Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/configuration_autoformer.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/modeling_autoformer.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/configuration_autoformer.py +246 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/modeling_autoformer.py +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__init__.py +77 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/configuration_bros.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/convert_bros_to_pytorch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/modeling_bros.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/processing_bros.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bros/configuration_bros.py +140 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bros/convert_bros_to_pytorch.py +145 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bros/modeling_bros.py +1320 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/bros/processing_bros.py +109 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__init__.py +28 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/convert_byt5_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/tokenization_byt5.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/convert_byt5_original_tf_checkpoint_to_pytorch.py +60 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/tokenization_byt5.py +234 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/__init__.py +83 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/processing_clvp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/configuration_clvp.py +457 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/feature_extraction_clvp.py +238 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/processing_clvp.py +91 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/tokenization_clvp.py +379 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__pycache__/configuration_decision_transformer.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__pycache__/modeling_decision_transformer.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__init__.py +117 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/modeling_lxmert.py +1438 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/modeling_tf_lxmert.py +1657 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert.py +520 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/rag/__init__.py +82 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/rag/configuration_rag.py +182 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/rag/modeling_rag.py +1628 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/rag/retrieval_rag.py +674 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/rag/tokenization_rag.py +120 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__init__.py +103 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/configuration_reformer.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/convert_reformer_trax_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/modeling_reformer.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/tokenization_reformer.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/tokenization_reformer_fast.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/configuration_reformer.py +239 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py +222 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/modeling_reformer.py +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/tokenization_reformer.py +186 -0
env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (951 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/configuration_autoformer.cpython-310.pyc
ADDED
Binary file (10.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/modeling_autoformer.cpython-310.pyc
ADDED
Binary file (79.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/configuration_autoformer.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Autoformer model configuration"""
|
16 |
+
|
17 |
+
from typing import List, Optional
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json",
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
class AutoformerConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of an [`AutoformerModel`]. It is used to instantiate an
|
33 |
+
Autoformer model according to the specified arguments, defining the model architecture. Instantiating a
|
34 |
+
configuration with the defaults will yield a similar configuration to that of the Autoformer
|
35 |
+
[huggingface/autoformer-tourism-monthly](https://huggingface.co/huggingface/autoformer-tourism-monthly)
|
36 |
+
architecture.
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
prediction_length (`int`):
|
43 |
+
The prediction length for the decoder. In other words, the prediction horizon of the model.
|
44 |
+
context_length (`int`, *optional*, defaults to `prediction_length`):
|
45 |
+
The context length for the encoder. If unset, the context length will be the same as the
|
46 |
+
`prediction_length`.
|
47 |
+
distribution_output (`string`, *optional*, defaults to `"student_t"`):
|
48 |
+
The distribution emission head for the model. Could be either "student_t", "normal" or "negative_binomial".
|
49 |
+
loss (`string`, *optional*, defaults to `"nll"`):
|
50 |
+
The loss function for the model corresponding to the `distribution_output` head. For parametric
|
51 |
+
distributions it is the negative log likelihood (nll) - which currently is the only supported one.
|
52 |
+
input_size (`int`, *optional*, defaults to 1):
|
53 |
+
The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of
|
54 |
+
multivariate targets.
|
55 |
+
lags_sequence (`list[int]`, *optional*, defaults to `[1, 2, 3, 4, 5, 6, 7]`):
|
56 |
+
The lags of the input time series as covariates often dictated by the frequency. Default is `[1, 2, 3, 4,
|
57 |
+
5, 6, 7]`.
|
58 |
+
scaling (`bool`, *optional* defaults to `True`):
|
59 |
+
Whether to scale the input targets.
|
60 |
+
num_time_features (`int`, *optional*, defaults to 0):
|
61 |
+
The number of time features in the input time series.
|
62 |
+
num_dynamic_real_features (`int`, *optional*, defaults to 0):
|
63 |
+
The number of dynamic real valued features.
|
64 |
+
num_static_categorical_features (`int`, *optional*, defaults to 0):
|
65 |
+
The number of static categorical features.
|
66 |
+
num_static_real_features (`int`, *optional*, defaults to 0):
|
67 |
+
The number of static real valued features.
|
68 |
+
cardinality (`list[int]`, *optional*):
|
69 |
+
The cardinality (number of different values) for each of the static categorical features. Should be a list
|
70 |
+
of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if
|
71 |
+
`num_static_categorical_features` is > 0.
|
72 |
+
embedding_dimension (`list[int]`, *optional*):
|
73 |
+
The dimension of the embedding for each of the static categorical features. Should be a list of integers,
|
74 |
+
having the same length as `num_static_categorical_features`. Cannot be `None` if
|
75 |
+
`num_static_categorical_features` is > 0.
|
76 |
+
d_model (`int`, *optional*, defaults to 64):
|
77 |
+
Dimensionality of the transformer layers.
|
78 |
+
encoder_layers (`int`, *optional*, defaults to 2):
|
79 |
+
Number of encoder layers.
|
80 |
+
decoder_layers (`int`, *optional*, defaults to 2):
|
81 |
+
Number of decoder layers.
|
82 |
+
encoder_attention_heads (`int`, *optional*, defaults to 2):
|
83 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
84 |
+
decoder_attention_heads (`int`, *optional*, defaults to 2):
|
85 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
86 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 32):
|
87 |
+
Dimension of the "intermediate" (often named feed-forward) layer in encoder.
|
88 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 32):
|
89 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
90 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
91 |
+
The non-linear activation function (function or string) in the encoder and decoder. If string, `"gelu"` and
|
92 |
+
`"relu"` are supported.
|
93 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
94 |
+
The dropout probability for all fully connected layers in the encoder, and decoder.
|
95 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.1):
|
96 |
+
The dropout probability for the attention and fully connected layers for each encoder layer.
|
97 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.1):
|
98 |
+
The dropout probability for the attention and fully connected layers for each decoder layer.
|
99 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
100 |
+
The dropout probability for the attention probabilities.
|
101 |
+
activation_dropout (`float`, *optional*, defaults to 0.1):
|
102 |
+
The dropout probability used between the two layers of the feed-forward networks.
|
103 |
+
num_parallel_samples (`int`, *optional*, defaults to 100):
|
104 |
+
The number of samples to generate in parallel for each time step of inference.
|
105 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
106 |
+
The standard deviation of the truncated normal weight initialization distribution.
|
107 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
108 |
+
Whether to use the past key/values attentions (if applicable to the model) to speed up decoding.
|
109 |
+
label_length (`int`, *optional*, defaults to 10):
|
110 |
+
Start token length of the Autoformer decoder, which is used for direct multi-step prediction (i.e.
|
111 |
+
non-autoregressive generation).
|
112 |
+
moving_average (`int`, defaults to 25):
|
113 |
+
The window size of the moving average. In practice, it's the kernel size in AvgPool1d of the Decomposition
|
114 |
+
Layer.
|
115 |
+
autocorrelation_factor (`int`, defaults to 3):
|
116 |
+
"Attention" (i.e. AutoCorrelation mechanism) factor which is used to find top k autocorrelations delays.
|
117 |
+
It's recommended in the paper to set it to a number between 1 and 5.
|
118 |
+
|
119 |
+
|
120 |
+
Example:
|
121 |
+
|
122 |
+
```python
|
123 |
+
>>> from transformers import AutoformerConfig, AutoformerModel
|
124 |
+
|
125 |
+
>>> # Initializing a default Autoformer configuration
|
126 |
+
>>> configuration = AutoformerConfig()
|
127 |
+
|
128 |
+
>>> # Randomly initializing a model (with random weights) from the configuration
|
129 |
+
>>> model = AutoformerModel(configuration)
|
130 |
+
|
131 |
+
>>> # Accessing the model configuration
|
132 |
+
>>> configuration = model.config
|
133 |
+
```"""
|
134 |
+
|
135 |
+
model_type = "autoformer"
|
136 |
+
attribute_map = {
|
137 |
+
"hidden_size": "d_model",
|
138 |
+
"num_attention_heads": "encoder_attention_heads",
|
139 |
+
"num_hidden_layers": "encoder_layers",
|
140 |
+
}
|
141 |
+
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
prediction_length: Optional[int] = None,
|
145 |
+
context_length: Optional[int] = None,
|
146 |
+
distribution_output: str = "student_t",
|
147 |
+
loss: str = "nll",
|
148 |
+
input_size: int = 1,
|
149 |
+
lags_sequence: List[int] = [1, 2, 3, 4, 5, 6, 7],
|
150 |
+
scaling: bool = True,
|
151 |
+
num_time_features: int = 0,
|
152 |
+
num_dynamic_real_features: int = 0,
|
153 |
+
num_static_categorical_features: int = 0,
|
154 |
+
num_static_real_features: int = 0,
|
155 |
+
cardinality: Optional[List[int]] = None,
|
156 |
+
embedding_dimension: Optional[List[int]] = None,
|
157 |
+
d_model: int = 64,
|
158 |
+
encoder_attention_heads: int = 2,
|
159 |
+
decoder_attention_heads: int = 2,
|
160 |
+
encoder_layers: int = 2,
|
161 |
+
decoder_layers: int = 2,
|
162 |
+
encoder_ffn_dim: int = 32,
|
163 |
+
decoder_ffn_dim: int = 32,
|
164 |
+
activation_function: str = "gelu",
|
165 |
+
dropout: float = 0.1,
|
166 |
+
encoder_layerdrop: float = 0.1,
|
167 |
+
decoder_layerdrop: float = 0.1,
|
168 |
+
attention_dropout: float = 0.1,
|
169 |
+
activation_dropout: float = 0.1,
|
170 |
+
num_parallel_samples: int = 100,
|
171 |
+
init_std: float = 0.02,
|
172 |
+
use_cache: bool = True,
|
173 |
+
is_encoder_decoder=True,
|
174 |
+
# Autoformer arguments
|
175 |
+
label_length: int = 10,
|
176 |
+
moving_average: int = 25,
|
177 |
+
autocorrelation_factor: int = 3,
|
178 |
+
**kwargs,
|
179 |
+
):
|
180 |
+
# time series specific configuration
|
181 |
+
self.prediction_length = prediction_length
|
182 |
+
self.context_length = context_length if context_length is not None else prediction_length
|
183 |
+
self.distribution_output = distribution_output
|
184 |
+
self.loss = loss
|
185 |
+
self.input_size = input_size
|
186 |
+
self.num_time_features = num_time_features
|
187 |
+
self.lags_sequence = lags_sequence
|
188 |
+
self.scaling = scaling
|
189 |
+
self.num_dynamic_real_features = num_dynamic_real_features
|
190 |
+
self.num_static_real_features = num_static_real_features
|
191 |
+
self.num_static_categorical_features = num_static_categorical_features
|
192 |
+
if cardinality is not None and num_static_categorical_features > 0:
|
193 |
+
if len(cardinality) != num_static_categorical_features:
|
194 |
+
raise ValueError(
|
195 |
+
"The cardinality should be a list of the same length as `num_static_categorical_features`"
|
196 |
+
)
|
197 |
+
self.cardinality = cardinality
|
198 |
+
else:
|
199 |
+
self.cardinality = [0]
|
200 |
+
if embedding_dimension is not None and num_static_categorical_features > 0:
|
201 |
+
if len(embedding_dimension) != num_static_categorical_features:
|
202 |
+
raise ValueError(
|
203 |
+
"The embedding dimension should be a list of the same length as `num_static_categorical_features`"
|
204 |
+
)
|
205 |
+
self.embedding_dimension = embedding_dimension
|
206 |
+
else:
|
207 |
+
self.embedding_dimension = [min(50, (cat + 1) // 2) for cat in self.cardinality]
|
208 |
+
self.num_parallel_samples = num_parallel_samples
|
209 |
+
|
210 |
+
# Transformer architecture configuration
|
211 |
+
self.feature_size = input_size * len(self.lags_sequence) + self._number_of_features
|
212 |
+
self.d_model = d_model
|
213 |
+
self.encoder_attention_heads = encoder_attention_heads
|
214 |
+
self.decoder_attention_heads = decoder_attention_heads
|
215 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
216 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
217 |
+
self.encoder_layers = encoder_layers
|
218 |
+
self.decoder_layers = decoder_layers
|
219 |
+
|
220 |
+
self.dropout = dropout
|
221 |
+
self.attention_dropout = attention_dropout
|
222 |
+
self.activation_dropout = activation_dropout
|
223 |
+
self.encoder_layerdrop = encoder_layerdrop
|
224 |
+
self.decoder_layerdrop = decoder_layerdrop
|
225 |
+
|
226 |
+
self.activation_function = activation_function
|
227 |
+
self.init_std = init_std
|
228 |
+
|
229 |
+
self.use_cache = use_cache
|
230 |
+
|
231 |
+
# Autoformer
|
232 |
+
self.label_length = label_length
|
233 |
+
self.moving_average = moving_average
|
234 |
+
self.autocorrelation_factor = autocorrelation_factor
|
235 |
+
|
236 |
+
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
|
237 |
+
|
238 |
+
@property
|
239 |
+
def _number_of_features(self) -> int:
|
240 |
+
return (
|
241 |
+
sum(self.embedding_dimension)
|
242 |
+
+ self.num_dynamic_real_features
|
243 |
+
+ self.num_time_features
|
244 |
+
+ self.num_static_real_features
|
245 |
+
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
|
246 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/modeling_autoformer.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__init__.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present NAVER Corp, The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_bros": ["BROS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BrosConfig"],
|
21 |
+
}
|
22 |
+
|
23 |
+
try:
|
24 |
+
if not is_tokenizers_available():
|
25 |
+
raise OptionalDependencyNotAvailable()
|
26 |
+
except OptionalDependencyNotAvailable:
|
27 |
+
pass
|
28 |
+
else:
|
29 |
+
_import_structure["processing_bros"] = ["BrosProcessor"]
|
30 |
+
|
31 |
+
try:
|
32 |
+
if not is_torch_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
_import_structure["modeling_bros"] = [
|
38 |
+
"BROS_PRETRAINED_MODEL_ARCHIVE_LIST",
|
39 |
+
"BrosPreTrainedModel",
|
40 |
+
"BrosModel",
|
41 |
+
"BrosForTokenClassification",
|
42 |
+
"BrosSpadeEEForTokenClassification",
|
43 |
+
"BrosSpadeELForTokenClassification",
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
if TYPE_CHECKING:
|
48 |
+
from .configuration_bros import BROS_PRETRAINED_CONFIG_ARCHIVE_MAP, BrosConfig
|
49 |
+
|
50 |
+
try:
|
51 |
+
if not is_tokenizers_available():
|
52 |
+
raise OptionalDependencyNotAvailable()
|
53 |
+
except OptionalDependencyNotAvailable:
|
54 |
+
pass
|
55 |
+
else:
|
56 |
+
from .processing_bros import BrosProcessor
|
57 |
+
|
58 |
+
try:
|
59 |
+
if not is_torch_available():
|
60 |
+
raise OptionalDependencyNotAvailable()
|
61 |
+
except OptionalDependencyNotAvailable:
|
62 |
+
pass
|
63 |
+
else:
|
64 |
+
from .modeling_bros import (
|
65 |
+
BROS_PRETRAINED_MODEL_ARCHIVE_LIST,
|
66 |
+
BrosForTokenClassification,
|
67 |
+
BrosModel,
|
68 |
+
BrosPreTrainedModel,
|
69 |
+
BrosSpadeEEForTokenClassification,
|
70 |
+
BrosSpadeELForTokenClassification,
|
71 |
+
)
|
72 |
+
|
73 |
+
|
74 |
+
else:
|
75 |
+
import sys
|
76 |
+
|
77 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.23 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/configuration_bros.cpython-310.pyc
ADDED
Binary file (5.73 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/convert_bros_to_pytorch.cpython-310.pyc
ADDED
Binary file (3.32 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/modeling_bros.cpython-310.pyc
ADDED
Binary file (36.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/processing_bros.cpython-310.pyc
ADDED
Binary file (3.58 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bros/configuration_bros.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023-present NAVER Corp, The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Bros model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
BROS_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"jinho8345/bros-base-uncased": "https://huggingface.co/jinho8345/bros-base-uncased/blob/main/config.json",
|
25 |
+
"jinho8345/bros-large-uncased": "https://huggingface.co/jinho8345/bros-large-uncased/blob/main/config.json",
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class BrosConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`BrosModel`] or a [`TFBrosModel`]. It is used to
|
32 |
+
instantiate a Bros model according to the specified arguments, defining the model architecture. Instantiating a
|
33 |
+
configuration with the defaults will yield a similar configuration to that of the Bros
|
34 |
+
[jinho8345/bros-base-uncased](https://huggingface.co/jinho8345/bros-base-uncased) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
41 |
+
Vocabulary size of the Bros model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`BrosModel`] or [`TFBrosModel`].
|
43 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
44 |
+
Dimensionality of the encoder layers and the pooler layer.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
46 |
+
Number of hidden layers in the Transformer encoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
50 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
51 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
52 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
53 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
54 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
55 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
56 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
57 |
+
The dropout ratio for the attention probabilities.
|
58 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
59 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
60 |
+
just in case (e.g., 512 or 1024 or 2048).
|
61 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
62 |
+
The vocabulary size of the `token_type_ids` passed when calling [`BrosModel`] or [`TFBrosModel`].
|
63 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
64 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
65 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
66 |
+
The epsilon used by the layer normalization layers.
|
67 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
68 |
+
The index of the padding token in the token vocabulary.
|
69 |
+
dim_bbox (`int`, *optional*, defaults to 8):
|
70 |
+
The dimension of the bounding box coordinates. (x0, y1, x1, y0, x1, y1, x0, y1)
|
71 |
+
bbox_scale (`float`, *optional*, defaults to 100.0):
|
72 |
+
The scale factor of the bounding box coordinates.
|
73 |
+
n_relations (`int`, *optional*, defaults to 1):
|
74 |
+
The number of relations for SpadeEE(entity extraction), SpadeEL(entity linking) head.
|
75 |
+
classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
|
76 |
+
The dropout ratio for the classifier head.
|
77 |
+
|
78 |
+
|
79 |
+
Examples:
|
80 |
+
|
81 |
+
```python
|
82 |
+
>>> from transformers import BrosConfig, BrosModel
|
83 |
+
|
84 |
+
>>> # Initializing a BROS jinho8345/bros-base-uncased style configuration
|
85 |
+
>>> configuration = BrosConfig()
|
86 |
+
|
87 |
+
>>> # Initializing a model from the jinho8345/bros-base-uncased style configuration
|
88 |
+
>>> model = BrosModel(configuration)
|
89 |
+
|
90 |
+
>>> # Accessing the model configuration
|
91 |
+
>>> configuration = model.config
|
92 |
+
```"""
|
93 |
+
|
94 |
+
model_type = "bros"
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
vocab_size=30522,
|
99 |
+
hidden_size=768,
|
100 |
+
num_hidden_layers=12,
|
101 |
+
num_attention_heads=12,
|
102 |
+
intermediate_size=3072,
|
103 |
+
hidden_act="gelu",
|
104 |
+
hidden_dropout_prob=0.1,
|
105 |
+
attention_probs_dropout_prob=0.1,
|
106 |
+
max_position_embeddings=512,
|
107 |
+
type_vocab_size=2,
|
108 |
+
initializer_range=0.02,
|
109 |
+
layer_norm_eps=1e-12,
|
110 |
+
pad_token_id=0,
|
111 |
+
dim_bbox=8,
|
112 |
+
bbox_scale=100.0,
|
113 |
+
n_relations=1,
|
114 |
+
classifier_dropout_prob=0.1,
|
115 |
+
**kwargs,
|
116 |
+
):
|
117 |
+
super().__init__(
|
118 |
+
vocab_size=vocab_size,
|
119 |
+
hidden_size=hidden_size,
|
120 |
+
num_hidden_layers=num_hidden_layers,
|
121 |
+
num_attention_heads=num_attention_heads,
|
122 |
+
intermediate_size=intermediate_size,
|
123 |
+
hidden_act=hidden_act,
|
124 |
+
hidden_dropout_prob=hidden_dropout_prob,
|
125 |
+
attention_probs_dropout_prob=attention_probs_dropout_prob,
|
126 |
+
max_position_embeddings=max_position_embeddings,
|
127 |
+
type_vocab_size=type_vocab_size,
|
128 |
+
initializer_range=initializer_range,
|
129 |
+
layer_norm_eps=layer_norm_eps,
|
130 |
+
pad_token_id=pad_token_id,
|
131 |
+
**kwargs,
|
132 |
+
)
|
133 |
+
|
134 |
+
self.dim_bbox = dim_bbox
|
135 |
+
self.bbox_scale = bbox_scale
|
136 |
+
self.n_relations = n_relations
|
137 |
+
self.dim_bbox_sinusoid_emb_2d = self.hidden_size // 4
|
138 |
+
self.dim_bbox_sinusoid_emb_1d = self.dim_bbox_sinusoid_emb_2d // self.dim_bbox
|
139 |
+
self.dim_bbox_projection = self.hidden_size // self.num_attention_heads
|
140 |
+
self.classifier_dropout_prob = classifier_dropout_prob
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bros/convert_bros_to_pytorch.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert Bros checkpoints."""
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
|
19 |
+
import bros # original repo
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from transformers import BrosConfig, BrosModel, BrosProcessor
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logging.set_verbosity_info()
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
def get_configs(model_name):
|
31 |
+
bros_config = BrosConfig.from_pretrained(model_name)
|
32 |
+
return bros_config
|
33 |
+
|
34 |
+
|
35 |
+
def remove_ignore_keys_(state_dict):
|
36 |
+
ignore_keys = [
|
37 |
+
"embeddings.bbox_sinusoid_emb.inv_freq",
|
38 |
+
]
|
39 |
+
for k in ignore_keys:
|
40 |
+
state_dict.pop(k, None)
|
41 |
+
|
42 |
+
|
43 |
+
def rename_key(name):
|
44 |
+
if name == "embeddings.bbox_projection.weight":
|
45 |
+
name = "bbox_embeddings.bbox_projection.weight"
|
46 |
+
|
47 |
+
if name == "embeddings.bbox_sinusoid_emb.x_pos_emb.inv_freq":
|
48 |
+
name = "bbox_embeddings.bbox_sinusoid_emb.x_pos_emb.inv_freq"
|
49 |
+
|
50 |
+
if name == "embeddings.bbox_sinusoid_emb.y_pos_emb.inv_freq":
|
51 |
+
name = "bbox_embeddings.bbox_sinusoid_emb.y_pos_emb.inv_freq"
|
52 |
+
|
53 |
+
return name
|
54 |
+
|
55 |
+
|
56 |
+
def convert_state_dict(orig_state_dict, model):
|
57 |
+
# rename keys
|
58 |
+
for key in orig_state_dict.copy().keys():
|
59 |
+
val = orig_state_dict.pop(key)
|
60 |
+
orig_state_dict[rename_key(key)] = val
|
61 |
+
|
62 |
+
# remove ignore keys
|
63 |
+
remove_ignore_keys_(orig_state_dict)
|
64 |
+
|
65 |
+
return orig_state_dict
|
66 |
+
|
67 |
+
|
68 |
+
def convert_bros_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False):
|
69 |
+
# load original model
|
70 |
+
original_model = bros.BrosModel.from_pretrained(model_name).eval()
|
71 |
+
|
72 |
+
# load HuggingFace Model
|
73 |
+
bros_config = get_configs(model_name)
|
74 |
+
model = BrosModel.from_pretrained(model_name, config=bros_config)
|
75 |
+
model.eval()
|
76 |
+
|
77 |
+
state_dict = original_model.state_dict()
|
78 |
+
new_state_dict = convert_state_dict(state_dict, model)
|
79 |
+
model.load_state_dict(new_state_dict)
|
80 |
+
|
81 |
+
# verify results
|
82 |
+
|
83 |
+
# original BROS model require 4 points (8 float values) for each bbox, prepare bbox with [batch_size, seq_len, 8] shape
|
84 |
+
bbox = torch.tensor(
|
85 |
+
[
|
86 |
+
[
|
87 |
+
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
|
88 |
+
[0.4396, 0.6720, 0.4659, 0.6720, 0.4659, 0.6850, 0.4396, 0.6850],
|
89 |
+
[0.4698, 0.6720, 0.4843, 0.6720, 0.4843, 0.6850, 0.4698, 0.6850],
|
90 |
+
[0.4698, 0.6720, 0.4843, 0.6720, 0.4843, 0.6850, 0.4698, 0.6850],
|
91 |
+
[0.2047, 0.6870, 0.2730, 0.6870, 0.2730, 0.7000, 0.2047, 0.7000],
|
92 |
+
[0.2047, 0.6870, 0.2730, 0.6870, 0.2730, 0.7000, 0.2047, 0.7000],
|
93 |
+
[1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000],
|
94 |
+
]
|
95 |
+
]
|
96 |
+
)
|
97 |
+
|
98 |
+
processor = BrosProcessor.from_pretrained(model_name)
|
99 |
+
|
100 |
+
encoding = processor("His name is Rocco.", return_tensors="pt")
|
101 |
+
encoding["bbox"] = bbox
|
102 |
+
|
103 |
+
original_hidden_states = original_model(**encoding).last_hidden_state
|
104 |
+
# pixel_values = processor(image, return_tensors="pt").pixel_values
|
105 |
+
|
106 |
+
last_hidden_states = model(**encoding).last_hidden_state
|
107 |
+
|
108 |
+
assert torch.allclose(original_hidden_states, last_hidden_states, atol=1e-4)
|
109 |
+
|
110 |
+
if pytorch_dump_folder_path is not None:
|
111 |
+
print(f"Saving model and processor to {pytorch_dump_folder_path}")
|
112 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
113 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
114 |
+
|
115 |
+
if push_to_hub:
|
116 |
+
model.push_to_hub("jinho8345/" + model_name.split("/")[-1], commit_message="Update model")
|
117 |
+
processor.push_to_hub("jinho8345/" + model_name.split("/")[-1], commit_message="Update model")
|
118 |
+
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
parser = argparse.ArgumentParser()
|
122 |
+
|
123 |
+
# Required parameters
|
124 |
+
parser.add_argument(
|
125 |
+
"--model_name",
|
126 |
+
default="jinho8345/bros-base-uncased",
|
127 |
+
required=False,
|
128 |
+
type=str,
|
129 |
+
help="Name of the original model you'd like to convert.",
|
130 |
+
)
|
131 |
+
parser.add_argument(
|
132 |
+
"--pytorch_dump_folder_path",
|
133 |
+
default=None,
|
134 |
+
required=False,
|
135 |
+
type=str,
|
136 |
+
help="Path to the output PyTorch model directory.",
|
137 |
+
)
|
138 |
+
parser.add_argument(
|
139 |
+
"--push_to_hub",
|
140 |
+
action="store_true",
|
141 |
+
help="Whether or not to push the converted model and processor to the 🤗 hub.",
|
142 |
+
)
|
143 |
+
|
144 |
+
args = parser.parse_args()
|
145 |
+
convert_bros_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bros/modeling_bros.py
ADDED
@@ -0,0 +1,1320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023-present NAVER Corp, The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Bros model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import CrossEntropyLoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...modeling_outputs import (
|
29 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
31 |
+
TokenClassifierOutput,
|
32 |
+
)
|
33 |
+
from ...modeling_utils import PreTrainedModel
|
34 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
35 |
+
from ...utils import (
|
36 |
+
ModelOutput,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
logging,
|
40 |
+
replace_return_docstrings,
|
41 |
+
)
|
42 |
+
from .configuration_bros import BrosConfig
|
43 |
+
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
_CHECKPOINT_FOR_DOC = "jinho8345/bros-base-uncased"
|
48 |
+
_CONFIG_FOR_DOC = "BrosConfig"
|
49 |
+
|
50 |
+
BROS_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
51 |
+
"jinho8345/bros-base-uncased",
|
52 |
+
"jinho8345/bros-large-uncased",
|
53 |
+
# See all Bros models at https://huggingface.co/models?filter=bros
|
54 |
+
]
|
55 |
+
|
56 |
+
BROS_START_DOCSTRING = r"""
|
57 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
58 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
59 |
+
and behavior.
|
60 |
+
|
61 |
+
Parameters:
|
62 |
+
config ([`BrosConfig`]): Model configuration class with all the parameters of the model.
|
63 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
64 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
65 |
+
"""
|
66 |
+
|
67 |
+
BROS_INPUTS_DOCSTRING = r"""
|
68 |
+
Args:
|
69 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
70 |
+
Indices of input sequence tokens in the vocabulary.
|
71 |
+
|
72 |
+
Indices can be obtained using [`BrosProcessor`]. See [`PreTrainedTokenizer.encode`] and
|
73 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
74 |
+
|
75 |
+
[What are input IDs?](../glossary#input-ids)
|
76 |
+
|
77 |
+
bbox ('torch.FloatTensor' of shape '(batch_size, num_boxes, 4)'):
|
78 |
+
Bounding box coordinates for each token in the input sequence. Each bounding box is a list of four values
|
79 |
+
(x1, y1, x2, y2), where (x1, y1) is the top left corner, and (x2, y2) is the bottom right corner of the
|
80 |
+
bounding box.
|
81 |
+
|
82 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
83 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
84 |
+
|
85 |
+
- 1 for tokens that are **not masked**,
|
86 |
+
- 0 for tokens that are **masked**.
|
87 |
+
|
88 |
+
[What are attention masks?](../glossary#attention-mask)
|
89 |
+
|
90 |
+
bbox_first_token_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
91 |
+
Mask to indicate the first token of each bounding box. Mask values selected in `[0, 1]`:
|
92 |
+
|
93 |
+
- 1 for tokens that are **not masked**,
|
94 |
+
- 0 for tokens that are **masked**.
|
95 |
+
|
96 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
97 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
98 |
+
1]`:
|
99 |
+
|
100 |
+
- 0 corresponds to a *sentence A* token,
|
101 |
+
- 1 corresponds to a *sentence B* token.
|
102 |
+
|
103 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
104 |
+
|
105 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
106 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
107 |
+
config.max_position_embeddings - 1]`.
|
108 |
+
|
109 |
+
[What are position IDs?](../glossary#position-ids)
|
110 |
+
|
111 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
112 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
113 |
+
|
114 |
+
- 1 indicates the head is **not masked**,
|
115 |
+
- 0 indicates the head is **masked**.
|
116 |
+
|
117 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
118 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
119 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
120 |
+
model's internal embedding lookup matrix.
|
121 |
+
|
122 |
+
output_attentions (`bool`, *optional*):
|
123 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
124 |
+
tensors for more detail.
|
125 |
+
|
126 |
+
output_hidden_states (`bool`, *optional*):
|
127 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
128 |
+
more detail.
|
129 |
+
|
130 |
+
return_dict (`bool`, *optional*):
|
131 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
132 |
+
"""
|
133 |
+
|
134 |
+
|
135 |
+
@dataclass
|
136 |
+
class BrosSpadeOutput(ModelOutput):
|
137 |
+
"""
|
138 |
+
Base class for outputs of token classification models.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
|
142 |
+
Classification loss.
|
143 |
+
initial_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
|
144 |
+
Classification scores for entity initial tokens (before SoftMax).
|
145 |
+
subsequent_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length+1)`):
|
146 |
+
Classification scores for entity sequence tokens (before SoftMax).
|
147 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
148 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
149 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
150 |
+
|
151 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
152 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
153 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
154 |
+
sequence_length)`.
|
155 |
+
|
156 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
157 |
+
heads.
|
158 |
+
"""
|
159 |
+
|
160 |
+
loss: Optional[torch.FloatTensor] = None
|
161 |
+
initial_token_logits: torch.FloatTensor = None
|
162 |
+
subsequent_token_logits: torch.FloatTensor = None
|
163 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
164 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
165 |
+
|
166 |
+
|
167 |
+
class BrosPositionalEmbedding1D(nn.Module):
|
168 |
+
# Reference: https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py#L15
|
169 |
+
|
170 |
+
def __init__(self, config):
|
171 |
+
super(BrosPositionalEmbedding1D, self).__init__()
|
172 |
+
|
173 |
+
self.dim_bbox_sinusoid_emb_1d = config.dim_bbox_sinusoid_emb_1d
|
174 |
+
|
175 |
+
inv_freq = 1 / (
|
176 |
+
10000 ** (torch.arange(0.0, self.dim_bbox_sinusoid_emb_1d, 2.0) / self.dim_bbox_sinusoid_emb_1d)
|
177 |
+
)
|
178 |
+
self.register_buffer("inv_freq", inv_freq)
|
179 |
+
|
180 |
+
def forward(self, pos_seq: torch.Tensor) -> torch.Tensor:
|
181 |
+
seq_size = pos_seq.size()
|
182 |
+
b1, b2, b3 = seq_size
|
183 |
+
sinusoid_inp = pos_seq.view(b1, b2, b3, 1) * self.inv_freq.view(1, 1, 1, self.dim_bbox_sinusoid_emb_1d // 2)
|
184 |
+
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
|
185 |
+
return pos_emb
|
186 |
+
|
187 |
+
|
188 |
+
class BrosPositionalEmbedding2D(nn.Module):
|
189 |
+
def __init__(self, config):
|
190 |
+
super(BrosPositionalEmbedding2D, self).__init__()
|
191 |
+
|
192 |
+
self.dim_bbox = config.dim_bbox
|
193 |
+
self.x_pos_emb = BrosPositionalEmbedding1D(config)
|
194 |
+
self.y_pos_emb = BrosPositionalEmbedding1D(config)
|
195 |
+
|
196 |
+
def forward(self, bbox: torch.Tensor) -> torch.Tensor:
|
197 |
+
stack = []
|
198 |
+
for i in range(self.dim_bbox):
|
199 |
+
if i % 2 == 0:
|
200 |
+
stack.append(self.x_pos_emb(bbox[..., i]))
|
201 |
+
else:
|
202 |
+
stack.append(self.y_pos_emb(bbox[..., i]))
|
203 |
+
bbox_pos_emb = torch.cat(stack, dim=-1)
|
204 |
+
return bbox_pos_emb
|
205 |
+
|
206 |
+
|
207 |
+
class BrosBboxEmbeddings(nn.Module):
|
208 |
+
def __init__(self, config):
|
209 |
+
super(BrosBboxEmbeddings, self).__init__()
|
210 |
+
self.bbox_sinusoid_emb = BrosPositionalEmbedding2D(config)
|
211 |
+
self.bbox_projection = nn.Linear(config.dim_bbox_sinusoid_emb_2d, config.dim_bbox_projection, bias=False)
|
212 |
+
|
213 |
+
def forward(self, bbox: torch.Tensor):
|
214 |
+
bbox_t = bbox.transpose(0, 1)
|
215 |
+
bbox_pos = bbox_t[None, :, :, :] - bbox_t[:, None, :, :]
|
216 |
+
bbox_pos_emb = self.bbox_sinusoid_emb(bbox_pos)
|
217 |
+
bbox_pos_emb = self.bbox_projection(bbox_pos_emb)
|
218 |
+
|
219 |
+
return bbox_pos_emb
|
220 |
+
|
221 |
+
|
222 |
+
class BrosTextEmbeddings(nn.Module):
|
223 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
224 |
+
|
225 |
+
def __init__(self, config):
|
226 |
+
super().__init__()
|
227 |
+
|
228 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
229 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
230 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
231 |
+
|
232 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
233 |
+
# any TensorFlow checkpoint file
|
234 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
235 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
236 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
237 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
238 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
239 |
+
self.register_buffer(
|
240 |
+
"token_type_ids",
|
241 |
+
torch.zeros(
|
242 |
+
self.position_ids.size(),
|
243 |
+
dtype=torch.long,
|
244 |
+
device=self.position_ids.device,
|
245 |
+
),
|
246 |
+
persistent=False,
|
247 |
+
)
|
248 |
+
|
249 |
+
def forward(
|
250 |
+
self,
|
251 |
+
input_ids: Optional[torch.Tensor] = None,
|
252 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
253 |
+
position_ids: Optional[torch.Tensor] = None,
|
254 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
255 |
+
past_key_values_length: int = 0,
|
256 |
+
) -> torch.Tensor:
|
257 |
+
if input_ids is not None:
|
258 |
+
input_shape = input_ids.size()
|
259 |
+
else:
|
260 |
+
input_shape = inputs_embeds.size()[:-1]
|
261 |
+
|
262 |
+
seq_length = input_shape[1]
|
263 |
+
|
264 |
+
if position_ids is None:
|
265 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
266 |
+
|
267 |
+
if token_type_ids is None:
|
268 |
+
if hasattr(self, "token_type_ids"):
|
269 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
270 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
271 |
+
token_type_ids = buffered_token_type_ids_expanded
|
272 |
+
else:
|
273 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
274 |
+
|
275 |
+
if inputs_embeds is None:
|
276 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
277 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
278 |
+
|
279 |
+
embeddings = inputs_embeds + token_type_embeddings
|
280 |
+
if self.position_embedding_type == "absolute":
|
281 |
+
position_embeddings = self.position_embeddings(position_ids)
|
282 |
+
embeddings += position_embeddings
|
283 |
+
embeddings = self.LayerNorm(embeddings)
|
284 |
+
embeddings = self.dropout(embeddings)
|
285 |
+
return embeddings
|
286 |
+
|
287 |
+
|
288 |
+
class BrosSelfAttention(nn.Module):
|
289 |
+
def __init__(self, config):
|
290 |
+
super().__init__()
|
291 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
292 |
+
raise ValueError(
|
293 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
294 |
+
f"heads ({config.num_attention_heads})"
|
295 |
+
)
|
296 |
+
|
297 |
+
self.num_attention_heads = config.num_attention_heads
|
298 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
299 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
300 |
+
|
301 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
302 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
303 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
304 |
+
|
305 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
306 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
307 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
308 |
+
self.max_position_embeddings = config.max_position_embeddings
|
309 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
310 |
+
|
311 |
+
self.is_decoder = config.is_decoder
|
312 |
+
|
313 |
+
def transpose_for_scores(self, x: torch.Tensor):
|
314 |
+
new_x_shape = x.size()[:-1] + (
|
315 |
+
self.num_attention_heads,
|
316 |
+
self.attention_head_size,
|
317 |
+
)
|
318 |
+
x = x.view(*new_x_shape)
|
319 |
+
return x.permute(0, 2, 1, 3)
|
320 |
+
|
321 |
+
def forward(
|
322 |
+
self,
|
323 |
+
hidden_states: torch.Tensor,
|
324 |
+
bbox_pos_emb: torch.Tensor,
|
325 |
+
attention_mask: Optional[torch.Tensor] = None,
|
326 |
+
head_mask: Optional[torch.Tensor] = None,
|
327 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
328 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
329 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
330 |
+
output_attentions: Optional[torch.Tensor] = False,
|
331 |
+
) -> Tuple[torch.Tensor]:
|
332 |
+
mixed_query_layer = self.query(hidden_states)
|
333 |
+
|
334 |
+
# If this is instantiated as a cross-attention module, the keys
|
335 |
+
# and values come from an encoder; the attention mask needs to be
|
336 |
+
# such that the encoder's padding tokens are not attended to.
|
337 |
+
is_cross_attention = encoder_hidden_states is not None
|
338 |
+
|
339 |
+
if is_cross_attention and past_key_value is not None:
|
340 |
+
# reuse k,v, cross_attentions
|
341 |
+
key_layer = past_key_value[0]
|
342 |
+
value_layer = past_key_value[1]
|
343 |
+
attention_mask = encoder_attention_mask
|
344 |
+
elif is_cross_attention:
|
345 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
346 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
347 |
+
attention_mask = encoder_attention_mask
|
348 |
+
elif past_key_value is not None:
|
349 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
350 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
351 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
352 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
353 |
+
else:
|
354 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
355 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
356 |
+
|
357 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
358 |
+
|
359 |
+
if self.is_decoder:
|
360 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
361 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
362 |
+
# key/value_states (first "if" case)
|
363 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
364 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
365 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
366 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
367 |
+
past_key_value = (key_layer, value_layer)
|
368 |
+
|
369 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
370 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
371 |
+
|
372 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
373 |
+
seq_length = hidden_states.size()[1]
|
374 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
375 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
376 |
+
distance = position_ids_l - position_ids_r
|
377 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
378 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
379 |
+
|
380 |
+
if self.position_embedding_type == "relative_key":
|
381 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
382 |
+
attention_scores = attention_scores + relative_position_scores
|
383 |
+
elif self.position_embedding_type == "relative_key_query":
|
384 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
385 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
386 |
+
|
387 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
388 |
+
|
389 |
+
# bbox positional encoding
|
390 |
+
batch_size, n_head, seq_length, d_head = query_layer.shape
|
391 |
+
bbox_pos_emb = bbox_pos_emb.view(seq_length, seq_length, batch_size, d_head)
|
392 |
+
bbox_pos_emb = bbox_pos_emb.permute([2, 0, 1, 3])
|
393 |
+
bbox_pos_scores = torch.einsum("bnid,bijd->bnij", (query_layer, bbox_pos_emb))
|
394 |
+
|
395 |
+
attention_scores = attention_scores + bbox_pos_scores
|
396 |
+
|
397 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
398 |
+
if attention_mask is not None:
|
399 |
+
# Apply the attention mask is (precomputed for all layers in BrosModel forward() function)
|
400 |
+
attention_scores = attention_scores + attention_mask
|
401 |
+
|
402 |
+
# Normalize the attention scores to probabilities.
|
403 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
404 |
+
|
405 |
+
# This is actually dropping out entire tokens to attend to, which might
|
406 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
407 |
+
attention_probs = self.dropout(attention_probs)
|
408 |
+
|
409 |
+
# Mask heads if we want to
|
410 |
+
if head_mask is not None:
|
411 |
+
attention_probs = attention_probs * head_mask
|
412 |
+
|
413 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
414 |
+
|
415 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
416 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
417 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
418 |
+
|
419 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
420 |
+
|
421 |
+
if self.is_decoder:
|
422 |
+
outputs = outputs + (past_key_value,)
|
423 |
+
return outputs
|
424 |
+
|
425 |
+
|
426 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Bros
|
427 |
+
class BrosSelfOutput(nn.Module):
|
428 |
+
def __init__(self, config):
|
429 |
+
super().__init__()
|
430 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
431 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
432 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
433 |
+
|
434 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
435 |
+
hidden_states = self.dense(hidden_states)
|
436 |
+
hidden_states = self.dropout(hidden_states)
|
437 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
438 |
+
return hidden_states
|
439 |
+
|
440 |
+
|
441 |
+
class BrosAttention(nn.Module):
|
442 |
+
def __init__(self, config):
|
443 |
+
super().__init__()
|
444 |
+
self.self = BrosSelfAttention(config)
|
445 |
+
self.output = BrosSelfOutput(config)
|
446 |
+
self.pruned_heads = set()
|
447 |
+
|
448 |
+
def prune_heads(self, heads):
|
449 |
+
if len(heads) == 0:
|
450 |
+
return
|
451 |
+
heads, index = find_pruneable_heads_and_indices(
|
452 |
+
heads,
|
453 |
+
self.self.num_attention_heads,
|
454 |
+
self.self.attention_head_size,
|
455 |
+
self.pruned_heads,
|
456 |
+
)
|
457 |
+
|
458 |
+
# Prune linear layers
|
459 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
460 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
461 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
462 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
463 |
+
|
464 |
+
# Update hyper params and store pruned heads
|
465 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
466 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
467 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
468 |
+
|
469 |
+
def forward(
|
470 |
+
self,
|
471 |
+
hidden_states: torch.Tensor,
|
472 |
+
bbox_pos_emb: torch.Tensor,
|
473 |
+
attention_mask: Optional[torch.Tensor] = None,
|
474 |
+
head_mask: Optional[torch.Tensor] = None,
|
475 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
476 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
477 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
478 |
+
output_attentions: Optional[bool] = False,
|
479 |
+
) -> Tuple[torch.Tensor]:
|
480 |
+
self_outputs = self.self(
|
481 |
+
hidden_states=hidden_states,
|
482 |
+
bbox_pos_emb=bbox_pos_emb,
|
483 |
+
attention_mask=attention_mask,
|
484 |
+
head_mask=head_mask,
|
485 |
+
encoder_hidden_states=encoder_hidden_states,
|
486 |
+
encoder_attention_mask=encoder_attention_mask,
|
487 |
+
past_key_value=past_key_value,
|
488 |
+
output_attentions=output_attentions,
|
489 |
+
)
|
490 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
491 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
492 |
+
return outputs
|
493 |
+
|
494 |
+
|
495 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Bros
|
496 |
+
class BrosIntermediate(nn.Module):
|
497 |
+
def __init__(self, config):
|
498 |
+
super().__init__()
|
499 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
500 |
+
if isinstance(config.hidden_act, str):
|
501 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
502 |
+
else:
|
503 |
+
self.intermediate_act_fn = config.hidden_act
|
504 |
+
|
505 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
506 |
+
hidden_states = self.dense(hidden_states)
|
507 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
508 |
+
return hidden_states
|
509 |
+
|
510 |
+
|
511 |
+
class BrosOutput(nn.Module):
|
512 |
+
def __init__(self, config):
|
513 |
+
super().__init__()
|
514 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
515 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
516 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
517 |
+
|
518 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
519 |
+
hidden_states = self.dense(hidden_states)
|
520 |
+
hidden_states = self.dropout(hidden_states)
|
521 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
522 |
+
return hidden_states
|
523 |
+
|
524 |
+
|
525 |
+
class BrosLayer(nn.Module):
|
526 |
+
def __init__(self, config):
|
527 |
+
super().__init__()
|
528 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
529 |
+
self.seq_len_dim = 1
|
530 |
+
self.attention = BrosAttention(config)
|
531 |
+
self.is_decoder = config.is_decoder
|
532 |
+
self.add_cross_attention = config.add_cross_attention
|
533 |
+
if self.add_cross_attention:
|
534 |
+
if not self.is_decoder:
|
535 |
+
raise Exception(f"{self} should be used as a decoder model if cross attention is added")
|
536 |
+
self.crossattention = BrosAttention(config)
|
537 |
+
self.intermediate = BrosIntermediate(config)
|
538 |
+
self.output = BrosOutput(config)
|
539 |
+
|
540 |
+
def forward(
|
541 |
+
self,
|
542 |
+
hidden_states: torch.Tensor,
|
543 |
+
bbox_pos_emb: torch.Tensor,
|
544 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
545 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
546 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
547 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
548 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
549 |
+
output_attentions: Optional[bool] = False,
|
550 |
+
) -> Tuple[torch.Tensor]:
|
551 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
552 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
553 |
+
self_attention_outputs = self.attention(
|
554 |
+
hidden_states,
|
555 |
+
bbox_pos_emb=bbox_pos_emb,
|
556 |
+
attention_mask=attention_mask,
|
557 |
+
head_mask=head_mask,
|
558 |
+
output_attentions=output_attentions,
|
559 |
+
past_key_value=self_attn_past_key_value,
|
560 |
+
)
|
561 |
+
attention_output = self_attention_outputs[0]
|
562 |
+
|
563 |
+
# if decoder, the last output is tuple of self-attn cache
|
564 |
+
if self.is_decoder:
|
565 |
+
outputs = self_attention_outputs[1:-1]
|
566 |
+
present_key_value = self_attention_outputs[-1]
|
567 |
+
else:
|
568 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
569 |
+
|
570 |
+
cross_attn_present_key_value = None
|
571 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
572 |
+
if hasattr(self, "crossattention"):
|
573 |
+
raise Exception(
|
574 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
575 |
+
)
|
576 |
+
|
577 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
578 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
579 |
+
cross_attention_outputs = self.crossattention(
|
580 |
+
attention_output,
|
581 |
+
attention_mask,
|
582 |
+
head_mask,
|
583 |
+
encoder_hidden_states,
|
584 |
+
encoder_attention_mask,
|
585 |
+
cross_attn_past_key_value,
|
586 |
+
output_attentions,
|
587 |
+
)
|
588 |
+
attention_output = cross_attention_outputs[0]
|
589 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
590 |
+
|
591 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
592 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
593 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
594 |
+
|
595 |
+
layer_output = apply_chunking_to_forward(
|
596 |
+
self.feed_forward_chunk,
|
597 |
+
self.chunk_size_feed_forward,
|
598 |
+
self.seq_len_dim,
|
599 |
+
attention_output,
|
600 |
+
)
|
601 |
+
outputs = (layer_output,) + outputs
|
602 |
+
|
603 |
+
# if decoder, return the attn key/values as the last output
|
604 |
+
if self.is_decoder:
|
605 |
+
outputs = outputs + (present_key_value,)
|
606 |
+
|
607 |
+
return outputs
|
608 |
+
|
609 |
+
def feed_forward_chunk(self, attention_output):
|
610 |
+
intermediate_output = self.intermediate(attention_output)
|
611 |
+
layer_output = self.output(intermediate_output, attention_output)
|
612 |
+
return layer_output
|
613 |
+
|
614 |
+
|
615 |
+
class BrosEncoder(nn.Module):
|
616 |
+
def __init__(self, config):
|
617 |
+
super().__init__()
|
618 |
+
self.config = config
|
619 |
+
self.layer = nn.ModuleList([BrosLayer(config) for _ in range(config.num_hidden_layers)])
|
620 |
+
|
621 |
+
def forward(
|
622 |
+
self,
|
623 |
+
hidden_states: torch.Tensor,
|
624 |
+
bbox_pos_emb: torch.Tensor,
|
625 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
626 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
627 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
628 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
629 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
630 |
+
use_cache: Optional[bool] = None,
|
631 |
+
output_attentions: Optional[bool] = False,
|
632 |
+
output_hidden_states: Optional[bool] = False,
|
633 |
+
return_dict: Optional[bool] = True,
|
634 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
635 |
+
all_hidden_states = () if output_hidden_states else None
|
636 |
+
all_self_attentions = () if output_attentions else None
|
637 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
638 |
+
|
639 |
+
next_decoder_cache = () if use_cache else None
|
640 |
+
for i, layer_module in enumerate(self.layer):
|
641 |
+
if output_hidden_states:
|
642 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
643 |
+
|
644 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
645 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
646 |
+
|
647 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
648 |
+
if use_cache:
|
649 |
+
logger.warning(
|
650 |
+
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
651 |
+
"`use_cache=False`..."
|
652 |
+
)
|
653 |
+
use_cache = False
|
654 |
+
layer_outputs = self._gradient_checkpointing_func(
|
655 |
+
layer_module.__call__,
|
656 |
+
hidden_states,
|
657 |
+
bbox_pos_emb,
|
658 |
+
attention_mask,
|
659 |
+
layer_head_mask,
|
660 |
+
encoder_hidden_states,
|
661 |
+
encoder_attention_mask,
|
662 |
+
output_attentions,
|
663 |
+
)
|
664 |
+
else:
|
665 |
+
layer_outputs = layer_module(
|
666 |
+
hidden_states=hidden_states,
|
667 |
+
bbox_pos_emb=bbox_pos_emb,
|
668 |
+
attention_mask=attention_mask,
|
669 |
+
head_mask=layer_head_mask,
|
670 |
+
encoder_hidden_states=encoder_hidden_states,
|
671 |
+
encoder_attention_mask=encoder_attention_mask,
|
672 |
+
past_key_value=past_key_value,
|
673 |
+
output_attentions=output_attentions,
|
674 |
+
)
|
675 |
+
|
676 |
+
hidden_states = layer_outputs[0]
|
677 |
+
if use_cache:
|
678 |
+
next_decoder_cache += (layer_outputs[-1],)
|
679 |
+
if output_attentions:
|
680 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
681 |
+
if self.config.add_cross_attention:
|
682 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
683 |
+
|
684 |
+
if output_hidden_states:
|
685 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
686 |
+
|
687 |
+
if not return_dict:
|
688 |
+
return tuple(
|
689 |
+
v
|
690 |
+
for v in [
|
691 |
+
hidden_states,
|
692 |
+
next_decoder_cache,
|
693 |
+
all_hidden_states,
|
694 |
+
all_self_attentions,
|
695 |
+
all_cross_attentions,
|
696 |
+
]
|
697 |
+
if v is not None
|
698 |
+
)
|
699 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
700 |
+
last_hidden_state=hidden_states,
|
701 |
+
past_key_values=next_decoder_cache,
|
702 |
+
hidden_states=all_hidden_states,
|
703 |
+
attentions=all_self_attentions,
|
704 |
+
cross_attentions=all_cross_attentions,
|
705 |
+
)
|
706 |
+
|
707 |
+
|
708 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Bros
|
709 |
+
class BrosPooler(nn.Module):
|
710 |
+
def __init__(self, config):
|
711 |
+
super().__init__()
|
712 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
713 |
+
self.activation = nn.Tanh()
|
714 |
+
|
715 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
716 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
717 |
+
# to the first token.
|
718 |
+
first_token_tensor = hidden_states[:, 0]
|
719 |
+
pooled_output = self.dense(first_token_tensor)
|
720 |
+
pooled_output = self.activation(pooled_output)
|
721 |
+
return pooled_output
|
722 |
+
|
723 |
+
|
724 |
+
class BrosRelationExtractor(nn.Module):
|
725 |
+
def __init__(self, config):
|
726 |
+
super().__init__()
|
727 |
+
self.n_relations = config.n_relations
|
728 |
+
self.backbone_hidden_size = config.hidden_size
|
729 |
+
self.head_hidden_size = config.hidden_size
|
730 |
+
self.classifier_dropout_prob = config.classifier_dropout_prob
|
731 |
+
|
732 |
+
self.drop = nn.Dropout(self.classifier_dropout_prob)
|
733 |
+
self.query = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size)
|
734 |
+
|
735 |
+
self.key = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size)
|
736 |
+
|
737 |
+
self.dummy_node = nn.Parameter(torch.zeros(1, self.backbone_hidden_size))
|
738 |
+
|
739 |
+
def forward(self, query_layer: torch.Tensor, key_layer: torch.Tensor):
|
740 |
+
query_layer = self.query(self.drop(query_layer))
|
741 |
+
|
742 |
+
dummy_vec = self.dummy_node.unsqueeze(0).repeat(1, key_layer.size(1), 1)
|
743 |
+
key_layer = torch.cat([key_layer, dummy_vec], axis=0)
|
744 |
+
key_layer = self.key(self.drop(key_layer))
|
745 |
+
|
746 |
+
query_layer = query_layer.view(
|
747 |
+
query_layer.size(0), query_layer.size(1), self.n_relations, self.head_hidden_size
|
748 |
+
)
|
749 |
+
key_layer = key_layer.view(key_layer.size(0), key_layer.size(1), self.n_relations, self.head_hidden_size)
|
750 |
+
|
751 |
+
relation_score = torch.matmul(
|
752 |
+
query_layer.permute(2, 1, 0, 3), key_layer.permute(2, 1, 3, 0)
|
753 |
+
) # equivalent to torch.einsum("ibnd,jbnd->nbij", (query_layer, key_layer))
|
754 |
+
|
755 |
+
return relation_score
|
756 |
+
|
757 |
+
|
758 |
+
class BrosPreTrainedModel(PreTrainedModel):
|
759 |
+
"""
|
760 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
761 |
+
models.
