Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/__init__.py +31 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/__pycache__/hierarchy.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/__pycache__/vq.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/_hierarchy.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/_optimal_leaf_ordering.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/_vq.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/hierarchy.py +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/hierarchy_test_data.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/test_disjoint_set.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/test_hierarchy.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/test_vq.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/hierarchy_test_data.py +145 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/test_disjoint_set.py +202 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/test_hierarchy.py +1225 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/test_vq.py +421 -0
- env-llmeval/lib/python3.10/site-packages/scipy/cluster/vq.py +835 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__init__.py +103 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_basic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_helper.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_pseudo_diffs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_realtransforms.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/basic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/helper.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/pseudo_diffs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/realtransforms.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/_basic.py +428 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/_helper.py +115 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/_realtransforms.py +598 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/convolve.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/helper.py +19 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/pseudo_diffs.py +22 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_basic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_helper.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_import.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_pseudo_diffs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_real_transforms.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/test_basic.py +873 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/test_helper.py +54 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/test_import.py +31 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/test_pseudo_diffs.py +380 -0
- env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/test_real_transforms.py +815 -0
- env-llmeval/lib/python3.10/site-packages/scipy/io/mmio.py +20 -0
- env-llmeval/lib/python3.10/site-packages/scipy/io/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/io/tests/data/array_float32_2d.sav +0 -0
env-llmeval/lib/python3.10/site-packages/scipy/cluster/__init__.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
=========================================
|
3 |
+
Clustering package (:mod:`scipy.cluster`)
|
4 |
+
=========================================
|
5 |
+
|
6 |
+
.. currentmodule:: scipy.cluster
|
7 |
+
|
8 |
+
.. toctree::
|
9 |
+
:hidden:
|
10 |
+
|
11 |
+
cluster.vq
|
12 |
+
cluster.hierarchy
|
13 |
+
|
14 |
+
Clustering algorithms are useful in information theory, target detection,
|
15 |
+
communications, compression, and other areas. The `vq` module only
|
16 |
+
supports vector quantization and the k-means algorithms.
|
17 |
+
|
18 |
+
The `hierarchy` module provides functions for hierarchical and
|
19 |
+
agglomerative clustering. Its features include generating hierarchical
|
20 |
+
clusters from distance matrices,
|
21 |
+
calculating statistics on clusters, cutting linkages
|
22 |
+
to generate flat clusters, and visualizing clusters with dendrograms.
|
23 |
+
|
24 |
+
"""
|
25 |
+
__all__ = ['vq', 'hierarchy']
|
26 |
+
|
27 |
+
from . import vq, hierarchy
|
28 |
+
|
29 |
+
from scipy._lib._testutils import PytestTester
|
30 |
+
test = PytestTester(__name__)
|
31 |
+
del PytestTester
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.08 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/__pycache__/hierarchy.cpython-310.pyc
ADDED
Binary file (131 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/__pycache__/vq.cpython-310.pyc
ADDED
Binary file (28.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/_hierarchy.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (423 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/_optimal_leaf_ordering.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (356 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/_vq.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (128 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/hierarchy.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (184 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/hierarchy_test_data.cpython-310.pyc
ADDED
Binary file (4.68 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/test_disjoint_set.cpython-310.pyc
ADDED
Binary file (6.21 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/test_hierarchy.cpython-310.pyc
ADDED
Binary file (41.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/test_vq.cpython-310.pyc
ADDED
Binary file (17 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/hierarchy_test_data.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy import array
|
2 |
+
|
3 |
+
|
4 |
+
Q_X = array([[5.26563660e-01, 3.14160190e-01, 8.00656370e-02],
|
5 |
+
[7.50205180e-01, 4.60299830e-01, 8.98696460e-01],
|
6 |
+
[6.65461230e-01, 6.94011420e-01, 9.10465700e-01],
|
7 |
+
[9.64047590e-01, 1.43082200e-03, 7.39874220e-01],
|
8 |
+
[1.08159060e-01, 5.53028790e-01, 6.63804780e-02],
|
9 |
+
[9.31359130e-01, 8.25424910e-01, 9.52315440e-01],
|
10 |
+
[6.78086960e-01, 3.41903970e-01, 5.61481950e-01],
|
11 |
+
[9.82730940e-01, 7.04605210e-01, 8.70978630e-02],
|
12 |
+
[6.14691610e-01, 4.69989230e-02, 6.02406450e-01],
|
13 |
+
[5.80161260e-01, 9.17354970e-01, 5.88163850e-01],
|
14 |
+
[1.38246310e+00, 1.96358160e+00, 1.94437880e+00],
|
15 |
+
[2.10675860e+00, 1.67148730e+00, 1.34854480e+00],
|
16 |
+
[1.39880070e+00, 1.66142050e+00, 1.32224550e+00],
|
17 |
+
[1.71410460e+00, 1.49176380e+00, 1.45432170e+00],
|
18 |
+
[1.54102340e+00, 1.84374950e+00, 1.64658950e+00],
|
19 |
+
[2.08512480e+00, 1.84524350e+00, 2.17340850e+00],
|
20 |
+
[1.30748740e+00, 1.53801650e+00, 2.16007740e+00],
|
21 |
+
[1.41447700e+00, 1.99329070e+00, 1.99107420e+00],
|
22 |
+
[1.61943490e+00, 1.47703280e+00, 1.89788160e+00],
|
23 |
+
[1.59880600e+00, 1.54988980e+00, 1.57563350e+00],
|
24 |
+
[3.37247380e+00, 2.69635310e+00, 3.39981700e+00],
|
25 |
+
[3.13705120e+00, 3.36528090e+00, 3.06089070e+00],
|
26 |
+
[3.29413250e+00, 3.19619500e+00, 2.90700170e+00],
|
27 |
+
[2.65510510e+00, 3.06785900e+00, 2.97198540e+00],
|
28 |
+
[3.30941040e+00, 2.59283970e+00, 2.57714110e+00],
|
29 |
+
[2.59557220e+00, 3.33477370e+00, 3.08793190e+00],
|
30 |
+
[2.58206180e+00, 3.41615670e+00, 3.26441990e+00],
|
31 |
+
[2.71127000e+00, 2.77032450e+00, 2.63466500e+00],
|
32 |
+
[2.79617850e+00, 3.25473720e+00, 3.41801560e+00],
|
33 |
+
[2.64741750e+00, 2.54538040e+00, 3.25354110e+00]])
|
34 |
+
|
35 |
+
ytdist = array([662., 877., 255., 412., 996., 295., 468., 268., 400., 754.,
|
36 |
+
564., 138., 219., 869., 669.])
|
37 |
+
|
38 |
+
linkage_ytdist_single = array([[2., 5., 138., 2.],
|
39 |
+
[3., 4., 219., 2.],
|
40 |
+
[0., 7., 255., 3.],
|
41 |
+
[1., 8., 268., 4.],
|
42 |
+
[6., 9., 295., 6.]])
|
43 |
+
|
44 |
+
linkage_ytdist_complete = array([[2., 5., 138., 2.],
|
45 |
+
[3., 4., 219., 2.],
|
46 |
+
[1., 6., 400., 3.],
|
47 |
+
[0., 7., 412., 3.],
|
48 |
+
[8., 9., 996., 6.]])
|
49 |
+
|
50 |
+
linkage_ytdist_average = array([[2., 5., 138., 2.],
|
51 |
+
[3., 4., 219., 2.],
|
52 |
+
[0., 7., 333.5, 3.],
|
53 |
+
[1., 6., 347.5, 3.],
|
54 |
+
[8., 9., 680.77777778, 6.]])
|
55 |
+
|
56 |
+
linkage_ytdist_weighted = array([[2., 5., 138., 2.],
|
57 |
+
[3., 4., 219., 2.],
|
58 |
+
[0., 7., 333.5, 3.],
|
59 |
+
[1., 6., 347.5, 3.],
|
60 |
+
[8., 9., 670.125, 6.]])
|
61 |
+
|
62 |
+
# the optimal leaf ordering of linkage_ytdist_single
|
63 |
+
linkage_ytdist_single_olo = array([[5., 2., 138., 2.],
|
64 |
+
[4., 3., 219., 2.],
|
65 |
+
[7., 0., 255., 3.],
|
66 |
+
[1., 8., 268., 4.],
|
67 |
+
[6., 9., 295., 6.]])
|
68 |
+
|
69 |
+
X = array([[1.43054825, -7.5693489],
|
70 |
+
[6.95887839, 6.82293382],
|
71 |
+
[2.87137846, -9.68248579],
|
72 |
+
[7.87974764, -6.05485803],
|
73 |
+
[8.24018364, -6.09495602],
|
74 |
+
[7.39020262, 8.54004355]])
|
75 |
+
|
76 |
+
linkage_X_centroid = array([[3., 4., 0.36265956, 2.],
|
77 |
+
[1., 5., 1.77045373, 2.],
|
78 |
+
[0., 2., 2.55760419, 2.],
|
79 |
+
[6., 8., 6.43614494, 4.],
|
80 |
+
[7., 9., 15.17363237, 6.]])
|
81 |
+
|
82 |
+
linkage_X_median = array([[3., 4., 0.36265956, 2.],
|
83 |
+
[1., 5., 1.77045373, 2.],
|
84 |
+
[0., 2., 2.55760419, 2.],
|
85 |
+
[6., 8., 6.43614494, 4.],
|
86 |
+
[7., 9., 15.17363237, 6.]])
|
87 |
+
|
88 |
+
linkage_X_ward = array([[3., 4., 0.36265956, 2.],
|
89 |
+
[1., 5., 1.77045373, 2.],
|
90 |
+
[0., 2., 2.55760419, 2.],
|
91 |
+
[6., 8., 9.10208346, 4.],
|
92 |
+
[7., 9., 24.7784379, 6.]])
|
93 |
+
|
94 |
+
# the optimal leaf ordering of linkage_X_ward
|
95 |
+
linkage_X_ward_olo = array([[4., 3., 0.36265956, 2.],
|
96 |
+
[5., 1., 1.77045373, 2.],
|
97 |
+
[2., 0., 2.55760419, 2.],
|
98 |
+
[6., 8., 9.10208346, 4.],
|
99 |
+
[7., 9., 24.7784379, 6.]])
|
100 |
+
|
101 |
+
inconsistent_ytdist = {
|
102 |
+
1: array([[138., 0., 1., 0.],
|
103 |
+
[219., 0., 1., 0.],
|
104 |
+
[255., 0., 1., 0.],
|
105 |
+
[268., 0., 1., 0.],
|
106 |
+
[295., 0., 1., 0.]]),
|
107 |
+
2: array([[138., 0., 1., 0.],
|
108 |
+
[219., 0., 1., 0.],
|
109 |
+
[237., 25.45584412, 2., 0.70710678],
|
110 |
+
[261.5, 9.19238816, 2., 0.70710678],
|
111 |
+
[233.66666667, 83.9424406, 3., 0.7306594]]),
|
112 |
+
3: array([[138., 0., 1., 0.],
|
113 |
+
[219., 0., 1., 0.],
|
114 |
+
[237., 25.45584412, 2., 0.70710678],
|
115 |
+
[247.33333333, 25.38372182, 3., 0.81417007],
|
116 |
+
[239., 69.36377537, 4., 0.80733783]]),
|
117 |
+
4: array([[138., 0., 1., 0.],
|
118 |
+
[219., 0., 1., 0.],
|
119 |
+
[237., 25.45584412, 2., 0.70710678],
|
120 |
+
[247.33333333, 25.38372182, 3., 0.81417007],
|
121 |
+
[235., 60.73302232, 5., 0.98793042]])}
|
122 |
+
|
123 |
+
fcluster_inconsistent = {
|
124 |
+
0.8: array([6, 2, 2, 4, 6, 2, 3, 7, 3, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1,
|
125 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1]),
|
126 |
+
1.0: array([6, 2, 2, 4, 6, 2, 3, 7, 3, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1,
|
127 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1]),
|
128 |
+
2.0: array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
129 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1])}
|
130 |
+
|
131 |
+
fcluster_distance = {
|
132 |
+
0.6: array([4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 3,
|
133 |
+
1, 1, 1, 2, 1, 1, 1, 1, 1]),
|
134 |
+
1.0: array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1,
|
135 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1]),
|
136 |
+
2.0: array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
137 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1])}
|
138 |
+
|
139 |
+
fcluster_maxclust = {
|
140 |
+
8.0: array([5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 7, 7, 7, 7, 7, 8, 7, 7, 7, 7, 4,
|
141 |
+
1, 1, 1, 3, 1, 1, 1, 1, 2]),
|
142 |
+
4.0: array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2,
|
143 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1]),
|
144 |
+
1.0: array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
145 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1])}
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/test_disjoint_set.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
from pytest import raises as assert_raises
|
3 |
+
import numpy as np
|
4 |
+
from scipy.cluster.hierarchy import DisjointSet
|
5 |
+
import string
|
6 |
+
|
7 |
+
|
8 |
+
def generate_random_token():
|
9 |
+
k = len(string.ascii_letters)
|
10 |
+
tokens = list(np.arange(k, dtype=int))
|
11 |
+
tokens += list(np.arange(k, dtype=float))
|
12 |
+
tokens += list(string.ascii_letters)
|
13 |
+
tokens += [None for i in range(k)]
|
14 |
+
tokens = np.array(tokens, dtype=object)
|
15 |
+
rng = np.random.RandomState(seed=0)
|
16 |
+
|
17 |
+
while 1:
|
18 |
+
size = rng.randint(1, 3)
|
19 |
+
element = rng.choice(tokens, size)
|
20 |
+
if size == 1:
|
21 |
+
yield element[0]
|
22 |
+
else:
|
23 |
+
yield tuple(element)
|
24 |
+
|
25 |
+
|
26 |
+
def get_elements(n):
|
27 |
+
# dict is deterministic without difficulty of comparing numpy ints
|
28 |
+
elements = {}
|
29 |
+
for element in generate_random_token():
|
30 |
+
if element not in elements:
|
31 |
+
elements[element] = len(elements)
|
32 |
+
if len(elements) >= n:
|
33 |
+
break
|
34 |
+
return list(elements.keys())
|
35 |
+
|
36 |
+
|
37 |
+
def test_init():
|
38 |
+
n = 10
|
39 |
+
elements = get_elements(n)
|
40 |
+
dis = DisjointSet(elements)
|
41 |
+
assert dis.n_subsets == n
|
42 |
+
assert list(dis) == elements
|
43 |
+
|
44 |
+
|
45 |
+
def test_len():
|
46 |
+
n = 10
|
47 |
+
elements = get_elements(n)
|
48 |
+
dis = DisjointSet(elements)
|
49 |
+
assert len(dis) == n
|
50 |
+
|
51 |
+
dis.add("dummy")
|
52 |
+
assert len(dis) == n + 1
|
53 |
+
|
54 |
+
|
55 |
+
@pytest.mark.parametrize("n", [10, 100])
|
56 |
+
def test_contains(n):
|
57 |
+
elements = get_elements(n)
|
58 |
+
dis = DisjointSet(elements)
|
59 |
+
for x in elements:
|
60 |
+
assert x in dis
|
61 |
+
|
62 |
+
assert "dummy" not in dis
|
63 |
+
|
64 |
+
|
65 |
+
@pytest.mark.parametrize("n", [10, 100])
|
66 |
+
def test_add(n):
|
67 |
+
elements = get_elements(n)
|
68 |
+
dis1 = DisjointSet(elements)
|
69 |
+
|
70 |
+
dis2 = DisjointSet()
|
71 |
+
for i, x in enumerate(elements):
|
72 |
+
dis2.add(x)
|
73 |
+
assert len(dis2) == i + 1
|
74 |
+
|
75 |
+
# test idempotency by adding element again
|
76 |
+
dis2.add(x)
|
77 |
+
assert len(dis2) == i + 1
|
78 |
+
|
79 |
+
assert list(dis1) == list(dis2)
|
80 |
+
|
81 |
+
|
82 |
+
def test_element_not_present():
|
83 |
+
elements = get_elements(n=10)
|
84 |
+
dis = DisjointSet(elements)
|
85 |
+
|
86 |
+
with assert_raises(KeyError):
|
87 |
+
dis["dummy"]
|
88 |
+
|
89 |
+
with assert_raises(KeyError):
|
90 |
+
dis.merge(elements[0], "dummy")
|
91 |
+
|
92 |
+
with assert_raises(KeyError):
|
93 |
+
dis.connected(elements[0], "dummy")
|
94 |
+
|
95 |
+
|
96 |
+
@pytest.mark.parametrize("direction", ["forwards", "backwards"])
|
97 |
+
@pytest.mark.parametrize("n", [10, 100])
|
98 |
+
def test_linear_union_sequence(n, direction):
|
99 |
+
elements = get_elements(n)
|
100 |
+
dis = DisjointSet(elements)
|
101 |
+
assert elements == list(dis)
|
102 |
+
|
103 |
+
indices = list(range(n - 1))
|
104 |
+
if direction == "backwards":
|
105 |
+
indices = indices[::-1]
|
106 |
+
|
107 |
+
for it, i in enumerate(indices):
|
108 |
+
assert not dis.connected(elements[i], elements[i + 1])
|
109 |
+
assert dis.merge(elements[i], elements[i + 1])
|
110 |
+
assert dis.connected(elements[i], elements[i + 1])
|
111 |
+
assert dis.n_subsets == n - 1 - it
|
112 |
+
|
113 |
+
roots = [dis[i] for i in elements]
|
114 |
+
if direction == "forwards":
|
115 |
+
assert all(elements[0] == r for r in roots)
|
116 |
+
else:
|
117 |
+
assert all(elements[-2] == r for r in roots)
|
118 |
+
assert not dis.merge(elements[0], elements[-1])
|
119 |
+
|
120 |
+
|
121 |
+
@pytest.mark.parametrize("n", [10, 100])
|
122 |
+
def test_self_unions(n):
|
123 |
+
elements = get_elements(n)
|
124 |
+
dis = DisjointSet(elements)
|
125 |
+
|
126 |
+
for x in elements:
|
127 |
+
assert dis.connected(x, x)
|
128 |
+
assert not dis.merge(x, x)
|
129 |
+
assert dis.connected(x, x)
|
130 |
+
assert dis.n_subsets == len(elements)
|
131 |
+
|
132 |
+
assert elements == list(dis)
|
133 |
+
roots = [dis[x] for x in elements]
|
134 |
+
assert elements == roots
|
135 |
+
|
136 |
+
|
137 |
+
@pytest.mark.parametrize("order", ["ab", "ba"])
|
138 |
+
@pytest.mark.parametrize("n", [10, 100])
|
139 |
+
def test_equal_size_ordering(n, order):
|
140 |
+
elements = get_elements(n)
|
141 |
+
dis = DisjointSet(elements)
|
142 |
+
|
143 |
+
rng = np.random.RandomState(seed=0)
|
144 |
+
indices = np.arange(n)
|
145 |
+
rng.shuffle(indices)
|
146 |
+
|
147 |
+
for i in range(0, len(indices), 2):
|
148 |
+
a, b = elements[indices[i]], elements[indices[i + 1]]
|
149 |
+
if order == "ab":
|
150 |
+
assert dis.merge(a, b)
|
151 |
+
else:
|
152 |
+
assert dis.merge(b, a)
|
153 |
+
|
154 |
+
expected = elements[min(indices[i], indices[i + 1])]
|
155 |
+
assert dis[a] == expected
|
156 |
+
assert dis[b] == expected
|
157 |
+
|
158 |
+
|
159 |
+
@pytest.mark.parametrize("kmax", [5, 10])
|
160 |
+
def test_binary_tree(kmax):
|
161 |
+
n = 2**kmax
|
162 |
+
elements = get_elements(n)
|
163 |
+
dis = DisjointSet(elements)
|
164 |
+
rng = np.random.RandomState(seed=0)
|
165 |
+
|
166 |
+
for k in 2**np.arange(kmax):
|
167 |
+
for i in range(0, n, 2 * k):
|
168 |
+
r1, r2 = rng.randint(0, k, size=2)
|
169 |
+
a, b = elements[i + r1], elements[i + k + r2]
|
170 |
+
assert not dis.connected(a, b)
|
171 |
+
assert dis.merge(a, b)
|
172 |
+
assert dis.connected(a, b)
|
173 |
+
|
174 |
+
assert elements == list(dis)
|
175 |
+
roots = [dis[i] for i in elements]
|
176 |
+
expected_indices = np.arange(n) - np.arange(n) % (2 * k)
|
177 |
+
expected = [elements[i] for i in expected_indices]
|
178 |
+
assert roots == expected
|
179 |
+
|
180 |
+
|
181 |
+
@pytest.mark.parametrize("n", [10, 100])
|
182 |
+
def test_subsets(n):
|
183 |
+
elements = get_elements(n)
|
184 |
+
dis = DisjointSet(elements)
|
185 |
+
|
186 |
+
rng = np.random.RandomState(seed=0)
|
187 |
+
for i, j in rng.randint(0, n, (n, 2)):
|
188 |
+
x = elements[i]
|
189 |
+
y = elements[j]
|
190 |
+
|
191 |
+
expected = {element for element in dis if {dis[element]} == {dis[x]}}
|
192 |
+
assert dis.subset_size(x) == len(dis.subset(x))
|
193 |
+
assert expected == dis.subset(x)
|
194 |
+
|
195 |
+
expected = {dis[element]: set() for element in dis}
|
196 |
+
for element in dis:
|
197 |
+
expected[dis[element]].add(element)
|
198 |
+
expected = list(expected.values())
|
199 |
+
assert expected == dis.subsets()
|
200 |
+
|
201 |
+
dis.merge(x, y)
|
202 |
+
assert dis.subset(x) == dis.subset(y)
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/test_hierarchy.py
ADDED
@@ -0,0 +1,1225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Author: Damian Eads
|
3 |
+
# Date: April 17, 2008
|
4 |
+
#
|
5 |
+
# Copyright (C) 2008 Damian Eads
|
6 |
+
#
|
7 |
+
# Redistribution and use in source and binary forms, with or without
|
8 |
+
# modification, are permitted provided that the following conditions
|
9 |
+
# are met:
|
10 |
+
#
|
11 |
+
# 1. Redistributions of source code must retain the above copyright
|
12 |
+
# notice, this list of conditions and the following disclaimer.
|
13 |
+
#
|
14 |
+
# 2. Redistributions in binary form must reproduce the above
|
15 |
+
# copyright notice, this list of conditions and the following
|
16 |
+
# disclaimer in the documentation and/or other materials provided
|
17 |
+
# with the distribution.
|
18 |
+
#
|
19 |
+
# 3. The name of the author may not be used to endorse or promote
|
20 |
+
# products derived from this software without specific prior
|
21 |
+
# written permission.
|
22 |
+
#
|
23 |
+
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
24 |
+
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
25 |
+
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
26 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
27 |
+
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
28 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
29 |
+
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
30 |
+
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
31 |
+
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
32 |
+
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
33 |
+
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
34 |
+
import numpy as np
|
35 |
+
from numpy.testing import assert_allclose, assert_equal, assert_, assert_warns
|
36 |
+
import pytest
|
37 |
+
from pytest import raises as assert_raises
|
38 |
+
|
39 |
+
import scipy.cluster.hierarchy
|
40 |
+
from scipy.cluster.hierarchy import (
|
41 |
+
ClusterWarning, linkage, from_mlab_linkage, to_mlab_linkage,
|
42 |
+
num_obs_linkage, inconsistent, cophenet, fclusterdata, fcluster,
|
43 |
+
is_isomorphic, single, leaders,
|
44 |
+
correspond, is_monotonic, maxdists, maxinconsts, maxRstat,
|
45 |
+
is_valid_linkage, is_valid_im, to_tree, leaves_list, dendrogram,
|
46 |
+
set_link_color_palette, cut_tree, optimal_leaf_ordering,
|
47 |
+
_order_cluster_tree, _hierarchy, _LINKAGE_METHODS)
|
48 |
+
from scipy.spatial.distance import pdist
|
49 |
+
from scipy.cluster._hierarchy import Heap
|
50 |
+
from scipy.conftest import array_api_compatible
|
51 |
+
from scipy._lib._array_api import xp_assert_close, xp_assert_equal
|
52 |
+
|
53 |
+
from . import hierarchy_test_data
|
54 |
+
|
55 |
+
|
56 |
+
# Matplotlib is not a scipy dependency but is optionally used in dendrogram, so
|
57 |
+
# check if it's available
|
58 |
+
try:
|
59 |
+
import matplotlib
|
60 |
+
# and set the backend to be Agg (no gui)
|
61 |
+
matplotlib.use('Agg')
|
62 |
+
# before importing pyplot
|
63 |
+
import matplotlib.pyplot as plt
|
64 |
+
have_matplotlib = True
|
65 |
+
except Exception:
|
66 |
+
have_matplotlib = False
|
67 |
+
|
68 |
+
|
69 |
+
pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_if_array_api")]
|
70 |
+
skip_if_array_api = pytest.mark.skip_if_array_api
|
71 |
+
|
72 |
+
|
73 |
+
class TestLinkage:
|
74 |
+
|
75 |
+
@skip_if_array_api(cpu_only=True)
|
76 |
+
def test_linkage_non_finite_elements_in_distance_matrix(self, xp):
|
77 |
+
# Tests linkage(Y) where Y contains a non-finite element (e.g. NaN or Inf).
|
78 |
+
# Exception expected.
|
79 |
+
y = xp.zeros((6,))
|
80 |
+
y[0] = xp.nan
|
81 |
+
assert_raises(ValueError, linkage, y)
|
82 |
+
|
83 |
+
@skip_if_array_api(cpu_only=True)
|
84 |
+
def test_linkage_empty_distance_matrix(self, xp):
|
85 |
+
# Tests linkage(Y) where Y is a 0x4 linkage matrix. Exception expected.
|
86 |
+
y = xp.zeros((0,))
|
87 |
+
assert_raises(ValueError, linkage, y)
|
88 |
+
|
89 |
+
@skip_if_array_api(cpu_only=True)
|
90 |
+
def test_linkage_tdist(self, xp):
|
91 |
+
for method in ['single', 'complete', 'average', 'weighted']:
|
92 |
+
self.check_linkage_tdist(method, xp)
|
93 |
+
|
94 |
+
def check_linkage_tdist(self, method, xp):
|
95 |
+
# Tests linkage(Y, method) on the tdist data set.
|
96 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), method)
|
97 |
+
expectedZ = getattr(hierarchy_test_data, 'linkage_ytdist_' + method)
|
98 |
+
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-10)
|
99 |
+
|
100 |
+
@skip_if_array_api(cpu_only=True)
|
101 |
+
def test_linkage_X(self, xp):
|
102 |
+
for method in ['centroid', 'median', 'ward']:
|
103 |
+
self.check_linkage_q(method, xp)
|
104 |
+
|
105 |
+
def check_linkage_q(self, method, xp):
|
106 |
+
# Tests linkage(Y, method) on the Q data set.
|
107 |
+
Z = linkage(xp.asarray(hierarchy_test_data.X), method)
|
108 |
+
expectedZ = getattr(hierarchy_test_data, 'linkage_X_' + method)
|
109 |
+
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06)
|
110 |
+
|
111 |
+
y = scipy.spatial.distance.pdist(hierarchy_test_data.X,
|
112 |
+
metric="euclidean")
|
113 |
+
Z = linkage(xp.asarray(y), method)
|
114 |
+
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06)
|
115 |
+
|
116 |
+
@skip_if_array_api(cpu_only=True)
|
117 |
+
def test_compare_with_trivial(self, xp):
|
118 |
+
rng = np.random.RandomState(0)
|
119 |
+
n = 20
|
120 |
+
X = rng.rand(n, 2)
|
121 |
+
d = pdist(X)
|
122 |
+
|
123 |
+
for method, code in _LINKAGE_METHODS.items():
|
124 |
+
Z_trivial = _hierarchy.linkage(d, n, code)
|
125 |
+
Z = linkage(xp.asarray(d), method)
|
126 |
+
xp_assert_close(Z, xp.asarray(Z_trivial), rtol=1e-14, atol=1e-15)
|
127 |
+
|
128 |
+
@skip_if_array_api(cpu_only=True)
|
129 |
+
def test_optimal_leaf_ordering(self, xp):
|
130 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), optimal_ordering=True)
|
131 |
+
expectedZ = getattr(hierarchy_test_data, 'linkage_ytdist_single_olo')
|
132 |
+
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-10)
|
133 |
+
|
134 |
+
|
135 |
+
@skip_if_array_api(cpu_only=True)
|
136 |
+
class TestLinkageTies:
|
137 |
+
|
138 |
+
_expectations = {
|
139 |
+
'single': np.array([[0, 1, 1.41421356, 2],
|
140 |
+
[2, 3, 1.41421356, 3]]),
|
141 |
+
'complete': np.array([[0, 1, 1.41421356, 2],
|
142 |
+
[2, 3, 2.82842712, 3]]),
|
143 |
+
'average': np.array([[0, 1, 1.41421356, 2],
|
144 |
+
[2, 3, 2.12132034, 3]]),
|
145 |
+
'weighted': np.array([[0, 1, 1.41421356, 2],
|
146 |
+
[2, 3, 2.12132034, 3]]),
|
147 |
+
'centroid': np.array([[0, 1, 1.41421356, 2],
|
148 |
+
[2, 3, 2.12132034, 3]]),
|
149 |
+
'median': np.array([[0, 1, 1.41421356, 2],
|
150 |
+
[2, 3, 2.12132034, 3]]),
|
151 |
+
'ward': np.array([[0, 1, 1.41421356, 2],
|
152 |
+
[2, 3, 2.44948974, 3]]),
|
153 |
+
}
|
154 |
+
|
155 |
+
def test_linkage_ties(self, xp):
|
156 |
+
for method in ['single', 'complete', 'average', 'weighted',
|
157 |
+
'centroid', 'median', 'ward']:
|
158 |
+
self.check_linkage_ties(method, xp)
|
159 |
+
|
160 |
+
def check_linkage_ties(self, method, xp):
|
161 |
+
X = xp.asarray([[-1, -1], [0, 0], [1, 1]])
|
162 |
+
Z = linkage(X, method=method)
|
163 |
+
expectedZ = self._expectations[method]
|
164 |
+
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06)
|
165 |
+
|
166 |
+
|
167 |
+
@skip_if_array_api(cpu_only=True)
|
168 |
+
class TestInconsistent:
|
169 |
+
|
170 |
+
def test_inconsistent_tdist(self, xp):
|
171 |
+
for depth in hierarchy_test_data.inconsistent_ytdist:
|
172 |
+
self.check_inconsistent_tdist(depth, xp)
|
173 |
+
|
174 |
+
def check_inconsistent_tdist(self, depth, xp):
|
175 |
+
Z = xp.asarray(hierarchy_test_data.linkage_ytdist_single)
|
176 |
+
xp_assert_close(inconsistent(Z, depth),
|
177 |
+
xp.asarray(hierarchy_test_data.inconsistent_ytdist[depth]))
|
178 |
+
|
179 |
+
|
180 |
+
@skip_if_array_api(cpu_only=True)
|
181 |
+
class TestCopheneticDistance:
|
182 |
+
|
183 |
+
def test_linkage_cophenet_tdist_Z(self, xp):
|
184 |
+
# Tests cophenet(Z) on tdist data set.
|
185 |
+
expectedM = xp.asarray([268, 295, 255, 255, 295, 295, 268, 268, 295, 295,
|
186 |
+
295, 138, 219, 295, 295])
|
187 |
+
Z = xp.asarray(hierarchy_test_data.linkage_ytdist_single)
|
188 |
+
M = cophenet(Z)
|
189 |
+
xp_assert_close(M, xp.asarray(expectedM, dtype=xp.float64), atol=1e-10)
|
190 |
+
|
191 |
+
def test_linkage_cophenet_tdist_Z_Y(self, xp):
|
192 |
+
# Tests cophenet(Z, Y) on tdist data set.
|
193 |
+
Z = xp.asarray(hierarchy_test_data.linkage_ytdist_single)
|
194 |
+
(c, M) = cophenet(Z, xp.asarray(hierarchy_test_data.ytdist))
|
195 |
+
expectedM = xp.asarray([268, 295, 255, 255, 295, 295, 268, 268, 295, 295,
|
196 |
+
295, 138, 219, 295, 295], dtype=xp.float64)
|
197 |
+
expectedc = xp.asarray(0.639931296433393415057366837573, dtype=xp.float64)[()]
|
198 |
+
xp_assert_close(c, expectedc, atol=1e-10)
|
199 |
+
xp_assert_close(M, expectedM, atol=1e-10)
|
200 |
+
|
201 |
+
|
202 |
+
class TestMLabLinkageConversion:
|
203 |
+
|
204 |
+
def test_mlab_linkage_conversion_empty(self, xp):
|
205 |
+
# Tests from/to_mlab_linkage on empty linkage array.
|
206 |
+
X = xp.asarray([], dtype=xp.float64)
|
207 |
+
xp_assert_equal(from_mlab_linkage(X), X)
|
208 |
+
xp_assert_equal(to_mlab_linkage(X), X)
|
209 |
+
|
210 |
+
@skip_if_array_api(cpu_only=True)
|
211 |
+
def test_mlab_linkage_conversion_single_row(self, xp):
|
212 |
+
# Tests from/to_mlab_linkage on linkage array with single row.
|
213 |
+
Z = xp.asarray([[0., 1., 3., 2.]])
|
214 |
+
Zm = xp.asarray([[1, 2, 3]])
|
215 |
+
xp_assert_close(from_mlab_linkage(Zm), xp.asarray(Z, dtype=xp.float64),
|
216 |
+
rtol=1e-15)
|
217 |
+
xp_assert_close(to_mlab_linkage(Z), xp.asarray(Zm, dtype=xp.float64),
|
218 |
+
rtol=1e-15)
|
219 |
+
|
220 |
+
@skip_if_array_api(cpu_only=True)
|
221 |
+
def test_mlab_linkage_conversion_multiple_rows(self, xp):
|
222 |
+
# Tests from/to_mlab_linkage on linkage array with multiple rows.
|
223 |
+
Zm = xp.asarray([[3, 6, 138], [4, 5, 219],
|
224 |
+
[1, 8, 255], [2, 9, 268], [7, 10, 295]])
|
225 |
+
Z = xp.asarray([[2., 5., 138., 2.],
|
226 |
+
[3., 4., 219., 2.],
|
227 |
+
[0., 7., 255., 3.],
|
228 |
+
[1., 8., 268., 4.],
|
229 |
+
[6., 9., 295., 6.]],
|
230 |
+
dtype=xp.float64)
|
231 |
+
xp_assert_close(from_mlab_linkage(Zm), Z, rtol=1e-15)
|
232 |
+
xp_assert_close(to_mlab_linkage(Z), xp.asarray(Zm, dtype=xp.float64),
|
233 |
+
rtol=1e-15)
|
234 |
+
|
235 |
+
|
236 |
+
@skip_if_array_api(cpu_only=True)
|
237 |
+
class TestFcluster:
|
238 |
+
|
239 |
+
def test_fclusterdata(self, xp):
|
240 |
+
for t in hierarchy_test_data.fcluster_inconsistent:
|
241 |
+
self.check_fclusterdata(t, 'inconsistent', xp)
|
242 |
+
for t in hierarchy_test_data.fcluster_distance:
|
243 |
+
self.check_fclusterdata(t, 'distance', xp)
|
244 |
+
for t in hierarchy_test_data.fcluster_maxclust:
|
245 |
+
self.check_fclusterdata(t, 'maxclust', xp)
|
246 |
+
|
247 |
+
def check_fclusterdata(self, t, criterion, xp):
|
248 |
+
# Tests fclusterdata(X, criterion=criterion, t=t) on a random 3-cluster data set
|
249 |
+
expectedT = xp.asarray(getattr(hierarchy_test_data, 'fcluster_' + criterion)[t])
|
250 |
+
X = xp.asarray(hierarchy_test_data.Q_X)
|
251 |
+
T = fclusterdata(X, criterion=criterion, t=t)
|
252 |
+
assert_(is_isomorphic(T, expectedT))
|
253 |
+
|
254 |
+
def test_fcluster(self, xp):
|
255 |
+
for t in hierarchy_test_data.fcluster_inconsistent:
|
256 |
+
self.check_fcluster(t, 'inconsistent', xp)
|
257 |
+
for t in hierarchy_test_data.fcluster_distance:
|
258 |
+
self.check_fcluster(t, 'distance', xp)
|
259 |
+
for t in hierarchy_test_data.fcluster_maxclust:
|
260 |
+
self.check_fcluster(t, 'maxclust', xp)
|
261 |
+
|
262 |
+
def check_fcluster(self, t, criterion, xp):
|
263 |
+
# Tests fcluster(Z, criterion=criterion, t=t) on a random 3-cluster data set.
|
264 |
+
expectedT = xp.asarray(getattr(hierarchy_test_data, 'fcluster_' + criterion)[t])
|
265 |
+
Z = single(xp.asarray(hierarchy_test_data.Q_X))
|
266 |
+
T = fcluster(Z, criterion=criterion, t=t)
|
267 |
+
assert_(is_isomorphic(T, expectedT))
|
268 |
+
|
269 |
+
def test_fcluster_monocrit(self, xp):
|
270 |
+
for t in hierarchy_test_data.fcluster_distance:
|
271 |
+
self.check_fcluster_monocrit(t, xp)
|
272 |
+
for t in hierarchy_test_data.fcluster_maxclust:
|
273 |
+
self.check_fcluster_maxclust_monocrit(t, xp)
|
274 |
+
|
275 |
+
def check_fcluster_monocrit(self, t, xp):
|
276 |
+
expectedT = xp.asarray(hierarchy_test_data.fcluster_distance[t])
|
277 |
+
Z = single(xp.asarray(hierarchy_test_data.Q_X))
|
278 |
+
T = fcluster(Z, t, criterion='monocrit', monocrit=maxdists(Z))
|
279 |
+
assert_(is_isomorphic(T, expectedT))
|
280 |
+
|
281 |
+
def check_fcluster_maxclust_monocrit(self, t, xp):
|
282 |
+
expectedT = xp.asarray(hierarchy_test_data.fcluster_maxclust[t])
|
283 |
+
Z = single(xp.asarray(hierarchy_test_data.Q_X))
|
284 |
+
T = fcluster(Z, t, criterion='maxclust_monocrit', monocrit=maxdists(Z))
|
285 |
+
assert_(is_isomorphic(T, expectedT))
|
286 |
+
|
287 |
+
|
288 |
+
@skip_if_array_api(cpu_only=True)
|
289 |
+
class TestLeaders:
|
290 |
+
|
291 |
+
def test_leaders_single(self, xp):
|
292 |
+
# Tests leaders using a flat clustering generated by single linkage.
|
293 |
+
X = hierarchy_test_data.Q_X
|
294 |
+
Y = pdist(X)
|
295 |
+
Y = xp.asarray(Y)
|
296 |
+
Z = linkage(Y)
|
297 |
+
T = fcluster(Z, criterion='maxclust', t=3)
|
298 |
+
Lright = (xp.asarray([53, 55, 56]), xp.asarray([2, 3, 1]))
|
299 |
+
T = xp.asarray(T, dtype=xp.int32)
|
300 |
+
L = leaders(Z, T)
|
301 |
+
assert_allclose(np.concatenate(L), np.concatenate(Lright), rtol=1e-15)
|
302 |
+
|
303 |
+
|
304 |
+
@skip_if_array_api(np_only=True,
|
305 |
+
reasons=['`is_isomorphic` only supports NumPy backend'])
|
306 |
+
class TestIsIsomorphic:
|
307 |
+
|
308 |
+
@skip_if_array_api(np_only=True,
|
309 |
+
reasons=['array-likes only supported for NumPy backend'])
|
310 |
+
def test_array_like(self, xp):
|
311 |
+
assert is_isomorphic([1, 1, 1], [2, 2, 2])
|
312 |
+
assert is_isomorphic([], [])
|
313 |
+
|
314 |
+
def test_is_isomorphic_1(self, xp):
|
315 |
+
# Tests is_isomorphic on test case #1 (one flat cluster, different labellings)
|
316 |
+
a = xp.asarray([1, 1, 1])
|
317 |
+
b = xp.asarray([2, 2, 2])
|
318 |
+
assert is_isomorphic(a, b)
|
319 |
+
assert is_isomorphic(b, a)
|
320 |
+
|
321 |
+
def test_is_isomorphic_2(self, xp):
|
322 |
+
# Tests is_isomorphic on test case #2 (two flat clusters, different labelings)
|
323 |
+
a = xp.asarray([1, 7, 1])
|
324 |
+
b = xp.asarray([2, 3, 2])
|
325 |
+
assert is_isomorphic(a, b)
|
326 |
+
assert is_isomorphic(b, a)
|
327 |
+
|
328 |
+
def test_is_isomorphic_3(self, xp):
|
329 |
+
# Tests is_isomorphic on test case #3 (no flat clusters)
|
330 |
+
a = xp.asarray([])
|
331 |
+
b = xp.asarray([])
|
332 |
+
assert is_isomorphic(a, b)
|
333 |
+
|
334 |
+
def test_is_isomorphic_4A(self, xp):
|
335 |
+
# Tests is_isomorphic on test case #4A
|
336 |
+
# (3 flat clusters, different labelings, isomorphic)
|
337 |
+
a = xp.asarray([1, 2, 3])
|
338 |
+
b = xp.asarray([1, 3, 2])
|
339 |
+
assert is_isomorphic(a, b)
|
340 |
+
assert is_isomorphic(b, a)
|
341 |
+
|
342 |
+
def test_is_isomorphic_4B(self, xp):
|
343 |
+
# Tests is_isomorphic on test case #4B
|
344 |
+
# (3 flat clusters, different labelings, nonisomorphic)
|
345 |
+
a = xp.asarray([1, 2, 3, 3])
|
346 |
+
b = xp.asarray([1, 3, 2, 3])
|
347 |
+
assert is_isomorphic(a, b) is False
|
348 |
+
assert is_isomorphic(b, a) is False
|
349 |
+
|
350 |
+
def test_is_isomorphic_4C(self, xp):
|
351 |
+
# Tests is_isomorphic on test case #4C
|
352 |
+
# (3 flat clusters, different labelings, isomorphic)
|
353 |
+
a = xp.asarray([7, 2, 3])
|
354 |
+
b = xp.asarray([6, 3, 2])
|
355 |
+
assert is_isomorphic(a, b)
|
356 |
+
assert is_isomorphic(b, a)
|
357 |
+
|
358 |
+
def test_is_isomorphic_5(self, xp):
