Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__init__.py +63 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/__init__.py +73 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/configuration_codegen.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/modeling_codegen.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/tokenization_codegen.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/tokenization_codegen_fast.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/configuration_codegen.py +242 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/modeling_codegen.py +733 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/tokenization_codegen.py +396 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/tokenization_codegen_fast.py +255 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/__init__.py +102 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/configuration_convnext.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/convert_convnext_to_pytorch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/configuration_convnext.py +144 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/convert_convnext_to_pytorch.py +243 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/feature_extraction_convnext.py +33 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/image_processing_convnext.py +338 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/modeling_convnext.py +553 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/modeling_tf_convnext.py +667 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/dit/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/dit/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/dit/__pycache__/convert_dit_unilm_to_pytorch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/dit/convert_dit_unilm_to_pytorch.py +231 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/__init__.py +75 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/configuration_glpn.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/convert_glpn_to_pytorch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/feature_extraction_glpn.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/image_processing_glpn.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/modeling_glpn.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/configuration_glpn.py +137 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/convert_glpn_to_pytorch.py +219 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/feature_extraction_glpn.py +33 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/image_processing_glpn.py +233 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/modeling_glpn.py +780 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/configuration_lxmert.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/convert_lxmert_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/modeling_lxmert.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/modeling_tf_lxmert.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/tokenization_lxmert.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/tokenization_lxmert_fast.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/configuration_lxmert.py +171 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/convert_lxmert_original_tf_checkpoint_to_pytorch.py +60 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert_fast.py +191 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__init__.py +13 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__pycache__/checkpoint_reshaping_and_interoperability.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__pycache__/convert_megatron_gpt2_checkpoint.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__init__.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
# rely on isort to merge the imports
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_autoformer": [
|
22 |
+
"AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
23 |
+
"AutoformerConfig",
|
24 |
+
],
|
25 |
+
}
|
26 |
+
|
27 |
+
try:
|
28 |
+
if not is_torch_available():
|
29 |
+
raise OptionalDependencyNotAvailable()
|
30 |
+
except OptionalDependencyNotAvailable:
|
31 |
+
pass
|
32 |
+
else:
|
33 |
+
_import_structure["modeling_autoformer"] = [
|
34 |
+
"AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
35 |
+
"AutoformerForPrediction",
|
36 |
+
"AutoformerModel",
|
37 |
+
"AutoformerPreTrainedModel",
|
38 |
+
]
|
39 |
+
|
40 |
+
|
41 |
+
if TYPE_CHECKING:
|
42 |
+
from .configuration_autoformer import (
|
43 |
+
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
44 |
+
AutoformerConfig,
|
45 |
+
)
|
46 |
+
|
47 |
+
try:
|
48 |
+
if not is_torch_available():
|
49 |
+
raise OptionalDependencyNotAvailable()
|
50 |
+
except OptionalDependencyNotAvailable:
|
51 |
+
pass
|
52 |
+
else:
|
53 |
+
from .modeling_autoformer import (
|
54 |
+
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
55 |
+
AutoformerForPrediction,
|
56 |
+
AutoformerModel,
|
57 |
+
AutoformerPreTrainedModel,
|
58 |
+
)
|
59 |
+
|
60 |
+
else:
|
61 |
+
import sys
|
62 |
+
|
63 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/__init__.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_codegen": ["CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP", "CodeGenConfig", "CodeGenOnnxConfig"],
|
21 |
+
"tokenization_codegen": ["CodeGenTokenizer"],
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_tokenizers_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["tokenization_codegen_fast"] = ["CodeGenTokenizerFast"]
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_torch_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["modeling_codegen"] = [
|
39 |
+
"CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST",
|
40 |
+
"CodeGenForCausalLM",
|
41 |
+
"CodeGenModel",
|
42 |
+
"CodeGenPreTrainedModel",
|
43 |
+
]
|
44 |
+
|
45 |
+
if TYPE_CHECKING:
|
46 |
+
from .configuration_codegen import CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP, CodeGenConfig, CodeGenOnnxConfig
|
47 |
+
from .tokenization_codegen import CodeGenTokenizer
|
48 |
+
|
49 |
+
try:
|
50 |
+
if not is_tokenizers_available():
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
except OptionalDependencyNotAvailable:
|
53 |
+
pass
|
54 |
+
else:
|
55 |
+
from .tokenization_codegen_fast import CodeGenTokenizerFast
|
56 |
+
|
57 |
+
try:
|
58 |
+
if not is_torch_available():
|
59 |
+
raise OptionalDependencyNotAvailable()
|
60 |
+
except OptionalDependencyNotAvailable:
|
61 |
+
pass
|
62 |
+
else:
|
63 |
+
from .modeling_codegen import (
|
64 |
+
CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST,
|
65 |
+
CodeGenForCausalLM,
|
66 |
+
CodeGenModel,
|
67 |
+
CodeGenPreTrainedModel,
|
68 |
+
)
|
69 |
+
|
70 |
+
else:
|
71 |
+
import sys
|
72 |
+
|
73 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.24 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/configuration_codegen.cpython-310.pyc
ADDED
Binary file (9.63 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/modeling_codegen.cpython-310.pyc
ADDED
Binary file (20.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/tokenization_codegen.cpython-310.pyc
ADDED
Binary file (14.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/tokenization_codegen_fast.cpython-310.pyc
ADDED
Binary file (9.16 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/configuration_codegen.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" CodeGen model configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Any, List, Mapping, Optional
|
18 |
+
|
19 |
+
from ... import PreTrainedTokenizer, TensorType, is_torch_available
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...onnx import OnnxConfigWithPast, PatchingSpec
|
22 |
+
from ...utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
29 |
+
"Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json",
|
30 |
+
"Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json",
|
31 |
+
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json",
|
32 |
+
"Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json",
|
33 |
+
"Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json",
|
34 |
+
"Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json",
|
35 |
+
"Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json",
|
36 |
+
"Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json",
|
37 |
+
"Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json",
|
38 |
+
"Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json",
|
39 |
+
"Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json",
|
40 |
+
"Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json",
|
41 |
+
}
|
42 |
+
|
43 |
+
|
44 |
+
class CodeGenConfig(PretrainedConfig):
|
45 |
+
r"""
|
46 |
+
This is the configuration class to store the configuration of a [`CodeGenModel`]. It is used to instantiate a
|
47 |
+
CodeGen model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
48 |
+
with the defaults will yield a similar configuration to that of the CodeGen
|
49 |
+
[Salesforce/codegen-2B-mono](https://huggingface.co/Salesforce/codegen-2B-mono) architecture. Configuration objects
|
50 |
+
inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from
|
51 |
+
[`PretrainedConfig`] for more information.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
vocab_size (`int`, *optional*, defaults to 50400):
|
55 |
+
Vocabulary size of the CodeGen model. Defines the number of different tokens that can be represented by the
|
56 |
+
`inputs_ids` passed when calling [`CodeGenModel`].
|
57 |
+
n_positions (`int`, *optional*, defaults to 2048):
|
58 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
59 |
+
just in case (e.g., 512 or 1024 or 2048).
|
60 |
+
n_ctx (`int`, *optional*, defaults to 2048):
|
61 |
+
This attribute is used in `CodeGenModel.__init__` without any real effect.
|
62 |
+
n_embd (`int`, *optional*, defaults to 4096):
|
63 |
+
Dimensionality of the embeddings and hidden states.
|
64 |
+
n_layer (`int`, *optional*, defaults to 28):
|
65 |
+
Number of hidden layers in the Transformer encoder.
|
66 |
+
n_head (`int`, *optional*, defaults to 16):
|
67 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
68 |
+
rotary_dim (`int`, *optional*, defaults to 64):
|
69 |
+
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
|
70 |
+
n_inner (`int`, *optional*):
|
71 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
72 |
+
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
|
73 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
74 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
75 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
76 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
77 |
+
The dropout ratio for the embeddings.
|
78 |
+
attn_pdrop (`float`, *optional*, defaults to 0.0):
|
79 |
+
The dropout ratio for the attention.
|
80 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
81 |
+
The epsilon to use in the layer normalization layers.
|
82 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
83 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
84 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
85 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
86 |
+
bos_token_id (`int`, *optional*, defaults to 50256):
|
87 |
+
Beginning of stream token id.
|
88 |
+
eos_token_id (`int`, *optional*, defaults to 50256):
|
89 |
+
End of stream token id.
|
90 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
91 |
+
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
|
92 |
+
model has a output word embedding layer.
|
93 |
+
|
94 |
+
Example:
|
95 |
+
|
96 |
+
```python
|
97 |
+
>>> from transformers import CodeGenConfig, CodeGenModel
|
98 |
+
|
99 |
+
>>> # Initializing a CodeGen 6B configuration
|
100 |
+
>>> configuration = CodeGenConfig()
|
101 |
+
|
102 |
+
>>> # Initializing a model (with random weights) from the configuration
|
103 |
+
>>> model = CodeGenModel(configuration)
|
104 |
+
|
105 |
+
>>> # Accessing the model configuration
|
106 |
+
>>> configuration = model.config
|
107 |
+
```"""
|
108 |
+
|
109 |
+
model_type = "codegen"
|
110 |
+
attribute_map = {
|
111 |
+
"max_position_embeddings": "n_positions",
|
112 |
+
"hidden_size": "n_embd",
|
113 |
+
"num_attention_heads": "n_head",
|
114 |
+
"num_hidden_layers": "n_layer",
|
115 |
+
}
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_size=50400,
|
120 |
+
n_positions=2048,
|
121 |
+
n_ctx=2048,
|
122 |
+
n_embd=4096,
|
123 |
+
n_layer=28,
|
124 |
+
n_head=16,
|
125 |
+
rotary_dim=64,
|
126 |
+
n_inner=None,
|
127 |
+
activation_function="gelu_new",
|
128 |
+
resid_pdrop=0.0,
|
129 |
+
embd_pdrop=0.0,
|
130 |
+
attn_pdrop=0.0,
|
131 |
+
layer_norm_epsilon=1e-5,
|
132 |
+
initializer_range=0.02,
|
133 |
+
use_cache=True,
|
134 |
+
bos_token_id=50256,
|
135 |
+
eos_token_id=50256,
|
136 |
+
tie_word_embeddings=False,
|
137 |
+
**kwargs,
|
138 |
+
):
|
139 |
+
self.vocab_size = vocab_size
|
140 |
+
self.n_ctx = n_ctx
|
141 |
+
self.n_positions = n_positions
|
142 |
+
self.n_embd = n_embd
|
143 |
+
self.n_layer = n_layer
|
144 |
+
self.n_head = n_head
|
145 |
+
self.n_inner = n_inner
|
146 |
+
self.rotary_dim = rotary_dim
|
147 |
+
self.activation_function = activation_function
|
148 |
+
self.resid_pdrop = resid_pdrop
|
149 |
+
self.embd_pdrop = embd_pdrop
|
150 |
+
self.attn_pdrop = attn_pdrop
|
151 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
152 |
+
self.initializer_range = initializer_range
|
153 |
+
self.use_cache = use_cache
|
154 |
+
|
155 |
+
self.bos_token_id = bos_token_id
|
156 |
+
self.eos_token_id = eos_token_id
|
157 |
+
|
158 |
+
super().__init__(
|
159 |
+
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
|
160 |
+
)
|
161 |
+
|
162 |
+
|
163 |
+
# Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig
|
164 |
+
class CodeGenOnnxConfig(OnnxConfigWithPast):
|
165 |
+
def __init__(
|
166 |
+
self,
|
167 |
+
config: PretrainedConfig,
|
168 |
+
task: str = "default",
|
169 |
+
patching_specs: List[PatchingSpec] = None,
|
170 |
+
use_past: bool = False,
|
171 |
+
):
|
172 |
+
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
|
173 |
+
if not getattr(self._config, "pad_token_id", None):
|
174 |
+
# TODO: how to do that better?
|
175 |
+
self._config.pad_token_id = 0
|
176 |
+
|
177 |
+
@property
|
178 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
179 |
+
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
180 |
+
if self.use_past:
|
181 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
182 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
|
183 |
+
else:
|
184 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
185 |
+
|
186 |
+
return common_inputs
|
187 |
+
|
188 |
+
@property
|
189 |
+
def num_layers(self) -> int:
|
190 |
+
return self._config.n_layer
|
191 |
+
|
192 |
+
@property
|
193 |
+
def num_attention_heads(self) -> int:
|
194 |
+
return self._config.n_head
|
195 |
+
|
196 |
+
def generate_dummy_inputs(
|
197 |
+
self,
|
198 |
+
tokenizer: PreTrainedTokenizer,
|
199 |
+
batch_size: int = -1,
|
200 |
+
seq_length: int = -1,
|
201 |
+
is_pair: bool = False,
|
202 |
+
framework: Optional[TensorType] = None,
|
203 |
+
) -> Mapping[str, Any]:
|
204 |
+
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
205 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
206 |
+
)
|
207 |
+
|
208 |
+
# We need to order the input in the way they appears in the forward()
|
209 |
+
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
210 |
+
|
211 |
+
# Need to add the past_keys
|
212 |
+
if self.use_past:
|
213 |
+
if not is_torch_available():
|
214 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
215 |
+
else:
|
216 |
+
import torch
|
217 |
+
|
218 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
219 |
+
# Not using the same length for past_key_values
|
220 |
+
past_key_values_length = seqlen + 2
|
221 |
+
past_shape = (
|
222 |
+
batch,
|
223 |
+
self.num_attention_heads,
|
224 |
+
past_key_values_length,
|
225 |
+
self._config.hidden_size // self.num_attention_heads,
|
226 |
+
)
|
227 |
+
ordered_inputs["past_key_values"] = [
|
228 |
+
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
|
229 |
+
]
|
230 |
+
|
231 |
+
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
232 |
+
if self.use_past:
|
233 |
+
mask_dtype = ordered_inputs["attention_mask"].dtype
|
234 |
+
ordered_inputs["attention_mask"] = torch.cat(
|
235 |
+
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
236 |
+
)
|
237 |
+
|
238 |
+
return ordered_inputs
|
239 |
+
|
240 |
+
@property
|
241 |
+
def default_onnx_opset(self) -> int:
|
242 |
+
return 13
|
env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/modeling_codegen.py
ADDED
@@ -0,0 +1,733 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch CodeGen model."""
|
16 |
+
|
17 |
+
from typing import Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
from torch import nn
|
22 |
+
from torch.nn import CrossEntropyLoss
|
23 |
+
|
24 |
+
from ...activations import ACT2FN
|
25 |
+
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
26 |
+
from ...modeling_utils import PreTrainedModel
|
27 |
+
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
28 |
+
from .configuration_codegen import CodeGenConfig
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
_CHECKPOINT_FOR_DOC = "Salesforce/codegen-2B-mono"
|
34 |
+
_CONFIG_FOR_DOC = "CodeGenConfig"
|
35 |
+
|
36 |
+
|
37 |
+
CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
38 |
+
"Salesforce/codegen-350M-nl",
|
39 |
+
"Salesforce/codegen-350M-multi",
|
40 |
+
"Salesforce/codegen-350M-mono",
|
41 |
+
"Salesforce/codegen-2B-nl",
|
42 |
+
"Salesforce/codegen-2B-multi",
|
43 |
+
"Salesforce/codegen-2B-mono",
|
44 |
+
"Salesforce/codegen-6B-nl",
|
45 |
+
"Salesforce/codegen-6B-multi",
|
46 |
+
"Salesforce/codegen-6B-mono",
|
47 |
+
"Salesforce/codegen-16B-nl",
|
48 |
+
"Salesforce/codegen-16B-multi",
|
49 |
+
"Salesforce/codegen-16B-mono",
|
50 |
+
# See all CodeGen models at https://huggingface.co/models?filter=codegen
|
51 |
+
]
|
52 |
+
|
53 |
+
|
54 |
+
# Copied from transformers.models.gptj.modeling_gptj.create_sinusoidal_positions
|
55 |
+
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
|
56 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim))
|
57 |
+
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.int64).float(), inv_freq).float()
|
58 |
+
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
|
59 |
+
|
60 |
+
|
61 |
+
# Copied from transformers.models.gptj.modeling_gptj.rotate_every_two
|
62 |
+
def rotate_every_two(x: torch.Tensor) -> torch.Tensor:
|
63 |
+
x1 = x[:, :, :, ::2]
|
64 |
+
x2 = x[:, :, :, 1::2]
|
65 |
+
x = torch.stack((-x2, x1), dim=-1)
|
66 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
67 |
+
|
68 |
+
|
69 |
+
# Copied from transformers.models.gptj.modeling_gptj.apply_rotary_pos_emb
|
70 |
+
def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor:
|
71 |
+
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
|
72 |
+
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
|
73 |
+
return (tensor * cos) + (rotate_every_two(tensor) * sin)
|
74 |
+
|
75 |
+
|
76 |
+
class CodeGenAttention(nn.Module):
|
77 |
+
def __init__(self, config):
|
78 |
+
super().__init__()
|
79 |
+
|
80 |
+
max_positions = config.max_position_embeddings
|
81 |
+
self.register_buffer(
|
82 |
+
"causal_mask",
|
83 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
84 |
+
1, 1, max_positions, max_positions
|
85 |
+
),
|
86 |
+
persistent=False,
|
87 |
+
)
|
88 |
+
|
89 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
90 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
91 |
+
|
92 |
+
self.embed_dim = config.hidden_size
|
93 |
+
self.num_attention_heads = config.num_attention_heads
|
94 |
+
self.head_dim = self.embed_dim // self.num_attention_heads
|
95 |
+
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
96 |
+
raise ValueError(
|
97 |
+
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
98 |
+
f" `num_attention_heads`: {self.num_attention_heads})."
|
99 |
+
)
|
100 |
+
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
|
101 |
+
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)
|
102 |
+
|
103 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
104 |
+
self.rotary_dim = config.rotary_dim
|
105 |
+
pos_embd_dim = self.rotary_dim or self.embed_dim
|
106 |
+
self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)
|
107 |
+
|
108 |
+
def _split_heads(self, x, n_head, dim_head, mp_num):
|
109 |
+
reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head))
|
110 |
+
reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:])
|
111 |
+
return reshaped
|
112 |
+
|
113 |
+
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
|
114 |
+
"""
|
115 |
+
Merges attn_head_size dim and num_attn_heads dim into n_ctx
|
116 |
+
"""
|
117 |
+
if len(tensor.shape) == 5:
|
118 |
+
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
|
119 |
+
elif len(tensor.shape) == 4:
|
120 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
121 |
+
else:
|
122 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
|
123 |
+
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
|
124 |
+
return tensor.view(new_shape)
|
125 |
+
|
126 |
+
def _attn(
|
127 |
+
self,
|
128 |
+
query,
|
129 |
+
key,
|
130 |
+
value,
|
131 |
+
attention_mask=None,
|
132 |
+
head_mask=None,
|
133 |
+
):
|
134 |
+
# compute causal mask from causal mask buffer
|
135 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
136 |
+
causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length]
|
137 |
+
|
138 |
+
# Keep the attention weights computation in fp32 to avoid overflow issues
|
139 |
+
query = query.to(torch.float32)
|
140 |
+
key = key.to(torch.float32)
|
141 |
+
|
142 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
143 |
+
|
144 |
+
attn_weights = attn_weights / self.scale_attn
|
145 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
146 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
147 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
148 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
149 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
150 |
+
|
151 |
+
if attention_mask is not None:
|
152 |
+
# Apply the attention mask
|
153 |
+
attn_weights = attn_weights + attention_mask
|
154 |
+
|
155 |
+
attn_weights = nn.Softmax(dim=-1)(attn_weights)
|
156 |
+
attn_weights = attn_weights.to(value.dtype)
|
157 |
+
attn_weights = self.attn_dropout(attn_weights)
|
158 |
+
|
159 |
+
# Mask heads if we want to
|
160 |
+
if head_mask is not None:
|
161 |
+
attn_weights = attn_weights * head_mask
|
162 |
+
|
163 |
+
attn_output = torch.matmul(attn_weights, value)
|
164 |
+
|
165 |
+
return attn_output, attn_weights
|
166 |
+
|
167 |
+
def forward(
|
168 |
+
self,
|
169 |
+
hidden_states: Optional[torch.FloatTensor],
|
170 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
171 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
172 |
+
position_ids: Optional[torch.LongTensor] = None,
|
173 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
174 |
+
use_cache: Optional[bool] = False,
|
175 |
+
output_attentions: Optional[bool] = False,
|
176 |
+
) -> Union[
|
177 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
178 |
+
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
179 |
+
]:
|
180 |
+
qkv = self.qkv_proj(hidden_states)
|
181 |
+
# TODO(enijkamp): factor out number of logical TPU-v4 cores or make forward pass agnostic
|
182 |
+
mp_num = 4
|
183 |
+
qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))
|
184 |
+
|
185 |
+
local_dim = self.head_dim * self.num_attention_heads // mp_num
|
186 |
+
query, value, key = torch.split(qkv_split, local_dim, dim=-1)
|
187 |
+
query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
188 |
+
key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
189 |
+
|
190 |
+
value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
191 |
+
value = value.permute(0, 2, 1, 3)
|
192 |
+
|
193 |
+
embed_positions = self.embed_positions
|
194 |
+
if embed_positions.device != position_ids.device:
|
195 |
+
embed_positions = embed_positions.to(position_ids.device)
|
196 |
+
self.embed_positions = embed_positions
|
197 |
+
|
198 |
+
sincos = embed_positions[position_ids]
|
199 |
+
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
|
200 |
+
|
201 |
+
if self.rotary_dim is not None:
|
202 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
203 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
204 |
+
|
205 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
206 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
207 |
+
|
208 |
+
k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
|
209 |
+
q_rot = apply_rotary_pos_emb(q_rot, sin, cos)
|
210 |
+
|
211 |
+
key = torch.cat([k_rot, k_pass], dim=-1)
|
212 |
+
query = torch.cat([q_rot, q_pass], dim=-1)
|
213 |
+
else:
|
214 |
+
key = apply_rotary_pos_emb(key, sin, cos)
|
215 |
+
query = apply_rotary_pos_emb(query, sin, cos)
|
216 |
+
|
217 |
+
key = key.permute(0, 2, 1, 3)
|
218 |
+
query = query.permute(0, 2, 1, 3)
|
219 |
+
|
220 |
+
if layer_past is not None:
|
221 |
+
past_key = layer_past[0]
|
222 |
+
past_value = layer_past[1]
|
223 |
+
key = torch.cat((past_key, key), dim=-2)
|
224 |
+
value = torch.cat((past_value, value), dim=-2)
|
225 |
+
|
226 |
+
if use_cache is True:
|
227 |
+
# Note that this cast is quite ugly, but is not implemented before ROPE as k_rot in the original codebase is always in fp32.
|
228 |
+
# Reference: https://github.com/salesforce/CodeGen/blob/f210c3bb1216c975ad858cd4132c0fdeabf4bfc2/codegen1/jaxformer/hf/codegen/modeling_codegen.py#L38
|
229 |
+
present = (key.to(hidden_states.dtype), value)
|
230 |
+
else:
|
231 |
+
present = None
|
232 |
+
|
233 |
+
# compute self-attention: V x Softmax(QK^T)
|
234 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
235 |
+
|
236 |
+
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
|
237 |
+
attn_output = self.out_proj(attn_output)
|
238 |
+
attn_output = self.resid_dropout(attn_output)
|
239 |
+
|
240 |
+
outputs = (attn_output, present)
|
241 |
+
if output_attentions:
|
242 |
+
outputs += (attn_weights,)
|
243 |
+
|
244 |
+
return outputs # a, present, (attentions)
|
245 |
+
|
246 |
+
|
247 |
+
# Copied from transformers.models.gptj.modeling_gptj.GPTJMLP with GPTJ->CodeGen
|
248 |
+
class CodeGenMLP(nn.Module):
|
249 |
+
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
|
250 |
+
super().__init__()
|
251 |
+
embed_dim = config.n_embd
|
252 |
+
|
253 |
+
self.fc_in = nn.Linear(embed_dim, intermediate_size)
|
254 |
+
self.fc_out = nn.Linear(intermediate_size, embed_dim)
|
255 |
+
|
256 |
+
self.act = ACT2FN[config.activation_function]
|
257 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
258 |
+
|
259 |
+
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
|
260 |
+
hidden_states = self.fc_in(hidden_states)
|
261 |
+
hidden_states = self.act(hidden_states)
|
262 |
+
hidden_states = self.fc_out(hidden_states)
|
263 |
+
hidden_states = self.dropout(hidden_states)
|
264 |
+
return hidden_states
|
265 |
+
|
266 |
+
|
267 |
+
# Copied from transformers.models.gptj.modeling_gptj.GPTJBlock with GPTJ->CodeGen
|
268 |
+
class CodeGenBlock(nn.Module):
|
269 |
+
# Ignore copy
|
270 |
+
def __init__(self, config):
|
271 |
+
super().__init__()
|
272 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
273 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
274 |
+
self.attn = CodeGenAttention(config)
|
275 |
+
self.mlp = CodeGenMLP(inner_dim, config)
|
276 |
+
|
277 |
+
def forward(
|
278 |
+
self,
|
279 |
+
hidden_states: Optional[torch.FloatTensor],
|
280 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
281 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
282 |
+
position_ids: Optional[torch.LongTensor] = None,
|
283 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
284 |
+
use_cache: Optional[bool] = False,
|
285 |
+
output_attentions: Optional[bool] = False,
|
286 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
287 |
+
residual = hidden_states
|
288 |
+
hidden_states = self.ln_1(hidden_states)
|
289 |
+
attn_outputs = self.attn(
|
290 |
+
hidden_states=hidden_states,
|
291 |
+
layer_past=layer_past,
|
292 |
+
attention_mask=attention_mask,
|
293 |
+
position_ids=position_ids,
|
294 |
+
head_mask=head_mask,
|
295 |
+
use_cache=use_cache,
|
296 |
+
output_attentions=output_attentions,
|
297 |
+
)
|
298 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
299 |
+
outputs = attn_outputs[1:]
|
300 |
+
|
301 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
302 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
303 |
+
|
304 |
+
if use_cache:
|
305 |
+
outputs = (hidden_states,) + outputs
|
306 |
+
else:
|
307 |
+
outputs = (hidden_states,) + outputs[1:]
|
308 |
+
|
309 |
+
return outputs # hidden_states, present, (attentions)
|
310 |
+
|
311 |
+
|
312 |
+
class CodeGenPreTrainedModel(PreTrainedModel):
|
313 |
+
"""
|
314 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
315 |
+
models.
|
316 |
+
"""
|
317 |
+
|
318 |
+
config_class = CodeGenConfig
|
319 |
+
base_model_prefix = "transformer"
|
320 |
+
supports_gradient_checkpointing = True
|
321 |
+
_no_split_modules = ["CodeGenBlock"]
|
322 |
+
_skip_keys_device_placement = "past_key_values"
|
323 |
+
|
324 |
+
def __init__(self, *inputs, **kwargs):
|
325 |
+
super().__init__(*inputs, **kwargs)
|
326 |
+
|
327 |
+
def _init_weights(self, module):
|
328 |
+
"""Initialize the weights."""
|
329 |
+
if isinstance(module, (nn.Linear,)):
|
330 |
+
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
|
331 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
332 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
333 |
+
if module.bias is not None:
|
334 |
+
module.bias.data.zero_()
|
335 |
+
elif isinstance(module, nn.Embedding):
|
336 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
337 |
+
if module.padding_idx is not None:
|
338 |
+
module.weight.data[module.padding_idx].zero_()
|
339 |
+
elif isinstance(module, nn.LayerNorm):
|
340 |
+
module.bias.data.zero_()
|
341 |
+
module.weight.data.fill_(1.0)
|
342 |
+
|
343 |
+
|
344 |
+
CODEGEN_START_DOCSTRING = r"""
|
345 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
346 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
347 |
+
behavior.
|
348 |
+
|
349 |
+
Parameters:
|
350 |
+
config ([`CodeGenConfig`]): Model configuration class with all the parameters of the model.
|
351 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
352 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
353 |
+
"""
|
354 |
+
|
355 |
+
CODEGEN_INPUTS_DOCSTRING = r"""
|
356 |
+
Args:
|
357 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
358 |
+
Indices of input sequence tokens in the vocabulary.
|
359 |
+
|
360 |
+
Indices can be obtained using [`AutoProcenizer`]. See [`PreTrainedTokenizer.encode`] and
|
361 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
362 |
+
|
363 |
+
[What are input IDs?](../glossary#input-ids)
|
364 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
365 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
366 |
+
|
367 |
+
- 1 for tokens that are **not masked**,
|
368 |
+
- 0 for tokens that are **masked**.
