applied-ai-018 commited on
Commit
b3d787f
·
verified ·
1 Parent(s): 8f1a485

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. llmeval-env/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11 +3 -0
  3. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__init__.py +0 -0
  4. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/__init__.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/executor.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/extensions.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/executor.py +239 -0
  8. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/extensions.py +584 -0
  9. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__init__.py +27 -0
  10. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/__init__.cpython-310.pyc +0 -0
  11. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/mean_.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/min_max_.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/shared.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/sum_.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/var_.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/mean_.py +196 -0
  17. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/min_max_.py +125 -0
  18. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/shared.py +29 -0
  19. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/sum_.py +244 -0
  20. llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/var_.py +245 -0
  21. llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/base.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/cast.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/common.cpython-310.pyc +0 -0
  24. llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/concat.cpython-310.pyc +0 -0
  25. llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/generic.cpython-310.pyc +0 -0
  26. llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/inference.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/missing.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__init__.py +15 -0
  29. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/__init__.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/grouper.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/numba_.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/ops.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/base.py +121 -0
  34. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/categorical.py +87 -0
  35. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/generic.py +2852 -0
  36. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/groupby.py +0 -0
  37. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/grouper.py +1102 -0
  38. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/indexing.py +304 -0
  39. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/numba_.py +181 -0
  40. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/ops.py +1208 -0
  41. llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__init__.py +28 -0
  42. llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/__init__.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/accessor.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/base.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/object_array.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/pandas/core/strings/accessor.py +0 -0
  47. llmeval-env/lib/python3.10/site-packages/pandas/core/strings/base.py +262 -0
  48. llmeval-env/lib/python3.10/site-packages/pandas/core/strings/object_array.py +497 -0
  49. llmeval-env/lib/python3.10/site-packages/pandas/core/util/__init__.py +0 -0
  50. llmeval-env/lib/python3.10/site-packages/pandas/core/util/__pycache__/__init__.cpython-310.pyc +0 -0
.gitattributes CHANGED
@@ -190,3 +190,4 @@ llmeval-env/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_adv_infer.so.
190
  llmeval-env/lib/python3.10/site-packages/nvidia/nccl/lib/libnccl.so.2 filter=lfs diff=lfs merge=lfs -text
191
  llmeval-env/lib/python3.10/site-packages/nvidia/cusparse/lib/libcusparse.so.12 filter=lfs diff=lfs merge=lfs -text
192
  llmeval-env/lib/python3.10/site-packages/numexpr/interpreter.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
 
 
190
  llmeval-env/lib/python3.10/site-packages/nvidia/nccl/lib/libnccl.so.2 filter=lfs diff=lfs merge=lfs -text
191
  llmeval-env/lib/python3.10/site-packages/nvidia/cusparse/lib/libcusparse.so.12 filter=lfs diff=lfs merge=lfs -text
192
  llmeval-env/lib/python3.10/site-packages/numexpr/interpreter.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
193
+ llmeval-env/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11 filter=lfs diff=lfs merge=lfs -text
llmeval-env/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9203da41484a93c1da684567bf6d732687b9b1307e3098256cb69225d6f575e4
3
+ size 192713344
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (191 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/executor.cpython-310.pyc ADDED
Binary file (5.11 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/extensions.cpython-310.pyc ADDED
Binary file (15.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/executor.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import functools
4
+ from typing import (
5
+ TYPE_CHECKING,
6
+ Any,
7
+ Callable,
8
+ )
9
+
10
+ if TYPE_CHECKING:
11
+ from pandas._typing import Scalar
12
+
13
+ import numpy as np
14
+
15
+ from pandas.compat._optional import import_optional_dependency
16
+
17
+
18
+ @functools.cache
19
+ def generate_apply_looper(func, nopython=True, nogil=True, parallel=False):
20
+ if TYPE_CHECKING:
21
+ import numba
22
+ else:
23
+ numba = import_optional_dependency("numba")
24
+ nb_compat_func = numba.extending.register_jitable(func)
25
+
26
+ @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel)
27
+ def nb_looper(values, axis):
28
+ # Operate on the first row/col in order to get
29
+ # the output shape
30
+ if axis == 0:
31
+ first_elem = values[:, 0]
32
+ dim0 = values.shape[1]
33
+ else:
34
+ first_elem = values[0]
35
+ dim0 = values.shape[0]
36
+ res0 = nb_compat_func(first_elem)
37
+ # Use np.asarray to get shape for
38
+ # https://github.com/numba/numba/issues/4202#issuecomment-1185981507
39
+ buf_shape = (dim0,) + np.atleast_1d(np.asarray(res0)).shape
40
+ if axis == 0:
41
+ buf_shape = buf_shape[::-1]
42
+ buff = np.empty(buf_shape)
43
+
44
+ if axis == 1:
45
+ buff[0] = res0
46
+ for i in numba.prange(1, values.shape[0]):
47
+ buff[i] = nb_compat_func(values[i])
48
+ else:
49
+ buff[:, 0] = res0
50
+ for j in numba.prange(1, values.shape[1]):
51
+ buff[:, j] = nb_compat_func(values[:, j])
52
+ return buff
53
+
54
+ return nb_looper
55
+
56
+
57
+ @functools.cache
58
+ def make_looper(func, result_dtype, is_grouped_kernel, nopython, nogil, parallel):
59
+ if TYPE_CHECKING:
60
+ import numba
61
+ else:
62
+ numba = import_optional_dependency("numba")
63
+
64
+ if is_grouped_kernel:
65
+
66
+ @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel)
67
+ def column_looper(
68
+ values: np.ndarray,
69
+ labels: np.ndarray,
70
+ ngroups: int,
71
+ min_periods: int,
72
+ *args,
73
+ ):
74
+ result = np.empty((values.shape[0], ngroups), dtype=result_dtype)
75
+ na_positions = {}
76
+ for i in numba.prange(values.shape[0]):
77
+ output, na_pos = func(
78
+ values[i], result_dtype, labels, ngroups, min_periods, *args
79
+ )
80
+ result[i] = output
81
+ if len(na_pos) > 0:
82
+ na_positions[i] = np.array(na_pos)
83
+ return result, na_positions
84
+
85
+ else:
86
+
87
+ @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel)
88
+ def column_looper(
89
+ values: np.ndarray,
90
+ start: np.ndarray,
91
+ end: np.ndarray,
92
+ min_periods: int,
93
+ *args,
94
+ ):
95
+ result = np.empty((values.shape[0], len(start)), dtype=result_dtype)
96
+ na_positions = {}
97
+ for i in numba.prange(values.shape[0]):
98
+ output, na_pos = func(
99
+ values[i], result_dtype, start, end, min_periods, *args
100
+ )
101
+ result[i] = output
102
+ if len(na_pos) > 0:
103
+ na_positions[i] = np.array(na_pos)
104
+ return result, na_positions
105
+
106
+ return column_looper
107
+
108
+
109
+ default_dtype_mapping: dict[np.dtype, Any] = {
110
+ np.dtype("int8"): np.int64,
111
+ np.dtype("int16"): np.int64,
112
+ np.dtype("int32"): np.int64,
113
+ np.dtype("int64"): np.int64,
114
+ np.dtype("uint8"): np.uint64,
115
+ np.dtype("uint16"): np.uint64,
116
+ np.dtype("uint32"): np.uint64,
117
+ np.dtype("uint64"): np.uint64,
118
+ np.dtype("float32"): np.float64,
119
+ np.dtype("float64"): np.float64,
120
+ np.dtype("complex64"): np.complex128,
121
+ np.dtype("complex128"): np.complex128,
122
+ }
123
+
124
+
125
+ # TODO: Preserve complex dtypes
126
+
127
+ float_dtype_mapping: dict[np.dtype, Any] = {
128
+ np.dtype("int8"): np.float64,
129
+ np.dtype("int16"): np.float64,
130
+ np.dtype("int32"): np.float64,
131
+ np.dtype("int64"): np.float64,
132
+ np.dtype("uint8"): np.float64,
133
+ np.dtype("uint16"): np.float64,
134
+ np.dtype("uint32"): np.float64,
135
+ np.dtype("uint64"): np.float64,
136
+ np.dtype("float32"): np.float64,
137
+ np.dtype("float64"): np.float64,
138
+ np.dtype("complex64"): np.float64,
139
+ np.dtype("complex128"): np.float64,
140
+ }
141
+
142
+ identity_dtype_mapping: dict[np.dtype, Any] = {
143
+ np.dtype("int8"): np.int8,
144
+ np.dtype("int16"): np.int16,
145
+ np.dtype("int32"): np.int32,
146
+ np.dtype("int64"): np.int64,
147
+ np.dtype("uint8"): np.uint8,
148
+ np.dtype("uint16"): np.uint16,
149
+ np.dtype("uint32"): np.uint32,
150
+ np.dtype("uint64"): np.uint64,
151
+ np.dtype("float32"): np.float32,
152
+ np.dtype("float64"): np.float64,
153
+ np.dtype("complex64"): np.complex64,
154
+ np.dtype("complex128"): np.complex128,
155
+ }
156
+
157
+
158
+ def generate_shared_aggregator(
159
+ func: Callable[..., Scalar],
160
+ dtype_mapping: dict[np.dtype, np.dtype],
161
+ is_grouped_kernel: bool,
162
+ nopython: bool,
163
+ nogil: bool,
164
+ parallel: bool,
165
+ ):
166
+ """
167
+ Generate a Numba function that loops over the columns 2D object and applies
168
+ a 1D numba kernel over each column.
169
+
170
+ Parameters
171
+ ----------
172
+ func : function
173
+ aggregation function to be applied to each column
174
+ dtype_mapping: dict or None
175
+ If not None, maps a dtype to a result dtype.
176
+ Otherwise, will fall back to default mapping.
177
+ is_grouped_kernel: bool, default False
178
+ Whether func operates using the group labels (True)
179
+ or using starts/ends arrays
180
+
181
+ If true, you also need to pass the number of groups to this function
182
+ nopython : bool
183
+ nopython to be passed into numba.jit
184
+ nogil : bool
185
+ nogil to be passed into numba.jit
186
+ parallel : bool
187
+ parallel to be passed into numba.jit
188
+
189
+ Returns
190
+ -------
191
+ Numba function
192
+ """
193
+
194
+ # A wrapper around the looper function,
195
+ # to dispatch based on dtype since numba is unable to do that in nopython mode
196
+
197
+ # It also post-processes the values by inserting nans where number of observations
198
+ # is less than min_periods
199
+ # Cannot do this in numba nopython mode
200
+ # (you'll run into type-unification error when you cast int -> float)
201
+ def looper_wrapper(
202
+ values,
203
+ start=None,
204
+ end=None,
205
+ labels=None,
206
+ ngroups=None,
207
+ min_periods: int = 0,
208
+ **kwargs,
209
+ ):
210
+ result_dtype = dtype_mapping[values.dtype]
211
+ column_looper = make_looper(
212
+ func, result_dtype, is_grouped_kernel, nopython, nogil, parallel
213
+ )
214
+ # Need to unpack kwargs since numba only supports *args
215
+ if is_grouped_kernel:
216
+ result, na_positions = column_looper(
217
+ values, labels, ngroups, min_periods, *kwargs.values()
218
+ )
219
+ else:
220
+ result, na_positions = column_looper(
221
+ values, start, end, min_periods, *kwargs.values()
222
+ )
223
+ if result.dtype.kind == "i":
224
+ # Look if na_positions is not empty
225
+ # If so, convert the whole block
226
+ # This is OK since int dtype cannot hold nan,
227
+ # so if min_periods not satisfied for 1 col, it is not satisfied for
228
+ # all columns at that index
229
+ for na_pos in na_positions.values():
230
+ if len(na_pos) > 0:
231
+ result = result.astype("float64")
232
+ break
233
+ # TODO: Optimize this
234
+ for i, na_pos in na_positions.items():
235
+ if len(na_pos) > 0:
236
+ result[i, na_pos] = np.nan
237
+ return result
238
+
239
+ return looper_wrapper
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/extensions.py ADDED
@@ -0,0 +1,584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Disable type checking for this module since numba's internals
2
+ # are not typed, and we use numba's internals via its extension API
3
+ # mypy: ignore-errors
4
+ """
5
+ Utility classes/functions to let numba recognize
6
+ pandas Index/Series/DataFrame
7
+
8
+ Mostly vendored from https://github.com/numba/numba/blob/main/numba/tests/pdlike_usecase.py
9
+ """
10
+
11
+ from __future__ import annotations
12
+
13
+ from contextlib import contextmanager
14
+ import operator
15
+
16
+ import numba
17
+ from numba import types
18
+ from numba.core import cgutils
19
+ from numba.core.datamodel import models
20
+ from numba.core.extending import (
21
+ NativeValue,
22
+ box,
23
+ lower_builtin,
24
+ make_attribute_wrapper,
25
+ overload,
26
+ overload_attribute,
27
+ overload_method,
28
+ register_model,
29
+ type_callable,
30
+ typeof_impl,
31
+ unbox,
32
+ )
33
+ from numba.core.imputils import impl_ret_borrowed
34
+ import numpy as np
35
+
36
+ from pandas._libs import lib
37
+
38
+ from pandas.core.indexes.base import Index
39
+ from pandas.core.indexing import _iLocIndexer
40
+ from pandas.core.internals import SingleBlockManager
41
+ from pandas.core.series import Series
42
+
43
+
44
+ # Helper function to hack around fact that Index casts numpy string dtype to object
45
+ #
46
+ # Idea is to set an attribute on a Index called _numba_data
47
+ # that is the original data, or the object data casted to numpy string dtype,
48
+ # with a context manager that is unset afterwards
49
+ @contextmanager
50
+ def set_numba_data(index: Index):
51
+ numba_data = index._data
52
+ if numba_data.dtype == object:
53
+ if not lib.is_string_array(numba_data):
54
+ raise ValueError(
55
+ "The numba engine only supports using string or numeric column names"
56
+ )
57
+ numba_data = numba_data.astype("U")
58
+ try:
59
+ index._numba_data = numba_data
60
+ yield index
61
+ finally:
62
+ del index._numba_data
63
+
64
+
65
+ # TODO: Range index support
66
+ # (this currently lowers OK, but does not round-trip)
67
+ class IndexType(types.Type):
68
+ """
69
+ The type class for Index objects.
70
+ """
71
+
72
+ def __init__(self, dtype, layout, pyclass: any) -> None:
73
+ self.pyclass = pyclass
74
+ name = f"index({dtype}, {layout})"
75
+ self.dtype = dtype
76
+ self.layout = layout
77
+ super().__init__(name)
78
+
79
+ @property
80
+ def key(self):
81
+ return self.pyclass, self.dtype, self.layout
82
+
83
+ @property
84
+ def as_array(self):
85
+ return types.Array(self.dtype, 1, self.layout)
86
+
87
+ def copy(self, dtype=None, ndim: int = 1, layout=None):
88
+ assert ndim == 1
89
+ if dtype is None:
90
+ dtype = self.dtype
91
+ layout = layout or self.layout
92
+ return type(self)(dtype, layout, self.pyclass)
93
+
94
+
95
+ class SeriesType(types.Type):
96
+ """
97
+ The type class for Series objects.
98
+ """
99
+
100
+ def __init__(self, dtype, index, namety) -> None:
101
+ assert isinstance(index, IndexType)
102
+ self.dtype = dtype
103
+ self.index = index
104
+ self.values = types.Array(self.dtype, 1, "C")
105
+ self.namety = namety
106
+ name = f"series({dtype}, {index}, {namety})"
107
+ super().__init__(name)
108
+
109
+ @property
110
+ def key(self):
111
+ return self.dtype, self.index, self.namety
112
+
113
+ @property
114
+ def as_array(self):
115
+ return self.values
116
+
117
+ def copy(self, dtype=None, ndim: int = 1, layout: str = "C"):
118
+ assert ndim == 1
119
+ assert layout == "C"
120
+ if dtype is None:
121
+ dtype = self.dtype
122
+ return type(self)(dtype, self.index, self.namety)
123
+
124
+
125
+ @typeof_impl.register(Index)
126
+ def typeof_index(val, c):
127
+ """
128
+ This will assume that only strings are in object dtype
129
+ index.
130
+ (you should check this before this gets lowered down to numba)
131
+ """
132
+ # arrty = typeof_impl(val._data, c)
133
+ arrty = typeof_impl(val._numba_data, c)
134
+ assert arrty.ndim == 1
135
+ return IndexType(arrty.dtype, arrty.layout, type(val))
136
+
137
+
138
+ @typeof_impl.register(Series)
139
+ def typeof_series(val, c):
140
+ index = typeof_impl(val.index, c)
141
+ arrty = typeof_impl(val.values, c)
142
+ namety = typeof_impl(val.name, c)
143
+ assert arrty.ndim == 1
144
+ assert arrty.layout == "C"
145
+ return SeriesType(arrty.dtype, index, namety)
146
+
147
+
148
+ @type_callable(Series)
149
+ def type_series_constructor(context):
150
+ def typer(data, index, name=None):
151
+ if isinstance(index, IndexType) and isinstance(data, types.Array):
152
+ assert data.ndim == 1
153
+ if name is None:
154
+ name = types.intp
155
+ return SeriesType(data.dtype, index, name)
156
+
157
+ return typer
158
+
159
+
160
+ @type_callable(Index)
161
+ def type_index_constructor(context):
162
+ def typer(data, hashmap=None):
163
+ if isinstance(data, types.Array):
164
+ assert data.layout == "C"
165
+ assert data.ndim == 1
166
+ assert hashmap is None or isinstance(hashmap, types.DictType)
167
+ return IndexType(data.dtype, layout=data.layout, pyclass=Index)
168
+
169
+ return typer
170
+
171
+
172
+ # Backend extensions for Index and Series and Frame
173
+ @register_model(IndexType)
174
+ class IndexModel(models.StructModel):
175
+ def __init__(self, dmm, fe_type) -> None:
176
+ # We don't want the numpy string scalar type in our hashmap
177
+ members = [
178
+ ("data", fe_type.as_array),
179
+ # This is an attempt to emulate our hashtable code with a numba
180
+ # typed dict
181
+ # It maps from values in the index to their integer positions in the array
182
+ ("hashmap", types.DictType(fe_type.dtype, types.intp)),
183
+ # Pointer to the Index object this was created from, or that it
184
+ # boxes to
185
+ # https://numba.discourse.group/t/qst-how-to-cache-the-boxing-of-an-object/2128/2?u=lithomas1
186
+ ("parent", types.pyobject),
187
+ ]
188
+ models.StructModel.__init__(self, dmm, fe_type, members)
189
+
190
+
191
+ @register_model(SeriesType)
192
+ class SeriesModel(models.StructModel):
193
+ def __init__(self, dmm, fe_type) -> None:
194
+ members = [
195
+ ("index", fe_type.index),
196
+ ("values", fe_type.as_array),
197
+ ("name", fe_type.namety),
198
+ ]
199
+ models.StructModel.__init__(self, dmm, fe_type, members)
200
+
201
+
202
+ make_attribute_wrapper(IndexType, "data", "_data")
203
+ make_attribute_wrapper(IndexType, "hashmap", "hashmap")
204
+
205
+ make_attribute_wrapper(SeriesType, "index", "index")
206
+ make_attribute_wrapper(SeriesType, "values", "values")
207
+ make_attribute_wrapper(SeriesType, "name", "name")
208
+
209
+
210
+ @lower_builtin(Series, types.Array, IndexType)
211
+ def pdseries_constructor(context, builder, sig, args):
212
+ data, index = args
213
+ series = cgutils.create_struct_proxy(sig.return_type)(context, builder)
214
+ series.index = index
215
+ series.values = data
216
+ series.name = context.get_constant(types.intp, 0)
217
+ return impl_ret_borrowed(context, builder, sig.return_type, series._getvalue())
218
+
219
+
220
+ @lower_builtin(Series, types.Array, IndexType, types.intp)
221
+ @lower_builtin(Series, types.Array, IndexType, types.float64)
222
+ @lower_builtin(Series, types.Array, IndexType, types.unicode_type)
223
+ def pdseries_constructor_with_name(context, builder, sig, args):
224
+ data, index, name = args
225
+ series = cgutils.create_struct_proxy(sig.return_type)(context, builder)
226
+ series.index = index
227
+ series.values = data
228
+ series.name = name
229
+ return impl_ret_borrowed(context, builder, sig.return_type, series._getvalue())
230
+
231
+
232
+ @lower_builtin(Index, types.Array, types.DictType, types.pyobject)
233
+ def index_constructor_2arg(context, builder, sig, args):
234
+ (data, hashmap, parent) = args
235
+ index = cgutils.create_struct_proxy(sig.return_type)(context, builder)
236
+
237
+ index.data = data
238
+ index.hashmap = hashmap
239
+ index.parent = parent
240
+ return impl_ret_borrowed(context, builder, sig.return_type, index._getvalue())
241
+
242
+
243
+ @lower_builtin(Index, types.Array, types.DictType)
244
+ def index_constructor_2arg_parent(context, builder, sig, args):
245
+ # Basically same as index_constructor_1arg, but also lets you specify the
246
+ # parent object
247
+ (data, hashmap) = args
248
+ index = cgutils.create_struct_proxy(sig.return_type)(context, builder)
249
+
250
+ index.data = data
251
+ index.hashmap = hashmap
252
+ return impl_ret_borrowed(context, builder, sig.return_type, index._getvalue())
253
+
254
+
255
+ @lower_builtin(Index, types.Array)
256
+ def index_constructor_1arg(context, builder, sig, args):
257
+ from numba.typed import Dict
258
+
259
+ key_type = sig.return_type.dtype
260
+ value_type = types.intp
261
+
262
+ def index_impl(data):
263
+ return Index(data, Dict.empty(key_type, value_type))
264
+
265
+ return context.compile_internal(builder, index_impl, sig, args)
266
+
267
+
268
+ # Helper to convert the unicodecharseq (numpy string scalar) into a unicode_type
269
+ # (regular string)
270
+ def maybe_cast_str(x):
271
+ # Dummy function that numba can overload
272
+ pass
273
+
274
+
275
+ @overload(maybe_cast_str)
276
+ def maybe_cast_str_impl(x):
277
+ """Converts numba UnicodeCharSeq (numpy string scalar) -> unicode type (string).
278
+ Is a no-op for other types."""
279
+ if isinstance(x, types.UnicodeCharSeq):
280
+ return lambda x: str(x)
281
+ else:
282
+ return lambda x: x
283
+
284
+
285
+ @unbox(IndexType)
286
+ def unbox_index(typ, obj, c):
287
+ """
288
+ Convert a Index object to a native structure.
289
+
290
+ Note: Object dtype is not allowed here
291
+ """
292
+ data_obj = c.pyapi.object_getattr_string(obj, "_numba_data")
293
+ index = cgutils.create_struct_proxy(typ)(c.context, c.builder)
294
+ # If we see an object array, assume its been validated as only containing strings
295
+ # We still need to do the conversion though
296
+ index.data = c.unbox(typ.as_array, data_obj).value
297
+ typed_dict_obj = c.pyapi.unserialize(c.pyapi.serialize_object(numba.typed.Dict))
298
+ # Create an empty typed dict in numba for the hashmap for indexing
299
+ # equiv of numba.typed.Dict.empty(typ.dtype, types.intp)
300
+ arr_type_obj = c.pyapi.unserialize(c.pyapi.serialize_object(typ.dtype))
301
+ intp_type_obj = c.pyapi.unserialize(c.pyapi.serialize_object(types.intp))
302
+ hashmap_obj = c.pyapi.call_method(
303
+ typed_dict_obj, "empty", (arr_type_obj, intp_type_obj)
304
+ )
305
+ index.hashmap = c.unbox(types.DictType(typ.dtype, types.intp), hashmap_obj).value
306
+ # Set the parent for speedy boxing.
307
+ index.parent = obj
308
+
309
+ # Decrefs
310
+ c.pyapi.decref(data_obj)
311
+ c.pyapi.decref(arr_type_obj)
312
+ c.pyapi.decref(intp_type_obj)
313
+ c.pyapi.decref(typed_dict_obj)
314
+
315
+ return NativeValue(index._getvalue())
316
+
317
+
318
+ @unbox(SeriesType)
319
+ def unbox_series(typ, obj, c):
320
+ """
321
+ Convert a Series object to a native structure.
322
+ """
323
+ index_obj = c.pyapi.object_getattr_string(obj, "index")
324
+ values_obj = c.pyapi.object_getattr_string(obj, "values")
325
+ name_obj = c.pyapi.object_getattr_string(obj, "name")
326
+
327
+ series = cgutils.create_struct_proxy(typ)(c.context, c.builder)
328
+ series.index = c.unbox(typ.index, index_obj).value
329
+ series.values = c.unbox(typ.values, values_obj).value
330
+ series.name = c.unbox(typ.namety, name_obj).value
331
+
332
+ # Decrefs
333
+ c.pyapi.decref(index_obj)
334
+ c.pyapi.decref(values_obj)
335
+ c.pyapi.decref(name_obj)
336
+
337
+ return NativeValue(series._getvalue())
338
+
339
+
340
+ @box(IndexType)
341
+ def box_index(typ, val, c):
342
+ """
343
+ Convert a native index structure to a Index object.
344
+
345
+ If our native index is of a numpy string dtype, we'll cast it to
346
+ object.
347
+ """
348
+ # First build a Numpy array object, then wrap it in a Index
349
+ index = cgutils.create_struct_proxy(typ)(c.context, c.builder, value=val)
350
+
351
+ res = cgutils.alloca_once_value(c.builder, index.parent)
352
+
353
+ # Does parent exist?
354
+ # (it means already boxed once, or Index same as original df.index or df.columns)
355
+ # xref https://github.com/numba/numba/blob/596e8a55334cc46854e3192766e643767bd7c934/numba/core/boxing.py#L593C17-L593C17
356
+ with c.builder.if_else(cgutils.is_not_null(c.builder, index.parent)) as (
357
+ has_parent,
358
+ otherwise,
359
+ ):
360
+ with has_parent:
361
+ c.pyapi.incref(index.parent)
362
+ with otherwise:
363
+ # TODO: preserve the original class for the index
364
+ # Also need preserve the name of the Index
365
+ # class_obj = c.pyapi.unserialize(c.pyapi.serialize_object(typ.pyclass))
366
+ class_obj = c.pyapi.unserialize(c.pyapi.serialize_object(Index))
367
+ array_obj = c.box(typ.as_array, index.data)
368
+ if isinstance(typ.dtype, types.UnicodeCharSeq):
369
+ # We converted to numpy string dtype, convert back
370
+ # to object since _simple_new won't do that for uss
371
+ object_str_obj = c.pyapi.unserialize(c.pyapi.serialize_object("object"))
372
+ array_obj = c.pyapi.call_method(array_obj, "astype", (object_str_obj,))
373
+ c.pyapi.decref(object_str_obj)
374
+ # this is basically Index._simple_new(array_obj, name_obj) in python
375
+ index_obj = c.pyapi.call_method(class_obj, "_simple_new", (array_obj,))
376
+ index.parent = index_obj
377
+ c.builder.store(index_obj, res)
378
+
379
+ # Decrefs
380
+ c.pyapi.decref(class_obj)
381
+ c.pyapi.decref(array_obj)
382
+ return c.builder.load(res)
383
+
384
+
385
+ @box(SeriesType)
386
+ def box_series(typ, val, c):
387
+ """
388
+ Convert a native series structure to a Series object.
389
+ """
390
+ series = cgutils.create_struct_proxy(typ)(c.context, c.builder, value=val)
391
+ series_const_obj = c.pyapi.unserialize(c.pyapi.serialize_object(Series._from_mgr))
392
+ mgr_const_obj = c.pyapi.unserialize(
393
+ c.pyapi.serialize_object(SingleBlockManager.from_array)
394
+ )
395
+ index_obj = c.box(typ.index, series.index)
396
+ array_obj = c.box(typ.as_array, series.values)
397
+ name_obj = c.box(typ.namety, series.name)
398
+ # This is basically equivalent of
399
+ # pd.Series(data=array_obj, index=index_obj)
400
+ # To improve perf, we will construct the Series from a manager
401
+ # object to avoid checks.
402
+ # We'll also set the name attribute manually to avoid validation
403
+ mgr_obj = c.pyapi.call_function_objargs(
404
+ mgr_const_obj,
405
+ (
406
+ array_obj,
407
+ index_obj,
408
+ ),
409
+ )
410
+ mgr_axes_obj = c.pyapi.object_getattr_string(mgr_obj, "axes")
411
+ # Series._constructor_from_mgr(mgr, axes)
412
+ series_obj = c.pyapi.call_function_objargs(
413
+ series_const_obj, (mgr_obj, mgr_axes_obj)
414
+ )
415
+ c.pyapi.object_setattr_string(series_obj, "_name", name_obj)
416
+
417
+ # Decrefs
418
+ c.pyapi.decref(series_const_obj)
419
+ c.pyapi.decref(mgr_axes_obj)
420
+ c.pyapi.decref(mgr_obj)
421
+ c.pyapi.decref(mgr_const_obj)
422
+ c.pyapi.decref(index_obj)
423
+ c.pyapi.decref(array_obj)
424
+ c.pyapi.decref(name_obj)
425
+
426
+ return series_obj
427
+
428
+
429
+ # Add common series reductions (e.g. mean, sum),
430
+ # and also add common binops (e.g. add, sub, mul, div)
431
+ def generate_series_reduction(ser_reduction, ser_method):
432
+ @overload_method(SeriesType, ser_reduction)
433
+ def series_reduction(series):
434
+ def series_reduction_impl(series):
435
+ return ser_method(series.values)
436
+
437
+ return series_reduction_impl
438
+
439
+ return series_reduction
440
+
441
+
442
+ def generate_series_binop(binop):
443
+ @overload(binop)
444
+ def series_binop(series1, value):
445
+ if isinstance(series1, SeriesType):
446
+ if isinstance(value, SeriesType):
447
+
448
+ def series_binop_impl(series1, series2):
449
+ # TODO: Check index matching?
450
+ return Series(
451
+ binop(series1.values, series2.values),
452
+ series1.index,
453
+ series1.name,
454
+ )
455
+
456
+ return series_binop_impl
457
+ else:
458
+
459
+ def series_binop_impl(series1, value):
460
+ return Series(
461
+ binop(series1.values, value), series1.index, series1.name
462
+ )
463
+
464
+ return series_binop_impl
465
+
466
+ return series_binop
467
+
468
+
469
+ series_reductions = [
470
+ ("sum", np.sum),
471
+ ("mean", np.mean),
472
+ # Disabled due to discrepancies between numba std. dev
473
+ # and pandas std. dev (no way to specify dof)
474
+ # ("std", np.std),
475
+ # ("var", np.var),
476
+ ("min", np.min),
477
+ ("max", np.max),
478
+ ]
479
+ for reduction, reduction_method in series_reductions:
480
+ generate_series_reduction(reduction, reduction_method)
481
+
482
+ series_binops = [operator.add, operator.sub, operator.mul, operator.truediv]
483
+
484
+ for ser_binop in series_binops:
485
+ generate_series_binop(ser_binop)
486
+
487
+
488
+ # get_loc on Index
489
+ @overload_method(IndexType, "get_loc")
490
+ def index_get_loc(index, item):
491
+ def index_get_loc_impl(index, item):
492
+ # Initialize the hash table if not initialized
493
+ if len(index.hashmap) == 0:
494
+ for i, val in enumerate(index._data):
495
+ index.hashmap[val] = i
496
+ return index.hashmap[item]
497
+
498
+ return index_get_loc_impl
499
+
500
+
501
+ # Indexing for Series/Index
502
+ @overload(operator.getitem)
503
+ def series_indexing(series, item):
504
+ if isinstance(series, SeriesType):
505
+
506
+ def series_getitem(series, item):
507
+ loc = series.index.get_loc(item)
508
+ return series.iloc[loc]
509
+
510
+ return series_getitem
511
+
512
+
513
+ @overload(operator.getitem)
514
+ def index_indexing(index, idx):
515
+ if isinstance(index, IndexType):
516
+
517
+ def index_getitem(index, idx):
518
+ return index._data[idx]
519
+
520
+ return index_getitem
521
+
522
+
523
+ class IlocType(types.Type):
524
+ def __init__(self, obj_type) -> None:
525
+ self.obj_type = obj_type
526
+ name = f"iLocIndexer({obj_type})"
527
+ super().__init__(name=name)
528
+
529
+ @property
530
+ def key(self):
531
+ return self.obj_type
532
+
533
+
534
+ @typeof_impl.register(_iLocIndexer)
535
+ def typeof_iloc(val, c):
536
+ objtype = typeof_impl(val.obj, c)
537
+ return IlocType(objtype)
538
+
539
+
540
+ @type_callable(_iLocIndexer)
541
+ def type_iloc_constructor(context):
542
+ def typer(obj):
543
+ if isinstance(obj, SeriesType):
544
+ return IlocType(obj)
545
+
546
+ return typer
547
+
548
+
549
+ @lower_builtin(_iLocIndexer, SeriesType)
550
+ def iloc_constructor(context, builder, sig, args):
551
+ (obj,) = args
552
+ iloc_indexer = cgutils.create_struct_proxy(sig.return_type)(context, builder)
553
+ iloc_indexer.obj = obj
554
+ return impl_ret_borrowed(
555
+ context, builder, sig.return_type, iloc_indexer._getvalue()
556
+ )
557
+
558
+
559
+ @register_model(IlocType)
560
+ class ILocModel(models.StructModel):
561
+ def __init__(self, dmm, fe_type) -> None:
562
+ members = [("obj", fe_type.obj_type)]
563
+ models.StructModel.__init__(self, dmm, fe_type, members)
564
+
565
+
566
+ make_attribute_wrapper(IlocType, "obj", "obj")
567
+
568
+
569
+ @overload_attribute(SeriesType, "iloc")
570
+ def series_iloc(series):
571
+ def get(series):
572
+ return _iLocIndexer(series)
573
+
574
+ return get
575
+
576
+
577
+ @overload(operator.getitem)
578
+ def iloc_getitem(iloc_indexer, i):
579
+ if isinstance(iloc_indexer, IlocType):
580
+
581
+ def getitem_impl(iloc_indexer, i):
582
+ return iloc_indexer.obj.values[i]
583
+
584
+ return getitem_impl
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__init__.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas.core._numba.kernels.mean_ import (
2
+ grouped_mean,
3
+ sliding_mean,
4
+ )
5
+ from pandas.core._numba.kernels.min_max_ import (
6
+ grouped_min_max,
7
+ sliding_min_max,
8
+ )
9
+ from pandas.core._numba.kernels.sum_ import (
10
+ grouped_sum,
11
+ sliding_sum,
12
+ )
13
+ from pandas.core._numba.kernels.var_ import (
14
+ grouped_var,
15
+ sliding_var,
16
+ )
17
+
18
+ __all__ = [
19
+ "sliding_mean",
20
+ "grouped_mean",
21
+ "sliding_sum",
22
+ "grouped_sum",
23
+ "sliding_var",
24
+ "grouped_var",
25
+ "sliding_min_max",
26
+ "grouped_min_max",
27
+ ]
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (631 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/mean_.cpython-310.pyc ADDED
Binary file (3.49 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/min_max_.cpython-310.pyc ADDED
Binary file (2.46 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/shared.cpython-310.pyc ADDED
Binary file (790 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/sum_.cpython-310.pyc ADDED
Binary file (3.82 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/var_.cpython-310.pyc ADDED
Binary file (3.96 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/mean_.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Numba 1D mean kernels that can be shared by
3
+ * Dataframe / Series
4
+ * groupby
5
+ * rolling / expanding
6
+
7
+ Mirrors pandas/_libs/window/aggregation.pyx
8
+ """
9
+ from __future__ import annotations
10
+
11
+ from typing import TYPE_CHECKING
12
+
13
+ import numba
14
+ import numpy as np
15
+
16
+ from pandas.core._numba.kernels.shared import is_monotonic_increasing
17
+ from pandas.core._numba.kernels.sum_ import grouped_kahan_sum
18
+
19
+ if TYPE_CHECKING:
20
+ from pandas._typing import npt
21
+
22
+
23
+ @numba.jit(nopython=True, nogil=True, parallel=False)
24
+ def add_mean(
25
+ val: float,
26
+ nobs: int,
27
+ sum_x: float,
28
+ neg_ct: int,
29
+ compensation: float,
30
+ num_consecutive_same_value: int,
31
+ prev_value: float,
32
+ ) -> tuple[int, float, int, float, int, float]:
33
+ if not np.isnan(val):
34
+ nobs += 1
35
+ y = val - compensation
36
+ t = sum_x + y
37
+ compensation = t - sum_x - y
38
+ sum_x = t
39
+ if val < 0:
40
+ neg_ct += 1
41
+
42
+ if val == prev_value:
43
+ num_consecutive_same_value += 1
44
+ else:
45
+ num_consecutive_same_value = 1
46
+ prev_value = val
47
+
48
+ return nobs, sum_x, neg_ct, compensation, num_consecutive_same_value, prev_value
49
+
50
+
51
+ @numba.jit(nopython=True, nogil=True, parallel=False)
52
+ def remove_mean(
53
+ val: float, nobs: int, sum_x: float, neg_ct: int, compensation: float
54
+ ) -> tuple[int, float, int, float]:
55
+ if not np.isnan(val):
56
+ nobs -= 1
57
+ y = -val - compensation
58
+ t = sum_x + y
59
+ compensation = t - sum_x - y
60
+ sum_x = t
61
+ if val < 0:
62
+ neg_ct -= 1
63
+ return nobs, sum_x, neg_ct, compensation
64
+
65
+
66
+ @numba.jit(nopython=True, nogil=True, parallel=False)
67
+ def sliding_mean(
68
+ values: np.ndarray,
69
+ result_dtype: np.dtype,
70
+ start: np.ndarray,
71
+ end: np.ndarray,
72
+ min_periods: int,
73
+ ) -> tuple[np.ndarray, list[int]]:
74
+ N = len(start)
75
+ nobs = 0
76
+ sum_x = 0.0
77
+ neg_ct = 0
78
+ compensation_add = 0.0
79
+ compensation_remove = 0.0
80
+
81
+ is_monotonic_increasing_bounds = is_monotonic_increasing(
82
+ start
83
+ ) and is_monotonic_increasing(end)
84
+
85
+ output = np.empty(N, dtype=result_dtype)
86
+
87
+ for i in range(N):
88
+ s = start[i]
89
+ e = end[i]
90
+ if i == 0 or not is_monotonic_increasing_bounds:
91
+ prev_value = values[s]
92
+ num_consecutive_same_value = 0
93
+
94
+ for j in range(s, e):
95
+ val = values[j]
96
+ (
97
+ nobs,
98
+ sum_x,
99
+ neg_ct,
100
+ compensation_add,
101
+ num_consecutive_same_value,
102
+ prev_value,
103
+ ) = add_mean(
104
+ val,
105
+ nobs,
106
+ sum_x,
107
+ neg_ct,
108
+ compensation_add,
109
+ num_consecutive_same_value,
110
+ prev_value, # pyright: ignore[reportGeneralTypeIssues]
111
+ )
112
+ else:
113
+ for j in range(start[i - 1], s):
114
+ val = values[j]
115
+ nobs, sum_x, neg_ct, compensation_remove = remove_mean(
116
+ val, nobs, sum_x, neg_ct, compensation_remove
117
+ )
118
+
119
+ for j in range(end[i - 1], e):
120
+ val = values[j]
121
+ (
122
+ nobs,
123
+ sum_x,
124
+ neg_ct,
125
+ compensation_add,
126
+ num_consecutive_same_value,
127
+ prev_value,
128
+ ) = add_mean(
129
+ val,
130
+ nobs,
131
+ sum_x,
132
+ neg_ct,
133
+ compensation_add,
134
+ num_consecutive_same_value,
135
+ prev_value, # pyright: ignore[reportGeneralTypeIssues]
136
+ )
137
+
138
+ if nobs >= min_periods and nobs > 0:
139
+ result = sum_x / nobs
140
+ if num_consecutive_same_value >= nobs:
141
+ result = prev_value
142
+ elif neg_ct == 0 and result < 0:
143
+ result = 0
144
+ elif neg_ct == nobs and result > 0:
145
+ result = 0
146
+ else:
147
+ result = np.nan
148
+
149
+ output[i] = result
150
+
151
+ if not is_monotonic_increasing_bounds:
152
+ nobs = 0
153
+ sum_x = 0.0
154
+ neg_ct = 0
155
+ compensation_remove = 0.0
156
+
157
+ # na_position is empty list since float64 can already hold nans
158
+ # Do list comprehension, since numba cannot figure out that na_pos is
159
+ # empty list of ints on its own
160
+ na_pos = [0 for i in range(0)]
161
+ return output, na_pos
162
+
163
+
164
+ @numba.jit(nopython=True, nogil=True, parallel=False)
165
+ def grouped_mean(
166
+ values: np.ndarray,
167
+ result_dtype: np.dtype,
168
+ labels: npt.NDArray[np.intp],
169
+ ngroups: int,
170
+ min_periods: int,
171
+ ) -> tuple[np.ndarray, list[int]]:
172
+ output, nobs_arr, comp_arr, consecutive_counts, prev_vals = grouped_kahan_sum(
173
+ values, result_dtype, labels, ngroups
174
+ )
175
+
176
+ # Post-processing, replace sums that don't satisfy min_periods
177
+ for lab in range(ngroups):
178
+ nobs = nobs_arr[lab]
179
+ num_consecutive_same_value = consecutive_counts[lab]
180
+ prev_value = prev_vals[lab]
181
+ sum_x = output[lab]
182
+ if nobs >= min_periods:
183
+ if num_consecutive_same_value >= nobs:
184
+ result = prev_value * nobs
185
+ else:
186
+ result = sum_x
187
+ else:
188
+ result = np.nan
189
+ result /= nobs
190
+ output[lab] = result
191
+
192
+ # na_position is empty list since float64 can already hold nans
193
+ # Do list comprehension, since numba cannot figure out that na_pos is
194
+ # empty list of ints on its own
195
+ na_pos = [0 for i in range(0)]
196
+ return output, na_pos
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/min_max_.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Numba 1D min/max kernels that can be shared by
3
+ * Dataframe / Series
4
+ * groupby
5
+ * rolling / expanding
6
+
7
+ Mirrors pandas/_libs/window/aggregation.pyx
8
+ """
9
+ from __future__ import annotations
10
+
11
+ from typing import TYPE_CHECKING
12
+
13
+ import numba
14
+ import numpy as np
15
+
16
+ if TYPE_CHECKING:
17
+ from pandas._typing import npt
18
+
19
+
20
+ @numba.jit(nopython=True, nogil=True, parallel=False)
21
+ def sliding_min_max(
22
+ values: np.ndarray,
23
+ result_dtype: np.dtype,
24
+ start: np.ndarray,
25
+ end: np.ndarray,
26
+ min_periods: int,
27
+ is_max: bool,
28
+ ) -> tuple[np.ndarray, list[int]]:
29
+ N = len(start)
30
+ nobs = 0
31
+ output = np.empty(N, dtype=result_dtype)
32
+ na_pos = []
33
+ # Use deque once numba supports it
34
+ # https://github.com/numba/numba/issues/7417
35
+ Q: list = []
36
+ W: list = []
37
+ for i in range(N):
38
+ curr_win_size = end[i] - start[i]
39
+ if i == 0:
40
+ st = start[i]
41
+ else:
42
+ st = end[i - 1]
43
+
44
+ for k in range(st, end[i]):
45
+ ai = values[k]
46
+ if not np.isnan(ai):
47
+ nobs += 1
48
+ elif is_max:
49
+ ai = -np.inf
50
+ else:
51
+ ai = np.inf
52
+ # Discard previous entries if we find new min or max
53
+ if is_max:
54
+ while Q and ((ai >= values[Q[-1]]) or values[Q[-1]] != values[Q[-1]]):
55
+ Q.pop()
56
+ else:
57
+ while Q and ((ai <= values[Q[-1]]) or values[Q[-1]] != values[Q[-1]]):
58
+ Q.pop()
59
+ Q.append(k)
60
+ W.append(k)
61
+
62
+ # Discard entries outside and left of current window
63
+ while Q and Q[0] <= start[i] - 1:
64
+ Q.pop(0)
65
+ while W and W[0] <= start[i] - 1:
66
+ if not np.isnan(values[W[0]]):
67
+ nobs -= 1
68
+ W.pop(0)
69
+
70
+ # Save output based on index in input value array
71
+ if Q and curr_win_size > 0 and nobs >= min_periods:
72
+ output[i] = values[Q[0]]
73
+ else:
74
+ if values.dtype.kind != "i":
75
+ output[i] = np.nan
76
+ else:
77
+ na_pos.append(i)
78
+
79
+ return output, na_pos
80
+
81
+
82
+ @numba.jit(nopython=True, nogil=True, parallel=False)
83
+ def grouped_min_max(
84
+ values: np.ndarray,
85
+ result_dtype: np.dtype,
86
+ labels: npt.NDArray[np.intp],
87
+ ngroups: int,
88
+ min_periods: int,
89
+ is_max: bool,
90
+ ) -> tuple[np.ndarray, list[int]]:
91
+ N = len(labels)
92
+ nobs = np.zeros(ngroups, dtype=np.int64)
93
+ na_pos = []
94
+ output = np.empty(ngroups, dtype=result_dtype)
95
+
96
+ for i in range(N):
97
+ lab = labels[i]
98
+ val = values[i]
99
+ if lab < 0:
100
+ continue
101
+
102
+ if values.dtype.kind == "i" or not np.isnan(val):
103
+ nobs[lab] += 1
104
+ else:
105
+ # NaN value cannot be a min/max value
106
+ continue
107
+
108
+ if nobs[lab] == 1:
109
+ # First element in group, set output equal to this
110
+ output[lab] = val
111
+ continue
112
+
113
+ if is_max:
114
+ if val > output[lab]:
115
+ output[lab] = val
116
+ else:
117
+ if val < output[lab]:
118
+ output[lab] = val
119
+
120
+ # Set labels that don't satisfy min_periods as np.nan
121
+ for lab, count in enumerate(nobs):
122
+ if count < min_periods:
123
+ na_pos.append(lab)
124
+
125
+ return output, na_pos
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/shared.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import TYPE_CHECKING
4
+
5
+ import numba
6
+
7
+ if TYPE_CHECKING:
8
+ import numpy as np
9
+
10
+
11
+ @numba.jit(
12
+ # error: Any? not callable
13
+ numba.boolean(numba.int64[:]), # type: ignore[misc]
14
+ nopython=True,
15
+ nogil=True,
16
+ parallel=False,
17
+ )
18
+ def is_monotonic_increasing(bounds: np.ndarray) -> bool:
19
+ """Check if int64 values are monotonically increasing."""
