Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CPUGeneratorImpl.h +49 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CollapseDims.h +94 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/DimVector.h +2 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/LegacyVmapMode.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/SparseCsrTensorImpl.h +186 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorAccessor.h +2 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ceil_div.h +24 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/code_template.h +243 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/jiterator_macros.h +38 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_autocast_to_reduced_precision.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_efficient_attention_backward.h +47 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_sparse_backward.h +47 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_grid_sampler_2d_cpu_fallback_native.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_solve_ex_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_make_dep_token.h +34 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_neg_view_native.h +21 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_pack_padded_sequence_backward_native.h +21 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_bsr_ops.h +39 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact2d_backward_meta_dispatch.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_validate_sparse_csc_tensor_args_native.h +21 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/abs.h +44 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool2d_backward_ops.h +39 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/argmin_cuda_dispatch.h +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/argmin_native.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/argsort_native.h +24 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/clamp_cpu_dispatch.h +30 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/clip_compositeimplicitautograd_dispatch.h +30 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cosh_meta_dispatch.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_affine_grid_generator_backward_compositeexplicitautograd_dispatch.h +24 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_batch_norm_backward_compositeexplicitautograd_dispatch.h +24 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_batch_norm_native.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/digamma_cuda_dispatch.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/empty_strided_native.h +25 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/exp_ops.h +50 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_fft2_compositeimplicitautograd_dispatch.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_fftn_compositeimplicitautograd_dispatch.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_ifftn_native.h +22 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool2d_backward_meta.h +27 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool2d_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fused_moving_avg_obs_fake_quant_ops.h +28 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_native.h +21 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/infinitely_differentiable_gelu_backward_compositeimplicitautograd_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/less_equal_native.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/lift_fresh_copy.h +39 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_eigvals_compositeimplicitautograd_dispatch.h +23 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_factor_ex_meta.h +27 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linspace.h +97 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/log10.h +44 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/log1p_cuda_dispatch.h +26 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/logical_xor_cuda_dispatch.h +24 -0
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CPUGeneratorImpl.h
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Generator.h>
|
4 |
+
#include <ATen/core/MT19937RNGEngine.h>
|
5 |
+
#include <c10/core/GeneratorImpl.h>
|
6 |
+
#include <c10/util/Optional.h>
|
7 |
+
|
8 |
+
namespace at {
|
9 |
+
|
10 |
+
struct TORCH_API CPUGeneratorImpl : public c10::GeneratorImpl {
|
11 |
+
// Constructors
|
12 |
+
CPUGeneratorImpl(uint64_t seed_in = default_rng_seed_val);
|
13 |
+
~CPUGeneratorImpl() override = default;
|
14 |
+
|
15 |
+
// CPUGeneratorImpl methods
|
16 |
+
std::shared_ptr<CPUGeneratorImpl> clone() const;
|
17 |
+
void set_current_seed(uint64_t seed) override;
|
18 |
+
void set_offset(uint64_t offset) override;
|
19 |
+
uint64_t get_offset() const override;
|
20 |
+
uint64_t current_seed() const override;
|
21 |
+
uint64_t seed() override;
|
22 |
+
void set_state(const c10::TensorImpl& new_state) override;
|
23 |
+
c10::intrusive_ptr<c10::TensorImpl> get_state() const override;
|
24 |
+
static c10::DeviceType device_type();
|
25 |
+
uint32_t random();
|
26 |
+
uint64_t random64();
|
27 |
+
c10::optional<float> next_float_normal_sample();
|
28 |
+
c10::optional<double> next_double_normal_sample();
|
29 |
+
void set_next_float_normal_sample(c10::optional<float> randn);
|
30 |
+
void set_next_double_normal_sample(c10::optional<double> randn);
|
31 |
+
at::mt19937 engine();
|
32 |
+
void set_engine(at::mt19937 engine);
|
33 |
+
|
34 |
+
private:
|
35 |
+
CPUGeneratorImpl* clone_impl() const override;
|
36 |
+
at::mt19937 engine_;
|
37 |
+
c10::optional<float> next_float_normal_sample_;
|
38 |
+
c10::optional<double> next_double_normal_sample_;
|
39 |
+
};
|
40 |
+
|
41 |
+
namespace detail {
|
42 |
+
|
43 |
+
TORCH_API const Generator& getDefaultCPUGenerator();
|
44 |
+
TORCH_API Generator
|
45 |
+
createCPUGenerator(uint64_t seed_val = default_rng_seed_val);
|
46 |
+
|
47 |
+
} // namespace detail
|
48 |
+
|
49 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/CollapseDims.h
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <c10/util/Exception.h>
|
2 |
+
#include <utility>
|
3 |
+
|
4 |
+
namespace at {
|
5 |
+
|
6 |
+
/*
|
7 |
+
[collapse dims] Updates sizes, and strides to reflect a "collapse" of
|
8 |
+
the info, possibly excluding the optional excludeDim. A "collapsed" version
|
9 |
+
of the info is the fewest dims that order the tensor's elements in the same
|
10 |
+
way as the original info. If excludeDim is specified, the collapse is the
|
11 |
+
fewest dims that order the tensor's elements as the original and preserve the
|
12 |
+
excluded dimension, unless the tensor collapses to a point.
|
13 |
+
|
14 |
+
This function returns a pair of values.
|
15 |
+
|
16 |
+
1) The (new) index of the preserved dimension if excludeDim is
|
17 |
+
specified. 0 if the tensor is collapsed to a point. -1
|
18 |
+
otherwise.
|
19 |
+
|
20 |
+
2) The new number of dimensions.
|
21 |
+
*/
|
22 |
+
template <typename T>
|
23 |
+
inline std::pair<int64_t, int64_t> collapse_dims(
|
24 |
+
T* sizes,
|
25 |
+
T* strides,
|
26 |
+
int64_t dims,
|
27 |
+
const int excludeDim = -1) {
|
28 |
+
TORCH_CHECK(
|
29 |
+
excludeDim >= -1 && excludeDim < dims,
|
30 |
+
"expected excluded dim between -1 and dims - 1");
|
31 |
+
|
32 |
+
int64_t stopDim = (excludeDim == -1) ? dims : excludeDim;
|
33 |
+
int64_t newIndex = -1;
|
34 |
+
int64_t oldIndex = 0;
|
35 |
+
int64_t remappedExcludedDim = -1;
|
36 |
+
|
37 |
+
while (oldIndex < dims) {
|
38 |
+
// Finds a dimension to collapse into
|
39 |
+
for (; oldIndex < stopDim; ++oldIndex) {
|
40 |
+
if (sizes[oldIndex] == 1) {
|
41 |
+
continue;
|
42 |
+
}
|
43 |
+
|
44 |
+
++newIndex;
|
45 |
+
sizes[newIndex] = sizes[oldIndex];
|
46 |
+
strides[newIndex] = strides[oldIndex];
|
47 |
+
++oldIndex;
|
48 |
+
break;
|
49 |
+
}
|
50 |
+
|
51 |
+
// Collapses dims
|
52 |
+
for (; oldIndex < stopDim; ++oldIndex) {
|
53 |
+
if (sizes[oldIndex] == 1) {
|
54 |
+
continue;
|
55 |
+
}
|
56 |
+
|
57 |
+
if (strides[newIndex] == sizes[oldIndex] * strides[oldIndex]) {
|
58 |
+
sizes[newIndex] *= sizes[oldIndex];
|
59 |
+
strides[newIndex] = strides[oldIndex];
|
60 |
+
} else {
|
61 |
+
++newIndex;
|
62 |
+
sizes[newIndex] = sizes[oldIndex];
|
63 |
+
strides[newIndex] = strides[oldIndex];
|
64 |
+
}
|
65 |
+
}
|
66 |
+
|
67 |
+
// Handles excludeDim being set (oldIndex == excludeDim)
|
68 |
+
if (oldIndex != dims) {
|
69 |
+
// Preserves excluded dimension
|
70 |
+
++newIndex;
|
71 |
+
sizes[newIndex] = sizes[oldIndex];
|
72 |
+
strides[newIndex] = strides[oldIndex];
|
73 |
+
remappedExcludedDim = newIndex;
|
74 |
+
|
75 |
+
// Restarts iteration after excludeDim
|
76 |
+
++oldIndex;
|
77 |
+
stopDim = dims;
|
78 |
+
}
|
79 |
+
}
|
80 |
+
|
81 |
+
// Handles special case of all dims size 1
|
82 |
+
if (newIndex == -1 || (newIndex == 0 && sizes[0] == 1)) {
|
83 |
+
dims = 1;
|
84 |
+
sizes[0] = 1;
|
85 |
+
strides[0] = 1;
|
86 |
+
|
87 |
+
return std::pair<int64_t, int64_t>(0, 1);
|
88 |
+
}
|
89 |
+
|
90 |
+
dims = newIndex + 1;
|
91 |
+
return std::pair<int64_t, int64_t>(remappedExcludedDim, dims);
|
92 |
+
}
|
93 |
+
|
94 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/DimVector.h
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/core/DimVector.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/LegacyVmapMode.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/impl/LocalDispatchKeySet.h>
|
4 |
+
|
5 |
+
namespace at::impl {
|
6 |
+
|
7 |
+
// VmapMode contains a thread local count of how many nested vmaps
|
8 |
+
// we are currently inside. That number is known as the `vmap level`.