|
359 |
+
# Tests is_isomorphic on test case #5 (1000 observations, 2/3/5 random
|
360 |
+
# clusters, random permutation of the labeling).
|
361 |
+
for nc in [2, 3, 5]:
|
362 |
+
self.help_is_isomorphic_randperm(1000, nc, xp=xp)
|
363 |
+
|
364 |
+
def test_is_isomorphic_6(self, xp):
|
365 |
+
# Tests is_isomorphic on test case #5A (1000 observations, 2/3/5 random
|
366 |
+
# clusters, random permutation of the labeling, slightly
|
367 |
+
# nonisomorphic.)
|
368 |
+
for nc in [2, 3, 5]:
|
369 |
+
self.help_is_isomorphic_randperm(1000, nc, True, 5, xp=xp)
|
370 |
+
|
371 |
+
def test_is_isomorphic_7(self, xp):
|
372 |
+
# Regression test for gh-6271
|
373 |
+
a = xp.asarray([1, 2, 3])
|
374 |
+
b = xp.asarray([1, 1, 1])
|
375 |
+
assert not is_isomorphic(a, b)
|
376 |
+
|
377 |
+
def help_is_isomorphic_randperm(self, nobs, nclusters, noniso=False, nerrors=0,
|
378 |
+
*, xp):
|
379 |
+
for k in range(3):
|
380 |
+
a = (np.random.rand(nobs) * nclusters).astype(int)
|
381 |
+
b = np.zeros(a.size, dtype=int)
|
382 |
+
P = np.random.permutation(nclusters)
|
383 |
+
for i in range(0, a.shape[0]):
|
384 |
+
b[i] = P[a[i]]
|
385 |
+
if noniso:
|
386 |
+
Q = np.random.permutation(nobs)
|
387 |
+
b[Q[0:nerrors]] += 1
|
388 |
+
b[Q[0:nerrors]] %= nclusters
|
389 |
+
a = xp.asarray(a)
|
390 |
+
b = xp.asarray(b)
|
391 |
+
assert is_isomorphic(a, b) == (not noniso)
|
392 |
+
assert is_isomorphic(b, a) == (not noniso)
|
393 |
+
|
394 |
+
|
395 |
+
@skip_if_array_api(cpu_only=True)
|
396 |
+
class TestIsValidLinkage:
|
397 |
+
|
398 |
+
def test_is_valid_linkage_various_size(self, xp):
|
399 |
+
for nrow, ncol, valid in [(2, 5, False), (2, 3, False),
|
400 |
+
(1, 4, True), (2, 4, True)]:
|
401 |
+
self.check_is_valid_linkage_various_size(nrow, ncol, valid, xp)
|
402 |
+
|
403 |
+
def check_is_valid_linkage_various_size(self, nrow, ncol, valid, xp):
|
404 |
+
# Tests is_valid_linkage(Z) with linkage matrices of various sizes
|
405 |
+
Z = xp.asarray([[0, 1, 3.0, 2, 5],
|
406 |
+
[3, 2, 4.0, 3, 3]], dtype=xp.float64)
|
407 |
+
Z = Z[:nrow, :ncol]
|
408 |
+
assert_(is_valid_linkage(Z) == valid)
|
409 |
+
if not valid:
|
410 |
+
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
|
411 |
+
|
412 |
+
def test_is_valid_linkage_int_type(self, xp):
|
413 |
+
# Tests is_valid_linkage(Z) with integer type.
|
414 |
+
Z = xp.asarray([[0, 1, 3.0, 2],
|
415 |
+
[3, 2, 4.0, 3]], dtype=xp.int64)
|
416 |
+
assert_(is_valid_linkage(Z) is False)
|
417 |
+
assert_raises(TypeError, is_valid_linkage, Z, throw=True)
|
418 |
+
|
419 |
+
def test_is_valid_linkage_empty(self, xp):
|
420 |
+
# Tests is_valid_linkage(Z) with empty linkage.
|
421 |
+
Z = xp.zeros((0, 4), dtype=xp.float64)
|
422 |
+
assert_(is_valid_linkage(Z) is False)
|
423 |
+
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
|
424 |
+
|
425 |
+
def test_is_valid_linkage_4_and_up(self, xp):
|
426 |
+
# Tests is_valid_linkage(Z) on linkage on observation sets between
|
427 |
+
# sizes 4 and 15 (step size 3).
|
428 |
+
for i in range(4, 15, 3):
|
429 |
+
y = np.random.rand(i*(i-1)//2)
|
430 |
+
y = xp.asarray(y)
|
431 |
+
Z = linkage(y)
|
432 |
+
assert_(is_valid_linkage(Z) is True)
|
433 |
+
|
434 |
+
def test_is_valid_linkage_4_and_up_neg_index_left(self, xp):
|
435 |
+
# Tests is_valid_linkage(Z) on linkage on observation sets between
|
436 |
+
# sizes 4 and 15 (step size 3) with negative indices (left).
|
437 |
+
for i in range(4, 15, 3):
|
438 |
+
y = np.random.rand(i*(i-1)//2)
|
439 |
+
y = xp.asarray(y)
|
440 |
+
Z = linkage(y)
|
441 |
+
Z[i//2,0] = -2
|
442 |
+
assert_(is_valid_linkage(Z) is False)
|
443 |
+
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
|
444 |
+
|
445 |
+
def test_is_valid_linkage_4_and_up_neg_index_right(self, xp):
|
446 |
+
# Tests is_valid_linkage(Z) on linkage on observation sets between
|
447 |
+
# sizes 4 and 15 (step size 3) with negative indices (right).
|
448 |
+
for i in range(4, 15, 3):
|
449 |
+
y = np.random.rand(i*(i-1)//2)
|
450 |
+
y = xp.asarray(y)
|
451 |
+
Z = linkage(y)
|
452 |
+
Z[i//2,1] = -2
|
453 |
+
assert_(is_valid_linkage(Z) is False)
|
454 |
+
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
|
455 |
+
|
456 |
+
def test_is_valid_linkage_4_and_up_neg_dist(self, xp):
|
457 |
+
# Tests is_valid_linkage(Z) on linkage on observation sets between
|
458 |
+
# sizes 4 and 15 (step size 3) with negative distances.
|
459 |
+
for i in range(4, 15, 3):
|
460 |
+
y = np.random.rand(i*(i-1)//2)
|
461 |
+
y = xp.asarray(y)
|
462 |
+
Z = linkage(y)
|
463 |
+
Z[i//2,2] = -0.5
|
464 |
+
assert_(is_valid_linkage(Z) is False)
|
465 |
+
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
|
466 |
+
|
467 |
+
def test_is_valid_linkage_4_and_up_neg_counts(self, xp):
|
468 |
+
# Tests is_valid_linkage(Z) on linkage on observation sets between
|
469 |
+
# sizes 4 and 15 (step size 3) with negative counts.
|
470 |
+
for i in range(4, 15, 3):
|
471 |
+
y = np.random.rand(i*(i-1)//2)
|
472 |
+
y = xp.asarray(y)
|
473 |
+
Z = linkage(y)
|
474 |
+
Z[i//2,3] = -2
|
475 |
+
assert_(is_valid_linkage(Z) is False)
|
476 |
+
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
|
477 |
+
|
478 |
+
|
479 |
+
@skip_if_array_api(cpu_only=True)
|
480 |
+
class TestIsValidInconsistent:
|
481 |
+
|
482 |
+
def test_is_valid_im_int_type(self, xp):
|
483 |
+
# Tests is_valid_im(R) with integer type.
|
484 |
+
R = xp.asarray([[0, 1, 3.0, 2],
|
485 |
+
[3, 2, 4.0, 3]], dtype=xp.int64)
|
486 |
+
assert_(is_valid_im(R) is False)
|
487 |
+
assert_raises(TypeError, is_valid_im, R, throw=True)
|
488 |
+
|
489 |
+
def test_is_valid_im_various_size(self, xp):
|
490 |
+
for nrow, ncol, valid in [(2, 5, False), (2, 3, False),
|
491 |
+
(1, 4, True), (2, 4, True)]:
|
492 |
+
self.check_is_valid_im_various_size(nrow, ncol, valid, xp)
|
493 |
+
|
494 |
+
def check_is_valid_im_various_size(self, nrow, ncol, valid, xp):
|
495 |
+
# Tests is_valid_im(R) with linkage matrices of various sizes
|
496 |
+
R = xp.asarray([[0, 1, 3.0, 2, 5],
|
497 |
+
[3, 2, 4.0, 3, 3]], dtype=xp.float64)
|
498 |
+
R = R[:nrow, :ncol]
|
499 |
+
assert_(is_valid_im(R) == valid)
|
500 |
+
if not valid:
|
501 |
+
assert_raises(ValueError, is_valid_im, R, throw=True)
|
502 |
+
|
503 |
+
def test_is_valid_im_empty(self, xp):
|
504 |
+
# Tests is_valid_im(R) with empty inconsistency matrix.
|
505 |
+
R = xp.zeros((0, 4), dtype=xp.float64)
|
506 |
+
assert_(is_valid_im(R) is False)
|
507 |
+
assert_raises(ValueError, is_valid_im, R, throw=True)
|
508 |
+
|
509 |
+
def test_is_valid_im_4_and_up(self, xp):
|
510 |
+
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
|
511 |
+
# (step size 3).
|
512 |
+
for i in range(4, 15, 3):
|
513 |
+
y = np.random.rand(i*(i-1)//2)
|
514 |
+
y = xp.asarray(y)
|
515 |
+
Z = linkage(y)
|
516 |
+
R = inconsistent(Z)
|
517 |
+
assert_(is_valid_im(R) is True)
|
518 |
+
|
519 |
+
def test_is_valid_im_4_and_up_neg_index_left(self, xp):
|
520 |
+
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
|
521 |
+
# (step size 3) with negative link height means.
|
522 |
+
for i in range(4, 15, 3):
|
523 |
+
y = np.random.rand(i*(i-1)//2)
|
524 |
+
y = xp.asarray(y)
|
525 |
+
Z = linkage(y)
|
526 |
+
R = inconsistent(Z)
|
527 |
+
R[i//2,0] = -2.0
|
528 |
+
assert_(is_valid_im(R) is False)
|
529 |
+
assert_raises(ValueError, is_valid_im, R, throw=True)
|
530 |
+
|
531 |
+
def test_is_valid_im_4_and_up_neg_index_right(self, xp):
|
532 |
+
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
|
533 |
+
# (step size 3) with negative link height standard deviations.
|
534 |
+
for i in range(4, 15, 3):
|
535 |
+
y = np.random.rand(i*(i-1)//2)
|
536 |
+
y = xp.asarray(y)
|
537 |
+
Z = linkage(y)
|
538 |
+
R = inconsistent(Z)
|
539 |
+
R[i//2,1] = -2.0
|
540 |
+
assert_(is_valid_im(R) is False)
|
541 |
+
assert_raises(ValueError, is_valid_im, R, throw=True)
|
542 |
+
|
543 |
+
def test_is_valid_im_4_and_up_neg_dist(self, xp):
|
544 |
+
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
|
545 |
+
# (step size 3) with negative link counts.
|
546 |
+
for i in range(4, 15, 3):
|
547 |
+
y = np.random.rand(i*(i-1)//2)
|
548 |
+
y = xp.asarray(y)
|
549 |
+
Z = linkage(y)
|
550 |
+
R = inconsistent(Z)
|
551 |
+
R[i//2,2] = -0.5
|
552 |
+
assert_(is_valid_im(R) is False)
|
553 |
+
assert_raises(ValueError, is_valid_im, R, throw=True)
|
554 |
+
|
555 |
+
|
556 |
+
class TestNumObsLinkage:
|
557 |
+
|
558 |
+
@skip_if_array_api(cpu_only=True)
|
559 |
+
def test_num_obs_linkage_empty(self, xp):
|
560 |
+
# Tests num_obs_linkage(Z) with empty linkage.
|
561 |
+
Z = xp.zeros((0, 4), dtype=xp.float64)
|
562 |
+
assert_raises(ValueError, num_obs_linkage, Z)
|
563 |
+
|
564 |
+
def test_num_obs_linkage_1x4(self, xp):
|
565 |
+
# Tests num_obs_linkage(Z) on linkage over 2 observations.
|
566 |
+
Z = xp.asarray([[0, 1, 3.0, 2]], dtype=xp.float64)
|
567 |
+
assert_equal(num_obs_linkage(Z), 2)
|
568 |
+
|
569 |
+
def test_num_obs_linkage_2x4(self, xp):
|
570 |
+
# Tests num_obs_linkage(Z) on linkage over 3 observations.
|
571 |
+
Z = xp.asarray([[0, 1, 3.0, 2],
|
572 |
+
[3, 2, 4.0, 3]], dtype=xp.float64)
|
573 |
+
assert_equal(num_obs_linkage(Z), 3)
|
574 |
+
|
575 |
+
@skip_if_array_api(cpu_only=True)
|
576 |
+
def test_num_obs_linkage_4_and_up(self, xp):
|
577 |
+
# Tests num_obs_linkage(Z) on linkage on observation sets between sizes
|
578 |
+
# 4 and 15 (step size 3).
|
579 |
+
for i in range(4, 15, 3):
|
580 |
+
y = np.random.rand(i*(i-1)//2)
|
581 |
+
y = xp.asarray(y)
|
582 |
+
Z = linkage(y)
|
583 |
+
assert_equal(num_obs_linkage(Z), i)
|
584 |
+
|
585 |
+
|
586 |
+
@skip_if_array_api(cpu_only=True)
|
587 |
+
class TestLeavesList:
|
588 |
+
|
589 |
+
def test_leaves_list_1x4(self, xp):
|
590 |
+
# Tests leaves_list(Z) on a 1x4 linkage.
|
591 |
+
Z = xp.asarray([[0, 1, 3.0, 2]], dtype=xp.float64)
|
592 |
+
to_tree(Z)
|
593 |
+
assert_allclose(leaves_list(Z), [0, 1], rtol=1e-15)
|
594 |
+
|
595 |
+
def test_leaves_list_2x4(self, xp):
|
596 |
+
# Tests leaves_list(Z) on a 2x4 linkage.
|
597 |
+
Z = xp.asarray([[0, 1, 3.0, 2],
|
598 |
+
[3, 2, 4.0, 3]], dtype=xp.float64)
|
599 |
+
to_tree(Z)
|
600 |
+
assert_allclose(leaves_list(Z), [0, 1, 2], rtol=1e-15)
|
601 |
+
|
602 |
+
def test_leaves_list_Q(self, xp):
|
603 |
+
for method in ['single', 'complete', 'average', 'weighted', 'centroid',
|
604 |
+
'median', 'ward']:
|
605 |
+
self.check_leaves_list_Q(method, xp)
|
606 |
+
|
607 |
+
def check_leaves_list_Q(self, method, xp):
|
608 |
+
# Tests leaves_list(Z) on the Q data set
|
609 |
+
X = xp.asarray(hierarchy_test_data.Q_X)
|
610 |
+
Z = linkage(X, method)
|
611 |
+
node = to_tree(Z)
|
612 |
+
assert_allclose(node.pre_order(), leaves_list(Z), rtol=1e-15)
|
613 |
+
|
614 |
+
def test_Q_subtree_pre_order(self, xp):
|
615 |
+
# Tests that pre_order() works when called on sub-trees.
|
616 |
+
X = xp.asarray(hierarchy_test_data.Q_X)
|
617 |
+
Z = linkage(X, 'single')
|
618 |
+
node = to_tree(Z)
|
619 |
+
assert_allclose(node.pre_order(), (node.get_left().pre_order()
|
620 |
+
+ node.get_right().pre_order()),
|
621 |
+
rtol=1e-15)
|
622 |
+
|
623 |
+
|
624 |
+
@skip_if_array_api(cpu_only=True)
|
625 |
+
class TestCorrespond:
|
626 |
+
|
627 |
+
def test_correspond_empty(self, xp):
|
628 |
+
# Tests correspond(Z, y) with empty linkage and condensed distance matrix.
|
629 |
+
y = xp.zeros((0,), dtype=xp.float64)
|
630 |
+
Z = xp.zeros((0,4), dtype=xp.float64)
|
631 |
+
assert_raises(ValueError, correspond, Z, y)
|
632 |
+
|
633 |
+
def test_correspond_2_and_up(self, xp):
|
634 |
+
# Tests correspond(Z, y) on linkage and CDMs over observation sets of
|
635 |
+
# different sizes.
|
636 |
+
for i in range(2, 4):
|
637 |
+
y = np.random.rand(i*(i-1)//2)
|
638 |
+
y = xp.asarray(y)
|
639 |
+
Z = linkage(y)
|
640 |
+
assert_(correspond(Z, y))
|
641 |
+
for i in range(4, 15, 3):
|
642 |
+
y = np.random.rand(i*(i-1)//2)
|
643 |
+
y = xp.asarray(y)
|
644 |
+
Z = linkage(y)
|
645 |
+
assert_(correspond(Z, y))
|
646 |
+
|
647 |
+
def test_correspond_4_and_up(self, xp):
|
648 |
+
# Tests correspond(Z, y) on linkage and CDMs over observation sets of
|
649 |
+
# different sizes. Correspondence should be false.
|
650 |
+
for (i, j) in (list(zip(list(range(2, 4)), list(range(3, 5)))) +
|
651 |
+
list(zip(list(range(3, 5)), list(range(2, 4))))):
|
652 |
+
y = np.random.rand(i*(i-1)//2)
|
653 |
+
y2 = np.random.rand(j*(j-1)//2)
|
654 |
+
y = xp.asarray(y)
|
655 |
+
y2 = xp.asarray(y2)
|
656 |
+
Z = linkage(y)
|
657 |
+
Z2 = linkage(y2)
|
658 |
+
assert not correspond(Z, y2)
|
659 |
+
assert not correspond(Z2, y)
|
660 |
+
|
661 |
+
def test_correspond_4_and_up_2(self, xp):
|
662 |
+
# Tests correspond(Z, y) on linkage and CDMs over observation sets of
|
663 |
+
# different sizes. Correspondence should be false.
|
664 |
+
for (i, j) in (list(zip(list(range(2, 7)), list(range(16, 21)))) +
|
665 |
+
list(zip(list(range(2, 7)), list(range(16, 21))))):
|
666 |
+
y = np.random.rand(i*(i-1)//2)
|
667 |
+
y2 = np.random.rand(j*(j-1)//2)
|
668 |
+
y = xp.asarray(y)
|
669 |
+
y2 = xp.asarray(y2)
|
670 |
+
Z = linkage(y)
|
671 |
+
Z2 = linkage(y2)
|
672 |
+
assert not correspond(Z, y2)
|
673 |
+
assert not correspond(Z2, y)
|
674 |
+
|
675 |
+
def test_num_obs_linkage_multi_matrix(self, xp):
|
676 |
+
# Tests num_obs_linkage with observation matrices of multiple sizes.
|
677 |
+
for n in range(2, 10):
|
678 |
+
X = np.random.rand(n, 4)
|
679 |
+
Y = pdist(X)
|
680 |
+
Y = xp.asarray(Y)
|
681 |
+
Z = linkage(Y)
|
682 |
+
assert_equal(num_obs_linkage(Z), n)
|
683 |
+
|
684 |
+
|
685 |
+
@skip_if_array_api(cpu_only=True)
|
686 |
+
class TestIsMonotonic:
|
687 |
+
|
688 |
+
def test_is_monotonic_empty(self, xp):
|
689 |
+
# Tests is_monotonic(Z) on an empty linkage.
|
690 |
+
Z = xp.zeros((0, 4), dtype=xp.float64)
|
691 |
+
assert_raises(ValueError, is_monotonic, Z)
|
692 |
+
|
693 |
+
def test_is_monotonic_1x4(self, xp):
|
694 |
+
# Tests is_monotonic(Z) on 1x4 linkage. Expecting True.
|
695 |
+
Z = xp.asarray([[0, 1, 0.3, 2]], dtype=xp.float64)
|
696 |
+
assert is_monotonic(Z)
|
697 |
+
|
698 |
+
def test_is_monotonic_2x4_T(self, xp):
|
699 |
+
# Tests is_monotonic(Z) on 2x4 linkage. Expecting True.
|
700 |
+
Z = xp.asarray([[0, 1, 0.3, 2],
|
701 |
+
[2, 3, 0.4, 3]], dtype=xp.float64)
|
702 |
+
assert is_monotonic(Z)
|
703 |
+
|
704 |
+
def test_is_monotonic_2x4_F(self, xp):
|
705 |
+
# Tests is_monotonic(Z) on 2x4 linkage. Expecting False.
|
706 |
+
Z = xp.asarray([[0, 1, 0.4, 2],
|
707 |
+
[2, 3, 0.3, 3]], dtype=xp.float64)
|
708 |
+
assert not is_monotonic(Z)
|
709 |
+
|
710 |
+
def test_is_monotonic_3x4_T(self, xp):
|
711 |
+
# Tests is_monotonic(Z) on 3x4 linkage. Expecting True.
|
712 |
+
Z = xp.asarray([[0, 1, 0.3, 2],
|
713 |
+
[2, 3, 0.4, 2],
|
714 |
+
[4, 5, 0.6, 4]], dtype=xp.float64)
|
715 |
+
assert is_monotonic(Z)
|
716 |
+
|
717 |
+
def test_is_monotonic_3x4_F1(self, xp):
|
718 |
+
# Tests is_monotonic(Z) on 3x4 linkage (case 1). Expecting False.
|
719 |
+
Z = xp.asarray([[0, 1, 0.3, 2],
|
720 |
+
[2, 3, 0.2, 2],
|
721 |
+
[4, 5, 0.6, 4]], dtype=xp.float64)
|
722 |
+
assert not is_monotonic(Z)
|
723 |
+
|
724 |
+
def test_is_monotonic_3x4_F2(self, xp):
|
725 |
+
# Tests is_monotonic(Z) on 3x4 linkage (case 2). Expecting False.
|
726 |
+
Z = xp.asarray([[0, 1, 0.8, 2],
|
727 |
+
[2, 3, 0.4, 2],
|
728 |
+
[4, 5, 0.6, 4]], dtype=xp.float64)
|
729 |
+
assert not is_monotonic(Z)
|
730 |
+
|
731 |
+
def test_is_monotonic_3x4_F3(self, xp):
|
732 |
+
# Tests is_monotonic(Z) on 3x4 linkage (case 3). Expecting False
|
733 |
+
Z = xp.asarray([[0, 1, 0.3, 2],
|
734 |
+
[2, 3, 0.4, 2],
|
735 |
+
[4, 5, 0.2, 4]], dtype=xp.float64)
|
736 |
+
assert not is_monotonic(Z)
|
737 |
+
|
738 |
+
def test_is_monotonic_tdist_linkage1(self, xp):
|
739 |
+
# Tests is_monotonic(Z) on clustering generated by single linkage on
|
740 |
+
# tdist data set. Expecting True.
|
741 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
742 |
+
assert is_monotonic(Z)
|
743 |
+
|
744 |
+
def test_is_monotonic_tdist_linkage2(self, xp):
|
745 |
+
# Tests is_monotonic(Z) on clustering generated by single linkage on
|
746 |
+
# tdist data set. Perturbing. Expecting False.
|
747 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
748 |
+
Z[2,2] = 0.0
|
749 |
+
assert not is_monotonic(Z)
|
750 |
+
|
751 |
+
def test_is_monotonic_Q_linkage(self, xp):
|
752 |
+
# Tests is_monotonic(Z) on clustering generated by single linkage on
|
753 |
+
# Q data set. Expecting True.
|
754 |
+
X = xp.asarray(hierarchy_test_data.Q_X)
|
755 |
+
Z = linkage(X, 'single')
|
756 |
+
assert is_monotonic(Z)
|
757 |
+
|
758 |
+
|
759 |
+
@skip_if_array_api(cpu_only=True)
|
760 |
+
class TestMaxDists:
|
761 |
+
|
762 |
+
def test_maxdists_empty_linkage(self, xp):
|
763 |
+
# Tests maxdists(Z) on empty linkage. Expecting exception.
|
764 |
+
Z = xp.zeros((0, 4), dtype=xp.float64)
|
765 |
+
assert_raises(ValueError, maxdists, Z)
|
766 |
+
|
767 |
+
def test_maxdists_one_cluster_linkage(self, xp):
|
768 |
+
# Tests maxdists(Z) on linkage with one cluster.
|
769 |
+
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
|
770 |
+
MD = maxdists(Z)
|
771 |
+
expectedMD = calculate_maximum_distances(Z, xp)
|
772 |
+
xp_assert_close(MD, expectedMD, atol=1e-15)
|
773 |
+
|
774 |
+
def test_maxdists_Q_linkage(self, xp):
|
775 |
+
for method in ['single', 'complete', 'ward', 'centroid', 'median']:
|
776 |
+
self.check_maxdists_Q_linkage(method, xp)
|
777 |
+
|
778 |
+
def check_maxdists_Q_linkage(self, method, xp):
|
779 |
+
# Tests maxdists(Z) on the Q data set
|
780 |
+
X = xp.asarray(hierarchy_test_data.Q_X)
|
781 |
+
Z = linkage(X, method)
|
782 |
+
MD = maxdists(Z)
|
783 |
+
expectedMD = calculate_maximum_distances(Z, xp)
|
784 |
+
xp_assert_close(MD, expectedMD, atol=1e-15)
|
785 |
+
|
786 |
+
|
787 |
+
class TestMaxInconsts:
|
788 |
+
|
789 |
+
@skip_if_array_api(cpu_only=True)
|
790 |
+
def test_maxinconsts_empty_linkage(self, xp):
|
791 |
+
# Tests maxinconsts(Z, R) on empty linkage. Expecting exception.
|
792 |
+
Z = xp.zeros((0, 4), dtype=xp.float64)
|
793 |
+
R = xp.zeros((0, 4), dtype=xp.float64)
|
794 |
+
assert_raises(ValueError, maxinconsts, Z, R)
|
795 |
+
|
796 |
+
def test_maxinconsts_difrow_linkage(self, xp):
|
797 |
+
# Tests maxinconsts(Z, R) on linkage and inconsistency matrices with
|
798 |
+
# different numbers of clusters. Expecting exception.
|
799 |
+
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
|
800 |
+
R = np.random.rand(2, 4)
|
801 |
+
R = xp.asarray(R)
|
802 |
+
assert_raises(ValueError, maxinconsts, Z, R)
|
803 |
+
|
804 |
+
@skip_if_array_api(cpu_only=True)
|
805 |
+
def test_maxinconsts_one_cluster_linkage(self, xp):
|
806 |
+
# Tests maxinconsts(Z, R) on linkage with one cluster.
|
807 |
+
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
|
808 |
+
R = xp.asarray([[0, 0, 0, 0.3]], dtype=xp.float64)
|
809 |
+
MD = maxinconsts(Z, R)
|
810 |
+
expectedMD = calculate_maximum_inconsistencies(Z, R, xp=xp)
|
811 |
+
xp_assert_close(MD, expectedMD, atol=1e-15)
|
812 |
+
|
813 |
+
@skip_if_array_api(cpu_only=True)
|
814 |
+
def test_maxinconsts_Q_linkage(self, xp):
|
815 |
+
for method in ['single', 'complete', 'ward', 'centroid', 'median']:
|
816 |
+
self.check_maxinconsts_Q_linkage(method, xp)
|
817 |
+
|
818 |
+
def check_maxinconsts_Q_linkage(self, method, xp):
|
819 |
+
# Tests maxinconsts(Z, R) on the Q data set
|
820 |
+
X = xp.asarray(hierarchy_test_data.Q_X)
|
821 |
+
Z = linkage(X, method)
|
822 |
+
R = inconsistent(Z)
|
823 |
+
MD = maxinconsts(Z, R)
|
824 |
+
expectedMD = calculate_maximum_inconsistencies(Z, R, xp=xp)
|
825 |
+
xp_assert_close(MD, expectedMD, atol=1e-15)
|
826 |
+
|
827 |
+
|
828 |
+
class TestMaxRStat:
|
829 |
+
|
830 |
+
def test_maxRstat_invalid_index(self, xp):
|
831 |
+
for i in [3.3, -1, 4]:
|
832 |
+
self.check_maxRstat_invalid_index(i, xp)
|
833 |
+
|
834 |
+
def check_maxRstat_invalid_index(self, i, xp):
|
835 |
+
# Tests maxRstat(Z, R, i). Expecting exception.
|
836 |
+
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
|
837 |
+
R = xp.asarray([[0, 0, 0, 0.3]], dtype=xp.float64)
|
838 |
+
if isinstance(i, int):
|
839 |
+
assert_raises(ValueError, maxRstat, Z, R, i)
|
840 |
+
else:
|
841 |
+
assert_raises(TypeError, maxRstat, Z, R, i)
|
842 |
+
|
843 |
+
@skip_if_array_api(cpu_only=True)
|
844 |
+
def test_maxRstat_empty_linkage(self, xp):
|
845 |
+
for i in range(4):
|
846 |
+
self.check_maxRstat_empty_linkage(i, xp)
|
847 |
+
|
848 |
+
def check_maxRstat_empty_linkage(self, i, xp):
|
849 |
+
# Tests maxRstat(Z, R, i) on empty linkage. Expecting exception.
|
850 |
+
Z = xp.zeros((0, 4), dtype=xp.float64)
|
851 |
+
R = xp.zeros((0, 4), dtype=xp.float64)
|
852 |
+
assert_raises(ValueError, maxRstat, Z, R, i)
|
853 |
+
|
854 |
+
def test_maxRstat_difrow_linkage(self, xp):
|
855 |
+
for i in range(4):
|
856 |
+
self.check_maxRstat_difrow_linkage(i, xp)
|
857 |
+
|
858 |
+
def check_maxRstat_difrow_linkage(self, i, xp):
|
859 |
+
# Tests maxRstat(Z, R, i) on linkage and inconsistency matrices with
|
860 |
+
# different numbers of clusters. Expecting exception.
|
861 |
+
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
|
862 |
+
R = np.random.rand(2, 4)
|
863 |
+
R = xp.asarray(R)
|
864 |
+
assert_raises(ValueError, maxRstat, Z, R, i)
|
865 |
+
|
866 |
+
@skip_if_array_api(cpu_only=True)
|
867 |
+
def test_maxRstat_one_cluster_linkage(self, xp):
|
868 |
+
for i in range(4):
|
869 |
+
self.check_maxRstat_one_cluster_linkage(i, xp)
|
870 |
+
|
871 |
+
def check_maxRstat_one_cluster_linkage(self, i, xp):
|
872 |
+
# Tests maxRstat(Z, R, i) on linkage with one cluster.
|
873 |
+
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
|
874 |
+
R = xp.asarray([[0, 0, 0, 0.3]], dtype=xp.float64)
|
875 |
+
MD = maxRstat(Z, R, 1)
|
876 |
+
expectedMD = calculate_maximum_inconsistencies(Z, R, 1, xp)
|
877 |
+
xp_assert_close(MD, expectedMD, atol=1e-15)
|
878 |
+
|
879 |
+
@skip_if_array_api(cpu_only=True)
|
880 |
+
def test_maxRstat_Q_linkage(self, xp):
|
881 |
+
for method in ['single', 'complete', 'ward', 'centroid', 'median']:
|
882 |
+
for i in range(4):
|
883 |
+
self.check_maxRstat_Q_linkage(method, i, xp)
|
884 |
+
|
885 |
+
def check_maxRstat_Q_linkage(self, method, i, xp):
|
886 |
+
# Tests maxRstat(Z, R, i) on the Q data set
|
887 |
+
X = xp.asarray(hierarchy_test_data.Q_X)
|
888 |
+
Z = linkage(X, method)
|
889 |
+
R = inconsistent(Z)
|
890 |
+
MD = maxRstat(Z, R, 1)
|
891 |
+
expectedMD = calculate_maximum_inconsistencies(Z, R, 1, xp)
|
892 |
+
xp_assert_close(MD, expectedMD, atol=1e-15)
|
893 |
+
|
894 |
+
|
895 |
+
@skip_if_array_api(cpu_only=True)
|
896 |
+
class TestDendrogram:
|
897 |
+
|
898 |
+
def test_dendrogram_single_linkage_tdist(self, xp):
|
899 |
+
# Tests dendrogram calculation on single linkage of the tdist data set.
|
900 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
901 |
+
R = dendrogram(Z, no_plot=True)
|
902 |
+
leaves = R["leaves"]
|
903 |
+
assert_equal(leaves, [2, 5, 1, 0, 3, 4])
|
904 |
+
|
905 |
+
def test_valid_orientation(self, xp):
|
906 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
907 |
+
assert_raises(ValueError, dendrogram, Z, orientation="foo")
|
908 |
+
|
909 |
+
def test_labels_as_array_or_list(self, xp):
|
910 |
+
# test for gh-12418
|
911 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
912 |
+
labels = xp.asarray([1, 3, 2, 6, 4, 5])
|
913 |
+
result1 = dendrogram(Z, labels=labels, no_plot=True)
|
914 |
+
result2 = dendrogram(Z, labels=list(labels), no_plot=True)
|
915 |
+
assert result1 == result2
|
916 |
+
|
917 |
+
@pytest.mark.skipif(not have_matplotlib, reason="no matplotlib")
|
918 |
+
def test_valid_label_size(self, xp):
|
919 |
+
link = xp.asarray([
|
920 |
+
[0, 1, 1.0, 4],
|
921 |
+
[2, 3, 1.0, 5],
|
922 |
+
[4, 5, 2.0, 6],
|
923 |
+
])
|
924 |
+
plt.figure()
|
925 |
+
with pytest.raises(ValueError) as exc_info:
|
926 |
+
dendrogram(link, labels=list(range(100)))
|
927 |
+
assert "Dimensions of Z and labels must be consistent."\
|
928 |
+
in str(exc_info.value)
|
929 |
+
|
930 |
+
with pytest.raises(
|
931 |
+
ValueError,
|
932 |
+
match="Dimensions of Z and labels must be consistent."):
|
933 |
+
dendrogram(link, labels=[])
|
934 |
+
|
935 |
+
plt.close()
|
936 |
+
|
937 |
+
@pytest.mark.skipif(not have_matplotlib, reason="no matplotlib")
|
938 |
+
def test_dendrogram_plot(self, xp):
|
939 |
+
for orientation in ['top', 'bottom', 'left', 'right']:
|
940 |
+
self.check_dendrogram_plot(orientation, xp)
|
941 |
+
|
942 |
+
def check_dendrogram_plot(self, orientation, xp):
|
943 |
+
# Tests dendrogram plotting.
|
944 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
945 |
+
expected = {'color_list': ['C1', 'C0', 'C0', 'C0', 'C0'],
|
946 |
+
'dcoord': [[0.0, 138.0, 138.0, 0.0],
|
947 |
+
[0.0, 219.0, 219.0, 0.0],
|
948 |
+
[0.0, 255.0, 255.0, 219.0],
|
949 |
+
[0.0, 268.0, 268.0, 255.0],
|
950 |
+
[138.0, 295.0, 295.0, 268.0]],
|
951 |
+
'icoord': [[5.0, 5.0, 15.0, 15.0],
|
952 |
+
[45.0, 45.0, 55.0, 55.0],
|
953 |
+
[35.0, 35.0, 50.0, 50.0],
|
954 |
+
[25.0, 25.0, 42.5, 42.5],
|
955 |
+
[10.0, 10.0, 33.75, 33.75]],
|
956 |
+
'ivl': ['2', '5', '1', '0', '3', '4'],
|
957 |
+
'leaves': [2, 5, 1, 0, 3, 4],
|
958 |
+
'leaves_color_list': ['C1', 'C1', 'C0', 'C0', 'C0', 'C0'],
|
959 |
+
}
|
960 |
+
|
961 |
+
fig = plt.figure()
|
962 |
+
ax = fig.add_subplot(221)
|
963 |
+
|
964 |
+
# test that dendrogram accepts ax keyword
|
965 |
+
R1 = dendrogram(Z, ax=ax, orientation=orientation)
|
966 |
+
R1['dcoord'] = np.asarray(R1['dcoord'])
|
967 |
+
assert_equal(R1, expected)
|
968 |
+
|
969 |
+
# test that dendrogram accepts and handle the leaf_font_size and
|
970 |
+
# leaf_rotation keywords
|
971 |
+
dendrogram(Z, ax=ax, orientation=orientation,
|
972 |
+
leaf_font_size=20, leaf_rotation=90)
|
973 |
+
testlabel = (
|
974 |
+
ax.get_xticklabels()[0]
|
975 |
+
if orientation in ['top', 'bottom']
|
976 |
+
else ax.get_yticklabels()[0]
|
977 |
+
)
|
978 |
+
assert_equal(testlabel.get_rotation(), 90)
|
979 |
+
assert_equal(testlabel.get_size(), 20)
|
980 |
+
dendrogram(Z, ax=ax, orientation=orientation,
|
981 |
+
leaf_rotation=90)
|
982 |
+
testlabel = (
|
983 |
+
ax.get_xticklabels()[0]
|
984 |
+
if orientation in ['top', 'bottom']
|
985 |
+
else ax.get_yticklabels()[0]
|
986 |
+
)
|
987 |
+
assert_equal(testlabel.get_rotation(), 90)
|
988 |
+
dendrogram(Z, ax=ax, orientation=orientation,
|
989 |
+
leaf_font_size=20)
|
990 |
+
testlabel = (
|
991 |
+
ax.get_xticklabels()[0]
|
992 |
+
if orientation in ['top', 'bottom']
|
993 |
+
else ax.get_yticklabels()[0]
|
994 |
+
)
|
995 |
+
assert_equal(testlabel.get_size(), 20)
|
996 |
+
plt.close()
|
997 |
+
|
998 |
+
# test plotting to gca (will import pylab)
|
999 |
+
R2 = dendrogram(Z, orientation=orientation)
|
1000 |
+
plt.close()
|
1001 |
+
R2['dcoord'] = np.asarray(R2['dcoord'])
|
1002 |
+
assert_equal(R2, expected)
|
1003 |
+
|
1004 |
+
@pytest.mark.skipif(not have_matplotlib, reason="no matplotlib")
|
1005 |
+
def test_dendrogram_truncate_mode(self, xp):
|
1006 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
1007 |
+
|
1008 |
+
R = dendrogram(Z, 2, 'lastp', show_contracted=True)
|
1009 |
+
plt.close()
|
1010 |
+
R['dcoord'] = np.asarray(R['dcoord'])
|
1011 |
+
assert_equal(R, {'color_list': ['C0'],
|
1012 |
+
'dcoord': [[0.0, 295.0, 295.0, 0.0]],
|
1013 |
+
'icoord': [[5.0, 5.0, 15.0, 15.0]],
|
1014 |
+
'ivl': ['(2)', '(4)'],
|
1015 |
+
'leaves': [6, 9],
|
1016 |
+
'leaves_color_list': ['C0', 'C0'],
|
1017 |
+
})
|
1018 |
+
|
1019 |
+
R = dendrogram(Z, 2, 'mtica', show_contracted=True)
|
1020 |
+
plt.close()
|
1021 |
+
R['dcoord'] = np.asarray(R['dcoord'])
|
1022 |
+
assert_equal(R, {'color_list': ['C1', 'C0', 'C0', 'C0'],
|
1023 |
+
'dcoord': [[0.0, 138.0, 138.0, 0.0],
|
1024 |
+
[0.0, 255.0, 255.0, 0.0],
|
1025 |
+
[0.0, 268.0, 268.0, 255.0],
|
1026 |
+
[138.0, 295.0, 295.0, 268.0]],
|
1027 |
+
'icoord': [[5.0, 5.0, 15.0, 15.0],
|
1028 |
+
[35.0, 35.0, 45.0, 45.0],
|
1029 |
+
[25.0, 25.0, 40.0, 40.0],
|
1030 |
+
[10.0, 10.0, 32.5, 32.5]],
|
1031 |
+
'ivl': ['2', '5', '1', '0', '(2)'],
|
1032 |
+
'leaves': [2, 5, 1, 0, 7],
|
1033 |
+
'leaves_color_list': ['C1', 'C1', 'C0', 'C0', 'C0'],
|
1034 |
+
})
|
1035 |
+
|
1036 |
+
def test_dendrogram_colors(self, xp):
|
1037 |
+
# Tests dendrogram plots with alternate colors
|
1038 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
1039 |
+
|
1040 |
+
set_link_color_palette(['c', 'm', 'y', 'k'])
|
1041 |
+
R = dendrogram(Z, no_plot=True,
|
1042 |
+
above_threshold_color='g', color_threshold=250)
|
1043 |
+
set_link_color_palette(['g', 'r', 'c', 'm', 'y', 'k'])
|
1044 |
+
|
1045 |
+
color_list = R['color_list']
|
1046 |
+
assert_equal(color_list, ['c', 'm', 'g', 'g', 'g'])
|
1047 |
+
|
1048 |
+
# reset color palette (global list)
|
1049 |
+
set_link_color_palette(None)
|
1050 |
+
|
1051 |
+
def test_dendrogram_leaf_colors_zero_dist(self, xp):
|
1052 |
+
# tests that the colors of leafs are correct for tree
|
1053 |
+
# with two identical points
|
1054 |
+
x = xp.asarray([[1, 0, 0],
|
1055 |
+
[0, 0, 1],
|
1056 |
+
[0, 2, 0],
|
1057 |
+
[0, 0, 1],
|
1058 |
+
[0, 1, 0],
|
1059 |
+
[0, 1, 0]])
|
1060 |
+
z = linkage(x, "single")
|
1061 |
+
d = dendrogram(z, no_plot=True)
|
1062 |
+
exp_colors = ['C0', 'C1', 'C1', 'C0', 'C2', 'C2']
|
1063 |
+
colors = d["leaves_color_list"]
|
1064 |
+
assert_equal(colors, exp_colors)
|
1065 |
+
|
1066 |
+
def test_dendrogram_leaf_colors(self, xp):
|
1067 |
+
# tests that the colors are correct for a tree
|
1068 |
+
# with two near points ((0, 0, 1.1) and (0, 0, 1))
|
1069 |
+
x = xp.asarray([[1, 0, 0],
|
1070 |
+
[0, 0, 1.1],
|
1071 |
+
[0, 2, 0],
|
1072 |
+
[0, 0, 1],
|
1073 |
+
[0, 1, 0],
|
1074 |
+
[0, 1, 0]])
|
1075 |
+
z = linkage(x, "single")
|
1076 |
+
d = dendrogram(z, no_plot=True)
|
1077 |
+
exp_colors = ['C0', 'C1', 'C1', 'C0', 'C2', 'C2']
|
1078 |
+
colors = d["leaves_color_list"]
|
1079 |
+
assert_equal(colors, exp_colors)
|
1080 |
+
|
1081 |
+
|
1082 |
+
def calculate_maximum_distances(Z, xp):
