applied-ai-018 commited on
Commit
c7dd694
·
verified ·
1 Parent(s): 8f29813

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_add_batch_dim_ops.h +28 -0
  2. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_addmm_activation_cuda_dispatch.h +25 -0
  3. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_weight_to_int4pack.h +30 -0
  4. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn.h +91 -0
  5. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_compositeexplicitautograd_dispatch.h +26 -0
  6. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cummin_helper_cpu_dispatch.h +23 -0
  7. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_ops.h +39 -0
  8. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized_cpu_dispatch.h +26 -0
  9. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_erf_cpu_dispatch.h +24 -0
  10. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_neg_ops.h +50 -0
  11. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adam_native.h +26 -0
  12. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_solve_ex_meta.h +27 -0
  13. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_local_scalar_dense_native.h +22 -0
  14. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_logcumsumexp_cuda_dispatch.h +25 -0
  15. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_mixed_dtypes_linear_cuda_dispatch.h +23 -0
  16. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_mps_convolution_transpose_compositeexplicitautograd_dispatch.h +26 -0
  17. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_get_jagged_dummy_ops.h +28 -0
  18. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_tensor_storage_offsets_native.h +22 -0
  19. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nnpack_available.h +30 -0
  20. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_slow_conv2d_backward.h +135 -0
  21. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_log_softmax_backward_data_ops.h +39 -0
  22. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_native.h +21 -0
  23. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_test_warn_in_autograd.h +39 -0
  24. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_differentiable_gru_cell_backward_compositeimplicitautograd_dispatch.h +23 -0
  25. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_fused_gru_cell_backward.h +39 -0
  26. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_cpu_dispatch.h +28 -0
  27. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_int4pack_mm_ops.h +28 -0
  28. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/acosh.h +44 -0
  29. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_backward_reduce_native.h +22 -0
  30. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_gather_stats_native.h +22 -0
  31. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/chain_matmul_ops.h +39 -0
  32. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/conv_depthwise3d.h +91 -0
  33. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cos.h +44 -0
  34. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cosine_similarity_ops.h +28 -0
  35. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/crow_indices_ops.h +28 -0
  36. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/dense_dim_cpu_dispatch.h +23 -0
  37. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfftn_native.h +22 -0
  38. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/floor_cuda_dispatch.h +26 -0
  39. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/full_like_compositeexplicitautograd_dispatch.h +26 -0
  40. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/gather_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
  41. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/ge_cpu_dispatch.h +30 -0
  42. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/glu_backward_native.h +24 -0
  43. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/gt.h +53 -0
  44. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/hardswish_cuda_dispatch.h +26 -0
  45. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/igamma_cpu_dispatch.h +26 -0
  46. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/lift_fresh_copy_compositeexplicitautograd_dispatch.h +24 -0
  47. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_cond_native.h +24 -0
  48. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_inv_ex_cpu_dispatch.h +25 -0
  49. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_qr_native.h +23 -0
  50. llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_solve_compositeimplicitautograd_dispatch.h +25 -0
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_add_batch_dim_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _add_batch_dim {
18
+ using schema = at::Tensor (const at::Tensor &, int64_t, int64_t);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_add_batch_dim")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_add_batch_dim(Tensor self, int batch_dim, int level) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, int64_t batch_dim, int64_t level);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t batch_dim, int64_t level);
26
+ };
27
+
28
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_addmm_activation_cuda_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor _addmm_activation(const at::Tensor & self, const at::Tensor & mat1, const at::Tensor & mat2, const at::Scalar & beta=1, const at::Scalar & alpha=1, bool use_gelu=false);
21
+ TORCH_API at::Tensor & _addmm_activation_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & mat1, const at::Tensor & mat2, const at::Scalar & beta=1, const at::Scalar & alpha=1, bool use_gelu=false);
22
+ TORCH_API at::Tensor & _addmm_activation_outf(const at::Tensor & self, const at::Tensor & mat1, const at::Tensor & mat2, const at::Scalar & beta, const at::Scalar & alpha, bool use_gelu, at::Tensor & out);
