applied-ai-018 commited on
Commit
de2bdc3
·
verified ·
1 Parent(s): b38c997

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/__init__.py +0 -0
  2. env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/__init__.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/bench_discrete_log.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/bench_meijerint.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/bench_symbench.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/bench_discrete_log.py +83 -0
  7. env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/bench_meijerint.py +261 -0
  8. env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/bench_symbench.py +134 -0
  9. env-llmeval/lib/python3.10/site-packages/sympy/interactive/__init__.py +8 -0
  10. env-llmeval/lib/python3.10/site-packages/sympy/interactive/printing.py +562 -0
  11. env-llmeval/lib/python3.10/site-packages/sympy/interactive/traversal.py +95 -0
  12. env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/__init__.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/decompogen.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/inequalities.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/pde.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/polysys.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/recurr.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/solveset.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/sympy/solvers/benchmarks/__pycache__/__init__.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/sympy/solvers/benchmarks/__pycache__/bench_solvers.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/sympy/solvers/benchmarks/bench_solvers.py +12 -0
  22. env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/__init__.py +0 -0
  23. env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/test_polysys.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/test_solvers.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/test_constantsimp.py +179 -0
  27. env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/test_decompogen.py +59 -0
  28. env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/test_pde.py +239 -0
  29. env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/test_polysys.py +178 -0
  30. env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/test_solvers.py +0 -0
  31. env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/test_solveset.py +0 -0
  32. env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/__init__.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/basisdependent.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/coordsysrect.cpython-310.pyc +0 -0
  35. env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/deloperator.cpython-310.pyc +0 -0
  36. env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/dyadic.cpython-310.pyc +0 -0
  37. env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/functions.cpython-310.pyc +0 -0
  38. env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/implicitregion.cpython-310.pyc +0 -0
  39. env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/integrals.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/operators.cpython-310.pyc +0 -0
  41. env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/orienters.cpython-310.pyc +0 -0
  42. env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/parametricregion.cpython-310.pyc +0 -0
  43. env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/point.cpython-310.pyc +0 -0
  44. env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/scalar.cpython-310.pyc +0 -0
  45. env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/vector.cpython-310.pyc +0 -0
  46. env-llmeval/lib/python3.10/site-packages/sympy/vector/deloperator.py +121 -0
  47. env-llmeval/lib/python3.10/site-packages/sympy/vector/functions.py +517 -0
  48. env-llmeval/lib/python3.10/site-packages/sympy/vector/implicitregion.py +506 -0
  49. env-llmeval/lib/python3.10/site-packages/sympy/vector/integrals.py +206 -0
  50. env-llmeval/lib/python3.10/site-packages/sympy/vector/orienters.py +398 -0
env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (181 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/bench_discrete_log.cpython-310.pyc ADDED
Binary file (2.01 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/bench_meijerint.cpython-310.pyc ADDED
Binary file (10.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/__pycache__/bench_symbench.cpython-310.pyc ADDED
Binary file (5.14 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/bench_discrete_log.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ from time import time
3
+ from sympy.ntheory.residue_ntheory import (discrete_log,
4
+ _discrete_log_trial_mul, _discrete_log_shanks_steps,
5
+ _discrete_log_pollard_rho, _discrete_log_pohlig_hellman)
6
+
7
+
8
+ # Cyclic group (Z/pZ)* with p prime, order p - 1 and generator g
9
+ data_set_1 = [
10
+ # p, p - 1, g
11
+ [191, 190, 19],
12
+ [46639, 46638, 6],
13
+ [14789363, 14789362, 2],
14
+ [4254225211, 4254225210, 2],
15
+ [432751500361, 432751500360, 7],
16
+ [158505390797053, 158505390797052, 2],
17
+ [6575202655312007, 6575202655312006, 5],
18
+ [8430573471995353769, 8430573471995353768, 3],
19
+ [3938471339744997827267, 3938471339744997827266, 2],
20
+ [875260951364705563393093, 875260951364705563393092, 5],
21
+ ]
22
+
23
+
24
+ # Cyclic sub-groups of (Z/nZ)* with prime order p and generator g
25
+ # (n, p are primes and n = 2 * p + 1)
26
+ data_set_2 = [
27
+ # n, p, g
28
+ [227, 113, 3],
29
+ [2447, 1223, 2],
30
+ [24527, 12263, 2],
31
+ [245639, 122819, 2],
32
+ [2456747, 1228373, 3],
33
+ [24567899, 12283949, 3],
34
+ [245679023, 122839511, 2],
35
+ [2456791307, 1228395653, 3],
36
+ [24567913439, 12283956719, 2],
37
+ [245679135407, 122839567703, 2],
38
+ [2456791354763, 1228395677381, 3],
39
+ [24567913550903, 12283956775451, 2],
40
+ [245679135509519, 122839567754759, 2],
41
+ ]
42
+
43
+
44
+ # Cyclic sub-groups of (Z/nZ)* with smooth order o and generator g
45
+ data_set_3 = [
46
+ # n, o, g
47
+ [2**118, 2**116, 3],
48
+ ]
49
+
50
+
51
+ def bench_discrete_log(data_set, algo=None):
52
+ if algo is None:
53
+ f = discrete_log
54
+ elif algo == 'trial':
55
+ f = _discrete_log_trial_mul
56
+ elif algo == 'shanks':
57
+ f = _discrete_log_shanks_steps
58
+ elif algo == 'rho':
59
+ f = _discrete_log_pollard_rho
60
+ elif algo == 'ph':
61
+ f = _discrete_log_pohlig_hellman
62
+ else:
63
+ raise ValueError("Argument 'algo' should be one"
64
+ " of ('trial', 'shanks', 'rho' or 'ph')")
65
+
66
+ for i, data in enumerate(data_set):
67
+ for j, (n, p, g) in enumerate(data):
68
+ t = time()
69
+ l = f(n, pow(g, p - 1, n), g, p)
70
+ t = time() - t
71
+ print('[%02d-%03d] %15.10f' % (i, j, t))
72
+ assert l == p - 1
73
+
74
+
75
+ if __name__ == '__main__':
76
+ algo = sys.argv[1] \
77
+ if len(sys.argv) > 1 else None
78
+ data_set = [
79
+ data_set_1,
80
+ data_set_2,
81
+ data_set_3,
82
+ ]
83
+ bench_discrete_log(data_set, algo)
env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/bench_meijerint.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # conceal the implicit import from the code quality tester
2
+ from sympy.core.numbers import (oo, pi)
3
+ from sympy.core.symbol import (Symbol, symbols)
4
+ from sympy.functions.elementary.exponential import exp
5
+ from sympy.functions.elementary.miscellaneous import sqrt
6
+ from sympy.functions.special.bessel import besseli
7
+ from sympy.functions.special.gamma_functions import gamma
8
+ from sympy.integrals.integrals import integrate
9
+ from sympy.integrals.transforms import (mellin_transform,
10
+ inverse_fourier_transform, inverse_mellin_transform,
11
+ laplace_transform, inverse_laplace_transform, fourier_transform)
12
+
13
+ LT = laplace_transform
14
+ FT = fourier_transform
15
+ MT = mellin_transform
16
+ IFT = inverse_fourier_transform
17
+ ILT = inverse_laplace_transform
18
+ IMT = inverse_mellin_transform
19
+
20
+ from sympy.abc import x, y
21
+ nu, beta, rho = symbols('nu beta rho')
22
+
23
+ apos, bpos, cpos, dpos, posk, p = symbols('a b c d k p', positive=True)
24
+ k = Symbol('k', real=True)
25
+ negk = Symbol('k', negative=True)
26
+
27
+ mu1, mu2 = symbols('mu1 mu2', real=True, nonzero=True, finite=True)
28
+ sigma1, sigma2 = symbols('sigma1 sigma2', real=True, nonzero=True,
29
+ finite=True, positive=True)
30
+ rate = Symbol('lambda', positive=True)
31
+
32
+
33
+ def normal(x, mu, sigma):
34
+ return 1/sqrt(2*pi*sigma**2)*exp(-(x - mu)**2/2/sigma**2)
35
+
36
+
37
+ def exponential(x, rate):
38
+ return rate*exp(-rate*x)
39
+ alpha, beta = symbols('alpha beta', positive=True)
40
+ betadist = x**(alpha - 1)*(1 + x)**(-alpha - beta)*gamma(alpha + beta) \
41
+ /gamma(alpha)/gamma(beta)
42
+ kint = Symbol('k', integer=True, positive=True)
43
+ chi = 2**(1 - kint/2)*x**(kint - 1)*exp(-x**2/2)/gamma(kint/2)
44
+ chisquared = 2**(-k/2)/gamma(k/2)*x**(k/2 - 1)*exp(-x/2)
45
+ dagum = apos*p/x*(x/bpos)**(apos*p)/(1 + x**apos/bpos**apos)**(p + 1)
46
+ d1, d2 = symbols('d1 d2', positive=True)
47
+ f = sqrt(((d1*x)**d1 * d2**d2)/(d1*x + d2)**(d1 + d2))/x \
48
+ /gamma(d1/2)/gamma(d2/2)*gamma((d1 + d2)/2)
49
+ nupos, sigmapos = symbols('nu sigma', positive=True)
50
+ rice = x/sigmapos**2*exp(-(x**2 + nupos**2)/2/sigmapos**2)*besseli(0, x*
51
+ nupos/sigmapos**2)
52
+ mu = Symbol('mu', real=True)
53
+ laplace = exp(-abs(x - mu)/bpos)/2/bpos
54
+
55
+ u = Symbol('u', polar=True)
56
+ tpos = Symbol('t', positive=True)
57
+
58
+
59
+ def E(expr):
60
+ integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
61
+ (x, 0, oo), (y, -oo, oo), meijerg=True)
62
+ integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1),
63
+ (y, -oo, oo), (x, 0, oo), meijerg=True)
64
+
65
+ bench = [
66
+ 'MT(x**nu*Heaviside(x - 1), x, s)',
67
+ 'MT(x**nu*Heaviside(1 - x), x, s)',
68
+ 'MT((1-x)**(beta - 1)*Heaviside(1-x), x, s)',
69
+ 'MT((x-1)**(beta - 1)*Heaviside(x-1), x, s)',
70
+ 'MT((1+x)**(-rho), x, s)',
71
+ 'MT(abs(1-x)**(-rho), x, s)',
72
+ 'MT((1-x)**(beta-1)*Heaviside(1-x) + a*(x-1)**(beta-1)*Heaviside(x-1), x, s)',
73
+ 'MT((x**a-b**a)/(x-b), x, s)',
74
+ 'MT((x**a-bpos**a)/(x-bpos), x, s)',
75
+ 'MT(exp(-x), x, s)',
76
+ 'MT(exp(-1/x), x, s)',
77
+ 'MT(log(x)**4*Heaviside(1-x), x, s)',
78
+ 'MT(log(x)**3*Heaviside(x-1), x, s)',
79
+ 'MT(log(x + 1), x, s)',
80
+ 'MT(log(1/x + 1), x, s)',
81
+ 'MT(log(abs(1 - x)), x, s)',
82
+ 'MT(log(abs(1 - 1/x)), x, s)',
83
+ 'MT(log(x)/(x+1), x, s)',
84
+ 'MT(log(x)**2/(x+1), x, s)',
85
+ 'MT(log(x)/(x+1)**2, x, s)',
86
+ 'MT(erf(sqrt(x)), x, s)',
87
+
88
+ 'MT(besselj(a, 2*sqrt(x)), x, s)',
89
+ 'MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s)',
90
+ 'MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s)',
91
+ 'MT(besselj(a, sqrt(x))**2, x, s)',
92
+ 'MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s)',
93
+ 'MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s)',
94
+ 'MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s)',
95
+ 'MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)',
96
+ 'MT(bessely(a, 2*sqrt(x)), x, s)',
97
+ 'MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s)',
98
+ 'MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s)',
99
+ 'MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s)',
100
+ 'MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s)',
101
+ 'MT(bessely(a, sqrt(x))**2, x, s)',
102
+
103
+ 'MT(besselk(a, 2*sqrt(x)), x, s)',
104
+ 'MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk(a, 2*sqrt(2*sqrt(x))), x, s)',
105
+ 'MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s)',
106
+ 'MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s)',
107
+ 'MT(exp(-x/2)*besselk(a, x/2), x, s)',
108
+
109
+ # later: ILT, IMT
110
+
111
+ 'LT((t-apos)**bpos*exp(-cpos*(t-apos))*Heaviside(t-apos), t, s)',
112
+ 'LT(t**apos, t, s)',
113
+ 'LT(Heaviside(t), t, s)',
114
+ 'LT(Heaviside(t - apos), t, s)',
115
+ 'LT(1 - exp(-apos*t), t, s)',
116
+ 'LT((exp(2*t)-1)*exp(-bpos - t)*Heaviside(t)/2, t, s, noconds=True)',
117
+ 'LT(exp(t), t, s)',
118
+ 'LT(exp(2*t), t, s)',
119
+ 'LT(exp(apos*t), t, s)',
120
+ 'LT(log(t/apos), t, s)',
121
+ 'LT(erf(t), t, s)',
122
+ 'LT(sin(apos*t), t, s)',
123
+ 'LT(cos(apos*t), t, s)',
124
+ 'LT(exp(-apos*t)*sin(bpos*t), t, s)',
125
+ 'LT(exp(-apos*t)*cos(bpos*t), t, s)',
126
+ 'LT(besselj(0, t), t, s, noconds=True)',
127
+ 'LT(besselj(1, t), t, s, noconds=True)',
128
+
129
+ 'FT(Heaviside(1 - abs(2*apos*x)), x, k)',
130
+ 'FT(Heaviside(1-abs(apos*x))*(1-abs(apos*x)), x, k)',
131
+ 'FT(exp(-apos*x)*Heaviside(x), x, k)',
132
+ 'IFT(1/(apos + 2*pi*I*x), x, posk, noconds=False)',
133
+ 'IFT(1/(apos + 2*pi*I*x), x, -posk, noconds=False)',
134
+ 'IFT(1/(apos + 2*pi*I*x), x, negk)',
135
+ 'FT(x*exp(-apos*x)*Heaviside(x), x, k)',
136
+ 'FT(exp(-apos*x)*sin(bpos*x)*Heaviside(x), x, k)',
137
+ 'FT(exp(-apos*x**2), x, k)',
138
+ 'IFT(sqrt(pi/apos)*exp(-(pi*k)**2/apos), k, x)',
139
+ 'FT(exp(-apos*abs(x)), x, k)',
140
+
141
+ 'integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True)',
142
+ 'integrate(x*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True)',
143
+ 'integrate(x**2*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True)',
144
+ 'integrate(x**3*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True)',
145
+ 'integrate(normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
146
+ ' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
147
+ 'integrate(x*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
148
+ ' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
149
+ 'integrate(y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
150
+ ' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
151
+ 'integrate(x*y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
152
+ ' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
153
+ 'integrate((x+y+1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
154
+ ' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
155
+ 'integrate((x+y-1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
156
+ ' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
157
+ 'integrate(x**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
158
+ ' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
159
+ 'integrate(y**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),'
160
+ ' (x, -oo, oo), (y, -oo, oo), meijerg=True)',
161
+ 'integrate(exponential(x, rate), (x, 0, oo), meijerg=True)',