|
762 |
+
"""
|
763 |
+
|
764 |
+
config_class = BrosConfig
|
765 |
+
base_model_prefix = "bros"
|
766 |
+
|
767 |
+
def _init_weights(self, module):
|
768 |
+
"""Initialize the weights"""
|
769 |
+
if isinstance(module, nn.Linear):
|
770 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
771 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
772 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
773 |
+
if module.bias is not None:
|
774 |
+
module.bias.data.zero_()
|
775 |
+
elif isinstance(module, nn.Embedding):
|
776 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
777 |
+
if module.padding_idx is not None:
|
778 |
+
module.weight.data[module.padding_idx].zero_()
|
779 |
+
elif isinstance(module, nn.LayerNorm):
|
780 |
+
module.bias.data.zero_()
|
781 |
+
module.weight.data.fill_(1.0)
|
782 |
+
|
783 |
+
|
784 |
+
@add_start_docstrings(
|
785 |
+
"The bare Bros Model transformer outputting raw hidden-states without any specific head on top.",
|
786 |
+
BROS_START_DOCSTRING,
|
787 |
+
)
|
788 |
+
class BrosModel(BrosPreTrainedModel):
|
789 |
+
def __init__(self, config, add_pooling_layer=True):
|
790 |
+
super().__init__(config)
|
791 |
+
self.config = config
|
792 |
+
|
793 |
+
self.embeddings = BrosTextEmbeddings(config)
|
794 |
+
self.bbox_embeddings = BrosBboxEmbeddings(config)
|
795 |
+
self.encoder = BrosEncoder(config)
|
796 |
+
|
797 |
+
self.pooler = BrosPooler(config) if add_pooling_layer else None
|
798 |
+
|
799 |
+
self.init_weights()
|
800 |
+
|
801 |
+
def get_input_embeddings(self):
|
802 |
+
return self.embeddings.word_embeddings
|
803 |
+
|
804 |
+
def set_input_embeddings(self, value):
|
805 |
+
self.embeddings.word_embeddings = value
|
806 |
+
|
807 |
+
def _prune_heads(self, heads_to_prune):
|
808 |
+
"""
|
809 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
810 |
+
class PreTrainedModel
|
811 |
+
"""
|
812 |
+
for layer, heads in heads_to_prune.items():
|
813 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
814 |
+
|
815 |
+
@add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
816 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
817 |
+
def forward(
|
818 |
+
self,
|
819 |
+
input_ids: Optional[torch.Tensor] = None,
|
820 |
+
bbox: Optional[torch.Tensor] = None,
|
821 |
+
attention_mask: Optional[torch.Tensor] = None,
|
822 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
823 |
+
position_ids: Optional[torch.Tensor] = None,
|
824 |
+
head_mask: Optional[torch.Tensor] = None,
|
825 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
826 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
827 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
828 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
829 |
+
use_cache: Optional[bool] = None,
|
830 |
+
output_attentions: Optional[bool] = None,
|
831 |
+
output_hidden_states: Optional[bool] = None,
|
832 |
+
return_dict: Optional[bool] = None,
|
833 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
834 |
+
r"""
|
835 |
+
Returns:
|
836 |
+
|
837 |
+
Examples:
|
838 |
+
|
839 |
+
```python
|
840 |
+
>>> import torch
|
841 |
+
>>> from transformers import BrosProcessor, BrosModel
|
842 |
+
|
843 |
+
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
|
844 |
+
|
845 |
+
>>> model = BrosModel.from_pretrained("jinho8345/bros-base-uncased")
|
846 |
+
|
847 |
+
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
|
848 |
+
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
|
849 |
+
>>> encoding["bbox"] = bbox
|
850 |
+
|
851 |
+
>>> outputs = model(**encoding)
|
852 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
853 |
+
```"""
|
854 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
855 |
+
output_hidden_states = (
|
856 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
857 |
+
)
|
858 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
859 |
+
|
860 |
+
if self.config.is_decoder:
|
861 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
862 |
+
else:
|
863 |
+
use_cache = False
|
864 |
+
|
865 |
+
if input_ids is not None and inputs_embeds is not None:
|
866 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
867 |
+
elif input_ids is not None:
|
868 |
+
input_shape = input_ids.size()
|
869 |
+
elif inputs_embeds is not None:
|
870 |
+
input_shape = inputs_embeds.size()[:-1]
|
871 |
+
else:
|
872 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
873 |
+
|
874 |
+
if bbox is None:
|
875 |
+
raise ValueError("You have to specify bbox")
|
876 |
+
|
877 |
+
batch_size, seq_length = input_shape
|
878 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
879 |
+
|
880 |
+
# past_key_values_length
|
881 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
882 |
+
|
883 |
+
if attention_mask is None:
|
884 |
+
attention_mask = torch.ones(input_shape, device=device)
|
885 |
+
|
886 |
+
if token_type_ids is None:
|
887 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
888 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
889 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
890 |
+
token_type_ids = buffered_token_type_ids_expanded
|
891 |
+
else:
|
892 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
893 |
+
|
894 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
895 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
896 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
897 |
+
|
898 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
899 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
900 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
901 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
902 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
903 |
+
if encoder_attention_mask is None:
|
904 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
905 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
906 |
+
else:
|
907 |
+
encoder_extended_attention_mask = None
|
908 |
+
|
909 |
+
# Prepare head mask if needed
|
910 |
+
# 1.0 in head_mask indicate we keep the head
|
911 |
+
# attention_probs has shape bsz x n_heads x N x N
|
912 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
913 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
914 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
915 |
+
|
916 |
+
embedding_output = self.embeddings(
|
917 |
+
input_ids=input_ids,
|
918 |
+
position_ids=position_ids,
|
919 |
+
token_type_ids=token_type_ids,
|
920 |
+
inputs_embeds=inputs_embeds,
|
921 |
+
past_key_values_length=past_key_values_length,
|
922 |
+
)
|
923 |
+
|
924 |
+
# if bbox has 2 points (4 float tensors) per token, convert it to 4 points (8 float tensors) per token
|
925 |
+
if bbox.shape[-1] == 4:
|
926 |
+
bbox = bbox[:, :, [0, 1, 2, 1, 2, 3, 0, 3]]
|
927 |
+
scaled_bbox = bbox * self.config.bbox_scale
|
928 |
+
bbox_position_embeddings = self.bbox_embeddings(scaled_bbox)
|
929 |
+
|
930 |
+
encoder_outputs = self.encoder(
|
931 |
+
embedding_output,
|
932 |
+
bbox_pos_emb=bbox_position_embeddings,
|
933 |
+
attention_mask=extended_attention_mask,
|
934 |
+
head_mask=head_mask,
|
935 |
+
encoder_hidden_states=encoder_hidden_states,
|
936 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
937 |
+
past_key_values=past_key_values,
|
938 |
+
use_cache=use_cache,
|
939 |
+
output_attentions=output_attentions,
|
940 |
+
output_hidden_states=output_hidden_states,
|
941 |
+
return_dict=return_dict,
|
942 |
+
)
|
943 |
+
sequence_output = encoder_outputs[0]
|
944 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
945 |
+
|
946 |
+
if not return_dict:
|
947 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
948 |
+
|
949 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
950 |
+
last_hidden_state=sequence_output,
|
951 |
+
pooler_output=pooled_output,
|
952 |
+
past_key_values=encoder_outputs.past_key_values,
|
953 |
+
hidden_states=encoder_outputs.hidden_states,
|
954 |
+
attentions=encoder_outputs.attentions,
|
955 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
956 |
+
)
|
957 |
+
|
958 |
+
|
959 |
+
@add_start_docstrings(
|
960 |
+
"""
|
961 |
+
Bros Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
962 |
+
Named-Entity-Recognition (NER) tasks.
|
963 |
+
""",
|
964 |
+
BROS_START_DOCSTRING,
|
965 |
+
)
|
966 |
+
class BrosForTokenClassification(BrosPreTrainedModel):
|
967 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
968 |
+
|
969 |
+
def __init__(self, config):
|
970 |
+
super().__init__(config)
|
971 |
+
self.num_labels = config.num_labels
|
972 |
+
|
973 |
+
self.bros = BrosModel(config)
|
974 |
+
classifier_dropout = (
|
975 |
+
config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob
|
976 |
+
)
|
977 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
978 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
979 |
+
|
980 |
+
self.init_weights()
|
981 |
+
|
982 |
+
@add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
983 |
+
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
984 |
+
def forward(
|
985 |
+
self,
|
986 |
+
input_ids: Optional[torch.Tensor] = None,
|
987 |
+
bbox: Optional[torch.Tensor] = None,
|
988 |
+
attention_mask: Optional[torch.Tensor] = None,
|
989 |
+
bbox_first_token_mask: Optional[torch.Tensor] = None,
|
990 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
991 |
+
position_ids: Optional[torch.Tensor] = None,
|
992 |
+
head_mask: Optional[torch.Tensor] = None,
|
993 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
994 |
+
labels: Optional[torch.Tensor] = None,
|
995 |
+
output_attentions: Optional[bool] = None,
|
996 |
+
output_hidden_states: Optional[bool] = None,
|
997 |
+
return_dict: Optional[bool] = None,
|
998 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
999 |
+
r"""
|
1000 |
+
|
1001 |
+
Returns:
|
1002 |
+
|
1003 |
+
Examples:
|
1004 |
+
|
1005 |
+
```python
|
1006 |
+
>>> import torch
|
1007 |
+
>>> from transformers import BrosProcessor, BrosForTokenClassification
|
1008 |
+
|
1009 |
+
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
|
1010 |
+
|
1011 |
+
>>> model = BrosForTokenClassification.from_pretrained("jinho8345/bros-base-uncased")
|
1012 |
+
|
1013 |
+
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
|
1014 |
+
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
|
1015 |
+
>>> encoding["bbox"] = bbox
|
1016 |
+
|
1017 |
+
>>> outputs = model(**encoding)
|
1018 |
+
```"""
|
1019 |
+
|
1020 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1021 |
+
|
1022 |
+
outputs = self.bros(
|
1023 |
+
input_ids,
|
1024 |
+
bbox=bbox,
|
1025 |
+
attention_mask=attention_mask,
|
1026 |
+
token_type_ids=token_type_ids,
|
1027 |
+
position_ids=position_ids,
|
1028 |
+
head_mask=head_mask,
|
1029 |
+
inputs_embeds=inputs_embeds,
|
1030 |
+
output_attentions=output_attentions,
|
1031 |
+
output_hidden_states=output_hidden_states,
|
1032 |
+
return_dict=return_dict,
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
sequence_output = outputs[0]
|
1036 |
+
|
1037 |
+
sequence_output = self.dropout(sequence_output)
|
1038 |
+
logits = self.classifier(sequence_output)
|
1039 |
+
|
1040 |
+
loss = None
|
1041 |
+
if labels is not None:
|
1042 |
+
loss_fct = CrossEntropyLoss()
|
1043 |
+
if bbox_first_token_mask is not None:
|
1044 |
+
bbox_first_token_mask = bbox_first_token_mask.view(-1)
|
1045 |
+
loss = loss_fct(
|
1046 |
+
logits.view(-1, self.num_labels)[bbox_first_token_mask], labels.view(-1)[bbox_first_token_mask]
|
1047 |
+
)
|
1048 |
+
else:
|
1049 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1050 |
+
|
1051 |
+
if not return_dict:
|
1052 |
+
output = (logits,) + outputs[2:]
|
1053 |
+
return ((loss,) + output) if loss is not None else output
|
1054 |
+
|
1055 |
+
return TokenClassifierOutput(
|
1056 |
+
loss=loss,
|
1057 |
+
logits=logits,
|
1058 |
+
hidden_states=outputs.hidden_states,
|
1059 |
+
attentions=outputs.attentions,
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
|
1063 |
+
@add_start_docstrings(
|
1064 |
+
"""
|
1065 |
+
Bros Model with a token classification head on top (initial_token_layers and subsequent_token_layer on top of the
|
1066 |
+
hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. The initial_token_classifier is used to
|
1067 |
+
predict the first token of each entity, and the subsequent_token_classifier is used to predict the subsequent
|
1068 |
+
tokens within an entity. Compared to BrosForTokenClassification, this model is more robust to serialization errors
|
1069 |
+
since it predicts next token from one token.
|
1070 |
+
""",
|
1071 |
+
BROS_START_DOCSTRING,
|
1072 |
+
)
|
1073 |
+
class BrosSpadeEEForTokenClassification(BrosPreTrainedModel):
|
1074 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1075 |
+
|
1076 |
+
def __init__(self, config):
|
1077 |
+
super().__init__(config)
|
1078 |
+
self.config = config
|
1079 |
+
self.num_labels = config.num_labels
|
1080 |
+
self.n_relations = config.n_relations
|
1081 |
+
self.backbone_hidden_size = config.hidden_size
|
1082 |
+
|
1083 |
+
self.bros = BrosModel(config)
|
1084 |
+
classifier_dropout = (
|
1085 |
+
config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob
|
1086 |
+
)
|
1087 |
+
|
1088 |
+
# Initial token classification for Entity Extraction (NER)
|
1089 |
+
self.initial_token_classifier = nn.Sequential(
|
1090 |
+
nn.Dropout(classifier_dropout),
|
1091 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
1092 |
+
nn.Dropout(classifier_dropout),
|
1093 |
+
nn.Linear(config.hidden_size, config.num_labels),
|
1094 |
+
)
|
1095 |
+
|
1096 |
+
# Subsequent token classification for Entity Extraction (NER)
|
1097 |
+
self.subsequent_token_classifier = BrosRelationExtractor(config)
|
1098 |
+
|
1099 |
+
self.init_weights()
|
1100 |
+
|
1101 |
+
@add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1102 |
+
@replace_return_docstrings(output_type=BrosSpadeOutput, config_class=_CONFIG_FOR_DOC)
|
1103 |
+
def forward(
|
1104 |
+
self,
|
1105 |
+
input_ids: Optional[torch.Tensor] = None,
|
1106 |
+
bbox: Optional[torch.Tensor] = None,
|
1107 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1108 |
+
bbox_first_token_mask: Optional[torch.Tensor] = None,
|
1109 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1110 |
+
position_ids: Optional[torch.Tensor] = None,
|
1111 |
+
head_mask: Optional[torch.Tensor] = None,
|
1112 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1113 |
+
initial_token_labels: Optional[torch.Tensor] = None,
|
1114 |
+
subsequent_token_labels: Optional[torch.Tensor] = None,
|
1115 |
+
output_attentions: Optional[bool] = None,
|
1116 |
+
output_hidden_states: Optional[bool] = None,
|
1117 |
+
return_dict: Optional[bool] = None,
|
1118 |
+
) -> Union[Tuple[torch.Tensor], BrosSpadeOutput]:
|
1119 |
+
r"""
|
1120 |
+
Returns:
|
1121 |
+
|
1122 |
+
Examples:
|
1123 |
+
|
1124 |
+
```python
|
1125 |
+
>>> import torch
|
1126 |
+
>>> from transformers import BrosProcessor, BrosSpadeEEForTokenClassification
|
1127 |
+
|
1128 |
+
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
|
1129 |
+
|
1130 |
+
>>> model = BrosSpadeEEForTokenClassification.from_pretrained("jinho8345/bros-base-uncased")
|
1131 |
+
|
1132 |
+
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
|
1133 |
+
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
|
1134 |
+
>>> encoding["bbox"] = bbox
|
1135 |
+
|
1136 |
+
>>> outputs = model(**encoding)
|
1137 |
+
```"""
|
1138 |
+
|
1139 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1140 |
+
|
1141 |
+
outputs = self.bros(
|
1142 |
+
input_ids=input_ids,
|
1143 |
+
bbox=bbox,
|
1144 |
+
attention_mask=attention_mask,
|
1145 |
+
token_type_ids=token_type_ids,
|
1146 |
+
position_ids=position_ids,
|
1147 |
+
head_mask=head_mask,
|
1148 |
+
inputs_embeds=inputs_embeds,
|
1149 |
+
output_attentions=output_attentions,
|
1150 |
+
output_hidden_states=output_hidden_states,
|
1151 |
+
return_dict=return_dict,
|
1152 |
+
)
|
1153 |
+
|
1154 |
+
last_hidden_states = outputs[0]
|
1155 |
+
last_hidden_states = last_hidden_states.transpose(0, 1).contiguous()
|
1156 |
+
initial_token_logits = self.initial_token_classifier(last_hidden_states).transpose(0, 1).contiguous()
|
1157 |
+
subsequent_token_logits = self.subsequent_token_classifier(last_hidden_states, last_hidden_states).squeeze(0)
|
1158 |
+
|
1159 |
+
# make subsequent token (sequence token classification) mask
|
1160 |
+
inv_attention_mask = 1 - attention_mask
|
1161 |
+
batch_size, max_seq_length = inv_attention_mask.shape
|
1162 |
+
device = inv_attention_mask.device
|
1163 |
+
invalid_token_mask = torch.cat([inv_attention_mask, torch.zeros([batch_size, 1]).to(device)], axis=1).bool()
|
1164 |
+
subsequent_token_logits = subsequent_token_logits.masked_fill(
|
1165 |
+
invalid_token_mask[:, None, :], torch.finfo(subsequent_token_logits.dtype).min
|
1166 |
+
)
|
1167 |
+
self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device).bool()
|
1168 |
+
subsequent_token_logits = subsequent_token_logits.masked_fill(
|
1169 |
+
self_token_mask[None, :, :], torch.finfo(subsequent_token_logits.dtype).min
|
1170 |
+
)
|
1171 |
+
subsequent_token_mask = attention_mask.view(-1).bool()
|
1172 |
+
|
1173 |
+
loss = None
|
1174 |
+
if initial_token_labels is not None and subsequent_token_labels is not None:
|
1175 |
+
loss_fct = CrossEntropyLoss()
|
1176 |
+
|
1177 |
+
# get initial token loss
|
1178 |
+
initial_token_labels = initial_token_labels.view(-1)
|
1179 |
+
if bbox_first_token_mask is not None:
|
1180 |
+
bbox_first_token_mask = bbox_first_token_mask.view(-1)
|
1181 |
+
initial_token_loss = loss_fct(
|
1182 |
+
initial_token_logits.view(-1, self.num_labels)[bbox_first_token_mask],
|
1183 |
+
initial_token_labels[bbox_first_token_mask],
|
1184 |
+
)
|
1185 |
+
else:
|
1186 |
+
initial_token_loss = loss_fct(initial_token_logits.view(-1, self.num_labels), initial_token_labels)
|
1187 |
+
|
1188 |
+
subsequent_token_labels = subsequent_token_labels.view(-1)
|
1189 |
+
subsequent_token_loss = loss_fct(
|
1190 |
+
subsequent_token_logits.view(-1, max_seq_length + 1)[subsequent_token_mask],
|
1191 |
+
subsequent_token_labels[subsequent_token_mask],
|
1192 |
+
)
|
1193 |
+
|
1194 |
+
loss = initial_token_loss + subsequent_token_loss
|
1195 |
+
|
1196 |
+
if not return_dict:
|
1197 |
+
output = (initial_token_logits, subsequent_token_logits) + outputs[2:]
|
1198 |
+
return ((loss,) + output) if loss is not None else output
|
1199 |
+
|
1200 |
+
return BrosSpadeOutput(
|
1201 |
+
loss=loss,
|
1202 |
+
initial_token_logits=initial_token_logits,
|
1203 |
+
subsequent_token_logits=subsequent_token_logits,
|
1204 |
+
hidden_states=outputs.hidden_states,
|
1205 |
+
attentions=outputs.attentions,
|
1206 |
+
)
|
1207 |
+
|
1208 |
+
|
1209 |
+
@add_start_docstrings(
|
1210 |
+
"""
|
1211 |
+
Bros Model with a token classification head on top (a entity_linker layer on top of the hidden-states output) e.g.
|
1212 |
+
for Entity-Linking. The entity_linker is used to predict intra-entity links (one entity to another entity).
|
1213 |
+
""",
|
1214 |
+
BROS_START_DOCSTRING,
|
1215 |
+
)
|
1216 |
+
class BrosSpadeELForTokenClassification(BrosPreTrainedModel):
|
1217 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1218 |
+
|
1219 |
+
def __init__(self, config):
|
1220 |
+
super().__init__(config)
|
1221 |
+
self.config = config
|
1222 |
+
self.num_labels = config.num_labels
|
1223 |
+
self.n_relations = config.n_relations
|
1224 |
+
self.backbone_hidden_size = config.hidden_size
|
1225 |
+
|
1226 |
+
self.bros = BrosModel(config)
|
1227 |
+
(config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob)
|
1228 |
+
|
1229 |
+
self.entity_linker = BrosRelationExtractor(config)
|
1230 |
+
|
1231 |
+
self.init_weights()
|
1232 |
+
|
1233 |
+
@add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1234 |
+
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
1235 |
+
def forward(
|
1236 |
+
self,
|
1237 |
+
input_ids: Optional[torch.Tensor] = None,
|
1238 |
+
bbox: Optional[torch.Tensor] = None,
|
1239 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1240 |
+
bbox_first_token_mask: Optional[torch.Tensor] = None,
|
1241 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1242 |
+
position_ids: Optional[torch.Tensor] = None,
|
1243 |
+
head_mask: Optional[torch.Tensor] = None,
|
1244 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1245 |
+
labels: Optional[torch.Tensor] = None,
|
1246 |
+
output_attentions: Optional[bool] = None,
|
1247 |
+
output_hidden_states: Optional[bool] = None,
|
1248 |
+
return_dict: Optional[bool] = None,
|
1249 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1250 |
+
r"""
|
1251 |
+
Returns:
|
1252 |
+
|
1253 |
+
Examples:
|
1254 |
+
|
1255 |
+
```python
|
1256 |
+
>>> import torch
|
1257 |
+
>>> from transformers import BrosProcessor, BrosSpadeELForTokenClassification
|
1258 |
+
|
1259 |
+
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
|
1260 |
+
|
1261 |
+
>>> model = BrosSpadeELForTokenClassification.from_pretrained("jinho8345/bros-base-uncased")
|
1262 |
+
|
1263 |
+
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
|
1264 |
+
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
|
1265 |
+
>>> encoding["bbox"] = bbox
|
1266 |
+
|
1267 |
+
>>> outputs = model(**encoding)
|
1268 |
+
```"""
|
1269 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1270 |
+
|
1271 |
+
outputs = self.bros(
|
1272 |
+
input_ids=input_ids,
|
1273 |
+
bbox=bbox,
|
1274 |
+
attention_mask=attention_mask,
|
1275 |
+
token_type_ids=token_type_ids,
|
1276 |
+
position_ids=position_ids,
|
1277 |
+
head_mask=head_mask,
|
1278 |
+
inputs_embeds=inputs_embeds,
|
1279 |
+
output_attentions=output_attentions,
|
1280 |
+
output_hidden_states=output_hidden_states,
|
1281 |
+
return_dict=return_dict,
|
1282 |
+
)
|
1283 |
+
|
1284 |
+
last_hidden_states = outputs[0]
|
1285 |
+
last_hidden_states = last_hidden_states.transpose(0, 1).contiguous()
|
1286 |
+
|
1287 |
+
logits = self.entity_linker(last_hidden_states, last_hidden_states).squeeze(0)
|
1288 |
+
|
1289 |
+
loss = None
|
1290 |
+
if labels is not None:
|
1291 |
+
loss_fct = CrossEntropyLoss()
|
1292 |
+
|
1293 |
+
batch_size, max_seq_length = attention_mask.shape
|
1294 |
+
device = attention_mask.device
|
1295 |
+
|
1296 |
+
self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device).bool()
|
1297 |
+
|
1298 |
+
mask = bbox_first_token_mask.view(-1)
|
1299 |
+
bbox_first_token_mask = torch.cat(
|
1300 |
+
[
|
1301 |
+
~bbox_first_token_mask,
|
1302 |
+
torch.zeros([batch_size, 1], dtype=torch.bool).to(device),
|
1303 |
+
],
|
1304 |
+
axis=1,
|
1305 |
+
)
|
1306 |
+
logits = logits.masked_fill(bbox_first_token_mask[:, None, :], torch.finfo(logits.dtype).min)
|
1307 |
+
logits = logits.masked_fill(self_token_mask[None, :, :], torch.finfo(logits.dtype).min)
|
1308 |
+
|
1309 |
+
loss = loss_fct(logits.view(-1, max_seq_length + 1)[mask], labels.view(-1)[mask])
|
1310 |
+
|
1311 |
+
if not return_dict:
|
1312 |
+
output = (logits,) + outputs[2:]
|
1313 |
+
return ((loss,) + output) if loss is not None else output
|
1314 |
+
|
1315 |
+
return TokenClassifierOutput(
|
1316 |
+
loss=loss,
|
1317 |
+
logits=logits,
|
1318 |
+
hidden_states=outputs.hidden_states,
|
1319 |
+
attentions=outputs.attentions,
|
1320 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/bros/processing_bros.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for Bros.
|
17 |
+
"""
|
18 |
+
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
from ...processing_utils import ProcessorMixin
|
22 |
+
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
23 |
+
from ...utils import TensorType
|
24 |
+
|
25 |
+
|
26 |
+
class BrosProcessor(ProcessorMixin):
|
27 |
+
r"""
|
28 |
+
Constructs a Bros processor which wraps a BERT tokenizer.
|
29 |
+
|
30 |
+
[`BrosProcessor`] offers all the functionalities of [`BertTokenizerFast`]. See the docstring of
|
31 |
+
[`~BrosProcessor.__call__`] and [`~BrosProcessor.decode`] for more information.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
tokenizer (`BertTokenizerFast`, *optional*):
|
35 |
+
An instance of ['BertTokenizerFast`]. The tokenizer is a required input.
|
36 |
+
"""
|
37 |
+
|
38 |
+
attributes = ["tokenizer"]
|
39 |
+
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
|
40 |
+
|
41 |
+
def __init__(self, tokenizer=None, **kwargs):
|
42 |
+
if tokenizer is None:
|
43 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
44 |
+
|
45 |
+
super().__init__(tokenizer)
|
46 |
+
|
47 |
+
def __call__(
|
48 |
+
self,
|
49 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
50 |
+
add_special_tokens: bool = True,
|
51 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
52 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
53 |
+
max_length: Optional[int] = None,
|
54 |
+
stride: int = 0,
|
55 |
+
pad_to_multiple_of: Optional[int] = None,
|
56 |
+
return_token_type_ids: Optional[bool] = None,
|
57 |
+
return_attention_mask: Optional[bool] = None,
|
58 |
+
return_overflowing_tokens: bool = False,
|
59 |
+
return_special_tokens_mask: bool = False,
|
60 |
+
return_offsets_mapping: bool = False,
|
61 |
+
return_length: bool = False,
|
62 |
+
verbose: bool = True,
|
63 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
64 |
+
**kwargs,
|
65 |
+
) -> BatchEncoding:
|
66 |
+
"""
|
67 |
+
This method uses [`BertTokenizerFast.__call__`] to prepare text for the model.
|
68 |
+
|
69 |
+
Please refer to the docstring of the above two methods for more information.
|
70 |
+
"""
|
71 |
+
encoding = self.tokenizer(
|
72 |
+
text=text,
|
73 |
+
add_special_tokens=add_special_tokens,
|
74 |
+
padding=padding,
|
75 |
+
truncation=truncation,
|
76 |
+
max_length=max_length,
|
77 |
+
stride=stride,
|
78 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
79 |
+
return_token_type_ids=return_token_type_ids,
|
80 |
+
return_attention_mask=return_attention_mask,
|
81 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
82 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
83 |
+
return_offsets_mapping=return_offsets_mapping,
|
84 |
+
return_length=return_length,
|
85 |
+
verbose=verbose,
|
86 |
+
return_tensors=return_tensors,
|
87 |
+
**kwargs,
|
88 |
+
)
|
89 |
+
|
90 |
+
return encoding
|
91 |
+
|
92 |
+
def batch_decode(self, *args, **kwargs):
|
93 |
+
"""
|
94 |
+
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
95 |
+
refer to the docstring of this method for more information.
|
96 |
+
"""
|
97 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
98 |
+
|
99 |
+
def decode(self, *args, **kwargs):
|
100 |
+
"""
|
101 |
+
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
102 |
+
the docstring of this method for more information.
|
103 |
+
"""
|
104 |
+
return self.tokenizer.decode(*args, **kwargs)
|
105 |
+
|
106 |
+
@property
|
107 |
+
def model_input_names(self):
|
108 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
109 |
+
return list(dict.fromkeys(tokenizer_input_names))
|
env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__init__.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import _LazyModule
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {"tokenization_byt5": ["ByT5Tokenizer"]}
|
21 |
+
|
22 |
+
|
23 |
+
if TYPE_CHECKING:
|
24 |
+
from .tokenization_byt5 import ByT5Tokenizer
|
25 |
+
else:
|
26 |
+
import sys
|
27 |
+
|
28 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (498 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/convert_byt5_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (1.38 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/tokenization_byt5.cpython-310.pyc
ADDED
Binary file (9.22 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/convert_byt5_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The T5 authors and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert T5 checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
from transformers import T5Config, T5ForConditionalGeneration, load_tf_weights_in_t5
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logging.set_verbosity_info()
|
25 |
+
|
26 |
+
|
27 |
+
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path):
|
28 |
+
# Initialise PyTorch model
|
29 |
+
config = T5Config.from_json_file(config_file)
|
30 |
+
print(f"Building PyTorch model from configuration: {config}")
|
31 |
+
model = T5ForConditionalGeneration(config)
|
32 |
+
|
33 |
+
# Load weights from tf checkpoint
|
34 |
+
load_tf_weights_in_t5(model, config, tf_checkpoint_path)
|
35 |
+
|
36 |
+
# Save pytorch-model
|
37 |
+
print(f"Save PyTorch model to {pytorch_dump_path}")
|
38 |
+
model.save_pretrained(pytorch_dump_path)
|
39 |
+
|
40 |
+
|
41 |
+
if __name__ == "__main__":
|
42 |
+
parser = argparse.ArgumentParser()
|
43 |
+
# Required parameters
|
44 |
+
parser.add_argument(
|
45 |
+
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
46 |
+
)
|
47 |
+
parser.add_argument(
|
48 |
+
"--config_file",
|
49 |
+
default=None,
|
50 |
+
type=str,
|
51 |
+
required=True,
|
52 |
+
help=(
|
53 |
+
"The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture."
|
54 |
+
),
|
55 |
+
)
|
56 |
+
parser.add_argument(
|
57 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
58 |
+
)
|
59 |
+
args = parser.parse_args()
|
60 |
+
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/tokenization_byt5.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 T5 Authors and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization class for model ByT5."""
|
16 |
+
|
17 |
+
|
18 |
+
import warnings
|
19 |
+
from typing import List, Optional, Tuple
|
20 |
+
|
21 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
22 |
+
from ...utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
class ByT5Tokenizer(PreTrainedTokenizer):
|
29 |
+
"""
|
30 |
+
Construct a ByT5 tokenizer. ByT5 simply uses raw bytes utf-8 encoding.
|
31 |
+
|
32 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
33 |
+
this superclass for more information regarding those methods.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
37 |
+
The end of sequence token.
|
38 |
+
|
39 |
+
<Tip>
|
40 |
+
|
41 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
42 |
+
The token used is the `sep_token`.
|
43 |
+
|
44 |
+
</Tip>
|
45 |
+
|
46 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
47 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
48 |
+
token instead.
|
49 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
50 |
+
The token used for padding, for example when batching sequences of different lengths.
|
51 |
+
extra_ids (`int`, *optional*, defaults to 125):
|
52 |
+
Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are
|
53 |
+
accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. Extra tokens are
|
54 |
+
indexed from the end of the vocabulary up to beginning ("<extra_id_0>" is the last token in the vocabulary
|
55 |
+
like in ByT5 preprocessing see
|
56 |
+
[here](https://github.com/google-research/text-to-text-transfer-transformer/blob/9fd7b14a769417be33bc6c850f9598764913c833/t5/data/preprocessors.py#L2117)).
|
57 |
+
additional_special_tokens (`List[str]`, *optional*):
|
58 |
+
Additional special tokens used by the tokenizer.
|
59 |
+
"""
|
60 |
+
|
61 |
+
model_input_names = ["input_ids", "attention_mask"]
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
eos_token="</s>",
|
66 |
+
unk_token="<unk>",
|
67 |
+
pad_token="<pad>",
|
68 |
+
extra_ids=125,
|
69 |
+
additional_special_tokens=None,
|
70 |
+
**kwargs,
|
71 |
+
) -> None:
|
72 |
+
# Add extra_ids to the special token list
|
73 |
+
if extra_ids > 0 and additional_special_tokens is None:
|
74 |
+
additional_special_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)]
|
75 |
+
elif extra_ids > 0 and additional_special_tokens is not None and len(additional_special_tokens) > 0:
|
76 |
+
# Check that we have the right number of extra_id special tokens
|
77 |
+
extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens)))
|
78 |
+
if extra_tokens != extra_ids:
|
79 |
+
raise ValueError(
|
80 |
+
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
|
81 |
+
" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"
|
82 |
+
" extra_ids tokens"
|
83 |
+
)
|
84 |
+
|
85 |
+
pad_token = AddedToken(pad_token, lstrip=True, rstrip=True) if isinstance(pad_token, str) else pad_token
|
86 |
+
# we force left and right stripping for backward compatibility. The byt5tests depend on this.
|
87 |
+
eos_token = AddedToken(eos_token, lstrip=True, rstrip=True) if isinstance(eos_token, str) else eos_token
|
88 |
+
unk_token = AddedToken(unk_token, lstrip=True, rstrip=True) if isinstance(unk_token, str) else unk_token
|
89 |
+
# unk token needs to be in the vocab with correct index
|
90 |
+
self._added_tokens_decoder = {0: pad_token, 1: eos_token, 2: unk_token}
|
91 |
+
self.offset = len(self._added_tokens_decoder)
|
92 |
+
self._utf_vocab_size = 2**8 # utf is 8 bits
|
93 |
+
super().__init__(
|
94 |
+
eos_token=eos_token,
|
95 |
+
unk_token=unk_token,
|
96 |
+
pad_token=pad_token,
|
97 |
+
extra_ids=0,
|
98 |
+
additional_special_tokens=additional_special_tokens, # TODO extra ids are not used :sweatywmile:
|
99 |
+
**kwargs,
|
100 |
+
)
|
101 |
+
|
102 |
+
@property
|
103 |
+
def vocab_size(self):
|
104 |
+
return self._utf_vocab_size
|
105 |
+
|
106 |
+
def get_vocab(self):
|
107 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.offset)}
|
108 |
+
vocab.update(self.added_tokens_encoder)
|
109 |
+
return vocab
|
110 |
+
|
111 |
+
def get_special_tokens_mask(
|
112 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
113 |
+
) -> List[int]:
|
114 |
+
"""
|
115 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
116 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
token_ids_0 (`List[int]`):
|
120 |
+
List of IDs.
|
121 |
+
token_ids_1 (`List[int]`, *optional*):
|
122 |
+
Optional second list of IDs for sequence pairs.
|
123 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
124 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
128 |
+
"""
|
129 |
+
if already_has_special_tokens:
|
130 |
+
return super().get_special_tokens_mask(
|
131 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
132 |
+
)
|
133 |
+
|
134 |
+
# normal case: some special tokens
|
135 |
+
if token_ids_1 is None:
|
136 |
+
return ([0] * len(token_ids_0)) + [1]
|
137 |
+
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
138 |
+
|
139 |
+
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
|
140 |
+
"""Do not add eos again if user already added it."""
|
141 |
+
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
|
142 |
+
warnings.warn(
|
143 |
+
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
|
144 |
+
" eos tokens being added."
|
145 |
+
)
|
146 |
+
return token_ids
|
147 |
+
else:
|
148 |
+
return token_ids + [self.eos_token_id]
|
149 |
+
|
150 |
+
def create_token_type_ids_from_sequences(
|
151 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
152 |
+
) -> List[int]:
|
153 |
+
"""
|
154 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. ByT5 does not
|
155 |
+
make use of token type ids, therefore a list of zeros is returned.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
token_ids_0 (`List[int]`):
|
159 |
+
List of IDs.
|
160 |
+
token_ids_1 (`List[int]`, *optional*):
|
161 |
+
Optional second list of IDs for sequence pairs.
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
`List[int]`: List of zeros.
|
165 |
+
"""
|
166 |
+
eos = [self.eos_token_id]
|
167 |
+
|
168 |
+
if token_ids_1 is None:
|
169 |
+
return len(token_ids_0 + eos) * [0]
|
170 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
171 |
+
|
172 |
+
def build_inputs_with_special_tokens(
|
173 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
174 |
+
) -> List[int]:
|
175 |
+
"""
|
176 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
177 |
+
adding special tokens. A sequence has the following format:
|
178 |
+
|
179 |
+
- single sequence: `X </s>`
|
180 |
+
- pair of sequences: `A </s> B </s>`
|
181 |
+
|
182 |
+
Args:
|
183 |
+
token_ids_0 (`List[int]`):
|
184 |
+
List of IDs to which the special tokens will be added.
|
185 |
+
token_ids_1 (`List[int]`, *optional*):
|
186 |
+
Optional second list of IDs for sequence pairs.
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
190 |
+
"""
|
191 |
+
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
|
192 |
+
if token_ids_1 is None:
|
193 |
+
return token_ids_0
|
194 |
+
else:
|
195 |
+
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
|
196 |
+
return token_ids_0 + token_ids_1
|
197 |
+
|
198 |
+
def _tokenize(self, text: str) -> List[str]:
|
199 |
+
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
|
200 |
+
tokens = [chr(i) for i in text.encode("utf-8")]
|
201 |
+
return tokens
|
202 |
+
|
203 |
+
def _convert_token_to_id(self, token):
|
204 |
+
"""Converts a token (str) in an id using the vocab."""
|
205 |
+
|
206 |
+
if len(token) != 1:
|
207 |
+
token_id = None
|
208 |
+
else:
|
209 |
+
token_id = ord(token) + self.offset
|
210 |
+
|
211 |
+
return token_id
|
212 |
+
|
213 |
+
def _convert_id_to_token(self, index):
|
214 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
215 |
+
token = chr(index - self.offset)
|
216 |
+
return token
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens):
|
219 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
220 |
+
bstring = b""
|
221 |
+
for token in tokens:
|
222 |
+
if token in self.added_tokens_decoder:
|
223 |
+
tok_string = self.added_tokens_decoder[token].encode("utf-8")
|
224 |
+
elif token in self.added_tokens_encoder:
|
225 |
+
tok_string = token.encode("utf-8")
|
226 |
+
else:
|
227 |
+
tok_string = bytes([ord(token)])
|
228 |
+
bstring += tok_string
|
229 |
+
string = bstring.decode("utf-8", errors="ignore")
|
230 |
+
return string
|
231 |
+
|
232 |
+
# ByT5Tokenizer has no vocab file
|
233 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
234 |
+
return ()
|
env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/__init__.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_torch_available,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
_import_structure = {
|
24 |
+
"configuration_clvp": [
|
25 |
+
"CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
26 |
+
"ClvpConfig",
|
27 |
+
"ClvpDecoderConfig",
|
28 |
+
"ClvpEncoderConfig",
|
29 |
+
],
|
30 |
+
"feature_extraction_clvp": ["ClvpFeatureExtractor"],
|
31 |
+
"processing_clvp": ["ClvpProcessor"],
|
32 |
+
"tokenization_clvp": ["ClvpTokenizer"],
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
try:
|
37 |
+
if not is_torch_available():
|
38 |
+
raise OptionalDependencyNotAvailable()
|
39 |
+
except OptionalDependencyNotAvailable:
|
40 |
+
pass
|
41 |
+
else:
|
42 |
+
_import_structure["modeling_clvp"] = [
|
43 |
+
"CLVP_PRETRAINED_MODEL_ARCHIVE_LIST",
|
44 |
+
"ClvpModelForConditionalGeneration",
|
45 |
+
"ClvpForCausalLM",
|
46 |
+
"ClvpModel",
|
47 |
+
"ClvpPreTrainedModel",
|
48 |
+
"ClvpEncoder",
|
49 |
+
"ClvpDecoder",
|
50 |
+
]
|
51 |
+
|
52 |
+
|
53 |
+
if TYPE_CHECKING:
|
54 |
+
from .configuration_clvp import (
|
55 |
+
CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
56 |
+
ClvpConfig,
|
57 |
+
ClvpDecoderConfig,
|
58 |
+
ClvpEncoderConfig,
|
59 |
+
)
|
60 |
+
from .feature_extraction_clvp import ClvpFeatureExtractor
|
61 |
+
from .processing_clvp import ClvpProcessor
|
62 |
+
from .tokenization_clvp import ClvpTokenizer
|
63 |
+
|
64 |
+
try:
|
65 |
+
if not is_torch_available():
|
66 |
+
raise OptionalDependencyNotAvailable()
|
67 |
+
except OptionalDependencyNotAvailable:
|
68 |
+
pass
|
69 |
+
else:
|
70 |
+
from .modeling_clvp import (
|
71 |
+
CLVP_PRETRAINED_MODEL_ARCHIVE_LIST,
|
72 |
+
ClvpDecoder,
|
73 |
+
ClvpEncoder,
|
74 |
+
ClvpForCausalLM,
|
75 |
+
ClvpModel,
|
76 |
+
ClvpModelForConditionalGeneration,
|
77 |
+
ClvpPreTrainedModel,
|
78 |
+
)
|
79 |
+
|
80 |
+
else:
|
81 |
+
import sys
|
82 |
+
|
83 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/processing_clvp.cpython-310.pyc
ADDED
Binary file (2.89 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/configuration_clvp.py
ADDED
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" CLVP model configuration"""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from typing import TYPE_CHECKING, Union
|
20 |
+
|
21 |
+
|
22 |
+
if TYPE_CHECKING:
|
23 |
+
pass
|
24 |
+
|
25 |
+
from ...configuration_utils import PretrainedConfig
|
26 |
+
from ...utils import logging
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
32 |
+
"susnato/clvp_dev": "https://huggingface.co/susnato/clvp_dev/resolve/main/config.json",
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
class ClvpEncoderConfig(PretrainedConfig):
|
37 |
+
r"""
|
38 |
+
This is the configuration class to store the configuration of a [`ClvpEncoder`]. It is used to instantiate a CLVP
|
39 |
+
text or CLVP speech encoder according to the specified arguments. Instantiating a configuration with the defaults
|
40 |
+
will yield a similar configuration to that of the encoder of the CLVP
|
41 |
+
[susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
|
42 |
+
|
43 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
44 |
+
documentation from [`PretrainedConfig`] for more information.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
vocab_size (`int`, *optional*, defaults to 256):
|
48 |
+
Vocabulary size of the CLVP Encoder model.
|
49 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
50 |
+
Dimensionality of the encoder layers and the pooler layer.
|
51 |
+
intermediate_size (`int`, *optional*, defaults to 1536):
|
52 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
53 |
+
projection_dim (`int`, *optional*, defaults to 768):
|
54 |
+
Dimensionality of the projection vector.
|
55 |
+
num_hidden_layers (`int`, *optional*, defaults to 20):
|
56 |
+
Number of hidden layers in the Transformer encoder.
|
57 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
58 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
59 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
60 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
61 |
+
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
62 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
63 |
+
The epsilon used by the layer normalization layers.
|
64 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
65 |
+
The dropout ratio for the attention probabilities.
|
66 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
67 |
+
The dropout ratio for the feed-forward layers in [`ClvpEncoderMLP`].
|
68 |
+
use_rotary_embedding (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether to use rotary_embedding or not.
|
70 |
+
use_attention_bias (`bool`, *optional*, defaults to `False`):
|
71 |
+
Whether to use bias in Query, Key and Value layers during self attention.
|
72 |
+
summary_type (`str`, *optional*, defaults to `"mean"`):
|
73 |
+
What strategy to use to get pooler_output from the last_hidden_state. `"last"`, `"first"`, `"mean"` and
|
74 |
+
`"cls_index"` are supported.
|
75 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
76 |
+
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
|
77 |
+
testing).
|
78 |
+
bos_token_id (`int`, *optional*, defaults to 255):
|
79 |
+
Beginning of sequence token id.
|
80 |
+
eos_token_id (`int`, *optional*, defaults to 0):
|
81 |
+
End of sequence token id.
|
82 |
+
|
83 |
+
Example:
|
84 |
+
|
85 |
+
```python
|
86 |
+
>>> from transformers import ClvpEncoderConfig, ClvpEncoder
|
87 |
+
|
88 |
+
>>> # Initializing a ClvpEncoderConfig with susnato/clvp_dev style configuration
|
89 |
+
>>> encoder_configuration = ClvpEncoderConfig()
|
90 |
+
|
91 |
+
>>> # Initializing a ClvpEncoder (with random weights) from the susnato/clvp_dev style configuration
|
92 |
+
>>> model = ClvpEncoder(encoder_configuration)
|
93 |
+
|
94 |
+
>>> # Accessing the model configuration
|
95 |
+
>>> configuration = model.config
|
96 |
+
```"""
|
97 |
+
|
98 |
+
model_type = "clvp_encoder"
|
99 |
+
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
vocab_size=256,
|
103 |
+
hidden_size=768,
|
104 |
+
intermediate_size=1536,
|
105 |
+
projection_dim=768,
|
106 |
+
num_hidden_layers=20,
|
107 |
+
num_attention_heads=12,
|
108 |
+
hidden_act="gelu",
|
109 |
+
layer_norm_eps=1e-5,
|
110 |
+
attention_dropout=0.1,
|
111 |
+
dropout=0.1,
|
112 |
+
use_rotary_embedding=True,
|
113 |
+
use_attention_bias=False,
|
114 |
+
summary_type="mean",
|
115 |
+
initializer_factor=1.0,
|
116 |
+
bos_token_id=255,
|
117 |
+
eos_token_id=0,
|
118 |
+
**kwargs,
|
119 |
+
):
|
120 |
+
self.vocab_size = vocab_size
|
121 |
+
self.hidden_size = hidden_size
|
122 |
+
self.intermediate_size = intermediate_size
|
123 |
+
self.projection_dim = projection_dim
|
124 |
+
self.num_hidden_layers = num_hidden_layers
|
125 |
+
self.num_attention_heads = num_attention_heads
|
126 |
+
self.layer_norm_eps = layer_norm_eps
|
127 |
+
self.hidden_act = hidden_act
|
128 |
+
self.initializer_factor = initializer_factor
|
129 |
+
self.attention_dropout = attention_dropout
|
130 |
+
self.dropout = dropout
|
131 |
+
self.use_rotary_embedding = use_rotary_embedding
|
132 |
+
self.use_attention_bias = use_attention_bias
|
133 |
+
self.summary_type = summary_type
|
134 |
+
self.bos_token_id = bos_token_id
|
135 |
+
self.eos_token_id = eos_token_id
|
136 |
+
|
137 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
138 |
+
|
139 |
+
@classmethod
|
140 |
+
def from_pretrained(
|
141 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], config_type: str = "text_config", **kwargs
|
142 |
+
) -> "PretrainedConfig":
|
143 |
+
cls._set_token_in_kwargs(kwargs)
|
144 |
+
|
145 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
146 |
+
|
147 |
+
# make sure to have the config_type be either "text_config" or "speech_config"
|
148 |
+
# this is to make sure that we can load only text or speech configs from the nested ClvpConfig.
|
149 |
+
if config_type not in ["text_config", "speech_config"]:
|
150 |
+
raise ValueError(
|
151 |
+
f"We can only load either 'text_config' or 'speech_config' but you are trying to load" f"{config_type}"
|
152 |
+
)
|
153 |
+
|
154 |
+
# get the text config dict if we are loading from ClvpConfig
|
155 |
+
if config_dict.get("model_type") == "clvp":
|
156 |
+
config_dict = config_dict[config_type]
|
157 |
+
|
158 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
159 |
+
logger.warning(
|
160 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
161 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
162 |
+
)
|
163 |
+
|
164 |
+
return cls.from_dict(config_dict, **kwargs)
|
165 |
+
|
166 |
+
|
167 |
+
class ClvpDecoderConfig(PretrainedConfig):
|
168 |
+
r"""
|
169 |
+
This is the configuration class to store the configuration of a [`ClvpDecoder`]. It is used to instantiate a CLVP
|
170 |
+
Decoder Model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
171 |
+
with the defaults will yield a similar configuration to that of the Decoder part of the CLVP
|
172 |
+
[susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
|
173 |
+
|
174 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
175 |
+
documentation from [`PretrainedConfig`] for more information.
|
176 |
+
|
177 |
+
The architecture is similar to GPT2.
|
178 |
+
|
179 |
+
Args:
|
180 |
+
vocab_size (`int`, *optional*, defaults to 8194):
|
181 |
+
Vocabulary size of the model.
|
182 |
+
max_position_embeddings (`int`, *optional*, defaults to 608):
|
183 |
+
The maximum sequence length of mel tokens that this model might ever be used with. Similar to `n_positions`
|
184 |
+
in `GPT2Config`.
|
185 |
+
max_text_tokens (`int`, *optional*, defaults to 404):
|
186 |
+
The maximum sequence length of text tokens that this model might ever be used with. Similar to
|
187 |
+
`n_positions` in `GPT2Config`.
|
188 |
+
hidden_size (`int`, *optional*, defaults to 1024):
|
189 |
+
Dimensionality of the embeddings and hidden states.
|
190 |
+
num_hidden_layers (`int`, *optional*, defaults to 30):
|
191 |
+
Number of hidden layers in the Transformer encoder.
|
192 |
+
num_attention_heads (`int`, *optional*, defaults to 16):
|
193 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
194 |
+
n_inner (`int`, *optional*):
|
195 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times `hidden_size`.
|
196 |
+
num_mel_attn_blocks (`int`, *optional*, defaults to 6):
|
197 |
+
Denotes the number of self attention layers in [`ClvpConditioningEncoder`].
|
198 |
+
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
|
199 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
200 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
201 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
202 |
+
embd_pdrop (`float`, *optional*, defaults to 0.1):
|
203 |
+
The dropout ratio for the embeddings.
|
204 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
205 |
+
The dropout ratio for the attention.
|
206 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
207 |
+
The epsilon to use in the layer normalization layers.
|
208 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
209 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
210 |
+
summary_type (`string`, *optional*, defaults to `"cls_index"`):
|
211 |
+
Argument used when doing sequence summary.
|
212 |
+
|
213 |
+
Has to be one of the following options:
|
214 |
+
|
215 |
+
- `"last"`: Take the last token hidden state (like XLNet).
|
216 |
+
- `"first"`: Take the first token hidden state (like BERT).
|
217 |
+
- `"mean"`: Take the mean of all tokens hidden states.
|
218 |
+
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
|
219 |
+
- `"attn"`: Not implemented now, use multi-head attention.
|
220 |
+
summary_use_proj (`bool`, *optional*, defaults to `True`):
|
221 |
+
Whether or not to add a projection after the vector extraction.
|
222 |
+
summary_activation (`str`, *optional*):
|
223 |
+
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
|
224 |
+
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
|
225 |
+
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
|
226 |
+
summary_first_dropout (`float`, *optional*, defaults to 0.1):
|
227 |
+
The dropout ratio to be used after the projection and activation.
|
228 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
229 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
230 |
+
bos_token_id (`int`, *optional*, defaults to 8192):
|
231 |
+
Beginning of sequence token id, used at the start of the generation.
|
232 |
+
eos_token_id (`int`, *optional*, defaults to 8193):
|
233 |
+
End of sequence token id, used in the method
|
234 |
+
[`ClvpModelForConditionalGeneration.fix_speech_decoder_output()`] to correct decoder outputs.
|
235 |
+
feature_size (`int`, *optional*, defaults to 80):
|
236 |
+
The feature dimension of the extracted mel features. This value is used in [`ClvpConditioningEncoder`].
|
237 |
+
use_attention_bias (`bool`, *optional*, defaults to `True`):
|
238 |
+
Whether to use bias in Query, Key and Value layers during self attention.
|
239 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
240 |
+
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
|
241 |
+
testing).
|
242 |
+
decoder_fixing_codes (`list`, *optional*, defaults to `[83, 45, 45, 248]`):
|
243 |
+
These values are used in the method `fix_speech_decoder_output` to fix decoder generated outputs.
|
244 |
+
|
245 |
+
Example:
|
246 |
+
|
247 |
+
```python
|
248 |
+
>>> from transformers import ClvpDecoderConfig, ClvpDecoder
|
249 |
+
|
250 |
+
>>> # Initializing a ClvpDecoderConfig with susnato/clvp_dev style configuration
|
251 |
+
>>> decoder_configuration = ClvpDecoderConfig()
|
252 |
+
|
253 |
+
>>> # Initializing a ClvpDecoder (with random weights) from the susnato/clvp_dev style configuration
|
254 |
+
>>> model = ClvpDecoder(decoder_configuration)
|
255 |
+
|
256 |
+
>>> # Accessing the model configuration
|
257 |
+
>>> configuration = model.config
|
258 |
+
```"""
|
259 |
+
|
260 |
+
model_type = "clvp_decoder"
|
261 |
+
|
262 |
+
def __init__(
|
263 |
+
self,
|
264 |
+
vocab_size=8194,
|
265 |
+
max_position_embeddings=608,
|
266 |
+
max_text_tokens=404,
|
267 |
+
hidden_size=1024,
|
268 |
+
num_hidden_layers=30,
|
269 |
+
num_attention_heads=16,
|
270 |
+
n_inner=None,
|
271 |
+
num_mel_attn_blocks=6,
|
272 |
+
activation_function="gelu_new",
|
273 |
+
resid_pdrop=0.1,
|
274 |
+
embd_pdrop=0.1,
|
275 |
+
attention_dropout=0.1,
|
276 |
+
layer_norm_epsilon=1e-5,
|
277 |
+
initializer_range=0.02,
|
278 |
+
summary_type="cls_index",
|
279 |
+
summary_use_proj=True,
|
280 |
+
summary_activation=None,
|
281 |
+
summary_proj_to_labels=True,
|
282 |
+
summary_first_dropout=0.1,
|
283 |
+
use_cache=True,
|
284 |
+
bos_token_id=8192,
|
285 |
+
eos_token_id=8193,
|
286 |
+
feature_size=80,
|
287 |
+
use_attention_bias=True,
|
288 |
+
initializer_factor=1.0,
|
289 |
+
decoder_fixing_codes=[83, 45, 45, 248],
|
290 |
+
**kwargs,
|
291 |
+
):
|
292 |
+
self.vocab_size = vocab_size
|
293 |
+
self.max_position_embeddings = max_position_embeddings
|
294 |
+
self.max_text_tokens = max_text_tokens
|
295 |
+
self.hidden_size = hidden_size
|
296 |
+
self.num_hidden_layers = num_hidden_layers
|
297 |
+
self.num_attention_heads = num_attention_heads
|
298 |
+
self.n_inner = n_inner
|
299 |
+
self.num_mel_attn_blocks = num_mel_attn_blocks
|
300 |
+
self.activation_function = activation_function
|
301 |
+
self.resid_pdrop = resid_pdrop
|
302 |
+
self.embd_pdrop = embd_pdrop
|
303 |
+
self.attention_dropout = attention_dropout
|
304 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
305 |
+
self.initializer_range = initializer_range
|
306 |
+
self.summary_type = summary_type
|
307 |
+
self.summary_use_proj = summary_use_proj
|
308 |
+
self.summary_activation = summary_activation
|
309 |
+
self.summary_first_dropout = summary_first_dropout
|
310 |
+
self.summary_proj_to_labels = summary_proj_to_labels
|
311 |
+
self.use_cache = use_cache
|
312 |
+
self.feature_size = feature_size
|
313 |
+
self.use_attention_bias = use_attention_bias
|
314 |
+
self.initializer_factor = initializer_factor
|
315 |
+
self.decoder_fixing_codes = decoder_fixing_codes
|
316 |
+
|
317 |
+
self.bos_token_id = bos_token_id
|
318 |
+
self.eos_token_id = eos_token_id
|
319 |
+
|
320 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
321 |
+
|
322 |
+
@classmethod
|
323 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
324 |
+
cls._set_token_in_kwargs(kwargs)
|
325 |
+
|
326 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
327 |
+
|
328 |
+
# get the speech config dict if we are loading from ClvpConfig
|
329 |
+
if config_dict.get("model_type") == "clvp":
|
330 |
+
config_dict = config_dict["decoder_config"]
|
331 |
+
|
332 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
333 |
+
logger.warning(
|
334 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
335 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
336 |
+
)
|
337 |
+
|
338 |
+
return cls.from_dict(config_dict, **kwargs)
|
339 |
+
|
340 |
+
|
341 |
+
class ClvpConfig(PretrainedConfig):
|
342 |
+
r"""
|
343 |
+
[`ClvpConfig`] is the configuration class to store the configuration of a [`ClvpModelForConditionalGeneration`]. It
|
344 |
+
is used to instantiate a CLVP model according to the specified arguments, defining the text model, speech model and
|
345 |
+
decoder model configs. Instantiating a configuration with the defaults will yield a similar configuration to that
|
346 |
+
of the CLVP [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
|
347 |
+
|
348 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
349 |
+
documentation from [`PretrainedConfig`] for more information.
|
350 |
+
|
351 |
+
Args:
|
352 |
+
text_config (`dict`, *optional*):
|
353 |
+
Dictionary of configuration options used to initialize the CLVP text encoder.
|
354 |
+
speech_config (`dict`, *optional*):
|
355 |
+
Dictionary of configuration options used to initialize CLVP speech encoder.
|
356 |
+
decoder_config (`dict`, *optional*):
|
357 |
+
Dictionary of configuration options used to initialize [`ClvpDecoderConfig`].
|
358 |
+
projection_dim (`int`, *optional*, defaults to 768):
|
359 |
+
Dimentionality of text and speech projection layers.
|
360 |
+
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
361 |
+
The inital value of the *logit_scale* paramter. Default is used as per the original CLVP implementation.
|
362 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
363 |
+
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
|
364 |
+
testing).
|
365 |
+
kwargs (*optional*):
|
366 |
+
Dictionary of keyword arguments.
|
367 |
+
|
368 |
+
Example:
|
369 |
+
|
370 |
+
```python
|
371 |
+
>>> from transformers import ClvpConfig, ClvpModelForConditionalGeneration
|
372 |
+
|
373 |
+
>>> # Initializing a ClvpConfig with susnato/clvp_dev style configuration
|
374 |
+
>>> configuration = ClvpConfig()
|
375 |
+
|
376 |
+
>>> # Initializing a ClvpModelForConditionalGeneration (with random weights) from the susnato/clvp_dev style configuration
|
377 |
+
>>> model = ClvpModelForConditionalGeneration(configuration)
|
378 |
+
|
379 |
+
>>> # Accessing the model configuration
|
380 |
+
>>> configuration = model.config
|
381 |
+
|
382 |
+
>>> # We can also initialize a CLVPConfig from a CLVPTextConfig, CLVPSpeechConfig and a CLVPAutoRegressiveConfig
|
383 |
+
>>> from transformers import ClvpEncoderConfig, ClvpDecoderConfig
|
384 |
+
|
385 |
+
>>> # Initializing a CLVP text, CLVP speech and CLVP decoder configuration
|
386 |
+
>>> config_text = ClvpEncoderConfig()
|
387 |
+
>>> config_speech = ClvpEncoderConfig()
|
388 |
+
>>> decoder_config = ClvpDecoderConfig()
|
389 |
+
|
390 |
+
>>> config = ClvpConfig.from_sub_model_configs(config_text, config_speech, decoder_config)
|
391 |
+
```"""
|
392 |
+
|
393 |
+
model_type = "clvp"
|
394 |
+
is_composition = True
|
395 |
+
|
396 |
+
def __init__(
|
397 |
+
self,
|
398 |
+
text_config=None,
|
399 |
+
speech_config=None,
|
400 |
+
decoder_config=None,
|
401 |
+
projection_dim=768,
|
402 |
+
logit_scale_init_value=2.6592,
|
403 |
+
initializer_factor=1.0,
|
404 |
+
**kwargs,
|
405 |
+
):
|
406 |
+
super().__init__(**kwargs)
|
407 |
+
|
408 |
+
if text_config is None:
|
409 |
+
text_config = {}
|
410 |
+
logger.info("`text_config` is `None`. Initializing the `ClvpEncoderConfig` with default values.")
|
411 |
+
|
412 |
+
if speech_config is None:
|
413 |
+
speech_config = {}
|
414 |
+
logger.info("`speech_config` is `None`. initializing the `ClvpEncoderConfig` with default values.")
|
415 |
+
|
416 |
+
if decoder_config is None:
|
417 |
+
decoder_config = {}
|
418 |
+
logger.info("`decoder_config` is `None`. initializing the `ClvpDecoderConfig` with default values.")
|
419 |
+
|
420 |
+
self.text_config = ClvpEncoderConfig(**text_config)
|
421 |
+
self.speech_config = ClvpEncoderConfig(**speech_config)
|
422 |
+
self.decoder_config = ClvpDecoderConfig(**decoder_config)
|
423 |
+
|
424 |
+
self.projection_dim = projection_dim
|
425 |
+
self.logit_scale_init_value = logit_scale_init_value
|
426 |
+
self.initializer_factor = initializer_factor
|
427 |
+
|
428 |
+
@classmethod
|
429 |
+
def from_sub_model_configs(
|
430 |
+
cls,
|
431 |
+
text_config: ClvpEncoderConfig,
|
432 |
+
speech_config: ClvpEncoderConfig,
|
433 |
+
decoder_config: ClvpDecoderConfig,
|
434 |
+
**kwargs,
|
435 |
+
):
|
436 |
+
r"""
|
437 |
+
Instantiate a [`ClvpConfig`] (or a derived class) from CLVP text model configuration, CLVP speech model
|
438 |
+
configuration and CLVP decoder model configuration.
