applied-ai-018 commited on
Commit
cc79702
·
verified ·
1 Parent(s): b3d787f

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/base.cpython-310.pyc +0 -0
  2. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/categorical.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/generic.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/groupby.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/indexing.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/pandas/io/__init__.py +13 -0
  7. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/__init__.cpython-310.pyc +0 -0
  8. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/_util.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/api.cpython-310.pyc +0 -0
  10. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/clipboards.cpython-310.pyc +0 -0
  11. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/common.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/feather_format.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/gbq.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/html.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/orc.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/parquet.cpython-310.pyc +0 -0
  17. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/pickle.cpython-310.pyc +0 -0
  18. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/pytables.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/spss.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/sql.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/stata.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/xml.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/pandas/io/api.py +65 -0
  24. llmeval-env/lib/python3.10/site-packages/pandas/io/common.py +1267 -0
  25. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__init__.py +19 -0
  26. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/__init__.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_base.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_calamine.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_odfreader.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_odswriter.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_openpyxl.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_pyxlsb.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_util.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_xlrd.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_xlsxwriter.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_base.py +1659 -0
  37. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_calamine.py +121 -0
  38. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_odfreader.py +253 -0
  39. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_odswriter.py +357 -0
  40. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_openpyxl.py +639 -0
  41. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_pyxlsb.py +127 -0
  42. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_util.py +334 -0
  43. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_xlrd.py +143 -0
  44. llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_xlsxwriter.py +284 -0
  45. llmeval-env/lib/python3.10/site-packages/pandas/io/gbq.py +255 -0
  46. llmeval-env/lib/python3.10/site-packages/pandas/io/json/__init__.py +15 -0
  47. llmeval-env/lib/python3.10/site-packages/pandas/io/json/__pycache__/__init__.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/pandas/io/json/__pycache__/_json.cpython-310.pyc +0 -0
  49. llmeval-env/lib/python3.10/site-packages/pandas/io/json/__pycache__/_normalize.cpython-310.pyc +0 -0
  50. llmeval-env/lib/python3.10/site-packages/pandas/io/json/__pycache__/_table_schema.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/base.cpython-310.pyc ADDED
Binary file (1.42 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/categorical.cpython-310.pyc ADDED
Binary file (2.31 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/generic.cpython-310.pyc ADDED
Binary file (78.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/groupby.cpython-310.pyc ADDED
Binary file (159 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/indexing.cpython-310.pyc ADDED
Binary file (9.75 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__init__.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ruff: noqa: TCH004
2
+ from typing import TYPE_CHECKING
3
+
4
+ if TYPE_CHECKING:
5
+ # import modules that have public classes/functions
6
+ from pandas.io import (
7
+ formats,
8
+ json,
9
+ stata,
10
+ )
11
+
12
+ # mark only those modules as public
13
+ __all__ = ["formats", "json", "stata"]
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (329 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/_util.cpython-310.pyc ADDED
Binary file (1.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/api.cpython-310.pyc ADDED
Binary file (1.32 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/clipboards.cpython-310.pyc ADDED
Binary file (5.25 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/common.cpython-310.pyc ADDED
Binary file (27.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/feather_format.cpython-310.pyc ADDED
Binary file (4.24 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/gbq.cpython-310.pyc ADDED
Binary file (8.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/html.cpython-310.pyc ADDED
Binary file (36.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/orc.cpython-310.pyc ADDED
Binary file (7.66 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/parquet.cpython-310.pyc ADDED
Binary file (18.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/pickle.cpython-310.pyc ADDED
Binary file (5.84 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/pytables.cpython-310.pyc ADDED
Binary file (138 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/spss.cpython-310.pyc ADDED
Binary file (2.31 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/sql.cpython-310.pyc ADDED
Binary file (79.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/stata.cpython-310.pyc ADDED
Binary file (103 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/__pycache__/xml.cpython-310.pyc ADDED
Binary file (34 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/api.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Data IO api
3
+ """
4
+
5
+ from pandas.io.clipboards import read_clipboard
6
+ from pandas.io.excel import (
7
+ ExcelFile,
8
+ ExcelWriter,
9
+ read_excel,
10
+ )
11
+ from pandas.io.feather_format import read_feather
12
+ from pandas.io.gbq import read_gbq
13
+ from pandas.io.html import read_html
14
+ from pandas.io.json import read_json
15
+ from pandas.io.orc import read_orc
16
+ from pandas.io.parquet import read_parquet
17
+ from pandas.io.parsers import (
18
+ read_csv,
19
+ read_fwf,
20
+ read_table,
21
+ )
22
+ from pandas.io.pickle import (
23
+ read_pickle,
24
+ to_pickle,
25
+ )
26
+ from pandas.io.pytables import (
27
+ HDFStore,
28
+ read_hdf,
29
+ )
30
+ from pandas.io.sas import read_sas
31
+ from pandas.io.spss import read_spss
32
+ from pandas.io.sql import (
33
+ read_sql,
34
+ read_sql_query,
35
+ read_sql_table,
36
+ )
37
+ from pandas.io.stata import read_stata
38
+ from pandas.io.xml import read_xml
39
+
40
+ __all__ = [
41
+ "ExcelFile",
42
+ "ExcelWriter",
43
+ "HDFStore",
44
+ "read_clipboard",
45
+ "read_csv",
46
+ "read_excel",
47
+ "read_feather",
48
+ "read_fwf",
49
+ "read_gbq",
50
+ "read_hdf",
51
+ "read_html",
52
+ "read_json",
53
+ "read_orc",
54
+ "read_parquet",
55
+ "read_pickle",
56
+ "read_sas",
57
+ "read_spss",
58
+ "read_sql",
59
+ "read_sql_query",
60
+ "read_sql_table",
61
+ "read_stata",
62
+ "read_table",
63
+ "read_xml",
64
+ "to_pickle",
65
+ ]
llmeval-env/lib/python3.10/site-packages/pandas/io/common.py ADDED
@@ -0,0 +1,1267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Common IO api utilities"""
2
+ from __future__ import annotations
3
+
4
+ from abc import (
5
+ ABC,
6
+ abstractmethod,
7
+ )
8
+ import codecs
9
+ from collections import defaultdict
10
+ from collections.abc import (
11
+ Hashable,
12
+ Mapping,
13
+ Sequence,
14
+ )
15
+ import dataclasses
16
+ import functools
17
+ import gzip
18
+ from io import (
19
+ BufferedIOBase,
20
+ BytesIO,
21
+ RawIOBase,
22
+ StringIO,
23
+ TextIOBase,
24
+ TextIOWrapper,
25
+ )
26
+ import mmap
27
+ import os
28
+ from pathlib import Path
29
+ import re
30
+ import tarfile
31
+ from typing import (
32
+ IO,
33
+ TYPE_CHECKING,
34
+ Any,
35
+ AnyStr,
36
+ DefaultDict,
37
+ Generic,
38
+ Literal,
39
+ TypeVar,
40
+ cast,
41
+ overload,
42
+ )
43
+ from urllib.parse import (
44
+ urljoin,
45
+ urlparse as parse_url,
46
+ uses_netloc,
47
+ uses_params,
48
+ uses_relative,
49
+ )
50
+ import warnings
51
+ import zipfile
52
+
53
+ from pandas._typing import (
54
+ BaseBuffer,
55
+ ReadCsvBuffer,
56
+ )
57
+ from pandas.compat import (
58
+ get_bz2_file,
59
+ get_lzma_file,
60
+ )
61
+ from pandas.compat._optional import import_optional_dependency
62
+ from pandas.util._decorators import doc
63
+ from pandas.util._exceptions import find_stack_level
64
+
65
+ from pandas.core.dtypes.common import (
66
+ is_bool,
67
+ is_file_like,
68
+ is_integer,
69
+ is_list_like,
70
+ )
71
+ from pandas.core.dtypes.generic import ABCMultiIndex
72
+
73
+ from pandas.core.shared_docs import _shared_docs
74
+
75
+ _VALID_URLS = set(uses_relative + uses_netloc + uses_params)
76
+ _VALID_URLS.discard("")
77
+ _RFC_3986_PATTERN = re.compile(r"^[A-Za-z][A-Za-z0-9+\-+.]*://")
78
+
79
+ BaseBufferT = TypeVar("BaseBufferT", bound=BaseBuffer)
80
+
81
+
82
+ if TYPE_CHECKING:
83
+ from types import TracebackType
84
+
85
+ from pandas._typing import (
86
+ CompressionDict,
87
+ CompressionOptions,
88
+ FilePath,
89
+ ReadBuffer,
90
+ StorageOptions,
91
+ WriteBuffer,
92
+ )
93
+
94
+ from pandas import MultiIndex
95
+
96
+
97
+ @dataclasses.dataclass
98
+ class IOArgs:
99
+ """
100
+ Return value of io/common.py:_get_filepath_or_buffer.
101
+ """
102
+
103
+ filepath_or_buffer: str | BaseBuffer
104
+ encoding: str
105
+ mode: str
106
+ compression: CompressionDict
107
+ should_close: bool = False
108
+
109
+
110
+ @dataclasses.dataclass
111
+ class IOHandles(Generic[AnyStr]):
112
+ """
113
+ Return value of io/common.py:get_handle
114
+
115
+ Can be used as a context manager.
116
+
117
+ This is used to easily close created buffers and to handle corner cases when
118
+ TextIOWrapper is inserted.
119
+
120
+ handle: The file handle to be used.
121
+ created_handles: All file handles that are created by get_handle
122
+ is_wrapped: Whether a TextIOWrapper needs to be detached.
123
+ """
124
+
125
+ # handle might not implement the IO-interface
126
+ handle: IO[AnyStr]
127
+ compression: CompressionDict
128
+ created_handles: list[IO[bytes] | IO[str]] = dataclasses.field(default_factory=list)
129
+ is_wrapped: bool = False
130
+
131
+ def close(self) -> None:
132
+ """
133
+ Close all created buffers.
134
+
135
+ Note: If a TextIOWrapper was inserted, it is flushed and detached to
136
+ avoid closing the potentially user-created buffer.
137
+ """
138
+ if self.is_wrapped:
139
+ assert isinstance(self.handle, TextIOWrapper)
140
+ self.handle.flush()
141
+ self.handle.detach()
142
+ self.created_handles.remove(self.handle)
143
+ for handle in self.created_handles:
144
+ handle.close()
145
+ self.created_handles = []
146
+ self.is_wrapped = False
147
+
148
+ def __enter__(self) -> IOHandles[AnyStr]:
149
+ return self
150
+
151
+ def __exit__(
152
+ self,
153
+ exc_type: type[BaseException] | None,
154
+ exc_value: BaseException | None,
155
+ traceback: TracebackType | None,
156
+ ) -> None:
157
+ self.close()
158
+
159
+
160
+ def is_url(url: object) -> bool:
161
+ """
162
+ Check to see if a URL has a valid protocol.
163
+
164
+ Parameters
165
+ ----------
166
+ url : str or unicode
167
+
168
+ Returns
169
+ -------
170
+ isurl : bool
171
+ If `url` has a valid protocol return True otherwise False.
172
+ """
173
+ if not isinstance(url, str):
174
+ return False
175
+ return parse_url(url).scheme in _VALID_URLS
176
+
177
+
178
+ @overload
179
+ def _expand_user(filepath_or_buffer: str) -> str:
180
+ ...
181
+
182
+
183
+ @overload
184
+ def _expand_user(filepath_or_buffer: BaseBufferT) -> BaseBufferT:
185
+ ...
186
+
187
+
188
+ def _expand_user(filepath_or_buffer: str | BaseBufferT) -> str | BaseBufferT:
189
+ """
190
+ Return the argument with an initial component of ~ or ~user
191
+ replaced by that user's home directory.
192
+
193
+ Parameters
194
+ ----------
195
+ filepath_or_buffer : object to be converted if possible
196
+
197
+ Returns
198
+ -------
199
+ expanded_filepath_or_buffer : an expanded filepath or the
200
+ input if not expandable
201
+ """
202
+ if isinstance(filepath_or_buffer, str):
203
+ return os.path.expanduser(filepath_or_buffer)
204
+ return filepath_or_buffer
205
+
206
+
207
+ def validate_header_arg(header: object) -> None:
208
+ if header is None:
209
+ return
210
+ if is_integer(header):
211
+ header = cast(int, header)
212
+ if header < 0:
213
+ # GH 27779
214
+ raise ValueError(
215
+ "Passing negative integer to header is invalid. "
216
+ "For no header, use header=None instead"
217
+ )
218
+ return
219
+ if is_list_like(header, allow_sets=False):
220
+ header = cast(Sequence, header)
221
+ if not all(map(is_integer, header)):
222
+ raise ValueError("header must be integer or list of integers")
223
+ if any(i < 0 for i in header):
224
+ raise ValueError("cannot specify multi-index header with negative integers")
225
+ return
226
+ if is_bool(header):
227
+ raise TypeError(
228
+ "Passing a bool to header is invalid. Use header=None for no header or "
229
+ "header=int or list-like of ints to specify "
230
+ "the row(s) making up the column names"
231
+ )
232
+ # GH 16338
233
+ raise ValueError("header must be integer or list of integers")
234
+
235
+
236
+ @overload
237
+ def stringify_path(filepath_or_buffer: FilePath, convert_file_like: bool = ...) -> str:
238
+ ...
239
+
240
+
241
+ @overload
242
+ def stringify_path(
243
+ filepath_or_buffer: BaseBufferT, convert_file_like: bool = ...
244
+ ) -> BaseBufferT:
245
+ ...
246
+
247
+
248
+ def stringify_path(
249
+ filepath_or_buffer: FilePath | BaseBufferT,
250
+ convert_file_like: bool = False,
251
+ ) -> str | BaseBufferT:
252
+ """
253
+ Attempt to convert a path-like object to a string.
254
+
255
+ Parameters
256
+ ----------
257
+ filepath_or_buffer : object to be converted
258
+
259
+ Returns
260
+ -------
261
+ str_filepath_or_buffer : maybe a string version of the object
262
+
263
+ Notes
264
+ -----
265
+ Objects supporting the fspath protocol are coerced
266
+ according to its __fspath__ method.
267
+
268
+ Any other object is passed through unchanged, which includes bytes,
269
+ strings, buffers, or anything else that's not even path-like.
270
+ """
271
+ if not convert_file_like and is_file_like(filepath_or_buffer):
272
+ # GH 38125: some fsspec objects implement os.PathLike but have already opened a
273
+ # file. This prevents opening the file a second time. infer_compression calls
274
+ # this function with convert_file_like=True to infer the compression.
275
+ return cast(BaseBufferT, filepath_or_buffer)
276
+
277
+ if isinstance(filepath_or_buffer, os.PathLike):
278
+ filepath_or_buffer = filepath_or_buffer.__fspath__()
279
+ return _expand_user(filepath_or_buffer)
280
+
281
+
282
+ def urlopen(*args, **kwargs):
283
+ """
284
+ Lazy-import wrapper for stdlib urlopen, as that imports a big chunk of
285
+ the stdlib.
286
+ """
287
+ import urllib.request
288
+
289
+ return urllib.request.urlopen(*args, **kwargs)
290
+
291
+
292
+ def is_fsspec_url(url: FilePath | BaseBuffer) -> bool:
293
+ """
294
+ Returns true if the given URL looks like
295
+ something fsspec can handle
296
+ """
297
+ return (
298
+ isinstance(url, str)
299
+ and bool(_RFC_3986_PATTERN.match(url))
300
+ and not url.startswith(("http://", "https://"))
301
+ )
302
+
303
+
304
+ @doc(
305
+ storage_options=_shared_docs["storage_options"],
306
+ compression_options=_shared_docs["compression_options"] % "filepath_or_buffer",
307
+ )
308
+ def _get_filepath_or_buffer(
309
+ filepath_or_buffer: FilePath | BaseBuffer,
310
+ encoding: str = "utf-8",
311
+ compression: CompressionOptions | None = None,
312
+ mode: str = "r",
313
+ storage_options: StorageOptions | None = None,
314
+ ) -> IOArgs:
315
+ """
316
+ If the filepath_or_buffer is a url, translate and return the buffer.
317
+ Otherwise passthrough.
318
+
319
+ Parameters
320
+ ----------
321
+ filepath_or_buffer : a url, filepath (str, py.path.local or pathlib.Path),
322
+ or buffer
323
+ {compression_options}
324
+
325
+ .. versionchanged:: 1.4.0 Zstandard support.
326
+
327
+ encoding : the encoding to use to decode bytes, default is 'utf-8'
328
+ mode : str, optional
329
+
330
+ {storage_options}
331
+
332
+
333
+ Returns the dataclass IOArgs.
334
+ """
335
+ filepath_or_buffer = stringify_path(filepath_or_buffer)
336
+
337
+ # handle compression dict
338
+ compression_method, compression = get_compression_method(compression)
339
+ compression_method = infer_compression(filepath_or_buffer, compression_method)
340
+
341
+ # GH21227 internal compression is not used for non-binary handles.
342
+ if compression_method and hasattr(filepath_or_buffer, "write") and "b" not in mode:
343
+ warnings.warn(
344
+ "compression has no effect when passing a non-binary object as input.",
345
+ RuntimeWarning,
346
+ stacklevel=find_stack_level(),
347
+ )
348
+ compression_method = None
349
+
350
+ compression = dict(compression, method=compression_method)
351
+
352
+ # bz2 and xz do not write the byte order mark for utf-16 and utf-32
353
+ # print a warning when writing such files
354
+ if (
355
+ "w" in mode
356
+ and compression_method in ["bz2", "xz"]
357
+ and encoding in ["utf-16", "utf-32"]
358
+ ):
359
+ warnings.warn(
360
+ f"{compression} will not write the byte order mark for {encoding}",
361
+ UnicodeWarning,
362
+ stacklevel=find_stack_level(),
363
+ )
364
+
365
+ # Use binary mode when converting path-like objects to file-like objects (fsspec)
366
+ # except when text mode is explicitly requested. The original mode is returned if
367
+ # fsspec is not used.
368
+ fsspec_mode = mode
369
+ if "t" not in fsspec_mode and "b" not in fsspec_mode:
370
+ fsspec_mode += "b"
371
+
372
+ if isinstance(filepath_or_buffer, str) and is_url(filepath_or_buffer):
373
+ # TODO: fsspec can also handle HTTP via requests, but leaving this
374
+ # unchanged. using fsspec appears to break the ability to infer if the
375
+ # server responded with gzipped data
376
+ storage_options = storage_options or {}
377
+
378
+ # waiting until now for importing to match intended lazy logic of
379
+ # urlopen function defined elsewhere in this module
380
+ import urllib.request
381
+
382
+ # assuming storage_options is to be interpreted as headers
383
+ req_info = urllib.request.Request(filepath_or_buffer, headers=storage_options)
384
+ with urlopen(req_info) as req:
385
+ content_encoding = req.headers.get("Content-Encoding", None)
386
+ if content_encoding == "gzip":
387
+ # Override compression based on Content-Encoding header
388
+ compression = {"method": "gzip"}
389
+ reader = BytesIO(req.read())
390
+ return IOArgs(
391
+ filepath_or_buffer=reader,
392
+ encoding=encoding,
393
+ compression=compression,
394
+ should_close=True,
395
+ mode=fsspec_mode,
396
+ )
397
+
398
+ if is_fsspec_url(filepath_or_buffer):
399
+ assert isinstance(
400
+ filepath_or_buffer, str
401
+ ) # just to appease mypy for this branch
402
+ # two special-case s3-like protocols; these have special meaning in Hadoop,
403
+ # but are equivalent to just "s3" from fsspec's point of view
404
+ # cc #11071
405
+ if filepath_or_buffer.startswith("s3a://"):
406
+ filepath_or_buffer = filepath_or_buffer.replace("s3a://", "s3://")
407
+ if filepath_or_buffer.startswith("s3n://"):
408
+ filepath_or_buffer = filepath_or_buffer.replace("s3n://", "s3://")
409
+ fsspec = import_optional_dependency("fsspec")
410
+
411
+ # If botocore is installed we fallback to reading with anon=True
412
+ # to allow reads from public buckets
413
+ err_types_to_retry_with_anon: list[Any] = []
414
+ try:
415
+ import_optional_dependency("botocore")
416
+ from botocore.exceptions import (
417
+ ClientError,
418
+ NoCredentialsError,
419
+ )
420
+
421
+ err_types_to_retry_with_anon = [
422
+ ClientError,
423
+ NoCredentialsError,
424
+ PermissionError,
425
+ ]
426
+ except ImportError:
427
+ pass
428
+
429
+ try:
430
+ file_obj = fsspec.open(
431
+ filepath_or_buffer, mode=fsspec_mode, **(storage_options or {})
432
+ ).open()
433
+ # GH 34626 Reads from Public Buckets without Credentials needs anon=True
434
+ except tuple(err_types_to_retry_with_anon):
435
+ if storage_options is None:
436
+ storage_options = {"anon": True}
437
+ else:
438
+ # don't mutate user input.
439
+ storage_options = dict(storage_options)
440
+ storage_options["anon"] = True
441
+ file_obj = fsspec.open(
442
+ filepath_or_buffer, mode=fsspec_mode, **(storage_options or {})
443
+ ).open()
444
+
445
+ return IOArgs(
446
+ filepath_or_buffer=file_obj,
447
+ encoding=encoding,
448
+ compression=compression,
449
+ should_close=True,
450
+ mode=fsspec_mode,
451
+ )
452
+ elif storage_options:
453
+ raise ValueError(
454
+ "storage_options passed with file object or non-fsspec file path"
455
+ )
456
+
457
+ if isinstance(filepath_or_buffer, (str, bytes, mmap.mmap)):
458
+ return IOArgs(
459
+ filepath_or_buffer=_expand_user(filepath_or_buffer),
460
+ encoding=encoding,
461
+ compression=compression,
462
+ should_close=False,
463
+ mode=mode,
464
+ )
465
+
466
+ # is_file_like requires (read | write) & __iter__ but __iter__ is only
467
+ # needed for read_csv(engine=python)
468
+ if not (
469
+ hasattr(filepath_or_buffer, "read") or hasattr(filepath_or_buffer, "write")
470
+ ):
471
+ msg = f"Invalid file path or buffer object type: {type(filepath_or_buffer)}"
472
+ raise ValueError(msg)
473
+
474
+ return IOArgs(
475
+ filepath_or_buffer=filepath_or_buffer,
476
+ encoding=encoding,
477
+ compression=compression,
478
+ should_close=False,
479
+ mode=mode,
480
+ )
481
+
482
+
483
+ def file_path_to_url(path: str) -> str:
484
+ """
485
+ converts an absolute native path to a FILE URL.
486
+
487
+ Parameters
488
+ ----------
489
+ path : a path in native format
490
+
491
+ Returns
492
+ -------
493
+ a valid FILE URL
494
+ """
495
+ # lazify expensive import (~30ms)
496
+ from urllib.request import pathname2url
497
+
498
+ return urljoin("file:", pathname2url(path))
499
+
500
+
501
+ extension_to_compression = {
502
+ ".tar": "tar",
503
+ ".tar.gz": "tar",
504
+ ".tar.bz2": "tar",
505
+ ".tar.xz": "tar",
506
+ ".gz": "gzip",
507
+ ".bz2": "bz2",
508
+ ".zip": "zip",
509
+ ".xz": "xz",
510
+ ".zst": "zstd",
511
+ }
512
+ _supported_compressions = set(extension_to_compression.values())
513
+
514
+
515
+ def get_compression_method(
516
+ compression: CompressionOptions,
517
+ ) -> tuple[str | None, CompressionDict]:
518
+ """
519
+ Simplifies a compression argument to a compression method string and
520
+ a mapping containing additional arguments.
521
+
522
+ Parameters
523
+ ----------
524
+ compression : str or mapping
525
+ If string, specifies the compression method. If mapping, value at key
526
+ 'method' specifies compression method.
527
+
528
+ Returns
529
+ -------
530
+ tuple of ({compression method}, Optional[str]
531
+ {compression arguments}, Dict[str, Any])
532
+
533
+ Raises
534
+ ------
535
+ ValueError on mapping missing 'method' key
536
+ """
537
+ compression_method: str | None
538
+ if isinstance(compression, Mapping):
539
+ compression_args = dict(compression)
540
+ try:
541
+ compression_method = compression_args.pop("method")
542
+ except KeyError as err:
543
+ raise ValueError("If mapping, compression must have key 'method'") from err
544
+ else:
545
+ compression_args = {}
546
+ compression_method = compression
547
+ return compression_method, compression_args
548
+
549
+
550
+ @doc(compression_options=_shared_docs["compression_options"] % "filepath_or_buffer")
551
+ def infer_compression(
552
+ filepath_or_buffer: FilePath | BaseBuffer, compression: str | None
553
+ ) -> str | None:
554
+ """
555
+ Get the compression method for filepath_or_buffer. If compression='infer',
556
+ the inferred compression method is returned. Otherwise, the input
557
+ compression method is returned unchanged, unless it's invalid, in which
558
+ case an error is raised.
559
+
560
+ Parameters
561
+ ----------
562
+ filepath_or_buffer : str or file handle
563
+ File path or object.
564
+ {compression_options}
565
+
566
+ .. versionchanged:: 1.4.0 Zstandard support.
567
+
568
+ Returns
569
+ -------
570
+ string or None
571
+
572
+ Raises
573
+ ------
574
+ ValueError on invalid compression specified.
