Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_add_batch_dim_ops.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_addmm_activation_cuda_dispatch.h +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_weight_to_int4pack.h +30 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn.h +91 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_compositeexplicitautograd_dispatch.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cummin_helper_cpu_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_ops.h +39 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized_cpu_dispatch.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_erf_cpu_dispatch.h +24 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_neg_ops.h +50 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adam_native.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_solve_ex_meta.h +27 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_local_scalar_dense_native.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_logcumsumexp_cuda_dispatch.h +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_mixed_dtypes_linear_cuda_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_mps_convolution_transpose_compositeexplicitautograd_dispatch.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_get_jagged_dummy_ops.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_tensor_storage_offsets_native.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nnpack_available.h +30 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_slow_conv2d_backward.h +135 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_log_softmax_backward_data_ops.h +39 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_native.h +21 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_test_warn_in_autograd.h +39 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_differentiable_gru_cell_backward_compositeimplicitautograd_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_fused_gru_cell_backward.h +39 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_cpu_dispatch.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_int4pack_mm_ops.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/acosh.h +44 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_backward_reduce_native.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_gather_stats_native.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/chain_matmul_ops.h +39 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/conv_depthwise3d.h +91 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cos.h +44 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cosine_similarity_ops.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/crow_indices_ops.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/dense_dim_cpu_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfftn_native.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/floor_cuda_dispatch.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/full_like_compositeexplicitautograd_dispatch.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/gather_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/ge_cpu_dispatch.h +30 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/glu_backward_native.h +24 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/gt.h +53 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/hardswish_cuda_dispatch.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/igamma_cpu_dispatch.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/lift_fresh_copy_compositeexplicitautograd_dispatch.h +24 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_cond_native.h +24 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_inv_ex_cpu_dispatch.h +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_qr_native.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_solve_compositeimplicitautograd_dispatch.h +25 -0
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_add_batch_dim_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _add_batch_dim {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, int64_t, int64_t);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_add_batch_dim")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_add_batch_dim(Tensor self, int batch_dim, int level) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, int64_t batch_dim, int64_t level);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t batch_dim, int64_t level);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_addmm_activation_cuda_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _addmm_activation(const at::Tensor & self, const at::Tensor & mat1, const at::Tensor & mat2, const at::Scalar & beta=1, const at::Scalar & alpha=1, bool use_gelu=false);
|
21 |
+
TORCH_API at::Tensor & _addmm_activation_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & mat1, const at::Tensor & mat2, const at::Scalar & beta=1, const at::Scalar & alpha=1, bool use_gelu=false);
|
22 |
+
TORCH_API at::Tensor & _addmm_activation_outf(const at::Tensor & self, const at::Tensor & mat1, const at::Tensor & mat2, const at::Scalar & beta, const at::Scalar & alpha, bool use_gelu, at::Tensor & out);
|
23 |
+
|
24 |
+
} // namespace cuda
|
25 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_weight_to_int4pack.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_convert_weight_to_int4pack_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_convert_weight_to_int4pack(Tensor self, int innerKTiles) -> Tensor
|
26 |
+
inline at::Tensor _convert_weight_to_int4pack(const at::Tensor & self, int64_t innerKTiles) {
|
27 |
+
return at::_ops::_convert_weight_to_int4pack::call(self, innerKTiles);
|
28 |
+
}
|
29 |
+
|
30 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_cudnn_rnn_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_cudnn_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _cudnn_rnn(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
|
27 |
+