|
1083 |
+
# Used for testing correctness of maxdists.
|
1084 |
+
n = Z.shape[0] + 1
|
1085 |
+
B = xp.zeros((n-1,), dtype=Z.dtype)
|
1086 |
+
q = xp.zeros((3,))
|
1087 |
+
for i in range(0, n - 1):
|
1088 |
+
q[:] = 0.0
|
1089 |
+
left = Z[i, 0]
|
1090 |
+
right = Z[i, 1]
|
1091 |
+
if left >= n:
|
1092 |
+
q[0] = B[xp.asarray(left, dtype=xp.int64) - n]
|
1093 |
+
if right >= n:
|
1094 |
+
q[1] = B[xp.asarray(right, dtype=xp.int64) - n]
|
1095 |
+
q[2] = Z[i, 2]
|
1096 |
+
B[i] = xp.max(q)
|
1097 |
+
return B
|
1098 |
+
|
1099 |
+
|
1100 |
+
def calculate_maximum_inconsistencies(Z, R, k=3, xp=np):
|
1101 |
+
# Used for testing correctness of maxinconsts.
|
1102 |
+
n = Z.shape[0] + 1
|
1103 |
+
dtype = xp.result_type(Z, R)
|
1104 |
+
B = xp.zeros((n-1,), dtype=dtype)
|
1105 |
+
q = xp.zeros((3,))
|
1106 |
+
for i in range(0, n - 1):
|
1107 |
+
q[:] = 0.0
|
1108 |
+
left = Z[i, 0]
|
1109 |
+
right = Z[i, 1]
|
1110 |
+
if left >= n:
|
1111 |
+
q[0] = B[xp.asarray(left, dtype=xp.int64) - n]
|
1112 |
+
if right >= n:
|
1113 |
+
q[1] = B[xp.asarray(right, dtype=xp.int64) - n]
|
1114 |
+
q[2] = R[i, k]
|
1115 |
+
B[i] = xp.max(q)
|
1116 |
+
return B
|
1117 |
+
|
1118 |
+
|
1119 |
+
@skip_if_array_api(cpu_only=True)
|
1120 |
+
def test_unsupported_uncondensed_distance_matrix_linkage_warning(xp):
|
1121 |
+
assert_warns(ClusterWarning, linkage, xp.asarray([[0, 1], [1, 0]]))
|
1122 |
+
|
1123 |
+
|
1124 |
+
def test_euclidean_linkage_value_error(xp):
|
1125 |
+
for method in scipy.cluster.hierarchy._EUCLIDEAN_METHODS:
|
1126 |
+
assert_raises(ValueError, linkage, xp.asarray([[1, 1], [1, 1]]),
|
1127 |
+
method=method, metric='cityblock')
|
1128 |
+
|
1129 |
+
|
1130 |
+
@skip_if_array_api(cpu_only=True)
|
1131 |
+
def test_2x2_linkage(xp):
|
1132 |
+
Z1 = linkage(xp.asarray([1]), method='single', metric='euclidean')
|
1133 |
+
Z2 = linkage(xp.asarray([[0, 1], [0, 0]]), method='single', metric='euclidean')
|
1134 |
+
xp_assert_close(Z1, Z2, rtol=1e-15)
|
1135 |
+
|
1136 |
+
|
1137 |
+
@skip_if_array_api(cpu_only=True)
|
1138 |
+
def test_node_compare(xp):
|
1139 |
+
np.random.seed(23)
|
1140 |
+
nobs = 50
|
1141 |
+
X = np.random.randn(nobs, 4)
|
1142 |
+
X = xp.asarray(X)
|
1143 |
+
Z = scipy.cluster.hierarchy.ward(X)
|
1144 |
+
tree = to_tree(Z)
|
1145 |
+
assert_(tree > tree.get_left())
|
1146 |
+
assert_(tree.get_right() > tree.get_left())
|
1147 |
+
assert_(tree.get_right() == tree.get_right())
|
1148 |
+
assert_(tree.get_right() != tree.get_left())
|
1149 |
+
|
1150 |
+
|
1151 |
+
@skip_if_array_api(np_only=True, reasons=['`cut_tree` uses non-standard indexing'])
|
1152 |
+
def test_cut_tree(xp):
|
1153 |
+
np.random.seed(23)
|
1154 |
+
nobs = 50
|
1155 |
+
X = np.random.randn(nobs, 4)
|
1156 |
+
X = xp.asarray(X)
|
1157 |
+
Z = scipy.cluster.hierarchy.ward(X)
|
1158 |
+
cutree = cut_tree(Z)
|
1159 |
+
|
1160 |
+
# cutree.dtype varies between int32 and int64 over platforms
|
1161 |
+
xp_assert_close(cutree[:, 0], xp.arange(nobs), rtol=1e-15, check_dtype=False)
|
1162 |
+
xp_assert_close(cutree[:, -1], xp.zeros(nobs), rtol=1e-15, check_dtype=False)
|
1163 |
+
assert_equal(np.asarray(cutree).max(0), np.arange(nobs - 1, -1, -1))
|
1164 |
+
|
1165 |
+
xp_assert_close(cutree[:, [-5]], cut_tree(Z, n_clusters=5), rtol=1e-15)
|
1166 |
+
xp_assert_close(cutree[:, [-5, -10]], cut_tree(Z, n_clusters=[5, 10]), rtol=1e-15)
|
1167 |
+
xp_assert_close(cutree[:, [-10, -5]], cut_tree(Z, n_clusters=[10, 5]), rtol=1e-15)
|
1168 |
+
|
1169 |
+
nodes = _order_cluster_tree(Z)
|
1170 |
+
heights = xp.asarray([node.dist for node in nodes])
|
1171 |
+
|
1172 |
+
xp_assert_close(cutree[:, np.searchsorted(heights, [5])],
|
1173 |
+
cut_tree(Z, height=5), rtol=1e-15)
|
1174 |
+
xp_assert_close(cutree[:, np.searchsorted(heights, [5, 10])],
|
1175 |
+
cut_tree(Z, height=[5, 10]), rtol=1e-15)
|
1176 |
+
xp_assert_close(cutree[:, np.searchsorted(heights, [10, 5])],
|
1177 |
+
cut_tree(Z, height=[10, 5]), rtol=1e-15)
|
1178 |
+
|
1179 |
+
|
1180 |
+
@skip_if_array_api(cpu_only=True)
|
1181 |
+
def test_optimal_leaf_ordering(xp):
|
1182 |
+
# test with the distance vector y
|
1183 |
+
Z = optimal_leaf_ordering(linkage(xp.asarray(hierarchy_test_data.ytdist)),
|
1184 |
+
xp.asarray(hierarchy_test_data.ytdist))
|
1185 |
+
expectedZ = hierarchy_test_data.linkage_ytdist_single_olo
|
1186 |
+
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-10)
|
1187 |
+
|
1188 |
+
# test with the observation matrix X
|
1189 |
+
Z = optimal_leaf_ordering(linkage(xp.asarray(hierarchy_test_data.X), 'ward'),
|
1190 |
+
xp.asarray(hierarchy_test_data.X))
|
1191 |
+
expectedZ = hierarchy_test_data.linkage_X_ward_olo
|
1192 |
+
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06)
|
1193 |
+
|
1194 |
+
|
1195 |
+
@skip_if_array_api(np_only=True, reasons=['`Heap` only supports NumPy backend'])
|
1196 |
+
def test_Heap(xp):
|
1197 |
+
values = xp.asarray([2, -1, 0, -1.5, 3])
|
1198 |
+
heap = Heap(values)
|
1199 |
+
|
1200 |
+
pair = heap.get_min()
|
1201 |
+
assert_equal(pair['key'], 3)
|
1202 |
+
assert_equal(pair['value'], -1.5)
|
1203 |
+
|
1204 |
+
heap.remove_min()
|
1205 |
+
pair = heap.get_min()
|
1206 |
+
assert_equal(pair['key'], 1)
|
1207 |
+
assert_equal(pair['value'], -1)
|
1208 |
+
|
1209 |
+
heap.change_value(1, 2.5)
|
1210 |
+
pair = heap.get_min()
|
1211 |
+
assert_equal(pair['key'], 2)
|
1212 |
+
assert_equal(pair['value'], 0)
|
1213 |
+
|
1214 |
+
heap.remove_min()
|
1215 |
+
heap.remove_min()
|
1216 |
+
|
1217 |
+
heap.change_value(1, 10)
|
1218 |
+
pair = heap.get_min()
|
1219 |
+
assert_equal(pair['key'], 4)
|
1220 |
+
assert_equal(pair['value'], 3)
|
1221 |
+
|
1222 |
+
heap.remove_min()
|
1223 |
+
pair = heap.get_min()
|
1224 |
+
assert_equal(pair['key'], 1)
|
1225 |
+
assert_equal(pair['value'], 10)
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/tests/test_vq.py
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
import sys
|
3 |
+
from copy import deepcopy
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from numpy.testing import (
|
7 |
+
assert_array_equal, assert_equal, assert_, suppress_warnings
|
8 |
+
)
|
9 |
+
import pytest
|
10 |
+
from pytest import raises as assert_raises
|
11 |
+
|
12 |
+
from scipy.cluster.vq import (kmeans, kmeans2, py_vq, vq, whiten,
|
13 |
+
ClusterError, _krandinit)
|
14 |
+
from scipy.cluster import _vq
|
15 |
+
from scipy.conftest import array_api_compatible
|
16 |
+
from scipy.sparse._sputils import matrix
|
17 |
+
|
18 |
+
from scipy._lib._array_api import (
|
19 |
+
SCIPY_ARRAY_API, copy, cov, xp_assert_close, xp_assert_equal
|
20 |
+
)
|
21 |
+
|
22 |
+
pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_if_array_api")]
|
23 |
+
skip_if_array_api = pytest.mark.skip_if_array_api
|
24 |
+
|
25 |
+
TESTDATA_2D = np.array([
|
26 |
+
-2.2, 1.17, -1.63, 1.69, -2.04, 4.38, -3.09, 0.95, -1.7, 4.79, -1.68, 0.68,
|
27 |
+
-2.26, 3.34, -2.29, 2.55, -1.72, -0.72, -1.99, 2.34, -2.75, 3.43, -2.45,
|
28 |
+
2.41, -4.26, 3.65, -1.57, 1.87, -1.96, 4.03, -3.01, 3.86, -2.53, 1.28,
|
29 |
+
-4.0, 3.95, -1.62, 1.25, -3.42, 3.17, -1.17, 0.12, -3.03, -0.27, -2.07,
|
30 |
+
-0.55, -1.17, 1.34, -2.82, 3.08, -2.44, 0.24, -1.71, 2.48, -5.23, 4.29,
|
31 |
+
-2.08, 3.69, -1.89, 3.62, -2.09, 0.26, -0.92, 1.07, -2.25, 0.88, -2.25,
|
32 |
+
2.02, -4.31, 3.86, -2.03, 3.42, -2.76, 0.3, -2.48, -0.29, -3.42, 3.21,
|
33 |
+
-2.3, 1.73, -2.84, 0.69, -1.81, 2.48, -5.24, 4.52, -2.8, 1.31, -1.67,
|
34 |
+
-2.34, -1.18, 2.17, -2.17, 2.82, -1.85, 2.25, -2.45, 1.86, -6.79, 3.94,
|
35 |
+
-2.33, 1.89, -1.55, 2.08, -1.36, 0.93, -2.51, 2.74, -2.39, 3.92, -3.33,
|
36 |
+
2.99, -2.06, -0.9, -2.83, 3.35, -2.59, 3.05, -2.36, 1.85, -1.69, 1.8,
|
37 |
+
-1.39, 0.66, -2.06, 0.38, -1.47, 0.44, -4.68, 3.77, -5.58, 3.44, -2.29,
|
38 |
+
2.24, -1.04, -0.38, -1.85, 4.23, -2.88, 0.73, -2.59, 1.39, -1.34, 1.75,
|
39 |
+
-1.95, 1.3, -2.45, 3.09, -1.99, 3.41, -5.55, 5.21, -1.73, 2.52, -2.17,
|
40 |
+
0.85, -2.06, 0.49, -2.54, 2.07, -2.03, 1.3, -3.23, 3.09, -1.55, 1.44,
|
41 |
+
-0.81, 1.1, -2.99, 2.92, -1.59, 2.18, -2.45, -0.73, -3.12, -1.3, -2.83,
|
42 |
+
0.2, -2.77, 3.24, -1.98, 1.6, -4.59, 3.39, -4.85, 3.75, -2.25, 1.71, -3.28,
|
43 |
+
3.38, -1.74, 0.88, -2.41, 1.92, -2.24, 1.19, -2.48, 1.06, -1.68, -0.62,
|
44 |
+
-1.3, 0.39, -1.78, 2.35, -3.54, 2.44, -1.32, 0.66, -2.38, 2.76, -2.35,
|
45 |
+
3.95, -1.86, 4.32, -2.01, -1.23, -1.79, 2.76, -2.13, -0.13, -5.25, 3.84,
|
46 |
+
-2.24, 1.59, -4.85, 2.96, -2.41, 0.01, -0.43, 0.13, -3.92, 2.91, -1.75,
|
47 |
+
-0.53, -1.69, 1.69, -1.09, 0.15, -2.11, 2.17, -1.53, 1.22, -2.1, -0.86,
|
48 |
+
-2.56, 2.28, -3.02, 3.33, -1.12, 3.86, -2.18, -1.19, -3.03, 0.79, -0.83,
|
49 |
+
0.97, -3.19, 1.45, -1.34, 1.28, -2.52, 4.22, -4.53, 3.22, -1.97, 1.75,
|
50 |
+
-2.36, 3.19, -0.83, 1.53, -1.59, 1.86, -2.17, 2.3, -1.63, 2.71, -2.03,
|
51 |
+
3.75, -2.57, -0.6, -1.47, 1.33, -1.95, 0.7, -1.65, 1.27, -1.42, 1.09, -3.0,
|
52 |
+
3.87, -2.51, 3.06, -2.6, 0.74, -1.08, -0.03, -2.44, 1.31, -2.65, 2.99,
|
53 |
+
-1.84, 1.65, -4.76, 3.75, -2.07, 3.98, -2.4, 2.67, -2.21, 1.49, -1.21,
|
54 |
+
1.22, -5.29, 2.38, -2.85, 2.28, -5.6, 3.78, -2.7, 0.8, -1.81, 3.5, -3.75,
|
55 |
+
4.17, -1.29, 2.99, -5.92, 3.43, -1.83, 1.23, -1.24, -1.04, -2.56, 2.37,
|
56 |
+
-3.26, 0.39, -4.63, 2.51, -4.52, 3.04, -1.7, 0.36, -1.41, 0.04, -2.1, 1.0,
|
57 |
+
-1.87, 3.78, -4.32, 3.59, -2.24, 1.38, -1.99, -0.22, -1.87, 1.95, -0.84,
|
58 |
+
2.17, -5.38, 3.56, -1.27, 2.9, -1.79, 3.31, -5.47, 3.85, -1.44, 3.69,
|
59 |
+
-2.02, 0.37, -1.29, 0.33, -2.34, 2.56, -1.74, -1.27, -1.97, 1.22, -2.51,
|
60 |
+
-0.16, -1.64, -0.96, -2.99, 1.4, -1.53, 3.31, -2.24, 0.45, -2.46, 1.71,
|
61 |
+
-2.88, 1.56, -1.63, 1.46, -1.41, 0.68, -1.96, 2.76, -1.61,
|
62 |
+
2.11]).reshape((200, 2))
|
63 |
+
|
64 |
+
|
65 |
+
# Global data
|
66 |
+
X = np.array([[3.0, 3], [4, 3], [4, 2],
|
67 |
+
[9, 2], [5, 1], [6, 2], [9, 4],
|
68 |
+
[5, 2], [5, 4], [7, 4], [6, 5]])
|
69 |
+
|
70 |
+
CODET1 = np.array([[3.0000, 3.0000],
|
71 |
+
[6.2000, 4.0000],
|
72 |
+
[5.8000, 1.8000]])
|
73 |
+
|
74 |
+
CODET2 = np.array([[11.0/3, 8.0/3],
|
75 |
+
[6.7500, 4.2500],
|
76 |
+
[6.2500, 1.7500]])
|
77 |
+
|
78 |
+
LABEL1 = np.array([0, 1, 2, 2, 2, 2, 1, 2, 1, 1, 1])
|
79 |
+
|
80 |
+
|
81 |
+
class TestWhiten:
|
82 |
+
|
83 |
+
def test_whiten(self, xp):
|
84 |
+
desired = xp.asarray([[5.08738849, 2.97091878],
|
85 |
+
[3.19909255, 0.69660580],
|
86 |
+
[4.51041982, 0.02640918],
|
87 |
+
[4.38567074, 0.95120889],
|
88 |
+
[2.32191480, 1.63195503]])
|
89 |
+
|
90 |
+
obs = xp.asarray([[0.98744510, 0.82766775],
|
91 |
+
[0.62093317, 0.19406729],
|
92 |
+
[0.87545741, 0.00735733],
|
93 |
+
[0.85124403, 0.26499712],
|
94 |
+
[0.45067590, 0.45464607]])
|
95 |
+
xp_assert_close(whiten(obs), desired, rtol=1e-5)
|
96 |
+
|
97 |
+
def test_whiten_zero_std(self, xp):
|
98 |
+
desired = xp.asarray([[0., 1.0, 2.86666544],
|
99 |
+
[0., 1.0, 1.32460034],
|
100 |
+
[0., 1.0, 3.74382172]])
|
101 |
+
|
102 |
+
obs = xp.asarray([[0., 1., 0.74109533],
|
103 |
+
[0., 1., 0.34243798],
|
104 |
+
[0., 1., 0.96785929]])
|
105 |
+
with warnings.catch_warnings(record=True) as w:
|
106 |
+
warnings.simplefilter('always')
|
107 |
+
|
108 |
+
xp_assert_close(whiten(obs), desired, rtol=1e-5)
|
109 |
+
|
110 |
+
assert_equal(len(w), 1)
|
111 |
+
assert_(issubclass(w[-1].category, RuntimeWarning))
|
112 |
+
|
113 |
+
def test_whiten_not_finite(self, xp):
|
114 |
+
for bad_value in xp.nan, xp.inf, -xp.inf:
|
115 |
+
obs = xp.asarray([[0.98744510, bad_value],
|
116 |
+
[0.62093317, 0.19406729],
|
117 |
+
[0.87545741, 0.00735733],
|
118 |
+
[0.85124403, 0.26499712],
|
119 |
+
[0.45067590, 0.45464607]])
|
120 |
+
assert_raises(ValueError, whiten, obs)
|
121 |
+
|
122 |
+
@pytest.mark.skipif(SCIPY_ARRAY_API,
|
123 |
+
reason='`np.matrix` unsupported in array API mode')
|
124 |
+
def test_whiten_not_finite_matrix(self, xp):
|
125 |
+
for bad_value in np.nan, np.inf, -np.inf:
|
126 |
+
obs = matrix([[0.98744510, bad_value],
|
127 |
+
[0.62093317, 0.19406729],
|
128 |
+
[0.87545741, 0.00735733],
|
129 |
+
[0.85124403, 0.26499712],
|
130 |
+
[0.45067590, 0.45464607]])
|
131 |
+
assert_raises(ValueError, whiten, obs)
|
132 |
+
|
133 |
+
|
134 |
+
class TestVq:
|
135 |
+
|
136 |
+
@skip_if_array_api(cpu_only=True)
|
137 |
+
def test_py_vq(self, xp):
|
138 |
+
initc = np.concatenate([[X[0]], [X[1]], [X[2]]])
|
139 |
+
# label1.dtype varies between int32 and int64 over platforms
|
140 |
+
label1 = py_vq(xp.asarray(X), xp.asarray(initc))[0]
|
141 |
+
xp_assert_equal(label1, xp.asarray(LABEL1, dtype=xp.int64),
|
142 |
+
check_dtype=False)
|
143 |
+
|
144 |
+
@pytest.mark.skipif(SCIPY_ARRAY_API,
|
145 |
+
reason='`np.matrix` unsupported in array API mode')
|
146 |
+
def test_py_vq_matrix(self, xp):
|
147 |
+
initc = np.concatenate([[X[0]], [X[1]], [X[2]]])
|
148 |
+
# label1.dtype varies between int32 and int64 over platforms
|
149 |
+
label1 = py_vq(matrix(X), matrix(initc))[0]
|
150 |
+
assert_array_equal(label1, LABEL1)
|
151 |
+
|
152 |
+
@skip_if_array_api(np_only=True, reasons=['`_vq` only supports NumPy backend'])
|
153 |
+
def test_vq(self, xp):
|
154 |
+
initc = np.concatenate([[X[0]], [X[1]], [X[2]]])
|
155 |
+
label1, _ = _vq.vq(xp.asarray(X), xp.asarray(initc))
|
156 |
+
assert_array_equal(label1, LABEL1)
|
157 |
+
_, _ = vq(xp.asarray(X), xp.asarray(initc))
|
158 |
+
|
159 |
+
@pytest.mark.skipif(SCIPY_ARRAY_API,
|
160 |
+
reason='`np.matrix` unsupported in array API mode')
|
161 |
+
def test_vq_matrix(self, xp):
|
162 |
+
initc = np.concatenate([[X[0]], [X[1]], [X[2]]])
|
163 |
+
label1, _ = _vq.vq(matrix(X), matrix(initc))
|
164 |
+
assert_array_equal(label1, LABEL1)
|
165 |
+
_, _ = vq(matrix(X), matrix(initc))
|
166 |
+
|
167 |
+
@skip_if_array_api(cpu_only=True)
|
168 |
+
def test_vq_1d(self, xp):
|
169 |
+
# Test special rank 1 vq algo, python implementation.
|
170 |
+
data = X[:, 0]
|
171 |
+
initc = data[:3]
|
172 |
+
a, b = _vq.vq(data, initc)
|
173 |
+
data = xp.asarray(data)
|
174 |
+
initc = xp.asarray(initc)
|
175 |
+
ta, tb = py_vq(data[:, np.newaxis], initc[:, np.newaxis])
|
176 |
+
# ta.dtype varies between int32 and int64 over platforms
|
177 |
+
xp_assert_equal(ta, xp.asarray(a, dtype=xp.int64), check_dtype=False)
|
178 |
+
xp_assert_equal(tb, xp.asarray(b))
|
179 |
+
|
180 |
+
@skip_if_array_api(np_only=True, reasons=['`_vq` only supports NumPy backend'])
|
181 |
+
def test__vq_sametype(self, xp):
|
182 |
+
a = xp.asarray([1.0, 2.0], dtype=xp.float64)
|
183 |
+
b = a.astype(xp.float32)
|
184 |
+
assert_raises(TypeError, _vq.vq, a, b)
|
185 |
+
|
186 |
+
@skip_if_array_api(np_only=True, reasons=['`_vq` only supports NumPy backend'])
|
187 |
+
def test__vq_invalid_type(self, xp):
|
188 |
+
a = xp.asarray([1, 2], dtype=int)
|
189 |
+
assert_raises(TypeError, _vq.vq, a, a)
|
190 |
+
|
191 |
+
@skip_if_array_api(cpu_only=True)
|
192 |
+
def test_vq_large_nfeat(self, xp):
|
193 |
+
X = np.random.rand(20, 20)
|
194 |
+
code_book = np.random.rand(3, 20)
|
195 |
+
|
196 |
+
codes0, dis0 = _vq.vq(X, code_book)
|
197 |
+
codes1, dis1 = py_vq(
|
198 |
+
xp.asarray(X), xp.asarray(code_book)
|
199 |
+
)
|
200 |
+
xp_assert_close(dis1, xp.asarray(dis0), rtol=1e-5)
|
201 |
+
# codes1.dtype varies between int32 and int64 over platforms
|
202 |
+
xp_assert_equal(codes1, xp.asarray(codes0, dtype=xp.int64), check_dtype=False)
|
203 |
+
|
204 |
+
X = X.astype(np.float32)
|
205 |
+
code_book = code_book.astype(np.float32)
|
206 |
+
|
207 |
+
codes0, dis0 = _vq.vq(X, code_book)
|
208 |
+
codes1, dis1 = py_vq(
|
209 |
+
xp.asarray(X), xp.asarray(code_book)
|
210 |
+
)
|
211 |
+
xp_assert_close(dis1, xp.asarray(dis0, dtype=xp.float64), rtol=1e-5)
|
212 |
+
# codes1.dtype varies between int32 and int64 over platforms
|
213 |
+
xp_assert_equal(codes1, xp.asarray(codes0, dtype=xp.int64), check_dtype=False)
|
214 |
+
|
215 |
+
@skip_if_array_api(cpu_only=True)
|
216 |
+
def test_vq_large_features(self, xp):
|
217 |
+
X = np.random.rand(10, 5) * 1000000
|
218 |
+
code_book = np.random.rand(2, 5) * 1000000
|
219 |
+
|
220 |
+
codes0, dis0 = _vq.vq(X, code_book)
|
221 |
+
codes1, dis1 = py_vq(
|
222 |
+
xp.asarray(X), xp.asarray(code_book)
|
223 |
+
)
|
224 |
+
xp_assert_close(dis1, xp.asarray(dis0), rtol=1e-5)
|
225 |
+
# codes1.dtype varies between int32 and int64 over platforms
|
226 |
+
xp_assert_equal(codes1, xp.asarray(codes0, dtype=xp.int64), check_dtype=False)
|
227 |
+
|
228 |
+
|
229 |
+
# Whole class skipped on GPU for now;
|
230 |
+
# once pdist/cdist are hooked up for CuPy, more tests will work
|
231 |
+
@skip_if_array_api(cpu_only=True)
|
232 |
+
class TestKMean:
|
233 |
+
|
234 |
+
def test_large_features(self, xp):
|
235 |
+
# Generate a data set with large values, and run kmeans on it to
|
236 |
+
# (regression for 1077).
|
237 |
+
d = 300
|
238 |
+
n = 100
|
239 |
+
|
240 |
+
m1 = np.random.randn(d)
|
241 |
+
m2 = np.random.randn(d)
|
242 |
+
x = 10000 * np.random.randn(n, d) - 20000 * m1
|
243 |
+
y = 10000 * np.random.randn(n, d) + 20000 * m2
|
244 |
+
|
245 |
+
data = np.empty((x.shape[0] + y.shape[0], d), np.float64)
|
246 |
+
data[:x.shape[0]] = x
|
247 |
+
data[x.shape[0]:] = y
|
248 |
+
|
249 |
+
kmeans(xp.asarray(data), 2)
|
250 |
+
|
251 |
+
def test_kmeans_simple(self, xp):
|
252 |
+
np.random.seed(54321)
|
253 |
+
initc = np.concatenate([[X[0]], [X[1]], [X[2]]])
|
254 |
+
code1 = kmeans(xp.asarray(X), xp.asarray(initc), iter=1)[0]
|
255 |
+
xp_assert_close(code1, xp.asarray(CODET2))
|
256 |
+
|
257 |
+
@pytest.mark.skipif(SCIPY_ARRAY_API,
|
258 |
+
reason='`np.matrix` unsupported in array API mode')
|
259 |
+
def test_kmeans_simple_matrix(self, xp):
|
260 |
+
np.random.seed(54321)
|
261 |
+
initc = np.concatenate([[X[0]], [X[1]], [X[2]]])
|
262 |
+
code1 = kmeans(matrix(X), matrix(initc), iter=1)[0]
|
263 |
+
xp_assert_close(code1, CODET2)
|
264 |
+
|
265 |
+
def test_kmeans_lost_cluster(self, xp):
|
266 |
+
# This will cause kmeans to have a cluster with no points.
|
267 |
+
data = xp.asarray(TESTDATA_2D)
|
268 |
+
initk = xp.asarray([[-1.8127404, -0.67128041],
|
269 |
+
[2.04621601, 0.07401111],
|
270 |
+
[-2.31149087, -0.05160469]])
|
271 |
+
|
272 |
+
kmeans(data, initk)
|
273 |
+
with suppress_warnings() as sup:
|
274 |
+
sup.filter(UserWarning,
|
275 |
+
"One of the clusters is empty. Re-run kmeans with a "
|
276 |
+
"different initialization")
|
277 |
+
kmeans2(data, initk, missing='warn')
|
278 |
+
|
279 |
+
assert_raises(ClusterError, kmeans2, data, initk, missing='raise')
|
280 |
+
|
281 |
+
def test_kmeans2_simple(self, xp):
|
282 |
+
np.random.seed(12345678)
|
283 |
+
initc = xp.asarray(np.concatenate([[X[0]], [X[1]], [X[2]]]))
|
284 |
+
arrays = [xp.asarray] if SCIPY_ARRAY_API else [np.asarray, matrix]
|
285 |
+
for tp in arrays:
|
286 |
+
code1 = kmeans2(tp(X), tp(initc), iter=1)[0]
|
287 |
+
code2 = kmeans2(tp(X), tp(initc), iter=2)[0]
|
288 |
+
|
289 |
+
xp_assert_close(code1, xp.asarray(CODET1))
|
290 |
+
xp_assert_close(code2, xp.asarray(CODET2))
|
291 |
+
|
292 |
+
@pytest.mark.skipif(SCIPY_ARRAY_API,
|
293 |
+
reason='`np.matrix` unsupported in array API mode')
|
294 |
+
def test_kmeans2_simple_matrix(self, xp):
|
295 |
+
np.random.seed(12345678)
|
296 |
+
initc = xp.asarray(np.concatenate([[X[0]], [X[1]], [X[2]]]))
|
297 |
+
code1 = kmeans2(matrix(X), matrix(initc), iter=1)[0]
|
298 |
+
code2 = kmeans2(matrix(X), matrix(initc), iter=2)[0]
|
299 |
+
|
300 |
+
xp_assert_close(code1, CODET1)
|
301 |
+
xp_assert_close(code2, CODET2)
|
302 |
+
|
303 |
+
def test_kmeans2_rank1(self, xp):
|
304 |
+
data = xp.asarray(TESTDATA_2D)
|
305 |
+
data1 = data[:, 0]
|
306 |
+
|
307 |
+
initc = data1[:3]
|
308 |
+
code = copy(initc, xp=xp)
|
309 |
+
kmeans2(data1, code, iter=1)[0]
|
310 |
+
kmeans2(data1, code, iter=2)[0]
|
311 |
+
|
312 |
+
def test_kmeans2_rank1_2(self, xp):
|
313 |
+
data = xp.asarray(TESTDATA_2D)
|
314 |
+
data1 = data[:, 0]
|
315 |
+
kmeans2(data1, 2, iter=1)
|
316 |
+
|
317 |
+
def test_kmeans2_high_dim(self, xp):
|
318 |
+
# test kmeans2 when the number of dimensions exceeds the number
|
319 |
+
# of input points
|
320 |
+
data = xp.asarray(TESTDATA_2D)
|
321 |
+
data = xp.reshape(data, (20, 20))[:10, :]
|
322 |
+
kmeans2(data, 2)
|
323 |
+
|
324 |
+
def test_kmeans2_init(self, xp):
|
325 |
+
np.random.seed(12345)
|
326 |
+
data = xp.asarray(TESTDATA_2D)
|
327 |
+
k = 3
|
328 |
+
|
329 |
+
kmeans2(data, k, minit='points')
|
330 |
+
kmeans2(data[:, 1], k, minit='points') # special case (1-D)
|
331 |
+
|
332 |
+
kmeans2(data, k, minit='++')
|
333 |
+
kmeans2(data[:, 1], k, minit='++') # special case (1-D)
|
334 |
+
|
335 |
+
# minit='random' can give warnings, filter those
|
336 |
+
with suppress_warnings() as sup:
|
337 |
+
sup.filter(message="One of the clusters is empty. Re-run.")
|
338 |
+
kmeans2(data, k, minit='random')
|
339 |
+
kmeans2(data[:, 1], k, minit='random') # special case (1-D)
|
340 |
+
|
341 |
+
@pytest.mark.skipif(sys.platform == 'win32',
|
342 |
+
reason='Fails with MemoryError in Wine.')
|
343 |
+
def test_krandinit(self, xp):
|
344 |
+
data = xp.asarray(TESTDATA_2D)
|
345 |
+
datas = [xp.reshape(data, (200, 2)),
|
346 |
+
xp.reshape(data, (20, 20))[:10, :]]
|
347 |
+
k = int(1e6)
|
348 |
+
for data in datas:
|
349 |
+
rng = np.random.default_rng(1234)
|
350 |
+
init = _krandinit(data, k, rng, xp)
|
351 |
+
orig_cov = cov(data.T)
|
352 |
+
init_cov = cov(init.T)
|
353 |
+
xp_assert_close(orig_cov, init_cov, atol=1e-2)
|
354 |
+
|
355 |
+
def test_kmeans2_empty(self, xp):
|
356 |
+
# Regression test for gh-1032.
|
357 |
+
assert_raises(ValueError, kmeans2, xp.asarray([]), 2)
|
358 |
+
|
359 |
+
def test_kmeans_0k(self, xp):
|
360 |
+
# Regression test for gh-1073: fail when k arg is 0.
|
361 |
+
assert_raises(ValueError, kmeans, xp.asarray(X), 0)
|
362 |
+
assert_raises(ValueError, kmeans2, xp.asarray(X), 0)
|
363 |
+
assert_raises(ValueError, kmeans2, xp.asarray(X), xp.asarray([]))
|
364 |
+
|
365 |
+
def test_kmeans_large_thres(self, xp):
|
366 |
+
# Regression test for gh-1774
|
367 |
+
x = xp.asarray([1, 2, 3, 4, 10], dtype=xp.float64)
|
368 |
+
res = kmeans(x, 1, thresh=1e16)
|
369 |
+
xp_assert_close(res[0], xp.asarray([4.], dtype=xp.float64))
|
370 |
+
xp_assert_close(res[1], xp.asarray(2.3999999999999999, dtype=xp.float64)[()])
|
371 |
+
|
372 |
+
def test_kmeans2_kpp_low_dim(self, xp):
|
373 |
+
# Regression test for gh-11462
|
374 |
+
prev_res = xp.asarray([[-1.95266667, 0.898],
|
375 |
+
[-3.153375, 3.3945]], dtype=xp.float64)
|
376 |
+
np.random.seed(42)
|
377 |
+
res, _ = kmeans2(xp.asarray(TESTDATA_2D), 2, minit='++')
|
378 |
+
xp_assert_close(res, prev_res)
|
379 |
+
|
380 |
+
def test_kmeans2_kpp_high_dim(self, xp):
|
381 |
+
# Regression test for gh-11462
|
382 |
+
n_dim = 100
|
383 |
+
size = 10
|
384 |
+
centers = np.vstack([5 * np.ones(n_dim),
|
385 |
+
-5 * np.ones(n_dim)])
|
386 |
+
np.random.seed(42)
|
387 |
+
data = np.vstack([
|
388 |
+
np.random.multivariate_normal(centers[0], np.eye(n_dim), size=size),
|
389 |
+
np.random.multivariate_normal(centers[1], np.eye(n_dim), size=size)
|
390 |
+
])
|
391 |
+
|
392 |
+
data = xp.asarray(data)
|
393 |
+
res, _ = kmeans2(data, 2, minit='++')
|
394 |
+
xp_assert_equal(xp.sign(res), xp.sign(xp.asarray(centers)))
|
395 |
+
|
396 |
+
def test_kmeans_diff_convergence(self, xp):
|
397 |
+
# Regression test for gh-8727
|
398 |
+
obs = xp.asarray([-3, -1, 0, 1, 1, 8], dtype=xp.float64)
|
399 |
+
res = kmeans(obs, xp.asarray([-3., 0.99]))
|
400 |
+
xp_assert_close(res[0], xp.asarray([-0.4, 8.], dtype=xp.float64))
|
401 |
+
xp_assert_close(res[1], xp.asarray(1.0666666666666667, dtype=xp.float64)[()])
|
402 |
+
|
403 |
+
def test_kmeans_and_kmeans2_random_seed(self, xp):
|
404 |
+
|
405 |
+
seed_list = [
|
406 |
+
1234, np.random.RandomState(1234), np.random.default_rng(1234)
|
407 |
+
]
|
408 |
+
|
409 |
+
for seed in seed_list:
|
410 |
+
seed1 = deepcopy(seed)
|
411 |
+
seed2 = deepcopy(seed)
|
412 |
+
data = xp.asarray(TESTDATA_2D)
|
413 |
+
# test for kmeans
|
414 |
+
res1, _ = kmeans(data, 2, seed=seed1)
|
415 |
+
res2, _ = kmeans(data, 2, seed=seed2)
|
416 |
+
xp_assert_close(res1, res2, xp=xp) # should be same results
|
417 |
+
# test for kmeans2
|
418 |
+
for minit in ["random", "points", "++"]:
|
419 |
+
res1, _ = kmeans2(data, 2, minit=minit, seed=seed1)
|
420 |
+
res2, _ = kmeans2(data, 2, minit=minit, seed=seed2)
|
421 |
+
xp_assert_close(res1, res2, xp=xp) # should be same results
|
env-llmeval/lib/python3.10/site-packages/scipy/cluster/vq.py
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
K-means clustering and vector quantization (:mod:`scipy.cluster.vq`)
|
3 |
+
====================================================================
|
4 |
+
|
5 |
+
Provides routines for k-means clustering, generating code books
|
6 |
+
from k-means models and quantizing vectors by comparing them with
|
7 |
+
centroids in a code book.
|
8 |
+
|
9 |
+
.. autosummary::
|
10 |
+
:toctree: generated/
|
11 |
+
|
12 |
+
whiten -- Normalize a group of observations so each feature has unit variance
|
13 |
+
vq -- Calculate code book membership of a set of observation vectors
|
14 |
+
kmeans -- Perform k-means on a set of observation vectors forming k clusters
|
15 |
+
kmeans2 -- A different implementation of k-means with more methods
|
16 |
+
-- for initializing centroids
|
17 |
+
|
18 |
+
Background information
|
19 |
+
----------------------
|
20 |
+
The k-means algorithm takes as input the number of clusters to
|
21 |
+
generate, k, and a set of observation vectors to cluster. It
|
22 |
+
returns a set of centroids, one for each of the k clusters. An
|
23 |
+
observation vector is classified with the cluster number or
|
24 |
+
centroid index of the centroid closest to it.
|
25 |
+
|
26 |
+
A vector v belongs to cluster i if it is closer to centroid i than
|
27 |
+
any other centroid. If v belongs to i, we say centroid i is the
|
28 |
+
dominating centroid of v. The k-means algorithm tries to
|
29 |
+
minimize distortion, which is defined as the sum of the squared distances
|
30 |
+
between each observation vector and its dominating centroid.
|
31 |
+
The minimization is achieved by iteratively reclassifying
|
32 |
+
the observations into clusters and recalculating the centroids until
|
33 |
+
a configuration is reached in which the centroids are stable. One can
|
34 |
+
also define a maximum number of iterations.
|
35 |
+
|
36 |
+
Since vector quantization is a natural application for k-means,
|
37 |
+
information theory terminology is often used. The centroid index
|
38 |
+
or cluster index is also referred to as a "code" and the table
|
39 |
+
mapping codes to centroids and, vice versa, is often referred to as a
|
40 |
+
"code book". The result of k-means, a set of centroids, can be
|
41 |
+
used to quantize vectors. Quantization aims to find an encoding of
|
42 |
+
vectors that reduces the expected distortion.
|
43 |
+
|
44 |
+
All routines expect obs to be an M by N array, where the rows are
|
45 |
+
the observation vectors. The codebook is a k by N array, where the
|
46 |
+
ith row is the centroid of code word i. The observation vectors
|
47 |
+
and centroids have the same feature dimension.
|
48 |
+
|
49 |
+
As an example, suppose we wish to compress a 24-bit color image
|
50 |
+
(each pixel is represented by one byte for red, one for blue, and
|
51 |
+
one for green) before sending it over the web. By using a smaller
|
52 |
+
8-bit encoding, we can reduce the amount of data by two
|
53 |
+
thirds. Ideally, the colors for each of the 256 possible 8-bit
|
54 |
+
encoding values should be chosen to minimize distortion of the
|
55 |
+
color. Running k-means with k=256 generates a code book of 256
|
56 |
+
codes, which fills up all possible 8-bit sequences. Instead of
|
57 |
+
sending a 3-byte value for each pixel, the 8-bit centroid index
|
58 |
+
(or code word) of the dominating centroid is transmitted. The code
|
59 |
+
book is also sent over the wire so each 8-bit code can be
|
60 |
+
translated back to a 24-bit pixel value representation. If the
|
61 |
+
image of interest was of an ocean, we would expect many 24-bit
|
62 |
+
blues to be represented by 8-bit codes. If it was an image of a
|
63 |
+
human face, more flesh-tone colors would be represented in the
|
64 |
+
code book.
