Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/_cloudpickle_wrapper.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/_dask.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/_memmapping_reducer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/_multiprocessing_helpers.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/_parallel_backends.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/_store_backends.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/backports.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/compressor.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/disk.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/executor.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/func_inspect.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/hashing.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/logger.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/memory.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/numpy_pickle.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/numpy_pickle_compat.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/numpy_pickle_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/parallel.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/pool.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/testing.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/_cloudpickle_wrapper.py +19 -0
- llmeval-env/lib/python3.10/site-packages/joblib/_memmapping_reducer.py +657 -0
- llmeval-env/lib/python3.10/site-packages/joblib/_multiprocessing_helpers.py +53 -0
- llmeval-env/lib/python3.10/site-packages/joblib/_parallel_backends.py +649 -0
- llmeval-env/lib/python3.10/site-packages/joblib/_utils.py +83 -0
- llmeval-env/lib/python3.10/site-packages/joblib/backports.py +177 -0
- llmeval-env/lib/python3.10/site-packages/joblib/externals/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/__init__.py +44 -0
- llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/_base.py +28 -0
- llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/_posix_reduction.py +67 -0
- llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/_win_reduction.py +18 -0
- llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/fork_exec.py +43 -0
- llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/popen_loky_posix.py +193 -0
- llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/process.py +85 -0
- llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/resource_tracker.py +378 -0
- llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/spawn.py +250 -0
- llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/synchronize.py +409 -0
- llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/cloudpickle_wrapper.py +102 -0
- llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/initializers.py +80 -0
- llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/process_executor.py +1314 -0
- llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/reusable_executor.py +285 -0
- llmeval-env/lib/python3.10/site-packages/joblib/func_inspect.py +369 -0
- llmeval-env/lib/python3.10/site-packages/joblib/logger.py +162 -0
- llmeval-env/lib/python3.10/site-packages/joblib/memory.py +1172 -0
- llmeval-env/lib/python3.10/site-packages/joblib/numpy_pickle.py +659 -0
- llmeval-env/lib/python3.10/site-packages/joblib/numpy_pickle_utils.py +253 -0
- llmeval-env/lib/python3.10/site-packages/joblib/parallel.py +2010 -0
- llmeval-env/lib/python3.10/site-packages/joblib/pool.py +354 -0
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.64 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/_cloudpickle_wrapper.cpython-310.pyc
ADDED
Binary file (609 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/_dask.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/_memmapping_reducer.cpython-310.pyc
ADDED
Binary file (15.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/_multiprocessing_helpers.cpython-310.pyc
ADDED
Binary file (1.27 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/_parallel_backends.cpython-310.pyc
ADDED
Binary file (20.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/_store_backends.cpython-310.pyc
ADDED
Binary file (15.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/_utils.cpython-310.pyc
ADDED
Binary file (2.67 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/backports.cpython-310.pyc
ADDED
Binary file (5.38 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/compressor.cpython-310.pyc
ADDED
Binary file (16.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/disk.cpython-310.pyc
ADDED
Binary file (3.12 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/executor.cpython-310.pyc
ADDED
Binary file (3.21 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/func_inspect.cpython-310.pyc
ADDED
Binary file (8.92 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/hashing.cpython-310.pyc
ADDED
Binary file (6.37 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/logger.cpython-310.pyc
ADDED
Binary file (4.36 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/memory.cpython-310.pyc
ADDED
Binary file (34 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/numpy_pickle.cpython-310.pyc
ADDED
Binary file (17.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/numpy_pickle_compat.cpython-310.pyc
ADDED
Binary file (7.12 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/numpy_pickle_utils.cpython-310.pyc
ADDED
Binary file (6.57 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/parallel.cpython-310.pyc
ADDED
Binary file (56.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/pool.cpython-310.pyc
ADDED
Binary file (12.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/__pycache__/testing.cpython-310.pyc
ADDED
Binary file (2.91 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/_cloudpickle_wrapper.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Small shim of loky's cloudpickle_wrapper to avoid failure when
|
3 |
+
multiprocessing is not available.
|
4 |
+
"""
|
5 |
+
|
6 |
+
|
7 |
+
from ._multiprocessing_helpers import mp
|
8 |
+
|
9 |
+
|
10 |
+
def _my_wrap_non_picklable_objects(obj, keep_wrapper=True):
|
11 |
+
return obj
|
12 |
+
|
13 |
+
|
14 |
+
if mp is not None:
|
15 |
+
from .externals.loky import wrap_non_picklable_objects
|
16 |
+
else:
|
17 |
+
wrap_non_picklable_objects = _my_wrap_non_picklable_objects
|
18 |
+
|
19 |
+
__all__ = ["wrap_non_picklable_objects"]
|
llmeval-env/lib/python3.10/site-packages/joblib/_memmapping_reducer.py
ADDED
@@ -0,0 +1,657 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Reducer using memory mapping for numpy arrays
|
3 |
+
"""
|
4 |
+
# Author: Thomas Moreau <[email protected]>
|
5 |
+
# Copyright: 2017, Thomas Moreau
|
6 |
+
# License: BSD 3 clause
|
7 |
+
|
8 |
+
from mmap import mmap
|
9 |
+
import errno
|
10 |
+
import os
|
11 |
+
import stat
|
12 |
+
import threading
|
13 |
+
import atexit
|
14 |
+
import tempfile
|
15 |
+
import time
|
16 |
+
import warnings
|
17 |
+
import weakref
|
18 |
+
from uuid import uuid4
|
19 |
+
from multiprocessing import util
|
20 |
+
|
21 |
+
from pickle import whichmodule, loads, dumps, HIGHEST_PROTOCOL, PicklingError
|
22 |
+
|
23 |
+
try:
|
24 |
+
WindowsError
|
25 |
+
except NameError:
|
26 |
+
WindowsError = type(None)
|
27 |
+
|
28 |
+
try:
|
29 |
+
import numpy as np
|
30 |
+
from numpy.lib.stride_tricks import as_strided
|
31 |
+
except ImportError:
|
32 |
+
np = None
|
33 |
+
|
34 |
+
from .numpy_pickle import dump, load, load_temporary_memmap
|
35 |
+
from .backports import make_memmap
|
36 |
+
from .disk import delete_folder
|
37 |
+
from .externals.loky.backend import resource_tracker
|
38 |
+
|
39 |
+
# Some system have a ramdisk mounted by default, we can use it instead of /tmp
|
40 |
+
# as the default folder to dump big arrays to share with subprocesses.
|
41 |
+
SYSTEM_SHARED_MEM_FS = '/dev/shm'
|
42 |
+
|
43 |
+
# Minimal number of bytes available on SYSTEM_SHARED_MEM_FS to consider using
|
44 |
+
# it as the default folder to dump big arrays to share with subprocesses.
|
45 |
+
SYSTEM_SHARED_MEM_FS_MIN_SIZE = int(2e9)
|
46 |
+
|
47 |
+
# Folder and file permissions to chmod temporary files generated by the
|
48 |
+
# memmapping pool. Only the owner of the Python process can access the
|
49 |
+
# temporary files and folder.
|
50 |
+
FOLDER_PERMISSIONS = stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR
|
51 |
+
FILE_PERMISSIONS = stat.S_IRUSR | stat.S_IWUSR
|
52 |
+
|
53 |
+
# Set used in joblib workers, referencing the filenames of temporary memmaps
|
54 |
+
# created by joblib to speed up data communication. In child processes, we add
|
55 |
+
# a finalizer to these memmaps that sends a maybe_unlink call to the
|
56 |
+
# resource_tracker, in order to free main memory as fast as possible.
|
57 |
+
JOBLIB_MMAPS = set()
|
58 |
+
|
59 |
+
|
60 |
+
def _log_and_unlink(filename):
|
61 |
+
from .externals.loky.backend.resource_tracker import _resource_tracker
|
62 |
+
util.debug(
|
63 |
+
"[FINALIZER CALL] object mapping to {} about to be deleted,"
|
64 |
+
" decrementing the refcount of the file (pid: {})".format(
|
65 |
+
os.path.basename(filename), os.getpid()))
|
66 |
+
_resource_tracker.maybe_unlink(filename, "file")
|
67 |
+
|
68 |
+
|
69 |
+
def add_maybe_unlink_finalizer(memmap):
|
70 |
+
util.debug(
|
71 |
+
"[FINALIZER ADD] adding finalizer to {} (id {}, filename {}, pid {})"
|
72 |
+
"".format(type(memmap), id(memmap), os.path.basename(memmap.filename),
|
73 |
+
os.getpid()))
|
74 |
+
weakref.finalize(memmap, _log_and_unlink, memmap.filename)
|
75 |
+
|
76 |
+
|
77 |
+
def unlink_file(filename):
|
78 |
+
"""Wrapper around os.unlink with a retry mechanism.
|
79 |
+
|
80 |
+
The retry mechanism has been implemented primarily to overcome a race
|
81 |
+
condition happening during the finalizer of a np.memmap: when a process
|
82 |
+
holding the last reference to a mmap-backed np.memmap/np.array is about to
|
83 |
+
delete this array (and close the reference), it sends a maybe_unlink
|
84 |
+
request to the resource_tracker. This request can be processed faster than
|
85 |
+
it takes for the last reference of the memmap to be closed, yielding (on
|
86 |
+
Windows) a PermissionError in the resource_tracker loop.
|
87 |
+
"""
|
88 |
+
NUM_RETRIES = 10
|
89 |
+
for retry_no in range(1, NUM_RETRIES + 1):
|
90 |
+
try:
|
91 |
+
os.unlink(filename)
|
92 |
+
break
|
93 |
+
except PermissionError:
|
94 |
+
util.debug(
|
95 |
+
'[ResourceTracker] tried to unlink {}, got '
|
96 |
+
'PermissionError'.format(filename)
|
97 |
+
)
|
98 |
+
if retry_no == NUM_RETRIES:
|
99 |
+
raise
|
100 |
+
else:
|
101 |
+
time.sleep(.2)
|
102 |
+
except FileNotFoundError:
|
103 |
+
# In case of a race condition when deleting the temporary folder,
|
104 |
+
# avoid noisy FileNotFoundError exception in the resource tracker.
|
105 |
+
pass
|
106 |
+
|
107 |
+
|
108 |
+
resource_tracker._CLEANUP_FUNCS['file'] = unlink_file
|
109 |
+
|
110 |
+
|
111 |
+
class _WeakArrayKeyMap:
|
112 |
+
"""A variant of weakref.WeakKeyDictionary for unhashable numpy arrays.
|
113 |
+
|
114 |
+
This datastructure will be used with numpy arrays as obj keys, therefore we
|
115 |
+
do not use the __get__ / __set__ methods to avoid any conflict with the
|
116 |
+
numpy fancy indexing syntax.
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self):
|
120 |
+
self._data = {}
|
121 |
+
|
122 |
+
def get(self, obj):
|
123 |
+
ref, val = self._data[id(obj)]
|
124 |
+
if ref() is not obj:
|
125 |
+
# In case of race condition with on_destroy: could never be
|
126 |
+
# triggered by the joblib tests with CPython.
|
127 |
+
raise KeyError(obj)
|
128 |
+
return val
|
129 |
+
|
130 |
+
def set(self, obj, value):
|
131 |
+
key = id(obj)
|
132 |
+
try:
|
133 |
+
ref, _ = self._data[key]
|
134 |
+
if ref() is not obj:
|
135 |
+
# In case of race condition with on_destroy: could never be
|
136 |
+
# triggered by the joblib tests with CPython.
|
137 |
+
raise KeyError(obj)
|
138 |
+
except KeyError:
|
139 |
+
# Insert the new entry in the mapping along with a weakref
|
140 |
+
# callback to automatically delete the entry from the mapping
|
141 |
+
# as soon as the object used as key is garbage collected.
|
142 |
+
def on_destroy(_):
|
143 |
+
del self._data[key]
|
144 |
+
ref = weakref.ref(obj, on_destroy)
|
145 |
+
self._data[key] = ref, value
|
146 |
+
|
147 |
+
def __getstate__(self):
|
148 |
+
raise PicklingError("_WeakArrayKeyMap is not pickleable")
|
149 |
+
|
150 |
+
|
151 |
+
###############################################################################
|
152 |
+
# Support for efficient transient pickling of numpy data structures
|
153 |
+
|
154 |
+
|
155 |
+
def _get_backing_memmap(a):
|
156 |
+
"""Recursively look up the original np.memmap instance base if any."""
|
157 |
+
b = getattr(a, 'base', None)
|
158 |
+
if b is None:
|
159 |
+
# TODO: check scipy sparse datastructure if scipy is installed
|
160 |
+
# a nor its descendants do not have a memmap base
|
161 |
+
return None
|
162 |
+
|
163 |
+
elif isinstance(b, mmap):
|
164 |
+
# a is already a real memmap instance.
|
165 |
+
return a
|
166 |
+
|
167 |
+
else:
|
168 |
+
# Recursive exploration of the base ancestry
|
169 |
+
return _get_backing_memmap(b)
|
170 |
+
|
171 |
+
|
172 |
+
def _get_temp_dir(pool_folder_name, temp_folder=None):
|
173 |
+
"""Get the full path to a subfolder inside the temporary folder.
|
174 |
+
|
175 |
+
Parameters
|
176 |
+
----------
|
177 |
+
pool_folder_name : str
|
178 |
+
Sub-folder name used for the serialization of a pool instance.
|
179 |
+
|
180 |
+
temp_folder: str, optional
|
181 |
+
Folder to be used by the pool for memmapping large arrays
|
182 |
+
for sharing memory with worker processes. If None, this will try in
|
183 |
+
order:
|
184 |
+
|
185 |
+
- a folder pointed by the JOBLIB_TEMP_FOLDER environment
|
186 |
+
variable,
|
187 |
+
- /dev/shm if the folder exists and is writable: this is a
|
188 |
+
RAMdisk filesystem available by default on modern Linux
|
189 |
+
distributions,
|
190 |
+
- the default system temporary folder that can be
|
191 |
+
overridden with TMP, TMPDIR or TEMP environment
|
192 |
+
variables, typically /tmp under Unix operating systems.
|
193 |
+
|
194 |
+
Returns
|
195 |
+
-------
|
196 |
+
pool_folder : str
|
197 |
+
full path to the temporary folder
|
198 |
+
use_shared_mem : bool
|
199 |
+
whether the temporary folder is written to the system shared memory
|
200 |
+
folder or some other temporary folder.
|
201 |
+
"""
|
202 |
+
use_shared_mem = False
|
203 |
+
if temp_folder is None:
|
204 |
+
temp_folder = os.environ.get('JOBLIB_TEMP_FOLDER', None)
|
205 |
+
if temp_folder is None:
|
206 |
+
if os.path.exists(SYSTEM_SHARED_MEM_FS) and hasattr(os, 'statvfs'):
|
207 |
+
try:
|
208 |
+
shm_stats = os.statvfs(SYSTEM_SHARED_MEM_FS)
|
209 |
+
available_nbytes = shm_stats.f_bsize * shm_stats.f_bavail
|
210 |
+
if available_nbytes > SYSTEM_SHARED_MEM_FS_MIN_SIZE:
|
211 |
+
# Try to see if we have write access to the shared mem
|
212 |
+
# folder only if it is reasonably large (that is 2GB or
|
213 |
+
# more).
|
214 |
+
temp_folder = SYSTEM_SHARED_MEM_FS
|
215 |
+
pool_folder = os.path.join(temp_folder, pool_folder_name)
|
216 |
+
if not os.path.exists(pool_folder):
|
217 |
+
os.makedirs(pool_folder)
|
218 |
+
use_shared_mem = True
|
219 |
+
except (IOError, OSError):
|
220 |
+
# Missing rights in the /dev/shm partition, fallback to regular
|
221 |
+
# temp folder.
|
222 |
+
temp_folder = None
|
223 |
+
if temp_folder is None:
|
224 |
+
# Fallback to the default tmp folder, typically /tmp
|
225 |
+
temp_folder = tempfile.gettempdir()
|
226 |
+
temp_folder = os.path.abspath(os.path.expanduser(temp_folder))
|
227 |
+
pool_folder = os.path.join(temp_folder, pool_folder_name)
|
228 |
+
return pool_folder, use_shared_mem
|
229 |
+
|
230 |
+
|
231 |
+
def has_shareable_memory(a):
|
232 |
+
"""Return True if a is backed by some mmap buffer directly or not."""
|
233 |
+
return _get_backing_memmap(a) is not None
|
234 |
+
|
235 |
+
|
236 |
+
def _strided_from_memmap(filename, dtype, mode, offset, order, shape, strides,
|
237 |
+
total_buffer_len, unlink_on_gc_collect):
|
238 |
+
"""Reconstruct an array view on a memory mapped file."""
|
239 |
+
if mode == 'w+':
|
240 |
+
# Do not zero the original data when unpickling
|
241 |
+
mode = 'r+'
|
242 |
+
|
243 |
+
if strides is None:
|
244 |
+
# Simple, contiguous memmap
|
245 |
+
return make_memmap(
|
246 |
+
filename, dtype=dtype, shape=shape, mode=mode, offset=offset,
|
247 |
+
order=order, unlink_on_gc_collect=unlink_on_gc_collect
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
# For non-contiguous data, memmap the total enclosing buffer and then
|
251 |
+
# extract the non-contiguous view with the stride-tricks API
|
252 |
+
base = make_memmap(
|
253 |
+
filename, dtype=dtype, shape=total_buffer_len, offset=offset,
|
254 |
+
mode=mode, order=order, unlink_on_gc_collect=unlink_on_gc_collect
|
255 |
+
)
|
256 |
+
return as_strided(base, shape=shape, strides=strides)
|
257 |
+
|
258 |
+
|
259 |
+
def _reduce_memmap_backed(a, m):
|
260 |
+
"""Pickling reduction for memmap backed arrays.
|
261 |
+
|
262 |
+
a is expected to be an instance of np.ndarray (or np.memmap)
|
263 |
+
m is expected to be an instance of np.memmap on the top of the ``base``
|
264 |
+
attribute ancestry of a. ``m.base`` should be the real python mmap object.
|
265 |
+
"""
|
266 |
+
# offset that comes from the striding differences between a and m
|
267 |
+
util.debug('[MEMMAP REDUCE] reducing a memmap-backed array '
|
268 |
+
'(shape, {}, pid: {})'.format(a.shape, os.getpid()))
|
269 |
+
try:
|
270 |
+
from numpy.lib.array_utils import byte_bounds
|
271 |
+
except (ModuleNotFoundError, ImportError):
|
272 |
+
# Backward-compat for numpy < 2.0
|
273 |
+
from numpy import byte_bounds
|
274 |
+
a_start, a_end = byte_bounds(a)
|
275 |
+
m_start = byte_bounds(m)[0]
|
276 |
+
offset = a_start - m_start
|
277 |
+
|
278 |
+
# offset from the backing memmap
|
279 |
+
offset += m.offset
|
280 |
+
|
281 |
+
if m.flags['F_CONTIGUOUS']:
|
282 |
+
order = 'F'
|
283 |
+
else:
|
284 |
+
# The backing memmap buffer is necessarily contiguous hence C if not
|
285 |
+
# Fortran
|
286 |
+
order = 'C'
|
287 |
+
|
288 |
+
if a.flags['F_CONTIGUOUS'] or a.flags['C_CONTIGUOUS']:
|
289 |
+
# If the array is a contiguous view, no need to pass the strides
|
290 |
+
strides = None
|
291 |
+
total_buffer_len = None
|
292 |
+
else:
|
293 |
+
# Compute the total number of items to map from which the strided
|
294 |
+
# view will be extracted.
|
295 |
+
strides = a.strides
|
296 |
+
total_buffer_len = (a_end - a_start) // a.itemsize
|
297 |
+
|
298 |
+
return (_strided_from_memmap,
|
299 |
+
(m.filename, a.dtype, m.mode, offset, order, a.shape, strides,
|
300 |
+
total_buffer_len, False))
|
301 |
+
|
302 |
+
|
303 |
+
def reduce_array_memmap_backward(a):
|
304 |
+
"""reduce a np.array or a np.memmap from a child process"""
|
305 |
+
m = _get_backing_memmap(a)
|
306 |
+
if isinstance(m, np.memmap) and m.filename not in JOBLIB_MMAPS:
|
307 |
+
# if a is backed by a memmaped file, reconstruct a using the
|
308 |
+
# memmaped file.
|
309 |
+
return _reduce_memmap_backed(a, m)
|
310 |
+
else:
|
311 |
+
# a is either a regular (not memmap-backed) numpy array, or an array
|
312 |
+
# backed by a shared temporary file created by joblib. In the latter
|
313 |
+
# case, in order to limit the lifespan of these temporary files, we
|
314 |
+
# serialize the memmap as a regular numpy array, and decref the
|
315 |
+
# file backing the memmap (done implicitly in a previously registered
|
316 |
+
# finalizer, see ``unlink_on_gc_collect`` for more details)
|
317 |
+
return (
|
318 |
+
loads, (dumps(np.asarray(a), protocol=HIGHEST_PROTOCOL), )
|
319 |
+
)
|
320 |
+
|
321 |
+
|
322 |
+
class ArrayMemmapForwardReducer(object):
|
323 |
+
"""Reducer callable to dump large arrays to memmap files.
|
324 |
+
|
325 |
+
Parameters
|
326 |
+
----------
|
327 |
+
max_nbytes: int
|
328 |
+
Threshold to trigger memmapping of large arrays to files created
|
329 |
+
a folder.
|
330 |
+
temp_folder_resolver: callable
|
331 |
+
An callable in charge of resolving a temporary folder name where files
|
332 |
+
for backing memmapped arrays are created.
|
333 |
+
mmap_mode: 'r', 'r+' or 'c'
|
334 |
+
Mode for the created memmap datastructure. See the documentation of
|
335 |
+
numpy.memmap for more details. Note: 'w+' is coerced to 'r+'
|
336 |
+
automatically to avoid zeroing the data on unpickling.
|
337 |
+
verbose: int, optional, 0 by default
|
338 |
+
If verbose > 0, memmap creations are logged.
|
339 |
+
If verbose > 1, both memmap creations, reuse and array pickling are
|
340 |
+
logged.
|
341 |
+
prewarm: bool, optional, False by default.
|
342 |
+
Force a read on newly memmapped array to make sure that OS pre-cache it
|
343 |
+
memory. This can be useful to avoid concurrent disk access when the
|
344 |
+
same data array is passed to different worker processes.
|
345 |
+
"""
|
346 |
+
|
347 |
+
def __init__(self, max_nbytes, temp_folder_resolver, mmap_mode,
|
348 |
+
unlink_on_gc_collect, verbose=0, prewarm=True):
|
349 |
+
self._max_nbytes = max_nbytes
|
350 |
+
self._temp_folder_resolver = temp_folder_resolver
|
351 |
+
self._mmap_mode = mmap_mode
|
352 |
+
self.verbose = int(verbose)
|
353 |
+
if prewarm == "auto":
|
354 |
+
self._prewarm = not self._temp_folder.startswith(
|
355 |
+
SYSTEM_SHARED_MEM_FS
|
356 |
+
)
|
357 |
+
else:
|
358 |
+
self._prewarm = prewarm
|
359 |
+
self._prewarm = prewarm
|
360 |
+
self._memmaped_arrays = _WeakArrayKeyMap()
|
361 |
+
self._temporary_memmaped_filenames = set()
|
362 |
+
self._unlink_on_gc_collect = unlink_on_gc_collect
|
363 |
+
|
364 |
+
@property
|
365 |
+
def _temp_folder(self):
|
366 |
+
return self._temp_folder_resolver()
|
367 |
+
|
368 |
+
def __reduce__(self):
|
369 |
+
# The ArrayMemmapForwardReducer is passed to the children processes: it
|
370 |
+
# needs to be pickled but the _WeakArrayKeyMap need to be skipped as
|
371 |
+
# it's only guaranteed to be consistent with the parent process memory
|
372 |
+
# garbage collection.
|
373 |
+
# Although this reducer is pickled, it is not needed in its destination
|
374 |
+
# process (child processes), as we only use this reducer to send
|
375 |
+
# memmaps from the parent process to the children processes. For this
|
376 |
+
# reason, we can afford skipping the resolver, (which would otherwise
|
377 |
+
# be unpicklable), and pass it as None instead.
|
378 |
+
args = (self._max_nbytes, None, self._mmap_mode,
|
379 |
+
self._unlink_on_gc_collect)
|
380 |
+
kwargs = {
|
381 |
+
'verbose': self.verbose,
|
382 |
+
'prewarm': self._prewarm,
|
383 |
+
}
|
384 |
+
return ArrayMemmapForwardReducer, args, kwargs
|
385 |
+
|
386 |
+
def __call__(self, a):
|
387 |
+
m = _get_backing_memmap(a)
|
388 |
+
if m is not None and isinstance(m, np.memmap):
|
389 |
+
# a is already backed by a memmap file, let's reuse it directly
|
390 |
+
return _reduce_memmap_backed(a, m)
|
391 |
+
|
392 |
+
if (not a.dtype.hasobject and self._max_nbytes is not None and
|
393 |
+
a.nbytes > self._max_nbytes):
|
394 |
+
# check that the folder exists (lazily create the pool temp folder
|
395 |
+
# if required)
|
396 |
+
try:
|
397 |
+
os.makedirs(self._temp_folder)
|
398 |
+
os.chmod(self._temp_folder, FOLDER_PERMISSIONS)
|
399 |
+
except OSError as e:
|
400 |
+
if e.errno != errno.EEXIST:
|
401 |
+
raise e
|
402 |
+
|
403 |
+
try:
|
404 |
+
basename = self._memmaped_arrays.get(a)
|
405 |
+
except KeyError:
|
406 |
+
# Generate a new unique random filename. The process and thread
|
407 |
+
# ids are only useful for debugging purpose and to make it
|
408 |
+
# easier to cleanup orphaned files in case of hard process
|
409 |
+
# kill (e.g. by "kill -9" or segfault).
|
410 |
+
basename = "{}-{}-{}.pkl".format(
|
411 |
+
os.getpid(), id(threading.current_thread()), uuid4().hex)
|
412 |
+
self._memmaped_arrays.set(a, basename)
|
413 |
+
filename = os.path.join(self._temp_folder, basename)
|
414 |
+
|
415 |
+
# In case the same array with the same content is passed several
|
416 |
+
# times to the pool subprocess children, serialize it only once
|
417 |
+
|
418 |
+
is_new_memmap = filename not in self._temporary_memmaped_filenames
|
419 |
+
|
420 |
+
# add the memmap to the list of temporary memmaps created by joblib
|
421 |
+
self._temporary_memmaped_filenames.add(filename)
|
422 |
+
|
423 |
+
if self._unlink_on_gc_collect:
|
424 |
+
# Bump reference count of the memmap by 1 to account for
|
425 |
+
# shared usage of the memmap by a child process. The
|
426 |
+
# corresponding decref call will be executed upon calling
|
427 |
+
# resource_tracker.maybe_unlink, registered as a finalizer in
|
428 |
+
# the child.
|
429 |
+
# the incref/decref calls here are only possible when the child
|
430 |
+
# and the parent share the same resource_tracker. It is not the
|
431 |
+
# case for the multiprocessing backend, but it does not matter
|
432 |
+
# because unlinking a memmap from a child process is only
|
433 |
+
# useful to control the memory usage of long-lasting child
|
434 |
+
# processes, while the multiprocessing-based pools terminate
|
435 |
+
# their workers at the end of a map() call.
|
436 |
+
resource_tracker.register(filename, "file")
|
437 |
+
|
438 |
+
if is_new_memmap:
|
439 |
+
# Incref each temporary memmap created by joblib one extra
|
440 |
+
# time. This means that these memmaps will only be deleted
|
441 |
+
# once an extra maybe_unlink() is called, which is done once
|
442 |
+
# all the jobs have completed (or been canceled) in the
|
443 |
+
# Parallel._terminate_backend() method.
|
444 |
+
resource_tracker.register(filename, "file")
|
445 |
+
|
446 |
+
if not os.path.exists(filename):
|
447 |
+
util.debug(
|
448 |
+
"[ARRAY DUMP] Pickling new array (shape={}, dtype={}) "
|
449 |
+
"creating a new memmap at {}".format(
|
450 |
+
a.shape, a.dtype, filename))
|
451 |
+
for dumped_filename in dump(a, filename):
|
452 |
+
os.chmod(dumped_filename, FILE_PERMISSIONS)
|
453 |
+
|
454 |
+
if self._prewarm:
|
455 |
+
# Warm up the data by accessing it. This operation ensures
|
456 |
+
# that the disk access required to create the memmapping
|
457 |
+
# file are performed in the reducing process and avoids
|
458 |
+
# concurrent memmap creation in multiple children
|
459 |
+
# processes.
|
460 |
+
load(filename, mmap_mode=self._mmap_mode).max()
|
461 |
+
|
462 |
+
else:
|
463 |
+
util.debug(
|
464 |
+
"[ARRAY DUMP] Pickling known array (shape={}, dtype={}) "
|
465 |
+
"reusing memmap file: {}".format(
|
466 |
+
a.shape, a.dtype, os.path.basename(filename)))
|
467 |
+
|
468 |
+
# The worker process will use joblib.load to memmap the data
|
469 |
+
return (
|
470 |
+
(load_temporary_memmap, (filename, self._mmap_mode,
|
471 |
+
self._unlink_on_gc_collect))
|
472 |
+
)
|
473 |
+
else:
|
474 |
+
# do not convert a into memmap, let pickler do its usual copy with
|
475 |
+
# the default system pickler
|
476 |
+
util.debug(
|
477 |
+
'[ARRAY DUMP] Pickling array (NO MEMMAPPING) (shape={}, '
|
478 |
+
' dtype={}).'.format(a.shape, a.dtype))
|
479 |
+
return (loads, (dumps(a, protocol=HIGHEST_PROTOCOL),))
|
480 |
+
|
481 |
+
|
482 |
+
def get_memmapping_reducers(
|
483 |
+
forward_reducers=None, backward_reducers=None,
|
484 |
+
temp_folder_resolver=None, max_nbytes=1e6, mmap_mode='r', verbose=0,
|
485 |
+
prewarm=False, unlink_on_gc_collect=True, **kwargs):
|
486 |
+
"""Construct a pair of memmapping reducer linked to a tmpdir.
|
487 |
+
|
488 |
+
This function manage the creation and the clean up of the temporary folders
|
489 |
+
underlying the memory maps and should be use to get the reducers necessary
|
490 |
+
to construct joblib pool or executor.
|
491 |
+
"""
|
492 |
+
if forward_reducers is None:
|
493 |
+
forward_reducers = dict()
|
494 |
+
if backward_reducers is None:
|
495 |
+
backward_reducers = dict()
|
496 |
+
|
497 |
+
if np is not None:
|
498 |
+
# Register smart numpy.ndarray reducers that detects memmap backed
|
499 |
+
# arrays and that is also able to dump to memmap large in-memory
|
500 |
+
# arrays over the max_nbytes threshold
|
501 |
+
forward_reduce_ndarray = ArrayMemmapForwardReducer(
|
502 |
+
max_nbytes, temp_folder_resolver, mmap_mode, unlink_on_gc_collect,
|
503 |
+
verbose, prewarm=prewarm)
|
504 |
+
forward_reducers[np.ndarray] = forward_reduce_ndarray
|
505 |
+
forward_reducers[np.memmap] = forward_reduce_ndarray
|
506 |
+
|
507 |
+
# Communication from child process to the parent process always
|
508 |
+
# pickles in-memory numpy.ndarray without dumping them as memmap
|
509 |
+
# to avoid confusing the caller and make it tricky to collect the
|
510 |
+
# temporary folder
|
511 |
+
backward_reducers[np.ndarray] = reduce_array_memmap_backward
|
512 |
+
backward_reducers[np.memmap] = reduce_array_memmap_backward
|
513 |
+
|
514 |
+
return forward_reducers, backward_reducers
|
515 |
+
|
516 |
+
|
517 |
+
class TemporaryResourcesManager(object):
|
518 |
+
"""Stateful object able to manage temporary folder and pickles
|
519 |
+
|
520 |
+
It exposes:
|
521 |
+
- a per-context folder name resolving API that memmap-based reducers will
|
522 |
+
rely on to know where to pickle the temporary memmaps
|
523 |
+
- a temporary file/folder management API that internally uses the
|
524 |
+
resource_tracker.
|
525 |
+
"""
|
526 |
+
|
527 |
+
def __init__(self, temp_folder_root=None, context_id=None):
|
528 |
+
self._current_temp_folder = None
|
529 |
+
self._temp_folder_root = temp_folder_root
|
530 |
+
self._use_shared_mem = None
|
531 |
+
self._cached_temp_folders = dict()
|
532 |
+
self._id = uuid4().hex
|
533 |
+
self._finalizers = {}
|
534 |
+
if context_id is None:
|
535 |
+
# It would be safer to not assign a default context id (less silent
|
536 |
+
# bugs), but doing this while maintaining backward compatibility
|
537 |
+
# with the previous, context-unaware version get_memmaping_executor
|
538 |
+
# exposes too many low-level details.
|
539 |
+
context_id = uuid4().hex
|
540 |
+
self.set_current_context(context_id)
|
541 |
+
|
542 |
+
def set_current_context(self, context_id):
|
543 |
+
self._current_context_id = context_id
|
544 |
+
self.register_new_context(context_id)
|
545 |
+
|
546 |
+
def register_new_context(self, context_id):
|
547 |
+
# Prepare a sub-folder name specific to a context (usually a unique id
|
548 |
+
# generated by each instance of the Parallel class). Do not create in
|
549 |
+
# advance to spare FS write access if no array is to be dumped).
|
550 |
+
if context_id in self._cached_temp_folders:
|
551 |
+
return
|
552 |
+
else:
|
553 |
+
# During its lifecycle, one Parallel object can have several
|
554 |
+
# executors associated to it (for instance, if a loky worker raises
|
555 |
+
# an exception, joblib shutdowns the executor and instantly
|
556 |
+
# recreates a new one before raising the error - see
|
557 |
+
# ``ensure_ready``. Because we don't want two executors tied to
|
558 |
+
# the same Parallel object (and thus the same context id) to
|
559 |
+
# register/use/delete the same folder, we also add an id specific
|
560 |
+
# to the current Manager (and thus specific to its associated
|
561 |
+
# executor) to the folder name.
|
562 |
+
new_folder_name = (
|
563 |
+
"joblib_memmapping_folder_{}_{}_{}".format(
|
564 |
+
os.getpid(), self._id, context_id)
|
565 |
+
)
|
566 |
+
new_folder_path, _ = _get_temp_dir(
|
567 |
+
new_folder_name, self._temp_folder_root
|
568 |
+
)
|
569 |
+
self.register_folder_finalizer(new_folder_path, context_id)
|
570 |
+
self._cached_temp_folders[context_id] = new_folder_path
|
571 |
+
|
572 |
+
def resolve_temp_folder_name(self):
|
573 |
+
"""Return a folder name specific to the currently activated context"""
|
574 |
+
return self._cached_temp_folders[self._current_context_id]
|
575 |
+
|
576 |
+
# resource management API
|
577 |
+
|
578 |
+
def register_folder_finalizer(self, pool_subfolder, context_id):
|
579 |
+
# Register the garbage collector at program exit in case caller forgets
|
580 |
+
# to call terminate explicitly: note we do not pass any reference to
|
581 |
+
# ensure that this callback won't prevent garbage collection of
|
582 |
+
# parallel instance and related file handler resources such as POSIX
|
583 |
+
# semaphores and pipes
|
584 |
+
pool_module_name = whichmodule(delete_folder, 'delete_folder')
|
585 |
+
resource_tracker.register(pool_subfolder, "folder")
|
586 |
+
|
587 |
+
def _cleanup():
|
588 |
+
# In some cases the Python runtime seems to set delete_folder to
|
589 |
+
# None just before exiting when accessing the delete_folder
|
590 |
+
# function from the closure namespace. So instead we reimport
|
591 |
+
# the delete_folder function explicitly.
|
592 |
+
# https://github.com/joblib/joblib/issues/328
|
593 |
+
# We cannot just use from 'joblib.pool import delete_folder'
|
594 |
+
# because joblib should only use relative imports to allow
|
595 |
+
# easy vendoring.
|
596 |
+
delete_folder = __import__(
|
597 |
+
pool_module_name, fromlist=['delete_folder']
|
598 |
+
).delete_folder
|
599 |
+
try:
|
600 |
+
delete_folder(pool_subfolder, allow_non_empty=True)
|
601 |
+
resource_tracker.unregister(pool_subfolder, "folder")
|
602 |
+
except OSError:
|
603 |
+
warnings.warn("Failed to delete temporary folder: {}"
|
604 |
+
.format(pool_subfolder))
|
605 |
+
|
606 |
+
self._finalizers[context_id] = atexit.register(_cleanup)
|
607 |
+
|
608 |
+
def _clean_temporary_resources(self, context_id=None, force=False,
|
609 |
+
allow_non_empty=False):
|
610 |
+
"""Clean temporary resources created by a process-based pool"""
|
611 |
+
if context_id is None:
|
612 |
+
# Iterates over a copy of the cache keys to avoid Error due to
|
613 |
+
# iterating over a changing size dictionary.
|
614 |
+
for context_id in list(self._cached_temp_folders):
|
615 |
+
self._clean_temporary_resources(
|
616 |
+
context_id, force=force, allow_non_empty=allow_non_empty
|
617 |
+
)
|
618 |
+
else:
|
619 |
+
temp_folder = self._cached_temp_folders.get(context_id)
|
620 |
+
if temp_folder and os.path.exists(temp_folder):
|
621 |
+
for filename in os.listdir(temp_folder):
|
622 |
+
if force:
|
623 |
+
# Some workers have failed and the ref counted might
|
624 |
+
# be off. The workers should have shut down by this
|
625 |
+
# time so forcefully clean up the files.
|
626 |
+
resource_tracker.unregister(
|
627 |
+
os.path.join(temp_folder, filename), "file"
|
628 |
+
)
|
629 |
+
else:
|
630 |
+
resource_tracker.maybe_unlink(
|
631 |
+
os.path.join(temp_folder, filename), "file"
|
632 |
+
)
|
633 |
+
|
634 |
+
# When forcing clean-up, try to delete the folder even if some
|
635 |
+
# files are still in it. Otherwise, try to delete the folder
|
636 |
+
allow_non_empty |= force
|
637 |
+
|
638 |
+
# Clean up the folder if possible, either if it is empty or
|
639 |
+
# if none of the files in it are in used and allow_non_empty.
|
640 |
+
try:
|
641 |
+
delete_folder(
|
642 |
+
temp_folder, allow_non_empty=allow_non_empty
|
643 |
+
)
|
644 |
+
# Forget the folder once it has been deleted
|
645 |
+
self._cached_temp_folders.pop(context_id, None)
|
646 |
+
resource_tracker.unregister(temp_folder, "folder")
|
647 |
+
|
648 |
+
# Also cancel the finalizers that gets triggered at gc.
|
649 |
+
finalizer = self._finalizers.pop(context_id, None)
|
650 |
+
if finalizer is not None:
|
651 |
+
atexit.unregister(finalizer)
|
652 |
+
|
653 |
+
except OSError:
|
654 |
+
# Temporary folder cannot be deleted right now.
|
655 |
+
# This folder will be cleaned up by an atexit
|
656 |
+
# finalizer registered by the memmapping_reducer.
|
657 |
+
pass
|
llmeval-env/lib/python3.10/site-packages/joblib/_multiprocessing_helpers.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Helper module to factorize the conditional multiprocessing import logic
|
2 |
+
|
3 |
+
We use a distinct module to simplify import statements and avoid introducing
|
4 |
+
circular dependencies (for instance for the assert_spawning name).
|
5 |
+
"""
|
6 |
+
import os
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
|
10 |
+
# Obtain possible configuration from the environment, assuming 1 (on)
|
11 |
+
# by default, upon 0 set to None. Should instructively fail if some non
|
12 |
+
# 0/1 value is set.
|
13 |
+
mp = int(os.environ.get('JOBLIB_MULTIPROCESSING', 1)) or None
|
14 |
+
if mp:
|
15 |
+
try:
|
16 |
+
import multiprocessing as mp
|
17 |
+
import _multiprocessing # noqa
|
18 |
+
except ImportError:
|
19 |
+
mp = None
|
20 |
+
|
21 |
+
# 2nd stage: validate that locking is available on the system and
|
22 |
+
# issue a warning if not
|
23 |
+
if mp is not None:
|
24 |
+
try:
|
25 |
+
# try to create a named semaphore using SemLock to make sure they are
|
26 |
+
# available on this platform. We use the low level object
|
27 |
+
# _multiprocessing.SemLock to avoid spawning a resource tracker on
|
28 |
+
# Unix system or changing the default backend.
|
29 |
+
import tempfile
|
30 |
+
from _multiprocessing import SemLock
|
31 |
+
|
32 |
+
_rand = tempfile._RandomNameSequence()
|
33 |
+
for i in range(100):
|
34 |
+
try:
|
35 |
+
name = '/joblib-{}-{}' .format(
|
36 |
+
os.getpid(), next(_rand))
|
37 |
+
_sem = SemLock(0, 0, 1, name=name, unlink=True)
|
38 |
+
del _sem # cleanup
|
39 |
+
break
|
40 |
+
except FileExistsError as e: # pragma: no cover
|
41 |
+
if i >= 99:
|
42 |
+
raise FileExistsError(
|
43 |
+
'cannot find name for semaphore') from e
|
44 |
+
except (FileExistsError, AttributeError, ImportError, OSError) as e:
|
45 |
+
mp = None
|
46 |
+
warnings.warn('%s. joblib will operate in serial mode' % (e,))
|
47 |
+
|
48 |
+
|
49 |
+
# 3rd stage: backward compat for the assert_spawning helper
|
50 |
+
if mp is not None:
|
51 |
+
from multiprocessing.context import assert_spawning
|
52 |
+
else:
|
53 |
+
assert_spawning = None
|
llmeval-env/lib/python3.10/site-packages/joblib/_parallel_backends.py
ADDED
@@ -0,0 +1,649 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Backends for embarrassingly parallel code.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import gc
|
6 |
+
import os
|
7 |
+
import warnings
|
8 |
+
import threading
|
9 |
+
import contextlib
|
10 |
+
from abc import ABCMeta, abstractmethod
|
11 |
+
|
12 |
+
from ._utils import (
|
13 |
+
_TracebackCapturingWrapper,
|
14 |
+
_retrieve_traceback_capturing_wrapped_call
|
15 |
+
)
|
16 |
+
|
17 |
+
from ._multiprocessing_helpers import mp
|
18 |
+
|
19 |
+
if mp is not None:
|
20 |
+
from .pool import MemmappingPool
|
21 |
+
from multiprocessing.pool import ThreadPool
|
22 |
+
from .executor import get_memmapping_executor
|
23 |
+
|
24 |
+
# Import loky only if multiprocessing is present
|
25 |
+
from .externals.loky import process_executor, cpu_count
|
26 |
+
from .externals.loky.process_executor import ShutdownExecutorError
|
27 |
+
|
28 |
+
|
29 |
+
class ParallelBackendBase(metaclass=ABCMeta):
|
30 |
+
"""Helper abc which defines all methods a ParallelBackend must implement"""
|
31 |
+
|
32 |
+
supports_inner_max_num_threads = False
|
33 |
+
supports_retrieve_callback = False
|
34 |
+
default_n_jobs = 1
|
35 |
+
|
36 |
+
@property
|
37 |
+
def supports_return_generator(self):
|
38 |
+
return self.supports_retrieve_callback
|
39 |
+
|
40 |
+
@property
|
41 |
+
def supports_timeout(self):
|
42 |
+
return self.supports_retrieve_callback
|
43 |
+
|
44 |
+
nesting_level = None
|
45 |
+
|
46 |
+
def __init__(self, nesting_level=None, inner_max_num_threads=None,
|
47 |
+
**kwargs):
|
48 |
+
super().__init__(**kwargs)
|
49 |
+
self.nesting_level = nesting_level
|
50 |
+
self.inner_max_num_threads = inner_max_num_threads
|
51 |
+
|
52 |
+
MAX_NUM_THREADS_VARS = [
|
53 |
+
'OMP_NUM_THREADS', 'OPENBLAS_NUM_THREADS', 'MKL_NUM_THREADS',
|
54 |
+
'BLIS_NUM_THREADS', 'VECLIB_MAXIMUM_THREADS', 'NUMBA_NUM_THREADS',
|
55 |
+
'NUMEXPR_NUM_THREADS',
|
56 |
+
]
|
57 |
+
|
58 |
+
TBB_ENABLE_IPC_VAR = "ENABLE_IPC"
|
59 |
+
|
60 |
+
@abstractmethod
|
61 |
+
def effective_n_jobs(self, n_jobs):
|
62 |
+
"""Determine the number of jobs that can actually run in parallel
|
63 |
+
|
64 |
+
n_jobs is the number of workers requested by the callers. Passing
|
65 |
+
n_jobs=-1 means requesting all available workers for instance matching
|
66 |
+
the number of CPU cores on the worker host(s).
|
67 |
+
|
68 |
+
This method should return a guesstimate of the number of workers that
|
69 |
+
can actually perform work concurrently. The primary use case is to make
|
70 |
+
it possible for the caller to know in how many chunks to slice the
|
71 |
+
work.
|
72 |
+
|
73 |
+
In general working on larger data chunks is more efficient (less
|
74 |
+
scheduling overhead and better use of CPU cache prefetching heuristics)
|
75 |
+
as long as all the workers have enough work to do.
|
76 |
+
"""
|
77 |
+
|
78 |
+
@abstractmethod
|
79 |
+
def apply_async(self, func, callback=None):
|
80 |
+
"""Schedule a func to be run"""
|
81 |
+
|
82 |
+
def retrieve_result_callback(self, out):
|
83 |
+
"""Called within the callback function passed in apply_async.
|
84 |
+
|
85 |
+
The argument of this function is the argument given to a callback in
|
86 |
+
the considered backend. It is supposed to return the outcome of a task
|
87 |
+
if it succeeded or raise the exception if it failed.
|
88 |
+
"""
|
89 |
+
|
90 |
+
def configure(self, n_jobs=1, parallel=None, prefer=None, require=None,
|
91 |
+
**backend_args):
|
92 |
+
"""Reconfigure the backend and return the number of workers.
|
93 |
+
|
94 |
+
This makes it possible to reuse an existing backend instance for
|
95 |
+
successive independent calls to Parallel with different parameters.
|
96 |
+
"""
|
97 |
+
self.parallel = parallel
|
98 |
+
return self.effective_n_jobs(n_jobs)
|
99 |
+
|
100 |
+
def start_call(self):
|
101 |
+
"""Call-back method called at the beginning of a Parallel call"""
|
102 |
+
|
103 |
+
def stop_call(self):
|
104 |
+
"""Call-back method called at the end of a Parallel call"""
|
105 |
+
|
106 |
+
def terminate(self):
|
107 |
+
"""Shutdown the workers and free the shared memory."""
|
108 |
+
|
109 |
+
def compute_batch_size(self):
|
110 |
+
"""Determine the optimal batch size"""
|
111 |
+
return 1
|
112 |
+
|
113 |
+
def batch_completed(self, batch_size, duration):
|
114 |
+
"""Callback indicate how long it took to run a batch"""
|
115 |
+
|
116 |
+
def get_exceptions(self):
|
117 |
+
"""List of exception types to be captured."""
|
118 |
+
return []
|
119 |
+
|
120 |
+
def abort_everything(self, ensure_ready=True):
|
121 |
+
"""Abort any running tasks
|
122 |
+
|
123 |
+
This is called when an exception has been raised when executing a task
|
124 |
+
and all the remaining tasks will be ignored and can therefore be
|
125 |
+
aborted to spare computation resources.
|
126 |
+
|
127 |
+
If ensure_ready is True, the backend should be left in an operating
|
128 |
+
state as future tasks might be re-submitted via that same backend
|
129 |
+
instance.
|
130 |
+
|
131 |
+
If ensure_ready is False, the implementer of this method can decide
|
132 |
+
to leave the backend in a closed / terminated state as no new task
|
133 |
+
are expected to be submitted to this backend.
|
134 |
+
|
135 |
+
Setting ensure_ready to False is an optimization that can be leveraged
|
136 |
+
when aborting tasks via killing processes from a local process pool
|
137 |
+
managed by the backend it-self: if we expect no new tasks, there is no
|
138 |
+
point in re-creating new workers.
|
139 |
+
"""
|
140 |
+
# Does nothing by default: to be overridden in subclasses when
|
141 |
+
# canceling tasks is possible.
|
142 |
+
pass
|
143 |
+
|
144 |
+
def get_nested_backend(self):
|
145 |
+
"""Backend instance to be used by nested Parallel calls.
|
146 |
+
|
147 |
+
By default a thread-based backend is used for the first level of
|
148 |
+
nesting. Beyond, switch to sequential backend to avoid spawning too
|
149 |
+
many threads on the host.
|
150 |
+
"""
|
151 |
+
nesting_level = getattr(self, 'nesting_level', 0) + 1
|
152 |
+
if nesting_level > 1:
|
153 |
+
return SequentialBackend(nesting_level=nesting_level), None
|
154 |
+
else:
|
155 |
+
return ThreadingBackend(nesting_level=nesting_level), None
|
156 |
+
|
157 |
+
@contextlib.contextmanager
|
158 |
+
def retrieval_context(self):
|
159 |
+
"""Context manager to manage an execution context.
|
160 |
+
|
161 |
+
Calls to Parallel.retrieve will be made inside this context.
|
162 |
+
|
163 |
+
By default, this does nothing. It may be useful for subclasses to
|
164 |
+
handle nested parallelism. In particular, it may be required to avoid
|
165 |
+
deadlocks if a backend manages a fixed number of workers, when those
|
166 |
+
workers may be asked to do nested Parallel calls. Without
|
167 |
+
'retrieval_context' this could lead to deadlock, as all the workers
|
168 |
+
managed by the backend may be "busy" waiting for the nested parallel
|
169 |
+
calls to finish, but the backend has no free workers to execute those
|
170 |
+
tasks.
|
171 |
+
"""
|
172 |
+
yield
|
173 |
+
|
174 |
+
def _prepare_worker_env(self, n_jobs):
|
175 |
+
"""Return environment variables limiting threadpools in external libs.
|
176 |
+
|
177 |
+
This function return a dict containing environment variables to pass
|
178 |
+
when creating a pool of process. These environment variables limit the
|
179 |
+
number of threads to `n_threads` for OpenMP, MKL, Accelerated and
|
180 |
+
OpenBLAS libraries in the child processes.
|
181 |
+
"""
|
182 |
+
explicit_n_threads = self.inner_max_num_threads
|
183 |
+
default_n_threads = max(cpu_count() // n_jobs, 1)
|
184 |
+
|
185 |
+
# Set the inner environment variables to self.inner_max_num_threads if
|
186 |
+
# it is given. Else, default to cpu_count // n_jobs unless the variable
|
187 |
+
# is already present in the parent process environment.
|
188 |
+
env = {}
|
189 |
+
for var in self.MAX_NUM_THREADS_VARS:
|
190 |
+
if explicit_n_threads is None:
|
191 |
+
var_value = os.environ.get(var, default_n_threads)
|
192 |
+
else:
|
193 |
+
var_value = explicit_n_threads
|
194 |
+
|
195 |
+
env[var] = str(var_value)
|
196 |
+
|
197 |
+
if self.TBB_ENABLE_IPC_VAR not in os.environ:
|
198 |
+
# To avoid over-subscription when using TBB, let the TBB schedulers
|
199 |
+
# use Inter Process Communication to coordinate:
|
200 |
+
env[self.TBB_ENABLE_IPC_VAR] = "1"
|
201 |
+
return env
|
202 |
+
|
203 |
+
@staticmethod
|
204 |
+
def in_main_thread():
|
205 |
+
return isinstance(threading.current_thread(), threading._MainThread)
|
206 |
+
|
207 |
+
|
208 |
+
class SequentialBackend(ParallelBackendBase):
|
209 |
+
"""A ParallelBackend which will execute all batches sequentially.
|
210 |
+
|
211 |
+
Does not use/create any threading objects, and hence has minimal
|
212 |
+
overhead. Used when n_jobs == 1.
|
213 |
+
"""
|
214 |
+
|
215 |
+
uses_threads = True
|
216 |
+
supports_timeout = False
|
217 |
+
supports_retrieve_callback = False
|
218 |
+
supports_sharedmem = True
|
219 |
+
|
220 |
+
def effective_n_jobs(self, n_jobs):
|
221 |
+
"""Determine the number of jobs which are going to run in parallel"""
|
222 |
+
if n_jobs == 0:
|
223 |
+
raise ValueError('n_jobs == 0 in Parallel has no meaning')
|
224 |
+
return 1
|
225 |
+
|
226 |
+
def apply_async(self, func, callback=None):
|
227 |
+
"""Schedule a func to be run"""
|
228 |
+
raise RuntimeError("Should never be called for SequentialBackend.")
|
229 |
+
|
230 |
+
def retrieve_result_callback(self, out):
|
231 |
+
raise RuntimeError("Should never be called for SequentialBackend.")
|
232 |
+
|
233 |
+
def get_nested_backend(self):
|
234 |
+
# import is not top level to avoid cyclic import errors.
|
235 |
+
from .parallel import get_active_backend
|
236 |
+
|
237 |
+
# SequentialBackend should neither change the nesting level, the
|
238 |
+
# default backend or the number of jobs. Just return the current one.
|
239 |
+
return get_active_backend()
|
240 |
+
|
241 |
+
|
242 |
+
class PoolManagerMixin(object):
|
243 |
+
"""A helper class for managing pool of workers."""
|
244 |
+
|
245 |
+
_pool = None
|
246 |
+
|
247 |
+
def effective_n_jobs(self, n_jobs):
|
248 |
+
"""Determine the number of jobs which are going to run in parallel"""
|
249 |
+
if n_jobs == 0:
|
250 |
+
raise ValueError('n_jobs == 0 in Parallel has no meaning')
|
251 |
+
elif mp is None or n_jobs is None:
|
252 |
+
# multiprocessing is not available or disabled, fallback
|
253 |
+
# to sequential mode
|
254 |
+
return 1
|
255 |
+
elif n_jobs < 0:
|
256 |
+
n_jobs = max(cpu_count() + 1 + n_jobs, 1)
|
257 |
+
return n_jobs
|
258 |
+
|
259 |
+
def terminate(self):
|
260 |
+
"""Shutdown the process or thread pool"""
|
261 |
+
if self._pool is not None:
|
262 |
+
self._pool.close()
|
263 |
+
self._pool.terminate() # terminate does a join()
|
264 |
+
self._pool = None
|
265 |
+
|
266 |
+
def _get_pool(self):
|
267 |
+
"""Used by apply_async to make it possible to implement lazy init"""
|
268 |
+
return self._pool
|
269 |
+
|
270 |
+
def apply_async(self, func, callback=None):
|
271 |
+
"""Schedule a func to be run"""
|
272 |
+
# Here, we need a wrapper to avoid crashes on KeyboardInterruptErrors.
|
273 |
+
# We also call the callback on error, to make sure the pool does not
|
274 |
+
# wait on crashed jobs.
|
275 |
+
return self._get_pool().apply_async(
|
276 |
+
_TracebackCapturingWrapper(func), (),
|
277 |
+
callback=callback, error_callback=callback
|
278 |
+
)
|
279 |
+
|
280 |
+
def retrieve_result_callback(self, out):
|
281 |
+
"""Mimic concurrent.futures results, raising an error if needed."""
|
282 |
+
return _retrieve_traceback_capturing_wrapped_call(out)
|
283 |
+
|
284 |
+
def abort_everything(self, ensure_ready=True):
|
285 |
+
"""Shutdown the pool and restart a new one with the same parameters"""
|
286 |
+
self.terminate()
|
287 |
+
if ensure_ready:
|
288 |
+
self.configure(n_jobs=self.parallel.n_jobs, parallel=self.parallel,
|
289 |
+
**self.parallel._backend_args)
|
290 |
+
|
291 |
+
|
292 |
+
class AutoBatchingMixin(object):
|
293 |
+
"""A helper class for automagically batching jobs."""
|
294 |
+
|
295 |
+
# In seconds, should be big enough to hide multiprocessing dispatching
|
296 |
+
# overhead.
|
297 |
+
# This settings was found by running benchmarks/bench_auto_batching.py
|
298 |
+
# with various parameters on various platforms.
|
299 |
+
MIN_IDEAL_BATCH_DURATION = .2
|
300 |
+
|
301 |
+
# Should not be too high to avoid stragglers: long jobs running alone
|
302 |
+
# on a single worker while other workers have no work to process any more.
|
303 |
+
MAX_IDEAL_BATCH_DURATION = 2
|
304 |
+
|
305 |
+
# Batching counters default values
|
306 |
+
_DEFAULT_EFFECTIVE_BATCH_SIZE = 1
|
307 |
+
_DEFAULT_SMOOTHED_BATCH_DURATION = 0.0
|
308 |
+
|
309 |
+
def __init__(self, **kwargs):
|
310 |
+
super().__init__(**kwargs)
|
311 |
+
self._effective_batch_size = self._DEFAULT_EFFECTIVE_BATCH_SIZE
|
312 |
+
self._smoothed_batch_duration = self._DEFAULT_SMOOTHED_BATCH_DURATION
|
313 |
+
|
314 |
+
def compute_batch_size(self):
|
315 |
+
"""Determine the optimal batch size"""
|
316 |
+
old_batch_size = self._effective_batch_size
|
317 |
+
batch_duration = self._smoothed_batch_duration
|
318 |
+
if (batch_duration > 0 and
|
319 |
+
batch_duration < self.MIN_IDEAL_BATCH_DURATION):
|
320 |
+
# The current batch size is too small: the duration of the
|
321 |
+
# processing of a batch of task is not large enough to hide
|
322 |
+
# the scheduling overhead.
|
323 |
+
ideal_batch_size = int(old_batch_size *
|
324 |
+
self.MIN_IDEAL_BATCH_DURATION /
|
325 |
+
batch_duration)
|
326 |
+
# Multiply by two to limit oscilations between min and max.
|
327 |
+
ideal_batch_size *= 2
|
328 |
+
|
329 |
+
# dont increase the batch size too fast to limit huge batch sizes
|
330 |
+
# potentially leading to starving worker
|
331 |
+
batch_size = min(2 * old_batch_size, ideal_batch_size)
|
332 |
+
|
333 |
+
batch_size = max(batch_size, 1)
|
334 |
+
|
335 |
+
self._effective_batch_size = batch_size
|
336 |
+
if self.parallel.verbose >= 10:
|
337 |
+
self.parallel._print(
|
338 |
+
f"Batch computation too fast ({batch_duration}s.) "
|
339 |
+
f"Setting batch_size={batch_size}."
|
340 |
+
)
|
341 |
+
elif (batch_duration > self.MAX_IDEAL_BATCH_DURATION and
|
342 |
+
old_batch_size >= 2):
|
343 |
+
# The current batch size is too big. If we schedule overly long
|
344 |
+
# running batches some CPUs might wait with nothing left to do
|
345 |
+
# while a couple of CPUs a left processing a few long running
|
346 |
+
# batches. Better reduce the batch size a bit to limit the
|
347 |
+
# likelihood of scheduling such stragglers.
|
348 |
+
|
349 |
+
# decrease the batch size quickly to limit potential starving
|
350 |
+
ideal_batch_size = int(
|
351 |
+
old_batch_size * self.MIN_IDEAL_BATCH_DURATION / batch_duration
|
352 |
+
)
|
353 |
+
# Multiply by two to limit oscilations between min and max.
|
354 |
+
batch_size = max(2 * ideal_batch_size, 1)
|
355 |
+
self._effective_batch_size = batch_size
|
356 |
+
if self.parallel.verbose >= 10:
|
357 |
+
self.parallel._print(
|
358 |
+
f"Batch computation too slow ({batch_duration}s.) "
|
359 |
+
f"Setting batch_size={batch_size}."