575
+ """
576
+ if compression is None:
577
+ return None
578
+
579
+ # Infer compression
580
+ if compression == "infer":
581
+ # Convert all path types (e.g. pathlib.Path) to strings
582
+ filepath_or_buffer = stringify_path(filepath_or_buffer, convert_file_like=True)
583
+ if not isinstance(filepath_or_buffer, str):
584
+ # Cannot infer compression of a buffer, assume no compression
585
+ return None
586
+
587
+ # Infer compression from the filename/URL extension
588
+ for extension, compression in extension_to_compression.items():
589
+ if filepath_or_buffer.lower().endswith(extension):
590
+ return compression
591
+ return None
592
+
593
+ # Compression has been specified. Check that it's valid
594
+ if compression in _supported_compressions:
595
+ return compression
596
+
597
+ valid = ["infer", None] + sorted(_supported_compressions)
598
+ msg = (
599
+ f"Unrecognized compression type: {compression}\n"
600
+ f"Valid compression types are {valid}"
601
+ )
602
+ raise ValueError(msg)
603
+
604
+
605
+ def check_parent_directory(path: Path | str) -> None:
606
+ """
607
+ Check if parent directory of a file exists, raise OSError if it does not
608
+
609
+ Parameters
610
+ ----------
611
+ path: Path or str
612
+ Path to check parent directory of
613
+ """
614
+ parent = Path(path).parent
615
+ if not parent.is_dir():
616
+ raise OSError(rf"Cannot save file into a non-existent directory: '{parent}'")
617
+
618
+
619
+ @overload
620
+ def get_handle(
621
+ path_or_buf: FilePath | BaseBuffer,
622
+ mode: str,
623
+ *,
624
+ encoding: str | None = ...,
625
+ compression: CompressionOptions = ...,
626
+ memory_map: bool = ...,
627
+ is_text: Literal[False],
628
+ errors: str | None = ...,
629
+ storage_options: StorageOptions = ...,
630
+ ) -> IOHandles[bytes]:
631
+ ...
632
+
633
+
634
+ @overload
635
+ def get_handle(
636
+ path_or_buf: FilePath | BaseBuffer,
637
+ mode: str,
638
+ *,
639
+ encoding: str | None = ...,
640
+ compression: CompressionOptions = ...,
641
+ memory_map: bool = ...,
642
+ is_text: Literal[True] = ...,
643
+ errors: str | None = ...,
644
+ storage_options: StorageOptions = ...,
645
+ ) -> IOHandles[str]:
646
+ ...
647
+
648
+
649
+ @overload
650
+ def get_handle(
651
+ path_or_buf: FilePath | BaseBuffer,
652
+ mode: str,
653
+ *,
654
+ encoding: str | None = ...,
655
+ compression: CompressionOptions = ...,
656
+ memory_map: bool = ...,
657
+ is_text: bool = ...,
658
+ errors: str | None = ...,
659
+ storage_options: StorageOptions = ...,
660
+ ) -> IOHandles[str] | IOHandles[bytes]:
661
+ ...
662
+
663
+
664
+ @doc(compression_options=_shared_docs["compression_options"] % "path_or_buf")
665
+ def get_handle(
666
+ path_or_buf: FilePath | BaseBuffer,
667
+ mode: str,
668
+ *,
669
+ encoding: str | None = None,
670
+ compression: CompressionOptions | None = None,
671
+ memory_map: bool = False,
672
+ is_text: bool = True,
673
+ errors: str | None = None,
674
+ storage_options: StorageOptions | None = None,
675
+ ) -> IOHandles[str] | IOHandles[bytes]:
676
+ """
677
+ Get file handle for given path/buffer and mode.
678
+
679
+ Parameters
680
+ ----------
681
+ path_or_buf : str or file handle
682
+ File path or object.
683
+ mode : str
684
+ Mode to open path_or_buf with.
685
+ encoding : str or None
686
+ Encoding to use.
687
+ {compression_options}
688
+
689
+ May be a dict with key 'method' as compression mode
690
+ and other keys as compression options if compression
691
+ mode is 'zip'.
692
+
693
+ Passing compression options as keys in dict is
694
+ supported for compression modes 'gzip', 'bz2', 'zstd' and 'zip'.
695
+
696
+ .. versionchanged:: 1.4.0 Zstandard support.
697
+
698
+ memory_map : bool, default False
699
+ See parsers._parser_params for more information. Only used by read_csv.
700
+ is_text : bool, default True
701
+ Whether the type of the content passed to the file/buffer is string or
702
+ bytes. This is not the same as `"b" not in mode`. If a string content is
703
+ passed to a binary file/buffer, a wrapper is inserted.
704
+ errors : str, default 'strict'
705
+ Specifies how encoding and decoding errors are to be handled.
706
+ See the errors argument for :func:`open` for a full list
707
+ of options.
708
+ storage_options: StorageOptions = None
709
+ Passed to _get_filepath_or_buffer
710
+
711
+ Returns the dataclass IOHandles
712
+ """
713
+ # Windows does not default to utf-8. Set to utf-8 for a consistent behavior
714
+ encoding = encoding or "utf-8"
715
+
716
+ errors = errors or "strict"
717
+
718
+ # read_csv does not know whether the buffer is opened in binary/text mode
719
+ if _is_binary_mode(path_or_buf, mode) and "b" not in mode:
720
+ mode += "b"
721
+
722
+ # validate encoding and errors
723
+ codecs.lookup(encoding)
724
+ if isinstance(errors, str):
725
+ codecs.lookup_error(errors)
726
+
727
+ # open URLs
728
+ ioargs = _get_filepath_or_buffer(
729
+ path_or_buf,
730
+ encoding=encoding,
731
+ compression=compression,
732
+ mode=mode,
733
+ storage_options=storage_options,
734
+ )
735
+
736
+ handle = ioargs.filepath_or_buffer
737
+ handles: list[BaseBuffer]
738
+
739
+ # memory mapping needs to be the first step
740
+ # only used for read_csv
741
+ handle, memory_map, handles = _maybe_memory_map(handle, memory_map)
742
+
743
+ is_path = isinstance(handle, str)
744
+ compression_args = dict(ioargs.compression)
745
+ compression = compression_args.pop("method")
746
+
747
+ # Only for write methods
748
+ if "r" not in mode and is_path:
749
+ check_parent_directory(str(handle))
750
+
751
+ if compression:
752
+ if compression != "zstd":
753
+ # compression libraries do not like an explicit text-mode
754
+ ioargs.mode = ioargs.mode.replace("t", "")
755
+ elif compression == "zstd" and "b" not in ioargs.mode:
756
+ # python-zstandard defaults to text mode, but we always expect
757
+ # compression libraries to use binary mode.
758
+ ioargs.mode += "b"
759
+
760
+ # GZ Compression
761
+ if compression == "gzip":
762
+ if isinstance(handle, str):
763
+ # error: Incompatible types in assignment (expression has type
764
+ # "GzipFile", variable has type "Union[str, BaseBuffer]")
765
+ handle = gzip.GzipFile( # type: ignore[assignment]
766
+ filename=handle,
767
+ mode=ioargs.mode,
768
+ **compression_args,
769
+ )
770
+ else:
771
+ handle = gzip.GzipFile(
772
+ # No overload variant of "GzipFile" matches argument types
773
+ # "Union[str, BaseBuffer]", "str", "Dict[str, Any]"
774
+ fileobj=handle, # type: ignore[call-overload]
775
+ mode=ioargs.mode,
776
+ **compression_args,
777
+ )
778
+
779
+ # BZ Compression
780
+ elif compression == "bz2":
781
+ # Overload of "BZ2File" to handle pickle protocol 5
782
+ # "Union[str, BaseBuffer]", "str", "Dict[str, Any]"
783
+ handle = get_bz2_file()( # type: ignore[call-overload]
784
+ handle,
785
+ mode=ioargs.mode,
786
+ **compression_args,
787
+ )
788
+
789
+ # ZIP Compression
790
+ elif compression == "zip":
791
+ # error: Argument 1 to "_BytesZipFile" has incompatible type
792
+ # "Union[str, BaseBuffer]"; expected "Union[Union[str, PathLike[str]],
793
+ # ReadBuffer[bytes], WriteBuffer[bytes]]"
794
+ handle = _BytesZipFile(
795
+ handle, ioargs.mode, **compression_args # type: ignore[arg-type]
796
+ )
797
+ if handle.buffer.mode == "r":
798
+ handles.append(handle)
799
+ zip_names = handle.buffer.namelist()
800
+ if len(zip_names) == 1:
801
+ handle = handle.buffer.open(zip_names.pop())
802
+ elif not zip_names:
803
+ raise ValueError(f"Zero files found in ZIP file {path_or_buf}")
804
+ else:
805
+ raise ValueError(
806
+ "Multiple files found in ZIP file. "
807
+ f"Only one file per ZIP: {zip_names}"
808
+ )
809
+
810
+ # TAR Encoding
811
+ elif compression == "tar":
812
+ compression_args.setdefault("mode", ioargs.mode)
813
+ if isinstance(handle, str):
814
+ handle = _BytesTarFile(name=handle, **compression_args)
815
+ else:
816
+ # error: Argument "fileobj" to "_BytesTarFile" has incompatible
817
+ # type "BaseBuffer"; expected "Union[ReadBuffer[bytes],
818
+ # WriteBuffer[bytes], None]"
819
+ handle = _BytesTarFile(
820
+ fileobj=handle, **compression_args # type: ignore[arg-type]
821
+ )
822
+ assert isinstance(handle, _BytesTarFile)
823
+ if "r" in handle.buffer.mode:
824
+ handles.append(handle)
825
+ files = handle.buffer.getnames()
826
+ if len(files) == 1:
827
+ file = handle.buffer.extractfile(files[0])
828
+ assert file is not None
829
+ handle = file
830
+ elif not files:
831
+ raise ValueError(f"Zero files found in TAR archive {path_or_buf}")
832
+ else:
833
+ raise ValueError(
834
+ "Multiple files found in TAR archive. "
835
+ f"Only one file per TAR archive: {files}"
836
+ )
837
+
838
+ # XZ Compression
839
+ elif compression == "xz":
840
+ # error: Argument 1 to "LZMAFile" has incompatible type "Union[str,
841
+ # BaseBuffer]"; expected "Optional[Union[Union[str, bytes, PathLike[str],
842
+ # PathLike[bytes]], IO[bytes]], None]"
843
+ handle = get_lzma_file()(
844
+ handle, ioargs.mode, **compression_args # type: ignore[arg-type]
845
+ )
846
+
847
+ # Zstd Compression
848
+ elif compression == "zstd":
849
+ zstd = import_optional_dependency("zstandard")
850
+ if "r" in ioargs.mode:
851
+ open_args = {"dctx": zstd.ZstdDecompressor(**compression_args)}
852
+ else:
853
+ open_args = {"cctx": zstd.ZstdCompressor(**compression_args)}
854
+ handle = zstd.open(
855
+ handle,
856
+ mode=ioargs.mode,
857
+ **open_args,
858
+ )
859
+
860
+ # Unrecognized Compression
861
+ else:
862
+ msg = f"Unrecognized compression type: {compression}"
863
+ raise ValueError(msg)
864
+
865
+ assert not isinstance(handle, str)
866
+ handles.append(handle)
867
+
868
+ elif isinstance(handle, str):
869
+ # Check whether the filename is to be opened in binary mode.
870
+ # Binary mode does not support 'encoding' and 'newline'.
871
+ if ioargs.encoding and "b" not in ioargs.mode:
872
+ # Encoding
873
+ handle = open(
874
+ handle,
875
+ ioargs.mode,
876
+ encoding=ioargs.encoding,
877
+ errors=errors,
878
+ newline="",
879
+ )
880
+ else:
881
+ # Binary mode
882
+ handle = open(handle, ioargs.mode)
883
+ handles.append(handle)
884
+
885
+ # Convert BytesIO or file objects passed with an encoding
886
+ is_wrapped = False
887
+ if not is_text and ioargs.mode == "rb" and isinstance(handle, TextIOBase):
888
+ # not added to handles as it does not open/buffer resources
889
+ handle = _BytesIOWrapper(
890
+ handle,
891
+ encoding=ioargs.encoding,
892
+ )
893
+ elif is_text and (
894
+ compression or memory_map or _is_binary_mode(handle, ioargs.mode)
895
+ ):
896
+ if (
897
+ not hasattr(handle, "readable")
898
+ or not hasattr(handle, "writable")
899
+ or not hasattr(handle, "seekable")
900
+ ):
901
+ handle = _IOWrapper(handle)
902
+ # error: Argument 1 to "TextIOWrapper" has incompatible type
903
+ # "_IOWrapper"; expected "IO[bytes]"
904
+ handle = TextIOWrapper(
905
+ handle, # type: ignore[arg-type]
906
+ encoding=ioargs.encoding,
907
+ errors=errors,
908
+ newline="",
909
+ )
910
+ handles.append(handle)
911
+ # only marked as wrapped when the caller provided a handle
912
+ is_wrapped = not (
913
+ isinstance(ioargs.filepath_or_buffer, str) or ioargs.should_close
914
+ )
915
+
916
+ if "r" in ioargs.mode and not hasattr(handle, "read"):
917
+ raise TypeError(
918
+ "Expected file path name or file-like object, "
919
+ f"got {type(ioargs.filepath_or_buffer)} type"
920
+ )
921
+
922
+ handles.reverse() # close the most recently added buffer first
923
+ if ioargs.should_close:
924
+ assert not isinstance(ioargs.filepath_or_buffer, str)
925
+ handles.append(ioargs.filepath_or_buffer)
926
+
927
+ return IOHandles(
928
+ # error: Argument "handle" to "IOHandles" has incompatible type
929
+ # "Union[TextIOWrapper, GzipFile, BaseBuffer, typing.IO[bytes],
930
+ # typing.IO[Any]]"; expected "pandas._typing.IO[Any]"
931
+ handle=handle, # type: ignore[arg-type]
932
+ # error: Argument "created_handles" to "IOHandles" has incompatible type
933
+ # "List[BaseBuffer]"; expected "List[Union[IO[bytes], IO[str]]]"
934
+ created_handles=handles, # type: ignore[arg-type]
935
+ is_wrapped=is_wrapped,
936
+ compression=ioargs.compression,
937
+ )
938
+
939
+
940
+ # error: Definition of "__enter__" in base class "IOBase" is incompatible
941
+ # with definition in base class "BinaryIO"
942
+ class _BufferedWriter(BytesIO, ABC): # type: ignore[misc]
943
+ """
944
+ Some objects do not support multiple .write() calls (TarFile and ZipFile).
945
+ This wrapper writes to the underlying buffer on close.
946
+ """
947
+
948
+ buffer = BytesIO()
949
+
950
+ @abstractmethod
951
+ def write_to_buffer(self) -> None:
952
+ ...
953
+
954
+ def close(self) -> None:
955
+ if self.closed:
956
+ # already closed
957
+ return
958
+ if self.getbuffer().nbytes:
959
+ # write to buffer
960
+ self.seek(0)
961
+ with self.buffer:
962
+ self.write_to_buffer()
963
+ else:
964
+ self.buffer.close()
965
+ super().close()
966
+
967
+
968
+ class _BytesTarFile(_BufferedWriter):
969
+ def __init__(
970
+ self,
971
+ name: str | None = None,
972
+ mode: Literal["r", "a", "w", "x"] = "r",
973
+ fileobj: ReadBuffer[bytes] | WriteBuffer[bytes] | None = None,
974
+ archive_name: str | None = None,
975
+ **kwargs,
976
+ ) -> None:
977
+ super().__init__()
978
+ self.archive_name = archive_name
979
+ self.name = name
980
+ # error: Incompatible types in assignment (expression has type "TarFile",
981
+ # base class "_BufferedWriter" defined the type as "BytesIO")
982
+ self.buffer: tarfile.TarFile = tarfile.TarFile.open( # type: ignore[assignment]
983
+ name=name,
984
+ mode=self.extend_mode(mode),
985
+ fileobj=fileobj,
986
+ **kwargs,
987
+ )
988
+
989
+ def extend_mode(self, mode: str) -> str:
990
+ mode = mode.replace("b", "")
991
+ if mode != "w":
992
+ return mode
993
+ if self.name is not None:
994
+ suffix = Path(self.name).suffix
995
+ if suffix in (".gz", ".xz", ".bz2"):
996
+ mode = f"{mode}:{suffix[1:]}"
997
+ return mode
998
+
999
+ def infer_filename(self) -> str | None:
1000
+ """
1001
+ If an explicit archive_name is not given, we still want the file inside the zip
1002
+ file not to be named something.tar, because that causes confusion (GH39465).
1003
+ """
1004
+ if self.name is None:
1005
+ return None
1006
+
1007
+ filename = Path(self.name)
1008
+ if filename.suffix == ".tar":
1009
+ return filename.with_suffix("").name
1010
+ elif filename.suffix in (".tar.gz", ".tar.bz2", ".tar.xz"):
1011
+ return filename.with_suffix("").with_suffix("").name
1012
+ return filename.name
1013
+
1014
+ def write_to_buffer(self) -> None:
1015
+ # TarFile needs a non-empty string
1016
+ archive_name = self.archive_name or self.infer_filename() or "tar"
1017
+ tarinfo = tarfile.TarInfo(name=archive_name)
1018
+ tarinfo.size = len(self.getvalue())
1019
+ self.buffer.addfile(tarinfo, self)
1020
+
1021
+
1022
+ class _BytesZipFile(_BufferedWriter):
1023
+ def __init__(
1024
+ self,
1025
+ file: FilePath | ReadBuffer[bytes] | WriteBuffer[bytes],
1026
+ mode: str,
1027
+ archive_name: str | None = None,
1028
+ **kwargs,
1029
+ ) -> None:
1030
+ super().__init__()
1031
+ mode = mode.replace("b", "")
1032
+ self.archive_name = archive_name
1033
+
1034
+ kwargs.setdefault("compression", zipfile.ZIP_DEFLATED)
1035
+ # error: Incompatible types in assignment (expression has type "ZipFile",
1036
+ # base class "_BufferedWriter" defined the type as "BytesIO")
1037
+ self.buffer: zipfile.ZipFile = zipfile.ZipFile( # type: ignore[assignment]
1038
+ file, mode, **kwargs
1039
+ )
1040
+
1041
+ def infer_filename(self) -> str | None:
1042
+ """
1043
+ If an explicit archive_name is not given, we still want the file inside the zip
1044
+ file not to be named something.zip, because that causes confusion (GH39465).
1045
+ """
1046
+ if isinstance(self.buffer.filename, (os.PathLike, str)):
1047
+ filename = Path(self.buffer.filename)
1048
+ if filename.suffix == ".zip":
1049
+ return filename.with_suffix("").name
1050
+ return filename.name
1051
+ return None
1052
+
1053
+ def write_to_buffer(self) -> None:
1054
+ # ZipFile needs a non-empty string
1055
+ archive_name = self.archive_name or self.infer_filename() or "zip"
1056
+ self.buffer.writestr(archive_name, self.getvalue())
1057
+
1058
+
1059
+ class _IOWrapper:
1060
+ # TextIOWrapper is overly strict: it request that the buffer has seekable, readable,
1061
+ # and writable. If we have a read-only buffer, we shouldn't need writable and vice
1062
+ # versa. Some buffers, are seek/read/writ-able but they do not have the "-able"
1063
+ # methods, e.g., tempfile.SpooledTemporaryFile.
1064
+ # If a buffer does not have the above "-able" methods, we simple assume they are
1065
+ # seek/read/writ-able.
1066
+ def __init__(self, buffer: BaseBuffer) -> None:
1067
+ self.buffer = buffer
1068
+
1069
+ def __getattr__(self, name: str):
1070
+ return getattr(self.buffer, name)
1071
+
1072
+ def readable(self) -> bool:
1073
+ if hasattr(self.buffer, "readable"):
1074
+ return self.buffer.readable()
1075
+ return True
1076
+
1077
+ def seekable(self) -> bool:
1078
+ if hasattr(self.buffer, "seekable"):
1079
+ return self.buffer.seekable()
1080
+ return True
1081
+
1082
+ def writable(self) -> bool:
1083
+ if hasattr(self.buffer, "writable"):
1084
+ return self.buffer.writable()
1085
+ return True
1086
+
1087
+
1088
+ class _BytesIOWrapper:
1089
+ # Wrapper that wraps a StringIO buffer and reads bytes from it
1090
+ # Created for compat with pyarrow read_csv
1091
+ def __init__(self, buffer: StringIO | TextIOBase, encoding: str = "utf-8") -> None:
1092
+ self.buffer = buffer
1093
+ self.encoding = encoding
1094
+ # Because a character can be represented by more than 1 byte,
1095
+ # it is possible that reading will produce more bytes than n
1096
+ # We store the extra bytes in this overflow variable, and append the
1097
+ # overflow to the front of the bytestring the next time reading is performed
1098
+ self.overflow = b""
1099
+
1100
+ def __getattr__(self, attr: str):
1101
+ return getattr(self.buffer, attr)
1102
+
1103
+ def read(self, n: int | None = -1) -> bytes:
1104
+ assert self.buffer is not None
1105
+ bytestring = self.buffer.read(n).encode(self.encoding)
1106
+ # When n=-1/n greater than remaining bytes: Read entire file/rest of file
1107
+ combined_bytestring = self.overflow + bytestring
1108
+ if n is None or n < 0 or n >= len(combined_bytestring):
1109
+ self.overflow = b""
1110
+ return combined_bytestring
1111
+ else:
1112
+ to_return = combined_bytestring[:n]
1113
+ self.overflow = combined_bytestring[n:]
1114
+ return to_return
1115
+
1116
+
1117
+ def _maybe_memory_map(
1118
+ handle: str | BaseBuffer, memory_map: bool
1119
+ ) -> tuple[str | BaseBuffer, bool, list[BaseBuffer]]:
1120
+ """Try to memory map file/buffer."""
1121
+ handles: list[BaseBuffer] = []
1122
+ memory_map &= hasattr(handle, "fileno") or isinstance(handle, str)
1123
+ if not memory_map:
1124
+ return handle, memory_map, handles
1125
+
1126
+ # mmap used by only read_csv
1127
+ handle = cast(ReadCsvBuffer, handle)
1128
+
1129
+ # need to open the file first
1130
+ if isinstance(handle, str):
1131
+ handle = open(handle, "rb")
1132
+ handles.append(handle)
1133
+
1134
+ try:
1135
+ # open mmap and adds *-able
1136
+ # error: Argument 1 to "_IOWrapper" has incompatible type "mmap";
1137
+ # expected "BaseBuffer"
1138
+ wrapped = _IOWrapper(
1139
+ mmap.mmap(
1140
+ handle.fileno(), 0, access=mmap.ACCESS_READ # type: ignore[arg-type]
1141
+ )
1142
+ )
1143
+ finally:
1144
+ for handle in reversed(handles):
1145
+ # error: "BaseBuffer" has no attribute "close"
1146
+ handle.close() # type: ignore[attr-defined]
1147
+
1148
+ return wrapped, memory_map, [wrapped]
1149
+
1150
+
1151
+ def file_exists(filepath_or_buffer: FilePath | BaseBuffer) -> bool:
1152
+ """Test whether file exists."""
1153
+ exists = False
1154
+ filepath_or_buffer = stringify_path(filepath_or_buffer)
1155
+ if not isinstance(filepath_or_buffer, str):
1156
+ return exists
1157
+ try:
1158
+ exists = os.path.exists(filepath_or_buffer)
1159
+ # gh-5874: if the filepath is too long will raise here
1160
+ except (TypeError, ValueError):
1161
+ pass
1162
+ return exists
1163
+
1164
+
1165
+ def _is_binary_mode(handle: FilePath | BaseBuffer, mode: str) -> bool:
1166
+ """Whether the handle is opened in binary mode"""
1167
+ # specified by user
1168
+ if "t" in mode or "b" in mode:
1169
+ return "b" in mode
1170
+
1171
+ # exceptions
1172
+ text_classes = (
1173
+ # classes that expect string but have 'b' in mode
1174
+ codecs.StreamWriter,
1175
+ codecs.StreamReader,
1176
+ codecs.StreamReaderWriter,
1177
+ )
1178
+ if issubclass(type(handle), text_classes):
1179
+ return False
1180
+
1181
+ return isinstance(handle, _get_binary_io_classes()) or "b" in getattr(
1182
+ handle, "mode", mode
1183
+ )
1184
+
1185
+
1186
+ @functools.lru_cache
1187
+ def _get_binary_io_classes() -> tuple[type, ...]:
1188
+ """IO classes that that expect bytes"""
1189
+ binary_classes: tuple[type, ...] = (BufferedIOBase, RawIOBase)
1190
+
1191
+ # python-zstandard doesn't use any of the builtin base classes; instead we
1192
+ # have to use the `zstd.ZstdDecompressionReader` class for isinstance checks.
1193
+ # Unfortunately `zstd.ZstdDecompressionReader` isn't exposed by python-zstandard
1194
+ # so we have to get it from a `zstd.ZstdDecompressor` instance.
1195
+ # See also https://github.com/indygreg/python-zstandard/pull/165.
1196
+ zstd = import_optional_dependency("zstandard", errors="ignore")
1197
+ if zstd is not None:
1198
+ with zstd.ZstdDecompressor().stream_reader(b"") as reader:
1199
+ binary_classes += (type(reader),)
1200
+
1201
+ return binary_classes
1202
+
1203
+
1204
+ def is_potential_multi_index(
1205
+ columns: Sequence[Hashable] | MultiIndex,
1206
+ index_col: bool | Sequence[int] | None = None,
1207
+ ) -> bool:
1208
+ """
1209
+ Check whether or not the `columns` parameter
1210
+ could be converted into a MultiIndex.
1211
+
1212
+ Parameters
1213
+ ----------
1214
+ columns : array-like
1215
+ Object which may or may not be convertible into a MultiIndex
1216
+ index_col : None, bool or list, optional
1217
+ Column or columns to use as the (possibly hierarchical) index
1218
+
1219
+ Returns
1220
+ -------
1221
+ bool : Whether or not columns could become a MultiIndex
1222
+ """
1223
+ if index_col is None or isinstance(index_col, bool):
1224
+ index_col = []
1225
+
1226
+ return bool(
1227
+ len(columns)
1228
+ and not isinstance(columns, ABCMultiIndex)
1229
+ and all(isinstance(c, tuple) for c in columns if c not in list(index_col))
1230
+ )
1231
+
1232
+
1233
+ def dedup_names(
1234
+ names: Sequence[Hashable], is_potential_multiindex: bool
1235
+ ) -> Sequence[Hashable]:
1236
+ """
1237
+ Rename column names if duplicates exist.
1238
+
1239
+ Currently the renaming is done by appending a period and an autonumeric,
1240
+ but a custom pattern may be supported in the future.