20
+ n = len(bounds)
21
+ if n < 2:
22
+ return True
23
+ prev = bounds[0]
24
+ for i in range(1, n):
25
+ cur = bounds[i]
26
+ if cur < prev:
27
+ return False
28
+ prev = cur
29
+ return True
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/sum_.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Numba 1D sum kernels that can be shared by
3
+ * Dataframe / Series
4
+ * groupby
5
+ * rolling / expanding
6
+
7
+ Mirrors pandas/_libs/window/aggregation.pyx
8
+ """
9
+ from __future__ import annotations
10
+
11
+ from typing import (
12
+ TYPE_CHECKING,
13
+ Any,
14
+ )
15
+
16
+ import numba
17
+ from numba.extending import register_jitable
18
+ import numpy as np
19
+
20
+ if TYPE_CHECKING:
21
+ from pandas._typing import npt
22
+
23
+ from pandas.core._numba.kernels.shared import is_monotonic_increasing
24
+
25
+
26
+ @numba.jit(nopython=True, nogil=True, parallel=False)
27
+ def add_sum(
28
+ val: Any,
29
+ nobs: int,
30
+ sum_x: Any,
31
+ compensation: Any,
32
+ num_consecutive_same_value: int,
33
+ prev_value: Any,
34
+ ) -> tuple[int, Any, Any, int, Any]:
35
+ if not np.isnan(val):
36
+ nobs += 1
37
+ y = val - compensation
38
+ t = sum_x + y
39
+ compensation = t - sum_x - y
40
+ sum_x = t
41
+
42
+ if val == prev_value:
43
+ num_consecutive_same_value += 1
44
+ else:
45
+ num_consecutive_same_value = 1
46
+ prev_value = val
47
+
48
+ return nobs, sum_x, compensation, num_consecutive_same_value, prev_value
49
+
50
+
51
+ @numba.jit(nopython=True, nogil=True, parallel=False)
52
+ def remove_sum(
53
+ val: Any, nobs: int, sum_x: Any, compensation: Any
54
+ ) -> tuple[int, Any, Any]:
55
+ if not np.isnan(val):
56
+ nobs -= 1
57
+ y = -val - compensation
58
+ t = sum_x + y
59
+ compensation = t - sum_x - y
60
+ sum_x = t
61
+ return nobs, sum_x, compensation
62
+
63
+
64
+ @numba.jit(nopython=True, nogil=True, parallel=False)
65
+ def sliding_sum(
66
+ values: np.ndarray,
67
+ result_dtype: np.dtype,
68
+ start: np.ndarray,
69
+ end: np.ndarray,
70
+ min_periods: int,
71
+ ) -> tuple[np.ndarray, list[int]]:
72
+ dtype = values.dtype
73
+
74
+ na_val: object = np.nan
75
+ if dtype.kind == "i":
76
+ na_val = 0
77
+
78
+ N = len(start)
79
+ nobs = 0
80
+ sum_x = 0
81
+ compensation_add = 0
82
+ compensation_remove = 0
83
+ na_pos = []
84
+
85
+ is_monotonic_increasing_bounds = is_monotonic_increasing(
86
+ start
87
+ ) and is_monotonic_increasing(end)
88
+
89
+ output = np.empty(N, dtype=result_dtype)
90
+
91
+ for i in range(N):
92
+ s = start[i]
93
+ e = end[i]
94
+ if i == 0 or not is_monotonic_increasing_bounds:
95
+ prev_value = values[s]
96
+ num_consecutive_same_value = 0
97
+
98
+ for j in range(s, e):
99
+ val = values[j]
100
+ (
101
+ nobs,
102
+ sum_x,
103
+ compensation_add,
104
+ num_consecutive_same_value,
105
+ prev_value,
106
+ ) = add_sum(
107
+ val,
108
+ nobs,
109
+ sum_x,
110
+ compensation_add,
111
+ num_consecutive_same_value,
112
+ prev_value,
113
+ )
114
+ else:
115
+ for j in range(start[i - 1], s):
116
+ val = values[j]
117
+ nobs, sum_x, compensation_remove = remove_sum(
118
+ val, nobs, sum_x, compensation_remove
119
+ )
120
+
121
+ for j in range(end[i - 1], e):
122
+ val = values[j]
123
+ (
124
+ nobs,
125
+ sum_x,
126
+ compensation_add,
127
+ num_consecutive_same_value,
128
+ prev_value,
129
+ ) = add_sum(
130
+ val,
131
+ nobs,
132
+ sum_x,
133
+ compensation_add,
134
+ num_consecutive_same_value,
135
+ prev_value,
136
+ )
137
+
138
+ if nobs == 0 == min_periods:
139
+ result: object = 0
140
+ elif nobs >= min_periods:
141
+ if num_consecutive_same_value >= nobs:
142
+ result = prev_value * nobs
143
+ else:
144
+ result = sum_x
145
+ else:
146
+ result = na_val
147
+ if dtype.kind == "i":
148
+ na_pos.append(i)
149
+
150
+ output[i] = result
151
+
152
+ if not is_monotonic_increasing_bounds:
153
+ nobs = 0
154
+ sum_x = 0
155
+ compensation_remove = 0
156
+
157
+ return output, na_pos
158
+
159
+
160
+ # Mypy/pyright don't like the fact that the decorator is untyped
161
+ @register_jitable # type: ignore[misc]
162
+ def grouped_kahan_sum(
163
+ values: np.ndarray,
164
+ result_dtype: np.dtype,
165
+ labels: npt.NDArray[np.intp],
166
+ ngroups: int,
167
+ ) -> tuple[
168
+ np.ndarray, npt.NDArray[np.int64], np.ndarray, npt.NDArray[np.int64], np.ndarray
169
+ ]:
170
+ N = len(labels)
171
+
172
+ nobs_arr = np.zeros(ngroups, dtype=np.int64)
173
+ comp_arr = np.zeros(ngroups, dtype=values.dtype)
174
+ consecutive_counts = np.zeros(ngroups, dtype=np.int64)
175
+ prev_vals = np.zeros(ngroups, dtype=values.dtype)
176
+ output = np.zeros(ngroups, dtype=result_dtype)
177
+
178
+ for i in range(N):
179
+ lab = labels[i]
180
+ val = values[i]
181
+
182
+ if lab < 0:
183
+ continue
184
+
185
+ sum_x = output[lab]
186
+ nobs = nobs_arr[lab]
187
+ compensation_add = comp_arr[lab]
188
+ num_consecutive_same_value = consecutive_counts[lab]
189
+ prev_value = prev_vals[lab]
190
+
191
+ (
192
+ nobs,
193
+ sum_x,
194
+ compensation_add,
195
+ num_consecutive_same_value,
196
+ prev_value,
197
+ ) = add_sum(
198
+ val,
199
+ nobs,
200
+ sum_x,
201
+ compensation_add,
202
+ num_consecutive_same_value,
203
+ prev_value,
204
+ )
205
+
206
+ output[lab] = sum_x
207
+ consecutive_counts[lab] = num_consecutive_same_value
208
+ prev_vals[lab] = prev_value
209
+ comp_arr[lab] = compensation_add
210
+ nobs_arr[lab] = nobs
211
+ return output, nobs_arr, comp_arr, consecutive_counts, prev_vals
212
+
213
+
214
+ @numba.jit(nopython=True, nogil=True, parallel=False)
215
+ def grouped_sum(
216
+ values: np.ndarray,
217
+ result_dtype: np.dtype,
218
+ labels: npt.NDArray[np.intp],
219
+ ngroups: int,
220
+ min_periods: int,
221
+ ) -> tuple[np.ndarray, list[int]]:
222
+ na_pos = []
223
+
224
+ output, nobs_arr, comp_arr, consecutive_counts, prev_vals = grouped_kahan_sum(
225
+ values, result_dtype, labels, ngroups
226
+ )
227
+
228
+ # Post-processing, replace sums that don't satisfy min_periods
229
+ for lab in range(ngroups):
230
+ nobs = nobs_arr[lab]
231
+ num_consecutive_same_value = consecutive_counts[lab]
232
+ prev_value = prev_vals[lab]
233
+ sum_x = output[lab]
234
+ if nobs >= min_periods:
235
+ if num_consecutive_same_value >= nobs:
236
+ result = prev_value * nobs
237
+ else:
238
+ result = sum_x
239
+ else:
240
+ result = sum_x # Don't change val, will be replaced by nan later
241
+ na_pos.append(lab)
242
+ output[lab] = result
243
+
244
+ return output, na_pos
llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/var_.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Numba 1D var kernels that can be shared by
3
+ * Dataframe / Series
4
+ * groupby
5
+ * rolling / expanding
6
+
7
+ Mirrors pandas/_libs/window/aggregation.pyx
8
+ """
9
+ from __future__ import annotations
10
+
11
+ from typing import TYPE_CHECKING
12
+
13
+ import numba
14
+ import numpy as np
15
+
16
+ if TYPE_CHECKING:
17
+ from pandas._typing import npt
18
+
19
+ from pandas.core._numba.kernels.shared import is_monotonic_increasing
20
+
21
+
22
+ @numba.jit(nopython=True, nogil=True, parallel=False)
23
+ def add_var(
24
+ val: float,
25
+ nobs: int,
26
+ mean_x: float,
27
+ ssqdm_x: float,
28
+ compensation: float,
29
+ num_consecutive_same_value: int,
30
+ prev_value: float,
31
+ ) -> tuple[int, float, float, float, int, float]:
32
+ if not np.isnan(val):
33
+ if val == prev_value:
34
+ num_consecutive_same_value += 1
35
+ else:
36
+ num_consecutive_same_value = 1
37
+ prev_value = val
38
+
39
+ nobs += 1
40
+ prev_mean = mean_x - compensation
41
+ y = val - compensation
42
+ t = y - mean_x
43
+ compensation = t + mean_x - y
44
+ delta = t
45
+ if nobs:
46
+ mean_x += delta / nobs
47
+ else:
48
+ mean_x = 0
49
+ ssqdm_x += (val - prev_mean) * (val - mean_x)
50
+ return nobs, mean_x, ssqdm_x, compensation, num_consecutive_same_value, prev_value
51
+
52
+
53
+ @numba.jit(nopython=True, nogil=True, parallel=False)
54
+ def remove_var(
55
+ val: float, nobs: int, mean_x: float, ssqdm_x: float, compensation: float
56
+ ) -> tuple[int, float, float, float]:
57
+ if not np.isnan(val):
58
+ nobs -= 1
59
+ if nobs:
60
+ prev_mean = mean_x - compensation
61
+ y = val - compensation
62
+ t = y - mean_x
63
+ compensation = t + mean_x - y
64
+ delta = t
65
+ mean_x -= delta / nobs
66
+ ssqdm_x -= (val - prev_mean) * (val - mean_x)
67
+ else:
68
+ mean_x = 0
69
+ ssqdm_x = 0
70
+ return nobs, mean_x, ssqdm_x, compensation
71
+
72
+
73
+ @numba.jit(nopython=True, nogil=True, parallel=False)
74
+ def sliding_var(
75
+ values: np.ndarray,
76
+ result_dtype: np.dtype,
77
+ start: np.ndarray,
78
+ end: np.ndarray,
79
+ min_periods: int,
80
+ ddof: int = 1,
81
+ ) -> tuple[np.ndarray, list[int]]:
82
+ N = len(start)
83
+ nobs = 0
84
+ mean_x = 0.0
85
+ ssqdm_x = 0.0
86
+ compensation_add = 0.0
87
+ compensation_remove = 0.0
88
+
89
+ min_periods = max(min_periods, 1)
90
+ is_monotonic_increasing_bounds = is_monotonic_increasing(
91
+ start
92
+ ) and is_monotonic_increasing(end)
93
+
94
+ output = np.empty(N, dtype=result_dtype)
95
+
96
+ for i in range(N):
97
+ s = start[i]
98
+ e = end[i]
99
+ if i == 0 or not is_monotonic_increasing_bounds:
100
+ prev_value = values[s]
101
+ num_consecutive_same_value = 0
102
+
103
+ for j in range(s, e):
104
+ val = values[j]
105
+ (
106
+ nobs,
107
+ mean_x,
108
+ ssqdm_x,
109
+ compensation_add,
110
+ num_consecutive_same_value,
111
+ prev_value,
112
+ ) = add_var(
113
+ val,
114
+ nobs,
115
+ mean_x,
116
+ ssqdm_x,
117
+ compensation_add,
118
+ num_consecutive_same_value,
119
+ prev_value,
120
+ )
121
+ else:
122
+ for j in range(start[i - 1], s):
123
+ val = values[j]
124
+ nobs, mean_x, ssqdm_x, compensation_remove = remove_var(
125
+ val, nobs, mean_x, ssqdm_x, compensation_remove
126
+ )
127
+
128
+ for j in range(end[i - 1], e):
129
+ val = values[j]
130
+ (
131
+ nobs,
132
+ mean_x,
133
+ ssqdm_x,
134
+ compensation_add,
135
+ num_consecutive_same_value,
136
+ prev_value,
137
+ ) = add_var(
138
+ val,
139
+ nobs,
140
+ mean_x,
141
+ ssqdm_x,
142
+ compensation_add,
143
+ num_consecutive_same_value,
144
+ prev_value,
145
+ )
146
+
147
+ if nobs >= min_periods and nobs > ddof:
148
+ if nobs == 1 or num_consecutive_same_value >= nobs:
149
+ result = 0.0
150
+ else:
151
+ result = ssqdm_x / (nobs - ddof)
152
+ else:
153
+ result = np.nan
154
+
155
+ output[i] = result
156
+
157
+ if not is_monotonic_increasing_bounds:
158
+ nobs = 0
159
+ mean_x = 0.0
160
+ ssqdm_x = 0.0
161
+ compensation_remove = 0.0
162
+
163
+ # na_position is empty list since float64 can already hold nans
164
+ # Do list comprehension, since numba cannot figure out that na_pos is
165
+ # empty list of ints on its own
166
+ na_pos = [0 for i in range(0)]
167
+ return output, na_pos
168
+
169
+
170
+ @numba.jit(nopython=True, nogil=True, parallel=False)
171
+ def grouped_var(
172
+ values: np.ndarray,
173
+ result_dtype: np.dtype,
174
+ labels: npt.NDArray[np.intp],
175
+ ngroups: int,
176
+ min_periods: int,
177
+ ddof: int = 1,
178
+ ) -> tuple[np.ndarray, list[int]]:
179
+ N = len(labels)
180
+
181
+ nobs_arr = np.zeros(ngroups, dtype=np.int64)
182
+ comp_arr = np.zeros(ngroups, dtype=values.dtype)
183
+ consecutive_counts = np.zeros(ngroups, dtype=np.int64)
184
+ prev_vals = np.zeros(ngroups, dtype=values.dtype)
185
+ output = np.zeros(ngroups, dtype=result_dtype)
186
+ means = np.zeros(ngroups, dtype=result_dtype)
187
+
188
+ for i in range(N):
189
+ lab = labels[i]
190
+ val = values[i]
191
+
192
+ if lab < 0:
193
+ continue
194
+
195
+ mean_x = means[lab]
196
+ ssqdm_x = output[lab]
197
+ nobs = nobs_arr[lab]
198
+ compensation_add = comp_arr[lab]
199
+ num_consecutive_same_value = consecutive_counts[lab]
200
+ prev_value = prev_vals[lab]
201
+
202
+ (
203
+ nobs,
204
+ mean_x,
205
+ ssqdm_x,
206
+ compensation_add,
207
+ num_consecutive_same_value,
208
+ prev_value,
209
+ ) = add_var(
210
+ val,
211
+ nobs,
212
+ mean_x,
213
+ ssqdm_x,
214
+ compensation_add,
215
+ num_consecutive_same_value,
216
+ prev_value,
217
+ )
218
+
219
+ output[lab] = ssqdm_x
220
+ means[lab] = mean_x
221
+ consecutive_counts[lab] = num_consecutive_same_value
222
+ prev_vals[lab] = prev_value
223
+ comp_arr[lab] = compensation_add
224
+ nobs_arr[lab] = nobs
225
+
226
+ # Post-processing, replace vars that don't satisfy min_periods
227
+ for lab in range(ngroups):
228
+ nobs = nobs_arr[lab]
229
+ num_consecutive_same_value = consecutive_counts[lab]
230
+ ssqdm_x = output[lab]
231
+ if nobs >= min_periods and nobs > ddof:
232
+ if nobs == 1 or num_consecutive_same_value >= nobs:
233
+ result = 0.0
234
+ else:
235
+ result = ssqdm_x / (nobs - ddof)
236
+ else:
237
+ result = np.nan
238
+ output[lab] = result
239
+
240
+ # Second pass to get the std.dev
241
+ # na_position is empty list since float64 can already hold nans
242
+ # Do list comprehension, since numba cannot figure out that na_pos is
243
+ # empty list of ints on its own
244
+ na_pos = [0 for i in range(0)]
245
+ return output, na_pos
llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/base.cpython-310.pyc ADDED
Binary file (18.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/cast.cpython-310.pyc ADDED
Binary file (39.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/common.cpython-310.pyc ADDED
Binary file (42.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/concat.cpython-310.pyc ADDED
Binary file (10.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/generic.cpython-310.pyc ADDED
Binary file (3.23 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/inference.cpython-310.pyc ADDED
Binary file (9.55 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/missing.cpython-310.pyc ADDED
Binary file (19.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__init__.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas.core.groupby.generic import (
2
+ DataFrameGroupBy,
3
+ NamedAgg,
4
+ SeriesGroupBy,
5
+ )
6
+ from pandas.core.groupby.groupby import GroupBy
7
+ from pandas.core.groupby.grouper import Grouper
8
+
9
+ __all__ = [
10
+ "DataFrameGroupBy",
11
+ "NamedAgg",
12
+ "SeriesGroupBy",
13
+ "GroupBy",
14
+ "Grouper",
15
+ ]
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (467 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/grouper.cpython-310.pyc ADDED
Binary file (26.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/numba_.cpython-310.pyc ADDED
Binary file (4.52 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/ops.cpython-310.pyc ADDED
Binary file (29 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/base.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Provide basic components for groupby.
3
+ """
4
+ from __future__ import annotations
5
+
6
+ import dataclasses
7
+ from typing import TYPE_CHECKING
8
+
9
+ if TYPE_CHECKING:
10
+ from collections.abc import Hashable
11
+
12
+
13
+ @dataclasses.dataclass(order=True, frozen=True)
14
+ class OutputKey:
15
+ label: Hashable
16
+ position: int
17
+
18
+
19
+ # special case to prevent duplicate plots when catching exceptions when
20
+ # forwarding methods from NDFrames
21
+ plotting_methods = frozenset(["plot", "hist"])
22
+
23
+ # cythonized transformations or canned "agg+broadcast", which do not
24
+ # require postprocessing of the result by transform.
25
+ cythonized_kernels = frozenset(["cumprod", "cumsum", "shift", "cummin", "cummax"])
26
+
27
+ # List of aggregation/reduction functions.
28
+ # These map each group to a single numeric value
29
+ reduction_kernels = frozenset(
30
+ [
31
+ "all",
32
+ "any",
33
+ "corrwith",
34
+ "count",
35
+ "first",
36
+ "idxmax",
37
+ "idxmin",
38
+ "last",
39
+ "max",
40
+ "mean",
41
+ "median",
42
+ "min",
43
+ "nunique",
44
+ "prod",
45
+ # as long as `quantile`'s signature accepts only
46
+ # a single quantile value, it's a reduction.
47
+ # GH#27526 might change that.
48
+ "quantile",
49
+ "sem",
50
+ "size",
51
+ "skew",
52
+ "std",
53
+ "sum",
54
+ "var",
55
+ ]
56
+ )
57
+
58
+ # List of transformation functions.
59
+ # a transformation is a function that, for each group,
60
+ # produces a result that has the same shape as the group.
61
+
62
+
63
+ transformation_kernels = frozenset(
64
+ [
65
+ "bfill",
66
+ "cumcount",
67
+ "cummax",
68
+ "cummin",
69
+ "cumprod",
70
+ "cumsum",
71
+ "diff",
72
+ "ffill",
73
+ "fillna",
74
+ "ngroup",
75
+ "pct_change",
76
+ "rank",
77
+ "shift",
78
+ ]
79
+ )
80
+
81
+ # these are all the public methods on Grouper which don't belong
82
+ # in either of the above lists
83
+ groupby_other_methods = frozenset(
84
+ [
85
+ "agg",
86
+ "aggregate",
87
+ "apply",
88
+ "boxplot",
89
+ # corr and cov return ngroups*ncolumns rows, so they
90
+ # are neither a transformation nor a reduction
91
+ "corr",
92
+ "cov",
93
+ "describe",
94
+ "dtypes",
95
+ "expanding",
96
+ "ewm",
97
+ "filter",
98
+ "get_group",
99
+ "groups",
100
+ "head",
101
+ "hist",
102
+ "indices",
103
+ "ndim",
104
+ "ngroups",
105
+ "nth",
106
+ "ohlc",
107
+ "pipe",
108
+ "plot",
109
+ "resample",
110
+ "rolling",
111
+ "tail",
112
+ "take",
113
+ "transform",
114
+ "sample",
115
+ "value_counts",
116
+ ]
117
+ )
118
+ # Valid values of `name` for `groupby.transform(name)`
119
+ # NOTE: do NOT edit this directly. New additions should be inserted
120
+ # into the appropriate list above.
121
+ transform_kernel_allowlist = reduction_kernels | transformation_kernels
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/categorical.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import numpy as np
4
+
5
+ from pandas.core.algorithms import unique1d
6
+ from pandas.core.arrays.categorical import (
7
+ Categorical,
8
+ CategoricalDtype,
9
+ recode_for_categories,
10
+ )
11
+
12
+
13
+ def recode_for_groupby(
14
+ c: Categorical, sort: bool, observed: bool
15
+ ) -> tuple[Categorical, Categorical | None]:
16
+ """
17
+ Code the categories to ensure we can groupby for categoricals.
18
+
19
+ If observed=True, we return a new Categorical with the observed
20
+ categories only.
21
+
22
+ If sort=False, return a copy of self, coded with categories as
23
+ returned by .unique(), followed by any categories not appearing in
24
+ the data. If sort=True, return self.
25
+
26
+ This method is needed solely to ensure the categorical index of the
27
+ GroupBy result has categories in the order of appearance in the data
28
+ (GH-8868).
29
+
30
+ Parameters
31
+ ----------
32
+ c : Categorical
33
+ sort : bool
34
+ The value of the sort parameter groupby was called with.
35
+ observed : bool
36
+ Account only for the observed values
37
+
38
+ Returns
39
+ -------
40
+ Categorical
41
+ If sort=False, the new categories are set to the order of
42
+ appearance in codes (unless ordered=True, in which case the
43
+ original order is preserved), followed by any unrepresented
44
+ categories in the original order.
45
+ Categorical or None
46
+ If we are observed, return the original categorical, otherwise None
47
+ """
48
+ # we only care about observed values
49
+ if observed:
50
+ # In cases with c.ordered, this is equivalent to
51
+ # return c.remove_unused_categories(), c
52
+
53
+ unique_codes = unique1d(c.codes)
54
+
55
+ take_codes = unique_codes[unique_codes != -1]
56
+ if sort:
57
+ take_codes = np.sort(take_codes)
58
+
59
+ # we recode according to the uniques
60
+ categories = c.categories.take(take_codes)
61
+ codes = recode_for_categories(c.codes, c.categories, categories)
62
+
63
+ # return a new categorical that maps our new codes
64
+ # and categories
65
+ dtype = CategoricalDtype(categories, ordered=c.ordered)
66
+ return Categorical._simple_new(codes, dtype=dtype), c
67
+
68
+ # Already sorted according to c.categories; all is fine
69
+ if sort:
70
+ return c, None
71
+
72
+ # sort=False should order groups in as-encountered order (GH-8868)
73
+
74
+ # xref GH:46909: Re-ordering codes faster than using (set|add|reorder)_categories
75
+ all_codes = np.arange(c.categories.nunique())
76
+ # GH 38140: exclude nan from indexer for categories
77
+ unique_notnan_codes = unique1d(c.codes[c.codes != -1])
78
+ if sort:
79
+ unique_notnan_codes = np.sort(unique_notnan_codes)
80
+ if len(all_codes) > len(unique_notnan_codes):
81
+ # GH 13179: All categories need to be present, even if missing from the data
82
+ missing_codes = np.setdiff1d(all_codes, unique_notnan_codes, assume_unique=True)
83
+ take_codes = np.concatenate((unique_notnan_codes, missing_codes))
84
+ else:
85
+ take_codes = unique_notnan_codes
86
+
87
+ return Categorical(c, c.unique().categories.take(take_codes)), None
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/generic.py ADDED
@@ -0,0 +1,2852 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Define the SeriesGroupBy and DataFrameGroupBy
3
+ classes that hold the groupby interfaces (and some implementations).
4
+
5
+ These are user facing as the result of the ``df.groupby(...)`` operations,
6
+ which here returns a DataFrameGroupBy object.
7
+ """
8
+ from __future__ import annotations
9
+
10
+ from collections import abc
11
+ from functools import partial
12
+ from textwrap import dedent
13
+ from typing import (
14
+ TYPE_CHECKING,
15
+ Any,
16
+ Callable,
17
+ Literal,
18
+ NamedTuple,
19
+ TypeVar,
20
+ Union,
21
+ cast,
22
+ )
23
+ import warnings
24
+
25
+ import numpy as np
26
+
27
+ from pandas._libs import (
28
+ Interval,
29
+ lib,
30
+ )
31
+ from pandas._libs.hashtable import duplicated
32
+ from pandas.errors import SpecificationError
33
+ from pandas.util._decorators import (
34
+ Appender,
35
+ Substitution,
36
+ doc,
37
+ )
38
+ from pandas.util._exceptions import find_stack_level
39
+
40
+ from pandas.core.dtypes.common import (
41
+ ensure_int64,
42
+ is_bool,
43
+ is_dict_like,
44
+ is_integer_dtype,
45
+ is_list_like,
46
+ is_numeric_dtype,
47
+ is_scalar,
48
+ )
49
+ from pandas.core.dtypes.dtypes import (
50
+ CategoricalDtype,
51
+ IntervalDtype,
52
+ )
53
+ from pandas.core.dtypes.inference import is_hashable
54
+ from pandas.core.dtypes.missing import (
55
+ isna,
56
+ notna,
57
+ )
58
+
59
+ from pandas.core import algorithms
60
+ from pandas.core.apply import (
61
+ GroupByApply,
62
+ maybe_mangle_lambdas,
63
+ reconstruct_func,
64
+ validate_func_kwargs,
65
+ warn_alias_replacement,
66
+ )
67
+ import pandas.core.common as com
68
+ from pandas.core.frame import DataFrame
69
+ from pandas.core.groupby import (
70
+ base,
71
+ ops,
72
+ )
73
+ from pandas.core.groupby.groupby import (
74
+ GroupBy,
75
+ GroupByPlot,
76
+ _agg_template_frame,
77
+ _agg_template_series,
78
+ _apply_docs,
79
+ _transform_template,
80
+ )
81
+ from pandas.core.indexes.api import (
82
+ Index,
83
+ MultiIndex,
84
+ all_indexes_same,
85
+ default_index,
86
+ )
87
+ from pandas.core.series import Series
88
+ from pandas.core.sorting import get_group_index
89
+ from pandas.core.util.numba_ import maybe_use_numba
90
+
91
+ from pandas.plotting import boxplot_frame_groupby
92
+
93
+ if TYPE_CHECKING:
94
+ from collections.abc import (
95
+ Hashable,
96
+ Mapping,
97
+ Sequence,
98
+ )
99
+
100
+ from pandas._typing import (
101
+ ArrayLike,
102
+ Axis,
103
+ AxisInt,
104
+ CorrelationMethod,
105
+ FillnaOptions,
106
+ IndexLabel,
107
+ Manager,
108
+ Manager2D,
109
+ SingleManager,
110
+ TakeIndexer,
111
+ )
112
+
113
+ from pandas import Categorical
114
+ from pandas.core.generic import NDFrame
115
+
116
+ # TODO(typing) the return value on this callable should be any *scalar*.
117
+ AggScalar = Union[str, Callable[..., Any]]
118
+ # TODO: validate types on ScalarResult and move to _typing
119
+ # Blocked from using by https://github.com/python/mypy/issues/1484
120
+ # See note at _mangle_lambda_list
121
+ ScalarResult = TypeVar("ScalarResult")
122
+
123
+
124
+ class NamedAgg(NamedTuple):
125
+ """
126
+ Helper for column specific aggregation with control over output column names.
127
+
128
+ Subclass of typing.NamedTuple.
129
+
130
+ Parameters
131
+ ----------
132
+ column : Hashable
133
+ Column label in the DataFrame to apply aggfunc.
134
+ aggfunc : function or str
135
+ Function to apply to the provided column. If string, the name of a built-in
136
+ pandas function.
137
+
138
+ Examples
139
+ --------
140
+ >>> df = pd.DataFrame({"key": [1, 1, 2], "a": [-1, 0, 1], 1: [10, 11, 12]})
141
+ >>> agg_a = pd.NamedAgg(column="a", aggfunc="min")
142
+ >>> agg_1 = pd.NamedAgg(column=1, aggfunc=lambda x: np.mean(x))
143
+ >>> df.groupby("key").agg(result_a=agg_a, result_1=agg_1)
144
+ result_a result_1
145
+ key
146
+ 1 -1 10.5
147
+ 2 1 12.0
148
+ """
149
+
150
+ column: Hashable
151
+ aggfunc: AggScalar
152
+
153
+
154
+ class SeriesGroupBy(GroupBy[Series]):
155
+ def _wrap_agged_manager(self, mgr: Manager) -> Series:
156
+ out = self.obj._constructor_from_mgr(mgr, axes=mgr.axes)
157
+ out._name = self.obj.name
158
+ return out
159
+
160
+ def _get_data_to_aggregate(
161
+ self, *, numeric_only: bool = False, name: str | None = None
162
+ ) -> SingleManager:
163
+ ser = self._obj_with_exclusions
164
+ single = ser._mgr
165
+ if numeric_only and not is_numeric_dtype(ser.dtype):
166
+ # GH#41291 match Series behavior
167
+ kwd_name = "numeric_only"
168
+ raise TypeError(
169
+ f"Cannot use {kwd_name}=True with "
170
+ f"{type(self).__name__}.{name} and non-numeric dtypes."
