Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/__init__.py +96 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/common.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/cudagraphs.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/debugging.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/distributed.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/inductor.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/onnxrt.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/registry.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/tensorrt.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/torchxla.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/tvm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/common.py +112 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/cudagraphs.py +239 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/debugging.py +289 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/distributed.py +612 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/inductor.py +16 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/onnxrt.py +37 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/registry.py +115 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/tensorrt.py +14 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/torchxla.py +75 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/tvm.py +172 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/bytecode_analysis.py +250 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/callback.py +82 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/debug_utils.py +802 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/decorators.py +347 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py +1561 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/hooks.py +12 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/mutation_guard.py +126 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/replay_record.py +110 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/repro/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/after_aot.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/after_dynamo.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py +932 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py +566 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/source.py +545 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/test_case.py +78 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/types.py +99 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__init__.py +151 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/base.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/builder.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/builtin.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/constant.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/ctx_manager.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/dicts.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/distributed.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/functions.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/__init__.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from . import convert_frame, eval_frame, resume_execution
|
3 |
+
from .backends.registry import list_backends, lookup_backend, register_backend
|
4 |
+
from .callback import callback_handler, on_compile_end, on_compile_start
|
5 |
+
from .code_context import code_context
|
6 |
+
from .convert_frame import replay
|
7 |
+
from .decorators import (
|
8 |
+
allow_in_graph,
|
9 |
+
assume_constant_result,
|
10 |
+
disable,
|
11 |
+
disallow_in_graph,
|
12 |
+
forbid_in_graph,
|
13 |
+
graph_break,
|
14 |
+
mark_dynamic,
|
15 |
+
mark_static,
|
16 |
+
mark_static_address,
|
17 |
+
maybe_mark_dynamic,
|
18 |
+
run,
|
19 |
+
)
|
20 |
+
from .eval_frame import (
|
21 |
+
_reset_guarded_backend_cache,
|
22 |
+
explain,
|
23 |
+
export,
|
24 |
+
is_dynamo_supported,
|
25 |
+
is_inductor_supported,
|
26 |
+
optimize,
|
27 |
+
optimize_assert,
|
28 |
+
OptimizedModule,
|
29 |
+
reset_code,
|
30 |
+
)
|
31 |
+
from .external_utils import is_compiling
|
32 |
+
from .utils import graph_break_reasons, guard_failures, orig_code_map, reset_frame_count
|
33 |
+
|
34 |
+
__all__ = [
|
35 |
+
"allow_in_graph",
|
36 |
+
"assume_constant_result",
|
37 |
+
"disallow_in_graph",
|
38 |
+
"forbid_in_graph",
|
39 |
+
"graph_break",
|
40 |
+
"mark_dynamic",
|
41 |
+
"maybe_mark_dynamic",
|
42 |
+
"mark_static",
|
43 |
+
"mark_static_address",
|
44 |
+
"optimize",
|
45 |
+
"optimize_assert",
|
46 |
+
"export",
|
47 |
+
"explain",
|
48 |
+
"run",
|
49 |
+
"replay",
|
50 |
+
"disable",
|
51 |
+
"reset",
|
52 |
+
"OptimizedModule",
|
53 |
+
"is_compiling",
|
54 |
+
"register_backend",
|
55 |
+
"list_backends",
|
56 |
+
"lookup_backend",
|
57 |
+
]
|
58 |
+
|
59 |
+
if torch.manual_seed is torch.random.manual_seed:
|
60 |
+
import torch.jit._builtins
|
61 |
+
|
62 |
+
# Wrap manual_seed with the disable decorator.
|
63 |
+
# Can't do it at its implementation due to dependency issues.
|
64 |
+
torch.manual_seed = disable(torch.manual_seed)
|
65 |
+
# Add the new manual_seed to the builtin registry.
|
66 |
+
torch.jit._builtins._register_builtin(torch.manual_seed, "aten::manual_seed")
|
67 |
+
|
68 |
+
|
69 |
+
def reset() -> None:
|
70 |
+
"""Clear all compile caches and restore initial state"""
|
71 |
+
with convert_frame.compile_lock:
|
72 |
+
reset_code_caches()
|
73 |
+
convert_frame.input_codes.clear()
|
74 |
+
convert_frame.output_codes.clear()
|
75 |
+
orig_code_map.clear()
|
76 |
+
guard_failures.clear()
|
77 |
+
graph_break_reasons.clear()
|
78 |
+
resume_execution.ContinueExecutionCache.cache.clear()
|
79 |
+
_reset_guarded_backend_cache()
|
80 |
+
reset_frame_count()
|
81 |
+
torch._C._dynamo.compiled_autograd.clear_cache()
|
82 |
+
convert_frame.FRAME_COUNTER = 0
|
83 |
+
convert_frame.FRAME_COMPILE_COUNTER.clear()
|
84 |
+
callback_handler.clear()
|
85 |
+
|
86 |
+
|
87 |
+
def reset_code_caches() -> None:
|
88 |
+
"""Clear compile caches that are keyed by code objects"""
|
89 |
+
with convert_frame.compile_lock:
|
90 |
+
for weak_code in (
|
91 |
+
convert_frame.input_codes.seen + convert_frame.output_codes.seen
|
92 |
+
):
|
93 |
+
code = weak_code()
|
94 |
+
if code:
|
95 |
+
reset_code(code)
|
96 |
+
code_context.clear()
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (195 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/common.cpython-310.pyc
ADDED
Binary file (3.12 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/cudagraphs.cpython-310.pyc
ADDED
Binary file (6.91 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/debugging.cpython-310.pyc
ADDED
Binary file (8.67 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/distributed.cpython-310.pyc
ADDED
Binary file (18.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/inductor.cpython-310.pyc
ADDED
Binary file (560 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/onnxrt.cpython-310.pyc
ADDED
Binary file (1.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/registry.cpython-310.pyc
ADDED
Binary file (3.73 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/tensorrt.cpython-310.pyc
ADDED
Binary file (271 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/torchxla.cpython-310.pyc
ADDED
Binary file (1.93 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/tvm.cpython-310.pyc
ADDED
Binary file (5.21 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/common.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import contextlib
|
4 |
+
import functools
|
5 |
+
import logging
|
6 |
+
from unittest.mock import patch
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch._dynamo import disable
|
10 |
+
from torch._dynamo.utils import counters, defake
|
11 |
+
from torch._functorch.aot_autograd import aot_module_simplified
|
12 |
+
from torch.utils._python_dispatch import _disable_current_modes
|
13 |
+
|
14 |
+
log = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
|
17 |
+
def aot_autograd(**kwargs):
|
18 |
+
def compiler_fn(gm: torch.fx.GraphModule, example_inputs):
|
19 |
+
# Hack to get around circular import problems with aot_eager_decomp_partition
|
20 |
+
if callable(kwargs.get("decompositions")):
|
21 |
+
kwargs["decompositions"] = kwargs["decompositions"]()
|
22 |
+
|
23 |
+
# NB: dont delete counter increment
|
24 |
+
counters["aot_autograd"]["total"] += 1
|
25 |
+
use_fallback = False
|
26 |
+
|
27 |
+
if use_fallback:
|
28 |
+
log.debug("Unable to use AOT Autograd because graph has mutation")
|
29 |
+
counters["aot_autograd"]["not_ok"] += 1
|
30 |
+
return gm
|
31 |
+
|
32 |
+
# OK attempt to compile
|
33 |
+
|
34 |
+
def _wrapped_bw_compiler(*args, **kwargs):
|
35 |
+
# stop TorchDynamo from trying to compile our generated backwards pass
|
36 |
+
return disable(disable(bw_compiler)(*args, **kwargs))
|
37 |
+
|
38 |
+
bw_compiler = kwargs.get("bw_compiler") or kwargs["fw_compiler"]
|
39 |
+
kwargs["bw_compiler"] = _wrapped_bw_compiler
|
40 |
+
kwargs["inference_compiler"] = (
|
41 |
+
kwargs.get("inference_compiler") or kwargs["fw_compiler"]
|
42 |
+
)
|
43 |
+
|
44 |
+
from functorch.compile import nop
|
45 |
+
|
46 |
+
from torch._inductor.debug import enable_aot_logging
|
47 |
+
|
48 |
+
# debug asserts slow down compile time noticeably,
|
49 |
+
# So only default them on when the aot_eager backend is used.
|
50 |
+
if kwargs.get("fw_compiler", None) == nop:
|
51 |
+
patch_config = patch("functorch.compile.config.debug_assert", True)
|
52 |
+
else:
|
53 |
+
patch_config = contextlib.nullcontext()
|
54 |
+
|
55 |
+
try:
|
56 |
+
# NB: NOT cloned!
|
57 |
+
with enable_aot_logging(), patch_config:
|
58 |
+
cg = aot_module_simplified(gm, example_inputs, **kwargs)
|
59 |
+
counters["aot_autograd"]["ok"] += 1
|
60 |
+
return disable(cg)
|
61 |
+
except Exception:
|
62 |
+
counters["aot_autograd"]["not_ok"] += 1
|
63 |
+
raise
|
64 |
+
|
65 |
+
return compiler_fn
|
66 |
+
|
67 |
+
|
68 |
+
def mem_efficient_fusion_kwargs(use_decomps):
|
69 |
+
from functorch.compile import (
|
70 |
+
default_decompositions,
|
71 |
+
min_cut_rematerialization_partition,
|
72 |
+
ts_compile,
|
73 |
+
)
|
74 |
+
|
75 |
+
kwargs = {
|
76 |
+
# these are taken from memory_efficient_fusion()
|
77 |
+
"fw_compiler": ts_compile,
|
78 |
+
"bw_compiler": ts_compile,
|
79 |
+
"partition_fn": min_cut_rematerialization_partition,
|
80 |
+
}
|
81 |
+
|
82 |
+
if use_decomps:
|
83 |
+
kwargs["decompositions"] = default_decompositions
|
84 |
+
|
85 |
+
return kwargs
|
86 |
+
|
87 |
+
|
88 |
+
def fake_tensor_unsupported(fn):
|
89 |
+
"""
|
90 |
+
Decorator for backends that need real inputs. We swap out fake
|
91 |
+
tensors for zero tensors.
|
92 |
+
"""
|
93 |
+
|
94 |
+
@functools.wraps(fn)
|
95 |
+
def wrapper(model, inputs, **kwargs):
|
96 |
+
with _disable_current_modes():
|
97 |
+
inputs = list(map(defake, inputs))
|
98 |
+
return fn(model, inputs, **kwargs)
|
99 |
+
|
100 |
+
return wrapper
|
101 |
+
|
102 |
+
|
103 |
+
def device_from_inputs(example_inputs) -> torch.device:
|
104 |
+
for x in example_inputs:
|
105 |
+
if hasattr(x, "device"):
|
106 |
+
return x.device
|
107 |
+
|
108 |
+
|
109 |
+
def dtype_from_inputs(example_inputs) -> torch.dtype:
|
110 |
+
for x in example_inputs:
|
111 |
+
if hasattr(x, "dtype"):
|
112 |
+
return x.dtype
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/cudagraphs.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import functools
|
4 |
+
import operator
|
5 |
+
from collections import defaultdict
|
6 |
+
from typing import Dict, List, Optional
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch._dynamo.backends.debugging import boxed_nop
|
10 |
+
from torch._inductor.cudagraph_trees import cudagraphify_impl
|
11 |
+
from torch._inductor.cudagraph_utils import (
|
12 |
+
BoxedDeviceIndex,
|
13 |
+
check_multiple_devices_or_any_cpu_nodes,
|
14 |
+
get_mutation_stack_trace,
|
15 |
+
)
|
16 |
+
from torch._inductor.utils import (
|
17 |
+
BoxedBool,
|
18 |
+
count_tangents,
|
19 |
+
has_incompatible_cudagraph_ops,
|
20 |
+
num_fw_fixed_arguments,
|
21 |
+
output_node,
|
22 |
+
)
|
23 |
+
from torch.multiprocessing.reductions import StorageWeakRef
|
24 |
+
from .common import aot_autograd
|
25 |
+
from .registry import register_backend
|
26 |
+
|
27 |
+
perf_log = torch._logging.getArtifactLogger(__name__, "perf_hints")
|
28 |
+
|
29 |
+
|
30 |
+
def find_input_mutations(g):
|
31 |
+
def meta_fk(meta):
|
32 |
+
return meta["val"] if "val" in meta else meta["fake_result"]
|
33 |
+
|
34 |
+
inputs = defaultdict(set)
|
35 |
+
input_idx = 0
|
36 |
+
mutated_inputs = set()
|
37 |
+
for n in g.nodes:
|
38 |
+
if n.op == "placeholder":
|
39 |
+
if isinstance(meta_fk(n.meta), torch.Tensor):
|
40 |
+
inputs[StorageWeakRef(meta_fk(n.meta)._typed_storage())].add(input_idx)
|
41 |
+
input_idx += 1
|
42 |
+
elif n.op == "call_function":
|
43 |
+
if n.target is operator.getitem:
|
44 |
+
continue
|
45 |
+
schema = n.target._schema
|
46 |
+
for i, arg in enumerate(schema.arguments):
|
47 |
+
if i < len(n.args):
|
48 |
+
argument = n.args[i]
|
49 |
+
else:
|
50 |
+
if arg.name not in n.kwargs:
|
51 |
+
continue
|
52 |
+
argument = n.kwargs[arg.name]
|
53 |
+
mut_arg = False
|
54 |
+
if arg.alias_info:
|
55 |
+
if arg.alias_info.is_write:
|
56 |
+
mut_arg = True
|
57 |
+
if mut_arg:
|
58 |
+
# TODO: not correct for args that contain tensors in a struct
|
59 |
+
# like list
|
60 |
+
mutated_inputs |= inputs[
|
61 |
+
StorageWeakRef(meta_fk(argument.meta)._typed_storage())
|
62 |
+
]
|
63 |
+
|
64 |
+
# TODO: error on unrecognized nodes
|
65 |
+
return mutated_inputs
|
66 |
+
|
67 |
+
|
68 |
+
def get_device_node_mapping(gm: torch.fx.GraphModule):
|
69 |
+
device_node_mapping: Dict[torch.device, torch.fx.Node] = {}
|
70 |
+
for n in gm.graph.nodes:
|
71 |
+
t = n.meta.get("val", None)
|
72 |
+
if isinstance(t, torch.Tensor) and t.device not in device_node_mapping:
|
73 |
+
device_node_mapping[t.device] = n
|
74 |
+
return device_node_mapping
|
75 |
+
|
76 |
+
|
77 |
+
def check_for_mutation(aot_model: torch.fx.GraphModule, num_fixed) -> Optional[str]:
|
78 |
+
mutation_indices = find_input_mutations(aot_model.graph) - set(range(num_fixed))
|
79 |
+
if not mutation_indices:
|
80 |
+
return None
|
81 |
+
|
82 |
+
return get_mutation_stack_trace(aot_model, mutation_indices)
|
83 |
+
|
84 |
+
|
85 |
+
def check_for_skip(aot_model: torch.fx.GraphModule, num_fixed) -> Optional[str]:
|
86 |
+
if mut_skip := check_for_mutation(aot_model, num_fixed):
|
87 |
+
return mut_skip
|
88 |
+
|
89 |
+
if skip := check_multiple_devices_or_any_cpu_nodes(
|
90 |
+
get_device_node_mapping(aot_model)
|
91 |
+
):
|
92 |
+
return skip
|
93 |
+
|
94 |
+
if has_incompatible_cudagraph_ops(aot_model):
|
95 |
+
return "skipping cudagraphs due to incompatible op"
|
96 |
+
|
97 |
+
return None
|
98 |
+
|
99 |
+
|
100 |
+
def get_device_index(gm) -> int:
|
101 |
+
device = next(iter(get_device_node_mapping(gm)))
|
102 |
+
assert device.type == "cuda"
|
103 |
+
return device.index
|
104 |
+
|
105 |
+
|
106 |
+
def get_stack_traces(gm) -> List[Optional[str]]:
|
107 |
+
output = output_node(gm)
|
108 |
+
assert len(output.args) == 1
|
109 |
+
return [
|
110 |
+
(arg.stack_trace if isinstance(arg, torch.fx.node.Node) else None)
|
111 |
+
for arg in output.args[0]
|
112 |
+
]
|
113 |
+
|
114 |
+
|
115 |
+
def cudagraphs(dynamo_model, dynamo_inputs):
|
116 |
+
do_cudagraphs = BoxedBool(True)
|
117 |
+
boxed_device_index = BoxedDeviceIndex(None)
|
118 |
+
|
119 |
+
def forward_cudagraphs(aot_model, aot_inputs, is_inference=False):
|
120 |
+
interp = boxed_nop(aot_model, aot_inputs)
|
121 |
+
fixed = num_fw_fixed_arguments(len(dynamo_inputs), len(aot_inputs))
|
122 |
+
if skip_msg := check_for_skip(aot_model, fixed):
|
123 |
+
BoxedBool.disable(do_cudagraphs)
|
124 |
+
perf_log.warning("skipping cudagraphs due to %s", skip_msg)
|
125 |
+
return interp
|
126 |
+
|
127 |
+
boxed_device_index.set(get_device_index(aot_model))
|
128 |
+
|
129 |
+
out = cudagraphify_impl(
|
130 |
+
interp,
|
131 |
+
aot_inputs,
|
132 |
+
range(fixed),
|
133 |
+
device_index=boxed_device_index.value,
|
134 |
+
is_backward=False,
|
135 |
+
is_inference=False,
|
136 |
+
stack_traces=get_stack_traces(aot_model),
|
137 |
+
)
|
138 |
+
out._boxed_call = True
|
139 |
+
return out
|
140 |
+
|
141 |
+
def backward_cudagraphs(aot_model, aot_inputs):
|
142 |
+
interp = boxed_nop(aot_model, aot_inputs)
|
143 |
+
if not do_cudagraphs:
|
144 |
+
return aot_model
|
145 |
+
|
146 |
+
fixed = count_tangents(aot_model)
|
147 |
+
if skip_msg := check_for_skip(aot_model, fixed):
|
148 |
+
perf_log.warning("skipping cudagraphs due to %s", skip_msg)
|
149 |
+
|
150 |
+
# See [Backward Generation Handling]
|
151 |
+
manager = torch._inductor.cudagraph_trees.get_manager(
|
152 |
+
boxed_device_index.value, create_if_none_exists=False
|
153 |
+
)
|
154 |
+
assert manager is not None
|
155 |
+
|
156 |
+
def fn(inputs):
|
157 |
+
manager.set_to_running_backward()
|
158 |
+
return aot_model(inputs)
|
159 |
+
|
160 |
+
fn._boxed_call = True
|
161 |
+
return fn
|
162 |
+
|
163 |
+
out = cudagraphify_impl(
|
164 |
+
interp,
|
165 |
+
aot_inputs,
|
166 |
+
range(fixed),
|
167 |
+
device_index=get_device_index(aot_model),
|
168 |
+
is_backward=True,
|
169 |
+
is_inference=False,
|
170 |
+
stack_traces=get_stack_traces(aot_model),
|
171 |
+
)
|
172 |
+
out._boxed_call = True
|
173 |
+
return out
|
174 |
+
|
175 |
+
aot_cudagraphs = aot_autograd(
|
176 |
+
fw_compiler=forward_cudagraphs,
|
177 |
+
bw_compiler=backward_cudagraphs,
|
178 |
+
inference_compiler=functools.partial(forward_cudagraphs, is_inference=True),
|
179 |
+
keep_inference_input_mutations=torch._dynamo.config.cudagraph_backend_keep_input_mutation,
|
180 |
+
)
|
181 |
+
return aot_cudagraphs(dynamo_model, dynamo_inputs)
|
182 |
+
|
183 |
+
|
184 |
+
class CudagraphsBackend:
|
185 |
+
compiler_name = "cudagraphs"
|
186 |
+
|
187 |
+
@staticmethod
|
188 |
+
def reset():
|
189 |
+
from torch._inductor.cudagraph_trees import reset_cudagraph_trees
|
190 |
+
|
191 |
+
reset_cudagraph_trees()
|
192 |
+
|
193 |
+
@staticmethod
|
194 |
+
def __call__(model, inputs):
|
195 |
+
return cudagraphs(model, inputs)
|
196 |
+
|
197 |
+
|
198 |
+
# aot_cudagraphs only applies CUDA graphs to the graph. It is also helpful
|
199 |
+
# for debugging and can serve as a perf baseline.
|
200 |
+
register_backend(name="cudagraphs", compiler_fn=CudagraphsBackend())
|
201 |
+
|
202 |
+
|
203 |
+
def cudagraphs_inner(model, inputs, copy_outputs=True, copy_inputs=True):
|
204 |
+
"""This isn't registered as a backend, but is used in some benchmarks"""
|
205 |
+
assert isinstance(inputs, (list, tuple))
|
206 |
+
if copy_inputs:
|
207 |
+
static_inputs = [torch.zeros_like(x) for x in inputs]
|
208 |
+
else:
|
209 |
+
static_inputs = list(inputs)
|
210 |
+
|
211 |
+
# warmup
|
212 |
+
torch.cuda.synchronize()
|
213 |
+
stream = torch.cuda.Stream()
|
214 |
+
stream.wait_stream(torch.cuda.current_stream())
|
215 |
+
with torch.cuda.stream(stream):
|
216 |
+
model(*inputs)
|
217 |
+
stream.synchronize()
|
218 |
+
torch.cuda.current_stream().wait_stream(stream)
|
219 |
+
torch.cuda.synchronize()
|
220 |
+
|
221 |
+
# record
|
222 |
+
graph = torch.cuda.CUDAGraph()
|
223 |
+
with torch.cuda.graph(graph, stream=stream):
|
224 |
+
static_outputs = model(*static_inputs)
|
225 |
+
if not isinstance(static_outputs, (list, tuple)):
|
226 |
+
static_outputs = (static_outputs,)
|
227 |
+
|
228 |
+
def run(*new_inputs):
|
229 |
+
assert len(static_inputs) == len(new_inputs)
|
230 |
+
if copy_inputs:
|
231 |
+
for dst, src in zip(static_inputs, new_inputs):
|
232 |
+
dst.copy_(src)
|
233 |
+
graph.replay()
|
234 |
+
if copy_outputs:
|
235 |
+
return [x.clone() for x in static_outputs]
|
236 |
+
else:
|
237 |
+
return static_outputs
|
238 |
+
|
239 |
+
return run
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/debugging.py
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import dataclasses
|
4 |
+
import functools
|
5 |
+
from importlib import import_module
|
6 |
+
from typing import Any, List, Optional
|
7 |
+
|
8 |
+
from functorch.compile import min_cut_rematerialization_partition
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch import _guards
|
12 |
+
from torch._functorch.compilers import ts_compile
|
13 |
+
from .common import aot_autograd
|
14 |
+
from .registry import register_debug_backend as register_backend
|
15 |
+
|
16 |
+
"""
|
17 |
+
This file contains TorchDynamo backends intended for debugging uses.
|
18 |
+
"""
|
19 |
+
|
20 |
+
|
21 |
+
@register_backend
|
22 |
+
def eager(gm, fake_tensor_inputs):
|
23 |
+
return gm
|
24 |
+
|
25 |
+
|
26 |
+
@register_backend
|
27 |
+
def pre_dispatch_eager(gm, fake_tensor_inputs):
|
28 |
+
from torch.fx.experimental.proxy_tensor import make_fx
|
29 |
+
|
30 |
+
def runnable_gm(*args):
|
31 |
+
return torch.fx.Interpreter(gm).run(*args)
|
32 |
+
|
33 |
+
pre_dispatch_gm = make_fx(runnable_gm, pre_dispatch=True)(*fake_tensor_inputs)
|
34 |
+
pre_dispatch_gm.print_readable()
|
35 |
+
|
36 |
+
return pre_dispatch_gm
|
37 |
+
|
38 |
+
|
39 |
+
@register_backend
|
40 |
+
def eager_debug(gm, fake_tensor_inputs):
|
41 |
+
from torch._subclasses.schema_check_mode import SchemaCheckMode
|
42 |
+
|
43 |
+
# We could add more debugging bits here.
|
44 |
+
# Right now, this backend can be used to check for and error on
|
45 |
+
# custom dispatcher ops that have incorrect schemas.
|
46 |
+
def inner(*args):
|
47 |
+
with SchemaCheckMode():
|
48 |
+
return torch.fx.Interpreter(gm).run(*args)
|
49 |
+
|
50 |
+
return inner
|
51 |
+
|
52 |
+
|
53 |
+
@register_backend(name="ts")
|
54 |
+
def torchscript(gm, fake_tensor_inputs):
|
55 |
+
return torch.jit.script(gm)
|
56 |
+
|
57 |
+
|
58 |
+
# used boxed call to discard inputs when they are no longer needed
|
59 |
+
def boxed_nop(fx_g, example_inputs):
|
60 |
+
def run(args):
|
61 |
+
return torch.fx.Interpreter(fx_g).boxed_run(args)
|
62 |
+
|
63 |
+
run._boxed_call = True
|
64 |
+
return run
|
65 |
+
|
66 |
+
|
67 |
+
# Useful for debugging purpose
|
68 |
+
# aot_eager uses AOT Autograd backend with nop compiler. It is helpful in debugging.
|
69 |
+
aot_eager = aot_autograd(
|
70 |
+
fw_compiler=boxed_nop, partition_fn=min_cut_rematerialization_partition
|
71 |
+
)
|
72 |
+
register_backend(name="aot_eager", compiler_fn=aot_eager)
|
73 |
+
|
74 |
+
aot_eager_default_partitioner = aot_autograd(fw_compiler=boxed_nop)
|
75 |
+
register_backend(
|
76 |
+
name="aot_eager_default_partitioner", compiler_fn=aot_eager_default_partitioner
|
77 |
+
)
|
78 |
+
|
79 |
+
# Uses TorchInductor AOT Autograd decomps and partitioner to isolate aot vs
|
80 |
+
# inductor problems.
|
81 |
+
# aot_eager_decomp_partition just replaces the inductor compiler with nop to help
|
82 |
+
# isolate inductor vs aot_eager errors
|
83 |
+
aot_eager_decomp_partition = aot_autograd(
|
84 |
+
# these are taken from memory_efficient_fusion()
|
85 |
+
fw_compiler=boxed_nop,
|
86 |
+
bw_compiler=boxed_nop,
|
87 |
+
# NB: lambda here is to delay import of inductor
|
88 |
+
decompositions=lambda: import_module(
|
89 |
+
"torch._inductor.compile_fx"
|
90 |
+
).select_decomp_table(),
|
91 |
+
partition_fn=functools.partial(
|
92 |
+
min_cut_rematerialization_partition, compiler="inductor"
|
93 |
+
),
|
94 |
+
)
|
95 |
+
register_backend(
|
96 |
+
name="aot_eager_decomp_partition", compiler_fn=aot_eager_decomp_partition
|
97 |
+
)
|
98 |
+
|
99 |
+
# AOT Autograd with torchscript backend. Default partitioner.
|
100 |
+
# aot_ts uses torchscript backend. We can use this with both nnc and nvfuser
|
101 |
+
# by using the relevant fuser with torch.jit.fuser(...)
|
102 |
+
aot_ts = aot_autograd(fw_compiler=ts_compile)
|
103 |
+
register_backend(name="aot_ts", compiler_fn=aot_ts)
|
104 |
+
|
105 |
+
# These buggy backends are used for inducing bugs so that we can test
|
106 |
+
# our repro extraction / minifier scripts
|
107 |
+
|
108 |
+
|
109 |
+
class ReluCompileError(Exception):
|
110 |
+
pass
|
111 |
+
|
112 |
+
|
113 |
+
class TestingOnlyCompileError(Exception):
|
114 |
+
pass
|
115 |
+
|
116 |
+
|
117 |
+
@register_backend
|
118 |
+
def relu_compile_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs):
|
119 |
+
for node in gm.graph.nodes:
|
120 |
+
if node.target == torch.relu:
|
121 |
+
raise ReluCompileError()
|
122 |
+
return gm
|
123 |
+
|
124 |
+
|
125 |
+
@register_backend
|
126 |
+
def relu_runtime_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs):
|
127 |
+
for node in gm.graph.nodes:
|
128 |
+
if node.target == torch.relu:
|
129 |
+
node.target = torch._assert
|
130 |
+
node.args = (False, "ReluRuntimeError")
|
131 |
+
gm.recompile()
|
132 |
+
return gm
|
133 |
+
|
134 |
+
|
135 |
+
@register_backend
|
136 |
+
def relu_accuracy_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs):
|
137 |
+
for node in gm.graph.nodes:
|
138 |
+
if node.target == torch.relu:
|
139 |
+
node.target = torch.add
|
140 |
+
node.args = (node.args[0], 1)
|
141 |
+
gm.recompile()
|
142 |
+
|
143 |
+
return gm
|
144 |
+
|
145 |
+
|
146 |
+
@register_backend
|
147 |
+
def non_leaf_compile_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs):
|
148 |
+
# Require at least one non-trivial thing in the graph,
|
149 |
+
# see https://github.com/pytorch/pytorch/issues/102898
|
150 |
+
for node in gm.graph.nodes:
|
151 |
+
if node.op == "call_function":
|
152 |
+
break
|
153 |
+
else:
|
154 |
+
return gm
|
155 |
+
for t in example_inputs:
|
156 |
+
if not t.is_leaf:
|
157 |
+
raise TestingOnlyCompileError()
|
158 |
+
return gm
|
159 |
+
|
160 |
+
|
161 |
+
@dataclasses.dataclass
|
162 |
+
class ExplainOutput:
|
163 |
+
"""
|
164 |
+
This is the output of :func:`torch._dynamo.explain()`
|
165 |
+
There is no reason to create this class directly.
|
166 |
+
"""
|
167 |
+
|
168 |
+
graphs: List[torch.fx.GraphModule]
|
169 |
+
graph_count: int
|
170 |
+
graph_break_count: int
|
171 |
+
break_reasons: List[
|
172 |
+
Any
|
173 |
+
] # Type is GraphCompileReason but doesn't matter for this purpose
|
174 |
+
op_count: int
|
175 |
+
ops_per_graph: Optional[List[torch.fx.Node]] = None
|
176 |
+
out_guards: Optional[List[_guards.Guard]] = None
|
177 |
+
compile_times: Optional[str] = None
|
178 |
+
|
179 |
+
def __str__(self):
|
180 |
+
output = f"Graph Count: {self.graph_count}\n"
|
181 |
+
output += f"Graph Break Count: {self.graph_break_count}\n"
|
182 |
+
output += f"Op Count: {self.op_count}\n"
|
183 |
+
|
184 |
+
output += "Break Reasons:\n"
|
185 |
+
for idx, break_reason in enumerate(self.break_reasons):
|
186 |
+
output += f" Break Reason {idx+1}:\n"
|
187 |
+
output += f" Reason: {break_reason.reason}\n"
|
188 |
+
output += " User Stack:\n"
|
189 |
+
for frame_summary in break_reason.user_stack:
|
190 |
+
output += f" {frame_summary}\n"
|
191 |
+
|
192 |
+
if self.ops_per_graph is not None:
|
193 |
+
output += "Ops per Graph:\n"
|
194 |
+
for idx, ops in enumerate(self.ops_per_graph):
|
195 |
+
output += f" Ops {idx+1}:\n"
|
196 |
+
for op in ops:
|
197 |
+
output += f" {op}\n"
|
198 |
+
|
199 |
+
if self.out_guards is not None:
|
200 |
+
output += "Out Guards:\n"
|
201 |
+
for i, guard in enumerate(self.out_guards):
|
202 |
+
output += f" Guard {i+1}:\n"
|
203 |
+
output += f" {str(guard)}"
|
204 |
+
|
205 |
+
if self.compile_times is not None:
|
206 |
+
output += f"Compile Times: {self.compile_times}\n"
|
207 |
+
return output
|
208 |
+
|
209 |
+
|
210 |
+
def _explain_graph_detail(
|
211 |
+
gm: torch.fx.GraphModule, graphs, op_count, ops_per_graph, break_reasons
|
212 |
+
):
|
213 |
+
"""
|
214 |
+
This function is a utility which processes a torch.fx.GraphModule and
|
215 |
+
accumulates information about its ops, graph breaks, and other details. It
|
216 |
+
is intended to be used by the ExplainWithBackend class and
|
217 |
+
`torch._dynamo.explain()` to provide details from Dynamo's graph capture.
|
218 |
+
|
219 |
+
Parameters:
|
220 |
+
gm (torch.fx.GraphModule): The GraphModule to be processed.
|
221 |
+
graphs (list): A list that accumulates all the GraphModules processed.
|
222 |
+
op_count (int): The total count of operations in all GraphModules processed so far.
|
223 |
+
ops_per_graph (list): A list that accumulates the operations of each GraphModule.
|
224 |
+
break_reasons (list): A list that accumulates the reasons for breaks in each GraphModule.
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
tuple: A tuple containing the processed GraphModule, the updated lists of graphs,
|
228 |
+
operations per graph, and break reasons, and the updated operation count.
|
229 |
+
"""
|
230 |
+
graphs.append(gm)
|
231 |
+
ops = [node.target for node in gm.graph.nodes if node.op == "call_function"]
|
232 |
+
op_count += len(ops)
|
233 |
+
ops_per_graph.append(ops)
|
234 |
+
if gm.compile_subgraph_reason.graph_break:
|
235 |
+
break_reasons.append(gm.compile_subgraph_reason)
|
236 |
+
|
237 |
+
return gm, graphs, op_count, ops_per_graph, break_reasons
|
238 |
+
|
239 |
+
|
240 |
+
class ExplainWithBackend:
|
241 |
+
"""
|
242 |
+
This class is intended to be used as a backend for `torch.compile`. It is
|
243 |
+
composable with other backends. When used in this way, it accumulates
|
244 |
+
information about graph breaks, ops, and other info and provides a string
|
245 |
+
representation summarizing this information.
|
246 |
+
|
247 |
+
Attributes:
|
248 |
+
backend (str): The name of the backend to use for optimization.
|
249 |
+
graphs (list): A list of the graphs captured by TorchDynamo.
|
250 |
+
op_count (int): The total number of operations in all optimized graphs.
|
251 |
+
break_reasons (list): A list of graph break reasons with stack traces.
|
252 |
+
|
253 |
+
Example Usage:
|
254 |
+
def fn(x):
|
255 |
+
x = torch.sigmoid(x)
|
256 |
+
return x
|
257 |
+
|
258 |
+
torch._dynamo.reset()
|
259 |
+
eb = ExplainWithBackend("inductor")
|
260 |
+
optimized_fn = torch.compile(fn, backend=eb)
|
261 |
+
result = optimized_fn(torch.randn(5))
|
262 |
+
print(eb.output())
|
263 |
+
"""
|
264 |
+
|
265 |
+
def __init__(self, backend):
|
266 |
+
from .registry import lookup_backend
|
267 |
+
|
268 |
+
self.backend = lookup_backend(backend)
|
269 |
+
self.graphs = []
|
270 |
+
self.op_count = 0
|
271 |
+
self.break_reasons = []
|
272 |
+
|
273 |
+
def __call__(self, gm: torch.fx.GraphModule, example_inputs):
|
274 |
+
gm, self.graphs, self.op_count, _, self.break_reasons = _explain_graph_detail(
|
275 |
+
gm, self.graphs, self.op_count, [], self.break_reasons
|
276 |
+
)
|
277 |
+
return self.backend(gm, example_inputs)
|
278 |
+
|
279 |
+
def output(self) -> ExplainOutput:
|
280 |
+
graph_count = len(self.graphs)
|
281 |
+
output = ExplainOutput(
|
282 |
+
self.graphs,
|
283 |
+
graph_count,
|
284 |
+
graph_count - 1,
|
285 |
+
self.break_reasons,
|
286 |
+
self.op_count,
|
287 |
+
)
|
288 |
+
|
289 |
+
return output
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/distributed.py
ADDED
@@ -0,0 +1,612 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import traceback
|
5 |
+
from dataclasses import dataclass, field
|
6 |
+
from typing import Any, List, Optional
|
7 |
+
from unittest import mock
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import fx
|
11 |
+
from torch._dynamo.output_graph import GraphCompileReason
|
12 |
+
from torch._dynamo.utils import deepcopy_to_fake_tensor, detect_fake_mode
|
13 |
+
from torch._logging import trace_structured
|
14 |
+
from torch.fx.node import Node
|
15 |
+
|
16 |
+
# Regular log messages should go through 'log'.
|
17 |
+
# ddp_graph_log is a separate artifact logger reserved for dumping graphs.
|
18 |
+
# See docs/source/logging.rst for more info.
|
19 |
+
log = logging.getLogger(__name__)
|
20 |
+
ddp_graph_log = torch._logging.getArtifactLogger(__name__, "ddp_graphs")
|
21 |
+
|
22 |
+
|
23 |
+
def args_str(args):
|
24 |
+
# a debug helper
|
25 |
+
if torch.is_tensor(args):
|
26 |
+
return f"T[{args.shape}]"
|
27 |
+
elif isinstance(args, tuple):
|
28 |
+
return f"tuple({', '.join([args_str(x) for x in args])})"
|
29 |
+
elif isinstance(args, list):
|
30 |
+
return f"list({', '.join([args_str(x) for x in args])})"
|
31 |
+
else:
|
32 |
+
return str(args)
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class Bucket:
|
37 |
+
size: int = 0
|
38 |
+
params: List[str] = field(default_factory=list)
|
39 |
+
nodes: List[fx.Node] = field(default_factory=list)
|
40 |
+
|
41 |
+
# param_ids is just used for unit testing
|
42 |
+
param_ids: List = field(default_factory=list)
|
43 |
+
|
44 |
+
# keep track of any buckets that were extended for logging purposes
|
45 |
+
opcount_increased_to_capture_external_output: int = 0
|
46 |
+
paramsize_before_opcount_increase: int = 0
|
47 |
+
|
48 |
+
|
49 |
+
def bucket_has_external_output(bucket: Bucket) -> bool:
|
50 |
+
nodes_in_bucket = set()
|
51 |
+
# we want to iterate in reverse order, but clumsi-luckily the bucket.nodes list was already created backwards
|
52 |
+
# so we don't reverse it here
|
53 |
+
for node in bucket.nodes:
|
54 |
+
# assume node.op != output, since those are filtered in the original iteration
|
55 |
+
nodes_in_bucket.add(node)
|
56 |
+
for user in node.users:
|
57 |
+
if user not in nodes_in_bucket:
|
58 |
+
return True
|
59 |
+
return False
|
60 |
+
|
61 |
+
|
62 |
+
def pretty_print_buckets(buckets: List[Bucket], bucket_bytes_cap: int):
|
63 |
+
headers = ("Index", "Size (b)", "Param Names")
|
64 |
+
rows = []
|
65 |
+
extended_buckets = []
|
66 |
+
for idx, bucket in enumerate(reversed(buckets)):
|
67 |
+
if len(bucket.params) > 0:
|
68 |
+
rows.append((idx, bucket.size, bucket.params[0]))
|
69 |
+
for param in bucket.params[1:]:
|
70 |
+
rows.append((None, None, param))
|
71 |
+
if bucket.opcount_increased_to_capture_external_output > 0:
|
72 |
+
extended_buckets.append(
|
73 |
+
(
|
74 |
+
idx,
|
75 |
+
bucket.opcount_increased_to_capture_external_output,
|
76 |
+
bucket.size - bucket.paramsize_before_opcount_increase,
|
77 |
+
)
|
78 |
+
)
|
79 |
+
|
80 |
+
if len(rows):
|
81 |
+
log.info(
|
82 |
+
"\nDDPOptimizer used bucket cap %s and created %d buckets. Enable debug logs for detailed bucket info.",
|
83 |
+
bucket_bytes_cap,
|
84 |
+
len(buckets),
|
85 |
+
)
|
86 |
+
|
87 |
+
if len(extended_buckets):
|
88 |
+
log.warning(
|
89 |
+
"Some buckets were extended beyond their requested parameter capacities"
|
90 |
+
" in order to ensure each subgraph has an output node, required for fx graph partitioning."
|
91 |
+
" This can be the case when a subgraph would have only contained nodes performing inplace mutation,"
|
92 |
+
" and returning no logical outputs. This should not be a problem, unless it results in too few graph"
|
93 |
+
" partitions for optimal DDP performance."
|
94 |
+
)
|
95 |
+
|
96 |
+
try:
|
97 |
+
from tabulate import tabulate
|
98 |
+
|
99 |
+
log.debug(
|
100 |
+
"\nDDPOptimizer produced the following bucket assignments:\n%s",
|
101 |
+
tabulate(rows, headers=headers, tablefmt="simple_grid"),
|
102 |
+
)
|
103 |
+
|
104 |
+
if len(extended_buckets):
|
105 |
+
log.warning(
|
106 |
+
"DDPOptimizer extended these buckets to ensure per-subgraph output nodes:\n%s",
|
107 |
+
tabulate(
|
108 |
+
extended_buckets,
|
109 |
+
headers=("Index", "Extra Ops", "Extra Param Size (b)"),
|
110 |
+
tablefmt="simple_grid",
|
111 |
+
),
|
112 |
+
)
|
113 |
+
except ImportError:
|
114 |
+
log.debug(
|
115 |
+
"Please `pip install tabulate` in order to display ddp bucket sizes and diagnostic information."
|
116 |
+
)
|
117 |
+
else:
|
118 |
+
log.debug("DDPOptimizer captured no parameters and did not split this graph.")
|
119 |
+
|
120 |
+
|
121 |
+
def has_higher_order_op(gm):
|
122 |
+
# Check if there is a higher order op in the graph
|
123 |
+
for node in gm.graph.nodes:
|
124 |
+
if node.op == "get_attr":
|
125 |
+
maybe_param = getattr(gm, node.target)
|
126 |
+
if isinstance(maybe_param, torch.fx.GraphModule):
|
127 |
+
return True
|
128 |
+
return False
|
129 |
+
|
130 |
+
|
131 |
+
# 3 (lazy compile): Replace submodules with lazily compiling submodule
|
132 |
+
class SubmoduleReplacer(torch.fx.interpreter.Interpreter):
|
133 |
+
def __init__(self, module, compiler):
|
134 |
+
super().__init__(module)
|
135 |
+
self.compiler = compiler
|
136 |
+
|
137 |
+
def lazily_compiled_submod(self, input_mod):
|
138 |
+
"""
|
139 |
+
Create a wrapper around submodules which:
|
140 |
+
- lazily compiles each of the partitioned submodules using the user-provided compiler
|
141 |
+
- unpacks singleton tuples/lists into flat arg
|
142 |
+
"""
|
143 |
+
|
144 |
+
class LazilyCompiledModule(torch.nn.Module):
|
145 |
+
def __init__(self, submod, compiler, unwrap_singleton_tuple):
|
146 |
+
super().__init__()
|
147 |
+
self.submod = submod
|
148 |
+
self.compiler = compiler
|
149 |
+
self.compiled = False
|
150 |
+
self.unwrap_singleton_tuple = unwrap_singleton_tuple
|
151 |
+
|
152 |
+
def forward(self, *args):
|
153 |
+
if not self.compiled:
|
154 |
+
# First compile with args as example_inputs
|
155 |
+
# These args will be fakeified if using Inductor/AOTAutograd
|
156 |
+
new_submod = self.compiler(self.submod, args)
|
157 |
+
del self.submod
|
158 |
+
self.submod = new_submod
|
159 |
+
self.compiled = True
|
160 |
+
self.compiler = None
|
161 |
+
|
162 |
+
x = self.submod(*args)
|
163 |
+
# we must let 'input_mod' return a tuple, to make AOT happy.
|
164 |
+
# (aot_autograd compile_fn literally requires that the output of a graph it compiles is a tuple).
|
165 |
+
# however, we don't acutally want this tuple to be returned, since the fx logic that calls the submod
|
166 |
+
# will again wrap outputs from the submod in a tuple. So we unwrap it, and count on it being re-wrapped
|
167 |
+
if self.unwrap_singleton_tuple and isinstance(x, (tuple, list)):
|
168 |
+
return x[0]
|
169 |
+
return x
|
170 |
+
|
171 |
+
unwrap_singleton_tuple = False
|
172 |
+
for sn in input_mod.graph.nodes:
|
173 |
+
if sn.op == "output":
|
174 |
+
if not isinstance(sn.args[0], tuple):
|
175 |
+
unwrap_singleton_tuple = True
|
176 |
+
sn.args = (sn.args,)
|
177 |
+
|
178 |
+
input_mod.recompile()
|
179 |
+
input_mod.compile_subgraph_reason = GraphCompileReason(
|
180 |
+
"DDPOptimizer intentional graph-break (See Note [DDPOptimizer])."
