 |
+
assert s == -1
|
145 |
+
|
146 |
+
def test_predecessor_missing_source(self):
|
147 |
+
source = 8
|
148 |
+
with pytest.raises(nx.NodeNotFound, match=f"Source {source} not in G"):
|
149 |
+
nx.predecessor(self.cycle, source)
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/tests/test_weighted.py
ADDED
@@ -0,0 +1,972 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
from networkx.utils import pairwise
|
5 |
+
|
6 |
+
|
7 |
+
def validate_path(G, s, t, soln_len, path, weight="weight"):
|
8 |
+
assert path[0] == s
|
9 |
+
assert path[-1] == t
|
10 |
+
|
11 |
+
if callable(weight):
|
12 |
+
weight_f = weight
|
13 |
+
else:
|
14 |
+
if G.is_multigraph():
|
15 |
+
|
16 |
+
def weight_f(u, v, d):
|
17 |
+
return min(e.get(weight, 1) for e in d.values())
|
18 |
+
|
19 |
+
else:
|
20 |
+
|
21 |
+
def weight_f(u, v, d):
|
22 |
+
return d.get(weight, 1)
|
23 |
+
|
24 |
+
computed = sum(weight_f(u, v, G[u][v]) for u, v in pairwise(path))
|
25 |
+
assert soln_len == computed
|
26 |
+
|
27 |
+
|
28 |
+
def validate_length_path(G, s, t, soln_len, length, path, weight="weight"):
|
29 |
+
assert soln_len == length
|
30 |
+
validate_path(G, s, t, length, path, weight=weight)
|
31 |
+
|
32 |
+
|
33 |
+
class WeightedTestBase:
|
34 |
+
"""Base class for test classes that test functions for computing
|
35 |
+
shortest paths in weighted graphs.
|
36 |
+
|
37 |
+
"""
|
38 |
+
|
39 |
+
def setup_method(self):
|
40 |
+
"""Creates some graphs for use in the unit tests."""
|
41 |
+
cnlti = nx.convert_node_labels_to_integers
|
42 |
+
self.grid = cnlti(nx.grid_2d_graph(4, 4), first_label=1, ordering="sorted")
|
43 |
+
self.cycle = nx.cycle_graph(7)
|
44 |
+
self.directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph())
|
45 |
+
self.XG = nx.DiGraph()
|
46 |
+
self.XG.add_weighted_edges_from(
|
47 |
+
[
|
48 |
+
("s", "u", 10),
|
49 |
+
("s", "x", 5),
|
50 |
+
("u", "v", 1),
|
51 |
+
("u", "x", 2),
|
52 |
+
("v", "y", 1),
|
53 |
+
("x", "u", 3),
|
54 |
+
("x", "v", 5),
|
55 |
+
("x", "y", 2),
|
56 |
+
("y", "s", 7),
|
57 |
+
("y", "v", 6),
|
58 |
+
]
|
59 |
+
)
|
60 |
+
self.MXG = nx.MultiDiGraph(self.XG)
|
61 |
+
self.MXG.add_edge("s", "u", weight=15)
|
62 |
+
self.XG2 = nx.DiGraph()
|
63 |
+
self.XG2.add_weighted_edges_from(
|
64 |
+
[
|
65 |
+
[1, 4, 1],
|
66 |
+
[4, 5, 1],
|
67 |
+
[5, 6, 1],
|
68 |
+
[6, 3, 1],
|
69 |
+
[1, 3, 50],
|
70 |
+
[1, 2, 100],
|
71 |
+
[2, 3, 100],
|
72 |
+
]
|
73 |
+
)
|
74 |
+
|
75 |
+
self.XG3 = nx.Graph()
|
76 |
+
self.XG3.add_weighted_edges_from(
|
77 |
+
[[0, 1, 2], [1, 2, 12], [2, 3, 1], [3, 4, 5], [4, 5, 1], [5, 0, 10]]
|
78 |
+
)
|
79 |
+
|
80 |
+
self.XG4 = nx.Graph()
|
81 |
+
self.XG4.add_weighted_edges_from(
|
82 |
+
[
|
83 |
+
[0, 1, 2],
|
84 |
+
[1, 2, 2],
|
85 |
+
[2, 3, 1],
|
86 |
+
[3, 4, 1],
|
87 |
+
[4, 5, 1],
|
88 |
+
[5, 6, 1],
|
89 |
+
[6, 7, 1],
|
90 |
+
[7, 0, 1],
|
91 |
+
]
|
92 |
+
)
|
93 |
+
self.MXG4 = nx.MultiGraph(self.XG4)
|
94 |
+
self.MXG4.add_edge(0, 1, weight=3)
|
95 |
+
self.G = nx.DiGraph() # no weights
|
96 |
+
self.G.add_edges_from(
|
97 |
+
[
|
98 |
+
("s", "u"),
|
99 |
+
("s", "x"),
|
100 |
+
("u", "v"),
|
101 |
+
("u", "x"),
|
102 |
+
("v", "y"),
|
103 |
+
("x", "u"),
|
104 |
+
("x", "v"),
|
105 |
+
("x", "y"),
|
106 |
+
("y", "s"),
|
107 |
+
("y", "v"),
|
108 |
+
]
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
class TestWeightedPath(WeightedTestBase):
|
113 |
+
def test_dijkstra(self):
|
114 |
+
(D, P) = nx.single_source_dijkstra(self.XG, "s")
|
115 |
+
validate_path(self.XG, "s", "v", 9, P["v"])
|
116 |
+
assert D["v"] == 9
|
117 |
+
|
118 |
+
validate_path(
|
119 |
+
self.XG, "s", "v", 9, nx.single_source_dijkstra_path(self.XG, "s")["v"]
|
120 |
+
)
|
121 |
+
assert dict(nx.single_source_dijkstra_path_length(self.XG, "s"))["v"] == 9
|
122 |
+
|
123 |
+
validate_path(
|
124 |
+
self.XG, "s", "v", 9, nx.single_source_dijkstra(self.XG, "s")[1]["v"]
|
125 |
+
)
|
126 |
+
validate_path(
|
127 |
+
self.MXG, "s", "v", 9, nx.single_source_dijkstra_path(self.MXG, "s")["v"]
|
128 |
+
)
|
129 |
+
|
130 |
+
GG = self.XG.to_undirected()
|
131 |
+
# make sure we get lower weight
|
132 |
+
# to_undirected might choose either edge with weight 2 or weight 3
|
133 |
+
GG["u"]["x"]["weight"] = 2
|
134 |
+
(D, P) = nx.single_source_dijkstra(GG, "s")
|
135 |
+
validate_path(GG, "s", "v", 8, P["v"])
|
136 |
+
assert D["v"] == 8 # uses lower weight of 2 on u<->x edge
|
137 |
+
validate_path(GG, "s", "v", 8, nx.dijkstra_path(GG, "s", "v"))
|
138 |
+
assert nx.dijkstra_path_length(GG, "s", "v") == 8
|
139 |
+
|
140 |
+
validate_path(self.XG2, 1, 3, 4, nx.dijkstra_path(self.XG2, 1, 3))
|
141 |
+
validate_path(self.XG3, 0, 3, 15, nx.dijkstra_path(self.XG3, 0, 3))
|
142 |
+
assert nx.dijkstra_path_length(self.XG3, 0, 3) == 15
|
143 |
+
validate_path(self.XG4, 0, 2, 4, nx.dijkstra_path(self.XG4, 0, 2))
|
144 |
+
assert nx.dijkstra_path_length(self.XG4, 0, 2) == 4
|
145 |
+
validate_path(self.MXG4, 0, 2, 4, nx.dijkstra_path(self.MXG4, 0, 2))
|
146 |
+
validate_path(
|
147 |
+
self.G, "s", "v", 2, nx.single_source_dijkstra(self.G, "s", "v")[1]
|
148 |
+
)
|
149 |
+
validate_path(
|
150 |
+
self.G, "s", "v", 2, nx.single_source_dijkstra(self.G, "s")[1]["v"]
|
151 |
+
)
|
152 |
+
|
153 |
+
validate_path(self.G, "s", "v", 2, nx.dijkstra_path(self.G, "s", "v"))
|
154 |
+
assert nx.dijkstra_path_length(self.G, "s", "v") == 2
|
155 |
+
|
156 |
+
# NetworkXError: node s not reachable from moon
|
157 |
+
pytest.raises(nx.NetworkXNoPath, nx.dijkstra_path, self.G, "s", "moon")
|
158 |
+
pytest.raises(nx.NetworkXNoPath, nx.dijkstra_path_length, self.G, "s", "moon")
|
159 |
+
|
160 |
+
validate_path(self.cycle, 0, 3, 3, nx.dijkstra_path(self.cycle, 0, 3))
|
161 |
+
validate_path(self.cycle, 0, 4, 3, nx.dijkstra_path(self.cycle, 0, 4))
|
162 |
+
|
163 |
+
assert nx.single_source_dijkstra(self.cycle, 0, 0) == (0, [0])
|
164 |
+
|
165 |
+
def test_bidirectional_dijkstra(self):
|
166 |
+
validate_length_path(
|
167 |
+
self.XG, "s", "v", 9, *nx.bidirectional_dijkstra(self.XG, "s", "v")
|
168 |
+
)
|
169 |
+
validate_length_path(
|
170 |
+
self.G, "s", "v", 2, *nx.bidirectional_dijkstra(self.G, "s", "v")
|
171 |
+
)
|
172 |
+
validate_length_path(
|
173 |
+
self.cycle, 0, 3, 3, *nx.bidirectional_dijkstra(self.cycle, 0, 3)
|
174 |
+
)
|
175 |
+
validate_length_path(
|
176 |
+
self.cycle, 0, 4, 3, *nx.bidirectional_dijkstra(self.cycle, 0, 4)
|
177 |
+
)
|
178 |
+
validate_length_path(
|
179 |
+
self.XG3, 0, 3, 15, *nx.bidirectional_dijkstra(self.XG3, 0, 3)
|
180 |
+
)
|
181 |
+
validate_length_path(
|
182 |
+
self.XG4, 0, 2, 4, *nx.bidirectional_dijkstra(self.XG4, 0, 2)
|
183 |
+
)
|
184 |
+
|
185 |
+
# need more tests here
|
186 |
+
P = nx.single_source_dijkstra_path(self.XG, "s")["v"]
|
187 |
+
validate_path(
|
188 |
+
self.XG,
|
189 |
+
"s",
|
190 |
+
"v",
|
191 |
+
sum(self.XG[u][v]["weight"] for u, v in zip(P[:-1], P[1:])),
|
192 |
+
nx.dijkstra_path(self.XG, "s", "v"),
|
193 |
+
)
|
194 |
+
|
195 |
+
# check absent source
|
196 |
+
G = nx.path_graph(2)
|
197 |
+
pytest.raises(nx.NodeNotFound, nx.bidirectional_dijkstra, G, 3, 0)
|
198 |
+
|
199 |
+
def test_weight_functions(self):
|
200 |
+
def heuristic(*z):
|
201 |
+
return sum(val**2 for val in z)
|
202 |
+
|
203 |
+
def getpath(pred, v, s):
|
204 |
+
return [v] if v == s else getpath(pred, pred[v], s) + [v]
|
205 |
+
|
206 |
+
def goldberg_radzik(g, s, t, weight="weight"):
|
207 |
+
pred, dist = nx.goldberg_radzik(g, s, weight=weight)
|
208 |
+
dist = dist[t]
|
209 |
+
return dist, getpath(pred, t, s)
|
210 |
+
|
211 |
+
def astar(g, s, t, weight="weight"):
|
212 |
+
path = nx.astar_path(g, s, t, heuristic, weight=weight)
|
213 |
+
dist = nx.astar_path_length(g, s, t, heuristic, weight=weight)
|
214 |
+
return dist, path
|
215 |
+
|
216 |
+
def vlp(G, s, t, l, F, w):
|
217 |
+
res = F(G, s, t, weight=w)
|
218 |
+
validate_length_path(G, s, t, l, *res, weight=w)
|
219 |
+
|
220 |
+
G = self.cycle
|
221 |
+
s = 6
|
222 |
+
t = 4
|
223 |
+
path = [6] + list(range(t + 1))
|
224 |
+
|
225 |
+
def weight(u, v, _):
|
226 |
+
return 1 + v**2
|
227 |
+
|
228 |
+
length = sum(weight(u, v, None) for u, v in pairwise(path))
|
229 |
+
vlp(G, s, t, length, nx.bidirectional_dijkstra, weight)
|
230 |
+
vlp(G, s, t, length, nx.single_source_dijkstra, weight)
|
231 |
+
vlp(G, s, t, length, nx.single_source_bellman_ford, weight)
|
232 |
+
vlp(G, s, t, length, goldberg_radzik, weight)
|
233 |
+
vlp(G, s, t, length, astar, weight)
|
234 |
+
|
235 |
+
def weight(u, v, _):
|
236 |
+
return 2 ** (u * v)
|
237 |
+
|
238 |
+
length = sum(weight(u, v, None) for u, v in pairwise(path))
|
239 |
+
vlp(G, s, t, length, nx.bidirectional_dijkstra, weight)
|
240 |
+
vlp(G, s, t, length, nx.single_source_dijkstra, weight)
|
241 |
+
vlp(G, s, t, length, nx.single_source_bellman_ford, weight)
|
242 |
+
vlp(G, s, t, length, goldberg_radzik, weight)
|
243 |
+
vlp(G, s, t, length, astar, weight)
|
244 |
+
|
245 |
+
def test_bidirectional_dijkstra_no_path(self):
|
246 |
+
with pytest.raises(nx.NetworkXNoPath):
|
247 |
+
G = nx.Graph()
|
248 |
+
nx.add_path(G, [1, 2, 3])
|
249 |
+
nx.add_path(G, [4, 5, 6])
|
250 |
+
path = nx.bidirectional_dijkstra(G, 1, 6)
|
251 |
+
|
252 |
+
@pytest.mark.parametrize(
|
253 |
+
"fn",
|
254 |
+
(
|
255 |
+
nx.dijkstra_path,
|
256 |
+
nx.dijkstra_path_length,
|
257 |
+
nx.single_source_dijkstra_path,
|
258 |
+
nx.single_source_dijkstra_path_length,
|
259 |
+
nx.single_source_dijkstra,
|
260 |
+
nx.dijkstra_predecessor_and_distance,
|
261 |
+
),
|
262 |
+
)
|
263 |
+
def test_absent_source(self, fn):
|
264 |
+
G = nx.path_graph(2)
|
265 |
+
with pytest.raises(nx.NodeNotFound):
|
266 |
+
fn(G, 3, 0)
|
267 |
+
# Test when source == target, which is handled specially by some functions
|
268 |
+
with pytest.raises(nx.NodeNotFound):
|
269 |
+
fn(G, 3, 3)
|
270 |
+
|
271 |
+
def test_dijkstra_predecessor1(self):
|
272 |
+
G = nx.path_graph(4)
|
273 |
+
assert nx.dijkstra_predecessor_and_distance(G, 0) == (
|
274 |
+
{0: [], 1: [0], 2: [1], 3: [2]},
|
275 |
+
{0: 0, 1: 1, 2: 2, 3: 3},
|
276 |
+
)
|
277 |
+
|
278 |
+
def test_dijkstra_predecessor2(self):
|
279 |
+
# 4-cycle
|
280 |
+
G = nx.Graph([(0, 1), (1, 2), (2, 3), (3, 0)])
|
281 |
+
pred, dist = nx.dijkstra_predecessor_and_distance(G, (0))
|
282 |
+
assert pred[0] == []
|
283 |
+
assert pred[1] == [0]
|
284 |
+
assert pred[2] in [[1, 3], [3, 1]]
|
285 |
+
assert pred[3] == [0]
|
286 |
+
assert dist == {0: 0, 1: 1, 2: 2, 3: 1}
|
287 |
+
|
288 |
+
def test_dijkstra_predecessor3(self):
|
289 |
+
XG = nx.DiGraph()
|
290 |
+
XG.add_weighted_edges_from(
|
291 |
+
[
|
292 |
+
("s", "u", 10),
|
293 |
+
("s", "x", 5),
|
294 |
+
("u", "v", 1),
|
295 |
+
("u", "x", 2),
|
296 |
+
("v", "y", 1),
|
297 |
+
("x", "u", 3),
|
298 |
+
("x", "v", 5),
|
299 |
+
("x", "y", 2),
|
300 |
+
("y", "s", 7),
|
301 |
+
("y", "v", 6),
|
302 |
+
]
|
303 |
+
)
|
304 |
+
(P, D) = nx.dijkstra_predecessor_and_distance(XG, "s")
|
305 |
+
assert P["v"] == ["u"]
|
306 |
+
assert D["v"] == 9
|
307 |
+
(P, D) = nx.dijkstra_predecessor_and_distance(XG, "s", cutoff=8)
|
308 |
+
assert "v" not in D
|
309 |
+
|
310 |
+
def test_single_source_dijkstra_path_length(self):
|
311 |
+
pl = nx.single_source_dijkstra_path_length
|
312 |
+
assert dict(pl(self.MXG4, 0))[2] == 4
|
313 |
+
spl = pl(self.MXG4, 0, cutoff=2)
|
314 |
+
assert 2 not in spl
|
315 |
+
|
316 |
+
def test_bidirectional_dijkstra_multigraph(self):
|
317 |
+
G = nx.MultiGraph()
|
318 |
+
G.add_edge("a", "b", weight=10)
|
319 |
+
G.add_edge("a", "b", weight=100)
|
320 |
+
dp = nx.bidirectional_dijkstra(G, "a", "b")
|
321 |
+
assert dp == (10, ["a", "b"])
|
322 |
+
|
323 |
+
def test_dijkstra_pred_distance_multigraph(self):
|
324 |
+
G = nx.MultiGraph()
|
325 |
+
G.add_edge("a", "b", key="short", foo=5, weight=100)
|
326 |
+
G.add_edge("a", "b", key="long", bar=1, weight=110)
|
327 |
+
p, d = nx.dijkstra_predecessor_and_distance(G, "a")
|
328 |
+
assert p == {"a": [], "b": ["a"]}
|
329 |
+
assert d == {"a": 0, "b": 100}
|
330 |
+
|
331 |
+
def test_negative_edge_cycle(self):
|
332 |
+
G = nx.cycle_graph(5, create_using=nx.DiGraph())
|
333 |
+
assert not nx.negative_edge_cycle(G)
|
334 |
+
G.add_edge(8, 9, weight=-7)
|
335 |
+
G.add_edge(9, 8, weight=3)
|
336 |
+
graph_size = len(G)
|
337 |
+
assert nx.negative_edge_cycle(G)
|
338 |
+
assert graph_size == len(G)
|
339 |
+
pytest.raises(ValueError, nx.single_source_dijkstra_path_length, G, 8)
|
340 |
+
pytest.raises(ValueError, nx.single_source_dijkstra, G, 8)
|
341 |
+
pytest.raises(ValueError, nx.dijkstra_predecessor_and_distance, G, 8)
|
342 |
+
G.add_edge(9, 10)
|
343 |
+
pytest.raises(ValueError, nx.bidirectional_dijkstra, G, 8, 10)
|
344 |
+
G = nx.MultiDiGraph()
|
345 |
+
G.add_edge(2, 2, weight=-1)
|
346 |
+
assert nx.negative_edge_cycle(G)
|
347 |
+
|
348 |
+
def test_negative_edge_cycle_empty(self):
|
349 |
+
G = nx.DiGraph()
|
350 |
+
assert not nx.negative_edge_cycle(G)
|
351 |
+
|
352 |
+
def test_negative_edge_cycle_custom_weight_key(self):
|
353 |
+
d = nx.DiGraph()
|
354 |
+
d.add_edge("a", "b", w=-2)
|
355 |
+
d.add_edge("b", "a", w=-1)
|
356 |
+
assert nx.negative_edge_cycle(d, weight="w")
|
357 |
+
|
358 |
+
def test_weight_function(self):
|
359 |
+
"""Tests that a callable weight is interpreted as a weight
|
360 |
+
function instead of an edge attribute.
|
361 |
+
|
362 |
+
"""
|
363 |
+
# Create a triangle in which the edge from node 0 to node 2 has
|
364 |
+
# a large weight and the other two edges have a small weight.
|
365 |
+
G = nx.complete_graph(3)
|
366 |
+
G.adj[0][2]["weight"] = 10
|
367 |
+
G.adj[0][1]["weight"] = 1
|
368 |
+
G.adj[1][2]["weight"] = 1
|
369 |
+
|
370 |
+
# The weight function will take the multiplicative inverse of
|
371 |
+
# the weights on the edges. This way, weights that were large
|
372 |
+
# before now become small and vice versa.
|
373 |
+
|
374 |
+
def weight(u, v, d):
|
375 |
+
return 1 / d["weight"]
|
376 |
+
|
377 |
+
# The shortest path from 0 to 2 using the actual weights on the
|
378 |
+
# edges should be [0, 1, 2].
|
379 |
+
distance, path = nx.single_source_dijkstra(G, 0, 2)
|
380 |
+
assert distance == 2
|
381 |
+
assert path == [0, 1, 2]
|
382 |
+
# However, with the above weight function, the shortest path
|
383 |
+
# should be [0, 2], since that has a very small weight.
|
384 |
+
distance, path = nx.single_source_dijkstra(G, 0, 2, weight=weight)
|
385 |
+
assert distance == 1 / 10
|
386 |
+
assert path == [0, 2]
|
387 |
+
|
388 |
+
def test_all_pairs_dijkstra_path(self):
|
389 |
+
cycle = nx.cycle_graph(7)
|
390 |
+
p = dict(nx.all_pairs_dijkstra_path(cycle))
|
391 |
+
assert p[0][3] == [0, 1, 2, 3]
|
392 |
+
|
393 |
+
cycle[1][2]["weight"] = 10
|
394 |
+
p = dict(nx.all_pairs_dijkstra_path(cycle))
|
395 |
+
assert p[0][3] == [0, 6, 5, 4, 3]
|
396 |
+
|
397 |
+
def test_all_pairs_dijkstra_path_length(self):
|
398 |
+
cycle = nx.cycle_graph(7)
|
399 |
+
pl = dict(nx.all_pairs_dijkstra_path_length(cycle))
|
400 |
+
assert pl[0] == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1}
|
401 |
+
|
402 |
+
cycle[1][2]["weight"] = 10
|
403 |
+
pl = dict(nx.all_pairs_dijkstra_path_length(cycle))
|
404 |
+
assert pl[0] == {0: 0, 1: 1, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1}
|
405 |
+
|
406 |
+
def test_all_pairs_dijkstra(self):
|
407 |
+
cycle = nx.cycle_graph(7)
|
408 |
+
out = dict(nx.all_pairs_dijkstra(cycle))
|
409 |
+
assert out[0][0] == {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1}
|
410 |
+
assert out[0][1][3] == [0, 1, 2, 3]
|
411 |
+
|
412 |
+
cycle[1][2]["weight"] = 10
|
413 |
+
out = dict(nx.all_pairs_dijkstra(cycle))
|
414 |
+
assert out[0][0] == {0: 0, 1: 1, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1}
|
415 |
+
assert out[0][1][3] == [0, 6, 5, 4, 3]
|
416 |
+
|
417 |
+
|
418 |
+
class TestDijkstraPathLength:
|
419 |
+
"""Unit tests for the :func:`networkx.dijkstra_path_length`
|
420 |
+
function.
|
421 |
+
|
422 |
+
"""
|
423 |
+
|
424 |
+
def test_weight_function(self):
|
425 |
+
"""Tests for computing the length of the shortest path using
|
426 |
+
Dijkstra's algorithm with a user-defined weight function.
|
427 |
+
|
428 |
+
"""
|
429 |
+
# Create a triangle in which the edge from node 0 to node 2 has
|
430 |
+
# a large weight and the other two edges have a small weight.
|
431 |
+
G = nx.complete_graph(3)
|
432 |
+
G.adj[0][2]["weight"] = 10
|
433 |
+
G.adj[0][1]["weight"] = 1
|
434 |
+
G.adj[1][2]["weight"] = 1
|
435 |
+
|
436 |
+
# The weight function will take the multiplicative inverse of
|
437 |
+
# the weights on the edges. This way, weights that were large
|
438 |
+
# before now become small and vice versa.
|
439 |
+
|
440 |
+
def weight(u, v, d):
|
441 |
+
return 1 / d["weight"]
|
442 |
+
|
443 |
+
# The shortest path from 0 to 2 using the actual weights on the
|
444 |
+
# edges should be [0, 1, 2]. However, with the above weight
|
445 |
+
# function, the shortest path should be [0, 2], since that has a
|
446 |
+
# very small weight.
|
447 |
+
length = nx.dijkstra_path_length(G, 0, 2, weight=weight)
|
448 |
+
assert length == 1 / 10
|
449 |
+
|
450 |
+
|
451 |
+
class TestMultiSourceDijkstra:
|
452 |
+
"""Unit tests for the multi-source dialect of Dijkstra's shortest
|
453 |
+
path algorithms.
|
454 |
+
|
455 |
+
"""
|
456 |
+
|
457 |
+
def test_no_sources(self):
|
458 |
+
with pytest.raises(ValueError):
|
459 |
+
nx.multi_source_dijkstra(nx.Graph(), {})
|
460 |
+
|
461 |
+
def test_path_no_sources(self):
|
462 |
+
with pytest.raises(ValueError):
|
463 |
+
nx.multi_source_dijkstra_path(nx.Graph(), {})
|
464 |
+
|
465 |
+
def test_path_length_no_sources(self):
|
466 |
+
with pytest.raises(ValueError):
|
467 |
+
nx.multi_source_dijkstra_path_length(nx.Graph(), {})
|
468 |
+
|
469 |
+
@pytest.mark.parametrize(
|
470 |
+
"fn",
|
471 |
+
(
|
472 |
+
nx.multi_source_dijkstra_path,
|
473 |
+
nx.multi_source_dijkstra_path_length,
|
474 |
+
nx.multi_source_dijkstra,
|
475 |
+
),
|
476 |
+
)
|
477 |
+
def test_absent_source(self, fn):
|
478 |
+
G = nx.path_graph(2)
|
479 |
+
with pytest.raises(nx.NodeNotFound):
|
480 |
+
fn(G, [3], 0)
|
481 |
+
with pytest.raises(nx.NodeNotFound):
|
482 |
+
fn(G, [3], 3)
|
483 |
+
|
484 |
+
def test_two_sources(self):
|
485 |
+
edges = [(0, 1, 1), (1, 2, 1), (2, 3, 10), (3, 4, 1)]
|
486 |
+
G = nx.Graph()
|
487 |
+
G.add_weighted_edges_from(edges)
|
488 |
+
sources = {0, 4}
|
489 |
+
distances, paths = nx.multi_source_dijkstra(G, sources)
|
490 |
+
expected_distances = {0: 0, 1: 1, 2: 2, 3: 1, 4: 0}
|
491 |
+
expected_paths = {0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [4, 3], 4: [4]}
|
492 |
+
assert distances == expected_distances
|
493 |
+
assert paths == expected_paths
|
494 |
+
|
495 |
+
def test_simple_paths(self):
|
496 |
+
G = nx.path_graph(4)
|
497 |
+
lengths = nx.multi_source_dijkstra_path_length(G, [0])
|
498 |
+
assert lengths == {n: n for n in G}
|
499 |
+
paths = nx.multi_source_dijkstra_path(G, [0])
|
500 |
+
assert paths == {n: list(range(n + 1)) for n in G}
|
501 |
+
|
502 |
+
|
503 |
+
class TestBellmanFordAndGoldbergRadzik(WeightedTestBase):
|
504 |
+
def test_single_node_graph(self):
|
505 |
+
G = nx.DiGraph()
|
506 |
+
G.add_node(0)
|
507 |
+
assert nx.single_source_bellman_ford_path(G, 0) == {0: [0]}
|
508 |
+
assert nx.single_source_bellman_ford_path_length(G, 0) == {0: 0}
|
509 |
+
assert nx.single_source_bellman_ford(G, 0) == ({0: 0}, {0: [0]})
|
510 |
+
assert nx.bellman_ford_predecessor_and_distance(G, 0) == ({0: []}, {0: 0})
|
511 |
+
assert nx.goldberg_radzik(G, 0) == ({0: None}, {0: 0})
|
512 |
+
|
513 |
+
def test_absent_source_bellman_ford(self):
|
514 |
+
# the check is in _bellman_ford; this provides regression testing
|
515 |
+
# against later changes to "client" Bellman-Ford functions
|
516 |
+
G = nx.path_graph(2)
|
517 |
+
for fn in (
|
518 |
+
nx.bellman_ford_predecessor_and_distance,
|
519 |
+
nx.bellman_ford_path,
|
520 |
+
nx.bellman_ford_path_length,
|
521 |
+
nx.single_source_bellman_ford_path,
|
522 |
+
nx.single_source_bellman_ford_path_length,
|
523 |
+
nx.single_source_bellman_ford,
|
524 |
+
):
|
525 |
+
pytest.raises(nx.NodeNotFound, fn, G, 3, 0)
|
526 |
+
pytest.raises(nx.NodeNotFound, fn, G, 3, 3)
|
527 |
+
|
528 |
+
def test_absent_source_goldberg_radzik(self):
|
529 |
+
with pytest.raises(nx.NodeNotFound):
|
530 |
+
G = nx.path_graph(2)
|
531 |
+
nx.goldberg_radzik(G, 3, 0)
|
532 |
+
|
533 |
+
def test_negative_cycle_heuristic(self):
|
534 |
+
G = nx.DiGraph()
|
535 |
+
G.add_edge(0, 1, weight=-1)
|
536 |
+
G.add_edge(1, 2, weight=-1)
|
537 |
+
G.add_edge(2, 3, weight=-1)
|
538 |
+
G.add_edge(3, 0, weight=3)
|
539 |
+
assert not nx.negative_edge_cycle(G, heuristic=True)
|
540 |
+
G.add_edge(2, 0, weight=1.999)
|
541 |
+
assert nx.negative_edge_cycle(G, heuristic=True)
|
542 |
+
G.edges[2, 0]["weight"] = 2
|
543 |
+
assert not nx.negative_edge_cycle(G, heuristic=True)
|
544 |
+
|
545 |
+
def test_negative_cycle_consistency(self):
|
546 |
+
import random
|
547 |
+
|
548 |
+
unif = random.uniform
|
549 |
+
for random_seed in range(2): # range(20):
|
550 |
+
random.seed(random_seed)
|
551 |
+
for density in [0.1, 0.9]: # .3, .7, .9]:
|
552 |
+
for N in [1, 10, 20]: # range(1, 60 - int(30 * density)):
|
553 |
+
for max_cost in [1, 90]: # [1, 10, 40, 90]:
|
554 |
+
G = nx.binomial_graph(N, density, seed=4, directed=True)
|
555 |
+
edges = ((u, v, unif(-1, max_cost)) for u, v in G.edges)
|
556 |
+
G.add_weighted_edges_from(edges)
|
557 |
+
|
558 |
+
no_heuristic = nx.negative_edge_cycle(G, heuristic=False)
|
559 |
+
with_heuristic = nx.negative_edge_cycle(G, heuristic=True)
|
560 |
+
assert no_heuristic == with_heuristic
|
561 |
+
|
562 |
+
def test_negative_cycle(self):
|
563 |
+
G = nx.cycle_graph(5, create_using=nx.DiGraph())
|
564 |
+
G.add_edge(1, 2, weight=-7)
|
565 |
+
for i in range(5):
|
566 |
+
pytest.raises(
|
567 |
+
nx.NetworkXUnbounded, nx.single_source_bellman_ford_path, G, i
|
568 |
+
)
|
569 |
+
pytest.raises(
|
570 |
+
nx.NetworkXUnbounded, nx.single_source_bellman_ford_path_length, G, i
|
571 |
+
)
|
572 |
+
pytest.raises(nx.NetworkXUnbounded, nx.single_source_bellman_ford, G, i)
|
573 |
+
pytest.raises(
|
574 |
+
nx.NetworkXUnbounded, nx.bellman_ford_predecessor_and_distance, G, i
|
575 |
+
)
|
576 |
+
pytest.raises(nx.NetworkXUnbounded, nx.goldberg_radzik, G, i)
|
577 |
+
G = nx.cycle_graph(5) # undirected Graph
|
578 |
+
G.add_edge(1, 2, weight=-3)
|
579 |
+
for i in range(5):
|
580 |
+
pytest.raises(
|
581 |
+
nx.NetworkXUnbounded, nx.single_source_bellman_ford_path, G, i
|
582 |
+
)
|
583 |
+
pytest.raises(
|
584 |
+
nx.NetworkXUnbounded, nx.single_source_bellman_ford_path_length, G, i
|
585 |
+
)
|
586 |
+
pytest.raises(nx.NetworkXUnbounded, nx.single_source_bellman_ford, G, i)
|
587 |
+
pytest.raises(
|
588 |
+
nx.NetworkXUnbounded, nx.bellman_ford_predecessor_and_distance, G, i
|
589 |
+
)
|
590 |
+
pytest.raises(nx.NetworkXUnbounded, nx.goldberg_radzik, G, i)
|
591 |
+
G = nx.DiGraph([(1, 1, {"weight": -1})])
|
592 |
+
pytest.raises(nx.NetworkXUnbounded, nx.single_source_bellman_ford_path, G, 1)
|
593 |
+
pytest.raises(
|
594 |
+
nx.NetworkXUnbounded, nx.single_source_bellman_ford_path_length, G, 1
|
595 |
+
)
|
596 |
+
pytest.raises(nx.NetworkXUnbounded, nx.single_source_bellman_ford, G, 1)
|
597 |
+
pytest.raises(
|
598 |
+
nx.NetworkXUnbounded, nx.bellman_ford_predecessor_and_distance, G, 1
|
599 |
+
)
|
600 |
+
pytest.raises(nx.NetworkXUnbounded, nx.goldberg_radzik, G, 1)
|
601 |
+
G = nx.MultiDiGraph([(1, 1, {"weight": -1})])
|
602 |
+
pytest.raises(nx.NetworkXUnbounded, nx.single_source_bellman_ford_path, G, 1)
|
603 |
+
pytest.raises(
|
604 |
+
nx.NetworkXUnbounded, nx.single_source_bellman_ford_path_length, G, 1
|
605 |
+
)
|
606 |
+
pytest.raises(nx.NetworkXUnbounded, nx.single_source_bellman_ford, G, 1)
|
607 |
+
pytest.raises(
|
608 |
+
nx.NetworkXUnbounded, nx.bellman_ford_predecessor_and_distance, G, 1
|
609 |
+
)
|
610 |
+
pytest.raises(nx.NetworkXUnbounded, nx.goldberg_radzik, G, 1)
|
611 |
+
|
612 |
+
def test_zero_cycle(self):
|
613 |
+
G = nx.cycle_graph(5, create_using=nx.DiGraph())
|
614 |
+
G.add_edge(2, 3, weight=-4)
|
615 |
+
# check that zero cycle doesn't raise
|
616 |
+
nx.goldberg_radzik(G, 1)
|
617 |
+
nx.bellman_ford_predecessor_and_distance(G, 1)
|
618 |
+
|
619 |
+
G.add_edge(2, 3, weight=-4.0001)
|
620 |
+
# check that negative cycle does raise
|
621 |
+
pytest.raises(
|
622 |
+
nx.NetworkXUnbounded, nx.bellman_ford_predecessor_and_distance, G, 1
|
623 |
+
)
|
624 |
+
pytest.raises(nx.NetworkXUnbounded, nx.goldberg_radzik, G, 1)
|
625 |
+
|
626 |
+
def test_find_negative_cycle_longer_cycle(self):
|
627 |
+
G = nx.cycle_graph(5, create_using=nx.DiGraph())
|
628 |
+
nx.add_cycle(G, [3, 5, 6, 7, 8, 9])
|
629 |
+
G.add_edge(1, 2, weight=-30)
|
630 |
+
assert nx.find_negative_cycle(G, 1) == [0, 1, 2, 3, 4, 0]
|
631 |
+
assert nx.find_negative_cycle(G, 7) == [2, 3, 4, 0, 1, 2]
|
632 |
+
|
633 |
+
def test_find_negative_cycle_no_cycle(self):
|
634 |
+
G = nx.path_graph(5, create_using=nx.DiGraph())
|
635 |
+
pytest.raises(nx.NetworkXError, nx.find_negative_cycle, G, 3)
|
636 |
+
|
637 |
+
def test_find_negative_cycle_single_edge(self):
|
638 |
+
G = nx.Graph()
|
639 |
+
G.add_edge(0, 1, weight=-1)
|
640 |
+
assert nx.find_negative_cycle(G, 1) == [1, 0, 1]
|
641 |
+
|
642 |
+
def test_negative_weight(self):
|
643 |
+
G = nx.cycle_graph(5, create_using=nx.DiGraph())
|
644 |
+
G.add_edge(1, 2, weight=-3)
|
645 |
+
assert nx.single_source_bellman_ford_path(G, 0) == {
|
646 |
+
0: [0],
|
647 |
+
1: [0, 1],
|
648 |
+
2: [0, 1, 2],
|
649 |
+
3: [0, 1, 2, 3],
|
650 |
+
4: [0, 1, 2, 3, 4],
|
651 |
+
}
|
652 |
+
assert nx.single_source_bellman_ford_path_length(G, 0) == {
|
653 |
+
0: 0,
|
654 |
+
1: 1,
|
655 |
+
2: -2,
|
656 |
+
3: -1,
|
657 |
+
4: 0,
|
658 |
+
}
|
659 |
+
assert nx.single_source_bellman_ford(G, 0) == (
|
660 |
+
{0: 0, 1: 1, 2: -2, 3: -1, 4: 0},
|
661 |
+
{0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [0, 1, 2, 3], 4: [0, 1, 2, 3, 4]},
|
662 |
+
)
|
663 |
+
assert nx.bellman_ford_predecessor_and_distance(G, 0) == (
|
664 |
+
{0: [], 1: [0], 2: [1], 3: [2], 4: [3]},
|
665 |
+
{0: 0, 1: 1, 2: -2, 3: -1, 4: 0},
|
666 |
+
)
|
667 |
+
assert nx.goldberg_radzik(G, 0) == (
|
668 |
+
{0: None, 1: 0, 2: 1, 3: 2, 4: 3},
|
669 |
+
{0: 0, 1: 1, 2: -2, 3: -1, 4: 0},
|
670 |
+
)
|
671 |
+
|
672 |
+
def test_not_connected(self):
|
673 |
+
G = nx.complete_graph(6)
|
674 |
+
G.add_edge(10, 11)
|
675 |
+
G.add_edge(10, 12)
|
676 |
+
assert nx.single_source_bellman_ford_path(G, 0) == {
|
677 |
+
0: [0],
|
678 |
+
1: [0, 1],
|
679 |
+
2: [0, 2],
|
680 |
+
3: [0, 3],
|
681 |
+
4: [0, 4],
|
682 |
+
5: [0, 5],
|
683 |
+
}
|
684 |
+
assert nx.single_source_bellman_ford_path_length(G, 0) == {
|
685 |
+
0: 0,
|
686 |
+
1: 1,
|
687 |
+
2: 1,
|
688 |
+
3: 1,
|
689 |
+
4: 1,
|
690 |
+
5: 1,
|
691 |
+
}
|
692 |
+
assert nx.single_source_bellman_ford(G, 0) == (
|
693 |
+
{0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1},
|
694 |
+
{0: [0], 1: [0, 1], 2: [0, 2], 3: [0, 3], 4: [0, 4], 5: [0, 5]},
|
695 |
+
)
|
696 |
+
assert nx.bellman_ford_predecessor_and_distance(G, 0) == (
|
697 |
+
{0: [], 1: [0], 2: [0], 3: [0], 4: [0], 5: [0]},
|
698 |
+
{0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1},
|
699 |
+
)
|
700 |
+
assert nx.goldberg_radzik(G, 0) == (
|
701 |
+
{0: None, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0},
|
702 |
+
{0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1},
|
703 |
+
)