162
+ 'integrate(x*exponential(x, rate), (x, 0, oo), meijerg=True)',
163
+ 'integrate(x**2*exponential(x, rate), (x, 0, oo), meijerg=True)',
164
+ 'E(1)',
165
+ 'E(x*y)',
166
+ 'E(x*y**2)',
167
+ 'E((x+y+1)**2)',
168
+ 'E(x+y+1)',
169
+ 'E((x+y-1)**2)',
170
+ 'integrate(betadist, (x, 0, oo), meijerg=True)',
171
+ 'integrate(x*betadist, (x, 0, oo), meijerg=True)',
172
+ 'integrate(x**2*betadist, (x, 0, oo), meijerg=True)',
173
+ 'integrate(chi, (x, 0, oo), meijerg=True)',
174
+ 'integrate(x*chi, (x, 0, oo), meijerg=True)',
175
+ 'integrate(x**2*chi, (x, 0, oo), meijerg=True)',
176
+ 'integrate(chisquared, (x, 0, oo), meijerg=True)',
177
+ 'integrate(x*chisquared, (x, 0, oo), meijerg=True)',
178
+ 'integrate(x**2*chisquared, (x, 0, oo), meijerg=True)',
179
+ 'integrate(((x-k)/sqrt(2*k))**3*chisquared, (x, 0, oo), meijerg=True)',
180
+ 'integrate(dagum, (x, 0, oo), meijerg=True)',
181
+ 'integrate(x*dagum, (x, 0, oo), meijerg=True)',
182
+ 'integrate(x**2*dagum, (x, 0, oo), meijerg=True)',
183
+ 'integrate(f, (x, 0, oo), meijerg=True)',
184
+ 'integrate(x*f, (x, 0, oo), meijerg=True)',
185
+ 'integrate(x**2*f, (x, 0, oo), meijerg=True)',
186
+ 'integrate(rice, (x, 0, oo), meijerg=True)',
187
+ 'integrate(laplace, (x, -oo, oo), meijerg=True)',
188
+ 'integrate(x*laplace, (x, -oo, oo), meijerg=True)',
189
+ 'integrate(x**2*laplace, (x, -oo, oo), meijerg=True)',
190
+ 'integrate(log(x) * x**(k-1) * exp(-x) / gamma(k), (x, 0, oo))',
191
+
192
+ 'integrate(sin(z*x)*(x**2-1)**(-(y+S(1)/2)), (x, 1, oo), meijerg=True)',
193
+ 'integrate(besselj(0,x)*besselj(1,x)*exp(-x**2), (x, 0, oo), meijerg=True)',
194
+ 'integrate(besselj(0,x)*besselj(1,x)*besselk(0,x), (x, 0, oo), meijerg=True)',
195
+ 'integrate(besselj(0,x)*besselj(1,x)*exp(-x**2), (x, 0, oo), meijerg=True)',
196
+ 'integrate(besselj(a,x)*besselj(b,x)/x, (x,0,oo), meijerg=True)',
197
+
198
+ 'hyperexpand(meijerg((-s - a/2 + 1, -s + a/2 + 1), (-a/2 - S(1)/2, -s + a/2 + S(3)/2), (a/2, -a/2), (-a/2 - S(1)/2, -s + a/2 + S(3)/2), 1))',
199
+ "gammasimp(S('2**(2*s)*(-pi*gamma(-a + 1)*gamma(a + 1)*gamma(-a - s + 1)*gamma(-a + s - 1/2)*gamma(a - s + 3/2)*gamma(a + s + 1)/(a*(a + s)) - gamma(-a - 1/2)*gamma(-a + 1)*gamma(a + 1)*gamma(a + 3/2)*gamma(-s + 3/2)*gamma(s - 1/2)*gamma(-a + s + 1)*gamma(a - s + 1)/(a*(-a + s)))*gamma(-2*s + 1)*gamma(s + 1)/(pi*s*gamma(-a - 1/2)*gamma(a + 3/2)*gamma(-s + 1)*gamma(-s + 3/2)*gamma(s - 1/2)*gamma(-a - s + 1)*gamma(-a + s - 1/2)*gamma(a - s + 1)*gamma(a - s + 3/2))'))",
200
+
201
+ 'mellin_transform(E1(x), x, s)',
202
+ 'inverse_mellin_transform(gamma(s)/s, s, x, (0, oo))',
203
+ 'mellin_transform(expint(a, x), x, s)',
204
+ 'mellin_transform(Si(x), x, s)',
205
+ 'inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2)/(2*s*gamma(-s/2 + 1)), s, x, (-1, 0))',
206
+ 'mellin_transform(Ci(sqrt(x)), x, s)',
207
+ 'inverse_mellin_transform(-4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + S(1)/2)),s, u, (0, 1))',
208
+ 'laplace_transform(Ci(x), x, s)',
209
+ 'laplace_transform(expint(a, x), x, s)',
210
+ 'laplace_transform(expint(1, x), x, s)',
211
+ 'laplace_transform(expint(2, x), x, s)',
212
+ 'inverse_laplace_transform(-log(1 + s**2)/2/s, s, u)',
213
+ 'inverse_laplace_transform(log(s + 1)/s, s, x)',
214
+ 'inverse_laplace_transform((s - log(s + 1))/s**2, s, x)',
215
+ 'laplace_transform(Chi(x), x, s)',
216
+ 'laplace_transform(Shi(x), x, s)',
217
+
218
+ 'integrate(exp(-z*x)/x, (x, 1, oo), meijerg=True, conds="none")',
219
+ 'integrate(exp(-z*x)/x**2, (x, 1, oo), meijerg=True, conds="none")',
220
+ 'integrate(exp(-z*x)/x**3, (x, 1, oo), meijerg=True,conds="none")',
221
+ 'integrate(-cos(x)/x, (x, tpos, oo), meijerg=True)',
222
+ 'integrate(-sin(x)/x, (x, tpos, oo), meijerg=True)',
223
+ 'integrate(sin(x)/x, (x, 0, z), meijerg=True)',
224
+ 'integrate(sinh(x)/x, (x, 0, z), meijerg=True)',
225
+ 'integrate(exp(-x)/x, x, meijerg=True)',
226
+ 'integrate(exp(-x)/x**2, x, meijerg=True)',
227
+ 'integrate(cos(u)/u, u, meijerg=True)',
228
+ 'integrate(cosh(u)/u, u, meijerg=True)',
229
+ 'integrate(expint(1, x), x, meijerg=True)',
230
+ 'integrate(expint(2, x), x, meijerg=True)',
231
+ 'integrate(Si(x), x, meijerg=True)',
232
+ 'integrate(Ci(u), u, meijerg=True)',
233
+ 'integrate(Shi(x), x, meijerg=True)',
234
+ 'integrate(Chi(u), u, meijerg=True)',
235
+ 'integrate(Si(x)*exp(-x), (x, 0, oo), meijerg=True)',
236
+ 'integrate(expint(1, x)*sin(x), (x, 0, oo), meijerg=True)'
237
+ ]
238
+
239
+ from time import time
240
+ from sympy.core.cache import clear_cache
241
+ import sys
242
+
243
+ timings = []
244
+
245
+ if __name__ == '__main__':
246
+ for n, string in enumerate(bench):
247
+ clear_cache()
248
+ _t = time()
249
+ exec(string)
250
+ _t = time() - _t
251
+ timings += [(_t, string)]
252
+ sys.stdout.write('.')
253
+ sys.stdout.flush()
254
+ if n % (len(bench) // 10) == 0:
255
+ sys.stdout.write('%s' % (10*n // len(bench)))
256
+ print()
257
+
258
+ timings.sort(key=lambda x: -x[0])
259
+
260
+ for ti, string in timings:
261
+ print('%.2fs %s' % (ti, string))
env-llmeval/lib/python3.10/site-packages/sympy/benchmarks/bench_symbench.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ from sympy.core.random import random
3
+ from sympy.core.numbers import (I, Integer, pi)
4
+ from sympy.core.symbol import Symbol
5
+ from sympy.core.sympify import sympify
6
+ from sympy.functions.elementary.miscellaneous import sqrt
7
+ from sympy.functions.elementary.trigonometric import sin
8
+ from sympy.polys.polytools import factor
9
+ from sympy.simplify.simplify import simplify
10
+ from sympy.abc import x, y, z
11
+ from timeit import default_timer as clock
12
+
13
+
14
+ def bench_R1():
15
+ "real(f(f(f(f(f(f(f(f(f(f(i/2)))))))))))"
16
+ def f(z):
17
+ return sqrt(Integer(1)/3)*z**2 + I/3
18
+ f(f(f(f(f(f(f(f(f(f(I/2)))))))))).as_real_imag()[0]
19
+
20
+
21
+ def bench_R2():
22
+ "Hermite polynomial hermite(15, y)"
23
+ def hermite(n, y):
24
+ if n == 1:
25
+ return 2*y
26
+ if n == 0:
27
+ return 1
28
+ return (2*y*hermite(n - 1, y) - 2*(n - 1)*hermite(n - 2, y)).expand()
29
+
30
+ hermite(15, y)
31
+
32
+
33
+ def bench_R3():
34
+ "a = [bool(f==f) for _ in range(10)]"
35
+ f = x + y + z
36
+ [bool(f == f) for _ in range(10)]
37
+
38
+
39
+ def bench_R4():
40
+ # we don't have Tuples
41
+ pass
42
+
43
+
44
+ def bench_R5():
45
+ "blowup(L, 8); L=uniq(L)"
46
+ def blowup(L, n):
47
+ for i in range(n):
48
+ L.append( (L[i] + L[i + 1]) * L[i + 2] )
49
+
50
+ def uniq(x):
51
+ v = set(x)
52
+ return v
53
+ L = [x, y, z]
54
+ blowup(L, 8)
55
+ L = uniq(L)
56
+
57
+
58
+ def bench_R6():
59
+ "sum(simplify((x+sin(i))/x+(x-sin(i))/x) for i in range(100))"
60
+ sum(simplify((x + sin(i))/x + (x - sin(i))/x) for i in range(100))
61
+
62
+
63
+ def bench_R7():
64
+ "[f.subs(x, random()) for _ in range(10**4)]"
65
+ f = x**24 + 34*x**12 + 45*x**3 + 9*x**18 + 34*x**10 + 32*x**21
66
+ [f.subs(x, random()) for _ in range(10**4)]
67
+
68
+
69
+ def bench_R8():
70
+ "right(x^2,0,5,10^4)"
71
+ def right(f, a, b, n):
72
+ a = sympify(a)
73
+ b = sympify(b)
74
+ n = sympify(n)
75
+ x = f.atoms(Symbol).pop()
76
+ Deltax = (b - a)/n
77
+ c = a
78
+ est = 0
79
+ for i in range(n):
80
+ c += Deltax
81
+ est += f.subs(x, c)
82
+ return est*Deltax
83
+
84
+ right(x**2, 0, 5, 10**4)
85
+
86
+
87
+ def _bench_R9():
88
+ "factor(x^20 - pi^5*y^20)"
89
+ factor(x**20 - pi**5*y**20)
90
+
91
+
92
+ def bench_R10():
93
+ "v = [-pi,-pi+1/10..,pi]"
94
+ def srange(min, max, step):
95
+ v = [min]
96
+ while (max - v[-1]).evalf() > 0:
97
+ v.append(v[-1] + step)
98
+ return v[:-1]
99
+ srange(-pi, pi, sympify(1)/10)
100
+
101
+
102
+ def bench_R11():
103
+ "a = [random() + random()*I for w in [0..1000]]"
104
+ [random() + random()*I for w in range(1000)]
105
+
106
+
107
+ def bench_S1():
108
+ "e=(x+y+z+1)**7;f=e*(e+1);f.expand()"
109
+ e = (x + y + z + 1)**7
110
+ f = e*(e + 1)
111
+ f.expand()
112
+
113
+
114
+ if __name__ == '__main__':
115
+ benchmarks = [
116
+ bench_R1,
117
+ bench_R2,
118
+ bench_R3,
119
+ bench_R5,
120
+ bench_R6,
121
+ bench_R7,
122
+ bench_R8,
123
+ #_bench_R9,
124
+ bench_R10,
125
+ bench_R11,
126
+ #bench_S1,
127
+ ]
128
+
129
+ report = []
130
+ for b in benchmarks:
131
+ t = clock()
132
+ b()
133
+ t = clock() - t
134
+ print("%s%65s: %f" % (b.__name__, b.__doc__, t))
env-llmeval/lib/python3.10/site-packages/sympy/interactive/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ """Helper module for setting up interactive SymPy sessions. """
2
+
3
+ from .printing import init_printing
4
+ from .session import init_session
5
+ from .traversal import interactive_traversal
6
+
7
+
8
+ __all__ = ['init_printing', 'init_session', 'interactive_traversal']
env-llmeval/lib/python3.10/site-packages/sympy/interactive/printing.py ADDED
@@ -0,0 +1,562 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tools for setting up printing in interactive sessions. """
2
+
3
+ from sympy.external.importtools import version_tuple
4
+ from io import BytesIO
5
+
6
+ from sympy.printing.latex import latex as default_latex
7
+ from sympy.printing.preview import preview
8
+ from sympy.utilities.misc import debug
9
+ from sympy.printing.defaults import Printable
10
+
11
+
12
+ def _init_python_printing(stringify_func, **settings):
13
+ """Setup printing in Python interactive session. """
14
+ import sys
15
+ import builtins
16
+
17
+ def _displayhook(arg):
18
+ """Python's pretty-printer display hook.
19
+
20
+ This function was adapted from:
21
+
22
+ https://www.python.org/dev/peps/pep-0217/
23
+
24
+ """
25
+ if arg is not None:
26
+ builtins._ = None
27
+ print(stringify_func(arg, **settings))
28
+ builtins._ = arg
29
+
30
+ sys.displayhook = _displayhook
31
+
32
+
33
+ def _init_ipython_printing(ip, stringify_func, use_latex, euler, forecolor,
34
+ backcolor, fontsize, latex_mode, print_builtin,
35
+ latex_printer, scale, **settings):
36
+ """Setup printing in IPython interactive session. """
37
+ try:
38
+ from IPython.lib.latextools import latex_to_png
39
+ except ImportError:
40
+ pass
41
+
42
+ # Guess best font color if none was given based on the ip.colors string.
43
+ # From the IPython documentation:
44
+ # It has four case-insensitive values: 'nocolor', 'neutral', 'linux',
45
+ # 'lightbg'. The default is neutral, which should be legible on either
46
+ # dark or light terminal backgrounds. linux is optimised for dark
47
+ # backgrounds and lightbg for light ones.
48
+ if forecolor is None:
49
+ color = ip.colors.lower()
50
+ if color == 'lightbg':
51
+ forecolor = 'Black'
52
+ elif color == 'linux':
53
+ forecolor = 'White'
54
+ else:
55
+ # No idea, go with gray.
56
+ forecolor = 'Gray'
57
+ debug("init_printing: Automatic foreground color:", forecolor)
58
+
59
+ if use_latex == "svg":
60
+ extra_preamble = "\n\\special{color %s}" % forecolor
61
+ else:
62
+ extra_preamble = ""
63
+
64
+ imagesize = 'tight'
65
+ offset = "0cm,0cm"
66
+ resolution = round(150*scale)
67
+ dvi = r"-T %s -D %d -bg %s -fg %s -O %s" % (
68
+ imagesize, resolution, backcolor, forecolor, offset)
69
+ dvioptions = dvi.split()
70
+
71
+ svg_scale = 150/72*scale
72
+ dvioptions_svg = ["--no-fonts", "--scale={}".format(svg_scale)]
73
+
74
+ debug("init_printing: DVIOPTIONS:", dvioptions)
75
+ debug("init_printing: DVIOPTIONS_SVG:", dvioptions_svg)
76
+
77
+ latex = latex_printer or default_latex
78
+
79
+ def _print_plain(arg, p, cycle):
80
+ """caller for pretty, for use in IPython 0.11"""
81
+ if _can_print(arg):
82
+ p.text(stringify_func(arg))
83
+ else:
84
+ p.text(IPython.lib.pretty.pretty(arg))
85
+
86
+ def _preview_wrapper(o):
87
+ exprbuffer = BytesIO()
88
+ try:
89
+ preview(o, output='png', viewer='BytesIO', euler=euler,
90
+ outputbuffer=exprbuffer, extra_preamble=extra_preamble,
91
+ dvioptions=dvioptions, fontsize=fontsize)
92
+ except Exception as e:
93
+ # IPython swallows exceptions
94
+ debug("png printing:", "_preview_wrapper exception raised:",
95
+ repr(e))
96
+ raise
97
+ return exprbuffer.getvalue()
98
+
99
+ def _svg_wrapper(o):
100
+ exprbuffer = BytesIO()
101
+ try:
102
+ preview(o, output='svg', viewer='BytesIO', euler=euler,
103
+ outputbuffer=exprbuffer, extra_preamble=extra_preamble,
104
+ dvioptions=dvioptions_svg, fontsize=fontsize)
105
+ except Exception as e:
106
+ # IPython swallows exceptions
107
+ debug("svg printing:", "_preview_wrapper exception raised:",
108
+ repr(e))
109
+ raise
110
+ return exprbuffer.getvalue().decode('utf-8')
111
+
112
+ def _matplotlib_wrapper(o):
113
+ # mathtext can't render some LaTeX commands. For example, it can't
114
+ # render any LaTeX environments such as array or matrix. So here we
115
+ # ensure that if mathtext fails to render, we return None.
116
+ try:
117
+ try:
118
+ return latex_to_png(o, color=forecolor, scale=scale)
119
+ except TypeError: # Old IPython version without color and scale
120
+ return latex_to_png(o)
121
+ except ValueError as e:
122
+ debug('matplotlib exception caught:', repr(e))
123
+ return None
124
+
125
+
126
+ # Hook methods for builtin SymPy printers
127
+ printing_hooks = ('_latex', '_sympystr', '_pretty', '_sympyrepr')
128
+
129
+
130
+ def _can_print(o):
131
+ """Return True if type o can be printed with one of the SymPy printers.
132
+
133
+ If o is a container type, this is True if and only if every element of
134
+ o can be printed in this way.
135
+ """
136
+
137
+ try:
138
+ # If you're adding another type, make sure you add it to printable_types
139
+ # later in this file as well
140
+
141
+ builtin_types = (list, tuple, set, frozenset)
142
+ if isinstance(o, builtin_types):
143
+ # If the object is a custom subclass with a custom str or
144
+ # repr, use that instead.
145
+ if (type(o).__str__ not in (i.__str__ for i in builtin_types) or
146
+ type(o).__repr__ not in (i.__repr__ for i in builtin_types)):
147
+ return False
148
+ return all(_can_print(i) for i in o)
149
+ elif isinstance(o, dict):
150
+ return all(_can_print(i) and _can_print(o[i]) for i in o)
151
+ elif isinstance(o, bool):
152
+ return False
153
+ elif isinstance(o, Printable):
154
+ # types known to SymPy
155
+ return True
156
+ elif any(hasattr(o, hook) for hook in printing_hooks):
157
+ # types which add support themselves
158
+ return True
159
+ elif isinstance(o, (float, int)) and print_builtin:
160
+ return True
161
+ return False
162
+ except RuntimeError:
163
+ return False
164
+ # This is in case maximum recursion depth is reached.