|
181 |
+
" Set `torch._dynamo.config.optimize_ddp = False` to disable.",
|
182 |
+
[
|
183 |
+
# it's close to useless to get a real stacktrace here, and quite verbose.
|
184 |
+
traceback.FrameSummary(__file__, 0, DDPOptimizer),
|
185 |
+
],
|
186 |
+
)
|
187 |
+
wrapper = LazilyCompiledModule(
|
188 |
+
input_mod,
|
189 |
+
self.compiler,
|
190 |
+
unwrap_singleton_tuple,
|
191 |
+
)
|
192 |
+
return wrapper
|
193 |
+
|
194 |
+
# We replace the submodules with lazy submodules which compile
|
195 |
+
# the corresponding submodules when they are run with real values
|
196 |
+
# Always returns `None` - we do not need to propagate values in order
|
197 |
+
# to replace submodules.
|
198 |
+
def run_node(self, n: Node) -> Any:
|
199 |
+
if n.op == "call_module":
|
200 |
+
real_mod = self.fetch_attr(n.target)
|
201 |
+
|
202 |
+
ddp_graph_log.debug("\n---%s graph---\n%s", n.target, real_mod.graph)
|
203 |
+
|
204 |
+
assert len(n.kwargs) == 0, "We assume only args for these modules"
|
205 |
+
lazily_compiled_submod = self.lazily_compiled_submod(real_mod)
|
206 |
+
|
207 |
+
# We update the original (outer) graph with a call into the compiled module
|
208 |
+
# instead of the uncompiled one.
|
209 |
+
self.module.delete_submodule(n.target)
|
210 |
+
n.target = "compiled_" + n.target
|
211 |
+
self.module.add_submodule(n.target, lazily_compiled_submod)
|
212 |
+
|
213 |
+
|
214 |
+
# 3 (no lazy compile): compile each of the partitioned submodules using the user-provided compiler
|
215 |
+
class SubmodCompiler(torch.fx.interpreter.Interpreter):
|
216 |
+
def __init__(self, module, compiler, fake_mode):
|
217 |
+
super().__init__(module)
|
218 |
+
self.compiler = compiler
|
219 |
+
self.fake_mode = fake_mode
|
220 |
+
|
221 |
+
def compile_submod(self, input_mod, args, kwargs):
|
222 |
+
"""
|
223 |
+
Compile the submodule,
|
224 |
+
using a wrapper to make sure its output is always a tuple,
|
225 |
+
which is required by AotAutograd based compilers
|
226 |
+
"""
|
227 |
+
assert len(kwargs) == 0, "We assume only args for these modules"
|
228 |
+
|
229 |
+
class WrapperModule(torch.nn.Module):
|
230 |
+
def __init__(self, submod, unwrap_singleton_tuple):
|
231 |
+
super().__init__()
|
232 |
+
self.submod = submod
|
233 |
+
self.unwrap_singleton_tuple = unwrap_singleton_tuple
|
234 |
+
|
235 |
+
def forward(self, *args):
|
236 |
+
x = self.submod(*args)
|
237 |
+
# TODO(whc)
|
238 |
+
# for some reason the isinstance check is necessary if I split one node per submod
|
239 |
+
# - even though I supposedly wrapped the output in a tuple in those cases, the real
|
240 |
+
# compiled module was still returning a tensor
|
241 |
+
if self.unwrap_singleton_tuple and isinstance(x, (tuple, list)):
|
242 |
+
return x[0]
|
243 |
+
return x
|
244 |
+
|
245 |
+
unwrap_singleton_tuple = False
|
246 |
+
for sn in input_mod.graph.nodes:
|
247 |
+
if sn.op == "output":
|
248 |
+
if not isinstance(sn.args[0], tuple):
|
249 |
+
unwrap_singleton_tuple = True
|
250 |
+
sn.args = (sn.args,)
|
251 |
+
|
252 |
+
input_mod.recompile()
|
253 |
+
input_mod.compile_subgraph_reason = GraphCompileReason(
|
254 |
+
"DDPOptimizer intentional graph-break (See Note [DDPOptimizer])."
|
255 |
+
" Set `torch._dynamo.config.optimize_ddp = False` to disable.",
|
256 |
+
[
|
257 |
+
# it's close to useless to get a real stacktrace here, and quite verbose.
|
258 |
+
traceback.FrameSummary(__file__, 0, DDPOptimizer),
|
259 |
+
],
|
260 |
+
)
|
261 |
+
|
262 |
+
wrapper = WrapperModule(
|
263 |
+
self.compiler(input_mod, args),
|
264 |
+
unwrap_singleton_tuple,
|
265 |
+
)
|
266 |
+
return wrapper
|
267 |
+
|
268 |
+
# Note:
|
269 |
+
#
|
270 |
+
# The way distributed works today around fake tensors can be somewhat confusing.
|
271 |
+
# Some of these codepaths are shared in both runtime, and compile time. The presence
|
272 |
+
# of a fake_mode, read off of fake tensor inputs, dictates how we will operate.
|
273 |
+
#
|
274 |
+
# A few things to keep in mind:
|
275 |
+
#
|
276 |
+
# 1) We invoke `compile_submod` with a real module. The output of that gets stored
|
277 |
+
# on the graph via `self.module.add_submodule(n.target, compiled_submod_real)`.
|
278 |
+
#
|
279 |
+
# 2) When running a call_module targeted node, if we have a fake_mode, we fakify the
|
280 |
+
# module we got from self.fetch_attr(n.target). Regardless of fake_mode, we then execute it.
|
281 |
+
#
|
282 |
+
# 3) Fake tensors should always be around during compile time.
|
283 |
+
#
|
284 |
+
# 4) Fake tensors should never be around at runtime.
|
285 |
+
#
|
286 |
+
# 5) We end up with a compilation mode that takes a real submodule and fake tensors,
|
287 |
+
# to match what aot_autograd expects. See Note: [Fake Modules and AOTAutograd]
|
288 |
+
def run_node(self, n: Node) -> Any:
|
289 |
+
args, kwargs = self.fetch_args_kwargs_from_env(n)
|
290 |
+
new_args = []
|
291 |
+
assert self.fake_mode
|
292 |
+
for arg in args:
|
293 |
+
if isinstance(arg, torch.Tensor) and not isinstance(
|
294 |
+
arg, torch._subclasses.FakeTensor
|
295 |
+
):
|
296 |
+
new_args.append(torch._dynamo.utils.to_fake_tensor(arg, self.fake_mode))
|
297 |
+
else:
|
298 |
+
new_args.append(arg)
|
299 |
+
|
300 |
+
log.debug("run_node %s, %s got args %s", n.op, n.target, args_str(args))
|
301 |
+
assert isinstance(args, tuple)
|
302 |
+
assert isinstance(kwargs, dict)
|
303 |
+
|
304 |
+
if n.op == "call_module":
|
305 |
+
real_mod = self.fetch_attr(n.target)
|
306 |
+
if self.fake_mode:
|
307 |
+
curr_submod = deepcopy_to_fake_tensor(real_mod, self.fake_mode)
|
308 |
+
else:
|
309 |
+
curr_submod = real_mod
|
310 |
+
|
311 |
+
ddp_graph_log.debug("\n---%s graph---\n%s", n.target, curr_submod.graph)
|
312 |
+
|
313 |
+
# When calling the compiler on the submod, inputs (new_args) are expected to
|
314 |
+
# be FakeTensors already since Dynamo would have made them FakeTensors in the
|
315 |
+
# non-DDP flow. However, the parameters are _not_ expected to be FakeTensors,
|
316 |
+
# since this wrapping happens during compilation
|
317 |
+
|
318 |
+
# Note: Returning Fake Tensors on First AOT Autograd Call
|
319 |
+
#
|
320 |
+
# Inductor will optimize strides of outputs when it deems it profitable.
|
321 |
+
# For instance, converting to channels last. When we split the graph here
|
322 |
+
# into multiple inductor compilations, we need to make sure that the
|
323 |
+
# output strides of one compilation is appropriately passed to the subsequent
|
324 |
+
# compilations. However, the mapping from inductor output to dynamo output
|
325 |
+
# is non-trivial due to aot_autograd's deduping, de-aliasing, mutation, re-writing,
|
326 |
+
# subclass handling, etc. In order to replay all this logic we set a flag such that
|
327 |
+
# the first invocation of inductor in aot_autograd will return Fake Tensors with
|
328 |
+
# appropriate strides. Then, all of aot autograd's runtime logic is replayed.
|
329 |
+
# This gives us the appropriately strided outputs here which will reflect runtime strides.
|
330 |
+
|
331 |
+
class FakeifyFirstAOTInvocationGuard:
|
332 |
+
def __init__(self):
|
333 |
+
self.tc = torch._guards.TracingContext.try_get()
|
334 |
+
assert self.tc
|
335 |
+
torch._guards.TracingContext.try_get().fakify_first_call = True
|
336 |
+
|
337 |
+
def __del__(self):
|
338 |
+
self.tc.fakify_first_call = False
|
339 |
+
|
340 |
+
# For aot_eager and other backends, tracing context is not set
|
341 |
+
has_tracing_context = torch._guards.TracingContext.try_get() is not None
|
342 |
+
if has_tracing_context:
|
343 |
+
g = FakeifyFirstAOTInvocationGuard()
|
344 |
+
|
345 |
+
from torch._dynamo.utils import counters
|
346 |
+
|
347 |
+
init = counters["aot_autograd"]["total"]
|
348 |
+
compiled_submod_real = self.compile_submod(real_mod, new_args, kwargs)
|
349 |
+
|
350 |
+
# TODO - better way of doing this?
|
351 |
+
# Only aot autograd handles fakifying first call
|
352 |
+
invoked_aot_autograd = init != counters["aot_autograd"]["total"]
|
353 |
+
|
354 |
+
# We update the original (outer) graph with a call into the compiled module
|
355 |
+
# instead of the uncompiled one.
|
356 |
+
self.module.delete_submodule(n.target)
|
357 |
+
n.target = "compiled_" + n.target
|
358 |
+
self.module.add_submodule(n.target, compiled_submod_real)
|
359 |
+
|
360 |
+
# Finally, we have to produce inputs for use compiling the next submodule,
|
361 |
+
# and these need to be FakeTensors, so we execute the module under fake_mode
|
362 |
+
# Because parameters are not fake we patch fake tensor mode to allow non fake inputs
|
363 |
+
with self.fake_mode, mock.patch.object(
|
364 |
+
self.fake_mode, "allow_non_fake_inputs", True
|
365 |
+
):
|
366 |
+
if has_tracing_context and invoked_aot_autograd:
|
367 |
+
out = compiled_submod_real(*new_args, **kwargs)
|
368 |
+
# output should be fake or subclass
|
369 |
+
assert all(
|
370 |
+
(not isinstance(t, torch.Tensor) or type(t) is not torch.Tensor)
|
371 |
+
for t in (out if isinstance(out, (list, tuple)) else [out])
|
372 |
+
)
|
373 |
+
return out
|
374 |
+
else:
|
375 |
+
return curr_submod(*new_args, **kwargs)
|
376 |
+
else:
|
377 |
+
# placeholder or output nodes don't need to get compiled, just executed
|
378 |
+
return getattr(self, n.op)(n.target, new_args, kwargs)
|
379 |
+
|
380 |
+
|
381 |
+
class DDPOptimizer:
|
382 |
+
|
383 |
+
"""Note [DDPOptimizer]
|
384 |
+
DDPOptimizer applies when dynamo compiles models wrapped in DistributedDataParallel (DDP),
|
385 |
+
breaking the dynamo graph into chunks to compile separately, with the breaks aligning to
|
386 |
+
the boundaries of gradient-allreduce buckets chosen by DDP.
|
387 |
+
|
388 |
+
Background/Motivation
|
389 |
+
- DDP uses allreduce collectives to synchronize partial gradients computed on different workers
|
390 |
+
- DDP groups gradient allreduces into 'buckets' to optimize communication efficiency of all-reduce
|
391 |
+
- Parameters grouped into buckets are assumed to be adjacent in time, so they become ready
|
392 |
+
at around the same time during backward and thus can share the same allreduce efficiently
|
393 |
+
- Allreduces must overlap with backward compute for optimal training performance
|
394 |
+
- DDP schedules allreduces using 'hooks' fired from the c++ autograd engine in pytorch, which
|
395 |
+
operates when individual grads become 'ready'
|
396 |
+
- Dynamo+AOTAutograd produces a single fused graph that runs 'atomically' from the perspective of the
|
397 |
+
autograd engine, such that all gradients become 'ready' at the same time. Hooks fire after the whole
|
398 |
+
fused backward function executes, preventing any overlap of compute and communication
|
399 |
+
|
400 |
+
Algorithm
|
401 |
+
- DDPOptimizer starts off with an FX graph traced by dynamo which represents forward. It can traverse
|
402 |
+
this graph in reverse order to determine the true order that gradients will become ready during backward.
|
403 |
+
- Parameter sizes are counted in reverse order, up to a bucket size limit, at which point a new bucket is started
|
404 |
+
and a graph break introduced
|
405 |
+
- Each of the subgraphs is compiled by the compiler provided to dynamo by the user, and then fused back together
|
406 |
+
into an outer module that is returned to the user
|
407 |
+
|
408 |
+
Notes
|
409 |
+
- It would be better to enforce (by adding an API to DDP) that the bucket splits chosen here are used by DDP,
|
410 |
+
and that DDP does not need to detect or optimize bucket order by observing execution at runtime, as it does
|
411 |
+
in eager.
|
412 |
+
- If Dynamo can't capture a whole graph for the portion of the model wrapped by DDP, this algorithm will currently
|
413 |
+
produce splits that do not necessarily align with the buckets used by DDP. This should result in performance
|
414 |
+
degradation approaching the baseline case where graph-splits are not used, but not worse.
|
415 |
+
- If the backend compiler fails to compile a single subgraph, it will execute eagerly despite the rest of the
|
416 |
+
subgraphs being compiled
|
417 |
+
- DDP has a 'parameters_and_buffers_to_ignore' field, which DDPOptimizer attempts to honor by reading markers
|
418 |
+
left by DDP on individual parameters. In cases where other transformations, such as reparameterization, are
|
419 |
+
also used, the ignore markers could be lost. If DDPOptimizer fails to ignore a parameter ignored by DDP,
|
420 |
+
it is not catastrophic but could impact performance by choosing sub-optimal bucket splits.
|
421 |
+
- DDPOptimizer always ignores all buffers, regardless of their ignore flag, since buffers do not require gradients,
|
422 |
+
and therefore aren't allreduced by DDP. (They are broadcast during forward, but this is not covered by
|
423 |
+
DDPOptimizer)
|
424 |
+
|
425 |
+
Debugging
|
426 |
+
- Generally, it is easiest to debug DDPOptimizer in a single process program, using pdb.
|
427 |
+
- In many cases, the log messages are helpful (they show bucket size assignments)-
|
428 |
+
just set TORCH_LOGS env to include any of 'dynamo', 'distributed', or 'dist_ddp'.
|
429 |
+
- See `benchmarks/dynamo/distributed.py` for a simple harness that will run a toy model or a torchbench model
|
430 |
+
in a single process (or with torchrun, in multiple processes)
|
431 |
+
|
432 |
+
Args:
|
433 |
+
bucket_bytes_cap (int): Controls the size of buckets, in bytes, used to determine graphbreaks. Should be
|
434 |
+
set to match the equivalent parameter on the original DDP module.
|
435 |
+
|
436 |
+
backend_compile_fn (callable): A dynamo compiler function, to be invoked to compile each subgraph.
|
437 |
+
|
438 |
+
first_bucket_cap (int): Controls the size of the first bucket. Should match DDP's first bucket cap. DDP
|
439 |
+
special-cases the first bucket size since it is sometimes optimal to start a small allreduce early.
|
440 |
+
|
441 |
+
"""
|
442 |
+
|
443 |
+
def __init__(
|
444 |
+
self,
|
445 |
+
bucket_bytes_cap: int,
|
446 |
+
backend_compile_fn,
|
447 |
+
first_bucket_cap: Optional[int] = None,
|
448 |
+
):
|
449 |
+
if first_bucket_cap is not None:
|
450 |
+
self.first_bucket_cap = first_bucket_cap
|
451 |
+
elif torch.distributed.is_available():
|
452 |
+
# this constant comes from C10D lib which is not always built
|
453 |
+
self.first_bucket_cap = torch.distributed._DEFAULT_FIRST_BUCKET_BYTES
|
454 |
+
else:
|
455 |
+
self.first_bucket_cap = bucket_bytes_cap
|
456 |
+
|
457 |
+
self.bucket_bytes_cap = bucket_bytes_cap
|
458 |
+
assert (
|
459 |
+
self.first_bucket_cap <= self.bucket_bytes_cap
|
460 |
+
), "First bucket should be smaller/equal to other buckets to get comms warmed up ASAP"
|
461 |
+
|
462 |
+
self.backend_compile_fn = backend_compile_fn
|
463 |
+
|
464 |
+
def _ignore_parameter(self, parameter):
|
465 |
+
return hasattr(parameter, "_ddp_ignored") and parameter._ddp_ignored
|
466 |
+
|
467 |
+
def compile_fn(self, gm: fx.GraphModule, example_inputs: List[torch.Tensor]):
|
468 |
+
"""
|
469 |
+
Implements graph splitting, first determining a set of of buckets by counting
|
470 |
+
parameter sizes in reverse graph order, then invoking the user/backend compiler
|
471 |
+
to compile each subgraph. Finally, stiches compiled graphs into one graphmodule
|
472 |
+
and returns its callable.
|
473 |
+
"""
|
474 |
+
if has_higher_order_op(gm):
|
475 |
+
# This indicates presence of a higher order op. For now, we
|
476 |
+
# have no way to break the higher order op into two buckets.
|
477 |
+
# Allowing higher order ops in the graph also requires
|
478 |
+
# changes in the split_module, becuase graph splitter
|
479 |
+
# currently assumes that all the args of all ops are
|
480 |
+
# tensors, but in the case of higher order ops, it could be
|
481 |
+
# a graph module. As a workaround, we are shortcircuiting
|
482 |
+
raise NotImplementedError(
|
483 |
+
"DDPOptimizer backend: Found a higher order op in the graph. "
|
484 |
+
"This is not supported. Please turn off DDP optimizer using "
|
485 |
+
"torch._dynamo.config.optimize_ddp=False. Note that this can "
|
486 |
+
"cause performance degradation because there will be one bucket "
|
487 |
+
"for the entire Dynamo graph. Please refer to this issue - "
|
488 |
+
"https://github.com/pytorch/pytorch/issues/104674."
|
489 |
+
)
|
490 |
+
|
491 |
+
# 1: compute the partition map according to DDP bucket logic
|
492 |
+
buckets = [Bucket()] # (size, param_names)
|
493 |
+
for node in reversed(gm.graph.nodes):
|
494 |
+
if node.op in ("output", "placeholder"):
|
495 |
+
continue
|
496 |
+
|
497 |
+
if (
|
498 |
+
buckets[0].size >= self.bucket_bytes_cap
|
499 |
+
or len(buckets) == 1
|
500 |
+
and buckets[0].size >= self.first_bucket_cap
|
501 |
+
):
|
502 |
+
if bucket_has_external_output(buckets[0]):
|
503 |
+
buckets.insert(0, Bucket())
|
504 |
+
else:
|
505 |
+
# continue building this bucket past the point of filling its parameter capacity,
|
506 |
+
# to increase chances it contains at least one node that is either a global output or
|
507 |
+
# passed as input to a subsequent graph
|
508 |
+
|
509 |
+
if buckets[0].opcount_increased_to_capture_external_output == 0:
|
510 |
+
buckets[0].paramsize_before_opcount_increase = buckets[0].size
|
511 |
+
buckets[0].opcount_increased_to_capture_external_output += 1
|
512 |
+
|
513 |
+
if node.op == "call_module":
|
514 |
+
target = gm.get_submodule(node.target)
|
515 |
+
for name, param in target.named_parameters():
|
516 |
+
if param.requires_grad and not self._ignore_parameter(param):
|
517 |
+
buckets[0].size += param.untyped_storage().nbytes()
|
518 |
+
buckets[0].params.append(f"{node.target}_{name}")
|
519 |
+
buckets[0].param_ids.append(id(param))
|
520 |
+
elif node.op == "get_attr":
|
521 |
+
maybe_param = getattr(gm, node.target)
|
522 |
+
if maybe_param.requires_grad and not self._ignore_parameter(
|
523 |
+
maybe_param
|
524 |
+
):
|
525 |
+
buckets[0].size += maybe_param.untyped_storage().nbytes()
|
526 |
+
buckets[0].params.append(node.target)
|
527 |
+
buckets[0].param_ids.append(id(maybe_param))
|
528 |
+
|
529 |
+
# All nodes have to be mapped to a bucket, even if they don't have their own params
|
530 |
+
# Ignored params still end up in buckets, we just don't count them towards the capacity
|
531 |
+
buckets[0].nodes.append(node)
|
532 |
+
|
533 |
+
if len(buckets) > 1 and buckets[0].size == 0:
|
534 |
+
# we collected a small preamble graph with ops that don't include parameters, fuse it back
|
535 |
+
buckets[1].nodes.extend(buckets[0].nodes)
|
536 |
+
assert len(buckets[0].params) == 0, "Params should be empty if size is 0"
|
537 |
+
del buckets[0]
|
538 |
+
|
539 |
+
# stash buckets for testing/debugging purposes
|
540 |
+
self.buckets = buckets
|
541 |
+
pretty_print_buckets(buckets, self.bucket_bytes_cap)
|
542 |
+
|
543 |
+
if len(buckets) == 1:
|
544 |
+
# bypass split/fuse logic if there is only one bucket
|
545 |
+
return self.backend_compile_fn(gm, example_inputs)
|
546 |
+
|
547 |
+
# 2: partition the graphmodule according to bucket capacity
|
548 |
+
partition_map = {}
|
549 |
+
for idx, b in enumerate(buckets):
|
550 |
+
for node in b.nodes:
|
551 |
+
partition_map[node] = idx
|
552 |
+
|
553 |
+
split_gm = fx.passes.split_module.split_module(
|
554 |
+
gm, None, lambda node: partition_map[node]
|
555 |
+
)
|
556 |
+
|
557 |
+
debug_str = (
|
558 |
+
f"\n---orig graph---\n{gm.graph}\n"
|
559 |
+
+ f"\n---split graph---\n{split_gm.graph}\n"
|
560 |
+
)
|
561 |
+
for name, module in split_gm.named_modules():
|
562 |
+
if "." not in name and len(name):
|
563 |
+
# only print the submod graphs, not their children
|
564 |
+
debug_str += f"\n---{name} graph---\n{module.graph}\n"
|
565 |
+
debug_str += "\n---------------\n"
|
566 |
+
ddp_graph_log.debug(debug_str)
|
567 |
+
|
568 |
+
trace_structured(
|
569 |
+
"optimize_ddp_split_graph",
|
570 |
+
payload_fn=lambda: split_gm.print_readable(print_output=False),
|
571 |
+
)
|
572 |
+
for name, module in split_gm.named_modules():
|
573 |
+
if "." not in name and len(name):
|
574 |
+
trace_structured(
|
575 |
+
"optimize_ddp_split_child",
|
576 |
+
lambda: {"name": name},
|
577 |
+
payload_fn=lambda: module.print_readable(print_output=False),
|
578 |
+
)
|
579 |
+
|
580 |
+
# NOTE, we want to enable `optimize_ddp_lazy_compile` by default as soon as possible,
|
581 |
+
# becuase it will fix stride mismatch errors (see motivation: https://github.com/pytorch/pytorch/pull/114154).
|
582 |
+
# However, lazy compile currently causes shape mismatch in other cases (`test_graph_split_inductor_transpose`)
|
583 |
+
# and we need to fix them before we can enable it by default.
|
584 |
+
if not torch._dynamo.config.optimize_ddp_lazy_compile:
|
585 |
+
# Today, optimize_ddp=True and keep_output_stride=False can lead to silent
|
586 |
+
# correctness issues. The problem is that ddp_optimizer works by partitioning
|
587 |
+
# the dynamo graph, sending each subgraph through aot autograd to inductor,
|
588 |
+
# and creates example inputs by eagerly interpreting each subgraph to get
|
589 |
+
# an output that with the same metadata that we'd get from eager mode.
|
590 |
+
# This is a problem though, for torch._inductor.config.keep_output_stride.
|
591 |
+
# The above config can cause the outputs of the first graph to have
|
592 |
+
# **different** strides from eager, causing the inputs that we pass
|
593 |
+
# to the second graph to be wrong.
|
594 |
+
# To really fix this, we would need to faithfully ask inductor
|
595 |
+
# what the outputs to each graph it expects are.
|
596 |
+
fake_mode = detect_fake_mode(example_inputs)
|
597 |
+
if fake_mode is None:
|
598 |
+
fake_mode = torch._subclasses.fake_tensor.FakeTensorMode()
|
599 |
+
|
600 |
+
if torch._dynamo.config.optimize_ddp_lazy_compile:
|
601 |
+
submod_compiler = SubmoduleReplacer(split_gm, self.backend_compile_fn)
|
602 |
+
else:
|
603 |
+
submod_compiler = SubmodCompiler(
|
604 |
+
split_gm, self.backend_compile_fn, fake_mode
|
605 |
+
)
|
606 |
+
submod_compiler.run(*example_inputs)
|
607 |
+
split_gm.recompile()
|
608 |
+
|
609 |
+
ddp_graph_log.debug(
|
610 |
+
"\n---final graph---\n%s\n---------------\n", split_gm.graph
|
611 |
+
)
|
612 |
+
return split_gm
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/inductor.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import sys
|
4 |
+
|
5 |
+
from torch._dynamo import register_backend
|
6 |
+
|
7 |
+
|
8 |
+
@register_backend
|
9 |
+
def inductor(*args, **kwargs):
|
10 |
+
if sys.platform == "win32":
|
11 |
+
raise RuntimeError("Windows not yet supported for inductor")
|
12 |
+
|
13 |
+
# do import here to avoid loading inductor into memory when it is not used
|
14 |
+
from torch._inductor.compile_fx import compile_fx
|
15 |
+
|
16 |
+
return compile_fx(*args, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/onnxrt.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
# This backend is maintained by ONNX team. To direct issues
|
4 |
+
# to the right people, please tag related GitHub issues with `module: onnx`.
|
5 |
+
#
|
6 |
+
# Maintainers' Github IDs: wschin, thiagocrepaldi, BowenBao, abock
|
7 |
+
from torch.onnx._internal.onnxruntime import (
|
8 |
+
is_onnxrt_backend_supported,
|
9 |
+
torch_compile_backend,
|
10 |
+
)
|
11 |
+
from .registry import register_backend
|
12 |
+
|
13 |
+
|
14 |
+
def has_onnxruntime():
|
15 |
+
# FIXME(abock): update test/dynamo/test_backends.py to call is_onnxrt_backend_supported()
|
16 |
+
return is_onnxrt_backend_supported()
|
17 |
+
|
18 |
+
|
19 |
+
if is_onnxrt_backend_supported():
|
20 |
+
register_backend(name="onnxrt", compiler_fn=torch_compile_backend)
|
21 |
+
else:
|
22 |
+
|
23 |
+
def information_displaying_backend(*args, **kwargs):
|
24 |
+
raise ImportError(
|
25 |
+
"onnxrt is not registered as a backend. "
|
26 |
+
"Please make sure all dependencies such as "
|
27 |
+
"numpy, onnx, onnxscript, and onnxruntime-training are installed. "
|
28 |
+
"Suggested procedure to fix dependency problem:\n"
|
29 |
+
" (1) pip or conda install numpy onnx onnxscript onnxruntime-training.\n"
|
30 |
+
" (2) Open a new python terminal.\n"
|
31 |
+
" (3) Call the API `torch.onnx.is_onnxrt_backend_supported()`:\n"
|
32 |
+
" (4) If it returns `True`, then you can use `onnxrt` backend.\n"
|
33 |
+
" (5) If it returns `False`, please execute the package importing section in "
|
34 |
+
"torch/onnx/_internal/onnxruntime.py under pdb line-by-line to see which import fails."
|
35 |
+
)
|
36 |
+
|
37 |
+
register_backend(name="onnxrt", compiler_fn=information_displaying_backend)
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/registry.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import functools
|
4 |
+
import sys
|
5 |
+
from typing import Callable, Dict, List, Optional, Protocol, Sequence, Tuple
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import fx
|
9 |
+
|
10 |
+
|
11 |
+
class CompiledFn(Protocol):
|
12 |
+
def __call__(self, *args: torch.Tensor) -> Tuple[torch.Tensor, ...]:
|
13 |
+
...
|
14 |
+
|
15 |
+
|
16 |
+
CompilerFn = Callable[[fx.GraphModule, List[torch.Tensor]], CompiledFn]
|
17 |
+
|
18 |
+
_BACKENDS: Dict[str, CompilerFn] = dict()
|
19 |
+
|
20 |
+
|
21 |
+
def register_backend(
|
22 |
+
compiler_fn: Optional[CompilerFn] = None,
|
23 |
+
name: Optional[str] = None,
|
24 |
+
tags: Sequence[str] = (),
|
25 |
+
):
|
26 |
+
"""
|
27 |
+
Decorator to add a given compiler to the registry to allow calling
|
28 |
+
`torch.compile` with string shorthand. Note: for projects not
|
29 |
+
imported by default, it might be easier to pass a function directly
|
30 |
+
as a backend and not use a string.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
compiler_fn: Callable taking a FX graph and fake tensor inputs
|
34 |
+
name: Optional name, defaults to `compiler_fn.__name__`
|
35 |
+
tags: Optional set of string tags to categorize backend with
|
36 |
+
"""
|
37 |
+
if compiler_fn is None:
|
38 |
+
# @register_backend(name="") syntax
|
39 |
+
return functools.partial(register_backend, name=name, tags=tags)
|
40 |
+
assert callable(compiler_fn)
|
41 |
+
name = name or compiler_fn.__name__
|
42 |
+
assert name not in _BACKENDS, f"duplicate name: {name}"
|
43 |
+
_BACKENDS[name] = compiler_fn
|
44 |
+
compiler_fn._tags = tuple(tags)
|
45 |
+
return compiler_fn
|
46 |
+
|
47 |
+
|
48 |
+
register_debug_backend = functools.partial(register_backend, tags=("debug",))
|
49 |
+
register_experimental_backend = functools.partial(
|
50 |
+
register_backend, tags=("experimental",)
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
def lookup_backend(compiler_fn):
|
55 |
+
"""Expand backend strings to functions"""
|
56 |
+
if isinstance(compiler_fn, str):
|
57 |
+
if compiler_fn not in _BACKENDS:
|
58 |
+
_lazy_import()
|
59 |
+
if compiler_fn not in _BACKENDS:
|
60 |
+
_lazy_import_entry_point(compiler_fn)
|
61 |
+
if compiler_fn not in _BACKENDS:
|
62 |
+
from ..exc import InvalidBackend
|
63 |
+
|
64 |
+
raise InvalidBackend(name=compiler_fn)
|
65 |
+
compiler_fn = _BACKENDS[compiler_fn]
|
66 |
+
return compiler_fn
|
67 |
+
|
68 |
+
|
69 |
+
def list_backends(exclude_tags=("debug", "experimental")) -> List[str]:
|
70 |
+
"""
|
71 |
+
Return valid strings that can be passed to:
|
72 |
+
|
73 |
+
torch.compile(..., backend="name")
|
74 |
+
"""
|
75 |
+
_lazy_import()
|
76 |
+
exclude_tags = set(exclude_tags or ())
|
77 |
+
return sorted(
|
78 |
+
[
|
79 |
+
name
|
80 |
+
for name, backend in _BACKENDS.items()
|
81 |
+
if not exclude_tags.intersection(backend._tags)
|
82 |
+
]
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
@functools.lru_cache(None)
|
87 |
+
def _lazy_import():
|
88 |
+
from .. import backends
|
89 |
+
from ..utils import import_submodule
|
90 |
+
|
91 |
+
import_submodule(backends)
|
92 |
+
|
93 |
+
from ..repro.after_dynamo import dynamo_minifier_backend
|
94 |
+
|
95 |
+
assert dynamo_minifier_backend is not None
|
96 |
+
|
97 |
+
|
98 |
+
@functools.lru_cache(None)
|
99 |
+
def _lazy_import_entry_point(backend_name: str):
|
100 |
+
from importlib.metadata import entry_points
|
101 |
+
|
102 |
+
compiler_fn = None
|
103 |
+
group_name = "torch_dynamo_backends"
|
104 |
+
if sys.version_info < (3, 10):
|
105 |
+
backend_eps = entry_points()
|
106 |
+
eps = [ep for ep in backend_eps.get(group_name, ()) if ep.name == backend_name]
|
107 |
+
if len(eps) > 0:
|
108 |
+
compiler_fn = eps[0].load()
|
109 |
+
else:
|
110 |
+
backend_eps = entry_points(group=group_name)
|
111 |
+
if backend_name in backend_eps.names:
|
112 |
+
compiler_fn = backend_eps[backend_name].load()
|
113 |
+
|
114 |
+
if compiler_fn is not None and backend_name not in list_backends(tuple()):
|
115 |
+
register_backend(compiler_fn=compiler_fn, name=backend_name)
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/tensorrt.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
# import torch # type: ignore[import]
|
4 |
+
# from .common import device_from_inputs, fake_tensor_unsupported # type: ignore[import]
|
5 |
+
# from .registry import register_backend # type: ignore[import]
|
6 |
+
|
7 |
+
"""
|
8 |
+
Placeholder for TensorRT backend for dynamo via torch-tensorrt
|
9 |
+
"""
|
10 |
+
|
11 |
+
# @register_backend
|
12 |
+
# def tensorrt(gm, example_inputs):
|
13 |
+
# import torch_tensorrt # type: ignore[import]
|
14 |
+
# pass
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/torchxla.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
from functorch.compile import make_boxed_func
|
7 |
+
|
8 |
+
from ..backends.common import aot_autograd
|
9 |
+
from .registry import register_backend, register_experimental_backend
|
10 |
+
|
11 |
+
log = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
@register_experimental_backend
|
15 |
+
def torchxla_trivial(gm, fake_tensor_inputs):
|
16 |
+
return gm
|
17 |
+
|
18 |
+
|
19 |
+
@register_experimental_backend
|
20 |
+
def torchxla_trace_once(model, fake_tensor_inputs):
|
21 |
+
warnings.warn(
|
22 |
+
"This backend will be deprecated in 2.2, please use `openxla` backend instead"
|
23 |
+
)
|
24 |
+
|
25 |
+
return xla_backend_helper(model, fake_tensor_inputs)
|
26 |
+
|
27 |
+
|
28 |
+
@register_backend
|
29 |
+
def openxla_eval(model, fake_tensor_inputs):
|
30 |
+
return xla_backend_helper(model, fake_tensor_inputs, boxed=False)
|
31 |
+
|
32 |
+
|
33 |
+
def openxla_eval_boxed(model, fake_tensor_inputs):
|
34 |
+
return xla_backend_helper(model, fake_tensor_inputs, boxed=True)
|
35 |
+
|
36 |
+
|
37 |
+
def xla_backend_helper(model, fake_tensor_inputs, boxed=False):
|
38 |
+
try:
|
39 |
+
import torch_xla.core.dynamo_bridge as bridge
|
40 |
+
except ImportError as e:
|
41 |
+
raise ImportError(
|
42 |
+
"Please follow the instruction in https://github.com/pytorch/xla#pytorchxla to install torch_xla"
|
43 |
+
) from e
|
44 |
+
|
45 |
+
compiled_graph = None
|
46 |
+
|
47 |
+
def fwd(*args):
|
48 |
+
nonlocal model
|
49 |
+
nonlocal compiled_graph
|
50 |
+
if compiled_graph is None:
|
51 |
+
compiled_graph = bridge.extract_compiled_graph(model, args)
|
52 |
+
del model
|
53 |
+
return compiled_graph(*args)
|
54 |
+
|
55 |
+
return make_boxed_func(fwd) if boxed else fwd
|
56 |
+
|
57 |
+
|
58 |
+
aot_torchxla_trivial = aot_autograd(
|
59 |
+
fw_compiler=torchxla_trivial,
|
60 |
+
)
|
61 |
+
register_experimental_backend(
|
62 |
+
name="aot_torchxla_trivial", compiler_fn=aot_torchxla_trivial
|
63 |
+
)
|
64 |
+
|
65 |
+
aot_torchxla_trace_once = aot_autograd(
|
66 |
+
fw_compiler=torchxla_trace_once,
|
67 |
+
)
|
68 |
+
register_experimental_backend(
|
69 |
+
name="aot_torchxla_trace_once", compiler_fn=aot_torchxla_trace_once
|
70 |
+
)
|
71 |
+
|
72 |
+
openxla = aot_autograd(
|
73 |
+
fw_compiler=openxla_eval_boxed,
|
74 |
+
)
|
75 |
+
register_backend(name="openxla", compiler_fn=openxla)
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/backends/tvm.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import functools
|
4 |
+
import importlib
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from .common import device_from_inputs, fake_tensor_unsupported
|
11 |
+
|
12 |
+
from .registry import register_backend
|
13 |
+
|
14 |
+
log = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
|
17 |
+
@register_backend
|
18 |
+
@fake_tensor_unsupported
|
19 |
+
def tvm(gm, example_inputs, *, scheduler=None, trials=20000):
|
20 |
+
import tvm # type: ignore[import]
|
21 |
+
from tvm import relay # type: ignore[import]
|
22 |
+
from tvm.contrib import graph_executor # type: ignore[import]
|
23 |
+
|
24 |
+
jit_mod = torch.jit.trace(gm, example_inputs)
|
25 |
+
device = device_from_inputs(example_inputs)
|
26 |
+
shape_list = [(f"inp_{idx}", i.shape) for idx, i in enumerate(example_inputs)]
|
27 |
+
example_outputs = gm(*example_inputs)
|
28 |
+
if len(example_outputs) == 0:
|
29 |
+
log.warning("Explicitly fall back to eager due to zero output")
|
30 |
+
return gm.forward
|
31 |
+
mod, params = relay.frontend.from_pytorch(jit_mod, shape_list)
|
32 |
+
if device.type == "cuda":
|
33 |
+
dev = tvm.cuda(device.index)
|
34 |
+
target = tvm.target.cuda()
|
35 |
+
else:
|
36 |
+
dev = tvm.cpu(0)
|
37 |
+
target = tvm.target.Target(llvm_target())
|
38 |
+
|
39 |
+
if scheduler is None:
|
40 |
+
scheduler = os.environ.get("TVM_SCHEDULER", None)
|
41 |
+
|
42 |
+
if scheduler == "auto_scheduler":
|
43 |
+
from tvm import auto_scheduler
|
44 |
+
|
45 |
+
log_file = tempfile.NamedTemporaryFile()
|
46 |
+
|
47 |
+
if not os.path.exists(log_file):
|
48 |
+
tasks, task_weights = auto_scheduler.extract_tasks(
|
49 |
+
mod["main"], params, target
|
50 |
+
)
|
51 |
+
for task in tasks:
|
52 |
+
print(task.compute_dag)
|
53 |
+
else:
|
54 |
+
print("No tasks")
|
55 |
+
if len(tasks) != 0:
|
56 |
+
tuner = auto_scheduler.TaskScheduler(tasks, task_weights)
|
57 |
+
if not os.path.exists(log_file):
|
58 |
+
assert trials > 0
|
59 |
+
tune_option = auto_scheduler.TuningOptions(
|
60 |
+
num_measure_trials=trials,
|
61 |
+
measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
|
62 |
+
early_stopping=2000,
|
63 |
+
)
|
64 |
+
try:
|
65 |
+
tuner.tune(tune_option)
|
66 |
+
except Exception:
|
67 |
+
if os.path.exists(log_file):
|
68 |
+
os.unlink(log_file)
|
69 |
+
raise
|
70 |
+
|
71 |
+
with auto_scheduler.ApplyHistoryBest(log_file):
|
72 |
+
with tvm.transform.PassContext(
|
73 |
+
opt_level=3, config={"relay.backend.use_auto_scheduler": True}
|
74 |
+
):
|
75 |
+
lib = relay.build(mod, target=target, params=params)
|
76 |
+
elif scheduler == "meta_schedule":
|
77 |
+
from tvm import meta_schedule as ms
|
78 |
+
|
79 |
+
with tempfile.TemporaryDirectory() as work_dir:
|
80 |
+
if device.type != "cuda":
|
81 |
+
# meta_schedule needs num-cores to be specified
|
82 |
+
# here we use the maximum core count
|
83 |
+
target = tvm.target.Target(
|
84 |
+
f"{llvm_target()} --num-cores {ms.utils.cpu_count(logical=False)}"
|
85 |
+
)
|
86 |
+
# TODO(shingjan): This could be replaced by tvm.contrib.torch.optimize_torch
|
87 |
+
# once USE_PT_TVMDSOOP is updated and turned on by default in TVM.
|
88 |
+
database = ms.relay_integration.tune_relay(
|
89 |
+
mod=mod,
|
90 |
+
target=target,
|
91 |
+
work_dir=work_dir,
|
92 |
+
max_trials_global=20000,
|
93 |
+
num_trials_per_iter=64,
|
94 |
+
params=params,
|
95 |
+
strategy="evolutionary",
|
96 |
+
)
|
97 |
+
lib = ms.relay_integration.compile_relay(
|
98 |
+
database=database,
|
99 |
+
mod=mod,
|
100 |
+
target=target,
|
101 |
+
params=params,
|
102 |
+
)
|
103 |
+
elif scheduler == "default" or not scheduler:
|
104 |
+
# no autotuning
|
105 |
+
with tvm.transform.PassContext(opt_level=10):
|
106 |
+
lib = relay.build(mod, target=target, params=params)
|
107 |
+
else:
|
108 |
+
raise NotImplementedError(
|
109 |
+
"This tuning option is invalid/not implemented for torchdynamo's TVM-related backend. "
|
110 |
+
"There are three available options: default, auto_scheduler and meta_schedule."
|
111 |
+
)
|
112 |
+
m = graph_executor.GraphModule(lib["default"](dev))
|
113 |
+
|
114 |
+
def to_torch_tensor(nd_tensor):
|
115 |
+
"""A helper function to transfer a NDArray to torch.tensor."""
|
116 |
+
if nd_tensor.dtype == "bool":
|
117 |
+
# DLPack does not support boolean so it can't be handled by
|
118 |
+
# torch.utils.dlpack.from_pack. Workaround by going through
|
119 |
+
# numpy, although this brings additional data copy overhead.
|
120 |
+
return torch.from_numpy(nd_tensor.numpy())
|
121 |
+
return torch.utils.dlpack.from_dlpack(nd_tensor.to_dlpack())
|
122 |
+
|
123 |
+
def to_tvm_tensor(torch_tensor):
|
124 |
+
"""A helper function to transfer a torch.tensor to NDArray."""
|
125 |
+
if torch_tensor.dtype == torch.bool:
|
126 |
+
# same reason as above, fallback to numpy conversion which
|
127 |
+
# could introduce data copy overhead
|
128 |
+
return tvm.nd.array(torch_tensor.cpu().numpy())
|
129 |
+
return tvm.nd.from_dlpack(torch_tensor)
|
130 |
+
|
131 |
+
def exec_tvm(*i_args):
|
132 |
+
args = [a.contiguous() for a in i_args]
|
133 |
+
shape_info, _ = m.get_input_info()
|
134 |
+
active_inputs = {name for name, _ in shape_info.items()}
|
135 |
+
for idx, arg in enumerate(args, 0):
|
136 |
+
if arg.dim() != 0:
|
137 |
+
if arg.requires_grad:
|
138 |
+
arg = arg.detach()
|
139 |
+
inp_name = f"inp_{idx}"
|
140 |
+
if inp_name not in active_inputs:
|
141 |
+
log.warning(
|
142 |
+
"input %s skipped as not found in tvm's runtime library",
|
143 |
+
inp_name,
|
144 |
+
)
|
145 |
+
continue
|
146 |
+
m.set_input(
|
147 |
+
inp_name,
|
148 |
+
to_tvm_tensor(arg),
|
149 |
+
)
|
150 |
+
m.run()
|
151 |
+
return [to_torch_tensor(m.get_output(i)) for i in range(m.get_num_outputs())]
|
152 |
+
|
153 |
+
return exec_tvm
|
154 |
+
|
155 |
+
|
156 |
+
tvm_meta_schedule = functools.partial(tvm, scheduler="meta_schedule")
|
157 |
+
tvm_auto_scheduler = functools.partial(tvm, scheduler="auto_scheduler")
|
158 |
+
|
159 |
+
|
160 |
+
def has_tvm():
|
161 |
+
try:
|
162 |
+
importlib.import_module("tvm")
|
163 |
+
return True
|
164 |
+
except ImportError:
|
165 |
+
return False
|
166 |
+
|
167 |
+
|
168 |
+
@functools.lru_cache(None)
|
169 |
+
def llvm_target():
|
170 |
+
if "avx512" in open("/proc/cpuinfo").read():
|
171 |
+
return "llvm -mcpu=skylake-avx512"
|
172 |
+
return "llvm -mcpu=core-avx2"
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/bytecode_analysis.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import bisect
|
2 |
+
import dataclasses
|
3 |
+
import dis
|
4 |
+
import sys
|
5 |
+
from typing import Any, Set, Union
|
6 |
+
|
7 |
+
TERMINAL_OPCODES = {
|
8 |
+
dis.opmap["RETURN_VALUE"],
|
9 |
+
dis.opmap["JUMP_FORWARD"],
|
10 |
+
dis.opmap["RAISE_VARARGS"],
|
11 |
+
# TODO(jansel): double check exception handling
|
12 |
+
}
|
13 |
+
if sys.version_info >= (3, 9):
|
14 |
+
TERMINAL_OPCODES.add(dis.opmap["RERAISE"])
|
15 |
+
if sys.version_info >= (3, 11):
|
16 |
+
TERMINAL_OPCODES.add(dis.opmap["JUMP_BACKWARD"])
|
17 |
+
TERMINAL_OPCODES.add(dis.opmap["JUMP_FORWARD"])
|
18 |
+
else:
|
19 |
+
TERMINAL_OPCODES.add(dis.opmap["JUMP_ABSOLUTE"])
|
20 |
+
JUMP_OPCODES = set(dis.hasjrel + dis.hasjabs)
|
21 |
+
JUMP_OPNAMES = {dis.opname[opcode] for opcode in JUMP_OPCODES}
|
22 |
+
HASLOCAL = set(dis.haslocal)
|
23 |
+
HASFREE = set(dis.hasfree)
|
24 |
+
|
25 |
+
stack_effect = dis.stack_effect
|
26 |
+
|
27 |
+
|
28 |
+
def get_indexof(insts):
|
29 |
+
"""
|
30 |
+
Get a mapping from instruction memory address to index in instruction list.