|
439 |
+
|
440 |
+
Args:
|
441 |
+
text_config (`ClvpEncoderConfig`):
|
442 |
+
Text model configuration of type [`ClvpEncoderConfig`].
|
443 |
+
speech_config (`ClvpEncoderConfig`):
|
444 |
+
Speech model configuration of type [`ClvpEncoderConfig`].
|
445 |
+
decoder_config (`ClvpDecoderConfig`):
|
446 |
+
Decoder model configuration of type [`ClvpDecoderConfig`].
|
447 |
+
|
448 |
+
Returns:
|
449 |
+
[`ClvpConfig`]: An instance of a configuration object
|
450 |
+
"""
|
451 |
+
|
452 |
+
return cls(
|
453 |
+
text_config=text_config.to_dict(),
|
454 |
+
speech_config=speech_config.to_dict(),
|
455 |
+
decoder_config=decoder_config.to_dict(),
|
456 |
+
**kwargs,
|
457 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/feature_extraction_clvp.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
Feature extractor class for CLVP
|
18 |
+
"""
|
19 |
+
|
20 |
+
from typing import List, Optional, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
from ...audio_utils import mel_filter_bank, spectrogram, window_function
|
25 |
+
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
|
26 |
+
from ...feature_extraction_utils import BatchFeature
|
27 |
+
from ...utils import TensorType, logging
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
class ClvpFeatureExtractor(SequenceFeatureExtractor):
|
34 |
+
r"""
|
35 |
+
Constructs a CLVP feature extractor.
|
36 |
+
|
37 |
+
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
|
38 |
+
most of the main methods. Users should refer to this superclass for more information regarding those methods.
|
39 |
+
|
40 |
+
This class extracts log-mel-spectrogram features from raw speech using a custom numpy implementation of the `Short
|
41 |
+
Time Fourier Transform` which should match pytorch's `torch.stft` equivalent.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
feature_size (`int`, *optional*, defaults to 80):
|
45 |
+
The feature dimension of the extracted features.
|
46 |
+
sampling_rate (`int`, *optional*, defaults to 22050):
|
47 |
+
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
|
48 |
+
default_audio_length (`int`, *optional*, defaults to 6):
|
49 |
+
The default length of raw audio in seconds. If `max_length` is not set during `__call__` then it will
|
50 |
+
automatically be set to default_audio_length * `self.sampling_rate`.
|
51 |
+
hop_length (`int`, *optional*, defaults to 256):
|
52 |
+
Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
|
53 |
+
chunk_length (`int`, *optional*, defaults to 30):
|
54 |
+
The maximum number of chuncks of `sampling_rate` samples used to trim and pad longer or shorter audio
|
55 |
+
sequences.
|
56 |
+
n_fft (`int`, *optional*, defaults to 1024):
|
57 |
+
Size of the Fourier transform.
|
58 |
+
padding_value (`float`, *optional*, defaults to 0.0):
|
59 |
+
Padding value used to pad the audio. Should correspond to silences.
|
60 |
+
mel_norms (`list` of length `feature_size`, *optional*):
|
61 |
+
If `mel_norms` is provided then it will be used to normalize the log-mel spectrograms along each
|
62 |
+
mel-filter.
|
63 |
+
return_attention_mask (`bool`, *optional*, defaults to `False`):
|
64 |
+
Whether to return the attention mask. If left to the default, it will return the attention mask.
|
65 |
+
|
66 |
+
[What are attention masks?](../glossary#attention-mask)
|
67 |
+
"""
|
68 |
+
|
69 |
+
model_input_names = ["input_features", "attention_mask"]
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
feature_size=80,
|
74 |
+
sampling_rate=22050,
|
75 |
+
default_audio_length=6,
|
76 |
+
hop_length=256,
|
77 |
+
chunk_length=30,
|
78 |
+
n_fft=1024,
|
79 |
+
padding_value=0.0,
|
80 |
+
mel_norms=None,
|
81 |
+
return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask
|
82 |
+
**kwargs,
|
83 |
+
):
|
84 |
+
super().__init__(
|
85 |
+
feature_size=feature_size,
|
86 |
+
sampling_rate=sampling_rate,
|
87 |
+
padding_value=padding_value,
|
88 |
+
return_attention_mask=return_attention_mask,
|
89 |
+
**kwargs,
|
90 |
+
)
|
91 |
+
self.n_fft = n_fft
|
92 |
+
self.hop_length = hop_length
|
93 |
+
self.chunk_length = chunk_length
|
94 |
+
self.n_samples = chunk_length * sampling_rate
|
95 |
+
self.nb_max_frames = self.n_samples // hop_length
|
96 |
+
self.sampling_rate = sampling_rate
|
97 |
+
self.default_audio_length = default_audio_length
|
98 |
+
self.mel_norms = mel_norms
|
99 |
+
self.mel_filters = mel_filter_bank(
|
100 |
+
num_frequency_bins=1 + (n_fft // 2),
|
101 |
+
num_mel_filters=feature_size,
|
102 |
+
min_frequency=0.0,
|
103 |
+
max_frequency=8000.0,
|
104 |
+
sampling_rate=sampling_rate,
|
105 |
+
norm="slaney",
|
106 |
+
mel_scale="htk",
|
107 |
+
)
|
108 |
+
|
109 |
+
def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
|
110 |
+
"""
|
111 |
+
This method first computes the log-mel spectrogram of the provided audio then applies normalization along the
|
112 |
+
each mel-filterbank, if `mel_norms` is provided.
|
113 |
+
"""
|
114 |
+
log_spec = spectrogram(
|
115 |
+
waveform,
|
116 |
+
window_function(self.n_fft, "hann"),
|
117 |
+
frame_length=self.n_fft,
|
118 |
+
hop_length=self.hop_length,
|
119 |
+
power=2.0,
|
120 |
+
mel_filters=self.mel_filters,
|
121 |
+
log_mel=None,
|
122 |
+
)
|
123 |
+
|
124 |
+
log_spec = np.log(np.clip(log_spec, a_min=1e-5, a_max=None))
|
125 |
+
|
126 |
+
if self.mel_norms is not None:
|
127 |
+
log_spec = log_spec / np.array(self.mel_norms)[:, None]
|
128 |
+
|
129 |
+
return log_spec
|
130 |
+
|
131 |
+
def __call__(
|
132 |
+
self,
|
133 |
+
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
|
134 |
+
sampling_rate: Optional[int] = None,
|
135 |
+
truncation: bool = True,
|
136 |
+
pad_to_multiple_of: Optional[int] = None,
|
137 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
138 |
+
return_attention_mask: Optional[bool] = True,
|
139 |
+
padding: Optional[str] = "max_length",
|
140 |
+
max_length: Optional[int] = None,
|
141 |
+
**kwargs,
|
142 |
+
) -> BatchFeature:
|
143 |
+
"""
|
144 |
+
`ClvpFeatureExtractor` is used to extract various voice specific properties such as the pitch and tone of the
|
145 |
+
voice, speaking speed, and even speaking defects like a lisp or stuttering from a sample voice or `raw_speech`.
|
146 |
+
|
147 |
+
First the voice is padded or truncated in a way such that it becomes a waveform of `self.default_audio_length`
|
148 |
+
seconds long and then the log-mel spectrogram is extracted from it.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
|
152 |
+
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
|
153 |
+
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
|
154 |
+
stereo, i.e. single float per timestep.
|
155 |
+
sampling_rate (`int`, *optional*):
|
156 |
+
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
|
157 |
+
`sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
|
158 |
+
pipeline.
|
159 |
+
truncation (`bool`, *optional*, default to `True`):
|
160 |
+
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
|
161 |
+
pad_to_multiple_of (`int`, *optional*):
|
162 |
+
If set will pad the sequence to a multiple of the provided value.
|
163 |
+
|
164 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
165 |
+
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
|
166 |
+
return_attention_mask (`bool`, *optional*, defaults to `True`):
|
167 |
+
Whether to return the attention mask. If left to the default, it will return the attention mask.
|
168 |
+
|
169 |
+
[What are attention masks?](../glossary#attention-mask)
|
170 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
171 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
172 |
+
|
173 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
174 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
175 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
176 |
+
padding_value (`float`, defaults to 0.0):
|
177 |
+
The value that is used to fill the padding values / vectors.
|
178 |
+
max_length (`int`, *optional*):
|
179 |
+
The maximum input length of the inputs.
|
180 |
+
"""
|
181 |
+
|
182 |
+
if sampling_rate is not None:
|
183 |
+
if sampling_rate != self.sampling_rate:
|
184 |
+
raise ValueError(
|
185 |
+
f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
|
186 |
+
f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
|
187 |
+
f" was sampled with {self.sampling_rate} and not {sampling_rate}."
|
188 |
+
)
|
189 |
+
else:
|
190 |
+
logger.warning(
|
191 |
+
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
|
192 |
+
"Failing to do so can result in silent errors that might be hard to debug."
|
193 |
+
)
|
194 |
+
|
195 |
+
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
|
196 |
+
if is_batched_numpy and len(raw_speech.shape) > 2:
|
197 |
+
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
|
198 |
+
is_batched = is_batched_numpy or (
|
199 |
+
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
|
200 |
+
)
|
201 |
+
|
202 |
+
if is_batched:
|
203 |
+
raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
|
204 |
+
elif not is_batched and not isinstance(raw_speech, np.ndarray):
|
205 |
+
raw_speech = np.asarray(raw_speech, dtype=np.float32)
|
206 |
+
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
|
207 |
+
raw_speech = raw_speech.astype(np.float32)
|
208 |
+
|
209 |
+
# always return batch
|
210 |
+
if not is_batched:
|
211 |
+
raw_speech = [np.asarray([raw_speech]).T]
|
212 |
+
|
213 |
+
batched_speech = BatchFeature({"input_features": raw_speech})
|
214 |
+
|
215 |
+
max_length = self.default_audio_length * self.sampling_rate if max_length is None else max_length
|
216 |
+
|
217 |
+
padded_inputs = self.pad(
|
218 |
+
batched_speech,
|
219 |
+
padding=padding,
|
220 |
+
max_length=max_length,
|
221 |
+
truncation=truncation,
|
222 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
223 |
+
return_attention_mask=return_attention_mask,
|
224 |
+
)
|
225 |
+
|
226 |
+
# make sure list is in array format
|
227 |
+
input_features = padded_inputs.get("input_features").transpose(2, 0, 1)
|
228 |
+
|
229 |
+
input_features = [
|
230 |
+
self._np_extract_fbank_features(waveform).astype(np.float32) for waveform in input_features[0]
|
231 |
+
]
|
232 |
+
|
233 |
+
if isinstance(input_features[0], List):
|
234 |
+
padded_inputs["input_features"] = [np.asarray(feature) for feature in input_features]
|
235 |
+
else:
|
236 |
+
padded_inputs["input_features"] = input_features
|
237 |
+
|
238 |
+
return padded_inputs.convert_to_tensors(return_tensors)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/processing_clvp.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
Processor class for CLVP
|
18 |
+
"""
|
19 |
+
|
20 |
+
|
21 |
+
from ...processing_utils import ProcessorMixin
|
22 |
+
|
23 |
+
|
24 |
+
class ClvpProcessor(ProcessorMixin):
|
25 |
+
r"""
|
26 |
+
Constructs a CLVP processor which wraps a CLVP Feature Extractor and a CLVP Tokenizer into a single processor.
|
27 |
+
|
28 |
+
[`ClvpProcessor`] offers all the functionalities of [`ClvpFeatureExtractor`] and [`ClvpTokenizer`]. See the
|
29 |
+
[`~ClvpProcessor.__call__`], [`~ClvpProcessor.decode`] and [`~ClvpProcessor.batch_decode`] for more information.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
feature_extractor (`ClvpFeatureExtractor`):
|
33 |
+
An instance of [`ClvpFeatureExtractor`]. The feature extractor is a required input.
|
34 |
+
tokenizer (`ClvpTokenizer`):
|
35 |
+
An instance of [`ClvpTokenizer`]. The tokenizer is a required input.
|
36 |
+
"""
|
37 |
+
|
38 |
+
feature_extractor_class = "ClvpFeatureExtractor"
|
39 |
+
tokenizer_class = "ClvpTokenizer"
|
40 |
+
model_input_names = [
|
41 |
+
"input_ids",
|
42 |
+
"input_features",
|
43 |
+
"attention_mask",
|
44 |
+
]
|
45 |
+
|
46 |
+
def __init__(self, feature_extractor, tokenizer):
|
47 |
+
super().__init__(feature_extractor, tokenizer)
|
48 |
+
|
49 |
+
def __call__(self, *args, **kwargs):
|
50 |
+
"""
|
51 |
+
Forwards the `audio` and `sampling_rate` arguments to [`~ClvpFeatureExtractor.__call__`] and the `text`
|
52 |
+
argument to [`~ClvpTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
|
53 |
+
information.
|
54 |
+
"""
|
55 |
+
|
56 |
+
raw_speech = kwargs.pop("raw_speech", None)
|
57 |
+
sampling_rate = kwargs.pop("sampling_rate", None)
|
58 |
+
text = kwargs.pop("text", None)
|
59 |
+
|
60 |
+
if raw_speech is None and text is None:
|
61 |
+
raise ValueError("You need to specify either an `raw_speech` or `text` input to process.")
|
62 |
+
|
63 |
+
if raw_speech is not None:
|
64 |
+
inputs = self.feature_extractor(raw_speech, sampling_rate=sampling_rate, **kwargs)
|
65 |
+
if text is not None:
|
66 |
+
encodings = self.tokenizer(text, **kwargs)
|
67 |
+
|
68 |
+
if text is None:
|
69 |
+
return inputs
|
70 |
+
elif raw_speech is None:
|
71 |
+
return encodings
|
72 |
+
else:
|
73 |
+
inputs["input_ids"] = encodings["input_ids"]
|
74 |
+
inputs["attention_mask"] = encodings["attention_mask"]
|
75 |
+
return inputs
|
76 |
+
|
77 |
+
# Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.batch_decode with Whisper->Clvp
|
78 |
+
def batch_decode(self, *args, **kwargs):
|
79 |
+
"""
|
80 |
+
This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
81 |
+
refer to the docstring of this method for more information.
|
82 |
+
"""
|
83 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
84 |
+
|
85 |
+
# Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.decode with Whisper->Clvp
|
86 |
+
def decode(self, *args, **kwargs):
|
87 |
+
"""
|
88 |
+
This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
89 |
+
the docstring of this method for more information.
|
90 |
+
"""
|
91 |
+
return self.tokenizer.decode(*args, **kwargs)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/tokenization_clvp.py
ADDED
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization class for CLVP."""
|
16 |
+
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
from functools import lru_cache
|
20 |
+
from typing import List, Optional, Tuple
|
21 |
+
|
22 |
+
import regex as re
|
23 |
+
|
24 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
25 |
+
from ...utils import logging
|
26 |
+
from .number_normalizer import EnglishNormalizer
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
VOCAB_FILES_NAMES = {
|
32 |
+
"vocab_file": "vocab.json",
|
33 |
+
"merges_file": "merges.txt",
|
34 |
+
}
|
35 |
+
|
36 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
37 |
+
"vocab_file": {
|
38 |
+
"clvp_dev": "https://huggingface.co/susnato/clvp_dev/blob/main/vocab.json",
|
39 |
+
},
|
40 |
+
"merges_file": {
|
41 |
+
"clvp_dev": "https://huggingface.co/susnato/clvp_dev/blob/main/merges.txt",
|
42 |
+
},
|
43 |
+
}
|
44 |
+
|
45 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
46 |
+
"clvp_dev": 1024,
|
47 |
+
}
|
48 |
+
|
49 |
+
|
50 |
+
@lru_cache()
|
51 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
|
52 |
+
def bytes_to_unicode():
|
53 |
+
"""
|
54 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
55 |
+
characters the bpe code barfs on.
|
56 |
+
|
57 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
58 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
59 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
60 |
+
tables between utf-8 bytes and unicode strings.
|
61 |
+
"""
|
62 |
+
bs = (
|
63 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
64 |
+
)
|
65 |
+
cs = bs[:]
|
66 |
+
n = 0
|
67 |
+
for b in range(2**8):
|
68 |
+
if b not in bs:
|
69 |
+
bs.append(b)
|
70 |
+
cs.append(2**8 + n)
|
71 |
+
n += 1
|
72 |
+
cs = [chr(n) for n in cs]
|
73 |
+
return dict(zip(bs, cs))
|
74 |
+
|
75 |
+
|
76 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
|
77 |
+
def get_pairs(word):
|
78 |
+
"""
|
79 |
+
Return set of symbol pairs in a word.
|
80 |
+
|
81 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
82 |
+
"""
|
83 |
+
pairs = set()
|
84 |
+
prev_char = word[0]
|
85 |
+
for char in word[1:]:
|
86 |
+
pairs.add((prev_char, char))
|
87 |
+
prev_char = char
|
88 |
+
return pairs
|
89 |
+
|
90 |
+
|
91 |
+
class ClvpTokenizer(PreTrainedTokenizer):
|
92 |
+
"""
|
93 |
+
Construct a CLVP tokenizer. Based on byte-level Byte-Pair-Encoding.
|
94 |
+
|
95 |
+
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
96 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
97 |
+
|
98 |
+
```python
|
99 |
+
>>> from transformers import ClvpTokenizer
|
100 |
+
|
101 |
+
>>> tokenizer = ClvpTokenizer.from_pretrained("susnato/clvp_dev")
|
102 |
+
>>> tokenizer("Hello world")["input_ids"]
|
103 |
+
[62, 84, 28, 2, 179, 79]
|
104 |
+
|
105 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
106 |
+
[2, 62, 84, 28, 2, 179, 79]
|
107 |
+
```
|
108 |
+
|
109 |
+
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
|
110 |
+
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
|
111 |
+
|
112 |
+
<Tip>
|
113 |
+
|
114 |
+
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
|
115 |
+
|
116 |
+
</Tip>
|
117 |
+
|
118 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
119 |
+
this superclass for more information regarding those methods.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
vocab_file (`str`):
|
123 |
+
Path to the vocabulary file.
|
124 |
+
merges_file (`str`):
|
125 |
+
Path to the merges file.
|
126 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
127 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
128 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
129 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
130 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
131 |
+
token instead.
|
132 |
+
bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
133 |
+
The beginning of sequence token.
|
134 |
+
eos_token (`str`, *optional*, defaults to `"[STOP]"`):
|
135 |
+
The end of sequence token.
|
136 |
+
pad_token (`str`, *optional*, defaults to `"[STOP]"`):
|
137 |
+
The pad token of the sequence.
|
138 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
139 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
140 |
+
other word. (CLVP tokenizer detect beginning of words by the preceding space).
|
141 |
+
add_bos_token (`bool`, *optional*, defaults to `False`):
|
142 |
+
Whether to add `bos_token` in front of the sequence when add_special_tokens=True.
|
143 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
144 |
+
Whether to add `eos_token` in end of the sequence when add_special_tokens=True.
|
145 |
+
"""
|
146 |
+
|
147 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
148 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
149 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
150 |
+
model_input_names = [
|
151 |
+
"input_ids",
|
152 |
+
"attention_mask",
|
153 |
+
]
|
154 |
+
|
155 |
+
def __init__(
|
156 |
+
self,
|
157 |
+
vocab_file,
|
158 |
+
merges_file,
|
159 |
+
errors="replace",
|
160 |
+
unk_token="[UNK]",
|
161 |
+
bos_token="<|endoftext|>",
|
162 |
+
eos_token="[STOP]",
|
163 |
+
pad_token="[STOP]",
|
164 |
+
add_prefix_space=False,
|
165 |
+
add_bos_token=False,
|
166 |
+
add_eos_token=False,
|
167 |
+
**kwargs,
|
168 |
+
):
|
169 |
+
bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
|
170 |
+
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
|
171 |
+
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
|
172 |
+
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
|
173 |
+
|
174 |
+
self.add_bos_token = add_bos_token
|
175 |
+
self.add_eos_token = add_eos_token
|
176 |
+
self._normalizer = None
|
177 |
+
|
178 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
179 |
+
self.encoder = json.load(vocab_handle)
|
180 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
181 |
+
self.errors = errors # how to handle errors in decoding
|
182 |
+
self.byte_encoder = bytes_to_unicode()
|
183 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
184 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
185 |
+
bpe_merges = merges_handle.read().split("\n")[1:-1]
|
186 |
+
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
187 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
188 |
+
self.cache = {}
|
189 |
+
self.add_prefix_space = add_prefix_space
|
190 |
+
|
191 |
+
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
192 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
193 |
+
|
194 |
+
super().__init__(
|
195 |
+
errors=errors,
|
196 |
+
unk_token=unk_token,
|
197 |
+
bos_token=bos_token,
|
198 |
+
eos_token=eos_token,
|
199 |
+
pad_token=pad_token,
|
200 |
+
add_prefix_space=add_prefix_space,
|
201 |
+
add_bos_token=add_bos_token,
|
202 |
+
add_eos_token=add_eos_token,
|
203 |
+
**kwargs,
|
204 |
+
)
|
205 |
+
|
206 |
+
@property
|
207 |
+
def vocab_size(self):
|
208 |
+
return len(self.encoder)
|
209 |
+
|
210 |
+
@property
|
211 |
+
def normalizer(self):
|
212 |
+
if self._normalizer is None:
|
213 |
+
self._normalizer = EnglishNormalizer()
|
214 |
+
return self._normalizer
|
215 |
+
|
216 |
+
def get_vocab(self):
|
217 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
218 |
+
|
219 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
|
220 |
+
def bpe(self, token):
|
221 |
+
if token in self.cache:
|
222 |
+
return self.cache[token]
|
223 |
+
word = tuple(token)
|
224 |
+
pairs = get_pairs(word)
|
225 |
+
|
226 |
+
if not pairs:
|
227 |
+
return token
|
228 |
+
|
229 |
+
while True:
|
230 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
231 |
+
if bigram not in self.bpe_ranks:
|
232 |
+
break
|
233 |
+
first, second = bigram
|
234 |
+
new_word = []
|
235 |
+
i = 0
|
236 |
+
while i < len(word):
|
237 |
+
try:
|
238 |
+
j = word.index(first, i)
|
239 |
+
except ValueError:
|
240 |
+
new_word.extend(word[i:])
|
241 |
+
break
|
242 |
+
else:
|
243 |
+
new_word.extend(word[i:j])
|
244 |
+
i = j
|
245 |
+
|
246 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
247 |
+
new_word.append(first + second)
|
248 |
+
i += 2
|
249 |
+
else:
|
250 |
+
new_word.append(word[i])
|
251 |
+
i += 1
|
252 |
+
new_word = tuple(new_word)
|
253 |
+
word = new_word
|
254 |
+
if len(word) == 1:
|
255 |
+
break
|
256 |
+
else:
|
257 |
+
pairs = get_pairs(word)
|
258 |
+
word = " ".join(word)
|
259 |
+
self.cache[token] = word
|
260 |
+
return word
|
261 |
+
|
262 |
+
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
|
263 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
264 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
265 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
266 |
+
|
267 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
268 |
+
|
269 |
+
if token_ids_1 is not None:
|
270 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
271 |
+
|
272 |
+
return output
|
273 |
+
|
274 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_special_tokens_mask
|
275 |
+
def get_special_tokens_mask(
|
276 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
277 |
+
) -> List[int]:
|
278 |
+
"""
|
279 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
280 |
+
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
281 |
+
|
282 |
+
Args:
|
283 |
+
token_ids_0 (`List[int]`):
|
284 |
+
List of IDs.
|
285 |
+
token_ids_1 (`List[int]`, *optional*):
|
286 |
+
Optional second list of IDs for sequence pairs.
|
287 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
288 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
289 |
+
|
290 |
+
Returns:
|
291 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
292 |
+
"""
|
293 |
+
if already_has_special_tokens:
|
294 |
+
return super().get_special_tokens_mask(
|
295 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
296 |
+
)
|
297 |
+
|
298 |
+
if not self.add_bos_token:
|
299 |
+
return super().get_special_tokens_mask(
|
300 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
|
301 |
+
)
|
302 |
+
|
303 |
+
if token_ids_1 is None:
|
304 |
+
return [1] + ([0] * len(token_ids_0))
|
305 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|
306 |
+
|
307 |
+
def _tokenize(self, text):
|
308 |
+
"""Tokenize a string."""
|
309 |
+
bpe_tokens = []
|
310 |
+
text = self.normalizer(text)
|
311 |
+
for token in re.findall(self.pat, text):
|
312 |
+
token = "".join(
|
313 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
314 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
315 |
+
|
316 |
+
# if the token is "Ġ" we replace it with "[SPACE]" (if "[SPACE]" is present in the vocab), otherwise we keep the "Ġ".
|
317 |
+
bpe_tokens.extend(
|
318 |
+
"[SPACE]" if bpe_token == "\u0120" and "[SPACE]" in self.encoder.keys() else bpe_token
|
319 |
+
for bpe_token in self.bpe(token).split(" ")
|
320 |
+
)
|
321 |
+
|
322 |
+
return bpe_tokens
|
323 |
+
|
324 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
|
325 |
+
def _convert_token_to_id(self, token):
|
326 |
+
"""Converts a token (str) in an id using the vocab."""
|
327 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
328 |
+
|
329 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
|
330 |
+
def _convert_id_to_token(self, index):
|
331 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
332 |
+
return self.decoder.get(index)
|
333 |
+
|
334 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
|
335 |
+
def convert_tokens_to_string(self, tokens):
|
336 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
337 |
+
text = "".join(tokens)
|
338 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
339 |
+
return text
|
340 |
+
|
341 |
+
def clean_up_tokenization(self, text):
|
342 |
+
text = "".join(text)
|
343 |
+
vocab_tokens = list(self.encoder.keys()) + list(self.added_tokens_encoder.keys())
|
344 |
+
|
345 |
+
text = text.replace("[SPACE]", " ") if "[SPACE]" in vocab_tokens else text
|
346 |
+
text = text.replace("[STOP]", " ") if "[STOP]" in vocab_tokens else text
|
347 |
+
|
348 |
+
text = text.replace(self.unk_token, "").replace(" ", " ").replace(" ", " ")
|
349 |
+
return text
|
350 |
+
|
351 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
|
352 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
353 |
+
if not os.path.isdir(save_directory):
|
354 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
355 |
+
return
|
356 |
+
vocab_file = os.path.join(
|
357 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
358 |
+
)
|
359 |
+
merge_file = os.path.join(
|
360 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
361 |
+
)
|
362 |
+
|
363 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
364 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
365 |
+
|
366 |
+
index = 0
|
367 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
368 |
+
writer.write("#version: 0.2\n")
|
369 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
370 |
+
if index != token_index:
|
371 |
+
logger.warning(
|
372 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
373 |
+
" Please check that the tokenizer is not corrupted!"
|
374 |
+
)
|
375 |
+
index = token_index
|
376 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
377 |
+
index += 1
|
378 |
+
|
379 |
+
return vocab_file, merge_file
|
env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.08 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__pycache__/configuration_decision_transformer.cpython-310.pyc
ADDED
Binary file (6.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__pycache__/modeling_decision_transformer.cpython-310.pyc
ADDED
Binary file (25.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__init__.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_tf_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {
|
27 |
+
"configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"],
|
28 |
+
"tokenization_lxmert": ["LxmertTokenizer"],
|
29 |
+
}
|
30 |
+
|
31 |
+
try:
|
32 |
+
if not is_tokenizers_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
_import_structure["tokenization_lxmert_fast"] = ["LxmertTokenizerFast"]
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_torch_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
_import_structure["modeling_lxmert"] = [
|
46 |
+
"LxmertEncoder",
|
47 |
+
"LxmertForPreTraining",
|
48 |
+
"LxmertForQuestionAnswering",
|
49 |
+
"LxmertModel",
|
50 |
+
"LxmertPreTrainedModel",
|
51 |
+
"LxmertVisualFeatureEncoder",
|
52 |
+
"LxmertXLayer",
|
53 |
+
]
|
54 |
+
|
55 |
+
try:
|
56 |
+
if not is_tf_available():
|
57 |
+
raise OptionalDependencyNotAvailable()
|
58 |
+
except OptionalDependencyNotAvailable:
|
59 |
+
pass
|
60 |
+
else:
|
61 |
+
_import_structure["modeling_tf_lxmert"] = [
|
62 |
+
"TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
63 |
+
"TFLxmertForPreTraining",
|
64 |
+
"TFLxmertMainLayer",
|
65 |
+
"TFLxmertModel",
|
66 |
+
"TFLxmertPreTrainedModel",
|
67 |
+
"TFLxmertVisualFeatureEncoder",
|
68 |
+
]
|
69 |
+
|
70 |
+
|
71 |
+
if TYPE_CHECKING:
|
72 |
+
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
|
73 |
+
from .tokenization_lxmert import LxmertTokenizer
|
74 |
+
|
75 |
+
try:
|
76 |
+
if not is_tokenizers_available():
|
77 |
+
raise OptionalDependencyNotAvailable()
|
78 |
+
except OptionalDependencyNotAvailable:
|
79 |
+
pass
|
80 |
+
else:
|
81 |
+
from .tokenization_lxmert_fast import LxmertTokenizerFast
|
82 |
+
|
83 |
+
try:
|
84 |
+
if not is_torch_available():
|
85 |
+
raise OptionalDependencyNotAvailable()
|
86 |
+
except OptionalDependencyNotAvailable:
|
87 |
+
pass
|
88 |
+
else:
|
89 |
+
from .modeling_lxmert import (
|
90 |
+
LxmertEncoder,
|
91 |
+
LxmertForPreTraining,
|
92 |
+
LxmertForQuestionAnswering,
|
93 |
+
LxmertModel,
|
94 |
+
LxmertPreTrainedModel,
|
95 |
+
LxmertVisualFeatureEncoder,
|
96 |
+
LxmertXLayer,
|
97 |
+
)
|
98 |
+
|
99 |
+
try:
|
100 |
+
if not is_tf_available():
|
101 |
+
raise OptionalDependencyNotAvailable()
|
102 |
+
except OptionalDependencyNotAvailable:
|
103 |
+
pass
|
104 |
+
else:
|
105 |
+
from .modeling_tf_lxmert import (
|
106 |
+
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
107 |
+
TFLxmertForPreTraining,
|
108 |
+
TFLxmertMainLayer,
|
109 |
+
TFLxmertModel,
|
110 |
+
TFLxmertPreTrainedModel,
|
111 |
+
TFLxmertVisualFeatureEncoder,
|
112 |
+
)
|
113 |
+
|
114 |
+
else:
|
115 |
+
import sys
|
116 |
+
|
117 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/modeling_lxmert.py
ADDED
@@ -0,0 +1,1438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Hao Tan, Mohit Bansal, and the HuggingFace team
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch LXMERT model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import warnings
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import Dict, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import CrossEntropyLoss, SmoothL1Loss
|
27 |
+
|
28 |
+
from ...activations import ACT2FN, gelu
|
29 |
+
from ...modeling_utils import PreTrainedModel
|
30 |
+
from ...utils import (
|
31 |
+
ModelOutput,
|
32 |
+
add_code_sample_docstrings,
|
33 |
+
add_start_docstrings,
|
34 |
+
add_start_docstrings_to_model_forward,
|
35 |
+
logging,
|
36 |
+
replace_return_docstrings,
|
37 |
+
)
|
38 |
+
from .configuration_lxmert import LxmertConfig
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
_CHECKPOINT_FOR_DOC = "unc-nlp/lxmert-base-uncased"
|
44 |
+
_CONFIG_FOR_DOC = "LxmertConfig"
|
45 |
+
|
46 |
+
LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
47 |
+
"unc-nlp/lxmert-base-uncased",
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
class GeLU(nn.Module):
|
52 |
+
def __init__(self):
|
53 |
+
super().__init__()
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
return gelu(x)
|
57 |
+
|
58 |
+
|
59 |
+
@dataclass
|
60 |
+
class LxmertModelOutput(ModelOutput):
|
61 |
+
"""
|
62 |
+
Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language,
|
63 |
+
visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship"
|
64 |
+
encoder")
|
65 |
+
|
66 |
+
|
67 |
+
Args:
|
68 |
+
language_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
69 |
+
Sequence of hidden-states at the output of the last layer of the language encoder.
|
70 |
+
vision_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
71 |
+
Sequence of hidden-states at the output of the last layer of the visual encoder.
|
72 |
+
pooled_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
|
73 |
+
Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed
|
74 |
+
by a Linear layer and a Tanh activation function. The Linear
|
75 |
+
language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
76 |
+
Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
|
77 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
78 |
+
vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
79 |
+
Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
|
80 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
81 |
+
language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
82 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
83 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
84 |
+
the self-attention heads.
|
85 |
+
vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
86 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
87 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
88 |
+
the self-attention heads.
|
89 |
+
cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
90 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
91 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
92 |
+
the self-attention heads.
|
93 |
+
"""
|
94 |
+
|
95 |
+
language_output: Optional[torch.FloatTensor] = None
|
96 |
+
vision_output: Optional[torch.FloatTensor] = None
|
97 |
+
pooled_output: Optional[torch.FloatTensor] = None
|
98 |
+
language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
99 |
+
vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
100 |
+
language_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
101 |
+
vision_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
102 |
+
cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
103 |
+
|
104 |
+
|
105 |
+
@dataclass
|
106 |
+
class LxmertForQuestionAnsweringOutput(ModelOutput):
|
107 |
+
"""
|
108 |
+
Output type of [`LxmertForQuestionAnswering`].
|
109 |
+
|
110 |
+
Args:
|
111 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
112 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
113 |
+
(classification) loss.k.
|
114 |
+
question_answering_score (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`, *optional*):
|
115 |
+
Prediction scores of question answering objective (classification).
|
116 |
+
language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
117 |
+
Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
|
118 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
119 |
+
vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
120 |
+
Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
|
121 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
122 |
+
language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
123 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
124 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
125 |
+
the self-attention heads.
|
126 |
+
vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
127 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
128 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
129 |
+
the self-attention heads.
|
130 |
+
cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
131 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
132 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
133 |
+
the self-attention heads.
|
134 |
+
"""
|
135 |
+
|
136 |
+
loss: Optional[torch.FloatTensor] = None
|
137 |
+
question_answering_score: Optional[torch.FloatTensor] = None
|
138 |
+
language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
139 |
+
vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
140 |
+
language_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
141 |
+
vision_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
142 |
+
cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
143 |
+
|
144 |
+
|
145 |
+
@dataclass
|
146 |
+
class LxmertForPreTrainingOutput(ModelOutput):
|
147 |
+
"""
|
148 |
+
Output type of [`LxmertForPreTraining`].
|
149 |
+
|
150 |
+
Args:
|
151 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
152 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
153 |
+
(classification) loss.
|
154 |
+
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
155 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
156 |
+
cross_relationship_score (`torch.FloatTensor` of shape `(batch_size, 2)`):
|
157 |
+
Prediction scores of the textual matching objective (classification) head (scores of True/False
|
158 |
+
continuation before SoftMax).
|
159 |
+
question_answering_score (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`):
|
160 |
+
Prediction scores of question answering objective (classification).
|
161 |
+
language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
162 |
+
Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
|
163 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
164 |
+
vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
165 |
+
Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
|
166 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
167 |
+
language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
168 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
169 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
170 |
+
the self-attention heads.
|
171 |
+
vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
172 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
173 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
174 |
+
the self-attention heads.
|
175 |
+
cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
176 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
177 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
178 |
+
the self-attention heads.
|
179 |
+
|
180 |
+
"""
|
181 |
+
|
182 |
+
loss: Optional[torch.FloatTensor] = None
|
183 |
+
prediction_logits: Optional[torch.FloatTensor] = None
|
184 |
+
cross_relationship_score: Optional[torch.FloatTensor] = None
|
185 |
+
question_answering_score: Optional[torch.FloatTensor] = None
|
186 |
+
language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
187 |
+
vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
188 |
+
language_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
189 |
+
vision_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
190 |
+
cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
191 |
+
|
192 |
+
|
193 |
+
def load_tf_weights_in_lxmert(model, config, tf_checkpoint_path):
|
194 |
+
"""Load tf checkpoints in a pytorch model."""
|
195 |
+
try:
|
196 |
+
import re
|
197 |
+
|
198 |
+
import numpy as np
|
199 |
+
import tensorflow as tf
|
200 |
+
except ImportError:
|
201 |
+
logger.error(
|
202 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
203 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
204 |
+
)
|
205 |
+
raise
|
206 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
207 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
208 |
+
# Load weights from TF model
|
209 |
+
init_vars = tf.train.list_variables(tf_path)
|
210 |
+
names = []
|
211 |
+
arrays = []
|
212 |
+
for name, shape in init_vars:
|
213 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
214 |
+
array = tf.train.load_variable(tf_path, name)
|
215 |
+
names.append(name)
|
216 |
+
arrays.append(array)
|
217 |
+
|
218 |
+
for name, array in zip(names, arrays):
|
219 |
+
name = name.split("/")
|
220 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
221 |
+
# which are not required for using pretrained model
|
222 |
+
if any(
|
223 |
+
n
|
224 |
+
in [
|
225 |
+
"adam_v",
|
226 |
+
"adam_m",
|
227 |
+
"AdamWeightDecayOptimizer",
|
228 |
+
"AdamWeightDecayOptimizer_1",
|
229 |
+
"global_step",
|
230 |
+
]
|
231 |
+
for n in name
|
232 |
+
):
|
233 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
234 |
+
continue
|
235 |
+
pointer = model
|
236 |
+
for m_name in name:
|
237 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
238 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
239 |
+
else:
|
240 |
+
scope_names = [m_name]
|
241 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
242 |
+
pointer = getattr(pointer, "weight")
|
243 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
244 |
+
pointer = getattr(pointer, "bias")
|
245 |
+
elif scope_names[0] == "output_weights":
|
246 |
+
pointer = getattr(pointer, "weight")
|
247 |
+
elif scope_names[0] == "squad":
|
248 |
+
pointer = getattr(pointer, "classifier")
|
249 |
+
else:
|
250 |
+
try:
|
251 |
+
pointer = getattr(pointer, scope_names[0])
|
252 |
+
except AttributeError:
|
253 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
254 |
+
continue
|
255 |
+
if len(scope_names) >= 2:
|
256 |
+
num = int(scope_names[1])
|
257 |
+
pointer = pointer[num]
|
258 |
+
if m_name[-11:] == "_embeddings":
|
259 |
+
pointer = getattr(pointer, "weight")
|
260 |
+
elif m_name == "kernel":
|
261 |
+
array = np.transpose(array)
|
262 |
+
try:
|
263 |
+
assert pointer.shape == array.shape
|
264 |
+
except AssertionError as e:
|
265 |
+
e.args += (pointer.shape, array.shape)
|
266 |
+
raise
|
267 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
268 |
+
pointer.data = torch.from_numpy(array)
|
269 |
+
return model
|
270 |
+
|
271 |
+
|
272 |
+
class LxmertEmbeddings(nn.Module):
|
273 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
274 |
+
|
275 |
+
def __init__(self, config):
|
276 |
+
super().__init__()
|
277 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
|
278 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0)
|
279 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size, padding_idx=0)
|
280 |
+
|
281 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
282 |
+
# any TensorFlow checkpoint file
|
283 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
|
284 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
285 |
+
|
286 |
+
def forward(self, input_ids, token_type_ids=None, inputs_embeds=None):
|
287 |
+
if input_ids is not None:
|
288 |
+
input_shape = input_ids.size()
|
289 |
+
device = input_ids.device
|
290 |
+
else:
|
291 |
+
input_shape = inputs_embeds.size()[:-1]
|
292 |
+
device = inputs_embeds.device
|
293 |
+
seq_length = input_shape[1]
|
294 |
+
|
295 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
|
296 |
+
position_ids = position_ids.unsqueeze(0).expand(input_shape)
|
297 |
+
|
298 |
+
if token_type_ids is None:
|
299 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
300 |
+
|
301 |
+
if inputs_embeds is None:
|
302 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
303 |
+
position_embeddings = self.position_embeddings(position_ids)
|
304 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
305 |
+
|
306 |
+
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
|
307 |
+
embeddings = self.LayerNorm(embeddings)
|
308 |
+
embeddings = self.dropout(embeddings)
|
309 |
+
return embeddings
|
310 |
+
|
311 |
+
|
312 |
+
class LxmertAttention(nn.Module):
|
313 |
+
def __init__(self, config, ctx_dim=None):
|
314 |
+
super().__init__()
|
315 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
316 |
+
raise ValueError(
|
317 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
318 |
+
f"heads ({config.num_attention_heads})"
|
319 |
+
)
|
320 |
+
self.num_attention_heads = config.num_attention_heads
|
321 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
322 |
+
self.head_size = self.num_attention_heads * self.attention_head_size
|
323 |
+
|
324 |
+
# visual_dim = 2048
|
325 |
+
if ctx_dim is None:
|
326 |
+
ctx_dim = config.hidden_size
|
327 |
+
self.query = nn.Linear(config.hidden_size, self.head_size)
|
328 |
+
self.key = nn.Linear(ctx_dim, self.head_size)
|
329 |
+
self.value = nn.Linear(ctx_dim, self.head_size)
|
330 |
+
|
331 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
332 |
+
|
333 |
+
def transpose_for_scores(self, x):
|
334 |
+
new_x_shape = x.size()[:-1] + (
|
335 |
+
self.num_attention_heads,
|
336 |
+
self.attention_head_size,
|
337 |
+
)
|
338 |
+
x = x.view(new_x_shape)
|
339 |
+
return x.permute(0, 2, 1, 3)
|
340 |
+
|
341 |
+
def forward(self, hidden_states, context, attention_mask=None, output_attentions=False):
|
342 |
+
mixed_query_layer = self.query(hidden_states)
|
343 |
+
mixed_key_layer = self.key(context)
|
344 |
+
mixed_value_layer = self.value(context)
|
345 |
+
|
346 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
347 |
+
key_layer = self.transpose_for_scores(mixed_key_layer)
|
348 |
+
value_layer = self.transpose_for_scores(mixed_value_layer)
|
349 |
+
|
350 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
351 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
352 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
353 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
354 |
+
if attention_mask is not None:
|
355 |
+
attention_scores = attention_scores + attention_mask
|
356 |
+
|
357 |
+
# Normalize the attention scores to probabilities.
|
358 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
359 |
+
|
360 |
+
# This is actually dropping out entire tokens to attend to, which might
|
361 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
362 |
+
attention_probs = self.dropout(attention_probs)
|
363 |
+
|
364 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
365 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
366 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,)
|
367 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
368 |
+
|
369 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
370 |
+
return outputs
|
371 |
+
|
372 |
+
|
373 |
+
class LxmertAttentionOutput(nn.Module):
|
374 |
+
def __init__(self, config):
|
375 |
+
super().__init__()
|
376 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
377 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
|
378 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
379 |
+
|
380 |
+
def forward(self, hidden_states, input_tensor):
|
381 |
+
hidden_states = self.dense(hidden_states)
|
382 |
+
hidden_states = self.dropout(hidden_states)
|
383 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
384 |
+
return hidden_states
|
385 |
+
|
386 |
+
|
387 |
+
class LxmertCrossAttentionLayer(nn.Module):
|
388 |
+
def __init__(self, config):
|
389 |
+
super().__init__()
|
390 |
+
self.att = LxmertAttention(config)
|
391 |
+
self.output = LxmertAttentionOutput(config)
|
392 |
+
|
393 |
+
def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None, output_attentions=False):
|
394 |
+
output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions=output_attentions)
|
395 |
+
if output_attentions:
|
396 |
+
attention_probs = output[1]
|
397 |
+
attention_output = self.output(output[0], input_tensor)
|
398 |
+
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
|
399 |
+
return outputs
|
400 |
+
|
401 |
+
|
402 |
+
class LxmertSelfAttentionLayer(nn.Module):
|
403 |
+
def __init__(self, config):
|
404 |
+
super().__init__()
|
405 |
+
self.self = LxmertAttention(config)
|
406 |
+
self.output = LxmertAttentionOutput(config)
|
407 |
+
|
408 |
+
def forward(self, input_tensor, attention_mask, output_attentions=False):
|
409 |
+
# Self attention attends to itself, thus keys and queries are the same (input_tensor).
|
410 |
+
output = self.self(
|
411 |
+
input_tensor,
|
412 |
+
input_tensor,
|
413 |
+
attention_mask,
|
414 |
+
output_attentions=output_attentions,
|
415 |
+
)
|
416 |
+
if output_attentions:
|
417 |
+
attention_probs = output[1]
|
418 |
+
attention_output = self.output(output[0], input_tensor)
|
419 |
+
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
|
420 |
+
return outputs
|
421 |
+
|
422 |
+
|
423 |
+
class LxmertIntermediate(nn.Module):
|
424 |
+
def __init__(self, config):
|
425 |
+
super().__init__()
|
426 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
427 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
428 |
+
|
429 |
+
def forward(self, hidden_states):
|
430 |
+
hidden_states = self.dense(hidden_states)
|
431 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
432 |
+
return hidden_states
|
433 |
+
|
434 |
+
|
435 |
+
class LxmertOutput(nn.Module):
|
436 |
+
def __init__(self, config):
|
437 |
+
super().__init__()
|
438 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
439 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
|
440 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
441 |
+
|
442 |
+
def forward(self, hidden_states, input_tensor):
|
443 |
+
hidden_states = self.dense(hidden_states)
|
444 |
+
hidden_states = self.dropout(hidden_states)
|
445 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
446 |
+
return hidden_states
|
447 |
+
|
448 |
+
|
449 |
+
class LxmertLayer(nn.Module):
|
450 |
+
def __init__(self, config):
|
451 |
+
super().__init__()
|
452 |
+
self.attention = LxmertSelfAttentionLayer(config)
|
453 |
+
self.intermediate = LxmertIntermediate(config)
|
454 |
+
self.output = LxmertOutput(config)
|
455 |
+
|
456 |
+
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
|
457 |
+
outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions)
|
458 |
+
attention_output = outputs[0]
|
459 |
+
intermediate_output = self.intermediate(attention_output)
|
460 |
+
layer_output = self.output(intermediate_output, attention_output)
|
461 |
+
outputs = (layer_output,) + outputs[1:] # add attentions if we output them
|
462 |
+
return outputs
|
463 |
+
|
464 |
+
|
465 |
+
class LxmertXLayer(nn.Module):
|
466 |
+
def __init__(self, config):
|
467 |
+
super().__init__()
|
468 |
+
# The cross-attention Layer
|
469 |
+
self.visual_attention = LxmertCrossAttentionLayer(config)
|
470 |
+
|
471 |
+
# Self-attention Layers
|
472 |
+
self.lang_self_att = LxmertSelfAttentionLayer(config)
|
473 |
+
self.visn_self_att = LxmertSelfAttentionLayer(config)
|
474 |
+
|
475 |
+
# Intermediate and Output Layers (FFNs)
|
476 |
+
self.lang_inter = LxmertIntermediate(config)
|
477 |
+
self.lang_output = LxmertOutput(config)
|
478 |
+
self.visn_inter = LxmertIntermediate(config)
|
479 |
+
self.visn_output = LxmertOutput(config)
|
480 |
+
|
481 |
+
def cross_att(
|
482 |
+
self,
|
483 |
+
lang_input,
|
484 |
+
lang_attention_mask,
|
485 |
+
visual_input,
|
486 |
+
visual_attention_mask,
|
487 |
+
output_x_attentions=False,
|
488 |
+
):
|
489 |
+
# Cross Attention
|
490 |
+
lang_att_output = self.visual_attention(
|
491 |
+
lang_input,
|
492 |
+
visual_input,
|
493 |
+
ctx_att_mask=visual_attention_mask,
|
494 |
+
output_attentions=output_x_attentions,
|
495 |
+
)
|
496 |
+
visual_att_output = self.visual_attention(
|
497 |
+
visual_input,
|
498 |
+
lang_input,
|
499 |
+
ctx_att_mask=lang_attention_mask,
|
500 |
+
output_attentions=False,
|
501 |
+
)
|
502 |
+
return lang_att_output, visual_att_output
|
503 |
+
|
504 |
+
def self_att(self, lang_input, lang_attention_mask, visual_input, visual_attention_mask):
|
505 |
+
# Self Attention
|
506 |
+
lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions=False)
|
507 |
+
visual_att_output = self.visn_self_att(visual_input, visual_attention_mask, output_attentions=False)
|
508 |
+
return lang_att_output[0], visual_att_output[0]
|
509 |
+
|
510 |
+
def output_fc(self, lang_input, visual_input):
|
511 |
+
# FC layers
|
512 |
+
lang_inter_output = self.lang_inter(lang_input)
|
513 |
+
visual_inter_output = self.visn_inter(visual_input)
|
514 |
+
|
515 |
+
# Layer output
|
516 |
+
lang_output = self.lang_output(lang_inter_output, lang_input)
|
517 |
+
visual_output = self.visn_output(visual_inter_output, visual_input)
|
518 |
+
|
519 |
+
return lang_output, visual_output
|
520 |
+
|
521 |
+
def forward(
|
522 |
+
self,
|
523 |
+
lang_feats,
|
524 |
+
lang_attention_mask,
|
525 |
+
visual_feats,
|
526 |
+
visual_attention_mask,
|
527 |
+
output_attentions=False,
|
528 |
+
):
|
529 |
+
lang_att_output, visual_att_output = self.cross_att(
|
530 |
+
lang_input=lang_feats,
|
531 |
+
lang_attention_mask=lang_attention_mask,
|
532 |
+
visual_input=visual_feats,
|
533 |
+
visual_attention_mask=visual_attention_mask,
|
534 |
+
output_x_attentions=output_attentions,
|
535 |
+
)
|
536 |
+
attention_probs = lang_att_output[1:]
|
537 |
+
lang_att_output, visual_att_output = self.self_att(
|
538 |
+
lang_att_output[0],
|
539 |
+
lang_attention_mask,
|
540 |
+
visual_att_output[0],
|
541 |
+
visual_attention_mask,
|
542 |
+
)
|
543 |
+
|
544 |
+
lang_output, visual_output = self.output_fc(lang_att_output, visual_att_output)
|
545 |
+
return (
|
546 |
+
(
|
547 |
+
lang_output,
|
548 |
+
visual_output,
|
549 |
+
attention_probs[0],
|
550 |
+
)
|
551 |
+
if output_attentions
|
552 |
+
else (lang_output, visual_output)
|
553 |
+
)
|
554 |
+
|
555 |
+
|
556 |
+
class LxmertVisualFeatureEncoder(nn.Module):
|
557 |
+
def __init__(self, config):
|
558 |
+
super().__init__()
|
559 |
+
feat_dim = config.visual_feat_dim
|
560 |
+
pos_dim = config.visual_pos_dim
|
561 |
+
|
562 |
+
# Object feature encoding
|
563 |
+
self.visn_fc = nn.Linear(feat_dim, config.hidden_size)
|
564 |
+
self.visn_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12)
|
565 |
+
|
566 |
+
# Box position encoding
|
567 |
+
self.box_fc = nn.Linear(pos_dim, config.hidden_size)
|
568 |
+
self.box_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12)
|
569 |
+
|
570 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
571 |
+
|
572 |
+
def forward(self, visual_feats, visual_pos):
|
573 |
+
x = self.visn_fc(visual_feats)
|
574 |
+
x = self.visn_layer_norm(x)
|
575 |
+
y = self.box_fc(visual_pos)
|
576 |
+
y = self.box_layer_norm(y)
|
577 |
+
output = (x + y) / 2
|
578 |
+
|
579 |
+
output = self.dropout(output)
|
580 |
+
return output
|
581 |
+
|
582 |
+
|
583 |
+
class LxmertEncoder(nn.Module):
|
584 |
+
def __init__(self, config):
|
585 |
+
super().__init__()
|
586 |
+
|
587 |
+
# Obj-level image embedding layer
|
588 |
+
self.visn_fc = LxmertVisualFeatureEncoder(config)
|
589 |
+
self.config = config
|
590 |
+
|
591 |
+
# Number of layers
|
592 |
+
self.num_l_layers = config.l_layers
|
593 |
+
self.num_x_layers = config.x_layers
|
594 |
+
self.num_r_layers = config.r_layers
|
595 |
+
|
596 |
+
# Layers
|
597 |
+
# Using self.layer instead of self.l_layer to support loading BERT weights.
|
598 |
+
self.layer = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_l_layers)])
|
599 |
+
self.x_layers = nn.ModuleList([LxmertXLayer(config) for _ in range(self.num_x_layers)])
|
600 |
+
self.r_layers = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_r_layers)])
|
601 |
+
|
602 |
+
def forward(
|
603 |
+
self,
|
604 |
+
lang_feats,
|
605 |
+
lang_attention_mask,
|
606 |
+
visual_feats,
|
607 |
+
visual_pos,
|
608 |
+
visual_attention_mask=None,
|
609 |
+
output_attentions=None,
|
610 |
+
):
|
611 |
+
vision_hidden_states = ()
|
612 |
+
language_hidden_states = ()
|
613 |
+
vision_attentions = () if output_attentions or self.config.output_attentions else None
|
614 |
+
language_attentions = () if output_attentions or self.config.output_attentions else None
|
615 |
+
cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None
|
616 |
+
|
617 |
+
visual_feats = self.visn_fc(visual_feats, visual_pos)
|
618 |
+
|
619 |
+
# Run language layers
|
620 |
+
for layer_module in self.layer:
|
621 |
+
l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions=output_attentions)
|
622 |
+
lang_feats = l_outputs[0]
|
623 |
+
language_hidden_states = language_hidden_states + (lang_feats,)
|
624 |
+
if language_attentions is not None:
|
625 |
+
language_attentions = language_attentions + (l_outputs[1],)
|
626 |
+
|
627 |
+
# Run relational layers
|
628 |
+
for layer_module in self.r_layers:
|
629 |
+
v_outputs = layer_module(visual_feats, visual_attention_mask, output_attentions=output_attentions)
|
630 |
+
visual_feats = v_outputs[0]
|
631 |
+
vision_hidden_states = vision_hidden_states + (visual_feats,)
|
632 |
+
if vision_attentions is not None:
|
633 |
+
vision_attentions = vision_attentions + (v_outputs[1],)
|
634 |
+
|
635 |
+
# Run cross-modality layers
|
636 |
+
for layer_module in self.x_layers:
|
637 |
+
x_outputs = layer_module(
|
638 |
+
lang_feats,
|
639 |
+
lang_attention_mask,
|
640 |
+
visual_feats,
|
641 |
+
visual_attention_mask,
|
642 |
+
output_attentions=output_attentions,
|
643 |
+
)
|
644 |
+
lang_feats, visual_feats = x_outputs[:2]
|
645 |
+
vision_hidden_states = vision_hidden_states + (visual_feats,)
|
646 |
+
language_hidden_states = language_hidden_states + (lang_feats,)
|
647 |
+
if cross_encoder_attentions is not None:
|
648 |
+
cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],)
|
649 |
+
visual_encoder_outputs = (
|
650 |
+
vision_hidden_states,
|
651 |
+
vision_attentions if output_attentions else None,
|
652 |
+
)
|
653 |
+
lang_encoder_outputs = (
|
654 |
+
language_hidden_states,
|
655 |
+
language_attentions if output_attentions else None,
|
656 |
+
)
|
657 |
+
return (
|
658 |
+
visual_encoder_outputs,
|
659 |
+
lang_encoder_outputs,
|
660 |
+
cross_encoder_attentions if output_attentions else None,
|
661 |
+
)
|
662 |
+
|
663 |
+
|
664 |
+
class LxmertPooler(nn.Module):
|
665 |
+
def __init__(self, config):
|
666 |
+
super(LxmertPooler, self).__init__()
|
667 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
668 |
+
self.activation = nn.Tanh()
|
669 |
+
|
670 |
+
def forward(self, hidden_states):
|
671 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
672 |
+
# to the first token.
|
673 |
+
first_token_tensor = hidden_states[:, 0]
|
674 |
+
pooled_output = self.dense(first_token_tensor)
|
675 |
+
pooled_output = self.activation(pooled_output)
|
676 |
+
return pooled_output
|
677 |
+
|
678 |
+
|
679 |
+
class LxmertPredictionHeadTransform(nn.Module):
|
680 |
+
def __init__(self, config):
|
681 |
+
super(LxmertPredictionHeadTransform, self).__init__()
|
682 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
683 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
684 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
|
685 |
+
|
686 |
+
def forward(self, hidden_states):
|
687 |
+
hidden_states = self.dense(hidden_states)
|
688 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
689 |
+
hidden_states = self.LayerNorm(hidden_states)
|
690 |
+
return hidden_states
|
691 |
+
|
692 |
+
|
693 |
+
class LxmertLMPredictionHead(nn.Module):
|
694 |
+
def __init__(self, config, lxmert_model_embedding_weights):
|
695 |
+
super(LxmertLMPredictionHead, self).__init__()
|
696 |
+
self.transform = LxmertPredictionHeadTransform(config)
|
697 |
+
|
698 |
+
# The output weights are the same as the input embeddings, but there is
|
699 |
+
# an output-only bias for each token.
|
700 |
+
self.decoder = nn.Linear(
|
701 |
+
lxmert_model_embedding_weights.size(1),
|
702 |
+
lxmert_model_embedding_weights.size(0),
|
703 |
+
bias=False,
|
704 |
+
)
|
705 |
+
self.decoder.weight = lxmert_model_embedding_weights
|
706 |
+
self.bias = nn.Parameter(torch.zeros(lxmert_model_embedding_weights.size(0)))
|
707 |
+
|
708 |
+
def forward(self, hidden_states):
|
709 |
+
hidden_states = self.transform(hidden_states)
|
710 |
+
hidden_states = self.decoder(hidden_states) + self.bias
|
711 |
+
return hidden_states
|
712 |
+
|
713 |
+
|
714 |
+
class LxmertVisualAnswerHead(nn.Module):
|
715 |
+
def __init__(self, config, num_labels):
|
716 |
+
super().__init__()
|
717 |
+
hid_dim = config.hidden_size
|
718 |
+
self.logit_fc = nn.Sequential(
|
719 |
+
nn.Linear(hid_dim, hid_dim * 2),
|
720 |
+
GeLU(),
|
721 |
+
nn.LayerNorm(hid_dim * 2, eps=1e-12),
|
722 |
+
nn.Linear(hid_dim * 2, num_labels),
|
723 |
+
)
|
724 |
+
|
725 |
+
def forward(self, hidden_states):
|
726 |
+
return self.logit_fc(hidden_states)
|
727 |
+
|
728 |
+
|
729 |
+
class LxmertVisualObjHead(nn.Module):
|
730 |
+
def __init__(self, config):
|
731 |
+
super().__init__()
|
732 |
+
self.transform = LxmertPredictionHeadTransform(config)
|
733 |
+
# Decide the use of visual losses
|
734 |
+
visual_losses = {}
|
735 |
+
if config.visual_obj_loss:
|
736 |
+
visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels}
|
737 |
+
if config.visual_attr_loss:
|
738 |
+
visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels}
|
739 |
+
if config.visual_feat_loss:
|
740 |
+
visual_losses["feat"] = {
|
741 |
+
"shape": (-1, config.visual_feat_dim),
|
742 |
+
"num": config.visual_feat_dim,
|
743 |
+
}
|
744 |
+
self.visual_losses = visual_losses
|
745 |
+
|
746 |
+
# The output weights are the same as the input embeddings, but there is
|
747 |
+
# an output-only bias for each token.
|
748 |
+
self.decoder_dict = nn.ModuleDict(
|
749 |
+
{key: nn.Linear(config.hidden_size, self.visual_losses[key]["num"]) for key in self.visual_losses}
|
750 |
+
)
|
751 |
+
|
752 |
+
def forward(self, hidden_states):
|
753 |
+
hidden_states = self.transform(hidden_states)
|
754 |
+
output = {}
|
755 |
+
for key in self.visual_losses:
|
756 |
+
output[key] = self.decoder_dict[key](hidden_states)
|
757 |
+
return output
|
758 |
+
|
759 |
+
|
760 |
+
class LxmertPreTrainingHeads(nn.Module):
|
761 |
+
def __init__(self, config, lxmert_model_embedding_weights):
|
762 |
+
super(LxmertPreTrainingHeads, self).__init__()
|
763 |
+
self.predictions = LxmertLMPredictionHead(config, lxmert_model_embedding_weights)
|
764 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
765 |
+
|
766 |
+
def forward(self, sequence_output, pooled_output):
|
767 |
+
prediction_scores = self.predictions(sequence_output)
|
768 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
769 |
+
return prediction_scores, seq_relationship_score
|
770 |
+
|
771 |
+
|
772 |
+
class LxmertPreTrainedModel(PreTrainedModel):
|
773 |
+
"""
|
774 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
775 |
+
models.