|
65 |
+
|
66 |
+
"""
|
67 |
+
import warnings
|
68 |
+
import numpy as np
|
69 |
+
from collections import deque
|
70 |
+
from scipy._lib._array_api import (
|
71 |
+
_asarray, array_namespace, size, atleast_nd, copy, cov
|
72 |
+
)
|
73 |
+
from scipy._lib._util import check_random_state, rng_integers
|
74 |
+
from scipy.spatial.distance import cdist
|
75 |
+
|
76 |
+
from . import _vq
|
77 |
+
|
78 |
+
__docformat__ = 'restructuredtext'
|
79 |
+
|
80 |
+
__all__ = ['whiten', 'vq', 'kmeans', 'kmeans2']
|
81 |
+
|
82 |
+
|
83 |
+
class ClusterError(Exception):
|
84 |
+
pass
|
85 |
+
|
86 |
+
|
87 |
+
def whiten(obs, check_finite=True):
|
88 |
+
"""
|
89 |
+
Normalize a group of observations on a per feature basis.
|
90 |
+
|
91 |
+
Before running k-means, it is beneficial to rescale each feature
|
92 |
+
dimension of the observation set by its standard deviation (i.e. "whiten"
|
93 |
+
it - as in "white noise" where each frequency has equal power).
|
94 |
+
Each feature is divided by its standard deviation across all observations
|
95 |
+
to give it unit variance.
|
96 |
+
|
97 |
+
Parameters
|
98 |
+
----------
|
99 |
+
obs : ndarray
|
100 |
+
Each row of the array is an observation. The
|
101 |
+
columns are the features seen during each observation.
|
102 |
+
|
103 |
+
>>> # f0 f1 f2
|
104 |
+
>>> obs = [[ 1., 1., 1.], #o0
|
105 |
+
... [ 2., 2., 2.], #o1
|
106 |
+
... [ 3., 3., 3.], #o2
|
107 |
+
... [ 4., 4., 4.]] #o3
|
108 |
+
|
109 |
+
check_finite : bool, optional
|
110 |
+
Whether to check that the input matrices contain only finite numbers.
|
111 |
+
Disabling may give a performance gain, but may result in problems
|
112 |
+
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
113 |
+
Default: True
|
114 |
+
|
115 |
+
Returns
|
116 |
+
-------
|
117 |
+
result : ndarray
|
118 |
+
Contains the values in `obs` scaled by the standard deviation
|
119 |
+
of each column.
|
120 |
+
|
121 |
+
Examples
|
122 |
+
--------
|
123 |
+
>>> import numpy as np
|
124 |
+
>>> from scipy.cluster.vq import whiten
|
125 |
+
>>> features = np.array([[1.9, 2.3, 1.7],
|
126 |
+
... [1.5, 2.5, 2.2],
|
127 |
+
... [0.8, 0.6, 1.7,]])
|
128 |
+
>>> whiten(features)
|
129 |
+
array([[ 4.17944278, 2.69811351, 7.21248917],
|
130 |
+
[ 3.29956009, 2.93273208, 9.33380951],
|
131 |
+
[ 1.75976538, 0.7038557 , 7.21248917]])
|
132 |
+
|
133 |
+
"""
|
134 |
+
xp = array_namespace(obs)
|
135 |
+
obs = _asarray(obs, check_finite=check_finite, xp=xp)
|
136 |
+
std_dev = xp.std(obs, axis=0)
|
137 |
+
zero_std_mask = std_dev == 0
|
138 |
+
if xp.any(zero_std_mask):
|
139 |
+
std_dev[zero_std_mask] = 1.0
|
140 |
+
warnings.warn("Some columns have standard deviation zero. "
|
141 |
+
"The values of these columns will not change.",
|
142 |
+
RuntimeWarning, stacklevel=2)
|
143 |
+
return obs / std_dev
|
144 |
+
|
145 |
+
|
146 |
+
def vq(obs, code_book, check_finite=True):
|
147 |
+
"""
|
148 |
+
Assign codes from a code book to observations.
|
149 |
+
|
150 |
+
Assigns a code from a code book to each observation. Each
|
151 |
+
observation vector in the 'M' by 'N' `obs` array is compared with the
|
152 |
+
centroids in the code book and assigned the code of the closest
|
153 |
+
centroid.
|
154 |
+
|
155 |
+
The features in `obs` should have unit variance, which can be
|
156 |
+
achieved by passing them through the whiten function. The code
|
157 |
+
book can be created with the k-means algorithm or a different
|
158 |
+
encoding algorithm.
|
159 |
+
|
160 |
+
Parameters
|
161 |
+
----------
|
162 |
+
obs : ndarray
|
163 |
+
Each row of the 'M' x 'N' array is an observation. The columns are
|
164 |
+
the "features" seen during each observation. The features must be
|
165 |
+
whitened first using the whiten function or something equivalent.
|
166 |
+
code_book : ndarray
|
167 |
+
The code book is usually generated using the k-means algorithm.
|
168 |
+
Each row of the array holds a different code, and the columns are
|
169 |
+
the features of the code.
|
170 |
+
|
171 |
+
>>> # f0 f1 f2 f3
|
172 |
+
>>> code_book = [
|
173 |
+
... [ 1., 2., 3., 4.], #c0
|
174 |
+
... [ 1., 2., 3., 4.], #c1
|
175 |
+
... [ 1., 2., 3., 4.]] #c2
|
176 |
+
|
177 |
+
check_finite : bool, optional
|
178 |
+
Whether to check that the input matrices contain only finite numbers.
|
179 |
+
Disabling may give a performance gain, but may result in problems
|
180 |
+
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
181 |
+
Default: True
|
182 |
+
|
183 |
+
Returns
|
184 |
+
-------
|
185 |
+
code : ndarray
|
186 |
+
A length M array holding the code book index for each observation.
|
187 |
+
dist : ndarray
|
188 |
+
The distortion (distance) between the observation and its nearest
|
189 |
+
code.
|
190 |
+
|
191 |
+
Examples
|
192 |
+
--------
|
193 |
+
>>> import numpy as np
|
194 |
+
>>> from scipy.cluster.vq import vq
|
195 |
+
>>> code_book = np.array([[1., 1., 1.],
|
196 |
+
... [2., 2., 2.]])
|
197 |
+
>>> features = np.array([[1.9, 2.3, 1.7],
|
198 |
+
... [1.5, 2.5, 2.2],
|
199 |
+
... [0.8, 0.6, 1.7]])
|
200 |
+
>>> vq(features, code_book)
|
201 |
+
(array([1, 1, 0], dtype=int32), array([0.43588989, 0.73484692, 0.83066239]))
|
202 |
+
|
203 |
+
"""
|
204 |
+
xp = array_namespace(obs, code_book)
|
205 |
+
obs = _asarray(obs, xp=xp, check_finite=check_finite)
|
206 |
+
code_book = _asarray(code_book, xp=xp, check_finite=check_finite)
|
207 |
+
ct = xp.result_type(obs, code_book)
|
208 |
+
|
209 |
+
c_obs = xp.astype(obs, ct, copy=False)
|
210 |
+
c_code_book = xp.astype(code_book, ct, copy=False)
|
211 |
+
|
212 |
+
if xp.isdtype(ct, kind='real floating'):
|
213 |
+
c_obs = np.asarray(c_obs)
|
214 |
+
c_code_book = np.asarray(c_code_book)
|
215 |
+
result = _vq.vq(c_obs, c_code_book)
|
216 |
+
return xp.asarray(result[0]), xp.asarray(result[1])
|
217 |
+
return py_vq(obs, code_book, check_finite=False)
|
218 |
+
|
219 |
+
|
220 |
+
def py_vq(obs, code_book, check_finite=True):
|
221 |
+
""" Python version of vq algorithm.
|
222 |
+
|
223 |
+
The algorithm computes the Euclidean distance between each
|
224 |
+
observation and every frame in the code_book.
|
225 |
+
|
226 |
+
Parameters
|
227 |
+
----------
|
228 |
+
obs : ndarray
|
229 |
+
Expects a rank 2 array. Each row is one observation.
|
230 |
+
code_book : ndarray
|
231 |
+
Code book to use. Same format than obs. Should have same number of
|
232 |
+
features (e.g., columns) than obs.
|
233 |
+
check_finite : bool, optional
|
234 |
+
Whether to check that the input matrices contain only finite numbers.
|
235 |
+
Disabling may give a performance gain, but may result in problems
|
236 |
+
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
237 |
+
Default: True
|
238 |
+
|
239 |
+
Returns
|
240 |
+
-------
|
241 |
+
code : ndarray
|
242 |
+
code[i] gives the label of the ith obversation; its code is
|
243 |
+
code_book[code[i]].
|
244 |
+
mind_dist : ndarray
|
245 |
+
min_dist[i] gives the distance between the ith observation and its
|
246 |
+
corresponding code.
|
247 |
+
|
248 |
+
Notes
|
249 |
+
-----
|
250 |
+
This function is slower than the C version but works for
|
251 |
+
all input types. If the inputs have the wrong types for the
|
252 |
+
C versions of the function, this one is called as a last resort.
|
253 |
+
|
254 |
+
It is about 20 times slower than the C version.
|
255 |
+
|
256 |
+
"""
|
257 |
+
xp = array_namespace(obs, code_book)
|
258 |
+
obs = _asarray(obs, xp=xp, check_finite=check_finite)
|
259 |
+
code_book = _asarray(code_book, xp=xp, check_finite=check_finite)
|
260 |
+
|
261 |
+
if obs.ndim != code_book.ndim:
|
262 |
+
raise ValueError("Observation and code_book should have the same rank")
|
263 |
+
|
264 |
+
if obs.ndim == 1:
|
265 |
+
obs = obs[:, xp.newaxis]
|
266 |
+
code_book = code_book[:, xp.newaxis]
|
267 |
+
|
268 |
+
# Once `cdist` has array API support, this `xp.asarray` call can be removed
|
269 |
+
dist = xp.asarray(cdist(obs, code_book))
|
270 |
+
code = xp.argmin(dist, axis=1)
|
271 |
+
min_dist = xp.min(dist, axis=1)
|
272 |
+
return code, min_dist
|
273 |
+
|
274 |
+
|
275 |
+
def _kmeans(obs, guess, thresh=1e-5, xp=None):
|
276 |
+
""" "raw" version of k-means.
|
277 |
+
|
278 |
+
Returns
|
279 |
+
-------
|
280 |
+
code_book
|
281 |
+
The lowest distortion codebook found.
|
282 |
+
avg_dist
|
283 |
+
The average distance a observation is from a code in the book.
|
284 |
+
Lower means the code_book matches the data better.
|
285 |
+
|
286 |
+
See Also
|
287 |
+
--------
|
288 |
+
kmeans : wrapper around k-means
|
289 |
+
|
290 |
+
Examples
|
291 |
+
--------
|
292 |
+
Note: not whitened in this example.
|
293 |
+
|
294 |
+
>>> import numpy as np
|
295 |
+
>>> from scipy.cluster.vq import _kmeans
|
296 |
+
>>> features = np.array([[ 1.9,2.3],
|
297 |
+
... [ 1.5,2.5],
|
298 |
+
... [ 0.8,0.6],
|
299 |
+
... [ 0.4,1.8],
|
300 |
+
... [ 1.0,1.0]])
|
301 |
+
>>> book = np.array((features[0],features[2]))
|
302 |
+
>>> _kmeans(features,book)
|
303 |
+
(array([[ 1.7 , 2.4 ],
|
304 |
+
[ 0.73333333, 1.13333333]]), 0.40563916697728591)
|
305 |
+
|
306 |
+
"""
|
307 |
+
xp = np if xp is None else xp
|
308 |
+
code_book = guess
|
309 |
+
diff = xp.inf
|
310 |
+
prev_avg_dists = deque([diff], maxlen=2)
|
311 |
+
while diff > thresh:
|
312 |
+
# compute membership and distances between obs and code_book
|
313 |
+
obs_code, distort = vq(obs, code_book, check_finite=False)
|
314 |
+
prev_avg_dists.append(xp.mean(distort, axis=-1))
|
315 |
+
# recalc code_book as centroids of associated obs
|
316 |
+
obs = np.asarray(obs)
|
317 |
+
obs_code = np.asarray(obs_code)
|
318 |
+
code_book, has_members = _vq.update_cluster_means(obs, obs_code,
|
319 |
+
code_book.shape[0])
|
320 |
+
obs = xp.asarray(obs)
|
321 |
+
obs_code = xp.asarray(obs_code)
|
322 |
+
code_book = xp.asarray(code_book)
|
323 |
+
has_members = xp.asarray(has_members)
|
324 |
+
code_book = code_book[has_members]
|
325 |
+
diff = xp.abs(prev_avg_dists[0] - prev_avg_dists[1])
|
326 |
+
|
327 |
+
return code_book, prev_avg_dists[1]
|
328 |
+
|
329 |
+
|
330 |
+
def kmeans(obs, k_or_guess, iter=20, thresh=1e-5, check_finite=True,
|
331 |
+
*, seed=None):
|
332 |
+
"""
|
333 |
+
Performs k-means on a set of observation vectors forming k clusters.
|
334 |
+
|
335 |
+
The k-means algorithm adjusts the classification of the observations
|
336 |
+
into clusters and updates the cluster centroids until the position of
|
337 |
+
the centroids is stable over successive iterations. In this
|
338 |
+
implementation of the algorithm, the stability of the centroids is
|
339 |
+
determined by comparing the absolute value of the change in the average
|
340 |
+
Euclidean distance between the observations and their corresponding
|
341 |
+
centroids against a threshold. This yields
|
342 |
+
a code book mapping centroids to codes and vice versa.
|
343 |
+
|
344 |
+
Parameters
|
345 |
+
----------
|
346 |
+
obs : ndarray
|
347 |
+
Each row of the M by N array is an observation vector. The
|
348 |
+
columns are the features seen during each observation.
|
349 |
+
The features must be whitened first with the `whiten` function.
|
350 |
+
|
351 |
+
k_or_guess : int or ndarray
|
352 |
+
The number of centroids to generate. A code is assigned to
|
353 |
+
each centroid, which is also the row index of the centroid
|
354 |
+
in the code_book matrix generated.
|
355 |
+
|
356 |
+
The initial k centroids are chosen by randomly selecting
|
357 |
+
observations from the observation matrix. Alternatively,
|
358 |
+
passing a k by N array specifies the initial k centroids.
|
359 |
+
|
360 |
+
iter : int, optional
|
361 |
+
The number of times to run k-means, returning the codebook
|
362 |
+
with the lowest distortion. This argument is ignored if
|
363 |
+
initial centroids are specified with an array for the
|
364 |
+
``k_or_guess`` parameter. This parameter does not represent the
|
365 |
+
number of iterations of the k-means algorithm.
|
366 |
+
|
367 |
+
thresh : float, optional
|
368 |
+
Terminates the k-means algorithm if the change in
|
369 |
+
distortion since the last k-means iteration is less than
|
370 |
+
or equal to threshold.
|
371 |
+
|
372 |
+
check_finite : bool, optional
|
373 |
+
Whether to check that the input matrices contain only finite numbers.
|
374 |
+
Disabling may give a performance gain, but may result in problems
|
375 |
+
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
376 |
+
Default: True
|
377 |
+
|
378 |
+
seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional
|
379 |
+
Seed for initializing the pseudo-random number generator.
|
380 |
+
If `seed` is None (or `numpy.random`), the `numpy.random.RandomState`
|
381 |
+
singleton is used.
|
382 |
+
If `seed` is an int, a new ``RandomState`` instance is used,
|
383 |
+
seeded with `seed`.
|
384 |
+
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
385 |
+
that instance is used.
|
386 |
+
The default is None.
|
387 |
+
|
388 |
+
Returns
|
389 |
+
-------
|
390 |
+
codebook : ndarray
|
391 |
+
A k by N array of k centroids. The ith centroid
|
392 |
+
codebook[i] is represented with the code i. The centroids
|
393 |
+
and codes generated represent the lowest distortion seen,
|
394 |
+
not necessarily the globally minimal distortion.
|
395 |
+
Note that the number of centroids is not necessarily the same as the
|
396 |
+
``k_or_guess`` parameter, because centroids assigned to no observations
|
397 |
+
are removed during iterations.
|
398 |
+
|
399 |
+
distortion : float
|
400 |
+
The mean (non-squared) Euclidean distance between the observations
|
401 |
+
passed and the centroids generated. Note the difference to the standard
|
402 |
+
definition of distortion in the context of the k-means algorithm, which
|
403 |
+
is the sum of the squared distances.
|
404 |
+
|
405 |
+
See Also
|
406 |
+
--------
|
407 |
+
kmeans2 : a different implementation of k-means clustering
|
408 |
+
with more methods for generating initial centroids but without
|
409 |
+
using a distortion change threshold as a stopping criterion.
|
410 |
+
|
411 |
+
whiten : must be called prior to passing an observation matrix
|
412 |
+
to kmeans.
|
413 |
+
|
414 |
+
Notes
|
415 |
+
-----
|
416 |
+
For more functionalities or optimal performance, you can use
|
417 |
+
`sklearn.cluster.KMeans <https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html>`_.
|
418 |
+
`This <https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html#comparison-of-high-performance-implementations>`_
|
419 |
+
is a benchmark result of several implementations.
|
420 |
+
|
421 |
+
Examples
|
422 |
+
--------
|
423 |
+
>>> import numpy as np
|
424 |
+
>>> from scipy.cluster.vq import vq, kmeans, whiten
|
425 |
+
>>> import matplotlib.pyplot as plt
|
426 |
+
>>> features = np.array([[ 1.9,2.3],
|
427 |
+
... [ 1.5,2.5],
|
428 |
+
... [ 0.8,0.6],
|
429 |
+
... [ 0.4,1.8],
|
430 |
+
... [ 0.1,0.1],
|
431 |
+
... [ 0.2,1.8],
|
432 |
+
... [ 2.0,0.5],
|
433 |
+
... [ 0.3,1.5],
|
434 |
+
... [ 1.0,1.0]])
|
435 |
+
>>> whitened = whiten(features)
|
436 |
+
>>> book = np.array((whitened[0],whitened[2]))
|
437 |
+
>>> kmeans(whitened,book)
|
438 |
+
(array([[ 2.3110306 , 2.86287398], # random
|
439 |
+
[ 0.93218041, 1.24398691]]), 0.85684700941625547)
|
440 |
+
|
441 |
+
>>> codes = 3
|
442 |
+
>>> kmeans(whitened,codes)
|
443 |
+
(array([[ 2.3110306 , 2.86287398], # random
|
444 |
+
[ 1.32544402, 0.65607529],
|
445 |
+
[ 0.40782893, 2.02786907]]), 0.5196582527686241)
|
446 |
+
|
447 |
+
>>> # Create 50 datapoints in two clusters a and b
|
448 |
+
>>> pts = 50
|
449 |
+
>>> rng = np.random.default_rng()
|
450 |
+
>>> a = rng.multivariate_normal([0, 0], [[4, 1], [1, 4]], size=pts)
|
451 |
+
>>> b = rng.multivariate_normal([30, 10],
|
452 |
+
... [[10, 2], [2, 1]],
|
453 |
+
... size=pts)
|
454 |
+
>>> features = np.concatenate((a, b))
|
455 |
+
>>> # Whiten data
|
456 |
+
>>> whitened = whiten(features)
|
457 |
+
>>> # Find 2 clusters in the data
|
458 |
+
>>> codebook, distortion = kmeans(whitened, 2)
|
459 |
+
>>> # Plot whitened data and cluster centers in red
|
460 |
+
>>> plt.scatter(whitened[:, 0], whitened[:, 1])
|
461 |
+
>>> plt.scatter(codebook[:, 0], codebook[:, 1], c='r')
|
462 |
+
>>> plt.show()
|
463 |
+
|
464 |
+
"""
|
465 |
+
if isinstance(k_or_guess, int):
|
466 |
+
xp = array_namespace(obs)
|
467 |
+
else:
|
468 |
+
xp = array_namespace(obs, k_or_guess)
|
469 |
+
obs = _asarray(obs, xp=xp, check_finite=check_finite)
|
470 |
+
guess = _asarray(k_or_guess, xp=xp, check_finite=check_finite)
|
471 |
+
if iter < 1:
|
472 |
+
raise ValueError("iter must be at least 1, got %s" % iter)
|
473 |
+
|
474 |
+
# Determine whether a count (scalar) or an initial guess (array) was passed.
|
475 |
+
if size(guess) != 1:
|
476 |
+
if size(guess) < 1:
|
477 |
+
raise ValueError("Asked for 0 clusters. Initial book was %s" %
|
478 |
+
guess)
|
479 |
+
return _kmeans(obs, guess, thresh=thresh, xp=xp)
|
480 |
+
|
481 |
+
# k_or_guess is a scalar, now verify that it's an integer
|
482 |
+
k = int(guess)
|
483 |
+
if k != guess:
|
484 |
+
raise ValueError("If k_or_guess is a scalar, it must be an integer.")
|
485 |
+
if k < 1:
|
486 |
+
raise ValueError("Asked for %d clusters." % k)
|
487 |
+
|
488 |
+
rng = check_random_state(seed)
|
489 |
+
|
490 |
+
# initialize best distance value to a large value
|
491 |
+
best_dist = xp.inf
|
492 |
+
for i in range(iter):
|
493 |
+
# the initial code book is randomly selected from observations
|
494 |
+
guess = _kpoints(obs, k, rng, xp)
|
495 |
+
book, dist = _kmeans(obs, guess, thresh=thresh, xp=xp)
|
496 |
+
if dist < best_dist:
|
497 |
+
best_book = book
|
498 |
+
best_dist = dist
|
499 |
+
return best_book, best_dist
|
500 |
+
|
501 |
+
|
502 |
+
def _kpoints(data, k, rng, xp):
|
503 |
+
"""Pick k points at random in data (one row = one observation).
|
504 |
+
|
505 |
+
Parameters
|
506 |
+
----------
|
507 |
+
data : ndarray
|
508 |
+
Expect a rank 1 or 2 array. Rank 1 are assumed to describe one
|
509 |
+
dimensional data, rank 2 multidimensional data, in which case one
|
510 |
+
row is one observation.
|
511 |
+
k : int
|
512 |
+
Number of samples to generate.
|
513 |
+
rng : `numpy.random.Generator` or `numpy.random.RandomState`
|
514 |
+
Random number generator.
|
515 |
+
|
516 |
+
Returns
|
517 |
+
-------
|
518 |
+
x : ndarray
|
519 |
+
A 'k' by 'N' containing the initial centroids
|
520 |
+
|
521 |
+
"""
|
522 |
+
idx = rng.choice(data.shape[0], size=int(k), replace=False)
|
523 |
+
# convert to array with default integer dtype (avoids numpy#25607)
|
524 |
+
idx = xp.asarray(idx, dtype=xp.asarray([1]).dtype)
|
525 |
+
return xp.take(data, idx, axis=0)
|
526 |
+
|
527 |
+
|
528 |
+
def _krandinit(data, k, rng, xp):
|
529 |
+
"""Returns k samples of a random variable whose parameters depend on data.
|
530 |
+
|
531 |
+
More precisely, it returns k observations sampled from a Gaussian random
|
532 |
+
variable whose mean and covariances are the ones estimated from the data.
|
533 |
+
|
534 |
+
Parameters
|
535 |
+
----------
|
536 |
+
data : ndarray
|
537 |
+
Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D
|
538 |
+
data, rank 2 multidimensional data, in which case one
|
539 |
+
row is one observation.
|
540 |
+
k : int
|
541 |
+
Number of samples to generate.
|
542 |
+
rng : `numpy.random.Generator` or `numpy.random.RandomState`
|
543 |
+
Random number generator.
|
544 |
+
|
545 |
+
Returns
|
546 |
+
-------
|
547 |
+
x : ndarray
|
548 |
+
A 'k' by 'N' containing the initial centroids
|
549 |
+
|
550 |
+
"""
|
551 |
+
mu = xp.mean(data, axis=0)
|
552 |
+
k = np.asarray(k)
|
553 |
+
|
554 |
+
if data.ndim == 1:
|
555 |
+
_cov = cov(data)
|
556 |
+
x = rng.standard_normal(size=k)
|
557 |
+
x = xp.asarray(x)
|
558 |
+
x *= xp.sqrt(_cov)
|
559 |
+
elif data.shape[1] > data.shape[0]:
|
560 |
+
# initialize when the covariance matrix is rank deficient
|
561 |
+
_, s, vh = xp.linalg.svd(data - mu, full_matrices=False)
|
562 |
+
x = rng.standard_normal(size=(k, size(s)))
|
563 |
+
x = xp.asarray(x)
|
564 |
+
sVh = s[:, None] * vh / xp.sqrt(data.shape[0] - xp.asarray(1.))
|
565 |
+
x = x @ sVh
|
566 |
+
else:
|
567 |
+
_cov = atleast_nd(cov(data.T), ndim=2)
|
568 |
+
|
569 |
+
# k rows, d cols (one row = one obs)
|
570 |
+
# Generate k sample of a random variable ~ Gaussian(mu, cov)
|
571 |
+
x = rng.standard_normal(size=(k, size(mu)))
|
572 |
+
x = xp.asarray(x)
|
573 |
+
x = x @ xp.linalg.cholesky(_cov).T
|
574 |
+
|
575 |
+
x += mu
|
576 |
+
return x
|
577 |
+
|
578 |
+
|
579 |
+
def _kpp(data, k, rng, xp):
|
580 |
+
""" Picks k points in the data based on the kmeans++ method.
|
581 |
+
|
582 |
+
Parameters
|
583 |
+
----------
|
584 |
+
data : ndarray
|
585 |
+
Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D
|
586 |
+
data, rank 2 multidimensional data, in which case one
|
587 |
+
row is one observation.
|
588 |
+
k : int
|
589 |
+
Number of samples to generate.
|
590 |
+
rng : `numpy.random.Generator` or `numpy.random.RandomState`
|
591 |
+
Random number generator.
|
592 |
+
|
593 |
+
Returns
|
594 |
+
-------
|
595 |
+
init : ndarray
|
596 |
+
A 'k' by 'N' containing the initial centroids.
|
597 |
+
|
598 |
+
References
|
599 |
+
----------
|
600 |
+
.. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
|
601 |
+
careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
|
602 |
+
on Discrete Algorithms, 2007.
|
603 |
+
"""
|
604 |
+
|
605 |
+
ndim = len(data.shape)
|
606 |
+
if ndim == 1:
|
607 |
+
data = data[:, None]
|
608 |
+
|
609 |
+
dims = data.shape[1]
|
610 |
+
|
611 |
+
init = xp.empty((int(k), dims))
|
612 |
+
|
613 |
+
for i in range(k):
|
614 |
+
if i == 0:
|
615 |
+
init[i, :] = data[rng_integers(rng, data.shape[0]), :]
|
616 |
+
|
617 |
+
else:
|
618 |
+
D2 = cdist(init[:i,:], data, metric='sqeuclidean').min(axis=0)
|
619 |
+
probs = D2/D2.sum()
|
620 |
+
cumprobs = probs.cumsum()
|
621 |
+
r = rng.uniform()
|
622 |
+
cumprobs = np.asarray(cumprobs)
|
623 |
+
init[i, :] = data[np.searchsorted(cumprobs, r), :]
|
624 |
+
|
625 |
+
if ndim == 1:
|
626 |
+
init = init[:, 0]
|
627 |
+
return init
|
628 |
+
|
629 |
+
|
630 |
+
_valid_init_meth = {'random': _krandinit, 'points': _kpoints, '++': _kpp}
|
631 |
+
|
632 |
+
|
633 |
+
def _missing_warn():
|
634 |
+
"""Print a warning when called."""
|
635 |
+
warnings.warn("One of the clusters is empty. "
|
636 |
+
"Re-run kmeans with a different initialization.",
|
637 |
+
stacklevel=3)
|
638 |
+
|
639 |
+
|
640 |
+
def _missing_raise():
|
641 |
+
"""Raise a ClusterError when called."""
|
642 |
+
raise ClusterError("One of the clusters is empty. "
|
643 |
+
"Re-run kmeans with a different initialization.")
|
644 |
+
|
645 |
+
|
646 |
+
_valid_miss_meth = {'warn': _missing_warn, 'raise': _missing_raise}
|
647 |
+
|
648 |
+
|
649 |
+
def kmeans2(data, k, iter=10, thresh=1e-5, minit='random',
|
650 |
+
missing='warn', check_finite=True, *, seed=None):
|
651 |
+
"""
|
652 |
+
Classify a set of observations into k clusters using the k-means algorithm.
|
653 |
+
|
654 |
+
The algorithm attempts to minimize the Euclidean distance between
|
655 |
+
observations and centroids. Several initialization methods are
|
656 |
+
included.
|
657 |
+
|
658 |
+
Parameters
|
659 |
+
----------
|
660 |
+
data : ndarray
|
661 |
+
A 'M' by 'N' array of 'M' observations in 'N' dimensions or a length
|
662 |
+
'M' array of 'M' 1-D observations.
|
663 |
+
k : int or ndarray
|
664 |
+
The number of clusters to form as well as the number of
|
665 |
+
centroids to generate. If `minit` initialization string is
|
666 |
+
'matrix', or if a ndarray is given instead, it is
|
667 |
+
interpreted as initial cluster to use instead.
|
668 |
+
iter : int, optional
|
669 |
+
Number of iterations of the k-means algorithm to run. Note
|
670 |
+
that this differs in meaning from the iters parameter to
|
671 |
+
the kmeans function.
|
672 |
+
thresh : float, optional
|
673 |
+
(not used yet)
|
674 |
+
minit : str, optional
|
675 |
+
Method for initialization. Available methods are 'random',
|
676 |
+
'points', '++' and 'matrix':
|
677 |
+
|
678 |
+
'random': generate k centroids from a Gaussian with mean and
|
679 |
+
variance estimated from the data.
|
680 |
+
|
681 |
+
'points': choose k observations (rows) at random from data for
|
682 |
+
the initial centroids.
|
683 |
+
|
684 |
+
'++': choose k observations accordingly to the kmeans++ method
|
685 |
+
(careful seeding)
|
686 |
+
|
687 |
+
'matrix': interpret the k parameter as a k by M (or length k
|
688 |
+
array for 1-D data) array of initial centroids.
|
689 |
+
missing : str, optional
|
690 |
+
Method to deal with empty clusters. Available methods are
|
691 |
+
'warn' and 'raise':
|
692 |
+
|
693 |
+
'warn': give a warning and continue.
|
694 |
+
|
695 |
+
'raise': raise an ClusterError and terminate the algorithm.
|
696 |
+
check_finite : bool, optional
|
697 |
+
Whether to check that the input matrices contain only finite numbers.
|
698 |
+
Disabling may give a performance gain, but may result in problems
|
699 |
+
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
700 |
+
Default: True
|
701 |
+
seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional
|
702 |
+
Seed for initializing the pseudo-random number generator.
|
703 |
+
If `seed` is None (or `numpy.random`), the `numpy.random.RandomState`
|
704 |
+
singleton is used.
|
705 |
+
If `seed` is an int, a new ``RandomState`` instance is used,
|
706 |
+
seeded with `seed`.
|
707 |
+
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
708 |
+
that instance is used.
|
709 |
+
The default is None.
|
710 |
+
|
711 |
+
Returns
|
712 |
+
-------
|
713 |
+
centroid : ndarray
|
714 |
+
A 'k' by 'N' array of centroids found at the last iteration of
|
715 |
+
k-means.
|
716 |
+
label : ndarray
|
717 |
+
label[i] is the code or index of the centroid the
|
718 |
+
ith observation is closest to.
|
719 |
+
|
720 |
+
See Also
|
721 |
+
--------
|
722 |
+
kmeans
|
723 |
+
|
724 |
+
References
|
725 |
+
----------
|
726 |
+
.. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
|
727 |
+
careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
|
728 |
+
on Discrete Algorithms, 2007.
|
729 |
+
|
730 |
+
Examples
|
731 |
+
--------
|
732 |
+
>>> from scipy.cluster.vq import kmeans2
|
733 |
+
>>> import matplotlib.pyplot as plt
|
734 |
+
>>> import numpy as np
|
735 |
+
|
736 |
+
Create z, an array with shape (100, 2) containing a mixture of samples
|
737 |
+
from three multivariate normal distributions.
|
738 |
+
|
739 |
+
>>> rng = np.random.default_rng()
|
740 |
+
>>> a = rng.multivariate_normal([0, 6], [[2, 1], [1, 1.5]], size=45)
|
741 |
+
>>> b = rng.multivariate_normal([2, 0], [[1, -1], [-1, 3]], size=30)
|
742 |
+
>>> c = rng.multivariate_normal([6, 4], [[5, 0], [0, 1.2]], size=25)
|
743 |
+
>>> z = np.concatenate((a, b, c))
|
744 |
+
>>> rng.shuffle(z)
|
745 |
+
|
746 |
+
Compute three clusters.
|
747 |
+
|
748 |
+
>>> centroid, label = kmeans2(z, 3, minit='points')
|
749 |
+
>>> centroid
|
750 |
+
array([[ 2.22274463, -0.61666946], # may vary
|
751 |
+
[ 0.54069047, 5.86541444],
|
752 |
+
[ 6.73846769, 4.01991898]])
|
753 |
+
|
754 |
+
How many points are in each cluster?
|
755 |
+
|
756 |
+
>>> counts = np.bincount(label)
|
757 |
+
>>> counts
|
758 |
+
array([29, 51, 20]) # may vary
|
759 |
+
|
760 |
+
Plot the clusters.
|
761 |
+
|
762 |
+
>>> w0 = z[label == 0]
|
763 |
+
>>> w1 = z[label == 1]
|
764 |
+
>>> w2 = z[label == 2]
|
765 |
+
>>> plt.plot(w0[:, 0], w0[:, 1], 'o', alpha=0.5, label='cluster 0')
|
766 |
+
>>> plt.plot(w1[:, 0], w1[:, 1], 'd', alpha=0.5, label='cluster 1')
|
767 |
+
>>> plt.plot(w2[:, 0], w2[:, 1], 's', alpha=0.5, label='cluster 2')
|
768 |
+
>>> plt.plot(centroid[:, 0], centroid[:, 1], 'k*', label='centroids')
|
769 |
+
>>> plt.axis('equal')
|
770 |
+
>>> plt.legend(shadow=True)
|
771 |
+
>>> plt.show()
|
772 |
+
|
773 |
+
"""
|
774 |
+
if int(iter) < 1:
|
775 |
+
raise ValueError("Invalid iter (%s), "
|
776 |
+
"must be a positive integer." % iter)
|
777 |
+
try:
|
778 |
+
miss_meth = _valid_miss_meth[missing]
|
779 |
+
except KeyError as e:
|
780 |
+
raise ValueError(f"Unknown missing method {missing!r}") from e
|
781 |
+
|
782 |
+
if isinstance(k, int):
|
783 |
+
xp = array_namespace(data)
|
784 |
+
else:
|
785 |
+
xp = array_namespace(data, k)
|
786 |
+
data = _asarray(data, xp=xp, check_finite=check_finite)
|
787 |
+
code_book = copy(k, xp=xp)
|
788 |
+
if data.ndim == 1:
|
789 |
+
d = 1
|
790 |
+
elif data.ndim == 2:
|
791 |
+
d = data.shape[1]
|
792 |
+
else:
|
793 |
+
raise ValueError("Input of rank > 2 is not supported.")
|
794 |
+
|
795 |
+
if size(data) < 1 or size(code_book) < 1:
|
796 |
+
raise ValueError("Empty input is not supported.")
|
797 |
+
|
798 |
+
# If k is not a single value, it should be compatible with data's shape
|
799 |
+
if minit == 'matrix' or size(code_book) > 1:
|
800 |
+
if data.ndim != code_book.ndim:
|
801 |
+
raise ValueError("k array doesn't match data rank")
|
802 |
+
nc = code_book.shape[0]
|
803 |
+
if data.ndim > 1 and code_book.shape[1] != d:
|
804 |
+
raise ValueError("k array doesn't match data dimension")
|
805 |
+
else:
|
806 |
+
nc = int(code_book)
|
807 |
+
|
808 |
+
if nc < 1:
|
809 |
+
raise ValueError("Cannot ask kmeans2 for %d clusters"
|
810 |
+
" (k was %s)" % (nc, code_book))
|
811 |
+
elif nc != code_book:
|
812 |
+
warnings.warn("k was not an integer, was converted.", stacklevel=2)
|
813 |
+
|
814 |
+
try:
|
815 |
+
init_meth = _valid_init_meth[minit]
|
816 |
+
except KeyError as e:
|
817 |
+
raise ValueError(f"Unknown init method {minit!r}") from e
|
818 |
+
else:
|
819 |
+
rng = check_random_state(seed)
|
820 |
+
code_book = init_meth(data, code_book, rng, xp)
|
821 |
+
|
822 |
+
data = np.asarray(data)
|
823 |
+
code_book = np.asarray(code_book)
|
824 |
+
for i in range(iter):
|
825 |
+
# Compute the nearest neighbor for each obs using the current code book
|
826 |
+
label = vq(data, code_book, check_finite=check_finite)[0]
|
827 |
+
# Update the code book by computing centroids
|
828 |
+
new_code_book, has_members = _vq.update_cluster_means(data, label, nc)
|
829 |
+
if not has_members.all():
|
830 |
+
miss_meth()
|
831 |
+
# Set the empty clusters to their previous positions
|
832 |
+
new_code_book[~has_members] = code_book[~has_members]
|
833 |
+
code_book = new_code_book
|
834 |
+
|
835 |
+
return xp.asarray(code_book), xp.asarray(label)
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__init__.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
=========================================================
|
3 |
+
Legacy discrete Fourier transforms (:mod:`scipy.fftpack`)
|
4 |
+
=========================================================
|
5 |
+
|
6 |
+
.. legacy::
|
7 |
+
|
8 |
+
New code should use :mod:`scipy.fft`.
|
9 |
+
|
10 |
+
Fast Fourier Transforms (FFTs)
|
11 |
+
==============================
|
12 |
+
|
13 |
+
.. autosummary::
|
14 |
+
:toctree: generated/
|
15 |
+
|
16 |
+
fft - Fast (discrete) Fourier Transform (FFT)
|
17 |
+
ifft - Inverse FFT
|
18 |
+
fft2 - 2-D FFT
|
19 |
+
ifft2 - 2-D inverse FFT
|
20 |
+
fftn - N-D FFT
|
21 |
+
ifftn - N-D inverse FFT
|
22 |
+
rfft - FFT of strictly real-valued sequence
|
23 |
+
irfft - Inverse of rfft
|
24 |
+
dct - Discrete cosine transform
|
25 |
+
idct - Inverse discrete cosine transform
|
26 |
+
dctn - N-D Discrete cosine transform
|
27 |
+
idctn - N-D Inverse discrete cosine transform
|
28 |
+
dst - Discrete sine transform
|
29 |
+
idst - Inverse discrete sine transform
|
30 |
+
dstn - N-D Discrete sine transform
|
31 |
+
idstn - N-D Inverse discrete sine transform
|
32 |
+
|
33 |
+
Differential and pseudo-differential operators
|
34 |
+
==============================================
|
35 |
+
|
36 |
+
.. autosummary::
|
37 |
+
:toctree: generated/
|
38 |
+
|
39 |
+
diff - Differentiation and integration of periodic sequences
|
40 |
+
tilbert - Tilbert transform: cs_diff(x,h,h)
|
41 |
+
itilbert - Inverse Tilbert transform: sc_diff(x,h,h)
|
42 |
+
hilbert - Hilbert transform: cs_diff(x,inf,inf)
|
43 |
+
ihilbert - Inverse Hilbert transform: sc_diff(x,inf,inf)
|
44 |
+
cs_diff - cosh/sinh pseudo-derivative of periodic sequences
|
45 |
+
sc_diff - sinh/cosh pseudo-derivative of periodic sequences
|
46 |
+
ss_diff - sinh/sinh pseudo-derivative of periodic sequences
|
47 |
+
cc_diff - cosh/cosh pseudo-derivative of periodic sequences
|
48 |
+
shift - Shift periodic sequences
|
49 |
+
|
50 |
+
Helper functions
|
51 |
+
================
|
52 |
+
|
53 |
+
.. autosummary::
|
54 |
+
:toctree: generated/
|
55 |
+
|
56 |
+
fftshift - Shift the zero-frequency component to the center of the spectrum
|
57 |
+
ifftshift - The inverse of `fftshift`
|
58 |
+
fftfreq - Return the Discrete Fourier Transform sample frequencies
|
59 |
+
rfftfreq - DFT sample frequencies (for usage with rfft, irfft)
|
60 |
+
next_fast_len - Find the optimal length to zero-pad an FFT for speed
|
61 |
+
|
62 |
+
Note that ``fftshift``, ``ifftshift`` and ``fftfreq`` are numpy functions
|
63 |
+
exposed by ``fftpack``; importing them from ``numpy`` should be preferred.
