Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/sympy/functions/__init__.py +111 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/__init__.py +1 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/_trigonometric_special.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/hyperbolic.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/miscellaneous.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/piecewise.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/trigonometric.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/_trigonometric_special.py +260 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/complexes.py +1465 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/exponential.py +1291 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/hyperbolic.py +2203 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/integers.py +625 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/miscellaneous.py +915 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/piecewise.py +1506 -0
- llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/trigonometric.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/__init__.py +11 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/__pycache__/conflict.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/__pycache__/core.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/__pycache__/dispatcher.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/__pycache__/utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/conflict.py +68 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/core.py +83 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/dispatcher.py +413 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_conflict.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_core.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_dispatcher.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_conflict.py +62 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_core.py +213 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_dispatcher.py +284 -0
- llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/utils.py +105 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/anticommutator.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/boson.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/cartesian.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/cg.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/commutator.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/constants.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/dagger.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/density.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/gate.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/grover.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/hilbert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/identitysearch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/innerproduct.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/matrixcache.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/matrixutils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/operator.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/sympy/functions/__init__.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A functions module, includes all the standard functions.
|
2 |
+
|
3 |
+
Combinatorial - factorial, fibonacci, harmonic, bernoulli...
|
4 |
+
Elementary - hyperbolic, trigonometric, exponential, floor and ceiling, sqrt...
|
5 |
+
Special - gamma, zeta,spherical harmonics...
|
6 |
+
"""
|
7 |
+
|
8 |
+
from sympy.functions.combinatorial.factorials import (factorial, factorial2,
|
9 |
+
rf, ff, binomial, RisingFactorial, FallingFactorial, subfactorial)
|
10 |
+
from sympy.functions.combinatorial.numbers import (carmichael, fibonacci, lucas, tribonacci,
|
11 |
+
harmonic, bernoulli, bell, euler, catalan, genocchi, andre, partition, motzkin)
|
12 |
+
from sympy.functions.elementary.miscellaneous import (sqrt, root, Min, Max,
|
13 |
+
Id, real_root, cbrt, Rem)
|
14 |
+
from sympy.functions.elementary.complexes import (re, im, sign, Abs,
|
15 |
+
conjugate, arg, polar_lift, periodic_argument, unbranched_argument,
|
16 |
+
principal_branch, transpose, adjoint, polarify, unpolarify)
|
17 |
+
from sympy.functions.elementary.trigonometric import (sin, cos, tan,
|
18 |
+
sec, csc, cot, sinc, asin, acos, atan, asec, acsc, acot, atan2)
|
19 |
+
from sympy.functions.elementary.exponential import (exp_polar, exp, log,
|
20 |
+
LambertW)
|
21 |
+
from sympy.functions.elementary.hyperbolic import (sinh, cosh, tanh, coth,
|
22 |
+
sech, csch, asinh, acosh, atanh, acoth, asech, acsch)
|
23 |
+
from sympy.functions.elementary.integers import floor, ceiling, frac
|
24 |
+
from sympy.functions.elementary.piecewise import (Piecewise, piecewise_fold,
|
25 |
+
piecewise_exclusive)
|
26 |
+
from sympy.functions.special.error_functions import (erf, erfc, erfi, erf2,
|
27 |
+
erfinv, erfcinv, erf2inv, Ei, expint, E1, li, Li, Si, Ci, Shi, Chi,
|
28 |
+
fresnels, fresnelc)
|
29 |
+
from sympy.functions.special.gamma_functions import (gamma, lowergamma,
|
30 |
+
uppergamma, polygamma, loggamma, digamma, trigamma, multigamma)
|
31 |
+
from sympy.functions.special.zeta_functions import (dirichlet_eta, zeta,
|
32 |
+
lerchphi, polylog, stieltjes, riemann_xi)
|
33 |
+
from sympy.functions.special.tensor_functions import (Eijk, LeviCivita,
|
34 |
+
KroneckerDelta)
|
35 |
+
from sympy.functions.special.singularity_functions import SingularityFunction
|
36 |
+
from sympy.functions.special.delta_functions import DiracDelta, Heaviside
|
37 |
+
from sympy.functions.special.bsplines import bspline_basis, bspline_basis_set, interpolating_spline
|
38 |
+
from sympy.functions.special.bessel import (besselj, bessely, besseli, besselk,
|
39 |
+
hankel1, hankel2, jn, yn, jn_zeros, hn1, hn2, airyai, airybi, airyaiprime, airybiprime, marcumq)
|
40 |
+
from sympy.functions.special.hyper import hyper, meijerg, appellf1
|
41 |
+
from sympy.functions.special.polynomials import (legendre, assoc_legendre,
|
42 |
+
hermite, hermite_prob, chebyshevt, chebyshevu, chebyshevu_root,
|
43 |
+
chebyshevt_root, laguerre, assoc_laguerre, gegenbauer, jacobi, jacobi_normalized)
|
44 |
+
from sympy.functions.special.spherical_harmonics import Ynm, Ynm_c, Znm
|
45 |
+
from sympy.functions.special.elliptic_integrals import (elliptic_k,
|
46 |
+
elliptic_f, elliptic_e, elliptic_pi)
|
47 |
+
from sympy.functions.special.beta_functions import beta, betainc, betainc_regularized
|
48 |
+
from sympy.functions.special.mathieu_functions import (mathieus, mathieuc,
|
49 |
+
mathieusprime, mathieucprime)
|
50 |
+
ln = log
|
51 |
+
|
52 |
+
__all__ = [
|
53 |
+
'factorial', 'factorial2', 'rf', 'ff', 'binomial', 'RisingFactorial',
|
54 |
+
'FallingFactorial', 'subfactorial',
|
55 |
+
|
56 |
+
'carmichael', 'fibonacci', 'lucas', 'motzkin', 'tribonacci', 'harmonic',
|
57 |
+
'bernoulli', 'bell', 'euler', 'catalan', 'genocchi', 'andre', 'partition',
|
58 |
+
|
59 |
+
'sqrt', 'root', 'Min', 'Max', 'Id', 'real_root', 'cbrt', 'Rem',
|
60 |
+
|
61 |
+
're', 'im', 'sign', 'Abs', 'conjugate', 'arg', 'polar_lift',
|
62 |
+
'periodic_argument', 'unbranched_argument', 'principal_branch',
|
63 |
+
'transpose', 'adjoint', 'polarify', 'unpolarify',
|
64 |
+
|
65 |
+
'sin', 'cos', 'tan', 'sec', 'csc', 'cot', 'sinc', 'asin', 'acos', 'atan',
|
66 |
+
'asec', 'acsc', 'acot', 'atan2',
|
67 |
+
|
68 |
+
'exp_polar', 'exp', 'ln', 'log', 'LambertW',
|
69 |
+
|
70 |
+
'sinh', 'cosh', 'tanh', 'coth', 'sech', 'csch', 'asinh', 'acosh', 'atanh',
|
71 |
+
'acoth', 'asech', 'acsch',
|
72 |
+
|
73 |
+
'floor', 'ceiling', 'frac',
|
74 |
+
|
75 |
+
'Piecewise', 'piecewise_fold', 'piecewise_exclusive',
|
76 |
+
|
77 |
+
'erf', 'erfc', 'erfi', 'erf2', 'erfinv', 'erfcinv', 'erf2inv', 'Ei',
|
78 |
+
'expint', 'E1', 'li', 'Li', 'Si', 'Ci', 'Shi', 'Chi', 'fresnels',
|
79 |
+
'fresnelc',
|
80 |
+
|
81 |
+
'gamma', 'lowergamma', 'uppergamma', 'polygamma', 'loggamma', 'digamma',
|
82 |
+
'trigamma', 'multigamma',
|
83 |
+
|
84 |
+
'dirichlet_eta', 'zeta', 'lerchphi', 'polylog', 'stieltjes', 'riemann_xi',
|
85 |
+
|
86 |
+
'Eijk', 'LeviCivita', 'KroneckerDelta',
|
87 |
+
|
88 |
+
'SingularityFunction',
|
89 |
+
|
90 |
+
'DiracDelta', 'Heaviside',
|
91 |
+
|
92 |
+
'bspline_basis', 'bspline_basis_set', 'interpolating_spline',
|
93 |
+
|
94 |
+
'besselj', 'bessely', 'besseli', 'besselk', 'hankel1', 'hankel2', 'jn',
|
95 |
+
'yn', 'jn_zeros', 'hn1', 'hn2', 'airyai', 'airybi', 'airyaiprime',
|
96 |
+
'airybiprime', 'marcumq',
|
97 |
+
|
98 |
+
'hyper', 'meijerg', 'appellf1',
|
99 |
+
|
100 |
+
'legendre', 'assoc_legendre', 'hermite', 'hermite_prob', 'chebyshevt',
|
101 |
+
'chebyshevu', 'chebyshevu_root', 'chebyshevt_root', 'laguerre',
|
102 |
+
'assoc_laguerre', 'gegenbauer', 'jacobi', 'jacobi_normalized',
|
103 |
+
|
104 |
+
'Ynm', 'Ynm_c', 'Znm',
|
105 |
+
|
106 |
+
'elliptic_k', 'elliptic_f', 'elliptic_e', 'elliptic_pi',
|
107 |
+
|
108 |
+
'beta', 'betainc', 'betainc_regularized',
|
109 |
+
|
110 |
+
'mathieus', 'mathieuc', 'mathieusprime', 'mathieucprime',
|
111 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Stub __init__.py for sympy.functions.elementary
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (199 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/_trigonometric_special.cpython-310.pyc
ADDED
Binary file (8.56 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/hyperbolic.cpython-310.pyc
ADDED
Binary file (55.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/miscellaneous.cpython-310.pyc
ADDED
Binary file (30.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/piecewise.cpython-310.pyc
ADDED
Binary file (44.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/trigonometric.cpython-310.pyc
ADDED
Binary file (91.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/_trigonometric_special.py
ADDED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""A module for special angle forumlas for trigonometric functions
|
2 |
+
|
3 |
+
TODO
|
4 |
+
====
|
5 |
+
|
6 |
+
This module should be developed in the future to contain direct squrae root
|
7 |
+
representation of
|
8 |
+
|
9 |
+
.. math
|
10 |
+
F(\frac{n}{m} \pi)
|
11 |
+
|
12 |
+
for every
|
13 |
+
|
14 |
+
- $m \in \{ 3, 5, 17, 257, 65537 \}$
|
15 |
+
- $n \in \mathbb{N}$, $0 \le n < m$
|
16 |
+
- $F \in \{\sin, \cos, \tan, \csc, \sec, \cot\}$
|
17 |
+
|
18 |
+
Without multi-step rewrites
|
19 |
+
(e.g. $\tan \to \cos/\sin \to \cos/\sqrt \to \ sqrt$)
|
20 |
+
or using chebyshev identities
|
21 |
+
(e.g. $\cos \to \cos + \cos^2 + \cdots \to \sqrt{} + \sqrt{}^2 + \cdots $),
|
22 |
+
which are trivial to implement in sympy,
|
23 |
+
and had used to give overly complicated expressions.
|
24 |
+
|
25 |
+
The reference can be found below, if anyone may need help implementing them.
|
26 |
+
|
27 |
+
References
|
28 |
+
==========
|
29 |
+
|
30 |
+
.. [*] Gottlieb, Christian. (1999). The Simple and straightforward construction
|
31 |
+
of the regular 257-gon. The Mathematical Intelligencer. 21. 31-37.
|
32 |
+
10.1007/BF03024829.
|
33 |
+
.. [*] https://resources.wolframcloud.com/FunctionRepository/resources/Cos2PiOverFermatPrime
|
34 |
+
"""
|
35 |
+
from __future__ import annotations
|
36 |
+
from typing import Callable
|
37 |
+
from functools import reduce
|
38 |
+
from sympy.core.expr import Expr
|
39 |
+
from sympy.core.singleton import S
|
40 |
+
from sympy.core.numbers import igcdex, Integer
|
41 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
42 |
+
from sympy.core.cache import cacheit
|
43 |
+
|
44 |
+
|
45 |
+
def migcdex(*x: int) -> tuple[tuple[int, ...], int]:
|
46 |
+
r"""Compute extended gcd for multiple integers.
|
47 |
+
|
48 |
+
Explanation
|
49 |
+
===========
|
50 |
+
|
51 |
+
Given the integers $x_1, \cdots, x_n$ and
|
52 |
+
an extended gcd for multiple arguments are defined as a solution
|
53 |
+
$(y_1, \cdots, y_n), g$ for the diophantine equation
|
54 |
+
$x_1 y_1 + \cdots + x_n y_n = g$ such that
|
55 |
+
$g = \gcd(x_1, \cdots, x_n)$.
|
56 |
+
|
57 |
+
Examples
|
58 |
+
========
|
59 |
+
|
60 |
+
>>> from sympy.functions.elementary._trigonometric_special import migcdex
|
61 |
+
>>> migcdex()
|
62 |
+
((), 0)
|
63 |
+
>>> migcdex(4)
|
64 |
+
((1,), 4)
|
65 |
+
>>> migcdex(4, 6)
|
66 |
+
((-1, 1), 2)
|
67 |
+
>>> migcdex(6, 10, 15)
|
68 |
+
((1, 1, -1), 1)
|
69 |
+
"""
|
70 |
+
if not x:
|
71 |
+
return (), 0
|
72 |
+
|
73 |
+
if len(x) == 1:
|
74 |
+
return (1,), x[0]
|
75 |
+
|
76 |
+
if len(x) == 2:
|
77 |
+
u, v, h = igcdex(x[0], x[1])
|
78 |
+
return (u, v), h
|
79 |
+
|
80 |
+
y, g = migcdex(*x[1:])
|
81 |
+
u, v, h = igcdex(x[0], g)
|
82 |
+
return (u, *(v * i for i in y)), h
|
83 |
+
|
84 |
+
|
85 |
+
def ipartfrac(*denoms: int) -> tuple[int, ...]:
|
86 |
+
r"""Compute the the partial fraction decomposition.
|
87 |
+
|
88 |
+
Explanation
|
89 |
+
===========
|
90 |
+
|
91 |
+
Given a rational number $\frac{1}{q_1 \cdots q_n}$ where all
|
92 |
+
$q_1, \cdots, q_n$ are pairwise coprime,
|
93 |
+
|
94 |
+
A partial fraction decomposition is defined as
|
95 |
+
|
96 |
+
.. math::
|
97 |
+
\frac{1}{q_1 \cdots q_n} = \frac{p_1}{q_1} + \cdots + \frac{p_n}{q_n}
|
98 |
+
|
99 |
+
And it can be derived from solving the following diophantine equation for
|
100 |
+
the $p_1, \cdots, p_n$
|
101 |
+
|
102 |
+
.. math::
|
103 |
+
1 = p_1 \prod_{i \ne 1}q_i + \cdots + p_n \prod_{i \ne n}q_i
|
104 |
+
|
105 |
+
Where $q_1, \cdots, q_n$ being pairwise coprime implies
|
106 |
+
$\gcd(\prod_{i \ne 1}q_i, \cdots, \prod_{i \ne n}q_i) = 1$,
|
107 |
+
which guarantees the existance of the solution.
|
108 |
+
|
109 |
+
It is sufficient to compute partial fraction decomposition only
|
110 |
+
for numerator $1$ because partial fraction decomposition for any
|
111 |
+
$\frac{n}{q_1 \cdots q_n}$ can be easily computed by multiplying
|
112 |
+
the result by $n$ afterwards.
|
113 |
+
|
114 |
+
Parameters
|
115 |
+
==========
|
116 |
+
|
117 |
+
denoms : int
|
118 |
+
The pairwise coprime integer denominators $q_i$ which defines the
|
119 |
+
rational number $\frac{1}{q_1 \cdots q_n}$
|
120 |
+
|
121 |
+
Returns
|
122 |
+
=======
|
123 |
+
|
124 |
+
tuple[int, ...]
|
125 |
+
The list of numerators which semantically corresponds to $p_i$ of the
|
126 |
+
partial fraction decomposition
|
127 |
+
$\frac{1}{q_1 \cdots q_n} = \frac{p_1}{q_1} + \cdots + \frac{p_n}{q_n}$
|
128 |
+
|
129 |
+
Examples
|
130 |
+
========
|
131 |
+
|
132 |
+
>>> from sympy import Rational, Mul
|
133 |
+
>>> from sympy.functions.elementary._trigonometric_special import ipartfrac
|
134 |
+
|
135 |
+
>>> denoms = 2, 3, 5
|
136 |
+
>>> numers = ipartfrac(2, 3, 5)
|
137 |
+
>>> numers
|
138 |
+
(1, 7, -14)
|
139 |
+
|
140 |
+
>>> Rational(1, Mul(*denoms))
|
141 |
+
1/30
|
142 |
+
>>> out = 0
|
143 |
+
>>> for n, d in zip(numers, denoms):
|
144 |
+
... out += Rational(n, d)
|
145 |
+
>>> out
|
146 |
+
1/30
|
147 |
+
"""
|
148 |
+
if not denoms:
|
149 |
+
return ()
|
150 |
+
|
151 |
+
def mul(x: int, y: int) -> int:
|
152 |
+
return x * y
|
153 |
+
|
154 |
+
denom = reduce(mul, denoms)
|
155 |
+
a = [denom // x for x in denoms]
|
156 |
+
h, _ = migcdex(*a)
|
157 |
+
return h
|
158 |
+
|
159 |
+
|
160 |
+
def fermat_coords(n: int) -> list[int] | None:
|
161 |
+
"""If n can be factored in terms of Fermat primes with
|
162 |
+
multiplicity of each being 1, return those primes, else
|
163 |
+
None
|
164 |
+
"""
|
165 |
+
primes = []
|
166 |
+
for p in [3, 5, 17, 257, 65537]:
|
167 |
+
quotient, remainder = divmod(n, p)
|
168 |
+
if remainder == 0:
|
169 |
+
n = quotient
|
170 |
+
primes.append(p)
|
171 |
+
if n == 1:
|
172 |
+
return primes
|
173 |
+
return None
|
174 |
+
|
175 |
+
|
176 |
+
@cacheit
|
177 |
+
def cos_3() -> Expr:
|
178 |
+
r"""Computes $\cos \frac{\pi}{3}$ in square roots"""
|
179 |
+
return S.Half
|
180 |
+
|
181 |
+
|
182 |
+
@cacheit
|
183 |
+
def cos_5() -> Expr:
|
184 |
+
r"""Computes $\cos \frac{\pi}{5}$ in square roots"""
|
185 |
+
return (sqrt(5) + 1) / 4
|
186 |
+
|
187 |
+
|
188 |
+
@cacheit
|
189 |
+
def cos_17() -> Expr:
|
190 |
+
r"""Computes $\cos \frac{\pi}{17}$ in square roots"""
|
191 |
+
return sqrt(
|
192 |
+
(15 + sqrt(17)) / 32 + sqrt(2) * (sqrt(17 - sqrt(17)) +
|
193 |
+
sqrt(sqrt(2) * (-8 * sqrt(17 + sqrt(17)) - (1 - sqrt(17))
|
194 |
+
* sqrt(17 - sqrt(17))) + 6 * sqrt(17) + 34)) / 32)
|
195 |
+
|
196 |
+
|
197 |
+
@cacheit
|
198 |
+
def cos_257() -> Expr:
|
199 |
+
r"""Computes $\cos \frac{\pi}{257}$ in square roots
|
200 |
+
|
201 |
+
References
|
202 |
+
==========
|
203 |
+
|
204 |
+
.. [*] https://math.stackexchange.com/questions/516142/how-does-cos2-pi-257-look-like-in-real-radicals
|
205 |
+
.. [*] https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html
|
206 |
+
"""
|
207 |
+
def f1(a: Expr, b: Expr) -> tuple[Expr, Expr]:
|
208 |
+
return (a + sqrt(a**2 + b)) / 2, (a - sqrt(a**2 + b)) / 2
|
209 |
+
|
210 |
+
def f2(a: Expr, b: Expr) -> Expr:
|
211 |
+
return (a - sqrt(a**2 + b))/2
|
212 |
+
|
213 |
+
t1, t2 = f1(S.NegativeOne, Integer(256))
|
214 |
+
z1, z3 = f1(t1, Integer(64))
|
215 |
+
z2, z4 = f1(t2, Integer(64))
|
216 |
+
y1, y5 = f1(z1, 4*(5 + t1 + 2*z1))
|
217 |
+
y6, y2 = f1(z2, 4*(5 + t2 + 2*z2))
|
218 |
+
y3, y7 = f1(z3, 4*(5 + t1 + 2*z3))
|
219 |
+
y8, y4 = f1(z4, 4*(5 + t2 + 2*z4))
|
220 |
+
x1, x9 = f1(y1, -4*(t1 + y1 + y3 + 2*y6))
|
221 |
+
x2, x10 = f1(y2, -4*(t2 + y2 + y4 + 2*y7))
|
222 |
+
x3, x11 = f1(y3, -4*(t1 + y3 + y5 + 2*y8))
|
223 |
+
x4, x12 = f1(y4, -4*(t2 + y4 + y6 + 2*y1))
|
224 |
+
x5, x13 = f1(y5, -4*(t1 + y5 + y7 + 2*y2))
|
225 |
+
x6, x14 = f1(y6, -4*(t2 + y6 + y8 + 2*y3))
|
226 |
+
x15, x7 = f1(y7, -4*(t1 + y7 + y1 + 2*y4))
|
227 |
+
x8, x16 = f1(y8, -4*(t2 + y8 + y2 + 2*y5))
|
228 |
+
v1 = f2(x1, -4*(x1 + x2 + x3 + x6))
|
229 |
+
v2 = f2(x2, -4*(x2 + x3 + x4 + x7))
|
230 |
+
v3 = f2(x8, -4*(x8 + x9 + x10 + x13))
|
231 |
+
v4 = f2(x9, -4*(x9 + x10 + x11 + x14))
|
232 |
+
v5 = f2(x10, -4*(x10 + x11 + x12 + x15))
|
233 |
+
v6 = f2(x16, -4*(x16 + x1 + x2 + x5))
|
234 |
+
u1 = -f2(-v1, -4*(v2 + v3))
|
235 |
+
u2 = -f2(-v4, -4*(v5 + v6))
|
236 |
+
w1 = -2*f2(-u1, -4*u2)
|
237 |
+
return sqrt(sqrt(2)*sqrt(w1 + 4)/8 + S.Half)
|
238 |
+
|
239 |
+
|
240 |
+
def cos_table() -> dict[int, Callable[[], Expr]]:
|
241 |
+
r"""Lazily evaluated table for $\cos \frac{\pi}{n}$ in square roots for
|
242 |
+
$n \in \{3, 5, 17, 257, 65537\}$.
|
243 |
+
|
244 |
+
Notes
|
245 |
+
=====
|
246 |
+
|
247 |
+
65537 is the only other known Fermat prime and it is nearly impossible to
|
248 |
+
build in the current SymPy due to performance issues.
|
249 |
+
|
250 |
+
References
|
251 |
+
==========
|
252 |
+
|
253 |
+
https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html
|
254 |
+
"""
|
255 |
+
return {
|
256 |
+
3: cos_3,
|
257 |
+
5: cos_5,
|
258 |
+
17: cos_17,
|
259 |
+
257: cos_257
|
260 |
+
}
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/complexes.py
ADDED
@@ -0,0 +1,1465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple as tTuple
|
2 |
+
|
3 |
+
from sympy.core import S, Add, Mul, sympify, Symbol, Dummy, Basic
|
4 |
+
from sympy.core.expr import Expr
|
5 |
+
from sympy.core.exprtools import factor_terms
|
6 |
+
from sympy.core.function import (Function, Derivative, ArgumentIndexError,
|
7 |
+
AppliedUndef, expand_mul)
|
8 |
+
from sympy.core.logic import fuzzy_not, fuzzy_or
|
9 |
+
from sympy.core.numbers import pi, I, oo
|
10 |
+
from sympy.core.power import Pow
|
11 |
+
from sympy.core.relational import Eq
|
12 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
13 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
14 |
+
|
15 |
+
###############################################################################
|
16 |
+
######################### REAL and IMAGINARY PARTS ############################
|
17 |
+
###############################################################################
|
18 |
+
|
19 |
+
|
20 |
+
class re(Function):
|
21 |
+
"""
|
22 |
+
Returns real part of expression. This function performs only
|
23 |
+
elementary analysis and so it will fail to decompose properly
|
24 |
+
more complicated expressions. If completely simplified result
|
25 |
+
is needed then use ``Basic.as_real_imag()`` or perform complex
|
26 |
+
expansion on instance of this function.
|
27 |
+
|
28 |
+
Examples
|
29 |
+
========
|
30 |
+
|
31 |
+
>>> from sympy import re, im, I, E, symbols
|
32 |
+
>>> x, y = symbols('x y', real=True)
|
33 |
+
>>> re(2*E)
|
34 |
+
2*E
|
35 |
+
>>> re(2*I + 17)
|
36 |
+
17
|
37 |
+
>>> re(2*I)
|
38 |
+
0
|
39 |
+
>>> re(im(x) + x*I + 2)
|
40 |
+
2
|
41 |
+
>>> re(5 + I + 2)
|
42 |
+
7
|
43 |
+
|
44 |
+
Parameters
|
45 |
+
==========
|
46 |
+
|
47 |
+
arg : Expr
|
48 |
+
Real or complex expression.
|
49 |
+
|
50 |
+
Returns
|
51 |
+
=======
|
52 |
+
|
53 |
+
expr : Expr
|
54 |
+
Real part of expression.
|
55 |
+
|
56 |
+
See Also
|
57 |
+
========
|
58 |
+
|
59 |
+
im
|
60 |
+
"""
|
61 |
+
|
62 |
+
args: tTuple[Expr]
|
63 |
+
|
64 |
+
is_extended_real = True
|
65 |
+
unbranched = True # implicitly works on the projection to C
|
66 |
+
_singularities = True # non-holomorphic
|
67 |
+
|
68 |
+
@classmethod
|
69 |
+
def eval(cls, arg):
|
70 |
+
if arg is S.NaN:
|
71 |
+
return S.NaN
|
72 |
+
elif arg is S.ComplexInfinity:
|
73 |
+
return S.NaN
|
74 |
+
elif arg.is_extended_real:
|
75 |
+
return arg
|
76 |
+
elif arg.is_imaginary or (I*arg).is_extended_real:
|
77 |
+
return S.Zero
|
78 |
+
elif arg.is_Matrix:
|
79 |
+
return arg.as_real_imag()[0]
|
80 |
+
elif arg.is_Function and isinstance(arg, conjugate):
|
81 |
+
return re(arg.args[0])
|
82 |
+
else:
|
83 |
+
|
84 |
+
included, reverted, excluded = [], [], []
|
85 |
+
args = Add.make_args(arg)
|
86 |
+
for term in args:
|
87 |
+
coeff = term.as_coefficient(I)
|
88 |
+
|
89 |
+
if coeff is not None:
|
90 |
+
if not coeff.is_extended_real:
|
91 |
+
reverted.append(coeff)
|
92 |
+
elif not term.has(I) and term.is_extended_real:
|
93 |
+
excluded.append(term)
|
94 |
+
else:
|
95 |
+
# Try to do some advanced expansion. If
|
96 |
+
# impossible, don't try to do re(arg) again
|
97 |
+
# (because this is what we are trying to do now).
|
98 |
+
real_imag = term.as_real_imag(ignore=arg)
|
99 |
+
if real_imag:
|
100 |
+
excluded.append(real_imag[0])
|
101 |
+
else:
|
102 |
+
included.append(term)
|
103 |
+
|
104 |
+
if len(args) != len(included):
|
105 |
+
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
|
106 |
+
|
107 |
+
return cls(a) - im(b) + c
|
108 |
+
|
109 |
+
def as_real_imag(self, deep=True, **hints):
|
110 |
+
"""
|
111 |
+
Returns the real number with a zero imaginary part.
|
112 |
+
|
113 |
+
"""
|
114 |
+
return (self, S.Zero)
|
115 |
+
|
116 |
+
def _eval_derivative(self, x):
|
117 |
+
if x.is_extended_real or self.args[0].is_extended_real:
|
118 |
+
return re(Derivative(self.args[0], x, evaluate=True))
|
119 |
+
if x.is_imaginary or self.args[0].is_imaginary:
|
120 |
+
return -I \
|
121 |
+
* im(Derivative(self.args[0], x, evaluate=True))
|
122 |
+
|
123 |
+
def _eval_rewrite_as_im(self, arg, **kwargs):
|
124 |
+
return self.args[0] - I*im(self.args[0])
|
125 |
+
|
126 |
+
def _eval_is_algebraic(self):
|
127 |
+
return self.args[0].is_algebraic
|
128 |
+
|
129 |
+
def _eval_is_zero(self):
|
130 |
+
# is_imaginary implies nonzero
|
131 |
+
return fuzzy_or([self.args[0].is_imaginary, self.args[0].is_zero])
|
132 |
+
|
133 |
+
def _eval_is_finite(self):
|
134 |
+
if self.args[0].is_finite:
|
135 |
+
return True
|
136 |
+
|
137 |
+
def _eval_is_complex(self):
|
138 |
+
if self.args[0].is_finite:
|
139 |
+
return True
|
140 |
+
|
141 |
+
|
142 |
+
class im(Function):
|
143 |
+
"""
|
144 |
+
Returns imaginary part of expression. This function performs only
|
145 |
+
elementary analysis and so it will fail to decompose properly more
|
146 |
+
complicated expressions. If completely simplified result is needed then
|
147 |
+
use ``Basic.as_real_imag()`` or perform complex expansion on instance of
|
148 |
+
this function.
|
149 |
+
|
150 |
+
Examples
|
151 |
+
========
|
152 |
+
|
153 |
+
>>> from sympy import re, im, E, I
|
154 |
+
>>> from sympy.abc import x, y
|
155 |
+
>>> im(2*E)
|
156 |
+
0
|
157 |
+
>>> im(2*I + 17)
|
158 |
+
2
|
159 |
+
>>> im(x*I)
|
160 |
+
re(x)
|
161 |
+
>>> im(re(x) + y)
|
162 |
+
im(y)
|
163 |
+
>>> im(2 + 3*I)
|
164 |
+
3
|
165 |
+
|
166 |
+
Parameters
|
167 |
+
==========
|
168 |
+
|
169 |
+
arg : Expr
|
170 |
+
Real or complex expression.
|
171 |
+
|
172 |
+
Returns
|
173 |
+
=======
|
174 |
+
|
175 |
+
expr : Expr
|
176 |
+
Imaginary part of expression.
|
177 |
+
|
178 |
+
See Also
|
179 |
+
========
|
180 |
+
|
181 |
+
re
|
182 |
+
"""
|
183 |
+
|
184 |
+
args: tTuple[Expr]
|
185 |
+
|
186 |
+
is_extended_real = True
|
187 |
+
unbranched = True # implicitly works on the projection to C
|
188 |
+
_singularities = True # non-holomorphic
|
189 |
+
|
190 |
+
@classmethod
|
191 |
+
def eval(cls, arg):
|
192 |
+
if arg is S.NaN:
|
193 |
+
return S.NaN
|
194 |
+
elif arg is S.ComplexInfinity:
|
195 |
+
return S.NaN
|
196 |
+
elif arg.is_extended_real:
|
197 |
+
return S.Zero
|
198 |
+
elif arg.is_imaginary or (I*arg).is_extended_real:
|
199 |
+
return -I * arg
|
200 |
+
elif arg.is_Matrix:
|
201 |
+
return arg.as_real_imag()[1]
|
202 |
+
elif arg.is_Function and isinstance(arg, conjugate):
|
203 |
+
return -im(arg.args[0])
|
204 |
+
else:
|
205 |
+
included, reverted, excluded = [], [], []
|
206 |
+
args = Add.make_args(arg)
|
207 |
+
for term in args:
|
208 |
+
coeff = term.as_coefficient(I)
|
209 |
+
|
210 |
+
if coeff is not None:
|
211 |
+
if not coeff.is_extended_real:
|
212 |
+
reverted.append(coeff)
|
213 |
+
else:
|
214 |
+
excluded.append(coeff)
|
215 |
+
elif term.has(I) or not term.is_extended_real:
|
216 |
+
# Try to do some advanced expansion. If
|
217 |
+
# impossible, don't try to do im(arg) again
|
218 |
+
# (because this is what we are trying to do now).
|
219 |
+
real_imag = term.as_real_imag(ignore=arg)
|
220 |
+
if real_imag:
|
221 |
+
excluded.append(real_imag[1])
|
222 |
+
else:
|
223 |
+
included.append(term)
|
224 |
+
|
225 |
+
if len(args) != len(included):
|
226 |
+
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
|
227 |
+
|
228 |
+
return cls(a) + re(b) + c
|
229 |
+
|
230 |
+
def as_real_imag(self, deep=True, **hints):
|
231 |
+
"""
|
232 |
+
Return the imaginary part with a zero real part.
|
233 |
+
|
234 |
+
"""
|
235 |
+
return (self, S.Zero)
|
236 |
+
|
237 |
+
def _eval_derivative(self, x):
|
238 |
+
if x.is_extended_real or self.args[0].is_extended_real:
|
239 |
+
return im(Derivative(self.args[0], x, evaluate=True))
|
240 |
+
if x.is_imaginary or self.args[0].is_imaginary:
|
241 |
+
return -I \
|
242 |
+
* re(Derivative(self.args[0], x, evaluate=True))
|
243 |
+
|
244 |
+
def _eval_rewrite_as_re(self, arg, **kwargs):
|
245 |
+
return -I*(self.args[0] - re(self.args[0]))
|
246 |
+
|
247 |
+
def _eval_is_algebraic(self):
|
248 |
+
return self.args[0].is_algebraic
|
249 |
+
|
250 |
+
def _eval_is_zero(self):
|
251 |
+
return self.args[0].is_extended_real
|
252 |
+
|
253 |
+
def _eval_is_finite(self):
|
254 |
+
if self.args[0].is_finite:
|
255 |
+
return True
|
256 |
+
|
257 |
+
def _eval_is_complex(self):
|
258 |
+
if self.args[0].is_finite:
|
259 |
+
return True
|
260 |
+
|
261 |
+
###############################################################################
|
262 |
+
############### SIGN, ABSOLUTE VALUE, ARGUMENT and CONJUGATION ################
|
263 |
+
###############################################################################
|
264 |
+
|
265 |
+
class sign(Function):
|
266 |
+
"""
|
267 |
+
Returns the complex sign of an expression:
|
268 |
+
|
269 |
+
Explanation
|
270 |
+
===========
|
271 |
+
|
272 |
+
If the expression is real the sign will be:
|
273 |
+
|
274 |
+
* $1$ if expression is positive
|
275 |
+
* $0$ if expression is equal to zero
|
276 |
+
* $-1$ if expression is negative
|
277 |
+
|
278 |
+
If the expression is imaginary the sign will be:
|
279 |
+
|
280 |
+
* $I$ if im(expression) is positive
|
281 |
+
* $-I$ if im(expression) is negative
|
282 |
+
|
283 |
+
Otherwise an unevaluated expression will be returned. When evaluated, the
|
284 |
+
result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``.
|
285 |
+
|
286 |
+
Examples
|
287 |
+
========
|
288 |
+
|
289 |
+
>>> from sympy import sign, I
|
290 |
+
|
291 |
+
>>> sign(-1)
|
292 |
+
-1
|
293 |
+
>>> sign(0)
|
294 |
+
0
|
295 |
+
>>> sign(-3*I)
|
296 |
+
-I
|
297 |
+
>>> sign(1 + I)
|
298 |
+
sign(1 + I)
|
299 |
+
>>> _.evalf()
|
300 |
+
0.707106781186548 + 0.707106781186548*I
|
301 |
+
|
302 |
+
Parameters
|
303 |
+
==========
|
304 |
+
|
305 |
+
arg : Expr
|
306 |
+
Real or imaginary expression.
|
307 |
+
|
308 |
+
Returns
|
309 |
+
=======
|
310 |
+
|
311 |
+
expr : Expr
|
312 |
+
Complex sign of expression.
|
313 |
+
|
314 |
+
See Also
|
315 |
+
========
|
316 |
+
|
317 |
+
Abs, conjugate
|
318 |
+
"""
|
319 |
+
|
320 |
+
is_complex = True
|
321 |
+
_singularities = True
|
322 |
+
|
323 |
+
def doit(self, **hints):
|
324 |
+
s = super().doit()
|
325 |
+
if s == self and self.args[0].is_zero is False:
|
326 |
+
return self.args[0] / Abs(self.args[0])
|
327 |
+
return s
|
328 |
+
|
329 |
+
@classmethod
|
330 |
+
def eval(cls, arg):
|
331 |
+
# handle what we can
|
332 |
+
if arg.is_Mul:
|
333 |
+
c, args = arg.as_coeff_mul()
|
334 |
+
unk = []
|
335 |
+
s = sign(c)
|
336 |
+
for a in args:
|
337 |
+
if a.is_extended_negative:
|
338 |
+
s = -s
|
339 |
+
elif a.is_extended_positive:
|
340 |
+
pass
|
341 |
+
else:
|
342 |
+
if a.is_imaginary:
|
343 |
+
ai = im(a)
|
344 |
+
if ai.is_comparable: # i.e. a = I*real
|
345 |
+
s *= I
|
346 |
+
if ai.is_extended_negative:
|
347 |
+
# can't use sign(ai) here since ai might not be
|
348 |
+
# a Number
|
349 |
+
s = -s
|
350 |
+
else:
|
351 |
+
unk.append(a)
|
352 |
+
else:
|
353 |
+
unk.append(a)
|
354 |
+
if c is S.One and len(unk) == len(args):
|
355 |
+
return None
|
356 |
+
return s * cls(arg._new_rawargs(*unk))
|
357 |
+
if arg is S.NaN:
|
358 |
+
return S.NaN
|
359 |
+
if arg.is_zero: # it may be an Expr that is zero
|
360 |
+
return S.Zero
|
361 |
+
if arg.is_extended_positive:
|
362 |
+
return S.One
|
363 |
+
if arg.is_extended_negative:
|
364 |
+
return S.NegativeOne
|
365 |
+
if arg.is_Function:
|
366 |
+
if isinstance(arg, sign):
|
367 |
+
return arg
|
368 |
+
if arg.is_imaginary:
|
369 |
+
if arg.is_Pow and arg.exp is S.Half:
|
370 |
+
# we catch this because non-trivial sqrt args are not expanded
|
371 |
+
# e.g. sqrt(1-sqrt(2)) --x--> to I*sqrt(sqrt(2) - 1)
|
372 |
+
return I
|
373 |
+
arg2 = -I * arg
|
374 |
+
if arg2.is_extended_positive:
|
375 |
+
return I
|
376 |
+
if arg2.is_extended_negative:
|
377 |
+
return -I
|
378 |
+
|
379 |
+
def _eval_Abs(self):
|
380 |
+
if fuzzy_not(self.args[0].is_zero):
|
381 |
+
return S.One
|
382 |
+
|
383 |
+
def _eval_conjugate(self):
|
384 |
+
return sign(conjugate(self.args[0]))
|
385 |
+
|
386 |
+
def _eval_derivative(self, x):
|
387 |
+
if self.args[0].is_extended_real:
|
388 |
+
from sympy.functions.special.delta_functions import DiracDelta
|
389 |
+
return 2 * Derivative(self.args[0], x, evaluate=True) \
|
390 |
+
* DiracDelta(self.args[0])
|
391 |
+
elif self.args[0].is_imaginary:
|
392 |
+
from sympy.functions.special.delta_functions import DiracDelta
|
393 |
+
return 2 * Derivative(self.args[0], x, evaluate=True) \
|
394 |
+
* DiracDelta(-I * self.args[0])
|
395 |
+
|
396 |
+
def _eval_is_nonnegative(self):
|
397 |
+
if self.args[0].is_nonnegative:
|
398 |
+
return True
|
399 |
+
|
400 |
+
def _eval_is_nonpositive(self):
|
401 |
+
if self.args[0].is_nonpositive:
|
402 |
+
return True
|
403 |
+
|
404 |
+
def _eval_is_imaginary(self):
|
405 |
+
return self.args[0].is_imaginary
|
406 |
+
|
407 |
+
def _eval_is_integer(self):
|
408 |
+
return self.args[0].is_extended_real
|
409 |
+
|
410 |
+
def _eval_is_zero(self):
|
411 |
+
return self.args[0].is_zero
|
412 |
+
|
413 |
+
def _eval_power(self, other):
|
414 |
+
if (
|
415 |
+
fuzzy_not(self.args[0].is_zero) and
|
416 |
+
other.is_integer and
|
417 |
+
other.is_even
|
418 |
+
):
|
419 |
+
return S.One
|
420 |
+
|
421 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
422 |
+
arg0 = self.args[0]
|
423 |
+
x0 = arg0.subs(x, 0)
|
424 |
+
if x0 != 0:
|
425 |
+
return self.func(x0)
|
426 |
+
if cdir != 0:
|
427 |
+
cdir = arg0.dir(x, cdir)
|
428 |
+
return -S.One if re(cdir) < 0 else S.One
|
429 |
+
|
430 |
+
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
|
431 |
+
if arg.is_extended_real:
|
432 |
+
return Piecewise((1, arg > 0), (-1, arg < 0), (0, True))
|
433 |
+
|
434 |
+
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
|
435 |
+
from sympy.functions.special.delta_functions import Heaviside
|
436 |
+
if arg.is_extended_real:
|
437 |
+
return Heaviside(arg) * 2 - 1
|
438 |
+
|
439 |
+
def _eval_rewrite_as_Abs(self, arg, **kwargs):
|
440 |
+
return Piecewise((0, Eq(arg, 0)), (arg / Abs(arg), True))
|
441 |
+
|
442 |
+
def _eval_simplify(self, **kwargs):
|
443 |
+
return self.func(factor_terms(self.args[0])) # XXX include doit?
|
444 |
+
|
445 |
+
|
446 |
+
class Abs(Function):
|
447 |
+
"""
|
448 |
+
Return the absolute value of the argument.
|
449 |
+
|
450 |
+
Explanation
|
451 |
+
===========
|
452 |
+
|
453 |
+
This is an extension of the built-in function ``abs()`` to accept symbolic
|
454 |
+
values. If you pass a SymPy expression to the built-in ``abs()``, it will
|
455 |
+
pass it automatically to ``Abs()``.
|
456 |
+
|
457 |
+
Examples
|
458 |
+
========
|
459 |
+
|
460 |
+
>>> from sympy import Abs, Symbol, S, I
|
461 |
+
>>> Abs(-1)
|
462 |
+
1
|
463 |
+
>>> x = Symbol('x', real=True)
|
464 |
+
>>> Abs(-x)
|
465 |
+
Abs(x)
|
466 |
+
>>> Abs(x**2)
|
467 |
+
x**2
|
468 |
+
>>> abs(-x) # The Python built-in
|
469 |
+
Abs(x)
|
470 |
+
>>> Abs(3*x + 2*I)
|
471 |
+
sqrt(9*x**2 + 4)
|
472 |
+
>>> Abs(8*I)
|
473 |
+
8
|
474 |
+
|
475 |
+
Note that the Python built-in will return either an Expr or int depending on
|
476 |
+
the argument::
|
477 |
+
|
478 |
+
>>> type(abs(-1))
|
479 |
+
<... 'int'>
|
480 |
+
>>> type(abs(S.NegativeOne))
|
481 |
+
<class 'sympy.core.numbers.One'>
|
482 |
+
|
483 |
+
Abs will always return a SymPy object.
|
484 |
+
|
485 |
+
Parameters
|
486 |
+
==========
|
487 |
+
|
488 |
+
arg : Expr
|
489 |
+
Real or complex expression.
|
490 |
+
|
491 |
+
Returns
|
492 |
+
=======
|
493 |
+
|
494 |
+
expr : Expr
|
495 |
+
Absolute value returned can be an expression or integer depending on
|
496 |
+
input arg.
|
497 |
+
|
498 |
+
See Also
|
499 |
+
========
|
500 |
+
|
501 |
+
sign, conjugate
|
502 |
+
"""
|
503 |
+
|
504 |
+
args: tTuple[Expr]
|
505 |
+
|
506 |
+
is_extended_real = True
|
507 |
+
is_extended_negative = False
|
508 |
+
is_extended_nonnegative = True
|
509 |
+
unbranched = True
|
510 |
+
_singularities = True # non-holomorphic
|
511 |
+
|
512 |
+
def fdiff(self, argindex=1):
|
513 |
+
"""
|
514 |
+
Get the first derivative of the argument to Abs().
|
515 |
+
|
516 |
+
"""
|
517 |
+
if argindex == 1:
|
518 |
+
return sign(self.args[0])
|
519 |
+
else:
|
520 |
+
raise ArgumentIndexError(self, argindex)
|
521 |
+
|
522 |
+
@classmethod
|
523 |
+
def eval(cls, arg):
|
524 |
+
from sympy.simplify.simplify import signsimp
|
525 |
+
|
526 |
+
if hasattr(arg, '_eval_Abs'):
|
527 |
+
obj = arg._eval_Abs()
|
528 |
+
if obj is not None:
|
529 |
+
return obj
|
530 |
+
if not isinstance(arg, Expr):
|
531 |
+
raise TypeError("Bad argument type for Abs(): %s" % type(arg))
|
532 |
+
|
533 |
+
# handle what we can
|
534 |
+
arg = signsimp(arg, evaluate=False)
|
535 |
+
n, d = arg.as_numer_denom()
|
536 |
+
if d.free_symbols and not n.free_symbols:
|
537 |
+
return cls(n)/cls(d)
|
538 |
+
|
539 |
+
if arg.is_Mul:
|
540 |
+
known = []
|
541 |
+
unk = []
|
542 |
+
for t in arg.args:
|
543 |
+
if t.is_Pow and t.exp.is_integer and t.exp.is_negative:
|
544 |
+
bnew = cls(t.base)
|
545 |
+
if isinstance(bnew, cls):
|
546 |
+
unk.append(t)
|
547 |
+
else:
|
548 |
+
known.append(Pow(bnew, t.exp))
|
549 |
+
else:
|
550 |
+
tnew = cls(t)
|
551 |
+
if isinstance(tnew, cls):
|
552 |
+
unk.append(t)
|
553 |
+
else:
|
554 |
+
known.append(tnew)
|
555 |
+
known = Mul(*known)
|
556 |
+
unk = cls(Mul(*unk), evaluate=False) if unk else S.One
|
557 |
+
return known*unk
|
558 |
+
if arg is S.NaN:
|
559 |
+
return S.NaN
|
560 |
+
if arg is S.ComplexInfinity:
|
561 |
+
return oo
|
562 |
+
from sympy.functions.elementary.exponential import exp, log
|
563 |
+
|
564 |
+
if arg.is_Pow:
|
565 |
+
base, exponent = arg.as_base_exp()
|
566 |
+
if base.is_extended_real:
|
567 |
+
if exponent.is_integer:
|
568 |
+
if exponent.is_even:
|
569 |
+
return arg
|
570 |
+
if base is S.NegativeOne:
|
571 |
+
return S.One
|
572 |
+
return Abs(base)**exponent
|
573 |
+
if base.is_extended_nonnegative:
|
574 |
+
return base**re(exponent)
|
575 |
+
if base.is_extended_negative:
|
576 |
+
return (-base)**re(exponent)*exp(-pi*im(exponent))
|
577 |
+
return
|
578 |
+
elif not base.has(Symbol): # complex base
|
579 |
+
# express base**exponent as exp(exponent*log(base))
|
580 |
+
a, b = log(base).as_real_imag()
|
581 |
+
z = a + I*b
|
582 |
+
return exp(re(exponent*z))
|
583 |
+
if isinstance(arg, exp):
|
584 |
+
return exp(re(arg.args[0]))
|
585 |
+
if isinstance(arg, AppliedUndef):
|
586 |
+
if arg.is_positive:
|
587 |
+
return arg
|
588 |
+
elif arg.is_negative:
|
589 |
+
return -arg
|
590 |
+
return
|
591 |
+
if arg.is_Add and arg.has(oo, S.NegativeInfinity):
|
592 |
+
if any(a.is_infinite for a in arg.as_real_imag()):
|
593 |
+
return oo
|
594 |
+
if arg.is_zero:
|
595 |
+
return S.Zero
|
596 |
+
if arg.is_extended_nonnegative:
|
597 |
+
return arg
|
598 |
+
if arg.is_extended_nonpositive:
|
599 |
+
return -arg
|
600 |
+
if arg.is_imaginary:
|
601 |
+
arg2 = -I * arg
|
602 |
+
if arg2.is_extended_nonnegative:
|
603 |
+
return arg2
|
604 |
+
if arg.is_extended_real:
|
605 |
+
return
|
606 |
+
# reject result if all new conjugates are just wrappers around
|
607 |
+
# an expression that was already in the arg
|
608 |
+
conj = signsimp(arg.conjugate(), evaluate=False)
|
609 |
+
new_conj = conj.atoms(conjugate) - arg.atoms(conjugate)
|
610 |
+
if new_conj and all(arg.has(i.args[0]) for i in new_conj):
|
611 |
+
return
|
612 |
+
if arg != conj and arg != -conj:
|
613 |
+
ignore = arg.atoms(Abs)
|
614 |
+
abs_free_arg = arg.xreplace({i: Dummy(real=True) for i in ignore})
|
615 |
+
unk = [a for a in abs_free_arg.free_symbols if a.is_extended_real is None]
|
616 |
+
if not unk or not all(conj.has(conjugate(u)) for u in unk):
|
617 |
+
return sqrt(expand_mul(arg*conj))
|
618 |
+
|
619 |
+
def _eval_is_real(self):
|
620 |
+
if self.args[0].is_finite:
|
621 |
+
return True
|
622 |
+
|
623 |
+
def _eval_is_integer(self):
|
624 |
+
if self.args[0].is_extended_real:
|
625 |
+
return self.args[0].is_integer
|
626 |
+
|
627 |
+
def _eval_is_extended_nonzero(self):
|
628 |
+
return fuzzy_not(self._args[0].is_zero)
|
629 |
+
|
630 |
+
def _eval_is_zero(self):
|
631 |
+
return self._args[0].is_zero
|
632 |
+
|
633 |
+
def _eval_is_extended_positive(self):
|
634 |
+
return fuzzy_not(self._args[0].is_zero)
|
635 |
+
|
636 |
+
def _eval_is_rational(self):
|
637 |
+
if self.args[0].is_extended_real:
|
638 |
+
return self.args[0].is_rational
|
639 |
+
|
640 |
+
def _eval_is_even(self):
|
641 |
+
if self.args[0].is_extended_real:
|
642 |
+
return self.args[0].is_even
|
643 |
+
|
644 |
+
def _eval_is_odd(self):
|
645 |
+
if self.args[0].is_extended_real:
|
646 |
+
return self.args[0].is_odd
|
647 |
+
|
648 |
+
def _eval_is_algebraic(self):
|
649 |
+
return self.args[0].is_algebraic
|
650 |
+
|
651 |
+
def _eval_power(self, exponent):
|
652 |
+
if self.args[0].is_extended_real and exponent.is_integer:
|
653 |
+
if exponent.is_even:
|
654 |
+
return self.args[0]**exponent
|
655 |
+
elif exponent is not S.NegativeOne and exponent.is_Integer:
|
656 |
+
return self.args[0]**(exponent - 1)*self
|
657 |
+
return
|
658 |
+
|
659 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
660 |
+
from sympy.functions.elementary.exponential import log
|
661 |
+
direction = self.args[0].leadterm(x)[0]
|
662 |
+
if direction.has(log(x)):
|
663 |
+
direction = direction.subs(log(x), logx)
|
664 |
+
s = self.args[0]._eval_nseries(x, n=n, logx=logx)
|
665 |
+
return (sign(direction)*s).expand()
|
666 |
+
|
667 |
+
def _eval_derivative(self, x):
|
668 |
+
if self.args[0].is_extended_real or self.args[0].is_imaginary:
|
669 |
+
return Derivative(self.args[0], x, evaluate=True) \
|
670 |
+
* sign(conjugate(self.args[0]))
|
671 |
+
rv = (re(self.args[0]) * Derivative(re(self.args[0]), x,
|
672 |
+
evaluate=True) + im(self.args[0]) * Derivative(im(self.args[0]),
|
673 |
+
x, evaluate=True)) / Abs(self.args[0])
|
674 |
+
return rv.rewrite(sign)
|
675 |
+
|
676 |
+
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
|
677 |
+
# Note this only holds for real arg (since Heaviside is not defined
|
678 |
+
# for complex arguments).
|
679 |
+
from sympy.functions.special.delta_functions import Heaviside
|
680 |
+
if arg.is_extended_real:
|
681 |
+
return arg*(Heaviside(arg) - Heaviside(-arg))
|
682 |
+
|
683 |
+
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
|
684 |
+
if arg.is_extended_real:
|
685 |
+
return Piecewise((arg, arg >= 0), (-arg, True))
|
686 |
+
elif arg.is_imaginary:
|
687 |
+
return Piecewise((I*arg, I*arg >= 0), (-I*arg, True))
|
688 |
+
|
689 |
+
def _eval_rewrite_as_sign(self, arg, **kwargs):
|
690 |
+
return arg/sign(arg)
|
691 |
+
|
692 |
+
def _eval_rewrite_as_conjugate(self, arg, **kwargs):
|
693 |
+
return sqrt(arg*conjugate(arg))
|
694 |
+
|
695 |
+
|
696 |
+
class arg(Function):
|
697 |
+
r"""
|
698 |
+
Returns the argument (in radians) of a complex number. The argument is
|
699 |
+
evaluated in consistent convention with ``atan2`` where the branch-cut is
|
700 |
+
taken along the negative real axis and ``arg(z)`` is in the interval
|
701 |
+
$(-\pi,\pi]$. For a positive number, the argument is always 0; the
|
702 |
+
argument of a negative number is $\pi$; and the argument of 0
|
703 |
+
is undefined and returns ``nan``. So the ``arg`` function will never nest
|
704 |
+
greater than 3 levels since at the 4th application, the result must be
|
705 |
+
nan; for a real number, nan is returned on the 3rd application.
|
706 |
+
|
707 |
+
Examples
|
708 |
+
========
|
709 |
+
|
710 |
+
>>> from sympy import arg, I, sqrt, Dummy
|
711 |
+
>>> from sympy.abc import x
|
712 |
+
>>> arg(2.0)
|
713 |
+
0
|
714 |
+
>>> arg(I)
|
715 |
+
pi/2
|
716 |
+
>>> arg(sqrt(2) + I*sqrt(2))
|
717 |
+
pi/4
|
718 |
+
>>> arg(sqrt(3)/2 + I/2)
|
719 |
+
pi/6
|
720 |
+
>>> arg(4 + 3*I)
|
721 |
+
atan(3/4)
|
722 |
+
>>> arg(0.8 + 0.6*I)
|
723 |
+
0.643501108793284
|
724 |
+
>>> arg(arg(arg(arg(x))))
|
725 |
+
nan
|
726 |
+
>>> real = Dummy(real=True)
|
727 |
+
>>> arg(arg(arg(real)))
|
728 |
+
nan
|
729 |
+
|
730 |
+
Parameters
|
731 |
+
==========
|
732 |
+
|
733 |
+
arg : Expr
|
734 |
+
Real or complex expression.
|
735 |
+
|
736 |
+
Returns
|
737 |
+
=======
|
738 |
+
|
739 |
+
value : Expr
|
740 |
+
Returns arc tangent of arg measured in radians.
|
741 |
+
|
742 |
+
"""
|
743 |
+
|
744 |
+
is_extended_real = True
|
745 |
+
is_real = True
|
746 |
+
is_finite = True
|
747 |
+
_singularities = True # non-holomorphic
|
748 |
+
|
749 |
+
@classmethod
|
750 |
+
def eval(cls, arg):
|
751 |
+
a = arg
|
752 |
+
for i in range(3):
|
753 |
+
if isinstance(a, cls):
|
754 |
+
a = a.args[0]
|
755 |
+
else:
|
756 |
+
if i == 2 and a.is_extended_real:
|
757 |
+
return S.NaN
|
758 |
+
break
|
759 |
+
else:
|
760 |
+
return S.NaN
|
761 |
+
from sympy.functions.elementary.exponential import exp_polar
|
762 |
+
if isinstance(arg, exp_polar):
|
763 |
+
return periodic_argument(arg, oo)
|
764 |
+
if not arg.is_Atom:
|
765 |
+
c, arg_ = factor_terms(arg).as_coeff_Mul()
|
766 |
+
if arg_.is_Mul:
|
767 |
+
arg_ = Mul(*[a if (sign(a) not in (-1, 1)) else
|
768 |
+
sign(a) for a in arg_.args])
|
769 |
+
arg_ = sign(c)*arg_
|
770 |
+
else:
|
771 |
+
arg_ = arg
|
772 |
+
if any(i.is_extended_positive is None for i in arg_.atoms(AppliedUndef)):
|
773 |
+
return
|
774 |
+
from sympy.functions.elementary.trigonometric import atan2
|
775 |
+
x, y = arg_.as_real_imag()
|
776 |
+
rv = atan2(y, x)
|
777 |
+
if rv.is_number:
|
778 |
+
return rv
|
779 |
+
if arg_ != arg:
|
780 |
+
return cls(arg_, evaluate=False)
|
781 |
+
|
782 |
+
def _eval_derivative(self, t):
|
783 |
+
x, y = self.args[0].as_real_imag()
|
784 |
+
return (x * Derivative(y, t, evaluate=True) - y *
|
785 |
+
Derivative(x, t, evaluate=True)) / (x**2 + y**2)
|
786 |
+
|
787 |
+
def _eval_rewrite_as_atan2(self, arg, **kwargs):
|
788 |
+
from sympy.functions.elementary.trigonometric import atan2
|
789 |
+
x, y = self.args[0].as_real_imag()
|
790 |
+
return atan2(y, x)
|
791 |
+
|
792 |
+
|
793 |
+
class conjugate(Function):
|
794 |
+
"""
|
795 |
+
Returns the *complex conjugate* [1]_ of an argument.