1241
+
1242
+ Examples
1243
+ --------
1244
+ >>> dedup_names(["x", "y", "x", "x"], is_potential_multiindex=False)
1245
+ ['x', 'y', 'x.1', 'x.2']
1246
+ """
1247
+ names = list(names) # so we can index
1248
+ counts: DefaultDict[Hashable, int] = defaultdict(int)
1249
+
1250
+ for i, col in enumerate(names):
1251
+ cur_count = counts[col]
1252
+
1253
+ while cur_count > 0:
1254
+ counts[col] = cur_count + 1
1255
+
1256
+ if is_potential_multiindex:
1257
+ # for mypy
1258
+ assert isinstance(col, tuple)
1259
+ col = col[:-1] + (f"{col[-1]}.{cur_count}",)
1260
+ else:
1261
+ col = f"{col}.{cur_count}"
1262
+ cur_count = counts[col]
1263
+
1264
+ names[i] = col
1265
+ counts[col] = cur_count + 1
1266
+
1267
+ return names
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__init__.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas.io.excel._base import (
2
+ ExcelFile,
3
+ ExcelWriter,
4
+ read_excel,
5
+ )
6
+ from pandas.io.excel._odswriter import ODSWriter as _ODSWriter
7
+ from pandas.io.excel._openpyxl import OpenpyxlWriter as _OpenpyxlWriter
8
+ from pandas.io.excel._util import register_writer
9
+ from pandas.io.excel._xlsxwriter import XlsxWriter as _XlsxWriter
10
+
11
+ __all__ = ["read_excel", "ExcelWriter", "ExcelFile"]
12
+
13
+
14
+ register_writer(_OpenpyxlWriter)
15
+
16
+ register_writer(_XlsxWriter)
17
+
18
+
19
+ register_writer(_ODSWriter)
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (641 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_base.cpython-310.pyc ADDED
Binary file (48.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_calamine.cpython-310.pyc ADDED
Binary file (4.35 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_odfreader.cpython-310.pyc ADDED
Binary file (7.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_odswriter.cpython-310.pyc ADDED
Binary file (8.79 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_openpyxl.cpython-310.pyc ADDED
Binary file (17.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_pyxlsb.cpython-310.pyc ADDED
Binary file (4.17 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_util.cpython-310.pyc ADDED
Binary file (8.41 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_xlrd.cpython-310.pyc ADDED
Binary file (4.24 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/__pycache__/_xlsxwriter.cpython-310.pyc ADDED
Binary file (6.14 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_base.py ADDED
@@ -0,0 +1,1659 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from collections.abc import (
4
+ Hashable,
5
+ Iterable,
6
+ Mapping,
7
+ Sequence,
8
+ )
9
+ import datetime
10
+ from functools import partial
11
+ from io import BytesIO
12
+ import os
13
+ from textwrap import fill
14
+ from typing import (
15
+ IO,
16
+ TYPE_CHECKING,
17
+ Any,
18
+ Callable,
19
+ Generic,
20
+ Literal,
21
+ TypeVar,
22
+ Union,
23
+ cast,
24
+ overload,
25
+ )
26
+ import warnings
27
+ import zipfile
28
+
29
+ from pandas._config import config
30
+
31
+ from pandas._libs import lib
32
+ from pandas._libs.parsers import STR_NA_VALUES
33
+ from pandas.compat._optional import (
34
+ get_version,
35
+ import_optional_dependency,
36
+ )
37
+ from pandas.errors import EmptyDataError
38
+ from pandas.util._decorators import (
39
+ Appender,
40
+ doc,
41
+ )
42
+ from pandas.util._exceptions import find_stack_level
43
+ from pandas.util._validators import check_dtype_backend
44
+
45
+ from pandas.core.dtypes.common import (
46
+ is_bool,
47
+ is_float,
48
+ is_integer,
49
+ is_list_like,
50
+ )
51
+
52
+ from pandas.core.frame import DataFrame
53
+ from pandas.core.shared_docs import _shared_docs
54
+ from pandas.util.version import Version
55
+
56
+ from pandas.io.common import (
57
+ IOHandles,
58
+ get_handle,
59
+ stringify_path,
60
+ validate_header_arg,
61
+ )
62
+ from pandas.io.excel._util import (
63
+ fill_mi_header,
64
+ get_default_engine,
65
+ get_writer,
66
+ maybe_convert_usecols,
67
+ pop_header_name,
68
+ )
69
+ from pandas.io.parsers import TextParser
70
+ from pandas.io.parsers.readers import validate_integer
71
+
72
+ if TYPE_CHECKING:
73
+ from types import TracebackType
74
+
75
+ from pandas._typing import (
76
+ DtypeArg,
77
+ DtypeBackend,
78
+ ExcelWriterIfSheetExists,
79
+ FilePath,
80
+ IntStrT,
81
+ ReadBuffer,
82
+ Self,
83
+ SequenceNotStr,
84
+ StorageOptions,
85
+ WriteExcelBuffer,
86
+ )
87
+ _read_excel_doc = (
88
+ """
89
+ Read an Excel file into a ``pandas`` ``DataFrame``.
90
+
91
+ Supports `xls`, `xlsx`, `xlsm`, `xlsb`, `odf`, `ods` and `odt` file extensions
92
+ read from a local filesystem or URL. Supports an option to read
93
+ a single sheet or a list of sheets.
94
+
95
+ Parameters
96
+ ----------
97
+ io : str, bytes, ExcelFile, xlrd.Book, path object, or file-like object
98
+ Any valid string path is acceptable. The string could be a URL. Valid
99
+ URL schemes include http, ftp, s3, and file. For file URLs, a host is
100
+ expected. A local file could be: ``file://localhost/path/to/table.xlsx``.
101
+
102
+ If you want to pass in a path object, pandas accepts any ``os.PathLike``.
103
+
104
+ By file-like object, we refer to objects with a ``read()`` method,
105
+ such as a file handle (e.g. via builtin ``open`` function)
106
+ or ``StringIO``.
107
+
108
+ .. deprecated:: 2.1.0
109
+ Passing byte strings is deprecated. To read from a
110
+ byte string, wrap it in a ``BytesIO`` object.
111
+ sheet_name : str, int, list, or None, default 0
112
+ Strings are used for sheet names. Integers are used in zero-indexed
113
+ sheet positions (chart sheets do not count as a sheet position).
114
+ Lists of strings/integers are used to request multiple sheets.
115
+ Specify ``None`` to get all worksheets.
116
+
117
+ Available cases:
118
+
119
+ * Defaults to ``0``: 1st sheet as a `DataFrame`
120
+ * ``1``: 2nd sheet as a `DataFrame`
121
+ * ``"Sheet1"``: Load sheet with name "Sheet1"
122
+ * ``[0, 1, "Sheet5"]``: Load first, second and sheet named "Sheet5"
123
+ as a dict of `DataFrame`
124
+ * ``None``: All worksheets.
125
+
126
+ header : int, list of int, default 0
127
+ Row (0-indexed) to use for the column labels of the parsed
128
+ DataFrame. If a list of integers is passed those row positions will
129
+ be combined into a ``MultiIndex``. Use None if there is no header.
130
+ names : array-like, default None
131
+ List of column names to use. If file contains no header row,
132
+ then you should explicitly pass header=None.
133
+ index_col : int, str, list of int, default None
134
+ Column (0-indexed) to use as the row labels of the DataFrame.
135
+ Pass None if there is no such column. If a list is passed,
136
+ those columns will be combined into a ``MultiIndex``. If a
137
+ subset of data is selected with ``usecols``, index_col
138
+ is based on the subset.
139
+
140
+ Missing values will be forward filled to allow roundtripping with
141
+ ``to_excel`` for ``merged_cells=True``. To avoid forward filling the
142
+ missing values use ``set_index`` after reading the data instead of
143
+ ``index_col``.
144
+ usecols : str, list-like, or callable, default None
145
+ * If None, then parse all columns.
146
+ * If str, then indicates comma separated list of Excel column letters
147
+ and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
148
+ both sides.
149
+ * If list of int, then indicates list of column numbers to be parsed
150
+ (0-indexed).
151
+ * If list of string, then indicates list of column names to be parsed.
152
+ * If callable, then evaluate each column name against it and parse the
153
+ column if the callable returns ``True``.
154
+
155
+ Returns a subset of the columns according to behavior above.
156
+ dtype : Type name or dict of column -> type, default None
157
+ Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32}}
158
+ Use ``object`` to preserve data as stored in Excel and not interpret dtype,
159
+ which will necessarily result in ``object`` dtype.
160
+ If converters are specified, they will be applied INSTEAD
161
+ of dtype conversion.
162
+ If you use ``None``, it will infer the dtype of each column based on the data.
163
+ engine : {{'openpyxl', 'calamine', 'odf', 'pyxlsb', 'xlrd'}}, default None
164
+ If io is not a buffer or path, this must be set to identify io.
165
+ Engine compatibility :
166
+
167
+ - ``openpyxl`` supports newer Excel file formats.
168
+ - ``calamine`` supports Excel (.xls, .xlsx, .xlsm, .xlsb)
169
+ and OpenDocument (.ods) file formats.
170
+ - ``odf`` supports OpenDocument file formats (.odf, .ods, .odt).
171
+ - ``pyxlsb`` supports Binary Excel files.
172
+ - ``xlrd`` supports old-style Excel files (.xls).
173
+
174
+ When ``engine=None``, the following logic will be used to determine the engine:
175
+
176
+ - If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),
177
+ then `odf <https://pypi.org/project/odfpy/>`_ will be used.
178
+ - Otherwise if ``path_or_buffer`` is an xls format, ``xlrd`` will be used.
179
+ - Otherwise if ``path_or_buffer`` is in xlsb format, ``pyxlsb`` will be used.
180
+ - Otherwise ``openpyxl`` will be used.
181
+ converters : dict, default None
182
+ Dict of functions for converting values in certain columns. Keys can
183
+ either be integers or column labels, values are functions that take one
184
+ input argument, the Excel cell content, and return the transformed
185
+ content.
186
+ true_values : list, default None
187
+ Values to consider as True.
188
+ false_values : list, default None
189
+ Values to consider as False.
190
+ skiprows : list-like, int, or callable, optional
191
+ Line numbers to skip (0-indexed) or number of lines to skip (int) at the
192
+ start of the file. If callable, the callable function will be evaluated
193
+ against the row indices, returning True if the row should be skipped and
194
+ False otherwise. An example of a valid callable argument would be ``lambda
195
+ x: x in [0, 2]``.
196
+ nrows : int, default None
197
+ Number of rows to parse.
198
+ na_values : scalar, str, list-like, or dict, default None
199
+ Additional strings to recognize as NA/NaN. If dict passed, specific
200
+ per-column NA values. By default the following values are interpreted
201
+ as NaN: '"""
202
+ + fill("', '".join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ")
203
+ + """'.
204
+ keep_default_na : bool, default True
205
+ Whether or not to include the default NaN values when parsing the data.
206
+ Depending on whether ``na_values`` is passed in, the behavior is as follows:
207
+
208
+ * If ``keep_default_na`` is True, and ``na_values`` are specified,
209
+ ``na_values`` is appended to the default NaN values used for parsing.
210
+ * If ``keep_default_na`` is True, and ``na_values`` are not specified, only
211
+ the default NaN values are used for parsing.
212
+ * If ``keep_default_na`` is False, and ``na_values`` are specified, only
213
+ the NaN values specified ``na_values`` are used for parsing.
214
+ * If ``keep_default_na`` is False, and ``na_values`` are not specified, no
215
+ strings will be parsed as NaN.
216
+
217
+ Note that if `na_filter` is passed in as False, the ``keep_default_na`` and
218
+ ``na_values`` parameters will be ignored.
219
+ na_filter : bool, default True
220
+ Detect missing value markers (empty strings and the value of na_values). In
221
+ data without any NAs, passing ``na_filter=False`` can improve the
222
+ performance of reading a large file.
223
+ verbose : bool, default False
224
+ Indicate number of NA values placed in non-numeric columns.
225
+ parse_dates : bool, list-like, or dict, default False
226
+ The behavior is as follows:
227
+
228
+ * ``bool``. If True -> try parsing the index.
229
+ * ``list`` of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
230
+ each as a separate date column.
231
+ * ``list`` of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as
232
+ a single date column.
233
+ * ``dict``, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call
234
+ result 'foo'
235
+
236
+ If a column or index contains an unparsable date, the entire column or
237
+ index will be returned unaltered as an object data type. If you don`t want to
238
+ parse some cells as date just change their type in Excel to "Text".
239
+ For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_excel``.
240
+
241
+ Note: A fast-path exists for iso8601-formatted dates.
242
+ date_parser : function, optional
243
+ Function to use for converting a sequence of string columns to an array of
244
+ datetime instances. The default uses ``dateutil.parser.parser`` to do the
245
+ conversion. Pandas will try to call `date_parser` in three different ways,
246
+ advancing to the next if an exception occurs: 1) Pass one or more arrays
247
+ (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the
248
+ string values from the columns defined by `parse_dates` into a single array
249
+ and pass that; and 3) call `date_parser` once for each row using one or
250
+ more strings (corresponding to the columns defined by `parse_dates`) as
251
+ arguments.
252
+
253
+ .. deprecated:: 2.0.0
254
+ Use ``date_format`` instead, or read in as ``object`` and then apply
255
+ :func:`to_datetime` as-needed.
256
+ date_format : str or dict of column -> format, default ``None``
257
+ If used in conjunction with ``parse_dates``, will parse dates according to this
258
+ format. For anything more complex,
259
+ please read in as ``object`` and then apply :func:`to_datetime` as-needed.
260
+
261
+ .. versionadded:: 2.0.0
262
+ thousands : str, default None
263
+ Thousands separator for parsing string columns to numeric. Note that
264
+ this parameter is only necessary for columns stored as TEXT in Excel,
265
+ any numeric columns will automatically be parsed, regardless of display
266
+ format.
267
+ decimal : str, default '.'
268
+ Character to recognize as decimal point for parsing string columns to numeric.
269
+ Note that this parameter is only necessary for columns stored as TEXT in Excel,
270
+ any numeric columns will automatically be parsed, regardless of display
271
+ format.(e.g. use ',' for European data).
272
+
273
+ .. versionadded:: 1.4.0
274
+
275
+ comment : str, default None
276
+ Comments out remainder of line. Pass a character or characters to this
277
+ argument to indicate comments in the input file. Any data between the
278
+ comment string and the end of the current line is ignored.
279
+ skipfooter : int, default 0
280
+ Rows at the end to skip (0-indexed).
281
+ {storage_options}
282
+
283
+ dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
284
+ Back-end data type applied to the resultant :class:`DataFrame`
285
+ (still experimental). Behaviour is as follows:
286
+
287
+ * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
288
+ (default).
289
+ * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
290
+ DataFrame.
291
+
292
+ .. versionadded:: 2.0
293
+
294
+ engine_kwargs : dict, optional
295
+ Arbitrary keyword arguments passed to excel engine.
296
+
297
+ Returns
298
+ -------
299
+ DataFrame or dict of DataFrames
300
+ DataFrame from the passed in Excel file. See notes in sheet_name
301
+ argument for more information on when a dict of DataFrames is returned.
302
+
303
+ See Also
304
+ --------
305
+ DataFrame.to_excel : Write DataFrame to an Excel file.
306
+ DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
307
+ read_csv : Read a comma-separated values (csv) file into DataFrame.
308
+ read_fwf : Read a table of fixed-width formatted lines into DataFrame.
309
+
310
+ Notes
311
+ -----
312
+ For specific information on the methods used for each Excel engine, refer to the pandas
313
+ :ref:`user guide <io.excel_reader>`
314
+
315
+ Examples
316
+ --------
317
+ The file can be read using the file name as string or an open file object:
318
+
319
+ >>> pd.read_excel('tmp.xlsx', index_col=0) # doctest: +SKIP
320
+ Name Value
321
+ 0 string1 1
322
+ 1 string2 2
323
+ 2 #Comment 3
324
+
325
+ >>> pd.read_excel(open('tmp.xlsx', 'rb'),
326
+ ... sheet_name='Sheet3') # doctest: +SKIP
327
+ Unnamed: 0 Name Value
328
+ 0 0 string1 1
329
+ 1 1 string2 2
330
+ 2 2 #Comment 3
331
+
332
+ Index and header can be specified via the `index_col` and `header` arguments
333
+
334
+ >>> pd.read_excel('tmp.xlsx', index_col=None, header=None) # doctest: +SKIP
335
+ 0 1 2
336
+ 0 NaN Name Value
337
+ 1 0.0 string1 1
338
+ 2 1.0 string2 2
339
+ 3 2.0 #Comment 3
340
+
341
+ Column types are inferred but can be explicitly specified
342
+
343
+ >>> pd.read_excel('tmp.xlsx', index_col=0,
344
+ ... dtype={{'Name': str, 'Value': float}}) # doctest: +SKIP
345
+ Name Value
346
+ 0 string1 1.0
347
+ 1 string2 2.0
348
+ 2 #Comment 3.0
349
+
350
+ True, False, and NA values, and thousands separators have defaults,
351
+ but can be explicitly specified, too. Supply the values you would like
352
+ as strings or lists of strings!
353
+
354
+ >>> pd.read_excel('tmp.xlsx', index_col=0,
355
+ ... na_values=['string1', 'string2']) # doctest: +SKIP
356
+ Name Value
357
+ 0 NaN 1
358
+ 1 NaN 2
359
+ 2 #Comment 3
360
+
361
+ Comment lines in the excel input file can be skipped using the
362
+ ``comment`` kwarg.
363
+
364
+ >>> pd.read_excel('tmp.xlsx', index_col=0, comment='#') # doctest: +SKIP
365
+ Name Value
366
+ 0 string1 1.0
367
+ 1 string2 2.0
368
+ 2 None NaN
369
+ """
370
+ )
371
+
372
+
373
+ @overload
374
+ def read_excel(
375
+ io,
376
+ # sheet name is str or int -> DataFrame
377
+ sheet_name: str | int = ...,
378
+ *,
379
+ header: int | Sequence[int] | None = ...,
380
+ names: SequenceNotStr[Hashable] | range | None = ...,
381
+ index_col: int | str | Sequence[int] | None = ...,
382
+ usecols: int
383
+ | str
384
+ | Sequence[int]
385
+ | Sequence[str]
386
+ | Callable[[str], bool]
387
+ | None = ...,
388
+ dtype: DtypeArg | None = ...,
389
+ engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb", "calamine"] | None = ...,
390
+ converters: dict[str, Callable] | dict[int, Callable] | None = ...,
391
+ true_values: Iterable[Hashable] | None = ...,
392
+ false_values: Iterable[Hashable] | None = ...,
393
+ skiprows: Sequence[int] | int | Callable[[int], object] | None = ...,
394
+ nrows: int | None = ...,
395
+ na_values=...,
396
+ keep_default_na: bool = ...,
397
+ na_filter: bool = ...,
398
+ verbose: bool = ...,
399
+ parse_dates: list | dict | bool = ...,
400
+ date_parser: Callable | lib.NoDefault = ...,
401
+ date_format: dict[Hashable, str] | str | None = ...,
402
+ thousands: str | None = ...,
403
+ decimal: str = ...,
404
+ comment: str | None = ...,
405
+ skipfooter: int = ...,
406
+ storage_options: StorageOptions = ...,
407
+ dtype_backend: DtypeBackend | lib.NoDefault = ...,
408
+ ) -> DataFrame:
409
+ ...
410
+
411
+
412
+ @overload
413
+ def read_excel(
414
+ io,
415
+ # sheet name is list or None -> dict[IntStrT, DataFrame]
416
+ sheet_name: list[IntStrT] | None,
417
+ *,
418
+ header: int | Sequence[int] | None = ...,
419
+ names: SequenceNotStr[Hashable] | range | None = ...,
420
+ index_col: int | str | Sequence[int] | None = ...,
421
+ usecols: int
422
+ | str
423
+ | Sequence[int]
424
+ | Sequence[str]
425
+ | Callable[[str], bool]
426
+ | None = ...,
427
+ dtype: DtypeArg | None = ...,
428
+ engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb", "calamine"] | None = ...,
429
+ converters: dict[str, Callable] | dict[int, Callable] | None = ...,
430
+ true_values: Iterable[Hashable] | None = ...,
431
+ false_values: Iterable[Hashable] | None = ...,
432
+ skiprows: Sequence[int] | int | Callable[[int], object] | None = ...,
433
+ nrows: int | None = ...,
434
+ na_values=...,
435
+ keep_default_na: bool = ...,
436
+ na_filter: bool = ...,
437
+ verbose: bool = ...,
438
+ parse_dates: list | dict | bool = ...,
439
+ date_parser: Callable | lib.NoDefault = ...,
440
+ date_format: dict[Hashable, str] | str | None = ...,
441
+ thousands: str | None = ...,
442
+ decimal: str = ...,
443
+ comment: str | None = ...,
444
+ skipfooter: int = ...,
445
+ storage_options: StorageOptions = ...,
446
+ dtype_backend: DtypeBackend | lib.NoDefault = ...,
447
+ ) -> dict[IntStrT, DataFrame]:
448
+ ...
449
+
450
+
451
+ @doc(storage_options=_shared_docs["storage_options"])
452
+ @Appender(_read_excel_doc)
453
+ def read_excel(
454
+ io,
455
+ sheet_name: str | int | list[IntStrT] | None = 0,
456
+ *,
457
+ header: int | Sequence[int] | None = 0,
458
+ names: SequenceNotStr[Hashable] | range | None = None,
459
+ index_col: int | str | Sequence[int] | None = None,
460
+ usecols: int
461
+ | str
462
+ | Sequence[int]
463
+ | Sequence[str]
464
+ | Callable[[str], bool]
465
+ | None = None,
466
+ dtype: DtypeArg | None = None,
467
+ engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb", "calamine"] | None = None,
468
+ converters: dict[str, Callable] | dict[int, Callable] | None = None,
469
+ true_values: Iterable[Hashable] | None = None,
470
+ false_values: Iterable[Hashable] | None = None,
471
+ skiprows: Sequence[int] | int | Callable[[int], object] | None = None,
472
+ nrows: int | None = None,
473
+ na_values=None,
474
+ keep_default_na: bool = True,
475
+ na_filter: bool = True,
476
+ verbose: bool = False,
477
+ parse_dates: list | dict | bool = False,
478
+ date_parser: Callable | lib.NoDefault = lib.no_default,
479
+ date_format: dict[Hashable, str] | str | None = None,
480
+ thousands: str | None = None,
481
+ decimal: str = ".",
482
+ comment: str | None = None,
483
+ skipfooter: int = 0,
484
+ storage_options: StorageOptions | None = None,
485
+ dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
486
+ engine_kwargs: dict | None = None,
487
+ ) -> DataFrame | dict[IntStrT, DataFrame]:
488
+ check_dtype_backend(dtype_backend)
489
+ should_close = False
490
+ if engine_kwargs is None:
491
+ engine_kwargs = {}
492
+
493
+ if not isinstance(io, ExcelFile):
494
+ should_close = True
495
+ io = ExcelFile(
496
+ io,
497
+ storage_options=storage_options,
498
+ engine=engine,
499
+ engine_kwargs=engine_kwargs,
500
+ )
501
+ elif engine and engine != io.engine:
502
+ raise ValueError(
503
+ "Engine should not be specified when passing "
504
+ "an ExcelFile - ExcelFile already has the engine set"
505
+ )
506
+
507
+ try:
508
+ data = io.parse(
509
+ sheet_name=sheet_name,
510
+ header=header,
511
+ names=names,
512
+ index_col=index_col,
513
+ usecols=usecols,
514
+ dtype=dtype,
515
+ converters=converters,
516
+ true_values=true_values,
517
+ false_values=false_values,
518
+ skiprows=skiprows,
519
+ nrows=nrows,
520
+ na_values=na_values,
521
+ keep_default_na=keep_default_na,
522
+ na_filter=na_filter,
523
+ verbose=verbose,
524
+ parse_dates=parse_dates,
525
+ date_parser=date_parser,
526
+ date_format=date_format,
527
+ thousands=thousands,
528
+ decimal=decimal,
529
+ comment=comment,
530
+ skipfooter=skipfooter,
531
+ dtype_backend=dtype_backend,
532
+ )
533
+ finally:
534
+ # make sure to close opened file handles
535
+ if should_close:
536
+ io.close()
537
+ return data
538
+
539
+
540
+ _WorkbookT = TypeVar("_WorkbookT")
541
+
542
+
543
+ class BaseExcelReader(Generic[_WorkbookT]):
544
+ book: _WorkbookT
545
+
546
+ def __init__(
547
+ self,
548
+ filepath_or_buffer,
549
+ storage_options: StorageOptions | None = None,
550
+ engine_kwargs: dict | None = None,
551
+ ) -> None:
552
+ if engine_kwargs is None:
553
+ engine_kwargs = {}
554
+
555
+ # First argument can also be bytes, so create a buffer
556
+ if isinstance(filepath_or_buffer, bytes):
557
+ filepath_or_buffer = BytesIO(filepath_or_buffer)
558
+
559
+ self.handles = IOHandles(
560
+ handle=filepath_or_buffer, compression={"method": None}
561
+ )
562
+ if not isinstance(filepath_or_buffer, (ExcelFile, self._workbook_class)):
563
+ self.handles = get_handle(
564
+ filepath_or_buffer, "rb", storage_options=storage_options, is_text=False
565
+ )
566
+
567
+ if isinstance(self.handles.handle, self._workbook_class):
568
+ self.book = self.handles.handle
569
+ elif hasattr(self.handles.handle, "read"):
570
+ # N.B. xlrd.Book has a read attribute too
571
+ self.handles.handle.seek(0)
572
+ try:
573
+ self.book = self.load_workbook(self.handles.handle, engine_kwargs)
574
+ except Exception:
575
+ self.close()
576
+ raise
577
+ else:
578
+ raise ValueError(
579
+ "Must explicitly set engine if not passing in buffer or path for io."