|
704 |
+
|
705 |
+
# not connected, with a component not containing the source that
|
706 |
+
# contains a negative cycle.
|
707 |
+
G = nx.complete_graph(6)
|
708 |
+
G.add_edges_from(
|
709 |
+
[
|
710 |
+
("A", "B", {"load": 3}),
|
711 |
+
("B", "C", {"load": -10}),
|
712 |
+
("C", "A", {"load": 2}),
|
713 |
+
]
|
714 |
+
)
|
715 |
+
assert nx.single_source_bellman_ford_path(G, 0, weight="load") == {
|
716 |
+
0: [0],
|
717 |
+
1: [0, 1],
|
718 |
+
2: [0, 2],
|
719 |
+
3: [0, 3],
|
720 |
+
4: [0, 4],
|
721 |
+
5: [0, 5],
|
722 |
+
}
|
723 |
+
assert nx.single_source_bellman_ford_path_length(G, 0, weight="load") == {
|
724 |
+
0: 0,
|
725 |
+
1: 1,
|
726 |
+
2: 1,
|
727 |
+
3: 1,
|
728 |
+
4: 1,
|
729 |
+
5: 1,
|
730 |
+
}
|
731 |
+
assert nx.single_source_bellman_ford(G, 0, weight="load") == (
|
732 |
+
{0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1},
|
733 |
+
{0: [0], 1: [0, 1], 2: [0, 2], 3: [0, 3], 4: [0, 4], 5: [0, 5]},
|
734 |
+
)
|
735 |
+
assert nx.bellman_ford_predecessor_and_distance(G, 0, weight="load") == (
|
736 |
+
{0: [], 1: [0], 2: [0], 3: [0], 4: [0], 5: [0]},
|
737 |
+
{0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1},
|
738 |
+
)
|
739 |
+
assert nx.goldberg_radzik(G, 0, weight="load") == (
|
740 |
+
{0: None, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0},
|
741 |
+
{0: 0, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1},
|
742 |
+
)
|
743 |
+
|
744 |
+
def test_multigraph(self):
|
745 |
+
assert nx.bellman_ford_path(self.MXG, "s", "v") == ["s", "x", "u", "v"]
|
746 |
+
assert nx.bellman_ford_path_length(self.MXG, "s", "v") == 9
|
747 |
+
assert nx.single_source_bellman_ford_path(self.MXG, "s")["v"] == [
|
748 |
+
"s",
|
749 |
+
"x",
|
750 |
+
"u",
|
751 |
+
"v",
|
752 |
+
]
|
753 |
+
assert nx.single_source_bellman_ford_path_length(self.MXG, "s")["v"] == 9
|
754 |
+
D, P = nx.single_source_bellman_ford(self.MXG, "s", target="v")
|
755 |
+
assert D == 9
|
756 |
+
assert P == ["s", "x", "u", "v"]
|
757 |
+
P, D = nx.bellman_ford_predecessor_and_distance(self.MXG, "s")
|
758 |
+
assert P["v"] == ["u"]
|
759 |
+
assert D["v"] == 9
|
760 |
+
P, D = nx.goldberg_radzik(self.MXG, "s")
|
761 |
+
assert P["v"] == "u"
|
762 |
+
assert D["v"] == 9
|
763 |
+
assert nx.bellman_ford_path(self.MXG4, 0, 2) == [0, 1, 2]
|
764 |
+
assert nx.bellman_ford_path_length(self.MXG4, 0, 2) == 4
|
765 |
+
assert nx.single_source_bellman_ford_path(self.MXG4, 0)[2] == [0, 1, 2]
|
766 |
+
assert nx.single_source_bellman_ford_path_length(self.MXG4, 0)[2] == 4
|
767 |
+
D, P = nx.single_source_bellman_ford(self.MXG4, 0, target=2)
|
768 |
+
assert D == 4
|
769 |
+
assert P == [0, 1, 2]
|
770 |
+
P, D = nx.bellman_ford_predecessor_and_distance(self.MXG4, 0)
|
771 |
+
assert P[2] == [1]
|
772 |
+
assert D[2] == 4
|
773 |
+
P, D = nx.goldberg_radzik(self.MXG4, 0)
|
774 |
+
assert P[2] == 1
|
775 |
+
assert D[2] == 4
|
776 |
+
|
777 |
+
def test_others(self):
|
778 |
+
assert nx.bellman_ford_path(self.XG, "s", "v") == ["s", "x", "u", "v"]
|
779 |
+
assert nx.bellman_ford_path_length(self.XG, "s", "v") == 9
|
780 |
+
assert nx.single_source_bellman_ford_path(self.XG, "s")["v"] == [
|
781 |
+
"s",
|
782 |
+
"x",
|
783 |
+
"u",
|
784 |
+
"v",
|
785 |
+
]
|
786 |
+
assert nx.single_source_bellman_ford_path_length(self.XG, "s")["v"] == 9
|
787 |
+
D, P = nx.single_source_bellman_ford(self.XG, "s", target="v")
|
788 |
+
assert D == 9
|
789 |
+
assert P == ["s", "x", "u", "v"]
|
790 |
+
(P, D) = nx.bellman_ford_predecessor_and_distance(self.XG, "s")
|
791 |
+
assert P["v"] == ["u"]
|
792 |
+
assert D["v"] == 9
|
793 |
+
(P, D) = nx.goldberg_radzik(self.XG, "s")
|
794 |
+
assert P["v"] == "u"
|
795 |
+
assert D["v"] == 9
|
796 |
+
|
797 |
+
def test_path_graph(self):
|
798 |
+
G = nx.path_graph(4)
|
799 |
+
assert nx.single_source_bellman_ford_path(G, 0) == {
|
800 |
+
0: [0],
|
801 |
+
1: [0, 1],
|
802 |
+
2: [0, 1, 2],
|
803 |
+
3: [0, 1, 2, 3],
|
804 |
+
}
|
805 |
+
assert nx.single_source_bellman_ford_path_length(G, 0) == {
|
806 |
+
0: 0,
|
807 |
+
1: 1,
|
808 |
+
2: 2,
|
809 |
+
3: 3,
|
810 |
+
}
|
811 |
+
assert nx.single_source_bellman_ford(G, 0) == (
|
812 |
+
{0: 0, 1: 1, 2: 2, 3: 3},
|
813 |
+
{0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [0, 1, 2, 3]},
|
814 |
+
)
|
815 |
+
assert nx.bellman_ford_predecessor_and_distance(G, 0) == (
|
816 |
+
{0: [], 1: [0], 2: [1], 3: [2]},
|
817 |
+
{0: 0, 1: 1, 2: 2, 3: 3},
|
818 |
+
)
|
819 |
+
assert nx.goldberg_radzik(G, 0) == (
|
820 |
+
{0: None, 1: 0, 2: 1, 3: 2},
|
821 |
+
{0: 0, 1: 1, 2: 2, 3: 3},
|
822 |
+
)
|
823 |
+
assert nx.single_source_bellman_ford_path(G, 3) == {
|
824 |
+
0: [3, 2, 1, 0],
|
825 |
+
1: [3, 2, 1],
|
826 |
+
2: [3, 2],
|
827 |
+
3: [3],
|
828 |
+
}
|
829 |
+
assert nx.single_source_bellman_ford_path_length(G, 3) == {
|
830 |
+
0: 3,
|
831 |
+
1: 2,
|
832 |
+
2: 1,
|
833 |
+
3: 0,
|
834 |
+
}
|
835 |
+
assert nx.single_source_bellman_ford(G, 3) == (
|
836 |
+
{0: 3, 1: 2, 2: 1, 3: 0},
|
837 |
+
{0: [3, 2, 1, 0], 1: [3, 2, 1], 2: [3, 2], 3: [3]},
|
838 |
+
)
|
839 |
+
assert nx.bellman_ford_predecessor_and_distance(G, 3) == (
|
840 |
+
{0: [1], 1: [2], 2: [3], 3: []},
|
841 |
+
{0: 3, 1: 2, 2: 1, 3: 0},
|
842 |
+
)
|
843 |
+
assert nx.goldberg_radzik(G, 3) == (
|
844 |
+
{0: 1, 1: 2, 2: 3, 3: None},
|
845 |
+
{0: 3, 1: 2, 2: 1, 3: 0},
|
846 |
+
)
|
847 |
+
|
848 |
+
def test_4_cycle(self):
|
849 |
+
# 4-cycle
|
850 |
+
G = nx.Graph([(0, 1), (1, 2), (2, 3), (3, 0)])
|
851 |
+
dist, path = nx.single_source_bellman_ford(G, 0)
|
852 |
+
assert dist == {0: 0, 1: 1, 2: 2, 3: 1}
|
853 |
+
assert path[0] == [0]
|
854 |
+
assert path[1] == [0, 1]
|
855 |
+
assert path[2] in [[0, 1, 2], [0, 3, 2]]
|
856 |
+
assert path[3] == [0, 3]
|
857 |
+
|
858 |
+
pred, dist = nx.bellman_ford_predecessor_and_distance(G, 0)
|
859 |
+
assert pred[0] == []
|
860 |
+
assert pred[1] == [0]
|
861 |
+
assert pred[2] in [[1, 3], [3, 1]]
|
862 |
+
assert pred[3] == [0]
|
863 |
+
assert dist == {0: 0, 1: 1, 2: 2, 3: 1}
|
864 |
+
|
865 |
+
pred, dist = nx.goldberg_radzik(G, 0)
|
866 |
+
assert pred[0] is None
|
867 |
+
assert pred[1] == 0
|
868 |
+
assert pred[2] in [1, 3]
|
869 |
+
assert pred[3] == 0
|
870 |
+
assert dist == {0: 0, 1: 1, 2: 2, 3: 1}
|
871 |
+
|
872 |
+
def test_negative_weight_bf_path(self):
|
873 |
+
G = nx.DiGraph()
|
874 |
+
G.add_nodes_from("abcd")
|
875 |
+
G.add_edge("a", "d", weight=0)
|
876 |
+
G.add_edge("a", "b", weight=1)
|
877 |
+
G.add_edge("b", "c", weight=-3)
|
878 |
+
G.add_edge("c", "d", weight=1)
|
879 |
+
|
880 |
+
assert nx.bellman_ford_path(G, "a", "d") == ["a", "b", "c", "d"]
|
881 |
+
assert nx.bellman_ford_path_length(G, "a", "d") == -1
|
882 |
+
|
883 |
+
def test_zero_cycle_smoke(self):
|
884 |
+
D = nx.DiGraph()
|
885 |
+
D.add_weighted_edges_from([(0, 1, 1), (1, 2, 1), (2, 3, 1), (3, 1, -2)])
|
886 |
+
|
887 |
+
nx.bellman_ford_path(D, 1, 3)
|
888 |
+
nx.dijkstra_path(D, 1, 3)
|
889 |
+
nx.bidirectional_dijkstra(D, 1, 3)
|
890 |
+
# FIXME nx.goldberg_radzik(D, 1)
|
891 |
+
|
892 |
+
|
893 |
+
class TestJohnsonAlgorithm(WeightedTestBase):
|
894 |
+
def test_single_node_graph(self):
|
895 |
+
G = nx.DiGraph()
|
896 |
+
G.add_node(0)
|
897 |
+
assert nx.johnson(G) == {0: {0: [0]}}
|
898 |
+
|
899 |
+
def test_negative_cycle(self):
|
900 |
+
G = nx.DiGraph()
|
901 |
+
G.add_weighted_edges_from(
|
902 |
+
[
|
903 |
+
("0", "3", 3),
|
904 |
+
("0", "1", -5),
|
905 |
+
("1", "0", -5),
|
906 |
+
("0", "2", 2),
|
907 |
+
("1", "2", 4),
|
908 |
+
("2", "3", 1),
|
909 |
+
]
|
910 |
+
)
|
911 |
+
pytest.raises(nx.NetworkXUnbounded, nx.johnson, G)
|
912 |
+
G = nx.Graph()
|
913 |
+
G.add_weighted_edges_from(
|
914 |
+
[
|
915 |
+
("0", "3", 3),
|
916 |
+
("0", "1", -5),
|
917 |
+
("1", "0", -5),
|
918 |
+
("0", "2", 2),
|
919 |
+
("1", "2", 4),
|
920 |
+
("2", "3", 1),
|
921 |
+
]
|
922 |
+
)
|
923 |
+
pytest.raises(nx.NetworkXUnbounded, nx.johnson, G)
|
924 |
+
|
925 |
+
def test_negative_weights(self):
|
926 |
+
G = nx.DiGraph()
|
927 |
+
G.add_weighted_edges_from(
|
928 |
+
[("0", "3", 3), ("0", "1", -5), ("0", "2", 2), ("1", "2", 4), ("2", "3", 1)]
|
929 |
+
)
|
930 |
+
paths = nx.johnson(G)
|
931 |
+
assert paths == {
|
932 |
+
"1": {"1": ["1"], "3": ["1", "2", "3"], "2": ["1", "2"]},
|
933 |
+
"0": {
|
934 |
+
"1": ["0", "1"],
|
935 |
+
"0": ["0"],
|
936 |
+
"3": ["0", "1", "2", "3"],
|
937 |
+
"2": ["0", "1", "2"],
|
938 |
+
},
|
939 |
+
"3": {"3": ["3"]},
|
940 |
+
"2": {"3": ["2", "3"], "2": ["2"]},
|
941 |
+
}
|
942 |
+
|
943 |
+
def test_unweighted_graph(self):
|
944 |
+
G = nx.Graph()
|
945 |
+
G.add_edges_from([(1, 0), (2, 1)])
|
946 |
+
H = G.copy()
|
947 |
+
nx.set_edge_attributes(H, values=1, name="weight")
|
948 |
+
assert nx.johnson(G) == nx.johnson(H)
|
949 |
+
|
950 |
+
def test_partially_weighted_graph_with_negative_edges(self):
|
951 |
+
G = nx.DiGraph()
|
952 |
+
G.add_edges_from([(0, 1), (1, 2), (2, 0), (1, 0)])
|
953 |
+
G[1][0]["weight"] = -2
|
954 |
+
G[0][1]["weight"] = 3
|
955 |
+
G[1][2]["weight"] = -4
|
956 |
+
|
957 |
+
H = G.copy()
|
958 |
+
H[2][0]["weight"] = 1
|
959 |
+
|
960 |
+
I = G.copy()
|
961 |
+
I[2][0]["weight"] = 8
|
962 |
+
|
963 |
+
assert nx.johnson(G) == nx.johnson(H)
|
964 |
+
assert nx.johnson(G) != nx.johnson(I)
|
965 |
+
|
966 |
+
def test_graphs(self):
|
967 |
+
validate_path(self.XG, "s", "v", 9, nx.johnson(self.XG)["s"]["v"])
|
968 |
+
validate_path(self.MXG, "s", "v", 9, nx.johnson(self.MXG)["s"]["v"])
|
969 |
+
validate_path(self.XG2, 1, 3, 4, nx.johnson(self.XG2)[1][3])
|
970 |
+
validate_path(self.XG3, 0, 3, 15, nx.johnson(self.XG3)[0][3])
|
971 |
+
validate_path(self.XG4, 0, 2, 4, nx.johnson(self.XG4)[0][2])
|
972 |
+
validate_path(self.MXG4, 0, 2, 4, nx.johnson(self.MXG4)[0][2])
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/unweighted.py
ADDED
@@ -0,0 +1,576 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Shortest path algorithms for unweighted graphs.
|
3 |
+
"""
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
"bidirectional_shortest_path",
|
10 |
+
"single_source_shortest_path",
|
11 |
+
"single_source_shortest_path_length",
|
12 |
+
"single_target_shortest_path",
|
13 |
+
"single_target_shortest_path_length",
|
14 |
+
"all_pairs_shortest_path",
|
15 |
+
"all_pairs_shortest_path_length",
|
16 |
+
"predecessor",
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
@nx._dispatchable
|
21 |
+
def single_source_shortest_path_length(G, source, cutoff=None):
|
22 |
+
"""Compute the shortest path lengths from source to all reachable nodes.
|
23 |
+
|
24 |
+
Parameters
|
25 |
+
----------
|
26 |
+
G : NetworkX graph
|
27 |
+
|
28 |
+
source : node
|
29 |
+
Starting node for path
|
30 |
+
|
31 |
+
cutoff : integer, optional
|
32 |
+
Depth to stop the search. Only paths of length <= cutoff are returned.
|
33 |
+
|
34 |
+
Returns
|
35 |
+
-------
|
36 |
+
lengths : dict
|
37 |
+
Dict keyed by node to shortest path length to source.
|
38 |
+
|
39 |
+
Examples
|
40 |
+
--------
|
41 |
+
>>> G = nx.path_graph(5)
|
42 |
+
>>> length = nx.single_source_shortest_path_length(G, 0)
|
43 |
+
>>> length[4]
|
44 |
+
4
|
45 |
+
>>> for node in length:
|
46 |
+
... print(f"{node}: {length[node]}")
|
47 |
+
0: 0
|
48 |
+
1: 1
|
49 |
+
2: 2
|
50 |
+
3: 3
|
51 |
+
4: 4
|
52 |
+
|
53 |
+
See Also
|
54 |
+
--------
|
55 |
+
shortest_path_length
|
56 |
+
"""
|
57 |
+
if source not in G:
|
58 |
+
raise nx.NodeNotFound(f"Source {source} is not in G")
|
59 |
+
if cutoff is None:
|
60 |
+
cutoff = float("inf")
|
61 |
+
nextlevel = [source]
|
62 |
+
return dict(_single_shortest_path_length(G._adj, nextlevel, cutoff))
|
63 |
+
|
64 |
+
|
65 |
+
def _single_shortest_path_length(adj, firstlevel, cutoff):
|
66 |
+
"""Yields (node, level) in a breadth first search
|
67 |
+
|
68 |
+
Shortest Path Length helper function
|
69 |
+
Parameters
|
70 |
+
----------
|
71 |
+
adj : dict
|
72 |
+
Adjacency dict or view
|
73 |
+
firstlevel : list
|
74 |
+
starting nodes, e.g. [source] or [target]
|
75 |
+
cutoff : int or float
|
76 |
+
level at which we stop the process
|
77 |
+
"""
|
78 |
+
seen = set(firstlevel)
|
79 |
+
nextlevel = firstlevel
|
80 |
+
level = 0
|
81 |
+
n = len(adj)
|
82 |
+
for v in nextlevel:
|
83 |
+
yield (v, level)
|
84 |
+
while nextlevel and cutoff > level:
|
85 |
+
level += 1
|
86 |
+
thislevel = nextlevel
|
87 |
+
nextlevel = []
|
88 |
+
for v in thislevel:
|
89 |
+
for w in adj[v]:
|
90 |
+
if w not in seen:
|
91 |
+
seen.add(w)
|
92 |
+
nextlevel.append(w)
|
93 |
+
yield (w, level)
|
94 |
+
if len(seen) == n:
|
95 |
+
return
|
96 |
+
|
97 |
+
|
98 |
+
@nx._dispatchable
|
99 |
+
def single_target_shortest_path_length(G, target, cutoff=None):
|
100 |
+
"""Compute the shortest path lengths to target from all reachable nodes.
|
101 |
+
|
102 |
+
Parameters
|
103 |
+
----------
|
104 |
+
G : NetworkX graph
|
105 |
+
|
106 |
+
target : node
|
107 |
+
Target node for path
|
108 |
+
|
109 |
+
cutoff : integer, optional
|
110 |
+
Depth to stop the search. Only paths of length <= cutoff are returned.
|
111 |
+
|
112 |
+
Returns
|
113 |
+
-------
|
114 |
+
lengths : iterator
|
115 |
+
(source, shortest path length) iterator
|
116 |
+
|
117 |
+
Examples
|
118 |
+
--------
|
119 |
+
>>> G = nx.path_graph(5, create_using=nx.DiGraph())
|
120 |
+
>>> length = dict(nx.single_target_shortest_path_length(G, 4))
|
121 |
+
>>> length[0]
|
122 |
+
4
|
123 |
+
>>> for node in range(5):
|
124 |
+
... print(f"{node}: {length[node]}")
|
125 |
+
0: 4
|
126 |
+
1: 3
|
127 |
+
2: 2
|
128 |
+
3: 1
|
129 |
+
4: 0
|
130 |
+
|
131 |
+
See Also
|
132 |
+
--------
|
133 |
+
single_source_shortest_path_length, shortest_path_length
|
134 |
+
"""
|
135 |
+
if target not in G:
|
136 |
+
raise nx.NodeNotFound(f"Target {target} is not in G")
|
137 |
+
|
138 |
+
warnings.warn(
|
139 |
+
(
|
140 |
+
"\n\nsingle_target_shortest_path_length will return a dict instead of"
|
141 |
+
"\nan iterator in version 3.5"
|
142 |
+
),
|
143 |
+
FutureWarning,
|
144 |
+
stacklevel=3,
|
145 |
+
)
|
146 |
+
|
147 |
+
if cutoff is None:
|
148 |
+
cutoff = float("inf")
|
149 |
+
# handle either directed or undirected
|
150 |
+
adj = G._pred if G.is_directed() else G._adj
|
151 |
+
nextlevel = [target]
|
152 |
+
# for version 3.3 we will return a dict like this:
|
153 |
+
# return dict(_single_shortest_path_length(adj, nextlevel, cutoff))
|
154 |
+
return _single_shortest_path_length(adj, nextlevel, cutoff)
|
155 |
+
|
156 |
+
|
157 |
+
@nx._dispatchable
|
158 |
+
def all_pairs_shortest_path_length(G, cutoff=None):
|
159 |
+
"""Computes the shortest path lengths between all nodes in `G`.
|
160 |
+
|
161 |
+
Parameters
|
162 |
+
----------
|
163 |
+
G : NetworkX graph
|
164 |
+
|
165 |
+
cutoff : integer, optional
|
166 |
+
Depth at which to stop the search. Only paths of length at most
|
167 |
+
`cutoff` are returned.
|
168 |
+
|
169 |
+
Returns
|
170 |
+
-------
|
171 |
+
lengths : iterator
|
172 |
+
(source, dictionary) iterator with dictionary keyed by target and
|
173 |
+
shortest path length as the key value.
|
174 |
+
|
175 |
+
Notes
|
176 |
+
-----
|
177 |
+
The iterator returned only has reachable node pairs.
|
178 |
+
|
179 |
+
Examples
|
180 |
+
--------
|
181 |
+
>>> G = nx.path_graph(5)
|
182 |
+
>>> length = dict(nx.all_pairs_shortest_path_length(G))
|
183 |
+
>>> for node in [0, 1, 2, 3, 4]:
|
184 |
+
... print(f"1 - {node}: {length[1][node]}")
|
185 |
+
1 - 0: 1
|
186 |
+
1 - 1: 0
|
187 |
+
1 - 2: 1
|
188 |
+
1 - 3: 2
|
189 |
+
1 - 4: 3
|
190 |
+
>>> length[3][2]
|
191 |
+
1
|
192 |
+
>>> length[2][2]
|
193 |
+
0
|
194 |
+
|
195 |
+
"""
|
196 |
+
length = single_source_shortest_path_length
|
197 |
+
# TODO This can be trivially parallelized.
|
198 |
+
for n in G:
|
199 |
+
yield (n, length(G, n, cutoff=cutoff))
|
200 |
+
|
201 |
+
|
202 |
+
@nx._dispatchable
|
203 |
+
def bidirectional_shortest_path(G, source, target):
|
204 |
+
"""Returns a list of nodes in a shortest path between source and target.
|
205 |
+
|
206 |
+
Parameters
|
207 |
+
----------
|
208 |
+
G : NetworkX graph
|
209 |
+
|
210 |
+
source : node label
|
211 |
+
starting node for path
|
212 |
+
|
213 |
+
target : node label
|
214 |
+
ending node for path
|
215 |
+
|
216 |
+
Returns
|
217 |
+
-------
|
218 |
+
path: list
|
219 |
+
List of nodes in a path from source to target.
|
220 |
+
|
221 |
+
Raises
|
222 |
+
------
|
223 |
+
NetworkXNoPath
|
224 |
+
If no path exists between source and target.
|
225 |
+
|
226 |
+
Examples
|
227 |
+
--------
|
228 |
+
>>> G = nx.Graph()
|
229 |
+
>>> nx.add_path(G, [0, 1, 2, 3, 0, 4, 5, 6, 7, 4])
|
230 |
+
>>> nx.bidirectional_shortest_path(G, 2, 6)
|
231 |
+
[2, 1, 0, 4, 5, 6]
|
232 |
+
|
233 |
+
See Also
|
234 |
+
--------
|
235 |
+
shortest_path
|
236 |
+
|
237 |
+
Notes
|
238 |
+
-----
|
239 |
+
This algorithm is used by shortest_path(G, source, target).
|
240 |
+
"""
|
241 |
+
|
242 |
+
if source not in G or target not in G:
|
243 |
+
msg = f"Either source {source} or target {target} is not in G"
|
244 |
+
raise nx.NodeNotFound(msg)
|
245 |
+
|
246 |
+
# call helper to do the real work
|
247 |
+
results = _bidirectional_pred_succ(G, source, target)
|
248 |
+
pred, succ, w = results
|
249 |
+
|
250 |
+
# build path from pred+w+succ
|
251 |
+
path = []
|
252 |
+
# from source to w
|
253 |
+
while w is not None:
|
254 |
+
path.append(w)
|
255 |
+
w = pred[w]
|
256 |
+
path.reverse()
|
257 |
+
# from w to target
|
258 |
+
w = succ[path[-1]]
|
259 |
+
while w is not None:
|
260 |
+
path.append(w)
|
261 |
+
w = succ[w]
|
262 |
+
|
263 |
+
return path
|
264 |
+
|
265 |
+
|
266 |
+
def _bidirectional_pred_succ(G, source, target):
|
267 |
+
"""Bidirectional shortest path helper.
|
268 |
+
|
269 |
+
Returns (pred, succ, w) where
|
270 |
+
pred is a dictionary of predecessors from w to the source, and
|
271 |
+
succ is a dictionary of successors from w to the target.
|
272 |
+
"""
|
273 |
+
# does BFS from both source and target and meets in the middle
|
274 |
+
if target == source:
|
275 |
+
return ({target: None}, {source: None}, source)
|
276 |
+
|
277 |
+
# handle either directed or undirected
|
278 |
+
if G.is_directed():
|
279 |
+
Gpred = G.pred
|
280 |
+
Gsucc = G.succ
|
281 |
+
else:
|
282 |
+
Gpred = G.adj
|
283 |
+
Gsucc = G.adj
|
284 |
+
|
285 |
+
# predecessor and successors in search
|
286 |
+
pred = {source: None}
|
287 |
+
succ = {target: None}
|
288 |
+
|
289 |
+
# initialize fringes, start with forward
|
290 |
+
forward_fringe = [source]
|
291 |
+
reverse_fringe = [target]
|
292 |
+
|
293 |
+
while forward_fringe and reverse_fringe:
|
294 |
+
if len(forward_fringe) <= len(reverse_fringe):
|
295 |
+
this_level = forward_fringe
|
296 |
+
forward_fringe = []
|
297 |
+
for v in this_level:
|
298 |
+
for w in Gsucc[v]:
|
299 |
+
if w not in pred:
|
300 |
+
forward_fringe.append(w)
|
301 |
+
pred[w] = v
|
302 |
+
if w in succ: # path found
|
303 |
+
return pred, succ, w
|
304 |
+
else:
|
305 |
+
this_level = reverse_fringe
|
306 |
+
reverse_fringe = []
|
307 |
+
for v in this_level:
|
308 |
+
for w in Gpred[v]:
|
309 |
+
if w not in succ:
|
310 |
+
succ[w] = v
|
311 |
+
reverse_fringe.append(w)
|
312 |
+
if w in pred: # found path
|
313 |
+
return pred, succ, w
|
314 |
+
|
315 |
+
raise nx.NetworkXNoPath(f"No path between {source} and {target}.")
|
316 |
+
|
317 |
+
|
318 |
+
@nx._dispatchable
|
319 |
+
def single_source_shortest_path(G, source, cutoff=None):
|
320 |
+
"""Compute shortest path between source
|
321 |
+
and all other nodes reachable from source.
|
322 |
+
|
323 |
+
Parameters
|
324 |
+
----------
|
325 |
+
G : NetworkX graph
|
326 |
+
|
327 |
+
source : node label
|
328 |
+
Starting node for path
|
329 |
+
|
330 |
+
cutoff : integer, optional
|
331 |
+
Depth to stop the search. Only paths of length <= cutoff are returned.
|
332 |
+
|
333 |
+
Returns
|
334 |
+
-------
|
335 |
+
paths : dictionary
|
336 |
+
Dictionary, keyed by target, of shortest paths.
|
337 |
+
|
338 |
+
Examples
|
339 |
+
--------
|
340 |
+
>>> G = nx.path_graph(5)
|
341 |
+
>>> path = nx.single_source_shortest_path(G, 0)
|
342 |
+
>>> path[4]
|
343 |
+
[0, 1, 2, 3, 4]
|
344 |
+
|
345 |
+
Notes
|
346 |
+
-----
|
347 |
+
The shortest path is not necessarily unique. So there can be multiple
|
348 |
+
paths between the source and each target node, all of which have the
|
349 |
+
same 'shortest' length. For each target node, this function returns
|
350 |
+
only one of those paths.
|
351 |
+
|
352 |
+
See Also
|
353 |
+
--------
|
354 |
+
shortest_path
|
355 |
+
"""
|
356 |
+
if source not in G:
|
357 |
+
raise nx.NodeNotFound(f"Source {source} not in G")
|
358 |
+
|
359 |
+
def join(p1, p2):
|
360 |
+
return p1 + p2
|
361 |
+
|
362 |
+
if cutoff is None:
|
363 |
+
cutoff = float("inf")
|
364 |
+
nextlevel = {source: 1} # list of nodes to check at next level
|
365 |
+
paths = {source: [source]} # paths dictionary (paths to key from source)
|
366 |
+
return dict(_single_shortest_path(G.adj, nextlevel, paths, cutoff, join))
|
367 |
+
|
368 |
+
|
369 |
+
def _single_shortest_path(adj, firstlevel, paths, cutoff, join):
|
370 |
+
"""Returns shortest paths
|
371 |
+
|
372 |
+
Shortest Path helper function
|
373 |
+
Parameters
|
374 |
+
----------
|
375 |
+
adj : dict
|
376 |
+
Adjacency dict or view
|
377 |
+
firstlevel : dict
|
378 |
+
starting nodes, e.g. {source: 1} or {target: 1}
|
379 |
+
paths : dict
|
380 |
+
paths for starting nodes, e.g. {source: [source]}
|
381 |
+
cutoff : int or float
|
382 |
+
level at which we stop the process
|
383 |
+
join : function
|
384 |
+
function to construct a path from two partial paths. Requires two
|
385 |
+
list inputs `p1` and `p2`, and returns a list. Usually returns
|
386 |
+
`p1 + p2` (forward from source) or `p2 + p1` (backward from target)
|
387 |
+
"""
|
388 |
+
level = 0 # the current level
|
389 |
+
nextlevel = firstlevel
|
390 |
+
while nextlevel and cutoff > level:
|
391 |
+
thislevel = nextlevel
|
392 |
+
nextlevel = {}
|
393 |
+
for v in thislevel:
|
394 |
+
for w in adj[v]:
|
395 |
+
if w not in paths:
|
396 |
+
paths[w] = join(paths[v], [w])
|
397 |
+
nextlevel[w] = 1
|
398 |
+
level += 1
|
399 |
+
return paths
|
400 |
+
|
401 |
+
|
402 |
+
@nx._dispatchable
|
403 |
+
def single_target_shortest_path(G, target, cutoff=None):
|
404 |
+
"""Compute shortest path to target from all nodes that reach target.
|
405 |
+
|
406 |
+
Parameters
|
407 |
+
----------
|
408 |
+
G : NetworkX graph
|
409 |
+
|
410 |
+
target : node label
|
411 |
+
Target node for path
|
412 |
+
|
413 |
+
cutoff : integer, optional
|
414 |
+
Depth to stop the search. Only paths of length <= cutoff are returned.
|
415 |
+
|
416 |
+
Returns
|
417 |
+
-------
|
418 |
+
paths : dictionary
|
419 |
+
Dictionary, keyed by target, of shortest paths.
|
420 |
+
|
421 |
+
Examples
|
422 |
+
--------
|
423 |
+
>>> G = nx.path_graph(5, create_using=nx.DiGraph())
|
424 |
+
>>> path = nx.single_target_shortest_path(G, 4)
|
425 |
+
>>> path[0]
|
426 |
+
[0, 1, 2, 3, 4]
|
427 |
+
|
428 |
+
Notes
|
429 |
+
-----
|
430 |
+
The shortest path is not necessarily unique. So there can be multiple
|
431 |
+
paths between the source and each target node, all of which have the
|
432 |
+
same 'shortest' length. For each target node, this function returns
|
433 |
+
only one of those paths.
|
434 |
+
|
435 |
+
See Also
|
436 |
+
--------
|
437 |
+
shortest_path, single_source_shortest_path
|
438 |
+
"""
|
439 |
+
if target not in G:
|
440 |
+
raise nx.NodeNotFound(f"Target {target} not in G")
|
441 |
+
|
442 |
+
def join(p1, p2):
|
443 |
+
return p2 + p1
|
444 |
+
|
445 |
+
# handle undirected graphs
|
446 |
+
adj = G.pred if G.is_directed() else G.adj
|
447 |
+
if cutoff is None:
|
448 |
+
cutoff = float("inf")
|
449 |
+
nextlevel = {target: 1} # list of nodes to check at next level
|
450 |
+
paths = {target: [target]} # paths dictionary (paths to key from source)
|
451 |
+
return dict(_single_shortest_path(adj, nextlevel, paths, cutoff, join))
|
452 |
+
|
453 |
+
|
454 |
+
@nx._dispatchable
|
455 |
+
def all_pairs_shortest_path(G, cutoff=None):
|
456 |
+
"""Compute shortest paths between all nodes.
|
457 |
+
|
458 |
+
Parameters
|
459 |
+
----------
|
460 |
+
G : NetworkX graph
|
461 |
+
|
462 |
+
cutoff : integer, optional
|
463 |
+
Depth at which to stop the search. Only paths of length at most
|
464 |
+
`cutoff` are returned.
|
465 |
+
|
466 |
+
Returns
|
467 |
+
-------
|
468 |
+
paths : iterator
|
469 |
+
Dictionary, keyed by source and target, of shortest paths.
|
470 |
+
|
471 |
+
Examples
|
472 |
+
--------
|
473 |
+
>>> G = nx.path_graph(5)
|
474 |
+
>>> path = dict(nx.all_pairs_shortest_path(G))
|
475 |
+
>>> print(path[0][4])
|
476 |
+
[0, 1, 2, 3, 4]
|
477 |
+
|
478 |
+
Notes
|
479 |
+
-----
|
480 |
+
There may be multiple shortest paths with the same length between
|
481 |
+
two nodes. For each pair, this function returns only one of those paths.
|
482 |
+
|
483 |
+
See Also
|
484 |
+
--------
|
485 |
+
floyd_warshall
|
486 |
+
all_pairs_all_shortest_paths
|
487 |
+
|
488 |
+
"""
|
489 |
+
# TODO This can be trivially parallelized.
|
490 |
+
for n in G:
|
491 |
+
yield (n, single_source_shortest_path(G, n, cutoff=cutoff))
|
492 |
+
|
493 |
+
|
494 |
+
@nx._dispatchable
|
495 |
+
def predecessor(G, source, target=None, cutoff=None, return_seen=None):
|
496 |
+
"""Returns dict of predecessors for the path from source to all nodes in G.
|
497 |
+
|
498 |
+
Parameters
|
499 |
+
----------
|
500 |
+
G : NetworkX graph
|
501 |
+
|
502 |
+
source : node label
|
503 |
+
Starting node for path
|
504 |
+
|
505 |
+
target : node label, optional
|
506 |
+
Ending node for path. If provided only predecessors between
|
507 |
+
source and target are returned
|
508 |
+
|
509 |
+
cutoff : integer, optional
|
510 |
+
Depth to stop the search. Only paths of length <= cutoff are returned.
|
511 |
+
|
512 |
+
return_seen : bool, optional (default=None)
|
513 |
+
Whether to return a dictionary, keyed by node, of the level (number of
|
514 |
+
hops) to reach the node (as seen during breadth-first-search).
|
515 |
+
|
516 |
+
Returns
|
517 |
+
-------
|
518 |
+
pred : dictionary
|
519 |
+
Dictionary, keyed by node, of predecessors in the shortest path.
|
520 |
+
|
521 |
+
|
522 |
+
(pred, seen): tuple of dictionaries
|
523 |
+
If `return_seen` argument is set to `True`, then a tuple of dictionaries
|
524 |
+
is returned. The first element is the dictionary, keyed by node, of
|
525 |
+
predecessors in the shortest path. The second element is the dictionary,
|
526 |
+
keyed by node, of the level (number of hops) to reach the node (as seen
|
527 |
+
during breadth-first-search).
|
528 |
+
|
529 |
+
Examples
|
530 |
+
--------
|
531 |
+
>>> G = nx.path_graph(4)
|
532 |
+
>>> list(G)
|
533 |
+
[0, 1, 2, 3]
|
534 |
+
>>> nx.predecessor(G, 0)
|
535 |
+
{0: [], 1: [0], 2: [1], 3: [2]}
|
536 |
+
>>> nx.predecessor(G, 0, return_seen=True)
|
537 |
+
({0: [], 1: [0], 2: [1], 3: [2]}, {0: 0, 1: 1, 2: 2, 3: 3})
|
538 |
+
|
539 |
+
|
540 |
+
"""
|
541 |
+
if source not in G:
|
542 |
+
raise nx.NodeNotFound(f"Source {source} not in G")
|
543 |
+
|
544 |
+
level = 0 # the current level
|
545 |
+
nextlevel = [source] # list of nodes to check at next level
|
546 |
+
seen = {source: level} # level (number of hops) when seen in BFS
|
547 |
+
pred = {source: []} # predecessor dictionary
|
548 |
+
while nextlevel:
|
549 |
+
level = level + 1
|
550 |
+
thislevel = nextlevel
|
551 |
+
nextlevel = []
|
552 |
+
for v in thislevel:
|
553 |
+
for w in G[v]:
|
554 |
+
if w not in seen:
|
555 |
+
pred[w] = [v]
|
556 |
+
seen[w] = level
|
557 |
+
nextlevel.append(w)
|
558 |
+
elif seen[w] == level: # add v to predecessor list if it
|
559 |
+
pred[w].append(v) # is at the correct level
|
560 |
+
if cutoff and cutoff <= level:
|
561 |
+
break
|
562 |
+
|
563 |
+
if target is not None:
|
564 |
+
if return_seen:
|
565 |
+
if target not in pred:
|
566 |
+
return ([], -1) # No predecessor
|
567 |
+
return (pred[target], seen[target])
|
568 |
+
else:
|
569 |
+
if target not in pred:
|
570 |
+
return [] # No predecessor
|
571 |
+
return pred[target]
|
572 |
+
else:
|
573 |
+
if return_seen:
|
574 |
+
return (pred, seen)
|
575 |
+
else:
|
576 |
+
return pred
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/shortest_paths/weighted.py
ADDED
@@ -0,0 +1,2517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Shortest path algorithms for weighted graphs.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from collections import deque
|
6 |
+
from heapq import heappop, heappush
|
7 |
+
from itertools import count
|
8 |
+
|
9 |
+
import networkx as nx
|
10 |
+
from networkx.algorithms.shortest_paths.generic import _build_paths_from_predecessors
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
"dijkstra_path",
|
14 |
+
"dijkstra_path_length",
|
15 |
+
"bidirectional_dijkstra",
|
16 |
+
"single_source_dijkstra",
|
17 |
+
"single_source_dijkstra_path",
|
18 |
+
"single_source_dijkstra_path_length",
|
19 |
+
"multi_source_dijkstra",
|
20 |
+
"multi_source_dijkstra_path",
|
21 |
+
"multi_source_dijkstra_path_length",
|
22 |
+
"all_pairs_dijkstra",
|
23 |
+
"all_pairs_dijkstra_path",
|
24 |
+
"all_pairs_dijkstra_path_length",
|
25 |
+
"dijkstra_predecessor_and_distance",
|
26 |
+
"bellman_ford_path",
|
27 |
+
"bellman_ford_path_length",
|
28 |
+
"single_source_bellman_ford",
|
29 |
+
"single_source_bellman_ford_path",
|
30 |
+
"single_source_bellman_ford_path_length",
|
31 |
+
"all_pairs_bellman_ford_path",
|
32 |
+
"all_pairs_bellman_ford_path_length",
|
33 |
+
"bellman_ford_predecessor_and_distance",
|
34 |
+
"negative_edge_cycle",
|
35 |
+
"find_negative_cycle",
|
36 |
+
"goldberg_radzik",
|
37 |
+
"johnson",
|
38 |
+
]
|
39 |
+
|
40 |
+
|
41 |
+
def _weight_function(G, weight):
|
42 |
+
"""Returns a function that returns the weight of an edge.
|
43 |
+
|
44 |
+
The returned function is specifically suitable for input to
|
45 |
+
functions :func:`_dijkstra` and :func:`_bellman_ford_relaxation`.
|
46 |
+
|
47 |
+
Parameters
|
48 |
+
----------
|
49 |
+
G : NetworkX graph.
|
50 |
+
|
51 |
+
weight : string or function
|
52 |
+
If it is callable, `weight` itself is returned. If it is a string,
|
53 |
+
it is assumed to be the name of the edge attribute that represents
|
54 |
+
the weight of an edge. In that case, a function is returned that
|
55 |
+
gets the edge weight according to the specified edge attribute.
|
56 |
+
|
57 |
+
Returns
|
58 |
+
-------
|
59 |
+
function
|
60 |
+
This function returns a callable that accepts exactly three inputs:
|
61 |
+
a node, an node adjacent to the first one, and the edge attribute
|
62 |
+
dictionary for the eedge joining those nodes. That function returns
|
63 |
+
a number representing the weight of an edge.
|
64 |
+
|
65 |
+
If `G` is a multigraph, and `weight` is not callable, the
|
66 |
+
minimum edge weight over all parallel edges is returned. If any edge
|
67 |
+
does not have an attribute with key `weight`, it is assumed to
|
68 |
+
have weight one.
|
69 |
+
|
70 |
+
"""
|
71 |
+
if callable(weight):
|
72 |
+
return weight
|
73 |
+
# If the weight keyword argument is not callable, we assume it is a
|
74 |
+
# string representing the edge attribute containing the weight of
|
75 |
+
# the edge.
|
76 |
+
if G.is_multigraph():
|
77 |
+
return lambda u, v, d: min(attr.get(weight, 1) for attr in d.values())
|
78 |
+
return lambda u, v, data: data.get(weight, 1)
|
79 |
+
|
80 |
+
|
81 |
+
@nx._dispatchable(edge_attrs="weight")
|
82 |
+
def dijkstra_path(G, source, target, weight="weight"):
|
83 |
+
"""Returns the shortest weighted path from source to target in G.