return at::_ops::_cudnn_rnn::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _cudnn_rnn(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
|
32 |
+
return at::_ops::_cudnn_rnn::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::_cudnn_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
|
37 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _cudnn_rnn_symint(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
|
38 |
+
return at::_ops::_cudnn_rnn::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _cudnn_rnn(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
|
43 |
+
return at::_ops::_cudnn_rnn::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::_cudnn_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
|
48 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
|
49 |
+
return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, out0, out1, out2, out3, out4);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
53 |
+
::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
|
54 |
+
return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, out0, out1, out2, out3, out4);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::_cudnn_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
|
59 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
|
60 |
+
return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, out0, out1, out2, out3, out4);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
64 |
+
::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
|
65 |
+
return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, out0, out1, out2, out3, out4);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::_cudnn_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
|
70 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_symint_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
|
71 |
+
return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
75 |
+
::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
|
76 |
+
return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::_cudnn_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
|
81 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_symint_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
|
82 |
+
return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
|
87 |
+
return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4);
|
22 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_symint_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state);
|
23 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_symint_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4);
|
24 |
+
|
25 |
+
} // namespace compositeexplicitautograd
|
26 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cummin_helper_cpu_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API void _cummin_helper(const at::Tensor & self, at::Tensor & values, at::Tensor & indices, int64_t dim);
|
21 |
+
|
22 |
+
} // namespace cpu
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _efficientzerotensor {
|
18 |
+
using schema = at::Tensor (c10::SymIntArrayRef, c10::optional<at::ScalarType>, c10::optional<at::Layout>, c10::optional<at::Device>, c10::optional<bool>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_efficientzerotensor")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_efficientzerotensor(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor")
|
24 |
+
static at::Tensor call(c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _efficientzerotensor_out {
|
29 |
+
using schema = at::Tensor & (c10::SymIntArrayRef, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_efficientzerotensor")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_efficientzerotensor.out(SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(c10::SymIntArrayRef size, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, c10::SymIntArrayRef size, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized_cpu_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _empty_affine_quantized(at::IntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous);
|
21 |
+
TORCH_API at::Tensor _empty_affine_quantized(at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format);
|
22 |
+
TORCH_API at::Tensor _empty_affine_quantized_symint(c10::SymIntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous);
|
23 |
+
TORCH_API at::Tensor _empty_affine_quantized_symint(c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format);
|
24 |
+
|
25 |
+
} // namespace cpu
|
26 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_erf_cpu_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_erf(at::TensorList self);
|
21 |
+
TORCH_API void _foreach_erf_(at::TensorList self);
|
22 |
+
|
23 |
+
} // namespace cpu
|
24 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_neg_ops.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _foreach_neg {
|
18 |
+
using schema = ::std::vector<at::Tensor> (at::TensorList);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_neg")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_neg(Tensor[] self) -> Tensor[]")
|
24 |
+
static ::std::vector<at::Tensor> call(at::TensorList self);
|
25 |
+
static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _foreach_neg_ {
|
29 |
+
using schema = void (at::TensorList);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_neg_")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_neg_(Tensor(a!)[] self) -> ()")
|
35 |
+
static void call(at::TensorList self);
|
36 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API _foreach_neg_out {
|
40 |
+
using schema = void (at::TensorList, at::TensorList);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_neg")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_neg.out(Tensor[] self, *, Tensor(a!)[] out) -> ()")
|
46 |
+
static void call(at::TensorList self, at::TensorList out);
|
47 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList out);
|
48 |
+
};
|
49 |
+
|