171
+ )
172
+ return single
173
+
174
+ _agg_examples_doc = dedent(
175
+ """
176
+ Examples
177
+ --------
178
+ >>> s = pd.Series([1, 2, 3, 4])
179
+
180
+ >>> s
181
+ 0 1
182
+ 1 2
183
+ 2 3
184
+ 3 4
185
+ dtype: int64
186
+
187
+ >>> s.groupby([1, 1, 2, 2]).min()
188
+ 1 1
189
+ 2 3
190
+ dtype: int64
191
+
192
+ >>> s.groupby([1, 1, 2, 2]).agg('min')
193
+ 1 1
194
+ 2 3
195
+ dtype: int64
196
+
197
+ >>> s.groupby([1, 1, 2, 2]).agg(['min', 'max'])
198
+ min max
199
+ 1 1 2
200
+ 2 3 4
201
+
202
+ The output column names can be controlled by passing
203
+ the desired column names and aggregations as keyword arguments.
204
+
205
+ >>> s.groupby([1, 1, 2, 2]).agg(
206
+ ... minimum='min',
207
+ ... maximum='max',
208
+ ... )
209
+ minimum maximum
210
+ 1 1 2
211
+ 2 3 4
212
+
213
+ .. versionchanged:: 1.3.0
214
+
215
+ The resulting dtype will reflect the return value of the aggregating function.
216
+
217
+ >>> s.groupby([1, 1, 2, 2]).agg(lambda x: x.astype(float).min())
218
+ 1 1.0
219
+ 2 3.0
220
+ dtype: float64
221
+ """
222
+ )
223
+
224
+ @Appender(
225
+ _apply_docs["template"].format(
226
+ input="series", examples=_apply_docs["series_examples"]
227
+ )
228
+ )
229
+ def apply(self, func, *args, **kwargs) -> Series:
230
+ return super().apply(func, *args, **kwargs)
231
+
232
+ @doc(_agg_template_series, examples=_agg_examples_doc, klass="Series")
233
+ def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs):
234
+ relabeling = func is None
235
+ columns = None
236
+ if relabeling:
237
+ columns, func = validate_func_kwargs(kwargs)
238
+ kwargs = {}
239
+
240
+ if isinstance(func, str):
241
+ if maybe_use_numba(engine) and engine is not None:
242
+ # Not all agg functions support numba, only propagate numba kwargs
243
+ # if user asks for numba, and engine is not None
244
+ # (if engine is None, the called function will handle the case where
245
+ # numba is requested via the global option)
246
+ kwargs["engine"] = engine
247
+ if engine_kwargs is not None:
248
+ kwargs["engine_kwargs"] = engine_kwargs
249
+ return getattr(self, func)(*args, **kwargs)
250
+
251
+ elif isinstance(func, abc.Iterable):
252
+ # Catch instances of lists / tuples
253
+ # but not the class list / tuple itself.
254
+ func = maybe_mangle_lambdas(func)
255
+ kwargs["engine"] = engine
256
+ kwargs["engine_kwargs"] = engine_kwargs
257
+ ret = self._aggregate_multiple_funcs(func, *args, **kwargs)
258
+ if relabeling:
259
+ # columns is not narrowed by mypy from relabeling flag
260
+ assert columns is not None # for mypy
261
+ ret.columns = columns
262
+ if not self.as_index:
263
+ ret = ret.reset_index()
264
+ return ret
265
+
266
+ else:
267
+ cyfunc = com.get_cython_func(func)
268
+ if cyfunc and not args and not kwargs:
269
+ warn_alias_replacement(self, func, cyfunc)
270
+ return getattr(self, cyfunc)()
271
+
272
+ if maybe_use_numba(engine):
273
+ return self._aggregate_with_numba(
274
+ func, *args, engine_kwargs=engine_kwargs, **kwargs
275
+ )
276
+
277
+ if self.ngroups == 0:
278
+ # e.g. test_evaluate_with_empty_groups without any groups to
279
+ # iterate over, we have no output on which to do dtype
280
+ # inference. We default to using the existing dtype.
281
+ # xref GH#51445
282
+ obj = self._obj_with_exclusions
283
+ return self.obj._constructor(
284
+ [],
285
+ name=self.obj.name,
286
+ index=self._grouper.result_index,
287
+ dtype=obj.dtype,
288
+ )
289
+
290
+ if self._grouper.nkeys > 1:
291
+ return self._python_agg_general(func, *args, **kwargs)
292
+
293
+ try:
294
+ return self._python_agg_general(func, *args, **kwargs)
295
+ except KeyError:
296
+ # KeyError raised in test_groupby.test_basic is bc the func does
297
+ # a dictionary lookup on group.name, but group name is not
298
+ # pinned in _python_agg_general, only in _aggregate_named
299
+ result = self._aggregate_named(func, *args, **kwargs)
300
+
301
+ warnings.warn(
302
+ "Pinning the groupby key to each group in "
303
+ f"{type(self).__name__}.agg is deprecated, and cases that "
304
+ "relied on it will raise in a future version. "
305
+ "If your operation requires utilizing the groupby keys, "
306
+ "iterate over the groupby object instead.",
307
+ FutureWarning,
308
+ stacklevel=find_stack_level(),
309
+ )
310
+
311
+ # result is a dict whose keys are the elements of result_index
312
+ result = Series(result, index=self._grouper.result_index)
313
+ result = self._wrap_aggregated_output(result)
314
+ return result
315
+
316
+ agg = aggregate
317
+
318
+ def _python_agg_general(self, func, *args, **kwargs):
319
+ orig_func = func
320
+ func = com.is_builtin_func(func)
321
+ if orig_func != func:
322
+ alias = com._builtin_table_alias[func]
323
+ warn_alias_replacement(self, orig_func, alias)
324
+ f = lambda x: func(x, *args, **kwargs)
325
+
326
+ obj = self._obj_with_exclusions
327
+ result = self._grouper.agg_series(obj, f)
328
+ res = obj._constructor(result, name=obj.name)
329
+ return self._wrap_aggregated_output(res)
330
+
331
+ def _aggregate_multiple_funcs(self, arg, *args, **kwargs) -> DataFrame:
332
+ if isinstance(arg, dict):
333
+ if self.as_index:
334
+ # GH 15931
335
+ raise SpecificationError("nested renamer is not supported")
336
+ else:
337
+ # GH#50684 - This accidentally worked in 1.x
338
+ msg = (
339
+ "Passing a dictionary to SeriesGroupBy.agg is deprecated "
340
+ "and will raise in a future version of pandas. Pass a list "
341
+ "of aggregations instead."
342
+ )
343
+ warnings.warn(
344
+ message=msg,
345
+ category=FutureWarning,
346
+ stacklevel=find_stack_level(),
347
+ )
348
+ arg = list(arg.items())
349
+ elif any(isinstance(x, (tuple, list)) for x in arg):
350
+ arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg]
351
+ else:
352
+ # list of functions / function names
353
+ columns = (com.get_callable_name(f) or f for f in arg)
354
+ arg = zip(columns, arg)
355
+
356
+ results: dict[base.OutputKey, DataFrame | Series] = {}
357
+ with com.temp_setattr(self, "as_index", True):
358
+ # Combine results using the index, need to adjust index after
359
+ # if as_index=False (GH#50724)
360
+ for idx, (name, func) in enumerate(arg):
361
+ key = base.OutputKey(label=name, position=idx)
362
+ results[key] = self.aggregate(func, *args, **kwargs)
363
+
364
+ if any(isinstance(x, DataFrame) for x in results.values()):
365
+ from pandas import concat
366
+
367
+ res_df = concat(
368
+ results.values(), axis=1, keys=[key.label for key in results]
369
+ )
370
+ return res_df
371
+
372
+ indexed_output = {key.position: val for key, val in results.items()}
373
+ output = self.obj._constructor_expanddim(indexed_output, index=None)
374
+ output.columns = Index(key.label for key in results)
375
+
376
+ return output
377
+
378
+ def _wrap_applied_output(
379
+ self,
380
+ data: Series,
381
+ values: list[Any],
382
+ not_indexed_same: bool = False,
383
+ is_transform: bool = False,
384
+ ) -> DataFrame | Series:
385
+ """
386
+ Wrap the output of SeriesGroupBy.apply into the expected result.
387
+
388
+ Parameters
389
+ ----------
390
+ data : Series
391
+ Input data for groupby operation.
392
+ values : List[Any]
393
+ Applied output for each group.
394
+ not_indexed_same : bool, default False
395
+ Whether the applied outputs are not indexed the same as the group axes.
396
+
397
+ Returns
398
+ -------
399
+ DataFrame or Series
400
+ """
401
+ if len(values) == 0:
402
+ # GH #6265
403
+ if is_transform:
404
+ # GH#47787 see test_group_on_empty_multiindex
405
+ res_index = data.index
406
+ else:
407
+ res_index = self._grouper.result_index
408
+
409
+ return self.obj._constructor(
410
+ [],
411
+ name=self.obj.name,
412
+ index=res_index,
413
+ dtype=data.dtype,
414
+ )
415
+ assert values is not None
416
+
417
+ if isinstance(values[0], dict):
418
+ # GH #823 #24880
419
+ index = self._grouper.result_index
420
+ res_df = self.obj._constructor_expanddim(values, index=index)
421
+ res_df = self._reindex_output(res_df)
422
+ # if self.observed is False,
423
+ # keep all-NaN rows created while re-indexing
424
+ res_ser = res_df.stack(future_stack=True)
425
+ res_ser.name = self.obj.name
426
+ return res_ser
427
+ elif isinstance(values[0], (Series, DataFrame)):
428
+ result = self._concat_objects(
429
+ values,
430
+ not_indexed_same=not_indexed_same,
431
+ is_transform=is_transform,
432
+ )
433
+ if isinstance(result, Series):
434
+ result.name = self.obj.name
435
+ if not self.as_index and not_indexed_same:
436
+ result = self._insert_inaxis_grouper(result)
437
+ result.index = default_index(len(result))
438
+ return result
439
+ else:
440
+ # GH #6265 #24880
441
+ result = self.obj._constructor(
442
+ data=values, index=self._grouper.result_index, name=self.obj.name
443
+ )
444
+ if not self.as_index:
445
+ result = self._insert_inaxis_grouper(result)
446
+ result.index = default_index(len(result))
447
+ return self._reindex_output(result)
448
+
449
+ def _aggregate_named(self, func, *args, **kwargs):
450
+ # Note: this is very similar to _aggregate_series_pure_python,
451
+ # but that does not pin group.name
452
+ result = {}
453
+ initialized = False
454
+
455
+ for name, group in self._grouper.get_iterator(
456
+ self._obj_with_exclusions, axis=self.axis
457
+ ):
458
+ # needed for pandas/tests/groupby/test_groupby.py::test_basic_aggregations
459
+ object.__setattr__(group, "name", name)
460
+
461
+ output = func(group, *args, **kwargs)
462
+ output = ops.extract_result(output)
463
+ if not initialized:
464
+ # We only do this validation on the first iteration
465
+ ops.check_result_array(output, group.dtype)
466
+ initialized = True
467
+ result[name] = output
468
+
469
+ return result
470
+
471
+ __examples_series_doc = dedent(
472
+ """
473
+ >>> ser = pd.Series([390.0, 350.0, 30.0, 20.0],
474
+ ... index=["Falcon", "Falcon", "Parrot", "Parrot"],
475
+ ... name="Max Speed")
476
+ >>> grouped = ser.groupby([1, 1, 2, 2])
477
+ >>> grouped.transform(lambda x: (x - x.mean()) / x.std())
478
+ Falcon 0.707107
479
+ Falcon -0.707107
480
+ Parrot 0.707107
481
+ Parrot -0.707107
482
+ Name: Max Speed, dtype: float64
483
+
484
+ Broadcast result of the transformation
485
+
486
+ >>> grouped.transform(lambda x: x.max() - x.min())
487
+ Falcon 40.0
488
+ Falcon 40.0
489
+ Parrot 10.0
490
+ Parrot 10.0
491
+ Name: Max Speed, dtype: float64
492
+
493
+ >>> grouped.transform("mean")
494
+ Falcon 370.0
495
+ Falcon 370.0
496
+ Parrot 25.0
497
+ Parrot 25.0
498
+ Name: Max Speed, dtype: float64
499
+
500
+ .. versionchanged:: 1.3.0
501
+
502
+ The resulting dtype will reflect the return value of the passed ``func``,
503
+ for example:
504
+
505
+ >>> grouped.transform(lambda x: x.astype(int).max())
506
+ Falcon 390
507
+ Falcon 390
508
+ Parrot 30
509
+ Parrot 30
510
+ Name: Max Speed, dtype: int64
511
+ """
512
+ )
513
+
514
+ @Substitution(klass="Series", example=__examples_series_doc)
515
+ @Appender(_transform_template)
516
+ def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs):
517
+ return self._transform(
518
+ func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs
519
+ )
520
+
521
+ def _cython_transform(
522
+ self, how: str, numeric_only: bool = False, axis: AxisInt = 0, **kwargs
523
+ ):
524
+ assert axis == 0 # handled by caller
525
+
526
+ obj = self._obj_with_exclusions
527
+
528
+ try:
529
+ result = self._grouper._cython_operation(
530
+ "transform", obj._values, how, axis, **kwargs
531
+ )
532
+ except NotImplementedError as err:
533
+ # e.g. test_groupby_raises_string
534
+ raise TypeError(f"{how} is not supported for {obj.dtype} dtype") from err
535
+
536
+ return obj._constructor(result, index=self.obj.index, name=obj.name)
537
+
538
+ def _transform_general(
539
+ self, func: Callable, engine, engine_kwargs, *args, **kwargs
540
+ ) -> Series:
541
+ """
542
+ Transform with a callable `func`.
543
+ """
544
+ if maybe_use_numba(engine):
545
+ return self._transform_with_numba(
546
+ func, *args, engine_kwargs=engine_kwargs, **kwargs
547
+ )
548
+ assert callable(func)
549
+ klass = type(self.obj)
550
+
551
+ results = []
552
+ for name, group in self._grouper.get_iterator(
553
+ self._obj_with_exclusions, axis=self.axis
554
+ ):
555
+ # this setattr is needed for test_transform_lambda_with_datetimetz
556
+ object.__setattr__(group, "name", name)
557
+ res = func(group, *args, **kwargs)
558
+
559
+ results.append(klass(res, index=group.index))
560
+
561
+ # check for empty "results" to avoid concat ValueError
562
+ if results:
563
+ from pandas.core.reshape.concat import concat
564
+
565
+ concatenated = concat(results)
566
+ result = self._set_result_index_ordered(concatenated)
567
+ else:
568
+ result = self.obj._constructor(dtype=np.float64)
569
+
570
+ result.name = self.obj.name
571
+ return result
572
+
573
+ def filter(self, func, dropna: bool = True, *args, **kwargs):
574
+ """
575
+ Filter elements from groups that don't satisfy a criterion.
576
+
577
+ Elements from groups are filtered if they do not satisfy the
578
+ boolean criterion specified by func.
579
+
580
+ Parameters
581
+ ----------
582
+ func : function
583
+ Criterion to apply to each group. Should return True or False.
584
+ dropna : bool
585
+ Drop groups that do not pass the filter. True by default; if False,
586
+ groups that evaluate False are filled with NaNs.
587
+
588
+ Returns
589
+ -------
590
+ Series
591
+
592
+ Notes
593
+ -----
594
+ Functions that mutate the passed object can produce unexpected
595
+ behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
596
+ for more details.
597
+
598
+ Examples
599
+ --------
600
+ >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
601
+ ... 'foo', 'bar'],
602
+ ... 'B' : [1, 2, 3, 4, 5, 6],
603
+ ... 'C' : [2.0, 5., 8., 1., 2., 9.]})
604
+ >>> grouped = df.groupby('A')
605
+ >>> df.groupby('A').B.filter(lambda x: x.mean() > 3.)
606
+ 1 2
607
+ 3 4
608
+ 5 6
609
+ Name: B, dtype: int64
610
+ """
611
+ if isinstance(func, str):
612
+ wrapper = lambda x: getattr(x, func)(*args, **kwargs)
613
+ else:
614
+ wrapper = lambda x: func(x, *args, **kwargs)
615
+
616
+ # Interpret np.nan as False.
617
+ def true_and_notna(x) -> bool:
618
+ b = wrapper(x)
619
+ return notna(b) and b
620
+
621
+ try:
622
+ indices = [
623
+ self._get_index(name)
624
+ for name, group in self._grouper.get_iterator(
625
+ self._obj_with_exclusions, axis=self.axis
626
+ )
627
+ if true_and_notna(group)
628
+ ]
629
+ except (ValueError, TypeError) as err:
630
+ raise TypeError("the filter must return a boolean result") from err
631
+
632
+ filtered = self._apply_filter(indices, dropna)
633
+ return filtered
634
+
635
+ def nunique(self, dropna: bool = True) -> Series | DataFrame:
636
+ """
637
+ Return number of unique elements in the group.
638
+
639
+ Returns
640
+ -------
641
+ Series
642
+ Number of unique values within each group.
643
+
644
+ Examples
645
+ --------
646
+ For SeriesGroupby:
647
+
648
+ >>> lst = ['a', 'a', 'b', 'b']
649
+ >>> ser = pd.Series([1, 2, 3, 3], index=lst)
650
+ >>> ser
651
+ a 1
652
+ a 2
653
+ b 3
654
+ b 3
655
+ dtype: int64
656
+ >>> ser.groupby(level=0).nunique()
657
+ a 2
658
+ b 1
659
+ dtype: int64
660
+
661
+ For Resampler:
662
+
663
+ >>> ser = pd.Series([1, 2, 3, 3], index=pd.DatetimeIndex(
664
+ ... ['2023-01-01', '2023-01-15', '2023-02-01', '2023-02-15']))
665
+ >>> ser
666
+ 2023-01-01 1
667
+ 2023-01-15 2
668
+ 2023-02-01 3
669
+ 2023-02-15 3
670
+ dtype: int64
671
+ >>> ser.resample('MS').nunique()
672
+ 2023-01-01 2
673
+ 2023-02-01 1
674
+ Freq: MS, dtype: int64
675
+ """
676
+ ids, _, ngroups = self._grouper.group_info
677
+ val = self.obj._values
678
+ codes, uniques = algorithms.factorize(val, use_na_sentinel=dropna, sort=False)
679
+
680
+ if self._grouper.has_dropped_na:
681
+ mask = ids >= 0
682
+ ids = ids[mask]
683
+ codes = codes[mask]
684
+
685
+ group_index = get_group_index(
686
+ labels=[ids, codes],
687
+ shape=(ngroups, len(uniques)),
688
+ sort=False,
689
+ xnull=dropna,
690
+ )
691
+
692
+ if dropna:
693
+ mask = group_index >= 0
694
+ if (~mask).any():
695
+ ids = ids[mask]
696
+ group_index = group_index[mask]
697
+
698
+ mask = duplicated(group_index, "first")
699
+ res = np.bincount(ids[~mask], minlength=ngroups)
700
+ res = ensure_int64(res)
701
+
702
+ ri = self._grouper.result_index
703
+ result: Series | DataFrame = self.obj._constructor(
704
+ res, index=ri, name=self.obj.name
705
+ )
706
+ if not self.as_index:
707
+ result = self._insert_inaxis_grouper(result)
708
+ result.index = default_index(len(result))
709
+ return self._reindex_output(result, fill_value=0)
710
+
711
+ @doc(Series.describe)
712
+ def describe(self, percentiles=None, include=None, exclude=None) -> Series:
713
+ return super().describe(
714
+ percentiles=percentiles, include=include, exclude=exclude
715
+ )
716
+
717
+ def value_counts(
718
+ self,
719
+ normalize: bool = False,
720
+ sort: bool = True,
721
+ ascending: bool = False,
722
+ bins=None,
723
+ dropna: bool = True,
724
+ ) -> Series | DataFrame:
725
+ name = "proportion" if normalize else "count"
726
+
727
+ if bins is None:
728
+ result = self._value_counts(
729
+ normalize=normalize, sort=sort, ascending=ascending, dropna=dropna
730
+ )
731
+ result.name = name
732
+ return result
733
+
734
+ from pandas.core.reshape.merge import get_join_indexers
735
+ from pandas.core.reshape.tile import cut
736
+
737
+ ids, _, _ = self._grouper.group_info
738
+ val = self.obj._values
739
+
740
+ index_names = self._grouper.names + [self.obj.name]
741
+
742
+ if isinstance(val.dtype, CategoricalDtype) or (
743
+ bins is not None and not np.iterable(bins)
744
+ ):
745
+ # scalar bins cannot be done at top level
746
+ # in a backward compatible way
747
+ # GH38672 relates to categorical dtype
748
+ ser = self.apply(
749
+ Series.value_counts,
750
+ normalize=normalize,
751
+ sort=sort,
752
+ ascending=ascending,
753
+ bins=bins,
754
+ )
755
+ ser.name = name
756
+ ser.index.names = index_names
757
+ return ser
758
+
759
+ # groupby removes null keys from groupings
760
+ mask = ids != -1
761
+ ids, val = ids[mask], val[mask]
762
+
763
+ lab: Index | np.ndarray
764
+ if bins is None:
765
+ lab, lev = algorithms.factorize(val, sort=True)
766
+ llab = lambda lab, inc: lab[inc]
767
+ else:
768
+ # lab is a Categorical with categories an IntervalIndex
769
+ cat_ser = cut(Series(val, copy=False), bins, include_lowest=True)
770
+ cat_obj = cast("Categorical", cat_ser._values)
771
+ lev = cat_obj.categories
772
+ lab = lev.take(
773
+ cat_obj.codes,
774
+ allow_fill=True,
775
+ fill_value=lev._na_value,
776
+ )
777
+ llab = lambda lab, inc: lab[inc]._multiindex.codes[-1]
778
+
779
+ if isinstance(lab.dtype, IntervalDtype):
780
+ # TODO: should we do this inside II?
781
+ lab_interval = cast(Interval, lab)
782
+
783
+ sorter = np.lexsort((lab_interval.left, lab_interval.right, ids))
784
+ else:
785
+ sorter = np.lexsort((lab, ids))
786
+
787
+ ids, lab = ids[sorter], lab[sorter]
788
+
789
+ # group boundaries are where group ids change
790
+ idchanges = 1 + np.nonzero(ids[1:] != ids[:-1])[0]
791
+ idx = np.r_[0, idchanges]
792
+ if not len(ids):
793
+ idx = idchanges
794
+
795
+ # new values are where sorted labels change
796
+ lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1))
797
+ inc = np.r_[True, lchanges]
798
+ if not len(val):
799
+ inc = lchanges
800
+ inc[idx] = True # group boundaries are also new values
801
+ out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts
802
+
803
+ # num. of times each group should be repeated
804
+ rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx))
805
+
806
+ # multi-index components
807
+ codes = self._grouper.reconstructed_codes
808
+ codes = [rep(level_codes) for level_codes in codes] + [llab(lab, inc)]
809
+ levels = [ping._group_index for ping in self._grouper.groupings] + [lev]
810
+
811
+ if dropna:
812
+ mask = codes[-1] != -1
813
+ if mask.all():
814
+ dropna = False
815
+ else:
816
+ out, codes = out[mask], [level_codes[mask] for level_codes in codes]
817
+
818
+ if normalize:
819
+ out = out.astype("float")
820
+ d = np.diff(np.r_[idx, len(ids)])
821
+ if dropna:
822
+ m = ids[lab == -1]
823
+ np.add.at(d, m, -1)
824
+ acc = rep(d)[mask]
825
+ else:
826
+ acc = rep(d)
827
+ out /= acc
828
+
829
+ if sort and bins is None:
830
+ cat = ids[inc][mask] if dropna else ids[inc]
831
+ sorter = np.lexsort((out if ascending else -out, cat))
832
+ out, codes[-1] = out[sorter], codes[-1][sorter]
833
+
834
+ if bins is not None:
835
+ # for compat. with libgroupby.value_counts need to ensure every
836
+ # bin is present at every index level, null filled with zeros
837
+ diff = np.zeros(len(out), dtype="bool")
838
+ for level_codes in codes[:-1]:
839
+ diff |= np.r_[True, level_codes[1:] != level_codes[:-1]]
840
+
841
+ ncat, nbin = diff.sum(), len(levels[-1])
842
+
843
+ left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)]
844
+
845
+ right = [diff.cumsum() - 1, codes[-1]]
846
+
847
+ # error: Argument 1 to "get_join_indexers" has incompatible type
848
+ # "List[ndarray[Any, Any]]"; expected "List[Union[Union[ExtensionArray,
849
+ # ndarray[Any, Any]], Index, Series]]
850
+ _, idx = get_join_indexers(
851
+ left, right, sort=False, how="left" # type: ignore[arg-type]
852
+ )
853
+ if idx is not None:
854
+ out = np.where(idx != -1, out[idx], 0)
855
+
856
+ if sort:
857
+ sorter = np.lexsort((out if ascending else -out, left[0]))
858
+ out, left[-1] = out[sorter], left[-1][sorter]
859
+
860
+ # build the multi-index w/ full levels
861
+ def build_codes(lev_codes: np.ndarray) -> np.ndarray:
862
+ return np.repeat(lev_codes[diff], nbin)
863
+
864
+ codes = [build_codes(lev_codes) for lev_codes in codes[:-1]]
865
+ codes.append(left[-1])
866
+
867
+ mi = MultiIndex(
868
+ levels=levels, codes=codes, names=index_names, verify_integrity=False
869
+ )
870
+
871
+ if is_integer_dtype(out.dtype):
872
+ out = ensure_int64(out)
873
+ result = self.obj._constructor(out, index=mi, name=name)
874
+ if not self.as_index:
875
+ result = result.reset_index()
876
+ return result
877
+
878
+ def fillna(
879
+ self,
880
+ value: object | ArrayLike | None = None,
881
+ method: FillnaOptions | None = None,
882
+ axis: Axis | None | lib.NoDefault = lib.no_default,
883
+ inplace: bool = False,
884
+ limit: int | None = None,
885
+ downcast: dict | None | lib.NoDefault = lib.no_default,
886
+ ) -> Series | None:
887
+ """
888
+ Fill NA/NaN values using the specified method within groups.
889
+
890
+ .. deprecated:: 2.2.0
891
+ This method is deprecated and will be removed in a future version.
892
+ Use the :meth:`.SeriesGroupBy.ffill` or :meth:`.SeriesGroupBy.bfill`
893
+ for forward or backward filling instead. If you want to fill with a
894
+ single value, use :meth:`Series.fillna` instead.
895
+
896
+ Parameters
897
+ ----------
898
+ value : scalar, dict, Series, or DataFrame
899
+ Value to use to fill holes (e.g. 0), alternately a
900
+ dict/Series/DataFrame of values specifying which value to use for
901
+ each index (for a Series) or column (for a DataFrame). Values not
902
+ in the dict/Series/DataFrame will not be filled. This value cannot
903
+ be a list. Users wanting to use the ``value`` argument and not ``method``
904
+ should prefer :meth:`.Series.fillna` as this
905
+ will produce the same result and be more performant.
906
+ method : {{'bfill', 'ffill', None}}, default None
907
+ Method to use for filling holes. ``'ffill'`` will propagate
908
+ the last valid observation forward within a group.
909
+ ``'bfill'`` will use next valid observation to fill the gap.
910
+ axis : {0 or 'index', 1 or 'columns'}
911
+ Unused, only for compatibility with :meth:`DataFrameGroupBy.fillna`.
912
+ inplace : bool, default False
913
+ Broken. Do not set to True.
914
+ limit : int, default None
915
+ If method is specified, this is the maximum number of consecutive
916
+ NaN values to forward/backward fill within a group. In other words,
917
+ if there is a gap with more than this number of consecutive NaNs,
918
+ it will only be partially filled. If method is not specified, this is the
919
+ maximum number of entries along the entire axis where NaNs will be
920
+ filled. Must be greater than 0 if not None.
921
+ downcast : dict, default is None
922
+ A dict of item->dtype of what to downcast if possible,
923
+ or the string 'infer' which will try to downcast to an appropriate
924
+ equal type (e.g. float64 to int64 if possible).
925
+
926
+ Returns
927
+ -------
928
+ Series
929
+ Object with missing values filled within groups.
930
+
931
+ See Also
932
+ --------
933
+ ffill : Forward fill values within a group.
934
+ bfill : Backward fill values within a group.
935
+
936
+ Examples
937
+ --------
938
+ For SeriesGroupBy:
939
+
940
+ >>> lst = ['cat', 'cat', 'cat', 'mouse', 'mouse']
941
+ >>> ser = pd.Series([1, None, None, 2, None], index=lst)
942
+ >>> ser
943
+ cat 1.0
944
+ cat NaN
945
+ cat NaN
946
+ mouse 2.0
947
+ mouse NaN
948
+ dtype: float64
949
+ >>> ser.groupby(level=0).fillna(0, limit=1)
950
+ cat 1.0
951
+ cat 0.0
952
+ cat NaN
953
+ mouse 2.0
954
+ mouse 0.0
955
+ dtype: float64
956
+ """
957
+ warnings.warn(
958
+ f"{type(self).__name__}.fillna is deprecated and "
959
+ "will be removed in a future version. Use obj.ffill() or obj.bfill() "
960
+ "for forward or backward filling instead. If you want to fill with a "
961
+ f"single value, use {type(self.obj).__name__}.fillna instead",
962
+ FutureWarning,
963
+ stacklevel=find_stack_level(),
964
+ )
965
+ result = self._op_via_apply(
966
+ "fillna",
967
+ value=value,
968
+ method=method,
969
+ axis=axis,
970
+ inplace=inplace,
971
+ limit=limit,
972
+ downcast=downcast,
973
+ )
974
+ return result
975
+
976
+ def take(
977
+ self,
978
+ indices: TakeIndexer,
979
+ axis: Axis | lib.NoDefault = lib.no_default,
980
+ **kwargs,
981
+ ) -> Series:
982
+ """
983
+ Return the elements in the given *positional* indices in each group.
984
+
985
+ This means that we are not indexing according to actual values in
986
+ the index attribute of the object. We are indexing according to the
987
+ actual position of the element in the object.
988
+
989
+ If a requested index does not exist for some group, this method will raise.
990
+ To get similar behavior that ignores indices that don't exist, see
991
+ :meth:`.SeriesGroupBy.nth`.
992
+
993
+ Parameters
994
+ ----------
995
+ indices : array-like
996
+ An array of ints indicating which positions to take in each group.
997
+ axis : {0 or 'index', 1 or 'columns', None}, default 0
998
+ The axis on which to select elements. ``0`` means that we are
999
+ selecting rows, ``1`` means that we are selecting columns.
1000
+ For `SeriesGroupBy` this parameter is unused and defaults to 0.
1001
+
1002
+ .. deprecated:: 2.1.0
1003
+ For axis=1, operate on the underlying object instead. Otherwise
1004
+ the axis keyword is not necessary.
1005
+
1006
+ **kwargs
1007
+ For compatibility with :meth:`numpy.take`. Has no effect on the
1008
+ output.
1009
+
1010
+ Returns
1011
+ -------
1012
+ Series
1013
+ A Series containing the elements taken from each group.
1014
+
1015
+ See Also
1016
+ --------
1017
+ Series.take : Take elements from a Series along an axis.
1018
+ Series.loc : Select a subset of a DataFrame by labels.
1019
+ Series.iloc : Select a subset of a DataFrame by positions.
1020
+ numpy.take : Take elements from an array along an axis.
1021
+ SeriesGroupBy.nth : Similar to take, won't raise if indices don't exist.
1022
+
1023
+ Examples
1024
+ --------
1025
+ >>> df = pd.DataFrame([('falcon', 'bird', 389.0),
1026
+ ... ('parrot', 'bird', 24.0),
1027
+ ... ('lion', 'mammal', 80.5),
1028
+ ... ('monkey', 'mammal', np.nan),
1029
+ ... ('rabbit', 'mammal', 15.0)],
1030
+ ... columns=['name', 'class', 'max_speed'],
1031
+ ... index=[4, 3, 2, 1, 0])
1032
+ >>> df
1033
+ name class max_speed
1034
+ 4 falcon bird 389.0
1035
+ 3 parrot bird 24.0
1036
+ 2 lion mammal 80.5
1037
+ 1 monkey mammal NaN
1038
+ 0 rabbit mammal 15.0
1039
+ >>> gb = df["name"].groupby([1, 1, 2, 2, 2])
1040
+
1041
+ Take elements at positions 0 and 1 along the axis 0 in each group (default).
1042
+
1043
+ >>> gb.take([0, 1])
1044
+ 1 4 falcon
1045
+ 3 parrot
1046
+ 2 2 lion
1047
+ 1 monkey
1048
+ Name: name, dtype: object
1049
+
1050
+ We may take elements using negative integers for positive indices,
1051
+ starting from the end of the object, just like with Python lists.
1052
+
1053
+ >>> gb.take([-1, -2])
1054
+ 1 3 parrot
1055
+ 4 falcon
1056
+ 2 0 rabbit
1057
+ 1 monkey
1058
+ Name: name, dtype: object
1059
+ """
1060
+ result = self._op_via_apply("take", indices=indices, axis=axis, **kwargs)
1061
+ return result
1062
+
1063
+ def skew(
1064
+ self,
1065
+ axis: Axis | lib.NoDefault = lib.no_default,
1066
+ skipna: bool = True,
1067
+ numeric_only: bool = False,
1068
+ **kwargs,
1069
+ ) -> Series:
1070
+ """
1071
+ Return unbiased skew within groups.
1072
+
1073
+ Normalized by N-1.
1074
+
1075
+ Parameters
1076
+ ----------
1077
+ axis : {0 or 'index', 1 or 'columns', None}, default 0
1078
+ Axis for the function to be applied on.
1079
+ This parameter is only for compatibility with DataFrame and is unused.
1080
+
1081
+ .. deprecated:: 2.1.0
1082
+ For axis=1, operate on the underlying object instead. Otherwise
1083
+ the axis keyword is not necessary.
1084
+
1085
+ skipna : bool, default True
1086
+ Exclude NA/null values when computing the result.
1087
+
1088
+ numeric_only : bool, default False
1089
+ Include only float, int, boolean columns. Not implemented for Series.
1090
+
1091
+ **kwargs
1092
+ Additional keyword arguments to be passed to the function.
1093
+
1094
+ Returns
1095
+ -------
1096
+ Series
1097
+
1098
+ See Also
1099
+ --------
1100
+ Series.skew : Return unbiased skew over requested axis.
1101
+
1102
+ Examples
1103
+ --------
1104
+ >>> ser = pd.Series([390., 350., 357., np.nan, 22., 20., 30.],
1105
+ ... index=['Falcon', 'Falcon', 'Falcon', 'Falcon',
1106
+ ... 'Parrot', 'Parrot', 'Parrot'],
1107
+ ... name="Max Speed")
1108
+ >>> ser
1109
+ Falcon 390.0
1110
+ Falcon 350.0
1111
+ Falcon 357.0
1112
+ Falcon NaN
1113
+ Parrot 22.0
1114
+ Parrot 20.0
1115
+ Parrot 30.0
1116
+ Name: Max Speed, dtype: float64
1117
+ >>> ser.groupby(level=0).skew()
1118
+ Falcon 1.525174
1119
+ Parrot 1.457863
1120
+ Name: Max Speed, dtype: float64
1121
+ >>> ser.groupby(level=0).skew(skipna=False)
1122
+ Falcon NaN
1123
+ Parrot 1.457863
1124
+ Name: Max Speed, dtype: float64
1125
+ """
1126
+ if axis is lib.no_default:
1127
+ axis = 0
1128
+
1129
+ if axis != 0:
1130
+ result = self._op_via_apply(
1131
+ "skew",
1132
+ axis=axis,
1133
+ skipna=skipna,
1134
+ numeric_only=numeric_only,
1135
+ **kwargs,
1136
+ )
1137
+ return result
1138
+
1139
+ def alt(obj):
1140
+ # This should not be reached since the cython path should raise
1141
+ # TypeError and not NotImplementedError.
1142
+ raise TypeError(f"'skew' is not supported for dtype={obj.dtype}")
1143
+
1144
+ return self._cython_agg_general(
1145
+ "skew", alt=alt, skipna=skipna, numeric_only=numeric_only, **kwargs
1146
+ )
1147
+
1148
+ @property
1149
+ @doc(Series.plot.__doc__)
1150
+ def plot(self) -> GroupByPlot:
1151
+ result = GroupByPlot(self)
1152
+ return result
1153
+
1154
+ @doc(Series.nlargest.__doc__)
1155
+ def nlargest(
1156
+ self, n: int = 5, keep: Literal["first", "last", "all"] = "first"
1157
+ ) -> Series:
1158
+ f = partial(Series.nlargest, n=n, keep=keep)
1159
+ data = self._obj_with_exclusions
1160
+ # Don't change behavior if result index happens to be the same, i.e.
1161
+ # already ordered and n >= all group sizes.
1162
+ result = self._python_apply_general(f, data, not_indexed_same=True)
1163
+ return result
1164
+
1165
+ @doc(Series.nsmallest.__doc__)
1166
+ def nsmallest(
1167
+ self, n: int = 5, keep: Literal["first", "last", "all"] = "first"
1168
+ ) -> Series:
1169
+ f = partial(Series.nsmallest, n=n, keep=keep)
1170
+ data = self._obj_with_exclusions
1171
+ # Don't change behavior if result index happens to be the same, i.e.
1172
+ # already ordered and n >= all group sizes.
1173
+ result = self._python_apply_general(f, data, not_indexed_same=True)
1174
+ return result
1175
+
1176
+ @doc(Series.idxmin.__doc__)
1177
+ def idxmin(
1178
+ self, axis: Axis | lib.NoDefault = lib.no_default, skipna: bool = True
1179
+ ) -> Series:
1180
+ return self._idxmax_idxmin("idxmin", axis=axis, skipna=skipna)
1181
+
1182
+ @doc(Series.idxmax.__doc__)
1183
+ def idxmax(
1184
+ self, axis: Axis | lib.NoDefault = lib.no_default, skipna: bool = True
1185
+ ) -> Series:
1186
+ return self._idxmax_idxmin("idxmax", axis=axis, skipna=skipna)
1187
+
1188
+ @doc(Series.corr.__doc__)
1189
+ def corr(
1190
+ self,
1191
+ other: Series,
1192
+ method: CorrelationMethod = "pearson",
1193
+ min_periods: int | None = None,
1194
+ ) -> Series:
1195
+ result = self._op_via_apply(
1196
+ "corr", other=other, method=method, min_periods=min_periods
1197
+ )
1198
+ return result
1199
+
1200
+ @doc(Series.cov.__doc__)
1201
+ def cov(
1202
+ self, other: Series, min_periods: int | None = None, ddof: int | None = 1
1203
+ ) -> Series:
1204
+ result = self._op_via_apply(
1205
+ "cov", other=other, min_periods=min_periods, ddof=ddof
1206
+ )
1207
+ return result
1208
+
1209
+ @property
1210
+ def is_monotonic_increasing(self) -> Series:
1211
+ """
1212
+ Return whether each group's values are monotonically increasing.