|
360 |
+
)
|
361 |
+
else:
|
362 |
+
# No batch size adjustment
|
363 |
+
batch_size = old_batch_size
|
364 |
+
|
365 |
+
if batch_size != old_batch_size:
|
366 |
+
# Reset estimation of the smoothed mean batch duration: this
|
367 |
+
# estimate is updated in the multiprocessing apply_async
|
368 |
+
# CallBack as long as the batch_size is constant. Therefore
|
369 |
+
# we need to reset the estimate whenever we re-tune the batch
|
370 |
+
# size.
|
371 |
+
self._smoothed_batch_duration = \
|
372 |
+
self._DEFAULT_SMOOTHED_BATCH_DURATION
|
373 |
+
|
374 |
+
return batch_size
|
375 |
+
|
376 |
+
def batch_completed(self, batch_size, duration):
|
377 |
+
"""Callback indicate how long it took to run a batch"""
|
378 |
+
if batch_size == self._effective_batch_size:
|
379 |
+
# Update the smoothed streaming estimate of the duration of a batch
|
380 |
+
# from dispatch to completion
|
381 |
+
old_duration = self._smoothed_batch_duration
|
382 |
+
if old_duration == self._DEFAULT_SMOOTHED_BATCH_DURATION:
|
383 |
+
# First record of duration for this batch size after the last
|
384 |
+
# reset.
|
385 |
+
new_duration = duration
|
386 |
+
else:
|
387 |
+
# Update the exponentially weighted average of the duration of
|
388 |
+
# batch for the current effective size.
|
389 |
+
new_duration = 0.8 * old_duration + 0.2 * duration
|
390 |
+
self._smoothed_batch_duration = new_duration
|
391 |
+
|
392 |
+
def reset_batch_stats(self):
|
393 |
+
"""Reset batch statistics to default values.
|
394 |
+
|
395 |
+
This avoids interferences with future jobs.
|
396 |
+
"""
|
397 |
+
self._effective_batch_size = self._DEFAULT_EFFECTIVE_BATCH_SIZE
|
398 |
+
self._smoothed_batch_duration = self._DEFAULT_SMOOTHED_BATCH_DURATION
|
399 |
+
|
400 |
+
|
401 |
+
class ThreadingBackend(PoolManagerMixin, ParallelBackendBase):
|
402 |
+
"""A ParallelBackend which will use a thread pool to execute batches in.
|
403 |
+
|
404 |
+
This is a low-overhead backend but it suffers from the Python Global
|
405 |
+
Interpreter Lock if the called function relies a lot on Python objects.
|
406 |
+
Mostly useful when the execution bottleneck is a compiled extension that
|
407 |
+
explicitly releases the GIL (for instance a Cython loop wrapped in a "with
|
408 |
+
nogil" block or an expensive call to a library such as NumPy).
|
409 |
+
|
410 |
+
The actual thread pool is lazily initialized: the actual thread pool
|
411 |
+
construction is delayed to the first call to apply_async.
|
412 |
+
|
413 |
+
ThreadingBackend is used as the default backend for nested calls.
|
414 |
+
"""
|
415 |
+
|
416 |
+
supports_retrieve_callback = True
|
417 |
+
uses_threads = True
|
418 |
+
supports_sharedmem = True
|
419 |
+
|
420 |
+
def configure(self, n_jobs=1, parallel=None, **backend_args):
|
421 |
+
"""Build a process or thread pool and return the number of workers"""
|
422 |
+
n_jobs = self.effective_n_jobs(n_jobs)
|
423 |
+
if n_jobs == 1:
|
424 |
+
# Avoid unnecessary overhead and use sequential backend instead.
|
425 |
+
raise FallbackToBackend(
|
426 |
+
SequentialBackend(nesting_level=self.nesting_level))
|
427 |
+
self.parallel = parallel
|
428 |
+
self._n_jobs = n_jobs
|
429 |
+
return n_jobs
|
430 |
+
|
431 |
+
def _get_pool(self):
|
432 |
+
"""Lazily initialize the thread pool
|
433 |
+
|
434 |
+
The actual pool of worker threads is only initialized at the first
|
435 |
+
call to apply_async.
|
436 |
+
"""
|
437 |
+
if self._pool is None:
|
438 |
+
self._pool = ThreadPool(self._n_jobs)
|
439 |
+
return self._pool
|
440 |
+
|
441 |
+
|
442 |
+
class MultiprocessingBackend(PoolManagerMixin, AutoBatchingMixin,
|
443 |
+
ParallelBackendBase):
|
444 |
+
"""A ParallelBackend which will use a multiprocessing.Pool.
|
445 |
+
|
446 |
+
Will introduce some communication and memory overhead when exchanging
|
447 |
+
input and output data with the with the worker Python processes.
|
448 |
+
However, does not suffer from the Python Global Interpreter Lock.
|
449 |
+
"""
|
450 |
+
|
451 |
+
supports_retrieve_callback = True
|
452 |
+
supports_return_generator = False
|
453 |
+
|
454 |
+
def effective_n_jobs(self, n_jobs):
|
455 |
+
"""Determine the number of jobs which are going to run in parallel.
|
456 |
+
|
457 |
+
This also checks if we are attempting to create a nested parallel
|
458 |
+
loop.
|
459 |
+
"""
|
460 |
+
if mp is None:
|
461 |
+
return 1
|
462 |
+
|
463 |
+
if mp.current_process().daemon:
|
464 |
+
# Daemonic processes cannot have children
|
465 |
+
if n_jobs != 1:
|
466 |
+
if inside_dask_worker():
|
467 |
+
msg = (
|
468 |
+
"Inside a Dask worker with daemon=True, "
|
469 |
+
"setting n_jobs=1.\nPossible work-arounds:\n"
|
470 |
+
"- dask.config.set("
|
471 |
+
"{'distributed.worker.daemon': False})"
|
472 |
+
"- set the environment variable "
|
473 |
+
"DASK_DISTRIBUTED__WORKER__DAEMON=False\n"
|
474 |
+
"before creating your Dask cluster."
|
475 |
+
)
|
476 |
+
else:
|
477 |
+
msg = (
|
478 |
+
'Multiprocessing-backed parallel loops '
|
479 |
+
'cannot be nested, setting n_jobs=1'
|
480 |
+
)
|
481 |
+
warnings.warn(msg, stacklevel=3)
|
482 |
+
return 1
|
483 |
+
|
484 |
+
if process_executor._CURRENT_DEPTH > 0:
|
485 |
+
# Mixing loky and multiprocessing in nested loop is not supported
|
486 |
+
if n_jobs != 1:
|
487 |
+
warnings.warn(
|
488 |
+
'Multiprocessing-backed parallel loops cannot be nested,'
|
489 |
+
' below loky, setting n_jobs=1',
|
490 |
+
stacklevel=3)
|
491 |
+
return 1
|
492 |
+
|
493 |
+
elif not (self.in_main_thread() or self.nesting_level == 0):
|
494 |
+
# Prevent posix fork inside in non-main posix threads
|
495 |
+
if n_jobs != 1:
|
496 |
+
warnings.warn(
|
497 |
+
'Multiprocessing-backed parallel loops cannot be nested'
|
498 |
+
' below threads, setting n_jobs=1',
|
499 |
+
stacklevel=3)
|
500 |
+
return 1
|
501 |
+
|
502 |
+
return super(MultiprocessingBackend, self).effective_n_jobs(n_jobs)
|
503 |
+
|
504 |
+
def configure(self, n_jobs=1, parallel=None, prefer=None, require=None,
|
505 |
+
**memmappingpool_args):
|
506 |
+
"""Build a process or thread pool and return the number of workers"""
|
507 |
+
n_jobs = self.effective_n_jobs(n_jobs)
|
508 |
+
if n_jobs == 1:
|
509 |
+
raise FallbackToBackend(
|
510 |
+
SequentialBackend(nesting_level=self.nesting_level))
|
511 |
+
|
512 |
+
# Make sure to free as much memory as possible before forking
|
513 |
+
gc.collect()
|
514 |
+
self._pool = MemmappingPool(n_jobs, **memmappingpool_args)
|
515 |
+
self.parallel = parallel
|
516 |
+
return n_jobs
|
517 |
+
|
518 |
+
def terminate(self):
|
519 |
+
"""Shutdown the process or thread pool"""
|
520 |
+
super(MultiprocessingBackend, self).terminate()
|
521 |
+
self.reset_batch_stats()
|
522 |
+
|
523 |
+
|
524 |
+
class LokyBackend(AutoBatchingMixin, ParallelBackendBase):
|
525 |
+
"""Managing pool of workers with loky instead of multiprocessing."""
|
526 |
+
|
527 |
+
supports_retrieve_callback = True
|
528 |
+
supports_inner_max_num_threads = True
|
529 |
+
|
530 |
+
def configure(self, n_jobs=1, parallel=None, prefer=None, require=None,
|
531 |
+
idle_worker_timeout=300, **memmappingexecutor_args):
|
532 |
+
"""Build a process executor and return the number of workers"""
|
533 |
+
n_jobs = self.effective_n_jobs(n_jobs)
|
534 |
+
if n_jobs == 1:
|
535 |
+
raise FallbackToBackend(
|
536 |
+
SequentialBackend(nesting_level=self.nesting_level))
|
537 |
+
|
538 |
+
self._workers = get_memmapping_executor(
|
539 |
+
n_jobs, timeout=idle_worker_timeout,
|
540 |
+
env=self._prepare_worker_env(n_jobs=n_jobs),
|
541 |
+
context_id=parallel._id, **memmappingexecutor_args)
|
542 |
+
self.parallel = parallel
|
543 |
+
return n_jobs
|
544 |
+
|
545 |
+
def effective_n_jobs(self, n_jobs):
|
546 |
+
"""Determine the number of jobs which are going to run in parallel"""
|
547 |
+
if n_jobs == 0:
|
548 |
+
raise ValueError('n_jobs == 0 in Parallel has no meaning')
|
549 |
+
elif mp is None or n_jobs is None:
|
550 |
+
# multiprocessing is not available or disabled, fallback
|
551 |
+
# to sequential mode
|
552 |
+
return 1
|
553 |
+
elif mp.current_process().daemon:
|
554 |
+
# Daemonic processes cannot have children
|
555 |
+
if n_jobs != 1:
|
556 |
+
if inside_dask_worker():
|
557 |
+
msg = (
|
558 |
+
"Inside a Dask worker with daemon=True, "
|
559 |
+
"setting n_jobs=1.\nPossible work-arounds:\n"
|
560 |
+
"- dask.config.set("
|
561 |
+
"{'distributed.worker.daemon': False})\n"
|
562 |
+
"- set the environment variable "
|
563 |
+
"DASK_DISTRIBUTED__WORKER__DAEMON=False\n"
|
564 |
+
"before creating your Dask cluster."
|
565 |
+
)
|
566 |
+
else:
|
567 |
+
msg = (
|
568 |
+
'Loky-backed parallel loops cannot be called in a'
|
569 |
+
' multiprocessing, setting n_jobs=1'
|
570 |
+
)
|
571 |
+
warnings.warn(msg, stacklevel=3)
|
572 |
+
|
573 |
+
return 1
|
574 |
+
elif not (self.in_main_thread() or self.nesting_level == 0):
|
575 |
+
# Prevent posix fork inside in non-main posix threads
|
576 |
+
if n_jobs != 1:
|
577 |
+
warnings.warn(
|
578 |
+
'Loky-backed parallel loops cannot be nested below '
|
579 |
+
'threads, setting n_jobs=1',
|
580 |
+
stacklevel=3)
|
581 |
+
return 1
|
582 |
+
elif n_jobs < 0:
|
583 |
+
n_jobs = max(cpu_count() + 1 + n_jobs, 1)
|
584 |
+
return n_jobs
|
585 |
+
|
586 |
+
def apply_async(self, func, callback=None):
|
587 |
+
"""Schedule a func to be run"""
|
588 |
+
future = self._workers.submit(func)
|
589 |
+
if callback is not None:
|
590 |
+
future.add_done_callback(callback)
|
591 |
+
return future
|
592 |
+
|
593 |
+
def retrieve_result_callback(self, out):
|
594 |
+
try:
|
595 |
+
return out.result()
|
596 |
+
except ShutdownExecutorError:
|
597 |
+
raise RuntimeError(
|
598 |
+
"The executor underlying Parallel has been shutdown. "
|
599 |
+
"This is likely due to the garbage collection of a previous "
|
600 |
+
"generator from a call to Parallel with return_as='generator'."
|
601 |
+
" Make sure the generator is not garbage collected when "
|
602 |
+
"submitting a new job or that it is first properly exhausted."
|
603 |
+
)
|
604 |
+
|
605 |
+
def terminate(self):
|
606 |
+
if self._workers is not None:
|
607 |
+
# Don't terminate the workers as we want to reuse them in later
|
608 |
+
# calls, but cleanup the temporary resources that the Parallel call
|
609 |
+
# created. This 'hack' requires a private, low-level operation.
|
610 |
+
self._workers._temp_folder_manager._clean_temporary_resources(
|
611 |
+
context_id=self.parallel._id, force=False
|
612 |
+
)
|
613 |
+
self._workers = None
|
614 |
+
|
615 |
+
self.reset_batch_stats()
|
616 |
+
|
617 |
+
def abort_everything(self, ensure_ready=True):
|
618 |
+
"""Shutdown the workers and restart a new one with the same parameters
|
619 |
+
"""
|
620 |
+
self._workers.terminate(kill_workers=True)
|
621 |
+
self._workers = None
|
622 |
+
|
623 |
+
if ensure_ready:
|
624 |
+
self.configure(n_jobs=self.parallel.n_jobs, parallel=self.parallel)
|
625 |
+
|
626 |
+
|
627 |
+
class FallbackToBackend(Exception):
|
628 |
+
"""Raised when configuration should fallback to another backend"""
|
629 |
+
|
630 |
+
def __init__(self, backend):
|
631 |
+
self.backend = backend
|
632 |
+
|
633 |
+
|
634 |
+
def inside_dask_worker():
|
635 |
+
"""Check whether the current function is executed inside a Dask worker.
|
636 |
+
"""
|
637 |
+
# This function can not be in joblib._dask because there would be a
|
638 |
+
# circular import:
|
639 |
+
# _dask imports _parallel_backend that imports _dask ...
|
640 |
+
try:
|
641 |
+
from distributed import get_worker
|
642 |
+
except ImportError:
|
643 |
+
return False
|
644 |
+
|
645 |
+
try:
|
646 |
+
get_worker()
|
647 |
+
return True
|
648 |
+
except ValueError:
|
649 |
+
return False
|
llmeval-env/lib/python3.10/site-packages/joblib/_utils.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://stackoverflow.com/a/9558001/2536294
|
2 |
+
|
3 |
+
import ast
|
4 |
+
from dataclasses import dataclass
|
5 |
+
import operator as op
|
6 |
+
|
7 |
+
|
8 |
+
from ._multiprocessing_helpers import mp
|
9 |
+
|
10 |
+
if mp is not None:
|
11 |
+
from .externals.loky.process_executor import _ExceptionWithTraceback
|
12 |
+
|
13 |
+
|
14 |
+
# supported operators
|
15 |
+
operators = {
|
16 |
+
ast.Add: op.add,
|
17 |
+
ast.Sub: op.sub,
|
18 |
+
ast.Mult: op.mul,
|
19 |
+
ast.Div: op.truediv,
|
20 |
+
ast.FloorDiv: op.floordiv,
|
21 |
+
ast.Mod: op.mod,
|
22 |
+
ast.Pow: op.pow,
|
23 |
+
ast.USub: op.neg,
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
def eval_expr(expr):
|
28 |
+
"""
|
29 |
+
>>> eval_expr('2*6')
|
30 |
+
12
|
31 |
+
>>> eval_expr('2**6')
|
32 |
+
64
|
33 |
+
>>> eval_expr('1 + 2*3**(4) / (6 + -7)')
|
34 |
+
-161.0
|
35 |
+
"""
|
36 |
+
try:
|
37 |
+
return eval_(ast.parse(expr, mode="eval").body)
|
38 |
+
except (TypeError, SyntaxError, KeyError) as e:
|
39 |
+
raise ValueError(
|
40 |
+
f"{expr!r} is not a valid or supported arithmetic expression."
|
41 |
+
) from e
|
42 |
+
|
43 |
+
|
44 |
+
def eval_(node):
|
45 |
+
if isinstance(node, ast.Constant): # <constant>
|
46 |
+
return node.value
|
47 |
+
elif isinstance(node, ast.BinOp): # <left> <operator> <right>
|
48 |
+
return operators[type(node.op)](eval_(node.left), eval_(node.right))
|
49 |
+
elif isinstance(node, ast.UnaryOp): # <operator> <operand> e.g., -1
|
50 |
+
return operators[type(node.op)](eval_(node.operand))
|
51 |
+
else:
|
52 |
+
raise TypeError(node)
|
53 |
+
|
54 |
+
|
55 |
+
@dataclass(frozen=True)
|
56 |
+
class _Sentinel:
|
57 |
+
"""A sentinel to mark a parameter as not explicitly set"""
|
58 |
+
default_value: object
|
59 |
+
|
60 |
+
def __repr__(self):
|
61 |
+
return f"default({self.default_value!r})"
|
62 |
+
|
63 |
+
|
64 |
+
class _TracebackCapturingWrapper:
|
65 |
+
"""Protect function call and return error with traceback."""
|
66 |
+
|
67 |
+
def __init__(self, func):
|
68 |
+
self.func = func
|
69 |
+
|
70 |
+
def __call__(self, **kwargs):
|
71 |
+
try:
|
72 |
+
return self.func(**kwargs)
|
73 |
+
except BaseException as e:
|
74 |
+
return _ExceptionWithTraceback(e)
|
75 |
+
|
76 |
+
|
77 |
+
def _retrieve_traceback_capturing_wrapped_call(out):
|
78 |
+
if isinstance(out, _ExceptionWithTraceback):
|
79 |
+
rebuild, args = out.__reduce__()
|
80 |
+
out = rebuild(*args)
|
81 |
+
if isinstance(out, BaseException):
|
82 |
+
raise out
|
83 |
+
return out
|
llmeval-env/lib/python3.10/site-packages/joblib/backports.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Backports of fixes for joblib dependencies
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import time
|
7 |
+
|
8 |
+
from os.path import basename
|
9 |
+
from multiprocessing import util
|
10 |
+
|
11 |
+
|
12 |
+
class Version:
|
13 |
+
"""Backport from deprecated distutils
|
14 |
+
|
15 |
+
We maintain this backport to avoid introducing a new dependency on
|
16 |
+
`packaging`.
|
17 |
+
|
18 |
+
We might rexplore this choice in the future if all major Python projects
|
19 |
+
introduce a dependency on packaging anyway.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, vstring=None):
|
23 |
+
if vstring:
|
24 |
+
self.parse(vstring)
|
25 |
+
|
26 |
+
def __repr__(self):
|
27 |
+
return "%s ('%s')" % (self.__class__.__name__, str(self))
|
28 |
+
|
29 |
+
def __eq__(self, other):
|
30 |
+
c = self._cmp(other)
|
31 |
+
if c is NotImplemented:
|
32 |
+
return c
|
33 |
+
return c == 0
|
34 |
+
|
35 |
+
def __lt__(self, other):
|
36 |
+
c = self._cmp(other)
|
37 |
+
if c is NotImplemented:
|
38 |
+
return c
|
39 |
+
return c < 0
|
40 |
+
|
41 |
+
def __le__(self, other):
|
42 |
+
c = self._cmp(other)
|
43 |
+
if c is NotImplemented:
|
44 |
+
return c
|
45 |
+
return c <= 0
|
46 |
+
|
47 |
+
def __gt__(self, other):
|
48 |
+
c = self._cmp(other)
|
49 |
+
if c is NotImplemented:
|
50 |
+
return c
|
51 |
+
return c > 0
|
52 |
+
|
53 |
+
def __ge__(self, other):
|
54 |
+
c = self._cmp(other)
|
55 |
+
if c is NotImplemented:
|
56 |
+
return c
|
57 |
+
return c >= 0
|
58 |
+
|
59 |
+
|
60 |
+
class LooseVersion(Version):
|
61 |
+
"""Backport from deprecated distutils
|
62 |
+
|
63 |
+
We maintain this backport to avoid introducing a new dependency on
|
64 |
+
`packaging`.
|
65 |
+
|
66 |
+
We might rexplore this choice in the future if all major Python projects
|
67 |
+
introduce a dependency on packaging anyway.
|
68 |
+
"""
|
69 |
+
|
70 |
+
component_re = re.compile(r'(\d+ | [a-z]+ | \.)', re.VERBOSE)
|
71 |
+
|
72 |
+
def __init__(self, vstring=None):
|
73 |
+
if vstring:
|
74 |
+
self.parse(vstring)
|
75 |
+
|
76 |
+
def parse(self, vstring):
|
77 |
+
# I've given up on thinking I can reconstruct the version string
|
78 |
+
# from the parsed tuple -- so I just store the string here for
|
79 |
+
# use by __str__
|
80 |
+
self.vstring = vstring
|
81 |
+
components = [x for x in self.component_re.split(vstring)
|
82 |
+
if x and x != '.']
|
83 |
+
for i, obj in enumerate(components):
|
84 |
+
try:
|
85 |
+
components[i] = int(obj)
|
86 |
+
except ValueError:
|
87 |
+
pass
|
88 |
+
|
89 |
+
self.version = components
|
90 |
+
|
91 |
+
def __str__(self):
|
92 |
+
return self.vstring
|
93 |
+
|
94 |
+
def __repr__(self):
|
95 |
+
return "LooseVersion ('%s')" % str(self)
|
96 |
+
|
97 |
+
def _cmp(self, other):
|
98 |
+
if isinstance(other, str):
|
99 |
+
other = LooseVersion(other)
|
100 |
+
elif not isinstance(other, LooseVersion):
|
101 |
+
return NotImplemented
|
102 |
+
|
103 |
+
if self.version == other.version:
|
104 |
+
return 0
|
105 |
+
if self.version < other.version:
|
106 |
+
return -1
|
107 |
+
if self.version > other.version:
|
108 |
+
return 1
|
109 |
+
|
110 |
+
|
111 |
+
try:
|
112 |
+
import numpy as np
|
113 |
+
|
114 |
+
def make_memmap(filename, dtype='uint8', mode='r+', offset=0,
|
115 |
+
shape=None, order='C', unlink_on_gc_collect=False):
|
116 |
+
"""Custom memmap constructor compatible with numpy.memmap.
|
117 |
+
|
118 |
+
This function:
|
119 |
+
- is a backport the numpy memmap offset fix (See
|
120 |
+
https://github.com/numpy/numpy/pull/8443 for more details.
|
121 |
+
The numpy fix is available starting numpy 1.13)
|
122 |
+
- adds ``unlink_on_gc_collect``, which specifies explicitly whether
|
123 |
+
the process re-constructing the memmap owns a reference to the
|
124 |
+
underlying file. If set to True, it adds a finalizer to the
|
125 |
+
newly-created memmap that sends a maybe_unlink request for the
|
126 |
+
memmaped file to resource_tracker.
|
127 |
+
"""
|
128 |
+
util.debug(
|
129 |
+
"[MEMMAP READ] creating a memmap (shape {}, filename {}, "
|
130 |
+
"pid {})".format(shape, basename(filename), os.getpid())
|
131 |
+
)
|
132 |
+
|
133 |
+
mm = np.memmap(filename, dtype=dtype, mode=mode, offset=offset,
|
134 |
+
shape=shape, order=order)
|
135 |
+
if LooseVersion(np.__version__) < '1.13':
|
136 |
+
mm.offset = offset
|
137 |
+
if unlink_on_gc_collect:
|
138 |
+
from ._memmapping_reducer import add_maybe_unlink_finalizer
|
139 |
+
add_maybe_unlink_finalizer(mm)
|
140 |
+
return mm
|
141 |
+
except ImportError:
|
142 |
+
def make_memmap(filename, dtype='uint8', mode='r+', offset=0,
|
143 |
+
shape=None, order='C', unlink_on_gc_collect=False):
|
144 |
+
raise NotImplementedError(
|
145 |
+
"'joblib.backports.make_memmap' should not be used "
|
146 |
+
'if numpy is not installed.')
|
147 |
+
|
148 |
+
|
149 |
+
if os.name == 'nt':
|
150 |
+
# https://github.com/joblib/joblib/issues/540
|
151 |
+
access_denied_errors = (5, 13)
|
152 |
+
from os import replace
|
153 |
+
|
154 |
+
def concurrency_safe_rename(src, dst):
|
155 |
+
"""Renames ``src`` into ``dst`` overwriting ``dst`` if it exists.
|
156 |
+
|
157 |
+
On Windows os.replace can yield permission errors if executed by two
|
158 |
+
different processes.
|
159 |
+
"""
|
160 |
+
max_sleep_time = 1
|
161 |
+
total_sleep_time = 0
|
162 |
+
sleep_time = 0.001
|
163 |
+
while total_sleep_time < max_sleep_time:
|
164 |
+
try:
|
165 |
+
replace(src, dst)
|
166 |
+
break
|
167 |
+
except Exception as exc:
|
168 |
+
if getattr(exc, 'winerror', None) in access_denied_errors:
|
169 |
+
time.sleep(sleep_time)
|
170 |
+
total_sleep_time += sleep_time
|
171 |
+
sleep_time *= 2
|
172 |
+
else:
|
173 |
+
raise
|
174 |
+
else:
|
175 |
+
raise
|
176 |
+
else:
|
177 |
+
from os import replace as concurrency_safe_rename # noqa
|
llmeval-env/lib/python3.10/site-packages/joblib/externals/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/__init__.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""The :mod:`loky` module manages a pool of worker that can be re-used across time.
|
2 |
+
It provides a robust and dynamic implementation os the
|
3 |
+
:class:`ProcessPoolExecutor` and a function :func:`get_reusable_executor` which
|
4 |
+
hide the pool management under the hood.
|
5 |
+
"""
|
6 |
+
from concurrent.futures import (
|
7 |
+
ALL_COMPLETED,
|
8 |
+
FIRST_COMPLETED,
|
9 |
+
FIRST_EXCEPTION,
|
10 |
+
CancelledError,
|
11 |
+
Executor,
|
12 |
+
TimeoutError,
|
13 |
+
as_completed,
|
14 |
+
wait,
|
15 |
+
)
|
16 |
+
|
17 |
+
from ._base import Future
|
18 |
+
from .backend.context import cpu_count
|
19 |
+
from .backend.reduction import set_loky_pickler
|
20 |
+
from .reusable_executor import get_reusable_executor
|
21 |
+
from .cloudpickle_wrapper import wrap_non_picklable_objects
|
22 |
+
from .process_executor import BrokenProcessPool, ProcessPoolExecutor
|
23 |
+
|
24 |
+
|
25 |
+
__all__ = [
|
26 |
+
"get_reusable_executor",
|
27 |
+
"cpu_count",
|
28 |
+
"wait",
|
29 |
+
"as_completed",
|
30 |
+
"Future",
|
31 |
+
"Executor",
|
32 |
+
"ProcessPoolExecutor",
|
33 |
+
"BrokenProcessPool",
|
34 |
+
"CancelledError",
|
35 |
+
"TimeoutError",
|
36 |
+
"FIRST_COMPLETED",
|
37 |
+
"FIRST_EXCEPTION",
|
38 |
+
"ALL_COMPLETED",
|
39 |
+
"wrap_non_picklable_objects",
|
40 |
+
"set_loky_pickler",
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
__version__ = "3.4.1"
|
llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/_base.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
###############################################################################
|
2 |
+
# Modification of concurrent.futures.Future
|
3 |
+
#
|
4 |
+
# author: Thomas Moreau and Olivier Grisel
|
5 |
+
#
|
6 |
+
# adapted from concurrent/futures/_base.py (17/02/2017)
|
7 |
+
# * Do not use yield from
|
8 |
+
# * Use old super syntax
|
9 |
+
#
|
10 |
+
# Copyright 2009 Brian Quinlan. All Rights Reserved.
|
11 |
+
# Licensed to PSF under a Contributor Agreement.
|
12 |
+
|
13 |
+
from concurrent.futures import Future as _BaseFuture
|
14 |
+
from concurrent.futures._base import LOGGER
|
15 |
+
|
16 |
+
|
17 |
+
# To make loky._base.Future instances awaitable by concurrent.futures.wait,
|
18 |
+
# derive our custom Future class from _BaseFuture. _invoke_callback is the only
|
19 |
+
# modification made to this class in loky.
|
20 |
+
# TODO investigate why using `concurrent.futures.Future` directly does not
|
21 |
+
# always work in our test suite.
|
22 |
+
class Future(_BaseFuture):
|
23 |
+
def _invoke_callbacks(self):
|
24 |
+
for callback in self._done_callbacks:
|
25 |
+
try:
|
26 |
+
callback(self)
|
27 |
+
except BaseException:
|
28 |
+
LOGGER.exception(f"exception calling callback for {self!r}")
|
llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/_posix_reduction.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
###############################################################################
|
2 |
+
# Extra reducers for Unix based system and connections objects
|
3 |
+
#
|
4 |
+
# author: Thomas Moreau and Olivier Grisel
|
5 |
+
#
|
6 |
+
# adapted from multiprocessing/reduction.py (17/02/2017)
|
7 |
+
# * Add adapted reduction for LokyProcesses and socket/Connection
|
8 |
+
#
|
9 |
+
import os
|
10 |
+
import socket
|
11 |
+
import _socket
|
12 |
+
from multiprocessing.connection import Connection
|
13 |
+
from multiprocessing.context import get_spawning_popen
|
14 |
+
|
15 |
+
from .reduction import register
|
16 |
+
|
17 |
+
HAVE_SEND_HANDLE = (
|
18 |
+
hasattr(socket, "CMSG_LEN")
|
19 |
+
and hasattr(socket, "SCM_RIGHTS")
|
20 |
+
and hasattr(socket.socket, "sendmsg")
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def _mk_inheritable(fd):
|
25 |
+
os.set_inheritable(fd, True)
|
26 |
+
return fd
|
27 |
+
|
28 |
+
|
29 |
+
def DupFd(fd):
|
30 |
+
"""Return a wrapper for an fd."""
|
31 |
+
popen_obj = get_spawning_popen()
|
32 |
+
if popen_obj is not None:
|
33 |
+
return popen_obj.DupFd(popen_obj.duplicate_for_child(fd))
|
34 |
+
elif HAVE_SEND_HANDLE:
|
35 |
+
from multiprocessing import resource_sharer
|
36 |
+
|
37 |
+
return resource_sharer.DupFd(fd)
|
38 |
+
else:
|
39 |
+
raise TypeError(
|
40 |
+
"Cannot pickle connection object. This object can only be "
|
41 |
+
"passed when spawning a new process"
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
def _reduce_socket(s):
|
46 |
+
df = DupFd(s.fileno())
|
47 |
+
return _rebuild_socket, (df, s.family, s.type, s.proto)
|
48 |
+
|
49 |
+
|
50 |
+
def _rebuild_socket(df, family, type, proto):
|
51 |
+
fd = df.detach()
|
52 |
+
return socket.fromfd(fd, family, type, proto)
|
53 |
+
|
54 |
+
|
55 |
+
def rebuild_connection(df, readable, writable):
|
56 |
+
fd = df.detach()
|
57 |
+
return Connection(fd, readable, writable)
|
58 |
+
|
59 |
+
|
60 |
+
def reduce_connection(conn):
|
61 |
+
df = DupFd(conn.fileno())
|
62 |
+
return rebuild_connection, (df, conn.readable, conn.writable)
|
63 |
+
|
64 |
+
|
65 |
+
register(socket.socket, _reduce_socket)
|
66 |
+
register(_socket.socket, _reduce_socket)
|
67 |
+
register(Connection, reduce_connection)
|
llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/_win_reduction.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
###############################################################################
|
2 |
+
# Extra reducers for Windows system and connections objects
|
3 |
+
#
|
4 |
+
# author: Thomas Moreau and Olivier Grisel
|
5 |
+
#
|
6 |
+
# adapted from multiprocessing/reduction.py (17/02/2017)
|
7 |
+
# * Add adapted reduction for LokyProcesses and socket/PipeConnection
|
8 |
+
#
|
9 |
+
import socket
|
10 |
+
from multiprocessing import connection
|
11 |
+
from multiprocessing.reduction import _reduce_socket
|
12 |
+
|
13 |
+
from .reduction import register
|
14 |
+
|
15 |
+
# register reduction for win32 communication objects
|
16 |
+
register(socket.socket, _reduce_socket)
|
17 |
+
register(connection.Connection, connection.reduce_connection)
|
18 |
+
register(connection.PipeConnection, connection.reduce_pipe_connection)
|
llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/fork_exec.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
###############################################################################
|
2 |
+
# Launch a subprocess using forkexec and make sure only the needed fd are
|
3 |
+
# shared in the two process.
|
4 |
+
#
|
5 |
+
# author: Thomas Moreau and Olivier Grisel
|
6 |
+
#
|
7 |
+
import os
|
8 |
+
import sys
|
9 |
+
|
10 |
+
|
11 |
+
def close_fds(keep_fds): # pragma: no cover
|
12 |
+
"""Close all the file descriptors except those in keep_fds."""
|
13 |
+
|
14 |
+
# Make sure to keep stdout and stderr open for logging purpose
|
15 |
+
keep_fds = {*keep_fds, 1, 2}
|
16 |
+
|
17 |
+
# We try to retrieve all the open fds
|
18 |
+
try:
|
19 |
+
open_fds = {int(fd) for fd in os.listdir("/proc/self/fd")}
|
20 |
+
except FileNotFoundError:
|
21 |
+
import resource
|
22 |
+
|
23 |
+
max_nfds = resource.getrlimit(resource.RLIMIT_NOFILE)[0]
|
24 |
+
open_fds = {*range(max_nfds)}
|
25 |
+
|
26 |
+
for i in open_fds - keep_fds:
|
27 |
+
try:
|
28 |
+
os.close(i)
|
29 |
+
except OSError:
|
30 |
+
pass
|
31 |
+
|
32 |
+
|
33 |
+
def fork_exec(cmd, keep_fds, env=None):
|
34 |
+
# copy the environment variables to set in the child process
|
35 |
+
env = env or {}
|
36 |
+
child_env = {**os.environ, **env}
|
37 |
+
|
38 |
+
pid = os.fork()
|
39 |
+
if pid == 0: # pragma: no cover
|
40 |
+
close_fds(keep_fds)
|
41 |
+
os.execve(sys.executable, cmd, child_env)
|
42 |
+
else:
|
43 |
+
return pid
|
llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/popen_loky_posix.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
###############################################################################
|
2 |
+
# Popen for LokyProcess.
|
3 |
+
#
|
4 |
+
# author: Thomas Moreau and Olivier Grisel
|
5 |
+
#
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import signal
|
9 |
+
import pickle
|
10 |
+
from io import BytesIO
|
11 |
+
from multiprocessing import util, process
|
12 |
+
from multiprocessing.connection import wait
|
13 |
+
from multiprocessing.context import set_spawning_popen
|
14 |
+
|
15 |
+
from . import reduction, resource_tracker, spawn
|
16 |
+
|
17 |
+
|
18 |
+
__all__ = ["Popen"]
|
19 |
+
|
20 |
+
|
21 |
+
#
|
22 |
+
# Wrapper for an fd used while launching a process
|
23 |
+
#
|
24 |
+
|
25 |
+
|
26 |
+
class _DupFd:
|
27 |
+
def __init__(self, fd):
|
28 |
+
self.fd = reduction._mk_inheritable(fd)
|
29 |
+
|
30 |
+
def detach(self):
|
31 |
+
return self.fd
|
32 |
+
|
33 |
+
|
34 |
+
#
|
35 |
+
# Start child process using subprocess.Popen
|
36 |
+
#
|
37 |
+
|
38 |
+
|
39 |
+
class Popen:
|
40 |
+
method = "loky"
|
41 |
+
DupFd = _DupFd
|
42 |
+
|
43 |
+
def __init__(self, process_obj):
|
44 |
+
sys.stdout.flush()
|
45 |
+
sys.stderr.flush()
|
46 |
+
self.returncode = None
|
47 |
+
self._fds = []
|
48 |
+
self._launch(process_obj)
|
49 |
+
|
50 |
+
def duplicate_for_child(self, fd):
|
51 |
+
self._fds.append(fd)
|
52 |
+
return reduction._mk_inheritable(fd)
|
53 |
+
|
54 |
+
def poll(self, flag=os.WNOHANG):
|
55 |
+
if self.returncode is None:
|
56 |
+
while True:
|
57 |
+
try:
|
58 |
+
pid, sts = os.waitpid(self.pid, flag)
|
59 |
+
except OSError:
|
60 |
+
# Child process not yet created. See #1731717
|
61 |
+
# e.errno == errno.ECHILD == 10
|
62 |
+
return None
|
63 |
+
else:
|
64 |
+
break
|
65 |
+
if pid == self.pid:
|
66 |
+
if os.WIFSIGNALED(sts):
|
67 |
+
self.returncode = -os.WTERMSIG(sts)
|
68 |
+
else:
|
69 |
+
assert os.WIFEXITED(sts)
|
70 |
+
self.returncode = os.WEXITSTATUS(sts)
|
71 |
+
return self.returncode
|
72 |
+
|
73 |
+
def wait(self, timeout=None):
|
74 |
+
if self.returncode is None:
|
75 |
+
if timeout is not None:
|
76 |
+
if not wait([self.sentinel], timeout):
|
77 |
+
return None
|
78 |
+
# This shouldn't block if wait() returned successfully.
|
79 |
+
return self.poll(os.WNOHANG if timeout == 0.0 else 0)
|
80 |
+
return self.returncode
|
81 |
+
|
82 |
+
def terminate(self):
|
83 |
+
if self.returncode is None:
|
84 |
+
try:
|
85 |
+
os.kill(self.pid, signal.SIGTERM)
|
86 |
+
except ProcessLookupError:
|
87 |
+
pass
|
88 |
+
except OSError:
|
89 |
+
if self.wait(timeout=0.1) is None:
|
90 |
+
raise
|
91 |
+
|
92 |
+
def _launch(self, process_obj):
|
93 |
+
|
94 |
+
tracker_fd = resource_tracker._resource_tracker.getfd()
|
95 |
+
|
96 |
+
fp = BytesIO()
|
97 |
+
set_spawning_popen(self)
|
98 |
+
try:
|
99 |
+
prep_data = spawn.get_preparation_data(
|
100 |
+
process_obj._name,
|
101 |
+
getattr(process_obj, "init_main_module", True),
|
102 |
+
)
|
103 |
+
reduction.dump(prep_data, fp)
|
104 |
+
reduction.dump(process_obj, fp)
|
105 |
+
|
106 |
+
finally:
|
107 |
+
set_spawning_popen(None)
|
108 |
+
|
109 |
+
try:
|
110 |
+
parent_r, child_w = os.pipe()
|
111 |
+
child_r, parent_w = os.pipe()
|
112 |
+
# for fd in self._fds:
|
113 |
+
# _mk_inheritable(fd)
|
114 |
+
|
115 |
+
cmd_python = [sys.executable]
|
116 |
+
cmd_python += ["-m", self.__module__]
|
117 |
+
cmd_python += ["--process-name", str(process_obj.name)]
|
118 |
+
cmd_python += ["--pipe", str(reduction._mk_inheritable(child_r))]
|
119 |
+
reduction._mk_inheritable(child_w)
|
120 |
+
reduction._mk_inheritable(tracker_fd)
|
121 |
+
self._fds += [child_r, child_w, tracker_fd]
|
122 |
+
if sys.version_info >= (3, 8) and os.name == "posix":
|
123 |
+
mp_tracker_fd = prep_data["mp_tracker_args"]["fd"]
|
124 |
+
self.duplicate_for_child(mp_tracker_fd)
|
125 |
+
|
126 |
+
from .fork_exec import fork_exec
|
127 |
+
|
128 |
+
pid = fork_exec(cmd_python, self._fds, env=process_obj.env)
|
129 |
+
util.debug(
|
130 |
+
f"launched python with pid {pid} and cmd:\n{cmd_python}"
|
131 |
+
)
|
132 |
+
self.sentinel = parent_r
|
133 |
+
|
134 |
+
method = "getbuffer"
|
135 |
+
if not hasattr(fp, method):
|
136 |
+
method = "getvalue"
|
137 |
+
with os.fdopen(parent_w, "wb") as f:
|
138 |
+
f.write(getattr(fp, method)())
|
139 |
+
self.pid = pid
|
140 |
+
finally:
|
141 |
+
if parent_r is not None:
|
142 |
+
util.Finalize(self, os.close, (parent_r,))
|
143 |
+
for fd in (child_r, child_w):
|
144 |
+
if fd is not None:
|
145 |
+
os.close(fd)
|
146 |
+
|
147 |
+
@staticmethod
|
148 |
+
def thread_is_spawning():
|
149 |
+
return True
|
150 |
+
|
151 |
+
|
152 |
+
if __name__ == "__main__":
|
153 |
+
import argparse
|
154 |
+
|
155 |
+
parser = argparse.ArgumentParser("Command line parser")
|
156 |
+
parser.add_argument(
|
157 |
+
"--pipe", type=int, required=True, help="File handle for the pipe"
|
158 |
+
)
|
159 |
+
parser.add_argument(
|
160 |
+
"--process-name",
|
161 |
+
type=str,
|
162 |
+
default=None,
|
163 |
+
help="Identifier for debugging purpose",
|
164 |
+
)
|
165 |
+
|
166 |
+
args = parser.parse_args()
|
167 |
+
|
168 |
+
info = {}
|
169 |
+
exitcode = 1
|
170 |
+
try:
|
171 |
+
with os.fdopen(args.pipe, "rb") as from_parent:
|
172 |
+
process.current_process()._inheriting = True
|
173 |
+
try:
|
174 |
+
prep_data = pickle.load(from_parent)
|
175 |
+
spawn.prepare(prep_data)
|
176 |
+
process_obj = pickle.load(from_parent)
|
177 |
+
finally:
|
178 |
+
del process.current_process()._inheriting
|
179 |
+
|
180 |
+
exitcode = process_obj._bootstrap()
|
181 |
+
except Exception:
|
182 |
+
print("\n\n" + "-" * 80)
|
183 |
+
print(f"{args.process_name} failed with traceback: ")
|
184 |
+
print("-" * 80)
|
185 |
+
import traceback
|
186 |
+
|
187 |
+
print(traceback.format_exc())
|
188 |
+
print("\n" + "-" * 80)
|
189 |
+
finally:
|
190 |
+
if from_parent is not None:
|
191 |
+
from_parent.close()
|
192 |
+
|
193 |
+
sys.exit(exitcode)
|
llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/process.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
###############################################################################
|
2 |
+
# LokyProcess implementation
|
3 |
+
#
|
4 |
+
# authors: Thomas Moreau and Olivier Grisel
|
5 |
+
#
|
6 |
+
# based on multiprocessing/process.py (17/02/2017)
|
7 |
+
#
|
8 |
+
import sys
|
9 |
+
from multiprocessing.context import assert_spawning
|
10 |
+
from multiprocessing.process import BaseProcess
|
11 |
+
|
12 |
+
|
13 |
+
class LokyProcess(BaseProcess):
|
14 |
+
_start_method = "loky"
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
group=None,
|
19 |
+
target=None,
|
20 |
+
name=None,
|
21 |
+
args=(),
|
22 |
+
kwargs={},
|
23 |
+
daemon=None,
|
24 |
+
init_main_module=False,
|
25 |
+
env=None,
|
26 |
+
):
|
27 |
+
super().__init__(
|
28 |
+
group=group,
|
29 |
+
target=target,
|
30 |
+
name=name,
|
31 |
+
args=args,
|
32 |
+
kwargs=kwargs,
|
33 |
+
daemon=daemon,
|
34 |
+
)
|
35 |
+
self.env = {} if env is None else env
|
36 |
+
self.authkey = self.authkey
|
37 |
+
self.init_main_module = init_main_module
|
38 |
+
|
39 |
+
@staticmethod
|
40 |
+
def _Popen(process_obj):
|
41 |
+
if sys.platform == "win32":
|
42 |
+
from .popen_loky_win32 import Popen
|
43 |
+
else:
|
44 |
+
from .popen_loky_posix import Popen
|
45 |
+
return Popen(process_obj)
|
46 |
+
|
47 |
+
|
48 |
+
class LokyInitMainProcess(LokyProcess):
|
49 |
+
_start_method = "loky_init_main"
|
50 |
+
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
group=None,
|
54 |
+
target=None,
|
55 |
+
name=None,
|
56 |
+
args=(),
|
57 |
+
kwargs={},
|
58 |
+
daemon=None,
|
59 |
+
):
|
60 |
+
super().__init__(
|
61 |
+
group=group,
|
62 |
+
target=target,
|
63 |
+
name=name,
|
64 |
+
args=args,
|
65 |
+
kwargs=kwargs,
|
66 |
+
daemon=daemon,
|
67 |
+
init_main_module=True,
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
#
|
72 |
+
# We subclass bytes to avoid accidental transmission of auth keys over network
|
73 |
+
#
|
74 |
+
|
75 |
+
|
76 |
+
class AuthenticationKey(bytes):
|
77 |
+
def __reduce__(self):
|
78 |
+
try:
|
79 |
+
assert_spawning(self)
|
80 |
+
except RuntimeError:
|
81 |
+
raise TypeError(
|
82 |
+
"Pickling an AuthenticationKey object is "
|
83 |
+
"disallowed for security reasons"
|
84 |
+
)
|
85 |
+
return AuthenticationKey, (bytes(self),)
|
llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/resource_tracker.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
###############################################################################
|
2 |
+
# Server process to keep track of unlinked resources, like folders and
|
3 |
+
# semaphores and clean them.
|
4 |
+
#
|
5 |
+
# author: Thomas Moreau
|
6 |
+
#
|
7 |
+
# adapted from multiprocessing/semaphore_tracker.py (17/02/2017)
|
8 |
+
# * include custom spawnv_passfds to start the process
|
9 |
+
# * add some VERBOSE logging
|
10 |
+
#
|
11 |
+
# TODO: multiprocessing.resource_tracker was contributed to Python 3.8 so
|
12 |
+
# once loky drops support for Python 3.7 it might be possible to stop
|
13 |
+
# maintaining this loky-specific fork. As a consequence, it might also be
|
14 |
+
# possible to stop maintaining the loky.backend.synchronize fork of
|
15 |
+
# multiprocessing.synchronize.
|
16 |
+
|
17 |
+
#
|
18 |
+
# On Unix we run a server process which keeps track of unlinked
|
19 |
+
# resources. The server ignores SIGINT and SIGTERM and reads from a
|
20 |
+
# pipe. The resource_tracker implements a reference counting scheme: each time
|
21 |
+
# a Python process anticipates the shared usage of a resource by another
|
22 |
+
# process, it signals the resource_tracker of this shared usage, and in return,
|
23 |
+
# the resource_tracker increments the resource's reference count by 1.
|
24 |
+
# Similarly, when access to a resource is closed by a Python process, the
|
25 |
+
# process notifies the resource_tracker by asking it to decrement the
|
26 |
+
# resource's reference count by 1. When the reference count drops to 0, the
|
27 |
+
# resource_tracker attempts to clean up the underlying resource.
|
28 |
+
|
29 |
+
# Finally, every other process connected to the resource tracker has a copy of
|
30 |
+
# the writable end of the pipe used to communicate with it, so the resource
|
31 |
+
# tracker gets EOF when all other processes have exited. Then the
|
32 |
+
# resource_tracker process unlinks any remaining leaked resources (with
|
33 |
+
# reference count above 0)
|
34 |
+
|
35 |
+
# For semaphores, this is important because the system only supports a limited
|
36 |
+
# number of named semaphores, and they will not be automatically removed till
|
37 |
+
# the next reboot. Without this resource tracker process, "killall python"
|
38 |
+
# would probably leave unlinked semaphores.
|
39 |
+
|
40 |
+
# Note that this behavior differs from CPython's resource_tracker, which only
|
41 |
+
# implements list of shared resources, and not a proper refcounting scheme.
|
42 |
+
# Also, CPython's resource tracker will only attempt to cleanup those shared
|
43 |
+
# resources once all procsses connected to the resouce tracker have exited.
|
44 |
+
|
45 |
+
|
46 |
+
import os
|
47 |
+
import shutil
|
48 |
+
import sys
|
49 |
+
import signal
|
50 |
+
import warnings
|
51 |
+
import threading
|
52 |
+
from _multiprocessing import sem_unlink
|
53 |
+
from multiprocessing import util
|
54 |
+
|
55 |
+
from . import spawn
|
56 |
+
|
57 |
+
if sys.platform == "win32":
|
58 |
+
import _winapi
|
59 |
+
import msvcrt
|
60 |
+
from multiprocessing.reduction import duplicate
|
61 |
+
|
62 |
+
|
63 |
+
__all__ = ["ensure_running", "register", "unregister"]
|
64 |
+
|
65 |
+
_HAVE_SIGMASK = hasattr(signal, "pthread_sigmask")
|
66 |
+
_IGNORED_SIGNALS = (signal.SIGINT, signal.SIGTERM)
|
67 |
+
|
68 |
+
_CLEANUP_FUNCS = {"folder": shutil.rmtree, "file": os.unlink}
|
69 |
+
|
70 |
+
if os.name == "posix":
|
71 |
+
_CLEANUP_FUNCS["semlock"] = sem_unlink
|
72 |
+
|
73 |
+
|
74 |
+
VERBOSE = False
|
75 |
+
|
76 |
+
|
77 |
+
class ResourceTracker:
|
78 |
+
def __init__(self):
|
79 |
+
self._lock = threading.Lock()
|
80 |
+
self._fd = None
|
81 |
+
self._pid = None
|
82 |
+
|
83 |
+
def getfd(self):
|
84 |
+
self.ensure_running()
|
85 |
+
return self._fd
|
86 |
+
|
87 |
+
def ensure_running(self):
|
88 |
+
"""Make sure that resource tracker process is running.
|
89 |
+
|
90 |
+
This can be run from any process. Usually a child process will use
|
91 |
+
the resource created by its parent."""
|
92 |
+
with self._lock:
|
93 |
+
if self._fd is not None:
|
94 |
+
# resource tracker was launched before, is it still running?
|
95 |
+
if self._check_alive():
|
96 |
+
# => still alive
|
97 |
+
return
|
98 |
+
# => dead, launch it again
|
99 |
+
os.close(self._fd)
|
100 |
+
if os.name == "posix":
|
101 |
+
try:
|
102 |
+
# At this point, the resource_tracker process has been
|
103 |
+
# killed or crashed. Let's remove the process entry
|
104 |
+
# from the process table to avoid zombie processes.
|
105 |
+
os.waitpid(self._pid, 0)
|
106 |
+
except OSError:
|
107 |
+
# The process was terminated or is a child from an
|
108 |
+
# ancestor of the current process.
|
109 |
+
pass
|
110 |
+
self._fd = None
|
111 |
+
self._pid = None
|
112 |
+
|
113 |
+
warnings.warn(
|
114 |
+
"resource_tracker: process died unexpectedly, "
|
115 |
+
"relaunching. Some folders/sempahores might "
|
116 |
+
"leak."
|
117 |
+
)
|
118 |
+
|
119 |
+
fds_to_pass = []
|
120 |
+
try:
|
121 |
+
fds_to_pass.append(sys.stderr.fileno())
|
122 |
+
except Exception:
|
123 |
+
pass
|
124 |
+
|
125 |
+
r, w = os.pipe()
|
126 |
+
if sys.platform == "win32":
|
127 |
+
_r = duplicate(msvcrt.get_osfhandle(r), inheritable=True)
|
128 |
+
os.close(r)
|
129 |
+
r = _r
|
130 |
+
|
131 |
+
cmd = f"from {main.__module__} import main; main({r}, {VERBOSE})"
|
132 |
+
try:
|
133 |
+
fds_to_pass.append(r)
|
134 |
+
# process will out live us, so no need to wait on pid
|
135 |
+
exe = spawn.get_executable()
|
136 |
+
args = [exe, *util._args_from_interpreter_flags(), "-c", cmd]
|
137 |
+
util.debug(f"launching resource tracker: {args}")
|
138 |
+
# bpo-33613: Register a signal mask that will block the
|
139 |
+
# signals. This signal mask will be inherited by the child
|
140 |
+
# that is going to be spawned and will protect the child from a
|
141 |
+
# race condition that can make the child die before it
|
142 |
+
# registers signal handlers for SIGINT and SIGTERM. The mask is
|
143 |
+
# unregistered after spawning the child.
|
144 |
+
try:
|
145 |
+
if _HAVE_SIGMASK:
|
146 |
+
signal.pthread_sigmask(
|
147 |
+
signal.SIG_BLOCK, _IGNORED_SIGNALS
|
148 |
+
)
|
149 |
+
pid = spawnv_passfds(exe, args, fds_to_pass)
|
150 |
+
finally:
|
151 |
+
if _HAVE_SIGMASK:
|
152 |
+
signal.pthread_sigmask(
|
153 |
+
signal.SIG_UNBLOCK, _IGNORED_SIGNALS
|
154 |
+
)
|
155 |
+
except BaseException:
|
156 |
+
os.close(w)
|
157 |
+
raise
|
158 |
+
else:
|
159 |
+
self._fd = w
|
160 |
+
self._pid = pid
|
161 |
+
finally:
|
162 |
+
if sys.platform == "win32":
|
163 |
+
_winapi.CloseHandle(r)
|
164 |
+
else:
|
165 |
+
os.close(r)
|
166 |
+
|
167 |
+
def _check_alive(self):
|
168 |
+
"""Check for the existence of the resource tracker process."""
|
169 |
+
try:
|
170 |
+
self._send("PROBE", "", "")
|
171 |
+
except BrokenPipeError:
|
172 |
+
return False
|
173 |
+
else:
|
174 |
+
return True
|
175 |
+
|
176 |
+
def register(self, name, rtype):
|
177 |
+
"""Register a named resource, and increment its refcount."""
|
178 |
+
self.ensure_running()
|
179 |
+
self._send("REGISTER", name, rtype)
|
180 |
+
|
181 |
+
def unregister(self, name, rtype):
|
182 |
+
"""Unregister a named resource with resource tracker."""
|
183 |
+
self.ensure_running()
|
184 |
+
self._send("UNREGISTER", name, rtype)
|
185 |
+
|
186 |
+
def maybe_unlink(self, name, rtype):
|
187 |
+
"""Decrement the refcount of a resource, and delete it if it hits 0"""
|
188 |
+
self.ensure_running()
|
189 |
+
self._send("MAYBE_UNLINK", name, rtype)
|
190 |
+
|
191 |
+
def _send(self, cmd, name, rtype):
|
192 |
+
if len(name) > 512:
|
193 |
+
# posix guarantees that writes to a pipe of less than PIPE_BUF
|
194 |
+
# bytes are atomic, and that PIPE_BUF >= 512
|
195 |
+
raise ValueError("name too long")
|
196 |
+
msg = f"{cmd}:{name}:{rtype}\n".encode("ascii")
|
197 |
+
nbytes = os.write(self._fd, msg)
|
198 |
+
assert nbytes == len(msg)
|
199 |
+
|
200 |
+
|
201 |
+
_resource_tracker = ResourceTracker()
|
202 |
+
ensure_running = _resource_tracker.ensure_running
|
203 |
+
register = _resource_tracker.register
|
204 |
+
maybe_unlink = _resource_tracker.maybe_unlink
|
205 |
+
unregister = _resource_tracker.unregister
|
206 |
+
getfd = _resource_tracker.getfd
|
207 |
+
|
208 |
+
|
209 |
+
def main(fd, verbose=0):
|
210 |
+
"""Run resource tracker."""
|
211 |
+
# protect the process from ^C and "killall python" etc
|
212 |
+
if verbose:
|
213 |
+
util.log_to_stderr(level=util.DEBUG)
|
214 |
+
|
215 |
+
signal.signal(signal.SIGINT, signal.SIG_IGN)
|
216 |
+
signal.signal(signal.SIGTERM, signal.SIG_IGN)
|
217 |
+
|
218 |
+
if _HAVE_SIGMASK:
|
219 |
+
signal.pthread_sigmask(signal.SIG_UNBLOCK, _IGNORED_SIGNALS)
|
220 |
+
|
221 |
+
for f in (sys.stdin, sys.stdout):
|
222 |
+
try:
|
223 |
+
f.close()
|
224 |
+
except Exception:
|
225 |
+
pass
|
226 |
+
|
227 |
+
if verbose:
|
228 |
+
util.debug("Main resource tracker is running")
|
229 |
+
|
230 |
+
registry = {rtype: {} for rtype in _CLEANUP_FUNCS.keys()}
|
231 |
+
try:
|
232 |
+
# keep track of registered/unregistered resources
|
233 |
+
if sys.platform == "win32":
|
234 |
+
fd = msvcrt.open_osfhandle(fd, os.O_RDONLY)
|
235 |
+
with open(fd, "rb") as f:
|
236 |
+
while True:
|
237 |
+
line = f.readline()
|
238 |
+
if line == b"": # EOF
|
239 |
+
break
|
240 |
+
try:
|
241 |
+
splitted = line.strip().decode("ascii").split(":")
|
242 |
+
# name can potentially contain separator symbols (for
|
243 |
+
# instance folders on Windows)
|
244 |
+
cmd, name, rtype = (
|
245 |
+
splitted[0],
|
246 |
+
":".join(splitted[1:-1]),
|
247 |
+
splitted[-1],
|
248 |
+
)
|
249 |
+
|
250 |
+
if cmd == "PROBE":
|
251 |
+
continue
|
252 |
+
|
253 |
+
if rtype not in _CLEANUP_FUNCS:
|
254 |
+
raise ValueError(
|
255 |
+
f"Cannot register {name} for automatic cleanup: "
|
256 |
+
f"unknown resource type ({rtype}). Resource type "
|
257 |
+
"should be one of the following: "
|
258 |
+
f"{list(_CLEANUP_FUNCS.keys())}"
|
259 |
+
)
|
260 |
+
|
261 |
+
if cmd == "REGISTER":
|
262 |
+
if name not in registry[rtype]:
|
263 |
+
registry[rtype][name] = 1
|
264 |
+
else:
|
265 |
+
registry[rtype][name] += 1
|
266 |
+
|
267 |
+
if verbose:
|
268 |
+
util.debug(
|
269 |
+
"[ResourceTracker] incremented refcount of "
|
270 |
+
f"{rtype} {name} "
|
271 |
+
f"(current {registry[rtype][name]})"
|
272 |
+
)
|
273 |
+
elif cmd == "UNREGISTER":
|
274 |
+
del registry[rtype][name]
|
275 |
+
if verbose:
|
276 |
+
util.debug(
|
277 |
+
f"[ResourceTracker] unregister {name} {rtype}: "
|
278 |
+
f"registry({len(registry)})"
|
279 |
+
)
|
280 |
+
elif cmd == "MAYBE_UNLINK":
|
281 |
+
registry[rtype][name] -= 1
|
282 |
+
if verbose:
|
283 |
+
util.debug(
|
284 |
+
"[ResourceTracker] decremented refcount of "
|
285 |
+
f"{rtype} {name} "
|
286 |
+
f"(current {registry[rtype][name]})"
|
287 |
+
)
|
288 |
+
|
289 |
+
if registry[rtype][name] == 0:
|
290 |
+
del registry[rtype][name]
|
291 |
+
try:
|
292 |
+
if verbose:
|
293 |
+
util.debug(
|
294 |
+
f"[ResourceTracker] unlink {name}"
|
295 |
+
)
|
296 |
+
_CLEANUP_FUNCS[rtype](name)
|
297 |
+
except Exception as e:
|
298 |
+
warnings.warn(
|
299 |
+
f"resource_tracker: {name}: {e!r}"
|
300 |
+
)
|
301 |
+
|
302 |
+
else:
|
303 |
+
raise RuntimeError(f"unrecognized command {cmd!r}")
|
304 |
+
except BaseException:
|
305 |
+
try:
|
306 |
+
sys.excepthook(*sys.exc_info())
|
307 |
+
except BaseException:
|
308 |
+
pass
|
309 |
+
finally:
|
310 |
+
# all processes have terminated; cleanup any remaining resources
|
311 |
+
def _unlink_resources(rtype_registry, rtype):
|
312 |
+
if rtype_registry:
|
313 |
+
try:
|
314 |
+
warnings.warn(
|
315 |
+
"resource_tracker: There appear to be "
|
316 |
+
f"{len(rtype_registry)} leaked {rtype} objects to "
|
317 |
+
"clean up at shutdown"
|
318 |
+
)
|
319 |
+
except Exception:
|
320 |
+
pass
|
321 |
+
for name in rtype_registry:
|
322 |
+
# For some reason the process which created and registered this
|
323 |
+
# resource has failed to unregister it. Presumably it has
|
324 |
+
# died. We therefore clean it up.
|
325 |
+
try:
|
326 |
+
_CLEANUP_FUNCS[rtype](name)
|
327 |
+
if verbose:
|
328 |
+
util.debug(f"[ResourceTracker] unlink {name}")
|
329 |
+
except Exception as e:
|
330 |
+
warnings.warn(f"resource_tracker: {name}: {e!r}")
|
331 |
+
|
332 |
+
for rtype, rtype_registry in registry.items():
|
333 |
+
if rtype == "folder":
|
334 |
+
continue
|
335 |
+
else:
|
336 |
+
_unlink_resources(rtype_registry, rtype)
|
337 |
+
|
338 |
+
# The default cleanup routine for folders deletes everything inside
|
339 |
+
# those folders recursively, which can include other resources tracked
|
340 |
+
# by the resource tracker). To limit the risk of the resource tracker
|
341 |
+
# attempting to delete twice a resource (once as part of a tracked
|
342 |
+
# folder, and once as a resource), we delete the folders after all
|
343 |
+
# other resource types.
|
344 |
+
if "folder" in registry:
|
345 |
+
_unlink_resources(registry["folder"], "folder")
|
346 |
+
|
347 |
+
if verbose:
|
348 |
+
util.debug("resource tracker shut down")
|
349 |
+
|
350 |
+
|
351 |
+
#
|
352 |
+
# Start a program with only specified fds kept open
|
353 |
+
#
|
354 |
+
|
355 |
+
|
356 |
+
def spawnv_passfds(path, args, passfds):
|
357 |
+
passfds = sorted(passfds)
|
358 |
+
if sys.platform != "win32":
|
359 |
+
errpipe_read, errpipe_write = os.pipe()
|
360 |
+
try:
|
361 |
+
from .reduction import _mk_inheritable
|
362 |
+
from .fork_exec import fork_exec
|
363 |
+
|
364 |
+
_pass = [_mk_inheritable(fd) for fd in passfds]
|
365 |
+
return fork_exec(args, _pass)
|
366 |
+
finally:
|
367 |
+
os.close(errpipe_read)
|
368 |
+
os.close(errpipe_write)
|
369 |
+
else:
|
370 |
+
cmd = " ".join(f'"{x}"' for x in args)
|
371 |
+
try:
|
372 |
+
_, ht, pid, _ = _winapi.CreateProcess(
|
373 |
+
path, cmd, None, None, True, 0, None, None, None
|
374 |
+
)
|
375 |
+
_winapi.CloseHandle(ht)
|
376 |
+
except BaseException:
|
377 |
+
pass
|
378 |
+
return pid
|
llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/spawn.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
###############################################################################
|
2 |
+
# Prepares and processes the data to setup the new process environment
|
3 |
+
#
|
4 |
+
# author: Thomas Moreau and Olivier Grisel
|
5 |
+
#
|
6 |
+
# adapted from multiprocessing/spawn.py (17/02/2017)
|
7 |
+
# * Improve logging data
|
8 |
+
#
|
9 |
+
import os
|
10 |
+
import sys
|
11 |
+
import runpy
|
12 |
+
import textwrap
|
13 |
+
import types
|
14 |
+
from multiprocessing import process, util
|
15 |
+
|
16 |
+
|
17 |
+
if sys.platform != "win32":
|
18 |
+
WINEXE = False
|
19 |
+
WINSERVICE = False
|
20 |
+
else:
|
21 |
+
import msvcrt
|
22 |
+
from multiprocessing.reduction import duplicate
|
23 |
+
|
24 |
+
WINEXE = sys.platform == "win32" and getattr(sys, "frozen", False)
|
25 |
+
WINSERVICE = sys.executable.lower().endswith("pythonservice.exe")
|
26 |
+
|
27 |
+
if WINSERVICE:
|
28 |
+
_python_exe = os.path.join(sys.exec_prefix, "python.exe")
|
29 |
+
else:
|
30 |
+
_python_exe = sys.executable
|
31 |
+
|
32 |
+
|
33 |
+
def get_executable():
|
34 |
+
return _python_exe
|
35 |
+
|
36 |
+
|
37 |
+
def _check_not_importing_main():
|
38 |
+
if getattr(process.current_process(), "_inheriting", False):
|
39 |
+
raise RuntimeError(
|
40 |
+
textwrap.dedent(
|
41 |
+
"""\
|
42 |
+
An attempt has been made to start a new process before the
|
43 |
+
current process has finished its bootstrapping phase.