|
9 |
+
// VmapMode is used in the implementation of the Python `torch.vmap` API.
|
10 |
+
//
|
11 |
+
// NOTE: this is NOT the c++ api for torch.vmap. That doesn't exist yet.
|
12 |
+
|
13 |
+
struct TORCH_API VmapMode {
|
14 |
+
// Returns the vmap level, aka the count of how many nested vmaps we're in.
|
15 |
+
static int64_t current_vmap_level();
|
16 |
+
|
17 |
+
// Increment the count of nested vmaps. If this causes the vmap level to be
|
18 |
+
// greater than 0, then it enables DispatchKey::VmapMode on all tensors.
|
19 |
+
static int64_t increment_nesting();
|
20 |
+
|
21 |
+
// Decrements the count of nested vmaps. If this causes the vmap level to be
|
22 |
+
// equal to 0, then it disables DispatchKey::VmapMode on all tensors.
|
23 |
+
static int64_t decrement_nesting();
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace at::impl
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/SparseCsrTensorImpl.h
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Tensor.h>
|
4 |
+
#include <c10/core/TensorImpl.h>
|
5 |
+
#include <c10/util/Exception.h>
|
6 |
+
namespace at {
|
7 |
+
|
8 |
+
// Struct implementing a sparse CSR tensor. It uses three 1-D tensors for
|
9 |
+
// denoting the data: `crow_indices_`, `col_indices_` and `values_`.
|
10 |
+
// The `crow_indices_` tensor is a integer tensor of shape `(size(0) + 1)`
|
11 |
+
// that represents the compressed row indices of the CSR tensor. The
|
12 |
+
// `col_indices_` tensor is an integer tensor of shape `(nnz())`
|
13 |
+
// that explicitly stores the column indices of each value of the sparse
|
14 |
+
// tensor. The `values_` tensor can be of any pytorch-supported data type
|
15 |
+
// and has shape `(nnz())`.
|
16 |
+
//
|
17 |
+
// Since the main advantage of the CSR format over the COO format is speed of
|
18 |
+
// computation, care must be taken to facilitate smooth interfacing of
|
19 |
+
// these data structures with optimized libraries such as MKL and MAGMA.
|
20 |
+
// Since the MKL interface for pytorch currently uses indexing with int32
|
21 |
+
// type, it is important to make sure that the `crow_indices` and `col_indices`
|
22 |
+
// are of type int32 when calling MKL routines such as SPMM or SPMV.
|
23 |
+
//
|
24 |
+
// If not calling MKL, it should be alright to use 64 bit integer tensors
|
25 |
+
// for indexing.
|
26 |
+
struct TORCH_API SparseCsrTensorImpl : public TensorImpl {
|
27 |
+
Tensor crow_indices_;
|
28 |
+
Tensor col_indices_;
|
29 |
+
Tensor values_;
|
30 |
+
Layout layout_;
|
31 |
+
|
32 |
+
public:
|
33 |
+
explicit SparseCsrTensorImpl(
|
34 |
+
at::DispatchKeySet,
|
35 |
+
at::Device device,
|
36 |
+
Layout layout,
|
37 |
+
const caffe2::TypeMeta);
|
38 |
+
|
39 |
+
void resize_(int64_t nnz, IntArrayRef size);
|
40 |
+
void resize_and_clear_(
|
41 |
+
int64_t sparse_dim,
|
42 |
+
int64_t dense_dim,
|
43 |
+
IntArrayRef size);
|
44 |
+
void resize_as_sparse_compressed_tensor_(const Tensor& src);
|
45 |
+
void set_member_tensors(
|
46 |
+
const Tensor& crow_indices,
|
47 |
+
const Tensor& col_indices,
|
48 |
+
const Tensor& values,
|
49 |
+
c10::SymIntArrayRef size);
|
50 |
+
void set_member_tensors(
|
51 |
+
const Tensor& crow_indices,
|
52 |
+
const Tensor& col_indices,
|
53 |
+
const Tensor& values,
|
54 |
+
IntArrayRef size);
|
55 |
+
const Tensor& compressed_indices() const {
|
56 |
+
return crow_indices_;
|
57 |
+
}
|
58 |
+
const Tensor& plain_indices() const {
|
59 |
+
return col_indices_;
|
60 |
+
}
|
61 |
+
const Tensor& values() const {
|
62 |
+
return values_;
|
63 |
+
}
|
64 |
+
int64_t nnz() {
|
65 |
+
return col_indices_.size(-1);
|
66 |
+
}
|
67 |
+
|
68 |
+
inline int64_t batch_dim() const noexcept {
|
69 |
+
return crow_indices_.dim() - 1;
|
70 |
+
}
|
71 |
+
|
72 |
+
inline int64_t sparse_dim() const noexcept {
|
73 |
+
return 2;
|
74 |
+
}
|
75 |
+
|
76 |
+
inline int64_t dense_dim() const noexcept {
|
77 |
+
return values_.dim() - batch_dim() - block_dim() - 1;
|
78 |
+
}
|
79 |
+
|
80 |
+
private:
|
81 |
+
inline int64_t block_dim() const noexcept {
|
82 |
+
return (layout_ == kSparseBsr || layout_ == kSparseBsc ? 2 : 0);
|
83 |
+
}
|
84 |
+
|
85 |
+
protected:
|
86 |
+
IntArrayRef strides_custom() const override;
|
87 |
+
SymIntArrayRef sym_strides_custom() const override;
|
88 |
+
bool is_contiguous_custom(MemoryFormat) const override;
|
89 |
+
|
90 |
+
public:
|
91 |
+
void set_size(int64_t dim, int64_t new_size) override;
|
92 |
+
void set_stride(int64_t dim, int64_t new_stride) override;
|
93 |
+
void set_storage_offset(int64_t storage_offset) override;
|
94 |
+
Layout layout_impl() const override {
|
95 |
+
return layout_;
|
96 |
+
}
|
97 |
+
void set_layout(Layout layout) {
|
98 |
+
switch (layout) {
|
99 |
+
case kSparseCsr:
|
100 |
+
case kSparseCsc:
|
101 |
+
case kSparseBsr:
|
102 |
+
case kSparseBsc:
|
103 |
+
layout_ = layout;
|
104 |
+
break;
|
105 |
+
default:
|
106 |
+
TORCH_CHECK(false, "unsupported layout ", layout);
|
107 |
+
}
|
108 |
+
}
|
109 |
+
|
110 |
+
/**
|
111 |
+
* Return a TensorImpl that is a shallow-copy of this TensorImpl.