|
84 |
+
|
85 |
+
Uses Dijkstra's Method to compute the shortest weighted path
|
86 |
+
between two nodes in a graph.
|
87 |
+
|
88 |
+
Parameters
|
89 |
+
----------
|
90 |
+
G : NetworkX graph
|
91 |
+
|
92 |
+
source : node
|
93 |
+
Starting node
|
94 |
+
|
95 |
+
target : node
|
96 |
+
Ending node
|
97 |
+
|
98 |
+
weight : string or function
|
99 |
+
If this is a string, then edge weights will be accessed via the
|
100 |
+
edge attribute with this key (that is, the weight of the edge
|
101 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
102 |
+
such edge attribute exists, the weight of the edge is assumed to
|
103 |
+
be one.
|
104 |
+
|
105 |
+
If this is a function, the weight of an edge is the value
|
106 |
+
returned by the function. The function must accept exactly three
|
107 |
+
positional arguments: the two endpoints of an edge and the
|
108 |
+
dictionary of edge attributes for that edge. The function must
|
109 |
+
return a number or None to indicate a hidden edge.
|
110 |
+
|
111 |
+
Returns
|
112 |
+
-------
|
113 |
+
path : list
|
114 |
+
List of nodes in a shortest path.
|
115 |
+
|
116 |
+
Raises
|
117 |
+
------
|
118 |
+
NodeNotFound
|
119 |
+
If `source` is not in `G`.
|
120 |
+
|
121 |
+
NetworkXNoPath
|
122 |
+
If no path exists between source and target.
|
123 |
+
|
124 |
+
Examples
|
125 |
+
--------
|
126 |
+
>>> G = nx.path_graph(5)
|
127 |
+
>>> print(nx.dijkstra_path(G, 0, 4))
|
128 |
+
[0, 1, 2, 3, 4]
|
129 |
+
|
130 |
+
Find edges of shortest path in Multigraph
|
131 |
+
|
132 |
+
>>> G = nx.MultiDiGraph()
|
133 |
+
>>> G.add_weighted_edges_from([(1, 2, 0.75), (1, 2, 0.5), (2, 3, 0.5), (1, 3, 1.5)])
|
134 |
+
>>> nodes = nx.dijkstra_path(G, 1, 3)
|
135 |
+
>>> edges = nx.utils.pairwise(nodes)
|
136 |
+
>>> list(
|
137 |
+
... (u, v, min(G[u][v], key=lambda k: G[u][v][k].get("weight", 1)))
|
138 |
+
... for u, v in edges
|
139 |
+
... )
|
140 |
+
[(1, 2, 1), (2, 3, 0)]
|
141 |
+
|
142 |
+
Notes
|
143 |
+
-----
|
144 |
+
Edge weight attributes must be numerical.
|
145 |
+
Distances are calculated as sums of weighted edges traversed.
|
146 |
+
|
147 |
+
The weight function can be used to hide edges by returning None.
|
148 |
+
So ``weight = lambda u, v, d: 1 if d['color']=="red" else None``
|
149 |
+
will find the shortest red path.
|
150 |
+
|
151 |
+
The weight function can be used to include node weights.
|
152 |
+
|
153 |
+
>>> def func(u, v, d):
|
154 |
+
... node_u_wt = G.nodes[u].get("node_weight", 1)
|
155 |
+
... node_v_wt = G.nodes[v].get("node_weight", 1)
|
156 |
+
... edge_wt = d.get("weight", 1)
|
157 |
+
... return node_u_wt / 2 + node_v_wt / 2 + edge_wt
|
158 |
+
|
159 |
+
In this example we take the average of start and end node
|
160 |
+
weights of an edge and add it to the weight of the edge.
|
161 |
+
|
162 |
+
The function :func:`single_source_dijkstra` computes both
|
163 |
+
path and length-of-path if you need both, use that.
|
164 |
+
|
165 |
+
See Also
|
166 |
+
--------
|
167 |
+
bidirectional_dijkstra
|
168 |
+
bellman_ford_path
|
169 |
+
single_source_dijkstra
|
170 |
+
"""
|
171 |
+
(length, path) = single_source_dijkstra(G, source, target=target, weight=weight)
|
172 |
+
return path
|
173 |
+
|
174 |
+
|
175 |
+
@nx._dispatchable(edge_attrs="weight")
|
176 |
+
def dijkstra_path_length(G, source, target, weight="weight"):
|
177 |
+
"""Returns the shortest weighted path length in G from source to target.
|
178 |
+
|
179 |
+
Uses Dijkstra's Method to compute the shortest weighted path length
|
180 |
+
between two nodes in a graph.
|
181 |
+
|
182 |
+
Parameters
|
183 |
+
----------
|
184 |
+
G : NetworkX graph
|
185 |
+
|
186 |
+
source : node label
|
187 |
+
starting node for path
|
188 |
+
|
189 |
+
target : node label
|
190 |
+
ending node for path
|
191 |
+
|
192 |
+
weight : string or function
|
193 |
+
If this is a string, then edge weights will be accessed via the
|
194 |
+
edge attribute with this key (that is, the weight of the edge
|
195 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
196 |
+
such edge attribute exists, the weight of the edge is assumed to
|
197 |
+
be one.
|
198 |
+
|
199 |
+
If this is a function, the weight of an edge is the value
|
200 |
+
returned by the function. The function must accept exactly three
|
201 |
+
positional arguments: the two endpoints of an edge and the
|
202 |
+
dictionary of edge attributes for that edge. The function must
|
203 |
+
return a number or None to indicate a hidden edge.
|
204 |
+
|
205 |
+
Returns
|
206 |
+
-------
|
207 |
+
length : number
|
208 |
+
Shortest path length.
|
209 |
+
|
210 |
+
Raises
|
211 |
+
------
|
212 |
+
NodeNotFound
|
213 |
+
If `source` is not in `G`.
|
214 |
+
|
215 |
+
NetworkXNoPath
|
216 |
+
If no path exists between source and target.
|
217 |
+
|
218 |
+
Examples
|
219 |
+
--------
|
220 |
+
>>> G = nx.path_graph(5)
|
221 |
+
>>> nx.dijkstra_path_length(G, 0, 4)
|
222 |
+
4
|
223 |
+
|
224 |
+
Notes
|
225 |
+
-----
|
226 |
+
Edge weight attributes must be numerical.
|
227 |
+
Distances are calculated as sums of weighted edges traversed.
|
228 |
+
|
229 |
+
The weight function can be used to hide edges by returning None.
|
230 |
+
So ``weight = lambda u, v, d: 1 if d['color']=="red" else None``
|
231 |
+
will find the shortest red path.
|
232 |
+
|
233 |
+
The function :func:`single_source_dijkstra` computes both
|
234 |
+
path and length-of-path if you need both, use that.
|
235 |
+
|
236 |
+
See Also
|
237 |
+
--------
|
238 |
+
bidirectional_dijkstra
|
239 |
+
bellman_ford_path_length
|
240 |
+
single_source_dijkstra
|
241 |
+
|
242 |
+
"""
|
243 |
+
if source not in G:
|
244 |
+
raise nx.NodeNotFound(f"Node {source} not found in graph")
|
245 |
+
if source == target:
|
246 |
+
return 0
|
247 |
+
weight = _weight_function(G, weight)
|
248 |
+
length = _dijkstra(G, source, weight, target=target)
|
249 |
+
try:
|
250 |
+
return length[target]
|
251 |
+
except KeyError as err:
|
252 |
+
raise nx.NetworkXNoPath(f"Node {target} not reachable from {source}") from err
|
253 |
+
|
254 |
+
|
255 |
+
@nx._dispatchable(edge_attrs="weight")
|
256 |
+
def single_source_dijkstra_path(G, source, cutoff=None, weight="weight"):
|
257 |
+
"""Find shortest weighted paths in G from a source node.
|
258 |
+
|
259 |
+
Compute shortest path between source and all other reachable
|
260 |
+
nodes for a weighted graph.
|
261 |
+
|
262 |
+
Parameters
|
263 |
+
----------
|
264 |
+
G : NetworkX graph
|
265 |
+
|
266 |
+
source : node
|
267 |
+
Starting node for path.
|
268 |
+
|
269 |
+
cutoff : integer or float, optional
|
270 |
+
Length (sum of edge weights) at which the search is stopped.
|
271 |
+
If cutoff is provided, only return paths with summed weight <= cutoff.
|
272 |
+
|
273 |
+
weight : string or function
|
274 |
+
If this is a string, then edge weights will be accessed via the
|
275 |
+
edge attribute with this key (that is, the weight of the edge
|
276 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
277 |
+
such edge attribute exists, the weight of the edge is assumed to
|
278 |
+
be one.
|
279 |
+
|
280 |
+
If this is a function, the weight of an edge is the value
|
281 |
+
returned by the function. The function must accept exactly three
|
282 |
+
positional arguments: the two endpoints of an edge and the
|
283 |
+
dictionary of edge attributes for that edge. The function must
|
284 |
+
return a number or None to indicate a hidden edge.
|
285 |
+
|
286 |
+
Returns
|
287 |
+
-------
|
288 |
+
paths : dictionary
|
289 |
+
Dictionary of shortest path lengths keyed by target.
|
290 |
+
|
291 |
+
Raises
|
292 |
+
------
|
293 |
+
NodeNotFound
|
294 |
+
If `source` is not in `G`.
|
295 |
+
|
296 |
+
Examples
|
297 |
+
--------
|
298 |
+
>>> G = nx.path_graph(5)
|
299 |
+
>>> path = nx.single_source_dijkstra_path(G, 0)
|
300 |
+
>>> path[4]
|
301 |
+
[0, 1, 2, 3, 4]
|
302 |
+
|
303 |
+
Notes
|
304 |
+
-----
|
305 |
+
Edge weight attributes must be numerical.
|
306 |
+
Distances are calculated as sums of weighted edges traversed.
|
307 |
+
|
308 |
+
The weight function can be used to hide edges by returning None.
|
309 |
+
So ``weight = lambda u, v, d: 1 if d['color']=="red" else None``
|
310 |
+
will find the shortest red path.
|
311 |
+
|
312 |
+
See Also
|
313 |
+
--------
|
314 |
+
single_source_dijkstra, single_source_bellman_ford
|
315 |
+
|
316 |
+
"""
|
317 |
+
return multi_source_dijkstra_path(G, {source}, cutoff=cutoff, weight=weight)
|
318 |
+
|
319 |
+
|
320 |
+
@nx._dispatchable(edge_attrs="weight")
|
321 |
+
def single_source_dijkstra_path_length(G, source, cutoff=None, weight="weight"):
|
322 |
+
"""Find shortest weighted path lengths in G from a source node.
|
323 |
+
|
324 |
+
Compute the shortest path length between source and all other
|
325 |
+
reachable nodes for a weighted graph.
|
326 |
+
|
327 |
+
Parameters
|
328 |
+
----------
|
329 |
+
G : NetworkX graph
|
330 |
+
|
331 |
+
source : node label
|
332 |
+
Starting node for path
|
333 |
+
|
334 |
+
cutoff : integer or float, optional
|
335 |
+
Length (sum of edge weights) at which the search is stopped.
|
336 |
+
If cutoff is provided, only return paths with summed weight <= cutoff.
|
337 |
+
|
338 |
+
weight : string or function
|
339 |
+
If this is a string, then edge weights will be accessed via the
|
340 |
+
edge attribute with this key (that is, the weight of the edge
|
341 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
342 |
+
such edge attribute exists, the weight of the edge is assumed to
|
343 |
+
be one.
|
344 |
+
|
345 |
+
If this is a function, the weight of an edge is the value
|
346 |
+
returned by the function. The function must accept exactly three
|
347 |
+
positional arguments: the two endpoints of an edge and the
|
348 |
+
dictionary of edge attributes for that edge. The function must
|
349 |
+
return a number or None to indicate a hidden edge.
|
350 |
+
|
351 |
+
Returns
|
352 |
+
-------
|
353 |
+
length : dict
|
354 |
+
Dict keyed by node to shortest path length from source.
|
355 |
+
|
356 |
+
Raises
|
357 |
+
------
|
358 |
+
NodeNotFound
|
359 |
+
If `source` is not in `G`.
|
360 |
+
|
361 |
+
Examples
|
362 |
+
--------
|
363 |
+
>>> G = nx.path_graph(5)
|
364 |
+
>>> length = nx.single_source_dijkstra_path_length(G, 0)
|
365 |
+
>>> length[4]
|
366 |
+
4
|
367 |
+
>>> for node in [0, 1, 2, 3, 4]:
|
368 |
+
... print(f"{node}: {length[node]}")
|
369 |
+
0: 0
|
370 |
+
1: 1
|
371 |
+
2: 2
|
372 |
+
3: 3
|
373 |
+
4: 4
|
374 |
+
|
375 |
+
Notes
|
376 |
+
-----
|
377 |
+
Edge weight attributes must be numerical.
|
378 |
+
Distances are calculated as sums of weighted edges traversed.
|
379 |
+
|
380 |
+
The weight function can be used to hide edges by returning None.
|
381 |
+
So ``weight = lambda u, v, d: 1 if d['color']=="red" else None``
|
382 |
+
will find the shortest red path.
|
383 |
+
|
384 |
+
See Also
|
385 |
+
--------
|
386 |
+
single_source_dijkstra, single_source_bellman_ford_path_length
|
387 |
+
|
388 |
+
"""
|
389 |
+
return multi_source_dijkstra_path_length(G, {source}, cutoff=cutoff, weight=weight)
|
390 |
+
|
391 |
+
|
392 |
+
@nx._dispatchable(edge_attrs="weight")
|
393 |
+
def single_source_dijkstra(G, source, target=None, cutoff=None, weight="weight"):
|
394 |
+
"""Find shortest weighted paths and lengths from a source node.
|
395 |
+
|
396 |
+
Compute the shortest path length between source and all other
|
397 |
+
reachable nodes for a weighted graph.
|
398 |
+
|
399 |
+
Uses Dijkstra's algorithm to compute shortest paths and lengths
|
400 |
+
between a source and all other reachable nodes in a weighted graph.
|
401 |
+
|
402 |
+
Parameters
|
403 |
+
----------
|
404 |
+
G : NetworkX graph
|
405 |
+
|
406 |
+
source : node label
|
407 |
+
Starting node for path
|
408 |
+
|
409 |
+
target : node label, optional
|
410 |
+
Ending node for path
|
411 |
+
|
412 |
+
cutoff : integer or float, optional
|
413 |
+
Length (sum of edge weights) at which the search is stopped.
|
414 |
+
If cutoff is provided, only return paths with summed weight <= cutoff.
|
415 |
+
|
416 |
+
|
417 |
+
weight : string or function
|
418 |
+
If this is a string, then edge weights will be accessed via the
|
419 |
+
edge attribute with this key (that is, the weight of the edge
|
420 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
421 |
+
such edge attribute exists, the weight of the edge is assumed to
|
422 |
+
be one.
|
423 |
+
|
424 |
+
If this is a function, the weight of an edge is the value
|
425 |
+
returned by the function. The function must accept exactly three
|
426 |
+
positional arguments: the two endpoints of an edge and the
|
427 |
+
dictionary of edge attributes for that edge. The function must
|
428 |
+
return a number or None to indicate a hidden edge.
|
429 |
+
|
430 |
+
Returns
|
431 |
+
-------
|
432 |
+
distance, path : pair of dictionaries, or numeric and list.
|
433 |
+
If target is None, paths and lengths to all nodes are computed.
|
434 |
+
The return value is a tuple of two dictionaries keyed by target nodes.
|
435 |
+
The first dictionary stores distance to each target node.
|
436 |
+
The second stores the path to each target node.
|
437 |
+
If target is not None, returns a tuple (distance, path), where
|
438 |
+
distance is the distance from source to target and path is a list
|
439 |
+
representing the path from source to target.
|
440 |
+
|
441 |
+
Raises
|
442 |
+
------
|
443 |
+
NodeNotFound
|
444 |
+
If `source` is not in `G`.
|
445 |
+
|
446 |
+
Examples
|
447 |
+
--------
|
448 |
+
>>> G = nx.path_graph(5)
|
449 |
+
>>> length, path = nx.single_source_dijkstra(G, 0)
|
450 |
+
>>> length[4]
|
451 |
+
4
|
452 |
+
>>> for node in [0, 1, 2, 3, 4]:
|
453 |
+
... print(f"{node}: {length[node]}")
|
454 |
+
0: 0
|
455 |
+
1: 1
|
456 |
+
2: 2
|
457 |
+
3: 3
|
458 |
+
4: 4
|
459 |
+
>>> path[4]
|
460 |
+
[0, 1, 2, 3, 4]
|
461 |
+
>>> length, path = nx.single_source_dijkstra(G, 0, 1)
|
462 |
+
>>> length
|
463 |
+
1
|
464 |
+
>>> path
|
465 |
+
[0, 1]
|
466 |
+
|
467 |
+
Notes
|
468 |
+
-----
|
469 |
+
Edge weight attributes must be numerical.
|
470 |
+
Distances are calculated as sums of weighted edges traversed.
|
471 |
+
|
472 |
+
The weight function can be used to hide edges by returning None.
|
473 |
+
So ``weight = lambda u, v, d: 1 if d['color']=="red" else None``
|
474 |
+
will find the shortest red path.
|
475 |
+
|
476 |
+
Based on the Python cookbook recipe (119466) at
|
477 |
+
https://code.activestate.com/recipes/119466/
|
478 |
+
|
479 |
+
This algorithm is not guaranteed to work if edge weights
|
480 |
+
are negative or are floating point numbers
|
481 |
+
(overflows and roundoff errors can cause problems).
|
482 |
+
|
483 |
+
See Also
|
484 |
+
--------
|
485 |
+
single_source_dijkstra_path
|
486 |
+
single_source_dijkstra_path_length
|
487 |
+
single_source_bellman_ford
|
488 |
+
"""
|
489 |
+
return multi_source_dijkstra(
|
490 |
+
G, {source}, cutoff=cutoff, target=target, weight=weight
|
491 |
+
)
|
492 |
+
|
493 |
+
|
494 |
+
@nx._dispatchable(edge_attrs="weight")
|
495 |
+
def multi_source_dijkstra_path(G, sources, cutoff=None, weight="weight"):
|
496 |
+
"""Find shortest weighted paths in G from a given set of source
|
497 |
+
nodes.
|
498 |
+
|
499 |
+
Compute shortest path between any of the source nodes and all other
|
500 |
+
reachable nodes for a weighted graph.
|
501 |
+
|
502 |
+
Parameters
|
503 |
+
----------
|
504 |
+
G : NetworkX graph
|
505 |
+
|
506 |
+
sources : non-empty set of nodes
|
507 |
+
Starting nodes for paths. If this is just a set containing a
|
508 |
+
single node, then all paths computed by this function will start
|
509 |
+
from that node. If there are two or more nodes in the set, the
|
510 |
+
computed paths may begin from any one of the start nodes.
|
511 |
+
|
512 |
+
cutoff : integer or float, optional
|
513 |
+
Length (sum of edge weights) at which the search is stopped.
|
514 |
+
If cutoff is provided, only return paths with summed weight <= cutoff.
|
515 |
+
|
516 |
+
weight : string or function
|
517 |
+
If this is a string, then edge weights will be accessed via the
|
518 |
+
edge attribute with this key (that is, the weight of the edge
|
519 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
520 |
+
such edge attribute exists, the weight of the edge is assumed to
|
521 |
+
be one.
|
522 |
+
|
523 |
+
If this is a function, the weight of an edge is the value
|
524 |
+
returned by the function. The function must accept exactly three
|
525 |
+
positional arguments: the two endpoints of an edge and the
|
526 |
+
dictionary of edge attributes for that edge. The function must
|
527 |
+
return a number or None to indicate a hidden edge.
|
528 |
+
|
529 |
+
Returns
|
530 |
+
-------
|
531 |
+
paths : dictionary
|
532 |
+
Dictionary of shortest paths keyed by target.
|
533 |
+
|
534 |
+
Examples
|
535 |
+
--------
|
536 |
+
>>> G = nx.path_graph(5)
|
537 |
+
>>> path = nx.multi_source_dijkstra_path(G, {0, 4})
|
538 |
+
>>> path[1]
|
539 |
+
[0, 1]
|
540 |
+
>>> path[3]
|
541 |
+
[4, 3]
|
542 |
+
|
543 |
+
Notes
|
544 |
+
-----
|
545 |
+
Edge weight attributes must be numerical.
|
546 |
+
Distances are calculated as sums of weighted edges traversed.
|
547 |
+
|
548 |
+
The weight function can be used to hide edges by returning None.
|
549 |
+
So ``weight = lambda u, v, d: 1 if d['color']=="red" else None``
|
550 |
+
will find the shortest red path.
|
551 |
+
|
552 |
+
Raises
|
553 |
+
------
|
554 |
+
ValueError
|
555 |
+
If `sources` is empty.
|
556 |
+
NodeNotFound
|
557 |
+
If any of `sources` is not in `G`.
|
558 |
+
|
559 |
+
See Also
|
560 |
+
--------
|
561 |
+
multi_source_dijkstra, multi_source_bellman_ford
|
562 |
+
|
563 |
+
"""
|
564 |
+
length, path = multi_source_dijkstra(G, sources, cutoff=cutoff, weight=weight)
|
565 |
+
return path
|
566 |
+
|
567 |
+
|
568 |
+
@nx._dispatchable(edge_attrs="weight")
|
569 |
+
def multi_source_dijkstra_path_length(G, sources, cutoff=None, weight="weight"):
|
570 |
+
"""Find shortest weighted path lengths in G from a given set of
|
571 |
+
source nodes.
|
572 |
+
|
573 |
+
Compute the shortest path length between any of the source nodes and
|
574 |
+
all other reachable nodes for a weighted graph.
|
575 |
+
|
576 |
+
Parameters
|
577 |
+
----------
|
578 |
+
G : NetworkX graph
|
579 |
+
|
580 |
+
sources : non-empty set of nodes
|
581 |
+
Starting nodes for paths. If this is just a set containing a
|
582 |
+
single node, then all paths computed by this function will start
|
583 |
+
from that node. If there are two or more nodes in the set, the
|
584 |
+
computed paths may begin from any one of the start nodes.
|
585 |
+
|
586 |
+
cutoff : integer or float, optional
|
587 |
+
Length (sum of edge weights) at which the search is stopped.
|
588 |
+
If cutoff is provided, only return paths with summed weight <= cutoff.
|
589 |
+
|
590 |
+
weight : string or function
|
591 |
+
If this is a string, then edge weights will be accessed via the
|
592 |
+
edge attribute with this key (that is, the weight of the edge
|
593 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
594 |
+
such edge attribute exists, the weight of the edge is assumed to
|
595 |
+
be one.
|
596 |
+
|
597 |
+
If this is a function, the weight of an edge is the value
|
598 |
+
returned by the function. The function must accept exactly three
|
599 |
+
positional arguments: the two endpoints of an edge and the
|
600 |
+
dictionary of edge attributes for that edge. The function must
|
601 |
+
return a number or None to indicate a hidden edge.
|
602 |
+
|
603 |
+
Returns
|
604 |
+
-------
|
605 |
+
length : dict
|
606 |
+
Dict keyed by node to shortest path length to nearest source.
|
607 |
+
|
608 |
+
Examples
|
609 |
+
--------
|
610 |
+
>>> G = nx.path_graph(5)
|
611 |
+
>>> length = nx.multi_source_dijkstra_path_length(G, {0, 4})
|
612 |
+
>>> for node in [0, 1, 2, 3, 4]:
|
613 |
+
... print(f"{node}: {length[node]}")
|
614 |
+
0: 0
|
615 |
+
1: 1
|
616 |
+
2: 2
|
617 |
+
3: 1
|
618 |
+
4: 0
|
619 |
+
|
620 |
+
Notes
|
621 |
+
-----
|
622 |
+
Edge weight attributes must be numerical.
|
623 |
+
Distances are calculated as sums of weighted edges traversed.
|
624 |
+
|
625 |
+
The weight function can be used to hide edges by returning None.
|
626 |
+
So ``weight = lambda u, v, d: 1 if d['color']=="red" else None``
|
627 |
+
will find the shortest red path.
|
628 |
+
|
629 |
+
Raises
|
630 |
+
------
|
631 |
+
ValueError
|
632 |
+
If `sources` is empty.
|
633 |
+
NodeNotFound
|
634 |
+
If any of `sources` is not in `G`.
|
635 |
+
|
636 |
+
See Also
|
637 |
+
--------
|
638 |
+
multi_source_dijkstra
|
639 |
+
|
640 |
+
"""
|
641 |
+
if not sources:
|
642 |
+
raise ValueError("sources must not be empty")
|
643 |
+
for s in sources:
|
644 |
+
if s not in G:
|
645 |
+
raise nx.NodeNotFound(f"Node {s} not found in graph")
|
646 |
+
weight = _weight_function(G, weight)
|
647 |
+
return _dijkstra_multisource(G, sources, weight, cutoff=cutoff)
|
648 |
+
|
649 |
+
|
650 |
+
@nx._dispatchable(edge_attrs="weight")
|
651 |
+
def multi_source_dijkstra(G, sources, target=None, cutoff=None, weight="weight"):
|
652 |
+
"""Find shortest weighted paths and lengths from a given set of
|
653 |
+
source nodes.
|
654 |
+
|
655 |
+
Uses Dijkstra's algorithm to compute the shortest paths and lengths
|
656 |
+
between one of the source nodes and the given `target`, or all other
|
657 |
+
reachable nodes if not specified, for a weighted graph.
|
658 |
+
|
659 |
+
Parameters
|
660 |
+
----------
|
661 |
+
G : NetworkX graph
|
662 |
+
|
663 |
+
sources : non-empty set of nodes
|
664 |
+
Starting nodes for paths. If this is just a set containing a
|
665 |
+
single node, then all paths computed by this function will start
|
666 |
+
from that node. If there are two or more nodes in the set, the
|
667 |
+
computed paths may begin from any one of the start nodes.
|
668 |
+
|
669 |
+
target : node label, optional
|
670 |
+
Ending node for path
|
671 |
+
|
672 |
+
cutoff : integer or float, optional
|
673 |
+
Length (sum of edge weights) at which the search is stopped.
|
674 |
+
If cutoff is provided, only return paths with summed weight <= cutoff.
|
675 |
+
|
676 |
+
weight : string or function
|
677 |
+
If this is a string, then edge weights will be accessed via the
|
678 |
+
edge attribute with this key (that is, the weight of the edge
|
679 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
680 |
+
such edge attribute exists, the weight of the edge is assumed to
|
681 |
+
be one.
|
682 |
+
|
683 |
+
If this is a function, the weight of an edge is the value
|
684 |
+
returned by the function. The function must accept exactly three
|
685 |
+
positional arguments: the two endpoints of an edge and the
|
686 |
+
dictionary of edge attributes for that edge. The function must
|
687 |
+
return a number or None to indicate a hidden edge.
|
688 |
+
|
689 |
+
Returns
|
690 |
+
-------
|
691 |
+
distance, path : pair of dictionaries, or numeric and list
|
692 |
+
If target is None, returns a tuple of two dictionaries keyed by node.
|
693 |
+
The first dictionary stores distance from one of the source nodes.
|
694 |
+
The second stores the path from one of the sources to that node.
|
695 |
+
If target is not None, returns a tuple of (distance, path) where
|
696 |
+
distance is the distance from source to target and path is a list
|
697 |
+
representing the path from source to target.
|
698 |
+
|
699 |
+
Examples
|
700 |
+
--------
|
701 |
+
>>> G = nx.path_graph(5)
|
702 |
+
>>> length, path = nx.multi_source_dijkstra(G, {0, 4})
|
703 |
+
>>> for node in [0, 1, 2, 3, 4]:
|
704 |
+
... print(f"{node}: {length[node]}")
|
705 |
+
0: 0
|
706 |
+
1: 1
|
707 |
+
2: 2
|
708 |
+
3: 1
|
709 |
+
4: 0
|
710 |
+
>>> path[1]
|
711 |
+
[0, 1]
|
712 |
+
>>> path[3]
|
713 |
+
[4, 3]
|
714 |
+
|
715 |
+
>>> length, path = nx.multi_source_dijkstra(G, {0, 4}, 1)
|
716 |
+
>>> length
|
717 |
+
1
|
718 |
+
>>> path
|
719 |
+
[0, 1]
|
720 |
+
|
721 |
+
Notes
|
722 |
+
-----
|
723 |
+
Edge weight attributes must be numerical.
|
724 |
+
Distances are calculated as sums of weighted edges traversed.
|
725 |
+
|
726 |
+
The weight function can be used to hide edges by returning None.
|
727 |
+
So ``weight = lambda u, v, d: 1 if d['color']=="red" else None``
|
728 |
+
will find the shortest red path.
|
729 |
+
|
730 |
+
Based on the Python cookbook recipe (119466) at
|
731 |
+
https://code.activestate.com/recipes/119466/
|
732 |
+
|
733 |
+
This algorithm is not guaranteed to work if edge weights
|
734 |
+
are negative or are floating point numbers
|
735 |
+
(overflows and roundoff errors can cause problems).
|
736 |
+
|
737 |
+
Raises
|
738 |
+
------
|
739 |
+
ValueError
|
740 |
+
If `sources` is empty.
|
741 |
+
NodeNotFound
|
742 |
+
If any of `sources` is not in `G`.
|
743 |
+
|
744 |
+
See Also
|
745 |
+
--------
|
746 |
+
multi_source_dijkstra_path
|
747 |
+
multi_source_dijkstra_path_length
|
748 |
+
|
749 |
+
"""
|
750 |
+
if not sources:
|
751 |
+
raise ValueError("sources must not be empty")
|
752 |
+
for s in sources:
|
753 |
+
if s not in G:
|
754 |
+
raise nx.NodeNotFound(f"Node {s} not found in graph")
|
755 |
+
if target in sources:
|
756 |
+
return (0, [target])
|
757 |
+
weight = _weight_function(G, weight)
|
758 |
+
paths = {source: [source] for source in sources} # dictionary of paths
|
759 |
+
dist = _dijkstra_multisource(
|
760 |
+
G, sources, weight, paths=paths, cutoff=cutoff, target=target
|
761 |
+
)
|
762 |
+
if target is None:
|
763 |
+
return (dist, paths)
|
764 |
+
try:
|
765 |
+
return (dist[target], paths[target])
|
766 |
+
except KeyError as err:
|
767 |
+
raise nx.NetworkXNoPath(f"No path to {target}.") from err
|
768 |
+
|
769 |
+
|
770 |
+
def _dijkstra(G, source, weight, pred=None, paths=None, cutoff=None, target=None):
|
771 |
+
"""Uses Dijkstra's algorithm to find shortest weighted paths from a
|
772 |
+
single source.
|
773 |
+
|
774 |
+
This is a convenience function for :func:`_dijkstra_multisource`
|
775 |
+
with all the arguments the same, except the keyword argument
|
776 |
+
`sources` set to ``[source]``.
|
777 |
+
|
778 |
+
"""
|
779 |
+
return _dijkstra_multisource(
|
780 |
+
G, [source], weight, pred=pred, paths=paths, cutoff=cutoff, target=target
|
781 |
+
)
|
782 |
+
|
783 |
+
|
784 |
+
def _dijkstra_multisource(
|
785 |
+
G, sources, weight, pred=None, paths=None, cutoff=None, target=None
|
786 |
+
):
|
787 |
+
"""Uses Dijkstra's algorithm to find shortest weighted paths
|
788 |
+
|
789 |
+
Parameters
|
790 |
+
----------
|
791 |
+
G : NetworkX graph
|
792 |
+
|
793 |
+
sources : non-empty iterable of nodes
|
794 |
+
Starting nodes for paths. If this is just an iterable containing
|
795 |
+
a single node, then all paths computed by this function will
|
796 |
+
start from that node. If there are two or more nodes in this
|
797 |
+
iterable, the computed paths may begin from any one of the start
|
798 |
+
nodes.
|
799 |
+
|
800 |
+
weight: function
|
801 |
+
Function with (u, v, data) input that returns that edge's weight
|
802 |
+
or None to indicate a hidden edge
|
803 |
+
|
804 |
+
pred: dict of lists, optional(default=None)
|
805 |
+
dict to store a list of predecessors keyed by that node
|
806 |
+
If None, predecessors are not stored.
|
807 |
+
|
808 |
+
paths: dict, optional (default=None)
|
809 |
+
dict to store the path list from source to each node, keyed by node.
|
810 |
+
If None, paths are not stored.
|
811 |
+
|
812 |
+
target : node label, optional
|
813 |
+
Ending node for path. Search is halted when target is found.
|
814 |
+
|
815 |
+
cutoff : integer or float, optional
|
816 |
+
Length (sum of edge weights) at which the search is stopped.
|
817 |
+
If cutoff is provided, only return paths with summed weight <= cutoff.
|
818 |
+
|
819 |
+
Returns
|
820 |
+
-------
|
821 |
+
distance : dictionary
|
822 |
+
A mapping from node to shortest distance to that node from one
|
823 |
+
of the source nodes.
|
824 |
+
|
825 |
+
Raises
|
826 |
+
------
|
827 |
+
NodeNotFound
|
828 |
+
If any of `sources` is not in `G`.
|
829 |
+
|
830 |
+
Notes
|
831 |
+
-----
|
832 |
+
The optional predecessor and path dictionaries can be accessed by
|
833 |
+
the caller through the original pred and paths objects passed
|
834 |
+
as arguments. No need to explicitly return pred or paths.
|
835 |
+
|
836 |
+
"""
|
837 |
+
G_succ = G._adj # For speed-up (and works for both directed and undirected graphs)
|
838 |
+
|
839 |
+
push = heappush
|
840 |
+
pop = heappop
|
841 |
+
dist = {} # dictionary of final distances
|
842 |
+
seen = {}
|
843 |
+
# fringe is heapq with 3-tuples (distance,c,node)
|
844 |
+
# use the count c to avoid comparing nodes (may not be able to)
|
845 |
+
c = count()
|
846 |
+
fringe = []
|
847 |
+
for source in sources:
|
848 |
+
seen[source] = 0
|
849 |
+
push(fringe, (0, next(c), source))
|
850 |
+
while fringe:
|
851 |
+
(d, _, v) = pop(fringe)
|
852 |
+
if v in dist:
|
853 |
+
continue # already searched this node.
|
854 |
+
dist[v] = d
|
855 |
+
if v == target:
|
856 |
+
break
|
857 |
+
for u, e in G_succ[v].items():
|
858 |
+
cost = weight(v, u, e)
|
859 |
+
if cost is None:
|
860 |
+
continue
|
861 |
+
vu_dist = dist[v] + cost
|
862 |
+
if cutoff is not None:
|
863 |
+
if vu_dist > cutoff:
|
864 |
+
continue
|
865 |
+
if u in dist:
|
866 |
+
u_dist = dist[u]
|
867 |
+
if vu_dist < u_dist:
|
868 |
+
raise ValueError("Contradictory paths found:", "negative weights?")
|
869 |
+
elif pred is not None and vu_dist == u_dist:
|
870 |
+
pred[u].append(v)
|
871 |
+
elif u not in seen or vu_dist < seen[u]:
|
872 |
+
seen[u] = vu_dist
|
873 |
+
push(fringe, (vu_dist, next(c), u))
|
874 |
+
if paths is not None:
|
875 |
+
paths[u] = paths[v] + [u]
|
876 |
+
if pred is not None:
|
877 |
+
pred[u] = [v]
|
878 |
+
elif vu_dist == seen[u]:
|
879 |
+
if pred is not None:
|
880 |
+
pred[u].append(v)
|
881 |
+
|
882 |
+
# The optional predecessor and path dictionaries can be accessed
|
883 |
+
# by the caller via the pred and paths objects passed as arguments.
|
884 |
+
return dist
|
885 |
+
|
886 |
+
|
887 |
+
@nx._dispatchable(edge_attrs="weight")
|
888 |
+
def dijkstra_predecessor_and_distance(G, source, cutoff=None, weight="weight"):
|
889 |
+
"""Compute weighted shortest path length and predecessors.
|
890 |
+
|
891 |
+
Uses Dijkstra's Method to obtain the shortest weighted paths
|
892 |
+
and return dictionaries of predecessors for each node and
|
893 |
+
distance for each node from the `source`.
|
894 |
+
|
895 |
+
Parameters
|
896 |
+
----------
|
897 |
+
G : NetworkX graph
|
898 |
+
|
899 |
+
source : node label
|
900 |
+
Starting node for path
|
901 |
+
|
902 |
+
cutoff : integer or float, optional
|
903 |
+
Length (sum of edge weights) at which the search is stopped.
|
904 |
+
If cutoff is provided, only return paths with summed weight <= cutoff.
|
905 |
+
|
906 |
+
weight : string or function
|
907 |
+
If this is a string, then edge weights will be accessed via the
|
908 |
+
edge attribute with this key (that is, the weight of the edge
|
909 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
910 |
+
such edge attribute exists, the weight of the edge is assumed to
|
911 |
+
be one.
|
912 |
+
|
913 |
+
If this is a function, the weight of an edge is the value
|
914 |
+
returned by the function. The function must accept exactly three
|
915 |
+
positional arguments: the two endpoints of an edge and the
|
916 |
+
dictionary of edge attributes for that edge. The function must
|
917 |
+
return a number or None to indicate a hidden edge.
|
918 |
+
|
919 |
+
Returns
|
920 |
+
-------
|
921 |
+
pred, distance : dictionaries
|
922 |
+
Returns two dictionaries representing a list of predecessors
|
923 |
+
of a node and the distance to each node.
|
924 |
+
|
925 |
+
Raises
|
926 |
+
------
|
927 |
+
NodeNotFound
|
928 |
+
If `source` is not in `G`.
|
929 |
+
|
930 |
+
Notes
|
931 |
+
-----
|
932 |
+
Edge weight attributes must be numerical.
|
933 |
+
Distances are calculated as sums of weighted edges traversed.
|
934 |
+
|
935 |
+
The list of predecessors contains more than one element only when
|
936 |
+
there are more than one shortest paths to the key node.
|
937 |
+
|
938 |
+
Examples
|
939 |
+
--------
|
940 |
+
>>> G = nx.path_graph(5, create_using=nx.DiGraph())
|
941 |
+
>>> pred, dist = nx.dijkstra_predecessor_and_distance(G, 0)
|
942 |
+
>>> sorted(pred.items())
|
943 |
+
[(0, []), (1, [0]), (2, [1]), (3, [2]), (4, [3])]
|
944 |
+
>>> sorted(dist.items())
|
945 |
+
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
|
946 |
+
|
947 |
+
>>> pred, dist = nx.dijkstra_predecessor_and_distance(G, 0, 1)
|
948 |
+
>>> sorted(pred.items())
|
949 |
+
[(0, []), (1, [0])]
|
950 |
+
>>> sorted(dist.items())
|
951 |
+
[(0, 0), (1, 1)]
|
952 |
+
"""
|
953 |
+
if source not in G:
|
954 |
+
raise nx.NodeNotFound(f"Node {source} is not found in the graph")
|
955 |
+
weight = _weight_function(G, weight)
|
956 |
+
pred = {source: []} # dictionary of predecessors
|
957 |
+
return (pred, _dijkstra(G, source, weight, pred=pred, cutoff=cutoff))
|
958 |
+
|
959 |
+
|
960 |
+
@nx._dispatchable(edge_attrs="weight")
|
961 |
+
def all_pairs_dijkstra(G, cutoff=None, weight="weight"):
|
962 |
+
"""Find shortest weighted paths and lengths between all nodes.
|
963 |
+
|
964 |
+
Parameters
|
965 |
+
----------
|
966 |
+
G : NetworkX graph
|
967 |
+
|
968 |
+
cutoff : integer or float, optional
|
969 |
+
Length (sum of edge weights) at which the search is stopped.
|
970 |
+
If cutoff is provided, only return paths with summed weight <= cutoff.
|
971 |
+
|
972 |
+
weight : string or function
|
973 |
+
If this is a string, then edge weights will be accessed via the
|
974 |
+
edge attribute with this key (that is, the weight of the edge
|
975 |
+
joining `u` to `v` will be ``G.edge[u][v][weight]``). If no
|
976 |
+
such edge attribute exists, the weight of the edge is assumed to
|
977 |
+
be one.
|
978 |
+
|
979 |
+
If this is a function, the weight of an edge is the value
|
980 |
+
returned by the function. The function must accept exactly three
|
981 |
+
positional arguments: the two endpoints of an edge and the
|
982 |
+
dictionary of edge attributes for that edge. The function must
|
983 |
+
return a number or None to indicate a hidden edge.
|
984 |
+
|
985 |
+
Yields
|
986 |
+
------
|
987 |
+
(node, (distance, path)) : (node obj, (dict, dict))
|
988 |
+
Each source node has two associated dicts. The first holds distance
|
989 |
+
keyed by target and the second holds paths keyed by target.
|
990 |
+
(See single_source_dijkstra for the source/target node terminology.)
|
991 |
+
If desired you can apply `dict()` to this function to create a dict
|
992 |
+
keyed by source node to the two dicts.