580
+ )
581
+
582
+ @property
583
+ def _workbook_class(self) -> type[_WorkbookT]:
584
+ raise NotImplementedError
585
+
586
+ def load_workbook(self, filepath_or_buffer, engine_kwargs) -> _WorkbookT:
587
+ raise NotImplementedError
588
+
589
+ def close(self) -> None:
590
+ if hasattr(self, "book"):
591
+ if hasattr(self.book, "close"):
592
+ # pyxlsb: opens a TemporaryFile
593
+ # openpyxl: https://stackoverflow.com/questions/31416842/
594
+ # openpyxl-does-not-close-excel-workbook-in-read-only-mode
595
+ self.book.close()
596
+ elif hasattr(self.book, "release_resources"):
597
+ # xlrd
598
+ # https://github.com/python-excel/xlrd/blob/2.0.1/xlrd/book.py#L548
599
+ self.book.release_resources()
600
+ self.handles.close()
601
+
602
+ @property
603
+ def sheet_names(self) -> list[str]:
604
+ raise NotImplementedError
605
+
606
+ def get_sheet_by_name(self, name: str):
607
+ raise NotImplementedError
608
+
609
+ def get_sheet_by_index(self, index: int):
610
+ raise NotImplementedError
611
+
612
+ def get_sheet_data(self, sheet, rows: int | None = None):
613
+ raise NotImplementedError
614
+
615
+ def raise_if_bad_sheet_by_index(self, index: int) -> None:
616
+ n_sheets = len(self.sheet_names)
617
+ if index >= n_sheets:
618
+ raise ValueError(
619
+ f"Worksheet index {index} is invalid, {n_sheets} worksheets found"
620
+ )
621
+
622
+ def raise_if_bad_sheet_by_name(self, name: str) -> None:
623
+ if name not in self.sheet_names:
624
+ raise ValueError(f"Worksheet named '{name}' not found")
625
+
626
+ def _check_skiprows_func(
627
+ self,
628
+ skiprows: Callable,
629
+ rows_to_use: int,
630
+ ) -> int:
631
+ """
632
+ Determine how many file rows are required to obtain `nrows` data
633
+ rows when `skiprows` is a function.
634
+
635
+ Parameters
636
+ ----------
637
+ skiprows : function
638
+ The function passed to read_excel by the user.
639
+ rows_to_use : int
640
+ The number of rows that will be needed for the header and
641
+ the data.
642
+
643
+ Returns
644
+ -------
645
+ int
646
+ """
647
+ i = 0
648
+ rows_used_so_far = 0
649
+ while rows_used_so_far < rows_to_use:
650
+ if not skiprows(i):
651
+ rows_used_so_far += 1
652
+ i += 1
653
+ return i
654
+
655
+ def _calc_rows(
656
+ self,
657
+ header: int | Sequence[int] | None,
658
+ index_col: int | Sequence[int] | None,
659
+ skiprows: Sequence[int] | int | Callable[[int], object] | None,
660
+ nrows: int | None,
661
+ ) -> int | None:
662
+ """
663
+ If nrows specified, find the number of rows needed from the
664
+ file, otherwise return None.
665
+
666
+
667
+ Parameters
668
+ ----------
669
+ header : int, list of int, or None
670
+ See read_excel docstring.
671
+ index_col : int, str, list of int, or None
672
+ See read_excel docstring.
673
+ skiprows : list-like, int, callable, or None
674
+ See read_excel docstring.
675
+ nrows : int or None
676
+ See read_excel docstring.
677
+
678
+ Returns
679
+ -------
680
+ int or None
681
+ """
682
+ if nrows is None:
683
+ return None
684
+ if header is None:
685
+ header_rows = 1
686
+ elif is_integer(header):
687
+ header = cast(int, header)
688
+ header_rows = 1 + header
689
+ else:
690
+ header = cast(Sequence, header)
691
+ header_rows = 1 + header[-1]
692
+ # If there is a MultiIndex header and an index then there is also
693
+ # a row containing just the index name(s)
694
+ if is_list_like(header) and index_col is not None:
695
+ header = cast(Sequence, header)
696
+ if len(header) > 1:
697
+ header_rows += 1
698
+ if skiprows is None:
699
+ return header_rows + nrows
700
+ if is_integer(skiprows):
701
+ skiprows = cast(int, skiprows)
702
+ return header_rows + nrows + skiprows
703
+ if is_list_like(skiprows):
704
+
705
+ def f(skiprows: Sequence, x: int) -> bool:
706
+ return x in skiprows
707
+
708
+ skiprows = cast(Sequence, skiprows)
709
+ return self._check_skiprows_func(partial(f, skiprows), header_rows + nrows)
710
+ if callable(skiprows):
711
+ return self._check_skiprows_func(
712
+ skiprows,
713
+ header_rows + nrows,
714
+ )
715
+ # else unexpected skiprows type: read_excel will not optimize
716
+ # the number of rows read from file
717
+ return None
718
+
719
+ def parse(
720
+ self,
721
+ sheet_name: str | int | list[int] | list[str] | None = 0,
722
+ header: int | Sequence[int] | None = 0,
723
+ names: SequenceNotStr[Hashable] | range | None = None,
724
+ index_col: int | Sequence[int] | None = None,
725
+ usecols=None,
726
+ dtype: DtypeArg | None = None,
727
+ true_values: Iterable[Hashable] | None = None,
728
+ false_values: Iterable[Hashable] | None = None,
729
+ skiprows: Sequence[int] | int | Callable[[int], object] | None = None,
730
+ nrows: int | None = None,
731
+ na_values=None,
732
+ verbose: bool = False,
733
+ parse_dates: list | dict | bool = False,
734
+ date_parser: Callable | lib.NoDefault = lib.no_default,
735
+ date_format: dict[Hashable, str] | str | None = None,
736
+ thousands: str | None = None,
737
+ decimal: str = ".",
738
+ comment: str | None = None,
739
+ skipfooter: int = 0,
740
+ dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
741
+ **kwds,
742
+ ):
743
+ validate_header_arg(header)
744
+ validate_integer("nrows", nrows)
745
+
746
+ ret_dict = False
747
+
748
+ # Keep sheetname to maintain backwards compatibility.
749
+ sheets: list[int] | list[str]
750
+ if isinstance(sheet_name, list):
751
+ sheets = sheet_name
752
+ ret_dict = True
753
+ elif sheet_name is None:
754
+ sheets = self.sheet_names
755
+ ret_dict = True
756
+ elif isinstance(sheet_name, str):
757
+ sheets = [sheet_name]
758
+ else:
759
+ sheets = [sheet_name]
760
+
761
+ # handle same-type duplicates.
762
+ sheets = cast(Union[list[int], list[str]], list(dict.fromkeys(sheets).keys()))
763
+
764
+ output = {}
765
+
766
+ last_sheetname = None
767
+ for asheetname in sheets:
768
+ last_sheetname = asheetname
769
+ if verbose:
770
+ print(f"Reading sheet {asheetname}")
771
+
772
+ if isinstance(asheetname, str):
773
+ sheet = self.get_sheet_by_name(asheetname)
774
+ else: # assume an integer if not a string
775
+ sheet = self.get_sheet_by_index(asheetname)
776
+
777
+ file_rows_needed = self._calc_rows(header, index_col, skiprows, nrows)
778
+ data = self.get_sheet_data(sheet, file_rows_needed)
779
+ if hasattr(sheet, "close"):
780
+ # pyxlsb opens two TemporaryFiles
781
+ sheet.close()
782
+ usecols = maybe_convert_usecols(usecols)
783
+
784
+ if not data:
785
+ output[asheetname] = DataFrame()
786
+ continue
787
+
788
+ is_list_header = False
789
+ is_len_one_list_header = False
790
+ if is_list_like(header):
791
+ assert isinstance(header, Sequence)
792
+ is_list_header = True
793
+ if len(header) == 1:
794
+ is_len_one_list_header = True
795
+
796
+ if is_len_one_list_header:
797
+ header = cast(Sequence[int], header)[0]
798
+
799
+ # forward fill and pull out names for MultiIndex column
800
+ header_names = None
801
+ if header is not None and is_list_like(header):
802
+ assert isinstance(header, Sequence)
803
+
804
+ header_names = []
805
+ control_row = [True] * len(data[0])
806
+
807
+ for row in header:
808
+ if is_integer(skiprows):
809
+ assert isinstance(skiprows, int)
810
+ row += skiprows
811
+
812
+ if row > len(data) - 1:
813
+ raise ValueError(
814
+ f"header index {row} exceeds maximum index "
815
+ f"{len(data) - 1} of data.",
816
+ )
817
+
818
+ data[row], control_row = fill_mi_header(data[row], control_row)
819
+
820
+ if index_col is not None:
821
+ header_name, _ = pop_header_name(data[row], index_col)
822
+ header_names.append(header_name)
823
+
824
+ # If there is a MultiIndex header and an index then there is also
825
+ # a row containing just the index name(s)
826
+ has_index_names = False
827
+ if is_list_header and not is_len_one_list_header and index_col is not None:
828
+ index_col_list: Sequence[int]
829
+ if isinstance(index_col, int):
830
+ index_col_list = [index_col]
831
+ else:
832
+ assert isinstance(index_col, Sequence)
833
+ index_col_list = index_col
834
+
835
+ # We have to handle mi without names. If any of the entries in the data
836
+ # columns are not empty, this is a regular row
837
+ assert isinstance(header, Sequence)
838
+ if len(header) < len(data):
839
+ potential_index_names = data[len(header)]
840
+ potential_data = [
841
+ x
842
+ for i, x in enumerate(potential_index_names)
843
+ if not control_row[i] and i not in index_col_list
844
+ ]
845
+ has_index_names = all(x == "" or x is None for x in potential_data)
846
+
847
+ if is_list_like(index_col):
848
+ # Forward fill values for MultiIndex index.
849
+ if header is None:
850
+ offset = 0
851
+ elif isinstance(header, int):
852
+ offset = 1 + header
853
+ else:
854
+ offset = 1 + max(header)
855
+
856
+ # GH34673: if MultiIndex names present and not defined in the header,
857
+ # offset needs to be incremented so that forward filling starts
858
+ # from the first MI value instead of the name
859
+ if has_index_names:
860
+ offset += 1
861
+
862
+ # Check if we have an empty dataset
863
+ # before trying to collect data.
864
+ if offset < len(data):
865
+ assert isinstance(index_col, Sequence)
866
+
867
+ for col in index_col:
868
+ last = data[offset][col]
869
+
870
+ for row in range(offset + 1, len(data)):
871
+ if data[row][col] == "" or data[row][col] is None:
872
+ data[row][col] = last
873
+ else:
874
+ last = data[row][col]
875
+
876
+ # GH 12292 : error when read one empty column from excel file
877
+ try:
878
+ parser = TextParser(
879
+ data,
880
+ names=names,
881
+ header=header,
882
+ index_col=index_col,
883
+ has_index_names=has_index_names,
884
+ dtype=dtype,
885
+ true_values=true_values,
886
+ false_values=false_values,
887
+ skiprows=skiprows,
888
+ nrows=nrows,
889
+ na_values=na_values,
890
+ skip_blank_lines=False, # GH 39808
891
+ parse_dates=parse_dates,
892
+ date_parser=date_parser,
893
+ date_format=date_format,
894
+ thousands=thousands,
895
+ decimal=decimal,
896
+ comment=comment,
897
+ skipfooter=skipfooter,
898
+ usecols=usecols,
899
+ dtype_backend=dtype_backend,
900
+ **kwds,
901
+ )
902
+
903
+ output[asheetname] = parser.read(nrows=nrows)
904
+
905
+ if header_names:
906
+ output[asheetname].columns = output[asheetname].columns.set_names(
907
+ header_names
908
+ )
909
+
910
+ except EmptyDataError:
911
+ # No Data, return an empty DataFrame
912
+ output[asheetname] = DataFrame()
913
+
914
+ except Exception as err:
915
+ err.args = (f"{err.args[0]} (sheet: {asheetname})", *err.args[1:])
916
+ raise err
917
+
918
+ if last_sheetname is None:
919
+ raise ValueError("Sheet name is an empty list")
920
+
921
+ if ret_dict:
922
+ return output
923
+ else:
924
+ return output[last_sheetname]
925
+
926
+
927
+ @doc(storage_options=_shared_docs["storage_options"])
928
+ class ExcelWriter(Generic[_WorkbookT]):
929
+ """
930
+ Class for writing DataFrame objects into excel sheets.
931
+
932
+ Default is to use:
933
+
934
+ * `xlsxwriter <https://pypi.org/project/XlsxWriter/>`__ for xlsx files if xlsxwriter
935
+ is installed otherwise `openpyxl <https://pypi.org/project/openpyxl/>`__
936
+ * `odswriter <https://pypi.org/project/odswriter/>`__ for ods files
937
+
938
+ See ``DataFrame.to_excel`` for typical usage.
939
+
940
+ The writer should be used as a context manager. Otherwise, call `close()` to save
941
+ and close any opened file handles.
942
+
943
+ Parameters
944
+ ----------
945
+ path : str or typing.BinaryIO
946
+ Path to xls or xlsx or ods file.
947
+ engine : str (optional)
948
+ Engine to use for writing. If None, defaults to
949
+ ``io.excel.<extension>.writer``. NOTE: can only be passed as a keyword
950
+ argument.
951
+ date_format : str, default None
952
+ Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
953
+ datetime_format : str, default None
954
+ Format string for datetime objects written into Excel files.
955
+ (e.g. 'YYYY-MM-DD HH:MM:SS').
956
+ mode : {{'w', 'a'}}, default 'w'
957
+ File mode to use (write or append). Append does not work with fsspec URLs.
958
+ {storage_options}
959
+
960
+ if_sheet_exists : {{'error', 'new', 'replace', 'overlay'}}, default 'error'
961
+ How to behave when trying to write to a sheet that already
962
+ exists (append mode only).
963
+
964
+ * error: raise a ValueError.
965
+ * new: Create a new sheet, with a name determined by the engine.
966
+ * replace: Delete the contents of the sheet before writing to it.
967
+ * overlay: Write contents to the existing sheet without first removing,
968
+ but possibly over top of, the existing contents.
969
+
970
+ .. versionadded:: 1.3.0
971
+
972
+ .. versionchanged:: 1.4.0
973
+
974
+ Added ``overlay`` option
975
+
976
+ engine_kwargs : dict, optional
977
+ Keyword arguments to be passed into the engine. These will be passed to
978
+ the following functions of the respective engines:
979
+
980
+ * xlsxwriter: ``xlsxwriter.Workbook(file, **engine_kwargs)``
981
+ * openpyxl (write mode): ``openpyxl.Workbook(**engine_kwargs)``
982
+ * openpyxl (append mode): ``openpyxl.load_workbook(file, **engine_kwargs)``
983
+ * odswriter: ``odf.opendocument.OpenDocumentSpreadsheet(**engine_kwargs)``
984
+
985
+ .. versionadded:: 1.3.0
986
+
987
+ Notes
988
+ -----
989
+ For compatibility with CSV writers, ExcelWriter serializes lists
990
+ and dicts to strings before writing.
991
+
992
+ Examples
993
+ --------
994
+ Default usage:
995
+
996
+ >>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"]) # doctest: +SKIP
997
+ >>> with pd.ExcelWriter("path_to_file.xlsx") as writer:
998
+ ... df.to_excel(writer) # doctest: +SKIP
999
+
1000
+ To write to separate sheets in a single file:
1001
+
1002
+ >>> df1 = pd.DataFrame([["AAA", "BBB"]], columns=["Spam", "Egg"]) # doctest: +SKIP
1003
+ >>> df2 = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"]) # doctest: +SKIP
1004
+ >>> with pd.ExcelWriter("path_to_file.xlsx") as writer:
1005
+ ... df1.to_excel(writer, sheet_name="Sheet1") # doctest: +SKIP
1006
+ ... df2.to_excel(writer, sheet_name="Sheet2") # doctest: +SKIP
1007
+
1008
+ You can set the date format or datetime format:
1009
+
1010
+ >>> from datetime import date, datetime # doctest: +SKIP
1011
+ >>> df = pd.DataFrame(
1012
+ ... [
1013
+ ... [date(2014, 1, 31), date(1999, 9, 24)],
1014
+ ... [datetime(1998, 5, 26, 23, 33, 4), datetime(2014, 2, 28, 13, 5, 13)],
1015
+ ... ],
1016
+ ... index=["Date", "Datetime"],
1017
+ ... columns=["X", "Y"],
1018
+ ... ) # doctest: +SKIP
1019
+ >>> with pd.ExcelWriter(
1020
+ ... "path_to_file.xlsx",
1021
+ ... date_format="YYYY-MM-DD",
1022
+ ... datetime_format="YYYY-MM-DD HH:MM:SS"
1023
+ ... ) as writer:
1024
+ ... df.to_excel(writer) # doctest: +SKIP
1025
+
1026
+ You can also append to an existing Excel file:
1027
+
1028
+ >>> with pd.ExcelWriter("path_to_file.xlsx", mode="a", engine="openpyxl") as writer:
1029
+ ... df.to_excel(writer, sheet_name="Sheet3") # doctest: +SKIP
1030
+
1031
+ Here, the `if_sheet_exists` parameter can be set to replace a sheet if it
1032
+ already exists:
1033
+
1034
+ >>> with ExcelWriter(
1035
+ ... "path_to_file.xlsx",
1036
+ ... mode="a",
1037
+ ... engine="openpyxl",
1038
+ ... if_sheet_exists="replace",
1039
+ ... ) as writer:
1040
+ ... df.to_excel(writer, sheet_name="Sheet1") # doctest: +SKIP
1041
+
1042
+ You can also write multiple DataFrames to a single sheet. Note that the
1043
+ ``if_sheet_exists`` parameter needs to be set to ``overlay``:
1044
+
1045
+ >>> with ExcelWriter("path_to_file.xlsx",
1046
+ ... mode="a",
1047
+ ... engine="openpyxl",
1048
+ ... if_sheet_exists="overlay",
1049
+ ... ) as writer:
1050
+ ... df1.to_excel(writer, sheet_name="Sheet1")
1051
+ ... df2.to_excel(writer, sheet_name="Sheet1", startcol=3) # doctest: +SKIP
1052
+
1053
+ You can store Excel file in RAM:
1054
+
1055
+ >>> import io
1056
+ >>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"])
1057
+ >>> buffer = io.BytesIO()
1058
+ >>> with pd.ExcelWriter(buffer) as writer:
1059
+ ... df.to_excel(writer)
1060
+
1061
+ You can pack Excel file into zip archive:
1062
+
1063
+ >>> import zipfile # doctest: +SKIP
1064
+ >>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"]) # doctest: +SKIP
1065
+ >>> with zipfile.ZipFile("path_to_file.zip", "w") as zf:
1066
+ ... with zf.open("filename.xlsx", "w") as buffer:
1067
+ ... with pd.ExcelWriter(buffer) as writer:
1068
+ ... df.to_excel(writer) # doctest: +SKIP
1069
+
1070
+ You can specify additional arguments to the underlying engine:
1071
+
1072
+ >>> with pd.ExcelWriter(
1073
+ ... "path_to_file.xlsx",
1074
+ ... engine="xlsxwriter",
1075
+ ... engine_kwargs={{"options": {{"nan_inf_to_errors": True}}}}
1076
+ ... ) as writer:
1077
+ ... df.to_excel(writer) # doctest: +SKIP
1078
+
1079
+ In append mode, ``engine_kwargs`` are passed through to
1080
+ openpyxl's ``load_workbook``:
1081
+
1082
+ >>> with pd.ExcelWriter(
1083
+ ... "path_to_file.xlsx",
1084
+ ... engine="openpyxl",
1085
+ ... mode="a",
1086
+ ... engine_kwargs={{"keep_vba": True}}
1087
+ ... ) as writer:
1088
+ ... df.to_excel(writer, sheet_name="Sheet2") # doctest: +SKIP
1089
+ """
1090
+
1091
+ # Defining an ExcelWriter implementation (see abstract methods for more...)
1092
+
1093
+ # - Mandatory
1094
+ # - ``write_cells(self, cells, sheet_name=None, startrow=0, startcol=0)``
1095
+ # --> called to write additional DataFrames to disk
1096
+ # - ``_supported_extensions`` (tuple of supported extensions), used to
1097
+ # check that engine supports the given extension.
1098
+ # - ``_engine`` - string that gives the engine name. Necessary to
1099
+ # instantiate class directly and bypass ``ExcelWriterMeta`` engine
1100
+ # lookup.
1101
+ # - ``save(self)`` --> called to save file to disk
1102
+ # - Mostly mandatory (i.e. should at least exist)
1103
+ # - book, cur_sheet, path
1104
+
1105
+ # - Optional:
1106
+ # - ``__init__(self, path, engine=None, **kwargs)`` --> always called
1107
+ # with path as first argument.
1108
+
1109
+ # You also need to register the class with ``register_writer()``.
1110
+ # Technically, ExcelWriter implementations don't need to subclass
1111
+ # ExcelWriter.
1112
+
1113
+ _engine: str
1114
+ _supported_extensions: tuple[str, ...]
1115
+
1116
+ def __new__(
1117
+ cls,
1118
+ path: FilePath | WriteExcelBuffer | ExcelWriter,
1119
+ engine: str | None = None,
1120
+ date_format: str | None = None,
1121
+ datetime_format: str | None = None,
1122
+ mode: str = "w",
1123
+ storage_options: StorageOptions | None = None,
1124
+ if_sheet_exists: ExcelWriterIfSheetExists | None = None,
1125
+ engine_kwargs: dict | None = None,
1126
+ ) -> Self:
1127
+ # only switch class if generic(ExcelWriter)
1128
+ if cls is ExcelWriter:
1129
+ if engine is None or (isinstance(engine, str) and engine == "auto"):
1130
+ if isinstance(path, str):
1131
+ ext = os.path.splitext(path)[-1][1:]
1132
+ else:
1133
+ ext = "xlsx"
1134
+
1135
+ try:
1136
+ engine = config.get_option(f"io.excel.{ext}.writer", silent=True)
1137
+ if engine == "auto":
1138
+ engine = get_default_engine(ext, mode="writer")
1139
+ except KeyError as err:
1140
+ raise ValueError(f"No engine for filetype: '{ext}'") from err
1141
+
1142
+ # for mypy
1143
+ assert engine is not None
1144
+ # error: Incompatible types in assignment (expression has type
1145
+ # "type[ExcelWriter[Any]]", variable has type "type[Self]")
1146
+ cls = get_writer(engine) # type: ignore[assignment]
1147
+
1148
+ return object.__new__(cls)
1149
+
1150
+ # declare external properties you can count on
1151
+ _path = None
1152
+
1153
+ @property
1154
+ def supported_extensions(self) -> tuple[str, ...]:
1155
+ """Extensions that writer engine supports."""
1156
+ return self._supported_extensions
1157
+
1158
+ @property
1159
+ def engine(self) -> str:
1160
+ """Name of engine."""
1161
+ return self._engine
1162
+
1163
+ @property
1164
+ def sheets(self) -> dict[str, Any]:
1165
+ """Mapping of sheet names to sheet objects."""
1166
+ raise NotImplementedError
1167
+
1168
+ @property
1169
+ def book(self) -> _WorkbookT:
1170
+ """
1171
+ Book instance. Class type will depend on the engine used.
1172
+
1173
+ This attribute can be used to access engine-specific features.
1174
+ """
1175
+ raise NotImplementedError
1176
+
1177
+ def _write_cells(
1178
+ self,
1179
+ cells,
1180
+ sheet_name: str | None = None,
1181
+ startrow: int = 0,
1182
+ startcol: int = 0,
1183
+ freeze_panes: tuple[int, int] | None = None,
1184
+ ) -> None:
1185
+ """
1186
+ Write given formatted cells into Excel an excel sheet
1187
+
1188
+ Parameters
1189
+ ----------
1190
+ cells : generator
1191
+ cell of formatted data to save to Excel sheet
1192
+ sheet_name : str, default None
1193
+ Name of Excel sheet, if None, then use self.cur_sheet
1194
+ startrow : upper left cell row to dump data frame
1195
+ startcol : upper left cell column to dump data frame
1196
+ freeze_panes: int tuple of length 2
1197
+ contains the bottom-most row and right-most column to freeze
1198
+ """
1199
+ raise NotImplementedError
1200
+
1201
+ def _save(self) -> None:
1202
+ """
1203
+ Save workbook to disk.
1204
+ """
1205
+ raise NotImplementedError
1206
+
1207
+ def __init__(
1208
+ self,
1209
+ path: FilePath | WriteExcelBuffer | ExcelWriter,
1210
+ engine: str | None = None,
1211
+ date_format: str | None = None,
1212
+ datetime_format: str | None = None,
1213
+ mode: str = "w",
1214
+ storage_options: StorageOptions | None = None,
1215
+ if_sheet_exists: ExcelWriterIfSheetExists | None = None,
1216
+ engine_kwargs: dict[str, Any] | None = None,
1217
+ ) -> None:
1218
+ # validate that this engine can handle the extension
1219
+ if isinstance(path, str):
1220
+ ext = os.path.splitext(path)[-1]
1221
+ self.check_extension(ext)
1222
+
1223
+ # use mode to open the file
1224
+ if "b" not in mode:
1225
+ mode += "b"
1226
+ # use "a" for the user to append data to excel but internally use "r+" to let
1227
+ # the excel backend first read the existing file and then write any data to it
1228
+ mode = mode.replace("a", "r+")
1229
+
1230
+ if if_sheet_exists not in (None, "error", "new", "replace", "overlay"):
1231
+ raise ValueError(
1232
+ f"'{if_sheet_exists}' is not valid for if_sheet_exists. "
1233
+ "Valid options are 'error', 'new', 'replace' and 'overlay'."
1234
+ )
1235
+ if if_sheet_exists and "r+" not in mode:
1236
+ raise ValueError("if_sheet_exists is only valid in append mode (mode='a')")
1237
+ if if_sheet_exists is None:
1238
+ if_sheet_exists = "error"
1239
+ self._if_sheet_exists = if_sheet_exists
1240
+
1241
+ # cast ExcelWriter to avoid adding 'if self._handles is not None'
1242
+ self._handles = IOHandles(
1243
+ cast(IO[bytes], path), compression={"compression": None}
1244
+ )
1245
+ if not isinstance(path, ExcelWriter):
1246
+ self._handles = get_handle(
1247
+ path, mode, storage_options=storage_options, is_text=False
1248
+ )
1249
+ self._cur_sheet = None
1250
+
1251
+ if date_format is None:
1252
+ self._date_format = "YYYY-MM-DD"
1253
+ else:
1254
+ self._date_format = date_format
1255
+ if datetime_format is None:
1256
+ self._datetime_format = "YYYY-MM-DD HH:MM:SS"
1257
+ else:
1258
+ self._datetime_format = datetime_format
1259
+
1260
+ self._mode = mode
1261
+
1262
+ @property
1263
+ def date_format(self) -> str:
1264
+ """
1265
+ Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
1266
+ """
1267
+ return self._date_format
1268
+
1269
+ @property
1270
+ def datetime_format(self) -> str:
1271
+ """
1272
+ Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
1273
+ """
1274
+ return self._datetime_format
1275
+
1276
+ @property
1277
+ def if_sheet_exists(self) -> str:
1278
+ """
1279
+ How to behave when writing to a sheet that already exists in append mode.