|
369 |
+
|
370 |
+
[What are attention masks?](../glossary#attention-mask)
|
371 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
372 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
373 |
+
1]`:
|
374 |
+
|
375 |
+
- 0 corresponds to a *sentence A* token,
|
376 |
+
- 1 corresponds to a *sentence B* token.
|
377 |
+
|
378 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
379 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
380 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
381 |
+
config.n_positions - 1]`.
|
382 |
+
|
383 |
+
[What are position IDs?](../glossary#position-ids)
|
384 |
+
head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
|
385 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
386 |
+
|
387 |
+
- 1 indicates the head is **not masked**,
|
388 |
+
- 0 indicates the head is **masked**.
|
389 |
+
|
390 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
|
391 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
392 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
393 |
+
model's internal embedding lookup matrix.
|
394 |
+
output_attentions (`bool`, *optional*):
|
395 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
396 |
+
tensors for more detail.
|
397 |
+
output_hidden_states (`bool`, *optional*):
|
398 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
399 |
+
more detail.
|
400 |
+
return_dict (`bool`, *optional*):
|
401 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
402 |
+
"""
|
403 |
+
|
404 |
+
|
405 |
+
@add_start_docstrings(
|
406 |
+
"The bare CodeGen Model transformer outputting raw hidden-states without any specific head on top.",
|
407 |
+
CODEGEN_START_DOCSTRING,
|
408 |
+
)
|
409 |
+
class CodeGenModel(CodeGenPreTrainedModel):
|
410 |
+
def __init__(self, config):
|
411 |
+
super().__init__(config)
|
412 |
+
|
413 |
+
self.embed_dim = config.n_embd
|
414 |
+
self.vocab_size = config.vocab_size
|
415 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
416 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
417 |
+
self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)])
|
418 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
419 |
+
self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads)
|
420 |
+
|
421 |
+
self.gradient_checkpointing = False
|
422 |
+
|
423 |
+
# Initialize weights and apply final processing
|
424 |
+
self.post_init()
|
425 |
+
|
426 |
+
def get_input_embeddings(self):
|
427 |
+
return self.wte
|
428 |
+
|
429 |
+
def set_input_embeddings(self, new_embeddings):
|
430 |
+
self.wte = new_embeddings
|
431 |
+
|
432 |
+
@add_start_docstrings_to_model_forward(CODEGEN_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
433 |
+
@add_code_sample_docstrings(
|
434 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
435 |
+
output_type=BaseModelOutputWithPast,
|
436 |
+
config_class=_CONFIG_FOR_DOC,
|
437 |
+
)
|
438 |
+
def forward(
|
439 |
+
self,
|
440 |
+
input_ids: Optional[torch.LongTensor] = None,
|
441 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
442 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
443 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
444 |
+
position_ids: Optional[torch.LongTensor] = None,
|
445 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
446 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
447 |
+
use_cache: Optional[bool] = None,
|
448 |
+
output_attentions: Optional[bool] = None,
|
449 |
+
output_hidden_states: Optional[bool] = None,
|
450 |
+
return_dict: Optional[bool] = None,
|
451 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
452 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
453 |
+
output_hidden_states = (
|
454 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
455 |
+
)
|
456 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
457 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
458 |
+
|
459 |
+
if input_ids is not None and inputs_embeds is not None:
|
460 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
461 |
+
elif input_ids is not None:
|
462 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
463 |
+
input_shape = input_ids.size()
|
464 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
465 |
+
batch_size = input_ids.shape[0]
|
466 |
+
elif inputs_embeds is not None:
|
467 |
+
input_shape = inputs_embeds.size()[:-1]
|
468 |
+
batch_size = inputs_embeds.shape[0]
|
469 |
+
else:
|
470 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
471 |
+
|
472 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
473 |
+
|
474 |
+
if token_type_ids is not None:
|
475 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
476 |
+
|
477 |
+
if past_key_values is None:
|
478 |
+
past_length = 0
|
479 |
+
past_key_values = tuple([None] * len(self.h))
|
480 |
+
else:
|
481 |
+
past_length = past_key_values[0][0].size(-2)
|
482 |
+
|
483 |
+
if position_ids is None:
|
484 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
485 |
+
position_ids = position_ids.unsqueeze(0)
|
486 |
+
|
487 |
+
# Attention mask.
|
488 |
+
if attention_mask is not None:
|
489 |
+
if batch_size <= 0:
|
490 |
+
raise ValueError("batch_size has to be defined and > 0")
|
491 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
492 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
493 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
494 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
495 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
496 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
497 |
+
attention_mask = attention_mask[:, None, None, :]
|
498 |
+
|
499 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
500 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
501 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
502 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
503 |
+
# effectively the same as removing these entirely.
|
504 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
505 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
506 |
+
|
507 |
+
# Prepare head mask if needed
|
508 |
+
# 1.0 in head_mask indicate we keep the head
|
509 |
+
# attention_probs has shape bsz x num_attention_heads x N x N
|
510 |
+
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
511 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
512 |
+
|
513 |
+
if inputs_embeds is None:
|
514 |
+
inputs_embeds = self.wte(input_ids)
|
515 |
+
|
516 |
+
hidden_states = inputs_embeds
|
517 |
+
|
518 |
+
if token_type_ids is not None:
|
519 |
+
token_type_embeds = self.wte(token_type_ids)
|
520 |
+
hidden_states = hidden_states + token_type_embeds
|
521 |
+
|
522 |
+
hidden_states = self.drop(hidden_states)
|
523 |
+
|
524 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
525 |
+
|
526 |
+
if self.gradient_checkpointing and self.training:
|
527 |
+
if use_cache:
|
528 |
+
logger.warning_once(
|
529 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
530 |
+
"`use_cache=False`..."
|
531 |
+
)
|
532 |
+
use_cache = False
|
533 |
+
|
534 |
+
presents = () if use_cache else None
|
535 |
+
all_self_attentions = () if output_attentions else None
|
536 |
+
all_hidden_states = () if output_hidden_states else None
|
537 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
538 |
+
if output_hidden_states:
|
539 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
540 |
+
|
541 |
+
if self.gradient_checkpointing and self.training:
|
542 |
+
outputs = self._gradient_checkpointing_func(
|
543 |
+
block.__call__,
|
544 |
+
hidden_states,
|
545 |
+
None,
|
546 |
+
attention_mask,
|
547 |
+
position_ids,
|
548 |
+
head_mask[i],
|
549 |
+
use_cache,
|
550 |
+
output_attentions,
|
551 |
+
)
|
552 |
+
else:
|
553 |
+
outputs = block(
|
554 |
+
hidden_states=hidden_states,
|
555 |
+
layer_past=layer_past,
|
556 |
+
attention_mask=attention_mask,
|
557 |
+
position_ids=position_ids,
|
558 |
+
head_mask=head_mask[i],
|
559 |
+
use_cache=use_cache,
|
560 |
+
output_attentions=output_attentions,
|
561 |
+
)
|
562 |
+
|
563 |
+
hidden_states = outputs[0]
|
564 |
+
if use_cache is True:
|
565 |
+
presents = presents + (outputs[1],)
|
566 |
+
|
567 |
+
if output_attentions:
|
568 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
569 |
+
|
570 |
+
hidden_states = self.ln_f(hidden_states)
|
571 |
+
|
572 |
+
hidden_states = hidden_states.view(output_shape)
|
573 |
+
# Add last hidden state
|
574 |
+
if output_hidden_states:
|
575 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
576 |
+
|
577 |
+
if not return_dict:
|
578 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
579 |
+
|
580 |
+
return BaseModelOutputWithPast(
|
581 |
+
last_hidden_state=hidden_states,
|
582 |
+
past_key_values=presents,
|
583 |
+
hidden_states=all_hidden_states,
|
584 |
+
attentions=all_self_attentions,
|
585 |
+
)
|
586 |
+
|
587 |
+
|
588 |
+
@add_start_docstrings(
|
589 |
+
"""
|
590 |
+
The CodeGen Model transformer with a language modeling head on top.
|
591 |
+
""",
|
592 |
+
CODEGEN_START_DOCSTRING,
|
593 |
+
)
|
594 |
+
class CodeGenForCausalLM(CodeGenPreTrainedModel):
|
595 |
+
_tied_weights_keys = ["lm_head.weight"]
|
596 |
+
|
597 |
+
def __init__(self, config):
|
598 |
+
super().__init__(config)
|
599 |
+
self.transformer = CodeGenModel(config)
|
600 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
601 |
+
|
602 |
+
# Initialize weights and apply final processing
|
603 |
+
self.post_init()
|
604 |
+
|
605 |
+
def get_output_embeddings(self):
|
606 |
+
return self.lm_head
|
607 |
+
|
608 |
+
def set_output_embeddings(self, new_embeddings):
|
609 |
+
self.lm_head = new_embeddings
|
610 |
+
|
611 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
|
612 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
613 |
+
# Omit tokens covered by past_key_values
|
614 |
+
if past_key_values:
|
615 |
+
past_length = past_key_values[0][0].shape[2]
|
616 |
+
|
617 |
+
# Some generation methods already pass only the last input ID
|
618 |
+
if input_ids.shape[1] > past_length:
|
619 |
+
remove_prefix_length = past_length
|
620 |
+
else:
|
621 |
+
# Default to old behavior: keep only final ID
|
622 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
623 |
+
|
624 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
625 |
+
if token_type_ids is not None:
|
626 |
+
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
627 |
+
|
628 |
+
attention_mask = kwargs.get("attention_mask", None)
|
629 |
+
position_ids = kwargs.get("position_ids", None)
|
630 |
+
|
631 |
+
if attention_mask is not None and position_ids is None:
|
632 |
+
# create position_ids on the fly for batch generation
|
633 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
634 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
635 |
+
if past_key_values:
|
636 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
637 |
+
|
638 |
+
return {
|
639 |
+
"input_ids": input_ids,
|
640 |
+
"past_key_values": past_key_values,
|
641 |
+
"use_cache": kwargs.get("use_cache"),
|
642 |
+
"position_ids": position_ids,
|
643 |
+
"attention_mask": attention_mask,
|
644 |
+
"token_type_ids": token_type_ids,
|
645 |
+
}
|
646 |
+
|
647 |
+
@add_start_docstrings_to_model_forward(CODEGEN_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
648 |
+
@add_code_sample_docstrings(
|
649 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
650 |
+
output_type=CausalLMOutputWithPast,
|
651 |
+
config_class=_CONFIG_FOR_DOC,
|
652 |
+
)
|
653 |
+
def forward(
|
654 |
+
self,
|
655 |
+
input_ids: Optional[torch.LongTensor] = None,
|
656 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
657 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
658 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
659 |
+
position_ids: Optional[torch.LongTensor] = None,
|
660 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
661 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
662 |
+
labels: Optional[torch.LongTensor] = None,
|
663 |
+
use_cache: Optional[bool] = None,
|
664 |
+
output_attentions: Optional[bool] = None,
|
665 |
+
output_hidden_states: Optional[bool] = None,
|
666 |
+
return_dict: Optional[bool] = None,
|
667 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
668 |
+
r"""
|
669 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
670 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
671 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
672 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
673 |
+
"""
|
674 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
675 |
+
|
676 |
+
transformer_outputs = self.transformer(
|
677 |
+
input_ids,
|
678 |
+
past_key_values=past_key_values,
|
679 |
+
attention_mask=attention_mask,
|
680 |
+
token_type_ids=token_type_ids,
|
681 |
+
position_ids=position_ids,
|
682 |
+
head_mask=head_mask,
|
683 |
+
inputs_embeds=inputs_embeds,
|
684 |
+
use_cache=use_cache,
|
685 |
+
output_attentions=output_attentions,
|
686 |
+
output_hidden_states=output_hidden_states,
|
687 |
+
return_dict=return_dict,
|
688 |
+
)
|
689 |
+
hidden_states = transformer_outputs[0]
|
690 |
+
|
691 |
+
# make sure sampling in fp16 works correctly and
|
692 |
+
# compute loss in fp32 to match with mesh-tf version
|
693 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
694 |
+
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
695 |
+
|
696 |
+
loss = None
|
697 |
+
if labels is not None:
|
698 |
+
# move labels to correct device to enable model parallelism
|
699 |
+
labels = labels.to(lm_logits.device)
|
700 |
+
# Shift so that tokens < n predict n
|
701 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
702 |
+
shift_labels = labels[..., 1:].contiguous()
|
703 |
+
# Flatten the tokens
|
704 |
+
loss_fct = CrossEntropyLoss()
|
705 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
706 |
+
|
707 |
+
loss = loss.to(hidden_states.dtype)
|
708 |
+
|
709 |
+
if not return_dict:
|
710 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
711 |
+
return ((loss,) + output) if loss is not None else output
|
712 |
+
|
713 |
+
return CausalLMOutputWithPast(
|
714 |
+
loss=loss,
|
715 |
+
logits=lm_logits,
|
716 |
+
past_key_values=transformer_outputs.past_key_values,
|
717 |
+
hidden_states=transformer_outputs.hidden_states,
|
718 |
+
attentions=transformer_outputs.attentions,
|
719 |
+
)
|
720 |
+
|
721 |
+
@staticmethod
|
722 |
+
def _reorder_cache(
|
723 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
724 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
725 |
+
"""
|
726 |
+
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
|
727 |
+
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
728 |
+
beam_idx at every generation step.
|
729 |
+
"""
|
730 |
+
return tuple(
|
731 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
732 |
+
for layer_past in past_key_values
|
733 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/tokenization_codegen.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Salesforce authors, The Open AI Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for CodeGen"""
|
16 |
+
|
17 |
+
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
from functools import lru_cache
|
21 |
+
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import regex as re
|
25 |
+
|
26 |
+
from ...utils import is_tf_available, is_torch_available, logging, to_py_obj
|
27 |
+
|
28 |
+
|
29 |
+
if TYPE_CHECKING:
|
30 |
+
if is_torch_available():
|
31 |
+
import torch
|
32 |
+
if is_tf_available():
|
33 |
+
import tensorflow as tf
|
34 |
+
|
35 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
VOCAB_FILES_NAMES = {
|
41 |
+
"vocab_file": "vocab.json",
|
42 |
+
"merges_file": "merges.txt",
|
43 |
+
}
|
44 |
+
|
45 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
46 |
+
"vocab_file": {
|
47 |
+
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
|
48 |
+
},
|
49 |
+
"merges_file": {
|
50 |
+
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
|
51 |
+
},
|
52 |
+
}
|
53 |
+
|
54 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
55 |
+
"Salesforce/codegen-350M-mono": 2048,
|
56 |
+
}
|
57 |
+
|
58 |
+
|
59 |
+
@lru_cache()
|
60 |
+
def bytes_to_unicode():
|
61 |
+
"""
|
62 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
63 |
+
characters the bpe code barfs on.
|
64 |
+
|
65 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
66 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
67 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
68 |
+
tables between utf-8 bytes and unicode strings.
|
69 |
+
"""
|
70 |
+
bs = (
|
71 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
72 |
+
)
|
73 |
+
cs = bs[:]
|
74 |
+
n = 0
|
75 |
+
for b in range(2**8):
|
76 |
+
if b not in bs:
|
77 |
+
bs.append(b)
|
78 |
+
cs.append(2**8 + n)
|
79 |
+
n += 1
|
80 |
+
cs = [chr(n) for n in cs]
|
81 |
+
return dict(zip(bs, cs))
|
82 |
+
|
83 |
+
|
84 |
+
def get_pairs(word):
|
85 |
+
"""
|
86 |
+
Return set of symbol pairs in a word.
|
87 |
+
|
88 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
89 |
+
"""
|
90 |
+
pairs = set()
|
91 |
+
prev_char = word[0]
|
92 |
+
for char in word[1:]:
|
93 |
+
pairs.add((prev_char, char))
|
94 |
+
prev_char = char
|
95 |
+
return pairs
|
96 |
+
|
97 |
+
|
98 |
+
class CodeGenTokenizer(PreTrainedTokenizer):
|
99 |
+
"""
|
100 |
+
Construct a CodeGen tokenizer. Based on byte-level Byte-Pair-Encoding.
|
101 |
+
|
102 |
+
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
103 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
104 |
+
|
105 |
+
```python
|
106 |
+
>>> from transformers import CodeGenTokenizer
|
107 |
+
|
108 |
+
>>> tokenizer = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono")
|
109 |
+
>>> tokenizer("Hello world")["input_ids"]
|
110 |
+
[15496, 995]
|
111 |
+
|
112 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
113 |
+
[18435, 995]
|
114 |
+
```
|
115 |
+
|
116 |
+
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
|
117 |
+
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
|
118 |
+
|
119 |
+
<Tip>
|
120 |
+
|
121 |
+
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
|
122 |
+
|
123 |
+
</Tip>
|
124 |
+
|
125 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
126 |
+
this superclass for more information regarding those methods.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
vocab_file (`str`):
|
130 |
+
Path to the vocabulary file.
|
131 |
+
merges_file (`str`):
|
132 |
+
Path to the merges file.
|
133 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
134 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
135 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
136 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
137 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
138 |
+
token instead.
|
139 |
+
bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
140 |
+
The beginning of sequence token.
|
141 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
142 |
+
The end of sequence token.
|
143 |
+
pad_token (`str`, *optional*):
|
144 |
+
The token used for padding, for example when batching sequences of different lengths.
|
145 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
146 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
147 |
+
other word. (CodeGen tokenizer detect beginning of words by the preceding space).
|
148 |
+
add_bos_token (`bool`, *optional*, defaults to `False`):
|
149 |
+
Whether to add a beginning of sequence token at the start of sequences.
|
150 |
+
"""
|
151 |
+
|
152 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
153 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
154 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
155 |
+
model_input_names = ["input_ids", "attention_mask"]
|
156 |
+
|
157 |
+
def __init__(
|
158 |
+
self,
|
159 |
+
vocab_file,
|
160 |
+
merges_file,
|
161 |
+
errors="replace",
|
162 |
+
unk_token="<|endoftext|>",
|
163 |
+
bos_token="<|endoftext|>",
|
164 |
+
eos_token="<|endoftext|>",
|
165 |
+
pad_token=None,
|
166 |
+
add_prefix_space=False,
|
167 |
+
add_bos_token=False,
|
168 |
+
**kwargs,
|
169 |
+
):
|
170 |
+
bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
|
171 |
+
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
|
172 |
+
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
|
173 |
+
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
|
174 |
+
self.add_bos_token = add_bos_token
|
175 |
+
|
176 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
177 |
+
self.encoder = json.load(vocab_handle)
|
178 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
179 |
+
self.errors = errors # how to handle errors in decoding
|
180 |
+
self.byte_encoder = bytes_to_unicode()
|
181 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
182 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
183 |
+
bpe_merges = merges_handle.read().split("\n")[1:-1]
|
184 |
+
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
185 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
186 |
+
self.cache = {}
|
187 |
+
self.add_prefix_space = add_prefix_space
|
188 |
+
|
189 |
+
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
190 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
191 |
+
super().__init__(
|
192 |
+
errors=errors,
|
193 |
+
unk_token=unk_token,
|
194 |
+
bos_token=bos_token,
|
195 |
+
eos_token=eos_token,
|
196 |
+
pad_token=pad_token,
|
197 |
+
add_prefix_space=add_prefix_space,
|
198 |
+
add_bos_token=add_bos_token,
|
199 |
+
**kwargs,
|
200 |
+
)
|
201 |
+
|
202 |
+
@property
|
203 |
+
def vocab_size(self):
|
204 |
+
return len(self.encoder)
|
205 |
+
|
206 |
+
def get_vocab(self):
|
207 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
208 |
+
|
209 |
+
def bpe(self, token):
|
210 |
+
if token in self.cache:
|
211 |
+
return self.cache[token]
|
212 |
+
word = tuple(token)
|
213 |
+
pairs = get_pairs(word)
|
214 |
+
|
215 |
+
if not pairs:
|
216 |
+
return token
|
217 |
+
|
218 |
+
while True:
|
219 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
220 |
+
if bigram not in self.bpe_ranks:
|
221 |
+
break
|
222 |
+
first, second = bigram
|
223 |
+
new_word = []
|
224 |
+
i = 0
|
225 |
+
while i < len(word):
|
226 |
+
try:
|
227 |
+
j = word.index(first, i)
|
228 |
+
except ValueError:
|
229 |
+
new_word.extend(word[i:])
|
230 |
+
break
|
231 |
+
else:
|
232 |
+
new_word.extend(word[i:j])
|
233 |
+
i = j
|
234 |
+
|
235 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
236 |
+
new_word.append(first + second)
|
237 |
+
i += 2
|
238 |
+
else:
|
239 |
+
new_word.append(word[i])
|
240 |
+
i += 1
|
241 |
+
new_word = tuple(new_word)
|
242 |
+
word = new_word
|
243 |
+
if len(word) == 1:
|
244 |
+
break
|
245 |
+
else:
|
246 |
+
pairs = get_pairs(word)
|
247 |
+
word = " ".join(word)
|
248 |
+
self.cache[token] = word
|
249 |
+
return word
|
250 |
+
|
251 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
252 |
+
if self.add_bos_token:
|
253 |
+
bos_token_ids = [self.bos_token_id]
|
254 |
+
else:
|
255 |
+
bos_token_ids = []
|
256 |
+
|
257 |
+
output = bos_token_ids + token_ids_0
|
258 |
+
|
259 |
+
if token_ids_1 is None:
|
260 |
+
return output
|
261 |
+
|
262 |
+
return output + bos_token_ids + token_ids_1
|
263 |
+
|
264 |
+
def _tokenize(self, text):
|
265 |
+
"""Tokenize a string."""
|
266 |
+
bpe_tokens = []
|
267 |
+
for token in re.findall(self.pat, text):
|
268 |
+
token = "".join(
|
269 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
270 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
271 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
272 |
+
return bpe_tokens
|
273 |
+
|
274 |
+
def _convert_token_to_id(self, token):
|
275 |
+
"""Converts a token (str) in an id using the vocab."""
|
276 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
277 |
+
|
278 |
+
def _convert_id_to_token(self, index):
|
279 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
280 |
+
return self.decoder.get(index)
|
281 |
+
|
282 |
+
def convert_tokens_to_string(self, tokens):
|
283 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
284 |
+
text = "".join(tokens)
|
285 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
286 |
+
return text
|
287 |
+
|
288 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
289 |
+
if not os.path.isdir(save_directory):
|
290 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
291 |
+
return
|
292 |
+
vocab_file = os.path.join(
|
293 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
294 |
+
)
|
295 |
+
merge_file = os.path.join(
|
296 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
297 |
+
)
|
298 |
+
|
299 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
300 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
301 |
+
|
302 |
+
index = 0
|
303 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
304 |
+
writer.write("#version: 0.2\n")
|
305 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
306 |
+
if index != token_index:
|
307 |
+
logger.warning(
|
308 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
309 |
+
" Please check that the tokenizer is not corrupted!"
|
310 |
+
)
|
311 |
+
index = token_index
|
312 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
313 |
+
index += 1
|
314 |
+
|
315 |
+
return vocab_file, merge_file
|
316 |
+
|
317 |
+
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
318 |
+
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
|
319 |
+
if is_split_into_words or add_prefix_space:
|
320 |
+
text = " " + text
|
321 |
+
return (text, kwargs)
|
322 |
+
|
323 |
+
def decode(
|
324 |
+
self,
|
325 |
+
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
|
326 |
+
skip_special_tokens: bool = False,
|
327 |
+
clean_up_tokenization_spaces: bool = None,
|
328 |
+
truncate_before_pattern: Optional[List[str]] = None,
|
329 |
+
**kwargs,
|
330 |
+
) -> str:
|
331 |
+
"""
|
332 |
+
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
|
333 |
+
tokens and clean up tokenization spaces.
|
334 |
+
|
335 |
+
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
|
336 |
+
|
337 |
+
Args:
|
338 |
+
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
|
339 |
+
List of tokenized input ids. Can be obtained using the `__call__` method.
|
340 |
+
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
341 |
+
Whether or not to remove special tokens in the decoding.
|
342 |
+
clean_up_tokenization_spaces (`bool`, *optional*):
|
343 |
+
Whether or not to clean up the tokenization spaces. If `None`, will default to
|
344 |
+
`self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
|
345 |
+
truncate_before_pattern (`List[str]`, *optional*, defaults to `None`):
|
346 |
+
A list of regular expression strings that will be used to truncate the returned string. This can be
|
347 |
+
used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning
|
348 |
+
of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`.
|
349 |
+
kwargs (additional keyword arguments, *optional*):
|
350 |
+
Will be passed to the underlying model specific decode method.
|
351 |
+
|
352 |
+
Returns:
|
353 |
+
`str`: The decoded sentence.
|
354 |
+
"""
|
355 |
+
|
356 |
+
token_ids = to_py_obj(token_ids)
|
357 |
+
|
358 |
+
decoded_text = super()._decode(
|
359 |
+
token_ids=token_ids,
|
360 |
+
skip_special_tokens=skip_special_tokens,
|
361 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
362 |
+
**kwargs,
|
363 |
+
)
|
364 |
+
|
365 |
+
if truncate_before_pattern is not None and len(truncate_before_pattern) > 0:
|
366 |
+
decoded_text = self.truncate(decoded_text, truncate_before_pattern)
|
367 |
+
|
368 |
+
return decoded_text
|
369 |
+
|
370 |
+
def truncate(self, completion, truncate_before_pattern):
|
371 |
+
def find_re(string, pattern, start_pos):
|
372 |
+
m = pattern.search(string, start_pos)
|
373 |
+
return m.start() if m else -1
|
374 |
+
|
375 |
+
terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern]
|
376 |
+
|
377 |
+
prints = list(re.finditer("^print", completion, re.MULTILINE))
|
378 |
+
|
379 |
+
if len(prints) > 1:
|
380 |
+
completion = completion[: prints[1].start()]
|
381 |
+
|
382 |
+
defs = list(re.finditer("^def", completion, re.MULTILINE))
|
383 |
+
|
384 |
+
if len(defs) > 1:
|
385 |
+
completion = completion[: defs[1].start()]
|
386 |
+
|
387 |
+
start_pos = 0
|
388 |
+
|
389 |
+
terminals_pos = [
|
390 |
+
pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1
|
391 |
+
]
|
392 |
+
|
393 |
+
if len(terminals_pos) > 0:
|
394 |
+
return completion[: min(terminals_pos)]
|
395 |
+
else:
|
396 |
+
return completion
|
env-llmeval/lib/python3.10/site-packages/transformers/models/codegen/tokenization_codegen_fast.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Salesforce authors, The Open AI Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for OpenAI GPT."""
|
16 |
+
|
17 |
+
|
18 |
+
import json
|
19 |
+
import re
|
20 |
+
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
from ...utils import is_tf_available, is_torch_available, logging
|
25 |
+
|
26 |
+
|
27 |
+
if TYPE_CHECKING:
|
28 |
+
if is_torch_available():
|
29 |
+
import torch
|
30 |
+
if is_tf_available():
|
31 |
+
import tensorflow as tf
|
32 |
+
|
33 |
+
from tokenizers import pre_tokenizers
|
34 |
+
|
35 |
+
from ...tokenization_utils_base import BatchEncoding
|
36 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
37 |
+
from .tokenization_codegen import CodeGenTokenizer
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
|
43 |
+
|
44 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
45 |
+
"vocab_file": {
|
46 |
+
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
|
47 |
+
},
|
48 |
+
"merges_file": {
|
49 |
+
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
|
50 |
+
},
|
51 |
+
"tokenizer_file": {
|
52 |
+
"Salesforce/codegen-350M-mono": (
|
53 |
+
"https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json"
|
54 |
+
),
|
55 |
+
},
|
56 |
+
}
|
57 |
+
|
58 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
59 |
+
"Salesforce/codegen-350M-mono": 2048,
|
60 |
+
}
|
61 |
+
|
62 |
+
|
63 |
+
class CodeGenTokenizerFast(PreTrainedTokenizerFast):
|
64 |
+
"""
|
65 |
+
Construct a "fast" CodeGen tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
|
66 |
+
Byte-Pair-Encoding.
|
67 |
+
|
68 |
+
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
69 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
70 |
+
|
71 |
+
```python
|
72 |
+
>>> from transformers import CodeGenTokenizerFast
|
73 |
+
|
74 |
+
>>> tokenizer = CodeGenTokenizerFast.from_pretrained("Salesforce/codegen-350M-mono")
|
75 |
+
>>> tokenizer("Hello world")["input_ids"]
|
76 |
+
[15496, 995]
|
77 |
+
|
78 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
79 |
+
[18435, 995]
|
80 |
+
```
|
81 |
+
|
82 |
+
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
|
83 |
+
the model was not pretrained this way, it might yield a decrease in performance.