23
+
24
+ } // namespace cuda
25
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_weight_to_int4pack.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_convert_weight_to_int4pack_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_convert_weight_to_int4pack(Tensor self, int innerKTiles) -> Tensor
26
+ inline at::Tensor _convert_weight_to_int4pack(const at::Tensor & self, int64_t innerKTiles) {
27
+ return at::_ops::_convert_weight_to_int4pack::call(self, innerKTiles);
28
+ }
29
+
30
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_cudnn_rnn_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_cudnn_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _cudnn_rnn(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
27
+ return at::_ops::_cudnn_rnn::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _cudnn_rnn(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
32
+ return at::_ops::_cudnn_rnn::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state);
33
+ }
34
+ }
35
+
36
+ // aten::_cudnn_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
37
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _cudnn_rnn_symint(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
38
+ return at::_ops::_cudnn_rnn::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _cudnn_rnn(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
43
+ return at::_ops::_cudnn_rnn::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state);
44
+ }
45
+ }
46
+
47
+ // aten::_cudnn_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
48
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
49
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, out0, out1, out2, out3, out4);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
54
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, out0, out1, out2, out3, out4);
55
+ }
56
+ }
57
+
58
+ // aten::_cudnn_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
59
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
60
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, out0, out1, out2, out3, out4);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
65
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, out0, out1, out2, out3, out4);
66
+ }
67
+ }
68
+
69
+ // aten::_cudnn_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
70
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_symint_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
71
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
76
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
77
+ }
78
+ }
79
+
80
+ // aten::_cudnn_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
81
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_symint_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
82
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
87
+ return at::_ops::_cudnn_rnn_out::call(input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
88
+ }
89
+ }
90
+
91
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_symint_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state);
23
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _cudnn_rnn_symint_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4);
24
+
25
+ } // namespace compositeexplicitautograd
26
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_cummin_helper_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API void _cummin_helper(const at::Tensor & self, at::Tensor & values, at::Tensor & indices, int64_t dim);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _efficientzerotensor {
18
+ using schema = at::Tensor (c10::SymIntArrayRef, c10::optional<at::ScalarType>, c10::optional<at::Layout>, c10::optional<at::Device>, c10::optional<bool>);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_efficientzerotensor")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_efficientzerotensor(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor")
24
+ static at::Tensor call(c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
26
+ };
27
+
28
+ struct TORCH_API _efficientzerotensor_out {
29
+ using schema = at::Tensor & (c10::SymIntArrayRef, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_efficientzerotensor")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_efficientzerotensor.out(SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(c10::SymIntArrayRef size, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, c10::SymIntArrayRef size, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized_cpu_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor _empty_affine_quantized(at::IntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous);
21
+ TORCH_API at::Tensor _empty_affine_quantized(at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format);
22
+ TORCH_API at::Tensor _empty_affine_quantized_symint(c10::SymIntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, c10::optional<at::MemoryFormat> memory_format=MemoryFormat::Contiguous);
23
+ TORCH_API at::Tensor _empty_affine_quantized_symint(c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format);
24
+
25
+ } // namespace cpu
26
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_erf_cpu_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::vector<at::Tensor> _foreach_erf(at::TensorList self);
21
+ TORCH_API void _foreach_erf_(at::TensorList self);
22
+
23
+ } // namespace cpu
24
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_neg_ops.h ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _foreach_neg {
18
+ using schema = ::std::vector<at::Tensor> (at::TensorList);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_neg")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_neg(Tensor[] self) -> Tensor[]")
24
+ static ::std::vector<at::Tensor> call(at::TensorList self);
25