|
31 |
+
Additionally checks that each instruction only appears once in the list.
|
32 |
+
"""
|
33 |
+
indexof = {}
|
34 |
+
for i, inst in enumerate(insts):
|
35 |
+
assert inst not in indexof
|
36 |
+
indexof[inst] = i
|
37 |
+
return indexof
|
38 |
+
|
39 |
+
|
40 |
+
def remove_dead_code(instructions):
|
41 |
+
"""Dead code elimination"""
|
42 |
+
indexof = get_indexof(instructions)
|
43 |
+
live_code = set()
|
44 |
+
|
45 |
+
def find_live_code(start):
|
46 |
+
for i in range(start, len(instructions)):
|
47 |
+
if i in live_code:
|
48 |
+
return
|
49 |
+
live_code.add(i)
|
50 |
+
inst = instructions[i]
|
51 |
+
if inst.exn_tab_entry:
|
52 |
+
find_live_code(indexof[inst.exn_tab_entry.target])
|
53 |
+
if inst.opcode in JUMP_OPCODES:
|
54 |
+
find_live_code(indexof[inst.target])
|
55 |
+
if inst.opcode in TERMINAL_OPCODES:
|
56 |
+
return
|
57 |
+
|
58 |
+
find_live_code(0)
|
59 |
+
|
60 |
+
# change exception table entries if start/end instructions are dead
|
61 |
+
# assumes that exception table entries have been propagated,
|
62 |
+
# e.g. with bytecode_transformation.propagate_inst_exn_table_entries,
|
63 |
+
# and that instructions with an exn_tab_entry lies within its start/end.
|
64 |
+
if sys.version_info >= (3, 11):
|
65 |
+
live_idx = sorted(live_code)
|
66 |
+
for i, inst in enumerate(instructions):
|
67 |
+
if i in live_code and inst.exn_tab_entry:
|
68 |
+
# find leftmost live instruction >= start
|
69 |
+
start_idx = bisect.bisect_left(
|
70 |
+
live_idx, indexof[inst.exn_tab_entry.start]
|
71 |
+
)
|
72 |
+
assert start_idx < len(live_idx)
|
73 |
+
# find rightmost live instruction <= end
|
74 |
+
end_idx = (
|
75 |
+
bisect.bisect_right(live_idx, indexof[inst.exn_tab_entry.end]) - 1
|
76 |
+
)
|
77 |
+
assert end_idx >= 0
|
78 |
+
assert live_idx[start_idx] <= i <= live_idx[end_idx]
|
79 |
+
inst.exn_tab_entry.start = instructions[live_idx[start_idx]]
|
80 |
+
inst.exn_tab_entry.end = instructions[live_idx[end_idx]]
|
81 |
+
|
82 |
+
return [inst for i, inst in enumerate(instructions) if i in live_code]
|
83 |
+
|
84 |
+
|
85 |
+
def remove_pointless_jumps(instructions):
|
86 |
+
"""Eliminate jumps to the next instruction"""
|
87 |
+
pointless_jumps = {
|
88 |
+
id(a)
|
89 |
+
for a, b in zip(instructions, instructions[1:])
|
90 |
+
if a.opname == "JUMP_ABSOLUTE" and a.target is b
|
91 |
+
}
|
92 |
+
return [inst for inst in instructions if id(inst) not in pointless_jumps]
|
93 |
+
|
94 |
+
|
95 |
+
def propagate_line_nums(instructions):
|
96 |
+
"""Ensure every instruction has line number set in case some are removed"""
|
97 |
+
cur_line_no = None
|
98 |
+
|
99 |
+
def populate_line_num(inst):
|
100 |
+
nonlocal cur_line_no
|
101 |
+
if inst.starts_line:
|
102 |
+
cur_line_no = inst.starts_line
|
103 |
+
|
104 |
+
inst.starts_line = cur_line_no
|
105 |
+
|
106 |
+
for inst in instructions:
|
107 |
+
populate_line_num(inst)
|
108 |
+
|
109 |
+
|
110 |
+
def remove_extra_line_nums(instructions):
|
111 |
+
"""Remove extra starts line properties before packing bytecode"""
|
112 |
+
|
113 |
+
cur_line_no = None
|
114 |
+
|
115 |
+
def remove_line_num(inst):
|
116 |
+
nonlocal cur_line_no
|
117 |
+
if inst.starts_line is None:
|
118 |
+
return
|
119 |
+
elif inst.starts_line == cur_line_no:
|
120 |
+
inst.starts_line = None
|
121 |
+
else:
|
122 |
+
cur_line_no = inst.starts_line
|
123 |
+
|
124 |
+
for inst in instructions:
|
125 |
+
remove_line_num(inst)
|
126 |
+
|
127 |
+
|
128 |
+
@dataclasses.dataclass
|
129 |
+
class ReadsWrites:
|
130 |
+
reads: Set[Any]
|
131 |
+
writes: Set[Any]
|
132 |
+
visited: Set[Any]
|
133 |
+
|
134 |
+
|
135 |
+
def livevars_analysis(instructions, instruction):
|
136 |
+
indexof = get_indexof(instructions)
|
137 |
+
must = ReadsWrites(set(), set(), set())
|
138 |
+
may = ReadsWrites(set(), set(), set())
|
139 |
+
|
140 |
+
def walk(state, start):
|
141 |
+
if start in state.visited:
|
142 |
+
return
|
143 |
+
state.visited.add(start)
|
144 |
+
|
145 |
+
for i in range(start, len(instructions)):
|
146 |
+
inst = instructions[i]
|
147 |
+
if inst.opcode in HASLOCAL or inst.opcode in HASFREE:
|
148 |
+
if "LOAD" in inst.opname or "DELETE" in inst.opname:
|
149 |
+
if inst.argval not in must.writes:
|
150 |
+
state.reads.add(inst.argval)
|
151 |
+
elif "STORE" in inst.opname:
|
152 |
+
state.writes.add(inst.argval)
|
153 |
+
elif inst.opname == "MAKE_CELL":
|
154 |
+
pass
|
155 |
+
else:
|
156 |
+
raise NotImplementedError(f"unhandled {inst.opname}")
|
157 |
+
if inst.exn_tab_entry:
|
158 |
+
walk(may, indexof[inst.exn_tab_entry.target])
|
159 |
+
if inst.opcode in JUMP_OPCODES:
|
160 |
+
walk(may, indexof[inst.target])
|
161 |
+
state = may
|
162 |
+
if inst.opcode in TERMINAL_OPCODES:
|
163 |
+
return
|
164 |
+
|
165 |
+
walk(must, indexof[instruction])
|
166 |
+
return must.reads | may.reads
|
167 |
+
|
168 |
+
|
169 |
+
@dataclasses.dataclass
|
170 |
+
class FixedPointBox:
|
171 |
+
value: bool = True
|
172 |
+
|
173 |
+
|
174 |
+
@dataclasses.dataclass
|
175 |
+
class StackSize:
|
176 |
+
low: Union[int, float]
|
177 |
+
high: Union[int, float]
|
178 |
+
fixed_point: FixedPointBox
|
179 |
+
|
180 |
+
def zero(self):
|
181 |
+
self.low = 0
|
182 |
+
self.high = 0
|
183 |
+
self.fixed_point.value = False
|
184 |
+
|
185 |
+
def offset_of(self, other, n):
|
186 |
+
prior = (self.low, self.high)
|
187 |
+
self.low = min(self.low, other.low + n)
|
188 |
+
self.high = max(self.high, other.high + n)
|
189 |
+
if (self.low, self.high) != prior:
|
190 |
+
self.fixed_point.value = False
|
191 |
+
|
192 |
+
def exn_tab_jump(self, depth):
|
193 |
+
prior = (self.low, self.high)
|
194 |
+
self.low = min(self.low, depth)
|
195 |
+
self.high = max(self.high, depth)
|
196 |
+
if (self.low, self.high) != prior:
|
197 |
+
self.fixed_point.value = False
|
198 |
+
|
199 |
+
|
200 |
+
def stacksize_analysis(instructions) -> Union[int, float]:
|
201 |
+
assert instructions
|
202 |
+
fixed_point = FixedPointBox()
|
203 |
+
stack_sizes = {
|
204 |
+
inst: StackSize(float("inf"), float("-inf"), fixed_point)
|
205 |
+
for inst in instructions
|
206 |
+
}
|
207 |
+
stack_sizes[instructions[0]].zero()
|
208 |
+
|
209 |
+
for _ in range(100):
|
210 |
+
if fixed_point.value:
|
211 |
+
break
|
212 |
+
fixed_point.value = True
|
213 |
+
|
214 |
+
for inst, next_inst in zip(instructions, instructions[1:] + [None]):
|
215 |
+
stack_size = stack_sizes[inst]
|
216 |
+
# CALL_FINALLY in Python 3.8 is handled differently when determining stack depth.
|
217 |
+
# See https://github.com/python/cpython/blob/3.8/Python/compile.c#L5450.
|
218 |
+
# Essentially, the stack effect of CALL_FINALLY is computed with jump=True,
|
219 |
+
# but the resulting stack depth is propagated to the next instruction, not the
|
220 |
+
# jump target.
|
221 |
+
is_call_finally = (
|
222 |
+
sys.version_info < (3, 9) and inst.opcode == dis.opmap["CALL_FINALLY"]
|
223 |
+
)
|
224 |
+
if inst.opcode not in TERMINAL_OPCODES:
|
225 |
+
assert next_inst is not None, f"missing next inst: {inst}"
|
226 |
+
stack_sizes[next_inst].offset_of(
|
227 |
+
stack_size,
|
228 |
+
stack_effect(inst.opcode, inst.arg, jump=is_call_finally),
|
229 |
+
)
|
230 |
+
if inst.opcode in JUMP_OPCODES and not is_call_finally:
|
231 |
+
stack_sizes[inst.target].offset_of(
|
232 |
+
stack_size, stack_effect(inst.opcode, inst.arg, jump=True)
|
233 |
+
)
|
234 |
+
if inst.exn_tab_entry:
|
235 |
+
# see https://github.com/python/cpython/blob/3.11/Objects/exception_handling_notes.txt
|
236 |
+
# on why depth is computed this way.
|
237 |
+
depth = inst.exn_tab_entry.depth + int(inst.exn_tab_entry.lasti) + 1
|
238 |
+
stack_sizes[inst.exn_tab_entry.target].exn_tab_jump(depth)
|
239 |
+
|
240 |
+
if False:
|
241 |
+
for inst in instructions:
|
242 |
+
stack_size = stack_sizes[inst]
|
243 |
+
print(stack_size.low, stack_size.high, inst)
|
244 |
+
|
245 |
+
low = min([x.low for x in stack_sizes.values()])
|
246 |
+
high = max([x.high for x in stack_sizes.values()])
|
247 |
+
|
248 |
+
assert fixed_point.value, "failed to reach fixed point"
|
249 |
+
assert low >= 0
|
250 |
+
return high
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/callback.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class CompilationCallbackHandler:
|
2 |
+
def __init__(self):
|
3 |
+
self.start_callbacks = []
|
4 |
+
self.end_callbacks = []
|
5 |
+
|
6 |
+
def register_start_callback(self, callback):
|
7 |
+
"""
|
8 |
+
Register a callback function to be called when the compilation starts.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
- callback (callable): The callback function to register.
|
12 |
+
"""
|
13 |
+
self.start_callbacks.append(callback)
|
14 |
+
return callback
|
15 |
+
|
16 |
+
def register_end_callback(self, callback):
|
17 |
+
"""
|
18 |
+
Register a callback function to be called when the compilation ends.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
- callback (callable): The callback function to register.
|
22 |
+
"""
|
23 |
+
self.end_callbacks.append(callback)
|
24 |
+
return callback
|
25 |
+
|
26 |
+
def remove_start_callback(self, callback):
|
27 |
+
"""
|
28 |
+
Remove a registered start callback function.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
- callback (callable): The callback function to remove.
|
32 |
+
"""
|
33 |
+
self.start_callbacks.remove(callback)
|
34 |
+
|
35 |
+
def remove_end_callback(self, callback):
|
36 |
+
"""
|
37 |
+
Remove a registered end callback function.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
- callback (callable): The callback function to remove.
|
41 |
+
"""
|
42 |
+
self.end_callbacks.remove(callback)
|
43 |
+
|
44 |
+
def run_start_callbacks(self):
|
45 |
+
"""
|
46 |
+
Execute all registered start callbacks.
|
47 |
+
"""
|
48 |
+
for callback in self.start_callbacks:
|
49 |
+
callback()
|
50 |
+
|
51 |
+
def run_end_callbacks(self):
|
52 |
+
"""
|
53 |
+
Execute all registered end callbacks.
|
54 |
+
"""
|
55 |
+
for callback in self.end_callbacks:
|
56 |
+
callback()
|
57 |
+
|
58 |
+
def clear(self):
|
59 |
+
"""
|
60 |
+
Clear all registered callbacks.
|
61 |
+
"""
|
62 |
+
self.start_callbacks.clear()
|
63 |
+
self.end_callbacks.clear()
|
64 |
+
|
65 |
+
|
66 |
+
callback_handler = CompilationCallbackHandler()
|
67 |
+
|
68 |
+
|
69 |
+
def on_compile_start(callback):
|
70 |
+
"""
|
71 |
+
Decorator to register a callback function for the start of the compilation.
|
72 |
+
"""
|
73 |
+
callback_handler.register_start_callback(callback)
|
74 |
+
return callback
|
75 |
+
|
76 |
+
|
77 |
+
def on_compile_end(callback):
|
78 |
+
"""
|
79 |
+
Decorator to register a callback function for the end of the compilation.
|
80 |
+
"""
|
81 |
+
callback_handler.register_end_callback(callback)
|
82 |
+
return callback
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/debug_utils.py
ADDED
@@ -0,0 +1,802 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: disable-error-code="method-assign"
|
2 |
+
|
3 |
+
import copy
|
4 |
+
import functools
|
5 |
+
import getpass
|
6 |
+
import inspect
|
7 |
+
import itertools
|
8 |
+
import logging
|
9 |
+
import os
|
10 |
+
import re
|
11 |
+
import subprocess
|
12 |
+
import tempfile
|
13 |
+
import textwrap
|
14 |
+
from collections import Counter
|
15 |
+
from importlib import import_module
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, TypeVar
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch._prims_common as utils
|
20 |
+
import torch._subclasses.meta_utils
|
21 |
+
from torch import Tensor
|
22 |
+
|
23 |
+
from torch._dynamo.testing import rand_strided
|
24 |
+
from torch._prims_common import is_float_dtype
|
25 |
+
from torch.multiprocessing.reductions import StorageWeakRef
|
26 |
+
from torch.utils._content_store import ContentStoreReader, ContentStoreWriter
|
27 |
+
|
28 |
+
from . import config
|
29 |
+
from .utils import clone_inputs, get_debug_dir
|
30 |
+
|
31 |
+
log = logging.getLogger(__name__)
|
32 |
+
|
33 |
+
T = TypeVar("T")
|
34 |
+
|
35 |
+
|
36 |
+
inductor_config = import_module("torch._inductor.config")
|
37 |
+
use_buck = inductor_config.is_fbcode()
|
38 |
+
|
39 |
+
if use_buck:
|
40 |
+
import libfb.py.build_info
|
41 |
+
|
42 |
+
|
43 |
+
extra_deps = []
|
44 |
+
extra_imports = ""
|
45 |
+
if use_buck:
|
46 |
+
extra_deps = [
|
47 |
+
"//caffe2/torch/fb/sparsenn:sparsenn_operators_gpu",
|
48 |
+
"//caffe2/torch/fb/sparsenn:sparsenn_operators",
|
49 |
+
"//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu",
|
50 |
+
"//deeplearning/fbgemm/fbgemm_gpu:sparse_ops",
|
51 |
+
]
|
52 |
+
cur_target = libfb.py.build_info.BuildInfo.get_build_rule().replace("fbcode:", "//") # type: ignore[possibly-undefined]
|
53 |
+
extra_imports = "\n".join([f'torch.ops.load_library("{x}")' for x in extra_deps])
|
54 |
+
|
55 |
+
|
56 |
+
BUCK_CMD_PREFIX = ["buck2", "run", "@mode/dev-nosan"]
|
57 |
+
|
58 |
+
|
59 |
+
class BuckTargetWriter:
|
60 |
+
def __init__(self, filename):
|
61 |
+
self.subdir, self.py_file = os.path.split(os.path.abspath(filename))
|
62 |
+
self.target = self.py_file.replace(".py", "")
|
63 |
+
|
64 |
+
# Get main_module path from fbcode
|
65 |
+
self.path = f'{self.subdir.replace("/", ".")}.{self.target}'
|
66 |
+
self.path = self.path[self.path.find("fbcode.") :]
|
67 |
+
self.path = self.path[7:]
|
68 |
+
|
69 |
+
# Get cmd line path
|
70 |
+
tmp = self.subdir
|
71 |
+
tmp = tmp[tmp.find("fbcode/") :][7:]
|
72 |
+
self.cmd_line_path = f"//{tmp}:{self.target}"
|
73 |
+
|
74 |
+
def build(self):
|
75 |
+
extra_cpp_deps = "\n".join([f' "{x}",' for x in extra_deps])
|
76 |
+
return textwrap.dedent(
|
77 |
+
f"""
|
78 |
+
load("@fbcode_macros//build_defs:python_binary.bzl", "python_binary")
|
79 |
+
|
80 |
+
python_binary(
|
81 |
+
name="{self.target}",
|
82 |
+
srcs = ["{self.py_file}"],
|
83 |
+
compile = False,
|
84 |
+
deps = [
|
85 |
+
"//caffe2:torch",
|
86 |
+
"//caffe2/functorch:functorch",
|
87 |
+
"//triton:triton",
|
88 |
+
"{cur_target}",
|
89 |
+
],
|
90 |
+
cpp_deps = [
|
91 |
+
{extra_cpp_deps}
|
92 |
+
],
|
93 |
+
main_module = "{self.path}",
|
94 |
+
par_style = "xar",
|
95 |
+
)
|
96 |
+
"""
|
97 |
+
)
|
98 |
+
|
99 |
+
def write(self, print_msg=True):
|
100 |
+
target_file = os.path.join(self.subdir, "TARGETS")
|
101 |
+
with open(target_file, "w") as fd:
|
102 |
+
fd.write(self.build())
|
103 |
+
# log.warning("Wrote isolation TARGETS file at %s", target_file)
|
104 |
+
cmd_split = BUCK_CMD_PREFIX + [self.cmd_line_path]
|
105 |
+
if print_msg:
|
106 |
+
log.warning(
|
107 |
+
"Found an example that reproduces the error. Run this cmd to repro - %s",
|
108 |
+
" ".join(cmd_split),
|
109 |
+
)
|
110 |
+
return cmd_split
|
111 |
+
|
112 |
+
|
113 |
+
def minifier_dir():
|
114 |
+
path = os.path.join(get_debug_dir(), "minifier")
|
115 |
+
if path is None:
|
116 |
+
path = f"{tempfile.gettempdir()}/minifier_{getpass.getuser()}"
|
117 |
+
if not os.path.exists(path):
|
118 |
+
os.makedirs(path, exist_ok=True)
|
119 |
+
return path
|
120 |
+
|
121 |
+
|
122 |
+
MAX_CONSTANT_NUMEL_INLINE = 4
|
123 |
+
|
124 |
+
|
125 |
+
class NNModuleToString:
|
126 |
+
safe_reprs = [
|
127 |
+
torch.nn.Linear,
|
128 |
+
torch.nn.Conv1d,
|
129 |
+
torch.nn.Conv2d,
|
130 |
+
torch.nn.Conv3d,
|
131 |
+
torch.nn.BatchNorm1d,
|
132 |
+
torch.nn.BatchNorm2d,
|
133 |
+
torch.nn.BatchNorm3d,
|
134 |
+
torch.nn.LayerNorm,
|
135 |
+
torch.nn.Dropout,
|
136 |
+
torch.nn.Softmax,
|
137 |
+
torch.nn.ReLU,
|
138 |
+
torch.nn.GELU,
|
139 |
+
torch.nn.Identity,
|
140 |
+
torch.nn.MaxPool2d,
|
141 |
+
torch.nn.Embedding,
|
142 |
+
torch.nn.Tanh,
|
143 |
+
torch.nn.ConvTranspose1d,
|
144 |
+
torch.nn.GLU,
|
145 |
+
torch.nn.LSTM,
|
146 |
+
torch.nn.Flatten,
|
147 |
+
torch.nn.AdaptiveAvgPool2d,
|
148 |
+
]
|
149 |
+
|
150 |
+
@staticmethod
|
151 |
+
def can_convert_to_string(gm):
|
152 |
+
cant_convert = set()
|
153 |
+
for _, module in gm.named_children():
|
154 |
+
if type(module) not in NNModuleToString.safe_reprs:
|
155 |
+
cant_convert.add(module)
|
156 |
+
|
157 |
+
if len(cant_convert) > 0:
|
158 |
+
log.warning("We have not tested reprs of some modules - %s", cant_convert)
|
159 |
+
# TODO - Assuming that all modules can be safely repr'd. Check if that assumption is correct.
|
160 |
+
return True
|
161 |
+
|
162 |
+
@staticmethod
|
163 |
+
def convert(gm):
|
164 |
+
from torch.nn.modules.module import _addindent
|
165 |
+
|
166 |
+
tab = " " * 4
|
167 |
+
|
168 |
+
model_str = textwrap.dedent(
|
169 |
+
"""
|
170 |
+
from torch.nn import *
|
171 |
+
class Repro(torch.nn.Module):
|
172 |
+
def __init__(self):
|
173 |
+
super().__init__()
|
174 |
+
"""
|
175 |
+
)
|
176 |
+
|
177 |
+
for module_name, module in gm.named_children():
|
178 |
+
module_str = f"{module.__repr__()}"
|
179 |
+
# module should be a core torch.nn.Module, so all parameters
|
180 |
+
# should be on the same device.
|
181 |
+
example_param = next(module.parameters(), None)
|
182 |
+
if example_param is not None and example_param.is_cuda:
|
183 |
+
module_str = f"{module_str}.cuda()"
|
184 |
+
model_str += f"{tab*2}self.{module_name} = {module_str}\n"
|
185 |
+
|
186 |
+
for buffer_name, buffer in gm._buffers.items():
|
187 |
+
if buffer is None:
|
188 |
+
continue
|
189 |
+
# Serialize full data for small buffers
|
190 |
+
if buffer.numel() <= MAX_CONSTANT_NUMEL_INLINE:
|
191 |
+
from torch._tensor_str import PRINT_OPTS
|
192 |
+
|
193 |
+
assert PRINT_OPTS.threshold >= MAX_CONSTANT_NUMEL_INLINE
|
194 |
+
tensor_str = repr(buffer)
|
195 |
+
elif torch.is_floating_point(buffer):
|
196 |
+
tensor_str = f"torch.randn({list(buffer.shape)}, dtype={buffer.dtype})"
|
197 |
+
else:
|
198 |
+
tensor_str = (
|
199 |
+
f"torch.randint(1, size={list(buffer.shape)}, dtype={buffer.dtype})"
|
200 |
+
)
|
201 |
+
if buffer.is_cuda:
|
202 |
+
tensor_str = f"{tensor_str}.cuda()"
|
203 |
+
model_str += f"{tab*2}self.register_buffer('{buffer_name}', {tensor_str})\n"
|
204 |
+
|
205 |
+
for param_name, param in gm._parameters.items():
|
206 |
+
if param is None:
|
207 |
+
continue
|
208 |
+
maybe_device = ""
|
209 |
+
if param.is_cuda:
|
210 |
+
maybe_device = ', device="cuda"'
|
211 |
+
tensor_str = f"torch.nn.Parameter(torch.randn({list(param.shape)}, dtype={param.dtype}{maybe_device}))"
|
212 |
+
model_str += f"{tab*2}self.{param_name} = {tensor_str}\n"
|
213 |
+
|
214 |
+
# TODO - Keep this code for now. But, I don't think we will need this.
|
215 |
+
# attrs = dir(gm)
|
216 |
+
# for attr in attrs:
|
217 |
+
# if "_tensor_constant" in attr:
|
218 |
+
# val = getattr(gm, attr)
|
219 |
+
# model_str += f" {attr} = {val!r}\n"
|
220 |
+
|
221 |
+
model_str += f"{_addindent(gm.code, 4)}\n"
|
222 |
+
return model_str
|
223 |
+
|
224 |
+
|
225 |
+
@functools.lru_cache(None) # subprocess is expensive
|
226 |
+
def _cuda_system_info_comment():
|
227 |
+
if not torch.cuda.is_available():
|
228 |
+
return "# torch.cuda.is_available()==False, no GPU info collected\n"
|
229 |
+
|
230 |
+
model_str = "# CUDA Info: \n"
|
231 |
+
try:
|
232 |
+
cuda_version_out = subprocess.check_output(["nvcc", "--version"])
|
233 |
+
cuda_version_lines = cuda_version_out.decode().split("\n")
|
234 |
+
comment = "".join([f"# {s} \n" for s in cuda_version_lines if s not in [""]])
|
235 |
+
model_str += f"{comment}\n"
|
236 |
+
except (FileNotFoundError, subprocess.CalledProcessError):
|
237 |
+
model_str += "# nvcc not found\n"
|
238 |
+
|
239 |
+
gpu_names = Counter(
|
240 |
+
torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())
|
241 |
+
)
|
242 |
+
|
243 |
+
model_str += "# GPU Hardware Info: \n"
|
244 |
+
for name, count in gpu_names.items():
|
245 |
+
model_str += f"# {name} : {count} \n"
|
246 |
+
model_str += "\n"
|
247 |
+
return model_str
|
248 |
+
|
249 |
+
|
250 |
+
def generate_config_string(*, stable_output=False):
|
251 |
+
import torch._functorch.config
|
252 |
+
import torch._inductor.config
|
253 |
+
|
254 |
+
if stable_output:
|
255 |
+
return "# config omitted due to stable_output=True"
|
256 |
+
|
257 |
+
experimental_config = torch.fx.experimental._config.codegen_config() # type: ignore[attr-defined]
|
258 |
+
return f"""\
|
259 |
+
import torch._dynamo.config
|
260 |
+
import torch._inductor.config
|
261 |
+
import torch._functorch.config
|
262 |
+
import torch.fx.experimental._config
|
263 |
+
{torch._dynamo.config.codegen_config()}
|
264 |
+
{torch._inductor.config.codegen_config()}
|
265 |
+
{torch._functorch.config.codegen_config()}
|
266 |
+
{experimental_config}
|
267 |
+
"""
|
268 |
+
|
269 |
+
|
270 |
+
def get_minifier_repro_path():
|
271 |
+
return os.path.join(minifier_dir(), "minifier_launcher.py")
|
272 |
+
|
273 |
+
|
274 |
+
def helper_for_dump_minify(contents):
|
275 |
+
minified_repro_path = get_minifier_repro_path()
|
276 |
+
log.warning("Writing minified repro to:\n%s", minified_repro_path)
|
277 |
+
|
278 |
+
if use_buck:
|
279 |
+
BuckTargetWriter(minified_repro_path).write()
|
280 |
+
try:
|
281 |
+
with open(minified_repro_path, "w") as fd:
|
282 |
+
fd.write(contents)
|
283 |
+
|
284 |
+
except OSError as e:
|
285 |
+
log.exception(e)
|
286 |
+
raise NotImplementedError("Could not write to {minified_repro_path}") from e
|
287 |
+
|
288 |
+
|
289 |
+
class AccuracyError(Exception):
|
290 |
+
pass
|
291 |
+
|
292 |
+
|
293 |
+
def clone_inputs_retaining_gradness(example_inputs):
|
294 |
+
"""
|
295 |
+
This clone inputs is different from utils clone_input. In case of minifier,
|
296 |
+
all the tensors are leaf tensors while creating a new graph. So, we set the
|
297 |
+
requires_grad field w/o checking the leafness of the tensor.
|
298 |
+
"""
|
299 |
+
cloned_inputs = clone_inputs(example_inputs)
|
300 |
+
for idx in range(len(example_inputs)):
|
301 |
+
if isinstance(cloned_inputs[idx], torch.Tensor):
|
302 |
+
cloned_inputs[idx].requires_grad_(example_inputs[idx].requires_grad)
|
303 |
+
return cloned_inputs
|
304 |
+
|
305 |
+
|
306 |
+
def run_fwd_maybe_bwd(gm, args, only_fwd=False, disable_clone=False):
|
307 |
+
"""
|
308 |
+
Runs a forward and possibly backward iteration for a given mod and args.
|
309 |
+
|
310 |
+
When disable_clone is True, we will use args as-is without cloning.
|
311 |
+
This is higher fidelity but we may destroy the args in the process.
|
312 |
+
"""
|
313 |
+
from torch._functorch.aot_autograd import make_boxed_func
|
314 |
+
|
315 |
+
from .testing import collect_results, reduce_to_scalar_loss, requires_bwd_pass
|
316 |
+
|
317 |
+
gm = copy.deepcopy(gm)
|
318 |
+
if not disable_clone:
|
319 |
+
args = clone_inputs_retaining_gradness(args)
|
320 |
+
|
321 |
+
if hasattr(gm, "zero_grad"):
|
322 |
+
gm.zero_grad(True)
|
323 |
+
|
324 |
+
# TorchInductor returned callable expects lists. So, boxing the call.
|
325 |
+
orig_named_parameters = getattr(gm, "named_parameters", None)
|
326 |
+
orig_named_buffers = getattr(gm, "named_buffers", None)
|
327 |
+
if not hasattr(gm, "_boxed_call") and (
|
328 |
+
orig_named_parameters is not None or orig_named_buffers is not None
|
329 |
+
):
|
330 |
+
gm = make_boxed_func(gm)
|
331 |
+
if orig_named_parameters is not None:
|
332 |
+
gm.named_parameters = orig_named_parameters
|
333 |
+
if orig_named_buffers is not None:
|
334 |
+
gm.named_buffers = orig_named_buffers
|
335 |
+
|
336 |
+
out = gm(args)
|
337 |
+
if only_fwd:
|
338 |
+
return out
|
339 |
+
if requires_bwd_pass(out):
|
340 |
+
loss = reduce_to_scalar_loss(out)
|
341 |
+
loss.backward()
|
342 |
+
return collect_results(gm, out, None, args)
|
343 |
+
|
344 |
+
|
345 |
+
def same_two_models(
|
346 |
+
gm,
|
347 |
+
opt_gm,
|
348 |
+
example_inputs,
|
349 |
+
only_fwd=False,
|
350 |
+
*,
|
351 |
+
require_fp64=False,
|
352 |
+
ignore_non_fp=False,
|
353 |
+
):
|
354 |
+
"""
|
355 |
+
Check two models have same accuracy.
|
356 |
+
|
357 |
+
require_fp64: if True, raise an error if we unable to calculate the fp64 reference
|
358 |
+
ignore_non_fp: if True, do not compare outputs which are not floating point. This
|
359 |
+
is mostly useful for the minifier (which wants to avoid quantizing floating point
|
360 |
+
error into integer/boolean error)
|
361 |
+
"""
|
362 |
+
from .eval_frame import OptimizedModule
|
363 |
+
from .testing import (
|
364 |
+
named_buffers_for_optimized_module,
|
365 |
+
named_parameters_for_optimized_module,
|
366 |
+
)
|
367 |
+
from .utils import same
|
368 |
+
|
369 |
+
if isinstance(gm, OptimizedModule):
|
370 |
+
gm.named_parameters = named_parameters_for_optimized_module(gm)
|
371 |
+
gm.named_buffers = named_buffers_for_optimized_module(gm)
|
372 |
+
|
373 |
+
if isinstance(opt_gm, OptimizedModule):
|
374 |
+
opt_gm.named_parameters = named_parameters_for_optimized_module(opt_gm)
|
375 |
+
opt_gm.named_buffers = named_buffers_for_optimized_module(opt_gm)
|
376 |
+
|
377 |
+
ref = run_fwd_maybe_bwd(gm, example_inputs, only_fwd)
|
378 |
+
|
379 |
+
fp64_ref = None
|
380 |
+
if config.same_two_models_use_fp64:
|
381 |
+
try:
|
382 |
+
fp64_model, fp64_examples = cast_to_fp64(
|
383 |
+
copy.deepcopy(gm), clone_inputs_retaining_gradness(example_inputs)
|
384 |
+
)
|
385 |
+
fp64_ref = run_fwd_maybe_bwd(fp64_model, fp64_examples, only_fwd)
|
386 |
+
except Exception:
|
387 |
+
if require_fp64:
|
388 |
+
raise RuntimeError("Could not generate fp64 outputs") # noqa: TRY200
|
389 |
+
log.warning("Could not generate fp64 outputs")
|
390 |
+
|
391 |
+
try:
|
392 |
+
res = run_fwd_maybe_bwd(opt_gm, example_inputs, only_fwd)
|
393 |
+
except Exception as e:
|
394 |
+
# This means that the minified graph is bad/exposes a different problem.
|
395 |
+
# As we are checking accuracy here, lets log the exception and return True.
|
396 |
+
log.exception(
|
397 |
+
"While minifying the program in accuracy minification mode, "
|
398 |
+
"ran into a runtime exception which is likely an unrelated issue."
|
399 |
+
" Skipping this graph."
|
400 |
+
)
|
401 |
+
return True
|
402 |
+
|
403 |
+
passing = same(
|
404 |
+
ref,
|
405 |
+
res,
|
406 |
+
fp64_ref,
|
407 |
+
tol=config.repro_tolerance,
|
408 |
+
equal_nan=True,
|
409 |
+
ignore_non_fp=ignore_non_fp,
|
410 |
+
)
|
411 |
+
return passing
|
412 |
+
|
413 |
+
|
414 |
+
def cast_dtype_args_to_fp64(model):
|
415 |
+
for node in model.graph.nodes:
|
416 |
+
if (
|
417 |
+
node.op == "call_function"
|
418 |
+
and node.target == torch.ops.prims.convert_element_type.default
|
419 |
+
):
|
420 |
+
assert len(node.args) == 2
|
421 |
+
if is_float_dtype(node.args[1]) and node.args[1] != torch.float64:
|
422 |
+
node.args = (node.args[0], torch.float64)
|
423 |
+
if node.op == "call_function":
|
424 |
+
dtype = node.kwargs.get("dtype")
|
425 |
+
if dtype is not None and is_float_dtype(dtype):
|
426 |
+
new_kwargs = dict(node.kwargs)
|
427 |
+
new_kwargs["dtype"] = torch.float64
|
428 |
+
node.kwargs = new_kwargs
|
429 |
+
|
430 |
+
model.graph.lint()
|
431 |
+
model.recompile()
|
432 |
+
return model
|
433 |
+
|
434 |
+
|
435 |
+
def cast_to(dtype, model, inputs):
|
436 |
+
from torch.utils._pytree import tree_map
|
437 |
+
|
438 |
+
model = model.to(dtype)
|
439 |
+
if dtype == torch.float64:
|
440 |
+
# If casting to fp64 for accuracy comparison, we need to
|
441 |
+
# replace dtype arguments embedded in the graph with fp64
|
442 |
+
model = cast_dtype_args_to_fp64(model)
|
443 |
+
|
444 |
+
inputs = tree_map(
|
445 |
+
lambda x: x.to(dtype)
|
446 |
+
if isinstance(x, torch.Tensor) and x.is_floating_point()
|
447 |
+
else x,
|
448 |
+
inputs,
|
449 |
+
)
|
450 |
+
return model, inputs
|
451 |
+
|
452 |
+
|
453 |
+
def cast_to_fp64(model, inputs):
|
454 |
+
return cast_to(torch.float64, model, inputs)
|
455 |
+
|
456 |
+
|
457 |
+
def backend_accuracy_fails(
|
458 |
+
gm,
|
459 |
+
example_inputs,
|
460 |
+
compiler_fn,
|
461 |
+
only_fwd=False,
|
462 |
+
*,
|
463 |
+
require_fp64=False,
|
464 |
+
ignore_non_fp=False,
|
465 |
+
):
|
466 |
+
try:
|
467 |
+
compiled_gm = compiler_fn(
|
468 |
+
copy.deepcopy(gm), clone_inputs_retaining_gradness(example_inputs)
|
469 |
+
)
|
470 |
+
return not same_two_models(
|
471 |
+
gm,
|
472 |
+
compiled_gm,
|
473 |
+
example_inputs,
|
474 |
+
only_fwd,
|
475 |
+
require_fp64=require_fp64,
|
476 |
+
ignore_non_fp=ignore_non_fp,
|
477 |
+
)
|
478 |
+
except Exception as e:
|
479 |
+
# This means that the minified graph is bad/exposes a different problem.
|
480 |
+
# As we are checking accuracy here, lets log the exception and return False.
|
481 |
+
log.exception(
|
482 |
+
"While minifying the program in accuracy minification mode, "
|
483 |
+
"ran into a runtime exception which is likely an unrelated issue."
|
484 |
+
" Skipping this graph"
|
485 |
+
)
|
486 |
+
return False
|
487 |
+
|
488 |
+
|
489 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
490 |
+
# REPRO SUPPORT CODE
|
491 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
492 |
+
|
493 |
+
|
494 |
+
# Helper functions for computing what the default values of tensor
|
495 |
+
# values should be. These all coincide with factory functions, e.g., torch.empty
|
496 |
+
|
497 |
+
|
498 |
+
def _stride_or_default(
|
499 |
+
stride: Optional["torch._prims_common.StrideType"],
|
500 |
+
*,
|
501 |
+
shape: "torch._prims_common.ShapeType",
|
502 |
+
) -> "torch._prims_common.StrideType":
|
503 |
+
return stride if stride is not None else utils.make_contiguous_strides_for(shape)
|
504 |
+
|
505 |
+
|
506 |
+
def _mk_defaulter(d: T) -> Callable[[Optional[T]], T]:
|
507 |
+
return lambda x: x if x is not None else d
|
508 |
+
|
509 |
+
|
510 |
+
_dtype_or_default = _mk_defaulter(torch.float32)
|
511 |
+
_device_or_default = _mk_defaulter(torch.device("cpu"))
|
512 |
+
_storage_offset_or_default = _mk_defaulter(0)
|
513 |
+
_requires_grad_or_default = _mk_defaulter(False)
|
514 |
+
_is_leaf_or_default = _mk_defaulter(False)
|
515 |
+
|
516 |
+
|
517 |
+
class NopInputReader:
|
518 |
+
def __init__(self):
|
519 |
+
self.total = 0
|
520 |
+
|
521 |
+
def storage(self, storage_hash, nbytes, *, device=None, dtype_hint=None):
|
522 |
+
self.total += 1
|
523 |
+
|
524 |
+
def tensor(self, *args, **kwargs):
|
525 |
+
pass
|
526 |
+
|
527 |
+
def symint(self, *args, **kwargs):
|
528 |
+
pass
|
529 |
+
|
530 |
+
|
531 |
+
# TODO: Support bundling the entire repro into a zip file for ease of
|
532 |
+
# transferring around
|
533 |
+
class InputReader:
|
534 |
+
def __init__(self, save_dir=None, *, pbar=None):
|
535 |
+
# If None, we will generate random data instead. It's important
|
536 |
+
# to natively support this use case as it will allow people to
|
537 |
+
# share repros without including the real data, if the problem
|
538 |
+
# reproduces even on random data.
|
539 |
+
if save_dir is None:
|
540 |
+
log.warning("no save_dir specified, will generate random data")
|
541 |
+
self.store = ContentStoreReader(save_dir) if save_dir is not None else None
|
542 |
+
self.args = []
|
543 |
+
self.pbar = pbar
|
544 |
+
|
545 |
+
def storage(self, storage_hash, nbytes, *, device=None, dtype_hint=None):
|
546 |
+
if self.pbar is not None:
|
547 |
+
self.pbar.update(1)
|
548 |
+
device = _device_or_default(device)
|
549 |
+
dtype_hint = _dtype_or_default(dtype_hint)
|
550 |
+
if self.store is not None and storage_hash is not None:
|
551 |
+
try:
|
552 |
+
storage = self.store.read_storage(storage_hash)
|
553 |
+
except FileNotFoundError:
|
554 |
+
pass
|
555 |
+
else:
|
556 |
+
if device != storage.device:
|
557 |
+
log.warning("device mismatch: %s != %s", device, storage.device)
|
558 |
+
# TODO: transfer it to the right device? But failing this
|
559 |
+
# way would be very mysterious! Would have been better
|
560 |
+
# not to store device in the serialized format...
|
561 |
+
return storage
|
562 |
+
log.warning("could not load %s, generating random data instead", storage_hash)
|
563 |
+
shape = (nbytes // dtype_hint.itemsize,)
|
564 |
+
stride = _stride_or_default(None, shape=shape)
|
565 |
+
return rand_strided(shape, stride, dtype_hint, device).untyped_storage()
|
566 |
+
|
567 |
+
def tensor(
|
568 |
+
self,
|
569 |
+
storage,
|
570 |
+
shape,
|
571 |
+
stride=None,
|
572 |
+
*,
|
573 |
+
storage_offset=None,
|
574 |
+
dtype=None,
|
575 |
+
requires_grad=None,
|
576 |
+
is_leaf=None,
|
577 |
+
**metadata,
|
578 |
+
):
|
579 |
+
stride = _stride_or_default(stride, shape=shape)
|
580 |
+
storage_offset = _storage_offset_or_default(storage_offset)
|
581 |
+
dtype = _dtype_or_default(dtype)
|
582 |
+
is_leaf = _is_leaf_or_default(is_leaf)
|
583 |
+
requires_grad = _requires_grad_or_default(requires_grad)
|
584 |
+
t = torch.tensor(
|
585 |
+
[], dtype=dtype, device=storage.device, requires_grad=requires_grad
|
586 |
+
)
|
587 |
+
with torch.no_grad():
|
588 |
+
t.set_(storage, storage_offset, shape, stride)
|
589 |
+
if not is_leaf:
|
590 |
+
# Fake up some autograd history in a very naughty way
|
591 |
+
with torch.enable_grad():
|
592 |
+
t = t.clone(memory_format=torch.preserve_format)
|
593 |
+
with torch.no_grad():
|
594 |
+
t.set_(storage, storage_offset, shape, stride)
|
595 |
+
assert torch._subclasses.meta_utils.safe_is_leaf(t) == is_leaf
|
596 |
+
torch._utils.set_tensor_metadata(t, metadata)
|
597 |
+
self.args.append(t)
|
598 |
+
return t # for BC
|
599 |
+
|
600 |
+
def symint(self, val):
|
601 |
+
self.args.append(val)
|
602 |
+
return val # for BC
|
603 |
+
|
604 |
+
|
605 |
+
# Here is our writer strategy:
|
606 |
+
# 1. We will stream all of the inputs to disk
|
607 |
+
# 2. You can now deterministically randomize the inputs, or reload
|
608 |
+
# the inputs from disk
|
609 |
+
# 3. You can YOLO run the script without the inputs, in which case
|
610 |
+
# we'll fill the inputs with random data and pray. This is the
|
611 |
+
# legacy behavior, but it's also useful if you want to find out
|
612 |
+
# if we're so broken even random inputs trigger it
|
613 |
+
# 4. We could offer an in process "check if the randomized thing
|
614 |
+
# works too" but this is delicate so we don't do it
|
615 |
+
|
616 |
+
|
617 |
+
class InputWriter:
|
618 |
+
def __init__(self, save_dir, *, stable_hash=False):
|
619 |
+
self._lines = []
|
620 |
+
# TODO: consider ensuring tensor and storage counters line up?
|
621 |
+
self.storage_counter = itertools.count()
|
622 |
+
self.save_dir = save_dir
|
623 |
+
self.store = (
|
624 |
+
ContentStoreWriter(save_dir, stable_hash=stable_hash)
|
625 |
+
if save_dir is not None
|
626 |
+
else None
|
627 |
+
)
|
628 |
+
self.seen_storages = {}
|
629 |
+
|
630 |
+
def lines(self):
|
631 |
+
r = [
|
632 |
+
"def load_args(reader):",
|
633 |
+
]
|
634 |
+
r.extend(f" {l}" for l in self._lines)
|
635 |
+
# In case we need to change the internal format of load_args
|
636 |
+
# in an FC-breaking way
|
637 |
+
r.append("load_args._version = 0")
|
638 |
+
return r
|
639 |
+
|
640 |
+
# Storages are untyped, but we need to initialize them with data if
|
641 |
+
# we don't have the real data, so we give a hint saying what kind
|
642 |
+
# of initialization may be appropriate
|
643 |
+
#
|
644 |
+
# If we had a FakeTensor, device_hint tells us what device should be
|
645 |
+
def storage(self, untyped_storage, *, dtype_hint=None, device_hint=None) -> str:
|
646 |
+
ws = StorageWeakRef(untyped_storage)
|
647 |
+
v = self.seen_storages.get(ws)
|
648 |
+
if v is not None:
|
649 |
+
return v
|
650 |
+
v = f"buf{next(self.storage_counter)}"
|
651 |
+
maybe_dtype_hint = ""
|
652 |
+
if _dtype_or_default(None) != _dtype_or_default(dtype_hint):
|
653 |
+
maybe_dtype_hint = f", dtype_hint={dtype_hint!r}"
|
654 |
+
# TODO: being optional on device is kind of pointless as the default
|
655 |
+
# is CPU but most repros we care about are CUDA
|
656 |
+
maybe_device = ""
|
657 |
+
device = untyped_storage.device
|
658 |
+
if device.type == "meta":
|
659 |
+
assert device_hint is not None
|
660 |
+
device = device_hint
|
661 |
+
if _device_or_default(None) != device:
|
662 |
+
maybe_device = f", device={device!r}"
|
663 |
+
nbytes = untyped_storage.nbytes()
|
664 |
+
storage_hash = None
|
665 |
+
if self.store is not None and untyped_storage.device.type != "meta":
|
666 |
+
storage_hash = self.store.write_storage(untyped_storage)
|
667 |
+
self._lines.append(
|
668 |
+
f"{v} = reader.storage({storage_hash!r}, {nbytes!r}{maybe_device}{maybe_dtype_hint})"
|
669 |
+
)
|
670 |
+
self.seen_storages[ws] = v
|
671 |
+
return v
|
672 |
+
|
673 |
+
def tensor(self, name, t) -> None:
|
674 |
+
storage = self.storage(
|
675 |
+
t.untyped_storage(), dtype_hint=t.dtype, device_hint=t.device
|
676 |
+
)
|
677 |
+
args = []
|
678 |
+
# NB: this is positional, must come first
|
679 |
+
if _stride_or_default(None, shape=t.shape) != t.stride():
|
680 |
+
args.append(str(tuple(t.stride())))
|
681 |
+
if _dtype_or_default(None) != t.dtype:
|
682 |
+
args.append(f"dtype={t.dtype!r}")
|
683 |
+
if _storage_offset_or_default(None) != t.storage_offset():
|
684 |
+
args.append(f"storage_offset={t.storage_offset()!r}")
|
685 |
+
tensor_metadata = torch._utils.get_tensor_metadata(t)
|
686 |
+
if tensor_metadata:
|
687 |
+
args.extend(f"{k}={v!r}" for k, v in tensor_metadata.items())
|
688 |
+
if _requires_grad_or_default(None) != t.requires_grad:
|
689 |
+
args.append(f"requires_grad={t.requires_grad!r}")
|
690 |
+
is_leaf = torch._subclasses.meta_utils.safe_is_leaf(t)
|
691 |
+
if _is_leaf_or_default(None) != is_leaf:
|
692 |
+
args.append(f"is_leaf={is_leaf!r}")
|
693 |
+
self._lines.append(
|
694 |
+
"reader.tensor("
|
695 |
+
+ ", ".join([storage, str(tuple(t.shape)), *args])
|
696 |
+
+ f") # {name}"
|
697 |
+
)
|
698 |
+
|
699 |
+
# TODO: this doesn't actually symint atm
|
700 |
+
def symint(self, name, val) -> None:
|
701 |
+
if isinstance(val, torch.SymInt):
|
702 |
+
val = val.node.hint
|
703 |
+
self._lines.append(f"reader.symint({val!r}) # {name}")
|
704 |
+
|
705 |
+
|
706 |
+
def aot_graph_input_parser(
|
707 |
+
func: Callable[[List[Tensor]], List[Tensor]],
|
708 |
+
device: str = "cuda",
|
709 |
+
sym_shapes: Optional[Dict[str, int]] = None,
|
710 |
+
default_sym_shape: Optional[int] = None,
|
711 |
+
) -> Dict[str, Any]:
|
712 |
+
"""
|
713 |
+
Takes in a function which has been printed with print_readable() and constructs kwargs to run it.