|
993 |
+
|
994 |
+
Examples
|
995 |
+
--------
|
996 |
+
>>> G = nx.path_graph(5)
|
997 |
+
>>> len_path = dict(nx.all_pairs_dijkstra(G))
|
998 |
+
>>> len_path[3][0][1]
|
999 |
+
2
|
1000 |
+
>>> for node in [0, 1, 2, 3, 4]:
|
1001 |
+
... print(f"3 - {node}: {len_path[3][0][node]}")
|
1002 |
+
3 - 0: 3
|
1003 |
+
3 - 1: 2
|
1004 |
+
3 - 2: 1
|
1005 |
+
3 - 3: 0
|
1006 |
+
3 - 4: 1
|
1007 |
+
>>> len_path[3][1][1]
|
1008 |
+
[3, 2, 1]
|
1009 |
+
>>> for n, (dist, path) in nx.all_pairs_dijkstra(G):
|
1010 |
+
... print(path[1])
|
1011 |
+
[0, 1]
|
1012 |
+
[1]
|
1013 |
+
[2, 1]
|
1014 |
+
[3, 2, 1]
|
1015 |
+
[4, 3, 2, 1]
|
1016 |
+
|
1017 |
+
Notes
|
1018 |
+
-----
|
1019 |
+
Edge weight attributes must be numerical.
|
1020 |
+
Distances are calculated as sums of weighted edges traversed.
|
1021 |
+
|
1022 |
+
The yielded dicts only have keys for reachable nodes.
|
1023 |
+
"""
|
1024 |
+
for n in G:
|
1025 |
+
dist, path = single_source_dijkstra(G, n, cutoff=cutoff, weight=weight)
|
1026 |
+
yield (n, (dist, path))
|
1027 |
+
|
1028 |
+
|
1029 |
+
@nx._dispatchable(edge_attrs="weight")
|
1030 |
+
def all_pairs_dijkstra_path_length(G, cutoff=None, weight="weight"):
|
1031 |
+
"""Compute shortest path lengths between all nodes in a weighted graph.
|
1032 |
+
|
1033 |
+
Parameters
|
1034 |
+
----------
|
1035 |
+
G : NetworkX graph
|
1036 |
+
|
1037 |
+
cutoff : integer or float, optional
|
1038 |
+
Length (sum of edge weights) at which the search is stopped.
|
1039 |
+
If cutoff is provided, only return paths with summed weight <= cutoff.
|
1040 |
+
|
1041 |
+
weight : string or function
|
1042 |
+
If this is a string, then edge weights will be accessed via the
|
1043 |
+
edge attribute with this key (that is, the weight of the edge
|
1044 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
1045 |
+
such edge attribute exists, the weight of the edge is assumed to
|
1046 |
+
be one.
|
1047 |
+
|
1048 |
+
If this is a function, the weight of an edge is the value
|
1049 |
+
returned by the function. The function must accept exactly three
|
1050 |
+
positional arguments: the two endpoints of an edge and the
|
1051 |
+
dictionary of edge attributes for that edge. The function must
|
1052 |
+
return a number or None to indicate a hidden edge.
|
1053 |
+
|
1054 |
+
Returns
|
1055 |
+
-------
|
1056 |
+
distance : iterator
|
1057 |
+
(source, dictionary) iterator with dictionary keyed by target and
|
1058 |
+
shortest path length as the key value.
|
1059 |
+
|
1060 |
+
Examples
|
1061 |
+
--------
|
1062 |
+
>>> G = nx.path_graph(5)
|
1063 |
+
>>> length = dict(nx.all_pairs_dijkstra_path_length(G))
|
1064 |
+
>>> for node in [0, 1, 2, 3, 4]:
|
1065 |
+
... print(f"1 - {node}: {length[1][node]}")
|
1066 |
+
1 - 0: 1
|
1067 |
+
1 - 1: 0
|
1068 |
+
1 - 2: 1
|
1069 |
+
1 - 3: 2
|
1070 |
+
1 - 4: 3
|
1071 |
+
>>> length[3][2]
|
1072 |
+
1
|
1073 |
+
>>> length[2][2]
|
1074 |
+
0
|
1075 |
+
|
1076 |
+
Notes
|
1077 |
+
-----
|
1078 |
+
Edge weight attributes must be numerical.
|
1079 |
+
Distances are calculated as sums of weighted edges traversed.
|
1080 |
+
|
1081 |
+
The dictionary returned only has keys for reachable node pairs.
|
1082 |
+
"""
|
1083 |
+
length = single_source_dijkstra_path_length
|
1084 |
+
for n in G:
|
1085 |
+
yield (n, length(G, n, cutoff=cutoff, weight=weight))
|
1086 |
+
|
1087 |
+
|
1088 |
+
@nx._dispatchable(edge_attrs="weight")
|
1089 |
+
def all_pairs_dijkstra_path(G, cutoff=None, weight="weight"):
|
1090 |
+
"""Compute shortest paths between all nodes in a weighted graph.
|
1091 |
+
|
1092 |
+
Parameters
|
1093 |
+
----------
|
1094 |
+
G : NetworkX graph
|
1095 |
+
|
1096 |
+
cutoff : integer or float, optional
|
1097 |
+
Length (sum of edge weights) at which the search is stopped.
|
1098 |
+
If cutoff is provided, only return paths with summed weight <= cutoff.
|
1099 |
+
|
1100 |
+
weight : string or function
|
1101 |
+
If this is a string, then edge weights will be accessed via the
|
1102 |
+
edge attribute with this key (that is, the weight of the edge
|
1103 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
1104 |
+
such edge attribute exists, the weight of the edge is assumed to
|
1105 |
+
be one.
|
1106 |
+
|
1107 |
+
If this is a function, the weight of an edge is the value
|
1108 |
+
returned by the function. The function must accept exactly three
|
1109 |
+
positional arguments: the two endpoints of an edge and the
|
1110 |
+
dictionary of edge attributes for that edge. The function must
|
1111 |
+
return a number or None to indicate a hidden edge.
|
1112 |
+
|
1113 |
+
Returns
|
1114 |
+
-------
|
1115 |
+
paths : iterator
|
1116 |
+
(source, dictionary) iterator with dictionary keyed by target and
|
1117 |
+
shortest path as the key value.
|
1118 |
+
|
1119 |
+
Examples
|
1120 |
+
--------
|
1121 |
+
>>> G = nx.path_graph(5)
|
1122 |
+
>>> path = dict(nx.all_pairs_dijkstra_path(G))
|
1123 |
+
>>> path[0][4]
|
1124 |
+
[0, 1, 2, 3, 4]
|
1125 |
+
|
1126 |
+
Notes
|
1127 |
+
-----
|
1128 |
+
Edge weight attributes must be numerical.
|
1129 |
+
Distances are calculated as sums of weighted edges traversed.
|
1130 |
+
|
1131 |
+
See Also
|
1132 |
+
--------
|
1133 |
+
floyd_warshall, all_pairs_bellman_ford_path
|
1134 |
+
|
1135 |
+
"""
|
1136 |
+
path = single_source_dijkstra_path
|
1137 |
+
# TODO This can be trivially parallelized.
|
1138 |
+
for n in G:
|
1139 |
+
yield (n, path(G, n, cutoff=cutoff, weight=weight))
|
1140 |
+
|
1141 |
+
|
1142 |
+
@nx._dispatchable(edge_attrs="weight")
|
1143 |
+
def bellman_ford_predecessor_and_distance(
|
1144 |
+
G, source, target=None, weight="weight", heuristic=False
|
1145 |
+
):
|
1146 |
+
"""Compute shortest path lengths and predecessors on shortest paths
|
1147 |
+
in weighted graphs.
|
1148 |
+
|
1149 |
+
The algorithm has a running time of $O(mn)$ where $n$ is the number of
|
1150 |
+
nodes and $m$ is the number of edges. It is slower than Dijkstra but
|
1151 |
+
can handle negative edge weights.
|
1152 |
+
|
1153 |
+
If a negative cycle is detected, you can use :func:`find_negative_cycle`
|
1154 |
+
to return the cycle and examine it. Shortest paths are not defined when
|
1155 |
+
a negative cycle exists because once reached, the path can cycle forever
|
1156 |
+
to build up arbitrarily low weights.
|
1157 |
+
|
1158 |
+
Parameters
|
1159 |
+
----------
|
1160 |
+
G : NetworkX graph
|
1161 |
+
The algorithm works for all types of graphs, including directed
|
1162 |
+
graphs and multigraphs.
|
1163 |
+
|
1164 |
+
source: node label
|
1165 |
+
Starting node for path
|
1166 |
+
|
1167 |
+
target : node label, optional
|
1168 |
+
Ending node for path
|
1169 |
+
|
1170 |
+
weight : string or function
|
1171 |
+
If this is a string, then edge weights will be accessed via the
|
1172 |
+
edge attribute with this key (that is, the weight of the edge
|
1173 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
1174 |
+
such edge attribute exists, the weight of the edge is assumed to
|
1175 |
+
be one.
|
1176 |
+
|
1177 |
+
If this is a function, the weight of an edge is the value
|
1178 |
+
returned by the function. The function must accept exactly three
|
1179 |
+
positional arguments: the two endpoints of an edge and the
|
1180 |
+
dictionary of edge attributes for that edge. The function must
|
1181 |
+
return a number.
|
1182 |
+
|
1183 |
+
heuristic : bool
|
1184 |
+
Determines whether to use a heuristic to early detect negative
|
1185 |
+
cycles at a hopefully negligible cost.
|
1186 |
+
|
1187 |
+
Returns
|
1188 |
+
-------
|
1189 |
+
pred, dist : dictionaries
|
1190 |
+
Returns two dictionaries keyed by node to predecessor in the
|
1191 |
+
path and to the distance from the source respectively.
|
1192 |
+
|
1193 |
+
Raises
|
1194 |
+
------
|
1195 |
+
NodeNotFound
|
1196 |
+
If `source` is not in `G`.
|
1197 |
+
|
1198 |
+
NetworkXUnbounded
|
1199 |
+
If the (di)graph contains a negative (di)cycle, the
|
1200 |
+
algorithm raises an exception to indicate the presence of the
|
1201 |
+
negative (di)cycle. Note: any negative weight edge in an
|
1202 |
+
undirected graph is a negative cycle.
|
1203 |
+
|
1204 |
+
Examples
|
1205 |
+
--------
|
1206 |
+
>>> G = nx.path_graph(5, create_using=nx.DiGraph())
|
1207 |
+
>>> pred, dist = nx.bellman_ford_predecessor_and_distance(G, 0)
|
1208 |
+
>>> sorted(pred.items())
|
1209 |
+
[(0, []), (1, [0]), (2, [1]), (3, [2]), (4, [3])]
|
1210 |
+
>>> sorted(dist.items())
|
1211 |
+
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
|
1212 |
+
|
1213 |
+
>>> pred, dist = nx.bellman_ford_predecessor_and_distance(G, 0, 1)
|
1214 |
+
>>> sorted(pred.items())
|
1215 |
+
[(0, []), (1, [0]), (2, [1]), (3, [2]), (4, [3])]
|
1216 |
+
>>> sorted(dist.items())
|
1217 |
+
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
|
1218 |
+
|
1219 |
+
>>> G = nx.cycle_graph(5, create_using=nx.DiGraph())
|
1220 |
+
>>> G[1][2]["weight"] = -7
|
1221 |
+
>>> nx.bellman_ford_predecessor_and_distance(G, 0)
|
1222 |
+
Traceback (most recent call last):
|
1223 |
+
...
|
1224 |
+
networkx.exception.NetworkXUnbounded: Negative cycle detected.
|
1225 |
+
|
1226 |
+
See Also
|
1227 |
+
--------
|
1228 |
+
find_negative_cycle
|
1229 |
+
|
1230 |
+
Notes
|
1231 |
+
-----
|
1232 |
+
Edge weight attributes must be numerical.
|
1233 |
+
Distances are calculated as sums of weighted edges traversed.
|
1234 |
+
|
1235 |
+
The dictionaries returned only have keys for nodes reachable from
|
1236 |
+
the source.
|
1237 |
+
|
1238 |
+
In the case where the (di)graph is not connected, if a component
|
1239 |
+
not containing the source contains a negative (di)cycle, it
|
1240 |
+
will not be detected.
|
1241 |
+
|
1242 |
+
In NetworkX v2.1 and prior, the source node had predecessor `[None]`.
|
1243 |
+
In NetworkX v2.2 this changed to the source node having predecessor `[]`
|
1244 |
+
"""
|
1245 |
+
if source not in G:
|
1246 |
+
raise nx.NodeNotFound(f"Node {source} is not found in the graph")
|
1247 |
+
weight = _weight_function(G, weight)
|
1248 |
+
if G.is_multigraph():
|
1249 |
+
if any(
|
1250 |
+
weight(u, v, {k: d}) < 0
|
1251 |
+
for u, v, k, d in nx.selfloop_edges(G, keys=True, data=True)
|
1252 |
+
):
|
1253 |
+
raise nx.NetworkXUnbounded("Negative cycle detected.")
|
1254 |
+
else:
|
1255 |
+
if any(weight(u, v, d) < 0 for u, v, d in nx.selfloop_edges(G, data=True)):
|
1256 |
+
raise nx.NetworkXUnbounded("Negative cycle detected.")
|
1257 |
+
|
1258 |
+
dist = {source: 0}
|
1259 |
+
pred = {source: []}
|
1260 |
+
|
1261 |
+
if len(G) == 1:
|
1262 |
+
return pred, dist
|
1263 |
+
|
1264 |
+
weight = _weight_function(G, weight)
|
1265 |
+
|
1266 |
+
dist = _bellman_ford(
|
1267 |
+
G, [source], weight, pred=pred, dist=dist, target=target, heuristic=heuristic
|
1268 |
+
)
|
1269 |
+
return (pred, dist)
|
1270 |
+
|
1271 |
+
|
1272 |
+
def _bellman_ford(
|
1273 |
+
G,
|
1274 |
+
source,
|
1275 |
+
weight,
|
1276 |
+
pred=None,
|
1277 |
+
paths=None,
|
1278 |
+
dist=None,
|
1279 |
+
target=None,
|
1280 |
+
heuristic=True,
|
1281 |
+
):
|
1282 |
+
"""Calls relaxation loop for Bellman–Ford algorithm and builds paths
|
1283 |
+
|
1284 |
+
This is an implementation of the SPFA variant.
|
1285 |
+
See https://en.wikipedia.org/wiki/Shortest_Path_Faster_Algorithm
|
1286 |
+
|
1287 |
+
Parameters
|
1288 |
+
----------
|
1289 |
+
G : NetworkX graph
|
1290 |
+
|
1291 |
+
source: list
|
1292 |
+
List of source nodes. The shortest path from any of the source
|
1293 |
+
nodes will be found if multiple sources are provided.
|
1294 |
+
|
1295 |
+
weight : function
|
1296 |
+
The weight of an edge is the value returned by the function. The
|
1297 |
+
function must accept exactly three positional arguments: the two
|
1298 |
+
endpoints of an edge and the dictionary of edge attributes for
|
1299 |
+
that edge. The function must return a number.
|
1300 |
+
|
1301 |
+
pred: dict of lists, optional (default=None)
|
1302 |
+
dict to store a list of predecessors keyed by that node
|
1303 |
+
If None, predecessors are not stored
|
1304 |
+
|
1305 |
+
paths: dict, optional (default=None)
|
1306 |
+
dict to store the path list from source to each node, keyed by node
|
1307 |
+
If None, paths are not stored
|
1308 |
+
|
1309 |
+
dist: dict, optional (default=None)
|
1310 |
+
dict to store distance from source to the keyed node
|
1311 |
+
If None, returned dist dict contents default to 0 for every node in the
|
1312 |
+
source list
|
1313 |
+
|
1314 |
+
target: node label, optional
|
1315 |
+
Ending node for path. Path lengths to other destinations may (and
|
1316 |
+
probably will) be incorrect.
|
1317 |
+
|
1318 |
+
heuristic : bool
|
1319 |
+
Determines whether to use a heuristic to early detect negative
|
1320 |
+
cycles at a hopefully negligible cost.
|
1321 |
+
|
1322 |
+
Returns
|
1323 |
+
-------
|
1324 |
+
dist : dict
|
1325 |
+
Returns a dict keyed by node to the distance from the source.
|
1326 |
+
Dicts for paths and pred are in the mutated input dicts by those names.
|
1327 |
+
|
1328 |
+
Raises
|
1329 |
+
------
|
1330 |
+
NodeNotFound
|
1331 |
+
If any of `source` is not in `G`.
|
1332 |
+
|
1333 |
+
NetworkXUnbounded
|
1334 |
+
If the (di)graph contains a negative (di)cycle, the
|
1335 |
+
algorithm raises an exception to indicate the presence of the
|
1336 |
+
negative (di)cycle. Note: any negative weight edge in an
|
1337 |
+
undirected graph is a negative cycle
|
1338 |
+
"""
|
1339 |
+
if pred is None:
|
1340 |
+
pred = {v: [] for v in source}
|
1341 |
+
|
1342 |
+
if dist is None:
|
1343 |
+
dist = {v: 0 for v in source}
|
1344 |
+
|
1345 |
+
negative_cycle_found = _inner_bellman_ford(
|
1346 |
+
G,
|
1347 |
+
source,
|
1348 |
+
weight,
|
1349 |
+
pred,
|
1350 |
+
dist,
|
1351 |
+
heuristic,
|
1352 |
+
)
|
1353 |
+
if negative_cycle_found is not None:
|
1354 |
+
raise nx.NetworkXUnbounded("Negative cycle detected.")
|
1355 |
+
|
1356 |
+
if paths is not None:
|
1357 |
+
sources = set(source)
|
1358 |
+
dsts = [target] if target is not None else pred
|
1359 |
+
for dst in dsts:
|
1360 |
+
gen = _build_paths_from_predecessors(sources, dst, pred)
|
1361 |
+
paths[dst] = next(gen)
|
1362 |
+
|
1363 |
+
return dist
|
1364 |
+
|
1365 |
+
|
1366 |
+
def _inner_bellman_ford(
|
1367 |
+
G,
|
1368 |
+
sources,
|
1369 |
+
weight,
|
1370 |
+
pred,
|
1371 |
+
dist=None,
|
1372 |
+
heuristic=True,
|
1373 |
+
):
|
1374 |
+
"""Inner Relaxation loop for Bellman–Ford algorithm.
|
1375 |
+
|
1376 |
+
This is an implementation of the SPFA variant.
|
1377 |
+
See https://en.wikipedia.org/wiki/Shortest_Path_Faster_Algorithm
|
1378 |
+
|
1379 |
+
Parameters
|
1380 |
+
----------
|
1381 |
+
G : NetworkX graph
|
1382 |
+
|
1383 |
+
source: list
|
1384 |
+
List of source nodes. The shortest path from any of the source
|
1385 |
+
nodes will be found if multiple sources are provided.
|
1386 |
+
|
1387 |
+
weight : function
|
1388 |
+
The weight of an edge is the value returned by the function. The
|
1389 |
+
function must accept exactly three positional arguments: the two
|
1390 |
+
endpoints of an edge and the dictionary of edge attributes for
|
1391 |
+
that edge. The function must return a number.
|
1392 |
+
|
1393 |
+
pred: dict of lists
|
1394 |
+
dict to store a list of predecessors keyed by that node
|
1395 |
+
|
1396 |
+
dist: dict, optional (default=None)
|
1397 |
+
dict to store distance from source to the keyed node
|
1398 |
+
If None, returned dist dict contents default to 0 for every node in the
|
1399 |
+
source list
|
1400 |
+
|
1401 |
+
heuristic : bool
|
1402 |
+
Determines whether to use a heuristic to early detect negative
|
1403 |
+
cycles at a hopefully negligible cost.
|
1404 |
+
|
1405 |
+
Returns
|
1406 |
+
-------
|
1407 |
+
node or None
|
1408 |
+
Return a node `v` where processing discovered a negative cycle.
|
1409 |
+
If no negative cycle found, return None.
|
1410 |
+
|
1411 |
+
Raises
|
1412 |
+
------
|
1413 |
+
NodeNotFound
|
1414 |
+
If any of `source` is not in `G`.
|
1415 |
+
"""
|
1416 |
+
for s in sources:
|
1417 |
+
if s not in G:
|
1418 |
+
raise nx.NodeNotFound(f"Source {s} not in G")
|
1419 |
+
|
1420 |
+
if pred is None:
|
1421 |
+
pred = {v: [] for v in sources}
|
1422 |
+
|
1423 |
+
if dist is None:
|
1424 |
+
dist = {v: 0 for v in sources}
|
1425 |
+
|
1426 |
+
# Heuristic Storage setup. Note: use None because nodes cannot be None
|
1427 |
+
nonexistent_edge = (None, None)
|
1428 |
+
pred_edge = {v: None for v in sources}
|
1429 |
+
recent_update = {v: nonexistent_edge for v in sources}
|
1430 |
+
|
1431 |
+
G_succ = G._adj # For speed-up (and works for both directed and undirected graphs)
|
1432 |
+
inf = float("inf")
|
1433 |
+
n = len(G)
|
1434 |
+
|
1435 |
+
count = {}
|
1436 |
+
q = deque(sources)
|
1437 |
+
in_q = set(sources)
|
1438 |
+
while q:
|
1439 |
+
u = q.popleft()
|
1440 |
+
in_q.remove(u)
|
1441 |
+
|
1442 |
+
# Skip relaxations if any of the predecessors of u is in the queue.
|
1443 |
+
if all(pred_u not in in_q for pred_u in pred[u]):
|
1444 |
+
dist_u = dist[u]
|
1445 |
+
for v, e in G_succ[u].items():
|
1446 |
+
dist_v = dist_u + weight(u, v, e)
|
1447 |
+
|
1448 |
+
if dist_v < dist.get(v, inf):
|
1449 |
+
# In this conditional branch we are updating the path with v.
|
1450 |
+
# If it happens that some earlier update also added node v
|
1451 |
+
# that implies the existence of a negative cycle since
|
1452 |
+
# after the update node v would lie on the update path twice.
|
1453 |
+
# The update path is stored up to one of the source nodes,
|
1454 |
+
# therefore u is always in the dict recent_update
|
1455 |
+
if heuristic:
|
1456 |
+
if v in recent_update[u]:
|
1457 |
+
# Negative cycle found!
|
1458 |
+
pred[v].append(u)
|
1459 |
+
return v
|
1460 |
+
|
1461 |
+
# Transfer the recent update info from u to v if the
|
1462 |
+
# same source node is the head of the update path.
|
1463 |
+
# If the source node is responsible for the cost update,
|
1464 |
+
# then clear the history and use it instead.
|
1465 |
+
if v in pred_edge and pred_edge[v] == u:
|
1466 |
+
recent_update[v] = recent_update[u]
|
1467 |
+
else:
|
1468 |
+
recent_update[v] = (u, v)
|
1469 |
+
|
1470 |
+
if v not in in_q:
|
1471 |
+
q.append(v)
|
1472 |
+
in_q.add(v)
|
1473 |
+
count_v = count.get(v, 0) + 1
|
1474 |
+
if count_v == n:
|
1475 |
+
# Negative cycle found!
|
1476 |
+
return v
|
1477 |
+
|
1478 |
+
count[v] = count_v
|
1479 |
+
dist[v] = dist_v
|
1480 |
+
pred[v] = [u]
|
1481 |
+
pred_edge[v] = u
|
1482 |
+
|
1483 |
+
elif dist.get(v) is not None and dist_v == dist.get(v):
|
1484 |
+
pred[v].append(u)
|
1485 |
+
|
1486 |
+
# successfully found shortest_path. No negative cycles found.
|
1487 |
+
return None
|
1488 |
+
|
1489 |
+
|
1490 |
+
@nx._dispatchable(edge_attrs="weight")
|
1491 |
+
def bellman_ford_path(G, source, target, weight="weight"):
|
1492 |
+
"""Returns the shortest path from source to target in a weighted graph G.
|
1493 |
+
|
1494 |
+
Parameters
|
1495 |
+
----------
|
1496 |
+
G : NetworkX graph
|
1497 |
+
|
1498 |
+
source : node
|
1499 |
+
Starting node
|
1500 |
+
|
1501 |
+
target : node
|
1502 |
+
Ending node
|
1503 |
+
|
1504 |
+
weight : string or function (default="weight")
|
1505 |
+
If this is a string, then edge weights will be accessed via the
|
1506 |
+
edge attribute with this key (that is, the weight of the edge
|
1507 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
1508 |
+
such edge attribute exists, the weight of the edge is assumed to
|
1509 |
+
be one.
|
1510 |
+
|
1511 |
+
If this is a function, the weight of an edge is the value
|
1512 |
+
returned by the function. The function must accept exactly three
|
1513 |
+
positional arguments: the two endpoints of an edge and the
|
1514 |
+
dictionary of edge attributes for that edge. The function must
|
1515 |
+
return a number.
|
1516 |
+
|
1517 |
+
Returns
|
1518 |
+
-------
|
1519 |
+
path : list
|
1520 |
+
List of nodes in a shortest path.
|
1521 |
+
|
1522 |
+
Raises
|
1523 |
+
------
|
1524 |
+
NodeNotFound
|
1525 |
+
If `source` is not in `G`.
|
1526 |
+
|
1527 |
+
NetworkXNoPath
|
1528 |
+
If no path exists between source and target.
|
1529 |
+
|
1530 |
+
Examples
|
1531 |
+
--------
|
1532 |
+
>>> G = nx.path_graph(5)
|
1533 |
+
>>> nx.bellman_ford_path(G, 0, 4)
|
1534 |
+
[0, 1, 2, 3, 4]
|
1535 |
+
|
1536 |
+
Notes
|
1537 |
+
-----
|
1538 |
+
Edge weight attributes must be numerical.
|
1539 |
+
Distances are calculated as sums of weighted edges traversed.
|
1540 |
+
|
1541 |
+
See Also
|
1542 |
+
--------
|
1543 |
+
dijkstra_path, bellman_ford_path_length
|
1544 |
+
"""
|
1545 |
+
length, path = single_source_bellman_ford(G, source, target=target, weight=weight)
|
1546 |
+
return path
|
1547 |
+
|
1548 |
+
|
1549 |
+
@nx._dispatchable(edge_attrs="weight")
|
1550 |
+
def bellman_ford_path_length(G, source, target, weight="weight"):
|
1551 |
+
"""Returns the shortest path length from source to target
|
1552 |
+
in a weighted graph.
|
1553 |
+
|
1554 |
+
Parameters
|
1555 |
+
----------
|
1556 |
+
G : NetworkX graph
|
1557 |
+
|
1558 |
+
source : node label
|
1559 |
+
starting node for path
|
1560 |
+
|
1561 |
+
target : node label
|
1562 |
+
ending node for path
|
1563 |
+
|
1564 |
+
weight : string or function (default="weight")
|
1565 |
+
If this is a string, then edge weights will be accessed via the
|
1566 |
+
edge attribute with this key (that is, the weight of the edge
|
1567 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
1568 |
+
such edge attribute exists, the weight of the edge is assumed to
|
1569 |
+
be one.
|
1570 |
+
|
1571 |
+
If this is a function, the weight of an edge is the value
|
1572 |
+
returned by the function. The function must accept exactly three
|
1573 |
+
positional arguments: the two endpoints of an edge and the
|
1574 |
+
dictionary of edge attributes for that edge. The function must
|
1575 |
+
return a number.
|
1576 |
+
|
1577 |
+
Returns
|
1578 |
+
-------
|
1579 |
+
length : number
|
1580 |
+
Shortest path length.
|
1581 |
+
|
1582 |
+
Raises
|
1583 |
+
------
|
1584 |
+
NodeNotFound
|
1585 |
+
If `source` is not in `G`.
|
1586 |
+
|
1587 |
+
NetworkXNoPath
|
1588 |
+
If no path exists between source and target.
|
1589 |
+
|
1590 |
+
Examples
|
1591 |
+
--------
|
1592 |
+
>>> G = nx.path_graph(5)
|
1593 |
+
>>> nx.bellman_ford_path_length(G, 0, 4)
|
1594 |
+
4
|
1595 |
+
|
1596 |
+
Notes
|
1597 |
+
-----
|
1598 |
+
Edge weight attributes must be numerical.
|
1599 |
+
Distances are calculated as sums of weighted edges traversed.
|
1600 |
+
|
1601 |
+
See Also
|
1602 |
+
--------
|
1603 |
+
dijkstra_path_length, bellman_ford_path
|
1604 |
+
"""
|
1605 |
+
if source == target:
|
1606 |
+
if source not in G:
|
1607 |
+
raise nx.NodeNotFound(f"Node {source} not found in graph")
|
1608 |
+
return 0
|
1609 |
+
|
1610 |
+
weight = _weight_function(G, weight)
|
1611 |
+
|
1612 |
+
length = _bellman_ford(G, [source], weight, target=target)
|
1613 |
+
|
1614 |
+
try:
|
1615 |
+
return length[target]
|
1616 |
+
except KeyError as err:
|
1617 |
+
raise nx.NetworkXNoPath(f"node {target} not reachable from {source}") from err
|
1618 |
+
|
1619 |
+
|
1620 |
+
@nx._dispatchable(edge_attrs="weight")
|
1621 |
+
def single_source_bellman_ford_path(G, source, weight="weight"):
|
1622 |
+
"""Compute shortest path between source and all other reachable
|
1623 |
+
nodes for a weighted graph.
|
1624 |
+
|
1625 |
+
Parameters
|
1626 |
+
----------
|
1627 |
+
G : NetworkX graph
|
1628 |
+
|
1629 |
+
source : node
|
1630 |
+
Starting node for path.
|
1631 |
+
|
1632 |
+
weight : string or function (default="weight")
|
1633 |
+
If this is a string, then edge weights will be accessed via the
|
1634 |
+
edge attribute with this key (that is, the weight of the edge
|
1635 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
1636 |
+
such edge attribute exists, the weight of the edge is assumed to
|
1637 |
+
be one.
|
1638 |
+
|
1639 |
+
If this is a function, the weight of an edge is the value
|
1640 |
+
returned by the function. The function must accept exactly three
|
1641 |
+
positional arguments: the two endpoints of an edge and the
|
1642 |
+
dictionary of edge attributes for that edge. The function must
|
1643 |
+
return a number.
|
1644 |
+
|
1645 |
+
Returns
|
1646 |
+
-------
|
1647 |
+
paths : dictionary
|
1648 |
+
Dictionary of shortest path lengths keyed by target.
|
1649 |
+
|
1650 |
+
Raises
|
1651 |
+
------
|
1652 |
+
NodeNotFound
|
1653 |
+
If `source` is not in `G`.
|
1654 |
+
|
1655 |
+
Examples
|
1656 |
+
--------
|
1657 |
+
>>> G = nx.path_graph(5)
|
1658 |
+
>>> path = nx.single_source_bellman_ford_path(G, 0)
|
1659 |
+
>>> path[4]
|
1660 |
+
[0, 1, 2, 3, 4]
|
1661 |
+
|
1662 |
+
Notes
|
1663 |
+
-----
|
1664 |
+
Edge weight attributes must be numerical.
|
1665 |
+
Distances are calculated as sums of weighted edges traversed.
|
1666 |
+
|
1667 |
+
See Also
|
1668 |
+
--------
|
1669 |
+
single_source_dijkstra, single_source_bellman_ford
|
1670 |
+
|
1671 |
+
"""
|
1672 |
+
(length, path) = single_source_bellman_ford(G, source, weight=weight)
|
1673 |
+
return path
|
1674 |
+
|
1675 |
+
|
1676 |
+
@nx._dispatchable(edge_attrs="weight")
|
1677 |
+
def single_source_bellman_ford_path_length(G, source, weight="weight"):
|
1678 |
+
"""Compute the shortest path length between source and all other
|
1679 |
+
reachable nodes for a weighted graph.
|
1680 |
+
|
1681 |
+
Parameters
|
1682 |
+
----------
|
1683 |
+
G : NetworkX graph
|
1684 |
+
|
1685 |
+
source : node label
|
1686 |
+
Starting node for path
|
1687 |
+
|
1688 |
+
weight : string or function (default="weight")
|
1689 |
+
If this is a string, then edge weights will be accessed via the
|
1690 |
+
edge attribute with this key (that is, the weight of the edge
|
1691 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
1692 |
+
such edge attribute exists, the weight of the edge is assumed to
|
1693 |
+
be one.
|
1694 |
+
|
1695 |
+
If this is a function, the weight of an edge is the value
|
1696 |
+
returned by the function. The function must accept exactly three
|
1697 |
+
positional arguments: the two endpoints of an edge and the
|
1698 |
+
dictionary of edge attributes for that edge. The function must
|
1699 |
+
return a number.
|
1700 |
+
|
1701 |
+
Returns
|
1702 |
+
-------
|
1703 |
+
length : dictionary
|
1704 |
+
Dictionary of shortest path length keyed by target
|
1705 |
+
|
1706 |
+
Raises
|
1707 |
+
------
|
1708 |
+
NodeNotFound
|
1709 |
+
If `source` is not in `G`.
|
1710 |
+
|
1711 |
+
Examples
|
1712 |
+
--------
|
1713 |
+
>>> G = nx.path_graph(5)
|
1714 |
+
>>> length = nx.single_source_bellman_ford_path_length(G, 0)
|
1715 |
+
>>> length[4]
|
1716 |
+
4
|
1717 |
+
>>> for node in [0, 1, 2, 3, 4]:
|
1718 |
+
... print(f"{node}: {length[node]}")
|
1719 |
+
0: 0
|
1720 |
+
1: 1
|
1721 |
+
2: 2
|
1722 |
+
3: 3
|
1723 |
+
4: 4
|
1724 |
+
|
1725 |
+
Notes
|
1726 |
+
-----
|
1727 |
+
Edge weight attributes must be numerical.
|
1728 |
+
Distances are calculated as sums of weighted edges traversed.
|
1729 |
+
|
1730 |
+
See Also
|
1731 |
+
--------
|
1732 |
+
single_source_dijkstra, single_source_bellman_ford
|
1733 |
+
|
1734 |
+
"""
|
1735 |
+
weight = _weight_function(G, weight)
|
1736 |
+
return _bellman_ford(G, [source], weight)
|
1737 |
+
|
1738 |
+
|
1739 |
+
@nx._dispatchable(edge_attrs="weight")
|
1740 |
+
def single_source_bellman_ford(G, source, target=None, weight="weight"):
|
1741 |
+
"""Compute shortest paths and lengths in a weighted graph G.
|
1742 |
+
|
1743 |
+
Uses Bellman-Ford algorithm for shortest paths.
|
1744 |
+
|
1745 |
+
Parameters
|
1746 |
+
----------
|
1747 |
+
G : NetworkX graph
|
1748 |
+
|
1749 |
+
source : node label
|
1750 |
+
Starting node for path
|
1751 |
+
|
1752 |
+
target : node label, optional
|
1753 |
+
Ending node for path
|
1754 |
+
|
1755 |
+
weight : string or function
|
1756 |
+
If this is a string, then edge weights will be accessed via the
|
1757 |
+
edge attribute with this key (that is, the weight of the edge
|
1758 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
1759 |
+
such edge attribute exists, the weight of the edge is assumed to
|
1760 |
+
be one.
|
1761 |
+
|
1762 |
+
If this is a function, the weight of an edge is the value
|
1763 |
+
returned by the function. The function must accept exactly three
|
1764 |
+
positional arguments: the two endpoints of an edge and the
|
1765 |
+
dictionary of edge attributes for that edge. The function must
|
1766 |
+
return a number.
|
1767 |
+
|
1768 |
+
Returns
|
1769 |
+
-------
|
1770 |
+
distance, path : pair of dictionaries, or numeric and list
|
1771 |
+
If target is None, returns a tuple of two dictionaries keyed by node.
|
1772 |
+
The first dictionary stores distance from one of the source nodes.
|
1773 |
+
The second stores the path from one of the sources to that node.
|
1774 |
+
If target is not None, returns a tuple of (distance, path) where
|
1775 |
+
distance is the distance from source to target and path is a list
|
1776 |
+
representing the path from source to target.
|
1777 |
+
|
1778 |
+
Raises
|
1779 |
+
------
|
1780 |
+
NodeNotFound
|
1781 |
+
If `source` is not in `G`.
|
1782 |
+
|
1783 |
+
Examples
|
1784 |
+
--------
|
1785 |
+
>>> G = nx.path_graph(5)
|
1786 |
+
>>> length, path = nx.single_source_bellman_ford(G, 0)
|
1787 |
+
>>> length[4]
|
1788 |
+
4
|
1789 |
+
>>> for node in [0, 1, 2, 3, 4]:
|
1790 |
+
... print(f"{node}: {length[node]}")
|
1791 |
+
0: 0
|
1792 |
+
1: 1
|
1793 |
+
2: 2
|
1794 |
+
3: 3
|
1795 |
+
4: 4
|
1796 |
+
>>> path[4]
|
1797 |
+
[0, 1, 2, 3, 4]
|
1798 |
+
>>> length, path = nx.single_source_bellman_ford(G, 0, 1)
|
1799 |
+
>>> length
|
1800 |
+
1
|
1801 |
+
>>> path
|
1802 |
+
[0, 1]
|
1803 |
+
|
1804 |
+
Notes
|
1805 |
+
-----
|
1806 |
+
Edge weight attributes must be numerical.
|
1807 |
+
Distances are calculated as sums of weighted edges traversed.
|
1808 |
+
|
1809 |
+
See Also
|
1810 |
+
--------
|
1811 |
+
single_source_dijkstra
|
1812 |
+
single_source_bellman_ford_path
|
1813 |
+
single_source_bellman_ford_path_length
|
1814 |
+
"""
|
1815 |
+
if source == target:
|
1816 |
+
if source not in G:
|
1817 |
+
raise nx.NodeNotFound(f"Node {source} is not found in the graph")
|
1818 |
+
return (0, [source])
|
1819 |
+
|
1820 |
+
weight = _weight_function(G, weight)
|
1821 |
+
|
1822 |
+
paths = {source: [source]} # dictionary of paths
|
1823 |
+
dist = _bellman_ford(G, [source], weight, paths=paths, target=target)
|
1824 |
+
if target is None:
|
1825 |
+
return (dist, paths)
|
1826 |
+
try:
|
1827 |
+
return (dist[target], paths[target])
|
1828 |
+
except KeyError as err:
|
1829 |
+
msg = f"Node {target} not reachable from {source}"
|
1830 |
+
raise nx.NetworkXNoPath(msg) from err
|
1831 |
+
|
1832 |
+
|
1833 |
+
@nx._dispatchable(edge_attrs="weight")
|
1834 |
+
def all_pairs_bellman_ford_path_length(G, weight="weight"):
|
1835 |
+
"""Compute shortest path lengths between all nodes in a weighted graph.
|
1836 |
+
|
1837 |
+
Parameters
|
1838 |
+
----------
|
1839 |
+
G : NetworkX graph
|
1840 |
+
|
1841 |
+
weight : string or function (default="weight")
|
1842 |
+
If this is a string, then edge weights will be accessed via the
|
1843 |
+
edge attribute with this key (that is, the weight of the edge
|
1844 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
1845 |
+
such edge attribute exists, the weight of the edge is assumed to
|
1846 |
+
be one.
|
1847 |
+
|
1848 |
+
If this is a function, the weight of an edge is the value
|
1849 |
+
returned by the function. The function must accept exactly three
|
1850 |
+
positional arguments: the two endpoints of an edge and the
|
1851 |
+
dictionary of edge attributes for that edge. The function must
|
1852 |
+
return a number.
|
1853 |
+
|
1854 |
+
Returns
|
1855 |
+
-------
|
1856 |
+
distance : iterator
|
1857 |
+
(source, dictionary) iterator with dictionary keyed by target and
|
1858 |
+
shortest path length as the key value.
|
1859 |
+
|
1860 |
+
Examples
|
1861 |
+
--------
|
1862 |
+
>>> G = nx.path_graph(5)
|
1863 |
+
>>> length = dict(nx.all_pairs_bellman_ford_path_length(G))
|
1864 |
+
>>> for node in [0, 1, 2, 3, 4]:
|
1865 |
+
... print(f"1 - {node}: {length[1][node]}")
|
1866 |
+
1 - 0: 1
|
1867 |
+
1 - 1: 0
|
1868 |
+
1 - 2: 1
|
1869 |
+
1 - 3: 2
|
1870 |
+
1 - 4: 3
|
1871 |
+
>>> length[3][2]
|
1872 |
+
1
|
1873 |
+
>>> length[2][2]
|
1874 |
+
0
|
1875 |
+
|
1876 |
+
Notes
|
1877 |
+
-----
|
1878 |
+
Edge weight attributes must be numerical.
|
1879 |
+
Distances are calculated as sums of weighted edges traversed.
|
1880 |
+
|
1881 |
+
The dictionary returned only has keys for reachable node pairs.
|
1882 |
+
"""
|
1883 |
+
length = single_source_bellman_ford_path_length
|
1884 |
+
for n in G:
|
1885 |
+
yield (n, dict(length(G, n, weight=weight)))
|
1886 |
+
|
1887 |
+
|
1888 |
+
@nx._dispatchable(edge_attrs="weight")
|
1889 |
+
def all_pairs_bellman_ford_path(G, weight="weight"):
|
1890 |
+
"""Compute shortest paths between all nodes in a weighted graph.
|
1891 |
+
|
1892 |
+
Parameters
|
1893 |
+
----------
|
1894 |
+
G : NetworkX graph
|
1895 |
+
|
1896 |
+
weight : string or function (default="weight")
|
1897 |
+
If this is a string, then edge weights will be accessed via the
|
1898 |
+
edge attribute with this key (that is, the weight of the edge
|
1899 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
1900 |
+
such edge attribute exists, the weight of the edge is assumed to
|
1901 |
+
be one.