|
796 |
+
In mathematics, the complex conjugate of a complex number
|
797 |
+
is given by changing the sign of the imaginary part.
|
798 |
+
|
799 |
+
Thus, the conjugate of the complex number
|
800 |
+
:math:`a + ib` (where $a$ and $b$ are real numbers) is :math:`a - ib`
|
801 |
+
|
802 |
+
Examples
|
803 |
+
========
|
804 |
+
|
805 |
+
>>> from sympy import conjugate, I
|
806 |
+
>>> conjugate(2)
|
807 |
+
2
|
808 |
+
>>> conjugate(I)
|
809 |
+
-I
|
810 |
+
>>> conjugate(3 + 2*I)
|
811 |
+
3 - 2*I
|
812 |
+
>>> conjugate(5 - I)
|
813 |
+
5 + I
|
814 |
+
|
815 |
+
Parameters
|
816 |
+
==========
|
817 |
+
|
818 |
+
arg : Expr
|
819 |
+
Real or complex expression.
|
820 |
+
|
821 |
+
Returns
|
822 |
+
=======
|
823 |
+
|
824 |
+
arg : Expr
|
825 |
+
Complex conjugate of arg as real, imaginary or mixed expression.
|
826 |
+
|
827 |
+
See Also
|
828 |
+
========
|
829 |
+
|
830 |
+
sign, Abs
|
831 |
+
|
832 |
+
References
|
833 |
+
==========
|
834 |
+
|
835 |
+
.. [1] https://en.wikipedia.org/wiki/Complex_conjugation
|
836 |
+
"""
|
837 |
+
_singularities = True # non-holomorphic
|
838 |
+
|
839 |
+
@classmethod
|
840 |
+
def eval(cls, arg):
|
841 |
+
obj = arg._eval_conjugate()
|
842 |
+
if obj is not None:
|
843 |
+
return obj
|
844 |
+
|
845 |
+
def inverse(self):
|
846 |
+
return conjugate
|
847 |
+
|
848 |
+
def _eval_Abs(self):
|
849 |
+
return Abs(self.args[0], evaluate=True)
|
850 |
+
|
851 |
+
def _eval_adjoint(self):
|
852 |
+
return transpose(self.args[0])
|
853 |
+
|
854 |
+
def _eval_conjugate(self):
|
855 |
+
return self.args[0]
|
856 |
+
|
857 |
+
def _eval_derivative(self, x):
|
858 |
+
if x.is_real:
|
859 |
+
return conjugate(Derivative(self.args[0], x, evaluate=True))
|
860 |
+
elif x.is_imaginary:
|
861 |
+
return -conjugate(Derivative(self.args[0], x, evaluate=True))
|
862 |
+
|
863 |
+
def _eval_transpose(self):
|
864 |
+
return adjoint(self.args[0])
|
865 |
+
|
866 |
+
def _eval_is_algebraic(self):
|
867 |
+
return self.args[0].is_algebraic
|
868 |
+
|
869 |
+
|
870 |
+
class transpose(Function):
|
871 |
+
"""
|
872 |
+
Linear map transposition.
|
873 |
+
|
874 |
+
Examples
|
875 |
+
========
|
876 |
+
|
877 |
+
>>> from sympy import transpose, Matrix, MatrixSymbol
|
878 |
+
>>> A = MatrixSymbol('A', 25, 9)
|
879 |
+
>>> transpose(A)
|
880 |
+
A.T
|
881 |
+
>>> B = MatrixSymbol('B', 9, 22)
|
882 |
+
>>> transpose(B)
|
883 |
+
B.T
|
884 |
+
>>> transpose(A*B)
|
885 |
+
B.T*A.T
|
886 |
+
>>> M = Matrix([[4, 5], [2, 1], [90, 12]])
|
887 |
+
>>> M
|
888 |
+
Matrix([
|
889 |
+
[ 4, 5],
|
890 |
+
[ 2, 1],
|
891 |
+
[90, 12]])
|
892 |
+
>>> transpose(M)
|
893 |
+
Matrix([
|
894 |
+
[4, 2, 90],
|
895 |
+
[5, 1, 12]])
|
896 |
+
|
897 |
+
Parameters
|
898 |
+
==========
|
899 |
+
|
900 |
+
arg : Matrix
|
901 |
+
Matrix or matrix expression to take the transpose of.
|
902 |
+
|
903 |
+
Returns
|
904 |
+
=======
|
905 |
+
|
906 |
+
value : Matrix
|
907 |
+
Transpose of arg.
|
908 |
+
|
909 |
+
"""
|
910 |
+
|
911 |
+
@classmethod
|
912 |
+
def eval(cls, arg):
|
913 |
+
obj = arg._eval_transpose()
|
914 |
+
if obj is not None:
|
915 |
+
return obj
|
916 |
+
|
917 |
+
def _eval_adjoint(self):
|
918 |
+
return conjugate(self.args[0])
|
919 |
+
|
920 |
+
def _eval_conjugate(self):
|
921 |
+
return adjoint(self.args[0])
|
922 |
+
|
923 |
+
def _eval_transpose(self):
|
924 |
+
return self.args[0]
|
925 |
+
|
926 |
+
|
927 |
+
class adjoint(Function):
|
928 |
+
"""
|
929 |
+
Conjugate transpose or Hermite conjugation.
|
930 |
+
|
931 |
+
Examples
|
932 |
+
========
|
933 |
+
|
934 |
+
>>> from sympy import adjoint, MatrixSymbol
|
935 |
+
>>> A = MatrixSymbol('A', 10, 5)
|
936 |
+
>>> adjoint(A)
|
937 |
+
Adjoint(A)
|
938 |
+
|
939 |
+
Parameters
|
940 |
+
==========
|
941 |
+
|
942 |
+
arg : Matrix
|
943 |
+
Matrix or matrix expression to take the adjoint of.
|
944 |
+
|
945 |
+
Returns
|
946 |
+
=======
|
947 |
+
|
948 |
+
value : Matrix
|
949 |
+
Represents the conjugate transpose or Hermite
|
950 |
+
conjugation of arg.
|
951 |
+
|
952 |
+
"""
|
953 |
+
|
954 |
+
@classmethod
|
955 |
+
def eval(cls, arg):
|
956 |
+
obj = arg._eval_adjoint()
|
957 |
+
if obj is not None:
|
958 |
+
return obj
|
959 |
+
obj = arg._eval_transpose()
|
960 |
+
if obj is not None:
|
961 |
+
return conjugate(obj)
|
962 |
+
|
963 |
+
def _eval_adjoint(self):
|
964 |
+
return self.args[0]
|
965 |
+
|
966 |
+
def _eval_conjugate(self):
|
967 |
+
return transpose(self.args[0])
|
968 |
+
|
969 |
+
def _eval_transpose(self):
|
970 |
+
return conjugate(self.args[0])
|
971 |
+
|
972 |
+
def _latex(self, printer, exp=None, *args):
|
973 |
+
arg = printer._print(self.args[0])
|
974 |
+
tex = r'%s^{\dagger}' % arg
|
975 |
+
if exp:
|
976 |
+
tex = r'\left(%s\right)^{%s}' % (tex, exp)
|
977 |
+
return tex
|
978 |
+
|
979 |
+
def _pretty(self, printer, *args):
|
980 |
+
from sympy.printing.pretty.stringpict import prettyForm
|
981 |
+
pform = printer._print(self.args[0], *args)
|
982 |
+
if printer._use_unicode:
|
983 |
+
pform = pform**prettyForm('\N{DAGGER}')
|
984 |
+
else:
|
985 |
+
pform = pform**prettyForm('+')
|
986 |
+
return pform
|
987 |
+
|
988 |
+
###############################################################################
|
989 |
+
############### HANDLING OF POLAR NUMBERS #####################################
|
990 |
+
###############################################################################
|
991 |
+
|
992 |
+
|
993 |
+
class polar_lift(Function):
|
994 |
+
"""
|
995 |
+
Lift argument to the Riemann surface of the logarithm, using the
|
996 |
+
standard branch.
|
997 |
+
|
998 |
+
Examples
|
999 |
+
========
|
1000 |
+
|
1001 |
+
>>> from sympy import Symbol, polar_lift, I
|
1002 |
+
>>> p = Symbol('p', polar=True)
|
1003 |
+
>>> x = Symbol('x')
|
1004 |
+
>>> polar_lift(4)
|
1005 |
+
4*exp_polar(0)
|
1006 |
+
>>> polar_lift(-4)
|
1007 |
+
4*exp_polar(I*pi)
|
1008 |
+
>>> polar_lift(-I)
|
1009 |
+
exp_polar(-I*pi/2)
|
1010 |
+
>>> polar_lift(I + 2)
|
1011 |
+
polar_lift(2 + I)
|
1012 |
+
|
1013 |
+
>>> polar_lift(4*x)
|
1014 |
+
4*polar_lift(x)
|
1015 |
+
>>> polar_lift(4*p)
|
1016 |
+
4*p
|
1017 |
+
|
1018 |
+
Parameters
|
1019 |
+
==========
|
1020 |
+
|
1021 |
+
arg : Expr
|
1022 |
+
Real or complex expression.
|
1023 |
+
|
1024 |
+
See Also
|
1025 |
+
========
|
1026 |
+
|
1027 |
+
sympy.functions.elementary.exponential.exp_polar
|
1028 |
+
periodic_argument
|
1029 |
+
"""
|
1030 |
+
|
1031 |
+
is_polar = True
|
1032 |
+
is_comparable = False # Cannot be evalf'd.
|
1033 |
+
|
1034 |
+
@classmethod
|
1035 |
+
def eval(cls, arg):
|
1036 |
+
from sympy.functions.elementary.complexes import arg as argument
|
1037 |
+
if arg.is_number:
|
1038 |
+
ar = argument(arg)
|
1039 |
+
# In general we want to affirm that something is known,
|
1040 |
+
# e.g. `not ar.has(argument) and not ar.has(atan)`
|
1041 |
+
# but for now we will just be more restrictive and
|
1042 |
+
# see that it has evaluated to one of the known values.
|
1043 |
+
if ar in (0, pi/2, -pi/2, pi):
|
1044 |
+
from sympy.functions.elementary.exponential import exp_polar
|
1045 |
+
return exp_polar(I*ar)*abs(arg)
|
1046 |
+
|
1047 |
+
if arg.is_Mul:
|
1048 |
+
args = arg.args
|
1049 |
+
else:
|
1050 |
+
args = [arg]
|
1051 |
+
included = []
|
1052 |
+
excluded = []
|
1053 |
+
positive = []
|
1054 |
+
for arg in args:
|
1055 |
+
if arg.is_polar:
|
1056 |
+
included += [arg]
|
1057 |
+
elif arg.is_positive:
|
1058 |
+
positive += [arg]
|
1059 |
+
else:
|
1060 |
+
excluded += [arg]
|
1061 |
+
if len(excluded) < len(args):
|
1062 |
+
if excluded:
|
1063 |
+
return Mul(*(included + positive))*polar_lift(Mul(*excluded))
|
1064 |
+
elif included:
|
1065 |
+
return Mul(*(included + positive))
|
1066 |
+
else:
|
1067 |
+
from sympy.functions.elementary.exponential import exp_polar
|
1068 |
+
return Mul(*positive)*exp_polar(0)
|
1069 |
+
|
1070 |
+
def _eval_evalf(self, prec):
|
1071 |
+
""" Careful! any evalf of polar numbers is flaky """
|
1072 |
+
return self.args[0]._eval_evalf(prec)
|
1073 |
+
|
1074 |
+
def _eval_Abs(self):
|
1075 |
+
return Abs(self.args[0], evaluate=True)
|
1076 |
+
|
1077 |
+
|
1078 |
+
class periodic_argument(Function):
|
1079 |
+
r"""
|
1080 |
+
Represent the argument on a quotient of the Riemann surface of the
|
1081 |
+
logarithm. That is, given a period $P$, always return a value in
|
1082 |
+
$(-P/2, P/2]$, by using $\exp(PI) = 1$.
|
1083 |
+
|
1084 |
+
Examples
|
1085 |
+
========
|
1086 |
+
|
1087 |
+
>>> from sympy import exp_polar, periodic_argument
|
1088 |
+
>>> from sympy import I, pi
|
1089 |
+
>>> periodic_argument(exp_polar(10*I*pi), 2*pi)
|
1090 |
+
0
|
1091 |
+
>>> periodic_argument(exp_polar(5*I*pi), 4*pi)
|
1092 |
+
pi
|
1093 |
+
>>> from sympy import exp_polar, periodic_argument
|
1094 |
+
>>> from sympy import I, pi
|
1095 |
+
>>> periodic_argument(exp_polar(5*I*pi), 2*pi)
|
1096 |
+
pi
|
1097 |
+
>>> periodic_argument(exp_polar(5*I*pi), 3*pi)
|
1098 |
+
-pi
|
1099 |
+
>>> periodic_argument(exp_polar(5*I*pi), pi)
|
1100 |
+
0
|
1101 |
+
|
1102 |
+
Parameters
|
1103 |
+
==========
|
1104 |
+
|
1105 |
+
ar : Expr
|
1106 |
+
A polar number.
|
1107 |
+
|
1108 |
+
period : Expr
|
1109 |
+
The period $P$.
|
1110 |
+
|
1111 |
+
See Also
|
1112 |
+
========
|
1113 |
+
|
1114 |
+
sympy.functions.elementary.exponential.exp_polar
|
1115 |
+
polar_lift : Lift argument to the Riemann surface of the logarithm
|
1116 |
+
principal_branch
|
1117 |
+
"""
|
1118 |
+
|
1119 |
+
@classmethod
|
1120 |
+
def _getunbranched(cls, ar):
|
1121 |
+
from sympy.functions.elementary.exponential import exp_polar, log
|
1122 |
+
if ar.is_Mul:
|
1123 |
+
args = ar.args
|
1124 |
+
else:
|
1125 |
+
args = [ar]
|
1126 |
+
unbranched = 0
|
1127 |
+
for a in args:
|
1128 |
+
if not a.is_polar:
|
1129 |
+
unbranched += arg(a)
|
1130 |
+
elif isinstance(a, exp_polar):
|
1131 |
+
unbranched += a.exp.as_real_imag()[1]
|
1132 |
+
elif a.is_Pow:
|
1133 |
+
re, im = a.exp.as_real_imag()
|
1134 |
+
unbranched += re*unbranched_argument(
|
1135 |
+
a.base) + im*log(abs(a.base))
|
1136 |
+
elif isinstance(a, polar_lift):
|
1137 |
+
unbranched += arg(a.args[0])
|
1138 |
+
else:
|
1139 |
+
return None
|
1140 |
+
return unbranched
|
1141 |
+
|
1142 |
+
@classmethod
|
1143 |
+
def eval(cls, ar, period):
|
1144 |
+
# Our strategy is to evaluate the argument on the Riemann surface of the
|
1145 |
+
# logarithm, and then reduce.
|
1146 |
+
# NOTE evidently this means it is a rather bad idea to use this with
|
1147 |
+
# period != 2*pi and non-polar numbers.
|
1148 |
+
if not period.is_extended_positive:
|
1149 |
+
return None
|
1150 |
+
if period == oo and isinstance(ar, principal_branch):
|
1151 |
+
return periodic_argument(*ar.args)
|
1152 |
+
if isinstance(ar, polar_lift) and period >= 2*pi:
|
1153 |
+
return periodic_argument(ar.args[0], period)
|
1154 |
+
if ar.is_Mul:
|
1155 |
+
newargs = [x for x in ar.args if not x.is_positive]
|
1156 |
+
if len(newargs) != len(ar.args):
|
1157 |
+
return periodic_argument(Mul(*newargs), period)
|
1158 |
+
unbranched = cls._getunbranched(ar)
|
1159 |
+
if unbranched is None:
|
1160 |
+
return None
|
1161 |
+
from sympy.functions.elementary.trigonometric import atan, atan2
|
1162 |
+
if unbranched.has(periodic_argument, atan2, atan):
|
1163 |
+
return None
|
1164 |
+
if period == oo:
|
1165 |
+
return unbranched
|
1166 |
+
if period != oo:
|
1167 |
+
from sympy.functions.elementary.integers import ceiling
|
1168 |
+
n = ceiling(unbranched/period - S.Half)*period
|
1169 |
+
if not n.has(ceiling):
|
1170 |
+
return unbranched - n
|
1171 |
+
|
1172 |
+
def _eval_evalf(self, prec):
|
1173 |
+
z, period = self.args
|
1174 |
+
if period == oo:
|
1175 |
+
unbranched = periodic_argument._getunbranched(z)
|
1176 |
+
if unbranched is None:
|
1177 |
+
return self
|
1178 |
+
return unbranched._eval_evalf(prec)
|
1179 |
+
ub = periodic_argument(z, oo)._eval_evalf(prec)
|
1180 |
+
from sympy.functions.elementary.integers import ceiling
|
1181 |
+
return (ub - ceiling(ub/period - S.Half)*period)._eval_evalf(prec)
|
1182 |
+
|
1183 |
+
|
1184 |
+
def unbranched_argument(arg):
|
1185 |
+
'''
|
1186 |
+
Returns periodic argument of arg with period as infinity.
|
1187 |
+
|
1188 |
+
Examples
|
1189 |
+
========
|
1190 |
+
|
1191 |
+
>>> from sympy import exp_polar, unbranched_argument
|
1192 |
+
>>> from sympy import I, pi
|
1193 |
+
>>> unbranched_argument(exp_polar(15*I*pi))
|
1194 |
+
15*pi
|
1195 |
+
>>> unbranched_argument(exp_polar(7*I*pi))
|
1196 |
+
7*pi
|
1197 |
+
|
1198 |
+
See also
|
1199 |
+
========
|
1200 |
+
|
1201 |
+
periodic_argument
|
1202 |
+
'''
|
1203 |
+
return periodic_argument(arg, oo)
|
1204 |
+
|
1205 |
+
|
1206 |
+
class principal_branch(Function):
|
1207 |
+
"""
|
1208 |
+
Represent a polar number reduced to its principal branch on a quotient
|
1209 |
+
of the Riemann surface of the logarithm.
|
1210 |
+
|
1211 |
+
Explanation
|
1212 |
+
===========
|
1213 |
+
|
1214 |
+
This is a function of two arguments. The first argument is a polar
|
1215 |
+
number `z`, and the second one a positive real number or infinity, `p`.
|
1216 |
+
The result is ``z mod exp_polar(I*p)``.
|
1217 |
+
|
1218 |
+
Examples
|
1219 |
+
========
|
1220 |
+
|
1221 |
+
>>> from sympy import exp_polar, principal_branch, oo, I, pi
|
1222 |
+
>>> from sympy.abc import z
|
1223 |
+
>>> principal_branch(z, oo)
|
1224 |
+
z
|
1225 |
+
>>> principal_branch(exp_polar(2*pi*I)*3, 2*pi)
|
1226 |
+
3*exp_polar(0)
|
1227 |
+
>>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi)
|
1228 |
+
3*principal_branch(z, 2*pi)
|
1229 |
+
|
1230 |
+
Parameters
|
1231 |
+
==========
|
1232 |
+
|
1233 |
+
x : Expr
|
1234 |
+
A polar number.
|
1235 |
+
|
1236 |
+
period : Expr
|
1237 |
+
Positive real number or infinity.
|
1238 |
+
|
1239 |
+
See Also
|
1240 |
+
========
|
1241 |
+
|
1242 |
+
sympy.functions.elementary.exponential.exp_polar
|
1243 |
+
polar_lift : Lift argument to the Riemann surface of the logarithm
|
1244 |
+
periodic_argument
|
1245 |
+
"""
|
1246 |
+
|
1247 |
+
is_polar = True
|
1248 |
+
is_comparable = False # cannot always be evalf'd
|
1249 |
+
|
1250 |
+
@classmethod
|
1251 |
+
def eval(self, x, period):
|
1252 |
+
from sympy.functions.elementary.exponential import exp_polar
|
1253 |
+
if isinstance(x, polar_lift):
|
1254 |
+
return principal_branch(x.args[0], period)
|
1255 |
+
if period == oo:
|
1256 |
+
return x
|
1257 |
+
ub = periodic_argument(x, oo)
|
1258 |
+
barg = periodic_argument(x, period)
|
1259 |
+
if ub != barg and not ub.has(periodic_argument) \
|
1260 |
+
and not barg.has(periodic_argument):
|
1261 |
+
pl = polar_lift(x)
|
1262 |
+
|
1263 |
+
def mr(expr):
|
1264 |
+
if not isinstance(expr, Symbol):
|
1265 |
+
return polar_lift(expr)
|
1266 |
+
return expr
|
1267 |
+
pl = pl.replace(polar_lift, mr)
|
1268 |
+
# Recompute unbranched argument
|
1269 |
+
ub = periodic_argument(pl, oo)
|
1270 |
+
if not pl.has(polar_lift):
|
1271 |
+
if ub != barg:
|
1272 |
+
res = exp_polar(I*(barg - ub))*pl
|
1273 |
+
else:
|
1274 |
+
res = pl
|
1275 |
+
if not res.is_polar and not res.has(exp_polar):
|
1276 |
+
res *= exp_polar(0)
|
1277 |
+
return res
|
1278 |
+
|
1279 |
+
if not x.free_symbols:
|
1280 |
+
c, m = x, ()
|
1281 |
+
else:
|
1282 |
+
c, m = x.as_coeff_mul(*x.free_symbols)
|
1283 |
+
others = []
|
1284 |
+
for y in m:
|
1285 |
+
if y.is_positive:
|
1286 |
+
c *= y
|
1287 |
+
else:
|
1288 |
+
others += [y]
|
1289 |
+
m = tuple(others)
|
1290 |
+
arg = periodic_argument(c, period)
|
1291 |
+
if arg.has(periodic_argument):
|
1292 |
+
return None
|
1293 |
+
if arg.is_number and (unbranched_argument(c) != arg or
|
1294 |
+
(arg == 0 and m != () and c != 1)):
|
1295 |
+
if arg == 0:
|
1296 |
+
return abs(c)*principal_branch(Mul(*m), period)
|
1297 |
+
return principal_branch(exp_polar(I*arg)*Mul(*m), period)*abs(c)
|
1298 |
+
if arg.is_number and ((abs(arg) < period/2) == True or arg == period/2) \
|
1299 |
+
and m == ():
|
1300 |
+
return exp_polar(arg*I)*abs(c)
|
1301 |
+
|
1302 |
+
def _eval_evalf(self, prec):
|
1303 |
+
z, period = self.args
|
1304 |
+
p = periodic_argument(z, period)._eval_evalf(prec)
|
1305 |
+
if abs(p) > pi or p == -pi:
|
1306 |
+
return self # Cannot evalf for this argument.
|
1307 |
+
from sympy.functions.elementary.exponential import exp
|
1308 |
+
return (abs(z)*exp(I*p))._eval_evalf(prec)
|
1309 |
+
|
1310 |
+
|
1311 |
+
def _polarify(eq, lift, pause=False):
|
1312 |
+
from sympy.integrals.integrals import Integral
|
1313 |
+
if eq.is_polar:
|
1314 |
+
return eq
|
1315 |
+
if eq.is_number and not pause:
|
1316 |
+
return polar_lift(eq)
|
1317 |
+
if isinstance(eq, Symbol) and not pause and lift:
|
1318 |
+
return polar_lift(eq)
|
1319 |
+
elif eq.is_Atom:
|
1320 |
+
return eq
|
1321 |
+
elif eq.is_Add:
|
1322 |
+
r = eq.func(*[_polarify(arg, lift, pause=True) for arg in eq.args])
|
1323 |
+
if lift:
|
1324 |
+
return polar_lift(r)
|
1325 |
+
return r
|
1326 |
+
elif eq.is_Pow and eq.base == S.Exp1:
|
1327 |
+
return eq.func(S.Exp1, _polarify(eq.exp, lift, pause=False))
|
1328 |
+
elif eq.is_Function:
|
1329 |
+
return eq.func(*[_polarify(arg, lift, pause=False) for arg in eq.args])
|
1330 |
+
elif isinstance(eq, Integral):
|
1331 |
+
# Don't lift the integration variable
|
1332 |
+
func = _polarify(eq.function, lift, pause=pause)
|
1333 |
+
limits = []
|
1334 |
+
for limit in eq.args[1:]:
|
1335 |
+
var = _polarify(limit[0], lift=False, pause=pause)
|
1336 |
+
rest = _polarify(limit[1:], lift=lift, pause=pause)
|
1337 |
+
limits.append((var,) + rest)
|
1338 |
+
return Integral(*((func,) + tuple(limits)))
|
1339 |
+
else:
|
1340 |
+
return eq.func(*[_polarify(arg, lift, pause=pause)
|
1341 |
+
if isinstance(arg, Expr) else arg for arg in eq.args])
|
1342 |
+
|
1343 |
+
|
1344 |
+
def polarify(eq, subs=True, lift=False):
|
1345 |
+
"""
|
1346 |
+
Turn all numbers in eq into their polar equivalents (under the standard
|
1347 |
+
choice of argument).
|
1348 |
+
|
1349 |
+
Note that no attempt is made to guess a formal convention of adding
|
1350 |
+
polar numbers, expressions like $1 + x$ will generally not be altered.
|
1351 |
+
|
1352 |
+
Note also that this function does not promote ``exp(x)`` to ``exp_polar(x)``.
|
1353 |
+
|
1354 |
+
If ``subs`` is ``True``, all symbols which are not already polar will be
|
1355 |
+
substituted for polar dummies; in this case the function behaves much
|
1356 |
+
like :func:`~.posify`.
|
1357 |
+
|
1358 |
+
If ``lift`` is ``True``, both addition statements and non-polar symbols are
|
1359 |
+
changed to their ``polar_lift()``ed versions.
|
1360 |
+
Note that ``lift=True`` implies ``subs=False``.
|
1361 |
+
|
1362 |
+
Examples
|
1363 |
+
========
|
1364 |
+
|
1365 |
+
>>> from sympy import polarify, sin, I
|
1366 |
+
>>> from sympy.abc import x, y
|
1367 |
+
>>> expr = (-x)**y
|
1368 |
+
>>> expr.expand()
|
1369 |
+
(-x)**y
|
1370 |
+
>>> polarify(expr)
|
1371 |
+
((_x*exp_polar(I*pi))**_y, {_x: x, _y: y})
|
1372 |
+
>>> polarify(expr)[0].expand()
|
1373 |
+
_x**_y*exp_polar(_y*I*pi)
|
1374 |
+
>>> polarify(x, lift=True)
|
1375 |
+
polar_lift(x)
|
1376 |
+
>>> polarify(x*(1+y), lift=True)
|
1377 |
+
polar_lift(x)*polar_lift(y + 1)
|
1378 |
+
|
1379 |
+
Adds are treated carefully:
|
1380 |
+
|
1381 |
+
>>> polarify(1 + sin((1 + I)*x))
|
1382 |
+
(sin(_x*polar_lift(1 + I)) + 1, {_x: x})
|
1383 |
+
"""
|
1384 |
+
if lift:
|
1385 |
+
subs = False
|
1386 |
+
eq = _polarify(sympify(eq), lift)
|
1387 |
+
if not subs:
|
1388 |
+
return eq
|
1389 |
+
reps = {s: Dummy(s.name, polar=True) for s in eq.free_symbols}
|
1390 |
+
eq = eq.subs(reps)
|
1391 |
+
return eq, {r: s for s, r in reps.items()}
|
1392 |
+
|
1393 |
+
|
1394 |
+
def _unpolarify(eq, exponents_only, pause=False):
|
1395 |
+
if not isinstance(eq, Basic) or eq.is_Atom:
|
1396 |
+
return eq
|
1397 |
+
|
1398 |
+
if not pause:
|
1399 |
+
from sympy.functions.elementary.exponential import exp, exp_polar
|
1400 |
+
if isinstance(eq, exp_polar):
|
1401 |
+
return exp(_unpolarify(eq.exp, exponents_only))
|
1402 |
+
if isinstance(eq, principal_branch) and eq.args[1] == 2*pi:
|
1403 |
+
return _unpolarify(eq.args[0], exponents_only)
|
1404 |
+
if (
|
1405 |
+
eq.is_Add or eq.is_Mul or eq.is_Boolean or
|
1406 |
+
eq.is_Relational and (
|
1407 |
+
eq.rel_op in ('==', '!=') and 0 in eq.args or
|
1408 |
+
eq.rel_op not in ('==', '!='))
|
1409 |
+
):
|
1410 |
+
return eq.func(*[_unpolarify(x, exponents_only) for x in eq.args])
|
1411 |
+
if isinstance(eq, polar_lift):
|
1412 |
+
return _unpolarify(eq.args[0], exponents_only)
|
1413 |
+
|
1414 |
+
if eq.is_Pow:
|
1415 |
+
expo = _unpolarify(eq.exp, exponents_only)
|
1416 |
+
base = _unpolarify(eq.base, exponents_only,
|
1417 |
+
not (expo.is_integer and not pause))
|
1418 |
+
return base**expo
|
1419 |
+
|
1420 |
+
if eq.is_Function and getattr(eq.func, 'unbranched', False):
|
1421 |
+
return eq.func(*[_unpolarify(x, exponents_only, exponents_only)
|
1422 |
+
for x in eq.args])
|
1423 |
+
|
1424 |
+
return eq.func(*[_unpolarify(x, exponents_only, True) for x in eq.args])
|
1425 |
+
|
1426 |
+
|
1427 |
+
def unpolarify(eq, subs=None, exponents_only=False):
|
1428 |
+
"""
|
1429 |
+
If `p` denotes the projection from the Riemann surface of the logarithm to
|
1430 |
+
the complex line, return a simplified version `eq'` of `eq` such that
|
1431 |
+
`p(eq') = p(eq)`.
|
1432 |
+
Also apply the substitution subs in the end. (This is a convenience, since
|
1433 |
+
``unpolarify``, in a certain sense, undoes :func:`polarify`.)
|
1434 |
+
|
1435 |
+
Examples
|
1436 |
+
========
|
1437 |
+
|
1438 |
+
>>> from sympy import unpolarify, polar_lift, sin, I
|
1439 |
+
>>> unpolarify(polar_lift(I + 2))
|
1440 |
+
2 + I
|
1441 |
+
>>> unpolarify(sin(polar_lift(I + 7)))
|
1442 |
+
sin(7 + I)
|
1443 |
+
"""
|
1444 |
+
if isinstance(eq, bool):
|
1445 |
+
return eq
|
1446 |
+
|
1447 |
+
eq = sympify(eq)
|
1448 |
+
if subs is not None:
|
1449 |
+
return unpolarify(eq.subs(subs))
|
1450 |
+
changed = True
|
1451 |
+
pause = False
|
1452 |
+
if exponents_only:
|
1453 |
+
pause = True
|
1454 |
+
while changed:
|
1455 |
+
changed = False
|
1456 |
+
res = _unpolarify(eq, exponents_only, pause)
|
1457 |
+
if res != eq:
|
1458 |
+
changed = True
|
1459 |
+
eq = res
|
1460 |
+
if isinstance(res, bool):
|
1461 |
+
return res
|
1462 |
+
# Finally, replacing Exp(0) by 1 is always correct.
|
1463 |
+
# So is polar_lift(0) -> 0.
|
1464 |
+
from sympy.functions.elementary.exponential import exp_polar
|
1465 |
+
return res.subs({exp_polar(0): 1, polar_lift(0): 0})
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/exponential.py
ADDED
@@ -0,0 +1,1291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import product
|
2 |
+
from typing import Tuple as tTuple
|
3 |
+
|
4 |
+
from sympy.core.add import Add
|
5 |
+
from sympy.core.cache import cacheit
|
6 |
+
from sympy.core.expr import Expr
|
7 |
+
from sympy.core.function import (Function, ArgumentIndexError, expand_log,
|
8 |
+
expand_mul, FunctionClass, PoleError, expand_multinomial, expand_complex)
|
9 |
+
from sympy.core.logic import fuzzy_and, fuzzy_not, fuzzy_or
|
10 |
+
from sympy.core.mul import Mul
|
11 |
+
from sympy.core.numbers import Integer, Rational, pi, I, ImaginaryUnit
|
12 |
+
from sympy.core.parameters import global_parameters
|
13 |
+
from sympy.core.power import Pow
|
14 |
+
from sympy.core.singleton import S
|
15 |
+
from sympy.core.symbol import Wild, Dummy
|
16 |
+
from sympy.core.sympify import sympify
|
17 |
+
from sympy.functions.combinatorial.factorials import factorial
|
18 |
+
from sympy.functions.elementary.complexes import arg, unpolarify, im, re, Abs
|
19 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
20 |
+
from sympy.ntheory import multiplicity, perfect_power
|
21 |
+
from sympy.ntheory.factor_ import factorint
|
22 |
+
|
23 |
+
# NOTE IMPORTANT
|
24 |
+
# The series expansion code in this file is an important part of the gruntz
|
25 |
+
# algorithm for determining limits. _eval_nseries has to return a generalized
|
26 |
+
# power series with coefficients in C(log(x), log).
|
27 |
+
# In more detail, the result of _eval_nseries(self, x, n) must be
|
28 |
+
# c_0*x**e_0 + ... (finitely many terms)
|
29 |
+
# where e_i are numbers (not necessarily integers) and c_i involve only
|
30 |
+
# numbers, the function log, and log(x). [This also means it must not contain
|
31 |
+
# log(x(1+p)), this *has* to be expanded to log(x)+log(1+p) if x.is_positive and
|
32 |
+
# p.is_positive.]
|
33 |
+
|
34 |
+
|
35 |
+
class ExpBase(Function):
|
36 |
+
|
37 |
+
unbranched = True
|
38 |
+
_singularities = (S.ComplexInfinity,)
|
39 |
+
|
40 |
+
@property
|
41 |
+
def kind(self):
|
42 |
+
return self.exp.kind
|
43 |
+
|
44 |
+
def inverse(self, argindex=1):
|
45 |
+
"""
|
46 |
+
Returns the inverse function of ``exp(x)``.
|
47 |
+
"""
|
48 |
+
return log
|
49 |
+
|
50 |
+
def as_numer_denom(self):
|
51 |
+
"""
|
52 |
+
Returns this with a positive exponent as a 2-tuple (a fraction).
|
53 |
+
|
54 |
+
Examples
|
55 |
+
========
|
56 |
+
|
57 |
+
>>> from sympy import exp
|
58 |
+
>>> from sympy.abc import x
|
59 |
+
>>> exp(-x).as_numer_denom()
|
60 |
+
(1, exp(x))
|
61 |
+
>>> exp(x).as_numer_denom()
|
62 |
+
(exp(x), 1)
|
63 |
+
"""
|
64 |
+
# this should be the same as Pow.as_numer_denom wrt
|
65 |
+
# exponent handling
|
66 |
+
exp = self.exp
|
67 |
+
neg_exp = exp.is_negative
|
68 |
+
if not neg_exp and not (-exp).is_negative:
|
69 |
+
neg_exp = exp.could_extract_minus_sign()
|
70 |
+
if neg_exp:
|
71 |
+
return S.One, self.func(-exp)
|
72 |
+
return self, S.One
|
73 |
+
|
74 |
+
@property
|
75 |
+
def exp(self):
|
76 |
+
"""
|
77 |
+
Returns the exponent of the function.
|
78 |
+
"""
|
79 |
+
return self.args[0]
|
80 |
+
|
81 |
+
def as_base_exp(self):
|
82 |
+
"""
|
83 |
+
Returns the 2-tuple (base, exponent).
|
84 |
+
"""
|
85 |
+
return self.func(1), Mul(*self.args)
|
86 |
+
|
87 |
+
def _eval_adjoint(self):
|
88 |
+
return self.func(self.exp.adjoint())
|
89 |
+
|
90 |
+
def _eval_conjugate(self):
|
91 |
+
return self.func(self.exp.conjugate())
|
92 |
+
|
93 |
+
def _eval_transpose(self):
|
94 |
+
return self.func(self.exp.transpose())
|
95 |
+
|
96 |
+
def _eval_is_finite(self):
|
97 |
+
arg = self.exp
|
98 |
+
if arg.is_infinite:
|
99 |
+
if arg.is_extended_negative:
|
100 |
+
return True
|
101 |
+
if arg.is_extended_positive:
|
102 |
+
return False
|
103 |
+
if arg.is_finite:
|
104 |
+
return True
|
105 |
+
|
106 |
+
def _eval_is_rational(self):
|
107 |
+
s = self.func(*self.args)
|
108 |
+
if s.func == self.func:
|
109 |
+
z = s.exp.is_zero
|
110 |
+
if z:
|
111 |
+
return True
|
112 |
+
elif s.exp.is_rational and fuzzy_not(z):
|
113 |
+
return False
|
114 |
+
else:
|
115 |
+
return s.is_rational
|
116 |
+
|
117 |
+
def _eval_is_zero(self):
|
118 |
+
return self.exp is S.NegativeInfinity
|
119 |
+
|
120 |
+
def _eval_power(self, other):
|
121 |
+
"""exp(arg)**e -> exp(arg*e) if assumptions allow it.
|
122 |
+
"""
|
123 |
+
b, e = self.as_base_exp()
|
124 |
+
return Pow._eval_power(Pow(b, e, evaluate=False), other)
|
125 |
+
|
126 |
+
def _eval_expand_power_exp(self, **hints):
|
127 |
+
from sympy.concrete.products import Product
|
128 |
+
from sympy.concrete.summations import Sum
|
129 |
+
arg = self.args[0]
|
130 |
+
if arg.is_Add and arg.is_commutative:
|
131 |
+
return Mul.fromiter(self.func(x) for x in arg.args)
|
132 |
+
elif isinstance(arg, Sum) and arg.is_commutative:
|
133 |
+
return Product(self.func(arg.function), *arg.limits)
|
134 |
+
return self.func(arg)
|
135 |
+
|
136 |
+
|
137 |
+
class exp_polar(ExpBase):
|
138 |
+
r"""
|
139 |
+
Represent a *polar number* (see g-function Sphinx documentation).
|
140 |
+
|
141 |
+
Explanation
|
142 |
+
===========
|
143 |
+
|
144 |
+
``exp_polar`` represents the function
|
145 |
+
`Exp: \mathbb{C} \rightarrow \mathcal{S}`, sending the complex number
|
146 |
+
`z = a + bi` to the polar number `r = exp(a), \theta = b`. It is one of
|
147 |
+
the main functions to construct polar numbers.
|
148 |
+
|
149 |
+
Examples
|
150 |
+
========
|
151 |
+
|
152 |
+
>>> from sympy import exp_polar, pi, I, exp
|
153 |
+
|
154 |
+
The main difference is that polar numbers do not "wrap around" at `2 \pi`:
|
155 |
+
|
156 |
+
>>> exp(2*pi*I)
|
157 |
+
1
|
158 |
+
>>> exp_polar(2*pi*I)
|
159 |
+
exp_polar(2*I*pi)
|
160 |
+
|
161 |
+
apart from that they behave mostly like classical complex numbers:
|
162 |
+
|
163 |
+
>>> exp_polar(2)*exp_polar(3)
|
164 |
+
exp_polar(5)
|
165 |
+
|
166 |
+
See Also
|
167 |
+
========
|
168 |
+
|
169 |
+
sympy.simplify.powsimp.powsimp
|
170 |
+
polar_lift
|
171 |
+
periodic_argument
|
172 |
+
principal_branch
|
173 |
+
"""
|
174 |
+
|
175 |
+
is_polar = True
|
176 |
+
is_comparable = False # cannot be evalf'd
|
177 |
+
|
178 |
+
def _eval_Abs(self): # Abs is never a polar number
|
179 |
+
return exp(re(self.args[0]))
|
180 |
+
|
181 |
+
def _eval_evalf(self, prec):
|
182 |
+
""" Careful! any evalf of polar numbers is flaky """
|
183 |
+
i = im(self.args[0])
|
184 |
+
try:
|
185 |
+
bad = (i <= -pi or i > pi)
|
186 |
+
except TypeError:
|
187 |
+
bad = True
|
188 |
+
if bad:
|
189 |
+
return self # cannot evalf for this argument
|
190 |
+
res = exp(self.args[0])._eval_evalf(prec)
|
191 |
+
if i > 0 and im(res) < 0:
|
192 |
+
# i ~ pi, but exp(I*i) evaluated to argument slightly bigger than pi
|
193 |
+
return re(res)
|
194 |
+
return res
|
195 |
+
|
196 |
+
def _eval_power(self, other):
|
197 |
+
return self.func(self.args[0]*other)
|
198 |
+
|
199 |
+
def _eval_is_extended_real(self):
|
200 |
+
if self.args[0].is_extended_real:
|
201 |
+
return True
|
202 |
+
|
203 |
+
def as_base_exp(self):
|
204 |
+
# XXX exp_polar(0) is special!
|
205 |
+
if self.args[0] == 0:
|
206 |
+
return self, S.One
|
207 |
+
return ExpBase.as_base_exp(self)
|
208 |
+
|
209 |
+
|
210 |
+
class ExpMeta(FunctionClass):
|
211 |
+
def __instancecheck__(cls, instance):
|
212 |
+
if exp in instance.__class__.__mro__:
|
213 |
+
return True
|
214 |
+
return isinstance(instance, Pow) and instance.base is S.Exp1
|
215 |
+
|
216 |
+
|
217 |
+
class exp(ExpBase, metaclass=ExpMeta):
|
218 |
+
"""
|
219 |
+
The exponential function, :math:`e^x`.
|
220 |
+
|
221 |
+
Examples
|
222 |
+
========
|
223 |
+
|
224 |
+
>>> from sympy import exp, I, pi
|
225 |
+
>>> from sympy.abc import x
|
226 |
+
>>> exp(x)
|
227 |
+
exp(x)
|
228 |
+
>>> exp(x).diff(x)
|
229 |
+
exp(x)
|
230 |
+
>>> exp(I*pi)
|
231 |
+
-1
|
232 |
+
|
233 |
+
Parameters
|
234 |
+
==========
|
235 |
+
|
236 |
+
arg : Expr
|
237 |
+
|
238 |
+
See Also
|
239 |
+
========
|
240 |
+
|
241 |
+
log
|
242 |
+
"""
|
243 |
+
|
244 |
+
def fdiff(self, argindex=1):
|
245 |
+
"""
|
246 |
+
Returns the first derivative of this function.
|
247 |
+
"""
|
248 |
+
if argindex == 1:
|
249 |
+
return self
|
250 |
+
else:
|
251 |
+
raise ArgumentIndexError(self, argindex)
|
252 |
+
|
253 |
+
def _eval_refine(self, assumptions):
|
254 |
+
from sympy.assumptions import ask, Q
|
255 |
+
arg = self.args[0]
|
256 |
+
if arg.is_Mul:
|
257 |
+
Ioo = I*S.Infinity
|
258 |
+
if arg in [Ioo, -Ioo]:
|
259 |
+
return S.NaN
|
260 |
+
|
261 |
+
coeff = arg.as_coefficient(pi*I)
|
262 |
+
if coeff:
|
263 |
+
if ask(Q.integer(2*coeff)):
|
264 |
+
if ask(Q.even(coeff)):
|
265 |
+
return S.One
|
266 |
+
elif ask(Q.odd(coeff)):
|
267 |
+
return S.NegativeOne
|
268 |
+
elif ask(Q.even(coeff + S.Half)):
|
269 |
+
return -I
|
270 |
+
elif ask(Q.odd(coeff + S.Half)):
|
271 |
+
return I
|
272 |
+
|
273 |
+
@classmethod
|
274 |
+
def eval(cls, arg):
|
275 |
+
from sympy.calculus import AccumBounds
|
276 |
+
from sympy.matrices.matrices import MatrixBase
|
277 |
+
from sympy.sets.setexpr import SetExpr
|
278 |
+
from sympy.simplify.simplify import logcombine
|
279 |
+
if isinstance(arg, MatrixBase):
|
280 |
+
return arg.exp()
|
281 |
+
elif global_parameters.exp_is_pow:
|
282 |
+
return Pow(S.Exp1, arg)
|
283 |
+
elif arg.is_Number:
|
284 |
+
if arg is S.NaN:
|
285 |
+
return S.NaN
|
286 |
+
elif arg.is_zero:
|
287 |
+
return S.One
|
288 |
+
elif arg is S.One:
|
289 |
+
return S.Exp1
|
290 |
+
elif arg is S.Infinity:
|
291 |
+
return S.Infinity
|
292 |
+
elif arg is S.NegativeInfinity:
|
293 |
+
return S.Zero
|
294 |
+
elif arg is S.ComplexInfinity:
|
295 |
+
return S.NaN
|
296 |
+
elif isinstance(arg, log):
|
297 |
+
return arg.args[0]
|
298 |
+
elif isinstance(arg, AccumBounds):
|
299 |
+
return AccumBounds(exp(arg.min), exp(arg.max))
|
300 |
+
elif isinstance(arg, SetExpr):
|
301 |
+
return arg._eval_func(cls)
|
302 |
+
elif arg.is_Mul:
|
303 |
+
coeff = arg.as_coefficient(pi*I)
|
304 |
+
if coeff:
|
305 |
+
if (2*coeff).is_integer:
|
306 |
+
if coeff.is_even:
|
307 |
+
return S.One
|
308 |
+
elif coeff.is_odd:
|
309 |
+
return S.NegativeOne
|
310 |
+
elif (coeff + S.Half).is_even:
|
311 |
+
return -I
|
312 |
+
elif (coeff + S.Half).is_odd:
|
313 |
+
return I
|
314 |
+
elif coeff.is_Rational:
|
315 |
+
ncoeff = coeff % 2 # restrict to [0, 2pi)
|
316 |
+
if ncoeff > 1: # restrict to (-pi, pi]
|
317 |
+
ncoeff -= 2
|
318 |
+
if ncoeff != coeff:
|
319 |
+
return cls(ncoeff*pi*I)
|
320 |
+
|
321 |
+
# Warning: code in risch.py will be very sensitive to changes
|
322 |
+
# in this (see DifferentialExtension).
|
323 |
+
|
324 |
+
# look for a single log factor
|
325 |
+
|
326 |
+
coeff, terms = arg.as_coeff_Mul()
|
327 |
+
|
328 |
+
# but it can't be multiplied by oo
|
329 |
+
if coeff in [S.NegativeInfinity, S.Infinity]:
|
330 |
+
if terms.is_number:
|
331 |
+
if coeff is S.NegativeInfinity:
|
332 |
+
terms = -terms
|
333 |
+
if re(terms).is_zero and terms is not S.Zero:
|
334 |
+
return S.NaN
|
335 |
+
if re(terms).is_positive and im(terms) is not S.Zero:
|
336 |
+
return S.ComplexInfinity
|
337 |
+
if re(terms).is_negative:
|
338 |
+
return S.Zero
|
339 |
+
return None
|
340 |
+
|
341 |
+
coeffs, log_term = [coeff], None
|
342 |
+
for term in Mul.make_args(terms):
|
343 |
+
term_ = logcombine(term)
|
344 |
+
if isinstance(term_, log):
|
345 |
+
if log_term is None:
|
346 |
+
log_term = term_.args[0]
|
347 |
+
else:
|
348 |
+
return None
|
349 |
+
elif term.is_comparable:
|
350 |
+
coeffs.append(term)
|
351 |
+
else:
|
352 |
+
return None
|
353 |
+
|
354 |
+
return log_term**Mul(*coeffs) if log_term else None
|
355 |
+
|
356 |
+
elif arg.is_Add:
|
357 |
+
out = []
|
358 |
+
add = []
|
359 |
+
argchanged = False
|
360 |
+
for a in arg.args:
|
361 |
+
if a is S.One:
|
362 |
+
add.append(a)
|
363 |
+
continue
|
364 |
+
newa = cls(a)
|
365 |
+
if isinstance(newa, cls):
|
366 |
+
if newa.args[0] != a:
|
367 |
+
add.append(newa.args[0])
|
368 |
+
argchanged = True
|
369 |
+
else:
|
370 |
+
add.append(a)
|
371 |
+
else:
|
372 |
+
out.append(newa)
|
373 |
+
if out or argchanged:
|
374 |
+
return Mul(*out)*cls(Add(*add), evaluate=False)
|
375 |
+
|
376 |
+
if arg.is_zero:
|
377 |
+
return S.One
|
378 |
+
|
379 |
+
@property
|
380 |
+
def base(self):
|
381 |
+
"""
|
382 |
+
Returns the base of the exponential function.
|
383 |
+
"""
|
384 |
+
return S.Exp1
|
385 |
+
|
386 |
+
@staticmethod
|
387 |
+
@cacheit
|
388 |
+
def taylor_term(n, x, *previous_terms):
|
389 |
+
"""
|
390 |
+
Calculates the next term in the Taylor series expansion.
|
391 |
+
"""
|
392 |
+
if n < 0:
|
393 |
+
return S.Zero
|
394 |
+
if n == 0:
|
395 |
+
return S.One
|
396 |
+
x = sympify(x)
|
397 |
+
if previous_terms:
|
398 |
+
p = previous_terms[-1]
|
399 |
+
if p is not None:
|
400 |
+
return p * x / n
|
401 |
+
return x**n/factorial(n)
|
402 |
+
|
403 |
+
def as_real_imag(self, deep=True, **hints):
|
404 |
+
"""
|
405 |
+
Returns this function as a 2-tuple representing a complex number.
|
406 |
+
|
407 |
+
Examples
|
408 |
+
========
|
409 |
+
|
410 |
+
>>> from sympy import exp, I
|
411 |
+
>>> from sympy.abc import x
|
412 |
+
>>> exp(x).as_real_imag()
|
413 |
+
(exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x)))
|
414 |
+
>>> exp(1).as_real_imag()
|
415 |
+
(E, 0)
|
416 |
+
>>> exp(I).as_real_imag()
|
417 |
+
(cos(1), sin(1))
|
418 |
+
>>> exp(1+I).as_real_imag()
|
419 |
+
(E*cos(1), E*sin(1))
|
420 |
+
|
421 |
+
See Also
|
422 |
+
========
|
423 |
+
|
424 |
+
sympy.functions.elementary.complexes.re
|
425 |
+
sympy.functions.elementary.complexes.im
|
426 |
+
"""
|
427 |
+
from sympy.functions.elementary.trigonometric import cos, sin
|
428 |
+
re, im = self.args[0].as_real_imag()
|
429 |
+
if deep:
|
430 |
+
re = re.expand(deep, **hints)
|
431 |
+
im = im.expand(deep, **hints)
|
432 |
+
cos, sin = cos(im), sin(im)
|
433 |
+
return (exp(re)*cos, exp(re)*sin)
|
434 |
+
|
435 |
+
def _eval_subs(self, old, new):
|
436 |
+
# keep processing of power-like args centralized in Pow
|
437 |
+
if old.is_Pow: # handle (exp(3*log(x))).subs(x**2, z) -> z**(3/2)
|
438 |
+
old = exp(old.exp*log(old.base))
|
439 |
+
elif old is S.Exp1 and new.is_Function:
|
440 |
+
old = exp
|
441 |
+
if isinstance(old, exp) or old is S.Exp1:
|
442 |
+
f = lambda a: Pow(*a.as_base_exp(), evaluate=False) if (
|
443 |
+
a.is_Pow or isinstance(a, exp)) else a
|
444 |
+
return Pow._eval_subs(f(self), f(old), new)
|
445 |
+
|
446 |
+
if old is exp and not new.is_Function:
|
447 |
+
return new**self.exp._subs(old, new)
|
448 |
+
return Function._eval_subs(self, old, new)
|
449 |
+
|
450 |
+
def _eval_is_extended_real(self):
|
451 |
+
if self.args[0].is_extended_real:
|
452 |
+
return True
|
453 |
+
elif self.args[0].is_imaginary:
|
454 |
+
arg2 = -S(2) * I * self.args[0] / pi
|
455 |
+
return arg2.is_even
|
456 |
+
|
457 |
+
def _eval_is_complex(self):
|
458 |
+
def complex_extended_negative(arg):
|
459 |
+
yield arg.is_complex
|
460 |
+
yield arg.is_extended_negative
|
461 |
+
return fuzzy_or(complex_extended_negative(self.args[0]))
|
462 |
+
|
463 |
+
def _eval_is_algebraic(self):
|
464 |
+
if (self.exp / pi / I).is_rational:
|
465 |
+
return True
|
466 |
+
if fuzzy_not(self.exp.is_zero):
|
467 |
+
if self.exp.is_algebraic:
|
468 |
+
return False
|
469 |
+
elif (self.exp / pi).is_rational:
|
470 |
+
return False
|
471 |
+
|
472 |
+
def _eval_is_extended_positive(self):
|
473 |
+
if self.exp.is_extended_real:
|
474 |
+
return self.args[0] is not S.NegativeInfinity
|
475 |
+
elif self.exp.is_imaginary:
|
476 |
+
arg2 = -I * self.args[0] / pi
|
477 |
+
return arg2.is_even
|
478 |
+
|
479 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
480 |
+
# NOTE Please see the comment at the beginning of this file, labelled
|
481 |
+
# IMPORTANT.
|
482 |
+
from sympy.functions.elementary.complexes import sign
|
483 |
+
from sympy.functions.elementary.integers import ceiling
|
484 |
+
from sympy.series.limits import limit
|
485 |
+
from sympy.series.order import Order
|
486 |
+
from sympy.simplify.powsimp import powsimp
|
487 |
+
arg = self.exp
|
488 |
+
arg_series = arg._eval_nseries(x, n=n, logx=logx)
|
489 |
+
if arg_series.is_Order:
|
490 |
+
return 1 + arg_series
|
491 |
+
arg0 = limit(arg_series.removeO(), x, 0)
|
492 |
+
if arg0 is S.NegativeInfinity:
|
493 |
+
return Order(x**n, x)
|
494 |
+
if arg0 is S.Infinity:
|
495 |
+
return self
|
496 |
+
# checking for indecisiveness/ sign terms in arg0
|
497 |
+
if any(isinstance(arg, (sign, ImaginaryUnit)) for arg in arg0.args):
|
498 |
+
return self
|
499 |
+
t = Dummy("t")
|
500 |
+
nterms = n
|
501 |
+
try:
|
502 |
+
cf = Order(arg.as_leading_term(x, logx=logx), x).getn()
|
503 |
+
except (NotImplementedError, PoleError):
|
504 |
+
cf = 0
|
505 |
+
if cf and cf > 0:
|
506 |
+
nterms = ceiling(n/cf)
|
507 |
+
exp_series = exp(t)._taylor(t, nterms)
|
508 |
+
r = exp(arg0)*exp_series.subs(t, arg_series - arg0)
|
509 |
+
rep = {logx: log(x)} if logx is not None else {}
|
510 |
+
if r.subs(rep) == self:
|
511 |
+
return r
|
512 |
+
if cf and cf > 1:
|
513 |
+
r += Order((arg_series - arg0)**n, x)/x**((cf-1)*n)
|
514 |
+
else:
|
515 |
+
r += Order((arg_series - arg0)**n, x)
|
516 |
+
r = r.expand()
|
517 |
+
r = powsimp(r, deep=True, combine='exp')
|
518 |
+
# powsimp may introduce unexpanded (-1)**Rational; see PR #17201
|
519 |
+
simplerat = lambda x: x.is_Rational and x.q in [3, 4, 6]
|
520 |
+
w = Wild('w', properties=[simplerat])
|
521 |
+
r = r.replace(S.NegativeOne**w, expand_complex(S.NegativeOne**w))
|
522 |
+
return r
|
523 |
+
|
524 |
+
def _taylor(self, x, n):
|
525 |
+
l = []
|
526 |
+
g = None
|
527 |
+
for i in range(n):
|
528 |
+
g = self.taylor_term(i, self.args[0], g)
|
529 |
+
g = g.nseries(x, n=n)
|
530 |
+
l.append(g.removeO())
|
531 |
+
return Add(*l)
|
532 |
+
|
533 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
534 |
+
from sympy.calculus.util import AccumBounds
|
535 |
+
arg = self.args[0].cancel().as_leading_term(x, logx=logx)
|
536 |
+
arg0 = arg.subs(x, 0)
|
537 |
+
if arg is S.NaN:
|
538 |
+
return S.NaN
|
539 |
+
if isinstance(arg0, AccumBounds):
|
540 |
+
# This check addresses a corner case involving AccumBounds.
|
541 |
+
# if isinstance(arg, AccumBounds) is True, then arg0 can either be 0,
|
542 |
+
# AccumBounds(-oo, 0) or AccumBounds(-oo, oo).
|
543 |
+
# Check out function: test_issue_18473() in test_exponential.py and
|
544 |
+
# test_limits.py for more information.
|
545 |
+
if re(cdir) < S.Zero:
|
546 |
+
return exp(-arg0)
|
547 |
+
return exp(arg0)
|
548 |
+
if arg0 is S.NaN:
|
549 |
+
arg0 = arg.limit(x, 0)
|
550 |
+
if arg0.is_infinite is False:
|
551 |
+
return exp(arg0)
|
552 |
+
raise PoleError("Cannot expand %s around 0" % (self))
|
553 |
+
|
554 |
+
def _eval_rewrite_as_sin(self, arg, **kwargs):
|
555 |
+
from sympy.functions.elementary.trigonometric import sin
|
556 |
+
return sin(I*arg + pi/2) - I*sin(I*arg)
|
557 |
+
|
558 |
+
def _eval_rewrite_as_cos(self, arg, **kwargs):
|
559 |
+
from sympy.functions.elementary.trigonometric import cos
|
560 |
+
return cos(I*arg) + I*cos(I*arg + pi/2)
|
561 |
+
|
562 |
+
def _eval_rewrite_as_tanh(self, arg, **kwargs):
|
563 |
+
from sympy.functions.elementary.hyperbolic import tanh
|
564 |
+
return (1 + tanh(arg/2))/(1 - tanh(arg/2))
|
565 |
+
|
566 |
+
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
|
567 |
+
from sympy.functions.elementary.trigonometric import sin, cos
|
568 |
+
if arg.is_Mul:
|
569 |
+
coeff = arg.coeff(pi*I)
|
570 |
+
if coeff and coeff.is_number:
|
571 |
+
cosine, sine = cos(pi*coeff), sin(pi*coeff)
|
572 |
+
if not isinstance(cosine, cos) and not isinstance (sine, sin):
|
573 |
+
return cosine + I*sine
|
574 |
+
|
575 |
+
def _eval_rewrite_as_Pow(self, arg, **kwargs):
|
576 |
+
if arg.is_Mul:
|
577 |
+
logs = [a for a in arg.args if isinstance(a, log) and len(a.args) == 1]
|
578 |
+
if logs:
|
579 |
+
return Pow(logs[0].args[0], arg.coeff(logs[0]))
|
580 |
+
|
581 |
+
|
582 |
+
def match_real_imag(expr):
|
583 |
+
r"""
|
584 |
+
Try to match expr with $a + Ib$ for real $a$ and $b$.