|
44 |
+
|
45 |
+
This probably means that you are not using fork to start your
|
46 |
+
child processes and you have forgotten to use the proper idiom
|
47 |
+
in the main module:
|
48 |
+
|
49 |
+
if __name__ == '__main__':
|
50 |
+
freeze_support()
|
51 |
+
...
|
52 |
+
|
53 |
+
The "freeze_support()" line can be omitted if the program
|
54 |
+
is not going to be frozen to produce an executable."""
|
55 |
+
)
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
def get_preparation_data(name, init_main_module=True):
|
60 |
+
"""Return info about parent needed by child to unpickle process object."""
|
61 |
+
_check_not_importing_main()
|
62 |
+
d = dict(
|
63 |
+
log_to_stderr=util._log_to_stderr,
|
64 |
+
authkey=bytes(process.current_process().authkey),
|
65 |
+
name=name,
|
66 |
+
sys_argv=sys.argv,
|
67 |
+
orig_dir=process.ORIGINAL_DIR,
|
68 |
+
dir=os.getcwd(),
|
69 |
+
)
|
70 |
+
|
71 |
+
# Send sys_path and make sure the current directory will not be changed
|
72 |
+
d["sys_path"] = [p if p != "" else process.ORIGINAL_DIR for p in sys.path]
|
73 |
+
|
74 |
+
# Make sure to pass the information if the multiprocessing logger is active
|
75 |
+
if util._logger is not None:
|
76 |
+
d["log_level"] = util._logger.getEffectiveLevel()
|
77 |
+
if util._logger.handlers:
|
78 |
+
h = util._logger.handlers[0]
|
79 |
+
d["log_fmt"] = h.formatter._fmt
|
80 |
+
|
81 |
+
# Tell the child how to communicate with the resource_tracker
|
82 |
+
from .resource_tracker import _resource_tracker
|
83 |
+
|
84 |
+
_resource_tracker.ensure_running()
|
85 |
+
d["tracker_args"] = {"pid": _resource_tracker._pid}
|
86 |
+
if sys.platform == "win32":
|
87 |
+
d["tracker_args"]["fh"] = msvcrt.get_osfhandle(_resource_tracker._fd)
|
88 |
+
else:
|
89 |
+
d["tracker_args"]["fd"] = _resource_tracker._fd
|
90 |
+
|
91 |
+
if sys.version_info >= (3, 8) and os.name == "posix":
|
92 |
+
# joblib/loky#242: allow loky processes to retrieve the resource
|
93 |
+
# tracker of their parent in case the child processes depickles
|
94 |
+
# shared_memory objects, that are still tracked by multiprocessing's
|
95 |
+
# resource_tracker by default.
|
96 |
+
# XXX: this is a workaround that may be error prone: in the future, it
|
97 |
+
# would be better to have loky subclass multiprocessing's shared_memory
|
98 |
+
# to force registration of shared_memory segments via loky's
|
99 |
+
# resource_tracker.
|
100 |
+
from multiprocessing.resource_tracker import (
|
101 |
+
_resource_tracker as mp_resource_tracker,
|
102 |
+
)
|
103 |
+
|
104 |
+
# multiprocessing's resource_tracker must be running before loky
|
105 |
+
# process is created (othewise the child won't be able to use it if it
|
106 |
+
# is created later on)
|
107 |
+
mp_resource_tracker.ensure_running()
|
108 |
+
d["mp_tracker_args"] = {
|
109 |
+
"fd": mp_resource_tracker._fd,
|
110 |
+
"pid": mp_resource_tracker._pid,
|
111 |
+
}
|
112 |
+
|
113 |
+
# Figure out whether to initialise main in the subprocess as a module
|
114 |
+
# or through direct execution (or to leave it alone entirely)
|
115 |
+
if init_main_module:
|
116 |
+
main_module = sys.modules["__main__"]
|
117 |
+
try:
|
118 |
+
main_mod_name = getattr(main_module.__spec__, "name", None)
|
119 |
+
except BaseException:
|
120 |
+
main_mod_name = None
|
121 |
+
if main_mod_name is not None:
|
122 |
+
d["init_main_from_name"] = main_mod_name
|
123 |
+
elif sys.platform != "win32" or (not WINEXE and not WINSERVICE):
|
124 |
+
main_path = getattr(main_module, "__file__", None)
|
125 |
+
if main_path is not None:
|
126 |
+
if (
|
127 |
+
not os.path.isabs(main_path)
|
128 |
+
and process.ORIGINAL_DIR is not None
|
129 |
+
):
|
130 |
+
main_path = os.path.join(process.ORIGINAL_DIR, main_path)
|
131 |
+
d["init_main_from_path"] = os.path.normpath(main_path)
|
132 |
+
|
133 |
+
return d
|
134 |
+
|
135 |
+
|
136 |
+
#
|
137 |
+
# Prepare current process
|
138 |
+
#
|
139 |
+
old_main_modules = []
|
140 |
+
|
141 |
+
|
142 |
+
def prepare(data, parent_sentinel=None):
|
143 |
+
"""Try to get current process ready to unpickle process object."""
|
144 |
+
if "name" in data:
|
145 |
+
process.current_process().name = data["name"]
|
146 |
+
|
147 |
+
if "authkey" in data:
|
148 |
+
process.current_process().authkey = data["authkey"]
|
149 |
+
|
150 |
+
if "log_to_stderr" in data and data["log_to_stderr"]:
|
151 |
+
util.log_to_stderr()
|
152 |
+
|
153 |
+
if "log_level" in data:
|
154 |
+
util.get_logger().setLevel(data["log_level"])
|
155 |
+
|
156 |
+
if "log_fmt" in data:
|
157 |
+
import logging
|
158 |
+
|
159 |
+
util.get_logger().handlers[0].setFormatter(
|
160 |
+
logging.Formatter(data["log_fmt"])
|
161 |
+
)
|
162 |
+
|
163 |
+
if "sys_path" in data:
|
164 |
+
sys.path = data["sys_path"]
|
165 |
+
|
166 |
+
if "sys_argv" in data:
|
167 |
+
sys.argv = data["sys_argv"]
|
168 |
+
|
169 |
+
if "dir" in data:
|
170 |
+
os.chdir(data["dir"])
|
171 |
+
|
172 |
+
if "orig_dir" in data:
|
173 |
+
process.ORIGINAL_DIR = data["orig_dir"]
|
174 |
+
|
175 |
+
if "mp_tracker_args" in data:
|
176 |
+
from multiprocessing.resource_tracker import (
|
177 |
+
_resource_tracker as mp_resource_tracker,
|
178 |
+
)
|
179 |
+
|
180 |
+
mp_resource_tracker._fd = data["mp_tracker_args"]["fd"]
|
181 |
+
mp_resource_tracker._pid = data["mp_tracker_args"]["pid"]
|
182 |
+
if "tracker_args" in data:
|
183 |
+
from .resource_tracker import _resource_tracker
|
184 |
+
|
185 |
+
_resource_tracker._pid = data["tracker_args"]["pid"]
|
186 |
+
if sys.platform == "win32":
|
187 |
+
handle = data["tracker_args"]["fh"]
|
188 |
+
handle = duplicate(handle, source_process=parent_sentinel)
|
189 |
+
_resource_tracker._fd = msvcrt.open_osfhandle(handle, os.O_RDONLY)
|
190 |
+
else:
|
191 |
+
_resource_tracker._fd = data["tracker_args"]["fd"]
|
192 |
+
|
193 |
+
if "init_main_from_name" in data:
|
194 |
+
_fixup_main_from_name(data["init_main_from_name"])
|
195 |
+
elif "init_main_from_path" in data:
|
196 |
+
_fixup_main_from_path(data["init_main_from_path"])
|
197 |
+
|
198 |
+
|
199 |
+
# Multiprocessing module helpers to fix up the main module in
|
200 |
+
# spawned subprocesses
|
201 |
+
def _fixup_main_from_name(mod_name):
|
202 |
+
# __main__.py files for packages, directories, zip archives, etc, run
|
203 |
+
# their "main only" code unconditionally, so we don't even try to
|
204 |
+
# populate anything in __main__, nor do we make any changes to
|
205 |
+
# __main__ attributes
|
206 |
+
current_main = sys.modules["__main__"]
|
207 |
+
if mod_name == "__main__" or mod_name.endswith(".__main__"):
|
208 |
+
return
|
209 |
+
|
210 |
+
# If this process was forked, __main__ may already be populated
|
211 |
+
if getattr(current_main.__spec__, "name", None) == mod_name:
|
212 |
+
return
|
213 |
+
|
214 |
+
# Otherwise, __main__ may contain some non-main code where we need to
|
215 |
+
# support unpickling it properly. We rerun it as __mp_main__ and make
|
216 |
+
# the normal __main__ an alias to that
|
217 |
+
old_main_modules.append(current_main)
|
218 |
+
main_module = types.ModuleType("__mp_main__")
|
219 |
+
main_content = runpy.run_module(
|
220 |
+
mod_name, run_name="__mp_main__", alter_sys=True
|
221 |
+
)
|
222 |
+
main_module.__dict__.update(main_content)
|
223 |
+
sys.modules["__main__"] = sys.modules["__mp_main__"] = main_module
|
224 |
+
|
225 |
+
|
226 |
+
def _fixup_main_from_path(main_path):
|
227 |
+
# If this process was forked, __main__ may already be populated
|
228 |
+
current_main = sys.modules["__main__"]
|
229 |
+
|
230 |
+
# Unfortunately, the main ipython launch script historically had no
|
231 |
+
# "if __name__ == '__main__'" guard, so we work around that
|
232 |
+
# by treating it like a __main__.py file
|
233 |
+
# See https://github.com/ipython/ipython/issues/4698
|
234 |
+
main_name = os.path.splitext(os.path.basename(main_path))[0]
|
235 |
+
if main_name == "ipython":
|
236 |
+
return
|
237 |
+
|
238 |
+
# Otherwise, if __file__ already has the setting we expect,
|
239 |
+
# there's nothing more to do
|
240 |
+
if getattr(current_main, "__file__", None) == main_path:
|
241 |
+
return
|
242 |
+
|
243 |
+
# If the parent process has sent a path through rather than a module
|
244 |
+
# name we assume it is an executable script that may contain
|
245 |
+
# non-main code that needs to be executed
|
246 |
+
old_main_modules.append(current_main)
|
247 |
+
main_module = types.ModuleType("__mp_main__")
|
248 |
+
main_content = runpy.run_path(main_path, run_name="__mp_main__")
|
249 |
+
main_module.__dict__.update(main_content)
|
250 |
+
sys.modules["__main__"] = sys.modules["__mp_main__"] = main_module
|
llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/backend/synchronize.py
ADDED
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
###############################################################################
|
2 |
+
# Synchronization primitives based on our SemLock implementation
|
3 |
+
#
|
4 |
+
# author: Thomas Moreau and Olivier Grisel
|
5 |
+
#
|
6 |
+
# adapted from multiprocessing/synchronize.py (17/02/2017)
|
7 |
+
# * Remove ctx argument for compatibility reason
|
8 |
+
# * Registers a cleanup function with the loky resource_tracker to remove the
|
9 |
+
# semaphore when the process dies instead.
|
10 |
+
#
|
11 |
+
# TODO: investigate which Python version is required to be able to use
|
12 |
+
# multiprocessing.resource_tracker and therefore multiprocessing.synchronize
|
13 |
+
# instead of a loky-specific fork.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import sys
|
17 |
+
import tempfile
|
18 |
+
import threading
|
19 |
+
import _multiprocessing
|
20 |
+
from time import time as _time
|
21 |
+
from multiprocessing import process, util
|
22 |
+
from multiprocessing.context import assert_spawning
|
23 |
+
|
24 |
+
from . import resource_tracker
|
25 |
+
|
26 |
+
__all__ = [
|
27 |
+
"Lock",
|
28 |
+
"RLock",
|
29 |
+
"Semaphore",
|
30 |
+
"BoundedSemaphore",
|
31 |
+
"Condition",
|
32 |
+
"Event",
|
33 |
+
]
|
34 |
+
# Try to import the mp.synchronize module cleanly, if it fails
|
35 |
+
# raise ImportError for platforms lacking a working sem_open implementation.
|
36 |
+
# See issue 3770
|
37 |
+
try:
|
38 |
+
from _multiprocessing import SemLock as _SemLock
|
39 |
+
from _multiprocessing import sem_unlink
|
40 |
+
except ImportError:
|
41 |
+
raise ImportError(
|
42 |
+
"This platform lacks a functioning sem_open"
|
43 |
+
" implementation, therefore, the required"
|
44 |
+
" synchronization primitives needed will not"
|
45 |
+
" function, see issue 3770."
|
46 |
+
)
|
47 |
+
|
48 |
+
#
|
49 |
+
# Constants
|
50 |
+
#
|
51 |
+
|
52 |
+
RECURSIVE_MUTEX, SEMAPHORE = range(2)
|
53 |
+
SEM_VALUE_MAX = _multiprocessing.SemLock.SEM_VALUE_MAX
|
54 |
+
|
55 |
+
|
56 |
+
#
|
57 |
+
# Base class for semaphores and mutexes; wraps `_multiprocessing.SemLock`
|
58 |
+
#
|
59 |
+
|
60 |
+
|
61 |
+
class SemLock:
|
62 |
+
|
63 |
+
_rand = tempfile._RandomNameSequence()
|
64 |
+
|
65 |
+
def __init__(self, kind, value, maxvalue, name=None):
|
66 |
+
# unlink_now is only used on win32 or when we are using fork.
|
67 |
+
unlink_now = False
|
68 |
+
if name is None:
|
69 |
+
# Try to find an unused name for the SemLock instance.
|
70 |
+
for _ in range(100):
|
71 |
+
try:
|
72 |
+
self._semlock = _SemLock(
|
73 |
+
kind, value, maxvalue, SemLock._make_name(), unlink_now
|
74 |
+
)
|
75 |
+
except FileExistsError: # pragma: no cover
|
76 |
+
pass
|
77 |
+
else:
|
78 |
+
break
|
79 |
+
else: # pragma: no cover
|
80 |
+
raise FileExistsError("cannot find name for semaphore")
|
81 |
+
else:
|
82 |
+
self._semlock = _SemLock(kind, value, maxvalue, name, unlink_now)
|
83 |
+
self.name = name
|
84 |
+
util.debug(
|
85 |
+
f"created semlock with handle {self._semlock.handle} and name "
|
86 |
+
f'"{self.name}"'
|
87 |
+
)
|
88 |
+
|
89 |
+
self._make_methods()
|
90 |
+
|
91 |
+
def _after_fork(obj):
|
92 |
+
obj._semlock._after_fork()
|
93 |
+
|
94 |
+
util.register_after_fork(self, _after_fork)
|
95 |
+
|
96 |
+
# When the object is garbage collected or the
|
97 |
+
# process shuts down we unlink the semaphore name
|
98 |
+
resource_tracker.register(self._semlock.name, "semlock")
|
99 |
+
util.Finalize(
|
100 |
+
self, SemLock._cleanup, (self._semlock.name,), exitpriority=0
|
101 |
+
)
|
102 |
+
|
103 |
+
@staticmethod
|
104 |
+
def _cleanup(name):
|
105 |
+
try:
|
106 |
+
sem_unlink(name)
|
107 |
+
except FileNotFoundError:
|
108 |
+
# Already unlinked, possibly by user code: ignore and make sure to
|
109 |
+
# unregister the semaphore from the resource tracker.
|
110 |
+
pass
|
111 |
+
finally:
|
112 |
+
resource_tracker.unregister(name, "semlock")
|
113 |
+
|
114 |
+
def _make_methods(self):
|
115 |
+
self.acquire = self._semlock.acquire
|
116 |
+
self.release = self._semlock.release
|
117 |
+
|
118 |
+
def __enter__(self):
|
119 |
+
return self._semlock.acquire()
|
120 |
+
|
121 |
+
def __exit__(self, *args):
|
122 |
+
return self._semlock.release()
|
123 |
+
|
124 |
+
def __getstate__(self):
|
125 |
+
assert_spawning(self)
|
126 |
+
sl = self._semlock
|
127 |
+
h = sl.handle
|
128 |
+
return (h, sl.kind, sl.maxvalue, sl.name)
|
129 |
+
|
130 |
+
def __setstate__(self, state):
|
131 |
+
self._semlock = _SemLock._rebuild(*state)
|
132 |
+
util.debug(
|
133 |
+
f'recreated blocker with handle {state[0]!r} and name "{state[3]}"'
|
134 |
+
)
|
135 |
+
self._make_methods()
|
136 |
+
|
137 |
+
@staticmethod
|
138 |
+
def _make_name():
|
139 |
+
# OSX does not support long names for semaphores
|
140 |
+
return f"/loky-{os.getpid()}-{next(SemLock._rand)}"
|
141 |
+
|
142 |
+
|
143 |
+
#
|
144 |
+
# Semaphore
|
145 |
+
#
|
146 |
+
|
147 |
+
|
148 |
+
class Semaphore(SemLock):
|
149 |
+
def __init__(self, value=1):
|
150 |
+
SemLock.__init__(self, SEMAPHORE, value, SEM_VALUE_MAX)
|
151 |
+
|
152 |
+
def get_value(self):
|
153 |
+
if sys.platform == "darwin":
|
154 |
+
raise NotImplementedError("OSX does not implement sem_getvalue")
|
155 |
+
return self._semlock._get_value()
|
156 |
+
|
157 |
+
def __repr__(self):
|
158 |
+
try:
|
159 |
+
value = self._semlock._get_value()
|
160 |
+
except Exception:
|
161 |
+
value = "unknown"
|
162 |
+
return f"<{self.__class__.__name__}(value={value})>"
|
163 |
+
|
164 |
+
|
165 |
+
#
|
166 |
+
# Bounded semaphore
|
167 |
+
#
|
168 |
+
|
169 |
+
|
170 |
+
class BoundedSemaphore(Semaphore):
|
171 |
+
def __init__(self, value=1):
|
172 |
+
SemLock.__init__(self, SEMAPHORE, value, value)
|
173 |
+
|
174 |
+
def __repr__(self):
|
175 |
+
try:
|
176 |
+
value = self._semlock._get_value()
|
177 |
+
except Exception:
|
178 |
+
value = "unknown"
|
179 |
+
return (
|
180 |
+
f"<{self.__class__.__name__}(value={value}, "
|
181 |
+
f"maxvalue={self._semlock.maxvalue})>"
|
182 |
+
)
|
183 |
+
|
184 |
+
|
185 |
+
#
|
186 |
+
# Non-recursive lock
|
187 |
+
#
|
188 |
+
|
189 |
+
|
190 |
+
class Lock(SemLock):
|
191 |
+
def __init__(self):
|
192 |
+
super().__init__(SEMAPHORE, 1, 1)
|
193 |
+
|
194 |
+
def __repr__(self):
|
195 |
+
try:
|
196 |
+
if self._semlock._is_mine():
|
197 |
+
name = process.current_process().name
|
198 |
+
if threading.current_thread().name != "MainThread":
|
199 |
+
name = f"{name}|{threading.current_thread().name}"
|
200 |
+
elif self._semlock._get_value() == 1:
|
201 |
+
name = "None"
|
202 |
+
elif self._semlock._count() > 0:
|
203 |
+
name = "SomeOtherThread"
|
204 |
+
else:
|
205 |
+
name = "SomeOtherProcess"
|
206 |
+
except Exception:
|
207 |
+
name = "unknown"
|
208 |
+
return f"<{self.__class__.__name__}(owner={name})>"
|
209 |
+
|
210 |
+
|
211 |
+
#
|
212 |
+
# Recursive lock
|
213 |
+
#
|
214 |
+
|
215 |
+
|
216 |
+
class RLock(SemLock):
|
217 |
+
def __init__(self):
|
218 |
+
super().__init__(RECURSIVE_MUTEX, 1, 1)
|
219 |
+
|
220 |
+
def __repr__(self):
|
221 |
+
try:
|
222 |
+
if self._semlock._is_mine():
|
223 |
+
name = process.current_process().name
|
224 |
+
if threading.current_thread().name != "MainThread":
|
225 |
+
name = f"{name}|{threading.current_thread().name}"
|
226 |
+
count = self._semlock._count()
|
227 |
+
elif self._semlock._get_value() == 1:
|
228 |
+
name, count = "None", 0
|
229 |
+
elif self._semlock._count() > 0:
|
230 |
+
name, count = "SomeOtherThread", "nonzero"
|
231 |
+
else:
|
232 |
+
name, count = "SomeOtherProcess", "nonzero"
|
233 |
+
except Exception:
|
234 |
+
name, count = "unknown", "unknown"
|
235 |
+
return f"<{self.__class__.__name__}({name}, {count})>"
|
236 |
+
|
237 |
+
|
238 |
+
#
|
239 |
+
# Condition variable
|
240 |
+
#
|
241 |
+
|
242 |
+
|
243 |
+
class Condition:
|
244 |
+
def __init__(self, lock=None):
|
245 |
+
self._lock = lock or RLock()
|
246 |
+
self._sleeping_count = Semaphore(0)
|
247 |
+
self._woken_count = Semaphore(0)
|
248 |
+
self._wait_semaphore = Semaphore(0)
|
249 |
+
self._make_methods()
|
250 |
+
|
251 |
+
def __getstate__(self):
|
252 |
+
assert_spawning(self)
|
253 |
+
return (
|
254 |
+
self._lock,
|
255 |
+
self._sleeping_count,
|
256 |
+
self._woken_count,
|
257 |
+
self._wait_semaphore,
|
258 |
+
)
|
259 |
+
|
260 |
+
def __setstate__(self, state):
|
261 |
+
(
|
262 |
+
self._lock,
|
263 |
+
self._sleeping_count,
|
264 |
+
self._woken_count,
|
265 |
+
self._wait_semaphore,
|
266 |
+
) = state
|
267 |
+
self._make_methods()
|
268 |
+
|
269 |
+
def __enter__(self):
|
270 |
+
return self._lock.__enter__()
|
271 |
+
|
272 |
+
def __exit__(self, *args):
|
273 |
+
return self._lock.__exit__(*args)
|
274 |
+
|
275 |
+
def _make_methods(self):
|
276 |
+
self.acquire = self._lock.acquire
|
277 |
+
self.release = self._lock.release
|
278 |
+
|
279 |
+
def __repr__(self):
|
280 |
+
try:
|
281 |
+
num_waiters = (
|
282 |
+
self._sleeping_count._semlock._get_value()
|
283 |
+
- self._woken_count._semlock._get_value()
|
284 |
+
)
|
285 |
+
except Exception:
|
286 |
+
num_waiters = "unknown"
|
287 |
+
return f"<{self.__class__.__name__}({self._lock}, {num_waiters})>"
|
288 |
+
|
289 |
+
def wait(self, timeout=None):
|
290 |
+
assert (
|
291 |
+
self._lock._semlock._is_mine()
|
292 |
+
), "must acquire() condition before using wait()"
|
293 |
+
|
294 |
+
# indicate that this thread is going to sleep
|
295 |
+
self._sleeping_count.release()
|
296 |
+
|
297 |
+
# release lock
|
298 |
+
count = self._lock._semlock._count()
|
299 |
+
for _ in range(count):
|
300 |
+
self._lock.release()
|
301 |
+
|
302 |
+
try:
|
303 |
+
# wait for notification or timeout
|
304 |
+
return self._wait_semaphore.acquire(True, timeout)
|
305 |
+
finally:
|
306 |
+
# indicate that this thread has woken
|
307 |
+
self._woken_count.release()
|
308 |
+
|
309 |
+
# reacquire lock
|
310 |
+
for _ in range(count):
|
311 |
+
self._lock.acquire()
|
312 |
+
|
313 |
+
def notify(self):
|
314 |
+
assert self._lock._semlock._is_mine(), "lock is not owned"
|
315 |
+
assert not self._wait_semaphore.acquire(False)
|
316 |
+
|
317 |
+
# to take account of timeouts since last notify() we subtract
|
318 |
+
# woken_count from sleeping_count and rezero woken_count
|
319 |
+
while self._woken_count.acquire(False):
|
320 |
+
res = self._sleeping_count.acquire(False)
|
321 |
+
assert res
|
322 |
+
|
323 |
+
if self._sleeping_count.acquire(False): # try grabbing a sleeper
|
324 |
+
self._wait_semaphore.release() # wake up one sleeper
|
325 |
+
self._woken_count.acquire() # wait for the sleeper to wake
|
326 |
+
|
327 |
+
# rezero _wait_semaphore in case a timeout just happened
|
328 |
+
self._wait_semaphore.acquire(False)
|
329 |
+
|
330 |
+
def notify_all(self):
|
331 |
+
assert self._lock._semlock._is_mine(), "lock is not owned"
|
332 |
+
assert not self._wait_semaphore.acquire(False)
|
333 |
+
|
334 |
+
# to take account of timeouts since last notify*() we subtract
|
335 |
+
# woken_count from sleeping_count and rezero woken_count
|
336 |
+
while self._woken_count.acquire(False):
|
337 |
+
res = self._sleeping_count.acquire(False)
|
338 |
+
assert res
|
339 |
+
|
340 |
+
sleepers = 0
|
341 |
+
while self._sleeping_count.acquire(False):
|
342 |
+
self._wait_semaphore.release() # wake up one sleeper
|
343 |
+
sleepers += 1
|
344 |
+
|
345 |
+
if sleepers:
|
346 |
+
for _ in range(sleepers):
|
347 |
+
self._woken_count.acquire() # wait for a sleeper to wake
|
348 |
+
|
349 |
+
# rezero wait_semaphore in case some timeouts just happened
|
350 |
+
while self._wait_semaphore.acquire(False):
|
351 |
+
pass
|
352 |
+
|
353 |
+
def wait_for(self, predicate, timeout=None):
|
354 |
+
result = predicate()
|
355 |
+
if result:
|
356 |
+
return result
|
357 |
+
if timeout is not None:
|
358 |
+
endtime = _time() + timeout
|
359 |
+
else:
|
360 |
+
endtime = None
|
361 |
+
waittime = None
|
362 |
+
while not result:
|
363 |
+
if endtime is not None:
|
364 |
+
waittime = endtime - _time()
|
365 |
+
if waittime <= 0:
|
366 |
+
break
|
367 |
+
self.wait(waittime)
|
368 |
+
result = predicate()
|
369 |
+
return result
|
370 |
+
|
371 |
+
|
372 |
+
#
|
373 |
+
# Event
|
374 |
+
#
|
375 |
+
|
376 |
+
|
377 |
+
class Event:
|
378 |
+
def __init__(self):
|
379 |
+
self._cond = Condition(Lock())
|
380 |
+
self._flag = Semaphore(0)
|
381 |
+
|
382 |
+
def is_set(self):
|
383 |
+
with self._cond:
|
384 |
+
if self._flag.acquire(False):
|
385 |
+
self._flag.release()
|
386 |
+
return True
|
387 |
+
return False
|
388 |
+
|
389 |
+
def set(self):
|
390 |
+
with self._cond:
|
391 |
+
self._flag.acquire(False)
|
392 |
+
self._flag.release()
|
393 |
+
self._cond.notify_all()
|
394 |
+
|
395 |
+
def clear(self):
|
396 |
+
with self._cond:
|
397 |
+
self._flag.acquire(False)
|
398 |
+
|
399 |
+
def wait(self, timeout=None):
|
400 |
+
with self._cond:
|
401 |
+
if self._flag.acquire(False):
|
402 |
+
self._flag.release()
|
403 |
+
else:
|
404 |
+
self._cond.wait(timeout)
|
405 |
+
|
406 |
+
if self._flag.acquire(False):
|
407 |
+
self._flag.release()
|
408 |
+
return True
|
409 |
+
return False
|
llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/cloudpickle_wrapper.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from functools import partial
|
3 |
+
from joblib.externals.cloudpickle import dumps, loads
|
4 |
+
|
5 |
+
|
6 |
+
WRAP_CACHE = {}
|
7 |
+
|
8 |
+
|
9 |
+
class CloudpickledObjectWrapper:
|
10 |
+
def __init__(self, obj, keep_wrapper=False):
|
11 |
+
self._obj = obj
|
12 |
+
self._keep_wrapper = keep_wrapper
|
13 |
+
|
14 |
+
def __reduce__(self):
|
15 |
+
_pickled_object = dumps(self._obj)
|
16 |
+
if not self._keep_wrapper:
|
17 |
+
return loads, (_pickled_object,)
|
18 |
+
|
19 |
+
return _reconstruct_wrapper, (_pickled_object, self._keep_wrapper)
|
20 |
+
|
21 |
+
def __getattr__(self, attr):
|
22 |
+
# Ensure that the wrapped object can be used seemlessly as the
|
23 |
+
# previous object.
|
24 |
+
if attr not in ["_obj", "_keep_wrapper"]:
|
25 |
+
return getattr(self._obj, attr)
|
26 |
+
return getattr(self, attr)
|
27 |
+
|
28 |
+
|
29 |
+
# Make sure the wrapped object conserves the callable property
|
30 |
+
class CallableObjectWrapper(CloudpickledObjectWrapper):
|
31 |
+
def __call__(self, *args, **kwargs):
|
32 |
+
return self._obj(*args, **kwargs)
|
33 |
+
|
34 |
+
|
35 |
+
def _wrap_non_picklable_objects(obj, keep_wrapper):
|
36 |
+
if callable(obj):
|
37 |
+
return CallableObjectWrapper(obj, keep_wrapper=keep_wrapper)
|
38 |
+
return CloudpickledObjectWrapper(obj, keep_wrapper=keep_wrapper)
|
39 |
+
|
40 |
+
|
41 |
+
def _reconstruct_wrapper(_pickled_object, keep_wrapper):
|
42 |
+
obj = loads(_pickled_object)
|
43 |
+
return _wrap_non_picklable_objects(obj, keep_wrapper)
|
44 |
+
|
45 |
+
|
46 |
+
def _wrap_objects_when_needed(obj):
|
47 |
+
# Function to introspect an object and decide if it should be wrapped or
|
48 |
+
# not.
|
49 |
+
need_wrap = "__main__" in getattr(obj, "__module__", "")
|
50 |
+
if isinstance(obj, partial):
|
51 |
+
return partial(
|
52 |
+
_wrap_objects_when_needed(obj.func),
|
53 |
+
*[_wrap_objects_when_needed(a) for a in obj.args],
|
54 |
+
**{
|
55 |
+
k: _wrap_objects_when_needed(v)
|
56 |
+
for k, v in obj.keywords.items()
|
57 |
+
}
|
58 |
+
)
|
59 |
+
if callable(obj):
|
60 |
+
# Need wrap if the object is a function defined in a local scope of
|
61 |
+
# another function.
|
62 |
+
func_code = getattr(obj, "__code__", "")
|
63 |
+
need_wrap |= getattr(func_code, "co_flags", 0) & inspect.CO_NESTED
|
64 |
+
|
65 |
+
# Need wrap if the obj is a lambda expression
|
66 |
+
func_name = getattr(obj, "__name__", "")
|
67 |
+
need_wrap |= "<lambda>" in func_name
|
68 |
+
|
69 |
+
if not need_wrap:
|
70 |
+
return obj
|
71 |
+
|
72 |
+
wrapped_obj = WRAP_CACHE.get(obj)
|
73 |
+
if wrapped_obj is None:
|
74 |
+
wrapped_obj = _wrap_non_picklable_objects(obj, keep_wrapper=False)
|
75 |
+
WRAP_CACHE[obj] = wrapped_obj
|
76 |
+
return wrapped_obj
|
77 |
+
|
78 |
+
|
79 |
+
def wrap_non_picklable_objects(obj, keep_wrapper=True):
|
80 |
+
"""Wrapper for non-picklable object to use cloudpickle to serialize them.
|
81 |
+
|
82 |
+
Note that this wrapper tends to slow down the serialization process as it
|
83 |
+
is done with cloudpickle which is typically slower compared to pickle. The
|
84 |
+
proper way to solve serialization issues is to avoid defining functions and
|
85 |
+
objects in the main scripts and to implement __reduce__ functions for
|
86 |
+
complex classes.
|
87 |
+
"""
|
88 |
+
# If obj is a class, create a CloudpickledClassWrapper which instantiates
|
89 |
+
# the object internally and wrap it directly in a CloudpickledObjectWrapper
|
90 |
+
if inspect.isclass(obj):
|
91 |
+
|
92 |
+
class CloudpickledClassWrapper(CloudpickledObjectWrapper):
|
93 |
+
def __init__(self, *args, **kwargs):
|
94 |
+
self._obj = obj(*args, **kwargs)
|
95 |
+
self._keep_wrapper = keep_wrapper
|
96 |
+
|
97 |
+
CloudpickledClassWrapper.__name__ = obj.__name__
|
98 |
+
return CloudpickledClassWrapper
|
99 |
+
|
100 |
+
# If obj is an instance of a class, just wrap it in a regular
|
101 |
+
# CloudpickledObjectWrapper
|
102 |
+
return _wrap_non_picklable_objects(obj, keep_wrapper=keep_wrapper)
|
llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/initializers.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
|
4 |
+
def _viztracer_init(init_kwargs):
|
5 |
+
"""Initialize viztracer's profiler in worker processes"""
|
6 |
+
from viztracer import VizTracer
|
7 |
+
|
8 |
+
tracer = VizTracer(**init_kwargs)
|
9 |
+
tracer.register_exit()
|
10 |
+
tracer.start()
|
11 |
+
|
12 |
+
|
13 |
+
def _make_viztracer_initializer_and_initargs():
|
14 |
+
try:
|
15 |
+
import viztracer
|
16 |
+
|
17 |
+
tracer = viztracer.get_tracer()
|
18 |
+
if tracer is not None and getattr(tracer, "enable", False):
|
19 |
+
# Profiler is active: introspect its configuration to
|
20 |
+
# initialize the workers with the same configuration.
|
21 |
+
return _viztracer_init, (tracer.init_kwargs,)
|
22 |
+
except ImportError:
|
23 |
+
# viztracer is not installed: nothing to do
|
24 |
+
pass
|
25 |
+
except Exception as e:
|
26 |
+
# In case viztracer's API evolve, we do not want to crash loky but
|
27 |
+
# we want to know about it to be able to update loky.
|
28 |
+
warnings.warn(f"Unable to introspect viztracer state: {e}")
|
29 |
+
return None, ()
|
30 |
+
|
31 |
+
|
32 |
+
class _ChainedInitializer:
|
33 |
+
"""Compound worker initializer
|
34 |
+
|
35 |
+
This is meant to be used in conjunction with _chain_initializers to
|
36 |
+
produce the necessary chained_args list to be passed to __call__.
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self, initializers):
|
40 |
+
self._initializers = initializers
|
41 |
+
|
42 |
+
def __call__(self, *chained_args):
|
43 |
+
for initializer, args in zip(self._initializers, chained_args):
|
44 |
+
initializer(*args)
|
45 |
+
|
46 |
+
|
47 |
+
def _chain_initializers(initializer_and_args):
|
48 |
+
"""Convenience helper to combine a sequence of initializers.
|
49 |
+
|
50 |
+
If some initializers are None, they are filtered out.
|
51 |
+
"""
|
52 |
+
filtered_initializers = []
|
53 |
+
filtered_initargs = []
|
54 |
+
for initializer, initargs in initializer_and_args:
|
55 |
+
if initializer is not None:
|
56 |
+
filtered_initializers.append(initializer)
|
57 |
+
filtered_initargs.append(initargs)
|
58 |
+
|
59 |
+
if not filtered_initializers:
|
60 |
+
return None, ()
|
61 |
+
elif len(filtered_initializers) == 1:
|
62 |
+
return filtered_initializers[0], filtered_initargs[0]
|
63 |
+
else:
|
64 |
+
return _ChainedInitializer(filtered_initializers), filtered_initargs
|
65 |
+
|
66 |
+
|
67 |
+
def _prepare_initializer(initializer, initargs):
|
68 |
+
if initializer is not None and not callable(initializer):
|
69 |
+
raise TypeError(
|
70 |
+
f"initializer must be a callable, got: {initializer!r}"
|
71 |
+
)
|
72 |
+
|
73 |
+
# Introspect runtime to determine if we need to propagate the viztracer
|
74 |
+
# profiler information to the workers:
|
75 |
+
return _chain_initializers(
|
76 |
+
[
|
77 |
+
(initializer, initargs),
|
78 |
+
_make_viztracer_initializer_and_initargs(),
|
79 |
+
]
|
80 |
+
)
|
llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/process_executor.py
ADDED
@@ -0,0 +1,1314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
###############################################################################
|
2 |
+
# Re-implementation of the ProcessPoolExecutor more robust to faults
|
3 |
+
#
|
4 |
+
# author: Thomas Moreau and Olivier Grisel
|
5 |
+
#
|
6 |
+
# adapted from concurrent/futures/process_pool_executor.py (17/02/2017)
|
7 |
+
# * Add an extra management thread to detect executor_manager_thread failures,
|
8 |
+
# * Improve the shutdown process to avoid deadlocks,
|
9 |
+
# * Add timeout for workers,
|
10 |
+
# * More robust pickling process.
|
11 |
+
#
|
12 |
+
# Copyright 2009 Brian Quinlan. All Rights Reserved.
|
13 |
+
# Licensed to PSF under a Contributor Agreement.
|
14 |
+
|
15 |
+
"""Implements ProcessPoolExecutor.
|
16 |
+
|
17 |
+
The follow diagram and text describe the data-flow through the system:
|
18 |
+
|
19 |
+
|======================= In-process =====================|== Out-of-process ==|
|
20 |
+
|
21 |
+
+----------+ +----------+ +--------+ +-----------+ +---------+
|
22 |
+
| | => | Work Ids | | | | Call Q | | Process |
|
23 |
+
| | +----------+ | | +-----------+ | Pool |
|
24 |
+
| | | ... | | | | ... | +---------+
|
25 |
+
| | | 6 | => | | => | 5, call() | => | |
|
26 |
+
| | | 7 | | | | ... | | |
|
27 |
+
| Process | | ... | | Local | +-----------+ | Process |
|
28 |
+
| Pool | +----------+ | Worker | | #1..n |
|
29 |
+
| Executor | | Thread | | |
|
30 |
+
| | +----------- + | | +-----------+ | |
|
31 |
+
| | <=> | Work Items | <=> | | <= | Result Q | <= | |
|
32 |
+
| | +------------+ | | +-----------+ | |
|
33 |
+
| | | 6: call() | | | | ... | | |
|
34 |
+
| | | future | +--------+ | 4, result | | |
|
35 |
+
| | | ... | | 3, except | | |
|
36 |
+
+----------+ +------------+ +-----------+ +---------+
|
37 |
+
|
38 |
+
Executor.submit() called:
|
39 |
+
- creates a uniquely numbered _WorkItem and adds it to the "Work Items" dict
|
40 |
+
- adds the id of the _WorkItem to the "Work Ids" queue
|
41 |
+
|
42 |
+
Local worker thread:
|
43 |
+
- reads work ids from the "Work Ids" queue and looks up the corresponding
|
44 |
+
WorkItem from the "Work Items" dict: if the work item has been cancelled then
|
45 |
+
it is simply removed from the dict, otherwise it is repackaged as a
|
46 |
+
_CallItem and put in the "Call Q". New _CallItems are put in the "Call Q"
|
47 |
+
until "Call Q" is full. NOTE: the size of the "Call Q" is kept small because
|
48 |
+
calls placed in the "Call Q" can no longer be cancelled with Future.cancel().
|
49 |
+
- reads _ResultItems from "Result Q", updates the future stored in the
|
50 |
+
"Work Items" dict and deletes the dict entry
|
51 |
+
|
52 |
+
Process #1..n:
|
53 |
+
- reads _CallItems from "Call Q", executes the calls, and puts the resulting
|
54 |
+
_ResultItems in "Result Q"
|
55 |
+
"""
|
56 |
+
|
57 |
+
|
58 |
+
__author__ = "Thomas Moreau ([email protected])"
|
59 |
+
|
60 |
+
|
61 |
+
import os
|
62 |
+
import gc
|
63 |
+
import sys
|
64 |
+
import queue
|
65 |
+
import struct
|
66 |
+
import weakref
|
67 |
+
import warnings
|
68 |
+
import itertools
|
69 |
+
import traceback
|
70 |
+
import threading
|
71 |
+
from time import time, sleep
|
72 |
+
import multiprocessing as mp
|
73 |
+
from functools import partial
|
74 |
+
from pickle import PicklingError
|
75 |
+
from concurrent.futures import Executor
|
76 |
+
from concurrent.futures._base import LOGGER
|
77 |
+
from concurrent.futures.process import BrokenProcessPool as _BPPException
|
78 |
+
from multiprocessing.connection import wait
|
79 |
+
|
80 |
+
from ._base import Future
|
81 |
+
from .backend import get_context
|
82 |
+
from .backend.context import cpu_count, _MAX_WINDOWS_WORKERS
|
83 |
+
from .backend.queues import Queue, SimpleQueue
|
84 |
+
from .backend.reduction import set_loky_pickler, get_loky_pickler_name
|
85 |
+
from .backend.utils import kill_process_tree, get_exitcodes_terminated_worker
|
86 |
+
from .initializers import _prepare_initializer
|
87 |
+
|
88 |
+
|
89 |
+
# Mechanism to prevent infinite process spawning. When a worker of a
|
90 |
+
# ProcessPoolExecutor nested in MAX_DEPTH Executor tries to create a new
|
91 |
+
# Executor, a LokyRecursionError is raised
|
92 |
+
MAX_DEPTH = int(os.environ.get("LOKY_MAX_DEPTH", 10))
|
93 |
+
_CURRENT_DEPTH = 0
|
94 |
+
|
95 |
+
# Minimum time interval between two consecutive memory leak protection checks.
|
96 |
+
_MEMORY_LEAK_CHECK_DELAY = 1.0
|
97 |
+
|
98 |
+
# Number of bytes of memory usage allowed over the reference process size.
|
99 |
+
_MAX_MEMORY_LEAK_SIZE = int(3e8)
|
100 |
+
|
101 |
+
|
102 |
+
try:
|
103 |
+
from psutil import Process
|
104 |
+
|
105 |
+
_USE_PSUTIL = True
|
106 |
+
|
107 |
+
def _get_memory_usage(pid, force_gc=False):
|
108 |
+
if force_gc:
|
109 |
+
gc.collect()
|
110 |
+
|
111 |
+
mem_size = Process(pid).memory_info().rss
|
112 |
+
mp.util.debug(f"psutil return memory size: {mem_size}")
|
113 |
+
return mem_size
|
114 |
+
|
115 |
+
except ImportError:
|
116 |
+
_USE_PSUTIL = False
|
117 |
+
|
118 |
+
|
119 |
+
class _ThreadWakeup:
|
120 |
+
def __init__(self):
|
121 |
+
self._closed = False
|
122 |
+
self._reader, self._writer = mp.Pipe(duplex=False)
|
123 |
+
|
124 |
+
def close(self):
|
125 |
+
if not self._closed:
|
126 |
+
self._closed = True
|
127 |
+
self._writer.close()
|
128 |
+
self._reader.close()
|
129 |
+
|
130 |
+
def wakeup(self):
|
131 |
+
if not self._closed:
|
132 |
+
self._writer.send_bytes(b"")
|
133 |
+
|
134 |
+
def clear(self):
|
135 |
+
if not self._closed:
|
136 |
+
while self._reader.poll():
|
137 |
+
self._reader.recv_bytes()
|
138 |
+
|
139 |
+
|
140 |
+
class _ExecutorFlags:
|
141 |
+
"""necessary references to maintain executor states without preventing gc
|
142 |
+
|
143 |
+
It permits to keep the information needed by executor_manager_thread
|
144 |
+
and crash_detection_thread to maintain the pool without preventing the
|
145 |
+
garbage collection of unreferenced executors.
|
146 |
+
"""
|
147 |
+
|
148 |
+
def __init__(self, shutdown_lock):
|
149 |
+
|
150 |
+
self.shutdown = False
|
151 |
+
self.broken = None
|
152 |
+
self.kill_workers = False
|
153 |
+
self.shutdown_lock = shutdown_lock
|
154 |
+
|
155 |
+
def flag_as_shutting_down(self, kill_workers=None):
|
156 |
+
with self.shutdown_lock:
|
157 |
+
self.shutdown = True
|
158 |
+
if kill_workers is not None:
|
159 |
+
self.kill_workers = kill_workers
|
160 |
+
|
161 |
+
def flag_as_broken(self, broken):
|
162 |
+
with self.shutdown_lock:
|
163 |
+
self.shutdown = True
|
164 |
+
self.broken = broken
|
165 |
+
|
166 |
+
|
167 |
+
# Prior to 3.9, executor_manager_thread is created as daemon thread. This means
|
168 |
+
# that it is not joined automatically when the interpreter is shutting down.
|
169 |
+
# To work around this problem, an exit handler is installed to tell the
|
170 |
+
# thread to exit when the interpreter is shutting down and then waits until
|
171 |
+
# it finishes. The thread needs to be daemonized because the atexit hooks are
|
172 |
+
# called after all non daemonized threads are joined.
|
173 |
+
#
|
174 |
+
# Starting 3.9, there exists a specific atexit hook to be called before joining
|
175 |
+
# the threads so the executor_manager_thread does not need to be daemonized
|
176 |
+
# anymore.
|
177 |
+
#
|
178 |
+
# The atexit hooks are registered when starting the first ProcessPoolExecutor
|
179 |
+
# to avoid import having an effect on the interpreter.
|
180 |
+
|
181 |
+
_global_shutdown = False
|
182 |
+
_global_shutdown_lock = threading.Lock()
|
183 |
+
_threads_wakeups = weakref.WeakKeyDictionary()
|
184 |
+
|
185 |
+
|
186 |
+
def _python_exit():
|
187 |
+
global _global_shutdown
|
188 |
+
_global_shutdown = True
|
189 |
+
|
190 |
+
# Materialize the list of items to avoid error due to iterating over
|
191 |
+
# changing size dictionary.
|
192 |
+
items = list(_threads_wakeups.items())
|
193 |
+
if len(items) > 0:
|
194 |
+
mp.util.debug(
|
195 |
+
"Interpreter shutting down. Waking up {len(items)}"
|
196 |
+
f"executor_manager_thread:\n{items}"
|
197 |
+
)
|
198 |
+
|
199 |
+
# Wake up the executor_manager_thread's so they can detect the interpreter
|
200 |
+
# is shutting down and exit.
|
201 |
+
for _, (shutdown_lock, thread_wakeup) in items:
|
202 |
+
with shutdown_lock:
|
203 |
+
thread_wakeup.wakeup()
|
204 |
+
|
205 |
+
# Collect the executor_manager_thread's to make sure we exit cleanly.
|
206 |
+
for thread, _ in items:
|
207 |
+
# This locks is to prevent situations where an executor is gc'ed in one
|
208 |
+
# thread while the atexit finalizer is running in another thread. This
|
209 |
+
# can happen when joblib is used in pypy for instance.
|
210 |
+
with _global_shutdown_lock:
|
211 |
+
thread.join()
|
212 |
+
|
213 |
+
|
214 |
+
# With the fork context, _thread_wakeups is propagated to children.
|
215 |
+
# Clear it after fork to avoid some situation that can cause some
|
216 |
+
# freeze when joining the workers.
|
217 |
+
mp.util.register_after_fork(_threads_wakeups, lambda obj: obj.clear())
|
218 |
+
|
219 |
+
|
220 |
+
# Module variable to register the at_exit call
|
221 |
+
process_pool_executor_at_exit = None
|
222 |
+
|
223 |
+
# Controls how many more calls than processes will be queued in the call queue.
|
224 |
+
# A smaller number will mean that processes spend more time idle waiting for
|
225 |
+
# work while a larger number will make Future.cancel() succeed less frequently
|
226 |
+
# (Futures in the call queue cannot be cancelled).
|
227 |
+
EXTRA_QUEUED_CALLS = 1
|
228 |
+
|
229 |
+
|
230 |
+
class _RemoteTraceback(Exception):
|
231 |
+
"""Embed stringification of remote traceback in local traceback"""
|
232 |
+
|
233 |
+
def __init__(self, tb=None):
|
234 |
+
self.tb = f'\n"""\n{tb}"""'
|
235 |
+
|
236 |
+
def __str__(self):
|
237 |
+
return self.tb
|
238 |
+
|
239 |
+
|
240 |
+
# Do not inherit from BaseException to mirror
|
241 |
+
# concurrent.futures.process._ExceptionWithTraceback
|
242 |
+
class _ExceptionWithTraceback:
|
243 |
+
def __init__(self, exc):
|
244 |
+
tb = getattr(exc, "__traceback__", None)
|
245 |
+
if tb is None:
|
246 |
+
_, _, tb = sys.exc_info()
|
247 |
+
tb = traceback.format_exception(type(exc), exc, tb)
|
248 |
+
tb = "".join(tb)
|
249 |
+
self.exc = exc
|
250 |
+
self.tb = tb
|
251 |
+
|
252 |
+
def __reduce__(self):
|
253 |
+
return _rebuild_exc, (self.exc, self.tb)
|
254 |
+
|
255 |
+
|
256 |
+
def _rebuild_exc(exc, tb):
|
257 |
+
exc.__cause__ = _RemoteTraceback(tb)
|
258 |
+
return exc
|
259 |
+
|
260 |
+
|
261 |
+
class _WorkItem:
|
262 |
+
|
263 |
+
__slots__ = ["future", "fn", "args", "kwargs"]
|
264 |
+
|
265 |
+
def __init__(self, future, fn, args, kwargs):
|
266 |
+
self.future = future
|
267 |
+
self.fn = fn
|
268 |
+
self.args = args
|
269 |
+
self.kwargs = kwargs
|
270 |
+
|
271 |
+
|
272 |
+
class _ResultItem:
|
273 |
+
def __init__(self, work_id, exception=None, result=None):
|
274 |
+
self.work_id = work_id
|
275 |
+
self.exception = exception
|
276 |
+
self.result = result
|
277 |
+
|
278 |
+
|
279 |
+
class _CallItem:
|
280 |
+
def __init__(self, work_id, fn, args, kwargs):
|
281 |
+
self.work_id = work_id
|
282 |
+
self.fn = fn
|
283 |
+
self.args = args
|
284 |
+
self.kwargs = kwargs
|
285 |
+
|
286 |
+
# Store the current loky_pickler so it is correctly set in the worker
|
287 |
+
self.loky_pickler = get_loky_pickler_name()
|
288 |
+
|
289 |
+
def __call__(self):
|
290 |
+
set_loky_pickler(self.loky_pickler)
|
291 |
+
return self.fn(*self.args, **self.kwargs)
|
292 |
+
|
293 |
+
def __repr__(self):
|
294 |
+
return (
|
295 |
+
f"CallItem({self.work_id}, {self.fn}, {self.args}, {self.kwargs})"
|
296 |
+
)
|
297 |
+
|
298 |
+
|
299 |
+
class _SafeQueue(Queue):
|
300 |
+
"""Safe Queue set exception to the future object linked to a job"""
|
301 |
+
|
302 |
+
def __init__(
|
303 |
+
self,
|
304 |
+
max_size=0,
|
305 |
+
ctx=None,
|
306 |
+
pending_work_items=None,
|
307 |
+
running_work_items=None,
|
308 |
+
thread_wakeup=None,
|
309 |
+
reducers=None,
|
310 |
+
):
|
311 |
+
self.thread_wakeup = thread_wakeup
|
312 |
+
self.pending_work_items = pending_work_items
|
313 |
+
self.running_work_items = running_work_items
|
314 |
+
super().__init__(max_size, reducers=reducers, ctx=ctx)
|
315 |
+
|
316 |
+
def _on_queue_feeder_error(self, e, obj):
|
317 |
+
if isinstance(obj, _CallItem):
|
318 |
+
# format traceback only works on python3
|
319 |
+
if isinstance(e, struct.error):
|
320 |
+
raised_error = RuntimeError(
|
321 |
+
"The task could not be sent to the workers as it is too "
|
322 |
+
"large for `send_bytes`."
|
323 |
+
)
|
324 |
+
else:
|
325 |
+
raised_error = PicklingError(
|
326 |
+
"Could not pickle the task to send it to the workers."
|
327 |
+
)
|
328 |
+
tb = traceback.format_exception(
|
329 |
+
type(e), e, getattr(e, "__traceback__", None)
|
330 |
+
)
|
331 |
+
raised_error.__cause__ = _RemoteTraceback("".join(tb))
|
332 |
+
work_item = self.pending_work_items.pop(obj.work_id, None)
|
333 |
+
self.running_work_items.remove(obj.work_id)
|
334 |
+
# work_item can be None if another process terminated. In this
|
335 |
+
# case, the executor_manager_thread fails all work_items with
|
336 |
+
# BrokenProcessPool
|
337 |
+
if work_item is not None:
|
338 |
+
work_item.future.set_exception(raised_error)
|
339 |
+
del work_item
|
340 |
+
self.thread_wakeup.wakeup()
|
341 |
+
else:
|
342 |
+
super()._on_queue_feeder_error(e, obj)
|
343 |
+
|
344 |
+
|
345 |
+
def _get_chunks(chunksize, *iterables):
|
346 |
+
"""Iterates over zip()ed iterables in chunks."""
|
347 |
+
it = zip(*iterables)
|
348 |
+
while True:
|
349 |
+
chunk = tuple(itertools.islice(it, chunksize))
|
350 |
+
if not chunk:
|
351 |
+
return
|
352 |
+
yield chunk
|
353 |
+
|
354 |
+
|
355 |
+
def _process_chunk(fn, chunk):
|
356 |
+
"""Processes a chunk of an iterable passed to map.
|
357 |
+
|
358 |
+
Runs the function passed to map() on a chunk of the
|
359 |
+
iterable passed to map.
|
360 |
+
|
361 |
+
This function is run in a separate process.
|
362 |
+
|
363 |
+
"""
|
364 |
+
return [fn(*args) for args in chunk]
|
365 |
+
|
366 |
+
|
367 |
+
def _sendback_result(result_queue, work_id, result=None, exception=None):
|
368 |
+
"""Safely send back the given result or exception"""
|
369 |
+
try:
|
370 |
+
result_queue.put(
|
371 |
+
_ResultItem(work_id, result=result, exception=exception)
|
372 |
+
)
|
373 |
+
except BaseException as e:
|
374 |
+
exc = _ExceptionWithTraceback(e)
|
375 |
+
result_queue.put(_ResultItem(work_id, exception=exc))
|
376 |
+
|
377 |
+
|
378 |
+
def _process_worker(
|
379 |
+
call_queue,
|
380 |
+
result_queue,
|
381 |
+
initializer,
|
382 |
+
initargs,
|
383 |
+
processes_management_lock,
|
384 |
+
timeout,
|
385 |
+
worker_exit_lock,
|
386 |
+
current_depth,
|
387 |
+
):
|
388 |
+
"""Evaluates calls from call_queue and places the results in result_queue.
|
389 |
+
|
390 |
+
This worker is run in a separate process.
|
391 |
+
|
392 |
+
Args:
|
393 |
+
call_queue: A ctx.Queue of _CallItems that will be read and
|
394 |
+
evaluated by the worker.
|
395 |
+
result_queue: A ctx.Queue of _ResultItems that will written
|
396 |
+
to by the worker.
|
397 |
+
initializer: A callable initializer, or None
|
398 |
+
initargs: A tuple of args for the initializer
|
399 |
+
processes_management_lock: A ctx.Lock avoiding worker timeout while
|
400 |
+
some workers are being spawned.
|
401 |
+
timeout: maximum time to wait for a new item in the call_queue. If that
|
402 |
+
time is expired, the worker will shutdown.
|
403 |
+
worker_exit_lock: Lock to avoid flagging the executor as broken on
|
404 |
+
workers timeout.
|
405 |
+
current_depth: Nested parallelism level, to avoid infinite spawning.