|
1902 |
+
|
1903 |
+
If this is a function, the weight of an edge is the value
|
1904 |
+
returned by the function. The function must accept exactly three
|
1905 |
+
positional arguments: the two endpoints of an edge and the
|
1906 |
+
dictionary of edge attributes for that edge. The function must
|
1907 |
+
return a number.
|
1908 |
+
|
1909 |
+
Returns
|
1910 |
+
-------
|
1911 |
+
paths : iterator
|
1912 |
+
(source, dictionary) iterator with dictionary keyed by target and
|
1913 |
+
shortest path as the key value.
|
1914 |
+
|
1915 |
+
Examples
|
1916 |
+
--------
|
1917 |
+
>>> G = nx.path_graph(5)
|
1918 |
+
>>> path = dict(nx.all_pairs_bellman_ford_path(G))
|
1919 |
+
>>> path[0][4]
|
1920 |
+
[0, 1, 2, 3, 4]
|
1921 |
+
|
1922 |
+
Notes
|
1923 |
+
-----
|
1924 |
+
Edge weight attributes must be numerical.
|
1925 |
+
Distances are calculated as sums of weighted edges traversed.
|
1926 |
+
|
1927 |
+
See Also
|
1928 |
+
--------
|
1929 |
+
floyd_warshall, all_pairs_dijkstra_path
|
1930 |
+
|
1931 |
+
"""
|
1932 |
+
path = single_source_bellman_ford_path
|
1933 |
+
# TODO This can be trivially parallelized.
|
1934 |
+
for n in G:
|
1935 |
+
yield (n, path(G, n, weight=weight))
|
1936 |
+
|
1937 |
+
|
1938 |
+
@nx._dispatchable(edge_attrs="weight")
|
1939 |
+
def goldberg_radzik(G, source, weight="weight"):
|
1940 |
+
"""Compute shortest path lengths and predecessors on shortest paths
|
1941 |
+
in weighted graphs.
|
1942 |
+
|
1943 |
+
The algorithm has a running time of $O(mn)$ where $n$ is the number of
|
1944 |
+
nodes and $m$ is the number of edges. It is slower than Dijkstra but
|
1945 |
+
can handle negative edge weights.
|
1946 |
+
|
1947 |
+
Parameters
|
1948 |
+
----------
|
1949 |
+
G : NetworkX graph
|
1950 |
+
The algorithm works for all types of graphs, including directed
|
1951 |
+
graphs and multigraphs.
|
1952 |
+
|
1953 |
+
source: node label
|
1954 |
+
Starting node for path
|
1955 |
+
|
1956 |
+
weight : string or function
|
1957 |
+
If this is a string, then edge weights will be accessed via the
|
1958 |
+
edge attribute with this key (that is, the weight of the edge
|
1959 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
1960 |
+
such edge attribute exists, the weight of the edge is assumed to
|
1961 |
+
be one.
|
1962 |
+
|
1963 |
+
If this is a function, the weight of an edge is the value
|
1964 |
+
returned by the function. The function must accept exactly three
|
1965 |
+
positional arguments: the two endpoints of an edge and the
|
1966 |
+
dictionary of edge attributes for that edge. The function must
|
1967 |
+
return a number.
|
1968 |
+
|
1969 |
+
Returns
|
1970 |
+
-------
|
1971 |
+
pred, dist : dictionaries
|
1972 |
+
Returns two dictionaries keyed by node to predecessor in the
|
1973 |
+
path and to the distance from the source respectively.
|
1974 |
+
|
1975 |
+
Raises
|
1976 |
+
------
|
1977 |
+
NodeNotFound
|
1978 |
+
If `source` is not in `G`.
|
1979 |
+
|
1980 |
+
NetworkXUnbounded
|
1981 |
+
If the (di)graph contains a negative (di)cycle, the
|
1982 |
+
algorithm raises an exception to indicate the presence of the
|
1983 |
+
negative (di)cycle. Note: any negative weight edge in an
|
1984 |
+
undirected graph is a negative cycle.
|
1985 |
+
|
1986 |
+
As of NetworkX v3.2, a zero weight cycle is no longer
|
1987 |
+
incorrectly reported as a negative weight cycle.
|
1988 |
+
|
1989 |
+
|
1990 |
+
Examples
|
1991 |
+
--------
|
1992 |
+
>>> G = nx.path_graph(5, create_using=nx.DiGraph())
|
1993 |
+
>>> pred, dist = nx.goldberg_radzik(G, 0)
|
1994 |
+
>>> sorted(pred.items())
|
1995 |
+
[(0, None), (1, 0), (2, 1), (3, 2), (4, 3)]
|
1996 |
+
>>> sorted(dist.items())
|
1997 |
+
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
|
1998 |
+
|
1999 |
+
>>> G = nx.cycle_graph(5, create_using=nx.DiGraph())
|
2000 |
+
>>> G[1][2]["weight"] = -7
|
2001 |
+
>>> nx.goldberg_radzik(G, 0)
|
2002 |
+
Traceback (most recent call last):
|
2003 |
+
...
|
2004 |
+
networkx.exception.NetworkXUnbounded: Negative cycle detected.
|
2005 |
+
|
2006 |
+
Notes
|
2007 |
+
-----
|
2008 |
+
Edge weight attributes must be numerical.
|
2009 |
+
Distances are calculated as sums of weighted edges traversed.
|
2010 |
+
|
2011 |
+
The dictionaries returned only have keys for nodes reachable from
|
2012 |
+
the source.
|
2013 |
+
|
2014 |
+
In the case where the (di)graph is not connected, if a component
|
2015 |
+
not containing the source contains a negative (di)cycle, it
|
2016 |
+
will not be detected.
|
2017 |
+
|
2018 |
+
"""
|
2019 |
+
if source not in G:
|
2020 |
+
raise nx.NodeNotFound(f"Node {source} is not found in the graph")
|
2021 |
+
weight = _weight_function(G, weight)
|
2022 |
+
if G.is_multigraph():
|
2023 |
+
if any(
|
2024 |
+
weight(u, v, {k: d}) < 0
|
2025 |
+
for u, v, k, d in nx.selfloop_edges(G, keys=True, data=True)
|
2026 |
+
):
|
2027 |
+
raise nx.NetworkXUnbounded("Negative cycle detected.")
|
2028 |
+
else:
|
2029 |
+
if any(weight(u, v, d) < 0 for u, v, d in nx.selfloop_edges(G, data=True)):
|
2030 |
+
raise nx.NetworkXUnbounded("Negative cycle detected.")
|
2031 |
+
|
2032 |
+
if len(G) == 1:
|
2033 |
+
return {source: None}, {source: 0}
|
2034 |
+
|
2035 |
+
G_succ = G._adj # For speed-up (and works for both directed and undirected graphs)
|
2036 |
+
|
2037 |
+
inf = float("inf")
|
2038 |
+
d = {u: inf for u in G}
|
2039 |
+
d[source] = 0
|
2040 |
+
pred = {source: None}
|
2041 |
+
|
2042 |
+
def topo_sort(relabeled):
|
2043 |
+
"""Topologically sort nodes relabeled in the previous round and detect
|
2044 |
+
negative cycles.
|
2045 |
+
"""
|
2046 |
+
# List of nodes to scan in this round. Denoted by A in Goldberg and
|
2047 |
+
# Radzik's paper.
|
2048 |
+
to_scan = []
|
2049 |
+
# In the DFS in the loop below, neg_count records for each node the
|
2050 |
+
# number of edges of negative reduced costs on the path from a DFS root
|
2051 |
+
# to the node in the DFS forest. The reduced cost of an edge (u, v) is
|
2052 |
+
# defined as d[u] + weight[u][v] - d[v].
|
2053 |
+
#
|
2054 |
+
# neg_count also doubles as the DFS visit marker array.
|
2055 |
+
neg_count = {}
|
2056 |
+
for u in relabeled:
|
2057 |
+
# Skip visited nodes.
|
2058 |
+
if u in neg_count:
|
2059 |
+
continue
|
2060 |
+
d_u = d[u]
|
2061 |
+
# Skip nodes without out-edges of negative reduced costs.
|
2062 |
+
if all(d_u + weight(u, v, e) >= d[v] for v, e in G_succ[u].items()):
|
2063 |
+
continue
|
2064 |
+
# Nonrecursive DFS that inserts nodes reachable from u via edges of
|
2065 |
+
# nonpositive reduced costs into to_scan in (reverse) topological
|
2066 |
+
# order.
|
2067 |
+
stack = [(u, iter(G_succ[u].items()))]
|
2068 |
+
in_stack = {u}
|
2069 |
+
neg_count[u] = 0
|
2070 |
+
while stack:
|
2071 |
+
u, it = stack[-1]
|
2072 |
+
try:
|
2073 |
+
v, e = next(it)
|
2074 |
+
except StopIteration:
|
2075 |
+
to_scan.append(u)
|
2076 |
+
stack.pop()
|
2077 |
+
in_stack.remove(u)
|
2078 |
+
continue
|
2079 |
+
t = d[u] + weight(u, v, e)
|
2080 |
+
d_v = d[v]
|
2081 |
+
if t < d_v:
|
2082 |
+
is_neg = t < d_v
|
2083 |
+
d[v] = t
|
2084 |
+
pred[v] = u
|
2085 |
+
if v not in neg_count:
|
2086 |
+
neg_count[v] = neg_count[u] + int(is_neg)
|
2087 |
+
stack.append((v, iter(G_succ[v].items())))
|
2088 |
+
in_stack.add(v)
|
2089 |
+
elif v in in_stack and neg_count[u] + int(is_neg) > neg_count[v]:
|
2090 |
+
# (u, v) is a back edge, and the cycle formed by the
|
2091 |
+
# path v to u and (u, v) contains at least one edge of
|
2092 |
+
# negative reduced cost. The cycle must be of negative
|
2093 |
+
# cost.
|
2094 |
+
raise nx.NetworkXUnbounded("Negative cycle detected.")
|
2095 |
+
to_scan.reverse()
|
2096 |
+
return to_scan
|
2097 |
+
|
2098 |
+
def relax(to_scan):
|
2099 |
+
"""Relax out-edges of relabeled nodes."""
|
2100 |
+
relabeled = set()
|
2101 |
+
# Scan nodes in to_scan in topological order and relax incident
|
2102 |
+
# out-edges. Add the relabled nodes to labeled.
|
2103 |
+
for u in to_scan:
|
2104 |
+
d_u = d[u]
|
2105 |
+
for v, e in G_succ[u].items():
|
2106 |
+
w_e = weight(u, v, e)
|
2107 |
+
if d_u + w_e < d[v]:
|
2108 |
+
d[v] = d_u + w_e
|
2109 |
+
pred[v] = u
|
2110 |
+
relabeled.add(v)
|
2111 |
+
return relabeled
|
2112 |
+
|
2113 |
+
# Set of nodes relabled in the last round of scan operations. Denoted by B
|
2114 |
+
# in Goldberg and Radzik's paper.
|
2115 |
+
relabeled = {source}
|
2116 |
+
|
2117 |
+
while relabeled:
|
2118 |
+
to_scan = topo_sort(relabeled)
|
2119 |
+
relabeled = relax(to_scan)
|
2120 |
+
|
2121 |
+
d = {u: d[u] for u in pred}
|
2122 |
+
return pred, d
|
2123 |
+
|
2124 |
+
|
2125 |
+
@nx._dispatchable(edge_attrs="weight")
|
2126 |
+
def negative_edge_cycle(G, weight="weight", heuristic=True):
|
2127 |
+
"""Returns True if there exists a negative edge cycle anywhere in G.
|
2128 |
+
|
2129 |
+
Parameters
|
2130 |
+
----------
|
2131 |
+
G : NetworkX graph
|
2132 |
+
|
2133 |
+
weight : string or function
|
2134 |
+
If this is a string, then edge weights will be accessed via the
|
2135 |
+
edge attribute with this key (that is, the weight of the edge
|
2136 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
2137 |
+
such edge attribute exists, the weight of the edge is assumed to
|
2138 |
+
be one.
|
2139 |
+
|
2140 |
+
If this is a function, the weight of an edge is the value
|
2141 |
+
returned by the function. The function must accept exactly three
|
2142 |
+
positional arguments: the two endpoints of an edge and the
|
2143 |
+
dictionary of edge attributes for that edge. The function must
|
2144 |
+
return a number.
|
2145 |
+
|
2146 |
+
heuristic : bool
|
2147 |
+
Determines whether to use a heuristic to early detect negative
|
2148 |
+
cycles at a negligible cost. In case of graphs with a negative cycle,
|
2149 |
+
the performance of detection increases by at least an order of magnitude.
|
2150 |
+
|
2151 |
+
Returns
|
2152 |
+
-------
|
2153 |
+
negative_cycle : bool
|
2154 |
+
True if a negative edge cycle exists, otherwise False.
|
2155 |
+
|
2156 |
+
Examples
|
2157 |
+
--------
|
2158 |
+
>>> G = nx.cycle_graph(5, create_using=nx.DiGraph())
|
2159 |
+
>>> print(nx.negative_edge_cycle(G))
|
2160 |
+
False
|
2161 |
+
>>> G[1][2]["weight"] = -7
|
2162 |
+
>>> print(nx.negative_edge_cycle(G))
|
2163 |
+
True
|
2164 |
+
|
2165 |
+
Notes
|
2166 |
+
-----
|
2167 |
+
Edge weight attributes must be numerical.
|
2168 |
+
Distances are calculated as sums of weighted edges traversed.
|
2169 |
+
|
2170 |
+
This algorithm uses bellman_ford_predecessor_and_distance() but finds
|
2171 |
+
negative cycles on any component by first adding a new node connected to
|
2172 |
+
every node, and starting bellman_ford_predecessor_and_distance on that
|
2173 |
+
node. It then removes that extra node.
|
2174 |
+
"""
|
2175 |
+
if G.size() == 0:
|
2176 |
+
return False
|
2177 |
+
|
2178 |
+
# find unused node to use temporarily
|
2179 |
+
newnode = -1
|
2180 |
+
while newnode in G:
|
2181 |
+
newnode -= 1
|
2182 |
+
# connect it to all nodes
|
2183 |
+
G.add_edges_from([(newnode, n) for n in G])
|
2184 |
+
|
2185 |
+
try:
|
2186 |
+
bellman_ford_predecessor_and_distance(
|
2187 |
+
G, newnode, weight=weight, heuristic=heuristic
|
2188 |
+
)
|
2189 |
+
except nx.NetworkXUnbounded:
|
2190 |
+
return True
|
2191 |
+
finally:
|
2192 |
+
G.remove_node(newnode)
|
2193 |
+
return False
|
2194 |
+
|
2195 |
+
|
2196 |
+
@nx._dispatchable(edge_attrs="weight")
|
2197 |
+
def find_negative_cycle(G, source, weight="weight"):
|
2198 |
+
"""Returns a cycle with negative total weight if it exists.
|
2199 |
+
|
2200 |
+
Bellman-Ford is used to find shortest_paths. That algorithm
|
2201 |
+
stops if there exists a negative cycle. This algorithm
|
2202 |
+
picks up from there and returns the found negative cycle.
|
2203 |
+
|
2204 |
+
The cycle consists of a list of nodes in the cycle order. The last
|
2205 |
+
node equals the first to make it a cycle.
|
2206 |
+
You can look up the edge weights in the original graph. In the case
|
2207 |
+
of multigraphs the relevant edge is the minimal weight edge between
|
2208 |
+
the nodes in the 2-tuple.
|
2209 |
+
|
2210 |
+
If the graph has no negative cycle, a NetworkXError is raised.
|
2211 |
+
|
2212 |
+
Parameters
|
2213 |
+
----------
|
2214 |
+
G : NetworkX graph
|
2215 |
+
|
2216 |
+
source: node label
|
2217 |
+
The search for the negative cycle will start from this node.
|
2218 |
+
|
2219 |
+
weight : string or function
|
2220 |
+
If this is a string, then edge weights will be accessed via the
|
2221 |
+
edge attribute with this key (that is, the weight of the edge
|
2222 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
2223 |
+
such edge attribute exists, the weight of the edge is assumed to
|
2224 |
+
be one.
|
2225 |
+
|
2226 |
+
If this is a function, the weight of an edge is the value
|
2227 |
+
returned by the function. The function must accept exactly three
|
2228 |
+
positional arguments: the two endpoints of an edge and the
|
2229 |
+
dictionary of edge attributes for that edge. The function must
|
2230 |
+
return a number.
|
2231 |
+
|
2232 |
+
Examples
|
2233 |
+
--------
|
2234 |
+
>>> G = nx.DiGraph()
|
2235 |
+
>>> G.add_weighted_edges_from([(0, 1, 2), (1, 2, 2), (2, 0, 1), (1, 4, 2), (4, 0, -5)])
|
2236 |
+
>>> nx.find_negative_cycle(G, 0)
|
2237 |
+
[4, 0, 1, 4]
|
2238 |
+
|
2239 |
+
Returns
|
2240 |
+
-------
|
2241 |
+
cycle : list
|
2242 |
+
A list of nodes in the order of the cycle found. The last node
|
2243 |
+
equals the first to indicate a cycle.
|
2244 |
+
|
2245 |
+
Raises
|
2246 |
+
------
|
2247 |
+
NetworkXError
|
2248 |
+
If no negative cycle is found.
|
2249 |
+
"""
|
2250 |
+
weight = _weight_function(G, weight)
|
2251 |
+
pred = {source: []}
|
2252 |
+
|
2253 |
+
v = _inner_bellman_ford(G, [source], weight, pred=pred)
|
2254 |
+
if v is None:
|
2255 |
+
raise nx.NetworkXError("No negative cycles detected.")
|
2256 |
+
|
2257 |
+
# negative cycle detected... find it
|
2258 |
+
neg_cycle = []
|
2259 |
+
stack = [(v, list(pred[v]))]
|
2260 |
+
seen = {v}
|
2261 |
+
while stack:
|
2262 |
+
node, preds = stack[-1]
|
2263 |
+
if v in preds:
|
2264 |
+
# found the cycle
|
2265 |
+
neg_cycle.extend([node, v])
|
2266 |
+
neg_cycle = list(reversed(neg_cycle))
|
2267 |
+
return neg_cycle
|
2268 |
+
|
2269 |
+
if preds:
|
2270 |
+
nbr = preds.pop()
|
2271 |
+
if nbr not in seen:
|
2272 |
+
stack.append((nbr, list(pred[nbr])))
|
2273 |
+
neg_cycle.append(node)
|
2274 |
+
seen.add(nbr)
|
2275 |
+
else:
|
2276 |
+
stack.pop()
|
2277 |
+
if neg_cycle:
|
2278 |
+
neg_cycle.pop()
|
2279 |
+
else:
|
2280 |
+
if v in G[v] and weight(G, v, v) < 0:
|
2281 |
+
return [v, v]
|
2282 |
+
# should not reach here
|
2283 |
+
raise nx.NetworkXError("Negative cycle is detected but not found")
|
2284 |
+
# should not get here...
|
2285 |
+
msg = "negative cycle detected but not identified"
|
2286 |
+
raise nx.NetworkXUnbounded(msg)
|
2287 |
+
|
2288 |
+
|
2289 |
+
@nx._dispatchable(edge_attrs="weight")
|
2290 |
+
def bidirectional_dijkstra(G, source, target, weight="weight"):
|
2291 |
+
r"""Dijkstra's algorithm for shortest paths using bidirectional search.
|
2292 |
+
|
2293 |
+
Parameters
|
2294 |
+
----------
|
2295 |
+
G : NetworkX graph
|
2296 |
+
|
2297 |
+
source : node
|
2298 |
+
Starting node.
|
2299 |
+
|
2300 |
+
target : node
|
2301 |
+
Ending node.
|
2302 |
+
|
2303 |
+
weight : string or function
|
2304 |
+
If this is a string, then edge weights will be accessed via the
|
2305 |
+
edge attribute with this key (that is, the weight of the edge
|
2306 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
2307 |
+
such edge attribute exists, the weight of the edge is assumed to
|
2308 |
+
be one.
|
2309 |
+
|
2310 |
+
If this is a function, the weight of an edge is the value
|
2311 |
+
returned by the function. The function must accept exactly three
|
2312 |
+
positional arguments: the two endpoints of an edge and the
|
2313 |
+
dictionary of edge attributes for that edge. The function must
|
2314 |
+
return a number or None to indicate a hidden edge.
|
2315 |
+
|
2316 |
+
Returns
|
2317 |
+
-------
|
2318 |
+
length, path : number and list
|
2319 |
+
length is the distance from source to target.
|
2320 |
+
path is a list of nodes on a path from source to target.
|
2321 |
+
|
2322 |
+
Raises
|
2323 |
+
------
|
2324 |
+
NodeNotFound
|
2325 |
+
If either `source` or `target` is not in `G`.
|
2326 |
+
|
2327 |
+
NetworkXNoPath
|
2328 |
+
If no path exists between source and target.
|
2329 |
+
|
2330 |
+
Examples
|
2331 |
+
--------
|
2332 |
+
>>> G = nx.path_graph(5)
|
2333 |
+
>>> length, path = nx.bidirectional_dijkstra(G, 0, 4)
|
2334 |
+
>>> print(length)
|
2335 |
+
4
|
2336 |
+
>>> print(path)
|
2337 |
+
[0, 1, 2, 3, 4]
|
2338 |
+
|
2339 |
+
Notes
|
2340 |
+
-----
|
2341 |
+
Edge weight attributes must be numerical.
|
2342 |
+
Distances are calculated as sums of weighted edges traversed.
|
2343 |
+
|
2344 |
+
The weight function can be used to hide edges by returning None.
|
2345 |
+
So ``weight = lambda u, v, d: 1 if d['color']=="red" else None``
|
2346 |
+
will find the shortest red path.
|
2347 |
+
|
2348 |
+
In practice bidirectional Dijkstra is much more than twice as fast as
|
2349 |
+
ordinary Dijkstra.
|
2350 |
+
|
2351 |
+
Ordinary Dijkstra expands nodes in a sphere-like manner from the
|
2352 |
+
source. The radius of this sphere will eventually be the length
|
2353 |
+
of the shortest path. Bidirectional Dijkstra will expand nodes
|
2354 |
+
from both the source and the target, making two spheres of half
|
2355 |
+
this radius. Volume of the first sphere is `\pi*r*r` while the
|
2356 |
+
others are `2*\pi*r/2*r/2`, making up half the volume.
|
2357 |
+
|
2358 |
+
This algorithm is not guaranteed to work if edge weights
|
2359 |
+
are negative or are floating point numbers
|
2360 |
+
(overflows and roundoff errors can cause problems).
|
2361 |
+
|
2362 |
+
See Also
|
2363 |
+
--------
|
2364 |
+
shortest_path
|
2365 |
+
shortest_path_length
|
2366 |
+
"""
|
2367 |
+
if source not in G or target not in G:
|
2368 |
+
msg = f"Either source {source} or target {target} is not in G"
|
2369 |
+
raise nx.NodeNotFound(msg)
|
2370 |
+
|
2371 |
+
if source == target:
|
2372 |
+
return (0, [source])
|
2373 |
+
|
2374 |
+
weight = _weight_function(G, weight)
|
2375 |
+
push = heappush
|
2376 |
+
pop = heappop
|
2377 |
+
# Init: [Forward, Backward]
|
2378 |
+
dists = [{}, {}] # dictionary of final distances
|
2379 |
+
paths = [{source: [source]}, {target: [target]}] # dictionary of paths
|
2380 |
+
fringe = [[], []] # heap of (distance, node) for choosing node to expand
|
2381 |
+
seen = [{source: 0}, {target: 0}] # dict of distances to seen nodes
|
2382 |
+
c = count()
|
2383 |
+
# initialize fringe heap
|
2384 |
+
push(fringe[0], (0, next(c), source))
|
2385 |
+
push(fringe[1], (0, next(c), target))
|
2386 |
+
# neighs for extracting correct neighbor information
|
2387 |
+
if G.is_directed():
|
2388 |
+
neighs = [G._succ, G._pred]
|
2389 |
+
else:
|
2390 |
+
neighs = [G._adj, G._adj]
|
2391 |
+
# variables to hold shortest discovered path
|
2392 |
+
# finaldist = 1e30000
|
2393 |
+
finalpath = []
|
2394 |
+
dir = 1
|
2395 |
+
while fringe[0] and fringe[1]:
|
2396 |
+
# choose direction
|
2397 |
+
# dir == 0 is forward direction and dir == 1 is back
|
2398 |
+
dir = 1 - dir
|
2399 |
+
# extract closest to expand
|
2400 |
+
(dist, _, v) = pop(fringe[dir])
|
2401 |
+
if v in dists[dir]:
|
2402 |
+
# Shortest path to v has already been found
|
2403 |
+
continue
|
2404 |
+
# update distance
|
2405 |
+
dists[dir][v] = dist # equal to seen[dir][v]
|
2406 |
+
if v in dists[1 - dir]:
|
2407 |
+
# if we have scanned v in both directions we are done
|
2408 |
+
# we have now discovered the shortest path
|
2409 |
+
return (finaldist, finalpath)
|
2410 |
+
|
2411 |
+
for w, d in neighs[dir][v].items():
|
2412 |
+
# weight(v, w, d) for forward and weight(w, v, d) for back direction
|
2413 |
+
cost = weight(v, w, d) if dir == 0 else weight(w, v, d)
|
2414 |
+
if cost is None:
|
2415 |
+
continue
|
2416 |
+
vwLength = dists[dir][v] + cost
|
2417 |
+
if w in dists[dir]:
|
2418 |
+
if vwLength < dists[dir][w]:
|
2419 |
+
raise ValueError("Contradictory paths found: negative weights?")
|
2420 |
+
elif w not in seen[dir] or vwLength < seen[dir][w]:
|
2421 |
+
# relaxing
|
2422 |
+
seen[dir][w] = vwLength
|
2423 |
+
push(fringe[dir], (vwLength, next(c), w))
|
2424 |
+
paths[dir][w] = paths[dir][v] + [w]
|
2425 |
+
if w in seen[0] and w in seen[1]:
|
2426 |
+
# see if this path is better than the already
|
2427 |
+
# discovered shortest path
|
2428 |
+
totaldist = seen[0][w] + seen[1][w]
|
2429 |
+
if finalpath == [] or finaldist > totaldist:
|
2430 |
+
finaldist = totaldist
|
2431 |
+
revpath = paths[1][w][:]
|
2432 |
+
revpath.reverse()
|
2433 |
+
finalpath = paths[0][w] + revpath[1:]
|
2434 |
+
raise nx.NetworkXNoPath(f"No path between {source} and {target}.")
|
2435 |
+
|
2436 |
+
|
2437 |
+
@nx._dispatchable(edge_attrs="weight")
|
2438 |
+
def johnson(G, weight="weight"):
|
2439 |
+
r"""Uses Johnson's Algorithm to compute shortest paths.
|
2440 |
+
|
2441 |
+
Johnson's Algorithm finds a shortest path between each pair of
|
2442 |
+
nodes in a weighted graph even if negative weights are present.
|
2443 |
+
|
2444 |
+
Parameters
|
2445 |
+
----------
|
2446 |
+
G : NetworkX graph
|
2447 |
+
|
2448 |
+
weight : string or function
|
2449 |
+
If this is a string, then edge weights will be accessed via the
|
2450 |
+
edge attribute with this key (that is, the weight of the edge
|
2451 |
+
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
|
2452 |
+
such edge attribute exists, the weight of the edge is assumed to
|
2453 |
+
be one.
|
2454 |
+
|
2455 |
+
If this is a function, the weight of an edge is the value
|
2456 |
+
returned by the function. The function must accept exactly three
|
2457 |
+
positional arguments: the two endpoints of an edge and the
|
2458 |
+
dictionary of edge attributes for that edge. The function must
|
2459 |
+
return a number.
|
2460 |
+
|
2461 |
+
Returns
|
2462 |
+
-------
|
2463 |
+
distance : dictionary
|
2464 |
+
Dictionary, keyed by source and target, of shortest paths.
|
2465 |
+
|
2466 |
+
Examples
|
2467 |
+
--------
|
2468 |
+
>>> graph = nx.DiGraph()
|
2469 |
+
>>> graph.add_weighted_edges_from(
|
2470 |
+
... [("0", "3", 3), ("0", "1", -5), ("0", "2", 2), ("1", "2", 4), ("2", "3", 1)]
|
2471 |
+
... )
|
2472 |
+
>>> paths = nx.johnson(graph, weight="weight")
|
2473 |
+
>>> paths["0"]["2"]
|
2474 |
+
['0', '1', '2']
|
2475 |
+
|
2476 |
+
Notes
|
2477 |
+
-----
|
2478 |
+
Johnson's algorithm is suitable even for graphs with negative weights. It
|
2479 |
+
works by using the Bellman–Ford algorithm to compute a transformation of
|
2480 |
+
the input graph that removes all negative weights, allowing Dijkstra's
|
2481 |
+
algorithm to be used on the transformed graph.
|
2482 |
+
|
2483 |
+
The time complexity of this algorithm is $O(n^2 \log n + n m)$,
|
2484 |
+
where $n$ is the number of nodes and $m$ the number of edges in the
|
2485 |
+
graph. For dense graphs, this may be faster than the Floyd–Warshall
|
2486 |
+
algorithm.
|
2487 |
+
|
2488 |
+
See Also
|
2489 |
+
--------
|
2490 |
+
floyd_warshall_predecessor_and_distance
|
2491 |
+
floyd_warshall_numpy
|
2492 |
+
all_pairs_shortest_path
|
2493 |
+
all_pairs_shortest_path_length
|
2494 |
+
all_pairs_dijkstra_path
|
2495 |
+
bellman_ford_predecessor_and_distance
|
2496 |
+
all_pairs_bellman_ford_path
|
2497 |
+
all_pairs_bellman_ford_path_length
|
2498 |
+
|
2499 |
+
"""
|
2500 |
+
dist = {v: 0 for v in G}
|
2501 |
+
pred = {v: [] for v in G}
|
2502 |
+
weight = _weight_function(G, weight)
|
2503 |
+
|
2504 |
+
# Calculate distance of shortest paths
|
2505 |
+
dist_bellman = _bellman_ford(G, list(G), weight, pred=pred, dist=dist)
|
2506 |
+
|
2507 |
+
# Update the weight function to take into account the Bellman--Ford
|
2508 |
+
# relaxation distances.
|
2509 |
+
def new_weight(u, v, d):
|
2510 |
+
return weight(u, v, d) + dist_bellman[u] - dist_bellman[v]
|
2511 |
+
|
2512 |
+
def dist_path(v):
|
2513 |
+
paths = {v: [v]}
|
2514 |
+
_dijkstra(G, v, new_weight, paths=paths)
|
2515 |
+
return paths
|
2516 |
+
|
2517 |
+
return {v: dist_path(v) for v in G}
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/smallworld.py
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for estimating the small-world-ness of graphs.
|
2 |
+
|
3 |
+
A small world network is characterized by a small average shortest path length,
|
4 |
+
and a large clustering coefficient.
|
5 |
+
|
6 |
+
Small-worldness is commonly measured with the coefficient sigma or omega.
|
7 |
+
|
8 |
+
Both coefficients compare the average clustering coefficient and shortest path
|
9 |
+
length of a given graph against the same quantities for an equivalent random
|
10 |
+
or lattice graph.
|
11 |
+
|
12 |
+
For more information, see the Wikipedia article on small-world network [1]_.
|
13 |
+
|
14 |
+
.. [1] Small-world network:: https://en.wikipedia.org/wiki/Small-world_network
|
15 |
+
|
16 |
+
"""
|
17 |
+
import networkx as nx
|
18 |
+
from networkx.utils import not_implemented_for, py_random_state
|
19 |
+
|
20 |
+
__all__ = ["random_reference", "lattice_reference", "sigma", "omega"]
|
21 |
+
|
22 |
+
|
23 |
+
@not_implemented_for("directed")
|
24 |
+
@not_implemented_for("multigraph")
|
25 |
+
@py_random_state(3)
|
26 |
+
@nx._dispatchable(returns_graph=True)
|
27 |
+
def random_reference(G, niter=1, connectivity=True, seed=None):
|
28 |
+
"""Compute a random graph by swapping edges of a given graph.
|
29 |
+
|
30 |
+
Parameters
|
31 |
+
----------
|
32 |
+
G : graph
|
33 |
+
An undirected graph with 4 or more nodes.
|
34 |
+
|
35 |
+
niter : integer (optional, default=1)
|
36 |
+
An edge is rewired approximately `niter` times.
|
37 |
+
|
38 |
+
connectivity : boolean (optional, default=True)
|
39 |
+
When True, ensure connectivity for the randomized graph.
|
40 |
+
|
41 |
+
seed : integer, random_state, or None (default)
|
42 |
+
Indicator of random number generation state.
|
43 |
+
See :ref:`Randomness<randomness>`.
|
44 |
+
|
45 |
+
Returns
|
46 |
+
-------
|
47 |
+
G : graph
|
48 |
+
The randomized graph.
|
49 |
+
|
50 |
+
Raises
|
51 |
+
------
|
52 |
+
NetworkXError
|
53 |
+
If there are fewer than 4 nodes or 2 edges in `G`
|
54 |
+
|
55 |
+
Notes
|
56 |
+
-----
|
57 |
+
The implementation is adapted from the algorithm by Maslov and Sneppen
|
58 |
+
(2002) [1]_.
|
59 |
+
|
60 |
+
References
|
61 |
+
----------
|
62 |
+
.. [1] Maslov, Sergei, and Kim Sneppen.
|
63 |
+
"Specificity and stability in topology of protein networks."
|
64 |
+
Science 296.5569 (2002): 910-913.
|
65 |
+
"""
|
66 |
+
if len(G) < 4:
|
67 |
+
raise nx.NetworkXError("Graph has fewer than four nodes.")
|
68 |
+
if len(G.edges) < 2:
|
69 |
+
raise nx.NetworkXError("Graph has fewer that 2 edges")
|
70 |
+
|
71 |
+
from networkx.utils import cumulative_distribution, discrete_sequence
|
72 |
+
|
73 |
+
local_conn = nx.connectivity.local_edge_connectivity
|
74 |
+
|
75 |
+
G = G.copy()
|
76 |
+
keys, degrees = zip(*G.degree()) # keys, degree
|
77 |
+
cdf = cumulative_distribution(degrees) # cdf of degree
|
78 |
+
nnodes = len(G)
|
79 |
+
nedges = nx.number_of_edges(G)
|
80 |
+
niter = niter * nedges
|
81 |
+
ntries = int(nnodes * nedges / (nnodes * (nnodes - 1) / 2))
|
82 |
+
swapcount = 0
|
83 |
+
|
84 |
+
for i in range(niter):
|
85 |
+
n = 0
|
86 |
+
while n < ntries:
|
87 |
+
# pick two random edges without creating edge list
|
88 |
+
# choose source node indices from discrete distribution
|
89 |
+
(ai, ci) = discrete_sequence(2, cdistribution=cdf, seed=seed)
|
90 |
+
if ai == ci:
|
91 |
+
continue # same source, skip
|
92 |
+
a = keys[ai] # convert index to label
|
93 |
+
c = keys[ci]
|
94 |
+
# choose target uniformly from neighbors
|
95 |
+
b = seed.choice(list(G.neighbors(a)))
|
96 |
+
d = seed.choice(list(G.neighbors(c)))
|
97 |
+
if b in [a, c, d] or d in [a, b, c]:
|
98 |
+
continue # all vertices should be different
|
99 |
+
|
100 |
+
# don't create parallel edges
|
101 |
+
if (d not in G[a]) and (b not in G[c]):
|
102 |
+
G.add_edge(a, d)
|
103 |
+
G.add_edge(c, b)
|
104 |
+
G.remove_edge(a, b)
|
105 |
+
G.remove_edge(c, d)
|
106 |
+
|
107 |
+
# Check if the graph is still connected
|
108 |
+
if connectivity and local_conn(G, a, b) == 0:
|
109 |
+
# Not connected, revert the swap
|
110 |
+
G.remove_edge(a, d)
|
111 |
+
G.remove_edge(c, b)
|
112 |
+
G.add_edge(a, b)
|
113 |
+
G.add_edge(c, d)
|
114 |
+
else:
|
115 |
+
swapcount += 1
|
116 |
+
break
|
117 |
+
n += 1
|
118 |
+
return G
|
119 |
+
|
120 |
+
|
121 |
+
@not_implemented_for("directed")
|
122 |
+
@not_implemented_for("multigraph")
|
123 |
+
@py_random_state(4)
|
124 |
+
@nx._dispatchable(returns_graph=True)
|
125 |
+
def lattice_reference(G, niter=5, D=None, connectivity=True, seed=None):
|
126 |
+
"""Latticize the given graph by swapping edges.
|
127 |
+
|
128 |
+
Parameters
|
129 |
+
----------
|
130 |
+
G : graph
|
131 |
+
An undirected graph.
|
132 |
+
|
133 |
+
niter : integer (optional, default=1)
|
134 |
+
An edge is rewired approximately niter times.
|
135 |
+
|
136 |
+
D : numpy.array (optional, default=None)
|
137 |
+
Distance to the diagonal matrix.
|
138 |
+
|
139 |
+
connectivity : boolean (optional, default=True)
|
140 |
+
Ensure connectivity for the latticized graph when set to True.
|
141 |
+
|
142 |
+
seed : integer, random_state, or None (default)
|
143 |
+
Indicator of random number generation state.
|
144 |
+
See :ref:`Randomness<randomness>`.
|
145 |
+
|
146 |
+
Returns
|
147 |
+
-------
|
148 |
+
G : graph
|
149 |
+
The latticized graph.
|
150 |
+
|
151 |
+
Raises
|
152 |
+
------
|
153 |
+
NetworkXError
|
154 |
+
If there are fewer than 4 nodes or 2 edges in `G`
|
155 |
+
|
156 |
+
Notes
|
157 |
+
-----
|
158 |
+
The implementation is adapted from the algorithm by Sporns et al. [1]_.
|
159 |
+
which is inspired from the original work by Maslov and Sneppen(2002) [2]_.
|
160 |
+
|
161 |
+
References
|
162 |
+
----------
|
163 |
+
.. [1] Sporns, Olaf, and Jonathan D. Zwi.
|
164 |
+
"The small world of the cerebral cortex."
|
165 |
+
Neuroinformatics 2.2 (2004): 145-162.
|
166 |
+
.. [2] Maslov, Sergei, and Kim Sneppen.
|
167 |
+
"Specificity and stability in topology of protein networks."
|
168 |
+
Science 296.5569 (2002): 910-913.
|
169 |
+
"""
|
170 |
+
import numpy as np
|
171 |
+
|
172 |
+
from networkx.utils import cumulative_distribution, discrete_sequence
|
173 |
+
|
174 |
+
local_conn = nx.connectivity.local_edge_connectivity
|
175 |
+
|
176 |
+
if len(G) < 4:
|
177 |
+
raise nx.NetworkXError("Graph has fewer than four nodes.")
|
178 |
+
if len(G.edges) < 2:
|
179 |
+
raise nx.NetworkXError("Graph has fewer that 2 edges")
|
180 |
+
# Instead of choosing uniformly at random from a generated edge list,
|
181 |
+
# this algorithm chooses nonuniformly from the set of nodes with
|
182 |
+
# probability weighted by degree.
|
183 |
+
G = G.copy()
|
184 |
+
keys, degrees = zip(*G.degree()) # keys, degree
|
185 |
+
cdf = cumulative_distribution(degrees) # cdf of degree
|
186 |
+
|
187 |
+
nnodes = len(G)
|
188 |
+
nedges = nx.number_of_edges(G)
|
189 |
+
if D is None:
|
190 |
+
D = np.zeros((nnodes, nnodes))
|
191 |
+
un = np.arange(1, nnodes)
|
192 |
+
um = np.arange(nnodes - 1, 0, -1)
|
193 |
+
u = np.append((0,), np.where(un < um, un, um))
|
194 |
+
|
195 |
+
for v in range(int(np.ceil(nnodes / 2))):
|
196 |
+
D[nnodes - v - 1, :] = np.append(u[v + 1 :], u[: v + 1])
|
197 |
+
D[v, :] = D[nnodes - v - 1, :][::-1]
|
198 |
+
|
199 |
+
niter = niter * nedges
|
200 |
+
# maximal number of rewiring attempts per 'niter'
|
201 |
+
max_attempts = int(nnodes * nedges / (nnodes * (nnodes - 1) / 2))
|
202 |
+
|
203 |
+
for _ in range(niter):
|
204 |
+
n = 0
|
205 |
+
while n < max_attempts:
|
206 |
+
# pick two random edges without creating edge list
|
207 |
+
# choose source node indices from discrete distribution
|
208 |
+
(ai, ci) = discrete_sequence(2, cdistribution=cdf, seed=seed)
|
209 |
+
if ai == ci:
|
210 |
+
continue # same source, skip
|
211 |
+
a = keys[ai] # convert index to label
|
212 |
+
c = keys[ci]
|
213 |
+
# choose target uniformly from neighbors
|
214 |
+
b = seed.choice(list(G.neighbors(a)))
|
215 |
+
d = seed.choice(list(G.neighbors(c)))
|
216 |
+
bi = keys.index(b)
|
217 |
+
di = keys.index(d)
|
218 |
+
|
219 |
+
if b in [a, c, d] or d in [a, b, c]:
|
220 |
+
continue # all vertices should be different
|
221 |
+
|
222 |
+
# don't create parallel edges
|
223 |
+
if (d not in G[a]) and (b not in G[c]):
|
224 |
+
if D[ai, bi] + D[ci, di] >= D[ai, ci] + D[bi, di]:
|
225 |
+
# only swap if we get closer to the diagonal
|
226 |
+
G.add_edge(a, d)
|
227 |
+
G.add_edge(c, b)
|
228 |
+
G.remove_edge(a, b)
|
229 |
+
G.remove_edge(c, d)
|
230 |
+
|
231 |
+
# Check if the graph is still connected
|
232 |
+
if connectivity and local_conn(G, a, b) == 0:
|
233 |
+
# Not connected, revert the swap
|
234 |
+
G.remove_edge(a, d)
|
235 |
+
G.remove_edge(c, b)
|
236 |
+
G.add_edge(a, b)
|
237 |
+
G.add_edge(c, d)
|
238 |
+
else:
|
239 |
+
break
|
240 |
+
n += 1
|
241 |
+
|
242 |
+
return G
|
243 |
+
|
244 |
+
|
245 |
+
@not_implemented_for("directed")
|
246 |
+
@not_implemented_for("multigraph")
|
247 |
+
@py_random_state(3)
|
248 |
+
@nx._dispatchable
|
249 |
+
def sigma(G, niter=100, nrand=10, seed=None):
|
250 |
+
"""Returns the small-world coefficient (sigma) of the given graph.