|
776 |
+
"""
|
777 |
+
|
778 |
+
config_class = LxmertConfig
|
779 |
+
load_tf_weights = load_tf_weights_in_lxmert
|
780 |
+
base_model_prefix = "lxmert"
|
781 |
+
|
782 |
+
def _init_weights(self, module):
|
783 |
+
"""Initialize the weights"""
|
784 |
+
if isinstance(module, nn.Linear):
|
785 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
786 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
787 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
788 |
+
if module.bias is not None:
|
789 |
+
module.bias.data.zero_()
|
790 |
+
elif isinstance(module, nn.Embedding):
|
791 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
792 |
+
if module.padding_idx is not None:
|
793 |
+
module.weight.data[module.padding_idx].zero_()
|
794 |
+
elif isinstance(module, nn.LayerNorm):
|
795 |
+
module.bias.data.zero_()
|
796 |
+
module.weight.data.fill_(1.0)
|
797 |
+
|
798 |
+
|
799 |
+
LXMERT_START_DOCSTRING = r"""
|
800 |
+
|
801 |
+
The LXMERT model was proposed in [LXMERT: Learning Cross-Modality Encoder Representations from
|
802 |
+
Transformers](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. It's a vision and language transformer
|
803 |
+
model, pretrained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MSCOCO captions, and Visual
|
804 |
+
genome, using a combination of masked language modeling, region of interest feature regression, cross entropy loss
|
805 |
+
for question answering attribute prediction, and object tag prediction.
|
806 |
+
|
807 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
808 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
809 |
+
etc.)
|
810 |
+
|
811 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
812 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
813 |
+
and behavior.
|
814 |
+
|
815 |
+
Parameters:
|
816 |
+
config ([`LxmertConfig`]): Model configuration class with all the parameters of the model.
|
817 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
818 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
819 |
+
"""
|
820 |
+
|
821 |
+
LXMERT_INPUTS_DOCSTRING = r"""
|
822 |
+
|
823 |
+
Args:
|
824 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
825 |
+
Indices of input sequence tokens in the vocabulary.
|
826 |
+
|
827 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
828 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
829 |
+
|
830 |
+
[What are input IDs?](../glossary#input-ids)
|
831 |
+
visual_feats (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`):
|
832 |
+
This input represents visual features. They ROI pooled object features from bounding boxes using a
|
833 |
+
faster-RCNN model)
|
834 |
+
|
835 |
+
These are currently not provided by the transformers library.
|
836 |
+
visual_pos (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_pos_dim)`):
|
837 |
+
This input represents spacial features corresponding to their relative (via index) visual features. The
|
838 |
+
pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to
|
839 |
+
1.
|
840 |
+
|
841 |
+
These are currently not provided by the transformers library.
|
842 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
843 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
844 |
+
|
845 |
+
- 1 for tokens that are **not masked**,
|
846 |
+
- 0 for tokens that are **masked**.
|
847 |
+
|
848 |
+
[What are attention masks?](../glossary#attention-mask)
|
849 |
+
visual_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
850 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
851 |
+
|
852 |
+
- 1 for tokens that are **not masked**,
|
853 |
+
- 0 for tokens that are **masked**.
|
854 |
+
|
855 |
+
[What are attention masks?](../glossary#attention-mask)
|
856 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
857 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
858 |
+
1]`:
|
859 |
+
|
860 |
+
- 0 corresponds to a *sentence A* token,
|
861 |
+
- 1 corresponds to a *sentence B* token.
|
862 |
+
|
863 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
864 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
865 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
866 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
867 |
+
model's internal embedding lookup matrix.
|
868 |
+
output_attentions (`bool`, *optional*):
|
869 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
870 |
+
tensors for more detail.
|
871 |
+
output_hidden_states (`bool`, *optional*):
|
872 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
873 |
+
more detail.
|
874 |
+
return_dict (`bool`, *optional*):
|
875 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
876 |
+
"""
|
877 |
+
|
878 |
+
|
879 |
+
@add_start_docstrings(
|
880 |
+
"The bare Lxmert Model transformer outputting raw hidden-states without any specific head on top.",
|
881 |
+
LXMERT_START_DOCSTRING,
|
882 |
+
)
|
883 |
+
class LxmertModel(LxmertPreTrainedModel):
|
884 |
+
def __init__(self, config):
|
885 |
+
super().__init__(config)
|
886 |
+
self.embeddings = LxmertEmbeddings(config)
|
887 |
+
self.encoder = LxmertEncoder(config)
|
888 |
+
self.pooler = LxmertPooler(config)
|
889 |
+
# Initialize weights and apply final processing
|
890 |
+
self.post_init()
|
891 |
+
|
892 |
+
def get_input_embeddings(self):
|
893 |
+
return self.embeddings.word_embeddings
|
894 |
+
|
895 |
+
def set_input_embeddings(self, new_embeddings):
|
896 |
+
self.embeddings.word_embeddings = new_embeddings
|
897 |
+
|
898 |
+
@add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
899 |
+
@add_code_sample_docstrings(
|
900 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
901 |
+
output_type=LxmertModelOutput,
|
902 |
+
config_class=_CONFIG_FOR_DOC,
|
903 |
+
)
|
904 |
+
def forward(
|
905 |
+
self,
|
906 |
+
input_ids: Optional[torch.LongTensor] = None,
|
907 |
+
visual_feats: Optional[torch.FloatTensor] = None,
|
908 |
+
visual_pos: Optional[torch.FloatTensor] = None,
|
909 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
910 |
+
visual_attention_mask: Optional[torch.FloatTensor] = None,
|
911 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
912 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
913 |
+
output_attentions: Optional[bool] = None,
|
914 |
+
output_hidden_states: Optional[bool] = None,
|
915 |
+
return_dict: Optional[bool] = None,
|
916 |
+
) -> Union[LxmertModelOutput, Tuple[torch.FloatTensor]]:
|
917 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
918 |
+
output_hidden_states = (
|
919 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
920 |
+
)
|
921 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
922 |
+
|
923 |
+
if input_ids is not None and inputs_embeds is not None:
|
924 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
925 |
+
elif input_ids is not None:
|
926 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
927 |
+
input_shape = input_ids.size()
|
928 |
+
elif inputs_embeds is not None:
|
929 |
+
input_shape = inputs_embeds.size()[:-1]
|
930 |
+
else:
|
931 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
932 |
+
|
933 |
+
if visual_feats is None:
|
934 |
+
raise ValueError("`visual_feats` cannot be `None`")
|
935 |
+
if visual_pos is None:
|
936 |
+
raise ValueError("`visual_pos` cannot be `None`")
|
937 |
+
|
938 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
939 |
+
|
940 |
+
if attention_mask is None:
|
941 |
+
attention_mask = torch.ones(input_shape, device=device)
|
942 |
+
if token_type_ids is None:
|
943 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
944 |
+
|
945 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
946 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
947 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
948 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
949 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
950 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
951 |
+
|
952 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
953 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
954 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
955 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
956 |
+
# effectively the same as removing these entirely.
|
957 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)
|
958 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
|
959 |
+
|
960 |
+
# Process the visual attention mask
|
961 |
+
if visual_attention_mask is not None:
|
962 |
+
extended_visual_attention_mask = visual_attention_mask.unsqueeze(1).unsqueeze(2)
|
963 |
+
extended_visual_attention_mask = extended_visual_attention_mask.to(dtype=self.dtype)
|
964 |
+
extended_visual_attention_mask = (1.0 - extended_visual_attention_mask) * torch.finfo(self.dtype).min
|
965 |
+
else:
|
966 |
+
extended_visual_attention_mask = None
|
967 |
+
|
968 |
+
# Positional Word Embeddings
|
969 |
+
embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds)
|
970 |
+
|
971 |
+
# Run Lxmert encoder
|
972 |
+
encoder_outputs = self.encoder(
|
973 |
+
embedding_output,
|
974 |
+
extended_attention_mask,
|
975 |
+
visual_feats=visual_feats,
|
976 |
+
visual_pos=visual_pos,
|
977 |
+
visual_attention_mask=extended_visual_attention_mask,
|
978 |
+
output_attentions=output_attentions,
|
979 |
+
)
|
980 |
+
|
981 |
+
visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2]
|
982 |
+
vision_hidden_states = visual_encoder_outputs[0]
|
983 |
+
language_hidden_states = lang_encoder_outputs[0]
|
984 |
+
|
985 |
+
all_attentions = ()
|
986 |
+
if output_attentions:
|
987 |
+
language_attentions = lang_encoder_outputs[1]
|
988 |
+
vision_attentions = visual_encoder_outputs[1]
|
989 |
+
cross_encoder_attentions = encoder_outputs[2]
|
990 |
+
all_attentions = (
|
991 |
+
language_attentions,
|
992 |
+
vision_attentions,
|
993 |
+
cross_encoder_attentions,
|
994 |
+
)
|
995 |
+
|
996 |
+
hidden_states = (language_hidden_states, vision_hidden_states) if output_hidden_states else ()
|
997 |
+
|
998 |
+
visual_output = vision_hidden_states[-1]
|
999 |
+
lang_output = language_hidden_states[-1]
|
1000 |
+
pooled_output = self.pooler(lang_output)
|
1001 |
+
|
1002 |
+
if not return_dict:
|
1003 |
+
return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions
|
1004 |
+
|
1005 |
+
return LxmertModelOutput(
|
1006 |
+
pooled_output=pooled_output,
|
1007 |
+
language_output=lang_output,
|
1008 |
+
vision_output=visual_output,
|
1009 |
+
language_hidden_states=language_hidden_states if output_hidden_states else None,
|
1010 |
+
vision_hidden_states=vision_hidden_states if output_hidden_states else None,
|
1011 |
+
language_attentions=language_attentions if output_attentions else None,
|
1012 |
+
vision_attentions=vision_attentions if output_attentions else None,
|
1013 |
+
cross_encoder_attentions=cross_encoder_attentions if output_attentions else None,
|
1014 |
+
)
|
1015 |
+
|
1016 |
+
|
1017 |
+
@add_start_docstrings(
|
1018 |
+
"""Lxmert Model with a specified pretraining head on top.""",
|
1019 |
+
LXMERT_START_DOCSTRING,
|
1020 |
+
)
|
1021 |
+
class LxmertForPreTraining(LxmertPreTrainedModel):
|
1022 |
+
_tied_weights_keys = ["cls.predictions.decoder.weight"]
|
1023 |
+
|
1024 |
+
def __init__(self, config):
|
1025 |
+
super().__init__(config)
|
1026 |
+
# Configuration
|
1027 |
+
self.config = config
|
1028 |
+
self.num_qa_labels = config.num_qa_labels
|
1029 |
+
self.visual_loss_normalizer = config.visual_loss_normalizer
|
1030 |
+
|
1031 |
+
# Use of pretraining tasks
|
1032 |
+
self.task_mask_lm = config.task_mask_lm
|
1033 |
+
self.task_obj_predict = config.task_obj_predict
|
1034 |
+
self.task_matched = config.task_matched
|
1035 |
+
self.task_qa = config.task_qa
|
1036 |
+
|
1037 |
+
# Lxmert backbone
|
1038 |
+
self.lxmert = LxmertModel(config)
|
1039 |
+
|
1040 |
+
# Pre-training heads
|
1041 |
+
self.cls = LxmertPreTrainingHeads(config, self.lxmert.embeddings.word_embeddings.weight)
|
1042 |
+
if self.task_obj_predict:
|
1043 |
+
self.obj_predict_head = LxmertVisualObjHead(config)
|
1044 |
+
if self.task_qa:
|
1045 |
+
self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels)
|
1046 |
+
|
1047 |
+
# Weight initialization
|
1048 |
+
# Initialize weights and apply final processing
|
1049 |
+
self.post_init()
|
1050 |
+
|
1051 |
+
# Loss functions
|
1052 |
+
self.loss_fcts = {
|
1053 |
+
"l2": SmoothL1Loss(reduction="none"),
|
1054 |
+
"visual_ce": CrossEntropyLoss(reduction="none"),
|
1055 |
+
"ce": CrossEntropyLoss(),
|
1056 |
+
}
|
1057 |
+
|
1058 |
+
visual_losses = {}
|
1059 |
+
if config.visual_obj_loss:
|
1060 |
+
visual_losses["obj"] = {
|
1061 |
+
"shape": (-1,),
|
1062 |
+
"num": config.num_object_labels,
|
1063 |
+
"loss": "visual_ce",
|
1064 |
+
}
|
1065 |
+
if config.visual_attr_loss:
|
1066 |
+
visual_losses["attr"] = {
|
1067 |
+
"shape": (-1,),
|
1068 |
+
"num": config.num_attr_labels,
|
1069 |
+
"loss": "visual_ce",
|
1070 |
+
}
|
1071 |
+
if config.visual_feat_loss:
|
1072 |
+
visual_losses["feat"] = {
|
1073 |
+
"shape": (-1, config.visual_feat_dim),
|
1074 |
+
"num": config.visual_feat_dim,
|
1075 |
+
"loss": "l2",
|
1076 |
+
}
|
1077 |
+
self.visual_losses = visual_losses
|
1078 |
+
|
1079 |
+
def resize_num_qa_labels(self, num_labels):
|
1080 |
+
"""
|
1081 |
+
Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size
|
1082 |
+
will add newly initialized weights. Reducing the size will remove weights from the end
|
1083 |
+
|
1084 |
+
Args:
|
1085 |
+
num_labels (`int`, *optional*):
|
1086 |
+
New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized
|
1087 |
+
weights at the end. Reducing the size will remove weights from the end. If not provided or `None`, just
|
1088 |
+
returns a pointer to the qa labels ``torch.nn.Linear``` module of the model without doing anything.
|
1089 |
+
|
1090 |
+
Return:
|
1091 |
+
`torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer
|
1092 |
+
"""
|
1093 |
+
|
1094 |
+
cur_qa_logit_layer = self.get_qa_logit_layer()
|
1095 |
+
if num_labels is None or cur_qa_logit_layer is None:
|
1096 |
+
return
|
1097 |
+
new_qa_logit_layer = self._resize_qa_labels(num_labels)
|
1098 |
+
self.config.num_qa_labels = num_labels
|
1099 |
+
self.num_qa_labels = num_labels
|
1100 |
+
|
1101 |
+
return new_qa_logit_layer
|
1102 |
+
|
1103 |
+
def _resize_qa_labels(self, num_labels):
|
1104 |
+
cur_qa_logit_layer = self.get_qa_logit_layer()
|
1105 |
+
new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels)
|
1106 |
+
self._set_qa_logit_layer(new_qa_logit_layer)
|
1107 |
+
return self.get_qa_logit_layer()
|
1108 |
+
|
1109 |
+
def get_qa_logit_layer(self) -> nn.Module:
|
1110 |
+
"""
|
1111 |
+
Returns the linear layer that produces question answering logits.
|
1112 |
+
|
1113 |
+
Returns:
|
1114 |
+
`nn.Module`: A torch module mapping the question answering prediction hidden states or `None` if LXMERT
|
1115 |
+
does not have a visual answering head.
|
1116 |
+
"""
|
1117 |
+
if hasattr(self, "answer_head"):
|
1118 |
+
return self.answer_head.logit_fc[-1]
|
1119 |
+
|
1120 |
+
def _set_qa_logit_layer(self, qa_logit_layer):
|
1121 |
+
self.answer_head.logit_fc[-1] = qa_logit_layer
|
1122 |
+
|
1123 |
+
def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels):
|
1124 |
+
if num_labels is None:
|
1125 |
+
return cur_qa_logit_layer
|
1126 |
+
|
1127 |
+
cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size()
|
1128 |
+
if cur_qa_labels == num_labels:
|
1129 |
+
return cur_qa_logit_layer
|
1130 |
+
|
1131 |
+
# Build new linear output
|
1132 |
+
if getattr(cur_qa_logit_layer, "bias", None) is not None:
|
1133 |
+
new_qa_logit_layer = nn.Linear(hidden_dim, num_labels)
|
1134 |
+
else:
|
1135 |
+
new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False)
|
1136 |
+
|
1137 |
+
new_qa_logit_layer.to(cur_qa_logit_layer.weight.device)
|
1138 |
+
|
1139 |
+
# initialize all new labels
|
1140 |
+
self._init_weights(new_qa_logit_layer)
|
1141 |
+
|
1142 |
+
# Copy labels from the previous weights
|
1143 |
+
num_labels_to_copy = min(cur_qa_labels, num_labels)
|
1144 |
+
new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :]
|
1145 |
+
if getattr(cur_qa_logit_layer, "bias", None) is not None:
|
1146 |
+
new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy]
|
1147 |
+
|
1148 |
+
return new_qa_logit_layer
|
1149 |
+
|
1150 |
+
@add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1151 |
+
@replace_return_docstrings(output_type=LxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1152 |
+
def forward(
|
1153 |
+
self,
|
1154 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1155 |
+
visual_feats: Optional[torch.FloatTensor] = None,
|
1156 |
+
visual_pos: Optional[torch.FloatTensor] = None,
|
1157 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1158 |
+
visual_attention_mask: Optional[torch.FloatTensor] = None,
|
1159 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1160 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1161 |
+
labels: Optional[torch.LongTensor] = None,
|
1162 |
+
obj_labels: Optional[Dict[str, Tuple[torch.FloatTensor, torch.FloatTensor]]] = None,
|
1163 |
+
matched_label: Optional[torch.LongTensor] = None,
|
1164 |
+
ans: Optional[torch.Tensor] = None,
|
1165 |
+
output_attentions: Optional[bool] = None,
|
1166 |
+
output_hidden_states: Optional[bool] = None,
|
1167 |
+
return_dict: Optional[bool] = None,
|
1168 |
+
**kwargs,
|
1169 |
+
) -> Union[LxmertForPreTrainingOutput, Tuple[torch.FloatTensor]]:
|
1170 |
+
r"""
|
1171 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1172 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1173 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1174 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1175 |
+
obj_labels (`Dict[Str: Tuple[Torch.FloatTensor, Torch.FloatTensor]]`, *optional*):
|
1176 |
+
each key is named after each one of the visual losses and each element of the tuple is of the shape
|
1177 |
+
`(batch_size, num_features)` and `(batch_size, num_features, visual_feature_dim)` for each the label id and
|
1178 |
+
the label score respectively
|
1179 |
+
matched_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1180 |
+
Labels for computing the whether or not the text input matches the image (classification) loss. Input
|
1181 |
+
should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
|
1182 |
+
|
1183 |
+
- 0 indicates that the sentence does not match the image,
|
1184 |
+
- 1 indicates that the sentence does match the image.
|
1185 |
+
ans (`Torch.Tensor` of shape `(batch_size)`, *optional*):
|
1186 |
+
a one hot representation hof the correct answer *optional*
|
1187 |
+
|
1188 |
+
Returns:
|
1189 |
+
"""
|
1190 |
+
|
1191 |
+
if "masked_lm_labels" in kwargs:
|
1192 |
+
warnings.warn(
|
1193 |
+
"The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels`"
|
1194 |
+
" instead.",
|
1195 |
+
FutureWarning,
|
1196 |
+
)
|
1197 |
+
labels = kwargs.pop("masked_lm_labels")
|
1198 |
+
|
1199 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1200 |
+
|
1201 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1202 |
+
lxmert_output = self.lxmert(
|
1203 |
+
input_ids=input_ids,
|
1204 |
+
visual_feats=visual_feats,
|
1205 |
+
visual_pos=visual_pos,
|
1206 |
+
token_type_ids=token_type_ids,
|
1207 |
+
attention_mask=attention_mask,
|
1208 |
+
visual_attention_mask=visual_attention_mask,
|
1209 |
+
inputs_embeds=inputs_embeds,
|
1210 |
+
output_hidden_states=output_hidden_states,
|
1211 |
+
output_attentions=output_attentions,
|
1212 |
+
return_dict=return_dict,
|
1213 |
+
)
|
1214 |
+
|
1215 |
+
lang_output, visual_output, pooled_output = (
|
1216 |
+
lxmert_output[0],
|
1217 |
+
lxmert_output[1],
|
1218 |
+
lxmert_output[2],
|
1219 |
+
)
|
1220 |
+
lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output)
|
1221 |
+
if self.task_qa:
|
1222 |
+
answer_score = self.answer_head(pooled_output)
|
1223 |
+
else:
|
1224 |
+
answer_score = pooled_output[0][0]
|
1225 |
+
|
1226 |
+
total_loss = (
|
1227 |
+
None
|
1228 |
+
if (labels is None and matched_label is None and obj_labels is None and ans is None)
|
1229 |
+
else torch.tensor(0.0, device=device)
|
1230 |
+
)
|
1231 |
+
if labels is not None and self.task_mask_lm:
|
1232 |
+
masked_lm_loss = self.loss_fcts["ce"](
|
1233 |
+
lang_prediction_scores.view(-1, self.config.vocab_size),
|
1234 |
+
labels.view(-1),
|
1235 |
+
)
|
1236 |
+
total_loss += masked_lm_loss
|
1237 |
+
if matched_label is not None and self.task_matched:
|
1238 |
+
matched_loss = self.loss_fcts["ce"](cross_relationship_score.view(-1, 2), matched_label.view(-1))
|
1239 |
+
total_loss += matched_loss
|
1240 |
+
if obj_labels is not None and self.task_obj_predict:
|
1241 |
+
total_visual_loss = torch.tensor(0.0, device=input_ids.device)
|
1242 |
+
visual_prediction_scores_dict = self.obj_predict_head(visual_output)
|
1243 |
+
for key, key_info in self.visual_losses.items():
|
1244 |
+
label, mask_conf = obj_labels[key]
|
1245 |
+
output_dim = key_info["num"]
|
1246 |
+
loss_fct_name = key_info["loss"]
|
1247 |
+
label_shape = key_info["shape"]
|
1248 |
+
weight = self.visual_loss_normalizer
|
1249 |
+
visual_loss_fct = self.loss_fcts[loss_fct_name]
|
1250 |
+
visual_prediction_scores = visual_prediction_scores_dict[key]
|
1251 |
+
visual_loss = visual_loss_fct(
|
1252 |
+
visual_prediction_scores.view(-1, output_dim),
|
1253 |
+
label.view(label_shape),
|
1254 |
+
)
|
1255 |
+
if visual_loss.dim() > 1: # Regression Losses
|
1256 |
+
visual_loss = visual_loss.mean(1)
|
1257 |
+
visual_loss = (visual_loss * mask_conf.view(-1)).mean() * weight
|
1258 |
+
total_visual_loss += visual_loss
|
1259 |
+
total_loss += total_visual_loss
|
1260 |
+
if ans is not None and self.task_qa:
|
1261 |
+
answer_loss = self.loss_fcts["ce"](answer_score.view(-1, self.num_qa_labels), ans.view(-1))
|
1262 |
+
total_loss += answer_loss
|
1263 |
+
|
1264 |
+
if not return_dict:
|
1265 |
+
output = (
|
1266 |
+
lang_prediction_scores,
|
1267 |
+
cross_relationship_score,
|
1268 |
+
answer_score,
|
1269 |
+
) + lxmert_output[3:]
|
1270 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1271 |
+
|
1272 |
+
return LxmertForPreTrainingOutput(
|
1273 |
+
loss=total_loss,
|
1274 |
+
prediction_logits=lang_prediction_scores,
|
1275 |
+
cross_relationship_score=cross_relationship_score,
|
1276 |
+
question_answering_score=answer_score,
|
1277 |
+
language_hidden_states=lxmert_output.language_hidden_states,
|
1278 |
+
vision_hidden_states=lxmert_output.vision_hidden_states,
|
1279 |
+
language_attentions=lxmert_output.language_attentions,
|
1280 |
+
vision_attentions=lxmert_output.vision_attentions,
|
1281 |
+
cross_encoder_attentions=lxmert_output.cross_encoder_attentions,
|
1282 |
+
)
|
1283 |
+
|
1284 |
+
|
1285 |
+
@add_start_docstrings(
|
1286 |
+
"""Lxmert Model with a visual-answering head on top for downstream QA tasks""",
|
1287 |
+
LXMERT_START_DOCSTRING,
|
1288 |
+
)
|
1289 |
+
class LxmertForQuestionAnswering(LxmertPreTrainedModel):
|
1290 |
+
def __init__(self, config):
|
1291 |
+
super().__init__(config)
|
1292 |
+
# Configuration
|
1293 |
+
self.config = config
|
1294 |
+
self.num_qa_labels = config.num_qa_labels
|
1295 |
+
self.visual_loss_normalizer = config.visual_loss_normalizer
|
1296 |
+
|
1297 |
+
# Lxmert backbone
|
1298 |
+
self.lxmert = LxmertModel(config)
|
1299 |
+
|
1300 |
+
self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels)
|
1301 |
+
|
1302 |
+
# Weight initialization
|
1303 |
+
# Initialize weights and apply final processing
|
1304 |
+
self.post_init()
|
1305 |
+
|
1306 |
+
# Loss function
|
1307 |
+
self.loss = CrossEntropyLoss()
|
1308 |
+
|
1309 |
+
def resize_num_qa_labels(self, num_labels):
|
1310 |
+
"""
|
1311 |
+
Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size
|
1312 |
+
will add newly initialized weights. Reducing the size will remove weights from the end
|
1313 |
+
|
1314 |
+
Args:
|
1315 |
+
num_labels (`int`, *optional*):
|
1316 |
+
New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized
|
1317 |
+
weights at the end. Reducing the size will remove weights from the end. If not provided or `None`, just
|
1318 |
+
returns a pointer to the qa labels ``torch.nn.Linear``` module of the model without doing anything.
|
1319 |
+
|
1320 |
+
Return:
|
1321 |
+
`torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer
|
1322 |
+
"""
|
1323 |
+
|
1324 |
+
cur_qa_logit_layer = self.get_qa_logit_layer()
|
1325 |
+
if num_labels is None or cur_qa_logit_layer is None:
|
1326 |
+
return
|
1327 |
+
new_qa_logit_layer = self._resize_qa_labels(num_labels)
|
1328 |
+
self.config.num_qa_labels = num_labels
|
1329 |
+
self.num_qa_labels = num_labels
|
1330 |
+
|
1331 |
+
return new_qa_logit_layer
|
1332 |
+
|
1333 |
+
def _resize_qa_labels(self, num_labels):
|
1334 |
+
cur_qa_logit_layer = self.get_qa_logit_layer()
|
1335 |
+
new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels)
|
1336 |
+
self._set_qa_logit_layer(new_qa_logit_layer)
|
1337 |
+
return self.get_qa_logit_layer()
|
1338 |
+
|
1339 |
+
def get_qa_logit_layer(self) -> nn.Module:
|
1340 |
+
"""
|
1341 |
+
Returns the linear layer that produces question answering logits
|
1342 |
+
|
1343 |
+
Returns:
|
1344 |
+
`nn.Module`: A torch module mapping the question answering prediction hidden states. `None`: A NoneType
|
1345 |
+
object if Lxmert does not have the visual answering head.
|
1346 |
+
"""
|
1347 |
+
|
1348 |
+
if hasattr(self, "answer_head"):
|
1349 |
+
return self.answer_head.logit_fc[-1]
|
1350 |
+
|
1351 |
+
def _set_qa_logit_layer(self, qa_logit_layer):
|
1352 |
+
self.answer_head.logit_fc[-1] = qa_logit_layer
|
1353 |
+
|
1354 |
+
def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels):
|
1355 |
+
if num_labels is None:
|
1356 |
+
return cur_qa_logit_layer
|
1357 |
+
|
1358 |
+
cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size()
|
1359 |
+
if cur_qa_labels == num_labels:
|
1360 |
+
return cur_qa_logit_layer
|
1361 |
+
|
1362 |
+
# Build new linear output
|
1363 |
+
if getattr(cur_qa_logit_layer, "bias", None) is not None:
|
1364 |
+
new_qa_logit_layer = nn.Linear(hidden_dim, num_labels)
|
1365 |
+
else:
|
1366 |
+
new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False)
|
1367 |
+
|
1368 |
+
new_qa_logit_layer.to(cur_qa_logit_layer.weight.device)
|
1369 |
+
|
1370 |
+
# initialize all new labels
|
1371 |
+
self._init_weights(new_qa_logit_layer)
|
1372 |
+
|
1373 |
+
# Copy labels from the previous weights
|
1374 |
+
num_labels_to_copy = min(cur_qa_labels, num_labels)
|
1375 |
+
new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :]
|
1376 |
+
if getattr(cur_qa_logit_layer, "bias", None) is not None:
|
1377 |
+
new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy]
|
1378 |
+
|
1379 |
+
return new_qa_logit_layer
|
1380 |
+
|
1381 |
+
@add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1382 |
+
@add_code_sample_docstrings(
|
1383 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1384 |
+
output_type=LxmertForQuestionAnsweringOutput,
|
1385 |
+
config_class=_CONFIG_FOR_DOC,
|
1386 |
+
)
|
1387 |
+
def forward(
|
1388 |
+
self,
|
1389 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1390 |
+
visual_feats: Optional[torch.FloatTensor] = None,
|
1391 |
+
visual_pos: Optional[torch.FloatTensor] = None,
|
1392 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1393 |
+
visual_attention_mask: Optional[torch.FloatTensor] = None,
|
1394 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1395 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1396 |
+
labels: Optional[torch.Tensor] = None,
|
1397 |
+
output_attentions: Optional[bool] = None,
|
1398 |
+
output_hidden_states: Optional[bool] = None,
|
1399 |
+
return_dict: Optional[bool] = None,
|
1400 |
+
) -> Union[LxmertForQuestionAnsweringOutput, Tuple[torch.FloatTensor]]:
|
1401 |
+
r"""
|
1402 |
+
labels (`Torch.Tensor` of shape `(batch_size)`, *optional*):
|
1403 |
+
A one-hot representation of the correct answer
|
1404 |
+
"""
|
1405 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1406 |
+
|
1407 |
+
lxmert_output = self.lxmert(
|
1408 |
+
input_ids=input_ids,
|
1409 |
+
visual_feats=visual_feats,
|
1410 |
+
visual_pos=visual_pos,
|
1411 |
+
token_type_ids=token_type_ids,
|
1412 |
+
attention_mask=attention_mask,
|
1413 |
+
visual_attention_mask=visual_attention_mask,
|
1414 |
+
inputs_embeds=inputs_embeds,
|
1415 |
+
output_hidden_states=output_hidden_states,
|
1416 |
+
output_attentions=output_attentions,
|
1417 |
+
return_dict=return_dict,
|
1418 |
+
)
|
1419 |
+
|
1420 |
+
pooled_output = lxmert_output[2]
|
1421 |
+
answer_score = self.answer_head(pooled_output)
|
1422 |
+
loss = None
|
1423 |
+
if labels is not None:
|
1424 |
+
loss = self.loss(answer_score.view(-1, self.num_qa_labels), labels.view(-1))
|
1425 |
+
|
1426 |
+
if not return_dict:
|
1427 |
+
output = (answer_score,) + lxmert_output[3:]
|
1428 |
+
return (loss,) + output if loss is not None else output
|
1429 |
+
|
1430 |
+
return LxmertForQuestionAnsweringOutput(
|
1431 |
+
loss=loss,
|
1432 |
+
question_answering_score=answer_score,
|
1433 |
+
language_hidden_states=lxmert_output.language_hidden_states,
|
1434 |
+
vision_hidden_states=lxmert_output.vision_hidden_states,
|
1435 |
+
language_attentions=lxmert_output.language_attentions,
|
1436 |
+
vision_attentions=lxmert_output.vision_attentions,
|
1437 |
+
cross_encoder_attentions=lxmert_output.cross_encoder_attentions,
|
1438 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/modeling_tf_lxmert.py
ADDED
@@ -0,0 +1,1657 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors, The HuggingFace Inc. team, and the
|
3 |
+
# Lxmert Authors.
|
4 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
""" TF 2.0 LXMERT model."""
|
18 |
+
|
19 |
+
|
20 |
+
from __future__ import annotations
|
21 |
+
|
22 |
+
import warnings
|
23 |
+
from dataclasses import dataclass
|
24 |
+
from typing import Dict, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import numpy as np
|
27 |
+
import tensorflow as tf
|
28 |
+
|
29 |
+
from ...activations_tf import get_tf_activation
|
30 |
+
from ...modeling_tf_utils import (
|
31 |
+
TFModelInputType,
|
32 |
+
TFPreTrainedModel,
|
33 |
+
get_initializer,
|
34 |
+
keras,
|
35 |
+
keras_serializable,
|
36 |
+
shape_list,
|
37 |
+
unpack_inputs,
|
38 |
+
)
|
39 |
+
from ...tf_utils import check_embeddings_within_bounds, stable_softmax
|
40 |
+
from ...utils import (
|
41 |
+
ModelOutput,
|
42 |
+
add_code_sample_docstrings,
|
43 |
+
add_start_docstrings,
|
44 |
+
add_start_docstrings_to_model_forward,
|
45 |
+
logging,
|
46 |
+
replace_return_docstrings,
|
47 |
+
)
|
48 |
+
from .configuration_lxmert import LxmertConfig
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
_CHECKPOINT_FOR_DOC = "unc-nlp/lxmert-base-uncased"
|
54 |
+
_CONFIG_FOR_DOC = "LxmertConfig"
|
55 |
+
|
56 |
+
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
57 |
+
"unc-nlp/lxmert-base-uncased",
|
58 |
+
]
|
59 |
+
|
60 |
+
|
61 |
+
@dataclass
|
62 |
+
class TFLxmertModelOutput(ModelOutput):
|
63 |
+
"""
|
64 |
+
Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language,
|
65 |
+
visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship"
|
66 |
+
encoder")
|
67 |
+
|
68 |
+
|
69 |
+
Args:
|
70 |
+
language_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
71 |
+
Sequence of hidden-states at the output of the last layer of the language encoder.
|
72 |
+
vision_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
73 |
+
Sequence of hidden-states at the output of the last layer of the visual encoder.
|
74 |
+
pooled_output (`tf.Tensor` of shape `(batch_size, hidden_size)`):
|
75 |
+
Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed
|
76 |
+
by a Linear layer and a Tanh activation function. The Linear
|
77 |
+
language_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
78 |
+
Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape
|
79 |
+
`(batch_size, sequence_length, hidden_size)`.
|
80 |
+
vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
81 |
+
Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape
|
82 |
+
`(batch_size, sequence_length, hidden_size)`.
|
83 |
+
language_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
84 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
85 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
86 |
+
the self-attention heads.
|
87 |
+
vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
88 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
89 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
90 |
+
the self-attention heads.
|
91 |
+
cross_encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
92 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
93 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
94 |
+
the self-attention heads.
|
95 |
+
"""
|
96 |
+
|
97 |
+
language_output: tf.Tensor | None = None
|
98 |
+
vision_output: tf.Tensor | None = None
|
99 |
+
pooled_output: tf.Tensor | None = None
|
100 |
+
language_hidden_states: Tuple[tf.Tensor] | None = None
|
101 |
+
vision_hidden_states: Tuple[tf.Tensor] | None = None
|
102 |
+
language_attentions: Tuple[tf.Tensor] | None = None
|
103 |
+
vision_attentions: Tuple[tf.Tensor] | None = None
|
104 |
+
cross_encoder_attentions: Tuple[tf.Tensor] | None = None
|
105 |
+
|
106 |
+
|
107 |
+
@dataclass
|
108 |
+
class TFLxmertForPreTrainingOutput(ModelOutput):
|
109 |
+
"""
|
110 |
+
Output type of [`LxmertForPreTraining`].
|
111 |
+
|
112 |
+
Args:
|
113 |
+
loss (*optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`):
|
114 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
115 |
+
(classification) loss.
|
116 |
+
prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
117 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
118 |
+
cross_relationship_score (`tf.Tensor` of shape `(batch_size, 2)`):
|
119 |
+
Prediction scores of the textual matching objective (classification) head (scores of True/False
|
120 |
+
continuation before SoftMax).
|
121 |
+
question_answering_score (`tf.Tensor` of shape `(batch_size, n_qa_answers)`):
|
122 |
+
Prediction scores of question answering objective (classification).
|
123 |
+
language_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
124 |
+
Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape
|
125 |
+
`(batch_size, sequence_length, hidden_size)`.
|
126 |
+
vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
127 |
+
Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape
|
128 |
+
`(batch_size, sequence_length, hidden_size)`.
|
129 |
+
language_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
130 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
131 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
132 |
+
the self-attention heads.
|
133 |
+
vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
134 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
135 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
136 |
+
the self-attention heads.
|
137 |
+
cross_encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
138 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
139 |
+
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
140 |
+
the self-attention heads.
|
141 |
+
|
142 |
+
"""
|
143 |
+
|
144 |
+
loss: tf.Tensor | None = None
|
145 |
+
prediction_logits: tf.Tensor | None = None
|
146 |
+
cross_relationship_score: tf.Tensor | None = None
|
147 |
+
question_answering_score: tf.Tensor | None = None
|
148 |
+
language_hidden_states: Tuple[tf.Tensor] | None = None
|
149 |
+
vision_hidden_states: Tuple[tf.Tensor] | None = None
|
150 |
+
language_attentions: Tuple[tf.Tensor] | None = None
|
151 |
+
vision_attentions: Tuple[tf.Tensor] | None = None
|
152 |
+
cross_encoder_attentions: Tuple[tf.Tensor] | None = None
|
153 |
+
|
154 |
+
|
155 |
+
class TFLxmertVisualFeatureEncoder(keras.layers.Layer):
|
156 |
+
def __init__(self, config, **kwargs):
|
157 |
+
super().__init__(**kwargs)
|
158 |
+
|
159 |
+
# Object feature encoding
|
160 |
+
self.visn_fc = keras.layers.Dense(
|
161 |
+
config.hidden_size,
|
162 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
163 |
+
name="visn_fc",
|
164 |
+
)
|
165 |
+
self.visn_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="visn_layer_norm")
|
166 |
+
|
167 |
+
# Box position encoding
|
168 |
+
self.box_fc = keras.layers.Dense(
|
169 |
+
config.hidden_size,
|
170 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
171 |
+
name="box_fc",
|
172 |
+
)
|
173 |
+
self.box_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="box_layer_norm")
|
174 |
+
|
175 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
176 |
+
self.feat_dim = config.visual_feat_dim
|
177 |
+
self.pos_dim = config.visual_pos_dim
|
178 |
+
self.config = config
|
179 |
+
|
180 |
+
def call(self, visn_input, training=False):
|
181 |
+
feats, boxes = visn_input
|
182 |
+
|
183 |
+
x = self.visn_fc(feats)
|
184 |
+
x = self.visn_layer_norm(x)
|
185 |
+
y = self.box_fc(boxes)
|
186 |
+
y = self.box_layer_norm(y)
|
187 |
+
output = (x + y) / 2
|
188 |
+
|
189 |
+
output = self.dropout(output, training=training)
|
190 |
+
return output
|
191 |
+
|
192 |
+
def build(self, input_shape=None):
|
193 |
+
if self.built:
|
194 |
+
return
|
195 |
+
self.built = True
|
196 |
+
if getattr(self, "visn_fc", None) is not None:
|
197 |
+
with tf.name_scope(self.visn_fc.name):
|
198 |
+
self.visn_fc.build([None, None, self.feat_dim])
|
199 |
+
if getattr(self, "visn_layer_norm", None) is not None:
|
200 |
+
with tf.name_scope(self.visn_layer_norm.name):
|
201 |
+
self.visn_layer_norm.build([None, None, self.config.hidden_size])
|
202 |
+
if getattr(self, "box_fc", None) is not None:
|
203 |
+
with tf.name_scope(self.box_fc.name):
|
204 |
+
self.box_fc.build([None, None, self.pos_dim])
|
205 |
+
if getattr(self, "box_layer_norm", None) is not None:
|
206 |
+
with tf.name_scope(self.box_layer_norm.name):
|
207 |
+
self.box_layer_norm.build([None, None, self.config.hidden_size])
|
208 |
+
|
209 |
+
|
210 |
+
class TFLxmertEmbeddings(keras.layers.Layer):
|
211 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
212 |
+
|
213 |
+
def __init__(self, config, **kwargs):
|
214 |
+
super().__init__(**kwargs)
|
215 |
+
|
216 |
+
self.config = config
|
217 |
+
self.hidden_size = config.hidden_size
|
218 |
+
self.max_position_embeddings = config.max_position_embeddings
|
219 |
+
self.initializer_range = config.initializer_range
|
220 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
221 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
222 |
+
|
223 |
+
def build(self, input_shape=None):
|
224 |
+
with tf.name_scope("word_embeddings"):
|
225 |
+
self.weight = self.add_weight(
|
226 |
+
name="weight",
|
227 |
+
shape=[self.config.vocab_size, self.hidden_size],
|
228 |
+
initializer=get_initializer(initializer_range=self.initializer_range),
|
229 |
+
)
|
230 |
+
|
231 |
+
with tf.name_scope("token_type_embeddings"):
|
232 |
+
self.token_type_embeddings = self.add_weight(
|
233 |
+
name="embeddings",
|
234 |
+
shape=[self.config.type_vocab_size, self.hidden_size],
|
235 |
+
initializer=get_initializer(initializer_range=self.initializer_range),
|
236 |
+
)
|
237 |
+
|
238 |
+
with tf.name_scope("position_embeddings"):
|
239 |
+
self.position_embeddings = self.add_weight(
|
240 |
+
name="embeddings",
|
241 |
+
shape=[self.max_position_embeddings, self.hidden_size],
|
242 |
+
initializer=get_initializer(initializer_range=self.initializer_range),
|
243 |
+
)
|
244 |
+
|
245 |
+
if self.built:
|
246 |
+
return
|
247 |
+
self.built = True
|
248 |
+
if getattr(self, "LayerNorm", None) is not None:
|
249 |
+
with tf.name_scope(self.LayerNorm.name):
|
250 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
251 |
+
|
252 |
+
def call(self, input_ids=None, token_type_ids=None, inputs_embeds=None, training=False):
|
253 |
+
"""
|
254 |
+
Applies embedding based on inputs tensor.
|
255 |
+
|
256 |
+
Returns:
|
257 |
+
final_embeddings (`tf.Tensor`): output embedding tensor.
|
258 |
+
"""
|
259 |
+
assert not (input_ids is None and inputs_embeds is None)
|
260 |
+
|
261 |
+
if input_ids is not None:
|
262 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
263 |
+
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
|
264 |
+
|
265 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
266 |
+
|
267 |
+
if token_type_ids is None:
|
268 |
+
token_type_ids = tf.fill(dims=input_shape, value=0)
|
269 |
+
|
270 |
+
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
|
271 |
+
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
|
272 |
+
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
|
273 |
+
final_embeddings = inputs_embeds + position_embeds + token_type_embeds
|
274 |
+
final_embeddings = self.LayerNorm(inputs=final_embeddings)
|
275 |
+
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
|
276 |
+
|
277 |
+
return final_embeddings
|
278 |
+
|
279 |
+
|
280 |
+
class TFLxmertAttention(keras.layers.Layer):
|
281 |
+
def __init__(self, config, **kwargs):
|
282 |
+
super().__init__(**kwargs)
|
283 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
284 |
+
raise ValueError(
|
285 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
286 |
+
f"heads ({config.num_attention_heads}"
|
287 |
+
)
|
288 |
+
|
289 |
+
self.num_attention_heads = config.num_attention_heads
|
290 |
+
assert config.hidden_size % config.num_attention_heads == 0
|
291 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
292 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
293 |
+
|
294 |
+
self.query = keras.layers.Dense(
|
295 |
+
self.all_head_size,
|
296 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
297 |
+
name="query",
|
298 |
+
)
|
299 |
+
self.key = keras.layers.Dense(
|
300 |
+
self.all_head_size,
|
301 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
302 |
+
name="key",
|
303 |
+
)
|
304 |
+
self.value = keras.layers.Dense(
|
305 |
+
self.all_head_size,
|
306 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
307 |
+
name="value",
|
308 |
+
)
|
309 |
+
|
310 |
+
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
|
311 |
+
self.ctx_dim = config.hidden_size
|
312 |
+
self.config = config
|
313 |
+
|
314 |
+
def transpose_for_scores(self, x, batch_size):
|
315 |
+
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
|
316 |
+
x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size))
|
317 |
+
return tf.transpose(x, perm=[0, 2, 1, 3])
|
318 |
+
|
319 |
+
def call(self, hidden_states, context, attention_mask, output_attentions, training=False):
|
320 |
+
batch_size = shape_list(hidden_states)[0]
|
321 |
+
mixed_query_layer = self.query(hidden_states)
|
322 |
+
mixed_key_layer = self.key(context)
|
323 |
+
mixed_value_layer = self.value(context)
|
324 |
+
|
325 |
+
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
|
326 |
+
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
|
327 |
+
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
|
328 |
+
|
329 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
330 |
+
attention_scores = tf.matmul(
|
331 |
+
query_layer, key_layer, transpose_b=True
|
332 |
+
) # (batch size, num_heads, seq_len_q, seq_len_k)
|
333 |
+
dk = tf.cast(shape_list(key_layer)[-1], dtype=attention_scores.dtype) # scale attention_scores
|
334 |
+
attention_scores = attention_scores / tf.math.sqrt(dk)
|
335 |
+
|
336 |
+
if attention_mask is not None:
|
337 |
+
# Apply the attention mask is (precomputed for all layers in TFLxmertModel call() function)
|
338 |
+
attention_mask = tf.cast(attention_mask, dtype=attention_scores.dtype)
|
339 |
+
attention_scores = attention_scores + attention_mask
|
340 |
+
|
341 |
+
# Normalize the attention scores to probabilities.
|
342 |
+
attention_probs = stable_softmax(attention_scores, axis=-1)
|
343 |
+
|
344 |
+
# This is actually dropping out entire tokens to attend to, which might
|
345 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
346 |
+
attention_probs = self.dropout(attention_probs, training=training)
|
347 |
+
context_layer = tf.matmul(attention_probs, value_layer)
|
348 |
+
|
349 |
+
context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
|
350 |
+
context_layer = tf.reshape(
|
351 |
+
context_layer, (batch_size, -1, self.all_head_size)
|
352 |
+
) # (batch_size, seq_len_q, all_head_size)
|
353 |
+
|
354 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
355 |
+
return outputs
|
356 |
+
|
357 |
+
def build(self, input_shape=None):
|
358 |
+
if self.built:
|
359 |
+
return
|
360 |
+
self.built = True
|
361 |
+
if getattr(self, "query", None) is not None:
|
362 |
+
with tf.name_scope(self.query.name):
|
363 |
+
self.query.build([None, None, self.config.hidden_size])
|
364 |
+
if getattr(self, "key", None) is not None:
|
365 |
+
with tf.name_scope(self.key.name):
|
366 |
+
self.key.build([None, None, self.ctx_dim])
|
367 |
+
if getattr(self, "value", None) is not None:
|
368 |
+
with tf.name_scope(self.value.name):
|
369 |
+
self.value.build([None, None, self.ctx_dim])
|
370 |
+
|
371 |
+
|
372 |
+
class TFLxmertIntermediate(keras.layers.Layer):
|
373 |
+
def __init__(self, config, **kwargs):
|
374 |
+
super().__init__(**kwargs)
|
375 |
+
self.dense = keras.layers.Dense(
|
376 |
+
config.intermediate_size,
|
377 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
378 |
+
name="dense",
|
379 |
+
)
|
380 |
+
if isinstance(config.hidden_act, str):
|
381 |
+
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
|
382 |
+
else:
|
383 |
+
self.intermediate_act_fn = config.hidden_act
|
384 |
+
self.config = config
|
385 |
+
|
386 |
+
def call(self, hidden_states):
|
387 |
+
hidden_states = self.dense(hidden_states)
|
388 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
389 |
+
return hidden_states
|
390 |
+
|
391 |
+
def build(self, input_shape=None):
|
392 |
+
if self.built:
|
393 |
+
return
|
394 |
+
self.built = True
|
395 |
+
if getattr(self, "dense", None) is not None:
|
396 |
+
with tf.name_scope(self.dense.name):
|
397 |
+
self.dense.build([None, None, self.config.hidden_size])
|
398 |
+
|
399 |
+
|
400 |
+
class TFLxmertOutput(keras.layers.Layer):
|
401 |
+
def __init__(self, config, **kwargs):
|
402 |
+
super().__init__(**kwargs)
|
403 |
+
self.dense = keras.layers.Dense(
|
404 |
+
config.hidden_size,
|
405 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
406 |
+
name="dense",
|
407 |
+
)
|
408 |
+
|
409 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
410 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
411 |
+
self.config = config
|
412 |
+
|
413 |
+
def call(self, hidden_states, input_tensor, training=False):
|
414 |
+
hidden_states = self.dense(hidden_states)
|
415 |
+
hidden_states = self.dropout(hidden_states, training)
|
416 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
417 |
+
return hidden_states
|
418 |
+
|
419 |
+
def build(self, input_shape=None):
|
420 |
+
if self.built:
|
421 |
+
return
|
422 |
+
self.built = True
|
423 |
+
if getattr(self, "dense", None) is not None:
|
424 |
+
with tf.name_scope(self.dense.name):
|
425 |
+
self.dense.build([None, None, self.config.intermediate_size])
|
426 |
+
if getattr(self, "LayerNorm", None) is not None:
|
427 |
+
with tf.name_scope(self.LayerNorm.name):
|
428 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
429 |
+
|
430 |
+
|
431 |
+
class TFLxmertAttentionOutput(keras.layers.Layer):
|
432 |
+
def __init__(self, config, **kwargs):
|
433 |
+
super().__init__(**kwargs)
|
434 |
+
self.dense = keras.layers.Dense(
|
435 |
+
config.hidden_size,
|
436 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
437 |
+
name="dense",
|
438 |
+
)
|
439 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
440 |
+
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
|
441 |
+
self.config = config
|
442 |
+
|
443 |
+
def call(self, hidden_states, input_tensor, training=False):
|
444 |
+
hidden_states = self.dense(hidden_states)
|
445 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
446 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
447 |
+
return hidden_states
|
448 |
+
|
449 |
+
def build(self, input_shape=None):
|
450 |
+
if self.built:
|
451 |
+
return
|
452 |
+
self.built = True
|
453 |
+
if getattr(self, "dense", None) is not None:
|
454 |
+
with tf.name_scope(self.dense.name):
|
455 |
+
self.dense.build([None, None, self.config.hidden_size])
|
456 |
+
if getattr(self, "LayerNorm", None) is not None:
|
457 |
+
with tf.name_scope(self.LayerNorm.name):
|
458 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
459 |
+
|
460 |
+
|
461 |
+
class TFLxmertSelfAttentionLayer(keras.layers.Layer):
|
462 |
+
def __init__(self, config, **kwargs):
|
463 |
+
super().__init__(**kwargs)
|
464 |
+
self.self = TFLxmertAttention(config, name="self")
|
465 |
+
self.attention_output = TFLxmertAttentionOutput(config, name="output")
|
466 |
+
|
467 |
+
def call(self, input_tensor, attention_mask, output_attentions, training=False):
|
468 |
+
# Self attention attends to itself, thus keys and queries are the same (input_tensor).
|
469 |
+
self_output = self.self(input_tensor, input_tensor, attention_mask, output_attentions)
|
470 |
+
if output_attentions:
|
471 |
+
attention_probs = self_output[1]
|
472 |
+
attention_output = self.attention_output(self_output[0], input_tensor)
|
473 |
+
return (attention_output, attention_probs) if output_attentions else (attention_output,)
|
474 |
+
|
475 |
+
def build(self, input_shape=None):
|
476 |
+
if self.built:
|
477 |
+
return
|
478 |
+
self.built = True
|
479 |
+
if getattr(self, "self", None) is not None:
|
480 |
+
with tf.name_scope(self.self.name):
|
481 |
+
self.self.build(None)
|
482 |
+
if getattr(self, "attention_output", None) is not None:
|
483 |
+
with tf.name_scope(self.attention_output.name):
|
484 |
+
self.attention_output.build(None)
|
485 |
+
|
486 |
+
|
487 |
+
class TFLxmertCrossAttentionLayer(keras.layers.Layer):
|
488 |
+
def __init__(self, config, **kwargs):
|
489 |
+
super().__init__(**kwargs)
|
490 |
+
self.att = TFLxmertAttention(config, name="att")
|
491 |
+
self.attention_output = TFLxmertAttentionOutput(config, name="output")
|
492 |
+
|
493 |
+
def call(
|
494 |
+
self,
|
495 |
+
input_tensor,
|
496 |
+
ctx_tensor,
|
497 |
+
ctx_att_mask,
|
498 |
+
output_attentions=False,
|
499 |
+
training=False,
|
500 |
+
):
|
501 |
+
output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions, training=training)
|
502 |
+
if output_attentions:
|
503 |
+
attention_probs = output[1]
|
504 |
+
attention_output = self.attention_output(output[0], input_tensor, training=training)
|
505 |
+
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
|
506 |
+
return outputs
|
507 |
+
|
508 |
+
def build(self, input_shape=None):
|
509 |
+
if self.built:
|
510 |
+
return
|
511 |
+
self.built = True
|
512 |
+
if getattr(self, "att", None) is not None:
|
513 |
+
with tf.name_scope(self.att.name):
|
514 |
+
self.att.build(None)
|
515 |
+
if getattr(self, "attention_output", None) is not None:
|
516 |
+
with tf.name_scope(self.attention_output.name):
|
517 |
+
self.attention_output.build(None)
|
518 |
+
|
519 |
+
|
520 |
+
class TFLxmertLayer(keras.layers.Layer):
|
521 |
+
def __init__(self, config, **kwargs):
|
522 |
+
super().__init__(**kwargs)
|
523 |
+
self.attention = TFLxmertSelfAttentionLayer(config, name="attention")
|
524 |
+
self.intermediate = TFLxmertIntermediate(config, name="intermediate")
|
525 |
+
self.transformer_output = TFLxmertOutput(config, name="output")
|
526 |
+
|
527 |
+
def call(self, hidden_states, attention_mask, output_attentions, training=False):
|
528 |
+
attention_outputs = self.attention(hidden_states, attention_mask, output_attentions, training=training)
|
529 |
+
attention_output = attention_outputs[0]
|
530 |
+
intermediate_output = self.intermediate(attention_output)
|
531 |
+
layer_output = self.transformer_output(intermediate_output, attention_output, training=training)
|
532 |
+
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
|
533 |
+
return outputs
|
534 |
+
|
535 |
+
def build(self, input_shape=None):
|
536 |
+
if self.built:
|
537 |
+
return
|
538 |
+
self.built = True
|
539 |
+
if getattr(self, "attention", None) is not None:
|
540 |
+
with tf.name_scope(self.attention.name):
|
541 |
+
self.attention.build(None)
|
542 |
+
if getattr(self, "intermediate", None) is not None:
|
543 |
+
with tf.name_scope(self.intermediate.name):
|
544 |
+
self.intermediate.build(None)
|
545 |
+
if getattr(self, "transformer_output", None) is not None:
|
546 |
+
with tf.name_scope(self.transformer_output.name):
|
547 |
+
self.transformer_output.build(None)
|
548 |
+
|
549 |
+
|
550 |
+
class TFLxmertXLayer(keras.layers.Layer):
|
551 |
+
def __init__(self, config, **kwargs):
|
552 |
+
super().__init__(**kwargs)
|
553 |
+
self.visual_attention = TFLxmertCrossAttentionLayer(config, name="visual_attention")
|
554 |
+
|
555 |
+
# Self-attention Layers
|
556 |
+
self.lang_self_att = TFLxmertSelfAttentionLayer(config, name="lang_self_att")
|
557 |
+
self.visn_self_att = TFLxmertSelfAttentionLayer(config, name="visn_self_att")
|
558 |
+
|
559 |
+
# Intermediate and Output Layers (FFNs)
|
560 |
+
self.lang_inter = TFLxmertIntermediate(config, name="lang_inter")
|
561 |
+
self.lang_output = TFLxmertOutput(config, name="lang_output")
|
562 |
+
self.visn_inter = TFLxmertIntermediate(config, name="visn_inter")
|
563 |
+
self.visn_output = TFLxmertOutput(config, name="visn_output")
|
564 |
+
|
565 |
+
def cross_att(
|
566 |
+
self,
|
567 |
+
lang_input,
|
568 |
+
lang_attention_mask,
|
569 |
+
visn_input,
|
570 |
+
visn_attention_mask,
|
571 |
+
output_attentions,
|
572 |
+
training=False,
|
573 |
+
):