+ static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
26
+ };
27
+
28
+ struct TORCH_API _foreach_neg_ {
29
+ using schema = void (at::TensorList);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_neg_")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_neg_(Tensor(a!)[] self) -> ()")
35
+ static void call(at::TensorList self);
36
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
37
+ };
38
+
39
+ struct TORCH_API _foreach_neg_out {
40
+ using schema = void (at::TensorList, at::TensorList);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_neg")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_neg.out(Tensor[] self, *, Tensor(a!)[] out) -> ()")
46
+ static void call(at::TensorList self, at::TensorList out);
47
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList out);
48
+ };
49
+
50
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adam_native.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> _fused_adam(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
20
+ TORCH_API void _fused_adam_out(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
21
+ TORCH_API void _fused_adam_kernel_cuda_(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
22
+ TORCH_API ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> _fused_adam(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
23
+ TORCH_API void _fused_adam_tensor_lr_out(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
24
+ TORCH_API void _fused_adam_kernel_cuda_(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
25
+ } // namespace native
26
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_solve_ex_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured__linalg_solve_ex : public at::impl::MetaBase {
21
+
22
+
23
+ void meta(const at::Tensor & A, const at::Tensor & B, bool left, bool check_errors);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_local_scalar_dense_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Scalar _local_scalar_dense_cpu(const at::Tensor & self);
20
+ TORCH_API at::Scalar _local_scalar_dense_cuda(const at::Tensor & self);
21
+ } // namespace native
22
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_logcumsumexp_cuda_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor _logcumsumexp(const at::Tensor & self, int64_t dim);
21
+ TORCH_API at::Tensor & _logcumsumexp_out(at::Tensor & out, const at::Tensor & self, int64_t dim);
22
+ TORCH_API at::Tensor & _logcumsumexp_outf(const at::Tensor & self, int64_t dim, at::Tensor & out);
23
+
24
+ } // namespace cuda
25
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_mixed_dtypes_linear_cuda_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor _mixed_dtypes_linear(const at::Tensor & input, const at::Tensor & weight, const at::Tensor & scale, const c10::optional<at::Tensor> & bias={}, c10::optional<c10::string_view> activation=c10::nullopt);
21
+
22
+ } // namespace cuda
23
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_mps_convolution_transpose_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & _mps_convolution_transpose_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef padding, at::IntArrayRef output_padding, at::IntArrayRef stride, at::IntArrayRef dilation, int64_t groups);
21
+ TORCH_API at::Tensor & _mps_convolution_transpose_outf(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef padding, at::IntArrayRef output_padding, at::IntArrayRef stride, at::IntArrayRef dilation, int64_t groups, at::Tensor & out);
22
+ TORCH_API at::Tensor & _mps_convolution_transpose_symint_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups);
23
+ TORCH_API at::Tensor & _mps_convolution_transpose_symint_outf(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, at::Tensor & out);
24
+
25
+ } // namespace compositeexplicitautograd
26
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_get_jagged_dummy_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _nested_get_jagged_dummy {
18
+ using schema = at::Tensor (const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_nested_get_jagged_dummy")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_nested_get_jagged_dummy(Tensor any) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & any);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & any);
26
+ };
27
+
28
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_tensor_storage_offsets_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & _nested_tensor_storage_offsets_out(const at::Tensor & self, at::Tensor & out);
20
+ TORCH_API at::Tensor _nested_tensor_storage_offsets(const at::Tensor & self);
21
+ } // namespace native
22
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_nnpack_available.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_nnpack_available_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_nnpack_available() -> bool
26
+ inline bool _nnpack_available() {
27
+ return at::_ops::_nnpack_available::call();
28
+ }
29
+
30
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_slow_conv2d_backward.h ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_slow_conv2d_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_slow_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
26
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_out(at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding) {
27
+ return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), grad_input, grad_weight, grad_bias);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_out(at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding) {
32
+ return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), grad_input, grad_weight, grad_bias);
33
+ }
34
+ }
35
+
36
+ // aten::_slow_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
37
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias) {
38