|
251 |
+
|
252 |
+
The small-world coefficient is defined as:
|
253 |
+
sigma = C/Cr / L/Lr
|
254 |
+
where C and L are respectively the average clustering coefficient and
|
255 |
+
average shortest path length of G. Cr and Lr are respectively the average
|
256 |
+
clustering coefficient and average shortest path length of an equivalent
|
257 |
+
random graph.
|
258 |
+
|
259 |
+
A graph is commonly classified as small-world if sigma>1.
|
260 |
+
|
261 |
+
Parameters
|
262 |
+
----------
|
263 |
+
G : NetworkX graph
|
264 |
+
An undirected graph.
|
265 |
+
niter : integer (optional, default=100)
|
266 |
+
Approximate number of rewiring per edge to compute the equivalent
|
267 |
+
random graph.
|
268 |
+
nrand : integer (optional, default=10)
|
269 |
+
Number of random graphs generated to compute the average clustering
|
270 |
+
coefficient (Cr) and average shortest path length (Lr).
|
271 |
+
seed : integer, random_state, or None (default)
|
272 |
+
Indicator of random number generation state.
|
273 |
+
See :ref:`Randomness<randomness>`.
|
274 |
+
|
275 |
+
Returns
|
276 |
+
-------
|
277 |
+
sigma : float
|
278 |
+
The small-world coefficient of G.
|
279 |
+
|
280 |
+
Notes
|
281 |
+
-----
|
282 |
+
The implementation is adapted from Humphries et al. [1]_ [2]_.
|
283 |
+
|
284 |
+
References
|
285 |
+
----------
|
286 |
+
.. [1] The brainstem reticular formation is a small-world, not scale-free,
|
287 |
+
network M. D. Humphries, K. Gurney and T. J. Prescott,
|
288 |
+
Proc. Roy. Soc. B 2006 273, 503-511, doi:10.1098/rspb.2005.3354.
|
289 |
+
.. [2] Humphries and Gurney (2008).
|
290 |
+
"Network 'Small-World-Ness': A Quantitative Method for Determining
|
291 |
+
Canonical Network Equivalence".
|
292 |
+
PLoS One. 3 (4). PMID 18446219. doi:10.1371/journal.pone.0002051.
|
293 |
+
"""
|
294 |
+
import numpy as np
|
295 |
+
|
296 |
+
# Compute the mean clustering coefficient and average shortest path length
|
297 |
+
# for an equivalent random graph
|
298 |
+
randMetrics = {"C": [], "L": []}
|
299 |
+
for i in range(nrand):
|
300 |
+
Gr = random_reference(G, niter=niter, seed=seed)
|
301 |
+
randMetrics["C"].append(nx.transitivity(Gr))
|
302 |
+
randMetrics["L"].append(nx.average_shortest_path_length(Gr))
|
303 |
+
|
304 |
+
C = nx.transitivity(G)
|
305 |
+
L = nx.average_shortest_path_length(G)
|
306 |
+
Cr = np.mean(randMetrics["C"])
|
307 |
+
Lr = np.mean(randMetrics["L"])
|
308 |
+
|
309 |
+
sigma = (C / Cr) / (L / Lr)
|
310 |
+
|
311 |
+
return float(sigma)
|
312 |
+
|
313 |
+
|
314 |
+
@not_implemented_for("directed")
|
315 |
+
@not_implemented_for("multigraph")
|
316 |
+
@py_random_state(3)
|
317 |
+
@nx._dispatchable
|
318 |
+
def omega(G, niter=5, nrand=10, seed=None):
|
319 |
+
"""Returns the small-world coefficient (omega) of a graph
|
320 |
+
|
321 |
+
The small-world coefficient of a graph G is:
|
322 |
+
|
323 |
+
omega = Lr/L - C/Cl
|
324 |
+
|
325 |
+
where C and L are respectively the average clustering coefficient and
|
326 |
+
average shortest path length of G. Lr is the average shortest path length
|
327 |
+
of an equivalent random graph and Cl is the average clustering coefficient
|
328 |
+
of an equivalent lattice graph.
|
329 |
+
|
330 |
+
The small-world coefficient (omega) measures how much G is like a lattice
|
331 |
+
or a random graph. Negative values mean G is similar to a lattice whereas
|
332 |
+
positive values mean G is a random graph.
|
333 |
+
Values close to 0 mean that G has small-world characteristics.
|
334 |
+
|
335 |
+
Parameters
|
336 |
+
----------
|
337 |
+
G : NetworkX graph
|
338 |
+
An undirected graph.
|
339 |
+
|
340 |
+
niter: integer (optional, default=5)
|
341 |
+
Approximate number of rewiring per edge to compute the equivalent
|
342 |
+
random graph.
|
343 |
+
|
344 |
+
nrand: integer (optional, default=10)
|
345 |
+
Number of random graphs generated to compute the maximal clustering
|
346 |
+
coefficient (Cr) and average shortest path length (Lr).
|
347 |
+
|
348 |
+
seed : integer, random_state, or None (default)
|
349 |
+
Indicator of random number generation state.
|
350 |
+
See :ref:`Randomness<randomness>`.
|
351 |
+
|
352 |
+
|
353 |
+
Returns
|
354 |
+
-------
|
355 |
+
omega : float
|
356 |
+
The small-world coefficient (omega)
|
357 |
+
|
358 |
+
Notes
|
359 |
+
-----
|
360 |
+
The implementation is adapted from the algorithm by Telesford et al. [1]_.
|
361 |
+
|
362 |
+
References
|
363 |
+
----------
|
364 |
+
.. [1] Telesford, Joyce, Hayasaka, Burdette, and Laurienti (2011).
|
365 |
+
"The Ubiquity of Small-World Networks".
|
366 |
+
Brain Connectivity. 1 (0038): 367-75. PMC 3604768. PMID 22432451.
|
367 |
+
doi:10.1089/brain.2011.0038.
|
368 |
+
"""
|
369 |
+
import numpy as np
|
370 |
+
|
371 |
+
# Compute the mean clustering coefficient and average shortest path length
|
372 |
+
# for an equivalent random graph
|
373 |
+
randMetrics = {"C": [], "L": []}
|
374 |
+
|
375 |
+
# Calculate initial average clustering coefficient which potentially will
|
376 |
+
# get replaced by higher clustering coefficients from generated lattice
|
377 |
+
# reference graphs
|
378 |
+
Cl = nx.average_clustering(G)
|
379 |
+
|
380 |
+
niter_lattice_reference = niter
|
381 |
+
niter_random_reference = niter * 2
|
382 |
+
|
383 |
+
for _ in range(nrand):
|
384 |
+
# Generate random graph
|
385 |
+
Gr = random_reference(G, niter=niter_random_reference, seed=seed)
|
386 |
+
randMetrics["L"].append(nx.average_shortest_path_length(Gr))
|
387 |
+
|
388 |
+
# Generate lattice graph
|
389 |
+
Gl = lattice_reference(G, niter=niter_lattice_reference, seed=seed)
|
390 |
+
|
391 |
+
# Replace old clustering coefficient, if clustering is higher in
|
392 |
+
# generated lattice reference
|
393 |
+
Cl_temp = nx.average_clustering(Gl)
|
394 |
+
if Cl_temp > Cl:
|
395 |
+
Cl = Cl_temp
|
396 |
+
|
397 |
+
C = nx.average_clustering(G)
|
398 |
+
L = nx.average_shortest_path_length(G)
|
399 |
+
Lr = np.mean(randMetrics["L"])
|
400 |
+
|
401 |
+
omega = (Lr / L) - (C / Cl)
|
402 |
+
|
403 |
+
return float(omega)
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/smetric.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import networkx as nx
|
2 |
+
|
3 |
+
__all__ = ["s_metric"]
|
4 |
+
|
5 |
+
|
6 |
+
@nx._dispatchable
|
7 |
+
def s_metric(G, **kwargs):
|
8 |
+
"""Returns the s-metric [1]_ of graph.
|
9 |
+
|
10 |
+
The s-metric is defined as the sum of the products ``deg(u) * deg(v)``
|
11 |
+
for every edge ``(u, v)`` in `G`.
|
12 |
+
|
13 |
+
Parameters
|
14 |
+
----------
|
15 |
+
G : graph
|
16 |
+
The graph used to compute the s-metric.
|
17 |
+
normalized : bool (optional)
|
18 |
+
Normalize the value.
|
19 |
+
|
20 |
+
.. deprecated:: 3.2
|
21 |
+
|
22 |
+
The `normalized` keyword argument is deprecated and will be removed
|
23 |
+
in the future
|
24 |
+
|
25 |
+
Returns
|
26 |
+
-------
|
27 |
+
s : float
|
28 |
+
The s-metric of the graph.
|
29 |
+
|
30 |
+
References
|
31 |
+
----------
|
32 |
+
.. [1] Lun Li, David Alderson, John C. Doyle, and Walter Willinger,
|
33 |
+
Towards a Theory of Scale-Free Graphs:
|
34 |
+
Definition, Properties, and Implications (Extended Version), 2005.
|
35 |
+
https://arxiv.org/abs/cond-mat/0501169
|
36 |
+
"""
|
37 |
+
# NOTE: This entire code block + the **kwargs in the signature can all be
|
38 |
+
# removed when the deprecation expires.
|
39 |
+
# Normalized is always False, since all `normalized=True` did was raise
|
40 |
+
# a NotImplementedError
|
41 |
+
if kwargs:
|
42 |
+
# Warn for `normalize`, raise for any other kwarg
|
43 |
+
if "normalized" in kwargs:
|
44 |
+
import warnings
|
45 |
+
|
46 |
+
warnings.warn(
|
47 |
+
"\n\nThe `normalized` keyword is deprecated and will be removed\n"
|
48 |
+
"in the future. To silence this warning, remove `normalized`\n"
|
49 |
+
"when calling `s_metric`.\n\n"
|
50 |
+
"The value of `normalized` is ignored.",
|
51 |
+
DeprecationWarning,
|
52 |
+
stacklevel=3,
|
53 |
+
)
|
54 |
+
else:
|
55 |
+
# Typical raising behavior for Python when kwarg not recognized
|
56 |
+
raise TypeError(
|
57 |
+
f"s_metric got an unexpected keyword argument '{list(kwargs.keys())[0]}'"
|
58 |
+
)
|
59 |
+
|
60 |
+
return float(sum(G.degree(u) * G.degree(v) for (u, v) in G.edges()))
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/sparsifiers.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for computing sparsifiers of graphs."""
|
2 |
+
import math
|
3 |
+
|
4 |
+
import networkx as nx
|
5 |
+
from networkx.utils import not_implemented_for, py_random_state
|
6 |
+
|
7 |
+
__all__ = ["spanner"]
|
8 |
+
|
9 |
+
|
10 |
+
@not_implemented_for("directed")
|
11 |
+
@not_implemented_for("multigraph")
|
12 |
+
@py_random_state(3)
|
13 |
+
@nx._dispatchable(edge_attrs="weight", returns_graph=True)
|
14 |
+
def spanner(G, stretch, weight=None, seed=None):
|
15 |
+
"""Returns a spanner of the given graph with the given stretch.
|
16 |
+
|
17 |
+
A spanner of a graph G = (V, E) with stretch t is a subgraph
|
18 |
+
H = (V, E_S) such that E_S is a subset of E and the distance between
|
19 |
+
any pair of nodes in H is at most t times the distance between the
|
20 |
+
nodes in G.
|
21 |
+
|
22 |
+
Parameters
|
23 |
+
----------
|
24 |
+
G : NetworkX graph
|
25 |
+
An undirected simple graph.
|
26 |
+
|
27 |
+
stretch : float
|
28 |
+
The stretch of the spanner.
|
29 |
+
|
30 |
+
weight : object
|
31 |
+
The edge attribute to use as distance.
|
32 |
+
|
33 |
+
seed : integer, random_state, or None (default)
|
34 |
+
Indicator of random number generation state.
|
35 |
+
See :ref:`Randomness<randomness>`.
|
36 |
+
|
37 |
+
Returns
|
38 |
+
-------
|
39 |
+
NetworkX graph
|
40 |
+
A spanner of the given graph with the given stretch.
|
41 |
+
|
42 |
+
Raises
|
43 |
+
------
|
44 |
+
ValueError
|
45 |
+
If a stretch less than 1 is given.
|
46 |
+
|
47 |
+
Notes
|
48 |
+
-----
|
49 |
+
This function implements the spanner algorithm by Baswana and Sen,
|
50 |
+
see [1].
|
51 |
+
|
52 |
+
This algorithm is a randomized las vegas algorithm: The expected
|
53 |
+
running time is O(km) where k = (stretch + 1) // 2 and m is the
|
54 |
+
number of edges in G. The returned graph is always a spanner of the
|
55 |
+
given graph with the specified stretch. For weighted graphs the
|
56 |
+
number of edges in the spanner is O(k * n^(1 + 1 / k)) where k is
|
57 |
+
defined as above and n is the number of nodes in G. For unweighted
|
58 |
+
graphs the number of edges is O(n^(1 + 1 / k) + kn).
|
59 |
+
|
60 |
+
References
|
61 |
+
----------
|
62 |
+
[1] S. Baswana, S. Sen. A Simple and Linear Time Randomized
|
63 |
+
Algorithm for Computing Sparse Spanners in Weighted Graphs.
|
64 |
+
Random Struct. Algorithms 30(4): 532-563 (2007).
|
65 |
+
"""
|
66 |
+
if stretch < 1:
|
67 |
+
raise ValueError("stretch must be at least 1")
|
68 |
+
|
69 |
+
k = (stretch + 1) // 2
|
70 |
+
|
71 |
+
# initialize spanner H with empty edge set
|
72 |
+
H = nx.empty_graph()
|
73 |
+
H.add_nodes_from(G.nodes)
|
74 |
+
|
75 |
+
# phase 1: forming the clusters
|
76 |
+
# the residual graph has V' from the paper as its node set
|
77 |
+
# and E' from the paper as its edge set
|
78 |
+
residual_graph = _setup_residual_graph(G, weight)
|
79 |
+
# clustering is a dictionary that maps nodes in a cluster to the
|
80 |
+
# cluster center
|
81 |
+
clustering = {v: v for v in G.nodes}
|
82 |
+
sample_prob = math.pow(G.number_of_nodes(), -1 / k)
|
83 |
+
size_limit = 2 * math.pow(G.number_of_nodes(), 1 + 1 / k)
|
84 |
+
|
85 |
+
i = 0
|
86 |
+
while i < k - 1:
|
87 |
+
# step 1: sample centers
|
88 |
+
sampled_centers = set()
|
89 |
+
for center in set(clustering.values()):
|
90 |
+
if seed.random() < sample_prob:
|
91 |
+
sampled_centers.add(center)
|
92 |
+
|
93 |
+
# combined loop for steps 2 and 3
|
94 |
+
edges_to_add = set()
|
95 |
+
edges_to_remove = set()
|
96 |
+
new_clustering = {}
|
97 |
+
for v in residual_graph.nodes:
|
98 |
+
if clustering[v] in sampled_centers:
|
99 |
+
continue
|
100 |
+
|
101 |
+
# step 2: find neighboring (sampled) clusters and
|
102 |
+
# lightest edges to them
|
103 |
+
lightest_edge_neighbor, lightest_edge_weight = _lightest_edge_dicts(
|
104 |
+
residual_graph, clustering, v
|
105 |
+
)
|
106 |
+
neighboring_sampled_centers = (
|
107 |
+
set(lightest_edge_weight.keys()) & sampled_centers
|
108 |
+
)
|
109 |
+
|
110 |
+
# step 3: add edges to spanner
|
111 |
+
if not neighboring_sampled_centers:
|
112 |
+
# connect to each neighboring center via lightest edge
|
113 |
+
for neighbor in lightest_edge_neighbor.values():
|
114 |
+
edges_to_add.add((v, neighbor))
|
115 |
+
# remove all incident edges
|
116 |
+
for neighbor in residual_graph.adj[v]:
|
117 |
+
edges_to_remove.add((v, neighbor))
|
118 |
+
|
119 |
+
else: # there is a neighboring sampled center
|
120 |
+
closest_center = min(
|
121 |
+
neighboring_sampled_centers, key=lightest_edge_weight.get
|
122 |
+
)
|
123 |
+
closest_center_weight = lightest_edge_weight[closest_center]
|
124 |
+
closest_center_neighbor = lightest_edge_neighbor[closest_center]
|
125 |
+
|
126 |
+
edges_to_add.add((v, closest_center_neighbor))
|
127 |
+
new_clustering[v] = closest_center
|
128 |
+
|
129 |
+
# connect to centers with edge weight less than
|
130 |
+
# closest_center_weight
|
131 |
+
for center, edge_weight in lightest_edge_weight.items():
|
132 |
+
if edge_weight < closest_center_weight:
|
133 |
+
neighbor = lightest_edge_neighbor[center]
|
134 |
+
edges_to_add.add((v, neighbor))
|
135 |
+
|
136 |
+
# remove edges to centers with edge weight less than
|
137 |
+
# closest_center_weight
|
138 |
+
for neighbor in residual_graph.adj[v]:
|
139 |
+
nbr_cluster = clustering[neighbor]
|
140 |
+
nbr_weight = lightest_edge_weight[nbr_cluster]
|
141 |
+
if (
|
142 |
+
nbr_cluster == closest_center
|
143 |
+
or nbr_weight < closest_center_weight
|
144 |
+
):
|
145 |
+
edges_to_remove.add((v, neighbor))
|
146 |
+
|
147 |
+
# check whether iteration added too many edges to spanner,
|
148 |
+
# if so repeat
|
149 |
+
if len(edges_to_add) > size_limit:
|
150 |
+
# an iteration is repeated O(1) times on expectation
|
151 |
+
continue
|
152 |
+
|
153 |
+
# iteration succeeded
|
154 |
+
i = i + 1
|
155 |
+
|
156 |
+
# actually add edges to spanner
|
157 |
+
for u, v in edges_to_add:
|
158 |
+
_add_edge_to_spanner(H, residual_graph, u, v, weight)
|
159 |
+
|
160 |
+
# actually delete edges from residual graph
|
161 |
+
residual_graph.remove_edges_from(edges_to_remove)
|
162 |
+
|
163 |
+
# copy old clustering data to new_clustering
|
164 |
+
for node, center in clustering.items():
|
165 |
+
if center in sampled_centers:
|
166 |
+
new_clustering[node] = center
|
167 |
+
clustering = new_clustering
|
168 |
+
|
169 |
+
# step 4: remove intra-cluster edges
|
170 |
+
for u in residual_graph.nodes:
|
171 |
+
for v in list(residual_graph.adj[u]):
|
172 |
+
if clustering[u] == clustering[v]:
|
173 |
+
residual_graph.remove_edge(u, v)
|
174 |
+
|
175 |
+
# update residual graph node set
|
176 |
+
for v in list(residual_graph.nodes):
|
177 |
+
if v not in clustering:
|
178 |
+
residual_graph.remove_node(v)
|
179 |
+
|
180 |
+
# phase 2: vertex-cluster joining
|
181 |
+
for v in residual_graph.nodes:
|
182 |
+
lightest_edge_neighbor, _ = _lightest_edge_dicts(residual_graph, clustering, v)
|
183 |
+
for neighbor in lightest_edge_neighbor.values():
|
184 |
+
_add_edge_to_spanner(H, residual_graph, v, neighbor, weight)
|
185 |
+
|
186 |
+
return H
|
187 |
+
|
188 |
+
|
189 |
+
def _setup_residual_graph(G, weight):
|
190 |
+
"""Setup residual graph as a copy of G with unique edges weights.
|
191 |
+
|
192 |
+
The node set of the residual graph corresponds to the set V' from
|
193 |
+
the Baswana-Sen paper and the edge set corresponds to the set E'
|
194 |
+
from the paper.
|
195 |
+
|
196 |
+
This function associates distinct weights to the edges of the
|
197 |
+
residual graph (even for unweighted input graphs), as required by
|
198 |
+
the algorithm.
|
199 |
+
|
200 |
+
Parameters
|
201 |
+
----------
|
202 |
+
G : NetworkX graph
|
203 |
+
An undirected simple graph.
|
204 |
+
|
205 |
+
weight : object
|
206 |
+
The edge attribute to use as distance.
|
207 |
+
|
208 |
+
Returns
|
209 |
+
-------
|
210 |
+
NetworkX graph
|
211 |
+
The residual graph used for the Baswana-Sen algorithm.
|
212 |
+
"""
|
213 |
+
residual_graph = G.copy()
|
214 |
+
|
215 |
+
# establish unique edge weights, even for unweighted graphs
|
216 |
+
for u, v in G.edges():
|
217 |
+
if not weight:
|
218 |
+
residual_graph[u][v]["weight"] = (id(u), id(v))
|
219 |
+
else:
|
220 |
+
residual_graph[u][v]["weight"] = (G[u][v][weight], id(u), id(v))
|
221 |
+
|
222 |
+
return residual_graph
|
223 |
+
|
224 |
+
|
225 |
+
def _lightest_edge_dicts(residual_graph, clustering, node):
|
226 |
+
"""Find the lightest edge to each cluster.
|
227 |
+
|
228 |
+
Searches for the minimum-weight edge to each cluster adjacent to
|
229 |
+
the given node.
|
230 |
+
|
231 |
+
Parameters
|
232 |
+
----------
|
233 |
+
residual_graph : NetworkX graph
|
234 |
+
The residual graph used by the Baswana-Sen algorithm.
|
235 |
+
|
236 |
+
clustering : dictionary
|
237 |
+
The current clustering of the nodes.
|
238 |
+
|
239 |
+
node : node
|
240 |
+
The node from which the search originates.
|
241 |
+
|
242 |
+
Returns
|
243 |
+
-------
|
244 |
+
lightest_edge_neighbor, lightest_edge_weight : dictionary, dictionary
|
245 |
+
lightest_edge_neighbor is a dictionary that maps a center C to
|
246 |
+
a node v in the corresponding cluster such that the edge from
|
247 |
+
the given node to v is the lightest edge from the given node to
|
248 |
+
any node in cluster. lightest_edge_weight maps a center C to the
|
249 |
+
weight of the aforementioned edge.
|
250 |
+
|
251 |
+
Notes
|
252 |
+
-----
|
253 |
+
If a cluster has no node that is adjacent to the given node in the
|
254 |
+
residual graph then the center of the cluster is not a key in the
|
255 |
+
returned dictionaries.
|
256 |
+
"""
|
257 |
+
lightest_edge_neighbor = {}
|
258 |
+
lightest_edge_weight = {}
|
259 |
+
for neighbor in residual_graph.adj[node]:
|
260 |
+
nbr_center = clustering[neighbor]
|
261 |
+
weight = residual_graph[node][neighbor]["weight"]
|
262 |
+
if (
|
263 |
+
nbr_center not in lightest_edge_weight
|
264 |
+
or weight < lightest_edge_weight[nbr_center]
|
265 |
+
):
|
266 |
+
lightest_edge_neighbor[nbr_center] = neighbor
|
267 |
+
lightest_edge_weight[nbr_center] = weight
|
268 |
+
return lightest_edge_neighbor, lightest_edge_weight
|
269 |
+
|
270 |
+
|
271 |
+
def _add_edge_to_spanner(H, residual_graph, u, v, weight):
|
272 |
+
"""Add the edge {u, v} to the spanner H and take weight from
|
273 |
+
the residual graph.
|
274 |
+
|
275 |
+
Parameters
|
276 |
+
----------
|
277 |
+
H : NetworkX graph
|
278 |
+
The spanner under construction.
|
279 |
+
|
280 |
+
residual_graph : NetworkX graph
|
281 |
+
The residual graph used by the Baswana-Sen algorithm. The weight
|
282 |
+
for the edge is taken from this graph.
|
283 |
+
|
284 |
+
u : node
|
285 |
+
One endpoint of the edge.
|
286 |
+
|
287 |
+
v : node
|
288 |
+
The other endpoint of the edge.
|
289 |
+
|
290 |
+
weight : object
|
291 |
+
The edge attribute to use as distance.
|
292 |
+
"""
|
293 |
+
H.add_edge(u, v)
|
294 |
+
if weight:
|
295 |
+
H[u][v][weight] = residual_graph[u][v]["weight"][0]
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/summarization.py
ADDED
@@ -0,0 +1,563 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Graph summarization finds smaller representations of graphs resulting in faster
|
3 |
+
runtime of algorithms, reduced storage needs, and noise reduction.
|
4 |
+
Summarization has applications in areas such as visualization, pattern mining,
|
5 |
+
clustering and community detection, and more. Core graph summarization
|
6 |
+
techniques are grouping/aggregation, bit-compression,
|
7 |
+
simplification/sparsification, and influence based. Graph summarization
|
8 |
+
algorithms often produce either summary graphs in the form of supergraphs or
|
9 |
+
sparsified graphs, or a list of independent structures. Supergraphs are the
|
10 |
+
most common product, which consist of supernodes and original nodes and are
|
11 |
+
connected by edges and superedges, which represent aggregate edges between
|
12 |
+
nodes and supernodes.
|
13 |
+
|
14 |
+
Grouping/aggregation based techniques compress graphs by representing
|
15 |
+
close/connected nodes and edges in a graph by a single node/edge in a
|
16 |
+
supergraph. Nodes can be grouped together into supernodes based on their
|
17 |
+
structural similarities or proximity within a graph to reduce the total number
|
18 |
+
of nodes in a graph. Edge-grouping techniques group edges into lossy/lossless
|
19 |
+
nodes called compressor or virtual nodes to reduce the total number of edges in
|
20 |
+
a graph. Edge-grouping techniques can be lossless, meaning that they can be
|
21 |
+
used to re-create the original graph, or techniques can be lossy, requiring
|
22 |
+
less space to store the summary graph, but at the expense of lower
|
23 |
+
reconstruction accuracy of the original graph.
|
24 |
+
|
25 |
+
Bit-compression techniques minimize the amount of information needed to
|
26 |
+
describe the original graph, while revealing structural patterns in the
|
27 |
+
original graph. The two-part minimum description length (MDL) is often used to
|
28 |
+
represent the model and the original graph in terms of the model. A key
|
29 |
+
difference between graph compression and graph summarization is that graph
|
30 |
+
summarization focuses on finding structural patterns within the original graph,
|
31 |
+
whereas graph compression focuses on compressions the original graph to be as
|
32 |
+
small as possible. **NOTE**: Some bit-compression methods exist solely to
|
33 |
+
compress a graph without creating a summary graph or finding comprehensible
|
34 |
+
structural patterns.
|
35 |
+
|
36 |
+
Simplification/Sparsification techniques attempt to create a sparse
|
37 |
+
representation of a graph by removing unimportant nodes and edges from the
|
38 |
+
graph. Sparsified graphs differ from supergraphs created by
|
39 |
+
grouping/aggregation by only containing a subset of the original nodes and
|
40 |
+
edges of the original graph.
|
41 |
+
|
42 |
+
Influence based techniques aim to find a high-level description of influence
|
43 |
+
propagation in a large graph. These methods are scarce and have been mostly
|
44 |
+
applied to social graphs.
|
45 |
+
|
46 |
+
*dedensification* is a grouping/aggregation based technique to compress the
|
47 |
+
neighborhoods around high-degree nodes in unweighted graphs by adding
|
48 |
+
compressor nodes that summarize multiple edges of the same type to
|
49 |
+
high-degree nodes (nodes with a degree greater than a given threshold).
|
50 |
+
Dedensification was developed for the purpose of increasing performance of
|
51 |
+
query processing around high-degree nodes in graph databases and enables direct
|
52 |
+
operations on the compressed graph. The structural patterns surrounding
|
53 |
+
high-degree nodes in the original is preserved while using fewer edges and
|
54 |
+
adding a small number of compressor nodes. The degree of nodes present in the
|
55 |
+
original graph is also preserved. The current implementation of dedensification
|
56 |
+
supports graphs with one edge type.
|
57 |
+
|
58 |
+
For more information on graph summarization, see `Graph Summarization Methods
|
59 |
+
and Applications: A Survey <https://dl.acm.org/doi/abs/10.1145/3186727>`_
|
60 |
+
"""
|
61 |
+
from collections import Counter, defaultdict
|
62 |
+
|
63 |
+
import networkx as nx
|
64 |
+
|
65 |
+
__all__ = ["dedensify", "snap_aggregation"]
|
66 |
+
|
67 |
+
|
68 |
+
@nx._dispatchable(mutates_input={"not copy": 3}, returns_graph=True)
|
69 |
+
def dedensify(G, threshold, prefix=None, copy=True):
|
70 |
+
"""Compresses neighborhoods around high-degree nodes
|
71 |
+
|
72 |
+
Reduces the number of edges to high-degree nodes by adding compressor nodes
|
73 |
+
that summarize multiple edges of the same type to high-degree nodes (nodes
|
74 |
+
with a degree greater than a given threshold). Dedensification also has
|
75 |
+
the added benefit of reducing the number of edges around high-degree nodes.
|
76 |
+
The implementation currently supports graphs with a single edge type.
|
77 |
+
|
78 |
+
Parameters
|
79 |
+
----------
|
80 |
+
G: graph
|
81 |
+
A networkx graph
|
82 |
+
threshold: int
|
83 |
+
Minimum degree threshold of a node to be considered a high degree node.
|
84 |
+
The threshold must be greater than or equal to 2.
|
85 |
+
prefix: str or None, optional (default: None)
|
86 |
+
An optional prefix for denoting compressor nodes
|
87 |
+
copy: bool, optional (default: True)
|
88 |
+
Indicates if dedensification should be done inplace
|
89 |
+
|
90 |
+
Returns
|
91 |
+
-------
|
92 |
+
dedensified networkx graph : (graph, set)
|
93 |
+
2-tuple of the dedensified graph and set of compressor nodes
|
94 |
+
|
95 |
+
Notes
|
96 |
+
-----
|
97 |
+
According to the algorithm in [1]_, removes edges in a graph by
|
98 |
+
compressing/decompressing the neighborhoods around high degree nodes by
|
99 |
+
adding compressor nodes that summarize multiple edges of the same type
|
100 |
+
to high-degree nodes. Dedensification will only add a compressor node when
|
101 |
+
doing so will reduce the total number of edges in the given graph. This
|
102 |
+
implementation currently supports graphs with a single edge type.
|
103 |
+
|
104 |
+
Examples
|
105 |
+
--------
|
106 |
+
Dedensification will only add compressor nodes when doing so would result
|
107 |
+
in fewer edges::
|
108 |
+
|
109 |
+
>>> original_graph = nx.DiGraph()
|
110 |
+
>>> original_graph.add_nodes_from(
|
111 |
+
... ["1", "2", "3", "4", "5", "6", "A", "B", "C"]
|
112 |
+
... )
|
113 |
+
>>> original_graph.add_edges_from(
|
114 |
+
... [
|
115 |
+
... ("1", "C"), ("1", "B"),
|
116 |
+
... ("2", "C"), ("2", "B"), ("2", "A"),
|
117 |
+
... ("3", "B"), ("3", "A"), ("3", "6"),
|
118 |
+
... ("4", "C"), ("4", "B"), ("4", "A"),
|
119 |
+
... ("5", "B"), ("5", "A"),
|
120 |
+
... ("6", "5"),
|
121 |
+
... ("A", "6")
|
122 |
+
... ]
|
123 |
+
... )
|
124 |
+
>>> c_graph, c_nodes = nx.dedensify(original_graph, threshold=2)
|
125 |
+
>>> original_graph.number_of_edges()
|
126 |
+
15
|
127 |
+
>>> c_graph.number_of_edges()
|
128 |
+
14
|
129 |
+
|
130 |
+
A dedensified, directed graph can be "densified" to reconstruct the
|
131 |
+
original graph::
|
132 |
+
|
133 |
+
>>> original_graph = nx.DiGraph()
|
134 |
+
>>> original_graph.add_nodes_from(
|
135 |
+
... ["1", "2", "3", "4", "5", "6", "A", "B", "C"]
|
136 |
+
... )
|
137 |
+
>>> original_graph.add_edges_from(
|
138 |
+
... [
|
139 |
+
... ("1", "C"), ("1", "B"),
|
140 |
+
... ("2", "C"), ("2", "B"), ("2", "A"),
|
141 |
+
... ("3", "B"), ("3", "A"), ("3", "6"),
|
142 |
+
... ("4", "C"), ("4", "B"), ("4", "A"),
|
143 |
+
... ("5", "B"), ("5", "A"),
|
144 |
+
... ("6", "5"),
|
145 |
+
... ("A", "6")
|
146 |
+
... ]
|
147 |
+
... )
|
148 |
+
>>> c_graph, c_nodes = nx.dedensify(original_graph, threshold=2)
|
149 |
+
>>> # re-densifies the compressed graph into the original graph
|
150 |
+
>>> for c_node in c_nodes:
|
151 |
+
... all_neighbors = set(nx.all_neighbors(c_graph, c_node))
|
152 |
+
... out_neighbors = set(c_graph.neighbors(c_node))
|
153 |
+
... for out_neighbor in out_neighbors:
|
154 |
+
... c_graph.remove_edge(c_node, out_neighbor)
|
155 |
+
... in_neighbors = all_neighbors - out_neighbors
|
156 |
+
... for in_neighbor in in_neighbors:
|
157 |
+
... c_graph.remove_edge(in_neighbor, c_node)
|
158 |
+
... for out_neighbor in out_neighbors:
|
159 |
+
... c_graph.add_edge(in_neighbor, out_neighbor)
|
160 |
+
... c_graph.remove_node(c_node)
|
161 |
+
...
|
162 |
+
>>> nx.is_isomorphic(original_graph, c_graph)
|
163 |
+
True
|
164 |
+
|
165 |
+
References
|
166 |
+
----------
|
167 |
+
.. [1] Maccioni, A., & Abadi, D. J. (2016, August).
|
168 |
+
Scalable pattern matching over compressed graphs via dedensification.
|
169 |
+
In Proceedings of the 22nd ACM SIGKDD International Conference on
|
170 |
+
Knowledge Discovery and Data Mining (pp. 1755-1764).
|
171 |
+
http://www.cs.umd.edu/~abadi/papers/graph-dedense.pdf
|
172 |
+
"""
|
173 |
+
if threshold < 2:
|
174 |
+
raise nx.NetworkXError("The degree threshold must be >= 2")
|
175 |
+
|
176 |
+
degrees = G.in_degree if G.is_directed() else G.degree
|
177 |
+
# Group nodes based on degree threshold
|
178 |
+
high_degree_nodes = {n for n, d in degrees if d > threshold}
|
179 |
+
low_degree_nodes = G.nodes() - high_degree_nodes
|
180 |
+
|
181 |
+
auxiliary = {}
|
182 |
+
for node in G:
|
183 |
+
high_degree_nbrs = frozenset(high_degree_nodes & set(G[node]))
|
184 |
+
if high_degree_nbrs:
|
185 |
+
if high_degree_nbrs in auxiliary:
|
186 |
+
auxiliary[high_degree_nbrs].add(node)
|
187 |
+
else:
|
188 |
+
auxiliary[high_degree_nbrs] = {node}
|
189 |
+
|
190 |
+
if copy:
|
191 |
+
G = G.copy()
|
192 |
+
|
193 |
+
compressor_nodes = set()
|
194 |
+
for index, (high_degree_nodes, low_degree_nodes) in enumerate(auxiliary.items()):
|
195 |
+
low_degree_node_count = len(low_degree_nodes)
|
196 |
+
high_degree_node_count = len(high_degree_nodes)
|
197 |
+
old_edges = high_degree_node_count * low_degree_node_count
|
198 |
+
new_edges = high_degree_node_count + low_degree_node_count
|
199 |
+
if old_edges <= new_edges:
|
200 |
+
continue
|
201 |
+
compression_node = "".join(str(node) for node in high_degree_nodes)
|
202 |
+
if prefix:
|
203 |
+
compression_node = str(prefix) + compression_node
|
204 |
+
for node in low_degree_nodes:
|
205 |
+
for high_node in high_degree_nodes:
|
206 |
+
if G.has_edge(node, high_node):
|
207 |
+
G.remove_edge(node, high_node)
|
208 |
+
|
209 |
+
G.add_edge(node, compression_node)
|
210 |
+
for node in high_degree_nodes:
|
211 |
+
G.add_edge(compression_node, node)
|
212 |
+
compressor_nodes.add(compression_node)
|
213 |
+
return G, compressor_nodes
|
214 |
+
|
215 |
+
|
216 |
+
def _snap_build_graph(
|
217 |
+
G,
|
218 |
+
groups,
|
219 |
+
node_attributes,
|
220 |
+
edge_attributes,
|
221 |
+
neighbor_info,
|
222 |
+
edge_types,
|
223 |
+
prefix,
|
224 |
+
supernode_attribute,
|
225 |
+
superedge_attribute,
|
226 |
+
):
|
227 |
+
"""
|
228 |
+
Build the summary graph from the data structures produced in the SNAP aggregation algorithm
|
229 |
+
|
230 |
+
Used in the SNAP aggregation algorithm to build the output summary graph and supernode
|
231 |
+
lookup dictionary. This process uses the original graph and the data structures to
|
232 |
+
create the supernodes with the correct node attributes, and the superedges with the correct
|
233 |
+
edge attributes
|
234 |
+
|
235 |
+
Parameters
|
236 |
+
----------
|
237 |
+
G: networkx.Graph
|
238 |
+
the original graph to be summarized
|
239 |
+
groups: dict
|
240 |
+
A dictionary of unique group IDs and their corresponding node groups
|
241 |
+
node_attributes: iterable
|
242 |
+
An iterable of the node attributes considered in the summarization process
|
243 |
+
edge_attributes: iterable
|
244 |
+
An iterable of the edge attributes considered in the summarization process
|
245 |
+
neighbor_info: dict
|
246 |
+
A data structure indicating the number of edges a node has with the
|
247 |
+
groups in the current summarization of each edge type
|
248 |
+
edge_types: dict
|
249 |
+
dictionary of edges in the graph and their corresponding attributes recognized
|
250 |
+
in the summarization
|
251 |
+
prefix: string
|
252 |
+
The prefix to be added to all supernodes
|
253 |
+
supernode_attribute: str
|
254 |
+
The node attribute for recording the supernode groupings of nodes
|
255 |
+
superedge_attribute: str
|
256 |
+
The edge attribute for recording the edge types represented by superedges
|
257 |
+
|
258 |
+
Returns
|
259 |
+
-------
|
260 |
+
summary graph: Networkx graph
|
261 |
+
"""
|
262 |
+
output = G.__class__()
|
263 |
+
node_label_lookup = {}
|
264 |
+
for index, group_id in enumerate(groups):
|
265 |
+
group_set = groups[group_id]
|
266 |
+
supernode = f"{prefix}{index}"
|
267 |
+
node_label_lookup[group_id] = supernode
|
268 |
+
supernode_attributes = {
|
269 |
+
attr: G.nodes[next(iter(group_set))][attr] for attr in node_attributes
|
270 |
+
}
|
271 |
+
supernode_attributes[supernode_attribute] = group_set
|
272 |
+
output.add_node(supernode, **supernode_attributes)
|
273 |
+
|
274 |
+
for group_id in groups:
|
275 |
+
group_set = groups[group_id]
|
276 |
+
source_supernode = node_label_lookup[group_id]
|
277 |
+
for other_group, group_edge_types in neighbor_info[
|
278 |
+
next(iter(group_set))
|
279 |
+
].items():
|
280 |
+
if group_edge_types:
|
281 |
+
target_supernode = node_label_lookup[other_group]
|
282 |
+
summary_graph_edge = (source_supernode, target_supernode)
|
283 |
+
|
284 |
+
edge_types = [
|
285 |
+
dict(zip(edge_attributes, edge_type))
|
286 |
+
for edge_type in group_edge_types
|
287 |
+
]
|
288 |
+
|
289 |
+
has_edge = output.has_edge(*summary_graph_edge)
|
290 |
+
if output.is_multigraph():
|
291 |
+
if not has_edge:
|
292 |
+
for edge_type in edge_types:
|
293 |
+
output.add_edge(*summary_graph_edge, **edge_type)
|
294 |
+
elif not output.is_directed():
|
295 |
+
existing_edge_data = output.get_edge_data(*summary_graph_edge)
|
296 |
+
for edge_type in edge_types:
|
297 |
+
if edge_type not in existing_edge_data.values():
|
298 |
+
output.add_edge(*summary_graph_edge, **edge_type)
|
299 |
+
else:
|
300 |
+
superedge_attributes = {superedge_attribute: edge_types}
|
301 |
+
output.add_edge(*summary_graph_edge, **superedge_attributes)
|
302 |
+
|
303 |
+
return output
|
304 |
+
|
305 |
+
|
306 |
+
def _snap_eligible_group(G, groups, group_lookup, edge_types):
|
307 |
+
"""
|
308 |
+
Determines if a group is eligible to be split.