165
+ # Since RecursionError is for versions of Python 3.5+
166
+ # so this is to guard against RecursionError for older versions.
167
+
168
+ def _print_latex_png(o):
169
+ """
170
+ A function that returns a png rendered by an external latex
171
+ distribution, falling back to matplotlib rendering
172
+ """
173
+ if _can_print(o):
174
+ s = latex(o, mode=latex_mode, **settings)
175
+ if latex_mode == 'plain':
176
+ s = '$\\displaystyle %s$' % s
177
+ try:
178
+ return _preview_wrapper(s)
179
+ except RuntimeError as e:
180
+ debug('preview failed with:', repr(e),
181
+ ' Falling back to matplotlib backend')
182
+ if latex_mode != 'inline':
183
+ s = latex(o, mode='inline', **settings)
184
+ return _matplotlib_wrapper(s)
185
+
186
+ def _print_latex_svg(o):
187
+ """
188
+ A function that returns a svg rendered by an external latex
189
+ distribution, no fallback available.
190
+ """
191
+ if _can_print(o):
192
+ s = latex(o, mode=latex_mode, **settings)
193
+ if latex_mode == 'plain':
194
+ s = '$\\displaystyle %s$' % s
195
+ try:
196
+ return _svg_wrapper(s)
197
+ except RuntimeError as e:
198
+ debug('preview failed with:', repr(e),
199
+ ' No fallback available.')
200
+
201
+ def _print_latex_matplotlib(o):
202
+ """
203
+ A function that returns a png rendered by mathtext
204
+ """
205
+ if _can_print(o):
206
+ s = latex(o, mode='inline', **settings)
207
+ return _matplotlib_wrapper(s)
208
+
209
+ def _print_latex_text(o):
210
+ """
211
+ A function to generate the latex representation of SymPy expressions.
212
+ """
213
+ if _can_print(o):
214
+ s = latex(o, mode=latex_mode, **settings)
215
+ if latex_mode == 'plain':
216
+ return '$\\displaystyle %s$' % s
217
+ return s
218
+
219
+ def _result_display(self, arg):
220
+ """IPython's pretty-printer display hook, for use in IPython 0.10
221
+
222
+ This function was adapted from:
223
+
224
+ ipython/IPython/hooks.py:155
225
+
226
+ """
227
+ if self.rc.pprint:
228
+ out = stringify_func(arg)
229
+
230
+ if '\n' in out:
231
+ print()
232
+
233
+ print(out)
234
+ else:
235
+ print(repr(arg))
236
+
237
+ import IPython
238
+ if version_tuple(IPython.__version__) >= version_tuple('0.11'):
239
+
240
+ # Printable is our own type, so we handle it with methods instead of
241
+ # the approach required by builtin types. This allows downstream
242
+ # packages to override the methods in their own subclasses of Printable,
243
+ # which avoids the effects of gh-16002.
244
+ printable_types = [float, tuple, list, set, frozenset, dict, int]
245
+
246
+ plaintext_formatter = ip.display_formatter.formatters['text/plain']
247
+
248
+ # Exception to the rule above: IPython has better dispatching rules
249
+ # for plaintext printing (xref ipython/ipython#8938), and we can't
250
+ # use `_repr_pretty_` without hitting a recursion error in _print_plain.
251
+ for cls in printable_types + [Printable]:
252
+ plaintext_formatter.for_type(cls, _print_plain)
253
+
254
+ svg_formatter = ip.display_formatter.formatters['image/svg+xml']
255
+ if use_latex in ('svg', ):
256
+ debug("init_printing: using svg formatter")
257
+ for cls in printable_types:
258
+ svg_formatter.for_type(cls, _print_latex_svg)
259
+ Printable._repr_svg_ = _print_latex_svg
260
+ else:
261
+ debug("init_printing: not using any svg formatter")
262
+ for cls in printable_types:
263
+ # Better way to set this, but currently does not work in IPython
264
+ #png_formatter.for_type(cls, None)
265
+ if cls in svg_formatter.type_printers:
266
+ svg_formatter.type_printers.pop(cls)
267
+ Printable._repr_svg_ = Printable._repr_disabled
268
+
269
+ png_formatter = ip.display_formatter.formatters['image/png']
270
+ if use_latex in (True, 'png'):
271
+ debug("init_printing: using png formatter")
272
+ for cls in printable_types:
273
+ png_formatter.for_type(cls, _print_latex_png)
274
+ Printable._repr_png_ = _print_latex_png
275
+ elif use_latex == 'matplotlib':
276
+ debug("init_printing: using matplotlib formatter")
277
+ for cls in printable_types:
278
+ png_formatter.for_type(cls, _print_latex_matplotlib)
279
+ Printable._repr_png_ = _print_latex_matplotlib
280
+ else:
281
+ debug("init_printing: not using any png formatter")
282
+ for cls in printable_types:
283
+ # Better way to set this, but currently does not work in IPython
284
+ #png_formatter.for_type(cls, None)
285
+ if cls in png_formatter.type_printers:
286
+ png_formatter.type_printers.pop(cls)
287
+ Printable._repr_png_ = Printable._repr_disabled
288
+
289
+ latex_formatter = ip.display_formatter.formatters['text/latex']
290
+ if use_latex in (True, 'mathjax'):
291
+ debug("init_printing: using mathjax formatter")
292
+ for cls in printable_types:
293
+ latex_formatter.for_type(cls, _print_latex_text)
294
+ Printable._repr_latex_ = _print_latex_text
295
+ else:
296
+ debug("init_printing: not using text/latex formatter")
297
+ for cls in printable_types:
298
+ # Better way to set this, but currently does not work in IPython
299
+ #latex_formatter.for_type(cls, None)
300
+ if cls in latex_formatter.type_printers:
301
+ latex_formatter.type_printers.pop(cls)
302
+ Printable._repr_latex_ = Printable._repr_disabled
303
+
304
+ else:
305
+ ip.set_hook('result_display', _result_display)
306
+
307
+ def _is_ipython(shell):
308
+ """Is a shell instance an IPython shell?"""
309
+ # shortcut, so we don't import IPython if we don't have to
310
+ from sys import modules
311
+ if 'IPython' not in modules:
312
+ return False
313
+ try:
314
+ from IPython.core.interactiveshell import InteractiveShell
315
+ except ImportError:
316
+ # IPython < 0.11
317
+ try:
318
+ from IPython.iplib import InteractiveShell
319
+ except ImportError:
320
+ # Reaching this points means IPython has changed in a backward-incompatible way
321
+ # that we don't know about. Warn?
322
+ return False
323
+ return isinstance(shell, InteractiveShell)
324
+
325
+ # Used by the doctester to override the default for no_global
326
+ NO_GLOBAL = False
327
+
328
+ def init_printing(pretty_print=True, order=None, use_unicode=None,
329
+ use_latex=None, wrap_line=None, num_columns=None,
330
+ no_global=False, ip=None, euler=False, forecolor=None,
331
+ backcolor='Transparent', fontsize='10pt',
332
+ latex_mode='plain', print_builtin=True,
333
+ str_printer=None, pretty_printer=None,
334
+ latex_printer=None, scale=1.0, **settings):
335
+ r"""
336
+ Initializes pretty-printer depending on the environment.
337
+
338
+ Parameters
339
+ ==========
340
+
341
+ pretty_print : bool, default=True
342
+ If ``True``, use :func:`~.pretty_print` to stringify or the provided pretty
343
+ printer; if ``False``, use :func:`~.sstrrepr` to stringify or the provided string
344
+ printer.
345
+ order : string or None, default='lex'
346
+ There are a few different settings for this parameter:
347
+ ``'lex'`` (default), which is lexographic order;
348
+ ``'grlex'``, which is graded lexographic order;
349
+ ``'grevlex'``, which is reversed graded lexographic order;
350
+ ``'old'``, which is used for compatibility reasons and for long expressions;
351
+ ``None``, which sets it to lex.
352
+ use_unicode : bool or None, default=None
353
+ If ``True``, use unicode characters;
354
+ if ``False``, do not use unicode characters;
355
+ if ``None``, make a guess based on the environment.
356
+ use_latex : string, bool, or None, default=None
357
+ If ``True``, use default LaTeX rendering in GUI interfaces (png and
358
+ mathjax);
359
+ if ``False``, do not use LaTeX rendering;
360
+ if ``None``, make a guess based on the environment;
361
+ if ``'png'``, enable LaTeX rendering with an external LaTeX compiler,
362
+ falling back to matplotlib if external compilation fails;
363
+ if ``'matplotlib'``, enable LaTeX rendering with matplotlib;
364
+ if ``'mathjax'``, enable LaTeX text generation, for example MathJax
365
+ rendering in IPython notebook or text rendering in LaTeX documents;
366
+ if ``'svg'``, enable LaTeX rendering with an external latex compiler,
367
+ no fallback
368
+ wrap_line : bool
369
+ If True, lines will wrap at the end; if False, they will not wrap
370
+ but continue as one line. This is only relevant if ``pretty_print`` is
371
+ True.
372
+ num_columns : int or None, default=None
373
+ If ``int``, number of columns before wrapping is set to num_columns; if
374
+ ``None``, number of columns before wrapping is set to terminal width.
375
+ This is only relevant if ``pretty_print`` is ``True``.
376
+ no_global : bool, default=False
377
+ If ``True``, the settings become system wide;
378
+ if ``False``, use just for this console/session.
379
+ ip : An interactive console
380
+ This can either be an instance of IPython,
381
+ or a class that derives from code.InteractiveConsole.
382
+ euler : bool, optional, default=False
383
+ Loads the euler package in the LaTeX preamble for handwritten style
384
+ fonts (https://www.ctan.org/pkg/euler).
385
+ forecolor : string or None, optional, default=None
386
+ DVI setting for foreground color. ``None`` means that either ``'Black'``,
387
+ ``'White'``, or ``'Gray'`` will be selected based on a guess of the IPython
388
+ terminal color setting. See notes.
389
+ backcolor : string, optional, default='Transparent'
390
+ DVI setting for background color. See notes.
391
+ fontsize : string or int, optional, default='10pt'
392
+ A font size to pass to the LaTeX documentclass function in the
393
+ preamble. Note that the options are limited by the documentclass.
394
+ Consider using scale instead.
395
+ latex_mode : string, optional, default='plain'
396
+ The mode used in the LaTeX printer. Can be one of:
397
+ ``{'inline'|'plain'|'equation'|'equation*'}``.
398
+ print_builtin : boolean, optional, default=True
399
+ If ``True`` then floats and integers will be printed. If ``False`` the
400
+ printer will only print SymPy types.
401
+ str_printer : function, optional, default=None
402
+ A custom string printer function. This should mimic
403
+ :func:`~.sstrrepr()`.
404
+ pretty_printer : function, optional, default=None
405
+ A custom pretty printer. This should mimic :func:`~.pretty()`.
406
+ latex_printer : function, optional, default=None
407
+ A custom LaTeX printer. This should mimic :func:`~.latex()`.
408
+ scale : float, optional, default=1.0
409
+ Scale the LaTeX output when using the ``'png'`` or ``'svg'`` backends.
410
+ Useful for high dpi screens.
411
+ settings :
412
+ Any additional settings for the ``latex`` and ``pretty`` commands can
413
+ be used to fine-tune the output.
414
+
415
+ Examples
416
+ ========
417
+
418
+ >>> from sympy.interactive import init_printing
419
+ >>> from sympy import Symbol, sqrt
420
+ >>> from sympy.abc import x, y
421
+ >>> sqrt(5)
422
+ sqrt(5)
423
+ >>> init_printing(pretty_print=True) # doctest: +SKIP
424
+ >>> sqrt(5) # doctest: +SKIP
425
+ ___
426
+ \/ 5
427
+ >>> theta = Symbol('theta') # doctest: +SKIP
428
+ >>> init_printing(use_unicode=True) # doctest: +SKIP
429
+ >>> theta # doctest: +SKIP
430
+ \u03b8
431
+ >>> init_printing(use_unicode=False) # doctest: +SKIP
432
+ >>> theta # doctest: +SKIP
433
+ theta
434
+ >>> init_printing(order='lex') # doctest: +SKIP
435
+ >>> str(y + x + y**2 + x**2) # doctest: +SKIP
436
+ x**2 + x + y**2 + y
437
+ >>> init_printing(order='grlex') # doctest: +SKIP
438
+ >>> str(y + x + y**2 + x**2) # doctest: +SKIP
439
+ x**2 + x + y**2 + y
440
+ >>> init_printing(order='grevlex') # doctest: +SKIP
441
+ >>> str(y * x**2 + x * y**2) # doctest: +SKIP
442
+ x**2*y + x*y**2
443
+ >>> init_printing(order='old') # doctest: +SKIP
444
+ >>> str(x**2 + y**2 + x + y) # doctest: +SKIP
445
+ x**2 + x + y**2 + y
446
+ >>> init_printing(num_columns=10) # doctest: +SKIP
447
+ >>> x**2 + x + y**2 + y # doctest: +SKIP
448
+ x + y +
449
+ x**2 + y**2
450
+
451
+ Notes
452
+ =====
453
+
454
+ The foreground and background colors can be selected when using ``'png'`` or
455
+ ``'svg'`` LaTeX rendering. Note that before the ``init_printing`` command is
456
+ executed, the LaTeX rendering is handled by the IPython console and not SymPy.
457
+
458
+ The colors can be selected among the 68 standard colors known to ``dvips``,
459
+ for a list see [1]_. In addition, the background color can be
460
+ set to ``'Transparent'`` (which is the default value).
461
+
462
+ When using the ``'Auto'`` foreground color, the guess is based on the
463
+ ``colors`` variable in the IPython console, see [2]_. Hence, if
464
+ that variable is set correctly in your IPython console, there is a high
465
+ chance that the output will be readable, although manual settings may be
466
+ needed.
467
+
468
+
469
+ References
470
+ ==========
471
+
472
+ .. [1] https://en.wikibooks.org/wiki/LaTeX/Colors#The_68_standard_colors_known_to_dvips
473
+
474
+ .. [2] https://ipython.readthedocs.io/en/stable/config/details.html#terminal-colors
475
+
476
+ See Also
477
+ ========
478
+
479
+ sympy.printing.latex
480
+ sympy.printing.pretty
481
+
482
+ """
483
+ import sys
484
+ from sympy.printing.printer import Printer
485
+
486
+ if pretty_print:
487
+ if pretty_printer is not None:
488
+ stringify_func = pretty_printer
489
+ else:
490
+ from sympy.printing import pretty as stringify_func
491
+ else:
492
+ if str_printer is not None:
493
+ stringify_func = str_printer
494
+ else:
495
+ from sympy.printing import sstrrepr as stringify_func
496
+
497
+ # Even if ip is not passed, double check that not in IPython shell
498
+ in_ipython = False
499
+ if ip is None:
500
+ try:
501
+ ip = get_ipython()
502
+ except NameError:
503
+ pass
504
+ else:
505
+ in_ipython = (ip is not None)
506
+
507
+ if ip and not in_ipython:
508
+ in_ipython = _is_ipython(ip)
509
+
510
+ if in_ipython and pretty_print:
511
+ try:
512
+ import IPython
513
+ # IPython 1.0 deprecates the frontend module, so we import directly
514
+ # from the terminal module to prevent a deprecation message from being
515
+ # shown.