|
574 |
+
# Cross Attention
|
575 |
+
|
576 |
+
# Keras saving and loading model *does not work* with the same inputs for two layers.
|
577 |
+
lang_attention_lang_input = tf.identity(lang_input)
|
578 |
+
visn_attention_lang_input = tf.identity(lang_input)
|
579 |
+
lang_attention_visn_input = tf.identity(visn_input)
|
580 |
+
visn_attention_visn_input = tf.identity(visn_input)
|
581 |
+
|
582 |
+
lang_att_output = self.visual_attention(
|
583 |
+
lang_attention_lang_input,
|
584 |
+
lang_attention_visn_input,
|
585 |
+
visn_attention_mask,
|
586 |
+
output_attentions=output_attentions,
|
587 |
+
training=training,
|
588 |
+
)
|
589 |
+
visn_att_output = self.visual_attention(
|
590 |
+
visn_attention_visn_input,
|
591 |
+
visn_attention_lang_input,
|
592 |
+
lang_attention_mask,
|
593 |
+
output_attentions=output_attentions,
|
594 |
+
training=training,
|
595 |
+
)
|
596 |
+
return lang_att_output, visn_att_output
|
597 |
+
|
598 |
+
def self_att(
|
599 |
+
self,
|
600 |
+
lang_input,
|
601 |
+
lang_attention_mask,
|
602 |
+
visn_input,
|
603 |
+
visn_attention_mask,
|
604 |
+
training=False,
|
605 |
+
):
|
606 |
+
# Self Attention
|
607 |
+
output_attentions = False
|
608 |
+
lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions, training=training)
|
609 |
+
visn_att_output = self.visn_self_att(visn_input, visn_attention_mask, output_attentions, training=training)
|
610 |
+
return lang_att_output[0], visn_att_output[0]
|
611 |
+
|
612 |
+
def output_fc(self, lang_input, visn_input, training=False):
|
613 |
+
# FC layers
|
614 |
+
lang_inter_output = self.lang_inter(lang_input)
|
615 |
+
visn_inter_output = self.visn_inter(visn_input)
|
616 |
+
|
617 |
+
# Layer output
|
618 |
+
lang_output = self.lang_output(lang_inter_output, lang_input, training)
|
619 |
+
visn_output = self.visn_output(visn_inter_output, visn_input, training)
|
620 |
+
return lang_output, visn_output
|
621 |
+
|
622 |
+
def call(
|
623 |
+
self,
|
624 |
+
lang_feats,
|
625 |
+
lang_attention_mask,
|
626 |
+
visn_feats,
|
627 |
+
visn_attention_mask,
|
628 |
+
output_attentions,
|
629 |
+
training=False,
|
630 |
+
):
|
631 |
+
lang_att_output = lang_feats
|
632 |
+
visn_att_output = visn_feats
|
633 |
+
|
634 |
+
lang_att_output, visn_att_output = self.cross_att(
|
635 |
+
lang_att_output,
|
636 |
+
lang_attention_mask,
|
637 |
+
visn_att_output,
|
638 |
+
visn_attention_mask,
|
639 |
+
output_attentions,
|
640 |
+
training=training,
|
641 |
+
)
|
642 |
+
attention_probs = lang_att_output[1:]
|
643 |
+
lang_att_output, visn_att_output = self.self_att(
|
644 |
+
lang_att_output[0],
|
645 |
+
lang_attention_mask,
|
646 |
+
visn_att_output[0],
|
647 |
+
visn_attention_mask,
|
648 |
+
training=training,
|
649 |
+
)
|
650 |
+
lang_output, visn_output = self.output_fc(lang_att_output, visn_att_output, training=training)
|
651 |
+
|
652 |
+
return (lang_output, visn_output, attention_probs[0]) if output_attentions else (lang_output, visn_output)
|
653 |
+
|
654 |
+
def build(self, input_shape=None):
|
655 |
+
if self.built:
|
656 |
+
return
|
657 |
+
self.built = True
|
658 |
+
if getattr(self, "visual_attention", None) is not None:
|
659 |
+
with tf.name_scope(self.visual_attention.name):
|
660 |
+
self.visual_attention.build(None)
|
661 |
+
if getattr(self, "lang_self_att", None) is not None:
|
662 |
+
with tf.name_scope(self.lang_self_att.name):
|
663 |
+
self.lang_self_att.build(None)
|
664 |
+
if getattr(self, "visn_self_att", None) is not None:
|
665 |
+
with tf.name_scope(self.visn_self_att.name):
|
666 |
+
self.visn_self_att.build(None)
|
667 |
+
if getattr(self, "lang_inter", None) is not None:
|
668 |
+
with tf.name_scope(self.lang_inter.name):
|
669 |
+
self.lang_inter.build(None)
|
670 |
+
if getattr(self, "lang_output", None) is not None:
|
671 |
+
with tf.name_scope(self.lang_output.name):
|
672 |
+
self.lang_output.build(None)
|
673 |
+
if getattr(self, "visn_inter", None) is not None:
|
674 |
+
with tf.name_scope(self.visn_inter.name):
|
675 |
+
self.visn_inter.build(None)
|
676 |
+
if getattr(self, "visn_output", None) is not None:
|
677 |
+
with tf.name_scope(self.visn_output.name):
|
678 |
+
self.visn_output.build(None)
|
679 |
+
|
680 |
+
|
681 |
+
class TFLxmertEncoder(keras.layers.Layer):
|
682 |
+
def __init__(self, config, **kwargs):
|
683 |
+
super().__init__(**kwargs)
|
684 |
+
|
685 |
+
self.visn_fc = TFLxmertVisualFeatureEncoder(config, name="visn_fc")
|
686 |
+
|
687 |
+
# Number of layers
|
688 |
+
self.num_l_layers = config.l_layers
|
689 |
+
self.num_x_layers = config.x_layers
|
690 |
+
self.num_r_layers = config.r_layers
|
691 |
+
|
692 |
+
# Layers
|
693 |
+
# Using self.layer instead of self.l_layer to support loading BERT weights.
|
694 |
+
self.layer = [TFLxmertLayer(config, name=f"layer_._{i}") for i in range(self.num_l_layers)]
|
695 |
+
self.x_layers = [TFLxmertXLayer(config, name=f"x_layers_._{i}") for i in range(self.num_x_layers)]
|
696 |
+
self.r_layers = [TFLxmertLayer(config, name=f"r_layers_._{i}") for i in range(self.num_r_layers)]
|
697 |
+
self.config = config
|
698 |
+
|
699 |
+
def call(
|
700 |
+
self,
|
701 |
+
lang_feats=None,
|
702 |
+
lang_attention_mask=None,
|
703 |
+
visual_feats=None,
|
704 |
+
visual_pos=None,
|
705 |
+
visual_attention_mask=None,
|
706 |
+
output_attentions=None,
|
707 |
+
training=False,
|
708 |
+
):
|
709 |
+
vision_hidden_states = ()
|
710 |
+
language_hidden_states = ()
|
711 |
+
vision_attentions = () if output_attentions or self.config.output_attentions else None
|
712 |
+
language_attentions = () if output_attentions or self.config.output_attentions else None
|
713 |
+
cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None
|
714 |
+
|
715 |
+
visual_feats = self.visn_fc([visual_feats, visual_pos], training=training)
|
716 |
+
|
717 |
+
# Run language layers
|
718 |
+
for layer_module in self.layer:
|
719 |
+
l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions, training=training)
|
720 |
+
lang_feats = l_outputs[0]
|
721 |
+
language_hidden_states = language_hidden_states + (lang_feats,)
|
722 |
+
if language_attentions is not None:
|
723 |
+
language_attentions = language_attentions + (l_outputs[1],)
|
724 |
+
|
725 |
+
# Run relational layers
|
726 |
+
for layer_module in self.r_layers:
|
727 |
+
v_outputs = layer_module(
|
728 |
+
visual_feats,
|
729 |
+
visual_attention_mask,
|
730 |
+
output_attentions,
|
731 |
+
training=training,
|
732 |
+
)
|
733 |
+
visual_feats = v_outputs[0]
|
734 |
+
vision_hidden_states = vision_hidden_states + (visual_feats,)
|
735 |
+
if vision_attentions is not None:
|
736 |
+
vision_attentions = vision_attentions + (v_outputs[1],)
|
737 |
+
|
738 |
+
# Run cross-modality layers
|
739 |
+
for layer_module in self.x_layers:
|
740 |
+
x_outputs = layer_module(
|
741 |
+
lang_feats,
|
742 |
+
lang_attention_mask,
|
743 |
+
visual_feats,
|
744 |
+
visual_attention_mask,
|
745 |
+
output_attentions,
|
746 |
+
training=training,
|
747 |
+
)
|
748 |
+
lang_feats, visual_feats = x_outputs[:2]
|
749 |
+
vision_hidden_states = vision_hidden_states + (visual_feats,)
|
750 |
+
language_hidden_states = language_hidden_states + (lang_feats,)
|
751 |
+
if cross_encoder_attentions is not None:
|
752 |
+
cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],)
|
753 |
+
|
754 |
+
visual_encoder_outputs = (
|
755 |
+
vision_hidden_states,
|
756 |
+
vision_attentions if output_attentions else None,
|
757 |
+
)
|
758 |
+
lang_encoder_outputs = (
|
759 |
+
language_hidden_states,
|
760 |
+
language_attentions if output_attentions else None,
|
761 |
+
)
|
762 |
+
|
763 |
+
return (
|
764 |
+
visual_encoder_outputs,
|
765 |
+
lang_encoder_outputs,
|
766 |
+
cross_encoder_attentions if output_attentions else None,
|
767 |
+
)
|
768 |
+
|
769 |
+
def build(self, input_shape=None):
|
770 |
+
if self.built:
|
771 |
+
return
|
772 |
+
self.built = True
|
773 |
+
if getattr(self, "visn_fc", None) is not None:
|
774 |
+
with tf.name_scope(self.visn_fc.name):
|
775 |
+
self.visn_fc.build(None)
|
776 |
+
if getattr(self, "layer", None) is not None:
|
777 |
+
for layer in self.layer:
|
778 |
+
with tf.name_scope(layer.name):
|
779 |
+
layer.build(None)
|
780 |
+
if getattr(self, "x_layers", None) is not None:
|
781 |
+
for layer in self.x_layers:
|
782 |
+
with tf.name_scope(layer.name):
|
783 |
+
layer.build(None)
|
784 |
+
if getattr(self, "r_layers", None) is not None:
|
785 |
+
for layer in self.r_layers:
|
786 |
+
with tf.name_scope(layer.name):
|
787 |
+
layer.build(None)
|
788 |
+
|
789 |
+
|
790 |
+
@keras_serializable
|
791 |
+
class TFLxmertMainLayer(keras.layers.Layer):
|
792 |
+
config_class = LxmertConfig
|
793 |
+
|
794 |
+
def __init__(self, config, **kwargs):
|
795 |
+
super().__init__(**kwargs)
|
796 |
+
|
797 |
+
self.config = config
|
798 |
+
self.num_l_layers = config.l_layers
|
799 |
+
self.num_x_layers = config.x_layers
|
800 |
+
self.num_r_layers = config.r_layers
|
801 |
+
self.initializer_range = config.initializer_range
|
802 |
+
self.output_attentions = config.output_attentions
|
803 |
+
self.output_hidden_states = config.output_hidden_states
|
804 |
+
self.return_dict = config.use_return_dict
|
805 |
+
self.embeddings = TFLxmertEmbeddings(config, name="embeddings")
|
806 |
+
self.encoder = TFLxmertEncoder(config, name="encoder")
|
807 |
+
self.pooler = TFLxmertPooler(config, name="pooler")
|
808 |
+
self.config = config
|
809 |
+
|
810 |
+
def get_input_embeddings(self):
|
811 |
+
return self.embeddings
|
812 |
+
|
813 |
+
def set_input_embeddings(self, value):
|
814 |
+
self.embeddings.weight = value
|
815 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
816 |
+
|
817 |
+
def _prune_heads(self, heads_to_prune):
|
818 |
+
raise NotImplementedError
|
819 |
+
|
820 |
+
@unpack_inputs
|
821 |
+
def call(
|
822 |
+
self,
|
823 |
+
input_ids=None,
|
824 |
+
visual_feats=None,
|
825 |
+
visual_pos=None,
|
826 |
+
attention_mask=None,
|
827 |
+
visual_attention_mask=None,
|
828 |
+
token_type_ids=None,
|
829 |
+
inputs_embeds=None,
|
830 |
+
output_attentions=None,
|
831 |
+
output_hidden_states=None,
|
832 |
+
return_dict=None,
|
833 |
+
training=False,
|
834 |
+
):
|
835 |
+
if input_ids is not None and inputs_embeds is not None:
|
836 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
837 |
+
elif input_ids is not None:
|
838 |
+
input_shape = shape_list(input_ids)
|
839 |
+
elif inputs_embeds is not None:
|
840 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
841 |
+
else:
|
842 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
843 |
+
if visual_pos is None or visual_feats is None:
|
844 |
+
raise ValueError("visual_feats and visual_pos cannot be `None` in LXMERT's `call` method.")
|
845 |
+
|
846 |
+
if attention_mask is None:
|
847 |
+
attention_mask = tf.fill(input_shape, 1)
|
848 |
+
|
849 |
+
if token_type_ids is None:
|
850 |
+
token_type_ids = tf.fill(input_shape, 0)
|
851 |
+
|
852 |
+
# Positional Word Embeddings
|
853 |
+
embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds, training)
|
854 |
+
|
855 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
856 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
857 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
858 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
859 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
860 |
+
extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
|
861 |
+
|
862 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
863 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
864 |
+
# positions we want to attend and -10000.0 for masked positions.
|
865 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
866 |
+
# effectively the same as removing these entirely.
|
867 |
+
|
868 |
+
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
|
869 |
+
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
|
870 |
+
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
|
871 |
+
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
|
872 |
+
|
873 |
+
if visual_attention_mask is not None:
|
874 |
+
extended_visual_attention_mask = tf.reshape(visual_attention_mask, (input_shape[0], 1, 1, input_shape[1]))
|
875 |
+
extended_visual_attention_mask = tf.expand_dims(tf.expand_dims(visual_attention_mask, axis=1), axis=1)
|
876 |
+
|
877 |
+
extended_visual_attention_mask = tf.cast(extended_visual_attention_mask, dtype=embedding_output.dtype)
|
878 |
+
extended_visual_attention_mask = tf.multiply(
|
879 |
+
tf.subtract(one_cst, extended_visual_attention_mask), ten_thousand_cst
|
880 |
+
)
|
881 |
+
else:
|
882 |
+
extended_visual_attention_mask = None
|
883 |
+
|
884 |
+
# Run Lxmert encoder
|
885 |
+
encoder_outputs = self.encoder(
|
886 |
+
embedding_output,
|
887 |
+
extended_attention_mask,
|
888 |
+
visual_feats,
|
889 |
+
visual_pos,
|
890 |
+
extended_visual_attention_mask,
|
891 |
+
output_attentions,
|
892 |
+
training,
|
893 |
+
)
|
894 |
+
visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2]
|
895 |
+
vision_hidden_states = visual_encoder_outputs[0]
|
896 |
+
language_hidden_states = lang_encoder_outputs[0]
|
897 |
+
|
898 |
+
all_attentions = ()
|
899 |
+
if output_attentions:
|
900 |
+
language_attentions = lang_encoder_outputs[1]
|
901 |
+
vision_attentions = visual_encoder_outputs[1]
|
902 |
+
cross_encoder_attentions = encoder_outputs[2]
|
903 |
+
all_attentions = (
|
904 |
+
language_attentions,
|
905 |
+
vision_attentions,
|
906 |
+
cross_encoder_attentions,
|
907 |
+
)
|
908 |
+
|
909 |
+
hidden_states = (language_hidden_states, vision_hidden_states) if output_hidden_states else ()
|
910 |
+
|
911 |
+
visual_output = vision_hidden_states[-1]
|
912 |
+
lang_output = language_hidden_states[-1]
|
913 |
+
pooled_output = self.pooler(lang_output)
|
914 |
+
|
915 |
+
if not return_dict:
|
916 |
+
return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions
|
917 |
+
|
918 |
+
return TFLxmertModelOutput(
|
919 |
+
pooled_output=pooled_output,
|
920 |
+
language_output=lang_output,
|
921 |
+
vision_output=visual_output,
|
922 |
+
language_hidden_states=language_hidden_states if output_hidden_states else None,
|
923 |
+
vision_hidden_states=vision_hidden_states if output_hidden_states else None,
|
924 |
+
language_attentions=language_attentions if output_attentions else None,
|
925 |
+
vision_attentions=vision_attentions if output_attentions else None,
|
926 |
+
cross_encoder_attentions=cross_encoder_attentions if output_attentions else None,
|
927 |
+
)
|
928 |
+
|
929 |
+
def build(self, input_shape=None):
|
930 |
+
if self.built:
|
931 |
+
return
|
932 |
+
self.built = True
|
933 |
+
if getattr(self, "embeddings", None) is not None:
|
934 |
+
with tf.name_scope(self.embeddings.name):
|
935 |
+
self.embeddings.build(None)
|
936 |
+
if getattr(self, "encoder", None) is not None:
|
937 |
+
with tf.name_scope(self.encoder.name):
|
938 |
+
self.encoder.build(None)
|
939 |
+
if getattr(self, "pooler", None) is not None:
|
940 |
+
with tf.name_scope(self.pooler.name):
|
941 |
+
self.pooler.build(None)
|
942 |
+
|
943 |
+
|
944 |
+
class TFLxmertPreTrainedModel(TFPreTrainedModel):
|
945 |
+
"""
|
946 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
947 |
+
models.
|
948 |
+
"""
|
949 |
+
|
950 |
+
config_class = LxmertConfig
|
951 |
+
base_model_prefix = "lxmert"
|
952 |
+
|
953 |
+
@property
|
954 |
+
def dummy_inputs(self):
|
955 |
+
"""
|
956 |
+
Dummy inputs to build the network.
|
957 |
+
|
958 |
+
Returns:
|
959 |
+
tf.Tensor with dummy inputs
|
960 |
+
"""
|
961 |
+
batch_size = 2
|
962 |
+
num_visual_features = 10
|
963 |
+
input_ids = tf.constant([[3, 5, 6], [2, 3, 4]], dtype=tf.int32)
|
964 |
+
visual_feats = tf.random.uniform((batch_size, num_visual_features, self.config.visual_feat_dim))
|
965 |
+
visual_pos = tf.random.uniform((batch_size, num_visual_features, 4))
|
966 |
+
|
967 |
+
return {
|
968 |
+
"input_ids": input_ids,
|
969 |
+
"visual_feats": visual_feats,
|
970 |
+
"visual_pos": visual_pos,
|
971 |
+
}
|
972 |
+
|
973 |
+
@property
|
974 |
+
def input_signature(self):
|
975 |
+
return {
|
976 |
+
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
|
977 |
+
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
|
978 |
+
"visual_feats": tf.TensorSpec((None, None, self.config.visual_feat_dim), tf.float32, name="visual_feats"),
|
979 |
+
"visual_pos": tf.TensorSpec((None, None, 4), tf.float32, name="visual_pos"),
|
980 |
+
"visual_attention_mask": tf.TensorSpec((None, None), tf.int32, name="visual_attention_mask"),
|
981 |
+
"token_type_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"),
|
982 |
+
}
|
983 |
+
|
984 |
+
|
985 |
+
LXMERT_START_DOCSTRING = r"""
|
986 |
+
|
987 |
+
The LXMERT model was proposed in [LXMERT: Learning Cross-Modality Encoder Representations from
|
988 |
+
Transformers](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. It's a vision and language transformer
|
989 |
+
model, pre-trained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MCSCOCO captions, and Visual
|
990 |
+
genome, using a combination of masked language modeling, region of interest feature regression, cross entropy loss
|
991 |
+
for question answering attribute prediction, and object tag prediction.
|
992 |
+
|
993 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
994 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
995 |
+
behavior.
|
996 |
+
|
997 |
+
<Tip>
|
998 |
+
|
999 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
1000 |
+
|
1001 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
1002 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
1003 |
+
|
1004 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
1005 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
1006 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
1007 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
1008 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
1009 |
+
positional argument:
|
1010 |
+
|
1011 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
1012 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
1013 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
1014 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
1015 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
1016 |
+
|
1017 |
+
Note that when creating models and layers with
|
1018 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
1019 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
1020 |
+
|
1021 |
+
</Tip>
|
1022 |
+
|
1023 |
+
Parameters:
|
1024 |
+
config ([`LxmertConfig`]): Model configuration class with all the parameters of the model.
|
1025 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1026 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1027 |
+
"""
|
1028 |
+
|
1029 |
+
LXMERT_INPUTS_DOCSTRING = r"""
|
1030 |
+
Args:
|
1031 |
+
input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`):
|
1032 |
+
Indices of input sequence tokens in the vocabulary.
|
1033 |
+
|
1034 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
1035 |
+
[`PreTrainedTokenizer.encode`] for details.
|
1036 |
+
|
1037 |
+
[What are input IDs?](../glossary#input-ids)
|
1038 |
+
visual_feats (`tf.Tensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`):
|
1039 |
+
This input represents visual features. They ROI pooled object features from bounding boxes using a
|
1040 |
+
faster-RCNN model)
|
1041 |
+
|
1042 |
+
These are currently not provided by the transformers library.
|
1043 |
+
visual_pos (`tf.Tensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`):
|
1044 |
+
This input represents spacial features corresponding to their relative (via index) visual features. The
|
1045 |
+
pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to
|
1046 |
+
1.
|
1047 |
+
|
1048 |
+
These are currently not provided by the transformers library.
|
1049 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1050 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1051 |
+
|
1052 |
+
- 1 for tokens that are **not masked**,
|
1053 |
+
- 0 for tokens that are **masked**.
|
1054 |
+
|
1055 |
+
[What are attention masks?](../glossary#attention-mask)
|
1056 |
+
visual_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1057 |
+
MMask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1058 |
+
|
1059 |
+
- 1 for tokens that are **not masked**,
|
1060 |
+
- 0 for tokens that are **masked**.
|
1061 |
+
|
1062 |
+
[What are attention masks?](../glossary#attention-mask)
|
1063 |
+
token_type_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1064 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
1065 |
+
1]`:
|
1066 |
+
|
1067 |
+
- 0 corresponds to a *sentence A* token,
|
1068 |
+
- 1 corresponds to a *sentence B* token.
|
1069 |
+
|
1070 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
1071 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1072 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1073 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1074 |
+
model's internal embedding lookup matrix.
|
1075 |
+
output_attentions (`bool`, *optional*):
|
1076 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1077 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
1078 |
+
config will be used instead.
|
1079 |
+
output_hidden_states (`bool`, *optional*):
|
1080 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1081 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
1082 |
+
used instead.
|
1083 |
+
return_dict (`bool`, *optional*):
|
1084 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
1085 |
+
eager mode, in graph mode the value will always be set to True.
|
1086 |
+
training (`bool`, *optional*, defaults to `False`):
|
1087 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
1088 |
+
behaviors between training and evaluation).
|
1089 |
+
"""
|
1090 |
+
|
1091 |
+
|
1092 |
+
@add_start_docstrings(
|
1093 |
+
"The bare Lxmert Model transformer outputting raw hidden-states without any specific head on top.",
|
1094 |
+
LXMERT_START_DOCSTRING,
|
1095 |
+
)
|
1096 |
+
class TFLxmertModel(TFLxmertPreTrainedModel):
|
1097 |
+
def __init__(self, config, *inputs, **kwargs):
|
1098 |
+
super().__init__(config, *inputs, **kwargs)
|
1099 |
+
self.lxmert = TFLxmertMainLayer(config, name="lxmert")
|
1100 |
+
|
1101 |
+
@unpack_inputs
|
1102 |
+
@add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING)
|
1103 |
+
@add_code_sample_docstrings(
|
1104 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1105 |
+
output_type=TFLxmertModelOutput,
|
1106 |
+
config_class=_CONFIG_FOR_DOC,
|
1107 |
+
)
|
1108 |
+
def call(
|
1109 |
+
self,
|
1110 |
+
input_ids: TFModelInputType | None = None,
|
1111 |
+
visual_feats: tf.Tensor | None = None,
|
1112 |
+
visual_pos: tf.Tensor | None = None,
|
1113 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1114 |
+
visual_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1115 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1116 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1117 |
+
output_attentions: Optional[bool] = None,
|
1118 |
+
output_hidden_states: Optional[bool] = None,
|
1119 |
+
return_dict: Optional[bool] = None,
|
1120 |
+
training: bool = False,
|
1121 |
+
) -> Union[Tuple, TFLxmertModelOutput]:
|
1122 |
+
outputs = self.lxmert(
|
1123 |
+
input_ids,
|
1124 |
+
visual_feats,
|
1125 |
+
visual_pos,
|
1126 |
+
attention_mask,
|
1127 |
+
visual_attention_mask,
|
1128 |
+
token_type_ids,
|
1129 |
+
inputs_embeds,
|
1130 |
+
output_attentions,
|
1131 |
+
output_hidden_states,
|
1132 |
+
return_dict,
|
1133 |
+
training,
|
1134 |
+
)
|
1135 |
+
|
1136 |
+
return outputs
|
1137 |
+
|
1138 |
+
def build(self, input_shape=None):
|
1139 |
+
if self.built:
|
1140 |
+
return
|
1141 |
+
self.built = True
|
1142 |
+
if getattr(self, "lxmert", None) is not None:
|
1143 |
+
with tf.name_scope(self.lxmert.name):
|
1144 |
+
self.lxmert.build(None)
|
1145 |
+
|
1146 |
+
|
1147 |
+
class TFLxmertPooler(keras.layers.Layer):
|
1148 |
+
def __init__(self, config, **kwargs):
|
1149 |
+
super().__init__(**kwargs)
|
1150 |
+
self.dense = keras.layers.Dense(
|
1151 |
+
config.hidden_size,
|
1152 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1153 |
+
activation="tanh",
|
1154 |
+
name="dense",
|
1155 |
+
)
|
1156 |
+
self.config = config
|
1157 |
+
|
1158 |
+
def call(self, hidden_states):
|
1159 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
1160 |
+
# to the first token.
|
1161 |
+
first_token_tensor = hidden_states[:, 0]
|
1162 |
+
pooled_output = self.dense(first_token_tensor)
|
1163 |
+
return pooled_output
|
1164 |
+
|
1165 |
+
def build(self, input_shape=None):
|
1166 |
+
if self.built:
|
1167 |
+
return
|
1168 |
+
self.built = True
|
1169 |
+
if getattr(self, "dense", None) is not None:
|
1170 |
+
with tf.name_scope(self.dense.name):
|
1171 |
+
self.dense.build([None, None, self.config.hidden_size])
|
1172 |
+
|
1173 |
+
|
1174 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->Lxmert
|
1175 |
+
class TFLxmertPredictionHeadTransform(keras.layers.Layer):
|
1176 |
+
def __init__(self, config: LxmertConfig, **kwargs):
|
1177 |
+
super().__init__(**kwargs)
|
1178 |
+
|
1179 |
+
self.dense = keras.layers.Dense(
|
1180 |
+
units=config.hidden_size,
|
1181 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1182 |
+
name="dense",
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
if isinstance(config.hidden_act, str):
|
1186 |
+
self.transform_act_fn = get_tf_activation(config.hidden_act)
|
1187 |
+
else:
|
1188 |
+
self.transform_act_fn = config.hidden_act
|
1189 |
+
|
1190 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
1191 |
+
self.config = config
|
1192 |
+
|
1193 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
1194 |
+
hidden_states = self.dense(inputs=hidden_states)
|
1195 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
1196 |
+
hidden_states = self.LayerNorm(inputs=hidden_states)
|
1197 |
+
|
1198 |
+
return hidden_states
|
1199 |
+
|
1200 |
+
def build(self, input_shape=None):
|
1201 |
+
if self.built:
|
1202 |
+
return
|
1203 |
+
self.built = True
|
1204 |
+
if getattr(self, "dense", None) is not None:
|
1205 |
+
with tf.name_scope(self.dense.name):
|
1206 |
+
self.dense.build([None, None, self.config.hidden_size])
|
1207 |
+
if getattr(self, "LayerNorm", None) is not None:
|
1208 |
+
with tf.name_scope(self.LayerNorm.name):
|
1209 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
1210 |
+
|
1211 |
+
|
1212 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMPredictionHead with Bert->Lxmert
|
1213 |
+
class TFLxmertLMPredictionHead(keras.layers.Layer):
|
1214 |
+
def __init__(self, config: LxmertConfig, input_embeddings: keras.layers.Layer, **kwargs):
|
1215 |
+
super().__init__(**kwargs)
|
1216 |
+
|
1217 |
+
self.config = config
|
1218 |
+
self.hidden_size = config.hidden_size
|
1219 |
+
|
1220 |
+
self.transform = TFLxmertPredictionHeadTransform(config, name="transform")
|
1221 |
+
|
1222 |
+
# The output weights are the same as the input embeddings, but there is
|
1223 |
+
# an output-only bias for each token.
|
1224 |
+
self.input_embeddings = input_embeddings
|
1225 |
+
|
1226 |
+
def build(self, input_shape=None):
|
1227 |
+
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
|
1228 |
+
|
1229 |
+
if self.built:
|
1230 |
+
return
|
1231 |
+
self.built = True
|
1232 |
+
if getattr(self, "transform", None) is not None:
|
1233 |
+
with tf.name_scope(self.transform.name):
|
1234 |
+
self.transform.build(None)
|
1235 |
+
|
1236 |
+
def get_output_embeddings(self) -> keras.layers.Layer:
|
1237 |
+
return self.input_embeddings
|
1238 |
+
|
1239 |
+
def set_output_embeddings(self, value: tf.Variable):
|
1240 |
+
self.input_embeddings.weight = value
|
1241 |
+
self.input_embeddings.vocab_size = shape_list(value)[0]
|
1242 |
+
|
1243 |
+
def get_bias(self) -> Dict[str, tf.Variable]:
|
1244 |
+
return {"bias": self.bias}
|
1245 |
+
|
1246 |
+
def set_bias(self, value: tf.Variable):
|
1247 |
+
self.bias = value["bias"]
|
1248 |
+
self.config.vocab_size = shape_list(value["bias"])[0]
|
1249 |
+
|
1250 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
1251 |
+
hidden_states = self.transform(hidden_states=hidden_states)
|
1252 |
+
seq_length = shape_list(hidden_states)[1]
|
1253 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
|
1254 |
+
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
|
1255 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
|
1256 |
+
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
|
1257 |
+
|
1258 |
+
return hidden_states
|
1259 |
+
|
1260 |
+
|
1261 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->Lxmert
|
1262 |
+
class TFLxmertMLMHead(keras.layers.Layer):
|
1263 |
+
def __init__(self, config: LxmertConfig, input_embeddings: keras.layers.Layer, **kwargs):
|
1264 |
+
super().__init__(**kwargs)
|
1265 |
+
|
1266 |
+
self.predictions = TFLxmertLMPredictionHead(config, input_embeddings, name="predictions")
|
1267 |
+
|
1268 |
+
def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
|
1269 |
+
prediction_scores = self.predictions(hidden_states=sequence_output)
|
1270 |
+
|
1271 |
+
return prediction_scores
|
1272 |
+
|
1273 |
+
def build(self, input_shape=None):
|
1274 |
+
if self.built:
|
1275 |
+
return
|
1276 |
+
self.built = True
|
1277 |
+
if getattr(self, "predictions", None) is not None:
|
1278 |
+
with tf.name_scope(self.predictions.name):
|
1279 |
+
self.predictions.build(None)
|
1280 |
+
|
1281 |
+
|
1282 |
+
class TFLxmertPreTrainingHeads(keras.layers.Layer):
|
1283 |
+
def __init__(self, config, input_embeddings, **kwargs):
|
1284 |
+
super().__init__(**kwargs)
|
1285 |
+
self.predictions = TFLxmertLMPredictionHead(config, input_embeddings, name="predictions")
|
1286 |
+
|
1287 |
+
self.seq_relationship = keras.layers.Dense(
|
1288 |
+
2,
|
1289 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1290 |
+
name="seq_relationship",
|
1291 |
+
)
|
1292 |
+
self.config = config
|
1293 |
+
|
1294 |
+
def call(self, sequence_output, pooled_output):
|
1295 |
+
prediction_scores = self.predictions(sequence_output)
|
1296 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
1297 |
+
return prediction_scores, seq_relationship_score
|
1298 |
+
|
1299 |
+
def build(self, input_shape=None):
|
1300 |
+
if self.built:
|
1301 |
+
return
|
1302 |
+
self.built = True
|
1303 |
+
if getattr(self, "predictions", None) is not None:
|
1304 |
+
with tf.name_scope(self.predictions.name):
|
1305 |
+
self.predictions.build(None)
|
1306 |
+
if getattr(self, "seq_relationship", None) is not None:
|
1307 |
+
with tf.name_scope(self.seq_relationship.name):
|
1308 |
+
self.seq_relationship.build([None, None, self.config.hidden_size])
|
1309 |
+
|
1310 |
+
|
1311 |
+
class TFLxmertVisualAnswerHead(keras.layers.Layer):
|
1312 |
+
def __init__(self, config, num_labels, **kwargs):
|
1313 |
+
super().__init__(**kwargs)
|
1314 |
+
hid_dim = config.hidden_size
|
1315 |
+
self.dense = keras.layers.Dense(
|
1316 |
+
hid_dim * 2,
|
1317 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1318 |
+
name="logit_fc_._0",
|
1319 |
+
)
|
1320 |
+
self.activation = get_tf_activation("gelu")
|
1321 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="logit_fc_._2")
|
1322 |
+
self.dense_1 = keras.layers.Dense(
|
1323 |
+
num_labels,
|
1324 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1325 |
+
name="logit_fc_._3",
|
1326 |
+
)
|
1327 |
+
self.hid_dim = hid_dim
|
1328 |
+
|
1329 |
+
def call(self, hidden_states):
|
1330 |
+
hidden_states = self.dense(hidden_states)
|
1331 |
+
hidden_states = self.activation(hidden_states)
|
1332 |
+
hidden_states = self.layer_norm(hidden_states)
|
1333 |
+
hidden_states = self.dense_1(hidden_states)
|
1334 |
+
|
1335 |
+
return hidden_states
|
1336 |
+
|
1337 |
+
def build(self, input_shape=None):
|
1338 |
+
if self.built:
|
1339 |
+
return
|
1340 |
+
self.built = True
|
1341 |
+
if getattr(self, "dense", None) is not None:
|
1342 |
+
with tf.name_scope(self.dense.name):
|
1343 |
+
self.dense.build([None, None, self.hid_dim])
|
1344 |
+
if getattr(self, "layer_norm", None) is not None:
|
1345 |
+
with tf.name_scope(self.layer_norm.name):
|
1346 |
+
self.layer_norm.build([None, self.hid_dim * 2])
|
1347 |
+
if getattr(self, "dense_1", None) is not None:
|
1348 |
+
with tf.name_scope(self.dense_1.name):
|
1349 |
+
self.dense_1.build([None, None, self.hid_dim * 2])
|
1350 |
+
|
1351 |
+
|
1352 |
+
class TFLxmertVisualObjHead(keras.layers.Layer):
|
1353 |
+
def __init__(self, config, **kwargs):
|
1354 |
+
super().__init__(**kwargs)
|
1355 |
+
self.transform = TFLxmertPredictionHeadTransform(config, name="transform")
|
1356 |
+
|
1357 |
+
# Decide the use of visual losses
|
1358 |
+
visual_losses = {}
|
1359 |
+
if config.visual_obj_loss:
|
1360 |
+
visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels}
|
1361 |
+
if config.visual_attr_loss:
|
1362 |
+
visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels}
|
1363 |
+
if config.visual_feat_loss:
|
1364 |
+
visual_losses["feat"] = {"shape": (-1, 2048), "num": config.visual_feat_dim}
|
1365 |
+
self.visual_losses = visual_losses
|
1366 |
+
|
1367 |
+
# The output weights are the same as the input embeddings, but there is
|
1368 |
+
# an output-only bias for each token.
|
1369 |
+
self.decoder_dict = {
|
1370 |
+
key: keras.layers.Dense(
|
1371 |
+
self.visual_losses[key]["num"],
|
1372 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1373 |
+
name=f"decoder_dict.{key}",
|
1374 |
+
)
|
1375 |
+
for key in self.visual_losses
|
1376 |
+
}
|
1377 |
+
self.config = config
|
1378 |
+
|
1379 |
+
def call(self, hidden_states):
|
1380 |
+
hidden_states = self.transform(hidden_states)
|
1381 |
+
output = {}
|
1382 |
+
for key in self.visual_losses:
|
1383 |
+
output[key] = self.decoder_dict[key](hidden_states)
|
1384 |
+
return output
|
1385 |
+
|
1386 |
+
def build(self, input_shape=None):
|
1387 |
+
if self.built:
|
1388 |
+
return
|
1389 |
+
self.built = True
|
1390 |
+
if getattr(self, "transform", None) is not None:
|
1391 |
+
with tf.name_scope(self.transform.name):
|
1392 |
+
self.transform.build(None)
|
1393 |
+
if getattr(self, "decoder_dict", None) is not None:
|
1394 |
+
for layer in self.decoder_dict.values():
|
1395 |
+
with tf.name_scope(layer.name):
|
1396 |
+
layer.build([None, None, self.config.hidden_size])
|
1397 |
+
|
1398 |
+
|
1399 |
+
@add_start_docstrings("""Lxmert Model with a `language modeling` head on top.""", LXMERT_START_DOCSTRING)
|
1400 |
+
class TFLxmertForPreTraining(TFLxmertPreTrainedModel):
|
1401 |
+
def __init__(self, config, *inputs, **kwargs):
|
1402 |
+
super().__init__(config, *inputs, **kwargs)
|
1403 |
+
|
1404 |
+
self.config = config
|
1405 |
+
self.num_qa_labels = config.num_qa_labels
|
1406 |
+
self.visual_loss_normalizer = config.visual_loss_normalizer
|
1407 |
+
|
1408 |
+
# Use of pretraining tasks
|
1409 |
+
self.task_mask_lm = config.task_mask_lm
|
1410 |
+
self.task_obj_predict = config.task_obj_predict
|
1411 |
+
self.task_matched = config.task_matched
|
1412 |
+
self.task_qa = config.task_qa
|
1413 |
+
|
1414 |
+
# Lxmert backbone
|
1415 |
+
self.lxmert = TFLxmertMainLayer(config, name="lxmert")
|
1416 |
+
|
1417 |
+
# Pre-training heads
|
1418 |
+
self.cls = TFLxmertPreTrainingHeads(config, self.lxmert.embeddings, name="cls")
|
1419 |
+
if self.task_obj_predict:
|
1420 |
+
self.obj_predict_head = TFLxmertVisualObjHead(config, name="obj_predict_head")
|
1421 |
+
if self.task_qa:
|
1422 |
+
self.answer_head = TFLxmertVisualAnswerHead(config, self.num_qa_labels, name="answer_head")
|
1423 |
+
|
1424 |
+
# Loss functions
|
1425 |
+
self.loss_fcts = {
|
1426 |
+
"l2": keras.losses.Huber(delta=1.0, name="huber_loss"),
|
1427 |
+
"visn_ce": keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
1428 |
+
"ce": keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
1429 |
+
}
|
1430 |
+
|
1431 |
+
visual_losses = {}
|
1432 |
+
if config.visual_obj_loss:
|
1433 |
+
visual_losses["obj"] = {
|
1434 |
+
"shape": (-1,),
|
1435 |
+
"num": config.num_object_labels,
|
1436 |
+
"loss": "visn_ce",
|
1437 |
+
}
|
1438 |
+
if config.visual_attr_loss:
|
1439 |
+
visual_losses["attr"] = {
|
1440 |
+
"shape": (-1,),
|
1441 |
+
"num": config.num_attr_labels,
|
1442 |
+
"loss": "visn_ce",
|
1443 |
+
}
|
1444 |
+
if config.visual_feat_loss:
|
1445 |
+
visual_losses["feat"] = {
|
1446 |
+
"shape": (-1, config.visual_feat_dim),
|
1447 |
+
"num": config.visual_feat_dim,
|
1448 |
+
"loss": "l2",
|
1449 |
+
}
|
1450 |
+
self.visual_losses = visual_losses
|
1451 |
+
|
1452 |
+
@property
|
1453 |
+
def dummy_inputs(self):
|
1454 |
+
"""
|
1455 |
+
Dummy inputs to build the network.
|
1456 |
+
|
1457 |
+
Returns:
|
1458 |
+
tf.Tensor with dummy inputs
|
1459 |
+
"""
|
1460 |
+
batch_size = 2
|
1461 |
+
num_visual_features = 10
|
1462 |
+
input_ids = tf.constant([[3, 5, 6], [2, 3, 4]], dtype=tf.int32)
|
1463 |
+
visual_feats = tf.random.uniform((batch_size, num_visual_features, self.config.visual_feat_dim))
|
1464 |
+
visual_pos = tf.random.uniform((batch_size, num_visual_features, 4))
|
1465 |
+
|
1466 |
+
if self.config.task_obj_predict:
|
1467 |
+
obj_labels = {}
|
1468 |
+
if self.config.visual_attr_loss and self.config.task_obj_predict:
|
1469 |
+
obj_labels["attr"] = (
|
1470 |
+
tf.ones([batch_size, num_visual_features]),
|
1471 |
+
tf.ones([batch_size, num_visual_features]),
|
1472 |
+
)
|
1473 |
+
if self.config.visual_feat_loss and self.config.task_obj_predict:
|
1474 |
+
obj_labels["feat"] = (
|
1475 |
+
tf.ones([batch_size, num_visual_features, self.config.visual_feat_dim]),
|
1476 |
+
tf.ones([batch_size, num_visual_features]),
|
1477 |
+
)
|
1478 |
+
if self.config.visual_obj_loss and self.config.task_obj_predict:
|
1479 |
+
obj_labels["obj"] = (
|
1480 |
+
tf.ones([batch_size, num_visual_features]),
|
1481 |
+
tf.ones([batch_size, num_visual_features]),
|
1482 |
+
)
|
1483 |
+
|
1484 |
+
return {
|
1485 |
+
**{
|
1486 |
+
"input_ids": input_ids,
|
1487 |
+
"visual_feats": visual_feats,
|
1488 |
+
"visual_pos": visual_pos,
|
1489 |
+
},
|
1490 |
+
**({"obj_labels": obj_labels} if self.config.task_obj_predict else {}),
|
1491 |
+
}
|
1492 |
+
|
1493 |
+
def get_lm_head(self):
|
1494 |
+
return self.cls.predictions
|
1495 |
+
|
1496 |
+
def get_prefix_bias_name(self):
|
1497 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
1498 |
+
return self.name + "/" + self.cls.name + "/" + self.cls.predictions.name
|
1499 |
+
|
1500 |
+
@unpack_inputs
|
1501 |
+
@add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING)
|
1502 |
+
@replace_return_docstrings(output_type=TFLxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1503 |
+
def call(
|
1504 |
+
self,
|
1505 |
+
input_ids: TFModelInputType | None = None,
|
1506 |
+
visual_feats: tf.Tensor | None = None,
|
1507 |
+
visual_pos: tf.Tensor | None = None,
|
1508 |
+
attention_mask: tf.Tensor | None = None,
|
1509 |
+
visual_attention_mask: tf.Tensor | None = None,
|
1510 |
+
token_type_ids: tf.Tensor | None = None,
|
1511 |
+
inputs_embeds: tf.Tensor | None = None,
|
1512 |
+
masked_lm_labels: tf.Tensor | None = None,
|
1513 |
+
obj_labels: Dict[str, Tuple[tf.Tensor, tf.Tensor]] | None = None,
|
1514 |
+
matched_label: tf.Tensor | None = None,
|
1515 |
+
ans: tf.Tensor | None = None,
|
1516 |
+
output_attentions: bool | None = None,
|
1517 |
+
output_hidden_states: bool | None = None,
|
1518 |
+
return_dict: bool | None = None,
|
1519 |
+
training: bool = False,
|
1520 |
+
) -> Tuple[tf.Tensor] | TFLxmertForPreTrainingOutput:
|
1521 |
+
r"""
|
1522 |
+
masked_lm_labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1523 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1524 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1525 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1526 |
+
obj_labels (`Dict[Str: Tuple[tf.Tensor, tf.Tensor]]`, *optional*, defaults to `None`):
|
1527 |
+
each key is named after each one of the visual losses and each element of the tuple is of the shape
|
1528 |
+
`(batch_size, num_features)` and `(batch_size, num_features, visual_feature_dim)` for each the label id and
|
1529 |
+
the label score respectively
|
1530 |
+
matched_label (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1531 |
+
Labels for computing the whether or not the text input matches the image (classification) loss. Input
|
1532 |
+
should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
|
1533 |
+
|
1534 |
+
- 0 indicates that the sentence does not match the image,
|
1535 |
+
- 1 indicates that the sentence does match the image.
|
1536 |
+
ans (`tf.Tensor` of shape `(batch_size)`, *optional*, defaults to `None`):
|
1537 |
+
a one hot representation hof the correct answer *optional*
|
1538 |
+
|
1539 |
+
Returns:
|
1540 |
+
"""
|
1541 |
+
|
1542 |
+
lxmert_output = self.lxmert(
|
1543 |
+
input_ids,
|
1544 |
+
visual_feats,
|
1545 |
+
visual_pos,
|
1546 |
+
attention_mask,
|
1547 |
+
visual_attention_mask,
|
1548 |
+
token_type_ids,
|
1549 |
+
inputs_embeds,
|
1550 |
+
output_attentions,
|
1551 |
+
output_hidden_states,
|
1552 |
+
return_dict,
|
1553 |
+
training,
|
1554 |
+
)
|
1555 |
+
|
1556 |
+
lang_output, visual_output, pooled_output = (
|
1557 |
+
lxmert_output[0],
|
1558 |
+
lxmert_output[1],
|
1559 |
+
lxmert_output[2],
|
1560 |
+
)
|
1561 |
+
lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output)
|
1562 |
+
if self.task_qa:
|
1563 |
+
answer_score = self.answer_head(pooled_output)
|
1564 |
+
else:
|
1565 |
+
answer_score = pooled_output[0][0]
|
1566 |
+
|
1567 |
+
total_loss = (
|
1568 |
+
None
|
1569 |
+
if (masked_lm_labels is None and matched_label is None and obj_labels is None and ans is None)
|
1570 |
+
else tf.constant(0.0)
|
1571 |
+
)
|
1572 |
+
losses = ()
|
1573 |
+
if masked_lm_labels is not None and self.task_mask_lm:
|
1574 |
+
masked_lm_loss = self.loss_fcts["ce"](
|
1575 |
+
tf.reshape(masked_lm_labels, [-1]),
|
1576 |
+
tf.reshape(lang_prediction_scores, [-1, self.config.vocab_size]),
|
1577 |
+
)
|
1578 |
+
total_loss += masked_lm_loss
|
1579 |
+
losses += (masked_lm_loss,)
|
1580 |
+
if matched_label is not None and self.task_matched:
|
1581 |
+
matched_loss = self.loss_fcts["ce"](
|
1582 |
+
tf.reshape(matched_label, [-1]),
|
1583 |
+
tf.reshape(cross_relationship_score, [-1, 2]),
|
1584 |
+
)
|
1585 |
+
total_loss += matched_loss
|
1586 |
+
losses += (matched_loss,)
|
1587 |
+
if obj_labels is not None and self.task_obj_predict:
|
1588 |
+
total_visn_loss = 0.0
|
1589 |
+
visn_prediction_scores_dict = self.obj_predict_head(visual_output)
|
1590 |
+
for key, key_info in self.visual_losses.items():
|
1591 |
+
label, mask_conf = obj_labels[key]
|
1592 |
+
output_dim = key_info["num"]
|
1593 |
+
loss_fct_name = key_info["loss"]
|
1594 |
+
label_shape = key_info["shape"]
|
1595 |
+
weight = self.visual_loss_normalizer
|
1596 |
+
visn_loss_fct = self.loss_fcts[loss_fct_name]
|
1597 |
+
visn_prediction_scores = visn_prediction_scores_dict[key]
|
1598 |
+
visn_loss = visn_loss_fct(
|
1599 |
+
tf.reshape(label, label_shape),
|
1600 |
+
tf.reshape(visn_prediction_scores, [-1, output_dim]),
|
1601 |
+
)
|
1602 |
+
|
1603 |
+
if visn_loss.ndim > 1: # Regression Losses
|
1604 |
+
visn_loss = tf.reduce_mean(visn_loss)
|
1605 |
+
visn_loss = tf.reduce_mean(visn_loss * tf.cast(tf.reshape(mask_conf, [-1]), visn_loss.dtype)) * weight
|
1606 |
+
total_visn_loss += visn_loss
|
1607 |
+
losses += (visn_loss,)
|
1608 |
+
total_loss += total_visn_loss
|
1609 |
+
if ans is not None and self.task_qa:
|
1610 |
+
answer_loss = self.loss_fcts["ce"](
|
1611 |
+
tf.reshape(ans, [-1]), tf.reshape(answer_score, [-1, self.num_qa_labels])
|
1612 |
+
)
|
1613 |
+
# exclude "*2" here to match the effect of QA losses.
|
1614 |
+
# Previous: (loss *0) for 6 epochs, (loss *2) for 6 epochs. (Used 10 instead of 6 in EMNLP paper)
|
1615 |
+
# Now : (loss *1) for 12 epochs
|
1616 |
+
#
|
1617 |
+
# * 2 # Multiply by 2 because > half of the data will not have label
|
1618 |
+
total_loss += answer_loss
|
1619 |
+
losses += (answer_loss,)
|
1620 |
+
# return total_loss, tf.stack(losses)[tf.new_axis, ...], answer_score.detach()
|
1621 |
+
|
1622 |
+
if not return_dict:
|
1623 |
+
output = (
|
1624 |
+
lang_prediction_scores,
|
1625 |
+
cross_relationship_score,
|
1626 |
+
answer_score,
|
1627 |
+
) + lxmert_output[3:]
|
1628 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1629 |
+
|
1630 |
+
return TFLxmertForPreTrainingOutput(
|
1631 |
+
loss=total_loss,
|
1632 |
+
prediction_logits=lang_prediction_scores,
|
1633 |
+
cross_relationship_score=cross_relationship_score,
|
1634 |
+
question_answering_score=answer_score,
|
1635 |
+
language_hidden_states=lxmert_output.language_hidden_states,
|
1636 |
+
vision_hidden_states=lxmert_output.vision_hidden_states,
|
1637 |
+
language_attentions=lxmert_output.language_attentions,
|
1638 |
+
vision_attentions=lxmert_output.vision_attentions,
|
1639 |
+
cross_encoder_attentions=lxmert_output.cross_encoder_attentions,
|
1640 |
+
)
|
1641 |
+
|
1642 |
+
def build(self, input_shape=None):
|
1643 |
+
if self.built:
|
1644 |
+
return
|
1645 |
+
self.built = True
|
1646 |
+
if getattr(self, "lxmert", None) is not None:
|
1647 |
+
with tf.name_scope(self.lxmert.name):
|
1648 |
+
self.lxmert.build(None)
|
1649 |
+
if getattr(self, "cls", None) is not None:
|
1650 |
+
with tf.name_scope(self.cls.name):
|
1651 |
+
self.cls.build(None)
|
1652 |
+
if getattr(self, "obj_predict_head", None) is not None:
|
1653 |
+
with tf.name_scope(self.obj_predict_head.name):
|
1654 |
+
self.obj_predict_head.build(None)
|
1655 |
+
if getattr(self, "answer_head", None) is not None:
|
1656 |
+
with tf.name_scope(self.answer_head.name):
|
1657 |
+
self.answer_head.build(None)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert.py
ADDED
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import collections
|
17 |
+
import os
|
18 |
+
import unicodedata
|
19 |
+
from typing import List, Optional, Tuple
|
20 |
+
|
21 |
+
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
22 |
+
from ...utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
28 |
+
|
29 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
30 |
+
"vocab_file": {
|
31 |
+
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt",
|
32 |
+
}
|
33 |
+
}
|
34 |
+
|
35 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
36 |
+
"unc-nlp/lxmert-base-uncased": 512,
|
37 |
+
}
|
38 |
+
|
39 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
40 |
+
"unc-nlp/lxmert-base-uncased": {"do_lower_case": True},
|
41 |
+
}
|
42 |
+
|
43 |
+
|
44 |
+
# Copied from transformers.models.bert.tokenization_bert.load_vocab
|
45 |
+
def load_vocab(vocab_file):
|
46 |
+
"""Loads a vocabulary file into a dictionary."""
|
47 |
+
vocab = collections.OrderedDict()
|
48 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
49 |
+
tokens = reader.readlines()
|
50 |
+
for index, token in enumerate(tokens):
|
51 |
+
token = token.rstrip("\n")
|
52 |
+
vocab[token] = index
|
53 |
+
return vocab
|
54 |
+
|
55 |
+
|
56 |
+
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
|
57 |
+
def whitespace_tokenize(text):
|
58 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
59 |
+
text = text.strip()
|
60 |
+
if not text:
|
61 |
+
return []
|
62 |
+
tokens = text.split()
|
63 |
+
return tokens
|
64 |
+
|
65 |
+
|
66 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer with bert-base-cased->unc-nlp/lxmert-base-uncased, BERT->Lxmert, BertTokenizer->LxmertTokenizer
|
67 |
+
class LxmertTokenizer(PreTrainedTokenizer):
|
68 |
+
r"""
|
69 |
+
Construct a Lxmert tokenizer. Based on WordPiece.
|
70 |
+
|
71 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
72 |
+
this superclass for more information regarding those methods.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
vocab_file (`str`):
|
76 |
+
File containing the vocabulary.
|
77 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether or not to lowercase the input when tokenizing.
|
79 |
+
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
|
80 |
+
Whether or not to do basic tokenization before WordPiece.
|
81 |
+
never_split (`Iterable`, *optional*):
|
82 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
83 |
+
`do_basic_tokenize=True`
|
84 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
85 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
86 |
+
token instead.
|
87 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
88 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
89 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
90 |
+
token of a sequence built with special tokens.
|
91 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
92 |
+
The token used for padding, for example when batching sequences of different lengths.
|
93 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
94 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
95 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
96 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
97 |
+
The token used for masking values. This is the token used when training this model with masked language
|
98 |
+
modeling. This is the token which the model will try to predict.
|
99 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
100 |
+
Whether or not to tokenize Chinese characters.
|
101 |
+
|
102 |
+
This should likely be deactivated for Japanese (see this
|
103 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
104 |
+
strip_accents (`bool`, *optional*):
|
105 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
106 |
+
value for `lowercase` (as in the original Lxmert).
|
107 |
+
"""
|
108 |
+
|
109 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
110 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
111 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
112 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
113 |
+
|
114 |
+
def __init__(
|
115 |
+
self,
|
116 |
+
vocab_file,
|
117 |
+
do_lower_case=True,
|
118 |
+
do_basic_tokenize=True,
|
119 |
+
never_split=None,
|
120 |
+
unk_token="[UNK]",
|
121 |
+
sep_token="[SEP]",
|
122 |
+
pad_token="[PAD]",
|
123 |
+
cls_token="[CLS]",
|
124 |
+
mask_token="[MASK]",
|
125 |
+
tokenize_chinese_chars=True,
|
126 |
+
strip_accents=None,
|
127 |
+
**kwargs,
|
128 |
+
):
|
129 |
+
if not os.path.isfile(vocab_file):
|
130 |
+
raise ValueError(
|
131 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
132 |
+
" model use `tokenizer = LxmertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
133 |
+
)
|
134 |
+
self.vocab = load_vocab(vocab_file)
|
135 |
+
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
136 |
+
self.do_basic_tokenize = do_basic_tokenize
|
137 |
+
if do_basic_tokenize:
|
138 |
+
self.basic_tokenizer = BasicTokenizer(
|
139 |
+
do_lower_case=do_lower_case,
|
140 |
+
never_split=never_split,
|
141 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
142 |
+
strip_accents=strip_accents,
|
143 |
+
)
|
144 |
+
|
145 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
146 |
+
|
147 |
+
super().__init__(
|
148 |
+
do_lower_case=do_lower_case,
|
149 |
+
do_basic_tokenize=do_basic_tokenize,
|
150 |
+
never_split=never_split,
|
151 |
+
unk_token=unk_token,
|
152 |
+
sep_token=sep_token,
|
153 |
+
pad_token=pad_token,
|
154 |
+
cls_token=cls_token,
|
155 |
+
mask_token=mask_token,
|
156 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
157 |
+
strip_accents=strip_accents,
|
158 |
+
**kwargs,
|
159 |
+
)
|
160 |
+
|
161 |
+
@property
|
162 |
+
def do_lower_case(self):
|
163 |
+
return self.basic_tokenizer.do_lower_case
|
164 |
+
|
165 |
+
@property
|
166 |
+
def vocab_size(self):
|
167 |
+
return len(self.vocab)
|
168 |
+
|
169 |
+
def get_vocab(self):
|
170 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
171 |
+
|
172 |
+
def _tokenize(self, text, split_special_tokens=False):
|
173 |
+
split_tokens = []
|
174 |
+
if self.do_basic_tokenize:
|
175 |
+
for token in self.basic_tokenizer.tokenize(
|
176 |
+
text, never_split=self.all_special_tokens if not split_special_tokens else None
|
177 |
+
):
|
178 |
+
# If the token is part of the never_split set
|
179 |
+
if token in self.basic_tokenizer.never_split:
|
180 |
+
split_tokens.append(token)
|
181 |
+
else:
|
182 |
+
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
183 |
+
else:
|
184 |
+
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
185 |
+
return split_tokens
|
186 |
+
|
187 |
+
def _convert_token_to_id(self, token):
|
188 |
+
"""Converts a token (str) in an id using the vocab."""