1280
+ """
1281
+ return self._if_sheet_exists
1282
+
1283
+ def __fspath__(self) -> str:
1284
+ return getattr(self._handles.handle, "name", "")
1285
+
1286
+ def _get_sheet_name(self, sheet_name: str | None) -> str:
1287
+ if sheet_name is None:
1288
+ sheet_name = self._cur_sheet
1289
+ if sheet_name is None: # pragma: no cover
1290
+ raise ValueError("Must pass explicit sheet_name or set _cur_sheet property")
1291
+ return sheet_name
1292
+
1293
+ def _value_with_fmt(
1294
+ self, val
1295
+ ) -> tuple[
1296
+ int | float | bool | str | datetime.datetime | datetime.date, str | None
1297
+ ]:
1298
+ """
1299
+ Convert numpy types to Python types for the Excel writers.
1300
+
1301
+ Parameters
1302
+ ----------
1303
+ val : object
1304
+ Value to be written into cells
1305
+
1306
+ Returns
1307
+ -------
1308
+ Tuple with the first element being the converted value and the second
1309
+ being an optional format
1310
+ """
1311
+ fmt = None
1312
+
1313
+ if is_integer(val):
1314
+ val = int(val)
1315
+ elif is_float(val):
1316
+ val = float(val)
1317
+ elif is_bool(val):
1318
+ val = bool(val)
1319
+ elif isinstance(val, datetime.datetime):
1320
+ fmt = self._datetime_format
1321
+ elif isinstance(val, datetime.date):
1322
+ fmt = self._date_format
1323
+ elif isinstance(val, datetime.timedelta):
1324
+ val = val.total_seconds() / 86400
1325
+ fmt = "0"
1326
+ else:
1327
+ val = str(val)
1328
+
1329
+ return val, fmt
1330
+
1331
+ @classmethod
1332
+ def check_extension(cls, ext: str) -> Literal[True]:
1333
+ """
1334
+ checks that path's extension against the Writer's supported
1335
+ extensions. If it isn't supported, raises UnsupportedFiletypeError.
1336
+ """
1337
+ if ext.startswith("."):
1338
+ ext = ext[1:]
1339
+ if not any(ext in extension for extension in cls._supported_extensions):
1340
+ raise ValueError(f"Invalid extension for engine '{cls.engine}': '{ext}'")
1341
+ return True
1342
+
1343
+ # Allow use as a contextmanager
1344
+ def __enter__(self) -> Self:
1345
+ return self
1346
+
1347
+ def __exit__(
1348
+ self,
1349
+ exc_type: type[BaseException] | None,
1350
+ exc_value: BaseException | None,
1351
+ traceback: TracebackType | None,
1352
+ ) -> None:
1353
+ self.close()
1354
+
1355
+ def close(self) -> None:
1356
+ """synonym for save, to make it more file-like"""
1357
+ self._save()
1358
+ self._handles.close()
1359
+
1360
+
1361
+ XLS_SIGNATURES = (
1362
+ b"\x09\x00\x04\x00\x07\x00\x10\x00", # BIFF2
1363
+ b"\x09\x02\x06\x00\x00\x00\x10\x00", # BIFF3
1364
+ b"\x09\x04\x06\x00\x00\x00\x10\x00", # BIFF4
1365
+ b"\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1", # Compound File Binary
1366
+ )
1367
+ ZIP_SIGNATURE = b"PK\x03\x04"
1368
+ PEEK_SIZE = max(map(len, XLS_SIGNATURES + (ZIP_SIGNATURE,)))
1369
+
1370
+
1371
+ @doc(storage_options=_shared_docs["storage_options"])
1372
+ def inspect_excel_format(
1373
+ content_or_path: FilePath | ReadBuffer[bytes],
1374
+ storage_options: StorageOptions | None = None,
1375
+ ) -> str | None:
1376
+ """
1377
+ Inspect the path or content of an excel file and get its format.
1378
+
1379
+ Adopted from xlrd: https://github.com/python-excel/xlrd.
1380
+
1381
+ Parameters
1382
+ ----------
1383
+ content_or_path : str or file-like object
1384
+ Path to file or content of file to inspect. May be a URL.
1385
+ {storage_options}
1386
+
1387
+ Returns
1388
+ -------
1389
+ str or None
1390
+ Format of file if it can be determined.
1391
+
1392
+ Raises
1393
+ ------
1394
+ ValueError
1395
+ If resulting stream is empty.
1396
+ BadZipFile
1397
+ If resulting stream does not have an XLS signature and is not a valid zipfile.
1398
+ """
1399
+ if isinstance(content_or_path, bytes):
1400
+ content_or_path = BytesIO(content_or_path)
1401
+
1402
+ with get_handle(
1403
+ content_or_path, "rb", storage_options=storage_options, is_text=False
1404
+ ) as handle:
1405
+ stream = handle.handle
1406
+ stream.seek(0)
1407
+ buf = stream.read(PEEK_SIZE)
1408
+ if buf is None:
1409
+ raise ValueError("stream is empty")
1410
+ assert isinstance(buf, bytes)
1411
+ peek = buf
1412
+ stream.seek(0)
1413
+
1414
+ if any(peek.startswith(sig) for sig in XLS_SIGNATURES):
1415
+ return "xls"
1416
+ elif not peek.startswith(ZIP_SIGNATURE):
1417
+ return None
1418
+
1419
+ with zipfile.ZipFile(stream) as zf:
1420
+ # Workaround for some third party files that use forward slashes and
1421
+ # lower case names.
1422
+ component_names = [
1423
+ name.replace("\\", "/").lower() for name in zf.namelist()
1424
+ ]
1425
+
1426
+ if "xl/workbook.xml" in component_names:
1427
+ return "xlsx"
1428
+ if "xl/workbook.bin" in component_names:
1429
+ return "xlsb"
1430
+ if "content.xml" in component_names:
1431
+ return "ods"
1432
+ return "zip"
1433
+
1434
+
1435
+ class ExcelFile:
1436
+ """
1437
+ Class for parsing tabular Excel sheets into DataFrame objects.
1438
+
1439
+ See read_excel for more documentation.
1440
+
1441
+ Parameters
1442
+ ----------
1443
+ path_or_buffer : str, bytes, path object (pathlib.Path or py._path.local.LocalPath),
1444
+ A file-like object, xlrd workbook or openpyxl workbook.
1445
+ If a string or path object, expected to be a path to a
1446
+ .xls, .xlsx, .xlsb, .xlsm, .odf, .ods, or .odt file.
1447
+ engine : str, default None
1448
+ If io is not a buffer or path, this must be set to identify io.
1449
+ Supported engines: ``xlrd``, ``openpyxl``, ``odf``, ``pyxlsb``, ``calamine``
1450
+ Engine compatibility :
1451
+
1452
+ - ``xlrd`` supports old-style Excel files (.xls).
1453
+ - ``openpyxl`` supports newer Excel file formats.
1454
+ - ``odf`` supports OpenDocument file formats (.odf, .ods, .odt).
1455
+ - ``pyxlsb`` supports Binary Excel files.
1456
+ - ``calamine`` supports Excel (.xls, .xlsx, .xlsm, .xlsb)
1457
+ and OpenDocument (.ods) file formats.
1458
+
1459
+ .. versionchanged:: 1.2.0
1460
+
1461
+ The engine `xlrd <https://xlrd.readthedocs.io/en/latest/>`_
1462
+ now only supports old-style ``.xls`` files.
1463
+ When ``engine=None``, the following logic will be
1464
+ used to determine the engine:
1465
+
1466
+ - If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),
1467
+ then `odf <https://pypi.org/project/odfpy/>`_ will be used.
1468
+ - Otherwise if ``path_or_buffer`` is an xls format,
1469
+ ``xlrd`` will be used.
1470
+ - Otherwise if ``path_or_buffer`` is in xlsb format,
1471
+ `pyxlsb <https://pypi.org/project/pyxlsb/>`_ will be used.
1472
+
1473
+ .. versionadded:: 1.3.0
1474
+
1475
+ - Otherwise if `openpyxl <https://pypi.org/project/openpyxl/>`_ is installed,
1476
+ then ``openpyxl`` will be used.
1477
+ - Otherwise if ``xlrd >= 2.0`` is installed, a ``ValueError`` will be raised.
1478
+
1479
+ .. warning::
1480
+
1481
+ Please do not report issues when using ``xlrd`` to read ``.xlsx`` files.
1482
+ This is not supported, switch to using ``openpyxl`` instead.
1483
+ engine_kwargs : dict, optional
1484
+ Arbitrary keyword arguments passed to excel engine.
1485
+
1486
+ Examples
1487
+ --------
1488
+ >>> file = pd.ExcelFile('myfile.xlsx') # doctest: +SKIP
1489
+ >>> with pd.ExcelFile("myfile.xls") as xls: # doctest: +SKIP
1490
+ ... df1 = pd.read_excel(xls, "Sheet1") # doctest: +SKIP
1491
+ """
1492
+
1493
+ from pandas.io.excel._calamine import CalamineReader
1494
+ from pandas.io.excel._odfreader import ODFReader
1495
+ from pandas.io.excel._openpyxl import OpenpyxlReader
1496
+ from pandas.io.excel._pyxlsb import PyxlsbReader
1497
+ from pandas.io.excel._xlrd import XlrdReader
1498
+
1499
+ _engines: Mapping[str, Any] = {
1500
+ "xlrd": XlrdReader,
1501
+ "openpyxl": OpenpyxlReader,
1502
+ "odf": ODFReader,
1503
+ "pyxlsb": PyxlsbReader,
1504
+ "calamine": CalamineReader,
1505
+ }
1506
+
1507
+ def __init__(
1508
+ self,
1509
+ path_or_buffer,
1510
+ engine: str | None = None,
1511
+ storage_options: StorageOptions | None = None,
1512
+ engine_kwargs: dict | None = None,
1513
+ ) -> None:
1514
+ if engine_kwargs is None:
1515
+ engine_kwargs = {}
1516
+
1517
+ if engine is not None and engine not in self._engines:
1518
+ raise ValueError(f"Unknown engine: {engine}")
1519
+
1520
+ # First argument can also be bytes, so create a buffer
1521
+ if isinstance(path_or_buffer, bytes):
1522
+ path_or_buffer = BytesIO(path_or_buffer)
1523
+ warnings.warn(
1524
+ "Passing bytes to 'read_excel' is deprecated and "
1525
+ "will be removed in a future version. To read from a "
1526
+ "byte string, wrap it in a `BytesIO` object.",
1527
+ FutureWarning,
1528
+ stacklevel=find_stack_level(),
1529
+ )
1530
+
1531
+ # Could be a str, ExcelFile, Book, etc.
1532
+ self.io = path_or_buffer
1533
+ # Always a string
1534
+ self._io = stringify_path(path_or_buffer)
1535
+
1536
+ # Determine xlrd version if installed
1537
+ if import_optional_dependency("xlrd", errors="ignore") is None:
1538
+ xlrd_version = None
1539
+ else:
1540
+ import xlrd
1541
+
1542
+ xlrd_version = Version(get_version(xlrd))
1543
+
1544
+ if engine is None:
1545
+ # Only determine ext if it is needed
1546
+ ext: str | None
1547
+ if xlrd_version is not None and isinstance(path_or_buffer, xlrd.Book):
1548
+ ext = "xls"
1549
+ else:
1550
+ ext = inspect_excel_format(
1551
+ content_or_path=path_or_buffer, storage_options=storage_options
1552
+ )
1553
+ if ext is None:
1554
+ raise ValueError(
1555
+ "Excel file format cannot be determined, you must specify "
1556
+ "an engine manually."
1557
+ )
1558
+
1559
+ engine = config.get_option(f"io.excel.{ext}.reader", silent=True)
1560
+ if engine == "auto":
1561
+ engine = get_default_engine(ext, mode="reader")
1562
+
1563
+ assert engine is not None
1564
+ self.engine = engine
1565
+ self.storage_options = storage_options
1566
+
1567
+ self._reader = self._engines[engine](
1568
+ self._io,
1569
+ storage_options=storage_options,
1570
+ engine_kwargs=engine_kwargs,
1571
+ )
1572
+
1573
+ def __fspath__(self):
1574
+ return self._io
1575
+
1576
+ def parse(
1577
+ self,
1578
+ sheet_name: str | int | list[int] | list[str] | None = 0,
1579
+ header: int | Sequence[int] | None = 0,
1580
+ names: SequenceNotStr[Hashable] | range | None = None,
1581
+ index_col: int | Sequence[int] | None = None,
1582
+ usecols=None,
1583
+ converters=None,
1584
+ true_values: Iterable[Hashable] | None = None,
1585
+ false_values: Iterable[Hashable] | None = None,
1586
+ skiprows: Sequence[int] | int | Callable[[int], object] | None = None,
1587
+ nrows: int | None = None,
1588
+ na_values=None,
1589
+ parse_dates: list | dict | bool = False,
1590
+ date_parser: Callable | lib.NoDefault = lib.no_default,
1591
+ date_format: str | dict[Hashable, str] | None = None,
1592
+ thousands: str | None = None,
1593
+ comment: str | None = None,
1594
+ skipfooter: int = 0,
1595
+ dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
1596
+ **kwds,
1597
+ ) -> DataFrame | dict[str, DataFrame] | dict[int, DataFrame]:
1598
+ """
1599
+ Parse specified sheet(s) into a DataFrame.
1600
+
1601
+ Equivalent to read_excel(ExcelFile, ...) See the read_excel
1602
+ docstring for more info on accepted parameters.
1603
+
1604
+ Returns
1605
+ -------
1606
+ DataFrame or dict of DataFrames
1607
+ DataFrame from the passed in Excel file.
1608
+
1609
+ Examples
1610
+ --------
1611
+ >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C'])
1612
+ >>> df.to_excel('myfile.xlsx') # doctest: +SKIP
1613
+ >>> file = pd.ExcelFile('myfile.xlsx') # doctest: +SKIP
1614
+ >>> file.parse() # doctest: +SKIP
1615
+ """
1616
+ return self._reader.parse(
1617
+ sheet_name=sheet_name,
1618
+ header=header,
1619
+ names=names,
1620
+ index_col=index_col,
1621
+ usecols=usecols,
1622
+ converters=converters,
1623
+ true_values=true_values,
1624
+ false_values=false_values,
1625
+ skiprows=skiprows,
1626
+ nrows=nrows,
1627
+ na_values=na_values,
1628
+ parse_dates=parse_dates,
1629
+ date_parser=date_parser,
1630
+ date_format=date_format,
1631
+ thousands=thousands,
1632
+ comment=comment,
1633
+ skipfooter=skipfooter,
1634
+ dtype_backend=dtype_backend,
1635
+ **kwds,
1636
+ )
1637
+
1638
+ @property
1639
+ def book(self):
1640
+ return self._reader.book
1641
+
1642
+ @property
1643
+ def sheet_names(self):
1644
+ return self._reader.sheet_names
1645
+
1646
+ def close(self) -> None:
1647
+ """close io if necessary"""
1648
+ self._reader.close()
1649
+
1650
+ def __enter__(self) -> Self:
1651
+ return self
1652
+
1653
+ def __exit__(
1654
+ self,
1655
+ exc_type: type[BaseException] | None,
1656
+ exc_value: BaseException | None,
1657
+ traceback: TracebackType | None,
1658
+ ) -> None:
1659
+ self.close()
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_calamine.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from datetime import (
4
+ date,
5
+ datetime,
6
+ time,
7
+ timedelta,
8
+ )
9
+ from typing import (
10
+ TYPE_CHECKING,
11
+ Any,
12
+ Union,
13
+ )
14
+
15
+ from pandas.compat._optional import import_optional_dependency
16
+ from pandas.util._decorators import doc
17
+
18
+ import pandas as pd
19
+ from pandas.core.shared_docs import _shared_docs
20
+
21
+ from pandas.io.excel._base import BaseExcelReader
22
+
23
+ if TYPE_CHECKING:
24
+ from python_calamine import (
25
+ CalamineSheet,
26
+ CalamineWorkbook,
27
+ )
28
+
29
+ from pandas._typing import (
30
+ FilePath,
31
+ NaTType,
32
+ ReadBuffer,
33
+ Scalar,
34
+ StorageOptions,
35
+ )
36
+
37
+ _CellValue = Union[int, float, str, bool, time, date, datetime, timedelta]
38
+
39
+
40
+ class CalamineReader(BaseExcelReader["CalamineWorkbook"]):
41
+ @doc(storage_options=_shared_docs["storage_options"])
42
+ def __init__(
43
+ self,
44
+ filepath_or_buffer: FilePath | ReadBuffer[bytes],
45
+ storage_options: StorageOptions | None = None,
46
+ engine_kwargs: dict | None = None,
47
+ ) -> None:
48
+ """
49
+ Reader using calamine engine (xlsx/xls/xlsb/ods).
50
+
51
+ Parameters
52
+ ----------
53
+ filepath_or_buffer : str, path to be parsed or
54
+ an open readable stream.
55
+ {storage_options}
56
+ engine_kwargs : dict, optional
57
+ Arbitrary keyword arguments passed to excel engine.
58
+ """
59
+ import_optional_dependency("python_calamine")
60
+ super().__init__(
61
+ filepath_or_buffer,
62
+ storage_options=storage_options,
63
+ engine_kwargs=engine_kwargs,
64
+ )
65
+
66
+ @property
67
+ def _workbook_class(self) -> type[CalamineWorkbook]:
68
+ from python_calamine import CalamineWorkbook
69
+
70
+ return CalamineWorkbook
71
+
72
+ def load_workbook(
73
+ self, filepath_or_buffer: FilePath | ReadBuffer[bytes], engine_kwargs: Any
74
+ ) -> CalamineWorkbook:
75
+ from python_calamine import load_workbook
76
+
77
+ return load_workbook(filepath_or_buffer, **engine_kwargs)
78
+
79
+ @property
80
+ def sheet_names(self) -> list[str]:
81
+ from python_calamine import SheetTypeEnum
82
+
83
+ return [
84
+ sheet.name
85
+ for sheet in self.book.sheets_metadata
86
+ if sheet.typ == SheetTypeEnum.WorkSheet
87
+ ]
88
+
89
+ def get_sheet_by_name(self, name: str) -> CalamineSheet:
90
+ self.raise_if_bad_sheet_by_name(name)
91
+ return self.book.get_sheet_by_name(name)
92
+
93
+ def get_sheet_by_index(self, index: int) -> CalamineSheet:
94
+ self.raise_if_bad_sheet_by_index(index)
95
+ return self.book.get_sheet_by_index(index)
96
+
97
+ def get_sheet_data(
98
+ self, sheet: CalamineSheet, file_rows_needed: int | None = None
99
+ ) -> list[list[Scalar | NaTType | time]]:
100
+ def _convert_cell(value: _CellValue) -> Scalar | NaTType | time:
101
+ if isinstance(value, float):
102
+ val = int(value)
103
+ if val == value:
104
+ return val
105
+ else:
106
+ return value
107
+ elif isinstance(value, date):
108
+ return pd.Timestamp(value)
109
+ elif isinstance(value, timedelta):
110
+ return pd.Timedelta(value)
111
+ elif isinstance(value, time):
112
+ return value
113
+
114
+ return value
115
+
116
+ rows: list[list[_CellValue]] = sheet.to_python(
117
+ skip_empty_area=False, nrows=file_rows_needed
118
+ )
119
+ data = [[_convert_cell(cell) for cell in row] for row in rows]
120
+
121
+ return data
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_odfreader.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import (
4
+ TYPE_CHECKING,
5
+ cast,
6
+ )
7
+
8
+ import numpy as np
9
+
10
+ from pandas._typing import (
11
+ FilePath,
12
+ ReadBuffer,
13
+ Scalar,
14
+ StorageOptions,
15
+ )
16
+ from pandas.compat._optional import import_optional_dependency
17
+ from pandas.util._decorators import doc
18
+
19
+ import pandas as pd
20
+ from pandas.core.shared_docs import _shared_docs
21
+
22
+ from pandas.io.excel._base import BaseExcelReader
23
+
24
+ if TYPE_CHECKING:
25
+ from odf.opendocument import OpenDocument
26
+
27
+ from pandas._libs.tslibs.nattype import NaTType
28
+
29
+
30
+ @doc(storage_options=_shared_docs["storage_options"])
31
+ class ODFReader(BaseExcelReader["OpenDocument"]):
32
+ def __init__(
33
+ self,
34
+ filepath_or_buffer: FilePath | ReadBuffer[bytes],
35
+ storage_options: StorageOptions | None = None,
36
+ engine_kwargs: dict | None = None,
37
+ ) -> None:
38
+ """
39
+ Read tables out of OpenDocument formatted files.
40
+
41
+ Parameters
42
+ ----------
43
+ filepath_or_buffer : str, path to be parsed or
44
+ an open readable stream.
45
+ {storage_options}
46
+ engine_kwargs : dict, optional
47
+ Arbitrary keyword arguments passed to excel engine.
48
+ """
49
+ import_optional_dependency("odf")
50
+ super().__init__(
51
+ filepath_or_buffer,
52
+ storage_options=storage_options,
53
+ engine_kwargs=engine_kwargs,
54
+ )
55
+
56
+ @property
57
+ def _workbook_class(self) -> type[OpenDocument]:
58
+ from odf.opendocument import OpenDocument
59
+
60
+ return OpenDocument
61
+
62
+ def load_workbook(
63
+ self, filepath_or_buffer: FilePath | ReadBuffer[bytes], engine_kwargs
64
+ ) -> OpenDocument:
65
+ from odf.opendocument import load
66
+
67
+ return load(filepath_or_buffer, **engine_kwargs)
68
+
69
+ @property
70
+ def empty_value(self) -> str:
71
+ """Property for compat with other readers."""
72
+ return ""
73
+
74
+ @property
75
+ def sheet_names(self) -> list[str]:
76
+ """Return a list of sheet names present in the document"""
77
+ from odf.table import Table
78
+
79
+ tables = self.book.getElementsByType(Table)
80
+ return [t.getAttribute("name") for t in tables]
81
+
82
+ def get_sheet_by_index(self, index: int):
83
+ from odf.table import Table
84
+
85
+ self.raise_if_bad_sheet_by_index(index)
86
+ tables = self.book.getElementsByType(Table)
87
+ return tables[index]
88
+
89
+ def get_sheet_by_name(self, name: str):
90
+ from odf.table import Table
91
+
92
+ self.raise_if_bad_sheet_by_name(name)
93
+ tables = self.book.getElementsByType(Table)
94
+
95
+ for table in tables:
96
+ if table.getAttribute("name") == name:
97
+ return table
98
+
99
+ self.close()
100
+ raise ValueError(f"sheet {name} not found")
101
+
102
+ def get_sheet_data(
103
+ self, sheet, file_rows_needed: int | None = None
104
+ ) -> list[list[Scalar | NaTType]]:
105
+ """
106
+ Parse an ODF Table into a list of lists
107
+ """
108
+ from odf.table import (
109
+ CoveredTableCell,
110
+ TableCell,
111
+ TableRow,
112
+ )
113
+
114
+ covered_cell_name = CoveredTableCell().qname
115
+ table_cell_name = TableCell().qname
116
+ cell_names = {covered_cell_name, table_cell_name}
117
+
118
+ sheet_rows = sheet.getElementsByType(TableRow)
119
+ empty_rows = 0
120
+ max_row_len = 0
121
+
122
+ table: list[list[Scalar | NaTType]] = []
123
+
124
+ for sheet_row in sheet_rows:
125
+ sheet_cells = [
126
+ x
127
+ for x in sheet_row.childNodes
128
+ if hasattr(x, "qname") and x.qname in cell_names
129
+ ]
130
+ empty_cells = 0
131
+ table_row: list[Scalar | NaTType] = []
132
+
133
+ for sheet_cell in sheet_cells:
134
+ if sheet_cell.qname == table_cell_name:
135
+ value = self._get_cell_value(sheet_cell)
136
+ else:
137
+ value = self.empty_value
138
+
139
+ column_repeat = self._get_column_repeat(sheet_cell)
140
+
141
+ # Queue up empty values, writing only if content succeeds them
142
+ if value == self.empty_value:
143
+ empty_cells += column_repeat
144
+ else:
145
+ table_row.extend([self.empty_value] * empty_cells)
146
+ empty_cells = 0
147
+ table_row.extend([value] * column_repeat)
148
+
149
+ if max_row_len < len(table_row):
150
+ max_row_len = len(table_row)
151
+
152
+ row_repeat = self._get_row_repeat(sheet_row)
153
+ if len(table_row) == 0:
154
+ empty_rows += row_repeat
155
+ else:
156
+ # add blank rows to our table
157
+ table.extend([[self.empty_value]] * empty_rows)
158
+ empty_rows = 0
159
+ table.extend(table_row for _ in range(row_repeat))
160
+ if file_rows_needed is not None and len(table) >= file_rows_needed:
161
+ break
162
+
163
+ # Make our table square
164
+ for row in table:
165
+ if len(row) < max_row_len:
166
+ row.extend([self.empty_value] * (max_row_len - len(row)))
167
+
168
+ return table
169
+
170
+ def _get_row_repeat(self, row) -> int:
171
+ """
172
+ Return number of times this row was repeated
173
+ Repeating an empty row appeared to be a common way
174
+ of representing sparse rows in the table.