|
714 |
+
|
715 |
+
Handles Tensor inputs, Symints, and a graph module which might have tensor constants.
|
716 |
+
|
717 |
+
Consider a function `forward` defined as follows:
|
718 |
+
|
719 |
+
def forward(self, primals_1: "f32[1001, 6]", primals_2: "f32[s0]", primals_3: "Sym(s0)",):
|
720 |
+
_tensor_constant0: "i64[4190]" = self._tensor_constant0
|
721 |
+
# Further implementation
|
722 |
+
|
723 |
+
kwargs = aot_graph_input_parser(forward)
|
724 |
+
forward(**kwargs)
|
725 |
+
"""
|
726 |
+
|
727 |
+
from torch.fx.graph import dtype_abbrs
|
728 |
+
|
729 |
+
dtype_map = {value: key for key, value in dtype_abbrs.items()}
|
730 |
+
dtype_pattern = "|".join(dtype_abbrs.values())
|
731 |
+
|
732 |
+
# Extracting the source code from the function
|
733 |
+
source = inspect.getsource(func)
|
734 |
+
|
735 |
+
# Regular expressions
|
736 |
+
tensor_assignment_regex = rf"(_tensor_constant\d+): \"({dtype_pattern})\[\s*(.*?)\s*\]\" = self\.(_tensor_constant\d+)"
|
737 |
+
tensor_regex = rf"({dtype_pattern})\[\s*(.*?)\s*\]"
|
738 |
+
sym_shape_regex = r"Sym\((s\d+)\)"
|
739 |
+
|
740 |
+
class TensorContainer:
|
741 |
+
"Container for tensors as attributes"
|
742 |
+
pass
|
743 |
+
|
744 |
+
# Dictionary for tensors from annotations
|
745 |
+
kwargs: Dict[str, Any] = {}
|
746 |
+
|
747 |
+
sym_shapes = sym_shapes or {}
|
748 |
+
|
749 |
+
def get_sym_int(symint):
|
750 |
+
torch._check(
|
751 |
+
symint in sym_shapes or default_sym_shape is not None,
|
752 |
+
lambda: f"{symint} not in symbolic_shapes and default sym shape not passed in",
|
753 |
+
)
|
754 |
+
return sym_shapes.get(symint, default_sym_shape)
|
755 |
+
|
756 |
+
def gen_tensor(shape, dtype) -> Tensor:
|
757 |
+
# Resolve symbolic shapes to concrete values
|
758 |
+
resolved_shape = []
|
759 |
+
dynamic_dims = []
|
760 |
+
for i, dim in enumerate(shape):
|
761 |
+
dim = dim.strip()
|
762 |
+
if "s" in dim:
|
763 |
+
s = get_sym_int(dim)
|
764 |
+
resolved_shape.append(s)
|
765 |
+
dynamic_dims.append(i)
|
766 |
+
else:
|
767 |
+
resolved_shape.append(int(dim))
|
768 |
+
|
769 |
+
constructor = torch.randn if dtype.is_floating_point else torch.zeros
|
770 |
+
out = constructor(resolved_shape, dtype=dtype, device=device) # type: ignore[call-arg]
|
771 |
+
for d in dynamic_dims:
|
772 |
+
torch._dynamo.mark_dynamic(out, d)
|
773 |
+
return out
|
774 |
+
|
775 |
+
# Parse function annotations for tensor generation
|
776 |
+
annotations = func.__annotations__
|
777 |
+
for param, annotation in annotations.items():
|
778 |
+
# Skip 'return' annotation
|
779 |
+
if param == "return":
|
780 |
+
continue
|
781 |
+
|
782 |
+
match = re.search(tensor_regex, annotation)
|
783 |
+
if match:
|
784 |
+
data_type, shape_str = match.groups()
|
785 |
+
shape = tuple(shape_str.split(","))
|
786 |
+
dtype = dtype_map[data_type]
|
787 |
+
kwargs[param] = gen_tensor(shape, dtype)
|
788 |
+
|
789 |
+
match = re.search(sym_shape_regex, annotation)
|
790 |
+
if match:
|
791 |
+
kwargs[param] = get_sym_int(match.group(1))
|
792 |
+
|
793 |
+
if "self" in inspect.signature(func).parameters:
|
794 |
+
container = TensorContainer()
|
795 |
+
kwargs["self"] = container
|
796 |
+
for match in re.finditer(tensor_assignment_regex, source):
|
797 |
+
attr_name, data_type, shape_str, _ = match.groups()
|
798 |
+
shape = tuple(shape_str.split(","))
|
799 |
+
dtype = dtype_map[data_type]
|
800 |
+
setattr(container, attr_name, gen_tensor(shape, dtype))
|
801 |
+
|
802 |
+
return kwargs
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/decorators.py
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import TYPE_CHECKING
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
|
6 |
+
from . import trace_rules, variables
|
7 |
+
from .comptime import comptime
|
8 |
+
from .eval_frame import DisableContext, innermost_fn, RunOnlyContext
|
9 |
+
from .exc import IncorrectUsage
|
10 |
+
from .external_utils import is_compiling
|
11 |
+
|
12 |
+
if TYPE_CHECKING:
|
13 |
+
from torch._C._dynamo.eval_frame import ( # noqa: F401
|
14 |
+
reset_code,
|
15 |
+
set_eval_frame,
|
16 |
+
set_guard_error_hook,
|
17 |
+
skip_code,
|
18 |
+
unsupported,
|
19 |
+
)
|
20 |
+
else:
|
21 |
+
for name in dir(torch._C._dynamo.eval_frame):
|
22 |
+
if name.startswith("__"):
|
23 |
+
continue
|
24 |
+
globals()[name] = getattr(torch._C._dynamo.eval_frame, name)
|
25 |
+
|
26 |
+
|
27 |
+
def run(fn=None):
|
28 |
+
"""Don't do any dynamic compiles, just use prior optimizations"""
|
29 |
+
if fn is not None:
|
30 |
+
fn = innermost_fn(fn)
|
31 |
+
assert callable(fn)
|
32 |
+
return RunOnlyContext()(fn)
|
33 |
+
return RunOnlyContext()
|
34 |
+
|
35 |
+
|
36 |
+
def disable(fn=None, recursive=True):
|
37 |
+
"""
|
38 |
+
Decorator and context manager to disable TorchDynamo
|
39 |
+
|
40 |
+
If recursive=True, Dynamo is completely skipped on the decorated function
|
41 |
+
frame as well as the recursively invoked functions.
|
42 |
+
|
43 |
+
If recursive=False, Dynamo skips frames associated with the function code,
|
44 |
+
but still process recursively invoked frames.
|
45 |
+
"""
|
46 |
+
if recursive:
|
47 |
+
if fn is not None:
|
48 |
+
fn = innermost_fn(fn)
|
49 |
+
assert callable(fn)
|
50 |
+
return DisableContext()(fn)
|
51 |
+
return DisableContext()
|
52 |
+
else:
|
53 |
+
return skip(fn)
|
54 |
+
|
55 |
+
|
56 |
+
def skip(fn=None):
|
57 |
+
"""
|
58 |
+
Skip frames associated with the function code, but still process recursively
|
59 |
+
invoked frames
|
60 |
+
"""
|
61 |
+
if fn is None:
|
62 |
+
return skip
|
63 |
+
fn = innermost_fn(fn)
|
64 |
+
assert callable(fn)
|
65 |
+
skip_code(fn.__code__)
|
66 |
+
fn._torchdynamo_disable = True
|
67 |
+
return fn
|
68 |
+
|
69 |
+
|
70 |
+
def assume_constant_result(fn):
|
71 |
+
fn._dynamo_marked_constant = True
|
72 |
+
return fn
|
73 |
+
|
74 |
+
|
75 |
+
def allow_in_graph(fn):
|
76 |
+
"""
|
77 |
+
Customize which functions TorchDynamo will include in the generated
|
78 |
+
graph. Similar to `torch.fx.wrap()`.
|
79 |
+
::
|
80 |
+
|
81 |
+
torch._dynamo.allow_in_graph(my_custom_function)
|
82 |
+
|
83 |
+
@torch._dynamo.optimize(...)
|
84 |
+
def fn(a):
|
85 |
+
x = torch.add(x, 1)
|
86 |
+
x = my_custom_function(x)
|
87 |
+
x = torch.add(x, 1)
|
88 |
+
return x
|
89 |
+
|
90 |
+
fn(...)
|
91 |
+
|
92 |
+
Will capture a single graph containing `my_custom_function()`.
|
93 |
+
"""
|
94 |
+
if isinstance(fn, (list, tuple)):
|
95 |
+
return [allow_in_graph(x) for x in fn]
|
96 |
+
assert callable(fn), "allow_in_graph expects a callable"
|
97 |
+
if trace_rules.lookup_callable(fn) != variables.TorchInGraphFunctionVariable:
|
98 |
+
trace_rules._disallowed_callable_ids.remove(id(fn))
|
99 |
+
trace_rules._allowed_callable_ids.add(id(fn))
|
100 |
+
return fn
|
101 |
+
|
102 |
+
|
103 |
+
def _disallow_in_graph_helper(throw_if_not_allowed):
|
104 |
+
def inner(fn):
|
105 |
+
if isinstance(fn, (list, tuple)):
|
106 |
+
return [disallow_in_graph(x) for x in fn]
|
107 |
+
assert callable(fn), "disallow_in_graph expects a callable"
|
108 |
+
if (
|
109 |
+
throw_if_not_allowed
|
110 |
+
and trace_rules.lookup_callable(fn)
|
111 |
+
!= variables.TorchInGraphFunctionVariable
|
112 |
+
and trace_rules.lookup(fn) != variables.TorchInGraphFunctionVariable
|
113 |
+
):
|
114 |
+
raise IncorrectUsage(
|
115 |
+
"disallow_in_graph is expected to be used on an already allowed callable (like torch.* ops). "
|
116 |
+
"Allowed callables means callables that TorchDynamo puts as-is in the extracted graph."
|
117 |
+
)
|
118 |
+
trace_rules._allowed_callable_ids.remove(id(fn))
|
119 |
+
trace_rules._disallowed_callable_ids.add(id(fn))
|
120 |
+
return fn
|
121 |
+
|
122 |
+
return inner
|
123 |
+
|
124 |
+
|
125 |
+
def disallow_in_graph(fn):
|
126 |
+
"""
|
127 |
+
Customize which functions TorchDynamo will exclude in the generated
|
128 |
+
graph and force a graph break on.
|
129 |
+
::
|
130 |
+
|
131 |
+
torch._dynamo.disallow_in_graph(torch.sub)
|
132 |
+
|
133 |
+
@torch._dynamo.optimize(...)
|
134 |
+
def fn(a):
|
135 |
+
x = torch.add(x, 1)
|
136 |
+
x = torch.sub(x, 1)
|
137 |
+
x = torch.add(x, 1)
|
138 |
+
return x
|
139 |
+
|
140 |
+
fn(...)
|
141 |
+
|
142 |
+
Will break the graph on `torch.sub`, and give two graphs each with a
|
143 |
+
single `torch.add()` op.
|
144 |
+
"""
|
145 |
+
return _disallow_in_graph_helper(throw_if_not_allowed=True)(fn)
|
146 |
+
|
147 |
+
|
148 |
+
@_disallow_in_graph_helper(throw_if_not_allowed=False)
|
149 |
+
def graph_break():
|
150 |
+
"""Force a graph break"""
|
151 |
+
pass
|
152 |
+
|
153 |
+
|
154 |
+
def forbid_in_graph(fn):
|
155 |
+
"""
|
156 |
+
Customize which functions TorchDynamo will assert are not present while tracing.
|
157 |
+
|
158 |
+
If you want a graph break on this function instead, use disallow_in_graph.
|
159 |
+
TODO(voz): We now have allow_in_graph, disallow_in_graph, forbid_in_graph - some more robust
|
160 |
+
documentation would not be amiss.
|
161 |
+
"""
|
162 |
+
if isinstance(fn, (list, tuple)):
|
163 |
+
return [forbid_in_graph(x) for x in fn]
|
164 |
+
assert callable(fn), "forbid_in_graph applies only to callables"
|
165 |
+
fn._dynamo_forbidden = True
|
166 |
+
return fn
|
167 |
+
|
168 |
+
|
169 |
+
# Helper function to flatten a tensor subclass and apply a function to
|
170 |
+
# all inner tensors that match the outer dim. Used to reduce duplication
|
171 |
+
# across the various marking APIs.
|
172 |
+
def _apply_func_to_inner_tensors_of_same_dim(func, t, *args, **kwargs):
|
173 |
+
assert is_traceable_wrapper_subclass(t)
|
174 |
+
|
175 |
+
attrs, ctx = t.__tensor_flatten__()
|
176 |
+
for attr in attrs:
|
177 |
+
inner = getattr(t, attr)
|
178 |
+
if inner.dim() == t.dim():
|
179 |
+
func(inner, *args, **kwargs)
|
180 |
+
|
181 |
+
|
182 |
+
@dataclass(frozen=True)
|
183 |
+
class _DimRange:
|
184 |
+
"""
|
185 |
+
This represents an dimension of a tensor and the corresponding
|
186 |
+
min and max values it can take. Don't create this
|
187 |
+
class directly; instead, use :func:`mark_dynamic`.
|
188 |
+
"""
|
189 |
+
|
190 |
+
dim: int
|
191 |
+
min: int
|
192 |
+
max: int
|
193 |
+
|
194 |
+
|
195 |
+
@forbid_in_graph
|
196 |
+
def mark_dynamic(t, index, *, min=None, max=None):
|
197 |
+
"""
|
198 |
+
Mark a tensor as having a dynamic dim and set corresponding min and max range for the dim.
|
199 |
+
|
200 |
+
[Note - on the state of mark_dynamic]
|
201 |
+
|
202 |
+
The behavior of having a dynamic dimension on a tensor is governed by a few factors:
|
203 |
+
|
204 |
+
1) torch._dynamo.config dynamic_shapes True or False.
|
205 |
+
a) dynamic_shapes=True - dynamic_shapes must be True for mark_dynamic to work.
|
206 |
+
a) dynamic_shapes=False - This config will raise an exception when used in conjunction with
|
207 |
+
mark_dynamic. We will eventually support this.
|
208 |
+
|
209 |
+
2) If the dimension is fully constrained - as in, it does not allow more than a single value
|
210 |
+
in both eager (torch.compile, torch._dynamo.optimize) mode and export mode (torch._dynamo.export),
|
211 |
+
we will raise an error
|
212 |
+
|
213 |
+
3) If the dimension is partially constrained - allowing at least 2 values but not the full unbounded
|
214 |
+
range of shapes, in eager we will pass it through, but export will raise an error.
|
215 |
+
|
216 |
+
4) Attempts to trace this function will explicitly raise. As such, all calls to mark_dynamic must be made
|
217 |
+
before torch.compile.
|
218 |
+
|
219 |
+
"""
|
220 |
+
if is_traceable_wrapper_subclass(t):
|
221 |
+
# default behavior: mirror mark_dynamic() on all inner tensors with same dim as t
|
222 |
+
# TODO: Make this configurable via a supported public API
|
223 |
+
_apply_func_to_inner_tensors_of_same_dim(
|
224 |
+
mark_dynamic, t, index, min=min, max=max
|
225 |
+
)
|
226 |
+
|
227 |
+
if isinstance(index, int):
|
228 |
+
if not hasattr(t, "_dynamo_dynamic_indices"):
|
229 |
+
t._dynamo_dynamic_indices = set()
|
230 |
+
t._dynamo_dynamic_range = set()
|
231 |
+
# TODO(voz): Should we bounds check?
|
232 |
+
t._dynamo_dynamic_indices.add(index)
|
233 |
+
t._dynamo_dynamic_range.add(_DimRange(index, min, max))
|
234 |
+
return
|
235 |
+
|
236 |
+
assert isinstance(index, (list, tuple))
|
237 |
+
for i in index:
|
238 |
+
mark_dynamic(t, i, min=min, max=max)
|
239 |
+
|
240 |
+
|
241 |
+
@forbid_in_graph
|
242 |
+
def maybe_mark_dynamic(t, index):
|
243 |
+
"""
|
244 |
+
Mark a tensor as having a dynamic dim, but don't enforce it (i.e., if this
|
245 |
+
dimension ends up getting specialized, don't error).
|
246 |
+
"""
|
247 |
+
if is_traceable_wrapper_subclass(t):
|
248 |
+
# default behavior: mirror maybe_mark_dynamic() on all inner tensors with same dim as t
|
249 |
+
# TODO: Make this configurable via a supported public API
|
250 |
+
_apply_func_to_inner_tensors_of_same_dim(maybe_mark_dynamic, t, index)
|
251 |
+
|
252 |
+
if isinstance(index, int):
|
253 |
+
if not hasattr(t, "_dynamo_weak_dynamic_indices"):
|
254 |
+
t._dynamo_weak_dynamic_indices = set()
|
255 |
+
# TODO(voz): Should we bounds check?
|
256 |
+
t._dynamo_weak_dynamic_indices.add(index)
|
257 |
+
return
|
258 |
+
|
259 |
+
assert isinstance(index, (list, tuple))
|
260 |
+
for i in index:
|
261 |
+
maybe_mark_dynamic(t, i)
|
262 |
+
|
263 |
+
|
264 |
+
def mark_static(t, index=None):
|
265 |
+
"""
|
266 |
+
Mark a tensor as having a static dim.
|
267 |
+
|
268 |
+
This will prevent us from attempting to compile it dynamically
|
269 |
+
when dynamic=True; this can improve trace-time performance.
|
270 |
+
|
271 |
+
This has lower precedence than mark_dynamic.
|
272 |
+
|
273 |
+
Unlike mark_dynamic, this can be done inside a graph, in which case it
|
274 |
+
induces specialization on the tensor.
|
275 |
+
"""
|
276 |
+
if is_compiling():
|
277 |
+
if index is None:
|
278 |
+
for s in t.size():
|
279 |
+
comptime.force_static(s)
|
280 |
+
else:
|
281 |
+
comptime.force_static(t.size(index))
|
282 |
+
return
|
283 |
+
|
284 |
+
if is_traceable_wrapper_subclass(t):
|
285 |
+
# default behavior: mirror mark_static() on all inner tensors with same dim as t
|
286 |
+
# TODO: Make this configurable via a supported public API
|
287 |
+
_apply_func_to_inner_tensors_of_same_dim(mark_static, t, index)
|
288 |
+
|
289 |
+
if isinstance(index, int):
|
290 |
+
if not hasattr(t, "_dynamo_static_indices"):
|
291 |
+
t._dynamo_static_indices = set()
|
292 |
+
# TODO(voz): Should we bounds check?
|
293 |
+
t._dynamo_static_indices.add(index)
|
294 |
+
elif index is None:
|
295 |
+
for i in range(t.dim()):
|
296 |
+
mark_static(t, i)
|
297 |
+
else:
|
298 |
+
assert isinstance(index, (list, tuple))
|
299 |
+
for i in index:
|
300 |
+
mark_static(t, i)
|
301 |
+
|
302 |
+
|
303 |
+
@forbid_in_graph
|
304 |
+
def mark_static_address(t, guard=True):
|
305 |
+
"""
|
306 |
+
Marks an input tensor whose data_ptr will not change across multiple calls
|
307 |
+
to a dynamo-compiled function. This indicates to cudagraphs that an extra allocation
|
308 |
+
is not needed for this input. The data_ptr will be guarded if guard=True. Note:
|
309 |
+
Tensors marked in this way will be kept alive until `torch._dynamo.reset()` is called.
|
310 |
+
"""
|
311 |
+
if not isinstance(t, torch.Tensor):
|
312 |
+
raise TypeError(f"mark_static_address expects a tensor but recieved {type(t)}")
|
313 |
+
|
314 |
+
if guard:
|
315 |
+
t._dynamo_static_input_type = "guarded" # type: ignore[attr-defined]
|
316 |
+
else:
|
317 |
+
t._dynamo_static_input_type = "unguarded" # type: ignore[attr-defined]
|
318 |
+
|
319 |
+
|
320 |
+
# Note: this carefully avoids eagerly import einops.
|
321 |
+
# TODO: we should delete this whole _allow_in_graph_einops logic by approximately 2024 Q2
|
322 |
+
def _allow_in_graph_einops():
|
323 |
+
import einops
|
324 |
+
|
325 |
+
try:
|
326 |
+
# requires einops > 0.6.1, torch >= 2.0
|
327 |
+
from einops._torch_specific import ( # type: ignore[attr-defined] # noqa: F401
|
328 |
+
_ops_were_registered_in_torchdynamo,
|
329 |
+
)
|
330 |
+
|
331 |
+
# einops > 0.6.1 will call the op registration logic as it is imported.
|
332 |
+
pass
|
333 |
+
except ImportError:
|
334 |
+
# einops <= 0.6.1
|
335 |
+
allow_in_graph(einops.rearrange)
|
336 |
+
allow_in_graph(einops.reduce)
|
337 |
+
if hasattr(einops, "repeat"):
|
338 |
+
allow_in_graph(einops.repeat) # available since einops 0.2.0
|
339 |
+
if hasattr(einops, "einsum"):
|
340 |
+
allow_in_graph(einops.einsum) # available since einops 0.5.0
|
341 |
+
if hasattr(einops, "pack"):
|
342 |
+
allow_in_graph(einops.pack) # available since einops 0.6.0
|
343 |
+
if hasattr(einops, "unpack"):
|
344 |
+
allow_in_graph(einops.unpack) # available since einops 0.6.0
|
345 |
+
|
346 |
+
|
347 |
+
trace_rules.add_module_init_func("einops", _allow_in_graph_einops)
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py
ADDED
@@ -0,0 +1,1561 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: disable-error-code="method-assign"
|
2 |
+
|
3 |
+
"""
|
4 |
+
Functions in this file are responsible for modifying the eval frame
|
5 |
+
handler at RUNTIME. Therefore, all functions in this file are hot.
|
6 |
+
Functions that only execute at compile time should be placed
|
7 |
+
in torch._dynamo.convert_frame.
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
|
12 |
+
import contextlib
|
13 |
+
import functools
|
14 |
+
import inspect
|
15 |
+
import logging
|
16 |
+
import os
|
17 |
+
import sys
|
18 |
+
import textwrap
|
19 |
+
import threading
|
20 |
+
import traceback
|
21 |
+
import types
|
22 |
+
import warnings
|
23 |
+
import weakref
|
24 |
+
from enum import Enum
|
25 |
+
from os.path import dirname, join
|
26 |
+
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Set, Tuple, Union
|
27 |
+
from unittest.mock import patch
|
28 |
+
|
29 |
+
import torch
|
30 |
+
import torch.fx
|
31 |
+
import torch.utils._pytree as pytree
|
32 |
+
import torch.utils.checkpoint
|
33 |
+
from torch import _guards
|
34 |
+
from torch._subclasses import fake_tensor
|
35 |
+
from torch._utils_internal import log_export_usage
|
36 |
+
from torch.export import Constraint
|
37 |
+
from torch.export.dynamic_shapes import _process_dynamic_shapes
|
38 |
+
from torch.fx.experimental.proxy_tensor import make_fx, maybe_disable_fake_tensor_mode
|
39 |
+
from torch.fx.experimental.symbolic_shapes import (
|
40 |
+
ConstraintViolationError,
|
41 |
+
DimDynamic,
|
42 |
+
StatelessSymbolicContext,
|
43 |
+
)
|
44 |
+
from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo
|
45 |
+
|
46 |
+
from ..fx import GraphModule
|
47 |
+
from .backends.registry import CompilerFn, lookup_backend
|
48 |
+
|
49 |
+
from .hooks import Hooks
|
50 |
+
|
51 |
+
# see discussion at https://github.com/pytorch/pytorch/issues/120699
|
52 |
+
reset_code = torch._C._dynamo.eval_frame.reset_code # noqa: F401
|
53 |
+
set_eval_frame = torch._C._dynamo.eval_frame.set_eval_frame # noqa: F401
|
54 |
+
set_guard_error_hook = torch._C._dynamo.eval_frame.set_guard_error_hook # noqa: F401
|
55 |
+
skip_code = torch._C._dynamo.eval_frame.skip_code # noqa: F401
|
56 |
+
unsupported = torch._C._dynamo.eval_frame.unsupported # noqa: F401
|
57 |
+
|
58 |
+
from . import config, convert_frame, external_utils, trace_rules, utils
|
59 |
+
from .code_context import code_context
|
60 |
+
from .exc import CondOpArgsMismatchError, UserError, UserErrorType
|
61 |
+
from .mutation_guard import install_generation_tagging_init
|
62 |
+
from .types import CacheEntry, DynamoCallback
|
63 |
+
from .utils import common_constant_types, compile_times
|
64 |
+
|
65 |
+
log = logging.getLogger(__name__)
|
66 |
+
|
67 |
+
from torch._dispatch.python import enable_python_dispatcher
|
68 |
+
|
69 |
+
always_optimize_code_objects = utils.ExactWeakKeyDictionary()
|
70 |
+
null_context = contextlib.nullcontext
|
71 |
+
|
72 |
+
|
73 |
+
import sympy
|
74 |
+
|
75 |
+
|
76 |
+
# See https://github.com/python/typing/pull/240
|
77 |
+
class Unset(Enum):
|
78 |
+
token = 0
|
79 |
+
|
80 |
+
|
81 |
+
unset = Unset.token
|
82 |
+
|
83 |
+
guarded_backend_cache = threading.local()
|
84 |
+
cached_backends: Dict[int, CompilerFn] = {}
|
85 |
+
|
86 |
+
|
87 |
+
def check_current_backend(backend_obj_id: int):
|
88 |
+
"""
|
89 |
+
Called from guards to check if we need to recompile due to a backend change
|
90 |
+
"""
|
91 |
+
# TODO(jansel): we should move guarded_backend_cache to C++
|
92 |
+
try:
|
93 |
+
if guarded_backend_cache.skip_backend_check_for_run_only_mode:
|
94 |
+
return True
|
95 |
+
except AttributeError:
|
96 |
+
# Go slightly faster next time
|
97 |
+
guarded_backend_cache.skip_backend_check_for_run_only_mode = False
|
98 |
+
try:
|
99 |
+
current_backend = guarded_backend_cache.current_backend
|
100 |
+
except AttributeError:
|
101 |
+
current_backend = None
|
102 |
+
return (
|
103 |
+
# Avoid the dict lookup in case of exact same object
|
104 |
+
id(current_backend) == backend_obj_id
|
105 |
+
or current_backend == cached_backends.get(backend_obj_id, None)
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
def _reset_guarded_backend_cache():
|
110 |
+
global cached_backends
|
111 |
+
guarded_backend_cache.skip_backend_check_for_run_only_mode = False
|
112 |
+
guarded_backend_cache.current_backend = None
|
113 |
+
for backend in cached_backends.values():
|
114 |
+
if hasattr(backend, "reset"):
|
115 |
+
backend.reset()
|
116 |
+
cached_backends.clear()
|
117 |
+
|
118 |
+
|
119 |
+
def backend_cache_manager(callback: DynamoCallback):
|
120 |
+
# callback is False for RunOnlyContext. RunOnlyContext is used
|
121 |
+
# as a way to re-use the previous compiled cache.
|
122 |
+
# We therefore skip the check and re-use whatever code that's already cached.
|
123 |
+
# Note: the cache that's actually used depends on the caching policy.
|
124 |
+
if callback is False:
|
125 |
+
|
126 |
+
def change():
|
127 |
+
try:
|
128 |
+
prev_skip = guarded_backend_cache.skip_backend_check_for_run_only_mode
|
129 |
+
except AttributeError:
|
130 |
+
prev_skip = False
|
131 |
+
guarded_backend_cache.skip_backend_check_for_run_only_mode = True
|
132 |
+
|
133 |
+
def revert():
|
134 |
+
guarded_backend_cache.skip_backend_check_for_run_only_mode = prev_skip
|
135 |
+
|
136 |
+
return revert
|
137 |
+
|
138 |
+
else:
|
139 |
+
backend = innermost_fn(callback)
|
140 |
+
|
141 |
+
def change():
|
142 |
+
cached_backends.setdefault(id(backend), backend)
|
143 |
+
try:
|
144 |
+
prev_backend = guarded_backend_cache.current_backend
|
145 |
+
except AttributeError:
|
146 |
+
prev_backend = None
|
147 |
+
guarded_backend_cache.current_backend = backend
|
148 |
+
|
149 |
+
def revert():
|
150 |
+
guarded_backend_cache.current_backend = prev_backend
|
151 |
+
|
152 |
+
return revert
|
153 |
+
|
154 |
+
return change
|
155 |
+
|
156 |
+
|
157 |
+
DONT_WRAP_FILES = {
|
158 |
+
# For tracing into fx modules
|
159 |
+
inspect.getsourcefile(GraphModule),
|
160 |
+
join(dirname(dirname(__file__)), "onnx/_internal/fx/dynamo_graph_extractor.py"),
|
161 |
+
}
|
162 |
+
|
163 |
+
|
164 |
+
def _debug_get_cache_entry_list(
|
165 |
+
code: Union[types.CodeType, Callable[..., Any]]
|
166 |
+
) -> List[CacheEntry]:
|
167 |
+
"""
|
168 |
+
Given a code object or a callable object, retrieve the cache entries
|
169 |
+
stored in this code.
|
170 |
+
"""
|
171 |
+
if callable(code):
|
172 |
+
code = code.__code__
|
173 |
+
return torch._C._dynamo.eval_frame._debug_get_cache_entry_list(code)
|
174 |
+
|
175 |
+
|
176 |
+
class OptimizedModule(torch.nn.Module):
|
177 |
+
"""
|
178 |
+
Wraps the original nn.Module object and later patches its
|
179 |
+
forward method to optimized self.forward method.
|
180 |
+
"""
|
181 |
+
|
182 |
+
_torchdynamo_orig_callable: Callable[..., Any]
|
183 |
+
get_compiler_config: Callable[[], Any]
|
184 |
+
|
185 |
+
def __init__(self, mod: torch.nn.Module, dynamo_ctx):
|
186 |
+
super().__init__()
|
187 |
+
# Installs the params/buffer
|
188 |
+
self._orig_mod = mod
|
189 |
+
self.dynamo_ctx = dynamo_ctx
|
190 |
+
self._initialize()
|
191 |
+
|
192 |
+
def _initialize(self):
|
193 |
+
# Do this stuff in constructor to lower overhead slightly
|
194 |
+
if isinstance(self._orig_mod.forward, types.MethodType) and trace_rules.check(
|
195 |
+
self._orig_mod.forward
|
196 |
+
):
|
197 |
+
# This may be a torch.nn.* instance in trace_rules.py which
|
198 |
+
# won't trigger a frame evaluation workaround to add an extra
|
199 |
+
# frame we can capture
|
200 |
+
self.forward = self.dynamo_ctx(external_utils.wrap_inline(self._orig_mod))
|
201 |
+
else:
|
202 |
+
# Invoke hooks outside of dynamo then pickup the inner frame
|
203 |
+
self.forward = self.dynamo_ctx(self._orig_mod.__call__)
|
204 |
+
|
205 |
+
if hasattr(self._orig_mod, "_initialize_hook"):
|
206 |
+
self._forward = self.forward
|
207 |
+
self.forward = self._call_lazy_check
|
208 |
+
|
209 |
+
def __getstate__(self):
|
210 |
+
state = dict(self.__dict__)
|
211 |
+
state.pop("forward", None)
|
212 |
+
state.pop("__call__", None)
|
213 |
+
return state
|
214 |
+
|
215 |
+
def __setstate__(self, state):
|
216 |
+
self.__dict__ = state
|
217 |
+
self._initialize()
|
218 |
+
|
219 |
+
def __getattr__(self, name):
|
220 |
+
if name == "_orig_mod":
|
221 |
+
return self._modules["_orig_mod"]
|
222 |
+
return getattr(self._orig_mod, name)
|
223 |
+
|
224 |
+
def _call_lazy_check(self, *args, **kwargs):
|
225 |
+
if hasattr(self._orig_mod, "_initialize_hook"):
|
226 |
+
# In the case of a lazy module, we want to run
|
227 |
+
# the pre-hooks which initialize it.
|
228 |
+
# Afterwards, lazy module deletes its pre-hooks
|
229 |
+
# to avoid treating it as lazy on subsequent recompile.
|
230 |
+
self._orig_mod._infer_parameters(self._orig_mod, args, kwargs)
|
231 |
+
return self._forward(*args, **kwargs)
|
232 |
+
|
233 |
+
def __dir__(self):
|
234 |
+
orig_mod_attrs = self._orig_mod.__dir__()
|
235 |
+
return orig_mod_attrs + [
|
236 |
+
attr for attr in super().__dir__() if attr not in orig_mod_attrs
|
237 |
+
]
|
238 |
+
|
239 |
+
|
240 |
+
def remove_from_cache(f):
|
241 |
+
"""
|
242 |
+
Make sure f.__code__ is not cached to force a recompile
|
243 |
+
"""
|
244 |
+
if isinstance(f, types.CodeType):
|
245 |
+
reset_code(f)
|
246 |
+
elif hasattr(f, "__code__"):
|
247 |
+
reset_code(f.__code__)
|
248 |
+
elif hasattr(getattr(f, "forward", None), "__code__"):
|
249 |
+
reset_code(f.forward.__code__)
|
250 |
+
else:
|
251 |
+
from . import reset # type: ignore[attr-defined]
|
252 |
+
|
253 |
+
reset()
|
254 |
+
log.warning("could not determine __code__ for %s", f)
|
255 |
+
|
256 |
+
|
257 |
+
def nothing():
|
258 |
+
pass
|
259 |
+
|
260 |
+
|
261 |
+
def always_false():
|
262 |
+
return False
|
263 |
+
|
264 |
+
|
265 |
+
def innermost_fn(fn):
|
266 |
+
"""
|
267 |
+
In case of nesting of _TorchDynamoContext calls, find the innermost
|
268 |
+
function. TorchDynamo caches on fn.__code__ object, so its necessary to find
|
269 |
+
the innermost function to pass on the optimize, run, disable etc.
|
270 |
+
"""
|
271 |
+
unaltered_fn = fn
|
272 |
+
while hasattr(unaltered_fn, "_torchdynamo_orig_callable"):
|
273 |
+
unaltered_fn = unaltered_fn._torchdynamo_orig_callable
|
274 |
+
assert callable(unaltered_fn)
|
275 |
+
return unaltered_fn
|
276 |
+
|
277 |
+
|
278 |
+
def make_set_enable_dynamic(enable: bool):
|
279 |
+
assert isinstance(enable, bool)
|
280 |
+
if enable:
|
281 |
+
# Assume everything is dynamic by default
|
282 |
+
return config._make_closure_patcher(assume_static_by_default=False)
|
283 |
+
else:
|
284 |
+
return config._make_closure_patcher(
|
285 |
+
automatic_dynamic_shapes=False, assume_static_by_default=True
|
286 |
+
)
|
287 |
+
|
288 |
+
|
289 |
+
class _TorchDynamoContext:
|
290 |
+
def __init__(
|
291 |
+
self,
|
292 |
+
callback: DynamoCallback,
|
293 |
+
on_enter=nothing,
|
294 |
+
backend_ctx_ctor=null_context,
|
295 |
+
patch_fn=nothing,
|
296 |
+
first_ctx=False,
|
297 |
+
*,
|
298 |
+
export=False,
|
299 |
+
dynamic=None,
|
300 |
+
compiler_config=None,
|
301 |
+
):
|
302 |
+
super().__init__()
|
303 |
+
assert callable(callback) or callback is False or callback is None
|
304 |
+
self.callback: DynamoCallback = callback
|
305 |
+
self.prior: Union[Unset, DynamoCallback] = unset
|
306 |
+
self.first_ctx = first_ctx
|
307 |
+
self.export = export
|
308 |
+
self.compiler_config = compiler_config
|
309 |
+
self.cleanup_fns: List[Callable[[], Any]] = []
|
310 |
+
self.enter_exit_hooks = [backend_cache_manager(self.callback)]
|
311 |
+
patch_fn()
|
312 |
+
|
313 |
+
if dynamic is not None:
|
314 |
+
self.enter_exit_hooks.append(make_set_enable_dynamic(dynamic))
|
315 |
+
|
316 |
+
if on_enter is not nothing:
|
317 |
+
# this case is not common
|
318 |
+
def call_on_enter():
|
319 |
+
on_enter()
|
320 |
+
return nothing
|
321 |
+
|
322 |
+
self.enter_exit_hooks.append(call_on_enter)
|
323 |
+
|
324 |
+
if backend_ctx_ctor is not contextlib.nullcontext:
|
325 |
+
# this case is not common
|
326 |
+
def call_backend_ctx():
|
327 |
+
ctx = backend_ctx_ctor()
|
328 |
+
ctx.__enter__()
|
329 |
+
return functools.partial(ctx.__exit__, None, None, None)
|
330 |
+
|
331 |
+
self.enter_exit_hooks.append(call_backend_ctx)
|
332 |
+
|
333 |
+
def __enter__(self):
|
334 |
+
if config.raise_on_ctx_manager_usage:
|
335 |
+
raise RuntimeError(
|
336 |
+
"torch._dynamo.optimize(...) is used with a context manager. "
|
337 |
+
"Please refer to https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html "
|
338 |
+
"to use torch._dynamo.optimize(...) as an annotation/decorator. "
|
339 |
+
)
|
340 |
+
self.cleanup_fns = [enter() for enter in self.enter_exit_hooks]
|
341 |
+
self.prior = set_eval_frame(self.callback)
|
342 |
+
|
343 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
344 |
+
assert self.prior is not unset
|
345 |
+
set_eval_frame(self.prior)
|
346 |
+
self.prior = unset
|
347 |
+
for cleanup in self.cleanup_fns:
|
348 |
+
cleanup()
|
349 |
+
self.cleanup_fns.clear()
|
350 |
+
|
351 |
+
def __call__(self, fn):
|
352 |
+
# public api for compiler config/options
|
353 |
+
def get_compiler_config():
|
354 |
+
return self.compiler_config
|
355 |
+
|
356 |
+
fn = innermost_fn(fn)
|
357 |
+
|
358 |
+
# add context containing GraphModule to any GraphModule forward functions
|
359 |
+
from torch.fx._lazy_graph_module import _LazyGraphModule
|
360 |
+
|
361 |
+
if isinstance(fn, _LazyGraphModule) or (
|
362 |
+
isinstance(getattr(fn, "__self__", None), _LazyGraphModule)
|
363 |
+
and fn.__name__ == "_lazy_forward"
|
364 |
+
):
|
365 |
+
# Since dynamo will run the forward method for the GraphModule shortly
|
366 |
+
# anyways, it does not hurt to do the real recompilation here if
|
367 |
+
# this is a _LazyGraphModule. This makes it easier for dynamo to
|
368 |
+
# optimize a _LazyGraphModule.
|
369 |
+
|
370 |
+
lazy_gm = fn if isinstance(fn, _LazyGraphModule) else fn.__self__
|
371 |
+
|
372 |
+
_LazyGraphModule.force_recompile(lazy_gm)
|
373 |
+
|
374 |
+
# Assume that the underlying node metadata of `fn`,
|
375 |
+
# a GraphModule instance, accurately represents
|
376 |
+
# all instances of type(fn).
|
377 |
+
code_context.get_context(lazy_gm.forward.__code__)[
|
378 |
+
"orig_graphmodule"
|
379 |
+
] = weakref.ref(lazy_gm)
|
380 |
+
|
381 |
+
if not isinstance(fn, _LazyGraphModule):
|
382 |
+
# replace fn with the real forward method
|
383 |
+
fn = lazy_gm.forward
|
384 |
+
elif isinstance(fn, GraphModule):
|
385 |
+
code_context.get_context(fn.forward.__code__)[
|
386 |
+
"orig_graphmodule"
|
387 |
+
] = weakref.ref(fn)
|
388 |
+
|
389 |
+
# Optimize the forward method of torch.nn.Module object
|
390 |
+
if isinstance(fn, torch.nn.Module):
|
391 |
+
mod = fn
|
392 |
+
new_mod = OptimizedModule(mod, self)
|
393 |
+
# Save the function pointer to find the original callable while nesting
|
394 |
+
# of decorators.
|
395 |
+
new_mod._torchdynamo_orig_callable = mod.forward
|
396 |
+
|
397 |
+
# when compiling torch.nn.Module,
|
398 |
+
# provide public api OptimizedModule.get_compiler_config()
|
399 |
+
assert not hasattr(new_mod, "get_compiler_config")
|
400 |
+
new_mod.get_compiler_config = get_compiler_config
|
401 |
+
|
402 |
+
return new_mod
|
403 |
+
assert callable(fn)
|
404 |
+
|
405 |
+
try:
|
406 |
+
filename = inspect.getsourcefile(fn)
|
407 |
+
except TypeError:
|
408 |
+
filename = None
|
409 |
+
if (
|
410 |
+
(filename is None or trace_rules.check(fn))
|
411 |
+
and (
|
412 |
+
getattr(fn, "__name__", "") not in ["_call_impl", "_wrapped_call_impl"]
|
413 |
+
)
|
414 |
+
and filename not in DONT_WRAP_FILES
|
415 |
+
):
|
416 |
+
# call to a builtin without a frame for us to capture
|
417 |
+
fn = external_utils.wrap_inline(fn)
|
418 |
+
|
419 |
+
callback = self.callback
|
420 |
+
|
421 |
+
if isinstance(self, DisableContext):
|
422 |
+
is_jit_tracing = always_false
|
423 |
+
is_fx_tracing = always_false
|
424 |
+
else:
|
425 |
+
is_jit_tracing = torch._C._is_tracing
|
426 |
+
is_fx_tracing = torch.fx._symbolic_trace.is_fx_tracing
|
427 |
+
|
428 |
+
@functools.wraps(fn)
|
429 |
+
def _fn(*args, **kwargs):
|
430 |
+
if is_fx_tracing():
|
431 |
+
if config.error_on_nested_fx_trace:
|
432 |
+
raise RuntimeError(
|
433 |
+
"Detected that you are using FX to symbolically trace "
|
434 |
+
"a dynamo-optimized function. This is not supported at the moment."