50 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adam_native.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> _fused_adam(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
|
20 |
+
TORCH_API void _fused_adam_out(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
|
21 |
+
TORCH_API void _fused_adam_kernel_cuda_(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
|
22 |
+
TORCH_API ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> _fused_adam(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
|
23 |
+
TORCH_API void _fused_adam_tensor_lr_out(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
|
24 |
+
TORCH_API void _fused_adam_kernel_cuda_(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
|
25 |
+
} // namespace native
|
26 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_solve_ex_meta.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeMetaFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
struct TORCH_API structured__linalg_solve_ex : public at::impl::MetaBase {
|
21 |
+
|
22 |
+
|
23 |
+
void meta(const at::Tensor & A, const at::Tensor & B, bool left, bool check_errors);
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace native
|
27 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_local_scalar_dense_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Scalar _local_scalar_dense_cpu(const at::Tensor & self);
|
20 |
+
TORCH_API at::Scalar _local_scalar_dense_cuda(const at::Tensor & self);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_logcumsumexp_cuda_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _logcumsumexp(const at::Tensor & self, int64_t dim);
|
21 |
+
TORCH_API at::Tensor & _logcumsumexp_out(at::Tensor & out, const at::Tensor & self, int64_t dim);
|
22 |
+
TORCH_API at::Tensor & _logcumsumexp_outf(const at::Tensor & self, int64_t dim, at::Tensor & out);
|
23 |
+
|
24 |
+
} // namespace cuda
|
25 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_mixed_dtypes_linear_cuda_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _mixed_dtypes_linear(const at::Tensor & input, const at::Tensor & weight, const at::Tensor & scale, const c10::optional<at::Tensor> & bias={}, c10::optional<c10::string_view> activation=c10::nullopt);
|
21 |
+
|
22 |
+
} // namespace cuda
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_mps_convolution_transpose_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & _mps_convolution_transpose_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef padding, at::IntArrayRef output_padding, at::IntArrayRef stride, at::IntArrayRef dilation, int64_t groups);
|
21 |
+
TORCH_API at::Tensor & _mps_convolution_transpose_outf(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef padding, at::IntArrayRef output_padding, at::IntArrayRef stride, at::IntArrayRef dilation, int64_t groups, at::Tensor & out);
|
22 |
+
TORCH_API at::Tensor & _mps_convolution_transpose_symint_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups);
|
23 |
+
TORCH_API at::Tensor & _mps_convolution_transpose_symint_outf(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, at::Tensor & out);
|
24 |
+
|
25 |
+
} // namespace compositeexplicitautograd
|
26 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_get_jagged_dummy_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _nested_get_jagged_dummy {
|
18 |
+
using schema = at::Tensor (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_nested_get_jagged_dummy")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_nested_get_jagged_dummy(Tensor any) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & any);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & any);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_tensor_storage_offsets_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor & _nested_tensor_storage_offsets_out(const at::Tensor & self, at::Tensor & out);
|
20 |
+
TORCH_API at::Tensor _nested_tensor_storage_offsets(const at::Tensor & self);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nnpack_available.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_nnpack_available_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_nnpack_available() -> bool
|
26 |
+
inline bool _nnpack_available() {
|
27 |
+
return at::_ops::_nnpack_available::call();
|
28 |
+
}
|
29 |
+
|
30 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_slow_conv2d_backward.h
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_slow_conv2d_backward_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_slow_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
26 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_out(at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding) {
|
27 |
+
return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), grad_input, grad_weight, grad_bias);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_out(at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding) {
|
32 |
+
return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), grad_input, grad_weight, grad_bias);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::_slow_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
37 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias) {
|
38 |
+
return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), grad_input, grad_weight, grad_bias);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
42 |
+
::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias) {
|
43 |
+
return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), grad_input, grad_weight, grad_bias);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::_slow_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
48 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_symint_out(at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding) {
|
49 |
+
return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, kernel_size, stride, padding, grad_input, grad_weight, grad_bias);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
53 |
+