175
+ """
176
+ from odf.namespaces import TABLENS
177
+
178
+ return int(row.attributes.get((TABLENS, "number-rows-repeated"), 1))
179
+
180
+ def _get_column_repeat(self, cell) -> int:
181
+ from odf.namespaces import TABLENS
182
+
183
+ return int(cell.attributes.get((TABLENS, "number-columns-repeated"), 1))
184
+
185
+ def _get_cell_value(self, cell) -> Scalar | NaTType:
186
+ from odf.namespaces import OFFICENS
187
+
188
+ if str(cell) == "#N/A":
189
+ return np.nan
190
+
191
+ cell_type = cell.attributes.get((OFFICENS, "value-type"))
192
+ if cell_type == "boolean":
193
+ if str(cell) == "TRUE":
194
+ return True
195
+ return False
196
+ if cell_type is None:
197
+ return self.empty_value
198
+ elif cell_type == "float":
199
+ # GH5394
200
+ cell_value = float(cell.attributes.get((OFFICENS, "value")))
201
+ val = int(cell_value)
202
+ if val == cell_value:
203
+ return val
204
+ return cell_value
205
+ elif cell_type == "percentage":
206
+ cell_value = cell.attributes.get((OFFICENS, "value"))
207
+ return float(cell_value)
208
+ elif cell_type == "string":
209
+ return self._get_cell_string_value(cell)
210
+ elif cell_type == "currency":
211
+ cell_value = cell.attributes.get((OFFICENS, "value"))
212
+ return float(cell_value)
213
+ elif cell_type == "date":
214
+ cell_value = cell.attributes.get((OFFICENS, "date-value"))
215
+ return pd.Timestamp(cell_value)
216
+ elif cell_type == "time":
217
+ stamp = pd.Timestamp(str(cell))
218
+ # cast needed here because Scalar doesn't include datetime.time
219
+ return cast(Scalar, stamp.time())
220
+ else:
221
+ self.close()
222
+ raise ValueError(f"Unrecognized type {cell_type}")
223
+
224
+ def _get_cell_string_value(self, cell) -> str:
225
+ """
226
+ Find and decode OpenDocument text:s tags that represent
227
+ a run length encoded sequence of space characters.
228
+ """
229
+ from odf.element import Element
230
+ from odf.namespaces import TEXTNS
231
+ from odf.office import Annotation
232
+ from odf.text import S
233
+
234
+ office_annotation = Annotation().qname
235
+ text_s = S().qname
236
+
237
+ value = []
238
+
239
+ for fragment in cell.childNodes:
240
+ if isinstance(fragment, Element):
241
+ if fragment.qname == text_s:
242
+ spaces = int(fragment.attributes.get((TEXTNS, "c"), 1))
243
+ value.append(" " * spaces)
244
+ elif fragment.qname == office_annotation:
245
+ continue
246
+ else:
247
+ # recursive impl needed in case of nested fragments
248
+ # with multiple spaces
249
+ # https://github.com/pandas-dev/pandas/pull/36175#discussion_r484639704
250
+ value.append(self._get_cell_string_value(fragment))
251
+ else:
252
+ value.append(str(fragment).strip("\n"))
253
+ return "".join(value)
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_odswriter.py ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from collections import defaultdict
4
+ import datetime
5
+ import json
6
+ from typing import (
7
+ TYPE_CHECKING,
8
+ Any,
9
+ DefaultDict,
10
+ cast,
11
+ overload,
12
+ )
13
+
14
+ from pandas.io.excel._base import ExcelWriter
15
+ from pandas.io.excel._util import (
16
+ combine_kwargs,
17
+ validate_freeze_panes,
18
+ )
19
+
20
+ if TYPE_CHECKING:
21
+ from pandas._typing import (
22
+ ExcelWriterIfSheetExists,
23
+ FilePath,
24
+ StorageOptions,
25
+ WriteExcelBuffer,
26
+ )
27
+
28
+ from pandas.io.formats.excel import ExcelCell
29
+
30
+
31
+ class ODSWriter(ExcelWriter):
32
+ _engine = "odf"
33
+ _supported_extensions = (".ods",)
34
+
35
+ def __init__(
36
+ self,
37
+ path: FilePath | WriteExcelBuffer | ExcelWriter,
38
+ engine: str | None = None,
39
+ date_format: str | None = None,
40
+ datetime_format=None,
41
+ mode: str = "w",
42
+ storage_options: StorageOptions | None = None,
43
+ if_sheet_exists: ExcelWriterIfSheetExists | None = None,
44
+ engine_kwargs: dict[str, Any] | None = None,
45
+ **kwargs,
46
+ ) -> None:
47
+ from odf.opendocument import OpenDocumentSpreadsheet
48
+
49
+ if mode == "a":
50
+ raise ValueError("Append mode is not supported with odf!")
51
+
52
+ engine_kwargs = combine_kwargs(engine_kwargs, kwargs)
53
+ self._book = OpenDocumentSpreadsheet(**engine_kwargs)
54
+
55
+ super().__init__(
56
+ path,
57
+ mode=mode,
58
+ storage_options=storage_options,
59
+ if_sheet_exists=if_sheet_exists,
60
+ engine_kwargs=engine_kwargs,
61
+ )
62
+
63
+ self._style_dict: dict[str, str] = {}
64
+
65
+ @property
66
+ def book(self):
67
+ """
68
+ Book instance of class odf.opendocument.OpenDocumentSpreadsheet.
69
+
70
+ This attribute can be used to access engine-specific features.
71
+ """
72
+ return self._book
73
+
74
+ @property
75
+ def sheets(self) -> dict[str, Any]:
76
+ """Mapping of sheet names to sheet objects."""
77
+ from odf.table import Table
78
+
79
+ result = {
80
+ sheet.getAttribute("name"): sheet
81
+ for sheet in self.book.getElementsByType(Table)
82
+ }
83
+ return result
84
+
85
+ def _save(self) -> None:
86
+ """
87
+ Save workbook to disk.
88
+ """
89
+ for sheet in self.sheets.values():
90
+ self.book.spreadsheet.addElement(sheet)
91
+ self.book.save(self._handles.handle)
92
+
93
+ def _write_cells(
94
+ self,
95
+ cells: list[ExcelCell],
96
+ sheet_name: str | None = None,
97
+ startrow: int = 0,
98
+ startcol: int = 0,
99
+ freeze_panes: tuple[int, int] | None = None,
100
+ ) -> None:
101
+ """
102
+ Write the frame cells using odf
103
+ """
104
+ from odf.table import (
105
+ Table,
106
+ TableCell,
107
+ TableRow,
108
+ )
109
+ from odf.text import P
110
+
111
+ sheet_name = self._get_sheet_name(sheet_name)
112
+ assert sheet_name is not None
113
+
114
+ if sheet_name in self.sheets:
115
+ wks = self.sheets[sheet_name]
116
+ else:
117
+ wks = Table(name=sheet_name)
118
+ self.book.spreadsheet.addElement(wks)
119
+
120
+ if validate_freeze_panes(freeze_panes):
121
+ freeze_panes = cast(tuple[int, int], freeze_panes)
122
+ self._create_freeze_panes(sheet_name, freeze_panes)
123
+
124
+ for _ in range(startrow):
125
+ wks.addElement(TableRow())
126
+
127
+ rows: DefaultDict = defaultdict(TableRow)
128
+ col_count: DefaultDict = defaultdict(int)
129
+
130
+ for cell in sorted(cells, key=lambda cell: (cell.row, cell.col)):
131
+ # only add empty cells if the row is still empty
132
+ if not col_count[cell.row]:
133
+ for _ in range(startcol):
134
+ rows[cell.row].addElement(TableCell())
135
+
136
+ # fill with empty cells if needed
137
+ for _ in range(cell.col - col_count[cell.row]):
138
+ rows[cell.row].addElement(TableCell())
139
+ col_count[cell.row] += 1
140
+
141
+ pvalue, tc = self._make_table_cell(cell)
142
+ rows[cell.row].addElement(tc)
143
+ col_count[cell.row] += 1
144
+ p = P(text=pvalue)
145
+ tc.addElement(p)
146
+
147
+ # add all rows to the sheet
148
+ if len(rows) > 0:
149
+ for row_nr in range(max(rows.keys()) + 1):
150
+ wks.addElement(rows[row_nr])
151
+
152
+ def _make_table_cell_attributes(self, cell) -> dict[str, int | str]:
153
+ """Convert cell attributes to OpenDocument attributes
154
+
155
+ Parameters
156
+ ----------
157
+ cell : ExcelCell
158
+ Spreadsheet cell data
159
+
160
+ Returns
161
+ -------
162
+ attributes : Dict[str, Union[int, str]]
163
+ Dictionary with attributes and attribute values
164
+ """
165
+ attributes: dict[str, int | str] = {}
166
+ style_name = self._process_style(cell.style)
167
+ if style_name is not None:
168
+ attributes["stylename"] = style_name
169
+ if cell.mergestart is not None and cell.mergeend is not None:
170
+ attributes["numberrowsspanned"] = max(1, cell.mergestart)
171
+ attributes["numbercolumnsspanned"] = cell.mergeend
172
+ return attributes
173
+
174
+ def _make_table_cell(self, cell) -> tuple[object, Any]:
175
+ """Convert cell data to an OpenDocument spreadsheet cell
176
+
177
+ Parameters
178
+ ----------
179
+ cell : ExcelCell
180
+ Spreadsheet cell data
181
+
182
+ Returns
183
+ -------
184
+ pvalue, cell : Tuple[str, TableCell]
185
+ Display value, Cell value
186
+ """
187
+ from odf.table import TableCell
188
+
189
+ attributes = self._make_table_cell_attributes(cell)
190
+ val, fmt = self._value_with_fmt(cell.val)
191
+ pvalue = value = val
192
+ if isinstance(val, bool):
193
+ value = str(val).lower()
194
+ pvalue = str(val).upper()
195
+ return (
196
+ pvalue,
197
+ TableCell(
198
+ valuetype="boolean",
199
+ booleanvalue=value,
200
+ attributes=attributes,
201
+ ),
202
+ )
203
+ elif isinstance(val, datetime.datetime):
204
+ # Fast formatting
205
+ value = val.isoformat()
206
+ # Slow but locale-dependent
207
+ pvalue = val.strftime("%c")
208
+ return (
209
+ pvalue,
210
+ TableCell(valuetype="date", datevalue=value, attributes=attributes),
211
+ )
212
+ elif isinstance(val, datetime.date):
213
+ # Fast formatting
214
+ value = f"{val.year}-{val.month:02d}-{val.day:02d}"
215
+ # Slow but locale-dependent
216
+ pvalue = val.strftime("%x")
217
+ return (
218
+ pvalue,
219
+ TableCell(valuetype="date", datevalue=value, attributes=attributes),
220
+ )
221
+ elif isinstance(val, str):
222
+ return (
223
+ pvalue,
224
+ TableCell(
225
+ valuetype="string",
226
+ stringvalue=value,
227
+ attributes=attributes,
228
+ ),
229
+ )
230
+ else:
231
+ return (
232
+ pvalue,
233
+ TableCell(
234
+ valuetype="float",
235
+ value=value,
236
+ attributes=attributes,
237
+ ),
238
+ )
239
+
240
+ @overload
241
+ def _process_style(self, style: dict[str, Any]) -> str:
242
+ ...
243
+
244
+ @overload
245
+ def _process_style(self, style: None) -> None:
246
+ ...
247
+
248
+ def _process_style(self, style: dict[str, Any] | None) -> str | None:
249
+ """Convert a style dictionary to a OpenDocument style sheet
250
+
251
+ Parameters
252
+ ----------
253
+ style : Dict
254
+ Style dictionary
255
+
256
+ Returns
257
+ -------
258
+ style_key : str
259
+ Unique style key for later reference in sheet
260
+ """
261
+ from odf.style import (
262
+ ParagraphProperties,
263
+ Style,
264
+ TableCellProperties,
265
+ TextProperties,
266
+ )
267
+
268
+ if style is None:
269
+ return None
270
+ style_key = json.dumps(style)
271
+ if style_key in self._style_dict:
272
+ return self._style_dict[style_key]
273
+ name = f"pd{len(self._style_dict)+1}"
274
+ self._style_dict[style_key] = name
275
+ odf_style = Style(name=name, family="table-cell")
276
+ if "font" in style:
277
+ font = style["font"]
278
+ if font.get("bold", False):
279
+ odf_style.addElement(TextProperties(fontweight="bold"))
280
+ if "borders" in style:
281
+ borders = style["borders"]
282
+ for side, thickness in borders.items():
283
+ thickness_translation = {"thin": "0.75pt solid #000000"}
284
+ odf_style.addElement(
285
+ TableCellProperties(
286
+ attributes={f"border{side}": thickness_translation[thickness]}
287
+ )
288
+ )
289
+ if "alignment" in style:
290
+ alignment = style["alignment"]
291
+ horizontal = alignment.get("horizontal")
292
+ if horizontal:
293
+ odf_style.addElement(ParagraphProperties(textalign=horizontal))
294
+ vertical = alignment.get("vertical")
295
+ if vertical:
296
+ odf_style.addElement(TableCellProperties(verticalalign=vertical))
297
+ self.book.styles.addElement(odf_style)
298
+ return name
299
+
300
+ def _create_freeze_panes(
301
+ self, sheet_name: str, freeze_panes: tuple[int, int]
302
+ ) -> None:
303
+ """
304
+ Create freeze panes in the sheet.
305
+
306
+ Parameters
307
+ ----------
308
+ sheet_name : str
309
+ Name of the spreadsheet
310
+ freeze_panes : tuple of (int, int)
311
+ Freeze pane location x and y
312
+ """
313
+ from odf.config import (
314
+ ConfigItem,
315
+ ConfigItemMapEntry,
316
+ ConfigItemMapIndexed,
317
+ ConfigItemMapNamed,
318
+ ConfigItemSet,
319
+ )
320
+
321
+ config_item_set = ConfigItemSet(name="ooo:view-settings")
322
+ self.book.settings.addElement(config_item_set)
323
+
324
+ config_item_map_indexed = ConfigItemMapIndexed(name="Views")
325
+ config_item_set.addElement(config_item_map_indexed)
326
+
327
+ config_item_map_entry = ConfigItemMapEntry()
328
+ config_item_map_indexed.addElement(config_item_map_entry)
329
+
330
+ config_item_map_named = ConfigItemMapNamed(name="Tables")
331
+ config_item_map_entry.addElement(config_item_map_named)
332
+
333
+ config_item_map_entry = ConfigItemMapEntry(name=sheet_name)
334
+ config_item_map_named.addElement(config_item_map_entry)
335
+
336
+ config_item_map_entry.addElement(
337
+ ConfigItem(name="HorizontalSplitMode", type="short", text="2")
338
+ )
339
+ config_item_map_entry.addElement(
340
+ ConfigItem(name="VerticalSplitMode", type="short", text="2")
341
+ )
342
+ config_item_map_entry.addElement(
343
+ ConfigItem(
344
+ name="HorizontalSplitPosition", type="int", text=str(freeze_panes[0])
345
+ )
346
+ )
347
+ config_item_map_entry.addElement(
348
+ ConfigItem(
349
+ name="VerticalSplitPosition", type="int", text=str(freeze_panes[1])
350
+ )
351
+ )
352
+ config_item_map_entry.addElement(
353
+ ConfigItem(name="PositionRight", type="int", text=str(freeze_panes[0]))
354
+ )
355
+ config_item_map_entry.addElement(
356
+ ConfigItem(name="PositionBottom", type="int", text=str(freeze_panes[1]))
357
+ )
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_openpyxl.py ADDED
@@ -0,0 +1,639 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import mmap
4
+ from typing import (
5
+ TYPE_CHECKING,
6
+ Any,
7
+ cast,
8
+ )
9
+
10
+ import numpy as np
11
+
12
+ from pandas.compat._optional import import_optional_dependency
13
+ from pandas.util._decorators import doc
14
+
15
+ from pandas.core.shared_docs import _shared_docs
16
+
17
+ from pandas.io.excel._base import (
18
+ BaseExcelReader,
19
+ ExcelWriter,
20
+ )
21
+ from pandas.io.excel._util import (
22
+ combine_kwargs,
23
+ validate_freeze_panes,
24
+ )
25
+
26
+ if TYPE_CHECKING:
27
+ from openpyxl import Workbook
28
+ from openpyxl.descriptors.serialisable import Serialisable
29
+
30
+ from pandas._typing import (
31
+ ExcelWriterIfSheetExists,
32
+ FilePath,
33
+ ReadBuffer,
34
+ Scalar,
35
+ StorageOptions,
36
+ WriteExcelBuffer,
37
+ )
38
+
39
+
40
+ class OpenpyxlWriter(ExcelWriter):
41
+ _engine = "openpyxl"
42
+ _supported_extensions = (".xlsx", ".xlsm")
43
+
44
+ def __init__(
45
+ self,
46
+ path: FilePath | WriteExcelBuffer | ExcelWriter,
47
+ engine: str | None = None,
48
+ date_format: str | None = None,
49
+ datetime_format: str | None = None,
50
+ mode: str = "w",
51
+ storage_options: StorageOptions | None = None,
52
+ if_sheet_exists: ExcelWriterIfSheetExists | None = None,
53
+ engine_kwargs: dict[str, Any] | None = None,
54
+ **kwargs,
55
+ ) -> None:
56
+ # Use the openpyxl module as the Excel writer.
57
+ from openpyxl.workbook import Workbook
58
+
59
+ engine_kwargs = combine_kwargs(engine_kwargs, kwargs)
60
+
61
+ super().__init__(
62
+ path,
63
+ mode=mode,
64
+ storage_options=storage_options,
65
+ if_sheet_exists=if_sheet_exists,
66
+ engine_kwargs=engine_kwargs,
67
+ )
68
+
69
+ # ExcelWriter replaced "a" by "r+" to allow us to first read the excel file from
70
+ # the file and later write to it
71
+ if "r+" in self._mode: # Load from existing workbook
72
+ from openpyxl import load_workbook
73
+
74
+ try:
75
+ self._book = load_workbook(self._handles.handle, **engine_kwargs)
76
+ except TypeError:
77
+ self._handles.handle.close()
78
+ raise
79
+ self._handles.handle.seek(0)
80
+ else:
81
+ # Create workbook object with default optimized_write=True.
82
+ try:
83
+ self._book = Workbook(**engine_kwargs)
84
+ except TypeError:
85
+ self._handles.handle.close()
86
+ raise
87
+
88
+ if self.book.worksheets:
89
+ self.book.remove(self.book.worksheets[0])
90
+
91
+ @property
92
+ def book(self) -> Workbook:
93
+ """
94
+ Book instance of class openpyxl.workbook.Workbook.
95
+
96
+ This attribute can be used to access engine-specific features.
97
+ """
98
+ return self._book
99
+
100
+ @property
101
+ def sheets(self) -> dict[str, Any]:
102
+ """Mapping of sheet names to sheet objects."""
103
+ result = {name: self.book[name] for name in self.book.sheetnames}
104
+ return result
105
+
106
+ def _save(self) -> None:
107
+ """
108
+ Save workbook to disk.
109
+ """
110
+ self.book.save(self._handles.handle)
111
+ if "r+" in self._mode and not isinstance(self._handles.handle, mmap.mmap):
112
+ # truncate file to the written content
113
+ self._handles.handle.truncate()
114
+
115
+ @classmethod
116
+ def _convert_to_style_kwargs(cls, style_dict: dict) -> dict[str, Serialisable]:
117
+ """
118
+ Convert a style_dict to a set of kwargs suitable for initializing
119
+ or updating-on-copy an openpyxl v2 style object.
120
+
121
+ Parameters
122
+ ----------
123
+ style_dict : dict
124
+ A dict with zero or more of the following keys (or their synonyms).
125
+ 'font'
126
+ 'fill'
127
+ 'border' ('borders')
128
+ 'alignment'
129
+ 'number_format'
130
+ 'protection'
131
+
132
+ Returns
133
+ -------
134
+ style_kwargs : dict
135
+ A dict with the same, normalized keys as ``style_dict`` but each
136
+ value has been replaced with a native openpyxl style object of the
137
+ appropriate class.
138
+ """
139
+ _style_key_map = {"borders": "border"}
140
+
141
+ style_kwargs: dict[str, Serialisable] = {}
142
+ for k, v in style_dict.items():
143
+ k = _style_key_map.get(k, k)
144
+ _conv_to_x = getattr(cls, f"_convert_to_{k}", lambda x: None)
145
+ new_v = _conv_to_x(v)
146
+ if new_v:
147
+ style_kwargs[k] = new_v
148
+
149
+ return style_kwargs
150
+
151
+ @classmethod
152
+ def _convert_to_color(cls, color_spec):
153
+ """
154
+ Convert ``color_spec`` to an openpyxl v2 Color object.
155
+
156
+ Parameters
157
+ ----------
158
+ color_spec : str, dict
159
+ A 32-bit ARGB hex string, or a dict with zero or more of the
160
+ following keys.
161
+ 'rgb'
162
+ 'indexed'
163
+ 'auto'
164
+ 'theme'
165
+ 'tint'
166
+ 'index'
167
+ 'type'
168
+
169
+ Returns
170
+ -------
171
+ color : openpyxl.styles.Color
172
+ """
173
+ from openpyxl.styles import Color
174
+
175
+ if isinstance(color_spec, str):
176
+ return Color(color_spec)
177
+ else:
178
+ return Color(**color_spec)
179
+
180
+ @classmethod
181
+ def _convert_to_font(cls, font_dict):
182
+ """
183
+ Convert ``font_dict`` to an openpyxl v2 Font object.
184
+
185
+ Parameters
186
+ ----------
187
+ font_dict : dict
188
+ A dict with zero or more of the following keys (or their synonyms).
189
+ 'name'
190
+ 'size' ('sz')
191
+ 'bold' ('b')
192
+ 'italic' ('i')
193
+ 'underline' ('u')
194
+ 'strikethrough' ('strike')
195
+ 'color'
196
+ 'vertAlign' ('vertalign')
197
+ 'charset'
198
+ 'scheme'
199
+ 'family'
200
+ 'outline'
201
+ 'shadow'
202
+ 'condense'
203
+
204
+ Returns
205
+ -------
206
+ font : openpyxl.styles.Font
207
+ """
208
+ from openpyxl.styles import Font
209
+
210
+ _font_key_map = {
211
+ "sz": "size",
212
+ "b": "bold",
213
+ "i": "italic",
214
+ "u": "underline",
215
+ "strike": "strikethrough",
216
+ "vertalign": "vertAlign",
217
+ }
218
+
219
+ font_kwargs = {}
220
+ for k, v in font_dict.items():
221
+ k = _font_key_map.get(k, k)
222
+ if k == "color":
223
+ v = cls._convert_to_color(v)
224
+ font_kwargs[k] = v
225
+
226
+ return Font(**font_kwargs)
227
+
228
+ @classmethod
229
+ def _convert_to_stop(cls, stop_seq):
230
+ """
231
+ Convert ``stop_seq`` to a list of openpyxl v2 Color objects,
232
+ suitable for initializing the ``GradientFill`` ``stop`` parameter.
233
+
234
+ Parameters
235
+ ----------
236
+ stop_seq : iterable
237
+ An iterable that yields objects suitable for consumption by
238
+ ``_convert_to_color``.
239
+
240
+ Returns
241
+ -------
242
+ stop : list of openpyxl.styles.Color
243
+ """
244
+ return map(cls._convert_to_color, stop_seq)
245
+
246
+ @classmethod
247
+ def _convert_to_fill(cls, fill_dict: dict[str, Any]):
248
+ """
249
+ Convert ``fill_dict`` to an openpyxl v2 Fill object.
250
+
251
+ Parameters
252
+ ----------
253
+ fill_dict : dict
254
+ A dict with one or more of the following keys (or their synonyms),
255
+ 'fill_type' ('patternType', 'patterntype')
256
+ 'start_color' ('fgColor', 'fgcolor')
257
+ 'end_color' ('bgColor', 'bgcolor')
258
+ or one or more of the following keys (or their synonyms).
259
+ 'type' ('fill_type')
260
+ 'degree'
261
+ 'left'
262
+ 'right'
263
+ 'top'
264
+ 'bottom'
265
+ 'stop'
266
+
267
+ Returns
268
+ -------
269
+ fill : openpyxl.styles.Fill
270
+ """
271
+ from openpyxl.styles import (
272
+ GradientFill,
273
+ PatternFill,
274
+ )
275
+
276
+ _pattern_fill_key_map = {
277
+ "patternType": "fill_type",
278
+ "patterntype": "fill_type",
279
+ "fgColor": "start_color",
280
+ "fgcolor": "start_color",
281
+ "bgColor": "end_color",
282
+ "bgcolor": "end_color",
283
+ }
284
+
285
+ _gradient_fill_key_map = {"fill_type": "type"}
286
+
287
+ pfill_kwargs = {}
288
+ gfill_kwargs = {}
289
+ for k, v in fill_dict.items():
290
+ pk = _pattern_fill_key_map.get(k)
291
+ gk = _gradient_fill_key_map.get(k)
292
+ if pk in ["start_color", "end_color"]:
293
+ v = cls._convert_to_color(v)
294
+ if gk == "stop":
295
+ v = cls._convert_to_stop(v)
296
+ if pk:
297
+ pfill_kwargs[pk] = v
298
+ elif gk:
299
+ gfill_kwargs[gk] = v
300
+ else:
301
+ pfill_kwargs[k] = v
302
+ gfill_kwargs[k] = v
303
+
304
+ try:
305
+ return PatternFill(**pfill_kwargs)
306
+ except TypeError:
307
+ return GradientFill(**gfill_kwargs)
308
+
309
+ @classmethod
310
+ def _convert_to_side(cls, side_spec):
311
+ """
312
+ Convert ``side_spec`` to an openpyxl v2 Side object.
313
+
314
+ Parameters
315
+ ----------
316
+ side_spec : str, dict
317
+ A string specifying the border style, or a dict with zero or more
318
+ of the following keys (or their synonyms).