|
435 |
+
)
|
436 |
+
else:
|
437 |
+
return fn(*args, **kwargs)
|
438 |
+
|
439 |
+
if is_jit_tracing():
|
440 |
+
if config.error_on_nested_jit_trace:
|
441 |
+
raise RuntimeError(
|
442 |
+
"Detected that you are using FX to torch.jit.trace "
|
443 |
+
"a dynamo-optimized function. This is not supported at the moment."
|
444 |
+
)
|
445 |
+
else:
|
446 |
+
return fn(*args, **kwargs)
|
447 |
+
|
448 |
+
cleanups = [enter() for enter in self.enter_exit_hooks]
|
449 |
+
prior = set_eval_frame(callback)
|
450 |
+
try:
|
451 |
+
return fn(*args, **kwargs)
|
452 |
+
finally:
|
453 |
+
set_eval_frame(prior)
|
454 |
+
for cleanup in cleanups:
|
455 |
+
cleanup()
|
456 |
+
|
457 |
+
# hooks to properly handle inlining
|
458 |
+
if isinstance(self, DisableContext):
|
459 |
+
_fn._torchdynamo_disable = True # type: ignore[attr-defined]
|
460 |
+
else:
|
461 |
+
_fn._torchdynamo_inline = fn # type: ignore[attr-defined]
|
462 |
+
|
463 |
+
# Save the function pointer to find the original callable while nesting
|
464 |
+
# of decorators.
|
465 |
+
_fn._torchdynamo_orig_callable = fn # type: ignore[attr-defined]
|
466 |
+
|
467 |
+
# when compiling user function instead of nn.Module
|
468 |
+
# provide public api _fn.get_compiler_config()
|
469 |
+
assert not hasattr(_fn, "get_compiler_config")
|
470 |
+
_fn.get_compiler_config = get_compiler_config # type: ignore[attr-defined]
|
471 |
+
|
472 |
+
# If the function is called using torch._dynamo.optimize decorator, we
|
473 |
+
# should prevent any type of skipping.
|
474 |
+
if callback not in (None, False):
|
475 |
+
if not hasattr(fn, "__code__"):
|
476 |
+
raise RuntimeError(
|
477 |
+
textwrap.dedent(
|
478 |
+
"""
|
479 |
+
|
480 |
+
torch._dynamo.optimize is called on a non function object.
|
481 |
+
If this is a callable class, please wrap the relevant code into a function and optimize the
|
482 |
+
wrapper function.
|
483 |
+
|
484 |
+
>> class CallableClass:
|
485 |
+
>> def __init__(self):
|
486 |
+
>> super().__init__()
|
487 |
+
>> self.relu = torch.nn.ReLU()
|
488 |
+
>>
|
489 |
+
>> def __call__(self, x):
|
490 |
+
>> return self.relu(torch.sin(x))
|
491 |
+
>>
|
492 |
+
>> def print_hello(self):
|
493 |
+
>> print("Hello world")
|
494 |
+
>>
|
495 |
+
>> mod = CallableClass()
|
496 |
+
|
497 |
+
If you want to optimize the __call__ function and other code, wrap that up in a function
|
498 |
+
|
499 |
+
>> def wrapper_fn(x):
|
500 |
+
>> y = mod(x)
|
501 |
+
>> return y.sum()
|
502 |
+
|
503 |
+
and then optimize the wrapper_fn
|
504 |
+
|
505 |
+
>> opt_wrapper_fn = torch._dynamo.optimize(wrapper_fn)
|
506 |
+
"""
|
507 |
+
)
|
508 |
+
)
|
509 |
+
always_optimize_code_objects[fn.__code__] = True
|
510 |
+
|
511 |
+
return _fn
|
512 |
+
|
513 |
+
|
514 |
+
class OptimizeContext(_TorchDynamoContext):
|
515 |
+
def __init__(
|
516 |
+
self,
|
517 |
+
callback,
|
518 |
+
backend_ctx_ctor,
|
519 |
+
first_ctx=False,
|
520 |
+
*,
|
521 |
+
export=False,
|
522 |
+
dynamic=None,
|
523 |
+
compiler_config=None,
|
524 |
+
):
|
525 |
+
def on_enter():
|
526 |
+
install_generation_tagging_init()
|
527 |
+
|
528 |
+
super().__init__(
|
529 |
+
callback=callback,
|
530 |
+
on_enter=on_enter,
|
531 |
+
backend_ctx_ctor=backend_ctx_ctor,
|
532 |
+
patch_fn=TorchPatcher.patch,
|
533 |
+
first_ctx=first_ctx,
|
534 |
+
export=export,
|
535 |
+
dynamic=dynamic,
|
536 |
+
compiler_config=compiler_config,
|
537 |
+
)
|
538 |
+
|
539 |
+
|
540 |
+
class RunOnlyContext(_TorchDynamoContext):
|
541 |
+
def __init__(self):
|
542 |
+
# cudagraph trees relies on generation increment
|
543 |
+
def on_enter():
|
544 |
+
torch._dynamo.mutation_guard.GenerationTracker.generation += 1
|
545 |
+
|
546 |
+
super().__init__(callback=False, on_enter=on_enter)
|
547 |
+
|
548 |
+
|
549 |
+
class DisableContext(_TorchDynamoContext):
|
550 |
+
def __init__(self):
|
551 |
+
super().__init__(callback=None)
|
552 |
+
|
553 |
+
|
554 |
+
def _optimize_catch_errors(
|
555 |
+
compile_fn,
|
556 |
+
hooks: Hooks,
|
557 |
+
backend_ctx_ctor=null_context,
|
558 |
+
export=False,
|
559 |
+
dynamic=None,
|
560 |
+
compiler_config=None,
|
561 |
+
):
|
562 |
+
return OptimizeContext(
|
563 |
+
convert_frame.catch_errors_wrapper(compile_fn, hooks),
|
564 |
+
backend_ctx_ctor=backend_ctx_ctor,
|
565 |
+
first_ctx=True,
|
566 |
+
export=export,
|
567 |
+
dynamic=dynamic,
|
568 |
+
compiler_config=compiler_config,
|
569 |
+
)
|
570 |
+
|
571 |
+
|
572 |
+
def get_compiler_fn(compiler_fn):
|
573 |
+
from .repro.after_dynamo import wrap_backend_debug
|
574 |
+
|
575 |
+
if hasattr(compiler_fn, "compiler_name"):
|
576 |
+
compiler_str = compiler_fn.compiler_name
|
577 |
+
elif isinstance(compiler_fn, str):
|
578 |
+
compiler_str = compiler_fn
|
579 |
+
else:
|
580 |
+
compiler_str = None
|
581 |
+
compiler_fn = lookup_backend(compiler_fn)
|
582 |
+
return wrap_backend_debug(compiler_fn, compiler_str)
|
583 |
+
|
584 |
+
|
585 |
+
class _NullDecorator(contextlib.nullcontext): # type: ignore[type-arg]
|
586 |
+
def __call__(self, fn):
|
587 |
+
assert callable(fn)
|
588 |
+
return fn
|
589 |
+
|
590 |
+
|
591 |
+
def check_if_dynamo_supported():
|
592 |
+
if sys.version_info >= (3, 12):
|
593 |
+
raise RuntimeError("Python 3.12+ not yet supported for torch.compile")
|
594 |
+
|
595 |
+
|
596 |
+
def is_dynamo_supported():
|
597 |
+
try:
|
598 |
+
check_if_dynamo_supported()
|
599 |
+
return True
|
600 |
+
except Exception:
|
601 |
+
return False
|
602 |
+
|
603 |
+
|
604 |
+
def check_if_inductor_supported():
|
605 |
+
check_if_dynamo_supported()
|
606 |
+
|
607 |
+
if sys.platform == "win32":
|
608 |
+
raise RuntimeError("Windows not yet supported for inductor")
|
609 |
+
|
610 |
+
|
611 |
+
def is_inductor_supported():
|
612 |
+
try:
|
613 |
+
check_if_inductor_supported()
|
614 |
+
return True
|
615 |
+
except Exception:
|
616 |
+
return False
|
617 |
+
|
618 |
+
|
619 |
+
def optimize(
|
620 |
+
backend="inductor",
|
621 |
+
*,
|
622 |
+
nopython=False,
|
623 |
+
guard_export_fn=None,
|
624 |
+
guard_fail_fn=None,
|
625 |
+
disable=False,
|
626 |
+
dynamic=None,
|
627 |
+
):
|
628 |
+
"""
|
629 |
+
The main entrypoint of TorchDynamo. Do graph capture and call
|
630 |
+
backend() to optimize extracted graphs.
|
631 |
+
|
632 |
+
Args:
|
633 |
+
backend: One of the two things:
|
634 |
+
- Either, a function/callable taking a torch.fx.GraphModule and
|
635 |
+
example_inputs and returning a python callable that runs the
|
636 |
+
graph faster.
|
637 |
+
One can also provide additional context for the backend, like
|
638 |
+
torch.jit.fuser("fuser2"), by setting the backend_ctx_ctor attribute.
|
639 |
+
See AOTAutogradMemoryEfficientFusionWithContext for the usage.
|
640 |
+
- Or, a string backend name in `torch._dynamo.list_backends()`
|
641 |
+
nopython: If True, graph breaks will be errors and there will
|
642 |
+
be a single whole-program graph.
|
643 |
+
disable: If True, turn this decorator into a no-op
|
644 |
+
dynamic: If True, upfront compile as dynamic a kernel as possible. If False,
|
645 |
+
disable all dynamic shapes support (always specialize). If None, automatically
|
646 |
+
detect when sizes vary and generate dynamic kernels upon recompile.
|
647 |
+
|
648 |
+
Example Usage::
|
649 |
+
|
650 |
+
@torch._dynamo.optimize()
|
651 |
+
def toy_example(a, b):
|
652 |
+
...
|
653 |
+
"""
|
654 |
+
check_if_dynamo_supported()
|
655 |
+
# Note: The hooks object could be global instead of passed around, *however* that would make
|
656 |
+
# for a confusing API usage and plumbing story wherein we nest multiple .optimize calls.
|
657 |
+
# There is some prior art around this, w/r/t nesting backend calls are enforced to be the same
|
658 |
+
# compiler, however, this feels onerous for callback and hooks, and it feels better to give our users an
|
659 |
+
# easier to understand UX at the cost of a little more plumbing on our end.
|
660 |
+
hooks = Hooks(guard_export_fn=guard_export_fn, guard_fail_fn=guard_fail_fn)
|
661 |
+
torch._C._log_api_usage_once("torch._dynamo.optimize")
|
662 |
+
if disable or os.environ.get("TORCHDYNAMO_DISABLE", "") == "1":
|
663 |
+
return _NullDecorator()
|
664 |
+
|
665 |
+
backend = get_compiler_fn(backend)
|
666 |
+
|
667 |
+
# Find if backend has any extra context manager
|
668 |
+
backend_ctx_ctor = getattr(backend, "backend_ctx_ctor", null_context)
|
669 |
+
|
670 |
+
if nopython:
|
671 |
+
return optimize_assert(
|
672 |
+
backend,
|
673 |
+
dynamic=dynamic,
|
674 |
+
hooks=hooks,
|
675 |
+
)
|
676 |
+
return _optimize_catch_errors(
|
677 |
+
convert_frame.convert_frame(backend, hooks=hooks),
|
678 |
+
hooks,
|
679 |
+
backend_ctx_ctor,
|
680 |
+
dynamic=dynamic,
|
681 |
+
compiler_config=backend.get_compiler_config()
|
682 |
+
if hasattr(backend, "get_compiler_config")
|
683 |
+
else None,
|
684 |
+
)
|
685 |
+
|
686 |
+
|
687 |
+
# TODO(voz): Consider making "explain" output alongside a run / part of a run
|
688 |
+
@patch("torch._dynamo.symbolic_convert.explain", True)
|
689 |
+
def explain(f, *extra_args, **extra_kwargs):
|
690 |
+
def inner(*args, **kwargs):
|
691 |
+
# TODO(voz): Do we want a decorator for this?
|
692 |
+
from . import reset # type: ignore[attr-defined]
|
693 |
+
|
694 |
+
reset()
|
695 |
+
|
696 |
+
graphs: List[torch.fx.GraphModule] = []
|
697 |
+
break_reasons: List[Any] = []
|
698 |
+
op_count: int = 0
|
699 |
+
ops_per_graph: List[torch.fx.Node] = []
|
700 |
+
out_guards: List[_guards.Guard] = []
|
701 |
+
|
702 |
+
def dynamo_graph_accumulating_compiler(
|
703 |
+
gm: torch.fx.GraphModule, example_inputs
|
704 |
+
):
|
705 |
+
from .backends.debugging import _explain_graph_detail
|
706 |
+
|
707 |
+
nonlocal graphs
|
708 |
+
nonlocal op_count
|
709 |
+
nonlocal ops_per_graph
|
710 |
+
nonlocal break_reasons
|
711 |
+
|
712 |
+
gm, graphs, op_count, ops_per_graph, break_reasons = _explain_graph_detail(
|
713 |
+
gm, graphs, op_count, ops_per_graph, break_reasons
|
714 |
+
)
|
715 |
+
|
716 |
+
return gm.forward
|
717 |
+
|
718 |
+
def guard_export_print(guards):
|
719 |
+
nonlocal out_guards
|
720 |
+
out_guards.extend(guards)
|
721 |
+
|
722 |
+
opt_f = optimize(
|
723 |
+
dynamo_graph_accumulating_compiler,
|
724 |
+
nopython=False,
|
725 |
+
guard_export_fn=guard_export_print,
|
726 |
+
)(f)
|
727 |
+
# TODO(voz): We may have instances of `f` that mutate inputs, we should track sideeffects and reject.
|
728 |
+
opt_f(*args, **kwargs)
|
729 |
+
|
730 |
+
graph_count = len(graphs)
|
731 |
+
|
732 |
+
# For the explanation summary, dedupe reasons by the innermost stack frame and dedupe by it.
|
733 |
+
deduped_reasons = {}
|
734 |
+
for reason in break_reasons:
|
735 |
+
innermost_frame = reason.user_stack[-1]
|
736 |
+
# __repr__ uniquely identifies a FrameSummary so we can use it for deduping
|
737 |
+
deduped_reasons[repr(innermost_frame)] = reason
|
738 |
+
|
739 |
+
formatted_list = ""
|
740 |
+
for idx, break_reason in enumerate(deduped_reasons.values()):
|
741 |
+
formatted_stack = "".join(traceback.format_list(break_reason.user_stack))
|
742 |
+
msg = f"{idx + 1}. Reason: {break_reason.reason}\n User Stack: {formatted_stack}\n"
|
743 |
+
formatted_list += msg
|
744 |
+
|
745 |
+
graph_break_count = graph_count - 1
|
746 |
+
compile_time = compile_times(repr="str")
|
747 |
+
|
748 |
+
# TODO(voz): Do we want a decorator for this?
|
749 |
+
reset()
|
750 |
+
from .backends.debugging import ExplainOutput
|
751 |
+
|
752 |
+
return ExplainOutput(
|
753 |
+
graphs,
|
754 |
+
graph_count,
|
755 |
+
graph_break_count,
|
756 |
+
break_reasons,
|
757 |
+
op_count,
|
758 |
+
ops_per_graph,
|
759 |
+
out_guards,
|
760 |
+
compile_time,
|
761 |
+
)
|
762 |
+
|
763 |
+
if extra_args or extra_kwargs:
|
764 |
+
warnings.warn(
|
765 |
+
"explain(f, *args, **kwargs) is deprecated, use explain(f)(*args, **kwargs) instead. "
|
766 |
+
"If you don't migrate, we may break your explain call in the future if your user defined kwargs "
|
767 |
+
"conflict with future kwargs added to explain(f)."
|
768 |
+
)
|
769 |
+
return inner(*extra_args, **extra_kwargs)
|
770 |
+
else:
|
771 |
+
return inner
|
772 |
+
|
773 |
+
|
774 |
+
class FlattenInputOutputSignature(torch.fx.interpreter.Transformer):
|
775 |
+
def __init__(
|
776 |
+
self,
|
777 |
+
m: torch.fx.GraphModule,
|
778 |
+
flat_args: Tuple[Any],
|
779 |
+
matched_input_elements_positions: List[int],
|
780 |
+
flat_results: List[Any],
|
781 |
+
matched_output_elements_positions: List[int],
|
782 |
+
example_fake_inputs: List[torch.Tensor],
|
783 |
+
flat_args_dynamic_dims: List[Set[int]],
|
784 |
+
fake_mode: Optional[fake_tensor.FakeTensorMode] = None,
|
785 |
+
):
|
786 |
+
super().__init__(m)
|
787 |
+
|
788 |
+
assert len(flat_args_dynamic_dims) == len(flat_args)
|
789 |
+
matched_input_elements_to_fake = {
|
790 |
+
val: example_fake_inputs[ix]
|
791 |
+
for ix, val in enumerate(matched_input_elements_positions)
|
792 |
+
}
|
793 |
+
|
794 |
+
self.new_args = []
|
795 |
+
for i in range(0, len(flat_args)):
|
796 |
+
arg = super().placeholder(f"arg{i}", (), {})
|
797 |
+
if i in matched_input_elements_to_fake:
|
798 |
+
arg.node.meta["val"] = matched_input_elements_to_fake[i]
|
799 |
+
else:
|
800 |
+
# Fill node.mata["val"] with faketensor from the input,
|
801 |
+
# if it's not found in matched_input_elements_positions
|
802 |
+
if fake_mode is not None and isinstance(flat_args[i], torch.Tensor):
|
803 |
+
# TODO(zhxchen17) Also preserve all the user constraints here.
|
804 |
+
arg.node.meta["val"] = fake_mode.from_tensor(
|
805 |
+
flat_args[i],
|
806 |
+
symbolic_context=StatelessSymbolicContext(
|
807 |
+
dynamic_sizes=[
|
808 |
+
DimDynamic.DYNAMIC
|
809 |
+
if d in flat_args_dynamic_dims[i]
|
810 |
+
else DimDynamic.STATIC
|
811 |
+
for d in range(len(flat_args[i].shape))
|
812 |
+
],
|
813 |
+
constraint_sizes=[None] * len(flat_args[i].shape),
|
814 |
+
),
|
815 |
+
)
|
816 |
+
self.new_args.append(arg)
|
817 |
+
self.old_args_gen = (self.new_args[i] for i in matched_input_elements_positions)
|
818 |
+
self.matched_output_elements_positions = matched_output_elements_positions
|
819 |
+
self.flat_results = flat_results
|
820 |
+
|
821 |
+
def placeholder(self, target, args, kwargs):
|
822 |
+
arg = next(self.old_args_gen)
|
823 |
+
if "val" in self.current_node.meta:
|
824 |
+
arg.node.meta["val"] = self.current_node.meta["val"]
|
825 |
+
if "tensor_dict" in self.current_node.meta:
|
826 |
+
arg.node.meta["tensor_dict"] = self.current_node.meta["tensor_dict"]
|
827 |
+
if "example_value" in self.current_node.meta:
|
828 |
+
arg.node.meta["example_value"] = self.current_node.meta["example_value"]
|
829 |
+
return arg
|
830 |
+
|
831 |
+
def output(self, target, args, kwargs):
|
832 |
+
dynamo_result_flat = args[0]
|
833 |
+
lookup = [*dynamo_result_flat, *self.new_args]
|
834 |
+
new_results_flat = []
|
835 |
+
for i in range(len(self.flat_results)):
|
836 |
+
if self.matched_output_elements_positions[i] is not None:
|
837 |
+
new_results_flat.append(
|
838 |
+
lookup[self.matched_output_elements_positions[i]]
|
839 |
+
)
|
840 |
+
else:
|
841 |
+
const_val = self.flat_results[i]
|
842 |
+
assert isinstance(const_val, tuple(common_constant_types))
|
843 |
+
new_results_flat.append(const_val)
|
844 |
+
return super().output(target, (new_results_flat,), {})
|
845 |
+
|
846 |
+
def run_node(self, n):
|
847 |
+
self.current_node = n
|
848 |
+
result_proxy = super().run_node(n)
|
849 |
+
if "val" in self.current_node.meta:
|
850 |
+
result_proxy.node.meta["val"] = self.current_node.meta["val"]
|
851 |
+
if "example_value" in self.current_node.meta:
|
852 |
+
result_proxy.node.meta["example_value"] = self.current_node.meta[
|
853 |
+
"example_value"
|
854 |
+
]
|
855 |
+
if self.current_node.op != "output":
|
856 |
+
result_proxy.node._rename(
|
857 |
+
getattr(self.current_node, "name", result_proxy.node.name)
|
858 |
+
)
|
859 |
+
return result_proxy
|
860 |
+
|
861 |
+
def transform(self):
|
862 |
+
result_gm = super().transform()
|
863 |
+
if "dynamo_flat_name_to_original_fqn" in self.module.meta:
|
864 |
+
result_gm.meta["dynamo_flat_name_to_original_fqn"] = self.module.meta[
|
865 |
+
"dynamo_flat_name_to_original_fqn"
|
866 |
+
]
|
867 |
+
return result_gm
|
868 |
+
|
869 |
+
|
870 |
+
class ExportResult(NamedTuple):
|
871 |
+
graph_module: torch.fx.GraphModule
|
872 |
+
guards: _guards.GuardsSet
|
873 |
+
# NB: Do not add new fields without overriding __iter__; people are
|
874 |
+
# destructuring so it is BC-breaking
|
875 |
+
|
876 |
+
|
877 |
+
def check_signature_rewritable(graph):
|
878 |
+
input_errors = []
|
879 |
+
for node in graph.graph.nodes:
|
880 |
+
if node.op == "placeholder":
|
881 |
+
assert hasattr(node, "_dynamo_source")
|
882 |
+
source = node._dynamo_source
|
883 |
+
user_stacks = graph._source_to_user_stacks.get(source)
|
884 |
+
if user_stacks is None:
|
885 |
+
continue
|
886 |
+
assert len(user_stacks) > 0
|
887 |
+
# In some cases we may not have a useful stack. Look for a
|
888 |
+
# useful stack
|
889 |
+
stack = None
|
890 |
+
for s in user_stacks:
|
891 |
+
if len(s) == 0:
|
892 |
+
continue
|
893 |
+
stack = s
|
894 |
+
break
|
895 |
+
if stack is None:
|
896 |
+
msg = f"{source.name()}, a closed over free variable"
|
897 |
+
else:
|
898 |
+
tb = "".join(traceback.format_list(stack))
|
899 |
+
extra = ""
|
900 |
+
if len(user_stacks) > 1:
|
901 |
+
extra = f"(elided {len(user_stacks)-1} more accesses)"
|
902 |
+
msg = f"{source.name()}, accessed at:\n{tb}{extra}"
|
903 |
+
# TODO: option to print ALL of the stack traces at once
|
904 |
+
input_errors.append(msg)
|
905 |
+
|
906 |
+
if input_errors:
|
907 |
+
raise UserError(
|
908 |
+
UserErrorType.INVALID_INPUT,
|
909 |
+
"Cannot export model which references tensors that are neither "
|
910 |
+
"buffers/parameters/constants nor are direct inputs. For each tensor, if you'd "
|
911 |
+
"like this tensor to be an explicit input, add it as a dummy argument "
|
912 |
+
"to the top-level model definition you are exporting; if you would "
|
913 |
+
"like its value to be embedded as an exported constant, wrap its access "
|
914 |
+
"in a function marked with @assume_constant_result.\n\n"
|
915 |
+
+ "\n\n".join(input_errors),
|
916 |
+
)
|
917 |
+
|
918 |
+
|
919 |
+
def rewrite_signature(
|
920 |
+
f_sig,
|
921 |
+
graph,
|
922 |
+
fake_mode,
|
923 |
+
flat_args,
|
924 |
+
in_spec,
|
925 |
+
example_fake_inputs,
|
926 |
+
graph_captured_input,
|
927 |
+
graph_captured_output,
|
928 |
+
dynamo_traced_result,
|
929 |
+
flat_args_dynamic_dims,
|
930 |
+
):
|
931 |
+
orig_args, orig_kwargs = pytree.tree_unflatten(flat_args, in_spec)
|
932 |
+
|
933 |
+
def check_user_input_output(flat_values, error_type):
|
934 |
+
supported_types = [
|
935 |
+
torch.Tensor,
|
936 |
+
torch.SymInt,
|
937 |
+
torch.SymFloat,
|
938 |
+
torch.SymBool,
|
939 |
+
torch._C.ScriptObject,
|
940 |
+
] + list(common_constant_types)
|
941 |
+
|
942 |
+
def is_supported_type(val):
|
943 |
+
return isinstance(val, tuple(supported_types))
|
944 |
+
|
945 |
+
value_type = "input" if error_type == UserErrorType.INVALID_INPUT else "output"
|
946 |
+
# We only check that the outputs are not None. Inputs can be None.
|
947 |
+
for v in flat_values:
|
948 |
+
if not is_supported_type(v):
|
949 |
+
if error_type == UserErrorType.INVALID_INPUT and v is None:
|
950 |
+
continue
|
951 |
+
|
952 |
+
raise UserError(
|
953 |
+
error_type,
|
954 |
+
f"It looks like one of the {value_type}s with type `{type(v)}` "
|
955 |
+
"is not supported or pytree-flattenable. \n"
|
956 |
+
f"Exported graphs {value_type}s can only contain the "
|
957 |
+
f"following supported types: {supported_types}. \n"
|
958 |
+
"If you are using a custom class object, "
|
959 |
+
"please register a pytree_flatten/unflatten function "
|
960 |
+
"using `torch.utils._pytree.register_pytree_node` or "
|
961 |
+
"`torch.export.register_dataclass`.",
|
962 |
+
)
|
963 |
+
|
964 |
+
check_user_input_output(flat_args, UserErrorType.INVALID_INPUT)
|
965 |
+
flat_results_traced, out_spec_traced = pytree.tree_flatten(dynamo_traced_result)
|
966 |
+
check_user_input_output(flat_results_traced, UserErrorType.INVALID_OUTPUT)
|
967 |
+
|
968 |
+
def produce_matching(debug_type, sources, candidates):
|
969 |
+
matched_elements_positions: List[Optional[int]] = []
|
970 |
+
dict_of_source_vals = {}
|
971 |
+
for i, val in enumerate(sources):
|
972 |
+
dict_of_source_vals[id(val)] = i
|
973 |
+
|
974 |
+
for i, val in enumerate(candidates):
|
975 |
+
if isinstance(val, tuple(common_constant_types)):
|
976 |
+
matched_elements_positions.append(None)
|
977 |
+
elif id(val) not in dict_of_source_vals:
|
978 |
+
raise AssertionError(
|
979 |
+
f"Unexpectedly found a {type(val)} in the {debug_type}.\n"
|
980 |
+
'Please file an issue along with a paste of the logs from TORCH_LOGS="+export"'
|
981 |
+
)
|
982 |
+
else:
|
983 |
+
matched_elements_positions.append(dict_of_source_vals[id(val)])
|
984 |
+
|
985 |
+
return matched_elements_positions
|
986 |
+
|
987 |
+
matched_input_elements_positions = produce_matching(
|
988 |
+
"inputs", flat_args, graph_captured_input
|
989 |
+
)
|
990 |
+
|
991 |
+
assert graph_captured_output is not None
|
992 |
+
matched_output_elements_positions = produce_matching(
|
993 |
+
"outputs", list(graph_captured_output) + flat_args, flat_results_traced
|
994 |
+
)
|
995 |
+
|
996 |
+
new_graph = FlattenInputOutputSignature(
|
997 |
+
graph,
|
998 |
+
flat_args,
|
999 |
+
matched_input_elements_positions,
|
1000 |
+
flat_results_traced,
|
1001 |
+
matched_output_elements_positions,
|
1002 |
+
example_fake_inputs,
|
1003 |
+
flat_args_dynamic_dims,
|
1004 |
+
fake_mode,
|
1005 |
+
).transform()
|
1006 |
+
|
1007 |
+
# Make dynamo graph to have same input/output spec as user code
|
1008 |
+
def argument_names(f_sig, args, kwargs) -> List[str]:
|
1009 |
+
def signature_to_fullargspec(sig: inspect.Signature):
|
1010 |
+
# Get a list of Parameter objects from the Signature object
|
1011 |
+
params = list(sig.parameters.values())
|
1012 |
+
# Separate positional arguments, keyword-only arguments and varargs/varkw
|
1013 |
+
args = [
|
1014 |
+
p.name
|
1015 |
+
for p in params
|
1016 |
+
if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD
|
1017 |
+
]
|
1018 |
+
kwonlyargs = [
|
1019 |
+
p.name for p in params if p.kind == inspect.Parameter.KEYWORD_ONLY
|
1020 |
+
]
|
1021 |
+
varargs = next(
|
1022 |
+
(p.name for p in params if p.kind == inspect.Parameter.VAR_POSITIONAL),
|
1023 |
+
None,
|
1024 |
+
)
|
1025 |
+
varkw = next(
|
1026 |
+
(p.name for p in params if p.kind == inspect.Parameter.VAR_KEYWORD),
|
1027 |
+
None,
|
1028 |
+
)
|
1029 |
+
# Get default values for positional arguments and keyword-only arguments
|
1030 |
+
defaults = tuple(
|
1031 |
+
p.default
|
1032 |
+
for p in params
|
1033 |
+
if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD
|
1034 |
+
and p.default is not inspect.Parameter.empty
|
1035 |
+
)
|
1036 |
+
kwonlydefaults = {
|
1037 |
+
p.name: p.default
|
1038 |
+
for p in params
|
1039 |
+
if p.kind == inspect.Parameter.KEYWORD_ONLY
|
1040 |
+
and p.default is not inspect.Parameter.empty
|
1041 |
+
}
|
1042 |
+
# Get annotations for parameters and return value
|
1043 |
+
annotations = {}
|
1044 |
+
if sig.return_annotation:
|
1045 |
+
annotations = {"return": sig.return_annotation}
|
1046 |
+
for parameter in params:
|
1047 |
+
annotations[parameter.name] = parameter.annotation
|
1048 |
+
# Return a FullArgSpec object with the extracted attributes
|
1049 |
+
return inspect.FullArgSpec(
|
1050 |
+
args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
fullargspec = signature_to_fullargspec(f_sig)
|
1054 |
+
|
1055 |
+
# 1. Map `args` 1-to-1 to positional arguments in original signature.
|
1056 |
+
input_strs = fullargspec.args[: len(args)]
|
1057 |
+
|
1058 |
+
if len(args) > len(fullargspec.args):
|
1059 |
+
# 2. If there are more arguments left in `args`, they map to varargs in original
|
1060 |
+
# signature. Assign names as {varargs}_0, {varargs}_1, ...
|
1061 |
+
assert fullargspec.varargs is not None, "More arguments than expected"
|
1062 |
+
input_strs += [
|
1063 |
+
f"{fullargspec.varargs}_{i}"
|
1064 |
+
for i in range(0, len(args) - len(input_strs))
|
1065 |
+
]
|
1066 |
+
elif len(args) < len(fullargspec.args):
|
1067 |
+
# 3. If there are fewer arguments in `args` than `fullargspec.args`,
|
1068 |
+
# it implies these are arguments either with default values, or provided in
|
1069 |
+
# `kwargs`. The former can be safely ignored. Because Dynamo.export does not
|
1070 |
+
# export them as part of the function signature. The latter will be handled
|
1071 |
+
# in the next step.
|
1072 |
+
for unprovided_arg in fullargspec.args[
|
1073 |
+
len(args) : -len(fullargspec.defaults or [])
|
1074 |
+
]:
|
1075 |
+
assert unprovided_arg in kwargs, f"Missing argument {unprovided_arg}"
|
1076 |
+
|
1077 |
+
# 4. Keyword arguments provided in `kwargs`.
|
1078 |
+
input_strs += list(kwargs.keys())
|
1079 |
+
|
1080 |
+
# 5. Keyword-only arguments with default values if not provided are not exported
|
1081 |
+
# as part of the function signature.
|
1082 |
+
for kwonly_arg in fullargspec.kwonlyargs:
|
1083 |
+
kwonlydefaults = fullargspec.kwonlydefaults or {}
|
1084 |
+
assert (
|
1085 |
+
kwonly_arg in kwargs or kwonly_arg in kwonlydefaults
|
1086 |
+
), f"Missing keyword only argument {kwonly_arg}"
|
1087 |
+
|
1088 |
+
return input_strs
|
1089 |
+
|
1090 |
+
new_graph.graph._codegen = _PyTreeCodeGen(
|
1091 |
+
_PyTreeInfo(
|
1092 |
+
argument_names(f_sig, orig_args, orig_kwargs),
|
1093 |
+
in_spec,
|
1094 |
+
out_spec_traced,
|
1095 |
+
)
|
1096 |
+
)
|
1097 |
+
new_graph.recompile()
|
1098 |
+
return new_graph
|
1099 |
+
|
1100 |
+
|
1101 |
+
def export(
|
1102 |
+
f: Callable[..., Any],
|
1103 |
+
*extra_args,
|
1104 |
+
aten_graph: bool = False,
|
1105 |
+
pre_dispatch: bool = False,
|
1106 |
+
decomposition_table: Optional[
|
1107 |
+
Dict[torch._ops.OpOverload, Callable[..., Any]]
|
1108 |
+
] = None,
|
1109 |
+
tracing_mode: str = "symbolic",
|
1110 |
+
constraints: Optional[List[Constraint]] = None,
|
1111 |
+
dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any], List[Any]]] = None,
|
1112 |
+
assume_static_by_default: bool = False,
|
1113 |
+
same_signature: bool = True,
|
1114 |
+
disable_constraint_solver: bool = False,
|
1115 |
+
_log_export_usage: bool = True,
|
1116 |
+
**extra_kwargs,
|
1117 |
+
) -> Callable[..., ExportResult]:
|
1118 |
+
"""
|
1119 |
+
Export an input function f to a format that can be executed outside of PyTorch using the FX graph.
|
1120 |
+
|
1121 |
+
Args:
|
1122 |
+
f (callable): A PyTorch function to be exported.
|
1123 |
+
|
1124 |
+
aten_graph (bool): If True, exports a graph with ATen operators.
|
1125 |
+
If False, exports a graph with Python operators. Default is False.
|
1126 |
+
|
1127 |
+
pre_dispatch (bool): If True, exports a graph with ATen operators,
|
1128 |
+
but before any logic in the PyTorch dispatcher has run.
|
1129 |
+
This can be useful if you want to apply further transformations on a graph before running it
|
1130 |
+
through autograd, autocast, or any other functionalities that are integrated into the dispatcher.
|
1131 |
+
This flag is only valid if aten_graph=True is set.
|
1132 |
+
Default is False.
|
1133 |
+
|
1134 |
+
decomposition_table (dict): A dictionary that maps operators to their decomposition functions.
|
1135 |
+
Required if aten_graph or tracing_mode is specified. Default is None.
|
1136 |
+
|
1137 |
+
tracing_mode (str): If "symbolic", turn on dynamic shapes support. Default is "symbolic".
|
1138 |
+
|
1139 |
+
constraints: [DEPRECATED: use ``dynamic_shapes`` instead, see below]
|
1140 |
+
An optional list of constraints on the dynamic arguments
|
1141 |
+
that specify their possible range of shapes. By default, shapes of
|
1142 |
+
input torch.Tensors are assumed to be static. If an input torch.Tensor
|
1143 |
+
is expected to have dynamic shapes, please use :func:`dynamic_dim`
|
1144 |
+
to define :class:`Constraint` objects that specify the dynamics and the possible
|
1145 |
+
range of shapes. See :func:`dynamic_dim` docstring for examples on
|
1146 |
+
how to use it.
|
1147 |
+
|
1148 |
+
dynamic_shapes:
|
1149 |
+
An optional argument where the type should either be:
|
1150 |
+
1) a dict from argument names of ``f`` to their dynamic shape specifications,
|
1151 |
+
2) a tuple that specifies dynamic shape specifications for each input in original order.
|
1152 |
+
If you are specifying dynamism on keyword args, you will need to pass them in the order that
|
1153 |
+
is defined in the original function signature.
|
1154 |
+
|
1155 |
+
The dynamic shape of a tensor argument can be specified as either
|
1156 |
+
(1) a dict from dynamic dimension indices to :func:`Dim` types, where it is
|
1157 |
+
not required to include static dimension indices in this dict, but when they are,
|
1158 |
+
they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None,
|
1159 |
+
where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions
|
1160 |
+
are denoted by None. Arguments that are dicts or tuples / lists of tensors are
|
1161 |
+
recursively specified by using mappings or sequences of contained specifications.
|
1162 |
+
|
1163 |
+
same_signature (bool): If True, rewrite the returned graph's signature to be the same as f.
|
1164 |
+
|
1165 |
+
disable_constraint_solver (bool): Whether the dim constraint solver must be disabled.
|
1166 |
+
|
1167 |
+
Returns:
|
1168 |
+
A function that given args and kwargs, returns a tuple of (graph, guards)
|
1169 |
+
Graph: An FX graph representing the execution of the input PyTorch function with the provided arguments and options.
|
1170 |
+
Guards: The guards we accumulated during tracing f above
|
1171 |
+
|
1172 |
+
Raises:
|
1173 |
+
AssertionError: If decomposition_table is specified without setting aten_graph=True,
|
1174 |
+
or if graph breaks during tracing in export.
|
1175 |
+
|
1176 |
+
AssertionError: If Dynamo input and output is not consistent with traced input/output.
|
1177 |
+
|
1178 |
+
Note - this headerdoc was authored by ChatGPT, with slight modifications by the author.
|
1179 |
+
"""
|
1180 |
+
if _log_export_usage:
|
1181 |
+
log_export_usage(event="export.private_api", flags={"_dynamo"})
|
1182 |
+
|
1183 |
+
# Deal with "local variable referenced before assignment"
|
1184 |
+
_f = f
|
1185 |
+
_assume_static_by_default = assume_static_by_default
|
1186 |
+
|
1187 |
+
def inner(*args, **kwargs):
|
1188 |
+
nonlocal constraints
|
1189 |
+
if constraints is not None:
|
1190 |
+
if _log_export_usage:
|
1191 |
+
warnings.warn(
|
1192 |
+
"Using `constraints` to specify dynamic shapes for export is DEPRECATED "
|
1193 |
+
"and will not be supported in the future. "
|
1194 |
+
"Please use `dynamic_shapes` instead (see docs on `torch.export.export`).",
|
1195 |
+
DeprecationWarning,
|
1196 |
+
stacklevel=2,
|
1197 |
+
)
|
1198 |
+
else:
|
1199 |
+
constraints = _process_dynamic_shapes(_f, args, kwargs, dynamic_shapes)
|
1200 |
+
f = _f
|
1201 |
+
assume_static_by_default = _assume_static_by_default
|
1202 |
+
check_if_dynamo_supported()
|
1203 |
+
torch._C._log_api_usage_once("torch._dynamo.export")
|
1204 |
+
if decomposition_table is not None:
|
1205 |
+
assert (
|
1206 |
+
aten_graph
|
1207 |
+
), "Specifying a decomposition_table table or tracing mode is illegal without setting aten_graph=True"
|
1208 |
+
if pre_dispatch:
|
1209 |
+
assert aten_graph, "pre_dispatch=True can only be used when aten_graph=True"
|
1210 |
+
f = innermost_fn(f)
|
1211 |
+
call_to_inspect = f.forward if isinstance(f, torch.nn.Module) else f
|
1212 |
+
original_signature = inspect.signature(call_to_inspect)
|
1213 |
+
graph = None
|
1214 |
+
out_guards = None
|
1215 |
+
graph_captured_input = None
|
1216 |
+
graph_captured_result: Optional[Tuple[torch.Tensor, ...]] = None
|
1217 |
+
fake_mode = None
|
1218 |
+
|
1219 |
+
def guard_export_print(guards: _guards.GuardsSet):
|
1220 |
+
nonlocal out_guards
|
1221 |
+
assert (
|
1222 |
+
out_guards is None
|
1223 |
+
), "whole graph export entails exactly one guard export"
|
1224 |
+
out_guards = guards
|
1225 |
+
|
1226 |
+
example_inputs = []
|
1227 |
+
|
1228 |
+
def dynamo_normalization_capturing_compiler(
|
1229 |
+
gm: torch.fx.GraphModule, inner_example_inputs
|
1230 |
+
):
|
1231 |
+
nonlocal graph
|
1232 |
+
assert (
|
1233 |
+
graph is None
|
1234 |
+
), "Tried to emit a second graph during export. Tracing through 'f' must produce a single graph."