::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_out(at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding) {
|
54 |
+
return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, kernel_size, stride, padding, grad_input, grad_weight, grad_bias);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::_slow_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
59 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_symint_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias) {
|
60 |
+
return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, kernel_size, stride, padding, grad_input, grad_weight, grad_bias);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
64 |
+
::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias) {
|
65 |
+
return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, kernel_size, stride, padding, grad_input, grad_weight, grad_bias);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::_slow_conv2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
70 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _slow_conv2d_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array<bool,3> output_mask) {
|
71 |
+
return at::_ops::_slow_conv2d_backward_output_mask::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output_mask);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
75 |
+
::std::tuple<at::Tensor,at::Tensor,at::Tensor> _slow_conv2d_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array<bool,3> output_mask) {
|
76 |
+
return at::_ops::_slow_conv2d_backward_output_mask::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output_mask);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::_slow_conv2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
81 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _slow_conv2d_backward_symint(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, ::std::array<bool,3> output_mask) {
|
82 |
+
return at::_ops::_slow_conv2d_backward_output_mask::call(grad_output, self, weight, kernel_size, stride, padding, output_mask);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
::std::tuple<at::Tensor,at::Tensor,at::Tensor> _slow_conv2d_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, ::std::array<bool,3> output_mask) {
|
87 |
+
return at::_ops::_slow_conv2d_backward_output_mask::call(grad_output, self, weight, kernel_size, stride, padding, output_mask);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
// aten::_slow_conv2d_backward.output_mask_out(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
92 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array<bool,3> output_mask) {
|
93 |
+
return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output_mask, out0, out1, out2);
|
94 |
+
}
|
95 |
+
namespace symint {
|
96 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
97 |
+
::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array<bool,3> output_mask) {
|
98 |
+
return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output_mask, out0, out1, out2);
|
99 |
+
}
|
100 |
+
}
|
101 |
+
|
102 |
+
// aten::_slow_conv2d_backward.output_mask_out(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
103 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
|
104 |
+
return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output_mask, out0, out1, out2);
|
105 |
+
}
|
106 |
+
namespace symint {
|
107 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
108 |
+
::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
|
109 |
+
return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output_mask, out0, out1, out2);
|
110 |
+
}
|
111 |
+
}
|
112 |
+
|
113 |
+
// aten::_slow_conv2d_backward.output_mask_out(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
114 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_symint_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, ::std::array<bool,3> output_mask) {
|
115 |
+
return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, kernel_size, stride, padding, output_mask, out0, out1, out2);
|
116 |
+
}
|
117 |
+
namespace symint {
|
118 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
119 |
+
::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, ::std::array<bool,3> output_mask) {
|
120 |
+
return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, kernel_size, stride, padding, output_mask, out0, out1, out2);
|
121 |
+
}
|
122 |
+
}
|
123 |
+
|
124 |
+
// aten::_slow_conv2d_backward.output_mask_out(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
125 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_symint_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
|
126 |
+
return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, kernel_size, stride, padding, output_mask, out0, out1, out2);
|
127 |
+
}
|
128 |
+
namespace symint {
|
129 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
130 |
+
::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
|
131 |
+
return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, kernel_size, stride, padding, output_mask, out0, out1, out2);
|
132 |
+
}
|
133 |
+
}
|
134 |
+
|
135 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_log_softmax_backward_data_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _sparse_log_softmax_backward_data {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, int64_t, const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_sparse_log_softmax_backward_data")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_sparse_log_softmax_backward_data(Tensor grad_output, Tensor output, int dim, Tensor self) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, const at::Tensor & self);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _sparse_log_softmax_backward_data_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, int64_t, const at::Tensor &, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_sparse_log_softmax_backward_data")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_sparse_log_softmax_backward_data.out(Tensor grad_output, Tensor output, int dim, Tensor self, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, const at::Tensor & self, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, const at::Tensor & self, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> _sparse_mm_reduce_impl_sparse_csr_cpu(const at::Tensor & self, const at::Tensor & other, c10::string_view reduce);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_test_warn_in_autograd.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_test_warn_in_autograd_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_test_warn_in_autograd(Tensor self) -> Tensor