516
+ if version_tuple(IPython.__version__) >= version_tuple('1.0'):
517
+ from IPython.terminal.interactiveshell import TerminalInteractiveShell
518
+ else:
519
+ from IPython.frontend.terminal.interactiveshell import TerminalInteractiveShell
520
+ from code import InteractiveConsole
521
+ except ImportError:
522
+ pass
523
+ else:
524
+ # This will be True if we are in the qtconsole or notebook
525
+ if not isinstance(ip, (InteractiveConsole, TerminalInteractiveShell)) \
526
+ and 'ipython-console' not in ''.join(sys.argv):
527
+ if use_unicode is None:
528
+ debug("init_printing: Setting use_unicode to True")
529
+ use_unicode = True
530
+ if use_latex is None:
531
+ debug("init_printing: Setting use_latex to True")
532
+ use_latex = True
533
+
534
+ if not NO_GLOBAL and not no_global:
535
+ Printer.set_global_settings(order=order, use_unicode=use_unicode,
536
+ wrap_line=wrap_line, num_columns=num_columns)
537
+ else:
538
+ _stringify_func = stringify_func
539
+
540
+ if pretty_print:
541
+ stringify_func = lambda expr, **settings: \
542
+ _stringify_func(expr, order=order,
543
+ use_unicode=use_unicode,
544
+ wrap_line=wrap_line,
545
+ num_columns=num_columns,
546
+ **settings)
547
+ else:
548
+ stringify_func = \
549
+ lambda expr, **settings: _stringify_func(
550
+ expr, order=order, **settings)
551
+
552
+ if in_ipython:
553
+ mode_in_settings = settings.pop("mode", None)
554
+ if mode_in_settings:
555
+ debug("init_printing: Mode is not able to be set due to internals"
556
+ "of IPython printing")
557
+ _init_ipython_printing(ip, stringify_func, use_latex, euler,
558
+ forecolor, backcolor, fontsize, latex_mode,
559
+ print_builtin, latex_printer, scale,
560
+ **settings)
561
+ else:
562
+ _init_python_printing(stringify_func, **settings)
env-llmeval/lib/python3.10/site-packages/sympy/interactive/traversal.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.basic import Basic
2
+ from sympy.printing import pprint
3
+
4
+ import random
5
+
6
+ def interactive_traversal(expr):
7
+ """Traverse a tree asking a user which branch to choose. """
8
+
9
+ RED, BRED = '\033[0;31m', '\033[1;31m'
10
+ GREEN, BGREEN = '\033[0;32m', '\033[1;32m'
11
+ YELLOW, BYELLOW = '\033[0;33m', '\033[1;33m' # noqa
12
+ BLUE, BBLUE = '\033[0;34m', '\033[1;34m' # noqa
13
+ MAGENTA, BMAGENTA = '\033[0;35m', '\033[1;35m'# noqa
14
+ CYAN, BCYAN = '\033[0;36m', '\033[1;36m' # noqa
15
+ END = '\033[0m'
16
+
17
+ def cprint(*args):
18
+ print("".join(map(str, args)) + END)
19
+
20
+ def _interactive_traversal(expr, stage):
21
+ if stage > 0:
22
+ print()
23
+
24
+ cprint("Current expression (stage ", BYELLOW, stage, END, "):")
25
+ print(BCYAN)
26
+ pprint(expr)
27
+ print(END)
28
+
29
+ if isinstance(expr, Basic):
30
+ if expr.is_Add:
31
+ args = expr.as_ordered_terms()
32
+ elif expr.is_Mul:
33
+ args = expr.as_ordered_factors()
34
+ else:
35
+ args = expr.args
36
+ elif hasattr(expr, "__iter__"):
37
+ args = list(expr)
38
+ else:
39
+ return expr
40
+
41
+ n_args = len(args)
42
+
43
+ if not n_args:
44
+ return expr
45
+
46
+ for i, arg in enumerate(args):
47
+ cprint(GREEN, "[", BGREEN, i, GREEN, "] ", BLUE, type(arg), END)
48
+ pprint(arg)
49
+ print()
50
+
51
+ if n_args == 1:
52
+ choices = '0'
53
+ else:
54
+ choices = '0-%d' % (n_args - 1)
55
+
56
+ try:
57
+ choice = input("Your choice [%s,f,l,r,d,?]: " % choices)
58
+ except EOFError:
59
+ result = expr
60
+ print()
61
+ else:
62
+ if choice == '?':
63
+ cprint(RED, "%s - select subexpression with the given index" %
64
+ choices)
65
+ cprint(RED, "f - select the first subexpression")
66
+ cprint(RED, "l - select the last subexpression")
67
+ cprint(RED, "r - select a random subexpression")
68
+ cprint(RED, "d - done\n")
69
+
70
+ result = _interactive_traversal(expr, stage)
71
+ elif choice in ('d', ''):
72
+ result = expr
73
+ elif choice == 'f':
74
+ result = _interactive_traversal(args[0], stage + 1)
75
+ elif choice == 'l':
76
+ result = _interactive_traversal(args[-1], stage + 1)
77
+ elif choice == 'r':
78
+ result = _interactive_traversal(random.choice(args), stage + 1)
79
+ else:
80
+ try:
81
+ choice = int(choice)
82
+ except ValueError:
83
+ cprint(BRED,
84
+ "Choice must be a number in %s range\n" % choices)
85
+ result = _interactive_traversal(expr, stage)
86
+ else:
87
+ if choice < 0 or choice >= n_args:
88
+ cprint(BRED, "Choice must be in %s range\n" % choices)
89
+ result = _interactive_traversal(expr, stage)
90
+ else:
91
+ result = _interactive_traversal(args[choice], stage + 1)
92
+
93
+ return result
94
+
95
+ return _interactive_traversal(expr, 0)
env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.94 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/decompogen.cpython-310.pyc ADDED
Binary file (3.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/inequalities.cpython-310.pyc ADDED
Binary file (23.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/pde.cpython-310.pyc ADDED
Binary file (29.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/polysys.cpython-310.pyc ADDED
Binary file (12.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/recurr.cpython-310.pyc ADDED
Binary file (22.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/solvers/__pycache__/solveset.cpython-310.pyc ADDED
Binary file (105 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/solvers/benchmarks/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (189 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/solvers/benchmarks/__pycache__/bench_solvers.cpython-310.pyc ADDED
Binary file (729 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/solvers/benchmarks/bench_solvers.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.symbol import Symbol
2
+ from sympy.matrices.dense import (eye, zeros)
3
+ from sympy.solvers.solvers import solve_linear_system
4
+
5
+ N = 8
6
+ M = zeros(N, N + 1)
7
+ M[:, :N] = eye(N)
8
+ S = [Symbol('A%i' % i) for i in range(N)]
9
+
10
+
11
+ def timeit_linsolve_trivial():
12
+ solve_linear_system(M, *S)
env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (184 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/test_polysys.cpython-310.pyc ADDED
Binary file (7.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/__pycache__/test_solvers.cpython-310.pyc ADDED
Binary file (106 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/test_constantsimp.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ If the arbitrary constant class from issue 4435 is ever implemented, this
3
+ should serve as a set of test cases.
4
+ """
5
+
6
+ from sympy.core.function import Function
7
+ from sympy.core.numbers import I
8
+ from sympy.core.power import Pow
9
+ from sympy.core.relational import Eq
10
+ from sympy.core.singleton import S
11
+ from sympy.core.symbol import Symbol
12
+ from sympy.functions.elementary.exponential import (exp, log)
13
+ from sympy.functions.elementary.hyperbolic import (cosh, sinh)
14
+ from sympy.functions.elementary.miscellaneous import sqrt
15
+ from sympy.functions.elementary.trigonometric import (acos, cos, sin)
16
+ from sympy.integrals.integrals import Integral
17
+ from sympy.solvers.ode.ode import constantsimp, constant_renumber
18
+ from sympy.testing.pytest import XFAIL
19
+
20
+
21
+ x = Symbol('x')
22
+ y = Symbol('y')
23
+ z = Symbol('z')
24
+ u2 = Symbol('u2')
25
+ _a = Symbol('_a')
26
+ C1 = Symbol('C1')
27
+ C2 = Symbol('C2')
28
+ C3 = Symbol('C3')
29
+ f = Function('f')
30
+
31
+
32
+ def test_constant_mul():
33
+ # We want C1 (Constant) below to absorb the y's, but not the x's
34
+ assert constant_renumber(constantsimp(y*C1, [C1])) == C1*y
35
+ assert constant_renumber(constantsimp(C1*y, [C1])) == C1*y
36
+ assert constant_renumber(constantsimp(x*C1, [C1])) == x*C1
37
+ assert constant_renumber(constantsimp(C1*x, [C1])) == x*C1
38
+ assert constant_renumber(constantsimp(2*C1, [C1])) == C1
39
+ assert constant_renumber(constantsimp(C1*2, [C1])) == C1
40
+ assert constant_renumber(constantsimp(y*C1*x, [C1, y])) == C1*x
41
+ assert constant_renumber(constantsimp(x*y*C1, [C1, y])) == x*C1
42
+ assert constant_renumber(constantsimp(y*x*C1, [C1, y])) == x*C1
43
+ assert constant_renumber(constantsimp(C1*x*y, [C1, y])) == C1*x
44
+ assert constant_renumber(constantsimp(x*C1*y, [C1, y])) == x*C1
45
+ assert constant_renumber(constantsimp(C1*y*(y + 1), [C1])) == C1*y*(y+1)
46
+ assert constant_renumber(constantsimp(y*C1*(y + 1), [C1])) == C1*y*(y+1)
47
+ assert constant_renumber(constantsimp(x*(y*C1), [C1])) == x*y*C1
48
+ assert constant_renumber(constantsimp(x*(C1*y), [C1])) == x*y*C1
49
+ assert constant_renumber(constantsimp(C1*(x*y), [C1, y])) == C1*x
50
+ assert constant_renumber(constantsimp((x*y)*C1, [C1, y])) == x*C1
51
+ assert constant_renumber(constantsimp((y*x)*C1, [C1, y])) == x*C1
52
+ assert constant_renumber(constantsimp(y*(y + 1)*C1, [C1, y])) == C1
53
+ assert constant_renumber(constantsimp((C1*x)*y, [C1, y])) == C1*x
54
+ assert constant_renumber(constantsimp(y*(x*C1), [C1, y])) == x*C1
55
+ assert constant_renumber(constantsimp((x*C1)*y, [C1, y])) == x*C1
56
+ assert constant_renumber(constantsimp(C1*x*y*x*y*2, [C1, y])) == C1*x**2
57
+ assert constant_renumber(constantsimp(C1*x*y*z, [C1, y, z])) == C1*x
58
+ assert constant_renumber(constantsimp(C1*x*y**2*sin(z), [C1, y, z])) == C1*x
59
+ assert constant_renumber(constantsimp(C1*C1, [C1])) == C1
60
+ assert constant_renumber(constantsimp(C1*C2, [C1, C2])) == C1
61
+ assert constant_renumber(constantsimp(C2*C2, [C1, C2])) == C1
62
+ assert constant_renumber(constantsimp(C1*C1*C2, [C1, C2])) == C1
63
+ assert constant_renumber(constantsimp(C1*x*2**x, [C1])) == C1*x*2**x
64
+
65
+ def test_constant_add():
66
+ assert constant_renumber(constantsimp(C1 + C1, [C1])) == C1
67
+ assert constant_renumber(constantsimp(C1 + 2, [C1])) == C1
68
+ assert constant_renumber(constantsimp(2 + C1, [C1])) == C1
69
+ assert constant_renumber(constantsimp(C1 + y, [C1, y])) == C1
70
+ assert constant_renumber(constantsimp(C1 + x, [C1])) == C1 + x
71
+ assert constant_renumber(constantsimp(C1 + C1, [C1])) == C1
72
+ assert constant_renumber(constantsimp(C1 + C2, [C1, C2])) == C1
73
+ assert constant_renumber(constantsimp(C2 + C1, [C1, C2])) == C1
74
+ assert constant_renumber(constantsimp(C1 + C2 + C1, [C1, C2])) == C1
75
+
76
+
77
+ def test_constant_power_as_base():
78
+ assert constant_renumber(constantsimp(C1**C1, [C1])) == C1
79
+ assert constant_renumber(constantsimp(Pow(C1, C1), [C1])) == C1
80
+ assert constant_renumber(constantsimp(C1**C1, [C1])) == C1
81
+ assert constant_renumber(constantsimp(C1**C2, [C1, C2])) == C1
82
+ assert constant_renumber(constantsimp(C2**C1, [C1, C2])) == C1
83
+ assert constant_renumber(constantsimp(C2**C2, [C1, C2])) == C1
84
+ assert constant_renumber(constantsimp(C1**y, [C1, y])) == C1
85
+ assert constant_renumber(constantsimp(C1**x, [C1])) == C1**x
86
+ assert constant_renumber(constantsimp(C1**2, [C1])) == C1
87
+ assert constant_renumber(
88
+ constantsimp(C1**(x*y), [C1])) == C1**(x*y)
89
+
90
+
91
+ def test_constant_power_as_exp():
92
+ assert constant_renumber(constantsimp(x**C1, [C1])) == x**C1
93
+ assert constant_renumber(constantsimp(y**C1, [C1, y])) == C1
94
+ assert constant_renumber(constantsimp(x**y**C1, [C1, y])) == x**C1
95
+ assert constant_renumber(
96
+ constantsimp((x**y)**C1, [C1])) == (x**y)**C1
97
+ assert constant_renumber(
98
+ constantsimp(x**(y**C1), [C1, y])) == x**C1
99
+ assert constant_renumber(constantsimp(x**C1**y, [C1, y])) == x**C1
100
+ assert constant_renumber(
101
+ constantsimp(x**(C1**y), [C1, y])) == x**C1
102
+ assert constant_renumber(
103
+ constantsimp((x**C1)**y, [C1])) == (x**C1)**y
104
+ assert constant_renumber(constantsimp(2**C1, [C1])) == C1
105
+ assert constant_renumber(constantsimp(S(2)**C1, [C1])) == C1
106
+ assert constant_renumber(constantsimp(exp(C1), [C1])) == C1
107
+ assert constant_renumber(
108
+ constantsimp(exp(C1 + x), [C1])) == C1*exp(x)
109
+ assert constant_renumber(constantsimp(Pow(2, C1), [C1])) == C1
110
+
111
+
112
+ def test_constant_function():
113
+ assert constant_renumber(constantsimp(sin(C1), [C1])) == C1
114
+ assert constant_renumber(constantsimp(f(C1), [C1])) == C1
115
+ assert constant_renumber(constantsimp(f(C1, C1), [C1])) == C1
116
+ assert constant_renumber(constantsimp(f(C1, C2), [C1, C2])) == C1
117
+ assert constant_renumber(constantsimp(f(C2, C1), [C1, C2])) == C1
118
+ assert constant_renumber(constantsimp(f(C2, C2), [C1, C2])) == C1
119
+ assert constant_renumber(
120
+ constantsimp(f(C1, x), [C1])) == f(C1, x)
121
+ assert constant_renumber(constantsimp(f(C1, y), [C1, y])) == C1
122
+ assert constant_renumber(constantsimp(f(y, C1), [C1, y])) == C1
123
+ assert constant_renumber(constantsimp(f(C1, y, C2), [C1, C2, y])) == C1
124
+
125
+
126
+ def test_constant_function_multiple():
127
+ # The rules to not renumber in this case would be too complicated, and
128
+ # dsolve is not likely to ever encounter anything remotely like this.