|
309 |
+
|
310 |
+
A group is eligible to be split if all nodes in the group have edges of the same type(s)
|
311 |
+
with the same other groups.
|
312 |
+
|
313 |
+
Parameters
|
314 |
+
----------
|
315 |
+
G: graph
|
316 |
+
graph to be summarized
|
317 |
+
groups: dict
|
318 |
+
A dictionary of unique group IDs and their corresponding node groups
|
319 |
+
group_lookup: dict
|
320 |
+
dictionary of nodes and their current corresponding group ID
|
321 |
+
edge_types: dict
|
322 |
+
dictionary of edges in the graph and their corresponding attributes recognized
|
323 |
+
in the summarization
|
324 |
+
|
325 |
+
Returns
|
326 |
+
-------
|
327 |
+
tuple: group ID to split, and neighbor-groups participation_counts data structure
|
328 |
+
"""
|
329 |
+
nbr_info = {node: {gid: Counter() for gid in groups} for node in group_lookup}
|
330 |
+
for group_id in groups:
|
331 |
+
current_group = groups[group_id]
|
332 |
+
|
333 |
+
# build nbr_info for nodes in group
|
334 |
+
for node in current_group:
|
335 |
+
nbr_info[node] = {group_id: Counter() for group_id in groups}
|
336 |
+
edges = G.edges(node, keys=True) if G.is_multigraph() else G.edges(node)
|
337 |
+
for edge in edges:
|
338 |
+
neighbor = edge[1]
|
339 |
+
edge_type = edge_types[edge]
|
340 |
+
neighbor_group_id = group_lookup[neighbor]
|
341 |
+
nbr_info[node][neighbor_group_id][edge_type] += 1
|
342 |
+
|
343 |
+
# check if group_id is eligible to be split
|
344 |
+
group_size = len(current_group)
|
345 |
+
for other_group_id in groups:
|
346 |
+
edge_counts = Counter()
|
347 |
+
for node in current_group:
|
348 |
+
edge_counts.update(nbr_info[node][other_group_id].keys())
|
349 |
+
|
350 |
+
if not all(count == group_size for count in edge_counts.values()):
|
351 |
+
# only the nbr_info of the returned group_id is required for handling group splits
|
352 |
+
return group_id, nbr_info
|
353 |
+
|
354 |
+
# if no eligible groups, complete nbr_info is calculated
|
355 |
+
return None, nbr_info
|
356 |
+
|
357 |
+
|
358 |
+
def _snap_split(groups, neighbor_info, group_lookup, group_id):
|
359 |
+
"""
|
360 |
+
Splits a group based on edge types and updates the groups accordingly
|
361 |
+
|
362 |
+
Splits the group with the given group_id based on the edge types
|
363 |
+
of the nodes so that each new grouping will all have the same
|
364 |
+
edges with other nodes.
|
365 |
+
|
366 |
+
Parameters
|
367 |
+
----------
|
368 |
+
groups: dict
|
369 |
+
A dictionary of unique group IDs and their corresponding node groups
|
370 |
+
neighbor_info: dict
|
371 |
+
A data structure indicating the number of edges a node has with the
|
372 |
+
groups in the current summarization of each edge type
|
373 |
+
edge_types: dict
|
374 |
+
dictionary of edges in the graph and their corresponding attributes recognized
|
375 |
+
in the summarization
|
376 |
+
group_lookup: dict
|
377 |
+
dictionary of nodes and their current corresponding group ID
|
378 |
+
group_id: object
|
379 |
+
ID of group to be split
|
380 |
+
|
381 |
+
Returns
|
382 |
+
-------
|
383 |
+
dict
|
384 |
+
The updated groups based on the split
|
385 |
+
"""
|
386 |
+
new_group_mappings = defaultdict(set)
|
387 |
+
for node in groups[group_id]:
|
388 |
+
signature = tuple(
|
389 |
+
frozenset(edge_types) for edge_types in neighbor_info[node].values()
|
390 |
+
)
|
391 |
+
new_group_mappings[signature].add(node)
|
392 |
+
|
393 |
+
# leave the biggest new_group as the original group
|
394 |
+
new_groups = sorted(new_group_mappings.values(), key=len)
|
395 |
+
for new_group in new_groups[:-1]:
|
396 |
+
# Assign unused integer as the new_group_id
|
397 |
+
# ids are tuples, so will not interact with the original group_ids
|
398 |
+
new_group_id = len(groups)
|
399 |
+
groups[new_group_id] = new_group
|
400 |
+
groups[group_id] -= new_group
|
401 |
+
for node in new_group:
|
402 |
+
group_lookup[node] = new_group_id
|
403 |
+
|
404 |
+
return groups
|
405 |
+
|
406 |
+
|
407 |
+
@nx._dispatchable(
|
408 |
+
node_attrs="[node_attributes]", edge_attrs="[edge_attributes]", returns_graph=True
|
409 |
+
)
|
410 |
+
def snap_aggregation(
|
411 |
+
G,
|
412 |
+
node_attributes,
|
413 |
+
edge_attributes=(),
|
414 |
+
prefix="Supernode-",
|
415 |
+
supernode_attribute="group",
|
416 |
+
superedge_attribute="types",
|
417 |
+
):
|
418 |
+
"""Creates a summary graph based on attributes and connectivity.
|
419 |
+
|
420 |
+
This function uses the Summarization by Grouping Nodes on Attributes
|
421 |
+
and Pairwise edges (SNAP) algorithm for summarizing a given
|
422 |
+
graph by grouping nodes by node attributes and their edge attributes
|
423 |
+
into supernodes in a summary graph. This name SNAP should not be
|
424 |
+
confused with the Stanford Network Analysis Project (SNAP).
|
425 |
+
|
426 |
+
Here is a high-level view of how this algorithm works:
|
427 |
+
|
428 |
+
1) Group nodes by node attribute values.
|
429 |
+
|
430 |
+
2) Iteratively split groups until all nodes in each group have edges
|
431 |
+
to nodes in the same groups. That is, until all the groups are homogeneous
|
432 |
+
in their member nodes' edges to other groups. For example,
|
433 |
+
if all the nodes in group A only have edge to nodes in group B, then the
|
434 |
+
group is homogeneous and does not need to be split. If all nodes in group B
|
435 |
+
have edges with nodes in groups {A, C}, but some also have edges with other
|
436 |
+
nodes in B, then group B is not homogeneous and needs to be split into
|
437 |
+
groups have edges with {A, C} and a group of nodes having
|
438 |
+
edges with {A, B, C}. This way, viewers of the summary graph can
|
439 |
+
assume that all nodes in the group have the exact same node attributes and
|
440 |
+
the exact same edges.
|
441 |
+
|
442 |
+
3) Build the output summary graph, where the groups are represented by
|
443 |
+
super-nodes. Edges represent the edges shared between all the nodes in each
|
444 |
+
respective groups.
|
445 |
+
|
446 |
+
A SNAP summary graph can be used to visualize graphs that are too large to display
|
447 |
+
or visually analyze, or to efficiently identify sets of similar nodes with similar connectivity
|
448 |
+
patterns to other sets of similar nodes based on specified node and/or edge attributes in a graph.
|
449 |
+
|
450 |
+
Parameters
|
451 |
+
----------
|
452 |
+
G: graph
|
453 |
+
Networkx Graph to be summarized
|
454 |
+
node_attributes: iterable, required
|
455 |
+
An iterable of the node attributes used to group nodes in the summarization process. Nodes
|
456 |
+
with the same values for these attributes will be grouped together in the summary graph.
|
457 |
+
edge_attributes: iterable, optional
|
458 |
+
An iterable of the edge attributes considered in the summarization process. If provided, unique
|
459 |
+
combinations of the attribute values found in the graph are used to
|
460 |
+
determine the edge types in the graph. If not provided, all edges
|
461 |
+
are considered to be of the same type.
|
462 |
+
prefix: str
|
463 |
+
The prefix used to denote supernodes in the summary graph. Defaults to 'Supernode-'.
|
464 |
+
supernode_attribute: str
|
465 |
+
The node attribute for recording the supernode groupings of nodes. Defaults to 'group'.
|
466 |
+
superedge_attribute: str
|
467 |
+
The edge attribute for recording the edge types of multiple edges. Defaults to 'types'.
|
468 |
+
|
469 |
+
Returns
|
470 |
+
-------
|
471 |
+
networkx.Graph: summary graph
|
472 |
+
|
473 |
+
Examples
|
474 |
+
--------
|
475 |
+
SNAP aggregation takes a graph and summarizes it in the context of user-provided
|
476 |
+
node and edge attributes such that a viewer can more easily extract and
|
477 |
+
analyze the information represented by the graph
|
478 |
+
|
479 |
+
>>> nodes = {
|
480 |
+
... "A": dict(color="Red"),
|
481 |
+
... "B": dict(color="Red"),
|
482 |
+
... "C": dict(color="Red"),
|
483 |
+
... "D": dict(color="Red"),
|
484 |
+
... "E": dict(color="Blue"),
|
485 |
+
... "F": dict(color="Blue"),
|
486 |
+
... }
|
487 |
+
>>> edges = [
|
488 |
+
... ("A", "E", "Strong"),
|
489 |
+
... ("B", "F", "Strong"),
|
490 |
+
... ("C", "E", "Weak"),
|
491 |
+
... ("D", "F", "Weak"),
|
492 |
+
... ]
|
493 |
+
>>> G = nx.Graph()
|
494 |
+
>>> for node in nodes:
|
495 |
+
... attributes = nodes[node]
|
496 |
+
... G.add_node(node, **attributes)
|
497 |
+
>>> for source, target, type in edges:
|
498 |
+
... G.add_edge(source, target, type=type)
|
499 |
+
>>> node_attributes = ("color",)
|
500 |
+
>>> edge_attributes = ("type",)
|
501 |
+
>>> summary_graph = nx.snap_aggregation(
|
502 |
+
... G, node_attributes=node_attributes, edge_attributes=edge_attributes
|
503 |
+
... )
|
504 |
+
|
505 |
+
Notes
|
506 |
+
-----
|
507 |
+
The summary graph produced is called a maximum Attribute-edge
|
508 |
+
compatible (AR-compatible) grouping. According to [1]_, an
|
509 |
+
AR-compatible grouping means that all nodes in each group have the same
|
510 |
+
exact node attribute values and the same exact edges and
|
511 |
+
edge types to one or more nodes in the same groups. The maximal
|
512 |
+
AR-compatible grouping is the grouping with the minimal cardinality.
|
513 |
+
|
514 |
+
The AR-compatible grouping is the most detailed grouping provided by
|
515 |
+
any of the SNAP algorithms.
|
516 |
+
|
517 |
+
References
|
518 |
+
----------
|
519 |
+
.. [1] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation
|
520 |
+
for graph summarization. In Proc. 2008 ACM-SIGMOD Int. Conf.
|
521 |
+
Management of Data (SIGMOD’08), pages 567–580, Vancouver, Canada,
|
522 |
+
June 2008.
|
523 |
+
"""
|
524 |
+
edge_types = {
|
525 |
+
edge: tuple(attrs.get(attr) for attr in edge_attributes)
|
526 |
+
for edge, attrs in G.edges.items()
|
527 |
+
}
|
528 |
+
if not G.is_directed():
|
529 |
+
if G.is_multigraph():
|
530 |
+
# list is needed to avoid mutating while iterating
|
531 |
+
edges = [((v, u, k), etype) for (u, v, k), etype in edge_types.items()]
|
532 |
+
else:
|
533 |
+
# list is needed to avoid mutating while iterating
|
534 |
+
edges = [((v, u), etype) for (u, v), etype in edge_types.items()]
|
535 |
+
edge_types.update(edges)
|
536 |
+
|
537 |
+
group_lookup = {
|
538 |
+
node: tuple(attrs[attr] for attr in node_attributes)
|
539 |
+
for node, attrs in G.nodes.items()
|
540 |
+
}
|
541 |
+
groups = defaultdict(set)
|
542 |
+
for node, node_type in group_lookup.items():
|
543 |
+
groups[node_type].add(node)
|
544 |
+
|
545 |
+
eligible_group_id, nbr_info = _snap_eligible_group(
|
546 |
+
G, groups, group_lookup, edge_types
|
547 |
+
)
|
548 |
+
while eligible_group_id:
|
549 |
+
groups = _snap_split(groups, nbr_info, group_lookup, eligible_group_id)
|
550 |
+
eligible_group_id, nbr_info = _snap_eligible_group(
|
551 |
+
G, groups, group_lookup, edge_types
|
552 |
+
)
|
553 |
+
return _snap_build_graph(
|
554 |
+
G,
|
555 |
+
groups,
|
556 |
+
node_attributes,
|
557 |
+
edge_attributes,
|
558 |
+
nbr_info,
|
559 |
+
edge_types,
|
560 |
+
prefix,
|
561 |
+
supernode_attribute,
|
562 |
+
superedge_attribute,
|
563 |
+
)
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/swap.py
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Swap edges in a graph.
|
2 |
+
"""
|
3 |
+
|
4 |
+
import math
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.utils import py_random_state
|
8 |
+
|
9 |
+
__all__ = ["double_edge_swap", "connected_double_edge_swap", "directed_edge_swap"]
|
10 |
+
|
11 |
+
|
12 |
+
@nx.utils.not_implemented_for("undirected")
|
13 |
+
@py_random_state(3)
|
14 |
+
@nx._dispatchable(mutates_input=True, returns_graph=True)
|
15 |
+
def directed_edge_swap(G, *, nswap=1, max_tries=100, seed=None):
|
16 |
+
"""Swap three edges in a directed graph while keeping the node degrees fixed.
|
17 |
+
|
18 |
+
A directed edge swap swaps three edges such that a -> b -> c -> d becomes
|
19 |
+
a -> c -> b -> d. This pattern of swapping allows all possible states with the
|
20 |
+
same in- and out-degree distribution in a directed graph to be reached.
|
21 |
+
|
22 |
+
If the swap would create parallel edges (e.g. if a -> c already existed in the
|
23 |
+
previous example), another attempt is made to find a suitable trio of edges.
|
24 |
+
|
25 |
+
Parameters
|
26 |
+
----------
|
27 |
+
G : DiGraph
|
28 |
+
A directed graph
|
29 |
+
|
30 |
+
nswap : integer (optional, default=1)
|
31 |
+
Number of three-edge (directed) swaps to perform
|
32 |
+
|
33 |
+
max_tries : integer (optional, default=100)
|
34 |
+
Maximum number of attempts to swap edges
|
35 |
+
|
36 |
+
seed : integer, random_state, or None (default)
|
37 |
+
Indicator of random number generation state.
|
38 |
+
See :ref:`Randomness<randomness>`.
|
39 |
+
|
40 |
+
Returns
|
41 |
+
-------
|
42 |
+
G : DiGraph
|
43 |
+
The graph after the edges are swapped.
|
44 |
+
|
45 |
+
Raises
|
46 |
+
------
|
47 |
+
NetworkXError
|
48 |
+
If `G` is not directed, or
|
49 |
+
If nswap > max_tries, or
|
50 |
+
If there are fewer than 4 nodes or 3 edges in `G`.
|
51 |
+
NetworkXAlgorithmError
|
52 |
+
If the number of swap attempts exceeds `max_tries` before `nswap` swaps are made
|
53 |
+
|
54 |
+
Notes
|
55 |
+
-----
|
56 |
+
Does not enforce any connectivity constraints.
|
57 |
+
|
58 |
+
The graph G is modified in place.
|
59 |
+
|
60 |
+
A later swap is allowed to undo a previous swap.
|
61 |
+
|
62 |
+
References
|
63 |
+
----------
|
64 |
+
.. [1] Erdős, Péter L., et al. “A Simple Havel-Hakimi Type Algorithm to Realize
|
65 |
+
Graphical Degree Sequences of Directed Graphs.” ArXiv:0905.4913 [Math],
|
66 |
+
Jan. 2010. https://doi.org/10.48550/arXiv.0905.4913.
|
67 |
+
Published 2010 in Elec. J. Combinatorics (17(1)). R66.
|
68 |
+
http://www.combinatorics.org/Volume_17/PDF/v17i1r66.pdf
|
69 |
+
.. [2] “Combinatorics - Reaching All Possible Simple Directed Graphs with a given
|
70 |
+
Degree Sequence with 2-Edge Swaps.” Mathematics Stack Exchange,
|
71 |
+
https://math.stackexchange.com/questions/22272/. Accessed 30 May 2022.
|
72 |
+
"""
|
73 |
+
if nswap > max_tries:
|
74 |
+
raise nx.NetworkXError("Number of swaps > number of tries allowed.")
|
75 |
+
if len(G) < 4:
|
76 |
+
raise nx.NetworkXError("DiGraph has fewer than four nodes.")
|
77 |
+
if len(G.edges) < 3:
|
78 |
+
raise nx.NetworkXError("DiGraph has fewer than 3 edges")
|
79 |
+
|
80 |
+
# Instead of choosing uniformly at random from a generated edge list,
|
81 |
+
# this algorithm chooses nonuniformly from the set of nodes with
|
82 |
+
# probability weighted by degree.
|
83 |
+
tries = 0
|
84 |
+
swapcount = 0
|
85 |
+
keys, degrees = zip(*G.degree()) # keys, degree
|
86 |
+
cdf = nx.utils.cumulative_distribution(degrees) # cdf of degree
|
87 |
+
discrete_sequence = nx.utils.discrete_sequence
|
88 |
+
|
89 |
+
while swapcount < nswap:
|
90 |
+
# choose source node index from discrete distribution
|
91 |
+
start_index = discrete_sequence(1, cdistribution=cdf, seed=seed)[0]
|
92 |
+
start = keys[start_index]
|
93 |
+
tries += 1
|
94 |
+
|
95 |
+
if tries > max_tries:
|
96 |
+
msg = f"Maximum number of swap attempts ({tries}) exceeded before desired swaps achieved ({nswap})."
|
97 |
+
raise nx.NetworkXAlgorithmError(msg)
|
98 |
+
|
99 |
+
# If the given node doesn't have any out edges, then there isn't anything to swap
|
100 |
+
if G.out_degree(start) == 0:
|
101 |
+
continue
|
102 |
+
second = seed.choice(list(G.succ[start]))
|
103 |
+
if start == second:
|
104 |
+
continue
|
105 |
+
|
106 |
+
if G.out_degree(second) == 0:
|
107 |
+
continue
|
108 |
+
third = seed.choice(list(G.succ[second]))
|
109 |
+
if second == third:
|
110 |
+
continue
|
111 |
+
|
112 |
+
if G.out_degree(third) == 0:
|
113 |
+
continue
|
114 |
+
fourth = seed.choice(list(G.succ[third]))
|
115 |
+
if third == fourth:
|
116 |
+
continue
|
117 |
+
|
118 |
+
if (
|
119 |
+
third not in G.succ[start]
|
120 |
+
and fourth not in G.succ[second]
|
121 |
+
and second not in G.succ[third]
|
122 |
+
):
|
123 |
+
# Swap nodes
|
124 |
+
G.add_edge(start, third)
|
125 |
+
G.add_edge(third, second)
|
126 |
+
G.add_edge(second, fourth)
|
127 |
+
G.remove_edge(start, second)
|
128 |
+
G.remove_edge(second, third)
|
129 |
+
G.remove_edge(third, fourth)
|
130 |
+
swapcount += 1
|
131 |
+
|
132 |
+
return G
|
133 |
+
|
134 |
+
|
135 |
+
@py_random_state(3)
|
136 |
+
@nx._dispatchable(mutates_input=True, returns_graph=True)
|
137 |
+
def double_edge_swap(G, nswap=1, max_tries=100, seed=None):
|
138 |
+
"""Swap two edges in the graph while keeping the node degrees fixed.
|
139 |
+
|
140 |
+
A double-edge swap removes two randomly chosen edges u-v and x-y
|
141 |
+
and creates the new edges u-x and v-y::
|
142 |
+
|
143 |
+
u--v u v
|
144 |
+
becomes | |
|
145 |
+
x--y x y
|
146 |
+
|
147 |
+
If either the edge u-x or v-y already exist no swap is performed
|
148 |
+
and another attempt is made to find a suitable edge pair.
|
149 |
+
|
150 |
+
Parameters
|
151 |
+
----------
|
152 |
+
G : graph
|
153 |
+
An undirected graph
|
154 |
+
|
155 |
+
nswap : integer (optional, default=1)
|
156 |
+
Number of double-edge swaps to perform
|
157 |
+
|
158 |
+
max_tries : integer (optional)
|
159 |
+
Maximum number of attempts to swap edges
|
160 |
+
|
161 |
+
seed : integer, random_state, or None (default)
|
162 |
+
Indicator of random number generation state.
|
163 |
+
See :ref:`Randomness<randomness>`.
|
164 |
+
|
165 |
+
Returns
|
166 |
+
-------
|
167 |
+
G : graph
|
168 |
+
The graph after double edge swaps.
|
169 |
+
|
170 |
+
Raises
|
171 |
+
------
|
172 |
+
NetworkXError
|
173 |
+
If `G` is directed, or
|
174 |
+
If `nswap` > `max_tries`, or
|
175 |
+
If there are fewer than 4 nodes or 2 edges in `G`.
|
176 |
+
NetworkXAlgorithmError
|
177 |
+
If the number of swap attempts exceeds `max_tries` before `nswap` swaps are made
|
178 |
+
|
179 |
+
Notes
|
180 |
+
-----
|
181 |
+
Does not enforce any connectivity constraints.
|
182 |
+
|
183 |
+
The graph G is modified in place.
|
184 |
+
"""
|
185 |
+
if G.is_directed():
|
186 |
+
raise nx.NetworkXError(
|
187 |
+
"double_edge_swap() not defined for directed graphs. Use directed_edge_swap instead."
|
188 |
+
)
|
189 |
+
if nswap > max_tries:
|
190 |
+
raise nx.NetworkXError("Number of swaps > number of tries allowed.")
|
191 |
+
if len(G) < 4:
|
192 |
+
raise nx.NetworkXError("Graph has fewer than four nodes.")
|
193 |
+
if len(G.edges) < 2:
|
194 |
+
raise nx.NetworkXError("Graph has fewer than 2 edges")
|
195 |
+
# Instead of choosing uniformly at random from a generated edge list,
|
196 |
+
# this algorithm chooses nonuniformly from the set of nodes with
|
197 |
+
# probability weighted by degree.
|
198 |
+
n = 0
|
199 |
+
swapcount = 0
|
200 |
+
keys, degrees = zip(*G.degree()) # keys, degree
|
201 |
+
cdf = nx.utils.cumulative_distribution(degrees) # cdf of degree
|
202 |
+
discrete_sequence = nx.utils.discrete_sequence
|
203 |
+
while swapcount < nswap:
|
204 |
+
# if random.random() < 0.5: continue # trick to avoid periodicities?
|
205 |
+
# pick two random edges without creating edge list
|
206 |
+
# choose source node indices from discrete distribution
|
207 |
+
(ui, xi) = discrete_sequence(2, cdistribution=cdf, seed=seed)
|
208 |
+
if ui == xi:
|
209 |
+
continue # same source, skip
|
210 |
+
u = keys[ui] # convert index to label
|
211 |
+
x = keys[xi]
|
212 |
+
# choose target uniformly from neighbors
|
213 |
+
v = seed.choice(list(G[u]))
|
214 |
+
y = seed.choice(list(G[x]))
|
215 |
+
if v == y:
|
216 |
+
continue # same target, skip
|
217 |
+
if (x not in G[u]) and (y not in G[v]): # don't create parallel edges
|
218 |
+
G.add_edge(u, x)
|
219 |
+
G.add_edge(v, y)
|
220 |
+
G.remove_edge(u, v)
|
221 |
+
G.remove_edge(x, y)
|
222 |
+
swapcount += 1
|
223 |
+
if n >= max_tries:
|
224 |
+
e = (
|
225 |
+
f"Maximum number of swap attempts ({n}) exceeded "
|
226 |
+
f"before desired swaps achieved ({nswap})."
|
227 |
+
)
|
228 |
+
raise nx.NetworkXAlgorithmError(e)
|
229 |
+
n += 1
|
230 |
+
return G
|
231 |
+
|
232 |
+
|
233 |
+
@py_random_state(3)
|
234 |
+
@nx._dispatchable(mutates_input=True)
|
235 |
+
def connected_double_edge_swap(G, nswap=1, _window_threshold=3, seed=None):
|
236 |
+
"""Attempts the specified number of double-edge swaps in the graph `G`.
|
237 |
+
|
238 |
+
A double-edge swap removes two randomly chosen edges `(u, v)` and `(x,
|
239 |
+
y)` and creates the new edges `(u, x)` and `(v, y)`::
|
240 |
+
|
241 |
+
u--v u v
|
242 |
+
becomes | |
|
243 |
+
x--y x y
|
244 |
+
|
245 |
+
If either `(u, x)` or `(v, y)` already exist, then no swap is performed
|
246 |
+
so the actual number of swapped edges is always *at most* `nswap`.
|
247 |
+
|
248 |
+
Parameters
|
249 |
+
----------
|
250 |
+
G : graph
|
251 |
+
An undirected graph
|
252 |
+
|
253 |
+
nswap : integer (optional, default=1)
|
254 |
+
Number of double-edge swaps to perform
|
255 |
+
|
256 |
+
_window_threshold : integer
|
257 |
+
|
258 |
+
The window size below which connectedness of the graph will be checked
|
259 |
+
after each swap.
|
260 |
+
|
261 |
+
The "window" in this function is a dynamically updated integer that
|
262 |
+
represents the number of swap attempts to make before checking if the
|
263 |
+
graph remains connected. It is an optimization used to decrease the
|
264 |
+
running time of the algorithm in exchange for increased complexity of
|
265 |
+
implementation.
|
266 |
+
|
267 |
+
If the window size is below this threshold, then the algorithm checks
|
268 |
+
after each swap if the graph remains connected by checking if there is a
|
269 |
+
path joining the two nodes whose edge was just removed. If the window
|
270 |
+
size is above this threshold, then the algorithm performs do all the
|
271 |
+
swaps in the window and only then check if the graph is still connected.
|
272 |
+
|
273 |
+
seed : integer, random_state, or None (default)
|
274 |
+
Indicator of random number generation state.
|
275 |
+
See :ref:`Randomness<randomness>`.
|
276 |
+
|
277 |
+
Returns
|
278 |
+
-------
|
279 |
+
int
|
280 |
+
The number of successful swaps
|
281 |
+
|
282 |
+
Raises
|
283 |
+
------
|
284 |
+
|
285 |
+
NetworkXError
|
286 |
+
|
287 |
+
If the input graph is not connected, or if the graph has fewer than four
|
288 |
+
nodes.
|
289 |
+
|
290 |
+
Notes
|
291 |
+
-----
|
292 |
+
|
293 |
+
The initial graph `G` must be connected, and the resulting graph is
|
294 |
+
connected. The graph `G` is modified in place.
|
295 |
+
|
296 |
+
References
|
297 |
+
----------
|
298 |
+
.. [1] C. Gkantsidis and M. Mihail and E. Zegura,
|
299 |
+
The Markov chain simulation method for generating connected
|
300 |
+
power law random graphs, 2003.
|
301 |
+
http://citeseer.ist.psu.edu/gkantsidis03markov.html
|
302 |
+
"""
|
303 |
+
if not nx.is_connected(G):
|
304 |
+
raise nx.NetworkXError("Graph not connected")
|
305 |
+
if len(G) < 4:
|
306 |
+
raise nx.NetworkXError("Graph has fewer than four nodes.")
|
307 |
+
n = 0
|
308 |
+
swapcount = 0
|
309 |
+
deg = G.degree()
|
310 |
+
# Label key for nodes
|
311 |
+
dk = [n for n, d in G.degree()]
|
312 |
+
cdf = nx.utils.cumulative_distribution([d for n, d in G.degree()])
|
313 |
+
discrete_sequence = nx.utils.discrete_sequence
|
314 |
+
window = 1
|
315 |
+
while n < nswap:
|
316 |
+
wcount = 0
|
317 |
+
swapped = []
|
318 |
+
# If the window is small, we just check each time whether the graph is
|
319 |
+
# connected by checking if the nodes that were just separated are still
|
320 |
+
# connected.
|
321 |
+
if window < _window_threshold:
|
322 |
+
# This Boolean keeps track of whether there was a failure or not.
|
323 |
+
fail = False
|
324 |
+
while wcount < window and n < nswap:
|
325 |
+
# Pick two random edges without creating the edge list. Choose
|
326 |
+
# source nodes from the discrete degree distribution.
|
327 |
+
(ui, xi) = discrete_sequence(2, cdistribution=cdf, seed=seed)
|
328 |
+
# If the source nodes are the same, skip this pair.
|
329 |
+
if ui == xi:
|
330 |
+
continue
|
331 |
+
# Convert an index to a node label.
|
332 |
+
u = dk[ui]
|
333 |
+
x = dk[xi]
|
334 |
+
# Choose targets uniformly from neighbors.
|
335 |
+
v = seed.choice(list(G.neighbors(u)))
|
336 |
+
y = seed.choice(list(G.neighbors(x)))
|
337 |
+
# If the target nodes are the same, skip this pair.
|
338 |
+
if v == y:
|
339 |
+
continue
|
340 |
+
if x not in G[u] and y not in G[v]:
|
341 |
+
G.remove_edge(u, v)
|
342 |
+
G.remove_edge(x, y)
|
343 |
+
G.add_edge(u, x)
|
344 |
+
G.add_edge(v, y)
|
345 |
+
swapped.append((u, v, x, y))
|
346 |
+
swapcount += 1
|
347 |
+
n += 1
|
348 |
+
# If G remains connected...
|
349 |
+
if nx.has_path(G, u, v):
|
350 |
+
wcount += 1
|
351 |
+
# Otherwise, undo the changes.
|
352 |
+
else:
|
353 |
+
G.add_edge(u, v)
|
354 |
+
G.add_edge(x, y)
|
355 |
+
G.remove_edge(u, x)
|
356 |
+
G.remove_edge(v, y)
|
357 |
+
swapcount -= 1
|
358 |
+
fail = True
|
359 |
+
# If one of the swaps failed, reduce the window size.
|
360 |
+
if fail:
|
361 |
+
window = math.ceil(window / 2)
|
362 |
+
else:
|
363 |
+
window += 1
|
364 |
+
# If the window is large, then there is a good chance that a bunch of
|
365 |
+
# swaps will work. It's quicker to do all those swaps first and then
|
366 |
+
# check if the graph remains connected.
|
367 |
+
else:
|
368 |
+
while wcount < window and n < nswap:
|
369 |
+
# Pick two random edges without creating the edge list. Choose
|
370 |
+
# source nodes from the discrete degree distribution.
|
371 |
+
(ui, xi) = discrete_sequence(2, cdistribution=cdf, seed=seed)
|
372 |
+
# If the source nodes are the same, skip this pair.
|
373 |
+
if ui == xi:
|
374 |
+
continue
|
375 |
+
# Convert an index to a node label.
|
376 |
+
u = dk[ui]
|
377 |
+
x = dk[xi]
|
378 |
+
# Choose targets uniformly from neighbors.
|
379 |
+
v = seed.choice(list(G.neighbors(u)))
|
380 |
+
y = seed.choice(list(G.neighbors(x)))
|
381 |
+
# If the target nodes are the same, skip this pair.
|
382 |
+
if v == y:
|
383 |
+
continue
|
384 |
+
if x not in G[u] and y not in G[v]:
|
385 |
+
G.remove_edge(u, v)
|
386 |
+
G.remove_edge(x, y)
|
387 |
+
G.add_edge(u, x)
|
388 |
+
G.add_edge(v, y)
|
389 |
+
swapped.append((u, v, x, y))
|
390 |
+
swapcount += 1
|
391 |
+
n += 1
|
392 |
+
wcount += 1
|
393 |
+
# If the graph remains connected, increase the window size.
|
394 |
+
if nx.is_connected(G):
|
395 |
+
window += 1
|
396 |
+
# Otherwise, undo the changes from the previous window and decrease
|
397 |
+
# the window size.
|
398 |
+
else:
|
399 |
+
while swapped:
|
400 |
+
(u, v, x, y) = swapped.pop()
|
401 |
+
G.add_edge(u, v)
|
402 |
+
G.add_edge(x, y)
|
403 |
+
G.remove_edge(u, x)
|
404 |
+
G.remove_edge(v, y)
|
405 |
+
swapcount -= 1
|
406 |
+
window = math.ceil(window / 2)
|
407 |
+
return swapcount
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/tournament.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions concerning tournament graphs.
|
2 |
+
|
3 |
+
A `tournament graph`_ is a complete oriented graph. In other words, it
|
4 |
+
is a directed graph in which there is exactly one directed edge joining
|
5 |
+
each pair of distinct nodes. For each function in this module that
|
6 |
+
accepts a graph as input, you must provide a tournament graph. The
|
7 |
+
responsibility is on the caller to ensure that the graph is a tournament
|
8 |
+
graph:
|
9 |
+
|
10 |
+
>>> G = nx.DiGraph([(0, 1), (1, 2), (2, 0)])
|
11 |
+
>>> nx.is_tournament(G)
|
12 |
+
True
|
13 |
+
|
14 |
+
To access the functions in this module, you must access them through the
|
15 |
+
:mod:`networkx.tournament` module::
|
16 |
+
|
17 |
+
>>> nx.tournament.is_reachable(G, 0, 1)
|
18 |
+
True
|
19 |
+
|
20 |
+
.. _tournament graph: https://en.wikipedia.org/wiki/Tournament_%28graph_theory%29
|
21 |
+
|
22 |
+
"""
|
23 |
+
from itertools import combinations
|
24 |
+
|
25 |
+
import networkx as nx
|
26 |
+
from networkx.algorithms.simple_paths import is_simple_path as is_path
|
27 |
+
from networkx.utils import arbitrary_element, not_implemented_for, py_random_state
|
28 |
+
|
29 |
+
__all__ = [
|
30 |
+
"hamiltonian_path",
|
31 |
+
"is_reachable",
|
32 |
+
"is_strongly_connected",
|
33 |
+
"is_tournament",
|
34 |
+
"random_tournament",
|
35 |
+
"score_sequence",
|
36 |
+
]
|
37 |
+
|
38 |
+
|
39 |
+
def index_satisfying(iterable, condition):
|
40 |
+
"""Returns the index of the first element in `iterable` that
|
41 |
+
satisfies the given condition.
|
42 |
+
|
43 |
+
If no such element is found (that is, when the iterable is
|
44 |
+
exhausted), this returns the length of the iterable (that is, one
|
45 |
+
greater than the last index of the iterable).
|
46 |
+
|
47 |
+
`iterable` must not be empty. If `iterable` is empty, this
|
48 |
+
function raises :exc:`ValueError`.
|
49 |
+
|
50 |
+
"""
|
51 |
+
# Pre-condition: iterable must not be empty.
|
52 |
+
for i, x in enumerate(iterable):
|
53 |
+
if condition(x):
|
54 |
+
return i
|
55 |
+
# If we reach the end of the iterable without finding an element
|
56 |
+
# that satisfies the condition, return the length of the iterable,
|
57 |
+
# which is one greater than the index of its last element. If the
|
58 |
+
# iterable was empty, `i` will not be defined, so we raise an
|
59 |
+
# exception.
|
60 |
+
try:
|
61 |
+
return i + 1
|
62 |
+
except NameError as err:
|
63 |
+
raise ValueError("iterable must be non-empty") from err
|
64 |
+
|
65 |
+
|
66 |
+
@not_implemented_for("undirected")
|
67 |
+
@not_implemented_for("multigraph")
|
68 |
+
@nx._dispatchable
|
69 |
+
def is_tournament(G):
|
70 |
+
"""Returns True if and only if `G` is a tournament.
|
71 |
+
|
72 |
+
A tournament is a directed graph, with neither self-loops nor
|
73 |
+
multi-edges, in which there is exactly one directed edge joining
|
74 |
+
each pair of distinct nodes.
|
75 |
+
|
76 |
+
Parameters
|
77 |
+
----------
|
78 |
+
G : NetworkX graph
|
79 |
+
A directed graph representing a tournament.
|
80 |
+
|
81 |
+
Returns
|
82 |
+
-------
|
83 |
+
bool
|
84 |
+
Whether the given graph is a tournament graph.
|
85 |
+
|
86 |
+
Examples
|
87 |
+
--------
|
88 |
+
>>> G = nx.DiGraph([(0, 1), (1, 2), (2, 0)])
|
89 |
+
>>> nx.is_tournament(G)
|
90 |
+
True
|
91 |
+
|
92 |
+
Notes
|
93 |
+
-----
|
94 |
+
Some definitions require a self-loop on each node, but that is not
|
95 |
+
the convention used here.
|
96 |
+
|
97 |
+
"""
|
98 |
+
# In a tournament, there is exactly one directed edge joining each pair.
|
99 |
+
return (
|
100 |
+
all((v in G[u]) ^ (u in G[v]) for u, v in combinations(G, 2))
|
101 |
+
and nx.number_of_selfloops(G) == 0
|
102 |
+
)
|
103 |
+
|
104 |
+
|
105 |
+
@not_implemented_for("undirected")
|
106 |
+
@not_implemented_for("multigraph")
|
107 |
+
@nx._dispatchable
|
108 |
+
def hamiltonian_path(G):
|
109 |
+
"""Returns a Hamiltonian path in the given tournament graph.
|
110 |
+
|
111 |
+
Each tournament has a Hamiltonian path. If furthermore, the
|
112 |
+
tournament is strongly connected, then the returned Hamiltonian path
|
113 |
+
is a Hamiltonian cycle (by joining the endpoints of the path).
|
114 |
+
|
115 |
+
Parameters
|
116 |
+
----------
|
117 |
+
G : NetworkX graph
|
118 |
+
A directed graph representing a tournament.
|
119 |
+
|
120 |
+
Returns
|
121 |
+
-------
|
122 |
+
path : list
|
123 |
+
A list of nodes which form a Hamiltonian path in `G`.
|
124 |
+
|
125 |
+
Examples
|
126 |
+
--------
|
127 |
+
>>> G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)])
|
128 |
+
>>> nx.is_tournament(G)
|
129 |
+
True
|
130 |
+
>>> nx.tournament.hamiltonian_path(G)
|
131 |
+
[0, 1, 2, 3]
|
132 |
+
|
133 |
+
Notes
|
134 |
+
-----
|
135 |
+
This is a recursive implementation with an asymptotic running time
|
136 |
+
of $O(n^2)$, ignoring multiplicative polylogarithmic factors, where
|
137 |
+
$n$ is the number of nodes in the graph.
|
138 |
+
|
139 |
+
"""
|
140 |
+
if len(G) == 0:
|
141 |
+
return []
|
142 |
+
if len(G) == 1:
|
143 |
+
return [arbitrary_element(G)]
|
144 |
+
v = arbitrary_element(G)
|
145 |
+
hampath = hamiltonian_path(G.subgraph(set(G) - {v}))
|
146 |
+
# Get the index of the first node in the path that does *not* have
|
147 |
+
# an edge to `v`, then insert `v` before that node.
|
148 |
+
index = index_satisfying(hampath, lambda u: v not in G[u])
|
149 |
+
hampath.insert(index, v)
|
150 |
+
return hampath
|
151 |
+
|
152 |
+
|
153 |
+
@py_random_state(1)
|
154 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
155 |
+
def random_tournament(n, seed=None):
|
156 |
+
r"""Returns a random tournament graph on `n` nodes.
|
157 |
+
|
158 |
+
Parameters
|
159 |
+
----------
|
160 |
+
n : int
|
161 |
+
The number of nodes in the returned graph.
|
162 |
+
seed : integer, random_state, or None (default)
|
163 |
+
Indicator of random number generation state.
|
164 |
+
See :ref:`Randomness<randomness>`.
|
165 |
+
|
166 |
+
Returns
|
167 |
+
-------
|
168 |
+
G : DiGraph
|
169 |
+
A tournament on `n` nodes, with exactly one directed edge joining
|
170 |
+
each pair of distinct nodes.
|
171 |
+
|
172 |
+
Notes
|
173 |
+
-----
|
174 |
+
This algorithm adds, for each pair of distinct nodes, an edge with
|
175 |
+
uniformly random orientation. In other words, `\binom{n}{2}` flips
|
176 |
+
of an unbiased coin decide the orientations of the edges in the
|
177 |
+
graph.