|
26 |
+
inline at::Tensor _test_warn_in_autograd(const at::Tensor & self) {
|
27 |
+
return at::_ops::_test_warn_in_autograd::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_test_warn_in_autograd.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & _test_warn_in_autograd_out(at::Tensor & out, const at::Tensor & self) {
|
32 |
+
return at::_ops::_test_warn_in_autograd_out::call(self, out);
|
33 |
+
}
|
34 |
+
// aten::_test_warn_in_autograd.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & _test_warn_in_autograd_outf(const at::Tensor & self, at::Tensor & out) {
|
36 |
+
return at::_ops::_test_warn_in_autograd_out::call(self, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_differentiable_gru_cell_backward_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _thnn_differentiable_gru_cell_backward(const at::Tensor & grad_hy, const at::Tensor & input_gates, const at::Tensor & hidden_gates, const at::Tensor & hx, const c10::optional<at::Tensor> & input_bias, const c10::optional<at::Tensor> & hidden_bias);
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_fused_gru_cell_backward.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_thnn_fused_gru_cell_backward_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_thnn_fused_gru_cell_backward(Tensor grad_hy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _thnn_fused_gru_cell_backward(const at::Tensor & grad_hy, const at::Tensor & workspace, bool has_bias) {
|
27 |
+
return at::_ops::_thnn_fused_gru_cell_backward::call(grad_hy, workspace, has_bias);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_thnn_fused_gru_cell_backward.out(Tensor grad_hy, Tensor workspace, bool has_bias, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
|
31 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _thnn_fused_gru_cell_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & grad_hy, const at::Tensor & workspace, bool has_bias) {
|
32 |
+
return at::_ops::_thnn_fused_gru_cell_backward_out::call(grad_hy, workspace, has_bias, out0, out1, out2, out3, out4);
|
33 |
+
}
|
34 |
+
// aten::_thnn_fused_gru_cell_backward.out(Tensor grad_hy, Tensor workspace, bool has_bias, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
|
35 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _thnn_fused_gru_cell_backward_outf(const at::Tensor & grad_hy, const at::Tensor & workspace, bool has_bias, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
|
36 |
+
return at::_ops::_thnn_fused_gru_cell_backward_out::call(grad_hy, workspace, has_bias, out0, out1, out2, out3, out4);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_cpu_dispatch.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _upsample_bicubic2d_aa(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor _upsample_bicubic2d_aa_symint(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
22 |
+
TORCH_API at::Tensor & _upsample_bicubic2d_aa_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
23 |
+
TORCH_API at::Tensor & _upsample_bicubic2d_aa_outf(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out);
|
24 |
+
TORCH_API at::Tensor & _upsample_bicubic2d_aa_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
25 |
+
TORCH_API at::Tensor & _upsample_bicubic2d_aa_symint_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out);
|
26 |
+
|
27 |
+
} // namespace cpu
|
28 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_int4pack_mm_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _weight_int4pack_mm {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, int64_t, const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_weight_int4pack_mm")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_weight_int4pack_mm(Tensor self, Tensor mat2, int qGroupSize, Tensor qScaleAndZeros) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & mat2, int64_t qGroupSize, const at::Tensor & qScaleAndZeros);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & mat2, int64_t qGroupSize, const at::Tensor & qScaleAndZeros);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/acosh.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/acosh_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::acosh(Tensor self) -> Tensor
|
26 |
+
inline at::Tensor acosh(const at::Tensor & self) {
|
27 |
+
return at::_ops::acosh::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::acosh_(Tensor(a!) self) -> Tensor(a!)
|
31 |
+
inline at::Tensor & acosh_(at::Tensor & self) {
|
32 |
+
return at::_ops::acosh_::call(self);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::acosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
36 |
+
inline at::Tensor & acosh_out(at::Tensor & out, const at::Tensor & self) {
|
37 |
+
return at::_ops::acosh_out::call(self, out);
|
38 |
+
}
|
39 |
+
// aten::acosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
40 |
+
inline at::Tensor & acosh_outf(const at::Tensor & self, at::Tensor & out) {
|
41 |
+
return at::_ops::acosh_out::call(self, out);
|
42 |
+
}
|
43 |
+
|
44 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_backward_reduce_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> batch_norm_backward_reduce_out(const at::Tensor & grad_out, const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & weight, bool input_g, bool weight_g, bool bias_g, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3);