|
84 |
+
|
85 |
+
<Tip>
|
86 |
+
|
87 |
+
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
|
88 |
+
|
89 |
+
</Tip>
|
90 |
+
|
91 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
92 |
+
refer to this superclass for more information regarding those methods.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
vocab_file (`str`, *optional*):
|
96 |
+
Path to the vocabulary file.
|
97 |
+
merges_file (`str`, *optional*):
|
98 |
+
Path to the merges file.
|
99 |
+
tokenizer_file (`str`, *optional*):
|
100 |
+
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
|
101 |
+
contains everything needed to load the tokenizer.
|
102 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
103 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
104 |
+
token instead.
|
105 |
+
bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
106 |
+
The beginning of sequence token.
|
107 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
108 |
+
The end of sequence token.
|
109 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
110 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
111 |
+
other word. (CodeGen tokenizer detect beginning of words by the preceding space).
|
112 |
+
"""
|
113 |
+
|
114 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
115 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
116 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
117 |
+
model_input_names = ["input_ids", "attention_mask"]
|
118 |
+
slow_tokenizer_class = CodeGenTokenizer
|
119 |
+
|
120 |
+
def __init__(
|
121 |
+
self,
|
122 |
+
vocab_file=None,
|
123 |
+
merges_file=None,
|
124 |
+
tokenizer_file=None,
|
125 |
+
unk_token="<|endoftext|>",
|
126 |
+
bos_token="<|endoftext|>",
|
127 |
+
eos_token="<|endoftext|>",
|
128 |
+
add_prefix_space=False,
|
129 |
+
**kwargs,
|
130 |
+
):
|
131 |
+
super().__init__(
|
132 |
+
vocab_file,
|
133 |
+
merges_file,
|
134 |
+
tokenizer_file=tokenizer_file,
|
135 |
+
unk_token=unk_token,
|
136 |
+
bos_token=bos_token,
|
137 |
+
eos_token=eos_token,
|
138 |
+
add_prefix_space=add_prefix_space,
|
139 |
+
**kwargs,
|
140 |
+
)
|
141 |
+
|
142 |
+
if kwargs.pop("add_bos_token", False):
|
143 |
+
model_id = kwargs.pop("name_or_path", "")
|
144 |
+
raise ValueError(
|
145 |
+
"Currenty GPT2's fast tokenizer does NOT support adding a BOS token. "
|
146 |
+
"Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n"
|
147 |
+
f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n"
|
148 |
+
f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n"
|
149 |
+
"This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005."
|
150 |
+
" so that the fast tokenizer works correctly."
|
151 |
+
)
|
152 |
+
|
153 |
+
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
|
154 |
+
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
|
155 |
+
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
|
156 |
+
pre_tok_state["add_prefix_space"] = add_prefix_space
|
157 |
+
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
|
158 |
+
|
159 |
+
self.add_prefix_space = add_prefix_space
|
160 |
+
|
161 |
+
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
162 |
+
is_split_into_words = kwargs.get("is_split_into_words", False)
|
163 |
+
assert self.add_prefix_space or not is_split_into_words, (
|
164 |
+
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
|
165 |
+
"to use it with pretokenized inputs."
|
166 |
+
)
|
167 |
+
|
168 |
+
return super()._batch_encode_plus(*args, **kwargs)
|
169 |
+
|
170 |
+
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
171 |
+
is_split_into_words = kwargs.get("is_split_into_words", False)
|
172 |
+
|
173 |
+
assert self.add_prefix_space or not is_split_into_words, (
|
174 |
+
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
|
175 |
+
"to use it with pretokenized inputs."
|
176 |
+
)
|
177 |
+
|
178 |
+
return super()._encode_plus(*args, **kwargs)
|
179 |
+
|
180 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
181 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
182 |
+
return tuple(files)
|
183 |
+
|
184 |
+
def decode(
|
185 |
+
self,
|
186 |
+
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
|
187 |
+
skip_special_tokens: bool = False,
|
188 |
+
clean_up_tokenization_spaces: bool = None,
|
189 |
+
truncate_before_pattern: Optional[List[str]] = None,
|
190 |
+
**kwargs,
|
191 |
+
) -> str:
|
192 |
+
"""
|
193 |
+
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
|
194 |
+
tokens and clean up tokenization spaces.
|
195 |
+
|
196 |
+
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
|
200 |
+
List of tokenized input ids. Can be obtained using the `__call__` method.
|
201 |
+
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
202 |
+
Whether or not to remove special tokens in the decoding.
|
203 |
+
clean_up_tokenization_spaces (`bool`, *optional*):
|
204 |
+
Whether or not to clean up the tokenization spaces. If `None`, will default to
|
205 |
+
`self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
|
206 |
+
truncate_before_pattern (`List[str]`, *optional*, defaults to `None`):
|
207 |
+
A list of regular expression strings that will be used to truncate the returned string. This can be
|
208 |
+
used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning
|
209 |
+
of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`.
|
210 |
+
kwargs (additional keyword arguments, *optional*):
|
211 |
+
Will be passed to the underlying model specific decode method.
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
`str`: The decoded sentence.
|
215 |
+
"""
|
216 |
+
|
217 |
+
decoded_text = super().decode(
|
218 |
+
token_ids=token_ids,
|
219 |
+
skip_special_tokens=skip_special_tokens,
|
220 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
221 |
+
**kwargs,
|
222 |
+
)
|
223 |
+
|
224 |
+
if truncate_before_pattern is not None and len(truncate_before_pattern) > 0:
|
225 |
+
decoded_text = self.truncate(decoded_text, truncate_before_pattern)
|
226 |
+
|
227 |
+
return decoded_text
|
228 |
+
|
229 |
+
def truncate(self, completion, truncate_before_pattern):
|
230 |
+
def find_re(string, pattern, start_pos):
|
231 |
+
m = pattern.search(string, start_pos)
|
232 |
+
return m.start() if m else -1
|
233 |
+
|
234 |
+
terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern]
|
235 |
+
|
236 |
+
prints = list(re.finditer("^print", completion, re.MULTILINE))
|
237 |
+
|
238 |
+
if len(prints) > 1:
|
239 |
+
completion = completion[: prints[1].start()]
|
240 |
+
|
241 |
+
defs = list(re.finditer("^def", completion, re.MULTILINE))
|
242 |
+
|
243 |
+
if len(defs) > 1:
|
244 |
+
completion = completion[: defs[1].start()]
|
245 |
+
|
246 |
+
start_pos = 0
|
247 |
+
|
248 |
+
terminals_pos = [
|
249 |
+
pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1
|
250 |
+
]
|
251 |
+
|
252 |
+
if len(terminals_pos) > 0:
|
253 |
+
return completion[: min(terminals_pos)]
|
254 |
+
else:
|
255 |
+
return completion
|
env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/__init__.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_tf_available,
|
20 |
+
is_torch_available,
|
21 |
+
is_vision_available,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
_import_structure = {
|
26 |
+
"configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"]
|
27 |
+
}
|
28 |
+
|
29 |
+
try:
|
30 |
+
if not is_vision_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["feature_extraction_convnext"] = ["ConvNextFeatureExtractor"]
|
36 |
+
_import_structure["image_processing_convnext"] = ["ConvNextImageProcessor"]
|
37 |
+
|
38 |
+
try:
|
39 |
+
if not is_torch_available():
|
40 |
+
raise OptionalDependencyNotAvailable()
|
41 |
+
except OptionalDependencyNotAvailable:
|
42 |
+
pass
|
43 |
+
else:
|
44 |
+
_import_structure["modeling_convnext"] = [
|
45 |
+
"CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
46 |
+
"ConvNextForImageClassification",
|
47 |
+
"ConvNextModel",
|
48 |
+
"ConvNextPreTrainedModel",
|
49 |
+
"ConvNextBackbone",
|
50 |
+
]
|
51 |
+
|
52 |
+
try:
|
53 |
+
if not is_tf_available():
|
54 |
+
raise OptionalDependencyNotAvailable()
|
55 |
+
except OptionalDependencyNotAvailable:
|
56 |
+
pass
|
57 |
+
else:
|
58 |
+
_import_structure["modeling_tf_convnext"] = [
|
59 |
+
"TFConvNextForImageClassification",
|
60 |
+
"TFConvNextModel",
|
61 |
+
"TFConvNextPreTrainedModel",
|
62 |
+
]
|
63 |
+
|
64 |
+
if TYPE_CHECKING:
|
65 |
+
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
|
66 |
+
|
67 |
+
try:
|
68 |
+
if not is_vision_available():
|
69 |
+
raise OptionalDependencyNotAvailable()
|
70 |
+
except OptionalDependencyNotAvailable:
|
71 |
+
pass
|
72 |
+
else:
|
73 |
+
from .feature_extraction_convnext import ConvNextFeatureExtractor
|
74 |
+
from .image_processing_convnext import ConvNextImageProcessor
|
75 |
+
|
76 |
+
try:
|
77 |
+
if not is_torch_available():
|
78 |
+
raise OptionalDependencyNotAvailable()
|
79 |
+
except OptionalDependencyNotAvailable:
|
80 |
+
pass
|
81 |
+
else:
|
82 |
+
from .modeling_convnext import (
|
83 |
+
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
84 |
+
ConvNextBackbone,
|
85 |
+
ConvNextForImageClassification,
|
86 |
+
ConvNextModel,
|
87 |
+
ConvNextPreTrainedModel,
|
88 |
+
)
|
89 |
+
|
90 |
+
try:
|
91 |
+
if not is_tf_available():
|
92 |
+
raise OptionalDependencyNotAvailable()
|
93 |
+
except OptionalDependencyNotAvailable:
|
94 |
+
pass
|
95 |
+
else:
|
96 |
+
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
|
97 |
+
|
98 |
+
|
99 |
+
else:
|
100 |
+
import sys
|
101 |
+
|
102 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/configuration_convnext.cpython-310.pyc
ADDED
Binary file (6.08 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/convert_convnext_to_pytorch.cpython-310.pyc
ADDED
Binary file (7.14 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/configuration_convnext.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" ConvNeXT model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from packaging import version
|
21 |
+
|
22 |
+
from ...configuration_utils import PretrainedConfig
|
23 |
+
from ...onnx import OnnxConfig
|
24 |
+
from ...utils import logging
|
25 |
+
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
31 |
+
"facebook/convnext-tiny-224": "https://huggingface.co/facebook/convnext-tiny-224/resolve/main/config.json",
|
32 |
+
# See all ConvNeXT models at https://huggingface.co/models?filter=convnext
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
class ConvNextConfig(BackboneConfigMixin, PretrainedConfig):
|
37 |
+
r"""
|
38 |
+
This is the configuration class to store the configuration of a [`ConvNextModel`]. It is used to instantiate an
|
39 |
+
ConvNeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
40 |
+
with the defaults will yield a similar configuration to that of the ConvNeXT
|
41 |
+
[facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) architecture.
|
42 |
+
|
43 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
44 |
+
documentation from [`PretrainedConfig`] for more information.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
num_channels (`int`, *optional*, defaults to 3):
|
48 |
+
The number of input channels.
|
49 |
+
patch_size (`int`, optional, defaults to 4):
|
50 |
+
Patch size to use in the patch embedding layer.
|
51 |
+
num_stages (`int`, optional, defaults to 4):
|
52 |
+
The number of stages in the model.
|
53 |
+
hidden_sizes (`List[int]`, *optional*, defaults to [96, 192, 384, 768]):
|
54 |
+
Dimensionality (hidden size) at each stage.
|
55 |
+
depths (`List[int]`, *optional*, defaults to [3, 3, 9, 3]):
|
56 |
+
Depth (number of blocks) for each stage.
|
57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
58 |
+
The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
|
59 |
+
`"selu"` and `"gelu_new"` are supported.
|
60 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
61 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
62 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
63 |
+
The epsilon used by the layer normalization layers.
|
64 |
+
layer_scale_init_value (`float`, *optional*, defaults to 1e-6):
|
65 |
+
The initial value for the layer scale.
|
66 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
67 |
+
The drop rate for stochastic depth.
|
68 |
+
out_features (`List[str]`, *optional*):
|
69 |
+
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
|
70 |
+
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
|
71 |
+
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
|
72 |
+
same order as defined in the `stage_names` attribute.
|
73 |
+
out_indices (`List[int]`, *optional*):
|
74 |
+
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
75 |
+
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
|
76 |
+
If unset and `out_features` is unset, will default to the last stage. Must be in the
|
77 |
+
same order as defined in the `stage_names` attribute.
|
78 |
+
|
79 |
+
Example:
|
80 |
+
```python
|
81 |
+
>>> from transformers import ConvNextConfig, ConvNextModel
|
82 |
+
|
83 |
+
>>> # Initializing a ConvNext convnext-tiny-224 style configuration
|
84 |
+
>>> configuration = ConvNextConfig()
|
85 |
+
|
86 |
+
>>> # Initializing a model (with random weights) from the convnext-tiny-224 style configuration
|
87 |
+
>>> model = ConvNextModel(configuration)
|
88 |
+
|
89 |
+
>>> # Accessing the model configuration
|
90 |
+
>>> configuration = model.config
|
91 |
+
```"""
|
92 |
+
|
93 |
+
model_type = "convnext"
|
94 |
+
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
num_channels=3,
|
98 |
+
patch_size=4,
|
99 |
+
num_stages=4,
|
100 |
+
hidden_sizes=None,
|
101 |
+
depths=None,
|
102 |
+
hidden_act="gelu",
|
103 |
+
initializer_range=0.02,
|
104 |
+
layer_norm_eps=1e-12,
|
105 |
+
layer_scale_init_value=1e-6,
|
106 |
+
drop_path_rate=0.0,
|
107 |
+
image_size=224,
|
108 |
+
out_features=None,
|
109 |
+
out_indices=None,
|
110 |
+
**kwargs,
|
111 |
+
):
|
112 |
+
super().__init__(**kwargs)
|
113 |
+
|
114 |
+
self.num_channels = num_channels
|
115 |
+
self.patch_size = patch_size
|
116 |
+
self.num_stages = num_stages
|
117 |
+
self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
|
118 |
+
self.depths = [3, 3, 9, 3] if depths is None else depths
|
119 |
+
self.hidden_act = hidden_act
|
120 |
+
self.initializer_range = initializer_range
|
121 |
+
self.layer_norm_eps = layer_norm_eps
|
122 |
+
self.layer_scale_init_value = layer_scale_init_value
|
123 |
+
self.drop_path_rate = drop_path_rate
|
124 |
+
self.image_size = image_size
|
125 |
+
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)]
|
126 |
+
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
127 |
+
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
|
128 |
+
)
|
129 |
+
|
130 |
+
|
131 |
+
class ConvNextOnnxConfig(OnnxConfig):
|
132 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
133 |
+
|
134 |
+
@property
|
135 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
136 |
+
return OrderedDict(
|
137 |
+
[
|
138 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
139 |
+
]
|
140 |
+
)
|
141 |
+
|
142 |
+
@property
|
143 |
+
def atol_for_validation(self) -> float:
|
144 |
+
return 1e-5
|
env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/convert_convnext_to_pytorch.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert ConvNext checkpoints from the original repository.
|
16 |
+
|
17 |
+
URL: https://github.com/facebookresearch/ConvNeXt"""
|
18 |
+
|
19 |
+
|
20 |
+
import argparse
|
21 |
+
import json
|
22 |
+
from pathlib import Path
|
23 |
+
|
24 |
+
import requests
|
25 |
+
import torch
|
26 |
+
from huggingface_hub import hf_hub_download
|
27 |
+
from PIL import Image
|
28 |
+
|
29 |
+
from transformers import ConvNextConfig, ConvNextForImageClassification, ConvNextImageProcessor
|
30 |
+
from transformers.utils import logging
|
31 |
+
|
32 |
+
|
33 |
+
logging.set_verbosity_info()
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
|
37 |
+
def get_convnext_config(checkpoint_url):
|
38 |
+
config = ConvNextConfig()
|
39 |
+
|
40 |
+
if "tiny" in checkpoint_url:
|
41 |
+
depths = [3, 3, 9, 3]
|
42 |
+
hidden_sizes = [96, 192, 384, 768]
|
43 |
+
if "small" in checkpoint_url:
|
44 |
+
depths = [3, 3, 27, 3]
|
45 |
+
hidden_sizes = [96, 192, 384, 768]
|
46 |
+
if "base" in checkpoint_url:
|
47 |
+
depths = [3, 3, 27, 3]
|
48 |
+
hidden_sizes = [128, 256, 512, 1024]
|
49 |
+
if "large" in checkpoint_url:
|
50 |
+
depths = [3, 3, 27, 3]
|
51 |
+
hidden_sizes = [192, 384, 768, 1536]
|
52 |
+
if "xlarge" in checkpoint_url:
|
53 |
+
depths = [3, 3, 27, 3]
|
54 |
+
hidden_sizes = [256, 512, 1024, 2048]
|
55 |
+
|
56 |
+
if "1k" in checkpoint_url:
|
57 |
+
num_labels = 1000
|
58 |
+
filename = "imagenet-1k-id2label.json"
|
59 |
+
expected_shape = (1, 1000)
|
60 |
+
else:
|
61 |
+
num_labels = 21841
|
62 |
+
filename = "imagenet-22k-id2label.json"
|
63 |
+
expected_shape = (1, 21841)
|
64 |
+
|
65 |
+
repo_id = "huggingface/label-files"
|
66 |
+
config.num_labels = num_labels
|
67 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
68 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
69 |
+
if "1k" not in checkpoint_url:
|
70 |
+
# this dataset contains 21843 labels but the model only has 21841
|
71 |
+
# we delete the classes as mentioned in https://github.com/google-research/big_transfer/issues/18
|
72 |
+
del id2label[9205]
|
73 |
+
del id2label[15027]
|
74 |
+
config.id2label = id2label
|
75 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
76 |
+
config.hidden_sizes = hidden_sizes
|
77 |
+
config.depths = depths
|
78 |
+
|
79 |
+
return config, expected_shape
|
80 |
+
|
81 |
+
|
82 |
+
def rename_key(name):
|
83 |
+
if "downsample_layers.0.0" in name:
|
84 |
+
name = name.replace("downsample_layers.0.0", "embeddings.patch_embeddings")
|
85 |
+
if "downsample_layers.0.1" in name:
|
86 |
+
name = name.replace("downsample_layers.0.1", "embeddings.norm") # we rename to layernorm later on
|
87 |
+
if "downsample_layers.1.0" in name:
|
88 |
+
name = name.replace("downsample_layers.1.0", "stages.1.downsampling_layer.0")
|
89 |
+
if "downsample_layers.1.1" in name:
|
90 |
+
name = name.replace("downsample_layers.1.1", "stages.1.downsampling_layer.1")
|
91 |
+
if "downsample_layers.2.0" in name:
|
92 |
+
name = name.replace("downsample_layers.2.0", "stages.2.downsampling_layer.0")
|
93 |
+
if "downsample_layers.2.1" in name:
|
94 |
+
name = name.replace("downsample_layers.2.1", "stages.2.downsampling_layer.1")
|
95 |
+
if "downsample_layers.3.0" in name:
|
96 |
+
name = name.replace("downsample_layers.3.0", "stages.3.downsampling_layer.0")
|
97 |
+
if "downsample_layers.3.1" in name:
|
98 |
+
name = name.replace("downsample_layers.3.1", "stages.3.downsampling_layer.1")
|
99 |
+
if "stages" in name and "downsampling_layer" not in name:
|
100 |
+
# stages.0.0. for instance should be renamed to stages.0.layers.0.
|
101 |
+
name = name[: len("stages.0")] + ".layers" + name[len("stages.0") :]
|
102 |
+
if "stages" in name:
|
103 |
+
name = name.replace("stages", "encoder.stages")
|
104 |
+
if "norm" in name:
|
105 |
+
name = name.replace("norm", "layernorm")
|
106 |
+
if "gamma" in name:
|
107 |
+
name = name.replace("gamma", "layer_scale_parameter")
|
108 |
+
if "head" in name:
|
109 |
+
name = name.replace("head", "classifier")
|
110 |
+
|
111 |
+
return name
|
112 |
+
|
113 |
+
|
114 |
+
# We will verify our results on an image of cute cats
|
115 |
+
def prepare_img():
|
116 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
117 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
118 |
+
return im
|
119 |
+
|
120 |
+
|
121 |
+
@torch.no_grad()
|
122 |
+
def convert_convnext_checkpoint(checkpoint_url, pytorch_dump_folder_path):
|
123 |
+
"""
|
124 |
+
Copy/paste/tweak model's weights to our ConvNext structure.
|
125 |
+
"""
|
126 |
+
|
127 |
+
# define ConvNext configuration based on URL
|
128 |
+
config, expected_shape = get_convnext_config(checkpoint_url)
|
129 |
+
# load original state_dict from URL
|
130 |
+
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)["model"]
|
131 |
+
# rename keys
|
132 |
+
for key in state_dict.copy().keys():
|
133 |
+
val = state_dict.pop(key)
|
134 |
+
state_dict[rename_key(key)] = val
|
135 |
+
# add prefix to all keys expect classifier head
|
136 |
+
for key in state_dict.copy().keys():
|
137 |
+
val = state_dict.pop(key)
|
138 |
+
if not key.startswith("classifier"):
|
139 |
+
key = "convnext." + key
|
140 |
+
state_dict[key] = val
|
141 |
+
|
142 |
+
# load HuggingFace model
|
143 |
+
model = ConvNextForImageClassification(config)
|
144 |
+
model.load_state_dict(state_dict)
|
145 |
+
model.eval()
|
146 |
+
|
147 |
+
# Check outputs on an image, prepared by ConvNextImageProcessor
|
148 |
+
size = 224 if "224" in checkpoint_url else 384
|
149 |
+
image_processor = ConvNextImageProcessor(size=size)
|
150 |
+
pixel_values = image_processor(images=prepare_img(), return_tensors="pt").pixel_values
|
151 |
+
|
152 |
+
logits = model(pixel_values).logits
|
153 |
+
|
154 |
+
# note: the logits below were obtained without center cropping
|
155 |
+
if checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth":
|
156 |
+
expected_logits = torch.tensor([-0.1210, -0.6605, 0.1918])
|
157 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth":
|
158 |
+
expected_logits = torch.tensor([-0.4473, -0.1847, -0.6365])
|
159 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth":
|
160 |
+
expected_logits = torch.tensor([0.4525, 0.7539, 0.0308])
|
161 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_384.pth":
|
162 |
+
expected_logits = torch.tensor([0.3561, 0.6350, -0.0384])
|
163 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth":
|
164 |
+
expected_logits = torch.tensor([0.4174, -0.0989, 0.1489])
|
165 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_384.pth":
|
166 |
+
expected_logits = torch.tensor([0.2513, -0.1349, -0.1613])
|
167 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth":
|
168 |
+
expected_logits = torch.tensor([1.2980, 0.3631, -0.1198])
|
169 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth":
|
170 |
+
expected_logits = torch.tensor([1.2963, 0.1227, 0.1723])
|
171 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth":
|
172 |
+
expected_logits = torch.tensor([1.7956, 0.8390, 0.2820])
|
173 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth":
|
174 |
+
expected_logits = torch.tensor([-0.2822, -0.0502, -0.0878])
|
175 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth":
|
176 |
+
expected_logits = torch.tensor([-0.5672, -0.0730, -0.4348])
|
177 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth":
|
178 |
+
expected_logits = torch.tensor([0.2681, 0.2365, 0.6246])
|
179 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth":
|
180 |
+
expected_logits = torch.tensor([-0.2642, 0.3931, 0.5116])
|
181 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth":
|
182 |
+
expected_logits = torch.tensor([-0.6677, -0.1873, -0.8379])
|
183 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth":
|
184 |
+
expected_logits = torch.tensor([-0.7749, -0.2967, -0.6444])
|
185 |
+
else:
|
186 |
+
raise ValueError(f"Unknown URL: {checkpoint_url}")
|
187 |
+
|
188 |
+
assert torch.allclose(logits[0, :3], expected_logits, atol=1e-3)
|
189 |
+
assert logits.shape == expected_shape
|
190 |
+
|
191 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
192 |
+
print(f"Saving model to {pytorch_dump_folder_path}")
|
193 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
194 |
+
print(f"Saving image processor to {pytorch_dump_folder_path}")
|
195 |
+
image_processor.save_pretrained(pytorch_dump_folder_path)
|
196 |
+
|
197 |
+
print("Pushing model to the hub...")
|
198 |
+
model_name = "convnext"
|
199 |
+
if "tiny" in checkpoint_url:
|
200 |
+
model_name += "-tiny"
|
201 |
+
elif "small" in checkpoint_url:
|
202 |
+
model_name += "-small"
|
203 |
+
elif "base" in checkpoint_url:
|
204 |
+
model_name += "-base"
|
205 |
+
elif "xlarge" in checkpoint_url:
|
206 |
+
model_name += "-xlarge"
|
207 |
+
elif "large" in checkpoint_url:
|
208 |
+
model_name += "-large"
|
209 |
+
if "224" in checkpoint_url:
|
210 |
+
model_name += "-224"
|
211 |
+
elif "384" in checkpoint_url:
|
212 |
+
model_name += "-384"
|
213 |
+
if "22k" in checkpoint_url and "1k" not in checkpoint_url:
|
214 |
+
model_name += "-22k"
|
215 |
+
if "22k" in checkpoint_url and "1k" in checkpoint_url:
|
216 |
+
model_name += "-22k-1k"
|
217 |
+
|
218 |
+
model.push_to_hub(
|
219 |
+
repo_path_or_name=Path(pytorch_dump_folder_path, model_name),
|
220 |
+
organization="nielsr",
|
221 |
+
commit_message="Add model",
|
222 |
+
)
|
223 |
+
|
224 |
+
|
225 |
+
if __name__ == "__main__":
|
226 |
+
parser = argparse.ArgumentParser()
|
227 |
+
# Required parameters
|
228 |
+
parser.add_argument(
|
229 |
+
"--checkpoint_url",
|
230 |
+
default="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth",
|
231 |
+
type=str,
|
232 |
+
help="URL of the original ConvNeXT checkpoint you'd like to convert.",
|
233 |
+
)
|
234 |
+
parser.add_argument(
|
235 |
+
"--pytorch_dump_folder_path",
|
236 |
+
default=None,
|
237 |
+
type=str,
|
238 |
+
required=True,
|
239 |
+
help="Path to the output PyTorch model directory.",
|
240 |
+
)
|
241 |
+
|
242 |
+
args = parser.parse_args()
|
243 |
+
convert_convnext_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/feature_extraction_convnext.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for ConvNeXT."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...utils import logging
|
20 |
+
from .image_processing_convnext import ConvNextImageProcessor
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class ConvNextFeatureExtractor(ConvNextImageProcessor):
|
27 |
+
def __init__(self, *args, **kwargs) -> None:
|
28 |
+
warnings.warn(
|
29 |
+
"The class ConvNextFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
|
30 |
+
" Please use ConvNextImageProcessor instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
super().__init__(*args, **kwargs)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/image_processing_convnext.py
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for ConvNeXT."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
+
from ...image_transforms import (
|
23 |
+
center_crop,
|
24 |
+
get_resize_output_image_size,
|
25 |
+
resize,
|
26 |
+
to_channel_dimension_format,
|
27 |
+
)
|
28 |
+
from ...image_utils import (
|
29 |
+
IMAGENET_STANDARD_MEAN,
|
30 |
+
IMAGENET_STANDARD_STD,
|
31 |
+
ChannelDimension,
|
32 |
+
ImageInput,
|
33 |
+
PILImageResampling,
|
34 |
+
infer_channel_dimension_format,
|
35 |
+
is_scaled_image,
|
36 |
+
make_list_of_images,
|
37 |
+
to_numpy_array,
|
38 |
+
valid_images,
|
39 |
+
validate_kwargs,
|
40 |
+
validate_preprocess_arguments,
|
41 |
+
)
|
42 |
+
from ...utils import TensorType, is_vision_available, logging
|
43 |
+
|
44 |
+
|
45 |
+
if is_vision_available():
|
46 |
+
import PIL
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
|
52 |
+
class ConvNextImageProcessor(BaseImageProcessor):
|
53 |
+
r"""
|
54 |
+
Constructs a ConvNeXT image processor.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
58 |
+
Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overriden
|
59 |
+
by `do_resize` in the `preprocess` method.
|
60 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 384}`):
|
61 |
+
Resolution of the output image after `resize` is applied. If `size["shortest_edge"]` >= 384, the image is
|
62 |
+
resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the image will
|
63 |
+
be matched to `int(size["shortest_edge"]/crop_pct)`, after which the image is cropped to
|
64 |
+
`(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`. Can
|
65 |
+
be overriden by `size` in the `preprocess` method.