|
406 |
+
"""
|
407 |
+
if initializer is not None:
|
408 |
+
try:
|
409 |
+
initializer(*initargs)
|
410 |
+
except BaseException:
|
411 |
+
LOGGER.critical("Exception in initializer:", exc_info=True)
|
412 |
+
# The parent will notice that the process stopped and
|
413 |
+
# mark the pool broken
|
414 |
+
return
|
415 |
+
|
416 |
+
# set the global _CURRENT_DEPTH mechanism to limit recursive call
|
417 |
+
global _CURRENT_DEPTH
|
418 |
+
_CURRENT_DEPTH = current_depth
|
419 |
+
_process_reference_size = None
|
420 |
+
_last_memory_leak_check = None
|
421 |
+
pid = os.getpid()
|
422 |
+
|
423 |
+
mp.util.debug(f"Worker started with timeout={timeout}")
|
424 |
+
while True:
|
425 |
+
try:
|
426 |
+
call_item = call_queue.get(block=True, timeout=timeout)
|
427 |
+
if call_item is None:
|
428 |
+
mp.util.info("Shutting down worker on sentinel")
|
429 |
+
except queue.Empty:
|
430 |
+
mp.util.info(f"Shutting down worker after timeout {timeout:0.3f}s")
|
431 |
+
if processes_management_lock.acquire(block=False):
|
432 |
+
processes_management_lock.release()
|
433 |
+
call_item = None
|
434 |
+
else:
|
435 |
+
mp.util.info("Could not acquire processes_management_lock")
|
436 |
+
continue
|
437 |
+
except BaseException:
|
438 |
+
previous_tb = traceback.format_exc()
|
439 |
+
try:
|
440 |
+
result_queue.put(_RemoteTraceback(previous_tb))
|
441 |
+
except BaseException:
|
442 |
+
# If we cannot format correctly the exception, at least print
|
443 |
+
# the traceback.
|
444 |
+
print(previous_tb)
|
445 |
+
mp.util.debug("Exiting with code 1")
|
446 |
+
sys.exit(1)
|
447 |
+
if call_item is None:
|
448 |
+
# Notify queue management thread about worker shutdown
|
449 |
+
result_queue.put(pid)
|
450 |
+
is_clean = worker_exit_lock.acquire(True, timeout=30)
|
451 |
+
|
452 |
+
# Early notify any loky executor running in this worker process
|
453 |
+
# (nested parallelism) that this process is about to shutdown to
|
454 |
+
# avoid a deadlock waiting undifinitely for the worker to finish.
|
455 |
+
_python_exit()
|
456 |
+
|
457 |
+
if is_clean:
|
458 |
+
mp.util.debug("Exited cleanly")
|
459 |
+
else:
|
460 |
+
mp.util.info("Main process did not release worker_exit")
|
461 |
+
return
|
462 |
+
try:
|
463 |
+
r = call_item()
|
464 |
+
except BaseException as e:
|
465 |
+
exc = _ExceptionWithTraceback(e)
|
466 |
+
result_queue.put(_ResultItem(call_item.work_id, exception=exc))
|
467 |
+
else:
|
468 |
+
_sendback_result(result_queue, call_item.work_id, result=r)
|
469 |
+
del r
|
470 |
+
|
471 |
+
# Free the resource as soon as possible, to avoid holding onto
|
472 |
+
# open files or shared memory that is not needed anymore
|
473 |
+
del call_item
|
474 |
+
|
475 |
+
if _USE_PSUTIL:
|
476 |
+
if _process_reference_size is None:
|
477 |
+
# Make reference measurement after the first call
|
478 |
+
_process_reference_size = _get_memory_usage(pid, force_gc=True)
|
479 |
+
_last_memory_leak_check = time()
|
480 |
+
continue
|
481 |
+
if time() - _last_memory_leak_check > _MEMORY_LEAK_CHECK_DELAY:
|
482 |
+
mem_usage = _get_memory_usage(pid)
|
483 |
+
_last_memory_leak_check = time()
|
484 |
+
if mem_usage - _process_reference_size < _MAX_MEMORY_LEAK_SIZE:
|
485 |
+
# Memory usage stays within bounds: everything is fine.
|
486 |
+
continue
|
487 |
+
|
488 |
+
# Check again memory usage; this time take the measurement
|
489 |
+
# after a forced garbage collection to break any reference
|
490 |
+
# cycles.
|
491 |
+
mem_usage = _get_memory_usage(pid, force_gc=True)
|
492 |
+
_last_memory_leak_check = time()
|
493 |
+
if mem_usage - _process_reference_size < _MAX_MEMORY_LEAK_SIZE:
|
494 |
+
# The GC managed to free the memory: everything is fine.
|
495 |
+
continue
|
496 |
+
|
497 |
+
# The process is leaking memory: let the main process
|
498 |
+
# know that we need to start a new worker.
|
499 |
+
mp.util.info("Memory leak detected: shutting down worker")
|
500 |
+
result_queue.put(pid)
|
501 |
+
with worker_exit_lock:
|
502 |
+
mp.util.debug("Exit due to memory leak")
|
503 |
+
return
|
504 |
+
else:
|
505 |
+
# if psutil is not installed, trigger gc.collect events
|
506 |
+
# regularly to limit potential memory leaks due to reference cycles
|
507 |
+
if _last_memory_leak_check is None or (
|
508 |
+
time() - _last_memory_leak_check > _MEMORY_LEAK_CHECK_DELAY
|
509 |
+
):
|
510 |
+
gc.collect()
|
511 |
+
_last_memory_leak_check = time()
|
512 |
+
|
513 |
+
|
514 |
+
class _ExecutorManagerThread(threading.Thread):
|
515 |
+
"""Manages the communication between this process and the worker processes.
|
516 |
+
|
517 |
+
The manager is run in a local thread.
|
518 |
+
|
519 |
+
Args:
|
520 |
+
executor: A reference to the ProcessPoolExecutor that owns
|
521 |
+
this thread. A weakref will be own by the manager as well as
|
522 |
+
references to internal objects used to introspect the state of
|
523 |
+
the executor.
|
524 |
+
"""
|
525 |
+
|
526 |
+
def __init__(self, executor):
|
527 |
+
# Store references to necessary internals of the executor.
|
528 |
+
|
529 |
+
# A _ThreadWakeup to allow waking up the executor_manager_thread from
|
530 |
+
# the main Thread and avoid deadlocks caused by permanently
|
531 |
+
# locked queues.
|
532 |
+
self.thread_wakeup = executor._executor_manager_thread_wakeup
|
533 |
+
self.shutdown_lock = executor._shutdown_lock
|
534 |
+
|
535 |
+
# A weakref.ref to the ProcessPoolExecutor that owns this thread. Used
|
536 |
+
# to determine if the ProcessPoolExecutor has been garbage collected
|
537 |
+
# and that the manager can exit.
|
538 |
+
# When the executor gets garbage collected, the weakref callback
|
539 |
+
# will wake up the queue management thread so that it can terminate
|
540 |
+
# if there is no pending work item.
|
541 |
+
def weakref_cb(
|
542 |
+
_,
|
543 |
+
thread_wakeup=self.thread_wakeup,
|
544 |
+
shutdown_lock=self.shutdown_lock,
|
545 |
+
):
|
546 |
+
if mp is not None:
|
547 |
+
# At this point, the multiprocessing module can already be
|
548 |
+
# garbage collected. We only log debug info when still
|
549 |
+
# possible.
|
550 |
+
mp.util.debug(
|
551 |
+
"Executor collected: triggering callback for"
|
552 |
+
" QueueManager wakeup"
|
553 |
+
)
|
554 |
+
with shutdown_lock:
|
555 |
+
thread_wakeup.wakeup()
|
556 |
+
|
557 |
+
self.executor_reference = weakref.ref(executor, weakref_cb)
|
558 |
+
|
559 |
+
# The flags of the executor
|
560 |
+
self.executor_flags = executor._flags
|
561 |
+
|
562 |
+
# A list of the ctx.Process instances used as workers.
|
563 |
+
self.processes = executor._processes
|
564 |
+
|
565 |
+
# A ctx.Queue that will be filled with _CallItems derived from
|
566 |
+
# _WorkItems for processing by the process workers.
|
567 |
+
self.call_queue = executor._call_queue
|
568 |
+
|
569 |
+
# A ctx.SimpleQueue of _ResultItems generated by the process workers.
|
570 |
+
self.result_queue = executor._result_queue
|
571 |
+
|
572 |
+
# A queue.Queue of work ids e.g. Queue([5, 6, ...]).
|
573 |
+
self.work_ids_queue = executor._work_ids
|
574 |
+
|
575 |
+
# A dict mapping work ids to _WorkItems e.g.
|
576 |
+
# {5: <_WorkItem...>, 6: <_WorkItem...>, ...}
|
577 |
+
self.pending_work_items = executor._pending_work_items
|
578 |
+
|
579 |
+
# A list of the work_ids that are currently running
|
580 |
+
self.running_work_items = executor._running_work_items
|
581 |
+
|
582 |
+
# A lock to avoid concurrent shutdown of workers on timeout and spawn
|
583 |
+
# of new processes or shut down
|
584 |
+
self.processes_management_lock = executor._processes_management_lock
|
585 |
+
|
586 |
+
super().__init__(name="ExecutorManagerThread")
|
587 |
+
if sys.version_info < (3, 9):
|
588 |
+
self.daemon = True
|
589 |
+
|
590 |
+
def run(self):
|
591 |
+
# Main loop for the executor manager thread.
|
592 |
+
|
593 |
+
while True:
|
594 |
+
self.add_call_item_to_queue()
|
595 |
+
|
596 |
+
result_item, is_broken, bpe = self.wait_result_broken_or_wakeup()
|
597 |
+
|
598 |
+
if is_broken:
|
599 |
+
self.terminate_broken(bpe)
|
600 |
+
return
|
601 |
+
if result_item is not None:
|
602 |
+
self.process_result_item(result_item)
|
603 |
+
# Delete reference to result_item to avoid keeping references
|
604 |
+
# while waiting on new results.
|
605 |
+
del result_item
|
606 |
+
|
607 |
+
if self.is_shutting_down():
|
608 |
+
self.flag_executor_shutting_down()
|
609 |
+
|
610 |
+
# Since no new work items can be added, it is safe to shutdown
|
611 |
+
# this thread if there are no pending work items.
|
612 |
+
if not self.pending_work_items:
|
613 |
+
self.join_executor_internals()
|
614 |
+
return
|
615 |
+
|
616 |
+
def add_call_item_to_queue(self):
|
617 |
+
# Fills call_queue with _WorkItems from pending_work_items.
|
618 |
+
# This function never blocks.
|
619 |
+
while True:
|
620 |
+
if self.call_queue.full():
|
621 |
+
return
|
622 |
+
try:
|
623 |
+
work_id = self.work_ids_queue.get(block=False)
|
624 |
+
except queue.Empty:
|
625 |
+
return
|
626 |
+
else:
|
627 |
+
work_item = self.pending_work_items[work_id]
|
628 |
+
|
629 |
+
if work_item.future.set_running_or_notify_cancel():
|
630 |
+
self.running_work_items += [work_id]
|
631 |
+
self.call_queue.put(
|
632 |
+
_CallItem(
|
633 |
+
work_id,
|
634 |
+
work_item.fn,
|
635 |
+
work_item.args,
|
636 |
+
work_item.kwargs,
|
637 |
+
),
|
638 |
+
block=True,
|
639 |
+
)
|
640 |
+
else:
|
641 |
+
del self.pending_work_items[work_id]
|
642 |
+
continue
|
643 |
+
|
644 |
+
def wait_result_broken_or_wakeup(self):
|
645 |
+
# Wait for a result to be ready in the result_queue while checking
|
646 |
+
# that all worker processes are still running, or for a wake up
|
647 |
+
# signal send. The wake up signals come either from new tasks being
|
648 |
+
# submitted, from the executor being shutdown/gc-ed, or from the
|
649 |
+
# shutdown of the python interpreter.
|
650 |
+
result_reader = self.result_queue._reader
|
651 |
+
wakeup_reader = self.thread_wakeup._reader
|
652 |
+
readers = [result_reader, wakeup_reader]
|
653 |
+
worker_sentinels = [p.sentinel for p in list(self.processes.values())]
|
654 |
+
ready = wait(readers + worker_sentinels)
|
655 |
+
|
656 |
+
bpe = None
|
657 |
+
is_broken = True
|
658 |
+
result_item = None
|
659 |
+
if result_reader in ready:
|
660 |
+
try:
|
661 |
+
result_item = result_reader.recv()
|
662 |
+
if isinstance(result_item, _RemoteTraceback):
|
663 |
+
bpe = BrokenProcessPool(
|
664 |
+
"A task has failed to un-serialize. Please ensure that"
|
665 |
+
" the arguments of the function are all picklable."
|
666 |
+
)
|
667 |
+
bpe.__cause__ = result_item
|
668 |
+
else:
|
669 |
+
is_broken = False
|
670 |
+
except BaseException as e:
|
671 |
+
bpe = BrokenProcessPool(
|
672 |
+
"A result has failed to un-serialize. Please ensure that "
|
673 |
+
"the objects returned by the function are always "
|
674 |
+
"picklable."
|
675 |
+
)
|
676 |
+
tb = traceback.format_exception(
|
677 |
+
type(e), e, getattr(e, "__traceback__", None)
|
678 |
+
)
|
679 |
+
bpe.__cause__ = _RemoteTraceback("".join(tb))
|
680 |
+
|
681 |
+
elif wakeup_reader in ready:
|
682 |
+
# This is simply a wake-up event that might either trigger putting
|
683 |
+
# more tasks in the queue or trigger the clean up of resources.
|
684 |
+
is_broken = False
|
685 |
+
else:
|
686 |
+
# A worker has terminated and we don't know why, set the state of
|
687 |
+
# the executor as broken
|
688 |
+
exit_codes = ""
|
689 |
+
if sys.platform != "win32":
|
690 |
+
# In Windows, introspecting terminated workers exitcodes seems
|
691 |
+
# unstable, therefore they are not appended in the exception
|
692 |
+
# message.
|
693 |
+
exit_codes = (
|
694 |
+
"\nThe exit codes of the workers are "
|
695 |
+
f"{get_exitcodes_terminated_worker(self.processes)}"
|
696 |
+
)
|
697 |
+
mp.util.debug(
|
698 |
+
"A worker unexpectedly terminated. Workers that "
|
699 |
+
"might have caused the breakage: "
|
700 |
+
+ str(
|
701 |
+
{
|
702 |
+
p.name: p.exitcode
|
703 |
+
for p in list(self.processes.values())
|
704 |
+
if p is not None and p.sentinel in ready
|
705 |
+
}
|
706 |
+
)
|
707 |
+
)
|
708 |
+
bpe = TerminatedWorkerError(
|
709 |
+
"A worker process managed by the executor was unexpectedly "
|
710 |
+
"terminated. This could be caused by a segmentation fault "
|
711 |
+
"while calling the function or by an excessive memory usage "
|
712 |
+
"causing the Operating System to kill the worker.\n"
|
713 |
+
f"{exit_codes}"
|
714 |
+
)
|
715 |
+
|
716 |
+
self.thread_wakeup.clear()
|
717 |
+
|
718 |
+
return result_item, is_broken, bpe
|
719 |
+
|
720 |
+
def process_result_item(self, result_item):
|
721 |
+
# Process the received a result_item. This can be either the PID of a
|
722 |
+
# worker that exited gracefully or a _ResultItem
|
723 |
+
|
724 |
+
if isinstance(result_item, int):
|
725 |
+
# Clean shutdown of a worker using its PID, either on request
|
726 |
+
# by the executor.shutdown method or by the timeout of the worker
|
727 |
+
# itself: we should not mark the executor as broken.
|
728 |
+
with self.processes_management_lock:
|
729 |
+
p = self.processes.pop(result_item, None)
|
730 |
+
|
731 |
+
# p can be None if the executor is concurrently shutting down.
|
732 |
+
if p is not None:
|
733 |
+
p._worker_exit_lock.release()
|
734 |
+
mp.util.debug(
|
735 |
+
f"joining {p.name} when processing {p.pid} as result_item"
|
736 |
+
)
|
737 |
+
p.join()
|
738 |
+
del p
|
739 |
+
|
740 |
+
# Make sure the executor have the right number of worker, even if a
|
741 |
+
# worker timeout while some jobs were submitted. If some work is
|
742 |
+
# pending or there is less processes than running items, we need to
|
743 |
+
# start a new Process and raise a warning.
|
744 |
+
n_pending = len(self.pending_work_items)
|
745 |
+
n_running = len(self.running_work_items)
|
746 |
+
if n_pending - n_running > 0 or n_running > len(self.processes):
|
747 |
+
executor = self.executor_reference()
|
748 |
+
if (
|
749 |
+
executor is not None
|
750 |
+
and len(self.processes) < executor._max_workers
|
751 |
+
):
|
752 |
+
warnings.warn(
|
753 |
+
"A worker stopped while some jobs were given to the "
|
754 |
+
"executor. This can be caused by a too short worker "
|
755 |
+
"timeout or by a memory leak.",
|
756 |
+
UserWarning,
|
757 |
+
)
|
758 |
+
with executor._processes_management_lock:
|
759 |
+
executor._adjust_process_count()
|
760 |
+
executor = None
|
761 |
+
else:
|
762 |
+
# Received a _ResultItem so mark the future as completed.
|
763 |
+
work_item = self.pending_work_items.pop(result_item.work_id, None)
|
764 |
+
# work_item can be None if another process terminated (see above)
|
765 |
+
if work_item is not None:
|
766 |
+
if result_item.exception:
|
767 |
+
work_item.future.set_exception(result_item.exception)
|
768 |
+
else:
|
769 |
+
work_item.future.set_result(result_item.result)
|
770 |
+
self.running_work_items.remove(result_item.work_id)
|
771 |
+
|
772 |
+
def is_shutting_down(self):
|
773 |
+
# Check whether we should start shutting down the executor.
|
774 |
+
executor = self.executor_reference()
|
775 |
+
# No more work items can be added if:
|
776 |
+
# - The interpreter is shutting down OR
|
777 |
+
# - The executor that owns this thread is not broken AND
|
778 |
+
# * The executor that owns this worker has been collected OR
|
779 |
+
# * The executor that owns this worker has been shutdown.
|
780 |
+
# If the executor is broken, it should be detected in the next loop.
|
781 |
+
return _global_shutdown or (
|
782 |
+
(executor is None or self.executor_flags.shutdown)
|
783 |
+
and not self.executor_flags.broken
|
784 |
+
)
|
785 |
+
|
786 |
+
def terminate_broken(self, bpe):
|
787 |
+
# Terminate the executor because it is in a broken state. The bpe
|
788 |
+
# argument can be used to display more information on the error that
|
789 |
+
# lead the executor into becoming broken.
|
790 |
+
|
791 |
+
# Mark the process pool broken so that submits fail right now.
|
792 |
+
self.executor_flags.flag_as_broken(bpe)
|
793 |
+
|
794 |
+
# Mark pending tasks as failed.
|
795 |
+
for work_item in self.pending_work_items.values():
|
796 |
+
work_item.future.set_exception(bpe)
|
797 |
+
# Delete references to object. See issue16284
|
798 |
+
del work_item
|
799 |
+
self.pending_work_items.clear()
|
800 |
+
|
801 |
+
# Terminate remaining workers forcibly: the queues or their
|
802 |
+
# locks may be in a dirty state and block forever.
|
803 |
+
self.kill_workers(reason="broken executor")
|
804 |
+
|
805 |
+
# clean up resources
|
806 |
+
self.join_executor_internals()
|
807 |
+
|
808 |
+
def flag_executor_shutting_down(self):
|
809 |
+
# Flag the executor as shutting down and cancel remaining tasks if
|
810 |
+
# requested as early as possible if it is not gc-ed yet.
|
811 |
+
self.executor_flags.flag_as_shutting_down()
|
812 |
+
|
813 |
+
# Cancel pending work items if requested.
|
814 |
+
if self.executor_flags.kill_workers:
|
815 |
+
while self.pending_work_items:
|
816 |
+
_, work_item = self.pending_work_items.popitem()
|
817 |
+
work_item.future.set_exception(
|
818 |
+
ShutdownExecutorError(
|
819 |
+
"The Executor was shutdown with `kill_workers=True` "
|
820 |
+
"before this job could complete."
|
821 |
+
)
|
822 |
+
)
|
823 |
+
del work_item
|
824 |
+
|
825 |
+
# Kill the remaining worker forcibly to no waste time joining them
|
826 |
+
self.kill_workers(reason="executor shutting down")
|
827 |
+
|
828 |
+
def kill_workers(self, reason=""):
|
829 |
+
# Terminate the remaining workers using SIGKILL. This function also
|
830 |
+
# terminates descendant workers of the children in case there is some
|
831 |
+
# nested parallelism.
|
832 |
+
while self.processes:
|
833 |
+
_, p = self.processes.popitem()
|
834 |
+
mp.util.debug(f"terminate process {p.name}, reason: {reason}")
|
835 |
+
try:
|
836 |
+
kill_process_tree(p)
|
837 |
+
except ProcessLookupError: # pragma: no cover
|
838 |
+
pass
|
839 |
+
|
840 |
+
def shutdown_workers(self):
|
841 |
+
# shutdown all workers in self.processes
|
842 |
+
|
843 |
+
# Create a list to avoid RuntimeError due to concurrent modification of
|
844 |
+
# processes. nb_children_alive is thus an upper bound. Also release the
|
845 |
+
# processes' _worker_exit_lock to accelerate the shutdown procedure, as
|
846 |
+
# there is no need for hand-shake here.
|
847 |
+
with self.processes_management_lock:
|
848 |
+
n_children_to_stop = 0
|
849 |
+
for p in list(self.processes.values()):
|
850 |
+
mp.util.debug(f"releasing worker exit lock on {p.name}")
|
851 |
+
p._worker_exit_lock.release()
|
852 |
+
n_children_to_stop += 1
|
853 |
+
|
854 |
+
mp.util.debug(f"found {n_children_to_stop} processes to stop")
|
855 |
+
|
856 |
+
# Send the right number of sentinels, to make sure all children are
|
857 |
+
# properly terminated. Do it with a mechanism that avoid hanging on
|
858 |
+
# Full queue when all workers have already been shutdown.
|
859 |
+
n_sentinels_sent = 0
|
860 |
+
cooldown_time = 0.001
|
861 |
+
while (
|
862 |
+
n_sentinels_sent < n_children_to_stop
|
863 |
+
and self.get_n_children_alive() > 0
|
864 |
+
):
|
865 |
+
for _ in range(n_children_to_stop - n_sentinels_sent):
|
866 |
+
try:
|
867 |
+
self.call_queue.put_nowait(None)
|
868 |
+
n_sentinels_sent += 1
|
869 |
+
except queue.Full as e:
|
870 |
+
if cooldown_time > 5.0:
|
871 |
+
mp.util.info(
|
872 |
+
"failed to send all sentinels and exit with error."
|
873 |
+
f"\ncall_queue size={self.call_queue._maxsize}; "
|
874 |
+
f" full is {self.call_queue.full()}; "
|
875 |
+
)
|
876 |
+
raise e
|
877 |
+
mp.util.info(
|
878 |
+
"full call_queue prevented to send all sentinels at "
|
879 |
+
"once, waiting..."
|
880 |
+
)
|
881 |
+
sleep(cooldown_time)
|
882 |
+
cooldown_time *= 1.2
|
883 |
+
break
|
884 |
+
|
885 |
+
mp.util.debug(f"sent {n_sentinels_sent} sentinels to the call queue")
|
886 |
+
|
887 |
+
def join_executor_internals(self):
|
888 |
+
self.shutdown_workers()
|
889 |
+
|
890 |
+
# Release the queue's resources as soon as possible. Flag the feeder
|
891 |
+
# thread for clean exit to avoid having the crash detection thread flag
|
892 |
+
# the Executor as broken during the shutdown. This is safe as either:
|
893 |
+
# * We don't need to communicate with the workers anymore
|
894 |
+
# * There is nothing left in the Queue buffer except None sentinels
|
895 |
+
mp.util.debug("closing call_queue")
|
896 |
+
self.call_queue.close()
|
897 |
+
self.call_queue.join_thread()
|
898 |
+
|
899 |
+
# Closing result_queue
|
900 |
+
mp.util.debug("closing result_queue")
|
901 |
+
self.result_queue.close()
|
902 |
+
|
903 |
+
mp.util.debug("closing thread_wakeup")
|
904 |
+
with self.shutdown_lock:
|
905 |
+
self.thread_wakeup.close()
|
906 |
+
|
907 |
+
# If .join() is not called on the created processes then
|
908 |
+
# some ctx.Queue methods may deadlock on macOS.
|
909 |
+
with self.processes_management_lock:
|
910 |
+
mp.util.debug(f"joining {len(self.processes)} processes")
|
911 |
+
n_joined_processes = 0
|
912 |
+
while True:
|
913 |
+
try:
|
914 |
+
pid, p = self.processes.popitem()
|
915 |
+
mp.util.debug(f"joining process {p.name} with pid {pid}")
|
916 |
+
p.join()
|
917 |
+
n_joined_processes += 1
|
918 |
+
except KeyError:
|
919 |
+
break
|
920 |
+
|
921 |
+
mp.util.debug(
|
922 |
+
"executor management thread clean shutdown of "
|
923 |
+
f"{n_joined_processes} workers"
|
924 |
+
)
|
925 |
+
|
926 |
+
def get_n_children_alive(self):
|
927 |
+
# This is an upper bound on the number of children alive.
|
928 |
+
with self.processes_management_lock:
|
929 |
+
return sum(p.is_alive() for p in list(self.processes.values()))
|
930 |
+
|
931 |
+
|
932 |
+
_system_limits_checked = False
|
933 |
+
_system_limited = None
|
934 |
+
|
935 |
+
|
936 |
+
def _check_system_limits():
|
937 |
+
global _system_limits_checked, _system_limited
|
938 |
+
if _system_limits_checked and _system_limited:
|
939 |
+
raise NotImplementedError(_system_limited)
|
940 |
+
_system_limits_checked = True
|
941 |
+
try:
|
942 |
+
nsems_max = os.sysconf("SC_SEM_NSEMS_MAX")
|
943 |
+
except (AttributeError, ValueError):
|
944 |
+
# sysconf not available or setting not available
|
945 |
+
return
|
946 |
+
if nsems_max == -1:
|
947 |
+
# undetermined limit, assume that limit is determined
|
948 |
+
# by available memory only
|
949 |
+
return
|
950 |
+
if nsems_max >= 256:
|
951 |
+
# minimum number of semaphores available
|
952 |
+
# according to POSIX
|
953 |
+
return
|
954 |
+
_system_limited = (
|
955 |
+
f"system provides too few semaphores ({nsems_max} available, "
|
956 |
+
"256 necessary)"
|
957 |
+
)
|
958 |
+
raise NotImplementedError(_system_limited)
|
959 |
+
|
960 |
+
|
961 |
+
def _chain_from_iterable_of_lists(iterable):
|
962 |
+
"""
|
963 |
+
Specialized implementation of itertools.chain.from_iterable.
|
964 |
+
Each item in *iterable* should be a list. This function is
|
965 |
+
careful not to keep references to yielded objects.
|
966 |
+
"""
|
967 |
+
for element in iterable:
|
968 |
+
element.reverse()
|
969 |
+
while element:
|
970 |
+
yield element.pop()
|
971 |
+
|
972 |
+
|
973 |
+
def _check_max_depth(context):
|
974 |
+
# Limit the maxmal recursion level
|
975 |
+
global _CURRENT_DEPTH
|
976 |
+
if context.get_start_method() == "fork" and _CURRENT_DEPTH > 0:
|
977 |
+
raise LokyRecursionError(
|
978 |
+
"Could not spawn extra nested processes at depth superior to "
|
979 |
+
"MAX_DEPTH=1. It is not possible to increase this limit when "
|
980 |
+
"using the 'fork' start method."
|
981 |
+
)
|
982 |
+
|
983 |
+
if 0 < MAX_DEPTH and _CURRENT_DEPTH + 1 > MAX_DEPTH:
|
984 |
+
raise LokyRecursionError(
|
985 |
+
"Could not spawn extra nested processes at depth superior to "
|
986 |
+
f"MAX_DEPTH={MAX_DEPTH}. If this is intendend, you can change "
|
987 |
+
"this limit with the LOKY_MAX_DEPTH environment variable."
|
988 |
+
)
|
989 |
+
|
990 |
+
|
991 |
+
class LokyRecursionError(RuntimeError):
|
992 |
+
"""A process tries to spawn too many levels of nested processes."""
|
993 |
+
|
994 |
+
|
995 |
+
class BrokenProcessPool(_BPPException):
|
996 |
+
"""
|
997 |
+
Raised when the executor is broken while a future was in the running state.
|
998 |
+
The cause can an error raised when unpickling the task in the worker
|
999 |
+
process or when unpickling the result value in the parent process. It can
|
1000 |
+
also be caused by a worker process being terminated unexpectedly.
|
1001 |
+
"""
|
1002 |
+
|
1003 |
+
|
1004 |
+
class TerminatedWorkerError(BrokenProcessPool):
|
1005 |
+
"""
|
1006 |
+
Raised when a process in a ProcessPoolExecutor terminated abruptly
|
1007 |
+
while a future was in the running state.
|
1008 |
+
"""
|
1009 |
+
|
1010 |
+
|
1011 |
+
# Alias for backward compat (for code written for loky 1.1.4 and earlier). Do
|
1012 |
+
# not use in new code.
|
1013 |
+
BrokenExecutor = BrokenProcessPool
|
1014 |
+
|
1015 |
+
|
1016 |
+
class ShutdownExecutorError(RuntimeError):
|
1017 |
+
|
1018 |
+
"""
|
1019 |
+
Raised when a ProcessPoolExecutor is shutdown while a future was in the
|
1020 |
+
running or pending state.
|
1021 |
+
"""
|
1022 |
+
|
1023 |
+
|
1024 |
+
class ProcessPoolExecutor(Executor):
|
1025 |
+
|
1026 |
+
_at_exit = None
|
1027 |
+
|
1028 |
+
def __init__(
|
1029 |
+
self,
|
1030 |
+
max_workers=None,
|
1031 |
+
job_reducers=None,
|
1032 |
+
result_reducers=None,
|
1033 |
+
timeout=None,
|
1034 |
+
context=None,
|
1035 |
+
initializer=None,
|
1036 |
+
initargs=(),
|
1037 |
+
env=None,
|
1038 |
+
):
|
1039 |
+
"""Initializes a new ProcessPoolExecutor instance.
|
1040 |
+
|
1041 |
+
Args:
|
1042 |
+
max_workers: int, optional (default: cpu_count())
|
1043 |
+
The maximum number of processes that can be used to execute the
|
1044 |
+
given calls. If None or not given then as many worker processes
|
1045 |
+
will be created as the number of CPUs the current process
|
1046 |
+
can use.
|
1047 |
+
job_reducers, result_reducers: dict(type: reducer_func)
|
1048 |
+
Custom reducer for pickling the jobs and the results from the
|
1049 |
+
Executor. If only `job_reducers` is provided, `result_reducer`
|
1050 |
+
will use the same reducers
|
1051 |
+
timeout: int, optional (default: None)
|
1052 |
+
Idle workers exit after timeout seconds. If a new job is
|
1053 |
+
submitted after the timeout, the executor will start enough
|
1054 |
+
new Python processes to make sure the pool of workers is full.
|
1055 |
+
context: A multiprocessing context to launch the workers. This
|
1056 |
+
object should provide SimpleQueue, Queue and Process.
|
1057 |
+
initializer: An callable used to initialize worker processes.
|
1058 |
+
initargs: A tuple of arguments to pass to the initializer.
|
1059 |
+
env: A dict of environment variable to overwrite in the child
|
1060 |
+
process. The environment variables are set before any module is
|
1061 |
+
loaded. Note that this only works with the loky context.
|
1062 |
+
"""
|
1063 |
+
_check_system_limits()
|
1064 |
+
|
1065 |
+
if max_workers is None:
|
1066 |
+
self._max_workers = cpu_count()
|
1067 |
+
else:
|
1068 |
+
if max_workers <= 0:
|
1069 |
+
raise ValueError("max_workers must be greater than 0")
|
1070 |
+
self._max_workers = max_workers
|
1071 |
+
|
1072 |
+
if (
|
1073 |
+
sys.platform == "win32"
|
1074 |
+
and self._max_workers > _MAX_WINDOWS_WORKERS
|
1075 |
+
):
|
1076 |
+
warnings.warn(
|
1077 |
+
f"On Windows, max_workers cannot exceed {_MAX_WINDOWS_WORKERS} "
|
1078 |
+
"due to limitations of the operating system."
|
1079 |
+
)
|
1080 |
+
self._max_workers = _MAX_WINDOWS_WORKERS
|
1081 |
+
|
1082 |
+
if context is None:
|
1083 |
+
context = get_context()
|
1084 |
+
self._context = context
|
1085 |
+
self._env = env
|
1086 |
+
|
1087 |
+
self._initializer, self._initargs = _prepare_initializer(
|
1088 |
+
initializer, initargs
|
1089 |
+
)
|
1090 |
+
_check_max_depth(self._context)
|
1091 |
+
|
1092 |
+
if result_reducers is None:
|
1093 |
+
result_reducers = job_reducers
|
1094 |
+
|
1095 |
+
# Timeout
|
1096 |
+
self._timeout = timeout
|
1097 |
+
|
1098 |
+
# Management thread
|
1099 |
+
self._executor_manager_thread = None
|
1100 |
+
|
1101 |
+
# Map of pids to processes
|
1102 |
+
self._processes = {}
|
1103 |
+
|
1104 |
+
# Internal variables of the ProcessPoolExecutor
|
1105 |
+
self._processes = {}
|
1106 |
+
self._queue_count = 0
|
1107 |
+
self._pending_work_items = {}
|
1108 |
+
self._running_work_items = []
|
1109 |
+
self._work_ids = queue.Queue()
|
1110 |
+
self._processes_management_lock = self._context.Lock()
|
1111 |
+
self._executor_manager_thread = None
|
1112 |
+
self._shutdown_lock = threading.Lock()
|
1113 |
+
|
1114 |
+
# _ThreadWakeup is a communication channel used to interrupt the wait
|
1115 |
+
# of the main loop of executor_manager_thread from another thread (e.g.
|
1116 |
+
# when calling executor.submit or executor.shutdown). We do not use the
|
1117 |
+
# _result_queue to send wakeup signals to the executor_manager_thread
|
1118 |
+
# as it could result in a deadlock if a worker process dies with the
|
1119 |
+
# _result_queue write lock still acquired.
|
1120 |
+
#
|
1121 |
+
# _shutdown_lock must be locked to access _ThreadWakeup.wakeup.
|
1122 |
+
self._executor_manager_thread_wakeup = _ThreadWakeup()
|
1123 |
+
|
1124 |
+
# Flag to hold the state of the Executor. This permits to introspect
|
1125 |
+
# the Executor state even once it has been garbage collected.
|
1126 |
+
self._flags = _ExecutorFlags(self._shutdown_lock)
|
1127 |
+
|
1128 |
+
# Finally setup the queues for interprocess communication
|
1129 |
+
self._setup_queues(job_reducers, result_reducers)
|
1130 |
+
|
1131 |
+
mp.util.debug("ProcessPoolExecutor is setup")
|
1132 |
+
|
1133 |
+
def _setup_queues(self, job_reducers, result_reducers, queue_size=None):
|
1134 |
+
# Make the call queue slightly larger than the number of processes to
|
1135 |
+
# prevent the worker processes from idling. But don't make it too big
|
1136 |
+
# because futures in the call queue cannot be cancelled.
|
1137 |
+
if queue_size is None:
|
1138 |
+
queue_size = 2 * self._max_workers + EXTRA_QUEUED_CALLS
|
1139 |
+
self._call_queue = _SafeQueue(
|
1140 |
+
max_size=queue_size,
|
1141 |
+
pending_work_items=self._pending_work_items,
|
1142 |
+
running_work_items=self._running_work_items,
|
1143 |
+
thread_wakeup=self._executor_manager_thread_wakeup,
|
1144 |
+
reducers=job_reducers,
|
1145 |
+
ctx=self._context,
|
1146 |
+
)
|
1147 |
+
# Killed worker processes can produce spurious "broken pipe"
|
1148 |
+
# tracebacks in the queue's own worker thread. But we detect killed
|
1149 |
+
# processes anyway, so silence the tracebacks.
|
1150 |
+
self._call_queue._ignore_epipe = True
|
1151 |
+
|
1152 |
+
self._result_queue = SimpleQueue(
|
1153 |
+
reducers=result_reducers, ctx=self._context
|
1154 |
+
)
|
1155 |
+
|
1156 |
+
def _start_executor_manager_thread(self):
|
1157 |
+
if self._executor_manager_thread is None:
|
1158 |
+
mp.util.debug("_start_executor_manager_thread called")
|
1159 |
+
|
1160 |
+
# Start the processes so that their sentinels are known.
|
1161 |
+
self._executor_manager_thread = _ExecutorManagerThread(self)
|
1162 |
+
self._executor_manager_thread.start()
|
1163 |
+
|
1164 |
+
# register this executor in a mechanism that ensures it will wakeup
|
1165 |
+
# when the interpreter is exiting.
|
1166 |
+
_threads_wakeups[self._executor_manager_thread] = (
|
1167 |
+
self._shutdown_lock,
|
1168 |
+
self._executor_manager_thread_wakeup,
|
1169 |
+
)
|
1170 |
+
|
1171 |
+
global process_pool_executor_at_exit
|
1172 |
+
if process_pool_executor_at_exit is None:
|
1173 |
+
# Ensure that the _python_exit function will be called before
|
1174 |
+
# the multiprocessing.Queue._close finalizers which have an
|
1175 |
+
# exitpriority of 10.
|
1176 |
+
|
1177 |
+
if sys.version_info < (3, 9):
|
1178 |
+
process_pool_executor_at_exit = mp.util.Finalize(
|
1179 |
+
None, _python_exit, exitpriority=20
|
1180 |
+
)
|
1181 |
+
else:
|
1182 |
+
process_pool_executor_at_exit = threading._register_atexit(
|
1183 |
+
_python_exit
|
1184 |
+
)
|
1185 |
+
|
1186 |
+
def _adjust_process_count(self):
|
1187 |
+
while len(self._processes) < self._max_workers:
|
1188 |
+
worker_exit_lock = self._context.BoundedSemaphore(1)
|
1189 |
+
args = (
|
1190 |
+
self._call_queue,
|
1191 |
+
self._result_queue,
|
1192 |
+
self._initializer,
|
1193 |
+
self._initargs,
|
1194 |
+
self._processes_management_lock,
|
1195 |
+
self._timeout,
|
1196 |
+
worker_exit_lock,
|
1197 |
+
_CURRENT_DEPTH + 1,
|
1198 |
+
)
|
1199 |
+
worker_exit_lock.acquire()
|
1200 |
+
try:
|
1201 |
+
# Try to spawn the process with some environment variable to
|
1202 |
+
# overwrite but it only works with the loky context for now.
|
1203 |
+
p = self._context.Process(
|
1204 |
+
target=_process_worker, args=args, env=self._env
|
1205 |
+
)
|
1206 |
+
except TypeError:
|
1207 |
+
p = self._context.Process(target=_process_worker, args=args)
|
1208 |
+
p._worker_exit_lock = worker_exit_lock
|
1209 |
+
p.start()
|
1210 |
+
self._processes[p.pid] = p
|
1211 |
+
mp.util.debug(
|
1212 |
+
f"Adjusted process count to {self._max_workers}: "
|
1213 |
+
f"{[(p.name, pid) for pid, p in self._processes.items()]}"
|
1214 |
+
)
|
1215 |
+
|
1216 |
+
def _ensure_executor_running(self):
|
1217 |
+
"""ensures all workers and management thread are running"""
|
1218 |
+
with self._processes_management_lock:
|
1219 |
+
if len(self._processes) != self._max_workers:
|
1220 |
+
self._adjust_process_count()
|
1221 |
+
self._start_executor_manager_thread()
|
1222 |
+
|
1223 |
+
def submit(self, fn, *args, **kwargs):
|
1224 |
+
with self._flags.shutdown_lock:
|
1225 |
+
if self._flags.broken is not None:
|
1226 |
+
raise self._flags.broken
|
1227 |
+
if self._flags.shutdown:
|
1228 |
+
raise ShutdownExecutorError(
|
1229 |
+
"cannot schedule new futures after shutdown"
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
# Cannot submit a new calls once the interpreter is shutting down.
|
1233 |
+
# This check avoids spawning new processes at exit.
|
1234 |
+
if _global_shutdown:
|
1235 |
+
raise RuntimeError(
|
1236 |
+
"cannot schedule new futures after " "interpreter shutdown"
|
1237 |
+
)
|
1238 |
+
|
1239 |
+
f = Future()
|
1240 |
+
w = _WorkItem(f, fn, args, kwargs)
|
1241 |
+
|
1242 |
+
self._pending_work_items[self._queue_count] = w
|
1243 |
+
self._work_ids.put(self._queue_count)
|
1244 |
+
self._queue_count += 1
|
1245 |
+
# Wake up queue management thread
|
1246 |
+
self._executor_manager_thread_wakeup.wakeup()
|
1247 |
+
|
1248 |
+
self._ensure_executor_running()
|
1249 |
+
return f
|
1250 |
+
|
1251 |
+
submit.__doc__ = Executor.submit.__doc__
|
1252 |
+
|
1253 |
+
def map(self, fn, *iterables, **kwargs):
|
1254 |
+
"""Returns an iterator equivalent to map(fn, iter).
|
1255 |
+
|
1256 |
+
Args:
|
1257 |
+
fn: A callable that will take as many arguments as there are
|
1258 |
+
passed iterables.
|
1259 |
+
timeout: The maximum number of seconds to wait. If None, then there
|
1260 |
+
is no limit on the wait time.
|
1261 |
+
chunksize: If greater than one, the iterables will be chopped into
|
1262 |
+
chunks of size chunksize and submitted to the process pool.
|
1263 |
+
If set to one, the items in the list will be sent one at a
|
1264 |
+
time.
|
1265 |
+
|
1266 |
+
Returns:
|
1267 |
+
An iterator equivalent to: map(func, *iterables) but the calls may
|
1268 |
+
be evaluated out-of-order.
|
1269 |
+
|
1270 |
+
Raises:
|
1271 |
+
TimeoutError: If the entire result iterator could not be generated
|
1272 |
+
before the given timeout.
|
1273 |
+
Exception: If fn(*args) raises for any values.
|
1274 |
+
"""
|
1275 |
+
timeout = kwargs.get("timeout", None)
|
1276 |
+
chunksize = kwargs.get("chunksize", 1)
|
1277 |
+
if chunksize < 1:
|
1278 |
+
raise ValueError("chunksize must be >= 1.")
|
1279 |
+
|
1280 |
+
results = super().map(
|
1281 |
+
partial(_process_chunk, fn),
|
1282 |
+
_get_chunks(chunksize, *iterables),
|
1283 |
+
timeout=timeout,
|
1284 |
+
)
|
1285 |
+
return _chain_from_iterable_of_lists(results)
|
1286 |
+
|
1287 |
+
def shutdown(self, wait=True, kill_workers=False):
|
1288 |
+
mp.util.debug(f"shutting down executor {self}")
|
1289 |
+
|
1290 |
+
self._flags.flag_as_shutting_down(kill_workers)
|
1291 |
+
executor_manager_thread = self._executor_manager_thread
|
1292 |
+
executor_manager_thread_wakeup = self._executor_manager_thread_wakeup
|
1293 |
+
|
1294 |
+
if executor_manager_thread_wakeup is not None:
|
1295 |
+
# Wake up queue management thread
|
1296 |
+
with self._shutdown_lock:
|
1297 |
+
self._executor_manager_thread_wakeup.wakeup()
|
1298 |
+
|
1299 |
+
if executor_manager_thread is not None and wait:
|
1300 |
+
# This locks avoids concurrent join if the interpreter
|
1301 |
+
# is shutting down.
|
1302 |
+
with _global_shutdown_lock:
|
1303 |
+
executor_manager_thread.join()
|
1304 |
+
_threads_wakeups.pop(executor_manager_thread, None)
|
1305 |
+
|
1306 |
+
# To reduce the risk of opening too many files, remove references to
|
1307 |
+
# objects that use file descriptors.
|
1308 |
+
self._executor_manager_thread = None
|
1309 |
+
self._executor_manager_thread_wakeup = None
|
1310 |
+
self._call_queue = None
|
1311 |
+
self._result_queue = None
|
1312 |
+
self._processes_management_lock = None
|
1313 |
+
|
1314 |
+
shutdown.__doc__ = Executor.shutdown.__doc__
|
llmeval-env/lib/python3.10/site-packages/joblib/externals/loky/reusable_executor.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
###############################################################################
|
2 |
+
# Reusable ProcessPoolExecutor
|
3 |
+
#
|
4 |
+
# author: Thomas Moreau and Olivier Grisel
|
5 |
+
#
|
6 |
+
import time
|
7 |
+
import warnings
|
8 |
+
import threading
|
9 |
+
import multiprocessing as mp
|
10 |
+
|
11 |
+
from .process_executor import ProcessPoolExecutor, EXTRA_QUEUED_CALLS
|
12 |
+
from .backend.context import cpu_count
|
13 |
+
from .backend import get_context
|
14 |
+
|
15 |
+
__all__ = ["get_reusable_executor"]
|
16 |
+
|
17 |
+
# Singleton executor and id management
|
18 |
+
_executor_lock = threading.RLock()
|
19 |
+
_next_executor_id = 0
|
20 |
+
_executor = None
|
21 |
+
_executor_kwargs = None
|
22 |
+
|
23 |
+
|
24 |
+
def _get_next_executor_id():
|
25 |
+
"""Ensure that each successive executor instance has a unique, monotonic id.
|
26 |
+
|
27 |
+
The purpose of this monotonic id is to help debug and test automated
|
28 |
+
instance creation.
|
29 |
+
"""
|
30 |
+
global _next_executor_id
|
31 |
+
with _executor_lock:
|
32 |
+
executor_id = _next_executor_id
|
33 |
+
_next_executor_id += 1
|
34 |
+
return executor_id
|
35 |
+
|
36 |
+
|
37 |
+
def get_reusable_executor(
|
38 |
+
max_workers=None,
|
39 |
+
context=None,
|
40 |
+
timeout=10,
|
41 |
+
kill_workers=False,
|
42 |
+
reuse="auto",
|
43 |
+
job_reducers=None,
|
44 |
+
result_reducers=None,
|
45 |
+
initializer=None,
|
46 |
+
initargs=(),
|
47 |
+
env=None,
|
48 |
+
):
|
49 |
+
"""Return the current ReusableExectutor instance.
|
50 |
+
|
51 |
+
Start a new instance if it has not been started already or if the previous
|
52 |
+
instance was left in a broken state.
|
53 |
+
|
54 |
+
If the previous instance does not have the requested number of workers, the
|
55 |
+
executor is dynamically resized to adjust the number of workers prior to
|
56 |
+
returning.
|
57 |
+
|
58 |
+
Reusing a singleton instance spares the overhead of starting new worker
|
59 |
+
processes and importing common python packages each time.
|
60 |
+
|
61 |
+
``max_workers`` controls the maximum number of tasks that can be running in
|
62 |
+
parallel in worker processes. By default this is set to the number of
|
63 |
+
CPUs on the host.
|
64 |
+
|
65 |
+
Setting ``timeout`` (in seconds) makes idle workers automatically shutdown
|
66 |
+
so as to release system resources. New workers are respawn upon submission
|
67 |
+
of new tasks so that ``max_workers`` are available to accept the newly
|
68 |
+
submitted tasks. Setting ``timeout`` to around 100 times the time required
|
69 |
+
to spawn new processes and import packages in them (on the order of 100ms)
|
70 |
+
ensures that the overhead of spawning workers is negligible.
|
71 |
+
|
72 |
+
Setting ``kill_workers=True`` makes it possible to forcibly interrupt
|
73 |
+
previously spawned jobs to get a new instance of the reusable executor
|
74 |
+
with new constructor argument values.
|
75 |
+
|
76 |
+
The ``job_reducers`` and ``result_reducers`` are used to customize the
|
77 |
+
pickling of tasks and results send to the executor.
|
78 |
+
|
79 |
+
When provided, the ``initializer`` is run first in newly spawned
|
80 |
+
processes with argument ``initargs``.
|
81 |
+
|
82 |
+
The environment variable in the child process are a copy of the values in
|
83 |
+
the main process. One can provide a dict ``{ENV: VAL}`` where ``ENV`` and
|
84 |
+
``VAL`` are string literals to overwrite the environment variable ``ENV``
|
85 |
+
in the child processes to value ``VAL``. The environment variables are set
|
86 |
+
in the children before any module is loaded. This only works with the
|
87 |
+
``loky`` context.
|
88 |
+
"""
|
89 |
+
_executor, _ = _ReusablePoolExecutor.get_reusable_executor(
|
90 |
+
max_workers=max_workers,
|
91 |
+
context=context,
|
92 |
+
timeout=timeout,
|
93 |
+
kill_workers=kill_workers,
|
94 |
+
reuse=reuse,
|
95 |
+
job_reducers=job_reducers,
|
96 |
+
result_reducers=result_reducers,
|
97 |
+
initializer=initializer,
|
98 |
+
initargs=initargs,
|
99 |
+
env=env,
|
100 |
+
)
|
101 |
+
return _executor
|
102 |
+
|
103 |
+
|
104 |
+
class _ReusablePoolExecutor(ProcessPoolExecutor):
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
submit_resize_lock,
|
108 |
+
max_workers=None,
|
109 |
+
context=None,
|
110 |
+
timeout=None,
|
111 |
+
executor_id=0,
|
112 |
+
job_reducers=None,
|
113 |
+
result_reducers=None,
|
114 |
+
initializer=None,
|
115 |
+
initargs=(),
|
116 |
+
env=None,
|
117 |
+
):
|
118 |
+
super().__init__(
|
119 |
+
max_workers=max_workers,
|
120 |
+
context=context,
|
121 |
+
timeout=timeout,
|
122 |
+
job_reducers=job_reducers,
|
123 |
+
result_reducers=result_reducers,
|
124 |
+
initializer=initializer,
|
125 |
+
initargs=initargs,
|
126 |
+
env=env,
|
127 |
+
)
|
128 |
+
self.executor_id = executor_id
|
129 |
+
self._submit_resize_lock = submit_resize_lock
|
130 |
+
|
131 |
+
@classmethod
|
132 |
+
def get_reusable_executor(
|
133 |
+
cls,
|
134 |
+
max_workers=None,
|
135 |
+
context=None,
|
136 |
+
timeout=10,
|
137 |
+
kill_workers=False,
|
138 |
+
reuse="auto",
|
139 |
+
job_reducers=None,
|
140 |
+
result_reducers=None,
|
141 |
+
initializer=None,
|
142 |
+
initargs=(),
|
143 |
+
env=None,
|
144 |
+
):
|
145 |
+
with _executor_lock:
|
146 |
+
global _executor, _executor_kwargs
|
147 |
+
executor = _executor
|
148 |
+
|
149 |
+
if max_workers is None:
|
150 |
+
if reuse is True and executor is not None:
|
151 |
+
max_workers = executor._max_workers
|
152 |
+
else:
|
153 |
+
max_workers = cpu_count()
|
154 |
+
elif max_workers <= 0:
|
155 |
+
raise ValueError(
|
156 |
+
f"max_workers must be greater than 0, got {max_workers}."
|
157 |
+
)
|
158 |
+
|
159 |
+
if isinstance(context, str):
|
160 |
+
context = get_context(context)
|
161 |
+
if context is not None and context.get_start_method() == "fork":
|
162 |
+
raise ValueError(
|
163 |
+
"Cannot use reusable executor with the 'fork' context"
|
164 |
+
)
|
165 |
+
|
166 |
+
kwargs = dict(
|
167 |
+
context=context,
|
168 |
+
timeout=timeout,
|
169 |
+
job_reducers=job_reducers,
|
170 |
+
result_reducers=result_reducers,
|
171 |
+
initializer=initializer,
|
172 |
+
initargs=initargs,
|
173 |
+
env=env,
|
174 |
+
)
|
175 |
+
if executor is None:
|
176 |
+
is_reused = False
|
177 |
+
mp.util.debug(
|
178 |
+
f"Create a executor with max_workers={max_workers}."
|
179 |
+
)
|
180 |
+
executor_id = _get_next_executor_id()
|
181 |
+
_executor_kwargs = kwargs
|
182 |
+
_executor = executor = cls(
|
183 |
+
_executor_lock,
|
184 |
+
max_workers=max_workers,
|
185 |
+
executor_id=executor_id,
|
186 |
+
**kwargs,
|
187 |
+
)
|
188 |
+
else:
|
189 |
+
if reuse == "auto":
|
190 |
+
reuse = kwargs == _executor_kwargs
|
191 |
+
if (
|
192 |
+
executor._flags.broken
|
193 |
+
or executor._flags.shutdown
|
194 |
+
or not reuse
|
195 |
+
):
|
196 |
+
if executor._flags.broken:
|
197 |
+
reason = "broken"
|
198 |
+
elif executor._flags.shutdown:
|
199 |
+
reason = "shutdown"
|
200 |
+
else:
|
201 |
+
reason = "arguments have changed"
|
202 |
+
mp.util.debug(
|
203 |
+
"Creating a new executor with max_workers="
|
204 |
+
f"{max_workers} as the previous instance cannot be "
|
205 |
+
f"reused ({reason})."
|
206 |
+
)
|
207 |
+
executor.shutdown(wait=True, kill_workers=kill_workers)
|
208 |
+
_executor = executor = _executor_kwargs = None
|
209 |
+
# Recursive call to build a new instance
|
210 |
+
return cls.get_reusable_executor(
|
211 |
+
max_workers=max_workers, **kwargs
|
212 |
+
)
|
213 |
+
else:
|
214 |
+
mp.util.debug(
|
215 |
+
"Reusing existing executor with "
|
216 |
+
f"max_workers={executor._max_workers}."
|
217 |
+
)
|
218 |
+
is_reused = True
|
219 |
+
executor._resize(max_workers)
|
220 |
+
|
221 |
+
return executor, is_reused
|
222 |
+
|
223 |
+
def submit(self, fn, *args, **kwargs):
|
224 |
+
with self._submit_resize_lock:
|
225 |
+
return super().submit(fn, *args, **kwargs)
|
226 |
+
|
227 |
+
def _resize(self, max_workers):
|
228 |
+
with self._submit_resize_lock:
|
229 |
+
if max_workers is None:
|
230 |
+
raise ValueError("Trying to resize with max_workers=None")
|
231 |
+
elif max_workers == self._max_workers:
|
232 |
+
return
|
233 |
+
|
234 |
+
if self._executor_manager_thread is None:
|
235 |
+
# If the executor_manager_thread has not been started
|
236 |
+
# then no processes have been spawned and we can just
|
237 |
+
# update _max_workers and return
|
238 |
+
self._max_workers = max_workers
|
239 |
+
return
|
240 |
+
|
241 |
+
self._wait_job_completion()
|
242 |
+
|
243 |
+
# Some process might have returned due to timeout so check how many
|
244 |
+
# children are still alive. Use the _process_management_lock to
|
245 |
+
# ensure that no process are spawned or timeout during the resize.
|
246 |
+
with self._processes_management_lock:
|
247 |
+
processes = list(self._processes.values())
|
248 |
+
nb_children_alive = sum(p.is_alive() for p in processes)
|
249 |
+
self._max_workers = max_workers
|
250 |
+
for _ in range(max_workers, nb_children_alive):
|
251 |
+
self._call_queue.put(None)
|
252 |
+
while (
|
253 |
+
len(self._processes) > max_workers and not self._flags.broken
|
254 |
+
):
|
255 |
+
time.sleep(1e-3)
|
256 |
+
|
257 |
+
self._adjust_process_count()
|
258 |
+
processes = list(self._processes.values())
|
259 |
+
while not all(p.is_alive() for p in processes):
|
260 |
+
time.sleep(1e-3)
|
261 |
+
|
262 |
+
def _wait_job_completion(self):
|
263 |
+
"""Wait for the cache to be empty before resizing the pool."""
|
264 |
+
# Issue a warning to the user about the bad effect of this usage.
|
265 |
+
if self._pending_work_items:
|
266 |
+
warnings.warn(
|
267 |
+
"Trying to resize an executor with running jobs: "
|
268 |
+
"waiting for jobs completion before resizing.",
|
269 |
+
UserWarning,
|
270 |
+
)
|
271 |
+
mp.util.debug(
|
272 |
+
f"Executor {self.executor_id} waiting for jobs completion "
|
273 |
+
"before resizing"
|
274 |
+
)
|
275 |
+
# Wait for the completion of the jobs
|
276 |
+
while self._pending_work_items:
|
277 |
+
time.sleep(1e-3)
|
278 |
+
|
279 |
+
def _setup_queues(self, job_reducers, result_reducers):
|
280 |
+
# As this executor can be resized, use a large queue size to avoid
|
281 |
+
# underestimating capacity and introducing overhead
|
282 |
+
queue_size = 2 * cpu_count() + EXTRA_QUEUED_CALLS
|
283 |
+
super()._setup_queues(
|
284 |
+
job_reducers, result_reducers, queue_size=queue_size
|
285 |
+
)
|
llmeval-env/lib/python3.10/site-packages/joblib/func_inspect.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
My own variation on function-specific inspect-like features.