|
112 |
+
*
|
113 |
+
* For usage of `version_counter` and `allow_tensor_metadata_change`,
|
114 |
+
* see NOTE [ TensorImpl Shallow-Copying ].
|
115 |
+
*/
|
116 |
+
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
|
117 |
+
const c10::VariableVersion& version_counter,
|
118 |
+
bool allow_tensor_metadata_change) const override {
|
119 |
+
auto impl = c10::make_intrusive<SparseCsrTensorImpl>(
|
120 |
+
key_set(), device(), layout_impl(), dtype());
|
121 |
+
copy_tensor_metadata(
|
122 |
+
/*src_sparse_impl=*/this,
|
123 |
+
/*dest_sparse_impl=*/impl.get(),
|
124 |
+
/*version_counter=*/version_counter,
|
125 |
+
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
|
126 |
+
impl->refresh_numel();
|
127 |
+
return impl;
|
128 |
+
}
|
129 |
+
|
130 |
+
/**
|
131 |
+
* Return a TensorImpl that is a shallow-copy of this TensorImpl.
|
132 |
+
*
|
133 |
+
* For usage of `version_counter` and `allow_tensor_metadata_change`,
|
134 |
+
* see NOTE [ TensorImpl Shallow-Copying ].
|
135 |
+
*/
|
136 |
+
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
|
137 |
+
c10::VariableVersion&& version_counter,
|
138 |
+
bool allow_tensor_metadata_change) const override {
|
139 |
+
auto impl = c10::make_intrusive<SparseCsrTensorImpl>(
|
140 |
+
key_set(), device(), layout_impl(), dtype());
|
141 |
+
copy_tensor_metadata(
|
142 |
+
/*src_sparse_impl=*/this,
|
143 |
+
/*dest_sparse_impl=*/impl.get(),
|
144 |
+
/*version_counter=*/std::move(version_counter),
|
145 |
+
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
|
146 |
+
impl->refresh_numel();
|
147 |
+
return impl;
|
148 |
+
}
|
149 |
+
|
150 |
+
private:
|
151 |
+
explicit SparseCsrTensorImpl(
|
152 |
+
at::DispatchKeySet key_set,
|
153 |
+
const caffe2::TypeMeta data_type,
|
154 |
+
at::Tensor crow_indices,
|
155 |
+
at::Tensor col_indices,
|
156 |
+
at::Tensor values,
|
157 |
+
at::Layout layout);
|
158 |
+
|
159 |
+
const char* tensorimpl_type_name() const override;
|
160 |
+
|
161 |
+
/**
|
162 |
+
* Copy the tensor metadata fields (e.g. sizes / strides / storage pointer /
|
163 |
+
* storage_offset) from one TensorImpl to another TensorImpl.
|
164 |
+
*
|
165 |
+
* For usage of `version_counter` and `allow_tensor_metadata_change`, see NOTE
|
166 |
+
* [ TensorImpl Shallow-Copying ].
|
167 |
+
*/
|
168 |
+
static void copy_tensor_metadata(
|
169 |
+
const SparseCsrTensorImpl* src_sparse_impl,
|
170 |
+
SparseCsrTensorImpl* dest_sparse_impl,
|
171 |
+
c10::VariableVersion version_counter,
|
172 |
+
bool allow_tensor_metadata_change) {
|
173 |
+
TensorImpl::copy_tensor_metadata(
|
174 |
+
src_sparse_impl,
|
175 |
+
dest_sparse_impl,
|
176 |
+
std::move(version_counter),
|
177 |
+
allow_tensor_metadata_change);
|
178 |
+
|
179 |
+
// Sparse-specific fields
|
180 |
+
dest_sparse_impl->crow_indices_ = src_sparse_impl->compressed_indices();
|
181 |
+
dest_sparse_impl->col_indices_ = src_sparse_impl->plain_indices();
|
182 |
+
dest_sparse_impl->values_ = src_sparse_impl->values();
|
183 |
+
dest_sparse_impl->layout_ = src_sparse_impl->layout_impl();
|
184 |
+
}
|
185 |
+
};
|
186 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/TensorAccessor.h
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/core/TensorAccessor.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ceil_div.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/macros/Macros.h>
|
3 |
+
#include <type_traits>
|
4 |
+
|
5 |
+
namespace at {
|
6 |
+
|
7 |
+
/**
|
8 |
+
Computes ceil(a / b)
|
9 |
+
*/
|
10 |
+
template <typename T, typename = std::enable_if_t<std::is_integral_v<T>>>
|
11 |
+
C10_ALWAYS_INLINE C10_HOST_DEVICE T ceil_div(T a, T b) {
|
12 |
+
return (a + b - 1) / b;
|
13 |
+
}
|
14 |
+
|
15 |
+
/**
|
16 |
+
Computes ceil(a / b) * b; i.e., rounds up `a` to the next highest
|
17 |
+
multiple of b
|
18 |
+
*/
|
19 |
+
template <typename T>
|
20 |
+
C10_ALWAYS_INLINE C10_HOST_DEVICE T round_up(T a, T b) {
|
21 |
+
return ceil_div(a, b) * b;
|
22 |
+
}
|
23 |
+
|
24 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/code_template.h
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/util/irange.h>
|
4 |
+
|
5 |
+
#include <sstream>
|
6 |
+
#include <string>
|
7 |
+
#include <unordered_map>
|
8 |
+
#include <vector>
|
9 |
+
|
10 |
+
namespace at::jit {
|
11 |
+
|
12 |
+
// A template environment is a mapping from template variable names, e.g.,
|
13 |
+
// identifier (corresponding to $identifier) to their expansions.
|
14 |
+
//
|
15 |
+
// This template environment supports storing strings, numbers and lists
|
16 |
+
// of strings, and can be chained together (so that lookup proceeds in
|
17 |
+
// in the top level environment, and then recurses into a parent
|
18 |
+
// environment if the key is not found.)
|
19 |
+
struct TemplateEnv {
|
20 |
+
TemplateEnv() = default;
|
21 |
+
TemplateEnv(TemplateEnv& parent) : parent(&parent) {}
|
22 |
+
|
23 |
+
using string_list = std::vector<std::string>;
|
24 |
+
|
25 |
+
// Add a string 'v' to the map at key 'k'.
|
26 |
+
void s(const std::string& k, const std::string& v) {
|
27 |
+
strings_[k] = v;
|
28 |
+
lists_.erase(k);
|
29 |
+
}
|
30 |
+
|
31 |
+
// Add a number 'v' to the map at key 'k'
|
32 |
+
template <typename T>
|
33 |
+
void d(const std::string& k, const T& v) {
|
34 |
+
strings_[k] = c10::to_string(v);
|
35 |
+
lists_.erase(k);
|
36 |
+
}
|
37 |
+
|
38 |
+
// Retrieve the string representation of the value stored at 'k' from the map.
|
39 |
+
// Raises an exception if the key is not found.
|
40 |
+
const std::string& s(const std::string& k) const {
|
41 |
+
if (strings_.count(k) == 0) {
|
42 |
+
if (parent) {
|
43 |
+
return parent->s(k);
|
44 |
+
}
|
45 |
+
notFound(k);
|
46 |
+
}
|
47 |
+
return strings_.at(k);
|
48 |
+
}
|
49 |
+
|
50 |
+
// Store a list of strings 'v' in the map at 'k'.
|
51 |
+
void v(const std::string& k, const string_list& v) {
|
52 |
+
lists_[k] = v;
|
53 |
+
strings_.erase(k);
|
54 |
+
}
|
55 |
+
|
56 |
+
// Retrieve a list of strings stored at 'k' from the map.
|
57 |
+
// Raises an exception if the key is not found.
|
58 |
+
const string_list& v(const std::string& k) const {
|
59 |
+
if (lists_.count(k) == 0) {
|
60 |
+
if (parent) {
|
61 |
+
return parent->v(k);
|
62 |
+
}
|
63 |
+
notFound(k);
|
64 |
+
}
|
65 |
+
return lists_.at(k);
|
66 |
+
}
|
67 |
+
|
68 |
+
// Test if a string 'k' is a string (as opposed to a list.)