1213
+
1214
+ Returns
1215
+ -------
1216
+ Series
1217
+
1218
+ Examples
1219
+ --------
1220
+ >>> s = pd.Series([2, 1, 3, 4], index=['Falcon', 'Falcon', 'Parrot', 'Parrot'])
1221
+ >>> s.groupby(level=0).is_monotonic_increasing
1222
+ Falcon False
1223
+ Parrot True
1224
+ dtype: bool
1225
+ """
1226
+ return self.apply(lambda ser: ser.is_monotonic_increasing)
1227
+
1228
+ @property
1229
+ def is_monotonic_decreasing(self) -> Series:
1230
+ """
1231
+ Return whether each group's values are monotonically decreasing.
1232
+
1233
+ Returns
1234
+ -------
1235
+ Series
1236
+
1237
+ Examples
1238
+ --------
1239
+ >>> s = pd.Series([2, 1, 3, 4], index=['Falcon', 'Falcon', 'Parrot', 'Parrot'])
1240
+ >>> s.groupby(level=0).is_monotonic_decreasing
1241
+ Falcon True
1242
+ Parrot False
1243
+ dtype: bool
1244
+ """
1245
+ return self.apply(lambda ser: ser.is_monotonic_decreasing)
1246
+
1247
+ @doc(Series.hist.__doc__)
1248
+ def hist(
1249
+ self,
1250
+ by=None,
1251
+ ax=None,
1252
+ grid: bool = True,
1253
+ xlabelsize: int | None = None,
1254
+ xrot: float | None = None,
1255
+ ylabelsize: int | None = None,
1256
+ yrot: float | None = None,
1257
+ figsize: tuple[int, int] | None = None,
1258
+ bins: int | Sequence[int] = 10,
1259
+ backend: str | None = None,
1260
+ legend: bool = False,
1261
+ **kwargs,
1262
+ ):
1263
+ result = self._op_via_apply(
1264
+ "hist",
1265
+ by=by,
1266
+ ax=ax,
1267
+ grid=grid,
1268
+ xlabelsize=xlabelsize,
1269
+ xrot=xrot,
1270
+ ylabelsize=ylabelsize,
1271
+ yrot=yrot,
1272
+ figsize=figsize,
1273
+ bins=bins,
1274
+ backend=backend,
1275
+ legend=legend,
1276
+ **kwargs,
1277
+ )
1278
+ return result
1279
+
1280
+ @property
1281
+ @doc(Series.dtype.__doc__)
1282
+ def dtype(self) -> Series:
1283
+ return self.apply(lambda ser: ser.dtype)
1284
+
1285
+ def unique(self) -> Series:
1286
+ """
1287
+ Return unique values for each group.
1288
+
1289
+ It returns unique values for each of the grouped values. Returned in
1290
+ order of appearance. Hash table-based unique, therefore does NOT sort.
1291
+
1292
+ Returns
1293
+ -------
1294
+ Series
1295
+ Unique values for each of the grouped values.
1296
+
1297
+ See Also
1298
+ --------
1299
+ Series.unique : Return unique values of Series object.
1300
+
1301
+ Examples
1302
+ --------
1303
+ >>> df = pd.DataFrame([('Chihuahua', 'dog', 6.1),
1304
+ ... ('Beagle', 'dog', 15.2),
1305
+ ... ('Chihuahua', 'dog', 6.9),
1306
+ ... ('Persian', 'cat', 9.2),
1307
+ ... ('Chihuahua', 'dog', 7),
1308
+ ... ('Persian', 'cat', 8.8)],
1309
+ ... columns=['breed', 'animal', 'height_in'])
1310
+ >>> df
1311
+ breed animal height_in
1312
+ 0 Chihuahua dog 6.1
1313
+ 1 Beagle dog 15.2
1314
+ 2 Chihuahua dog 6.9
1315
+ 3 Persian cat 9.2
1316
+ 4 Chihuahua dog 7.0
1317
+ 5 Persian cat 8.8
1318
+ >>> ser = df.groupby('animal')['breed'].unique()
1319
+ >>> ser
1320
+ animal
1321
+ cat [Persian]
1322
+ dog [Chihuahua, Beagle]
1323
+ Name: breed, dtype: object
1324
+ """
1325
+ result = self._op_via_apply("unique")
1326
+ return result
1327
+
1328
+
1329
+ class DataFrameGroupBy(GroupBy[DataFrame]):
1330
+ _agg_examples_doc = dedent(
1331
+ """
1332
+ Examples
1333
+ --------
1334
+ >>> data = {"A": [1, 1, 2, 2],
1335
+ ... "B": [1, 2, 3, 4],
1336
+ ... "C": [0.362838, 0.227877, 1.267767, -0.562860]}
1337
+ >>> df = pd.DataFrame(data)
1338
+ >>> df
1339
+ A B C
1340
+ 0 1 1 0.362838
1341
+ 1 1 2 0.227877
1342
+ 2 2 3 1.267767
1343
+ 3 2 4 -0.562860
1344
+
1345
+ The aggregation is for each column.
1346
+
1347
+ >>> df.groupby('A').agg('min')
1348
+ B C
1349
+ A
1350
+ 1 1 0.227877
1351
+ 2 3 -0.562860
1352
+
1353
+ Multiple aggregations
1354
+
1355
+ >>> df.groupby('A').agg(['min', 'max'])
1356
+ B C
1357
+ min max min max
1358
+ A
1359
+ 1 1 2 0.227877 0.362838
1360
+ 2 3 4 -0.562860 1.267767
1361
+
1362
+ Select a column for aggregation
1363
+
1364
+ >>> df.groupby('A').B.agg(['min', 'max'])
1365
+ min max
1366
+ A
1367
+ 1 1 2
1368
+ 2 3 4
1369
+
1370
+ User-defined function for aggregation
1371
+
1372
+ >>> df.groupby('A').agg(lambda x: sum(x) + 2)
1373
+ B C
1374
+ A
1375
+ 1 5 2.590715
1376
+ 2 9 2.704907
1377
+
1378
+ Different aggregations per column
1379
+
1380
+ >>> df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'})
1381
+ B C
1382
+ min max sum
1383
+ A
1384
+ 1 1 2 0.590715
1385
+ 2 3 4 0.704907
1386
+
1387
+ To control the output names with different aggregations per column,
1388
+ pandas supports "named aggregation"
1389
+
1390
+ >>> df.groupby("A").agg(
1391
+ ... b_min=pd.NamedAgg(column="B", aggfunc="min"),
1392
+ ... c_sum=pd.NamedAgg(column="C", aggfunc="sum")
1393
+ ... )
1394
+ b_min c_sum
1395
+ A
1396
+ 1 1 0.590715
1397
+ 2 3 0.704907
1398
+
1399
+ - The keywords are the *output* column names
1400
+ - The values are tuples whose first element is the column to select
1401
+ and the second element is the aggregation to apply to that column.
1402
+ Pandas provides the ``pandas.NamedAgg`` namedtuple with the fields
1403
+ ``['column', 'aggfunc']`` to make it clearer what the arguments are.
1404
+ As usual, the aggregation can be a callable or a string alias.
1405
+
1406
+ See :ref:`groupby.aggregate.named` for more.
1407
+
1408
+ .. versionchanged:: 1.3.0
1409
+
1410
+ The resulting dtype will reflect the return value of the aggregating function.
1411
+
1412
+ >>> df.groupby("A")[["B"]].agg(lambda x: x.astype(float).min())
1413
+ B
1414
+ A
1415
+ 1 1.0
1416
+ 2 3.0
1417
+ """
1418
+ )
1419
+
1420
+ @doc(_agg_template_frame, examples=_agg_examples_doc, klass="DataFrame")
1421
+ def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs):
1422
+ relabeling, func, columns, order = reconstruct_func(func, **kwargs)
1423
+ func = maybe_mangle_lambdas(func)
1424
+
1425
+ if maybe_use_numba(engine):
1426
+ # Not all agg functions support numba, only propagate numba kwargs
1427
+ # if user asks for numba
1428
+ kwargs["engine"] = engine
1429
+ kwargs["engine_kwargs"] = engine_kwargs
1430
+
1431
+ op = GroupByApply(self, func, args=args, kwargs=kwargs)
1432
+ result = op.agg()
1433
+ if not is_dict_like(func) and result is not None:
1434
+ # GH #52849
1435
+ if not self.as_index and is_list_like(func):
1436
+ return result.reset_index()
1437
+ else:
1438
+ return result
1439
+ elif relabeling:
1440
+ # this should be the only (non-raising) case with relabeling
1441
+ # used reordered index of columns
1442
+ result = cast(DataFrame, result)
1443
+ result = result.iloc[:, order]
1444
+ result = cast(DataFrame, result)
1445
+ # error: Incompatible types in assignment (expression has type
1446
+ # "Optional[List[str]]", variable has type
1447
+ # "Union[Union[Union[ExtensionArray, ndarray[Any, Any]],
1448
+ # Index, Series], Sequence[Any]]")
1449
+ result.columns = columns # type: ignore[assignment]
1450
+
1451
+ if result is None:
1452
+ # Remove the kwargs we inserted
1453
+ # (already stored in engine, engine_kwargs arguments)
1454
+ if "engine" in kwargs:
1455
+ del kwargs["engine"]
1456
+ del kwargs["engine_kwargs"]
1457
+ # at this point func is not a str, list-like, dict-like,
1458
+ # or a known callable(e.g. sum)
1459
+ if maybe_use_numba(engine):
1460
+ return self._aggregate_with_numba(
1461
+ func, *args, engine_kwargs=engine_kwargs, **kwargs
1462
+ )
1463
+ # grouper specific aggregations
1464
+ if self._grouper.nkeys > 1:
1465
+ # test_groupby_as_index_series_scalar gets here with 'not self.as_index'
1466
+ return self._python_agg_general(func, *args, **kwargs)
1467
+ elif args or kwargs:
1468
+ # test_pass_args_kwargs gets here (with and without as_index)
1469
+ # can't return early
1470
+ result = self._aggregate_frame(func, *args, **kwargs)
1471
+
1472
+ elif self.axis == 1:
1473
+ # _aggregate_multiple_funcs does not allow self.axis == 1
1474
+ # Note: axis == 1 precludes 'not self.as_index', see __init__
1475
+ result = self._aggregate_frame(func)
1476
+ return result
1477
+
1478
+ else:
1479
+ # try to treat as if we are passing a list
1480
+ gba = GroupByApply(self, [func], args=(), kwargs={})
1481
+ try:
1482
+ result = gba.agg()
1483
+
1484
+ except ValueError as err:
1485
+ if "No objects to concatenate" not in str(err):
1486
+ raise
1487
+ # _aggregate_frame can fail with e.g. func=Series.mode,
1488
+ # where it expects 1D values but would be getting 2D values
1489
+ # In other tests, using aggregate_frame instead of GroupByApply
1490
+ # would give correct values but incorrect dtypes
1491
+ # object vs float64 in test_cython_agg_empty_buckets
1492
+ # float64 vs int64 in test_category_order_apply
1493
+ result = self._aggregate_frame(func)
1494
+
1495
+ else:
1496
+ # GH#32040, GH#35246
1497
+ # e.g. test_groupby_as_index_select_column_sum_empty_df
1498
+ result = cast(DataFrame, result)
1499
+ result.columns = self._obj_with_exclusions.columns.copy()
1500
+
1501
+ if not self.as_index:
1502
+ result = self._insert_inaxis_grouper(result)
1503
+ result.index = default_index(len(result))
1504
+
1505
+ return result
1506
+
1507
+ agg = aggregate
1508
+
1509
+ def _python_agg_general(self, func, *args, **kwargs):
1510
+ orig_func = func
1511
+ func = com.is_builtin_func(func)
1512
+ if orig_func != func:
1513
+ alias = com._builtin_table_alias[func]
1514
+ warn_alias_replacement(self, orig_func, alias)
1515
+ f = lambda x: func(x, *args, **kwargs)
1516
+
1517
+ if self.ngroups == 0:
1518
+ # e.g. test_evaluate_with_empty_groups different path gets different
1519
+ # result dtype in empty case.
1520
+ return self._python_apply_general(f, self._selected_obj, is_agg=True)
1521
+
1522
+ obj = self._obj_with_exclusions
1523
+ if self.axis == 1:
1524
+ obj = obj.T
1525
+
1526
+ if not len(obj.columns):
1527
+ # e.g. test_margins_no_values_no_cols
1528
+ return self._python_apply_general(f, self._selected_obj)
1529
+
1530
+ output: dict[int, ArrayLike] = {}
1531
+ for idx, (name, ser) in enumerate(obj.items()):
1532
+ result = self._grouper.agg_series(ser, f)
1533
+ output[idx] = result
1534
+
1535
+ res = self.obj._constructor(output)
1536
+ res.columns = obj.columns.copy(deep=False)
1537
+ return self._wrap_aggregated_output(res)
1538
+
1539
+ def _aggregate_frame(self, func, *args, **kwargs) -> DataFrame:
1540
+ if self._grouper.nkeys != 1:
1541
+ raise AssertionError("Number of keys must be 1")
1542
+
1543
+ obj = self._obj_with_exclusions
1544
+
1545
+ result: dict[Hashable, NDFrame | np.ndarray] = {}
1546
+ for name, grp_df in self._grouper.get_iterator(obj, self.axis):
1547
+ fres = func(grp_df, *args, **kwargs)
1548
+ result[name] = fres
1549
+
1550
+ result_index = self._grouper.result_index
1551
+ other_ax = obj.axes[1 - self.axis]
1552
+ out = self.obj._constructor(result, index=other_ax, columns=result_index)
1553
+ if self.axis == 0:
1554
+ out = out.T
1555
+
1556
+ return out
1557
+
1558
+ def _wrap_applied_output(
1559
+ self,
1560
+ data: DataFrame,
1561
+ values: list,
1562
+ not_indexed_same: bool = False,
1563
+ is_transform: bool = False,
1564
+ ):
1565
+ if len(values) == 0:
1566
+ if is_transform:
1567
+ # GH#47787 see test_group_on_empty_multiindex
1568
+ res_index = data.index
1569
+ else:
1570
+ res_index = self._grouper.result_index
1571
+
1572
+ result = self.obj._constructor(index=res_index, columns=data.columns)
1573
+ result = result.astype(data.dtypes, copy=False)
1574
+ return result
1575
+
1576
+ # GH12824
1577
+ # using values[0] here breaks test_groupby_apply_none_first
1578
+ first_not_none = next(com.not_none(*values), None)
1579
+
1580
+ if first_not_none is None:
1581
+ # GH9684 - All values are None, return an empty frame.
1582
+ return self.obj._constructor()
1583
+ elif isinstance(first_not_none, DataFrame):
1584
+ return self._concat_objects(
1585
+ values,
1586
+ not_indexed_same=not_indexed_same,
1587
+ is_transform=is_transform,
1588
+ )
1589
+
1590
+ key_index = self._grouper.result_index if self.as_index else None
1591
+
1592
+ if isinstance(first_not_none, (np.ndarray, Index)):
1593
+ # GH#1738: values is list of arrays of unequal lengths
1594
+ # fall through to the outer else clause
1595
+ # TODO: sure this is right? we used to do this
1596
+ # after raising AttributeError above
1597
+ # GH 18930
1598
+ if not is_hashable(self._selection):
1599
+ # error: Need type annotation for "name"
1600
+ name = tuple(self._selection) # type: ignore[var-annotated, arg-type]
1601
+ else:
1602
+ # error: Incompatible types in assignment
1603
+ # (expression has type "Hashable", variable
1604
+ # has type "Tuple[Any, ...]")
1605
+ name = self._selection # type: ignore[assignment]
1606
+ return self.obj._constructor_sliced(values, index=key_index, name=name)
1607
+ elif not isinstance(first_not_none, Series):
1608
+ # values are not series or array-like but scalars
1609
+ # self._selection not passed through to Series as the
1610
+ # result should not take the name of original selection
1611
+ # of columns
1612
+ if self.as_index:
1613
+ return self.obj._constructor_sliced(values, index=key_index)
1614
+ else:
1615
+ result = self.obj._constructor(values, columns=[self._selection])
1616
+ result = self._insert_inaxis_grouper(result)
1617
+ return result
1618
+ else:
1619
+ # values are Series
1620
+ return self._wrap_applied_output_series(
1621
+ values,
1622
+ not_indexed_same,
1623
+ first_not_none,
1624
+ key_index,
1625
+ is_transform,
1626
+ )
1627
+
1628
+ def _wrap_applied_output_series(
1629
+ self,
1630
+ values: list[Series],
1631
+ not_indexed_same: bool,
1632
+ first_not_none,
1633
+ key_index: Index | None,
1634
+ is_transform: bool,
1635
+ ) -> DataFrame | Series:
1636
+ kwargs = first_not_none._construct_axes_dict()
1637
+ backup = Series(**kwargs)
1638
+ values = [x if (x is not None) else backup for x in values]
1639
+
1640
+ all_indexed_same = all_indexes_same(x.index for x in values)
1641
+
1642
+ if not all_indexed_same:
1643
+ # GH 8467
1644
+ return self._concat_objects(
1645
+ values,
1646
+ not_indexed_same=True,
1647
+ is_transform=is_transform,
1648
+ )
1649
+
1650
+ # Combine values
1651
+ # vstack+constructor is faster than concat and handles MI-columns
1652
+ stacked_values = np.vstack([np.asarray(v) for v in values])
1653
+
1654
+ if self.axis == 0:
1655
+ index = key_index
1656
+ columns = first_not_none.index.copy()
1657
+ if columns.name is None:
1658
+ # GH6124 - propagate name of Series when it's consistent
1659
+ names = {v.name for v in values}
1660
+ if len(names) == 1:
1661
+ columns.name = next(iter(names))
1662
+ else:
1663
+ index = first_not_none.index
1664
+ columns = key_index
1665
+ stacked_values = stacked_values.T
1666
+
1667
+ if stacked_values.dtype == object:
1668
+ # We'll have the DataFrame constructor do inference
1669
+ stacked_values = stacked_values.tolist()
1670
+ result = self.obj._constructor(stacked_values, index=index, columns=columns)
1671
+
1672
+ if not self.as_index:
1673
+ result = self._insert_inaxis_grouper(result)
1674
+
1675
+ return self._reindex_output(result)
1676
+
1677
+ def _cython_transform(
1678
+ self,
1679
+ how: str,
1680
+ numeric_only: bool = False,
1681
+ axis: AxisInt = 0,
1682
+ **kwargs,
1683
+ ) -> DataFrame:
1684
+ assert axis == 0 # handled by caller
1685
+
1686
+ # With self.axis == 0, we have multi-block tests
1687
+ # e.g. test_rank_min_int, test_cython_transform_frame
1688
+ # test_transform_numeric_ret
1689
+ # With self.axis == 1, _get_data_to_aggregate does a transpose
1690
+ # so we always have a single block.
1691
+ mgr: Manager2D = self._get_data_to_aggregate(
1692
+ numeric_only=numeric_only, name=how
1693
+ )
1694
+
1695
+ def arr_func(bvalues: ArrayLike) -> ArrayLike:
1696
+ return self._grouper._cython_operation(
1697
+ "transform", bvalues, how, 1, **kwargs
1698
+ )
1699
+
1700
+ # We could use `mgr.apply` here and not have to set_axis, but
1701
+ # we would have to do shape gymnastics for ArrayManager compat
1702
+ res_mgr = mgr.grouped_reduce(arr_func)
1703
+ res_mgr.set_axis(1, mgr.axes[1])
1704
+
1705
+ res_df = self.obj._constructor_from_mgr(res_mgr, axes=res_mgr.axes)
1706
+ res_df = self._maybe_transpose_result(res_df)
1707
+ return res_df
1708
+
1709
+ def _transform_general(self, func, engine, engine_kwargs, *args, **kwargs):
1710
+ if maybe_use_numba(engine):
1711
+ return self._transform_with_numba(
1712
+ func, *args, engine_kwargs=engine_kwargs, **kwargs
1713
+ )
1714
+ from pandas.core.reshape.concat import concat
1715
+
1716
+ applied = []
1717
+ obj = self._obj_with_exclusions
1718
+ gen = self._grouper.get_iterator(obj, axis=self.axis)
1719
+ fast_path, slow_path = self._define_paths(func, *args, **kwargs)
1720
+
1721
+ # Determine whether to use slow or fast path by evaluating on the first group.
1722
+ # Need to handle the case of an empty generator and process the result so that
1723
+ # it does not need to be computed again.
1724
+ try:
1725
+ name, group = next(gen)
1726
+ except StopIteration:
1727
+ pass
1728
+ else:
1729
+ # 2023-02-27 No tests broken by disabling this pinning
1730
+ object.__setattr__(group, "name", name)
1731
+ try:
1732
+ path, res = self._choose_path(fast_path, slow_path, group)
1733
+ except ValueError as err:
1734
+ # e.g. test_transform_with_non_scalar_group
1735
+ msg = "transform must return a scalar value for each group"
1736
+ raise ValueError(msg) from err
1737
+ if group.size > 0:
1738
+ res = _wrap_transform_general_frame(self.obj, group, res)
1739
+ applied.append(res)
1740
+
1741
+ # Compute and process with the remaining groups
1742
+ for name, group in gen:
1743
+ if group.size == 0:
1744
+ continue
1745
+ # 2023-02-27 No tests broken by disabling this pinning
1746
+ object.__setattr__(group, "name", name)
1747
+ res = path(group)
1748
+
1749
+ res = _wrap_transform_general_frame(self.obj, group, res)
1750
+ applied.append(res)
1751
+
1752
+ concat_index = obj.columns if self.axis == 0 else obj.index
1753
+ other_axis = 1 if self.axis == 0 else 0 # switches between 0 & 1
1754
+ concatenated = concat(applied, axis=self.axis, verify_integrity=False)
1755
+ concatenated = concatenated.reindex(concat_index, axis=other_axis, copy=False)
1756
+ return self._set_result_index_ordered(concatenated)
1757
+
1758
+ __examples_dataframe_doc = dedent(
1759
+ """
1760
+ >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
1761
+ ... 'foo', 'bar'],
1762
+ ... 'B' : ['one', 'one', 'two', 'three',
1763
+ ... 'two', 'two'],
1764
+ ... 'C' : [1, 5, 5, 2, 5, 5],
1765
+ ... 'D' : [2.0, 5., 8., 1., 2., 9.]})
1766
+ >>> grouped = df.groupby('A')[['C', 'D']]
1767
+ >>> grouped.transform(lambda x: (x - x.mean()) / x.std())
1768
+ C D
1769
+ 0 -1.154701 -0.577350
1770
+ 1 0.577350 0.000000
1771
+ 2 0.577350 1.154701
1772
+ 3 -1.154701 -1.000000
1773
+ 4 0.577350 -0.577350
1774
+ 5 0.577350 1.000000
1775
+
1776
+ Broadcast result of the transformation
1777
+
1778
+ >>> grouped.transform(lambda x: x.max() - x.min())
1779
+ C D
1780
+ 0 4.0 6.0
1781
+ 1 3.0 8.0
1782
+ 2 4.0 6.0
1783
+ 3 3.0 8.0
1784
+ 4 4.0 6.0
1785
+ 5 3.0 8.0
1786
+
1787
+ >>> grouped.transform("mean")
1788
+ C D
1789
+ 0 3.666667 4.0
1790
+ 1 4.000000 5.0
1791
+ 2 3.666667 4.0
1792
+ 3 4.000000 5.0
1793
+ 4 3.666667 4.0
1794
+ 5 4.000000 5.0
1795
+
1796
+ .. versionchanged:: 1.3.0
1797
+
1798
+ The resulting dtype will reflect the return value of the passed ``func``,
1799
+ for example:
1800
+
1801
+ >>> grouped.transform(lambda x: x.astype(int).max())
1802
+ C D
1803
+ 0 5 8
1804
+ 1 5 9
1805
+ 2 5 8
1806
+ 3 5 9
1807
+ 4 5 8
1808
+ 5 5 9
1809
+ """
1810
+ )
1811
+
1812
+ @Substitution(klass="DataFrame", example=__examples_dataframe_doc)
1813
+ @Appender(_transform_template)
1814
+ def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs):
1815
+ return self._transform(
1816
+ func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs
1817
+ )
1818
+
1819
+ def _define_paths(self, func, *args, **kwargs):
1820
+ if isinstance(func, str):
1821
+ fast_path = lambda group: getattr(group, func)(*args, **kwargs)
1822
+ slow_path = lambda group: group.apply(
1823
+ lambda x: getattr(x, func)(*args, **kwargs), axis=self.axis
1824
+ )
1825
+ else:
1826
+ fast_path = lambda group: func(group, *args, **kwargs)
1827
+ slow_path = lambda group: group.apply(
1828
+ lambda x: func(x, *args, **kwargs), axis=self.axis
1829
+ )
1830
+ return fast_path, slow_path
1831
+
1832
+ def _choose_path(self, fast_path: Callable, slow_path: Callable, group: DataFrame):
1833
+ path = slow_path
1834
+ res = slow_path(group)
1835
+
1836
+ if self.ngroups == 1:
1837
+ # no need to evaluate multiple paths when only
1838
+ # a single group exists
1839
+ return path, res
1840
+
1841
+ # if we make it here, test if we can use the fast path
1842
+ try:
1843
+ res_fast = fast_path(group)
1844
+ except AssertionError:
1845
+ raise # pragma: no cover
1846
+ except Exception:
1847
+ # GH#29631 For user-defined function, we can't predict what may be
1848
+ # raised; see test_transform.test_transform_fastpath_raises
1849
+ return path, res
1850
+
1851
+ # verify fast path returns either:
1852
+ # a DataFrame with columns equal to group.columns
1853
+ # OR a Series with index equal to group.columns
1854
+ if isinstance(res_fast, DataFrame):
1855
+ if not res_fast.columns.equals(group.columns):
1856
+ return path, res
1857
+ elif isinstance(res_fast, Series):
1858
+ if not res_fast.index.equals(group.columns):
1859
+ return path, res
1860
+ else:
1861
+ return path, res
1862
+
1863
+ if res_fast.equals(res):
1864
+ path = fast_path
1865
+
1866
+ return path, res
1867
+
1868
+ def filter(self, func, dropna: bool = True, *args, **kwargs):
1869
+ """
1870
+ Filter elements from groups that don't satisfy a criterion.
1871
+
1872
+ Elements from groups are filtered if they do not satisfy the
1873
+ boolean criterion specified by func.
1874
+
1875
+ Parameters
1876
+ ----------
1877
+ func : function
1878
+ Criterion to apply to each group. Should return True or False.
1879
+ dropna : bool
1880
+ Drop groups that do not pass the filter. True by default; if False,
1881
+ groups that evaluate False are filled with NaNs.
1882
+
1883
+ Returns
1884
+ -------
1885
+ DataFrame
1886
+
1887
+ Notes
1888
+ -----
1889
+ Each subframe is endowed the attribute 'name' in case you need to know
1890
+ which group you are working on.
1891
+
1892
+ Functions that mutate the passed object can produce unexpected
1893
+ behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
1894
+ for more details.
1895
+
1896
+ Examples
1897
+ --------
1898
+ >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
1899
+ ... 'foo', 'bar'],
1900
+ ... 'B' : [1, 2, 3, 4, 5, 6],
1901
+ ... 'C' : [2.0, 5., 8., 1., 2., 9.]})
1902
+ >>> grouped = df.groupby('A')
1903
+ >>> grouped.filter(lambda x: x['B'].mean() > 3.)
1904
+ A B C
1905
+ 1 bar 2 5.0
1906
+ 3 bar 4 1.0
1907
+ 5 bar 6 9.0
1908
+ """
1909
+ indices = []
1910
+
1911
+ obj = self._selected_obj
1912
+ gen = self._grouper.get_iterator(obj, axis=self.axis)
1913
+
1914
+ for name, group in gen:
1915
+ # 2023-02-27 no tests are broken this pinning, but it is documented in the
1916
+ # docstring above.
1917
+ object.__setattr__(group, "name", name)
1918
+
1919
+ res = func(group, *args, **kwargs)
1920
+
1921
+ try:
1922
+ res = res.squeeze()
1923
+ except AttributeError: # allow e.g., scalars and frames to pass
1924
+ pass
1925
+
1926
+ # interpret the result of the filter
1927
+ if is_bool(res) or (is_scalar(res) and isna(res)):
1928
+ if notna(res) and res:
1929
+ indices.append(self._get_index(name))
1930
+ else:
1931
+ # non scalars aren't allowed
1932
+ raise TypeError(
1933
+ f"filter function returned a {type(res).__name__}, "
1934
+ "but expected a scalar bool"
1935
+ )
1936
+
1937
+ return self._apply_filter(indices, dropna)
1938
+
1939
+ def __getitem__(self, key) -> DataFrameGroupBy | SeriesGroupBy:
1940
+ if self.axis == 1:
1941
+ # GH 37725
1942
+ raise ValueError("Cannot subset columns when using axis=1")
1943
+ # per GH 23566
1944
+ if isinstance(key, tuple) and len(key) > 1:
1945
+ # if len == 1, then it becomes a SeriesGroupBy and this is actually
1946
+ # valid syntax, so don't raise
1947
+ raise ValueError(
1948
+ "Cannot subset columns with a tuple with more than one element. "
1949
+ "Use a list instead."
1950
+ )
1951
+ return super().__getitem__(key)
1952
+
1953
+ def _gotitem(self, key, ndim: int, subset=None):
1954
+ """
1955
+ sub-classes to define
1956
+ return a sliced object
1957
+
1958
+ Parameters
1959
+ ----------
1960
+ key : string / list of selections
1961
+ ndim : {1, 2}
1962
+ requested ndim of result
1963
+ subset : object, default None
1964
+ subset to act on
1965
+ """
1966
+ if ndim == 2:
1967
+ if subset is None:
1968
+ subset = self.obj
1969
+ return DataFrameGroupBy(
1970
+ subset,
1971
+ self.keys,
1972
+ axis=self.axis,
1973
+ level=self.level,
1974
+ grouper=self._grouper,
1975
+ exclusions=self.exclusions,
1976
+ selection=key,
1977
+ as_index=self.as_index,
1978
+ sort=self.sort,
1979
+ group_keys=self.group_keys,
1980
+ observed=self.observed,
1981
+ dropna=self.dropna,
1982
+ )
1983
+ elif ndim == 1:
1984
+ if subset is None:
1985
+ subset = self.obj[key]
1986
+ return SeriesGroupBy(
1987
+ subset,
1988
+ self.keys,
1989
+ level=self.level,
1990
+ grouper=self._grouper,
1991
+ exclusions=self.exclusions,
1992
+ selection=key,
1993
+ as_index=self.as_index,
1994
+ sort=self.sort,
1995
+ group_keys=self.group_keys,
1996
+ observed=self.observed,
1997
+ dropna=self.dropna,
1998
+ )
1999
+
2000
+ raise AssertionError("invalid ndim for _gotitem")
2001
+
2002
+ def _get_data_to_aggregate(
2003
+ self, *, numeric_only: bool = False, name: str | None = None
2004
+ ) -> Manager2D:
2005
+ obj = self._obj_with_exclusions
2006
+ if self.axis == 1:
2007
+ mgr = obj.T._mgr
2008
+ else:
2009
+ mgr = obj._mgr
2010
+
2011
+ if numeric_only:
2012
+ mgr = mgr.get_numeric_data()
2013
+ return mgr
2014
+
2015
+ def _wrap_agged_manager(self, mgr: Manager2D) -> DataFrame:
2016
+ return self.obj._constructor_from_mgr(mgr, axes=mgr.axes)
2017
+
2018
+ def _apply_to_column_groupbys(self, func) -> DataFrame:
2019
+ from pandas.core.reshape.concat import concat
2020
+
2021
+ obj = self._obj_with_exclusions
2022
+ columns = obj.columns
2023
+ sgbs = [
2024
+ SeriesGroupBy(
2025
+ obj.iloc[:, i],
2026
+ selection=colname,
2027
+ grouper=self._grouper,
2028
+ exclusions=self.exclusions,
2029
+ observed=self.observed,
2030
+ )
2031
+ for i, colname in enumerate(obj.columns)
2032
+ ]
2033
+ results = [func(sgb) for sgb in sgbs]
2034
+
2035
+ if not len(results):
2036
+ # concat would raise
2037
+ res_df = DataFrame([], columns=columns, index=self._grouper.result_index)
2038
+ else:
2039
+ res_df = concat(results, keys=columns, axis=1)
2040
+
2041
+ if not self.as_index:
2042
+ res_df.index = default_index(len(res_df))
2043
+ res_df = self._insert_inaxis_grouper(res_df)
2044
+ return res_df
2045
+
2046
+ def nunique(self, dropna: bool = True) -> DataFrame:
2047
+ """
2048
+ Return DataFrame with counts of unique elements in each position.
2049
+
2050
+ Parameters
2051
+ ----------
2052
+ dropna : bool, default True
2053
+ Don't include NaN in the counts.
2054
+
2055
+ Returns
2056
+ -------
2057
+ nunique: DataFrame
2058
+
2059
+ Examples
2060
+ --------
2061
+ >>> df = pd.DataFrame({'id': ['spam', 'egg', 'egg', 'spam',
2062
+ ... 'ham', 'ham'],
2063
+ ... 'value1': [1, 5, 5, 2, 5, 5],
2064
+ ... 'value2': list('abbaxy')})
2065
+ >>> df
2066
+ id value1 value2
2067
+ 0 spam 1 a
2068
+ 1 egg 5 b
2069
+ 2 egg 5 b
2070
+ 3 spam 2 a
2071
+ 4 ham 5 x
2072
+ 5 ham 5 y
2073
+
2074
+ >>> df.groupby('id').nunique()
2075
+ value1 value2
2076
+ id
2077
+ egg 1 1
2078
+ ham 1 2
2079
+ spam 2 1
2080
+
2081
+ Check for rows with the same id but conflicting values:
2082
+
2083
+ >>> df.groupby('id').filter(lambda g: (g.nunique() > 1).any())
2084
+ id value1 value2
2085
+ 0 spam 1 a
2086
+ 3 spam 2 a
2087
+ 4 ham 5 x
2088
+ 5 ham 5 y
2089
+ """
2090
+
2091
+ if self.axis != 0:
2092
+ # see test_groupby_crash_on_nunique
2093
+ return self._python_apply_general(
2094
+ lambda sgb: sgb.nunique(dropna), self._obj_with_exclusions, is_agg=True
2095
+ )
2096
+
2097
+ return self._apply_to_column_groupbys(lambda sgb: sgb.nunique(dropna))
2098
+
2099
+ def idxmax(
2100
+ self,
2101
+ axis: Axis | None | lib.NoDefault = lib.no_default,
2102
+ skipna: bool = True,
2103
+ numeric_only: bool = False,
2104
+ ) -> DataFrame:
2105
+ """
2106
+ Return index of first occurrence of maximum over requested axis.
2107
+
2108
+ NA/null values are excluded.
2109
+
2110
+ Parameters
2111
+ ----------
2112
+ axis : {{0 or 'index', 1 or 'columns'}}, default None
2113
+ The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
2114
+ If axis is not provided, grouper's axis is used.
2115
+
2116
+ .. versionchanged:: 2.0.0
2117
+
2118
+ .. deprecated:: 2.1.0
2119
+ For axis=1, operate on the underlying object instead. Otherwise
2120
+ the axis keyword is not necessary.
2121
+
2122
+ skipna : bool, default True
2123
+ Exclude NA/null values. If an entire row/column is NA, the result
2124
+ will be NA.
2125
+ numeric_only : bool, default False
2126
+ Include only `float`, `int` or `boolean` data.
2127
+
2128
+ .. versionadded:: 1.5.0
2129
+
2130
+ Returns
2131
+ -------
2132
+ Series
2133
+ Indexes of maxima along the specified axis.
2134
+
2135
+ Raises
2136
+ ------
2137
+ ValueError
2138
+ * If the row/column is empty
2139
+
2140
+ See Also
2141
+ --------
2142
+ Series.idxmax : Return index of the maximum element.
2143
+
2144
+ Notes
2145
+ -----
2146
+ This method is the DataFrame version of ``ndarray.argmax``.
2147
+
2148
+ Examples
2149
+ --------
2150
+ Consider a dataset containing food consumption in Argentina.
2151
+
2152
+ >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48],
2153
+ ... 'co2_emissions': [37.2, 19.66, 1712]},
2154
+ ... index=['Pork', 'Wheat Products', 'Beef'])
2155
+
2156
+ >>> df
2157
+ consumption co2_emissions
2158
+ Pork 10.51 37.20
2159
+ Wheat Products 103.11 19.66
2160
+ Beef 55.48 1712.00
2161
+
2162
+ By default, it returns the index for the maximum value in each column.
2163
+
2164
+ >>> df.idxmax()
2165
+ consumption Wheat Products
2166
+ co2_emissions Beef
2167
+ dtype: object
2168
+
2169
+ To return the index for the maximum value in each row, use ``axis="columns"``.
2170
+
2171
+ >>> df.idxmax(axis="columns")
2172
+ Pork co2_emissions
2173
+ Wheat Products consumption
2174
+ Beef co2_emissions
2175
+ dtype: object
2176
+ """
2177
+ return self._idxmax_idxmin(
2178
+ "idxmax", axis=axis, numeric_only=numeric_only, skipna=skipna
2179
+ )
2180
+
2181
+ def idxmin(
2182
+ self,
2183
+ axis: Axis | None | lib.NoDefault = lib.no_default,
2184
+ skipna: bool = True,
2185
+ numeric_only: bool = False,
2186
+ ) -> DataFrame:
2187
+ """
2188
+ Return index of first occurrence of minimum over requested axis.
2189
+
2190
+ NA/null values are excluded.
2191
+
2192
+ Parameters
2193
+ ----------
2194
+ axis : {{0 or 'index', 1 or 'columns'}}, default None
2195
+ The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
2196
+ If axis is not provided, grouper's axis is used.
2197
+
2198
+ .. versionchanged:: 2.0.0
2199
+
2200
+ .. deprecated:: 2.1.0
2201
+ For axis=1, operate on the underlying object instead. Otherwise
2202
+ the axis keyword is not necessary.