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> batch_norm_backward_reduce_cuda(const at::Tensor & grad_out, const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & weight, bool input_g, bool weight_g, bool bias_g);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_gather_stats_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> batch_norm_gather_stats_out(const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, double momentum, double eps, int64_t count, at::Tensor & out0, at::Tensor & out1);
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> batch_norm_gather_stats_cuda(const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, double momentum, double eps, int64_t count);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/chain_matmul_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API chain_matmul {
|
18 |
+
using schema = at::Tensor (at::TensorList);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::chain_matmul")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "chain_matmul(Tensor[] matrices) -> Tensor")
|
24 |
+
static at::Tensor call(at::TensorList matrices);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList matrices);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API chain_matmul_out {
|
29 |
+
using schema = at::Tensor & (at::TensorList, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::chain_matmul")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "chain_matmul.out(Tensor[] matrices, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(at::TensorList matrices, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList matrices, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/conv_depthwise3d.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/conv_depthwise3d_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::conv_depthwise3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation) -> Tensor
|
26 |
+
inline at::Tensor conv_depthwise3d(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation) {
|
27 |
+
return at::_ops::conv_depthwise3d::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation));
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor conv_depthwise3d(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation) {
|
32 |
+
return at::_ops::conv_depthwise3d::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation));
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::conv_depthwise3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation) -> Tensor
|
37 |
+
inline at::Tensor conv_depthwise3d_symint(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation) {
|
38 |
+
return at::_ops::conv_depthwise3d::call(self, weight, kernel_size, bias, stride, padding, dilation);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
at::Tensor conv_depthwise3d(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation) {
|
43 |
+
return at::_ops::conv_depthwise3d::call(self, weight, kernel_size, bias, stride, padding, dilation);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::conv_depthwise3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation, *, Tensor(a!) out) -> Tensor(a!)
|
48 |
+
inline at::Tensor & conv_depthwise3d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation) {
|
49 |
+
return at::_ops::conv_depthwise3d_out::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), out);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
53 |
+
at::Tensor & conv_depthwise3d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation) {
|
54 |
+
return at::_ops::conv_depthwise3d_out::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), out);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::conv_depthwise3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation, *, Tensor(a!) out) -> Tensor(a!)
|
59 |
+
inline at::Tensor & conv_depthwise3d_outf(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, at::Tensor & out) {
|
60 |
+
return at::_ops::conv_depthwise3d_out::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), out);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
64 |
+
at::Tensor & conv_depthwise3d_outf(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, at::Tensor & out) {
|
65 |
+
return at::_ops::conv_depthwise3d_out::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), out);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::conv_depthwise3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation, *, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & conv_depthwise3d_symint_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation) {
|
71 |
+
return at::_ops::conv_depthwise3d_out::call(self, weight, kernel_size, bias, stride, padding, dilation, out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
75 |
+
at::Tensor & conv_depthwise3d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation) {
|
76 |
+
return at::_ops::conv_depthwise3d_out::call(self, weight, kernel_size, bias, stride, padding, dilation, out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::conv_depthwise3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation, *, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & conv_depthwise3d_symint_outf(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, at::Tensor & out) {
|
82 |
+
return at::_ops::conv_depthwise3d_out::call(self, weight, kernel_size, bias, stride, padding, dilation, out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
at::Tensor & conv_depthwise3d_outf(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, at::Tensor & out) {
|
87 |
+
return at::_ops::conv_depthwise3d_out::call(self, weight, kernel_size, bias, stride, padding, dilation, out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cos.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/cos_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::cos(Tensor self) -> Tensor
|
26 |
+
inline at::Tensor cos(const at::Tensor & self) {
|
27 |
+
return at::_ops::cos::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::cos_(Tensor(a!) self) -> Tensor(a!)