|
585 |
+
|
586 |
+
``match_real_imag`` returns a tuple containing the real and imaginary
|
587 |
+
parts of expr or ``(None, None)`` if direct matching is not possible. Contrary
|
588 |
+
to :func:`~.re()`, :func:`~.im()``, and ``as_real_imag()``, this helper will not force things
|
589 |
+
by returning expressions themselves containing ``re()`` or ``im()`` and it
|
590 |
+
does not expand its argument either.
|
591 |
+
|
592 |
+
"""
|
593 |
+
r_, i_ = expr.as_independent(I, as_Add=True)
|
594 |
+
if i_ == 0 and r_.is_real:
|
595 |
+
return (r_, i_)
|
596 |
+
i_ = i_.as_coefficient(I)
|
597 |
+
if i_ and i_.is_real and r_.is_real:
|
598 |
+
return (r_, i_)
|
599 |
+
else:
|
600 |
+
return (None, None) # simpler to check for than None
|
601 |
+
|
602 |
+
|
603 |
+
class log(Function):
|
604 |
+
r"""
|
605 |
+
The natural logarithm function `\ln(x)` or `\log(x)`.
|
606 |
+
|
607 |
+
Explanation
|
608 |
+
===========
|
609 |
+
|
610 |
+
Logarithms are taken with the natural base, `e`. To get
|
611 |
+
a logarithm of a different base ``b``, use ``log(x, b)``,
|
612 |
+
which is essentially short-hand for ``log(x)/log(b)``.
|
613 |
+
|
614 |
+
``log`` represents the principal branch of the natural
|
615 |
+
logarithm. As such it has a branch cut along the negative
|
616 |
+
real axis and returns values having a complex argument in
|
617 |
+
`(-\pi, \pi]`.
|
618 |
+
|
619 |
+
Examples
|
620 |
+
========
|
621 |
+
|
622 |
+
>>> from sympy import log, sqrt, S, I
|
623 |
+
>>> log(8, 2)
|
624 |
+
3
|
625 |
+
>>> log(S(8)/3, 2)
|
626 |
+
-log(3)/log(2) + 3
|
627 |
+
>>> log(-1 + I*sqrt(3))
|
628 |
+
log(2) + 2*I*pi/3
|
629 |
+
|
630 |
+
See Also
|
631 |
+
========
|
632 |
+
|
633 |
+
exp
|
634 |
+
|
635 |
+
"""
|
636 |
+
|
637 |
+
args: tTuple[Expr]
|
638 |
+
|
639 |
+
_singularities = (S.Zero, S.ComplexInfinity)
|
640 |
+
|
641 |
+
def fdiff(self, argindex=1):
|
642 |
+
"""
|
643 |
+
Returns the first derivative of the function.
|
644 |
+
"""
|
645 |
+
if argindex == 1:
|
646 |
+
return 1/self.args[0]
|
647 |
+
else:
|
648 |
+
raise ArgumentIndexError(self, argindex)
|
649 |
+
|
650 |
+
def inverse(self, argindex=1):
|
651 |
+
r"""
|
652 |
+
Returns `e^x`, the inverse function of `\log(x)`.
|
653 |
+
"""
|
654 |
+
return exp
|
655 |
+
|
656 |
+
@classmethod
|
657 |
+
def eval(cls, arg, base=None):
|
658 |
+
from sympy.calculus import AccumBounds
|
659 |
+
from sympy.sets.setexpr import SetExpr
|
660 |
+
|
661 |
+
arg = sympify(arg)
|
662 |
+
|
663 |
+
if base is not None:
|
664 |
+
base = sympify(base)
|
665 |
+
if base == 1:
|
666 |
+
if arg == 1:
|
667 |
+
return S.NaN
|
668 |
+
else:
|
669 |
+
return S.ComplexInfinity
|
670 |
+
try:
|
671 |
+
# handle extraction of powers of the base now
|
672 |
+
# or else expand_log in Mul would have to handle this
|
673 |
+
n = multiplicity(base, arg)
|
674 |
+
if n:
|
675 |
+
return n + log(arg / base**n) / log(base)
|
676 |
+
else:
|
677 |
+
return log(arg)/log(base)
|
678 |
+
except ValueError:
|
679 |
+
pass
|
680 |
+
if base is not S.Exp1:
|
681 |
+
return cls(arg)/cls(base)
|
682 |
+
else:
|
683 |
+
return cls(arg)
|
684 |
+
|
685 |
+
if arg.is_Number:
|
686 |
+
if arg.is_zero:
|
687 |
+
return S.ComplexInfinity
|
688 |
+
elif arg is S.One:
|
689 |
+
return S.Zero
|
690 |
+
elif arg is S.Infinity:
|
691 |
+
return S.Infinity
|
692 |
+
elif arg is S.NegativeInfinity:
|
693 |
+
return S.Infinity
|
694 |
+
elif arg is S.NaN:
|
695 |
+
return S.NaN
|
696 |
+
elif arg.is_Rational and arg.p == 1:
|
697 |
+
return -cls(arg.q)
|
698 |
+
|
699 |
+
if arg.is_Pow and arg.base is S.Exp1 and arg.exp.is_extended_real:
|
700 |
+
return arg.exp
|
701 |
+
if isinstance(arg, exp) and arg.exp.is_extended_real:
|
702 |
+
return arg.exp
|
703 |
+
elif isinstance(arg, exp) and arg.exp.is_number:
|
704 |
+
r_, i_ = match_real_imag(arg.exp)
|
705 |
+
if i_ and i_.is_comparable:
|
706 |
+
i_ %= 2*pi
|
707 |
+
if i_ > pi:
|
708 |
+
i_ -= 2*pi
|
709 |
+
return r_ + expand_mul(i_ * I, deep=False)
|
710 |
+
elif isinstance(arg, exp_polar):
|
711 |
+
return unpolarify(arg.exp)
|
712 |
+
elif isinstance(arg, AccumBounds):
|
713 |
+
if arg.min.is_positive:
|
714 |
+
return AccumBounds(log(arg.min), log(arg.max))
|
715 |
+
elif arg.min.is_zero:
|
716 |
+
return AccumBounds(S.NegativeInfinity, log(arg.max))
|
717 |
+
else:
|
718 |
+
return S.NaN
|
719 |
+
elif isinstance(arg, SetExpr):
|
720 |
+
return arg._eval_func(cls)
|
721 |
+
|
722 |
+
if arg.is_number:
|
723 |
+
if arg.is_negative:
|
724 |
+
return pi * I + cls(-arg)
|
725 |
+
elif arg is S.ComplexInfinity:
|
726 |
+
return S.ComplexInfinity
|
727 |
+
elif arg is S.Exp1:
|
728 |
+
return S.One
|
729 |
+
|
730 |
+
if arg.is_zero:
|
731 |
+
return S.ComplexInfinity
|
732 |
+
|
733 |
+
# don't autoexpand Pow or Mul (see the issue 3351):
|
734 |
+
if not arg.is_Add:
|
735 |
+
coeff = arg.as_coefficient(I)
|
736 |
+
|
737 |
+
if coeff is not None:
|
738 |
+
if coeff is S.Infinity:
|
739 |
+
return S.Infinity
|
740 |
+
elif coeff is S.NegativeInfinity:
|
741 |
+
return S.Infinity
|
742 |
+
elif coeff.is_Rational:
|
743 |
+
if coeff.is_nonnegative:
|
744 |
+
return pi * I * S.Half + cls(coeff)
|
745 |
+
else:
|
746 |
+
return -pi * I * S.Half + cls(-coeff)
|
747 |
+
|
748 |
+
if arg.is_number and arg.is_algebraic:
|
749 |
+
# Match arg = coeff*(r_ + i_*I) with coeff>0, r_ and i_ real.
|
750 |
+
coeff, arg_ = arg.as_independent(I, as_Add=False)
|
751 |
+
if coeff.is_negative:
|
752 |
+
coeff *= -1
|
753 |
+
arg_ *= -1
|
754 |
+
arg_ = expand_mul(arg_, deep=False)
|
755 |
+
r_, i_ = arg_.as_independent(I, as_Add=True)
|
756 |
+
i_ = i_.as_coefficient(I)
|
757 |
+
if coeff.is_real and i_ and i_.is_real and r_.is_real:
|
758 |
+
if r_.is_zero:
|
759 |
+
if i_.is_positive:
|
760 |
+
return pi * I * S.Half + cls(coeff * i_)
|
761 |
+
elif i_.is_negative:
|
762 |
+
return -pi * I * S.Half + cls(coeff * -i_)
|
763 |
+
else:
|
764 |
+
from sympy.simplify import ratsimp
|
765 |
+
# Check for arguments involving rational multiples of pi
|
766 |
+
t = (i_/r_).cancel()
|
767 |
+
t1 = (-t).cancel()
|
768 |
+
atan_table = _log_atan_table()
|
769 |
+
if t in atan_table:
|
770 |
+
modulus = ratsimp(coeff * Abs(arg_))
|
771 |
+
if r_.is_positive:
|
772 |
+
return cls(modulus) + I * atan_table[t]
|
773 |
+
else:
|
774 |
+
return cls(modulus) + I * (atan_table[t] - pi)
|
775 |
+
elif t1 in atan_table:
|
776 |
+
modulus = ratsimp(coeff * Abs(arg_))
|
777 |
+
if r_.is_positive:
|
778 |
+
return cls(modulus) + I * (-atan_table[t1])
|
779 |
+
else:
|
780 |
+
return cls(modulus) + I * (pi - atan_table[t1])
|
781 |
+
|
782 |
+
def as_base_exp(self):
|
783 |
+
"""
|
784 |
+
Returns this function in the form (base, exponent).
|
785 |
+
"""
|
786 |
+
return self, S.One
|
787 |
+
|
788 |
+
@staticmethod
|
789 |
+
@cacheit
|
790 |
+
def taylor_term(n, x, *previous_terms): # of log(1+x)
|
791 |
+
r"""
|
792 |
+
Returns the next term in the Taylor series expansion of `\log(1+x)`.
|
793 |
+
"""
|
794 |
+
from sympy.simplify.powsimp import powsimp
|
795 |
+
if n < 0:
|
796 |
+
return S.Zero
|
797 |
+
x = sympify(x)
|
798 |
+
if n == 0:
|
799 |
+
return x
|
800 |
+
if previous_terms:
|
801 |
+
p = previous_terms[-1]
|
802 |
+
if p is not None:
|
803 |
+
return powsimp((-n) * p * x / (n + 1), deep=True, combine='exp')
|
804 |
+
return (1 - 2*(n % 2)) * x**(n + 1)/(n + 1)
|
805 |
+
|
806 |
+
def _eval_expand_log(self, deep=True, **hints):
|
807 |
+
from sympy.concrete import Sum, Product
|
808 |
+
force = hints.get('force', False)
|
809 |
+
factor = hints.get('factor', False)
|
810 |
+
if (len(self.args) == 2):
|
811 |
+
return expand_log(self.func(*self.args), deep=deep, force=force)
|
812 |
+
arg = self.args[0]
|
813 |
+
if arg.is_Integer:
|
814 |
+
# remove perfect powers
|
815 |
+
p = perfect_power(arg)
|
816 |
+
logarg = None
|
817 |
+
coeff = 1
|
818 |
+
if p is not False:
|
819 |
+
arg, coeff = p
|
820 |
+
logarg = self.func(arg)
|
821 |
+
# expand as product of its prime factors if factor=True
|
822 |
+
if factor:
|
823 |
+
p = factorint(arg)
|
824 |
+
if arg not in p.keys():
|
825 |
+
logarg = sum(n*log(val) for val, n in p.items())
|
826 |
+
if logarg is not None:
|
827 |
+
return coeff*logarg
|
828 |
+
elif arg.is_Rational:
|
829 |
+
return log(arg.p) - log(arg.q)
|
830 |
+
elif arg.is_Mul:
|
831 |
+
expr = []
|
832 |
+
nonpos = []
|
833 |
+
for x in arg.args:
|
834 |
+
if force or x.is_positive or x.is_polar:
|
835 |
+
a = self.func(x)
|
836 |
+
if isinstance(a, log):
|
837 |
+
expr.append(self.func(x)._eval_expand_log(**hints))
|
838 |
+
else:
|
839 |
+
expr.append(a)
|
840 |
+
elif x.is_negative:
|
841 |
+
a = self.func(-x)
|
842 |
+
expr.append(a)
|
843 |
+
nonpos.append(S.NegativeOne)
|
844 |
+
else:
|
845 |
+
nonpos.append(x)
|
846 |
+
return Add(*expr) + log(Mul(*nonpos))
|
847 |
+
elif arg.is_Pow or isinstance(arg, exp):
|
848 |
+
if force or (arg.exp.is_extended_real and (arg.base.is_positive or ((arg.exp+1)
|
849 |
+
.is_positive and (arg.exp-1).is_nonpositive))) or arg.base.is_polar:
|
850 |
+
b = arg.base
|
851 |
+
e = arg.exp
|
852 |
+
a = self.func(b)
|
853 |
+
if isinstance(a, log):
|
854 |
+
return unpolarify(e) * a._eval_expand_log(**hints)
|
855 |
+
else:
|
856 |
+
return unpolarify(e) * a
|
857 |
+
elif isinstance(arg, Product):
|
858 |
+
if force or arg.function.is_positive:
|
859 |
+
return Sum(log(arg.function), *arg.limits)
|
860 |
+
|
861 |
+
return self.func(arg)
|
862 |
+
|
863 |
+
def _eval_simplify(self, **kwargs):
|
864 |
+
from sympy.simplify.simplify import expand_log, simplify, inversecombine
|
865 |
+
if len(self.args) == 2: # it's unevaluated
|
866 |
+
return simplify(self.func(*self.args), **kwargs)
|
867 |
+
|
868 |
+
expr = self.func(simplify(self.args[0], **kwargs))
|
869 |
+
if kwargs['inverse']:
|
870 |
+
expr = inversecombine(expr)
|
871 |
+
expr = expand_log(expr, deep=True)
|
872 |
+
return min([expr, self], key=kwargs['measure'])
|
873 |
+
|
874 |
+
def as_real_imag(self, deep=True, **hints):
|
875 |
+
"""
|
876 |
+
Returns this function as a complex coordinate.
|
877 |
+
|
878 |
+
Examples
|
879 |
+
========
|
880 |
+
|
881 |
+
>>> from sympy import I, log
|
882 |
+
>>> from sympy.abc import x
|
883 |
+
>>> log(x).as_real_imag()
|
884 |
+
(log(Abs(x)), arg(x))
|
885 |
+
>>> log(I).as_real_imag()
|
886 |
+
(0, pi/2)
|
887 |
+
>>> log(1 + I).as_real_imag()
|
888 |
+
(log(sqrt(2)), pi/4)
|
889 |
+
>>> log(I*x).as_real_imag()
|
890 |
+
(log(Abs(x)), arg(I*x))
|
891 |
+
|
892 |
+
"""
|
893 |
+
sarg = self.args[0]
|
894 |
+
if deep:
|
895 |
+
sarg = self.args[0].expand(deep, **hints)
|
896 |
+
sarg_abs = Abs(sarg)
|
897 |
+
if sarg_abs == sarg:
|
898 |
+
return self, S.Zero
|
899 |
+
sarg_arg = arg(sarg)
|
900 |
+
if hints.get('log', False): # Expand the log
|
901 |
+
hints['complex'] = False
|
902 |
+
return (log(sarg_abs).expand(deep, **hints), sarg_arg)
|
903 |
+
else:
|
904 |
+
return log(sarg_abs), sarg_arg
|
905 |
+
|
906 |
+
def _eval_is_rational(self):
|
907 |
+
s = self.func(*self.args)
|
908 |
+
if s.func == self.func:
|
909 |
+
if (self.args[0] - 1).is_zero:
|
910 |
+
return True
|
911 |
+
if s.args[0].is_rational and fuzzy_not((self.args[0] - 1).is_zero):
|
912 |
+
return False
|
913 |
+
else:
|
914 |
+
return s.is_rational
|
915 |
+
|
916 |
+
def _eval_is_algebraic(self):
|
917 |
+
s = self.func(*self.args)
|
918 |
+
if s.func == self.func:
|
919 |
+
if (self.args[0] - 1).is_zero:
|
920 |
+
return True
|
921 |
+
elif fuzzy_not((self.args[0] - 1).is_zero):
|
922 |
+
if self.args[0].is_algebraic:
|
923 |
+
return False
|
924 |
+
else:
|
925 |
+
return s.is_algebraic
|
926 |
+
|
927 |
+
def _eval_is_extended_real(self):
|
928 |
+
return self.args[0].is_extended_positive
|
929 |
+
|
930 |
+
def _eval_is_complex(self):
|
931 |
+
z = self.args[0]
|
932 |
+
return fuzzy_and([z.is_complex, fuzzy_not(z.is_zero)])
|
933 |
+
|
934 |
+
def _eval_is_finite(self):
|
935 |
+
arg = self.args[0]
|
936 |
+
if arg.is_zero:
|
937 |
+
return False
|
938 |
+
return arg.is_finite
|
939 |
+
|
940 |
+
def _eval_is_extended_positive(self):
|
941 |
+
return (self.args[0] - 1).is_extended_positive
|
942 |
+
|
943 |
+
def _eval_is_zero(self):
|
944 |
+
return (self.args[0] - 1).is_zero
|
945 |
+
|
946 |
+
def _eval_is_extended_nonnegative(self):
|
947 |
+
return (self.args[0] - 1).is_extended_nonnegative
|
948 |
+
|
949 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
950 |
+
# NOTE Please see the comment at the beginning of this file, labelled
|
951 |
+
# IMPORTANT.
|
952 |
+
from sympy.series.order import Order
|
953 |
+
from sympy.simplify.simplify import logcombine
|
954 |
+
from sympy.core.symbol import Dummy
|
955 |
+
|
956 |
+
if self.args[0] == x:
|
957 |
+
return log(x) if logx is None else logx
|
958 |
+
arg = self.args[0]
|
959 |
+
t = Dummy('t', positive=True)
|
960 |
+
if cdir == 0:
|
961 |
+
cdir = 1
|
962 |
+
z = arg.subs(x, cdir*t)
|
963 |
+
|
964 |
+
k, l = Wild("k"), Wild("l")
|
965 |
+
r = z.match(k*t**l)
|
966 |
+
if r is not None:
|
967 |
+
k, l = r[k], r[l]
|
968 |
+
if l != 0 and not l.has(t) and not k.has(t):
|
969 |
+
r = l*log(x) if logx is None else l*logx
|
970 |
+
r += log(k) - l*log(cdir) # XXX true regardless of assumptions?
|
971 |
+
return r
|
972 |
+
|
973 |
+
def coeff_exp(term, x):
|
974 |
+
coeff, exp = S.One, S.Zero
|
975 |
+
for factor in Mul.make_args(term):
|
976 |
+
if factor.has(x):
|
977 |
+
base, exp = factor.as_base_exp()
|
978 |
+
if base != x:
|
979 |
+
try:
|
980 |
+
return term.leadterm(x)
|
981 |
+
except ValueError:
|
982 |
+
return term, S.Zero
|
983 |
+
else:
|
984 |
+
coeff *= factor
|
985 |
+
return coeff, exp
|
986 |
+
|
987 |
+
# TODO new and probably slow
|
988 |
+
try:
|
989 |
+
a, b = z.leadterm(t, logx=logx, cdir=1)
|
990 |
+
except (ValueError, NotImplementedError, PoleError):
|
991 |
+
s = z._eval_nseries(t, n=n, logx=logx, cdir=1)
|
992 |
+
while s.is_Order:
|
993 |
+
n += 1
|
994 |
+
s = z._eval_nseries(t, n=n, logx=logx, cdir=1)
|
995 |
+
try:
|
996 |
+
a, b = s.removeO().leadterm(t, cdir=1)
|
997 |
+
except ValueError:
|
998 |
+
a, b = s.removeO().as_leading_term(t, cdir=1), S.Zero
|
999 |
+
|
1000 |
+
p = (z/(a*t**b) - 1)._eval_nseries(t, n=n, logx=logx, cdir=1)
|
1001 |
+
if p.has(exp):
|
1002 |
+
p = logcombine(p)
|
1003 |
+
if isinstance(p, Order):
|
1004 |
+
n = p.getn()
|
1005 |
+
_, d = coeff_exp(p, t)
|
1006 |
+
logx = log(x) if logx is None else logx
|
1007 |
+
|
1008 |
+
if not d.is_positive:
|
1009 |
+
res = log(a) - b*log(cdir) + b*logx
|
1010 |
+
_res = res
|
1011 |
+
logflags = {"deep": True, "log": True, "mul": False, "power_exp": False,
|
1012 |
+
"power_base": False, "multinomial": False, "basic": False, "force": True,
|
1013 |
+
"factor": False}
|
1014 |
+
expr = self.expand(**logflags)
|
1015 |
+
if (not a.could_extract_minus_sign() and
|
1016 |
+
logx.could_extract_minus_sign()):
|
1017 |
+
_res = _res.subs(-logx, -log(x)).expand(**logflags)
|
1018 |
+
else:
|
1019 |
+
_res = _res.subs(logx, log(x)).expand(**logflags)
|
1020 |
+
if _res == expr:
|
1021 |
+
return res
|
1022 |
+
return res + Order(x**n, x)
|
1023 |
+
|
1024 |
+
def mul(d1, d2):
|
1025 |
+
res = {}
|
1026 |
+
for e1, e2 in product(d1, d2):
|
1027 |
+
ex = e1 + e2
|
1028 |
+
if ex < n:
|
1029 |
+
res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2]
|
1030 |
+
return res
|
1031 |
+
|
1032 |
+
pterms = {}
|
1033 |
+
|
1034 |
+
for term in Add.make_args(p.removeO()):
|
1035 |
+
co1, e1 = coeff_exp(term, t)
|
1036 |
+
pterms[e1] = pterms.get(e1, S.Zero) + co1
|
1037 |
+
|
1038 |
+
k = S.One
|
1039 |
+
terms = {}
|
1040 |
+
pk = pterms
|
1041 |
+
|
1042 |
+
while k*d < n:
|
1043 |
+
coeff = -S.NegativeOne**k/k
|
1044 |
+
for ex in pk:
|
1045 |
+
_ = terms.get(ex, S.Zero) + coeff*pk[ex]
|
1046 |
+
terms[ex] = _.nsimplify()
|
1047 |
+
pk = mul(pk, pterms)
|
1048 |
+
k += S.One
|
1049 |
+
|
1050 |
+
res = log(a) - b*log(cdir) + b*logx
|
1051 |
+
for ex in terms:
|
1052 |
+
res += terms[ex]*t**(ex)
|
1053 |
+
|
1054 |
+
if a.is_negative and im(z) != 0:
|
1055 |
+
from sympy.functions.special.delta_functions import Heaviside
|
1056 |
+
for i, term in enumerate(z.lseries(t)):
|
1057 |
+
if not term.is_real or i == 5:
|
1058 |
+
break
|
1059 |
+
if i < 5:
|
1060 |
+
coeff, _ = term.as_coeff_exponent(t)
|
1061 |
+
res += -2*I*pi*Heaviside(-im(coeff), 0)
|
1062 |
+
|
1063 |
+
res = res.subs(t, x/cdir)
|
1064 |
+
return res + Order(x**n, x)
|
1065 |
+
|
1066 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
1067 |
+
# NOTE
|
1068 |
+
# Refer https://github.com/sympy/sympy/pull/23592 for more information
|
1069 |
+
# on each of the following steps involved in this method.
|
1070 |
+
arg0 = self.args[0].together()
|
1071 |
+
|
1072 |
+
# STEP 1
|
1073 |
+
t = Dummy('t', positive=True)
|
1074 |
+
if cdir == 0:
|
1075 |
+
cdir = 1
|
1076 |
+
z = arg0.subs(x, cdir*t)
|
1077 |
+
|
1078 |
+
# STEP 2
|
1079 |
+
try:
|
1080 |
+
c, e = z.leadterm(t, logx=logx, cdir=1)
|
1081 |
+
except ValueError:
|
1082 |
+
arg = arg0.as_leading_term(x, logx=logx, cdir=cdir)
|
1083 |
+
return log(arg)
|
1084 |
+
if c.has(t):
|
1085 |
+
c = c.subs(t, x/cdir)
|
1086 |
+
if e != 0:
|
1087 |
+
raise PoleError("Cannot expand %s around 0" % (self))
|
1088 |
+
return log(c)
|
1089 |
+
|
1090 |
+
# STEP 3
|
1091 |
+
if c == S.One and e == S.Zero:
|
1092 |
+
return (arg0 - S.One).as_leading_term(x, logx=logx)
|
1093 |
+
|
1094 |
+
# STEP 4
|
1095 |
+
res = log(c) - e*log(cdir)
|
1096 |
+
logx = log(x) if logx is None else logx
|
1097 |
+
res += e*logx
|
1098 |
+
|
1099 |
+
# STEP 5
|
1100 |
+
if c.is_negative and im(z) != 0:
|
1101 |
+
from sympy.functions.special.delta_functions import Heaviside
|
1102 |
+
for i, term in enumerate(z.lseries(t)):
|
1103 |
+
if not term.is_real or i == 5:
|
1104 |
+
break
|
1105 |
+
if i < 5:
|
1106 |
+
coeff, _ = term.as_coeff_exponent(t)
|
1107 |
+
res += -2*I*pi*Heaviside(-im(coeff), 0)
|
1108 |
+
return res
|
1109 |
+
|
1110 |
+
|
1111 |
+
class LambertW(Function):
|
1112 |
+
r"""
|
1113 |
+
The Lambert W function $W(z)$ is defined as the inverse
|
1114 |
+
function of $w \exp(w)$ [1]_.
|
1115 |
+
|
1116 |
+
Explanation
|
1117 |
+
===========
|
1118 |
+
|
1119 |
+
In other words, the value of $W(z)$ is such that $z = W(z) \exp(W(z))$
|
1120 |
+
for any complex number $z$. The Lambert W function is a multivalued
|
1121 |
+
function with infinitely many branches $W_k(z)$, indexed by
|
1122 |
+
$k \in \mathbb{Z}$. Each branch gives a different solution $w$
|
1123 |
+
of the equation $z = w \exp(w)$.
|
1124 |
+
|
1125 |
+
The Lambert W function has two partially real branches: the
|
1126 |
+
principal branch ($k = 0$) is real for real $z > -1/e$, and the
|
1127 |
+
$k = -1$ branch is real for $-1/e < z < 0$. All branches except
|
1128 |
+
$k = 0$ have a logarithmic singularity at $z = 0$.
|
1129 |
+
|
1130 |
+
Examples
|
1131 |
+
========
|
1132 |
+
|
1133 |
+
>>> from sympy import LambertW
|
1134 |
+
>>> LambertW(1.2)
|
1135 |
+
0.635564016364870
|
1136 |
+
>>> LambertW(1.2, -1).n()
|
1137 |
+
-1.34747534407696 - 4.41624341514535*I
|
1138 |
+
>>> LambertW(-1).is_real
|
1139 |
+
False
|
1140 |
+
|
1141 |
+
References
|
1142 |
+
==========
|
1143 |
+
|
1144 |
+
.. [1] https://en.wikipedia.org/wiki/Lambert_W_function
|
1145 |
+
"""
|
1146 |
+
_singularities = (-Pow(S.Exp1, -1, evaluate=False), S.ComplexInfinity)
|
1147 |
+
|
1148 |
+
@classmethod
|
1149 |
+
def eval(cls, x, k=None):
|
1150 |
+
if k == S.Zero:
|
1151 |
+
return cls(x)
|
1152 |
+
elif k is None:
|
1153 |
+
k = S.Zero
|
1154 |
+
|
1155 |
+
if k.is_zero:
|
1156 |
+
if x.is_zero:
|
1157 |
+
return S.Zero
|
1158 |
+
if x is S.Exp1:
|
1159 |
+
return S.One
|
1160 |
+
if x == -1/S.Exp1:
|
1161 |
+
return S.NegativeOne
|
1162 |
+
if x == -log(2)/2:
|
1163 |
+
return -log(2)
|
1164 |
+
if x == 2*log(2):
|
1165 |
+
return log(2)
|
1166 |
+
if x == -pi/2:
|
1167 |
+
return I*pi/2
|
1168 |
+
if x == exp(1 + S.Exp1):
|
1169 |
+
return S.Exp1
|
1170 |
+
if x is S.Infinity:
|
1171 |
+
return S.Infinity
|
1172 |
+
if x.is_zero:
|
1173 |
+
return S.Zero
|
1174 |
+
|
1175 |
+
if fuzzy_not(k.is_zero):
|
1176 |
+
if x.is_zero:
|
1177 |
+
return S.NegativeInfinity
|
1178 |
+
if k is S.NegativeOne:
|
1179 |
+
if x == -pi/2:
|
1180 |
+
return -I*pi/2
|
1181 |
+
elif x == -1/S.Exp1:
|
1182 |
+
return S.NegativeOne
|
1183 |
+
elif x == -2*exp(-2):
|
1184 |
+
return -Integer(2)
|
1185 |
+
|
1186 |
+
def fdiff(self, argindex=1):
|
1187 |
+
"""
|
1188 |
+
Return the first derivative of this function.
|
1189 |
+
"""
|
1190 |
+
x = self.args[0]
|
1191 |
+
|
1192 |
+
if len(self.args) == 1:
|
1193 |
+
if argindex == 1:
|
1194 |
+
return LambertW(x)/(x*(1 + LambertW(x)))
|
1195 |
+
else:
|
1196 |
+
k = self.args[1]
|
1197 |
+
if argindex == 1:
|
1198 |
+
return LambertW(x, k)/(x*(1 + LambertW(x, k)))
|
1199 |
+
|
1200 |
+
raise ArgumentIndexError(self, argindex)
|
1201 |
+
|
1202 |
+
def _eval_is_extended_real(self):
|
1203 |
+
x = self.args[0]
|
1204 |
+
if len(self.args) == 1:
|
1205 |
+
k = S.Zero
|
1206 |
+
else:
|
1207 |
+
k = self.args[1]
|
1208 |
+
if k.is_zero:
|
1209 |
+
if (x + 1/S.Exp1).is_positive:
|
1210 |
+
return True
|
1211 |
+
elif (x + 1/S.Exp1).is_nonpositive:
|
1212 |
+
return False
|
1213 |
+
elif (k + 1).is_zero:
|
1214 |
+
if x.is_negative and (x + 1/S.Exp1).is_positive:
|
1215 |
+
return True
|
1216 |
+
elif x.is_nonpositive or (x + 1/S.Exp1).is_nonnegative:
|
1217 |
+
return False
|
1218 |
+
elif fuzzy_not(k.is_zero) and fuzzy_not((k + 1).is_zero):
|
1219 |
+
if x.is_extended_real:
|
1220 |
+
return False
|
1221 |
+
|
1222 |
+
def _eval_is_finite(self):
|
1223 |
+
return self.args[0].is_finite
|
1224 |
+
|
1225 |
+
def _eval_is_algebraic(self):
|
1226 |
+
s = self.func(*self.args)
|
1227 |
+
if s.func == self.func:
|
1228 |
+
if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic:
|
1229 |
+
return False
|
1230 |
+
else:
|
1231 |
+
return s.is_algebraic
|
1232 |
+
|
1233 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
1234 |
+
if len(self.args) == 1:
|
1235 |
+
arg = self.args[0]
|
1236 |
+
arg0 = arg.subs(x, 0).cancel()
|
1237 |
+
if not arg0.is_zero:
|
1238 |
+
return self.func(arg0)
|
1239 |
+
return arg.as_leading_term(x)
|
1240 |
+
|
1241 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
1242 |
+
if len(self.args) == 1:
|
1243 |
+
from sympy.functions.elementary.integers import ceiling
|
1244 |
+
from sympy.series.order import Order
|
1245 |
+
arg = self.args[0].nseries(x, n=n, logx=logx)
|
1246 |
+
lt = arg.as_leading_term(x, logx=logx)
|
1247 |
+
lte = 1
|
1248 |
+
if lt.is_Pow:
|
1249 |
+
lte = lt.exp
|
1250 |
+
if ceiling(n/lte) >= 1:
|
1251 |
+
s = Add(*[(-S.One)**(k - 1)*Integer(k)**(k - 2)/
|
1252 |
+
factorial(k - 1)*arg**k for k in range(1, ceiling(n/lte))])
|
1253 |
+
s = expand_multinomial(s)
|
1254 |
+
else:
|
1255 |
+
s = S.Zero
|
1256 |
+
|
1257 |
+
return s + Order(x**n, x)
|
1258 |
+
return super()._eval_nseries(x, n, logx)
|
1259 |
+
|
1260 |
+
def _eval_is_zero(self):
|
1261 |
+
x = self.args[0]
|
1262 |
+
if len(self.args) == 1:
|
1263 |
+
return x.is_zero
|
1264 |
+
else:
|
1265 |
+
return fuzzy_and([x.is_zero, self.args[1].is_zero])
|
1266 |
+
|
1267 |
+
|
1268 |
+
@cacheit
|
1269 |
+
def _log_atan_table():
|
1270 |
+
return {
|
1271 |
+
# first quadrant only
|
1272 |
+
sqrt(3): pi / 3,
|
1273 |
+
1: pi / 4,
|
1274 |
+
sqrt(5 - 2 * sqrt(5)): pi / 5,
|
1275 |
+
sqrt(2) * sqrt(5 - sqrt(5)) / (1 + sqrt(5)): pi / 5,
|
1276 |
+
sqrt(5 + 2 * sqrt(5)): pi * Rational(2, 5),
|
1277 |
+
sqrt(2) * sqrt(sqrt(5) + 5) / (-1 + sqrt(5)): pi * Rational(2, 5),
|
1278 |
+
sqrt(3) / 3: pi / 6,
|
1279 |
+
sqrt(2) - 1: pi / 8,
|
1280 |
+
sqrt(2 - sqrt(2)) / sqrt(sqrt(2) + 2): pi / 8,
|
1281 |
+
sqrt(2) + 1: pi * Rational(3, 8),
|
1282 |
+
sqrt(sqrt(2) + 2) / sqrt(2 - sqrt(2)): pi * Rational(3, 8),
|
1283 |
+
sqrt(1 - 2 * sqrt(5) / 5): pi / 10,
|
1284 |
+
(-sqrt(2) + sqrt(10)) / (2 * sqrt(sqrt(5) + 5)): pi / 10,
|
1285 |
+
sqrt(1 + 2 * sqrt(5) / 5): pi * Rational(3, 10),
|
1286 |
+
(sqrt(2) + sqrt(10)) / (2 * sqrt(5 - sqrt(5))): pi * Rational(3, 10),
|
1287 |
+
2 - sqrt(3): pi / 12,
|
1288 |
+
(-1 + sqrt(3)) / (1 + sqrt(3)): pi / 12,
|
1289 |
+
2 + sqrt(3): pi * Rational(5, 12),
|
1290 |
+
(1 + sqrt(3)) / (-1 + sqrt(3)): pi * Rational(5, 12)
|
1291 |
+
}
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/hyperbolic.py
ADDED
@@ -0,0 +1,2203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import S, sympify, cacheit
|
2 |
+
from sympy.core.add import Add
|
3 |
+
from sympy.core.function import Function, ArgumentIndexError
|
4 |
+
from sympy.core.logic import fuzzy_or, fuzzy_and, FuzzyBool
|
5 |
+
from sympy.core.numbers import I, pi, Rational
|
6 |
+
from sympy.core.symbol import Dummy
|
7 |
+
from sympy.functions.combinatorial.factorials import (binomial, factorial,
|
8 |
+
RisingFactorial)
|
9 |
+
from sympy.functions.combinatorial.numbers import bernoulli, euler, nC
|
10 |
+
from sympy.functions.elementary.complexes import Abs, im, re
|
11 |
+
from sympy.functions.elementary.exponential import exp, log, match_real_imag
|
12 |
+
from sympy.functions.elementary.integers import floor
|
13 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
14 |
+
from sympy.functions.elementary.trigonometric import (
|
15 |
+
acos, acot, asin, atan, cos, cot, csc, sec, sin, tan,
|
16 |
+
_imaginary_unit_as_coefficient)
|
17 |
+
from sympy.polys.specialpolys import symmetric_poly
|
18 |
+
|
19 |
+
|
20 |
+
def _rewrite_hyperbolics_as_exp(expr):
|
21 |
+
return expr.xreplace({h: h.rewrite(exp)
|
22 |
+
for h in expr.atoms(HyperbolicFunction)})
|
23 |
+
|
24 |
+
|
25 |
+
@cacheit
|
26 |
+
def _acosh_table():
|
27 |
+
return {
|
28 |
+
I: log(I*(1 + sqrt(2))),
|
29 |
+
-I: log(-I*(1 + sqrt(2))),
|
30 |
+
S.Half: pi/3,
|
31 |
+
Rational(-1, 2): pi*Rational(2, 3),
|
32 |
+
sqrt(2)/2: pi/4,
|
33 |
+
-sqrt(2)/2: pi*Rational(3, 4),
|
34 |
+
1/sqrt(2): pi/4,
|
35 |
+
-1/sqrt(2): pi*Rational(3, 4),
|
36 |
+
sqrt(3)/2: pi/6,
|
37 |
+
-sqrt(3)/2: pi*Rational(5, 6),
|
38 |
+
(sqrt(3) - 1)/sqrt(2**3): pi*Rational(5, 12),
|
39 |
+
-(sqrt(3) - 1)/sqrt(2**3): pi*Rational(7, 12),
|
40 |
+
sqrt(2 + sqrt(2))/2: pi/8,
|
41 |
+
-sqrt(2 + sqrt(2))/2: pi*Rational(7, 8),
|
42 |
+
sqrt(2 - sqrt(2))/2: pi*Rational(3, 8),
|
43 |
+
-sqrt(2 - sqrt(2))/2: pi*Rational(5, 8),
|
44 |
+
(1 + sqrt(3))/(2*sqrt(2)): pi/12,
|
45 |
+
-(1 + sqrt(3))/(2*sqrt(2)): pi*Rational(11, 12),
|
46 |
+
(sqrt(5) + 1)/4: pi/5,
|
47 |
+
-(sqrt(5) + 1)/4: pi*Rational(4, 5)
|
48 |
+
}
|
49 |
+
|
50 |
+
|
51 |
+
@cacheit
|
52 |
+
def _acsch_table():
|
53 |
+
return {
|
54 |
+
I: -pi / 2,
|
55 |
+
I*(sqrt(2) + sqrt(6)): -pi / 12,
|
56 |
+
I*(1 + sqrt(5)): -pi / 10,
|
57 |
+
I*2 / sqrt(2 - sqrt(2)): -pi / 8,
|
58 |
+
I*2: -pi / 6,
|
59 |
+
I*sqrt(2 + 2/sqrt(5)): -pi / 5,
|
60 |
+
I*sqrt(2): -pi / 4,
|
61 |
+
I*(sqrt(5)-1): -3*pi / 10,
|
62 |
+
I*2 / sqrt(3): -pi / 3,
|
63 |
+
I*2 / sqrt(2 + sqrt(2)): -3*pi / 8,
|
64 |
+
I*sqrt(2 - 2/sqrt(5)): -2*pi / 5,
|
65 |
+
I*(sqrt(6) - sqrt(2)): -5*pi / 12,
|
66 |
+
S(2): -I*log((1+sqrt(5))/2),
|
67 |
+
}
|
68 |
+
|
69 |
+
|
70 |
+
@cacheit
|
71 |
+
def _asech_table():
|
72 |
+
return {
|
73 |
+
I: - (pi*I / 2) + log(1 + sqrt(2)),
|
74 |
+
-I: (pi*I / 2) + log(1 + sqrt(2)),
|
75 |
+
(sqrt(6) - sqrt(2)): pi / 12,
|
76 |
+
(sqrt(2) - sqrt(6)): 11*pi / 12,
|
77 |
+
sqrt(2 - 2/sqrt(5)): pi / 10,
|
78 |
+
-sqrt(2 - 2/sqrt(5)): 9*pi / 10,
|
79 |
+
2 / sqrt(2 + sqrt(2)): pi / 8,
|
80 |
+
-2 / sqrt(2 + sqrt(2)): 7*pi / 8,
|
81 |
+
2 / sqrt(3): pi / 6,
|
82 |
+
-2 / sqrt(3): 5*pi / 6,
|
83 |
+
(sqrt(5) - 1): pi / 5,
|
84 |
+
(1 - sqrt(5)): 4*pi / 5,
|
85 |
+
sqrt(2): pi / 4,
|
86 |
+
-sqrt(2): 3*pi / 4,
|
87 |
+
sqrt(2 + 2/sqrt(5)): 3*pi / 10,
|
88 |
+
-sqrt(2 + 2/sqrt(5)): 7*pi / 10,
|
89 |
+
S(2): pi / 3,
|
90 |
+
-S(2): 2*pi / 3,
|
91 |
+
sqrt(2*(2 + sqrt(2))): 3*pi / 8,
|
92 |
+
-sqrt(2*(2 + sqrt(2))): 5*pi / 8,
|
93 |
+
(1 + sqrt(5)): 2*pi / 5,
|
94 |
+
(-1 - sqrt(5)): 3*pi / 5,
|
95 |
+
(sqrt(6) + sqrt(2)): 5*pi / 12,
|
96 |
+
(-sqrt(6) - sqrt(2)): 7*pi / 12,
|
97 |
+
I*S.Infinity: -pi*I / 2,
|
98 |
+
I*S.NegativeInfinity: pi*I / 2,
|
99 |
+
}
|
100 |
+
|
101 |
+
###############################################################################
|
102 |
+
########################### HYPERBOLIC FUNCTIONS ##############################
|
103 |
+
###############################################################################
|
104 |
+
|
105 |
+
|
106 |
+
class HyperbolicFunction(Function):
|
107 |
+
"""
|
108 |
+
Base class for hyperbolic functions.
|
109 |
+
|
110 |
+
See Also
|
111 |
+
========
|
112 |
+
|
113 |
+
sinh, cosh, tanh, coth
|
114 |
+
"""
|
115 |
+
|
116 |
+
unbranched = True
|
117 |
+
|
118 |
+
|
119 |
+
def _peeloff_ipi(arg):
|
120 |
+
r"""
|
121 |
+
Split ARG into two parts, a "rest" and a multiple of $I\pi$.
|
122 |
+
This assumes ARG to be an ``Add``.
|
123 |
+
The multiple of $I\pi$ returned in the second position is always a ``Rational``.
|
124 |
+
|
125 |
+
Examples
|
126 |
+
========
|
127 |
+
|
128 |
+
>>> from sympy.functions.elementary.hyperbolic import _peeloff_ipi as peel
|
129 |
+
>>> from sympy import pi, I
|
130 |
+
>>> from sympy.abc import x, y
|
131 |
+
>>> peel(x + I*pi/2)
|
132 |
+
(x, 1/2)
|
133 |
+
>>> peel(x + I*2*pi/3 + I*pi*y)
|
134 |
+
(x + I*pi*y + I*pi/6, 1/2)
|
135 |
+
"""
|
136 |
+
ipi = pi*I
|
137 |
+
for a in Add.make_args(arg):
|
138 |
+
if a == ipi:
|
139 |
+
K = S.One
|
140 |
+
break
|
141 |
+
elif a.is_Mul:
|
142 |
+
K, p = a.as_two_terms()
|
143 |
+
if p == ipi and K.is_Rational:
|
144 |
+
break
|
145 |
+
else:
|
146 |
+
return arg, S.Zero
|
147 |
+
|
148 |
+
m1 = (K % S.Half)
|
149 |
+
m2 = K - m1
|
150 |
+
return arg - m2*ipi, m2
|
151 |
+
|
152 |
+
|
153 |
+
class sinh(HyperbolicFunction):
|
154 |
+
r"""
|
155 |
+
``sinh(x)`` is the hyperbolic sine of ``x``.
|
156 |
+
|
157 |
+
The hyperbolic sine function is $\frac{e^x - e^{-x}}{2}$.
|
158 |
+
|
159 |
+
Examples
|
160 |
+
========
|
161 |
+
|
162 |
+
>>> from sympy import sinh
|
163 |
+
>>> from sympy.abc import x
|
164 |
+
>>> sinh(x)
|
165 |
+
sinh(x)
|
166 |
+
|
167 |
+
See Also
|
168 |
+
========
|
169 |
+
|
170 |
+
cosh, tanh, asinh
|
171 |
+
"""
|
172 |
+
|
173 |
+
def fdiff(self, argindex=1):
|
174 |
+
"""
|
175 |
+
Returns the first derivative of this function.
|
176 |
+
"""
|
177 |
+
if argindex == 1:
|
178 |
+
return cosh(self.args[0])
|
179 |
+
else:
|
180 |
+
raise ArgumentIndexError(self, argindex)
|
181 |
+
|
182 |
+
def inverse(self, argindex=1):
|
183 |
+
"""
|
184 |
+
Returns the inverse of this function.
|
185 |
+
"""
|
186 |
+
return asinh
|
187 |
+
|
188 |
+
@classmethod
|
189 |
+
def eval(cls, arg):
|
190 |
+
if arg.is_Number:
|
191 |
+
if arg is S.NaN:
|
192 |
+
return S.NaN
|
193 |
+
elif arg is S.Infinity:
|
194 |
+
return S.Infinity
|
195 |
+
elif arg is S.NegativeInfinity:
|
196 |
+
return S.NegativeInfinity
|
197 |
+
elif arg.is_zero:
|
198 |
+
return S.Zero
|
199 |
+
elif arg.is_negative:
|
200 |
+
return -cls(-arg)
|
201 |
+
else:
|
202 |
+
if arg is S.ComplexInfinity:
|
203 |
+
return S.NaN
|
204 |
+
|
205 |
+
i_coeff = _imaginary_unit_as_coefficient(arg)
|
206 |
+
|
207 |
+
if i_coeff is not None:
|
208 |
+
return I * sin(i_coeff)
|
209 |
+
else:
|
210 |
+
if arg.could_extract_minus_sign():
|
211 |
+
return -cls(-arg)
|
212 |
+
|
213 |
+
if arg.is_Add:
|
214 |
+
x, m = _peeloff_ipi(arg)
|
215 |
+
if m:
|
216 |
+
m = m*pi*I
|
217 |
+
return sinh(m)*cosh(x) + cosh(m)*sinh(x)
|
218 |
+
|
219 |
+
if arg.is_zero:
|
220 |
+
return S.Zero
|
221 |
+
|
222 |
+
if arg.func == asinh:
|
223 |
+
return arg.args[0]
|
224 |
+
|
225 |
+
if arg.func == acosh:
|
226 |
+
x = arg.args[0]
|
227 |
+
return sqrt(x - 1) * sqrt(x + 1)
|
228 |
+
|
229 |
+
if arg.func == atanh:
|
230 |
+
x = arg.args[0]
|
231 |
+
return x/sqrt(1 - x**2)
|
232 |
+
|
233 |
+
if arg.func == acoth:
|
234 |
+
x = arg.args[0]
|
235 |
+
return 1/(sqrt(x - 1) * sqrt(x + 1))
|
236 |
+
|
237 |
+
@staticmethod
|
238 |
+
@cacheit
|
239 |
+
def taylor_term(n, x, *previous_terms):
|
240 |
+
"""
|
241 |
+
Returns the next term in the Taylor series expansion.
|
242 |
+
"""
|
243 |
+
if n < 0 or n % 2 == 0:
|
244 |
+
return S.Zero
|
245 |
+
else:
|
246 |
+
x = sympify(x)
|
247 |
+
|
248 |
+
if len(previous_terms) > 2:
|
249 |
+
p = previous_terms[-2]
|
250 |
+
return p * x**2 / (n*(n - 1))
|
251 |
+
else:
|
252 |
+
return x**(n) / factorial(n)
|
253 |
+
|
254 |
+
def _eval_conjugate(self):
|
255 |
+
return self.func(self.args[0].conjugate())
|
256 |
+
|
257 |
+
def as_real_imag(self, deep=True, **hints):
|
258 |
+
"""
|
259 |
+
Returns this function as a complex coordinate.
|
260 |
+
"""
|
261 |
+
if self.args[0].is_extended_real:
|
262 |
+
if deep:
|
263 |
+
hints['complex'] = False
|
264 |
+
return (self.expand(deep, **hints), S.Zero)
|
265 |
+
else:
|
266 |
+
return (self, S.Zero)
|
267 |
+
if deep:
|
268 |
+
re, im = self.args[0].expand(deep, **hints).as_real_imag()
|
269 |
+
else:
|
270 |
+
re, im = self.args[0].as_real_imag()
|
271 |
+
return (sinh(re)*cos(im), cosh(re)*sin(im))
|
272 |
+
|
273 |
+
def _eval_expand_complex(self, deep=True, **hints):
|
274 |
+
re_part, im_part = self.as_real_imag(deep=deep, **hints)
|
275 |
+
return re_part + im_part*I
|
276 |
+
|
277 |
+
def _eval_expand_trig(self, deep=True, **hints):
|
278 |
+
if deep:
|
279 |
+
arg = self.args[0].expand(deep, **hints)
|
280 |
+
else:
|
281 |
+
arg = self.args[0]
|
282 |
+
x = None
|
283 |
+
if arg.is_Add: # TODO, implement more if deep stuff here
|
284 |
+
x, y = arg.as_two_terms()
|
285 |
+
else:
|
286 |
+
coeff, terms = arg.as_coeff_Mul(rational=True)
|
287 |
+
if coeff is not S.One and coeff.is_Integer and terms is not S.One:
|
288 |
+
x = terms
|
289 |
+
y = (coeff - 1)*x
|
290 |
+
if x is not None:
|
291 |
+
return (sinh(x)*cosh(y) + sinh(y)*cosh(x)).expand(trig=True)
|
292 |
+
return sinh(arg)
|
293 |
+
|
294 |
+
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
|
295 |
+
return (exp(arg) - exp(-arg)) / 2
|
296 |
+
|
297 |
+
def _eval_rewrite_as_exp(self, arg, **kwargs):
|
298 |
+
return (exp(arg) - exp(-arg)) / 2
|
299 |
+
|
300 |
+
def _eval_rewrite_as_sin(self, arg, **kwargs):
|
301 |
+
return -I * sin(I * arg)
|
302 |
+
|
303 |
+
def _eval_rewrite_as_csc(self, arg, **kwargs):
|
304 |
+
return -I / csc(I * arg)
|
305 |
+
|
306 |
+
def _eval_rewrite_as_cosh(self, arg, **kwargs):
|
307 |
+
return -I*cosh(arg + pi*I/2)
|
308 |
+
|
309 |
+
def _eval_rewrite_as_tanh(self, arg, **kwargs):
|
310 |
+
tanh_half = tanh(S.Half*arg)
|
311 |
+
return 2*tanh_half/(1 - tanh_half**2)
|
312 |
+
|
313 |
+
def _eval_rewrite_as_coth(self, arg, **kwargs):
|
314 |
+
coth_half = coth(S.Half*arg)
|
315 |
+
return 2*coth_half/(coth_half**2 - 1)
|
316 |
+
|
317 |
+
def _eval_rewrite_as_csch(self, arg, **kwargs):
|
318 |
+
return 1 / csch(arg)
|
319 |
+
|
320 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
321 |
+
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
|
322 |
+
arg0 = arg.subs(x, 0)
|
323 |
+
|
324 |
+
if arg0 is S.NaN:
|
325 |
+
arg0 = arg.limit(x, 0, dir='-' if cdir.is_negative else '+')
|
326 |
+
if arg0.is_zero:
|
327 |
+
return arg
|
328 |
+
elif arg0.is_finite:
|
329 |
+
return self.func(arg0)
|
330 |
+
else:
|
331 |
+
return self
|
332 |
+
|
333 |
+
def _eval_is_real(self):
|
334 |
+
arg = self.args[0]
|
335 |
+
if arg.is_real:
|
336 |
+
return True
|
337 |
+
|
338 |
+
# if `im` is of the form n*pi
|
339 |
+
# else, check if it is a number
|
340 |
+
re, im = arg.as_real_imag()
|
341 |
+
return (im%pi).is_zero
|
342 |
+
|
343 |
+
def _eval_is_extended_real(self):
|
344 |
+
if self.args[0].is_extended_real:
|
345 |
+
return True
|
346 |
+
|
347 |
+
def _eval_is_positive(self):
|
348 |
+
if self.args[0].is_extended_real:
|
349 |
+
return self.args[0].is_positive
|
350 |
+
|
351 |
+
def _eval_is_negative(self):
|
352 |
+
if self.args[0].is_extended_real:
|
353 |
+
return self.args[0].is_negative
|
354 |
+
|
355 |
+
def _eval_is_finite(self):
|
356 |
+
arg = self.args[0]
|
357 |
+
return arg.is_finite
|
358 |
+
|
359 |
+
def _eval_is_zero(self):
|
360 |
+
rest, ipi_mult = _peeloff_ipi(self.args[0])
|
361 |
+
if rest.is_zero:
|
362 |
+
return ipi_mult.is_integer
|
363 |
+
|
364 |
+
|
365 |
+
class cosh(HyperbolicFunction):
|
366 |
+
r"""
|
367 |
+
``cosh(x)`` is the hyperbolic cosine of ``x``.
|
368 |
+
|
369 |
+
The hyperbolic cosine function is $\frac{e^x + e^{-x}}{2}$.