|
1235 |
+
graph = gm
|
1236 |
+
|
1237 |
+
nonlocal fake_mode, example_inputs
|
1238 |
+
# NB: do NOT pass inner_example_inputs here, we are detecting the
|
1239 |
+
# Dynamo allocated fake mode, which should be DISTINCT from a
|
1240 |
+
# potential outer ambient fake mode which the user provided.
|
1241 |
+
# example_inputs is always the user specified inputs, so they
|
1242 |
+
# would have the wrong fake mode attached to them
|
1243 |
+
fake_mode = _guards.detect_fake_mode()
|
1244 |
+
example_inputs = inner_example_inputs
|
1245 |
+
|
1246 |
+
def result_capturing_wrapper(*graph_inputs):
|
1247 |
+
nonlocal graph_captured_result
|
1248 |
+
nonlocal graph_captured_input
|
1249 |
+
|
1250 |
+
graph_captured_input = graph_inputs
|
1251 |
+
assert graph is not None
|
1252 |
+
|
1253 |
+
named_parameters = dict(graph.named_parameters(remove_duplicate=False))
|
1254 |
+
named_buffers = dict(graph.named_buffers(remove_duplicate=False))
|
1255 |
+
|
1256 |
+
ambient_fake_mode = (
|
1257 |
+
_guards.detect_fake_mode(graph_inputs)
|
1258 |
+
if _guards.detect_fake_mode(graph_inputs) is not None
|
1259 |
+
else fake_mode
|
1260 |
+
)
|
1261 |
+
|
1262 |
+
with ambient_fake_mode, enable_python_dispatcher():
|
1263 |
+
params_and_buffers = {
|
1264 |
+
**named_parameters,
|
1265 |
+
**named_buffers,
|
1266 |
+
}
|
1267 |
+
fake_params_buffers = dict()
|
1268 |
+
|
1269 |
+
for name, value in params_and_buffers.items():
|
1270 |
+
fake_params_buffers[name] = ambient_fake_mode.from_tensor(
|
1271 |
+
value, static_shapes=True
|
1272 |
+
)
|
1273 |
+
|
1274 |
+
fake_graph_inputs = pytree.tree_map(
|
1275 |
+
ambient_fake_mode.from_tensor, graph_inputs
|
1276 |
+
)
|
1277 |
+
graph_captured_result = torch.func.functional_call(
|
1278 |
+
graph, fake_params_buffers, fake_graph_inputs
|
1279 |
+
)
|
1280 |
+
|
1281 |
+
return graph_captured_result
|
1282 |
+
|
1283 |
+
return result_capturing_wrapper
|
1284 |
+
|
1285 |
+
# Note: This is needed by rewrite_signature. We need to put it before
|
1286 |
+
# optimize_assert since user program may mutate the inputs.
|
1287 |
+
flat_args, in_spec = pytree.tree_flatten((args, kwargs))
|
1288 |
+
|
1289 |
+
remove_from_cache(f)
|
1290 |
+
constraint_violation_error = None
|
1291 |
+
if tracing_mode != "symbolic":
|
1292 |
+
assume_static_by_default = True
|
1293 |
+
with config.patch(
|
1294 |
+
specialize_int=True,
|
1295 |
+
assume_static_by_default=assume_static_by_default,
|
1296 |
+
automatic_dynamic_shapes=False,
|
1297 |
+
capture_dynamic_output_shape_ops=True,
|
1298 |
+
capture_scalar_outputs=True,
|
1299 |
+
):
|
1300 |
+
opt_f = optimize_assert(
|
1301 |
+
dynamo_normalization_capturing_compiler,
|
1302 |
+
hooks=Hooks(
|
1303 |
+
guard_export_fn=guard_export_print,
|
1304 |
+
guard_fail_fn=None,
|
1305 |
+
),
|
1306 |
+
export=True,
|
1307 |
+
export_constraints=constraints,
|
1308 |
+
)(f)
|
1309 |
+
# TODO(voz): We may have instances of `f` that mutate inputs, we should track sideeffects and reject.
|
1310 |
+
try:
|
1311 |
+
result_traced = opt_f(*args, **kwargs)
|
1312 |
+
except ConstraintViolationError as e:
|
1313 |
+
constraint_violation_error = e
|
1314 |
+
remove_from_cache(f)
|
1315 |
+
|
1316 |
+
if (
|
1317 |
+
not disable_constraint_solver
|
1318 |
+
and (shape_env := getattr(fake_mode, "shape_env", None)) is not None
|
1319 |
+
and (dim_constraints := shape_env.dim_constraints) is not None
|
1320 |
+
and not isinstance(
|
1321 |
+
call_to_inspect, (torch._ops.OpOverloadPacket, torch._ops.OpOverload)
|
1322 |
+
)
|
1323 |
+
and not trace_rules.check(call_to_inspect)
|
1324 |
+
):
|
1325 |
+
dim_constraints.solve()
|
1326 |
+
dim_constraints.remove_redundant_dynamic_results()
|
1327 |
+
forced_specializations = dim_constraints.forced_specializations()
|
1328 |
+
msg = dim_constraints.prettify_results(
|
1329 |
+
original_signature, constraint_violation_error, forced_specializations
|
1330 |
+
)
|
1331 |
+
if constraint_violation_error:
|
1332 |
+
constraint_violation_error.args = (
|
1333 |
+
constraint_violation_error.args[0] + msg,
|
1334 |
+
)
|
1335 |
+
else:
|
1336 |
+
if forced_specializations:
|
1337 |
+
constraint_violation_error = ConstraintViolationError(msg)
|
1338 |
+
else:
|
1339 |
+
log.info(
|
1340 |
+
"Summary of dimension constraints:%s",
|
1341 |
+
msg,
|
1342 |
+
)
|
1343 |
+
|
1344 |
+
# Error if we have any constraints on static values
|
1345 |
+
for k in shape_env.var_to_range.keys():
|
1346 |
+
if isinstance(k, sympy.Integer):
|
1347 |
+
constraint_violation_error = ConstraintViolationError(
|
1348 |
+
f"{''.join(traceback.format_list(shape_env.var_to_stack[k]))}\n"
|
1349 |
+
"It appears that you're trying to set a constraint on a "
|
1350 |
+
f"value which we evaluated to have a static value of {k}. "
|
1351 |
+
'Set TORCH_LOGS="+export" for more information.'
|
1352 |
+
)
|
1353 |
+
if constraint_violation_error:
|
1354 |
+
raise constraint_violation_error
|
1355 |
+
|
1356 |
+
assert (
|
1357 |
+
graph is not None
|
1358 |
+
), "Failed to produce a graph during tracing as no tensor operations were found."
|
1359 |
+
assert hasattr(graph, "_source_to_user_stacks")
|
1360 |
+
assert out_guards is not None, "Failed to produce guards during tracing"
|
1361 |
+
assert fake_mode is not None
|
1362 |
+
|
1363 |
+
log.info(
|
1364 |
+
"Dynamo captured graph:\n\n%s", graph.print_readable(print_output=False)
|
1365 |
+
)
|
1366 |
+
|
1367 |
+
# This check need to happened before aten_graph
|
1368 |
+
# because placeholder's _source_node attribute is not preserved by make_fx
|
1369 |
+
if same_signature:
|
1370 |
+
check_signature_rewritable(graph)
|
1371 |
+
|
1372 |
+
# NB: This is mostly hitting the cache; Dynamo already converted these
|
1373 |
+
example_fake_inputs = [fake_mode.from_tensor(t) for t in example_inputs]
|
1374 |
+
|
1375 |
+
if aten_graph:
|
1376 |
+
# Running graph with interpreter is needed for propagating the stack_trace
|
1377 |
+
def graph_with_interpreter(*args):
|
1378 |
+
with torch.fx.traceback.preserve_node_meta():
|
1379 |
+
return torch.fx.Interpreter(graph).run(*args)
|
1380 |
+
|
1381 |
+
with maybe_disable_fake_tensor_mode(), enable_python_dispatcher(), (
|
1382 |
+
fake_mode
|
1383 |
+
):
|
1384 |
+
try:
|
1385 |
+
graph = make_fx(
|
1386 |
+
graph_with_interpreter,
|
1387 |
+
decomposition_table=decomposition_table,
|
1388 |
+
tracing_mode="real",
|
1389 |
+
_allow_non_fake_inputs=True,
|
1390 |
+
pre_dispatch=pre_dispatch,
|
1391 |
+
_allow_fake_constant=False,
|
1392 |
+
)(*example_fake_inputs)
|
1393 |
+
except CondOpArgsMismatchError as e:
|
1394 |
+
# Wrap the internal error to the user-facing error
|
1395 |
+
raise UserError( # noqa: TRY200
|
1396 |
+
UserErrorType.DYNAMIC_CONTROL_FLOW,
|
1397 |
+
str(e),
|
1398 |
+
case_name="cond_operands",
|
1399 |
+
)
|
1400 |
+
|
1401 |
+
assert graph is not None
|
1402 |
+
for node in graph.graph.nodes:
|
1403 |
+
if node.op == "get_attr" and isinstance(
|
1404 |
+
getattr(graph, node.target), torch.Tensor
|
1405 |
+
):
|
1406 |
+
node.meta["val"] = fake_mode.from_tensor(
|
1407 |
+
getattr(graph, node.target), static_shapes=True
|
1408 |
+
)
|
1409 |
+
|
1410 |
+
if same_signature:
|
1411 |
+
flat_args_dynamic_dims = [
|
1412 |
+
{c.dim for c in (constraints or ()) if c.w_tensor() is x}
|
1413 |
+
for x in flat_args
|
1414 |
+
]
|
1415 |
+
graph = rewrite_signature(
|
1416 |
+
original_signature,
|
1417 |
+
graph,
|
1418 |
+
fake_mode,
|
1419 |
+
flat_args,
|
1420 |
+
in_spec,
|
1421 |
+
example_fake_inputs,
|
1422 |
+
graph_captured_input,
|
1423 |
+
graph_captured_result,
|
1424 |
+
result_traced, # type: ignore[possibly-undefined]
|
1425 |
+
flat_args_dynamic_dims,
|
1426 |
+
)
|
1427 |
+
# Store constraints and inputs as metadata for user passes, e.g. turn constraints to runtime check
|
1428 |
+
assert graph is not None
|
1429 |
+
graph.meta["input_shape_constraints"] = (
|
1430 |
+
[constraint.serializable_spec for constraint in constraints]
|
1431 |
+
if constraints
|
1432 |
+
else []
|
1433 |
+
)
|
1434 |
+
|
1435 |
+
return ExportResult(graph, out_guards)
|
1436 |
+
|
1437 |
+
if extra_args or extra_kwargs:
|
1438 |
+
warnings.warn(
|
1439 |
+
"export(f, *args, **kwargs) is deprecated, use export(f)(*args, **kwargs) instead. "
|
1440 |
+
"If you don't migrate, we may break your export call in the future if your user defined kwargs "
|
1441 |
+
"conflict with future kwargs added to export(f)."
|
1442 |
+
)
|
1443 |
+
return inner(*extra_args, **extra_kwargs)
|
1444 |
+
else:
|
1445 |
+
return inner
|
1446 |
+
|
1447 |
+
|
1448 |
+
def optimize_assert(
|
1449 |
+
backend,
|
1450 |
+
*,
|
1451 |
+
hooks=Hooks(None, None),
|
1452 |
+
export=False,
|
1453 |
+
export_constraints=None,
|
1454 |
+
dynamic=None,
|
1455 |
+
):
|
1456 |
+
"""
|
1457 |
+
The same as `torch._dynamo.optimize(backend, nopython=True)`
|
1458 |
+
"""
|
1459 |
+
backend = get_compiler_fn(backend)
|
1460 |
+
|
1461 |
+
# Find if backend has any extra context manager
|
1462 |
+
backend_ctx_ctor = getattr(backend, "backend_ctx_ctor", null_context)
|
1463 |
+
|
1464 |
+
return _optimize_catch_errors(
|
1465 |
+
convert_frame.convert_frame_assert(
|
1466 |
+
backend, export=export, export_constraints=export_constraints
|
1467 |
+
),
|
1468 |
+
hooks,
|
1469 |
+
backend_ctx_ctor,
|
1470 |
+
export=export,
|
1471 |
+
dynamic=dynamic,
|
1472 |
+
)
|
1473 |
+
|
1474 |
+
|
1475 |
+
class TorchPatcher:
|
1476 |
+
@staticmethod
|
1477 |
+
@functools.lru_cache(None)
|
1478 |
+
def patch():
|
1479 |
+
# A better way to disable the following would be decorate the source
|
1480 |
+
# functions with @torch._disable_dynamo. However, this causes issues
|
1481 |
+
# with torch.deploy internally.
|
1482 |
+
from .decorators import disable
|
1483 |
+
|
1484 |
+
torch.jit.trace = disable(torch.jit.trace)
|
1485 |
+
torch.jit.trace_module = disable(torch.jit.trace_module)
|
1486 |
+
torch.jit._get_trace_graph = disable(torch.jit._get_trace_graph)
|
1487 |
+
torch.fx._symbolic_trace.Tracer.trace = disable(
|
1488 |
+
torch.fx._symbolic_trace.Tracer.trace
|
1489 |
+
)
|
1490 |
+
torch.distributions.Distribution.set_default_validate_args(False)
|
1491 |
+
|
1492 |
+
from ..optim import (
|
1493 |
+
adadelta,
|
1494 |
+
adagrad,
|
1495 |
+
adam,
|
1496 |
+
adamax,
|
1497 |
+
adamw,
|
1498 |
+
asgd,
|
1499 |
+
lbfgs,
|
1500 |
+
nadam,
|
1501 |
+
radam,
|
1502 |
+
rmsprop,
|
1503 |
+
rprop,
|
1504 |
+
sgd,
|
1505 |
+
sparse_adam,
|
1506 |
+
)
|
1507 |
+
|
1508 |
+
optimizer_modules = {
|
1509 |
+
adadelta,
|
1510 |
+
adagrad,
|
1511 |
+
adam,
|
1512 |
+
adamax,
|
1513 |
+
adamw,
|
1514 |
+
asgd,
|
1515 |
+
lbfgs,
|
1516 |
+
nadam,
|
1517 |
+
radam,
|
1518 |
+
rmsprop,
|
1519 |
+
rprop,
|
1520 |
+
sgd,
|
1521 |
+
sparse_adam,
|
1522 |
+
}
|
1523 |
+
|
1524 |
+
for opt_mod in optimizer_modules:
|
1525 |
+
opt_name = opt_mod.__name__.split(".")[-1]
|
1526 |
+
fused_fn_name = f"_fused_{opt_name}"
|
1527 |
+
single_tensor_fn_name = f"_single_tensor_{opt_name}"
|
1528 |
+
|
1529 |
+
if hasattr(opt_mod, fused_fn_name):
|
1530 |
+
setattr(
|
1531 |
+
opt_mod, fused_fn_name, disable(getattr(opt_mod, fused_fn_name))
|
1532 |
+
)
|
1533 |
+
|
1534 |
+
optimizer_classes = [
|
1535 |
+
opt
|
1536 |
+
for opt in torch.optim.__dict__.values()
|
1537 |
+
if inspect.isclass(opt) and issubclass(opt, torch.optim.Optimizer)
|
1538 |
+
]
|
1539 |
+
|
1540 |
+
# Note: we don't support sparsity or tracing through backwards
|
1541 |
+
excluded_optimizer_classes = {
|
1542 |
+
torch.optim.SparseAdam,
|
1543 |
+
torch.optim.LBFGS,
|
1544 |
+
}
|
1545 |
+
|
1546 |
+
for opt in optimizer_classes:
|
1547 |
+
if opt in excluded_optimizer_classes:
|
1548 |
+
opt.step = disable(opt.step)
|
1549 |
+
|
1550 |
+
if hasattr(opt, "_init_group"):
|
1551 |
+
opt._init_group = disable(opt._init_group)
|
1552 |
+
|
1553 |
+
@staticmethod
|
1554 |
+
def suppress_torch_distributed_warnings(fn):
|
1555 |
+
def inner_fn(*args, **kwargs):
|
1556 |
+
warnings.filterwarnings(
|
1557 |
+
"ignore", category=UserWarning, module="torch.distributed"
|
1558 |
+
)
|
1559 |
+
return fn(*args, **kwargs)
|
1560 |
+
|
1561 |
+
return inner_fn
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/hooks.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
|
3 |
+
from typing import Callable, Optional
|
4 |
+
|
5 |
+
from torch._guards import GuardsSet
|
6 |
+
from .types import GuardFail
|
7 |
+
|
8 |
+
|
9 |
+
@dataclasses.dataclass
|
10 |
+
class Hooks:
|
11 |
+
guard_export_fn: Optional[Callable[[GuardsSet], None]] = None
|
12 |
+
guard_fail_fn: Optional[Callable[[GuardFail], None]] = None
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/mutation_guard.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: disable-error-code="method-assign"
|
2 |
+
|
3 |
+
import functools
|
4 |
+
import weakref
|
5 |
+
|
6 |
+
import torch.nn
|
7 |
+
from torch.nn import Module
|
8 |
+
|
9 |
+
from .utils import ExactWeakKeyDictionary, is_lazy_module
|
10 |
+
|
11 |
+
|
12 |
+
class MutationTracker:
|
13 |
+
db = ExactWeakKeyDictionary()
|
14 |
+
|
15 |
+
def __init__(self):
|
16 |
+
self.mutation_count = 0
|
17 |
+
self.watchers = []
|
18 |
+
|
19 |
+
def on_mutation(self, name):
|
20 |
+
self.mutation_count += 1
|
21 |
+
tmp = self.watchers
|
22 |
+
self.watchers = []
|
23 |
+
for ref in tmp:
|
24 |
+
guarded = ref()
|
25 |
+
if guarded is not None:
|
26 |
+
guarded.invalidate(ref)
|
27 |
+
|
28 |
+
def track(self, guarded_code):
|
29 |
+
self.watchers.append(weakref.ref(guarded_code))
|
30 |
+
|
31 |
+
|
32 |
+
def watch(obj, guarded_code):
|
33 |
+
"""invalidate guarded_code when obj is mutated"""
|
34 |
+
ensure_patched(type(obj))
|
35 |
+
|
36 |
+
if obj not in MutationTracker.db:
|
37 |
+
MutationTracker.db[obj] = MutationTracker()
|
38 |
+
tracker = MutationTracker.db[obj]
|
39 |
+
tracker.track(guarded_code)
|
40 |
+
|
41 |
+
|
42 |
+
def ensure_patched(cls):
|
43 |
+
if getattr(cls, "___needs_mutation_patch", True):
|
44 |
+
cls.___needs_mutation_patch = False
|
45 |
+
original_setattr = cls.__setattr__
|
46 |
+
|
47 |
+
@functools.wraps(original_setattr)
|
48 |
+
def custom_setattr(self, key, value):
|
49 |
+
try:
|
50 |
+
MutationTracker.db[self].on_mutation(key)
|
51 |
+
except KeyError:
|
52 |
+
pass
|
53 |
+
return original_setattr(self, key, value)
|
54 |
+
|
55 |
+
cls.__setattr__ = custom_setattr
|
56 |
+
|
57 |
+
|
58 |
+
class GenerationTracker:
|
59 |
+
generation = 0
|
60 |
+
dynamic_classes = ExactWeakKeyDictionary()
|
61 |
+
generation_values = ExactWeakKeyDictionary()
|
62 |
+
|
63 |
+
@classmethod
|
64 |
+
def tag(cls, obj):
|
65 |
+
cls.generation_values[obj] = cls.generation
|
66 |
+
|
67 |
+
@staticmethod
|
68 |
+
def mark_class_dynamic(cls):
|
69 |
+
assert issubclass(cls, torch.nn.Module)
|
70 |
+
GenerationTracker.dynamic_classes[cls] = True
|
71 |
+
|
72 |
+
@classmethod
|
73 |
+
def get_generation_value(cls, obj):
|
74 |
+
if obj not in cls.generation_values:
|
75 |
+
return -1
|
76 |
+
return cls.generation_values[obj]
|
77 |
+
|
78 |
+
@classmethod
|
79 |
+
def check(cls, obj):
|
80 |
+
return (
|
81 |
+
obj in cls.generation_values
|
82 |
+
and cls.generation_values[obj] == cls.generation
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
def is_dynamic_nn_module(obj):
|
87 |
+
"""Check for nn.Modules() created dynamically or mutated"""
|
88 |
+
if isinstance(obj, torch.nn.Module) and "forward" in obj.__dict__:
|
89 |
+
# A monkey patched `.forward` indicates something wacky is going on
|
90 |
+
return True
|
91 |
+
if hasattr(obj, "torchdynamo_force_dynamic"):
|
92 |
+
return obj.torchdynamo_force_dynamic
|
93 |
+
if is_lazy_module(obj):
|
94 |
+
return False
|
95 |
+
dyn = GenerationTracker.dynamic_classes.get(type(obj)) or GenerationTracker.check(
|
96 |
+
obj
|
97 |
+
)
|
98 |
+
return dyn
|
99 |
+
|
100 |
+
|
101 |
+
def install_generation_tagging_init():
|
102 |
+
"""
|
103 |
+
Monkey patch torch.nn.Module.__init__ and torch.nn.Module.__setstate__
|
104 |
+
so we can detect nn.Module instances created dynamically inside forward methods.
|
105 |
+
"""
|
106 |
+
|
107 |
+
if getattr(Module, "___needs_generation_tag_patch", True):
|
108 |
+
init = Module.__init__
|
109 |
+
|
110 |
+
def patched_init(self, *args, **kwargs):
|
111 |
+
init(self, *args, **kwargs)
|
112 |
+
GenerationTracker.tag(self)
|
113 |
+
|
114 |
+
Module.__init__ = patched_init
|
115 |
+
|
116 |
+
setstate = Module.__setstate__
|
117 |
+
|
118 |
+
def patched_setstate(self, state):
|
119 |
+
setstate(self, state)
|
120 |
+
GenerationTracker.tag(self)
|
121 |
+
|
122 |
+
Module.__setstate__ = patched_setstate
|
123 |
+
|
124 |
+
Module.___needs_generation_tag_patch = False # type: ignore[attr-defined]
|
125 |
+
|
126 |
+
GenerationTracker.generation += 1
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/replay_record.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from dataclasses import field
|
3 |
+
from types import CodeType, ModuleType
|
4 |
+
from typing import Any, Dict
|
5 |
+
|
6 |
+
from torch.utils._import_utils import import_dill
|
7 |
+
|
8 |
+
dill = import_dill()
|
9 |
+
|
10 |
+
|
11 |
+
@dataclasses.dataclass
|
12 |
+
class ModuleRecord:
|
13 |
+
module: ModuleType
|
14 |
+
accessed_attrs: Dict[str, Any] = field(default_factory=dict)
|
15 |
+
|
16 |
+
|
17 |
+
@dataclasses.dataclass
|
18 |
+
class DummyModule:
|
19 |
+
name: str
|
20 |
+
is_torch: bool = False
|
21 |
+
|
22 |
+
@property
|
23 |
+
def __name__(self):
|
24 |
+
return self.name
|
25 |
+
|
26 |
+
|
27 |
+
@dataclasses.dataclass
|
28 |
+
class ExecutionRecord:
|
29 |
+
code: CodeType
|
30 |
+
globals: Dict[str, Any] = field(default_factory=dict)
|
31 |
+
locals: Dict[str, Any] = field(default_factory=dict)
|
32 |
+
builtins: Dict[str, Any] = field(default_factory=dict)
|
33 |
+
code_options: Dict[str, Any] = field(default_factory=dict)
|
34 |
+
|
35 |
+
def dump(self, f):
|
36 |
+
assert dill is not None, "replay_record requires `pip install dill`"
|
37 |
+
dill.dump(self, f)
|
38 |
+
|
39 |
+
@classmethod
|
40 |
+
def load(cls, f):
|
41 |
+
assert dill is not None, "replay_record requires `pip install dill`"
|
42 |
+
return dill.load(f)
|
43 |
+
|
44 |
+
|
45 |
+
@dataclasses.dataclass
|
46 |
+
class ExecutionRecorder:
|
47 |
+
LOCAL_MOD_PREFIX = "___local_mod_"
|
48 |
+
|
49 |
+
code: CodeType
|
50 |
+
globals: Dict[str, Any] = field(default_factory=dict)
|
51 |
+
locals: Dict[str, Any] = field(default_factory=dict)
|
52 |
+
builtins: Dict[str, Any] = field(default_factory=dict)
|
53 |
+
code_options: Dict[str, Any] = field(default_factory=dict)
|
54 |
+
name_to_modrec: Dict[str, Any] = field(default_factory=dict)
|
55 |
+
|
56 |
+
def add_local_var(self, name, var):
|
57 |
+
if isinstance(var, ModuleType):
|
58 |
+
self.locals[name] = self._add_mod(var)
|
59 |
+
else:
|
60 |
+
self.locals[name] = var
|
61 |
+
|
62 |
+
def add_global_var(self, name, var):
|
63 |
+
if isinstance(var, ModuleType):
|
64 |
+
self.globals[name] = self._add_mod(var)
|
65 |
+
else:
|
66 |
+
self.globals[name] = var
|
67 |
+
|
68 |
+
def add_local_mod(self, name, mod):
|
69 |
+
assert isinstance(mod, ModuleType)
|
70 |
+
|
71 |
+
self.add_global_var(name, mod)
|
72 |
+
|
73 |
+
def record_module_access(self, mod, name, val):
|
74 |
+
if isinstance(val, ModuleType):
|
75 |
+
self.name_to_modrec[mod.__name__].accessed_attrs[name] = self._add_mod(val)
|
76 |
+
return
|
77 |
+
|
78 |
+
if mod.__name__ in self.name_to_modrec:
|
79 |
+
self.name_to_modrec[mod.__name__].accessed_attrs[name] = val
|
80 |
+
|
81 |
+
def get_record(self):
|
82 |
+
return ExecutionRecord(
|
83 |
+
self.code,
|
84 |
+
ExecutionRecorder._resolve_modules(self.globals),
|
85 |
+
ExecutionRecorder._resolve_modules(self.locals),
|
86 |
+
self.builtins.copy(),
|
87 |
+
self.code_options.copy(),
|
88 |
+
)
|
89 |
+
|
90 |
+
def _add_mod(self, mod):
|
91 |
+
if mod.__name__ not in self.name_to_modrec:
|
92 |
+
self.name_to_modrec[mod.__name__] = ModuleRecord(mod)
|
93 |
+
|
94 |
+
return self.name_to_modrec[mod.__name__]
|
95 |
+
|
96 |
+
# Convert ModuleRecords -> DummyModule tree
|
97 |
+
@classmethod
|
98 |
+
def _resolve_modules(cls, vars):
|
99 |
+
def resolve_module(var):
|
100 |
+
if not isinstance(var, ModuleRecord):
|
101 |
+
return var
|
102 |
+
|
103 |
+
dummy_mod = DummyModule(var.module.__name__)
|
104 |
+
for attr_name, attr_value in var.accessed_attrs.items():
|
105 |
+
attr_value = resolve_module(attr_value)
|
106 |
+
dummy_mod.__setattr__(attr_name, attr_value)
|
107 |
+
|
108 |
+
return dummy_mod
|
109 |
+
|
110 |
+
return {k: resolve_module(v) for k, v in vars.items()}
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/repro/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (192 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/after_aot.cpython-310.pyc
ADDED
Binary file (24.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/after_dynamo.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py
ADDED
@@ -0,0 +1,932 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import copy
|
3 |
+
import functools
|
4 |
+
import io
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import shutil
|
8 |
+
import subprocess
|
9 |
+
import sys
|
10 |
+
import textwrap
|
11 |
+
import uuid
|
12 |
+
from importlib import import_module
|
13 |
+
from tempfile import TemporaryFile
|
14 |
+
from typing import Any, Callable, Dict, Union
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.fx as fx
|
18 |
+
import torch.nn as nn
|
19 |
+
from torch._dynamo.debug_utils import (
|
20 |
+
_cuda_system_info_comment,
|
21 |
+
AccuracyError,
|
22 |
+
backend_accuracy_fails,
|
23 |
+
BuckTargetWriter,
|
24 |
+
cast_to_fp64,
|
25 |
+
extra_imports,
|
26 |
+
generate_config_string,
|
27 |
+
helper_for_dump_minify,
|
28 |
+
InputReader,
|
29 |
+
InputWriter,
|
30 |
+
MAX_CONSTANT_NUMEL_INLINE,
|
31 |
+
minifier_dir,
|
32 |
+
NNModuleToString,
|
33 |
+
NopInputReader,
|
34 |
+
same_two_models,
|
35 |
+
)
|
36 |
+
from torch._dynamo.utils import clone_inputs, counters, same
|
37 |
+
from torch.fx.experimental.proxy_tensor import make_fx
|
38 |
+
from torch.fx.experimental.symbolic_shapes import (
|
39 |
+
fx_placeholder_targets,
|
40 |
+
has_free_symbols,
|
41 |
+
)
|
42 |
+
from torch.hub import tqdm
|
43 |
+
|
44 |
+
from .. import config
|
45 |
+
|
46 |
+
log = logging.getLogger(__name__)
|
47 |
+
|
48 |
+
|
49 |
+
inductor_config = import_module("torch._inductor.config")
|
50 |
+
use_buck = inductor_config.is_fbcode()
|
51 |
+
|
52 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
53 |
+
# MAIN ENTRY POINT
|
54 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
55 |
+
|
56 |
+
|
57 |
+
def wrap_compiler_debug(unconfigured_compiler_fn, compiler_name: str):
|
58 |
+
"""
|
59 |
+
Minifier for Fx Graph modules after Aot Autograd has finished. We wrap both
|
60 |
+
forward and backward call separately with the backend compiler_fn - like
|
61 |
+
inductor or nvfuser. Intercepting after Aot Autograd presents neat
|
62 |
+
abstraction, where all the params are lifted as graph inputs, making it easy
|
63 |
+
to save the graph as a string.
|
64 |
+
"""
|
65 |
+
|
66 |
+
@functools.wraps(unconfigured_compiler_fn)
|
67 |
+
def debug_wrapper(gm, example_inputs, **kwargs):
|
68 |
+
from torch._subclasses import FakeTensorMode
|
69 |
+
|
70 |
+
compiler_fn = functools.partial(unconfigured_compiler_fn, **kwargs)
|
71 |
+
|
72 |
+
from torch._functorch.aot_autograd import get_aot_graph_name
|
73 |
+
|
74 |
+
graph_name = get_aot_graph_name()
|
75 |
+
|
76 |
+
# TODO: why do we need to deepcopy the original graph?
|
77 |
+
orig_graph = copy.deepcopy(gm.graph)
|
78 |
+
assert config.repro_after in ("dynamo", "aot", None)
|
79 |
+
|
80 |
+
try:
|
81 |
+
# Call the compiler_fn - which is either aot_autograd or inductor
|
82 |
+
# with fake inputs
|
83 |
+
inner_compiled_fn = compiler_fn(gm, example_inputs)
|
84 |
+
except Exception as e:
|
85 |
+
# TODO: Failures here are troublesome because no real inputs,
|
86 |
+
# need a different serialization strategy
|
87 |
+
if config.repro_after == "aot":
|
88 |
+
if config.repro_level == 1:
|
89 |
+
dump_compiler_graph_state(
|
90 |
+
fx.GraphModule(gm, orig_graph),
|
91 |
+
example_inputs,
|
92 |
+
compiler_name,
|
93 |
+
)
|
94 |
+
elif config.repro_level == 2:
|
95 |
+
dump_to_minify(
|
96 |
+
fx.GraphModule(gm, orig_graph),
|
97 |
+
example_inputs,
|
98 |
+
compiler_name,
|
99 |
+
)
|
100 |
+
log.error("CompilerError")
|
101 |
+
raise
|
102 |
+
|
103 |
+
# We may run regular PyTorch compute that may trigger Dynamo, do NOT
|
104 |
+
# recursively attempt to accuracy minify in that case!
|
105 |
+
def deferred_for_real_inputs(real_inputs):
|
106 |
+
# This is a bit obscure: if we recursively try to accuracy minify
|
107 |
+
# the SAME function, this would trigger. But most of the time
|
108 |
+
# we should never hit this branch
|
109 |
+
if config.repro_after != "aot":
|
110 |
+
return inner_compiled_fn(real_inputs)
|
111 |
+
with config.patch(repro_after=None):
|
112 |
+
return inner_debug_fn(real_inputs)
|
113 |
+
|
114 |
+
def inner_debug_fn(real_inputs):
|
115 |
+
"""
|
116 |
+
Aot Autograd fw_compiler and bw_compiler can have fake tensors. So,
|
117 |
+
example_inputs can be fake tensors. We can call compiler_fn (which is
|
118 |
+
inductor or nvfuser) with fake tensors but the actually compiled_fn
|
119 |
+
should be called with real tensors. Therefore, the actual invocation
|
120 |
+
is deferred.
|
121 |
+
"""
|
122 |
+
# Copy the tensor attrs like shape, stride etc by converting to Fake Tensor
|
123 |
+
# because inductor clears the tensor list in its codegen. And example_inputs
|
124 |
+
# are available only for the first invocation.
|
125 |
+
fake_mode = FakeTensorMode()
|
126 |
+
copy_tensor_attrs = [
|
127 |
+
fake_mode.from_tensor(x) if isinstance(x, torch.Tensor) else x
|
128 |
+
for x in real_inputs
|
129 |
+
]
|
130 |
+
if config.repro_level == 3:
|
131 |
+
# Always dump the original module in case we have segfaults
|
132 |
+
dump_to_minify(
|
133 |
+
fx.GraphModule(gm, orig_graph), real_inputs, compiler_name
|
134 |
+
)
|
135 |
+
|
136 |
+
if config.repro_level == 4:
|
137 |
+
if compiler_name != "inductor":
|
138 |
+
raise NotImplementedError(
|
139 |
+
"Accuracy minification is supported for inductor only"
|
140 |
+
)
|
141 |
+
if backend_aot_accuracy_fails(gm, real_inputs, compiler_fn):
|
142 |
+
log.warning(
|
143 |
+
"Accuracy failed for the AOT Autograd graph %s", graph_name
|
144 |
+
)
|
145 |
+
dump_compiler_graph_state(
|
146 |
+
fx.GraphModule(gm, orig_graph),
|
147 |
+
real_inputs,
|
148 |
+
f"{compiler_name}_accuracy",
|
149 |
+
)
|
150 |
+
dump_to_minify(
|
151 |
+
fx.GraphModule(gm, orig_graph),
|
152 |
+
real_inputs,
|
153 |
+
f"{compiler_name}_accuracy",
|
154 |
+
)
|
155 |
+
raise AccuracyError("Bad accuracy detected")
|
156 |
+
else:
|
157 |
+
# Call the compiled function with real inputs
|
158 |
+
return inner_compiled_fn(real_inputs)
|
159 |
+
else:
|
160 |
+
try:
|
161 |
+
# Call the compiled function with real inputs
|
162 |
+
out = inner_compiled_fn(real_inputs)
|
163 |
+
# sync cuda kernels to ensure IMA detection
|
164 |
+
for arg in example_inputs:
|
165 |
+
if isinstance(arg, torch.Tensor) and arg.is_cuda:
|
166 |
+
torch.cuda.synchronize()
|
167 |
+
break
|
168 |
+
return out
|
169 |
+
except Exception as e:
|
170 |
+
if config.repro_level == 1:
|
171 |
+
dump_compiler_graph_state(
|
172 |
+
fx.GraphModule(gm, orig_graph),
|
173 |
+
copy_tensor_attrs,
|
174 |
+
compiler_name,
|
175 |
+
)
|
176 |
+
elif config.repro_level == 2:
|
177 |
+
dump_to_minify(
|
178 |
+
fx.GraphModule(gm, orig_graph),
|
179 |
+
copy_tensor_attrs,
|
180 |
+
compiler_name,
|
181 |
+
)
|
182 |
+
raise
|
183 |
+
|
184 |
+
if config.repro_after == "aot":
|
185 |
+
compiled_fn = deferred_for_real_inputs
|
186 |
+
compiled_fn._boxed_call = True # type: ignore[attr-defined]
|
187 |
+
return compiled_fn
|
188 |
+
else:
|
189 |
+
return inner_compiled_fn
|
190 |
+
|
191 |
+
return debug_wrapper
|
192 |
+
|
193 |
+
|
194 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
195 |
+
# DUMP REPROS
|
196 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
197 |
+
|
198 |
+
|
199 |
+
def generate_compiler_repro_string(gm, args, *, stable_output=False, save_dir=None):
|
200 |
+
model_str = textwrap.dedent(
|
201 |
+
f"""
|
202 |
+
import torch
|
203 |
+
from torch import tensor, device
|
204 |
+
import torch.fx as fx
|
205 |
+
from torch._dynamo.testing import rand_strided
|
206 |
+
from math import inf
|
207 |
+
import torch._inductor.inductor_prims
|
208 |
+
|
209 |
+
{generate_config_string(stable_output=stable_output)}
|
210 |
+
|
211 |
+
isolate_fails_code_str = None
|
212 |
+
|
213 |
+
{extra_imports}
|
214 |
+
|
215 |
+
"""
|
216 |
+
)
|
217 |
+
if not stable_output:
|
218 |
+
model_str += f"# torch version: {torch.version.__version__}\n"
|
219 |
+
if hasattr(torch.version, "cuda"):
|
220 |
+
model_str += f"# torch cuda version: {torch.version.cuda}\n"
|
221 |
+
if hasattr(torch.version, "git_version"):
|
222 |
+
model_str += f"# torch git version: {torch.version.git_version}\n\n\n"
|
223 |
+
model_str += _cuda_system_info_comment()
|
224 |
+
|
225 |
+
model_str += NNModuleToString.convert(gm)
|
226 |
+
|
227 |
+
# get hint shape/stride when dynamic shape enabled
|
228 |
+
def hint_if_symint(x):
|
229 |
+
return tuple(i.node.hint if isinstance(i, torch.SymInt) else i for i in x)
|
230 |
+
|
231 |
+
writer = InputWriter(save_dir)
|
232 |
+
for placeholder, arg in zip(fx_placeholder_targets(gm), args):
|
233 |
+
if isinstance(arg, (int, torch.SymInt)):
|
234 |
+
writer.symint(placeholder, arg)
|
235 |
+
elif isinstance(arg, torch.Tensor):
|
236 |
+
# TODO: improve these names with FQN
|
237 |
+
writer.tensor(placeholder, arg)
|
238 |
+
else:
|
239 |
+
raise TypeError(f"arg is neither SymInt/int nor torch.Tensor, {arg}")
|
240 |
+
|
241 |
+
model_str += "\n".join(writer.lines()) + "\n"
|
242 |
+
|
243 |
+
model_str += "mod = Repro()\n"
|
244 |
+
return model_str
|
245 |
+
|
246 |
+
|
247 |
+
def save_graph_repro(
|
248 |
+
fd,
|
249 |
+
gm,
|
250 |
+
args,
|
251 |
+
compiler_name,
|
252 |
+
*,
|
253 |
+
stable_output=False,
|
254 |
+
save_dir=None,
|
255 |
+
command="run",
|
256 |
+
accuracy=None,
|
257 |
+
tracing_mode=None,
|
258 |
+
check_str=None,
|
259 |
+
):
|
260 |
+
fd.write(
|
261 |
+
generate_compiler_repro_string(
|
262 |
+
gm,
|
263 |
+
args,
|
264 |
+
stable_output=stable_output,
|
265 |
+
save_dir=save_dir,
|
266 |
+
)
|
267 |
+
)
|
268 |
+
if accuracy is None:
|
269 |
+
accuracy = "_accuracy" in compiler_name
|
270 |
+
if tracing_mode is None:
|
271 |
+
tracing_mode = "real"
|
272 |
+
if any(has_free_symbols(a) for a in args):
|
273 |
+
tracing_mode = "symbolic"
|
274 |
+
fd.write("if __name__ == '__main__':\n")
|
275 |
+
fd.write(" from torch._dynamo.repro.after_aot import run_repro\n")
|
276 |
+
fd.write(
|
277 |
+
f" with torch.no_grad():\n"
|
278 |
+
f" run_repro(mod, load_args, accuracy={accuracy!r}, command={command!r}, "
|
279 |
+
f"save_dir={save_dir!r}, tracing_mode={tracing_mode!r}, check_str={check_str!r}"
|
280 |
+
")\n"
|
281 |
+
)
|
282 |
+
|
283 |
+
|
284 |
+
def dump_compiler_graph_state(gm, args, compiler_name, *, accuracy=None):
|
285 |
+
subdir = os.path.join(minifier_dir(), "checkpoints")
|
286 |
+
if not os.path.exists(subdir):
|
287 |
+
os.makedirs(subdir, exist_ok=True)
|
288 |
+
file_name = os.path.join(subdir, f"{len(gm.graph.nodes)}.py")
|
289 |
+
log.warning(
|
290 |
+
"Writing checkpoint with %s nodes to %s", len(gm.graph.nodes), file_name
|
291 |
+
)
|
292 |
+
with open(file_name, "w") as fd:
|
293 |
+
save_graph_repro(
|
294 |
+
fd, gm, args, compiler_name, save_dir=subdir, accuracy=accuracy
|
295 |
+
)
|
296 |
+
curdir = os.getcwd()
|
297 |
+
repro_path = os.path.join(curdir, "repro.py")
|
298 |
+
try:
|
299 |
+
shutil.copyfile(file_name, repro_path)
|
300 |
+
log.warning("Copying repro file for convenience to %s", repro_path)
|
301 |
+
if use_buck:
|
302 |
+
BuckTargetWriter(file_name).write()
|
303 |
+
except OSError:
|
304 |
+
log.warning("No write permissions for %s", repro_path)
|
305 |
+
pass
|
306 |
+
|
307 |
+
|
308 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
309 |
+
# DUMP MINIFIER
|
310 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
311 |
+
|
312 |
+
|
313 |
+
def dump_to_minify(gm, args, compiler_name: str):
|
314 |
+
out = io.StringIO()
|
315 |
+
# TODO: factor this out
|
316 |
+
subdir = os.path.join(minifier_dir(), "checkpoints")
|
317 |
+
if not os.path.exists(subdir):
|
318 |
+
os.makedirs(subdir, exist_ok=True)
|
319 |
+
save_graph_repro(out, gm, args, compiler_name, save_dir=subdir, command="minify")
|
320 |
+
return helper_for_dump_minify(out.getvalue())
|
321 |
+
|
322 |
+
|
323 |
+
def isolate_fails(
|
324 |
+
fx_g,
|
325 |
+
args,
|
326 |
+
compiler_name: str,
|
327 |
+
env=None,
|
328 |
+
save_dir=None,
|
329 |
+
accuracy=None,
|
330 |
+
tracing_mode=None,
|
331 |
+
check_str=None,
|
332 |
+
):
|
333 |
+
if env is None:
|
334 |
+
env = {}
|
335 |
+
subdir = os.path.join(os.getcwd(), "isolate")
|
336 |
+
if not os.path.exists(subdir):
|
337 |
+
os.makedirs(subdir, exist_ok=True)
|
338 |
+
file_name = os.path.join(subdir, f"{str(uuid.uuid4())[:5]}.py")
|
339 |
+
with open(file_name, "w") as fd:
|
340 |
+
save_graph_repro(
|
341 |
+
fd,
|
342 |
+
fx_g,
|
343 |
+
args,
|
344 |
+
compiler_name,
|
345 |
+
save_dir=save_dir,
|
346 |
+
command="minifier-query",
|
347 |
+
accuracy=accuracy,
|
348 |
+
tracing_mode=tracing_mode,
|
349 |
+
check_str=check_str,
|
350 |
+
)
|
351 |
+
# with open(file_name, "r") as fd:
|
352 |
+
# print(fd.read())
|
353 |
+
new_env = os.environ.copy()
|
354 |
+
new_env = {**new_env, **env}
|
355 |
+
stdout, stderr = TemporaryFile(), TemporaryFile()
|
356 |
+
|
357 |
+
if use_buck:
|
358 |
+
cmd = BuckTargetWriter(file_name).write(print_msg=False)
|
359 |
+
else:
|
360 |
+
cmd = ["python", file_name]
|
361 |
+
|
362 |
+
p = subprocess.Popen(
|
363 |
+
cmd,
|
364 |
+
cwd=subdir,
|
365 |
+
stdout=stdout,
|
366 |
+
stderr=stderr,
|
367 |
+
env=new_env,
|
368 |
+
)
|
369 |
+
p.wait()
|
370 |
+
|
371 |
+
stdout.seek(0)
|
372 |
+
stderr.seek(0)
|
373 |
+
print(
|
374 |
+
textwrap.indent(stdout.read().decode("utf-8"), prefix=">> "), file=sys.stdout
|
375 |
+
)
|
376 |
+
print(
|
377 |
+
textwrap.indent(stderr.read().decode("utf-8"), prefix=">> "), file=sys.stderr
|
378 |
+
)
|
379 |
+
# print(f"Isolated test failed - {file_name}")
|
380 |
+
return p.returncode != 0
|
381 |
+
|
382 |
+
|
383 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
384 |
+
# MINIFIER TOOLS
|
385 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
386 |
+
|
387 |
+
|
388 |
+
def inductor_fails(fx_g, args, check_str=None):
|
389 |
+
has_cuda = False
|
390 |
+
for arg in args:
|
391 |
+
if isinstance(arg, torch.Tensor) and arg.is_cuda:
|
392 |
+
has_cuda = True
|
393 |
+
break
|
394 |
+
|
395 |
+
def sync():
|
396 |
+
if has_cuda:
|
397 |
+
# Ensures that segfaults are surfaced
|
398 |
+
torch.cuda.synchronize()
|
399 |
+
|
400 |
+
from torch._inductor.compile_fx import compile_fx_inner
|
401 |
+
|
402 |
+
try:
|
403 |
+
result = fx_g(*args)
|
404 |
+
assert isinstance(result, (tuple, list))
|
405 |
+
assert not any(isinstance(x, (tuple, list)) for x in result)
|
406 |
+
except Exception:
|
407 |
+
return False
|
408 |
+
|
409 |
+
sync()
|
410 |
+
|
411 |
+
try:
|
412 |
+
compile_mod = compile_fx_inner(fx_g, args)
|
413 |
+
compile_mod(args)
|
414 |
+
sync()
|
415 |
+
except Exception as e:
|
416 |
+
if check_str is not None and check_str not in repr(e):
|
417 |
+
return False
|
418 |
+
print(repr(e))
|
419 |
+
return True
|
420 |
+
return False
|
421 |
+
|
422 |
+
|
423 |
+
def inductor_accuracy_fails(
|
424 |
+
fx_g, args, check_str=None, *, require_fp64=False, ignore_non_fp=False
|
425 |
+
):
|
426 |
+
from torch._inductor.compile_fx import compile_fx_inner
|
427 |
+
|
428 |
+
return backend_aot_accuracy_fails(
|
429 |
+
fx_g,
|
430 |
+
args,
|
431 |
+
compile_fx_inner,
|
432 |
+
require_fp64=require_fp64,
|
433 |
+
ignore_non_fp=ignore_non_fp,
|
434 |
+
)
|
435 |
+
|
436 |
+
|
437 |
+
backend_aot_accuracy_fails = functools.partial(backend_accuracy_fails, only_fwd=True)
|
438 |
+
|
439 |
+
|
440 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
441 |
+
# REPRO MAIN
|
442 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
443 |
+
|
444 |
+
|
445 |
+
def repro_common(options, mod, load_args):
|
446 |
+
# Invariant for graphs we generate with the repro script
|
447 |
+
assert not any(mod.named_parameters())
|
448 |
+
for n, b in mod.named_buffers():
|
449 |
+
if b.numel() > MAX_CONSTANT_NUMEL_INLINE:
|
450 |
+
log.warning(
|
451 |
+
"Constant %s was not serialized, generated random data instead. "
|
452 |
+
"If you think this is affecting you, please comment on "
|
453 |
+
"https://github.com/pytorch/pytorch/issues/100468",
|
454 |
+
n,
|
455 |
+
)
|
456 |
+
|
457 |
+
if not hasattr(load_args, "_version"):
|
458 |
+
log.warning(
|
459 |
+
"load_args does not have a _version attribute, please file a bug to PyTorch "
|
460 |
+
"and describe how you generate this repro script"
|
461 |
+
)
|
462 |
+
else:
|
463 |
+
if load_args._version > 0:
|
464 |
+
log.warning(
|
465 |
+
"load_args is version %s, but this version of PyTorch only supports "
|
466 |
+
"version 0. We will try to run it anyway but there may be an incompatibility; "
|
467 |
+
"if so, try upgrading your version of PyTorch.",
|
468 |
+
load_args._version,
|
469 |
+
)
|
470 |
+
|
471 |
+
nop_reader = NopInputReader()
|
472 |
+
load_args(nop_reader)
|
473 |
+
|
474 |
+
with tqdm(desc="Loading inputs", total=nop_reader.total) as pbar:
|
475 |
+
input_reader = InputReader(save_dir=options.save_dir, pbar=pbar)
|
476 |
+
load_args(input_reader)
|
477 |
+
args = input_reader.args
|
478 |
+
|
479 |
+
# Turn mod into a GraphModule the slow way
|
480 |
+
# TODO: speed this up
|
481 |
+
mod = make_fx(mod, tracing_mode=options.tracing_mode)(*args)
|
482 |
+
|
483 |
+
torch._inductor.config.generate_intermediate_hooks = True
|
484 |
+
|
485 |
+
return mod, args
|
486 |
+
|
487 |
+
|
488 |
+
ACCURACY_FAILS: Dict[str, Callable[[nn.Module, Any], bool]] = {
|
489 |
+
"": inductor_fails,
|
490 |
+
# This might look inverted but it's not. strict_accuracy means "we will
|
491 |
+
# minify any time we see anything that diverges", whereas accuracy is more
|
492 |
+
# conservative, and will only minify if there is a meaningful fp64
|
493 |
+
# divergence
|
494 |
+
"accuracy": functools.partial(
|
495 |
+
inductor_accuracy_fails, require_fp64=True, ignore_non_fp=True
|
496 |
+
),
|
497 |
+
"strict_accuracy": inductor_accuracy_fails,
|
498 |
+
}
|
499 |
+
|
500 |
+
|
501 |
+
def repro_minifier_query(options, mod, load_args):
|
502 |
+
mod, args = repro_common(options, mod, load_args)
|
503 |
+
fail_fn = functools.partial(
|
504 |
+
ACCURACY_FAILS[options.accuracy], check_str=options.check_str
|
505 |
+
)
|
506 |
+
if fail_fn(mod, args):
|
507 |
+
sys.exit(1)
|
508 |
+
else:
|
509 |
+
sys.exit(0)
|
510 |
+
|
511 |
+
|
512 |
+
def repro_minify(options, mod, load_args):
|
513 |
+
from functorch.compile import minifier
|
514 |
+
|
515 |
+
mod, args = repro_common(options, mod, load_args)
|
516 |
+
compiler_name = "inductor_accuracy" if options.accuracy != "" else "inductor"
|
517 |
+
|
518 |
+
favored_device = 1 if torch.cuda.device_count() >= 2 else 0
|
519 |
+
env_variables = {"CUDA_VISIBLE_DEVICES": str(favored_device)}
|
520 |
+
|
521 |
+
module_fails: Any
|
522 |
+
if options.isolate:
|
523 |
+
module_fails = functools.partial(
|
524 |
+
isolate_fails,
|
525 |
+
env=env_variables,
|
526 |
+
compiler_name=compiler_name,
|
527 |
+
save_dir=options.save_dir,
|
528 |
+
accuracy=options.accuracy,
|
529 |
+
tracing_mode=options.tracing_mode,
|
530 |
+
)
|
531 |
+
else:
|
532 |
+
module_fails = ACCURACY_FAILS[options.accuracy]
|
533 |
+
|
534 |
+
minifier(
|
535 |
+
mod,
|
536 |
+
args,
|
537 |
+
module_fails=functools.partial(module_fails, check_str=options.check_str),
|
538 |
+
dump_state=functools.partial(
|
539 |
+
dump_compiler_graph_state, compiler_name=compiler_name
|
540 |
+
),
|
541 |
+
save_dir=options.save_dir,
|
542 |
+
offload_to_disk=options.offload_to_disk,
|
543 |
+
skip_offload=options.skip_saving_eager_intermediates,
|
544 |
+
skip_sanity=options.skip_sanity,
|
545 |
+
max_granularity=options.max_granularity,
|
546 |
+
)
|
547 |
+
|
548 |
+
|
549 |
+
def repro_analyze(options, mod, load_args):
|
550 |
+
from torch._inductor.compile_fx import compile_fx_inner
|
551 |
+
from torch._inductor.hooks import intermediate_hook
|
552 |
+
|
553 |
+
mod, args = repro_common(options, mod, load_args)