|
66 |
+
crop_pct (`float` *optional*, defaults to 224 / 256):
|
67 |
+
Percentage of the image to crop. Only has an effect if `do_resize` is `True` and size < 384. Can be
|
68 |
+
overriden by `crop_pct` in the `preprocess` method.
|
69 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
|
70 |
+
Resampling filter to use if resizing the image. Can be overriden by `resample` in the `preprocess` method.
|
71 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overriden by `do_rescale` in
|
73 |
+
the `preprocess` method.
|
74 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
75 |
+
Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess`
|
76 |
+
method.
|
77 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
79 |
+
method.
|
80 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
81 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
82 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
83 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
84 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
85 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
86 |
+
"""
|
87 |
+
|
88 |
+
model_input_names = ["pixel_values"]
|
89 |
+
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
do_resize: bool = True,
|
93 |
+
size: Dict[str, int] = None,
|
94 |
+
crop_pct: float = None,
|
95 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
96 |
+
do_rescale: bool = True,
|
97 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
98 |
+
do_normalize: bool = True,
|
99 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
100 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
101 |
+
**kwargs,
|
102 |
+
) -> None:
|
103 |
+
super().__init__(**kwargs)
|
104 |
+
size = size if size is not None else {"shortest_edge": 384}
|
105 |
+
size = get_size_dict(size, default_to_square=False)
|
106 |
+
|
107 |
+
self.do_resize = do_resize
|
108 |
+
self.size = size
|
109 |
+
# Default value set here for backwards compatibility where the value in config is None
|
110 |
+
self.crop_pct = crop_pct if crop_pct is not None else 224 / 256
|
111 |
+
self.resample = resample
|
112 |
+
self.do_rescale = do_rescale
|
113 |
+
self.rescale_factor = rescale_factor
|
114 |
+
self.do_normalize = do_normalize
|
115 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
116 |
+
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
117 |
+
self._valid_processor_keys = [
|
118 |
+
"images",
|
119 |
+
"do_resize",
|
120 |
+
"size",
|
121 |
+
"crop_pct",
|
122 |
+
"resample",
|
123 |
+
"do_rescale",
|
124 |
+
"rescale_factor",
|
125 |
+
"do_normalize",
|
126 |
+
"image_mean",
|
127 |
+
"image_std",
|
128 |
+
"return_tensors",
|
129 |
+
"data_format",
|
130 |
+
"input_data_format",
|
131 |
+
]
|
132 |
+
|
133 |
+
def resize(
|
134 |
+
self,
|
135 |
+
image: np.ndarray,
|
136 |
+
size: Dict[str, int],
|
137 |
+
crop_pct: float,
|
138 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
139 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
140 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
141 |
+
**kwargs,
|
142 |
+
) -> np.ndarray:
|
143 |
+
"""
|
144 |
+
Resize an image.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
image (`np.ndarray`):
|
148 |
+
Image to resize.
|
149 |
+
size (`Dict[str, int]`):
|
150 |
+
Dictionary of the form `{"shortest_edge": int}`, specifying the size of the output image. If
|
151 |
+
`size["shortest_edge"]` >= 384 image is resized to `(size["shortest_edge"], size["shortest_edge"])`.
|
152 |
+
Otherwise, the smaller edge of the image will be matched to `int(size["shortest_edge"] / crop_pct)`,
|
153 |
+
after which the image is cropped to `(size["shortest_edge"], size["shortest_edge"])`.
|
154 |
+
crop_pct (`float`):
|
155 |
+
Percentage of the image to crop. Only has an effect if size < 384.
|
156 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
157 |
+
Resampling filter to use when resizing the image.
|
158 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
159 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
160 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
161 |
+
The channel dimension format of the input image. If not provided, it will be inferred from the input
|
162 |
+
image.
|
163 |
+
"""
|
164 |
+
size = get_size_dict(size, default_to_square=False)
|
165 |
+
if "shortest_edge" not in size:
|
166 |
+
raise ValueError(f"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}")
|
167 |
+
shortest_edge = size["shortest_edge"]
|
168 |
+
|
169 |
+
if shortest_edge < 384:
|
170 |
+
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
|
171 |
+
resize_shortest_edge = int(shortest_edge / crop_pct)
|
172 |
+
resize_size = get_resize_output_image_size(
|
173 |
+
image, size=resize_shortest_edge, default_to_square=False, input_data_format=input_data_format
|
174 |
+
)
|
175 |
+
image = resize(
|
176 |
+
image=image,
|
177 |
+
size=resize_size,
|
178 |
+
resample=resample,
|
179 |
+
data_format=data_format,
|
180 |
+
input_data_format=input_data_format,
|
181 |
+
**kwargs,
|
182 |
+
)
|
183 |
+
# then crop to (shortest_edge, shortest_edge)
|
184 |
+
return center_crop(
|
185 |
+
image=image,
|
186 |
+
size=(shortest_edge, shortest_edge),
|
187 |
+
data_format=data_format,
|
188 |
+
input_data_format=input_data_format,
|
189 |
+
**kwargs,
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
# warping (no cropping) when evaluated at 384 or larger
|
193 |
+
return resize(
|
194 |
+
image,
|
195 |
+
size=(shortest_edge, shortest_edge),
|
196 |
+
resample=resample,
|
197 |
+
data_format=data_format,
|
198 |
+
input_data_format=input_data_format,
|
199 |
+
**kwargs,
|
200 |
+
)
|
201 |
+
|
202 |
+
def preprocess(
|
203 |
+
self,
|
204 |
+
images: ImageInput,
|
205 |
+
do_resize: bool = None,
|
206 |
+
size: Dict[str, int] = None,
|
207 |
+
crop_pct: float = None,
|
208 |
+
resample: PILImageResampling = None,
|
209 |
+
do_rescale: bool = None,
|
210 |
+
rescale_factor: float = None,
|
211 |
+
do_normalize: bool = None,
|
212 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
213 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
214 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
215 |
+
data_format: ChannelDimension = ChannelDimension.FIRST,
|
216 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
217 |
+
**kwargs,
|
218 |
+
) -> PIL.Image.Image:
|
219 |
+
"""
|
220 |
+
Preprocess an image or batch of images.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
images (`ImageInput`):
|
224 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
225 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
226 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
227 |
+
Whether to resize the image.
|
228 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
229 |
+
Size of the output image after `resize` has been applied. If `size["shortest_edge"]` >= 384, the image
|
230 |
+
is resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the
|
231 |
+
image will be matched to `int(size["shortest_edge"]/ crop_pct)`, after which the image is cropped to
|
232 |
+
`(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`.
|
233 |
+
crop_pct (`float`, *optional*, defaults to `self.crop_pct`):
|
234 |
+
Percentage of the image to crop if size < 384.
|
235 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
236 |
+
Resampling filter to use if resizing the image. This can be one of `PILImageResampling`, filters. Only
|
237 |
+
has an effect if `do_resize` is set to `True`.
|
238 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
239 |
+
Whether to rescale the image values between [0 - 1].
|
240 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
241 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
242 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
243 |
+
Whether to normalize the image.
|
244 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
245 |
+
Image mean.
|
246 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
247 |
+
Image standard deviation.
|
248 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
249 |
+
The type of tensors to return. Can be one of:
|
250 |
+
- Unset: Return a list of `np.ndarray`.
|
251 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
252 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
253 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
254 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
255 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
256 |
+
The channel dimension format for the output image. Can be one of:
|
257 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
258 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
259 |
+
- Unset: Use the channel dimension format of the input image.
|
260 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
261 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
262 |
+
from the input image. Can be one of:
|
263 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
264 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
265 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
266 |
+
"""
|
267 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
268 |
+
crop_pct = crop_pct if crop_pct is not None else self.crop_pct
|
269 |
+
resample = resample if resample is not None else self.resample
|
270 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
271 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
272 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
273 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
274 |
+
image_std = image_std if image_std is not None else self.image_std
|
275 |
+
|
276 |
+
size = size if size is not None else self.size
|
277 |
+
size = get_size_dict(size, default_to_square=False)
|
278 |
+
|
279 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
280 |
+
|
281 |
+
images = make_list_of_images(images)
|
282 |
+
|
283 |
+
if not valid_images(images):
|
284 |
+
raise ValueError(
|
285 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
286 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
287 |
+
)
|
288 |
+
|
289 |
+
validate_preprocess_arguments(
|
290 |
+
do_rescale=do_rescale,
|
291 |
+
rescale_factor=rescale_factor,
|
292 |
+
do_normalize=do_normalize,
|
293 |
+
image_mean=image_mean,
|
294 |
+
image_std=image_std,
|
295 |
+
do_resize=do_resize,
|
296 |
+
size=size,
|
297 |
+
resample=resample,
|
298 |
+
)
|
299 |
+
|
300 |
+
# All transformations expect numpy arrays.
|
301 |
+
images = [to_numpy_array(image) for image in images]
|
302 |
+
|
303 |
+
if is_scaled_image(images[0]) and do_rescale:
|
304 |
+
logger.warning_once(
|
305 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
306 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
307 |
+
)
|
308 |
+
|
309 |
+
if input_data_format is None:
|
310 |
+
# We assume that all images have the same channel dimension format.
|
311 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
312 |
+
|
313 |
+
if do_resize:
|
314 |
+
images = [
|
315 |
+
self.resize(
|
316 |
+
image=image, size=size, crop_pct=crop_pct, resample=resample, input_data_format=input_data_format
|
317 |
+
)
|
318 |
+
for image in images
|
319 |
+
]
|
320 |
+
|
321 |
+
if do_rescale:
|
322 |
+
images = [
|
323 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
324 |
+
for image in images
|
325 |
+
]
|
326 |
+
|
327 |
+
if do_normalize:
|
328 |
+
images = [
|
329 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
330 |
+
for image in images
|
331 |
+
]
|
332 |
+
|
333 |
+
images = [
|
334 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
335 |
+
]
|
336 |
+
|
337 |
+
data = {"pixel_values": images}
|
338 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/modeling_convnext.py
ADDED
@@ -0,0 +1,553 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch ConvNext model."""
|
16 |
+
|
17 |
+
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...modeling_outputs import (
|
27 |
+
BackboneOutput,
|
28 |
+
BaseModelOutputWithNoAttention,
|
29 |
+
BaseModelOutputWithPoolingAndNoAttention,
|
30 |
+
ImageClassifierOutputWithNoAttention,
|
31 |
+
)
|
32 |
+
from ...modeling_utils import PreTrainedModel
|
33 |
+
from ...utils import (
|
34 |
+
add_code_sample_docstrings,
|
35 |
+
add_start_docstrings,
|
36 |
+
add_start_docstrings_to_model_forward,
|
37 |
+
logging,
|
38 |
+
replace_return_docstrings,
|
39 |
+
)
|
40 |
+
from ...utils.backbone_utils import BackboneMixin
|
41 |
+
from .configuration_convnext import ConvNextConfig
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
# General docstring
|
47 |
+
_CONFIG_FOR_DOC = "ConvNextConfig"
|
48 |
+
|
49 |
+
# Base docstring
|
50 |
+
_CHECKPOINT_FOR_DOC = "facebook/convnext-tiny-224"
|
51 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
|
52 |
+
|
53 |
+
# Image classification docstring
|
54 |
+
_IMAGE_CLASS_CHECKPOINT = "facebook/convnext-tiny-224"
|
55 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
56 |
+
|
57 |
+
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
58 |
+
"facebook/convnext-tiny-224",
|
59 |
+
# See all ConvNext models at https://huggingface.co/models?filter=convnext
|
60 |
+
]
|
61 |
+
|
62 |
+
|
63 |
+
# Copied from transformers.models.beit.modeling_beit.drop_path
|
64 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
65 |
+
"""
|
66 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
67 |
+
|
68 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
69 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
70 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
71 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
72 |
+
argument.
|
73 |
+
"""
|
74 |
+
if drop_prob == 0.0 or not training:
|
75 |
+
return input
|
76 |
+
keep_prob = 1 - drop_prob
|
77 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
78 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
79 |
+
random_tensor.floor_() # binarize
|
80 |
+
output = input.div(keep_prob) * random_tensor
|
81 |
+
return output
|
82 |
+
|
83 |
+
|
84 |
+
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->ConvNext
|
85 |
+
class ConvNextDropPath(nn.Module):
|
86 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
87 |
+
|
88 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
89 |
+
super().__init__()
|
90 |
+
self.drop_prob = drop_prob
|
91 |
+
|
92 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
93 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
94 |
+
|
95 |
+
def extra_repr(self) -> str:
|
96 |
+
return "p={}".format(self.drop_prob)
|
97 |
+
|
98 |
+
|
99 |
+
class ConvNextLayerNorm(nn.Module):
|
100 |
+
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
101 |
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
|
102 |
+
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
|
103 |
+
"""
|
104 |
+
|
105 |
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
106 |
+
super().__init__()
|
107 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
108 |
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
109 |
+
self.eps = eps
|
110 |
+
self.data_format = data_format
|
111 |
+
if self.data_format not in ["channels_last", "channels_first"]:
|
112 |
+
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
|
113 |
+
self.normalized_shape = (normalized_shape,)
|
114 |
+
|
115 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
116 |
+
if self.data_format == "channels_last":
|
117 |
+
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
118 |
+
elif self.data_format == "channels_first":
|
119 |
+
input_dtype = x.dtype
|
120 |
+
x = x.float()
|
121 |
+
u = x.mean(1, keepdim=True)
|
122 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
123 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
124 |
+
x = x.to(dtype=input_dtype)
|
125 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
126 |
+
return x
|
127 |
+
|
128 |
+
|
129 |
+
class ConvNextEmbeddings(nn.Module):
|
130 |
+
"""This class is comparable to (and inspired by) the SwinEmbeddings class
|
131 |
+
found in src/transformers/models/swin/modeling_swin.py.
|
132 |
+
"""
|
133 |
+
|
134 |
+
def __init__(self, config):
|
135 |
+
super().__init__()
|
136 |
+
self.patch_embeddings = nn.Conv2d(
|
137 |
+
config.num_channels, config.hidden_sizes[0], kernel_size=config.patch_size, stride=config.patch_size
|
138 |
+
)
|
139 |
+
self.layernorm = ConvNextLayerNorm(config.hidden_sizes[0], eps=1e-6, data_format="channels_first")
|
140 |
+
self.num_channels = config.num_channels
|
141 |
+
|
142 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
143 |
+
num_channels = pixel_values.shape[1]
|
144 |
+
if num_channels != self.num_channels:
|
145 |
+
raise ValueError(
|
146 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
147 |
+
)
|
148 |
+
embeddings = self.patch_embeddings(pixel_values)
|
149 |
+
embeddings = self.layernorm(embeddings)
|
150 |
+
return embeddings
|
151 |
+
|
152 |
+
|
153 |
+
class ConvNextLayer(nn.Module):
|
154 |
+
"""This corresponds to the `Block` class in the original implementation.
|
155 |
+
|
156 |
+
There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
|
157 |
+
H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
|
158 |
+
|
159 |
+
The authors used (2) as they find it slightly faster in PyTorch.
|
160 |
+
|
161 |
+
Args:
|
162 |
+
config ([`ConvNextConfig`]): Model configuration class.
|
163 |
+
dim (`int`): Number of input channels.
|
164 |
+
drop_path (`float`): Stochastic depth rate. Default: 0.0.
|
165 |
+
"""
|
166 |
+
|
167 |
+
def __init__(self, config, dim, drop_path=0):
|
168 |
+
super().__init__()
|
169 |
+
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
|
170 |
+
self.layernorm = ConvNextLayerNorm(dim, eps=1e-6)
|
171 |
+
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
|
172 |
+
self.act = ACT2FN[config.hidden_act]
|
173 |
+
self.pwconv2 = nn.Linear(4 * dim, dim)
|
174 |
+
self.layer_scale_parameter = (
|
175 |
+
nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
176 |
+
if config.layer_scale_init_value > 0
|
177 |
+
else None
|
178 |
+
)
|
179 |
+
self.drop_path = ConvNextDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
180 |
+
|
181 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
182 |
+
input = hidden_states
|
183 |
+
x = self.dwconv(hidden_states)
|
184 |
+
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
185 |
+
x = self.layernorm(x)
|
186 |
+
x = self.pwconv1(x)
|
187 |
+
x = self.act(x)
|
188 |
+
x = self.pwconv2(x)
|
189 |
+
if self.layer_scale_parameter is not None:
|
190 |
+
x = self.layer_scale_parameter * x
|
191 |
+
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
192 |
+
|
193 |
+
x = input + self.drop_path(x)
|
194 |
+
return x
|
195 |
+
|
196 |
+
|
197 |
+
class ConvNextStage(nn.Module):
|
198 |
+
"""ConvNeXT stage, consisting of an optional downsampling layer + multiple residual blocks.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
config ([`ConvNextConfig`]): Model configuration class.
|
202 |
+
in_channels (`int`): Number of input channels.
|
203 |
+
out_channels (`int`): Number of output channels.
|
204 |
+
depth (`int`): Number of residual blocks.
|
205 |
+
drop_path_rates(`List[float]`): Stochastic depth rates for each layer.
|
206 |
+
"""
|
207 |
+
|
208 |
+
def __init__(self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None):
|
209 |
+
super().__init__()
|
210 |
+
|
211 |
+
if in_channels != out_channels or stride > 1:
|
212 |
+
self.downsampling_layer = nn.Sequential(
|
213 |
+
ConvNextLayerNorm(in_channels, eps=1e-6, data_format="channels_first"),
|
214 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride),
|
215 |
+
)
|
216 |
+
else:
|
217 |
+
self.downsampling_layer = nn.Identity()
|
218 |
+
drop_path_rates = drop_path_rates or [0.0] * depth
|
219 |
+
self.layers = nn.Sequential(
|
220 |
+
*[ConvNextLayer(config, dim=out_channels, drop_path=drop_path_rates[j]) for j in range(depth)]
|
221 |
+
)
|
222 |
+
|
223 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
224 |
+
hidden_states = self.downsampling_layer(hidden_states)
|
225 |
+
hidden_states = self.layers(hidden_states)
|
226 |
+
return hidden_states
|
227 |
+
|
228 |
+
|
229 |
+
class ConvNextEncoder(nn.Module):
|
230 |
+
def __init__(self, config):
|
231 |
+
super().__init__()
|
232 |
+
self.stages = nn.ModuleList()
|
233 |
+
drop_path_rates = [
|
234 |
+
x.tolist() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths)).split(config.depths)
|
235 |
+
]
|
236 |
+
prev_chs = config.hidden_sizes[0]
|
237 |
+
for i in range(config.num_stages):
|
238 |
+
out_chs = config.hidden_sizes[i]
|
239 |
+
stage = ConvNextStage(
|
240 |
+
config,
|
241 |
+
in_channels=prev_chs,
|
242 |
+
out_channels=out_chs,
|
243 |
+
stride=2 if i > 0 else 1,
|
244 |
+
depth=config.depths[i],
|
245 |
+
drop_path_rates=drop_path_rates[i],
|
246 |
+
)
|
247 |
+
self.stages.append(stage)
|
248 |
+
prev_chs = out_chs
|
249 |
+
|
250 |
+
def forward(
|
251 |
+
self,
|
252 |
+
hidden_states: torch.FloatTensor,
|
253 |
+
output_hidden_states: Optional[bool] = False,
|
254 |
+
return_dict: Optional[bool] = True,
|
255 |
+
) -> Union[Tuple, BaseModelOutputWithNoAttention]:
|
256 |
+
all_hidden_states = () if output_hidden_states else None
|
257 |
+
|
258 |
+
for i, layer_module in enumerate(self.stages):
|
259 |
+
if output_hidden_states:
|
260 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
261 |
+
|
262 |
+
hidden_states = layer_module(hidden_states)
|
263 |
+
|
264 |
+
if output_hidden_states:
|
265 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
266 |
+
|
267 |
+
if not return_dict:
|
268 |
+
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
|
269 |
+
|
270 |
+
return BaseModelOutputWithNoAttention(
|
271 |
+
last_hidden_state=hidden_states,
|
272 |
+
hidden_states=all_hidden_states,
|
273 |
+
)
|
274 |
+
|
275 |
+
|
276 |
+
class ConvNextPreTrainedModel(PreTrainedModel):
|
277 |
+
"""
|
278 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
279 |
+
models.
|
280 |
+
"""
|
281 |
+
|
282 |
+
config_class = ConvNextConfig
|
283 |
+
base_model_prefix = "convnext"
|
284 |
+
main_input_name = "pixel_values"
|
285 |
+
|
286 |
+
def _init_weights(self, module):
|
287 |
+
"""Initialize the weights"""
|
288 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
289 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
290 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
291 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
292 |
+
if module.bias is not None:
|
293 |
+
module.bias.data.zero_()
|
294 |
+
elif isinstance(module, nn.LayerNorm):
|
295 |
+
module.bias.data.zero_()
|
296 |
+
module.weight.data.fill_(1.0)
|
297 |
+
|
298 |
+
|
299 |
+
CONVNEXT_START_DOCSTRING = r"""
|
300 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
301 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
302 |
+
behavior.
|
303 |
+
|
304 |
+
Parameters:
|
305 |
+
config ([`ConvNextConfig`]): Model configuration class with all the parameters of the model.
|
306 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
307 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
308 |
+
"""
|
309 |
+
|
310 |
+
CONVNEXT_INPUTS_DOCSTRING = r"""
|
311 |
+
Args:
|
312 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
313 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
314 |
+
[`ConvNextImageProcessor.__call__`] for details.
|
315 |
+
|
316 |
+
output_hidden_states (`bool`, *optional*):
|
317 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
318 |
+
more detail.
|
319 |
+
return_dict (`bool`, *optional*):
|
320 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
321 |
+
"""
|
322 |
+
|
323 |
+
|
324 |
+
@add_start_docstrings(
|
325 |
+
"The bare ConvNext model outputting raw features without any specific head on top.",
|
326 |
+
CONVNEXT_START_DOCSTRING,
|
327 |
+
)
|
328 |
+
class ConvNextModel(ConvNextPreTrainedModel):
|
329 |
+
def __init__(self, config):
|
330 |
+
super().__init__(config)
|
331 |
+
self.config = config
|
332 |
+
|
333 |
+
self.embeddings = ConvNextEmbeddings(config)
|
334 |
+
self.encoder = ConvNextEncoder(config)
|
335 |
+
|
336 |
+
# final layernorm layer
|
337 |
+
self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
|
338 |
+
|
339 |
+
# Initialize weights and apply final processing
|
340 |
+
self.post_init()
|
341 |
+
|
342 |
+
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
|
343 |
+
@add_code_sample_docstrings(
|
344 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
345 |
+
output_type=BaseModelOutputWithPoolingAndNoAttention,
|
346 |
+
config_class=_CONFIG_FOR_DOC,
|
347 |
+
modality="vision",
|
348 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
349 |
+
)
|
350 |
+
def forward(
|
351 |
+
self,
|
352 |
+
pixel_values: torch.FloatTensor = None,
|
353 |
+
output_hidden_states: Optional[bool] = None,
|
354 |
+
return_dict: Optional[bool] = None,
|
355 |
+
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
|
356 |
+
output_hidden_states = (
|
357 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
358 |
+
)
|
359 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
360 |
+
|
361 |
+
if pixel_values is None:
|
362 |
+
raise ValueError("You have to specify pixel_values")
|
363 |
+
|
364 |
+
embedding_output = self.embeddings(pixel_values)
|
365 |
+
|
366 |
+
encoder_outputs = self.encoder(
|
367 |
+
embedding_output,
|
368 |
+
output_hidden_states=output_hidden_states,
|
369 |
+
return_dict=return_dict,
|
370 |
+
)
|
371 |
+
|
372 |
+
last_hidden_state = encoder_outputs[0]
|
373 |
+
|
374 |
+
# global average pooling, (N, C, H, W) -> (N, C)
|
375 |
+
pooled_output = self.layernorm(last_hidden_state.mean([-2, -1]))
|
376 |
+
|
377 |
+
if not return_dict:
|
378 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
379 |
+
|
380 |
+
return BaseModelOutputWithPoolingAndNoAttention(
|
381 |
+
last_hidden_state=last_hidden_state,
|
382 |
+
pooler_output=pooled_output,
|
383 |
+
hidden_states=encoder_outputs.hidden_states,
|
384 |
+
)
|
385 |
+
|
386 |
+
|
387 |
+
@add_start_docstrings(
|
388 |
+
"""
|
389 |
+
ConvNext Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
|
390 |
+
ImageNet.
|
391 |
+
""",
|
392 |
+
CONVNEXT_START_DOCSTRING,
|
393 |
+
)
|
394 |
+
class ConvNextForImageClassification(ConvNextPreTrainedModel):
|
395 |
+
def __init__(self, config):
|
396 |
+
super().__init__(config)
|
397 |
+
|
398 |
+
self.num_labels = config.num_labels
|
399 |
+
self.convnext = ConvNextModel(config)
|
400 |
+
|
401 |
+
# Classifier head
|
402 |
+
self.classifier = (
|
403 |
+
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
|
404 |
+
)
|
405 |
+
|
406 |
+
# Initialize weights and apply final processing
|
407 |
+
self.post_init()
|
408 |
+
|
409 |
+
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
|
410 |
+
@add_code_sample_docstrings(
|
411 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
412 |
+
output_type=ImageClassifierOutputWithNoAttention,
|
413 |
+
config_class=_CONFIG_FOR_DOC,
|
414 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
415 |
+
)
|
416 |
+
def forward(
|
417 |
+
self,
|
418 |
+
pixel_values: torch.FloatTensor = None,
|
419 |
+
labels: Optional[torch.LongTensor] = None,
|
420 |
+
output_hidden_states: Optional[bool] = None,
|
421 |
+
return_dict: Optional[bool] = None,
|
422 |
+
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
|
423 |
+
r"""
|
424 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
425 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
426 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
427 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
428 |
+
"""
|
429 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
430 |
+
|
431 |
+
outputs = self.convnext(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
432 |
+
|
433 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
434 |
+
|
435 |
+
logits = self.classifier(pooled_output)
|
436 |
+
|
437 |
+
loss = None
|
438 |
+
if labels is not None:
|
439 |
+
if self.config.problem_type is None:
|
440 |
+
if self.num_labels == 1:
|
441 |
+
self.config.problem_type = "regression"
|
442 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
443 |
+
self.config.problem_type = "single_label_classification"
|
444 |
+
else:
|
445 |
+
self.config.problem_type = "multi_label_classification"
|
446 |
+
|
447 |
+
if self.config.problem_type == "regression":
|
448 |
+
loss_fct = MSELoss()
|
449 |
+
if self.num_labels == 1:
|
450 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
451 |
+
else:
|
452 |
+
loss = loss_fct(logits, labels)
|
453 |
+
elif self.config.problem_type == "single_label_classification":
|
454 |
+
loss_fct = CrossEntropyLoss()
|
455 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
456 |
+
elif self.config.problem_type == "multi_label_classification":
|
457 |
+
loss_fct = BCEWithLogitsLoss()
|
458 |
+
loss = loss_fct(logits, labels)
|
459 |
+
if not return_dict:
|
460 |
+
output = (logits,) + outputs[2:]
|
461 |
+
return ((loss,) + output) if loss is not None else output
|
462 |
+
|
463 |
+
return ImageClassifierOutputWithNoAttention(
|
464 |
+
loss=loss,
|
465 |
+
logits=logits,
|
466 |
+
hidden_states=outputs.hidden_states,
|
467 |
+
)
|
468 |
+
|
469 |
+
|
470 |
+
@add_start_docstrings(
|
471 |
+
"""
|
472 |
+
ConvNeXt backbone, to be used with frameworks like DETR and MaskFormer.