319
+ 'style' ('border_style')
320
+ 'color'
321
+
322
+ Returns
323
+ -------
324
+ side : openpyxl.styles.Side
325
+ """
326
+ from openpyxl.styles import Side
327
+
328
+ _side_key_map = {"border_style": "style"}
329
+
330
+ if isinstance(side_spec, str):
331
+ return Side(style=side_spec)
332
+
333
+ side_kwargs = {}
334
+ for k, v in side_spec.items():
335
+ k = _side_key_map.get(k, k)
336
+ if k == "color":
337
+ v = cls._convert_to_color(v)
338
+ side_kwargs[k] = v
339
+
340
+ return Side(**side_kwargs)
341
+
342
+ @classmethod
343
+ def _convert_to_border(cls, border_dict):
344
+ """
345
+ Convert ``border_dict`` to an openpyxl v2 Border object.
346
+
347
+ Parameters
348
+ ----------
349
+ border_dict : dict
350
+ A dict with zero or more of the following keys (or their synonyms).
351
+ 'left'
352
+ 'right'
353
+ 'top'
354
+ 'bottom'
355
+ 'diagonal'
356
+ 'diagonal_direction'
357
+ 'vertical'
358
+ 'horizontal'
359
+ 'diagonalUp' ('diagonalup')
360
+ 'diagonalDown' ('diagonaldown')
361
+ 'outline'
362
+
363
+ Returns
364
+ -------
365
+ border : openpyxl.styles.Border
366
+ """
367
+ from openpyxl.styles import Border
368
+
369
+ _border_key_map = {"diagonalup": "diagonalUp", "diagonaldown": "diagonalDown"}
370
+
371
+ border_kwargs = {}
372
+ for k, v in border_dict.items():
373
+ k = _border_key_map.get(k, k)
374
+ if k == "color":
375
+ v = cls._convert_to_color(v)
376
+ if k in ["left", "right", "top", "bottom", "diagonal"]:
377
+ v = cls._convert_to_side(v)
378
+ border_kwargs[k] = v
379
+
380
+ return Border(**border_kwargs)
381
+
382
+ @classmethod
383
+ def _convert_to_alignment(cls, alignment_dict):
384
+ """
385
+ Convert ``alignment_dict`` to an openpyxl v2 Alignment object.
386
+
387
+ Parameters
388
+ ----------
389
+ alignment_dict : dict
390
+ A dict with zero or more of the following keys (or their synonyms).
391
+ 'horizontal'
392
+ 'vertical'
393
+ 'text_rotation'
394
+ 'wrap_text'
395
+ 'shrink_to_fit'
396
+ 'indent'
397
+ Returns
398
+ -------
399
+ alignment : openpyxl.styles.Alignment
400
+ """
401
+ from openpyxl.styles import Alignment
402
+
403
+ return Alignment(**alignment_dict)
404
+
405
+ @classmethod
406
+ def _convert_to_number_format(cls, number_format_dict):
407
+ """
408
+ Convert ``number_format_dict`` to an openpyxl v2.1.0 number format
409
+ initializer.
410
+
411
+ Parameters
412
+ ----------
413
+ number_format_dict : dict
414
+ A dict with zero or more of the following keys.
415
+ 'format_code' : str
416
+
417
+ Returns
418
+ -------
419
+ number_format : str
420
+ """
421
+ return number_format_dict["format_code"]
422
+
423
+ @classmethod
424
+ def _convert_to_protection(cls, protection_dict):
425
+ """
426
+ Convert ``protection_dict`` to an openpyxl v2 Protection object.
427
+
428
+ Parameters
429
+ ----------
430
+ protection_dict : dict
431
+ A dict with zero or more of the following keys.
432
+ 'locked'
433
+ 'hidden'
434
+
435
+ Returns
436
+ -------
437
+ """
438
+ from openpyxl.styles import Protection
439
+
440
+ return Protection(**protection_dict)
441
+
442
+ def _write_cells(
443
+ self,
444
+ cells,
445
+ sheet_name: str | None = None,
446
+ startrow: int = 0,
447
+ startcol: int = 0,
448
+ freeze_panes: tuple[int, int] | None = None,
449
+ ) -> None:
450
+ # Write the frame cells using openpyxl.
451
+ sheet_name = self._get_sheet_name(sheet_name)
452
+
453
+ _style_cache: dict[str, dict[str, Serialisable]] = {}
454
+
455
+ if sheet_name in self.sheets and self._if_sheet_exists != "new":
456
+ if "r+" in self._mode:
457
+ if self._if_sheet_exists == "replace":
458
+ old_wks = self.sheets[sheet_name]
459
+ target_index = self.book.index(old_wks)
460
+ del self.book[sheet_name]
461
+ wks = self.book.create_sheet(sheet_name, target_index)
462
+ elif self._if_sheet_exists == "error":
463
+ raise ValueError(
464
+ f"Sheet '{sheet_name}' already exists and "
465
+ f"if_sheet_exists is set to 'error'."
466
+ )
467
+ elif self._if_sheet_exists == "overlay":
468
+ wks = self.sheets[sheet_name]
469
+ else:
470
+ raise ValueError(
471
+ f"'{self._if_sheet_exists}' is not valid for if_sheet_exists. "
472
+ "Valid options are 'error', 'new', 'replace' and 'overlay'."
473
+ )
474
+ else:
475
+ wks = self.sheets[sheet_name]
476
+ else:
477
+ wks = self.book.create_sheet()
478
+ wks.title = sheet_name
479
+
480
+ if validate_freeze_panes(freeze_panes):
481
+ freeze_panes = cast(tuple[int, int], freeze_panes)
482
+ wks.freeze_panes = wks.cell(
483
+ row=freeze_panes[0] + 1, column=freeze_panes[1] + 1
484
+ )
485
+
486
+ for cell in cells:
487
+ xcell = wks.cell(
488
+ row=startrow + cell.row + 1, column=startcol + cell.col + 1
489
+ )
490
+ xcell.value, fmt = self._value_with_fmt(cell.val)
491
+ if fmt:
492
+ xcell.number_format = fmt
493
+
494
+ style_kwargs: dict[str, Serialisable] | None = {}
495
+ if cell.style:
496
+ key = str(cell.style)
497
+ style_kwargs = _style_cache.get(key)
498
+ if style_kwargs is None:
499
+ style_kwargs = self._convert_to_style_kwargs(cell.style)
500
+ _style_cache[key] = style_kwargs
501
+
502
+ if style_kwargs:
503
+ for k, v in style_kwargs.items():
504
+ setattr(xcell, k, v)
505
+
506
+ if cell.mergestart is not None and cell.mergeend is not None:
507
+ wks.merge_cells(
508
+ start_row=startrow + cell.row + 1,
509
+ start_column=startcol + cell.col + 1,
510
+ end_column=startcol + cell.mergeend + 1,
511
+ end_row=startrow + cell.mergestart + 1,
512
+ )
513
+
514
+ # When cells are merged only the top-left cell is preserved
515
+ # The behaviour of the other cells in a merged range is
516
+ # undefined
517
+ if style_kwargs:
518
+ first_row = startrow + cell.row + 1
519
+ last_row = startrow + cell.mergestart + 1
520
+ first_col = startcol + cell.col + 1
521
+ last_col = startcol + cell.mergeend + 1
522
+
523
+ for row in range(first_row, last_row + 1):
524
+ for col in range(first_col, last_col + 1):
525
+ if row == first_row and col == first_col:
526
+ # Ignore first cell. It is already handled.
527
+ continue
528
+ xcell = wks.cell(column=col, row=row)
529
+ for k, v in style_kwargs.items():
530
+ setattr(xcell, k, v)
531
+
532
+
533
+ class OpenpyxlReader(BaseExcelReader["Workbook"]):
534
+ @doc(storage_options=_shared_docs["storage_options"])
535
+ def __init__(
536
+ self,
537
+ filepath_or_buffer: FilePath | ReadBuffer[bytes],
538
+ storage_options: StorageOptions | None = None,
539
+ engine_kwargs: dict | None = None,
540
+ ) -> None:
541
+ """
542
+ Reader using openpyxl engine.
543
+
544
+ Parameters
545
+ ----------
546
+ filepath_or_buffer : str, path object or Workbook
547
+ Object to be parsed.
548
+ {storage_options}
549
+ engine_kwargs : dict, optional
550
+ Arbitrary keyword arguments passed to excel engine.
551
+ """
552
+ import_optional_dependency("openpyxl")
553
+ super().__init__(
554
+ filepath_or_buffer,
555
+ storage_options=storage_options,
556
+ engine_kwargs=engine_kwargs,
557
+ )
558
+
559
+ @property
560
+ def _workbook_class(self) -> type[Workbook]:
561
+ from openpyxl import Workbook
562
+
563
+ return Workbook
564
+
565
+ def load_workbook(
566
+ self, filepath_or_buffer: FilePath | ReadBuffer[bytes], engine_kwargs
567
+ ) -> Workbook:
568
+ from openpyxl import load_workbook
569
+
570
+ default_kwargs = {"read_only": True, "data_only": True, "keep_links": False}
571
+
572
+ return load_workbook(
573
+ filepath_or_buffer,
574
+ **(default_kwargs | engine_kwargs),
575
+ )
576
+
577
+ @property
578
+ def sheet_names(self) -> list[str]:
579
+ return [sheet.title for sheet in self.book.worksheets]
580
+
581
+ def get_sheet_by_name(self, name: str):
582
+ self.raise_if_bad_sheet_by_name(name)
583
+ return self.book[name]
584
+
585
+ def get_sheet_by_index(self, index: int):
586
+ self.raise_if_bad_sheet_by_index(index)
587
+ return self.book.worksheets[index]
588
+
589
+ def _convert_cell(self, cell) -> Scalar:
590
+ from openpyxl.cell.cell import (
591
+ TYPE_ERROR,
592
+ TYPE_NUMERIC,
593
+ )
594
+
595
+ if cell.value is None:
596
+ return "" # compat with xlrd
597
+ elif cell.data_type == TYPE_ERROR:
598
+ return np.nan
599
+ elif cell.data_type == TYPE_NUMERIC:
600
+ val = int(cell.value)
601
+ if val == cell.value:
602
+ return val
603
+ return float(cell.value)
604
+
605
+ return cell.value
606
+
607
+ def get_sheet_data(
608
+ self, sheet, file_rows_needed: int | None = None
609
+ ) -> list[list[Scalar]]:
610
+ if self.book.read_only:
611
+ sheet.reset_dimensions()
612
+
613
+ data: list[list[Scalar]] = []
614
+ last_row_with_data = -1
615
+ for row_number, row in enumerate(sheet.rows):
616
+ converted_row = [self._convert_cell(cell) for cell in row]
617
+ while converted_row and converted_row[-1] == "":
618
+ # trim trailing empty elements
619
+ converted_row.pop()
620
+ if converted_row:
621
+ last_row_with_data = row_number
622
+ data.append(converted_row)
623
+ if file_rows_needed is not None and len(data) >= file_rows_needed:
624
+ break
625
+
626
+ # Trim trailing empty rows
627
+ data = data[: last_row_with_data + 1]
628
+
629
+ if len(data) > 0:
630
+ # extend rows to max width
631
+ max_width = max(len(data_row) for data_row in data)
632
+ if min(len(data_row) for data_row in data) < max_width:
633
+ empty_cell: list[Scalar] = [""]
634
+ data = [
635
+ data_row + (max_width - len(data_row)) * empty_cell
636
+ for data_row in data
637
+ ]
638
+
639
+ return data
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_pyxlsb.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pyright: reportMissingImports=false
2
+ from __future__ import annotations
3
+
4
+ from typing import TYPE_CHECKING
5
+
6
+ from pandas.compat._optional import import_optional_dependency
7
+ from pandas.util._decorators import doc
8
+
9
+ from pandas.core.shared_docs import _shared_docs
10
+
11
+ from pandas.io.excel._base import BaseExcelReader
12
+
13
+ if TYPE_CHECKING:
14
+ from pyxlsb import Workbook
15
+
16
+ from pandas._typing import (
17
+ FilePath,
18
+ ReadBuffer,
19
+ Scalar,
20
+ StorageOptions,
21
+ )
22
+
23
+
24
+ class PyxlsbReader(BaseExcelReader["Workbook"]):
25
+ @doc(storage_options=_shared_docs["storage_options"])
26
+ def __init__(
27
+ self,
28
+ filepath_or_buffer: FilePath | ReadBuffer[bytes],
29
+ storage_options: StorageOptions | None = None,
30
+ engine_kwargs: dict | None = None,
31
+ ) -> None:
32
+ """
33
+ Reader using pyxlsb engine.
34
+
35
+ Parameters
36
+ ----------
37
+ filepath_or_buffer : str, path object, or Workbook
38
+ Object to be parsed.
39
+ {storage_options}
40
+ engine_kwargs : dict, optional
41
+ Arbitrary keyword arguments passed to excel engine.
42
+ """
43
+ import_optional_dependency("pyxlsb")
44
+ # This will call load_workbook on the filepath or buffer
45
+ # And set the result to the book-attribute
46
+ super().__init__(
47
+ filepath_or_buffer,
48
+ storage_options=storage_options,
49
+ engine_kwargs=engine_kwargs,
50
+ )
51
+
52
+ @property
53
+ def _workbook_class(self) -> type[Workbook]:
54
+ from pyxlsb import Workbook
55
+
56
+ return Workbook
57
+
58
+ def load_workbook(
59
+ self, filepath_or_buffer: FilePath | ReadBuffer[bytes], engine_kwargs
60
+ ) -> Workbook:
61
+ from pyxlsb import open_workbook
62
+
63
+ # TODO: hack in buffer capability
64
+ # This might need some modifications to the Pyxlsb library
65
+ # Actual work for opening it is in xlsbpackage.py, line 20-ish
66
+
67
+ return open_workbook(filepath_or_buffer, **engine_kwargs)
68
+
69
+ @property
70
+ def sheet_names(self) -> list[str]:
71
+ return self.book.sheets
72
+
73
+ def get_sheet_by_name(self, name: str):
74
+ self.raise_if_bad_sheet_by_name(name)
75
+ return self.book.get_sheet(name)
76
+
77
+ def get_sheet_by_index(self, index: int):
78
+ self.raise_if_bad_sheet_by_index(index)
79
+ # pyxlsb sheets are indexed from 1 onwards
80
+ # There's a fix for this in the source, but the pypi package doesn't have it
81
+ return self.book.get_sheet(index + 1)
82
+
83
+ def _convert_cell(self, cell) -> Scalar:
84
+ # TODO: there is no way to distinguish between floats and datetimes in pyxlsb
85
+ # This means that there is no way to read datetime types from an xlsb file yet
86
+ if cell.v is None:
87
+ return "" # Prevents non-named columns from not showing up as Unnamed: i
88
+ if isinstance(cell.v, float):
89
+ val = int(cell.v)
90
+ if val == cell.v:
91
+ return val
92
+ else:
93
+ return float(cell.v)
94
+
95
+ return cell.v
96
+
97
+ def get_sheet_data(
98
+ self,
99
+ sheet,
100
+ file_rows_needed: int | None = None,
101
+ ) -> list[list[Scalar]]:
102
+ data: list[list[Scalar]] = []
103
+ previous_row_number = -1
104
+ # When sparse=True the rows can have different lengths and empty rows are
105
+ # not returned. The cells are namedtuples of row, col, value (r, c, v).
106
+ for row in sheet.rows(sparse=True):
107
+ row_number = row[0].r
108
+ converted_row = [self._convert_cell(cell) for cell in row]
109
+ while converted_row and converted_row[-1] == "":
110
+ # trim trailing empty elements
111
+ converted_row.pop()
112
+ if converted_row:
113
+ data.extend([[]] * (row_number - previous_row_number - 1))
114
+ data.append(converted_row)
115
+ previous_row_number = row_number
116
+ if file_rows_needed is not None and len(data) >= file_rows_needed:
117
+ break
118
+ if data:
119
+ # extend rows to max_width
120
+ max_width = max(len(data_row) for data_row in data)
121
+ if min(len(data_row) for data_row in data) < max_width:
122
+ empty_cell: list[Scalar] = [""]
123
+ data = [
124
+ data_row + (max_width - len(data_row)) * empty_cell
125
+ for data_row in data
126
+ ]
127
+ return data
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_util.py ADDED
@@ -0,0 +1,334 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from collections.abc import (
4
+ Hashable,
5
+ Iterable,
6
+ MutableMapping,
7
+ Sequence,
8
+ )
9
+ from typing import (
10
+ TYPE_CHECKING,
11
+ Any,
12
+ Callable,
13
+ Literal,
14
+ TypeVar,
15
+ overload,
16
+ )
17
+
18
+ from pandas.compat._optional import import_optional_dependency
19
+
20
+ from pandas.core.dtypes.common import (
21
+ is_integer,
22
+ is_list_like,
23
+ )
24
+
25
+ if TYPE_CHECKING:
26
+ from pandas.io.excel._base import ExcelWriter
27
+
28
+ ExcelWriter_t = type[ExcelWriter]
29
+ usecols_func = TypeVar("usecols_func", bound=Callable[[Hashable], object])
30
+
31
+ _writers: MutableMapping[str, ExcelWriter_t] = {}
32
+
33
+
34
+ def register_writer(klass: ExcelWriter_t) -> None:
35
+ """
36
+ Add engine to the excel writer registry.io.excel.
37
+
38
+ You must use this method to integrate with ``to_excel``.
39
+
40
+ Parameters
41
+ ----------
42
+ klass : ExcelWriter
43
+ """
44
+ if not callable(klass):
45
+ raise ValueError("Can only register callables as engines")
46
+ engine_name = klass._engine
47
+ _writers[engine_name] = klass
48
+
49
+
50
+ def get_default_engine(ext: str, mode: Literal["reader", "writer"] = "reader") -> str:
51
+ """
52
+ Return the default reader/writer for the given extension.
53
+
54
+ Parameters
55
+ ----------
56
+ ext : str
57
+ The excel file extension for which to get the default engine.
58
+ mode : str {'reader', 'writer'}
59
+ Whether to get the default engine for reading or writing.
60
+ Either 'reader' or 'writer'
61
+
62
+ Returns
63
+ -------
64
+ str
65
+ The default engine for the extension.
66
+ """
67
+ _default_readers = {
68
+ "xlsx": "openpyxl",
69
+ "xlsm": "openpyxl",
70
+ "xlsb": "pyxlsb",
71
+ "xls": "xlrd",
72
+ "ods": "odf",
73
+ }
74
+ _default_writers = {
75
+ "xlsx": "openpyxl",
76
+ "xlsm": "openpyxl",
77
+ "xlsb": "pyxlsb",
78
+ "ods": "odf",
79
+ }
80
+ assert mode in ["reader", "writer"]
81
+ if mode == "writer":
82
+ # Prefer xlsxwriter over openpyxl if installed
83
+ xlsxwriter = import_optional_dependency("xlsxwriter", errors="warn")
84
+ if xlsxwriter:
85
+ _default_writers["xlsx"] = "xlsxwriter"
86
+ return _default_writers[ext]
87
+ else:
88
+ return _default_readers[ext]
89
+
90
+
91
+ def get_writer(engine_name: str) -> ExcelWriter_t:
92
+ try:
93
+ return _writers[engine_name]
94
+ except KeyError as err:
95
+ raise ValueError(f"No Excel writer '{engine_name}'") from err
96
+
97
+
98
+ def _excel2num(x: str) -> int:
99
+ """
100
+ Convert Excel column name like 'AB' to 0-based column index.
101
+
102
+ Parameters
103
+ ----------
104
+ x : str
105
+ The Excel column name to convert to a 0-based column index.
106
+
107
+ Returns
108
+ -------
109
+ num : int
110
+ The column index corresponding to the name.
111
+
112
+ Raises
113
+ ------
114
+ ValueError
115
+ Part of the Excel column name was invalid.
116
+ """
117
+ index = 0
118
+
119
+ for c in x.upper().strip():
120
+ cp = ord(c)
121
+
122
+ if cp < ord("A") or cp > ord("Z"):
123
+ raise ValueError(f"Invalid column name: {x}")
124
+
125
+ index = index * 26 + cp - ord("A") + 1
126
+
127
+ return index - 1
128
+
129
+
130
+ def _range2cols(areas: str) -> list[int]:
131
+ """
132
+ Convert comma separated list of column names and ranges to indices.
133
+
134
+ Parameters
135
+ ----------
136
+ areas : str
137
+ A string containing a sequence of column ranges (or areas).
138
+
139
+ Returns
140
+ -------
141
+ cols : list
142
+ A list of 0-based column indices.
143
+
144
+ Examples
145
+ --------
146
+ >>> _range2cols('A:E')
147
+ [0, 1, 2, 3, 4]
148
+ >>> _range2cols('A,C,Z:AB')
149
+ [0, 2, 25, 26, 27]
150
+ """
151
+ cols: list[int] = []
152
+
153
+ for rng in areas.split(","):
154
+ if ":" in rng:
155
+ rngs = rng.split(":")
156
+ cols.extend(range(_excel2num(rngs[0]), _excel2num(rngs[1]) + 1))
157
+ else:
158
+ cols.append(_excel2num(rng))
159
+
160
+ return cols
161
+
162
+
163
+ @overload
164
+ def maybe_convert_usecols(usecols: str | list[int]) -> list[int]:
165
+ ...
166
+
167
+
168
+ @overload
169
+ def maybe_convert_usecols(usecols: list[str]) -> list[str]:
170
+ ...
171
+
172
+
173
+ @overload
174
+ def maybe_convert_usecols(usecols: usecols_func) -> usecols_func:
175
+ ...
176
+
177
+
178
+ @overload
179
+ def maybe_convert_usecols(usecols: None) -> None:
180
+ ...
181
+
182
+
183
+ def maybe_convert_usecols(
184
+ usecols: str | list[int] | list[str] | usecols_func | None,
185
+ ) -> None | list[int] | list[str] | usecols_func:
186
+ """
187
+ Convert `usecols` into a compatible format for parsing in `parsers.py`.
188
+
189
+ Parameters
190
+ ----------
191
+ usecols : object
192
+ The use-columns object to potentially convert.
193
+
194
+ Returns
195
+ -------
196
+ converted : object
197
+ The compatible format of `usecols`.
198
+ """
199
+ if usecols is None:
200
+ return usecols
201
+
202
+ if is_integer(usecols):
203
+ raise ValueError(
204
+ "Passing an integer for `usecols` is no longer supported. "
205
+ "Please pass in a list of int from 0 to `usecols` inclusive instead."
206
+ )
207
+
208
+ if isinstance(usecols, str):
209
+ return _range2cols(usecols)
210
+
211
+ return usecols
212
+
213
+
214
+ @overload
215
+ def validate_freeze_panes(freeze_panes: tuple[int, int]) -> Literal[True]:
216
+ ...
217
+
218
+
219
+ @overload
220
+ def validate_freeze_panes(freeze_panes: None) -> Literal[False]:
221
+ ...
222
+
223
+
224
+ def validate_freeze_panes(freeze_panes: tuple[int, int] | None) -> bool:
225
+ if freeze_panes is not None:
226
+ if len(freeze_panes) == 2 and all(
227
+ isinstance(item, int) for item in freeze_panes
228
+ ):
229
+ return True
230
+
231
+ raise ValueError(
232
+ "freeze_panes must be of form (row, column) "
233
+ "where row and column are integers"
234
+ )
235
+
236
+ # freeze_panes wasn't specified, return False so it won't be applied
237
+ # to output sheet
238
+ return False
239
+
240
+
241
+ def fill_mi_header(
242
+ row: list[Hashable], control_row: list[bool]
243
+ ) -> tuple[list[Hashable], list[bool]]:
244
+ """
245
+ Forward fill blank entries in row but only inside the same parent index.
246
+
247
+ Used for creating headers in Multiindex.
248
+
249
+ Parameters
250
+ ----------
251
+ row : list
252
+ List of items in a single row.
253
+ control_row : list of bool
254
+ Helps to determine if particular column is in same parent index as the
255
+ previous value. Used to stop propagation of empty cells between
256
+ different indexes.
257
+
258
+ Returns
259
+ -------
260
+ Returns changed row and control_row
261
+ """
262
+ last = row[0]
263
+ for i in range(1, len(row)):
264
+ if not control_row[i]:
265
+ last = row[i]
266
+
267
+ if row[i] == "" or row[i] is None:
268
+ row[i] = last
269
+ else:
270
+ control_row[i] = False
271
+ last = row[i]
272
+
273
+ return row, control_row
274
+
275
+
276
+ def pop_header_name(
277
+ row: list[Hashable], index_col: int | Sequence[int]
278
+ ) -> tuple[Hashable | None, list[Hashable]]:
279
+ """
280
+ Pop the header name for MultiIndex parsing.
281
+
282
+ Parameters
283
+ ----------
284
+ row : list
285
+ The data row to parse for the header name.
286
+ index_col : int, list
287
+ The index columns for our data. Assumed to be non-null.
288
+
289
+ Returns
290
+ -------
291
+ header_name : str
292
+ The extracted header name.
293
+ trimmed_row : list
294
+ The original data row with the header name removed.
295
+ """
296
+ # Pop out header name and fill w/blank.
297
+ if is_list_like(index_col):
298
+ assert isinstance(index_col, Iterable)
299
+ i = max(index_col)
300
+ else:
301
+ assert not isinstance(index_col, Iterable)
302
+ i = index_col
303
+
304
+ header_name = row[i]
305
+ header_name = None if header_name == "" else header_name
306
+
307
+ return header_name, row[:i] + [""] + row[i + 1 :]
308
+
309
+
310
+ def combine_kwargs(engine_kwargs: dict[str, Any] | None, kwargs: dict) -> dict:
311
+ """
312
+ Used to combine two sources of kwargs for the backend engine.
313
+
314
+ Use of kwargs is deprecated, this function is solely for use in 1.3 and should
315
+ be removed in 1.4/2.0. Also _base.ExcelWriter.__new__ ensures either engine_kwargs
316
+ or kwargs must be None or empty respectively.
317
+
318
+ Parameters
319
+ ----------
320
+ engine_kwargs: dict
321
+ kwargs to be passed through to the engine.