|
554 |
+
|
555 |
+
# TODO: The logic for cloning inputs/models here is intentionally
|
556 |
+
# modeled off of run_fwd_maybe_bwd, but arguably it is better not to
|
557 |
+
# clone inputs (as you are doubling your effective GPU memory usage).
|
558 |
+
# It is certainly faster though! It probably makes sense to let the
|
559 |
+
# user specify the offload strategy.
|
560 |
+
|
561 |
+
with tqdm(desc="Compiling"):
|
562 |
+
compiled = compile_fx_inner(mod, args)
|
563 |
+
total = counters["inductor"]["intermediate_hooks"]
|
564 |
+
|
565 |
+
known_names = set()
|
566 |
+
|
567 |
+
def save_hook(name, val):
|
568 |
+
known_names.add(name)
|
569 |
+
if not options.skip_saving_inductor_intermediates:
|
570 |
+
writer.write_tensor(os.path.join("inductor", name), val)
|
571 |
+
pbar.update(1) # type: ignore[has-type]
|
572 |
+
|
573 |
+
writer = torch.utils._content_store.ContentStoreWriter(
|
574 |
+
options.save_dir, stable_hash=options.stable_hash
|
575 |
+
)
|
576 |
+
reader = torch.utils._content_store.ContentStoreReader(options.save_dir)
|
577 |
+
|
578 |
+
new_args = clone_inputs(args)
|
579 |
+
with intermediate_hook(save_hook), tqdm(
|
580 |
+
desc="Saving inductor intermediates", total=total
|
581 |
+
) as pbar:
|
582 |
+
compiled(new_args)
|
583 |
+
assert not new_args
|
584 |
+
|
585 |
+
def compare_tuples(tuple1, tuple2):
|
586 |
+
diff_indices = [i for i in range(len(tuple1)) if tuple1[i] != tuple2[i]]
|
587 |
+
diff_values = [(tuple1[i], tuple2[i]) for i in diff_indices]
|
588 |
+
|
589 |
+
if not diff_values:
|
590 |
+
return None
|
591 |
+
else:
|
592 |
+
return " and ".join(f"{a} != {b}" for a, b in diff_values)
|
593 |
+
|
594 |
+
def check_hook(name, val):
|
595 |
+
meta = writer.compute_tensor_metadata(val)
|
596 |
+
meta2 = reader.read_tensor_metadata(os.path.join("inductor", name))
|
597 |
+
reason = compare_tuples(meta, meta2)
|
598 |
+
if reason is not None:
|
599 |
+
pbar.write(f"NONDETERMINISTIC INDUCTOR at {name} ({reason})")
|
600 |
+
pbar.update(1)
|
601 |
+
|
602 |
+
if not options.skip_check_deterministic:
|
603 |
+
new_args = clone_inputs(args)
|
604 |
+
with intermediate_hook(check_hook), tqdm(
|
605 |
+
desc="Checking inductor determinism", total=total
|
606 |
+
) as pbar:
|
607 |
+
compiled(new_args)
|
608 |
+
assert not new_args
|
609 |
+
|
610 |
+
class WriterInterp(fx.Interpreter):
|
611 |
+
def __init__(self, mod, subdir):
|
612 |
+
super().__init__(mod)
|
613 |
+
self.subdir = subdir
|
614 |
+
|
615 |
+
def run_node(self, n):
|
616 |
+
r = super().run_node(n)
|
617 |
+
name = n.name
|
618 |
+
if name in known_names:
|
619 |
+
pbar.update(1)
|
620 |
+
writer.write_tensor(os.path.join(self.subdir, name), r)
|
621 |
+
return r
|
622 |
+
|
623 |
+
# NB: the module cast doesn't actually do anything, since there are no
|
624 |
+
# parameters/buffers on the module
|
625 |
+
if not options.skip_saving_float64_intermediates:
|
626 |
+
new_mod, new_args = cast_to_fp64(copy.deepcopy(mod), clone_inputs(args))
|
627 |
+
with tqdm(desc="Saving float64 intermediates", total=total) as pbar:
|
628 |
+
WriterInterp(new_mod, "float64").boxed_run(new_args)
|
629 |
+
assert not new_args
|
630 |
+
|
631 |
+
class ExactReaderInterp(fx.Interpreter):
|
632 |
+
def run_node(self, n):
|
633 |
+
r = super().run_node(n)
|
634 |
+
name = n.name
|
635 |
+
if name in known_names:
|
636 |
+
meta = writer.compute_tensor_metadata(r)
|
637 |
+
meta2 = reader.read_tensor_metadata(os.path.join("float64", name))
|
638 |
+
reason = compare_tuples(meta, meta2)
|
639 |
+
if reason is not None:
|
640 |
+
pbar.write(f"NONDETERMINISTIC FLOAT64 at {name} ({reason})")
|
641 |
+
pbar.update(1)
|
642 |
+
return r
|
643 |
+
|
644 |
+
# TODO: check eager determinism
|
645 |
+
|
646 |
+
if not options.skip_check_deterministic:
|
647 |
+
new_mod, new_args = cast_to_fp64(copy.deepcopy(mod), clone_inputs(args))
|
648 |
+
with tqdm(desc="Checking float64 determinism", total=total) as pbar:
|
649 |
+
ExactReaderInterp(new_mod).boxed_run(new_args)
|
650 |
+
assert not new_args
|
651 |
+
|
652 |
+
# Now that we've saved everything, interp through the eager graph
|
653 |
+
# and do comparisons
|
654 |
+
class ReaderInterp(fx.Interpreter):
|
655 |
+
def run_node(self, n):
|
656 |
+
r = super().run_node(n)
|
657 |
+
name = n.name
|
658 |
+
if name in known_names:
|
659 |
+
inductor = reader.read_tensor(os.path.join("inductor", name))
|
660 |
+
float64 = reader.read_tensor(os.path.join("float64", name))
|
661 |
+
logged = False
|
662 |
+
|
663 |
+
def log_error(msg, *args):
|
664 |
+
nonlocal logged
|
665 |
+
logged = True
|
666 |
+
pbar.write(f"DIVERGED at {name}: {msg % args}")
|
667 |
+
|
668 |
+
if not same(
|
669 |
+
r,
|
670 |
+
inductor,
|
671 |
+
float64,
|
672 |
+
tol=torch._dynamo.config.repro_tolerance,
|
673 |
+
equal_nan=True,
|
674 |
+
log_error=log_error,
|
675 |
+
):
|
676 |
+
assert logged
|
677 |
+
pbar.update(1)
|
678 |
+
return r
|
679 |
+
|
680 |
+
with tqdm(desc="Checking divergence", total=total) as pbar:
|
681 |
+
ReaderInterp(mod).boxed_run(args)
|
682 |
+
assert not args
|
683 |
+
|
684 |
+
|
685 |
+
def repro_run(options, mod, load_args):
|
686 |
+
from torch._inductor.compile_fx import compile_fx_inner
|
687 |
+
|
688 |
+
mod, args = repro_common(options, mod, load_args)
|
689 |
+
|
690 |
+
from torch.cuda import synchronize
|
691 |
+
|
692 |
+
compiled = compile_fx_inner(mod, args)
|
693 |
+
|
694 |
+
if options.accuracy != "":
|
695 |
+
# We don't really respect --accuracy vs --strict-accuracy here, it
|
696 |
+
# seems counterintuitive
|
697 |
+
if not same_two_models(mod, compiled, args, only_fwd=True):
|
698 |
+
raise AccuracyError("Bad accuracy detected")
|
699 |
+
else:
|
700 |
+
need_sync = False
|
701 |
+
for arg in args:
|
702 |
+
if isinstance(arg, torch.Tensor) and arg.is_cuda:
|
703 |
+
need_sync = True
|
704 |
+
break
|
705 |
+
ref = compiled(list(args))
|
706 |
+
if need_sync:
|
707 |
+
synchronize() # ensure segfaults are surfaced
|
708 |
+
return lambda: compiled(list(args))
|
709 |
+
|
710 |
+
|
711 |
+
# TODO: lazily load the inputs or something, rather than cloning them
|
712 |
+
def run_repro(
|
713 |
+
mod,
|
714 |
+
load_args,
|
715 |
+
*,
|
716 |
+
command="run",
|
717 |
+
accuracy: Union[bool, str] = "",
|
718 |
+
save_dir=None,
|
719 |
+
tracing_mode=None,
|
720 |
+
patch_code=None,
|
721 |
+
check_str=None,
|
722 |
+
**kwargs,
|
723 |
+
):
|
724 |
+
for k in kwargs:
|
725 |
+
log.warning(
|
726 |
+
"Unrecognized kwarg %s; perhaps this repro was made on a newer version of PyTorch",
|
727 |
+
k,
|
728 |
+
)
|
729 |
+
|
730 |
+
if accuracy is True:
|
731 |
+
accuracy = "accuracy"
|
732 |
+
elif accuracy is False:
|
733 |
+
accuracy = ""
|
734 |
+
|
735 |
+
if patch_code is not None:
|
736 |
+
log.warning(
|
737 |
+
"patch_code no longer works on this version of PyTorch, silently ignoring"
|
738 |
+
)
|
739 |
+
|
740 |
+
parser = argparse.ArgumentParser(
|
741 |
+
description=f"""\
|
742 |
+
An after_aot repro script, typically triggering a bug in PyTorch Inductor.
|
743 |
+
When run with no arguments, this script defaults to running '{command}'.
|
744 |
+
Extra flags may be available; to find out more, try '{command} --help'.
|
745 |
+
There are also alternate subcommands available, see below.
|
746 |
+
|
747 |
+
default settings on this script:
|
748 |
+
{accuracy=}
|
749 |
+
{tracing_mode=}
|
750 |
+
{save_dir=}
|
751 |
+
{check_str=}
|
752 |
+
""",
|
753 |
+
formatter_class=argparse.RawTextHelpFormatter,
|
754 |
+
)
|
755 |
+
|
756 |
+
def common_flags(parser):
|
757 |
+
accuracy_group = parser.add_mutually_exclusive_group()
|
758 |
+
accuracy_group.add_argument(
|
759 |
+
"--no-accuracy",
|
760 |
+
dest="accuracy",
|
761 |
+
action="store_const",
|
762 |
+
const="",
|
763 |
+
default=accuracy,
|
764 |
+
help="do not test accuracy, just run the module and see if it errors",
|
765 |
+
)
|
766 |
+
accuracy_group.add_argument(
|
767 |
+
"--accuracy",
|
768 |
+
action="store_const",
|
769 |
+
const="accuracy",
|
770 |
+
default=accuracy,
|
771 |
+
help="""\
|
772 |
+
test if the RMSE between the compiled module and the fp64 reference is greater
|
773 |
+
than eager and the fp64 reference. This is usually more reliable than the
|
774 |
+
standard allclose test, as we expect numeric differences from compiling, often
|
775 |
+
improving accuracy over eager. RMSE test allows for compiled module to
|
776 |
+
diverge greatly from eager, as long as this divergence moves it closer to the
|
777 |
+
'true' mathematical value of the network. Caveats: (1) double precision can
|
778 |
+
still suffer from rounding error, so it is not a perfect reference (see for
|
779 |
+
example 'Herbie: Automatically Improving Floating Point Accuracy') for
|
780 |
+
approaches that detect the necessary working precision and compute it in
|
781 |
+
arbitrary precision floating point; unfortunately, this is not practical for
|
782 |
+
tensor computation; (2) if there are not enough samples in the output being
|
783 |
+
compared, we may get unlucky and have an unlucky greater RMSE than eager; this
|
784 |
+
could be overcome by applying a more rigorous statistical test at some
|
785 |
+
p-value, which we leave for future work.
|
786 |
+
""",
|
787 |
+
)
|
788 |
+
accuracy_group.add_argument(
|
789 |
+
"--strict-accuracy",
|
790 |
+
dest="accuracy",
|
791 |
+
action="store_const",
|
792 |
+
const="strict_accuracy",
|
793 |
+
default=accuracy,
|
794 |
+
help="""\
|
795 |
+
by default, when doing accuracy minification we will reject reductions which
|
796 |
+
change the divergence from a floating point divergence to a integral/boolean
|
797 |
+
divergence. This is because some operations like ReLU involve temporarily
|
798 |
+
sharp boundaries that smooth out again afterwards; without requiring
|
799 |
+
divergence on floating point, the minifier will often fixate on divergent
|
800 |
+
boolean tensor even though this is not the true source of the divergence.
|
801 |
+
However, rejecting these reductions makes it more difficult for the minifier
|
802 |
+
to make process. Using this option will let the minifier progress for ALL
|
803 |
+
divergences--you just might not end up with a useful repro in the end.""",
|
804 |
+
)
|
805 |
+
|
806 |
+
parser.add_argument(
|
807 |
+
"--save-dir",
|
808 |
+
type=str,
|
809 |
+
default=save_dir,
|
810 |
+
metavar="DIR",
|
811 |
+
help="directory where saved inputs live",
|
812 |
+
)
|
813 |
+
parser.add_argument(
|
814 |
+
"--no-save-dir",
|
815 |
+
dest="save_dir",
|
816 |
+
action="store_const",
|
817 |
+
const=None,
|
818 |
+
help="don't use any directory for saved inputs",
|
819 |
+
)
|
820 |
+
parser.add_argument(
|
821 |
+
"--tracing-mode",
|
822 |
+
type=str,
|
823 |
+
metavar="{real,fake,symbolic}",
|
824 |
+
default=tracing_mode,
|
825 |
+
help="how to trace the repro module into a GraphModule with metadata",
|
826 |
+
)
|
827 |
+
|
828 |
+
subparsers = parser.add_subparsers(
|
829 |
+
dest="command", metavar="{run,minify,analyze}", required=True
|
830 |
+
)
|
831 |
+
|
832 |
+
parser_run = subparsers.add_parser(
|
833 |
+
"run",
|
834 |
+
help="just run the repro",
|
835 |
+
)
|
836 |
+
common_flags(parser_run)
|
837 |
+
|
838 |
+
parser_minify = subparsers.add_parser(
|
839 |
+
"minify", help="run the minifier on the repro"
|
840 |
+
)
|
841 |
+
common_flags(parser_minify)
|
842 |
+
parser_minify_isolate = parser_minify.add_mutually_exclusive_group()
|
843 |
+
parser_minify_isolate.add_argument(
|
844 |
+
"--isolate",
|
845 |
+
action="store_true",
|
846 |
+
default=True,
|
847 |
+
help="run in separate processes to avoid interference (default)",
|
848 |
+
)
|
849 |
+
parser_minify_isolate.add_argument(
|
850 |
+
"--no-isolate",
|
851 |
+
dest="isolate",
|
852 |
+
action="store_false",
|
853 |
+
help="speed up by running all compilation in same process",
|
854 |
+
)
|
855 |
+
parser_minify.add_argument(
|
856 |
+
"--skip-saving-eager-intermediates",
|
857 |
+
action="store_true",
|
858 |
+
help="skip saving eager intermediates on --minify",
|
859 |
+
)
|
860 |
+
# TODO: make this an option for --analyze too
|
861 |
+
parser_minify.add_argument(
|
862 |
+
"--offload-to-disk",
|
863 |
+
action="store_true",
|
864 |
+
help="during minification, offload delta debugging intermediates to disk. Use if you're OOMing",
|
865 |
+
)
|
866 |
+
parser_minify.add_argument(
|
867 |
+
"--skip-sanity",
|
868 |
+
action="store_true",
|
869 |
+
help="skip sanity check at beginning of minification on original graph",
|
870 |
+
)
|
871 |
+
parser_minify.add_argument(
|
872 |
+
"--max-granularity",
|
873 |
+
type=int,
|
874 |
+
default=None,
|
875 |
+
help="start at this granularity and work down; must be power of 2",
|
876 |
+
)
|
877 |
+
parser_minify.add_argument(
|
878 |
+
"--check-str",
|
879 |
+
type=str,
|
880 |
+
default=check_str,
|
881 |
+
help="require minified program to fail with error containing this string",
|
882 |
+
)
|
883 |
+
|
884 |
+
parser_analyze = subparsers.add_parser(
|
885 |
+
"analyze", help="run the accuracy analyzer on the repro"
|
886 |
+
)
|
887 |
+
common_flags(parser_analyze)
|
888 |
+
parser_analyze.add_argument(
|
889 |
+
"--skip-saving-inductor-intermediates",
|
890 |
+
action="store_true",
|
891 |
+
help="skip saving inductor intermediates on --analyze",
|
892 |
+
)
|
893 |
+
parser_analyze.add_argument(
|
894 |
+
"--skip-saving-float64-intermediates",
|
895 |
+
action="store_true",
|
896 |
+
help="skip saving float64 intermediates",
|
897 |
+
)
|
898 |
+
parser_analyze.add_argument(
|
899 |
+
"--skip-check-deterministic",
|
900 |
+
action="store_true",
|
901 |
+
help="skip checking that the network is deterministic",
|
902 |
+
)
|
903 |
+
parser_analyze.add_argument(
|
904 |
+
"--stable-hash",
|
905 |
+
action="store_true",
|
906 |
+
help="use SHA-1 checksum instead of fast (but possibly unsound) hash",
|
907 |
+
)
|
908 |
+
|
909 |
+
# Run the repro in the context of minification, inverting exit code meaning
|
910 |
+
parser_minifier_query = subparsers.add_parser(
|
911 |
+
"minifier-query",
|
912 |
+
)
|
913 |
+
common_flags(parser_minifier_query)
|
914 |
+
parser_minifier_query.add_argument(
|
915 |
+
"--check-str",
|
916 |
+
type=str,
|
917 |
+
default=check_str,
|
918 |
+
help="require minified program to fail with error containing this string",
|
919 |
+
)
|
920 |
+
|
921 |
+
args = None
|
922 |
+
if len(sys.argv) <= 1:
|
923 |
+
args = [command, *sys.argv[1:]]
|
924 |
+
|
925 |
+
options = parser.parse_args(args)
|
926 |
+
COMMAND_FNS = {
|
927 |
+
"minify": repro_minify,
|
928 |
+
"analyze": repro_analyze,
|
929 |
+
"minifier-query": repro_minifier_query,
|
930 |
+
"run": repro_run,
|
931 |
+
}
|
932 |
+
return COMMAND_FNS[options.command](options, mod, load_args)
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/repro/after_dynamo.py
ADDED
@@ -0,0 +1,566 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import copy
|
3 |
+
import functools
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import shutil
|
7 |
+
import sys
|
8 |
+
import textwrap
|
9 |
+
from importlib import import_module
|
10 |
+
from typing import Union
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.fx as fx
|
14 |
+
|
15 |
+
from torch._dynamo.debug_utils import (
|
16 |
+
AccuracyError,
|
17 |
+
backend_accuracy_fails,
|
18 |
+
BUCK_CMD_PREFIX,
|
19 |
+
BuckTargetWriter,
|
20 |
+
extra_imports,
|
21 |
+
generate_config_string,
|
22 |
+
helper_for_dump_minify,
|
23 |
+
InputReader,
|
24 |
+
InputWriter,
|
25 |
+
minifier_dir,
|
26 |
+
NNModuleToString,
|
27 |
+
NopInputReader,
|
28 |
+
run_fwd_maybe_bwd,
|
29 |
+
same_two_models,
|
30 |
+
)
|
31 |
+
from torch.fx.experimental.symbolic_shapes import fx_placeholder_targets
|
32 |
+
from torch.hub import tqdm
|
33 |
+
|
34 |
+
from .. import config
|
35 |
+
from ..backends.registry import lookup_backend, register_debug_backend
|
36 |
+
from ..debug_utils import clone_inputs_retaining_gradness
|
37 |
+
|
38 |
+
log = logging.getLogger(__name__)
|
39 |
+
|
40 |
+
|
41 |
+
inductor_config = import_module("torch._inductor.config")
|
42 |
+
use_buck = inductor_config.is_fbcode()
|
43 |
+
|
44 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
45 |
+
# MAIN ENTRY POINT
|
46 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
47 |
+
|
48 |
+
|
49 |
+
def wrap_backend_debug(unconfigured_compiler_fn, compiler_name: str):
|
50 |
+
"""
|
51 |
+
A minifier decorator that wraps the TorchDynamo produced Fx graph modules.
|
52 |
+
As opposed to wrap_compiler_debug, this wrapper intercepts at the
|
53 |
+
TorchDynamo produced Fx Graph Module. This makes it backend-agnostic to some
|
54 |
+
level, e.g., it is useful for minifying issues related to Aot Autograd
|
55 |
+
tracing. If an error is found, we minify and save the minified repro in
|
56 |
+
repro.tar.gz.
|
57 |
+
"""
|
58 |
+
|
59 |
+
@functools.wraps(unconfigured_compiler_fn)
|
60 |
+
def debug_wrapper(gm, example_inputs, **kwargs):
|
61 |
+
compiler_fn = functools.partial(unconfigured_compiler_fn, **kwargs)
|
62 |
+
assert config.repro_after in ("dynamo", "aot", None)
|
63 |
+
|
64 |
+
if config.repro_after == "dynamo":
|
65 |
+
|
66 |
+
def add_paths(exc):
|
67 |
+
exc.minifier_path = os.path.join(minifier_dir(), "minifier_launcher.py")
|
68 |
+
if use_buck:
|
69 |
+
exc.buck_command = " ".join(
|
70 |
+
BUCK_CMD_PREFIX
|
71 |
+
+ [BuckTargetWriter(exc.minifier_path).cmd_line_path]
|
72 |
+
)
|
73 |
+
|
74 |
+
if config.repro_level == 3:
|
75 |
+
dump_to_minify_after_dynamo(gm, example_inputs, compiler_name)
|
76 |
+
|
77 |
+
# Check for either accuracy (level 4) or other type of failures.
|
78 |
+
if config.repro_level == 4:
|
79 |
+
# Check Accuracy
|
80 |
+
compiled_gm = compiler_fn(copy.deepcopy(gm), example_inputs)
|
81 |
+
if backend_accuracy_fails(gm, example_inputs, compiler_fn):
|
82 |
+
log.warning(
|
83 |
+
"Accuracy failed for the TorchDynamo produced graph. Creating script to minify the error."
|
84 |
+
)
|
85 |
+
dump_to_minify_after_dynamo(
|
86 |
+
fx.GraphModule(gm, copy.deepcopy(gm.graph)),
|
87 |
+
example_inputs,
|
88 |
+
compiler_name,
|
89 |
+
)
|
90 |
+
exc = AccuracyError("Bad accuracy detected.")
|
91 |
+
add_paths(exc)
|
92 |
+
raise exc
|
93 |
+
else:
|
94 |
+
try:
|
95 |
+
compiled_gm = compiler_fn(copy.deepcopy(gm), example_inputs)
|
96 |
+
run_fwd_maybe_bwd(compiled_gm, example_inputs)
|
97 |
+
except Exception as exc:
|
98 |
+
log.warning(
|
99 |
+
"Compiled Fx GraphModule failed. Creating script to minify the error."
|
100 |
+
)
|
101 |
+
if config.repro_level == 1:
|
102 |
+
dump_state_fn = functools.partial(
|
103 |
+
dump_backend_state, compiler_name=compiler_name
|
104 |
+
)
|
105 |
+
dump_state_fn(
|
106 |
+
fx.GraphModule(gm, copy.deepcopy(gm.graph)), example_inputs
|
107 |
+
)
|
108 |
+
elif config.repro_level == 2:
|
109 |
+
dump_to_minify_after_dynamo(
|
110 |
+
fx.GraphModule(gm, copy.deepcopy(gm.graph)),
|
111 |
+
example_inputs,
|
112 |
+
compiler_name,
|
113 |
+
)
|
114 |
+
add_paths(exc)
|
115 |
+
raise
|
116 |
+
else:
|
117 |
+
compiled_gm = compiler_fn(gm, example_inputs)
|
118 |
+
|
119 |
+
return compiled_gm
|
120 |
+
|
121 |
+
debug_wrapper._torchdynamo_orig_callable = unconfigured_compiler_fn # type: ignore[attr-defined]
|
122 |
+
if hasattr(unconfigured_compiler_fn, "compiler_name"):
|
123 |
+
debug_wrapper.__name__ = unconfigured_compiler_fn.compiler_name
|
124 |
+
if hasattr(unconfigured_compiler_fn, "get_compiler_config"):
|
125 |
+
debug_wrapper.get_compiler_config = unconfigured_compiler_fn.get_compiler_config # type: ignore[attr-defined]
|
126 |
+
return debug_wrapper
|
127 |
+
|
128 |
+
|
129 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
130 |
+
# REPRO DUMPERS
|
131 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
132 |
+
|
133 |
+
|
134 |
+
def generate_dynamo_fx_repro_string(
|
135 |
+
gm,
|
136 |
+
args,
|
137 |
+
compiler_name,
|
138 |
+
check_accuracy=False,
|
139 |
+
*,
|
140 |
+
stable_output=False,
|
141 |
+
save_dir=None,
|
142 |
+
command="run",
|
143 |
+
):
|
144 |
+
"""
|
145 |
+
Generate a repro string for backend-agnostic minified version.
|
146 |
+
"""
|
147 |
+
|
148 |
+
model_str = NNModuleToString.convert(gm)
|
149 |
+
|
150 |
+
# TODO: Figure out why torch.compile'd hash isn't work on this codepath
|
151 |
+
writer = InputWriter(save_dir, stable_hash=True)
|
152 |
+
for placeholder, arg in zip(fx_placeholder_targets(gm), args):
|
153 |
+
if isinstance(arg, (int, torch.SymInt)):
|
154 |
+
writer.symint(placeholder, arg)
|
155 |
+
elif isinstance(arg, torch.Tensor):
|
156 |
+
# TODO: improve these names with FQN
|
157 |
+
writer.tensor(placeholder, arg)
|
158 |
+
else:
|
159 |
+
raise TypeError(f"arg is neither SymInt/int nor torch.Tensor, {arg}")
|
160 |
+
load_args = "\n".join(writer.lines())
|
161 |
+
|
162 |
+
return textwrap.dedent(
|
163 |
+
f"""
|
164 |
+
from math import inf
|
165 |
+
import torch
|
166 |
+
from torch import tensor, device
|
167 |
+
import torch.fx as fx
|
168 |
+
import torch._dynamo
|
169 |
+
from torch._dynamo.testing import rand_strided
|
170 |
+
from torch._dynamo.debug_utils import run_fwd_maybe_bwd
|
171 |
+
|
172 |
+
{generate_config_string(stable_output=stable_output)}
|
173 |
+
|
174 |
+
{extra_imports}
|
175 |
+
|
176 |
+
{model_str}
|
177 |
+
mod = Repro()
|
178 |
+
|
179 |
+
{load_args}
|
180 |
+
|
181 |
+
if __name__ == '__main__':
|
182 |
+
from torch._dynamo.repro.after_dynamo import run_repro
|
183 |
+
run_repro(mod, load_args, accuracy={check_accuracy!r}, command={command!r},
|
184 |
+
save_dir={save_dir!r}, autocast={torch.is_autocast_enabled()!r}, backend={compiler_name!r})
|
185 |
+
"""
|
186 |
+
)
|
187 |
+
|
188 |
+
|
189 |
+
def dump_backend_repro_as_file(gm, args, compiler_name, check_accuracy=False):
|
190 |
+
"""
|
191 |
+
Saves the repro to a repro.py file
|
192 |
+
"""
|
193 |
+
curdir = os.getcwd()
|
194 |
+
subdir = os.path.join(os.getcwd(), "checkpoints")
|
195 |
+
if not os.path.exists(subdir):
|
196 |
+
os.makedirs(subdir, exist_ok=True)
|
197 |
+
file_name = os.path.join(subdir, f"minified_{len(gm.graph.nodes)}_nodes.py")
|
198 |
+
log.warning(
|
199 |
+
"Writing checkpoint with %s nodes to %s", len(gm.graph.nodes), file_name
|
200 |
+
)
|
201 |
+
|
202 |
+
with open(file_name, "w") as fd:
|
203 |
+
fd.write(
|
204 |
+
generate_dynamo_fx_repro_string(
|
205 |
+
gm, args, compiler_name, check_accuracy, save_dir=subdir
|
206 |
+
)
|
207 |
+
)
|
208 |
+
latest_repro = os.path.join(curdir, "repro.py")
|
209 |
+
log.warning("Copying %s to %s for convenience", file_name, latest_repro)
|
210 |
+
|
211 |
+
if use_buck:
|
212 |
+
BuckTargetWriter(latest_repro).write()
|
213 |
+
|
214 |
+
shutil.copyfile(file_name, latest_repro)
|
215 |
+
|
216 |
+
|
217 |
+
def dump_backend_state(gm, args, compiler_name, check_accuracy=False):
|
218 |
+
"""
|
219 |
+
Dumps the dynamo graph to repro the issue.
|
220 |
+
1) It tries to convert Fx GraphModule to a string. If we can, it writes to a
|
221 |
+
repro.py file.
|
222 |
+
2) If we can't convert Fx GraphModule to a string, we use to_folder to save
|
223 |
+
the module and save a tar file.
|
224 |
+
"""
|
225 |
+
assert NNModuleToString.can_convert_to_string(gm)
|
226 |
+
return dump_backend_repro_as_file(gm, args, compiler_name, check_accuracy)
|
227 |
+
# return dump_backend_repro_as_tarfile(gm, args, compiler_name)
|
228 |
+
|
229 |
+
|
230 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
231 |
+
# MINIFIER DUMPER
|
232 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
233 |
+
|
234 |
+
|
235 |
+
def dump_to_minify_after_dynamo(gm, args, compiler_name):
|
236 |
+
# TODO: factor this out
|
237 |
+
subdir = os.path.join(minifier_dir(), "checkpoints")
|
238 |
+
if not os.path.exists(subdir):
|
239 |
+
os.makedirs(subdir, exist_ok=True)
|
240 |
+
helper_for_dump_minify(
|
241 |
+
generate_dynamo_fx_repro_string(
|
242 |
+
gm,
|
243 |
+
args,
|
244 |
+
compiler_name,
|
245 |
+
check_accuracy=config.repro_level == 4,
|
246 |
+
save_dir=subdir,
|
247 |
+
command="minify",
|
248 |
+
)
|
249 |
+
)
|
250 |
+
|
251 |
+
|
252 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
253 |
+
# MINIFIER BACKENDS
|
254 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
255 |
+
|
256 |
+
|
257 |
+
@register_debug_backend
|
258 |
+
def dynamo_minifier_backend(gm, example_inputs, compiler_name):
|
259 |
+
from functorch.compile import minifier
|
260 |
+
|
261 |
+
compiler_fn = lookup_backend(compiler_name)
|
262 |
+
|
263 |
+
# TODO: It's inconsistent to pass SymInt inputs but REAL tensors.
|
264 |
+
# We should pass ints and look at the GraphModule placeholders
|
265 |
+
# to resolve them to SymInt (if necessary)
|
266 |
+
example_inputs = [
|
267 |
+
i.node.hint if isinstance(i, torch.SymInt) else i for i in example_inputs
|
268 |
+
]
|
269 |
+
|
270 |
+
try:
|
271 |
+
compiled_gm = compiler_fn(gm, example_inputs)
|
272 |
+
run_fwd_maybe_bwd(compiled_gm, example_inputs)
|
273 |
+
raise ValueError("No issue was detected")
|
274 |
+
except Exception as exc:
|
275 |
+
orig_failure = str(exc)
|
276 |
+
log.warning(
|
277 |
+
"Compiled Fx GraphModule failed. Creating script to minify the error."
|
278 |
+
)
|
279 |
+
dump_state_fn = functools.partial(
|
280 |
+
dump_backend_state, compiler_name=compiler_name
|
281 |
+
)
|
282 |
+
dump_state_fn(fx.GraphModule(gm, copy.deepcopy(gm.graph)), example_inputs)
|
283 |
+
fails_fn = functools.partial(
|
284 |
+
backend_fails,
|
285 |
+
compiler_fn=compiler_fn,
|
286 |
+
orig_failure=orig_failure,
|
287 |
+
)
|
288 |
+
minifier(
|
289 |
+
gm,
|
290 |
+
example_inputs,
|
291 |
+
module_fails=fails_fn,
|
292 |
+
dump_state=dump_state_fn,
|
293 |
+
)
|
294 |
+
return gm
|
295 |
+
|
296 |
+
|
297 |
+
@register_debug_backend
|
298 |
+
def dynamo_accuracy_minifier_backend(gm, example_inputs, compiler_name):
|
299 |
+
from functorch.compile import minifier
|
300 |
+
|
301 |
+
compiler_fn = lookup_backend(compiler_name)
|
302 |
+
|
303 |
+
# Set the eval mode to remove randomness.
|
304 |
+
gm.eval()
|
305 |
+
|
306 |
+
# Check Accuracy
|
307 |
+
if backend_accuracy_fails(
|
308 |
+
gm, example_inputs, compiler_fn, only_fwd=config.repro_forward_only
|
309 |
+
):
|
310 |
+
log.warning("Accuracy failed for the TorchDynamo produced graph")
|
311 |
+
dump_state_fn = functools.partial(
|
312 |
+
dump_backend_state, compiler_name=compiler_name, check_accuracy=True
|
313 |
+
)
|
314 |
+
fails_fn = functools.partial(
|
315 |
+
backend_accuracy_fails,
|
316 |
+
compiler_fn=compiler_fn,
|
317 |
+
only_fwd=config.repro_forward_only,
|
318 |
+
)
|
319 |
+
dump_state_fn(fx.GraphModule(gm, copy.deepcopy(gm.graph)), example_inputs)
|
320 |
+
minifier(
|
321 |
+
gm,
|
322 |
+
example_inputs,
|
323 |
+
module_fails=fails_fn,
|
324 |
+
dump_state=dump_state_fn,
|
325 |
+
)
|
326 |
+
else:
|
327 |
+
log.error("Input graph does not fail accuracy testing")
|
328 |
+
return gm
|
329 |
+
|
330 |
+
|
331 |
+
def backend_fails(gm, example_inputs, compiler_fn, orig_failure):
|
332 |
+
"""
|
333 |
+
Minifier uses this function to identify if the minified graph module fails
|
334 |
+
with the same error.
|
335 |
+
|
336 |
+
One caveat is that minifier can potentially go into a wrong direction when
|
337 |
+
the resulting graph module fails for a different reason. To avoid this, we
|
338 |
+
save the string for the original exception and check similarity between new
|
339 |
+
and old exception. They can be somewhat different in some cases, when the
|
340 |
+
exception string depends on the failing node information. So, we have a
|
341 |
+
loose similarity metric to guide the minifier path.
|
342 |
+
"""
|
343 |
+
from difflib import SequenceMatcher
|
344 |
+
|
345 |
+
try:
|
346 |
+
# Run the original gm to check eager validity
|
347 |
+
run_fwd_maybe_bwd(gm, clone_inputs_retaining_gradness(example_inputs))
|
348 |
+
compiled_gm = compiler_fn(gm, example_inputs)
|
349 |
+
run_fwd_maybe_bwd(compiled_gm, clone_inputs_retaining_gradness(example_inputs))
|
350 |
+
return False
|
351 |
+
except Exception as e:
|
352 |
+
new_failure = str(e)
|
353 |
+
if SequenceMatcher(None, orig_failure, new_failure).ratio() > 0.5:
|
354 |
+
return True
|
355 |
+
return False
|
356 |
+
|
357 |
+
|
358 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
359 |
+
# REPRO MAIN
|
360 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
361 |
+
|
362 |
+
|
363 |
+
def run_load_args(options, mod, load_args):
|
364 |
+
if not hasattr(load_args, "_version"):
|
365 |
+
log.warning(
|
366 |
+
"load_args does not have a _version attribute, please file a bug to PyTorch "
|
367 |
+
"and describe how you generate this repro script"
|
368 |
+
)
|
369 |
+
else:
|
370 |
+
if load_args._version > 0:
|
371 |
+
log.warning(
|
372 |
+
"load_args is version %s, but this version of PyTorch only supports "
|
373 |
+
"version 0. We will try to run it anyway but there may be an incompatibility; "
|
374 |
+
"if so, try upgrading your version of PyTorch.",
|
375 |
+
load_args._version,
|
376 |
+
)
|
377 |
+
|
378 |
+
nop_reader = NopInputReader()
|
379 |
+
load_args(nop_reader)
|
380 |
+
|
381 |
+
with tqdm(desc="Loading inputs", total=nop_reader.total) as pbar:
|
382 |
+
input_reader = InputReader(save_dir=options.save_dir, pbar=pbar)
|
383 |
+
load_args(input_reader)
|
384 |
+
args = input_reader.args
|
385 |
+
|
386 |
+
return args
|
387 |
+
|
388 |
+
|
389 |
+
def repro_minify(options, mod, load_args):
|
390 |
+
args = run_load_args(options, mod, load_args)
|
391 |
+
|
392 |
+
# Setup debug minifier compiler
|
393 |
+
if not options.accuracy:
|
394 |
+
compiler_fn = lookup_backend("dynamo_minifier_backend")
|
395 |
+
else:
|
396 |
+
compiler_fn = lookup_backend("dynamo_accuracy_minifier_backend")
|
397 |
+
|
398 |
+
if options.backend is None:
|
399 |
+
raise RuntimeError(
|
400 |
+
"Compiler name is None - this likely means that a custom compiler "
|
401 |
+
"was called by torchdynamo. Please remove this error, import your "
|
402 |
+
"custom compiler function, and replace the backend=None "
|
403 |
+
"line in run_repro to backend=<my_imported_custom_function>"
|
404 |
+
)
|
405 |
+
|
406 |
+
dynamo_minifier_backend = functools.partial(
|
407 |
+
compiler_fn,
|
408 |
+
compiler_name=options.backend,
|
409 |
+
)
|
410 |
+
opt_mod = torch._dynamo.optimize(dynamo_minifier_backend)(mod)
|
411 |
+
|
412 |
+
with torch.cuda.amp.autocast(enabled=options.autocast):
|
413 |
+
opt_mod(*args)
|
414 |
+
|
415 |
+
|
416 |
+
def repro_run(options, mod, load_args):
|
417 |
+
opt_mod = torch._dynamo.optimize(options.backend)(mod)
|
418 |
+
|
419 |
+
if options.accuracy != "":
|
420 |
+
mod.eval()
|
421 |
+
opt_mod.eval()
|
422 |
+
|
423 |
+
with torch.cuda.amp.autocast(enabled=options.autocast):
|
424 |
+
# TODO: disable clone
|
425 |
+
args = run_load_args(options, mod, load_args)
|
426 |
+
assert same_two_models(mod, mod, args), "Eager itself failed"
|
427 |
+
if not same_two_models(mod, opt_mod, args):
|
428 |
+
raise AccuracyError("Dynamo failed")
|
429 |
+
else:
|
430 |
+
with torch.cuda.amp.autocast(enabled=options.autocast):
|
431 |
+
args = run_load_args(options, mod, load_args)
|
432 |
+
ref = run_fwd_maybe_bwd(
|
433 |
+
mod, args, only_fwd=options.only_fwd, disable_clone=True
|
434 |
+
)
|
435 |
+
del args
|
436 |
+
|
437 |
+
args = run_load_args(options, mod, load_args)
|
438 |
+
res = run_fwd_maybe_bwd(
|
439 |
+
opt_mod, args, only_fwd=options.only_fwd, disable_clone=True
|
440 |
+
)
|
441 |
+
|
442 |
+
|
443 |
+
def run_repro(
|
444 |
+
mod,
|
445 |
+
load_args,
|
446 |
+
*,
|
447 |
+
command="run",
|
448 |
+
accuracy: Union[bool, str] = "",
|
449 |
+
save_dir=None,
|
450 |
+
autocast=False,
|
451 |
+
backend="inductor",
|
452 |
+
**kwargs,
|
453 |
+
):
|
454 |
+
for k in kwargs:
|
455 |
+
log.warning(
|
456 |
+
"Unrecognized kwarg %s; perhaps this repro was made on a newer version of PyTorch",
|
457 |
+
k,
|
458 |
+
)
|
459 |
+
|
460 |
+
if accuracy is True:
|
461 |
+
accuracy = "accuracy"
|
462 |
+
elif accuracy is False:
|
463 |
+
accuracy = ""
|
464 |
+
|
465 |
+
parser = argparse.ArgumentParser(
|
466 |
+
description=f"""\
|
467 |
+
An after_dynamo repro script, typically triggering a bug in Dynamo or
|
468 |
+
AOTAutograd. When run with no arguments, this script defaults to running
|
469 |
+
'{command}'. Extra flags may be available; to find out more, try '{command}
|
470 |
+
--help'. There are also alternate subcommands available, see below.