|
69 |
+
bool keyIsString(const std::string& k) const {
|
70 |
+
if (strings_.count(k) > 0)
|
71 |
+
return true;
|
72 |
+
if (lists_.count(k) > 0)
|
73 |
+
return false;
|
74 |
+
if (parent)
|
75 |
+
return parent->keyIsString(k);
|
76 |
+
notFound(k);
|
77 |
+
}
|
78 |
+
|
79 |
+
private:
|
80 |
+
[[noreturn]] void notFound(const std::string& k) const {
|
81 |
+
std::stringstream ss;
|
82 |
+
ss << "key not found: " << k;
|
83 |
+
throw std::logic_error(ss.str());
|
84 |
+
}
|
85 |
+
|
86 |
+
std::unordered_map<std::string, std::string> strings_;
|
87 |
+
std::unordered_map<std::string, string_list> lists_;
|
88 |
+
TemplateEnv* parent{nullptr};
|
89 |
+
};
|
90 |
+
|
91 |
+
/*
|
92 |
+
# Match $identifier or ${identifier} and replace with the value in env.
|
93 |
+
# If this identifier is at the beginning of whitespace on a line
|
94 |
+
# and its value is a list then it is treated as
|
95 |
+
# block substitution by indenting all lines of all elements.
|
96 |
+
# If the identifier is on a line starting with non-whitespace and a list
|
97 |
+
# then it is comma separated. ${,foo} will insert a comma before the list
|
98 |
+
# if this list is not empty and ${foo,} will insert one after.
|
99 |
+
*/
|
100 |
+
struct CodeTemplate {
|
101 |
+
/* implicit */ CodeTemplate(std::string t) : template_text(std::move(t)) {}
|
102 |
+
|
103 |
+
std::string format(const TemplateEnv& env) const {
|
104 |
+
std::stringstream out;
|
105 |
+
size_t pos = 0;
|
106 |
+
size_t indent = 0;
|
107 |
+
bool all_whitespace = true;
|
108 |
+
while (pos < template_text.size()) {
|
109 |
+
char c = template_text[pos];
|
110 |
+
if (c == '$') {
|
111 |
+
std::stringstream kss;
|
112 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
113 |
+
bool comma_before;
|
114 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
115 |
+
bool comma_after;
|
116 |
+
size_t new_pos = parseKey(pos, kss, comma_before, comma_after);
|
117 |
+
std::string k = kss.str();
|
118 |
+
bool is_string = env.keyIsString(k);
|
119 |
+
if (all_whitespace) {
|
120 |
+
if (is_string)
|
121 |
+
emitStringWithIndents(out, indent, env.s(k));
|
122 |
+
else
|
123 |
+
emitLinesIndented(out, indent, env.v(k));
|
124 |
+
} else {
|
125 |
+
if (is_string)
|
126 |
+
out << env.s(k);
|
127 |
+
else
|
128 |
+
emitCommaSeparatedList(out, env.v(k), comma_before, comma_after);
|
129 |
+
}
|
130 |
+
all_whitespace = false;
|
131 |
+
pos = new_pos;
|
132 |
+
} else {
|
133 |
+
out << c;
|
134 |
+
if (!isspace(c))
|
135 |
+
all_whitespace = false;
|
136 |
+
indent++;
|
137 |
+
if (c == '\n') {
|
138 |
+
indent = 0;
|
139 |
+
all_whitespace = true;
|
140 |
+
}
|
141 |
+
pos++;
|
142 |
+
}
|
143 |
+
}
|
144 |
+
return out.str();
|
145 |
+
}
|
146 |
+
|
147 |
+
private:
|
148 |
+
using string_list = std::vector<std::string>;
|
149 |
+
char charAt(size_t p) const {
|
150 |
+
if (p >= template_text.size())
|
151 |
+
throw std::logic_error("EOS found in key");
|
152 |
+
return template_text[p];
|
153 |
+
}
|
154 |
+
size_t parseKey(
|
155 |
+
size_t pos,
|
156 |
+
std::ostream& k,
|
157 |
+
bool& comma_before,
|
158 |
+
bool& comma_after) const {
|
159 |
+
comma_before = false;
|
160 |
+
comma_after = false;
|
161 |
+
pos++;
|
162 |
+
if (charAt(pos) == '{') {
|
163 |
+
pos++;
|
164 |
+
if (charAt(pos) == ',') {
|
165 |
+
comma_before = true;
|
166 |
+
pos++;
|
167 |
+
}
|
168 |
+
pos = parseIdent(pos, k);
|
169 |
+
if (charAt(pos) == ',') {
|
170 |
+
comma_after = true;
|
171 |
+
pos++;
|
172 |
+
}
|
173 |
+
if (charAt(pos) != '}')
|
174 |
+
throw std::logic_error("missing terminating '}'");
|
175 |
+
pos++;
|
176 |
+
return pos;
|
177 |
+
} else {
|
178 |
+
return parseIdent(pos, k);
|
179 |
+
}
|
180 |
+
}
|
181 |
+
size_t parseIdent(size_t pos, std::ostream& k) const {
|
182 |
+
while (pos < template_text.size() &&
|
183 |
+
(isalnum(template_text[pos]) || template_text[pos] == '_')) {
|
184 |
+
k << template_text[pos];
|
185 |
+
pos++;
|
186 |
+
}
|
187 |
+
return pos;
|
188 |
+
}
|
189 |
+
void emitCommaSeparatedList(
|
190 |
+
std::ostream& out,
|
191 |
+
const string_list& strings,
|
192 |
+
bool comma_before,
|
193 |
+
bool comma_after) const {
|
194 |
+
if (comma_before && !strings.empty())
|
195 |
+
out << ", ";
|
196 |
+
for (const auto i : c10::irange(strings.size())) {
|
197 |
+
if (i > 0)
|
198 |
+
out << ", ";
|
199 |
+
out << strings[i];
|
200 |
+
}
|
201 |
+
if (comma_after && !strings.empty())
|
202 |
+
out << ", ";
|
203 |
+
}
|
204 |
+
// These indentation functions follow the convention that they never emit
|
205 |
+
// leading or trailing newlines when the input string does not have leading
|
206 |
+
// or trailing newlines. It's the responsibility of the calling function
|
207 |
+
// to indent correctly in the context.
|
208 |
+
void emitIndent(std::ostream& out, size_t indent) const {
|
209 |
+
for (C10_UNUSED const auto i : c10::irange(indent)) {
|
210 |
+
out << " ";
|
211 |
+
}
|
212 |
+
}
|
213 |
+
void emitStringWithIndents(
|
214 |
+
std::ostream& out,
|
215 |
+
size_t indent,
|
216 |
+
const std::string& str) const {
|
217 |
+
for (auto c : str) {
|
218 |
+
out << c;
|
219 |
+
if (c == '\n') {
|
220 |
+
emitIndent(out, indent);
|
221 |
+
}
|
222 |
+
}
|
223 |
+
}
|
224 |
+
void emitLinesIndented(
|
225 |
+
std::stringstream& out,
|
226 |
+
size_t indent,
|
227 |
+
const string_list& strings) const {
|
228 |
+
for (const auto i : c10::irange(strings.size())) {
|
229 |
+
if (i > 0)
|
230 |
+
emitIndent(out, indent);
|
231 |
+
emitStringWithIndents(out, indent, strings[i]);
|
232 |
+
if (i + 1 != strings.size())
|
233 |
+
out << "\n";
|
234 |
+
}
|
235 |
+
}
|
236 |
+
std::string template_text;
|
237 |
+
};
|
238 |
+
|
239 |
+
static inline std::string format(const std::string& fmt, TemplateEnv& env) {
|
240 |
+
return CodeTemplate(fmt).format(env);
|
241 |
+
}
|
242 |
+
|
243 |
+
} // namespace at::jit
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/jiterator_macros.h
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/macros/Macros.h>
|
3 |
+
#include <string>
|
4 |
+
|
5 |
+
#define JITERATOR_HOST_DEVICE C10_HOST_DEVICE
|
6 |
+
#if defined(_MSC_VER) && defined(__CUDACC__)
|
7 |
+
// NVRTC on Windows errors if __host__ __device__ attribute is
|
8 |
+
// present on kernel.