|
473 |
+
""",
|
474 |
+
CONVNEXT_START_DOCSTRING,
|
475 |
+
)
|
476 |
+
class ConvNextBackbone(ConvNextPreTrainedModel, BackboneMixin):
|
477 |
+
def __init__(self, config):
|
478 |
+
super().__init__(config)
|
479 |
+
super()._init_backbone(config)
|
480 |
+
|
481 |
+
self.embeddings = ConvNextEmbeddings(config)
|
482 |
+
self.encoder = ConvNextEncoder(config)
|
483 |
+
self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes
|
484 |
+
|
485 |
+
# Add layer norms to hidden states of out_features
|
486 |
+
hidden_states_norms = {}
|
487 |
+
for stage, num_channels in zip(self._out_features, self.channels):
|
488 |
+
hidden_states_norms[stage] = ConvNextLayerNorm(num_channels, data_format="channels_first")
|
489 |
+
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
|
490 |
+
|
491 |
+
# initialize weights and apply final processing
|
492 |
+
self.post_init()
|
493 |
+
|
494 |
+
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
|
495 |
+
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
|
496 |
+
def forward(
|
497 |
+
self,
|
498 |
+
pixel_values: torch.Tensor,
|
499 |
+
output_hidden_states: Optional[bool] = None,
|
500 |
+
return_dict: Optional[bool] = None,
|
501 |
+
) -> BackboneOutput:
|
502 |
+
"""
|
503 |
+
Returns:
|
504 |
+
|
505 |
+
Examples:
|
506 |
+
|
507 |
+
```python
|
508 |
+
>>> from transformers import AutoImageProcessor, AutoBackbone
|
509 |
+
>>> import torch
|
510 |
+
>>> from PIL import Image
|
511 |
+
>>> import requests
|
512 |
+
|
513 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
514 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
515 |
+
|
516 |
+
>>> processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
|
517 |
+
>>> model = AutoBackbone.from_pretrained("facebook/convnext-tiny-224")
|
518 |
+
|
519 |
+
>>> inputs = processor(image, return_tensors="pt")
|
520 |
+
>>> outputs = model(**inputs)
|
521 |
+
```"""
|
522 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
523 |
+
output_hidden_states = (
|
524 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
525 |
+
)
|
526 |
+
|
527 |
+
embedding_output = self.embeddings(pixel_values)
|
528 |
+
|
529 |
+
outputs = self.encoder(
|
530 |
+
embedding_output,
|
531 |
+
output_hidden_states=True,
|
532 |
+
return_dict=return_dict,
|
533 |
+
)
|
534 |
+
|
535 |
+
hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
536 |
+
|
537 |
+
feature_maps = ()
|
538 |
+
for stage, hidden_state in zip(self.stage_names, hidden_states):
|
539 |
+
if stage in self.out_features:
|
540 |
+
hidden_state = self.hidden_states_norms[stage](hidden_state)
|
541 |
+
feature_maps += (hidden_state,)
|
542 |
+
|
543 |
+
if not return_dict:
|
544 |
+
output = (feature_maps,)
|
545 |
+
if output_hidden_states:
|
546 |
+
output += (hidden_states,)
|
547 |
+
return output
|
548 |
+
|
549 |
+
return BackboneOutput(
|
550 |
+
feature_maps=feature_maps,
|
551 |
+
hidden_states=hidden_states if output_hidden_states else None,
|
552 |
+
attentions=None,
|
553 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/convnext/modeling_tf_convnext.py
ADDED
@@ -0,0 +1,667 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 ConvNext model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import tensorflow as tf
|
24 |
+
|
25 |
+
from ...activations_tf import get_tf_activation
|
26 |
+
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSequenceClassifierOutput
|
27 |
+
from ...modeling_tf_utils import (
|
28 |
+
TFModelInputType,
|
29 |
+
TFPreTrainedModel,
|
30 |
+
TFSequenceClassificationLoss,
|
31 |
+
get_initializer,
|
32 |
+
keras,
|
33 |
+
keras_serializable,
|
34 |
+
unpack_inputs,
|
35 |
+
)
|
36 |
+
from ...tf_utils import shape_list
|
37 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
38 |
+
from .configuration_convnext import ConvNextConfig
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
|
44 |
+
_CONFIG_FOR_DOC = "ConvNextConfig"
|
45 |
+
_CHECKPOINT_FOR_DOC = "facebook/convnext-tiny-224"
|
46 |
+
|
47 |
+
|
48 |
+
class TFConvNextDropPath(keras.layers.Layer):
|
49 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
50 |
+
References:
|
51 |
+
(1) github.com:rwightman/pytorch-image-models
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self, drop_path: float, **kwargs):
|
55 |
+
super().__init__(**kwargs)
|
56 |
+
self.drop_path = drop_path
|
57 |
+
|
58 |
+
def call(self, x: tf.Tensor, training=None):
|
59 |
+
if training:
|
60 |
+
keep_prob = 1 - self.drop_path
|
61 |
+
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
|
62 |
+
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
|
63 |
+
random_tensor = tf.floor(random_tensor)
|
64 |
+
return (x / keep_prob) * random_tensor
|
65 |
+
return x
|
66 |
+
|
67 |
+
|
68 |
+
class TFConvNextEmbeddings(keras.layers.Layer):
|
69 |
+
"""This class is comparable to (and inspired by) the SwinEmbeddings class
|
70 |
+
found in src/transformers/models/swin/modeling_swin.py.
|
71 |
+
"""
|
72 |
+
|
73 |
+
def __init__(self, config: ConvNextConfig, **kwargs):
|
74 |
+
super().__init__(**kwargs)
|
75 |
+
self.patch_embeddings = keras.layers.Conv2D(
|
76 |
+
filters=config.hidden_sizes[0],
|
77 |
+
kernel_size=config.patch_size,
|
78 |
+
strides=config.patch_size,
|
79 |
+
name="patch_embeddings",
|
80 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
81 |
+
bias_initializer=keras.initializers.Zeros(),
|
82 |
+
)
|
83 |
+
self.layernorm = keras.layers.LayerNormalization(epsilon=1e-6, name="layernorm")
|
84 |
+
self.num_channels = config.num_channels
|
85 |
+
self.config = config
|
86 |
+
|
87 |
+
def call(self, pixel_values):
|
88 |
+
if isinstance(pixel_values, dict):
|
89 |
+
pixel_values = pixel_values["pixel_values"]
|
90 |
+
|
91 |
+
tf.debugging.assert_equal(
|
92 |
+
shape_list(pixel_values)[1],
|
93 |
+
self.num_channels,
|
94 |
+
message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.",
|
95 |
+
)
|
96 |
+
|
97 |
+
# When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
|
98 |
+
# So change the input format from `NCHW` to `NHWC`.
|
99 |
+
# shape = (batch_size, in_height, in_width, in_channels)
|
100 |
+
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
|
101 |
+
|
102 |
+
embeddings = self.patch_embeddings(pixel_values)
|
103 |
+
embeddings = self.layernorm(embeddings)
|
104 |
+
return embeddings
|
105 |
+
|
106 |
+
def build(self, input_shape=None):
|
107 |
+
if self.built:
|
108 |
+
return
|
109 |
+
self.built = True
|
110 |
+
if getattr(self, "patch_embeddings", None) is not None:
|
111 |
+
with tf.name_scope(self.patch_embeddings.name):
|
112 |
+
self.patch_embeddings.build([None, None, None, self.config.num_channels])
|
113 |
+
if getattr(self, "layernorm", None) is not None:
|
114 |
+
with tf.name_scope(self.layernorm.name):
|
115 |
+
self.layernorm.build([None, None, None, self.config.hidden_sizes[0]])
|
116 |
+
|
117 |
+
|
118 |
+
class TFConvNextLayer(keras.layers.Layer):
|
119 |
+
"""This corresponds to the `Block` class in the original implementation.
|
120 |
+
|
121 |
+
There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
|
122 |
+
H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
|
123 |
+
|
124 |
+
The authors used (2) as they find it slightly faster in PyTorch. Since we already permuted the inputs to follow
|
125 |
+
NHWC ordering, we can just apply the operations straight-away without the permutation.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
config ([`ConvNextConfig`]): Model configuration class.
|
129 |
+
dim (`int`): Number of input channels.
|
130 |
+
drop_path (`float`): Stochastic depth rate. Default: 0.0.
|
131 |
+
"""
|
132 |
+
|
133 |
+
def __init__(self, config, dim, drop_path=0.0, **kwargs):
|
134 |
+
super().__init__(**kwargs)
|
135 |
+
self.dim = dim
|
136 |
+
self.config = config
|
137 |
+
self.dwconv = keras.layers.Conv2D(
|
138 |
+
filters=dim,
|
139 |
+
kernel_size=7,
|
140 |
+
padding="same",
|
141 |
+
groups=dim,
|
142 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
143 |
+
bias_initializer="zeros",
|
144 |
+
name="dwconv",
|
145 |
+
) # depthwise conv
|
146 |
+
self.layernorm = keras.layers.LayerNormalization(
|
147 |
+
epsilon=1e-6,
|
148 |
+
name="layernorm",
|
149 |
+
)
|
150 |
+
self.pwconv1 = keras.layers.Dense(
|
151 |
+
units=4 * dim,
|
152 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
153 |
+
bias_initializer="zeros",
|
154 |
+
name="pwconv1",
|
155 |
+
) # pointwise/1x1 convs, implemented with linear layers
|
156 |
+
self.act = get_tf_activation(config.hidden_act)
|
157 |
+
self.pwconv2 = keras.layers.Dense(
|
158 |
+
units=dim,
|
159 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
160 |
+
bias_initializer="zeros",
|
161 |
+
name="pwconv2",
|
162 |
+
)
|
163 |
+
# Using `layers.Activation` instead of `tf.identity` to better control `training`
|
164 |
+
# behaviour.
|
165 |
+
self.drop_path = (
|
166 |
+
TFConvNextDropPath(drop_path, name="drop_path")
|
167 |
+
if drop_path > 0.0
|
168 |
+
else keras.layers.Activation("linear", name="drop_path")
|
169 |
+
)
|
170 |
+
|
171 |
+
def build(self, input_shape: tf.TensorShape = None):
|
172 |
+
# PT's `nn.Parameters` must be mapped to a TF layer weight to inherit the same name hierarchy (and vice-versa)
|
173 |
+
self.layer_scale_parameter = (
|
174 |
+
self.add_weight(
|
175 |
+
shape=(self.dim,),
|
176 |
+
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
|
177 |
+
trainable=True,
|
178 |
+
name="layer_scale_parameter",
|
179 |
+
)
|
180 |
+
if self.config.layer_scale_init_value > 0
|
181 |
+
else None
|
182 |
+
)
|
183 |
+
|
184 |
+
if self.built:
|
185 |
+
return
|
186 |
+
self.built = True
|
187 |
+
if getattr(self, "dwconv", None) is not None:
|
188 |
+
with tf.name_scope(self.dwconv.name):
|
189 |
+
self.dwconv.build([None, None, None, self.dim])
|
190 |
+
if getattr(self, "layernorm", None) is not None:
|
191 |
+
with tf.name_scope(self.layernorm.name):
|
192 |
+
self.layernorm.build([None, None, None, self.dim])
|
193 |
+
if getattr(self, "pwconv1", None) is not None:
|
194 |
+
with tf.name_scope(self.pwconv1.name):
|
195 |
+
self.pwconv1.build([None, None, self.dim])
|
196 |
+
if getattr(self, "pwconv2", None) is not None:
|
197 |
+
with tf.name_scope(self.pwconv2.name):
|
198 |
+
self.pwconv2.build([None, None, 4 * self.dim])
|
199 |
+
if getattr(self, "drop_path", None) is not None:
|
200 |
+
with tf.name_scope(self.drop_path.name):
|
201 |
+
self.drop_path.build(None)
|
202 |
+
|
203 |
+
def call(self, hidden_states, training=False):
|
204 |
+
input = hidden_states
|
205 |
+
x = self.dwconv(hidden_states)
|
206 |
+
x = self.layernorm(x)
|
207 |
+
x = self.pwconv1(x)
|
208 |
+
x = self.act(x)
|
209 |
+
x = self.pwconv2(x)
|
210 |
+
|
211 |
+
if self.layer_scale_parameter is not None:
|
212 |
+
x = self.layer_scale_parameter * x
|
213 |
+
|
214 |
+
x = input + self.drop_path(x, training=training)
|
215 |
+
return x
|
216 |
+
|
217 |
+
|
218 |
+
class TFConvNextStage(keras.layers.Layer):
|
219 |
+
"""ConvNext stage, consisting of an optional downsampling layer + multiple residual blocks.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
config (`ConvNextV2Config`):
|
223 |
+
Model configuration class.
|
224 |
+
in_channels (`int`):
|
225 |
+
Number of input channels.
|
226 |
+
out_channels (`int`):
|
227 |
+
Number of output channels.
|
228 |
+
depth (`int`):
|
229 |
+
Number of residual blocks.
|
230 |
+
drop_path_rates(`List[float]`):
|
231 |
+
Stochastic depth rates for each layer.
|
232 |
+
"""
|
233 |
+
|
234 |
+
def __init__(
|
235 |
+
self,
|
236 |
+
config: ConvNextConfig,
|
237 |
+
in_channels: int,
|
238 |
+
out_channels: int,
|
239 |
+
kernel_size: int = 2,
|
240 |
+
stride: int = 2,
|
241 |
+
depth: int = 2,
|
242 |
+
drop_path_rates: Optional[List[float]] = None,
|
243 |
+
**kwargs,
|
244 |
+
):
|
245 |
+
super().__init__(**kwargs)
|
246 |
+
if in_channels != out_channels or stride > 1:
|
247 |
+
self.downsampling_layer = [
|
248 |
+
keras.layers.LayerNormalization(
|
249 |
+
epsilon=1e-6,
|
250 |
+
name="downsampling_layer.0",
|
251 |
+
),
|
252 |
+
# Inputs to this layer will follow NHWC format since we
|
253 |
+
# transposed the inputs from NCHW to NHWC in the `TFConvNextEmbeddings`
|
254 |
+
# layer. All the outputs throughout the model will be in NHWC
|
255 |
+
# from this point on until the output where we again change to
|
256 |
+
# NCHW.
|
257 |
+
keras.layers.Conv2D(
|
258 |
+
filters=out_channels,
|
259 |
+
kernel_size=kernel_size,
|
260 |
+
strides=stride,
|
261 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
262 |
+
bias_initializer=keras.initializers.Zeros(),
|
263 |
+
name="downsampling_layer.1",
|
264 |
+
),
|
265 |
+
]
|
266 |
+
else:
|
267 |
+
self.downsampling_layer = [tf.identity]
|
268 |
+
|
269 |
+
drop_path_rates = drop_path_rates or [0.0] * depth
|
270 |
+
self.layers = [
|
271 |
+
TFConvNextLayer(
|
272 |
+
config,
|
273 |
+
dim=out_channels,
|
274 |
+
drop_path=drop_path_rates[j],
|
275 |
+
name=f"layers.{j}",
|
276 |
+
)
|
277 |
+
for j in range(depth)
|
278 |
+
]
|
279 |
+
self.in_channels = in_channels
|
280 |
+
self.out_channels = out_channels
|
281 |
+
self.stride = stride
|
282 |
+
|
283 |
+
def call(self, hidden_states):
|
284 |
+
for layer in self.downsampling_layer:
|
285 |
+
hidden_states = layer(hidden_states)
|
286 |
+
for layer in self.layers:
|
287 |
+
hidden_states = layer(hidden_states)
|
288 |
+
return hidden_states
|
289 |
+
|
290 |
+
def build(self, input_shape=None):
|
291 |
+
if self.built:
|
292 |
+
return
|
293 |
+
self.built = True
|
294 |
+
if getattr(self, "layers", None) is not None:
|
295 |
+
for layer in self.layers:
|
296 |
+
with tf.name_scope(layer.name):
|
297 |
+
layer.build(None)
|
298 |
+
if self.in_channels != self.out_channels or self.stride > 1:
|
299 |
+
with tf.name_scope(self.downsampling_layer[0].name):
|
300 |
+
self.downsampling_layer[0].build([None, None, None, self.in_channels])
|
301 |
+
with tf.name_scope(self.downsampling_layer[1].name):
|
302 |
+
self.downsampling_layer[1].build([None, None, None, self.in_channels])
|
303 |
+
|
304 |
+
|
305 |
+
class TFConvNextEncoder(keras.layers.Layer):
|
306 |
+
def __init__(self, config, **kwargs):
|
307 |
+
super().__init__(**kwargs)
|
308 |
+
self.stages = []
|
309 |
+
drop_path_rates = tf.linspace(0.0, config.drop_path_rate, sum(config.depths))
|
310 |
+
drop_path_rates = tf.split(drop_path_rates, config.depths)
|
311 |
+
drop_path_rates = [x.numpy().tolist() for x in drop_path_rates]
|
312 |
+
prev_chs = config.hidden_sizes[0]
|
313 |
+
for i in range(config.num_stages):
|
314 |
+
out_chs = config.hidden_sizes[i]
|
315 |
+
stage = TFConvNextStage(
|
316 |
+
config,
|
317 |
+
in_channels=prev_chs,
|
318 |
+
out_channels=out_chs,
|
319 |
+
stride=2 if i > 0 else 1,
|
320 |
+
depth=config.depths[i],
|
321 |
+
drop_path_rates=drop_path_rates[i],
|
322 |
+
name=f"stages.{i}",
|
323 |
+
)
|
324 |
+
self.stages.append(stage)
|
325 |
+
prev_chs = out_chs
|
326 |
+
|
327 |
+
def call(self, hidden_states, output_hidden_states=False, return_dict=True):
|
328 |
+
all_hidden_states = () if output_hidden_states else None
|
329 |
+
|
330 |
+
for i, layer_module in enumerate(self.stages):
|
331 |
+
if output_hidden_states:
|
332 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
333 |
+
|
334 |
+
hidden_states = layer_module(hidden_states)
|
335 |
+
|
336 |
+
if output_hidden_states:
|
337 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
338 |
+
|
339 |
+
if not return_dict:
|
340 |
+
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
|
341 |
+
|
342 |
+
return TFBaseModelOutput(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
|
343 |
+
|
344 |
+
def build(self, input_shape=None):
|
345 |
+
for stage in self.stages:
|
346 |
+
with tf.name_scope(stage.name):
|
347 |
+
stage.build(None)
|
348 |
+
|
349 |
+
|
350 |
+
@keras_serializable
|
351 |
+
class TFConvNextMainLayer(keras.layers.Layer):
|
352 |
+
config_class = ConvNextConfig
|
353 |
+
|
354 |
+
def __init__(self, config: ConvNextConfig, add_pooling_layer: bool = True, **kwargs):
|
355 |
+
super().__init__(**kwargs)
|
356 |
+
|
357 |
+
self.config = config
|
358 |
+
self.embeddings = TFConvNextEmbeddings(config, name="embeddings")
|
359 |
+
self.encoder = TFConvNextEncoder(config, name="encoder")
|
360 |
+
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
|
361 |
+
# We are setting the `data_format` like so because from here on we will revert to the
|
362 |
+
# NCHW output format
|
363 |
+
self.pooler = keras.layers.GlobalAvgPool2D(data_format="channels_first") if add_pooling_layer else None
|
364 |
+
|
365 |
+
@unpack_inputs
|
366 |
+
def call(
|
367 |
+
self,
|
368 |
+
pixel_values: TFModelInputType | None = None,
|
369 |
+
output_hidden_states: Optional[bool] = None,
|
370 |
+
return_dict: Optional[bool] = None,
|
371 |
+
training: bool = False,
|
372 |
+
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
|
373 |
+
output_hidden_states = (
|
374 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
375 |
+
)
|
376 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
377 |
+
|
378 |
+
if pixel_values is None:
|
379 |
+
raise ValueError("You have to specify pixel_values")
|
380 |
+
|
381 |
+
embedding_output = self.embeddings(pixel_values, training=training)
|
382 |
+
|
383 |
+
encoder_outputs = self.encoder(
|
384 |
+
embedding_output,
|
385 |
+
output_hidden_states=output_hidden_states,
|
386 |
+
return_dict=return_dict,
|
387 |
+
training=training,
|
388 |
+
)
|
389 |
+
|
390 |
+
last_hidden_state = encoder_outputs[0]
|
391 |
+
# Change to NCHW output format have uniformity in the modules
|
392 |
+
last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2))
|
393 |
+
pooled_output = self.layernorm(self.pooler(last_hidden_state))
|
394 |
+
|
395 |
+
# Change the other hidden state outputs to NCHW as well
|
396 |
+
if output_hidden_states:
|
397 |
+
hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])
|
398 |
+
|
399 |
+
if not return_dict:
|
400 |
+
hidden_states = hidden_states if output_hidden_states else ()
|
401 |
+
return (last_hidden_state, pooled_output) + hidden_states
|
402 |
+
|
403 |
+
return TFBaseModelOutputWithPooling(
|
404 |
+
last_hidden_state=last_hidden_state,
|
405 |
+
pooler_output=pooled_output,
|
406 |
+
hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
|
407 |
+
)
|
408 |
+
|
409 |
+
def build(self, input_shape=None):
|
410 |
+
if self.built:
|
411 |
+
return
|
412 |
+
self.built = True
|
413 |
+
if getattr(self, "embeddings", None) is not None:
|
414 |
+
with tf.name_scope(self.embeddings.name):
|
415 |
+
self.embeddings.build(None)
|
416 |
+
if getattr(self, "encoder", None) is not None:
|
417 |
+
with tf.name_scope(self.encoder.name):
|
418 |
+
self.encoder.build(None)
|
419 |
+
if getattr(self, "layernorm", None) is not None:
|
420 |
+
with tf.name_scope(self.layernorm.name):
|
421 |
+
self.layernorm.build([None, self.config.hidden_sizes[-1]])
|
422 |
+
|
423 |
+
|
424 |
+
class TFConvNextPreTrainedModel(TFPreTrainedModel):
|
425 |
+
"""
|
426 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
427 |
+
models.
|
428 |
+
"""
|
429 |
+
|
430 |
+
config_class = ConvNextConfig
|
431 |
+
base_model_prefix = "convnext"
|
432 |
+
main_input_name = "pixel_values"
|
433 |
+
|
434 |
+
|
435 |
+
CONVNEXT_START_DOCSTRING = r"""
|
436 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
437 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
438 |
+
etc.)
|
439 |
+
|
440 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
441 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
442 |
+
behavior.
|
443 |
+
|
444 |
+
<Tip>
|
445 |
+
|
446 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
447 |
+
|
448 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
449 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
450 |
+
|
451 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
452 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
453 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
454 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
455 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
456 |
+
positional argument:
|
457 |
+
|
458 |
+
- a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
|
459 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
460 |
+
`model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
|
461 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
462 |
+
`model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
|
463 |
+
|
464 |
+
Note that when creating models and layers with
|
465 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
466 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
467 |
+
|
468 |
+
</Tip>
|
469 |
+
|
470 |
+
Parameters:
|
471 |
+
config ([`ConvNextConfig`]): Model configuration class with all the parameters of the model.
|
472 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
473 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
474 |
+
"""
|
475 |
+
|
476 |
+
CONVNEXT_INPUTS_DOCSTRING = r"""
|
477 |
+
Args:
|
478 |
+
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
|
479 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
480 |
+
[`ConvNextImageProcessor.__call__`] for details.
|
481 |
+
|
482 |
+
output_hidden_states (`bool`, *optional*):
|
483 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
484 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
485 |
+
used instead.
|
486 |
+
return_dict (`bool`, *optional*):
|
487 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
488 |
+
eager mode, in graph mode the value will always be set to True.
|
489 |
+
"""
|
490 |
+
|
491 |
+
|
492 |
+
@add_start_docstrings(
|
493 |
+
"The bare ConvNext model outputting raw features without any specific head on top.",
|
494 |
+
CONVNEXT_START_DOCSTRING,
|
495 |
+
)
|
496 |
+
class TFConvNextModel(TFConvNextPreTrainedModel):
|
497 |
+
def __init__(self, config, *inputs, add_pooling_layer=True, **kwargs):
|
498 |
+
super().__init__(config, *inputs, **kwargs)
|
499 |
+
self.convnext = TFConvNextMainLayer(config, add_pooling_layer=add_pooling_layer, name="convnext")
|
500 |
+
|
501 |
+
@unpack_inputs
|
502 |
+
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
|
503 |
+
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
|
504 |
+
def call(
|
505 |
+
self,
|
506 |
+
pixel_values: TFModelInputType | None = None,
|
507 |
+
output_hidden_states: Optional[bool] = None,
|
508 |
+
return_dict: Optional[bool] = None,
|
509 |
+
training: bool = False,
|
510 |
+
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
|
511 |
+
r"""
|
512 |
+
Returns:
|
513 |
+
|
514 |
+
Examples:
|
515 |
+
|
516 |
+
```python
|
517 |
+
>>> from transformers import AutoImageProcessor, TFConvNextModel
|
518 |
+
>>> from PIL import Image
|
519 |
+
>>> import requests
|
520 |
+
|
521 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
522 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
523 |
+
|
524 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
|
525 |
+
>>> model = TFConvNextModel.from_pretrained("facebook/convnext-tiny-224")
|
526 |
+
|
527 |
+
>>> inputs = image_processor(images=image, return_tensors="tf")
|
528 |
+
>>> outputs = model(**inputs)
|
529 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
530 |
+
```"""
|
531 |
+
output_hidden_states = (
|
532 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
533 |
+
)
|
534 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
535 |
+
|
536 |
+
if pixel_values is None:
|
537 |
+
raise ValueError("You have to specify pixel_values")
|
538 |
+
|
539 |
+
outputs = self.convnext(
|
540 |
+
pixel_values=pixel_values,
|
541 |
+
output_hidden_states=output_hidden_states,
|
542 |
+
return_dict=return_dict,
|
543 |
+
training=training,
|
544 |
+
)
|
545 |
+
|
546 |
+
if not return_dict:
|
547 |
+
return (outputs[0],) + outputs[1:]
|
548 |
+
|
549 |
+
return TFBaseModelOutputWithPooling(
|
550 |
+
last_hidden_state=outputs.last_hidden_state,
|
551 |
+
pooler_output=outputs.pooler_output,
|
552 |
+
hidden_states=outputs.hidden_states,
|
553 |
+
)
|
554 |
+
|
555 |
+
def build(self, input_shape=None):
|
556 |
+
if self.built:
|
557 |
+
return
|
558 |
+
self.built = True
|
559 |
+
if getattr(self, "convnext", None) is not None:
|
560 |
+
with tf.name_scope(self.convnext.name):
|
561 |
+
self.convnext.build(None)
|
562 |
+
|
563 |
+
|
564 |
+
@add_start_docstrings(
|
565 |
+
"""
|
566 |
+
ConvNext Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
|
567 |
+
ImageNet.