129
+ assert constant_renumber(
130
+ constantsimp(f(C1, C1, x), [C1])) == f(C1, C1, x)
131
+
132
+
133
+ def test_constant_multiple():
134
+ assert constant_renumber(constantsimp(C1*2 + 2, [C1])) == C1
135
+ assert constant_renumber(constantsimp(x*2/C1, [C1])) == C1*x
136
+ assert constant_renumber(constantsimp(C1**2*2 + 2, [C1])) == C1
137
+ assert constant_renumber(
138
+ constantsimp(sin(2*C1) + x + sqrt(2), [C1])) == C1 + x
139
+ assert constant_renumber(constantsimp(2*C1 + C2, [C1, C2])) == C1
140
+
141
+ def test_constant_repeated():
142
+ assert C1 + C1*x == constant_renumber( C1 + C1*x)
143
+
144
+ def test_ode_solutions():
145
+ # only a few examples here, the rest will be tested in the actual dsolve tests
146
+ assert constant_renumber(constantsimp(C1*exp(2*x) + exp(x)*(C2 + C3), [C1, C2, C3])) == \
147
+ constant_renumber(C1*exp(x) + C2*exp(2*x))
148
+ assert constant_renumber(
149
+ constantsimp(Eq(f(x), I*C1*sinh(x/3) + C2*cosh(x/3)), [C1, C2])
150
+ ) == constant_renumber(Eq(f(x), C1*sinh(x/3) + C2*cosh(x/3)))
151
+ assert constant_renumber(constantsimp(Eq(f(x), acos((-C1)/cos(x))), [C1])) == \
152
+ Eq(f(x), acos(C1/cos(x)))
153
+ assert constant_renumber(
154
+ constantsimp(Eq(log(f(x)/C1) + 2*exp(x/f(x)), 0), [C1])
155
+ ) == Eq(log(C1*f(x)) + 2*exp(x/f(x)), 0)
156
+ assert constant_renumber(constantsimp(Eq(log(x*sqrt(2)*sqrt(1/x)*sqrt(f(x))
157
+ /C1) + x**2/(2*f(x)**2), 0), [C1])) == \
158
+ Eq(log(C1*sqrt(x)*sqrt(f(x))) + x**2/(2*f(x)**2), 0)
159
+ assert constant_renumber(constantsimp(Eq(-exp(-f(x)/x)*sin(f(x)/x)/2 + log(x/C1) -
160
+ cos(f(x)/x)*exp(-f(x)/x)/2, 0), [C1])) == \
161
+ Eq(-exp(-f(x)/x)*sin(f(x)/x)/2 + log(C1*x) - cos(f(x)/x)*
162
+ exp(-f(x)/x)/2, 0)
163
+ assert constant_renumber(constantsimp(Eq(-Integral(-1/(sqrt(1 - u2**2)*u2),
164
+ (u2, _a, x/f(x))) + log(f(x)/C1), 0), [C1])) == \
165
+ Eq(-Integral(-1/(u2*sqrt(1 - u2**2)), (u2, _a, x/f(x))) +
166
+ log(C1*f(x)), 0)
167
+ assert [constantsimp(i, [C1]) for i in [Eq(f(x), sqrt(-C1*x + x**2)), Eq(f(x), -sqrt(-C1*x + x**2))]] == \
168
+ [Eq(f(x), sqrt(x*(C1 + x))), Eq(f(x), -sqrt(x*(C1 + x)))]
169
+
170
+
171
+ @XFAIL
172
+ def test_nonlocal_simplification():
173
+ assert constantsimp(C1 + C2+x*C2, [C1, C2]) == C1 + C2*x
174
+
175
+
176
+ def test_constant_Eq():
177
+ # C1 on the rhs is well-tested, but the lhs is only tested here
178
+ assert constantsimp(Eq(C1, 3 + f(x)*x), [C1]) == Eq(x*f(x), C1)
179
+ assert constantsimp(Eq(C1, 3 * f(x)*x), [C1]) == Eq(f(x)*x, C1)
env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/test_decompogen.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.solvers.decompogen import decompogen, compogen
2
+ from sympy.core.symbol import symbols
3
+ from sympy.functions.elementary.complexes import Abs
4
+ from sympy.functions.elementary.exponential import exp
5
+ from sympy.functions.elementary.miscellaneous import sqrt, Max
6
+ from sympy.functions.elementary.trigonometric import (cos, sin)
7
+ from sympy.testing.pytest import XFAIL, raises
8
+
9
+ x, y = symbols('x y')
10
+
11
+
12
+ def test_decompogen():
13
+ assert decompogen(sin(cos(x)), x) == [sin(x), cos(x)]
14
+ assert decompogen(sin(x)**2 + sin(x) + 1, x) == [x**2 + x + 1, sin(x)]
15
+ assert decompogen(sqrt(6*x**2 - 5), x) == [sqrt(x), 6*x**2 - 5]
16
+ assert decompogen(sin(sqrt(cos(x**2 + 1))), x) == [sin(x), sqrt(x), cos(x), x**2 + 1]
17
+ assert decompogen(Abs(cos(x)**2 + 3*cos(x) - 4), x) == [Abs(x), x**2 + 3*x - 4, cos(x)]
18
+ assert decompogen(sin(x)**2 + sin(x) - sqrt(3)/2, x) == [x**2 + x - sqrt(3)/2, sin(x)]
19
+ assert decompogen(Abs(cos(y)**2 + 3*cos(x) - 4), x) == [Abs(x), 3*x + cos(y)**2 - 4, cos(x)]
20
+ assert decompogen(x, y) == [x]
21
+ assert decompogen(1, x) == [1]
22
+ assert decompogen(Max(3, x), x) == [Max(3, x)]
23
+ raises(TypeError, lambda: decompogen(x < 5, x))
24
+ u = 2*x + 3
25
+ assert decompogen(Max(sqrt(u),(u)**2), x) == [Max(sqrt(x), x**2), u]
26
+ assert decompogen(Max(u, u**2, y), x) == [Max(x, x**2, y), u]
27
+ assert decompogen(Max(sin(x), u), x) == [Max(2*x + 3, sin(x))]
28
+
29
+
30
+ def test_decompogen_poly():
31
+ assert decompogen(x**4 + 2*x**2 + 1, x) == [x**2 + 2*x + 1, x**2]
32
+ assert decompogen(x**4 + 2*x**3 - x - 1, x) == [x**2 - x - 1, x**2 + x]
33
+
34
+
35
+ @XFAIL
36
+ def test_decompogen_fails():
37
+ A = lambda x: x**2 + 2*x + 3
38
+ B = lambda x: 4*x**2 + 5*x + 6
39
+ assert decompogen(A(x*exp(x)), x) == [x**2 + 2*x + 3, x*exp(x)]
40
+ assert decompogen(A(B(x)), x) == [x**2 + 2*x + 3, 4*x**2 + 5*x + 6]
41
+ assert decompogen(A(1/x + 1/x**2), x) == [x**2 + 2*x + 3, 1/x + 1/x**2]
42
+ assert decompogen(A(1/x + 2/(x + 1)), x) == [x**2 + 2*x + 3, 1/x + 2/(x + 1)]
43
+
44
+
45
+ def test_compogen():
46
+ assert compogen([sin(x), cos(x)], x) == sin(cos(x))
47
+ assert compogen([x**2 + x + 1, sin(x)], x) == sin(x)**2 + sin(x) + 1
48
+ assert compogen([sqrt(x), 6*x**2 - 5], x) == sqrt(6*x**2 - 5)
49
+ assert compogen([sin(x), sqrt(x), cos(x), x**2 + 1], x) == sin(sqrt(
50
+ cos(x**2 + 1)))
51
+ assert compogen([Abs(x), x**2 + 3*x - 4, cos(x)], x) == Abs(cos(x)**2 +
52
+ 3*cos(x) - 4)
53
+ assert compogen([x**2 + x - sqrt(3)/2, sin(x)], x) == (sin(x)**2 + sin(x) -
54
+ sqrt(3)/2)
55
+ assert compogen([Abs(x), 3*x + cos(y)**2 - 4, cos(x)], x) == \
56
+ Abs(3*cos(x) + cos(y)**2 - 4)
57
+ assert compogen([x**2 + 2*x + 1, x**2], x) == x**4 + 2*x**2 + 1
58
+ # the result is in unsimplified form
59
+ assert compogen([x**2 - x - 1, x**2 + x], x) == -x**2 - x + (x**2 + x)**2 - 1
env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/test_pde.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.function import (Derivative as D, Function)
2
+ from sympy.core.relational import Eq
3
+ from sympy.core.symbol import (Symbol, symbols)
4
+ from sympy.functions.elementary.exponential import (exp, log)
5
+ from sympy.functions.elementary.trigonometric import (cos, sin)
6
+ from sympy.core import S
7
+ from sympy.solvers.pde import (pde_separate, pde_separate_add, pde_separate_mul,
8
+ pdsolve, classify_pde, checkpdesol)
9
+ from sympy.testing.pytest import raises
10
+
11
+
12
+ a, b, c, x, y = symbols('a b c x y')
13
+
14
+ def test_pde_separate_add():
15
+ x, y, z, t = symbols("x,y,z,t")
16
+ F, T, X, Y, Z, u = map(Function, 'FTXYZu')
17
+
18
+ eq = Eq(D(u(x, t), x), D(u(x, t), t)*exp(u(x, t)))
19
+ res = pde_separate_add(eq, u(x, t), [X(x), T(t)])
20
+ assert res == [D(X(x), x)*exp(-X(x)), D(T(t), t)*exp(T(t))]
21
+
22
+
23
+ def test_pde_separate():
24
+ x, y, z, t = symbols("x,y,z,t")
25
+ F, T, X, Y, Z, u = map(Function, 'FTXYZu')
26
+
27
+ eq = Eq(D(u(x, t), x), D(u(x, t), t)*exp(u(x, t)))
28
+ raises(ValueError, lambda: pde_separate(eq, u(x, t), [X(x), T(t)], 'div'))
29
+
30
+
31
+ def test_pde_separate_mul():
32
+ x, y, z, t = symbols("x,y,z,t")
33
+ c = Symbol("C", real=True)
34
+ Phi = Function('Phi')
35
+ F, R, T, X, Y, Z, u = map(Function, 'FRTXYZu')
36
+ r, theta, z = symbols('r,theta,z')
37
+
38
+ # Something simple :)
39
+ eq = Eq(D(F(x, y, z), x) + D(F(x, y, z), y) + D(F(x, y, z), z), 0)
40
+
41
+ # Duplicate arguments in functions
42
+ raises(
43
+ ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(x), u(z, z)]))
44
+ # Wrong number of arguments
45
+ raises(ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(x), Y(y)]))
46
+ # Wrong variables: [x, y] -> [x, z]
47
+ raises(
48
+ ValueError, lambda: pde_separate_mul(eq, F(x, y, z), [X(t), Y(x, y)]))
49
+
50
+ assert pde_separate_mul(eq, F(x, y, z), [Y(y), u(x, z)]) == \
51
+ [D(Y(y), y)/Y(y), -D(u(x, z), x)/u(x, z) - D(u(x, z), z)/u(x, z)]
52
+ assert pde_separate_mul(eq, F(x, y, z), [X(x), Y(y), Z(z)]) == \
53
+ [D(X(x), x)/X(x), -D(Z(z), z)/Z(z) - D(Y(y), y)/Y(y)]
54
+
55
+ # wave equation
56
+ wave = Eq(D(u(x, t), t, t), c**2*D(u(x, t), x, x))
57
+ res = pde_separate_mul(wave, u(x, t), [X(x), T(t)])
58
+ assert res == [D(X(x), x, x)/X(x), D(T(t), t, t)/(c**2*T(t))]
59
+
60
+ # Laplace equation in cylindrical coords
61
+ eq = Eq(1/r * D(Phi(r, theta, z), r) + D(Phi(r, theta, z), r, 2) +
62
+ 1/r**2 * D(Phi(r, theta, z), theta, 2) + D(Phi(r, theta, z), z, 2), 0)
63
+ # Separate z
64
+ res = pde_separate_mul(eq, Phi(r, theta, z), [Z(z), u(theta, r)])
65
+ assert res == [D(Z(z), z, z)/Z(z),
66
+ -D(u(theta, r), r, r)/u(theta, r) -
67
+ D(u(theta, r), r)/(r*u(theta, r)) -
68
+ D(u(theta, r), theta, theta)/(r**2*u(theta, r))]
69
+ # Lets use the result to create a new equation...
70
+ eq = Eq(res[1], c)
71
+ # ...and separate theta...
72
+ res = pde_separate_mul(eq, u(theta, r), [T(theta), R(r)])
73
+ assert res == [D(T(theta), theta, theta)/T(theta),
74
+ -r*D(R(r), r)/R(r) - r**2*D(R(r), r, r)/R(r) - c*r**2]
75
+ # ...or r...
76
+ res = pde_separate_mul(eq, u(theta, r), [R(r), T(theta)])
77
+ assert res == [r*D(R(r), r)/R(r) + r**2*D(R(r), r, r)/R(r) + c*r**2,
78
+ -D(T(theta), theta, theta)/T(theta)]
79
+
80
+
81
+ def test_issue_11726():
82
+ x, t = symbols("x t")
83
+ f = symbols("f", cls=Function)
84
+ X, T = symbols("X T", cls=Function)
85
+
86
+ u = f(x, t)
87
+ eq = u.diff(x, 2) - u.diff(t, 2)
88
+ res = pde_separate(eq, u, [T(x), X(t)])
89
+ assert res == [D(T(x), x, x)/T(x),D(X(t), t, t)/X(t)]
90
+
91
+
92
+ def test_pde_classify():
93
+ # When more number of hints are added, add tests for classifying here.
94
+ f = Function('f')
95
+ eq1 = a*f(x,y) + b*f(x,y).diff(x) + c*f(x,y).diff(y)
96
+ eq2 = 3*f(x,y) + 2*f(x,y).diff(x) + f(x,y).diff(y)
97
+ eq3 = a*f(x,y) + b*f(x,y).diff(x) + 2*f(x,y).diff(y)
98
+ eq4 = x*f(x,y) + f(x,y).diff(x) + 3*f(x,y).diff(y)
99
+ eq5 = x**2*f(x,y) + x*f(x,y).diff(x) + x*y*f(x,y).diff(y)
100
+ eq6 = y*x**2*f(x,y) + y*f(x,y).diff(x) + f(x,y).diff(y)
101
+ for eq in [eq1, eq2, eq3]:
102
+ assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
103
+ for eq in [eq4, eq5, eq6]:
104
+ assert classify_pde(eq) == ('1st_linear_variable_coeff',)
105
+
106
+
107
+ def test_checkpdesol():
108
+ f, F = map(Function, ['f', 'F'])
109
+ eq1 = a*f(x,y) + b*f(x,y).diff(x) + c*f(x,y).diff(y)
110
+ eq2 = 3*f(x,y) + 2*f(x,y).diff(x) + f(x,y).diff(y)
111
+ eq3 = a*f(x,y) + b*f(x,y).diff(x) + 2*f(x,y).diff(y)
112
+ for eq in [eq1, eq2, eq3]:
113
+ assert checkpdesol(eq, pdsolve(eq))[0]
114
+ eq4 = x*f(x,y) + f(x,y).diff(x) + 3*f(x,y).diff(y)
115
+ eq5 = 2*f(x,y) + 1*f(x,y).diff(x) + 3*f(x,y).diff(y)
116
+ eq6 = f(x,y) + 1*f(x,y).diff(x) + 3*f(x,y).diff(y)
117
+ assert checkpdesol(eq4, [pdsolve(eq5), pdsolve(eq6)]) == [
118
+ (False, (x - 2)*F(3*x - y)*exp(-x/S(5) - 3*y/S(5))),
119
+ (False, (x - 1)*F(3*x - y)*exp(-x/S(10) - 3*y/S(10)))]
120
+ for eq in [eq4, eq5, eq6]:
121
+ assert checkpdesol(eq, pdsolve(eq))[0]
122
+ sol = pdsolve(eq4)
123
+ sol4 = Eq(sol.lhs - sol.rhs, 0)
124
+ raises(NotImplementedError, lambda:
125
+ checkpdesol(eq4, sol4, solve_for_func=False))
126
+
127
+
128
+ def test_solvefun():
129
+ f, F, G, H = map(Function, ['f', 'F', 'G', 'H'])
130
+ eq1 = f(x,y) + f(x,y).diff(x) + f(x,y).diff(y)
131
+ assert pdsolve(eq1) == Eq(f(x, y), F(x - y)*exp(-x/2 - y/2))
132
+ assert pdsolve(eq1, solvefun=G) == Eq(f(x, y), G(x - y)*exp(-x/2 - y/2))
133
+ assert pdsolve(eq1, solvefun=H) == Eq(f(x, y), H(x - y)*exp(-x/2 - y/2))
134
+
135
+
136
+ def test_pde_1st_linear_constant_coeff_homogeneous():
137
+ f, F = map(Function, ['f', 'F'])
138
+ u = f(x, y)
139
+ eq = 2*u + u.diff(x) + u.diff(y)
140
+ assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
141
+ sol = pdsolve(eq)
142
+ assert sol == Eq(u, F(x - y)*exp(-x - y))
143
+ assert checkpdesol(eq, sol)[0]
144
+
145
+ eq = 4 + (3*u.diff(x)/u) + (2*u.diff(y)/u)
146
+ assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
147
+ sol = pdsolve(eq)
148
+ assert sol == Eq(u, F(2*x - 3*y)*exp(-S(12)*x/13 - S(8)*y/13))
149
+ assert checkpdesol(eq, sol)[0]
150
+
151
+ eq = u + (6*u.diff(x)) + (7*u.diff(y))
152
+ assert classify_pde(eq) == ('1st_linear_constant_coeff_homogeneous',)
153
+ sol = pdsolve(eq)
154
+ assert sol == Eq(u, F(7*x - 6*y)*exp(-6*x/S(85) - 7*y/S(85)))
155
+ assert checkpdesol(eq, sol)[0]
156
+
157
+ eq = a*u + b*u.diff(x) + c*u.diff(y)
158
+ sol = pdsolve(eq)
159
+ assert checkpdesol(eq, sol)[0]
160
+
161
+
162
+ def test_pde_1st_linear_constant_coeff():
163
+ f, F = map(Function, ['f', 'F'])
164
+ u = f(x,y)
165
+ eq = -2*u.diff(x) + 4*u.diff(y) + 5*u - exp(x + 3*y)
166
+ sol = pdsolve(eq)
167
+ assert sol == Eq(f(x,y),
168
+ (F(4*x + 2*y)*exp(x/2) + exp(x + 4*y)/15)*exp(-y))
169
+ assert classify_pde(eq) == ('1st_linear_constant_coeff',
170
+ '1st_linear_constant_coeff_Integral')
171
+ assert checkpdesol(eq, sol)[0]
172
+
173
+ eq = (u.diff(x)/u) + (u.diff(y)/u) + 1 - (exp(x + y)/u)
174
+ sol = pdsolve(eq)
175
+ assert sol == Eq(f(x, y), F(x - y)*exp(-x/2 - y/2) + exp(x + y)/3)
176
+ assert classify_pde(eq) == ('1st_linear_constant_coeff',
177
+ '1st_linear_constant_coeff_Integral')
178
+ assert checkpdesol(eq, sol)[0]
179
+
180
+ eq = 2*u + -u.diff(x) + 3*u.diff(y) + sin(x)
181
+ sol = pdsolve(eq)
182
+ assert sol == Eq(f(x, y),
183
+ F(3*x + y)*exp(x/5 - 3*y/5) - 2*sin(x)/5 - cos(x)/5)
184
+ assert classify_pde(eq) == ('1st_linear_constant_coeff',
185
+ '1st_linear_constant_coeff_Integral')
186
+ assert checkpdesol(eq, sol)[0]
187
+
188
+ eq = u + u.diff(x) + u.diff(y) + x*y
189
+ sol = pdsolve(eq)
190
+ assert sol.expand() == Eq(f(x, y),
191
+ x + y + (x - y)**2/4 - (x + y)**2/4 + F(x - y)*exp(-x/2 - y/2) - 2).expand()
192
+ assert classify_pde(eq) == ('1st_linear_constant_coeff',
193
+ '1st_linear_constant_coeff_Integral')
194
+ assert checkpdesol(eq, sol)[0]
195
+ eq = u + u.diff(x) + u.diff(y) + log(x)
196
+ assert classify_pde(eq) == ('1st_linear_constant_coeff',
197
+ '1st_linear_constant_coeff_Integral')
198
+
199
+
200
+ def test_pdsolve_all():
201
+ f, F = map(Function, ['f', 'F'])
202
+ u = f(x,y)
203
+ eq = u + u.diff(x) + u.diff(y) + x**2*y
204
+ sol = pdsolve(eq, hint = 'all')
205
+ keys = ['1st_linear_constant_coeff',
206
+ '1st_linear_constant_coeff_Integral', 'default', 'order']
207
+ assert sorted(sol.keys()) == keys
208
+ assert sol['order'] == 1
209