+ return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), grad_input, grad_weight, grad_bias);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
42
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias) {
43
+ return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), grad_input, grad_weight, grad_bias);
44
+ }
45
+ }
46
+
47
+ // aten::_slow_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
48
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_symint_out(at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding) {
49
+ return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, kernel_size, stride, padding, grad_input, grad_weight, grad_bias);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
53
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_out(at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding) {
54
+ return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, kernel_size, stride, padding, grad_input, grad_weight, grad_bias);
55
+ }
56
+ }
57
+
58
+ // aten::_slow_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
59
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_symint_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias) {
60
+ return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, kernel_size, stride, padding, grad_input, grad_weight, grad_bias);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
64
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias) {
65
+ return at::_ops::_slow_conv2d_backward_grad_input::call(grad_output, self, weight, kernel_size, stride, padding, grad_input, grad_weight, grad_bias);
66
+ }
67
+ }
68
+
69
+ // aten::_slow_conv2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
70
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _slow_conv2d_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array<bool,3> output_mask) {
71
+ return at::_ops::_slow_conv2d_backward_output_mask::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output_mask);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
75
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _slow_conv2d_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array<bool,3> output_mask) {
76
+ return at::_ops::_slow_conv2d_backward_output_mask::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output_mask);
77
+ }
78
+ }
79
+
80
+ // aten::_slow_conv2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
81
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _slow_conv2d_backward_symint(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, ::std::array<bool,3> output_mask) {
82
+ return at::_ops::_slow_conv2d_backward_output_mask::call(grad_output, self, weight, kernel_size, stride, padding, output_mask);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _slow_conv2d_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, ::std::array<bool,3> output_mask) {
87
+ return at::_ops::_slow_conv2d_backward_output_mask::call(grad_output, self, weight, kernel_size, stride, padding, output_mask);
88
+ }
89
+ }
90
+
91
+ // aten::_slow_conv2d_backward.output_mask_out(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
92
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array<bool,3> output_mask) {
93
+ return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output_mask, out0, out1, out2);
94
+ }
95
+ namespace symint {
96
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
97
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array<bool,3> output_mask) {
98
+ return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output_mask, out0, out1, out2);
99
+ }
100
+ }
101
+
102
+ // aten::_slow_conv2d_backward.output_mask_out(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
103
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
104
+ return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output_mask, out0, out1, out2);
105
+ }
106
+ namespace symint {
107
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
108
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
109
+ return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, c10::fromIntArrayRefSlow(kernel_size), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), output_mask, out0, out1, out2);
110
+ }
111
+ }
112
+
113
+ // aten::_slow_conv2d_backward.output_mask_out(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
114
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_symint_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, ::std::array<bool,3> output_mask) {
115
+ return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, kernel_size, stride, padding, output_mask, out0, out1, out2);
116
+ }
117
+ namespace symint {
118
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
119
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, ::std::array<bool,3> output_mask) {
120
+ return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, kernel_size, stride, padding, output_mask, out0, out1, out2);
121
+ }
122
+ }
123
+
124
+ // aten::_slow_conv2d_backward.output_mask_out(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
125
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_symint_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
126
+ return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, kernel_size, stride, padding, output_mask, out0, out1, out2);
127
+ }
128
+ namespace symint {
129
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
130
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
131
+ return at::_ops::_slow_conv2d_backward_output_mask_out::call(grad_output, self, weight, kernel_size, stride, padding, output_mask, out0, out1, out2);
132
+ }
133
+ }
134
+
135