322
+ kwargs: dict
323
+ kwargs to be psased through to the engine (deprecated)
324
+
325
+ Returns
326
+ -------
327
+ engine_kwargs combined with kwargs
328
+ """
329
+ if engine_kwargs is None:
330
+ result = {}
331
+ else:
332
+ result = engine_kwargs.copy()
333
+ result.update(kwargs)
334
+ return result
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_xlrd.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from datetime import time
4
+ import math
5
+ from typing import TYPE_CHECKING
6
+
7
+ import numpy as np
8
+
9
+ from pandas.compat._optional import import_optional_dependency
10
+ from pandas.util._decorators import doc
11
+
12
+ from pandas.core.shared_docs import _shared_docs
13
+
14
+ from pandas.io.excel._base import BaseExcelReader
15
+
16
+ if TYPE_CHECKING:
17
+ from xlrd import Book
18
+
19
+ from pandas._typing import (
20
+ Scalar,
21
+ StorageOptions,
22
+ )
23
+
24
+
25
+ class XlrdReader(BaseExcelReader["Book"]):
26
+ @doc(storage_options=_shared_docs["storage_options"])
27
+ def __init__(
28
+ self,
29
+ filepath_or_buffer,
30
+ storage_options: StorageOptions | None = None,
31
+ engine_kwargs: dict | None = None,
32
+ ) -> None:
33
+ """
34
+ Reader using xlrd engine.
35
+
36
+ Parameters
37
+ ----------
38
+ filepath_or_buffer : str, path object or Workbook
39
+ Object to be parsed.
40
+ {storage_options}
41
+ engine_kwargs : dict, optional
42
+ Arbitrary keyword arguments passed to excel engine.
43
+ """
44
+ err_msg = "Install xlrd >= 2.0.1 for xls Excel support"
45
+ import_optional_dependency("xlrd", extra=err_msg)
46
+ super().__init__(
47
+ filepath_or_buffer,
48
+ storage_options=storage_options,
49
+ engine_kwargs=engine_kwargs,
50
+ )
51
+
52
+ @property
53
+ def _workbook_class(self) -> type[Book]:
54
+ from xlrd import Book
55
+
56
+ return Book
57
+
58
+ def load_workbook(self, filepath_or_buffer, engine_kwargs) -> Book:
59
+ from xlrd import open_workbook
60
+
61
+ if hasattr(filepath_or_buffer, "read"):
62
+ data = filepath_or_buffer.read()
63
+ return open_workbook(file_contents=data, **engine_kwargs)
64
+ else:
65
+ return open_workbook(filepath_or_buffer, **engine_kwargs)
66
+
67
+ @property
68
+ def sheet_names(self):
69
+ return self.book.sheet_names()
70
+
71
+ def get_sheet_by_name(self, name):
72
+ self.raise_if_bad_sheet_by_name(name)
73
+ return self.book.sheet_by_name(name)
74
+
75
+ def get_sheet_by_index(self, index):
76
+ self.raise_if_bad_sheet_by_index(index)
77
+ return self.book.sheet_by_index(index)
78
+
79
+ def get_sheet_data(
80
+ self, sheet, file_rows_needed: int | None = None
81
+ ) -> list[list[Scalar]]:
82
+ from xlrd import (
83
+ XL_CELL_BOOLEAN,
84
+ XL_CELL_DATE,
85
+ XL_CELL_ERROR,
86
+ XL_CELL_NUMBER,
87
+ xldate,
88
+ )
89
+
90
+ epoch1904 = self.book.datemode
91
+
92
+ def _parse_cell(cell_contents, cell_typ):
93
+ """
94
+ converts the contents of the cell into a pandas appropriate object
95
+ """
96
+ if cell_typ == XL_CELL_DATE:
97
+ # Use the newer xlrd datetime handling.
98
+ try:
99
+ cell_contents = xldate.xldate_as_datetime(cell_contents, epoch1904)
100
+ except OverflowError:
101
+ return cell_contents
102
+
103
+ # Excel doesn't distinguish between dates and time,
104
+ # so we treat dates on the epoch as times only.
105
+ # Also, Excel supports 1900 and 1904 epochs.
106
+ year = (cell_contents.timetuple())[0:3]
107
+ if (not epoch1904 and year == (1899, 12, 31)) or (
108
+ epoch1904 and year == (1904, 1, 1)
109
+ ):
110
+ cell_contents = time(
111
+ cell_contents.hour,
112
+ cell_contents.minute,
113
+ cell_contents.second,
114
+ cell_contents.microsecond,
115
+ )
116
+
117
+ elif cell_typ == XL_CELL_ERROR:
118
+ cell_contents = np.nan
119
+ elif cell_typ == XL_CELL_BOOLEAN:
120
+ cell_contents = bool(cell_contents)
121
+ elif cell_typ == XL_CELL_NUMBER:
122
+ # GH5394 - Excel 'numbers' are always floats
123
+ # it's a minimal perf hit and less surprising
124
+ if math.isfinite(cell_contents):
125
+ # GH54564 - don't attempt to convert NaN/Inf
126
+ val = int(cell_contents)
127
+ if val == cell_contents:
128
+ cell_contents = val
129
+ return cell_contents
130
+
131
+ data = []
132
+
133
+ nrows = sheet.nrows
134
+ if file_rows_needed is not None:
135
+ nrows = min(nrows, file_rows_needed)
136
+ for i in range(nrows):
137
+ row = [
138
+ _parse_cell(value, typ)
139
+ for value, typ in zip(sheet.row_values(i), sheet.row_types(i))
140
+ ]
141
+ data.append(row)
142
+
143
+ return data
llmeval-env/lib/python3.10/site-packages/pandas/io/excel/_xlsxwriter.py ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import json
4
+ from typing import (
5
+ TYPE_CHECKING,
6
+ Any,
7
+ )
8
+
9
+ from pandas.io.excel._base import ExcelWriter
10
+ from pandas.io.excel._util import (
11
+ combine_kwargs,
12
+ validate_freeze_panes,
13
+ )
14
+
15
+ if TYPE_CHECKING:
16
+ from pandas._typing import (
17
+ ExcelWriterIfSheetExists,
18
+ FilePath,
19
+ StorageOptions,
20
+ WriteExcelBuffer,
21
+ )
22
+
23
+
24
+ class _XlsxStyler:
25
+ # Map from openpyxl-oriented styles to flatter xlsxwriter representation
26
+ # Ordering necessary for both determinism and because some are keyed by
27
+ # prefixes of others.
28
+ STYLE_MAPPING: dict[str, list[tuple[tuple[str, ...], str]]] = {
29
+ "font": [
30
+ (("name",), "font_name"),
31
+ (("sz",), "font_size"),
32
+ (("size",), "font_size"),
33
+ (("color", "rgb"), "font_color"),
34
+ (("color",), "font_color"),
35
+ (("b",), "bold"),
36
+ (("bold",), "bold"),
37
+ (("i",), "italic"),
38
+ (("italic",), "italic"),
39
+ (("u",), "underline"),
40
+ (("underline",), "underline"),
41
+ (("strike",), "font_strikeout"),
42
+ (("vertAlign",), "font_script"),
43
+ (("vertalign",), "font_script"),
44
+ ],
45
+ "number_format": [(("format_code",), "num_format"), ((), "num_format")],
46
+ "protection": [(("locked",), "locked"), (("hidden",), "hidden")],
47
+ "alignment": [
48
+ (("horizontal",), "align"),
49
+ (("vertical",), "valign"),
50
+ (("text_rotation",), "rotation"),
51
+ (("wrap_text",), "text_wrap"),
52
+ (("indent",), "indent"),
53
+ (("shrink_to_fit",), "shrink"),
54
+ ],
55
+ "fill": [
56
+ (("patternType",), "pattern"),
57
+ (("patterntype",), "pattern"),
58
+ (("fill_type",), "pattern"),
59
+ (("start_color", "rgb"), "fg_color"),
60
+ (("fgColor", "rgb"), "fg_color"),
61
+ (("fgcolor", "rgb"), "fg_color"),
62
+ (("start_color",), "fg_color"),
63
+ (("fgColor",), "fg_color"),
64
+ (("fgcolor",), "fg_color"),
65
+ (("end_color", "rgb"), "bg_color"),
66
+ (("bgColor", "rgb"), "bg_color"),
67
+ (("bgcolor", "rgb"), "bg_color"),
68
+ (("end_color",), "bg_color"),
69
+ (("bgColor",), "bg_color"),
70
+ (("bgcolor",), "bg_color"),
71
+ ],
72
+ "border": [
73
+ (("color", "rgb"), "border_color"),
74
+ (("color",), "border_color"),
75
+ (("style",), "border"),
76
+ (("top", "color", "rgb"), "top_color"),
77
+ (("top", "color"), "top_color"),
78
+ (("top", "style"), "top"),
79
+ (("top",), "top"),
80
+ (("right", "color", "rgb"), "right_color"),
81
+ (("right", "color"), "right_color"),
82
+ (("right", "style"), "right"),
83
+ (("right",), "right"),
84
+ (("bottom", "color", "rgb"), "bottom_color"),
85
+ (("bottom", "color"), "bottom_color"),
86
+ (("bottom", "style"), "bottom"),
87
+ (("bottom",), "bottom"),
88
+ (("left", "color", "rgb"), "left_color"),
89
+ (("left", "color"), "left_color"),
90
+ (("left", "style"), "left"),
91
+ (("left",), "left"),
92
+ ],
93
+ }
94
+
95
+ @classmethod
96
+ def convert(cls, style_dict, num_format_str=None):
97
+ """
98
+ converts a style_dict to an xlsxwriter format dict
99
+
100
+ Parameters
101
+ ----------
102
+ style_dict : style dictionary to convert
103
+ num_format_str : optional number format string
104
+ """
105
+ # Create a XlsxWriter format object.
106
+ props = {}
107
+
108
+ if num_format_str is not None:
109
+ props["num_format"] = num_format_str
110
+
111
+ if style_dict is None:
112
+ return props
113
+
114
+ if "borders" in style_dict:
115
+ style_dict = style_dict.copy()
116
+ style_dict["border"] = style_dict.pop("borders")
117
+
118
+ for style_group_key, style_group in style_dict.items():
119
+ for src, dst in cls.STYLE_MAPPING.get(style_group_key, []):
120
+ # src is a sequence of keys into a nested dict
121
+ # dst is a flat key
122
+ if dst in props:
123
+ continue
124
+ v = style_group
125
+ for k in src:
126
+ try:
127
+ v = v[k]
128
+ except (KeyError, TypeError):
129
+ break
130
+ else:
131
+ props[dst] = v
132
+
133
+ if isinstance(props.get("pattern"), str):
134
+ # TODO: support other fill patterns
135
+ props["pattern"] = 0 if props["pattern"] == "none" else 1
136
+
137
+ for k in ["border", "top", "right", "bottom", "left"]:
138
+ if isinstance(props.get(k), str):
139
+ try:
140
+ props[k] = [
141
+ "none",
142
+ "thin",
143
+ "medium",
144
+ "dashed",
145
+ "dotted",
146
+ "thick",
147
+ "double",
148
+ "hair",
149
+ "mediumDashed",
150
+ "dashDot",
151
+ "mediumDashDot",
152
+ "dashDotDot",
153
+ "mediumDashDotDot",
154
+ "slantDashDot",
155
+ ].index(props[k])
156
+ except ValueError:
157
+ props[k] = 2
158
+
159
+ if isinstance(props.get("font_script"), str):
160
+ props["font_script"] = ["baseline", "superscript", "subscript"].index(
161
+ props["font_script"]
162
+ )
163
+
164
+ if isinstance(props.get("underline"), str):
165
+ props["underline"] = {
166
+ "none": 0,
167
+ "single": 1,
168
+ "double": 2,
169
+ "singleAccounting": 33,
170
+ "doubleAccounting": 34,
171
+ }[props["underline"]]
172
+
173
+ # GH 30107 - xlsxwriter uses different name
174
+ if props.get("valign") == "center":
175
+ props["valign"] = "vcenter"
176
+
177
+ return props
178
+
179
+
180
+ class XlsxWriter(ExcelWriter):
181
+ _engine = "xlsxwriter"
182
+ _supported_extensions = (".xlsx",)
183
+
184
+ def __init__(
185
+ self,
186
+ path: FilePath | WriteExcelBuffer | ExcelWriter,
187
+ engine: str | None = None,
188
+ date_format: str | None = None,
189
+ datetime_format: str | None = None,
190
+ mode: str = "w",
191
+ storage_options: StorageOptions | None = None,
192
+ if_sheet_exists: ExcelWriterIfSheetExists | None = None,
193
+ engine_kwargs: dict[str, Any] | None = None,
194
+ **kwargs,
195
+ ) -> None:
196
+ # Use the xlsxwriter module as the Excel writer.
197
+ from xlsxwriter import Workbook
198
+
199
+ engine_kwargs = combine_kwargs(engine_kwargs, kwargs)
200
+
201
+ if mode == "a":
202
+ raise ValueError("Append mode is not supported with xlsxwriter!")
203
+
204
+ super().__init__(
205
+ path,
206
+ engine=engine,
207
+ date_format=date_format,
208
+ datetime_format=datetime_format,
209
+ mode=mode,
210
+ storage_options=storage_options,
211
+ if_sheet_exists=if_sheet_exists,
212
+ engine_kwargs=engine_kwargs,
213
+ )
214
+
215
+ try:
216
+ self._book = Workbook(self._handles.handle, **engine_kwargs)
217
+ except TypeError:
218
+ self._handles.handle.close()
219
+ raise
220
+
221
+ @property
222
+ def book(self):
223
+ """
224
+ Book instance of class xlsxwriter.Workbook.
225
+
226
+ This attribute can be used to access engine-specific features.
227
+ """
228
+ return self._book
229
+
230
+ @property
231
+ def sheets(self) -> dict[str, Any]:
232
+ result = self.book.sheetnames
233
+ return result
234
+
235
+ def _save(self) -> None:
236
+ """
237
+ Save workbook to disk.
238
+ """
239
+ self.book.close()
240
+
241
+ def _write_cells(
242
+ self,
243
+ cells,
244
+ sheet_name: str | None = None,
245
+ startrow: int = 0,
246
+ startcol: int = 0,
247
+ freeze_panes: tuple[int, int] | None = None,
248
+ ) -> None:
249
+ # Write the frame cells using xlsxwriter.
250
+ sheet_name = self._get_sheet_name(sheet_name)
251
+
252
+ wks = self.book.get_worksheet_by_name(sheet_name)
253
+ if wks is None:
254
+ wks = self.book.add_worksheet(sheet_name)
255
+
256
+ style_dict = {"null": None}
257
+
258
+ if validate_freeze_panes(freeze_panes):
259
+ wks.freeze_panes(*(freeze_panes))
260
+
261
+ for cell in cells:
262
+ val, fmt = self._value_with_fmt(cell.val)
263
+
264
+ stylekey = json.dumps(cell.style)
265
+ if fmt:
266
+ stylekey += fmt
267
+
268
+ if stylekey in style_dict:
269
+ style = style_dict[stylekey]
270
+ else:
271
+ style = self.book.add_format(_XlsxStyler.convert(cell.style, fmt))
272
+ style_dict[stylekey] = style
273
+
274
+ if cell.mergestart is not None and cell.mergeend is not None:
275
+ wks.merge_range(
276
+ startrow + cell.row,
277
+ startcol + cell.col,
278
+ startrow + cell.mergestart,
279
+ startcol + cell.mergeend,
280
+ val,
281
+ style,
282
+ )
283
+ else:
284
+ wks.write(startrow + cell.row, startcol + cell.col, val, style)
llmeval-env/lib/python3.10/site-packages/pandas/io/gbq.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Google BigQuery support """
2
+ from __future__ import annotations
3
+
4
+ from typing import (
5
+ TYPE_CHECKING,
6
+ Any,
7
+ )
8
+ import warnings
9
+
10
+ from pandas.compat._optional import import_optional_dependency
11
+ from pandas.util._exceptions import find_stack_level
12
+
13
+ if TYPE_CHECKING:
14
+ import google.auth
15
+
16
+ from pandas import DataFrame
17
+
18
+
19
+ def _try_import():
20
+ # since pandas is a dependency of pandas-gbq
21
+ # we need to import on first use
22
+ msg = (
23
+ "pandas-gbq is required to load data from Google BigQuery. "
24
+ "See the docs: https://pandas-gbq.readthedocs.io."
25
+ )
26
+ pandas_gbq = import_optional_dependency("pandas_gbq", extra=msg)
27
+ return pandas_gbq
28
+
29
+
30
+ def read_gbq(
31
+ query: str,
32
+ project_id: str | None = None,
33
+ index_col: str | None = None,
34
+ col_order: list[str] | None = None,
35
+ reauth: bool = False,
36
+ auth_local_webserver: bool = True,
37
+ dialect: str | None = None,
38
+ location: str | None = None,
39
+ configuration: dict[str, Any] | None = None,
40
+ credentials: google.auth.credentials.Credentials | None = None,
41
+ use_bqstorage_api: bool | None = None,
42
+ max_results: int | None = None,
43
+ progress_bar_type: str | None = None,
44
+ ) -> DataFrame:
45
+ """
46
+ Load data from Google BigQuery.
47
+
48
+ .. deprecated:: 2.2.0
49
+
50
+ Please use ``pandas_gbq.read_gbq`` instead.
51
+
52
+ This function requires the `pandas-gbq package
53
+ <https://pandas-gbq.readthedocs.io>`__.
54
+
55
+ See the `How to authenticate with Google BigQuery
56
+ <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__
57
+ guide for authentication instructions.
58
+
59
+ Parameters
60
+ ----------
61
+ query : str
62
+ SQL-Like Query to return data values.
63
+ project_id : str, optional
64
+ Google BigQuery Account project ID. Optional when available from
65
+ the environment.
66
+ index_col : str, optional
67
+ Name of result column to use for index in results DataFrame.
68
+ col_order : list(str), optional
69
+ List of BigQuery column names in the desired order for results
70
+ DataFrame.
71
+ reauth : bool, default False
72
+ Force Google BigQuery to re-authenticate the user. This is useful
73
+ if multiple accounts are used.
74
+ auth_local_webserver : bool, default True
75
+ Use the `local webserver flow`_ instead of the `console flow`_
76
+ when getting user credentials.
77
+
78
+ .. _local webserver flow:
79
+ https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server
80
+ .. _console flow:
81
+ https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console
82
+
83
+ *New in version 0.2.0 of pandas-gbq*.
84
+
85
+ .. versionchanged:: 1.5.0
86
+ Default value is changed to ``True``. Google has deprecated the
87
+ ``auth_local_webserver = False`` `"out of band" (copy-paste)
88
+ flow
89
+ <https://developers.googleblog.com/2022/02/making-oauth-flows-safer.html?m=1#disallowed-oob>`_.
90
+ dialect : str, default 'legacy'
91
+ Note: The default value is changing to 'standard' in a future version.
92
+
93
+ SQL syntax dialect to use. Value can be one of:
94
+
95
+ ``'legacy'``
96
+ Use BigQuery's legacy SQL dialect. For more information see
97
+ `BigQuery Legacy SQL Reference
98
+ <https://cloud.google.com/bigquery/docs/reference/legacy-sql>`__.
99
+ ``'standard'``
100
+ Use BigQuery's standard SQL, which is
101
+ compliant with the SQL 2011 standard. For more information
102
+ see `BigQuery Standard SQL Reference
103
+ <https://cloud.google.com/bigquery/docs/reference/standard-sql/>`__.
104
+ location : str, optional
105
+ Location where the query job should run. See the `BigQuery locations
106
+ documentation
107
+ <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a
108
+ list of available locations. The location must match that of any
109
+ datasets used in the query.
110
+
111
+ *New in version 0.5.0 of pandas-gbq*.
112
+ configuration : dict, optional
113
+ Query config parameters for job processing.
114
+ For example:
115
+
116
+ configuration = {'query': {'useQueryCache': False}}
117
+
118
+ For more information see `BigQuery REST API Reference
119
+ <https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query>`__.
120
+ credentials : google.auth.credentials.Credentials, optional
121
+ Credentials for accessing Google APIs. Use this parameter to override
122
+ default credentials, such as to use Compute Engine
123
+ :class:`google.auth.compute_engine.Credentials` or Service Account
124
+ :class:`google.oauth2.service_account.Credentials` directly.
125
+
126
+ *New in version 0.8.0 of pandas-gbq*.
127
+ use_bqstorage_api : bool, default False
128
+ Use the `BigQuery Storage API
129
+ <https://cloud.google.com/bigquery/docs/reference/storage/>`__ to
130
+ download query results quickly, but at an increased cost. To use this
131
+ API, first `enable it in the Cloud Console
132
+ <https://console.cloud.google.com/apis/library/bigquerystorage.googleapis.com>`__.
133
+ You must also have the `bigquery.readsessions.create
134
+ <https://cloud.google.com/bigquery/docs/access-control#roles>`__
135
+ permission on the project you are billing queries to.
136
+
137
+ This feature requires version 0.10.0 or later of the ``pandas-gbq``
138
+ package. It also requires the ``google-cloud-bigquery-storage`` and
139
+ ``fastavro`` packages.
140
+
141
+ max_results : int, optional
142
+ If set, limit the maximum number of rows to fetch from the query
143
+ results.
144
+
145
+ progress_bar_type : Optional, str
146
+ If set, use the `tqdm <https://tqdm.github.io/>`__ library to
147
+ display a progress bar while the data downloads. Install the
148
+ ``tqdm`` package to use this feature.
149
+
150
+ Possible values of ``progress_bar_type`` include:
151
+
152
+ ``None``
153
+ No progress bar.
154
+ ``'tqdm'``
155
+ Use the :func:`tqdm.tqdm` function to print a progress bar
156
+ to :data:`sys.stderr`.
157
+ ``'tqdm_notebook'``
158
+ Use the :func:`tqdm.tqdm_notebook` function to display a
159
+ progress bar as a Jupyter notebook widget.
160
+ ``'tqdm_gui'``
161
+ Use the :func:`tqdm.tqdm_gui` function to display a
162
+ progress bar as a graphical dialog box.
163
+
164
+ Returns
165
+ -------
166
+ df: DataFrame
167
+ DataFrame representing results of query.
168
+
169
+ See Also
170
+ --------
171
+ pandas_gbq.read_gbq : This function in the pandas-gbq library.
172
+ DataFrame.to_gbq : Write a DataFrame to Google BigQuery.
173
+
174
+ Examples
175
+ --------
176
+ Example taken from `Google BigQuery documentation
177
+ <https://cloud.google.com/bigquery/docs/pandas-gbq-migration>`_
178
+
179
+ >>> sql = "SELECT name FROM table_name WHERE state = 'TX' LIMIT 100;"
180
+ >>> df = pd.read_gbq(sql, dialect="standard") # doctest: +SKIP
181
+ >>> project_id = "your-project-id" # doctest: +SKIP
182
+ >>> df = pd.read_gbq(sql,
183
+ ... project_id=project_id,
184
+ ... dialect="standard"
185
+ ... ) # doctest: +SKIP
186
+ """
187
+ warnings.warn(
188
+ "read_gbq is deprecated and will be removed in a future version. "
189
+ "Please use pandas_gbq.read_gbq instead: "
190
+ "https://pandas-gbq.readthedocs.io/en/latest/api.html#pandas_gbq.read_gbq",
191
+ FutureWarning,
192
+ stacklevel=find_stack_level(),
193
+ )
194
+ pandas_gbq = _try_import()
195
+
196
+ kwargs: dict[str, str | bool | int | None] = {}
197
+
198
+ # START: new kwargs. Don't populate unless explicitly set.
199
+ if use_bqstorage_api is not None:
200
+ kwargs["use_bqstorage_api"] = use_bqstorage_api
201
+ if max_results is not None:
202
+ kwargs["max_results"] = max_results
203
+
204
+ kwargs["progress_bar_type"] = progress_bar_type
205
+ # END: new kwargs
206
+
207
+ return pandas_gbq.read_gbq(
208
+ query,
209
+ project_id=project_id,
210
+ index_col=index_col,
211
+ col_order=col_order,
212
+ reauth=reauth,
213
+ auth_local_webserver=auth_local_webserver,
214
+ dialect=dialect,
215
+ location=location,
216
+ configuration=configuration,
217
+ credentials=credentials,
218
+ **kwargs,
219
+ )
220
+
221
+
222
+ def to_gbq(
223
+ dataframe: DataFrame,
224
+ destination_table: str,
225
+ project_id: str | None = None,
226
+ chunksize: int | None = None,
227
+ reauth: bool = False,
228
+ if_exists: str = "fail",
229
+ auth_local_webserver: bool = True,
230
+ table_schema: list[dict[str, str]] | None = None,
231
+ location: str | None = None,
232
+ progress_bar: bool = True,
233
+ credentials: google.auth.credentials.Credentials | None = None,
234
+ ) -> None:
235
+ warnings.warn(
236
+ "to_gbq is deprecated and will be removed in a future version. "
237
+ "Please use pandas_gbq.to_gbq instead: "
238
+ "https://pandas-gbq.readthedocs.io/en/latest/api.html#pandas_gbq.to_gbq",
239
+ FutureWarning,
240
+ stacklevel=find_stack_level(),
241
+ )
242
+ pandas_gbq = _try_import()
243
+ pandas_gbq.to_gbq(
244
+ dataframe,
245
+ destination_table,
246
+ project_id=project_id,
247
+ chunksize=chunksize,
248
+ reauth=reauth,
249
+ if_exists=if_exists,
250
+ auth_local_webserver=auth_local_webserver,
251
+ table_schema=table_schema,
252
+ location=location,
253
+ progress_bar=progress_bar,
254
+ credentials=credentials,
255
+ )
llmeval-env/lib/python3.10/site-packages/pandas/io/json/__init__.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas.io.json._json import (
2
+ read_json,
3
+ to_json,
4
+ ujson_dumps,
5
+ ujson_loads,
6
+ )
7
+ from pandas.io.json._table_schema import build_table_schema
8
+
9
+ __all__ = [
10
+ "ujson_dumps",
11
+ "ujson_loads",
12
+ "read_json",
13
+ "to_json",
14
+ "build_table_schema",
15
+ ]
llmeval-env/lib/python3.10/site-packages/pandas/io/json/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (420 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/json/__pycache__/_json.cpython-310.pyc ADDED
Binary file (39 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/json/__pycache__/_normalize.cpython-310.pyc ADDED
Binary file (15 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/io/json/__pycache__/_table_schema.cpython-310.pyc ADDED
Binary file (10.3 kB). View file