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
|
6 |
+
# Copyright (c) 2009 Gael Varoquaux
|
7 |
+
# License: BSD Style, 3 clauses.
|
8 |
+
|
9 |
+
import inspect
|
10 |
+
import warnings
|
11 |
+
import re
|
12 |
+
import os
|
13 |
+
import collections
|
14 |
+
|
15 |
+
from itertools import islice
|
16 |
+
from tokenize import open as open_py_source
|
17 |
+
|
18 |
+
from .logger import pformat
|
19 |
+
|
20 |
+
full_argspec_fields = ('args varargs varkw defaults kwonlyargs '
|
21 |
+
'kwonlydefaults annotations')
|
22 |
+
full_argspec_type = collections.namedtuple('FullArgSpec', full_argspec_fields)
|
23 |
+
|
24 |
+
|
25 |
+
def get_func_code(func):
|
26 |
+
""" Attempts to retrieve a reliable function code hash.
|
27 |
+
|
28 |
+
The reason we don't use inspect.getsource is that it caches the
|
29 |
+
source, whereas we want this to be modified on the fly when the
|
30 |
+
function is modified.
|
31 |
+
|
32 |
+
Returns
|
33 |
+
-------
|
34 |
+
func_code: string
|
35 |
+
The function code
|
36 |
+
source_file: string
|
37 |
+
The path to the file in which the function is defined.
|
38 |
+
first_line: int
|
39 |
+
The first line of the code in the source file.
|
40 |
+
|
41 |
+
Notes
|
42 |
+
------
|
43 |
+
This function does a bit more magic than inspect, and is thus
|
44 |
+
more robust.
|
45 |
+
"""
|
46 |
+
source_file = None
|
47 |
+
try:
|
48 |
+
code = func.__code__
|
49 |
+
source_file = code.co_filename
|
50 |
+
if not os.path.exists(source_file):
|
51 |
+
# Use inspect for lambda functions and functions defined in an
|
52 |
+
# interactive shell, or in doctests
|
53 |
+
source_code = ''.join(inspect.getsourcelines(func)[0])
|
54 |
+
line_no = 1
|
55 |
+
if source_file.startswith('<doctest '):
|
56 |
+
source_file, line_no = re.match(
|
57 |
+
r'\<doctest (.*\.rst)\[(.*)\]\>', source_file).groups()
|
58 |
+
line_no = int(line_no)
|
59 |
+
source_file = '<doctest %s>' % source_file
|
60 |
+
return source_code, source_file, line_no
|
61 |
+
# Try to retrieve the source code.
|
62 |
+
with open_py_source(source_file) as source_file_obj:
|
63 |
+
first_line = code.co_firstlineno
|
64 |
+
# All the lines after the function definition:
|
65 |
+
source_lines = list(islice(source_file_obj, first_line - 1, None))
|
66 |
+
return ''.join(inspect.getblock(source_lines)), source_file, first_line
|
67 |
+
except: # noqa: E722
|
68 |
+
# If the source code fails, we use the hash. This is fragile and
|
69 |
+
# might change from one session to another.
|
70 |
+
if hasattr(func, '__code__'):
|
71 |
+
# Python 3.X
|
72 |
+
return str(func.__code__.__hash__()), source_file, -1
|
73 |
+
else:
|
74 |
+
# Weird objects like numpy ufunc don't have __code__
|
75 |
+
# This is fragile, as quite often the id of the object is
|
76 |
+
# in the repr, so it might not persist across sessions,
|
77 |
+
# however it will work for ufuncs.
|
78 |
+
return repr(func), source_file, -1
|
79 |
+
|
80 |
+
|
81 |
+
def _clean_win_chars(string):
|
82 |
+
"""Windows cannot encode some characters in filename."""
|
83 |
+
import urllib
|
84 |
+
if hasattr(urllib, 'quote'):
|
85 |
+
quote = urllib.quote
|
86 |
+
else:
|
87 |
+
# In Python 3, quote is elsewhere
|
88 |
+
import urllib.parse
|
89 |
+
quote = urllib.parse.quote
|
90 |
+
for char in ('<', '>', '!', ':', '\\'):
|
91 |
+
string = string.replace(char, quote(char))
|
92 |
+
return string
|
93 |
+
|
94 |
+
|
95 |
+
def get_func_name(func, resolv_alias=True, win_characters=True):
|
96 |
+
""" Return the function import path (as a list of module names), and
|
97 |
+
a name for the function.
|
98 |
+
|
99 |
+
Parameters
|
100 |
+
----------
|
101 |
+
func: callable
|
102 |
+
The func to inspect
|
103 |
+
resolv_alias: boolean, optional
|
104 |
+
If true, possible local aliases are indicated.
|
105 |
+
win_characters: boolean, optional
|
106 |
+
If true, substitute special characters using urllib.quote
|
107 |
+
This is useful in Windows, as it cannot encode some filenames
|
108 |
+
"""
|
109 |
+
if hasattr(func, '__module__'):
|
110 |
+
module = func.__module__
|
111 |
+
else:
|
112 |
+
try:
|
113 |
+
module = inspect.getmodule(func)
|
114 |
+
except TypeError:
|
115 |
+
if hasattr(func, '__class__'):
|
116 |
+
module = func.__class__.__module__
|
117 |
+
else:
|
118 |
+
module = 'unknown'
|
119 |
+
if module is None:
|
120 |
+
# Happens in doctests, eg
|
121 |
+
module = ''
|
122 |
+
if module == '__main__':
|
123 |
+
try:
|
124 |
+
filename = os.path.abspath(inspect.getsourcefile(func))
|
125 |
+
except: # noqa: E722
|
126 |
+
filename = None
|
127 |
+
if filename is not None:
|
128 |
+
# mangling of full path to filename
|
129 |
+
parts = filename.split(os.sep)
|
130 |
+
if parts[-1].startswith('<ipython-input'):
|
131 |
+
# We're in a IPython (or notebook) session. parts[-1] comes
|
132 |
+
# from func.__code__.co_filename and is of the form
|
133 |
+
# <ipython-input-N-XYZ>, where:
|
134 |
+
# - N is the cell number where the function was defined
|
135 |
+
# - XYZ is a hash representing the function's code (and name).
|
136 |
+
# It will be consistent across sessions and kernel restarts,
|
137 |
+
# and will change if the function's code/name changes
|
138 |
+
# We remove N so that cache is properly hit if the cell where
|
139 |
+
# the func is defined is re-exectuted.
|
140 |
+
# The XYZ hash should avoid collisions between functions with
|
141 |
+
# the same name, both within the same notebook but also across
|
142 |
+
# notebooks
|
143 |
+
splitted = parts[-1].split('-')
|
144 |
+
parts[-1] = '-'.join(splitted[:2] + splitted[3:])
|
145 |
+
elif len(parts) > 2 and parts[-2].startswith('ipykernel_'):
|
146 |
+
# In a notebook session (ipykernel). Filename seems to be 'xyz'
|
147 |
+
# of above. parts[-2] has the structure ipykernel_XXXXXX where
|
148 |
+
# XXXXXX is a six-digit number identifying the current run (?).
|
149 |
+
# If we split it off, the function again has the same
|
150 |
+
# identifier across runs.
|
151 |
+
parts[-2] = 'ipykernel'
|
152 |
+
filename = '-'.join(parts)
|
153 |
+
if filename.endswith('.py'):
|
154 |
+
filename = filename[:-3]
|
155 |
+
module = module + '-' + filename
|
156 |
+
module = module.split('.')
|
157 |
+
if hasattr(func, 'func_name'):
|
158 |
+
name = func.func_name
|
159 |
+
elif hasattr(func, '__name__'):
|
160 |
+
name = func.__name__
|
161 |
+
else:
|
162 |
+
name = 'unknown'
|
163 |
+
# Hack to detect functions not defined at the module-level
|
164 |
+
if resolv_alias:
|
165 |
+
# TODO: Maybe add a warning here?
|
166 |
+
if hasattr(func, 'func_globals') and name in func.func_globals:
|
167 |
+
if not func.func_globals[name] is func:
|
168 |
+
name = '%s-alias' % name
|
169 |
+
if hasattr(func, '__qualname__') and func.__qualname__ != name:
|
170 |
+
# Extend the module name in case of nested functions to avoid
|
171 |
+
# (module, name) collisions
|
172 |
+
module.extend(func.__qualname__.split(".")[:-1])
|
173 |
+
if inspect.ismethod(func):
|
174 |
+
# We need to add the name of the class
|
175 |
+
if hasattr(func, 'im_class'):
|
176 |
+
klass = func.im_class
|
177 |
+
module.append(klass.__name__)
|
178 |
+
if os.name == 'nt' and win_characters:
|
179 |
+
# Windows can't encode certain characters in filenames
|
180 |
+
name = _clean_win_chars(name)
|
181 |
+
module = [_clean_win_chars(s) for s in module]
|
182 |
+
return module, name
|
183 |
+
|
184 |
+
|
185 |
+
def _signature_str(function_name, arg_sig):
|
186 |
+
"""Helper function to output a function signature"""
|
187 |
+
return '{}{}'.format(function_name, arg_sig)
|
188 |
+
|
189 |
+
|
190 |
+
def _function_called_str(function_name, args, kwargs):
|
191 |
+
"""Helper function to output a function call"""
|
192 |
+
template_str = '{0}({1}, {2})'
|
193 |
+
|
194 |
+
args_str = repr(args)[1:-1]
|
195 |
+
kwargs_str = ', '.join('%s=%s' % (k, v)
|
196 |
+
for k, v in kwargs.items())
|
197 |
+
return template_str.format(function_name, args_str,
|
198 |
+
kwargs_str)
|
199 |
+
|
200 |
+
|
201 |
+
def filter_args(func, ignore_lst, args=(), kwargs=dict()):
|
202 |
+
""" Filters the given args and kwargs using a list of arguments to
|
203 |
+
ignore, and a function specification.
|
204 |
+
|
205 |
+
Parameters
|
206 |
+
----------
|
207 |
+
func: callable
|
208 |
+
Function giving the argument specification
|
209 |
+
ignore_lst: list of strings
|
210 |
+
List of arguments to ignore (either a name of an argument
|
211 |
+
in the function spec, or '*', or '**')
|
212 |
+
*args: list
|
213 |
+
Positional arguments passed to the function.
|
214 |
+
**kwargs: dict
|
215 |
+
Keyword arguments passed to the function
|
216 |
+
|
217 |
+
Returns
|
218 |
+
-------
|
219 |
+
filtered_args: list
|
220 |
+
List of filtered positional and keyword arguments.
|
221 |
+
"""
|
222 |
+
args = list(args)
|
223 |
+
if isinstance(ignore_lst, str):
|
224 |
+
# Catch a common mistake
|
225 |
+
raise ValueError(
|
226 |
+
'ignore_lst must be a list of parameters to ignore '
|
227 |
+
'%s (type %s) was given' % (ignore_lst, type(ignore_lst)))
|
228 |
+
# Special case for functools.partial objects
|
229 |
+
if (not inspect.ismethod(func) and not inspect.isfunction(func)):
|
230 |
+
if ignore_lst:
|
231 |
+
warnings.warn('Cannot inspect object %s, ignore list will '
|
232 |
+
'not work.' % func, stacklevel=2)
|
233 |
+
return {'*': args, '**': kwargs}
|
234 |
+
arg_sig = inspect.signature(func)
|
235 |
+
arg_names = []
|
236 |
+
arg_defaults = []
|
237 |
+
arg_kwonlyargs = []
|
238 |
+
arg_varargs = None
|
239 |
+
arg_varkw = None
|
240 |
+
for param in arg_sig.parameters.values():
|
241 |
+
if param.kind is param.POSITIONAL_OR_KEYWORD:
|
242 |
+
arg_names.append(param.name)
|
243 |
+
elif param.kind is param.KEYWORD_ONLY:
|
244 |
+
arg_names.append(param.name)
|
245 |
+
arg_kwonlyargs.append(param.name)
|
246 |
+
elif param.kind is param.VAR_POSITIONAL:
|
247 |
+
arg_varargs = param.name
|
248 |
+
elif param.kind is param.VAR_KEYWORD:
|
249 |
+
arg_varkw = param.name
|
250 |
+
if param.default is not param.empty:
|
251 |
+
arg_defaults.append(param.default)
|
252 |
+
if inspect.ismethod(func):
|
253 |
+
# First argument is 'self', it has been removed by Python
|
254 |
+
# we need to add it back:
|
255 |
+
args = [func.__self__, ] + args
|
256 |
+
# func is an instance method, inspect.signature(func) does not
|
257 |
+
# include self, we need to fetch it from the class method, i.e
|
258 |
+
# func.__func__
|
259 |
+
class_method_sig = inspect.signature(func.__func__)
|
260 |
+
self_name = next(iter(class_method_sig.parameters))
|
261 |
+
arg_names = [self_name] + arg_names
|
262 |
+
# XXX: Maybe I need an inspect.isbuiltin to detect C-level methods, such
|
263 |
+
# as on ndarrays.
|
264 |
+
|
265 |
+
_, name = get_func_name(func, resolv_alias=False)
|
266 |
+
arg_dict = dict()
|
267 |
+
arg_position = -1
|
268 |
+
for arg_position, arg_name in enumerate(arg_names):
|
269 |
+
if arg_position < len(args):
|
270 |
+
# Positional argument or keyword argument given as positional
|
271 |
+
if arg_name not in arg_kwonlyargs:
|
272 |
+
arg_dict[arg_name] = args[arg_position]
|
273 |
+
else:
|
274 |
+
raise ValueError(
|
275 |
+
"Keyword-only parameter '%s' was passed as "
|
276 |
+
'positional parameter for %s:\n'
|
277 |
+
' %s was called.'
|
278 |
+
% (arg_name,
|
279 |
+
_signature_str(name, arg_sig),
|
280 |
+
_function_called_str(name, args, kwargs))
|
281 |
+
)
|
282 |
+
|
283 |
+
else:
|
284 |
+
position = arg_position - len(arg_names)
|
285 |
+
if arg_name in kwargs:
|
286 |
+
arg_dict[arg_name] = kwargs[arg_name]
|
287 |
+
else:
|
288 |
+
try:
|
289 |
+
arg_dict[arg_name] = arg_defaults[position]
|
290 |
+
except (IndexError, KeyError) as e:
|
291 |
+
# Missing argument
|
292 |
+
raise ValueError(
|
293 |
+
'Wrong number of arguments for %s:\n'
|
294 |
+
' %s was called.'
|
295 |
+
% (_signature_str(name, arg_sig),
|
296 |
+
_function_called_str(name, args, kwargs))
|
297 |
+
) from e
|
298 |
+
|
299 |
+
varkwargs = dict()
|
300 |
+
for arg_name, arg_value in sorted(kwargs.items()):
|
301 |
+
if arg_name in arg_dict:
|
302 |
+
arg_dict[arg_name] = arg_value
|
303 |
+
elif arg_varkw is not None:
|
304 |
+
varkwargs[arg_name] = arg_value
|
305 |
+
else:
|
306 |
+
raise TypeError("Ignore list for %s() contains an unexpected "
|
307 |
+
"keyword argument '%s'" % (name, arg_name))
|
308 |
+
|
309 |
+
if arg_varkw is not None:
|
310 |
+
arg_dict['**'] = varkwargs
|
311 |
+
if arg_varargs is not None:
|
312 |
+
varargs = args[arg_position + 1:]
|
313 |
+
arg_dict['*'] = varargs
|
314 |
+
|
315 |
+
# Now remove the arguments to be ignored
|
316 |
+
for item in ignore_lst:
|
317 |
+
if item in arg_dict:
|
318 |
+
arg_dict.pop(item)
|
319 |
+
else:
|
320 |
+
raise ValueError("Ignore list: argument '%s' is not defined for "
|
321 |
+
"function %s"
|
322 |
+
% (item,
|
323 |
+
_signature_str(name, arg_sig))
|
324 |
+
)
|
325 |
+
# XXX: Return a sorted list of pairs?
|
326 |
+
return arg_dict
|
327 |
+
|
328 |
+
|
329 |
+
def _format_arg(arg):
|
330 |
+
formatted_arg = pformat(arg, indent=2)
|
331 |
+
if len(formatted_arg) > 1500:
|
332 |
+
formatted_arg = '%s...' % formatted_arg[:700]
|
333 |
+
return formatted_arg
|
334 |
+
|
335 |
+
|
336 |
+
def format_signature(func, *args, **kwargs):
|
337 |
+
# XXX: Should this use inspect.formatargvalues/formatargspec?
|
338 |
+
module, name = get_func_name(func)
|
339 |
+
module = [m for m in module if m]
|
340 |
+
if module:
|
341 |
+
module.append(name)
|
342 |
+
module_path = '.'.join(module)
|
343 |
+
else:
|
344 |
+
module_path = name
|
345 |
+
arg_str = list()
|
346 |
+
previous_length = 0
|
347 |
+
for arg in args:
|
348 |
+
formatted_arg = _format_arg(arg)
|
349 |
+
if previous_length > 80:
|
350 |
+
formatted_arg = '\n%s' % formatted_arg
|
351 |
+
previous_length = len(formatted_arg)
|
352 |
+
arg_str.append(formatted_arg)
|
353 |
+
arg_str.extend(['%s=%s' % (v, _format_arg(i)) for v, i in kwargs.items()])
|
354 |
+
arg_str = ', '.join(arg_str)
|
355 |
+
|
356 |
+
signature = '%s(%s)' % (name, arg_str)
|
357 |
+
return module_path, signature
|
358 |
+
|
359 |
+
|
360 |
+
def format_call(func, args, kwargs, object_name="Memory"):
|
361 |
+
""" Returns a nicely formatted statement displaying the function
|
362 |
+
call with the given arguments.
|
363 |
+
"""
|
364 |
+
path, signature = format_signature(func, *args, **kwargs)
|
365 |
+
msg = '%s\n[%s] Calling %s...\n%s' % (80 * '_', object_name,
|
366 |
+
path, signature)
|
367 |
+
return msg
|
368 |
+
# XXX: Not using logging framework
|
369 |
+
# self.debug(msg)
|
llmeval-env/lib/python3.10/site-packages/joblib/logger.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Helpers for logging.
|
3 |
+
|
4 |
+
This module needs much love to become useful.
|
5 |
+
"""
|
6 |
+
|
7 |
+
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
|
8 |
+
# Copyright (c) 2008 Gael Varoquaux
|
9 |
+
# License: BSD Style, 3 clauses.
|
10 |
+
|
11 |
+
from __future__ import print_function
|
12 |
+
|
13 |
+
import time
|
14 |
+
import sys
|
15 |
+
import os
|
16 |
+
import shutil
|
17 |
+
import logging
|
18 |
+
import pprint
|
19 |
+
|
20 |
+
from .disk import mkdirp
|
21 |
+
|
22 |
+
|
23 |
+
def _squeeze_time(t):
|
24 |
+
"""Remove .1s to the time under Windows: this is the time it take to
|
25 |
+
stat files. This is needed to make results similar to timings under
|
26 |
+
Unix, for tests
|
27 |
+
"""
|
28 |
+
if sys.platform.startswith('win'):
|
29 |
+
return max(0, t - .1)
|
30 |
+
else:
|
31 |
+
return t
|
32 |
+
|
33 |
+
|
34 |
+
def format_time(t):
|
35 |
+
t = _squeeze_time(t)
|
36 |
+
return "%.1fs, %.1fmin" % (t, t / 60.)
|
37 |
+
|
38 |
+
|
39 |
+
def short_format_time(t):
|
40 |
+
t = _squeeze_time(t)
|
41 |
+
if t > 60:
|
42 |
+
return "%4.1fmin" % (t / 60.)
|
43 |
+
else:
|
44 |
+
return " %5.1fs" % (t)
|
45 |
+
|
46 |
+
|
47 |
+
def pformat(obj, indent=0, depth=3):
|
48 |
+
if 'numpy' in sys.modules:
|
49 |
+
import numpy as np
|
50 |
+
print_options = np.get_printoptions()
|
51 |
+
np.set_printoptions(precision=6, threshold=64, edgeitems=1)
|
52 |
+
else:
|
53 |
+
print_options = None
|
54 |
+
out = pprint.pformat(obj, depth=depth, indent=indent)
|
55 |
+
if print_options:
|
56 |
+
np.set_printoptions(**print_options)
|
57 |
+
return out
|
58 |
+
|
59 |
+
|
60 |
+
###############################################################################
|
61 |
+
# class `Logger`
|
62 |
+
###############################################################################
|
63 |
+
class Logger(object):
|
64 |
+
""" Base class for logging messages.
|
65 |
+
"""
|
66 |
+
|
67 |
+
def __init__(self, depth=3, name=None):
|
68 |
+
"""
|
69 |
+
Parameters
|
70 |
+
----------
|
71 |
+
depth: int, optional
|
72 |
+
The depth of objects printed.
|
73 |
+
name: str, optional
|
74 |
+
The namespace to log to. If None, defaults to joblib.
|
75 |
+
"""
|
76 |
+
self.depth = depth
|
77 |
+
self._name = name if name else 'joblib'
|
78 |
+
|
79 |
+
def warn(self, msg):
|
80 |
+
logging.getLogger(self._name).warning("[%s]: %s" % (self, msg))
|
81 |
+
|
82 |
+
def info(self, msg):
|
83 |
+
logging.info("[%s]: %s" % (self, msg))
|
84 |
+
|
85 |
+
def debug(self, msg):
|
86 |
+
# XXX: This conflicts with the debug flag used in children class
|
87 |
+
logging.getLogger(self._name).debug("[%s]: %s" % (self, msg))
|
88 |
+
|
89 |
+
def format(self, obj, indent=0):
|
90 |
+
"""Return the formatted representation of the object."""
|
91 |
+
return pformat(obj, indent=indent, depth=self.depth)
|
92 |
+
|
93 |
+
|
94 |
+
###############################################################################
|
95 |
+
# class `PrintTime`
|
96 |
+
###############################################################################
|
97 |
+
class PrintTime(object):
|
98 |
+
""" Print and log messages while keeping track of time.
|
99 |
+
"""
|
100 |
+
|
101 |
+
def __init__(self, logfile=None, logdir=None):
|
102 |
+
if logfile is not None and logdir is not None:
|
103 |
+
raise ValueError('Cannot specify both logfile and logdir')
|
104 |
+
# XXX: Need argument docstring
|
105 |
+
self.last_time = time.time()
|
106 |
+
self.start_time = self.last_time
|
107 |
+
if logdir is not None:
|
108 |
+
logfile = os.path.join(logdir, 'joblib.log')
|
109 |
+
self.logfile = logfile
|
110 |
+
if logfile is not None:
|
111 |
+
mkdirp(os.path.dirname(logfile))
|
112 |
+
if os.path.exists(logfile):
|
113 |
+
# Rotate the logs
|
114 |
+
for i in range(1, 9):
|
115 |
+
try:
|
116 |
+
shutil.move(logfile + '.%i' % i,
|
117 |
+
logfile + '.%i' % (i + 1))
|
118 |
+
except: # noqa: E722
|
119 |
+
"No reason failing here"
|
120 |
+
# Use a copy rather than a move, so that a process
|
121 |
+
# monitoring this file does not get lost.
|
122 |
+
try:
|
123 |
+
shutil.copy(logfile, logfile + '.1')
|
124 |
+
except: # noqa: E722
|
125 |
+
"No reason failing here"
|
126 |
+
try:
|
127 |
+
with open(logfile, 'w') as logfile:
|
128 |
+
logfile.write('\nLogging joblib python script\n')
|
129 |
+
logfile.write('\n---%s---\n' % time.ctime(self.last_time))
|
130 |
+
except: # noqa: E722
|
131 |
+
""" Multiprocessing writing to files can create race
|
132 |
+
conditions. Rather fail silently than crash the
|
133 |
+
computation.
|
134 |
+
"""
|
135 |
+
# XXX: We actually need a debug flag to disable this
|
136 |
+
# silent failure.
|
137 |
+
|
138 |
+
def __call__(self, msg='', total=False):
|
139 |
+
""" Print the time elapsed between the last call and the current
|
140 |
+
call, with an optional message.
|
141 |
+
"""
|
142 |
+
if not total:
|
143 |
+
time_lapse = time.time() - self.last_time
|
144 |
+
full_msg = "%s: %s" % (msg, format_time(time_lapse))
|
145 |
+
else:
|
146 |
+
# FIXME: Too much logic duplicated
|
147 |
+
time_lapse = time.time() - self.start_time
|
148 |
+
full_msg = "%s: %.2fs, %.1f min" % (msg, time_lapse,
|
149 |
+
time_lapse / 60)
|
150 |
+
print(full_msg, file=sys.stderr)
|
151 |
+
if self.logfile is not None:
|
152 |
+
try:
|
153 |
+
with open(self.logfile, 'a') as f:
|
154 |
+
print(full_msg, file=f)
|
155 |
+
except: # noqa: E722
|
156 |
+
""" Multiprocessing writing to files can create race
|
157 |
+
conditions. Rather fail silently than crash the
|
158 |
+
calculation.
|
159 |
+
"""
|
160 |
+
# XXX: We actually need a debug flag to disable this
|
161 |
+
# silent failure.
|
162 |
+
self.last_time = time.time()
|
llmeval-env/lib/python3.10/site-packages/joblib/memory.py
ADDED
@@ -0,0 +1,1172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A context object for caching a function's return value each time it
|
3 |
+
is called with the same input arguments.
|
4 |
+
|
5 |
+
"""
|
6 |
+
|
7 |
+
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
|
8 |
+
# Copyright (c) 2009 Gael Varoquaux
|
9 |
+
# License: BSD Style, 3 clauses.
|
10 |
+
|
11 |
+
|
12 |
+
import asyncio
|
13 |
+
import datetime
|
14 |
+
import functools
|
15 |
+
import inspect
|
16 |
+
import logging
|
17 |
+
import os
|
18 |
+
import pathlib
|
19 |
+
import pydoc
|
20 |
+
import re
|
21 |
+
import textwrap
|
22 |
+
import time
|
23 |
+
import tokenize
|
24 |
+
import traceback
|
25 |
+
import warnings
|
26 |
+
import weakref
|
27 |
+
|
28 |
+
from . import hashing
|
29 |
+
from ._store_backends import CacheWarning # noqa
|
30 |
+
from ._store_backends import FileSystemStoreBackend, StoreBackendBase
|
31 |
+
from .func_inspect import (filter_args, format_call, format_signature,
|
32 |
+
get_func_code, get_func_name)
|
33 |
+
from .logger import Logger, format_time, pformat
|
34 |
+
|
35 |
+
FIRST_LINE_TEXT = "# first line:"
|
36 |
+
|
37 |
+
# TODO: The following object should have a data store object as a sub
|
38 |
+
# object, and the interface to persist and query should be separated in
|
39 |
+
# the data store.
|
40 |
+
#
|
41 |
+
# This would enable creating 'Memory' objects with a different logic for
|
42 |
+
# pickling that would simply span a MemorizedFunc with the same
|
43 |
+
# store (or do we want to copy it to avoid cross-talks?), for instance to
|
44 |
+
# implement HDF5 pickling.
|
45 |
+
|
46 |
+
# TODO: Same remark for the logger, and probably use the Python logging
|
47 |
+
# mechanism.
|
48 |
+
|
49 |
+
|
50 |
+
def extract_first_line(func_code):
|
51 |
+
""" Extract the first line information from the function code
|
52 |
+
text if available.
|
53 |
+
"""
|
54 |
+
if func_code.startswith(FIRST_LINE_TEXT):
|
55 |
+
func_code = func_code.split('\n')
|
56 |
+
first_line = int(func_code[0][len(FIRST_LINE_TEXT):])
|
57 |
+
func_code = '\n'.join(func_code[1:])
|
58 |
+
else:
|
59 |
+
first_line = -1
|
60 |
+
return func_code, first_line
|
61 |
+
|
62 |
+
|
63 |
+
class JobLibCollisionWarning(UserWarning):
|
64 |
+
""" Warn that there might be a collision between names of functions.
|
65 |
+
"""
|
66 |
+
|
67 |
+
|
68 |
+
_STORE_BACKENDS = {'local': FileSystemStoreBackend}
|
69 |
+
|
70 |
+
|
71 |
+
def register_store_backend(backend_name, backend):
|
72 |
+
"""Extend available store backends.
|
73 |
+
|
74 |
+
The Memory, MemorizeResult and MemorizeFunc objects are designed to be
|
75 |
+
agnostic to the type of store used behind. By default, the local file
|
76 |
+
system is used but this function gives the possibility to extend joblib's
|
77 |
+
memory pattern with other types of storage such as cloud storage (S3, GCS,
|
78 |
+
OpenStack, HadoopFS, etc) or blob DBs.
|
79 |
+
|
80 |
+
Parameters
|
81 |
+
----------
|
82 |
+
backend_name: str
|
83 |
+
The name identifying the store backend being registered. For example,
|
84 |
+
'local' is used with FileSystemStoreBackend.
|
85 |
+
backend: StoreBackendBase subclass
|
86 |
+
The name of a class that implements the StoreBackendBase interface.
|
87 |
+
|
88 |
+
"""
|
89 |
+
if not isinstance(backend_name, str):
|
90 |
+
raise ValueError("Store backend name should be a string, "
|
91 |
+
"'{0}' given.".format(backend_name))
|
92 |
+
if backend is None or not issubclass(backend, StoreBackendBase):
|
93 |
+
raise ValueError("Store backend should inherit "
|
94 |
+
"StoreBackendBase, "
|
95 |
+
"'{0}' given.".format(backend))
|
96 |
+
|
97 |
+
_STORE_BACKENDS[backend_name] = backend
|
98 |
+
|
99 |
+
|
100 |
+
def _store_backend_factory(backend, location, verbose=0, backend_options=None):
|
101 |
+
"""Return the correct store object for the given location."""
|
102 |
+
if backend_options is None:
|
103 |
+
backend_options = {}
|
104 |
+
|
105 |
+
if isinstance(location, pathlib.Path):
|
106 |
+
location = str(location)
|
107 |
+
|
108 |
+
if isinstance(location, StoreBackendBase):
|
109 |
+
return location
|
110 |
+
elif isinstance(location, str):
|
111 |
+
obj = None
|
112 |
+
location = os.path.expanduser(location)
|
113 |
+
# The location is not a local file system, we look in the
|
114 |
+
# registered backends if there's one matching the given backend
|
115 |
+
# name.
|
116 |
+
for backend_key, backend_obj in _STORE_BACKENDS.items():
|
117 |
+
if backend == backend_key:
|
118 |
+
obj = backend_obj()
|
119 |
+
|
120 |
+
# By default, we assume the FileSystemStoreBackend can be used if no
|
121 |
+
# matching backend could be found.
|
122 |
+
if obj is None:
|
123 |
+
raise TypeError('Unknown location {0} or backend {1}'.format(
|
124 |
+
location, backend))
|
125 |
+
|
126 |
+
# The store backend is configured with the extra named parameters,
|
127 |
+
# some of them are specific to the underlying store backend.
|
128 |
+
obj.configure(location, verbose=verbose,
|
129 |
+
backend_options=backend_options)
|
130 |
+
return obj
|
131 |
+
elif location is not None:
|
132 |
+
warnings.warn(
|
133 |
+
"Instantiating a backend using a {} as a location is not "
|
134 |
+
"supported by joblib. Returning None instead.".format(
|
135 |
+
location.__class__.__name__), UserWarning)
|
136 |
+
|
137 |
+
return None
|
138 |
+
|
139 |
+
|
140 |
+
def _build_func_identifier(func):
|
141 |
+
"""Build a roughly unique identifier for the cached function."""
|
142 |
+
modules, funcname = get_func_name(func)
|
143 |
+
# We reuse historical fs-like way of building a function identifier
|
144 |
+
return os.path.join(*modules, funcname)
|
145 |
+
|
146 |
+
|
147 |
+
# An in-memory store to avoid looking at the disk-based function
|
148 |
+
# source code to check if a function definition has changed
|
149 |
+
_FUNCTION_HASHES = weakref.WeakKeyDictionary()
|
150 |
+
|
151 |
+
|
152 |
+
###############################################################################
|
153 |
+
# class `MemorizedResult`
|
154 |
+
###############################################################################
|
155 |
+
class MemorizedResult(Logger):
|
156 |
+
"""Object representing a cached value.
|
157 |
+
|
158 |
+
Attributes
|
159 |
+
----------
|
160 |
+
location: str
|
161 |
+
The location of joblib cache. Depends on the store backend used.
|
162 |
+
|
163 |
+
func: function or str
|
164 |
+
function whose output is cached. The string case is intended only for
|
165 |
+
instantiation based on the output of repr() on another instance.
|
166 |
+
(namely eval(repr(memorized_instance)) works).
|
167 |
+
|
168 |
+
argument_hash: str
|
169 |
+
hash of the function arguments.
|
170 |
+
|
171 |
+
backend: str
|
172 |
+
Type of store backend for reading/writing cache files.
|
173 |
+
Default is 'local'.
|
174 |
+
|
175 |
+
mmap_mode: {None, 'r+', 'r', 'w+', 'c'}
|
176 |
+
The memmapping mode used when loading from cache numpy arrays. See
|
177 |
+
numpy.load for the meaning of the different values.
|
178 |
+
|
179 |
+
verbose: int
|
180 |
+
verbosity level (0 means no message).
|
181 |
+
|
182 |
+
timestamp, metadata: string
|
183 |
+
for internal use only.
|
184 |
+
"""
|
185 |
+
def __init__(self, location, call_id, backend='local', mmap_mode=None,
|
186 |
+
verbose=0, timestamp=None, metadata=None):
|
187 |
+
Logger.__init__(self)
|
188 |
+
self._call_id = call_id
|
189 |
+
self.store_backend = _store_backend_factory(backend, location,
|
190 |
+
verbose=verbose)
|
191 |
+
self.mmap_mode = mmap_mode
|
192 |
+
|
193 |
+
if metadata is not None:
|
194 |
+
self.metadata = metadata
|
195 |
+
else:
|
196 |
+
self.metadata = self.store_backend.get_metadata(self._call_id)
|
197 |
+
|
198 |
+
self.duration = self.metadata.get('duration', None)
|
199 |
+
self.verbose = verbose
|
200 |
+
self.timestamp = timestamp
|
201 |
+
|
202 |
+
@property
|
203 |
+
def func(self):
|
204 |
+
return self.func_id
|
205 |
+
|
206 |
+
@property
|
207 |
+
def func_id(self):
|
208 |
+
return self._call_id[0]
|
209 |
+
|
210 |
+
@property
|
211 |
+
def args_id(self):
|
212 |
+
return self._call_id[1]
|
213 |
+
|
214 |
+
@property
|
215 |
+
def argument_hash(self):
|
216 |
+
warnings.warn(
|
217 |
+
"The 'argument_hash' attribute has been deprecated in version "
|
218 |
+
"0.12 and will be removed in version 0.14.\n"
|
219 |
+
"Use `args_id` attribute instead.",
|
220 |
+
DeprecationWarning, stacklevel=2)
|
221 |
+
return self.args_id
|
222 |
+
|
223 |
+
def get(self):
|
224 |
+
"""Read value from cache and return it."""
|
225 |
+
try:
|
226 |
+
return self.store_backend.load_item(
|
227 |
+
self._call_id,
|
228 |
+
timestamp=self.timestamp,
|
229 |
+
metadata=self.metadata,
|
230 |
+
verbose=self.verbose
|
231 |
+
)
|
232 |
+
except ValueError as exc:
|
233 |
+
new_exc = KeyError(
|
234 |
+
"Error while trying to load a MemorizedResult's value. "
|
235 |
+
"It seems that this folder is corrupted : {}".format(
|
236 |
+
os.path.join(self.store_backend.location, *self._call_id)))
|
237 |
+
raise new_exc from exc
|
238 |
+
|
239 |
+
def clear(self):
|
240 |
+
"""Clear value from cache"""
|
241 |
+
self.store_backend.clear_item(self._call_id)
|
242 |
+
|
243 |
+
def __repr__(self):
|
244 |
+
return '{}(location="{}", func="{}", args_id="{}")'.format(
|
245 |
+
self.__class__.__name__, self.store_backend.location,
|
246 |
+
*self._call_id
|
247 |
+
)
|
248 |
+
|
249 |
+
def __getstate__(self):
|
250 |
+
state = self.__dict__.copy()
|
251 |
+
state['timestamp'] = None
|
252 |
+
return state
|
253 |
+
|
254 |
+
|
255 |
+
class NotMemorizedResult(object):
|
256 |
+
"""Class representing an arbitrary value.
|
257 |
+
|
258 |
+
This class is a replacement for MemorizedResult when there is no cache.
|
259 |
+
"""
|
260 |
+
__slots__ = ('value', 'valid')
|
261 |
+
|
262 |
+
def __init__(self, value):
|
263 |
+
self.value = value
|
264 |
+
self.valid = True
|
265 |
+
|
266 |
+
def get(self):
|
267 |
+
if self.valid:
|
268 |
+
return self.value
|
269 |
+
else:
|
270 |
+
raise KeyError("No value stored.")
|
271 |
+
|
272 |
+
def clear(self):
|
273 |
+
self.valid = False
|
274 |
+
self.value = None
|
275 |
+
|
276 |
+
def __repr__(self):
|
277 |
+
if self.valid:
|
278 |
+
return ('{class_name}({value})'
|
279 |
+
.format(class_name=self.__class__.__name__,
|
280 |
+
value=pformat(self.value)))
|
281 |
+
else:
|
282 |
+
return self.__class__.__name__ + ' with no value'
|
283 |
+
|
284 |
+
# __getstate__ and __setstate__ are required because of __slots__
|
285 |
+
def __getstate__(self):
|
286 |
+
return {"valid": self.valid, "value": self.value}
|
287 |
+
|
288 |
+
def __setstate__(self, state):
|
289 |
+
self.valid = state["valid"]
|
290 |
+
self.value = state["value"]
|
291 |
+
|
292 |
+
|
293 |
+
###############################################################################
|
294 |
+
# class `NotMemorizedFunc`
|
295 |
+
###############################################################################
|
296 |
+
class NotMemorizedFunc(object):
|
297 |
+
"""No-op object decorating a function.
|
298 |
+
|
299 |
+
This class replaces MemorizedFunc when there is no cache. It provides an
|
300 |
+
identical API but does not write anything on disk.
|
301 |
+
|
302 |
+
Attributes
|
303 |
+
----------
|
304 |
+
func: callable
|
305 |
+
Original undecorated function.
|
306 |
+
"""
|
307 |
+
# Should be a light as possible (for speed)
|
308 |
+
def __init__(self, func):
|
309 |
+
self.func = func
|
310 |
+
|
311 |
+
def __call__(self, *args, **kwargs):
|
312 |
+
return self.func(*args, **kwargs)
|
313 |
+
|
314 |
+
def call_and_shelve(self, *args, **kwargs):
|
315 |
+
return NotMemorizedResult(self.func(*args, **kwargs))
|
316 |
+
|
317 |
+
def __repr__(self):
|
318 |
+
return '{0}(func={1})'.format(self.__class__.__name__, self.func)
|
319 |
+
|
320 |
+
def clear(self, warn=True):
|
321 |
+
# Argument "warn" is for compatibility with MemorizedFunc.clear
|
322 |
+
pass
|
323 |
+
|
324 |
+
def call(self, *args, **kwargs):
|
325 |
+
return self.func(*args, **kwargs), {}
|
326 |
+
|
327 |
+
def check_call_in_cache(self, *args, **kwargs):
|
328 |
+
return False
|
329 |
+
|
330 |
+
|
331 |
+
###############################################################################
|
332 |
+
# class `AsyncNotMemorizedFunc`
|
333 |
+
###############################################################################
|
334 |
+
class AsyncNotMemorizedFunc(NotMemorizedFunc):
|
335 |
+
async def call_and_shelve(self, *args, **kwargs):
|
336 |
+
return NotMemorizedResult(await self.func(*args, **kwargs))
|
337 |
+
|
338 |
+
|
339 |
+
###############################################################################
|
340 |
+
# class `MemorizedFunc`
|
341 |
+
###############################################################################
|
342 |
+
class MemorizedFunc(Logger):
|
343 |
+
"""Callable object decorating a function for caching its return value
|
344 |
+
each time it is called.
|
345 |
+
|
346 |
+
Methods are provided to inspect the cache or clean it.
|
347 |
+
|
348 |
+
Attributes
|
349 |
+
----------
|
350 |
+
func: callable
|
351 |
+
The original, undecorated, function.
|
352 |
+
|
353 |
+
location: string
|
354 |
+
The location of joblib cache. Depends on the store backend used.
|
355 |
+
|
356 |
+
backend: str
|
357 |
+
Type of store backend for reading/writing cache files.
|
358 |
+
Default is 'local', in which case the location is the path to a
|
359 |
+
disk storage.
|
360 |
+
|
361 |
+
ignore: list or None
|
362 |
+
List of variable names to ignore when choosing whether to
|
363 |
+
recompute.
|
364 |
+
|
365 |
+
mmap_mode: {None, 'r+', 'r', 'w+', 'c'}
|
366 |
+
The memmapping mode used when loading from cache
|
367 |
+
numpy arrays. See numpy.load for the meaning of the different
|
368 |
+
values.
|
369 |
+
|
370 |
+
compress: boolean, or integer
|
371 |
+
Whether to zip the stored data on disk. If an integer is
|
372 |
+
given, it should be between 1 and 9, and sets the amount
|
373 |
+
of compression. Note that compressed arrays cannot be
|
374 |
+
read by memmapping.
|
375 |
+
|
376 |
+
verbose: int, optional
|
377 |
+
The verbosity flag, controls messages that are issued as
|
378 |
+
the function is evaluated.
|
379 |
+
|
380 |
+
cache_validation_callback: callable, optional
|
381 |
+
Callable to check if a result in cache is valid or is to be recomputed.
|
382 |
+
When the function is called with arguments for which a cache exists,
|
383 |
+
the callback is called with the cache entry's metadata as its sole
|
384 |
+
argument. If it returns True, the cached result is returned, else the
|
385 |
+
cache for these arguments is cleared and the result is recomputed.
|
386 |
+
"""
|
387 |
+
# ------------------------------------------------------------------------
|
388 |
+
# Public interface
|
389 |
+
# ------------------------------------------------------------------------
|
390 |
+
|
391 |
+
def __init__(self, func, location, backend='local', ignore=None,
|
392 |
+
mmap_mode=None, compress=False, verbose=1, timestamp=None,
|
393 |
+
cache_validation_callback=None):
|
394 |
+
Logger.__init__(self)
|
395 |
+
self.mmap_mode = mmap_mode
|
396 |
+
self.compress = compress
|
397 |
+
self.func = func
|
398 |
+
self.cache_validation_callback = cache_validation_callback
|
399 |
+
self.func_id = _build_func_identifier(func)
|
400 |
+
self.ignore = ignore if ignore is not None else []
|
401 |
+
self._verbose = verbose
|
402 |
+
|
403 |
+
# retrieve store object from backend type and location.
|
404 |
+
self.store_backend = _store_backend_factory(backend, location,
|
405 |
+
verbose=verbose,
|
406 |
+
backend_options=dict(
|
407 |
+
compress=compress,
|
408 |
+
mmap_mode=mmap_mode),
|
409 |
+
)
|
410 |
+
if self.store_backend is not None:
|
411 |
+
# Create func directory on demand.
|
412 |
+
self.store_backend.store_cached_func_code([self.func_id])
|
413 |
+
|
414 |
+
self.timestamp = timestamp if timestamp is not None else time.time()
|
415 |
+
try:
|
416 |
+
functools.update_wrapper(self, func)
|
417 |
+
except Exception:
|
418 |
+
pass # Objects like ufunc don't like that
|
419 |
+
if inspect.isfunction(func):
|
420 |
+
doc = pydoc.TextDoc().document(func)
|
421 |
+
# Remove blank line
|
422 |
+
doc = doc.replace('\n', '\n\n', 1)
|
423 |
+
# Strip backspace-overprints for compatibility with autodoc
|
424 |
+
doc = re.sub('\x08.', '', doc)
|
425 |
+
else:
|
426 |
+
# Pydoc does a poor job on other objects
|
427 |
+
doc = func.__doc__
|
428 |
+
self.__doc__ = 'Memoized version of %s' % doc
|
429 |
+
|
430 |
+
self._func_code_info = None
|
431 |
+
self._func_code_id = None
|
432 |
+
|
433 |
+
def _is_in_cache_and_valid(self, call_id):
|
434 |
+
"""Check if the function call is cached and valid for given arguments.
|
435 |
+
|
436 |
+
- Compare the function code with the one from the cached function,
|
437 |
+
asserting if it has changed.
|
438 |
+
- Check if the function call is present in the cache.
|
439 |
+
- Call `cache_validation_callback` for user define cache validation.
|
440 |
+
|
441 |
+
Returns True if the function call is in cache and can be used, and
|
442 |
+
returns False otherwise.
|
443 |
+
"""
|
444 |
+
# Check if the code of the function has changed
|
445 |
+
if not self._check_previous_func_code(stacklevel=4):
|
446 |
+
return False
|
447 |
+
|
448 |
+
# Check if this specific call is in the cache
|
449 |
+
if not self.store_backend.contains_item(call_id):
|
450 |
+
return False
|
451 |
+
|
452 |
+
# Call the user defined cache validation callback
|
453 |
+
metadata = self.store_backend.get_metadata(call_id)
|
454 |
+
if (self.cache_validation_callback is not None and
|
455 |
+
not self.cache_validation_callback(metadata)):
|
456 |
+
self.store_backend.clear_item(call_id)
|
457 |
+
return False
|
458 |
+
|
459 |
+
return True
|
460 |
+
|
461 |
+
def _cached_call(self, args, kwargs, shelving):
|
462 |
+
"""Call wrapped function and cache result, or read cache if available.
|
463 |
+
|
464 |
+
This function returns the wrapped function output or a reference to
|
465 |
+
the cached result.
|
466 |
+
|
467 |
+
Arguments:
|
468 |
+
----------
|
469 |
+
|
470 |
+
args, kwargs: list and dict
|
471 |
+
input arguments for wrapped function
|
472 |
+
|
473 |
+
shelving: bool
|
474 |
+
True when called via the call_and_shelve function.
|
475 |
+
|
476 |
+
|
477 |
+
Returns
|
478 |
+
-------
|
479 |
+
output: Output of the wrapped function if shelving is false, or a
|
480 |
+
MemorizedResult reference to the value if shelving is true.
|
481 |
+
metadata: dict containing the metadata associated with the call.
|
482 |
+
"""
|
483 |
+
args_id = self._get_args_id(*args, **kwargs)
|
484 |
+
call_id = (self.func_id, args_id)
|
485 |
+
_, func_name = get_func_name(self.func)
|
486 |
+
func_info = self.store_backend.get_cached_func_info([self.func_id])
|
487 |
+
location = func_info['location']
|
488 |
+
|
489 |
+
if self._verbose >= 20:
|
490 |
+
logging.basicConfig(level=logging.INFO)
|
491 |
+
_, signature = format_signature(self.func, *args, **kwargs)
|
492 |
+
self.info(
|
493 |
+
textwrap.dedent(
|
494 |
+
f"""
|
495 |
+
Querying {func_name} with signature
|
496 |
+
{signature}.
|
497 |
+
|
498 |
+
(argument hash {args_id})
|
499 |
+
|
500 |
+
The store location is {location}.
|
501 |
+
"""
|
502 |
+
)
|
503 |
+
)
|
504 |
+
|
505 |
+
# Compare the function code with the previous to see if the
|
506 |
+
# function code has changed and check if the results are present in
|
507 |
+
# the cache.
|
508 |
+
if self._is_in_cache_and_valid(call_id):
|
509 |
+
if shelving:
|
510 |
+
return self._get_memorized_result(call_id), {}
|
511 |
+
|
512 |
+
try:
|
513 |
+
start_time = time.time()
|
514 |
+
output = self._load_item(call_id)
|
515 |
+
if self._verbose > 4:
|
516 |
+
self._print_duration(time.time() - start_time,
|
517 |
+
context='cache loaded ')
|
518 |
+
return output, {}
|
519 |
+
except Exception:
|
520 |
+
# XXX: Should use an exception logger
|
521 |
+
_, signature = format_signature(self.func, *args, **kwargs)
|
522 |
+
self.warn('Exception while loading results for '
|
523 |
+
'{}\n {}'.format(signature, traceback.format_exc()))
|
524 |
+
|
525 |
+
if self._verbose > 10:
|
526 |
+
self.warn(
|
527 |
+
f"Computing func {func_name}, argument hash {args_id} "
|
528 |
+
f"in location {location}"
|
529 |
+
)
|
530 |
+
|
531 |
+
# Returns the output but not the metadata
|
532 |
+
return self._call(call_id, args, kwargs, shelving)
|
533 |
+
|
534 |
+
@property
|
535 |
+
def func_code_info(self):
|
536 |
+
# 3-tuple property containing: the function source code, source file,
|
537 |
+
# and first line of the code inside the source file
|
538 |
+
if hasattr(self.func, '__code__'):
|
539 |
+
if self._func_code_id is None:
|
540 |
+
self._func_code_id = id(self.func.__code__)
|
541 |
+
elif id(self.func.__code__) != self._func_code_id:
|
542 |
+
# Be robust to dynamic reassignments of self.func.__code__
|
543 |
+
self._func_code_info = None
|
544 |
+
|
545 |
+
if self._func_code_info is None:
|
546 |
+
# Cache the source code of self.func . Provided that get_func_code
|
547 |
+
# (which should be called once on self) gets called in the process
|
548 |
+
# in which self.func was defined, this caching mechanism prevents
|
549 |
+
# undesired cache clearing when the cached function is called in
|
550 |
+
# an environment where the introspection utilities get_func_code
|
551 |
+
# relies on do not work (typically, in joblib child processes).
|
552 |
+
# See #1035 for more info
|
553 |
+
# TODO (pierreglaser): do the same with get_func_name?
|
554 |
+
self._func_code_info = get_func_code(self.func)
|
555 |
+
return self._func_code_info
|
556 |
+
|
557 |
+
def call_and_shelve(self, *args, **kwargs):
|
558 |
+
"""Call wrapped function, cache result and return a reference.
|
559 |
+
|
560 |
+
This method returns a reference to the cached result instead of the
|
561 |
+
result itself. The reference object is small and pickeable, allowing
|
562 |
+
to send or store it easily. Call .get() on reference object to get
|
563 |
+
result.
|
564 |
+
|
565 |
+
Returns
|
566 |
+
-------
|
567 |
+
cached_result: MemorizedResult or NotMemorizedResult
|
568 |
+
reference to the value returned by the wrapped function. The
|
569 |
+
class "NotMemorizedResult" is used when there is no cache
|
570 |
+
activated (e.g. location=None in Memory).
|
571 |
+
"""
|
572 |
+
# Return the wrapped output, without the metadata
|
573 |
+
return self._cached_call(args, kwargs, shelving=True)[0]
|
574 |
+
|
575 |
+
def __call__(self, *args, **kwargs):
|
576 |
+
# Return the output, without the metadata
|
577 |
+
return self._cached_call(args, kwargs, shelving=False)[0]
|
578 |
+
|
579 |
+
def __getstate__(self):
|
580 |
+
# Make sure self.func's source is introspected prior to being pickled -
|
581 |
+
# code introspection utilities typically do not work inside child
|
582 |
+
# processes
|
583 |
+
_ = self.func_code_info
|
584 |
+
|
585 |
+
# We don't store the timestamp when pickling, to avoid the hash
|
586 |
+
# depending from it.
|
587 |
+
state = self.__dict__.copy()
|
588 |
+
state['timestamp'] = None
|
589 |
+
|
590 |
+
# Invalidate the code id as id(obj) will be different in the child
|
591 |
+
state['_func_code_id'] = None
|
592 |
+
|
593 |
+
return state
|
594 |
+
|
595 |
+
def check_call_in_cache(self, *args, **kwargs):
|
596 |
+
"""Check if function call is in the memory cache.
|
597 |
+
|
598 |
+
Does not call the function or do any work besides func inspection
|
599 |
+
and arg hashing.
|
600 |
+
|
601 |
+
Returns
|
602 |
+
-------
|
603 |
+
is_call_in_cache: bool
|
604 |
+
Whether or not the result of the function has been cached
|
605 |
+
for the input arguments that have been passed.
|
606 |
+
"""
|
607 |
+
call_id = (self.func_id, self._get_args_id(*args, **kwargs))
|
608 |
+
return self.store_backend.contains_item(call_id)
|
609 |
+
|
610 |
+
# ------------------------------------------------------------------------
|
611 |
+
# Private interface
|
612 |
+
# ------------------------------------------------------------------------
|
613 |
+
|
614 |
+
def _get_args_id(self, *args, **kwargs):
|
615 |
+
"""Return the input parameter hash of a result."""
|
616 |
+
return hashing.hash(filter_args(self.func, self.ignore, args, kwargs),
|
617 |
+
coerce_mmap=self.mmap_mode is not None)
|
618 |
+
|
619 |
+
def _hash_func(self):
|
620 |
+
"""Hash a function to key the online cache"""
|
621 |
+
func_code_h = hash(getattr(self.func, '__code__', None))
|
622 |
+
return id(self.func), hash(self.func), func_code_h
|
623 |
+
|
624 |
+
def _write_func_code(self, func_code, first_line):
|
625 |
+
""" Write the function code and the filename to a file.
|
626 |
+
"""
|
627 |
+
# We store the first line because the filename and the function
|
628 |
+
# name is not always enough to identify a function: people
|
629 |
+
# sometimes have several functions named the same way in a
|
630 |
+
# file. This is bad practice, but joblib should be robust to bad
|
631 |
+
# practice.
|
632 |
+
func_code = u'%s %i\n%s' % (FIRST_LINE_TEXT, first_line, func_code)
|
633 |
+
self.store_backend.store_cached_func_code([self.func_id], func_code)
|
634 |
+
|
635 |
+
# Also store in the in-memory store of function hashes
|
636 |
+
is_named_callable = (hasattr(self.func, '__name__') and
|
637 |
+
self.func.__name__ != '<lambda>')
|
638 |
+
if is_named_callable:
|
639 |
+
# Don't do this for lambda functions or strange callable
|
640 |
+
# objects, as it ends up being too fragile
|
641 |
+
func_hash = self._hash_func()
|
642 |
+
try:
|
643 |
+
_FUNCTION_HASHES[self.func] = func_hash
|
644 |
+
except TypeError:
|
645 |
+
# Some callable are not hashable
|
646 |
+
pass
|
647 |
+
|
648 |
+
def _check_previous_func_code(self, stacklevel=2):
|
649 |
+
"""
|
650 |
+
stacklevel is the depth a which this function is called, to
|
651 |
+
issue useful warnings to the user.
|
652 |
+
"""
|
653 |
+
# First check if our function is in the in-memory store.
|
654 |
+
# Using the in-memory store not only makes things faster, but it
|
655 |
+
# also renders us robust to variations of the files when the
|
656 |
+
# in-memory version of the code does not vary
|
657 |
+
try:
|
658 |
+
if self.func in _FUNCTION_HASHES:
|
659 |
+
# We use as an identifier the id of the function and its
|
660 |
+
# hash. This is more likely to falsely change than have hash
|
661 |
+
# collisions, thus we are on the safe side.
|
662 |
+
func_hash = self._hash_func()
|
663 |
+
if func_hash == _FUNCTION_HASHES[self.func]:
|
664 |
+
return True
|
665 |
+
except TypeError:
|
666 |
+
# Some callables are not hashable
|
667 |
+
pass
|
668 |
+
|
669 |
+
# Here, we go through some effort to be robust to dynamically
|
670 |
+
# changing code and collision. We cannot inspect.getsource
|
671 |
+
# because it is not reliable when using IPython's magic "%run".
|
672 |
+
func_code, source_file, first_line = self.func_code_info
|
673 |
+
try:
|
674 |
+
old_func_code, old_first_line = extract_first_line(
|
675 |
+
self.store_backend.get_cached_func_code([self.func_id]))
|
676 |
+
except (IOError, OSError): # some backend can also raise OSError
|
677 |
+
self._write_func_code(func_code, first_line)
|
678 |
+
return False
|
679 |
+
if old_func_code == func_code:
|
680 |
+
return True
|
681 |
+
|
682 |
+
# We have differing code, is this because we are referring to
|
683 |
+
# different functions, or because the function we are referring to has
|
684 |
+
# changed?
|
685 |
+
|
686 |
+
_, func_name = get_func_name(self.func, resolv_alias=False,
|
687 |
+
win_characters=False)
|
688 |
+
if old_first_line == first_line == -1 or func_name == '<lambda>':
|
689 |
+
if not first_line == -1:
|
690 |
+
func_description = ("{0} ({1}:{2})"
|
691 |
+
.format(func_name, source_file,
|
692 |
+
first_line))
|
693 |
+
else:
|
694 |
+
func_description = func_name
|
695 |
+
warnings.warn(JobLibCollisionWarning(
|
696 |
+
"Cannot detect name collisions for function '{0}'"
|
697 |
+
.format(func_description)), stacklevel=stacklevel)
|
698 |
+
|
699 |
+
# Fetch the code at the old location and compare it. If it is the
|
700 |
+
# same than the code store, we have a collision: the code in the
|
701 |
+
# file has not changed, but the name we have is pointing to a new
|
702 |
+
# code block.
|
703 |
+
if not old_first_line == first_line and source_file is not None:
|
704 |
+
if os.path.exists(source_file):
|
705 |
+
_, func_name = get_func_name(self.func, resolv_alias=False)
|
706 |
+
num_lines = len(func_code.split('\n'))
|
707 |
+
with tokenize.open(source_file) as f:
|
708 |
+
on_disk_func_code = f.readlines()[
|
709 |
+
old_first_line - 1:old_first_line - 1 + num_lines - 1]
|
710 |
+
on_disk_func_code = ''.join(on_disk_func_code)
|
711 |
+
possible_collision = (on_disk_func_code.rstrip() ==
|
712 |
+
old_func_code.rstrip())
|
713 |
+
else:
|
714 |
+
possible_collision = source_file.startswith('<doctest ')
|
715 |
+
if possible_collision:
|
716 |
+
warnings.warn(JobLibCollisionWarning(
|
717 |
+
'Possible name collisions between functions '
|
718 |
+
"'%s' (%s:%i) and '%s' (%s:%i)" %
|
719 |
+
(func_name, source_file, old_first_line,
|
720 |
+
func_name, source_file, first_line)),
|
721 |
+
stacklevel=stacklevel)
|
722 |
+
|
723 |
+
# The function has changed, wipe the cache directory.
|
724 |
+
# XXX: Should be using warnings, and giving stacklevel
|
725 |
+
if self._verbose > 10:
|
726 |
+
_, func_name = get_func_name(self.func, resolv_alias=False)
|
727 |
+
self.warn("Function {0} (identified by {1}) has changed"
|
728 |
+
".".format(func_name, self.func_id))
|
729 |
+
self.clear(warn=True)
|
730 |
+
return False
|
731 |
+
|
732 |
+
def clear(self, warn=True):
|
733 |
+
"""Empty the function's cache."""
|
734 |
+
func_id = self.func_id
|
735 |
+
if self._verbose > 0 and warn:
|
736 |
+
self.warn("Clearing function cache identified by %s" % func_id)
|
737 |
+
self.store_backend.clear_path([func_id, ])
|
738 |
+
|
739 |
+
func_code, _, first_line = self.func_code_info
|
740 |
+
self._write_func_code(func_code, first_line)
|
741 |
+
|
742 |
+
def call(self, *args, **kwargs):
|
743 |
+
"""Force the execution of the function with the given arguments.
|
744 |
+
|
745 |
+
The output values will be persisted, i.e., the cache will be updated
|
746 |
+
with any new values.
|
747 |
+
|
748 |
+
Parameters
|
749 |
+
----------
|
750 |
+
*args: arguments
|
751 |
+
The arguments.
|
752 |
+
**kwargs: keyword arguments
|
753 |
+
Keyword arguments.
|
754 |
+
|
755 |
+
Returns
|
756 |
+
-------
|
757 |
+
output : object
|
758 |
+
The output of the function call.
|
759 |
+
metadata : dict
|
760 |
+
The metadata associated with the call.
|
761 |
+
"""
|
762 |
+
call_id = (self.func_id, self._get_args_id(*args, **kwargs))
|
763 |
+
|
764 |
+
# Return the output and the metadata
|
765 |
+
return self._call(call_id, args, kwargs)
|
766 |
+
|
767 |
+
def _call(self, call_id, args, kwargs, shelving=False):
|
768 |
+
# Return the output and the metadata
|
769 |
+
self._before_call(args, kwargs)
|
770 |
+
start_time = time.time()
|
771 |
+
output = self.func(*args, **kwargs)
|
772 |
+
return self._after_call(call_id, args, kwargs, shelving,
|
773 |
+
output, start_time)
|
774 |
+
|
775 |
+
def _before_call(self, args, kwargs):
|
776 |
+
if self._verbose > 0:
|
777 |
+
print(format_call(self.func, args, kwargs))
|
778 |
+
|
779 |
+
def _after_call(self, call_id, args, kwargs, shelving, output, start_time):
|
780 |
+
self.store_backend.dump_item(call_id, output, verbose=self._verbose)
|
781 |
+
duration = time.time() - start_time
|
782 |
+
if self._verbose > 0:
|
783 |
+
self._print_duration(duration)
|
784 |
+
metadata = self._persist_input(duration, call_id, args, kwargs)
|
785 |
+
if shelving:
|
786 |
+
return self._get_memorized_result(call_id, metadata), metadata
|
787 |
+
|
788 |
+
if self.mmap_mode is not None:
|
789 |
+
# Memmap the output at the first call to be consistent with
|
790 |
+
# later calls
|
791 |
+
output = self._load_item(call_id, metadata)
|
792 |
+
return output, metadata
|
793 |
+
|
794 |
+
def _persist_input(self, duration, call_id, args, kwargs,
|
795 |
+
this_duration_limit=0.5):
|
796 |
+
""" Save a small summary of the call using json format in the
|
797 |
+
output directory.
|
798 |
+
|
799 |
+
output_dir: string
|
800 |
+
directory where to write metadata.
|
801 |
+
|
802 |
+
duration: float
|
803 |
+
time taken by hashing input arguments, calling the wrapped
|
804 |
+
function and persisting its output.
|
805 |
+
|
806 |
+
args, kwargs: list and dict
|
807 |
+
input arguments for wrapped function
|
808 |
+
|
809 |
+
this_duration_limit: float
|
810 |
+
Max execution time for this function before issuing a warning.
|
811 |
+
"""
|
812 |
+
start_time = time.time()
|
813 |
+
argument_dict = filter_args(self.func, self.ignore,
|
814 |
+
args, kwargs)
|
815 |
+
|
816 |
+
input_repr = dict((k, repr(v)) for k, v in argument_dict.items())
|
817 |
+
# This can fail due to race-conditions with multiple
|
818 |
+
# concurrent joblibs removing the file or the directory
|
819 |
+
metadata = {
|
820 |
+
"duration": duration, "input_args": input_repr, "time": start_time,
|
821 |
+
}
|
822 |
+
|
823 |
+
self.store_backend.store_metadata(call_id, metadata)
|
824 |
+
|
825 |
+
this_duration = time.time() - start_time
|
826 |
+
if this_duration > this_duration_limit:
|
827 |
+
# This persistence should be fast. It will not be if repr() takes
|
828 |
+
# time and its output is large, because json.dump will have to
|
829 |
+
# write a large file. This should not be an issue with numpy arrays
|
830 |
+
# for which repr() always output a short representation, but can
|
831 |
+
# be with complex dictionaries. Fixing the problem should be a
|
832 |
+
# matter of replacing repr() above by something smarter.
|
833 |
+
warnings.warn("Persisting input arguments took %.2fs to run."
|
834 |
+
"If this happens often in your code, it can cause "
|
835 |
+
"performance problems "
|
836 |
+
"(results will be correct in all cases). "
|
837 |
+
"The reason for this is probably some large input "
|
838 |
+
"arguments for a wrapped function."