|
64 |
+
|
65 |
+
Convolutions (:mod:`scipy.fftpack.convolve`)
|
66 |
+
============================================
|
67 |
+
|
68 |
+
.. module:: scipy.fftpack.convolve
|
69 |
+
|
70 |
+
.. autosummary::
|
71 |
+
:toctree: generated/
|
72 |
+
|
73 |
+
convolve
|
74 |
+
convolve_z
|
75 |
+
init_convolution_kernel
|
76 |
+
destroy_convolve_cache
|
77 |
+
|
78 |
+
"""
|
79 |
+
|
80 |
+
|
81 |
+
__all__ = ['fft','ifft','fftn','ifftn','rfft','irfft',
|
82 |
+
'fft2','ifft2',
|
83 |
+
'diff',
|
84 |
+
'tilbert','itilbert','hilbert','ihilbert',
|
85 |
+
'sc_diff','cs_diff','cc_diff','ss_diff',
|
86 |
+
'shift',
|
87 |
+
'fftfreq', 'rfftfreq',
|
88 |
+
'fftshift', 'ifftshift',
|
89 |
+
'next_fast_len',
|
90 |
+
'dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn'
|
91 |
+
]
|
92 |
+
|
93 |
+
from ._basic import *
|
94 |
+
from ._pseudo_diffs import *
|
95 |
+
from ._helper import *
|
96 |
+
from ._realtransforms import *
|
97 |
+
|
98 |
+
# Deprecated namespaces, to be removed in v2.0.0
|
99 |
+
from . import basic, helper, pseudo_diffs, realtransforms
|
100 |
+
|
101 |
+
from scipy._lib._testutils import PytestTester
|
102 |
+
test = PytestTester(__name__)
|
103 |
+
del PytestTester
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.17 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_basic.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_helper.cpython-310.pyc
ADDED
Binary file (3.59 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_pseudo_diffs.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/_realtransforms.cpython-310.pyc
ADDED
Binary file (19.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/basic.cpython-310.pyc
ADDED
Binary file (638 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/helper.cpython-310.pyc
ADDED
Binary file (646 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/pseudo_diffs.cpython-310.pyc
ADDED
Binary file (720 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/__pycache__/realtransforms.cpython-310.pyc
ADDED
Binary file (663 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/_basic.py
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Discrete Fourier Transforms - _basic.py
|
3 |
+
"""
|
4 |
+
# Created by Pearu Peterson, August,September 2002
|
5 |
+
__all__ = ['fft','ifft','fftn','ifftn','rfft','irfft',
|
6 |
+
'fft2','ifft2']
|
7 |
+
|
8 |
+
from scipy.fft import _pocketfft
|
9 |
+
from ._helper import _good_shape
|
10 |
+
|
11 |
+
|
12 |
+
def fft(x, n=None, axis=-1, overwrite_x=False):
|
13 |
+
"""
|
14 |
+
Return discrete Fourier transform of real or complex sequence.
|
15 |
+
|
16 |
+
The returned complex array contains ``y(0), y(1),..., y(n-1)``, where
|
17 |
+
|
18 |
+
``y(j) = (x * exp(-2*pi*sqrt(-1)*j*np.arange(n)/n)).sum()``.
|
19 |
+
|
20 |
+
Parameters
|
21 |
+
----------
|
22 |
+
x : array_like
|
23 |
+
Array to Fourier transform.
|
24 |
+
n : int, optional
|
25 |
+
Length of the Fourier transform. If ``n < x.shape[axis]``, `x` is
|
26 |
+
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
|
27 |
+
default results in ``n = x.shape[axis]``.
|
28 |
+
axis : int, optional
|
29 |
+
Axis along which the fft's are computed; the default is over the
|
30 |
+
last axis (i.e., ``axis=-1``).
|
31 |
+
overwrite_x : bool, optional
|
32 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
33 |
+
|
34 |
+
Returns
|
35 |
+
-------
|
36 |
+
z : complex ndarray
|
37 |
+
with the elements::
|
38 |
+
|
39 |
+
[y(0),y(1),..,y(n/2),y(1-n/2),...,y(-1)] if n is even
|
40 |
+
[y(0),y(1),..,y((n-1)/2),y(-(n-1)/2),...,y(-1)] if n is odd
|
41 |
+
|
42 |
+
where::
|
43 |
+
|
44 |
+
y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n), j = 0..n-1
|
45 |
+
|
46 |
+
See Also
|
47 |
+
--------
|
48 |
+
ifft : Inverse FFT
|
49 |
+
rfft : FFT of a real sequence
|
50 |
+
|
51 |
+
Notes
|
52 |
+
-----
|
53 |
+
The packing of the result is "standard": If ``A = fft(a, n)``, then
|
54 |
+
``A[0]`` contains the zero-frequency term, ``A[1:n/2]`` contains the
|
55 |
+
positive-frequency terms, and ``A[n/2:]`` contains the negative-frequency
|
56 |
+
terms, in order of decreasingly negative frequency. So ,for an 8-point
|
57 |
+
transform, the frequencies of the result are [0, 1, 2, 3, -4, -3, -2, -1].
|
58 |
+
To rearrange the fft output so that the zero-frequency component is
|
59 |
+
centered, like [-4, -3, -2, -1, 0, 1, 2, 3], use `fftshift`.
|
60 |
+
|
61 |
+
Both single and double precision routines are implemented. Half precision
|
62 |
+
inputs will be converted to single precision. Non-floating-point inputs
|
63 |
+
will be converted to double precision. Long-double precision inputs are
|
64 |
+
not supported.
|
65 |
+
|
66 |
+
This function is most efficient when `n` is a power of two, and least
|
67 |
+
efficient when `n` is prime.
|
68 |
+
|
69 |
+
Note that if ``x`` is real-valued, then ``A[j] == A[n-j].conjugate()``.
|
70 |
+
If ``x`` is real-valued and ``n`` is even, then ``A[n/2]`` is real.
|
71 |
+
|
72 |
+
If the data type of `x` is real, a "real FFT" algorithm is automatically
|
73 |
+
used, which roughly halves the computation time. To increase efficiency
|
74 |
+
a little further, use `rfft`, which does the same calculation, but only
|
75 |
+
outputs half of the symmetrical spectrum. If the data is both real and
|
76 |
+
symmetrical, the `dct` can again double the efficiency by generating
|
77 |
+
half of the spectrum from half of the signal.
|
78 |
+
|
79 |
+
Examples
|
80 |
+
--------
|
81 |
+
>>> import numpy as np
|
82 |
+
>>> from scipy.fftpack import fft, ifft
|
83 |
+
>>> x = np.arange(5)
|
84 |
+
>>> np.allclose(fft(ifft(x)), x, atol=1e-15) # within numerical accuracy.
|
85 |
+
True
|
86 |
+
|
87 |
+
"""
|
88 |
+
return _pocketfft.fft(x, n, axis, None, overwrite_x)
|
89 |
+
|
90 |
+
|
91 |
+
def ifft(x, n=None, axis=-1, overwrite_x=False):
|
92 |
+
"""
|
93 |
+
Return discrete inverse Fourier transform of real or complex sequence.
|
94 |
+
|
95 |
+
The returned complex array contains ``y(0), y(1),..., y(n-1)``, where
|
96 |
+
|
97 |
+
``y(j) = (x * exp(2*pi*sqrt(-1)*j*np.arange(n)/n)).mean()``.
|
98 |
+
|
99 |
+
Parameters
|
100 |
+
----------
|
101 |
+
x : array_like
|
102 |
+
Transformed data to invert.
|
103 |
+
n : int, optional
|
104 |
+
Length of the inverse Fourier transform. If ``n < x.shape[axis]``,
|
105 |
+
`x` is truncated. If ``n > x.shape[axis]``, `x` is zero-padded.
|
106 |
+
The default results in ``n = x.shape[axis]``.
|
107 |
+
axis : int, optional
|
108 |
+
Axis along which the ifft's are computed; the default is over the
|
109 |
+
last axis (i.e., ``axis=-1``).
|
110 |
+
overwrite_x : bool, optional
|
111 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
112 |
+
|
113 |
+
Returns
|
114 |
+
-------
|
115 |
+
ifft : ndarray of floats
|
116 |
+
The inverse discrete Fourier transform.
|
117 |
+
|
118 |
+
See Also
|
119 |
+
--------
|
120 |
+
fft : Forward FFT
|
121 |
+
|
122 |
+
Notes
|
123 |
+
-----
|
124 |
+
Both single and double precision routines are implemented. Half precision
|
125 |
+
inputs will be converted to single precision. Non-floating-point inputs
|
126 |
+
will be converted to double precision. Long-double precision inputs are
|
127 |
+
not supported.
|
128 |
+
|
129 |
+
This function is most efficient when `n` is a power of two, and least
|
130 |
+
efficient when `n` is prime.
|
131 |
+
|
132 |
+
If the data type of `x` is real, a "real IFFT" algorithm is automatically
|
133 |
+
used, which roughly halves the computation time.
|
134 |
+
|
135 |
+
Examples
|
136 |
+
--------
|
137 |
+
>>> from scipy.fftpack import fft, ifft
|
138 |
+
>>> import numpy as np
|
139 |
+
>>> x = np.arange(5)
|
140 |
+
>>> np.allclose(ifft(fft(x)), x, atol=1e-15) # within numerical accuracy.
|
141 |
+
True
|
142 |
+
|
143 |
+
"""
|
144 |
+
return _pocketfft.ifft(x, n, axis, None, overwrite_x)
|
145 |
+
|
146 |
+
|
147 |
+
def rfft(x, n=None, axis=-1, overwrite_x=False):
|
148 |
+
"""
|
149 |
+
Discrete Fourier transform of a real sequence.
|
150 |
+
|
151 |
+
Parameters
|
152 |
+
----------
|
153 |
+
x : array_like, real-valued
|
154 |
+
The data to transform.
|
155 |
+
n : int, optional
|
156 |
+
Defines the length of the Fourier transform. If `n` is not specified
|
157 |
+
(the default) then ``n = x.shape[axis]``. If ``n < x.shape[axis]``,
|
158 |
+
`x` is truncated, if ``n > x.shape[axis]``, `x` is zero-padded.
|
159 |
+
axis : int, optional
|
160 |
+
The axis along which the transform is applied. The default is the
|
161 |
+
last axis.
|
162 |
+
overwrite_x : bool, optional
|
163 |
+
If set to true, the contents of `x` can be overwritten. Default is
|
164 |
+
False.
|
165 |
+
|
166 |
+
Returns
|
167 |
+
-------
|
168 |
+
z : real ndarray
|
169 |
+
The returned real array contains::
|
170 |
+
|
171 |
+
[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))] if n is even
|
172 |
+
[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))] if n is odd
|
173 |
+
|
174 |
+
where::
|
175 |
+
|
176 |
+
y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k*2*pi/n)
|
177 |
+
j = 0..n-1
|
178 |
+
|
179 |
+
See Also
|
180 |
+
--------
|
181 |
+
fft, irfft, scipy.fft.rfft
|
182 |
+
|
183 |
+
Notes
|
184 |
+
-----
|
185 |
+
Within numerical accuracy, ``y == rfft(irfft(y))``.
|
186 |
+
|
187 |
+
Both single and double precision routines are implemented. Half precision
|
188 |
+
inputs will be converted to single precision. Non-floating-point inputs
|
189 |
+
will be converted to double precision. Long-double precision inputs are
|
190 |
+
not supported.
|
191 |
+
|
192 |
+
To get an output with a complex datatype, consider using the newer
|
193 |
+
function `scipy.fft.rfft`.
|
194 |
+
|
195 |
+
Examples
|
196 |
+
--------
|
197 |
+
>>> from scipy.fftpack import fft, rfft
|
198 |
+
>>> a = [9, -9, 1, 3]
|
199 |
+
>>> fft(a)
|
200 |
+
array([ 4. +0.j, 8.+12.j, 16. +0.j, 8.-12.j])
|
201 |
+
>>> rfft(a)
|
202 |
+
array([ 4., 8., 12., 16.])
|
203 |
+
|
204 |
+
"""
|
205 |
+
return _pocketfft.rfft_fftpack(x, n, axis, None, overwrite_x)
|
206 |
+
|
207 |
+
|
208 |
+
def irfft(x, n=None, axis=-1, overwrite_x=False):
|
209 |
+
"""
|
210 |
+
Return inverse discrete Fourier transform of real sequence x.
|
211 |
+
|
212 |
+
The contents of `x` are interpreted as the output of the `rfft`
|
213 |
+
function.
|
214 |
+
|
215 |
+
Parameters
|
216 |
+
----------
|
217 |
+
x : array_like
|
218 |
+
Transformed data to invert.
|
219 |
+
n : int, optional
|
220 |
+
Length of the inverse Fourier transform.
|
221 |
+
If n < x.shape[axis], x is truncated.
|
222 |
+
If n > x.shape[axis], x is zero-padded.
|
223 |
+
The default results in n = x.shape[axis].
|
224 |
+
axis : int, optional
|
225 |
+
Axis along which the ifft's are computed; the default is over
|
226 |
+
the last axis (i.e., axis=-1).
|
227 |
+
overwrite_x : bool, optional
|
228 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
229 |
+
|
230 |
+
Returns
|
231 |
+
-------
|
232 |
+
irfft : ndarray of floats
|
233 |
+
The inverse discrete Fourier transform.
|
234 |
+
|
235 |
+
See Also
|
236 |
+
--------
|
237 |
+
rfft, ifft, scipy.fft.irfft
|
238 |
+
|
239 |
+
Notes
|
240 |
+
-----
|
241 |
+
The returned real array contains::
|
242 |
+
|
243 |
+
[y(0),y(1),...,y(n-1)]
|
244 |
+
|
245 |
+
where for n is even::
|
246 |
+
|
247 |
+
y(j) = 1/n (sum[k=1..n/2-1] (x[2*k-1]+sqrt(-1)*x[2*k])
|
248 |
+
* exp(sqrt(-1)*j*k* 2*pi/n)
|
249 |
+
+ c.c. + x[0] + (-1)**(j) x[n-1])
|
250 |
+
|
251 |
+
and for n is odd::
|
252 |
+
|
253 |
+
y(j) = 1/n (sum[k=1..(n-1)/2] (x[2*k-1]+sqrt(-1)*x[2*k])
|
254 |
+
* exp(sqrt(-1)*j*k* 2*pi/n)
|
255 |
+
+ c.c. + x[0])
|
256 |
+
|
257 |
+
c.c. denotes complex conjugate of preceding expression.
|
258 |
+
|
259 |
+
For details on input parameters, see `rfft`.
|
260 |
+
|
261 |
+
To process (conjugate-symmetric) frequency-domain data with a complex
|
262 |
+
datatype, consider using the newer function `scipy.fft.irfft`.
|
263 |
+
|
264 |
+
Examples
|
265 |
+
--------
|
266 |
+
>>> from scipy.fftpack import rfft, irfft
|
267 |
+
>>> a = [1.0, 2.0, 3.0, 4.0, 5.0]
|
268 |
+
>>> irfft(a)
|
269 |
+
array([ 2.6 , -3.16405192, 1.24398433, -1.14955713, 1.46962473])
|
270 |
+
>>> irfft(rfft(a))
|
271 |
+
array([1., 2., 3., 4., 5.])
|
272 |
+
|
273 |
+
"""
|
274 |
+
return _pocketfft.irfft_fftpack(x, n, axis, None, overwrite_x)
|
275 |
+
|
276 |
+
|
277 |
+
def fftn(x, shape=None, axes=None, overwrite_x=False):
|
278 |
+
"""
|
279 |
+
Return multidimensional discrete Fourier transform.
|
280 |
+
|
281 |
+
The returned array contains::
|
282 |
+
|
283 |
+
y[j_1,..,j_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
|
284 |
+
x[k_1,..,k_d] * prod[i=1..d] exp(-sqrt(-1)*2*pi/n_i * j_i * k_i)
|
285 |
+
|
286 |
+
where d = len(x.shape) and n = x.shape.
|
287 |
+
|
288 |
+
Parameters
|
289 |
+
----------
|
290 |
+
x : array_like
|
291 |
+
The (N-D) array to transform.
|
292 |
+
shape : int or array_like of ints or None, optional
|
293 |
+
The shape of the result. If both `shape` and `axes` (see below) are
|
294 |
+
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
|
295 |
+
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
|
296 |
+
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
|
297 |
+
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
|
298 |
+
length ``shape[i]``.
|
299 |
+
If any element of `shape` is -1, the size of the corresponding
|
300 |
+
dimension of `x` is used.
|
301 |
+
axes : int or array_like of ints or None, optional
|
302 |
+
The axes of `x` (`y` if `shape` is not None) along which the
|
303 |
+
transform is applied.
|
304 |
+
The default is over all axes.
|
305 |
+
overwrite_x : bool, optional
|
306 |
+
If True, the contents of `x` can be destroyed. Default is False.
|
307 |
+
|
308 |
+
Returns
|
309 |
+
-------
|
310 |
+
y : complex-valued N-D NumPy array
|
311 |
+
The (N-D) DFT of the input array.
|
312 |
+
|
313 |
+
See Also
|
314 |
+
--------
|
315 |
+
ifftn
|
316 |
+
|
317 |
+
Notes
|
318 |
+
-----
|
319 |
+
If ``x`` is real-valued, then
|
320 |
+
``y[..., j_i, ...] == y[..., n_i-j_i, ...].conjugate()``.
|
321 |
+
|
322 |
+
Both single and double precision routines are implemented. Half precision
|
323 |
+
inputs will be converted to single precision. Non-floating-point inputs
|
324 |
+
will be converted to double precision. Long-double precision inputs are
|
325 |
+
not supported.
|
326 |
+
|
327 |
+
Examples
|
328 |
+
--------
|
329 |
+
>>> import numpy as np
|
330 |
+
>>> from scipy.fftpack import fftn, ifftn
|
331 |
+
>>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
|
332 |
+
>>> np.allclose(y, fftn(ifftn(y)))
|
333 |
+
True
|
334 |
+
|
335 |
+
"""
|
336 |
+
shape = _good_shape(x, shape, axes)
|
337 |
+
return _pocketfft.fftn(x, shape, axes, None, overwrite_x)
|
338 |
+
|
339 |
+
|
340 |
+
def ifftn(x, shape=None, axes=None, overwrite_x=False):
|
341 |
+
"""
|
342 |
+
Return inverse multidimensional discrete Fourier transform.
|
343 |
+
|
344 |
+
The sequence can be of an arbitrary type.
|
345 |
+
|
346 |
+
The returned array contains::
|
347 |
+
|
348 |
+
y[j_1,..,j_d] = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
|
349 |
+
x[k_1,..,k_d] * prod[i=1..d] exp(sqrt(-1)*2*pi/n_i * j_i * k_i)
|
350 |
+
|
351 |
+
where ``d = len(x.shape)``, ``n = x.shape``, and ``p = prod[i=1..d] n_i``.
|
352 |
+
|
353 |
+
For description of parameters see `fftn`.
|
354 |
+
|
355 |
+
See Also
|
356 |
+
--------
|
357 |
+
fftn : for detailed information.
|
358 |
+
|
359 |
+
Examples
|
360 |
+
--------
|
361 |
+
>>> from scipy.fftpack import fftn, ifftn
|
362 |
+
>>> import numpy as np
|
363 |
+
>>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
|
364 |
+
>>> np.allclose(y, ifftn(fftn(y)))
|
365 |
+
True
|
366 |
+
|
367 |
+
"""
|
368 |
+
shape = _good_shape(x, shape, axes)
|
369 |
+
return _pocketfft.ifftn(x, shape, axes, None, overwrite_x)
|
370 |
+
|
371 |
+
|
372 |
+
def fft2(x, shape=None, axes=(-2,-1), overwrite_x=False):
|
373 |
+
"""
|
374 |
+
2-D discrete Fourier transform.
|
375 |
+
|
376 |
+
Return the 2-D discrete Fourier transform of the 2-D argument
|
377 |
+
`x`.
|
378 |
+
|
379 |
+
See Also
|
380 |
+
--------
|
381 |
+
fftn : for detailed information.
|
382 |
+
|
383 |
+
Examples
|
384 |
+
--------
|
385 |
+
>>> import numpy as np
|
386 |
+
>>> from scipy.fftpack import fft2, ifft2
|
387 |
+
>>> y = np.mgrid[:5, :5][0]
|
388 |
+
>>> y
|
389 |
+
array([[0, 0, 0, 0, 0],
|
390 |
+
[1, 1, 1, 1, 1],
|
391 |
+
[2, 2, 2, 2, 2],
|
392 |
+
[3, 3, 3, 3, 3],
|
393 |
+
[4, 4, 4, 4, 4]])
|
394 |
+
>>> np.allclose(y, ifft2(fft2(y)))
|
395 |
+
True
|
396 |
+
"""
|
397 |
+
return fftn(x,shape,axes,overwrite_x)
|
398 |
+
|
399 |
+
|
400 |
+
def ifft2(x, shape=None, axes=(-2,-1), overwrite_x=False):
|
401 |
+
"""
|
402 |
+
2-D discrete inverse Fourier transform of real or complex sequence.
|
403 |
+
|
404 |
+
Return inverse 2-D discrete Fourier transform of
|
405 |
+
arbitrary type sequence x.
|
406 |
+
|
407 |
+
See `ifft` for more information.
|
408 |
+
|
409 |
+
See Also
|
410 |
+
--------
|
411 |
+
fft2, ifft
|
412 |
+
|
413 |
+
Examples
|
414 |
+
--------
|
415 |
+
>>> import numpy as np
|
416 |
+
>>> from scipy.fftpack import fft2, ifft2
|
417 |
+
>>> y = np.mgrid[:5, :5][0]
|
418 |
+
>>> y
|
419 |
+
array([[0, 0, 0, 0, 0],
|
420 |
+
[1, 1, 1, 1, 1],
|
421 |
+
[2, 2, 2, 2, 2],
|
422 |
+
[3, 3, 3, 3, 3],
|
423 |
+
[4, 4, 4, 4, 4]])
|
424 |
+
>>> np.allclose(y, fft2(ifft2(y)))
|
425 |
+
True
|
426 |
+
|
427 |
+
"""
|
428 |
+
return ifftn(x,shape,axes,overwrite_x)
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/_helper.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from numpy.fft import fftshift, ifftshift, fftfreq
|
5 |
+
|
6 |
+
import scipy.fft._pocketfft.helper as _helper
|
7 |
+
|
8 |
+
__all__ = ['fftshift', 'ifftshift', 'fftfreq', 'rfftfreq', 'next_fast_len']
|
9 |
+
|
10 |
+
|
11 |
+
def rfftfreq(n, d=1.0):
|
12 |
+
"""DFT sample frequencies (for usage with rfft, irfft).
|
13 |
+
|
14 |
+
The returned float array contains the frequency bins in
|
15 |
+
cycles/unit (with zero at the start) given a window length `n` and a
|
16 |
+
sample spacing `d`::
|
17 |
+
|
18 |
+
f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2]/(d*n) if n is even
|
19 |
+
f = [0,1,1,2,2,...,n/2-1,n/2-1,n/2,n/2]/(d*n) if n is odd
|
20 |
+
|
21 |
+
Parameters
|
22 |
+
----------
|
23 |
+
n : int
|
24 |
+
Window length.
|
25 |
+
d : scalar, optional
|
26 |
+
Sample spacing. Default is 1.
|
27 |
+
|
28 |
+
Returns
|
29 |
+
-------
|
30 |
+
out : ndarray
|
31 |
+
The array of length `n`, containing the sample frequencies.
|
32 |
+
|
33 |
+
Examples
|
34 |
+
--------
|
35 |
+
>>> import numpy as np
|
36 |
+
>>> from scipy import fftpack
|
37 |
+
>>> sig = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
|
38 |
+
>>> sig_fft = fftpack.rfft(sig)
|
39 |
+
>>> n = sig_fft.size
|
40 |
+
>>> timestep = 0.1
|
41 |
+
>>> freq = fftpack.rfftfreq(n, d=timestep)
|
42 |
+
>>> freq
|
43 |
+
array([ 0. , 1.25, 1.25, 2.5 , 2.5 , 3.75, 3.75, 5. ])
|
44 |
+
|
45 |
+
"""
|
46 |
+
n = operator.index(n)
|
47 |
+
if n < 0:
|
48 |
+
raise ValueError("n = %s is not valid. "
|
49 |
+
"n must be a nonnegative integer." % n)
|
50 |
+
|
51 |
+
return (np.arange(1, n + 1, dtype=int) // 2) / float(n * d)
|
52 |
+
|
53 |
+
|
54 |
+
def next_fast_len(target):
|
55 |
+
"""
|
56 |
+
Find the next fast size of input data to `fft`, for zero-padding, etc.
|
57 |
+
|
58 |
+
SciPy's FFTPACK has efficient functions for radix {2, 3, 4, 5}, so this
|
59 |
+
returns the next composite of the prime factors 2, 3, and 5 which is
|
60 |
+
greater than or equal to `target`. (These are also known as 5-smooth
|
61 |
+
numbers, regular numbers, or Hamming numbers.)
|
62 |
+
|
63 |
+
Parameters
|
64 |
+
----------
|
65 |
+
target : int
|
66 |
+
Length to start searching from. Must be a positive integer.
|
67 |
+
|
68 |
+
Returns
|
69 |
+
-------
|
70 |
+
out : int
|
71 |
+
The first 5-smooth number greater than or equal to `target`.
|
72 |
+
|
73 |
+
Notes
|
74 |
+
-----
|
75 |
+
.. versionadded:: 0.18.0
|
76 |
+
|
77 |
+
Examples
|
78 |
+
--------
|
79 |
+
On a particular machine, an FFT of prime length takes 133 ms:
|
80 |
+
|
81 |
+
>>> from scipy import fftpack
|
82 |
+
>>> import numpy as np
|
83 |
+
>>> rng = np.random.default_rng()
|
84 |
+
>>> min_len = 10007 # prime length is worst case for speed
|
85 |
+
>>> a = rng.standard_normal(min_len)
|
86 |
+
>>> b = fftpack.fft(a)
|
87 |
+
|
88 |
+
Zero-padding to the next 5-smooth length reduces computation time to
|
89 |
+
211 us, a speedup of 630 times:
|
90 |
+
|
91 |
+
>>> fftpack.next_fast_len(min_len)
|
92 |
+
10125
|
93 |
+
>>> b = fftpack.fft(a, 10125)
|
94 |
+
|
95 |
+
Rounding up to the next power of 2 is not optimal, taking 367 us to
|
96 |
+
compute, 1.7 times as long as the 5-smooth size:
|
97 |
+
|
98 |
+
>>> b = fftpack.fft(a, 16384)
|
99 |
+
|
100 |
+
"""
|
101 |
+
# Real transforms use regular sizes so this is backwards compatible
|
102 |
+
return _helper.good_size(target, True)
|
103 |
+
|
104 |
+
|
105 |
+
def _good_shape(x, shape, axes):
|
106 |
+
"""Ensure that shape argument is valid for scipy.fftpack
|
107 |
+
|
108 |
+
scipy.fftpack does not support len(shape) < x.ndim when axes is not given.
|
109 |
+
"""
|
110 |
+
if shape is not None and axes is None:
|
111 |
+
shape = _helper._iterable_of_int(shape, 'shape')
|
112 |
+
if len(shape) != np.ndim(x):
|
113 |
+
raise ValueError("when given, axes and shape arguments"
|
114 |
+
" have to be of the same length")
|
115 |
+
return shape
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/_realtransforms.py
ADDED
@@ -0,0 +1,598 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Real spectrum transforms (DCT, DST, MDCT)
|
3 |
+
"""
|
4 |
+
|
5 |
+
__all__ = ['dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn']
|
6 |
+
|
7 |
+
from scipy.fft import _pocketfft
|
8 |
+
from ._helper import _good_shape
|
9 |
+
|
10 |
+
_inverse_typemap = {1: 1, 2: 3, 3: 2, 4: 4}
|
11 |
+
|
12 |
+
|
13 |
+
def dctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
|
14 |
+
"""
|
15 |
+
Return multidimensional Discrete Cosine Transform along the specified axes.
|
16 |
+
|
17 |
+
Parameters
|
18 |
+
----------
|
19 |
+
x : array_like
|
20 |
+
The input array.
|
21 |
+
type : {1, 2, 3, 4}, optional
|
22 |
+
Type of the DCT (see Notes). Default type is 2.
|
23 |
+
shape : int or array_like of ints or None, optional
|
24 |
+
The shape of the result. If both `shape` and `axes` (see below) are
|
25 |
+
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
|
26 |
+
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
|
27 |
+
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
|
28 |
+
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
|
29 |
+
length ``shape[i]``.
|
30 |
+
If any element of `shape` is -1, the size of the corresponding
|
31 |
+
dimension of `x` is used.
|
32 |
+
axes : int or array_like of ints or None, optional
|
33 |
+
Axes along which the DCT is computed.
|
34 |
+
The default is over all axes.
|
35 |
+
norm : {None, 'ortho'}, optional
|
36 |
+
Normalization mode (see Notes). Default is None.
|
37 |
+
overwrite_x : bool, optional
|
38 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
39 |
+
|
40 |
+
Returns
|
41 |
+
-------
|
42 |
+
y : ndarray of real
|
43 |
+
The transformed input array.
|
44 |
+
|
45 |
+
See Also
|
46 |
+
--------
|
47 |
+
idctn : Inverse multidimensional DCT
|
48 |
+
|
49 |
+
Notes
|
50 |
+
-----
|
51 |
+
For full details of the DCT types and normalization modes, as well as
|
52 |
+
references, see `dct`.
|
53 |
+
|
54 |
+
Examples
|
55 |
+
--------
|
56 |
+
>>> import numpy as np
|
57 |
+
>>> from scipy.fftpack import dctn, idctn
|
58 |
+
>>> rng = np.random.default_rng()
|
59 |
+
>>> y = rng.standard_normal((16, 16))
|
60 |
+
>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
|
61 |
+
True
|
62 |
+
|
63 |
+
"""
|
64 |
+
shape = _good_shape(x, shape, axes)
|
65 |
+
return _pocketfft.dctn(x, type, shape, axes, norm, overwrite_x)
|
66 |
+
|
67 |
+
|
68 |
+
def idctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
|
69 |
+
"""
|
70 |
+
Return multidimensional Discrete Cosine Transform along the specified axes.
|
71 |
+
|
72 |
+
Parameters
|
73 |
+
----------
|
74 |
+
x : array_like
|
75 |
+
The input array.
|
76 |
+
type : {1, 2, 3, 4}, optional
|
77 |
+
Type of the DCT (see Notes). Default type is 2.
|
78 |
+
shape : int or array_like of ints or None, optional
|
79 |
+
The shape of the result. If both `shape` and `axes` (see below) are
|
80 |
+
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
|
81 |
+
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
|
82 |
+
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
|
83 |
+
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
|
84 |
+
length ``shape[i]``.
|
85 |
+
If any element of `shape` is -1, the size of the corresponding
|
86 |
+
dimension of `x` is used.
|
87 |
+
axes : int or array_like of ints or None, optional
|
88 |
+
Axes along which the IDCT is computed.
|
89 |
+
The default is over all axes.
|
90 |
+
norm : {None, 'ortho'}, optional
|
91 |
+
Normalization mode (see Notes). Default is None.
|
92 |
+
overwrite_x : bool, optional
|
93 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
94 |
+
|
95 |
+
Returns
|
96 |
+
-------
|
97 |
+
y : ndarray of real
|
98 |
+
The transformed input array.
|
99 |
+
|
100 |
+
See Also
|
101 |
+
--------
|
102 |
+
dctn : multidimensional DCT
|
103 |
+
|
104 |
+
Notes
|
105 |
+
-----
|
106 |
+
For full details of the IDCT types and normalization modes, as well as
|
107 |
+
references, see `idct`.
|
108 |
+
|
109 |
+
Examples
|
110 |
+
--------
|
111 |
+
>>> import numpy as np
|
112 |
+
>>> from scipy.fftpack import dctn, idctn
|
113 |
+
>>> rng = np.random.default_rng()
|
114 |
+
>>> y = rng.standard_normal((16, 16))
|
115 |
+
>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
|
116 |
+
True
|
117 |
+
|
118 |
+
"""
|
119 |
+
type = _inverse_typemap[type]
|
120 |
+
shape = _good_shape(x, shape, axes)
|
121 |
+
return _pocketfft.dctn(x, type, shape, axes, norm, overwrite_x)
|
122 |
+
|
123 |
+
|
124 |
+
def dstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
|
125 |
+
"""
|
126 |
+
Return multidimensional Discrete Sine Transform along the specified axes.
|
127 |
+
|
128 |
+
Parameters
|
129 |
+
----------
|
130 |
+
x : array_like
|
131 |
+
The input array.
|
132 |
+
type : {1, 2, 3, 4}, optional
|
133 |
+
Type of the DST (see Notes). Default type is 2.
|
134 |
+
shape : int or array_like of ints or None, optional
|
135 |
+
The shape of the result. If both `shape` and `axes` (see below) are
|
136 |
+
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
|
137 |
+
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
|
138 |
+
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
|
139 |
+
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
|
140 |
+
length ``shape[i]``.
|
141 |
+
If any element of `shape` is -1, the size of the corresponding
|
142 |
+
dimension of `x` is used.
|
143 |
+
axes : int or array_like of ints or None, optional
|
144 |
+
Axes along which the DCT is computed.
|
145 |
+
The default is over all axes.
|
146 |
+
norm : {None, 'ortho'}, optional
|
147 |
+
Normalization mode (see Notes). Default is None.
|
148 |
+
overwrite_x : bool, optional
|
149 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
150 |
+
|
151 |
+
Returns
|
152 |
+
-------
|
153 |
+
y : ndarray of real
|
154 |
+
The transformed input array.
|
155 |
+
|
156 |
+
See Also
|
157 |
+
--------
|
158 |
+
idstn : Inverse multidimensional DST
|
159 |
+
|
160 |
+
Notes
|
161 |
+
-----
|
162 |
+
For full details of the DST types and normalization modes, as well as
|
163 |
+
references, see `dst`.
|
164 |
+
|
165 |
+
Examples
|
166 |
+
--------
|
167 |
+
>>> import numpy as np
|
168 |
+
>>> from scipy.fftpack import dstn, idstn
|
169 |
+
>>> rng = np.random.default_rng()
|
170 |
+
>>> y = rng.standard_normal((16, 16))
|
171 |
+
>>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
|
172 |
+
True
|
173 |
+
|
174 |
+
"""
|
175 |
+
shape = _good_shape(x, shape, axes)
|
176 |
+
return _pocketfft.dstn(x, type, shape, axes, norm, overwrite_x)
|
177 |
+
|
178 |
+
|
179 |
+
def idstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
|
180 |
+
"""
|
181 |
+
Return multidimensional Discrete Sine Transform along the specified axes.
|
182 |
+
|
183 |
+
Parameters
|
184 |
+
----------
|
185 |
+
x : array_like
|
186 |
+
The input array.
|
187 |
+
type : {1, 2, 3, 4}, optional
|
188 |
+
Type of the DST (see Notes). Default type is 2.
|
189 |
+
shape : int or array_like of ints or None, optional
|
190 |
+
The shape of the result. If both `shape` and `axes` (see below) are
|
191 |
+
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
|
192 |
+
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
|
193 |
+
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
|
194 |
+
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
|
195 |
+
length ``shape[i]``.
|
196 |
+
If any element of `shape` is -1, the size of the corresponding
|
197 |
+
dimension of `x` is used.
|
198 |
+
axes : int or array_like of ints or None, optional
|
199 |
+
Axes along which the IDST is computed.
|
200 |
+
The default is over all axes.
|
201 |
+
norm : {None, 'ortho'}, optional
|
202 |
+
Normalization mode (see Notes). Default is None.
|
203 |
+
overwrite_x : bool, optional
|
204 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
205 |
+
|
206 |
+
Returns
|
207 |
+
-------
|
208 |
+
y : ndarray of real
|
209 |
+
The transformed input array.
|
210 |
+
|
211 |
+
See Also
|
212 |
+
--------
|
213 |
+
dstn : multidimensional DST
|
214 |
+
|
215 |
+
Notes
|
216 |
+
-----
|
217 |
+
For full details of the IDST types and normalization modes, as well as
|
218 |
+
references, see `idst`.
|
219 |
+
|
220 |
+
Examples
|
221 |
+
--------
|
222 |
+
>>> import numpy as np
|
223 |
+
>>> from scipy.fftpack import dstn, idstn
|
224 |
+
>>> rng = np.random.default_rng()
|
225 |
+
>>> y = rng.standard_normal((16, 16))
|
226 |
+
>>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
|
227 |
+
True
|
228 |
+
|
229 |
+
"""
|
230 |
+
type = _inverse_typemap[type]
|
231 |
+
shape = _good_shape(x, shape, axes)
|
232 |
+
return _pocketfft.dstn(x, type, shape, axes, norm, overwrite_x)
|
233 |
+
|
234 |
+
|
235 |
+
def dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
|
236 |
+
r"""
|
237 |
+
Return the Discrete Cosine Transform of arbitrary type sequence x.
|
238 |
+
|
239 |
+
Parameters
|
240 |
+
----------
|
241 |
+
x : array_like
|
242 |
+
The input array.
|
243 |
+
type : {1, 2, 3, 4}, optional
|
244 |
+
Type of the DCT (see Notes). Default type is 2.
|
245 |
+
n : int, optional
|
246 |
+
Length of the transform. If ``n < x.shape[axis]``, `x` is
|
247 |
+
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
|
248 |
+
default results in ``n = x.shape[axis]``.
|
249 |
+
axis : int, optional
|
250 |
+
Axis along which the dct is computed; the default is over the
|
251 |
+
last axis (i.e., ``axis=-1``).
|
252 |
+
norm : {None, 'ortho'}, optional
|
253 |
+
Normalization mode (see Notes). Default is None.
|
254 |
+
overwrite_x : bool, optional
|
255 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
256 |
+
|
257 |
+
Returns
|
258 |
+
-------
|
259 |
+
y : ndarray of real
|
260 |
+
The transformed input array.
|
261 |
+
|
262 |
+
See Also
|
263 |
+
--------
|
264 |
+
idct : Inverse DCT
|
265 |
+
|
266 |
+
Notes
|
267 |
+
-----
|
268 |
+
For a single dimension array ``x``, ``dct(x, norm='ortho')`` is equal to
|
269 |
+
MATLAB ``dct(x)``.
|
270 |
+
|
271 |
+
There are, theoretically, 8 types of the DCT, only the first 4 types are
|
272 |
+
implemented in scipy. 'The' DCT generally refers to DCT type 2, and 'the'
|
273 |
+
Inverse DCT generally refers to DCT type 3.
|
274 |
+
|
275 |
+
**Type I**
|
276 |
+
|
277 |
+
There are several definitions of the DCT-I; we use the following
|
278 |
+
(for ``norm=None``)
|
279 |
+
|
280 |
+
.. math::
|
281 |
+
|
282 |
+
y_k = x_0 + (-1)^k x_{N-1} + 2 \sum_{n=1}^{N-2} x_n \cos\left(
|
283 |
+
\frac{\pi k n}{N-1} \right)
|
284 |
+
|
285 |
+
If ``norm='ortho'``, ``x[0]`` and ``x[N-1]`` are multiplied by a scaling
|
286 |
+
factor of :math:`\sqrt{2}`, and ``y[k]`` is multiplied by a scaling factor
|
287 |
+
``f``
|
288 |
+
|
289 |
+
.. math::
|
290 |
+
|
291 |
+
f = \begin{cases}
|
292 |
+
\frac{1}{2}\sqrt{\frac{1}{N-1}} & \text{if }k=0\text{ or }N-1, \\
|
293 |
+
\frac{1}{2}\sqrt{\frac{2}{N-1}} & \text{otherwise} \end{cases}
|
294 |
+
|
295 |
+
.. versionadded:: 1.2.0
|
296 |
+
Orthonormalization in DCT-I.
|
297 |
+
|
298 |
+
.. note::
|
299 |
+
The DCT-I is only supported for input size > 1.
|
300 |
+
|
301 |
+
**Type II**
|
302 |
+
|
303 |
+
There are several definitions of the DCT-II; we use the following
|
304 |
+
(for ``norm=None``)
|
305 |
+
|
306 |
+
.. math::
|
307 |
+
|
308 |
+
y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi k(2n+1)}{2N} \right)
|
309 |
+
|
310 |
+
If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``
|
311 |
+
|
312 |
+
.. math::
|
313 |
+
f = \begin{cases}
|
314 |
+
\sqrt{\frac{1}{4N}} & \text{if }k=0, \\
|
315 |
+
\sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases}
|
316 |
+
|
317 |
+
which makes the corresponding matrix of coefficients orthonormal
|
318 |
+
(``O @ O.T = np.eye(N)``).
|
319 |
+
|
320 |
+
**Type III**
|
321 |
+
|
322 |
+
There are several definitions, we use the following (for ``norm=None``)
|
323 |
+
|
324 |
+
.. math::
|
325 |
+
|
326 |
+
y_k = x_0 + 2 \sum_{n=1}^{N-1} x_n \cos\left(\frac{\pi(2k+1)n}{2N}\right)
|
327 |
+
|
328 |
+
or, for ``norm='ortho'``
|
329 |
+
|
330 |
+
.. math::
|
331 |
+
|
332 |
+
y_k = \frac{x_0}{\sqrt{N}} + \sqrt{\frac{2}{N}} \sum_{n=1}^{N-1} x_n
|
333 |
+
\cos\left(\frac{\pi(2k+1)n}{2N}\right)
|
334 |
+
|
335 |
+
The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up
|
336 |
+
to a factor `2N`. The orthonormalized DCT-III is exactly the inverse of
|
337 |
+
the orthonormalized DCT-II.
|
338 |
+
|
339 |
+
**Type IV**
|
340 |
+
|
341 |
+
There are several definitions of the DCT-IV; we use the following
|
342 |
+
(for ``norm=None``)
|
343 |
+
|
344 |
+
.. math::
|
345 |
+
|
346 |
+
y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi(2k+1)(2n+1)}{4N} \right)
|
347 |
+
|
348 |
+
If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``
|
349 |
+
|
350 |
+
.. math::
|
351 |
+
|
352 |
+
f = \frac{1}{\sqrt{2N}}
|
353 |
+
|
354 |
+
.. versionadded:: 1.2.0
|
355 |
+
Support for DCT-IV.