|
568 |
+
""",
|
569 |
+
CONVNEXT_START_DOCSTRING,
|
570 |
+
)
|
571 |
+
class TFConvNextForImageClassification(TFConvNextPreTrainedModel, TFSequenceClassificationLoss):
|
572 |
+
def __init__(self, config: ConvNextConfig, *inputs, **kwargs):
|
573 |
+
super().__init__(config, *inputs, **kwargs)
|
574 |
+
|
575 |
+
self.num_labels = config.num_labels
|
576 |
+
self.convnext = TFConvNextMainLayer(config, name="convnext")
|
577 |
+
|
578 |
+
# Classifier head
|
579 |
+
self.classifier = keras.layers.Dense(
|
580 |
+
units=config.num_labels,
|
581 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
582 |
+
bias_initializer="zeros",
|
583 |
+
name="classifier",
|
584 |
+
)
|
585 |
+
self.config = config
|
586 |
+
|
587 |
+
@unpack_inputs
|
588 |
+
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
|
589 |
+
@replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
590 |
+
def call(
|
591 |
+
self,
|
592 |
+
pixel_values: TFModelInputType | None = None,
|
593 |
+
output_hidden_states: Optional[bool] = None,
|
594 |
+
return_dict: Optional[bool] = None,
|
595 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
596 |
+
training: Optional[bool] = False,
|
597 |
+
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
598 |
+
r"""
|
599 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
600 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
601 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
602 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
603 |
+
|
604 |
+
Returns:
|
605 |
+
|
606 |
+
Examples:
|
607 |
+
|
608 |
+
```python
|
609 |
+
>>> from transformers import AutoImageProcessor, TFConvNextForImageClassification
|
610 |
+
>>> import tensorflow as tf
|
611 |
+
>>> from PIL import Image
|
612 |
+
>>> import requests
|
613 |
+
|
614 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
615 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
616 |
+
|
617 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
|
618 |
+
>>> model = TFConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224")
|
619 |
+
|
620 |
+
>>> inputs = image_processor(images=image, return_tensors="tf")
|
621 |
+
>>> outputs = model(**inputs)
|
622 |
+
>>> logits = outputs.logits
|
623 |
+
>>> # model predicts one of the 1000 ImageNet classes
|
624 |
+
>>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0]
|
625 |
+
>>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)])
|
626 |
+
```"""
|
627 |
+
output_hidden_states = (
|
628 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
629 |
+
)
|
630 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
631 |
+
|
632 |
+
if pixel_values is None:
|
633 |
+
raise ValueError("You have to specify pixel_values")
|
634 |
+
|
635 |
+
outputs = self.convnext(
|
636 |
+
pixel_values,
|
637 |
+
output_hidden_states=output_hidden_states,
|
638 |
+
return_dict=return_dict,
|
639 |
+
training=training,
|
640 |
+
)
|
641 |
+
|
642 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
643 |
+
|
644 |
+
logits = self.classifier(pooled_output)
|
645 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
646 |
+
|
647 |
+
if not return_dict:
|
648 |
+
output = (logits,) + outputs[2:]
|
649 |
+
return ((loss,) + output) if loss is not None else output
|
650 |
+
|
651 |
+
return TFSequenceClassifierOutput(
|
652 |
+
loss=loss,
|
653 |
+
logits=logits,
|
654 |
+
hidden_states=outputs.hidden_states,
|
655 |
+
)
|
656 |
+
|
657 |
+
def build(self, input_shape=None):
|
658 |
+
if self.built:
|
659 |
+
return
|
660 |
+
self.built = True
|
661 |
+
if getattr(self, "convnext", None) is not None:
|
662 |
+
with tf.name_scope(self.convnext.name):
|
663 |
+
self.convnext.build(None)
|
664 |
+
if getattr(self, "classifier", None) is not None:
|
665 |
+
if hasattr(self.classifier, "name"):
|
666 |
+
with tf.name_scope(self.classifier.name):
|
667 |
+
self.classifier.build([None, None, self.config.hidden_sizes[-1]])
|
env-llmeval/lib/python3.10/site-packages/transformers/models/dit/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/transformers/models/dit/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (188 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/dit/__pycache__/convert_dit_unilm_to_pytorch.cpython-310.pyc
ADDED
Binary file (6.44 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/dit/convert_dit_unilm_to_pytorch.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert DiT checkpoints from the unilm repository."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import requests
|
23 |
+
import torch
|
24 |
+
from huggingface_hub import hf_hub_download
|
25 |
+
from PIL import Image
|
26 |
+
|
27 |
+
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
|
28 |
+
from transformers.image_utils import PILImageResampling
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
|
32 |
+
logging.set_verbosity_info()
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
# here we list all keys to be renamed (original name on the left, our name on the right)
|
37 |
+
def create_rename_keys(config, has_lm_head=False, is_semantic=False):
|
38 |
+
prefix = "backbone." if is_semantic else ""
|
39 |
+
|
40 |
+
rename_keys = []
|
41 |
+
for i in range(config.num_hidden_layers):
|
42 |
+
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
|
43 |
+
rename_keys.append((f"{prefix}blocks.{i}.norm1.weight", f"beit.encoder.layer.{i}.layernorm_before.weight"))
|
44 |
+
rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"beit.encoder.layer.{i}.layernorm_before.bias"))
|
45 |
+
rename_keys.append(
|
46 |
+
(f"{prefix}blocks.{i}.attn.proj.weight", f"beit.encoder.layer.{i}.attention.output.dense.weight")
|
47 |
+
)
|
48 |
+
rename_keys.append(
|
49 |
+
(f"{prefix}blocks.{i}.attn.proj.bias", f"beit.encoder.layer.{i}.attention.output.dense.bias")
|
50 |
+
)
|
51 |
+
rename_keys.append((f"{prefix}blocks.{i}.norm2.weight", f"beit.encoder.layer.{i}.layernorm_after.weight"))
|
52 |
+
rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"beit.encoder.layer.{i}.layernorm_after.bias"))
|
53 |
+
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.weight", f"beit.encoder.layer.{i}.intermediate.dense.weight"))
|
54 |
+
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.bias", f"beit.encoder.layer.{i}.intermediate.dense.bias"))
|
55 |
+
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"beit.encoder.layer.{i}.output.dense.weight"))
|
56 |
+
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"beit.encoder.layer.{i}.output.dense.bias"))
|
57 |
+
|
58 |
+
# projection layer + position embeddings
|
59 |
+
rename_keys.extend(
|
60 |
+
[
|
61 |
+
(f"{prefix}cls_token", "beit.embeddings.cls_token"),
|
62 |
+
(f"{prefix}patch_embed.proj.weight", "beit.embeddings.patch_embeddings.projection.weight"),
|
63 |
+
(f"{prefix}patch_embed.proj.bias", "beit.embeddings.patch_embeddings.projection.bias"),
|
64 |
+
(f"{prefix}pos_embed", "beit.embeddings.position_embeddings"),
|
65 |
+
]
|
66 |
+
)
|
67 |
+
|
68 |
+
if has_lm_head:
|
69 |
+
# mask token + layernorm
|
70 |
+
rename_keys.extend(
|
71 |
+
[
|
72 |
+
("mask_token", "beit.embeddings.mask_token"),
|
73 |
+
("norm.weight", "layernorm.weight"),
|
74 |
+
("norm.bias", "layernorm.bias"),
|
75 |
+
]
|
76 |
+
)
|
77 |
+
else:
|
78 |
+
# layernorm + classification head
|
79 |
+
rename_keys.extend(
|
80 |
+
[
|
81 |
+
("fc_norm.weight", "beit.pooler.layernorm.weight"),
|
82 |
+
("fc_norm.bias", "beit.pooler.layernorm.bias"),
|
83 |
+
("head.weight", "classifier.weight"),
|
84 |
+
("head.bias", "classifier.bias"),
|
85 |
+
]
|
86 |
+
)
|
87 |
+
|
88 |
+
return rename_keys
|
89 |
+
|
90 |
+
|
91 |
+
# we split up the matrix of each encoder layer into queries, keys and values
|
92 |
+
def read_in_q_k_v(state_dict, config, has_lm_head=False, is_semantic=False):
|
93 |
+
for i in range(config.num_hidden_layers):
|
94 |
+
prefix = "backbone." if is_semantic else ""
|
95 |
+
# queries, keys and values
|
96 |
+
in_proj_weight = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight")
|
97 |
+
q_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias")
|
98 |
+
v_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias")
|
99 |
+
|
100 |
+
state_dict[f"beit.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
|
101 |
+
: config.hidden_size, :
|
102 |
+
]
|
103 |
+
state_dict[f"beit.encoder.layer.{i}.attention.attention.query.bias"] = q_bias
|
104 |
+
state_dict[f"beit.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
|
105 |
+
config.hidden_size : config.hidden_size * 2, :
|
106 |
+
]
|
107 |
+
state_dict[f"beit.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
|
108 |
+
-config.hidden_size :, :
|
109 |
+
]
|
110 |
+
state_dict[f"beit.encoder.layer.{i}.attention.attention.value.bias"] = v_bias
|
111 |
+
|
112 |
+
# gamma_1 and gamma_2
|
113 |
+
# we call them lambda because otherwise they are renamed when using .from_pretrained
|
114 |
+
gamma_1 = state_dict.pop(f"{prefix}blocks.{i}.gamma_1")
|
115 |
+
gamma_2 = state_dict.pop(f"{prefix}blocks.{i}.gamma_2")
|
116 |
+
|
117 |
+
state_dict[f"beit.encoder.layer.{i}.lambda_1"] = gamma_1
|
118 |
+
state_dict[f"beit.encoder.layer.{i}.lambda_2"] = gamma_2
|
119 |
+
|
120 |
+
|
121 |
+
def rename_key(dct, old, new):
|
122 |
+
val = dct.pop(old)
|
123 |
+
dct[new] = val
|
124 |
+
|
125 |
+
|
126 |
+
# We will verify our results on an image of cute cats
|
127 |
+
def prepare_img():
|
128 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
129 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
130 |
+
return im
|
131 |
+
|
132 |
+
|
133 |
+
@torch.no_grad()
|
134 |
+
def convert_dit_checkpoint(checkpoint_url, pytorch_dump_folder_path, push_to_hub=False):
|
135 |
+
"""
|
136 |
+
Copy/paste/tweak model's weights to our BEiT structure.
|
137 |
+
"""
|
138 |
+
|
139 |
+
# define default BEiT configuration
|
140 |
+
has_lm_head = False if "rvlcdip" in checkpoint_url else True
|
141 |
+
config = BeitConfig(use_absolute_position_embeddings=True, use_mask_token=has_lm_head)
|
142 |
+
|
143 |
+
# size of the architecture
|
144 |
+
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
|
145 |
+
config.hidden_size = 1024
|
146 |
+
config.intermediate_size = 4096
|
147 |
+
config.num_hidden_layers = 24
|
148 |
+
config.num_attention_heads = 16
|
149 |
+
|
150 |
+
# labels
|
151 |
+
if "rvlcdip" in checkpoint_url:
|
152 |
+
config.num_labels = 16
|
153 |
+
repo_id = "huggingface/label-files"
|
154 |
+
filename = "rvlcdip-id2label.json"
|
155 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
156 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
157 |
+
config.id2label = id2label
|
158 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
159 |
+
|
160 |
+
# load state_dict of original model, remove and rename some keys
|
161 |
+
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["model"]
|
162 |
+
|
163 |
+
rename_keys = create_rename_keys(config, has_lm_head=has_lm_head)
|
164 |
+
for src, dest in rename_keys:
|
165 |
+
rename_key(state_dict, src, dest)
|
166 |
+
read_in_q_k_v(state_dict, config, has_lm_head=has_lm_head)
|
167 |
+
|
168 |
+
# load HuggingFace model
|
169 |
+
model = BeitForMaskedImageModeling(config) if has_lm_head else BeitForImageClassification(config)
|
170 |
+
model.eval()
|
171 |
+
model.load_state_dict(state_dict)
|
172 |
+
|
173 |
+
# Check outputs on an image
|
174 |
+
image_processor = BeitImageProcessor(
|
175 |
+
size=config.image_size, resample=PILImageResampling.BILINEAR, do_center_crop=False
|
176 |
+
)
|
177 |
+
image = prepare_img()
|
178 |
+
|
179 |
+
encoding = image_processor(images=image, return_tensors="pt")
|
180 |
+
pixel_values = encoding["pixel_values"]
|
181 |
+
|
182 |
+
outputs = model(pixel_values)
|
183 |
+
logits = outputs.logits
|
184 |
+
|
185 |
+
# verify logits
|
186 |
+
expected_shape = [1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8192]
|
187 |
+
assert logits.shape == torch.Size(expected_shape), "Shape of logits not as expected"
|
188 |
+
|
189 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
190 |
+
print(f"Saving model to {pytorch_dump_folder_path}")
|
191 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
192 |
+
print(f"Saving image processor to {pytorch_dump_folder_path}")
|
193 |
+
image_processor.save_pretrained(pytorch_dump_folder_path)
|
194 |
+
|
195 |
+
if push_to_hub:
|
196 |
+
if has_lm_head:
|
197 |
+
model_name = "dit-base" if "base" in checkpoint_url else "dit-large"
|
198 |
+
else:
|
199 |
+
model_name = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip"
|
200 |
+
image_processor.push_to_hub(
|
201 |
+
repo_path_or_name=Path(pytorch_dump_folder_path, model_name),
|
202 |
+
organization="nielsr",
|
203 |
+
commit_message="Add image processor",
|
204 |
+
use_temp_dir=True,
|
205 |
+
)
|
206 |
+
model.push_to_hub(
|
207 |
+
repo_path_or_name=Path(pytorch_dump_folder_path, model_name),
|
208 |
+
organization="nielsr",
|
209 |
+
commit_message="Add model",
|
210 |
+
use_temp_dir=True,
|
211 |
+
)
|
212 |
+
|
213 |
+
|
214 |
+
if __name__ == "__main__":
|
215 |
+
parser = argparse.ArgumentParser()
|
216 |
+
|
217 |
+
parser.add_argument(
|
218 |
+
"--checkpoint_url",
|
219 |
+
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
|
220 |
+
type=str,
|
221 |
+
help="URL to the original PyTorch checkpoint (.pth file).",
|
222 |
+
)
|
223 |
+
parser.add_argument(
|
224 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
|
225 |
+
)
|
226 |
+
parser.add_argument(
|
227 |
+
"--push_to_hub",
|
228 |
+
action="store_true",
|
229 |
+
)
|
230 |
+
args = parser.parse_args()
|
231 |
+
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/__init__.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]}
|
20 |
+
|
21 |
+
try:
|
22 |
+
if not is_vision_available():
|
23 |
+
raise OptionalDependencyNotAvailable()
|
24 |
+
except OptionalDependencyNotAvailable:
|
25 |
+
pass
|
26 |
+
else:
|
27 |
+
_import_structure["feature_extraction_glpn"] = ["GLPNFeatureExtractor"]
|
28 |
+
_import_structure["image_processing_glpn"] = ["GLPNImageProcessor"]
|
29 |
+
|
30 |
+
try:
|
31 |
+
if not is_torch_available():
|
32 |
+
raise OptionalDependencyNotAvailable()
|
33 |
+
except OptionalDependencyNotAvailable:
|
34 |
+
pass
|
35 |
+
else:
|
36 |
+
_import_structure["modeling_glpn"] = [
|
37 |
+
"GLPN_PRETRAINED_MODEL_ARCHIVE_LIST",
|
38 |
+
"GLPNForDepthEstimation",
|
39 |
+
"GLPNLayer",
|
40 |
+
"GLPNModel",
|
41 |
+
"GLPNPreTrainedModel",
|
42 |
+
]
|
43 |
+
|
44 |
+
|
45 |
+
if TYPE_CHECKING:
|
46 |
+
from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig
|
47 |
+
|
48 |
+
try:
|
49 |
+
if not is_vision_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
from .feature_extraction_glpn import GLPNFeatureExtractor
|
55 |
+
from .image_processing_glpn import GLPNImageProcessor
|
56 |
+
|
57 |
+
try:
|
58 |
+
if not is_torch_available():
|
59 |
+
raise OptionalDependencyNotAvailable()
|
60 |
+
except OptionalDependencyNotAvailable:
|
61 |
+
pass
|
62 |
+
else:
|
63 |
+
from .modeling_glpn import (
|
64 |
+
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST,
|
65 |
+
GLPNForDepthEstimation,
|
66 |
+
GLPNLayer,
|
67 |
+
GLPNModel,
|
68 |
+
GLPNPreTrainedModel,
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
else:
|
73 |
+
import sys
|
74 |
+
|
75 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.22 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/configuration_glpn.cpython-310.pyc
ADDED
Binary file (5.39 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/convert_glpn_to_pytorch.cpython-310.pyc
ADDED
Binary file (5.39 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/feature_extraction_glpn.cpython-310.pyc
ADDED
Binary file (994 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/image_processing_glpn.cpython-310.pyc
ADDED
Binary file (9.32 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/modeling_glpn.cpython-310.pyc
ADDED
Binary file (23.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/configuration_glpn.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 KAIST and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" GLPN model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json",
|
25 |
+
# See all GLPN models at https://huggingface.co/models?filter=glpn
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class GLPNConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`GLPNModel`]. It is used to instantiate an GLPN
|
32 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
33 |
+
defaults will yield a similar configuration to that of the GLPN
|
34 |
+
[vinvino02/glpn-kitti](https://huggingface.co/vinvino02/glpn-kitti) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
num_channels (`int`, *optional*, defaults to 3):
|
41 |
+
The number of input channels.
|
42 |
+
num_encoder_blocks (`int`, *optional*, defaults to 4):
|
43 |
+
The number of encoder blocks (i.e. stages in the Mix Transformer encoder).
|
44 |
+
depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`):
|
45 |
+
The number of layers in each encoder block.
|
46 |
+
sr_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`):
|
47 |
+
Sequence reduction ratios in each encoder block.
|
48 |
+
hidden_sizes (`List[int]`, *optional*, defaults to `[32, 64, 160, 256]`):
|
49 |
+
Dimension of each of the encoder blocks.
|
50 |
+
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`):
|
51 |
+
Patch size before each encoder block.
|
52 |
+
strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
|
53 |
+
Stride before each encoder block.
|
54 |
+
num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`):
|
55 |
+
Number of attention heads for each attention layer in each block of the Transformer encoder.
|
56 |
+
mlp_ratios (`List[int]`, *optional*, defaults to `[4, 4, 4, 4]`):
|
57 |
+
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
|
58 |
+
encoder blocks.
|
59 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
60 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
61 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
62 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
63 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
64 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
65 |
+
The dropout ratio for the attention probabilities.
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
+
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
69 |
+
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
|
70 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
71 |
+
The epsilon used by the layer normalization layers.
|
72 |
+
decoder_hidden_size (`int`, *optional*, defaults to 64):
|
73 |
+
The dimension of the decoder.
|
74 |
+
max_depth (`int`, *optional*, defaults to 10):
|
75 |
+
The maximum depth of the decoder.
|
76 |
+
head_in_index (`int`, *optional*, defaults to -1):
|
77 |
+
The index of the features to use in the head.
|
78 |
+
|
79 |
+
Example:
|
80 |
+
|
81 |
+
```python
|
82 |
+
>>> from transformers import GLPNModel, GLPNConfig
|
83 |
+
|
84 |
+
>>> # Initializing a GLPN vinvino02/glpn-kitti style configuration
|
85 |
+
>>> configuration = GLPNConfig()
|
86 |
+
|
87 |
+
>>> # Initializing a model from the vinvino02/glpn-kitti style configuration
|
88 |
+
>>> model = GLPNModel(configuration)
|
89 |
+
|
90 |
+
>>> # Accessing the model configuration
|
91 |
+
>>> configuration = model.config
|
92 |
+
```"""
|
93 |
+
|
94 |
+
model_type = "glpn"
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
num_channels=3,
|
99 |
+
num_encoder_blocks=4,
|
100 |
+
depths=[2, 2, 2, 2],
|
101 |
+
sr_ratios=[8, 4, 2, 1],
|
102 |
+
hidden_sizes=[32, 64, 160, 256],
|
103 |
+
patch_sizes=[7, 3, 3, 3],
|
104 |
+
strides=[4, 2, 2, 2],
|
105 |
+
num_attention_heads=[1, 2, 5, 8],
|
106 |
+
mlp_ratios=[4, 4, 4, 4],
|
107 |
+
hidden_act="gelu",
|
108 |
+
hidden_dropout_prob=0.0,
|
109 |
+
attention_probs_dropout_prob=0.0,
|
110 |
+
initializer_range=0.02,
|
111 |
+
drop_path_rate=0.1,
|
112 |
+
layer_norm_eps=1e-6,
|
113 |
+
decoder_hidden_size=64,
|
114 |
+
max_depth=10,
|
115 |
+
head_in_index=-1,
|
116 |
+
**kwargs,
|
117 |
+
):
|
118 |
+
super().__init__(**kwargs)
|
119 |
+
|
120 |
+
self.num_channels = num_channels
|
121 |
+
self.num_encoder_blocks = num_encoder_blocks
|
122 |
+
self.depths = depths
|
123 |
+
self.sr_ratios = sr_ratios
|
124 |
+
self.hidden_sizes = hidden_sizes
|
125 |
+
self.patch_sizes = patch_sizes
|
126 |
+
self.strides = strides
|
127 |
+
self.mlp_ratios = mlp_ratios
|
128 |
+
self.num_attention_heads = num_attention_heads
|
129 |
+
self.hidden_act = hidden_act
|
130 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
131 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
132 |
+
self.initializer_range = initializer_range
|
133 |
+
self.drop_path_rate = drop_path_rate
|
134 |
+
self.layer_norm_eps = layer_norm_eps
|
135 |
+
self.decoder_hidden_size = decoder_hidden_size
|
136 |
+
self.max_depth = max_depth
|
137 |
+
self.head_in_index = head_in_index
|
env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/convert_glpn_to_pytorch.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert GLPN checkpoints."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
from collections import OrderedDict
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import requests
|
23 |
+
import torch
|
24 |
+
from PIL import Image
|
25 |
+
|
26 |
+
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
|
27 |
+
from transformers.utils import logging
|
28 |
+
|
29 |
+
|
30 |
+
logging.set_verbosity_info()
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
def rename_keys(state_dict):
|
35 |
+
new_state_dict = OrderedDict()
|
36 |
+
for key, value in state_dict.items():
|
37 |
+
if key.startswith("module.encoder"):
|
38 |
+
key = key.replace("module.encoder", "glpn.encoder")
|
39 |
+
if key.startswith("module.decoder"):
|
40 |
+
key = key.replace("module.decoder", "decoder.stages")
|
41 |
+
if "patch_embed" in key:
|
42 |
+
# replace for example patch_embed1 by patch_embeddings.0
|
43 |
+
idx = key[key.find("patch_embed") + len("patch_embed")]
|
44 |
+
key = key.replace(f"patch_embed{idx}", f"patch_embeddings.{int(idx)-1}")
|
45 |
+
if "norm" in key:
|
46 |
+
key = key.replace("norm", "layer_norm")
|
47 |
+
if "glpn.encoder.layer_norm" in key:
|
48 |
+
# replace for example layer_norm1 by layer_norm.0
|
49 |
+
idx = key[key.find("glpn.encoder.layer_norm") + len("glpn.encoder.layer_norm")]
|
50 |
+
key = key.replace(f"layer_norm{idx}", f"layer_norm.{int(idx)-1}")
|
51 |
+
if "layer_norm1" in key:
|
52 |
+
key = key.replace("layer_norm1", "layer_norm_1")
|
53 |
+
if "layer_norm2" in key:
|
54 |
+
key = key.replace("layer_norm2", "layer_norm_2")
|
55 |
+
if "block" in key:
|
56 |
+
# replace for example block1 by block.0
|
57 |
+
idx = key[key.find("block") + len("block")]
|
58 |
+
key = key.replace(f"block{idx}", f"block.{int(idx)-1}")
|
59 |
+
if "attn.q" in key:
|
60 |
+
key = key.replace("attn.q", "attention.self.query")
|
61 |
+
if "attn.proj" in key:
|
62 |
+
key = key.replace("attn.proj", "attention.output.dense")
|
63 |
+
if "attn" in key:
|
64 |
+
key = key.replace("attn", "attention.self")
|
65 |
+
if "fc1" in key:
|
66 |
+
key = key.replace("fc1", "dense1")
|
67 |
+
if "fc2" in key:
|
68 |
+
key = key.replace("fc2", "dense2")
|
69 |
+
if "linear_pred" in key:
|
70 |
+
key = key.replace("linear_pred", "classifier")
|
71 |
+
if "linear_fuse" in key:
|
72 |
+
key = key.replace("linear_fuse.conv", "linear_fuse")
|
73 |
+
key = key.replace("linear_fuse.bn", "batch_norm")
|
74 |
+
if "linear_c" in key:
|
75 |
+
# replace for example linear_c4 by linear_c.3
|
76 |
+
idx = key[key.find("linear_c") + len("linear_c")]
|
77 |
+
key = key.replace(f"linear_c{idx}", f"linear_c.{int(idx)-1}")
|
78 |
+
if "bot_conv" in key:
|
79 |
+
key = key.replace("bot_conv", "0.convolution")
|
80 |
+
if "skip_conv1" in key:
|
81 |
+
key = key.replace("skip_conv1", "1.convolution")
|
82 |
+
if "skip_conv2" in key:
|
83 |
+
key = key.replace("skip_conv2", "2.convolution")
|
84 |
+
if "fusion1" in key:
|
85 |
+
key = key.replace("fusion1", "1.fusion")
|
86 |
+
if "fusion2" in key:
|
87 |
+
key = key.replace("fusion2", "2.fusion")
|
88 |
+
if "fusion3" in key:
|
89 |
+
key = key.replace("fusion3", "3.fusion")
|
90 |
+
if "fusion" in key and "conv" in key:
|
91 |
+
key = key.replace("conv", "convolutional_layer")
|
92 |
+
if key.startswith("module.last_layer_depth"):
|
93 |
+
key = key.replace("module.last_layer_depth", "head.head")
|
94 |
+
new_state_dict[key] = value
|
95 |
+
|
96 |
+
return new_state_dict
|
97 |
+
|
98 |
+
|
99 |
+
def read_in_k_v(state_dict, config):
|
100 |
+
# for each of the encoder blocks:
|
101 |
+
for i in range(config.num_encoder_blocks):
|
102 |
+
for j in range(config.depths[i]):
|
103 |
+
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
|
104 |
+
kv_weight = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.weight")
|
105 |
+
kv_bias = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.bias")
|
106 |
+
# next, add keys and values (in that order) to the state dict
|
107 |
+
state_dict[f"glpn.encoder.block.{i}.{j}.attention.self.key.weight"] = kv_weight[
|
108 |
+
: config.hidden_sizes[i], :
|
109 |
+
]
|
110 |
+
state_dict[f"glpn.encoder.block.{i}.{j}.attention.self.key.bias"] = kv_bias[: config.hidden_sizes[i]]
|
111 |
+
state_dict[f"glpn.encoder.block.{i}.{j}.attention.self.value.weight"] = kv_weight[
|
112 |
+
config.hidden_sizes[i] :, :
|
113 |
+
]
|
114 |
+
state_dict[f"glpn.encoder.block.{i}.{j}.attention.self.value.bias"] = kv_bias[config.hidden_sizes[i] :]
|
115 |
+
|
116 |
+
|
117 |
+
# We will verify our results on a COCO image
|
118 |
+
def prepare_img():
|
119 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
120 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
121 |
+
|
122 |
+
return image
|
123 |
+
|
124 |
+
|
125 |
+
@torch.no_grad()
|
126 |
+
def convert_glpn_checkpoint(checkpoint_path, pytorch_dump_folder_path, push_to_hub=False, model_name=None):
|
127 |
+
"""
|
128 |
+
Copy/paste/tweak model's weights to our GLPN structure.
|
129 |
+
"""
|
130 |
+
|
131 |
+
# load GLPN configuration (Segformer-B4 size)
|
132 |
+
config = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3])
|
133 |
+
|
134 |
+
# load image processor (only resize + rescale)
|
135 |
+
image_processor = GLPNImageProcessor()
|
136 |
+
|
137 |
+
# prepare image
|
138 |
+
image = prepare_img()
|
139 |
+
pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
|
140 |
+
|
141 |
+
logger.info("Converting model...")
|
142 |
+
|
143 |
+
# load original state dict
|
144 |
+
state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
|
145 |
+
|
146 |
+
# rename keys
|
147 |
+
state_dict = rename_keys(state_dict)
|
148 |
+
|
149 |
+
# key and value matrices need special treatment
|
150 |
+
read_in_k_v(state_dict, config)
|
151 |
+
|
152 |
+
# create HuggingFace model and load state dict
|
153 |
+
model = GLPNForDepthEstimation(config)
|
154 |
+
model.load_state_dict(state_dict)
|
155 |
+
model.eval()
|
156 |
+
|
157 |
+
# forward pass
|
158 |
+
outputs = model(pixel_values)
|
159 |
+
predicted_depth = outputs.predicted_depth
|
160 |
+
|
161 |
+
# verify output
|
162 |
+
if model_name is not None:
|
163 |
+
if "nyu" in model_name:
|
164 |
+
expected_slice = torch.tensor(
|
165 |
+
[[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]]
|
166 |
+
)
|
167 |
+
elif "kitti" in model_name:
|
168 |
+
expected_slice = torch.tensor(
|
169 |
+
[[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]]
|
170 |
+
)
|
171 |
+
else:
|
172 |
+
raise ValueError(f"Unknown model name: {model_name}")
|
173 |
+
|
174 |
+
expected_shape = torch.Size([1, 480, 640])
|
175 |
+
|
176 |
+
assert predicted_depth.shape == expected_shape
|
177 |
+
assert torch.allclose(predicted_depth[0, :3, :3], expected_slice, atol=1e-4)
|
178 |
+
print("Looks ok!")
|
179 |
+
|
180 |
+
# finally, push to hub if required
|
181 |
+
if push_to_hub:
|
182 |
+
logger.info("Pushing model and image processor to the hub...")
|
183 |
+
model.push_to_hub(
|
184 |
+
repo_path_or_name=Path(pytorch_dump_folder_path, model_name),
|
185 |
+
organization="nielsr",
|
186 |
+
commit_message="Add model",
|
187 |
+
use_temp_dir=True,
|
188 |
+
)
|
189 |
+
image_processor.push_to_hub(
|
190 |
+
repo_path_or_name=Path(pytorch_dump_folder_path, model_name),
|
191 |
+
organization="nielsr",
|
192 |
+
commit_message="Add image processor",
|
193 |
+
use_temp_dir=True,
|
194 |
+
)
|
195 |
+
|
196 |
+
|
197 |
+
if __name__ == "__main__":
|
198 |
+
parser = argparse.ArgumentParser()
|
199 |
+
|
200 |
+
parser.add_argument(
|
201 |
+
"--checkpoint_path",
|
202 |
+
default=None,
|
203 |
+
type=str,
|
204 |
+
help="Path to the original PyTorch checkpoint (.pth file).",
|
205 |
+
)
|
206 |
+
parser.add_argument(
|
207 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
|
208 |
+
)
|
209 |
+
parser.add_argument(
|
210 |
+
"--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub."