|
839 |
+
% this_duration, stacklevel=5)
|
840 |
+
return metadata
|
841 |
+
|
842 |
+
def _get_memorized_result(self, call_id, metadata=None):
|
843 |
+
return MemorizedResult(self.store_backend, call_id,
|
844 |
+
metadata=metadata, timestamp=self.timestamp,
|
845 |
+
verbose=self._verbose - 1)
|
846 |
+
|
847 |
+
def _load_item(self, call_id, metadata=None):
|
848 |
+
return self.store_backend.load_item(call_id, metadata=metadata,
|
849 |
+
timestamp=self.timestamp,
|
850 |
+
verbose=self._verbose)
|
851 |
+
|
852 |
+
def _print_duration(self, duration, context=''):
|
853 |
+
_, name = get_func_name(self.func)
|
854 |
+
msg = f"{name} {context}- {format_time(duration)}"
|
855 |
+
print(max(0, (80 - len(msg))) * '_' + msg)
|
856 |
+
|
857 |
+
# ------------------------------------------------------------------------
|
858 |
+
# Private `object` interface
|
859 |
+
# ------------------------------------------------------------------------
|
860 |
+
|
861 |
+
def __repr__(self):
|
862 |
+
return '{class_name}(func={func}, location={location})'.format(
|
863 |
+
class_name=self.__class__.__name__,
|
864 |
+
func=self.func,
|
865 |
+
location=self.store_backend.location,)
|
866 |
+
|
867 |
+
|
868 |
+
###############################################################################
|
869 |
+
# class `AsyncMemorizedFunc`
|
870 |
+
###############################################################################
|
871 |
+
class AsyncMemorizedFunc(MemorizedFunc):
|
872 |
+
async def __call__(self, *args, **kwargs):
|
873 |
+
out = self._cached_call(args, kwargs, shelving=False)
|
874 |
+
out = await out if asyncio.iscoroutine(out) else out
|
875 |
+
return out[0] # Don't return metadata
|
876 |
+
|
877 |
+
async def call_and_shelve(self, *args, **kwargs):
|
878 |
+
out = self._cached_call(args, kwargs, shelving=True)
|
879 |
+
out = await out if asyncio.iscoroutine(out) else out
|
880 |
+
return out[0] # Don't return metadata
|
881 |
+
|
882 |
+
async def call(self, *args, **kwargs):
|
883 |
+
out = super().call(*args, **kwargs)
|
884 |
+
return await out if asyncio.iscoroutine(out) else out
|
885 |
+
|
886 |
+
async def _call(self, call_id, args, kwargs, shelving=False):
|
887 |
+
self._before_call(args, kwargs)
|
888 |
+
start_time = time.time()
|
889 |
+
output = await self.func(*args, **kwargs)
|
890 |
+
return self._after_call(
|
891 |
+
call_id, args, kwargs, shelving, output, start_time
|
892 |
+
)
|
893 |
+
|
894 |
+
|
895 |
+
###############################################################################
|
896 |
+
# class `Memory`
|
897 |
+
###############################################################################
|
898 |
+
class Memory(Logger):
|
899 |
+
""" A context object for caching a function's return value each time it
|
900 |
+
is called with the same input arguments.
|
901 |
+
|
902 |
+
All values are cached on the filesystem, in a deep directory
|
903 |
+
structure.
|
904 |
+
|
905 |
+
Read more in the :ref:`User Guide <memory>`.
|
906 |
+
|
907 |
+
Parameters
|
908 |
+
----------
|
909 |
+
location: str, pathlib.Path or None
|
910 |
+
The path of the base directory to use as a data store
|
911 |
+
or None. If None is given, no caching is done and
|
912 |
+
the Memory object is completely transparent. This option
|
913 |
+
replaces cachedir since version 0.12.
|
914 |
+
|
915 |
+
backend: str, optional
|
916 |
+
Type of store backend for reading/writing cache files.
|
917 |
+
Default: 'local'.
|
918 |
+
The 'local' backend is using regular filesystem operations to
|
919 |
+
manipulate data (open, mv, etc) in the backend.
|
920 |
+
|
921 |
+
mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional
|
922 |
+
The memmapping mode used when loading from cache
|
923 |
+
numpy arrays. See numpy.load for the meaning of the
|
924 |
+
arguments.
|
925 |
+
|
926 |
+
compress: boolean, or integer, optional
|
927 |
+
Whether to zip the stored data on disk. If an integer is
|
928 |
+
given, it should be between 1 and 9, and sets the amount
|
929 |
+
of compression. Note that compressed arrays cannot be
|
930 |
+
read by memmapping.
|
931 |
+
|
932 |
+
verbose: int, optional
|
933 |
+
Verbosity flag, controls the debug messages that are issued
|
934 |
+
as functions are evaluated.
|
935 |
+
|
936 |
+
bytes_limit: int | str, optional
|
937 |
+
Limit in bytes of the size of the cache. By default, the size of
|
938 |
+
the cache is unlimited. When reducing the size of the cache,
|
939 |
+
``joblib`` keeps the most recently accessed items first. If a
|
940 |
+
str is passed, it is converted to a number of bytes using units
|
941 |
+
{ K | M | G} for kilo, mega, giga.
|
942 |
+
|
943 |
+
**Note:** You need to call :meth:`joblib.Memory.reduce_size` to
|
944 |
+
actually reduce the cache size to be less than ``bytes_limit``.
|
945 |
+
|
946 |
+
**Note:** This argument has been deprecated. One should give the
|
947 |
+
value of ``bytes_limit`` directly in
|
948 |
+
:meth:`joblib.Memory.reduce_size`.
|
949 |
+
|
950 |
+
backend_options: dict, optional
|
951 |
+
Contains a dictionary of named parameters used to configure
|
952 |
+
the store backend.
|
953 |
+
"""
|
954 |
+
# ------------------------------------------------------------------------
|
955 |
+
# Public interface
|
956 |
+
# ------------------------------------------------------------------------
|
957 |
+
|
958 |
+
def __init__(self, location=None, backend='local',
|
959 |
+
mmap_mode=None, compress=False, verbose=1, bytes_limit=None,
|
960 |
+
backend_options=None):
|
961 |
+
Logger.__init__(self)
|
962 |
+
self._verbose = verbose
|
963 |
+
self.mmap_mode = mmap_mode
|
964 |
+
self.timestamp = time.time()
|
965 |
+
if bytes_limit is not None:
|
966 |
+
warnings.warn(
|
967 |
+
"bytes_limit argument has been deprecated. It will be removed "
|
968 |
+
"in version 1.5. Please pass its value directly to "
|
969 |
+
"Memory.reduce_size.",
|
970 |
+
category=DeprecationWarning
|
971 |
+
)
|
972 |
+
self.bytes_limit = bytes_limit
|
973 |
+
self.backend = backend
|
974 |
+
self.compress = compress
|
975 |
+
if backend_options is None:
|
976 |
+
backend_options = {}
|
977 |
+
self.backend_options = backend_options
|
978 |
+
|
979 |
+
if compress and mmap_mode is not None:
|
980 |
+
warnings.warn('Compressed results cannot be memmapped',
|
981 |
+
stacklevel=2)
|
982 |
+
|
983 |
+
self.location = location
|
984 |
+
if isinstance(location, str):
|
985 |
+
location = os.path.join(location, 'joblib')
|
986 |
+
|
987 |
+
self.store_backend = _store_backend_factory(
|
988 |
+
backend, location, verbose=self._verbose,
|
989 |
+
backend_options=dict(compress=compress, mmap_mode=mmap_mode,
|
990 |
+
**backend_options))
|
991 |
+
|
992 |
+
def cache(self, func=None, ignore=None, verbose=None, mmap_mode=False,
|
993 |
+
cache_validation_callback=None):
|
994 |
+
""" Decorates the given function func to only compute its return
|
995 |
+
value for input arguments not cached on disk.
|
996 |
+
|
997 |
+
Parameters
|
998 |
+
----------
|
999 |
+
func: callable, optional
|
1000 |
+
The function to be decorated
|
1001 |
+
ignore: list of strings
|
1002 |
+
A list of arguments name to ignore in the hashing
|
1003 |
+
verbose: integer, optional
|
1004 |
+
The verbosity mode of the function. By default that
|
1005 |
+
of the memory object is used.
|
1006 |
+
mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional
|
1007 |
+
The memmapping mode used when loading from cache
|
1008 |
+
numpy arrays. See numpy.load for the meaning of the
|
1009 |
+
arguments. By default that of the memory object is used.
|
1010 |
+
cache_validation_callback: callable, optional
|
1011 |
+
Callable to validate whether or not the cache is valid. When
|
1012 |
+
the cached function is called with arguments for which a cache
|
1013 |
+
exists, this callable is called with the metadata of the cached
|
1014 |
+
result as its sole argument. If it returns True, then the
|
1015 |
+
cached result is returned, else the cache for these arguments
|
1016 |
+
is cleared and recomputed.
|
1017 |
+
|
1018 |
+
Returns
|
1019 |
+
-------
|
1020 |
+
decorated_func: MemorizedFunc object
|
1021 |
+
The returned object is a MemorizedFunc object, that is
|
1022 |
+
callable (behaves like a function), but offers extra
|
1023 |
+
methods for cache lookup and management. See the
|
1024 |
+
documentation for :class:`joblib.memory.MemorizedFunc`.
|
1025 |
+
"""
|
1026 |
+
if (cache_validation_callback is not None and
|
1027 |
+
not callable(cache_validation_callback)):
|
1028 |
+
raise ValueError(
|
1029 |
+
"cache_validation_callback needs to be callable. "
|
1030 |
+
f"Got {cache_validation_callback}."
|
1031 |
+
)
|
1032 |
+
if func is None:
|
1033 |
+
# Partial application, to be able to specify extra keyword
|
1034 |
+
# arguments in decorators
|
1035 |
+
return functools.partial(
|
1036 |
+
self.cache, ignore=ignore,
|
1037 |
+
mmap_mode=mmap_mode,
|
1038 |
+
verbose=verbose,
|
1039 |
+
cache_validation_callback=cache_validation_callback
|
1040 |
+
)
|
1041 |
+
if self.store_backend is None:
|
1042 |
+
cls = (AsyncNotMemorizedFunc
|
1043 |
+
if asyncio.iscoroutinefunction(func)
|
1044 |
+
else NotMemorizedFunc)
|
1045 |
+
return cls(func)
|
1046 |
+
if verbose is None:
|
1047 |
+
verbose = self._verbose
|
1048 |
+
if mmap_mode is False:
|
1049 |
+
mmap_mode = self.mmap_mode
|
1050 |
+
if isinstance(func, MemorizedFunc):
|
1051 |
+
func = func.func
|
1052 |
+
cls = (AsyncMemorizedFunc
|
1053 |
+
if asyncio.iscoroutinefunction(func)
|
1054 |
+
else MemorizedFunc)
|
1055 |
+
return cls(
|
1056 |
+
func, location=self.store_backend, backend=self.backend,
|
1057 |
+
ignore=ignore, mmap_mode=mmap_mode, compress=self.compress,
|
1058 |
+
verbose=verbose, timestamp=self.timestamp,
|
1059 |
+
cache_validation_callback=cache_validation_callback
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
def clear(self, warn=True):
|
1063 |
+
""" Erase the complete cache directory.
|
1064 |
+
"""
|
1065 |
+
if warn:
|
1066 |
+
self.warn('Flushing completely the cache')
|
1067 |
+
if self.store_backend is not None:
|
1068 |
+
self.store_backend.clear()
|
1069 |
+
|
1070 |
+
# As the cache is completely clear, make sure the _FUNCTION_HASHES
|
1071 |
+
# cache is also reset. Else, for a function that is present in this
|
1072 |
+
# table, results cached after this clear will be have cache miss
|
1073 |
+
# as the function code is not re-written.
|
1074 |
+
_FUNCTION_HASHES.clear()
|
1075 |
+
|
1076 |
+
def reduce_size(self, bytes_limit=None, items_limit=None, age_limit=None):
|
1077 |
+
"""Remove cache elements to make the cache fit its limits.
|
1078 |
+
|
1079 |
+
The limitation can impose that the cache size fits in ``bytes_limit``,
|
1080 |
+
that the number of cache items is no more than ``items_limit``, and
|
1081 |
+
that all files in cache are not older than ``age_limit``.
|
1082 |
+
|
1083 |
+
Parameters
|
1084 |
+
----------
|
1085 |
+
bytes_limit: int | str, optional
|
1086 |
+
Limit in bytes of the size of the cache. By default, the size of
|
1087 |
+
the cache is unlimited. When reducing the size of the cache,
|
1088 |
+
``joblib`` keeps the most recently accessed items first. If a
|
1089 |
+
str is passed, it is converted to a number of bytes using units
|
1090 |
+
{ K | M | G} for kilo, mega, giga.
|
1091 |
+
|
1092 |
+
items_limit: int, optional
|
1093 |
+
Number of items to limit the cache to. By default, the number of
|
1094 |
+
items in the cache is unlimited. When reducing the size of the
|
1095 |
+
cache, ``joblib`` keeps the most recently accessed items first.
|
1096 |
+
|
1097 |
+
age_limit: datetime.timedelta, optional
|
1098 |
+
Maximum age of items to limit the cache to. When reducing the size
|
1099 |
+
of the cache, any items last accessed more than the given length of
|
1100 |
+
time ago are deleted.
|
1101 |
+
"""
|
1102 |
+
if bytes_limit is None:
|
1103 |
+
bytes_limit = self.bytes_limit
|
1104 |
+
|
1105 |
+
if self.store_backend is None:
|
1106 |
+
# No cached results, this function does nothing.
|
1107 |
+
return
|
1108 |
+
|
1109 |
+
if bytes_limit is None and items_limit is None and age_limit is None:
|
1110 |
+
# No limitation to impose, returning
|
1111 |
+
return
|
1112 |
+
|
1113 |
+
# Defers the actual limits enforcing to the store backend.
|
1114 |
+
self.store_backend.enforce_store_limits(
|
1115 |
+
bytes_limit, items_limit, age_limit
|
1116 |
+
)
|
1117 |
+
|
1118 |
+
def eval(self, func, *args, **kwargs):
|
1119 |
+
""" Eval function func with arguments `*args` and `**kwargs`,
|
1120 |
+
in the context of the memory.
|
1121 |
+
|
1122 |
+
This method works similarly to the builtin `apply`, except
|
1123 |
+
that the function is called only if the cache is not
|
1124 |
+
up to date.
|
1125 |
+
|
1126 |
+
"""
|
1127 |
+
if self.store_backend is None:
|
1128 |
+
return func(*args, **kwargs)
|
1129 |
+
return self.cache(func)(*args, **kwargs)
|
1130 |
+
|
1131 |
+
# ------------------------------------------------------------------------
|
1132 |
+
# Private `object` interface
|
1133 |
+
# ------------------------------------------------------------------------
|
1134 |
+
|
1135 |
+
def __repr__(self):
|
1136 |
+
return '{class_name}(location={location})'.format(
|
1137 |
+
class_name=self.__class__.__name__,
|
1138 |
+
location=(None if self.store_backend is None
|
1139 |
+
else self.store_backend.location))
|
1140 |
+
|
1141 |
+
def __getstate__(self):
|
1142 |
+
""" We don't store the timestamp when pickling, to avoid the hash
|
1143 |
+
depending from it.
|
1144 |
+
"""
|
1145 |
+
state = self.__dict__.copy()
|
1146 |
+
state['timestamp'] = None
|
1147 |
+
return state
|
1148 |
+
|
1149 |
+
|
1150 |
+
###############################################################################
|
1151 |
+
# cache_validation_callback helpers
|
1152 |
+
###############################################################################
|
1153 |
+
|
1154 |
+
def expires_after(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0,
|
1155 |
+
hours=0, weeks=0):
|
1156 |
+
"""Helper cache_validation_callback to force recompute after a duration.
|
1157 |
+
|
1158 |
+
Parameters
|
1159 |
+
----------
|
1160 |
+
days, seconds, microseconds, milliseconds, minutes, hours, weeks: numbers
|
1161 |
+
argument passed to a timedelta.
|
1162 |
+
"""
|
1163 |
+
delta = datetime.timedelta(
|
1164 |
+
days=days, seconds=seconds, microseconds=microseconds,
|
1165 |
+
milliseconds=milliseconds, minutes=minutes, hours=hours, weeks=weeks
|
1166 |
+
)
|
1167 |
+
|
1168 |
+
def cache_validation_callback(metadata):
|
1169 |
+
computation_age = time.time() - metadata['time']
|
1170 |
+
return computation_age < delta.total_seconds()
|
1171 |
+
|
1172 |
+
return cache_validation_callback
|
llmeval-env/lib/python3.10/site-packages/joblib/numpy_pickle.py
ADDED
@@ -0,0 +1,659 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utilities for fast persistence of big data, with optional compression."""
|
2 |
+
|
3 |
+
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
|
4 |
+
# Copyright (c) 2009 Gael Varoquaux
|
5 |
+
# License: BSD Style, 3 clauses.
|
6 |
+
|
7 |
+
import pickle
|
8 |
+
import os
|
9 |
+
import warnings
|
10 |
+
import io
|
11 |
+
from pathlib import Path
|
12 |
+
|
13 |
+
from .compressor import lz4, LZ4_NOT_INSTALLED_ERROR
|
14 |
+
from .compressor import _COMPRESSORS, register_compressor, BinaryZlibFile
|
15 |
+
from .compressor import (ZlibCompressorWrapper, GzipCompressorWrapper,
|
16 |
+
BZ2CompressorWrapper, LZMACompressorWrapper,
|
17 |
+
XZCompressorWrapper, LZ4CompressorWrapper)
|
18 |
+
from .numpy_pickle_utils import Unpickler, Pickler
|
19 |
+
from .numpy_pickle_utils import _read_fileobject, _write_fileobject
|
20 |
+
from .numpy_pickle_utils import _read_bytes, BUFFER_SIZE
|
21 |
+
from .numpy_pickle_utils import _ensure_native_byte_order
|
22 |
+
from .numpy_pickle_compat import load_compatibility
|
23 |
+
from .numpy_pickle_compat import NDArrayWrapper
|
24 |
+
# For compatibility with old versions of joblib, we need ZNDArrayWrapper
|
25 |
+
# to be visible in the current namespace.
|
26 |
+
# Explicitly skipping next line from flake8 as it triggers an F401 warning
|
27 |
+
# which we don't care.
|
28 |
+
from .numpy_pickle_compat import ZNDArrayWrapper # noqa
|
29 |
+
from .backports import make_memmap
|
30 |
+
|
31 |
+
# Register supported compressors
|
32 |
+
register_compressor('zlib', ZlibCompressorWrapper())
|
33 |
+
register_compressor('gzip', GzipCompressorWrapper())
|
34 |
+
register_compressor('bz2', BZ2CompressorWrapper())
|
35 |
+
register_compressor('lzma', LZMACompressorWrapper())
|
36 |
+
register_compressor('xz', XZCompressorWrapper())
|
37 |
+
register_compressor('lz4', LZ4CompressorWrapper())
|
38 |
+
|
39 |
+
|
40 |
+
###############################################################################
|
41 |
+
# Utility objects for persistence.
|
42 |
+
|
43 |
+
# For convenience, 16 bytes are used to be sure to cover all the possible
|
44 |
+
# dtypes' alignments. For reference, see:
|
45 |
+
# https://numpy.org/devdocs/dev/alignment.html
|
46 |
+
NUMPY_ARRAY_ALIGNMENT_BYTES = 16
|
47 |
+
|
48 |
+
|
49 |
+
class NumpyArrayWrapper(object):
|
50 |
+
"""An object to be persisted instead of numpy arrays.
|
51 |
+
|
52 |
+
This object is used to hack into the pickle machinery and read numpy
|
53 |
+
array data from our custom persistence format.
|
54 |
+
More precisely, this object is used for:
|
55 |
+
* carrying the information of the persisted array: subclass, shape, order,
|
56 |
+
dtype. Those ndarray metadata are used to correctly reconstruct the array
|
57 |
+
with low level numpy functions.
|
58 |
+
* determining if memmap is allowed on the array.
|
59 |
+
* reading the array bytes from a file.
|
60 |
+
* reading the array using memorymap from a file.
|
61 |
+
* writing the array bytes to a file.
|
62 |
+
|
63 |
+
Attributes
|
64 |
+
----------
|
65 |
+
subclass: numpy.ndarray subclass
|
66 |
+
Determine the subclass of the wrapped array.
|
67 |
+
shape: numpy.ndarray shape
|
68 |
+
Determine the shape of the wrapped array.
|
69 |
+
order: {'C', 'F'}
|
70 |
+
Determine the order of wrapped array data. 'C' is for C order, 'F' is
|
71 |
+
for fortran order.
|
72 |
+
dtype: numpy.ndarray dtype
|
73 |
+
Determine the data type of the wrapped array.
|
74 |
+
allow_mmap: bool
|
75 |
+
Determine if memory mapping is allowed on the wrapped array.
|
76 |
+
Default: False.
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, subclass, shape, order, dtype, allow_mmap=False,
|
80 |
+
numpy_array_alignment_bytes=NUMPY_ARRAY_ALIGNMENT_BYTES):
|
81 |
+
"""Constructor. Store the useful information for later."""
|
82 |
+
self.subclass = subclass
|
83 |
+
self.shape = shape
|
84 |
+
self.order = order
|
85 |
+
self.dtype = dtype
|
86 |
+
self.allow_mmap = allow_mmap
|
87 |
+
# We make numpy_array_alignment_bytes an instance attribute to allow us
|
88 |
+
# to change our mind about the default alignment and still load the old
|
89 |
+
# pickles (with the previous alignment) correctly
|
90 |
+
self.numpy_array_alignment_bytes = numpy_array_alignment_bytes
|
91 |
+
|
92 |
+
def safe_get_numpy_array_alignment_bytes(self):
|
93 |
+
# NumpyArrayWrapper instances loaded from joblib <= 1.1 pickles don't
|
94 |
+
# have an numpy_array_alignment_bytes attribute
|
95 |
+
return getattr(self, 'numpy_array_alignment_bytes', None)
|
96 |
+
|
97 |
+
def write_array(self, array, pickler):
|
98 |
+
"""Write array bytes to pickler file handle.
|
99 |
+
|
100 |
+
This function is an adaptation of the numpy write_array function
|
101 |
+
available in version 1.10.1 in numpy/lib/format.py.
|
102 |
+
"""
|
103 |
+
# Set buffer size to 16 MiB to hide the Python loop overhead.
|
104 |
+
buffersize = max(16 * 1024 ** 2 // array.itemsize, 1)
|
105 |
+
if array.dtype.hasobject:
|
106 |
+
# We contain Python objects so we cannot write out the data
|
107 |
+
# directly. Instead, we will pickle it out with version 2 of the
|
108 |
+
# pickle protocol.
|
109 |
+
pickle.dump(array, pickler.file_handle, protocol=2)
|
110 |
+
else:
|
111 |
+
numpy_array_alignment_bytes = \
|
112 |
+
self.safe_get_numpy_array_alignment_bytes()
|
113 |
+
if numpy_array_alignment_bytes is not None:
|
114 |
+
current_pos = pickler.file_handle.tell()
|
115 |
+
pos_after_padding_byte = current_pos + 1
|
116 |
+
padding_length = numpy_array_alignment_bytes - (
|
117 |
+
pos_after_padding_byte % numpy_array_alignment_bytes)
|
118 |
+
# A single byte is written that contains the padding length in
|
119 |
+
# bytes
|
120 |
+
padding_length_byte = int.to_bytes(
|
121 |
+
padding_length, length=1, byteorder='little')
|
122 |
+
pickler.file_handle.write(padding_length_byte)
|
123 |
+
|
124 |
+
if padding_length != 0:
|
125 |
+
padding = b'\xff' * padding_length
|
126 |
+
pickler.file_handle.write(padding)
|
127 |
+
|
128 |
+
for chunk in pickler.np.nditer(array,
|
129 |
+
flags=['external_loop',
|
130 |
+
'buffered',
|
131 |
+
'zerosize_ok'],
|
132 |
+
buffersize=buffersize,
|
133 |
+
order=self.order):
|
134 |
+
pickler.file_handle.write(chunk.tobytes('C'))
|
135 |
+
|
136 |
+
def read_array(self, unpickler):
|
137 |
+
"""Read array from unpickler file handle.
|
138 |
+
|
139 |
+
This function is an adaptation of the numpy read_array function
|
140 |
+
available in version 1.10.1 in numpy/lib/format.py.
|
141 |
+
"""
|
142 |
+
if len(self.shape) == 0:
|
143 |
+
count = 1
|
144 |
+
else:
|
145 |
+
# joblib issue #859: we cast the elements of self.shape to int64 to
|
146 |
+
# prevent a potential overflow when computing their product.
|
147 |
+
shape_int64 = [unpickler.np.int64(x) for x in self.shape]
|
148 |
+
count = unpickler.np.multiply.reduce(shape_int64)
|
149 |
+
# Now read the actual data.
|
150 |
+
if self.dtype.hasobject:
|
151 |
+
# The array contained Python objects. We need to unpickle the data.
|
152 |
+
array = pickle.load(unpickler.file_handle)
|
153 |
+
else:
|
154 |
+
numpy_array_alignment_bytes = \
|
155 |
+
self.safe_get_numpy_array_alignment_bytes()
|
156 |
+
if numpy_array_alignment_bytes is not None:
|
157 |
+
padding_byte = unpickler.file_handle.read(1)
|
158 |
+
padding_length = int.from_bytes(
|
159 |
+
padding_byte, byteorder='little')
|
160 |
+
if padding_length != 0:
|
161 |
+
unpickler.file_handle.read(padding_length)
|
162 |
+
|
163 |
+
# This is not a real file. We have to read it the
|
164 |
+
# memory-intensive way.
|
165 |
+
# crc32 module fails on reads greater than 2 ** 32 bytes,
|
166 |
+
# breaking large reads from gzip streams. Chunk reads to
|
167 |
+
# BUFFER_SIZE bytes to avoid issue and reduce memory overhead
|
168 |
+
# of the read. In non-chunked case count < max_read_count, so
|
169 |
+
# only one read is performed.
|
170 |
+
max_read_count = BUFFER_SIZE // min(BUFFER_SIZE,
|
171 |
+
self.dtype.itemsize)
|
172 |
+
|
173 |
+
array = unpickler.np.empty(count, dtype=self.dtype)
|
174 |
+
for i in range(0, count, max_read_count):
|
175 |
+
read_count = min(max_read_count, count - i)
|
176 |
+
read_size = int(read_count * self.dtype.itemsize)
|
177 |
+
data = _read_bytes(unpickler.file_handle,
|
178 |
+
read_size, "array data")
|
179 |
+
array[i:i + read_count] = \
|
180 |
+
unpickler.np.frombuffer(data, dtype=self.dtype,
|
181 |
+
count=read_count)
|
182 |
+
del data
|
183 |
+
|
184 |
+
if self.order == 'F':
|
185 |
+
array.shape = self.shape[::-1]
|
186 |
+
array = array.transpose()
|
187 |
+
else:
|
188 |
+
array.shape = self.shape
|
189 |
+
|
190 |
+
# Detect byte order mismatch and swap as needed.
|
191 |
+
return _ensure_native_byte_order(array)
|
192 |
+
|
193 |
+
def read_mmap(self, unpickler):
|
194 |
+
"""Read an array using numpy memmap."""
|
195 |
+
current_pos = unpickler.file_handle.tell()
|
196 |
+
offset = current_pos
|
197 |
+
numpy_array_alignment_bytes = \
|
198 |
+
self.safe_get_numpy_array_alignment_bytes()
|
199 |
+
|
200 |
+
if numpy_array_alignment_bytes is not None:
|
201 |
+
padding_byte = unpickler.file_handle.read(1)
|
202 |
+
padding_length = int.from_bytes(padding_byte, byteorder='little')
|
203 |
+
# + 1 is for the padding byte
|
204 |
+
offset += padding_length + 1
|
205 |
+
|
206 |
+
if unpickler.mmap_mode == 'w+':
|
207 |
+
unpickler.mmap_mode = 'r+'
|
208 |
+
|
209 |
+
marray = make_memmap(unpickler.filename,
|
210 |
+
dtype=self.dtype,
|
211 |
+
shape=self.shape,
|
212 |
+
order=self.order,
|
213 |
+
mode=unpickler.mmap_mode,
|
214 |
+
offset=offset)
|
215 |
+
# update the offset so that it corresponds to the end of the read array
|
216 |
+
unpickler.file_handle.seek(offset + marray.nbytes)
|
217 |
+
|
218 |
+
if (numpy_array_alignment_bytes is None and
|
219 |
+
current_pos % NUMPY_ARRAY_ALIGNMENT_BYTES != 0):
|
220 |
+
message = (
|
221 |
+
f'The memmapped array {marray} loaded from the file '
|
222 |
+
f'{unpickler.file_handle.name} is not byte aligned. '
|
223 |
+
'This may cause segmentation faults if this memmapped array '
|
224 |
+
'is used in some libraries like BLAS or PyTorch. '
|
225 |
+
'To get rid of this warning, regenerate your pickle file '
|
226 |
+
'with joblib >= 1.2.0. '
|
227 |
+
'See https://github.com/joblib/joblib/issues/563 '
|
228 |
+
'for more details'
|
229 |
+
)
|
230 |
+
warnings.warn(message)
|
231 |
+
|
232 |
+
return _ensure_native_byte_order(marray)
|
233 |
+
|
234 |
+
def read(self, unpickler):
|
235 |
+
"""Read the array corresponding to this wrapper.
|
236 |
+
|
237 |
+
Use the unpickler to get all information to correctly read the array.
|
238 |
+
|
239 |
+
Parameters
|
240 |
+
----------
|
241 |
+
unpickler: NumpyUnpickler
|
242 |
+
|
243 |
+
Returns
|
244 |
+
-------
|
245 |
+
array: numpy.ndarray
|
246 |
+
|
247 |
+
"""
|
248 |
+
# When requested, only use memmap mode if allowed.
|
249 |
+
if unpickler.mmap_mode is not None and self.allow_mmap:
|
250 |
+
array = self.read_mmap(unpickler)
|
251 |
+
else:
|
252 |
+
array = self.read_array(unpickler)
|
253 |
+
|
254 |
+
# Manage array subclass case
|
255 |
+
if (hasattr(array, '__array_prepare__') and
|
256 |
+
self.subclass not in (unpickler.np.ndarray,
|
257 |
+
unpickler.np.memmap)):
|
258 |
+
# We need to reconstruct another subclass
|
259 |
+
new_array = unpickler.np.core.multiarray._reconstruct(
|
260 |
+
self.subclass, (0,), 'b')
|
261 |
+
return new_array.__array_prepare__(array)
|
262 |
+
else:
|
263 |
+
return array
|
264 |
+
|
265 |
+
###############################################################################
|
266 |
+
# Pickler classes
|
267 |
+
|
268 |
+
|
269 |
+
class NumpyPickler(Pickler):
|
270 |
+
"""A pickler to persist big data efficiently.
|
271 |
+
|
272 |
+
The main features of this object are:
|
273 |
+
* persistence of numpy arrays in a single file.
|
274 |
+
* optional compression with a special care on avoiding memory copies.
|
275 |
+
|
276 |
+
Attributes
|
277 |
+
----------
|
278 |
+
fp: file
|
279 |
+
File object handle used for serializing the input object.
|
280 |
+
protocol: int, optional
|
281 |
+
Pickle protocol used. Default is pickle.DEFAULT_PROTOCOL.
|
282 |
+
"""
|
283 |
+
|
284 |
+
dispatch = Pickler.dispatch.copy()
|
285 |
+
|
286 |
+
def __init__(self, fp, protocol=None):
|
287 |
+
self.file_handle = fp
|
288 |
+
self.buffered = isinstance(self.file_handle, BinaryZlibFile)
|
289 |
+
|
290 |
+
# By default we want a pickle protocol that only changes with
|
291 |
+
# the major python version and not the minor one
|
292 |
+
if protocol is None:
|
293 |
+
protocol = pickle.DEFAULT_PROTOCOL
|
294 |
+
|
295 |
+
Pickler.__init__(self, self.file_handle, protocol=protocol)
|
296 |
+
# delayed import of numpy, to avoid tight coupling
|
297 |
+
try:
|
298 |
+
import numpy as np
|
299 |
+
except ImportError:
|
300 |
+
np = None
|
301 |
+
self.np = np
|
302 |
+
|
303 |
+
def _create_array_wrapper(self, array):
|
304 |
+
"""Create and returns a numpy array wrapper from a numpy array."""
|
305 |
+
order = 'F' if (array.flags.f_contiguous and
|
306 |
+
not array.flags.c_contiguous) else 'C'
|
307 |
+
allow_mmap = not self.buffered and not array.dtype.hasobject
|
308 |
+
|
309 |
+
kwargs = {}
|
310 |
+
try:
|
311 |
+
self.file_handle.tell()
|
312 |
+
except io.UnsupportedOperation:
|
313 |
+
kwargs = {'numpy_array_alignment_bytes': None}
|
314 |
+
|
315 |
+
wrapper = NumpyArrayWrapper(type(array),
|
316 |
+
array.shape, order, array.dtype,
|
317 |
+
allow_mmap=allow_mmap,
|
318 |
+
**kwargs)
|
319 |
+
|
320 |
+
return wrapper
|
321 |
+
|
322 |
+
def save(self, obj):
|
323 |
+
"""Subclass the Pickler `save` method.
|
324 |
+
|
325 |
+
This is a total abuse of the Pickler class in order to use the numpy
|
326 |
+
persistence function `save` instead of the default pickle
|
327 |
+
implementation. The numpy array is replaced by a custom wrapper in the
|
328 |
+
pickle persistence stack and the serialized array is written right
|
329 |
+
after in the file. Warning: the file produced does not follow the
|
330 |
+
pickle format. As such it can not be read with `pickle.load`.
|
331 |
+
"""
|
332 |
+
if self.np is not None and type(obj) in (self.np.ndarray,
|
333 |
+
self.np.matrix,
|
334 |
+
self.np.memmap):
|
335 |
+
if type(obj) is self.np.memmap:
|
336 |
+
# Pickling doesn't work with memmapped arrays
|
337 |
+
obj = self.np.asanyarray(obj)
|
338 |
+
|
339 |
+
# The array wrapper is pickled instead of the real array.
|
340 |
+
wrapper = self._create_array_wrapper(obj)
|
341 |
+
Pickler.save(self, wrapper)
|
342 |
+
|
343 |
+
# A framer was introduced with pickle protocol 4 and we want to
|
344 |
+
# ensure the wrapper object is written before the numpy array
|
345 |
+
# buffer in the pickle file.
|
346 |
+
# See https://www.python.org/dev/peps/pep-3154/#framing to get
|
347 |
+
# more information on the framer behavior.
|
348 |
+
if self.proto >= 4:
|
349 |
+
self.framer.commit_frame(force=True)
|
350 |
+
|
351 |
+
# And then array bytes are written right after the wrapper.
|
352 |
+
wrapper.write_array(obj, self)
|
353 |
+
return
|
354 |
+
|
355 |
+
return Pickler.save(self, obj)
|
356 |
+
|
357 |
+
|
358 |
+
class NumpyUnpickler(Unpickler):
|
359 |
+
"""A subclass of the Unpickler to unpickle our numpy pickles.
|
360 |
+
|
361 |
+
Attributes
|
362 |
+
----------
|
363 |
+
mmap_mode: str
|
364 |
+
The memorymap mode to use for reading numpy arrays.
|
365 |
+
file_handle: file_like
|
366 |
+
File object to unpickle from.
|
367 |
+
filename: str
|
368 |
+
Name of the file to unpickle from. It should correspond to file_handle.
|
369 |
+
This parameter is required when using mmap_mode.
|
370 |
+
np: module
|
371 |
+
Reference to numpy module if numpy is installed else None.
|
372 |
+
|
373 |
+
"""
|
374 |
+
|
375 |
+
dispatch = Unpickler.dispatch.copy()
|
376 |
+
|
377 |
+
def __init__(self, filename, file_handle, mmap_mode=None):
|
378 |
+
# The next line is for backward compatibility with pickle generated
|
379 |
+
# with joblib versions less than 0.10.
|
380 |
+
self._dirname = os.path.dirname(filename)
|
381 |
+
|
382 |
+
self.mmap_mode = mmap_mode
|
383 |
+
self.file_handle = file_handle
|
384 |
+
# filename is required for numpy mmap mode.
|
385 |
+
self.filename = filename
|
386 |
+
self.compat_mode = False
|
387 |
+
Unpickler.__init__(self, self.file_handle)
|
388 |
+
try:
|
389 |
+
import numpy as np
|
390 |
+
except ImportError:
|
391 |
+
np = None
|
392 |
+
self.np = np
|
393 |
+
|
394 |
+
def load_build(self):
|
395 |
+
"""Called to set the state of a newly created object.
|
396 |
+
|
397 |
+
We capture it to replace our place-holder objects, NDArrayWrapper or
|
398 |
+
NumpyArrayWrapper, by the array we are interested in. We
|
399 |
+
replace them directly in the stack of pickler.
|
400 |
+
NDArrayWrapper is used for backward compatibility with joblib <= 0.9.
|
401 |
+
"""
|
402 |
+
Unpickler.load_build(self)
|
403 |
+
|
404 |
+
# For backward compatibility, we support NDArrayWrapper objects.
|
405 |
+
if isinstance(self.stack[-1], (NDArrayWrapper, NumpyArrayWrapper)):
|
406 |
+
if self.np is None:
|
407 |
+
raise ImportError("Trying to unpickle an ndarray, "
|
408 |
+
"but numpy didn't import correctly")
|
409 |
+
array_wrapper = self.stack.pop()
|
410 |
+
# If any NDArrayWrapper is found, we switch to compatibility mode,
|
411 |
+
# this will be used to raise a DeprecationWarning to the user at
|
412 |
+
# the end of the unpickling.
|
413 |
+
if isinstance(array_wrapper, NDArrayWrapper):
|
414 |
+
self.compat_mode = True
|
415 |
+
self.stack.append(array_wrapper.read(self))
|
416 |
+
|
417 |
+
# Be careful to register our new method.
|
418 |
+
dispatch[pickle.BUILD[0]] = load_build
|
419 |
+
|
420 |
+
|
421 |
+
###############################################################################
|
422 |
+
# Utility functions
|
423 |
+
|
424 |
+
def dump(value, filename, compress=0, protocol=None, cache_size=None):
|
425 |
+
"""Persist an arbitrary Python object into one file.
|
426 |
+
|
427 |
+
Read more in the :ref:`User Guide <persistence>`.
|
428 |
+
|
429 |
+
Parameters
|
430 |
+
----------
|
431 |
+
value: any Python object
|
432 |
+
The object to store to disk.
|
433 |
+
filename: str, pathlib.Path, or file object.
|
434 |
+
The file object or path of the file in which it is to be stored.
|
435 |
+
The compression method corresponding to one of the supported filename
|
436 |
+
extensions ('.z', '.gz', '.bz2', '.xz' or '.lzma') will be used
|
437 |
+
automatically.
|
438 |
+
compress: int from 0 to 9 or bool or 2-tuple, optional
|
439 |
+
Optional compression level for the data. 0 or False is no compression.
|
440 |
+
Higher value means more compression, but also slower read and
|
441 |
+
write times. Using a value of 3 is often a good compromise.
|
442 |
+
See the notes for more details.
|
443 |
+
If compress is True, the compression level used is 3.
|
444 |
+
If compress is a 2-tuple, the first element must correspond to a string
|
445 |
+
between supported compressors (e.g 'zlib', 'gzip', 'bz2', 'lzma'
|
446 |
+
'xz'), the second element must be an integer from 0 to 9, corresponding
|
447 |
+
to the compression level.
|
448 |
+
protocol: int, optional
|
449 |
+
Pickle protocol, see pickle.dump documentation for more details.
|
450 |
+
cache_size: positive int, optional
|
451 |
+
This option is deprecated in 0.10 and has no effect.
|
452 |
+
|
453 |
+
Returns
|
454 |
+
-------
|
455 |
+
filenames: list of strings
|
456 |
+
The list of file names in which the data is stored. If
|
457 |
+
compress is false, each array is stored in a different file.
|
458 |
+
|
459 |
+
See Also
|
460 |
+
--------
|
461 |
+
joblib.load : corresponding loader
|
462 |
+
|
463 |
+
Notes
|
464 |
+
-----
|
465 |
+
Memmapping on load cannot be used for compressed files. Thus
|
466 |
+
using compression can significantly slow down loading. In
|
467 |
+
addition, compressed files take up extra memory during
|
468 |
+
dump and load.
|
469 |
+
|
470 |
+
"""
|
471 |
+
|
472 |
+
if Path is not None and isinstance(filename, Path):
|
473 |
+
filename = str(filename)
|
474 |
+
|
475 |
+
is_filename = isinstance(filename, str)
|
476 |
+
is_fileobj = hasattr(filename, "write")
|
477 |
+
|
478 |
+
compress_method = 'zlib' # zlib is the default compression method.
|
479 |
+
if compress is True:
|
480 |
+
# By default, if compress is enabled, we want the default compress
|
481 |
+
# level of the compressor.
|
482 |
+
compress_level = None
|
483 |
+
elif isinstance(compress, tuple):
|
484 |
+
# a 2-tuple was set in compress
|
485 |
+
if len(compress) != 2:
|
486 |
+
raise ValueError(
|
487 |
+
'Compress argument tuple should contain exactly 2 elements: '
|
488 |
+
'(compress method, compress level), you passed {}'
|
489 |
+
.format(compress))
|
490 |
+
compress_method, compress_level = compress
|
491 |
+
elif isinstance(compress, str):
|
492 |
+
compress_method = compress
|
493 |
+
compress_level = None # Use default compress level
|
494 |
+
compress = (compress_method, compress_level)
|
495 |
+
else:
|
496 |
+
compress_level = compress
|
497 |
+
|
498 |
+
if compress_method == 'lz4' and lz4 is None:
|
499 |
+
raise ValueError(LZ4_NOT_INSTALLED_ERROR)
|
500 |
+
|
501 |
+
if (compress_level is not None and
|
502 |
+
compress_level is not False and
|
503 |
+
compress_level not in range(10)):
|
504 |
+
# Raising an error if a non valid compress level is given.
|
505 |
+
raise ValueError(
|
506 |
+
'Non valid compress level given: "{}". Possible values are '
|
507 |
+
'{}.'.format(compress_level, list(range(10))))
|
508 |
+
|
509 |
+
if compress_method not in _COMPRESSORS:
|
510 |
+
# Raising an error if an unsupported compression method is given.
|
511 |
+
raise ValueError(
|
512 |
+
'Non valid compression method given: "{}". Possible values are '
|
513 |
+
'{}.'.format(compress_method, _COMPRESSORS))
|
514 |
+
|
515 |
+
if not is_filename and not is_fileobj:
|
516 |
+
# People keep inverting arguments, and the resulting error is
|
517 |
+
# incomprehensible
|
518 |
+
raise ValueError(
|
519 |
+
'Second argument should be a filename or a file-like object, '
|
520 |
+
'%s (type %s) was given.'
|
521 |
+
% (filename, type(filename))
|
522 |
+
)
|
523 |
+
|
524 |
+
if is_filename and not isinstance(compress, tuple):
|
525 |
+
# In case no explicit compression was requested using both compression
|
526 |
+
# method and level in a tuple and the filename has an explicit
|
527 |
+
# extension, we select the corresponding compressor.
|
528 |
+
|
529 |
+
# unset the variable to be sure no compression level is set afterwards.
|
530 |
+
compress_method = None
|
531 |
+
for name, compressor in _COMPRESSORS.items():
|
532 |
+
if filename.endswith(compressor.extension):
|
533 |
+
compress_method = name
|
534 |
+
|
535 |
+
if compress_method in _COMPRESSORS and compress_level == 0:
|
536 |
+
# we choose the default compress_level in case it was not given
|
537 |
+
# as an argument (using compress).
|
538 |
+
compress_level = None
|
539 |
+
|
540 |
+
if cache_size is not None:
|
541 |
+
# Cache size is deprecated starting from version 0.10
|
542 |
+
warnings.warn("Please do not set 'cache_size' in joblib.dump, "
|
543 |
+
"this parameter has no effect and will be removed. "
|
544 |
+
"You used 'cache_size={}'".format(cache_size),
|
545 |
+
DeprecationWarning, stacklevel=2)
|
546 |
+
|
547 |
+
if compress_level != 0:
|
548 |
+
with _write_fileobject(filename, compress=(compress_method,
|
549 |
+
compress_level)) as f:
|
550 |
+
NumpyPickler(f, protocol=protocol).dump(value)
|
551 |
+
elif is_filename:
|
552 |
+
with open(filename, 'wb') as f:
|
553 |
+
NumpyPickler(f, protocol=protocol).dump(value)
|
554 |
+
else:
|
555 |
+
NumpyPickler(filename, protocol=protocol).dump(value)
|
556 |
+
|
557 |
+
# If the target container is a file object, nothing is returned.
|
558 |
+
if is_fileobj:
|
559 |
+
return
|
560 |
+
|
561 |
+
# For compatibility, the list of created filenames (e.g with one element
|
562 |
+
# after 0.10.0) is returned by default.
|
563 |
+
return [filename]
|
564 |
+
|
565 |
+
|
566 |
+
def _unpickle(fobj, filename="", mmap_mode=None):
|
567 |
+
"""Internal unpickling function."""
|
568 |
+
# We are careful to open the file handle early and keep it open to
|
569 |
+
# avoid race-conditions on renames.
|
570 |
+
# That said, if data is stored in companion files, which can be
|
571 |
+
# the case with the old persistence format, moving the directory
|
572 |
+
# will create a race when joblib tries to access the companion
|
573 |
+
# files.
|
574 |
+
unpickler = NumpyUnpickler(filename, fobj, mmap_mode=mmap_mode)
|
575 |
+
obj = None
|
576 |
+
try:
|
577 |
+
obj = unpickler.load()
|
578 |
+
if unpickler.compat_mode:
|
579 |
+
warnings.warn("The file '%s' has been generated with a "
|
580 |
+
"joblib version less than 0.10. "
|
581 |
+
"Please regenerate this pickle file."
|
582 |
+
% filename,
|
583 |
+
DeprecationWarning, stacklevel=3)
|
584 |
+
except UnicodeDecodeError as exc:
|
585 |
+
# More user-friendly error message
|
586 |
+
new_exc = ValueError(
|
587 |
+
'You may be trying to read with '
|
588 |
+
'python 3 a joblib pickle generated with python 2. '
|
589 |
+
'This feature is not supported by joblib.')
|
590 |
+
new_exc.__cause__ = exc
|
591 |
+
raise new_exc
|
592 |
+
return obj
|
593 |
+
|
594 |
+
|
595 |
+
def load_temporary_memmap(filename, mmap_mode, unlink_on_gc_collect):
|
596 |
+
from ._memmapping_reducer import JOBLIB_MMAPS, add_maybe_unlink_finalizer
|
597 |
+
obj = load(filename, mmap_mode)
|
598 |
+
JOBLIB_MMAPS.add(obj.filename)
|
599 |
+
if unlink_on_gc_collect:
|
600 |
+
add_maybe_unlink_finalizer(obj)
|
601 |
+
return obj
|
602 |
+
|
603 |
+
|
604 |
+
def load(filename, mmap_mode=None):
|
605 |
+
"""Reconstruct a Python object from a file persisted with joblib.dump.
|
606 |
+
|
607 |
+
Read more in the :ref:`User Guide <persistence>`.
|
608 |
+
|
609 |
+
WARNING: joblib.load relies on the pickle module and can therefore
|
610 |
+
execute arbitrary Python code. It should therefore never be used
|
611 |
+
to load files from untrusted sources.
|
612 |
+
|
613 |
+
Parameters
|
614 |
+
----------
|
615 |
+
filename: str, pathlib.Path, or file object.
|
616 |
+
The file object or path of the file from which to load the object
|
617 |
+
mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional
|
618 |
+
If not None, the arrays are memory-mapped from the disk. This
|
619 |
+
mode has no effect for compressed files. Note that in this
|
620 |
+
case the reconstructed object might no longer match exactly
|
621 |
+
the originally pickled object.
|
622 |
+
|
623 |
+
Returns
|
624 |
+
-------
|
625 |
+
result: any Python object
|
626 |
+
The object stored in the file.
|
627 |
+
|
628 |
+
See Also
|
629 |
+
--------
|
630 |
+
joblib.dump : function to save an object
|
631 |
+
|
632 |
+
Notes
|
633 |
+
-----
|
634 |
+
|
635 |
+
This function can load numpy array files saved separately during the
|
636 |
+
dump. If the mmap_mode argument is given, it is passed to np.load and
|
637 |
+
arrays are loaded as memmaps. As a consequence, the reconstructed
|
638 |
+
object might not match the original pickled object. Note that if the
|
639 |
+
file was saved with compression, the arrays cannot be memmapped.
|
640 |
+
"""
|
641 |
+
if Path is not None and isinstance(filename, Path):
|
642 |
+
filename = str(filename)
|
643 |
+
|
644 |
+
if hasattr(filename, "read"):
|
645 |
+
fobj = filename
|
646 |
+
filename = getattr(fobj, 'name', '')
|
647 |
+
with _read_fileobject(fobj, filename, mmap_mode) as fobj:
|
648 |
+
obj = _unpickle(fobj)
|
649 |
+
else:
|
650 |
+
with open(filename, 'rb') as f:
|
651 |
+
with _read_fileobject(f, filename, mmap_mode) as fobj:
|
652 |
+
if isinstance(fobj, str):
|
653 |
+
# if the returned file object is a string, this means we
|
654 |
+
# try to load a pickle file generated with an version of
|
655 |
+
# Joblib so we load it with joblib compatibility function.
|
656 |
+
return load_compatibility(fobj)
|
657 |
+
|
658 |
+
obj = _unpickle(fobj, filename, mmap_mode)
|
659 |
+
return obj
|
llmeval-env/lib/python3.10/site-packages/joblib/numpy_pickle_utils.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utilities for fast persistence of big data, with optional compression."""
|
2 |
+
|
3 |
+
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
|
4 |
+
# Copyright (c) 2009 Gael Varoquaux
|
5 |
+
# License: BSD Style, 3 clauses.
|
6 |
+
|
7 |
+
import pickle
|
8 |
+
import io
|
9 |
+
import sys
|
10 |
+
import warnings
|
11 |
+
import contextlib
|
12 |
+
|
13 |
+
from .compressor import _ZFILE_PREFIX
|
14 |
+
from .compressor import _COMPRESSORS
|
15 |
+
|
16 |
+
try:
|
17 |
+
import numpy as np
|
18 |
+
except ImportError:
|
19 |
+
np = None
|
20 |
+
|
21 |
+
Unpickler = pickle._Unpickler
|
22 |
+
Pickler = pickle._Pickler
|
23 |
+
xrange = range
|
24 |
+
|
25 |
+
|
26 |
+
try:
|
27 |
+
# The python standard library can be built without bz2 so we make bz2
|
28 |
+
# usage optional.
|
29 |
+
# see https://github.com/scikit-learn/scikit-learn/issues/7526 for more
|
30 |
+
# details.
|
31 |
+
import bz2
|
32 |
+
except ImportError:
|
33 |
+
bz2 = None
|
34 |
+
|
35 |
+
# Buffer size used in io.BufferedReader and io.BufferedWriter
|
36 |
+
_IO_BUFFER_SIZE = 1024 ** 2
|
37 |
+
|
38 |
+
|
39 |
+
def _is_raw_file(fileobj):
|
40 |
+
"""Check if fileobj is a raw file object, e.g created with open."""
|
41 |
+
fileobj = getattr(fileobj, 'raw', fileobj)
|
42 |
+
return isinstance(fileobj, io.FileIO)
|
43 |
+
|
44 |
+
|
45 |
+
def _get_prefixes_max_len():
|
46 |
+
# Compute the max prefix len of registered compressors.
|
47 |
+
prefixes = [len(compressor.prefix) for compressor in _COMPRESSORS.values()]
|
48 |
+
prefixes += [len(_ZFILE_PREFIX)]
|
49 |
+
return max(prefixes)
|
50 |
+
|
51 |
+
|
52 |
+
def _is_numpy_array_byte_order_mismatch(array):
|
53 |
+
"""Check if numpy array is having byte order mismatch"""
|
54 |
+
return ((sys.byteorder == 'big' and
|
55 |
+
(array.dtype.byteorder == '<' or
|
56 |
+
(array.dtype.byteorder == '|' and array.dtype.fields and
|
57 |
+
all(e[0].byteorder == '<'
|
58 |
+
for e in array.dtype.fields.values())))) or
|
59 |
+
(sys.byteorder == 'little' and
|
60 |
+
(array.dtype.byteorder == '>' or
|
61 |
+
(array.dtype.byteorder == '|' and array.dtype.fields and
|
62 |
+
all(e[0].byteorder == '>'
|
63 |
+
for e in array.dtype.fields.values())))))
|
64 |
+
|
65 |
+
|
66 |
+
def _ensure_native_byte_order(array):
|
67 |
+
"""Use the byte order of the host while preserving values
|
68 |
+
|
69 |
+
Does nothing if array already uses the system byte order.
|
70 |
+
"""
|
71 |
+
if _is_numpy_array_byte_order_mismatch(array):
|
72 |
+
array = array.byteswap().view(array.dtype.newbyteorder('='))
|
73 |
+
return array
|
74 |
+
|
75 |
+
|
76 |
+
###############################################################################
|
77 |
+
# Cache file utilities
|
78 |
+
def _detect_compressor(fileobj):
|
79 |
+
"""Return the compressor matching fileobj.
|
80 |
+
|
81 |
+
Parameters
|
82 |
+
----------
|
83 |
+
fileobj: file object
|
84 |
+
|
85 |
+
Returns
|
86 |
+
-------
|
87 |
+
str in {'zlib', 'gzip', 'bz2', 'lzma', 'xz', 'compat', 'not-compressed'}
|
88 |
+
"""
|
89 |
+
# Read the magic number in the first bytes of the file.
|
90 |
+
max_prefix_len = _get_prefixes_max_len()
|
91 |
+
if hasattr(fileobj, 'peek'):
|
92 |
+
# Peek allows to read those bytes without moving the cursor in the
|
93 |
+
# file whic.
|
94 |
+
first_bytes = fileobj.peek(max_prefix_len)
|
95 |
+
else:
|
96 |
+
# Fallback to seek if the fileobject is not peekable.
|
97 |
+
first_bytes = fileobj.read(max_prefix_len)
|
98 |
+
fileobj.seek(0)
|
99 |
+
|
100 |
+
if first_bytes.startswith(_ZFILE_PREFIX):
|
101 |
+
return "compat"
|
102 |
+
else:
|
103 |
+
for name, compressor in _COMPRESSORS.items():
|
104 |
+
if first_bytes.startswith(compressor.prefix):
|
105 |
+
return name
|
106 |
+
|
107 |
+
return "not-compressed"
|
108 |
+
|
109 |
+
|
110 |
+
def _buffered_read_file(fobj):
|
111 |
+
"""Return a buffered version of a read file object."""
|
112 |
+
return io.BufferedReader(fobj, buffer_size=_IO_BUFFER_SIZE)
|
113 |
+
|
114 |
+
|
115 |
+
def _buffered_write_file(fobj):
|
116 |
+
"""Return a buffered version of a write file object."""
|
117 |
+
return io.BufferedWriter(fobj, buffer_size=_IO_BUFFER_SIZE)
|
118 |
+
|
119 |
+
|
120 |
+
@contextlib.contextmanager
|
121 |
+
def _read_fileobject(fileobj, filename, mmap_mode=None):
|
122 |
+
"""Utility function opening the right fileobject from a filename.
|
123 |
+
|
124 |
+
The magic number is used to choose between the type of file object to open:
|
125 |
+
* regular file object (default)
|
126 |
+
* zlib file object
|
127 |
+
* gzip file object
|
128 |
+
* bz2 file object
|
129 |
+
* lzma file object (for xz and lzma compressor)
|
130 |
+
|
131 |
+
Parameters
|
132 |
+
----------
|
133 |
+
fileobj: file object
|
134 |
+
compressor: str in {'zlib', 'gzip', 'bz2', 'lzma', 'xz', 'compat',
|
135 |
+
'not-compressed'}
|
136 |
+
filename: str
|
137 |
+
filename path corresponding to the fileobj parameter.
|
138 |
+
mmap_mode: str
|
139 |
+
memory map mode that should be used to open the pickle file. This
|
140 |
+
parameter is useful to verify that the user is not trying to one with
|
141 |
+
compression. Default: None.
|
142 |
+
|
143 |
+
Returns
|
144 |
+
-------
|
145 |
+
a file like object
|
146 |
+
|
147 |
+
"""
|
148 |
+
# Detect if the fileobj contains compressed data.
|
149 |
+
compressor = _detect_compressor(fileobj)
|
150 |
+
|
151 |
+
if compressor == 'compat':
|
152 |
+
# Compatibility with old pickle mode: simply return the input
|
153 |
+
# filename "as-is" and let the compatibility function be called by the
|
154 |
+
# caller.
|
155 |
+
warnings.warn("The file '%s' has been generated with a joblib "
|
156 |
+
"version less than 0.10. "
|
157 |
+
"Please regenerate this pickle file." % filename,
|
158 |
+
DeprecationWarning, stacklevel=2)
|
159 |
+
yield filename
|
160 |
+
else:
|
161 |
+
if compressor in _COMPRESSORS:
|
162 |
+
# based on the compressor detected in the file, we open the
|
163 |
+
# correct decompressor file object, wrapped in a buffer.
|
164 |
+
compressor_wrapper = _COMPRESSORS[compressor]
|
165 |
+
inst = compressor_wrapper.decompressor_file(fileobj)
|
166 |
+
fileobj = _buffered_read_file(inst)
|
167 |
+
|
168 |
+
# Checking if incompatible load parameters with the type of file:
|
169 |
+
# mmap_mode cannot be used with compressed file or in memory buffers
|
170 |
+
# such as io.BytesIO.
|
171 |
+
if mmap_mode is not None:
|
172 |
+
if isinstance(fileobj, io.BytesIO):
|
173 |
+
warnings.warn('In memory persistence is not compatible with '
|
174 |
+
'mmap_mode "%(mmap_mode)s" flag passed. '
|
175 |
+
'mmap_mode option will be ignored.'
|
176 |
+
% locals(), stacklevel=2)
|
177 |
+
elif compressor != 'not-compressed':
|
178 |
+
warnings.warn('mmap_mode "%(mmap_mode)s" is not compatible '
|
179 |
+
'with compressed file %(filename)s. '
|
180 |
+
'"%(mmap_mode)s" flag will be ignored.'
|
181 |
+
% locals(), stacklevel=2)
|
182 |
+
elif not _is_raw_file(fileobj):
|
183 |
+
warnings.warn('"%(fileobj)r" is not a raw file, mmap_mode '
|
184 |
+
'"%(mmap_mode)s" flag will be ignored.'
|
185 |
+
% locals(), stacklevel=2)
|
186 |
+
|
187 |
+
yield fileobj
|
188 |
+
|
189 |
+
|
190 |
+
def _write_fileobject(filename, compress=("zlib", 3)):
|
191 |
+
"""Return the right compressor file object in write mode."""
|
192 |
+
compressmethod = compress[0]
|
193 |
+
compresslevel = compress[1]
|
194 |
+
|
195 |
+
if compressmethod in _COMPRESSORS.keys():
|
196 |
+
file_instance = _COMPRESSORS[compressmethod].compressor_file(
|
197 |
+
filename, compresslevel=compresslevel)
|
198 |
+
return _buffered_write_file(file_instance)
|
199 |
+
else:
|
200 |
+
file_instance = _COMPRESSORS['zlib'].compressor_file(
|
201 |
+
filename, compresslevel=compresslevel)
|
202 |
+
return _buffered_write_file(file_instance)
|
203 |
+
|
204 |
+
|
205 |
+
# Utility functions/variables from numpy required for writing arrays.
|
206 |
+
# We need at least the functions introduced in version 1.9 of numpy. Here,
|
207 |
+
# we use the ones from numpy 1.10.2.
|
208 |
+
BUFFER_SIZE = 2 ** 18 # size of buffer for reading npz files in bytes
|
209 |
+
|
210 |
+
|
211 |
+
def _read_bytes(fp, size, error_template="ran out of data"):
|
212 |
+
"""Read from file-like object until size bytes are read.
|
213 |
+
|
214 |
+
TODO python2_drop: is it still needed? The docstring mentions python 2.6
|
215 |
+
and it looks like this can be at least simplified ...
|
216 |
+
|
217 |
+
Raises ValueError if not EOF is encountered before size bytes are read.
|
218 |
+
Non-blocking objects only supported if they derive from io objects.
|
219 |
+
|
220 |
+
Required as e.g. ZipExtFile in python 2.6 can return less data than
|
221 |
+
requested.
|
222 |
+
|
223 |
+
This function was taken from numpy/lib/format.py in version 1.10.2.
|
224 |
+
|
225 |
+
Parameters
|
226 |
+
----------
|
227 |
+
fp: file-like object
|
228 |
+
size: int
|
229 |
+
error_template: str
|
230 |
+
|
231 |
+
Returns
|
232 |
+
-------
|
233 |
+
a bytes object
|
234 |
+
The data read in bytes.
|
235 |
+
|
236 |
+
"""
|
237 |
+
data = bytes()
|
238 |
+
while True:
|
239 |
+
# io files (default in python3) return None or raise on
|
240 |
+
# would-block, python2 file will truncate, probably nothing can be
|
241 |
+
# done about that. note that regular files can't be non-blocking
|
242 |
+
try:
|
243 |
+
r = fp.read(size - len(data))
|
244 |
+
data += r
|
245 |
+
if len(r) == 0 or len(data) == size:
|
246 |
+
break
|
247 |
+
except io.BlockingIOError:
|
248 |
+
pass
|
249 |
+
if len(data) != size:
|
250 |
+
msg = "EOF: reading %s, expected %d bytes got %d"
|
251 |
+
raise ValueError(msg % (error_template, size, len(data)))
|
252 |
+
else:
|
253 |
+
return data
|
llmeval-env/lib/python3.10/site-packages/joblib/parallel.py
ADDED
@@ -0,0 +1,2010 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Helpers for embarrassingly parallel code.