|
370 |
+
|
371 |
+
Examples
|
372 |
+
========
|
373 |
+
|
374 |
+
>>> from sympy import cosh
|
375 |
+
>>> from sympy.abc import x
|
376 |
+
>>> cosh(x)
|
377 |
+
cosh(x)
|
378 |
+
|
379 |
+
See Also
|
380 |
+
========
|
381 |
+
|
382 |
+
sinh, tanh, acosh
|
383 |
+
"""
|
384 |
+
|
385 |
+
def fdiff(self, argindex=1):
|
386 |
+
if argindex == 1:
|
387 |
+
return sinh(self.args[0])
|
388 |
+
else:
|
389 |
+
raise ArgumentIndexError(self, argindex)
|
390 |
+
|
391 |
+
@classmethod
|
392 |
+
def eval(cls, arg):
|
393 |
+
from sympy.functions.elementary.trigonometric import cos
|
394 |
+
if arg.is_Number:
|
395 |
+
if arg is S.NaN:
|
396 |
+
return S.NaN
|
397 |
+
elif arg is S.Infinity:
|
398 |
+
return S.Infinity
|
399 |
+
elif arg is S.NegativeInfinity:
|
400 |
+
return S.Infinity
|
401 |
+
elif arg.is_zero:
|
402 |
+
return S.One
|
403 |
+
elif arg.is_negative:
|
404 |
+
return cls(-arg)
|
405 |
+
else:
|
406 |
+
if arg is S.ComplexInfinity:
|
407 |
+
return S.NaN
|
408 |
+
|
409 |
+
i_coeff = _imaginary_unit_as_coefficient(arg)
|
410 |
+
|
411 |
+
if i_coeff is not None:
|
412 |
+
return cos(i_coeff)
|
413 |
+
else:
|
414 |
+
if arg.could_extract_minus_sign():
|
415 |
+
return cls(-arg)
|
416 |
+
|
417 |
+
if arg.is_Add:
|
418 |
+
x, m = _peeloff_ipi(arg)
|
419 |
+
if m:
|
420 |
+
m = m*pi*I
|
421 |
+
return cosh(m)*cosh(x) + sinh(m)*sinh(x)
|
422 |
+
|
423 |
+
if arg.is_zero:
|
424 |
+
return S.One
|
425 |
+
|
426 |
+
if arg.func == asinh:
|
427 |
+
return sqrt(1 + arg.args[0]**2)
|
428 |
+
|
429 |
+
if arg.func == acosh:
|
430 |
+
return arg.args[0]
|
431 |
+
|
432 |
+
if arg.func == atanh:
|
433 |
+
return 1/sqrt(1 - arg.args[0]**2)
|
434 |
+
|
435 |
+
if arg.func == acoth:
|
436 |
+
x = arg.args[0]
|
437 |
+
return x/(sqrt(x - 1) * sqrt(x + 1))
|
438 |
+
|
439 |
+
@staticmethod
|
440 |
+
@cacheit
|
441 |
+
def taylor_term(n, x, *previous_terms):
|
442 |
+
if n < 0 or n % 2 == 1:
|
443 |
+
return S.Zero
|
444 |
+
else:
|
445 |
+
x = sympify(x)
|
446 |
+
|
447 |
+
if len(previous_terms) > 2:
|
448 |
+
p = previous_terms[-2]
|
449 |
+
return p * x**2 / (n*(n - 1))
|
450 |
+
else:
|
451 |
+
return x**(n)/factorial(n)
|
452 |
+
|
453 |
+
def _eval_conjugate(self):
|
454 |
+
return self.func(self.args[0].conjugate())
|
455 |
+
|
456 |
+
def as_real_imag(self, deep=True, **hints):
|
457 |
+
if self.args[0].is_extended_real:
|
458 |
+
if deep:
|
459 |
+
hints['complex'] = False
|
460 |
+
return (self.expand(deep, **hints), S.Zero)
|
461 |
+
else:
|
462 |
+
return (self, S.Zero)
|
463 |
+
if deep:
|
464 |
+
re, im = self.args[0].expand(deep, **hints).as_real_imag()
|
465 |
+
else:
|
466 |
+
re, im = self.args[0].as_real_imag()
|
467 |
+
|
468 |
+
return (cosh(re)*cos(im), sinh(re)*sin(im))
|
469 |
+
|
470 |
+
def _eval_expand_complex(self, deep=True, **hints):
|
471 |
+
re_part, im_part = self.as_real_imag(deep=deep, **hints)
|
472 |
+
return re_part + im_part*I
|
473 |
+
|
474 |
+
def _eval_expand_trig(self, deep=True, **hints):
|
475 |
+
if deep:
|
476 |
+
arg = self.args[0].expand(deep, **hints)
|
477 |
+
else:
|
478 |
+
arg = self.args[0]
|
479 |
+
x = None
|
480 |
+
if arg.is_Add: # TODO, implement more if deep stuff here
|
481 |
+
x, y = arg.as_two_terms()
|
482 |
+
else:
|
483 |
+
coeff, terms = arg.as_coeff_Mul(rational=True)
|
484 |
+
if coeff is not S.One and coeff.is_Integer and terms is not S.One:
|
485 |
+
x = terms
|
486 |
+
y = (coeff - 1)*x
|
487 |
+
if x is not None:
|
488 |
+
return (cosh(x)*cosh(y) + sinh(x)*sinh(y)).expand(trig=True)
|
489 |
+
return cosh(arg)
|
490 |
+
|
491 |
+
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
|
492 |
+
return (exp(arg) + exp(-arg)) / 2
|
493 |
+
|
494 |
+
def _eval_rewrite_as_exp(self, arg, **kwargs):
|
495 |
+
return (exp(arg) + exp(-arg)) / 2
|
496 |
+
|
497 |
+
def _eval_rewrite_as_cos(self, arg, **kwargs):
|
498 |
+
return cos(I * arg)
|
499 |
+
|
500 |
+
def _eval_rewrite_as_sec(self, arg, **kwargs):
|
501 |
+
return 1 / sec(I * arg)
|
502 |
+
|
503 |
+
def _eval_rewrite_as_sinh(self, arg, **kwargs):
|
504 |
+
return -I*sinh(arg + pi*I/2)
|
505 |
+
|
506 |
+
def _eval_rewrite_as_tanh(self, arg, **kwargs):
|
507 |
+
tanh_half = tanh(S.Half*arg)**2
|
508 |
+
return (1 + tanh_half)/(1 - tanh_half)
|
509 |
+
|
510 |
+
def _eval_rewrite_as_coth(self, arg, **kwargs):
|
511 |
+
coth_half = coth(S.Half*arg)**2
|
512 |
+
return (coth_half + 1)/(coth_half - 1)
|
513 |
+
|
514 |
+
def _eval_rewrite_as_sech(self, arg, **kwargs):
|
515 |
+
return 1 / sech(arg)
|
516 |
+
|
517 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
518 |
+
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
|
519 |
+
arg0 = arg.subs(x, 0)
|
520 |
+
|
521 |
+
if arg0 is S.NaN:
|
522 |
+
arg0 = arg.limit(x, 0, dir='-' if cdir.is_negative else '+')
|
523 |
+
if arg0.is_zero:
|
524 |
+
return S.One
|
525 |
+
elif arg0.is_finite:
|
526 |
+
return self.func(arg0)
|
527 |
+
else:
|
528 |
+
return self
|
529 |
+
|
530 |
+
def _eval_is_real(self):
|
531 |
+
arg = self.args[0]
|
532 |
+
|
533 |
+
# `cosh(x)` is real for real OR purely imaginary `x`
|
534 |
+
if arg.is_real or arg.is_imaginary:
|
535 |
+
return True
|
536 |
+
|
537 |
+
# cosh(a+ib) = cos(b)*cosh(a) + i*sin(b)*sinh(a)
|
538 |
+
# the imaginary part can be an expression like n*pi
|
539 |
+
# if not, check if the imaginary part is a number
|
540 |
+
re, im = arg.as_real_imag()
|
541 |
+
return (im%pi).is_zero
|
542 |
+
|
543 |
+
def _eval_is_positive(self):
|
544 |
+
# cosh(x+I*y) = cos(y)*cosh(x) + I*sin(y)*sinh(x)
|
545 |
+
# cosh(z) is positive iff it is real and the real part is positive.
|
546 |
+
# So we need sin(y)*sinh(x) = 0 which gives x=0 or y=n*pi
|
547 |
+
# Case 1 (y=n*pi): cosh(z) = (-1)**n * cosh(x) -> positive for n even
|
548 |
+
# Case 2 (x=0): cosh(z) = cos(y) -> positive when cos(y) is positive
|
549 |
+
z = self.args[0]
|
550 |
+
|
551 |
+
x, y = z.as_real_imag()
|
552 |
+
ymod = y % (2*pi)
|
553 |
+
|
554 |
+
yzero = ymod.is_zero
|
555 |
+
# shortcut if ymod is zero
|
556 |
+
if yzero:
|
557 |
+
return True
|
558 |
+
|
559 |
+
xzero = x.is_zero
|
560 |
+
# shortcut x is not zero
|
561 |
+
if xzero is False:
|
562 |
+
return yzero
|
563 |
+
|
564 |
+
return fuzzy_or([
|
565 |
+
# Case 1:
|
566 |
+
yzero,
|
567 |
+
# Case 2:
|
568 |
+
fuzzy_and([
|
569 |
+
xzero,
|
570 |
+
fuzzy_or([ymod < pi/2, ymod > 3*pi/2])
|
571 |
+
])
|
572 |
+
])
|
573 |
+
|
574 |
+
|
575 |
+
def _eval_is_nonnegative(self):
|
576 |
+
z = self.args[0]
|
577 |
+
|
578 |
+
x, y = z.as_real_imag()
|
579 |
+
ymod = y % (2*pi)
|
580 |
+
|
581 |
+
yzero = ymod.is_zero
|
582 |
+
# shortcut if ymod is zero
|
583 |
+
if yzero:
|
584 |
+
return True
|
585 |
+
|
586 |
+
xzero = x.is_zero
|
587 |
+
# shortcut x is not zero
|
588 |
+
if xzero is False:
|
589 |
+
return yzero
|
590 |
+
|
591 |
+
return fuzzy_or([
|
592 |
+
# Case 1:
|
593 |
+
yzero,
|
594 |
+
# Case 2:
|
595 |
+
fuzzy_and([
|
596 |
+
xzero,
|
597 |
+
fuzzy_or([ymod <= pi/2, ymod >= 3*pi/2])
|
598 |
+
])
|
599 |
+
])
|
600 |
+
|
601 |
+
def _eval_is_finite(self):
|
602 |
+
arg = self.args[0]
|
603 |
+
return arg.is_finite
|
604 |
+
|
605 |
+
def _eval_is_zero(self):
|
606 |
+
rest, ipi_mult = _peeloff_ipi(self.args[0])
|
607 |
+
if ipi_mult and rest.is_zero:
|
608 |
+
return (ipi_mult - S.Half).is_integer
|
609 |
+
|
610 |
+
|
611 |
+
class tanh(HyperbolicFunction):
|
612 |
+
r"""
|
613 |
+
``tanh(x)`` is the hyperbolic tangent of ``x``.
|
614 |
+
|
615 |
+
The hyperbolic tangent function is $\frac{\sinh(x)}{\cosh(x)}$.
|
616 |
+
|
617 |
+
Examples
|
618 |
+
========
|
619 |
+
|
620 |
+
>>> from sympy import tanh
|
621 |
+
>>> from sympy.abc import x
|
622 |
+
>>> tanh(x)
|
623 |
+
tanh(x)
|
624 |
+
|
625 |
+
See Also
|
626 |
+
========
|
627 |
+
|
628 |
+
sinh, cosh, atanh
|
629 |
+
"""
|
630 |
+
|
631 |
+
def fdiff(self, argindex=1):
|
632 |
+
if argindex == 1:
|
633 |
+
return S.One - tanh(self.args[0])**2
|
634 |
+
else:
|
635 |
+
raise ArgumentIndexError(self, argindex)
|
636 |
+
|
637 |
+
def inverse(self, argindex=1):
|
638 |
+
"""
|
639 |
+
Returns the inverse of this function.
|
640 |
+
"""
|
641 |
+
return atanh
|
642 |
+
|
643 |
+
@classmethod
|
644 |
+
def eval(cls, arg):
|
645 |
+
if arg.is_Number:
|
646 |
+
if arg is S.NaN:
|
647 |
+
return S.NaN
|
648 |
+
elif arg is S.Infinity:
|
649 |
+
return S.One
|
650 |
+
elif arg is S.NegativeInfinity:
|
651 |
+
return S.NegativeOne
|
652 |
+
elif arg.is_zero:
|
653 |
+
return S.Zero
|
654 |
+
elif arg.is_negative:
|
655 |
+
return -cls(-arg)
|
656 |
+
else:
|
657 |
+
if arg is S.ComplexInfinity:
|
658 |
+
return S.NaN
|
659 |
+
|
660 |
+
i_coeff = _imaginary_unit_as_coefficient(arg)
|
661 |
+
|
662 |
+
if i_coeff is not None:
|
663 |
+
if i_coeff.could_extract_minus_sign():
|
664 |
+
return -I * tan(-i_coeff)
|
665 |
+
return I * tan(i_coeff)
|
666 |
+
else:
|
667 |
+
if arg.could_extract_minus_sign():
|
668 |
+
return -cls(-arg)
|
669 |
+
|
670 |
+
if arg.is_Add:
|
671 |
+
x, m = _peeloff_ipi(arg)
|
672 |
+
if m:
|
673 |
+
tanhm = tanh(m*pi*I)
|
674 |
+
if tanhm is S.ComplexInfinity:
|
675 |
+
return coth(x)
|
676 |
+
else: # tanhm == 0
|
677 |
+
return tanh(x)
|
678 |
+
|
679 |
+
if arg.is_zero:
|
680 |
+
return S.Zero
|
681 |
+
|
682 |
+
if arg.func == asinh:
|
683 |
+
x = arg.args[0]
|
684 |
+
return x/sqrt(1 + x**2)
|
685 |
+
|
686 |
+
if arg.func == acosh:
|
687 |
+
x = arg.args[0]
|
688 |
+
return sqrt(x - 1) * sqrt(x + 1) / x
|
689 |
+
|
690 |
+
if arg.func == atanh:
|
691 |
+
return arg.args[0]
|
692 |
+
|
693 |
+
if arg.func == acoth:
|
694 |
+
return 1/arg.args[0]
|
695 |
+
|
696 |
+
@staticmethod
|
697 |
+
@cacheit
|
698 |
+
def taylor_term(n, x, *previous_terms):
|
699 |
+
if n < 0 or n % 2 == 0:
|
700 |
+
return S.Zero
|
701 |
+
else:
|
702 |
+
x = sympify(x)
|
703 |
+
|
704 |
+
a = 2**(n + 1)
|
705 |
+
|
706 |
+
B = bernoulli(n + 1)
|
707 |
+
F = factorial(n + 1)
|
708 |
+
|
709 |
+
return a*(a - 1) * B/F * x**n
|
710 |
+
|
711 |
+
def _eval_conjugate(self):
|
712 |
+
return self.func(self.args[0].conjugate())
|
713 |
+
|
714 |
+
def as_real_imag(self, deep=True, **hints):
|
715 |
+
if self.args[0].is_extended_real:
|
716 |
+
if deep:
|
717 |
+
hints['complex'] = False
|
718 |
+
return (self.expand(deep, **hints), S.Zero)
|
719 |
+
else:
|
720 |
+
return (self, S.Zero)
|
721 |
+
if deep:
|
722 |
+
re, im = self.args[0].expand(deep, **hints).as_real_imag()
|
723 |
+
else:
|
724 |
+
re, im = self.args[0].as_real_imag()
|
725 |
+
denom = sinh(re)**2 + cos(im)**2
|
726 |
+
return (sinh(re)*cosh(re)/denom, sin(im)*cos(im)/denom)
|
727 |
+
|
728 |
+
def _eval_expand_trig(self, **hints):
|
729 |
+
arg = self.args[0]
|
730 |
+
if arg.is_Add:
|
731 |
+
n = len(arg.args)
|
732 |
+
TX = [tanh(x, evaluate=False)._eval_expand_trig()
|
733 |
+
for x in arg.args]
|
734 |
+
p = [0, 0] # [den, num]
|
735 |
+
for i in range(n + 1):
|
736 |
+
p[i % 2] += symmetric_poly(i, TX)
|
737 |
+
return p[1]/p[0]
|
738 |
+
elif arg.is_Mul:
|
739 |
+
coeff, terms = arg.as_coeff_Mul()
|
740 |
+
if coeff.is_Integer and coeff > 1:
|
741 |
+
T = tanh(terms)
|
742 |
+
n = [nC(range(coeff), k)*T**k for k in range(1, coeff + 1, 2)]
|
743 |
+
d = [nC(range(coeff), k)*T**k for k in range(0, coeff + 1, 2)]
|
744 |
+
return Add(*n)/Add(*d)
|
745 |
+
return tanh(arg)
|
746 |
+
|
747 |
+
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
|
748 |
+
neg_exp, pos_exp = exp(-arg), exp(arg)
|
749 |
+
return (pos_exp - neg_exp)/(pos_exp + neg_exp)
|
750 |
+
|
751 |
+
def _eval_rewrite_as_exp(self, arg, **kwargs):
|
752 |
+
neg_exp, pos_exp = exp(-arg), exp(arg)
|
753 |
+
return (pos_exp - neg_exp)/(pos_exp + neg_exp)
|
754 |
+
|
755 |
+
def _eval_rewrite_as_tan(self, arg, **kwargs):
|
756 |
+
return -I * tan(I * arg)
|
757 |
+
|
758 |
+
def _eval_rewrite_as_cot(self, arg, **kwargs):
|
759 |
+
return -I / cot(I * arg)
|
760 |
+
|
761 |
+
def _eval_rewrite_as_sinh(self, arg, **kwargs):
|
762 |
+
return I*sinh(arg)/sinh(pi*I/2 - arg)
|
763 |
+
|
764 |
+
def _eval_rewrite_as_cosh(self, arg, **kwargs):
|
765 |
+
return I*cosh(pi*I/2 - arg)/cosh(arg)
|
766 |
+
|
767 |
+
def _eval_rewrite_as_coth(self, arg, **kwargs):
|
768 |
+
return 1/coth(arg)
|
769 |
+
|
770 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
771 |
+
from sympy.series.order import Order
|
772 |
+
arg = self.args[0].as_leading_term(x)
|
773 |
+
|
774 |
+
if x in arg.free_symbols and Order(1, x).contains(arg):
|
775 |
+
return arg
|
776 |
+
else:
|
777 |
+
return self.func(arg)
|
778 |
+
|
779 |
+
def _eval_is_real(self):
|
780 |
+
arg = self.args[0]
|
781 |
+
if arg.is_real:
|
782 |
+
return True
|
783 |
+
|
784 |
+
re, im = arg.as_real_imag()
|
785 |
+
|
786 |
+
# if denom = 0, tanh(arg) = zoo
|
787 |
+
if re == 0 and im % pi == pi/2:
|
788 |
+
return None
|
789 |
+
|
790 |
+
# check if im is of the form n*pi/2 to make sin(2*im) = 0
|
791 |
+
# if not, im could be a number, return False in that case
|
792 |
+
return (im % (pi/2)).is_zero
|
793 |
+
|
794 |
+
def _eval_is_extended_real(self):
|
795 |
+
if self.args[0].is_extended_real:
|
796 |
+
return True
|
797 |
+
|
798 |
+
def _eval_is_positive(self):
|
799 |
+
if self.args[0].is_extended_real:
|
800 |
+
return self.args[0].is_positive
|
801 |
+
|
802 |
+
def _eval_is_negative(self):
|
803 |
+
if self.args[0].is_extended_real:
|
804 |
+
return self.args[0].is_negative
|
805 |
+
|
806 |
+
def _eval_is_finite(self):
|
807 |
+
arg = self.args[0]
|
808 |
+
|
809 |
+
re, im = arg.as_real_imag()
|
810 |
+
denom = cos(im)**2 + sinh(re)**2
|
811 |
+
if denom == 0:
|
812 |
+
return False
|
813 |
+
elif denom.is_number:
|
814 |
+
return True
|
815 |
+
if arg.is_extended_real:
|
816 |
+
return True
|
817 |
+
|
818 |
+
def _eval_is_zero(self):
|
819 |
+
arg = self.args[0]
|
820 |
+
if arg.is_zero:
|
821 |
+
return True
|
822 |
+
|
823 |
+
|
824 |
+
class coth(HyperbolicFunction):
|
825 |
+
r"""
|
826 |
+
``coth(x)`` is the hyperbolic cotangent of ``x``.
|
827 |
+
|
828 |
+
The hyperbolic cotangent function is $\frac{\cosh(x)}{\sinh(x)}$.
|
829 |
+
|
830 |
+
Examples
|
831 |
+
========
|
832 |
+
|
833 |
+
>>> from sympy import coth
|
834 |
+
>>> from sympy.abc import x
|
835 |
+
>>> coth(x)
|
836 |
+
coth(x)
|
837 |
+
|
838 |
+
See Also
|
839 |
+
========
|
840 |
+
|
841 |
+
sinh, cosh, acoth
|
842 |
+
"""
|
843 |
+
|
844 |
+
def fdiff(self, argindex=1):
|
845 |
+
if argindex == 1:
|
846 |
+
return -1/sinh(self.args[0])**2
|
847 |
+
else:
|
848 |
+
raise ArgumentIndexError(self, argindex)
|
849 |
+
|
850 |
+
def inverse(self, argindex=1):
|
851 |
+
"""
|
852 |
+
Returns the inverse of this function.
|
853 |
+
"""
|
854 |
+
return acoth
|
855 |
+
|
856 |
+
@classmethod
|
857 |
+
def eval(cls, arg):
|
858 |
+
if arg.is_Number:
|
859 |
+
if arg is S.NaN:
|
860 |
+
return S.NaN
|
861 |
+
elif arg is S.Infinity:
|
862 |
+
return S.One
|
863 |
+
elif arg is S.NegativeInfinity:
|
864 |
+
return S.NegativeOne
|
865 |
+
elif arg.is_zero:
|
866 |
+
return S.ComplexInfinity
|
867 |
+
elif arg.is_negative:
|
868 |
+
return -cls(-arg)
|
869 |
+
else:
|
870 |
+
if arg is S.ComplexInfinity:
|
871 |
+
return S.NaN
|
872 |
+
|
873 |
+
i_coeff = _imaginary_unit_as_coefficient(arg)
|
874 |
+
|
875 |
+
if i_coeff is not None:
|
876 |
+
if i_coeff.could_extract_minus_sign():
|
877 |
+
return I * cot(-i_coeff)
|
878 |
+
return -I * cot(i_coeff)
|
879 |
+
else:
|
880 |
+
if arg.could_extract_minus_sign():
|
881 |
+
return -cls(-arg)
|
882 |
+
|
883 |
+
if arg.is_Add:
|
884 |
+
x, m = _peeloff_ipi(arg)
|
885 |
+
if m:
|
886 |
+
cothm = coth(m*pi*I)
|
887 |
+
if cothm is S.ComplexInfinity:
|
888 |
+
return coth(x)
|
889 |
+
else: # cothm == 0
|
890 |
+
return tanh(x)
|
891 |
+
|
892 |
+
if arg.is_zero:
|
893 |
+
return S.ComplexInfinity
|
894 |
+
|
895 |
+
if arg.func == asinh:
|
896 |
+
x = arg.args[0]
|
897 |
+
return sqrt(1 + x**2)/x
|
898 |
+
|
899 |
+
if arg.func == acosh:
|
900 |
+
x = arg.args[0]
|
901 |
+
return x/(sqrt(x - 1) * sqrt(x + 1))
|
902 |
+
|
903 |
+
if arg.func == atanh:
|
904 |
+
return 1/arg.args[0]
|
905 |
+
|
906 |
+
if arg.func == acoth:
|
907 |
+
return arg.args[0]
|
908 |
+
|
909 |
+
@staticmethod
|
910 |
+
@cacheit
|
911 |
+
def taylor_term(n, x, *previous_terms):
|
912 |
+
if n == 0:
|
913 |
+
return 1 / sympify(x)
|
914 |
+
elif n < 0 or n % 2 == 0:
|
915 |
+
return S.Zero
|
916 |
+
else:
|
917 |
+
x = sympify(x)
|
918 |
+
|
919 |
+
B = bernoulli(n + 1)
|
920 |
+
F = factorial(n + 1)
|
921 |
+
|
922 |
+
return 2**(n + 1) * B/F * x**n
|
923 |
+
|
924 |
+
def _eval_conjugate(self):
|
925 |
+
return self.func(self.args[0].conjugate())
|
926 |
+
|
927 |
+
def as_real_imag(self, deep=True, **hints):
|
928 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
929 |
+
if self.args[0].is_extended_real:
|
930 |
+
if deep:
|
931 |
+
hints['complex'] = False
|
932 |
+
return (self.expand(deep, **hints), S.Zero)
|
933 |
+
else:
|
934 |
+
return (self, S.Zero)
|
935 |
+
if deep:
|
936 |
+
re, im = self.args[0].expand(deep, **hints).as_real_imag()
|
937 |
+
else:
|
938 |
+
re, im = self.args[0].as_real_imag()
|
939 |
+
denom = sinh(re)**2 + sin(im)**2
|
940 |
+
return (sinh(re)*cosh(re)/denom, -sin(im)*cos(im)/denom)
|
941 |
+
|
942 |
+
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
|
943 |
+
neg_exp, pos_exp = exp(-arg), exp(arg)
|
944 |
+
return (pos_exp + neg_exp)/(pos_exp - neg_exp)
|
945 |
+
|
946 |
+
def _eval_rewrite_as_exp(self, arg, **kwargs):
|
947 |
+
neg_exp, pos_exp = exp(-arg), exp(arg)
|
948 |
+
return (pos_exp + neg_exp)/(pos_exp - neg_exp)
|
949 |
+
|
950 |
+
def _eval_rewrite_as_sinh(self, arg, **kwargs):
|
951 |
+
return -I*sinh(pi*I/2 - arg)/sinh(arg)
|
952 |
+
|
953 |
+
def _eval_rewrite_as_cosh(self, arg, **kwargs):
|
954 |
+
return -I*cosh(arg)/cosh(pi*I/2 - arg)
|
955 |
+
|
956 |
+
def _eval_rewrite_as_tanh(self, arg, **kwargs):
|
957 |
+
return 1/tanh(arg)
|
958 |
+
|
959 |
+
def _eval_is_positive(self):
|
960 |
+
if self.args[0].is_extended_real:
|
961 |
+
return self.args[0].is_positive
|
962 |
+
|
963 |
+
def _eval_is_negative(self):
|
964 |
+
if self.args[0].is_extended_real:
|
965 |
+
return self.args[0].is_negative
|
966 |
+
|
967 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
968 |
+
from sympy.series.order import Order
|
969 |
+
arg = self.args[0].as_leading_term(x)
|
970 |
+
|
971 |
+
if x in arg.free_symbols and Order(1, x).contains(arg):
|
972 |
+
return 1/arg
|
973 |
+
else:
|
974 |
+
return self.func(arg)
|
975 |
+
|
976 |
+
def _eval_expand_trig(self, **hints):
|
977 |
+
arg = self.args[0]
|
978 |
+
if arg.is_Add:
|
979 |
+
CX = [coth(x, evaluate=False)._eval_expand_trig() for x in arg.args]
|
980 |
+
p = [[], []]
|
981 |
+
n = len(arg.args)
|
982 |
+
for i in range(n, -1, -1):
|
983 |
+
p[(n - i) % 2].append(symmetric_poly(i, CX))
|
984 |
+
return Add(*p[0])/Add(*p[1])
|
985 |
+
elif arg.is_Mul:
|
986 |
+
coeff, x = arg.as_coeff_Mul(rational=True)
|
987 |
+
if coeff.is_Integer and coeff > 1:
|
988 |
+
c = coth(x, evaluate=False)
|
989 |
+
p = [[], []]
|
990 |
+
for i in range(coeff, -1, -1):
|
991 |
+
p[(coeff - i) % 2].append(binomial(coeff, i)*c**i)
|
992 |
+
return Add(*p[0])/Add(*p[1])
|
993 |
+
return coth(arg)
|
994 |
+
|
995 |
+
|
996 |
+
class ReciprocalHyperbolicFunction(HyperbolicFunction):
|
997 |
+
"""Base class for reciprocal functions of hyperbolic functions. """
|
998 |
+
|
999 |
+
#To be defined in class
|
1000 |
+
_reciprocal_of = None
|
1001 |
+
_is_even: FuzzyBool = None
|
1002 |
+
_is_odd: FuzzyBool = None
|
1003 |
+
|
1004 |
+
@classmethod
|
1005 |
+
def eval(cls, arg):
|
1006 |
+
if arg.could_extract_minus_sign():
|
1007 |
+
if cls._is_even:
|
1008 |
+
return cls(-arg)
|
1009 |
+
if cls._is_odd:
|
1010 |
+
return -cls(-arg)
|
1011 |
+
|
1012 |
+
t = cls._reciprocal_of.eval(arg)
|
1013 |
+
if hasattr(arg, 'inverse') and arg.inverse() == cls:
|
1014 |
+
return arg.args[0]
|
1015 |
+
return 1/t if t is not None else t
|
1016 |
+
|
1017 |
+
def _call_reciprocal(self, method_name, *args, **kwargs):
|
1018 |
+
# Calls method_name on _reciprocal_of
|
1019 |
+
o = self._reciprocal_of(self.args[0])
|
1020 |
+
return getattr(o, method_name)(*args, **kwargs)
|
1021 |
+
|
1022 |
+
def _calculate_reciprocal(self, method_name, *args, **kwargs):
|
1023 |
+
# If calling method_name on _reciprocal_of returns a value != None
|
1024 |
+
# then return the reciprocal of that value
|
1025 |
+
t = self._call_reciprocal(method_name, *args, **kwargs)
|
1026 |
+
return 1/t if t is not None else t
|
1027 |
+
|
1028 |
+
def _rewrite_reciprocal(self, method_name, arg):
|
1029 |
+
# Special handling for rewrite functions. If reciprocal rewrite returns
|
1030 |
+
# unmodified expression, then return None
|
1031 |
+
t = self._call_reciprocal(method_name, arg)
|
1032 |
+
if t is not None and t != self._reciprocal_of(arg):
|
1033 |
+
return 1/t
|
1034 |
+
|
1035 |
+
def _eval_rewrite_as_exp(self, arg, **kwargs):
|
1036 |
+
return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg)
|
1037 |
+
|
1038 |
+
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
|
1039 |
+
return self._rewrite_reciprocal("_eval_rewrite_as_tractable", arg)
|
1040 |
+
|
1041 |
+
def _eval_rewrite_as_tanh(self, arg, **kwargs):
|
1042 |
+
return self._rewrite_reciprocal("_eval_rewrite_as_tanh", arg)
|
1043 |
+
|
1044 |
+
def _eval_rewrite_as_coth(self, arg, **kwargs):
|
1045 |
+
return self._rewrite_reciprocal("_eval_rewrite_as_coth", arg)
|
1046 |
+
|
1047 |
+
def as_real_imag(self, deep = True, **hints):
|
1048 |
+
return (1 / self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints)
|
1049 |
+
|
1050 |
+
def _eval_conjugate(self):
|
1051 |
+
return self.func(self.args[0].conjugate())
|
1052 |
+
|
1053 |
+
def _eval_expand_complex(self, deep=True, **hints):
|
1054 |
+
re_part, im_part = self.as_real_imag(deep=True, **hints)
|
1055 |
+
return re_part + I*im_part
|
1056 |
+
|
1057 |
+
def _eval_expand_trig(self, **hints):
|
1058 |
+
return self._calculate_reciprocal("_eval_expand_trig", **hints)
|
1059 |
+
|
1060 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
1061 |
+
return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x)
|
1062 |
+
|
1063 |
+
def _eval_is_extended_real(self):
|
1064 |
+
return self._reciprocal_of(self.args[0]).is_extended_real
|
1065 |
+
|
1066 |
+
def _eval_is_finite(self):
|
1067 |
+
return (1/self._reciprocal_of(self.args[0])).is_finite
|
1068 |
+
|
1069 |
+
|
1070 |
+
class csch(ReciprocalHyperbolicFunction):
|
1071 |
+
r"""
|
1072 |
+
``csch(x)`` is the hyperbolic cosecant of ``x``.
|
1073 |
+
|
1074 |
+
The hyperbolic cosecant function is $\frac{2}{e^x - e^{-x}}$
|
1075 |
+
|
1076 |
+
Examples
|
1077 |
+
========
|
1078 |
+
|
1079 |
+
>>> from sympy import csch
|
1080 |
+
>>> from sympy.abc import x
|
1081 |
+
>>> csch(x)
|
1082 |
+
csch(x)
|
1083 |
+
|
1084 |
+
See Also
|
1085 |
+
========
|
1086 |
+
|
1087 |
+
sinh, cosh, tanh, sech, asinh, acosh
|
1088 |
+
"""
|
1089 |
+
|
1090 |
+
_reciprocal_of = sinh
|
1091 |
+
_is_odd = True
|
1092 |
+
|
1093 |
+
def fdiff(self, argindex=1):
|
1094 |
+
"""
|
1095 |
+
Returns the first derivative of this function
|
1096 |
+
"""
|
1097 |
+
if argindex == 1:
|
1098 |
+
return -coth(self.args[0]) * csch(self.args[0])
|
1099 |
+
else:
|
1100 |
+
raise ArgumentIndexError(self, argindex)
|
1101 |
+
|
1102 |
+
@staticmethod
|
1103 |
+
@cacheit
|
1104 |
+
def taylor_term(n, x, *previous_terms):
|
1105 |
+
"""
|
1106 |
+
Returns the next term in the Taylor series expansion
|
1107 |
+
"""
|
1108 |
+
if n == 0:
|
1109 |
+
return 1/sympify(x)
|
1110 |
+
elif n < 0 or n % 2 == 0:
|
1111 |
+
return S.Zero
|
1112 |
+
else:
|
1113 |
+
x = sympify(x)
|
1114 |
+
|
1115 |
+
B = bernoulli(n + 1)
|
1116 |
+
F = factorial(n + 1)
|
1117 |
+
|
1118 |
+
return 2 * (1 - 2**n) * B/F * x**n
|
1119 |
+
|
1120 |
+
def _eval_rewrite_as_sin(self, arg, **kwargs):
|
1121 |
+
return I / sin(I * arg)
|
1122 |
+
|
1123 |
+
def _eval_rewrite_as_csc(self, arg, **kwargs):
|
1124 |
+
return I * csc(I * arg)
|
1125 |
+
|
1126 |
+
def _eval_rewrite_as_cosh(self, arg, **kwargs):
|
1127 |
+
return I / cosh(arg + I * pi / 2)
|
1128 |
+
|
1129 |
+
def _eval_rewrite_as_sinh(self, arg, **kwargs):
|
1130 |
+
return 1 / sinh(arg)
|
1131 |
+
|
1132 |
+
def _eval_is_positive(self):
|
1133 |
+
if self.args[0].is_extended_real:
|
1134 |
+
return self.args[0].is_positive
|
1135 |
+
|
1136 |
+
def _eval_is_negative(self):
|
1137 |
+
if self.args[0].is_extended_real:
|
1138 |
+
return self.args[0].is_negative
|
1139 |
+
|
1140 |
+
|
1141 |
+
class sech(ReciprocalHyperbolicFunction):
|
1142 |
+
r"""
|
1143 |
+
``sech(x)`` is the hyperbolic secant of ``x``.
|
1144 |
+
|
1145 |
+
The hyperbolic secant function is $\frac{2}{e^x + e^{-x}}$
|
1146 |
+
|
1147 |
+
Examples
|
1148 |
+
========
|
1149 |
+
|
1150 |
+
>>> from sympy import sech
|
1151 |
+
>>> from sympy.abc import x
|
1152 |
+
>>> sech(x)
|
1153 |
+
sech(x)
|
1154 |
+
|
1155 |
+
See Also
|
1156 |
+
========
|
1157 |
+
|
1158 |
+
sinh, cosh, tanh, coth, csch, asinh, acosh
|
1159 |
+
"""
|
1160 |
+
|
1161 |
+
_reciprocal_of = cosh
|
1162 |
+
_is_even = True
|
1163 |
+
|
1164 |
+
def fdiff(self, argindex=1):
|
1165 |
+
if argindex == 1:
|
1166 |
+
return - tanh(self.args[0])*sech(self.args[0])
|
1167 |
+
else:
|
1168 |
+
raise ArgumentIndexError(self, argindex)
|
1169 |
+
|
1170 |
+
@staticmethod
|
1171 |
+
@cacheit
|
1172 |
+
def taylor_term(n, x, *previous_terms):
|
1173 |
+
if n < 0 or n % 2 == 1:
|
1174 |
+
return S.Zero
|
1175 |
+
else:
|
1176 |
+
x = sympify(x)
|
1177 |
+
return euler(n) / factorial(n) * x**(n)
|
1178 |
+
|
1179 |
+
def _eval_rewrite_as_cos(self, arg, **kwargs):
|
1180 |
+
return 1 / cos(I * arg)
|
1181 |
+
|
1182 |
+
def _eval_rewrite_as_sec(self, arg, **kwargs):
|
1183 |
+
return sec(I * arg)
|
1184 |
+
|
1185 |
+
def _eval_rewrite_as_sinh(self, arg, **kwargs):
|
1186 |
+
return I / sinh(arg + I * pi /2)
|
1187 |
+
|
1188 |
+
def _eval_rewrite_as_cosh(self, arg, **kwargs):
|
1189 |
+
return 1 / cosh(arg)
|
1190 |
+
|
1191 |
+
def _eval_is_positive(self):
|
1192 |
+
if self.args[0].is_extended_real:
|
1193 |
+
return True
|
1194 |
+
|
1195 |
+
|
1196 |
+
###############################################################################
|
1197 |
+
############################# HYPERBOLIC INVERSES #############################
|
1198 |
+
###############################################################################
|
1199 |
+
|
1200 |
+
class InverseHyperbolicFunction(Function):
|
1201 |
+
"""Base class for inverse hyperbolic functions."""
|
1202 |
+
|
1203 |
+
pass
|
1204 |
+
|
1205 |
+
|
1206 |
+
class asinh(InverseHyperbolicFunction):
|
1207 |
+
"""
|
1208 |
+
``asinh(x)`` is the inverse hyperbolic sine of ``x``.
|
1209 |
+
|
1210 |
+
The inverse hyperbolic sine function.
|
1211 |
+
|
1212 |
+
Examples
|
1213 |
+
========
|
1214 |
+
|
1215 |
+
>>> from sympy import asinh
|
1216 |
+
>>> from sympy.abc import x
|
1217 |
+
>>> asinh(x).diff(x)
|
1218 |
+
1/sqrt(x**2 + 1)
|
1219 |
+
>>> asinh(1)
|
1220 |
+
log(1 + sqrt(2))
|
1221 |
+
|
1222 |
+
See Also
|
1223 |
+
========
|
1224 |
+
|
1225 |
+
acosh, atanh, sinh
|
1226 |
+
"""
|
1227 |
+
|
1228 |
+
def fdiff(self, argindex=1):
|
1229 |
+
if argindex == 1:
|
1230 |
+
return 1/sqrt(self.args[0]**2 + 1)
|
1231 |
+
else:
|
1232 |
+
raise ArgumentIndexError(self, argindex)
|
1233 |
+
|
1234 |
+
@classmethod
|
1235 |
+
def eval(cls, arg):
|
1236 |
+
if arg.is_Number:
|
1237 |
+
if arg is S.NaN:
|
1238 |
+
return S.NaN
|
1239 |
+
elif arg is S.Infinity:
|
1240 |
+
return S.Infinity
|
1241 |
+
elif arg is S.NegativeInfinity:
|
1242 |
+
return S.NegativeInfinity
|
1243 |
+
elif arg.is_zero:
|
1244 |
+
return S.Zero
|
1245 |
+
elif arg is S.One:
|
1246 |
+
return log(sqrt(2) + 1)
|
1247 |
+
elif arg is S.NegativeOne:
|
1248 |
+
return log(sqrt(2) - 1)
|
1249 |
+
elif arg.is_negative:
|
1250 |
+
return -cls(-arg)
|
1251 |
+
else:
|
1252 |
+
if arg is S.ComplexInfinity:
|
1253 |
+
return S.ComplexInfinity
|
1254 |
+
|
1255 |
+
if arg.is_zero:
|
1256 |
+
return S.Zero
|
1257 |
+
|
1258 |
+
i_coeff = _imaginary_unit_as_coefficient(arg)
|
1259 |
+
|
1260 |
+
if i_coeff is not None:
|
1261 |
+
return I * asin(i_coeff)
|
1262 |
+
else:
|
1263 |
+
if arg.could_extract_minus_sign():
|
1264 |
+
return -cls(-arg)
|
1265 |
+
|
1266 |
+
if isinstance(arg, sinh) and arg.args[0].is_number:
|
1267 |
+
z = arg.args[0]
|
1268 |
+
if z.is_real:
|
1269 |
+
return z
|
1270 |
+
r, i = match_real_imag(z)
|
1271 |
+
if r is not None and i is not None:
|
1272 |
+
f = floor((i + pi/2)/pi)
|
1273 |
+
m = z - I*pi*f
|
1274 |
+
even = f.is_even
|
1275 |
+
if even is True:
|
1276 |
+
return m
|
1277 |
+
elif even is False:
|
1278 |
+
return -m
|
1279 |
+
|
1280 |
+
@staticmethod
|
1281 |
+
@cacheit
|
1282 |
+
def taylor_term(n, x, *previous_terms):
|
1283 |
+
if n < 0 or n % 2 == 0:
|
1284 |
+
return S.Zero
|
1285 |
+
else:
|
1286 |
+
x = sympify(x)
|
1287 |
+
if len(previous_terms) >= 2 and n > 2:
|
1288 |
+
p = previous_terms[-2]
|
1289 |
+
return -p * (n - 2)**2/(n*(n - 1)) * x**2
|
1290 |
+
else:
|
1291 |
+
k = (n - 1) // 2
|
1292 |
+
R = RisingFactorial(S.Half, k)
|
1293 |
+
F = factorial(k)
|
1294 |
+
return S.NegativeOne**k * R / F * x**n / n
|
1295 |
+
|
1296 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asinh
|
1297 |
+
arg = self.args[0]
|
1298 |
+
x0 = arg.subs(x, 0).cancel()
|
1299 |
+
if x0.is_zero:
|
1300 |
+
return arg.as_leading_term(x)
|
1301 |
+
# Handling branch points
|
1302 |
+
if x0 in (-I, I, S.ComplexInfinity):
|
1303 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1304 |
+
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo)
|
1305 |
+
if (1 + x0**2).is_negative:
|
1306 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1307 |
+
if re(ndir).is_positive:
|
1308 |
+
if im(x0).is_negative:
|
1309 |
+
return -self.func(x0) - I*pi
|
1310 |
+
elif re(ndir).is_negative:
|
1311 |
+
if im(x0).is_positive:
|
1312 |
+
return -self.func(x0) + I*pi
|
1313 |
+
else:
|
1314 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1315 |
+
return self.func(x0)
|
1316 |
+
|
1317 |
+
def _eval_nseries(self, x, n, logx, cdir=0): # asinh
|
1318 |
+
arg = self.args[0]
|
1319 |
+
arg0 = arg.subs(x, 0)
|
1320 |
+
|
1321 |
+
# Handling branch points
|
1322 |
+
if arg0 in (I, -I):
|
1323 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1324 |
+
|
1325 |
+
res = Function._eval_nseries(self, x, n=n, logx=logx)
|
1326 |
+
if arg0 is S.ComplexInfinity:
|
1327 |
+
return res
|
1328 |
+
|
1329 |
+
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo)
|
1330 |
+
if (1 + arg0**2).is_negative:
|
1331 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1332 |
+
if re(ndir).is_positive:
|
1333 |
+
if im(arg0).is_negative:
|
1334 |
+
return -res - I*pi
|
1335 |
+
elif re(ndir).is_negative:
|
1336 |
+
if im(arg0).is_positive:
|
1337 |
+
return -res + I*pi
|
1338 |
+
else:
|
1339 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1340 |
+
return res
|
1341 |
+
|
1342 |
+
def _eval_rewrite_as_log(self, x, **kwargs):
|
1343 |
+
return log(x + sqrt(x**2 + 1))
|
1344 |
+
|
1345 |
+
_eval_rewrite_as_tractable = _eval_rewrite_as_log
|
1346 |
+
|
1347 |
+
def _eval_rewrite_as_atanh(self, x, **kwargs):
|
1348 |
+
return atanh(x/sqrt(1 + x**2))
|
1349 |
+
|
1350 |
+
def _eval_rewrite_as_acosh(self, x, **kwargs):
|
1351 |
+
ix = I*x
|
1352 |
+
return I*(sqrt(1 - ix)/sqrt(ix - 1) * acosh(ix) - pi/2)
|
1353 |
+
|
1354 |
+
def _eval_rewrite_as_asin(self, x, **kwargs):
|
1355 |
+
return -I * asin(I * x)
|
1356 |
+
|
1357 |
+
def _eval_rewrite_as_acos(self, x, **kwargs):
|
1358 |
+
return I * acos(I * x) - I*pi/2
|
1359 |
+
|
1360 |
+
def inverse(self, argindex=1):
|
1361 |
+
"""
|
1362 |
+
Returns the inverse of this function.
|
1363 |
+
"""
|
1364 |
+
return sinh
|
1365 |
+
|
1366 |
+
def _eval_is_zero(self):
|
1367 |
+
return self.args[0].is_zero
|
1368 |
+
|
1369 |
+
|
1370 |
+
class acosh(InverseHyperbolicFunction):
|
1371 |
+
"""
|
1372 |
+
``acosh(x)`` is the inverse hyperbolic cosine of ``x``.
|
1373 |
+
|
1374 |
+
The inverse hyperbolic cosine function.
|
1375 |
+
|
1376 |
+
Examples
|
1377 |
+
========
|
1378 |
+
|
1379 |
+
>>> from sympy import acosh
|
1380 |
+
>>> from sympy.abc import x
|
1381 |
+
>>> acosh(x).diff(x)
|
1382 |
+
1/(sqrt(x - 1)*sqrt(x + 1))
|
1383 |
+
>>> acosh(1)
|
1384 |
+
0
|
1385 |
+
|
1386 |
+
See Also
|
1387 |
+
========
|
1388 |
+
|
1389 |
+
asinh, atanh, cosh
|
1390 |
+
"""
|
1391 |
+
|
1392 |
+
def fdiff(self, argindex=1):
|
1393 |
+
if argindex == 1:
|
1394 |
+
arg = self.args[0]
|
1395 |
+
return 1/(sqrt(arg - 1)*sqrt(arg + 1))
|
1396 |
+
else:
|
1397 |
+
raise ArgumentIndexError(self, argindex)
|
1398 |
+
|
1399 |
+
@classmethod
|
1400 |
+
def eval(cls, arg):
|
1401 |
+
if arg.is_Number:
|
1402 |
+
if arg is S.NaN:
|
1403 |
+
return S.NaN
|
1404 |
+
elif arg is S.Infinity:
|
1405 |
+
return S.Infinity
|
1406 |
+
elif arg is S.NegativeInfinity:
|
1407 |
+
return S.Infinity
|
1408 |
+
elif arg.is_zero:
|
1409 |
+
return pi*I / 2
|
1410 |
+
elif arg is S.One:
|
1411 |
+
return S.Zero
|
1412 |
+
elif arg is S.NegativeOne:
|
1413 |
+
return pi*I
|
1414 |
+
|
1415 |
+
if arg.is_number:
|
1416 |
+
cst_table = _acosh_table()
|
1417 |
+
|
1418 |
+
if arg in cst_table:
|
1419 |
+
if arg.is_extended_real:
|
1420 |
+
return cst_table[arg]*I
|
1421 |
+
return cst_table[arg]
|
1422 |
+
|
1423 |
+
if arg is S.ComplexInfinity:
|
1424 |
+
return S.ComplexInfinity
|
1425 |
+
if arg == I*S.Infinity:
|
1426 |
+
return S.Infinity + I*pi/2
|
1427 |
+
if arg == -I*S.Infinity:
|
1428 |
+
return S.Infinity - I*pi/2
|
1429 |
+
|
1430 |
+
if arg.is_zero:
|
1431 |
+
return pi*I*S.Half
|
1432 |
+
|
1433 |
+
if isinstance(arg, cosh) and arg.args[0].is_number:
|
1434 |
+
z = arg.args[0]
|
1435 |
+
if z.is_real:
|
1436 |
+
return Abs(z)
|
1437 |
+
r, i = match_real_imag(z)
|
1438 |
+
if r is not None and i is not None:
|
1439 |
+
f = floor(i/pi)
|
1440 |
+
m = z - I*pi*f
|
1441 |
+
even = f.is_even
|
1442 |
+
if even is True:
|
1443 |
+
if r.is_nonnegative:
|
1444 |
+
return m
|
1445 |
+
elif r.is_negative:
|
1446 |
+
return -m
|
1447 |
+
elif even is False:
|
1448 |
+
m -= I*pi
|
1449 |
+
if r.is_nonpositive:
|
1450 |
+
return -m
|
1451 |
+
elif r.is_positive:
|
1452 |
+
return m
|
1453 |
+
|
1454 |
+
@staticmethod
|
1455 |
+
@cacheit
|
1456 |
+
def taylor_term(n, x, *previous_terms):
|
1457 |
+
if n == 0:
|
1458 |
+
return I*pi/2
|
1459 |
+
elif n < 0 or n % 2 == 0:
|
1460 |
+
return S.Zero
|
1461 |
+
else:
|
1462 |
+
x = sympify(x)
|
1463 |
+
if len(previous_terms) >= 2 and n > 2:
|
1464 |
+
p = previous_terms[-2]
|
1465 |
+
return p * (n - 2)**2/(n*(n - 1)) * x**2
|
1466 |
+
else:
|
1467 |
+
k = (n - 1) // 2
|
1468 |
+
R = RisingFactorial(S.Half, k)
|
1469 |
+
F = factorial(k)
|
1470 |
+
return -R / F * I * x**n / n
|
1471 |
+
|
1472 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acosh
|
1473 |
+
arg = self.args[0]
|
1474 |
+
x0 = arg.subs(x, 0).cancel()
|
1475 |
+
# Handling branch points
|
1476 |
+
if x0 in (-S.One, S.Zero, S.One, S.ComplexInfinity):
|
1477 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1478 |
+
# Handling points lying on branch cuts (-oo, 1)
|
1479 |
+
if (x0 - 1).is_negative:
|
1480 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1481 |
+
if im(ndir).is_negative:
|
1482 |
+
if (x0 + 1).is_negative:
|
1483 |
+
return self.func(x0) - 2*I*pi
|
1484 |
+
return -self.func(x0)
|
1485 |
+
elif not im(ndir).is_positive:
|
1486 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1487 |
+
return self.func(x0)
|
1488 |
+
|
1489 |
+
def _eval_nseries(self, x, n, logx, cdir=0): # acosh
|
1490 |
+
arg = self.args[0]
|
1491 |
+
arg0 = arg.subs(x, 0)
|
1492 |
+
|
1493 |
+
# Handling branch points
|
1494 |
+
if arg0 in (S.One, S.NegativeOne):
|
1495 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1496 |
+
|
1497 |
+
res = Function._eval_nseries(self, x, n=n, logx=logx)
|
1498 |
+
if arg0 is S.ComplexInfinity:
|
1499 |
+
return res
|
1500 |
+
|
1501 |
+
# Handling points lying on branch cuts (-oo, 1)
|
1502 |
+
if (arg0 - 1).is_negative:
|
1503 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1504 |
+
if im(ndir).is_negative:
|
1505 |
+
if (arg0 + 1).is_negative:
|
1506 |
+
return res - 2*I*pi
|
1507 |
+
return -res
|
1508 |
+
elif not im(ndir).is_positive:
|
1509 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1510 |
+
return res
|
1511 |
+
|
1512 |
+
def _eval_rewrite_as_log(self, x, **kwargs):
|
1513 |
+
return log(x + sqrt(x + 1) * sqrt(x - 1))
|
1514 |
+
|
1515 |
+
_eval_rewrite_as_tractable = _eval_rewrite_as_log
|
1516 |
+
|
1517 |
+
def _eval_rewrite_as_acos(self, x, **kwargs):
|
1518 |
+
return sqrt(x - 1)/sqrt(1 - x) * acos(x)
|
1519 |
+
|
1520 |
+
def _eval_rewrite_as_asin(self, x, **kwargs):
|
1521 |
+
return sqrt(x - 1)/sqrt(1 - x) * (pi/2 - asin(x))
|
1522 |
+
|
1523 |
+
def _eval_rewrite_as_asinh(self, x, **kwargs):
|
1524 |
+
return sqrt(x - 1)/sqrt(1 - x) * (pi/2 + I*asinh(I*x))
|
1525 |
+
|
1526 |
+
def _eval_rewrite_as_atanh(self, x, **kwargs):
|
1527 |
+
sxm1 = sqrt(x - 1)
|
1528 |
+
s1mx = sqrt(1 - x)
|
1529 |
+
sx2m1 = sqrt(x**2 - 1)
|
1530 |
+
return (pi/2*sxm1/s1mx*(1 - x * sqrt(1/x**2)) +
|
1531 |
+
sxm1*sqrt(x + 1)/sx2m1 * atanh(sx2m1/x))
|
1532 |
+
|
1533 |
+
def inverse(self, argindex=1):
|
1534 |
+
"""
|
1535 |
+
Returns the inverse of this function.
|
1536 |
+
"""
|
1537 |
+
return cosh
|
1538 |
+
|
1539 |
+
def _eval_is_zero(self):
|
1540 |
+
if (self.args[0] - 1).is_zero:
|
1541 |
+
return True
|
1542 |
+
|
1543 |
+
|
1544 |
+
class atanh(InverseHyperbolicFunction):
|
1545 |
+
"""
|
1546 |
+
``atanh(x)`` is the inverse hyperbolic tangent of ``x``.
|
1547 |
+
|
1548 |
+
The inverse hyperbolic tangent function.