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_log_softmax_backward_data_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _sparse_log_softmax_backward_data {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, int64_t, const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_sparse_log_softmax_backward_data")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_sparse_log_softmax_backward_data(Tensor grad_output, Tensor output, int dim, Tensor self) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, const at::Tensor & self);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, const at::Tensor & self);
26
+ };
27
+
28
+ struct TORCH_API _sparse_log_softmax_backward_data_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, int64_t, const at::Tensor &, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_sparse_log_softmax_backward_data")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_sparse_log_softmax_backward_data.out(Tensor grad_output, Tensor output, int dim, Tensor self, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, const at::Tensor & self, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, const at::Tensor & self, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> _sparse_mm_reduce_impl_sparse_csr_cpu(const at::Tensor & self, const at::Tensor & other, c10::string_view reduce);
20
+ } // namespace native
21
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_test_warn_in_autograd.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_test_warn_in_autograd_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_test_warn_in_autograd(Tensor self) -> Tensor
26
+ inline at::Tensor _test_warn_in_autograd(const at::Tensor & self) {
27
+ return at::_ops::_test_warn_in_autograd::call(self);
28
+ }
29
+
30
+ // aten::_test_warn_in_autograd.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & _test_warn_in_autograd_out(at::Tensor & out, const at::Tensor & self) {
32
+ return at::_ops::_test_warn_in_autograd_out::call(self, out);
33
+ }
34
+ // aten::_test_warn_in_autograd.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & _test_warn_in_autograd_outf(const at::Tensor & self, at::Tensor & out) {
36
+ return at::_ops::_test_warn_in_autograd_out::call(self, out);
37
+ }
38
+
39
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_differentiable_gru_cell_backward_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _thnn_differentiable_gru_cell_backward(const at::Tensor & grad_hy, const at::Tensor & input_gates, const at::Tensor & hidden_gates, const at::Tensor & hx, const c10::optional<at::Tensor> & input_bias, const c10::optional<at::Tensor> & hidden_bias);
21
+
22
+ } // namespace compositeimplicitautograd
23
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_fused_gru_cell_backward.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_thnn_fused_gru_cell_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_thnn_fused_gru_cell_backward(Tensor grad_hy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _thnn_fused_gru_cell_backward(const at::Tensor & grad_hy, const at::Tensor & workspace, bool has_bias) {
27
+ return at::_ops::_thnn_fused_gru_cell_backward::call(grad_hy, workspace, has_bias);
28
+ }
29
+
30
+ // aten::_thnn_fused_gru_cell_backward.out(Tensor grad_hy, Tensor workspace, bool has_bias, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
31
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _thnn_fused_gru_cell_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & grad_hy, const at::Tensor & workspace, bool has_bias) {
32
+ return at::_ops::_thnn_fused_gru_cell_backward_out::call(grad_hy, workspace, has_bias, out0, out1, out2, out3, out4);
33
+ }
34
+ // aten::_thnn_fused_gru_cell_backward.out(Tensor grad_hy, Tensor workspace, bool has_bias, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
35
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _thnn_fused_gru_cell_backward_outf(const at::Tensor & grad_hy, const at::Tensor & workspace, bool has_bias, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
36
+ return at::_ops::_thnn_fused_gru_cell_backward_out::call(grad_hy, workspace, has_bias, out0, out1, out2, out3, out4);
37
+ }
38
+
39
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_cpu_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor _upsample_bicubic2d_aa(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
21
+ TORCH_API at::Tensor _upsample_bicubic2d_aa_symint(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
22
+ TORCH_API at::Tensor & _upsample_bicubic2d_aa_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
23
+ TORCH_API at::Tensor & _upsample_bicubic2d_aa_outf(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out);
24
+ TORCH_API at::Tensor & _upsample_bicubic2d_aa_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
25
+ TORCH_API at::Tensor & _upsample_bicubic2d_aa_symint_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out);
26
+
27
+ } // namespace cpu
28
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_int4pack_mm_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _weight_int4pack_mm {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, int64_t, const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_weight_int4pack_mm")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_weight_int4pack_mm(Tensor self, Tensor mat2, int qGroupSize, Tensor qScaleAndZeros) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, const at::Tensor & mat2, int64_t qGroupSize, const at::Tensor & qScaleAndZeros);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & mat2, int64_t qGroupSize, const at::Tensor & qScaleAndZeros);
26
+ };
27
+
28
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/acosh.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/acosh_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::acosh(Tensor self) -> Tensor
26
+ inline at::Tensor acosh(const at::Tensor & self) {
27
+ return at::_ops::acosh::call(self);
28
+ }
29
+
30
+ // aten::acosh_(Tensor(a!) self) -> Tensor(a!)