|
3 |
+
"""
|
4 |
+
# Author: Gael Varoquaux < gael dot varoquaux at normalesup dot org >
|
5 |
+
# Copyright: 2010, Gael Varoquaux
|
6 |
+
# License: BSD 3 clause
|
7 |
+
|
8 |
+
from __future__ import division
|
9 |
+
|
10 |
+
import os
|
11 |
+
import sys
|
12 |
+
from math import sqrt
|
13 |
+
import functools
|
14 |
+
import collections
|
15 |
+
import time
|
16 |
+
import threading
|
17 |
+
import itertools
|
18 |
+
from uuid import uuid4
|
19 |
+
from numbers import Integral
|
20 |
+
import warnings
|
21 |
+
import queue
|
22 |
+
import weakref
|
23 |
+
from contextlib import nullcontext
|
24 |
+
|
25 |
+
from multiprocessing import TimeoutError
|
26 |
+
|
27 |
+
from ._multiprocessing_helpers import mp
|
28 |
+
|
29 |
+
from .logger import Logger, short_format_time
|
30 |
+
from .disk import memstr_to_bytes
|
31 |
+
from ._parallel_backends import (FallbackToBackend, MultiprocessingBackend,
|
32 |
+
ThreadingBackend, SequentialBackend,
|
33 |
+
LokyBackend)
|
34 |
+
from ._utils import eval_expr, _Sentinel
|
35 |
+
|
36 |
+
# Make sure that those two classes are part of the public joblib.parallel API
|
37 |
+
# so that 3rd party backend implementers can import them from here.
|
38 |
+
from ._parallel_backends import AutoBatchingMixin # noqa
|
39 |
+
from ._parallel_backends import ParallelBackendBase # noqa
|
40 |
+
|
41 |
+
|
42 |
+
IS_PYPY = hasattr(sys, "pypy_version_info")
|
43 |
+
|
44 |
+
|
45 |
+
BACKENDS = {
|
46 |
+
'threading': ThreadingBackend,
|
47 |
+
'sequential': SequentialBackend,
|
48 |
+
}
|
49 |
+
# name of the backend used by default by Parallel outside of any context
|
50 |
+
# managed by ``parallel_config`` or ``parallel_backend``.
|
51 |
+
|
52 |
+
# threading is the only backend that is always everywhere
|
53 |
+
DEFAULT_BACKEND = 'threading'
|
54 |
+
|
55 |
+
MAYBE_AVAILABLE_BACKENDS = {'multiprocessing', 'loky'}
|
56 |
+
|
57 |
+
# if multiprocessing is available, so is loky, we set it as the default
|
58 |
+
# backend
|
59 |
+
if mp is not None:
|
60 |
+
BACKENDS['multiprocessing'] = MultiprocessingBackend
|
61 |
+
from .externals import loky
|
62 |
+
BACKENDS['loky'] = LokyBackend
|
63 |
+
DEFAULT_BACKEND = 'loky'
|
64 |
+
|
65 |
+
|
66 |
+
DEFAULT_THREAD_BACKEND = 'threading'
|
67 |
+
|
68 |
+
|
69 |
+
# Thread local value that can be overridden by the ``parallel_config`` context
|
70 |
+
# manager
|
71 |
+
_backend = threading.local()
|
72 |
+
|
73 |
+
|
74 |
+
def _register_dask():
|
75 |
+
"""Register Dask Backend if called with parallel_config(backend="dask")"""
|
76 |
+
try:
|
77 |
+
from ._dask import DaskDistributedBackend
|
78 |
+
register_parallel_backend('dask', DaskDistributedBackend)
|
79 |
+
except ImportError as e:
|
80 |
+
msg = ("To use the dask.distributed backend you must install both "
|
81 |
+
"the `dask` and distributed modules.\n\n"
|
82 |
+
"See https://dask.pydata.org/en/latest/install.html for more "
|
83 |
+
"information.")
|
84 |
+
raise ImportError(msg) from e
|
85 |
+
|
86 |
+
|
87 |
+
EXTERNAL_BACKENDS = {
|
88 |
+
'dask': _register_dask,
|
89 |
+
}
|
90 |
+
|
91 |
+
|
92 |
+
# Sentinels for the default values of the Parallel constructor and
|
93 |
+
# the parallel_config and parallel_backend context managers
|
94 |
+
default_parallel_config = {
|
95 |
+
"backend": _Sentinel(default_value=None),
|
96 |
+
"n_jobs": _Sentinel(default_value=None),
|
97 |
+
"verbose": _Sentinel(default_value=0),
|
98 |
+
"temp_folder": _Sentinel(default_value=None),
|
99 |
+
"max_nbytes": _Sentinel(default_value="1M"),
|
100 |
+
"mmap_mode": _Sentinel(default_value="r"),
|
101 |
+
"prefer": _Sentinel(default_value=None),
|
102 |
+
"require": _Sentinel(default_value=None),
|
103 |
+
}
|
104 |
+
|
105 |
+
|
106 |
+
VALID_BACKEND_HINTS = ('processes', 'threads', None)
|
107 |
+
VALID_BACKEND_CONSTRAINTS = ('sharedmem', None)
|
108 |
+
|
109 |
+
|
110 |
+
def _get_config_param(param, context_config, key):
|
111 |
+
"""Return the value of a parallel config parameter
|
112 |
+
|
113 |
+
Explicitly setting it in Parallel has priority over setting in a
|
114 |
+
parallel_(config/backend) context manager.
|
115 |
+
"""
|
116 |
+
if param is not default_parallel_config[key]:
|
117 |
+
# param is explicitly set, return it
|
118 |
+
return param
|
119 |
+
|
120 |
+
if context_config[key] is not default_parallel_config[key]:
|
121 |
+
# there's a context manager and the key is set, return it
|
122 |
+
return context_config[key]
|
123 |
+
|
124 |
+
# Otherwise, we are in the default_parallel_config,
|
125 |
+
# return the default value
|
126 |
+
return param.default_value
|
127 |
+
|
128 |
+
|
129 |
+
def get_active_backend(
|
130 |
+
prefer=default_parallel_config["prefer"],
|
131 |
+
require=default_parallel_config["require"],
|
132 |
+
verbose=default_parallel_config["verbose"],
|
133 |
+
):
|
134 |
+
"""Return the active default backend"""
|
135 |
+
backend, config = _get_active_backend(prefer, require, verbose)
|
136 |
+
n_jobs = _get_config_param(
|
137 |
+
default_parallel_config['n_jobs'], config, "n_jobs"
|
138 |
+
)
|
139 |
+
return backend, n_jobs
|
140 |
+
|
141 |
+
|
142 |
+
def _get_active_backend(
|
143 |
+
prefer=default_parallel_config["prefer"],
|
144 |
+
require=default_parallel_config["require"],
|
145 |
+
verbose=default_parallel_config["verbose"],
|
146 |
+
):
|
147 |
+
"""Return the active default backend"""
|
148 |
+
|
149 |
+
backend_config = getattr(_backend, "config", default_parallel_config)
|
150 |
+
|
151 |
+
backend = _get_config_param(
|
152 |
+
default_parallel_config['backend'], backend_config, "backend"
|
153 |
+
)
|
154 |
+
prefer = _get_config_param(prefer, backend_config, "prefer")
|
155 |
+
require = _get_config_param(require, backend_config, "require")
|
156 |
+
verbose = _get_config_param(verbose, backend_config, "verbose")
|
157 |
+
|
158 |
+
if prefer not in VALID_BACKEND_HINTS:
|
159 |
+
raise ValueError(
|
160 |
+
f"prefer={prefer} is not a valid backend hint, "
|
161 |
+
f"expected one of {VALID_BACKEND_HINTS}"
|
162 |
+
)
|
163 |
+
if require not in VALID_BACKEND_CONSTRAINTS:
|
164 |
+
raise ValueError(
|
165 |
+
f"require={require} is not a valid backend constraint, "
|
166 |
+
f"expected one of {VALID_BACKEND_CONSTRAINTS}"
|
167 |
+
)
|
168 |
+
if prefer == 'processes' and require == 'sharedmem':
|
169 |
+
raise ValueError(
|
170 |
+
"prefer == 'processes' and require == 'sharedmem'"
|
171 |
+
" are inconsistent settings"
|
172 |
+
)
|
173 |
+
|
174 |
+
explicit_backend = True
|
175 |
+
if backend is None:
|
176 |
+
|
177 |
+
# We are either outside of the scope of any parallel_(config/backend)
|
178 |
+
# context manager or the context manager did not set a backend.
|
179 |
+
# create the default backend instance now.
|
180 |
+
backend = BACKENDS[DEFAULT_BACKEND](nesting_level=0)
|
181 |
+
explicit_backend = False
|
182 |
+
|
183 |
+
# Try to use the backend set by the user with the context manager.
|
184 |
+
|
185 |
+
nesting_level = backend.nesting_level
|
186 |
+
uses_threads = getattr(backend, 'uses_threads', False)
|
187 |
+
supports_sharedmem = getattr(backend, 'supports_sharedmem', False)
|
188 |
+
# Force to use thread-based backend if the provided backend does not
|
189 |
+
# match the shared memory constraint or if the backend is not explicitly
|
190 |
+
# given and threads are preferred.
|
191 |
+
force_threads = (require == 'sharedmem' and not supports_sharedmem)
|
192 |
+
force_threads |= (
|
193 |
+
not explicit_backend and prefer == 'threads' and not uses_threads
|
194 |
+
)
|
195 |
+
if force_threads:
|
196 |
+
# This backend does not match the shared memory constraint:
|
197 |
+
# fallback to the default thead-based backend.
|
198 |
+
sharedmem_backend = BACKENDS[DEFAULT_THREAD_BACKEND](
|
199 |
+
nesting_level=nesting_level
|
200 |
+
)
|
201 |
+
# Warn the user if we forced the backend to thread-based, while the
|
202 |
+
# user explicitly specified a non-thread-based backend.
|
203 |
+
if verbose >= 10 and explicit_backend:
|
204 |
+
print(
|
205 |
+
f"Using {sharedmem_backend.__class__.__name__} as "
|
206 |
+
f"joblib backend instead of {backend.__class__.__name__} "
|
207 |
+
"as the latter does not provide shared memory semantics."
|
208 |
+
)
|
209 |
+
# Force to n_jobs=1 by default
|
210 |
+
thread_config = backend_config.copy()
|
211 |
+
thread_config['n_jobs'] = 1
|
212 |
+
return sharedmem_backend, thread_config
|
213 |
+
|
214 |
+
return backend, backend_config
|
215 |
+
|
216 |
+
|
217 |
+
class parallel_config:
|
218 |
+
"""Set the default backend or configuration for :class:`~joblib.Parallel`.
|
219 |
+
|
220 |
+
This is an alternative to directly passing keyword arguments to the
|
221 |
+
:class:`~joblib.Parallel` class constructor. It is particularly useful when
|
222 |
+
calling into library code that uses joblib internally but does not expose
|
223 |
+
the various parallel configuration arguments in its own API.
|
224 |
+
|
225 |
+
Parameters
|
226 |
+
----------
|
227 |
+
backend: str or ParallelBackendBase instance, default=None
|
228 |
+
If ``backend`` is a string it must match a previously registered
|
229 |
+
implementation using the :func:`~register_parallel_backend` function.
|
230 |
+
|
231 |
+
By default the following backends are available:
|
232 |
+
|
233 |
+
- 'loky': single-host, process-based parallelism (used by default),
|
234 |
+
- 'threading': single-host, thread-based parallelism,
|
235 |
+
- 'multiprocessing': legacy single-host, process-based parallelism.
|
236 |
+
|
237 |
+
'loky' is recommended to run functions that manipulate Python objects.
|
238 |
+
'threading' is a low-overhead alternative that is most efficient for
|
239 |
+
functions that release the Global Interpreter Lock: e.g. I/O-bound
|
240 |
+
code or CPU-bound code in a few calls to native code that explicitly
|
241 |
+
releases the GIL. Note that on some rare systems (such as pyodide),
|
242 |
+
multiprocessing and loky may not be available, in which case joblib
|
243 |
+
defaults to threading.
|
244 |
+
|
245 |
+
In addition, if the ``dask`` and ``distributed`` Python packages are
|
246 |
+
installed, it is possible to use the 'dask' backend for better
|
247 |
+
scheduling of nested parallel calls without over-subscription and
|
248 |
+
potentially distribute parallel calls over a networked cluster of
|
249 |
+
several hosts.
|
250 |
+
|
251 |
+
It is also possible to use the distributed 'ray' backend for
|
252 |
+
distributing the workload to a cluster of nodes. See more details
|
253 |
+
in the Examples section below.
|
254 |
+
|
255 |
+
Alternatively the backend can be passed directly as an instance.
|
256 |
+
|
257 |
+
n_jobs: int, default=None
|
258 |
+
The maximum number of concurrently running jobs, such as the number
|
259 |
+
of Python worker processes when ``backend="loky"`` or the size of the
|
260 |
+
thread-pool when ``backend="threading"``.
|
261 |
+
This argument is converted to an integer, rounded below for float.
|
262 |
+
If -1 is given, `joblib` tries to use all CPUs. The number of CPUs
|
263 |
+
``n_cpus`` is obtained with :func:`~cpu_count`.
|
264 |
+
For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. For instance,
|
265 |
+
using ``n_jobs=-2`` will result in all CPUs but one being used.
|
266 |
+
This argument can also go above ``n_cpus``, which will cause
|
267 |
+
oversubscription. In some cases, slight oversubscription can be
|
268 |
+
beneficial, e.g., for tasks with large I/O operations.
|
269 |
+
If 1 is given, no parallel computing code is used at all, and the
|
270 |
+
behavior amounts to a simple python `for` loop. This mode is not
|
271 |
+
compatible with `timeout`.
|
272 |
+
None is a marker for 'unset' that will be interpreted as n_jobs=1
|
273 |
+
unless the call is performed under a :func:`~parallel_config`
|
274 |
+
context manager that sets another value for ``n_jobs``.
|
275 |
+
If n_jobs = 0 then a ValueError is raised.
|
276 |
+
|
277 |
+
verbose: int, default=0
|
278 |
+
The verbosity level: if non zero, progress messages are
|
279 |
+
printed. Above 50, the output is sent to stdout.
|
280 |
+
The frequency of the messages increases with the verbosity level.
|
281 |
+
If it more than 10, all iterations are reported.
|
282 |
+
|
283 |
+
temp_folder: str or None, default=None
|
284 |
+
Folder to be used by the pool for memmapping large arrays
|
285 |
+
for sharing memory with worker processes. If None, this will try in
|
286 |
+
order:
|
287 |
+
|
288 |
+
- a folder pointed by the ``JOBLIB_TEMP_FOLDER`` environment
|
289 |
+
variable,
|
290 |
+
- ``/dev/shm`` if the folder exists and is writable: this is a
|
291 |
+
RAM disk filesystem available by default on modern Linux
|
292 |
+
distributions,
|
293 |
+
- the default system temporary folder that can be
|
294 |
+
overridden with ``TMP``, ``TMPDIR`` or ``TEMP`` environment
|
295 |
+
variables, typically ``/tmp`` under Unix operating systems.
|
296 |
+
|
297 |
+
max_nbytes int, str, or None, optional, default='1M'
|
298 |
+
Threshold on the size of arrays passed to the workers that
|
299 |
+
triggers automated memory mapping in temp_folder. Can be an int
|
300 |
+
in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte.
|
301 |
+
Use None to disable memmapping of large arrays.
|
302 |
+
|
303 |
+
mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, default='r'
|
304 |
+
Memmapping mode for numpy arrays passed to workers. None will
|
305 |
+
disable memmapping, other modes defined in the numpy.memmap doc:
|
306 |
+
https://numpy.org/doc/stable/reference/generated/numpy.memmap.html
|
307 |
+
Also, see 'max_nbytes' parameter documentation for more details.
|
308 |
+
|
309 |
+
prefer: str in {'processes', 'threads'} or None, default=None
|
310 |
+
Soft hint to choose the default backend.
|
311 |
+
The default process-based backend is 'loky' and the default
|
312 |
+
thread-based backend is 'threading'. Ignored if the ``backend``
|
313 |
+
parameter is specified.
|
314 |
+
|
315 |
+
require: 'sharedmem' or None, default=None
|
316 |
+
Hard constraint to select the backend. If set to 'sharedmem',
|
317 |
+
the selected backend will be single-host and thread-based.
|
318 |
+
|
319 |
+
inner_max_num_threads: int, default=None
|
320 |
+
If not None, overwrites the limit set on the number of threads
|
321 |
+
usable in some third-party library threadpools like OpenBLAS,
|
322 |
+
MKL or OpenMP. This is only used with the ``loky`` backend.
|
323 |
+
|
324 |
+
backend_params: dict
|
325 |
+
Additional parameters to pass to the backend constructor when
|
326 |
+
backend is a string.
|
327 |
+
|
328 |
+
Notes
|
329 |
+
-----
|
330 |
+
Joblib tries to limit the oversubscription by limiting the number of
|
331 |
+
threads usable in some third-party library threadpools like OpenBLAS, MKL
|
332 |
+
or OpenMP. The default limit in each worker is set to
|
333 |
+
``max(cpu_count() // effective_n_jobs, 1)`` but this limit can be
|
334 |
+
overwritten with the ``inner_max_num_threads`` argument which will be used
|
335 |
+
to set this limit in the child processes.
|
336 |
+
|
337 |
+
.. versionadded:: 1.3
|
338 |
+
|
339 |
+
Examples
|
340 |
+
--------
|
341 |
+
>>> from operator import neg
|
342 |
+
>>> with parallel_config(backend='threading'):
|
343 |
+
... print(Parallel()(delayed(neg)(i + 1) for i in range(5)))
|
344 |
+
...
|
345 |
+
[-1, -2, -3, -4, -5]
|
346 |
+
|
347 |
+
To use the 'ray' joblib backend add the following lines:
|
348 |
+
|
349 |
+
>>> from ray.util.joblib import register_ray # doctest: +SKIP
|
350 |
+
>>> register_ray() # doctest: +SKIP
|
351 |
+
>>> with parallel_config(backend="ray"): # doctest: +SKIP
|
352 |
+
... print(Parallel()(delayed(neg)(i + 1) for i in range(5)))
|
353 |
+
[-1, -2, -3, -4, -5]
|
354 |
+
|
355 |
+
"""
|
356 |
+
def __init__(
|
357 |
+
self,
|
358 |
+
backend=default_parallel_config["backend"],
|
359 |
+
*,
|
360 |
+
n_jobs=default_parallel_config["n_jobs"],
|
361 |
+
verbose=default_parallel_config["verbose"],
|
362 |
+
temp_folder=default_parallel_config["temp_folder"],
|
363 |
+
max_nbytes=default_parallel_config["max_nbytes"],
|
364 |
+
mmap_mode=default_parallel_config["mmap_mode"],
|
365 |
+
prefer=default_parallel_config["prefer"],
|
366 |
+
require=default_parallel_config["require"],
|
367 |
+
inner_max_num_threads=None,
|
368 |
+
**backend_params
|
369 |
+
):
|
370 |
+
# Save the parallel info and set the active parallel config
|
371 |
+
self.old_parallel_config = getattr(
|
372 |
+
_backend, "config", default_parallel_config
|
373 |
+
)
|
374 |
+
|
375 |
+
backend = self._check_backend(
|
376 |
+
backend, inner_max_num_threads, **backend_params
|
377 |
+
)
|
378 |
+
|
379 |
+
new_config = {
|
380 |
+
"n_jobs": n_jobs,
|
381 |
+
"verbose": verbose,
|
382 |
+
"temp_folder": temp_folder,
|
383 |
+
"max_nbytes": max_nbytes,
|
384 |
+
"mmap_mode": mmap_mode,
|
385 |
+
"prefer": prefer,
|
386 |
+
"require": require,
|
387 |
+
"backend": backend
|
388 |
+
}
|
389 |
+
self.parallel_config = self.old_parallel_config.copy()
|
390 |
+
self.parallel_config.update({
|
391 |
+
k: v for k, v in new_config.items()
|
392 |
+
if not isinstance(v, _Sentinel)
|
393 |
+
})
|
394 |
+
|
395 |
+
setattr(_backend, "config", self.parallel_config)
|
396 |
+
|
397 |
+
def _check_backend(self, backend, inner_max_num_threads, **backend_params):
|
398 |
+
if backend is default_parallel_config['backend']:
|
399 |
+
if inner_max_num_threads is not None or len(backend_params) > 0:
|
400 |
+
raise ValueError(
|
401 |
+
"inner_max_num_threads and other constructor "
|
402 |
+
"parameters backend_params are only supported "
|
403 |
+
"when backend is not None."
|
404 |
+
)
|
405 |
+
return backend
|
406 |
+
|
407 |
+
if isinstance(backend, str):
|
408 |
+
# Handle non-registered or missing backends
|
409 |
+
if backend not in BACKENDS:
|
410 |
+
if backend in EXTERNAL_BACKENDS:
|
411 |
+
register = EXTERNAL_BACKENDS[backend]
|
412 |
+
register()
|
413 |
+
elif backend in MAYBE_AVAILABLE_BACKENDS:
|
414 |
+
warnings.warn(
|
415 |
+
f"joblib backend '{backend}' is not available on "
|
416 |
+
f"your system, falling back to {DEFAULT_BACKEND}.",
|
417 |
+
UserWarning,
|
418 |
+
stacklevel=2
|
419 |
+
)
|
420 |
+
BACKENDS[backend] = BACKENDS[DEFAULT_BACKEND]
|
421 |
+
else:
|
422 |
+
raise ValueError(
|
423 |
+
f"Invalid backend: {backend}, expected one of "
|
424 |
+
f"{sorted(BACKENDS.keys())}"
|
425 |
+
)
|
426 |
+
|
427 |
+
backend = BACKENDS[backend](**backend_params)
|
428 |
+
|
429 |
+
if inner_max_num_threads is not None:
|
430 |
+
msg = (
|
431 |
+
f"{backend.__class__.__name__} does not accept setting the "
|
432 |
+
"inner_max_num_threads argument."
|
433 |
+
)
|
434 |
+
assert backend.supports_inner_max_num_threads, msg
|
435 |
+
backend.inner_max_num_threads = inner_max_num_threads
|
436 |
+
|
437 |
+
# If the nesting_level of the backend is not set previously, use the
|
438 |
+
# nesting level from the previous active_backend to set it
|
439 |
+
if backend.nesting_level is None:
|
440 |
+
parent_backend = self.old_parallel_config['backend']
|
441 |
+
if parent_backend is default_parallel_config['backend']:
|
442 |
+
nesting_level = 0
|
443 |
+
else:
|
444 |
+
nesting_level = parent_backend.nesting_level
|
445 |
+
backend.nesting_level = nesting_level
|
446 |
+
|
447 |
+
return backend
|
448 |
+
|
449 |
+
def __enter__(self):
|
450 |
+
return self.parallel_config
|
451 |
+
|
452 |
+
def __exit__(self, type, value, traceback):
|
453 |
+
self.unregister()
|
454 |
+
|
455 |
+
def unregister(self):
|
456 |
+
setattr(_backend, "config", self.old_parallel_config)
|
457 |
+
|
458 |
+
|
459 |
+
class parallel_backend(parallel_config):
|
460 |
+
"""Change the default backend used by Parallel inside a with block.
|
461 |
+
|
462 |
+
.. warning::
|
463 |
+
It is advised to use the :class:`~joblib.parallel_config` context
|
464 |
+
manager instead, which allows more fine-grained control over the
|
465 |
+
backend configuration.
|
466 |
+
|
467 |
+
If ``backend`` is a string it must match a previously registered
|
468 |
+
implementation using the :func:`~register_parallel_backend` function.
|
469 |
+
|
470 |
+
By default the following backends are available:
|
471 |
+
|
472 |
+
- 'loky': single-host, process-based parallelism (used by default),
|
473 |
+
- 'threading': single-host, thread-based parallelism,
|
474 |
+
- 'multiprocessing': legacy single-host, process-based parallelism.
|
475 |
+
|
476 |
+
'loky' is recommended to run functions that manipulate Python objects.
|
477 |
+
'threading' is a low-overhead alternative that is most efficient for
|
478 |
+
functions that release the Global Interpreter Lock: e.g. I/O-bound code or
|
479 |
+
CPU-bound code in a few calls to native code that explicitly releases the
|
480 |
+
GIL. Note that on some rare systems (such as Pyodide),
|
481 |
+
multiprocessing and loky may not be available, in which case joblib
|
482 |
+
defaults to threading.
|
483 |
+
|
484 |
+
You can also use the `Dask <https://docs.dask.org/en/stable/>`_ joblib
|
485 |
+
backend to distribute work across machines. This works well with
|
486 |
+
scikit-learn estimators with the ``n_jobs`` parameter, for example::
|
487 |
+
|
488 |
+
>>> import joblib # doctest: +SKIP
|
489 |
+
>>> from sklearn.model_selection import GridSearchCV # doctest: +SKIP
|
490 |
+
>>> from dask.distributed import Client, LocalCluster # doctest: +SKIP
|
491 |
+
|
492 |
+
>>> # create a local Dask cluster
|
493 |
+
>>> cluster = LocalCluster() # doctest: +SKIP
|
494 |
+
>>> client = Client(cluster) # doctest: +SKIP
|
495 |
+
>>> grid_search = GridSearchCV(estimator, param_grid, n_jobs=-1)
|
496 |
+
... # doctest: +SKIP
|
497 |
+
>>> with joblib.parallel_backend("dask", scatter=[X, y]): # doctest: +SKIP
|
498 |
+
... grid_search.fit(X, y)
|
499 |
+
|
500 |
+
It is also possible to use the distributed 'ray' backend for distributing
|
501 |
+
the workload to a cluster of nodes. To use the 'ray' joblib backend add
|
502 |
+
the following lines::
|
503 |
+
|
504 |
+
>>> from ray.util.joblib import register_ray # doctest: +SKIP
|
505 |
+
>>> register_ray() # doctest: +SKIP
|
506 |
+
>>> with parallel_backend("ray"): # doctest: +SKIP
|
507 |
+
... print(Parallel()(delayed(neg)(i + 1) for i in range(5)))
|
508 |
+
[-1, -2, -3, -4, -5]
|
509 |
+
|
510 |
+
Alternatively the backend can be passed directly as an instance.
|
511 |
+
|
512 |
+
By default all available workers will be used (``n_jobs=-1``) unless the
|
513 |
+
caller passes an explicit value for the ``n_jobs`` parameter.
|
514 |
+
|
515 |
+
This is an alternative to passing a ``backend='backend_name'`` argument to
|
516 |
+
the :class:`~Parallel` class constructor. It is particularly useful when
|
517 |
+
calling into library code that uses joblib internally but does not expose
|
518 |
+
the backend argument in its own API.
|
519 |
+
|
520 |
+
>>> from operator import neg
|
521 |
+
>>> with parallel_backend('threading'):
|
522 |
+
... print(Parallel()(delayed(neg)(i + 1) for i in range(5)))
|
523 |
+
...
|
524 |
+
[-1, -2, -3, -4, -5]
|
525 |
+
|
526 |
+
Joblib also tries to limit the oversubscription by limiting the number of
|
527 |
+
threads usable in some third-party library threadpools like OpenBLAS, MKL
|
528 |
+
or OpenMP. The default limit in each worker is set to
|
529 |
+
``max(cpu_count() // effective_n_jobs, 1)`` but this limit can be
|
530 |
+
overwritten with the ``inner_max_num_threads`` argument which will be used
|
531 |
+
to set this limit in the child processes.
|
532 |
+
|
533 |
+
.. versionadded:: 0.10
|
534 |
+
|
535 |
+
See Also
|
536 |
+
--------
|
537 |
+
joblib.parallel_config: context manager to change the backend
|
538 |
+
configuration.
|
539 |
+
"""
|
540 |
+
def __init__(self, backend, n_jobs=-1, inner_max_num_threads=None,
|
541 |
+
**backend_params):
|
542 |
+
|
543 |
+
super().__init__(
|
544 |
+
backend=backend,
|
545 |
+
n_jobs=n_jobs,
|
546 |
+
inner_max_num_threads=inner_max_num_threads,
|
547 |
+
**backend_params
|
548 |
+
)
|
549 |
+
|
550 |
+
if self.old_parallel_config is None:
|
551 |
+
self.old_backend_and_jobs = None
|
552 |
+
else:
|
553 |
+
self.old_backend_and_jobs = (
|
554 |
+
self.old_parallel_config["backend"],
|
555 |
+
self.old_parallel_config["n_jobs"],
|
556 |
+
)
|
557 |
+
self.new_backend_and_jobs = (
|
558 |
+
self.parallel_config["backend"],
|
559 |
+
self.parallel_config["n_jobs"],
|
560 |
+
)
|
561 |
+
|
562 |
+
def __enter__(self):
|
563 |
+
return self.new_backend_and_jobs
|
564 |
+
|
565 |
+
|
566 |
+
# Under Linux or OS X the default start method of multiprocessing
|
567 |
+
# can cause third party libraries to crash. Under Python 3.4+ it is possible
|
568 |
+
# to set an environment variable to switch the default start method from
|
569 |
+
# 'fork' to 'forkserver' or 'spawn' to avoid this issue albeit at the cost
|
570 |
+
# of causing semantic changes and some additional pool instantiation overhead.
|
571 |
+
DEFAULT_MP_CONTEXT = None
|
572 |
+
if hasattr(mp, 'get_context'):
|
573 |
+
method = os.environ.get('JOBLIB_START_METHOD', '').strip() or None
|
574 |
+
if method is not None:
|
575 |
+
DEFAULT_MP_CONTEXT = mp.get_context(method=method)
|
576 |
+
|
577 |
+
|
578 |
+
class BatchedCalls(object):
|
579 |
+
"""Wrap a sequence of (func, args, kwargs) tuples as a single callable"""
|
580 |
+
|
581 |
+
def __init__(self, iterator_slice, backend_and_jobs, reducer_callback=None,
|
582 |
+
pickle_cache=None):
|
583 |
+
self.items = list(iterator_slice)
|
584 |
+
self._size = len(self.items)
|
585 |
+
self._reducer_callback = reducer_callback
|
586 |
+
if isinstance(backend_and_jobs, tuple):
|
587 |
+
self._backend, self._n_jobs = backend_and_jobs
|
588 |
+
else:
|
589 |
+
# this is for backward compatibility purposes. Before 0.12.6,
|
590 |
+
# nested backends were returned without n_jobs indications.
|
591 |
+
self._backend, self._n_jobs = backend_and_jobs, None
|
592 |
+
self._pickle_cache = pickle_cache if pickle_cache is not None else {}
|
593 |
+
|
594 |
+
def __call__(self):
|
595 |
+
# Set the default nested backend to self._backend but do not set the
|
596 |
+
# change the default number of processes to -1
|
597 |
+
with parallel_config(backend=self._backend, n_jobs=self._n_jobs):
|
598 |
+
return [func(*args, **kwargs)
|
599 |
+
for func, args, kwargs in self.items]
|
600 |
+
|
601 |
+
def __reduce__(self):
|
602 |
+
if self._reducer_callback is not None:
|
603 |
+
self._reducer_callback()
|
604 |
+
# no need to pickle the callback.
|
605 |
+
return (
|
606 |
+
BatchedCalls,
|
607 |
+
(self.items, (self._backend, self._n_jobs), None,
|
608 |
+
self._pickle_cache)
|
609 |
+
)
|
610 |
+
|
611 |
+
def __len__(self):
|
612 |
+
return self._size
|
613 |
+
|
614 |
+
|
615 |
+
# Possible exit status for a task
|
616 |
+
TASK_DONE = "Done"
|
617 |
+
TASK_ERROR = "Error"
|
618 |
+
TASK_PENDING = "Pending"
|
619 |
+
|
620 |
+
|
621 |
+
###############################################################################
|
622 |
+
# CPU count that works also when multiprocessing has been disabled via
|
623 |
+
# the JOBLIB_MULTIPROCESSING environment variable
|
624 |
+
def cpu_count(only_physical_cores=False):
|
625 |
+
"""Return the number of CPUs.
|
626 |
+
|
627 |
+
This delegates to loky.cpu_count that takes into account additional
|
628 |
+
constraints such as Linux CFS scheduler quotas (typically set by container
|
629 |
+
runtimes such as docker) and CPU affinity (for instance using the taskset
|
630 |
+
command on Linux).
|
631 |
+
|
632 |
+
If only_physical_cores is True, do not take hyperthreading / SMT logical
|
633 |
+
cores into account.
|
634 |
+
"""
|
635 |
+
if mp is None:
|
636 |
+
return 1
|
637 |
+
|
638 |
+
return loky.cpu_count(only_physical_cores=only_physical_cores)
|
639 |
+
|
640 |
+
|
641 |
+
###############################################################################
|
642 |
+
# For verbosity
|
643 |
+
|
644 |
+
def _verbosity_filter(index, verbose):
|
645 |
+
""" Returns False for indices increasingly apart, the distance
|
646 |
+
depending on the value of verbose.
|
647 |
+
|
648 |
+
We use a lag increasing as the square of index
|
649 |
+
"""
|
650 |
+
if not verbose:
|
651 |
+
return True
|
652 |
+
elif verbose > 10:
|
653 |
+
return False
|
654 |
+
if index == 0:
|
655 |
+
return False
|
656 |
+
verbose = .5 * (11 - verbose) ** 2
|
657 |
+
scale = sqrt(index / verbose)
|
658 |
+
next_scale = sqrt((index + 1) / verbose)
|
659 |
+
return (int(next_scale) == int(scale))
|
660 |
+
|
661 |
+
|
662 |
+
###############################################################################
|
663 |
+
def delayed(function):
|
664 |
+
"""Decorator used to capture the arguments of a function."""
|
665 |
+
|
666 |
+
def delayed_function(*args, **kwargs):
|
667 |
+
return function, args, kwargs
|
668 |
+
try:
|
669 |
+
delayed_function = functools.wraps(function)(delayed_function)
|
670 |
+
except AttributeError:
|
671 |
+
" functools.wraps fails on some callable objects "
|
672 |
+
return delayed_function
|
673 |
+
|
674 |
+
|
675 |
+
###############################################################################
|
676 |
+
class BatchCompletionCallBack(object):
|
677 |
+
"""Callback to keep track of completed results and schedule the next tasks.
|
678 |
+
|
679 |
+
This callable is executed by the parent process whenever a worker process
|
680 |
+
has completed a batch of tasks.
|
681 |
+
|
682 |
+
It is used for progress reporting, to update estimate of the batch
|
683 |
+
processing duration and to schedule the next batch of tasks to be
|
684 |
+
processed.
|
685 |
+
|
686 |
+
It is assumed that this callback will always be triggered by the backend
|
687 |
+
right after the end of a task, in case of success as well as in case of
|
688 |
+
failure.
|
689 |
+
"""
|
690 |
+
|
691 |
+
##########################################################################
|
692 |
+
# METHODS CALLED BY THE MAIN THREAD #
|
693 |
+
##########################################################################
|
694 |
+
def __init__(self, dispatch_timestamp, batch_size, parallel):
|
695 |
+
self.dispatch_timestamp = dispatch_timestamp
|
696 |
+
self.batch_size = batch_size
|
697 |
+
self.parallel = parallel
|
698 |
+
self.parallel_call_id = parallel._call_id
|
699 |
+
|
700 |
+
# Internals to keep track of the status and outcome of the task.
|
701 |
+
|
702 |
+
# Used to hold a reference to the future-like object returned by the
|
703 |
+
# backend after launching this task
|
704 |
+
# This will be set later when calling `register_job`, as it is only
|
705 |
+
# created once the task has been submitted.
|
706 |
+
self.job = None
|
707 |
+
|
708 |
+
if not parallel._backend.supports_retrieve_callback:
|
709 |
+
# The status is only used for asynchronous result retrieval in the
|
710 |
+
# callback.
|
711 |
+
self.status = None
|
712 |
+
else:
|
713 |
+
# The initial status for the job is TASK_PENDING.
|
714 |
+
# Once it is done, it will be either TASK_DONE, or TASK_ERROR.
|
715 |
+
self.status = TASK_PENDING
|
716 |
+
|
717 |
+
def register_job(self, job):
|
718 |
+
"""Register the object returned by `apply_async`."""
|
719 |
+
self.job = job
|
720 |
+
|
721 |
+
def get_result(self, timeout):
|
722 |
+
"""Returns the raw result of the task that was submitted.
|
723 |
+
|
724 |
+
If the task raised an exception rather than returning, this same
|
725 |
+
exception will be raised instead.
|
726 |
+
|
727 |
+
If the backend supports the retrieval callback, it is assumed that this
|
728 |
+
method is only called after the result has been registered. It is
|
729 |
+
ensured by checking that `self.status(timeout)` does not return
|
730 |
+
TASK_PENDING. In this case, `get_result` directly returns the
|
731 |
+
registered result (or raise the registered exception).
|
732 |
+
|
733 |
+
For other backends, there are no such assumptions, but `get_result`
|
734 |
+
still needs to synchronously retrieve the result before it can
|
735 |
+
return it or raise. It will block at most `self.timeout` seconds
|
736 |
+
waiting for retrieval to complete, after that it raises a TimeoutError.
|
737 |
+
"""
|
738 |
+
|
739 |
+
backend = self.parallel._backend
|
740 |
+
|
741 |
+
if backend.supports_retrieve_callback:
|
742 |
+
# We assume that the result has already been retrieved by the
|
743 |
+
# callback thread, and is stored internally. It's just waiting to
|
744 |
+
# be returned.
|
745 |
+
return self._return_or_raise()
|
746 |
+
|
747 |
+
# For other backends, the main thread needs to run the retrieval step.
|
748 |
+
try:
|
749 |
+
if backend.supports_timeout:
|
750 |
+
result = self.job.get(timeout=timeout)
|
751 |
+
else:
|
752 |
+
result = self.job.get()
|
753 |
+
outcome = dict(result=result, status=TASK_DONE)
|
754 |
+
except BaseException as e:
|
755 |
+
outcome = dict(result=e, status=TASK_ERROR)
|
756 |
+
self._register_outcome(outcome)
|
757 |
+
|
758 |
+
return self._return_or_raise()
|
759 |
+
|
760 |
+
def _return_or_raise(self):
|
761 |
+
try:
|
762 |
+
if self.status == TASK_ERROR:
|
763 |
+
raise self._result
|
764 |
+
return self._result
|
765 |
+
finally:
|
766 |
+
del self._result
|
767 |
+
|
768 |
+
def get_status(self, timeout):
|
769 |
+
"""Get the status of the task.
|
770 |
+
|
771 |
+
This function also checks if the timeout has been reached and register
|
772 |
+
the TimeoutError outcome when it is the case.
|
773 |
+
"""
|
774 |
+
if timeout is None or self.status != TASK_PENDING:
|
775 |
+
return self.status
|
776 |
+
|
777 |
+
# The computation are running and the status is pending.
|
778 |
+
# Check that we did not wait for this jobs more than `timeout`.
|
779 |
+
now = time.time()
|
780 |
+
if not hasattr(self, "_completion_timeout_counter"):
|
781 |
+
self._completion_timeout_counter = now
|
782 |
+
|
783 |
+
if (now - self._completion_timeout_counter) > timeout:
|
784 |
+
outcome = dict(result=TimeoutError(), status=TASK_ERROR)
|
785 |
+
self._register_outcome(outcome)
|
786 |
+
|
787 |
+
return self.status
|
788 |
+
|
789 |
+
##########################################################################
|
790 |
+
# METHODS CALLED BY CALLBACK THREADS #
|
791 |
+
##########################################################################
|
792 |
+
def __call__(self, out):
|
793 |
+
"""Function called by the callback thread after a job is completed."""
|
794 |
+
|
795 |
+
# If the backend doesn't support callback retrievals, the next batch of
|
796 |
+
# tasks is dispatched regardless. The result will be retrieved by the
|
797 |
+
# main thread when calling `get_result`.
|
798 |
+
if not self.parallel._backend.supports_retrieve_callback:
|
799 |
+
self._dispatch_new()
|
800 |
+
return
|
801 |
+
|
802 |
+
# If the backend supports retrieving the result in the callback, it
|
803 |
+
# registers the task outcome (TASK_ERROR or TASK_DONE), and schedules
|
804 |
+
# the next batch if needed.
|
805 |
+
with self.parallel._lock:
|
806 |
+
# Edge case where while the task was processing, the `parallel`
|
807 |
+
# instance has been reset and a new call has been issued, but the
|
808 |
+
# worker managed to complete the task and trigger this callback
|
809 |
+
# call just before being aborted by the reset.
|
810 |
+
if self.parallel._call_id != self.parallel_call_id:
|
811 |
+
return
|
812 |
+
|
813 |
+
# When aborting, stop as fast as possible and do not retrieve the
|
814 |
+
# result as it won't be returned by the Parallel call.
|
815 |
+
if self.parallel._aborting:
|
816 |
+
return
|
817 |
+
|
818 |
+
# Retrieves the result of the task in the main process and dispatch
|
819 |
+
# a new batch if needed.
|
820 |
+
job_succeeded = self._retrieve_result(out)
|
821 |
+
|
822 |
+
if not self.parallel.return_ordered:
|
823 |
+
# Append the job to the queue in the order of completion
|
824 |
+
# instead of submission.
|
825 |
+
self.parallel._jobs.append(self)
|
826 |
+
|
827 |
+
if job_succeeded:
|
828 |
+
self._dispatch_new()
|
829 |
+
|
830 |
+
def _dispatch_new(self):
|
831 |
+
"""Schedule the next batch of tasks to be processed."""
|
832 |
+
|
833 |
+
# This steps ensure that auto-batching works as expected.
|
834 |
+
this_batch_duration = time.time() - self.dispatch_timestamp
|
835 |
+
self.parallel._backend.batch_completed(self.batch_size,
|
836 |
+
this_batch_duration)
|
837 |
+
|
838 |
+
# Schedule the next batch of tasks.
|
839 |
+
with self.parallel._lock:
|
840 |
+
self.parallel.n_completed_tasks += self.batch_size
|
841 |
+
self.parallel.print_progress()
|
842 |
+
if self.parallel._original_iterator is not None:
|
843 |
+
self.parallel.dispatch_next()
|
844 |
+
|
845 |
+
def _retrieve_result(self, out):
|
846 |
+
"""Fetch and register the outcome of a task.
|
847 |
+
|
848 |
+
Return True if the task succeeded, False otherwise.
|
849 |
+
This function is only called by backends that support retrieving
|
850 |
+
the task result in the callback thread.
|
851 |
+
"""
|
852 |
+
try:
|
853 |
+
result = self.parallel._backend.retrieve_result_callback(out)
|
854 |
+
outcome = dict(status=TASK_DONE, result=result)
|
855 |
+
except BaseException as e:
|
856 |
+
# Avoid keeping references to parallel in the error.
|
857 |
+
e.__traceback__ = None
|
858 |
+
outcome = dict(result=e, status=TASK_ERROR)
|
859 |
+
|
860 |
+
self._register_outcome(outcome)
|
861 |
+
return outcome['status'] != TASK_ERROR
|
862 |
+
|
863 |
+
##########################################################################
|
864 |
+
# This method can be called either in the main thread #
|
865 |
+
# or in the callback thread. #
|
866 |
+
##########################################################################
|
867 |
+
def _register_outcome(self, outcome):
|
868 |
+
"""Register the outcome of a task.
|
869 |
+
|
870 |
+
This method can be called only once, future calls will be ignored.
|
871 |
+
"""
|
872 |
+
# Covers the edge case where the main thread tries to register a
|
873 |
+
# `TimeoutError` while the callback thread tries to register a result
|
874 |
+
# at the same time.
|
875 |
+
with self.parallel._lock:
|
876 |
+
if self.status not in (TASK_PENDING, None):
|
877 |
+
return
|
878 |
+
self.status = outcome["status"]
|
879 |
+
|
880 |
+
self._result = outcome["result"]
|
881 |
+
|
882 |
+
# Once the result and the status are extracted, the last reference to
|
883 |
+
# the job can be deleted.
|
884 |
+
self.job = None
|
885 |
+
|
886 |
+
# As soon as an error as been spotted, early stopping flags are sent to
|
887 |
+
# the `parallel` instance.
|
888 |
+
if self.status == TASK_ERROR:
|
889 |
+
self.parallel._exception = True
|
890 |
+
self.parallel._aborting = True
|
891 |
+
|
892 |
+
|
893 |
+
###############################################################################
|
894 |
+
def register_parallel_backend(name, factory, make_default=False):
|
895 |
+
"""Register a new Parallel backend factory.
|
896 |
+
|
897 |
+
The new backend can then be selected by passing its name as the backend
|
898 |
+
argument to the :class:`~Parallel` class. Moreover, the default backend can
|
899 |
+
be overwritten globally by setting make_default=True.
|
900 |
+
|
901 |
+
The factory can be any callable that takes no argument and return an
|
902 |
+
instance of ``ParallelBackendBase``.
|
903 |
+
|
904 |
+
Warning: this function is experimental and subject to change in a future
|
905 |
+
version of joblib.
|
906 |
+
|
907 |
+
.. versionadded:: 0.10
|
908 |
+
"""
|
909 |
+
BACKENDS[name] = factory
|
910 |
+
if make_default:
|
911 |
+
global DEFAULT_BACKEND
|
912 |
+
DEFAULT_BACKEND = name
|
913 |
+
|
914 |
+
|
915 |
+
def effective_n_jobs(n_jobs=-1):
|
916 |
+
"""Determine the number of jobs that can actually run in parallel
|
917 |
+
|
918 |
+
n_jobs is the number of workers requested by the callers. Passing n_jobs=-1
|
919 |
+
means requesting all available workers for instance matching the number of
|
920 |
+
CPU cores on the worker host(s).
|
921 |
+
|
922 |
+
This method should return a guesstimate of the number of workers that can
|
923 |
+
actually perform work concurrently with the currently enabled default
|
924 |
+
backend. The primary use case is to make it possible for the caller to know
|
925 |
+
in how many chunks to slice the work.
|
926 |
+
|
927 |
+
In general working on larger data chunks is more efficient (less scheduling
|
928 |
+
overhead and better use of CPU cache prefetching heuristics) as long as all
|
929 |
+
the workers have enough work to do.
|
930 |
+
|
931 |
+
Warning: this function is experimental and subject to change in a future
|
932 |
+
version of joblib.
|
933 |
+
|
934 |
+
.. versionadded:: 0.10
|
935 |
+
"""
|
936 |
+
if n_jobs == 1:
|
937 |
+
return 1
|
938 |
+
|
939 |
+
backend, backend_n_jobs = get_active_backend()
|
940 |
+
if n_jobs is None:
|
941 |
+
n_jobs = backend_n_jobs
|
942 |
+
return backend.effective_n_jobs(n_jobs=n_jobs)
|
943 |
+
|
944 |
+
|
945 |
+
###############################################################################
|
946 |
+
class Parallel(Logger):
|
947 |
+
''' Helper class for readable parallel mapping.
|
948 |
+
|
949 |
+
Read more in the :ref:`User Guide <parallel>`.
|
950 |
+
|
951 |
+
Parameters
|
952 |
+
----------
|
953 |
+
n_jobs: int, default=None
|
954 |
+
The maximum number of concurrently running jobs, such as the number
|
955 |
+
of Python worker processes when ``backend="loky"`` or the size of
|
956 |
+
the thread-pool when ``backend="threading"``.
|
957 |
+
This argument is converted to an integer, rounded below for float.
|
958 |
+
If -1 is given, `joblib` tries to use all CPUs. The number of CPUs
|
959 |
+
``n_cpus`` is obtained with :func:`~cpu_count`.
|
960 |
+
For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. For instance,
|
961 |
+
using ``n_jobs=-2`` will result in all CPUs but one being used.
|
962 |
+
This argument can also go above ``n_cpus``, which will cause
|
963 |
+
oversubscription. In some cases, slight oversubscription can be
|
964 |
+
beneficial, e.g., for tasks with large I/O operations.
|
965 |
+
If 1 is given, no parallel computing code is used at all, and the
|
966 |
+
behavior amounts to a simple python `for` loop. This mode is not
|
967 |
+
compatible with ``timeout``.
|
968 |
+
None is a marker for 'unset' that will be interpreted as n_jobs=1
|
969 |
+
unless the call is performed under a :func:`~parallel_config`
|
970 |
+
context manager that sets another value for ``n_jobs``.
|
971 |
+
If n_jobs = 0 then a ValueError is raised.
|
972 |
+
backend: str, ParallelBackendBase instance or None, default='loky'
|
973 |
+
Specify the parallelization backend implementation.
|
974 |
+
Supported backends are:
|
975 |
+
|
976 |
+
- "loky" used by default, can induce some
|
977 |
+
communication and memory overhead when exchanging input and
|
978 |
+
output data with the worker Python processes. On some rare
|
979 |
+
systems (such as Pyiodide), the loky backend may not be
|
980 |
+
available.
|
981 |
+
- "multiprocessing" previous process-based backend based on
|
982 |
+
`multiprocessing.Pool`. Less robust than `loky`.
|
983 |
+
- "threading" is a very low-overhead backend but it suffers
|
984 |
+
from the Python Global Interpreter Lock if the called function
|
985 |
+
relies a lot on Python objects. "threading" is mostly useful
|
986 |
+
when the execution bottleneck is a compiled extension that
|
987 |
+
explicitly releases the GIL (for instance a Cython loop wrapped
|
988 |
+
in a "with nogil" block or an expensive call to a library such
|
989 |
+
as NumPy).
|
990 |
+
- finally, you can register backends by calling
|
991 |
+
:func:`~register_parallel_backend`. This will allow you to
|
992 |
+
implement a backend of your liking.
|
993 |
+
|
994 |
+
It is not recommended to hard-code the backend name in a call to
|
995 |
+
:class:`~Parallel` in a library. Instead it is recommended to set
|
996 |
+
soft hints (prefer) or hard constraints (require) so as to make it
|
997 |
+
possible for library users to change the backend from the outside
|
998 |
+
using the :func:`~parallel_config` context manager.
|
999 |
+
return_as: str in {'list', 'generator', 'generator_unordered'}, default='list'
|
1000 |
+
If 'list', calls to this instance will return a list, only when
|
1001 |
+
all results have been processed and retrieved.
|
1002 |
+
If 'generator', it will return a generator that yields the results
|
1003 |
+
as soon as they are available, in the order the tasks have been
|
1004 |
+
submitted with.
|
1005 |
+
If 'generator_unordered', the generator will immediately yield
|
1006 |
+
available results independently of the submission order. The output
|
1007 |
+
order is not deterministic in this case because it depends on the
|
1008 |
+
concurrency of the workers.
|
1009 |
+
prefer: str in {'processes', 'threads'} or None, default=None
|
1010 |
+
Soft hint to choose the default backend if no specific backend
|
1011 |
+
was selected with the :func:`~parallel_config` context manager.
|
1012 |
+
The default process-based backend is 'loky' and the default
|
1013 |
+
thread-based backend is 'threading'. Ignored if the ``backend``
|
1014 |
+
parameter is specified.
|
1015 |
+
require: 'sharedmem' or None, default=None
|
1016 |
+
Hard constraint to select the backend. If set to 'sharedmem',
|
1017 |
+
the selected backend will be single-host and thread-based even
|
1018 |
+
if the user asked for a non-thread based backend with
|
1019 |
+
:func:`~joblib.parallel_config`.
|
1020 |
+
verbose: int, default=0
|
1021 |
+
The verbosity level: if non zero, progress messages are
|
1022 |
+
printed. Above 50, the output is sent to stdout.
|
1023 |
+
The frequency of the messages increases with the verbosity level.
|
1024 |
+
If it more than 10, all iterations are reported.
|
1025 |
+
timeout: float or None, default=None
|
1026 |
+
Timeout limit for each task to complete. If any task takes longer
|
1027 |
+
a TimeOutError will be raised. Only applied when n_jobs != 1
|
1028 |
+
pre_dispatch: {'all', integer, or expression, as in '3*n_jobs'}, default='2*n_jobs'
|
1029 |
+
The number of batches (of tasks) to be pre-dispatched.
|
1030 |
+
Default is '2*n_jobs'. When batch_size="auto" this is reasonable
|
1031 |
+
default and the workers should never starve. Note that only basic
|
1032 |
+
arithmetics are allowed here and no modules can be used in this
|
1033 |
+
expression.
|
1034 |
+
batch_size: int or 'auto', default='auto'
|
1035 |
+
The number of atomic tasks to dispatch at once to each
|
1036 |
+
worker. When individual evaluations are very fast, dispatching
|
1037 |
+
calls to workers can be slower than sequential computation because
|
1038 |
+
of the overhead. Batching fast computations together can mitigate
|
1039 |
+
this.
|
1040 |
+
The ``'auto'`` strategy keeps track of the time it takes for a
|
1041 |
+
batch to complete, and dynamically adjusts the batch size to keep
|
1042 |
+
the time on the order of half a second, using a heuristic. The
|
1043 |
+
initial batch size is 1.
|
1044 |
+
``batch_size="auto"`` with ``backend="threading"`` will dispatch
|
1045 |
+
batches of a single task at a time as the threading backend has
|
1046 |
+
very little overhead and using larger batch size has not proved to
|
1047 |
+
bring any gain in that case.
|
1048 |
+
temp_folder: str or None, default=None
|
1049 |
+
Folder to be used by the pool for memmapping large arrays
|
1050 |
+
for sharing memory with worker processes. If None, this will try in
|
1051 |
+
order:
|
1052 |
+
|
1053 |
+
- a folder pointed by the JOBLIB_TEMP_FOLDER environment
|
1054 |
+
variable,
|
1055 |
+
- /dev/shm if the folder exists and is writable: this is a
|
1056 |
+
RAM disk filesystem available by default on modern Linux
|
1057 |
+
distributions,
|
1058 |
+
- the default system temporary folder that can be
|
1059 |
+
overridden with TMP, TMPDIR or TEMP environment
|
1060 |
+
variables, typically /tmp under Unix operating systems.
|
1061 |
+
|
1062 |
+
Only active when ``backend="loky"`` or ``"multiprocessing"``.
|
1063 |
+
max_nbytes int, str, or None, optional, default='1M'
|
1064 |
+
Threshold on the size of arrays passed to the workers that
|
1065 |
+
triggers automated memory mapping in temp_folder. Can be an int
|
1066 |
+
in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte.
|
1067 |
+
Use None to disable memmapping of large arrays.
|
1068 |
+
Only active when ``backend="loky"`` or ``"multiprocessing"``.
|
1069 |
+
mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, default='r'
|
1070 |
+
Memmapping mode for numpy arrays passed to workers. None will
|
1071 |
+
disable memmapping, other modes defined in the numpy.memmap doc:
|
1072 |
+
https://numpy.org/doc/stable/reference/generated/numpy.memmap.html
|
1073 |
+
Also, see 'max_nbytes' parameter documentation for more details.
|
1074 |
+
|
1075 |
+
Notes
|
1076 |
+
-----
|
1077 |
+
|
1078 |
+
This object uses workers to compute in parallel the application of a
|
1079 |
+
function to many different arguments. The main functionality it brings
|
1080 |
+
in addition to using the raw multiprocessing or concurrent.futures API
|
1081 |
+
are (see examples for details):
|
1082 |
+
|
1083 |
+
* More readable code, in particular since it avoids
|
1084 |
+
constructing list of arguments.
|
1085 |
+
|
1086 |
+
* Easier debugging:
|
1087 |
+
- informative tracebacks even when the error happens on
|
1088 |
+
the client side
|
1089 |
+
- using 'n_jobs=1' enables to turn off parallel computing
|
1090 |
+
for debugging without changing the codepath
|
1091 |
+
- early capture of pickling errors
|
1092 |
+
|
1093 |
+
* An optional progress meter.
|
1094 |
+
|
1095 |
+
* Interruption of multiprocesses jobs with 'Ctrl-C'
|
1096 |
+
|
1097 |
+
* Flexible pickling control for the communication to and from
|
1098 |
+
the worker processes.
|
1099 |
+
|
1100 |
+
* Ability to use shared memory efficiently with worker
|
1101 |
+
processes for large numpy-based datastructures.
|
1102 |
+
|
1103 |
+
Note that the intended usage is to run one call at a time. Multiple
|
1104 |
+
calls to the same Parallel object will result in a ``RuntimeError``
|
1105 |
+
|
1106 |
+
Examples
|
1107 |
+
--------
|
1108 |
+
|
1109 |
+
A simple example:
|
1110 |
+
|
1111 |
+
>>> from math import sqrt
|
1112 |
+
>>> from joblib import Parallel, delayed
|
1113 |
+
>>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10))
|
1114 |
+
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
|
1115 |
+
|
1116 |
+
Reshaping the output when the function has several return
|
1117 |
+
values:
|
1118 |
+
|
1119 |
+
>>> from math import modf
|
1120 |
+
>>> from joblib import Parallel, delayed
|
1121 |
+
>>> r = Parallel(n_jobs=1)(delayed(modf)(i/2.) for i in range(10))
|
1122 |
+
>>> res, i = zip(*r)
|
1123 |
+
>>> res
|
1124 |
+
(0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5)
|
1125 |
+
>>> i
|
1126 |
+
(0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0)
|
1127 |
+
|
1128 |
+
The progress meter: the higher the value of `verbose`, the more
|
1129 |
+
messages:
|
1130 |
+
|
1131 |
+
>>> from time import sleep
|
1132 |
+
>>> from joblib import Parallel, delayed
|
1133 |
+
>>> r = Parallel(n_jobs=2, verbose=10)(
|
1134 |
+
... delayed(sleep)(.2) for _ in range(10)) #doctest: +SKIP
|
1135 |
+
[Parallel(n_jobs=2)]: Done 1 tasks | elapsed: 0.6s
|
1136 |
+
[Parallel(n_jobs=2)]: Done 4 tasks | elapsed: 0.8s
|
1137 |
+
[Parallel(n_jobs=2)]: Done 10 out of 10 | elapsed: 1.4s finished
|
1138 |
+
|
1139 |
+
Traceback example, note how the line of the error is indicated
|
1140 |
+
as well as the values of the parameter passed to the function that
|
1141 |
+
triggered the exception, even though the traceback happens in the
|
1142 |
+
child process:
|
1143 |
+
|
1144 |
+
>>> from heapq import nlargest
|
1145 |
+
>>> from joblib import Parallel, delayed
|
1146 |
+
>>> Parallel(n_jobs=2)(
|
1147 |
+
... delayed(nlargest)(2, n) for n in (range(4), 'abcde', 3))
|
1148 |
+
... # doctest: +SKIP
|
1149 |
+
-----------------------------------------------------------------------
|
1150 |
+
Sub-process traceback:
|
1151 |
+
-----------------------------------------------------------------------
|
1152 |
+
TypeError Mon Nov 12 11:37:46 2012
|
1153 |
+
PID: 12934 Python 2.7.3: /usr/bin/python
|
1154 |
+
........................................................................