|
189 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
190 |
+
|
191 |
+
def _convert_id_to_token(self, index):
|
192 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
193 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
194 |
+
|
195 |
+
def convert_tokens_to_string(self, tokens):
|
196 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
197 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
198 |
+
return out_string
|
199 |
+
|
200 |
+
def build_inputs_with_special_tokens(
|
201 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
202 |
+
) -> List[int]:
|
203 |
+
"""
|
204 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
205 |
+
adding special tokens. A Lxmert sequence has the following format:
|
206 |
+
|
207 |
+
- single sequence: `[CLS] X [SEP]`
|
208 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
209 |
+
|
210 |
+
Args:
|
211 |
+
token_ids_0 (`List[int]`):
|
212 |
+
List of IDs to which the special tokens will be added.
|
213 |
+
token_ids_1 (`List[int]`, *optional*):
|
214 |
+
Optional second list of IDs for sequence pairs.
|
215 |
+
|
216 |
+
Returns:
|
217 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
218 |
+
"""
|
219 |
+
if token_ids_1 is None:
|
220 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
221 |
+
cls = [self.cls_token_id]
|
222 |
+
sep = [self.sep_token_id]
|
223 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
224 |
+
|
225 |
+
def get_special_tokens_mask(
|
226 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
227 |
+
) -> List[int]:
|
228 |
+
"""
|
229 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
230 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
231 |
+
|
232 |
+
Args:
|
233 |
+
token_ids_0 (`List[int]`):
|
234 |
+
List of IDs.
|
235 |
+
token_ids_1 (`List[int]`, *optional*):
|
236 |
+
Optional second list of IDs for sequence pairs.
|
237 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
238 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
242 |
+
"""
|
243 |
+
|
244 |
+
if already_has_special_tokens:
|
245 |
+
return super().get_special_tokens_mask(
|
246 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
247 |
+
)
|
248 |
+
|
249 |
+
if token_ids_1 is not None:
|
250 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
251 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
252 |
+
|
253 |
+
def create_token_type_ids_from_sequences(
|
254 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
255 |
+
) -> List[int]:
|
256 |
+
"""
|
257 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Lxmert sequence
|
258 |
+
pair mask has the following format:
|
259 |
+
|
260 |
+
```
|
261 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
262 |
+
| first sequence | second sequence |
|
263 |
+
```
|
264 |
+
|
265 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
266 |
+
|
267 |
+
Args:
|
268 |
+
token_ids_0 (`List[int]`):
|
269 |
+
List of IDs.
|
270 |
+
token_ids_1 (`List[int]`, *optional*):
|
271 |
+
Optional second list of IDs for sequence pairs.
|
272 |
+
|
273 |
+
Returns:
|
274 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
275 |
+
"""
|
276 |
+
sep = [self.sep_token_id]
|
277 |
+
cls = [self.cls_token_id]
|
278 |
+
if token_ids_1 is None:
|
279 |
+
return len(cls + token_ids_0 + sep) * [0]
|
280 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
281 |
+
|
282 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
283 |
+
index = 0
|
284 |
+
if os.path.isdir(save_directory):
|
285 |
+
vocab_file = os.path.join(
|
286 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
287 |
+
)
|
288 |
+
else:
|
289 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
290 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
291 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
292 |
+
if index != token_index:
|
293 |
+
logger.warning(
|
294 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
295 |
+
" Please check that the vocabulary is not corrupted!"
|
296 |
+
)
|
297 |
+
index = token_index
|
298 |
+
writer.write(token + "\n")
|
299 |
+
index += 1
|
300 |
+
return (vocab_file,)
|
301 |
+
|
302 |
+
|
303 |
+
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
|
304 |
+
class BasicTokenizer(object):
|
305 |
+
"""
|
306 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
307 |
+
|
308 |
+
Args:
|
309 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
310 |
+
Whether or not to lowercase the input when tokenizing.
|
311 |
+
never_split (`Iterable`, *optional*):
|
312 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
313 |
+
`do_basic_tokenize=True`
|
314 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
315 |
+
Whether or not to tokenize Chinese characters.
|
316 |
+
|
317 |
+
This should likely be deactivated for Japanese (see this
|
318 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
319 |
+
strip_accents (`bool`, *optional*):
|
320 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
321 |
+
value for `lowercase` (as in the original BERT).
|
322 |
+
do_split_on_punc (`bool`, *optional*, defaults to `True`):
|
323 |
+
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
|
324 |
+
the full context of the words, such as contractions.
|
325 |
+
"""
|
326 |
+
|
327 |
+
def __init__(
|
328 |
+
self,
|
329 |
+
do_lower_case=True,
|
330 |
+
never_split=None,
|
331 |
+
tokenize_chinese_chars=True,
|
332 |
+
strip_accents=None,
|
333 |
+
do_split_on_punc=True,
|
334 |
+
):
|
335 |
+
if never_split is None:
|
336 |
+
never_split = []
|
337 |
+
self.do_lower_case = do_lower_case
|
338 |
+
self.never_split = set(never_split)
|
339 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
340 |
+
self.strip_accents = strip_accents
|
341 |
+
self.do_split_on_punc = do_split_on_punc
|
342 |
+
|
343 |
+
def tokenize(self, text, never_split=None):
|
344 |
+
"""
|
345 |
+
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
never_split (`List[str]`, *optional*)
|
349 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
350 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
351 |
+
"""
|
352 |
+
# union() returns a new set by concatenating the two sets.
|
353 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
354 |
+
text = self._clean_text(text)
|
355 |
+
|
356 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
357 |
+
# models. This is also applied to the English models now, but it doesn't
|
358 |
+
# matter since the English models were not trained on any Chinese data
|
359 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
360 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
361 |
+
# words in the English Wikipedia.).
|
362 |
+
if self.tokenize_chinese_chars:
|
363 |
+
text = self._tokenize_chinese_chars(text)
|
364 |
+
# prevents treating the same character with different unicode codepoints as different characters
|
365 |
+
unicode_normalized_text = unicodedata.normalize("NFC", text)
|
366 |
+
orig_tokens = whitespace_tokenize(unicode_normalized_text)
|
367 |
+
split_tokens = []
|
368 |
+
for token in orig_tokens:
|
369 |
+
if token not in never_split:
|
370 |
+
if self.do_lower_case:
|
371 |
+
token = token.lower()
|
372 |
+
if self.strip_accents is not False:
|
373 |
+
token = self._run_strip_accents(token)
|
374 |
+
elif self.strip_accents:
|
375 |
+
token = self._run_strip_accents(token)
|
376 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
377 |
+
|
378 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
379 |
+
return output_tokens
|
380 |
+
|
381 |
+
def _run_strip_accents(self, text):
|
382 |
+
"""Strips accents from a piece of text."""
|
383 |
+
text = unicodedata.normalize("NFD", text)
|
384 |
+
output = []
|
385 |
+
for char in text:
|
386 |
+
cat = unicodedata.category(char)
|
387 |
+
if cat == "Mn":
|
388 |
+
continue
|
389 |
+
output.append(char)
|
390 |
+
return "".join(output)
|
391 |
+
|
392 |
+
def _run_split_on_punc(self, text, never_split=None):
|
393 |
+
"""Splits punctuation on a piece of text."""
|
394 |
+
if not self.do_split_on_punc or (never_split is not None and text in never_split):
|
395 |
+
return [text]
|
396 |
+
chars = list(text)
|
397 |
+
i = 0
|
398 |
+
start_new_word = True
|
399 |
+
output = []
|
400 |
+
while i < len(chars):
|
401 |
+
char = chars[i]
|
402 |
+
if _is_punctuation(char):
|
403 |
+
output.append([char])
|
404 |
+
start_new_word = True
|
405 |
+
else:
|
406 |
+
if start_new_word:
|
407 |
+
output.append([])
|
408 |
+
start_new_word = False
|
409 |
+
output[-1].append(char)
|
410 |
+
i += 1
|
411 |
+
|
412 |
+
return ["".join(x) for x in output]
|
413 |
+
|
414 |
+
def _tokenize_chinese_chars(self, text):
|
415 |
+
"""Adds whitespace around any CJK character."""
|
416 |
+
output = []
|
417 |
+
for char in text:
|
418 |
+
cp = ord(char)
|
419 |
+
if self._is_chinese_char(cp):
|
420 |
+
output.append(" ")
|
421 |
+
output.append(char)
|
422 |
+
output.append(" ")
|
423 |
+
else:
|
424 |
+
output.append(char)
|
425 |
+
return "".join(output)
|
426 |
+
|
427 |
+
def _is_chinese_char(self, cp):
|
428 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
429 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
430 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
431 |
+
#
|
432 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
433 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
434 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
435 |
+
# space-separated words, so they are not treated specially and handled
|
436 |
+
# like the all of the other languages.
|
437 |
+
if (
|
438 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
439 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
440 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
441 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
442 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
443 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
444 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
445 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
446 |
+
): #
|
447 |
+
return True
|
448 |
+
|
449 |
+
return False
|
450 |
+
|
451 |
+
def _clean_text(self, text):
|
452 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
453 |
+
output = []
|
454 |
+
for char in text:
|
455 |
+
cp = ord(char)
|
456 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
457 |
+
continue
|
458 |
+
if _is_whitespace(char):
|
459 |
+
output.append(" ")
|
460 |
+
else:
|
461 |
+
output.append(char)
|
462 |
+
return "".join(output)
|
463 |
+
|
464 |
+
|
465 |
+
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
|
466 |
+
class WordpieceTokenizer(object):
|
467 |
+
"""Runs WordPiece tokenization."""
|
468 |
+
|
469 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
470 |
+
self.vocab = vocab
|
471 |
+
self.unk_token = unk_token
|
472 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
473 |
+
|
474 |
+
def tokenize(self, text):
|
475 |
+
"""
|
476 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
477 |
+
tokenization using the given vocabulary.
|
478 |
+
|
479 |
+
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
480 |
+
|
481 |
+
Args:
|
482 |
+
text: A single token or whitespace separated tokens. This should have
|
483 |
+
already been passed through *BasicTokenizer*.
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
A list of wordpiece tokens.
|
487 |
+
"""
|
488 |
+
|
489 |
+
output_tokens = []
|
490 |
+
for token in whitespace_tokenize(text):
|
491 |
+
chars = list(token)
|
492 |
+
if len(chars) > self.max_input_chars_per_word:
|
493 |
+
output_tokens.append(self.unk_token)
|
494 |
+
continue
|
495 |
+
|
496 |
+
is_bad = False
|
497 |
+
start = 0
|
498 |
+
sub_tokens = []
|
499 |
+
while start < len(chars):
|
500 |
+
end = len(chars)
|
501 |
+
cur_substr = None
|
502 |
+
while start < end:
|
503 |
+
substr = "".join(chars[start:end])
|
504 |
+
if start > 0:
|
505 |
+
substr = "##" + substr
|
506 |
+
if substr in self.vocab:
|
507 |
+
cur_substr = substr
|
508 |
+
break
|
509 |
+
end -= 1
|
510 |
+
if cur_substr is None:
|
511 |
+
is_bad = True
|
512 |
+
break
|
513 |
+
sub_tokens.append(cur_substr)
|
514 |
+
start = end
|
515 |
+
|
516 |
+
if is_bad:
|
517 |
+
output_tokens.append(self.unk_token)
|
518 |
+
else:
|
519 |
+
output_tokens.extend(sub_tokens)
|
520 |
+
return output_tokens
|
env-llmeval/lib/python3.10/site-packages/transformers/models/rag/__init__.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_rag": ["RagConfig"],
|
22 |
+
"retrieval_rag": ["RagRetriever"],
|
23 |
+
"tokenization_rag": ["RagTokenizer"],
|
24 |
+
}
|
25 |
+
|
26 |
+
try:
|
27 |
+
if not is_torch_available():
|
28 |
+
raise OptionalDependencyNotAvailable()
|
29 |
+
except OptionalDependencyNotAvailable:
|
30 |
+
pass
|
31 |
+
else:
|
32 |
+
_import_structure["modeling_rag"] = [
|
33 |
+
"RagModel",
|
34 |
+
"RagPreTrainedModel",
|
35 |
+
"RagSequenceForGeneration",
|
36 |
+
"RagTokenForGeneration",
|
37 |
+
]
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_tf_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
_import_structure["modeling_tf_rag"] = [
|
46 |
+
"TFRagModel",
|
47 |
+
"TFRagPreTrainedModel",
|
48 |
+
"TFRagSequenceForGeneration",
|
49 |
+
"TFRagTokenForGeneration",
|
50 |
+
]
|
51 |
+
|
52 |
+
|
53 |
+
if TYPE_CHECKING:
|
54 |
+
from .configuration_rag import RagConfig
|
55 |
+
from .retrieval_rag import RagRetriever
|
56 |
+
from .tokenization_rag import RagTokenizer
|
57 |
+
|
58 |
+
try:
|
59 |
+
if not is_torch_available():
|
60 |
+
raise OptionalDependencyNotAvailable()
|
61 |
+
except OptionalDependencyNotAvailable:
|
62 |
+
pass
|
63 |
+
else:
|
64 |
+
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
|
65 |
+
|
66 |
+
try:
|
67 |
+
if not is_tf_available():
|
68 |
+
raise OptionalDependencyNotAvailable()
|
69 |
+
except OptionalDependencyNotAvailable:
|
70 |
+
pass
|
71 |
+
else:
|
72 |
+
from .modeling_tf_rag import (
|
73 |
+
TFRagModel,
|
74 |
+
TFRagPreTrainedModel,
|
75 |
+
TFRagSequenceForGeneration,
|
76 |
+
TFRagTokenForGeneration,
|
77 |
+
)
|
78 |
+
|
79 |
+
else:
|
80 |
+
import sys
|
81 |
+
|
82 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/rag/configuration_rag.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" RAG model configuration"""
|
16 |
+
|
17 |
+
|
18 |
+
from ...configuration_utils import PretrainedConfig
|
19 |
+
from ...utils import add_start_docstrings
|
20 |
+
|
21 |
+
|
22 |
+
RAG_CONFIG_DOC = r"""
|
23 |
+
[`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and
|
24 |
+
can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
title_sep (`str`, *optional*, defaults to `" / "`):
|
28 |
+
Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].
|
29 |
+
doc_sep (`str`, *optional*, defaults to `" // "`):
|
30 |
+
Separator inserted between the text of the retrieved document and the original input when calling
|
31 |
+
[`RagRetriever`].
|
32 |
+
n_docs (`int`, *optional*, defaults to 5):
|
33 |
+
Number of documents to retrieve.
|
34 |
+
max_combined_length (`int`, *optional*, defaults to 300):
|
35 |
+
Max length of contextualized input returned by [`~RagRetriever.__call__`].
|
36 |
+
retrieval_vector_size (`int`, *optional*, defaults to 768):
|
37 |
+
Dimensionality of the document embeddings indexed by [`RagRetriever`].
|
38 |
+
retrieval_batch_size (`int`, *optional*, defaults to 8):
|
39 |
+
Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated
|
40 |
+
[`RagRetriever`].
|
41 |
+
dataset (`str`, *optional*, defaults to `"wiki_dpr"`):
|
42 |
+
A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids
|
43 |
+
using `datasets.list_datasets()`).
|
44 |
+
dataset_split (`str`, *optional*, defaults to `"train"`)
|
45 |
+
Which split of the `dataset` to load.
|
46 |
+
index_name (`str`, *optional*, defaults to `"compressed"`)
|
47 |
+
The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and
|
48 |
+
`"compressed"`.
|
49 |
+
index_path (`str`, *optional*)
|
50 |
+
The path to the serialized faiss index on disk.
|
51 |
+
passages_path (`str`, *optional*):
|
52 |
+
A path to text passages compatible with the faiss index. Required if using
|
53 |
+
[`~models.rag.retrieval_rag.LegacyIndex`]
|
54 |
+
use_dummy_dataset (`bool`, *optional*, defaults to `False`)
|
55 |
+
Whether to load a "dummy" variant of the dataset specified by `dataset`.
|
56 |
+
label_smoothing (`float`, *optional*, defaults to 0.0):
|
57 |
+
Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing
|
58 |
+
in the loss calculation. If set to 0, no label smoothing is performed.
|
59 |
+
do_marginalize (`bool`, *optional*, defaults to `False`):
|
60 |
+
If `True`, the logits are marginalized over all documents by making use of
|
61 |
+
`torch.nn.functional.log_softmax`.
|
62 |
+
reduce_loss (`bool`, *optional*, defaults to `False`):
|
63 |
+
Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.
|
64 |
+
do_deduplication (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not to deduplicate the generations from different context documents for a given input. Has to be
|
66 |
+
set to `False` if used while training with distributed backend.
|
67 |
+
exclude_bos_score (`bool`, *optional*, defaults to `False`):
|
68 |
+
Whether or not to disregard the BOS token when computing the loss.
|
69 |
+
output_retrieved(`bool`, *optional*, defaults to `False`):
|
70 |
+
If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
|
71 |
+
`context_attention_mask` are returned. See returned tensors for more detail.
|
72 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
74 |
+
forced_eos_token_id (`int`, *optional*):
|
75 |
+
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
76 |
+
`eos_token_id`.
|
77 |
+
"""
|
78 |
+
|
79 |
+
|
80 |
+
@add_start_docstrings(RAG_CONFIG_DOC)
|
81 |
+
class RagConfig(PretrainedConfig):
|
82 |
+
model_type = "rag"
|
83 |
+
is_composition = True
|
84 |
+
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
vocab_size=None,
|
88 |
+
is_encoder_decoder=True,
|
89 |
+
prefix=None,
|
90 |
+
bos_token_id=None,
|
91 |
+
pad_token_id=None,
|
92 |
+
eos_token_id=None,
|
93 |
+
decoder_start_token_id=None,
|
94 |
+
title_sep=" / ",
|
95 |
+
doc_sep=" // ",
|
96 |
+
n_docs=5,
|
97 |
+
max_combined_length=300,
|
98 |
+
retrieval_vector_size=768,
|
99 |
+
retrieval_batch_size=8,
|
100 |
+
dataset="wiki_dpr",
|
101 |
+
dataset_split="train",
|
102 |
+
index_name="compressed",
|
103 |
+
index_path=None,
|
104 |
+
passages_path=None,
|
105 |
+
use_dummy_dataset=False,
|
106 |
+
reduce_loss=False,
|
107 |
+
label_smoothing=0.0,
|
108 |
+
do_deduplication=True,
|
109 |
+
exclude_bos_score=False,
|
110 |
+
do_marginalize=False,
|
111 |
+
output_retrieved=False,
|
112 |
+
use_cache=True,
|
113 |
+
forced_eos_token_id=None,
|
114 |
+
dataset_revision=None,
|
115 |
+
**kwargs,
|
116 |
+
):
|
117 |
+
super().__init__(
|
118 |
+
bos_token_id=bos_token_id,
|
119 |
+
pad_token_id=pad_token_id,
|
120 |
+
eos_token_id=eos_token_id,
|
121 |
+
decoder_start_token_id=decoder_start_token_id,
|
122 |
+
forced_eos_token_id=forced_eos_token_id,
|
123 |
+
is_encoder_decoder=is_encoder_decoder,
|
124 |
+
prefix=prefix,
|
125 |
+
vocab_size=vocab_size,
|
126 |
+
**kwargs,
|
127 |
+
)
|
128 |
+
assert (
|
129 |
+
"question_encoder" in kwargs and "generator" in kwargs
|
130 |
+
), "Config has to be initialized with question_encoder and generator config"
|
131 |
+
question_encoder_config = kwargs.pop("question_encoder")
|
132 |
+
question_encoder_model_type = question_encoder_config.pop("model_type")
|
133 |
+
decoder_config = kwargs.pop("generator")
|
134 |
+
decoder_model_type = decoder_config.pop("model_type")
|
135 |
+
|
136 |
+
from ..auto.configuration_auto import AutoConfig
|
137 |
+
|
138 |
+
self.question_encoder = AutoConfig.for_model(question_encoder_model_type, **question_encoder_config)
|
139 |
+
self.generator = AutoConfig.for_model(decoder_model_type, **decoder_config)
|
140 |
+
|
141 |
+
self.reduce_loss = reduce_loss
|
142 |
+
self.label_smoothing = label_smoothing
|
143 |
+
self.exclude_bos_score = exclude_bos_score
|
144 |
+
self.do_marginalize = do_marginalize
|
145 |
+
|
146 |
+
self.title_sep = title_sep
|
147 |
+
self.doc_sep = doc_sep
|
148 |
+
self.n_docs = n_docs
|
149 |
+
self.max_combined_length = max_combined_length
|
150 |
+
|
151 |
+
self.dataset = dataset
|
152 |
+
self.dataset_split = dataset_split
|
153 |
+
self.index_name = index_name
|
154 |
+
|
155 |
+
self.retrieval_vector_size = retrieval_vector_size
|
156 |
+
self.retrieval_batch_size = retrieval_batch_size
|
157 |
+
self.passages_path = passages_path
|
158 |
+
self.index_path = index_path
|
159 |
+
self.use_dummy_dataset = use_dummy_dataset
|
160 |
+
self.dataset_revision = dataset_revision
|
161 |
+
|
162 |
+
self.output_retrieved = output_retrieved
|
163 |
+
|
164 |
+
self.do_deduplication = do_deduplication
|
165 |
+
|
166 |
+
self.use_cache = use_cache
|
167 |
+
|
168 |
+
if self.forced_eos_token_id is None:
|
169 |
+
self.forced_eos_token_id = getattr(self.generator, "forced_eos_token_id", None)
|
170 |
+
|
171 |
+
@classmethod
|
172 |
+
def from_question_encoder_generator_configs(
|
173 |
+
cls, question_encoder_config: PretrainedConfig, generator_config: PretrainedConfig, **kwargs
|
174 |
+
) -> PretrainedConfig:
|
175 |
+
r"""
|
176 |
+
Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and
|
177 |
+
decoder model configuration.
|
178 |
+
|
179 |
+
Returns:
|
180 |
+
[`EncoderDecoderConfig`]: An instance of a configuration object
|
181 |
+
"""
|
182 |
+
return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **kwargs)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/rag/modeling_rag.py
ADDED
@@ -0,0 +1,1628 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""RAG model implementation."""
|
16 |
+
|
17 |
+
import copy
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Callable, List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
from torch import nn
|
23 |
+
|
24 |
+
from ...configuration_utils import PretrainedConfig
|
25 |
+
from ...generation import BeamSearchScorer, GenerationConfig, LogitsProcessorList, StoppingCriteriaList
|
26 |
+
from ...modeling_outputs import ModelOutput
|
27 |
+
from ...modeling_utils import PreTrainedModel
|
28 |
+
from ...utils import add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
29 |
+
from .configuration_rag import RagConfig
|
30 |
+
from .retrieval_rag import RagRetriever
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
_CONFIG_FOR_DOC = "RagConfig"
|
36 |
+
|
37 |
+
|
38 |
+
@dataclass
|
39 |
+
class RetrievAugLMMarginOutput(ModelOutput):
|
40 |
+
"""
|
41 |
+
Base class for retriever augmented marginalized models outputs.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
45 |
+
Language modeling loss.
|
46 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
47 |
+
Prediction scores of the language modeling head. The score is possibly marginalized over all documents for
|
48 |
+
each vocabulary token.
|
49 |
+
doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
|
50 |
+
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
|
51 |
+
`question_encoder_last_hidden_state`.
|
52 |
+
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
53 |
+
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
|
54 |
+
num_heads, sequence_length, embed_size_per_head)`).
|
55 |
+
|
56 |
+
Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used
|
57 |
+
(see `past_key_values` input) to speed up sequential decoding.
|
58 |
+
retrieved_doc_embeds (`torch.FloatTensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*):
|
59 |
+
Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute
|
60 |
+
the `doc_scores`.
|
61 |
+
retrieved_doc_ids (`torch.LongTensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*):
|
62 |
+
The indexes of the embedded documents retrieved by the retriever.
|
63 |
+
context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
|
64 |
+
Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.
|
65 |
+
context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
|
66 |
+
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
|
67 |
+
retriever.
|
68 |
+
question_encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
69 |
+
Sequence of hidden states at the output of the last layer of the question encoder pooled output of the
|
70 |
+
model.
|
71 |
+
question_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
72 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
|
73 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
74 |
+
|
75 |
+
Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
|
76 |
+
question_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
77 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
78 |
+
sequence_length)`.
|
79 |
+
|
80 |
+
Attentions weights of the question encoder, after the attention softmax, used to compute the weighted
|
81 |
+
average in the self-attention heads.
|
82 |
+
generator_enc_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
83 |
+
Sequence of hidden-states at the output of the last layer of the generator encoder of the model.
|
84 |
+
generator_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
85 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
|
86 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
87 |
+
|
88 |
+
Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
|
89 |
+
generator_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
90 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
91 |
+
sequence_length)`.
|
92 |
+
|
93 |
+
Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted
|
94 |
+
average in the self-attention heads.
|
95 |
+
generator_dec_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
96 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
|
97 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
98 |
+
|
99 |
+
Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
|
100 |
+
generator_dec_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
101 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
102 |
+
sequence_length)`.
|
103 |
+
|
104 |
+
Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted
|
105 |
+
average in the self-attention heads.
|
106 |
+
generator_cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
107 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
108 |
+
sequence_length)`.
|
109 |
+
|
110 |
+
Cross-attentions weights of the generator decoder, after the attention softmax, used to compute the
|
111 |
+
weighted average in the cross-attention heads.
|
112 |
+
"""
|
113 |
+
|
114 |
+
loss: Optional[torch.FloatTensor] = None
|
115 |
+
logits: torch.FloatTensor = None
|
116 |
+
doc_scores: torch.FloatTensor = None
|
117 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
118 |
+
retrieved_doc_embeds: Optional[torch.FloatTensor] = None
|
119 |
+
retrieved_doc_ids: Optional[torch.LongTensor] = None
|
120 |
+
context_input_ids: Optional[torch.LongTensor] = None
|
121 |
+
context_attention_mask: Optional[torch.LongTensor] = None
|
122 |
+
question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None
|
123 |
+
question_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
124 |
+
question_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
125 |
+
generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None
|
126 |
+
generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
127 |
+
generator_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
128 |
+
generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
129 |
+
generator_dec_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
130 |
+
generator_cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
131 |
+
|
132 |
+
|
133 |
+
@dataclass
|
134 |
+
class RetrievAugLMOutput(ModelOutput):
|
135 |
+
"""
|
136 |
+
Args:
|
137 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
138 |
+
Prediction scores of the language modeling head. The score is possibly marginalized over all documents for
|
139 |
+
each vocabulary token.
|
140 |
+
doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
|
141 |
+
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
|
142 |
+
`question_encoder_last_hidden_state`.
|
143 |
+
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
144 |
+
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
|
145 |
+
num_heads, sequence_length, embed_size_per_head)`).
|
146 |
+
|
147 |
+
Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used
|
148 |
+
(see `past_key_values` input) to speed up sequential decoding.
|
149 |
+
retrieved_doc_embeds (`torch.FloatTensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*):
|
150 |
+
Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute
|
151 |
+
the `doc_scores`.
|
152 |
+
retrieved_doc_ids (`torch.LongTensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*):
|
153 |
+
The indexes of the embedded documents retrieved by the retriever.
|
154 |
+
context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
|
155 |
+
Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.
|
156 |
+
context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
|
157 |
+
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
|
158 |
+
retriever.
|
159 |
+
question_encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
160 |
+
Sequence of hidden states at the output of the last layer of the question encoder pooled output of the
|
161 |
+
model.
|
162 |
+
question_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
163 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
|
164 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
165 |
+
|
166 |
+
Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
|
167 |
+
question_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
168 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
169 |
+
sequence_length)`.
|
170 |
+
|
171 |
+
Attentions weights of the question encoder, after the attention softmax, used to compute the weighted
|
172 |
+
average in the self-attention heads.
|
173 |
+
generator_enc_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
174 |
+
Sequence of hidden-states at the output of the last layer of the generator encoder of the model.
|
175 |
+
generator_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
176 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
|
177 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
178 |
+
|
179 |
+
Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
|
180 |
+
generator_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
181 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
182 |
+
sequence_length)`.
|
183 |
+
|
184 |
+
Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted
|
185 |
+
average in the self-attention heads.
|
186 |
+
generator_dec_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
187 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
|
188 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
189 |
+
|
190 |
+
Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
|
191 |
+
generator_dec_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
192 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
193 |
+
sequence_length)`.
|
194 |
+
|
195 |
+
Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted
|
196 |
+
average in the self-attention heads.
|
197 |
+
generator_cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
198 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
199 |
+
sequence_length)`.
|
200 |
+
|
201 |
+
Cross-attentions weights of the generator decoder, after the attention softmax, used to compute the
|
202 |
+
weighted average in the cross-attention heads.
|
203 |
+
"""
|
204 |
+
|
205 |
+
logits: torch.FloatTensor = None
|
206 |
+
doc_scores: torch.FloatTensor = None
|
207 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
208 |
+
retrieved_doc_embeds: Optional[torch.FloatTensor] = None
|
209 |
+
retrieved_doc_ids: Optional[torch.LongTensor] = None
|
210 |
+
context_input_ids: Optional[torch.LongTensor] = None
|
211 |
+
context_attention_mask: Optional[torch.LongTensor] = None
|
212 |
+
question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None
|
213 |
+
question_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
214 |
+
question_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
215 |
+
generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None
|
216 |
+
generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
217 |
+
generator_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
218 |
+
generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
219 |
+
generator_dec_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
220 |
+
generator_cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
221 |
+
|
222 |
+
|
223 |
+
class RagPreTrainedModel(PreTrainedModel):
|
224 |
+
r"""
|
225 |
+
RAG models were released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP
|
226 |
+
Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandra Piktus et al.
|
227 |
+
|
228 |
+
RAG is a retriever augmented model and encapsulate three components: a question encoder, a dataset retriever and a
|
229 |
+
generator, the encoder and generator are trainable while the retriever is just an indexed dataset.
|
230 |
+
|
231 |
+
"""
|
232 |
+
|
233 |
+
config_class = RagConfig
|
234 |
+
base_model_prefix = "rag"
|
235 |
+
|
236 |
+
@classmethod
|
237 |
+
def from_pretrained(cls, *args, **kwargs):
|
238 |
+
# At the moment fast initialization is not supported
|
239 |
+
# for composite models
|
240 |
+
kwargs["_fast_init"] = False
|
241 |
+
return super().from_pretrained(*args, **kwargs)
|
242 |
+
|
243 |
+
@classmethod
|
244 |
+
def from_pretrained_question_encoder_generator(
|
245 |
+
cls,
|
246 |
+
question_encoder_pretrained_model_name_or_path: str = None,
|
247 |
+
generator_pretrained_model_name_or_path: str = None,
|
248 |
+
retriever: RagRetriever = None,
|
249 |
+
**kwargs,
|
250 |
+
) -> PreTrainedModel:
|
251 |
+
r"""
|
252 |
+
Instantiates an question encoder and a generator from one or two base classes of the library from pretrained
|
253 |
+
model checkpoints.
|
254 |
+
|
255 |
+
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
|
256 |
+
the model, you need to first set it back in training mode with `model.train()`.
|
257 |
+
|
258 |
+
Params:
|
259 |
+
question_encoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
|
260 |
+
Information necessary to initiate the question encoder. Can be either:
|
261 |
+
|
262 |
+
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
263 |
+
- A path to a *directory* containing model weights saved using
|
264 |
+
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
265 |
+
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
|
266 |
+
this case, `from_tf` should be set to `True` and a configuration object should be provided as
|
267 |
+
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
|
268 |
+
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
269 |
+
|
270 |
+
generator_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
|
271 |
+
Information necessary to initiate the generator. Can be either:
|
272 |
+
|
273 |
+
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
274 |
+
- A path to a *directory* containing model weights saved using
|
275 |
+
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
276 |
+
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
|
277 |
+
this case, `from_tf` should be set to `True` and a configuration object should be provided as
|
278 |
+
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
|
279 |
+
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
280 |
+
|
281 |
+
model_args (remaining positional arguments, *optional*):
|
282 |
+
All remaining positional arguments will be passed to the underlying model's `__init__` method.
|
283 |
+
retriever ([`RagRetriever`], *optional*):
|
284 |
+
The retriever to use.
|
285 |
+
kwwargs (remaining dictionary of keyword arguments, *optional*):
|
286 |
+
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
287 |
+
`output_attentions=True`).
|
288 |
+
|
289 |
+
- To update the question_encoder configuration, use the prefix *question_encoder_* for each
|
290 |
+
configuration parameter.
|
291 |
+
- To update the generator configuration, use the prefix *generator_* for each configuration parameter.
|
292 |
+
- To update the parent model configuration, do not use a prefix for each configuration parameter.
|
293 |
+
|
294 |
+
Behaves differently depending on whether a `config` is provided or automatically loaded.
|
295 |
+
|
296 |
+
Example:
|
297 |
+
|
298 |
+
```python
|
299 |
+
>>> from transformers import RagModel
|
300 |
+
|
301 |
+
>>> # initialize a RAG from two pretrained models.
|
302 |
+
>>> model = RagModel.from_pretrained_question_encoder_generator(
|
303 |
+
... "facebook/dpr-question_encoder-single-nq-base", "google-t5/t5-small"
|
304 |
+
... )
|
305 |
+
>>> # saving model after fine-tuning
|
306 |
+
>>> model.save_pretrained("./rag")
|
307 |
+
>>> # load fine-tuned model
|
308 |
+
>>> model = RagModel.from_pretrained("./rag")
|
309 |
+
```"""
|
310 |
+
|
311 |
+
kwargs_question_encoder = {
|
312 |
+
argument[len("question_encoder_") :]: value
|
313 |
+
for argument, value in kwargs.items()
|
314 |
+
if argument.startswith("question_encoder_")
|
315 |
+
}
|
316 |
+
|
317 |
+
kwargs_generator = {
|
318 |
+
argument[len("generator_") :]: value
|
319 |
+
for argument, value in kwargs.items()
|
320 |
+
if argument.startswith("generator_")
|
321 |
+
}
|
322 |
+
|
323 |
+
# remove question_encoder, generator kwargs from kwargs
|
324 |
+
for key in kwargs_question_encoder.keys():
|
325 |
+
del kwargs["question_encoder_" + key]
|
326 |
+
for key in kwargs_generator.keys():
|
327 |
+
del kwargs["generator_" + key]
|
328 |
+
|
329 |
+
# Load and initialize the question_encoder and generator
|
330 |
+
# The distinction between question_encoder and generator at the model level is made
|
331 |
+
# by the value of the flag `is_generator` that we need to set correctly.
|
332 |
+
question_encoder = kwargs_question_encoder.pop("model", None)
|
333 |
+
if question_encoder is None:
|
334 |
+
assert question_encoder_pretrained_model_name_or_path is not None, (
|
335 |
+
"If `model` is not defined as an argument, a `question_encoder_pretrained_model_name_or_path` has to"
|
336 |
+
" be defined"
|
337 |
+
)
|
338 |
+
from ..auto.modeling_auto import AutoModel
|
339 |
+
|
340 |
+
if "config" not in kwargs_question_encoder:
|
341 |
+
from ..auto.configuration_auto import AutoConfig
|
342 |
+
|
343 |
+
question_encoder_config, kwargs_question_encoder = AutoConfig.from_pretrained(
|
344 |
+
question_encoder_pretrained_model_name_or_path,
|
345 |
+
**kwargs_question_encoder,
|
346 |
+
return_unused_kwargs=True,
|
347 |
+
)
|
348 |
+
kwargs_question_encoder["config"] = question_encoder_config
|
349 |
+
|
350 |
+
question_encoder = AutoModel.from_pretrained(
|
351 |
+
question_encoder_pretrained_model_name_or_path, **kwargs_question_encoder
|
352 |
+
)
|
353 |
+
|
354 |
+
generator = kwargs_generator.pop("model", None)
|
355 |
+
if generator is None:
|
356 |
+
assert generator_pretrained_model_name_or_path is not None, (
|
357 |
+
"If `generator_model` is not defined as an argument, a `generator_pretrained_model_name_or_path` has"
|
358 |
+
" to be defined"
|
359 |
+
)
|
360 |
+
from ..auto.modeling_auto import AutoModelForSeq2SeqLM
|
361 |
+
|
362 |
+
if "config" not in kwargs_generator:
|
363 |
+
from ..auto.configuration_auto import AutoConfig
|
364 |
+
|
365 |
+
generator_config, kwargs_generator = AutoConfig.from_pretrained(
|
366 |
+
generator_pretrained_model_name_or_path, **kwargs_generator, return_unused_kwargs=True
|
367 |
+
)
|
368 |
+
|
369 |
+
kwargs_generator["config"] = generator_config
|
370 |
+
|
371 |
+
generator = AutoModelForSeq2SeqLM.from_pretrained(
|
372 |
+
generator_pretrained_model_name_or_path, **kwargs_generator
|
373 |
+
)
|
374 |
+
|
375 |
+
# instantiate config with corresponding kwargs
|
376 |
+
config = kwargs.get("config", None)
|
377 |
+
if config is None:
|
378 |
+
config = RagConfig.from_question_encoder_generator_configs(
|
379 |
+
question_encoder.config, generator.config, **kwargs
|
380 |
+
)
|
381 |
+
|
382 |
+
return cls(question_encoder=question_encoder, generator=generator, config=config, retriever=retriever)
|
383 |
+
|
384 |
+
|
385 |
+
RAG_START_DOCSTRING = r"""
|
386 |
+
|
387 |
+
RAG is a seq2seq model which encapsulates two core components: a question encoder and a generator. During a forward
|
388 |
+
pass, we encode the input with the question encoder and pass it to the retriever to extract relevant context
|
389 |
+
documents. The documents are then prepended to the input. Such contextualized inputs is passed to the generator.
|
390 |
+
|
391 |
+
The question encoder can be any *autoencoding* model, preferably [`DPRQuestionEncoder`], and the generator can be
|
392 |
+
any *seq2seq* model, preferably [`BartForConditionalGeneration`].
|
393 |
+
|
394 |
+
The model can be initialized with a [`RagRetriever`] for end-to-end generation or used in combination with the
|
395 |
+
outputs of a retriever in multiple steps---see examples for more details. The model is compatible any
|
396 |
+
*autoencoding* model as the `question_encoder` and any *seq2seq* model with language model head as the `generator`.
|
397 |
+
It has been tested with [`DPRQuestionEncoder`] as the `question_encoder` and [`BartForConditionalGeneration`] or
|
398 |
+
[`T5ForConditionalGeneration`] as the `generator`.
|
399 |
+
|
400 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
401 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
402 |
+
etc.)
|
403 |
+
|
404 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
405 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
406 |
+
and behavior.
|
407 |
+
|
408 |
+
|
409 |
+
Args:
|
410 |
+
config ([`RagConfig`]):
|
411 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
412 |
+
load the weights associated with the model, only the configuration. Check out the
|
413 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
414 |
+
question_encoder ([`PreTrainedModel`]):
|
415 |
+
An encoder model compatible with the faiss index encapsulated by the `retriever`.
|
416 |
+
generator ([`PreTrainedModel`]):
|
417 |
+
A seq2seq model used as the generator in the RAG architecture.
|
418 |
+
retriever ([`RagRetriever`]):
|
419 |
+
A retriever class encapsulating a faiss index queried to obtain context documents for current inputs.
|
420 |
+
"""
|
421 |
+
|
422 |
+
|
423 |
+
RAG_FORWARD_INPUTS_DOCSTRING = r"""
|
424 |
+
Args:
|
425 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
426 |
+
Indices of input sequence tokens in the vocabulary. [`RagConfig`], used to initialize the model, specifies
|
427 |
+
which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to
|
428 |
+
obtain the indices.
|
429 |
+
|
430 |
+
[What are input IDs?](../glossary#input-ids)
|
431 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
432 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
433 |
+
|
434 |
+
- 1 for tokens that are **not masked**,
|
435 |
+
- 0 for tokens that are **masked**.
|
436 |
+
|
437 |
+
[What are attention masks?](../glossary#attention-mask)
|
438 |
+
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*)
|
439 |
+
Tuple consists of (`generator_enc_last_hidden_state`, *optional*: `generator_enc_hidden_states`,
|
440 |
+
*optional*: `generator_enc_attentions`). `generator_enc_last_hidden_state` of shape `(batch_size, n_docs *
|
441 |
+
sequence_length, hidden_size)` is a sequence of hidden-states at the output of the last layer of the
|
442 |
+
generator's encoder.
|
443 |
+
|
444 |
+
Used by the ([`RagModel`]) model during decoding.
|
445 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
446 |
+
Provide for generation tasks. `None` by default, construct as per instructions for the generator model
|
447 |
+
you're using with your RAG instance.
|
448 |
+
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
449 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
450 |
+
be used by default.
|
451 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`):
|
452 |
+
Tuple consists of two elements: `encoder_outputs` of the RAG model (see `encoder_outputs`) and
|
453 |
+
`past_key_values` of the underlying generator. Can be used to speed up decoding. `past_key_values` are used
|
454 |
+
in the ([`RagTokenForGeneration`]) model during decoding.
|
455 |
+
doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
|
456 |
+
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
|
457 |
+
`question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` `doc_scores`
|
458 |
+
has to be provided to the forward pass. `doc_scores` can be computed via
|
459 |
+
`question_encoder_last_hidden_state` and `retrieved_doc_embeds`, see examples for more information.
|
460 |
+
context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
|
461 |
+
Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the
|
462 |
+
retriever. If the model was not initialized with a `retriever` ``context_input_ids` has to be provided to
|
463 |
+
the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
|
464 |
+
context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`,*optional*, returned when *output_retrieved=True*):
|
465 |
+
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
|
466 |
+
retriever. If the model has is not initialized with a `retriever` `context_attention_mask` has to be
|
467 |
+
provided to the forward pass. `context_attention_mask` are returned by [`~RagRetriever.__call__`].
|
468 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
469 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
470 |
+
`past_key_values`).
|
471 |
+
output_attentions (`bool`, *optional*):
|
472 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
473 |
+
tensors for more detail.
|
474 |
+
output_hidden_states (`bool`, *optional*):
|
475 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
476 |
+
more detail.
|
477 |
+
output_retrieved(`bool`, *optional*):
|
478 |
+
Whether or not to return the `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
|
479 |
+
`context_attention_mask`. See returned tensors for more detail.
|
480 |
+
n_docs (`int`, *optional*, defaults to `config.n_docs``)
|
481 |
+
Number of documents to retrieve and/or number of documents for which to generate an answer.
|
482 |
+
"""
|
483 |
+
|
484 |
+
|
485 |
+
@add_start_docstrings_to_model_forward(RAG_START_DOCSTRING)
|
486 |
+
class RagModel(RagPreTrainedModel):
|
487 |
+
def __init__(
|
488 |
+
self,
|
489 |
+
config: Optional[PretrainedConfig] = None,
|
490 |
+
question_encoder: Optional[PreTrainedModel] = None,
|
491 |
+
generator: Optional[PreTrainedModel] = None,
|
492 |
+
retriever: Optional[RagRetriever] = None, # or maybe just use a `set_retriever(...)` method
|
493 |
+
**kwargs,
|
494 |
+
):
|
495 |
+
assert config is not None or (
|
496 |
+
question_encoder is not None and generator is not None
|
497 |
+
), "Either a configuration or an question_encoder and a generator has to be provided."
|
498 |
+
|
499 |
+
if config is None:
|
500 |
+
config = RagConfig.from_question_encoder_generator_configs(
|
501 |
+
question_encoder.config, generator.config, **kwargs
|
502 |
+
)
|
503 |
+
else:
|
504 |
+
assert isinstance(config, self.config_class), f"config: {config} has to be of type {self.config_class}"
|
505 |
+
super().__init__(config)
|
506 |
+
if question_encoder is None:
|
507 |
+
from ..auto.modeling_auto import AutoModel
|
508 |
+
|
509 |
+
question_encoder = AutoModel.from_config(config.question_encoder)
|
510 |
+
|
511 |
+
if generator is None:
|
512 |
+
from ..auto.modeling_auto import AutoModelForSeq2SeqLM
|
513 |
+
|
514 |
+
generator = AutoModelForSeq2SeqLM.from_config(config.generator)
|
515 |
+
|
516 |
+
self.retriever = retriever
|
517 |
+
if self.retriever is not None:
|
518 |
+
assert isinstance(
|
519 |
+
retriever, RagRetriever
|
520 |
+
), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`"
|
521 |
+
self.retriever = retriever
|
522 |
+
|
523 |
+
self.question_encoder = question_encoder
|
524 |
+
self.generator = generator
|
525 |
+
|
526 |
+
self.ctx_encoder = None
|
527 |
+
self.context_encoder_training = False
|
528 |
+
|
529 |
+
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
|
530 |
+
@replace_return_docstrings(output_type=RetrievAugLMOutput, config_class=_CONFIG_FOR_DOC)
|
531 |
+
def forward(
|
532 |
+
self,
|
533 |
+
input_ids: Optional[torch.LongTensor] = None,
|
534 |
+
attention_mask: Optional[torch.Tensor] = None,
|
535 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
536 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
537 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
538 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
539 |
+
doc_scores: Optional[torch.FloatTensor] = None,
|
540 |
+
context_input_ids: Optional[torch.LongTensor] = None,
|
541 |
+
context_attention_mask: Optional[torch.LongTensor] = None,
|
542 |
+
use_cache: Optional[bool] = None,
|
543 |
+
output_attentions: Optional[bool] = None,
|
544 |
+
output_hidden_states: Optional[bool] = None,
|
545 |
+
output_retrieved: Optional[bool] = None,
|
546 |
+
n_docs: Optional[int] = None,
|
547 |
+
) -> Union[Tuple[torch.Tensor], RetrievAugLMOutput]:
|
548 |
+
r"""
|
549 |
+
Returns:
|
550 |
+
|
551 |
+
Example:
|
552 |
+
|
553 |
+
```python
|
554 |
+
>>> from transformers import AutoTokenizer, RagRetriever, RagModel
|
555 |
+
>>> import torch
|
556 |
+
|
557 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base")
|
558 |
+
>>> retriever = RagRetriever.from_pretrained(
|
559 |
+
... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True
|
560 |
+
... )
|
561 |
+
>>> # initialize with RagRetriever to do everything in one forward call
|
562 |
+
>>> model = RagModel.from_pretrained("facebook/rag-token-base", retriever=retriever)
|
563 |
+
|
564 |
+
>>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt")
|
565 |
+
>>> outputs = model(input_ids=inputs["input_ids"])
|
566 |
+
```"""
|
567 |
+
n_docs = n_docs if n_docs is not None else self.config.n_docs
|
568 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
569 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
570 |
+
output_hidden_states = (
|
571 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
572 |
+
)
|
573 |
+
output_retrieved = output_retrieved if output_retrieved is not None else self.config.output_retrieved
|
574 |
+
|
575 |
+
# whether retriever has to be used
|
576 |
+
has_to_retrieve = (
|
577 |
+
self.retriever is not None
|
578 |
+
and (context_input_ids is None or context_attention_mask is None or doc_scores is None)
|
579 |
+
and encoder_outputs is None
|
580 |
+
)
|
581 |
+
# encoder_outputs are pre-computed during RAG-token generation
|
582 |
+
if encoder_outputs is None:
|
583 |
+
if has_to_retrieve:
|
584 |
+
question_enc_outputs = self.question_encoder(
|
585 |
+
input_ids, attention_mask=attention_mask, return_dict=True
|
586 |
+
)
|
587 |
+
question_encoder_last_hidden_state = question_enc_outputs[0] # hidden states of question encoder
|
588 |
+
|
589 |
+
retriever_outputs = self.retriever(
|
590 |
+
input_ids,
|
591 |
+
question_encoder_last_hidden_state.cpu().detach().to(torch.float32).numpy(),
|
592 |
+
prefix=self.generator.config.prefix,
|
593 |
+
n_docs=n_docs,
|
594 |
+
return_tensors="pt",
|
595 |
+
)
|
596 |
+
if self.context_encoder_training:
|
597 |
+
(
|
598 |
+
context_input_ids,
|
599 |
+
context_attention_mask,
|
600 |
+
retrieved_doc_embeds,
|
601 |
+
retrived_doc_input_ids,
|
602 |
+
retrived_doc_attention_mask,
|
603 |
+
retrieved_doc_ids,
|
604 |
+
) = (
|
605 |
+
retriever_outputs["context_input_ids"],
|
606 |
+
retriever_outputs["context_attention_mask"],
|
607 |
+
retriever_outputs["retrieved_doc_embeds"],
|
608 |
+
retriever_outputs["tokenized_doc_ids"],
|
609 |
+
retriever_outputs["tokenized_doc_attention_mask"],
|
610 |
+
retriever_outputs["doc_ids"],
|
611 |
+
)
|
612 |
+
|
613 |
+
context_input_ids = context_input_ids.to(input_ids)
|
614 |
+
context_attention_mask = context_attention_mask.to(input_ids)
|
615 |
+
|
616 |
+
retrived_doc_input_ids = retrived_doc_input_ids.to(input_ids)
|
617 |
+
retrived_doc_attention_mask = retrived_doc_attention_mask.to(input_ids)
|
618 |
+
retrieved_doc_embeds = self.ctx_encoder(
|
619 |
+
retrived_doc_input_ids, attention_mask=retrived_doc_attention_mask, return_dict=True
|
620 |
+
).pooler_output
|
621 |
+
retrieved_doc_embeds = retrieved_doc_embeds.view(
|
622 |
+
-1, n_docs, question_encoder_last_hidden_state.shape[1]
|
623 |
+
) # reshaping
|
624 |
+
|
625 |
+
# compute doc_scores involving ctx_encoder
|
626 |
+
doc_scores = torch.bmm(
|
627 |
+
question_encoder_last_hidden_state.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)
|
628 |
+
).squeeze(1)
|
629 |
+
|
630 |
+
else:
|
631 |
+
context_input_ids, context_attention_mask, retrieved_doc_embeds, retrieved_doc_ids = (
|
632 |
+
retriever_outputs["context_input_ids"],
|
633 |
+
retriever_outputs["context_attention_mask"],
|
634 |
+
retriever_outputs["retrieved_doc_embeds"],
|
635 |
+
retriever_outputs["doc_ids"],
|
636 |
+
)
|
637 |
+
|
638 |
+
# set to correct device
|
639 |
+
retrieved_doc_embeds = retrieved_doc_embeds.to(question_encoder_last_hidden_state)
|
640 |
+
context_input_ids = context_input_ids.to(input_ids)
|
641 |
+
context_attention_mask = context_attention_mask.to(input_ids)
|
642 |
+
|
643 |
+
# compute doc_scores
|
644 |
+
doc_scores = torch.bmm(
|
645 |
+
question_encoder_last_hidden_state.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)
|
646 |
+
).squeeze(1)
|
647 |
+
else:
|
648 |
+
assert context_input_ids is not None, (
|
649 |
+
"Make sure that `context_input_ids` are passed, if no `retriever` is set. Alternatively, you can"
|
650 |
+
" set a retriever using the `set_retriever(...)` function."
|
651 |
+
)
|
652 |
+
assert context_attention_mask is not None, (
|
653 |
+
"Make sure that `context_attention_mask` are passed, if no `retriever` is set. Alternatively, you"
|
654 |
+
" can set a retriever using the `set_retriever(...)` function."
|
655 |
+
)
|
656 |
+
assert doc_scores is not None, (
|
657 |
+
"Make sure that `doc_scores` are passed, if no `retriever` is set. Alternatively, you can set a"
|
658 |
+
" retriever using the `set_retriever(...)` function."
|
659 |
+
)
|
660 |
+
|
661 |
+
assert (
|
662 |
+
doc_scores is not None
|
663 |
+
), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function."
|
664 |
+
|
665 |
+
assert (doc_scores.shape[1] % n_docs) == 0, (
|
666 |
+
f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
|
667 |
+
f" {context_input_ids.shape[0]}."
|
668 |
+
)
|
669 |
+
|
670 |
+
# Decoder input without context documents
|
671 |
+
if decoder_input_ids is not None:
|
672 |
+
decoder_input_ids = decoder_input_ids.repeat_interleave(n_docs, dim=0)
|
673 |
+
|
674 |
+
if decoder_attention_mask is not None:
|
675 |
+
decoder_attention_mask = decoder_attention_mask.repeat_interleave(n_docs, dim=0)
|
676 |
+
|
677 |
+
gen_outputs = self.generator(
|
678 |
+
input_ids=context_input_ids,
|
679 |
+
attention_mask=context_attention_mask,
|
680 |
+
encoder_outputs=encoder_outputs,
|
681 |
+
decoder_input_ids=decoder_input_ids,
|
682 |
+
decoder_attention_mask=decoder_attention_mask,
|
683 |
+
past_key_values=past_key_values,
|
684 |
+
use_cache=use_cache,
|
685 |
+
output_attentions=output_attentions,
|
686 |
+
return_dict=True,
|
687 |
+
)
|
688 |
+
|
689 |
+
if not has_to_retrieve:
|
690 |
+
question_encoder_last_hidden_state = None
|
691 |
+
question_enc_hidden_states = None
|
692 |
+
question_enc_attentions = None
|
693 |
+
retrieved_doc_embeds = None
|
694 |
+
retrieved_doc_ids = None
|
695 |
+
else:
|
696 |
+
question_enc_hidden_states = question_enc_outputs.hidden_states
|
697 |
+
question_enc_attentions = question_enc_outputs.attentions
|
698 |
+
|
699 |
+
if not has_to_retrieve or not output_retrieved:
|
700 |
+
# don't output retrieved docs
|
701 |
+
context_input_ids = (None,)
|
702 |
+
context_attention_mask = None
|
703 |
+
retrieved_doc_embeds = None
|
704 |
+
retrieved_doc_ids = None
|
705 |
+
|
706 |
+
return RetrievAugLMOutput(
|
707 |
+
logits=gen_outputs.logits,
|
708 |
+
doc_scores=doc_scores,
|
709 |
+
past_key_values=gen_outputs.past_key_values,
|
710 |
+
context_input_ids=context_input_ids,
|
711 |
+
context_attention_mask=context_attention_mask,
|
712 |
+
retrieved_doc_embeds=retrieved_doc_embeds,
|
713 |
+
retrieved_doc_ids=retrieved_doc_ids,
|
714 |
+
question_encoder_last_hidden_state=question_encoder_last_hidden_state,
|
715 |
+
question_enc_hidden_states=question_enc_hidden_states,
|
716 |
+
question_enc_attentions=question_enc_attentions,
|
717 |
+
generator_enc_last_hidden_state=gen_outputs.encoder_last_hidden_state,
|
718 |
+
generator_enc_hidden_states=gen_outputs.encoder_hidden_states,
|
719 |
+
generator_enc_attentions=gen_outputs.encoder_attentions,
|
720 |
+
generator_dec_hidden_states=gen_outputs.decoder_hidden_states,
|
721 |
+
generator_dec_attentions=gen_outputs.decoder_attentions,
|
722 |
+
generator_cross_attentions=gen_outputs.cross_attentions,
|
723 |
+
)
|
724 |
+
|
725 |
+
|
726 |
+
@add_start_docstrings_to_model_forward(
|
727 |
+
"""
|
728 |
+
A RAG-sequence model implementation. It performs RAG-sequence specific marginalization in the forward pass.
|
729 |
+
""",
|
730 |
+
RAG_START_DOCSTRING,
|
731 |
+
)
|
732 |
+
class RagSequenceForGeneration(RagPreTrainedModel):
|
733 |
+
def __init__(
|
734 |
+
self,
|
735 |
+
config: Optional[PretrainedConfig] = None,
|
736 |
+
question_encoder: Optional[PreTrainedModel] = None,
|
737 |
+
generator: Optional[PreTrainedModel] = None,
|
738 |
+
retriever: Optional[RagRetriever] = None,
|
739 |
+
**kwargs,
|
740 |
+
):
|
741 |
+
assert config is not None or (
|
742 |
+
question_encoder is not None and generator is not None
|
743 |
+
), "Either a configuration or an encoder and a generator has to be provided."
|
744 |
+
|
745 |
+
if config is None:
|
746 |
+
config = RagConfig.from_question_encoder_generator_configs(
|
747 |
+
question_encoder.config, generator.config, **kwargs
|
748 |
+
)
|
749 |
+
super().__init__(config)
|
750 |
+
|
751 |
+
# instantiate model
|
752 |
+
self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever)
|
753 |
+
|
754 |
+
def set_retriever(self, retriever: RagRetriever):
|
755 |
+
self.rag.retriever = retriever
|
756 |
+
|
757 |
+
def set_context_encoder_for_training(self, ctx_encoder: PreTrainedModel):
|
758 |
+
self.rag.context_encoder_training = True
|
759 |
+
self.rag.ctx_encoder = ctx_encoder
|
760 |
+
|
761 |
+
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
|
762 |
+
@replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
|
763 |
+
def forward(
|
764 |
+
self,
|
765 |
+
input_ids: Optional[torch.LongTensor] = None,
|
766 |
+
attention_mask: Optional[torch.Tensor] = None,
|
767 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
768 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
769 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
770 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
771 |
+
context_input_ids: Optional[torch.LongTensor] = None,
|
772 |
+
context_attention_mask: Optional[torch.LongTensor] = None,
|
773 |
+
doc_scores: Optional[torch.FloatTensor] = None,
|
774 |
+
use_cache: Optional[bool] = None,
|
775 |
+
output_attentions: Optional[bool] = None,
|
776 |
+
output_hidden_states: Optional[bool] = None,
|
777 |
+
output_retrieved: Optional[bool] = None,
|
778 |
+
exclude_bos_score: Optional[bool] = None,
|
779 |
+
reduce_loss: Optional[bool] = None,
|
780 |
+
labels: Optional[torch.LongTensor] = None,
|
781 |
+
n_docs: Optional[int] = None,
|
782 |
+
**kwargs, # needs kwargs for generation
|
783 |
+
) -> RetrievAugLMMarginOutput:
|
784 |
+
r"""
|
785 |
+
exclude_bos_score (`bool`, *optional*):
|
786 |
+
Only relevant if `labels` is passed. If `True`, the score of the BOS token is disregarded when computing
|
787 |
+
the loss.