|
1549 |
+
|
1550 |
+
Examples
|
1551 |
+
========
|
1552 |
+
|
1553 |
+
>>> from sympy import atanh
|
1554 |
+
>>> from sympy.abc import x
|
1555 |
+
>>> atanh(x).diff(x)
|
1556 |
+
1/(1 - x**2)
|
1557 |
+
|
1558 |
+
See Also
|
1559 |
+
========
|
1560 |
+
|
1561 |
+
asinh, acosh, tanh
|
1562 |
+
"""
|
1563 |
+
|
1564 |
+
def fdiff(self, argindex=1):
|
1565 |
+
if argindex == 1:
|
1566 |
+
return 1/(1 - self.args[0]**2)
|
1567 |
+
else:
|
1568 |
+
raise ArgumentIndexError(self, argindex)
|
1569 |
+
|
1570 |
+
@classmethod
|
1571 |
+
def eval(cls, arg):
|
1572 |
+
if arg.is_Number:
|
1573 |
+
if arg is S.NaN:
|
1574 |
+
return S.NaN
|
1575 |
+
elif arg.is_zero:
|
1576 |
+
return S.Zero
|
1577 |
+
elif arg is S.One:
|
1578 |
+
return S.Infinity
|
1579 |
+
elif arg is S.NegativeOne:
|
1580 |
+
return S.NegativeInfinity
|
1581 |
+
elif arg is S.Infinity:
|
1582 |
+
return -I * atan(arg)
|
1583 |
+
elif arg is S.NegativeInfinity:
|
1584 |
+
return I * atan(-arg)
|
1585 |
+
elif arg.is_negative:
|
1586 |
+
return -cls(-arg)
|
1587 |
+
else:
|
1588 |
+
if arg is S.ComplexInfinity:
|
1589 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
1590 |
+
return I*AccumBounds(-pi/2, pi/2)
|
1591 |
+
|
1592 |
+
i_coeff = _imaginary_unit_as_coefficient(arg)
|
1593 |
+
|
1594 |
+
if i_coeff is not None:
|
1595 |
+
return I * atan(i_coeff)
|
1596 |
+
else:
|
1597 |
+
if arg.could_extract_minus_sign():
|
1598 |
+
return -cls(-arg)
|
1599 |
+
|
1600 |
+
if arg.is_zero:
|
1601 |
+
return S.Zero
|
1602 |
+
|
1603 |
+
if isinstance(arg, tanh) and arg.args[0].is_number:
|
1604 |
+
z = arg.args[0]
|
1605 |
+
if z.is_real:
|
1606 |
+
return z
|
1607 |
+
r, i = match_real_imag(z)
|
1608 |
+
if r is not None and i is not None:
|
1609 |
+
f = floor(2*i/pi)
|
1610 |
+
even = f.is_even
|
1611 |
+
m = z - I*f*pi/2
|
1612 |
+
if even is True:
|
1613 |
+
return m
|
1614 |
+
elif even is False:
|
1615 |
+
return m - I*pi/2
|
1616 |
+
|
1617 |
+
@staticmethod
|
1618 |
+
@cacheit
|
1619 |
+
def taylor_term(n, x, *previous_terms):
|
1620 |
+
if n < 0 or n % 2 == 0:
|
1621 |
+
return S.Zero
|
1622 |
+
else:
|
1623 |
+
x = sympify(x)
|
1624 |
+
return x**n / n
|
1625 |
+
|
1626 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0): # atanh
|
1627 |
+
arg = self.args[0]
|
1628 |
+
x0 = arg.subs(x, 0).cancel()
|
1629 |
+
if x0.is_zero:
|
1630 |
+
return arg.as_leading_term(x)
|
1631 |
+
# Handling branch points
|
1632 |
+
if x0 in (-S.One, S.One, S.ComplexInfinity):
|
1633 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1634 |
+
# Handling points lying on branch cuts (-oo, -1] U [1, oo)
|
1635 |
+
if (1 - x0**2).is_negative:
|
1636 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1637 |
+
if im(ndir).is_negative:
|
1638 |
+
if x0.is_negative:
|
1639 |
+
return self.func(x0) - I*pi
|
1640 |
+
elif im(ndir).is_positive:
|
1641 |
+
if x0.is_positive:
|
1642 |
+
return self.func(x0) + I*pi
|
1643 |
+
else:
|
1644 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1645 |
+
return self.func(x0)
|
1646 |
+
|
1647 |
+
def _eval_nseries(self, x, n, logx, cdir=0): # atanh
|
1648 |
+
arg = self.args[0]
|
1649 |
+
arg0 = arg.subs(x, 0)
|
1650 |
+
|
1651 |
+
# Handling branch points
|
1652 |
+
if arg0 in (S.One, S.NegativeOne):
|
1653 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1654 |
+
|
1655 |
+
res = Function._eval_nseries(self, x, n=n, logx=logx)
|
1656 |
+
if arg0 is S.ComplexInfinity:
|
1657 |
+
return res
|
1658 |
+
|
1659 |
+
# Handling points lying on branch cuts (-oo, -1] U [1, oo)
|
1660 |
+
if (1 - arg0**2).is_negative:
|
1661 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1662 |
+
if im(ndir).is_negative:
|
1663 |
+
if arg0.is_negative:
|
1664 |
+
return res - I*pi
|
1665 |
+
elif im(ndir).is_positive:
|
1666 |
+
if arg0.is_positive:
|
1667 |
+
return res + I*pi
|
1668 |
+
else:
|
1669 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1670 |
+
return res
|
1671 |
+
|
1672 |
+
def _eval_rewrite_as_log(self, x, **kwargs):
|
1673 |
+
return (log(1 + x) - log(1 - x)) / 2
|
1674 |
+
|
1675 |
+
_eval_rewrite_as_tractable = _eval_rewrite_as_log
|
1676 |
+
|
1677 |
+
def _eval_rewrite_as_asinh(self, x, **kwargs):
|
1678 |
+
f = sqrt(1/(x**2 - 1))
|
1679 |
+
return (pi*x/(2*sqrt(-x**2)) -
|
1680 |
+
sqrt(-x)*sqrt(1 - x**2)/sqrt(x)*f*asinh(f))
|
1681 |
+
|
1682 |
+
def _eval_is_zero(self):
|
1683 |
+
if self.args[0].is_zero:
|
1684 |
+
return True
|
1685 |
+
|
1686 |
+
def _eval_is_imaginary(self):
|
1687 |
+
return self.args[0].is_imaginary
|
1688 |
+
|
1689 |
+
def inverse(self, argindex=1):
|
1690 |
+
"""
|
1691 |
+
Returns the inverse of this function.
|
1692 |
+
"""
|
1693 |
+
return tanh
|
1694 |
+
|
1695 |
+
|
1696 |
+
class acoth(InverseHyperbolicFunction):
|
1697 |
+
"""
|
1698 |
+
``acoth(x)`` is the inverse hyperbolic cotangent of ``x``.
|
1699 |
+
|
1700 |
+
The inverse hyperbolic cotangent function.
|
1701 |
+
|
1702 |
+
Examples
|
1703 |
+
========
|
1704 |
+
|
1705 |
+
>>> from sympy import acoth
|
1706 |
+
>>> from sympy.abc import x
|
1707 |
+
>>> acoth(x).diff(x)
|
1708 |
+
1/(1 - x**2)
|
1709 |
+
|
1710 |
+
See Also
|
1711 |
+
========
|
1712 |
+
|
1713 |
+
asinh, acosh, coth
|
1714 |
+
"""
|
1715 |
+
|
1716 |
+
def fdiff(self, argindex=1):
|
1717 |
+
if argindex == 1:
|
1718 |
+
return 1/(1 - self.args[0]**2)
|
1719 |
+
else:
|
1720 |
+
raise ArgumentIndexError(self, argindex)
|
1721 |
+
|
1722 |
+
@classmethod
|
1723 |
+
def eval(cls, arg):
|
1724 |
+
if arg.is_Number:
|
1725 |
+
if arg is S.NaN:
|
1726 |
+
return S.NaN
|
1727 |
+
elif arg is S.Infinity:
|
1728 |
+
return S.Zero
|
1729 |
+
elif arg is S.NegativeInfinity:
|
1730 |
+
return S.Zero
|
1731 |
+
elif arg.is_zero:
|
1732 |
+
return pi*I / 2
|
1733 |
+
elif arg is S.One:
|
1734 |
+
return S.Infinity
|
1735 |
+
elif arg is S.NegativeOne:
|
1736 |
+
return S.NegativeInfinity
|
1737 |
+
elif arg.is_negative:
|
1738 |
+
return -cls(-arg)
|
1739 |
+
else:
|
1740 |
+
if arg is S.ComplexInfinity:
|
1741 |
+
return S.Zero
|
1742 |
+
|
1743 |
+
i_coeff = _imaginary_unit_as_coefficient(arg)
|
1744 |
+
|
1745 |
+
if i_coeff is not None:
|
1746 |
+
return -I * acot(i_coeff)
|
1747 |
+
else:
|
1748 |
+
if arg.could_extract_minus_sign():
|
1749 |
+
return -cls(-arg)
|
1750 |
+
|
1751 |
+
if arg.is_zero:
|
1752 |
+
return pi*I*S.Half
|
1753 |
+
|
1754 |
+
@staticmethod
|
1755 |
+
@cacheit
|
1756 |
+
def taylor_term(n, x, *previous_terms):
|
1757 |
+
if n == 0:
|
1758 |
+
return -I*pi/2
|
1759 |
+
elif n < 0 or n % 2 == 0:
|
1760 |
+
return S.Zero
|
1761 |
+
else:
|
1762 |
+
x = sympify(x)
|
1763 |
+
return x**n / n
|
1764 |
+
|
1765 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acoth
|
1766 |
+
arg = self.args[0]
|
1767 |
+
x0 = arg.subs(x, 0).cancel()
|
1768 |
+
if x0 is S.ComplexInfinity:
|
1769 |
+
return (1/arg).as_leading_term(x)
|
1770 |
+
# Handling branch points
|
1771 |
+
if x0 in (-S.One, S.One, S.Zero):
|
1772 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1773 |
+
# Handling points lying on branch cuts [-1, 1]
|
1774 |
+
if x0.is_real and (1 - x0**2).is_positive:
|
1775 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1776 |
+
if im(ndir).is_negative:
|
1777 |
+
if x0.is_positive:
|
1778 |
+
return self.func(x0) + I*pi
|
1779 |
+
elif im(ndir).is_positive:
|
1780 |
+
if x0.is_negative:
|
1781 |
+
return self.func(x0) - I*pi
|
1782 |
+
else:
|
1783 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1784 |
+
return self.func(x0)
|
1785 |
+
|
1786 |
+
def _eval_nseries(self, x, n, logx, cdir=0): # acoth
|
1787 |
+
arg = self.args[0]
|
1788 |
+
arg0 = arg.subs(x, 0)
|
1789 |
+
|
1790 |
+
# Handling branch points
|
1791 |
+
if arg0 in (S.One, S.NegativeOne):
|
1792 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1793 |
+
|
1794 |
+
res = Function._eval_nseries(self, x, n=n, logx=logx)
|
1795 |
+
if arg0 is S.ComplexInfinity:
|
1796 |
+
return res
|
1797 |
+
|
1798 |
+
# Handling points lying on branch cuts [-1, 1]
|
1799 |
+
if arg0.is_real and (1 - arg0**2).is_positive:
|
1800 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1801 |
+
if im(ndir).is_negative:
|
1802 |
+
if arg0.is_positive:
|
1803 |
+
return res + I*pi
|
1804 |
+
elif im(ndir).is_positive:
|
1805 |
+
if arg0.is_negative:
|
1806 |
+
return res - I*pi
|
1807 |
+
else:
|
1808 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1809 |
+
return res
|
1810 |
+
|
1811 |
+
def _eval_rewrite_as_log(self, x, **kwargs):
|
1812 |
+
return (log(1 + 1/x) - log(1 - 1/x)) / 2
|
1813 |
+
|
1814 |
+
_eval_rewrite_as_tractable = _eval_rewrite_as_log
|
1815 |
+
|
1816 |
+
def _eval_rewrite_as_atanh(self, x, **kwargs):
|
1817 |
+
return atanh(1/x)
|
1818 |
+
|
1819 |
+
def _eval_rewrite_as_asinh(self, x, **kwargs):
|
1820 |
+
return (pi*I/2*(sqrt((x - 1)/x)*sqrt(x/(x - 1)) - sqrt(1 + 1/x)*sqrt(x/(x + 1))) +
|
1821 |
+
x*sqrt(1/x**2)*asinh(sqrt(1/(x**2 - 1))))
|
1822 |
+
|
1823 |
+
def inverse(self, argindex=1):
|
1824 |
+
"""
|
1825 |
+
Returns the inverse of this function.
|
1826 |
+
"""
|
1827 |
+
return coth
|
1828 |
+
|
1829 |
+
|
1830 |
+
class asech(InverseHyperbolicFunction):
|
1831 |
+
"""
|
1832 |
+
``asech(x)`` is the inverse hyperbolic secant of ``x``.
|
1833 |
+
|
1834 |
+
The inverse hyperbolic secant function.
|
1835 |
+
|
1836 |
+
Examples
|
1837 |
+
========
|
1838 |
+
|
1839 |
+
>>> from sympy import asech, sqrt, S
|
1840 |
+
>>> from sympy.abc import x
|
1841 |
+
>>> asech(x).diff(x)
|
1842 |
+
-1/(x*sqrt(1 - x**2))
|
1843 |
+
>>> asech(1).diff(x)
|
1844 |
+
0
|
1845 |
+
>>> asech(1)
|
1846 |
+
0
|
1847 |
+
>>> asech(S(2))
|
1848 |
+
I*pi/3
|
1849 |
+
>>> asech(-sqrt(2))
|
1850 |
+
3*I*pi/4
|
1851 |
+
>>> asech((sqrt(6) - sqrt(2)))
|
1852 |
+
I*pi/12
|
1853 |
+
|
1854 |
+
See Also
|
1855 |
+
========
|
1856 |
+
|
1857 |
+
asinh, atanh, cosh, acoth
|
1858 |
+
|
1859 |
+
References
|
1860 |
+
==========
|
1861 |
+
|
1862 |
+
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
|
1863 |
+
.. [2] https://dlmf.nist.gov/4.37
|
1864 |
+
.. [3] https://functions.wolfram.com/ElementaryFunctions/ArcSech/
|
1865 |
+
|
1866 |
+
"""
|
1867 |
+
|
1868 |
+
def fdiff(self, argindex=1):
|
1869 |
+
if argindex == 1:
|
1870 |
+
z = self.args[0]
|
1871 |
+
return -1/(z*sqrt(1 - z**2))
|
1872 |
+
else:
|
1873 |
+
raise ArgumentIndexError(self, argindex)
|
1874 |
+
|
1875 |
+
@classmethod
|
1876 |
+
def eval(cls, arg):
|
1877 |
+
if arg.is_Number:
|
1878 |
+
if arg is S.NaN:
|
1879 |
+
return S.NaN
|
1880 |
+
elif arg is S.Infinity:
|
1881 |
+
return pi*I / 2
|
1882 |
+
elif arg is S.NegativeInfinity:
|
1883 |
+
return pi*I / 2
|
1884 |
+
elif arg.is_zero:
|
1885 |
+
return S.Infinity
|
1886 |
+
elif arg is S.One:
|
1887 |
+
return S.Zero
|
1888 |
+
elif arg is S.NegativeOne:
|
1889 |
+
return pi*I
|
1890 |
+
|
1891 |
+
if arg.is_number:
|
1892 |
+
cst_table = _asech_table()
|
1893 |
+
|
1894 |
+
if arg in cst_table:
|
1895 |
+
if arg.is_extended_real:
|
1896 |
+
return cst_table[arg]*I
|
1897 |
+
return cst_table[arg]
|
1898 |
+
|
1899 |
+
if arg is S.ComplexInfinity:
|
1900 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
1901 |
+
return I*AccumBounds(-pi/2, pi/2)
|
1902 |
+
|
1903 |
+
if arg.is_zero:
|
1904 |
+
return S.Infinity
|
1905 |
+
|
1906 |
+
@staticmethod
|
1907 |
+
@cacheit
|
1908 |
+
def taylor_term(n, x, *previous_terms):
|
1909 |
+
if n == 0:
|
1910 |
+
return log(2 / x)
|
1911 |
+
elif n < 0 or n % 2 == 1:
|
1912 |
+
return S.Zero
|
1913 |
+
else:
|
1914 |
+
x = sympify(x)
|
1915 |
+
if len(previous_terms) > 2 and n > 2:
|
1916 |
+
p = previous_terms[-2]
|
1917 |
+
return p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2)
|
1918 |
+
else:
|
1919 |
+
k = n // 2
|
1920 |
+
R = RisingFactorial(S.Half, k) * n
|
1921 |
+
F = factorial(k) * n // 2 * n // 2
|
1922 |
+
return -1 * R / F * x**n / 4
|
1923 |
+
|
1924 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asech
|
1925 |
+
arg = self.args[0]
|
1926 |
+
x0 = arg.subs(x, 0).cancel()
|
1927 |
+
# Handling branch points
|
1928 |
+
if x0 in (-S.One, S.Zero, S.One, S.ComplexInfinity):
|
1929 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1930 |
+
# Handling points lying on branch cuts (-oo, 0] U (1, oo)
|
1931 |
+
if x0.is_negative or (1 - x0).is_negative:
|
1932 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1933 |
+
if im(ndir).is_positive:
|
1934 |
+
if x0.is_positive or (x0 + 1).is_negative:
|
1935 |
+
return -self.func(x0)
|
1936 |
+
return self.func(x0) - 2*I*pi
|
1937 |
+
elif not im(ndir).is_negative:
|
1938 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
1939 |
+
return self.func(x0)
|
1940 |
+
|
1941 |
+
def _eval_nseries(self, x, n, logx, cdir=0): # asech
|
1942 |
+
from sympy.series.order import O
|
1943 |
+
arg = self.args[0]
|
1944 |
+
arg0 = arg.subs(x, 0)
|
1945 |
+
|
1946 |
+
# Handling branch points
|
1947 |
+
if arg0 is S.One:
|
1948 |
+
t = Dummy('t', positive=True)
|
1949 |
+
ser = asech(S.One - t**2).rewrite(log).nseries(t, 0, 2*n)
|
1950 |
+
arg1 = S.One - self.args[0]
|
1951 |
+
f = arg1.as_leading_term(x)
|
1952 |
+
g = (arg1 - f)/ f
|
1953 |
+
if not g.is_meromorphic(x, 0): # cannot be expanded
|
1954 |
+
return O(1) if n == 0 else O(sqrt(x))
|
1955 |
+
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
|
1956 |
+
res = (res1.removeO()*sqrt(f)).expand()
|
1957 |
+
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
|
1958 |
+
|
1959 |
+
if arg0 is S.NegativeOne:
|
1960 |
+
t = Dummy('t', positive=True)
|
1961 |
+
ser = asech(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n)
|
1962 |
+
arg1 = S.One + self.args[0]
|
1963 |
+
f = arg1.as_leading_term(x)
|
1964 |
+
g = (arg1 - f)/ f
|
1965 |
+
if not g.is_meromorphic(x, 0): # cannot be expanded
|
1966 |
+
return O(1) if n == 0 else I*pi + O(sqrt(x))
|
1967 |
+
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
|
1968 |
+
res = (res1.removeO()*sqrt(f)).expand()
|
1969 |
+
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
|
1970 |
+
|
1971 |
+
res = Function._eval_nseries(self, x, n=n, logx=logx)
|
1972 |
+
if arg0 is S.ComplexInfinity:
|
1973 |
+
return res
|
1974 |
+
|
1975 |
+
# Handling points lying on branch cuts (-oo, 0] U (1, oo)
|
1976 |
+
if arg0.is_negative or (1 - arg0).is_negative:
|
1977 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
1978 |
+
if im(ndir).is_positive:
|
1979 |
+
if arg0.is_positive or (arg0 + 1).is_negative:
|
1980 |
+
return -res
|
1981 |
+
return res - 2*I*pi
|
1982 |
+
elif not im(ndir).is_negative:
|
1983 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
1984 |
+
return res
|
1985 |
+
|
1986 |
+
def inverse(self, argindex=1):
|
1987 |
+
"""
|
1988 |
+
Returns the inverse of this function.
|
1989 |
+
"""
|
1990 |
+
return sech
|
1991 |
+
|
1992 |
+
def _eval_rewrite_as_log(self, arg, **kwargs):
|
1993 |
+
return log(1/arg + sqrt(1/arg - 1) * sqrt(1/arg + 1))
|
1994 |
+
|
1995 |
+
_eval_rewrite_as_tractable = _eval_rewrite_as_log
|
1996 |
+
|
1997 |
+
def _eval_rewrite_as_acosh(self, arg, **kwargs):
|
1998 |
+
return acosh(1/arg)
|
1999 |
+
|
2000 |
+
def _eval_rewrite_as_asinh(self, arg, **kwargs):
|
2001 |
+
return sqrt(1/arg - 1)/sqrt(1 - 1/arg)*(I*asinh(I/arg)
|
2002 |
+
+ pi*S.Half)
|
2003 |
+
|
2004 |
+
def _eval_rewrite_as_atanh(self, x, **kwargs):
|
2005 |
+
return (I*pi*(1 - sqrt(x)*sqrt(1/x) - I/2*sqrt(-x)/sqrt(x) - I/2*sqrt(x**2)/sqrt(-x**2))
|
2006 |
+
+ sqrt(1/(x + 1))*sqrt(x + 1)*atanh(sqrt(1 - x**2)))
|
2007 |
+
|
2008 |
+
def _eval_rewrite_as_acsch(self, x, **kwargs):
|
2009 |
+
return sqrt(1/x - 1)/sqrt(1 - 1/x)*(pi/2 - I*acsch(I*x))
|
2010 |
+
|
2011 |
+
|
2012 |
+
class acsch(InverseHyperbolicFunction):
|
2013 |
+
"""
|
2014 |
+
``acsch(x)`` is the inverse hyperbolic cosecant of ``x``.
|
2015 |
+
|
2016 |
+
The inverse hyperbolic cosecant function.
|
2017 |
+
|
2018 |
+
Examples
|
2019 |
+
========
|
2020 |
+
|
2021 |
+
>>> from sympy import acsch, sqrt, I
|
2022 |
+
>>> from sympy.abc import x
|
2023 |
+
>>> acsch(x).diff(x)
|
2024 |
+
-1/(x**2*sqrt(1 + x**(-2)))
|
2025 |
+
>>> acsch(1).diff(x)
|
2026 |
+
0
|
2027 |
+
>>> acsch(1)
|
2028 |
+
log(1 + sqrt(2))
|
2029 |
+
>>> acsch(I)
|
2030 |
+
-I*pi/2
|
2031 |
+
>>> acsch(-2*I)
|
2032 |
+
I*pi/6
|
2033 |
+
>>> acsch(I*(sqrt(6) - sqrt(2)))
|
2034 |
+
-5*I*pi/12
|
2035 |
+
|
2036 |
+
See Also
|
2037 |
+
========
|
2038 |
+
|
2039 |
+
asinh
|
2040 |
+
|
2041 |
+
References
|
2042 |
+
==========
|
2043 |
+
|
2044 |
+
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
|
2045 |
+
.. [2] https://dlmf.nist.gov/4.37
|
2046 |
+
.. [3] https://functions.wolfram.com/ElementaryFunctions/ArcCsch/
|
2047 |
+
|
2048 |
+
"""
|
2049 |
+
|
2050 |
+
def fdiff(self, argindex=1):
|
2051 |
+
if argindex == 1:
|
2052 |
+
z = self.args[0]
|
2053 |
+
return -1/(z**2*sqrt(1 + 1/z**2))
|
2054 |
+
else:
|
2055 |
+
raise ArgumentIndexError(self, argindex)
|
2056 |
+
|
2057 |
+
@classmethod
|
2058 |
+
def eval(cls, arg):
|
2059 |
+
if arg.is_Number:
|
2060 |
+
if arg is S.NaN:
|
2061 |
+
return S.NaN
|
2062 |
+
elif arg is S.Infinity:
|
2063 |
+
return S.Zero
|
2064 |
+
elif arg is S.NegativeInfinity:
|
2065 |
+
return S.Zero
|
2066 |
+
elif arg.is_zero:
|
2067 |
+
return S.ComplexInfinity
|
2068 |
+
elif arg is S.One:
|
2069 |
+
return log(1 + sqrt(2))
|
2070 |
+
elif arg is S.NegativeOne:
|
2071 |
+
return - log(1 + sqrt(2))
|
2072 |
+
|
2073 |
+
if arg.is_number:
|
2074 |
+
cst_table = _acsch_table()
|
2075 |
+
|
2076 |
+
if arg in cst_table:
|
2077 |
+
return cst_table[arg]*I
|
2078 |
+
|
2079 |
+
if arg is S.ComplexInfinity:
|
2080 |
+
return S.Zero
|
2081 |
+
|
2082 |
+
if arg.is_infinite:
|
2083 |
+
return S.Zero
|
2084 |
+
|
2085 |
+
if arg.is_zero:
|
2086 |
+
return S.ComplexInfinity
|
2087 |
+
|
2088 |
+
if arg.could_extract_minus_sign():
|
2089 |
+
return -cls(-arg)
|
2090 |
+
|
2091 |
+
@staticmethod
|
2092 |
+
@cacheit
|
2093 |
+
def taylor_term(n, x, *previous_terms):
|
2094 |
+
if n == 0:
|
2095 |
+
return log(2 / x)
|
2096 |
+
elif n < 0 or n % 2 == 1:
|
2097 |
+
return S.Zero
|
2098 |
+
else:
|
2099 |
+
x = sympify(x)
|
2100 |
+
if len(previous_terms) > 2 and n > 2:
|
2101 |
+
p = previous_terms[-2]
|
2102 |
+
return -p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2)
|
2103 |
+
else:
|
2104 |
+
k = n // 2
|
2105 |
+
R = RisingFactorial(S.Half, k) * n
|
2106 |
+
F = factorial(k) * n // 2 * n // 2
|
2107 |
+
return S.NegativeOne**(k +1) * R / F * x**n / 4
|
2108 |
+
|
2109 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acsch
|
2110 |
+
arg = self.args[0]
|
2111 |
+
x0 = arg.subs(x, 0).cancel()
|
2112 |
+
# Handling branch points
|
2113 |
+
if x0 in (-I, I, S.Zero):
|
2114 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
2115 |
+
if x0 is S.ComplexInfinity:
|
2116 |
+
return (1/arg).as_leading_term(x)
|
2117 |
+
# Handling points lying on branch cuts (-I, I)
|
2118 |
+
if x0.is_imaginary and (1 + x0**2).is_positive:
|
2119 |
+
ndir = arg.dir(x, cdir if cdir else 1)
|
2120 |
+
if re(ndir).is_positive:
|
2121 |
+
if im(x0).is_positive:
|
2122 |
+
return -self.func(x0) - I*pi
|
2123 |
+
elif re(ndir).is_negative:
|
2124 |
+
if im(x0).is_negative:
|
2125 |
+
return -self.func(x0) + I*pi
|
2126 |
+
else:
|
2127 |
+
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
2128 |
+
return self.func(x0)
|
2129 |
+
|
2130 |
+
def _eval_nseries(self, x, n, logx, cdir=0): # acsch
|
2131 |
+
from sympy.series.order import O
|
2132 |
+
arg = self.args[0]
|
2133 |
+
arg0 = arg.subs(x, 0)
|
2134 |
+
|
2135 |
+
# Handling branch points
|
2136 |
+
if arg0 is I:
|
2137 |
+
t = Dummy('t', positive=True)
|
2138 |
+
ser = acsch(I + t**2).rewrite(log).nseries(t, 0, 2*n)
|
2139 |
+
arg1 = -I + self.args[0]
|
2140 |
+
f = arg1.as_leading_term(x)
|
2141 |
+
g = (arg1 - f)/ f
|
2142 |
+
if not g.is_meromorphic(x, 0): # cannot be expanded
|
2143 |
+
return O(1) if n == 0 else -I*pi/2 + O(sqrt(x))
|
2144 |
+
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
|
2145 |
+
res = (res1.removeO()*sqrt(f)).expand()
|
2146 |
+
res = ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
|
2147 |
+
return res
|
2148 |
+
|
2149 |
+
if arg0 == S.NegativeOne*I:
|
2150 |
+
t = Dummy('t', positive=True)
|
2151 |
+
ser = acsch(-I + t**2).rewrite(log).nseries(t, 0, 2*n)
|
2152 |
+
arg1 = I + self.args[0]
|
2153 |
+
f = arg1.as_leading_term(x)
|
2154 |
+
g = (arg1 - f)/ f
|
2155 |
+
if not g.is_meromorphic(x, 0): # cannot be expanded
|
2156 |
+
return O(1) if n == 0 else I*pi/2 + O(sqrt(x))
|
2157 |
+
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
|
2158 |
+
res = (res1.removeO()*sqrt(f)).expand()
|
2159 |
+
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
|
2160 |
+
|
2161 |
+
res = Function._eval_nseries(self, x, n=n, logx=logx)
|
2162 |
+
if arg0 is S.ComplexInfinity:
|
2163 |
+
return res
|
2164 |
+
|
2165 |
+
# Handling points lying on branch cuts (-I, I)
|
2166 |
+
if arg0.is_imaginary and (1 + arg0**2).is_positive:
|
2167 |
+
ndir = self.args[0].dir(x, cdir if cdir else 1)
|
2168 |
+
if re(ndir).is_positive:
|
2169 |
+
if im(arg0).is_positive:
|
2170 |
+
return -res - I*pi
|
2171 |
+
elif re(ndir).is_negative:
|
2172 |
+
if im(arg0).is_negative:
|
2173 |
+
return -res + I*pi
|
2174 |
+
else:
|
2175 |
+
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
2176 |
+
return res
|
2177 |
+
|
2178 |
+
def inverse(self, argindex=1):
|
2179 |
+
"""
|
2180 |
+
Returns the inverse of this function.
|
2181 |
+
"""
|
2182 |
+
return csch
|
2183 |
+
|
2184 |
+
def _eval_rewrite_as_log(self, arg, **kwargs):
|
2185 |
+
return log(1/arg + sqrt(1/arg**2 + 1))
|
2186 |
+
|
2187 |
+
_eval_rewrite_as_tractable = _eval_rewrite_as_log
|
2188 |
+
|
2189 |
+
def _eval_rewrite_as_asinh(self, arg, **kwargs):
|
2190 |
+
return asinh(1/arg)
|
2191 |
+
|
2192 |
+
def _eval_rewrite_as_acosh(self, arg, **kwargs):
|
2193 |
+
return I*(sqrt(1 - I/arg)/sqrt(I/arg - 1)*
|
2194 |
+
acosh(I/arg) - pi*S.Half)
|
2195 |
+
|
2196 |
+
def _eval_rewrite_as_atanh(self, arg, **kwargs):
|
2197 |
+
arg2 = arg**2
|
2198 |
+
arg2p1 = arg2 + 1
|
2199 |
+
return sqrt(-arg2)/arg*(pi*S.Half -
|
2200 |
+
sqrt(-arg2p1**2)/arg2p1*atanh(sqrt(arg2p1)))
|
2201 |
+
|
2202 |
+
def _eval_is_zero(self):
|
2203 |
+
return self.args[0].is_infinite
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/integers.py
ADDED
@@ -0,0 +1,625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple as tTuple
|
2 |
+
|
3 |
+
from sympy.core.basic import Basic
|
4 |
+
from sympy.core.expr import Expr
|
5 |
+
|
6 |
+
from sympy.core import Add, S
|
7 |
+
from sympy.core.evalf import get_integer_part, PrecisionExhausted
|
8 |
+
from sympy.core.function import Function
|
9 |
+
from sympy.core.logic import fuzzy_or
|
10 |
+
from sympy.core.numbers import Integer
|
11 |
+
from sympy.core.relational import Gt, Lt, Ge, Le, Relational, is_eq
|
12 |
+
from sympy.core.symbol import Symbol
|
13 |
+
from sympy.core.sympify import _sympify
|
14 |
+
from sympy.functions.elementary.complexes import im, re
|
15 |
+
from sympy.multipledispatch import dispatch
|
16 |
+
|
17 |
+
###############################################################################
|
18 |
+
######################### FLOOR and CEILING FUNCTIONS #########################
|
19 |
+
###############################################################################
|
20 |
+
|
21 |
+
|
22 |
+
class RoundFunction(Function):
|
23 |
+
"""Abstract base class for rounding functions."""
|
24 |
+
|
25 |
+
args: tTuple[Expr]
|
26 |
+
|
27 |
+
@classmethod
|
28 |
+
def eval(cls, arg):
|
29 |
+
v = cls._eval_number(arg)
|
30 |
+
if v is not None:
|
31 |
+
return v
|
32 |
+
|
33 |
+
if arg.is_integer or arg.is_finite is False:
|
34 |
+
return arg
|
35 |
+
if arg.is_imaginary or (S.ImaginaryUnit*arg).is_real:
|
36 |
+
i = im(arg)
|
37 |
+
if not i.has(S.ImaginaryUnit):
|
38 |
+
return cls(i)*S.ImaginaryUnit
|
39 |
+
return cls(arg, evaluate=False)
|
40 |
+
|
41 |
+
# Integral, numerical, symbolic part
|
42 |
+
ipart = npart = spart = S.Zero
|
43 |
+
|
44 |
+
# Extract integral (or complex integral) terms
|
45 |
+
terms = Add.make_args(arg)
|
46 |
+
|
47 |
+
for t in terms:
|
48 |
+
if t.is_integer or (t.is_imaginary and im(t).is_integer):
|
49 |
+
ipart += t
|
50 |
+
elif t.has(Symbol):
|
51 |
+
spart += t
|
52 |
+
else:
|
53 |
+
npart += t
|
54 |
+
|
55 |
+
if not (npart or spart):
|
56 |
+
return ipart
|
57 |
+
|
58 |
+
# Evaluate npart numerically if independent of spart
|
59 |
+
if npart and (
|
60 |
+
not spart or
|
61 |
+
npart.is_real and (spart.is_imaginary or (S.ImaginaryUnit*spart).is_real) or
|
62 |
+
npart.is_imaginary and spart.is_real):
|
63 |
+
try:
|
64 |
+
r, i = get_integer_part(
|
65 |
+
npart, cls._dir, {}, return_ints=True)
|
66 |
+
ipart += Integer(r) + Integer(i)*S.ImaginaryUnit
|
67 |
+
npart = S.Zero
|
68 |
+
except (PrecisionExhausted, NotImplementedError):
|
69 |
+
pass
|
70 |
+
|
71 |
+
spart += npart
|
72 |
+
if not spart:
|
73 |
+
return ipart
|
74 |
+
elif spart.is_imaginary or (S.ImaginaryUnit*spart).is_real:
|
75 |
+
return ipart + cls(im(spart), evaluate=False)*S.ImaginaryUnit
|
76 |
+
elif isinstance(spart, (floor, ceiling)):
|
77 |
+
return ipart + spart
|
78 |
+
else:
|
79 |
+
return ipart + cls(spart, evaluate=False)
|
80 |
+
|
81 |
+
@classmethod
|
82 |
+
def _eval_number(cls, arg):
|
83 |
+
raise NotImplementedError()
|
84 |
+
|
85 |
+
def _eval_is_finite(self):
|
86 |
+
return self.args[0].is_finite
|
87 |
+
|
88 |
+
def _eval_is_real(self):
|
89 |
+
return self.args[0].is_real
|
90 |
+
|
91 |
+
def _eval_is_integer(self):
|
92 |
+
return self.args[0].is_real
|
93 |
+
|
94 |
+
|
95 |
+
class floor(RoundFunction):
|
96 |
+
"""
|
97 |
+
Floor is a univariate function which returns the largest integer
|
98 |
+
value not greater than its argument. This implementation
|
99 |
+
generalizes floor to complex numbers by taking the floor of the
|
100 |
+
real and imaginary parts separately.
|
101 |
+
|
102 |
+
Examples
|
103 |
+
========
|
104 |
+
|
105 |
+
>>> from sympy import floor, E, I, S, Float, Rational
|
106 |
+
>>> floor(17)
|
107 |
+
17
|
108 |
+
>>> floor(Rational(23, 10))
|
109 |
+
2
|
110 |
+
>>> floor(2*E)
|
111 |
+
5
|
112 |
+
>>> floor(-Float(0.567))
|
113 |
+
-1
|
114 |
+
>>> floor(-I/2)
|
115 |
+
-I
|
116 |
+
>>> floor(S(5)/2 + 5*I/2)
|
117 |
+
2 + 2*I
|
118 |
+
|
119 |
+
See Also
|
120 |
+
========
|
121 |
+
|
122 |
+
sympy.functions.elementary.integers.ceiling
|
123 |
+
|
124 |
+
References
|
125 |
+
==========
|
126 |
+
|
127 |
+
.. [1] "Concrete mathematics" by Graham, pp. 87
|
128 |
+
.. [2] https://mathworld.wolfram.com/FloorFunction.html
|
129 |
+
|
130 |
+
"""
|
131 |
+
_dir = -1
|
132 |
+
|
133 |
+
@classmethod
|
134 |
+
def _eval_number(cls, arg):
|
135 |
+
if arg.is_Number:
|
136 |
+
return arg.floor()
|
137 |
+
elif any(isinstance(i, j)
|
138 |
+
for i in (arg, -arg) for j in (floor, ceiling)):
|
139 |
+
return arg
|
140 |
+
if arg.is_NumberSymbol:
|
141 |
+
return arg.approximation_interval(Integer)[0]
|
142 |
+
|
143 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
144 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
145 |
+
arg = self.args[0]
|
146 |
+
arg0 = arg.subs(x, 0)
|
147 |
+
r = self.subs(x, 0)
|
148 |
+
if arg0 is S.NaN or isinstance(arg0, AccumBounds):
|
149 |
+
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
|
150 |
+
r = floor(arg0)
|
151 |
+
if arg0.is_finite:
|
152 |
+
if arg0 == r:
|
153 |
+
ndir = arg.dir(x, cdir=cdir)
|
154 |
+
return r - 1 if ndir.is_negative else r
|
155 |
+
else:
|
156 |
+
return r
|
157 |
+
return arg.as_leading_term(x, logx=logx, cdir=cdir)
|
158 |
+
|
159 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
160 |
+
arg = self.args[0]
|
161 |
+
arg0 = arg.subs(x, 0)
|
162 |
+
r = self.subs(x, 0)
|
163 |
+
if arg0 is S.NaN:
|
164 |
+
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
|
165 |
+
r = floor(arg0)
|
166 |
+
if arg0.is_infinite:
|
167 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
168 |
+
from sympy.series.order import Order
|
169 |
+
s = arg._eval_nseries(x, n, logx, cdir)
|
170 |
+
o = Order(1, (x, 0)) if n <= 0 else AccumBounds(-1, 0)
|
171 |
+
return s + o
|
172 |
+
if arg0 == r:
|
173 |
+
ndir = arg.dir(x, cdir=cdir if cdir != 0 else 1)
|
174 |
+
return r - 1 if ndir.is_negative else r
|
175 |
+
else:
|
176 |
+
return r
|
177 |
+
|
178 |
+
def _eval_is_negative(self):
|
179 |
+
return self.args[0].is_negative
|
180 |
+
|
181 |
+
def _eval_is_nonnegative(self):
|
182 |
+
return self.args[0].is_nonnegative
|
183 |
+
|
184 |
+
def _eval_rewrite_as_ceiling(self, arg, **kwargs):
|
185 |
+
return -ceiling(-arg)
|
186 |
+
|
187 |
+
def _eval_rewrite_as_frac(self, arg, **kwargs):
|
188 |
+
return arg - frac(arg)
|
189 |
+
|
190 |
+
def __le__(self, other):
|
191 |
+
other = S(other)
|
192 |
+
if self.args[0].is_real:
|
193 |
+
if other.is_integer:
|
194 |
+
return self.args[0] < other + 1
|
195 |
+
if other.is_number and other.is_real:
|
196 |
+
return self.args[0] < ceiling(other)
|
197 |
+
if self.args[0] == other and other.is_real:
|
198 |
+
return S.true
|
199 |
+
if other is S.Infinity and self.is_finite:
|
200 |
+
return S.true
|
201 |
+
|
202 |
+
return Le(self, other, evaluate=False)
|
203 |
+
|
204 |
+
def __ge__(self, other):
|
205 |
+
other = S(other)
|
206 |
+
if self.args[0].is_real:
|
207 |
+
if other.is_integer:
|
208 |
+
return self.args[0] >= other
|
209 |
+
if other.is_number and other.is_real:
|
210 |
+
return self.args[0] >= ceiling(other)
|
211 |
+
if self.args[0] == other and other.is_real:
|
212 |
+
return S.false
|
213 |
+
if other is S.NegativeInfinity and self.is_finite:
|
214 |
+
return S.true
|
215 |
+
|
216 |
+
return Ge(self, other, evaluate=False)
|
217 |
+
|
218 |
+
def __gt__(self, other):
|
219 |
+
other = S(other)
|
220 |
+
if self.args[0].is_real:
|
221 |
+
if other.is_integer:
|
222 |
+
return self.args[0] >= other + 1
|
223 |
+
if other.is_number and other.is_real:
|
224 |
+
return self.args[0] >= ceiling(other)
|
225 |
+
if self.args[0] == other and other.is_real:
|
226 |
+
return S.false
|
227 |
+
if other is S.NegativeInfinity and self.is_finite:
|
228 |
+
return S.true
|
229 |
+
|
230 |
+
return Gt(self, other, evaluate=False)
|
231 |
+
|
232 |
+
def __lt__(self, other):
|
233 |
+
other = S(other)
|
234 |
+
if self.args[0].is_real:
|
235 |
+
if other.is_integer:
|
236 |
+
return self.args[0] < other
|
237 |
+
if other.is_number and other.is_real:
|
238 |
+
return self.args[0] < ceiling(other)
|
239 |
+
if self.args[0] == other and other.is_real:
|
240 |
+
return S.false
|
241 |
+
if other is S.Infinity and self.is_finite:
|
242 |
+
return S.true
|
243 |
+
|
244 |
+
return Lt(self, other, evaluate=False)
|
245 |
+
|
246 |
+
|
247 |
+
@dispatch(floor, Expr)
|
248 |
+
def _eval_is_eq(lhs, rhs): # noqa:F811
|
249 |
+
return is_eq(lhs.rewrite(ceiling), rhs) or \
|
250 |
+
is_eq(lhs.rewrite(frac),rhs)
|
251 |
+
|
252 |
+
|
253 |
+
class ceiling(RoundFunction):
|
254 |
+
"""
|
255 |
+
Ceiling is a univariate function which returns the smallest integer
|
256 |
+
value not less than its argument. This implementation
|
257 |
+
generalizes ceiling to complex numbers by taking the ceiling of the
|
258 |
+
real and imaginary parts separately.
|
259 |
+
|
260 |
+
Examples
|
261 |
+
========
|
262 |
+
|
263 |
+
>>> from sympy import ceiling, E, I, S, Float, Rational
|
264 |
+
>>> ceiling(17)
|
265 |
+
17
|
266 |
+
>>> ceiling(Rational(23, 10))
|
267 |
+
3
|
268 |
+
>>> ceiling(2*E)
|
269 |
+
6
|
270 |
+
>>> ceiling(-Float(0.567))
|
271 |
+
0
|
272 |
+
>>> ceiling(I/2)
|
273 |
+
I
|
274 |
+
>>> ceiling(S(5)/2 + 5*I/2)
|
275 |
+
3 + 3*I
|
276 |
+
|
277 |
+
See Also
|
278 |
+
========
|
279 |
+
|
280 |
+
sympy.functions.elementary.integers.floor
|
281 |
+
|
282 |
+
References
|
283 |
+
==========
|
284 |
+
|
285 |
+
.. [1] "Concrete mathematics" by Graham, pp. 87
|
286 |
+
.. [2] https://mathworld.wolfram.com/CeilingFunction.html
|
287 |
+
|
288 |
+
"""
|
289 |
+
_dir = 1
|
290 |
+
|
291 |
+
@classmethod
|
292 |
+
def _eval_number(cls, arg):
|
293 |
+
if arg.is_Number:
|
294 |
+
return arg.ceiling()
|
295 |
+
elif any(isinstance(i, j)
|
296 |
+
for i in (arg, -arg) for j in (floor, ceiling)):
|
297 |
+
return arg
|
298 |
+
if arg.is_NumberSymbol:
|
299 |
+
return arg.approximation_interval(Integer)[1]
|
300 |
+
|
301 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
302 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
303 |
+
arg = self.args[0]
|
304 |
+
arg0 = arg.subs(x, 0)
|
305 |
+
r = self.subs(x, 0)
|
306 |
+
if arg0 is S.NaN or isinstance(arg0, AccumBounds):
|
307 |
+
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
|
308 |
+
r = ceiling(arg0)
|
309 |
+
if arg0.is_finite:
|
310 |
+
if arg0 == r:
|
311 |
+
ndir = arg.dir(x, cdir=cdir)
|
312 |
+
return r if ndir.is_negative else r + 1
|
313 |
+
else:
|
314 |
+
return r
|
315 |
+
return arg.as_leading_term(x, logx=logx, cdir=cdir)
|
316 |
+
|
317 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
318 |
+
arg = self.args[0]
|
319 |
+
arg0 = arg.subs(x, 0)
|
320 |
+
r = self.subs(x, 0)
|
321 |
+
if arg0 is S.NaN:
|
322 |
+
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
|
323 |
+
r = ceiling(arg0)
|
324 |
+
if arg0.is_infinite:
|
325 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
326 |
+
from sympy.series.order import Order
|
327 |
+
s = arg._eval_nseries(x, n, logx, cdir)
|
328 |
+
o = Order(1, (x, 0)) if n <= 0 else AccumBounds(0, 1)
|
329 |
+
return s + o
|
330 |
+
if arg0 == r:
|
331 |
+
ndir = arg.dir(x, cdir=cdir if cdir != 0 else 1)
|
332 |
+
return r if ndir.is_negative else r + 1
|
333 |
+
else:
|
334 |
+
return r
|
335 |
+
|
336 |
+
def _eval_rewrite_as_floor(self, arg, **kwargs):
|
337 |
+
return -floor(-arg)
|
338 |
+
|
339 |
+
def _eval_rewrite_as_frac(self, arg, **kwargs):
|
340 |
+
return arg + frac(-arg)
|
341 |
+
|
342 |
+
def _eval_is_positive(self):
|
343 |
+
return self.args[0].is_positive
|
344 |
+
|
345 |
+
def _eval_is_nonpositive(self):
|
346 |
+
return self.args[0].is_nonpositive
|
347 |
+
|
348 |
+
def __lt__(self, other):
|
349 |
+
other = S(other)
|
350 |
+
if self.args[0].is_real:
|
351 |
+
if other.is_integer:
|
352 |
+
return self.args[0] <= other - 1
|
353 |
+
if other.is_number and other.is_real:
|
354 |
+
return self.args[0] <= floor(other)
|
355 |
+
if self.args[0] == other and other.is_real:
|
356 |
+
return S.false
|
357 |
+
if other is S.Infinity and self.is_finite:
|
358 |
+
return S.true
|
359 |
+
|
360 |
+
return Lt(self, other, evaluate=False)
|
361 |
+
|
362 |
+
def __gt__(self, other):
|
363 |
+
other = S(other)
|
364 |
+
if self.args[0].is_real:
|
365 |
+
if other.is_integer:
|
366 |
+
return self.args[0] > other
|
367 |
+
if other.is_number and other.is_real:
|
368 |
+
return self.args[0] > floor(other)
|
369 |
+
if self.args[0] == other and other.is_real:
|
370 |
+
return S.false
|
371 |
+
if other is S.NegativeInfinity and self.is_finite:
|
372 |
+
return S.true
|
373 |
+
|
374 |
+
return Gt(self, other, evaluate=False)
|
375 |
+
|
376 |
+
def __ge__(self, other):
|
377 |
+
other = S(other)
|
378 |
+
if self.args[0].is_real:
|
379 |
+
if other.is_integer:
|
380 |
+
return self.args[0] > other - 1
|
381 |
+
if other.is_number and other.is_real:
|
382 |
+
return self.args[0] > floor(other)
|
383 |
+
if self.args[0] == other and other.is_real:
|
384 |
+
return S.true
|
385 |
+
if other is S.NegativeInfinity and self.is_finite:
|
386 |
+
return S.true
|
387 |
+
|
388 |
+
return Ge(self, other, evaluate=False)
|
389 |
+
|
390 |
+
def __le__(self, other):
|
391 |
+
other = S(other)
|
392 |
+
if self.args[0].is_real:
|
393 |
+
if other.is_integer:
|
394 |
+
return self.args[0] <= other
|
395 |
+
if other.is_number and other.is_real:
|
396 |
+
return self.args[0] <= floor(other)
|
397 |
+
if self.args[0] == other and other.is_real:
|
398 |
+
return S.false
|
399 |
+
if other is S.Infinity and self.is_finite:
|
400 |
+
return S.true
|
401 |
+
|
402 |
+
return Le(self, other, evaluate=False)
|
403 |
+
|
404 |
+
|
405 |
+
@dispatch(ceiling, Basic) # type:ignore
|
406 |
+
def _eval_is_eq(lhs, rhs): # noqa:F811
|
407 |
+
return is_eq(lhs.rewrite(floor), rhs) or is_eq(lhs.rewrite(frac),rhs)
|
408 |
+
|
409 |
+
|
410 |
+
class frac(Function):
|
411 |
+
r"""Represents the fractional part of x
|
412 |
+
|
413 |
+
For real numbers it is defined [1]_ as
|
414 |
+
|
415 |
+
.. math::
|
416 |
+
x - \left\lfloor{x}\right\rfloor
|
417 |
+
|
418 |
+
Examples
|
419 |
+
========
|
420 |
+
|
421 |
+
>>> from sympy import Symbol, frac, Rational, floor, I
|
422 |
+
>>> frac(Rational(4, 3))
|
423 |
+
1/3
|
424 |
+
>>> frac(-Rational(4, 3))
|
425 |
+
2/3
|
426 |
+
|
427 |
+
returns zero for integer arguments
|
428 |
+
|
429 |
+
>>> n = Symbol('n', integer=True)
|
430 |
+
>>> frac(n)
|
431 |
+
0
|
432 |
+
|
433 |
+
rewrite as floor
|
434 |
+
|
435 |
+
>>> x = Symbol('x')
|
436 |
+
>>> frac(x).rewrite(floor)
|
437 |
+
x - floor(x)
|
438 |
+
|
439 |
+
for complex arguments
|
440 |
+
|
441 |
+
>>> r = Symbol('r', real=True)
|
442 |
+
>>> t = Symbol('t', real=True)
|
443 |
+
>>> frac(t + I*r)
|
444 |
+
I*frac(r) + frac(t)
|
445 |
+
|
446 |
+
See Also
|
447 |
+
========
|
448 |
+
|
449 |
+
sympy.functions.elementary.integers.floor
|
450 |
+
sympy.functions.elementary.integers.ceiling
|
451 |
+
|
452 |
+
References
|
453 |
+
===========
|
454 |
+
|
455 |
+
.. [1] https://en.wikipedia.org/wiki/Fractional_part
|
456 |
+
.. [2] https://mathworld.wolfram.com/FractionalPart.html
|
457 |
+
|
458 |
+
"""
|
459 |
+
@classmethod
|
460 |
+
def eval(cls, arg):
|
461 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
462 |
+
|
463 |
+
def _eval(arg):
|
464 |
+
if arg in (S.Infinity, S.NegativeInfinity):
|
465 |
+
return AccumBounds(0, 1)
|
466 |
+
if arg.is_integer:
|
467 |
+
return S.Zero
|
468 |
+
if arg.is_number:
|
469 |
+
if arg is S.NaN:
|
470 |
+
return S.NaN
|
471 |
+
elif arg is S.ComplexInfinity:
|
472 |
+
return S.NaN
|
473 |
+
else:
|
474 |
+
return arg - floor(arg)
|
475 |
+
return cls(arg, evaluate=False)
|
476 |
+
|
477 |
+
terms = Add.make_args(arg)
|
478 |
+
real, imag = S.Zero, S.Zero
|
479 |
+
for t in terms:
|
480 |
+
# Two checks are needed for complex arguments
|
481 |
+
# see issue-7649 for details
|
482 |
+
if t.is_imaginary or (S.ImaginaryUnit*t).is_real:
|
483 |
+
i = im(t)
|
484 |
+
if not i.has(S.ImaginaryUnit):
|
485 |
+
imag += i
|
486 |
+
else:
|
487 |
+
real += t
|
488 |
+
else:
|
489 |
+
real += t
|
490 |
+
|
491 |
+
real = _eval(real)
|
492 |
+
imag = _eval(imag)
|
493 |
+
return real + S.ImaginaryUnit*imag
|
494 |
+
|
495 |
+
def _eval_rewrite_as_floor(self, arg, **kwargs):
|
496 |
+
return arg - floor(arg)
|
497 |
+
|
498 |
+
def _eval_rewrite_as_ceiling(self, arg, **kwargs):
|
499 |
+
return arg + ceiling(-arg)
|
500 |
+
|
501 |
+
def _eval_is_finite(self):
|
502 |
+
return True
|
503 |
+
|
504 |
+
def _eval_is_real(self):
|
505 |
+
return self.args[0].is_extended_real
|
506 |
+
|
507 |
+
def _eval_is_imaginary(self):
|
508 |
+
return self.args[0].is_imaginary
|
509 |
+
|
510 |
+
def _eval_is_integer(self):
|
511 |
+
return self.args[0].is_integer
|
512 |
+
|
513 |
+
def _eval_is_zero(self):
|
514 |
+
return fuzzy_or([self.args[0].is_zero, self.args[0].is_integer])
|
515 |
+
|
516 |
+
def _eval_is_negative(self):
|
517 |
+
return False
|
518 |
+
|
519 |
+
def __ge__(self, other):
|
520 |
+
if self.is_extended_real:
|
521 |
+
other = _sympify(other)
|
522 |
+
# Check if other <= 0
|
523 |
+
if other.is_extended_nonpositive:
|
524 |
+
return S.true
|
525 |
+
# Check if other >= 1
|
526 |
+
res = self._value_one_or_more(other)
|
527 |
+
if res is not None:
|
528 |
+
return not(res)
|
529 |
+
return Ge(self, other, evaluate=False)
|
530 |
+
|
531 |
+
def __gt__(self, other):
|
532 |
+
if self.is_extended_real:
|
533 |
+
other = _sympify(other)
|
534 |
+
# Check if other < 0
|
535 |
+
res = self._value_one_or_more(other)
|
536 |
+
if res is not None:
|
537 |
+
return not(res)
|
538 |
+
# Check if other >= 1
|
539 |
+
if other.is_extended_negative:
|
540 |
+
return S.true
|
541 |
+
return Gt(self, other, evaluate=False)
|
542 |
+
|
543 |
+
def __le__(self, other):
|
544 |
+
if self.is_extended_real:
|
545 |
+
other = _sympify(other)
|
546 |
+
# Check if other < 0
|
547 |
+
if other.is_extended_negative:
|
548 |
+
return S.false
|
549 |
+
# Check if other >= 1
|
550 |
+
res = self._value_one_or_more(other)
|
551 |
+
if res is not None:
|
552 |
+
return res
|
553 |
+
return Le(self, other, evaluate=False)
|
554 |
+
|
555 |
+
def __lt__(self, other):
|
556 |
+
if self.is_extended_real:
|
557 |
+
other = _sympify(other)
|
558 |
+
# Check if other <= 0
|
559 |
+
if other.is_extended_nonpositive:
|
560 |
+
return S.false
|
561 |
+
# Check if other >= 1
|
562 |
+
res = self._value_one_or_more(other)
|
563 |
+
if res is not None:
|
564 |
+
return res
|
565 |
+
return Lt(self, other, evaluate=False)
|
566 |
+
|
567 |
+
def _value_one_or_more(self, other):
|
568 |
+
if other.is_extended_real:
|
569 |
+
if other.is_number:
|
570 |
+
res = other >= 1
|
571 |
+
if res and not isinstance(res, Relational):
|
572 |
+
return S.true
|
573 |
+
if other.is_integer and other.is_positive:
|
574 |
+
return S.true
|
575 |
+
|
576 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
577 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
578 |
+
arg = self.args[0]
|
579 |
+
arg0 = arg.subs(x, 0)
|
580 |
+
r = self.subs(x, 0)
|
581 |
+
|
582 |
+
if arg0.is_finite:
|
583 |
+
if r.is_zero:
|
584 |
+
ndir = arg.dir(x, cdir=cdir)
|
585 |
+
if ndir.is_negative:
|
586 |
+
return S.One
|
587 |
+
return (arg - arg0).as_leading_term(x, logx=logx, cdir=cdir)
|
588 |
+
else:
|
589 |
+
return r
|
590 |
+
elif arg0 in (S.ComplexInfinity, S.Infinity, S.NegativeInfinity):
|
591 |
+
return AccumBounds(0, 1)
|
592 |
+
return arg.as_leading_term(x, logx=logx, cdir=cdir)
|
593 |
+
|
594 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
595 |
+
from sympy.series.order import Order
|
596 |
+
arg = self.args[0]
|
597 |
+
arg0 = arg.subs(x, 0)
|
598 |
+
r = self.subs(x, 0)
|
599 |
+
|
600 |
+
if arg0.is_infinite:
|
601 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
602 |
+
o = Order(1, (x, 0)) if n <= 0 else AccumBounds(0, 1) + Order(x**n, (x, 0))
|
603 |
+
return o
|
604 |
+
else:
|
605 |
+
res = (arg - arg0)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
606 |
+
if r.is_zero:
|
607 |
+
ndir = arg.dir(x, cdir=cdir)
|
608 |
+
res += S.One if ndir.is_negative else S.Zero
|
609 |
+
else:
|
610 |
+
res += r
|
611 |
+
return res
|
612 |
+
|
613 |
+
|
614 |
+
@dispatch(frac, Basic) # type:ignore
|
615 |
+
def _eval_is_eq(lhs, rhs): # noqa:F811
|
616 |
+
if (lhs.rewrite(floor) == rhs) or \
|
617 |
+
(lhs.rewrite(ceiling) == rhs):
|
618 |
+
return True
|
619 |
+
# Check if other < 0
|
620 |
+
if rhs.is_extended_negative:
|
621 |
+
return False
|
622 |
+
# Check if other >= 1
|
623 |
+
res = lhs._value_one_or_more(rhs)
|
624 |
+
if res is not None:
|
625 |
+
return False
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/miscellaneous.py
ADDED
@@ -0,0 +1,915 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Function, S, sympify, NumberKind
|
2 |
+
from sympy.utilities.iterables import sift
|
3 |
+
from sympy.core.add import Add
|
4 |
+
from sympy.core.containers import Tuple
|
5 |
+
from sympy.core.operations import LatticeOp, ShortCircuit
|
6 |
+
from sympy.core.function import (Application, Lambda,
|
7 |
+
ArgumentIndexError)
|
8 |
+
from sympy.core.expr import Expr
|
9 |
+
from sympy.core.exprtools import factor_terms
|
10 |
+
from sympy.core.mod import Mod
|
11 |
+
from sympy.core.mul import Mul
|
12 |
+
from sympy.core.numbers import Rational
|
13 |
+
from sympy.core.power import Pow
|
14 |
+
from sympy.core.relational import Eq, Relational
|
15 |
+
from sympy.core.singleton import Singleton
|
16 |
+
from sympy.core.sorting import ordered
|
17 |
+
from sympy.core.symbol import Dummy
|
18 |
+
from sympy.core.rules import Transform
|
19 |
+
from sympy.core.logic import fuzzy_and, fuzzy_or, _torf
|
20 |
+
from sympy.core.traversal import walk
|
21 |
+
from sympy.core.numbers import Integer
|
22 |
+
from sympy.logic.boolalg import And, Or
|
23 |
+
|
24 |
+
|
25 |
+
def _minmax_as_Piecewise(op, *args):
|
26 |
+
# helper for Min/Max rewrite as Piecewise
|
27 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
28 |
+
ec = []
|
29 |
+
for i, a in enumerate(args):
|
30 |
+
c = [Relational(a, args[j], op) for j in range(i + 1, len(args))]
|
31 |
+
ec.append((a, And(*c)))
|
32 |
+
return Piecewise(*ec)
|
33 |
+
|
34 |
+
|
35 |
+
class IdentityFunction(Lambda, metaclass=Singleton):
|
36 |
+
"""
|
37 |
+
The identity function
|
38 |
+
|
39 |
+
Examples
|
40 |
+
========
|
41 |
+
|
42 |
+
>>> from sympy import Id, Symbol
|
43 |
+
>>> x = Symbol('x')
|
44 |
+
>>> Id(x)
|
45 |
+
x
|
46 |
+
|
47 |
+
"""
|
48 |
+
|
49 |
+
_symbol = Dummy('x')
|
50 |
+
|
51 |
+
@property
|
52 |
+
def signature(self):
|
53 |
+
return Tuple(self._symbol)
|
54 |
+
|
55 |
+
@property
|
56 |
+
def expr(self):
|
57 |
+
return self._symbol
|
58 |
+
|
59 |
+
|
60 |
+
Id = S.IdentityFunction
|
61 |
+
|
62 |
+
###############################################################################
|
63 |
+
############################# ROOT and SQUARE ROOT FUNCTION ###################
|
64 |
+
###############################################################################
|
65 |
+
|
66 |
+
|
67 |
+
def sqrt(arg, evaluate=None):
|
68 |
+
"""Returns the principal square root.