31
+ inline at::Tensor & acosh_(at::Tensor & self) {
32
+ return at::_ops::acosh_::call(self);
33
+ }
34
+
35
+ // aten::acosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
36
+ inline at::Tensor & acosh_out(at::Tensor & out, const at::Tensor & self) {
37
+ return at::_ops::acosh_out::call(self, out);
38
+ }
39
+ // aten::acosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
40
+ inline at::Tensor & acosh_outf(const at::Tensor & self, at::Tensor & out) {
41
+ return at::_ops::acosh_out::call(self, out);
42
+ }
43
+
44
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_backward_reduce_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> batch_norm_backward_reduce_out(const at::Tensor & grad_out, const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & weight, bool input_g, bool weight_g, bool bias_g, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3);
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> batch_norm_backward_reduce_cuda(const at::Tensor & grad_out, const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & weight, bool input_g, bool weight_g, bool bias_g);
21
+ } // namespace native
22
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_gather_stats_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> batch_norm_gather_stats_out(const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, double momentum, double eps, int64_t count, at::Tensor & out0, at::Tensor & out1);
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> batch_norm_gather_stats_cuda(const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, double momentum, double eps, int64_t count);
21
+ } // namespace native
22
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/chain_matmul_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API chain_matmul {
18
+ using schema = at::Tensor (at::TensorList);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::chain_matmul")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "chain_matmul(Tensor[] matrices) -> Tensor")
24
+ static at::Tensor call(at::TensorList matrices);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList matrices);
26
+ };
27
+
28
+ struct TORCH_API chain_matmul_out {
29
+ using schema = at::Tensor & (at::TensorList, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::chain_matmul")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "chain_matmul.out(Tensor[] matrices, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(at::TensorList matrices, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList matrices, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/conv_depthwise3d.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/conv_depthwise3d_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::conv_depthwise3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation) -> Tensor
26
+ inline at::Tensor conv_depthwise3d(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation) {
27
+ return at::_ops::conv_depthwise3d::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation));
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor conv_depthwise3d(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation) {
32
+ return at::_ops::conv_depthwise3d::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation));
33
+ }
34
+ }
35
+
36
+ // aten::conv_depthwise3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation) -> Tensor
37
+ inline at::Tensor conv_depthwise3d_symint(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation) {
38
+ return at::_ops::conv_depthwise3d::call(self, weight, kernel_size, bias, stride, padding, dilation);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ at::Tensor conv_depthwise3d(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation) {
43
+ return at::_ops::conv_depthwise3d::call(self, weight, kernel_size, bias, stride, padding, dilation);
44
+ }
45
+ }
46
+
47
+ // aten::conv_depthwise3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation, *, Tensor(a!) out) -> Tensor(a!)
48
+ inline at::Tensor & conv_depthwise3d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation) {
49
+ return at::_ops::conv_depthwise3d_out::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), out);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ at::Tensor & conv_depthwise3d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation) {
54
+ return at::_ops::conv_depthwise3d_out::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), out);
55
+ }
56
+ }
57
+
58
+ // aten::conv_depthwise3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation, *, Tensor(a!) out) -> Tensor(a!)
59
+ inline at::Tensor & conv_depthwise3d_outf(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, at::Tensor & out) {
60
+ return at::_ops::conv_depthwise3d_out::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), out);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ at::Tensor & conv_depthwise3d_outf(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, at::Tensor & out) {
65
+ return at::_ops::conv_depthwise3d_out::call(self, weight, c10::fromIntArrayRefSlow(kernel_size), bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), out);
66
+ }
67
+ }
68
+
69
+ // aten::conv_depthwise3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation, *, Tensor(a!) out) -> Tensor(a!)
70
+ inline at::Tensor & conv_depthwise3d_symint_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation) {
71
+ return at::_ops::conv_depthwise3d_out::call(self, weight, kernel_size, bias, stride, padding, dilation, out);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ at::Tensor & conv_depthwise3d_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation) {
76
+ return at::_ops::conv_depthwise3d_out::call(self, weight, kernel_size, bias, stride, padding, dilation, out);
77
+ }
78
+ }
79
+
80
+ // aten::conv_depthwise3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation, *, Tensor(a!) out) -> Tensor(a!)
81
+ inline at::Tensor & conv_depthwise3d_symint_outf(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, at::Tensor & out) {
82
+ return at::_ops::conv_depthwise3d_out::call(self, weight, kernel_size, bias, stride, padding, dilation, out);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor & conv_depthwise3d_outf(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, at::Tensor & out) {
87
+ return at::_ops::conv_depthwise3d_out::call(self, weight, kernel_size, bias, stride, padding, dilation, out);
88
+ }
89
+ }
90
+
91
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cos.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/cos_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::cos(Tensor self) -> Tensor
26
+ inline at::Tensor cos(const at::Tensor & self) {
27
+ return at::_ops::cos::call(self);
28
+ }
29
+
30
+ // aten::cos_(Tensor(a!) self) -> Tensor(a!)