|
788 |
+
reduce_loss (`bool`, *optional*):
|
789 |
+
Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `torch.Tensor.sum`
|
790 |
+
operation.
|
791 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
792 |
+
Legacy dictionary, which is required so that model can use *generate()* function.
|
793 |
+
|
794 |
+
Returns:
|
795 |
+
|
796 |
+
Example:
|
797 |
+
|
798 |
+
```python
|
799 |
+
>>> from transformers import AutoTokenizer, RagRetriever, RagSequenceForGeneration
|
800 |
+
>>> import torch
|
801 |
+
|
802 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
803 |
+
>>> retriever = RagRetriever.from_pretrained(
|
804 |
+
... "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True
|
805 |
+
... )
|
806 |
+
>>> # initialize with RagRetriever to do everything in one forward call
|
807 |
+
>>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever)
|
808 |
+
|
809 |
+
>>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt")
|
810 |
+
>>> targets = tokenizer(text_target="In Paris, there are 10 million people.", return_tensors="pt")
|
811 |
+
>>> input_ids = inputs["input_ids"]
|
812 |
+
>>> labels = targets["input_ids"]
|
813 |
+
>>> outputs = model(input_ids=input_ids, labels=labels)
|
814 |
+
|
815 |
+
>>> # or use retriever separately
|
816 |
+
>>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", use_dummy_dataset=True)
|
817 |
+
>>> # 1. Encode
|
818 |
+
>>> question_hidden_states = model.question_encoder(input_ids)[0]
|
819 |
+
>>> # 2. Retrieve
|
820 |
+
>>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt")
|
821 |
+
>>> doc_scores = torch.bmm(
|
822 |
+
... question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)
|
823 |
+
... ).squeeze(1)
|
824 |
+
>>> # 3. Forward to generator
|
825 |
+
>>> outputs = model(
|
826 |
+
... context_input_ids=docs_dict["context_input_ids"],
|
827 |
+
... context_attention_mask=docs_dict["context_attention_mask"],
|
828 |
+
... doc_scores=doc_scores,
|
829 |
+
... decoder_input_ids=labels,
|
830 |
+
... )
|
831 |
+
```"""
|
832 |
+
n_docs = n_docs if n_docs is not None else self.config.n_docs
|
833 |
+
exclude_bos_score = exclude_bos_score if exclude_bos_score is not None else self.config.exclude_bos_score
|
834 |
+
reduce_loss = reduce_loss if reduce_loss is not None else self.config.reduce_loss
|
835 |
+
|
836 |
+
if labels is not None:
|
837 |
+
if decoder_input_ids is None:
|
838 |
+
decoder_input_ids = labels
|
839 |
+
use_cache = False
|
840 |
+
|
841 |
+
outputs = self.rag(
|
842 |
+
input_ids=input_ids,
|
843 |
+
attention_mask=attention_mask,
|
844 |
+
encoder_outputs=encoder_outputs,
|
845 |
+
decoder_input_ids=decoder_input_ids,
|
846 |
+
decoder_attention_mask=decoder_attention_mask,
|
847 |
+
context_input_ids=context_input_ids,
|
848 |
+
context_attention_mask=context_attention_mask,
|
849 |
+
doc_scores=doc_scores,
|
850 |
+
past_key_values=past_key_values,
|
851 |
+
use_cache=use_cache,
|
852 |
+
output_attentions=output_attentions,
|
853 |
+
output_hidden_states=output_hidden_states,
|
854 |
+
output_retrieved=output_retrieved,
|
855 |
+
n_docs=n_docs,
|
856 |
+
)
|
857 |
+
|
858 |
+
loss = None
|
859 |
+
if labels is not None:
|
860 |
+
loss = self.get_nll(
|
861 |
+
outputs.logits,
|
862 |
+
outputs.doc_scores,
|
863 |
+
decoder_input_ids,
|
864 |
+
reduce_loss=reduce_loss,
|
865 |
+
epsilon=self.config.label_smoothing,
|
866 |
+
exclude_bos_score=exclude_bos_score,
|
867 |
+
n_docs=n_docs,
|
868 |
+
)
|
869 |
+
|
870 |
+
return RetrievAugLMMarginOutput(
|
871 |
+
loss=loss,
|
872 |
+
logits=outputs.logits,
|
873 |
+
doc_scores=outputs.doc_scores,
|
874 |
+
past_key_values=outputs.past_key_values,
|
875 |
+
context_input_ids=outputs.context_input_ids,
|
876 |
+
context_attention_mask=outputs.context_attention_mask,
|
877 |
+
retrieved_doc_embeds=outputs.retrieved_doc_embeds,
|
878 |
+
retrieved_doc_ids=outputs.retrieved_doc_ids,
|
879 |
+
question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state,
|
880 |
+
question_enc_hidden_states=outputs.question_enc_hidden_states,
|
881 |
+
question_enc_attentions=outputs.question_enc_attentions,
|
882 |
+
generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state,
|
883 |
+
generator_enc_hidden_states=outputs.generator_enc_hidden_states,
|
884 |
+
generator_enc_attentions=outputs.generator_enc_attentions,
|
885 |
+
generator_dec_hidden_states=outputs.generator_dec_hidden_states,
|
886 |
+
generator_dec_attentions=outputs.generator_dec_attentions,
|
887 |
+
generator_cross_attentions=outputs.generator_cross_attentions,
|
888 |
+
)
|
889 |
+
|
890 |
+
@property
|
891 |
+
def retriever(self):
|
892 |
+
return self.rag.retriever
|
893 |
+
|
894 |
+
@property
|
895 |
+
def generator(self):
|
896 |
+
return self.rag.generator
|
897 |
+
|
898 |
+
@property
|
899 |
+
def question_encoder(self):
|
900 |
+
return self.rag.question_encoder
|
901 |
+
|
902 |
+
@torch.no_grad()
|
903 |
+
def generate(
|
904 |
+
self,
|
905 |
+
input_ids: Optional[torch.LongTensor] = None,
|
906 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
907 |
+
context_input_ids: Optional[torch.LongTensor] = None,
|
908 |
+
context_attention_mask: Optional[torch.LongTensor] = None,
|
909 |
+
doc_scores: Optional[torch.FloatTensor] = None,
|
910 |
+
do_deduplication: Optional[bool] = None, # defaults to True
|
911 |
+
num_return_sequences: Optional[int] = None, # defaults to 1
|
912 |
+
num_beams: Optional[int] = None, # defaults to 1
|
913 |
+
n_docs: Optional[int] = None,
|
914 |
+
**model_kwargs,
|
915 |
+
) -> torch.LongTensor:
|
916 |
+
"""
|
917 |
+
Implements RAG sequence "thorough" decoding. Read the [`~generation.GenerationMixin.generate`]` documentation
|
918 |
+
for more information on how to set other generate input parameters.
|
919 |
+
|
920 |
+
Args:
|
921 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
922 |
+
The sequence used as a prompt for the generation. If `input_ids` is not passed, then
|
923 |
+
`context_input_ids` has to be provided.
|
924 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
925 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
926 |
+
|
927 |
+
- 1 for tokens that are **not masked**,
|
928 |
+
- 0 for tokens that are **masked**.
|
929 |
+
|
930 |
+
[What are attention masks?](../glossary#attention-mask)
|
931 |
+
context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
|
932 |
+
Input IDs post-processed from the retrieved documents and the question encoder input_ids by the
|
933 |
+
retriever.
|
934 |
+
context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
|
935 |
+
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
|
936 |
+
retriever.
|
937 |
+
|
938 |
+
If the model is not initialized with a `retriever` or `input_ids` is not given, `context_input_ids` and
|
939 |
+
`context_attention_mask` have to be provided to the forward pass. They are returned by
|
940 |
+
[`~RagRetriever.__call__`].
|
941 |
+
doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
|
942 |
+
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
|
943 |
+
`question_encoder_last_hidden_state`.
|
944 |
+
|
945 |
+
If the model is not initialized with a `retriever` or `input_ids` is not given, `doc_scores` has to be
|
946 |
+
provided to the forward pass. `doc_scores` are returned by [`~RagRetriever.__call__`].
|
947 |
+
do_deduplication (`bool`, *optional*):
|
948 |
+
Whether or not to deduplicate the generations from different context documents for a given input. Has
|
949 |
+
to be set to `False` if used while training with distributed backend.
|
950 |
+
num_return_sequences(`int`, *optional*, defaults to 1):
|
951 |
+
The number of independently computed returned sequences for each element in the batch. Note that this
|
952 |
+
is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`]` function,
|
953 |
+
where we set `num_return_sequences` to `num_beams`.
|
954 |
+
num_beams (`int`, *optional*, defaults to 1):
|
955 |
+
Number of beams for beam search. 1 means no beam search.
|
956 |
+
n_docs (`int`, *optional*, defaults to `config.n_docs`)
|
957 |
+
Number of documents to retrieve and/or number of documents for which to generate an answer.
|
958 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
959 |
+
Additional kwargs will be passed to [`~generation.GenerationMixin.generate`].
|
960 |
+
|
961 |
+
Return:
|
962 |
+
`torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated
|
963 |
+
sequences. The second dimension (sequence length) is either equal to `max_length` or shorter if all batches
|
964 |
+
finished early due to the `eos_token_id`.
|
965 |
+
"""
|
966 |
+
|
967 |
+
n_docs = n_docs if n_docs is not None else self.config.n_docs
|
968 |
+
do_deduplication = do_deduplication if do_deduplication is not None else self.config.do_deduplication
|
969 |
+
num_doc_return_sequences = (
|
970 |
+
num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
|
971 |
+
)
|
972 |
+
num_beams = num_beams if num_beams is not None else self.config.num_beams
|
973 |
+
|
974 |
+
assert (
|
975 |
+
input_ids is not None or context_input_ids is not None
|
976 |
+
), " At least one of input_ids or context_input_ids must be given"
|
977 |
+
|
978 |
+
if self.retriever is not None and context_input_ids is None:
|
979 |
+
question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
|
980 |
+
context_input_ids = self.retriever(
|
981 |
+
input_ids,
|
982 |
+
question_hidden_states.cpu().detach().to(torch.float32).numpy(),
|
983 |
+
prefix=self.generator.config.prefix,
|
984 |
+
n_docs=n_docs,
|
985 |
+
return_tensors="pt",
|
986 |
+
)["context_input_ids"]
|
987 |
+
|
988 |
+
# set to correct device
|
989 |
+
context_input_ids = context_input_ids.to(input_ids)
|
990 |
+
|
991 |
+
hypos = []
|
992 |
+
model_kwargs["num_beams"] = num_beams
|
993 |
+
model_kwargs["num_return_sequences"] = num_beams
|
994 |
+
model_kwargs["attention_mask"] = None
|
995 |
+
|
996 |
+
batch_size = input_ids.shape[0] if input_ids is not None else context_input_ids.shape[0] // n_docs
|
997 |
+
|
998 |
+
for index in range(batch_size):
|
999 |
+
# first, generate beams from documents:
|
1000 |
+
generator_input_ids = context_input_ids[index * n_docs : (index + 1) * n_docs] # (n_docs, max_len)
|
1001 |
+
|
1002 |
+
output_sequences = self.generator.generate(
|
1003 |
+
generator_input_ids,
|
1004 |
+
**model_kwargs,
|
1005 |
+
) # n_docs * n_beam, tgt_len
|
1006 |
+
if do_deduplication:
|
1007 |
+
# do_deduplication, max_output_len
|
1008 |
+
output_sequences = torch.stack(list({str(k.tolist()): k for k in output_sequences}.values()))
|
1009 |
+
|
1010 |
+
num_candidates = output_sequences.shape[
|
1011 |
+
0
|
1012 |
+
] # after deduplication, this number can be less than n_docs*n_beam
|
1013 |
+
|
1014 |
+
# then, run model forwards to get nll scores:
|
1015 |
+
if input_ids is not None:
|
1016 |
+
new_input_ids = input_ids[index : index + 1].repeat(num_candidates, 1)
|
1017 |
+
outputs = self(new_input_ids, labels=output_sequences, exclude_bos_score=True)
|
1018 |
+
else: # input_ids is None, need context_input_ids/mask and doc_scores
|
1019 |
+
assert context_attention_mask is not None, (
|
1020 |
+
"Make sure that `context_attention_mask` are passed, if no `input_ids` is set. Alternatively, you"
|
1021 |
+
" can set a retriever using the `set_retriever(...)` function."
|
1022 |
+
)
|
1023 |
+
assert doc_scores is not None, (
|
1024 |
+
"Make sure that `doc_scores` are passed, if no `input_ids` is set. Alternatively, you can set a"
|
1025 |
+
" retriever using the `set_retriever(...)` function."
|
1026 |
+
)
|
1027 |
+
|
1028 |
+
individual_input_ids = generator_input_ids.repeat(
|
1029 |
+
num_candidates, 1
|
1030 |
+
) # (num_candidates*n_docs, max_len)
|
1031 |
+
|
1032 |
+
individual_attention_mask = context_attention_mask[index * n_docs : (index + 1) * n_docs]
|
1033 |
+
individual_attention_mask = individual_attention_mask.repeat(num_candidates, 1)
|
1034 |
+
|
1035 |
+
individual_doc_scores = doc_scores[index : (index + 1), :] # doc_scores.shape = [batch, n_docs]
|
1036 |
+
individual_doc_scores = individual_doc_scores.repeat(num_candidates, 1) # [num_candidates, n_docs]
|
1037 |
+
|
1038 |
+
outputs = self(
|
1039 |
+
context_input_ids=individual_input_ids,
|
1040 |
+
context_attention_mask=individual_attention_mask,
|
1041 |
+
doc_scores=individual_doc_scores,
|
1042 |
+
labels=output_sequences,
|
1043 |
+
exclude_bos_score=True,
|
1044 |
+
)
|
1045 |
+
|
1046 |
+
top_cand_inds = (-outputs["loss"]).topk(num_doc_return_sequences)[1]
|
1047 |
+
|
1048 |
+
# add hypothesis
|
1049 |
+
hypos.append(output_sequences[top_cand_inds])
|
1050 |
+
|
1051 |
+
return self._cat_and_pad(hypos, pad_token_id=self.config.generator.pad_token_id)
|
1052 |
+
|
1053 |
+
def get_nll(
|
1054 |
+
self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, exclude_bos_score=False, n_docs=None
|
1055 |
+
):
|
1056 |
+
# shift tokens left
|
1057 |
+
target = torch.cat(
|
1058 |
+
[target[:, 1:], target.new(target.shape[0], 1).fill_(self.config.generator.pad_token_id)], 1
|
1059 |
+
)
|
1060 |
+
|
1061 |
+
n_docs = n_docs if n_docs is not None else self.config.n_docs
|
1062 |
+
|
1063 |
+
# bos_token_id is None for T5
|
1064 |
+
bos_token_id = self.config.bos_token_id or self.config.generator.bos_token_id
|
1065 |
+
use_bos = bos_token_id is not None and target[:, 0].eq(bos_token_id).all()
|
1066 |
+
|
1067 |
+
def _mask_pads(ll, smooth_obj):
|
1068 |
+
pad_mask = target.eq(self.config.generator.pad_token_id)
|
1069 |
+
if pad_mask.any():
|
1070 |
+
ll.masked_fill_(pad_mask, 0.0)
|
1071 |
+
smooth_obj.masked_fill_(pad_mask, 0.0)
|
1072 |
+
return ll.squeeze(-1), smooth_obj.squeeze(-1)
|
1073 |
+
|
1074 |
+
# seq_logits dim = (batch*n_docs, tgt_len , #vocabs)
|
1075 |
+
seq_logprobs = nn.functional.log_softmax(seq_logits, dim=-1).view(
|
1076 |
+
seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.size(-1)
|
1077 |
+
) # batch_size x n_docs x tgt_len x #vocab_size
|
1078 |
+
doc_logprobs = nn.functional.log_softmax(doc_scores, dim=1).unsqueeze(-1).unsqueeze(-1)
|
1079 |
+
|
1080 |
+
# RAG-sequence marginalization
|
1081 |
+
first_token_scores = seq_logprobs[:, :, :1, :]
|
1082 |
+
second_token_scores = seq_logprobs[:, :, 1:2, :]
|
1083 |
+
remainder = seq_logprobs[:, :, 2:, :]
|
1084 |
+
rag_logprobs = torch.cat([first_token_scores, second_token_scores + doc_logprobs, remainder], dim=2)
|
1085 |
+
|
1086 |
+
# calculate loss
|
1087 |
+
target = target.unsqueeze(1).unsqueeze(-1).repeat(1, n_docs, 1, 1)
|
1088 |
+
assert target.dim() == rag_logprobs.dim()
|
1089 |
+
|
1090 |
+
ll = rag_logprobs.gather(dim=-1, index=target)
|
1091 |
+
smooth_obj = rag_logprobs.sum(dim=-1, keepdim=True) # total sum of all (normalised) logits
|
1092 |
+
|
1093 |
+
ll, smooth_obj = _mask_pads(ll, smooth_obj)
|
1094 |
+
|
1095 |
+
# sum over tokens, exclude bos while scoring
|
1096 |
+
ll = ll[:, :, 1:].sum(2) if exclude_bos_score and use_bos else ll.sum(2)
|
1097 |
+
smooth_obj = smooth_obj.sum(2)
|
1098 |
+
ll = ll.logsumexp(1) # logsumexp over docs
|
1099 |
+
smooth_obj = smooth_obj.logsumexp(1)
|
1100 |
+
|
1101 |
+
nll_loss = -ll
|
1102 |
+
smooth_loss = -smooth_obj
|
1103 |
+
|
1104 |
+
if reduce_loss:
|
1105 |
+
nll_loss = nll_loss.sum()
|
1106 |
+
smooth_loss = smooth_loss.sum()
|
1107 |
+
|
1108 |
+
eps_i = epsilon / rag_logprobs.size(-1)
|
1109 |
+
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
|
1110 |
+
return loss
|
1111 |
+
|
1112 |
+
@staticmethod
|
1113 |
+
def _cat_and_pad(tensors, pad_token_id):
|
1114 |
+
output = (
|
1115 |
+
tensors[0].new(sum([t.shape[0] for t in tensors]), max([t.shape[1] for t in tensors])).fill_(pad_token_id)
|
1116 |
+
)
|
1117 |
+
ind = 0
|
1118 |
+
for t in tensors:
|
1119 |
+
output[ind : ind + t.shape[0], : t.shape[1]] = t
|
1120 |
+
ind += t.shape[0]
|
1121 |
+
return output
|
1122 |
+
|
1123 |
+
|
1124 |
+
@add_start_docstrings_to_model_forward(
|
1125 |
+
"""
|
1126 |
+
A RAG-token model implementation. It performs RAG-token specific marginalization in the forward pass.
|
1127 |
+
""",
|
1128 |
+
RAG_START_DOCSTRING,
|
1129 |
+
)
|
1130 |
+
class RagTokenForGeneration(RagPreTrainedModel):
|
1131 |
+
def __init__(
|
1132 |
+
self,
|
1133 |
+
config: Optional[PretrainedConfig] = None,
|
1134 |
+
question_encoder: Optional[PreTrainedModel] = None,
|
1135 |
+
generator: Optional[PreTrainedModel] = None,
|
1136 |
+
retriever: Optional[RagRetriever] = None,
|
1137 |
+
**kwargs,
|
1138 |
+
):
|
1139 |
+
assert config is not None or (
|
1140 |
+
question_encoder is not None and generator is not None
|
1141 |
+
), "Either a configuration or an encoder and a generator has to be provided."
|
1142 |
+
|
1143 |
+
if config is None:
|
1144 |
+
config = RagConfig.from_question_encoder_generator_configs(
|
1145 |
+
question_encoder.config, generator.config, **kwargs
|
1146 |
+
)
|
1147 |
+
|
1148 |
+
super().__init__(config)
|
1149 |
+
|
1150 |
+
# instantiate model
|
1151 |
+
self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever)
|
1152 |
+
|
1153 |
+
def set_retriever(self, retriever: RagRetriever):
|
1154 |
+
self.rag.retriever = retriever
|
1155 |
+
|
1156 |
+
def set_context_encoder_for_training(self, ctx_encoder: PreTrainedModel):
|
1157 |
+
self.rag.context_encoder_training = True
|
1158 |
+
self.rag.ctx_encoder = ctx_encoder
|
1159 |
+
|
1160 |
+
def prepare_inputs_for_generation(
|
1161 |
+
self,
|
1162 |
+
decoder_input_ids,
|
1163 |
+
past_key_values=None,
|
1164 |
+
attention_mask=None,
|
1165 |
+
use_cache=None,
|
1166 |
+
encoder_outputs=None,
|
1167 |
+
doc_scores=None,
|
1168 |
+
n_docs=None,
|
1169 |
+
**kwargs,
|
1170 |
+
):
|
1171 |
+
if past_key_values is not None:
|
1172 |
+
# if past is defined use only last decoder_input_ids
|
1173 |
+
decoder_input_ids = decoder_input_ids[:, -1:]
|
1174 |
+
|
1175 |
+
return {
|
1176 |
+
"input_ids": None,
|
1177 |
+
"encoder_outputs": encoder_outputs,
|
1178 |
+
"doc_scores": doc_scores,
|
1179 |
+
"context_attention_mask": attention_mask,
|
1180 |
+
"decoder_input_ids": decoder_input_ids,
|
1181 |
+
"past_key_values": past_key_values,
|
1182 |
+
"use_cache": use_cache,
|
1183 |
+
"do_marginalize": True,
|
1184 |
+
"n_docs": n_docs,
|
1185 |
+
}
|
1186 |
+
|
1187 |
+
@property
|
1188 |
+
def retriever(self):
|
1189 |
+
return self.rag.retriever
|
1190 |
+
|
1191 |
+
@property
|
1192 |
+
def generator(self):
|
1193 |
+
return self.rag.generator
|
1194 |
+
|
1195 |
+
@property
|
1196 |
+
def question_encoder(self):
|
1197 |
+
return self.rag.question_encoder
|
1198 |
+
|
1199 |
+
@staticmethod
|
1200 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1201 |
+
"""Reorders cache for generation. BART-inspired but we need to take care of the extra dimension for docs"""
|
1202 |
+
|
1203 |
+
def _reorder_stacked(hidden_states, new_order):
|
1204 |
+
n_docs = hidden_states.shape[0] // new_order.shape[0]
|
1205 |
+
hidden_states = hidden_states.view(-1, n_docs, *hidden_states.shape[1:])
|
1206 |
+
hidden_states = hidden_states.index_select(0, new_order)
|
1207 |
+
result = hidden_states.view(-1, *hidden_states.shape[2:])
|
1208 |
+
return result
|
1209 |
+
|
1210 |
+
reordered_past = ()
|
1211 |
+
for layer_past in past_key_values:
|
1212 |
+
# get the correct batch idx from decoder layer's batch dim for cross and self-attn
|
1213 |
+
reordered_past += (
|
1214 |
+
tuple(_reorder_stacked(past_state, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
return reordered_past
|
1218 |
+
|
1219 |
+
def marginalize(self, seq_logits, doc_scores, n_docs=None):
|
1220 |
+
n_docs = n_docs if n_docs is not None else self.config.n_docs
|
1221 |
+
|
1222 |
+
# RAG-token marginalization
|
1223 |
+
seq_logprobs = nn.functional.log_softmax(seq_logits, dim=-1).view(
|
1224 |
+
seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.size(-1)
|
1225 |
+
)
|
1226 |
+
doc_logprobs = torch.log_softmax(doc_scores, dim=1)
|
1227 |
+
log_prob_sum = seq_logprobs + doc_logprobs.unsqueeze(-1).unsqueeze(-1)
|
1228 |
+
return torch.logsumexp(log_prob_sum, dim=1)
|
1229 |
+
|
1230 |
+
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
|
1231 |
+
@replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
|
1232 |
+
def forward(
|
1233 |
+
self,
|
1234 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1235 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1236 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1237 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1238 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
1239 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1240 |
+
context_input_ids: Optional[torch.LongTensor] = None,
|
1241 |
+
context_attention_mask: Optional[torch.LongTensor] = None,
|
1242 |
+
doc_scores: Optional[torch.FloatTensor] = None,
|
1243 |
+
use_cache: Optional[bool] = None,
|
1244 |
+
output_attentions: Optional[bool] = None,
|
1245 |
+
output_hidden_states: Optional[bool] = None,
|
1246 |
+
output_retrieved: Optional[bool] = None,
|
1247 |
+
do_marginalize: Optional[bool] = None,
|
1248 |
+
reduce_loss: Optional[bool] = None,
|
1249 |
+
labels: Optional[torch.LongTensor] = None,
|
1250 |
+
n_docs: Optional[int] = None,
|
1251 |
+
**kwargs, # needs kwargs for generation
|
1252 |
+
) -> RetrievAugLMMarginOutput:
|
1253 |
+
r"""
|
1254 |
+
do_marginalize (`bool`, *optional*):
|
1255 |
+
If `True`, the logits are marginalized over all documents by making use of
|
1256 |
+
`torch.nn.functional.log_softmax`.
|
1257 |
+
reduce_loss (`bool`, *optional*):
|
1258 |
+
Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `torch.Tensor.sum`
|
1259 |
+
operation.
|
1260 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1261 |
+
Legacy dictionary, which is required so that model can use *generate()* function.
|
1262 |
+
|
1263 |
+
Returns:
|
1264 |
+
|
1265 |
+
Example:
|
1266 |
+
|
1267 |
+
```python
|
1268 |
+
>>> from transformers import AutoTokenizer, RagRetriever, RagTokenForGeneration
|
1269 |
+
>>> import torch
|
1270 |
+
|
1271 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-nq")
|
1272 |
+
>>> retriever = RagRetriever.from_pretrained(
|
1273 |
+
... "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True
|
1274 |
+
... )
|
1275 |
+
>>> # initialize with RagRetriever to do everything in one forward call
|
1276 |
+
>>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever)
|
1277 |
+
|
1278 |
+
>>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt")
|
1279 |
+
>>> targets = tokenizer(text_target="In Paris, there are 10 million people.", return_tensors="pt")
|
1280 |
+
>>> input_ids = inputs["input_ids"]
|
1281 |
+
>>> labels = targets["input_ids"]
|
1282 |
+
>>> outputs = model(input_ids=input_ids, labels=labels)
|
1283 |
+
|
1284 |
+
>>> # or use retriever separately
|
1285 |
+
>>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True)
|
1286 |
+
>>> # 1. Encode
|
1287 |
+
>>> question_hidden_states = model.question_encoder(input_ids)[0]
|
1288 |
+
>>> # 2. Retrieve
|
1289 |
+
>>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt")
|
1290 |
+
>>> doc_scores = torch.bmm(
|
1291 |
+
... question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)
|
1292 |
+
... ).squeeze(1)
|
1293 |
+
>>> # 3. Forward to generator
|
1294 |
+
>>> outputs = model(
|
1295 |
+
... context_input_ids=docs_dict["context_input_ids"],
|
1296 |
+
... context_attention_mask=docs_dict["context_attention_mask"],
|
1297 |
+
... doc_scores=doc_scores,
|
1298 |
+
... decoder_input_ids=labels,
|
1299 |
+
... )
|
1300 |
+
|
1301 |
+
>>> # or directly generate
|
1302 |
+
>>> generated = model.generate(
|
1303 |
+
... context_input_ids=docs_dict["context_input_ids"],
|
1304 |
+
... context_attention_mask=docs_dict["context_attention_mask"],
|
1305 |
+
... doc_scores=doc_scores,
|
1306 |
+
... )
|
1307 |
+
>>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
|
1308 |
+
```"""
|
1309 |
+
n_docs = n_docs if n_docs is not None else self.config.n_docs
|
1310 |
+
do_marginalize = do_marginalize if do_marginalize is not None else self.config.do_marginalize
|
1311 |
+
reduce_loss = reduce_loss if reduce_loss is not None else self.config.reduce_loss
|
1312 |
+
|
1313 |
+
if labels is not None:
|
1314 |
+
if decoder_input_ids is None:
|
1315 |
+
decoder_input_ids = labels
|
1316 |
+
use_cache = False
|
1317 |
+
|
1318 |
+
outputs = self.rag(
|
1319 |
+
input_ids=input_ids,
|
1320 |
+
attention_mask=attention_mask,
|
1321 |
+
encoder_outputs=encoder_outputs,
|
1322 |
+
decoder_input_ids=decoder_input_ids,
|
1323 |
+
decoder_attention_mask=decoder_attention_mask,
|
1324 |
+
context_input_ids=context_input_ids,
|
1325 |
+
context_attention_mask=context_attention_mask,
|
1326 |
+
doc_scores=doc_scores,
|
1327 |
+
past_key_values=past_key_values,
|
1328 |
+
use_cache=use_cache,
|
1329 |
+
output_attentions=output_attentions,
|
1330 |
+
output_hidden_states=output_hidden_states,
|
1331 |
+
output_retrieved=output_retrieved,
|
1332 |
+
n_docs=n_docs,
|
1333 |
+
)
|
1334 |
+
|
1335 |
+
loss = None
|
1336 |
+
logits = outputs.logits
|
1337 |
+
if labels is not None:
|
1338 |
+
assert decoder_input_ids is not None
|
1339 |
+
loss = self.get_nll(
|
1340 |
+
outputs.logits,
|
1341 |
+
outputs.doc_scores,
|
1342 |
+
labels,
|
1343 |
+
reduce_loss=reduce_loss,
|
1344 |
+
epsilon=self.config.label_smoothing,
|
1345 |
+
n_docs=n_docs,
|
1346 |
+
)
|
1347 |
+
|
1348 |
+
if do_marginalize:
|
1349 |
+
logits = self.marginalize(logits, outputs.doc_scores, n_docs)
|
1350 |
+
|
1351 |
+
return RetrievAugLMMarginOutput(
|
1352 |
+
loss=loss,
|
1353 |
+
logits=logits,
|
1354 |
+
doc_scores=outputs.doc_scores,
|
1355 |
+
past_key_values=outputs.past_key_values,
|
1356 |
+
context_input_ids=outputs.context_input_ids,
|
1357 |
+
context_attention_mask=outputs.context_attention_mask,
|
1358 |
+
retrieved_doc_embeds=outputs.retrieved_doc_embeds,
|
1359 |
+
retrieved_doc_ids=outputs.retrieved_doc_ids,
|
1360 |
+
question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state,
|
1361 |
+
question_enc_hidden_states=outputs.question_enc_hidden_states,
|
1362 |
+
question_enc_attentions=outputs.question_enc_attentions,
|
1363 |
+
generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state,
|
1364 |
+
generator_enc_hidden_states=outputs.generator_enc_hidden_states,
|
1365 |
+
generator_enc_attentions=outputs.generator_enc_attentions,
|
1366 |
+
generator_dec_hidden_states=outputs.generator_dec_hidden_states,
|
1367 |
+
generator_dec_attentions=outputs.generator_dec_attentions,
|
1368 |
+
generator_cross_attentions=outputs.generator_cross_attentions,
|
1369 |
+
)
|
1370 |
+
|
1371 |
+
@torch.no_grad()
|
1372 |
+
def generate(
|
1373 |
+
self,
|
1374 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1375 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1376 |
+
context_input_ids: Optional[torch.LongTensor] = None,
|
1377 |
+
context_attention_mask: Optional[torch.LongTensor] = None,
|
1378 |
+
doc_scores: Optional[torch.FloatTensor] = None,
|
1379 |
+
n_docs: Optional[int] = None,
|
1380 |
+
generation_config: Optional[GenerationConfig] = None,
|
1381 |
+
prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]] = None,
|
1382 |
+
logits_processor: Optional[LogitsProcessorList] = LogitsProcessorList(),
|
1383 |
+
stopping_criteria: Optional[StoppingCriteriaList] = StoppingCriteriaList(),
|
1384 |
+
**kwargs,
|
1385 |
+
) -> torch.LongTensor:
|
1386 |
+
"""
|
1387 |
+
Implements RAG token decoding.
|
1388 |
+
|
1389 |
+
Args:
|
1390 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1391 |
+
The sequence used as a prompt for the generation. If `input_ids` is not passed, then
|
1392 |
+
`context_input_ids` has to be provided.
|
1393 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1394 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1395 |
+
|
1396 |
+
- 1 for tokens that are **not masked**,
|
1397 |
+
- 0 for tokens that are **masked**.
|
1398 |
+
|
1399 |
+
[What are attention masks?](../glossary#attention-mask)
|
1400 |
+
context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
|
1401 |
+
Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the
|
1402 |
+
retriever.
|
1403 |
+
|
1404 |
+
If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
|
1405 |
+
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
|
1406 |
+
context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
|
1407 |
+
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
|
1408 |
+
retriever.
|
1409 |
+
|
1410 |
+
If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
|
1411 |
+
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
|
1412 |
+
doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
|
1413 |
+
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
|
1414 |
+
`question_encoder_last_hidden_state`.
|
1415 |
+
|
1416 |
+
If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
|
1417 |
+
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
|
1418 |
+
n_docs (`int`, *optional*, defaults to `config.n_docs`)
|
1419 |
+
Number of documents to retrieve and/or number of documents for which to generate an answer.
|
1420 |
+
generation_config (`~generation.GenerationConfig`, *optional*):
|
1421 |
+
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
|
1422 |
+
passed to generate matching the attributes of `generation_config` will override them. If
|
1423 |
+
`generation_config` is not provided, the default will be used, which has the following loading
|
1424 |
+
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
|
1425 |
+
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
|
1426 |
+
default values, whose documentation should be checked to parameterize generation.
|
1427 |
+
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
|
1428 |
+
If provided, this function constraints the beam search to allowed tokens only at each step. If not
|
1429 |
+
provided no constraint is applied. This function takes 2 arguments `inputs_ids` and the batch ID
|
1430 |
+
`batch_id`. It has to return a list with the allowed tokens for the next generation step conditioned on
|
1431 |
+
the previously generated tokens `inputs_ids` and the batch ID `batch_id`. This argument is useful for
|
1432 |
+
constrained generation conditioned on the prefix, as described in [Autoregressive Entity
|
1433 |
+
Retrieval](https://arxiv.org/abs/2010.00904).
|
1434 |
+
logits_processor (`LogitsProcessorList`, *optional*):
|
1435 |
+
Custom logits processors that complement the default logits processors built from arguments and a
|
1436 |
+
model's config. If a logit processor is passed that is already created with the arguments or a model's
|
1437 |
+
config an error is thrown.
|
1438 |
+
stopping_criteria (`StoppingCriteriaList`, *optional*):
|
1439 |
+
Custom stopping criteria that complement the default stopping criteria built from arguments and a
|
1440 |
+
model's config. If a stopping criteria is passed that is already created with the arguments or a
|
1441 |
+
model's config an error is thrown.
|
1442 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
1443 |
+
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
|
1444 |
+
forwarded to the `forward` function of the model.
|
1445 |
+
|
1446 |
+
Return:
|
1447 |
+
`torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated
|
1448 |
+
sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches
|
1449 |
+
finished early due to the `eos_token_id`.
|
1450 |
+
"""
|
1451 |
+
# Handle `generation_config` and kwargs that might update it
|
1452 |
+
if generation_config is None:
|
1453 |
+
generation_config = self.generation_config
|
1454 |
+
generation_config = copy.deepcopy(generation_config)
|
1455 |
+
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
|
1456 |
+
|
1457 |
+
# set default parameters
|
1458 |
+
n_docs = n_docs if n_docs is not None else self.config.n_docs
|
1459 |
+
|
1460 |
+
# retrieve docs
|
1461 |
+
if self.retriever is not None and context_input_ids is None:
|
1462 |
+
question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
|
1463 |
+
out = self.retriever(
|
1464 |
+
input_ids,
|
1465 |
+
question_hidden_states.cpu().detach().to(torch.float32).numpy(),
|
1466 |
+
prefix=self.generator.config.prefix,
|
1467 |
+
n_docs=n_docs,
|
1468 |
+
return_tensors="pt",
|
1469 |
+
)
|
1470 |
+
context_input_ids, context_attention_mask, retrieved_doc_embeds = (
|
1471 |
+
out["context_input_ids"],
|
1472 |
+
out["context_attention_mask"],
|
1473 |
+
out["retrieved_doc_embeds"],
|
1474 |
+
)
|
1475 |
+
|
1476 |
+
# set to correct device
|
1477 |
+
retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
|
1478 |
+
context_input_ids = context_input_ids.to(input_ids)
|
1479 |
+
context_attention_mask = context_attention_mask.to(input_ids)
|
1480 |
+
|
1481 |
+
# compute doc_scores
|
1482 |
+
doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
|
1483 |
+
1
|
1484 |
+
)
|
1485 |
+
|
1486 |
+
assert (context_input_ids.shape[0] % n_docs) == 0, (
|
1487 |
+
f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
|
1488 |
+
f" {context_input_ids.shape[0]}."
|
1489 |
+
)
|
1490 |
+
|
1491 |
+
# batch_size
|
1492 |
+
batch_size = context_input_ids.shape[0] // n_docs
|
1493 |
+
|
1494 |
+
encoder = self.rag.generator.get_encoder()
|
1495 |
+
encoder_outputs = encoder(input_ids=context_input_ids, attention_mask=context_attention_mask, return_dict=True)
|
1496 |
+
|
1497 |
+
input_ids = torch.full(
|
1498 |
+
(batch_size * generation_config.num_beams, 1),
|
1499 |
+
generation_config.decoder_start_token_id,
|
1500 |
+
dtype=torch.long,
|
1501 |
+
device=next(self.parameters()).device,
|
1502 |
+
)
|
1503 |
+
input_ids_seq_length = input_ids.shape[-1]
|
1504 |
+
last_hidden_state = encoder_outputs["last_hidden_state"]
|
1505 |
+
|
1506 |
+
def extend_enc_output(tensor, num_beams=None):
|
1507 |
+
# split into `batch_size`, `num_beams`, `num_docs`
|
1508 |
+
tensor = tensor[None, None, :].reshape((batch_size, 1, n_docs) + tensor.shape[1:])
|
1509 |
+
# repeat same last hidden states over `num_beams` dimension
|
1510 |
+
tensor = tensor.expand((batch_size, num_beams, n_docs) + tensor.shape[3:])
|
1511 |
+
# merge `batch_size`, `num_beams`, `num_docs` dims again
|
1512 |
+
return tensor.reshape((batch_size * num_beams * n_docs,) + tensor.shape[3:])
|
1513 |
+
|
1514 |
+
# correctly extend last_hidden_state and attention mask
|
1515 |
+
context_attention_mask = extend_enc_output(context_attention_mask, num_beams=generation_config.num_beams)
|
1516 |
+
encoder_outputs["last_hidden_state"] = extend_enc_output(
|
1517 |
+
last_hidden_state, num_beams=generation_config.num_beams
|
1518 |
+
)
|
1519 |
+
|
1520 |
+
doc_scores = doc_scores.repeat_interleave(generation_config.num_beams, dim=0)
|
1521 |
+
|
1522 |
+
# define start_len & additional parameters
|
1523 |
+
model_kwargs["doc_scores"] = doc_scores
|
1524 |
+
model_kwargs["encoder_outputs"] = encoder_outputs
|
1525 |
+
model_kwargs["attention_mask"] = context_attention_mask
|
1526 |
+
model_kwargs["n_docs"] = n_docs
|
1527 |
+
|
1528 |
+
pre_processor = self._get_logits_processor(
|
1529 |
+
generation_config=generation_config,
|
1530 |
+
input_ids_seq_length=input_ids_seq_length,
|
1531 |
+
encoder_input_ids=context_input_ids,
|
1532 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
1533 |
+
logits_processor=logits_processor,
|
1534 |
+
)
|
1535 |
+
|
1536 |
+
if generation_config.num_beams == 1:
|
1537 |
+
if generation_config.num_return_sequences > 1:
|
1538 |
+
raise ValueError(
|
1539 |
+
f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
|
1540 |
+
" greedy search."
|
1541 |
+
)
|
1542 |
+
return self._greedy_search(
|
1543 |
+
input_ids,
|
1544 |
+
logits_processor=pre_processor,
|
1545 |
+
max_length=generation_config.max_length,
|
1546 |
+
pad_token_id=generation_config.pad_token_id,
|
1547 |
+
eos_token_id=generation_config.eos_token_id,
|
1548 |
+
**model_kwargs,
|
1549 |
+
)
|
1550 |
+
elif generation_config.num_beams > 1:
|
1551 |
+
if generation_config.num_return_sequences > generation_config.num_beams:
|
1552 |
+
raise ValueError("`num_return_sequences` has to be smaller or equal to `num_beams`.")
|
1553 |
+
beam_scorer = BeamSearchScorer(
|
1554 |
+
batch_size=batch_size,
|
1555 |
+
num_beams=generation_config.num_beams,
|
1556 |
+
device=self.device,
|
1557 |
+
length_penalty=generation_config.length_penalty,
|
1558 |
+
do_early_stopping=generation_config.early_stopping,
|
1559 |
+
num_beam_hyps_to_keep=generation_config.num_return_sequences,
|
1560 |
+
max_length=generation_config.max_length,
|
1561 |
+
)
|
1562 |
+
return self._beam_search(
|
1563 |
+
input_ids,
|
1564 |
+
beam_scorer,
|
1565 |
+
logits_processor=pre_processor,
|
1566 |
+
max_length=generation_config.max_length,
|
1567 |
+
pad_token_id=generation_config.pad_token_id,
|
1568 |
+
eos_token_id=generation_config.eos_token_id,
|
1569 |
+
**model_kwargs,
|
1570 |
+
)
|
1571 |
+
else:
|
1572 |
+
raise ValueError(
|
1573 |
+
f"`num_beams` has to be an integer strictly superior to 0 (≥ 1), but is {generation_config.num_beams}"
|
1574 |
+
)
|
1575 |
+
|
1576 |
+
def get_input_embeddings(self):
|
1577 |
+
return self.rag.generator.get_input_embeddings()
|
1578 |
+
|
1579 |
+
def get_output_embeddings(self):
|
1580 |
+
return self.rag.generator.get_output_embeddings()
|
1581 |
+
|
1582 |
+
def set_output_embeddings(self, new_embeddings):
|
1583 |
+
return self.rag.generator.set_output_embeddings(new_embeddings)
|
1584 |
+
|
1585 |
+
def shift_tokens_right(self, input_ids, start_token_id=None):
|
1586 |
+
"""Shift input ids one token to the right, and pad with start_token_id"""
|
1587 |
+
if start_token_id is None:
|
1588 |
+
start_token_id = self.config.decoder_start_token_id
|
1589 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
1590 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
1591 |
+
shifted_input_ids[:, 0] = start_token_id
|
1592 |
+
return shifted_input_ids
|
1593 |
+
|
1594 |
+
def get_nll(self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, n_docs=None):
|
1595 |
+
n_docs = n_docs if n_docs is not None else self.config.n_docs
|
1596 |
+
# shift tokens left
|
1597 |
+
target = torch.cat(
|
1598 |
+
[target[:, 1:], target.new(target.shape[0], 1).fill_(self.config.generator.pad_token_id)], 1
|
1599 |
+
)
|
1600 |
+
|
1601 |
+
def _mask_pads(ll, smooth_obj):
|
1602 |
+
pad_mask = target.eq(self.config.generator.pad_token_id)
|
1603 |
+
if pad_mask.any():
|
1604 |
+
ll.masked_fill_(pad_mask, 0.0)
|
1605 |
+
smooth_obj.masked_fill_(pad_mask, 0.0)
|
1606 |
+
return ll.squeeze(-1), smooth_obj.squeeze(-1)
|
1607 |
+
|
1608 |
+
rag_logprobs = self.marginalize(seq_logits, doc_scores, n_docs)
|
1609 |
+
|
1610 |
+
target = target.unsqueeze(-1)
|
1611 |
+
assert target.dim() == rag_logprobs.dim()
|
1612 |
+
|
1613 |
+
ll = rag_logprobs.gather(dim=-1, index=target)
|
1614 |
+
smooth_obj = rag_logprobs.sum(dim=-1, keepdim=True) # total sum of all (normalised) logits
|
1615 |
+
ll, smooth_obj = _mask_pads(ll, smooth_obj)
|
1616 |
+
ll = ll.sum(1) # sum over tokens
|
1617 |
+
smooth_obj = smooth_obj.sum(1)
|
1618 |
+
|
1619 |
+
nll_loss = -ll
|
1620 |
+
smooth_loss = -smooth_obj
|
1621 |
+
|
1622 |
+
if reduce_loss:
|
1623 |
+
nll_loss = nll_loss.sum()
|
1624 |
+
smooth_loss = smooth_loss.sum()
|
1625 |
+
|
1626 |
+
eps_i = epsilon / rag_logprobs.size(-1)
|
1627 |
+
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
|
1628 |
+
return loss
|
env-llmeval/lib/python3.10/site-packages/transformers/models/rag/retrieval_rag.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""RAG Retriever model implementation."""
|
16 |
+
|
17 |
+
import os
|
18 |
+
import pickle
|
19 |
+
import time
|
20 |
+
from typing import Iterable, List, Optional, Tuple
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
from ...tokenization_utils import PreTrainedTokenizer
|
25 |
+
from ...tokenization_utils_base import BatchEncoding
|
26 |
+
from ...utils import cached_file, is_datasets_available, is_faiss_available, logging, requires_backends, strtobool
|
27 |
+
from .configuration_rag import RagConfig
|
28 |
+
from .tokenization_rag import RagTokenizer
|
29 |
+
|
30 |
+
|
31 |
+
if is_datasets_available():
|
32 |
+
from datasets import Dataset, load_dataset, load_from_disk
|
33 |
+
|
34 |
+
if is_faiss_available():
|
35 |
+
import faiss
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
|
41 |
+
LEGACY_INDEX_PATH = "https://storage.googleapis.com/huggingface-nlp/datasets/wiki_dpr/"
|
42 |
+
|
43 |
+
|
44 |
+
class Index:
|
45 |
+
"""
|
46 |
+
A base class for the Indices encapsulated by the [`RagRetriever`].
|
47 |
+
"""
|
48 |
+
|
49 |
+
def get_doc_dicts(self, doc_ids: np.ndarray) -> List[dict]:
|
50 |
+
"""
|
51 |
+
Returns a list of dictionaries, containing titles and text of the retrieved documents.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
doc_ids (`np.ndarray` of shape `(batch_size, n_docs)`):
|
55 |
+
A tensor of document indices.
|
56 |
+
"""
|
57 |
+
raise NotImplementedError
|
58 |
+
|
59 |
+
def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]:
|
60 |
+
"""
|
61 |
+
For each query in the batch, retrieves `n_docs` documents.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`):
|
65 |
+
An array of query vectors.
|
66 |
+
n_docs (`int`):
|
67 |
+
The number of docs retrieved per query.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
`np.ndarray` of shape `(batch_size, n_docs)`: A tensor of indices of retrieved documents. `np.ndarray` of
|
71 |
+
shape `(batch_size, vector_size)`: A tensor of vector representations of retrieved documents.
|
72 |
+
"""
|
73 |
+
raise NotImplementedError
|
74 |
+
|
75 |
+
def is_initialized(self):
|
76 |
+
"""
|
77 |
+
Returns `True` if index is already initialized.
|
78 |
+
"""
|
79 |
+
raise NotImplementedError
|
80 |
+
|
81 |
+
def init_index(self):
|
82 |
+
"""
|
83 |
+
A function responsible for loading the index into memory. Should be called only once per training run of a RAG
|
84 |
+
model. E.g. if the model is trained on multiple GPUs in a distributed setup, only one of the workers will load
|
85 |
+
the index.
|
86 |
+
"""
|
87 |
+
raise NotImplementedError
|
88 |
+
|
89 |
+
|
90 |
+
class LegacyIndex(Index):
|
91 |
+
"""
|
92 |
+
An index which can be deserialized from the files built using https://github.com/facebookresearch/DPR. We use
|
93 |
+
default faiss index parameters as specified in that repository.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
vector_size (`int`):
|
97 |
+
The dimension of indexed vectors.
|
98 |
+
index_path (`str`):
|
99 |
+
A path to a *directory* containing index files compatible with [`~models.rag.retrieval_rag.LegacyIndex`]
|
100 |
+
"""
|
101 |
+
|
102 |
+
INDEX_FILENAME = "hf_bert_base.hnswSQ8_correct_phi_128.c_index"
|
103 |
+
PASSAGE_FILENAME = "psgs_w100.tsv.pkl"
|
104 |
+
|
105 |
+
def __init__(self, vector_size, index_path):
|
106 |
+
self.index_id_to_db_id = []
|
107 |
+
self.index_path = index_path
|
108 |
+
self.passages = self._load_passages()
|
109 |
+
self.vector_size = vector_size
|
110 |
+
self.index = None
|
111 |
+
self._index_initialized = False
|
112 |
+
|
113 |
+
def _resolve_path(self, index_path, filename):
|
114 |
+
is_local = os.path.isdir(index_path)
|
115 |
+
try:
|
116 |
+
# Load from URL or cache if already cached
|
117 |
+
resolved_archive_file = cached_file(index_path, filename)
|
118 |
+
except EnvironmentError:
|
119 |
+
msg = (
|
120 |
+
f"Can't load '{filename}'. Make sure that:\n\n"
|
121 |
+
f"- '{index_path}' is a correct remote path to a directory containing a file named {filename}\n\n"
|
122 |
+
f"- or '{index_path}' is the correct path to a directory containing a file named {filename}.\n\n"
|
123 |
+
)
|
124 |
+
raise EnvironmentError(msg)
|
125 |
+
if is_local:
|
126 |
+
logger.info(f"loading file {resolved_archive_file}")
|
127 |
+
else:
|
128 |
+
logger.info(f"loading file {filename} from cache at {resolved_archive_file}")
|
129 |
+
return resolved_archive_file
|
130 |
+
|
131 |
+
def _load_passages(self):
|
132 |
+
logger.info(f"Loading passages from {self.index_path}")
|
133 |
+
passages_path = self._resolve_path(self.index_path, self.PASSAGE_FILENAME)
|
134 |
+
if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")):
|
135 |
+
raise ValueError(
|
136 |
+
"This part uses `pickle.load` which is insecure and will execute arbitrary code that is potentially "
|
137 |
+
"malicious. It's recommended to never unpickle data that could have come from an untrusted source, or "
|
138 |
+
"that could have been tampered with. If you already verified the pickle data and decided to use it, "
|
139 |
+
"you can set the environment variable `TRUST_REMOTE_CODE` to `True` to allow it."
|
140 |
+
)
|
141 |
+
with open(passages_path, "rb") as passages_file:
|
142 |
+
passages = pickle.load(passages_file)
|
143 |
+
return passages
|
144 |
+
|
145 |
+
def _deserialize_index(self):
|
146 |
+
logger.info(f"Loading index from {self.index_path}")
|
147 |
+
resolved_index_path = self._resolve_path(self.index_path, self.INDEX_FILENAME + ".index.dpr")
|
148 |
+
self.index = faiss.read_index(resolved_index_path)
|
149 |
+
resolved_meta_path = self._resolve_path(self.index_path, self.INDEX_FILENAME + ".index_meta.dpr")
|
150 |
+
if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")):
|
151 |
+
raise ValueError(
|
152 |
+
"This part uses `pickle.load` which is insecure and will execute arbitrary code that is potentially "
|
153 |
+
"malicious. It's recommended to never unpickle data that could have come from an untrusted source, or "
|
154 |
+
"that could have been tampered with. If you already verified the pickle data and decided to use it, "
|
155 |
+
"you can set the environment variable `TRUST_REMOTE_CODE` to `True` to allow it."
|
156 |
+
)
|
157 |
+
with open(resolved_meta_path, "rb") as metadata_file:
|
158 |
+
self.index_id_to_db_id = pickle.load(metadata_file)
|
159 |
+
assert (
|
160 |
+
len(self.index_id_to_db_id) == self.index.ntotal
|
161 |
+
), "Deserialized index_id_to_db_id should match faiss index size"
|
162 |
+
|
163 |
+
def is_initialized(self):
|
164 |
+
return self._index_initialized
|
165 |
+
|
166 |
+
def init_index(self):
|
167 |
+
index = faiss.IndexHNSWFlat(self.vector_size + 1, 512)
|
168 |
+
index.hnsw.efSearch = 128
|
169 |
+
index.hnsw.efConstruction = 200
|
170 |
+
self.index = index
|
171 |
+
self._deserialize_index()
|
172 |
+
self._index_initialized = True
|
173 |
+
|
174 |
+
def get_doc_dicts(self, doc_ids: np.array):
|
175 |
+
doc_list = []
|
176 |
+
for doc_ids_i in doc_ids:
|
177 |
+
ids = [str(int(doc_id)) for doc_id in doc_ids_i]
|
178 |
+
docs = [self.passages[doc_id] for doc_id in ids]
|
179 |
+
doc_list.append(docs)
|
180 |
+
doc_dicts = []
|
181 |
+
for docs in doc_list:
|
182 |
+
doc_dict = {}
|
183 |
+
doc_dict["title"] = [doc[1] for doc in docs]
|
184 |
+
doc_dict["text"] = [doc[0] for doc in docs]
|
185 |
+
doc_dicts.append(doc_dict)
|
186 |
+
return doc_dicts
|
187 |
+
|
188 |
+
def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]:
|
189 |
+
aux_dim = np.zeros(len(question_hidden_states), dtype="float32").reshape(-1, 1)
|
190 |
+
query_nhsw_vectors = np.hstack((question_hidden_states, aux_dim))
|
191 |
+
_, docs_ids = self.index.search(query_nhsw_vectors, n_docs)
|
192 |
+
vectors = [[self.index.reconstruct(int(doc_id))[:-1] for doc_id in doc_ids] for doc_ids in docs_ids]
|
193 |
+
ids = [[int(self.index_id_to_db_id[doc_id]) for doc_id in doc_ids] for doc_ids in docs_ids]
|
194 |
+
return np.array(ids), np.array(vectors)
|
195 |
+
|
196 |
+
|
197 |
+
class HFIndexBase(Index):
|
198 |
+
def __init__(self, vector_size, dataset, index_initialized=False):
|
199 |
+
self.vector_size = vector_size
|
200 |
+
self.dataset = dataset
|
201 |
+
self._index_initialized = index_initialized
|
202 |
+
self._check_dataset_format(with_index=index_initialized)
|
203 |
+
dataset.set_format("numpy", columns=["embeddings"], output_all_columns=True, dtype="float32")
|
204 |
+
|
205 |
+
def _check_dataset_format(self, with_index: bool):
|
206 |
+
if not isinstance(self.dataset, Dataset):
|
207 |
+
raise ValueError(f"Dataset should be a datasets.Dataset object, but got {type(self.dataset)}")
|
208 |
+
if len({"title", "text", "embeddings"} - set(self.dataset.column_names)) > 0:
|
209 |
+
raise ValueError(
|
210 |
+
"Dataset should be a dataset with the following columns: "
|
211 |
+
"title (str), text (str) and embeddings (arrays of dimension vector_size), "
|
212 |
+
f"but got columns {self.dataset.column_names}"
|
213 |
+
)
|
214 |
+
if with_index and "embeddings" not in self.dataset.list_indexes():
|
215 |
+
raise ValueError(
|
216 |
+
"Missing faiss index in the dataset. Make sure you called `dataset.add_faiss_index` to compute it "
|
217 |
+
"or `dataset.load_faiss_index` to load one from the disk."
|
218 |
+
)
|
219 |
+
|
220 |
+
def init_index(self):
|
221 |
+
raise NotImplementedError()
|
222 |
+
|
223 |
+
def is_initialized(self):
|
224 |
+
return self._index_initialized
|
225 |
+
|
226 |
+
def get_doc_dicts(self, doc_ids: np.ndarray) -> List[dict]:
|
227 |
+
return [self.dataset[doc_ids[i].tolist()] for i in range(doc_ids.shape[0])]
|
228 |
+
|
229 |
+
def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]:
|
230 |
+
_, ids = self.dataset.search_batch("embeddings", question_hidden_states, n_docs)
|
231 |
+
docs = [self.dataset[[i for i in indices if i >= 0]] for indices in ids]
|
232 |
+
vectors = [doc["embeddings"] for doc in docs]
|
233 |
+
for i in range(len(vectors)):
|
234 |
+
if len(vectors[i]) < n_docs:
|
235 |
+
vectors[i] = np.vstack([vectors[i], np.zeros((n_docs - len(vectors[i]), self.vector_size))])
|
236 |
+
return np.array(ids), np.array(vectors) # shapes (batch_size, n_docs) and (batch_size, n_docs, d)
|
237 |
+
|
238 |
+
|
239 |
+
class CanonicalHFIndex(HFIndexBase):
|
240 |
+
"""
|
241 |
+
A wrapper around an instance of [`~datasets.Datasets`]. If `index_path` is set to `None`, we load the pre-computed
|
242 |
+
index available with the [`~datasets.arrow_dataset.Dataset`], otherwise, we load the index from the indicated path
|
243 |
+
on disk.
|
244 |
+
|
245 |
+
Args:
|
246 |
+
vector_size (`int`): the dimension of the passages embeddings used by the index
|
247 |
+
dataset_name (`str`, optional, defaults to `wiki_dpr`):
|
248 |
+
A dataset identifier of the indexed dataset on HuggingFace AWS bucket (list all available datasets and ids
|
249 |
+
with `datasets.list_datasets()`).
|
250 |
+
dataset_split (`str`, optional, defaults to `train`)
|
251 |
+
Which split of the `dataset` to load.
|
252 |
+
index_name (`str`, optional, defaults to `train`)
|
253 |
+
The index_name of the index associated with the `dataset`. The index loaded from `index_path` will be saved
|
254 |
+
under this name.
|
255 |
+
index_path (`str`, optional, defaults to `None`)
|
256 |
+
The path to the serialized faiss index on disk.
|
257 |
+
use_dummy_dataset (`bool`, optional, defaults to `False`):
|
258 |
+
If True, use the dummy configuration of the dataset for tests.
|
259 |
+
"""
|
260 |
+
|
261 |
+
def __init__(
|
262 |
+
self,
|
263 |
+
vector_size: int,
|
264 |
+
dataset_name: str = "wiki_dpr",
|
265 |
+
dataset_split: str = "train",
|
266 |
+
index_name: Optional[str] = None,
|
267 |
+
index_path: Optional[str] = None,
|
268 |
+
use_dummy_dataset=False,
|
269 |
+
dataset_revision=None,
|
270 |
+
):
|
271 |
+
if int(index_path is None) + int(index_name is None) != 1:
|
272 |
+
raise ValueError("Please provide `index_name` or `index_path`.")