|
1155 |
+
/usr/lib/python2.7/heapq.pyc in nlargest(n=2, iterable=3, key=None)
|
1156 |
+
419 if n >= size:
|
1157 |
+
420 return sorted(iterable, key=key, reverse=True)[:n]
|
1158 |
+
421
|
1159 |
+
422 # When key is none, use simpler decoration
|
1160 |
+
423 if key is None:
|
1161 |
+
--> 424 it = izip(iterable, count(0,-1)) # decorate
|
1162 |
+
425 result = _nlargest(n, it)
|
1163 |
+
426 return map(itemgetter(0), result) # undecorate
|
1164 |
+
427
|
1165 |
+
428 # General case, slowest method
|
1166 |
+
TypeError: izip argument #1 must support iteration
|
1167 |
+
_______________________________________________________________________
|
1168 |
+
|
1169 |
+
|
1170 |
+
Using pre_dispatch in a producer/consumer situation, where the
|
1171 |
+
data is generated on the fly. Note how the producer is first
|
1172 |
+
called 3 times before the parallel loop is initiated, and then
|
1173 |
+
called to generate new data on the fly:
|
1174 |
+
|
1175 |
+
>>> from math import sqrt
|
1176 |
+
>>> from joblib import Parallel, delayed
|
1177 |
+
>>> def producer():
|
1178 |
+
... for i in range(6):
|
1179 |
+
... print('Produced %s' % i)
|
1180 |
+
... yield i
|
1181 |
+
>>> out = Parallel(n_jobs=2, verbose=100, pre_dispatch='1.5*n_jobs')(
|
1182 |
+
... delayed(sqrt)(i) for i in producer()) #doctest: +SKIP
|
1183 |
+
Produced 0
|
1184 |
+
Produced 1
|
1185 |
+
Produced 2
|
1186 |
+
[Parallel(n_jobs=2)]: Done 1 jobs | elapsed: 0.0s
|
1187 |
+
Produced 3
|
1188 |
+
[Parallel(n_jobs=2)]: Done 2 jobs | elapsed: 0.0s
|
1189 |
+
Produced 4
|
1190 |
+
[Parallel(n_jobs=2)]: Done 3 jobs | elapsed: 0.0s
|
1191 |
+
Produced 5
|
1192 |
+
[Parallel(n_jobs=2)]: Done 4 jobs | elapsed: 0.0s
|
1193 |
+
[Parallel(n_jobs=2)]: Done 6 out of 6 | elapsed: 0.0s remaining: 0.0s
|
1194 |
+
[Parallel(n_jobs=2)]: Done 6 out of 6 | elapsed: 0.0s finished
|
1195 |
+
|
1196 |
+
''' # noqa: E501
|
1197 |
+
def __init__(
|
1198 |
+
self,
|
1199 |
+
n_jobs=default_parallel_config["n_jobs"],
|
1200 |
+
backend=default_parallel_config['backend'],
|
1201 |
+
return_as="list",
|
1202 |
+
verbose=default_parallel_config["verbose"],
|
1203 |
+
timeout=None,
|
1204 |
+
pre_dispatch='2 * n_jobs',
|
1205 |
+
batch_size='auto',
|
1206 |
+
temp_folder=default_parallel_config["temp_folder"],
|
1207 |
+
max_nbytes=default_parallel_config["max_nbytes"],
|
1208 |
+
mmap_mode=default_parallel_config["mmap_mode"],
|
1209 |
+
prefer=default_parallel_config["prefer"],
|
1210 |
+
require=default_parallel_config["require"],
|
1211 |
+
):
|
1212 |
+
# Initiate parent Logger class state
|
1213 |
+
super().__init__()
|
1214 |
+
|
1215 |
+
# Interpret n_jobs=None as 'unset'
|
1216 |
+
if n_jobs is None:
|
1217 |
+
n_jobs = default_parallel_config["n_jobs"]
|
1218 |
+
|
1219 |
+
active_backend, context_config = _get_active_backend(
|
1220 |
+
prefer=prefer, require=require, verbose=verbose
|
1221 |
+
)
|
1222 |
+
|
1223 |
+
nesting_level = active_backend.nesting_level
|
1224 |
+
|
1225 |
+
self.verbose = _get_config_param(verbose, context_config, "verbose")
|
1226 |
+
self.timeout = timeout
|
1227 |
+
self.pre_dispatch = pre_dispatch
|
1228 |
+
|
1229 |
+
if return_as not in {"list", "generator", "generator_unordered"}:
|
1230 |
+
raise ValueError(
|
1231 |
+
'Expected `return_as` parameter to be a string equal to "list"'
|
1232 |
+
f',"generator" or "generator_unordered", but got {return_as} '
|
1233 |
+
"instead."
|
1234 |
+
)
|
1235 |
+
self.return_as = return_as
|
1236 |
+
self.return_generator = return_as != "list"
|
1237 |
+
self.return_ordered = return_as != "generator_unordered"
|
1238 |
+
|
1239 |
+
# Check if we are under a parallel_config or parallel_backend
|
1240 |
+
# context manager and use the config from the context manager
|
1241 |
+
# for arguments that are not explicitly set.
|
1242 |
+
self._backend_args = {
|
1243 |
+
k: _get_config_param(param, context_config, k) for param, k in [
|
1244 |
+
(max_nbytes, "max_nbytes"),
|
1245 |
+
(temp_folder, "temp_folder"),
|
1246 |
+
(mmap_mode, "mmap_mode"),
|
1247 |
+
(prefer, "prefer"),
|
1248 |
+
(require, "require"),
|
1249 |
+
(verbose, "verbose"),
|
1250 |
+
]
|
1251 |
+
}
|
1252 |
+
|
1253 |
+
if isinstance(self._backend_args["max_nbytes"], str):
|
1254 |
+
self._backend_args["max_nbytes"] = memstr_to_bytes(
|
1255 |
+
self._backend_args["max_nbytes"]
|
1256 |
+
)
|
1257 |
+
self._backend_args["verbose"] = max(
|
1258 |
+
0, self._backend_args["verbose"] - 50
|
1259 |
+
)
|
1260 |
+
|
1261 |
+
if DEFAULT_MP_CONTEXT is not None:
|
1262 |
+
self._backend_args['context'] = DEFAULT_MP_CONTEXT
|
1263 |
+
elif hasattr(mp, "get_context"):
|
1264 |
+
self._backend_args['context'] = mp.get_context()
|
1265 |
+
|
1266 |
+
if backend is default_parallel_config['backend'] or backend is None:
|
1267 |
+
backend = active_backend
|
1268 |
+
|
1269 |
+
elif isinstance(backend, ParallelBackendBase):
|
1270 |
+
# Use provided backend as is, with the current nesting_level if it
|
1271 |
+
# is not set yet.
|
1272 |
+
if backend.nesting_level is None:
|
1273 |
+
backend.nesting_level = nesting_level
|
1274 |
+
|
1275 |
+
elif hasattr(backend, 'Pool') and hasattr(backend, 'Lock'):
|
1276 |
+
# Make it possible to pass a custom multiprocessing context as
|
1277 |
+
# backend to change the start method to forkserver or spawn or
|
1278 |
+
# preload modules on the forkserver helper process.
|
1279 |
+
self._backend_args['context'] = backend
|
1280 |
+
backend = MultiprocessingBackend(nesting_level=nesting_level)
|
1281 |
+
|
1282 |
+
elif backend not in BACKENDS and backend in MAYBE_AVAILABLE_BACKENDS:
|
1283 |
+
warnings.warn(
|
1284 |
+
f"joblib backend '{backend}' is not available on "
|
1285 |
+
f"your system, falling back to {DEFAULT_BACKEND}.",
|
1286 |
+
UserWarning,
|
1287 |
+
stacklevel=2)
|
1288 |
+
BACKENDS[backend] = BACKENDS[DEFAULT_BACKEND]
|
1289 |
+
backend = BACKENDS[DEFAULT_BACKEND](nesting_level=nesting_level)
|
1290 |
+
|
1291 |
+
else:
|
1292 |
+
try:
|
1293 |
+
backend_factory = BACKENDS[backend]
|
1294 |
+
except KeyError as e:
|
1295 |
+
raise ValueError("Invalid backend: %s, expected one of %r"
|
1296 |
+
% (backend, sorted(BACKENDS.keys()))) from e
|
1297 |
+
backend = backend_factory(nesting_level=nesting_level)
|
1298 |
+
|
1299 |
+
n_jobs = _get_config_param(n_jobs, context_config, "n_jobs")
|
1300 |
+
if n_jobs is None:
|
1301 |
+
# No specific context override and no specific value request:
|
1302 |
+
# default to the default of the backend.
|
1303 |
+
n_jobs = backend.default_n_jobs
|
1304 |
+
try:
|
1305 |
+
n_jobs = int(n_jobs)
|
1306 |
+
except ValueError:
|
1307 |
+
raise ValueError("n_jobs could not be converted to int")
|
1308 |
+
self.n_jobs = n_jobs
|
1309 |
+
|
1310 |
+
if (require == 'sharedmem' and
|
1311 |
+
not getattr(backend, 'supports_sharedmem', False)):
|
1312 |
+
raise ValueError("Backend %s does not support shared memory"
|
1313 |
+
% backend)
|
1314 |
+
|
1315 |
+
if (batch_size == 'auto' or isinstance(batch_size, Integral) and
|
1316 |
+
batch_size > 0):
|
1317 |
+
self.batch_size = batch_size
|
1318 |
+
else:
|
1319 |
+
raise ValueError(
|
1320 |
+
"batch_size must be 'auto' or a positive integer, got: %r"
|
1321 |
+
% batch_size)
|
1322 |
+
|
1323 |
+
if not isinstance(backend, SequentialBackend):
|
1324 |
+
if self.return_generator and not backend.supports_return_generator:
|
1325 |
+
raise ValueError(
|
1326 |
+
"Backend {} does not support "
|
1327 |
+
"return_as={}".format(backend, return_as)
|
1328 |
+
)
|
1329 |
+
# This lock is used to coordinate the main thread of this process
|
1330 |
+
# with the async callback thread of our the pool.
|
1331 |
+
self._lock = threading.RLock()
|
1332 |
+
self._jobs = collections.deque()
|
1333 |
+
self._pending_outputs = list()
|
1334 |
+
self._ready_batches = queue.Queue()
|
1335 |
+
self._reducer_callback = None
|
1336 |
+
|
1337 |
+
# Internal variables
|
1338 |
+
self._backend = backend
|
1339 |
+
self._running = False
|
1340 |
+
self._managed_backend = False
|
1341 |
+
self._id = uuid4().hex
|
1342 |
+
self._call_ref = None
|
1343 |
+
|
1344 |
+
def __enter__(self):
|
1345 |
+
self._managed_backend = True
|
1346 |
+
self._calling = False
|
1347 |
+
self._initialize_backend()
|
1348 |
+
return self
|
1349 |
+
|
1350 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
1351 |
+
self._managed_backend = False
|
1352 |
+
if self.return_generator and self._calling:
|
1353 |
+
self._abort()
|
1354 |
+
self._terminate_and_reset()
|
1355 |
+
|
1356 |
+
def _initialize_backend(self):
|
1357 |
+
"""Build a process or thread pool and return the number of workers"""
|
1358 |
+
try:
|
1359 |
+
n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,
|
1360 |
+
**self._backend_args)
|
1361 |
+
if self.timeout is not None and not self._backend.supports_timeout:
|
1362 |
+
warnings.warn(
|
1363 |
+
'The backend class {!r} does not support timeout. '
|
1364 |
+
"You have set 'timeout={}' in Parallel but "
|
1365 |
+
"the 'timeout' parameter will not be used.".format(
|
1366 |
+
self._backend.__class__.__name__,
|
1367 |
+
self.timeout))
|
1368 |
+
|
1369 |
+
except FallbackToBackend as e:
|
1370 |
+
# Recursively initialize the backend in case of requested fallback.
|
1371 |
+
self._backend = e.backend
|
1372 |
+
n_jobs = self._initialize_backend()
|
1373 |
+
|
1374 |
+
return n_jobs
|
1375 |
+
|
1376 |
+
def _effective_n_jobs(self):
|
1377 |
+
if self._backend:
|
1378 |
+
return self._backend.effective_n_jobs(self.n_jobs)
|
1379 |
+
return 1
|
1380 |
+
|
1381 |
+
def _terminate_and_reset(self):
|
1382 |
+
if hasattr(self._backend, 'stop_call') and self._calling:
|
1383 |
+
self._backend.stop_call()
|
1384 |
+
self._calling = False
|
1385 |
+
if not self._managed_backend:
|
1386 |
+
self._backend.terminate()
|
1387 |
+
|
1388 |
+
def _dispatch(self, batch):
|
1389 |
+
"""Queue the batch for computing, with or without multiprocessing
|
1390 |
+
|
1391 |
+
WARNING: this method is not thread-safe: it should be only called
|
1392 |
+
indirectly via dispatch_one_batch.
|
1393 |
+
|
1394 |
+
"""
|
1395 |
+
# If job.get() catches an exception, it closes the queue:
|
1396 |
+
if self._aborting:
|
1397 |
+
return
|
1398 |
+
|
1399 |
+
batch_size = len(batch)
|
1400 |
+
|
1401 |
+
self.n_dispatched_tasks += batch_size
|
1402 |
+
self.n_dispatched_batches += 1
|
1403 |
+
|
1404 |
+
dispatch_timestamp = time.time()
|
1405 |
+
|
1406 |
+
batch_tracker = BatchCompletionCallBack(
|
1407 |
+
dispatch_timestamp, batch_size, self
|
1408 |
+
)
|
1409 |
+
|
1410 |
+
if self.return_ordered:
|
1411 |
+
self._jobs.append(batch_tracker)
|
1412 |
+
|
1413 |
+
# If return_ordered is False, the batch_tracker is not stored in the
|
1414 |
+
# jobs queue at the time of submission. Instead, it will be appended to
|
1415 |
+
# the queue by itself as soon as the callback is triggered to be able
|
1416 |
+
# to return the results in the order of completion.
|
1417 |
+
|
1418 |
+
job = self._backend.apply_async(batch, callback=batch_tracker)
|
1419 |
+
batch_tracker.register_job(job)
|
1420 |
+
|
1421 |
+
def dispatch_next(self):
|
1422 |
+
"""Dispatch more data for parallel processing
|
1423 |
+
|
1424 |
+
This method is meant to be called concurrently by the multiprocessing
|
1425 |
+
callback. We rely on the thread-safety of dispatch_one_batch to protect
|
1426 |
+
against concurrent consumption of the unprotected iterator.
|
1427 |
+
|
1428 |
+
"""
|
1429 |
+
if not self.dispatch_one_batch(self._original_iterator):
|
1430 |
+
self._iterating = False
|
1431 |
+
self._original_iterator = None
|
1432 |
+
|
1433 |
+
def dispatch_one_batch(self, iterator):
|
1434 |
+
"""Prefetch the tasks for the next batch and dispatch them.
|
1435 |
+
|
1436 |
+
The effective size of the batch is computed here.
|
1437 |
+
If there are no more jobs to dispatch, return False, else return True.
|
1438 |
+
|
1439 |
+
The iterator consumption and dispatching is protected by the same
|
1440 |
+
lock so calling this function should be thread safe.
|
1441 |
+
|
1442 |
+
"""
|
1443 |
+
|
1444 |
+
if self._aborting:
|
1445 |
+
return False
|
1446 |
+
|
1447 |
+
batch_size = self._get_batch_size()
|
1448 |
+
|
1449 |
+
with self._lock:
|
1450 |
+
# to ensure an even distribution of the workload between workers,
|
1451 |
+
# we look ahead in the original iterators more than batch_size
|
1452 |
+
# tasks - However, we keep consuming only one batch at each
|
1453 |
+
# dispatch_one_batch call. The extra tasks are stored in a local
|
1454 |
+
# queue, _ready_batches, that is looked-up prior to re-consuming
|
1455 |
+
# tasks from the origal iterator.
|
1456 |
+
try:
|
1457 |
+
tasks = self._ready_batches.get(block=False)
|
1458 |
+
except queue.Empty:
|
1459 |
+
# slice the iterator n_jobs * batchsize items at a time. If the
|
1460 |
+
# slice returns less than that, then the current batchsize puts
|
1461 |
+
# too much weight on a subset of workers, while other may end
|
1462 |
+
# up starving. So in this case, re-scale the batch size
|
1463 |
+
# accordingly to distribute evenly the last items between all
|
1464 |
+
# workers.
|
1465 |
+
n_jobs = self._cached_effective_n_jobs
|
1466 |
+
big_batch_size = batch_size * n_jobs
|
1467 |
+
|
1468 |
+
try:
|
1469 |
+
islice = list(itertools.islice(iterator, big_batch_size))
|
1470 |
+
except Exception as e:
|
1471 |
+
# Handle the fact that the generator of task raised an
|
1472 |
+
# exception. As this part of the code can be executed in
|
1473 |
+
# a thread internal to the backend, register a task with
|
1474 |
+
# an error that will be raised in the user's thread.
|
1475 |
+
if isinstance(e.__context__, queue.Empty):
|
1476 |
+
# Suppress the cause of the exception if it is
|
1477 |
+
# queue.Empty to avoid cluttered traceback. Only do it
|
1478 |
+
# if the __context__ is really empty to avoid messing
|
1479 |
+
# with causes of the original error.
|
1480 |
+
e.__cause__ = None
|
1481 |
+
batch_tracker = BatchCompletionCallBack(
|
1482 |
+
0, batch_size, self
|
1483 |
+
)
|
1484 |
+
self._jobs.append(batch_tracker)
|
1485 |
+
batch_tracker._register_outcome(dict(
|
1486 |
+
result=e, status=TASK_ERROR
|
1487 |
+
))
|
1488 |
+
return True
|
1489 |
+
|
1490 |
+
if len(islice) == 0:
|
1491 |
+
return False
|
1492 |
+
elif (iterator is self._original_iterator and
|
1493 |
+
len(islice) < big_batch_size):
|
1494 |
+
# We reached the end of the original iterator (unless
|
1495 |
+
# iterator is the ``pre_dispatch``-long initial slice of
|
1496 |
+
# the original iterator) -- decrease the batch size to
|
1497 |
+
# account for potential variance in the batches running
|
1498 |
+
# time.
|
1499 |
+
final_batch_size = max(1, len(islice) // (10 * n_jobs))
|
1500 |
+
else:
|
1501 |
+
final_batch_size = max(1, len(islice) // n_jobs)
|
1502 |
+
|
1503 |
+
# enqueue n_jobs batches in a local queue
|
1504 |
+
for i in range(0, len(islice), final_batch_size):
|
1505 |
+
tasks = BatchedCalls(islice[i:i + final_batch_size],
|
1506 |
+
self._backend.get_nested_backend(),
|
1507 |
+
self._reducer_callback,
|
1508 |
+
self._pickle_cache)
|
1509 |
+
self._ready_batches.put(tasks)
|
1510 |
+
|
1511 |
+
# finally, get one task.
|
1512 |
+
tasks = self._ready_batches.get(block=False)
|
1513 |
+
if len(tasks) == 0:
|
1514 |
+
# No more tasks available in the iterator: tell caller to stop.
|
1515 |
+
return False
|
1516 |
+
else:
|
1517 |
+
self._dispatch(tasks)
|
1518 |
+
return True
|
1519 |
+
|
1520 |
+
def _get_batch_size(self):
|
1521 |
+
"""Returns the effective batch size for dispatch"""
|
1522 |
+
if self.batch_size == 'auto':
|
1523 |
+
return self._backend.compute_batch_size()
|
1524 |
+
else:
|
1525 |
+
# Fixed batch size strategy
|
1526 |
+
return self.batch_size
|
1527 |
+
|
1528 |
+
def _print(self, msg):
|
1529 |
+
"""Display the message on stout or stderr depending on verbosity"""
|
1530 |
+
# XXX: Not using the logger framework: need to
|
1531 |
+
# learn to use logger better.
|
1532 |
+
if not self.verbose:
|
1533 |
+
return
|
1534 |
+
if self.verbose < 50:
|
1535 |
+
writer = sys.stderr.write
|
1536 |
+
else:
|
1537 |
+
writer = sys.stdout.write
|
1538 |
+
writer(f"[{self}]: {msg}\n")
|
1539 |
+
|
1540 |
+
def _is_completed(self):
|
1541 |
+
"""Check if all tasks have been completed"""
|
1542 |
+
return self.n_completed_tasks == self.n_dispatched_tasks and not (
|
1543 |
+
self._iterating or self._aborting
|
1544 |
+
)
|
1545 |
+
|
1546 |
+
def print_progress(self):
|
1547 |
+
"""Display the process of the parallel execution only a fraction
|
1548 |
+
of time, controlled by self.verbose.
|
1549 |
+
"""
|
1550 |
+
|
1551 |
+
if not self.verbose:
|
1552 |
+
return
|
1553 |
+
|
1554 |
+
elapsed_time = time.time() - self._start_time
|
1555 |
+
|
1556 |
+
if self._is_completed():
|
1557 |
+
# Make sure that we get a last message telling us we are done
|
1558 |
+
self._print(
|
1559 |
+
f"Done {self.n_completed_tasks:3d} out of "
|
1560 |
+
f"{self.n_completed_tasks:3d} | elapsed: "
|
1561 |
+
f"{short_format_time(elapsed_time)} finished"
|
1562 |
+
)
|
1563 |
+
return
|
1564 |
+
|
1565 |
+
# Original job iterator becomes None once it has been fully
|
1566 |
+
# consumed: at this point we know the total number of jobs and we are
|
1567 |
+
# able to display an estimation of the remaining time based on already
|
1568 |
+
# completed jobs. Otherwise, we simply display the number of completed
|
1569 |
+
# tasks.
|
1570 |
+
elif self._original_iterator is not None:
|
1571 |
+
if _verbosity_filter(self.n_dispatched_batches, self.verbose):
|
1572 |
+
return
|
1573 |
+
self._print(
|
1574 |
+
f"Done {self.n_completed_tasks:3d} tasks | elapsed: "
|
1575 |
+
f"{short_format_time(elapsed_time)}"
|
1576 |
+
)
|
1577 |
+
else:
|
1578 |
+
index = self.n_completed_tasks
|
1579 |
+
# We are finished dispatching
|
1580 |
+
total_tasks = self.n_dispatched_tasks
|
1581 |
+
# We always display the first loop
|
1582 |
+
if not index == 0:
|
1583 |
+
# Display depending on the number of remaining items
|
1584 |
+
# A message as soon as we finish dispatching, cursor is 0
|
1585 |
+
cursor = (total_tasks - index + 1 -
|
1586 |
+
self._pre_dispatch_amount)
|
1587 |
+
frequency = (total_tasks // self.verbose) + 1
|
1588 |
+
is_last_item = (index + 1 == total_tasks)
|
1589 |
+
if (is_last_item or cursor % frequency):
|
1590 |
+
return
|
1591 |
+
remaining_time = (elapsed_time / index) * \
|
1592 |
+
(self.n_dispatched_tasks - index * 1.0)
|
1593 |
+
# only display status if remaining time is greater or equal to 0
|
1594 |
+
self._print(
|
1595 |
+
f"Done {index:3d} out of {total_tasks:3d} | elapsed: "
|
1596 |
+
f"{short_format_time(elapsed_time)} remaining: "
|
1597 |
+
f"{short_format_time(remaining_time)}"
|
1598 |
+
)
|
1599 |
+
|
1600 |
+
def _abort(self):
|
1601 |
+
# Stop dispatching new jobs in the async callback thread
|
1602 |
+
self._aborting = True
|
1603 |
+
|
1604 |
+
# If the backend allows it, cancel or kill remaining running
|
1605 |
+
# tasks without waiting for the results as we will raise
|
1606 |
+
# the exception we got back to the caller instead of returning
|
1607 |
+
# any result.
|
1608 |
+
backend = self._backend
|
1609 |
+
if (not self._aborted and hasattr(backend, 'abort_everything')):
|
1610 |
+
# If the backend is managed externally we need to make sure
|
1611 |
+
# to leave it in a working state to allow for future jobs
|
1612 |
+
# scheduling.
|
1613 |
+
ensure_ready = self._managed_backend
|
1614 |
+
backend.abort_everything(ensure_ready=ensure_ready)
|
1615 |
+
self._aborted = True
|
1616 |
+
|
1617 |
+
def _start(self, iterator, pre_dispatch):
|
1618 |
+
# Only set self._iterating to True if at least a batch
|
1619 |
+
# was dispatched. In particular this covers the edge
|
1620 |
+
# case of Parallel used with an exhausted iterator. If
|
1621 |
+
# self._original_iterator is None, then this means either
|
1622 |
+
# that pre_dispatch == "all", n_jobs == 1 or that the first batch
|
1623 |
+
# was very quick and its callback already dispatched all the
|
1624 |
+
# remaining jobs.
|
1625 |
+
self._iterating = False
|
1626 |
+
if self.dispatch_one_batch(iterator):
|
1627 |
+
self._iterating = self._original_iterator is not None
|
1628 |
+
|
1629 |
+
while self.dispatch_one_batch(iterator):
|
1630 |
+
pass
|
1631 |
+
|
1632 |
+
if pre_dispatch == "all":
|
1633 |
+
# The iterable was consumed all at once by the above for loop.
|
1634 |
+
# No need to wait for async callbacks to trigger to
|
1635 |
+
# consumption.
|
1636 |
+
self._iterating = False
|
1637 |
+
|
1638 |
+
def _get_outputs(self, iterator, pre_dispatch):
|
1639 |
+
"""Iterator returning the tasks' output as soon as they are ready."""
|
1640 |
+
dispatch_thread_id = threading.get_ident()
|
1641 |
+
detach_generator_exit = False
|
1642 |
+
try:
|
1643 |
+
self._start(iterator, pre_dispatch)
|
1644 |
+
# first yield returns None, for internal use only. This ensures
|
1645 |
+
# that we enter the try/except block and start dispatching the
|
1646 |
+
# tasks.
|
1647 |
+
yield
|
1648 |
+
|
1649 |
+
with self._backend.retrieval_context():
|
1650 |
+
yield from self._retrieve()
|
1651 |
+
|
1652 |
+
except GeneratorExit:
|
1653 |
+
# The generator has been garbage collected before being fully
|
1654 |
+
# consumed. This aborts the remaining tasks if possible and warn
|
1655 |
+
# the user if necessary.
|
1656 |
+
self._exception = True
|
1657 |
+
|
1658 |
+
# In some interpreters such as PyPy, GeneratorExit can be raised in
|
1659 |
+
# a different thread than the one used to start the dispatch of the
|
1660 |
+
# parallel tasks. This can lead to hang when a thread attempts to
|
1661 |
+
# join itself. As workaround, we detach the execution of the
|
1662 |
+
# aborting code to a dedicated thread. We then need to make sure
|
1663 |
+
# the rest of the function does not call `_terminate_and_reset`
|
1664 |
+
# in finally.
|
1665 |
+
if dispatch_thread_id != threading.get_ident():
|
1666 |
+
if not IS_PYPY:
|
1667 |
+
warnings.warn(
|
1668 |
+
"A generator produced by joblib.Parallel has been "
|
1669 |
+
"gc'ed in an unexpected thread. This behavior should "
|
1670 |
+
"not cause major -issues but to make sure, please "
|
1671 |
+
"report this warning and your use case at "
|
1672 |
+
"https://github.com/joblib/joblib/issues so it can "
|
1673 |
+
"be investigated."
|
1674 |
+
)
|
1675 |
+
|
1676 |
+
detach_generator_exit = True
|
1677 |
+
_parallel = self
|
1678 |
+
|
1679 |
+
class _GeneratorExitThread(threading.Thread):
|
1680 |
+
def run(self):
|
1681 |
+
_parallel._abort()
|
1682 |
+
if _parallel.return_generator:
|
1683 |
+
_parallel._warn_exit_early()
|
1684 |
+
_parallel._terminate_and_reset()
|
1685 |
+
|
1686 |
+
_GeneratorExitThread(
|
1687 |
+
name="GeneratorExitThread"
|
1688 |
+
).start()
|
1689 |
+
return
|
1690 |
+
|
1691 |
+
# Otherwise, we are in the thread that started the dispatch: we can
|
1692 |
+
# safely abort the execution and warn the user.
|
1693 |
+
self._abort()
|
1694 |
+
if self.return_generator:
|
1695 |
+
self._warn_exit_early()
|
1696 |
+
|
1697 |
+
raise
|
1698 |
+
|
1699 |
+
# Note: we catch any BaseException instead of just Exception instances
|
1700 |
+
# to also include KeyboardInterrupt
|
1701 |
+
except BaseException:
|
1702 |
+
self._exception = True
|
1703 |
+
self._abort()
|
1704 |
+
raise
|
1705 |
+
finally:
|
1706 |
+
# Store the unconsumed tasks and terminate the workers if necessary
|
1707 |
+
_remaining_outputs = ([] if self._exception else self._jobs)
|
1708 |
+
self._jobs = collections.deque()
|
1709 |
+
self._running = False
|
1710 |
+
if not detach_generator_exit:
|
1711 |
+
self._terminate_and_reset()
|
1712 |
+
|
1713 |
+
while len(_remaining_outputs) > 0:
|
1714 |
+
batched_results = _remaining_outputs.popleft()
|
1715 |
+
batched_results = batched_results.get_result(self.timeout)
|
1716 |
+
for result in batched_results:
|
1717 |
+
yield result
|
1718 |
+
|
1719 |
+
def _wait_retrieval(self):
|
1720 |
+
"""Return True if we need to continue retrieving some tasks."""
|
1721 |
+
|
1722 |
+
# If the input load is still being iterated over, it means that tasks
|
1723 |
+
# are still on the dispatch waitlist and their results will need to
|
1724 |
+
# be retrieved later on.
|
1725 |
+
if self._iterating:
|
1726 |
+
return True
|
1727 |
+
|
1728 |
+
# If some of the dispatched tasks are still being processed by the
|
1729 |
+
# workers, wait for the compute to finish before starting retrieval
|
1730 |
+
if self.n_completed_tasks < self.n_dispatched_tasks:
|
1731 |
+
return True
|
1732 |
+
|
1733 |
+
# For backends that does not support retrieving asynchronously the
|
1734 |
+
# result to the main process, all results must be carefully retrieved
|
1735 |
+
# in the _retrieve loop in the main thread while the backend is alive.
|
1736 |
+
# For other backends, the actual retrieval is done asynchronously in
|
1737 |
+
# the callback thread, and we can terminate the backend before the
|
1738 |
+
# `self._jobs` result list has been emptied. The remaining results
|
1739 |
+
# will be collected in the `finally` step of the generator.
|
1740 |
+
if not self._backend.supports_retrieve_callback:
|
1741 |
+
if len(self._jobs) > 0:
|
1742 |
+
return True
|
1743 |
+
|
1744 |
+
return False
|
1745 |
+
|
1746 |
+
def _retrieve(self):
|
1747 |
+
while self._wait_retrieval():
|
1748 |
+
|
1749 |
+
# If the callback thread of a worker has signaled that its task
|
1750 |
+
# triggered an exception, or if the retrieval loop has raised an
|
1751 |
+
# exception (e.g. `GeneratorExit`), exit the loop and surface the
|
1752 |
+
# worker traceback.
|
1753 |
+
if self._aborting:
|
1754 |
+
self._raise_error_fast()
|
1755 |
+
break
|
1756 |
+
|
1757 |
+
# If the next job is not ready for retrieval yet, we just wait for
|
1758 |
+
# async callbacks to progress.
|
1759 |
+
if ((len(self._jobs) == 0) or
|
1760 |
+
(self._jobs[0].get_status(
|
1761 |
+
timeout=self.timeout) == TASK_PENDING)):
|
1762 |
+
time.sleep(0.01)
|
1763 |
+
continue
|
1764 |
+
|
1765 |
+
# We need to be careful: the job list can be filling up as
|
1766 |
+
# we empty it and Python list are not thread-safe by
|
1767 |
+
# default hence the use of the lock
|
1768 |
+
with self._lock:
|
1769 |
+
batched_results = self._jobs.popleft()
|
1770 |
+
|
1771 |
+
# Flatten the batched results to output one output at a time
|
1772 |
+
batched_results = batched_results.get_result(self.timeout)
|
1773 |
+
for result in batched_results:
|
1774 |
+
self._nb_consumed += 1
|
1775 |
+
yield result
|
1776 |
+
|
1777 |
+
def _raise_error_fast(self):
|
1778 |
+
"""If we are aborting, raise if a job caused an error."""
|
1779 |
+
|
1780 |
+
# Find the first job whose status is TASK_ERROR if it exists.
|
1781 |
+
with self._lock:
|
1782 |
+
error_job = next((job for job in self._jobs
|
1783 |
+
if job.status == TASK_ERROR), None)
|
1784 |
+
|
1785 |
+
# If this error job exists, immediately raise the error by
|
1786 |
+
# calling get_result. This job might not exists if abort has been
|
1787 |
+
# called directly or if the generator is gc'ed.
|
1788 |
+
if error_job is not None:
|
1789 |
+
error_job.get_result(self.timeout)
|
1790 |
+
|
1791 |
+
def _warn_exit_early(self):
|
1792 |
+
"""Warn the user if the generator is gc'ed before being consumned."""
|
1793 |
+
ready_outputs = self.n_completed_tasks - self._nb_consumed
|
1794 |
+
is_completed = self._is_completed()
|
1795 |
+
msg = ""
|
1796 |
+
if ready_outputs:
|
1797 |
+
msg += (
|
1798 |
+
f"{ready_outputs} tasks have been successfully executed "
|
1799 |
+
" but not used."
|
1800 |
+
)
|
1801 |
+
if not is_completed:
|
1802 |
+
msg += " Additionally, "
|
1803 |
+
|
1804 |
+
if not is_completed:
|
1805 |
+
msg += (
|
1806 |
+
f"{self.n_dispatched_tasks - self.n_completed_tasks} tasks "
|
1807 |
+
"which were still being processed by the workers have been "
|
1808 |
+
"cancelled."
|
1809 |
+
)
|
1810 |
+
|
1811 |
+
if msg:
|
1812 |
+
msg += (
|
1813 |
+
" You could benefit from adjusting the input task "
|
1814 |
+
"iterator to limit unnecessary computation time."
|
1815 |
+
)
|
1816 |
+
|
1817 |
+
warnings.warn(msg)
|
1818 |
+
|
1819 |
+
def _get_sequential_output(self, iterable):
|
1820 |
+
"""Separate loop for sequential output.
|
1821 |
+
|
1822 |
+
This simplifies the traceback in case of errors and reduces the
|
1823 |
+
overhead of calling sequential tasks with `joblib`.
|
1824 |
+
"""
|
1825 |
+
try:
|
1826 |
+
self._iterating = True
|
1827 |
+
self._original_iterator = iterable
|
1828 |
+
batch_size = self._get_batch_size()
|
1829 |
+
|
1830 |
+
if batch_size != 1:
|
1831 |
+
it = iter(iterable)
|
1832 |
+
iterable_batched = iter(
|
1833 |
+
lambda: tuple(itertools.islice(it, batch_size)), ()
|
1834 |
+
)
|
1835 |
+
iterable = (
|
1836 |
+
task for batch in iterable_batched for task in batch
|
1837 |
+
)
|
1838 |
+
|
1839 |
+
# first yield returns None, for internal use only. This ensures
|
1840 |
+
# that we enter the try/except block and setup the generator.
|
1841 |
+
yield None
|
1842 |
+
|
1843 |
+
# Sequentially call the tasks and yield the results.
|
1844 |
+
for func, args, kwargs in iterable:
|
1845 |
+
self.n_dispatched_batches += 1
|
1846 |
+
self.n_dispatched_tasks += 1
|
1847 |
+
res = func(*args, **kwargs)
|
1848 |
+
self.n_completed_tasks += 1
|
1849 |
+
self.print_progress()
|
1850 |
+
yield res
|
1851 |
+
self._nb_consumed += 1
|
1852 |
+
except BaseException:
|
1853 |
+
self._exception = True
|
1854 |
+
self._aborting = True
|
1855 |
+
self._aborted = True
|
1856 |
+
raise
|
1857 |
+
finally:
|
1858 |
+
self.print_progress()
|
1859 |
+
self._running = False
|
1860 |
+
self._iterating = False
|
1861 |
+
self._original_iterator = None
|
1862 |
+
|
1863 |
+
def _reset_run_tracking(self):
|
1864 |
+
"""Reset the counters and flags used to track the execution."""
|
1865 |
+
|
1866 |
+
# Makes sur the parallel instance was not previously running in a
|
1867 |
+
# thread-safe way.
|
1868 |
+
with getattr(self, '_lock', nullcontext()):
|
1869 |
+
if self._running:
|
1870 |
+
msg = 'This Parallel instance is already running !'
|
1871 |
+
if self.return_generator is True:
|
1872 |
+
msg += (
|
1873 |
+
" Before submitting new tasks, you must wait for the "
|
1874 |
+
"completion of all the previous tasks, or clean all "
|
1875 |
+
"references to the output generator."
|
1876 |
+
)
|
1877 |
+
raise RuntimeError(msg)
|
1878 |
+
self._running = True
|
1879 |
+
|
1880 |
+
# Counter to keep track of the task dispatched and completed.
|
1881 |
+
self.n_dispatched_batches = 0
|
1882 |
+
self.n_dispatched_tasks = 0
|
1883 |
+
self.n_completed_tasks = 0
|
1884 |
+
|
1885 |
+
# Following count is incremented by one each time the user iterates
|
1886 |
+
# on the output generator, it is used to prepare an informative
|
1887 |
+
# warning message in case the generator is deleted before all the
|
1888 |
+
# dispatched tasks have been consumed.
|
1889 |
+
self._nb_consumed = 0
|
1890 |
+
|
1891 |
+
# Following flags are used to synchronize the threads in case one of
|
1892 |
+
# the tasks error-out to ensure that all workers abort fast and that
|
1893 |
+
# the backend terminates properly.
|
1894 |
+
|
1895 |
+
# Set to True as soon as a worker signals that a task errors-out
|
1896 |
+
self._exception = False
|
1897 |
+
# Set to True in case of early termination following an incident
|
1898 |
+
self._aborting = False
|
1899 |
+
# Set to True after abortion is complete
|
1900 |
+
self._aborted = False
|
1901 |
+
|
1902 |
+
def __call__(self, iterable):
|
1903 |
+
"""Main function to dispatch parallel tasks."""
|
1904 |
+
|
1905 |
+
self._reset_run_tracking()
|
1906 |
+
self._start_time = time.time()
|
1907 |
+
|
1908 |
+
if not self._managed_backend:
|
1909 |
+
n_jobs = self._initialize_backend()
|
1910 |
+
else:
|
1911 |
+
n_jobs = self._effective_n_jobs()
|
1912 |
+
|
1913 |
+
if n_jobs == 1:
|
1914 |
+
# If n_jobs==1, run the computation sequentially and return
|
1915 |
+
# immediately to avoid overheads.
|
1916 |
+
output = self._get_sequential_output(iterable)
|
1917 |
+
next(output)
|
1918 |
+
return output if self.return_generator else list(output)
|
1919 |
+
|
1920 |
+
# Let's create an ID that uniquely identifies the current call. If the
|
1921 |
+
# call is interrupted early and that the same instance is immediately
|
1922 |
+
# re-used, this id will be used to prevent workers that were
|
1923 |
+
# concurrently finalizing a task from the previous call to run the
|
1924 |
+
# callback.
|
1925 |
+
with self._lock:
|
1926 |
+
self._call_id = uuid4().hex
|
1927 |
+
|
1928 |
+
# self._effective_n_jobs should be called in the Parallel.__call__
|
1929 |
+
# thread only -- store its value in an attribute for further queries.
|
1930 |
+
self._cached_effective_n_jobs = n_jobs
|
1931 |
+
|
1932 |
+
if isinstance(self._backend, LokyBackend):
|
1933 |
+
# For the loky backend, we add a callback executed when reducing
|
1934 |
+
# BatchCalls, that makes the loky executor use a temporary folder
|
1935 |
+
# specific to this Parallel object when pickling temporary memmaps.
|
1936 |
+
# This callback is necessary to ensure that several Parallel
|
1937 |
+
# objects using the same reusable executor don't use the same
|
1938 |
+
# temporary resources.
|
1939 |
+
|
1940 |
+
def _batched_calls_reducer_callback():
|
1941 |
+
# Relevant implementation detail: the following lines, called
|
1942 |
+
# when reducing BatchedCalls, are called in a thread-safe
|
1943 |
+
# situation, meaning that the context of the temporary folder
|
1944 |
+
# manager will not be changed in between the callback execution
|
1945 |
+
# and the end of the BatchedCalls pickling. The reason is that
|
1946 |
+
# pickling (the only place where set_current_context is used)
|
1947 |
+
# is done from a single thread (the queue_feeder_thread).
|
1948 |
+
self._backend._workers._temp_folder_manager.set_current_context( # noqa
|
1949 |
+
self._id
|
1950 |
+
)
|
1951 |
+
self._reducer_callback = _batched_calls_reducer_callback
|
1952 |
+
|
1953 |
+
# self._effective_n_jobs should be called in the Parallel.__call__
|
1954 |
+
# thread only -- store its value in an attribute for further queries.
|
1955 |
+
self._cached_effective_n_jobs = n_jobs
|
1956 |
+
|
1957 |
+
backend_name = self._backend.__class__.__name__
|
1958 |
+
if n_jobs == 0:
|
1959 |
+
raise RuntimeError("%s has no active worker." % backend_name)
|
1960 |
+
|
1961 |
+
self._print(
|
1962 |
+
f"Using backend {backend_name} with {n_jobs} concurrent workers."
|
1963 |
+
)
|
1964 |
+
if hasattr(self._backend, 'start_call'):
|
1965 |
+
self._backend.start_call()
|
1966 |
+
|
1967 |
+
# Following flag prevents double calls to `backend.stop_call`.
|
1968 |
+
self._calling = True
|
1969 |
+
|
1970 |
+
iterator = iter(iterable)
|
1971 |
+
pre_dispatch = self.pre_dispatch
|
1972 |
+
|
1973 |
+
if pre_dispatch == 'all':
|
1974 |
+
# prevent further dispatch via multiprocessing callback thread
|
1975 |
+
self._original_iterator = None
|
1976 |
+
self._pre_dispatch_amount = 0
|
1977 |
+
else:
|
1978 |
+
self._original_iterator = iterator
|
1979 |
+
if hasattr(pre_dispatch, 'endswith'):
|
1980 |
+
pre_dispatch = eval_expr(
|
1981 |
+
pre_dispatch.replace("n_jobs", str(n_jobs))
|
1982 |
+
)
|
1983 |
+
self._pre_dispatch_amount = pre_dispatch = int(pre_dispatch)
|
1984 |
+
|
1985 |
+
# The main thread will consume the first pre_dispatch items and
|
1986 |
+
# the remaining items will later be lazily dispatched by async
|
1987 |
+
# callbacks upon task completions.
|
1988 |
+
|
1989 |
+
# TODO: this iterator should be batch_size * n_jobs
|
1990 |
+
iterator = itertools.islice(iterator, self._pre_dispatch_amount)
|
1991 |
+
|
1992 |
+
# Use a caching dict for callables that are pickled with cloudpickle to
|
1993 |
+
# improve performances. This cache is used only in the case of
|
1994 |
+
# functions that are defined in the __main__ module, functions that
|
1995 |
+
# are defined locally (inside another function) and lambda expressions.
|
1996 |
+
self._pickle_cache = dict()
|
1997 |
+
|
1998 |
+
output = self._get_outputs(iterator, pre_dispatch)
|
1999 |
+
self._call_ref = weakref.ref(output)
|
2000 |
+
|
2001 |
+
# The first item from the output is blank, but it makes the interpreter
|
2002 |
+
# progress until it enters the Try/Except block of the generator and
|
2003 |
+
# reaches the first `yield` statement. This starts the asynchronous
|
2004 |
+
# dispatch of the tasks to the workers.
|
2005 |
+
next(output)
|
2006 |
+
|
2007 |
+
return output if self.return_generator else list(output)
|
2008 |
+
|
2009 |
+
def __repr__(self):
|
2010 |
+
return '%s(n_jobs=%s)' % (self.__class__.__name__, self.n_jobs)
|
llmeval-env/lib/python3.10/site-packages/joblib/pool.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Custom implementation of multiprocessing.Pool with custom pickler.
|
2 |
+
|
3 |
+
This module provides efficient ways of working with data stored in
|
4 |
+
shared memory with numpy.memmap arrays without inducing any memory
|
5 |
+
copy between the parent and child processes.
|
6 |
+
|
7 |
+
This module should not be imported if multiprocessing is not
|
8 |
+
available as it implements subclasses of multiprocessing Pool
|
9 |
+
that uses a custom alternative to SimpleQueue.
|
10 |
+
|
11 |
+
"""
|
12 |
+
# Author: Olivier Grisel <[email protected]>
|
13 |
+
# Copyright: 2012, Olivier Grisel
|
14 |
+
# License: BSD 3 clause
|
15 |
+
|
16 |
+
import copyreg
|
17 |
+
import sys
|
18 |
+
import warnings
|
19 |
+
from time import sleep
|
20 |
+
|
21 |
+
try:
|
22 |
+
WindowsError
|
23 |
+
except NameError:
|
24 |
+
WindowsError = type(None)
|
25 |
+
|
26 |
+
from pickle import Pickler
|
27 |
+
|
28 |
+
from pickle import HIGHEST_PROTOCOL
|
29 |
+
from io import BytesIO
|
30 |
+
|
31 |
+
from ._memmapping_reducer import get_memmapping_reducers
|
32 |
+
from ._memmapping_reducer import TemporaryResourcesManager
|
33 |
+
from ._multiprocessing_helpers import mp, assert_spawning
|
34 |
+
|
35 |
+
# We need the class definition to derive from it, not the multiprocessing.Pool
|
36 |
+
# factory function
|
37 |
+
from multiprocessing.pool import Pool
|
38 |
+
|
39 |
+
try:
|
40 |
+
import numpy as np
|
41 |
+
except ImportError:
|
42 |
+
np = None
|
43 |
+
|
44 |
+
|
45 |
+
###############################################################################
|
46 |
+
# Enable custom pickling in Pool queues
|
47 |
+
|
48 |
+
class CustomizablePickler(Pickler):
|
49 |
+
"""Pickler that accepts custom reducers.
|
50 |
+
|
51 |
+
TODO python2_drop : can this be simplified ?
|
52 |
+
|
53 |
+
HIGHEST_PROTOCOL is selected by default as this pickler is used
|
54 |
+
to pickle ephemeral datastructures for interprocess communication
|
55 |
+
hence no backward compatibility is required.
|
56 |
+
|
57 |
+
`reducers` is expected to be a dictionary with key/values
|
58 |
+
being `(type, callable)` pairs where `callable` is a function that
|
59 |
+
give an instance of `type` will return a tuple `(constructor,
|
60 |
+
tuple_of_objects)` to rebuild an instance out of the pickled
|
61 |
+
`tuple_of_objects` as would return a `__reduce__` method. See the
|
62 |
+
standard library documentation on pickling for more details.
|
63 |
+
|
64 |
+
"""
|
65 |
+
|
66 |
+
# We override the pure Python pickler as its the only way to be able to
|
67 |
+
# customize the dispatch table without side effects in Python 2.7
|
68 |
+
# to 3.2. For Python 3.3+ leverage the new dispatch_table
|
69 |
+
# feature from https://bugs.python.org/issue14166 that makes it possible
|
70 |
+
# to use the C implementation of the Pickler which is faster.
|
71 |
+
|
72 |
+
def __init__(self, writer, reducers=None, protocol=HIGHEST_PROTOCOL):
|
73 |
+
Pickler.__init__(self, writer, protocol=protocol)
|
74 |
+
if reducers is None:
|
75 |
+
reducers = {}
|
76 |
+
if hasattr(Pickler, 'dispatch'):
|
77 |
+
# Make the dispatch registry an instance level attribute instead of
|
78 |
+
# a reference to the class dictionary under Python 2
|
79 |
+
self.dispatch = Pickler.dispatch.copy()
|
80 |
+
else:
|
81 |
+
# Under Python 3 initialize the dispatch table with a copy of the
|
82 |
+
# default registry
|
83 |
+
self.dispatch_table = copyreg.dispatch_table.copy()
|
84 |
+
for type, reduce_func in reducers.items():
|
85 |
+
self.register(type, reduce_func)
|
86 |
+
|
87 |
+
def register(self, type, reduce_func):
|
88 |
+
"""Attach a reducer function to a given type in the dispatch table."""
|
89 |
+
if hasattr(Pickler, 'dispatch'):
|
90 |
+
# Python 2 pickler dispatching is not explicitly customizable.
|
91 |
+
# Let us use a closure to workaround this limitation.
|
92 |
+
def dispatcher(self, obj):
|
93 |
+
reduced = reduce_func(obj)
|
94 |
+
self.save_reduce(obj=obj, *reduced)
|
95 |
+
self.dispatch[type] = dispatcher
|
96 |
+
else:
|
97 |
+
self.dispatch_table[type] = reduce_func
|
98 |
+
|
99 |
+
|
100 |
+
class CustomizablePicklingQueue(object):
|
101 |
+
"""Locked Pipe implementation that uses a customizable pickler.
|
102 |
+
|
103 |
+
This class is an alternative to the multiprocessing implementation
|
104 |
+
of SimpleQueue in order to make it possible to pass custom
|
105 |
+
pickling reducers, for instance to avoid memory copy when passing
|
106 |
+
memory mapped datastructures.
|
107 |
+
|
108 |
+
`reducers` is expected to be a dict with key / values being
|
109 |
+
`(type, callable)` pairs where `callable` is a function that, given an
|
110 |
+
instance of `type`, will return a tuple `(constructor, tuple_of_objects)`
|
111 |
+
to rebuild an instance out of the pickled `tuple_of_objects` as would
|
112 |
+
return a `__reduce__` method.
|
113 |
+
|
114 |
+
See the standard library documentation on pickling for more details.
|
115 |
+
"""
|
116 |
+
|
117 |
+
def __init__(self, context, reducers=None):
|
118 |
+
self._reducers = reducers
|
119 |
+
self._reader, self._writer = context.Pipe(duplex=False)
|
120 |
+
self._rlock = context.Lock()
|
121 |
+
if sys.platform == 'win32':
|
122 |
+
self._wlock = None
|
123 |
+
else:
|
124 |
+
self._wlock = context.Lock()
|
125 |
+
self._make_methods()
|
126 |
+
|
127 |
+
def __getstate__(self):
|
128 |
+
assert_spawning(self)
|
129 |
+
return (self._reader, self._writer, self._rlock, self._wlock,
|
130 |
+
self._reducers)
|
131 |
+
|
132 |
+
def __setstate__(self, state):
|
133 |
+
(self._reader, self._writer, self._rlock, self._wlock,
|
134 |
+
self._reducers) = state
|
135 |
+
self._make_methods()
|
136 |
+
|
137 |
+
def empty(self):
|
138 |
+
return not self._reader.poll()
|
139 |
+
|
140 |
+
def _make_methods(self):
|
141 |
+
self._recv = recv = self._reader.recv
|
142 |
+
racquire, rrelease = self._rlock.acquire, self._rlock.release
|
143 |
+
|
144 |
+
def get():
|
145 |
+
racquire()
|
146 |
+
try:
|
147 |
+
return recv()
|
148 |
+
finally:
|
149 |
+
rrelease()
|
150 |
+
|
151 |
+
self.get = get
|
152 |
+
|
153 |
+
if self._reducers:
|
154 |
+
def send(obj):
|
155 |
+
buffer = BytesIO()
|
156 |
+
CustomizablePickler(buffer, self._reducers).dump(obj)
|
157 |
+
self._writer.send_bytes(buffer.getvalue())
|
158 |
+
self._send = send
|
159 |
+
else:
|
160 |
+
self._send = send = self._writer.send
|
161 |
+
if self._wlock is None:
|
162 |
+
# writes to a message oriented win32 pipe are atomic
|
163 |
+
self.put = send
|
164 |
+
else:
|
165 |
+
wlock_acquire, wlock_release = (
|
166 |
+
self._wlock.acquire, self._wlock.release)
|
167 |
+
|
168 |
+
def put(obj):
|
169 |
+
wlock_acquire()
|
170 |
+
try:
|
171 |
+
return send(obj)
|
172 |
+
finally:
|
173 |
+
wlock_release()
|
174 |
+
|
175 |
+
self.put = put
|
176 |
+
|
177 |
+
|
178 |
+
class PicklingPool(Pool):
|
179 |
+
"""Pool implementation with customizable pickling reducers.
|
180 |
+
|
181 |
+
This is useful to control how data is shipped between processes
|
182 |
+
and makes it possible to use shared memory without useless
|
183 |
+
copies induces by the default pickling methods of the original
|
184 |
+
objects passed as arguments to dispatch.
|
185 |
+
|
186 |
+
`forward_reducers` and `backward_reducers` are expected to be
|
187 |
+
dictionaries with key/values being `(type, callable)` pairs where
|
188 |
+
`callable` is a function that, given an instance of `type`, will return a
|
189 |
+
tuple `(constructor, tuple_of_objects)` to rebuild an instance out of the
|
190 |
+
pickled `tuple_of_objects` as would return a `__reduce__` method.
|
191 |
+
See the standard library documentation about pickling for more details.
|
192 |
+
|
193 |
+
"""
|
194 |
+
|
195 |
+
def __init__(self, processes=None, forward_reducers=None,
|
196 |
+
backward_reducers=None, **kwargs):
|
197 |
+
if forward_reducers is None:
|
198 |
+
forward_reducers = dict()
|
199 |
+
if backward_reducers is None:
|
200 |
+
backward_reducers = dict()
|
201 |
+
self._forward_reducers = forward_reducers
|
202 |
+
self._backward_reducers = backward_reducers
|
203 |
+
poolargs = dict(processes=processes)
|
204 |
+
poolargs.update(kwargs)
|
205 |
+
super(PicklingPool, self).__init__(**poolargs)
|
206 |
+
|
207 |
+
def _setup_queues(self):
|
208 |
+
context = getattr(self, '_ctx', mp)
|
209 |
+
self._inqueue = CustomizablePicklingQueue(context,
|
210 |
+
self._forward_reducers)
|
211 |
+
self._outqueue = CustomizablePicklingQueue(context,
|
212 |
+
self._backward_reducers)
|
213 |
+
self._quick_put = self._inqueue._send
|
214 |
+
self._quick_get = self._outqueue._recv
|
215 |
+
|
216 |
+
|
217 |
+
class MemmappingPool(PicklingPool):
|
218 |
+
"""Process pool that shares large arrays to avoid memory copy.
|
219 |
+
|
220 |
+
This drop-in replacement for `multiprocessing.pool.Pool` makes
|
221 |
+
it possible to work efficiently with shared memory in a numpy
|
222 |
+
context.
|
223 |
+
|
224 |
+
Existing instances of numpy.memmap are preserved: the child
|
225 |
+
suprocesses will have access to the same shared memory in the
|
226 |
+
original mode except for the 'w+' mode that is automatically
|
227 |
+
transformed as 'r+' to avoid zeroing the original data upon
|
228 |
+
instantiation.
|
229 |
+
|
230 |
+
Furthermore large arrays from the parent process are automatically
|
231 |
+
dumped to a temporary folder on the filesystem such as child
|
232 |
+
processes to access their content via memmapping (file system
|
233 |
+
backed shared memory).
|
234 |
+
|
235 |
+
Note: it is important to call the terminate method to collect
|
236 |
+
the temporary folder used by the pool.
|
237 |
+
|
238 |
+
Parameters
|
239 |
+
----------
|
240 |
+
processes: int, optional
|
241 |
+
Number of worker processes running concurrently in the pool.
|
242 |
+
initializer: callable, optional
|
243 |
+
Callable executed on worker process creation.
|
244 |
+
initargs: tuple, optional
|
245 |
+
Arguments passed to the initializer callable.
|
246 |
+
temp_folder: (str, callable) optional
|
247 |
+
If str:
|
248 |
+
Folder to be used by the pool for memmapping large arrays
|
249 |
+
for sharing memory with worker processes. If None, this will try in
|
250 |
+
order:
|
251 |
+
- a folder pointed by the JOBLIB_TEMP_FOLDER environment variable,
|
252 |
+
- /dev/shm if the folder exists and is writable: this is a RAMdisk
|
253 |
+
filesystem available by default on modern Linux distributions,
|
254 |
+
- the default system temporary folder that can be overridden
|
255 |
+
with TMP, TMPDIR or TEMP environment variables, typically /tmp
|
256 |
+
under Unix operating systems.
|
257 |
+
if callable:
|
258 |
+
An callable in charge of dynamically resolving a temporary folder
|
259 |
+
for memmapping large arrays.
|
260 |
+
max_nbytes int or None, optional, 1e6 by default
|
261 |
+
Threshold on the size of arrays passed to the workers that
|
262 |
+
triggers automated memory mapping in temp_folder.
|
263 |
+
Use None to disable memmapping of large arrays.
|
264 |
+
mmap_mode: {'r+', 'r', 'w+', 'c'}
|
265 |
+
Memmapping mode for numpy arrays passed to workers.
|
266 |
+
See 'max_nbytes' parameter documentation for more details.
|
267 |
+
forward_reducers: dictionary, optional
|
268 |
+
Reducers used to pickle objects passed from main process to worker
|
269 |
+
processes: see below.
|
270 |
+
backward_reducers: dictionary, optional
|
271 |
+
Reducers used to pickle return values from workers back to the
|
272 |
+
main process.
|
273 |
+
verbose: int, optional
|
274 |
+
Make it possible to monitor how the communication of numpy arrays
|
275 |
+
with the subprocess is handled (pickling or memmapping)
|
276 |
+
prewarm: bool or str, optional, "auto" by default.
|
277 |
+
If True, force a read on newly memmapped array to make sure that OS
|
278 |
+
pre-cache it in memory. This can be useful to avoid concurrent disk
|
279 |
+
access when the same data array is passed to different worker
|
280 |
+
processes. If "auto" (by default), prewarm is set to True, unless the
|
281 |
+
Linux shared memory partition /dev/shm is available and used as temp
|
282 |
+
folder.
|
283 |
+
|
284 |
+
`forward_reducers` and `backward_reducers` are expected to be
|
285 |
+
dictionaries with key/values being `(type, callable)` pairs where
|
286 |
+
`callable` is a function that give an instance of `type` will return
|
287 |
+
a tuple `(constructor, tuple_of_objects)` to rebuild an instance out
|
288 |
+
of the pickled `tuple_of_objects` as would return a `__reduce__`
|
289 |
+
method. See the standard library documentation on pickling for more
|
290 |
+
details.
|
291 |
+
|
292 |
+
"""
|
293 |
+
|
294 |
+
def __init__(self, processes=None, temp_folder=None, max_nbytes=1e6,
|
295 |
+
mmap_mode='r', forward_reducers=None, backward_reducers=None,
|
296 |
+
verbose=0, context_id=None, prewarm=False, **kwargs):
|
297 |
+
|
298 |
+
if context_id is not None:
|
299 |
+
warnings.warn('context_id is deprecated and ignored in joblib'
|
300 |
+
' 0.9.4 and will be removed in 0.11',
|
301 |
+
DeprecationWarning)
|
302 |
+
|
303 |
+
manager = TemporaryResourcesManager(temp_folder)
|
304 |
+
self._temp_folder_manager = manager
|
305 |
+
|
306 |
+
# The usage of a temp_folder_resolver over a simple temp_folder is
|
307 |
+
# superfluous for multiprocessing pools, as they don't get reused, see
|
308 |
+
# get_memmapping_executor for more details. We still use it for code
|
309 |
+
# simplicity.
|
310 |
+
forward_reducers, backward_reducers = \
|
311 |
+
get_memmapping_reducers(
|
312 |
+
temp_folder_resolver=manager.resolve_temp_folder_name,
|
313 |
+
max_nbytes=max_nbytes, mmap_mode=mmap_mode,
|
314 |
+
forward_reducers=forward_reducers,
|
315 |
+
backward_reducers=backward_reducers, verbose=verbose,
|
316 |
+
unlink_on_gc_collect=False, prewarm=prewarm)
|
317 |
+
|
318 |
+
poolargs = dict(
|
319 |
+
processes=processes,
|
320 |
+
forward_reducers=forward_reducers,
|
321 |
+
backward_reducers=backward_reducers)
|
322 |
+
poolargs.update(kwargs)
|
323 |
+
super(MemmappingPool, self).__init__(**poolargs)
|
324 |
+
|
325 |
+
def terminate(self):
|
326 |
+
n_retries = 10
|
327 |
+
for i in range(n_retries):
|
328 |
+
try:
|
329 |
+
super(MemmappingPool, self).terminate()
|
330 |
+
break
|
331 |
+
except OSError as e:
|
332 |
+
if isinstance(e, WindowsError):
|
333 |
+
# Workaround occasional "[Error 5] Access is denied" issue
|
334 |
+
# when trying to terminate a process under windows.
|
335 |
+
sleep(0.1)
|
336 |
+
if i + 1 == n_retries:
|
337 |
+
warnings.warn("Failed to terminate worker processes in"
|
338 |
+
" multiprocessing pool: %r" % e)
|
339 |
+
|
340 |
+
# Clean up the temporary resources as the workers should now be off.
|
341 |
+
self._temp_folder_manager._clean_temporary_resources()
|
342 |
+
|
343 |
+
@property
|
344 |
+
def _temp_folder(self):
|
345 |
+
# Legacy property in tests. could be removed if we refactored the
|
346 |
+
# memmapping tests. SHOULD ONLY BE USED IN TESTS!
|
347 |
+
# We cache this property because it is called late in the tests - at
|
348 |
+
# this point, all context have been unregistered, and
|
349 |
+
# resolve_temp_folder_name raises an error.
|
350 |
+
if getattr(self, '_cached_temp_folder', None) is not None:
|
351 |
+
return self._cached_temp_folder
|
352 |
+
else:
|
353 |
+
self._cached_temp_folder = self._temp_folder_manager.resolve_temp_folder_name() # noqa
|
354 |
+
return self._cached_temp_folder
|