+ assert sol['default'] == '1st_linear_constant_coeff'
210
+ assert sol['1st_linear_constant_coeff'].expand() == Eq(f(x, y),
211
+ -x**2*y + x**2 + 2*x*y - 4*x - 2*y + F(x - y)*exp(-x/2 - y/2) + 6).expand()
212
+
213
+
214
+ def test_pdsolve_variable_coeff():
215
+ f, F = map(Function, ['f', 'F'])
216
+ u = f(x, y)
217
+ eq = x*(u.diff(x)) - y*(u.diff(y)) + y**2*u - y**2
218
+ sol = pdsolve(eq, hint="1st_linear_variable_coeff")
219
+ assert sol == Eq(u, F(x*y)*exp(y**2/2) + 1)
220
+ assert checkpdesol(eq, sol)[0]
221
+
222
+ eq = x**2*u + x*u.diff(x) + x*y*u.diff(y)
223
+ sol = pdsolve(eq, hint='1st_linear_variable_coeff')
224
+ assert sol == Eq(u, F(y*exp(-x))*exp(-x**2/2))
225
+ assert checkpdesol(eq, sol)[0]
226
+
227
+ eq = y*x**2*u + y*u.diff(x) + u.diff(y)
228
+ sol = pdsolve(eq, hint='1st_linear_variable_coeff')
229
+ assert sol == Eq(u, F(-2*x + y**2)*exp(-x**3/3))
230
+ assert checkpdesol(eq, sol)[0]
231
+
232
+ eq = exp(x)**2*(u.diff(x)) + y
233
+ sol = pdsolve(eq, hint='1st_linear_variable_coeff')
234
+ assert sol == Eq(u, y*exp(-2*x)/2 + F(y))
235
+ assert checkpdesol(eq, sol)[0]
236
+
237
+ eq = exp(2*x)*(u.diff(y)) + y*u - u
238
+ sol = pdsolve(eq, hint='1st_linear_variable_coeff')
239
+ assert sol == Eq(u, F(x)*exp(-y*(y - 2)*exp(-2*x)/2))
env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/test_polysys.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests for solvers of systems of polynomial equations. """
2
+ from sympy.core.numbers import (I, Integer, Rational)
3
+ from sympy.core.singleton import S
4
+ from sympy.core.symbol import symbols
5
+ from sympy.functions.elementary.miscellaneous import sqrt
6
+ from sympy.polys.domains.rationalfield import QQ
7
+ from sympy.polys.polyerrors import UnsolvableFactorError
8
+ from sympy.polys.polyoptions import Options
9
+ from sympy.polys.polytools import Poly
10
+ from sympy.solvers.solvers import solve
11
+ from sympy.utilities.iterables import flatten
12
+ from sympy.abc import x, y, z
13
+ from sympy.polys import PolynomialError
14
+ from sympy.solvers.polysys import (solve_poly_system,
15
+ solve_triangulated,
16
+ solve_biquadratic, SolveFailed,
17
+ solve_generic)
18
+ from sympy.polys.polytools import parallel_poly_from_expr
19
+ from sympy.testing.pytest import raises
20
+
21
+
22
+ def test_solve_poly_system():
23
+ assert solve_poly_system([x - 1], x) == [(S.One,)]
24
+
25
+ assert solve_poly_system([y - x, y - x - 1], x, y) is None
26
+
27
+ assert solve_poly_system([y - x**2, y + x**2], x, y) == [(S.Zero, S.Zero)]
28
+
29
+ assert solve_poly_system([2*x - 3, y*Rational(3, 2) - 2*x, z - 5*y], x, y, z) == \
30
+ [(Rational(3, 2), Integer(2), Integer(10))]
31
+
32
+ assert solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y) == \
33
+ [(0, 0), (2, -sqrt(2)), (2, sqrt(2))]
34
+
35
+ assert solve_poly_system([y - x**2, y + x**2 + 1], x, y) == \
36
+ [(-I*sqrt(S.Half), Rational(-1, 2)), (I*sqrt(S.Half), Rational(-1, 2))]
37
+
38
+ f_1 = x**2 + y + z - 1
39
+ f_2 = x + y**2 + z - 1
40
+ f_3 = x + y + z**2 - 1
41
+
42
+ a, b = sqrt(2) - 1, -sqrt(2) - 1
43
+
44
+ assert solve_poly_system([f_1, f_2, f_3], x, y, z) == \
45
+ [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
46
+
47
+ solution = [(1, -1), (1, 1)]
48
+
49
+ assert solve_poly_system([Poly(x**2 - y**2), Poly(x - 1)]) == solution
50
+ assert solve_poly_system([x**2 - y**2, x - 1], x, y) == solution
51
+ assert solve_poly_system([x**2 - y**2, x - 1]) == solution
52
+
53
+ assert solve_poly_system(
54
+ [x + x*y - 3, y + x*y - 4], x, y) == [(-3, -2), (1, 2)]
55
+
56
+ raises(NotImplementedError, lambda: solve_poly_system([x**3 - y**3], x, y))
57
+ raises(NotImplementedError, lambda: solve_poly_system(
58
+ [z, -2*x*y**2 + x + y**2*z, y**2*(-z - 4) + 2]))
59
+ raises(PolynomialError, lambda: solve_poly_system([1/x], x))
60
+
61
+ raises(NotImplementedError, lambda: solve_poly_system(
62
+ [x-1,], (x, y)))
63
+ raises(NotImplementedError, lambda: solve_poly_system(
64
+ [y-1,], (x, y)))
65
+
66
+ # solve_poly_system should ideally construct solutions using
67
+ # CRootOf for the following four tests
68
+ assert solve_poly_system([x**5 - x + 1], [x], strict=False) == []
69
+ raises(UnsolvableFactorError, lambda: solve_poly_system(
70
+ [x**5 - x + 1], [x], strict=True))
71
+
72
+ assert solve_poly_system([(x - 1)*(x**5 - x + 1), y**2 - 1], [x, y],
73
+ strict=False) == [(1, -1), (1, 1)]
74
+ raises(UnsolvableFactorError,
75
+ lambda: solve_poly_system([(x - 1)*(x**5 - x + 1), y**2-1],
76
+ [x, y], strict=True))
77
+
78
+
79
+ def test_solve_generic():
80
+ NewOption = Options((x, y), {'domain': 'ZZ'})
81
+ assert solve_generic([x**2 - 2*y**2, y**2 - y + 1], NewOption) == \
82
+ [(-sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2),
83
+ (sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2),
84
+ (-sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2),
85
+ (sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2)]
86
+
87
+ # solve_generic should ideally construct solutions using
88
+ # CRootOf for the following two tests
89
+ assert solve_generic(
90
+ [2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=False) == \
91
+ [(Rational(1, 2), 1)]
92
+ raises(UnsolvableFactorError, lambda: solve_generic(
93
+ [2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=True))
94
+
95
+
96
+ def test_solve_biquadratic():
97
+ x0, y0, x1, y1, r = symbols('x0 y0 x1 y1 r')
98
+
99
+ f_1 = (x - 1)**2 + (y - 1)**2 - r**2
100
+ f_2 = (x - 2)**2 + (y - 2)**2 - r**2
101
+ s = sqrt(2*r**2 - 1)
102
+ a = (3 - s)/2
103
+ b = (3 + s)/2
104
+ assert solve_poly_system([f_1, f_2], x, y) == [(a, b), (b, a)]
105
+
106
+ f_1 = (x - 1)**2 + (y - 2)**2 - r**2
107
+ f_2 = (x - 1)**2 + (y - 1)**2 - r**2
108
+
109
+ assert solve_poly_system([f_1, f_2], x, y) == \
110
+ [(1 - sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2)),
111
+ (1 + sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2))]
112
+
113
+ query = lambda expr: expr.is_Pow and expr.exp is S.Half
114
+
115
+ f_1 = (x - 1 )**2 + (y - 2)**2 - r**2
116
+ f_2 = (x - x1)**2 + (y - 1)**2 - r**2
117
+
118
+ result = solve_poly_system([f_1, f_2], x, y)
119
+
120
+ assert len(result) == 2 and all(len(r) == 2 for r in result)
121
+ assert all(r.count(query) == 1 for r in flatten(result))
122
+
123
+ f_1 = (x - x0)**2 + (y - y0)**2 - r**2
124
+ f_2 = (x - x1)**2 + (y - y1)**2 - r**2
125
+
126
+ result = solve_poly_system([f_1, f_2], x, y)
127
+
128
+ assert len(result) == 2 and all(len(r) == 2 for r in result)
129
+ assert all(len(r.find(query)) == 1 for r in flatten(result))
130
+
131
+ s1 = (x*y - y, x**2 - x)
132
+ assert solve(s1) == [{x: 1}, {x: 0, y: 0}]
133
+ s2 = (x*y - x, y**2 - y)
134
+ assert solve(s2) == [{y: 1}, {x: 0, y: 0}]
135
+ gens = (x, y)
136
+ for seq in (s1, s2):
137
+ (f, g), opt = parallel_poly_from_expr(seq, *gens)
138
+ raises(SolveFailed, lambda: solve_biquadratic(f, g, opt))
139
+ seq = (x**2 + y**2 - 2, y**2 - 1)
140
+ (f, g), opt = parallel_poly_from_expr(seq, *gens)
141
+ assert solve_biquadratic(f, g, opt) == [
142
+ (-1, -1), (-1, 1), (1, -1), (1, 1)]
143
+ ans = [(0, -1), (0, 1)]
144
+ seq = (x**2 + y**2 - 1, y**2 - 1)
145
+ (f, g), opt = parallel_poly_from_expr(seq, *gens)
146
+ assert solve_biquadratic(f, g, opt) == ans
147
+ seq = (x**2 + y**2 - 1, x**2 - x + y**2 - 1)
148
+ (f, g), opt = parallel_poly_from_expr(seq, *gens)
149
+ assert solve_biquadratic(f, g, opt) == ans
150
+
151
+
152
+ def test_solve_triangulated():
153
+ f_1 = x**2 + y + z - 1
154
+ f_2 = x + y**2 + z - 1
155
+ f_3 = x + y + z**2 - 1
156
+
157
+ a, b = sqrt(2) - 1, -sqrt(2) - 1
158
+
159
+ assert solve_triangulated([f_1, f_2, f_3], x, y, z) == \
160
+ [(0, 0, 1), (0, 1, 0), (1, 0, 0)]
161
+
162
+ dom = QQ.algebraic_field(sqrt(2))
163
+
164
+ assert solve_triangulated([f_1, f_2, f_3], x, y, z, domain=dom) == \
165
+ [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
166
+
167
+
168
+ def test_solve_issue_3686():
169
+ roots = solve_poly_system([((x - 5)**2/250000 + (y - Rational(5, 10))**2/250000) - 1, x], x, y)
170
+ assert roots == [(0, S.Half - 15*sqrt(1111)), (0, S.Half + 15*sqrt(1111))]
171
+
172
+ roots = solve_poly_system([((x - 5)**2/250000 + (y - 5.0/10)**2/250000) - 1, x], x, y)
173
+ # TODO: does this really have to be so complicated?!
174
+ assert len(roots) == 2
175
+ assert roots[0][0] == 0
176
+ assert roots[0][1].epsilon_eq(-499.474999374969, 1e12)
177
+ assert roots[1][0] == 0
178
+ assert roots[1][1].epsilon_eq(500.474999374969, 1e12)
env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/test_solvers.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/sympy/solvers/tests/test_solveset.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.76 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/basisdependent.cpython-310.pyc ADDED
Binary file (12.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/coordsysrect.cpython-310.pyc ADDED
Binary file (31.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/deloperator.cpython-310.pyc ADDED
Binary file (3.69 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/dyadic.cpython-310.pyc ADDED
Binary file (8.98 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/functions.cpython-310.pyc ADDED
Binary file (13.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/implicitregion.cpython-310.pyc ADDED
Binary file (13 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/integrals.cpython-310.pyc ADDED
Binary file (6.06 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/operators.cpython-310.pyc ADDED
Binary file (9.76 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/orienters.cpython-310.pyc ADDED
Binary file (12.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/parametricregion.cpython-310.pyc ADDED
Binary file (6.39 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/point.cpython-310.pyc ADDED
Binary file (4.12 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/scalar.cpython-310.pyc ADDED
Binary file (2.35 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/vector/__pycache__/vector.cpython-310.pyc ADDED
Binary file (18.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/vector/deloperator.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Basic
2
+ from sympy.vector.operators import gradient, divergence, curl
3
+
4
+
5
+ class Del(Basic):
6
+ """
7
+ Represents the vector differential operator, usually represented in
8
+ mathematical expressions as the 'nabla' symbol.
9
+ """
10
+
11
+ def __new__(cls):
12
+ obj = super().__new__(cls)
13
+ obj._name = "delop"
14
+ return obj
15
+
16
+ def gradient(self, scalar_field, doit=False):
17
+ """
18
+ Returns the gradient of the given scalar field, as a
19
+ Vector instance.
20
+
21
+ Parameters
22
+ ==========
23
+
24
+ scalar_field : SymPy expression
25
+ The scalar field to calculate the gradient of.
26
+
27
+ doit : bool
28
+ If True, the result is returned after calling .doit() on
29
+ each component. Else, the returned expression contains
30
+ Derivative instances
31
+
32
+ Examples
33
+ ========
34
+
35
+ >>> from sympy.vector import CoordSys3D, Del
36
+ >>> C = CoordSys3D('C')
37
+ >>> delop = Del()
38
+ >>> delop.gradient(9)
39
+ 0
40
+ >>> delop(C.x*C.y*C.z).doit()
41
+ C.y*C.z*C.i + C.x*C.z*C.j + C.x*C.y*C.k
42
+
43
+ """
44
+
45
+ return gradient(scalar_field, doit=doit)
46
+
47
+ __call__ = gradient
48
+ __call__.__doc__ = gradient.__doc__
49
+
50
+ def dot(self, vect, doit=False):
51
+ """
52
+ Represents the dot product between this operator and a given
53
+ vector - equal to the divergence of the vector field.
54
+
55
+ Parameters
56
+ ==========
57
+
58
+ vect : Vector
59
+ The vector whose divergence is to be calculated.
60
+
61
+ doit : bool
62
+ If True, the result is returned after calling .doit() on
63
+ each component. Else, the returned expression contains
64
+ Derivative instances
65
+
66
+ Examples
67
+ ========
68
+
69
+ >>> from sympy.vector import CoordSys3D, Del
70
+ >>> delop = Del()
71
+ >>> C = CoordSys3D('C')
72
+ >>> delop.dot(C.x*C.i)
73
+ Derivative(C.x, C.x)
74
+ >>> v = C.x*C.y*C.z * (C.i + C.j + C.k)
75
+ >>> (delop & v).doit()
76
+ C.x*C.y + C.x*C.z + C.y*C.z
77
+
78
+ """
79
+ return divergence(vect, doit=doit)
80
+
81
+ __and__ = dot
82
+ __and__.__doc__ = dot.__doc__
83
+
84
+ def cross(self, vect, doit=False):
85
+ """
86
+ Represents the cross product between this operator and a given
87
+ vector - equal to the curl of the vector field.
88
+
89
+ Parameters
90
+ ==========
91
+
92
+ vect : Vector
93
+ The vector whose curl is to be calculated.
94
+
95
+ doit : bool
96
+ If True, the result is returned after calling .doit() on
97
+ each component. Else, the returned expression contains
98
+ Derivative instances
99
+
100
+ Examples
101
+ ========
102
+
103
+ >>> from sympy.vector import CoordSys3D, Del
104
+ >>> C = CoordSys3D('C')
105
+ >>> delop = Del()
106
+ >>> v = C.x*C.y*C.z * (C.i + C.j + C.k)
107
+ >>> delop.cross(v, doit = True)
108
+ (-C.x*C.y + C.x*C.z)*C.i + (C.x*C.y - C.y*C.z)*C.j +
109
+ (-C.x*C.z + C.y*C.z)*C.k
110
+ >>> (delop ^ C.i).doit()
111
+ 0
112
+
113
+ """
114
+
115
+ return curl(vect, doit=doit)
116
+
117
+ __xor__ = cross
118
+ __xor__.__doc__ = cross.__doc__
119
+
120
+ def _sympystr(self, printer):
121
+ return self._name
env-llmeval/lib/python3.10/site-packages/sympy/vector/functions.py ADDED
@@ -0,0 +1,517 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.vector.coordsysrect import CoordSys3D
2
+ from sympy.vector.deloperator import Del
3
+ from sympy.vector.scalar import BaseScalar
4
+ from sympy.vector.vector import Vector, BaseVector
5
+ from sympy.vector.operators import gradient, curl, divergence
6
+ from sympy.core.function import diff
7
+ from sympy.core.singleton import S
8
+ from sympy.integrals.integrals import integrate
9
+ from sympy.simplify.simplify import simplify
10
+ from sympy.core import sympify
11
+ from sympy.vector.dyadic import Dyadic
12
+
13
+
14
+ def express(expr, system, system2=None, variables=False):
15
+ """
16
+ Global function for 'express' functionality.