|
178 |
+
|
179 |
+
"""
|
180 |
+
# Flip an unbiased coin for each pair of distinct nodes.
|
181 |
+
coins = (seed.random() for i in range((n * (n - 1)) // 2))
|
182 |
+
pairs = combinations(range(n), 2)
|
183 |
+
edges = ((u, v) if r < 0.5 else (v, u) for (u, v), r in zip(pairs, coins))
|
184 |
+
return nx.DiGraph(edges)
|
185 |
+
|
186 |
+
|
187 |
+
@not_implemented_for("undirected")
|
188 |
+
@not_implemented_for("multigraph")
|
189 |
+
@nx._dispatchable
|
190 |
+
def score_sequence(G):
|
191 |
+
"""Returns the score sequence for the given tournament graph.
|
192 |
+
|
193 |
+
The score sequence is the sorted list of the out-degrees of the
|
194 |
+
nodes of the graph.
|
195 |
+
|
196 |
+
Parameters
|
197 |
+
----------
|
198 |
+
G : NetworkX graph
|
199 |
+
A directed graph representing a tournament.
|
200 |
+
|
201 |
+
Returns
|
202 |
+
-------
|
203 |
+
list
|
204 |
+
A sorted list of the out-degrees of the nodes of `G`.
|
205 |
+
|
206 |
+
Examples
|
207 |
+
--------
|
208 |
+
>>> G = nx.DiGraph([(1, 0), (1, 3), (0, 2), (0, 3), (2, 1), (3, 2)])
|
209 |
+
>>> nx.is_tournament(G)
|
210 |
+
True
|
211 |
+
>>> nx.tournament.score_sequence(G)
|
212 |
+
[1, 1, 2, 2]
|
213 |
+
|
214 |
+
"""
|
215 |
+
return sorted(d for v, d in G.out_degree())
|
216 |
+
|
217 |
+
|
218 |
+
@not_implemented_for("undirected")
|
219 |
+
@not_implemented_for("multigraph")
|
220 |
+
@nx._dispatchable(preserve_edge_attrs={"G": {"weight": 1}})
|
221 |
+
def tournament_matrix(G):
|
222 |
+
r"""Returns the tournament matrix for the given tournament graph.
|
223 |
+
|
224 |
+
This function requires SciPy.
|
225 |
+
|
226 |
+
The *tournament matrix* of a tournament graph with edge set *E* is
|
227 |
+
the matrix *T* defined by
|
228 |
+
|
229 |
+
.. math::
|
230 |
+
|
231 |
+
T_{i j} =
|
232 |
+
\begin{cases}
|
233 |
+
+1 & \text{if } (i, j) \in E \\
|
234 |
+
-1 & \text{if } (j, i) \in E \\
|
235 |
+
0 & \text{if } i == j.
|
236 |
+
\end{cases}
|
237 |
+
|
238 |
+
An equivalent definition is `T = A - A^T`, where *A* is the
|
239 |
+
adjacency matrix of the graph `G`.
|
240 |
+
|
241 |
+
Parameters
|
242 |
+
----------
|
243 |
+
G : NetworkX graph
|
244 |
+
A directed graph representing a tournament.
|
245 |
+
|
246 |
+
Returns
|
247 |
+
-------
|
248 |
+
SciPy sparse array
|
249 |
+
The tournament matrix of the tournament graph `G`.
|
250 |
+
|
251 |
+
Raises
|
252 |
+
------
|
253 |
+
ImportError
|
254 |
+
If SciPy is not available.
|
255 |
+
|
256 |
+
"""
|
257 |
+
A = nx.adjacency_matrix(G)
|
258 |
+
return A - A.T
|
259 |
+
|
260 |
+
|
261 |
+
@not_implemented_for("undirected")
|
262 |
+
@not_implemented_for("multigraph")
|
263 |
+
@nx._dispatchable
|
264 |
+
def is_reachable(G, s, t):
|
265 |
+
"""Decides whether there is a path from `s` to `t` in the
|
266 |
+
tournament.
|
267 |
+
|
268 |
+
This function is more theoretically efficient than the reachability
|
269 |
+
checks than the shortest path algorithms in
|
270 |
+
:mod:`networkx.algorithms.shortest_paths`.
|
271 |
+
|
272 |
+
The given graph **must** be a tournament, otherwise this function's
|
273 |
+
behavior is undefined.
|
274 |
+
|
275 |
+
Parameters
|
276 |
+
----------
|
277 |
+
G : NetworkX graph
|
278 |
+
A directed graph representing a tournament.
|
279 |
+
|
280 |
+
s : node
|
281 |
+
A node in the graph.
|
282 |
+
|
283 |
+
t : node
|
284 |
+
A node in the graph.
|
285 |
+
|
286 |
+
Returns
|
287 |
+
-------
|
288 |
+
bool
|
289 |
+
Whether there is a path from `s` to `t` in `G`.
|
290 |
+
|
291 |
+
Examples
|
292 |
+
--------
|
293 |
+
>>> G = nx.DiGraph([(1, 0), (1, 3), (1, 2), (2, 3), (2, 0), (3, 0)])
|
294 |
+
>>> nx.is_tournament(G)
|
295 |
+
True
|
296 |
+
>>> nx.tournament.is_reachable(G, 1, 3)
|
297 |
+
True
|
298 |
+
>>> nx.tournament.is_reachable(G, 3, 2)
|
299 |
+
False
|
300 |
+
|
301 |
+
Notes
|
302 |
+
-----
|
303 |
+
Although this function is more theoretically efficient than the
|
304 |
+
generic shortest path functions, a speedup requires the use of
|
305 |
+
parallelism. Though it may in the future, the current implementation
|
306 |
+
does not use parallelism, thus you may not see much of a speedup.
|
307 |
+
|
308 |
+
This algorithm comes from [1].
|
309 |
+
|
310 |
+
References
|
311 |
+
----------
|
312 |
+
.. [1] Tantau, Till.
|
313 |
+
"A note on the complexity of the reachability problem for
|
314 |
+
tournaments."
|
315 |
+
*Electronic Colloquium on Computational Complexity*. 2001.
|
316 |
+
<http://eccc.hpi-web.de/report/2001/092/>
|
317 |
+
"""
|
318 |
+
|
319 |
+
def two_neighborhood(G, v):
|
320 |
+
"""Returns the set of nodes at distance at most two from `v`.
|
321 |
+
|
322 |
+
`G` must be a graph and `v` a node in that graph.
|
323 |
+
|
324 |
+
The returned set includes the nodes at distance zero (that is,
|
325 |
+
the node `v` itself), the nodes at distance one (that is, the
|
326 |
+
out-neighbors of `v`), and the nodes at distance two.
|
327 |
+
|
328 |
+
"""
|
329 |
+
# TODO This is trivially parallelizable.
|
330 |
+
return {
|
331 |
+
x for x in G if x == v or x in G[v] or any(is_path(G, [v, z, x]) for z in G)
|
332 |
+
}
|
333 |
+
|
334 |
+
def is_closed(G, nodes):
|
335 |
+
"""Decides whether the given set of nodes is closed.
|
336 |
+
|
337 |
+
A set *S* of nodes is *closed* if for each node *u* in the graph
|
338 |
+
not in *S* and for each node *v* in *S*, there is an edge from
|
339 |
+
*u* to *v*.
|
340 |
+
|
341 |
+
"""
|
342 |
+
# TODO This is trivially parallelizable.
|
343 |
+
return all(v in G[u] for u in set(G) - nodes for v in nodes)
|
344 |
+
|
345 |
+
# TODO This is trivially parallelizable.
|
346 |
+
neighborhoods = [two_neighborhood(G, v) for v in G]
|
347 |
+
return all(not (is_closed(G, S) and s in S and t not in S) for S in neighborhoods)
|
348 |
+
|
349 |
+
|
350 |
+
@not_implemented_for("undirected")
|
351 |
+
@not_implemented_for("multigraph")
|
352 |
+
@nx._dispatchable(name="tournament_is_strongly_connected")
|
353 |
+
def is_strongly_connected(G):
|
354 |
+
"""Decides whether the given tournament is strongly connected.
|
355 |
+
|
356 |
+
This function is more theoretically efficient than the
|
357 |
+
:func:`~networkx.algorithms.components.is_strongly_connected`
|
358 |
+
function.
|
359 |
+
|
360 |
+
The given graph **must** be a tournament, otherwise this function's
|
361 |
+
behavior is undefined.
|
362 |
+
|
363 |
+
Parameters
|
364 |
+
----------
|
365 |
+
G : NetworkX graph
|
366 |
+
A directed graph representing a tournament.
|
367 |
+
|
368 |
+
Returns
|
369 |
+
-------
|
370 |
+
bool
|
371 |
+
Whether the tournament is strongly connected.
|
372 |
+
|
373 |
+
Examples
|
374 |
+
--------
|
375 |
+
>>> G = nx.DiGraph([(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (3, 0)])
|
376 |
+
>>> nx.is_tournament(G)
|
377 |
+
True
|
378 |
+
>>> nx.tournament.is_strongly_connected(G)
|
379 |
+
True
|
380 |
+
>>> G.remove_edge(3, 0)
|
381 |
+
>>> G.add_edge(0, 3)
|
382 |
+
>>> nx.is_tournament(G)
|
383 |
+
True
|
384 |
+
>>> nx.tournament.is_strongly_connected(G)
|
385 |
+
False
|
386 |
+
|
387 |
+
Notes
|
388 |
+
-----
|
389 |
+
Although this function is more theoretically efficient than the
|
390 |
+
generic strong connectivity function, a speedup requires the use of
|
391 |
+
parallelism. Though it may in the future, the current implementation
|
392 |
+
does not use parallelism, thus you may not see much of a speedup.
|
393 |
+
|
394 |
+
This algorithm comes from [1].
|
395 |
+
|
396 |
+
References
|
397 |
+
----------
|
398 |
+
.. [1] Tantau, Till.
|
399 |
+
"A note on the complexity of the reachability problem for
|
400 |
+
tournaments."
|
401 |
+
*Electronic Colloquium on Computational Complexity*. 2001.
|
402 |
+
<http://eccc.hpi-web.de/report/2001/092/>
|
403 |
+
|
404 |
+
"""
|
405 |
+
# TODO This is trivially parallelizable.
|
406 |
+
return all(is_reachable(G, u, v) for u in G for v in G)
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/triads.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# See https://github.com/networkx/networkx/pull/1474
|
2 |
+
# Copyright 2011 Reya Group <http://www.reyagroup.com>
|
3 |
+
# Copyright 2011 Alex Levenson <[email protected]>
|
4 |
+
# Copyright 2011 Diederik van Liere <[email protected]>
|
5 |
+
"""Functions for analyzing triads of a graph."""
|
6 |
+
|
7 |
+
from collections import defaultdict
|
8 |
+
from itertools import combinations, permutations
|
9 |
+
|
10 |
+
import networkx as nx
|
11 |
+
from networkx.utils import not_implemented_for, py_random_state
|
12 |
+
|
13 |
+
__all__ = [
|
14 |
+
"triadic_census",
|
15 |
+
"is_triad",
|
16 |
+
"all_triplets",
|
17 |
+
"all_triads",
|
18 |
+
"triads_by_type",
|
19 |
+
"triad_type",
|
20 |
+
"random_triad",
|
21 |
+
]
|
22 |
+
|
23 |
+
#: The integer codes representing each type of triad.
|
24 |
+
#:
|
25 |
+
#: Triads that are the same up to symmetry have the same code.
|
26 |
+
TRICODES = (
|
27 |
+
1,
|
28 |
+
2,
|
29 |
+
2,
|
30 |
+
3,
|
31 |
+
2,
|
32 |
+
4,
|
33 |
+
6,
|
34 |
+
8,
|
35 |
+
2,
|
36 |
+
6,
|
37 |
+
5,
|
38 |
+
7,
|
39 |
+
3,
|
40 |
+
8,
|
41 |
+
7,
|
42 |
+
11,
|
43 |
+
2,
|
44 |
+
6,
|
45 |
+
4,
|
46 |
+
8,
|
47 |
+
5,
|
48 |
+
9,
|
49 |
+
9,
|
50 |
+
13,
|
51 |
+
6,
|
52 |
+
10,
|
53 |
+
9,
|
54 |
+
14,
|
55 |
+
7,
|
56 |
+
14,
|
57 |
+
12,
|
58 |
+
15,
|
59 |
+
2,
|
60 |
+
5,
|
61 |
+
6,
|
62 |
+
7,
|
63 |
+
6,
|
64 |
+
9,
|
65 |
+
10,
|
66 |
+
14,
|
67 |
+
4,
|
68 |
+
9,
|
69 |
+
9,
|
70 |
+
12,
|
71 |
+
8,
|
72 |
+
13,
|
73 |
+
14,
|
74 |
+
15,
|
75 |
+
3,
|
76 |
+
7,
|
77 |
+
8,
|
78 |
+
11,
|
79 |
+
7,
|
80 |
+
12,
|
81 |
+
14,
|
82 |
+
15,
|
83 |
+
8,
|
84 |
+
14,
|
85 |
+
13,
|
86 |
+
15,
|
87 |
+
11,
|
88 |
+
15,
|
89 |
+
15,
|
90 |
+
16,
|
91 |
+
)
|
92 |
+
|
93 |
+
#: The names of each type of triad. The order of the elements is
|
94 |
+
#: important: it corresponds to the tricodes given in :data:`TRICODES`.
|
95 |
+
TRIAD_NAMES = (
|
96 |
+
"003",
|
97 |
+
"012",
|
98 |
+
"102",
|
99 |
+
"021D",
|
100 |
+
"021U",
|
101 |
+
"021C",
|
102 |
+
"111D",
|
103 |
+
"111U",
|
104 |
+
"030T",
|
105 |
+
"030C",
|
106 |
+
"201",
|
107 |
+
"120D",
|
108 |
+
"120U",
|
109 |
+
"120C",
|
110 |
+
"210",
|
111 |
+
"300",
|
112 |
+
)
|
113 |
+
|
114 |
+
|
115 |
+
#: A dictionary mapping triad code to triad name.
|
116 |
+
TRICODE_TO_NAME = {i: TRIAD_NAMES[code - 1] for i, code in enumerate(TRICODES)}
|
117 |
+
|
118 |
+
|
119 |
+
def _tricode(G, v, u, w):
|
120 |
+
"""Returns the integer code of the given triad.
|
121 |
+
|
122 |
+
This is some fancy magic that comes from Batagelj and Mrvar's paper. It
|
123 |
+
treats each edge joining a pair of `v`, `u`, and `w` as a bit in
|
124 |
+
the binary representation of an integer.
|
125 |
+
|
126 |
+
"""
|
127 |
+
combos = ((v, u, 1), (u, v, 2), (v, w, 4), (w, v, 8), (u, w, 16), (w, u, 32))
|
128 |
+
return sum(x for u, v, x in combos if v in G[u])
|
129 |
+
|
130 |
+
|
131 |
+
@not_implemented_for("undirected")
|
132 |
+
@nx._dispatchable
|
133 |
+
def triadic_census(G, nodelist=None):
|
134 |
+
"""Determines the triadic census of a directed graph.
|
135 |
+
|
136 |
+
The triadic census is a count of how many of the 16 possible types of
|
137 |
+
triads are present in a directed graph. If a list of nodes is passed, then
|
138 |
+
only those triads are taken into account which have elements of nodelist in them.
|
139 |
+
|
140 |
+
Parameters
|
141 |
+
----------
|
142 |
+
G : digraph
|
143 |
+
A NetworkX DiGraph
|
144 |
+
nodelist : list
|
145 |
+
List of nodes for which you want to calculate triadic census
|
146 |
+
|
147 |
+
Returns
|
148 |
+
-------
|
149 |
+
census : dict
|
150 |
+
Dictionary with triad type as keys and number of occurrences as values.
|
151 |
+
|
152 |
+
Examples
|
153 |
+
--------
|
154 |
+
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1), (3, 4), (4, 1), (4, 2)])
|
155 |
+
>>> triadic_census = nx.triadic_census(G)
|
156 |
+
>>> for key, value in triadic_census.items():
|
157 |
+
... print(f"{key}: {value}")
|
158 |
+
003: 0
|
159 |
+
012: 0
|
160 |
+
102: 0
|
161 |
+
021D: 0
|
162 |
+
021U: 0
|
163 |
+
021C: 0
|
164 |
+
111D: 0
|
165 |
+
111U: 0
|
166 |
+
030T: 2
|
167 |
+
030C: 2
|
168 |
+
201: 0
|
169 |
+
120D: 0
|
170 |
+
120U: 0
|
171 |
+
120C: 0
|
172 |
+
210: 0
|
173 |
+
300: 0
|
174 |
+
|
175 |
+
Notes
|
176 |
+
-----
|
177 |
+
This algorithm has complexity $O(m)$ where $m$ is the number of edges in
|
178 |
+
the graph.
|
179 |
+
|
180 |
+
For undirected graphs, the triadic census can be computed by first converting
|
181 |
+
the graph into a directed graph using the ``G.to_directed()`` method.
|
182 |
+
After this conversion, only the triad types 003, 102, 201 and 300 will be
|
183 |
+
present in the undirected scenario.
|
184 |
+
|
185 |
+
Raises
|
186 |
+
------
|
187 |
+
ValueError
|
188 |
+
If `nodelist` contains duplicate nodes or nodes not in `G`.
|
189 |
+
If you want to ignore this you can preprocess with `set(nodelist) & G.nodes`
|
190 |
+
|
191 |
+
See also
|
192 |
+
--------
|
193 |
+
triad_graph
|
194 |
+
|
195 |
+
References
|
196 |
+
----------
|
197 |
+
.. [1] Vladimir Batagelj and Andrej Mrvar, A subquadratic triad census
|
198 |
+
algorithm for large sparse networks with small maximum degree,
|
199 |
+
University of Ljubljana,
|
200 |
+
http://vlado.fmf.uni-lj.si/pub/networks/doc/triads/triads.pdf
|
201 |
+
|
202 |
+
"""
|
203 |
+
nodeset = set(G.nbunch_iter(nodelist))
|
204 |
+
if nodelist is not None and len(nodelist) != len(nodeset):
|
205 |
+
raise ValueError("nodelist includes duplicate nodes or nodes not in G")
|
206 |
+
|
207 |
+
N = len(G)
|
208 |
+
Nnot = N - len(nodeset) # can signal special counting for subset of nodes
|
209 |
+
|
210 |
+
# create an ordering of nodes with nodeset nodes first
|
211 |
+
m = {n: i for i, n in enumerate(nodeset)}
|
212 |
+
if Nnot:
|
213 |
+
# add non-nodeset nodes later in the ordering
|
214 |
+
not_nodeset = G.nodes - nodeset
|
215 |
+
m.update((n, i + N) for i, n in enumerate(not_nodeset))
|
216 |
+
|
217 |
+
# build all_neighbor dicts for easy counting
|
218 |
+
# After Python 3.8 can leave off these keys(). Speedup also using G._pred
|
219 |
+
# nbrs = {n: G._pred[n].keys() | G._succ[n].keys() for n in G}
|
220 |
+
nbrs = {n: G.pred[n].keys() | G.succ[n].keys() for n in G}
|
221 |
+
dbl_nbrs = {n: G.pred[n].keys() & G.succ[n].keys() for n in G}
|
222 |
+
|
223 |
+
if Nnot:
|
224 |
+
sgl_nbrs = {n: G.pred[n].keys() ^ G.succ[n].keys() for n in not_nodeset}
|
225 |
+
# find number of edges not incident to nodes in nodeset
|
226 |
+
sgl = sum(1 for n in not_nodeset for nbr in sgl_nbrs[n] if nbr not in nodeset)
|
227 |
+
sgl_edges_outside = sgl // 2
|
228 |
+
dbl = sum(1 for n in not_nodeset for nbr in dbl_nbrs[n] if nbr not in nodeset)
|
229 |
+
dbl_edges_outside = dbl // 2
|
230 |
+
|
231 |
+
# Initialize the count for each triad to be zero.
|
232 |
+
census = {name: 0 for name in TRIAD_NAMES}
|
233 |
+
# Main loop over nodes
|
234 |
+
for v in nodeset:
|
235 |
+
vnbrs = nbrs[v]
|
236 |
+
dbl_vnbrs = dbl_nbrs[v]
|
237 |
+
if Nnot:
|
238 |
+
# set up counts of edges attached to v.
|
239 |
+
sgl_unbrs_bdy = sgl_unbrs_out = dbl_unbrs_bdy = dbl_unbrs_out = 0
|
240 |
+
for u in vnbrs:
|
241 |
+
if m[u] <= m[v]:
|
242 |
+
continue
|
243 |
+
unbrs = nbrs[u]
|
244 |
+
neighbors = (vnbrs | unbrs) - {u, v}
|
245 |
+
# Count connected triads.
|
246 |
+
for w in neighbors:
|
247 |
+
if m[u] < m[w] or (m[v] < m[w] < m[u] and v not in nbrs[w]):
|
248 |
+
code = _tricode(G, v, u, w)
|
249 |
+
census[TRICODE_TO_NAME[code]] += 1
|
250 |
+
|
251 |
+
# Use a formula for dyadic triads with edge incident to v
|
252 |
+
if u in dbl_vnbrs:
|
253 |
+
census["102"] += N - len(neighbors) - 2
|
254 |
+
else:
|
255 |
+
census["012"] += N - len(neighbors) - 2
|
256 |
+
|
257 |
+
# Count edges attached to v. Subtract later to get triads with v isolated
|
258 |
+
# _out are (u,unbr) for unbrs outside boundary of nodeset
|
259 |
+
# _bdy are (u,unbr) for unbrs on boundary of nodeset (get double counted)
|
260 |
+
if Nnot and u not in nodeset:
|
261 |
+
sgl_unbrs = sgl_nbrs[u]
|
262 |
+
sgl_unbrs_bdy += len(sgl_unbrs & vnbrs - nodeset)
|
263 |
+
sgl_unbrs_out += len(sgl_unbrs - vnbrs - nodeset)
|
264 |
+
dbl_unbrs = dbl_nbrs[u]
|
265 |
+
dbl_unbrs_bdy += len(dbl_unbrs & vnbrs - nodeset)
|
266 |
+
dbl_unbrs_out += len(dbl_unbrs - vnbrs - nodeset)
|
267 |
+
# if nodeset == G.nodes, skip this b/c we will find the edge later.
|
268 |
+
if Nnot:
|
269 |
+
# Count edges outside nodeset not connected with v (v isolated triads)
|
270 |
+
census["012"] += sgl_edges_outside - (sgl_unbrs_out + sgl_unbrs_bdy // 2)
|
271 |
+
census["102"] += dbl_edges_outside - (dbl_unbrs_out + dbl_unbrs_bdy // 2)
|
272 |
+
|
273 |
+
# calculate null triads: "003"
|
274 |
+
# null triads = total number of possible triads - all found triads
|
275 |
+
total_triangles = (N * (N - 1) * (N - 2)) // 6
|
276 |
+
triangles_without_nodeset = (Nnot * (Nnot - 1) * (Nnot - 2)) // 6
|
277 |
+
total_census = total_triangles - triangles_without_nodeset
|
278 |
+
census["003"] = total_census - sum(census.values())
|
279 |
+
|
280 |
+
return census
|
281 |
+
|
282 |
+
|
283 |
+
@nx._dispatchable
|
284 |
+
def is_triad(G):
|
285 |
+
"""Returns True if the graph G is a triad, else False.
|
286 |
+
|
287 |
+
Parameters
|
288 |
+
----------
|
289 |
+
G : graph
|
290 |
+
A NetworkX Graph
|
291 |
+
|
292 |
+
Returns
|
293 |
+
-------
|
294 |
+
istriad : boolean
|
295 |
+
Whether G is a valid triad
|
296 |
+
|
297 |
+
Examples
|
298 |
+
--------
|
299 |
+
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
|
300 |
+
>>> nx.is_triad(G)
|
301 |
+
True
|
302 |
+
>>> G.add_edge(0, 1)
|
303 |
+
>>> nx.is_triad(G)
|
304 |
+
False
|
305 |
+
"""
|
306 |
+
if isinstance(G, nx.Graph):
|
307 |
+
if G.order() == 3 and nx.is_directed(G):
|
308 |
+
if not any((n, n) in G.edges() for n in G.nodes()):
|
309 |
+
return True
|
310 |
+
return False
|
311 |
+
|
312 |
+
|
313 |
+
@not_implemented_for("undirected")
|
314 |
+
@nx._dispatchable
|
315 |
+
def all_triplets(G):
|
316 |
+
"""Returns a generator of all possible sets of 3 nodes in a DiGraph.
|
317 |
+
|
318 |
+
.. deprecated:: 3.3
|
319 |
+
|
320 |
+
all_triplets is deprecated and will be removed in NetworkX version 3.5.
|
321 |
+
Use `itertools.combinations` instead::
|
322 |
+
|
323 |
+
all_triplets = itertools.combinations(G, 3)
|
324 |
+
|
325 |
+
Parameters
|
326 |
+
----------
|
327 |
+
G : digraph
|
328 |
+
A NetworkX DiGraph
|
329 |
+
|
330 |
+
Returns
|
331 |
+
-------
|
332 |
+
triplets : generator of 3-tuples
|
333 |
+
Generator of tuples of 3 nodes
|
334 |
+
|
335 |
+
Examples
|
336 |
+
--------
|
337 |
+
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4)])
|
338 |
+
>>> list(nx.all_triplets(G))
|
339 |
+
[(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
|
340 |
+
|
341 |
+
"""
|
342 |
+
import warnings
|
343 |
+
|
344 |
+
warnings.warn(
|
345 |
+
(
|
346 |
+
"\n\nall_triplets is deprecated and will be rmoved in v3.5.\n"
|
347 |
+
"Use `itertools.combinations(G, 3)` instead."
|
348 |
+
),
|
349 |
+
category=DeprecationWarning,
|
350 |
+
stacklevel=4,
|
351 |
+
)
|
352 |
+
triplets = combinations(G.nodes(), 3)
|
353 |
+
return triplets
|
354 |
+
|
355 |
+
|
356 |
+
@not_implemented_for("undirected")
|
357 |
+
@nx._dispatchable(returns_graph=True)
|
358 |
+
def all_triads(G):
|
359 |
+
"""A generator of all possible triads in G.
|
360 |
+
|
361 |
+
Parameters
|
362 |
+
----------
|
363 |
+
G : digraph
|
364 |
+
A NetworkX DiGraph
|
365 |
+
|
366 |
+
Returns
|
367 |
+
-------
|
368 |
+
all_triads : generator of DiGraphs
|
369 |
+
Generator of triads (order-3 DiGraphs)
|
370 |
+
|
371 |
+
Examples
|
372 |
+
--------
|
373 |
+
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1), (3, 4), (4, 1), (4, 2)])
|
374 |
+
>>> for triad in nx.all_triads(G):
|
375 |
+
... print(triad.edges)
|
376 |
+
[(1, 2), (2, 3), (3, 1)]
|
377 |
+
[(1, 2), (4, 1), (4, 2)]
|
378 |
+
[(3, 1), (3, 4), (4, 1)]
|
379 |
+
[(2, 3), (3, 4), (4, 2)]
|
380 |
+
|
381 |
+
"""
|
382 |
+
triplets = combinations(G.nodes(), 3)
|
383 |
+
for triplet in triplets:
|
384 |
+
yield G.subgraph(triplet).copy()
|
385 |
+
|
386 |
+
|
387 |
+
@not_implemented_for("undirected")
|
388 |
+
@nx._dispatchable
|
389 |
+
def triads_by_type(G):
|
390 |
+
"""Returns a list of all triads for each triad type in a directed graph.
|
391 |
+
There are exactly 16 different types of triads possible. Suppose 1, 2, 3 are three
|
392 |
+
nodes, they will be classified as a particular triad type if their connections
|
393 |
+
are as follows:
|
394 |
+
|
395 |
+
- 003: 1, 2, 3
|
396 |
+
- 012: 1 -> 2, 3
|
397 |
+
- 102: 1 <-> 2, 3
|
398 |
+
- 021D: 1 <- 2 -> 3
|
399 |
+
- 021U: 1 -> 2 <- 3
|
400 |
+
- 021C: 1 -> 2 -> 3
|
401 |
+
- 111D: 1 <-> 2 <- 3
|
402 |
+
- 111U: 1 <-> 2 -> 3
|
403 |
+
- 030T: 1 -> 2 -> 3, 1 -> 3
|
404 |
+
- 030C: 1 <- 2 <- 3, 1 -> 3
|
405 |
+
- 201: 1 <-> 2 <-> 3
|
406 |
+
- 120D: 1 <- 2 -> 3, 1 <-> 3
|
407 |
+
- 120U: 1 -> 2 <- 3, 1 <-> 3
|
408 |
+
- 120C: 1 -> 2 -> 3, 1 <-> 3
|
409 |
+
- 210: 1 -> 2 <-> 3, 1 <-> 3
|
410 |
+
- 300: 1 <-> 2 <-> 3, 1 <-> 3
|
411 |
+
|
412 |
+
Refer to the :doc:`example gallery </auto_examples/graph/plot_triad_types>`
|
413 |
+
for visual examples of the triad types.
|
414 |
+
|
415 |
+
Parameters
|
416 |
+
----------
|
417 |
+
G : digraph
|
418 |
+
A NetworkX DiGraph
|
419 |
+
|
420 |
+
Returns
|
421 |
+
-------
|
422 |
+
tri_by_type : dict
|
423 |
+
Dictionary with triad types as keys and lists of triads as values.
|
424 |
+
|
425 |
+
Examples
|
426 |
+
--------
|
427 |
+
>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 3), (3, 1), (5, 6), (5, 4), (6, 7)])
|
428 |
+
>>> dict = nx.triads_by_type(G)
|
429 |
+
>>> dict["120C"][0].edges()
|
430 |
+
OutEdgeView([(1, 2), (1, 3), (2, 3), (3, 1)])
|
431 |
+
>>> dict["012"][0].edges()
|
432 |
+
OutEdgeView([(1, 2)])
|
433 |
+
|
434 |
+
References
|
435 |
+
----------
|
436 |
+
.. [1] Snijders, T. (2012). "Transitivity and triads." University of
|
437 |
+
Oxford.
|
438 |
+
https://web.archive.org/web/20170830032057/http://www.stats.ox.ac.uk/~snijders/Trans_Triads_ha.pdf
|
439 |
+
"""
|
440 |
+
# num_triads = o * (o - 1) * (o - 2) // 6
|
441 |
+
# if num_triads > TRIAD_LIMIT: print(WARNING)
|
442 |
+
all_tri = all_triads(G)
|
443 |
+
tri_by_type = defaultdict(list)
|
444 |
+
for triad in all_tri:
|
445 |
+
name = triad_type(triad)
|
446 |
+
tri_by_type[name].append(triad)
|
447 |
+
return tri_by_type
|
448 |
+
|
449 |
+
|
450 |
+
@not_implemented_for("undirected")
|
451 |
+
@nx._dispatchable
|
452 |
+
def triad_type(G):
|
453 |
+
"""Returns the sociological triad type for a triad.
|
454 |
+
|
455 |
+
Parameters
|
456 |
+
----------
|
457 |
+
G : digraph
|
458 |
+
A NetworkX DiGraph with 3 nodes
|
459 |
+
|
460 |
+
Returns
|
461 |
+
-------
|
462 |
+
triad_type : str
|
463 |
+
A string identifying the triad type
|
464 |
+
|
465 |
+
Examples
|
466 |
+
--------
|
467 |
+
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
|
468 |
+
>>> nx.triad_type(G)
|
469 |
+
'030C'
|
470 |
+
>>> G.add_edge(1, 3)
|
471 |
+
>>> nx.triad_type(G)
|
472 |
+
'120C'
|
473 |
+
|
474 |
+
Notes
|
475 |
+
-----
|
476 |
+
There can be 6 unique edges in a triad (order-3 DiGraph) (so 2^^6=64 unique
|
477 |
+
triads given 3 nodes). These 64 triads each display exactly 1 of 16
|
478 |
+
topologies of triads (topologies can be permuted). These topologies are
|
479 |
+
identified by the following notation:
|
480 |
+
|
481 |
+
{m}{a}{n}{type} (for example: 111D, 210, 102)
|
482 |
+
|
483 |
+
Here:
|
484 |
+
|
485 |
+
{m} = number of mutual ties (takes 0, 1, 2, 3); a mutual tie is (0,1)
|
486 |
+
AND (1,0)
|
487 |
+
{a} = number of asymmetric ties (takes 0, 1, 2, 3); an asymmetric tie
|
488 |
+
is (0,1) BUT NOT (1,0) or vice versa
|
489 |
+
{n} = number of null ties (takes 0, 1, 2, 3); a null tie is NEITHER
|
490 |
+
(0,1) NOR (1,0)
|
491 |
+
{type} = a letter (takes U, D, C, T) corresponding to up, down, cyclical
|
492 |
+
and transitive. This is only used for topologies that can have
|
493 |
+
more than one form (eg: 021D and 021U).
|
494 |
+
|
495 |
+
References
|
496 |
+
----------
|
497 |
+
.. [1] Snijders, T. (2012). "Transitivity and triads." University of
|
498 |
+
Oxford.
|
499 |
+
https://web.archive.org/web/20170830032057/http://www.stats.ox.ac.uk/~snijders/Trans_Triads_ha.pdf
|
500 |
+
"""
|
501 |
+
if not is_triad(G):
|
502 |
+
raise nx.NetworkXAlgorithmError("G is not a triad (order-3 DiGraph)")
|
503 |
+
num_edges = len(G.edges())
|
504 |
+
if num_edges == 0:
|
505 |
+
return "003"
|
506 |
+
elif num_edges == 1:
|
507 |
+
return "012"
|
508 |
+
elif num_edges == 2:
|
509 |
+
e1, e2 = G.edges()
|
510 |
+
if set(e1) == set(e2):
|
511 |
+
return "102"
|
512 |
+
elif e1[0] == e2[0]:
|
513 |
+
return "021D"
|
514 |
+
elif e1[1] == e2[1]:
|
515 |
+
return "021U"
|
516 |
+
elif e1[1] == e2[0] or e2[1] == e1[0]:
|
517 |
+
return "021C"
|
518 |
+
elif num_edges == 3:
|
519 |
+
for e1, e2, e3 in permutations(G.edges(), 3):
|
520 |
+
if set(e1) == set(e2):
|
521 |
+
if e3[0] in e1:
|
522 |
+
return "111U"
|
523 |
+
# e3[1] in e1:
|
524 |
+
return "111D"
|
525 |
+
elif set(e1).symmetric_difference(set(e2)) == set(e3):
|
526 |
+
if {e1[0], e2[0], e3[0]} == {e1[0], e2[0], e3[0]} == set(G.nodes()):
|
527 |
+
return "030C"
|
528 |
+
# e3 == (e1[0], e2[1]) and e2 == (e1[1], e3[1]):
|
529 |
+
return "030T"
|
530 |
+
elif num_edges == 4:
|
531 |
+
for e1, e2, e3, e4 in permutations(G.edges(), 4):
|
532 |
+
if set(e1) == set(e2):
|
533 |
+
# identify pair of symmetric edges (which necessarily exists)
|
534 |
+
if set(e3) == set(e4):
|
535 |
+
return "201"
|
536 |
+
if {e3[0]} == {e4[0]} == set(e3).intersection(set(e4)):
|
537 |
+
return "120D"
|
538 |
+
if {e3[1]} == {e4[1]} == set(e3).intersection(set(e4)):
|
539 |
+
return "120U"
|
540 |
+
if e3[1] == e4[0]:
|
541 |
+
return "120C"
|
542 |
+
elif num_edges == 5:
|
543 |
+
return "210"
|
544 |
+
elif num_edges == 6:
|
545 |
+
return "300"
|
546 |
+
|
547 |
+
|
548 |
+
@not_implemented_for("undirected")
|
549 |
+
@py_random_state(1)
|
550 |
+
@nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
|
551 |
+
def random_triad(G, seed=None):
|
552 |
+
"""Returns a random triad from a directed graph.
|
553 |
+
|
554 |
+
.. deprecated:: 3.3
|
555 |
+
|
556 |
+
random_triad is deprecated and will be removed in version 3.5.
|
557 |
+
Use random sampling directly instead::
|
558 |
+
|
559 |
+
G.subgraph(random.sample(list(G), 3))
|
560 |
+
|
561 |
+
Parameters
|
562 |
+
----------
|
563 |
+
G : digraph
|
564 |
+
A NetworkX DiGraph
|
565 |
+
seed : integer, random_state, or None (default)
|
566 |
+
Indicator of random number generation state.
|
567 |
+
See :ref:`Randomness<randomness>`.
|
568 |
+
|
569 |
+
Returns
|
570 |
+
-------
|
571 |
+
G2 : subgraph
|
572 |
+
A randomly selected triad (order-3 NetworkX DiGraph)
|
573 |
+
|
574 |
+
Raises
|
575 |
+
------
|
576 |
+
NetworkXError
|
577 |
+
If the input Graph has less than 3 nodes.
|
578 |
+
|
579 |
+
Examples
|
580 |
+
--------
|
581 |
+
>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 3), (3, 1), (5, 6), (5, 4), (6, 7)])
|
582 |
+
>>> triad = nx.random_triad(G, seed=1)
|
583 |
+
>>> triad.edges
|
584 |
+
OutEdgeView([(1, 2)])
|
585 |
+
|
586 |
+
"""
|
587 |
+
import warnings
|
588 |
+
|
589 |
+
warnings.warn(
|
590 |
+
(
|
591 |
+
"\n\nrandom_triad is deprecated and will be removed in NetworkX v3.5.\n"
|
592 |
+
"Use random.sample instead, e.g.::\n\n"
|
593 |
+
"\tG.subgraph(random.sample(list(G), 3))\n"
|
594 |
+
),
|
595 |
+
category=DeprecationWarning,
|
596 |
+
stacklevel=5,
|
597 |
+
)
|
598 |
+
if len(G) < 3:
|
599 |
+
raise nx.NetworkXError(
|
600 |
+
f"G needs at least 3 nodes to form a triad; (it has {len(G)} nodes)"
|
601 |
+
)
|
602 |
+
nodes = seed.sample(list(G.nodes()), 3)
|
603 |
+
G2 = G.subgraph(nodes)
|
604 |
+
return G2
|
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/vitality.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Vitality measures.
|
3 |
+
"""
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
|
8 |
+
__all__ = ["closeness_vitality"]
|
9 |
+
|
10 |
+
|
11 |
+
@nx._dispatchable(edge_attrs="weight")
|
12 |
+
def closeness_vitality(G, node=None, weight=None, wiener_index=None):
|
13 |
+
"""Returns the closeness vitality for nodes in the graph.
|
14 |
+
|
15 |
+
The *closeness vitality* of a node, defined in Section 3.6.2 of [1],
|
16 |
+
is the change in the sum of distances between all node pairs when
|
17 |
+
excluding that node.
|
18 |
+
|
19 |
+
Parameters
|
20 |
+
----------
|
21 |
+
G : NetworkX graph
|
22 |
+
A strongly-connected graph.
|
23 |
+
|
24 |
+
weight : string
|
25 |
+
The name of the edge attribute used as weight. This is passed
|
26 |
+
directly to the :func:`~networkx.wiener_index` function.
|
27 |
+
|
28 |
+
node : object
|
29 |
+
If specified, only the closeness vitality for this node will be
|
30 |
+
returned. Otherwise, a dictionary mapping each node to its
|
31 |
+
closeness vitality will be returned.
|
32 |
+
|
33 |
+
Other parameters
|
34 |
+
----------------
|
35 |
+
wiener_index : number
|
36 |
+
If you have already computed the Wiener index of the graph
|
37 |
+
`G`, you can provide that value here. Otherwise, it will be
|
38 |
+
computed for you.
|
39 |
+
|
40 |
+
Returns
|
41 |
+
-------
|
42 |
+
dictionary or float
|
43 |
+
If `node` is None, this function returns a dictionary
|
44 |
+
with nodes as keys and closeness vitality as the
|
45 |
+
value. Otherwise, it returns only the closeness vitality for the
|
46 |
+
specified `node`.
|
47 |
+
|
48 |
+
The closeness vitality of a node may be negative infinity if
|
49 |
+
removing that node would disconnect the graph.
|
50 |
+
|
51 |
+
Examples
|
52 |
+
--------
|
53 |
+
>>> G = nx.cycle_graph(3)
|
54 |
+
>>> nx.closeness_vitality(G)
|
55 |
+
{0: 2.0, 1: 2.0, 2: 2.0}
|
56 |
+
|
57 |
+
See Also
|
58 |
+
--------
|
59 |
+
closeness_centrality
|
60 |
+
|
61 |
+
References
|
62 |
+
----------
|
63 |
+
.. [1] Ulrik Brandes, Thomas Erlebach (eds.).
|
64 |
+
*Network Analysis: Methodological Foundations*.
|
65 |
+
Springer, 2005.
|
66 |
+
<http://books.google.com/books?id=TTNhSm7HYrIC>
|
67 |
+
|
68 |
+
"""
|
69 |
+
if wiener_index is None:
|
70 |
+
wiener_index = nx.wiener_index(G, weight=weight)
|
71 |
+
if node is not None:
|
72 |
+
after = nx.wiener_index(G.subgraph(set(G) - {node}), weight=weight)
|
73 |
+
return wiener_index - after
|
74 |
+
vitality = partial(closeness_vitality, G, weight=weight, wiener_index=wiener_index)
|
75 |
+
# TODO This can be trivially parallelized.
|
76 |
+
return {v: vitality(node=v) for v in G}
|