|
69 |
+
|
70 |
+
Parameters
|
71 |
+
==========
|
72 |
+
|
73 |
+
evaluate : bool, optional
|
74 |
+
The parameter determines if the expression should be evaluated.
|
75 |
+
If ``None``, its value is taken from
|
76 |
+
``global_parameters.evaluate``.
|
77 |
+
|
78 |
+
Examples
|
79 |
+
========
|
80 |
+
|
81 |
+
>>> from sympy import sqrt, Symbol, S
|
82 |
+
>>> x = Symbol('x')
|
83 |
+
|
84 |
+
>>> sqrt(x)
|
85 |
+
sqrt(x)
|
86 |
+
|
87 |
+
>>> sqrt(x)**2
|
88 |
+
x
|
89 |
+
|
90 |
+
Note that sqrt(x**2) does not simplify to x.
|
91 |
+
|
92 |
+
>>> sqrt(x**2)
|
93 |
+
sqrt(x**2)
|
94 |
+
|
95 |
+
This is because the two are not equal to each other in general.
|
96 |
+
For example, consider x == -1:
|
97 |
+
|
98 |
+
>>> from sympy import Eq
|
99 |
+
>>> Eq(sqrt(x**2), x).subs(x, -1)
|
100 |
+
False
|
101 |
+
|
102 |
+
This is because sqrt computes the principal square root, so the square may
|
103 |
+
put the argument in a different branch. This identity does hold if x is
|
104 |
+
positive:
|
105 |
+
|
106 |
+
>>> y = Symbol('y', positive=True)
|
107 |
+
>>> sqrt(y**2)
|
108 |
+
y
|
109 |
+
|
110 |
+
You can force this simplification by using the powdenest() function with
|
111 |
+
the force option set to True:
|
112 |
+
|
113 |
+
>>> from sympy import powdenest
|
114 |
+
>>> sqrt(x**2)
|
115 |
+
sqrt(x**2)
|
116 |
+
>>> powdenest(sqrt(x**2), force=True)
|
117 |
+
x
|
118 |
+
|
119 |
+
To get both branches of the square root you can use the rootof function:
|
120 |
+
|
121 |
+
>>> from sympy import rootof
|
122 |
+
|
123 |
+
>>> [rootof(x**2-3,i) for i in (0,1)]
|
124 |
+
[-sqrt(3), sqrt(3)]
|
125 |
+
|
126 |
+
Although ``sqrt`` is printed, there is no ``sqrt`` function so looking for
|
127 |
+
``sqrt`` in an expression will fail:
|
128 |
+
|
129 |
+
>>> from sympy.utilities.misc import func_name
|
130 |
+
>>> func_name(sqrt(x))
|
131 |
+
'Pow'
|
132 |
+
>>> sqrt(x).has(sqrt)
|
133 |
+
False
|
134 |
+
|
135 |
+
To find ``sqrt`` look for ``Pow`` with an exponent of ``1/2``:
|
136 |
+
|
137 |
+
>>> (x + 1/sqrt(x)).find(lambda i: i.is_Pow and abs(i.exp) is S.Half)
|
138 |
+
{1/sqrt(x)}
|
139 |
+
|
140 |
+
See Also
|
141 |
+
========
|
142 |
+
|
143 |
+
sympy.polys.rootoftools.rootof, root, real_root
|
144 |
+
|
145 |
+
References
|
146 |
+
==========
|
147 |
+
|
148 |
+
.. [1] https://en.wikipedia.org/wiki/Square_root
|
149 |
+
.. [2] https://en.wikipedia.org/wiki/Principal_value
|
150 |
+
"""
|
151 |
+
# arg = sympify(arg) is handled by Pow
|
152 |
+
return Pow(arg, S.Half, evaluate=evaluate)
|
153 |
+
|
154 |
+
|
155 |
+
def cbrt(arg, evaluate=None):
|
156 |
+
"""Returns the principal cube root.
|
157 |
+
|
158 |
+
Parameters
|
159 |
+
==========
|
160 |
+
|
161 |
+
evaluate : bool, optional
|
162 |
+
The parameter determines if the expression should be evaluated.
|
163 |
+
If ``None``, its value is taken from
|
164 |
+
``global_parameters.evaluate``.
|
165 |
+
|
166 |
+
Examples
|
167 |
+
========
|
168 |
+
|
169 |
+
>>> from sympy import cbrt, Symbol
|
170 |
+
>>> x = Symbol('x')
|
171 |
+
|
172 |
+
>>> cbrt(x)
|
173 |
+
x**(1/3)
|
174 |
+
|
175 |
+
>>> cbrt(x)**3
|
176 |
+
x
|
177 |
+
|
178 |
+
Note that cbrt(x**3) does not simplify to x.
|
179 |
+
|
180 |
+
>>> cbrt(x**3)
|
181 |
+
(x**3)**(1/3)
|
182 |
+
|
183 |
+
This is because the two are not equal to each other in general.
|
184 |
+
For example, consider `x == -1`:
|
185 |
+
|
186 |
+
>>> from sympy import Eq
|
187 |
+
>>> Eq(cbrt(x**3), x).subs(x, -1)
|
188 |
+
False
|
189 |
+
|
190 |
+
This is because cbrt computes the principal cube root, this
|
191 |
+
identity does hold if `x` is positive:
|
192 |
+
|
193 |
+
>>> y = Symbol('y', positive=True)
|
194 |
+
>>> cbrt(y**3)
|
195 |
+
y
|
196 |
+
|
197 |
+
See Also
|
198 |
+
========
|
199 |
+
|
200 |
+
sympy.polys.rootoftools.rootof, root, real_root
|
201 |
+
|
202 |
+
References
|
203 |
+
==========
|
204 |
+
|
205 |
+
.. [1] https://en.wikipedia.org/wiki/Cube_root
|
206 |
+
.. [2] https://en.wikipedia.org/wiki/Principal_value
|
207 |
+
|
208 |
+
"""
|
209 |
+
return Pow(arg, Rational(1, 3), evaluate=evaluate)
|
210 |
+
|
211 |
+
|
212 |
+
def root(arg, n, k=0, evaluate=None):
|
213 |
+
r"""Returns the *k*-th *n*-th root of ``arg``.
|
214 |
+
|
215 |
+
Parameters
|
216 |
+
==========
|
217 |
+
|
218 |
+
k : int, optional
|
219 |
+
Should be an integer in $\{0, 1, ..., n-1\}$.
|
220 |
+
Defaults to the principal root if $0$.
|
221 |
+
|
222 |
+
evaluate : bool, optional
|
223 |
+
The parameter determines if the expression should be evaluated.
|
224 |
+
If ``None``, its value is taken from
|
225 |
+
``global_parameters.evaluate``.
|
226 |
+
|
227 |
+
Examples
|
228 |
+
========
|
229 |
+
|
230 |
+
>>> from sympy import root, Rational
|
231 |
+
>>> from sympy.abc import x, n
|
232 |
+
|
233 |
+
>>> root(x, 2)
|
234 |
+
sqrt(x)
|
235 |
+
|
236 |
+
>>> root(x, 3)
|
237 |
+
x**(1/3)
|
238 |
+
|
239 |
+
>>> root(x, n)
|
240 |
+
x**(1/n)
|
241 |
+
|
242 |
+
>>> root(x, -Rational(2, 3))
|
243 |
+
x**(-3/2)
|
244 |
+
|
245 |
+
To get the k-th n-th root, specify k:
|
246 |
+
|
247 |
+
>>> root(-2, 3, 2)
|
248 |
+
-(-1)**(2/3)*2**(1/3)
|
249 |
+
|
250 |
+
To get all n n-th roots you can use the rootof function.
|
251 |
+
The following examples show the roots of unity for n
|
252 |
+
equal 2, 3 and 4:
|
253 |
+
|
254 |
+
>>> from sympy import rootof
|
255 |
+
|
256 |
+
>>> [rootof(x**2 - 1, i) for i in range(2)]
|
257 |
+
[-1, 1]
|
258 |
+
|
259 |
+
>>> [rootof(x**3 - 1,i) for i in range(3)]
|
260 |
+
[1, -1/2 - sqrt(3)*I/2, -1/2 + sqrt(3)*I/2]
|
261 |
+
|
262 |
+
>>> [rootof(x**4 - 1,i) for i in range(4)]
|
263 |
+
[-1, 1, -I, I]
|
264 |
+
|
265 |
+
SymPy, like other symbolic algebra systems, returns the
|
266 |
+
complex root of negative numbers. This is the principal
|
267 |
+
root and differs from the text-book result that one might
|
268 |
+
be expecting. For example, the cube root of -8 does not
|
269 |
+
come back as -2:
|
270 |
+
|
271 |
+
>>> root(-8, 3)
|
272 |
+
2*(-1)**(1/3)
|
273 |
+
|
274 |
+
The real_root function can be used to either make the principal
|
275 |
+
result real (or simply to return the real root directly):
|
276 |
+
|
277 |
+
>>> from sympy import real_root
|
278 |
+
>>> real_root(_)
|
279 |
+
-2
|
280 |
+
>>> real_root(-32, 5)
|
281 |
+
-2
|
282 |
+
|
283 |
+
Alternatively, the n//2-th n-th root of a negative number can be
|
284 |
+
computed with root:
|
285 |
+
|
286 |
+
>>> root(-32, 5, 5//2)
|
287 |
+
-2
|
288 |
+
|
289 |
+
See Also
|
290 |
+
========
|
291 |
+
|
292 |
+
sympy.polys.rootoftools.rootof
|
293 |
+
sympy.core.power.integer_nthroot
|
294 |
+
sqrt, real_root
|
295 |
+
|
296 |
+
References
|
297 |
+
==========
|
298 |
+
|
299 |
+
.. [1] https://en.wikipedia.org/wiki/Square_root
|
300 |
+
.. [2] https://en.wikipedia.org/wiki/Real_root
|
301 |
+
.. [3] https://en.wikipedia.org/wiki/Root_of_unity
|
302 |
+
.. [4] https://en.wikipedia.org/wiki/Principal_value
|
303 |
+
.. [5] https://mathworld.wolfram.com/CubeRoot.html
|
304 |
+
|
305 |
+
"""
|
306 |
+
n = sympify(n)
|
307 |
+
if k:
|
308 |
+
return Mul(Pow(arg, S.One/n, evaluate=evaluate), S.NegativeOne**(2*k/n), evaluate=evaluate)
|
309 |
+
return Pow(arg, 1/n, evaluate=evaluate)
|
310 |
+
|
311 |
+
|
312 |
+
def real_root(arg, n=None, evaluate=None):
|
313 |
+
r"""Return the real *n*'th-root of *arg* if possible.
|
314 |
+
|
315 |
+
Parameters
|
316 |
+
==========
|
317 |
+
|
318 |
+
n : int or None, optional
|
319 |
+
If *n* is ``None``, then all instances of
|
320 |
+
$(-n)^{1/\text{odd}}$ will be changed to $-n^{1/\text{odd}}$.
|
321 |
+
This will only create a real root of a principal root.
|
322 |
+
The presence of other factors may cause the result to not be
|
323 |
+
real.
|
324 |
+
|
325 |
+
evaluate : bool, optional
|
326 |
+
The parameter determines if the expression should be evaluated.
|
327 |
+
If ``None``, its value is taken from
|
328 |
+
``global_parameters.evaluate``.
|
329 |
+
|
330 |
+
Examples
|
331 |
+
========
|
332 |
+
|
333 |
+
>>> from sympy import root, real_root
|
334 |
+
|
335 |
+
>>> real_root(-8, 3)
|
336 |
+
-2
|
337 |
+
>>> root(-8, 3)
|
338 |
+
2*(-1)**(1/3)
|
339 |
+
>>> real_root(_)
|
340 |
+
-2
|
341 |
+
|
342 |
+
If one creates a non-principal root and applies real_root, the
|
343 |
+
result will not be real (so use with caution):
|
344 |
+
|
345 |
+
>>> root(-8, 3, 2)
|
346 |
+
-2*(-1)**(2/3)
|
347 |
+
>>> real_root(_)
|
348 |
+
-2*(-1)**(2/3)
|
349 |
+
|
350 |
+
See Also
|
351 |
+
========
|
352 |
+
|
353 |
+
sympy.polys.rootoftools.rootof
|
354 |
+
sympy.core.power.integer_nthroot
|
355 |
+
root, sqrt
|
356 |
+
"""
|
357 |
+
from sympy.functions.elementary.complexes import Abs, im, sign
|
358 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
359 |
+
if n is not None:
|
360 |
+
return Piecewise(
|
361 |
+
(root(arg, n, evaluate=evaluate), Or(Eq(n, S.One), Eq(n, S.NegativeOne))),
|
362 |
+
(Mul(sign(arg), root(Abs(arg), n, evaluate=evaluate), evaluate=evaluate),
|
363 |
+
And(Eq(im(arg), S.Zero), Eq(Mod(n, 2), S.One))),
|
364 |
+
(root(arg, n, evaluate=evaluate), True))
|
365 |
+
rv = sympify(arg)
|
366 |
+
n1pow = Transform(lambda x: -(-x.base)**x.exp,
|
367 |
+
lambda x:
|
368 |
+
x.is_Pow and
|
369 |
+
x.base.is_negative and
|
370 |
+
x.exp.is_Rational and
|
371 |
+
x.exp.p == 1 and x.exp.q % 2)
|
372 |
+
return rv.xreplace(n1pow)
|
373 |
+
|
374 |
+
###############################################################################
|
375 |
+
############################# MINIMUM and MAXIMUM #############################
|
376 |
+
###############################################################################
|
377 |
+
|
378 |
+
|
379 |
+
class MinMaxBase(Expr, LatticeOp):
|
380 |
+
def __new__(cls, *args, **assumptions):
|
381 |
+
from sympy.core.parameters import global_parameters
|
382 |
+
evaluate = assumptions.pop('evaluate', global_parameters.evaluate)
|
383 |
+
args = (sympify(arg) for arg in args)
|
384 |
+
|
385 |
+
# first standard filter, for cls.zero and cls.identity
|
386 |
+
# also reshape Max(a, Max(b, c)) to Max(a, b, c)
|
387 |
+
|
388 |
+
if evaluate:
|
389 |
+
try:
|
390 |
+
args = frozenset(cls._new_args_filter(args))
|
391 |
+
except ShortCircuit:
|
392 |
+
return cls.zero
|
393 |
+
# remove redundant args that are easily identified
|
394 |
+
args = cls._collapse_arguments(args, **assumptions)
|
395 |
+
# find local zeros
|
396 |
+
args = cls._find_localzeros(args, **assumptions)
|
397 |
+
args = frozenset(args)
|
398 |
+
|
399 |
+
if not args:
|
400 |
+
return cls.identity
|
401 |
+
|
402 |
+
if len(args) == 1:
|
403 |
+
return list(args).pop()
|
404 |
+
|
405 |
+
# base creation
|
406 |
+
obj = Expr.__new__(cls, *ordered(args), **assumptions)
|
407 |
+
obj._argset = args
|
408 |
+
return obj
|
409 |
+
|
410 |
+
@classmethod
|
411 |
+
def _collapse_arguments(cls, args, **assumptions):
|
412 |
+
"""Remove redundant args.
|
413 |
+
|
414 |
+
Examples
|
415 |
+
========
|
416 |
+
|
417 |
+
>>> from sympy import Min, Max
|
418 |
+
>>> from sympy.abc import a, b, c, d, e
|
419 |
+
|
420 |
+
Any arg in parent that appears in any
|
421 |
+
parent-like function in any of the flat args
|
422 |
+
of parent can be removed from that sub-arg:
|
423 |
+
|
424 |
+
>>> Min(a, Max(b, Min(a, c, d)))
|
425 |
+
Min(a, Max(b, Min(c, d)))
|
426 |
+
|
427 |
+
If the arg of parent appears in an opposite-than parent
|
428 |
+
function in any of the flat args of parent that function
|
429 |
+
can be replaced with the arg:
|
430 |
+
|
431 |
+
>>> Min(a, Max(b, Min(c, d, Max(a, e))))
|
432 |
+
Min(a, Max(b, Min(a, c, d)))
|
433 |
+
"""
|
434 |
+
if not args:
|
435 |
+
return args
|
436 |
+
args = list(ordered(args))
|
437 |
+
if cls == Min:
|
438 |
+
other = Max
|
439 |
+
else:
|
440 |
+
other = Min
|
441 |
+
|
442 |
+
# find global comparable max of Max and min of Min if a new
|
443 |
+
# value is being introduced in these args at position 0 of
|
444 |
+
# the ordered args
|
445 |
+
if args[0].is_number:
|
446 |
+
sifted = mins, maxs = [], []
|
447 |
+
for i in args:
|
448 |
+
for v in walk(i, Min, Max):
|
449 |
+
if v.args[0].is_comparable:
|
450 |
+
sifted[isinstance(v, Max)].append(v)
|
451 |
+
small = Min.identity
|
452 |
+
for i in mins:
|
453 |
+
v = i.args[0]
|
454 |
+
if v.is_number and (v < small) == True:
|
455 |
+
small = v
|
456 |
+
big = Max.identity
|
457 |
+
for i in maxs:
|
458 |
+
v = i.args[0]
|
459 |
+
if v.is_number and (v > big) == True:
|
460 |
+
big = v
|
461 |
+
# at the point when this function is called from __new__,
|
462 |
+
# there may be more than one numeric arg present since
|
463 |
+
# local zeros have not been handled yet, so look through
|
464 |
+
# more than the first arg
|
465 |
+
if cls == Min:
|
466 |
+
for arg in args:
|
467 |
+
if not arg.is_number:
|
468 |
+
break
|
469 |
+
if (arg < small) == True:
|
470 |
+
small = arg
|
471 |
+
elif cls == Max:
|
472 |
+
for arg in args:
|
473 |
+
if not arg.is_number:
|
474 |
+
break
|
475 |
+
if (arg > big) == True:
|
476 |
+
big = arg
|
477 |
+
T = None
|
478 |
+
if cls == Min:
|
479 |
+
if small != Min.identity:
|
480 |
+
other = Max
|
481 |
+
T = small
|
482 |
+
elif big != Max.identity:
|
483 |
+
other = Min
|
484 |
+
T = big
|
485 |
+
if T is not None:
|
486 |
+
# remove numerical redundancy
|
487 |
+
for i in range(len(args)):
|
488 |
+
a = args[i]
|
489 |
+
if isinstance(a, other):
|
490 |
+
a0 = a.args[0]
|
491 |
+
if ((a0 > T) if other == Max else (a0 < T)) == True:
|
492 |
+
args[i] = cls.identity
|
493 |
+
|
494 |
+
# remove redundant symbolic args
|
495 |
+
def do(ai, a):
|
496 |
+
if not isinstance(ai, (Min, Max)):
|
497 |
+
return ai
|
498 |
+
cond = a in ai.args
|
499 |
+
if not cond:
|
500 |
+
return ai.func(*[do(i, a) for i in ai.args],
|
501 |
+
evaluate=False)
|
502 |
+
if isinstance(ai, cls):
|
503 |
+
return ai.func(*[do(i, a) for i in ai.args if i != a],
|
504 |
+
evaluate=False)
|
505 |
+
return a
|
506 |
+
for i, a in enumerate(args):
|
507 |
+
args[i + 1:] = [do(ai, a) for ai in args[i + 1:]]
|
508 |
+
|
509 |
+
# factor out common elements as for
|
510 |
+
# Min(Max(x, y), Max(x, z)) -> Max(x, Min(y, z))
|
511 |
+
# and vice versa when swapping Min/Max -- do this only for the
|
512 |
+
# easy case where all functions contain something in common;
|
513 |
+
# trying to find some optimal subset of args to modify takes
|
514 |
+
# too long
|
515 |
+
|
516 |
+
def factor_minmax(args):
|
517 |
+
is_other = lambda arg: isinstance(arg, other)
|
518 |
+
other_args, remaining_args = sift(args, is_other, binary=True)
|
519 |
+
if not other_args:
|
520 |
+
return args
|
521 |
+
|
522 |
+
# Min(Max(x, y, z), Max(x, y, u, v)) -> {x,y}, ({z}, {u,v})
|
523 |
+
arg_sets = [set(arg.args) for arg in other_args]
|
524 |
+
common = set.intersection(*arg_sets)
|
525 |
+
if not common:
|
526 |
+
return args
|
527 |
+
|
528 |
+
new_other_args = list(common)
|
529 |
+
arg_sets_diff = [arg_set - common for arg_set in arg_sets]
|
530 |
+
|
531 |
+
# If any set is empty after removing common then all can be
|
532 |
+
# discarded e.g. Min(Max(a, b, c), Max(a, b)) -> Max(a, b)
|
533 |
+
if all(arg_sets_diff):
|
534 |
+
other_args_diff = [other(*s, evaluate=False) for s in arg_sets_diff]
|
535 |
+
new_other_args.append(cls(*other_args_diff, evaluate=False))
|
536 |
+
|
537 |
+
other_args_factored = other(*new_other_args, evaluate=False)
|
538 |
+
return remaining_args + [other_args_factored]
|
539 |
+
|
540 |
+
if len(args) > 1:
|
541 |
+
args = factor_minmax(args)
|
542 |
+
|
543 |
+
return args
|
544 |
+
|
545 |
+
@classmethod
|
546 |
+
def _new_args_filter(cls, arg_sequence):
|
547 |
+
"""
|
548 |
+
Generator filtering args.
|
549 |
+
|
550 |
+
first standard filter, for cls.zero and cls.identity.
|
551 |
+
Also reshape ``Max(a, Max(b, c))`` to ``Max(a, b, c)``,
|
552 |
+
and check arguments for comparability
|
553 |
+
"""
|
554 |
+
for arg in arg_sequence:
|
555 |
+
# pre-filter, checking comparability of arguments
|
556 |
+
if not isinstance(arg, Expr) or arg.is_extended_real is False or (
|
557 |
+
arg.is_number and
|
558 |
+
not arg.is_comparable):
|
559 |
+
raise ValueError("The argument '%s' is not comparable." % arg)
|
560 |
+
|
561 |
+
if arg == cls.zero:
|
562 |
+
raise ShortCircuit(arg)
|
563 |
+
elif arg == cls.identity:
|
564 |
+
continue
|
565 |
+
elif arg.func == cls:
|
566 |
+
yield from arg.args
|
567 |
+
else:
|
568 |
+
yield arg
|
569 |
+
|
570 |
+
@classmethod
|
571 |
+
def _find_localzeros(cls, values, **options):
|
572 |
+
"""
|
573 |
+
Sequentially allocate values to localzeros.
|
574 |
+
|
575 |
+
When a value is identified as being more extreme than another member it
|
576 |
+
replaces that member; if this is never true, then the value is simply
|
577 |
+
appended to the localzeros.
|
578 |
+
"""
|
579 |
+
localzeros = set()
|
580 |
+
for v in values:
|
581 |
+
is_newzero = True
|
582 |
+
localzeros_ = list(localzeros)
|
583 |
+
for z in localzeros_:
|
584 |
+
if id(v) == id(z):
|
585 |
+
is_newzero = False
|
586 |
+
else:
|
587 |
+
con = cls._is_connected(v, z)
|
588 |
+
if con:
|
589 |
+
is_newzero = False
|
590 |
+
if con is True or con == cls:
|
591 |
+
localzeros.remove(z)
|
592 |
+
localzeros.update([v])
|
593 |
+
if is_newzero:
|
594 |
+
localzeros.update([v])
|
595 |
+
return localzeros
|
596 |
+
|
597 |
+
@classmethod
|
598 |
+
def _is_connected(cls, x, y):
|
599 |
+
"""
|
600 |
+
Check if x and y are connected somehow.
|
601 |
+
"""
|
602 |
+
for i in range(2):
|
603 |
+
if x == y:
|
604 |
+
return True
|
605 |
+
t, f = Max, Min
|
606 |
+
for op in "><":
|
607 |
+
for j in range(2):
|
608 |
+
try:
|
609 |
+
if op == ">":
|
610 |
+
v = x >= y
|
611 |
+
else:
|
612 |
+
v = x <= y
|
613 |
+
except TypeError:
|
614 |
+
return False # non-real arg
|
615 |
+
if not v.is_Relational:
|
616 |
+
return t if v else f
|
617 |
+
t, f = f, t
|
618 |
+
x, y = y, x
|
619 |
+
x, y = y, x # run next pass with reversed order relative to start
|
620 |
+
# simplification can be expensive, so be conservative
|
621 |
+
# in what is attempted
|
622 |
+
x = factor_terms(x - y)
|
623 |
+
y = S.Zero
|
624 |
+
|
625 |
+
return False
|
626 |
+
|
627 |
+
def _eval_derivative(self, s):
|
628 |
+
# f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s)
|
629 |
+
i = 0
|
630 |
+
l = []
|
631 |
+
for a in self.args:
|
632 |
+
i += 1
|
633 |
+
da = a.diff(s)
|
634 |
+
if da.is_zero:
|
635 |
+
continue
|
636 |
+
try:
|
637 |
+
df = self.fdiff(i)
|
638 |
+
except ArgumentIndexError:
|
639 |
+
df = Function.fdiff(self, i)
|
640 |
+
l.append(df * da)
|
641 |
+
return Add(*l)
|
642 |
+
|
643 |
+
def _eval_rewrite_as_Abs(self, *args, **kwargs):
|
644 |
+
from sympy.functions.elementary.complexes import Abs
|
645 |
+
s = (args[0] + self.func(*args[1:]))/2
|
646 |
+
d = abs(args[0] - self.func(*args[1:]))/2
|
647 |
+
return (s + d if isinstance(self, Max) else s - d).rewrite(Abs)
|
648 |
+
|
649 |
+
def evalf(self, n=15, **options):
|
650 |
+
return self.func(*[a.evalf(n, **options) for a in self.args])
|
651 |
+
|
652 |
+
def n(self, *args, **kwargs):
|
653 |
+
return self.evalf(*args, **kwargs)
|
654 |
+
|
655 |
+
_eval_is_algebraic = lambda s: _torf(i.is_algebraic for i in s.args)
|
656 |
+
_eval_is_antihermitian = lambda s: _torf(i.is_antihermitian for i in s.args)
|
657 |
+
_eval_is_commutative = lambda s: _torf(i.is_commutative for i in s.args)
|
658 |
+
_eval_is_complex = lambda s: _torf(i.is_complex for i in s.args)
|
659 |
+
_eval_is_composite = lambda s: _torf(i.is_composite for i in s.args)
|
660 |
+
_eval_is_even = lambda s: _torf(i.is_even for i in s.args)
|
661 |
+
_eval_is_finite = lambda s: _torf(i.is_finite for i in s.args)
|
662 |
+
_eval_is_hermitian = lambda s: _torf(i.is_hermitian for i in s.args)
|
663 |
+
_eval_is_imaginary = lambda s: _torf(i.is_imaginary for i in s.args)
|
664 |
+
_eval_is_infinite = lambda s: _torf(i.is_infinite for i in s.args)
|
665 |
+
_eval_is_integer = lambda s: _torf(i.is_integer for i in s.args)
|
666 |
+
_eval_is_irrational = lambda s: _torf(i.is_irrational for i in s.args)
|
667 |
+
_eval_is_negative = lambda s: _torf(i.is_negative for i in s.args)
|
668 |
+
_eval_is_noninteger = lambda s: _torf(i.is_noninteger for i in s.args)
|
669 |
+
_eval_is_nonnegative = lambda s: _torf(i.is_nonnegative for i in s.args)
|
670 |
+
_eval_is_nonpositive = lambda s: _torf(i.is_nonpositive for i in s.args)
|
671 |
+
_eval_is_nonzero = lambda s: _torf(i.is_nonzero for i in s.args)
|
672 |
+
_eval_is_odd = lambda s: _torf(i.is_odd for i in s.args)
|
673 |
+
_eval_is_polar = lambda s: _torf(i.is_polar for i in s.args)
|
674 |
+
_eval_is_positive = lambda s: _torf(i.is_positive for i in s.args)
|
675 |
+
_eval_is_prime = lambda s: _torf(i.is_prime for i in s.args)
|
676 |
+
_eval_is_rational = lambda s: _torf(i.is_rational for i in s.args)
|
677 |
+
_eval_is_real = lambda s: _torf(i.is_real for i in s.args)
|
678 |
+
_eval_is_extended_real = lambda s: _torf(i.is_extended_real for i in s.args)
|
679 |
+
_eval_is_transcendental = lambda s: _torf(i.is_transcendental for i in s.args)
|
680 |
+
_eval_is_zero = lambda s: _torf(i.is_zero for i in s.args)
|
681 |
+
|
682 |
+
|
683 |
+
class Max(MinMaxBase, Application):
|
684 |
+
r"""
|
685 |
+
Return, if possible, the maximum value of the list.
|
686 |
+
|
687 |
+
When number of arguments is equal one, then
|
688 |
+
return this argument.
|
689 |
+
|
690 |
+
When number of arguments is equal two, then
|
691 |
+
return, if possible, the value from (a, b) that is $\ge$ the other.
|
692 |
+
|
693 |
+
In common case, when the length of list greater than 2, the task
|
694 |
+
is more complicated. Return only the arguments, which are greater
|
695 |
+
than others, if it is possible to determine directional relation.
|
696 |
+
|
697 |
+
If is not possible to determine such a relation, return a partially
|
698 |
+
evaluated result.
|
699 |
+
|
700 |
+
Assumptions are used to make the decision too.
|
701 |
+
|
702 |
+
Also, only comparable arguments are permitted.
|
703 |
+
|
704 |
+
It is named ``Max`` and not ``max`` to avoid conflicts
|
705 |
+
with the built-in function ``max``.
|
706 |
+
|
707 |
+
|
708 |
+
Examples
|
709 |
+
========
|
710 |
+
|
711 |
+
>>> from sympy import Max, Symbol, oo
|
712 |
+
>>> from sympy.abc import x, y, z
|
713 |
+
>>> p = Symbol('p', positive=True)
|
714 |
+
>>> n = Symbol('n', negative=True)
|
715 |
+
|
716 |
+
>>> Max(x, -2)
|
717 |
+
Max(-2, x)
|
718 |
+
>>> Max(x, -2).subs(x, 3)
|
719 |
+
3
|
720 |
+
>>> Max(p, -2)
|
721 |
+
p
|
722 |
+
>>> Max(x, y)
|
723 |
+
Max(x, y)
|
724 |
+
>>> Max(x, y) == Max(y, x)
|
725 |
+
True
|
726 |
+
>>> Max(x, Max(y, z))
|
727 |
+
Max(x, y, z)
|
728 |
+
>>> Max(n, 8, p, 7, -oo)
|
729 |
+
Max(8, p)
|
730 |
+
>>> Max (1, x, oo)
|
731 |
+
oo
|
732 |
+
|
733 |
+
* Algorithm
|
734 |
+
|
735 |
+
The task can be considered as searching of supremums in the
|
736 |
+
directed complete partial orders [1]_.
|
737 |
+
|
738 |
+
The source values are sequentially allocated by the isolated subsets
|
739 |
+
in which supremums are searched and result as Max arguments.
|
740 |
+
|
741 |
+
If the resulted supremum is single, then it is returned.
|
742 |
+
|
743 |
+
The isolated subsets are the sets of values which are only the comparable
|
744 |
+
with each other in the current set. E.g. natural numbers are comparable with
|
745 |
+
each other, but not comparable with the `x` symbol. Another example: the
|
746 |
+
symbol `x` with negative assumption is comparable with a natural number.
|
747 |
+
|
748 |
+
Also there are "least" elements, which are comparable with all others,
|
749 |
+
and have a zero property (maximum or minimum for all elements).
|
750 |
+
For example, in case of $\infty$, the allocation operation is terminated
|
751 |
+
and only this value is returned.
|
752 |
+
|
753 |
+
Assumption:
|
754 |
+
- if $A > B > C$ then $A > C$
|
755 |
+
- if $A = B$ then $B$ can be removed
|
756 |
+
|
757 |
+
References
|
758 |
+
==========
|
759 |
+
|
760 |
+
.. [1] https://en.wikipedia.org/wiki/Directed_complete_partial_order
|
761 |
+
.. [2] https://en.wikipedia.org/wiki/Lattice_%28order%29
|
762 |
+
|
763 |
+
See Also
|
764 |
+
========
|
765 |
+
|
766 |
+
Min : find minimum values
|
767 |
+
"""
|
768 |
+
zero = S.Infinity
|
769 |
+
identity = S.NegativeInfinity
|
770 |
+
|
771 |
+
def fdiff( self, argindex ):
|
772 |
+
from sympy.functions.special.delta_functions import Heaviside
|
773 |
+
n = len(self.args)
|
774 |
+
if 0 < argindex and argindex <= n:
|
775 |
+
argindex -= 1
|
776 |
+
if n == 2:
|
777 |
+
return Heaviside(self.args[argindex] - self.args[1 - argindex])
|
778 |
+
newargs = tuple([self.args[i] for i in range(n) if i != argindex])
|
779 |
+
return Heaviside(self.args[argindex] - Max(*newargs))
|
780 |
+
else:
|
781 |
+
raise ArgumentIndexError(self, argindex)
|
782 |
+
|
783 |
+
def _eval_rewrite_as_Heaviside(self, *args, **kwargs):
|
784 |
+
from sympy.functions.special.delta_functions import Heaviside
|
785 |
+
return Add(*[j*Mul(*[Heaviside(j - i) for i in args if i!=j]) \
|
786 |
+
for j in args])
|
787 |
+
|
788 |
+
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
|
789 |
+
return _minmax_as_Piecewise('>=', *args)
|
790 |
+
|
791 |
+
def _eval_is_positive(self):
|
792 |
+
return fuzzy_or(a.is_positive for a in self.args)
|
793 |
+
|
794 |
+
def _eval_is_nonnegative(self):
|
795 |
+
return fuzzy_or(a.is_nonnegative for a in self.args)
|
796 |
+
|
797 |
+
def _eval_is_negative(self):
|
798 |
+
return fuzzy_and(a.is_negative for a in self.args)
|
799 |
+
|
800 |
+
|
801 |
+
class Min(MinMaxBase, Application):
|
802 |
+
"""
|
803 |
+
Return, if possible, the minimum value of the list.
|
804 |
+
It is named ``Min`` and not ``min`` to avoid conflicts
|
805 |
+
with the built-in function ``min``.
|
806 |
+
|
807 |
+
Examples
|
808 |
+
========
|
809 |
+
|
810 |
+
>>> from sympy import Min, Symbol, oo
|
811 |
+
>>> from sympy.abc import x, y
|
812 |
+
>>> p = Symbol('p', positive=True)
|
813 |
+
>>> n = Symbol('n', negative=True)
|
814 |
+
|
815 |
+
>>> Min(x, -2)
|
816 |
+
Min(-2, x)
|
817 |
+
>>> Min(x, -2).subs(x, 3)
|
818 |
+
-2
|
819 |
+
>>> Min(p, -3)
|
820 |
+
-3
|
821 |
+
>>> Min(x, y)
|
822 |
+
Min(x, y)
|
823 |
+
>>> Min(n, 8, p, -7, p, oo)
|
824 |
+
Min(-7, n)
|
825 |
+
|
826 |
+
See Also
|
827 |
+
========
|
828 |
+
|
829 |
+
Max : find maximum values
|
830 |
+
"""
|
831 |
+
zero = S.NegativeInfinity
|
832 |
+
identity = S.Infinity
|
833 |
+
|
834 |
+
def fdiff( self, argindex ):
|
835 |
+
from sympy.functions.special.delta_functions import Heaviside
|
836 |
+
n = len(self.args)
|
837 |
+
if 0 < argindex and argindex <= n:
|
838 |
+
argindex -= 1
|
839 |
+
if n == 2:
|
840 |
+
return Heaviside( self.args[1-argindex] - self.args[argindex] )
|
841 |
+
newargs = tuple([ self.args[i] for i in range(n) if i != argindex])
|
842 |
+
return Heaviside( Min(*newargs) - self.args[argindex] )
|
843 |
+
else:
|
844 |
+
raise ArgumentIndexError(self, argindex)
|
845 |
+
|
846 |
+
def _eval_rewrite_as_Heaviside(self, *args, **kwargs):
|
847 |
+
from sympy.functions.special.delta_functions import Heaviside
|
848 |
+
return Add(*[j*Mul(*[Heaviside(i-j) for i in args if i!=j]) \
|
849 |
+
for j in args])
|
850 |
+
|
851 |
+
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
|
852 |
+
return _minmax_as_Piecewise('<=', *args)
|
853 |
+
|
854 |
+
def _eval_is_positive(self):
|
855 |
+
return fuzzy_and(a.is_positive for a in self.args)
|
856 |
+
|
857 |
+
def _eval_is_nonnegative(self):
|
858 |
+
return fuzzy_and(a.is_nonnegative for a in self.args)
|
859 |
+
|
860 |
+
def _eval_is_negative(self):
|
861 |
+
return fuzzy_or(a.is_negative for a in self.args)
|
862 |
+
|
863 |
+
|
864 |
+
class Rem(Function):
|
865 |
+
"""Returns the remainder when ``p`` is divided by ``q`` where ``p`` is finite
|
866 |
+
and ``q`` is not equal to zero. The result, ``p - int(p/q)*q``, has the same sign
|
867 |
+
as the divisor.
|
868 |
+
|
869 |
+
Parameters
|
870 |
+
==========
|
871 |
+
|
872 |
+
p : Expr
|
873 |
+
Dividend.
|
874 |
+
|
875 |
+
q : Expr
|
876 |
+
Divisor.
|
877 |
+
|
878 |
+
Notes
|
879 |
+
=====
|
880 |
+
|
881 |
+
``Rem`` corresponds to the ``%`` operator in C.
|
882 |
+
|
883 |
+
Examples
|
884 |
+
========
|
885 |
+
|
886 |
+
>>> from sympy.abc import x, y
|
887 |
+
>>> from sympy import Rem
|
888 |
+
>>> Rem(x**3, y)
|
889 |
+
Rem(x**3, y)
|
890 |
+
>>> Rem(x**3, y).subs({x: -5, y: 3})
|
891 |
+
-2
|
892 |
+
|
893 |
+
See Also
|
894 |
+
========
|
895 |
+
|
896 |
+
Mod
|
897 |
+
"""
|
898 |
+
kind = NumberKind
|
899 |
+
|
900 |
+
@classmethod
|
901 |
+
def eval(cls, p, q):
|
902 |
+
"""Return the function remainder if both p, q are numbers and q is not
|
903 |
+
zero.
|
904 |
+
"""
|
905 |
+
|
906 |
+
if q.is_zero:
|
907 |
+
raise ZeroDivisionError("Division by zero")
|
908 |
+
if p is S.NaN or q is S.NaN or p.is_finite is False or q.is_finite is False:
|
909 |
+
return S.NaN
|
910 |
+
if p is S.Zero or p in (q, -q) or (p.is_integer and q == 1):
|
911 |
+
return S.Zero
|
912 |
+
|
913 |
+
if q.is_Number:
|
914 |
+
if p.is_Number:
|
915 |
+
return p - Integer(p/q)*q
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/piecewise.py
ADDED
@@ -0,0 +1,1506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import S, Function, diff, Tuple, Dummy, Mul
|
2 |
+
from sympy.core.basic import Basic, as_Basic
|
3 |
+
from sympy.core.numbers import Rational, NumberSymbol, _illegal
|
4 |
+
from sympy.core.parameters import global_parameters
|
5 |
+
from sympy.core.relational import (Lt, Gt, Eq, Ne, Relational,
|
6 |
+
_canonical, _canonical_coeff)
|
7 |
+
from sympy.core.sorting import ordered
|
8 |
+
from sympy.functions.elementary.miscellaneous import Max, Min
|
9 |
+
from sympy.logic.boolalg import (And, Boolean, distribute_and_over_or, Not,
|
10 |
+
true, false, Or, ITE, simplify_logic, to_cnf, distribute_or_over_and)
|
11 |
+
from sympy.utilities.iterables import uniq, sift, common_prefix
|
12 |
+
from sympy.utilities.misc import filldedent, func_name
|
13 |
+
|
14 |
+
from itertools import product
|
15 |
+
|
16 |
+
Undefined = S.NaN # Piecewise()
|
17 |
+
|
18 |
+
class ExprCondPair(Tuple):
|
19 |
+
"""Represents an expression, condition pair."""
|
20 |
+
|
21 |
+
def __new__(cls, expr, cond):
|
22 |
+
expr = as_Basic(expr)
|
23 |
+
if cond == True:
|
24 |
+
return Tuple.__new__(cls, expr, true)
|
25 |
+
elif cond == False:
|
26 |
+
return Tuple.__new__(cls, expr, false)
|
27 |
+
elif isinstance(cond, Basic) and cond.has(Piecewise):
|
28 |
+
cond = piecewise_fold(cond)
|
29 |
+
if isinstance(cond, Piecewise):
|
30 |
+
cond = cond.rewrite(ITE)
|
31 |
+
|
32 |
+
if not isinstance(cond, Boolean):
|
33 |
+
raise TypeError(filldedent('''
|
34 |
+
Second argument must be a Boolean,
|
35 |
+
not `%s`''' % func_name(cond)))
|
36 |
+
return Tuple.__new__(cls, expr, cond)
|
37 |
+
|
38 |
+
@property
|
39 |
+
def expr(self):
|
40 |
+
"""
|
41 |
+
Returns the expression of this pair.
|
42 |
+
"""
|
43 |
+
return self.args[0]
|
44 |
+
|
45 |
+
@property
|
46 |
+
def cond(self):
|
47 |
+
"""
|
48 |
+
Returns the condition of this pair.
|
49 |
+
"""
|
50 |
+
return self.args[1]
|
51 |
+
|
52 |
+
@property
|
53 |
+
def is_commutative(self):
|
54 |
+
return self.expr.is_commutative
|
55 |
+
|
56 |
+
def __iter__(self):
|
57 |
+
yield self.expr
|
58 |
+
yield self.cond
|
59 |
+
|
60 |
+
def _eval_simplify(self, **kwargs):
|
61 |
+
return self.func(*[a.simplify(**kwargs) for a in self.args])
|
62 |
+
|
63 |
+
|
64 |
+
class Piecewise(Function):
|
65 |
+
"""
|
66 |
+
Represents a piecewise function.
|
67 |
+
|
68 |
+
Usage:
|
69 |
+
|
70 |
+
Piecewise( (expr,cond), (expr,cond), ... )
|
71 |
+
- Each argument is a 2-tuple defining an expression and condition
|
72 |
+
- The conds are evaluated in turn returning the first that is True.
|
73 |
+
If any of the evaluated conds are not explicitly False,
|
74 |
+
e.g. ``x < 1``, the function is returned in symbolic form.
|
75 |
+
- If the function is evaluated at a place where all conditions are False,
|
76 |
+
nan will be returned.
|
77 |
+
- Pairs where the cond is explicitly False, will be removed and no pair
|
78 |
+
appearing after a True condition will ever be retained. If a single
|
79 |
+
pair with a True condition remains, it will be returned, even when
|
80 |
+
evaluation is False.
|
81 |
+
|
82 |
+
Examples
|
83 |
+
========
|
84 |
+
|
85 |
+
>>> from sympy import Piecewise, log, piecewise_fold
|
86 |
+
>>> from sympy.abc import x, y
|
87 |
+
>>> f = x**2
|
88 |
+
>>> g = log(x)
|
89 |
+
>>> p = Piecewise((0, x < -1), (f, x <= 1), (g, True))
|
90 |
+
>>> p.subs(x,1)
|
91 |
+
1
|
92 |
+
>>> p.subs(x,5)
|
93 |
+
log(5)
|
94 |
+
|
95 |
+
Booleans can contain Piecewise elements:
|
96 |
+
|
97 |
+
>>> cond = (x < y).subs(x, Piecewise((2, x < 0), (3, True))); cond
|
98 |
+
Piecewise((2, x < 0), (3, True)) < y
|
99 |
+
|
100 |
+
The folded version of this results in a Piecewise whose
|
101 |
+
expressions are Booleans:
|
102 |
+
|
103 |
+
>>> folded_cond = piecewise_fold(cond); folded_cond
|
104 |
+
Piecewise((2 < y, x < 0), (3 < y, True))
|
105 |
+
|
106 |
+
When a Boolean containing Piecewise (like cond) or a Piecewise
|
107 |
+
with Boolean expressions (like folded_cond) is used as a condition,
|
108 |
+
it is converted to an equivalent :class:`~.ITE` object:
|
109 |
+
|
110 |
+
>>> Piecewise((1, folded_cond))
|
111 |
+
Piecewise((1, ITE(x < 0, y > 2, y > 3)))
|
112 |
+
|
113 |
+
When a condition is an ``ITE``, it will be converted to a simplified
|
114 |
+
Boolean expression:
|
115 |
+
|
116 |
+
>>> piecewise_fold(_)
|
117 |
+
Piecewise((1, ((x >= 0) | (y > 2)) & ((y > 3) | (x < 0))))
|
118 |
+
|
119 |
+
See Also
|
120 |
+
========
|
121 |
+
|
122 |
+
piecewise_fold
|
123 |
+
piecewise_exclusive
|
124 |
+
ITE
|
125 |
+
"""
|
126 |
+
|
127 |
+
nargs = None
|
128 |
+
is_Piecewise = True
|
129 |
+
|
130 |
+
def __new__(cls, *args, **options):
|
131 |
+
if len(args) == 0:
|
132 |
+
raise TypeError("At least one (expr, cond) pair expected.")
|
133 |
+
# (Try to) sympify args first
|
134 |
+
newargs = []
|
135 |
+
for ec in args:
|
136 |
+
# ec could be a ExprCondPair or a tuple
|
137 |
+
pair = ExprCondPair(*getattr(ec, 'args', ec))
|
138 |
+
cond = pair.cond
|
139 |
+
if cond is false:
|
140 |
+
continue
|
141 |
+
newargs.append(pair)
|
142 |
+
if cond is true:
|
143 |
+
break
|
144 |
+
|
145 |
+
eval = options.pop('evaluate', global_parameters.evaluate)
|
146 |
+
if eval:
|
147 |
+
r = cls.eval(*newargs)
|
148 |
+
if r is not None:
|
149 |
+
return r
|
150 |
+
elif len(newargs) == 1 and newargs[0].cond == True:
|
151 |
+
return newargs[0].expr
|
152 |
+
|
153 |
+
return Basic.__new__(cls, *newargs, **options)
|
154 |
+
|
155 |
+
@classmethod
|
156 |
+
def eval(cls, *_args):
|
157 |
+
"""Either return a modified version of the args or, if no
|
158 |
+
modifications were made, return None.
|
159 |
+
|
160 |
+
Modifications that are made here:
|
161 |
+
|
162 |
+
1. relationals are made canonical
|
163 |
+
2. any False conditions are dropped
|
164 |
+
3. any repeat of a previous condition is ignored
|
165 |
+
4. any args past one with a true condition are dropped
|
166 |
+
|
167 |
+
If there are no args left, nan will be returned.
|
168 |
+
If there is a single arg with a True condition, its
|
169 |
+
corresponding expression will be returned.
|
170 |
+
|
171 |
+
EXAMPLES
|
172 |
+
========
|
173 |
+
|
174 |
+
>>> from sympy import Piecewise
|
175 |
+
>>> from sympy.abc import x
|
176 |
+
>>> cond = -x < -1
|
177 |
+
>>> args = [(1, cond), (4, cond), (3, False), (2, True), (5, x < 1)]
|
178 |
+
>>> Piecewise(*args, evaluate=False)
|
179 |
+
Piecewise((1, -x < -1), (4, -x < -1), (2, True))
|
180 |
+
>>> Piecewise(*args)
|
181 |
+
Piecewise((1, x > 1), (2, True))
|
182 |
+
"""
|
183 |
+
if not _args:
|
184 |
+
return Undefined
|
185 |
+
|
186 |
+
if len(_args) == 1 and _args[0][-1] == True:
|
187 |
+
return _args[0][0]
|
188 |
+
|
189 |
+
newargs = _piecewise_collapse_arguments(_args)
|
190 |
+
|
191 |
+
# some conditions may have been redundant
|
192 |
+
missing = len(newargs) != len(_args)
|
193 |
+
# some conditions may have changed
|
194 |
+
same = all(a == b for a, b in zip(newargs, _args))
|
195 |
+
# if either change happened we return the expr with the
|
196 |
+
# updated args
|
197 |
+
if not newargs:
|
198 |
+
raise ValueError(filldedent('''
|
199 |
+
There are no conditions (or none that
|
200 |
+
are not trivially false) to define an
|
201 |
+
expression.'''))
|
202 |
+
if missing or not same:
|
203 |
+
return cls(*newargs)
|
204 |
+
|
205 |
+
def doit(self, **hints):
|
206 |
+
"""
|
207 |
+
Evaluate this piecewise function.
|
208 |
+
"""
|
209 |
+
newargs = []
|
210 |
+
for e, c in self.args:
|
211 |
+
if hints.get('deep', True):
|
212 |
+
if isinstance(e, Basic):
|
213 |
+
newe = e.doit(**hints)
|
214 |
+
if newe != self:
|
215 |
+
e = newe
|
216 |
+
if isinstance(c, Basic):
|
217 |
+
c = c.doit(**hints)
|
218 |
+
newargs.append((e, c))
|
219 |
+
return self.func(*newargs)
|
220 |
+
|
221 |
+
def _eval_simplify(self, **kwargs):
|
222 |
+
return piecewise_simplify(self, **kwargs)
|
223 |
+
|
224 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
225 |
+
for e, c in self.args:
|
226 |
+
if c == True or c.subs(x, 0) == True:
|
227 |
+
return e.as_leading_term(x)
|
228 |
+
|
229 |
+
def _eval_adjoint(self):
|
230 |
+
return self.func(*[(e.adjoint(), c) for e, c in self.args])
|
231 |
+
|
232 |
+
def _eval_conjugate(self):
|
233 |
+
return self.func(*[(e.conjugate(), c) for e, c in self.args])
|
234 |
+
|
235 |
+
def _eval_derivative(self, x):
|
236 |
+
return self.func(*[(diff(e, x), c) for e, c in self.args])
|
237 |
+
|
238 |
+
def _eval_evalf(self, prec):
|
239 |
+
return self.func(*[(e._evalf(prec), c) for e, c in self.args])
|
240 |
+
|
241 |
+
def _eval_is_meromorphic(self, x, a):
|
242 |
+
# Conditions often implicitly assume that the argument is real.
|
243 |
+
# Hence, there needs to be some check for as_set.
|
244 |
+
if not a.is_real:
|
245 |
+
return None
|
246 |
+
|
247 |
+
# Then, scan ExprCondPairs in the given order to find a piece that would contain a,
|
248 |
+
# possibly as a boundary point.
|
249 |
+
for e, c in self.args:
|
250 |
+
cond = c.subs(x, a)
|
251 |
+
|
252 |
+
if cond.is_Relational:
|
253 |
+
return None
|
254 |
+
if a in c.as_set().boundary:
|
255 |
+
return None
|
256 |
+
# Apply expression if a is an interior point of the domain of e.
|
257 |
+
if cond:
|
258 |
+
return e._eval_is_meromorphic(x, a)
|
259 |
+
|
260 |
+
def piecewise_integrate(self, x, **kwargs):
|
261 |
+
"""Return the Piecewise with each expression being
|
262 |
+
replaced with its antiderivative. To obtain a continuous
|
263 |
+
antiderivative, use the :func:`~.integrate` function or method.
|
264 |
+
|
265 |
+
Examples
|
266 |
+
========
|
267 |
+
|
268 |
+
>>> from sympy import Piecewise
|
269 |
+
>>> from sympy.abc import x
|
270 |
+
>>> p = Piecewise((0, x < 0), (1, x < 1), (2, True))
|
271 |
+
>>> p.piecewise_integrate(x)
|
272 |
+
Piecewise((0, x < 0), (x, x < 1), (2*x, True))
|
273 |
+
|
274 |
+
Note that this does not give a continuous function, e.g.
|
275 |
+
at x = 1 the 3rd condition applies and the antiderivative
|
276 |
+
there is 2*x so the value of the antiderivative is 2:
|
277 |
+
|
278 |
+
>>> anti = _
|
279 |
+
>>> anti.subs(x, 1)
|
280 |
+
2
|
281 |
+
|
282 |
+
The continuous derivative accounts for the integral *up to*
|
283 |
+
the point of interest, however:
|
284 |
+
|
285 |
+
>>> p.integrate(x)
|
286 |
+
Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True))
|
287 |
+
>>> _.subs(x, 1)
|
288 |
+
1
|
289 |
+
|
290 |
+
See Also
|
291 |
+
========
|
292 |
+
Piecewise._eval_integral
|
293 |
+
"""
|
294 |
+
from sympy.integrals import integrate
|
295 |
+
return self.func(*[(integrate(e, x, **kwargs), c) for e, c in self.args])
|
296 |
+
|
297 |
+
def _handle_irel(self, x, handler):
|
298 |
+
"""Return either None (if the conditions of self depend only on x) else
|
299 |
+
a Piecewise expression whose expressions (handled by the handler that
|
300 |
+
was passed) are paired with the governing x-independent relationals,
|
301 |
+
e.g. Piecewise((A, a(x) & b(y)), (B, c(x) | c(y)) ->
|
302 |
+
Piecewise(
|
303 |
+
(handler(Piecewise((A, a(x) & True), (B, c(x) | True)), b(y) & c(y)),
|
304 |
+
(handler(Piecewise((A, a(x) & True), (B, c(x) | False)), b(y)),
|
305 |
+
(handler(Piecewise((A, a(x) & False), (B, c(x) | True)), c(y)),
|
306 |
+
(handler(Piecewise((A, a(x) & False), (B, c(x) | False)), True))
|
307 |
+
"""
|
308 |
+
# identify governing relationals
|
309 |
+
rel = self.atoms(Relational)
|
310 |
+
irel = list(ordered([r for r in rel if x not in r.free_symbols
|
311 |
+
and r not in (S.true, S.false)]))
|
312 |
+
if irel:
|
313 |
+
args = {}
|
314 |
+
exprinorder = []
|
315 |
+
for truth in product((1, 0), repeat=len(irel)):
|
316 |
+
reps = dict(zip(irel, truth))
|
317 |
+
# only store the true conditions since the false are implied
|
318 |
+
# when they appear lower in the Piecewise args
|
319 |
+
if 1 not in truth:
|
320 |
+
cond = None # flag this one so it doesn't get combined
|
321 |
+
else:
|
322 |
+
andargs = Tuple(*[i for i in reps if reps[i]])
|
323 |
+
free = list(andargs.free_symbols)
|
324 |
+
if len(free) == 1:
|
325 |
+
from sympy.solvers.inequalities import (
|
326 |
+
reduce_inequalities, _solve_inequality)
|
327 |
+
try:
|
328 |
+
t = reduce_inequalities(andargs, free[0])
|
329 |
+
# ValueError when there are potentially
|
330 |
+
# nonvanishing imaginary parts
|
331 |
+
except (ValueError, NotImplementedError):
|
332 |
+
# at least isolate free symbol on left
|
333 |
+
t = And(*[_solve_inequality(
|
334 |
+
a, free[0], linear=True)
|
335 |
+
for a in andargs])
|
336 |
+
else:
|
337 |
+
t = And(*andargs)
|
338 |
+
if t is S.false:
|
339 |
+
continue # an impossible combination
|
340 |
+
cond = t
|
341 |
+
expr = handler(self.xreplace(reps))
|
342 |
+
if isinstance(expr, self.func) and len(expr.args) == 1:
|
343 |
+
expr, econd = expr.args[0]
|
344 |
+
cond = And(econd, True if cond is None else cond)
|
345 |
+
# the ec pairs are being collected since all possibilities
|
346 |
+
# are being enumerated, but don't put the last one in since
|
347 |
+
# its expr might match a previous expression and it
|
348 |
+
# must appear last in the args
|
349 |
+
if cond is not None:
|
350 |
+
args.setdefault(expr, []).append(cond)
|
351 |
+
# but since we only store the true conditions we must maintain
|
352 |
+
# the order so that the expression with the most true values
|
353 |
+
# comes first
|
354 |
+
exprinorder.append(expr)
|
355 |
+
# convert collected conditions as args of Or
|
356 |
+
for k in args:
|
357 |
+
args[k] = Or(*args[k])
|
358 |
+
# take them in the order obtained
|
359 |
+
args = [(e, args[e]) for e in uniq(exprinorder)]
|
360 |
+
# add in the last arg
|
361 |
+
args.append((expr, True))
|
362 |
+
return Piecewise(*args)
|
363 |
+
|
364 |
+
def _eval_integral(self, x, _first=True, **kwargs):
|
365 |
+
"""Return the indefinite integral of the
|
366 |
+
Piecewise such that subsequent substitution of x with a
|
367 |
+
value will give the value of the integral (not including
|
368 |
+
the constant of integration) up to that point. To only
|
369 |
+
integrate the individual parts of Piecewise, use the
|
370 |
+
``piecewise_integrate`` method.