|
9 |
+
// error: attribute "__host__" does not apply here
|
10 |
+
// error: attribute "__device__" does not apply here
|
11 |
+
#define JITERATOR_HOST_DEVICE
|
12 |
+
#endif
|
13 |
+
|
14 |
+
// jiterator_also_stringify_as macro is used to define code (for CPU/ROCm)
|
15 |
+
// and generate code string for `jiterator` (only when compiling for CUDA).
|
16 |
+
// Usage :
|
17 |
+
// jiterator_also_stringify_as(
|
18 |
+
// jiterator_code(template <typename T> T identity(T x) { return x; }),
|
19 |
+
// identity_string);
|
20 |
+
// This will define the template `identity` as present in code and
|
21 |
+
// also define `std::string identity_string` with the code as the string
|
22 |
+
// if this is being compiled for CUDA.
|
23 |
+
|
24 |
+
// `jiterator_code` macro is to deal with `,` in the kernel code.
|
25 |
+
// These `,`s confuse the preprocessor into thinking we are passing
|
26 |
+
// multiple arguments to the macro.
|
27 |
+
#define jiterator_code(...) __VA_ARGS__
|
28 |
+
#if defined(__CUDACC__) || defined(__HIPCC__)
|
29 |
+
// CPU and CUDA and ROCm case
|
30 |
+
#define stringify_code(...) #__VA_ARGS__
|
31 |
+
#define jiterator_also_stringify_as(code, str_name) \
|
32 |
+
code /* define the function */ \
|
33 |
+
const std::string str_name = std::string(stringify_code(code));
|
34 |
+
#else
|
35 |
+
// CPU only or CPU and ROCm case
|
36 |
+
// Only needs the function
|
37 |
+
#define jiterator_also_stringify_as(code, str_name) code
|
38 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_autocast_to_reduced_precision.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_autocast_to_reduced_precision_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_efficient_attention_backward.h
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_efficient_attention_backward_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_efficient_attention_backward(Tensor grad_out_, Tensor query, Tensor key, Tensor value, Tensor? bias, Tensor out, Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, SymInt max_seqlen_q, SymInt max_seqlen_k, Tensor logsumexp, float dropout_p, Tensor philox_seed, Tensor philox_offset, int custom_mask_type, bool bias_requires_grad, *, float? scale=None, int? num_splits_key=None) -> (Tensor, Tensor, Tensor, Tensor)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> _efficient_attention_backward(const at::Tensor & grad_out_, const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const c10::optional<at::Tensor> & bias, const at::Tensor & out, const c10::optional<at::Tensor> & cu_seqlens_q, const c10::optional<at::Tensor> & cu_seqlens_k, int64_t max_seqlen_q, int64_t max_seqlen_k, const at::Tensor & logsumexp, double dropout_p, const at::Tensor & philox_seed, const at::Tensor & philox_offset, int64_t custom_mask_type, bool bias_requires_grad, c10::optional<double> scale=c10::nullopt, c10::optional<int64_t> num_splits_key=c10::nullopt) {
|
27 |
+
return at::_ops::_efficient_attention_backward::call(grad_out_, query, key, value, bias, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, logsumexp, dropout_p, philox_seed, philox_offset, custom_mask_type, bias_requires_grad, scale, num_splits_key);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> _efficient_attention_backward(const at::Tensor & grad_out_, const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const c10::optional<at::Tensor> & bias, const at::Tensor & out, const c10::optional<at::Tensor> & cu_seqlens_q, const c10::optional<at::Tensor> & cu_seqlens_k, int64_t max_seqlen_q, int64_t max_seqlen_k, const at::Tensor & logsumexp, double dropout_p, const at::Tensor & philox_seed, const at::Tensor & philox_offset, int64_t custom_mask_type, bool bias_requires_grad, c10::optional<double> scale=c10::nullopt, c10::optional<int64_t> num_splits_key=c10::nullopt) {
|
32 |
+
return at::_ops::_efficient_attention_backward::call(grad_out_, query, key, value, bias, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, logsumexp, dropout_p, philox_seed, philox_offset, custom_mask_type, bias_requires_grad, scale, num_splits_key);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::_efficient_attention_backward(Tensor grad_out_, Tensor query, Tensor key, Tensor value, Tensor? bias, Tensor out, Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, SymInt max_seqlen_q, SymInt max_seqlen_k, Tensor logsumexp, float dropout_p, Tensor philox_seed, Tensor philox_offset, int custom_mask_type, bool bias_requires_grad, *, float? scale=None, int? num_splits_key=None) -> (Tensor, Tensor, Tensor, Tensor)
|
37 |
+
inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> _efficient_attention_backward_symint(const at::Tensor & grad_out_, const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const c10::optional<at::Tensor> & bias, const at::Tensor & out, const c10::optional<at::Tensor> & cu_seqlens_q, const c10::optional<at::Tensor> & cu_seqlens_k, c10::SymInt max_seqlen_q, c10::SymInt max_seqlen_k, const at::Tensor & logsumexp, double dropout_p, const at::Tensor & philox_seed, const at::Tensor & philox_offset, int64_t custom_mask_type, bool bias_requires_grad, c10::optional<double> scale=c10::nullopt, c10::optional<int64_t> num_splits_key=c10::nullopt) {
|
38 |
+
return at::_ops::_efficient_attention_backward::call(grad_out_, query, key, value, bias, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, logsumexp, dropout_p, philox_seed, philox_offset, custom_mask_type, bias_requires_grad, scale, num_splits_key);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> _efficient_attention_backward(const at::Tensor & grad_out_, const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const c10::optional<at::Tensor> & bias, const at::Tensor & out, const c10::optional<at::Tensor> & cu_seqlens_q, const c10::optional<at::Tensor> & cu_seqlens_k, c10::SymInt max_seqlen_q, c10::SymInt max_seqlen_k, const at::Tensor & logsumexp, double dropout_p, const at::Tensor & philox_seed, const at::Tensor & philox_offset, int64_t custom_mask_type, bool bias_requires_grad, c10::optional<double> scale=c10::nullopt, c10::optional<int64_t> num_splits_key=c10::nullopt) {
|
43 |
+
return at::_ops::_efficient_attention_backward::call(grad_out_, query, key, value, bias, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, logsumexp, dropout_p, philox_seed, philox_offset, custom_mask_type, bias_requires_grad, scale, num_splits_key);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_sparse_backward.h
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_embedding_bag_sparse_backward_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_embedding_bag_sparse_backward(Tensor grad, Tensor indices, Tensor offsets, Tensor offset2bag, Tensor bag_size, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor
|
26 |
+
inline at::Tensor _embedding_bag_sparse_backward(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, const at::Tensor & bag_size, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
|
27 |
+
return at::_ops::_embedding_bag_sparse_backward::call(grad, indices, offsets, offset2bag, bag_size, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor _embedding_bag_sparse_backward(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, const at::Tensor & bag_size, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
|
32 |
+
return at::_ops::_embedding_bag_sparse_backward::call(grad, indices, offsets, offset2bag, bag_size, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::_embedding_bag_sparse_backward(Tensor grad, Tensor indices, Tensor offsets, Tensor offset2bag, Tensor bag_size, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor
|
37 |
+
inline at::Tensor _embedding_bag_sparse_backward_symint(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, const at::Tensor & bag_size, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
|
38 |
+
return at::_ops::_embedding_bag_sparse_backward::call(grad, indices, offsets, offset2bag, bag_size, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
at::Tensor _embedding_bag_sparse_backward(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, const at::Tensor & bag_size, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
|
43 |
+
return at::_ops::_embedding_bag_sparse_backward::call(grad, indices, offsets, offset2bag, bag_size, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_grid_sampler_2d_cpu_fallback_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor _grid_sampler_2d_cpu_fallback(const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners);
|
20 |
+
TORCH_API at::Tensor & _grid_sampler_2d_cpu_fallback_out(const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, at::Tensor & out);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_solve_ex_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> _linalg_solve_ex(const at::Tensor & A, const at::Tensor & B, bool left=true, bool check_errors=false);
|
21 |
+
|
22 |
+
} // namespace compositeexplicitautogradnonfunctional
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_make_dep_token.h
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_make_dep_token_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_make_dep_token(*, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
26 |
+