31
+ inline at::Tensor & cos_(at::Tensor & self) {
32
+ return at::_ops::cos_::call(self);
33
+ }
34
+
35
+ // aten::cos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
36
+ inline at::Tensor & cos_out(at::Tensor & out, const at::Tensor & self) {
37
+ return at::_ops::cos_out::call(self, out);
38
+ }
39
+ // aten::cos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
40
+ inline at::Tensor & cos_outf(const at::Tensor & self, at::Tensor & out) {
41
+ return at::_ops::cos_out::call(self, out);
42
+ }
43
+
44
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cosine_similarity_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API cosine_similarity {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, int64_t, double);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::cosine_similarity")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "cosine_similarity(Tensor x1, Tensor x2, int dim=1, float eps=1e-08) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & x1, const at::Tensor & x2, int64_t dim, double eps);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & x1, const at::Tensor & x2, int64_t dim, double eps);
26
+ };
27
+
28
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/crow_indices_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API crow_indices {
18
+ using schema = at::Tensor (const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::crow_indices")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "crow_indices(Tensor(a) self) -> Tensor(a)")
24
+ static at::Tensor call(const at::Tensor & self);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
26
+ };
27
+
28
+ }} // namespace at::_ops
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/dense_dim_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API int64_t dense_dim(const at::Tensor & self);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfftn_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor fft_rfftn_symint(const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt);
20
+ TORCH_API at::Tensor & fft_rfftn_symint_out(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out);
21
+ } // namespace native
22
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/floor_cuda_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor floor(const at::Tensor & self);
21
+ TORCH_API at::Tensor & floor_out(at::Tensor & out, const at::Tensor & self);
22
+ TORCH_API at::Tensor & floor_outf(const at::Tensor & self, at::Tensor & out);
23
+ TORCH_API at::Tensor & floor_(at::Tensor & self);
24
+
25
+ } // namespace cuda
26
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/full_like_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor full_like(const at::Tensor & self, const at::Scalar & fill_value, at::TensorOptions options={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
21
+ TORCH_API at::Tensor full_like(const at::Tensor & self, const at::Scalar & fill_value, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, c10::optional<at::MemoryFormat> memory_format);
22
+ TORCH_API at::Tensor & full_like_out(at::Tensor & out, const at::Tensor & self, const at::Scalar & fill_value, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
23
+ TORCH_API at::Tensor & full_like_outf(const at::Tensor & self, const at::Scalar & fill_value, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
24
+
25
+ } // namespace compositeexplicitautograd
26
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/gather_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API at::Tensor gather(const at::Tensor & self, int64_t dim, const at::Tensor & index, bool sparse_grad=false);
21
+
22
+ } // namespace compositeexplicitautogradnonfunctional
23
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/ge_cpu_dispatch.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor ge(const at::Tensor & self, const at::Scalar & other);
21
+ TORCH_API at::Tensor & ge_out(at::Tensor & out, const at::Tensor & self, const at::Scalar & other);
22
+ TORCH_API at::Tensor & ge_outf(const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
23
+ TORCH_API at::Tensor & ge_(at::Tensor & self, const at::Scalar & other);
24
+ TORCH_API at::Tensor ge(const at::Tensor & self, const at::Tensor & other);
25
+ TORCH_API at::Tensor & ge_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
26
+ TORCH_API at::Tensor & ge_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
27
+ TORCH_API at::Tensor & ge_(at::Tensor & self, const at::Tensor & other);
28
+
29
+ } // namespace cpu
30
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/glu_backward_native.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor glu_backward_cpu(const at::Tensor & grad_output, const at::Tensor & self, int64_t dim);
20
+ TORCH_API at::Tensor & glu_backward_cpu_out(const at::Tensor & grad_output, const at::Tensor & self, int64_t dim, at::Tensor & grad_input);
21