|
371 |
+
|
372 |
+
Examples
|
373 |
+
========
|
374 |
+
|
375 |
+
>>> from sympy import Piecewise
|
376 |
+
>>> from sympy.abc import x
|
377 |
+
>>> p = Piecewise((0, x < 0), (1, x < 1), (2, True))
|
378 |
+
>>> p.integrate(x)
|
379 |
+
Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True))
|
380 |
+
>>> p.piecewise_integrate(x)
|
381 |
+
Piecewise((0, x < 0), (x, x < 1), (2*x, True))
|
382 |
+
|
383 |
+
See Also
|
384 |
+
========
|
385 |
+
Piecewise.piecewise_integrate
|
386 |
+
"""
|
387 |
+
from sympy.integrals.integrals import integrate
|
388 |
+
|
389 |
+
if _first:
|
390 |
+
def handler(ipw):
|
391 |
+
if isinstance(ipw, self.func):
|
392 |
+
return ipw._eval_integral(x, _first=False, **kwargs)
|
393 |
+
else:
|
394 |
+
return ipw.integrate(x, **kwargs)
|
395 |
+
irv = self._handle_irel(x, handler)
|
396 |
+
if irv is not None:
|
397 |
+
return irv
|
398 |
+
|
399 |
+
# handle a Piecewise from -oo to oo with and no x-independent relationals
|
400 |
+
# -----------------------------------------------------------------------
|
401 |
+
ok, abei = self._intervals(x)
|
402 |
+
if not ok:
|
403 |
+
from sympy.integrals.integrals import Integral
|
404 |
+
return Integral(self, x) # unevaluated
|
405 |
+
|
406 |
+
pieces = [(a, b) for a, b, _, _ in abei]
|
407 |
+
oo = S.Infinity
|
408 |
+
done = [(-oo, oo, -1)]
|
409 |
+
for k, p in enumerate(pieces):
|
410 |
+
if p == (-oo, oo):
|
411 |
+
# all undone intervals will get this key
|
412 |
+
for j, (a, b, i) in enumerate(done):
|
413 |
+
if i == -1:
|
414 |
+
done[j] = a, b, k
|
415 |
+
break # nothing else to consider
|
416 |
+
N = len(done) - 1
|
417 |
+
for j, (a, b, i) in enumerate(reversed(done)):
|
418 |
+
if i == -1:
|
419 |
+
j = N - j
|
420 |
+
done[j: j + 1] = _clip(p, (a, b), k)
|
421 |
+
done = [(a, b, i) for a, b, i in done if a != b]
|
422 |
+
|
423 |
+
# append an arg if there is a hole so a reference to
|
424 |
+
# argument -1 will give Undefined
|
425 |
+
if any(i == -1 for (a, b, i) in done):
|
426 |
+
abei.append((-oo, oo, Undefined, -1))
|
427 |
+
|
428 |
+
# return the sum of the intervals
|
429 |
+
args = []
|
430 |
+
sum = None
|
431 |
+
for a, b, i in done:
|
432 |
+
anti = integrate(abei[i][-2], x, **kwargs)
|
433 |
+
if sum is None:
|
434 |
+
sum = anti
|
435 |
+
else:
|
436 |
+
sum = sum.subs(x, a)
|
437 |
+
e = anti._eval_interval(x, a, x)
|
438 |
+
if sum.has(*_illegal) or e.has(*_illegal):
|
439 |
+
sum = anti
|
440 |
+
else:
|
441 |
+
sum += e
|
442 |
+
# see if we know whether b is contained in original
|
443 |
+
# condition
|
444 |
+
if b is S.Infinity:
|
445 |
+
cond = True
|
446 |
+
elif self.args[abei[i][-1]].cond.subs(x, b) == False:
|
447 |
+
cond = (x < b)
|
448 |
+
else:
|
449 |
+
cond = (x <= b)
|
450 |
+
args.append((sum, cond))
|
451 |
+
return Piecewise(*args)
|
452 |
+
|
453 |
+
def _eval_interval(self, sym, a, b, _first=True):
|
454 |
+
"""Evaluates the function along the sym in a given interval [a, b]"""
|
455 |
+
# FIXME: Currently complex intervals are not supported. A possible
|
456 |
+
# replacement algorithm, discussed in issue 5227, can be found in the
|
457 |
+
# following papers;
|
458 |
+
# http://portal.acm.org/citation.cfm?id=281649
|
459 |
+
# http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4127&rep=rep1&type=pdf
|
460 |
+
|
461 |
+
if a is None or b is None:
|
462 |
+
# In this case, it is just simple substitution
|
463 |
+
return super()._eval_interval(sym, a, b)
|
464 |
+
else:
|
465 |
+
x, lo, hi = map(as_Basic, (sym, a, b))
|
466 |
+
|
467 |
+
if _first: # get only x-dependent relationals
|
468 |
+
def handler(ipw):
|
469 |
+
if isinstance(ipw, self.func):
|
470 |
+
return ipw._eval_interval(x, lo, hi, _first=None)
|
471 |
+
else:
|
472 |
+
return ipw._eval_interval(x, lo, hi)
|
473 |
+
irv = self._handle_irel(x, handler)
|
474 |
+
if irv is not None:
|
475 |
+
return irv
|
476 |
+
|
477 |
+
if (lo < hi) is S.false or (
|
478 |
+
lo is S.Infinity or hi is S.NegativeInfinity):
|
479 |
+
rv = self._eval_interval(x, hi, lo, _first=False)
|
480 |
+
if isinstance(rv, Piecewise):
|
481 |
+
rv = Piecewise(*[(-e, c) for e, c in rv.args])
|
482 |
+
else:
|
483 |
+
rv = -rv
|
484 |
+
return rv
|
485 |
+
|
486 |
+
if (lo < hi) is S.true or (
|
487 |
+
hi is S.Infinity or lo is S.NegativeInfinity):
|
488 |
+
pass
|
489 |
+
else:
|
490 |
+
_a = Dummy('lo')
|
491 |
+
_b = Dummy('hi')
|
492 |
+
a = lo if lo.is_comparable else _a
|
493 |
+
b = hi if hi.is_comparable else _b
|
494 |
+
pos = self._eval_interval(x, a, b, _first=False)
|
495 |
+
if a == _a and b == _b:
|
496 |
+
# it's purely symbolic so just swap lo and hi and
|
497 |
+
# change the sign to get the value for when lo > hi
|
498 |
+
neg, pos = (-pos.xreplace({_a: hi, _b: lo}),
|
499 |
+
pos.xreplace({_a: lo, _b: hi}))
|
500 |
+
else:
|
501 |
+
# at least one of the bounds was comparable, so allow
|
502 |
+
# _eval_interval to use that information when computing
|
503 |
+
# the interval with lo and hi reversed
|
504 |
+
neg, pos = (-self._eval_interval(x, hi, lo, _first=False),
|
505 |
+
pos.xreplace({_a: lo, _b: hi}))
|
506 |
+
|
507 |
+
# allow simplification based on ordering of lo and hi
|
508 |
+
p = Dummy('', positive=True)
|
509 |
+
if lo.is_Symbol:
|
510 |
+
pos = pos.xreplace({lo: hi - p}).xreplace({p: hi - lo})
|
511 |
+
neg = neg.xreplace({lo: hi + p}).xreplace({p: lo - hi})
|
512 |
+
elif hi.is_Symbol:
|
513 |
+
pos = pos.xreplace({hi: lo + p}).xreplace({p: hi - lo})
|
514 |
+
neg = neg.xreplace({hi: lo - p}).xreplace({p: lo - hi})
|
515 |
+
# evaluate limits that may have unevaluate Min/Max
|
516 |
+
touch = lambda _: _.replace(
|
517 |
+
lambda x: isinstance(x, (Min, Max)),
|
518 |
+
lambda x: x.func(*x.args))
|
519 |
+
neg = touch(neg)
|
520 |
+
pos = touch(pos)
|
521 |
+
# assemble return expression; make the first condition be Lt
|
522 |
+
# b/c then the first expression will look the same whether
|
523 |
+
# the lo or hi limit is symbolic
|
524 |
+
if a == _a: # the lower limit was symbolic
|
525 |
+
rv = Piecewise(
|
526 |
+
(pos,
|
527 |
+
lo < hi),
|
528 |
+
(neg,
|
529 |
+
True))
|
530 |
+
else:
|
531 |
+
rv = Piecewise(
|
532 |
+
(neg,
|
533 |
+
hi < lo),
|
534 |
+
(pos,
|
535 |
+
True))
|
536 |
+
|
537 |
+
if rv == Undefined:
|
538 |
+
raise ValueError("Can't integrate across undefined region.")
|
539 |
+
if any(isinstance(i, Piecewise) for i in (pos, neg)):
|
540 |
+
rv = piecewise_fold(rv)
|
541 |
+
return rv
|
542 |
+
|
543 |
+
# handle a Piecewise with lo <= hi and no x-independent relationals
|
544 |
+
# -----------------------------------------------------------------
|
545 |
+
ok, abei = self._intervals(x)
|
546 |
+
if not ok:
|
547 |
+
from sympy.integrals.integrals import Integral
|
548 |
+
# not being able to do the interval of f(x) can
|
549 |
+
# be stated as not being able to do the integral
|
550 |
+
# of f'(x) over the same range
|
551 |
+
return Integral(self.diff(x), (x, lo, hi)) # unevaluated
|
552 |
+
|
553 |
+
pieces = [(a, b) for a, b, _, _ in abei]
|
554 |
+
done = [(lo, hi, -1)]
|
555 |
+
oo = S.Infinity
|
556 |
+
for k, p in enumerate(pieces):
|
557 |
+
if p[:2] == (-oo, oo):
|
558 |
+
# all undone intervals will get this key
|
559 |
+
for j, (a, b, i) in enumerate(done):
|
560 |
+
if i == -1:
|
561 |
+
done[j] = a, b, k
|
562 |
+
break # nothing else to consider
|
563 |
+
N = len(done) - 1
|
564 |
+
for j, (a, b, i) in enumerate(reversed(done)):
|
565 |
+
if i == -1:
|
566 |
+
j = N - j
|
567 |
+
done[j: j + 1] = _clip(p, (a, b), k)
|
568 |
+
done = [(a, b, i) for a, b, i in done if a != b]
|
569 |
+
|
570 |
+
# return the sum of the intervals
|
571 |
+
sum = S.Zero
|
572 |
+
upto = None
|
573 |
+
for a, b, i in done:
|
574 |
+
if i == -1:
|
575 |
+
if upto is None:
|
576 |
+
return Undefined
|
577 |
+
# TODO simplify hi <= upto
|
578 |
+
return Piecewise((sum, hi <= upto), (Undefined, True))
|
579 |
+
sum += abei[i][-2]._eval_interval(x, a, b)
|
580 |
+
upto = b
|
581 |
+
return sum
|
582 |
+
|
583 |
+
def _intervals(self, sym, err_on_Eq=False):
|
584 |
+
r"""Return a bool and a message (when bool is False), else a
|
585 |
+
list of unique tuples, (a, b, e, i), where a and b
|
586 |
+
are the lower and upper bounds in which the expression e of
|
587 |
+
argument i in self is defined and $a < b$ (when involving
|
588 |
+
numbers) or $a \le b$ when involving symbols.
|
589 |
+
|
590 |
+
If there are any relationals not involving sym, or any
|
591 |
+
relational cannot be solved for sym, the bool will be False
|
592 |
+
a message be given as the second return value. The calling
|
593 |
+
routine should have removed such relationals before calling
|
594 |
+
this routine.
|
595 |
+
|
596 |
+
The evaluated conditions will be returned as ranges.
|
597 |
+
Discontinuous ranges will be returned separately with
|
598 |
+
identical expressions. The first condition that evaluates to
|
599 |
+
True will be returned as the last tuple with a, b = -oo, oo.
|
600 |
+
"""
|
601 |
+
from sympy.solvers.inequalities import _solve_inequality
|
602 |
+
|
603 |
+
assert isinstance(self, Piecewise)
|
604 |
+
|
605 |
+
def nonsymfail(cond):
|
606 |
+
return False, filldedent('''
|
607 |
+
A condition not involving
|
608 |
+
%s appeared: %s''' % (sym, cond))
|
609 |
+
|
610 |
+
def _solve_relational(r):
|
611 |
+
if sym not in r.free_symbols:
|
612 |
+
return nonsymfail(r)
|
613 |
+
try:
|
614 |
+
rv = _solve_inequality(r, sym)
|
615 |
+
except NotImplementedError:
|
616 |
+
return False, 'Unable to solve relational %s for %s.' % (r, sym)
|
617 |
+
if isinstance(rv, Relational):
|
618 |
+
free = rv.args[1].free_symbols
|
619 |
+
if rv.args[0] != sym or sym in free:
|
620 |
+
return False, 'Unable to solve relational %s for %s.' % (r, sym)
|
621 |
+
if rv.rel_op == '==':
|
622 |
+
# this equality has been affirmed to have the form
|
623 |
+
# Eq(sym, rhs) where rhs is sym-free; it represents
|
624 |
+
# a zero-width interval which will be ignored
|
625 |
+
# whether it is an isolated condition or contained
|
626 |
+
# within an And or an Or
|
627 |
+
rv = S.false
|
628 |
+
elif rv.rel_op == '!=':
|
629 |
+
try:
|
630 |
+
rv = Or(sym < rv.rhs, sym > rv.rhs)
|
631 |
+
except TypeError:
|
632 |
+
# e.g. x != I ==> all real x satisfy
|
633 |
+
rv = S.true
|
634 |
+
elif rv == (S.NegativeInfinity < sym) & (sym < S.Infinity):
|
635 |
+
rv = S.true
|
636 |
+
return True, rv
|
637 |
+
|
638 |
+
args = list(self.args)
|
639 |
+
# make self canonical wrt Relationals
|
640 |
+
keys = self.atoms(Relational)
|
641 |
+
reps = {}
|
642 |
+
for r in keys:
|
643 |
+
ok, s = _solve_relational(r)
|
644 |
+
if ok != True:
|
645 |
+
return False, ok
|
646 |
+
reps[r] = s
|
647 |
+
# process args individually so if any evaluate, their position
|
648 |
+
# in the original Piecewise will be known
|
649 |
+
args = [i.xreplace(reps) for i in self.args]
|
650 |
+
|
651 |
+
# precondition args
|
652 |
+
expr_cond = []
|
653 |
+
default = idefault = None
|
654 |
+
for i, (expr, cond) in enumerate(args):
|
655 |
+
if cond is S.false:
|
656 |
+
continue
|
657 |
+
if cond is S.true:
|
658 |
+
default = expr
|
659 |
+
idefault = i
|
660 |
+
break
|
661 |
+
if isinstance(cond, Eq):
|
662 |
+
# unanticipated condition, but it is here in case a
|
663 |
+
# replacement caused an Eq to appear
|
664 |
+
if err_on_Eq:
|
665 |
+
return False, 'encountered Eq condition: %s' % cond
|
666 |
+
continue # zero width interval
|
667 |
+
|
668 |
+
cond = to_cnf(cond)
|
669 |
+
if isinstance(cond, And):
|
670 |
+
cond = distribute_or_over_and(cond)
|
671 |
+
|
672 |
+
if isinstance(cond, Or):
|
673 |
+
expr_cond.extend(
|
674 |
+
[(i, expr, o) for o in cond.args
|
675 |
+
if not isinstance(o, Eq)])
|
676 |
+
elif cond is not S.false:
|
677 |
+
expr_cond.append((i, expr, cond))
|
678 |
+
elif cond is S.true:
|
679 |
+
default = expr
|
680 |
+
idefault = i
|
681 |
+
break
|
682 |
+
|
683 |
+
# determine intervals represented by conditions
|
684 |
+
int_expr = []
|
685 |
+
for iarg, expr, cond in expr_cond:
|
686 |
+
if isinstance(cond, And):
|
687 |
+
lower = S.NegativeInfinity
|
688 |
+
upper = S.Infinity
|
689 |
+
exclude = []
|
690 |
+
for cond2 in cond.args:
|
691 |
+
if not isinstance(cond2, Relational):
|
692 |
+
return False, 'expecting only Relationals'
|
693 |
+
if isinstance(cond2, Eq):
|
694 |
+
lower = upper # ignore
|
695 |
+
if err_on_Eq:
|
696 |
+
return False, 'encountered secondary Eq condition'
|
697 |
+
break
|
698 |
+
elif isinstance(cond2, Ne):
|
699 |
+
l, r = cond2.args
|
700 |
+
if l == sym:
|
701 |
+
exclude.append(r)
|
702 |
+
elif r == sym:
|
703 |
+
exclude.append(l)
|
704 |
+
else:
|
705 |
+
return nonsymfail(cond2)
|
706 |
+
continue
|
707 |
+
elif cond2.lts == sym:
|
708 |
+
upper = Min(cond2.gts, upper)
|
709 |
+
elif cond2.gts == sym:
|
710 |
+
lower = Max(cond2.lts, lower)
|
711 |
+
else:
|
712 |
+
return nonsymfail(cond2) # should never get here
|
713 |
+
if exclude:
|
714 |
+
exclude = list(ordered(exclude))
|
715 |
+
newcond = []
|
716 |
+
for i, e in enumerate(exclude):
|
717 |
+
if e < lower == True or e > upper == True:
|
718 |
+
continue
|
719 |
+
if not newcond:
|
720 |
+
newcond.append((None, lower)) # add a primer
|
721 |
+
newcond.append((newcond[-1][1], e))
|
722 |
+
newcond.append((newcond[-1][1], upper))
|
723 |
+
newcond.pop(0) # remove the primer
|
724 |
+
expr_cond.extend([(iarg, expr, And(i[0] < sym, sym < i[1])) for i in newcond])
|
725 |
+
continue
|
726 |
+
elif isinstance(cond, Relational) and cond.rel_op != '!=':
|
727 |
+
lower, upper = cond.lts, cond.gts # part 1: initialize with givens
|
728 |
+
if cond.lts == sym: # part 1a: expand the side ...
|
729 |
+
lower = S.NegativeInfinity # e.g. x <= 0 ---> -oo <= 0
|
730 |
+
elif cond.gts == sym: # part 1a: ... that can be expanded
|
731 |
+
upper = S.Infinity # e.g. x >= 0 ---> oo >= 0
|
732 |
+
else:
|
733 |
+
return nonsymfail(cond)
|
734 |
+
else:
|
735 |
+
return False, 'unrecognized condition: %s' % cond
|
736 |
+
|
737 |
+
lower, upper = lower, Max(lower, upper)
|
738 |
+
if err_on_Eq and lower == upper:
|
739 |
+
return False, 'encountered Eq condition'
|
740 |
+
if (lower >= upper) is not S.true:
|
741 |
+
int_expr.append((lower, upper, expr, iarg))
|
742 |
+
|
743 |
+
if default is not None:
|
744 |
+
int_expr.append(
|
745 |
+
(S.NegativeInfinity, S.Infinity, default, idefault))
|
746 |
+
|
747 |
+
return True, list(uniq(int_expr))
|
748 |
+
|
749 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
750 |
+
args = [(ec.expr._eval_nseries(x, n, logx), ec.cond) for ec in self.args]
|
751 |
+
return self.func(*args)
|
752 |
+
|
753 |
+
def _eval_power(self, s):
|
754 |
+
return self.func(*[(e**s, c) for e, c in self.args])
|
755 |
+
|
756 |
+
def _eval_subs(self, old, new):
|
757 |
+
# this is strictly not necessary, but we can keep track
|
758 |
+
# of whether True or False conditions arise and be
|
759 |
+
# somewhat more efficient by avoiding other substitutions
|
760 |
+
# and avoiding invalid conditions that appear after a
|
761 |
+
# True condition
|
762 |
+
args = list(self.args)
|
763 |
+
args_exist = False
|
764 |
+
for i, (e, c) in enumerate(args):
|
765 |
+
c = c._subs(old, new)
|
766 |
+
if c != False:
|
767 |
+
args_exist = True
|
768 |
+
e = e._subs(old, new)
|
769 |
+
args[i] = (e, c)
|
770 |
+
if c == True:
|
771 |
+
break
|
772 |
+
if not args_exist:
|
773 |
+
args = ((Undefined, True),)
|
774 |
+
return self.func(*args)
|
775 |
+
|
776 |
+
def _eval_transpose(self):
|
777 |
+
return self.func(*[(e.transpose(), c) for e, c in self.args])
|
778 |
+
|
779 |
+
def _eval_template_is_attr(self, is_attr):
|
780 |
+
b = None
|
781 |
+
for expr, _ in self.args:
|
782 |
+
a = getattr(expr, is_attr)
|
783 |
+
if a is None:
|
784 |
+
return
|
785 |
+
if b is None:
|
786 |
+
b = a
|
787 |
+
elif b is not a:
|
788 |
+
return
|
789 |
+
return b
|
790 |
+
|
791 |
+
_eval_is_finite = lambda self: self._eval_template_is_attr(
|
792 |
+
'is_finite')
|
793 |
+
_eval_is_complex = lambda self: self._eval_template_is_attr('is_complex')
|
794 |
+
_eval_is_even = lambda self: self._eval_template_is_attr('is_even')
|
795 |
+
_eval_is_imaginary = lambda self: self._eval_template_is_attr(
|
796 |
+
'is_imaginary')
|
797 |
+
_eval_is_integer = lambda self: self._eval_template_is_attr('is_integer')
|
798 |
+
_eval_is_irrational = lambda self: self._eval_template_is_attr(
|
799 |
+
'is_irrational')
|
800 |
+
_eval_is_negative = lambda self: self._eval_template_is_attr('is_negative')
|
801 |
+
_eval_is_nonnegative = lambda self: self._eval_template_is_attr(
|
802 |
+
'is_nonnegative')
|
803 |
+
_eval_is_nonpositive = lambda self: self._eval_template_is_attr(
|
804 |
+
'is_nonpositive')
|
805 |
+
_eval_is_nonzero = lambda self: self._eval_template_is_attr(
|
806 |
+
'is_nonzero')
|
807 |
+
_eval_is_odd = lambda self: self._eval_template_is_attr('is_odd')
|
808 |
+
_eval_is_polar = lambda self: self._eval_template_is_attr('is_polar')
|
809 |
+
_eval_is_positive = lambda self: self._eval_template_is_attr('is_positive')
|
810 |
+
_eval_is_extended_real = lambda self: self._eval_template_is_attr(
|
811 |
+
'is_extended_real')
|
812 |
+
_eval_is_extended_positive = lambda self: self._eval_template_is_attr(
|
813 |
+
'is_extended_positive')
|
814 |
+
_eval_is_extended_negative = lambda self: self._eval_template_is_attr(
|
815 |
+
'is_extended_negative')
|
816 |
+
_eval_is_extended_nonzero = lambda self: self._eval_template_is_attr(
|
817 |
+
'is_extended_nonzero')
|
818 |
+
_eval_is_extended_nonpositive = lambda self: self._eval_template_is_attr(
|
819 |
+
'is_extended_nonpositive')
|
820 |
+
_eval_is_extended_nonnegative = lambda self: self._eval_template_is_attr(
|
821 |
+
'is_extended_nonnegative')
|
822 |
+
_eval_is_real = lambda self: self._eval_template_is_attr('is_real')
|
823 |
+
_eval_is_zero = lambda self: self._eval_template_is_attr(
|
824 |
+
'is_zero')
|
825 |
+
|
826 |
+
@classmethod
|
827 |
+
def __eval_cond(cls, cond):
|
828 |
+
"""Return the truth value of the condition."""
|
829 |
+
if cond == True:
|
830 |
+
return True
|
831 |
+
if isinstance(cond, Eq):
|
832 |
+
try:
|
833 |
+
diff = cond.lhs - cond.rhs
|
834 |
+
if diff.is_commutative:
|
835 |
+
return diff.is_zero
|
836 |
+
except TypeError:
|
837 |
+
pass
|
838 |
+
|
839 |
+
def as_expr_set_pairs(self, domain=None):
|
840 |
+
"""Return tuples for each argument of self that give
|
841 |
+
the expression and the interval in which it is valid
|
842 |
+
which is contained within the given domain.
|
843 |
+
If a condition cannot be converted to a set, an error
|
844 |
+
will be raised. The variable of the conditions is
|
845 |
+
assumed to be real; sets of real values are returned.
|
846 |
+
|
847 |
+
Examples
|
848 |
+
========
|
849 |
+
|
850 |
+
>>> from sympy import Piecewise, Interval
|
851 |
+
>>> from sympy.abc import x
|
852 |
+
>>> p = Piecewise(
|
853 |
+
... (1, x < 2),
|
854 |
+
... (2,(x > 0) & (x < 4)),
|
855 |
+
... (3, True))
|
856 |
+
>>> p.as_expr_set_pairs()
|
857 |
+
[(1, Interval.open(-oo, 2)),
|
858 |
+
(2, Interval.Ropen(2, 4)),
|
859 |
+
(3, Interval(4, oo))]
|
860 |
+
>>> p.as_expr_set_pairs(Interval(0, 3))
|
861 |
+
[(1, Interval.Ropen(0, 2)),
|
862 |
+
(2, Interval(2, 3))]
|
863 |
+
"""
|
864 |
+
if domain is None:
|
865 |
+
domain = S.Reals
|
866 |
+
exp_sets = []
|
867 |
+
U = domain
|
868 |
+
complex = not domain.is_subset(S.Reals)
|
869 |
+
cond_free = set()
|
870 |
+
for expr, cond in self.args:
|
871 |
+
cond_free |= cond.free_symbols
|
872 |
+
if len(cond_free) > 1:
|
873 |
+
raise NotImplementedError(filldedent('''
|
874 |
+
multivariate conditions are not handled.'''))
|
875 |
+
if complex:
|
876 |
+
for i in cond.atoms(Relational):
|
877 |
+
if not isinstance(i, (Eq, Ne)):
|
878 |
+
raise ValueError(filldedent('''
|
879 |
+
Inequalities in the complex domain are
|
880 |
+
not supported. Try the real domain by
|
881 |
+
setting domain=S.Reals'''))
|
882 |
+
cond_int = U.intersect(cond.as_set())
|
883 |
+
U = U - cond_int
|
884 |
+
if cond_int != S.EmptySet:
|
885 |
+
exp_sets.append((expr, cond_int))
|
886 |
+
return exp_sets
|
887 |
+
|
888 |
+
def _eval_rewrite_as_ITE(self, *args, **kwargs):
|
889 |
+
byfree = {}
|
890 |
+
args = list(args)
|
891 |
+
default = any(c == True for b, c in args)
|
892 |
+
for i, (b, c) in enumerate(args):
|
893 |
+
if not isinstance(b, Boolean) and b != True:
|
894 |
+
raise TypeError(filldedent('''
|
895 |
+
Expecting Boolean or bool but got `%s`
|
896 |
+
''' % func_name(b)))
|
897 |
+
if c == True:
|
898 |
+
break
|
899 |
+
# loop over independent conditions for this b
|
900 |
+
for c in c.args if isinstance(c, Or) else [c]:
|
901 |
+
free = c.free_symbols
|
902 |
+
x = free.pop()
|
903 |
+
try:
|
904 |
+
byfree[x] = byfree.setdefault(
|
905 |
+
x, S.EmptySet).union(c.as_set())
|
906 |
+
except NotImplementedError:
|
907 |
+
if not default:
|
908 |
+
raise NotImplementedError(filldedent('''
|
909 |
+
A method to determine whether a multivariate
|
910 |
+
conditional is consistent with a complete coverage
|
911 |
+
of all variables has not been implemented so the
|
912 |
+
rewrite is being stopped after encountering `%s`.
|
913 |
+
This error would not occur if a default expression
|
914 |
+
like `(foo, True)` were given.
|
915 |
+
''' % c))
|
916 |
+
if byfree[x] in (S.UniversalSet, S.Reals):
|
917 |
+
# collapse the ith condition to True and break
|
918 |
+
args[i] = list(args[i])
|
919 |
+
c = args[i][1] = True
|
920 |
+
break
|
921 |
+
if c == True:
|
922 |
+
break
|
923 |
+
if c != True:
|
924 |
+
raise ValueError(filldedent('''
|
925 |
+
Conditions must cover all reals or a final default
|
926 |
+
condition `(foo, True)` must be given.
|
927 |
+
'''))
|
928 |
+
last, _ = args[i] # ignore all past ith arg
|
929 |
+
for a, c in reversed(args[:i]):
|
930 |
+
last = ITE(c, a, last)
|
931 |
+
return _canonical(last)
|
932 |
+
|
933 |
+
def _eval_rewrite_as_KroneckerDelta(self, *args):
|
934 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
935 |
+
|
936 |
+
rules = {
|
937 |
+
And: [False, False],
|
938 |
+
Or: [True, True],
|
939 |
+
Not: [True, False],
|
940 |
+
Eq: [None, None],
|
941 |
+
Ne: [None, None]
|
942 |
+
}
|
943 |
+
|
944 |
+
class UnrecognizedCondition(Exception):
|
945 |
+
pass
|
946 |
+
|
947 |
+
def rewrite(cond):
|
948 |
+
if isinstance(cond, Eq):
|
949 |
+
return KroneckerDelta(*cond.args)
|
950 |
+
if isinstance(cond, Ne):
|
951 |
+
return 1 - KroneckerDelta(*cond.args)
|
952 |
+
|
953 |
+
cls, args = type(cond), cond.args
|
954 |
+
if cls not in rules:
|
955 |
+
raise UnrecognizedCondition(cls)
|
956 |
+
|
957 |
+
b1, b2 = rules[cls]
|
958 |
+
k = Mul(*[1 - rewrite(c) for c in args]) if b1 else Mul(*[rewrite(c) for c in args])
|
959 |
+
|
960 |
+
if b2:
|
961 |
+
return 1 - k
|
962 |
+
return k
|
963 |
+
|
964 |
+
conditions = []
|
965 |
+
true_value = None
|
966 |
+
for value, cond in args:
|
967 |
+
if type(cond) in rules:
|
968 |
+
conditions.append((value, cond))
|
969 |
+
elif cond is S.true:
|
970 |
+
if true_value is None:
|
971 |
+
true_value = value
|
972 |
+
else:
|
973 |
+
return
|
974 |
+
|
975 |
+
if true_value is not None:
|
976 |
+
result = true_value
|
977 |
+
|
978 |
+
for value, cond in conditions[::-1]:
|
979 |
+
try:
|
980 |
+
k = rewrite(cond)
|
981 |
+
result = k * value + (1 - k) * result
|
982 |
+
except UnrecognizedCondition:
|
983 |
+
return
|
984 |
+
|
985 |
+
return result
|
986 |
+
|
987 |
+
|
988 |
+
def piecewise_fold(expr, evaluate=True):
|
989 |
+
"""
|
990 |
+
Takes an expression containing a piecewise function and returns the
|
991 |
+
expression in piecewise form. In addition, any ITE conditions are
|
992 |
+
rewritten in negation normal form and simplified.
|
993 |
+
|
994 |
+
The final Piecewise is evaluated (default) but if the raw form
|
995 |
+
is desired, send ``evaluate=False``; if trivial evaluation is
|
996 |
+
desired, send ``evaluate=None`` and duplicate conditions and
|
997 |
+
processing of True and False will be handled.
|
998 |
+
|
999 |
+
Examples
|
1000 |
+
========
|
1001 |
+
|
1002 |
+
>>> from sympy import Piecewise, piecewise_fold, S
|
1003 |
+
>>> from sympy.abc import x
|
1004 |
+
>>> p = Piecewise((x, x < 1), (1, S(1) <= x))
|
1005 |
+
>>> piecewise_fold(x*p)
|
1006 |
+
Piecewise((x**2, x < 1), (x, True))
|
1007 |
+
|
1008 |
+
See Also
|
1009 |
+
========
|
1010 |
+
|
1011 |
+
Piecewise
|
1012 |
+
piecewise_exclusive
|
1013 |
+
"""
|
1014 |
+
if not isinstance(expr, Basic) or not expr.has(Piecewise):
|
1015 |
+
return expr
|
1016 |
+
|
1017 |
+
new_args = []
|
1018 |
+
if isinstance(expr, (ExprCondPair, Piecewise)):
|
1019 |
+
for e, c in expr.args:
|
1020 |
+
if not isinstance(e, Piecewise):
|
1021 |
+
e = piecewise_fold(e)
|
1022 |
+
# we don't keep Piecewise in condition because
|
1023 |
+
# it has to be checked to see that it's complete
|
1024 |
+
# and we convert it to ITE at that time
|
1025 |
+
assert not c.has(Piecewise) # pragma: no cover
|
1026 |
+
if isinstance(c, ITE):
|
1027 |
+
c = c.to_nnf()
|
1028 |
+
c = simplify_logic(c, form='cnf')
|
1029 |
+
if isinstance(e, Piecewise):
|
1030 |
+
new_args.extend([(piecewise_fold(ei), And(ci, c))
|
1031 |
+
for ei, ci in e.args])
|
1032 |
+
else:
|
1033 |
+
new_args.append((e, c))
|
1034 |
+
else:
|
1035 |
+
# Given
|
1036 |
+
# P1 = Piecewise((e11, c1), (e12, c2), A)
|
1037 |
+
# P2 = Piecewise((e21, c1), (e22, c2), B)
|
1038 |
+
# ...
|
1039 |
+
# the folding of f(P1, P2) is trivially
|
1040 |
+
# Piecewise(
|
1041 |
+
# (f(e11, e21), c1),
|
1042 |
+
# (f(e12, e22), c2),
|
1043 |
+
# (f(Piecewise(A), Piecewise(B)), True))
|
1044 |
+
# Certain objects end up rewriting themselves as thus, so
|
1045 |
+
# we do that grouping before the more generic folding.
|
1046 |
+
# The following applies this idea when f = Add or f = Mul
|
1047 |
+
# (and the expression is commutative).
|
1048 |
+
if expr.is_Add or expr.is_Mul and expr.is_commutative:
|
1049 |
+
p, args = sift(expr.args, lambda x: x.is_Piecewise, binary=True)
|
1050 |
+
pc = sift(p, lambda x: tuple([c for e,c in x.args]))
|
1051 |
+
for c in list(ordered(pc)):
|
1052 |
+
if len(pc[c]) > 1:
|
1053 |
+
pargs = [list(i.args) for i in pc[c]]
|
1054 |
+
# the first one is the same; there may be more
|
1055 |
+
com = common_prefix(*[
|
1056 |
+
[i.cond for i in j] for j in pargs])
|
1057 |
+
n = len(com)
|
1058 |
+
collected = []
|
1059 |
+
for i in range(n):
|
1060 |
+
collected.append((
|
1061 |
+
expr.func(*[ai[i].expr for ai in pargs]),
|
1062 |
+
com[i]))
|
1063 |
+
remains = []
|
1064 |
+
for a in pargs:
|
1065 |
+
if n == len(a): # no more args
|
1066 |
+
continue
|
1067 |
+
if a[n].cond == True: # no longer Piecewise
|
1068 |
+
remains.append(a[n].expr)
|
1069 |
+
else: # restore the remaining Piecewise
|
1070 |
+
remains.append(
|
1071 |
+
Piecewise(*a[n:], evaluate=False))
|
1072 |
+
if remains:
|
1073 |
+
collected.append((expr.func(*remains), True))
|
1074 |
+
args.append(Piecewise(*collected, evaluate=False))
|
1075 |
+
continue
|
1076 |
+
args.extend(pc[c])
|
1077 |
+
else:
|
1078 |
+
args = expr.args
|
1079 |
+
# fold
|
1080 |
+
folded = list(map(piecewise_fold, args))
|
1081 |
+
for ec in product(*[
|
1082 |
+
(i.args if isinstance(i, Piecewise) else
|
1083 |
+
[(i, true)]) for i in folded]):
|
1084 |
+
e, c = zip(*ec)
|
1085 |
+
new_args.append((expr.func(*e), And(*c)))
|
1086 |
+
|
1087 |
+
if evaluate is None:
|
1088 |
+
# don't return duplicate conditions, otherwise don't evaluate
|
1089 |
+
new_args = list(reversed([(e, c) for c, e in {
|
1090 |
+
c: e for e, c in reversed(new_args)}.items()]))
|
1091 |
+
rv = Piecewise(*new_args, evaluate=evaluate)
|
1092 |
+
if evaluate is None and len(rv.args) == 1 and rv.args[0].cond == True:
|
1093 |
+
return rv.args[0].expr
|
1094 |
+
if any(s.expr.has(Piecewise) for p in rv.atoms(Piecewise) for s in p.args):
|
1095 |
+
return piecewise_fold(rv)
|
1096 |
+
return rv
|
1097 |
+
|
1098 |
+
|
1099 |
+
def _clip(A, B, k):
|
1100 |
+
"""Return interval B as intervals that are covered by A (keyed
|
1101 |
+
to k) and all other intervals of B not covered by A keyed to -1.
|
1102 |
+
|
1103 |
+
The reference point of each interval is the rhs; if the lhs is
|
1104 |
+
greater than the rhs then an interval of zero width interval will
|
1105 |
+
result, e.g. (4, 1) is treated like (1, 1).
|
1106 |
+
|
1107 |
+
Examples
|
1108 |
+
========
|
1109 |
+
|
1110 |
+
>>> from sympy.functions.elementary.piecewise import _clip
|
1111 |
+
>>> from sympy import Tuple
|
1112 |
+
>>> A = Tuple(1, 3)
|
1113 |
+
>>> B = Tuple(2, 4)
|
1114 |
+
>>> _clip(A, B, 0)
|
1115 |
+
[(2, 3, 0), (3, 4, -1)]
|
1116 |
+
|
1117 |
+
Interpretation: interval portion (2, 3) of interval (2, 4) is
|
1118 |
+
covered by interval (1, 3) and is keyed to 0 as requested;
|
1119 |
+
interval (3, 4) was not covered by (1, 3) and is keyed to -1.
|
1120 |
+
"""
|
1121 |
+
a, b = B
|
1122 |
+
c, d = A
|
1123 |
+
c, d = Min(Max(c, a), b), Min(Max(d, a), b)
|
1124 |
+
a, b = Min(a, b), b
|
1125 |
+
p = []
|
1126 |
+
if a != c:
|
1127 |
+
p.append((a, c, -1))
|
1128 |
+
else:
|
1129 |
+
pass
|
1130 |
+
if c != d:
|
1131 |
+
p.append((c, d, k))
|
1132 |
+
else:
|
1133 |
+
pass
|
1134 |
+
if b != d:
|
1135 |
+
if d == c and p and p[-1][-1] == -1:
|
1136 |
+
p[-1] = p[-1][0], b, -1
|
1137 |
+
else:
|
1138 |
+
p.append((d, b, -1))
|
1139 |
+
else:
|
1140 |
+
pass
|
1141 |
+
|
1142 |
+
return p
|
1143 |
+
|
1144 |
+
|
1145 |
+
def piecewise_simplify_arguments(expr, **kwargs):
|
1146 |
+
from sympy.simplify.simplify import simplify
|
1147 |
+
|
1148 |
+
# simplify conditions
|
1149 |
+
f1 = expr.args[0].cond.free_symbols
|
1150 |
+
args = None
|
1151 |
+
if len(f1) == 1 and not expr.atoms(Eq):
|
1152 |
+
x = f1.pop()
|
1153 |
+
# this won't return intervals involving Eq
|
1154 |
+
# and it won't handle symbols treated as
|
1155 |
+
# booleans
|
1156 |
+
ok, abe_ = expr._intervals(x, err_on_Eq=True)
|
1157 |
+
def include(c, x, a):
|
1158 |
+
"return True if c.subs(x, a) is True, else False"
|
1159 |
+
try:
|
1160 |
+
return c.subs(x, a) == True
|
1161 |
+
except TypeError:
|
1162 |
+
return False
|
1163 |
+
if ok:
|
1164 |
+
args = []
|
1165 |
+
covered = S.EmptySet
|
1166 |
+
from sympy.sets.sets import Interval
|
1167 |
+
for a, b, e, i in abe_:
|
1168 |
+
c = expr.args[i].cond
|
1169 |
+
incl_a = include(c, x, a)
|
1170 |
+
incl_b = include(c, x, b)
|
1171 |
+
iv = Interval(a, b, not incl_a, not incl_b)
|
1172 |
+
cset = iv - covered
|
1173 |
+
if not cset:
|
1174 |
+
continue
|
1175 |
+
if incl_a and incl_b:
|
1176 |
+
if a.is_infinite and b.is_infinite:
|
1177 |
+
c = S.true
|
1178 |
+
elif b.is_infinite:
|
1179 |
+
c = (x >= a)
|
1180 |
+
elif a in covered or a.is_infinite:
|
1181 |
+
c = (x <= b)
|
1182 |
+
else:
|
1183 |
+
c = And(a <= x, x <= b)
|
1184 |
+
elif incl_a:
|
1185 |
+
if a in covered or a.is_infinite:
|
1186 |
+
c = (x < b)
|
1187 |
+
else:
|
1188 |
+
c = And(a <= x, x < b)
|
1189 |
+
elif incl_b:
|
1190 |
+
if b.is_infinite:
|
1191 |
+
c = (x > a)
|
1192 |
+
else:
|
1193 |
+
c = (x <= b)
|
1194 |
+
else:
|
1195 |
+
if a in covered:
|
1196 |
+
c = (x < b)
|
1197 |
+
else:
|
1198 |
+
c = And(a < x, x < b)
|
1199 |
+
covered |= iv
|
1200 |
+
if a is S.NegativeInfinity and incl_a:
|
1201 |
+
covered |= {S.NegativeInfinity}
|
1202 |
+
if b is S.Infinity and incl_b:
|
1203 |
+
covered |= {S.Infinity}
|
1204 |
+
args.append((e, c))
|
1205 |
+
if not S.Reals.is_subset(covered):
|
1206 |
+
args.append((Undefined, True))
|
1207 |
+
if args is None:
|
1208 |
+
args = list(expr.args)
|
1209 |
+
for i in range(len(args)):
|
1210 |
+
e, c = args[i]
|
1211 |
+
if isinstance(c, Basic):
|
1212 |
+
c = simplify(c, **kwargs)
|
1213 |
+
args[i] = (e, c)
|
1214 |
+
|
1215 |
+
# simplify expressions
|
1216 |
+
doit = kwargs.pop('doit', None)
|
1217 |
+
for i in range(len(args)):
|
1218 |
+
e, c = args[i]
|
1219 |
+
if isinstance(e, Basic):
|
1220 |
+
# Skip doit to avoid growth at every call for some integrals
|
1221 |
+
# and sums, see sympy/sympy#17165
|
1222 |
+
newe = simplify(e, doit=False, **kwargs)
|
1223 |
+
if newe != e:
|
1224 |
+
e = newe
|
1225 |
+
args[i] = (e, c)
|
1226 |
+
|
1227 |
+
# restore kwargs flag
|
1228 |
+
if doit is not None:
|
1229 |
+
kwargs['doit'] = doit
|
1230 |
+
|
1231 |
+
return Piecewise(*args)
|
1232 |
+
|
1233 |
+
|
1234 |
+
def _piecewise_collapse_arguments(_args):
|
1235 |
+
newargs = [] # the unevaluated conditions
|
1236 |
+
current_cond = set() # the conditions up to a given e, c pair
|
1237 |
+
for expr, cond in _args:
|
1238 |
+
cond = cond.replace(
|
1239 |
+
lambda _: _.is_Relational, _canonical_coeff)
|
1240 |
+
# Check here if expr is a Piecewise and collapse if one of
|
1241 |
+
# the conds in expr matches cond. This allows the collapsing
|
1242 |
+
# of Piecewise((Piecewise((x,x<0)),x<0)) to Piecewise((x,x<0)).
|
1243 |
+
# This is important when using piecewise_fold to simplify
|
1244 |
+
# multiple Piecewise instances having the same conds.
|
1245 |
+
# Eventually, this code should be able to collapse Piecewise's
|
1246 |
+
# having different intervals, but this will probably require
|
1247 |
+
# using the new assumptions.
|
1248 |
+
if isinstance(expr, Piecewise):
|
1249 |
+
unmatching = []
|
1250 |
+
for i, (e, c) in enumerate(expr.args):
|
1251 |
+
if c in current_cond:
|
1252 |
+
# this would already have triggered
|
1253 |
+
continue
|
1254 |
+
if c == cond:
|
1255 |
+
if c != True:
|
1256 |
+
# nothing past this condition will ever
|
1257 |
+
# trigger and only those args before this
|
1258 |
+
# that didn't match a previous condition
|
1259 |
+
# could possibly trigger
|
1260 |
+
if unmatching:
|
1261 |
+
expr = Piecewise(*(
|
1262 |
+
unmatching + [(e, c)]))
|
1263 |
+
else:
|
1264 |
+
expr = e
|
1265 |
+
break
|
1266 |
+
else:
|
1267 |
+
unmatching.append((e, c))
|
1268 |
+
|
1269 |
+
# check for condition repeats
|
1270 |
+
got = False
|
1271 |
+
# -- if an And contains a condition that was
|
1272 |
+
# already encountered, then the And will be
|
1273 |
+
# False: if the previous condition was False
|
1274 |
+
# then the And will be False and if the previous
|
1275 |
+
# condition is True then then we wouldn't get to
|
1276 |
+
# this point. In either case, we can skip this condition.
|
1277 |
+
for i in ([cond] +
|
1278 |
+
(list(cond.args) if isinstance(cond, And) else
|
1279 |
+
[])):
|
1280 |
+
if i in current_cond:
|
1281 |
+
got = True
|
1282 |
+
break
|
1283 |
+
if got:
|
1284 |
+
continue
|
1285 |
+
|
1286 |
+
# -- if not(c) is already in current_cond then c is
|
1287 |
+
# a redundant condition in an And. This does not
|
1288 |
+
# apply to Or, however: (e1, c), (e2, Or(~c, d))
|
1289 |
+
# is not (e1, c), (e2, d) because if c and d are
|
1290 |
+
# both False this would give no results when the
|
1291 |
+
# true answer should be (e2, True)
|
1292 |
+
if isinstance(cond, And):
|
1293 |
+
nonredundant = []
|
1294 |
+
for c in cond.args:
|
1295 |
+
if isinstance(c, Relational):
|
1296 |
+
if c.negated.canonical in current_cond:
|
1297 |
+
continue
|
1298 |
+
# if a strict inequality appears after
|
1299 |
+
# a non-strict one, then the condition is
|
1300 |
+
# redundant
|
1301 |
+
if isinstance(c, (Lt, Gt)) and (
|
1302 |
+
c.weak in current_cond):
|
1303 |
+
cond = False
|
1304 |
+
break
|
1305 |
+
nonredundant.append(c)
|
1306 |
+
else:
|
1307 |
+
cond = cond.func(*nonredundant)
|
1308 |
+
elif isinstance(cond, Relational):
|
1309 |
+
if cond.negated.canonical in current_cond:
|
1310 |
+
cond = S.true
|
1311 |
+
|
1312 |
+
current_cond.add(cond)
|
1313 |
+
|
1314 |
+
# collect successive e,c pairs when exprs or cond match
|
1315 |
+
if newargs:
|
1316 |
+
if newargs[-1].expr == expr:
|
1317 |
+
orcond = Or(cond, newargs[-1].cond)
|
1318 |
+
if isinstance(orcond, (And, Or)):
|
1319 |
+
orcond = distribute_and_over_or(orcond)
|
1320 |
+
newargs[-1] = ExprCondPair(expr, orcond)
|
1321 |
+
continue
|
1322 |
+
elif newargs[-1].cond == cond:
|
1323 |
+
continue
|
1324 |
+
newargs.append(ExprCondPair(expr, cond))
|
1325 |
+
return newargs
|
1326 |
+
|
1327 |
+
|
1328 |
+
_blessed = lambda e: getattr(e.lhs, '_diff_wrt', False) and (
|
1329 |
+
getattr(e.rhs, '_diff_wrt', None) or
|
1330 |
+
isinstance(e.rhs, (Rational, NumberSymbol)))
|
1331 |
+
|
1332 |
+
|
1333 |
+
def piecewise_simplify(expr, **kwargs):
|
1334 |
+
expr = piecewise_simplify_arguments(expr, **kwargs)
|
1335 |
+
if not isinstance(expr, Piecewise):
|
1336 |
+
return expr
|
1337 |
+
args = list(expr.args)
|
1338 |
+
|
1339 |
+
args = _piecewise_simplify_eq_and(args)
|
1340 |
+
args = _piecewise_simplify_equal_to_next_segment(args)
|
1341 |
+
return Piecewise(*args)
|
1342 |
+
|
1343 |
+
|
1344 |
+
def _piecewise_simplify_equal_to_next_segment(args):
|
1345 |
+
"""
|
1346 |
+
See if expressions valid for an Equal expression happens to evaluate
|
1347 |
+
to the same function as in the next piecewise segment, see:
|
1348 |
+
https://github.com/sympy/sympy/issues/8458
|
1349 |
+
"""
|
1350 |
+
prevexpr = None
|
1351 |
+
for i, (expr, cond) in reversed(list(enumerate(args))):
|
1352 |
+
if prevexpr is not None:
|
1353 |
+
if isinstance(cond, And):
|
1354 |
+
eqs, other = sift(cond.args,
|
1355 |
+
lambda i: isinstance(i, Eq), binary=True)
|
1356 |
+
elif isinstance(cond, Eq):
|
1357 |
+
eqs, other = [cond], []
|
1358 |
+
else:
|
1359 |
+
eqs = other = []
|
1360 |
+
_prevexpr = prevexpr
|
1361 |
+
_expr = expr
|
1362 |
+
if eqs and not other:
|
1363 |
+
eqs = list(ordered(eqs))
|
1364 |
+
for e in eqs:
|
1365 |
+
# allow 2 args to collapse into 1 for any e
|
1366 |
+
# otherwise limit simplification to only simple-arg
|
1367 |
+
# Eq instances
|
1368 |
+
if len(args) == 2 or _blessed(e):
|
1369 |
+
_prevexpr = _prevexpr.subs(*e.args)
|
1370 |
+
_expr = _expr.subs(*e.args)
|
1371 |
+
# Did it evaluate to the same?
|
1372 |
+
if _prevexpr == _expr:
|
1373 |
+
# Set the expression for the Not equal section to the same
|
1374 |
+
# as the next. These will be merged when creating the new
|
1375 |
+
# Piecewise
|
1376 |
+
args[i] = args[i].func(args[i + 1][0], cond)
|
1377 |
+
else:
|
1378 |
+
# Update the expression that we compare against
|
1379 |
+
prevexpr = expr
|
1380 |
+
else:
|
1381 |
+
prevexpr = expr
|
1382 |
+
return args
|
1383 |
+
|
1384 |
+
|
1385 |
+
def _piecewise_simplify_eq_and(args):
|
1386 |
+
"""
|
1387 |
+
Try to simplify conditions and the expression for
|
1388 |
+
equalities that are part of the condition, e.g.
|
1389 |
+
Piecewise((n, And(Eq(n,0), Eq(n + m, 0))), (1, True))
|
1390 |
+
-> Piecewise((0, And(Eq(n, 0), Eq(m, 0))), (1, True))
|
1391 |
+
"""
|
1392 |
+
for i, (expr, cond) in enumerate(args):
|
1393 |
+
if isinstance(cond, And):
|
1394 |
+
eqs, other = sift(cond.args,
|
1395 |
+
lambda i: isinstance(i, Eq), binary=True)
|
1396 |
+
elif isinstance(cond, Eq):
|
1397 |
+
eqs, other = [cond], []
|
1398 |
+
else:
|
1399 |
+
eqs = other = []
|
1400 |
+
if eqs:
|
1401 |
+
eqs = list(ordered(eqs))
|
1402 |
+
for j, e in enumerate(eqs):
|
1403 |
+
# these blessed lhs objects behave like Symbols
|
1404 |
+
# and the rhs are simple replacements for the "symbols"
|
1405 |
+
if _blessed(e):
|
1406 |
+
expr = expr.subs(*e.args)
|
1407 |
+
eqs[j + 1:] = [ei.subs(*e.args) for ei in eqs[j + 1:]]
|
1408 |
+
other = [ei.subs(*e.args) for ei in other]
|
1409 |
+
cond = And(*(eqs + other))
|
1410 |
+
args[i] = args[i].func(expr, cond)
|
1411 |
+
return args
|
1412 |
+
|
1413 |
+
|
1414 |
+
def piecewise_exclusive(expr, *, skip_nan=False, deep=True):
|
1415 |
+
"""
|
1416 |
+
Rewrite :class:`Piecewise` with mutually exclusive conditions.
|
1417 |
+
|
1418 |
+
Explanation
|
1419 |
+
===========
|
1420 |
+
|
1421 |
+
SymPy represents the conditions of a :class:`Piecewise` in an
|
1422 |
+
"if-elif"-fashion, allowing more than one condition to be simultaneously
|
1423 |
+
True. The interpretation is that the first condition that is True is the
|
1424 |
+
case that holds. While this is a useful representation computationally it
|
1425 |
+
is not how a piecewise formula is typically shown in a mathematical text.
|
1426 |
+
The :func:`piecewise_exclusive` function can be used to rewrite any
|
1427 |
+
:class:`Piecewise` with more typical mutually exclusive conditions.
|
1428 |
+
|
1429 |
+
Note that further manipulation of the resulting :class:`Piecewise`, e.g.
|
1430 |
+
simplifying it, will most likely make it non-exclusive. Hence, this is
|
1431 |
+
primarily a function to be used in conjunction with printing the Piecewise
|
1432 |
+
or if one would like to reorder the expression-condition pairs.
|
1433 |
+
|
1434 |
+
If it is not possible to determine that all possibilities are covered by
|
1435 |
+
the different cases of the :class:`Piecewise` then a final
|
1436 |
+
:class:`~sympy.core.numbers.NaN` case will be included explicitly. This
|
1437 |
+
can be prevented by passing ``skip_nan=True``.
|
1438 |
+
|
1439 |
+
Examples
|
1440 |
+
========
|
1441 |
+
|
1442 |
+
>>> from sympy import piecewise_exclusive, Symbol, Piecewise, S
|
1443 |
+
>>> x = Symbol('x', real=True)
|
1444 |
+
>>> p = Piecewise((0, x < 0), (S.Half, x <= 0), (1, True))
|
1445 |
+
>>> piecewise_exclusive(p)
|
1446 |
+
Piecewise((0, x < 0), (1/2, Eq(x, 0)), (1, x > 0))
|
1447 |
+
>>> piecewise_exclusive(Piecewise((2, x > 1)))
|
1448 |
+
Piecewise((2, x > 1), (nan, x <= 1))
|
1449 |
+
>>> piecewise_exclusive(Piecewise((2, x > 1)), skip_nan=True)
|
1450 |
+
Piecewise((2, x > 1))
|
1451 |
+
|
1452 |
+
Parameters
|
1453 |
+
==========
|
1454 |
+
|
1455 |
+
expr: a SymPy expression.
|
1456 |
+
Any :class:`Piecewise` in the expression will be rewritten.