2203
+
2204
+ skipna : bool, default True
2205
+ Exclude NA/null values. If an entire row/column is NA, the result
2206
+ will be NA.
2207
+ numeric_only : bool, default False
2208
+ Include only `float`, `int` or `boolean` data.
2209
+
2210
+ .. versionadded:: 1.5.0
2211
+
2212
+ Returns
2213
+ -------
2214
+ Series
2215
+ Indexes of minima along the specified axis.
2216
+
2217
+ Raises
2218
+ ------
2219
+ ValueError
2220
+ * If the row/column is empty
2221
+
2222
+ See Also
2223
+ --------
2224
+ Series.idxmin : Return index of the minimum element.
2225
+
2226
+ Notes
2227
+ -----
2228
+ This method is the DataFrame version of ``ndarray.argmin``.
2229
+
2230
+ Examples
2231
+ --------
2232
+ Consider a dataset containing food consumption in Argentina.
2233
+
2234
+ >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48],
2235
+ ... 'co2_emissions': [37.2, 19.66, 1712]},
2236
+ ... index=['Pork', 'Wheat Products', 'Beef'])
2237
+
2238
+ >>> df
2239
+ consumption co2_emissions
2240
+ Pork 10.51 37.20
2241
+ Wheat Products 103.11 19.66
2242
+ Beef 55.48 1712.00
2243
+
2244
+ By default, it returns the index for the minimum value in each column.
2245
+
2246
+ >>> df.idxmin()
2247
+ consumption Pork
2248
+ co2_emissions Wheat Products
2249
+ dtype: object
2250
+
2251
+ To return the index for the minimum value in each row, use ``axis="columns"``.
2252
+
2253
+ >>> df.idxmin(axis="columns")
2254
+ Pork consumption
2255
+ Wheat Products co2_emissions
2256
+ Beef consumption
2257
+ dtype: object
2258
+ """
2259
+ return self._idxmax_idxmin(
2260
+ "idxmin", axis=axis, numeric_only=numeric_only, skipna=skipna
2261
+ )
2262
+
2263
+ boxplot = boxplot_frame_groupby
2264
+
2265
+ def value_counts(
2266
+ self,
2267
+ subset: Sequence[Hashable] | None = None,
2268
+ normalize: bool = False,
2269
+ sort: bool = True,
2270
+ ascending: bool = False,
2271
+ dropna: bool = True,
2272
+ ) -> DataFrame | Series:
2273
+ """
2274
+ Return a Series or DataFrame containing counts of unique rows.
2275
+
2276
+ .. versionadded:: 1.4.0
2277
+
2278
+ Parameters
2279
+ ----------
2280
+ subset : list-like, optional
2281
+ Columns to use when counting unique combinations.
2282
+ normalize : bool, default False
2283
+ Return proportions rather than frequencies.
2284
+ sort : bool, default True
2285
+ Sort by frequencies.
2286
+ ascending : bool, default False
2287
+ Sort in ascending order.
2288
+ dropna : bool, default True
2289
+ Don't include counts of rows that contain NA values.
2290
+
2291
+ Returns
2292
+ -------
2293
+ Series or DataFrame
2294
+ Series if the groupby as_index is True, otherwise DataFrame.
2295
+
2296
+ See Also
2297
+ --------
2298
+ Series.value_counts: Equivalent method on Series.
2299
+ DataFrame.value_counts: Equivalent method on DataFrame.
2300
+ SeriesGroupBy.value_counts: Equivalent method on SeriesGroupBy.
2301
+
2302
+ Notes
2303
+ -----
2304
+ - If the groupby as_index is True then the returned Series will have a
2305
+ MultiIndex with one level per input column.
2306
+ - If the groupby as_index is False then the returned DataFrame will have an
2307
+ additional column with the value_counts. The column is labelled 'count' or
2308
+ 'proportion', depending on the ``normalize`` parameter.
2309
+
2310
+ By default, rows that contain any NA values are omitted from
2311
+ the result.
2312
+
2313
+ By default, the result will be in descending order so that the
2314
+ first element of each group is the most frequently-occurring row.
2315
+
2316
+ Examples
2317
+ --------
2318
+ >>> df = pd.DataFrame({
2319
+ ... 'gender': ['male', 'male', 'female', 'male', 'female', 'male'],
2320
+ ... 'education': ['low', 'medium', 'high', 'low', 'high', 'low'],
2321
+ ... 'country': ['US', 'FR', 'US', 'FR', 'FR', 'FR']
2322
+ ... })
2323
+
2324
+ >>> df
2325
+ gender education country
2326
+ 0 male low US
2327
+ 1 male medium FR
2328
+ 2 female high US
2329
+ 3 male low FR
2330
+ 4 female high FR
2331
+ 5 male low FR
2332
+
2333
+ >>> df.groupby('gender').value_counts()
2334
+ gender education country
2335
+ female high FR 1
2336
+ US 1
2337
+ male low FR 2
2338
+ US 1
2339
+ medium FR 1
2340
+ Name: count, dtype: int64
2341
+
2342
+ >>> df.groupby('gender').value_counts(ascending=True)
2343
+ gender education country
2344
+ female high FR 1
2345
+ US 1
2346
+ male low US 1
2347
+ medium FR 1
2348
+ low FR 2
2349
+ Name: count, dtype: int64
2350
+
2351
+ >>> df.groupby('gender').value_counts(normalize=True)
2352
+ gender education country
2353
+ female high FR 0.50
2354
+ US 0.50
2355
+ male low FR 0.50
2356
+ US 0.25
2357
+ medium FR 0.25
2358
+ Name: proportion, dtype: float64
2359
+
2360
+ >>> df.groupby('gender', as_index=False).value_counts()
2361
+ gender education country count
2362
+ 0 female high FR 1
2363
+ 1 female high US 1
2364
+ 2 male low FR 2
2365
+ 3 male low US 1
2366
+ 4 male medium FR 1
2367
+
2368
+ >>> df.groupby('gender', as_index=False).value_counts(normalize=True)
2369
+ gender education country proportion
2370
+ 0 female high FR 0.50
2371
+ 1 female high US 0.50
2372
+ 2 male low FR 0.50
2373
+ 3 male low US 0.25
2374
+ 4 male medium FR 0.25
2375
+ """
2376
+ return self._value_counts(subset, normalize, sort, ascending, dropna)
2377
+
2378
+ def fillna(
2379
+ self,
2380
+ value: Hashable | Mapping | Series | DataFrame | None = None,
2381
+ method: FillnaOptions | None = None,
2382
+ axis: Axis | None | lib.NoDefault = lib.no_default,
2383
+ inplace: bool = False,
2384
+ limit: int | None = None,
2385
+ downcast=lib.no_default,
2386
+ ) -> DataFrame | None:
2387
+ """
2388
+ Fill NA/NaN values using the specified method within groups.
2389
+
2390
+ .. deprecated:: 2.2.0
2391
+ This method is deprecated and will be removed in a future version.
2392
+ Use the :meth:`.DataFrameGroupBy.ffill` or :meth:`.DataFrameGroupBy.bfill`
2393
+ for forward or backward filling instead. If you want to fill with a
2394
+ single value, use :meth:`DataFrame.fillna` instead.
2395
+
2396
+ Parameters
2397
+ ----------
2398
+ value : scalar, dict, Series, or DataFrame
2399
+ Value to use to fill holes (e.g. 0), alternately a
2400
+ dict/Series/DataFrame of values specifying which value to use for
2401
+ each index (for a Series) or column (for a DataFrame). Values not
2402
+ in the dict/Series/DataFrame will not be filled. This value cannot
2403
+ be a list. Users wanting to use the ``value`` argument and not ``method``
2404
+ should prefer :meth:`.DataFrame.fillna` as this
2405
+ will produce the same result and be more performant.
2406
+ method : {{'bfill', 'ffill', None}}, default None
2407
+ Method to use for filling holes. ``'ffill'`` will propagate
2408
+ the last valid observation forward within a group.
2409
+ ``'bfill'`` will use next valid observation to fill the gap.
2410
+ axis : {0 or 'index', 1 or 'columns'}
2411
+ Axis along which to fill missing values. When the :class:`DataFrameGroupBy`
2412
+ ``axis`` argument is ``0``, using ``axis=1`` here will produce
2413
+ the same results as :meth:`.DataFrame.fillna`. When the
2414
+ :class:`DataFrameGroupBy` ``axis`` argument is ``1``, using ``axis=0``
2415
+ or ``axis=1`` here will produce the same results.
2416
+ inplace : bool, default False
2417
+ Broken. Do not set to True.
2418
+ limit : int, default None
2419
+ If method is specified, this is the maximum number of consecutive
2420
+ NaN values to forward/backward fill within a group. In other words,
2421
+ if there is a gap with more than this number of consecutive NaNs,
2422
+ it will only be partially filled. If method is not specified, this is the
2423
+ maximum number of entries along the entire axis where NaNs will be
2424
+ filled. Must be greater than 0 if not None.
2425
+ downcast : dict, default is None
2426
+ A dict of item->dtype of what to downcast if possible,
2427
+ or the string 'infer' which will try to downcast to an appropriate
2428
+ equal type (e.g. float64 to int64 if possible).
2429
+
2430
+ Returns
2431
+ -------
2432
+ DataFrame
2433
+ Object with missing values filled.
2434
+
2435
+ See Also
2436
+ --------
2437
+ ffill : Forward fill values within a group.
2438
+ bfill : Backward fill values within a group.
2439
+
2440
+ Examples
2441
+ --------
2442
+ >>> df = pd.DataFrame(
2443
+ ... {
2444
+ ... "key": [0, 0, 1, 1, 1],
2445
+ ... "A": [np.nan, 2, np.nan, 3, np.nan],
2446
+ ... "B": [2, 3, np.nan, np.nan, np.nan],
2447
+ ... "C": [np.nan, np.nan, 2, np.nan, np.nan],
2448
+ ... }
2449
+ ... )
2450
+ >>> df
2451
+ key A B C
2452
+ 0 0 NaN 2.0 NaN
2453
+ 1 0 2.0 3.0 NaN
2454
+ 2 1 NaN NaN 2.0
2455
+ 3 1 3.0 NaN NaN
2456
+ 4 1 NaN NaN NaN
2457
+
2458
+ Propagate non-null values forward or backward within each group along columns.
2459
+
2460
+ >>> df.groupby("key").fillna(method="ffill")
2461
+ A B C
2462
+ 0 NaN 2.0 NaN
2463
+ 1 2.0 3.0 NaN
2464
+ 2 NaN NaN 2.0
2465
+ 3 3.0 NaN 2.0
2466
+ 4 3.0 NaN 2.0
2467
+
2468
+ >>> df.groupby("key").fillna(method="bfill")
2469
+ A B C
2470
+ 0 2.0 2.0 NaN
2471
+ 1 2.0 3.0 NaN
2472
+ 2 3.0 NaN 2.0
2473
+ 3 3.0 NaN NaN
2474
+ 4 NaN NaN NaN
2475
+
2476
+ Propagate non-null values forward or backward within each group along rows.
2477
+
2478
+ >>> df.T.groupby(np.array([0, 0, 1, 1])).fillna(method="ffill").T
2479
+ key A B C
2480
+ 0 0.0 0.0 2.0 2.0
2481
+ 1 0.0 2.0 3.0 3.0
2482
+ 2 1.0 1.0 NaN 2.0
2483
+ 3 1.0 3.0 NaN NaN
2484
+ 4 1.0 1.0 NaN NaN
2485
+
2486
+ >>> df.T.groupby(np.array([0, 0, 1, 1])).fillna(method="bfill").T
2487
+ key A B C
2488
+ 0 0.0 NaN 2.0 NaN
2489
+ 1 0.0 2.0 3.0 NaN
2490
+ 2 1.0 NaN 2.0 2.0
2491
+ 3 1.0 3.0 NaN NaN
2492
+ 4 1.0 NaN NaN NaN
2493
+
2494
+ Only replace the first NaN element within a group along rows.
2495
+
2496
+ >>> df.groupby("key").fillna(method="ffill", limit=1)
2497
+ A B C
2498
+ 0 NaN 2.0 NaN
2499
+ 1 2.0 3.0 NaN
2500
+ 2 NaN NaN 2.0
2501
+ 3 3.0 NaN 2.0
2502
+ 4 3.0 NaN NaN
2503
+ """
2504
+ warnings.warn(
2505
+ f"{type(self).__name__}.fillna is deprecated and "
2506
+ "will be removed in a future version. Use obj.ffill() or obj.bfill() "
2507
+ "for forward or backward filling instead. If you want to fill with a "
2508
+ f"single value, use {type(self.obj).__name__}.fillna instead",
2509
+ FutureWarning,
2510
+ stacklevel=find_stack_level(),
2511
+ )
2512
+
2513
+ result = self._op_via_apply(
2514
+ "fillna",
2515
+ value=value,
2516
+ method=method,
2517
+ axis=axis,
2518
+ inplace=inplace,
2519
+ limit=limit,
2520
+ downcast=downcast,
2521
+ )
2522
+ return result
2523
+
2524
+ def take(
2525
+ self,
2526
+ indices: TakeIndexer,
2527
+ axis: Axis | None | lib.NoDefault = lib.no_default,
2528
+ **kwargs,
2529
+ ) -> DataFrame:
2530
+ """
2531
+ Return the elements in the given *positional* indices in each group.
2532
+
2533
+ This means that we are not indexing according to actual values in
2534
+ the index attribute of the object. We are indexing according to the
2535
+ actual position of the element in the object.
2536
+
2537
+ If a requested index does not exist for some group, this method will raise.
2538
+ To get similar behavior that ignores indices that don't exist, see
2539
+ :meth:`.DataFrameGroupBy.nth`.
2540
+
2541
+ Parameters
2542
+ ----------
2543
+ indices : array-like
2544
+ An array of ints indicating which positions to take.
2545
+ axis : {0 or 'index', 1 or 'columns', None}, default 0
2546
+ The axis on which to select elements. ``0`` means that we are
2547
+ selecting rows, ``1`` means that we are selecting columns.
2548
+
2549
+ .. deprecated:: 2.1.0
2550
+ For axis=1, operate on the underlying object instead. Otherwise
2551
+ the axis keyword is not necessary.
2552
+
2553
+ **kwargs
2554
+ For compatibility with :meth:`numpy.take`. Has no effect on the
2555
+ output.
2556
+
2557
+ Returns
2558
+ -------
2559
+ DataFrame
2560
+ An DataFrame containing the elements taken from each group.
2561
+
2562
+ See Also
2563
+ --------
2564
+ DataFrame.take : Take elements from a Series along an axis.
2565
+ DataFrame.loc : Select a subset of a DataFrame by labels.
2566
+ DataFrame.iloc : Select a subset of a DataFrame by positions.
2567
+ numpy.take : Take elements from an array along an axis.
2568
+
2569
+ Examples
2570
+ --------
2571
+ >>> df = pd.DataFrame([('falcon', 'bird', 389.0),
2572
+ ... ('parrot', 'bird', 24.0),
2573
+ ... ('lion', 'mammal', 80.5),
2574
+ ... ('monkey', 'mammal', np.nan),
2575
+ ... ('rabbit', 'mammal', 15.0)],
2576
+ ... columns=['name', 'class', 'max_speed'],
2577
+ ... index=[4, 3, 2, 1, 0])
2578
+ >>> df
2579
+ name class max_speed
2580
+ 4 falcon bird 389.0
2581
+ 3 parrot bird 24.0
2582
+ 2 lion mammal 80.5
2583
+ 1 monkey mammal NaN
2584
+ 0 rabbit mammal 15.0
2585
+ >>> gb = df.groupby([1, 1, 2, 2, 2])
2586
+
2587
+ Take elements at positions 0 and 1 along the axis 0 (default).
2588
+
2589
+ Note how the indices selected in the result do not correspond to
2590
+ our input indices 0 and 1. That's because we are selecting the 0th
2591
+ and 1st rows, not rows whose indices equal 0 and 1.
2592
+
2593
+ >>> gb.take([0, 1])
2594
+ name class max_speed
2595
+ 1 4 falcon bird 389.0
2596
+ 3 parrot bird 24.0
2597
+ 2 2 lion mammal 80.5
2598
+ 1 monkey mammal NaN
2599
+
2600
+ The order of the specified indices influences the order in the result.
2601
+ Here, the order is swapped from the previous example.
2602
+
2603
+ >>> gb.take([1, 0])
2604
+ name class max_speed
2605
+ 1 3 parrot bird 24.0
2606
+ 4 falcon bird 389.0
2607
+ 2 1 monkey mammal NaN
2608
+ 2 lion mammal 80.5
2609
+
2610
+ Take elements at indices 1 and 2 along the axis 1 (column selection).
2611
+
2612
+ We may take elements using negative integers for positive indices,
2613
+ starting from the end of the object, just like with Python lists.
2614
+
2615
+ >>> gb.take([-1, -2])
2616
+ name class max_speed
2617
+ 1 3 parrot bird 24.0
2618
+ 4 falcon bird 389.0
2619
+ 2 0 rabbit mammal 15.0
2620
+ 1 monkey mammal NaN
2621
+ """
2622
+ result = self._op_via_apply("take", indices=indices, axis=axis, **kwargs)
2623
+ return result
2624
+
2625
+ def skew(
2626
+ self,
2627
+ axis: Axis | None | lib.NoDefault = lib.no_default,
2628
+ skipna: bool = True,
2629
+ numeric_only: bool = False,
2630
+ **kwargs,
2631
+ ) -> DataFrame:
2632
+ """
2633
+ Return unbiased skew within groups.
2634
+
2635
+ Normalized by N-1.
2636
+
2637
+ Parameters
2638
+ ----------
2639
+ axis : {0 or 'index', 1 or 'columns', None}, default 0
2640
+ Axis for the function to be applied on.
2641
+
2642
+ Specifying ``axis=None`` will apply the aggregation across both axes.
2643
+
2644
+ .. versionadded:: 2.0.0
2645
+
2646
+ .. deprecated:: 2.1.0
2647
+ For axis=1, operate on the underlying object instead. Otherwise
2648
+ the axis keyword is not necessary.
2649
+
2650
+ skipna : bool, default True
2651
+ Exclude NA/null values when computing the result.
2652
+
2653
+ numeric_only : bool, default False
2654
+ Include only float, int, boolean columns.
2655
+
2656
+ **kwargs
2657
+ Additional keyword arguments to be passed to the function.
2658
+
2659
+ Returns
2660
+ -------
2661
+ DataFrame
2662
+
2663
+ See Also
2664
+ --------
2665
+ DataFrame.skew : Return unbiased skew over requested axis.
2666
+
2667
+ Examples
2668
+ --------
2669
+ >>> arrays = [['falcon', 'parrot', 'cockatoo', 'kiwi',
2670
+ ... 'lion', 'monkey', 'rabbit'],
2671
+ ... ['bird', 'bird', 'bird', 'bird',
2672
+ ... 'mammal', 'mammal', 'mammal']]
2673
+ >>> index = pd.MultiIndex.from_arrays(arrays, names=('name', 'class'))
2674
+ >>> df = pd.DataFrame({'max_speed': [389.0, 24.0, 70.0, np.nan,
2675
+ ... 80.5, 21.5, 15.0]},
2676
+ ... index=index)
2677
+ >>> df
2678
+ max_speed
2679
+ name class
2680
+ falcon bird 389.0
2681
+ parrot bird 24.0
2682
+ cockatoo bird 70.0
2683
+ kiwi bird NaN
2684
+ lion mammal 80.5
2685
+ monkey mammal 21.5
2686
+ rabbit mammal 15.0
2687
+ >>> gb = df.groupby(["class"])
2688
+ >>> gb.skew()
2689
+ max_speed
2690
+ class
2691
+ bird 1.628296
2692
+ mammal 1.669046
2693
+ >>> gb.skew(skipna=False)
2694
+ max_speed
2695
+ class
2696
+ bird NaN
2697
+ mammal 1.669046
2698
+ """
2699
+ if axis is lib.no_default:
2700
+ axis = 0
2701
+
2702
+ if axis != 0:
2703
+ result = self._op_via_apply(
2704
+ "skew",
2705
+ axis=axis,
2706
+ skipna=skipna,
2707
+ numeric_only=numeric_only,
2708
+ **kwargs,
2709
+ )
2710
+ return result
2711
+
2712
+ def alt(obj):
2713
+ # This should not be reached since the cython path should raise
2714
+ # TypeError and not NotImplementedError.
2715
+ raise TypeError(f"'skew' is not supported for dtype={obj.dtype}")
2716
+
2717
+ return self._cython_agg_general(
2718
+ "skew", alt=alt, skipna=skipna, numeric_only=numeric_only, **kwargs
2719
+ )
2720
+
2721
+ @property
2722
+ @doc(DataFrame.plot.__doc__)
2723
+ def plot(self) -> GroupByPlot:
2724
+ result = GroupByPlot(self)
2725
+ return result
2726
+
2727
+ @doc(DataFrame.corr.__doc__)
2728
+ def corr(
2729
+ self,
2730
+ method: str | Callable[[np.ndarray, np.ndarray], float] = "pearson",
2731
+ min_periods: int = 1,
2732
+ numeric_only: bool = False,
2733
+ ) -> DataFrame:
2734
+ result = self._op_via_apply(
2735
+ "corr", method=method, min_periods=min_periods, numeric_only=numeric_only
2736
+ )
2737
+ return result
2738
+
2739
+ @doc(DataFrame.cov.__doc__)
2740
+ def cov(
2741
+ self,
2742
+ min_periods: int | None = None,
2743
+ ddof: int | None = 1,
2744
+ numeric_only: bool = False,
2745
+ ) -> DataFrame:
2746
+ result = self._op_via_apply(
2747
+ "cov", min_periods=min_periods, ddof=ddof, numeric_only=numeric_only
2748
+ )
2749
+ return result
2750
+
2751
+ @doc(DataFrame.hist.__doc__)
2752
+ def hist(
2753
+ self,
2754
+ column: IndexLabel | None = None,
2755
+ by=None,
2756
+ grid: bool = True,
2757
+ xlabelsize: int | None = None,
2758
+ xrot: float | None = None,
2759
+ ylabelsize: int | None = None,
2760
+ yrot: float | None = None,
2761
+ ax=None,
2762
+ sharex: bool = False,
2763
+ sharey: bool = False,
2764
+ figsize: tuple[int, int] | None = None,
2765
+ layout: tuple[int, int] | None = None,
2766
+ bins: int | Sequence[int] = 10,
2767
+ backend: str | None = None,
2768
+ legend: bool = False,
2769
+ **kwargs,
2770
+ ):
2771
+ result = self._op_via_apply(
2772
+ "hist",
2773
+ column=column,
2774
+ by=by,
2775
+ grid=grid,
2776
+ xlabelsize=xlabelsize,
2777
+ xrot=xrot,
2778
+ ylabelsize=ylabelsize,
2779
+ yrot=yrot,
2780
+ ax=ax,
2781
+ sharex=sharex,
2782
+ sharey=sharey,
2783
+ figsize=figsize,
2784
+ layout=layout,
2785
+ bins=bins,
2786
+ backend=backend,
2787
+ legend=legend,
2788
+ **kwargs,
2789
+ )
2790
+ return result
2791
+
2792
+ @property
2793
+ @doc(DataFrame.dtypes.__doc__)
2794
+ def dtypes(self) -> Series:
2795
+ # GH#51045
2796
+ warnings.warn(
2797
+ f"{type(self).__name__}.dtypes is deprecated and will be removed in "
2798
+ "a future version. Check the dtypes on the base object instead",
2799
+ FutureWarning,
2800
+ stacklevel=find_stack_level(),
2801
+ )
2802
+
2803
+ # error: Incompatible return value type (got "DataFrame", expected "Series")
2804
+ return self._python_apply_general( # type: ignore[return-value]
2805
+ lambda df: df.dtypes, self._selected_obj
2806
+ )
2807
+
2808
+ @doc(DataFrame.corrwith.__doc__)
2809
+ def corrwith(
2810
+ self,
2811
+ other: DataFrame | Series,
2812
+ axis: Axis | lib.NoDefault = lib.no_default,
2813
+ drop: bool = False,
2814
+ method: CorrelationMethod = "pearson",
2815
+ numeric_only: bool = False,
2816
+ ) -> DataFrame:
2817
+ result = self._op_via_apply(
2818
+ "corrwith",
2819
+ other=other,
2820
+ axis=axis,
2821
+ drop=drop,
2822
+ method=method,
2823
+ numeric_only=numeric_only,
2824
+ )
2825
+ return result
2826
+
2827
+
2828
+ def _wrap_transform_general_frame(
2829
+ obj: DataFrame, group: DataFrame, res: DataFrame | Series
2830
+ ) -> DataFrame:
2831
+ from pandas import concat
2832
+
2833
+ if isinstance(res, Series):
2834
+ # we need to broadcast across the
2835
+ # other dimension; this will preserve dtypes
2836
+ # GH14457
2837
+ if res.index.is_(obj.index):
2838
+ res_frame = concat([res] * len(group.columns), axis=1)
2839
+ res_frame.columns = group.columns
2840
+ res_frame.index = group.index
2841
+ else:
2842
+ res_frame = obj._constructor(
2843
+ np.tile(res.values, (len(group.index), 1)),
2844
+ columns=group.columns,
2845
+ index=group.index,
2846
+ )
2847
+ assert isinstance(res_frame, DataFrame)
2848
+ return res_frame
2849
+ elif isinstance(res, DataFrame) and not res.index.is_(group.index):
2850
+ return res._align_frame(group)[0]
2851
+ else:
2852
+ return res
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/groupby.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/grouper.py ADDED
@@ -0,0 +1,1102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Provide user facing operators for doing the split part of the
3
+ split-apply-combine paradigm.
4
+ """
5
+ from __future__ import annotations
6
+
7
+ from typing import (
8
+ TYPE_CHECKING,
9
+ final,
10
+ )
11
+ import warnings
12
+
13
+ import numpy as np
14
+
15
+ from pandas._config import (
16
+ using_copy_on_write,
17
+ warn_copy_on_write,
18
+ )
19
+
20
+ from pandas._libs import lib
21
+ from pandas._libs.tslibs import OutOfBoundsDatetime
22
+ from pandas.errors import InvalidIndexError
23
+ from pandas.util._decorators import cache_readonly
24
+ from pandas.util._exceptions import find_stack_level
25
+
26
+ from pandas.core.dtypes.common import (
27
+ is_list_like,
28
+ is_scalar,
29
+ )
30
+ from pandas.core.dtypes.dtypes import CategoricalDtype
31
+
32
+ from pandas.core import algorithms
33
+ from pandas.core.arrays import (
34
+ Categorical,
35
+ ExtensionArray,
36
+ )
37
+ import pandas.core.common as com
38
+ from pandas.core.frame import DataFrame
39
+ from pandas.core.groupby import ops
40
+ from pandas.core.groupby.categorical import recode_for_groupby
41
+ from pandas.core.indexes.api import (
42
+ CategoricalIndex,
43
+ Index,
44
+ MultiIndex,
45
+ )
46
+ from pandas.core.series import Series
47
+
48
+ from pandas.io.formats.printing import pprint_thing
49
+
50
+ if TYPE_CHECKING:
51
+ from collections.abc import (
52
+ Hashable,
53
+ Iterator,
54
+ )
55
+
56
+ from pandas._typing import (
57
+ ArrayLike,
58
+ Axis,
59
+ NDFrameT,
60
+ npt,
61
+ )
62
+
63
+ from pandas.core.generic import NDFrame
64
+
65
+
66
+ class Grouper:
67
+ """
68
+ A Grouper allows the user to specify a groupby instruction for an object.
69
+
70
+ This specification will select a column via the key parameter, or if the
71
+ level and/or axis parameters are given, a level of the index of the target
72
+ object.
73
+
74
+ If `axis` and/or `level` are passed as keywords to both `Grouper` and
75
+ `groupby`, the values passed to `Grouper` take precedence.
76
+
77
+ Parameters
78
+ ----------
79
+ key : str, defaults to None
80
+ Groupby key, which selects the grouping column of the target.
81
+ level : name/number, defaults to None
82
+ The level for the target index.
83
+ freq : str / frequency object, defaults to None
84
+ This will groupby the specified frequency if the target selection
85
+ (via key or level) is a datetime-like object. For full specification
86
+ of available frequencies, please see `here
87
+ <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`_.
88
+ axis : str, int, defaults to 0
89
+ Number/name of the axis.
90
+ sort : bool, default to False
91
+ Whether to sort the resulting labels.
92
+ closed : {'left' or 'right'}
93
+ Closed end of interval. Only when `freq` parameter is passed.
94
+ label : {'left' or 'right'}
95
+ Interval boundary to use for labeling.
96
+ Only when `freq` parameter is passed.
97
+ convention : {'start', 'end', 'e', 's'}
98
+ If grouper is PeriodIndex and `freq` parameter is passed.
99
+
100
+ origin : Timestamp or str, default 'start_day'
101
+ The timestamp on which to adjust the grouping. The timezone of origin must
102
+ match the timezone of the index.
103
+ If string, must be one of the following:
104
+
105
+ - 'epoch': `origin` is 1970-01-01
106
+ - 'start': `origin` is the first value of the timeseries
107
+ - 'start_day': `origin` is the first day at midnight of the timeseries
108
+
109
+ - 'end': `origin` is the last value of the timeseries
110
+ - 'end_day': `origin` is the ceiling midnight of the last day
111
+
112
+ .. versionadded:: 1.3.0
113
+
114
+ offset : Timedelta or str, default is None
115
+ An offset timedelta added to the origin.
116
+
117
+ dropna : bool, default True
118
+ If True, and if group keys contain NA values, NA values together with
119
+ row/column will be dropped. If False, NA values will also be treated as
120
+ the key in groups.
121
+
122
+ Returns
123
+ -------
124
+ Grouper or pandas.api.typing.TimeGrouper
125
+ A TimeGrouper is returned if ``freq`` is not ``None``. Otherwise, a Grouper
126
+ is returned.
127
+
128
+ Examples
129
+ --------
130
+ ``df.groupby(pd.Grouper(key="Animal"))`` is equivalent to ``df.groupby('Animal')``
131
+
132
+ >>> df = pd.DataFrame(
133
+ ... {
134
+ ... "Animal": ["Falcon", "Parrot", "Falcon", "Falcon", "Parrot"],
135
+ ... "Speed": [100, 5, 200, 300, 15],
136
+ ... }
137
+ ... )
138
+ >>> df
139
+ Animal Speed
140
+ 0 Falcon 100
141
+ 1 Parrot 5
142
+ 2 Falcon 200
143
+ 3 Falcon 300
144
+ 4 Parrot 15
145
+ >>> df.groupby(pd.Grouper(key="Animal")).mean()
146
+ Speed
147
+ Animal
148
+ Falcon 200.0
149
+ Parrot 10.0
150
+
151
+ Specify a resample operation on the column 'Publish date'
152
+
153
+ >>> df = pd.DataFrame(
154
+ ... {
155
+ ... "Publish date": [
156
+ ... pd.Timestamp("2000-01-02"),
157
+ ... pd.Timestamp("2000-01-02"),
158
+ ... pd.Timestamp("2000-01-09"),
159
+ ... pd.Timestamp("2000-01-16")
160
+ ... ],
161
+ ... "ID": [0, 1, 2, 3],
162
+ ... "Price": [10, 20, 30, 40]
163
+ ... }
164
+ ... )
165
+ >>> df
166
+ Publish date ID Price
167
+ 0 2000-01-02 0 10
168
+ 1 2000-01-02 1 20
169
+ 2 2000-01-09 2 30
170
+ 3 2000-01-16 3 40
171
+ >>> df.groupby(pd.Grouper(key="Publish date", freq="1W")).mean()
172
+ ID Price
173
+ Publish date
174
+ 2000-01-02 0.5 15.0
175
+ 2000-01-09 2.0 30.0
176
+ 2000-01-16 3.0 40.0
177
+
178
+ If you want to adjust the start of the bins based on a fixed timestamp:
179
+
180
+ >>> start, end = '2000-10-01 23:30:00', '2000-10-02 00:30:00'
181
+ >>> rng = pd.date_range(start, end, freq='7min')
182
+ >>> ts = pd.Series(np.arange(len(rng)) * 3, index=rng)
183
+ >>> ts
184
+ 2000-10-01 23:30:00 0
185
+ 2000-10-01 23:37:00 3
186
+ 2000-10-01 23:44:00 6
187
+ 2000-10-01 23:51:00 9
188
+ 2000-10-01 23:58:00 12
189
+ 2000-10-02 00:05:00 15
190
+ 2000-10-02 00:12:00 18
191
+ 2000-10-02 00:19:00 21
192
+ 2000-10-02 00:26:00 24
193
+ Freq: 7min, dtype: int64
194
+
195
+ >>> ts.groupby(pd.Grouper(freq='17min')).sum()
196
+ 2000-10-01 23:14:00 0
197
+ 2000-10-01 23:31:00 9
198
+ 2000-10-01 23:48:00 21
199
+ 2000-10-02 00:05:00 54
200
+ 2000-10-02 00:22:00 24
201
+ Freq: 17min, dtype: int64
202
+
203
+ >>> ts.groupby(pd.Grouper(freq='17min', origin='epoch')).sum()
204
+ 2000-10-01 23:18:00 0
205
+ 2000-10-01 23:35:00 18
206
+ 2000-10-01 23:52:00 27
207
+ 2000-10-02 00:09:00 39
208
+ 2000-10-02 00:26:00 24
209
+ Freq: 17min, dtype: int64
210
+
211
+ >>> ts.groupby(pd.Grouper(freq='17min', origin='2000-01-01')).sum()
212
+ 2000-10-01 23:24:00 3
213
+ 2000-10-01 23:41:00 15
214
+ 2000-10-01 23:58:00 45
215
+ 2000-10-02 00:15:00 45
216
+ Freq: 17min, dtype: int64
217
+
218
+ If you want to adjust the start of the bins with an `offset` Timedelta, the two
219
+ following lines are equivalent:
220
+
221
+ >>> ts.groupby(pd.Grouper(freq='17min', origin='start')).sum()
222
+ 2000-10-01 23:30:00 9
223
+ 2000-10-01 23:47:00 21
224
+ 2000-10-02 00:04:00 54
225
+ 2000-10-02 00:21:00 24
226
+ Freq: 17min, dtype: int64
227
+
228
+ >>> ts.groupby(pd.Grouper(freq='17min', offset='23h30min')).sum()
229
+ 2000-10-01 23:30:00 9
230
+ 2000-10-01 23:47:00 21
231
+ 2000-10-02 00:04:00 54
232
+ 2000-10-02 00:21:00 24
233
+ Freq: 17min, dtype: int64
234
+
235
+ To replace the use of the deprecated `base` argument, you can now use `offset`,
236
+ in this example it is equivalent to have `base=2`:
237
+
238
+ >>> ts.groupby(pd.Grouper(freq='17min', offset='2min')).sum()
239
+ 2000-10-01 23:16:00 0
240
+ 2000-10-01 23:33:00 9
241
+ 2000-10-01 23:50:00 36
242
+ 2000-10-02 00:07:00 39
243
+ 2000-10-02 00:24:00 24
244
+ Freq: 17min, dtype: int64
245
+ """
246
+
247
+ sort: bool
248
+ dropna: bool
249
+ _gpr_index: Index | None
250
+ _grouper: Index | None
251
+
252
+ _attributes: tuple[str, ...] = ("key", "level", "freq", "axis", "sort", "dropna")
253
+
254
+ def __new__(cls, *args, **kwargs):
255
+ if kwargs.get("freq") is not None:
256
+ from pandas.core.resample import TimeGrouper
257
+
258
+ cls = TimeGrouper
259
+ return super().__new__(cls)
260
+
261
+ def __init__(
262
+ self,
263
+ key=None,
264
+ level=None,
265
+ freq=None,
266
+ axis: Axis | lib.NoDefault = lib.no_default,
267
+ sort: bool = False,
268
+ dropna: bool = True,
269
+ ) -> None:
270
+ if type(self) is Grouper:
271
+ # i.e. not TimeGrouper
272
+ if axis is not lib.no_default:
273
+ warnings.warn(
274
+ "Grouper axis keyword is deprecated and will be removed in a "
275
+ "future version. To group on axis=1, use obj.T.groupby(...) "
276
+ "instead",
277
+ FutureWarning,
278
+ stacklevel=find_stack_level(),
279
+ )
280
+ else:
281
+ axis = 0
282
+ if axis is lib.no_default:
283
+ axis = 0
284
+
285
+ self.key = key
286
+ self.level = level
287
+ self.freq = freq
288
+ self.axis = axis
289
+ self.sort = sort
290
+ self.dropna = dropna
291
+
292
+ self._grouper_deprecated = None
293
+ self._indexer_deprecated: npt.NDArray[np.intp] | None = None
294
+ self._obj_deprecated = None
295
+ self._gpr_index = None
296
+ self.binner = None
297
+ self._grouper = None
298
+ self._indexer: npt.NDArray[np.intp] | None = None
299
+
300
+ def _get_grouper(
301
+ self, obj: NDFrameT, validate: bool = True
302
+ ) -> tuple[ops.BaseGrouper, NDFrameT]:
303
+ """
304
+ Parameters
305
+ ----------
306
+ obj : Series or DataFrame
307
+ validate : bool, default True
308
+ if True, validate the grouper
309
+
310
+ Returns
311
+ -------
312
+ a tuple of grouper, obj (possibly sorted)
313
+ """
314
+ obj, _, _ = self._set_grouper(obj)
315
+ grouper, _, obj = get_grouper(
316
+ obj,
317
+ [self.key],
318
+ axis=self.axis,
319
+ level=self.level,
320
+ sort=self.sort,
321
+ validate=validate,
322
+ dropna=self.dropna,
323
+ )
324
+ # Without setting this, subsequent lookups to .groups raise
325
+ # error: Incompatible types in assignment (expression has type "BaseGrouper",
326
+ # variable has type "None")
327
+ self._grouper_deprecated = grouper # type: ignore[assignment]
328
+
329
+ return grouper, obj
330
+
331
+ def _set_grouper(
332
+ self, obj: NDFrameT, sort: bool = False, *, gpr_index: Index | None = None
333
+ ) -> tuple[NDFrameT, Index, npt.NDArray[np.intp] | None]:
334
+ """
335
+ given an object and the specifications, setup the internal grouper
336
+ for this particular specification
337
+
338
+ Parameters
339
+ ----------
340
+ obj : Series or DataFrame
341
+ sort : bool, default False
342
+ whether the resulting grouper should be sorted
343
+ gpr_index : Index or None, default None
344
+
345
+ Returns
346
+ -------
347
+ NDFrame
348
+ Index
349
+ np.ndarray[np.intp] | None
350
+ """
351
+ assert obj is not None
352
+
353
+ if self.key is not None and self.level is not None:
354
+ raise ValueError("The Grouper cannot specify both a key and a level!")