|
31 |
+
inline at::Tensor & cos_(at::Tensor & self) {
|
32 |
+
return at::_ops::cos_::call(self);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::cos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
36 |
+
inline at::Tensor & cos_out(at::Tensor & out, const at::Tensor & self) {
|
37 |
+
return at::_ops::cos_out::call(self, out);
|
38 |
+
}
|
39 |
+
// aten::cos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
40 |
+
inline at::Tensor & cos_outf(const at::Tensor & self, at::Tensor & out) {
|
41 |
+
return at::_ops::cos_out::call(self, out);
|
42 |
+
}
|
43 |
+
|
44 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cosine_similarity_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API cosine_similarity {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, int64_t, double);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::cosine_similarity")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "cosine_similarity(Tensor x1, Tensor x2, int dim=1, float eps=1e-08) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & x1, const at::Tensor & x2, int64_t dim, double eps);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & x1, const at::Tensor & x2, int64_t dim, double eps);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/crow_indices_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API crow_indices {
|
18 |
+
using schema = at::Tensor (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::crow_indices")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "crow_indices(Tensor(a) self) -> Tensor(a)")
|
24 |
+
static at::Tensor call(const at::Tensor & self);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/dense_dim_cpu_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API int64_t dense_dim(const at::Tensor & self);
|
21 |
+
|
22 |
+
} // namespace cpu
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfftn_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor fft_rfftn_symint(const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt);
|
20 |
+
TORCH_API at::Tensor & fft_rfftn_symint_out(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/floor_cuda_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor floor(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & floor_out(at::Tensor & out, const at::Tensor & self);
|
22 |
+
TORCH_API at::Tensor & floor_outf(const at::Tensor & self, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & floor_(at::Tensor & self);
|
24 |
+
|
25 |
+
} // namespace cuda
|
26 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/full_like_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor full_like(const at::Tensor & self, const at::Scalar & fill_value, at::TensorOptions options={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor full_like(const at::Tensor & self, const at::Scalar & fill_value, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, c10::optional<at::MemoryFormat> memory_format);
|
22 |
+
TORCH_API at::Tensor & full_like_out(at::Tensor & out, const at::Tensor & self, const at::Scalar & fill_value, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
|
23 |
+
TORCH_API at::Tensor & full_like_outf(const at::Tensor & self, const at::Scalar & fill_value, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
|
24 |
+
|
25 |
+
} // namespace compositeexplicitautograd
|
26 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/gather_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor gather(const at::Tensor & self, int64_t dim, const at::Tensor & index, bool sparse_grad=false);
|
21 |
+
|
22 |
+
} // namespace compositeexplicitautogradnonfunctional
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/ge_cpu_dispatch.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor ge(const at::Tensor & self, const at::Scalar & other);
|
21 |
+
TORCH_API at::Tensor & ge_out(at::Tensor & out, const at::Tensor & self, const at::Scalar & other);
|
22 |
+
TORCH_API at::Tensor & ge_outf(const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & ge_(at::Tensor & self, const at::Scalar & other);
|
24 |
+
TORCH_API at::Tensor ge(const at::Tensor & self, const at::Tensor & other);
|
25 |
+
TORCH_API at::Tensor & ge_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
|
26 |
+
TORCH_API at::Tensor & ge_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
|
27 |
+
TORCH_API at::Tensor & ge_(at::Tensor & self, const at::Tensor & other);
|
28 |
+
|
29 |
+
} // namespace cpu
|
30 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/glu_backward_native.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor glu_backward_cpu(const at::Tensor & grad_output, const at::Tensor & self, int64_t dim);
|
20 |
+
TORCH_API at::Tensor & glu_backward_cpu_out(const at::Tensor & grad_output, const at::Tensor & self, int64_t dim, at::Tensor & grad_input);
|
21 |
+
TORCH_API at::Tensor glu_backward_cuda(const at::Tensor & grad_output, const at::Tensor & self, int64_t dim);
|
22 |
+