|
1457 |
+
skip_nan: ``bool`` (default ``False``)
|
1458 |
+
If ``skip_nan`` is set to ``True`` then a final
|
1459 |
+
:class:`~sympy.core.numbers.NaN` case will not be included.
|
1460 |
+
deep: ``bool`` (default ``True``)
|
1461 |
+
If ``deep`` is ``True`` then :func:`piecewise_exclusive` will rewrite
|
1462 |
+
any :class:`Piecewise` subexpressions in ``expr`` rather than just
|
1463 |
+
rewriting ``expr`` itself.
|
1464 |
+
|
1465 |
+
Returns
|
1466 |
+
=======
|
1467 |
+
|
1468 |
+
An expression equivalent to ``expr`` but where all :class:`Piecewise` have
|
1469 |
+
been rewritten with mutually exclusive conditions.
|
1470 |
+
|
1471 |
+
See Also
|
1472 |
+
========
|
1473 |
+
|
1474 |
+
Piecewise
|
1475 |
+
piecewise_fold
|
1476 |
+
"""
|
1477 |
+
|
1478 |
+
def make_exclusive(*pwargs):
|
1479 |
+
|
1480 |
+
cumcond = false
|
1481 |
+
newargs = []
|
1482 |
+
|
1483 |
+
# Handle the first n-1 cases
|
1484 |
+
for expr_i, cond_i in pwargs[:-1]:
|
1485 |
+
cancond = And(cond_i, Not(cumcond)).simplify()
|
1486 |
+
cumcond = Or(cond_i, cumcond).simplify()
|
1487 |
+
newargs.append((expr_i, cancond))
|
1488 |
+
|
1489 |
+
# For the nth case defer simplification of cumcond
|
1490 |
+
expr_n, cond_n = pwargs[-1]
|
1491 |
+
cancond_n = And(cond_n, Not(cumcond)).simplify()
|
1492 |
+
newargs.append((expr_n, cancond_n))
|
1493 |
+
|
1494 |
+
if not skip_nan:
|
1495 |
+
cumcond = Or(cond_n, cumcond).simplify()
|
1496 |
+
if cumcond is not true:
|
1497 |
+
newargs.append((Undefined, Not(cumcond).simplify()))
|
1498 |
+
|
1499 |
+
return Piecewise(*newargs, evaluate=False)
|
1500 |
+
|
1501 |
+
if deep:
|
1502 |
+
return expr.replace(Piecewise, make_exclusive)
|
1503 |
+
elif isinstance(expr, Piecewise):
|
1504 |
+
return make_exclusive(*expr.args)
|
1505 |
+
else:
|
1506 |
+
return expr
|
llmeval-env/lib/python3.10/site-packages/sympy/functions/elementary/trigonometric.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .core import dispatch
|
2 |
+
from .dispatcher import (Dispatcher, halt_ordering, restart_ordering,
|
3 |
+
MDNotImplementedError)
|
4 |
+
|
5 |
+
__version__ = '0.4.9'
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
'dispatch',
|
9 |
+
|
10 |
+
'Dispatcher', 'halt_ordering', 'restart_ordering', 'MDNotImplementedError',
|
11 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (432 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/__pycache__/conflict.cpython-310.pyc
ADDED
Binary file (3.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/__pycache__/core.cpython-310.pyc
ADDED
Binary file (2.39 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/__pycache__/dispatcher.cpython-310.pyc
ADDED
Binary file (13.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (3.62 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/conflict.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .utils import _toposort, groupby
|
2 |
+
|
3 |
+
class AmbiguityWarning(Warning):
|
4 |
+
pass
|
5 |
+
|
6 |
+
|
7 |
+
def supercedes(a, b):
|
8 |
+
""" A is consistent and strictly more specific than B """
|
9 |
+
return len(a) == len(b) and all(map(issubclass, a, b))
|
10 |
+
|
11 |
+
|
12 |
+
def consistent(a, b):
|
13 |
+
""" It is possible for an argument list to satisfy both A and B """
|
14 |
+
return (len(a) == len(b) and
|
15 |
+
all(issubclass(aa, bb) or issubclass(bb, aa)
|
16 |
+
for aa, bb in zip(a, b)))
|
17 |
+
|
18 |
+
|
19 |
+
def ambiguous(a, b):
|
20 |
+
""" A is consistent with B but neither is strictly more specific """
|
21 |
+
return consistent(a, b) and not (supercedes(a, b) or supercedes(b, a))
|
22 |
+
|
23 |
+
|
24 |
+
def ambiguities(signatures):
|
25 |
+
""" All signature pairs such that A is ambiguous with B """
|
26 |
+
signatures = list(map(tuple, signatures))
|
27 |
+
return {(a, b) for a in signatures for b in signatures
|
28 |
+
if hash(a) < hash(b)
|
29 |
+
and ambiguous(a, b)
|
30 |
+
and not any(supercedes(c, a) and supercedes(c, b)
|
31 |
+
for c in signatures)}
|
32 |
+
|
33 |
+
|
34 |
+
def super_signature(signatures):
|
35 |
+
""" A signature that would break ambiguities """
|
36 |
+
n = len(signatures[0])
|
37 |
+
assert all(len(s) == n for s in signatures)
|
38 |
+
|
39 |
+
return [max([type.mro(sig[i]) for sig in signatures], key=len)[0]
|
40 |
+
for i in range(n)]
|
41 |
+
|
42 |
+
|
43 |
+
def edge(a, b, tie_breaker=hash):
|
44 |
+
""" A should be checked before B
|
45 |
+
|
46 |
+
Tie broken by tie_breaker, defaults to ``hash``
|
47 |
+
"""
|
48 |
+
if supercedes(a, b):
|
49 |
+
if supercedes(b, a):
|
50 |
+
return tie_breaker(a) > tie_breaker(b)
|
51 |
+
else:
|
52 |
+
return True
|
53 |
+
return False
|
54 |
+
|
55 |
+
|
56 |
+
def ordering(signatures):
|
57 |
+
""" A sane ordering of signatures to check, first to last
|
58 |
+
|
59 |
+
Topoological sort of edges as given by ``edge`` and ``supercedes``
|
60 |
+
"""
|
61 |
+
signatures = list(map(tuple, signatures))
|
62 |
+
edges = [(a, b) for a in signatures for b in signatures if edge(a, b)]
|
63 |
+
edges = groupby(lambda x: x[0], edges)
|
64 |
+
for s in signatures:
|
65 |
+
if s not in edges:
|
66 |
+
edges[s] = []
|
67 |
+
edges = {k: [b for a, b in v] for k, v in edges.items()}
|
68 |
+
return _toposort(edges)
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/core.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
import inspect
|
5 |
+
|
6 |
+
from .dispatcher import Dispatcher, MethodDispatcher, ambiguity_warn
|
7 |
+
|
8 |
+
# XXX: This parameter to dispatch isn't documented and isn't used anywhere in
|
9 |
+
# sympy. Maybe it should just be removed.
|
10 |
+
global_namespace: dict[str, Any] = {}
|
11 |
+
|
12 |
+
|
13 |
+
def dispatch(*types, namespace=global_namespace, on_ambiguity=ambiguity_warn):
|
14 |
+
""" Dispatch function on the types of the inputs
|
15 |
+
|
16 |
+
Supports dispatch on all non-keyword arguments.
|
17 |
+
|
18 |
+
Collects implementations based on the function name. Ignores namespaces.
|
19 |
+
|
20 |
+
If ambiguous type signatures occur a warning is raised when the function is
|
21 |
+
defined suggesting the additional method to break the ambiguity.
|
22 |
+
|
23 |
+
Examples
|
24 |
+
--------
|
25 |
+
|
26 |
+
>>> from sympy.multipledispatch import dispatch
|
27 |
+
>>> @dispatch(int)
|
28 |
+
... def f(x):
|
29 |
+
... return x + 1
|
30 |
+
|
31 |
+
>>> @dispatch(float)
|
32 |
+
... def f(x): # noqa: F811
|
33 |
+
... return x - 1
|
34 |
+
|
35 |
+
>>> f(3)
|
36 |
+
4
|
37 |
+
>>> f(3.0)
|
38 |
+
2.0
|
39 |
+
|
40 |
+
Specify an isolated namespace with the namespace keyword argument
|
41 |
+
|
42 |
+
>>> my_namespace = dict()
|
43 |
+
>>> @dispatch(int, namespace=my_namespace)
|
44 |
+
... def foo(x):
|
45 |
+
... return x + 1
|
46 |
+
|
47 |
+
Dispatch on instance methods within classes
|
48 |
+
|
49 |
+
>>> class MyClass(object):
|
50 |
+
... @dispatch(list)
|
51 |
+
... def __init__(self, data):
|
52 |
+
... self.data = data
|
53 |
+
... @dispatch(int)
|
54 |
+
... def __init__(self, datum): # noqa: F811
|
55 |
+
... self.data = [datum]
|
56 |
+
"""
|
57 |
+
types = tuple(types)
|
58 |
+
|
59 |
+
def _(func):
|
60 |
+
name = func.__name__
|
61 |
+
|
62 |
+
if ismethod(func):
|
63 |
+
dispatcher = inspect.currentframe().f_back.f_locals.get(
|
64 |
+
name,
|
65 |
+
MethodDispatcher(name))
|
66 |
+
else:
|
67 |
+
if name not in namespace:
|
68 |
+
namespace[name] = Dispatcher(name)
|
69 |
+
dispatcher = namespace[name]
|
70 |
+
|
71 |
+
dispatcher.add(types, func, on_ambiguity=on_ambiguity)
|
72 |
+
return dispatcher
|
73 |
+
return _
|
74 |
+
|
75 |
+
|
76 |
+
def ismethod(func):
|
77 |
+
""" Is func a method?
|
78 |
+
|
79 |
+
Note that this has to work as the method is defined but before the class is
|
80 |
+
defined. At this stage methods look like functions.
|
81 |
+
"""
|
82 |
+
signature = inspect.signature(func)
|
83 |
+
return signature.parameters.get('self', None) is not None
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/dispatcher.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from warnings import warn
|
4 |
+
import inspect
|
5 |
+
from .conflict import ordering, ambiguities, super_signature, AmbiguityWarning
|
6 |
+
from .utils import expand_tuples
|
7 |
+
import itertools as itl
|
8 |
+
|
9 |
+
|
10 |
+
class MDNotImplementedError(NotImplementedError):
|
11 |
+
""" A NotImplementedError for multiple dispatch """
|
12 |
+
|
13 |
+
|
14 |
+
### Functions for on_ambiguity
|
15 |
+
|
16 |
+
def ambiguity_warn(dispatcher, ambiguities):
|
17 |
+
""" Raise warning when ambiguity is detected
|
18 |
+
|
19 |
+
Parameters
|
20 |
+
----------
|
21 |
+
dispatcher : Dispatcher
|
22 |
+
The dispatcher on which the ambiguity was detected
|
23 |
+
ambiguities : set
|
24 |
+
Set of type signature pairs that are ambiguous within this dispatcher
|
25 |
+
|
26 |
+
See Also:
|
27 |
+
Dispatcher.add
|
28 |
+
warning_text
|
29 |
+
"""
|
30 |
+
warn(warning_text(dispatcher.name, ambiguities), AmbiguityWarning)
|
31 |
+
|
32 |
+
|
33 |
+
class RaiseNotImplementedError:
|
34 |
+
"""Raise ``NotImplementedError`` when called."""
|
35 |
+
|
36 |
+
def __init__(self, dispatcher):
|
37 |
+
self.dispatcher = dispatcher
|
38 |
+
|
39 |
+
def __call__(self, *args, **kwargs):
|
40 |
+
types = tuple(type(a) for a in args)
|
41 |
+
raise NotImplementedError(
|
42 |
+
"Ambiguous signature for %s: <%s>" % (
|
43 |
+
self.dispatcher.name, str_signature(types)
|
44 |
+
))
|
45 |
+
|
46 |
+
def ambiguity_register_error_ignore_dup(dispatcher, ambiguities):
|
47 |
+
"""
|
48 |
+
If super signature for ambiguous types is duplicate types, ignore it.
|
49 |
+
Else, register instance of ``RaiseNotImplementedError`` for ambiguous types.
|
50 |
+
|
51 |
+
Parameters
|
52 |
+
----------
|
53 |
+
dispatcher : Dispatcher
|
54 |
+
The dispatcher on which the ambiguity was detected
|
55 |
+
ambiguities : set
|
56 |
+
Set of type signature pairs that are ambiguous within this dispatcher
|
57 |
+
|
58 |
+
See Also:
|
59 |
+
Dispatcher.add
|
60 |
+
ambiguity_warn
|
61 |
+
"""
|
62 |
+
for amb in ambiguities:
|
63 |
+
signature = tuple(super_signature(amb))
|
64 |
+
if len(set(signature)) == 1:
|
65 |
+
continue
|
66 |
+
dispatcher.add(
|
67 |
+
signature, RaiseNotImplementedError(dispatcher),
|
68 |
+
on_ambiguity=ambiguity_register_error_ignore_dup
|
69 |
+
)
|
70 |
+
|
71 |
+
###
|
72 |
+
|
73 |
+
|
74 |
+
_unresolved_dispatchers: set[Dispatcher] = set()
|
75 |
+
_resolve = [True]
|
76 |
+
|
77 |
+
|
78 |
+
def halt_ordering():
|
79 |
+
_resolve[0] = False
|
80 |
+
|
81 |
+
|
82 |
+
def restart_ordering(on_ambiguity=ambiguity_warn):
|
83 |
+
_resolve[0] = True
|
84 |
+
while _unresolved_dispatchers:
|
85 |
+
dispatcher = _unresolved_dispatchers.pop()
|
86 |
+
dispatcher.reorder(on_ambiguity=on_ambiguity)
|
87 |
+
|
88 |
+
|
89 |
+
class Dispatcher:
|
90 |
+
""" Dispatch methods based on type signature
|
91 |
+
|
92 |
+
Use ``dispatch`` to add implementations
|
93 |
+
|
94 |
+
Examples
|
95 |
+
--------
|
96 |
+
|
97 |
+
>>> from sympy.multipledispatch import dispatch
|
98 |
+
>>> @dispatch(int)
|
99 |
+
... def f(x):
|
100 |
+
... return x + 1
|
101 |
+
|
102 |
+
>>> @dispatch(float)
|
103 |
+
... def f(x): # noqa: F811
|
104 |
+
... return x - 1
|
105 |
+
|
106 |
+
>>> f(3)
|
107 |
+
4
|
108 |
+
>>> f(3.0)
|
109 |
+
2.0
|
110 |
+
"""
|
111 |
+
__slots__ = '__name__', 'name', 'funcs', 'ordering', '_cache', 'doc'
|
112 |
+
|
113 |
+
def __init__(self, name, doc=None):
|
114 |
+
self.name = self.__name__ = name
|
115 |
+
self.funcs = {}
|
116 |
+
self._cache = {}
|
117 |
+
self.ordering = []
|
118 |
+
self.doc = doc
|
119 |
+
|
120 |
+
def register(self, *types, **kwargs):
|
121 |
+
""" Register dispatcher with new implementation
|
122 |
+
|
123 |
+
>>> from sympy.multipledispatch.dispatcher import Dispatcher
|
124 |
+
>>> f = Dispatcher('f')
|
125 |
+
>>> @f.register(int)
|
126 |
+
... def inc(x):
|
127 |
+
... return x + 1
|
128 |
+
|
129 |
+
>>> @f.register(float)
|
130 |
+
... def dec(x):
|
131 |
+
... return x - 1
|
132 |
+
|
133 |
+
>>> @f.register(list)
|
134 |
+
... @f.register(tuple)
|
135 |
+
... def reverse(x):
|
136 |
+
... return x[::-1]
|
137 |
+
|
138 |
+
>>> f(1)
|
139 |
+
2
|
140 |
+
|
141 |
+
>>> f(1.0)
|
142 |
+
0.0
|
143 |
+
|
144 |
+
>>> f([1, 2, 3])
|
145 |
+
[3, 2, 1]
|
146 |
+
"""
|
147 |
+
def _(func):
|
148 |
+
self.add(types, func, **kwargs)
|
149 |
+
return func
|
150 |
+
return _
|
151 |
+
|
152 |
+
@classmethod
|
153 |
+
def get_func_params(cls, func):
|
154 |
+
if hasattr(inspect, "signature"):
|
155 |
+
sig = inspect.signature(func)
|
156 |
+
return sig.parameters.values()
|
157 |
+
|
158 |
+
@classmethod
|
159 |
+
def get_func_annotations(cls, func):
|
160 |
+
""" Get annotations of function positional parameters
|
161 |
+
"""
|
162 |
+
params = cls.get_func_params(func)
|
163 |
+
if params:
|
164 |
+
Parameter = inspect.Parameter
|
165 |
+
|
166 |
+
params = (param for param in params
|
167 |
+
if param.kind in
|
168 |
+
(Parameter.POSITIONAL_ONLY,
|
169 |
+
Parameter.POSITIONAL_OR_KEYWORD))
|
170 |
+
|
171 |
+
annotations = tuple(
|
172 |
+
param.annotation
|
173 |
+
for param in params)
|
174 |
+
|
175 |
+
if not any(ann is Parameter.empty for ann in annotations):
|
176 |
+
return annotations
|
177 |
+
|
178 |
+
def add(self, signature, func, on_ambiguity=ambiguity_warn):
|
179 |
+
""" Add new types/method pair to dispatcher
|
180 |
+
|
181 |
+
>>> from sympy.multipledispatch import Dispatcher
|
182 |
+
>>> D = Dispatcher('add')
|
183 |
+
>>> D.add((int, int), lambda x, y: x + y)
|
184 |
+
>>> D.add((float, float), lambda x, y: x + y)
|
185 |
+
|
186 |
+
>>> D(1, 2)
|
187 |
+
3
|
188 |
+
>>> D(1, 2.0)
|
189 |
+
Traceback (most recent call last):
|
190 |
+
...
|
191 |
+
NotImplementedError: Could not find signature for add: <int, float>
|
192 |
+
|
193 |
+
When ``add`` detects a warning it calls the ``on_ambiguity`` callback
|
194 |
+
with a dispatcher/itself, and a set of ambiguous type signature pairs
|
195 |
+
as inputs. See ``ambiguity_warn`` for an example.
|
196 |
+
"""
|
197 |
+
# Handle annotations
|
198 |
+
if not signature:
|
199 |
+
annotations = self.get_func_annotations(func)
|
200 |
+
if annotations:
|
201 |
+
signature = annotations
|
202 |
+
|
203 |
+
# Handle union types
|
204 |
+
if any(isinstance(typ, tuple) for typ in signature):
|
205 |
+
for typs in expand_tuples(signature):
|
206 |
+
self.add(typs, func, on_ambiguity)
|
207 |
+
return
|
208 |
+
|
209 |
+
for typ in signature:
|
210 |
+
if not isinstance(typ, type):
|
211 |
+
str_sig = ', '.join(c.__name__ if isinstance(c, type)
|
212 |
+
else str(c) for c in signature)
|
213 |
+
raise TypeError("Tried to dispatch on non-type: %s\n"
|
214 |
+
"In signature: <%s>\n"
|
215 |
+
"In function: %s" %
|
216 |
+
(typ, str_sig, self.name))
|
217 |
+
|
218 |
+
self.funcs[signature] = func
|
219 |
+
self.reorder(on_ambiguity=on_ambiguity)
|
220 |
+
self._cache.clear()
|
221 |
+
|
222 |
+
def reorder(self, on_ambiguity=ambiguity_warn):
|
223 |
+
if _resolve[0]:
|
224 |
+
self.ordering = ordering(self.funcs)
|
225 |
+
amb = ambiguities(self.funcs)
|
226 |
+
if amb:
|
227 |
+
on_ambiguity(self, amb)
|
228 |
+
else:
|
229 |
+
_unresolved_dispatchers.add(self)
|
230 |
+
|
231 |
+
def __call__(self, *args, **kwargs):
|
232 |
+
types = tuple([type(arg) for arg in args])
|
233 |
+
try:
|
234 |
+
func = self._cache[types]
|
235 |
+
except KeyError:
|
236 |
+
func = self.dispatch(*types)
|
237 |
+
if not func:
|
238 |
+
raise NotImplementedError(
|
239 |
+
'Could not find signature for %s: <%s>' %
|
240 |
+
(self.name, str_signature(types)))
|
241 |
+
self._cache[types] = func
|
242 |
+
try:
|
243 |
+
return func(*args, **kwargs)
|
244 |
+
|
245 |
+
except MDNotImplementedError:
|
246 |
+
funcs = self.dispatch_iter(*types)
|
247 |
+
next(funcs) # burn first
|
248 |
+
for func in funcs:
|
249 |
+
try:
|
250 |
+
return func(*args, **kwargs)
|
251 |
+
except MDNotImplementedError:
|
252 |
+
pass
|
253 |
+
raise NotImplementedError("Matching functions for "
|
254 |
+
"%s: <%s> found, but none completed successfully"
|
255 |
+
% (self.name, str_signature(types)))
|
256 |
+
|
257 |
+
def __str__(self):
|
258 |
+
return "<dispatched %s>" % self.name
|
259 |
+
__repr__ = __str__
|
260 |
+
|
261 |
+
def dispatch(self, *types):
|
262 |
+
""" Deterimine appropriate implementation for this type signature
|
263 |
+
|
264 |
+
This method is internal. Users should call this object as a function.
|
265 |
+
Implementation resolution occurs within the ``__call__`` method.
|
266 |
+
|
267 |
+
>>> from sympy.multipledispatch import dispatch
|
268 |
+
>>> @dispatch(int)
|
269 |
+
... def inc(x):
|
270 |
+
... return x + 1
|
271 |
+
|
272 |
+
>>> implementation = inc.dispatch(int)
|
273 |
+
>>> implementation(3)
|
274 |
+
4
|
275 |
+
|
276 |
+
>>> print(inc.dispatch(float))
|
277 |
+
None
|
278 |
+
|
279 |
+
See Also:
|
280 |
+
``sympy.multipledispatch.conflict`` - module to determine resolution order
|
281 |
+
"""
|
282 |
+
|
283 |
+
if types in self.funcs:
|
284 |
+
return self.funcs[types]
|
285 |
+
|
286 |
+
try:
|
287 |
+
return next(self.dispatch_iter(*types))
|
288 |
+
except StopIteration:
|
289 |
+
return None
|
290 |
+
|
291 |
+
def dispatch_iter(self, *types):
|
292 |
+
n = len(types)
|
293 |
+
for signature in self.ordering:
|
294 |
+
if len(signature) == n and all(map(issubclass, types, signature)):
|
295 |
+
result = self.funcs[signature]
|
296 |
+
yield result
|
297 |
+
|
298 |
+
def resolve(self, types):
|
299 |
+
""" Deterimine appropriate implementation for this type signature
|
300 |
+
|
301 |
+
.. deprecated:: 0.4.4
|
302 |
+
Use ``dispatch(*types)`` instead
|
303 |
+
"""
|
304 |
+
warn("resolve() is deprecated, use dispatch(*types)",
|
305 |
+
DeprecationWarning)
|
306 |
+
|
307 |
+
return self.dispatch(*types)
|
308 |
+
|
309 |
+
def __getstate__(self):
|
310 |
+
return {'name': self.name,
|
311 |
+
'funcs': self.funcs}
|
312 |
+
|
313 |
+
def __setstate__(self, d):
|
314 |
+
self.name = d['name']
|
315 |
+
self.funcs = d['funcs']
|
316 |
+
self.ordering = ordering(self.funcs)
|
317 |
+
self._cache = {}
|
318 |
+
|
319 |
+
@property
|
320 |
+
def __doc__(self):
|
321 |
+
docs = ["Multiply dispatched method: %s" % self.name]
|
322 |
+
|
323 |
+
if self.doc:
|
324 |
+
docs.append(self.doc)
|
325 |
+
|
326 |
+
other = []
|
327 |
+
for sig in self.ordering[::-1]:
|
328 |
+
func = self.funcs[sig]
|
329 |
+
if func.__doc__:
|
330 |
+
s = 'Inputs: <%s>\n' % str_signature(sig)
|
331 |
+
s += '-' * len(s) + '\n'
|
332 |
+
s += func.__doc__.strip()
|
333 |
+
docs.append(s)
|
334 |
+
else:
|
335 |
+
other.append(str_signature(sig))
|
336 |
+
|
337 |
+
if other:
|
338 |
+
docs.append('Other signatures:\n ' + '\n '.join(other))
|
339 |
+
|
340 |
+
return '\n\n'.join(docs)
|
341 |
+
|
342 |
+
def _help(self, *args):
|
343 |
+
return self.dispatch(*map(type, args)).__doc__
|
344 |
+
|
345 |
+
def help(self, *args, **kwargs):
|
346 |
+
""" Print docstring for the function corresponding to inputs """
|
347 |
+
print(self._help(*args))
|
348 |
+
|
349 |
+
def _source(self, *args):
|
350 |
+
func = self.dispatch(*map(type, args))
|
351 |
+
if not func:
|
352 |
+
raise TypeError("No function found")
|
353 |
+
return source(func)
|
354 |
+
|
355 |
+
def source(self, *args, **kwargs):
|
356 |
+
""" Print source code for the function corresponding to inputs """
|
357 |
+
print(self._source(*args))
|
358 |
+
|
359 |
+
|
360 |
+
def source(func):
|
361 |
+
s = 'File: %s\n\n' % inspect.getsourcefile(func)
|
362 |
+
s = s + inspect.getsource(func)
|
363 |
+
return s
|
364 |
+
|
365 |
+
|
366 |
+
class MethodDispatcher(Dispatcher):
|
367 |
+
""" Dispatch methods based on type signature
|
368 |
+
|
369 |
+
See Also:
|
370 |
+
Dispatcher
|
371 |
+
"""
|
372 |
+
|
373 |
+
@classmethod
|
374 |
+
def get_func_params(cls, func):
|
375 |
+
if hasattr(inspect, "signature"):
|
376 |
+
sig = inspect.signature(func)
|
377 |
+
return itl.islice(sig.parameters.values(), 1, None)
|
378 |
+
|
379 |
+
def __get__(self, instance, owner):
|
380 |
+
self.obj = instance
|
381 |
+
self.cls = owner
|
382 |
+
return self
|
383 |
+
|
384 |
+
def __call__(self, *args, **kwargs):
|
385 |
+
types = tuple([type(arg) for arg in args])
|
386 |
+
func = self.dispatch(*types)
|
387 |
+
if not func:
|
388 |
+
raise NotImplementedError('Could not find signature for %s: <%s>' %
|
389 |
+
(self.name, str_signature(types)))
|
390 |
+
return func(self.obj, *args, **kwargs)
|
391 |
+
|
392 |
+
|
393 |
+
def str_signature(sig):
|
394 |
+
""" String representation of type signature
|
395 |
+
|
396 |
+
>>> from sympy.multipledispatch.dispatcher import str_signature
|
397 |
+
>>> str_signature((int, float))
|
398 |
+
'int, float'
|
399 |
+
"""
|
400 |
+
return ', '.join(cls.__name__ for cls in sig)
|
401 |
+
|
402 |
+
|
403 |
+
def warning_text(name, amb):
|
404 |
+
""" The text for ambiguity warnings """
|
405 |
+
text = "\nAmbiguities exist in dispatched function %s\n\n" % (name)
|
406 |
+
text += "The following signatures may result in ambiguous behavior:\n"
|
407 |
+
for pair in amb:
|
408 |
+
text += "\t" + \
|
409 |
+
', '.join('[' + str_signature(s) + ']' for s in pair) + "\n"
|
410 |
+
text += "\n\nConsider making the following additions:\n\n"
|
411 |
+
text += '\n\n'.join(['@dispatch(' + str_signature(super_signature(s))
|
412 |
+
+ ')\ndef %s(...)' % name for s in amb])
|
413 |
+
return text
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (201 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_conflict.cpython-310.pyc
ADDED
Binary file (2.49 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_core.cpython-310.pyc
ADDED
Binary file (7.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/__pycache__/test_dispatcher.cpython-310.pyc
ADDED
Binary file (10.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_conflict.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.multipledispatch.conflict import (supercedes, ordering, ambiguities,
|
2 |
+
ambiguous, super_signature, consistent)
|
3 |
+
|
4 |
+
|
5 |
+
class A: pass
|
6 |
+
class B(A): pass
|
7 |
+
class C: pass
|
8 |
+
|
9 |
+
|
10 |
+
def test_supercedes():
|
11 |
+
assert supercedes([B], [A])
|
12 |
+
assert supercedes([B, A], [A, A])
|
13 |
+
assert not supercedes([B, A], [A, B])
|
14 |
+
assert not supercedes([A], [B])
|
15 |
+
|
16 |
+
|
17 |
+
def test_consistent():
|
18 |
+
assert consistent([A], [A])
|
19 |
+
assert consistent([B], [B])
|
20 |
+
assert not consistent([A], [C])
|
21 |
+
assert consistent([A, B], [A, B])
|
22 |
+
assert consistent([B, A], [A, B])
|
23 |
+
assert not consistent([B, A], [B])
|
24 |
+
assert not consistent([B, A], [B, C])
|
25 |
+
|
26 |
+
|
27 |
+
def test_super_signature():
|
28 |
+
assert super_signature([[A]]) == [A]
|
29 |
+
assert super_signature([[A], [B]]) == [B]
|
30 |
+
assert super_signature([[A, B], [B, A]]) == [B, B]
|
31 |
+
assert super_signature([[A, A, B], [A, B, A], [B, A, A]]) == [B, B, B]
|
32 |
+
|
33 |
+
|
34 |
+
def test_ambiguous():
|
35 |
+
assert not ambiguous([A], [A])
|
36 |
+
assert not ambiguous([A], [B])
|
37 |
+
assert not ambiguous([B], [B])
|
38 |
+
assert not ambiguous([A, B], [B, B])
|
39 |
+
assert ambiguous([A, B], [B, A])
|
40 |
+
|
41 |
+
|
42 |
+
def test_ambiguities():
|
43 |
+
signatures = [[A], [B], [A, B], [B, A], [A, C]]
|
44 |
+
expected = {((A, B), (B, A))}
|
45 |
+
result = ambiguities(signatures)
|
46 |
+
assert set(map(frozenset, expected)) == set(map(frozenset, result))
|
47 |
+
|
48 |
+
signatures = [[A], [B], [A, B], [B, A], [A, C], [B, B]]
|
49 |
+
expected = set()
|
50 |
+
result = ambiguities(signatures)
|
51 |
+
assert set(map(frozenset, expected)) == set(map(frozenset, result))
|
52 |
+
|
53 |
+
|
54 |
+
def test_ordering():
|
55 |
+
signatures = [[A, A], [A, B], [B, A], [B, B], [A, C]]
|
56 |
+
ord = ordering(signatures)
|
57 |
+
assert ord[0] == (B, B) or ord[0] == (A, C)
|
58 |
+
assert ord[-1] == (A, A) or ord[-1] == (A, C)
|
59 |
+
|
60 |
+
|
61 |
+
def test_type_mro():
|
62 |
+
assert super_signature([[object], [type]]) == [type]
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_core.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
from sympy.multipledispatch import dispatch
|
5 |
+
from sympy.multipledispatch.conflict import AmbiguityWarning
|
6 |
+
from sympy.testing.pytest import raises, warns
|
7 |
+
from functools import partial
|
8 |
+
|
9 |
+
test_namespace: dict[str, Any] = {}
|
10 |
+
|
11 |
+
orig_dispatch = dispatch
|
12 |
+
dispatch = partial(dispatch, namespace=test_namespace)
|
13 |
+
|
14 |
+
|
15 |
+
def test_singledispatch():
|
16 |
+
@dispatch(int)
|
17 |
+
def f(x): # noqa:F811
|
18 |
+
return x + 1
|
19 |
+
|
20 |
+
@dispatch(int)
|
21 |
+
def g(x): # noqa:F811
|
22 |
+
return x + 2
|
23 |
+
|
24 |
+
@dispatch(float) # noqa:F811
|
25 |
+
def f(x): # noqa:F811
|
26 |
+
return x - 1
|
27 |
+
|
28 |
+
assert f(1) == 2
|
29 |
+
assert g(1) == 3
|
30 |
+
assert f(1.0) == 0
|
31 |
+
|
32 |
+
assert raises(NotImplementedError, lambda: f('hello'))
|
33 |
+
|
34 |
+
|
35 |
+
def test_multipledispatch():
|
36 |
+
@dispatch(int, int)
|
37 |
+
def f(x, y): # noqa:F811
|
38 |
+
return x + y
|
39 |
+
|
40 |
+
@dispatch(float, float) # noqa:F811
|
41 |
+
def f(x, y): # noqa:F811
|
42 |
+
return x - y
|
43 |
+
|
44 |
+
assert f(1, 2) == 3
|
45 |
+
assert f(1.0, 2.0) == -1.0
|
46 |
+
|
47 |
+
|
48 |
+
class A: pass
|
49 |
+
class B: pass
|
50 |
+
class C(A): pass
|
51 |
+
class D(C): pass
|
52 |
+
class E(C): pass
|
53 |
+
|
54 |
+
|
55 |
+
def test_inheritance():
|
56 |
+
@dispatch(A)
|
57 |
+
def f(x): # noqa:F811
|
58 |
+
return 'a'
|
59 |
+
|
60 |
+
@dispatch(B) # noqa:F811
|
61 |
+
def f(x): # noqa:F811
|
62 |
+
return 'b'
|
63 |
+
|
64 |
+
assert f(A()) == 'a'
|
65 |
+
assert f(B()) == 'b'
|
66 |
+
assert f(C()) == 'a'
|
67 |
+
|
68 |
+
|
69 |
+
def test_inheritance_and_multiple_dispatch():
|
70 |
+
@dispatch(A, A)
|
71 |
+
def f(x, y): # noqa:F811
|
72 |
+
return type(x), type(y)
|
73 |
+
|
74 |
+
@dispatch(A, B) # noqa:F811
|
75 |
+
def f(x, y): # noqa:F811
|
76 |
+
return 0
|
77 |
+
|
78 |
+
assert f(A(), A()) == (A, A)
|
79 |
+
assert f(A(), C()) == (A, C)
|
80 |
+
assert f(A(), B()) == 0
|
81 |
+
assert f(C(), B()) == 0
|
82 |
+
assert raises(NotImplementedError, lambda: f(B(), B()))
|
83 |
+
|
84 |
+
|
85 |
+
def test_competing_solutions():
|
86 |
+
@dispatch(A)
|
87 |
+
def h(x): # noqa:F811
|
88 |
+
return 1
|
89 |
+
|
90 |
+
@dispatch(C) # noqa:F811
|
91 |
+
def h(x): # noqa:F811
|
92 |
+
return 2
|
93 |
+
|
94 |
+
assert h(D()) == 2
|
95 |
+
|
96 |
+
|
97 |
+
def test_competing_multiple():
|
98 |
+
@dispatch(A, B)
|
99 |
+
def h(x, y): # noqa:F811
|
100 |
+
return 1
|
101 |
+
|
102 |
+
@dispatch(C, B) # noqa:F811
|
103 |
+
def h(x, y): # noqa:F811
|
104 |
+
return 2
|
105 |
+
|
106 |
+
assert h(D(), B()) == 2
|
107 |
+
|
108 |
+
|
109 |
+
def test_competing_ambiguous():
|
110 |
+
test_namespace = {}
|
111 |
+
dispatch = partial(orig_dispatch, namespace=test_namespace)
|
112 |
+
|
113 |
+
@dispatch(A, C)
|
114 |
+
def f(x, y): # noqa:F811
|
115 |
+
return 2
|
116 |
+
|
117 |
+
with warns(AmbiguityWarning, test_stacklevel=False):
|
118 |
+
@dispatch(C, A) # noqa:F811
|
119 |
+
def f(x, y): # noqa:F811
|
120 |
+
return 2
|
121 |
+
|
122 |
+
assert f(A(), C()) == f(C(), A()) == 2
|
123 |
+
# assert raises(Warning, lambda : f(C(), C()))
|
124 |
+
|
125 |
+
|
126 |
+
def test_caching_correct_behavior():
|
127 |
+
@dispatch(A)
|
128 |
+
def f(x): # noqa:F811
|
129 |
+
return 1
|
130 |
+
|
131 |
+
assert f(C()) == 1
|
132 |
+
|
133 |
+
@dispatch(C)
|
134 |
+
def f(x): # noqa:F811
|
135 |
+
return 2
|
136 |
+
|
137 |
+
assert f(C()) == 2
|
138 |
+
|
139 |
+
|
140 |
+
def test_union_types():
|
141 |
+
@dispatch((A, C))
|
142 |
+
def f(x): # noqa:F811
|
143 |
+
return 1
|
144 |
+
|
145 |
+
assert f(A()) == 1
|
146 |
+
assert f(C()) == 1
|
147 |
+
|
148 |
+
|
149 |
+
def test_namespaces():
|
150 |
+
ns1 = {}
|
151 |
+
ns2 = {}
|
152 |
+
|
153 |
+
def foo(x):
|
154 |
+
return 1
|
155 |
+
foo1 = orig_dispatch(int, namespace=ns1)(foo)
|
156 |
+
|
157 |
+
def foo(x):
|
158 |
+
return 2
|
159 |
+
foo2 = orig_dispatch(int, namespace=ns2)(foo)
|
160 |
+
|
161 |
+
assert foo1(0) == 1
|
162 |
+
assert foo2(0) == 2
|
163 |
+
|
164 |
+
|
165 |
+
"""
|
166 |
+
Fails
|
167 |
+
def test_dispatch_on_dispatch():
|
168 |
+
@dispatch(A)
|
169 |
+
@dispatch(C)
|
170 |
+
def q(x): # noqa:F811
|
171 |
+
return 1
|
172 |
+
|
173 |
+
assert q(A()) == 1
|
174 |
+
assert q(C()) == 1
|
175 |
+
"""
|
176 |
+
|
177 |
+
|
178 |
+
def test_methods():
|
179 |
+
class Foo:
|
180 |
+
@dispatch(float)
|
181 |
+
def f(self, x): # noqa:F811
|
182 |
+
return x - 1
|
183 |
+
|
184 |
+
@dispatch(int) # noqa:F811
|
185 |
+
def f(self, x): # noqa:F811
|
186 |
+
return x + 1
|
187 |
+
|
188 |
+
@dispatch(int)
|
189 |
+
def g(self, x): # noqa:F811
|
190 |
+
return x + 3
|
191 |
+
|
192 |
+
|
193 |
+
foo = Foo()
|
194 |
+
assert foo.f(1) == 2
|
195 |
+
assert foo.f(1.0) == 0.0
|
196 |
+
assert foo.g(1) == 4
|
197 |
+
|
198 |
+
|
199 |
+
def test_methods_multiple_dispatch():
|
200 |
+
class Foo:
|
201 |
+
@dispatch(A, A)
|
202 |
+
def f(x, y): # noqa:F811
|
203 |
+
return 1
|
204 |
+
|
205 |
+
@dispatch(A, C) # noqa:F811
|
206 |
+
def f(x, y): # noqa:F811
|
207 |
+
return 2
|
208 |
+
|
209 |
+
|
210 |
+
foo = Foo()
|
211 |
+
assert foo.f(A(), A()) == 1
|
212 |
+
assert foo.f(A(), C()) == 2
|
213 |
+
assert foo.f(C(), C()) == 2
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/tests/test_dispatcher.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.multipledispatch.dispatcher import (Dispatcher, MDNotImplementedError,
|
2 |
+
MethodDispatcher, halt_ordering,
|
3 |
+
restart_ordering,
|
4 |
+
ambiguity_register_error_ignore_dup)
|
5 |
+
from sympy.testing.pytest import raises, warns
|
6 |
+
|
7 |
+
|
8 |
+
def identity(x):
|
9 |
+
return x
|
10 |
+
|
11 |
+
|
12 |
+
def inc(x):
|
13 |
+
return x + 1
|
14 |
+
|
15 |
+
|
16 |
+
def dec(x):
|
17 |
+
return x - 1
|
18 |
+
|
19 |
+
|
20 |
+
def test_dispatcher():
|
21 |
+
f = Dispatcher('f')
|
22 |
+
f.add((int,), inc)
|
23 |
+
f.add((float,), dec)
|
24 |
+
|
25 |
+
with warns(DeprecationWarning, test_stacklevel=False):
|
26 |
+
assert f.resolve((int,)) == inc
|
27 |
+
assert f.dispatch(int) is inc
|
28 |
+
|
29 |
+
assert f(1) == 2
|
30 |
+
assert f(1.0) == 0.0
|
31 |
+
|
32 |
+
|
33 |
+
def test_union_types():
|
34 |
+
f = Dispatcher('f')
|
35 |
+
f.register((int, float))(inc)
|
36 |
+
|
37 |
+
assert f(1) == 2
|
38 |
+
assert f(1.0) == 2.0
|
39 |
+
|
40 |
+
|
41 |
+
def test_dispatcher_as_decorator():
|
42 |
+
f = Dispatcher('f')
|
43 |
+
|
44 |
+
@f.register(int)
|
45 |
+
def inc(x): # noqa:F811
|
46 |
+
return x + 1
|
47 |
+
|
48 |
+
@f.register(float) # noqa:F811
|
49 |
+
def inc(x): # noqa:F811
|
50 |
+
return x - 1
|
51 |
+
|
52 |
+
assert f(1) == 2
|
53 |
+
assert f(1.0) == 0.0
|
54 |
+
|
55 |
+
|
56 |
+
def test_register_instance_method():
|
57 |
+
|
58 |
+
class Test:
|
59 |
+
__init__ = MethodDispatcher('f')
|
60 |
+
|
61 |
+
@__init__.register(list)
|
62 |
+
def _init_list(self, data):
|
63 |
+
self.data = data
|
64 |
+
|
65 |
+
@__init__.register(object)
|
66 |
+
def _init_obj(self, datum):
|
67 |
+
self.data = [datum]
|
68 |
+
|
69 |
+
a = Test(3)
|
70 |
+
b = Test([3])
|
71 |
+
assert a.data == b.data
|
72 |
+
|
73 |
+
|
74 |
+
def test_on_ambiguity():
|
75 |
+
f = Dispatcher('f')
|
76 |
+
|
77 |
+
def identity(x): return x
|
78 |
+
|
79 |
+
ambiguities = [False]
|
80 |
+
|
81 |
+
def on_ambiguity(dispatcher, amb):
|
82 |
+
ambiguities[0] = True
|
83 |
+
|
84 |
+
f.add((object, object), identity, on_ambiguity=on_ambiguity)
|
85 |
+
assert not ambiguities[0]
|
86 |
+
f.add((object, float), identity, on_ambiguity=on_ambiguity)
|
87 |
+
assert not ambiguities[0]
|
88 |
+
f.add((float, object), identity, on_ambiguity=on_ambiguity)
|
89 |
+
assert ambiguities[0]
|
90 |
+
|
91 |
+
|
92 |
+
def test_raise_error_on_non_class():
|
93 |
+
f = Dispatcher('f')
|
94 |
+
assert raises(TypeError, lambda: f.add((1,), inc))
|
95 |
+
|
96 |
+
|
97 |
+
def test_docstring():
|
98 |
+
|
99 |
+
def one(x, y):
|
100 |
+
""" Docstring number one """
|
101 |
+
return x + y
|
102 |
+
|
103 |
+
def two(x, y):
|
104 |
+
""" Docstring number two """
|
105 |
+
return x + y
|
106 |
+
|
107 |
+
def three(x, y):
|
108 |
+
return x + y
|
109 |
+
|
110 |
+
master_doc = 'Doc of the multimethod itself'
|
111 |
+
|
112 |
+
f = Dispatcher('f', doc=master_doc)
|
113 |
+
f.add((object, object), one)
|
114 |
+
f.add((int, int), two)
|
115 |
+
f.add((float, float), three)
|
116 |
+
|
117 |
+
assert one.__doc__.strip() in f.__doc__
|
118 |
+
assert two.__doc__.strip() in f.__doc__
|
119 |
+
assert f.__doc__.find(one.__doc__.strip()) < \
|
120 |
+
f.__doc__.find(two.__doc__.strip())
|
121 |
+
assert 'object, object' in f.__doc__
|
122 |
+
assert master_doc in f.__doc__
|
123 |
+
|
124 |
+
|
125 |
+
def test_help():
|
126 |
+
def one(x, y):
|
127 |
+
""" Docstring number one """
|
128 |
+
return x + y
|
129 |
+
|
130 |
+
def two(x, y):
|
131 |
+
""" Docstring number two """
|
132 |
+
return x + y
|
133 |
+
|
134 |
+
def three(x, y):
|
135 |
+
""" Docstring number three """
|
136 |
+
return x + y
|
137 |
+
|
138 |
+
master_doc = 'Doc of the multimethod itself'
|
139 |
+
|
140 |
+
f = Dispatcher('f', doc=master_doc)
|
141 |
+
f.add((object, object), one)
|
142 |
+
f.add((int, int), two)
|
143 |
+
f.add((float, float), three)
|
144 |
+
|
145 |
+
assert f._help(1, 1) == two.__doc__
|
146 |
+
assert f._help(1.0, 2.0) == three.__doc__
|
147 |
+
|
148 |
+
|
149 |
+
def test_source():
|
150 |
+
def one(x, y):
|
151 |
+
""" Docstring number one """
|
152 |
+
return x + y
|
153 |
+
|
154 |
+
def two(x, y):
|
155 |
+
""" Docstring number two """
|
156 |
+
return x - y
|
157 |
+
|
158 |
+
master_doc = 'Doc of the multimethod itself'
|
159 |
+
|
160 |
+
f = Dispatcher('f', doc=master_doc)
|
161 |
+
f.add((int, int), one)
|
162 |
+
f.add((float, float), two)
|
163 |
+
|
164 |
+
assert 'x + y' in f._source(1, 1)
|
165 |
+
assert 'x - y' in f._source(1.0, 1.0)
|
166 |
+
|
167 |
+
|
168 |
+
def test_source_raises_on_missing_function():
|
169 |
+
f = Dispatcher('f')
|
170 |
+
|
171 |
+
assert raises(TypeError, lambda: f.source(1))
|
172 |
+
|
173 |
+
|
174 |
+
def test_halt_method_resolution():
|
175 |
+
g = [0]
|
176 |
+
|
177 |
+
def on_ambiguity(a, b):
|
178 |
+
g[0] += 1
|
179 |
+
|
180 |
+
f = Dispatcher('f')
|
181 |
+
|
182 |
+
halt_ordering()
|
183 |
+
|
184 |
+
def func(*args):
|
185 |
+
pass
|
186 |
+
|
187 |
+
f.add((int, object), func)
|
188 |
+
f.add((object, int), func)
|
189 |
+
|
190 |
+
assert g == [0]
|
191 |
+
|
192 |
+
restart_ordering(on_ambiguity=on_ambiguity)
|
193 |
+
|
194 |
+
assert g == [1]
|
195 |
+
|
196 |
+
assert set(f.ordering) == {(int, object), (object, int)}
|
197 |
+
|
198 |
+
|
199 |
+
def test_no_implementations():
|
200 |
+
f = Dispatcher('f')
|
201 |
+
assert raises(NotImplementedError, lambda: f('hello'))
|
202 |
+
|
203 |
+
|
204 |
+
def test_register_stacking():
|
205 |
+
f = Dispatcher('f')
|
206 |
+
|
207 |
+
@f.register(list)
|
208 |
+
@f.register(tuple)
|
209 |
+
def rev(x):
|
210 |
+
return x[::-1]
|
211 |
+
|
212 |
+
assert f((1, 2, 3)) == (3, 2, 1)
|
213 |
+
assert f([1, 2, 3]) == [3, 2, 1]
|
214 |
+
|
215 |
+
assert raises(NotImplementedError, lambda: f('hello'))
|
216 |
+
assert rev('hello') == 'olleh'
|
217 |
+
|
218 |
+
|
219 |
+
def test_dispatch_method():
|
220 |
+
f = Dispatcher('f')
|
221 |
+
|
222 |
+
@f.register(list)
|
223 |
+
def rev(x):
|
224 |
+
return x[::-1]
|
225 |
+
|
226 |
+
@f.register(int, int)
|
227 |
+
def add(x, y):
|
228 |
+
return x + y
|
229 |
+
|
230 |
+
class MyList(list):
|
231 |
+
pass
|
232 |
+
|
233 |
+
assert f.dispatch(list) is rev
|
234 |
+
assert f.dispatch(MyList) is rev
|
235 |
+
assert f.dispatch(int, int) is add
|
236 |
+
|
237 |
+
|
238 |
+
def test_not_implemented():
|
239 |
+
f = Dispatcher('f')
|
240 |
+
|
241 |
+
@f.register(object)
|
242 |
+
def _(x):
|
243 |
+
return 'default'
|
244 |
+
|
245 |
+
@f.register(int)
|
246 |
+
def _(x):
|
247 |
+
if x % 2 == 0:
|
248 |
+
return 'even'
|
249 |
+
else:
|
250 |
+
raise MDNotImplementedError()
|
251 |
+
|
252 |
+
assert f('hello') == 'default' # default behavior
|
253 |
+
assert f(2) == 'even' # specialized behavior
|
254 |
+
assert f(3) == 'default' # fall bac to default behavior
|
255 |
+
assert raises(NotImplementedError, lambda: f(1, 2))
|
256 |
+
|
257 |
+
|
258 |
+
def test_not_implemented_error():
|
259 |
+
f = Dispatcher('f')
|
260 |
+
|
261 |
+
@f.register(float)
|
262 |
+
def _(a):
|
263 |
+
raise MDNotImplementedError()
|
264 |
+
|
265 |
+
assert raises(NotImplementedError, lambda: f(1.0))
|
266 |
+
|
267 |
+
def test_ambiguity_register_error_ignore_dup():
|
268 |
+
f = Dispatcher('f')
|
269 |
+
|
270 |
+
class A:
|
271 |
+
pass
|
272 |
+
class B(A):
|
273 |
+
pass
|
274 |
+
class C(A):
|
275 |
+
pass
|
276 |
+
|
277 |
+
# suppress warning for registering ambiguous signal
|
278 |
+
f.add((A, B), lambda x,y: None, ambiguity_register_error_ignore_dup)
|
279 |
+
f.add((B, A), lambda x,y: None, ambiguity_register_error_ignore_dup)
|
280 |
+
f.add((A, C), lambda x,y: None, ambiguity_register_error_ignore_dup)
|
281 |
+
f.add((C, A), lambda x,y: None, ambiguity_register_error_ignore_dup)
|
282 |
+
|
283 |
+
# raises error if ambiguous signal is passed
|
284 |
+
assert raises(NotImplementedError, lambda: f(B(), C()))
|
llmeval-env/lib/python3.10/site-packages/sympy/multipledispatch/utils.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
|
3 |
+
|
4 |
+
def expand_tuples(L):
|
5 |
+
"""
|
6 |
+
>>> from sympy.multipledispatch.utils import expand_tuples
|
7 |
+
>>> expand_tuples([1, (2, 3)])
|
8 |
+
[(1, 2), (1, 3)]
|
9 |
+
|
10 |
+
>>> expand_tuples([1, 2])
|
11 |
+
[(1, 2)]
|
12 |
+
"""
|
13 |
+
if not L:
|
14 |
+
return [()]
|
15 |
+
elif not isinstance(L[0], tuple):
|
16 |
+
rest = expand_tuples(L[1:])
|
17 |
+
return [(L[0],) + t for t in rest]
|
18 |
+
else:
|
19 |
+
rest = expand_tuples(L[1:])
|
20 |
+
return [(item,) + t for t in rest for item in L[0]]
|
21 |
+
|
22 |
+
|
23 |
+
# Taken from theano/theano/gof/sched.py
|
24 |
+
# Avoids licensing issues because this was written by Matthew Rocklin
|
25 |
+
def _toposort(edges):
|
26 |
+
""" Topological sort algorithm by Kahn [1] - O(nodes + vertices)
|
27 |
+
|
28 |
+
inputs:
|
29 |
+
edges - a dict of the form {a: {b, c}} where b and c depend on a
|
30 |
+
outputs:
|
31 |
+
L - an ordered list of nodes that satisfy the dependencies of edges
|
32 |
+
|
33 |
+
>>> from sympy.multipledispatch.utils import _toposort
|
34 |
+
>>> _toposort({1: (2, 3), 2: (3, )})
|
35 |
+
[1, 2, 3]
|
36 |
+
|
37 |
+
Closely follows the wikipedia page [2]
|
38 |
+
|
39 |
+
[1] Kahn, Arthur B. (1962), "Topological sorting of large networks",
|
40 |
+
Communications of the ACM
|
41 |
+
[2] https://en.wikipedia.org/wiki/Toposort#Algorithms
|
42 |
+
"""
|
43 |
+
incoming_edges = reverse_dict(edges)
|
44 |
+
incoming_edges = {k: set(val) for k, val in incoming_edges.items()}
|
45 |
+
S = OrderedDict.fromkeys(v for v in edges if v not in incoming_edges)
|
46 |
+
L = []
|
47 |
+
|
48 |
+
while S:
|
49 |
+
n, _ = S.popitem()
|
50 |
+
L.append(n)
|
51 |
+
for m in edges.get(n, ()):
|
52 |
+
assert n in incoming_edges[m]
|
53 |
+
incoming_edges[m].remove(n)
|
54 |
+
if not incoming_edges[m]:
|
55 |
+
S[m] = None
|
56 |
+
if any(incoming_edges.get(v, None) for v in edges):
|
57 |
+
raise ValueError("Input has cycles")
|
58 |
+
return L
|
59 |
+
|
60 |
+
|
61 |
+
def reverse_dict(d):
|
62 |
+
"""Reverses direction of dependence dict
|
63 |
+
|
64 |
+
>>> d = {'a': (1, 2), 'b': (2, 3), 'c':()}
|
65 |
+
>>> reverse_dict(d) # doctest: +SKIP
|
66 |
+
{1: ('a',), 2: ('a', 'b'), 3: ('b',)}
|
67 |
+
|
68 |
+
:note: dict order are not deterministic. As we iterate on the
|
69 |
+
input dict, it make the output of this function depend on the
|
70 |
+
dict order. So this function output order should be considered
|
71 |
+
as undeterministic.
|
72 |
+
|
73 |
+
"""
|
74 |
+
result = {}
|
75 |
+
for key in d:
|
76 |
+
for val in d[key]:
|
77 |
+
result[val] = result.get(val, ()) + (key, )
|
78 |
+
return result
|
79 |
+
|
80 |
+
|
81 |
+
# Taken from toolz
|
82 |
+
# Avoids licensing issues because this version was authored by Matthew Rocklin
|
83 |
+
def groupby(func, seq):
|
84 |
+
""" Group a collection by a key function
|
85 |
+
|
86 |
+
>>> from sympy.multipledispatch.utils import groupby
|
87 |
+
>>> names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank']
|
88 |
+
>>> groupby(len, names) # doctest: +SKIP
|
89 |
+
{3: ['Bob', 'Dan'], 5: ['Alice', 'Edith', 'Frank'], 7: ['Charlie']}
|
90 |
+
|
91 |
+
>>> iseven = lambda x: x % 2 == 0
|
92 |
+
>>> groupby(iseven, [1, 2, 3, 4, 5, 6, 7, 8]) # doctest: +SKIP
|
93 |
+
{False: [1, 3, 5, 7], True: [2, 4, 6, 8]}
|
94 |
+
|
95 |
+
See Also:
|
96 |
+
``countby``
|
97 |
+
"""
|
98 |
+
|
99 |
+
d = {}
|
100 |
+
for item in seq:
|
101 |
+
key = func(item)
|
102 |
+
if key not in d:
|
103 |
+
d[key] = []
|
104 |
+
d[key].append(item)
|
105 |
+
return d
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/anticommutator.cpython-310.pyc
ADDED
Binary file (4.74 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/boson.cpython-310.pyc
ADDED
Binary file (8.49 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/cartesian.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/cg.cpython-310.pyc
ADDED
Binary file (22 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/commutator.cpython-310.pyc
ADDED
Binary file (6.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/constants.cpython-310.pyc
ADDED
Binary file (1.79 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/dagger.cpython-310.pyc
ADDED
Binary file (2.86 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/density.cpython-310.pyc
ADDED
Binary file (10.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/gate.cpython-310.pyc
ADDED
Binary file (34.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/grover.cpython-310.pyc
ADDED
Binary file (9.65 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/hilbert.cpython-310.pyc
ADDED
Binary file (19.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/identitysearch.cpython-310.pyc
ADDED
Binary file (21.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/innerproduct.cpython-310.pyc
ADDED
Binary file (4.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/matrixcache.cpython-310.pyc
ADDED
Binary file (3.74 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/matrixutils.cpython-310.pyc
ADDED
Binary file (7.39 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/physics/quantum/__pycache__/operator.cpython-310.pyc
ADDED
Binary file (19.8 kB). View file
|
|