+ TORCH_API at::Tensor glu_backward_cuda(const at::Tensor & grad_output, const at::Tensor & self, int64_t dim);
22
+ TORCH_API at::Tensor & glu_backward_cuda_out(const at::Tensor & grad_output, const at::Tensor & self, int64_t dim, at::Tensor & grad_input);
23
+ } // namespace native
24
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/gt.h ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/gt_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::gt.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
26
+ inline at::Tensor & gt_out(at::Tensor & out, const at::Tensor & self, const at::Scalar & other) {
27
+ return at::_ops::gt_Scalar_out::call(self, other, out);
28
+ }
29
+ // aten::gt.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
30
+ inline at::Tensor & gt_outf(const at::Tensor & self, const at::Scalar & other, at::Tensor & out) {
31
+ return at::_ops::gt_Scalar_out::call(self, other, out);
32
+ }
33
+
34
+ // aten::gt.Scalar(Tensor self, Scalar other) -> Tensor
35
+ inline at::Tensor gt(const at::Tensor & self, const at::Scalar & other) {
36
+ return at::_ops::gt_Scalar::call(self, other);
37
+ }
38
+
39
+ // aten::gt.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
40
+ inline at::Tensor & gt_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other) {
41
+ return at::_ops::gt_Tensor_out::call(self, other, out);
42
+ }
43
+ // aten::gt.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
44
+ inline at::Tensor & gt_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out) {
45
+ return at::_ops::gt_Tensor_out::call(self, other, out);
46
+ }
47
+
48
+ // aten::gt.Tensor(Tensor self, Tensor other) -> Tensor
49
+ inline at::Tensor gt(const at::Tensor & self, const at::Tensor & other) {
50
+ return at::_ops::gt_Tensor::call(self, other);
51
+ }
52
+
53
+ }
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/hardswish_cuda_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor hardswish(const at::Tensor & self);
21
+ TORCH_API at::Tensor & hardswish_out(at::Tensor & out, const at::Tensor & self);
22
+ TORCH_API at::Tensor & hardswish_outf(const at::Tensor & self, at::Tensor & out);
23
+ TORCH_API at::Tensor & hardswish_(at::Tensor & self);
24
+
25
+ } // namespace cuda
26
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/igamma_cpu_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor igamma(const at::Tensor & self, const at::Tensor & other);
21
+ TORCH_API at::Tensor & igamma_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
22
+ TORCH_API at::Tensor & igamma_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
23
+ TORCH_API at::Tensor & igamma_(at::Tensor & self, const at::Tensor & other);
24
+
25
+ } // namespace cpu
26
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/lift_fresh_copy_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & lift_fresh_copy_out(at::Tensor & out, const at::Tensor & self);
21
+ TORCH_API at::Tensor & lift_fresh_copy_outf(const at::Tensor & self, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_cond_native.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor linalg_cond(const at::Tensor & self, const c10::optional<at::Scalar> & p=c10::nullopt);
20
+ TORCH_API at::Tensor & linalg_cond_out(const at::Tensor & self, const c10::optional<at::Scalar> & p, at::Tensor & out);
21
+ TORCH_API at::Tensor linalg_cond(const at::Tensor & self, c10::string_view p);
22
+ TORCH_API at::Tensor & linalg_cond_out(const at::Tensor & self, c10::string_view p, at::Tensor & out);
23
+ } // namespace native
24
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_inv_ex_cpu_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> linalg_inv_ex(const at::Tensor & A, bool check_errors=false);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> linalg_inv_ex_out(at::Tensor & inverse, at::Tensor & info, const at::Tensor & A, bool check_errors=false);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> linalg_inv_ex_outf(const at::Tensor & A, bool check_errors, at::Tensor & inverse, at::Tensor & info);
23
+
24
+ } // namespace cpu
25
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_qr_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/linalg_qr_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_linalg_qr_out : public at::meta::structured_linalg_qr {
20
+ void impl(const at::Tensor & A, c10::string_view mode, const at::Tensor & Q, const at::Tensor & R);
21
+ };
22
+ } // namespace native
23
+ } // namespace at
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_solve_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor linalg_solve(const at::Tensor & A, const at::Tensor & B, bool left=true);
21
+ TORCH_API at::Tensor & linalg_solve_out(at::Tensor & out, const at::Tensor & A, const at::Tensor & B, bool left=true);
22
+ TORCH_API at::Tensor & linalg_solve_outf(const at::Tensor & A, const at::Tensor & B, bool left, at::Tensor & out);
23
+
24
+ } // namespace compositeimplicitautograd
25
+ } // namespace at