355
+
356
+ # Keep self._grouper value before overriding
357
+ if self._grouper is None:
358
+ # TODO: What are we assuming about subsequent calls?
359
+ self._grouper = gpr_index
360
+ self._indexer = self._indexer_deprecated
361
+
362
+ # the key must be a valid info item
363
+ if self.key is not None:
364
+ key = self.key
365
+ # The 'on' is already defined
366
+ if getattr(gpr_index, "name", None) == key and isinstance(obj, Series):
367
+ # Sometimes self._grouper will have been resorted while
368
+ # obj has not. In this case there is a mismatch when we
369
+ # call self._grouper.take(obj.index) so we need to undo the sorting
370
+ # before we call _grouper.take.
371
+ assert self._grouper is not None
372
+ if self._indexer is not None:
373
+ reverse_indexer = self._indexer.argsort()
374
+ unsorted_ax = self._grouper.take(reverse_indexer)
375
+ ax = unsorted_ax.take(obj.index)
376
+ else:
377
+ ax = self._grouper.take(obj.index)
378
+ else:
379
+ if key not in obj._info_axis:
380
+ raise KeyError(f"The grouper name {key} is not found")
381
+ ax = Index(obj[key], name=key)
382
+
383
+ else:
384
+ ax = obj._get_axis(self.axis)
385
+ if self.level is not None:
386
+ level = self.level
387
+
388
+ # if a level is given it must be a mi level or
389
+ # equivalent to the axis name
390
+ if isinstance(ax, MultiIndex):
391
+ level = ax._get_level_number(level)
392
+ ax = Index(ax._get_level_values(level), name=ax.names[level])
393
+
394
+ else:
395
+ if level not in (0, ax.name):
396
+ raise ValueError(f"The level {level} is not valid")
397
+
398
+ # possibly sort
399
+ indexer: npt.NDArray[np.intp] | None = None
400
+ if (self.sort or sort) and not ax.is_monotonic_increasing:
401
+ # use stable sort to support first, last, nth
402
+ # TODO: why does putting na_position="first" fix datetimelike cases?
403
+ indexer = self._indexer_deprecated = ax.array.argsort(
404
+ kind="mergesort", na_position="first"
405
+ )
406
+ ax = ax.take(indexer)
407
+ obj = obj.take(indexer, axis=self.axis)
408
+
409
+ # error: Incompatible types in assignment (expression has type
410
+ # "NDFrameT", variable has type "None")
411
+ self._obj_deprecated = obj # type: ignore[assignment]
412
+ self._gpr_index = ax
413
+ return obj, ax, indexer
414
+
415
+ @final
416
+ @property
417
+ def ax(self) -> Index:
418
+ warnings.warn(
419
+ f"{type(self).__name__}.ax is deprecated and will be removed in a "
420
+ "future version. Use Resampler.ax instead",
421
+ FutureWarning,
422
+ stacklevel=find_stack_level(),
423
+ )
424
+ index = self._gpr_index
425
+ if index is None:
426
+ raise ValueError("_set_grouper must be called before ax is accessed")
427
+ return index
428
+
429
+ @final
430
+ @property
431
+ def indexer(self):
432
+ warnings.warn(
433
+ f"{type(self).__name__}.indexer is deprecated and will be removed "
434
+ "in a future version. Use Resampler.indexer instead.",
435
+ FutureWarning,
436
+ stacklevel=find_stack_level(),
437
+ )
438
+ return self._indexer_deprecated
439
+
440
+ @final
441
+ @property
442
+ def obj(self):
443
+ # TODO(3.0): enforcing these deprecations on Grouper should close
444
+ # GH#25564, GH#41930
445
+ warnings.warn(
446
+ f"{type(self).__name__}.obj is deprecated and will be removed "
447
+ "in a future version. Use GroupBy.indexer instead.",
448
+ FutureWarning,
449
+ stacklevel=find_stack_level(),
450
+ )
451
+ return self._obj_deprecated
452
+
453
+ @final
454
+ @property
455
+ def grouper(self):
456
+ warnings.warn(
457
+ f"{type(self).__name__}.grouper is deprecated and will be removed "
458
+ "in a future version. Use GroupBy.grouper instead.",
459
+ FutureWarning,
460
+ stacklevel=find_stack_level(),
461
+ )
462
+ return self._grouper_deprecated
463
+
464
+ @final
465
+ @property
466
+ def groups(self):
467
+ warnings.warn(
468
+ f"{type(self).__name__}.groups is deprecated and will be removed "
469
+ "in a future version. Use GroupBy.groups instead.",
470
+ FutureWarning,
471
+ stacklevel=find_stack_level(),
472
+ )
473
+ # error: "None" has no attribute "groups"
474
+ return self._grouper_deprecated.groups # type: ignore[attr-defined]
475
+
476
+ @final
477
+ def __repr__(self) -> str:
478
+ attrs_list = (
479
+ f"{attr_name}={repr(getattr(self, attr_name))}"
480
+ for attr_name in self._attributes
481
+ if getattr(self, attr_name) is not None
482
+ )
483
+ attrs = ", ".join(attrs_list)
484
+ cls_name = type(self).__name__
485
+ return f"{cls_name}({attrs})"
486
+
487
+
488
+ @final
489
+ class Grouping:
490
+ """
491
+ Holds the grouping information for a single key
492
+
493
+ Parameters
494
+ ----------
495
+ index : Index
496
+ grouper :
497
+ obj : DataFrame or Series
498
+ name : Label
499
+ level :
500
+ observed : bool, default False
501
+ If we are a Categorical, use the observed values
502
+ in_axis : if the Grouping is a column in self.obj and hence among
503
+ Groupby.exclusions list
504
+ dropna : bool, default True
505
+ Whether to drop NA groups.
506
+ uniques : Array-like, optional
507
+ When specified, will be used for unique values. Enables including empty groups
508
+ in the result for a BinGrouper. Must not contain duplicates.
509
+
510
+ Attributes
511
+ -------
512
+ indices : dict
513
+ Mapping of {group -> index_list}
514
+ codes : ndarray
515
+ Group codes
516
+ group_index : Index or None
517
+ unique groups
518
+ groups : dict
519
+ Mapping of {group -> label_list}
520
+ """
521
+
522
+ _codes: npt.NDArray[np.signedinteger] | None = None
523
+ _all_grouper: Categorical | None
524
+ _orig_cats: Index | None
525
+ _index: Index
526
+
527
+ def __init__(
528
+ self,
529
+ index: Index,
530
+ grouper=None,
531
+ obj: NDFrame | None = None,
532
+ level=None,
533
+ sort: bool = True,
534
+ observed: bool = False,
535
+ in_axis: bool = False,
536
+ dropna: bool = True,
537
+ uniques: ArrayLike | None = None,
538
+ ) -> None:
539
+ self.level = level
540
+ self._orig_grouper = grouper
541
+ grouping_vector = _convert_grouper(index, grouper)
542
+ self._all_grouper = None
543
+ self._orig_cats = None
544
+ self._index = index
545
+ self._sort = sort
546
+ self.obj = obj
547
+ self._observed = observed
548
+ self.in_axis = in_axis
549
+ self._dropna = dropna
550
+ self._uniques = uniques
551
+
552
+ # we have a single grouper which may be a myriad of things,
553
+ # some of which are dependent on the passing in level
554
+
555
+ ilevel = self._ilevel
556
+ if ilevel is not None:
557
+ # In extant tests, the new self.grouping_vector matches
558
+ # `index.get_level_values(ilevel)` whenever
559
+ # mapper is None and isinstance(index, MultiIndex)
560
+ if isinstance(index, MultiIndex):
561
+ index_level = index.get_level_values(ilevel)
562
+ else:
563
+ index_level = index
564
+
565
+ if grouping_vector is None:
566
+ grouping_vector = index_level
567
+ else:
568
+ mapper = grouping_vector
569
+ grouping_vector = index_level.map(mapper)
570
+
571
+ # a passed Grouper like, directly get the grouper in the same way
572
+ # as single grouper groupby, use the group_info to get codes
573
+ elif isinstance(grouping_vector, Grouper):
574
+ # get the new grouper; we already have disambiguated
575
+ # what key/level refer to exactly, don't need to
576
+ # check again as we have by this point converted these
577
+ # to an actual value (rather than a pd.Grouper)
578
+ assert self.obj is not None # for mypy
579
+ newgrouper, newobj = grouping_vector._get_grouper(self.obj, validate=False)
580
+ self.obj = newobj
581
+
582
+ if isinstance(newgrouper, ops.BinGrouper):
583
+ # TODO: can we unwrap this and get a tighter typing
584
+ # for self.grouping_vector?
585
+ grouping_vector = newgrouper
586
+ else:
587
+ # ops.BaseGrouper
588
+ # TODO: 2023-02-03 no test cases with len(newgrouper.groupings) > 1.
589
+ # If that were to occur, would we be throwing out information?
590
+ # error: Cannot determine type of "grouping_vector" [has-type]
591
+ ng = newgrouper.groupings[0].grouping_vector # type: ignore[has-type]
592
+ # use Index instead of ndarray so we can recover the name
593
+ grouping_vector = Index(ng, name=newgrouper.result_index.name)
594
+
595
+ elif not isinstance(
596
+ grouping_vector, (Series, Index, ExtensionArray, np.ndarray)
597
+ ):
598
+ # no level passed
599
+ if getattr(grouping_vector, "ndim", 1) != 1:
600
+ t = str(type(grouping_vector))
601
+ raise ValueError(f"Grouper for '{t}' not 1-dimensional")
602
+
603
+ grouping_vector = index.map(grouping_vector)
604
+
605
+ if not (
606
+ hasattr(grouping_vector, "__len__")
607
+ and len(grouping_vector) == len(index)
608
+ ):
609
+ grper = pprint_thing(grouping_vector)
610
+ errmsg = (
611
+ "Grouper result violates len(labels) == "
612
+ f"len(data)\nresult: {grper}"
613
+ )
614
+ raise AssertionError(errmsg)
615
+
616
+ if isinstance(grouping_vector, np.ndarray):
617
+ if grouping_vector.dtype.kind in "mM":
618
+ # if we have a date/time-like grouper, make sure that we have
619
+ # Timestamps like
620
+ # TODO 2022-10-08 we only have one test that gets here and
621
+ # values are already in nanoseconds in that case.
622
+ grouping_vector = Series(grouping_vector).to_numpy()
623
+ elif isinstance(getattr(grouping_vector, "dtype", None), CategoricalDtype):
624
+ # a passed Categorical
625
+ self._orig_cats = grouping_vector.categories
626
+ grouping_vector, self._all_grouper = recode_for_groupby(
627
+ grouping_vector, sort, observed
628
+ )
629
+
630
+ self.grouping_vector = grouping_vector
631
+
632
+ def __repr__(self) -> str:
633
+ return f"Grouping({self.name})"
634
+
635
+ def __iter__(self) -> Iterator:
636
+ return iter(self.indices)
637
+
638
+ @cache_readonly
639
+ def _passed_categorical(self) -> bool:
640
+ dtype = getattr(self.grouping_vector, "dtype", None)
641
+ return isinstance(dtype, CategoricalDtype)
642
+
643
+ @cache_readonly
644
+ def name(self) -> Hashable:
645
+ ilevel = self._ilevel
646
+ if ilevel is not None:
647
+ return self._index.names[ilevel]
648
+
649
+ if isinstance(self._orig_grouper, (Index, Series)):
650
+ return self._orig_grouper.name
651
+
652
+ elif isinstance(self.grouping_vector, ops.BaseGrouper):
653
+ return self.grouping_vector.result_index.name
654
+
655
+ elif isinstance(self.grouping_vector, Index):
656
+ return self.grouping_vector.name
657
+
658
+ # otherwise we have ndarray or ExtensionArray -> no name
659
+ return None
660
+
661
+ @cache_readonly
662
+ def _ilevel(self) -> int | None:
663
+ """
664
+ If necessary, converted index level name to index level position.
665
+ """
666
+ level = self.level
667
+ if level is None:
668
+ return None
669
+ if not isinstance(level, int):
670
+ index = self._index
671
+ if level not in index.names:
672
+ raise AssertionError(f"Level {level} not in index")
673
+ return index.names.index(level)
674
+ return level
675
+
676
+ @property
677
+ def ngroups(self) -> int:
678
+ return len(self._group_index)
679
+
680
+ @cache_readonly
681
+ def indices(self) -> dict[Hashable, npt.NDArray[np.intp]]:
682
+ # we have a list of groupers
683
+ if isinstance(self.grouping_vector, ops.BaseGrouper):
684
+ return self.grouping_vector.indices
685
+
686
+ values = Categorical(self.grouping_vector)
687
+ return values._reverse_indexer()
688
+
689
+ @property
690
+ def codes(self) -> npt.NDArray[np.signedinteger]:
691
+ return self._codes_and_uniques[0]
692
+
693
+ @cache_readonly
694
+ def _group_arraylike(self) -> ArrayLike:
695
+ """
696
+ Analogous to result_index, but holding an ArrayLike to ensure
697
+ we can retain ExtensionDtypes.
698
+ """
699
+ if self._all_grouper is not None:
700
+ # retain dtype for categories, including unobserved ones
701
+ return self._result_index._values
702
+
703
+ elif self._passed_categorical:
704
+ return self._group_index._values
705
+
706
+ return self._codes_and_uniques[1]
707
+
708
+ @property
709
+ def group_arraylike(self) -> ArrayLike:
710
+ """
711
+ Analogous to result_index, but holding an ArrayLike to ensure
712
+ we can retain ExtensionDtypes.
713
+ """
714
+ warnings.warn(
715
+ "group_arraylike is deprecated and will be removed in a future "
716
+ "version of pandas",
717
+ category=FutureWarning,
718
+ stacklevel=find_stack_level(),
719
+ )
720
+ return self._group_arraylike
721
+
722
+ @cache_readonly
723
+ def _result_index(self) -> Index:
724
+ # result_index retains dtype for categories, including unobserved ones,
725
+ # which group_index does not
726
+ if self._all_grouper is not None:
727
+ group_idx = self._group_index
728
+ assert isinstance(group_idx, CategoricalIndex)
729
+ cats = self._orig_cats
730
+ # set_categories is dynamically added
731
+ return group_idx.set_categories(cats) # type: ignore[attr-defined]
732
+ return self._group_index
733
+
734
+ @property
735
+ def result_index(self) -> Index:
736
+ warnings.warn(
737
+ "result_index is deprecated and will be removed in a future "
738
+ "version of pandas",
739
+ category=FutureWarning,
740
+ stacklevel=find_stack_level(),
741
+ )
742
+ return self._result_index
743
+
744
+ @cache_readonly
745
+ def _group_index(self) -> Index:
746
+ codes, uniques = self._codes_and_uniques
747
+ if not self._dropna and self._passed_categorical:
748
+ assert isinstance(uniques, Categorical)
749
+ if self._sort and (codes == len(uniques)).any():
750
+ # Add NA value on the end when sorting
751
+ uniques = Categorical.from_codes(
752
+ np.append(uniques.codes, [-1]), uniques.categories, validate=False
753
+ )
754
+ elif len(codes) > 0:
755
+ # Need to determine proper placement of NA value when not sorting
756
+ cat = self.grouping_vector
757
+ na_idx = (cat.codes < 0).argmax()
758
+ if cat.codes[na_idx] < 0:
759
+ # count number of unique codes that comes before the nan value
760
+ na_unique_idx = algorithms.nunique_ints(cat.codes[:na_idx])
761
+ new_codes = np.insert(uniques.codes, na_unique_idx, -1)
762
+ uniques = Categorical.from_codes(
763
+ new_codes, uniques.categories, validate=False
764
+ )
765
+ return Index._with_infer(uniques, name=self.name)
766
+
767
+ @property
768
+ def group_index(self) -> Index:
769
+ warnings.warn(
770
+ "group_index is deprecated and will be removed in a future "
771
+ "version of pandas",
772
+ category=FutureWarning,
773
+ stacklevel=find_stack_level(),
774
+ )
775
+ return self._group_index
776
+
777
+ @cache_readonly
778
+ def _codes_and_uniques(self) -> tuple[npt.NDArray[np.signedinteger], ArrayLike]:
779
+ uniques: ArrayLike
780
+ if self._passed_categorical:
781
+ # we make a CategoricalIndex out of the cat grouper
782
+ # preserving the categories / ordered attributes;
783
+ # doesn't (yet - GH#46909) handle dropna=False
784
+ cat = self.grouping_vector
785
+ categories = cat.categories
786
+
787
+ if self._observed:
788
+ ucodes = algorithms.unique1d(cat.codes)
789
+ ucodes = ucodes[ucodes != -1]
790
+ if self._sort:
791
+ ucodes = np.sort(ucodes)
792
+ else:
793
+ ucodes = np.arange(len(categories))
794
+
795
+ uniques = Categorical.from_codes(
796
+ codes=ucodes, categories=categories, ordered=cat.ordered, validate=False
797
+ )
798
+
799
+ codes = cat.codes
800
+ if not self._dropna:
801
+ na_mask = codes < 0
802
+ if np.any(na_mask):
803
+ if self._sort:
804
+ # Replace NA codes with `largest code + 1`
805
+ na_code = len(categories)
806
+ codes = np.where(na_mask, na_code, codes)
807
+ else:
808
+ # Insert NA code into the codes based on first appearance
809
+ # A negative code must exist, no need to check codes[na_idx] < 0
810
+ na_idx = na_mask.argmax()
811
+ # count number of unique codes that comes before the nan value
812
+ na_code = algorithms.nunique_ints(codes[:na_idx])
813
+ codes = np.where(codes >= na_code, codes + 1, codes)
814
+ codes = np.where(na_mask, na_code, codes)
815
+
816
+ if not self._observed:
817
+ uniques = uniques.reorder_categories(self._orig_cats)
818
+
819
+ return codes, uniques
820
+
821
+ elif isinstance(self.grouping_vector, ops.BaseGrouper):
822
+ # we have a list of groupers
823
+ codes = self.grouping_vector.codes_info
824
+ uniques = self.grouping_vector.result_index._values
825
+ elif self._uniques is not None:
826
+ # GH#50486 Code grouping_vector using _uniques; allows
827
+ # including uniques that are not present in grouping_vector.
828
+ cat = Categorical(self.grouping_vector, categories=self._uniques)
829
+ codes = cat.codes
830
+ uniques = self._uniques
831
+ else:
832
+ # GH35667, replace dropna=False with use_na_sentinel=False
833
+ # error: Incompatible types in assignment (expression has type "Union[
834
+ # ndarray[Any, Any], Index]", variable has type "Categorical")
835
+ codes, uniques = algorithms.factorize( # type: ignore[assignment]
836
+ self.grouping_vector, sort=self._sort, use_na_sentinel=self._dropna
837
+ )
838
+ return codes, uniques
839
+
840
+ @cache_readonly
841
+ def groups(self) -> dict[Hashable, np.ndarray]:
842
+ cats = Categorical.from_codes(self.codes, self._group_index, validate=False)
843
+ return self._index.groupby(cats)
844
+
845
+
846
+ def get_grouper(
847
+ obj: NDFrameT,
848
+ key=None,
849
+ axis: Axis = 0,
850
+ level=None,
851
+ sort: bool = True,
852
+ observed: bool = False,
853
+ validate: bool = True,
854
+ dropna: bool = True,
855
+ ) -> tuple[ops.BaseGrouper, frozenset[Hashable], NDFrameT]:
856
+ """
857
+ Create and return a BaseGrouper, which is an internal
858
+ mapping of how to create the grouper indexers.
859
+ This may be composed of multiple Grouping objects, indicating
860
+ multiple groupers
861
+
862
+ Groupers are ultimately index mappings. They can originate as:
863
+ index mappings, keys to columns, functions, or Groupers
864
+
865
+ Groupers enable local references to axis,level,sort, while
866
+ the passed in axis, level, and sort are 'global'.
867
+
868
+ This routine tries to figure out what the passing in references
869
+ are and then creates a Grouping for each one, combined into
870
+ a BaseGrouper.
871
+
872
+ If observed & we have a categorical grouper, only show the observed
873
+ values.
874
+
875
+ If validate, then check for key/level overlaps.
876
+
877
+ """
878
+ group_axis = obj._get_axis(axis)
879
+
880
+ # validate that the passed single level is compatible with the passed
881
+ # axis of the object
882
+ if level is not None:
883
+ # TODO: These if-block and else-block are almost same.
884
+ # MultiIndex instance check is removable, but it seems that there are
885
+ # some processes only for non-MultiIndex in else-block,
886
+ # eg. `obj.index.name != level`. We have to consider carefully whether
887
+ # these are applicable for MultiIndex. Even if these are applicable,
888
+ # we need to check if it makes no side effect to subsequent processes
889
+ # on the outside of this condition.
890
+ # (GH 17621)
891
+ if isinstance(group_axis, MultiIndex):
892
+ if is_list_like(level) and len(level) == 1:
893
+ level = level[0]
894
+
895
+ if key is None and is_scalar(level):
896
+ # Get the level values from group_axis
897
+ key = group_axis.get_level_values(level)
898
+ level = None
899
+
900
+ else:
901
+ # allow level to be a length-one list-like object
902
+ # (e.g., level=[0])
903
+ # GH 13901
904
+ if is_list_like(level):
905
+ nlevels = len(level)
906
+ if nlevels == 1:
907
+ level = level[0]
908
+ elif nlevels == 0:
909
+ raise ValueError("No group keys passed!")
910
+ else:
911
+ raise ValueError("multiple levels only valid with MultiIndex")
912
+
913
+ if isinstance(level, str):
914
+ if obj._get_axis(axis).name != level:
915
+ raise ValueError(
916
+ f"level name {level} is not the name "
917
+ f"of the {obj._get_axis_name(axis)}"
918
+ )
919
+ elif level > 0 or level < -1:
920
+ raise ValueError("level > 0 or level < -1 only valid with MultiIndex")
921
+
922
+ # NOTE: `group_axis` and `group_axis.get_level_values(level)`
923
+ # are same in this section.
924
+ level = None
925
+ key = group_axis
926
+
927
+ # a passed-in Grouper, directly convert
928
+ if isinstance(key, Grouper):
929
+ grouper, obj = key._get_grouper(obj, validate=False)
930
+ if key.key is None:
931
+ return grouper, frozenset(), obj
932
+ else:
933
+ return grouper, frozenset({key.key}), obj
934
+
935
+ # already have a BaseGrouper, just return it
936
+ elif isinstance(key, ops.BaseGrouper):
937
+ return key, frozenset(), obj
938
+
939
+ if not isinstance(key, list):
940
+ keys = [key]
941
+ match_axis_length = False
942
+ else:
943
+ keys = key
944
+ match_axis_length = len(keys) == len(group_axis)
945
+
946
+ # what are we after, exactly?
947
+ any_callable = any(callable(g) or isinstance(g, dict) for g in keys)
948
+ any_groupers = any(isinstance(g, (Grouper, Grouping)) for g in keys)
949
+ any_arraylike = any(
950
+ isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys
951
+ )
952
+
953
+ # is this an index replacement?
954
+ if (
955
+ not any_callable
956
+ and not any_arraylike
957
+ and not any_groupers
958
+ and match_axis_length
959
+ and level is None
960
+ ):
961
+ if isinstance(obj, DataFrame):
962
+ all_in_columns_index = all(
963
+ g in obj.columns or g in obj.index.names for g in keys
964
+ )
965
+ else:
966
+ assert isinstance(obj, Series)
967
+ all_in_columns_index = all(g in obj.index.names for g in keys)
968
+
969
+ if not all_in_columns_index:
970
+ keys = [com.asarray_tuplesafe(keys)]
971
+
972
+ if isinstance(level, (tuple, list)):
973
+ if key is None:
974
+ keys = [None] * len(level)
975
+ levels = level
976
+ else:
977
+ levels = [level] * len(keys)
978
+
979
+ groupings: list[Grouping] = []
980
+ exclusions: set[Hashable] = set()
981
+
982
+ # if the actual grouper should be obj[key]
983
+ def is_in_axis(key) -> bool:
984
+ if not _is_label_like(key):
985
+ if obj.ndim == 1:
986
+ return False
987
+
988
+ # items -> .columns for DataFrame, .index for Series
989
+ items = obj.axes[-1]
990
+ try:
991
+ items.get_loc(key)
992
+ except (KeyError, TypeError, InvalidIndexError):
993
+ # TypeError shows up here if we pass e.g. an Index
994
+ return False
995
+
996
+ return True
997
+
998
+ # if the grouper is obj[name]
999
+ def is_in_obj(gpr) -> bool:
1000
+ if not hasattr(gpr, "name"):
1001
+ return False
1002
+ if using_copy_on_write() or warn_copy_on_write():
1003
+ # For the CoW case, we check the references to determine if the
1004
+ # series is part of the object
1005
+ try:
1006
+ obj_gpr_column = obj[gpr.name]
1007
+ except (KeyError, IndexError, InvalidIndexError, OutOfBoundsDatetime):
1008
+ return False
1009
+ if isinstance(gpr, Series) and isinstance(obj_gpr_column, Series):
1010
+ return gpr._mgr.references_same_values( # type: ignore[union-attr]
1011
+ obj_gpr_column._mgr, 0 # type: ignore[arg-type]
1012
+ )
1013
+ return False
1014
+ try:
1015
+ return gpr is obj[gpr.name]
1016
+ except (KeyError, IndexError, InvalidIndexError, OutOfBoundsDatetime):
1017
+ # IndexError reached in e.g. test_skip_group_keys when we pass
1018
+ # lambda here
1019
+ # InvalidIndexError raised on key-types inappropriate for index,
1020
+ # e.g. DatetimeIndex.get_loc(tuple())
1021
+ # OutOfBoundsDatetime raised when obj is a Series with DatetimeIndex
1022
+ # and gpr.name is month str
1023
+ return False
1024
+
1025
+ for gpr, level in zip(keys, levels):
1026
+ if is_in_obj(gpr): # df.groupby(df['name'])
1027
+ in_axis = True
1028
+ exclusions.add(gpr.name)
1029
+
1030
+ elif is_in_axis(gpr): # df.groupby('name')
1031
+ if obj.ndim != 1 and gpr in obj:
1032
+ if validate:
1033
+ obj._check_label_or_level_ambiguity(gpr, axis=axis)
1034
+ in_axis, name, gpr = True, gpr, obj[gpr]
1035
+ if gpr.ndim != 1:
1036
+ # non-unique columns; raise here to get the name in the
1037
+ # exception message
1038
+ raise ValueError(f"Grouper for '{name}' not 1-dimensional")
1039
+ exclusions.add(name)
1040
+ elif obj._is_level_reference(gpr, axis=axis):
1041
+ in_axis, level, gpr = False, gpr, None
1042
+ else:
1043
+ raise KeyError(gpr)
1044
+ elif isinstance(gpr, Grouper) and gpr.key is not None:
1045
+ # Add key to exclusions
1046
+ exclusions.add(gpr.key)
1047
+ in_axis = True
1048
+ else:
1049
+ in_axis = False
1050
+
1051
+ # create the Grouping
1052
+ # allow us to passing the actual Grouping as the gpr
1053
+ ping = (
1054
+ Grouping(
1055
+ group_axis,
1056
+ gpr,
1057
+ obj=obj,
1058
+ level=level,
1059
+ sort=sort,
1060
+ observed=observed,
1061
+ in_axis=in_axis,
1062
+ dropna=dropna,
1063
+ )
1064
+ if not isinstance(gpr, Grouping)
1065
+ else gpr
1066
+ )
1067
+
1068
+ groupings.append(ping)
1069
+
1070
+ if len(groupings) == 0 and len(obj):
1071
+ raise ValueError("No group keys passed!")
1072
+ if len(groupings) == 0:
1073
+ groupings.append(Grouping(Index([], dtype="int"), np.array([], dtype=np.intp)))
1074
+
1075
+ # create the internals grouper
1076
+ grouper = ops.BaseGrouper(group_axis, groupings, sort=sort, dropna=dropna)
1077
+ return grouper, frozenset(exclusions), obj
1078
+
1079
+
1080
+ def _is_label_like(val) -> bool:
1081
+ return isinstance(val, (str, tuple)) or (val is not None and is_scalar(val))
1082
+
1083
+
1084
+ def _convert_grouper(axis: Index, grouper):
1085
+ if isinstance(grouper, dict):
1086
+ return grouper.get
1087
+ elif isinstance(grouper, Series):
1088
+ if grouper.index.equals(axis):
1089
+ return grouper._values
1090
+ else:
1091
+ return grouper.reindex(axis)._values
1092
+ elif isinstance(grouper, MultiIndex):
1093
+ return grouper._values
1094
+ elif isinstance(grouper, (list, tuple, Index, Categorical, np.ndarray)):
1095
+ if len(grouper) != len(axis):
1096
+ raise ValueError("Grouper and axis must be same length")
1097
+
1098
+ if isinstance(grouper, (list, tuple)):
1099
+ grouper = com.asarray_tuplesafe(grouper)
1100
+ return grouper
1101
+ else:
1102
+ return grouper
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/indexing.py ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from collections.abc import Iterable
4
+ from typing import (
5
+ TYPE_CHECKING,
6
+ Literal,
7
+ cast,
8
+ )
9
+
10
+ import numpy as np
11
+
12
+ from pandas.util._decorators import (
13
+ cache_readonly,
14
+ doc,
15
+ )
16
+
17
+ from pandas.core.dtypes.common import (
18
+ is_integer,
19
+ is_list_like,
20
+ )
21
+
22
+ if TYPE_CHECKING:
23
+ from pandas._typing import PositionalIndexer
24
+
25
+ from pandas import (
26
+ DataFrame,
27
+ Series,
28
+ )
29
+ from pandas.core.groupby import groupby
30
+
31
+
32
+ class GroupByIndexingMixin:
33
+ """
34
+ Mixin for adding ._positional_selector to GroupBy.
35
+ """
36
+
37
+ @cache_readonly
38
+ def _positional_selector(self) -> GroupByPositionalSelector:
39
+ """
40
+ Return positional selection for each group.
41
+
42
+ ``groupby._positional_selector[i:j]`` is similar to
43
+ ``groupby.apply(lambda x: x.iloc[i:j])``
44
+ but much faster and preserves the original index and order.
45
+
46
+ ``_positional_selector[]`` is compatible with and extends :meth:`~GroupBy.head`
47
+ and :meth:`~GroupBy.tail`. For example:
48
+
49
+ - ``head(5)``
50
+ - ``_positional_selector[5:-5]``
51
+ - ``tail(5)``
52
+
53
+ together return all the rows.
54
+
55
+ Allowed inputs for the index are:
56
+
57
+ - An integer valued iterable, e.g. ``range(2, 4)``.
58
+ - A comma separated list of integers and slices, e.g. ``5``, ``2, 4``, ``2:4``.
59
+
60
+ The output format is the same as :meth:`~GroupBy.head` and
61
+ :meth:`~GroupBy.tail`, namely
62
+ a subset of the ``DataFrame`` or ``Series`` with the index and order preserved.
63
+
64
+ Returns
65
+ -------
66
+ Series
67
+ The filtered subset of the original Series.
68
+ DataFrame
69
+ The filtered subset of the original DataFrame.
70
+
71
+ See Also
72
+ --------
73
+ DataFrame.iloc : Purely integer-location based indexing for selection by
74
+ position.
75
+ GroupBy.head : Return first n rows of each group.
76
+ GroupBy.tail : Return last n rows of each group.
77
+ GroupBy.nth : Take the nth row from each group if n is an int, or a
78
+ subset of rows, if n is a list of ints.
79
+
80
+ Notes
81
+ -----
82
+ - The slice step cannot be negative.
83
+ - If the index specification results in overlaps, the item is not duplicated.
84
+ - If the index specification changes the order of items, then
85
+ they are returned in their original order.
86
+ By contrast, ``DataFrame.iloc`` can change the row order.
87
+ - ``groupby()`` parameters such as as_index and dropna are ignored.
88
+
89
+ The differences between ``_positional_selector[]`` and :meth:`~GroupBy.nth`
90
+ with ``as_index=False`` are:
91
+
92
+ - Input to ``_positional_selector`` can include
93
+ one or more slices whereas ``nth``
94
+ just handles an integer or a list of integers.
95
+ - ``_positional_selector`` can accept a slice relative to the
96
+ last row of each group.
97
+ - ``_positional_selector`` does not have an equivalent to the
98
+ ``nth()`` ``dropna`` parameter.
99
+
100
+ Examples
101
+ --------
102
+ >>> df = pd.DataFrame([["a", 1], ["a", 2], ["a", 3], ["b", 4], ["b", 5]],
103
+ ... columns=["A", "B"])
104
+ >>> df.groupby("A")._positional_selector[1:2]
105
+ A B
106
+ 1 a 2
107
+ 4 b 5
108
+
109
+ >>> df.groupby("A")._positional_selector[1, -1]
110
+ A B
111
+ 1 a 2
112
+ 2 a 3
113
+ 4 b 5
114
+ """
115
+ if TYPE_CHECKING:
116
+ # pylint: disable-next=used-before-assignment
117
+ groupby_self = cast(groupby.GroupBy, self)
118
+ else:
119
+ groupby_self = self
120
+
121
+ return GroupByPositionalSelector(groupby_self)
122
+
123
+ def _make_mask_from_positional_indexer(
124
+ self,
125
+ arg: PositionalIndexer | tuple,
126
+ ) -> np.ndarray:
127
+ if is_list_like(arg):
128
+ if all(is_integer(i) for i in cast(Iterable, arg)):
129
+ mask = self._make_mask_from_list(cast(Iterable[int], arg))
130
+ else:
131
+ mask = self._make_mask_from_tuple(cast(tuple, arg))
132
+
133
+ elif isinstance(arg, slice):
134
+ mask = self._make_mask_from_slice(arg)
135
+ elif is_integer(arg):
136
+ mask = self._make_mask_from_int(cast(int, arg))
137
+ else:
138
+ raise TypeError(
139
+ f"Invalid index {type(arg)}. "
140
+ "Must be integer, list-like, slice or a tuple of "
141
+ "integers and slices"
142
+ )
143
+
144
+ if isinstance(mask, bool):
145
+ if mask:
146
+ mask = self._ascending_count >= 0
147
+ else:
148
+ mask = self._ascending_count < 0
149
+
150
+ return cast(np.ndarray, mask)
151
+
152
+ def _make_mask_from_int(self, arg: int) -> np.ndarray:
153
+ if arg >= 0:
154
+ return self._ascending_count == arg
155
+ else:
156
+ return self._descending_count == (-arg - 1)
157
+
158
+ def _make_mask_from_list(self, args: Iterable[int]) -> bool | np.ndarray:
159
+ positive = [arg for arg in args if arg >= 0]
160
+ negative = [-arg - 1 for arg in args if arg < 0]
161
+
162
+ mask: bool | np.ndarray = False
163
+
164
+ if positive:
165
+ mask |= np.isin(self._ascending_count, positive)
166
+
167
+ if negative:
168
+ mask |= np.isin(self._descending_count, negative)
169
+
170
+ return mask
171
+
172
+ def _make_mask_from_tuple(self, args: tuple) -> bool | np.ndarray:
173
+ mask: bool | np.ndarray = False
174
+
175
+ for arg in args:
176
+ if is_integer(arg):
177
+ mask |= self._make_mask_from_int(cast(int, arg))
178
+ elif isinstance(arg, slice):
179
+ mask |= self._make_mask_from_slice(arg)
180
+ else:
181
+ raise ValueError(
182
+ f"Invalid argument {type(arg)}. Should be int or slice."
183
+ )
184
+
185
+ return mask
186
+
187
+ def _make_mask_from_slice(self, arg: slice) -> bool | np.ndarray:
188
+ start = arg.start
189
+ stop = arg.stop
190
+ step = arg.step
191
+
192
+ if step is not None and step < 0:
193
+ raise ValueError(f"Invalid step {step}. Must be non-negative")
194
+
195
+ mask: bool | np.ndarray = True
196
+
197
+ if step is None:
198
+ step = 1
199
+
200
+ if start is None:
201
+ if step > 1:
202
+ mask &= self._ascending_count % step == 0
203
+
204
+ elif start >= 0:
205
+ mask &= self._ascending_count >= start
206
+
207
+ if step > 1:
208
+ mask &= (self._ascending_count - start) % step == 0
209
+
210
+ else:
211
+ mask &= self._descending_count < -start
212
+
213
+ offset_array = self._descending_count + start + 1
214
+ limit_array = (
215
+ self._ascending_count + self._descending_count + (start + 1)
216
+ ) < 0
217
+ offset_array = np.where(limit_array, self._ascending_count, offset_array)
218
+
219
+ mask &= offset_array % step == 0
220
+
221
+ if stop is not None:
222
+ if stop >= 0:
223
+ mask &= self._ascending_count < stop
224
+ else:
225
+ mask &= self._descending_count >= -stop
226
+
227
+ return mask
228
+
229
+ @cache_readonly
230
+ def _ascending_count(self) -> np.ndarray:
231
+ if TYPE_CHECKING:
232
+ groupby_self = cast(groupby.GroupBy, self)
233
+ else:
234
+ groupby_self = self
235
+
236
+ return groupby_self._cumcount_array()
237
+
238
+ @cache_readonly
239
+ def _descending_count(self) -> np.ndarray:
240
+ if TYPE_CHECKING:
241
+ groupby_self = cast(groupby.GroupBy, self)
242
+ else:
243
+ groupby_self = self
244
+
245
+ return groupby_self._cumcount_array(ascending=False)
246
+
247
+
248
+ @doc(GroupByIndexingMixin._positional_selector)
249
+ class GroupByPositionalSelector:
250
+ def __init__(self, groupby_object: groupby.GroupBy) -> None:
251
+ self.groupby_object = groupby_object
252
+
253
+ def __getitem__(self, arg: PositionalIndexer | tuple) -> DataFrame | Series:
254
+ """
255
+ Select by positional index per group.
256
+
257
+ Implements GroupBy._positional_selector
258
+
259
+ Parameters
260
+ ----------
261
+ arg : PositionalIndexer | tuple
262
+ Allowed values are:
263
+ - int
264
+ - int valued iterable such as list or range
265
+ - slice with step either None or positive
266
+ - tuple of integers and slices
267
+
268
+ Returns
269
+ -------
270
+ Series
271
+ The filtered subset of the original groupby Series.
272
+ DataFrame
273
+ The filtered subset of the original groupby DataFrame.