|
356 |
+
|
357 |
+
References
|
358 |
+
----------
|
359 |
+
.. [1] 'A Fast Cosine Transform in One and Two Dimensions', by J.
|
360 |
+
Makhoul, `IEEE Transactions on acoustics, speech and signal
|
361 |
+
processing` vol. 28(1), pp. 27-34,
|
362 |
+
:doi:`10.1109/TASSP.1980.1163351` (1980).
|
363 |
+
.. [2] Wikipedia, "Discrete cosine transform",
|
364 |
+
https://en.wikipedia.org/wiki/Discrete_cosine_transform
|
365 |
+
|
366 |
+
Examples
|
367 |
+
--------
|
368 |
+
The Type 1 DCT is equivalent to the FFT (though faster) for real,
|
369 |
+
even-symmetrical inputs. The output is also real and even-symmetrical.
|
370 |
+
Half of the FFT input is used to generate half of the FFT output:
|
371 |
+
|
372 |
+
>>> from scipy.fftpack import fft, dct
|
373 |
+
>>> import numpy as np
|
374 |
+
>>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
|
375 |
+
array([ 30., -8., 6., -2., 6., -8.])
|
376 |
+
>>> dct(np.array([4., 3., 5., 10.]), 1)
|
377 |
+
array([ 30., -8., 6., -2.])
|
378 |
+
|
379 |
+
"""
|
380 |
+
return _pocketfft.dct(x, type, n, axis, norm, overwrite_x)
|
381 |
+
|
382 |
+
|
383 |
+
def idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
|
384 |
+
"""
|
385 |
+
Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.
|
386 |
+
|
387 |
+
Parameters
|
388 |
+
----------
|
389 |
+
x : array_like
|
390 |
+
The input array.
|
391 |
+
type : {1, 2, 3, 4}, optional
|
392 |
+
Type of the DCT (see Notes). Default type is 2.
|
393 |
+
n : int, optional
|
394 |
+
Length of the transform. If ``n < x.shape[axis]``, `x` is
|
395 |
+
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
|
396 |
+
default results in ``n = x.shape[axis]``.
|
397 |
+
axis : int, optional
|
398 |
+
Axis along which the idct is computed; the default is over the
|
399 |
+
last axis (i.e., ``axis=-1``).
|
400 |
+
norm : {None, 'ortho'}, optional
|
401 |
+
Normalization mode (see Notes). Default is None.
|
402 |
+
overwrite_x : bool, optional
|
403 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
404 |
+
|
405 |
+
Returns
|
406 |
+
-------
|
407 |
+
idct : ndarray of real
|
408 |
+
The transformed input array.
|
409 |
+
|
410 |
+
See Also
|
411 |
+
--------
|
412 |
+
dct : Forward DCT
|
413 |
+
|
414 |
+
Notes
|
415 |
+
-----
|
416 |
+
For a single dimension array `x`, ``idct(x, norm='ortho')`` is equal to
|
417 |
+
MATLAB ``idct(x)``.
|
418 |
+
|
419 |
+
'The' IDCT is the IDCT of type 2, which is the same as DCT of type 3.
|
420 |
+
|
421 |
+
IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type
|
422 |
+
3, and IDCT of type 3 is the DCT of type 2. IDCT of type 4 is the DCT
|
423 |
+
of type 4. For the definition of these types, see `dct`.
|
424 |
+
|
425 |
+
Examples
|
426 |
+
--------
|
427 |
+
The Type 1 DCT is equivalent to the DFT for real, even-symmetrical
|
428 |
+
inputs. The output is also real and even-symmetrical. Half of the IFFT
|
429 |
+
input is used to generate half of the IFFT output:
|
430 |
+
|
431 |
+
>>> from scipy.fftpack import ifft, idct
|
432 |
+
>>> import numpy as np
|
433 |
+
>>> ifft(np.array([ 30., -8., 6., -2., 6., -8.])).real
|
434 |
+
array([ 4., 3., 5., 10., 5., 3.])
|
435 |
+
>>> idct(np.array([ 30., -8., 6., -2.]), 1) / 6
|
436 |
+
array([ 4., 3., 5., 10.])
|
437 |
+
|
438 |
+
"""
|
439 |
+
type = _inverse_typemap[type]
|
440 |
+
return _pocketfft.dct(x, type, n, axis, norm, overwrite_x)
|
441 |
+
|
442 |
+
|
443 |
+
def dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
|
444 |
+
r"""
|
445 |
+
Return the Discrete Sine Transform of arbitrary type sequence x.
|
446 |
+
|
447 |
+
Parameters
|
448 |
+
----------
|
449 |
+
x : array_like
|
450 |
+
The input array.
|
451 |
+
type : {1, 2, 3, 4}, optional
|
452 |
+
Type of the DST (see Notes). Default type is 2.
|
453 |
+
n : int, optional
|
454 |
+
Length of the transform. If ``n < x.shape[axis]``, `x` is
|
455 |
+
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
|
456 |
+
default results in ``n = x.shape[axis]``.
|
457 |
+
axis : int, optional
|
458 |
+
Axis along which the dst is computed; the default is over the
|
459 |
+
last axis (i.e., ``axis=-1``).
|
460 |
+
norm : {None, 'ortho'}, optional
|
461 |
+
Normalization mode (see Notes). Default is None.
|
462 |
+
overwrite_x : bool, optional
|
463 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
464 |
+
|
465 |
+
Returns
|
466 |
+
-------
|
467 |
+
dst : ndarray of reals
|
468 |
+
The transformed input array.
|
469 |
+
|
470 |
+
See Also
|
471 |
+
--------
|
472 |
+
idst : Inverse DST
|
473 |
+
|
474 |
+
Notes
|
475 |
+
-----
|
476 |
+
For a single dimension array ``x``.
|
477 |
+
|
478 |
+
There are, theoretically, 8 types of the DST for different combinations of
|
479 |
+
even/odd boundary conditions and boundary off sets [1]_, only the first
|
480 |
+
4 types are implemented in scipy.
|
481 |
+
|
482 |
+
**Type I**
|
483 |
+
|
484 |
+
There are several definitions of the DST-I; we use the following
|
485 |
+
for ``norm=None``. DST-I assumes the input is odd around `n=-1` and `n=N`.
|
486 |
+
|
487 |
+
.. math::
|
488 |
+
|
489 |
+
y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(n+1)}{N+1}\right)
|
490 |
+
|
491 |
+
Note that the DST-I is only supported for input size > 1.
|
492 |
+
The (unnormalized) DST-I is its own inverse, up to a factor `2(N+1)`.
|
493 |
+
The orthonormalized DST-I is exactly its own inverse.
|
494 |
+
|
495 |
+
**Type II**
|
496 |
+
|
497 |
+
There are several definitions of the DST-II; we use the following for
|
498 |
+
``norm=None``. DST-II assumes the input is odd around `n=-1/2` and
|
499 |
+
`n=N-1/2`; the output is odd around :math:`k=-1` and even around `k=N-1`
|
500 |
+
|
501 |
+
.. math::
|
502 |
+
|
503 |
+
y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(2n+1)}{2N}\right)
|
504 |
+
|
505 |
+
if ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``
|
506 |
+
|
507 |
+
.. math::
|
508 |
+
|
509 |
+
f = \begin{cases}
|
510 |
+
\sqrt{\frac{1}{4N}} & \text{if }k = 0, \\
|
511 |
+
\sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases}
|
512 |
+
|
513 |
+
**Type III**
|
514 |
+
|
515 |
+
There are several definitions of the DST-III, we use the following (for
|
516 |
+
``norm=None``). DST-III assumes the input is odd around `n=-1` and even
|
517 |
+
around `n=N-1`
|
518 |
+
|
519 |
+
.. math::
|
520 |
+
|
521 |
+
y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin\left(
|
522 |
+
\frac{\pi(2k+1)(n+1)}{2N}\right)
|
523 |
+
|
524 |
+
The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up
|
525 |
+
to a factor `2N`. The orthonormalized DST-III is exactly the inverse of the
|
526 |
+
orthonormalized DST-II.
|
527 |
+
|
528 |
+
.. versionadded:: 0.11.0
|
529 |
+
|
530 |
+
**Type IV**
|
531 |
+
|
532 |
+
There are several definitions of the DST-IV, we use the following (for
|
533 |
+
``norm=None``). DST-IV assumes the input is odd around `n=-0.5` and even
|
534 |
+
around `n=N-0.5`
|
535 |
+
|
536 |
+
.. math::
|
537 |
+
|
538 |
+
y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(2k+1)(2n+1)}{4N}\right)
|
539 |
+
|
540 |
+
The (unnormalized) DST-IV is its own inverse, up to a factor `2N`. The
|
541 |
+
orthonormalized DST-IV is exactly its own inverse.
|
542 |
+
|
543 |
+
.. versionadded:: 1.2.0
|
544 |
+
Support for DST-IV.
|
545 |
+
|
546 |
+
References
|
547 |
+
----------
|
548 |
+
.. [1] Wikipedia, "Discrete sine transform",
|
549 |
+
https://en.wikipedia.org/wiki/Discrete_sine_transform
|
550 |
+
|
551 |
+
"""
|
552 |
+
return _pocketfft.dst(x, type, n, axis, norm, overwrite_x)
|
553 |
+
|
554 |
+
|
555 |
+
def idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
|
556 |
+
"""
|
557 |
+
Return the Inverse Discrete Sine Transform of an arbitrary type sequence.
|
558 |
+
|
559 |
+
Parameters
|
560 |
+
----------
|
561 |
+
x : array_like
|
562 |
+
The input array.
|
563 |
+
type : {1, 2, 3, 4}, optional
|
564 |
+
Type of the DST (see Notes). Default type is 2.
|
565 |
+
n : int, optional
|
566 |
+
Length of the transform. If ``n < x.shape[axis]``, `x` is
|
567 |
+
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
|
568 |
+
default results in ``n = x.shape[axis]``.
|
569 |
+
axis : int, optional
|
570 |
+
Axis along which the idst is computed; the default is over the
|
571 |
+
last axis (i.e., ``axis=-1``).
|
572 |
+
norm : {None, 'ortho'}, optional
|
573 |
+
Normalization mode (see Notes). Default is None.
|
574 |
+
overwrite_x : bool, optional
|
575 |
+
If True, the contents of `x` can be destroyed; the default is False.
|
576 |
+
|
577 |
+
Returns
|
578 |
+
-------
|
579 |
+
idst : ndarray of real
|
580 |
+
The transformed input array.
|
581 |
+
|
582 |
+
See Also
|
583 |
+
--------
|
584 |
+
dst : Forward DST
|
585 |
+
|
586 |
+
Notes
|
587 |
+
-----
|
588 |
+
'The' IDST is the IDST of type 2, which is the same as DST of type 3.
|
589 |
+
|
590 |
+
IDST of type 1 is the DST of type 1, IDST of type 2 is the DST of type
|
591 |
+
3, and IDST of type 3 is the DST of type 2. For the definition of these
|
592 |
+
types, see `dst`.
|
593 |
+
|
594 |
+
.. versionadded:: 0.11.0
|
595 |
+
|
596 |
+
"""
|
597 |
+
type = _inverse_typemap[type]
|
598 |
+
return _pocketfft.dst(x, type, n, axis, norm, overwrite_x)
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/convolve.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (273 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/helper.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.fftpack` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'fftshift', 'ifftshift', 'fftfreq', 'rfftfreq', 'next_fast_len'
|
9 |
+
]
|
10 |
+
|
11 |
+
|
12 |
+
def __dir__():
|
13 |
+
return __all__
|
14 |
+
|
15 |
+
|
16 |
+
def __getattr__(name):
|
17 |
+
return _sub_module_deprecation(sub_package="fftpack", module="helper",
|
18 |
+
private_modules=["_helper"], all=__all__,
|
19 |
+
attribute=name)
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/pseudo_diffs.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.fftpack` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'diff',
|
9 |
+
'tilbert', 'itilbert', 'hilbert', 'ihilbert',
|
10 |
+
'cs_diff', 'cc_diff', 'sc_diff', 'ss_diff',
|
11 |
+
'shift', 'iscomplexobj', 'convolve'
|
12 |
+
]
|
13 |
+
|
14 |
+
|
15 |
+
def __dir__():
|
16 |
+
return __all__
|
17 |
+
|
18 |
+
|
19 |
+
def __getattr__(name):
|
20 |
+
return _sub_module_deprecation(sub_package="fftpack", module="pseudo_diffs",
|
21 |
+
private_modules=["_pseudo_diffs"], all=__all__,
|
22 |
+
attribute=name)
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (184 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_basic.cpython-310.pyc
ADDED
Binary file (28.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_helper.cpython-310.pyc
ADDED
Binary file (2.22 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_import.cpython-310.pyc
ADDED
Binary file (1.56 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_pseudo_diffs.cpython-310.pyc
ADDED
Binary file (13 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/__pycache__/test_real_transforms.cpython-310.pyc
ADDED
Binary file (25.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/test_basic.py
ADDED
@@ -0,0 +1,873 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Created by Pearu Peterson, September 2002
|
2 |
+
|
3 |
+
from numpy.testing import (assert_, assert_equal, assert_array_almost_equal,
|
4 |
+
assert_array_almost_equal_nulp, assert_array_less)
|
5 |
+
import pytest
|
6 |
+
from pytest import raises as assert_raises
|
7 |
+
from scipy.fftpack import ifft, fft, fftn, ifftn, rfft, irfft, fft2
|
8 |
+
|
9 |
+
from numpy import (arange, array, asarray, zeros, dot, exp, pi,
|
10 |
+
swapaxes, double, cdouble)
|
11 |
+
import numpy as np
|
12 |
+
import numpy.fft
|
13 |
+
from numpy.random import rand
|
14 |
+
|
15 |
+
# "large" composite numbers supported by FFTPACK
|
16 |
+
LARGE_COMPOSITE_SIZES = [
|
17 |
+
2**13,
|
18 |
+
2**5 * 3**5,
|
19 |
+
2**3 * 3**3 * 5**2,
|
20 |
+
]
|
21 |
+
SMALL_COMPOSITE_SIZES = [
|
22 |
+
2,
|
23 |
+
2*3*5,
|
24 |
+
2*2*3*3,
|
25 |
+
]
|
26 |
+
# prime
|
27 |
+
LARGE_PRIME_SIZES = [
|
28 |
+
2011
|
29 |
+
]
|
30 |
+
SMALL_PRIME_SIZES = [
|
31 |
+
29
|
32 |
+
]
|
33 |
+
|
34 |
+
|
35 |
+
def _assert_close_in_norm(x, y, rtol, size, rdt):
|
36 |
+
# helper function for testing
|
37 |
+
err_msg = f"size: {size} rdt: {rdt}"
|
38 |
+
assert_array_less(np.linalg.norm(x - y), rtol*np.linalg.norm(x), err_msg)
|
39 |
+
|
40 |
+
|
41 |
+
def random(size):
|
42 |
+
return rand(*size)
|
43 |
+
|
44 |
+
|
45 |
+
def direct_dft(x):
|
46 |
+
x = asarray(x)
|
47 |
+
n = len(x)
|
48 |
+
y = zeros(n, dtype=cdouble)
|
49 |
+
w = -arange(n)*(2j*pi/n)
|
50 |
+
for i in range(n):
|
51 |
+
y[i] = dot(exp(i*w), x)
|
52 |
+
return y
|
53 |
+
|
54 |
+
|
55 |
+
def direct_idft(x):
|
56 |
+
x = asarray(x)
|
57 |
+
n = len(x)
|
58 |
+
y = zeros(n, dtype=cdouble)
|
59 |
+
w = arange(n)*(2j*pi/n)
|
60 |
+
for i in range(n):
|
61 |
+
y[i] = dot(exp(i*w), x)/n
|
62 |
+
return y
|
63 |
+
|
64 |
+
|
65 |
+
def direct_dftn(x):
|
66 |
+
x = asarray(x)
|
67 |
+
for axis in range(len(x.shape)):
|
68 |
+
x = fft(x, axis=axis)
|
69 |
+
return x
|
70 |
+
|
71 |
+
|
72 |
+
def direct_idftn(x):
|
73 |
+
x = asarray(x)
|
74 |
+
for axis in range(len(x.shape)):
|
75 |
+
x = ifft(x, axis=axis)
|
76 |
+
return x
|
77 |
+
|
78 |
+
|
79 |
+
def direct_rdft(x):
|
80 |
+
x = asarray(x)
|
81 |
+
n = len(x)
|
82 |
+
w = -arange(n)*(2j*pi/n)
|
83 |
+
r = zeros(n, dtype=double)
|
84 |
+
for i in range(n//2+1):
|
85 |
+
y = dot(exp(i*w), x)
|
86 |
+
if i:
|
87 |
+
r[2*i-1] = y.real
|
88 |
+
if 2*i < n:
|
89 |
+
r[2*i] = y.imag
|
90 |
+
else:
|
91 |
+
r[0] = y.real
|
92 |
+
return r
|
93 |
+
|
94 |
+
|
95 |
+
def direct_irdft(x):
|
96 |
+
x = asarray(x)
|
97 |
+
n = len(x)
|
98 |
+
x1 = zeros(n, dtype=cdouble)
|
99 |
+
for i in range(n//2+1):
|
100 |
+
if i:
|
101 |
+
if 2*i < n:
|
102 |
+
x1[i] = x[2*i-1] + 1j*x[2*i]
|
103 |
+
x1[n-i] = x[2*i-1] - 1j*x[2*i]
|
104 |
+
else:
|
105 |
+
x1[i] = x[2*i-1]
|
106 |
+
else:
|
107 |
+
x1[0] = x[0]
|
108 |
+
return direct_idft(x1).real
|
109 |
+
|
110 |
+
|
111 |
+
class _TestFFTBase:
|
112 |
+
def setup_method(self):
|
113 |
+
self.cdt = None
|
114 |
+
self.rdt = None
|
115 |
+
np.random.seed(1234)
|
116 |
+
|
117 |
+
def test_definition(self):
|
118 |
+
x = np.array([1,2,3,4+1j,1,2,3,4+2j], dtype=self.cdt)
|
119 |
+
y = fft(x)
|
120 |
+
assert_equal(y.dtype, self.cdt)
|
121 |
+
y1 = direct_dft(x)
|
122 |
+
assert_array_almost_equal(y,y1)
|
123 |
+
x = np.array([1,2,3,4+0j,5], dtype=self.cdt)
|
124 |
+
assert_array_almost_equal(fft(x),direct_dft(x))
|
125 |
+
|
126 |
+
def test_n_argument_real(self):
|
127 |
+
x1 = np.array([1,2,3,4], dtype=self.rdt)
|
128 |
+
x2 = np.array([1,2,3,4], dtype=self.rdt)
|
129 |
+
y = fft([x1,x2],n=4)
|
130 |
+
assert_equal(y.dtype, self.cdt)
|
131 |
+
assert_equal(y.shape,(2,4))
|
132 |
+
assert_array_almost_equal(y[0],direct_dft(x1))
|
133 |
+
assert_array_almost_equal(y[1],direct_dft(x2))
|
134 |
+
|
135 |
+
def _test_n_argument_complex(self):
|
136 |
+
x1 = np.array([1,2,3,4+1j], dtype=self.cdt)
|
137 |
+
x2 = np.array([1,2,3,4+1j], dtype=self.cdt)
|
138 |
+
y = fft([x1,x2],n=4)
|
139 |
+
assert_equal(y.dtype, self.cdt)
|
140 |
+
assert_equal(y.shape,(2,4))
|
141 |
+
assert_array_almost_equal(y[0],direct_dft(x1))
|
142 |
+
assert_array_almost_equal(y[1],direct_dft(x2))
|
143 |
+
|
144 |
+
def test_invalid_sizes(self):
|
145 |
+
assert_raises(ValueError, fft, [])
|
146 |
+
assert_raises(ValueError, fft, [[1,1],[2,2]], -5)
|
147 |
+
|
148 |
+
|
149 |
+
class TestDoubleFFT(_TestFFTBase):
|
150 |
+
def setup_method(self):
|
151 |
+
self.cdt = np.complex128
|
152 |
+
self.rdt = np.float64
|
153 |
+
|
154 |
+
|
155 |
+
class TestSingleFFT(_TestFFTBase):
|
156 |
+
def setup_method(self):
|
157 |
+
self.cdt = np.complex64
|
158 |
+
self.rdt = np.float32
|
159 |
+
|
160 |
+
reason = ("single-precision FFT implementation is partially disabled, "
|
161 |
+
"until accuracy issues with large prime powers are resolved")
|
162 |
+
|
163 |
+
@pytest.mark.xfail(run=False, reason=reason)
|
164 |
+
def test_notice(self):
|
165 |
+
pass
|
166 |
+
|
167 |
+
|
168 |
+
class TestFloat16FFT:
|
169 |
+
|
170 |
+
def test_1_argument_real(self):
|
171 |
+
x1 = np.array([1, 2, 3, 4], dtype=np.float16)
|
172 |
+
y = fft(x1, n=4)
|
173 |
+
assert_equal(y.dtype, np.complex64)
|
174 |
+
assert_equal(y.shape, (4, ))
|
175 |
+
assert_array_almost_equal(y, direct_dft(x1.astype(np.float32)))
|
176 |
+
|
177 |
+
def test_n_argument_real(self):
|
178 |
+
x1 = np.array([1, 2, 3, 4], dtype=np.float16)
|
179 |
+
x2 = np.array([1, 2, 3, 4], dtype=np.float16)
|
180 |
+
y = fft([x1, x2], n=4)
|
181 |
+
assert_equal(y.dtype, np.complex64)
|
182 |
+
assert_equal(y.shape, (2, 4))
|
183 |
+
assert_array_almost_equal(y[0], direct_dft(x1.astype(np.float32)))
|
184 |
+
assert_array_almost_equal(y[1], direct_dft(x2.astype(np.float32)))
|
185 |
+
|
186 |
+
|
187 |
+
class _TestIFFTBase:
|
188 |
+
def setup_method(self):
|
189 |
+
np.random.seed(1234)
|
190 |
+
|
191 |
+
def test_definition(self):
|
192 |
+
x = np.array([1,2,3,4+1j,1,2,3,4+2j], self.cdt)
|
193 |
+
y = ifft(x)
|
194 |
+
y1 = direct_idft(x)
|
195 |
+
assert_equal(y.dtype, self.cdt)
|
196 |
+
assert_array_almost_equal(y,y1)
|
197 |
+
|
198 |
+
x = np.array([1,2,3,4+0j,5], self.cdt)
|
199 |
+
assert_array_almost_equal(ifft(x),direct_idft(x))
|
200 |
+
|
201 |
+
def test_definition_real(self):
|
202 |
+
x = np.array([1,2,3,4,1,2,3,4], self.rdt)
|
203 |
+
y = ifft(x)
|
204 |
+
assert_equal(y.dtype, self.cdt)
|
205 |
+
y1 = direct_idft(x)
|
206 |
+
assert_array_almost_equal(y,y1)
|
207 |
+
|
208 |
+
x = np.array([1,2,3,4,5], dtype=self.rdt)
|
209 |
+
assert_equal(y.dtype, self.cdt)
|
210 |
+
assert_array_almost_equal(ifft(x),direct_idft(x))
|
211 |
+
|
212 |
+
def test_random_complex(self):
|
213 |
+
for size in [1,51,111,100,200,64,128,256,1024]:
|
214 |
+
x = random([size]).astype(self.cdt)
|
215 |
+
x = random([size]).astype(self.cdt) + 1j*x
|
216 |
+
y1 = ifft(fft(x))
|
217 |
+
y2 = fft(ifft(x))
|
218 |
+
assert_equal(y1.dtype, self.cdt)
|
219 |
+
assert_equal(y2.dtype, self.cdt)
|
220 |
+
assert_array_almost_equal(y1, x)
|
221 |
+
assert_array_almost_equal(y2, x)
|
222 |
+
|
223 |
+
def test_random_real(self):
|
224 |
+
for size in [1,51,111,100,200,64,128,256,1024]:
|
225 |
+
x = random([size]).astype(self.rdt)
|
226 |
+
y1 = ifft(fft(x))
|
227 |
+
y2 = fft(ifft(x))
|
228 |
+
assert_equal(y1.dtype, self.cdt)
|
229 |
+
assert_equal(y2.dtype, self.cdt)
|
230 |
+
assert_array_almost_equal(y1, x)
|
231 |
+
assert_array_almost_equal(y2, x)
|
232 |
+
|
233 |
+
def test_size_accuracy(self):
|
234 |
+
# Sanity check for the accuracy for prime and non-prime sized inputs
|
235 |
+
if self.rdt == np.float32:
|
236 |
+
rtol = 1e-5
|
237 |
+
elif self.rdt == np.float64:
|
238 |
+
rtol = 1e-10
|
239 |
+
|
240 |
+
for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
|
241 |
+
np.random.seed(1234)
|
242 |
+
x = np.random.rand(size).astype(self.rdt)
|
243 |
+
y = ifft(fft(x))
|
244 |
+
_assert_close_in_norm(x, y, rtol, size, self.rdt)
|
245 |
+
y = fft(ifft(x))
|
246 |
+
_assert_close_in_norm(x, y, rtol, size, self.rdt)
|
247 |
+
|
248 |
+
x = (x + 1j*np.random.rand(size)).astype(self.cdt)
|
249 |
+
y = ifft(fft(x))
|
250 |
+
_assert_close_in_norm(x, y, rtol, size, self.rdt)
|
251 |
+
y = fft(ifft(x))
|
252 |
+
_assert_close_in_norm(x, y, rtol, size, self.rdt)
|
253 |
+
|
254 |
+
def test_invalid_sizes(self):
|
255 |
+
assert_raises(ValueError, ifft, [])
|
256 |
+
assert_raises(ValueError, ifft, [[1,1],[2,2]], -5)
|
257 |
+
|
258 |
+
|
259 |
+
class TestDoubleIFFT(_TestIFFTBase):
|
260 |
+
def setup_method(self):
|
261 |
+
self.cdt = np.complex128
|
262 |
+
self.rdt = np.float64
|
263 |
+
|
264 |
+
|
265 |
+
class TestSingleIFFT(_TestIFFTBase):
|
266 |
+
def setup_method(self):
|
267 |
+
self.cdt = np.complex64
|
268 |
+
self.rdt = np.float32
|
269 |
+
|
270 |
+
|
271 |
+
class _TestRFFTBase:
|
272 |
+
def setup_method(self):
|
273 |
+
np.random.seed(1234)
|
274 |
+
|
275 |
+
def test_definition(self):
|
276 |
+
for t in [[1, 2, 3, 4, 1, 2, 3, 4], [1, 2, 3, 4, 1, 2, 3, 4, 5]]:
|
277 |
+
x = np.array(t, dtype=self.rdt)
|
278 |
+
y = rfft(x)
|
279 |
+
y1 = direct_rdft(x)
|
280 |
+
assert_array_almost_equal(y,y1)
|
281 |
+
assert_equal(y.dtype, self.rdt)
|
282 |
+
|
283 |
+
def test_invalid_sizes(self):
|
284 |
+
assert_raises(ValueError, rfft, [])
|
285 |
+
assert_raises(ValueError, rfft, [[1,1],[2,2]], -5)
|
286 |
+
|
287 |
+
# See gh-5790
|
288 |
+
class MockSeries:
|
289 |
+
def __init__(self, data):
|
290 |
+
self.data = np.asarray(data)
|
291 |
+
|
292 |
+
def __getattr__(self, item):
|
293 |
+
try:
|
294 |
+
return getattr(self.data, item)
|
295 |
+
except AttributeError as e:
|
296 |
+
raise AttributeError("'MockSeries' object "
|
297 |
+
f"has no attribute '{item}'") from e
|
298 |
+
|
299 |
+
def test_non_ndarray_with_dtype(self):
|
300 |
+
x = np.array([1., 2., 3., 4., 5.])
|
301 |
+
xs = _TestRFFTBase.MockSeries(x)
|
302 |
+
|
303 |
+
expected = [1, 2, 3, 4, 5]
|
304 |
+
rfft(xs)
|
305 |
+
|
306 |
+
# Data should not have been overwritten
|
307 |
+
assert_equal(x, expected)
|
308 |
+
assert_equal(xs.data, expected)
|
309 |
+
|
310 |
+
def test_complex_input(self):
|
311 |
+
assert_raises(TypeError, rfft, np.arange(4, dtype=np.complex64))
|
312 |
+
|
313 |
+
|
314 |
+
class TestRFFTDouble(_TestRFFTBase):
|
315 |
+
def setup_method(self):
|
316 |
+
self.cdt = np.complex128
|
317 |
+
self.rdt = np.float64
|
318 |
+
|
319 |
+
|
320 |
+
class TestRFFTSingle(_TestRFFTBase):
|
321 |
+
def setup_method(self):
|
322 |
+
self.cdt = np.complex64
|
323 |
+
self.rdt = np.float32
|
324 |
+
|
325 |
+
|
326 |
+
class _TestIRFFTBase:
|
327 |
+
def setup_method(self):
|
328 |
+
np.random.seed(1234)
|
329 |
+
|
330 |
+
def test_definition(self):
|
331 |
+
x1 = [1,2,3,4,1,2,3,4]
|
332 |
+
x1_1 = [1,2+3j,4+1j,2+3j,4,2-3j,4-1j,2-3j]
|
333 |
+
x2 = [1,2,3,4,1,2,3,4,5]
|
334 |
+
x2_1 = [1,2+3j,4+1j,2+3j,4+5j,4-5j,2-3j,4-1j,2-3j]
|
335 |
+
|
336 |
+
def _test(x, xr):
|
337 |
+
y = irfft(np.array(x, dtype=self.rdt))
|
338 |
+
y1 = direct_irdft(x)
|
339 |
+
assert_equal(y.dtype, self.rdt)
|
340 |
+
assert_array_almost_equal(y,y1, decimal=self.ndec)
|
341 |
+
assert_array_almost_equal(y,ifft(xr), decimal=self.ndec)
|
342 |
+
|
343 |
+
_test(x1, x1_1)
|
344 |
+
_test(x2, x2_1)
|
345 |
+
|
346 |
+
def test_random_real(self):
|
347 |
+
for size in [1,51,111,100,200,64,128,256,1024]:
|
348 |
+
x = random([size]).astype(self.rdt)
|
349 |
+
y1 = irfft(rfft(x))
|
350 |
+
y2 = rfft(irfft(x))
|
351 |
+
assert_equal(y1.dtype, self.rdt)
|
352 |
+
assert_equal(y2.dtype, self.rdt)
|
353 |
+
assert_array_almost_equal(y1, x, decimal=self.ndec,
|
354 |
+
err_msg="size=%d" % size)
|
355 |
+
assert_array_almost_equal(y2, x, decimal=self.ndec,
|
356 |
+
err_msg="size=%d" % size)
|
357 |
+
|
358 |
+
def test_size_accuracy(self):
|
359 |
+
# Sanity check for the accuracy for prime and non-prime sized inputs
|
360 |
+
if self.rdt == np.float32:
|
361 |
+
rtol = 1e-5
|
362 |
+
elif self.rdt == np.float64:
|
363 |
+
rtol = 1e-10
|
364 |
+
|
365 |
+
for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
|
366 |
+
np.random.seed(1234)
|
367 |
+
x = np.random.rand(size).astype(self.rdt)
|
368 |
+
y = irfft(rfft(x))
|
369 |
+
_assert_close_in_norm(x, y, rtol, size, self.rdt)
|
370 |
+
y = rfft(irfft(x))
|
371 |
+
_assert_close_in_norm(x, y, rtol, size, self.rdt)
|
372 |
+
|
373 |
+
def test_invalid_sizes(self):
|
374 |
+
assert_raises(ValueError, irfft, [])
|
375 |
+
assert_raises(ValueError, irfft, [[1,1],[2,2]], -5)
|
376 |
+
|
377 |
+
def test_complex_input(self):
|
378 |
+
assert_raises(TypeError, irfft, np.arange(4, dtype=np.complex64))
|
379 |
+
|
380 |
+
|
381 |
+
# self.ndec is bogus; we should have a assert_array_approx_equal for number of
|
382 |
+
# significant digits
|
383 |
+
|
384 |
+
class TestIRFFTDouble(_TestIRFFTBase):
|
385 |
+
def setup_method(self):
|
386 |
+
self.cdt = np.complex128
|
387 |
+
self.rdt = np.float64
|
388 |
+
self.ndec = 14
|
389 |
+
|
390 |
+
|
391 |
+
class TestIRFFTSingle(_TestIRFFTBase):
|
392 |
+
def setup_method(self):
|
393 |
+
self.cdt = np.complex64
|
394 |
+
self.rdt = np.float32
|
395 |
+
self.ndec = 5
|
396 |
+
|
397 |
+
|
398 |
+
class Testfft2:
|
399 |
+
def setup_method(self):
|
400 |
+
np.random.seed(1234)
|
401 |
+
|
402 |
+
def test_regression_244(self):
|
403 |
+
"""FFT returns wrong result with axes parameter."""