|
273 |
+
self.dataset_name = dataset_name
|
274 |
+
self.dataset_split = dataset_split
|
275 |
+
self.index_name = index_name
|
276 |
+
self.index_path = index_path
|
277 |
+
self.use_dummy_dataset = use_dummy_dataset
|
278 |
+
self.dataset_revision = dataset_revision
|
279 |
+
logger.info(f"Loading passages from {self.dataset_name}")
|
280 |
+
dataset = load_dataset(
|
281 |
+
self.dataset_name,
|
282 |
+
with_index=False,
|
283 |
+
split=self.dataset_split,
|
284 |
+
dummy=self.use_dummy_dataset,
|
285 |
+
revision=dataset_revision,
|
286 |
+
)
|
287 |
+
super().__init__(vector_size, dataset, index_initialized=False)
|
288 |
+
|
289 |
+
def init_index(self):
|
290 |
+
if self.index_path is not None:
|
291 |
+
logger.info(f"Loading index from {self.index_path}")
|
292 |
+
self.dataset.load_faiss_index("embeddings", file=self.index_path)
|
293 |
+
else:
|
294 |
+
logger.info(f"Loading index from {self.dataset_name} with index name {self.index_name}")
|
295 |
+
self.dataset = load_dataset(
|
296 |
+
self.dataset_name,
|
297 |
+
with_embeddings=True,
|
298 |
+
with_index=True,
|
299 |
+
split=self.dataset_split,
|
300 |
+
index_name=self.index_name,
|
301 |
+
dummy=self.use_dummy_dataset,
|
302 |
+
revision=self.dataset_revision,
|
303 |
+
)
|
304 |
+
self.dataset.set_format("numpy", columns=["embeddings"], output_all_columns=True)
|
305 |
+
self._index_initialized = True
|
306 |
+
|
307 |
+
|
308 |
+
class CustomHFIndex(HFIndexBase):
|
309 |
+
"""
|
310 |
+
A wrapper around an instance of [`~datasets.Datasets`]. The dataset and the index are both loaded from the
|
311 |
+
indicated paths on disk.
|
312 |
+
|
313 |
+
Args:
|
314 |
+
vector_size (`int`): the dimension of the passages embeddings used by the index
|
315 |
+
dataset_path (`str`):
|
316 |
+
The path to the serialized dataset on disk. The dataset should have 3 columns: title (str), text (str) and
|
317 |
+
embeddings (arrays of dimension vector_size)
|
318 |
+
index_path (`str`)
|
319 |
+
The path to the serialized faiss index on disk.
|
320 |
+
"""
|
321 |
+
|
322 |
+
def __init__(self, vector_size: int, dataset, index_path=None):
|
323 |
+
super().__init__(vector_size, dataset, index_initialized=index_path is None)
|
324 |
+
self.index_path = index_path
|
325 |
+
|
326 |
+
@classmethod
|
327 |
+
def load_from_disk(cls, vector_size, dataset_path, index_path):
|
328 |
+
logger.info(f"Loading passages from {dataset_path}")
|
329 |
+
if dataset_path is None or index_path is None:
|
330 |
+
raise ValueError(
|
331 |
+
"Please provide `dataset_path` and `index_path` after calling `dataset.save_to_disk(dataset_path)` "
|
332 |
+
"and `dataset.get_index('embeddings').save(index_path)`."
|
333 |
+
)
|
334 |
+
dataset = load_from_disk(dataset_path)
|
335 |
+
return cls(vector_size=vector_size, dataset=dataset, index_path=index_path)
|
336 |
+
|
337 |
+
def init_index(self):
|
338 |
+
if not self.is_initialized():
|
339 |
+
logger.info(f"Loading index from {self.index_path}")
|
340 |
+
self.dataset.load_faiss_index("embeddings", file=self.index_path)
|
341 |
+
self._index_initialized = True
|
342 |
+
|
343 |
+
|
344 |
+
class RagRetriever:
|
345 |
+
"""
|
346 |
+
Retriever used to get documents from vector queries. It retrieves the documents embeddings as well as the documents
|
347 |
+
contents, and it formats them to be used with a RagModel.
|
348 |
+
|
349 |
+
Args:
|
350 |
+
config ([`RagConfig`]):
|
351 |
+
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which
|
352 |
+
`Index` to build. You can load your own custom dataset with `config.index_name="custom"` or use a canonical
|
353 |
+
one (default) from the datasets library with `config.index_name="wiki_dpr"` for example.
|
354 |
+
question_encoder_tokenizer ([`PreTrainedTokenizer`]):
|
355 |
+
The tokenizer that was used to tokenize the question. It is used to decode the question and then use the
|
356 |
+
generator_tokenizer.
|
357 |
+
generator_tokenizer ([`PreTrainedTokenizer`]):
|
358 |
+
The tokenizer used for the generator part of the RagModel.
|
359 |
+
index ([`~models.rag.retrieval_rag.Index`], optional, defaults to the one defined by the configuration):
|
360 |
+
If specified, use this index instead of the one built using the configuration
|
361 |
+
|
362 |
+
Examples:
|
363 |
+
|
364 |
+
```python
|
365 |
+
>>> # To load the default "wiki_dpr" dataset with 21M passages from wikipedia (index name is 'compressed' or 'exact')
|
366 |
+
>>> from transformers import RagRetriever
|
367 |
+
|
368 |
+
>>> retriever = RagRetriever.from_pretrained(
|
369 |
+
... "facebook/dpr-ctx_encoder-single-nq-base", dataset="wiki_dpr", index_name="compressed"
|
370 |
+
... )
|
371 |
+
|
372 |
+
>>> # To load your own indexed dataset built with the datasets library. More info on how to build the indexed dataset in examples/rag/use_own_knowledge_dataset.py
|
373 |
+
>>> from transformers import RagRetriever
|
374 |
+
|
375 |
+
>>> dataset = (
|
376 |
+
... ...
|
377 |
+
... ) # dataset must be a datasets.Datasets object with columns "title", "text" and "embeddings", and it must have a faiss index
|
378 |
+
>>> retriever = RagRetriever.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", indexed_dataset=dataset)
|
379 |
+
|
380 |
+
>>> # To load your own indexed dataset built with the datasets library that was saved on disk. More info in examples/rag/use_own_knowledge_dataset.py
|
381 |
+
>>> from transformers import RagRetriever
|
382 |
+
|
383 |
+
>>> dataset_path = "path/to/my/dataset" # dataset saved via *dataset.save_to_disk(...)*
|
384 |
+
>>> index_path = "path/to/my/index.faiss" # faiss index saved via *dataset.get_index("embeddings").save(...)*
|
385 |
+
>>> retriever = RagRetriever.from_pretrained(
|
386 |
+
... "facebook/dpr-ctx_encoder-single-nq-base",
|
387 |
+
... index_name="custom",
|
388 |
+
... passages_path=dataset_path,
|
389 |
+
... index_path=index_path,
|
390 |
+
... )
|
391 |
+
|
392 |
+
>>> # To load the legacy index built originally for Rag's paper
|
393 |
+
>>> from transformers import RagRetriever
|
394 |
+
|
395 |
+
>>> retriever = RagRetriever.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", index_name="legacy")
|
396 |
+
```"""
|
397 |
+
|
398 |
+
def __init__(self, config, question_encoder_tokenizer, generator_tokenizer, index=None, init_retrieval=True):
|
399 |
+
self._init_retrieval = init_retrieval
|
400 |
+
requires_backends(self, ["datasets", "faiss"])
|
401 |
+
super().__init__()
|
402 |
+
self.index = index or self._build_index(config)
|
403 |
+
self.generator_tokenizer = generator_tokenizer
|
404 |
+
self.question_encoder_tokenizer = question_encoder_tokenizer
|
405 |
+
|
406 |
+
self.n_docs = config.n_docs
|
407 |
+
self.batch_size = config.retrieval_batch_size
|
408 |
+
|
409 |
+
self.config = config
|
410 |
+
if self._init_retrieval:
|
411 |
+
self.init_retrieval()
|
412 |
+
|
413 |
+
self.ctx_encoder_tokenizer = None
|
414 |
+
self.return_tokenized_docs = False
|
415 |
+
|
416 |
+
@staticmethod
|
417 |
+
def _build_index(config):
|
418 |
+
if config.index_name == "legacy":
|
419 |
+
return LegacyIndex(
|
420 |
+
config.retrieval_vector_size,
|
421 |
+
config.index_path or LEGACY_INDEX_PATH,
|
422 |
+
)
|
423 |
+
elif config.index_name == "custom":
|
424 |
+
return CustomHFIndex.load_from_disk(
|
425 |
+
vector_size=config.retrieval_vector_size,
|
426 |
+
dataset_path=config.passages_path,
|
427 |
+
index_path=config.index_path,
|
428 |
+
)
|
429 |
+
else:
|
430 |
+
return CanonicalHFIndex(
|
431 |
+
vector_size=config.retrieval_vector_size,
|
432 |
+
dataset_name=config.dataset,
|
433 |
+
dataset_split=config.dataset_split,
|
434 |
+
index_name=config.index_name,
|
435 |
+
index_path=config.index_path,
|
436 |
+
use_dummy_dataset=config.use_dummy_dataset,
|
437 |
+
dataset_revision=config.dataset_revision,
|
438 |
+
)
|
439 |
+
|
440 |
+
@classmethod
|
441 |
+
def from_pretrained(cls, retriever_name_or_path, indexed_dataset=None, **kwargs):
|
442 |
+
requires_backends(cls, ["datasets", "faiss"])
|
443 |
+
config = kwargs.pop("config", None) or RagConfig.from_pretrained(retriever_name_or_path, **kwargs)
|
444 |
+
rag_tokenizer = RagTokenizer.from_pretrained(retriever_name_or_path, config=config)
|
445 |
+
question_encoder_tokenizer = rag_tokenizer.question_encoder
|
446 |
+
generator_tokenizer = rag_tokenizer.generator
|
447 |
+
if indexed_dataset is not None:
|
448 |
+
config.index_name = "custom"
|
449 |
+
index = CustomHFIndex(config.retrieval_vector_size, indexed_dataset)
|
450 |
+
else:
|
451 |
+
index = cls._build_index(config)
|
452 |
+
return cls(
|
453 |
+
config,
|
454 |
+
question_encoder_tokenizer=question_encoder_tokenizer,
|
455 |
+
generator_tokenizer=generator_tokenizer,
|
456 |
+
index=index,
|
457 |
+
)
|
458 |
+
|
459 |
+
def save_pretrained(self, save_directory):
|
460 |
+
if isinstance(self.index, CustomHFIndex):
|
461 |
+
if self.config.index_path is None:
|
462 |
+
index_path = os.path.join(save_directory, "hf_dataset_index.faiss")
|
463 |
+
self.index.dataset.get_index("embeddings").save(index_path)
|
464 |
+
self.config.index_path = index_path
|
465 |
+
if self.config.passages_path is None:
|
466 |
+
passages_path = os.path.join(save_directory, "hf_dataset")
|
467 |
+
# datasets don't support save_to_disk with indexes right now
|
468 |
+
faiss_index = self.index.dataset._indexes.pop("embeddings")
|
469 |
+
self.index.dataset.save_to_disk(passages_path)
|
470 |
+
self.index.dataset._indexes["embeddings"] = faiss_index
|
471 |
+
self.config.passages_path = passages_path
|
472 |
+
self.config.save_pretrained(save_directory)
|
473 |
+
rag_tokenizer = RagTokenizer(
|
474 |
+
question_encoder=self.question_encoder_tokenizer,
|
475 |
+
generator=self.generator_tokenizer,
|
476 |
+
)
|
477 |
+
rag_tokenizer.save_pretrained(save_directory)
|
478 |
+
|
479 |
+
def init_retrieval(self):
|
480 |
+
"""
|
481 |
+
Retriever initialization function. It loads the index into memory.
|
482 |
+
"""
|
483 |
+
|
484 |
+
logger.info("initializing retrieval")
|
485 |
+
self.index.init_index()
|
486 |
+
|
487 |
+
def postprocess_docs(self, docs, input_strings, prefix, n_docs, return_tensors=None):
|
488 |
+
r"""
|
489 |
+
Postprocessing retrieved `docs` and combining them with `input_strings`.
|
490 |
+
|
491 |
+
Args:
|
492 |
+
docs (`dict`):
|
493 |
+
Retrieved documents.
|
494 |
+
input_strings (`str`):
|
495 |
+
Input strings decoded by `preprocess_query`.
|
496 |
+
prefix (`str`):
|
497 |
+
Prefix added at the beginning of each input, typically used with T5-based models.
|
498 |
+
|
499 |
+
Return:
|
500 |
+
`tuple(tensors)`: a tuple consisting of two elements: contextualized `input_ids` and a compatible
|
501 |
+
`attention_mask`.
|
502 |
+
"""
|
503 |
+
|
504 |
+
def cat_input_and_doc(doc_title, doc_text, input_string, prefix):
|
505 |
+
# TODO(Patrick): if we train more RAG models, I want to put the input first to take advantage of effortless truncation
|
506 |
+
# TODO(piktus): better handling of truncation
|
507 |
+
if doc_title.startswith('"'):
|
508 |
+
doc_title = doc_title[1:]
|
509 |
+
if doc_title.endswith('"'):
|
510 |
+
doc_title = doc_title[:-1]
|
511 |
+
if prefix is None:
|
512 |
+
prefix = ""
|
513 |
+
out = (prefix + doc_title + self.config.title_sep + doc_text + self.config.doc_sep + input_string).replace(
|
514 |
+
" ", " "
|
515 |
+
)
|
516 |
+
return out
|
517 |
+
|
518 |
+
rag_input_strings = [
|
519 |
+
cat_input_and_doc(
|
520 |
+
docs[i]["title"][j],
|
521 |
+
docs[i]["text"][j],
|
522 |
+
input_strings[i],
|
523 |
+
prefix,
|
524 |
+
)
|
525 |
+
for i in range(len(docs))
|
526 |
+
for j in range(n_docs)
|
527 |
+
]
|
528 |
+
|
529 |
+
contextualized_inputs = self.generator_tokenizer.batch_encode_plus(
|
530 |
+
rag_input_strings,
|
531 |
+
max_length=self.config.max_combined_length,
|
532 |
+
return_tensors=return_tensors,
|
533 |
+
padding="max_length",
|
534 |
+
truncation=True,
|
535 |
+
)
|
536 |
+
|
537 |
+
return contextualized_inputs["input_ids"], contextualized_inputs["attention_mask"]
|
538 |
+
|
539 |
+
def _chunk_tensor(self, t: Iterable, chunk_size: int) -> List[Iterable]:
|
540 |
+
return [t[i : i + chunk_size] for i in range(0, len(t), chunk_size)]
|
541 |
+
|
542 |
+
def _main_retrieve(self, question_hidden_states: np.ndarray, n_docs: int) -> Tuple[np.ndarray, np.ndarray]:
|
543 |
+
question_hidden_states_batched = self._chunk_tensor(question_hidden_states, self.batch_size)
|
544 |
+
ids_batched = []
|
545 |
+
vectors_batched = []
|
546 |
+
for question_hidden_states in question_hidden_states_batched:
|
547 |
+
start_time = time.time()
|
548 |
+
ids, vectors = self.index.get_top_docs(question_hidden_states, n_docs)
|
549 |
+
logger.debug(
|
550 |
+
f"index search time: {time.time() - start_time} sec, batch size {question_hidden_states.shape}"
|
551 |
+
)
|
552 |
+
ids_batched.extend(ids)
|
553 |
+
vectors_batched.extend(vectors)
|
554 |
+
return (
|
555 |
+
np.array(ids_batched),
|
556 |
+
np.array(vectors_batched),
|
557 |
+
) # shapes (batch_size, n_docs) and (batch_size, n_docs, d)
|
558 |
+
|
559 |
+
def retrieve(self, question_hidden_states: np.ndarray, n_docs: int) -> Tuple[np.ndarray, List[dict]]:
|
560 |
+
"""
|
561 |
+
Retrieves documents for specified `question_hidden_states`.
|
562 |
+
|
563 |
+
Args:
|
564 |
+
question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`):
|
565 |
+
A batch of query vectors to retrieve with.
|
566 |
+
n_docs (`int`):
|
567 |
+
The number of docs retrieved per query.
|
568 |
+
|
569 |
+
Return:
|
570 |
+
`Tuple[np.ndarray, np.ndarray, List[dict]]`: A tuple with the following objects:
|
571 |
+
|
572 |
+
- **retrieved_doc_embeds** (`np.ndarray` of shape `(batch_size, n_docs, dim)`) -- The retrieval embeddings
|
573 |
+
of the retrieved docs per query.
|
574 |
+
- **doc_ids** (`np.ndarray` of shape `(batch_size, n_docs)`) -- The ids of the documents in the index
|
575 |
+
- **doc_dicts** (`List[dict]`): The `retrieved_doc_embeds` examples per query.
|
576 |
+
"""
|
577 |
+
|
578 |
+
doc_ids, retrieved_doc_embeds = self._main_retrieve(question_hidden_states, n_docs)
|
579 |
+
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(doc_ids)
|
580 |
+
|
581 |
+
def set_ctx_encoder_tokenizer(self, ctx_encoder_tokenizer: PreTrainedTokenizer):
|
582 |
+
# used in end2end retriever training
|
583 |
+
self.ctx_encoder_tokenizer = ctx_encoder_tokenizer
|
584 |
+
self.return_tokenized_docs = True
|
585 |
+
|
586 |
+
def __call__(
|
587 |
+
self,
|
588 |
+
question_input_ids: List[List[int]],
|
589 |
+
question_hidden_states: np.ndarray,
|
590 |
+
prefix=None,
|
591 |
+
n_docs=None,
|
592 |
+
return_tensors=None,
|
593 |
+
) -> BatchEncoding:
|
594 |
+
"""
|
595 |
+
Retrieves documents for specified `question_hidden_states`.
|
596 |
+
|
597 |
+
Args:
|
598 |
+
question_input_ids (`List[List[int]]`) batch of input ids
|
599 |
+
question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`:
|
600 |
+
A batch of query vectors to retrieve with.
|
601 |
+
prefix (`str`, *optional*):
|
602 |
+
The prefix used by the generator's tokenizer.
|
603 |
+
n_docs (`int`, *optional*):
|
604 |
+
The number of docs retrieved per query.
|
605 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to "pt"):
|
606 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
607 |
+
|
608 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
609 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
610 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
611 |
+
|
612 |
+
Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
613 |
+
|
614 |
+
- **context_input_ids** -- List of token ids to be fed to a model.
|
615 |
+
|
616 |
+
[What are input IDs?](../glossary#input-ids)
|
617 |
+
|
618 |
+
- **context_attention_mask** -- List of indices specifying which tokens should be attended to by the model
|
619 |
+
(when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
|
620 |
+
|
621 |
+
[What are attention masks?](../glossary#attention-mask)
|
622 |
+
|
623 |
+
- **retrieved_doc_embeds** -- List of embeddings of the retrieved documents
|
624 |
+
- **doc_ids** -- List of ids of the retrieved documents
|
625 |
+
"""
|
626 |
+
|
627 |
+
n_docs = n_docs if n_docs is not None else self.n_docs
|
628 |
+
prefix = prefix if prefix is not None else self.config.generator.prefix
|
629 |
+
retrieved_doc_embeds, doc_ids, docs = self.retrieve(question_hidden_states, n_docs)
|
630 |
+
|
631 |
+
input_strings = self.question_encoder_tokenizer.batch_decode(question_input_ids, skip_special_tokens=True)
|
632 |
+
context_input_ids, context_attention_mask = self.postprocess_docs(
|
633 |
+
docs, input_strings, prefix, n_docs, return_tensors=return_tensors
|
634 |
+
)
|
635 |
+
|
636 |
+
if self.return_tokenized_docs:
|
637 |
+
retrieved_doc_text = []
|
638 |
+
retrieved_doc_title = []
|
639 |
+
|
640 |
+
for b_idx in range(len(docs)):
|
641 |
+
for doc_idx in range(n_docs):
|
642 |
+
retrieved_doc_text.append(docs[b_idx]["text"][doc_idx])
|
643 |
+
retrieved_doc_title.append(docs[b_idx]["title"][doc_idx])
|
644 |
+
|
645 |
+
tokenized_docs = self.ctx_encoder_tokenizer(
|
646 |
+
retrieved_doc_title,
|
647 |
+
retrieved_doc_text,
|
648 |
+
truncation=True,
|
649 |
+
padding="longest",
|
650 |
+
return_tensors=return_tensors,
|
651 |
+
)
|
652 |
+
|
653 |
+
return BatchEncoding(
|
654 |
+
{
|
655 |
+
"context_input_ids": context_input_ids,
|
656 |
+
"context_attention_mask": context_attention_mask,
|
657 |
+
"retrieved_doc_embeds": retrieved_doc_embeds,
|
658 |
+
"doc_ids": doc_ids,
|
659 |
+
"tokenized_doc_ids": tokenized_docs["input_ids"],
|
660 |
+
"tokenized_doc_attention_mask": tokenized_docs["attention_mask"],
|
661 |
+
},
|
662 |
+
tensor_type=return_tensors,
|
663 |
+
)
|
664 |
+
|
665 |
+
else:
|
666 |
+
return BatchEncoding(
|
667 |
+
{
|
668 |
+
"context_input_ids": context_input_ids,
|
669 |
+
"context_attention_mask": context_attention_mask,
|
670 |
+
"retrieved_doc_embeds": retrieved_doc_embeds,
|
671 |
+
"doc_ids": doc_ids,
|
672 |
+
},
|
673 |
+
tensor_type=return_tensors,
|
674 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/rag/tokenization_rag.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for RAG."""
|
16 |
+
import os
|
17 |
+
import warnings
|
18 |
+
from typing import List, Optional
|
19 |
+
|
20 |
+
from ...tokenization_utils_base import BatchEncoding
|
21 |
+
from ...utils import logging
|
22 |
+
from .configuration_rag import RagConfig
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
class RagTokenizer:
|
29 |
+
def __init__(self, question_encoder, generator):
|
30 |
+
self.question_encoder = question_encoder
|
31 |
+
self.generator = generator
|
32 |
+
self.current_tokenizer = self.question_encoder
|
33 |
+
|
34 |
+
def save_pretrained(self, save_directory):
|
35 |
+
if os.path.isfile(save_directory):
|
36 |
+
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
|
37 |
+
os.makedirs(save_directory, exist_ok=True)
|
38 |
+
question_encoder_path = os.path.join(save_directory, "question_encoder_tokenizer")
|
39 |
+
generator_path = os.path.join(save_directory, "generator_tokenizer")
|
40 |
+
self.question_encoder.save_pretrained(question_encoder_path)
|
41 |
+
self.generator.save_pretrained(generator_path)
|
42 |
+
|
43 |
+
@classmethod
|
44 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
45 |
+
# dynamically import AutoTokenizer
|
46 |
+
from ..auto.tokenization_auto import AutoTokenizer
|
47 |
+
|
48 |
+
config = kwargs.pop("config", None)
|
49 |
+
|
50 |
+
if config is None:
|
51 |
+
config = RagConfig.from_pretrained(pretrained_model_name_or_path)
|
52 |
+
|
53 |
+
question_encoder = AutoTokenizer.from_pretrained(
|
54 |
+
pretrained_model_name_or_path, config=config.question_encoder, subfolder="question_encoder_tokenizer"
|
55 |
+
)
|
56 |
+
generator = AutoTokenizer.from_pretrained(
|
57 |
+
pretrained_model_name_or_path, config=config.generator, subfolder="generator_tokenizer"
|
58 |
+
)
|
59 |
+
return cls(question_encoder=question_encoder, generator=generator)
|
60 |
+
|
61 |
+
def __call__(self, *args, **kwargs):
|
62 |
+
return self.current_tokenizer(*args, **kwargs)
|
63 |
+
|
64 |
+
def batch_decode(self, *args, **kwargs):
|
65 |
+
return self.generator.batch_decode(*args, **kwargs)
|
66 |
+
|
67 |
+
def decode(self, *args, **kwargs):
|
68 |
+
return self.generator.decode(*args, **kwargs)
|
69 |
+
|
70 |
+
def _switch_to_input_mode(self):
|
71 |
+
self.current_tokenizer = self.question_encoder
|
72 |
+
|
73 |
+
def _switch_to_target_mode(self):
|
74 |
+
self.current_tokenizer = self.generator
|
75 |
+
|
76 |
+
def prepare_seq2seq_batch(
|
77 |
+
self,
|
78 |
+
src_texts: List[str],
|
79 |
+
tgt_texts: Optional[List[str]] = None,
|
80 |
+
max_length: Optional[int] = None,
|
81 |
+
max_target_length: Optional[int] = None,
|
82 |
+
padding: str = "longest",
|
83 |
+
return_tensors: str = None,
|
84 |
+
truncation: bool = True,
|
85 |
+
**kwargs,
|
86 |
+
) -> BatchEncoding:
|
87 |
+
warnings.warn(
|
88 |
+
"`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the "
|
89 |
+
"regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` "
|
90 |
+
"context manager to prepare your targets. See the documentation of your specific tokenizer for more "
|
91 |
+
"details",
|
92 |
+
FutureWarning,
|
93 |
+
)
|
94 |
+
if max_length is None:
|
95 |
+
max_length = self.current_tokenizer.model_max_length
|
96 |
+
model_inputs = self(
|
97 |
+
src_texts,
|
98 |
+
add_special_tokens=True,
|
99 |
+
return_tensors=return_tensors,
|
100 |
+
max_length=max_length,
|
101 |
+
padding=padding,
|
102 |
+
truncation=truncation,
|
103 |
+
**kwargs,
|
104 |
+
)
|
105 |
+
if tgt_texts is None:
|
106 |
+
return model_inputs
|
107 |
+
# Process tgt_texts
|
108 |
+
if max_target_length is None:
|
109 |
+
max_target_length = self.current_tokenizer.model_max_length
|
110 |
+
labels = self(
|
111 |
+
text_target=tgt_texts,
|
112 |
+
add_special_tokens=True,
|
113 |
+
return_tensors=return_tensors,
|
114 |
+
padding=padding,
|
115 |
+
max_length=max_target_length,
|
116 |
+
truncation=truncation,
|
117 |
+
**kwargs,
|
118 |
+
)
|
119 |
+
model_inputs["labels"] = labels["input_ids"]
|
120 |
+
return model_inputs
|
env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__init__.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_sentencepiece_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]}
|
27 |
+
|
28 |
+
try:
|
29 |
+
if not is_sentencepiece_available():
|
30 |
+
raise OptionalDependencyNotAvailable()
|
31 |
+
except OptionalDependencyNotAvailable:
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
_import_structure["tokenization_reformer"] = ["ReformerTokenizer"]
|
35 |
+
|
36 |
+
try:
|
37 |
+
if not is_tokenizers_available():
|
38 |
+
raise OptionalDependencyNotAvailable()
|
39 |
+
except OptionalDependencyNotAvailable:
|
40 |
+
pass
|
41 |
+
else:
|
42 |
+
_import_structure["tokenization_reformer_fast"] = ["ReformerTokenizerFast"]
|
43 |
+
|
44 |
+
try:
|
45 |
+
if not is_torch_available():
|
46 |
+
raise OptionalDependencyNotAvailable()
|
47 |
+
except OptionalDependencyNotAvailable:
|
48 |
+
pass
|
49 |
+
else:
|
50 |
+
_import_structure["modeling_reformer"] = [
|
51 |
+
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
52 |
+
"ReformerAttention",
|
53 |
+
"ReformerForMaskedLM",
|
54 |
+
"ReformerForQuestionAnswering",
|
55 |
+
"ReformerForSequenceClassification",
|
56 |
+
"ReformerLayer",
|
57 |
+
"ReformerModel",
|
58 |
+
"ReformerModelWithLMHead",
|
59 |
+
"ReformerPreTrainedModel",
|
60 |
+
]
|
61 |
+
|
62 |
+
|
63 |
+
if TYPE_CHECKING:
|
64 |
+
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
|
65 |
+
|
66 |
+
try:
|
67 |
+
if not is_sentencepiece_available():
|
68 |
+
raise OptionalDependencyNotAvailable()
|
69 |
+
except OptionalDependencyNotAvailable:
|
70 |
+
pass
|
71 |
+
else:
|
72 |
+
from .tokenization_reformer import ReformerTokenizer
|
73 |
+
|
74 |
+
try:
|
75 |
+
if not is_tokenizers_available():
|
76 |
+
raise OptionalDependencyNotAvailable()
|
77 |
+
except OptionalDependencyNotAvailable:
|
78 |
+
pass
|
79 |
+
else:
|
80 |
+
from .tokenization_reformer_fast import ReformerTokenizerFast
|
81 |
+
|
82 |
+
try:
|
83 |
+
if not is_torch_available():
|
84 |
+
raise OptionalDependencyNotAvailable()
|
85 |
+
except OptionalDependencyNotAvailable:
|
86 |
+
pass
|
87 |
+
else:
|
88 |
+
from .modeling_reformer import (
|
89 |
+
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
90 |
+
ReformerAttention,
|
91 |
+
ReformerForMaskedLM,
|
92 |
+
ReformerForQuestionAnswering,
|
93 |
+
ReformerForSequenceClassification,
|
94 |
+
ReformerLayer,
|
95 |
+
ReformerModel,
|
96 |
+
ReformerModelWithLMHead,
|
97 |
+
ReformerPreTrainedModel,
|
98 |
+
)
|
99 |
+
|
100 |
+
else:
|
101 |
+
import sys
|
102 |
+
|
103 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.54 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/configuration_reformer.cpython-310.pyc
ADDED
Binary file (11.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/convert_reformer_trax_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (4.94 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/modeling_reformer.cpython-310.pyc
ADDED
Binary file (67 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/tokenization_reformer.cpython-310.pyc
ADDED
Binary file (6.75 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/tokenization_reformer_fast.cpython-310.pyc
ADDED
Binary file (4.13 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/configuration_reformer.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The Trax Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" Reformer model configuration"""
|
17 |
+
|
18 |
+
from ...configuration_utils import PretrainedConfig
|
19 |
+
from ...utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
25 |
+
"google/reformer-crime-and-punishment": (
|
26 |
+
"https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/config.json"
|
27 |
+
),
|
28 |
+
"google/reformer-enwik8": "https://huggingface.co/google/reformer-enwik8/resolve/main/config.json",
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
class ReformerConfig(PretrainedConfig):
|
33 |
+
r"""
|
34 |
+
This is the configuration class to store the configuration of a [`ReformerModel`]. It is used to instantiate a
|
35 |
+
Reformer model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
36 |
+
with the defaults will yield a similar configuration to that of the ReFormer
|
37 |
+
[google/reformer-crime-and-punishment](https://huggingface.co/google/reformer-crime-and-punishment) architecture.
|
38 |
+
|
39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
40 |
+
documentation from [`PretrainedConfig`] for more information.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
attention_head_size (`int`, *optional*, defaults to 64):
|
44 |
+
Dimensionality of the projected key, query and value vectors
|
45 |
+
attn_layers (`List[str]`, *optional*, defaults to `["local", "lsh", "local", "lsh", "local", "lsh"]`):
|
46 |
+
List of attention layer types in ascending order. It can be chosen between a LSHSelfAttention layer
|
47 |
+
(`"lsh"`) and a LocalSelfAttention layer (`"local"`).
|
48 |
+
|
49 |
+
For more information on LSHSelfAttention layer, see [LSH Self Attention](reformer#lsh-self-attention). For
|
50 |
+
more information on LocalSelfAttention layer, see [Local Self Attention](reformer#local-self-attention).
|
51 |
+
axial_pos_embds (`bool`, *optional*, defaults to `True`):
|
52 |
+
Whether or not to use axial position embeddings. For more information on how axial position embeddings
|
53 |
+
work, see [Axial Position Encodings](reformer#axial-positional-encodings).
|
54 |
+
axial_norm_std (`float`, *optional*, defaults to 1.0):
|
55 |
+
The standard deviation of the normal_initializer for initializing the weight matrices of the axial
|
56 |
+
positional encodings.
|
57 |
+
axial_pos_shape (`List[int]`, *optional*, defaults to `[64, 64]`):
|
58 |
+
The position dims of the axial position encodings. During training, the product of the position dims has to
|
59 |
+
be equal to the sequence length.
|
60 |
+
|
61 |
+
For more information on how axial position embeddings work, see [Axial Position
|
62 |
+
Encodings](reformer#axial-positional-encodings).
|
63 |
+
axial_pos_embds_dim (`List[int]`, *optional*, defaults to `[64, 192]`):
|
64 |
+
The embedding dims of the axial position encodings. The sum of the embedding dims has to be equal to the
|
65 |
+
hidden size.
|
66 |
+
|
67 |
+
For more information on how axial position embeddings work, see [Axial Position
|
68 |
+
Encodings](reformer#axial-positional-encodings).
|
69 |
+
chunk_size_lm_head (`int`, *optional*, defaults to 0):
|
70 |
+
The chunk size of the final language model feed forward head layer. A chunk size of 0 means that the feed
|
71 |
+
forward layer is not chunked. A chunk size of n means that the feed forward layer processes n <
|
72 |
+
sequence_length embeddings at a time.
|
73 |
+
|
74 |
+
For more information on feed forward chunking, see [How does Feed Forward Chunking
|
75 |
+
work?](../glossary#feed-forward-chunking).
|
76 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
77 |
+
The token id for the end-of-sentence token.
|
78 |
+
feed_forward_size (`int`, *optional*, defaults to 512):
|
79 |
+
Dimensionality of the feed_forward layer in the residual attention block.
|
80 |
+
hash_seed (`int`, *optional*):
|
81 |
+
Seed that can be used to make local sensitive hashing in `LSHSelfAttention` deterministic. This should only
|
82 |
+
be set for testing purposed. For evaluation and training purposes `hash_seed` should be left as `None` to
|
83 |
+
ensure fully random rotations in local sensitive hashing scheme.
|
84 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"relu"`):
|
85 |
+
The non-linear activation function (function or string) in the feed forward layer in the residual attention
|
86 |
+
block. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported.
|
87 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.05):
|
88 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
89 |
+
hidden_size (`int`, *optional*, defaults to 256):
|
90 |
+
Dimensionality of the output hidden states of the residual attention blocks.
|
91 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
92 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
93 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
94 |
+
Whether or not to use a causal mask in addition to the `attention_mask` passed to [`ReformerModel`]. When
|
95 |
+
using the Reformer for causal language modeling, this argument should be set to `True`.
|
96 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
97 |
+
The epsilon used by the layer normalization layers.
|
98 |
+
local_chunk_length (`int`, *optional*, defaults to 64):
|
99 |
+
Length of chunk which attends to itself in `LocalSelfAttention`. Chunking reduces memory complexity from
|
100 |
+
sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk
|
101 |
+
length (chunked self attention).
|
102 |
+
local_num_chunks_before (`int`, *optional*, defaults to 1):
|
103 |
+
Number of previous neighbouring chunks to attend to in `LocalSelfAttention` layer to itself.
|
104 |
+
local_num_chunks_after (`int`, *optional*, defaults to 0):
|
105 |
+
Number of following neighbouring chunks to attend to in `LocalSelfAttention` layer in addition to itself.
|
106 |
+
local_attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
107 |
+
The dropout ratio for the attention probabilities in `LocalSelfAttention`.
|
108 |
+
lsh_attn_chunk_length (`int`, *optional*, defaults to 64):
|
109 |
+
Length of chunk which attends to itself in `LSHSelfAttention`. Chunking reduces memory complexity from
|
110 |
+
sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk
|
111 |
+
length (chunked self attention).
|
112 |
+
lsh_num_chunks_before (`int`, *optional*, defaults to 1):
|
113 |
+
Number of previous neighbouring chunks to attend to in `LSHSelfAttention` layer to itself.
|
114 |
+
lsh_num_chunks_after (`int`, *optional*, defaults to 0):
|
115 |
+
Number of following neighbouring chunks to attend to in `LSHSelfAttention` layer to itself.
|
116 |
+
lsh_attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
117 |
+
The dropout ratio for the attention probabilities in `LSHSelfAttention`.
|
118 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
119 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
120 |
+
just in case (e.g., 512 or 1024 or 2048).
|
121 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
122 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
123 |
+
num_buckets (`int` or `List[int]`, *optional*):
|
124 |
+
Number of buckets, the key query vectors can be "hashed into" using the locality sensitive hashing scheme.
|
125 |
+
Each query key vector is hashed into a hash in `1, ..., num_buckets`. The number of buckets can also be
|
126 |
+
factorized into a list for improved memory complexity. In this case, each query key vector is hashed into a
|
127 |
+
hash in `1-1, 1-2, ..., num_buckets[0]-1, ..., num_buckets[0]-num_buckets[1]` if `num_buckets` is
|
128 |
+
factorized into two factors. The number of buckets (or the product the factors) should approximately equal
|
129 |
+
sequence length / lsh_chunk_length. If `num_buckets` not set, a good value is calculated on the fly.
|
130 |
+
num_hashes (`int`, *optional*, defaults to 1):
|
131 |
+
Number of hashing rounds (e.g., number of random rotations) in Local Sensitive Hashing scheme. The higher
|
132 |
+
`num_hashes`, the more accurate the `LSHSelfAttention` becomes, but also the more memory and time intensive
|
133 |
+
the hashing becomes.
|
134 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
135 |
+
The token id for the padding token.
|
136 |
+
vocab_size (`int`, *optional*, defaults to 320):\
|
137 |
+
Vocabulary size of the Reformer model. Defines the number of different tokens that can be represented by
|
138 |
+
the `inputs_ids` passed when calling [`ReformerModel`].
|
139 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
140 |
+
Whether to tie input and output embeddings.
|
141 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
142 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
143 |
+
classifier_dropout (`float`, *optional*):
|
144 |
+
The dropout ratio for the classification head.
|
145 |
+
|
146 |
+
Examples:
|
147 |
+
|
148 |
+
```python
|
149 |
+
>>> from transformers import ReformerConfig, ReformerModel
|
150 |
+
|
151 |
+
>>> # Initializing a Reformer configuration
|
152 |
+
>>> configuration = ReformerConfig()
|
153 |
+
|
154 |
+
>>> # Initializing a Reformer model (with random weights)
|
155 |
+
>>> model = ReformerModel(configuration)
|
156 |
+
|
157 |
+
>>> # Accessing the model configuration
|
158 |
+
>>> configuration = model.config
|
159 |
+
```
|
160 |
+
"""
|
161 |
+
|
162 |
+
model_type = "reformer"
|
163 |
+
keys_to_ignore_at_inference = ["past_buckets_states"]
|
164 |
+
attribute_map = {}
|
165 |
+
|
166 |
+
def __init__(
|
167 |
+
self,
|
168 |
+
attention_head_size=64,
|
169 |
+
attn_layers=["local", "lsh", "local", "lsh", "local", "lsh"],
|
170 |
+
axial_norm_std=1.0,
|
171 |
+
axial_pos_embds=True,
|
172 |
+
axial_pos_shape=[64, 64],
|
173 |
+
axial_pos_embds_dim=[64, 192],
|
174 |
+
chunk_size_lm_head=0,
|
175 |
+
eos_token_id=2,
|
176 |
+
feed_forward_size=512,
|
177 |
+
hash_seed=None,
|
178 |
+
hidden_act="relu",
|
179 |
+
hidden_dropout_prob=0.05,
|
180 |
+
hidden_size=256,
|
181 |
+
initializer_range=0.02,
|
182 |
+
is_decoder=False,
|
183 |
+
layer_norm_eps=1e-12,
|
184 |
+
local_num_chunks_before=1,
|
185 |
+
local_num_chunks_after=0,
|
186 |
+
local_attention_probs_dropout_prob=0.05,
|
187 |
+
local_attn_chunk_length=64,
|
188 |
+
lsh_attn_chunk_length=64,
|
189 |
+
lsh_attention_probs_dropout_prob=0.0,
|
190 |
+
lsh_num_chunks_before=1,
|
191 |
+
lsh_num_chunks_after=0,
|
192 |
+
max_position_embeddings=4096,
|
193 |
+
num_attention_heads=12,
|
194 |
+
num_buckets=None,
|
195 |
+
num_hashes=1,
|
196 |
+
pad_token_id=0,
|
197 |
+
vocab_size=320,
|
198 |
+
tie_word_embeddings=False,
|
199 |
+
use_cache=True,
|
200 |
+
classifier_dropout=None,
|
201 |
+
**kwargs,
|
202 |
+
):
|
203 |
+
self.hash_seed = hash_seed
|
204 |
+
self.vocab_size = vocab_size
|
205 |
+
self.attention_head_size = attention_head_size
|
206 |
+
self.hidden_size = hidden_size
|
207 |
+
self.num_attention_heads = num_attention_heads
|
208 |
+
self.num_hashes = num_hashes
|
209 |
+
self.num_hidden_layers = len(attn_layers)
|
210 |
+
self.num_buckets = tuple(num_buckets) if isinstance(num_buckets, list) else num_buckets
|
211 |
+
self.lsh_attn_chunk_length = lsh_attn_chunk_length
|
212 |
+
self.local_attn_chunk_length = local_attn_chunk_length
|
213 |
+
self.lsh_num_chunks_after = lsh_num_chunks_after
|
214 |
+
self.lsh_num_chunks_before = lsh_num_chunks_before
|
215 |
+
self.local_num_chunks_after = local_num_chunks_after
|
216 |
+
self.local_num_chunks_before = local_num_chunks_before
|
217 |
+
self.hidden_act = hidden_act
|
218 |
+
self.feed_forward_size = feed_forward_size
|
219 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
220 |
+
self.lsh_attention_probs_dropout_prob = lsh_attention_probs_dropout_prob
|
221 |
+
self.local_attention_probs_dropout_prob = local_attention_probs_dropout_prob
|
222 |
+
self.max_position_embeddings = max_position_embeddings
|
223 |
+
self.initializer_range = initializer_range
|
224 |
+
self.layer_norm_eps = layer_norm_eps
|
225 |
+
self.axial_pos_embds = axial_pos_embds
|
226 |
+
self.axial_pos_shape = tuple(axial_pos_shape)
|
227 |
+
self.axial_pos_embds_dim = tuple(axial_pos_embds_dim)
|
228 |
+
self.axial_norm_std = axial_norm_std
|
229 |
+
self.chunk_size_lm_head = chunk_size_lm_head
|
230 |
+
self.attn_layers = attn_layers
|
231 |
+
self.use_cache = use_cache
|
232 |
+
self.classifier_dropout = classifier_dropout
|
233 |
+
super().__init__(
|
234 |
+
pad_token_id=pad_token_id,
|
235 |
+
eos_token_id=eos_token_id,
|
236 |
+
is_decoder=is_decoder,
|
237 |
+
tie_word_embeddings=tie_word_embeddings,
|
238 |
+
**kwargs,
|
239 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert Reformer checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import pickle
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from transformers import ReformerConfig, ReformerModelWithLMHead
|
26 |
+
from transformers.utils import logging
|
27 |
+
|
28 |
+
|
29 |
+
logging.set_verbosity_info()
|
30 |
+
|
31 |
+
|
32 |
+
def set_param(torch_layer, weight, bias=None):
|
33 |
+
# set parameter of one layer
|
34 |
+
assert torch_layer.weight.shape == weight.shape, f"{torch_layer} layer.weight does not match"
|
35 |
+
torch_layer.weight = nn.Parameter(weight)
|
36 |
+
if bias is not None:
|
37 |
+
assert torch_layer.bias.shape == bias.shape, f"{torch_layer} layer.bias does not match"
|
38 |
+
torch_layer.bias = nn.Parameter(bias)
|
39 |
+
|
40 |
+
|
41 |
+
def set_layer_weights_in_torch_lsh(weights, torch_layer, hidden_size):
|
42 |
+
# set torch weights for 1-to-1 comparison
|
43 |
+
np_query_key = np.asarray(weights[0])
|
44 |
+
np_value = np.asarray(weights[1])
|
45 |
+
np_dense = np.asarray(weights[2])
|
46 |
+
|
47 |
+
set_param(
|
48 |
+
torch_layer.self_attention.query_key,
|
49 |
+
torch.tensor(np_query_key).transpose(1, 2).contiguous().view(-1, hidden_size),
|
50 |
+
)
|
51 |
+
set_param(
|
52 |
+
torch_layer.self_attention.value,
|
53 |
+
torch.tensor(np_value).transpose(1, 2).contiguous().view(-1, hidden_size),
|
54 |
+
)
|
55 |
+
set_param(
|
56 |
+
torch_layer.output.dense,
|
57 |
+
torch.tensor(np_dense).view(-1, hidden_size).contiguous().transpose(0, 1),
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
def set_layer_weights_in_torch_local(weights, torch_layer, hidden_size):
|
62 |
+
# set torch weights for 1-to-1 comparison
|
63 |
+
np_query = np.asarray(weights[0])
|
64 |
+
np_key = np.asarray(weights[1])
|
65 |
+
np_value = np.asarray(weights[2])
|
66 |
+
np_dense = np.asarray(weights[3])
|
67 |
+
|
68 |
+
set_param(
|
69 |
+
torch_layer.self_attention.query,
|
70 |
+
torch.tensor(np_query).transpose(1, 2).contiguous().view(-1, hidden_size),
|
71 |
+
)
|
72 |
+
set_param(
|
73 |
+
torch_layer.self_attention.key,
|
74 |
+
torch.tensor(np_key).transpose(1, 2).contiguous().view(-1, hidden_size),
|
75 |
+
)
|
76 |
+
set_param(
|
77 |
+
torch_layer.self_attention.value,
|
78 |
+
torch.tensor(np_value).transpose(1, 2).contiguous().view(-1, hidden_size),
|
79 |
+
)
|
80 |
+
set_param(
|
81 |
+
torch_layer.output.dense,
|
82 |
+
torch.tensor(np_dense).view(-1, hidden_size).contiguous().transpose(0, 1),
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
def set_block_weights_in_torch(weights, torch_block, hidden_size):
|
87 |
+
# layernorm 1
|
88 |
+
layer_norm_1 = weights[0][0][0]
|
89 |
+
layer_norm_1_weight = np.asarray(layer_norm_1[0])
|
90 |
+
layer_norm_1_bias = np.asarray(layer_norm_1[1])
|
91 |
+
set_param(
|
92 |
+
torch_block.attention.layer_norm,
|
93 |
+
torch.tensor(layer_norm_1_weight),
|
94 |
+
torch.tensor(layer_norm_1_bias),
|
95 |
+
)
|
96 |
+
|
97 |
+
# lsh weights + output
|
98 |
+
attn_weights = weights[0][1]
|
99 |
+
if len(attn_weights) < 4:
|
100 |
+
set_layer_weights_in_torch_lsh(attn_weights, torch_block.attention, hidden_size)
|
101 |
+
else:
|
102 |
+
set_layer_weights_in_torch_local(attn_weights, torch_block.attention, hidden_size)
|
103 |
+
|
104 |
+
# intermediate weighs
|
105 |
+
intermediate_weights = weights[2][0][1][2]
|
106 |
+
|
107 |
+
# Chunked Feed Forward
|
108 |
+
if len(intermediate_weights) == 4:
|
109 |
+
intermediate_weights = intermediate_weights[2]
|
110 |
+
|
111 |
+
# layernorm 2
|
112 |
+
layer_norm_2_weight = np.asarray(intermediate_weights[0][0])
|
113 |
+
layer_norm_2_bias = np.asarray(intermediate_weights[0][1])
|
114 |
+
set_param(
|
115 |
+
torch_block.feed_forward.layer_norm,
|
116 |
+
torch.tensor(layer_norm_2_weight),
|
117 |
+
torch.tensor(layer_norm_2_bias),
|
118 |
+
)
|
119 |
+
|
120 |
+
# intermediate dense
|
121 |
+
inter_dense_weight = np.asarray(intermediate_weights[1][0])
|
122 |
+
inter_dense_bias = np.asarray(intermediate_weights[1][1])
|
123 |
+
set_param(
|
124 |
+
torch_block.feed_forward.dense.dense,
|
125 |
+
torch.tensor(inter_dense_weight).transpose(0, 1).contiguous(),
|
126 |
+
torch.tensor(inter_dense_bias),
|
127 |
+
)
|
128 |
+
|
129 |
+
# intermediate out
|
130 |
+
out_dense_weight = np.asarray(intermediate_weights[4][0])
|
131 |
+
out_dense_bias = np.asarray(intermediate_weights[4][1])
|
132 |
+
set_param(
|
133 |
+
torch_block.feed_forward.output.dense,
|
134 |
+
torch.tensor(out_dense_weight).transpose(0, 1).contiguous(),
|
135 |
+
torch.tensor(out_dense_bias),
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
def set_model_weights_in_torch(weights, torch_model, hidden_size):
|
140 |
+
# reformer model
|
141 |
+
torch_model_reformer = torch_model.reformer
|
142 |
+
|
143 |
+
# word embeds
|
144 |
+
word_embeddings = np.asarray(weights[1])
|
145 |
+
set_param(
|
146 |
+
torch_model_reformer.embeddings.word_embeddings,
|
147 |
+
torch.tensor(word_embeddings),
|
148 |
+
)
|
149 |
+
|
150 |
+
if isinstance(weights[3], tuple):
|
151 |
+
position_embeddings = torch_model_reformer.embeddings.position_embeddings
|
152 |
+
for emb_idx in range(len(position_embeddings.weights)):
|
153 |
+
emb_weights = np.asarray(weights[3][emb_idx][0])
|
154 |
+
assert (
|
155 |
+
position_embeddings.weights[emb_idx].shape == emb_weights.shape
|
156 |
+
), f"{position_embeddings[emb_idx]} emb does not match"
|
157 |
+
position_embeddings.weights[emb_idx] = nn.Parameter(torch.tensor(emb_weights))
|
158 |
+
|
159 |
+
trax_layer_weights = weights[5]
|
160 |
+
assert len(torch_model_reformer.encoder.layers) * 4 == len(
|
161 |
+
trax_layer_weights
|
162 |
+
), "HF and trax model do not have the same number of layers"
|
163 |
+
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers):
|
164 |
+
block_weights = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
|
165 |
+
set_block_weights_in_torch(block_weights, layer, hidden_size)
|
166 |
+
|
167 |
+
# output layer norm
|
168 |
+
layer_norm_out_weight = np.asarray(weights[7][0])
|
169 |
+
layer_norm_out_bias = np.asarray(weights[7][1])
|
170 |
+
set_param(
|
171 |
+
torch_model_reformer.encoder.layer_norm,
|
172 |
+
torch.tensor(layer_norm_out_weight),
|
173 |
+
torch.tensor(layer_norm_out_bias),
|
174 |
+
)
|
175 |
+
|
176 |
+
# output embeddings
|
177 |
+
output_embed_weights = np.asarray(weights[9][0])
|
178 |
+
output_embed_bias = np.asarray(weights[9][1])
|
179 |
+
set_param(
|
180 |
+
torch_model.lm_head.decoder,
|
181 |
+
torch.tensor(output_embed_weights).transpose(0, 1).contiguous(),
|
182 |
+
torch.tensor(output_embed_bias),
|
183 |
+
)
|
184 |
+
|
185 |
+
|
186 |
+
def convert_trax_checkpoint_to_pytorch(trax_model_pkl_path, config_file, pytorch_dump_path):
|
187 |
+
# Initialise PyTorch model
|
188 |
+
config = ReformerConfig.from_json_file(config_file)
|
189 |
+
print(f"Building PyTorch model from configuration: {config}")
|
190 |
+
model = ReformerModelWithLMHead(config)
|
191 |
+
|
192 |
+
with open(trax_model_pkl_path, "rb") as f:
|
193 |
+
model_weights = pickle.load(f)["weights"]
|
194 |
+
|
195 |
+
set_model_weights_in_torch(model_weights, model, config.hidden_size)
|
196 |
+
|
197 |
+
# Save pytorch-model
|
198 |
+
print(f"Save PyTorch model to {pytorch_dump_path}")
|
199 |
+
torch.save(model.state_dict(), pytorch_dump_path)
|
200 |
+
|
201 |
+
|
202 |
+
if __name__ == "__main__":
|
203 |
+
parser = argparse.ArgumentParser()
|
204 |
+
# Required parameters
|
205 |
+
parser.add_argument(
|
206 |
+
"--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
207 |
+
)
|
208 |
+
parser.add_argument(
|
209 |
+
"--config_file",
|
210 |
+
default=None,
|
211 |
+
type=str,
|
212 |
+
required=True,
|
213 |
+
help=(
|
214 |
+
"The config json file corresponding to the pre-trained Reformer model. \n"
|
215 |
+
"This specifies the model architecture."
|
216 |
+
),
|
217 |
+
)
|
218 |
+
parser.add_argument(
|
219 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
220 |
+
)
|
221 |
+
args = parser.parse_args()
|
222 |
+
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
|
env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/modeling_reformer.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/tokenization_reformer.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The Trax Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization class for model Reformer."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple
|
21 |
+
|
22 |
+
import sentencepiece as spm
|
23 |
+
|
24 |
+
from ...tokenization_utils import PreTrainedTokenizer
|
25 |
+
from ...utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
SPIECE_UNDERLINE = "▁"
|
32 |
+
|
33 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
34 |
+
|
35 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
36 |
+
"vocab_file": {
|
37 |
+
"google/reformer-crime-and-punishment": (
|
38 |
+
"https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"
|
39 |
+
)
|
40 |
+
}
|
41 |
+
}
|
42 |
+
|
43 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
44 |
+
"google/reformer-crime-and-punishment": 524288,
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
class ReformerTokenizer(PreTrainedTokenizer):
|
49 |
+
"""
|
50 |
+
Construct a Reformer tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece) .
|
51 |
+
|
52 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
53 |
+
this superclass for more information regarding those methods.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
vocab_file (`str`):
|
57 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
58 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
59 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
60 |
+
The end of sequence token.
|
61 |
+
|
62 |
+
<Tip>
|
63 |
+
|
64 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
65 |
+
The token used is the `sep_token`.
|
66 |
+
|
67 |
+
</Tip>
|
68 |
+
|
69 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
70 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
71 |
+
token instead.
|
72 |
+
additional_special_tokens (`List[str]`, *optional*, defaults to `[]`):
|
73 |
+
Additional special tokens used by the tokenizer.
|
74 |
+
sp_model_kwargs (`dict`, *optional*):
|
75 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
76 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
77 |
+
to set:
|
78 |
+
|
79 |
+
- `enable_sampling`: Enable subword regularization.
|
80 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
81 |
+
|
82 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
83 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
84 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
85 |
+
using forward-filtering-and-backward-sampling algorithm.
|
86 |
+
|
87 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
88 |
+
BPE-dropout.
|
89 |
+
"""
|
90 |
+
|
91 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
92 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
93 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
94 |
+
model_input_names = ["input_ids", "attention_mask"]
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
vocab_file,
|
99 |
+
eos_token="</s>",
|
100 |
+
unk_token="<unk>",
|
101 |
+
additional_special_tokens=[],
|
102 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
103 |
+
**kwargs,
|
104 |
+
) -> None:
|
105 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
106 |
+
|
107 |
+
self.vocab_file = vocab_file
|
108 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
109 |
+
self.sp_model.Load(vocab_file)
|
110 |
+
|
111 |
+
super().__init__(
|
112 |
+
eos_token=eos_token,
|
113 |
+
unk_token=unk_token,
|
114 |
+
additional_special_tokens=additional_special_tokens,
|
115 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
116 |
+
**kwargs,
|
117 |
+
)
|
118 |
+
|
119 |
+
@property
|
120 |
+
def vocab_size(self):
|
121 |
+
return self.sp_model.get_piece_size()
|
122 |
+
|
123 |
+
def get_vocab(self) -> Dict[str, int]:
|
124 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
125 |
+
vocab.update(self.added_tokens_encoder)
|
126 |
+
return vocab
|
127 |
+
|
128 |
+
def __getstate__(self):
|
129 |
+
state = self.__dict__.copy()
|
130 |
+
state["sp_model"] = None
|
131 |
+
return state
|
132 |
+
|
133 |
+
def __setstate__(self, d):
|
134 |
+
self.__dict__ = d
|
135 |
+
|
136 |
+
# for backward compatibility
|
137 |
+
if not hasattr(self, "sp_model_kwargs"):
|
138 |
+
self.sp_model_kwargs = {}
|
139 |
+
|
140 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
141 |
+
self.sp_model.Load(self.vocab_file)
|
142 |
+
|
143 |
+
def _tokenize(self, text: str) -> List[str]:
|
144 |
+
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
|
145 |
+
return self.sp_model.encode(text, out_type=str)
|
146 |
+
|
147 |
+
def _convert_token_to_id(self, token):
|
148 |
+
"""Converts a token (str) in an id using the vocab."""
|
149 |
+
return self.sp_model.piece_to_id(token)
|
150 |
+
|
151 |
+
def _convert_id_to_token(self, index):
|
152 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
153 |
+
if index < self.sp_model.get_piece_size():
|
154 |
+
token = self.sp_model.IdToPiece(index)
|
155 |
+
return token
|
156 |
+
|
157 |
+
def convert_tokens_to_string(self, tokens):
|
158 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
159 |
+
current_sub_tokens = []
|
160 |
+
out_string = ""
|
161 |
+
for token in tokens:
|
162 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
163 |
+
if token in self.all_special_tokens:
|
164 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
165 |
+
current_sub_tokens = []
|
166 |
+
else:
|
167 |
+
current_sub_tokens.append(token)
|
168 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
169 |
+
return out_string.strip()
|
170 |
+
|
171 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
172 |
+
if not os.path.isdir(save_directory):
|
173 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
174 |
+
return
|
175 |
+
out_vocab_file = os.path.join(
|
176 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
177 |
+
)
|
178 |
+
|
179 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
180 |
+
copyfile(self.vocab_file, out_vocab_file)
|
181 |
+
elif not os.path.isfile(self.vocab_file):
|
182 |
+
with open(out_vocab_file, "wb") as fi:
|
183 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
184 |
+
fi.write(content_spiece_model)
|
185 |
+
|
186 |
+
return (out_vocab_file,)
|