274
+
275
+ See Also
276
+ --------
277
+ DataFrame.iloc : Integer-location based indexing for selection by position.
278
+ GroupBy.head : Return first n rows of each group.
279
+ GroupBy.tail : Return last n rows of each group.
280
+ GroupBy._positional_selector : Return positional selection for each group.
281
+ GroupBy.nth : Take the nth row from each group if n is an int, or a
282
+ subset of rows, if n is a list of ints.
283
+ """
284
+ mask = self.groupby_object._make_mask_from_positional_indexer(arg)
285
+ return self.groupby_object._mask_selected_obj(mask)
286
+
287
+
288
+ class GroupByNthSelector:
289
+ """
290
+ Dynamically substituted for GroupBy.nth to enable both call and index
291
+ """
292
+
293
+ def __init__(self, groupby_object: groupby.GroupBy) -> None:
294
+ self.groupby_object = groupby_object
295
+
296
+ def __call__(
297
+ self,
298
+ n: PositionalIndexer | tuple,
299
+ dropna: Literal["any", "all", None] = None,
300
+ ) -> DataFrame | Series:
301
+ return self.groupby_object._nth(n, dropna)
302
+
303
+ def __getitem__(self, n: PositionalIndexer | tuple) -> DataFrame | Series:
304
+ return self.groupby_object._nth(n)
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/numba_.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Common utilities for Numba operations with groupby ops"""
2
+ from __future__ import annotations
3
+
4
+ import functools
5
+ import inspect
6
+ from typing import (
7
+ TYPE_CHECKING,
8
+ Any,
9
+ Callable,
10
+ )
11
+
12
+ import numpy as np
13
+
14
+ from pandas.compat._optional import import_optional_dependency
15
+
16
+ from pandas.core.util.numba_ import (
17
+ NumbaUtilError,
18
+ jit_user_function,
19
+ )
20
+
21
+ if TYPE_CHECKING:
22
+ from pandas._typing import Scalar
23
+
24
+
25
+ def validate_udf(func: Callable) -> None:
26
+ """
27
+ Validate user defined function for ops when using Numba with groupby ops.
28
+
29
+ The first signature arguments should include:
30
+
31
+ def f(values, index, ...):
32
+ ...
33
+
34
+ Parameters
35
+ ----------
36
+ func : function, default False
37
+ user defined function
38
+
39
+ Returns
40
+ -------
41
+ None
42
+
43
+ Raises
44
+ ------
45
+ NumbaUtilError
46
+ """
47
+ if not callable(func):
48
+ raise NotImplementedError(
49
+ "Numba engine can only be used with a single function."
50
+ )
51
+ udf_signature = list(inspect.signature(func).parameters.keys())
52
+ expected_args = ["values", "index"]
53
+ min_number_args = len(expected_args)
54
+ if (
55
+ len(udf_signature) < min_number_args
56
+ or udf_signature[:min_number_args] != expected_args
57
+ ):
58
+ raise NumbaUtilError(
59
+ f"The first {min_number_args} arguments to {func.__name__} must be "
60
+ f"{expected_args}"
61
+ )
62
+
63
+
64
+ @functools.cache
65
+ def generate_numba_agg_func(
66
+ func: Callable[..., Scalar],
67
+ nopython: bool,
68
+ nogil: bool,
69
+ parallel: bool,
70
+ ) -> Callable[[np.ndarray, np.ndarray, np.ndarray, np.ndarray, int, Any], np.ndarray]:
71
+ """
72
+ Generate a numba jitted agg function specified by values from engine_kwargs.
73
+
74
+ 1. jit the user's function
75
+ 2. Return a groupby agg function with the jitted function inline
76
+
77
+ Configurations specified in engine_kwargs apply to both the user's
78
+ function _AND_ the groupby evaluation loop.
79
+
80
+ Parameters
81
+ ----------
82
+ func : function
83
+ function to be applied to each group and will be JITed
84
+ nopython : bool
85
+ nopython to be passed into numba.jit
86
+ nogil : bool
87
+ nogil to be passed into numba.jit
88
+ parallel : bool
89
+ parallel to be passed into numba.jit
90
+
91
+ Returns
92
+ -------
93
+ Numba function
94
+ """
95
+ numba_func = jit_user_function(func)
96
+ if TYPE_CHECKING:
97
+ import numba
98
+ else:
99
+ numba = import_optional_dependency("numba")
100
+
101
+ @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel)
102
+ def group_agg(
103
+ values: np.ndarray,
104
+ index: np.ndarray,
105
+ begin: np.ndarray,
106
+ end: np.ndarray,
107
+ num_columns: int,
108
+ *args: Any,
109
+ ) -> np.ndarray:
110
+ assert len(begin) == len(end)
111
+ num_groups = len(begin)
112
+
113
+ result = np.empty((num_groups, num_columns))
114
+ for i in numba.prange(num_groups):
115
+ group_index = index[begin[i] : end[i]]
116
+ for j in numba.prange(num_columns):
117
+ group = values[begin[i] : end[i], j]
118
+ result[i, j] = numba_func(group, group_index, *args)
119
+ return result
120
+
121
+ return group_agg
122
+
123
+
124
+ @functools.cache
125
+ def generate_numba_transform_func(
126
+ func: Callable[..., np.ndarray],
127
+ nopython: bool,
128
+ nogil: bool,
129
+ parallel: bool,
130
+ ) -> Callable[[np.ndarray, np.ndarray, np.ndarray, np.ndarray, int, Any], np.ndarray]:
131
+ """
132
+ Generate a numba jitted transform function specified by values from engine_kwargs.
133
+
134
+ 1. jit the user's function
135
+ 2. Return a groupby transform function with the jitted function inline
136
+
137
+ Configurations specified in engine_kwargs apply to both the user's
138
+ function _AND_ the groupby evaluation loop.
139
+
140
+ Parameters
141
+ ----------
142
+ func : function
143
+ function to be applied to each window and will be JITed
144
+ nopython : bool
145
+ nopython to be passed into numba.jit
146
+ nogil : bool
147
+ nogil to be passed into numba.jit
148
+ parallel : bool
149
+ parallel to be passed into numba.jit
150
+
151
+ Returns
152
+ -------
153
+ Numba function
154
+ """
155
+ numba_func = jit_user_function(func)
156
+ if TYPE_CHECKING:
157
+ import numba
158
+ else:
159
+ numba = import_optional_dependency("numba")
160
+
161
+ @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel)
162
+ def group_transform(
163
+ values: np.ndarray,
164
+ index: np.ndarray,
165
+ begin: np.ndarray,
166
+ end: np.ndarray,
167
+ num_columns: int,
168
+ *args: Any,
169
+ ) -> np.ndarray:
170
+ assert len(begin) == len(end)
171
+ num_groups = len(begin)
172
+
173
+ result = np.empty((len(values), num_columns))
174
+ for i in numba.prange(num_groups):
175
+ group_index = index[begin[i] : end[i]]
176
+ for j in numba.prange(num_columns):
177
+ group = values[begin[i] : end[i], j]
178
+ result[begin[i] : end[i], j] = numba_func(group, group_index, *args)
179
+ return result
180
+
181
+ return group_transform
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/ops.py ADDED
@@ -0,0 +1,1208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Provide classes to perform the groupby aggregate operations.
3
+
4
+ These are not exposed to the user and provide implementations of the grouping
5
+ operations, primarily in cython. These classes (BaseGrouper and BinGrouper)
6
+ are contained *in* the SeriesGroupBy and DataFrameGroupBy objects.
7
+ """
8
+ from __future__ import annotations
9
+
10
+ import collections
11
+ import functools
12
+ from typing import (
13
+ TYPE_CHECKING,
14
+ Callable,
15
+ Generic,
16
+ final,
17
+ )
18
+
19
+ import numpy as np
20
+
21
+ from pandas._libs import (
22
+ NaT,
23
+ lib,
24
+ )
25
+ import pandas._libs.groupby as libgroupby
26
+ from pandas._typing import (
27
+ ArrayLike,
28
+ AxisInt,
29
+ NDFrameT,
30
+ Shape,
31
+ npt,
32
+ )
33
+ from pandas.errors import AbstractMethodError
34
+ from pandas.util._decorators import cache_readonly
35
+
36
+ from pandas.core.dtypes.cast import (
37
+ maybe_cast_pointwise_result,
38
+ maybe_downcast_to_dtype,
39
+ )
40
+ from pandas.core.dtypes.common import (
41
+ ensure_float64,
42
+ ensure_int64,
43
+ ensure_platform_int,
44
+ ensure_uint64,
45
+ is_1d_only_ea_dtype,
46
+ )
47
+ from pandas.core.dtypes.missing import (
48
+ isna,
49
+ maybe_fill,
50
+ )
51
+
52
+ from pandas.core.frame import DataFrame
53
+ from pandas.core.groupby import grouper
54
+ from pandas.core.indexes.api import (
55
+ CategoricalIndex,
56
+ Index,
57
+ MultiIndex,
58
+ ensure_index,
59
+ )
60
+ from pandas.core.series import Series
61
+ from pandas.core.sorting import (
62
+ compress_group_index,
63
+ decons_obs_group_ids,
64
+ get_flattened_list,
65
+ get_group_index,
66
+ get_group_index_sorter,
67
+ get_indexer_dict,
68
+ )
69
+
70
+ if TYPE_CHECKING:
71
+ from collections.abc import (
72
+ Hashable,
73
+ Iterator,
74
+ Sequence,
75
+ )
76
+
77
+ from pandas.core.generic import NDFrame
78
+
79
+
80
+ def check_result_array(obj, dtype) -> None:
81
+ # Our operation is supposed to be an aggregation/reduction. If
82
+ # it returns an ndarray, this likely means an invalid operation has
83
+ # been passed. See test_apply_without_aggregation, test_agg_must_agg
84
+ if isinstance(obj, np.ndarray):
85
+ if dtype != object:
86
+ # If it is object dtype, the function can be a reduction/aggregation
87
+ # and still return an ndarray e.g. test_agg_over_numpy_arrays
88
+ raise ValueError("Must produce aggregated value")
89
+
90
+
91
+ def extract_result(res):
92
+ """
93
+ Extract the result object, it might be a 0-dim ndarray
94
+ or a len-1 0-dim, or a scalar
95
+ """
96
+ if hasattr(res, "_values"):
97
+ # Preserve EA
98
+ res = res._values
99
+ if res.ndim == 1 and len(res) == 1:
100
+ # see test_agg_lambda_with_timezone, test_resampler_grouper.py::test_apply
101
+ res = res[0]
102
+ return res
103
+
104
+
105
+ class WrappedCythonOp:
106
+ """
107
+ Dispatch logic for functions defined in _libs.groupby
108
+
109
+ Parameters
110
+ ----------
111
+ kind: str
112
+ Whether the operation is an aggregate or transform.
113
+ how: str
114
+ Operation name, e.g. "mean".
115
+ has_dropped_na: bool
116
+ True precisely when dropna=True and the grouper contains a null value.
117
+ """
118
+
119
+ # Functions for which we do _not_ attempt to cast the cython result
120
+ # back to the original dtype.
121
+ cast_blocklist = frozenset(
122
+ ["any", "all", "rank", "count", "size", "idxmin", "idxmax"]
123
+ )
124
+
125
+ def __init__(self, kind: str, how: str, has_dropped_na: bool) -> None:
126
+ self.kind = kind
127
+ self.how = how
128
+ self.has_dropped_na = has_dropped_na
129
+
130
+ _CYTHON_FUNCTIONS: dict[str, dict] = {
131
+ "aggregate": {
132
+ "any": functools.partial(libgroupby.group_any_all, val_test="any"),
133
+ "all": functools.partial(libgroupby.group_any_all, val_test="all"),
134
+ "sum": "group_sum",
135
+ "prod": "group_prod",
136
+ "idxmin": functools.partial(libgroupby.group_idxmin_idxmax, name="idxmin"),
137
+ "idxmax": functools.partial(libgroupby.group_idxmin_idxmax, name="idxmax"),
138
+ "min": "group_min",
139
+ "max": "group_max",
140
+ "mean": "group_mean",
141
+ "median": "group_median_float64",
142
+ "var": "group_var",
143
+ "std": functools.partial(libgroupby.group_var, name="std"),
144
+ "sem": functools.partial(libgroupby.group_var, name="sem"),
145
+ "skew": "group_skew",
146
+ "first": "group_nth",
147
+ "last": "group_last",
148
+ "ohlc": "group_ohlc",
149
+ },
150
+ "transform": {
151
+ "cumprod": "group_cumprod",
152
+ "cumsum": "group_cumsum",
153
+ "cummin": "group_cummin",
154
+ "cummax": "group_cummax",
155
+ "rank": "group_rank",
156
+ },
157
+ }
158
+
159
+ _cython_arity = {"ohlc": 4} # OHLC
160
+
161
+ @classmethod
162
+ def get_kind_from_how(cls, how: str) -> str:
163
+ if how in cls._CYTHON_FUNCTIONS["aggregate"]:
164
+ return "aggregate"
165
+ return "transform"
166
+
167
+ # Note: we make this a classmethod and pass kind+how so that caching
168
+ # works at the class level and not the instance level
169
+ @classmethod
170
+ @functools.cache
171
+ def _get_cython_function(
172
+ cls, kind: str, how: str, dtype: np.dtype, is_numeric: bool
173
+ ):
174
+ dtype_str = dtype.name
175
+ ftype = cls._CYTHON_FUNCTIONS[kind][how]
176
+
177
+ # see if there is a fused-type version of function
178
+ # only valid for numeric
179
+ if callable(ftype):
180
+ f = ftype
181
+ else:
182
+ f = getattr(libgroupby, ftype)
183
+ if is_numeric:
184
+ return f
185
+ elif dtype == np.dtype(object):
186
+ if how in ["median", "cumprod"]:
187
+ # no fused types -> no __signatures__
188
+ raise NotImplementedError(
189
+ f"function is not implemented for this dtype: "
190
+ f"[how->{how},dtype->{dtype_str}]"
191
+ )
192
+ elif how in ["std", "sem", "idxmin", "idxmax"]:
193
+ # We have a partial object that does not have __signatures__
194
+ return f
195
+ elif how == "skew":
196
+ # _get_cython_vals will convert to float64
197
+ pass
198
+ elif "object" not in f.__signatures__:
199
+ # raise NotImplementedError here rather than TypeError later
200
+ raise NotImplementedError(
201
+ f"function is not implemented for this dtype: "
202
+ f"[how->{how},dtype->{dtype_str}]"
203
+ )
204
+ return f
205
+ else:
206
+ raise NotImplementedError(
207
+ "This should not be reached. Please report a bug at "
208
+ "github.com/pandas-dev/pandas/",
209
+ dtype,
210
+ )
211
+
212
+ def _get_cython_vals(self, values: np.ndarray) -> np.ndarray:
213
+ """
214
+ Cast numeric dtypes to float64 for functions that only support that.
215
+
216
+ Parameters
217
+ ----------
218
+ values : np.ndarray
219
+
220
+ Returns
221
+ -------
222
+ values : np.ndarray
223
+ """
224
+ how = self.how
225
+
226
+ if how in ["median", "std", "sem", "skew"]:
227
+ # median only has a float64 implementation
228
+ # We should only get here with is_numeric, as non-numeric cases
229
+ # should raise in _get_cython_function
230
+ values = ensure_float64(values)
231
+
232
+ elif values.dtype.kind in "iu":
233
+ if how in ["var", "mean"] or (
234
+ self.kind == "transform" and self.has_dropped_na
235
+ ):
236
+ # has_dropped_na check need for test_null_group_str_transformer
237
+ # result may still include NaN, so we have to cast
238
+ values = ensure_float64(values)
239
+
240
+ elif how in ["sum", "ohlc", "prod", "cumsum", "cumprod"]:
241
+ # Avoid overflow during group op
242
+ if values.dtype.kind == "i":
243
+ values = ensure_int64(values)
244
+ else:
245
+ values = ensure_uint64(values)
246
+
247
+ return values
248
+
249
+ def _get_output_shape(self, ngroups: int, values: np.ndarray) -> Shape:
250
+ how = self.how
251
+ kind = self.kind
252
+
253
+ arity = self._cython_arity.get(how, 1)
254
+
255
+ out_shape: Shape
256
+ if how == "ohlc":
257
+ out_shape = (ngroups, arity)
258
+ elif arity > 1:
259
+ raise NotImplementedError(
260
+ "arity of more than 1 is not supported for the 'how' argument"
261
+ )
262
+ elif kind == "transform":
263
+ out_shape = values.shape
264
+ else:
265
+ out_shape = (ngroups,) + values.shape[1:]
266
+ return out_shape
267
+
268
+ def _get_out_dtype(self, dtype: np.dtype) -> np.dtype:
269
+ how = self.how
270
+
271
+ if how == "rank":
272
+ out_dtype = "float64"
273
+ elif how in ["idxmin", "idxmax"]:
274
+ # The Cython implementation only produces the row number; we'll take
275
+ # from the index using this in post processing
276
+ out_dtype = "intp"
277
+ else:
278
+ if dtype.kind in "iufcb":
279
+ out_dtype = f"{dtype.kind}{dtype.itemsize}"
280
+ else:
281
+ out_dtype = "object"
282
+ return np.dtype(out_dtype)
283
+
284
+ def _get_result_dtype(self, dtype: np.dtype) -> np.dtype:
285
+ """
286
+ Get the desired dtype of a result based on the
287
+ input dtype and how it was computed.
288
+
289
+ Parameters
290
+ ----------
291
+ dtype : np.dtype
292
+
293
+ Returns
294
+ -------
295
+ np.dtype
296
+ The desired dtype of the result.
297
+ """
298
+ how = self.how
299
+
300
+ if how in ["sum", "cumsum", "sum", "prod", "cumprod"]:
301
+ if dtype == np.dtype(bool):
302
+ return np.dtype(np.int64)
303
+ elif how in ["mean", "median", "var", "std", "sem"]:
304
+ if dtype.kind in "fc":
305
+ return dtype
306
+ elif dtype.kind in "iub":
307
+ return np.dtype(np.float64)
308
+ return dtype
309
+
310
+ @final
311
+ def _cython_op_ndim_compat(
312
+ self,
313
+ values: np.ndarray,
314
+ *,
315
+ min_count: int,
316
+ ngroups: int,
317
+ comp_ids: np.ndarray,
318
+ mask: npt.NDArray[np.bool_] | None = None,
319
+ result_mask: npt.NDArray[np.bool_] | None = None,
320
+ **kwargs,
321
+ ) -> np.ndarray:
322
+ if values.ndim == 1:
323
+ # expand to 2d, dispatch, then squeeze if appropriate
324
+ values2d = values[None, :]
325
+ if mask is not None:
326
+ mask = mask[None, :]
327
+ if result_mask is not None:
328
+ result_mask = result_mask[None, :]
329
+ res = self._call_cython_op(
330
+ values2d,
331
+ min_count=min_count,
332
+ ngroups=ngroups,
333
+ comp_ids=comp_ids,
334
+ mask=mask,
335
+ result_mask=result_mask,
336
+ **kwargs,
337
+ )
338
+ if res.shape[0] == 1:
339
+ return res[0]
340
+
341
+ # otherwise we have OHLC
342
+ return res.T
343
+
344
+ return self._call_cython_op(
345
+ values,
346
+ min_count=min_count,
347
+ ngroups=ngroups,
348
+ comp_ids=comp_ids,
349
+ mask=mask,
350
+ result_mask=result_mask,
351
+ **kwargs,
352
+ )
353
+
354
+ @final
355
+ def _call_cython_op(
356
+ self,
357
+ values: np.ndarray, # np.ndarray[ndim=2]
358
+ *,
359
+ min_count: int,
360
+ ngroups: int,
361
+ comp_ids: np.ndarray,
362
+ mask: npt.NDArray[np.bool_] | None,
363
+ result_mask: npt.NDArray[np.bool_] | None,
364
+ **kwargs,
365
+ ) -> np.ndarray: # np.ndarray[ndim=2]
366
+ orig_values = values
367
+
368
+ dtype = values.dtype
369
+ is_numeric = dtype.kind in "iufcb"
370
+
371
+ is_datetimelike = dtype.kind in "mM"
372
+
373
+ if is_datetimelike:
374
+ values = values.view("int64")
375
+ is_numeric = True
376
+ elif dtype.kind == "b":
377
+ values = values.view("uint8")
378
+ if values.dtype == "float16":
379
+ values = values.astype(np.float32)
380
+
381
+ if self.how in ["any", "all"]:
382
+ if mask is None:
383
+ mask = isna(values)
384
+ if dtype == object:
385
+ if kwargs["skipna"]:
386
+ # GH#37501: don't raise on pd.NA when skipna=True
387
+ if mask.any():
388
+ # mask on original values computed separately
389
+ values = values.copy()
390
+ values[mask] = True
391
+ values = values.astype(bool, copy=False).view(np.int8)
392
+ is_numeric = True
393
+
394
+ values = values.T
395
+ if mask is not None:
396
+ mask = mask.T
397
+ if result_mask is not None:
398
+ result_mask = result_mask.T
399
+
400
+ out_shape = self._get_output_shape(ngroups, values)
401
+ func = self._get_cython_function(self.kind, self.how, values.dtype, is_numeric)
402
+ values = self._get_cython_vals(values)
403
+ out_dtype = self._get_out_dtype(values.dtype)
404
+
405
+ result = maybe_fill(np.empty(out_shape, dtype=out_dtype))
406
+ if self.kind == "aggregate":
407
+ counts = np.zeros(ngroups, dtype=np.int64)
408
+ if self.how in [
409
+ "idxmin",
410
+ "idxmax",
411
+ "min",
412
+ "max",
413
+ "mean",
414
+ "last",
415
+ "first",
416
+ "sum",
417
+ ]:
418
+ func(
419
+ out=result,
420
+ counts=counts,
421
+ values=values,
422
+ labels=comp_ids,
423
+ min_count=min_count,
424
+ mask=mask,
425
+ result_mask=result_mask,
426
+ is_datetimelike=is_datetimelike,
427
+ **kwargs,
428
+ )
429
+ elif self.how in ["sem", "std", "var", "ohlc", "prod", "median"]:
430
+ if self.how in ["std", "sem"]:
431
+ kwargs["is_datetimelike"] = is_datetimelike
432
+ func(
433
+ result,
434
+ counts,
435
+ values,
436
+ comp_ids,
437
+ min_count=min_count,
438
+ mask=mask,
439
+ result_mask=result_mask,
440
+ **kwargs,
441
+ )
442
+ elif self.how in ["any", "all"]:
443
+ func(
444
+ out=result,
445
+ values=values,
446
+ labels=comp_ids,
447
+ mask=mask,
448
+ result_mask=result_mask,
449
+ **kwargs,
450
+ )
451
+ result = result.astype(bool, copy=False)
452
+ elif self.how in ["skew"]:
453
+ func(
454
+ out=result,
455
+ counts=counts,
456
+ values=values,
457
+ labels=comp_ids,
458
+ mask=mask,
459
+ result_mask=result_mask,
460
+ **kwargs,
461
+ )
462
+ if dtype == object:
463
+ result = result.astype(object)
464
+
465
+ else:
466
+ raise NotImplementedError(f"{self.how} is not implemented")
467
+ else:
468
+ # TODO: min_count
469
+ if self.how != "rank":
470
+ # TODO: should rank take result_mask?
471
+ kwargs["result_mask"] = result_mask
472
+ func(
473
+ out=result,
474
+ values=values,
475
+ labels=comp_ids,
476
+ ngroups=ngroups,
477
+ is_datetimelike=is_datetimelike,
478
+ mask=mask,
479
+ **kwargs,
480
+ )
481
+
482
+ if self.kind == "aggregate" and self.how not in ["idxmin", "idxmax"]:
483
+ # i.e. counts is defined. Locations where count<min_count
484
+ # need to have the result set to np.nan, which may require casting,
485
+ # see GH#40767. For idxmin/idxmax is handled specially via post-processing
486
+ if result.dtype.kind in "iu" and not is_datetimelike:
487
+ # if the op keeps the int dtypes, we have to use 0
488
+ cutoff = max(0 if self.how in ["sum", "prod"] else 1, min_count)
489
+ empty_groups = counts < cutoff
490
+ if empty_groups.any():
491
+ if result_mask is not None:
492
+ assert result_mask[empty_groups].all()
493
+ else:
494
+ # Note: this conversion could be lossy, see GH#40767
495
+ result = result.astype("float64")
496
+ result[empty_groups] = np.nan
497
+
498
+ result = result.T
499
+
500
+ if self.how not in self.cast_blocklist:
501
+ # e.g. if we are int64 and need to restore to datetime64/timedelta64
502
+ # "rank" is the only member of cast_blocklist we get here
503
+ # Casting only needed for float16, bool, datetimelike,
504
+ # and self.how in ["sum", "prod", "ohlc", "cumprod"]
505
+ res_dtype = self._get_result_dtype(orig_values.dtype)
506
+ op_result = maybe_downcast_to_dtype(result, res_dtype)
507
+ else:
508
+ op_result = result
509
+
510
+ return op_result
511
+
512
+ @final
513
+ def _validate_axis(self, axis: AxisInt, values: ArrayLike) -> None:
514
+ if values.ndim > 2:
515
+ raise NotImplementedError("number of dimensions is currently limited to 2")
516
+ if values.ndim == 2:
517
+ assert axis == 1, axis
518
+ elif not is_1d_only_ea_dtype(values.dtype):
519
+ # Note: it is *not* the case that axis is always 0 for 1-dim values,
520
+ # as we can have 1D ExtensionArrays that we need to treat as 2D
521
+ assert axis == 0
522
+
523
+ @final
524
+ def cython_operation(
525
+ self,
526
+ *,
527
+ values: ArrayLike,
528
+ axis: AxisInt,
529
+ min_count: int = -1,
530
+ comp_ids: np.ndarray,
531
+ ngroups: int,
532
+ **kwargs,
533
+ ) -> ArrayLike:
534
+ """
535
+ Call our cython function, with appropriate pre- and post- processing.
536
+ """
537
+ self._validate_axis(axis, values)
538
+
539
+ if not isinstance(values, np.ndarray):
540
+ # i.e. ExtensionArray
541
+ return values._groupby_op(
542
+ how=self.how,
543
+ has_dropped_na=self.has_dropped_na,
544
+ min_count=min_count,
545
+ ngroups=ngroups,
546
+ ids=comp_ids,
547
+ **kwargs,
548
+ )
549
+
550
+ return self._cython_op_ndim_compat(
551
+ values,
552
+ min_count=min_count,
553
+ ngroups=ngroups,
554
+ comp_ids=comp_ids,
555
+ mask=None,
556
+ **kwargs,
557
+ )
558
+
559
+
560
+ class BaseGrouper:
561
+ """
562
+ This is an internal Grouper class, which actually holds
563
+ the generated groups
564
+
565
+ Parameters
566
+ ----------
567
+ axis : Index
568
+ groupings : Sequence[Grouping]
569
+ all the grouping instances to handle in this grouper
570
+ for example for grouper list to groupby, need to pass the list
571
+ sort : bool, default True
572
+ whether this grouper will give sorted result or not
573
+
574
+ """
575
+
576
+ axis: Index
577
+
578
+ def __init__(
579
+ self,
580
+ axis: Index,
581
+ groupings: Sequence[grouper.Grouping],
582
+ sort: bool = True,
583
+ dropna: bool = True,
584
+ ) -> None:
585
+ assert isinstance(axis, Index), axis
586
+
587
+ self.axis = axis
588
+ self._groupings: list[grouper.Grouping] = list(groupings)
589
+ self._sort = sort
590
+ self.dropna = dropna
591
+
592
+ @property
593
+ def groupings(self) -> list[grouper.Grouping]:
594
+ return self._groupings
595
+
596
+ @property
597
+ def shape(self) -> Shape:
598
+ return tuple(ping.ngroups for ping in self.groupings)
599
+
600
+ def __iter__(self) -> Iterator[Hashable]:
601
+ return iter(self.indices)
602
+
603
+ @property
604
+ def nkeys(self) -> int:
605
+ return len(self.groupings)
606
+
607
+ def get_iterator(
608
+ self, data: NDFrameT, axis: AxisInt = 0
609
+ ) -> Iterator[tuple[Hashable, NDFrameT]]:
610
+ """
611
+ Groupby iterator
612
+
613
+ Returns
614
+ -------
615
+ Generator yielding sequence of (name, subsetted object)
616
+ for each group
617
+ """
618
+ splitter = self._get_splitter(data, axis=axis)
619
+ keys = self.group_keys_seq
620
+ yield from zip(keys, splitter)
621
+
622
+ @final
623
+ def _get_splitter(self, data: NDFrame, axis: AxisInt = 0) -> DataSplitter:
624
+ """
625
+ Returns
626
+ -------
627
+ Generator yielding subsetted objects
628
+ """
629
+ ids, _, ngroups = self.group_info
630
+ return _get_splitter(
631
+ data,
632
+ ids,
633
+ ngroups,
634
+ sorted_ids=self._sorted_ids,
635
+ sort_idx=self._sort_idx,
636
+ axis=axis,
637
+ )
638
+
639
+ @final
640
+ @cache_readonly
641
+ def group_keys_seq(self):
642
+ if len(self.groupings) == 1:
643
+ return self.levels[0]
644
+ else:
645
+ ids, _, ngroups = self.group_info
646
+
647
+ # provide "flattened" iterator for multi-group setting
648
+ return get_flattened_list(ids, ngroups, self.levels, self.codes)
649
+
650
+ @cache_readonly
651
+ def indices(self) -> dict[Hashable, npt.NDArray[np.intp]]:
652
+ """dict {group name -> group indices}"""
653
+ if len(self.groupings) == 1 and isinstance(self.result_index, CategoricalIndex):
654
+ # This shows unused categories in indices GH#38642
655
+ return self.groupings[0].indices
656
+ codes_list = [ping.codes for ping in self.groupings]
657
+ keys = [ping._group_index for ping in self.groupings]
658
+ return get_indexer_dict(codes_list, keys)
659
+
660
+ @final
661
+ def result_ilocs(self) -> npt.NDArray[np.intp]:
662
+ """
663
+ Get the original integer locations of result_index in the input.
664
+ """
665
+ # Original indices are where group_index would go via sorting.
666
+ # But when dropna is true, we need to remove null values while accounting for
667
+ # any gaps that then occur because of them.
668
+ group_index = get_group_index(
669
+ self.codes, self.shape, sort=self._sort, xnull=True
670
+ )
671
+ group_index, _ = compress_group_index(group_index, sort=self._sort)
672
+
673
+ if self.has_dropped_na:
674
+ mask = np.where(group_index >= 0)
675
+ # Count how many gaps are caused by previous null values for each position
676
+ null_gaps = np.cumsum(group_index == -1)[mask]
677
+ group_index = group_index[mask]
678
+
679
+ result = get_group_index_sorter(group_index, self.ngroups)
680
+
681
+ if self.has_dropped_na:
682
+ # Shift by the number of prior null gaps
683
+ result += np.take(null_gaps, result)
684
+
685
+ return result
686
+
687
+ @final
688
+ @property
689
+ def codes(self) -> list[npt.NDArray[np.signedinteger]]:
690
+ return [ping.codes for ping in self.groupings]
691
+
692
+ @property
693
+ def levels(self) -> list[Index]:
694
+ return [ping._group_index for ping in self.groupings]
695
+
696
+ @property
697
+ def names(self) -> list[Hashable]:
698
+ return [ping.name for ping in self.groupings]
699
+
700
+ @final
701
+ def size(self) -> Series:
702
+ """
703
+ Compute group sizes.
704
+ """
705
+ ids, _, ngroups = self.group_info
706
+ out: np.ndarray | list
707
+ if ngroups:
708
+ out = np.bincount(ids[ids != -1], minlength=ngroups)
709
+ else:
710
+ out = []
711
+ return Series(out, index=self.result_index, dtype="int64", copy=False)
712
+
713
+ @cache_readonly
714
+ def groups(self) -> dict[Hashable, np.ndarray]:
715
+ """dict {group name -> group labels}"""
716
+ if len(self.groupings) == 1:
717
+ return self.groupings[0].groups
718
+ else:
719
+ to_groupby = []
720
+ for ping in self.groupings:
721
+ gv = ping.grouping_vector
722
+ if not isinstance(gv, BaseGrouper):
723
+ to_groupby.append(gv)
724
+ else:
725
+ to_groupby.append(gv.groupings[0].grouping_vector)
726
+ index = MultiIndex.from_arrays(to_groupby)
727
+ return self.axis.groupby(index)
728
+
729
+ @final
730
+ @cache_readonly
731
+ def is_monotonic(self) -> bool:
732
+ # return if my group orderings are monotonic
733
+ return Index(self.group_info[0]).is_monotonic_increasing
734
+
735
+ @final
736
+ @cache_readonly
737
+ def has_dropped_na(self) -> bool:
738
+ """
739
+ Whether grouper has null value(s) that are dropped.
740
+ """
741
+ return bool((self.group_info[0] < 0).any())
742
+
743
+ @cache_readonly
744
+ def group_info(self) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp], int]:
745
+ comp_ids, obs_group_ids = self._get_compressed_codes()
746
+
747
+ ngroups = len(obs_group_ids)
748
+ comp_ids = ensure_platform_int(comp_ids)
749
+
750
+ return comp_ids, obs_group_ids, ngroups
751
+
752
+ @cache_readonly
753
+ def codes_info(self) -> npt.NDArray[np.intp]:
754
+ # return the codes of items in original grouped axis
755
+ ids, _, _ = self.group_info
756
+ return ids
757
+
758
+ @final
759
+ def _get_compressed_codes(
760
+ self,
761
+ ) -> tuple[npt.NDArray[np.signedinteger], npt.NDArray[np.intp]]:
762
+ # The first returned ndarray may have any signed integer dtype
763
+ if len(self.groupings) > 1:
764
+ group_index = get_group_index(self.codes, self.shape, sort=True, xnull=True)
765
+ return compress_group_index(group_index, sort=self._sort)
766
+ # FIXME: compress_group_index's second return value is int64, not intp
767
+
768
+ ping = self.groupings[0]
769
+ return ping.codes, np.arange(len(ping._group_index), dtype=np.intp)
770
+
771
+ @final
772
+ @cache_readonly
773
+ def ngroups(self) -> int:
774
+ return len(self.result_index)
775
+
776
+ @property
777
+ def reconstructed_codes(self) -> list[npt.NDArray[np.intp]]:
778
+ codes = self.codes
779
+ ids, obs_ids, _ = self.group_info
780
+ return decons_obs_group_ids(ids, obs_ids, self.shape, codes, xnull=True)
781
+
782
+ @cache_readonly
783
+ def result_index(self) -> Index:
784
+ if len(self.groupings) == 1:
785
+ return self.groupings[0]._result_index.rename(self.names[0])
786
+
787
+ codes = self.reconstructed_codes
788
+ levels = [ping._result_index for ping in self.groupings]
789
+ return MultiIndex(
790
+ levels=levels, codes=codes, verify_integrity=False, names=self.names
791
+ )
792
+
793
+ @final
794
+ def get_group_levels(self) -> list[ArrayLike]:
795
+ # Note: only called from _insert_inaxis_grouper, which
796
+ # is only called for BaseGrouper, never for BinGrouper
797
+ if len(self.groupings) == 1:
798
+ return [self.groupings[0]._group_arraylike]
799
+
800
+ name_list = []
801
+ for ping, codes in zip(self.groupings, self.reconstructed_codes):
802
+ codes = ensure_platform_int(codes)
803
+ levels = ping._group_arraylike.take(codes)
804
+
805
+ name_list.append(levels)
806
+
807
+ return name_list
808
+
809
+ # ------------------------------------------------------------
810
+ # Aggregation functions
811
+
812
+ @final
813
+ def _cython_operation(
814
+ self,
815
+ kind: str,
816
+ values,
817
+ how: str,
818
+ axis: AxisInt,
819
+ min_count: int = -1,
820
+ **kwargs,
821
+ ) -> ArrayLike:
822
+ """
823
+ Returns the values of a cython operation.
824
+ """
825
+ assert kind in ["transform", "aggregate"]
826
+
827
+ cy_op = WrappedCythonOp(kind=kind, how=how, has_dropped_na=self.has_dropped_na)
828
+
829
+ ids, _, _ = self.group_info
830
+ ngroups = self.ngroups
831
+ return cy_op.cython_operation(
832
+ values=values,
833
+ axis=axis,
834
+ min_count=min_count,
835
+ comp_ids=ids,
836
+ ngroups=ngroups,
837
+ **kwargs,
838
+ )
839
+
840
+ @final
841
+ def agg_series(
842
+ self, obj: Series, func: Callable, preserve_dtype: bool = False
843
+ ) -> ArrayLike:
844
+ """
845
+ Parameters
846
+ ----------
847
+ obj : Series
848
+ func : function taking a Series and returning a scalar-like
849
+ preserve_dtype : bool
850
+ Whether the aggregation is known to be dtype-preserving.
851
+
852
+ Returns
853
+ -------
854
+ np.ndarray or ExtensionArray
855
+ """
856
+
857
+ if not isinstance(obj._values, np.ndarray):
858
+ # we can preserve a little bit more aggressively with EA dtype
859
+ # because maybe_cast_pointwise_result will do a try/except
860
+ # with _from_sequence. NB we are assuming here that _from_sequence
861
+ # is sufficiently strict that it casts appropriately.
862
+ preserve_dtype = True
863
+
864
+ result = self._aggregate_series_pure_python(obj, func)
865
+
866
+ npvalues = lib.maybe_convert_objects(result, try_float=False)
867
+ if preserve_dtype:
868
+ out = maybe_cast_pointwise_result(npvalues, obj.dtype, numeric_only=True)
869
+ else:
870
+ out = npvalues
871
+ return out
872
+
873
+ @final
874
+ def _aggregate_series_pure_python(
875
+ self, obj: Series, func: Callable
876
+ ) -> npt.NDArray[np.object_]:
877
+ _, _, ngroups = self.group_info
878
+
879
+ result = np.empty(ngroups, dtype="O")
880
+ initialized = False
881
+
882
+ splitter = self._get_splitter(obj, axis=0)
883
+
884
+ for i, group in enumerate(splitter):
885
+ res = func(group)
886
+ res = extract_result(res)
887
+
888
+ if not initialized:
889
+ # We only do this validation on the first iteration
890
+ check_result_array(res, group.dtype)
891
+ initialized = True
892
+
893
+ result[i] = res
894
+
895
+ return result
896
+
897
+ @final
898
+ def apply_groupwise(
899
+ self, f: Callable, data: DataFrame | Series, axis: AxisInt = 0
900
+ ) -> tuple[list, bool]:
901
+ mutated = False
902
+ splitter = self._get_splitter(data, axis=axis)
903
+ group_keys = self.group_keys_seq
904
+ result_values = []
905
+
906
+ # This calls DataSplitter.__iter__
907
+ zipped = zip(group_keys, splitter)
908
+
909
+ for key, group in zipped:
910
+ # Pinning name is needed for
911
+ # test_group_apply_once_per_group,
912
+ # test_inconsistent_return_type, test_set_group_name,
913
+ # test_group_name_available_in_inference_pass,
914
+ # test_groupby_multi_timezone
915
+ object.__setattr__(group, "name", key)
916
+
917
+ # group might be modified
918
+ group_axes = group.axes
919
+ res = f(group)
920
+ if not mutated and not _is_indexed_like(res, group_axes, axis):
921
+ mutated = True
922
+ result_values.append(res)
923
+ # getattr pattern for __name__ is needed for functools.partial objects
924
+ if len(group_keys) == 0 and getattr(f, "__name__", None) in [
925
+ "skew",
926
+ "sum",
927
+ "prod",
928
+ ]:
929
+ # If group_keys is empty, then no function calls have been made,
930
+ # so we will not have raised even if this is an invalid dtype.