|
211 |
+
)
|
212 |
+
parser.add_argument(
|
213 |
+
"--model_name",
|
214 |
+
default="glpn-kitti",
|
215 |
+
type=str,
|
216 |
+
help="Name of the model in case you're pushing to the hub.",
|
217 |
+
)
|
218 |
+
args = parser.parse_args()
|
219 |
+
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/feature_extraction_glpn.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for GLPN."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...utils import logging
|
20 |
+
from .image_processing_glpn import GLPNImageProcessor
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class GLPNFeatureExtractor(GLPNImageProcessor):
|
27 |
+
def __init__(self, *args, **kwargs) -> None:
|
28 |
+
warnings.warn(
|
29 |
+
"The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
|
30 |
+
" use GLPNImageProcessor instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
super().__init__(*args, **kwargs)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/image_processing_glpn.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for GLPN."""
|
16 |
+
|
17 |
+
from typing import List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import PIL.Image
|
21 |
+
|
22 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature
|
23 |
+
from ...image_transforms import resize, to_channel_dimension_format
|
24 |
+
from ...image_utils import (
|
25 |
+
ChannelDimension,
|
26 |
+
PILImageResampling,
|
27 |
+
get_image_size,
|
28 |
+
infer_channel_dimension_format,
|
29 |
+
is_scaled_image,
|
30 |
+
make_list_of_images,
|
31 |
+
to_numpy_array,
|
32 |
+
valid_images,
|
33 |
+
validate_kwargs,
|
34 |
+
validate_preprocess_arguments,
|
35 |
+
)
|
36 |
+
from ...utils import TensorType, logging
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
|
42 |
+
class GLPNImageProcessor(BaseImageProcessor):
|
43 |
+
r"""
|
44 |
+
Constructs a GLPN image processor.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
48 |
+
Whether to resize the image's (height, width) dimensions, rounding them down to the closest multiple of
|
49 |
+
`size_divisor`. Can be overridden by `do_resize` in `preprocess`.
|
50 |
+
size_divisor (`int`, *optional*, defaults to 32):
|
51 |
+
When `do_resize` is `True`, images are resized so their height and width are rounded down to the closest
|
52 |
+
multiple of `size_divisor`. Can be overridden by `size_divisor` in `preprocess`.
|
53 |
+
resample (`PIL.Image` resampling filter, *optional*, defaults to `Resampling.BILINEAR`):
|
54 |
+
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
|
55 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
56 |
+
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Can be
|
57 |
+
overridden by `do_rescale` in `preprocess`.
|
58 |
+
"""
|
59 |
+
|
60 |
+
model_input_names = ["pixel_values"]
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
do_resize: bool = True,
|
65 |
+
size_divisor: int = 32,
|
66 |
+
resample=PILImageResampling.BILINEAR,
|
67 |
+
do_rescale: bool = True,
|
68 |
+
**kwargs,
|
69 |
+
) -> None:
|
70 |
+
self.do_resize = do_resize
|
71 |
+
self.do_rescale = do_rescale
|
72 |
+
self.size_divisor = size_divisor
|
73 |
+
self.resample = resample
|
74 |
+
super().__init__(**kwargs)
|
75 |
+
self._valid_processor_keys = [
|
76 |
+
"images",
|
77 |
+
"do_resize",
|
78 |
+
"size_divisor",
|
79 |
+
"resample",
|
80 |
+
"do_rescale",
|
81 |
+
"return_tensors",
|
82 |
+
"data_format",
|
83 |
+
"input_data_format",
|
84 |
+
]
|
85 |
+
|
86 |
+
def resize(
|
87 |
+
self,
|
88 |
+
image: np.ndarray,
|
89 |
+
size_divisor: int,
|
90 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
91 |
+
data_format: Optional[ChannelDimension] = None,
|
92 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
93 |
+
**kwargs,
|
94 |
+
) -> np.ndarray:
|
95 |
+
"""
|
96 |
+
Resize the image, rounding the (height, width) dimensions down to the closest multiple of size_divisor.
|
97 |
+
|
98 |
+
If the image is of dimension (3, 260, 170) and size_divisor is 32, the image will be resized to (3, 256, 160).
|
99 |
+
|
100 |
+
Args:
|
101 |
+
image (`np.ndarray`):
|
102 |
+
The image to resize.
|
103 |
+
size_divisor (`int`):
|
104 |
+
The image is resized so its height and width are rounded down to the closest multiple of
|
105 |
+
`size_divisor`.
|
106 |
+
resample:
|
107 |
+
`PIL.Image` resampling filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
|
108 |
+
data_format (`ChannelDimension` or `str`, *optional*):
|
109 |
+
The channel dimension format for the output image. If `None`, the channel dimension format of the input
|
110 |
+
image is used. Can be one of:
|
111 |
+
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
112 |
+
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
113 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
114 |
+
The channel dimension format of the input image. If not set, the channel dimension format is inferred
|
115 |
+
from the input image. Can be one of:
|
116 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
117 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
`np.ndarray`: The resized image.
|
121 |
+
"""
|
122 |
+
height, width = get_image_size(image, channel_dim=input_data_format)
|
123 |
+
# Rounds the height and width down to the closest multiple of size_divisor
|
124 |
+
new_h = height // size_divisor * size_divisor
|
125 |
+
new_w = width // size_divisor * size_divisor
|
126 |
+
image = resize(
|
127 |
+
image,
|
128 |
+
(new_h, new_w),
|
129 |
+
resample=resample,
|
130 |
+
data_format=data_format,
|
131 |
+
input_data_format=input_data_format,
|
132 |
+
**kwargs,
|
133 |
+
)
|
134 |
+
return image
|
135 |
+
|
136 |
+
def preprocess(
|
137 |
+
self,
|
138 |
+
images: Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]],
|
139 |
+
do_resize: Optional[bool] = None,
|
140 |
+
size_divisor: Optional[int] = None,
|
141 |
+
resample=None,
|
142 |
+
do_rescale: Optional[bool] = None,
|
143 |
+
return_tensors: Optional[Union[TensorType, str]] = None,
|
144 |
+
data_format: ChannelDimension = ChannelDimension.FIRST,
|
145 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
146 |
+
**kwargs,
|
147 |
+
) -> BatchFeature:
|
148 |
+
"""
|
149 |
+
Preprocess the given images.
|
150 |
+
|
151 |
+
Args:
|
152 |
+
images (`PIL.Image.Image` or `TensorType` or `List[np.ndarray]` or `List[TensorType]`):
|
153 |
+
Images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
154 |
+
passing in images with pixel values between 0 and 1, set `do_normalize=False`.
|
155 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
156 |
+
Whether to resize the input such that the (height, width) dimensions are a multiple of `size_divisor`.
|
157 |
+
size_divisor (`int`, *optional*, defaults to `self.size_divisor`):
|
158 |
+
When `do_resize` is `True`, images are resized so their height and width are rounded down to the
|
159 |
+
closest multiple of `size_divisor`.
|
160 |
+
resample (`PIL.Image` resampling filter, *optional*, defaults to `self.resample`):
|
161 |
+
`PIL.Image` resampling filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
|
162 |
+
an effect if `do_resize` is set to `True`.
|
163 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
164 |
+
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.).
|
165 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
166 |
+
The type of tensors to return. Can be one of:
|
167 |
+
- `None`: Return a list of `np.ndarray`.
|
168 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
169 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
170 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
171 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
172 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
173 |
+
The channel dimension format for the output image. Can be one of:
|
174 |
+
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
175 |
+
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
176 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
177 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
178 |
+
from the input image. Can be one of:
|
179 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
180 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
181 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
182 |
+
"""
|
183 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
184 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
185 |
+
size_divisor = size_divisor if size_divisor is not None else self.size_divisor
|
186 |
+
resample = resample if resample is not None else self.resample
|
187 |
+
|
188 |
+
images = make_list_of_images(images)
|
189 |
+
|
190 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
191 |
+
|
192 |
+
if not valid_images(images):
|
193 |
+
raise ValueError(
|
194 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
195 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
196 |
+
)
|
197 |
+
|
198 |
+
# Here, the rescale() method uses a constant rescale_factor. It does not need to be validated
|
199 |
+
# with a rescale_factor.
|
200 |
+
validate_preprocess_arguments(
|
201 |
+
do_resize=do_resize,
|
202 |
+
size=size_divisor, # Here, size_divisor is used as a parameter for optimal resizing instead of size.
|
203 |
+
resample=resample,
|
204 |
+
)
|
205 |
+
|
206 |
+
# All transformations expect numpy arrays.
|
207 |
+
images = [to_numpy_array(img) for img in images]
|
208 |
+
|
209 |
+
if is_scaled_image(images[0]) and do_rescale:
|
210 |
+
logger.warning_once(
|
211 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
212 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
213 |
+
)
|
214 |
+
|
215 |
+
if input_data_format is None:
|
216 |
+
# We assume that all images have the same channel dimension format.
|
217 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
218 |
+
|
219 |
+
if do_resize:
|
220 |
+
images = [
|
221 |
+
self.resize(image, size_divisor=size_divisor, resample=resample, input_data_format=input_data_format)
|
222 |
+
for image in images
|
223 |
+
]
|
224 |
+
|
225 |
+
if do_rescale:
|
226 |
+
images = [self.rescale(image, scale=1 / 255, input_data_format=input_data_format) for image in images]
|
227 |
+
|
228 |
+
images = [
|
229 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
230 |
+
]
|
231 |
+
|
232 |
+
data = {"pixel_values": images}
|
233 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/glpn/modeling_glpn.py
ADDED
@@ -0,0 +1,780 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 KAIST and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch GLPN model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...modeling_outputs import BaseModelOutput, DepthEstimatorOutput
|
27 |
+
from ...modeling_utils import PreTrainedModel
|
28 |
+
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
29 |
+
from ...utils import (
|
30 |
+
add_code_sample_docstrings,
|
31 |
+
add_start_docstrings,
|
32 |
+
add_start_docstrings_to_model_forward,
|
33 |
+
logging,
|
34 |
+
replace_return_docstrings,
|
35 |
+
)
|
36 |
+
from .configuration_glpn import GLPNConfig
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
|
42 |
+
# General docstring
|
43 |
+
_CONFIG_FOR_DOC = "GLPNConfig"
|
44 |
+
|
45 |
+
# Base docstring
|
46 |
+
_CHECKPOINT_FOR_DOC = "vinvino02/glpn-kitti"
|
47 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 512, 15, 20]
|
48 |
+
|
49 |
+
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
50 |
+
"vinvino02/glpn-kitti",
|
51 |
+
# See all GLPN models at https://huggingface.co/models?filter=glpn
|
52 |
+
]
|
53 |
+
|
54 |
+
|
55 |
+
# Copied from transformers.models.beit.modeling_beit.drop_path
|
56 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
57 |
+
"""
|
58 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
59 |
+
|
60 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
61 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
62 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
63 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
64 |
+
argument.
|
65 |
+
"""
|
66 |
+
if drop_prob == 0.0 or not training:
|
67 |
+
return input
|
68 |
+
keep_prob = 1 - drop_prob
|
69 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
70 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
71 |
+
random_tensor.floor_() # binarize
|
72 |
+
output = input.div(keep_prob) * random_tensor
|
73 |
+
return output
|
74 |
+
|
75 |
+
|
76 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerDropPath
|
77 |
+
class GLPNDropPath(nn.Module):
|
78 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
79 |
+
|
80 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
81 |
+
super().__init__()
|
82 |
+
self.drop_prob = drop_prob
|
83 |
+
|
84 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
85 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
86 |
+
|
87 |
+
def extra_repr(self) -> str:
|
88 |
+
return "p={}".format(self.drop_prob)
|
89 |
+
|
90 |
+
|
91 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerOverlapPatchEmbeddings
|
92 |
+
class GLPNOverlapPatchEmbeddings(nn.Module):
|
93 |
+
"""Construct the overlapping patch embeddings."""
|
94 |
+
|
95 |
+
def __init__(self, patch_size, stride, num_channels, hidden_size):
|
96 |
+
super().__init__()
|
97 |
+
self.proj = nn.Conv2d(
|
98 |
+
num_channels,
|
99 |
+
hidden_size,
|
100 |
+
kernel_size=patch_size,
|
101 |
+
stride=stride,
|
102 |
+
padding=patch_size // 2,
|
103 |
+
)
|
104 |
+
|
105 |
+
self.layer_norm = nn.LayerNorm(hidden_size)
|
106 |
+
|
107 |
+
def forward(self, pixel_values):
|
108 |
+
embeddings = self.proj(pixel_values)
|
109 |
+
_, _, height, width = embeddings.shape
|
110 |
+
# (batch_size, num_channels, height, width) -> (batch_size, num_channels, height*width) -> (batch_size, height*width, num_channels)
|
111 |
+
# this can be fed to a Transformer layer
|
112 |
+
embeddings = embeddings.flatten(2).transpose(1, 2)
|
113 |
+
embeddings = self.layer_norm(embeddings)
|
114 |
+
return embeddings, height, width
|
115 |
+
|
116 |
+
|
117 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerEfficientSelfAttention
|
118 |
+
class GLPNEfficientSelfAttention(nn.Module):
|
119 |
+
"""SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT
|
120 |
+
paper](https://arxiv.org/abs/2102.12122)."""
|
121 |
+
|
122 |
+
def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio):
|
123 |
+
super().__init__()
|
124 |
+
self.hidden_size = hidden_size
|
125 |
+
self.num_attention_heads = num_attention_heads
|
126 |
+
|
127 |
+
if self.hidden_size % self.num_attention_heads != 0:
|
128 |
+
raise ValueError(
|
129 |
+
f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention "
|
130 |
+
f"heads ({self.num_attention_heads})"
|
131 |
+
)
|
132 |
+
|
133 |
+
self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
|
134 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
135 |
+
|
136 |
+
self.query = nn.Linear(self.hidden_size, self.all_head_size)
|
137 |
+
self.key = nn.Linear(self.hidden_size, self.all_head_size)
|
138 |
+
self.value = nn.Linear(self.hidden_size, self.all_head_size)
|
139 |
+
|
140 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
141 |
+
|
142 |
+
self.sr_ratio = sequence_reduction_ratio
|
143 |
+
if sequence_reduction_ratio > 1:
|
144 |
+
self.sr = nn.Conv2d(
|
145 |
+
hidden_size, hidden_size, kernel_size=sequence_reduction_ratio, stride=sequence_reduction_ratio
|
146 |
+
)
|
147 |
+
self.layer_norm = nn.LayerNorm(hidden_size)
|
148 |
+
|
149 |
+
def transpose_for_scores(self, hidden_states):
|
150 |
+
new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
151 |
+
hidden_states = hidden_states.view(new_shape)
|
152 |
+
return hidden_states.permute(0, 2, 1, 3)
|
153 |
+
|
154 |
+
def forward(
|
155 |
+
self,
|
156 |
+
hidden_states,
|
157 |
+
height,
|
158 |
+
width,
|
159 |
+
output_attentions=False,
|
160 |
+
):
|
161 |
+
query_layer = self.transpose_for_scores(self.query(hidden_states))
|
162 |
+
|
163 |
+
if self.sr_ratio > 1:
|
164 |
+
batch_size, seq_len, num_channels = hidden_states.shape
|
165 |
+
# Reshape to (batch_size, num_channels, height, width)
|
166 |
+
hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
|
167 |
+
# Apply sequence reduction
|
168 |
+
hidden_states = self.sr(hidden_states)
|
169 |
+
# Reshape back to (batch_size, seq_len, num_channels)
|
170 |
+
hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1)
|
171 |
+
hidden_states = self.layer_norm(hidden_states)
|
172 |
+
|
173 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
174 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
175 |
+
|
176 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
177 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
178 |
+
|
179 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
180 |
+
|
181 |
+
# Normalize the attention scores to probabilities.
|
182 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
183 |
+
|
184 |
+
# This is actually dropping out entire tokens to attend to, which might
|
185 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
186 |
+
attention_probs = self.dropout(attention_probs)
|
187 |
+
|
188 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
189 |
+
|
190 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
191 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
192 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
193 |
+
|
194 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
195 |
+
|
196 |
+
return outputs
|
197 |
+
|
198 |
+
|
199 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerSelfOutput
|
200 |
+
class GLPNSelfOutput(nn.Module):
|
201 |
+
def __init__(self, config, hidden_size):
|
202 |
+
super().__init__()
|
203 |
+
self.dense = nn.Linear(hidden_size, hidden_size)
|
204 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
205 |
+
|
206 |
+
def forward(self, hidden_states, input_tensor):
|
207 |
+
hidden_states = self.dense(hidden_states)
|
208 |
+
hidden_states = self.dropout(hidden_states)
|
209 |
+
return hidden_states
|
210 |
+
|
211 |
+
|
212 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerAttention with Segformer->GLPN
|
213 |
+
class GLPNAttention(nn.Module):
|
214 |
+
def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio):
|
215 |
+
super().__init__()
|
216 |
+
self.self = GLPNEfficientSelfAttention(
|
217 |
+
config=config,
|
218 |
+
hidden_size=hidden_size,
|
219 |
+
num_attention_heads=num_attention_heads,
|
220 |
+
sequence_reduction_ratio=sequence_reduction_ratio,
|
221 |
+
)
|
222 |
+
self.output = GLPNSelfOutput(config, hidden_size=hidden_size)
|
223 |
+
self.pruned_heads = set()
|
224 |
+
|
225 |
+
def prune_heads(self, heads):
|
226 |
+
if len(heads) == 0:
|
227 |
+
return
|
228 |
+
heads, index = find_pruneable_heads_and_indices(
|
229 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
230 |
+
)
|
231 |
+
|
232 |
+
# Prune linear layers
|
233 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
234 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
235 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
236 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
237 |
+
|
238 |
+
# Update hyper params and store pruned heads
|
239 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
240 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
241 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
242 |
+
|
243 |
+
def forward(self, hidden_states, height, width, output_attentions=False):
|
244 |
+
self_outputs = self.self(hidden_states, height, width, output_attentions)
|
245 |
+
|
246 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
247 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
248 |
+
return outputs
|
249 |
+
|
250 |
+
|
251 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerDWConv
|
252 |
+
class GLPNDWConv(nn.Module):
|
253 |
+
def __init__(self, dim=768):
|
254 |
+
super().__init__()
|
255 |
+
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
|
256 |
+
|
257 |
+
def forward(self, hidden_states, height, width):
|
258 |
+
batch_size, seq_len, num_channels = hidden_states.shape
|
259 |
+
hidden_states = hidden_states.transpose(1, 2).view(batch_size, num_channels, height, width)
|
260 |
+
hidden_states = self.dwconv(hidden_states)
|
261 |
+
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
262 |
+
|
263 |
+
return hidden_states
|
264 |
+
|
265 |
+
|
266 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerMixFFN with Segformer->GLPN
|
267 |
+
class GLPNMixFFN(nn.Module):
|
268 |
+
def __init__(self, config, in_features, hidden_features=None, out_features=None):
|
269 |
+
super().__init__()
|
270 |
+
out_features = out_features or in_features
|
271 |
+
self.dense1 = nn.Linear(in_features, hidden_features)
|
272 |
+
self.dwconv = GLPNDWConv(hidden_features)
|
273 |
+
if isinstance(config.hidden_act, str):
|
274 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
275 |
+
else:
|
276 |
+
self.intermediate_act_fn = config.hidden_act
|
277 |
+
self.dense2 = nn.Linear(hidden_features, out_features)
|
278 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
279 |
+
|
280 |
+
def forward(self, hidden_states, height, width):
|
281 |
+
hidden_states = self.dense1(hidden_states)
|
282 |
+
hidden_states = self.dwconv(hidden_states, height, width)
|
283 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
284 |
+
hidden_states = self.dropout(hidden_states)
|
285 |
+
hidden_states = self.dense2(hidden_states)
|
286 |
+
hidden_states = self.dropout(hidden_states)
|
287 |
+
return hidden_states
|
288 |
+
|
289 |
+
|
290 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerLayer with Segformer->GLPN
|
291 |
+
class GLPNLayer(nn.Module):
|
292 |
+
"""This corresponds to the Block class in the original implementation."""
|
293 |
+
|
294 |
+
def __init__(self, config, hidden_size, num_attention_heads, drop_path, sequence_reduction_ratio, mlp_ratio):
|
295 |
+
super().__init__()
|
296 |
+
self.layer_norm_1 = nn.LayerNorm(hidden_size)
|
297 |
+
self.attention = GLPNAttention(
|
298 |
+
config,
|
299 |
+
hidden_size=hidden_size,
|
300 |
+
num_attention_heads=num_attention_heads,
|
301 |
+
sequence_reduction_ratio=sequence_reduction_ratio,
|
302 |
+
)
|
303 |
+
self.drop_path = GLPNDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
304 |
+
self.layer_norm_2 = nn.LayerNorm(hidden_size)
|
305 |
+
mlp_hidden_size = int(hidden_size * mlp_ratio)
|
306 |
+
self.mlp = GLPNMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size)
|
307 |
+
|
308 |
+
def forward(self, hidden_states, height, width, output_attentions=False):
|
309 |
+
self_attention_outputs = self.attention(
|
310 |
+
self.layer_norm_1(hidden_states), # in GLPN, layernorm is applied before self-attention
|
311 |
+
height,
|
312 |
+
width,
|
313 |
+
output_attentions=output_attentions,
|
314 |
+
)
|
315 |
+
|
316 |
+
attention_output = self_attention_outputs[0]
|
317 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
318 |
+
|
319 |
+
# first residual connection (with stochastic depth)
|
320 |
+
attention_output = self.drop_path(attention_output)
|
321 |
+
hidden_states = attention_output + hidden_states
|
322 |
+
|
323 |
+
mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width)
|
324 |
+
|
325 |
+
# second residual connection (with stochastic depth)
|
326 |
+
mlp_output = self.drop_path(mlp_output)
|
327 |
+
layer_output = mlp_output + hidden_states
|
328 |
+
|
329 |
+
outputs = (layer_output,) + outputs
|
330 |
+
|
331 |
+
return outputs
|
332 |
+
|
333 |
+
|
334 |
+
class GLPNEncoder(nn.Module):
|
335 |
+
def __init__(self, config):
|
336 |
+
super().__init__()
|
337 |
+
self.config = config
|
338 |
+
|
339 |
+
# stochastic depth decay rule
|
340 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
|
341 |
+
|
342 |
+
# patch embeddings
|
343 |
+
embeddings = []
|
344 |
+
for i in range(config.num_encoder_blocks):
|
345 |
+
embeddings.append(
|
346 |
+
GLPNOverlapPatchEmbeddings(
|
347 |
+
patch_size=config.patch_sizes[i],
|
348 |
+
stride=config.strides[i],
|
349 |
+
num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1],
|
350 |
+
hidden_size=config.hidden_sizes[i],
|
351 |
+
)
|
352 |
+
)
|
353 |
+
self.patch_embeddings = nn.ModuleList(embeddings)
|
354 |
+
|
355 |
+
# Transformer blocks
|
356 |
+
blocks = []
|
357 |
+
cur = 0
|
358 |
+
for i in range(config.num_encoder_blocks):
|
359 |
+
# each block consists of layers
|
360 |
+
layers = []
|
361 |
+
if i != 0:
|
362 |
+
cur += config.depths[i - 1]
|
363 |
+
for j in range(config.depths[i]):
|
364 |
+
layers.append(
|
365 |
+
GLPNLayer(
|
366 |
+
config,
|
367 |
+
hidden_size=config.hidden_sizes[i],
|
368 |
+
num_attention_heads=config.num_attention_heads[i],
|
369 |
+
drop_path=dpr[cur + j],
|
370 |
+
sequence_reduction_ratio=config.sr_ratios[i],
|
371 |
+
mlp_ratio=config.mlp_ratios[i],
|
372 |
+
)
|
373 |
+
)
|
374 |
+
blocks.append(nn.ModuleList(layers))
|
375 |
+
|
376 |
+
self.block = nn.ModuleList(blocks)
|
377 |
+
|
378 |
+
# Layer norms
|
379 |
+
self.layer_norm = nn.ModuleList(
|
380 |
+
[nn.LayerNorm(config.hidden_sizes[i]) for i in range(config.num_encoder_blocks)]
|
381 |
+
)
|
382 |
+
|
383 |
+
def forward(
|
384 |
+
self,
|
385 |
+
pixel_values,
|
386 |
+
output_attentions=False,
|
387 |
+
output_hidden_states=False,
|
388 |
+
return_dict=True,
|
389 |
+
):
|
390 |
+
all_hidden_states = () if output_hidden_states else None
|
391 |
+
all_self_attentions = () if output_attentions else None
|
392 |
+
|
393 |
+
batch_size = pixel_values.shape[0]
|
394 |
+
|
395 |
+
hidden_states = pixel_values
|
396 |
+
for idx, x in enumerate(zip(self.patch_embeddings, self.block, self.layer_norm)):
|
397 |
+
embedding_layer, block_layer, norm_layer = x
|
398 |
+
# first, obtain patch embeddings
|
399 |
+
hidden_states, height, width = embedding_layer(hidden_states)
|
400 |
+
# second, send embeddings through blocks
|
401 |
+
for i, blk in enumerate(block_layer):
|
402 |
+
layer_outputs = blk(hidden_states, height, width, output_attentions)
|
403 |
+
hidden_states = layer_outputs[0]
|
404 |
+
if output_attentions:
|
405 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
406 |
+
# third, apply layer norm
|
407 |
+
hidden_states = norm_layer(hidden_states)
|
408 |
+
# fourth, optionally reshape back to (batch_size, num_channels, height, width)
|
409 |
+
hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
|
410 |
+
if output_hidden_states:
|
411 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
412 |
+
|
413 |
+
if not return_dict:
|
414 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
415 |
+
return BaseModelOutput(
|
416 |
+
last_hidden_state=hidden_states,
|
417 |
+
hidden_states=all_hidden_states,
|
418 |
+
attentions=all_self_attentions,
|
419 |
+
)
|
420 |
+
|
421 |
+
|
422 |
+
class GLPNPreTrainedModel(PreTrainedModel):
|
423 |
+
"""
|
424 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
425 |
+
models.
|
426 |
+
"""
|
427 |
+
|
428 |
+
config_class = GLPNConfig
|
429 |
+
base_model_prefix = "glpn"
|
430 |
+
main_input_name = "pixel_values"
|
431 |
+
|
432 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerPreTrainedModel._init_weights
|
433 |
+
def _init_weights(self, module):
|
434 |
+
"""Initialize the weights"""
|
435 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
436 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
437 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
438 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
439 |
+
if module.bias is not None:
|
440 |
+
module.bias.data.zero_()
|
441 |
+
elif isinstance(module, nn.Embedding):
|
442 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
443 |
+
if module.padding_idx is not None:
|
444 |
+
module.weight.data[module.padding_idx].zero_()
|
445 |
+
elif isinstance(module, nn.LayerNorm):
|
446 |
+
module.bias.data.zero_()
|
447 |
+
module.weight.data.fill_(1.0)
|
448 |
+
|
449 |
+
|
450 |
+
GLPN_START_DOCSTRING = r"""
|
451 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
452 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
453 |
+
behavior.
|
454 |
+
|
455 |
+
Parameters:
|
456 |
+
config ([`GLPNConfig`]): Model configuration class with all the parameters of the model.
|
457 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
458 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
459 |
+
"""
|
460 |
+
|
461 |
+
GLPN_INPUTS_DOCSTRING = r"""
|
462 |
+
|
463 |
+
Args:
|
464 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
465 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
466 |
+
[`AutoImageProcessor`]. See [`GLPNImageProcessor.__call__`] for details.
|
467 |
+
|
468 |
+
output_attentions (`bool`, *optional*):
|
469 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
470 |
+
tensors for more detail.
|
471 |
+
output_hidden_states (`bool`, *optional*):
|
472 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
473 |
+
more detail.