|
404 |
+
# fftn (and hence fft2) used to break when both axes and shape were
|
405 |
+
# used
|
406 |
+
x = numpy.ones((4, 4, 2))
|
407 |
+
y = fft2(x, shape=(8, 8), axes=(-3, -2))
|
408 |
+
y_r = numpy.fft.fftn(x, s=(8, 8), axes=(-3, -2))
|
409 |
+
assert_array_almost_equal(y, y_r)
|
410 |
+
|
411 |
+
def test_invalid_sizes(self):
|
412 |
+
assert_raises(ValueError, fft2, [[]])
|
413 |
+
assert_raises(ValueError, fft2, [[1, 1], [2, 2]], (4, -3))
|
414 |
+
|
415 |
+
|
416 |
+
class TestFftnSingle:
|
417 |
+
def setup_method(self):
|
418 |
+
np.random.seed(1234)
|
419 |
+
|
420 |
+
def test_definition(self):
|
421 |
+
x = [[1, 2, 3],
|
422 |
+
[4, 5, 6],
|
423 |
+
[7, 8, 9]]
|
424 |
+
y = fftn(np.array(x, np.float32))
|
425 |
+
assert_(y.dtype == np.complex64,
|
426 |
+
msg="double precision output with single precision")
|
427 |
+
|
428 |
+
y_r = np.array(fftn(x), np.complex64)
|
429 |
+
assert_array_almost_equal_nulp(y, y_r)
|
430 |
+
|
431 |
+
@pytest.mark.parametrize('size', SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES)
|
432 |
+
def test_size_accuracy_small(self, size):
|
433 |
+
x = np.random.rand(size, size) + 1j*np.random.rand(size, size)
|
434 |
+
y1 = fftn(x.real.astype(np.float32))
|
435 |
+
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
|
436 |
+
|
437 |
+
assert_equal(y1.dtype, np.complex64)
|
438 |
+
assert_array_almost_equal_nulp(y1, y2, 2000)
|
439 |
+
|
440 |
+
@pytest.mark.parametrize('size', LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES)
|
441 |
+
def test_size_accuracy_large(self, size):
|
442 |
+
x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3)
|
443 |
+
y1 = fftn(x.real.astype(np.float32))
|
444 |
+
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
|
445 |
+
|
446 |
+
assert_equal(y1.dtype, np.complex64)
|
447 |
+
assert_array_almost_equal_nulp(y1, y2, 2000)
|
448 |
+
|
449 |
+
def test_definition_float16(self):
|
450 |
+
x = [[1, 2, 3],
|
451 |
+
[4, 5, 6],
|
452 |
+
[7, 8, 9]]
|
453 |
+
y = fftn(np.array(x, np.float16))
|
454 |
+
assert_equal(y.dtype, np.complex64)
|
455 |
+
y_r = np.array(fftn(x), np.complex64)
|
456 |
+
assert_array_almost_equal_nulp(y, y_r)
|
457 |
+
|
458 |
+
@pytest.mark.parametrize('size', SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES)
|
459 |
+
def test_float16_input_small(self, size):
|
460 |
+
x = np.random.rand(size, size) + 1j*np.random.rand(size, size)
|
461 |
+
y1 = fftn(x.real.astype(np.float16))
|
462 |
+
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
|
463 |
+
|
464 |
+
assert_equal(y1.dtype, np.complex64)
|
465 |
+
assert_array_almost_equal_nulp(y1, y2, 5e5)
|
466 |
+
|
467 |
+
@pytest.mark.parametrize('size', LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES)
|
468 |
+
def test_float16_input_large(self, size):
|
469 |
+
x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3)
|
470 |
+
y1 = fftn(x.real.astype(np.float16))
|
471 |
+
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
|
472 |
+
|
473 |
+
assert_equal(y1.dtype, np.complex64)
|
474 |
+
assert_array_almost_equal_nulp(y1, y2, 2e6)
|
475 |
+
|
476 |
+
|
477 |
+
class TestFftn:
|
478 |
+
def setup_method(self):
|
479 |
+
np.random.seed(1234)
|
480 |
+
|
481 |
+
def test_definition(self):
|
482 |
+
x = [[1, 2, 3],
|
483 |
+
[4, 5, 6],
|
484 |
+
[7, 8, 9]]
|
485 |
+
y = fftn(x)
|
486 |
+
assert_array_almost_equal(y, direct_dftn(x))
|
487 |
+
|
488 |
+
x = random((20, 26))
|
489 |
+
assert_array_almost_equal(fftn(x), direct_dftn(x))
|
490 |
+
|
491 |
+
x = random((5, 4, 3, 20))
|
492 |
+
assert_array_almost_equal(fftn(x), direct_dftn(x))
|
493 |
+
|
494 |
+
def test_axes_argument(self):
|
495 |
+
# plane == ji_plane, x== kji_space
|
496 |
+
plane1 = [[1, 2, 3],
|
497 |
+
[4, 5, 6],
|
498 |
+
[7, 8, 9]]
|
499 |
+
plane2 = [[10, 11, 12],
|
500 |
+
[13, 14, 15],
|
501 |
+
[16, 17, 18]]
|
502 |
+
plane3 = [[19, 20, 21],
|
503 |
+
[22, 23, 24],
|
504 |
+
[25, 26, 27]]
|
505 |
+
ki_plane1 = [[1, 2, 3],
|
506 |
+
[10, 11, 12],
|
507 |
+
[19, 20, 21]]
|
508 |
+
ki_plane2 = [[4, 5, 6],
|
509 |
+
[13, 14, 15],
|
510 |
+
[22, 23, 24]]
|
511 |
+
ki_plane3 = [[7, 8, 9],
|
512 |
+
[16, 17, 18],
|
513 |
+
[25, 26, 27]]
|
514 |
+
jk_plane1 = [[1, 10, 19],
|
515 |
+
[4, 13, 22],
|
516 |
+
[7, 16, 25]]
|
517 |
+
jk_plane2 = [[2, 11, 20],
|
518 |
+
[5, 14, 23],
|
519 |
+
[8, 17, 26]]
|
520 |
+
jk_plane3 = [[3, 12, 21],
|
521 |
+
[6, 15, 24],
|
522 |
+
[9, 18, 27]]
|
523 |
+
kj_plane1 = [[1, 4, 7],
|
524 |
+
[10, 13, 16], [19, 22, 25]]
|
525 |
+
kj_plane2 = [[2, 5, 8],
|
526 |
+
[11, 14, 17], [20, 23, 26]]
|
527 |
+
kj_plane3 = [[3, 6, 9],
|
528 |
+
[12, 15, 18], [21, 24, 27]]
|
529 |
+
ij_plane1 = [[1, 4, 7],
|
530 |
+
[2, 5, 8],
|
531 |
+
[3, 6, 9]]
|
532 |
+
ij_plane2 = [[10, 13, 16],
|
533 |
+
[11, 14, 17],
|
534 |
+
[12, 15, 18]]
|
535 |
+
ij_plane3 = [[19, 22, 25],
|
536 |
+
[20, 23, 26],
|
537 |
+
[21, 24, 27]]
|
538 |
+
ik_plane1 = [[1, 10, 19],
|
539 |
+
[2, 11, 20],
|
540 |
+
[3, 12, 21]]
|
541 |
+
ik_plane2 = [[4, 13, 22],
|
542 |
+
[5, 14, 23],
|
543 |
+
[6, 15, 24]]
|
544 |
+
ik_plane3 = [[7, 16, 25],
|
545 |
+
[8, 17, 26],
|
546 |
+
[9, 18, 27]]
|
547 |
+
ijk_space = [jk_plane1, jk_plane2, jk_plane3]
|
548 |
+
ikj_space = [kj_plane1, kj_plane2, kj_plane3]
|
549 |
+
jik_space = [ik_plane1, ik_plane2, ik_plane3]
|
550 |
+
jki_space = [ki_plane1, ki_plane2, ki_plane3]
|
551 |
+
kij_space = [ij_plane1, ij_plane2, ij_plane3]
|
552 |
+
x = array([plane1, plane2, plane3])
|
553 |
+
|
554 |
+
assert_array_almost_equal(fftn(x),
|
555 |
+
fftn(x, axes=(-3, -2, -1))) # kji_space
|
556 |
+
assert_array_almost_equal(fftn(x), fftn(x, axes=(0, 1, 2)))
|
557 |
+
assert_array_almost_equal(fftn(x, axes=(0, 2)), fftn(x, axes=(0, -1)))
|
558 |
+
y = fftn(x, axes=(2, 1, 0)) # ijk_space
|
559 |
+
assert_array_almost_equal(swapaxes(y, -1, -3), fftn(ijk_space))
|
560 |
+
y = fftn(x, axes=(2, 0, 1)) # ikj_space
|
561 |
+
assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -1, -2),
|
562 |
+
fftn(ikj_space))
|
563 |
+
y = fftn(x, axes=(1, 2, 0)) # jik_space
|
564 |
+
assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -3, -2),
|
565 |
+
fftn(jik_space))
|
566 |
+
y = fftn(x, axes=(1, 0, 2)) # jki_space
|
567 |
+
assert_array_almost_equal(swapaxes(y, -2, -3), fftn(jki_space))
|
568 |
+
y = fftn(x, axes=(0, 2, 1)) # kij_space
|
569 |
+
assert_array_almost_equal(swapaxes(y, -2, -1), fftn(kij_space))
|
570 |
+
|
571 |
+
y = fftn(x, axes=(-2, -1)) # ji_plane
|
572 |
+
assert_array_almost_equal(fftn(plane1), y[0])
|
573 |
+
assert_array_almost_equal(fftn(plane2), y[1])
|
574 |
+
assert_array_almost_equal(fftn(plane3), y[2])
|
575 |
+
|
576 |
+
y = fftn(x, axes=(1, 2)) # ji_plane
|
577 |
+
assert_array_almost_equal(fftn(plane1), y[0])
|
578 |
+
assert_array_almost_equal(fftn(plane2), y[1])
|
579 |
+
assert_array_almost_equal(fftn(plane3), y[2])
|
580 |
+
|
581 |
+
y = fftn(x, axes=(-3, -2)) # kj_plane
|
582 |
+
assert_array_almost_equal(fftn(x[:, :, 0]), y[:, :, 0])
|
583 |
+
assert_array_almost_equal(fftn(x[:, :, 1]), y[:, :, 1])
|
584 |
+
assert_array_almost_equal(fftn(x[:, :, 2]), y[:, :, 2])
|
585 |
+
|
586 |
+
y = fftn(x, axes=(-3, -1)) # ki_plane
|
587 |
+
assert_array_almost_equal(fftn(x[:, 0, :]), y[:, 0, :])
|
588 |
+
assert_array_almost_equal(fftn(x[:, 1, :]), y[:, 1, :])
|
589 |
+
assert_array_almost_equal(fftn(x[:, 2, :]), y[:, 2, :])
|
590 |
+
|
591 |
+
y = fftn(x, axes=(-1, -2)) # ij_plane
|
592 |
+
assert_array_almost_equal(fftn(ij_plane1), swapaxes(y[0], -2, -1))
|
593 |
+
assert_array_almost_equal(fftn(ij_plane2), swapaxes(y[1], -2, -1))
|
594 |
+
assert_array_almost_equal(fftn(ij_plane3), swapaxes(y[2], -2, -1))
|
595 |
+
|
596 |
+
y = fftn(x, axes=(-1, -3)) # ik_plane
|
597 |
+
assert_array_almost_equal(fftn(ik_plane1),
|
598 |
+
swapaxes(y[:, 0, :], -1, -2))
|
599 |
+
assert_array_almost_equal(fftn(ik_plane2),
|
600 |
+
swapaxes(y[:, 1, :], -1, -2))
|
601 |
+
assert_array_almost_equal(fftn(ik_plane3),
|
602 |
+
swapaxes(y[:, 2, :], -1, -2))
|
603 |
+
|
604 |
+
y = fftn(x, axes=(-2, -3)) # jk_plane
|
605 |
+
assert_array_almost_equal(fftn(jk_plane1),
|
606 |
+
swapaxes(y[:, :, 0], -1, -2))
|
607 |
+
assert_array_almost_equal(fftn(jk_plane2),
|
608 |
+
swapaxes(y[:, :, 1], -1, -2))
|
609 |
+
assert_array_almost_equal(fftn(jk_plane3),
|
610 |
+
swapaxes(y[:, :, 2], -1, -2))
|
611 |
+
|
612 |
+
y = fftn(x, axes=(-1,)) # i_line
|
613 |
+
for i in range(3):
|
614 |
+
for j in range(3):
|
615 |
+
assert_array_almost_equal(fft(x[i, j, :]), y[i, j, :])
|
616 |
+
y = fftn(x, axes=(-2,)) # j_line
|
617 |
+
for i in range(3):
|
618 |
+
for j in range(3):
|
619 |
+
assert_array_almost_equal(fft(x[i, :, j]), y[i, :, j])
|
620 |
+
y = fftn(x, axes=(0,)) # k_line
|
621 |
+
for i in range(3):
|
622 |
+
for j in range(3):
|
623 |
+
assert_array_almost_equal(fft(x[:, i, j]), y[:, i, j])
|
624 |
+
|
625 |
+
y = fftn(x, axes=()) # point
|
626 |
+
assert_array_almost_equal(y, x)
|
627 |
+
|
628 |
+
def test_shape_argument(self):
|
629 |
+
small_x = [[1, 2, 3],
|
630 |
+
[4, 5, 6]]
|
631 |
+
large_x1 = [[1, 2, 3, 0],
|
632 |
+
[4, 5, 6, 0],
|
633 |
+
[0, 0, 0, 0],
|
634 |
+
[0, 0, 0, 0]]
|
635 |
+
|
636 |
+
y = fftn(small_x, shape=(4, 4))
|
637 |
+
assert_array_almost_equal(y, fftn(large_x1))
|
638 |
+
|
639 |
+
y = fftn(small_x, shape=(3, 4))
|
640 |
+
assert_array_almost_equal(y, fftn(large_x1[:-1]))
|
641 |
+
|
642 |
+
def test_shape_axes_argument(self):
|
643 |
+
small_x = [[1, 2, 3],
|
644 |
+
[4, 5, 6],
|
645 |
+
[7, 8, 9]]
|
646 |
+
large_x1 = array([[1, 2, 3, 0],
|
647 |
+
[4, 5, 6, 0],
|
648 |
+
[7, 8, 9, 0],
|
649 |
+
[0, 0, 0, 0]])
|
650 |
+
y = fftn(small_x, shape=(4, 4), axes=(-2, -1))
|
651 |
+
assert_array_almost_equal(y, fftn(large_x1))
|
652 |
+
y = fftn(small_x, shape=(4, 4), axes=(-1, -2))
|
653 |
+
|
654 |
+
assert_array_almost_equal(y, swapaxes(
|
655 |
+
fftn(swapaxes(large_x1, -1, -2)), -1, -2))
|
656 |
+
|
657 |
+
def test_shape_axes_argument2(self):
|
658 |
+
# Change shape of the last axis
|
659 |
+
x = numpy.random.random((10, 5, 3, 7))
|
660 |
+
y = fftn(x, axes=(-1,), shape=(8,))
|
661 |
+
assert_array_almost_equal(y, fft(x, axis=-1, n=8))
|
662 |
+
|
663 |
+
# Change shape of an arbitrary axis which is not the last one
|
664 |
+
x = numpy.random.random((10, 5, 3, 7))
|
665 |
+
y = fftn(x, axes=(-2,), shape=(8,))
|
666 |
+
assert_array_almost_equal(y, fft(x, axis=-2, n=8))
|
667 |
+
|
668 |
+
# Change shape of axes: cf #244, where shape and axes were mixed up
|
669 |
+
x = numpy.random.random((4, 4, 2))
|
670 |
+
y = fftn(x, axes=(-3, -2), shape=(8, 8))
|
671 |
+
assert_array_almost_equal(y,
|
672 |
+
numpy.fft.fftn(x, axes=(-3, -2), s=(8, 8)))
|
673 |
+
|
674 |
+
def test_shape_argument_more(self):
|
675 |
+
x = zeros((4, 4, 2))
|
676 |
+
with assert_raises(ValueError,
|
677 |
+
match="when given, axes and shape arguments"
|
678 |
+
" have to be of the same length"):
|
679 |
+
fftn(x, shape=(8, 8, 2, 1))
|
680 |
+
|
681 |
+
def test_invalid_sizes(self):
|
682 |
+
with assert_raises(ValueError,
|
683 |
+
match="invalid number of data points"
|
684 |
+
r" \(\[1, 0\]\) specified"):
|
685 |
+
fftn([[]])
|
686 |
+
|
687 |
+
with assert_raises(ValueError,
|
688 |
+
match="invalid number of data points"
|
689 |
+
r" \(\[4, -3\]\) specified"):
|
690 |
+
fftn([[1, 1], [2, 2]], (4, -3))
|
691 |
+
|
692 |
+
|
693 |
+
class TestIfftn:
|
694 |
+
dtype = None
|
695 |
+
cdtype = None
|
696 |
+
|
697 |
+
def setup_method(self):
|
698 |
+
np.random.seed(1234)
|
699 |
+
|
700 |
+
@pytest.mark.parametrize('dtype,cdtype,maxnlp',
|
701 |
+
[(np.float64, np.complex128, 2000),
|
702 |
+
(np.float32, np.complex64, 3500)])
|
703 |
+
def test_definition(self, dtype, cdtype, maxnlp):
|
704 |
+
x = np.array([[1, 2, 3],
|
705 |
+
[4, 5, 6],
|
706 |
+
[7, 8, 9]], dtype=dtype)
|
707 |
+
y = ifftn(x)
|
708 |
+
assert_equal(y.dtype, cdtype)
|
709 |
+
assert_array_almost_equal_nulp(y, direct_idftn(x), maxnlp)
|
710 |
+
|
711 |
+
x = random((20, 26))
|
712 |
+
assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp)
|
713 |
+
|
714 |
+
x = random((5, 4, 3, 20))
|
715 |
+
assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp)
|
716 |
+
|
717 |
+
@pytest.mark.parametrize('maxnlp', [2000, 3500])
|
718 |
+
@pytest.mark.parametrize('size', [1, 2, 51, 32, 64, 92])
|
719 |
+
def test_random_complex(self, maxnlp, size):
|
720 |
+
x = random([size, size]) + 1j*random([size, size])
|
721 |
+
assert_array_almost_equal_nulp(ifftn(fftn(x)), x, maxnlp)
|
722 |
+
assert_array_almost_equal_nulp(fftn(ifftn(x)), x, maxnlp)
|
723 |
+
|
724 |
+
def test_invalid_sizes(self):
|
725 |
+
with assert_raises(ValueError,
|
726 |
+
match="invalid number of data points"
|
727 |
+
r" \(\[1, 0\]\) specified"):
|
728 |
+
ifftn([[]])
|
729 |
+
|
730 |
+
with assert_raises(ValueError,
|
731 |
+
match="invalid number of data points"
|
732 |
+
r" \(\[4, -3\]\) specified"):
|
733 |
+
ifftn([[1, 1], [2, 2]], (4, -3))
|
734 |
+
|
735 |
+
|
736 |
+
class FakeArray:
|
737 |
+
def __init__(self, data):
|
738 |
+
self._data = data
|
739 |
+
self.__array_interface__ = data.__array_interface__
|
740 |
+
|
741 |
+
|
742 |
+
class FakeArray2:
|
743 |
+
def __init__(self, data):
|
744 |
+
self._data = data
|
745 |
+
|
746 |
+
def __array__(self, dtype=None, copy=None):
|
747 |
+
return self._data
|
748 |
+
|
749 |
+
|
750 |
+
class TestOverwrite:
|
751 |
+
"""Check input overwrite behavior of the FFT functions."""
|
752 |
+
|
753 |
+
real_dtypes = (np.float32, np.float64)
|
754 |
+
dtypes = real_dtypes + (np.complex64, np.complex128)
|
755 |
+
fftsizes = [8, 16, 32]
|
756 |
+
|
757 |
+
def _check(self, x, routine, fftsize, axis, overwrite_x):
|
758 |
+
x2 = x.copy()
|
759 |
+
for fake in [lambda x: x, FakeArray, FakeArray2]:
|
760 |
+
routine(fake(x2), fftsize, axis, overwrite_x=overwrite_x)
|
761 |
+
|
762 |
+
sig = "{}({}{!r}, {!r}, axis={!r}, overwrite_x={!r})".format(
|
763 |
+
routine.__name__, x.dtype, x.shape, fftsize, axis, overwrite_x)
|
764 |
+
if not overwrite_x:
|
765 |
+
assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig)
|
766 |
+
|
767 |
+
def _check_1d(self, routine, dtype, shape, axis, overwritable_dtypes,
|
768 |
+
fftsize, overwrite_x):
|
769 |
+
np.random.seed(1234)
|
770 |
+
if np.issubdtype(dtype, np.complexfloating):
|
771 |
+
data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
|
772 |
+
else:
|
773 |
+
data = np.random.randn(*shape)
|
774 |
+
data = data.astype(dtype)
|
775 |
+
|
776 |
+
self._check(data, routine, fftsize, axis,
|
777 |
+
overwrite_x=overwrite_x)
|
778 |
+
|
779 |
+
@pytest.mark.parametrize('dtype', dtypes)
|
780 |
+
@pytest.mark.parametrize('fftsize', fftsizes)
|
781 |
+
@pytest.mark.parametrize('overwrite_x', [True, False])
|
782 |
+
@pytest.mark.parametrize('shape,axes', [((16,), -1),
|
783 |
+
((16, 2), 0),
|
784 |
+
((2, 16), 1)])
|
785 |
+
def test_fft_ifft(self, dtype, fftsize, overwrite_x, shape, axes):
|
786 |
+
overwritable = (np.complex128, np.complex64)
|
787 |
+
self._check_1d(fft, dtype, shape, axes, overwritable,
|
788 |
+
fftsize, overwrite_x)
|
789 |
+
self._check_1d(ifft, dtype, shape, axes, overwritable,
|
790 |
+
fftsize, overwrite_x)
|
791 |
+
|
792 |
+
@pytest.mark.parametrize('dtype', real_dtypes)
|
793 |
+
@pytest.mark.parametrize('fftsize', fftsizes)
|
794 |
+
@pytest.mark.parametrize('overwrite_x', [True, False])
|
795 |
+
@pytest.mark.parametrize('shape,axes', [((16,), -1),
|
796 |
+
((16, 2), 0),
|
797 |
+
((2, 16), 1)])
|
798 |
+
def test_rfft_irfft(self, dtype, fftsize, overwrite_x, shape, axes):
|
799 |
+
overwritable = self.real_dtypes
|
800 |
+
self._check_1d(irfft, dtype, shape, axes, overwritable,
|
801 |
+
fftsize, overwrite_x)
|
802 |
+
self._check_1d(rfft, dtype, shape, axes, overwritable,
|
803 |
+
fftsize, overwrite_x)
|
804 |
+
|
805 |
+
def _check_nd_one(self, routine, dtype, shape, axes, overwritable_dtypes,
|
806 |
+
overwrite_x):
|
807 |
+
np.random.seed(1234)
|
808 |
+
if np.issubdtype(dtype, np.complexfloating):
|
809 |
+
data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
|
810 |
+
else:
|
811 |
+
data = np.random.randn(*shape)
|
812 |
+
data = data.astype(dtype)
|
813 |
+
|
814 |
+
def fftshape_iter(shp):
|
815 |
+
if len(shp) <= 0:
|
816 |
+
yield ()
|
817 |
+
else:
|
818 |
+
for j in (shp[0]//2, shp[0], shp[0]*2):
|
819 |
+
for rest in fftshape_iter(shp[1:]):
|
820 |
+
yield (j,) + rest
|
821 |
+
|
822 |
+
if axes is None:
|
823 |
+
part_shape = shape
|
824 |
+
else:
|
825 |
+
part_shape = tuple(np.take(shape, axes))
|
826 |
+
|
827 |
+
for fftshape in fftshape_iter(part_shape):
|
828 |
+
self._check(data, routine, fftshape, axes,
|
829 |
+
overwrite_x=overwrite_x)
|
830 |
+
if data.ndim > 1:
|
831 |
+
self._check(data.T, routine, fftshape, axes,
|
832 |
+
overwrite_x=overwrite_x)
|
833 |
+
|
834 |
+
@pytest.mark.parametrize('dtype', dtypes)
|
835 |
+
@pytest.mark.parametrize('overwrite_x', [True, False])
|
836 |
+
@pytest.mark.parametrize('shape,axes', [((16,), None),
|
837 |
+
((16,), (0,)),
|
838 |
+
((16, 2), (0,)),
|
839 |
+
((2, 16), (1,)),
|
840 |
+
((8, 16), None),
|
841 |
+
((8, 16), (0, 1)),
|
842 |
+
((8, 16, 2), (0, 1)),
|
843 |
+
((8, 16, 2), (1, 2)),
|
844 |
+
((8, 16, 2), (0,)),
|
845 |
+
((8, 16, 2), (1,)),
|
846 |
+
((8, 16, 2), (2,)),
|
847 |
+
((8, 16, 2), None),
|
848 |
+
((8, 16, 2), (0, 1, 2))])
|
849 |
+
def test_fftn_ifftn(self, dtype, overwrite_x, shape, axes):
|
850 |
+
overwritable = (np.complex128, np.complex64)
|
851 |
+
self._check_nd_one(fftn, dtype, shape, axes, overwritable,
|
852 |
+
overwrite_x)
|
853 |
+
self._check_nd_one(ifftn, dtype, shape, axes, overwritable,
|
854 |
+
overwrite_x)
|
855 |
+
|
856 |
+
|
857 |
+
@pytest.mark.parametrize('func', [fftn, ifftn, fft2])
|
858 |
+
def test_shape_axes_ndarray(func):
|
859 |
+
# Test fftn and ifftn work with NumPy arrays for shape and axes arguments
|
860 |
+
# Regression test for gh-13342
|
861 |
+
a = np.random.rand(10, 10)
|
862 |
+
|
863 |
+
expect = func(a, shape=(5, 5))
|
864 |
+
actual = func(a, shape=np.array([5, 5]))
|
865 |
+
assert_equal(expect, actual)
|
866 |
+
|
867 |
+
expect = func(a, axes=(-1,))
|
868 |
+
actual = func(a, axes=np.array([-1,]))
|
869 |
+
assert_equal(expect, actual)
|
870 |
+
|
871 |
+
expect = func(a, shape=(4, 7), axes=(1, 0))
|
872 |
+
actual = func(a, shape=np.array([4, 7]), axes=np.array([1, 0]))
|
873 |
+
assert_equal(expect, actual)
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/test_helper.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Created by Pearu Peterson, September 2002
|
2 |
+
|
3 |
+
__usage__ = """
|
4 |
+
Build fftpack:
|
5 |
+
python setup_fftpack.py build
|
6 |
+
Run tests if scipy is installed:
|
7 |
+
python -c 'import scipy;scipy.fftpack.test(<level>)'
|
8 |
+
Run tests if fftpack is not installed:
|
9 |
+
python tests/test_helper.py [<level>]
|
10 |
+
"""
|
11 |
+
|
12 |
+
from numpy.testing import assert_array_almost_equal
|
13 |
+
from scipy.fftpack import fftshift, ifftshift, fftfreq, rfftfreq
|
14 |
+
|
15 |
+
from numpy import pi, random
|
16 |
+
|
17 |
+
class TestFFTShift:
|
18 |
+
|
19 |
+
def test_definition(self):
|
20 |
+
x = [0,1,2,3,4,-4,-3,-2,-1]
|
21 |
+
y = [-4,-3,-2,-1,0,1,2,3,4]
|
22 |
+
assert_array_almost_equal(fftshift(x),y)
|
23 |
+
assert_array_almost_equal(ifftshift(y),x)
|
24 |
+
x = [0,1,2,3,4,-5,-4,-3,-2,-1]
|
25 |
+
y = [-5,-4,-3,-2,-1,0,1,2,3,4]
|
26 |
+
assert_array_almost_equal(fftshift(x),y)
|
27 |
+
assert_array_almost_equal(ifftshift(y),x)
|
28 |
+
|
29 |
+
def test_inverse(self):
|
30 |
+
for n in [1,4,9,100,211]:
|
31 |
+
x = random.random((n,))
|
32 |
+
assert_array_almost_equal(ifftshift(fftshift(x)),x)
|
33 |
+
|
34 |
+
|
35 |
+
class TestFFTFreq:
|
36 |
+
|
37 |
+
def test_definition(self):
|
38 |
+
x = [0,1,2,3,4,-4,-3,-2,-1]
|
39 |
+
assert_array_almost_equal(9*fftfreq(9),x)
|
40 |
+
assert_array_almost_equal(9*pi*fftfreq(9,pi),x)
|
41 |
+
x = [0,1,2,3,4,-5,-4,-3,-2,-1]
|
42 |
+
assert_array_almost_equal(10*fftfreq(10),x)
|
43 |
+
assert_array_almost_equal(10*pi*fftfreq(10,pi),x)
|
44 |
+
|
45 |
+
|
46 |
+
class TestRFFTFreq:
|
47 |
+
|
48 |
+
def test_definition(self):
|
49 |
+
x = [0,1,1,2,2,3,3,4,4]
|
50 |
+
assert_array_almost_equal(9*rfftfreq(9),x)
|
51 |
+
assert_array_almost_equal(9*pi*rfftfreq(9,pi),x)
|
52 |
+
x = [0,1,1,2,2,3,3,4,4,5]
|
53 |
+
assert_array_almost_equal(10*rfftfreq(10),x)
|
54 |
+
assert_array_almost_equal(10*pi*rfftfreq(10,pi),x)
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/test_import.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Test possibility of patching fftpack with pyfftw.
|
2 |
+
|
3 |
+
No module source outside of scipy.fftpack should contain an import of
|
4 |
+
the form `from scipy.fftpack import ...`, so that a simple replacement
|
5 |
+
of scipy.fftpack by the corresponding fftw interface completely swaps
|
6 |
+
the two FFT implementations.
|
7 |
+
|
8 |
+
Because this simply inspects source files, we only need to run the test
|
9 |
+
on one version of Python.
|
10 |
+
"""
|
11 |
+
|
12 |
+
|
13 |
+
from pathlib import Path
|
14 |
+
import re
|
15 |
+
import tokenize
|
16 |
+
from numpy.testing import assert_
|
17 |
+
import scipy
|
18 |
+
|
19 |
+
class TestFFTPackImport:
|
20 |
+
def test_fftpack_import(self):
|
21 |
+
base = Path(scipy.__file__).parent
|
22 |
+
regexp = r"\s*from.+\.fftpack import .*\n"
|
23 |
+
for path in base.rglob("*.py"):
|
24 |
+
if base / "fftpack" in path.parents:
|
25 |
+
continue
|
26 |
+
# use tokenize to auto-detect encoding on systems where no
|
27 |
+
# default encoding is defined (e.g., LANG='C')
|
28 |
+
with tokenize.open(str(path)) as file:
|
29 |
+
assert_(all(not re.fullmatch(regexp, line)
|
30 |
+
for line in file),
|
31 |
+
f"{path} contains an import from fftpack")
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/test_pseudo_diffs.py
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Created by Pearu Peterson, September 2002
|
2 |
+
|
3 |
+
__usage__ = """
|
4 |
+
Build fftpack:
|
5 |
+
python setup_fftpack.py build
|
6 |
+
Run tests if scipy is installed:
|
7 |
+
python -c 'import scipy;scipy.fftpack.test(<level>)'
|
8 |
+
Run tests if fftpack is not installed:
|
9 |
+
python tests/test_pseudo_diffs.py [<level>]
|
10 |
+
"""
|
11 |
+
|
12 |
+
from numpy.testing import (assert_equal, assert_almost_equal,
|
13 |
+
assert_array_almost_equal)
|
14 |
+
from scipy.fftpack import (diff, fft, ifft, tilbert, itilbert, hilbert,
|
15 |
+
ihilbert, shift, fftfreq, cs_diff, sc_diff,
|
16 |
+
ss_diff, cc_diff)
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
from numpy import arange, sin, cos, pi, exp, tanh, sum, sign
|
20 |
+
from numpy.random import random
|
21 |
+
|
22 |
+
|
23 |
+
def direct_diff(x,k=1,period=None):
|
24 |
+
fx = fft(x)
|
25 |
+
n = len(fx)
|
26 |
+
if period is None:
|
27 |
+
period = 2*pi
|
28 |
+
w = fftfreq(n)*2j*pi/period*n
|
29 |
+
if k < 0:
|
30 |
+
w = 1 / w**k
|
31 |
+
w[0] = 0.0
|
32 |
+
else:
|
33 |
+
w = w**k
|
34 |
+
if n > 2000:
|
35 |
+
w[250:n-250] = 0.0
|
36 |
+
return ifft(w*fx).real
|
37 |
+
|
38 |
+
|
39 |
+
def direct_tilbert(x,h=1,period=None):
|
40 |
+
fx = fft(x)
|
41 |
+
n = len(fx)
|
42 |
+
if period is None:
|
43 |
+
period = 2*pi
|
44 |
+
w = fftfreq(n)*h*2*pi/period*n
|
45 |
+
w[0] = 1
|
46 |
+
w = 1j/tanh(w)
|
47 |
+
w[0] = 0j
|
48 |
+
return ifft(w*fx)
|
49 |
+
|
50 |
+
|
51 |
+
def direct_itilbert(x,h=1,period=None):
|
52 |
+
fx = fft(x)
|
53 |
+
n = len(fx)
|
54 |
+
if period is None:
|
55 |
+
period = 2*pi
|
56 |
+
w = fftfreq(n)*h*2*pi/period*n
|
57 |
+
w = -1j*tanh(w)
|
58 |
+
return ifft(w*fx)
|
59 |
+
|
60 |
+
|
61 |
+
def direct_hilbert(x):
|
62 |
+
fx = fft(x)
|
63 |
+
n = len(fx)
|
64 |
+
w = fftfreq(n)*n
|
65 |
+
w = 1j*sign(w)
|
66 |
+
return ifft(w*fx)
|
67 |
+
|
68 |
+
|
69 |
+
def direct_ihilbert(x):
|
70 |
+
return -direct_hilbert(x)
|
71 |
+
|
72 |
+
|
73 |
+
def direct_shift(x,a,period=None):
|
74 |
+
n = len(x)
|
75 |
+
if period is None:
|
76 |
+
k = fftfreq(n)*1j*n
|
77 |
+
else:
|
78 |
+
k = fftfreq(n)*2j*pi/period*n
|
79 |
+
return ifft(fft(x)*exp(k*a)).real
|
80 |
+
|
81 |
+
|
82 |
+
class TestDiff:
|
83 |
+
|
84 |
+
def test_definition(self):
|
85 |
+
for n in [16,17,64,127,32]:
|
86 |
+
x = arange(n)*2*pi/n
|
87 |
+
assert_array_almost_equal(diff(sin(x)),direct_diff(sin(x)))
|
88 |
+
assert_array_almost_equal(diff(sin(x),2),direct_diff(sin(x),2))
|
89 |
+
assert_array_almost_equal(diff(sin(x),3),direct_diff(sin(x),3))
|
90 |
+
assert_array_almost_equal(diff(sin(x),4),direct_diff(sin(x),4))
|
91 |
+
assert_array_almost_equal(diff(sin(x),5),direct_diff(sin(x),5))
|
92 |
+
assert_array_almost_equal(diff(sin(2*x),3),direct_diff(sin(2*x),3))
|
93 |
+
assert_array_almost_equal(diff(sin(2*x),4),direct_diff(sin(2*x),4))
|
94 |
+
assert_array_almost_equal(diff(cos(x)),direct_diff(cos(x)))
|
95 |
+
assert_array_almost_equal(diff(cos(x),2),direct_diff(cos(x),2))
|
96 |
+
assert_array_almost_equal(diff(cos(x),3),direct_diff(cos(x),3))
|
97 |
+
assert_array_almost_equal(diff(cos(x),4),direct_diff(cos(x),4))
|
98 |
+
assert_array_almost_equal(diff(cos(2*x)),direct_diff(cos(2*x)))
|
99 |
+
assert_array_almost_equal(diff(sin(x*n/8)),direct_diff(sin(x*n/8)))
|
100 |
+
assert_array_almost_equal(diff(cos(x*n/8)),direct_diff(cos(x*n/8)))
|
101 |
+
for k in range(5):
|
102 |
+
assert_array_almost_equal(diff(sin(4*x),k),direct_diff(sin(4*x),k))
|
103 |
+
assert_array_almost_equal(diff(cos(4*x),k),direct_diff(cos(4*x),k))
|
104 |
+
|
105 |
+
def test_period(self):
|
106 |
+
for n in [17,64]:
|
107 |
+
x = arange(n)/float(n)
|
108 |
+
assert_array_almost_equal(diff(sin(2*pi*x),period=1),
|
109 |
+
2*pi*cos(2*pi*x))
|
110 |
+
assert_array_almost_equal(diff(sin(2*pi*x),3,period=1),
|
111 |
+
-(2*pi)**3*cos(2*pi*x))
|
112 |
+
|
113 |
+
def test_sin(self):
|
114 |
+
for n in [32,64,77]:
|
115 |
+
x = arange(n)*2*pi/n
|
116 |
+
assert_array_almost_equal(diff(sin(x)),cos(x))
|
117 |
+
assert_array_almost_equal(diff(cos(x)),-sin(x))
|
118 |
+
assert_array_almost_equal(diff(sin(x),2),-sin(x))
|
119 |
+
assert_array_almost_equal(diff(sin(x),4),sin(x))
|
120 |
+
assert_array_almost_equal(diff(sin(4*x)),4*cos(4*x))
|
121 |
+
assert_array_almost_equal(diff(sin(sin(x))),cos(x)*cos(sin(x)))
|
122 |
+
|
123 |
+
def test_expr(self):
|
124 |
+
for n in [64,77,100,128,256,512,1024,2048,4096,8192][:5]:
|
125 |
+
x = arange(n)*2*pi/n
|
126 |
+
f = sin(x)*cos(4*x)+exp(sin(3*x))
|
127 |
+
df = cos(x)*cos(4*x)-4*sin(x)*sin(4*x)+3*cos(3*x)*exp(sin(3*x))
|
128 |
+
ddf = -17*sin(x)*cos(4*x)-8*cos(x)*sin(4*x)\
|
129 |
+
- 9*sin(3*x)*exp(sin(3*x))+9*cos(3*x)**2*exp(sin(3*x))
|
130 |
+
d1 = diff(f)
|
131 |
+
assert_array_almost_equal(d1,df)
|
132 |
+
assert_array_almost_equal(diff(df),ddf)
|
133 |
+
assert_array_almost_equal(diff(f,2),ddf)
|
134 |
+
assert_array_almost_equal(diff(ddf,-1),df)
|
135 |
+
|
136 |
+
def test_expr_large(self):
|
137 |
+
for n in [2048,4096]:
|
138 |
+
x = arange(n)*2*pi/n
|
139 |
+
f = sin(x)*cos(4*x)+exp(sin(3*x))
|
140 |
+
df = cos(x)*cos(4*x)-4*sin(x)*sin(4*x)+3*cos(3*x)*exp(sin(3*x))
|
141 |
+
ddf = -17*sin(x)*cos(4*x)-8*cos(x)*sin(4*x)\
|
142 |
+
- 9*sin(3*x)*exp(sin(3*x))+9*cos(3*x)**2*exp(sin(3*x))
|
143 |
+
assert_array_almost_equal(diff(f),df)
|
144 |
+
assert_array_almost_equal(diff(df),ddf)
|
145 |
+
assert_array_almost_equal(diff(ddf,-1),df)
|
146 |
+
assert_array_almost_equal(diff(f,2),ddf)
|
147 |
+
|
148 |
+
def test_int(self):
|
149 |
+
n = 64
|
150 |
+
x = arange(n)*2*pi/n
|
151 |
+
assert_array_almost_equal(diff(sin(x),-1),-cos(x))
|
152 |
+
assert_array_almost_equal(diff(sin(x),-2),-sin(x))
|
153 |
+
assert_array_almost_equal(diff(sin(x),-4),sin(x))
|
154 |
+
assert_array_almost_equal(diff(2*cos(2*x),-1),sin(2*x))
|
155 |
+
|
156 |
+
def test_random_even(self):
|
157 |
+
for k in [0,2,4,6]:
|
158 |
+
for n in [60,32,64,56,55]:
|
159 |
+
f = random((n,))
|
160 |
+
af = sum(f,axis=0)/n
|
161 |
+
f = f-af
|
162 |
+
# zeroing Nyquist mode:
|
163 |
+
f = diff(diff(f,1),-1)
|
164 |
+
assert_almost_equal(sum(f,axis=0),0.0)
|
165 |
+
assert_array_almost_equal(diff(diff(f,k),-k),f)
|
166 |
+
assert_array_almost_equal(diff(diff(f,-k),k),f)
|
167 |
+
|
168 |
+
def test_random_odd(self):
|
169 |
+
for k in [0,1,2,3,4,5,6]:
|
170 |
+
for n in [33,65,55]:
|
171 |
+
f = random((n,))
|
172 |
+
af = sum(f,axis=0)/n
|
173 |
+
f = f-af
|
174 |
+
assert_almost_equal(sum(f,axis=0),0.0)
|
175 |
+
assert_array_almost_equal(diff(diff(f,k),-k),f)
|
176 |
+
assert_array_almost_equal(diff(diff(f,-k),k),f)
|
177 |
+
|
178 |
+
def test_zero_nyquist(self):
|
179 |
+
for k in [0,1,2,3,4,5,6]:
|
180 |
+
for n in [32,33,64,56,55]:
|
181 |
+
f = random((n,))
|
182 |
+
af = sum(f,axis=0)/n
|
183 |
+
f = f-af
|
184 |
+
# zeroing Nyquist mode:
|
185 |
+
f = diff(diff(f,1),-1)
|
186 |
+
assert_almost_equal(sum(f,axis=0),0.0)
|
187 |
+
assert_array_almost_equal(diff(diff(f,k),-k),f)
|
188 |
+
assert_array_almost_equal(diff(diff(f,-k),k),f)
|
189 |
+
|
190 |
+
|
191 |
+
class TestTilbert:
|
192 |
+
|
193 |
+
def test_definition(self):
|
194 |
+
for h in [0.1,0.5,1,5.5,10]:
|
195 |
+
for n in [16,17,64,127]:
|
196 |
+
x = arange(n)*2*pi/n
|
197 |
+
y = tilbert(sin(x),h)
|
198 |
+
y1 = direct_tilbert(sin(x),h)
|
199 |
+
assert_array_almost_equal(y,y1)
|
200 |
+
assert_array_almost_equal(tilbert(sin(x),h),
|
201 |
+
direct_tilbert(sin(x),h))
|
202 |
+
assert_array_almost_equal(tilbert(sin(2*x),h),
|
203 |
+
direct_tilbert(sin(2*x),h))
|
204 |
+
|
205 |
+
def test_random_even(self):
|
206 |
+
for h in [0.1,0.5,1,5.5,10]:
|
207 |
+
for n in [32,64,56]:
|
208 |
+
f = random((n,))
|
209 |
+
af = sum(f,axis=0)/n
|
210 |
+
f = f-af
|
211 |
+
assert_almost_equal(sum(f,axis=0),0.0)
|
212 |
+
assert_array_almost_equal(direct_tilbert(direct_itilbert(f,h),h),f)
|
213 |
+
|
214 |
+
def test_random_odd(self):
|
215 |
+
for h in [0.1,0.5,1,5.5,10]:
|
216 |
+
for n in [33,65,55]:
|
217 |
+
f = random((n,))
|
218 |
+
af = sum(f,axis=0)/n
|
219 |
+
f = f-af
|
220 |
+
assert_almost_equal(sum(f,axis=0),0.0)
|
221 |
+
assert_array_almost_equal(itilbert(tilbert(f,h),h),f)
|
222 |
+
assert_array_almost_equal(tilbert(itilbert(f,h),h),f)
|
223 |
+
|
224 |
+
|
225 |
+
class TestITilbert:
|
226 |
+
|
227 |
+
def test_definition(self):
|
228 |
+
for h in [0.1,0.5,1,5.5,10]:
|
229 |
+
for n in [16,17,64,127]:
|
230 |
+
x = arange(n)*2*pi/n
|
231 |
+
y = itilbert(sin(x),h)
|
232 |
+
y1 = direct_itilbert(sin(x),h)
|
233 |
+
assert_array_almost_equal(y,y1)
|
234 |
+
assert_array_almost_equal(itilbert(sin(x),h),
|
235 |
+
direct_itilbert(sin(x),h))
|
236 |
+
assert_array_almost_equal(itilbert(sin(2*x),h),
|
237 |
+
direct_itilbert(sin(2*x),h))
|
238 |
+
|
239 |
+
|
240 |
+
class TestHilbert:
|
241 |
+
|
242 |
+
def test_definition(self):
|
243 |
+
for n in [16,17,64,127]:
|
244 |
+
x = arange(n)*2*pi/n
|
245 |
+
y = hilbert(sin(x))
|
246 |
+
y1 = direct_hilbert(sin(x))
|
247 |
+
assert_array_almost_equal(y,y1)
|
248 |
+
assert_array_almost_equal(hilbert(sin(2*x)),
|
249 |
+
direct_hilbert(sin(2*x)))
|
250 |
+
|
251 |
+
def test_tilbert_relation(self):
|
252 |
+
for n in [16,17,64,127]:
|
253 |
+
x = arange(n)*2*pi/n
|
254 |
+
f = sin(x)+cos(2*x)*sin(x)
|
255 |
+
y = hilbert(f)
|
256 |
+
y1 = direct_hilbert(f)
|
257 |
+
assert_array_almost_equal(y,y1)
|
258 |
+
y2 = tilbert(f,h=10)
|
259 |
+
assert_array_almost_equal(y,y2)
|
260 |
+
|
261 |
+
def test_random_odd(self):
|
262 |
+
for n in [33,65,55]:
|
263 |
+
f = random((n,))
|
264 |
+
af = sum(f,axis=0)/n
|
265 |
+
f = f-af
|
266 |
+
assert_almost_equal(sum(f,axis=0),0.0)
|
267 |
+
assert_array_almost_equal(ihilbert(hilbert(f)),f)
|
268 |
+
assert_array_almost_equal(hilbert(ihilbert(f)),f)
|
269 |
+
|
270 |
+
def test_random_even(self):
|
271 |
+
for n in [32,64,56]:
|
272 |
+
f = random((n,))
|
273 |
+
af = sum(f,axis=0)/n
|
274 |
+
f = f-af
|
275 |
+
# zeroing Nyquist mode:
|
276 |
+
f = diff(diff(f,1),-1)
|
277 |
+
assert_almost_equal(sum(f,axis=0),0.0)
|
278 |
+
assert_array_almost_equal(direct_hilbert(direct_ihilbert(f)),f)
|
279 |
+
assert_array_almost_equal(hilbert(ihilbert(f)),f)
|
280 |
+
|
281 |
+
|
282 |
+
class TestIHilbert:
|
283 |
+
|
284 |
+
def test_definition(self):
|
285 |
+
for n in [16,17,64,127]:
|
286 |
+
x = arange(n)*2*pi/n
|
287 |
+
y = ihilbert(sin(x))
|
288 |
+
y1 = direct_ihilbert(sin(x))
|
289 |
+
assert_array_almost_equal(y,y1)
|
290 |
+
assert_array_almost_equal(ihilbert(sin(2*x)),
|
291 |
+
direct_ihilbert(sin(2*x)))
|
292 |
+
|
293 |
+
def test_itilbert_relation(self):
|
294 |
+
for n in [16,17,64,127]:
|
295 |
+
x = arange(n)*2*pi/n
|
296 |
+
f = sin(x)+cos(2*x)*sin(x)
|
297 |
+
y = ihilbert(f)
|
298 |
+
y1 = direct_ihilbert(f)
|
299 |
+
assert_array_almost_equal(y,y1)
|
300 |
+
y2 = itilbert(f,h=10)
|
301 |
+
assert_array_almost_equal(y,y2)
|
302 |
+
|
303 |
+
|
304 |
+
class TestShift:
|
305 |
+
|
306 |
+
def test_definition(self):
|
307 |
+
for n in [18,17,64,127,32,2048,256]:
|
308 |
+
x = arange(n)*2*pi/n
|
309 |
+
for a in [0.1,3]:
|
310 |
+
assert_array_almost_equal(shift(sin(x),a),direct_shift(sin(x),a))
|
311 |
+
assert_array_almost_equal(shift(sin(x),a),sin(x+a))
|
312 |
+
assert_array_almost_equal(shift(cos(x),a),cos(x+a))
|
313 |
+
assert_array_almost_equal(shift(cos(2*x)+sin(x),a),
|
314 |
+
cos(2*(x+a))+sin(x+a))
|
315 |
+
assert_array_almost_equal(shift(exp(sin(x)),a),exp(sin(x+a)))
|
316 |
+
assert_array_almost_equal(shift(sin(x),2*pi),sin(x))
|
317 |
+
assert_array_almost_equal(shift(sin(x),pi),-sin(x))
|
318 |
+
assert_array_almost_equal(shift(sin(x),pi/2),cos(x))
|
319 |
+
|
320 |
+
|
321 |
+
class TestOverwrite:
|
322 |
+
"""Check input overwrite behavior """
|
323 |
+
|
324 |
+
real_dtypes = (np.float32, np.float64)
|
325 |
+
dtypes = real_dtypes + (np.complex64, np.complex128)
|
326 |
+
|
327 |
+
def _check(self, x, routine, *args, **kwargs):
|
328 |
+
x2 = x.copy()
|
329 |
+
routine(x2, *args, **kwargs)
|
330 |
+
sig = routine.__name__
|
331 |
+
if args:
|
332 |
+
sig += repr(args)
|
333 |
+
if kwargs:
|
334 |
+
sig += repr(kwargs)
|
335 |
+
assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig)
|
336 |
+
|
337 |
+
def _check_1d(self, routine, dtype, shape, *args, **kwargs):
|
338 |
+
np.random.seed(1234)
|
339 |
+
if np.issubdtype(dtype, np.complexfloating):
|
340 |
+
data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
|
341 |
+
else:
|
342 |
+
data = np.random.randn(*shape)
|
343 |
+
data = data.astype(dtype)
|
344 |
+
self._check(data, routine, *args, **kwargs)
|
345 |
+
|
346 |
+
def test_diff(self):
|
347 |
+
for dtype in self.dtypes:
|
348 |
+
self._check_1d(diff, dtype, (16,))
|
349 |
+
|
350 |
+
def test_tilbert(self):
|
351 |
+
for dtype in self.dtypes:
|
352 |
+
self._check_1d(tilbert, dtype, (16,), 1.6)
|
353 |
+
|
354 |
+
def test_itilbert(self):
|
355 |
+
for dtype in self.dtypes:
|
356 |
+
self._check_1d(itilbert, dtype, (16,), 1.6)
|
357 |
+
|
358 |
+
def test_hilbert(self):
|
359 |
+
for dtype in self.dtypes:
|
360 |
+
self._check_1d(hilbert, dtype, (16,))
|
361 |
+
|
362 |
+
def test_cs_diff(self):
|
363 |
+
for dtype in self.dtypes:
|
364 |
+
self._check_1d(cs_diff, dtype, (16,), 1.0, 4.0)
|
365 |
+
|
366 |
+
def test_sc_diff(self):
|
367 |
+
for dtype in self.dtypes:
|
368 |
+
self._check_1d(sc_diff, dtype, (16,), 1.0, 4.0)
|
369 |
+
|
370 |
+
def test_ss_diff(self):
|
371 |
+
for dtype in self.dtypes:
|
372 |
+
self._check_1d(ss_diff, dtype, (16,), 1.0, 4.0)
|
373 |
+
|
374 |
+
def test_cc_diff(self):
|
375 |
+
for dtype in self.dtypes:
|
376 |
+
self._check_1d(cc_diff, dtype, (16,), 1.0, 4.0)
|
377 |
+
|
378 |
+
def test_shift(self):
|
379 |
+
for dtype in self.dtypes:
|
380 |
+
self._check_1d(shift, dtype, (16,), 1.0)
|
env-llmeval/lib/python3.10/site-packages/scipy/fftpack/tests/test_real_transforms.py
ADDED
@@ -0,0 +1,815 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os.path import join, dirname
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from numpy.testing import assert_array_almost_equal, assert_equal
|
5 |
+
import pytest
|
6 |
+
from pytest import raises as assert_raises
|
7 |
+
|
8 |
+
from scipy.fftpack._realtransforms import (
|
9 |
+
dct, idct, dst, idst, dctn, idctn, dstn, idstn)
|
10 |
+
|
11 |
+
# Matlab reference data
|
12 |
+
MDATA = np.load(join(dirname(__file__), 'test.npz'))
|
13 |
+
X = [MDATA['x%d' % i] for i in range(8)]
|
14 |
+
Y = [MDATA['y%d' % i] for i in range(8)]
|
15 |
+
|
16 |
+
# FFTW reference data: the data are organized as follows:
|
17 |
+
# * SIZES is an array containing all available sizes
|
18 |
+
# * for every type (1, 2, 3, 4) and every size, the array dct_type_size
|
19 |
+
# contains the output of the DCT applied to the input np.linspace(0, size-1,
|
20 |
+
# size)
|
21 |
+
FFTWDATA_DOUBLE = np.load(join(dirname(__file__), 'fftw_double_ref.npz'))
|
22 |
+
FFTWDATA_SINGLE = np.load(join(dirname(__file__), 'fftw_single_ref.npz'))
|
23 |
+
FFTWDATA_SIZES = FFTWDATA_DOUBLE['sizes']
|
24 |
+
|
25 |
+
|
26 |
+
def fftw_dct_ref(type, size, dt):
|
27 |
+
x = np.linspace(0, size-1, size).astype(dt)
|
28 |
+
dt = np.result_type(np.float32, dt)
|
29 |
+
if dt == np.float64:
|
30 |
+
data = FFTWDATA_DOUBLE
|
31 |
+
elif dt == np.float32:
|
32 |
+
data = FFTWDATA_SINGLE
|
33 |
+
else:
|
34 |
+
raise ValueError()
|
35 |
+
y = (data['dct_%d_%d' % (type, size)]).astype(dt)
|
36 |
+
return x, y, dt
|
37 |
+
|
38 |
+
|
39 |
+
def fftw_dst_ref(type, size, dt):
|
40 |
+
x = np.linspace(0, size-1, size).astype(dt)
|
41 |
+
dt = np.result_type(np.float32, dt)
|
42 |
+
if dt == np.float64:
|
43 |
+
data = FFTWDATA_DOUBLE
|
44 |
+
elif dt == np.float32:
|
45 |
+
data = FFTWDATA_SINGLE
|
46 |
+
else:
|
47 |
+
raise ValueError()
|
48 |
+
y = (data['dst_%d_%d' % (type, size)]).astype(dt)
|
49 |
+
return x, y, dt
|
50 |
+
|
51 |
+
|
52 |
+
def dct_2d_ref(x, **kwargs):
|
53 |
+
"""Calculate reference values for testing dct2."""