17
+
18
+ Re-expresses a Vector, Dyadic or scalar(sympyfiable) in the given
19
+ coordinate system.
20
+
21
+ If 'variables' is True, then the coordinate variables (base scalars)
22
+ of other coordinate systems present in the vector/scalar field or
23
+ dyadic are also substituted in terms of the base scalars of the
24
+ given system.
25
+
26
+ Parameters
27
+ ==========
28
+
29
+ expr : Vector/Dyadic/scalar(sympyfiable)
30
+ The expression to re-express in CoordSys3D 'system'
31
+
32
+ system: CoordSys3D
33
+ The coordinate system the expr is to be expressed in
34
+
35
+ system2: CoordSys3D
36
+ The other coordinate system required for re-expression
37
+ (only for a Dyadic Expr)
38
+
39
+ variables : boolean
40
+ Specifies whether to substitute the coordinate variables present
41
+ in expr, in terms of those of parameter system
42
+
43
+ Examples
44
+ ========
45
+
46
+ >>> from sympy.vector import CoordSys3D
47
+ >>> from sympy import Symbol, cos, sin
48
+ >>> N = CoordSys3D('N')
49
+ >>> q = Symbol('q')
50
+ >>> B = N.orient_new_axis('B', q, N.k)
51
+ >>> from sympy.vector import express
52
+ >>> express(B.i, N)
53
+ (cos(q))*N.i + (sin(q))*N.j
54
+ >>> express(N.x, B, variables=True)
55
+ B.x*cos(q) - B.y*sin(q)
56
+ >>> d = N.i.outer(N.i)
57
+ >>> express(d, B, N) == (cos(q))*(B.i|N.i) + (-sin(q))*(B.j|N.i)
58
+ True
59
+
60
+ """
61
+
62
+ if expr in (0, Vector.zero):
63
+ return expr
64
+
65
+ if not isinstance(system, CoordSys3D):
66
+ raise TypeError("system should be a CoordSys3D \
67
+ instance")
68
+
69
+ if isinstance(expr, Vector):
70
+ if system2 is not None:
71
+ raise ValueError("system2 should not be provided for \
72
+ Vectors")
73
+ # Given expr is a Vector
74
+ if variables:
75
+ # If variables attribute is True, substitute
76
+ # the coordinate variables in the Vector
77
+ system_list = {x.system for x in expr.atoms(BaseScalar, BaseVector)} - {system}
78
+ subs_dict = {}
79
+ for f in system_list:
80
+ subs_dict.update(f.scalar_map(system))
81
+ expr = expr.subs(subs_dict)
82
+ # Re-express in this coordinate system
83
+ outvec = Vector.zero
84
+ parts = expr.separate()
85
+ for x in parts:
86
+ if x != system:
87
+ temp = system.rotation_matrix(x) * parts[x].to_matrix(x)
88
+ outvec += matrix_to_vector(temp, system)
89
+ else:
90
+ outvec += parts[x]
91
+ return outvec
92
+
93
+ elif isinstance(expr, Dyadic):
94
+ if system2 is None:
95
+ system2 = system
96
+ if not isinstance(system2, CoordSys3D):
97
+ raise TypeError("system2 should be a CoordSys3D \
98
+ instance")
99
+ outdyad = Dyadic.zero
100
+ var = variables
101
+ for k, v in expr.components.items():
102
+ outdyad += (express(v, system, variables=var) *
103
+ (express(k.args[0], system, variables=var) |
104
+ express(k.args[1], system2, variables=var)))
105
+
106
+ return outdyad
107
+
108
+ else:
109
+ if system2 is not None:
110
+ raise ValueError("system2 should not be provided for \
111
+ Vectors")
112
+ if variables:
113
+ # Given expr is a scalar field
114
+ system_set = set()
115
+ expr = sympify(expr)
116
+ # Substitute all the coordinate variables
117
+ for x in expr.atoms(BaseScalar):
118
+ if x.system != system:
119
+ system_set.add(x.system)
120
+ subs_dict = {}
121
+ for f in system_set:
122
+ subs_dict.update(f.scalar_map(system))
123
+ return expr.subs(subs_dict)
124
+ return expr
125
+
126
+
127
+ def directional_derivative(field, direction_vector):
128
+ """
129
+ Returns the directional derivative of a scalar or vector field computed
130
+ along a given vector in coordinate system which parameters are expressed.
131
+
132
+ Parameters
133
+ ==========
134
+
135
+ field : Vector or Scalar
136
+ The scalar or vector field to compute the directional derivative of
137
+
138
+ direction_vector : Vector
139
+ The vector to calculated directional derivative along them.
140
+
141
+
142
+ Examples
143
+ ========
144
+
145
+ >>> from sympy.vector import CoordSys3D, directional_derivative
146
+ >>> R = CoordSys3D('R')
147
+ >>> f1 = R.x*R.y*R.z
148
+ >>> v1 = 3*R.i + 4*R.j + R.k
149
+ >>> directional_derivative(f1, v1)
150
+ R.x*R.y + 4*R.x*R.z + 3*R.y*R.z
151
+ >>> f2 = 5*R.x**2*R.z
152
+ >>> directional_derivative(f2, v1)
153
+ 5*R.x**2 + 30*R.x*R.z
154
+
155
+ """
156
+ from sympy.vector.operators import _get_coord_systems
157
+ coord_sys = _get_coord_systems(field)
158
+ if len(coord_sys) > 0:
159
+ # TODO: This gets a random coordinate system in case of multiple ones:
160
+ coord_sys = next(iter(coord_sys))
161
+ field = express(field, coord_sys, variables=True)
162
+ i, j, k = coord_sys.base_vectors()
163
+ x, y, z = coord_sys.base_scalars()
164
+ out = Vector.dot(direction_vector, i) * diff(field, x)
165
+ out += Vector.dot(direction_vector, j) * diff(field, y)
166
+ out += Vector.dot(direction_vector, k) * diff(field, z)
167
+ if out == 0 and isinstance(field, Vector):
168
+ out = Vector.zero
169
+ return out
170
+ elif isinstance(field, Vector):
171
+ return Vector.zero
172
+ else:
173
+ return S.Zero
174
+
175
+
176
+ def laplacian(expr):
177
+ """
178
+ Return the laplacian of the given field computed in terms of
179
+ the base scalars of the given coordinate system.
180
+
181
+ Parameters
182
+ ==========
183
+
184
+ expr : SymPy Expr or Vector
185
+ expr denotes a scalar or vector field.
186
+
187
+ Examples
188
+ ========
189
+
190
+ >>> from sympy.vector import CoordSys3D, laplacian
191
+ >>> R = CoordSys3D('R')
192
+ >>> f = R.x**2*R.y**5*R.z
193
+ >>> laplacian(f)
194
+ 20*R.x**2*R.y**3*R.z + 2*R.y**5*R.z
195
+ >>> f = R.x**2*R.i + R.y**3*R.j + R.z**4*R.k
196
+ >>> laplacian(f)
197
+ 2*R.i + 6*R.y*R.j + 12*R.z**2*R.k
198
+
199
+ """
200
+
201
+ delop = Del()
202
+ if expr.is_Vector:
203
+ return (gradient(divergence(expr)) - curl(curl(expr))).doit()
204
+ return delop.dot(delop(expr)).doit()
205
+
206
+
207
+ def is_conservative(field):
208
+ """
209
+ Checks if a field is conservative.
210
+
211
+ Parameters
212
+ ==========
213
+
214
+ field : Vector
215
+ The field to check for conservative property
216
+
217
+ Examples
218
+ ========
219
+
220
+ >>> from sympy.vector import CoordSys3D
221
+ >>> from sympy.vector import is_conservative
222
+ >>> R = CoordSys3D('R')
223
+ >>> is_conservative(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
224
+ True
225
+ >>> is_conservative(R.z*R.j)
226
+ False
227
+
228
+ """
229
+
230
+ # Field is conservative irrespective of system
231
+ # Take the first coordinate system in the result of the
232
+ # separate method of Vector
233
+ if not isinstance(field, Vector):
234
+ raise TypeError("field should be a Vector")
235
+ if field == Vector.zero:
236
+ return True
237
+ return curl(field).simplify() == Vector.zero
238
+
239
+
240
+ def is_solenoidal(field):
241
+ """
242
+ Checks if a field is solenoidal.
243
+
244
+ Parameters
245
+ ==========
246
+
247
+ field : Vector
248
+ The field to check for solenoidal property
249
+
250
+ Examples
251
+ ========
252
+
253
+ >>> from sympy.vector import CoordSys3D
254
+ >>> from sympy.vector import is_solenoidal
255
+ >>> R = CoordSys3D('R')
256
+ >>> is_solenoidal(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
257
+ True
258
+ >>> is_solenoidal(R.y * R.j)
259
+ False
260
+
261
+ """
262
+
263
+ # Field is solenoidal irrespective of system
264
+ # Take the first coordinate system in the result of the
265
+ # separate method in Vector
266
+ if not isinstance(field, Vector):
267
+ raise TypeError("field should be a Vector")
268
+ if field == Vector.zero:
269
+ return True
270
+ return divergence(field).simplify() is S.Zero
271
+
272
+
273
+ def scalar_potential(field, coord_sys):
274
+ """
275
+ Returns the scalar potential function of a field in a given
276
+ coordinate system (without the added integration constant).
277
+
278
+ Parameters
279
+ ==========
280
+
281
+ field : Vector
282
+ The vector field whose scalar potential function is to be
283
+ calculated
284
+
285
+ coord_sys : CoordSys3D
286
+ The coordinate system to do the calculation in
287
+
288
+ Examples
289
+ ========
290
+
291
+ >>> from sympy.vector import CoordSys3D
292
+ >>> from sympy.vector import scalar_potential, gradient
293
+ >>> R = CoordSys3D('R')
294
+ >>> scalar_potential(R.k, R) == R.z
295
+ True
296
+ >>> scalar_field = 2*R.x**2*R.y*R.z
297
+ >>> grad_field = gradient(scalar_field)
298
+ >>> scalar_potential(grad_field, R)
299
+ 2*R.x**2*R.y*R.z
300
+
301
+ """
302
+
303
+ # Check whether field is conservative
304
+ if not is_conservative(field):
305
+ raise ValueError("Field is not conservative")
306
+ if field == Vector.zero:
307
+ return S.Zero
308
+ # Express the field exntirely in coord_sys
309
+ # Substitute coordinate variables also
310
+ if not isinstance(coord_sys, CoordSys3D):
311
+ raise TypeError("coord_sys must be a CoordSys3D")
312
+ field = express(field, coord_sys, variables=True)
313
+ dimensions = coord_sys.base_vectors()
314
+ scalars = coord_sys.base_scalars()
315
+ # Calculate scalar potential function
316
+ temp_function = integrate(field.dot(dimensions[0]), scalars[0])
317
+ for i, dim in enumerate(dimensions[1:]):
318
+ partial_diff = diff(temp_function, scalars[i + 1])
319
+ partial_diff = field.dot(dim) - partial_diff
320
+ temp_function += integrate(partial_diff, scalars[i + 1])
321
+ return temp_function
322
+
323
+
324
+ def scalar_potential_difference(field, coord_sys, point1, point2):
325
+ """
326
+ Returns the scalar potential difference between two points in a
327
+ certain coordinate system, wrt a given field.
328
+
329
+ If a scalar field is provided, its values at the two points are
330
+ considered. If a conservative vector field is provided, the values
331
+ of its scalar potential function at the two points are used.
332
+
333
+ Returns (potential at point2) - (potential at point1)
334
+
335
+ The position vectors of the two Points are calculated wrt the
336
+ origin of the coordinate system provided.
337
+
338
+ Parameters
339
+ ==========
340
+
341
+ field : Vector/Expr
342
+ The field to calculate wrt
343
+
344
+ coord_sys : CoordSys3D
345
+ The coordinate system to do the calculations in
346
+
347
+ point1 : Point
348
+ The initial Point in given coordinate system
349
+
350
+ position2 : Point
351
+ The second Point in the given coordinate system
352
+
353
+ Examples
354
+ ========
355
+
356
+ >>> from sympy.vector import CoordSys3D
357
+ >>> from sympy.vector import scalar_potential_difference
358
+ >>> R = CoordSys3D('R')
359
+ >>> P = R.origin.locate_new('P', R.x*R.i + R.y*R.j + R.z*R.k)
360
+ >>> vectfield = 4*R.x*R.y*R.i + 2*R.x**2*R.j
361
+ >>> scalar_potential_difference(vectfield, R, R.origin, P)
362
+ 2*R.x**2*R.y
363
+ >>> Q = R.origin.locate_new('O', 3*R.i + R.j + 2*R.k)
364
+ >>> scalar_potential_difference(vectfield, R, P, Q)
365
+ -2*R.x**2*R.y + 18
366
+
367
+ """
368
+
369
+ if not isinstance(coord_sys, CoordSys3D):
370
+ raise TypeError("coord_sys must be a CoordSys3D")
371
+ if isinstance(field, Vector):
372
+ # Get the scalar potential function
373
+ scalar_fn = scalar_potential(field, coord_sys)
374
+ else:
375
+ # Field is a scalar
376
+ scalar_fn = field
377
+ # Express positions in required coordinate system
378
+ origin = coord_sys.origin
379
+ position1 = express(point1.position_wrt(origin), coord_sys,
380
+ variables=True)
381
+ position2 = express(point2.position_wrt(origin), coord_sys,
382
+ variables=True)
383
+ # Get the two positions as substitution dicts for coordinate variables
384
+ subs_dict1 = {}
385
+ subs_dict2 = {}
386
+ scalars = coord_sys.base_scalars()
387
+ for i, x in enumerate(coord_sys.base_vectors()):
388
+ subs_dict1[scalars[i]] = x.dot(position1)
389
+ subs_dict2[scalars[i]] = x.dot(position2)
390
+ return scalar_fn.subs(subs_dict2) - scalar_fn.subs(subs_dict1)
391
+
392
+
393
+ def matrix_to_vector(matrix, system):
394
+ """
395
+ Converts a vector in matrix form to a Vector instance.
396
+
397
+ It is assumed that the elements of the Matrix represent the
398
+ measure numbers of the components of the vector along basis
399
+ vectors of 'system'.
400
+
401
+ Parameters
402
+ ==========
403
+
404
+ matrix : SymPy Matrix, Dimensions: (3, 1)
405
+ The matrix to be converted to a vector
406
+
407
+ system : CoordSys3D
408
+ The coordinate system the vector is to be defined in
409
+
410
+ Examples
411
+ ========
412
+
413
+ >>> from sympy import ImmutableMatrix as Matrix
414
+ >>> m = Matrix([1, 2, 3])
415
+ >>> from sympy.vector import CoordSys3D, matrix_to_vector
416
+ >>> C = CoordSys3D('C')
417
+ >>> v = matrix_to_vector(m, C)
418
+ >>> v
419
+ C.i + 2*C.j + 3*C.k
420
+ >>> v.to_matrix(C) == m
421
+ True
422
+
423
+ """
424
+
425
+ outvec = Vector.zero
426
+ vects = system.base_vectors()
427
+ for i, x in enumerate(matrix):
428
+ outvec += x * vects[i]
429
+ return outvec
430
+
431
+
432
+ def _path(from_object, to_object):
433
+ """
434
+ Calculates the 'path' of objects starting from 'from_object'
435
+ to 'to_object', along with the index of the first common
436
+ ancestor in the tree.
437
+
438
+ Returns (index, list) tuple.
439
+ """
440
+
441
+ if from_object._root != to_object._root:
442
+ raise ValueError("No connecting path found between " +
443
+ str(from_object) + " and " + str(to_object))
444
+
445
+ other_path = []
446
+ obj = to_object
447
+ while obj._parent is not None:
448
+ other_path.append(obj)
449
+ obj = obj._parent
450
+ other_path.append(obj)
451
+ object_set = set(other_path)
452
+ from_path = []
453
+ obj = from_object
454
+ while obj not in object_set:
455
+ from_path.append(obj)
456
+ obj = obj._parent
457
+ index = len(from_path)
458
+ i = other_path.index(obj)
459
+ while i >= 0:
460
+ from_path.append(other_path[i])
461
+ i -= 1
462
+ return index, from_path
463
+
464
+
465
+ def orthogonalize(*vlist, orthonormal=False):
466
+ """
467
+ Takes a sequence of independent vectors and orthogonalizes them
468
+ using the Gram - Schmidt process. Returns a list of
469
+ orthogonal or orthonormal vectors.
470
+
471
+ Parameters
472
+ ==========
473
+
474
+ vlist : sequence of independent vectors to be made orthogonal.
475
+
476
+ orthonormal : Optional parameter
477
+ Set to True if the vectors returned should be
478
+ orthonormal.