inline at::Tensor _make_dep_token(at::TensorOptions options={}, c10::optional<at::MemoryFormat> memory_format=c10::nullopt) {
|
27 |
+
return at::_ops::_make_dep_token::call(c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt(), c10::impl::check_tensor_options_and_extract_memory_format(options, memory_format));
|
28 |
+
}
|
29 |
+
// aten::_make_dep_token(*, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
30 |
+
inline at::Tensor _make_dep_token(c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, c10::optional<at::MemoryFormat> memory_format) {
|
31 |
+
return at::_ops::_make_dep_token::call(dtype, layout, device, pin_memory, memory_format);
|
32 |
+
}
|
33 |
+
|
34 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_neg_view_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor _neg_view(const at::Tensor & self);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_pack_padded_sequence_backward_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor _pack_padded_sequence_backward_symint(const at::Tensor & grad, c10::SymIntArrayRef input_size, const at::Tensor & batch_sizes, bool batch_first);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_bsr_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _to_sparse_bsr {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, at::IntArrayRef, c10::optional<int64_t>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_to_sparse_bsr")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_to_sparse_bsr(Tensor self, int[2] blocksize, int? dense_dim=None) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _to_sparse_bsr_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, at::IntArrayRef, c10::optional<int64_t>, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_to_sparse_bsr")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_to_sparse_bsr.out(Tensor self, int[2] blocksize, int? dense_dim=None, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact2d_backward_meta_dispatch.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _upsample_nearest_exact2d_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor _upsample_nearest_exact2d_backward_symint(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
22 |
+
TORCH_API at::Tensor & _upsample_nearest_exact2d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
23 |
+
TORCH_API at::Tensor & _upsample_nearest_exact2d_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input);
|
24 |
+
TORCH_API at::Tensor & _upsample_nearest_exact2d_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
25 |
+
TORCH_API at::Tensor & _upsample_nearest_exact2d_backward_symint_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input);
|
26 |
+
|
27 |
+
} // namespace meta
|
28 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/_validate_sparse_csc_tensor_args_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API void _validate_sparse_csc_tensor_args(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::IntArrayRef size);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/abs.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/abs_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::abs(Tensor self) -> Tensor
|
26 |
+
inline at::Tensor abs(const at::Tensor & self) {
|
27 |
+
return at::_ops::abs::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::abs_(Tensor(a!) self) -> Tensor(a!)
|
31 |
+
inline at::Tensor & abs_(at::Tensor & self) {
|
32 |
+
return at::_ops::abs_::call(self);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
36 |
+
inline at::Tensor & abs_out(at::Tensor & out, const at::Tensor & self) {
|
37 |
+
return at::_ops::abs_out::call(self, out);
|
38 |
+
}
|
39 |
+
// aten::abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
40 |
+
inline at::Tensor & abs_outf(const at::Tensor & self, at::Tensor & out) {
|
41 |
+
return at::_ops::abs_out::call(self, out);
|
42 |
+
}
|
43 |
+
|
44 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool2d_backward_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API adaptive_max_pool2d_backward_grad_input {
|
18 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const at::Tensor &, at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::adaptive_max_pool2d_backward")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "grad_input")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "adaptive_max_pool2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)")
|
24 |
+
static at::Tensor & call(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & indices, at::Tensor & grad_input);
|
25 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & indices, at::Tensor & grad_input);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API adaptive_max_pool2d_backward {
|
29 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::adaptive_max_pool2d_backward")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "adaptive_max_pool2d_backward(Tensor grad_output, Tensor self, Tensor indices) -> Tensor")
|
35 |
+
static at::Tensor call(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & indices);
|
36 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & indices);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/argmin_cuda_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor argmin(const at::Tensor & self, c10::optional<int64_t> dim=c10::nullopt, bool keepdim=false);
|
21 |
+
TORCH_API at::Tensor & argmin_out(at::Tensor & out, const at::Tensor & self, c10::optional<int64_t> dim=c10::nullopt, bool keepdim=false);
|
22 |
+
TORCH_API at::Tensor & argmin_outf(const at::Tensor & self, c10::optional<int64_t> dim, bool keepdim, at::Tensor & out);
|
23 |
+
|
24 |
+
} // namespace cuda
|
25 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/argmin_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
#include <ATen/ops/argmin_meta.h>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
struct TORCH_API structured_argmin_out : public at::meta::structured_argmin {
|
20 |
+
void impl(const at::Tensor & self, c10::optional<int64_t> dim, bool keepdim, const at::Tensor & out);
|
21 |
+
};
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/argsort_native.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor argsort(const at::Tensor & self, int64_t dim=-1, bool descending=false);
|
20 |
+
TORCH_API at::Tensor & argsort_stable_out(const at::Tensor & self, bool stable, int64_t dim, bool descending, at::Tensor & out);
|
21 |
+
TORCH_API at::Tensor argsort_stable(const at::Tensor & self, bool stable, int64_t dim=-1, bool descending=false);
|
22 |
+
TORCH_API at::Tensor argsort(const at::Tensor & self, at::Dimname dim, bool descending=false);
|
23 |
+
} // namespace native
|
24 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/clamp_cpu_dispatch.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor clamp(const at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor & clamp_out(at::Tensor & out, const at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max=c10::nullopt);
|
22 |
+
TORCH_API at::Tensor & clamp_outf(const at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & clamp_(at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max=c10::nullopt);
|
24 |
+
TORCH_API at::Tensor clamp(const at::Tensor & self, const c10::optional<at::Tensor> & min={}, const c10::optional<at::Tensor> & max={});
|
25 |
+
TORCH_API at::Tensor & clamp_out(at::Tensor & out, const at::Tensor & self, const c10::optional<at::Tensor> & min={}, const c10::optional<at::Tensor> & max={});
|
26 |
+
TORCH_API at::Tensor & clamp_outf(const at::Tensor & self, const c10::optional<at::Tensor> & min, const c10::optional<at::Tensor> & max, at::Tensor & out);
|
27 |
+
TORCH_API at::Tensor & clamp_(at::Tensor & self, const c10::optional<at::Tensor> & min={}, const c10::optional<at::Tensor> & max={});
|
28 |
+
|
29 |
+
} // namespace cpu
|
30 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/clip_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor clip(const at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor & clip_out(at::Tensor & out, const at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max=c10::nullopt);
|
22 |
+
TORCH_API at::Tensor & clip_outf(const at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & clip_(at::Tensor & self, const c10::optional<at::Scalar> & min, const c10::optional<at::Scalar> & max=c10::nullopt);
|
24 |
+
TORCH_API at::Tensor clip(const at::Tensor & self, const c10::optional<at::Tensor> & min={}, const c10::optional<at::Tensor> & max={});
|
25 |
+
TORCH_API at::Tensor & clip_out(at::Tensor & out, const at::Tensor & self, const c10::optional<at::Tensor> & min={}, const c10::optional<at::Tensor> & max={});
|
26 |
+
TORCH_API at::Tensor & clip_outf(const at::Tensor & self, const c10::optional<at::Tensor> & min, const c10::optional<at::Tensor> & max, at::Tensor & out);
|
27 |
+
TORCH_API at::Tensor & clip_(at::Tensor & self, const c10::optional<at::Tensor> & min={}, const c10::optional<at::Tensor> & max={});
|
28 |
+
|
29 |
+
} // namespace compositeimplicitautograd
|
30 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cosh_meta_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor cosh(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & cosh_out(at::Tensor & out, const at::Tensor & self);
|
22 |
+