TORCH_API at::Tensor & glu_backward_cuda_out(const at::Tensor & grad_output, const at::Tensor & self, int64_t dim, at::Tensor & grad_input);
|
23 |
+
} // namespace native
|
24 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/gt.h
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/gt_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::gt.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
26 |
+
inline at::Tensor & gt_out(at::Tensor & out, const at::Tensor & self, const at::Scalar & other) {
|
27 |
+
return at::_ops::gt_Scalar_out::call(self, other, out);
|
28 |
+
}
|
29 |
+
// aten::gt.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
30 |
+
inline at::Tensor & gt_outf(const at::Tensor & self, const at::Scalar & other, at::Tensor & out) {
|
31 |
+
return at::_ops::gt_Scalar_out::call(self, other, out);
|
32 |
+
}
|
33 |
+
|
34 |
+
// aten::gt.Scalar(Tensor self, Scalar other) -> Tensor
|
35 |
+
inline at::Tensor gt(const at::Tensor & self, const at::Scalar & other) {
|
36 |
+
return at::_ops::gt_Scalar::call(self, other);
|
37 |
+
}
|
38 |
+
|
39 |
+
// aten::gt.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
40 |
+
inline at::Tensor & gt_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other) {
|
41 |
+
return at::_ops::gt_Tensor_out::call(self, other, out);
|
42 |
+
}
|
43 |
+
// aten::gt.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
44 |
+
inline at::Tensor & gt_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out) {
|
45 |
+
return at::_ops::gt_Tensor_out::call(self, other, out);
|
46 |
+
}
|
47 |
+
|
48 |
+
// aten::gt.Tensor(Tensor self, Tensor other) -> Tensor
|
49 |
+
inline at::Tensor gt(const at::Tensor & self, const at::Tensor & other) {
|
50 |
+
return at::_ops::gt_Tensor::call(self, other);
|
51 |
+
}
|
52 |
+
|
53 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/hardswish_cuda_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor hardswish(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & hardswish_out(at::Tensor & out, const at::Tensor & self);
|
22 |
+
TORCH_API at::Tensor & hardswish_outf(const at::Tensor & self, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & hardswish_(at::Tensor & self);
|
24 |
+
|
25 |
+
} // namespace cuda
|
26 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/igamma_cpu_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor igamma(const at::Tensor & self, const at::Tensor & other);
|
21 |
+
TORCH_API at::Tensor & igamma_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
|
22 |
+
TORCH_API at::Tensor & igamma_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & igamma_(at::Tensor & self, const at::Tensor & other);
|
24 |
+
|
25 |
+
} // namespace cpu
|
26 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/lift_fresh_copy_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & lift_fresh_copy_out(at::Tensor & out, const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & lift_fresh_copy_outf(const at::Tensor & self, at::Tensor & out);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_cond_native.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor linalg_cond(const at::Tensor & self, const c10::optional<at::Scalar> & p=c10::nullopt);
|
20 |
+
TORCH_API at::Tensor & linalg_cond_out(const at::Tensor & self, const c10::optional<at::Scalar> & p, at::Tensor & out);
|
21 |
+
TORCH_API at::Tensor linalg_cond(const at::Tensor & self, c10::string_view p);
|
22 |
+
TORCH_API at::Tensor & linalg_cond_out(const at::Tensor & self, c10::string_view p, at::Tensor & out);
|
23 |
+
} // namespace native
|
24 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_inv_ex_cpu_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> linalg_inv_ex(const at::Tensor & A, bool check_errors=false);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> linalg_inv_ex_out(at::Tensor & inverse, at::Tensor & info, const at::Tensor & A, bool check_errors=false);
|
22 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> linalg_inv_ex_outf(const at::Tensor & A, bool check_errors, at::Tensor & inverse, at::Tensor & info);
|
23 |
+
|
24 |
+
} // namespace cpu
|
25 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_qr_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
#include <ATen/ops/linalg_qr_meta.h>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
struct TORCH_API structured_linalg_qr_out : public at::meta::structured_linalg_qr {
|
20 |
+
void impl(const at::Tensor & A, c10::string_view mode, const at::Tensor & Q, const at::Tensor & R);
|
21 |
+
};
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_solve_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor linalg_solve(const at::Tensor & A, const at::Tensor & B, bool left=true);
|
21 |
+
TORCH_API at::Tensor & linalg_solve_out(at::Tensor & out, const at::Tensor & A, const at::Tensor & B, bool left=true);
|
22 |
+
TORCH_API at::Tensor & linalg_solve_outf(const at::Tensor & A, const at::Tensor & B, bool left, at::Tensor & out);
|
23 |
+
|
24 |
+
} // namespace compositeimplicitautograd
|
25 |
+
} // namespace at
|