|
54 |
+
x = np.array(x, copy=True)
|
55 |
+
for row in range(x.shape[0]):
|
56 |
+
x[row, :] = dct(x[row, :], **kwargs)
|
57 |
+
for col in range(x.shape[1]):
|
58 |
+
x[:, col] = dct(x[:, col], **kwargs)
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
def idct_2d_ref(x, **kwargs):
|
63 |
+
"""Calculate reference values for testing idct2."""
|
64 |
+
x = np.array(x, copy=True)
|
65 |
+
for row in range(x.shape[0]):
|
66 |
+
x[row, :] = idct(x[row, :], **kwargs)
|
67 |
+
for col in range(x.shape[1]):
|
68 |
+
x[:, col] = idct(x[:, col], **kwargs)
|
69 |
+
return x
|
70 |
+
|
71 |
+
|
72 |
+
def dst_2d_ref(x, **kwargs):
|
73 |
+
"""Calculate reference values for testing dst2."""
|
74 |
+
x = np.array(x, copy=True)
|
75 |
+
for row in range(x.shape[0]):
|
76 |
+
x[row, :] = dst(x[row, :], **kwargs)
|
77 |
+
for col in range(x.shape[1]):
|
78 |
+
x[:, col] = dst(x[:, col], **kwargs)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
def idst_2d_ref(x, **kwargs):
|
83 |
+
"""Calculate reference values for testing idst2."""
|
84 |
+
x = np.array(x, copy=True)
|
85 |
+
for row in range(x.shape[0]):
|
86 |
+
x[row, :] = idst(x[row, :], **kwargs)
|
87 |
+
for col in range(x.shape[1]):
|
88 |
+
x[:, col] = idst(x[:, col], **kwargs)
|
89 |
+
return x
|
90 |
+
|
91 |
+
|
92 |
+
def naive_dct1(x, norm=None):
|
93 |
+
"""Calculate textbook definition version of DCT-I."""
|
94 |
+
x = np.array(x, copy=True)
|
95 |
+
N = len(x)
|
96 |
+
M = N-1
|
97 |
+
y = np.zeros(N)
|
98 |
+
m0, m = 1, 2
|
99 |
+
if norm == 'ortho':
|
100 |
+
m0 = np.sqrt(1.0/M)
|
101 |
+
m = np.sqrt(2.0/M)
|
102 |
+
for k in range(N):
|
103 |
+
for n in range(1, N-1):
|
104 |
+
y[k] += m*x[n]*np.cos(np.pi*n*k/M)
|
105 |
+
y[k] += m0 * x[0]
|
106 |
+
y[k] += m0 * x[N-1] * (1 if k % 2 == 0 else -1)
|
107 |
+
if norm == 'ortho':
|
108 |
+
y[0] *= 1/np.sqrt(2)
|
109 |
+
y[N-1] *= 1/np.sqrt(2)
|
110 |
+
return y
|
111 |
+
|
112 |
+
|
113 |
+
def naive_dst1(x, norm=None):
|
114 |
+
"""Calculate textbook definition version of DST-I."""
|
115 |
+
x = np.array(x, copy=True)
|
116 |
+
N = len(x)
|
117 |
+
M = N+1
|
118 |
+
y = np.zeros(N)
|
119 |
+
for k in range(N):
|
120 |
+
for n in range(N):
|
121 |
+
y[k] += 2*x[n]*np.sin(np.pi*(n+1.0)*(k+1.0)/M)
|
122 |
+
if norm == 'ortho':
|
123 |
+
y *= np.sqrt(0.5/M)
|
124 |
+
return y
|
125 |
+
|
126 |
+
|
127 |
+
def naive_dct4(x, norm=None):
|
128 |
+
"""Calculate textbook definition version of DCT-IV."""
|
129 |
+
x = np.array(x, copy=True)
|
130 |
+
N = len(x)
|
131 |
+
y = np.zeros(N)
|
132 |
+
for k in range(N):
|
133 |
+
for n in range(N):
|
134 |
+
y[k] += x[n]*np.cos(np.pi*(n+0.5)*(k+0.5)/(N))
|
135 |
+
if norm == 'ortho':
|
136 |
+
y *= np.sqrt(2.0/N)
|
137 |
+
else:
|
138 |
+
y *= 2
|
139 |
+
return y
|
140 |
+
|
141 |
+
|
142 |
+
def naive_dst4(x, norm=None):
|
143 |
+
"""Calculate textbook definition version of DST-IV."""
|
144 |
+
x = np.array(x, copy=True)
|
145 |
+
N = len(x)
|
146 |
+
y = np.zeros(N)
|
147 |
+
for k in range(N):
|
148 |
+
for n in range(N):
|
149 |
+
y[k] += x[n]*np.sin(np.pi*(n+0.5)*(k+0.5)/(N))
|
150 |
+
if norm == 'ortho':
|
151 |
+
y *= np.sqrt(2.0/N)
|
152 |
+
else:
|
153 |
+
y *= 2
|
154 |
+
return y
|
155 |
+
|
156 |
+
|
157 |
+
class TestComplex:
|
158 |
+
def test_dct_complex64(self):
|
159 |
+
y = dct(1j*np.arange(5, dtype=np.complex64))
|
160 |
+
x = 1j*dct(np.arange(5))
|
161 |
+
assert_array_almost_equal(x, y)
|
162 |
+
|
163 |
+
def test_dct_complex(self):
|
164 |
+
y = dct(np.arange(5)*1j)
|
165 |
+
x = 1j*dct(np.arange(5))
|
166 |
+
assert_array_almost_equal(x, y)
|
167 |
+
|
168 |
+
def test_idct_complex(self):
|
169 |
+
y = idct(np.arange(5)*1j)
|
170 |
+
x = 1j*idct(np.arange(5))
|
171 |
+
assert_array_almost_equal(x, y)
|
172 |
+
|
173 |
+
def test_dst_complex64(self):
|
174 |
+
y = dst(np.arange(5, dtype=np.complex64)*1j)
|
175 |
+
x = 1j*dst(np.arange(5))
|
176 |
+
assert_array_almost_equal(x, y)
|
177 |
+
|
178 |
+
def test_dst_complex(self):
|
179 |
+
y = dst(np.arange(5)*1j)
|
180 |
+
x = 1j*dst(np.arange(5))
|
181 |
+
assert_array_almost_equal(x, y)
|
182 |
+
|
183 |
+
def test_idst_complex(self):
|
184 |
+
y = idst(np.arange(5)*1j)
|
185 |
+
x = 1j*idst(np.arange(5))
|
186 |
+
assert_array_almost_equal(x, y)
|
187 |
+
|
188 |
+
|
189 |
+
class _TestDCTBase:
|
190 |
+
def setup_method(self):
|
191 |
+
self.rdt = None
|
192 |
+
self.dec = 14
|
193 |
+
self.type = None
|
194 |
+
|
195 |
+
def test_definition(self):
|
196 |
+
for i in FFTWDATA_SIZES:
|
197 |
+
x, yr, dt = fftw_dct_ref(self.type, i, self.rdt)
|
198 |
+
y = dct(x, type=self.type)
|
199 |
+
assert_equal(y.dtype, dt)
|
200 |
+
# XXX: we divide by np.max(y) because the tests fail otherwise. We
|
201 |
+
# should really use something like assert_array_approx_equal. The
|
202 |
+
# difference is due to fftw using a better algorithm w.r.t error
|
203 |
+
# propagation compared to the ones from fftpack.
|
204 |
+
assert_array_almost_equal(y / np.max(y), yr / np.max(y), decimal=self.dec,
|
205 |
+
err_msg="Size %d failed" % i)
|
206 |
+
|
207 |
+
def test_axis(self):
|
208 |
+
nt = 2
|
209 |
+
for i in [7, 8, 9, 16, 32, 64]:
|
210 |
+
x = np.random.randn(nt, i)
|
211 |
+
y = dct(x, type=self.type)
|
212 |
+
for j in range(nt):
|
213 |
+
assert_array_almost_equal(y[j], dct(x[j], type=self.type),
|
214 |
+
decimal=self.dec)
|
215 |
+
|
216 |
+
x = x.T
|
217 |
+
y = dct(x, axis=0, type=self.type)
|
218 |
+
for j in range(nt):
|
219 |
+
assert_array_almost_equal(y[:,j], dct(x[:,j], type=self.type),
|
220 |
+
decimal=self.dec)
|
221 |
+
|
222 |
+
|
223 |
+
class _TestDCTIBase(_TestDCTBase):
|
224 |
+
def test_definition_ortho(self):
|
225 |
+
# Test orthornomal mode.
|
226 |
+
dt = np.result_type(np.float32, self.rdt)
|
227 |
+
for xr in X:
|
228 |
+
x = np.array(xr, dtype=self.rdt)
|
229 |
+
y = dct(x, norm='ortho', type=1)
|
230 |
+
y2 = naive_dct1(x, norm='ortho')
|
231 |
+
assert_equal(y.dtype, dt)
|
232 |
+
assert_array_almost_equal(y / np.max(y), y2 / np.max(y), decimal=self.dec)
|
233 |
+
|
234 |
+
class _TestDCTIIBase(_TestDCTBase):
|
235 |
+
def test_definition_matlab(self):
|
236 |
+
# Test correspondence with MATLAB (orthornomal mode).
|
237 |
+
dt = np.result_type(np.float32, self.rdt)
|
238 |
+
for xr, yr in zip(X, Y):
|
239 |
+
x = np.array(xr, dtype=dt)
|
240 |
+
y = dct(x, norm="ortho", type=2)
|
241 |
+
assert_equal(y.dtype, dt)
|
242 |
+
assert_array_almost_equal(y, yr, decimal=self.dec)
|
243 |
+
|
244 |
+
|
245 |
+
class _TestDCTIIIBase(_TestDCTBase):
|
246 |
+
def test_definition_ortho(self):
|
247 |
+
# Test orthornomal mode.
|
248 |
+
dt = np.result_type(np.float32, self.rdt)
|
249 |
+
for xr in X:
|
250 |
+
x = np.array(xr, dtype=self.rdt)
|
251 |
+
y = dct(x, norm='ortho', type=2)
|
252 |
+
xi = dct(y, norm="ortho", type=3)
|
253 |
+
assert_equal(xi.dtype, dt)
|
254 |
+
assert_array_almost_equal(xi, x, decimal=self.dec)
|
255 |
+
|
256 |
+
class _TestDCTIVBase(_TestDCTBase):
|
257 |
+
def test_definition_ortho(self):
|
258 |
+
# Test orthornomal mode.
|
259 |
+
dt = np.result_type(np.float32, self.rdt)
|
260 |
+
for xr in X:
|
261 |
+
x = np.array(xr, dtype=self.rdt)
|
262 |
+
y = dct(x, norm='ortho', type=4)
|
263 |
+
y2 = naive_dct4(x, norm='ortho')
|
264 |
+
assert_equal(y.dtype, dt)
|
265 |
+
assert_array_almost_equal(y / np.max(y), y2 / np.max(y), decimal=self.dec)
|
266 |
+
|
267 |
+
|
268 |
+
class TestDCTIDouble(_TestDCTIBase):
|
269 |
+
def setup_method(self):
|
270 |
+
self.rdt = np.float64
|
271 |
+
self.dec = 10
|
272 |
+
self.type = 1
|
273 |
+
|
274 |
+
|
275 |
+
class TestDCTIFloat(_TestDCTIBase):
|
276 |
+
def setup_method(self):
|
277 |
+
self.rdt = np.float32
|
278 |
+
self.dec = 4
|
279 |
+
self.type = 1
|
280 |
+
|
281 |
+
|
282 |
+
class TestDCTIInt(_TestDCTIBase):
|
283 |
+
def setup_method(self):
|
284 |
+
self.rdt = int
|
285 |
+
self.dec = 5
|
286 |
+
self.type = 1
|
287 |
+
|
288 |
+
|
289 |
+
class TestDCTIIDouble(_TestDCTIIBase):
|
290 |
+
def setup_method(self):
|
291 |
+
self.rdt = np.float64
|
292 |
+
self.dec = 10
|
293 |
+
self.type = 2
|
294 |
+
|
295 |
+
|
296 |
+
class TestDCTIIFloat(_TestDCTIIBase):
|
297 |
+
def setup_method(self):
|
298 |
+
self.rdt = np.float32
|
299 |
+
self.dec = 5
|
300 |
+
self.type = 2
|
301 |
+
|
302 |
+
|
303 |
+
class TestDCTIIInt(_TestDCTIIBase):
|
304 |
+
def setup_method(self):
|
305 |
+
self.rdt = int
|
306 |
+
self.dec = 5
|
307 |
+
self.type = 2
|
308 |
+
|
309 |
+
|
310 |
+
class TestDCTIIIDouble(_TestDCTIIIBase):
|
311 |
+
def setup_method(self):
|
312 |
+
self.rdt = np.float64
|
313 |
+
self.dec = 14
|
314 |
+
self.type = 3
|
315 |
+
|
316 |
+
|
317 |
+
class TestDCTIIIFloat(_TestDCTIIIBase):
|
318 |
+
def setup_method(self):
|
319 |
+
self.rdt = np.float32
|
320 |
+
self.dec = 5
|
321 |
+
self.type = 3
|
322 |
+
|
323 |
+
|
324 |
+
class TestDCTIIIInt(_TestDCTIIIBase):
|
325 |
+
def setup_method(self):
|
326 |
+
self.rdt = int
|
327 |
+
self.dec = 5
|
328 |
+
self.type = 3
|
329 |
+
|
330 |
+
|
331 |
+
class TestDCTIVDouble(_TestDCTIVBase):
|
332 |
+
def setup_method(self):
|
333 |
+
self.rdt = np.float64
|
334 |
+
self.dec = 12
|
335 |
+
self.type = 3
|
336 |
+
|
337 |
+
|
338 |
+
class TestDCTIVFloat(_TestDCTIVBase):
|
339 |
+
def setup_method(self):
|
340 |
+
self.rdt = np.float32
|
341 |
+
self.dec = 5
|
342 |
+
self.type = 3
|
343 |
+
|
344 |
+
|
345 |
+
class TestDCTIVInt(_TestDCTIVBase):
|
346 |
+
def setup_method(self):
|
347 |
+
self.rdt = int
|
348 |
+
self.dec = 5
|
349 |
+
self.type = 3
|
350 |
+
|
351 |
+
|
352 |
+
class _TestIDCTBase:
|
353 |
+
def setup_method(self):
|
354 |
+
self.rdt = None
|
355 |
+
self.dec = 14
|
356 |
+
self.type = None
|
357 |
+
|
358 |
+
def test_definition(self):
|
359 |
+
for i in FFTWDATA_SIZES:
|
360 |
+
xr, yr, dt = fftw_dct_ref(self.type, i, self.rdt)
|
361 |
+
x = idct(yr, type=self.type)
|
362 |
+
if self.type == 1:
|
363 |
+
x /= 2 * (i-1)
|
364 |
+
else:
|
365 |
+
x /= 2 * i
|
366 |
+
assert_equal(x.dtype, dt)
|
367 |
+
# XXX: we divide by np.max(y) because the tests fail otherwise. We
|
368 |
+
# should really use something like assert_array_approx_equal. The
|
369 |
+
# difference is due to fftw using a better algorithm w.r.t error
|
370 |
+
# propagation compared to the ones from fftpack.
|
371 |
+
assert_array_almost_equal(x / np.max(x), xr / np.max(x), decimal=self.dec,
|
372 |
+
err_msg="Size %d failed" % i)
|
373 |
+
|
374 |
+
|
375 |
+
class TestIDCTIDouble(_TestIDCTBase):
|
376 |
+
def setup_method(self):
|
377 |
+
self.rdt = np.float64
|
378 |
+
self.dec = 10
|
379 |
+
self.type = 1
|
380 |
+
|
381 |
+
|
382 |
+
class TestIDCTIFloat(_TestIDCTBase):
|
383 |
+
def setup_method(self):
|
384 |
+
self.rdt = np.float32
|
385 |
+
self.dec = 4
|
386 |
+
self.type = 1
|
387 |
+
|
388 |
+
|
389 |
+
class TestIDCTIInt(_TestIDCTBase):
|
390 |
+
def setup_method(self):
|
391 |
+
self.rdt = int
|
392 |
+
self.dec = 4
|
393 |
+
self.type = 1
|
394 |
+
|
395 |
+
|
396 |
+
class TestIDCTIIDouble(_TestIDCTBase):
|
397 |
+
def setup_method(self):
|
398 |
+
self.rdt = np.float64
|
399 |
+
self.dec = 10
|
400 |
+
self.type = 2
|
401 |
+
|
402 |
+
|
403 |
+
class TestIDCTIIFloat(_TestIDCTBase):
|
404 |
+
def setup_method(self):
|
405 |
+
self.rdt = np.float32
|
406 |
+
self.dec = 5
|
407 |
+
self.type = 2
|
408 |
+
|
409 |
+
|
410 |
+
class TestIDCTIIInt(_TestIDCTBase):
|
411 |
+
def setup_method(self):
|
412 |
+
self.rdt = int
|
413 |
+
self.dec = 5
|
414 |
+
self.type = 2
|
415 |
+
|
416 |
+
|
417 |
+
class TestIDCTIIIDouble(_TestIDCTBase):
|
418 |
+
def setup_method(self):
|
419 |
+
self.rdt = np.float64
|
420 |
+
self.dec = 14
|
421 |
+
self.type = 3
|
422 |
+
|
423 |
+
|
424 |
+
class TestIDCTIIIFloat(_TestIDCTBase):
|
425 |
+
def setup_method(self):
|
426 |
+
self.rdt = np.float32
|
427 |
+
self.dec = 5
|
428 |
+
self.type = 3
|
429 |
+
|
430 |
+
|
431 |
+
class TestIDCTIIIInt(_TestIDCTBase):
|
432 |
+
def setup_method(self):
|
433 |
+
self.rdt = int
|
434 |
+
self.dec = 5
|
435 |
+
self.type = 3
|
436 |
+
|
437 |
+
class TestIDCTIVDouble(_TestIDCTBase):
|
438 |
+
def setup_method(self):
|
439 |
+
self.rdt = np.float64
|
440 |
+
self.dec = 12
|
441 |
+
self.type = 4
|
442 |
+
|
443 |
+
|
444 |
+
class TestIDCTIVFloat(_TestIDCTBase):
|
445 |
+
def setup_method(self):
|
446 |
+
self.rdt = np.float32
|
447 |
+
self.dec = 5
|
448 |
+
self.type = 4
|
449 |
+
|
450 |
+
|
451 |
+
class TestIDCTIVInt(_TestIDCTBase):
|
452 |
+
def setup_method(self):
|
453 |
+
self.rdt = int
|
454 |
+
self.dec = 5
|
455 |
+
self.type = 4
|
456 |
+
|
457 |
+
class _TestDSTBase:
|
458 |
+
def setup_method(self):
|
459 |
+
self.rdt = None # dtype
|
460 |
+
self.dec = None # number of decimals to match
|
461 |
+
self.type = None # dst type
|
462 |
+
|
463 |
+
def test_definition(self):
|
464 |
+
for i in FFTWDATA_SIZES:
|
465 |
+
xr, yr, dt = fftw_dst_ref(self.type, i, self.rdt)
|
466 |
+
y = dst(xr, type=self.type)
|
467 |
+
assert_equal(y.dtype, dt)
|
468 |
+
# XXX: we divide by np.max(y) because the tests fail otherwise. We
|
469 |
+
# should really use something like assert_array_approx_equal. The
|
470 |
+
# difference is due to fftw using a better algorithm w.r.t error
|
471 |
+
# propagation compared to the ones from fftpack.
|
472 |
+
assert_array_almost_equal(y / np.max(y), yr / np.max(y), decimal=self.dec,
|
473 |
+
err_msg="Size %d failed" % i)
|
474 |
+
|
475 |
+
|
476 |
+
class _TestDSTIBase(_TestDSTBase):
|
477 |
+
def test_definition_ortho(self):
|
478 |
+
# Test orthornomal mode.
|
479 |
+
dt = np.result_type(np.float32, self.rdt)
|
480 |
+
for xr in X:
|
481 |
+
x = np.array(xr, dtype=self.rdt)
|
482 |
+
y = dst(x, norm='ortho', type=1)
|
483 |
+
y2 = naive_dst1(x, norm='ortho')
|
484 |
+
assert_equal(y.dtype, dt)
|
485 |
+
assert_array_almost_equal(y / np.max(y), y2 / np.max(y), decimal=self.dec)
|
486 |
+
|
487 |
+
class _TestDSTIVBase(_TestDSTBase):
|
488 |
+
def test_definition_ortho(self):
|
489 |
+
# Test orthornomal mode.
|
490 |
+
dt = np.result_type(np.float32, self.rdt)
|
491 |
+
for xr in X:
|
492 |
+
x = np.array(xr, dtype=self.rdt)
|
493 |
+
y = dst(x, norm='ortho', type=4)
|
494 |
+
y2 = naive_dst4(x, norm='ortho')
|
495 |
+
assert_equal(y.dtype, dt)
|
496 |
+
assert_array_almost_equal(y, y2, decimal=self.dec)
|
497 |
+
|
498 |
+
class TestDSTIDouble(_TestDSTIBase):
|
499 |
+
def setup_method(self):
|
500 |
+
self.rdt = np.float64
|
501 |
+
self.dec = 12
|
502 |
+
self.type = 1
|
503 |
+
|
504 |
+
|
505 |
+
class TestDSTIFloat(_TestDSTIBase):
|
506 |
+
def setup_method(self):
|
507 |
+
self.rdt = np.float32
|
508 |
+
self.dec = 4
|
509 |
+
self.type = 1
|
510 |
+
|
511 |
+
|
512 |
+
class TestDSTIInt(_TestDSTIBase):
|
513 |
+
def setup_method(self):
|
514 |
+
self.rdt = int
|
515 |
+
self.dec = 5
|
516 |
+
self.type = 1
|
517 |
+
|
518 |
+
|
519 |
+
class TestDSTIIDouble(_TestDSTBase):
|
520 |
+
def setup_method(self):
|
521 |
+
self.rdt = np.float64
|
522 |
+
self.dec = 14
|
523 |
+
self.type = 2
|
524 |
+
|
525 |
+
|
526 |
+
class TestDSTIIFloat(_TestDSTBase):
|
527 |
+
def setup_method(self):
|
528 |
+
self.rdt = np.float32
|
529 |
+
self.dec = 6
|
530 |
+
self.type = 2
|
531 |
+
|
532 |
+
|
533 |
+
class TestDSTIIInt(_TestDSTBase):
|
534 |
+
def setup_method(self):
|
535 |
+
self.rdt = int
|
536 |
+
self.dec = 6
|
537 |
+
self.type = 2
|
538 |
+
|
539 |
+
|
540 |
+
class TestDSTIIIDouble(_TestDSTBase):
|
541 |
+
def setup_method(self):
|
542 |
+
self.rdt = np.float64
|
543 |
+
self.dec = 14
|
544 |
+
self.type = 3
|
545 |
+
|
546 |
+
|
547 |
+
class TestDSTIIIFloat(_TestDSTBase):
|
548 |
+
def setup_method(self):
|
549 |
+
self.rdt = np.float32
|
550 |
+
self.dec = 7
|
551 |
+
self.type = 3
|
552 |
+
|
553 |
+
|
554 |
+
class TestDSTIIIInt(_TestDSTBase):
|
555 |
+
def setup_method(self):
|
556 |
+
self.rdt = int
|
557 |
+
self.dec = 7
|
558 |
+
self.type = 3
|
559 |
+
|
560 |
+
|
561 |
+
class TestDSTIVDouble(_TestDSTIVBase):
|
562 |
+
def setup_method(self):
|
563 |
+
self.rdt = np.float64
|
564 |
+
self.dec = 12
|
565 |
+
self.type = 4
|
566 |
+
|
567 |
+
|
568 |
+
class TestDSTIVFloat(_TestDSTIVBase):
|
569 |
+
def setup_method(self):
|
570 |
+
self.rdt = np.float32
|
571 |
+
self.dec = 4
|
572 |
+
self.type = 4
|
573 |
+
|
574 |
+
|
575 |
+
class TestDSTIVInt(_TestDSTIVBase):
|
576 |
+
def setup_method(self):
|
577 |
+
self.rdt = int
|
578 |
+
self.dec = 5
|
579 |
+
self.type = 4
|
580 |
+
|
581 |
+
|
582 |
+
class _TestIDSTBase:
|
583 |
+
def setup_method(self):
|
584 |
+
self.rdt = None
|
585 |
+
self.dec = None
|
586 |
+
self.type = None
|
587 |
+
|
588 |
+
def test_definition(self):
|
589 |
+
for i in FFTWDATA_SIZES:
|
590 |
+
xr, yr, dt = fftw_dst_ref(self.type, i, self.rdt)
|
591 |
+
x = idst(yr, type=self.type)
|
592 |
+
if self.type == 1:
|
593 |
+
x /= 2 * (i+1)
|
594 |
+
else:
|
595 |
+
x /= 2 * i
|
596 |
+
assert_equal(x.dtype, dt)
|
597 |
+
# XXX: we divide by np.max(x) because the tests fail otherwise. We
|
598 |
+
# should really use something like assert_array_approx_equal. The
|
599 |
+
# difference is due to fftw using a better algorithm w.r.t error
|
600 |
+
# propagation compared to the ones from fftpack.
|
601 |
+
assert_array_almost_equal(x / np.max(x), xr / np.max(x), decimal=self.dec,
|
602 |
+
err_msg="Size %d failed" % i)
|
603 |
+
|
604 |
+
|
605 |
+
class TestIDSTIDouble(_TestIDSTBase):
|
606 |
+
def setup_method(self):
|
607 |
+
self.rdt = np.float64
|
608 |
+
self.dec = 12
|
609 |
+
self.type = 1
|
610 |
+
|
611 |
+
|
612 |
+
class TestIDSTIFloat(_TestIDSTBase):
|
613 |
+
def setup_method(self):
|
614 |
+
self.rdt = np.float32
|
615 |
+
self.dec = 4
|
616 |
+
self.type = 1
|
617 |
+
|
618 |
+
|
619 |
+
class TestIDSTIInt(_TestIDSTBase):
|
620 |
+
def setup_method(self):
|
621 |
+
self.rdt = int
|
622 |
+
self.dec = 4
|
623 |
+
self.type = 1
|
624 |
+
|
625 |
+
|
626 |
+
class TestIDSTIIDouble(_TestIDSTBase):
|
627 |
+
def setup_method(self):
|
628 |
+
self.rdt = np.float64
|
629 |
+
self.dec = 14
|
630 |
+
self.type = 2
|
631 |
+
|
632 |
+
|
633 |
+
class TestIDSTIIFloat(_TestIDSTBase):
|
634 |
+
def setup_method(self):
|
635 |
+
self.rdt = np.float32
|
636 |
+
self.dec = 6
|
637 |
+
self.type = 2
|
638 |
+
|
639 |
+
|
640 |
+
class TestIDSTIIInt(_TestIDSTBase):
|
641 |
+
def setup_method(self):
|
642 |
+
self.rdt = int
|
643 |
+
self.dec = 6
|
644 |
+
self.type = 2
|
645 |
+
|
646 |
+
|
647 |
+
class TestIDSTIIIDouble(_TestIDSTBase):
|
648 |
+
def setup_method(self):
|
649 |
+
self.rdt = np.float64
|
650 |
+
self.dec = 14
|
651 |
+
self.type = 3
|
652 |
+
|
653 |
+
|
654 |
+
class TestIDSTIIIFloat(_TestIDSTBase):
|
655 |
+
def setup_method(self):
|
656 |
+
self.rdt = np.float32
|
657 |
+
self.dec = 6
|
658 |
+
self.type = 3
|
659 |
+
|
660 |
+
|
661 |
+
class TestIDSTIIIInt(_TestIDSTBase):
|
662 |
+
def setup_method(self):
|
663 |
+
self.rdt = int
|
664 |
+
self.dec = 6
|
665 |
+
self.type = 3
|
666 |
+
|
667 |
+
|
668 |
+
class TestIDSTIVDouble(_TestIDSTBase):
|
669 |
+
def setup_method(self):
|
670 |
+
self.rdt = np.float64
|
671 |
+
self.dec = 12
|
672 |
+
self.type = 4
|
673 |
+
|
674 |
+
|
675 |
+
class TestIDSTIVFloat(_TestIDSTBase):
|
676 |
+
def setup_method(self):
|
677 |
+
self.rdt = np.float32
|
678 |
+
self.dec = 6
|
679 |
+
self.type = 4
|
680 |
+
|
681 |
+
|
682 |
+
class TestIDSTIVnt(_TestIDSTBase):
|
683 |
+
def setup_method(self):
|
684 |
+
self.rdt = int
|
685 |
+
self.dec = 6
|
686 |
+
self.type = 4
|
687 |
+
|
688 |
+
|
689 |
+
class TestOverwrite:
|
690 |
+
"""Check input overwrite behavior."""
|
691 |
+
|
692 |
+
real_dtypes = [np.float32, np.float64]
|
693 |
+
|
694 |
+
def _check(self, x, routine, type, fftsize, axis, norm, overwrite_x, **kw):
|
695 |
+
x2 = x.copy()
|
696 |
+
routine(x2, type, fftsize, axis, norm, overwrite_x=overwrite_x)
|
697 |
+
|
698 |
+
sig = "{}({}{!r}, {!r}, axis={!r}, overwrite_x={!r})".format(
|
699 |
+
routine.__name__, x.dtype, x.shape, fftsize, axis, overwrite_x)
|
700 |
+
if not overwrite_x:
|
701 |
+
assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig)
|
702 |
+
|
703 |
+
def _check_1d(self, routine, dtype, shape, axis):
|
704 |
+
np.random.seed(1234)
|
705 |
+
if np.issubdtype(dtype, np.complexfloating):
|
706 |
+
data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
|
707 |
+
else:
|
708 |
+
data = np.random.randn(*shape)
|
709 |
+
data = data.astype(dtype)
|
710 |
+
|
711 |
+
for type in [1, 2, 3, 4]:
|
712 |
+
for overwrite_x in [True, False]:
|
713 |
+
for norm in [None, 'ortho']:
|
714 |
+
self._check(data, routine, type, None, axis, norm,
|
715 |
+
overwrite_x)
|
716 |
+
|
717 |
+
def test_dct(self):
|
718 |
+
for dtype in self.real_dtypes:
|
719 |
+
self._check_1d(dct, dtype, (16,), -1)
|
720 |
+
self._check_1d(dct, dtype, (16, 2), 0)
|
721 |
+
self._check_1d(dct, dtype, (2, 16), 1)
|
722 |
+
|
723 |
+
def test_idct(self):
|
724 |
+
for dtype in self.real_dtypes:
|
725 |
+
self._check_1d(idct, dtype, (16,), -1)
|
726 |
+
self._check_1d(idct, dtype, (16, 2), 0)
|
727 |
+
self._check_1d(idct, dtype, (2, 16), 1)
|
728 |
+
|
729 |
+
def test_dst(self):
|
730 |
+
for dtype in self.real_dtypes:
|
731 |
+
self._check_1d(dst, dtype, (16,), -1)
|
732 |
+
self._check_1d(dst, dtype, (16, 2), 0)
|
733 |
+
self._check_1d(dst, dtype, (2, 16), 1)
|
734 |
+
|
735 |
+
def test_idst(self):
|
736 |
+
for dtype in self.real_dtypes:
|
737 |
+
self._check_1d(idst, dtype, (16,), -1)
|
738 |
+
self._check_1d(idst, dtype, (16, 2), 0)
|
739 |
+
self._check_1d(idst, dtype, (2, 16), 1)
|
740 |
+
|
741 |
+
|
742 |
+
class Test_DCTN_IDCTN:
|
743 |
+
dec = 14
|
744 |
+
dct_type = [1, 2, 3, 4]
|
745 |
+
norms = [None, 'ortho']
|
746 |
+
rstate = np.random.RandomState(1234)
|
747 |
+
shape = (32, 16)
|
748 |
+
data = rstate.randn(*shape)
|
749 |
+
|
750 |
+
@pytest.mark.parametrize('fforward,finverse', [(dctn, idctn),
|
751 |
+
(dstn, idstn)])
|
752 |
+
@pytest.mark.parametrize('axes', [None,
|
753 |
+
1, (1,), [1],
|
754 |
+
0, (0,), [0],
|
755 |
+
(0, 1), [0, 1],
|
756 |
+
(-2, -1), [-2, -1]])
|
757 |
+
@pytest.mark.parametrize('dct_type', dct_type)
|
758 |
+
@pytest.mark.parametrize('norm', ['ortho'])
|
759 |
+
def test_axes_round_trip(self, fforward, finverse, axes, dct_type, norm):
|
760 |
+
tmp = fforward(self.data, type=dct_type, axes=axes, norm=norm)
|
761 |
+
tmp = finverse(tmp, type=dct_type, axes=axes, norm=norm)
|
762 |
+
assert_array_almost_equal(self.data, tmp, decimal=12)
|
763 |
+
|
764 |
+
@pytest.mark.parametrize('fforward,fforward_ref', [(dctn, dct_2d_ref),
|
765 |
+
(dstn, dst_2d_ref)])
|
766 |
+
@pytest.mark.parametrize('dct_type', dct_type)
|
767 |
+
@pytest.mark.parametrize('norm', norms)
|
768 |
+
def test_dctn_vs_2d_reference(self, fforward, fforward_ref,
|
769 |
+
dct_type, norm):
|
770 |
+
y1 = fforward(self.data, type=dct_type, axes=None, norm=norm)
|
771 |
+
y2 = fforward_ref(self.data, type=dct_type, norm=norm)
|
772 |
+
assert_array_almost_equal(y1, y2, decimal=11)
|
773 |
+
|
774 |
+
@pytest.mark.parametrize('finverse,finverse_ref', [(idctn, idct_2d_ref),
|
775 |
+
(idstn, idst_2d_ref)])
|
776 |
+
@pytest.mark.parametrize('dct_type', dct_type)
|
777 |
+
@pytest.mark.parametrize('norm', [None, 'ortho'])
|
778 |
+
def test_idctn_vs_2d_reference(self, finverse, finverse_ref,
|
779 |
+
dct_type, norm):
|
780 |
+
fdata = dctn(self.data, type=dct_type, norm=norm)
|
781 |
+
y1 = finverse(fdata, type=dct_type, norm=norm)
|
782 |
+
y2 = finverse_ref(fdata, type=dct_type, norm=norm)
|
783 |
+
assert_array_almost_equal(y1, y2, decimal=11)
|
784 |
+
|
785 |
+
@pytest.mark.parametrize('fforward,finverse', [(dctn, idctn),
|
786 |
+
(dstn, idstn)])
|
787 |
+
def test_axes_and_shape(self, fforward, finverse):
|
788 |
+
with assert_raises(ValueError,
|
789 |
+
match="when given, axes and shape arguments"
|
790 |
+
" have to be of the same length"):
|
791 |
+
fforward(self.data, shape=self.data.shape[0], axes=(0, 1))
|
792 |
+
|
793 |
+
with assert_raises(ValueError,
|
794 |
+
match="when given, axes and shape arguments"
|
795 |
+
" have to be of the same length"):
|
796 |
+
fforward(self.data, shape=self.data.shape[0], axes=None)
|
797 |
+
|
798 |
+
with assert_raises(ValueError,
|
799 |
+
match="when given, axes and shape arguments"
|
800 |
+
" have to be of the same length"):
|
801 |
+
fforward(self.data, shape=self.data.shape, axes=0)
|
802 |
+
|
803 |
+
@pytest.mark.parametrize('fforward', [dctn, dstn])
|
804 |
+
def test_shape(self, fforward):
|
805 |
+
tmp = fforward(self.data, shape=(128, 128), axes=None)
|
806 |
+
assert_equal(tmp.shape, (128, 128))
|
807 |
+
|
808 |
+
@pytest.mark.parametrize('fforward,finverse', [(dctn, idctn),
|
809 |
+
(dstn, idstn)])
|
810 |
+
@pytest.mark.parametrize('axes', [1, (1,), [1],
|
811 |
+
0, (0,), [0]])
|
812 |
+
def test_shape_is_none_with_axes(self, fforward, finverse, axes):
|
813 |
+
tmp = fforward(self.data, shape=None, axes=axes, norm='ortho')
|
814 |
+
tmp = finverse(tmp, shape=None, axes=axes, norm='ortho')
|
815 |
+
assert_array_almost_equal(self.data, tmp, decimal=self.dec)
|
env-llmeval/lib/python3.10/site-packages/scipy/io/mmio.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.io` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'mminfo', 'mmread', 'mmwrite', 'MMFile',
|
9 |
+
'coo_matrix', 'asstr'
|
10 |
+
]
|
11 |
+
|
12 |
+
|
13 |
+
def __dir__():
|
14 |
+
return __all__
|
15 |
+
|
16 |
+
|
17 |
+
def __getattr__(name):
|
18 |
+
return _sub_module_deprecation(sub_package="io", module="mmio",
|
19 |
+
private_modules=["_mmio"], all=__all__,
|
20 |
+
attribute=name)
|
env-llmeval/lib/python3.10/site-packages/scipy/io/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/scipy/io/tests/data/array_float32_2d.sav
ADDED
Binary file (3.19 kB). View file
|
|