TORCH_API at::Tensor & cosh_outf(const at::Tensor & self, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & cosh_(at::Tensor & self);
|
24 |
+
|
25 |
+
} // namespace meta
|
26 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_affine_grid_generator_backward_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & cudnn_affine_grid_generator_backward_out(at::Tensor & out, const at::Tensor & grad, int64_t N, int64_t C, int64_t H, int64_t W);
|
21 |
+
TORCH_API at::Tensor & cudnn_affine_grid_generator_backward_outf(const at::Tensor & grad, int64_t N, int64_t C, int64_t H, int64_t W, at::Tensor & out);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_batch_norm_backward_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> cudnn_batch_norm_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & input, const at::Tensor & grad_output, const at::Tensor & weight, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, const c10::optional<at::Tensor> & save_mean, const c10::optional<at::Tensor> & save_var, double epsilon, const at::Tensor & reserveSpace);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> cudnn_batch_norm_backward_outf(const at::Tensor & input, const at::Tensor & grad_output, const at::Tensor & weight, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, const c10::optional<at::Tensor> & save_mean, const c10::optional<at::Tensor> & save_var, double epsilon, const at::Tensor & reserveSpace, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_batch_norm_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> cudnn_batch_norm_out(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, bool training, double exponential_average_factor, double epsilon, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3);
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> cudnn_batch_norm(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, bool training, double exponential_average_factor, double epsilon);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/digamma_cuda_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor digamma(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & digamma_out(at::Tensor & out, const at::Tensor & self);
|
22 |
+
TORCH_API at::Tensor & digamma_outf(const at::Tensor & self, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & digamma_(at::Tensor & self);
|
24 |
+
|
25 |
+
} // namespace cuda
|
26 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/empty_strided_native.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor & empty_strided_out_symint(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, at::Tensor & out);
|
20 |
+
TORCH_API at::Tensor empty_strided_cpu(at::IntArrayRef size, at::IntArrayRef stride, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={});
|
21 |
+
TORCH_API at::Tensor empty_strided_cuda(at::IntArrayRef size, at::IntArrayRef stride, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={});
|
22 |
+
TORCH_API at::Tensor empty_strided_meta_symint(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={});
|
23 |
+
TORCH_API at::Tensor empty_strided_unknown_quantized(at::IntArrayRef size, at::IntArrayRef stride, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={});
|
24 |
+
} // namespace native
|
25 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/exp_ops.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API exp {
|
18 |
+
using schema = at::Tensor (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::exp")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "exp(Tensor self) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API exp_ {
|
29 |
+
using schema = at::Tensor & (at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::exp_")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "exp_(Tensor(a!) self) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(at::Tensor & self);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API exp_out {
|
40 |
+
using schema = at::Tensor & (const at::Tensor &, at::Tensor &);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::exp")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "exp.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)")
|
46 |
+
static at::Tensor & call(const at::Tensor & self, at::Tensor & out);
|
47 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Tensor & out);
|
48 |
+
};
|
49 |
+
|
50 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_fft2_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor fft_fft2(const at::Tensor & self, at::OptionalIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor fft_fft2_symint(const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt);
|
22 |
+
TORCH_API at::Tensor & fft_fft2_out(at::Tensor & out, const at::Tensor & self, at::OptionalIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt);
|
23 |
+
TORCH_API at::Tensor & fft_fft2_outf(const at::Tensor & self, at::OptionalIntArrayRef s, at::IntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out);
|
24 |
+
TORCH_API at::Tensor & fft_fft2_symint_out(at::Tensor & out, const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::IntArrayRef dim={-2,-1}, c10::optional<c10::string_view> norm=c10::nullopt);
|
25 |
+
TORCH_API at::Tensor & fft_fft2_symint_outf(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::IntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out);
|
26 |
+
|
27 |
+
} // namespace compositeimplicitautograd
|
28 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_fftn_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor fft_fftn(const at::Tensor & self, at::OptionalIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor fft_fftn_symint(const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt);
|
22 |
+
TORCH_API at::Tensor & fft_fftn_out(at::Tensor & out, const at::Tensor & self, at::OptionalIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt);
|
23 |
+
TORCH_API at::Tensor & fft_fftn_outf(const at::Tensor & self, at::OptionalIntArrayRef s, at::OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out);
|
24 |
+
TORCH_API at::Tensor & fft_fftn_symint_out(at::Tensor & out, const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt);
|
25 |
+
TORCH_API at::Tensor & fft_fftn_symint_outf(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out);
|
26 |
+
|
27 |
+
} // namespace compositeimplicitautograd
|
28 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fft_ifftn_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor fft_ifftn_symint(const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt);
|
20 |
+
TORCH_API at::Tensor & fft_ifftn_symint_out(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool2d_backward_meta.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeMetaFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
struct TORCH_API structured_fractional_max_pool2d_backward : public at::impl::MetaBase {
|
21 |
+
|
22 |
+
|
23 |
+
void meta(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices);
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace native
|
27 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool2d_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> fractional_max_pool2d(const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & random_samples);
|
21 |
+
|
22 |
+
} // namespace compositeexplicitautogradnonfunctional
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/fused_moving_avg_obs_fake_quant_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API fused_moving_avg_obs_fake_quant {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, at::Tensor &, at::Tensor &, at::Tensor &, at::Tensor &, double, int64_t, int64_t, int64_t, bool, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::fused_moving_avg_obs_fake_quant")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "fused_moving_avg_obs_fake_quant(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & observer_on, const at::Tensor & fake_quant_on, at::Tensor & running_min, at::Tensor & running_max, at::Tensor & scale, at::Tensor & zero_point, double averaging_const, int64_t quant_min, int64_t quant_max, int64_t ch_axis, bool per_row_fake_quant, bool symmetric_quant);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & observer_on, const at::Tensor & fake_quant_on, at::Tensor & running_min, at::Tensor & running_max, at::Tensor & scale, at::Tensor & zero_point, double averaging_const, int64_t quant_min, int64_t quant_max, int64_t ch_axis, bool per_row_fake_quant, bool symmetric_quant);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor grid_sampler(const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/infinitely_differentiable_gelu_backward_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor infinitely_differentiable_gelu_backward(const at::Tensor & grad, const at::Tensor & self);
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/less_equal_native.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor less_equal(const at::Tensor & self, const at::Scalar & other);
|
20 |
+
TORCH_API at::Tensor & less_equal_out(const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
|
21 |
+
TORCH_API at::Tensor & less_equal_(at::Tensor & self, const at::Scalar & other);
|
22 |
+
TORCH_API at::Tensor less_equal(const at::Tensor & self, const at::Tensor & other);
|
23 |
+
TORCH_API at::Tensor & less_equal_out(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