|
474 |
+
return_dict (`bool`, *optional*):
|
475 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
476 |
+
"""
|
477 |
+
|
478 |
+
|
479 |
+
@add_start_docstrings(
|
480 |
+
"The bare GLPN encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.",
|
481 |
+
GLPN_START_DOCSTRING,
|
482 |
+
)
|
483 |
+
class GLPNModel(GLPNPreTrainedModel):
|
484 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerModel.__init__ with Segformer->GLPN
|
485 |
+
def __init__(self, config):
|
486 |
+
super().__init__(config)
|
487 |
+
self.config = config
|
488 |
+
|
489 |
+
# hierarchical Transformer encoder
|
490 |
+
self.encoder = GLPNEncoder(config)
|
491 |
+
|
492 |
+
# Initialize weights and apply final processing
|
493 |
+
self.post_init()
|
494 |
+
|
495 |
+
def _prune_heads(self, heads_to_prune):
|
496 |
+
"""
|
497 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
498 |
+
class PreTrainedModel
|
499 |
+
"""
|
500 |
+
for layer, heads in heads_to_prune.items():
|
501 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
502 |
+
|
503 |
+
@add_start_docstrings_to_model_forward(GLPN_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
504 |
+
@add_code_sample_docstrings(
|
505 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
506 |
+
output_type=BaseModelOutput,
|
507 |
+
config_class=_CONFIG_FOR_DOC,
|
508 |
+
modality="vision",
|
509 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
510 |
+
)
|
511 |
+
# Copied from transformers.models.segformer.modeling_segformer.SegformerModel.forward
|
512 |
+
def forward(
|
513 |
+
self,
|
514 |
+
pixel_values: torch.FloatTensor,
|
515 |
+
output_attentions: Optional[bool] = None,
|
516 |
+
output_hidden_states: Optional[bool] = None,
|
517 |
+
return_dict: Optional[bool] = None,
|
518 |
+
) -> Union[Tuple, BaseModelOutput]:
|
519 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
520 |
+
output_hidden_states = (
|
521 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
522 |
+
)
|
523 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
524 |
+
|
525 |
+
encoder_outputs = self.encoder(
|
526 |
+
pixel_values,
|
527 |
+
output_attentions=output_attentions,
|
528 |
+
output_hidden_states=output_hidden_states,
|
529 |
+
return_dict=return_dict,
|
530 |
+
)
|
531 |
+
sequence_output = encoder_outputs[0]
|
532 |
+
|
533 |
+
if not return_dict:
|
534 |
+
return (sequence_output,) + encoder_outputs[1:]
|
535 |
+
|
536 |
+
return BaseModelOutput(
|
537 |
+
last_hidden_state=sequence_output,
|
538 |
+
hidden_states=encoder_outputs.hidden_states,
|
539 |
+
attentions=encoder_outputs.attentions,
|
540 |
+
)
|
541 |
+
|
542 |
+
|
543 |
+
class GLPNSelectiveFeatureFusion(nn.Module):
|
544 |
+
"""
|
545 |
+
Selective Feature Fusion module, as explained in the [paper](https://arxiv.org/abs/2201.07436) (section 3.4). This
|
546 |
+
module adaptively selects and integrates local and global features by attaining an attention map for each feature.
|
547 |
+
"""
|
548 |
+
|
549 |
+
def __init__(self, in_channel=64):
|
550 |
+
super().__init__()
|
551 |
+
|
552 |
+
self.convolutional_layer1 = nn.Sequential(
|
553 |
+
nn.Conv2d(in_channels=int(in_channel * 2), out_channels=in_channel, kernel_size=3, stride=1, padding=1),
|
554 |
+
nn.BatchNorm2d(in_channel),
|
555 |
+
nn.ReLU(),
|
556 |
+
)
|
557 |
+
|
558 |
+
self.convolutional_layer2 = nn.Sequential(
|
559 |
+
nn.Conv2d(in_channels=in_channel, out_channels=int(in_channel / 2), kernel_size=3, stride=1, padding=1),
|
560 |
+
nn.BatchNorm2d(int(in_channel / 2)),
|
561 |
+
nn.ReLU(),
|
562 |
+
)
|
563 |
+
|
564 |
+
self.convolutional_layer3 = nn.Conv2d(
|
565 |
+
in_channels=int(in_channel / 2), out_channels=2, kernel_size=3, stride=1, padding=1
|
566 |
+
)
|
567 |
+
|
568 |
+
self.sigmoid = nn.Sigmoid()
|
569 |
+
|
570 |
+
def forward(self, local_features, global_features):
|
571 |
+
# concatenate features along the channel dimension
|
572 |
+
features = torch.cat((local_features, global_features), dim=1)
|
573 |
+
# pass through convolutional layers
|
574 |
+
features = self.convolutional_layer1(features)
|
575 |
+
features = self.convolutional_layer2(features)
|
576 |
+
features = self.convolutional_layer3(features)
|
577 |
+
# apply sigmoid to get two-channel attention map
|
578 |
+
attn = self.sigmoid(features)
|
579 |
+
# construct hybrid features by adding element-wise
|
580 |
+
hybrid_features = local_features * attn[:, 0, :, :].unsqueeze(1) + global_features * attn[
|
581 |
+
:, 1, :, :
|
582 |
+
].unsqueeze(1)
|
583 |
+
|
584 |
+
return hybrid_features
|
585 |
+
|
586 |
+
|
587 |
+
class GLPNDecoderStage(nn.Module):
|
588 |
+
def __init__(self, in_channels, out_channels):
|
589 |
+
super().__init__()
|
590 |
+
should_skip = in_channels == out_channels
|
591 |
+
self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1) if not should_skip else nn.Identity()
|
592 |
+
self.fusion = GLPNSelectiveFeatureFusion(out_channels)
|
593 |
+
self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False)
|
594 |
+
|
595 |
+
def forward(self, hidden_state, residual=None):
|
596 |
+
hidden_state = self.convolution(hidden_state)
|
597 |
+
if residual is not None:
|
598 |
+
hidden_state = self.fusion(hidden_state, residual)
|
599 |
+
hidden_state = self.upsample(hidden_state)
|
600 |
+
|
601 |
+
return hidden_state
|
602 |
+
|
603 |
+
hidden_state = self.upsample(hidden_state)
|
604 |
+
return hidden_state
|
605 |
+
|
606 |
+
|
607 |
+
class GLPNDecoder(nn.Module):
|
608 |
+
def __init__(self, config):
|
609 |
+
super().__init__()
|
610 |
+
# we use features from end -> start
|
611 |
+
reserved_hidden_sizes = config.hidden_sizes[::-1]
|
612 |
+
out_channels = config.decoder_hidden_size
|
613 |
+
|
614 |
+
self.stages = nn.ModuleList(
|
615 |
+
[GLPNDecoderStage(hidden_size, out_channels) for hidden_size in reserved_hidden_sizes]
|
616 |
+
)
|
617 |
+
# don't fuse in first stage
|
618 |
+
self.stages[0].fusion = None
|
619 |
+
|
620 |
+
self.final_upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False)
|
621 |
+
|
622 |
+
def forward(self, hidden_states: List[torch.Tensor]) -> List[torch.Tensor]:
|
623 |
+
stage_hidden_states = []
|
624 |
+
stage_hidden_state = None
|
625 |
+
for hidden_state, stage in zip(hidden_states[::-1], self.stages):
|
626 |
+
stage_hidden_state = stage(hidden_state, stage_hidden_state)
|
627 |
+
stage_hidden_states.append(stage_hidden_state)
|
628 |
+
|
629 |
+
stage_hidden_states[-1] = self.final_upsample(stage_hidden_state)
|
630 |
+
|
631 |
+
return stage_hidden_states
|
632 |
+
|
633 |
+
|
634 |
+
class SiLogLoss(nn.Module):
|
635 |
+
r"""
|
636 |
+
Implements the Scale-invariant log scale loss [Eigen et al., 2014](https://arxiv.org/abs/1406.2283).
|
637 |
+
|
638 |
+
$$L=\frac{1}{n} \sum_{i} d_{i}^{2}-\frac{1}{2 n^{2}}\left(\sum_{i} d_{i}^{2}\right)$$ where $d_{i}=\log y_{i}-\log
|
639 |
+
y_{i}^{*}$.
|
640 |
+
|
641 |
+
"""
|
642 |
+
|
643 |
+
def __init__(self, lambd=0.5):
|
644 |
+
super().__init__()
|
645 |
+
self.lambd = lambd
|
646 |
+
|
647 |
+
def forward(self, pred, target):
|
648 |
+
valid_mask = (target > 0).detach()
|
649 |
+
diff_log = torch.log(target[valid_mask]) - torch.log(pred[valid_mask])
|
650 |
+
loss = torch.sqrt(torch.pow(diff_log, 2).mean() - self.lambd * torch.pow(diff_log.mean(), 2))
|
651 |
+
|
652 |
+
return loss
|
653 |
+
|
654 |
+
|
655 |
+
class GLPNDepthEstimationHead(nn.Module):
|
656 |
+
def __init__(self, config):
|
657 |
+
super().__init__()
|
658 |
+
|
659 |
+
self.config = config
|
660 |
+
|
661 |
+
channels = config.decoder_hidden_size
|
662 |
+
self.head = nn.Sequential(
|
663 |
+
nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1),
|
664 |
+
nn.ReLU(inplace=False),
|
665 |
+
nn.Conv2d(channels, 1, kernel_size=3, stride=1, padding=1),
|
666 |
+
)
|
667 |
+
|
668 |
+
def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor:
|
669 |
+
# use last features of the decoder
|
670 |
+
hidden_states = hidden_states[self.config.head_in_index]
|
671 |
+
|
672 |
+
hidden_states = self.head(hidden_states)
|
673 |
+
|
674 |
+
predicted_depth = torch.sigmoid(hidden_states) * self.config.max_depth
|
675 |
+
predicted_depth = predicted_depth.squeeze(dim=1)
|
676 |
+
|
677 |
+
return predicted_depth
|
678 |
+
|
679 |
+
|
680 |
+
@add_start_docstrings(
|
681 |
+
"""GLPN Model transformer with a lightweight depth estimation head on top e.g. for KITTI, NYUv2.""",
|
682 |
+
GLPN_START_DOCSTRING,
|
683 |
+
)
|
684 |
+
class GLPNForDepthEstimation(GLPNPreTrainedModel):
|
685 |
+
def __init__(self, config):
|
686 |
+
super().__init__(config)
|
687 |
+
|
688 |
+
self.glpn = GLPNModel(config)
|
689 |
+
self.decoder = GLPNDecoder(config)
|
690 |
+
self.head = GLPNDepthEstimationHead(config)
|
691 |
+
|
692 |
+
# Initialize weights and apply final processing
|
693 |
+
self.post_init()
|
694 |
+
|
695 |
+
@add_start_docstrings_to_model_forward(GLPN_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
696 |
+
@replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC)
|
697 |
+
def forward(
|
698 |
+
self,
|
699 |
+
pixel_values: torch.FloatTensor,
|
700 |
+
labels: Optional[torch.FloatTensor] = None,
|
701 |
+
output_attentions: Optional[bool] = None,
|
702 |
+
output_hidden_states: Optional[bool] = None,
|
703 |
+
return_dict: Optional[bool] = None,
|
704 |
+
) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]:
|
705 |
+
r"""
|
706 |
+
labels (`torch.FloatTensor` of shape `(batch_size, height, width)`, *optional*):
|
707 |
+
Ground truth depth estimation maps for computing the loss.
|
708 |
+
|
709 |
+
Returns:
|
710 |
+
|
711 |
+
Examples:
|
712 |
+
|
713 |
+
```python
|
714 |
+
>>> from transformers import AutoImageProcessor, GLPNForDepthEstimation
|
715 |
+
>>> import torch
|
716 |
+
>>> import numpy as np
|
717 |
+
>>> from PIL import Image
|
718 |
+
>>> import requests
|
719 |
+
|
720 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
721 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
722 |
+
|
723 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("vinvino02/glpn-kitti")
|
724 |
+
>>> model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-kitti")
|
725 |
+
|
726 |
+
>>> # prepare image for the model
|
727 |
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
728 |
+
|
729 |
+
>>> with torch.no_grad():
|
730 |
+
... outputs = model(**inputs)
|
731 |
+
... predicted_depth = outputs.predicted_depth
|
732 |
+
|
733 |
+
>>> # interpolate to original size
|
734 |
+
>>> prediction = torch.nn.functional.interpolate(
|
735 |
+
... predicted_depth.unsqueeze(1),
|
736 |
+
... size=image.size[::-1],
|
737 |
+
... mode="bicubic",
|
738 |
+
... align_corners=False,
|
739 |
+
... )
|
740 |
+
|
741 |
+
>>> # visualize the prediction
|
742 |
+
>>> output = prediction.squeeze().cpu().numpy()
|
743 |
+
>>> formatted = (output * 255 / np.max(output)).astype("uint8")
|
744 |
+
>>> depth = Image.fromarray(formatted)
|
745 |
+
```"""
|
746 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
747 |
+
output_hidden_states = (
|
748 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
749 |
+
)
|
750 |
+
|
751 |
+
outputs = self.glpn(
|
752 |
+
pixel_values,
|
753 |
+
output_attentions=output_attentions,
|
754 |
+
output_hidden_states=True, # we need the intermediate hidden states
|
755 |
+
return_dict=return_dict,
|
756 |
+
)
|
757 |
+
|
758 |
+
hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
759 |
+
|
760 |
+
out = self.decoder(hidden_states)
|
761 |
+
predicted_depth = self.head(out)
|
762 |
+
|
763 |
+
loss = None
|
764 |
+
if labels is not None:
|
765 |
+
loss_fct = SiLogLoss()
|
766 |
+
loss = loss_fct(predicted_depth, labels)
|
767 |
+
|
768 |
+
if not return_dict:
|
769 |
+
if output_hidden_states:
|
770 |
+
output = (predicted_depth,) + outputs[1:]
|
771 |
+
else:
|
772 |
+
output = (predicted_depth,) + outputs[2:]
|
773 |
+
return ((loss,) + output) if loss is not None else output
|
774 |
+
|
775 |
+
return DepthEstimatorOutput(
|
776 |
+
loss=loss,
|
777 |
+
predicted_depth=predicted_depth,
|
778 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
779 |
+
attentions=outputs.attentions,
|
780 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.67 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/configuration_lxmert.cpython-310.pyc
ADDED
Binary file (7.97 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/convert_lxmert_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (1.42 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/modeling_lxmert.cpython-310.pyc
ADDED
Binary file (45.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/modeling_tf_lxmert.cpython-310.pyc
ADDED
Binary file (51.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/tokenization_lxmert.cpython-310.pyc
ADDED
Binary file (17.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__pycache__/tokenization_lxmert_fast.cpython-310.pyc
ADDED
Binary file (7.13 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/configuration_lxmert.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018, Hao Tan, Mohit Bansal
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" LXMERT model configuration"""
|
16 |
+
|
17 |
+
|
18 |
+
from ...configuration_utils import PretrainedConfig
|
19 |
+
from ...utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
25 |
+
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json",
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class LxmertConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`LxmertModel`] or a [`TFLxmertModel`]. It is used
|
32 |
+
to instantiate a LXMERT model according to the specified arguments, defining the model architecture. Instantiating
|
33 |
+
a configuration with the defaults will yield a similar configuration to that of the Lxmert
|
34 |
+
[unc-nlp/lxmert-base-uncased](https://huggingface.co/unc-nlp/lxmert-base-uncased) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
42 |
+
Vocabulary size of the LXMERT model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`LxmertModel`] or [`TFLxmertModel`].
|
44 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
45 |
+
Dimensionality of the encoder layers and the pooler layer.
|
46 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
47 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
48 |
+
num_qa_labels (`int`, *optional*, defaults to 9500):
|
49 |
+
This represents the total number of different question answering (QA) labels there are. If using more than
|
50 |
+
one dataset with QA, the user will need to account for the total number of labels that all of the datasets
|
51 |
+
have in total.
|
52 |
+
num_object_labels (`int`, *optional*, defaults to 1600):
|
53 |
+
This represents the total number of semantically unique objects that lxmert will be able to classify a
|
54 |
+
pooled-object feature as belonging too.
|
55 |
+
num_attr_labels (`int`, *optional*, defaults to 400):
|
56 |
+
This represents the total number of semantically unique attributes that lxmert will be able to classify a
|
57 |
+
pooled-object feature as possessing.
|
58 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
59 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
60 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
61 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
62 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
63 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
64 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
65 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
66 |
+
The dropout ratio for the attention probabilities.
|
67 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
68 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
69 |
+
just in case (e.g., 512 or 1024 or 2048).
|
70 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
71 |
+
The vocabulary size of the *token_type_ids* passed into [`BertModel`].
|
72 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
73 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
74 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
75 |
+
The epsilon used by the layer normalization layers.
|
76 |
+
l_layers (`int`, *optional*, defaults to 9):
|
77 |
+
Number of hidden layers in the Transformer language encoder.
|
78 |
+
x_layers (`int`, *optional*, defaults to 5):
|
79 |
+
Number of hidden layers in the Transformer cross modality encoder.
|
80 |
+
r_layers (`int`, *optional*, defaults to 5):
|
81 |
+
Number of hidden layers in the Transformer visual encoder.
|
82 |
+
visual_feat_dim (`int`, *optional*, defaults to 2048):
|
83 |
+
This represents the last dimension of the pooled-object features used as input for the model, representing
|
84 |
+
the size of each object feature itself.
|
85 |
+
visual_pos_dim (`int`, *optional*, defaults to 4):
|
86 |
+
This represents the number of spacial features that are mixed into the visual features. The default is set
|
87 |
+
to 4 because most commonly this will represent the location of a bounding box. i.e., (x, y, width, height)
|
88 |
+
visual_loss_normalizer (`float`, *optional*, defaults to 6.67):
|
89 |
+
This represents the scaling factor in which each visual loss is multiplied by if during pretraining, one
|
90 |
+
decided to train with multiple vision-based loss objectives.
|
91 |
+
task_matched (`bool`, *optional*, defaults to `True`):
|
92 |
+
This task is used for sentence-image matching. If the sentence correctly describes the image the label will
|
93 |
+
be 1. If the sentence does not correctly describe the image, the label will be 0.
|
94 |
+
task_mask_lm (`bool`, *optional*, defaults to `True`):
|
95 |
+
Whether or not to add masked language modeling (as used in pretraining models such as BERT) to the loss
|
96 |
+
objective.
|
97 |
+
task_obj_predict (`bool`, *optional*, defaults to `True`):
|
98 |
+
Whether or not to add object prediction, attribute prediction and feature regression to the loss objective.
|
99 |
+
task_qa (`bool`, *optional*, defaults to `True`):
|
100 |
+
Whether or not to add the question-answering loss to the objective
|
101 |
+
visual_obj_loss (`bool`, *optional*, defaults to `True`):
|
102 |
+
Whether or not to calculate the object-prediction loss objective
|
103 |
+
visual_attr_loss (`bool`, *optional*, defaults to `True`):
|
104 |
+
Whether or not to calculate the attribute-prediction loss objective
|
105 |
+
visual_feat_loss (`bool`, *optional*, defaults to `True`):
|
106 |
+
Whether or not to calculate the feature-regression loss objective
|
107 |
+
"""
|
108 |
+
|
109 |
+
model_type = "lxmert"
|
110 |
+
attribute_map = {}
|
111 |
+
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
vocab_size=30522,
|
115 |
+
hidden_size=768,
|
116 |
+
num_attention_heads=12,
|
117 |
+
num_qa_labels=9500,
|
118 |
+
num_object_labels=1600,
|
119 |
+
num_attr_labels=400,
|
120 |
+
intermediate_size=3072,
|
121 |
+
hidden_act="gelu",
|
122 |
+
hidden_dropout_prob=0.1,
|
123 |
+
attention_probs_dropout_prob=0.1,
|
124 |
+
max_position_embeddings=512,
|
125 |
+
type_vocab_size=2,
|
126 |
+
initializer_range=0.02,
|
127 |
+
layer_norm_eps=1e-12,
|
128 |
+
l_layers=9,
|
129 |
+
x_layers=5,
|
130 |
+
r_layers=5,
|
131 |
+
visual_feat_dim=2048,
|
132 |
+
visual_pos_dim=4,
|
133 |
+
visual_loss_normalizer=6.67,
|
134 |
+
task_matched=True,
|
135 |
+
task_mask_lm=True,
|
136 |
+
task_obj_predict=True,
|
137 |
+
task_qa=True,
|
138 |
+
visual_obj_loss=True,
|
139 |
+
visual_attr_loss=True,
|
140 |
+
visual_feat_loss=True,
|
141 |
+
**kwargs,
|
142 |
+
):
|
143 |
+
self.vocab_size = vocab_size
|
144 |
+
self.hidden_size = hidden_size
|
145 |
+
self.num_attention_heads = num_attention_heads
|
146 |
+
self.hidden_act = hidden_act
|
147 |
+
self.intermediate_size = intermediate_size
|
148 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
149 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
150 |
+
self.max_position_embeddings = max_position_embeddings
|
151 |
+
self.type_vocab_size = type_vocab_size
|
152 |
+
self.initializer_range = initializer_range
|
153 |
+
self.layer_norm_eps = layer_norm_eps
|
154 |
+
self.num_qa_labels = num_qa_labels
|
155 |
+
self.num_object_labels = num_object_labels
|
156 |
+
self.num_attr_labels = num_attr_labels
|
157 |
+
self.l_layers = l_layers
|
158 |
+
self.x_layers = x_layers
|
159 |
+
self.r_layers = r_layers
|
160 |
+
self.visual_feat_dim = visual_feat_dim
|
161 |
+
self.visual_pos_dim = visual_pos_dim
|
162 |
+
self.visual_loss_normalizer = visual_loss_normalizer
|
163 |
+
self.task_matched = task_matched
|
164 |
+
self.task_mask_lm = task_mask_lm
|
165 |
+
self.task_obj_predict = task_obj_predict
|
166 |
+
self.task_qa = task_qa
|
167 |
+
self.visual_obj_loss = visual_obj_loss
|
168 |
+
self.visual_attr_loss = visual_attr_loss
|
169 |
+
self.visual_feat_loss = visual_feat_loss
|
170 |
+
self.num_hidden_layers = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}
|
171 |
+
super().__init__(**kwargs)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/convert_lxmert_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert LXMERT checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logging.set_verbosity_info()
|
27 |
+
|
28 |
+
|
29 |
+
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path):
|
30 |
+
# Initialise PyTorch model
|
31 |
+
config = LxmertConfig.from_json_file(config_file)
|
32 |
+
print(f"Building PyTorch model from configuration: {config}")
|
33 |
+
model = LxmertForPreTraining(config)
|
34 |
+
|
35 |
+
# Load weights from tf checkpoint
|
36 |
+
load_tf_weights_in_lxmert(model, config, tf_checkpoint_path)
|
37 |
+
|
38 |
+
# Save pytorch-model
|
39 |
+
print(f"Save PyTorch model to {pytorch_dump_path}")
|
40 |
+
torch.save(model.state_dict(), pytorch_dump_path)
|
41 |
+
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
parser = argparse.ArgumentParser()
|
45 |
+
# Required parameters
|
46 |
+
parser.add_argument(
|
47 |
+
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
48 |
+
)
|
49 |
+
parser.add_argument(
|
50 |
+
"--config_file",
|
51 |
+
default=None,
|
52 |
+
type=str,
|
53 |
+
required=True,
|
54 |
+
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
|
55 |
+
)
|
56 |
+
parser.add_argument(
|
57 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
58 |
+
)
|
59 |
+
args = parser.parse_args()
|
60 |
+
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert_fast.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
from typing import List, Optional, Tuple
|
18 |
+
|
19 |
+
from tokenizers import normalizers
|
20 |
+
|
21 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
22 |
+
from .tokenization_lxmert import LxmertTokenizer
|
23 |
+
|
24 |
+
|
25 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
26 |
+
|
27 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
28 |
+
"vocab_file": {
|
29 |
+
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt",
|
30 |
+
},
|
31 |
+
"tokenizer_file": {
|
32 |
+
"unc-nlp/lxmert-base-uncased": (
|
33 |
+
"https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json"
|
34 |
+
),
|
35 |
+
},
|
36 |
+
}
|
37 |
+
|
38 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
39 |
+
"unc-nlp/lxmert-base-uncased": 512,
|
40 |
+
}
|
41 |
+
|
42 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
43 |
+
"unc-nlp/lxmert-base-uncased": {"do_lower_case": True},
|
44 |
+
}
|
45 |
+
|
46 |
+
|
47 |
+
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with bert-base-cased->unc-nlp/lxmert-base-uncased, BERT->Lxmert, Bert->Lxmert
|
48 |
+
class LxmertTokenizerFast(PreTrainedTokenizerFast):
|
49 |
+
r"""
|
50 |
+
Construct a "fast" Lxmert tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
|
51 |
+
|
52 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
53 |
+
refer to this superclass for more information regarding those methods.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
vocab_file (`str`):
|
57 |
+
File containing the vocabulary.
|
58 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
59 |
+
Whether or not to lowercase the input when tokenizing.
|
60 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
61 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
62 |
+
token instead.
|
63 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
64 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
65 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
66 |
+
token of a sequence built with special tokens.
|
67 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
68 |
+
The token used for padding, for example when batching sequences of different lengths.
|
69 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
70 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
71 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
72 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
73 |
+
The token used for masking values. This is the token used when training this model with masked language
|
74 |
+
modeling. This is the token which the model will try to predict.
|
75 |
+
clean_text (`bool`, *optional*, defaults to `True`):
|
76 |
+
Whether or not to clean the text before tokenization by removing any control characters and replacing all
|
77 |
+
whitespaces by the classic one.
|
78 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
|
80 |
+
issue](https://github.com/huggingface/transformers/issues/328)).
|
81 |
+
strip_accents (`bool`, *optional*):
|
82 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
83 |
+
value for `lowercase` (as in the original Lxmert).
|
84 |
+
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
|
85 |
+
The prefix for subwords.
|
86 |
+
"""
|
87 |
+
|
88 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
89 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
90 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
91 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
92 |
+
slow_tokenizer_class = LxmertTokenizer
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
vocab_file=None,
|
97 |
+
tokenizer_file=None,
|
98 |
+
do_lower_case=True,
|
99 |
+
unk_token="[UNK]",
|
100 |
+
sep_token="[SEP]",
|
101 |
+
pad_token="[PAD]",
|
102 |
+
cls_token="[CLS]",
|
103 |
+
mask_token="[MASK]",
|
104 |
+
tokenize_chinese_chars=True,
|
105 |
+
strip_accents=None,
|
106 |
+
**kwargs,
|
107 |
+
):
|
108 |
+
super().__init__(
|
109 |
+
vocab_file,
|
110 |
+
tokenizer_file=tokenizer_file,
|
111 |
+
do_lower_case=do_lower_case,
|
112 |
+
unk_token=unk_token,
|
113 |
+
sep_token=sep_token,
|
114 |
+
pad_token=pad_token,
|
115 |
+
cls_token=cls_token,
|
116 |
+
mask_token=mask_token,
|
117 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
118 |
+
strip_accents=strip_accents,
|
119 |
+
**kwargs,
|
120 |
+
)
|
121 |
+
|
122 |
+
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
|
123 |
+
if (
|
124 |
+
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
|
125 |
+
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
|
126 |
+
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
|
127 |
+
):
|
128 |
+
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
|
129 |
+
normalizer_state["lowercase"] = do_lower_case
|
130 |
+
normalizer_state["strip_accents"] = strip_accents
|
131 |
+
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
|
132 |
+
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
|
133 |
+
|
134 |
+
self.do_lower_case = do_lower_case
|
135 |
+
|
136 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
137 |
+
"""
|
138 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
139 |
+
adding special tokens. A Lxmert sequence has the following format:
|
140 |
+
|
141 |
+
- single sequence: `[CLS] X [SEP]`
|
142 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
143 |
+
|
144 |
+
Args:
|
145 |
+
token_ids_0 (`List[int]`):
|
146 |
+
List of IDs to which the special tokens will be added.
|
147 |
+
token_ids_1 (`List[int]`, *optional*):
|
148 |
+
Optional second list of IDs for sequence pairs.
|
149 |
+
|
150 |
+
Returns:
|
151 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
152 |
+
"""
|
153 |
+
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
154 |
+
|
155 |
+
if token_ids_1 is not None:
|
156 |
+
output += token_ids_1 + [self.sep_token_id]
|
157 |
+
|
158 |
+
return output
|
159 |
+
|
160 |
+
def create_token_type_ids_from_sequences(
|
161 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
162 |
+
) -> List[int]:
|
163 |
+
"""
|
164 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Lxmert sequence
|
165 |
+
pair mask has the following format:
|
166 |
+
|
167 |
+
```
|
168 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
169 |
+
| first sequence | second sequence |
|
170 |
+
```
|
171 |
+
|
172 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
173 |
+
|
174 |
+
Args:
|
175 |
+
token_ids_0 (`List[int]`):
|
176 |
+
List of IDs.
|
177 |
+
token_ids_1 (`List[int]`, *optional*):
|
178 |
+
Optional second list of IDs for sequence pairs.
|
179 |
+
|
180 |
+
Returns:
|
181 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
182 |
+
"""
|
183 |
+
sep = [self.sep_token_id]
|
184 |
+
cls = [self.cls_token_id]
|
185 |
+
if token_ids_1 is None:
|
186 |
+
return len(cls + token_ids_0 + sep) * [0]
|
187 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
188 |
+
|
189 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
190 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
191 |
+
return tuple(files)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
env-llmeval/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (198 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__pycache__/checkpoint_reshaping_and_interoperability.cpython-310.pyc
ADDED
Binary file (21.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__pycache__/convert_megatron_gpt2_checkpoint.cpython-310.pyc
ADDED
Binary file (6.1 kB). View file
|
|