|
471 |
+
|
472 |
+
default settings on this script:
|
473 |
+
{accuracy=}
|
474 |
+
{save_dir=}
|
475 |
+
""",
|
476 |
+
formatter_class=argparse.RawTextHelpFormatter,
|
477 |
+
)
|
478 |
+
|
479 |
+
def common_flags(parser):
|
480 |
+
accuracy_group = parser.add_mutually_exclusive_group()
|
481 |
+
accuracy_group.add_argument(
|
482 |
+
"--no-accuracy",
|
483 |
+
dest="accuracy",
|
484 |
+
action="store_const",
|
485 |
+
const="",
|
486 |
+
default=accuracy,
|
487 |
+
help="do not test accuracy, just run the module and see if it errors",
|
488 |
+
)
|
489 |
+
accuracy_group.add_argument(
|
490 |
+
"--accuracy",
|
491 |
+
action="store_const",
|
492 |
+
const="accuracy",
|
493 |
+
default=accuracy,
|
494 |
+
help="test accuracy",
|
495 |
+
)
|
496 |
+
parser.add_argument(
|
497 |
+
"--save-dir",
|
498 |
+
type=str,
|
499 |
+
default=save_dir,
|
500 |
+
metavar="DIR",
|
501 |
+
help="directory where saved inputs live",
|
502 |
+
)
|
503 |
+
parser.add_argument(
|
504 |
+
"--no-save-dir",
|
505 |
+
dest="save_dir",
|
506 |
+
action="store_const",
|
507 |
+
const=None,
|
508 |
+
help="don't use any directory for saved inputs",
|
509 |
+
)
|
510 |
+
parser.add_argument(
|
511 |
+
"--no-isolate",
|
512 |
+
dest="isolate",
|
513 |
+
action="store_false",
|
514 |
+
default=False,
|
515 |
+
help="no isolate (doesn't do anything for after_dynamo)",
|
516 |
+
)
|
517 |
+
parser.add_argument(
|
518 |
+
"--autocast",
|
519 |
+
default=autocast,
|
520 |
+
action="store_true",
|
521 |
+
help="use torch.cuda.amp.autocast",
|
522 |
+
)
|
523 |
+
parser.add_argument(
|
524 |
+
"--no-autocast",
|
525 |
+
dest="autocast",
|
526 |
+
action="store_false",
|
527 |
+
help="don't use torch.cuda.amp.autocast",
|
528 |
+
)
|
529 |
+
parser.add_argument(
|
530 |
+
"--backend",
|
531 |
+
type=str,
|
532 |
+
default=backend,
|
533 |
+
metavar="BACKEND",
|
534 |
+
help="torch.compile backend to use",
|
535 |
+
)
|
536 |
+
|
537 |
+
subparsers = parser.add_subparsers(
|
538 |
+
dest="command", metavar="{run,minify}", required=True
|
539 |
+
)
|
540 |
+
|
541 |
+
parser_run = subparsers.add_parser(
|
542 |
+
"run",
|
543 |
+
help="just run the repro",
|
544 |
+
)
|
545 |
+
common_flags(parser_run)
|
546 |
+
parser_run.add_argument(
|
547 |
+
"--only-fwd",
|
548 |
+
action="store_true",
|
549 |
+
help="don't run backwards compilation for testing",
|
550 |
+
)
|
551 |
+
|
552 |
+
parser_minify = subparsers.add_parser(
|
553 |
+
"minify", help="run the minifier on the repro"
|
554 |
+
)
|
555 |
+
common_flags(parser_minify)
|
556 |
+
|
557 |
+
args = None
|
558 |
+
if len(sys.argv) <= 1:
|
559 |
+
args = [command, *sys.argv[1:]]
|
560 |
+
|
561 |
+
options = parser.parse_args(args)
|
562 |
+
COMMAND_FNS = {
|
563 |
+
"minify": repro_minify,
|
564 |
+
"run": repro_run,
|
565 |
+
}
|
566 |
+
COMMAND_FNS[options.command](options, mod, load_args)
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/source.py
ADDED
@@ -0,0 +1,545 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import dataclasses
|
3 |
+
import enum
|
4 |
+
from typing import Any, Optional, Union
|
5 |
+
|
6 |
+
from torch._guards import ChainedSource, GuardSource, Source
|
7 |
+
|
8 |
+
from . import utils
|
9 |
+
from .bytecode_transformation import create_call_function, create_instruction
|
10 |
+
from .utils import enum_repr
|
11 |
+
|
12 |
+
# It shouldn't be supported to construct an NNModuleVariable inside an FSDP module,
|
13 |
+
# so those cases are omitted intentionally
|
14 |
+
_GUARD_SOURCE_NN_MODULE = {
|
15 |
+
GuardSource.LOCAL: GuardSource.LOCAL_NN_MODULE,
|
16 |
+
GuardSource.GLOBAL: GuardSource.GLOBAL_NN_MODULE,
|
17 |
+
GuardSource.LOCAL_NN_MODULE: GuardSource.LOCAL_NN_MODULE,
|
18 |
+
GuardSource.GLOBAL_NN_MODULE: GuardSource.GLOBAL_NN_MODULE,
|
19 |
+
}
|
20 |
+
|
21 |
+
_GUARD_SOURCE_FSDP_MODULE = {
|
22 |
+
GuardSource.LOCAL: GuardSource.LOCAL_FSDP_MODULE,
|
23 |
+
GuardSource.GLOBAL: GuardSource.GLOBAL_FSDP_MODULE,
|
24 |
+
GuardSource.LOCAL_NN_MODULE: GuardSource.LOCAL_FSDP_MODULE,
|
25 |
+
GuardSource.GLOBAL_NN_MODULE: GuardSource.GLOBAL_FSDP_MODULE,
|
26 |
+
GuardSource.LOCAL_FSDP_MODULE: GuardSource.LOCAL_FSDP_MODULE,
|
27 |
+
GuardSource.GLOBAL_FSDP_MODULE: GuardSource.GLOBAL_FSDP_MODULE,
|
28 |
+
}
|
29 |
+
|
30 |
+
_GUARD_SOURCE_NOT_NN_MODULE = {
|
31 |
+
GuardSource.LOCAL: GuardSource.LOCAL,
|
32 |
+
GuardSource.GLOBAL: GuardSource.GLOBAL,
|
33 |
+
GuardSource.LOCAL_NN_MODULE: GuardSource.LOCAL,
|
34 |
+
GuardSource.GLOBAL_NN_MODULE: GuardSource.GLOBAL,
|
35 |
+
GuardSource.LOCAL_FSDP_MODULE: GuardSource.LOCAL,
|
36 |
+
GuardSource.GLOBAL_FSDP_MODULE: GuardSource.GLOBAL,
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
def is_constant_source(source):
|
41 |
+
if isinstance(source, ConstantSource):
|
42 |
+
return True
|
43 |
+
try:
|
44 |
+
if source.guard_source() == GuardSource.CONSTANT:
|
45 |
+
return True
|
46 |
+
except NotImplementedError:
|
47 |
+
pass
|
48 |
+
|
49 |
+
return False
|
50 |
+
|
51 |
+
|
52 |
+
def reconstruct_getitem(
|
53 |
+
source: Union["GetItemSource", "ODictGetItemSource"], codegen, index_is_slice
|
54 |
+
):
|
55 |
+
source.base.reconstruct(codegen)
|
56 |
+
if isinstance(source.index, Source):
|
57 |
+
source.index.reconstruct(codegen)
|
58 |
+
else:
|
59 |
+
if index_is_slice:
|
60 |
+
assert isinstance(source, GetItemSource)
|
61 |
+
codegen.append_output(codegen.create_load_const(source.unpack_slice()))
|
62 |
+
else:
|
63 |
+
codegen.append_output(codegen.create_load_const(source.index))
|
64 |
+
|
65 |
+
|
66 |
+
@dataclasses.dataclass(frozen=True)
|
67 |
+
class LocalSource(Source):
|
68 |
+
local_name: str
|
69 |
+
cell_or_freevar: bool = False
|
70 |
+
|
71 |
+
def reconstruct(self, codegen):
|
72 |
+
codegen.append_output(codegen.create_load(self.local_name))
|
73 |
+
|
74 |
+
def guard_source(self):
|
75 |
+
return GuardSource.LOCAL
|
76 |
+
|
77 |
+
def name(self):
|
78 |
+
return f"L[{repr(self.local_name)}]"
|
79 |
+
|
80 |
+
|
81 |
+
@dataclasses.dataclass(frozen=True)
|
82 |
+
class SyntheticLocalSource(Source):
|
83 |
+
local_name: str
|
84 |
+
|
85 |
+
def reconstruct(self, codegen):
|
86 |
+
codegen.append_output(codegen.create_load(self.local_name))
|
87 |
+
|
88 |
+
def guard_source(self):
|
89 |
+
return GuardSource.SYNTHETIC_LOCAL
|
90 |
+
|
91 |
+
def name(self):
|
92 |
+
return f"SYNTHETIC_LOCAL[{self.local_name!r}]"
|
93 |
+
|
94 |
+
|
95 |
+
@dataclasses.dataclass(frozen=True)
|
96 |
+
class RandomValueSource(Source):
|
97 |
+
random_call_index: int
|
98 |
+
|
99 |
+
def guard_source(self):
|
100 |
+
return GuardSource.RANDOM_VALUE
|
101 |
+
|
102 |
+
def reconstruct(self, codegen):
|
103 |
+
codegen.append_output(codegen.create_load(codegen.tx.output.random_values_var))
|
104 |
+
codegen.append_output(codegen.create_load_const(self.random_call_index))
|
105 |
+
codegen.append_output(create_instruction("BINARY_SUBSCR"))
|
106 |
+
|
107 |
+
def name(self):
|
108 |
+
return f"random_value_{self.random_call_index}"
|
109 |
+
|
110 |
+
|
111 |
+
@dataclasses.dataclass(frozen=True)
|
112 |
+
class GlobalSource(Source):
|
113 |
+
global_name: str
|
114 |
+
|
115 |
+
def reconstruct(self, codegen):
|
116 |
+
codegen.append_output(
|
117 |
+
codegen.create_load_global(self.global_name, False, add=True)
|
118 |
+
)
|
119 |
+
|
120 |
+
def guard_source(self):
|
121 |
+
return GuardSource.GLOBAL
|
122 |
+
|
123 |
+
def name(self):
|
124 |
+
return f"G[{repr(self.global_name)}]"
|
125 |
+
|
126 |
+
|
127 |
+
@dataclasses.dataclass(frozen=True)
|
128 |
+
class GlobalWeakRefSource(Source):
|
129 |
+
global_name: str
|
130 |
+
|
131 |
+
def reconstruct(self, codegen):
|
132 |
+
codegen.append_output(
|
133 |
+
codegen.create_load_global(self.global_name, True, add=True)
|
134 |
+
)
|
135 |
+
codegen.extend_output(create_call_function(0, False))
|
136 |
+
|
137 |
+
def guard_source(self):
|
138 |
+
return GuardSource.GLOBAL
|
139 |
+
|
140 |
+
def name(self):
|
141 |
+
return f"G[{repr(self.global_name)}]()"
|
142 |
+
|
143 |
+
|
144 |
+
@dataclasses.dataclass(frozen=True)
|
145 |
+
class AttrSource(ChainedSource):
|
146 |
+
member: str
|
147 |
+
get_static: bool = False
|
148 |
+
|
149 |
+
def __post_init__(self):
|
150 |
+
assert self.base, "Can't construct an AttrSource without a valid base source"
|
151 |
+
if "." in self.member:
|
152 |
+
member_parts = self.member.split(".")
|
153 |
+
object.__setattr__(
|
154 |
+
self, "base", AttrSource(self.base, ".".join(member_parts[:-1]))
|
155 |
+
)
|
156 |
+
object.__setattr__(self, "member", member_parts[-1])
|
157 |
+
|
158 |
+
def reconstruct(self, codegen):
|
159 |
+
self.base.reconstruct(codegen)
|
160 |
+
codegen.extend_output(codegen.create_load_attrs(self.member))
|
161 |
+
|
162 |
+
def guard_source(self):
|
163 |
+
return self.base.guard_source()
|
164 |
+
|
165 |
+
def name(self):
|
166 |
+
if self.get_static:
|
167 |
+
return f"inspect.getattr_static({self.base.name()}, {self.member!r})"
|
168 |
+
elif not self.member.isidentifier():
|
169 |
+
return f"getattr({self.base.name()}, {self.member!r})"
|
170 |
+
return f"{self.base.name()}.{self.member}"
|
171 |
+
|
172 |
+
|
173 |
+
@dataclasses.dataclass(frozen=True)
|
174 |
+
class ParamBufferSource(AttrSource):
|
175 |
+
def guard_source(self):
|
176 |
+
return _GUARD_SOURCE_NN_MODULE[self.base.guard_source()]
|
177 |
+
|
178 |
+
|
179 |
+
# This source is intended to be used in places where a source is needed but it is expected
|
180 |
+
# that the symbol will be simplified out later on. Symbols with ephemeral sources are
|
181 |
+
# prioritized to be simplified out when e.g. compared against a symbol without an ephemeral
|
182 |
+
# source. Guarding on this source is an error.
|
183 |
+
#
|
184 |
+
# Example: During subclass view fake-ification, any close-over ViewFunc state should be
|
185 |
+
# symbolicized / fake-ified to avoid invalid specialization during view replay. This source
|
186 |
+
# is useful for symbols utilized in the middle of the view chain that are not expected to be
|
187 |
+
# present within the final view shape metadata.
|
188 |
+
@dataclasses.dataclass(frozen=True)
|
189 |
+
class EphemeralSource(Source):
|
190 |
+
desc: Optional[str] = None
|
191 |
+
|
192 |
+
def guard_source(self):
|
193 |
+
return GuardSource.EPHEMERAL
|
194 |
+
|
195 |
+
def name(self):
|
196 |
+
return f"<ephemeral{': ' + self.desc if self.desc is not None else ''}>"
|
197 |
+
|
198 |
+
def make_guard(self):
|
199 |
+
raise NotImplementedError()
|
200 |
+
|
201 |
+
def is_ephemeral(self):
|
202 |
+
return True
|
203 |
+
|
204 |
+
|
205 |
+
class TensorProperty(enum.Enum):
|
206 |
+
SIZE = 0
|
207 |
+
STRIDE = 1
|
208 |
+
STORAGE_OFFSET = 2
|
209 |
+
|
210 |
+
def method_name(self):
|
211 |
+
if self is TensorProperty.SIZE:
|
212 |
+
return "size"
|
213 |
+
elif self is TensorProperty.STRIDE:
|
214 |
+
return "stride"
|
215 |
+
elif self is TensorProperty.STORAGE_OFFSET:
|
216 |
+
return "storage_offset"
|
217 |
+
|
218 |
+
|
219 |
+
@dataclasses.dataclass(frozen=True)
|
220 |
+
class TensorPropertySource(ChainedSource):
|
221 |
+
prop: TensorProperty
|
222 |
+
idx: Optional[int] = None # None for STORAGE_OFFSET
|
223 |
+
|
224 |
+
def __post_init__(self):
|
225 |
+
assert self.base is not None
|
226 |
+
if self.prop is TensorProperty.STORAGE_OFFSET:
|
227 |
+
assert self.idx is None
|
228 |
+
else:
|
229 |
+
assert self.idx is not None
|
230 |
+
|
231 |
+
def reconstruct(self, codegen):
|
232 |
+
self.base.reconstruct(codegen)
|
233 |
+
codegen.append_output(codegen.create_load_attr(self.prop.method_name()))
|
234 |
+
if self.idx is not None:
|
235 |
+
codegen.append_output(codegen.create_load_const(self.idx))
|
236 |
+
codegen.extend_output(
|
237 |
+
create_call_function(1 if self.idx is not None else 0, True)
|
238 |
+
)
|
239 |
+
|
240 |
+
def guard_source(self):
|
241 |
+
return self.base.guard_source()
|
242 |
+
|
243 |
+
def name(self):
|
244 |
+
if self.prop is TensorProperty.SIZE:
|
245 |
+
return f"{self.base.name()}.size()[{self.idx}]"
|
246 |
+
elif self.prop is TensorProperty.STRIDE:
|
247 |
+
return f"{self.base.name()}.stride()[{self.idx}]"
|
248 |
+
elif self.prop is TensorProperty.STORAGE_OFFSET:
|
249 |
+
assert self.idx is None
|
250 |
+
return f"{self.base.name()}.storage_offset()"
|
251 |
+
else:
|
252 |
+
raise AssertionError(f"unhandled {self.prop}")
|
253 |
+
|
254 |
+
|
255 |
+
@dataclasses.dataclass(frozen=True)
|
256 |
+
class NegateSource(ChainedSource):
|
257 |
+
def __post_init__(self):
|
258 |
+
assert self.base is not None
|
259 |
+
|
260 |
+
def reconstruct(self, codegen):
|
261 |
+
raise NotImplementedError()
|
262 |
+
|
263 |
+
def guard_source(self):
|
264 |
+
return self.base.guard_source()
|
265 |
+
|
266 |
+
def name(self):
|
267 |
+
# NB: use method call so that function stripping regexes work
|
268 |
+
return f"{self.base.name()}.__neg__()"
|
269 |
+
|
270 |
+
|
271 |
+
@dataclasses.dataclass(frozen=True)
|
272 |
+
class ConvertIntSource(ChainedSource):
|
273 |
+
def __post_init__(self):
|
274 |
+
assert self.base is not None
|
275 |
+
|
276 |
+
def reconstruct(self, codegen):
|
277 |
+
self.base.reconstruct(codegen)
|
278 |
+
|
279 |
+
def guard_source(self):
|
280 |
+
return self.base.guard_source()
|
281 |
+
|
282 |
+
def name(self):
|
283 |
+
return f"cast_symbool_to_symint_guardless({self.base.name()})"
|
284 |
+
|
285 |
+
|
286 |
+
@dataclasses.dataclass(frozen=True)
|
287 |
+
class DefaultsSource(ChainedSource):
|
288 |
+
idx_key: Union[int, str]
|
289 |
+
is_kw: bool = False
|
290 |
+
field: str = dataclasses.field(init=False, repr=False, compare=False)
|
291 |
+
_name: str = dataclasses.field(init=False, repr=False, compare=False)
|
292 |
+
|
293 |
+
def __post_init__(self):
|
294 |
+
assert (
|
295 |
+
self.base
|
296 |
+
), "Base must be a valid source in order to properly track and guard this Defaults to its origin."
|
297 |
+
if self.is_kw:
|
298 |
+
assert isinstance(self.idx_key, str)
|
299 |
+
object.__setattr__(self, "field", "__kwdefaults__")
|
300 |
+
object.__setattr__(
|
301 |
+
self, "_name", f"{self.base.name()}.{self.field}['{self.idx_key}']"
|
302 |
+
)
|
303 |
+
else:
|
304 |
+
assert isinstance(self.idx_key, int)
|
305 |
+
object.__setattr__(self, "field", "__defaults__")
|
306 |
+
object.__setattr__(
|
307 |
+
self, "_name", f"{self.base.name()}.{self.field}[{self.idx_key}]"
|
308 |
+
)
|
309 |
+
|
310 |
+
def reconstruct(self, codegen):
|
311 |
+
self.base.reconstruct(codegen)
|
312 |
+
codegen.extend_output(codegen.create_load_attrs(self.field))
|
313 |
+
codegen.append_output(codegen.create_load_const(self.idx_key))
|
314 |
+
codegen.append_output(create_instruction("BINARY_SUBSCR"))
|
315 |
+
|
316 |
+
def guard_source(self):
|
317 |
+
return self.base.guard_source()
|
318 |
+
|
319 |
+
def name(self):
|
320 |
+
return self._name
|
321 |
+
|
322 |
+
|
323 |
+
@dataclasses.dataclass(frozen=True)
|
324 |
+
class GetItemSource(ChainedSource):
|
325 |
+
index: Any
|
326 |
+
index_is_slice: bool = False
|
327 |
+
|
328 |
+
def __post_init__(self):
|
329 |
+
assert self.base is not None
|
330 |
+
if isinstance(self.index, slice):
|
331 |
+
# store the hashable version of the slice so the whole GetItemSource is hashable
|
332 |
+
super().__setattr__("index", self.index.__reduce__())
|
333 |
+
super().__setattr__("index_is_slice", True)
|
334 |
+
|
335 |
+
def reconstruct(self, codegen):
|
336 |
+
reconstruct_getitem(self, codegen, index_is_slice=self.index_is_slice)
|
337 |
+
codegen.append_output(create_instruction("BINARY_SUBSCR"))
|
338 |
+
|
339 |
+
def guard_source(self):
|
340 |
+
return self.base.guard_source()
|
341 |
+
|
342 |
+
def unpack_slice(self):
|
343 |
+
assert self.index_is_slice
|
344 |
+
slice_class, slice_args = self.index
|
345 |
+
return slice_class(*slice_args)
|
346 |
+
|
347 |
+
def name(self):
|
348 |
+
# Index can be of following types
|
349 |
+
# 1) ConstDictKeySource
|
350 |
+
# 2) enum.Enum
|
351 |
+
# 3) index is a slice - example 1:4
|
352 |
+
# 4) index is a constant - example string, integer
|
353 |
+
if isinstance(self.index, Source):
|
354 |
+
if not isinstance(self.index, ConstDictKeySource):
|
355 |
+
raise ValueError(
|
356 |
+
"GetItemSource index must be a constant, enum or ConstDictKeySource"
|
357 |
+
)
|
358 |
+
return f"{self.base.name()}[{self.index.name()}]"
|
359 |
+
elif self.index_is_slice:
|
360 |
+
return f"{self.base.name()}[{self.unpack_slice()!r}]"
|
361 |
+
elif isinstance(self.index, enum.Enum):
|
362 |
+
return f"{self.base.name()}[{enum_repr(self.index, self.guard_source().is_local())}]"
|
363 |
+
else:
|
364 |
+
return f"{self.base.name()}[{self.index!r}]"
|
365 |
+
|
366 |
+
|
367 |
+
@dataclasses.dataclass(frozen=True)
|
368 |
+
class ConstDictKeySource(GetItemSource):
|
369 |
+
def is_dict_key(self):
|
370 |
+
return True
|
371 |
+
|
372 |
+
def reconstruct(self, codegen):
|
373 |
+
codegen.load_import_from(utils.__name__, "dict_keys_getitem")
|
374 |
+
self.base.reconstruct(codegen)
|
375 |
+
codegen.append_output(codegen.create_load_const(self.index))
|
376 |
+
codegen.extend_output(create_call_function(2, True))
|
377 |
+
|
378 |
+
def name(self):
|
379 |
+
# The list creation will be CSE'd by PyExprCSEPass
|
380 |
+
return f"list({self.base.name()}.keys())[{self.index!r}]"
|
381 |
+
|
382 |
+
|
383 |
+
@dataclasses.dataclass(frozen=True)
|
384 |
+
class TupleIteratorGetItemSource(GetItemSource):
|
385 |
+
def reconstruct(self, codegen):
|
386 |
+
codegen.load_import_from(utils.__name__, "tuple_iterator_getitem")
|
387 |
+
self.base.reconstruct(codegen)
|
388 |
+
codegen.append_output(codegen.create_load_const(self.index))
|
389 |
+
codegen.extend_output(create_call_function(2, True))
|
390 |
+
|
391 |
+
def name(self):
|
392 |
+
return f"___tuple_iterator_getitem({self.base.name()}, {self.index!r})"
|
393 |
+
|
394 |
+
|
395 |
+
@dataclasses.dataclass(frozen=True)
|
396 |
+
class TypeSource(ChainedSource):
|
397 |
+
def __post_init__(self):
|
398 |
+
assert self.base is not None
|
399 |
+
|
400 |
+
def reconstruct(self, codegen):
|
401 |
+
codegen.load_import_from("builtins", "type")
|
402 |
+
self.base.reconstruct(codegen)
|
403 |
+
codegen.extend_output(create_call_function(1, True))
|
404 |
+
|
405 |
+
def guard_source(self):
|
406 |
+
return self.base.guard_source()
|
407 |
+
|
408 |
+
def name(self):
|
409 |
+
return f"type({self.base.name()})"
|
410 |
+
|
411 |
+
|
412 |
+
@dataclasses.dataclass(frozen=True)
|
413 |
+
class ODictGetItemSource(ChainedSource):
|
414 |
+
index: Any
|
415 |
+
|
416 |
+
def __post_init__(self):
|
417 |
+
assert self.base is not None
|
418 |
+
|
419 |
+
def reconstruct(self, codegen):
|
420 |
+
codegen.append_output(
|
421 |
+
codegen._create_load_const(collections.OrderedDict.__getitem__)
|
422 |
+
)
|
423 |
+
reconstruct_getitem(self, codegen, index_is_slice=False)
|
424 |
+
codegen.extend_output(create_call_function(2, True))
|
425 |
+
|
426 |
+
def guard_source(self):
|
427 |
+
return self.base.guard_source()
|
428 |
+
|
429 |
+
def name(self):
|
430 |
+
if isinstance(self.index, type):
|
431 |
+
rep = f'__load_module("{self.index.__module__}").{self.index.__qualname__}'
|
432 |
+
return f"___odict_getitem({self.base.name()}, {rep})"
|
433 |
+
elif isinstance(self.index, Source):
|
434 |
+
return f"___odict_getitem({self.base.name()}, {self.index.name()})"
|
435 |
+
else:
|
436 |
+
return f"___odict_getitem({self.base.name()}, {self.index!r})"
|
437 |
+
|
438 |
+
|
439 |
+
@dataclasses.dataclass(frozen=True)
|
440 |
+
class NNModuleSource(ChainedSource):
|
441 |
+
def reconstruct(self, codegen):
|
442 |
+
self.base.reconstruct(codegen)
|
443 |
+
|
444 |
+
def guard_source(self):
|
445 |
+
return _GUARD_SOURCE_NN_MODULE[self.base.guard_source()]
|
446 |
+
|
447 |
+
def name(self):
|
448 |
+
return self.base.name()
|
449 |
+
|
450 |
+
|
451 |
+
@dataclasses.dataclass(frozen=True)
|
452 |
+
class NotNNModuleSource(NNModuleSource):
|
453 |
+
def guard_source(self):
|
454 |
+
return _GUARD_SOURCE_NOT_NN_MODULE[self.base.guard_source()]
|
455 |
+
|
456 |
+
|
457 |
+
@dataclasses.dataclass(frozen=True)
|
458 |
+
class FSDPNNModuleSource(NNModuleSource):
|
459 |
+
def guard_source(self):
|
460 |
+
return _GUARD_SOURCE_FSDP_MODULE[self.base.guard_source()]
|
461 |
+
|
462 |
+
|
463 |
+
@dataclasses.dataclass(frozen=True)
|
464 |
+
class GlobalStateSource(Source):
|
465 |
+
def name(self):
|
466 |
+
return ""
|
467 |
+
|
468 |
+
def guard_source(self):
|
469 |
+
return GuardSource.GLOBAL
|
470 |
+
|
471 |
+
|
472 |
+
@dataclasses.dataclass(frozen=True)
|
473 |
+
class ConstantSource(Source):
|
474 |
+
source_name: str
|
475 |
+
|
476 |
+
def reconstruct(self, codegen):
|
477 |
+
codegen.append_output(
|
478 |
+
codegen.create_load_global(self.source_name, False, add=False)
|
479 |
+
)
|
480 |
+
|
481 |
+
def guard_source(self):
|
482 |
+
return GuardSource.CONSTANT
|
483 |
+
|
484 |
+
def name(self):
|
485 |
+
return self.source_name
|
486 |
+
|
487 |
+
def make_guard(self, fn):
|
488 |
+
raise NotImplementedError()
|
489 |
+
|
490 |
+
|
491 |
+
@dataclasses.dataclass(frozen=True)
|
492 |
+
class NumpyTensorSource(ChainedSource):
|
493 |
+
def name(self) -> str:
|
494 |
+
return f"___from_numpy({self.base.name()})"
|
495 |
+
|
496 |
+
def guard_source(self):
|
497 |
+
return self.base.guard_source()
|
498 |
+
|
499 |
+
def reconstruct(self, codegen):
|
500 |
+
codegen.load_import_from("torch", "as_tensor")
|
501 |
+
self.base.reconstruct(codegen)
|
502 |
+
codegen.extend_output(create_call_function(1, True))
|
503 |
+
|
504 |
+
|
505 |
+
# This is a synthetic source that is associated with the singleton
|
506 |
+
# shape env guard we always register for all frames. We get the actual
|
507 |
+
# guard contents from the ambient ShapeEnv
|
508 |
+
@dataclasses.dataclass(frozen=True)
|
509 |
+
class ShapeEnvSource(Source):
|
510 |
+
def name(self):
|
511 |
+
return ""
|
512 |
+
|
513 |
+
def guard_source(self):
|
514 |
+
return GuardSource.SHAPE_ENV
|
515 |
+
|
516 |
+
|
517 |
+
@dataclasses.dataclass(frozen=True)
|
518 |
+
class BackwardStateSource(Source):
|
519 |
+
def name(self):
|
520 |
+
return ""
|
521 |
+
|
522 |
+
def guard_source(self):
|
523 |
+
return GuardSource.BACKWARD_STATE
|
524 |
+
|
525 |
+
|
526 |
+
def is_from_local_source(source: Source, *, allow_cell_or_freevar=True):
|
527 |
+
if isinstance(source, ChainedSource):
|
528 |
+
return is_from_local_source(
|
529 |
+
source.base, allow_cell_or_freevar=allow_cell_or_freevar
|
530 |
+
)
|
531 |
+
if not isinstance(source, LocalSource):
|
532 |
+
return False
|
533 |
+
if not allow_cell_or_freevar and source.cell_or_freevar:
|
534 |
+
return False
|
535 |
+
return True
|
536 |
+
|
537 |
+
|
538 |
+
# TODO: can probably write a generic "test this on everything in the chain"
|
539 |
+
# helper
|
540 |
+
def is_from_defaults(source: Source):
|
541 |
+
if isinstance(source, DefaultsSource):
|
542 |
+
return True
|
543 |
+
if isinstance(source, ChainedSource):
|
544 |
+
return is_from_defaults(source.base)
|
545 |
+
return False
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/test_case.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import importlib
|
3 |
+
import logging
|
4 |
+
import sys
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.testing
|
8 |
+
from torch.testing._internal.common_utils import ( # type: ignore[attr-defined]
|
9 |
+
IS_WINDOWS,
|
10 |
+
TEST_WITH_CROSSREF,
|
11 |
+
TEST_WITH_TORCHDYNAMO,
|
12 |
+
TestCase as TorchTestCase,
|
13 |
+
)
|
14 |
+
|
15 |
+
from . import config, reset, utils
|
16 |
+
|
17 |
+
log = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
def run_tests(needs=()):
|
21 |
+
from torch.testing._internal.common_utils import run_tests
|
22 |
+
|
23 |
+
if (
|
24 |
+
TEST_WITH_TORCHDYNAMO
|
25 |
+
or IS_WINDOWS
|
26 |
+
or TEST_WITH_CROSSREF
|
27 |
+
or sys.version_info >= (3, 12)
|
28 |
+
):
|
29 |
+
return # skip testing
|
30 |
+
|
31 |
+
if isinstance(needs, str):
|
32 |
+
needs = (needs,)
|
33 |
+
for need in needs:
|
34 |
+
if need == "cuda" and not torch.cuda.is_available():
|
35 |
+
return
|
36 |
+
else:
|
37 |
+
try:
|
38 |
+
importlib.import_module(need)
|
39 |
+
except ImportError:
|
40 |
+
return
|
41 |
+
run_tests()
|
42 |
+
|
43 |
+
|
44 |
+
class TestCase(TorchTestCase):
|
45 |
+
_exit_stack: contextlib.ExitStack
|
46 |
+
|
47 |
+
@classmethod
|
48 |
+
def tearDownClass(cls):
|
49 |
+
cls._exit_stack.close()
|
50 |
+
super().tearDownClass()
|
51 |
+
|
52 |
+
@classmethod
|
53 |
+
def setUpClass(cls):
|
54 |
+
super().setUpClass()
|
55 |
+
cls._exit_stack = contextlib.ExitStack() # type: ignore[attr-defined]
|
56 |
+
cls._exit_stack.enter_context( # type: ignore[attr-defined]
|
57 |
+
config.patch(
|
58 |
+
raise_on_ctx_manager_usage=True,
|
59 |
+
suppress_errors=False,
|
60 |
+
log_compilation_metrics=False,
|
61 |
+
),
|
62 |
+
)
|
63 |
+
|
64 |
+
def setUp(self):
|
65 |
+
self._prior_is_grad_enabled = torch.is_grad_enabled()
|
66 |
+
super().setUp()
|
67 |
+
reset()
|
68 |
+
utils.counters.clear()
|
69 |
+
|
70 |
+
def tearDown(self):
|
71 |
+
for k, v in utils.counters.items():
|
72 |
+
print(k, v.most_common())
|
73 |
+
reset()
|
74 |
+
utils.counters.clear()
|
75 |
+
super().tearDown()
|
76 |
+
if self._prior_is_grad_enabled is not torch.is_grad_enabled():
|
77 |
+
log.warning("Running test changed grad mode")
|
78 |
+
torch.set_grad_enabled(self._prior_is_grad_enabled)
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/types.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
import sys
|
3 |
+
import types
|
4 |
+
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Protocol, Union
|
5 |
+
|
6 |
+
from typing_extensions import TypeAlias
|
7 |
+
|
8 |
+
|
9 |
+
if sys.version_info >= (3, 11):
|
10 |
+
from torch._C._dynamo import eval_frame
|
11 |
+
|
12 |
+
DynamoFrameType: TypeAlias = eval_frame._PyInterpreterFrame
|
13 |
+
else:
|
14 |
+
DynamoFrameType: TypeAlias = types.FrameType
|
15 |
+
|
16 |
+
import torch
|
17 |
+
|
18 |
+
# This class has a `check_fn` field for the guard,
|
19 |
+
# and a `code` field for the code object.
|
20 |
+
CacheEntry = torch._C._dynamo.eval_frame._CacheEntry
|
21 |
+
|
22 |
+
ExtraState = torch._C._dynamo.eval_frame._ExtraState
|
23 |
+
|
24 |
+
# We use a dict to store additional data per frame.
|
25 |
+
FrameState = Dict[Any, Any]
|
26 |
+
|
27 |
+
|
28 |
+
class GuardFail(NamedTuple):
|
29 |
+
# A string repr of the piece of failed guard code we eval-ed
|
30 |
+
reason: str
|
31 |
+
# A code object where we failed a guard
|
32 |
+
orig_code: types.CodeType
|
33 |
+
|
34 |
+
|
35 |
+
class GuardFn(Protocol):
|
36 |
+
closure_vars: Dict[str, object]
|
37 |
+
args: List[str]
|
38 |
+
code_parts: List[str]
|
39 |
+
verbose_code_parts: List[str]
|
40 |
+
global_scope: Dict[str, object]
|
41 |
+
guard_fail_fn: Optional[Callable[[GuardFail], None]]
|
42 |
+
cache_entry: Optional[CacheEntry]
|
43 |
+
extra_state: Optional[ExtraState]
|
44 |
+
|
45 |
+
# maps locals of user function to bool
|
46 |
+
def __call__(self, f_locals: Dict[str, object]) -> bool:
|
47 |
+
...
|
48 |
+
|
49 |
+
|
50 |
+
@dataclasses.dataclass
|
51 |
+
class GuardedCode:
|
52 |
+
code: types.CodeType
|
53 |
+
check_fn: GuardFn
|
54 |
+
|
55 |
+
|
56 |
+
class DynamoCallbackFn(Protocol):
|
57 |
+
def __call__(
|
58 |
+
self,
|
59 |
+
frame: DynamoFrameType,
|
60 |
+
cache_entry: Optional[CacheEntry],
|
61 |
+
frame_state: FrameState,
|
62 |
+
) -> Optional[GuardedCode]:
|
63 |
+
...
|
64 |
+
|
65 |
+
|
66 |
+
DynamoCallback = Union[DynamoCallbackFn, None, bool]
|
67 |
+
|
68 |
+
|
69 |
+
class DynamoGuardHook(Protocol):
|
70 |
+
def __call__(
|
71 |
+
self,
|
72 |
+
guard_fn: GuardFn,
|
73 |
+
code: types.CodeType,
|
74 |
+
f_locals: Dict[str, object],
|
75 |
+
index: int,
|
76 |
+
last: bool,
|
77 |
+
) -> None:
|
78 |
+
...
|
79 |
+
|
80 |
+
|
81 |
+
class ProfilerStartHook(Protocol):
|
82 |
+
def __call__(
|
83 |
+
self,
|
84 |
+
name: str,
|
85 |
+
# TODO(whc) how do I annotate a _RecordFunction here?
|
86 |
+
) -> Any:
|
87 |
+
...
|
88 |
+
|
89 |
+
|
90 |
+
class ProfilerEndHook(Protocol):
|
91 |
+
def __call__(self, record: Any) -> None:
|
92 |
+
...
|
93 |
+
|
94 |
+
|
95 |
+
class BytecodeHook(Protocol):
|
96 |
+
def __call__(
|
97 |
+
self, code: types.CodeType, new_code: types.CodeType
|
98 |
+
) -> Optional[types.CodeType]:
|
99 |
+
...
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__init__.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
from .base import VariableTracker
|
4 |
+
from .builtin import BuiltinVariable
|
5 |
+
from .constant import ConstantVariable, EnumVariable
|
6 |
+
from .ctx_manager import (
|
7 |
+
ContextWrappingVariable,
|
8 |
+
DeterministicAlgorithmsVariable,
|
9 |
+
DisabledSavedTensorsHooksVariable,
|
10 |
+
GradIncrementNestingCtxManagerVariable,
|
11 |
+
GradInplaceRequiresGradCtxManagerVariable,
|
12 |
+
GradModeVariable,
|
13 |
+
InferenceModeVariable,
|
14 |
+
StreamContextVariable,
|
15 |
+
StreamVariable,
|
16 |
+
VmapIncrementNestingCtxManagerVariable,
|
17 |
+
WithExitFunctionVariable,
|
18 |
+
)
|
19 |
+
from .dicts import (
|
20 |
+
ConstDictVariable,
|
21 |
+
CustomizedDictVariable,
|
22 |
+
DataClassVariable,
|
23 |
+
DefaultDictVariable,
|
24 |
+
SetVariable,
|
25 |
+
)
|
26 |
+
from .distributed import BackwardHookVariable
|
27 |
+
from .functions import (
|
28 |
+
FunctoolsPartialVariable,
|
29 |
+
NestedUserFunctionVariable,
|
30 |
+
SkipFunctionVariable,
|
31 |
+
UserFunctionVariable,
|
32 |
+
UserMethodVariable,
|
33 |
+
)
|
34 |
+
from .higher_order_ops import (
|
35 |
+
FunctorchHigherOrderVariable,
|
36 |
+
TorchHigherOrderOperatorVariable,
|
37 |
+
)
|
38 |
+
from .iter import (
|
39 |
+
CountIteratorVariable,
|
40 |
+
CycleIteratorVariable,
|
41 |
+
IteratorVariable,
|
42 |
+
ItertoolsVariable,
|
43 |
+
RepeatIteratorVariable,
|
44 |
+
)
|
45 |
+
from .lazy import LazyVariableTracker
|
46 |
+
from .lists import (
|
47 |
+
BaseListVariable,
|
48 |
+
ListIteratorVariable,
|
49 |
+
ListVariable,
|
50 |
+
NamedTupleVariable,
|
51 |
+
RangeVariable,
|
52 |
+
RestrictedListSubclassVariable,
|
53 |
+
SliceVariable,
|
54 |
+
TupleIteratorVariable,
|
55 |
+
TupleVariable,
|
56 |
+
)
|
57 |
+
from .misc import (
|
58 |
+
AutogradFunctionContextVariable,
|
59 |
+
AutogradFunctionVariable,
|
60 |
+
ClosureVariable,
|
61 |
+
DeletedVariable,
|
62 |
+
GetAttrVariable,
|
63 |
+
InspectSignatureVariable,
|
64 |
+
LambdaVariable,
|
65 |
+
MethodWrapperVariable,
|
66 |
+
NewCellVariable,
|
67 |
+
NewGlobalVariable,
|
68 |
+
NumpyVariable,
|
69 |
+
PythonModuleVariable,
|
70 |
+
StringFormatVariable,
|
71 |
+
SuperVariable,
|
72 |
+
TypingVariable,
|
73 |
+
UnknownVariable,
|
74 |
+
)
|
75 |
+
from .nn_module import NNModuleVariable, UnspecializedNNModuleVariable
|
76 |
+
from .sdpa import SDPAParamsVariable
|
77 |
+
from .tensor import (
|
78 |
+
FakeItemVariable,
|
79 |
+
NumpyNdarrayVariable,
|
80 |
+
SymNodeVariable,
|
81 |
+
TensorVariable,
|
82 |
+
UnspecializedPythonVariable,
|
83 |
+
UntypedStorageVariable,
|
84 |
+
)
|
85 |
+
from .torch import TorchCtxManagerClassVariable, TorchInGraphFunctionVariable
|
86 |
+
from .user_defined import (
|
87 |
+
RemovableHandleVariable,
|
88 |
+
UserDefinedClassVariable,
|
89 |
+
UserDefinedObjectVariable,
|
90 |
+
)
|
91 |
+
|
92 |
+
__all__ = [
|
93 |
+
"AutogradFunctionContextVariable",
|
94 |
+
"AutogradFunctionVariable",
|
95 |
+
"BackwardHookVariable",
|
96 |
+
"BaseListVariable",
|
97 |
+
"BuiltinVariable",
|
98 |
+
"ClosureVariable",
|
99 |
+
"ConstantVariable",
|
100 |
+
"ConstDictVariable",
|
101 |
+
"ContextWrappingVariable",
|
102 |
+
"CountIteratorVariable",
|
103 |
+
"CustomizedDictVariable",
|
104 |
+
"CycleIteratorVariable",
|
105 |
+
"DataClassVariable",
|
106 |
+
"DefaultDictVariable",
|
107 |
+
"DeletedVariable",
|
108 |
+
"DeterministicAlgorithmsVariable",
|
109 |
+
"EnumVariable",
|
110 |
+
"FakeItemVariable",
|
111 |
+
"GetAttrVariable",
|
112 |
+
"GradModeVariable",
|
113 |
+
"InspectSignatureVariable",
|
114 |
+
"IteratorVariable",
|
115 |
+
"ItertoolsVariable",
|
116 |
+
"LambdaVariable",
|
117 |
+
"LazyVariableTracker",
|
118 |
+
"ListIteratorVariable",
|
119 |
+
"ListVariable",
|
120 |
+
"NamedTupleVariable",
|
121 |
+
"NestedUserFunctionVariable",
|
122 |
+
"NewCellVariable",
|
123 |
+
"NewGlobalVariable",
|
124 |
+
"NNModuleVariable",
|
125 |
+
"NumpyNdarrayVariable",
|
126 |
+
"NumpyVariable",
|
127 |
+
"PythonModuleVariable",
|
128 |
+
"RangeVariable",
|
129 |
+
"RemovableHandleVariable",
|
130 |
+
"RepeatIteratorVariable",
|
131 |
+
"RestrictedListSubclassVariable",
|
132 |
+
"SDPAParamsVariable",
|
133 |
+
"SkipFunctionVariable",
|
134 |
+
"SliceVariable",
|
135 |
+
"StringFormatVariable",
|
136 |
+
"SuperVariable",
|
137 |
+
"TensorVariable",
|
138 |
+
"TorchCtxManagerClassVariable",
|
139 |
+
"TorchInGraphFunctionVariable",
|
140 |
+
"TupleVariable",
|
141 |
+
"UnknownVariable",
|
142 |
+
"UnspecializedNNModuleVariable",
|
143 |
+
"UnspecializedPythonVariable",
|
144 |
+
"UntypedStorageVariable",
|
145 |
+
"UserDefinedClassVariable",
|
146 |
+
"UserDefinedObjectVariable",
|
147 |
+
"UserFunctionVariable",
|
148 |
+
"UserMethodVariable",
|
149 |
+
"VariableTracker",
|
150 |
+
"WithExitFunctionVariable",
|
151 |
+
]
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.17 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/base.cpython-310.pyc
ADDED
Binary file (14.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/builder.cpython-310.pyc
ADDED
Binary file (41.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/builtin.cpython-310.pyc
ADDED
Binary file (43.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/constant.cpython-310.pyc
ADDED
Binary file (7.88 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/ctx_manager.cpython-310.pyc
ADDED
Binary file (26.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/dicts.cpython-310.pyc
ADDED
Binary file (28.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/distributed.cpython-310.pyc
ADDED
Binary file (12.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_dynamo/variables/__pycache__/functions.cpython-310.pyc
ADDED
Binary file (28.2 kB). View file
|
|