|
24 |
+
TORCH_API at::Tensor & less_equal_(at::Tensor & self, const at::Tensor & other);
|
25 |
+
} // namespace native
|
26 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/lift_fresh_copy.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/lift_fresh_copy_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::lift_fresh_copy(Tensor self) -> Tensor
|
26 |
+
inline at::Tensor lift_fresh_copy(const at::Tensor & self) {
|
27 |
+
return at::_ops::lift_fresh_copy::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::lift_fresh_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & lift_fresh_copy_out(at::Tensor & out, const at::Tensor & self) {
|
32 |
+
return at::_ops::lift_fresh_copy_out::call(self, out);
|
33 |
+
}
|
34 |
+
// aten::lift_fresh_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & lift_fresh_copy_outf(const at::Tensor & self, at::Tensor & out) {
|
36 |
+
return at::_ops::lift_fresh_copy_out::call(self, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_eigvals_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor linalg_eigvals(const at::Tensor & self);
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_factor_ex_meta.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeMetaFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
struct TORCH_API structured_linalg_ldl_factor_ex : public at::impl::MetaBase {
|
21 |
+
|
22 |
+
|
23 |
+
void meta(const at::Tensor & self, bool hermitian, bool check_errors);
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace native
|
27 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/linspace.h
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/linspace_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::linspace(Scalar start, Scalar end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
26 |
+
inline at::Tensor linspace(const at::Scalar & start, const at::Scalar & end, int64_t steps, at::TensorOptions options={}) {
|
27 |
+
return at::_ops::linspace::call(start, end, steps, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
|
28 |
+
}
|
29 |
+
// aten::linspace(Scalar start, Scalar end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
30 |
+
inline at::Tensor linspace(const at::Scalar & start, const at::Scalar & end, int64_t steps, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
|
31 |
+
return at::_ops::linspace::call(start, end, steps, dtype, layout, device, pin_memory);
|
32 |
+
}
|
33 |
+
|
34 |
+
// aten::linspace.Tensor_Tensor(Tensor start, Tensor end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
35 |
+
inline at::Tensor linspace(const at::Tensor & start, const at::Tensor & end, int64_t steps, at::TensorOptions options={}) {
|
36 |
+
return at::_ops::linspace_Tensor_Tensor::call(start, end, steps, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
|
37 |
+
}
|
38 |
+
// aten::linspace.Tensor_Tensor(Tensor start, Tensor end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
39 |
+
inline at::Tensor linspace(const at::Tensor & start, const at::Tensor & end, int64_t steps, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
|
40 |
+
return at::_ops::linspace_Tensor_Tensor::call(start, end, steps, dtype, layout, device, pin_memory);
|
41 |
+
}
|
42 |
+
|
43 |
+
// aten::linspace.Tensor_Scalar(Tensor start, Scalar end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
44 |
+
inline at::Tensor linspace(const at::Tensor & start, const at::Scalar & end, int64_t steps, at::TensorOptions options={}) {
|
45 |
+
return at::_ops::linspace_Tensor_Scalar::call(start, end, steps, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
|
46 |
+
}
|
47 |
+
// aten::linspace.Tensor_Scalar(Tensor start, Scalar end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
48 |
+
inline at::Tensor linspace(const at::Tensor & start, const at::Scalar & end, int64_t steps, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
|
49 |
+
return at::_ops::linspace_Tensor_Scalar::call(start, end, steps, dtype, layout, device, pin_memory);
|
50 |
+
}
|
51 |
+
|
52 |
+
// aten::linspace.Scalar_Tensor(Scalar start, Tensor end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
53 |
+
inline at::Tensor linspace(const at::Scalar & start, const at::Tensor & end, int64_t steps, at::TensorOptions options={}) {
|
54 |
+
return at::_ops::linspace_Scalar_Tensor::call(start, end, steps, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
|
55 |
+
}
|
56 |
+
// aten::linspace.Scalar_Tensor(Scalar start, Tensor end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
57 |
+
inline at::Tensor linspace(const at::Scalar & start, const at::Tensor & end, int64_t steps, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
|
58 |
+
return at::_ops::linspace_Scalar_Tensor::call(start, end, steps, dtype, layout, device, pin_memory);
|
59 |
+
}
|
60 |
+
|
61 |
+
// aten::linspace.out(Scalar start, Scalar end, int steps, *, Tensor(a!) out) -> Tensor(a!)
|
62 |
+
inline at::Tensor & linspace_out(at::Tensor & out, const at::Scalar & start, const at::Scalar & end, int64_t steps) {
|
63 |
+
return at::_ops::linspace_out::call(start, end, steps, out);
|
64 |
+
}
|
65 |
+
// aten::linspace.out(Scalar start, Scalar end, int steps, *, Tensor(a!) out) -> Tensor(a!)
|
66 |
+
inline at::Tensor & linspace_outf(const at::Scalar & start, const at::Scalar & end, int64_t steps, at::Tensor & out) {
|
67 |
+
return at::_ops::linspace_out::call(start, end, steps, out);
|
68 |
+
}
|
69 |
+
|
70 |
+
// aten::linspace.Tensor_Tensor_out(Tensor start, Tensor end, int steps, *, Tensor(a!) out) -> Tensor(a!)
|
71 |
+
inline at::Tensor & linspace_out(at::Tensor & out, const at::Tensor & start, const at::Tensor & end, int64_t steps) {
|
72 |
+
return at::_ops::linspace_Tensor_Tensor_out::call(start, end, steps, out);
|
73 |
+
}
|
74 |
+
// aten::linspace.Tensor_Tensor_out(Tensor start, Tensor end, int steps, *, Tensor(a!) out) -> Tensor(a!)
|
75 |
+
inline at::Tensor & linspace_outf(const at::Tensor & start, const at::Tensor & end, int64_t steps, at::Tensor & out) {
|
76 |
+
return at::_ops::linspace_Tensor_Tensor_out::call(start, end, steps, out);
|
77 |
+
}
|
78 |
+
|
79 |
+
// aten::linspace.Tensor_Scalar_out(Tensor start, Scalar end, int steps, *, Tensor(a!) out) -> Tensor(a!)
|
80 |
+
inline at::Tensor & linspace_out(at::Tensor & out, const at::Tensor & start, const at::Scalar & end, int64_t steps) {
|
81 |
+
return at::_ops::linspace_Tensor_Scalar_out::call(start, end, steps, out);
|
82 |
+
}
|
83 |
+
// aten::linspace.Tensor_Scalar_out(Tensor start, Scalar end, int steps, *, Tensor(a!) out) -> Tensor(a!)
|
84 |
+
inline at::Tensor & linspace_outf(const at::Tensor & start, const at::Scalar & end, int64_t steps, at::Tensor & out) {
|
85 |
+
return at::_ops::linspace_Tensor_Scalar_out::call(start, end, steps, out);
|
86 |
+
}
|
87 |
+
|
88 |
+
// aten::linspace.Scalar_Tensor_out(Scalar start, Tensor end, int steps, *, Tensor(a!) out) -> Tensor(a!)
|
89 |
+
inline at::Tensor & linspace_out(at::Tensor & out, const at::Scalar & start, const at::Tensor & end, int64_t steps) {
|
90 |
+
return at::_ops::linspace_Scalar_Tensor_out::call(start, end, steps, out);
|
91 |
+
}
|
92 |
+
// aten::linspace.Scalar_Tensor_out(Scalar start, Tensor end, int steps, *, Tensor(a!) out) -> Tensor(a!)
|
93 |
+
inline at::Tensor & linspace_outf(const at::Scalar & start, const at::Tensor & end, int64_t steps, at::Tensor & out) {
|
94 |
+
return at::_ops::linspace_Scalar_Tensor_out::call(start, end, steps, out);
|
95 |
+
}
|
96 |
+
|
97 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/log10.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/log10_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::log10(Tensor self) -> Tensor
|
26 |
+
inline at::Tensor log10(const at::Tensor & self) {
|
27 |
+
return at::_ops::log10::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::log10_(Tensor(a!) self) -> Tensor(a!)
|
31 |
+
inline at::Tensor & log10_(at::Tensor & self) {
|
32 |
+
return at::_ops::log10_::call(self);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::log10.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
36 |
+
inline at::Tensor & log10_out(at::Tensor & out, const at::Tensor & self) {
|
37 |
+
return at::_ops::log10_out::call(self, out);
|
38 |
+
}
|
39 |
+
// aten::log10.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
40 |
+
inline at::Tensor & log10_outf(const at::Tensor & self, at::Tensor & out) {
|
41 |
+
return at::_ops::log10_out::call(self, out);
|
42 |
+
}
|
43 |
+
|
44 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/log1p_cuda_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor log1p(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & log1p_out(at::Tensor & out, const at::Tensor & self);
|
22 |
+
TORCH_API at::Tensor & log1p_outf(const at::Tensor & self, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & log1p_(at::Tensor & self);
|
24 |
+
|
25 |
+
} // namespace cuda
|
26 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/ops/logical_xor_cuda_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & logical_xor_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
|
21 |
+
TORCH_API at::Tensor & logical_xor_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
|
22 |
+
|
23 |
+
} // namespace cuda
|
24 |
+
} // namespace at
|