931
+ # So do one dummy call here to raise appropriate TypeError.
932
+ f(data.iloc[:0])
933
+
934
+ return result_values, mutated
935
+
936
+ # ------------------------------------------------------------
937
+ # Methods for sorting subsets of our GroupBy's object
938
+
939
+ @final
940
+ @cache_readonly
941
+ def _sort_idx(self) -> npt.NDArray[np.intp]:
942
+ # Counting sort indexer
943
+ ids, _, ngroups = self.group_info
944
+ return get_group_index_sorter(ids, ngroups)
945
+
946
+ @final
947
+ @cache_readonly
948
+ def _sorted_ids(self) -> npt.NDArray[np.intp]:
949
+ ids, _, _ = self.group_info
950
+ return ids.take(self._sort_idx)
951
+
952
+
953
+ class BinGrouper(BaseGrouper):
954
+ """
955
+ This is an internal Grouper class
956
+
957
+ Parameters
958
+ ----------
959
+ bins : the split index of binlabels to group the item of axis
960
+ binlabels : the label list
961
+ indexer : np.ndarray[np.intp], optional
962
+ the indexer created by Grouper
963
+ some groupers (TimeGrouper) will sort its axis and its
964
+ group_info is also sorted, so need the indexer to reorder
965
+
966
+ Examples
967
+ --------
968
+ bins: [2, 4, 6, 8, 10]
969
+ binlabels: DatetimeIndex(['2005-01-01', '2005-01-03',
970
+ '2005-01-05', '2005-01-07', '2005-01-09'],
971
+ dtype='datetime64[ns]', freq='2D')
972
+
973
+ the group_info, which contains the label of each item in grouped
974
+ axis, the index of label in label list, group number, is
975
+
976
+ (array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4]), array([0, 1, 2, 3, 4]), 5)
977
+
978
+ means that, the grouped axis has 10 items, can be grouped into 5
979
+ labels, the first and second items belong to the first label, the
980
+ third and forth items belong to the second label, and so on
981
+
982
+ """
983
+
984
+ bins: npt.NDArray[np.int64]
985
+ binlabels: Index
986
+
987
+ def __init__(
988
+ self,
989
+ bins,
990
+ binlabels,
991
+ indexer=None,
992
+ ) -> None:
993
+ self.bins = ensure_int64(bins)
994
+ self.binlabels = ensure_index(binlabels)
995
+ self.indexer = indexer
996
+
997
+ # These lengths must match, otherwise we could call agg_series
998
+ # with empty self.bins, which would raise later.
999
+ assert len(self.binlabels) == len(self.bins)
1000
+
1001
+ @cache_readonly
1002
+ def groups(self):
1003
+ """dict {group name -> group labels}"""
1004
+ # this is mainly for compat
1005
+ # GH 3881
1006
+ result = {
1007
+ key: value
1008
+ for key, value in zip(self.binlabels, self.bins)
1009
+ if key is not NaT
1010
+ }
1011
+ return result
1012
+
1013
+ @property
1014
+ def nkeys(self) -> int:
1015
+ # still matches len(self.groupings), but we can hard-code
1016
+ return 1
1017
+
1018
+ @cache_readonly
1019
+ def codes_info(self) -> npt.NDArray[np.intp]:
1020
+ # return the codes of items in original grouped axis
1021
+ ids, _, _ = self.group_info
1022
+ if self.indexer is not None:
1023
+ sorter = np.lexsort((ids, self.indexer))
1024
+ ids = ids[sorter]
1025
+ return ids
1026
+
1027
+ def get_iterator(self, data: NDFrame, axis: AxisInt = 0):
1028
+ """
1029
+ Groupby iterator
1030
+
1031
+ Returns
1032
+ -------
1033
+ Generator yielding sequence of (name, subsetted object)
1034
+ for each group
1035
+ """
1036
+ if axis == 0:
1037
+ slicer = lambda start, edge: data.iloc[start:edge]
1038
+ else:
1039
+ slicer = lambda start, edge: data.iloc[:, start:edge]
1040
+
1041
+ length = len(data.axes[axis])
1042
+
1043
+ start = 0
1044
+ for edge, label in zip(self.bins, self.binlabels):
1045
+ if label is not NaT:
1046
+ yield label, slicer(start, edge)
1047
+ start = edge
1048
+
1049
+ if start < length:
1050
+ yield self.binlabels[-1], slicer(start, None)
1051
+
1052
+ @cache_readonly
1053
+ def indices(self):
1054
+ indices = collections.defaultdict(list)
1055
+
1056
+ i = 0
1057
+ for label, bin in zip(self.binlabels, self.bins):
1058
+ if i < bin:
1059
+ if label is not NaT:
1060
+ indices[label] = list(range(i, bin))
1061
+ i = bin
1062
+ return indices
1063
+
1064
+ @cache_readonly
1065
+ def group_info(self) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp], int]:
1066
+ ngroups = self.ngroups
1067
+ obs_group_ids = np.arange(ngroups, dtype=np.intp)
1068
+ rep = np.diff(np.r_[0, self.bins])
1069
+
1070
+ rep = ensure_platform_int(rep)
1071
+ if ngroups == len(self.bins):
1072
+ comp_ids = np.repeat(np.arange(ngroups), rep)
1073
+ else:
1074
+ comp_ids = np.repeat(np.r_[-1, np.arange(ngroups)], rep)
1075
+
1076
+ return (
1077
+ ensure_platform_int(comp_ids),
1078
+ obs_group_ids,
1079
+ ngroups,
1080
+ )
1081
+
1082
+ @cache_readonly
1083
+ def reconstructed_codes(self) -> list[np.ndarray]:
1084
+ # get unique result indices, and prepend 0 as groupby starts from the first
1085
+ return [np.r_[0, np.flatnonzero(self.bins[1:] != self.bins[:-1]) + 1]]
1086
+
1087
+ @cache_readonly
1088
+ def result_index(self) -> Index:
1089
+ if len(self.binlabels) != 0 and isna(self.binlabels[0]):
1090
+ return self.binlabels[1:]
1091
+
1092
+ return self.binlabels
1093
+
1094
+ @property
1095
+ def levels(self) -> list[Index]:
1096
+ return [self.binlabels]
1097
+
1098
+ @property
1099
+ def names(self) -> list[Hashable]:
1100
+ return [self.binlabels.name]
1101
+
1102
+ @property
1103
+ def groupings(self) -> list[grouper.Grouping]:
1104
+ lev = self.binlabels
1105
+ codes = self.group_info[0]
1106
+ labels = lev.take(codes)
1107
+ ping = grouper.Grouping(
1108
+ labels, labels, in_axis=False, level=None, uniques=lev._values
1109
+ )
1110
+ return [ping]
1111
+
1112
+
1113
+ def _is_indexed_like(obj, axes, axis: AxisInt) -> bool:
1114
+ if isinstance(obj, Series):
1115
+ if len(axes) > 1:
1116
+ return False
1117
+ return obj.axes[axis].equals(axes[axis])
1118
+ elif isinstance(obj, DataFrame):
1119
+ return obj.axes[axis].equals(axes[axis])
1120
+
1121
+ return False
1122
+
1123
+
1124
+ # ----------------------------------------------------------------------
1125
+ # Splitting / application
1126
+
1127
+
1128
+ class DataSplitter(Generic[NDFrameT]):
1129
+ def __init__(
1130
+ self,
1131
+ data: NDFrameT,
1132
+ labels: npt.NDArray[np.intp],
1133
+ ngroups: int,
1134
+ *,
1135
+ sort_idx: npt.NDArray[np.intp],
1136
+ sorted_ids: npt.NDArray[np.intp],
1137
+ axis: AxisInt = 0,
1138
+ ) -> None:
1139
+ self.data = data
1140
+ self.labels = ensure_platform_int(labels) # _should_ already be np.intp
1141
+ self.ngroups = ngroups
1142
+
1143
+ self._slabels = sorted_ids
1144
+ self._sort_idx = sort_idx
1145
+
1146
+ self.axis = axis
1147
+ assert isinstance(axis, int), axis
1148
+
1149
+ def __iter__(self) -> Iterator:
1150
+ sdata = self._sorted_data
1151
+
1152
+ if self.ngroups == 0:
1153
+ # we are inside a generator, rather than raise StopIteration
1154
+ # we merely return signal the end
1155
+ return
1156
+
1157
+ starts, ends = lib.generate_slices(self._slabels, self.ngroups)
1158
+
1159
+ for start, end in zip(starts, ends):
1160
+ yield self._chop(sdata, slice(start, end))
1161
+
1162
+ @cache_readonly
1163
+ def _sorted_data(self) -> NDFrameT:
1164
+ return self.data.take(self._sort_idx, axis=self.axis)
1165
+
1166
+ def _chop(self, sdata, slice_obj: slice) -> NDFrame:
1167
+ raise AbstractMethodError(self)
1168
+
1169
+
1170
+ class SeriesSplitter(DataSplitter):
1171
+ def _chop(self, sdata: Series, slice_obj: slice) -> Series:
1172
+ # fastpath equivalent to `sdata.iloc[slice_obj]`
1173
+ mgr = sdata._mgr.get_slice(slice_obj)
1174
+ ser = sdata._constructor_from_mgr(mgr, axes=mgr.axes)
1175
+ ser._name = sdata.name
1176
+ return ser.__finalize__(sdata, method="groupby")
1177
+
1178
+
1179
+ class FrameSplitter(DataSplitter):
1180
+ def _chop(self, sdata: DataFrame, slice_obj: slice) -> DataFrame:
1181
+ # Fastpath equivalent to:
1182
+ # if self.axis == 0:
1183
+ # return sdata.iloc[slice_obj]
1184
+ # else:
1185
+ # return sdata.iloc[:, slice_obj]
1186
+ mgr = sdata._mgr.get_slice(slice_obj, axis=1 - self.axis)
1187
+ df = sdata._constructor_from_mgr(mgr, axes=mgr.axes)
1188
+ return df.__finalize__(sdata, method="groupby")
1189
+
1190
+
1191
+ def _get_splitter(
1192
+ data: NDFrame,
1193
+ labels: npt.NDArray[np.intp],
1194
+ ngroups: int,
1195
+ *,
1196
+ sort_idx: npt.NDArray[np.intp],
1197
+ sorted_ids: npt.NDArray[np.intp],
1198
+ axis: AxisInt = 0,
1199
+ ) -> DataSplitter:
1200
+ if isinstance(data, Series):
1201
+ klass: type[DataSplitter] = SeriesSplitter
1202
+ else:
1203
+ # i.e. DataFrame
1204
+ klass = FrameSplitter
1205
+
1206
+ return klass(
1207
+ data, labels, ngroups, sort_idx=sort_idx, sorted_ids=sorted_ids, axis=axis
1208
+ )
llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__init__.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Implementation of pandas.Series.str and its interface.
3
+
4
+ * strings.accessor.StringMethods : Accessor for Series.str
5
+ * strings.base.BaseStringArrayMethods: Mixin ABC for EAs to implement str methods
6
+
7
+ Most methods on the StringMethods accessor follow the pattern:
8
+
9
+ 1. extract the array from the series (or index)
10
+ 2. Call that array's implementation of the string method
11
+ 3. Wrap the result (in a Series, index, or DataFrame)
12
+
13
+ Pandas extension arrays implementing string methods should inherit from
14
+ pandas.core.strings.base.BaseStringArrayMethods. This is an ABC defining
15
+ the various string methods. To avoid namespace clashes and pollution,
16
+ these are prefixed with `_str_`. So ``Series.str.upper()`` calls
17
+ ``Series.array._str_upper()``. The interface isn't currently public
18
+ to other string extension arrays.
19
+ """
20
+ # Pandas current implementation is in ObjectStringArrayMixin. This is designed
21
+ # to work on object-dtype ndarrays.
22
+ #
23
+ # BaseStringArrayMethods
24
+ # - ObjectStringArrayMixin
25
+ # - StringArray
26
+ # - NumpyExtensionArray
27
+ # - Categorical
28
+ # - ArrowStringArray
llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.02 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/accessor.cpython-310.pyc ADDED
Binary file (99.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/base.cpython-310.pyc ADDED
Binary file (9.75 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/object_array.cpython-310.pyc ADDED
Binary file (21.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/strings/accessor.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/pandas/core/strings/base.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import abc
4
+ from typing import (
5
+ TYPE_CHECKING,
6
+ Callable,
7
+ Literal,
8
+ )
9
+
10
+ import numpy as np
11
+
12
+ if TYPE_CHECKING:
13
+ from collections.abc import Sequence
14
+ import re
15
+
16
+ from pandas._typing import Scalar
17
+
18
+ from pandas import Series
19
+
20
+
21
+ class BaseStringArrayMethods(abc.ABC):
22
+ """
23
+ Base class for extension arrays implementing string methods.
24
+
25
+ This is where our ExtensionArrays can override the implementation of
26
+ Series.str.<method>. We don't expect this to work with
27
+ 3rd-party extension arrays.
28
+
29
+ * User calls Series.str.<method>
30
+ * pandas extracts the extension array from the Series
31
+ * pandas calls ``extension_array._str_<method>(*args, **kwargs)``
32
+ * pandas wraps the result, to return to the user.
33
+
34
+ See :ref:`Series.str` for the docstring of each method.
35
+ """
36
+
37
+ def _str_getitem(self, key):
38
+ if isinstance(key, slice):
39
+ return self._str_slice(start=key.start, stop=key.stop, step=key.step)
40
+ else:
41
+ return self._str_get(key)
42
+
43
+ @abc.abstractmethod
44
+ def _str_count(self, pat, flags: int = 0):
45
+ pass
46
+
47
+ @abc.abstractmethod
48
+ def _str_pad(
49
+ self,
50
+ width: int,
51
+ side: Literal["left", "right", "both"] = "left",
52
+ fillchar: str = " ",
53
+ ):
54
+ pass
55
+
56
+ @abc.abstractmethod
57
+ def _str_contains(
58
+ self, pat, case: bool = True, flags: int = 0, na=None, regex: bool = True
59
+ ):
60
+ pass
61
+
62
+ @abc.abstractmethod
63
+ def _str_startswith(self, pat, na=None):
64
+ pass
65
+
66
+ @abc.abstractmethod
67
+ def _str_endswith(self, pat, na=None):
68
+ pass
69
+
70
+ @abc.abstractmethod
71
+ def _str_replace(
72
+ self,
73
+ pat: str | re.Pattern,
74
+ repl: str | Callable,
75
+ n: int = -1,
76
+ case: bool = True,
77
+ flags: int = 0,
78
+ regex: bool = True,
79
+ ):
80
+ pass
81
+
82
+ @abc.abstractmethod
83
+ def _str_repeat(self, repeats: int | Sequence[int]):
84
+ pass
85
+
86
+ @abc.abstractmethod
87
+ def _str_match(
88
+ self, pat: str, case: bool = True, flags: int = 0, na: Scalar = np.nan
89
+ ):
90
+ pass
91
+
92
+ @abc.abstractmethod
93
+ def _str_fullmatch(
94
+ self,
95
+ pat: str | re.Pattern,
96
+ case: bool = True,
97
+ flags: int = 0,
98
+ na: Scalar = np.nan,
99
+ ):
100
+ pass
101
+
102
+ @abc.abstractmethod
103
+ def _str_encode(self, encoding, errors: str = "strict"):
104
+ pass
105
+
106
+ @abc.abstractmethod
107
+ def _str_find(self, sub, start: int = 0, end=None):
108
+ pass
109
+
110
+ @abc.abstractmethod
111
+ def _str_rfind(self, sub, start: int = 0, end=None):
112
+ pass
113
+
114
+ @abc.abstractmethod
115
+ def _str_findall(self, pat, flags: int = 0):
116
+ pass
117
+
118
+ @abc.abstractmethod
119
+ def _str_get(self, i):
120
+ pass
121
+
122
+ @abc.abstractmethod
123
+ def _str_index(self, sub, start: int = 0, end=None):
124
+ pass
125
+
126
+ @abc.abstractmethod
127
+ def _str_rindex(self, sub, start: int = 0, end=None):
128
+ pass
129
+
130
+ @abc.abstractmethod
131
+ def _str_join(self, sep: str):
132
+ pass
133
+
134
+ @abc.abstractmethod
135
+ def _str_partition(self, sep: str, expand):
136
+ pass
137
+
138
+ @abc.abstractmethod
139
+ def _str_rpartition(self, sep: str, expand):
140
+ pass
141
+
142
+ @abc.abstractmethod
143
+ def _str_len(self):
144
+ pass
145
+
146
+ @abc.abstractmethod
147
+ def _str_slice(self, start=None, stop=None, step=None):
148
+ pass
149
+
150
+ @abc.abstractmethod
151
+ def _str_slice_replace(self, start=None, stop=None, repl=None):
152
+ pass
153
+
154
+ @abc.abstractmethod
155
+ def _str_translate(self, table):
156
+ pass
157
+
158
+ @abc.abstractmethod
159
+ def _str_wrap(self, width: int, **kwargs):
160
+ pass
161
+
162
+ @abc.abstractmethod
163
+ def _str_get_dummies(self, sep: str = "|"):
164
+ pass
165
+
166
+ @abc.abstractmethod
167
+ def _str_isalnum(self):
168
+ pass
169
+
170
+ @abc.abstractmethod
171
+ def _str_isalpha(self):
172
+ pass
173
+
174
+ @abc.abstractmethod
175
+ def _str_isdecimal(self):
176
+ pass
177
+
178
+ @abc.abstractmethod
179
+ def _str_isdigit(self):
180
+ pass
181
+
182
+ @abc.abstractmethod
183
+ def _str_islower(self):
184
+ pass
185
+
186
+ @abc.abstractmethod
187
+ def _str_isnumeric(self):
188
+ pass
189
+
190
+ @abc.abstractmethod
191
+ def _str_isspace(self):
192
+ pass
193
+
194
+ @abc.abstractmethod
195
+ def _str_istitle(self):
196
+ pass
197
+
198
+ @abc.abstractmethod
199
+ def _str_isupper(self):
200
+ pass
201
+
202
+ @abc.abstractmethod
203
+ def _str_capitalize(self):
204
+ pass
205
+
206
+ @abc.abstractmethod
207
+ def _str_casefold(self):
208
+ pass
209
+
210
+ @abc.abstractmethod
211
+ def _str_title(self):
212
+ pass
213
+
214
+ @abc.abstractmethod
215
+ def _str_swapcase(self):
216
+ pass
217
+
218
+ @abc.abstractmethod
219
+ def _str_lower(self):
220
+ pass
221
+
222
+ @abc.abstractmethod
223
+ def _str_upper(self):
224
+ pass
225
+
226
+ @abc.abstractmethod
227
+ def _str_normalize(self, form):
228
+ pass
229
+
230
+ @abc.abstractmethod
231
+ def _str_strip(self, to_strip=None):
232
+ pass
233
+
234
+ @abc.abstractmethod
235
+ def _str_lstrip(self, to_strip=None):
236
+ pass
237
+
238
+ @abc.abstractmethod
239
+ def _str_rstrip(self, to_strip=None):
240
+ pass
241
+
242
+ @abc.abstractmethod
243
+ def _str_removeprefix(self, prefix: str) -> Series:
244
+ pass
245
+
246
+ @abc.abstractmethod
247
+ def _str_removesuffix(self, suffix: str) -> Series:
248
+ pass
249
+
250
+ @abc.abstractmethod
251
+ def _str_split(
252
+ self, pat=None, n=-1, expand: bool = False, regex: bool | None = None
253
+ ):
254
+ pass
255
+
256
+ @abc.abstractmethod
257
+ def _str_rsplit(self, pat=None, n=-1):
258
+ pass
259
+
260
+ @abc.abstractmethod
261
+ def _str_extract(self, pat: str, flags: int = 0, expand: bool = True):
262
+ pass
llmeval-env/lib/python3.10/site-packages/pandas/core/strings/object_array.py ADDED
@@ -0,0 +1,497 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import functools
4
+ import re
5
+ import textwrap
6
+ from typing import (
7
+ TYPE_CHECKING,
8
+ Callable,
9
+ Literal,
10
+ cast,
11
+ )
12
+ import unicodedata
13
+
14
+ import numpy as np
15
+
16
+ from pandas._libs import lib
17
+ import pandas._libs.missing as libmissing
18
+ import pandas._libs.ops as libops
19
+
20
+ from pandas.core.dtypes.missing import isna
21
+
22
+ from pandas.core.strings.base import BaseStringArrayMethods
23
+
24
+ if TYPE_CHECKING:
25
+ from collections.abc import Sequence
26
+
27
+ from pandas._typing import (
28
+ NpDtype,
29
+ Scalar,
30
+ )
31
+
32
+ from pandas import Series
33
+
34
+
35
+ class ObjectStringArrayMixin(BaseStringArrayMethods):
36
+ """
37
+ String Methods operating on object-dtype ndarrays.
38
+ """
39
+
40
+ _str_na_value = np.nan
41
+
42
+ def __len__(self) -> int:
43
+ # For typing, _str_map relies on the object being sized.
44
+ raise NotImplementedError
45
+
46
+ def _str_map(
47
+ self, f, na_value=None, dtype: NpDtype | None = None, convert: bool = True
48
+ ):
49
+ """
50
+ Map a callable over valid elements of the array.
51
+
52
+ Parameters
53
+ ----------
54
+ f : Callable
55
+ A function to call on each non-NA element.
56
+ na_value : Scalar, optional
57
+ The value to set for NA values. Might also be used for the
58
+ fill value if the callable `f` raises an exception.
59
+ This defaults to ``self._str_na_value`` which is ``np.nan``
60
+ for object-dtype and Categorical and ``pd.NA`` for StringArray.
61
+ dtype : Dtype, optional
62
+ The dtype of the result array.
63
+ convert : bool, default True
64
+ Whether to call `maybe_convert_objects` on the resulting ndarray
65
+ """
66
+ if dtype is None:
67
+ dtype = np.dtype("object")
68
+ if na_value is None:
69
+ na_value = self._str_na_value
70
+
71
+ if not len(self):
72
+ return np.array([], dtype=dtype)
73
+
74
+ arr = np.asarray(self, dtype=object)
75
+ mask = isna(arr)
76
+ map_convert = convert and not np.all(mask)
77
+ try:
78
+ result = lib.map_infer_mask(arr, f, mask.view(np.uint8), map_convert)
79
+ except (TypeError, AttributeError) as err:
80
+ # Reraise the exception if callable `f` got wrong number of args.
81
+ # The user may want to be warned by this, instead of getting NaN
82
+ p_err = (
83
+ r"((takes)|(missing)) (?(2)from \d+ to )?\d+ "
84
+ r"(?(3)required )positional arguments?"
85
+ )
86
+
87
+ if len(err.args) >= 1 and re.search(p_err, err.args[0]):
88
+ # FIXME: this should be totally avoidable
89
+ raise err
90
+
91
+ def g(x):
92
+ # This type of fallback behavior can be removed once
93
+ # we remove object-dtype .str accessor.
94
+ try:
95
+ return f(x)
96
+ except (TypeError, AttributeError):
97
+ return na_value
98
+
99
+ return self._str_map(g, na_value=na_value, dtype=dtype)
100
+ if not isinstance(result, np.ndarray):
101
+ return result
102
+ if na_value is not np.nan:
103
+ np.putmask(result, mask, na_value)
104
+ if convert and result.dtype == object:
105
+ result = lib.maybe_convert_objects(result)
106
+ return result
107
+
108
+ def _str_count(self, pat, flags: int = 0):
109
+ regex = re.compile(pat, flags=flags)
110
+ f = lambda x: len(regex.findall(x))
111
+ return self._str_map(f, dtype="int64")
112
+
113
+ def _str_pad(
114
+ self,
115
+ width: int,
116
+ side: Literal["left", "right", "both"] = "left",
117
+ fillchar: str = " ",
118
+ ):
119
+ if side == "left":
120
+ f = lambda x: x.rjust(width, fillchar)
121
+ elif side == "right":
122
+ f = lambda x: x.ljust(width, fillchar)
123
+ elif side == "both":
124
+ f = lambda x: x.center(width, fillchar)
125
+ else: # pragma: no cover
126
+ raise ValueError("Invalid side")
127
+ return self._str_map(f)
128
+
129
+ def _str_contains(
130
+ self, pat, case: bool = True, flags: int = 0, na=np.nan, regex: bool = True
131
+ ):
132
+ if regex:
133
+ if not case:
134
+ flags |= re.IGNORECASE
135
+
136
+ pat = re.compile(pat, flags=flags)
137
+
138
+ f = lambda x: pat.search(x) is not None
139
+ else:
140
+ if case:
141
+ f = lambda x: pat in x
142
+ else:
143
+ upper_pat = pat.upper()
144
+ f = lambda x: upper_pat in x.upper()
145
+ return self._str_map(f, na, dtype=np.dtype("bool"))
146
+
147
+ def _str_startswith(self, pat, na=None):
148
+ f = lambda x: x.startswith(pat)
149
+ return self._str_map(f, na_value=na, dtype=np.dtype(bool))
150
+
151
+ def _str_endswith(self, pat, na=None):
152
+ f = lambda x: x.endswith(pat)
153
+ return self._str_map(f, na_value=na, dtype=np.dtype(bool))
154
+
155
+ def _str_replace(
156
+ self,
157
+ pat: str | re.Pattern,
158
+ repl: str | Callable,
159
+ n: int = -1,
160
+ case: bool = True,
161
+ flags: int = 0,
162
+ regex: bool = True,
163
+ ):
164
+ if case is False:
165
+ # add case flag, if provided
166
+ flags |= re.IGNORECASE
167
+
168
+ if regex or flags or callable(repl):
169
+ if not isinstance(pat, re.Pattern):
170
+ if regex is False:
171
+ pat = re.escape(pat)
172
+ pat = re.compile(pat, flags=flags)
173
+
174
+ n = n if n >= 0 else 0
175
+ f = lambda x: pat.sub(repl=repl, string=x, count=n)
176
+ else:
177
+ f = lambda x: x.replace(pat, repl, n)
178
+
179
+ return self._str_map(f, dtype=str)
180
+
181
+ def _str_repeat(self, repeats: int | Sequence[int]):
182
+ if lib.is_integer(repeats):
183
+ rint = cast(int, repeats)
184
+
185
+ def scalar_rep(x):
186
+ try:
187
+ return bytes.__mul__(x, rint)
188
+ except TypeError:
189
+ return str.__mul__(x, rint)
190
+
191
+ return self._str_map(scalar_rep, dtype=str)
192
+ else:
193
+ from pandas.core.arrays.string_ import BaseStringArray
194
+
195
+ def rep(x, r):
196
+ if x is libmissing.NA:
197
+ return x
198
+ try:
199
+ return bytes.__mul__(x, r)
200
+ except TypeError:
201
+ return str.__mul__(x, r)
202
+
203
+ result = libops.vec_binop(
204
+ np.asarray(self),
205
+ np.asarray(repeats, dtype=object),
206
+ rep,
207
+ )
208
+ if isinstance(self, BaseStringArray):
209
+ # Not going through map, so we have to do this here.
210
+ result = type(self)._from_sequence(result, dtype=self.dtype)
211
+ return result
212
+
213
+ def _str_match(
214
+ self, pat: str, case: bool = True, flags: int = 0, na: Scalar | None = None
215
+ ):
216
+ if not case:
217
+ flags |= re.IGNORECASE
218
+
219
+ regex = re.compile(pat, flags=flags)
220
+
221
+ f = lambda x: regex.match(x) is not None
222
+ return self._str_map(f, na_value=na, dtype=np.dtype(bool))
223
+
224
+ def _str_fullmatch(
225
+ self,
226
+ pat: str | re.Pattern,
227
+ case: bool = True,
228
+ flags: int = 0,
229
+ na: Scalar | None = None,
230
+ ):
231
+ if not case:
232
+ flags |= re.IGNORECASE
233
+
234
+ regex = re.compile(pat, flags=flags)
235
+
236
+ f = lambda x: regex.fullmatch(x) is not None
237
+ return self._str_map(f, na_value=na, dtype=np.dtype(bool))
238
+
239
+ def _str_encode(self, encoding, errors: str = "strict"):
240
+ f = lambda x: x.encode(encoding, errors=errors)
241
+ return self._str_map(f, dtype=object)
242
+
243
+ def _str_find(self, sub, start: int = 0, end=None):
244
+ return self._str_find_(sub, start, end, side="left")
245
+
246
+ def _str_rfind(self, sub, start: int = 0, end=None):
247
+ return self._str_find_(sub, start, end, side="right")
248
+
249
+ def _str_find_(self, sub, start, end, side):
250
+ if side == "left":
251
+ method = "find"
252
+ elif side == "right":
253
+ method = "rfind"
254
+ else: # pragma: no cover
255
+ raise ValueError("Invalid side")
256
+
257
+ if end is None:
258
+ f = lambda x: getattr(x, method)(sub, start)
259
+ else:
260
+ f = lambda x: getattr(x, method)(sub, start, end)
261
+ return self._str_map(f, dtype="int64")
262
+
263
+ def _str_findall(self, pat, flags: int = 0):
264
+ regex = re.compile(pat, flags=flags)
265
+ return self._str_map(regex.findall, dtype="object")
266
+
267
+ def _str_get(self, i):
268
+ def f(x):
269
+ if isinstance(x, dict):
270
+ return x.get(i)
271
+ elif len(x) > i >= -len(x):
272
+ return x[i]
273
+ return self._str_na_value
274
+
275
+ return self._str_map(f)
276
+
277
+ def _str_index(self, sub, start: int = 0, end=None):
278
+ if end:
279
+ f = lambda x: x.index(sub, start, end)
280
+ else:
281
+ f = lambda x: x.index(sub, start, end)
282
+ return self._str_map(f, dtype="int64")
283
+
284
+ def _str_rindex(self, sub, start: int = 0, end=None):
285
+ if end:
286
+ f = lambda x: x.rindex(sub, start, end)
287
+ else:
288
+ f = lambda x: x.rindex(sub, start, end)
289
+ return self._str_map(f, dtype="int64")
290
+
291
+ def _str_join(self, sep: str):
292
+ return self._str_map(sep.join)
293
+
294
+ def _str_partition(self, sep: str, expand):
295
+ result = self._str_map(lambda x: x.partition(sep), dtype="object")
296
+ return result
297
+
298
+ def _str_rpartition(self, sep: str, expand):
299
+ return self._str_map(lambda x: x.rpartition(sep), dtype="object")
300
+
301
+ def _str_len(self):
302
+ return self._str_map(len, dtype="int64")
303
+
304
+ def _str_slice(self, start=None, stop=None, step=None):
305
+ obj = slice(start, stop, step)
306
+ return self._str_map(lambda x: x[obj])
307
+
308
+ def _str_slice_replace(self, start=None, stop=None, repl=None):
309
+ if repl is None:
310
+ repl = ""
311
+
312
+ def f(x):
313
+ if x[start:stop] == "":
314
+ local_stop = start
315
+ else:
316
+ local_stop = stop
317
+ y = ""
318
+ if start is not None:
319
+ y += x[:start]
320
+ y += repl
321
+ if stop is not None:
322
+ y += x[local_stop:]
323
+ return y
324
+
325
+ return self._str_map(f)
326
+
327
+ def _str_split(
328
+ self,
329
+ pat: str | re.Pattern | None = None,
330
+ n=-1,
331
+ expand: bool = False,
332
+ regex: bool | None = None,
333
+ ):
334
+ if pat is None:
335
+ if n is None or n == 0:
336
+ n = -1
337
+ f = lambda x: x.split(pat, n)
338
+ else:
339
+ new_pat: str | re.Pattern
340
+ if regex is True or isinstance(pat, re.Pattern):
341
+ new_pat = re.compile(pat)
342
+ elif regex is False:
343
+ new_pat = pat
344
+ # regex is None so link to old behavior #43563
345
+ else:
346
+ if len(pat) == 1:
347
+ new_pat = pat
348
+ else:
349
+ new_pat = re.compile(pat)
350
+
351
+ if isinstance(new_pat, re.Pattern):
352
+ if n is None or n == -1:
353
+ n = 0
354
+ f = lambda x: new_pat.split(x, maxsplit=n)
355
+ else:
356
+ if n is None or n == 0:
357
+ n = -1
358
+ f = lambda x: x.split(pat, n)
359
+ return self._str_map(f, dtype=object)
360
+
361
+ def _str_rsplit(self, pat=None, n=-1):
362
+ if n is None or n == 0:
363
+ n = -1
364
+ f = lambda x: x.rsplit(pat, n)
365
+ return self._str_map(f, dtype="object")
366
+
367
+ def _str_translate(self, table):
368
+ return self._str_map(lambda x: x.translate(table))
369
+
370
+ def _str_wrap(self, width: int, **kwargs):
371
+ kwargs["width"] = width
372
+ tw = textwrap.TextWrapper(**kwargs)
373
+ return self._str_map(lambda s: "\n".join(tw.wrap(s)))
374
+
375
+ def _str_get_dummies(self, sep: str = "|"):
376
+ from pandas import Series
377
+
378
+ arr = Series(self).fillna("")
379
+ try:
380
+ arr = sep + arr + sep
381
+ except (TypeError, NotImplementedError):
382
+ arr = sep + arr.astype(str) + sep
383
+
384
+ tags: set[str] = set()
385
+ for ts in Series(arr, copy=False).str.split(sep):
386
+ tags.update(ts)
387
+ tags2 = sorted(tags - {""})
388
+
389
+ dummies = np.empty((len(arr), len(tags2)), dtype=np.int64)
390
+
391
+ def _isin(test_elements: str, element: str) -> bool:
392
+ return element in test_elements
393
+
394
+ for i, t in enumerate(tags2):
395
+ pat = sep + t + sep
396
+ dummies[:, i] = lib.map_infer(
397
+ arr.to_numpy(), functools.partial(_isin, element=pat)
398
+ )
399
+ return dummies, tags2
400
+
401
+ def _str_upper(self):
402
+ return self._str_map(lambda x: x.upper())
403
+
404
+ def _str_isalnum(self):
405
+ return self._str_map(str.isalnum, dtype="bool")
406
+
407
+ def _str_isalpha(self):
408
+ return self._str_map(str.isalpha, dtype="bool")
409
+
410
+ def _str_isdecimal(self):
411
+ return self._str_map(str.isdecimal, dtype="bool")
412
+
413
+ def _str_isdigit(self):
414
+ return self._str_map(str.isdigit, dtype="bool")
415
+
416
+ def _str_islower(self):
417
+ return self._str_map(str.islower, dtype="bool")
418
+
419
+ def _str_isnumeric(self):
420
+ return self._str_map(str.isnumeric, dtype="bool")
421
+
422
+ def _str_isspace(self):
423
+ return self._str_map(str.isspace, dtype="bool")
424
+
425
+ def _str_istitle(self):
426
+ return self._str_map(str.istitle, dtype="bool")
427
+
428
+ def _str_isupper(self):
429
+ return self._str_map(str.isupper, dtype="bool")
430
+
431
+ def _str_capitalize(self):
432
+ return self._str_map(str.capitalize)
433
+
434
+ def _str_casefold(self):
435
+ return self._str_map(str.casefold)
436
+
437
+ def _str_title(self):
438
+ return self._str_map(str.title)
439
+
440
+ def _str_swapcase(self):
441
+ return self._str_map(str.swapcase)
442
+
443
+ def _str_lower(self):
444
+ return self._str_map(str.lower)
445
+
446
+ def _str_normalize(self, form):
447
+ f = lambda x: unicodedata.normalize(form, x)
448
+ return self._str_map(f)
449
+
450
+ def _str_strip(self, to_strip=None):
451
+ return self._str_map(lambda x: x.strip(to_strip))
452
+
453
+ def _str_lstrip(self, to_strip=None):
454
+ return self._str_map(lambda x: x.lstrip(to_strip))
455
+
456
+ def _str_rstrip(self, to_strip=None):
457
+ return self._str_map(lambda x: x.rstrip(to_strip))
458
+
459
+ def _str_removeprefix(self, prefix: str) -> Series:
460
+ # outstanding question on whether to use native methods for users on Python 3.9+
461
+ # https://github.com/pandas-dev/pandas/pull/39226#issuecomment-836719770,
462
+ # in which case we could do return self._str_map(str.removeprefix)
463
+
464
+ def removeprefix(text: str) -> str:
465
+ if text.startswith(prefix):
466
+ return text[len(prefix) :]
467
+ return text
468
+
469
+ return self._str_map(removeprefix)
470
+
471
+ def _str_removesuffix(self, suffix: str) -> Series:
472
+ return self._str_map(lambda x: x.removesuffix(suffix))
473
+
474
+ def _str_extract(self, pat: str, flags: int = 0, expand: bool = True):
475
+ regex = re.compile(pat, flags=flags)
476
+ na_value = self._str_na_value
477
+
478
+ if not expand:
479
+
480
+ def g(x):
481
+ m = regex.search(x)
482
+ return m.groups()[0] if m else na_value
483
+
484
+ return self._str_map(g, convert=False)
485
+
486
+ empty_row = [na_value] * regex.groups
487
+
488
+ def f(x):
489
+ if not isinstance(x, str):
490
+ return empty_row
491
+ m = regex.search(x)
492
+ if m:
493
+ return [na_value if item is None else item for item in m.groups()]
494
+ else:
495
+ return empty_row
496
+
497
+ return [f(val) for val in np.asarray(self)]
llmeval-env/lib/python3.10/site-packages/pandas/core/util/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/core/util/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (189 Bytes). View file