479
+ Default: False
480
+
481
+ Examples
482
+ ========
483
+
484
+ >>> from sympy.vector.coordsysrect import CoordSys3D
485
+ >>> from sympy.vector.functions import orthogonalize
486
+ >>> C = CoordSys3D('C')
487
+ >>> i, j, k = C.base_vectors()
488
+ >>> v1 = i + 2*j
489
+ >>> v2 = 2*i + 3*j
490
+ >>> orthogonalize(v1, v2)
491
+ [C.i + 2*C.j, 2/5*C.i + (-1/5)*C.j]
492
+
493
+ References
494
+ ==========
495
+
496
+ .. [1] https://en.wikipedia.org/wiki/Gram-Schmidt_process
497
+
498
+ """
499
+
500
+ if not all(isinstance(vec, Vector) for vec in vlist):
501
+ raise TypeError('Each element must be of Type Vector')
502
+
503
+ ortho_vlist = []
504
+ for i, term in enumerate(vlist):
505
+ for j in range(i):
506
+ term -= ortho_vlist[j].projection(vlist[i])
507
+ # TODO : The following line introduces a performance issue
508
+ # and needs to be changed once a good solution for issue #10279 is
509
+ # found.
510
+ if simplify(term).equals(Vector.zero):
511
+ raise ValueError("Vector set not linearly independent")
512
+ ortho_vlist.append(term)
513
+
514
+ if orthonormal:
515
+ ortho_vlist = [vec.normalize() for vec in ortho_vlist]
516
+
517
+ return ortho_vlist
env-llmeval/lib/python3.10/site-packages/sympy/vector/implicitregion.py ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import Rational
2
+ from sympy.core.singleton import S
3
+ from sympy.core.symbol import symbols
4
+ from sympy.functions.elementary.complexes import sign
5
+ from sympy.functions.elementary.miscellaneous import sqrt
6
+ from sympy.polys.polytools import gcd
7
+ from sympy.sets.sets import Complement
8
+ from sympy.core import Basic, Tuple, diff, expand, Eq, Integer
9
+ from sympy.core.sorting import ordered
10
+ from sympy.core.symbol import _symbol
11
+ from sympy.solvers import solveset, nonlinsolve, diophantine
12
+ from sympy.polys import total_degree
13
+ from sympy.geometry import Point
14
+ from sympy.ntheory.factor_ import core
15
+
16
+
17
+ class ImplicitRegion(Basic):
18
+ """
19
+ Represents an implicit region in space.
20
+
21
+ Examples
22
+ ========
23
+
24
+ >>> from sympy import Eq
25
+ >>> from sympy.abc import x, y, z, t
26
+ >>> from sympy.vector import ImplicitRegion
27
+
28
+ >>> ImplicitRegion((x, y), x**2 + y**2 - 4)
29
+ ImplicitRegion((x, y), x**2 + y**2 - 4)
30
+ >>> ImplicitRegion((x, y), Eq(y*x, 1))
31
+ ImplicitRegion((x, y), x*y - 1)
32
+
33
+ >>> parabola = ImplicitRegion((x, y), y**2 - 4*x)
34
+ >>> parabola.degree
35
+ 2
36
+ >>> parabola.equation
37
+ -4*x + y**2
38
+ >>> parabola.rational_parametrization(t)
39
+ (4/t**2, 4/t)
40
+
41
+ >>> r = ImplicitRegion((x, y, z), Eq(z, x**2 + y**2))
42
+ >>> r.variables
43
+ (x, y, z)
44
+ >>> r.singular_points()
45
+ EmptySet
46
+ >>> r.regular_point()
47
+ (-10, -10, 200)
48
+
49
+ Parameters
50
+ ==========
51
+
52
+ variables : tuple to map variables in implicit equation to base scalars.
53
+
54
+ equation : An expression or Eq denoting the implicit equation of the region.
55
+
56
+ """
57
+ def __new__(cls, variables, equation):
58
+ if not isinstance(variables, Tuple):
59
+ variables = Tuple(*variables)
60
+
61
+ if isinstance(equation, Eq):
62
+ equation = equation.lhs - equation.rhs
63
+
64
+ return super().__new__(cls, variables, equation)
65
+
66
+ @property
67
+ def variables(self):
68
+ return self.args[0]
69
+
70
+ @property
71
+ def equation(self):
72
+ return self.args[1]
73
+
74
+ @property
75
+ def degree(self):
76
+ return total_degree(self.equation)
77
+
78
+ def regular_point(self):
79
+ """
80
+ Returns a point on the implicit region.
81
+
82
+ Examples
83
+ ========
84
+
85
+ >>> from sympy.abc import x, y, z
86
+ >>> from sympy.vector import ImplicitRegion
87
+ >>> circle = ImplicitRegion((x, y), (x + 2)**2 + (y - 3)**2 - 16)
88
+ >>> circle.regular_point()
89
+ (-2, -1)
90
+ >>> parabola = ImplicitRegion((x, y), x**2 - 4*y)
91
+ >>> parabola.regular_point()
92
+ (0, 0)
93
+ >>> r = ImplicitRegion((x, y, z), (x + y + z)**4)
94
+ >>> r.regular_point()
95
+ (-10, -10, 20)
96
+
97
+ References
98
+ ==========
99
+
100
+ - Erik Hillgarter, "Rational Points on Conics", Diploma Thesis, RISC-Linz,
101
+ J. Kepler Universitat Linz, 1996. Available:
102
+ https://www3.risc.jku.at/publications/download/risc_1355/Rational%20Points%20on%20Conics.pdf
103
+
104
+ """
105
+ equation = self.equation
106
+
107
+ if len(self.variables) == 1:
108
+ return (list(solveset(equation, self.variables[0], domain=S.Reals))[0],)
109
+ elif len(self.variables) == 2:
110
+
111
+ if self.degree == 2:
112
+ coeffs = a, b, c, d, e, f = conic_coeff(self.variables, equation)
113
+
114
+ if b**2 == 4*a*c:
115
+ x_reg, y_reg = self._regular_point_parabola(*coeffs)
116
+ else:
117
+ x_reg, y_reg = self._regular_point_ellipse(*coeffs)
118
+ return x_reg, y_reg
119
+
120
+ if len(self.variables) == 3:
121
+ x, y, z = self.variables
122
+
123
+ for x_reg in range(-10, 10):
124
+ for y_reg in range(-10, 10):
125
+ if not solveset(equation.subs({x: x_reg, y: y_reg}), self.variables[2], domain=S.Reals).is_empty:
126
+ return (x_reg, y_reg, list(solveset(equation.subs({x: x_reg, y: y_reg})))[0])
127
+
128
+ if len(self.singular_points()) != 0:
129
+ return list[self.singular_points()][0]
130
+
131
+ raise NotImplementedError()
132
+
133
+ def _regular_point_parabola(self, a, b, c, d, e, f):
134
+ ok = (a, d) != (0, 0) and (c, e) != (0, 0) and b**2 == 4*a*c and (a, c) != (0, 0)
135
+
136
+ if not ok:
137
+ raise ValueError("Rational Point on the conic does not exist")
138
+
139
+ if a != 0:
140
+ d_dash, f_dash = (4*a*e - 2*b*d, 4*a*f - d**2)
141
+ if d_dash != 0:
142
+ y_reg = -f_dash/d_dash
143
+ x_reg = -(d + b*y_reg)/(2*a)
144
+ else:
145
+ ok = False
146
+ elif c != 0:
147
+ d_dash, f_dash = (4*c*d - 2*b*e, 4*c*f - e**2)
148
+ if d_dash != 0:
149
+ x_reg = -f_dash/d_dash
150
+ y_reg = -(e + b*x_reg)/(2*c)
151
+ else:
152
+ ok = False
153
+
154
+ if ok:
155
+ return x_reg, y_reg
156
+ else:
157
+ raise ValueError("Rational Point on the conic does not exist")
158
+
159
+ def _regular_point_ellipse(self, a, b, c, d, e, f):
160
+ D = 4*a*c - b**2
161
+ ok = D
162
+
163
+ if not ok:
164
+ raise ValueError("Rational Point on the conic does not exist")
165
+
166
+ if a == 0 and c == 0:
167
+ K = -1
168
+ L = 4*(d*e - b*f)
169
+ elif c != 0:
170
+ K = D
171
+ L = 4*c**2*d**2 - 4*b*c*d*e + 4*a*c*e**2 + 4*b**2*c*f - 16*a*c**2*f
172
+ else:
173
+ K = D
174
+ L = 4*a**2*e**2 - 4*b*a*d*e + 4*b**2*a*f
175
+
176
+ ok = L != 0 and not(K > 0 and L < 0)
177
+ if not ok:
178
+ raise ValueError("Rational Point on the conic does not exist")
179
+
180
+ K = Rational(K).limit_denominator(10**12)
181
+ L = Rational(L).limit_denominator(10**12)
182
+
183
+ k1, k2 = K.p, K.q
184
+ l1, l2 = L.p, L.q
185
+ g = gcd(k2, l2)
186
+
187
+ a1 = (l2*k2)/g
188
+ b1 = (k1*l2)/g
189
+ c1 = -(l1*k2)/g
190
+ a2 = sign(a1)*core(abs(a1), 2)
191
+ r1 = sqrt(a1/a2)
192
+ b2 = sign(b1)*core(abs(b1), 2)
193
+ r2 = sqrt(b1/b2)
194
+ c2 = sign(c1)*core(abs(c1), 2)
195
+ r3 = sqrt(c1/c2)
196
+
197
+ g = gcd(gcd(a2, b2), c2)
198
+ a2 = a2/g
199
+ b2 = b2/g
200
+ c2 = c2/g
201
+
202
+ g1 = gcd(a2, b2)
203
+ a2 = a2/g1
204
+ b2 = b2/g1
205
+ c2 = c2*g1
206
+
207
+ g2 = gcd(a2,c2)
208
+ a2 = a2/g2
209
+ b2 = b2*g2
210
+ c2 = c2/g2
211
+
212
+ g3 = gcd(b2, c2)
213
+ a2 = a2*g3
214
+ b2 = b2/g3
215
+ c2 = c2/g3
216
+
217
+ x, y, z = symbols("x y z")
218
+ eq = a2*x**2 + b2*y**2 + c2*z**2
219
+
220
+ solutions = diophantine(eq)
221
+
222
+ if len(solutions) == 0:
223
+ raise ValueError("Rational Point on the conic does not exist")
224
+
225
+ flag = False
226
+ for sol in solutions:
227
+ syms = Tuple(*sol).free_symbols
228
+ rep = {s: 3 for s in syms}
229
+ sol_z = sol[2]
230
+
231
+ if sol_z == 0:
232
+ flag = True
233
+ continue
234
+
235
+ if not isinstance(sol_z, (int, Integer)):
236
+ syms_z = sol_z.free_symbols
237
+
238
+ if len(syms_z) == 1:
239
+ p = next(iter(syms_z))
240
+ p_values = Complement(S.Integers, solveset(Eq(sol_z, 0), p, S.Integers))
241
+ rep[p] = next(iter(p_values))
242
+
243
+ if len(syms_z) == 2:
244
+ p, q = list(ordered(syms_z))
245
+
246
+ for i in S.Integers:
247
+ subs_sol_z = sol_z.subs(p, i)
248
+ q_values = Complement(S.Integers, solveset(Eq(subs_sol_z, 0), q, S.Integers))
249
+
250
+ if not q_values.is_empty:
251
+ rep[p] = i
252
+ rep[q] = next(iter(q_values))
253
+ break
254
+
255
+ if len(syms) != 0:
256
+ x, y, z = tuple(s.subs(rep) for s in sol)
257
+ else:
258
+ x, y, z = sol
259
+ flag = False
260
+ break
261
+
262
+ if flag:
263
+ raise ValueError("Rational Point on the conic does not exist")
264
+
265
+ x = (x*g3)/r1
266
+ y = (y*g2)/r2
267
+ z = (z*g1)/r3
268
+ x = x/z
269
+ y = y/z
270
+
271
+ if a == 0 and c == 0:
272
+ x_reg = (x + y - 2*e)/(2*b)
273
+ y_reg = (x - y - 2*d)/(2*b)
274
+ elif c != 0:
275
+ x_reg = (x - 2*d*c + b*e)/K
276
+ y_reg = (y - b*x_reg - e)/(2*c)
277
+ else:
278
+ y_reg = (x - 2*e*a + b*d)/K
279
+ x_reg = (y - b*y_reg - d)/(2*a)
280
+
281
+ return x_reg, y_reg
282
+
283
+ def singular_points(self):
284
+ """
285
+ Returns a set of singular points of the region.
286
+
287
+ The singular points are those points on the region
288
+ where all partial derivatives vanish.
289
+
290
+ Examples
291
+ ========
292
+
293
+ >>> from sympy.abc import x, y
294
+ >>> from sympy.vector import ImplicitRegion
295
+ >>> I = ImplicitRegion((x, y), (y-1)**2 -x**3 + 2*x**2 -x)
296
+ >>> I.singular_points()
297
+ {(1, 1)}
298
+
299
+ """
300
+ eq_list = [self.equation]
301
+ for var in self.variables:
302
+ eq_list += [diff(self.equation, var)]
303
+
304
+ return nonlinsolve(eq_list, list(self.variables))
305
+
306
+ def multiplicity(self, point):
307
+ """
308
+ Returns the multiplicity of a singular point on the region.
309
+
310
+ A singular point (x,y) of region is said to be of multiplicity m
311
+ if all the partial derivatives off to order m - 1 vanish there.
312
+
313
+ Examples
314
+ ========
315
+
316
+ >>> from sympy.abc import x, y, z
317
+ >>> from sympy.vector import ImplicitRegion
318
+ >>> I = ImplicitRegion((x, y, z), x**2 + y**3 - z**4)
319
+ >>> I.singular_points()
320
+ {(0, 0, 0)}
321
+ >>> I.multiplicity((0, 0, 0))
322
+ 2
323
+
324
+ """
325
+ if isinstance(point, Point):
326
+ point = point.args
327
+
328
+ modified_eq = self.equation
329
+
330
+ for i, var in enumerate(self.variables):
331
+ modified_eq = modified_eq.subs(var, var + point[i])
332
+ modified_eq = expand(modified_eq)
333
+
334
+ if len(modified_eq.args) != 0:
335
+ terms = modified_eq.args
336
+ m = min([total_degree(term) for term in terms])
337
+ else:
338
+ terms = modified_eq
339
+ m = total_degree(terms)
340
+
341
+ return m
342
+
343
+ def rational_parametrization(self, parameters=('t', 's'), reg_point=None):
344
+ """
345
+ Returns the rational parametrization of implicit region.
346
+
347
+ Examples
348
+ ========
349
+
350
+ >>> from sympy import Eq
351
+ >>> from sympy.abc import x, y, z, s, t
352
+ >>> from sympy.vector import ImplicitRegion
353
+
354
+ >>> parabola = ImplicitRegion((x, y), y**2 - 4*x)
355
+ >>> parabola.rational_parametrization()
356
+ (4/t**2, 4/t)
357
+
358
+ >>> circle = ImplicitRegion((x, y), Eq(x**2 + y**2, 4))
359
+ >>> circle.rational_parametrization()
360
+ (4*t/(t**2 + 1), 4*t**2/(t**2 + 1) - 2)
361
+
362
+ >>> I = ImplicitRegion((x, y), x**3 + x**2 - y**2)
363
+ >>> I.rational_parametrization()
364
+ (t**2 - 1, t*(t**2 - 1))
365
+
366
+ >>> cubic_curve = ImplicitRegion((x, y), x**3 + x**2 - y**2)
367
+ >>> cubic_curve.rational_parametrization(parameters=(t))
368
+ (t**2 - 1, t*(t**2 - 1))
369
+
370
+ >>> sphere = ImplicitRegion((x, y, z), x**2 + y**2 + z**2 - 4)
371
+ >>> sphere.rational_parametrization(parameters=(t, s))
372
+ (-2 + 4/(s**2 + t**2 + 1), 4*s/(s**2 + t**2 + 1), 4*t/(s**2 + t**2 + 1))
373
+
374
+ For some conics, regular_points() is unable to find a point on curve.
375
+ To calulcate the parametric representation in such cases, user need
376
+ to determine a point on the region and pass it using reg_point.
377
+
378
+ >>> c = ImplicitRegion((x, y), (x - 1/2)**2 + (y)**2 - (1/4)**2)
379
+ >>> c.rational_parametrization(reg_point=(3/4, 0))
380
+ (0.75 - 0.5/(t**2 + 1), -0.5*t/(t**2 + 1))
381
+
382
+ References
383
+ ==========
384
+
385
+ - Christoph M. Hoffmann, "Conversion Methods between Parametric and
386
+ Implicit Curves and Surfaces", Purdue e-Pubs, 1990. Available:
387
+ https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1827&context=cstech
388
+
389
+ """
390
+ equation = self.equation
391
+ degree = self.degree
392
+
393
+ if degree == 1:
394
+ if len(self.variables) == 1:
395
+ return (equation,)
396
+ elif len(self.variables) == 2:
397
+ x, y = self.variables
398
+ y_par = list(solveset(equation, y))[0]
399
+ return x, y_par
400
+ else:
401
+ raise NotImplementedError()
402
+
403
+ point = ()
404
+
405
+ # Finding the (n - 1) fold point of the monoid of degree
406
+ if degree == 2:
407
+ # For degree 2 curves, either a regular point or a singular point can be used.
408
+ if reg_point is not None:
409
+ # Using point provided by the user as regular point
410
+ point = reg_point
411
+ else:
412
+ if len(self.singular_points()) != 0:
413
+ point = list(self.singular_points())[0]
414
+ else:
415
+ point = self.regular_point()
416
+
417
+ if len(self.singular_points()) != 0:
418
+ singular_points = self.singular_points()
419
+ for spoint in singular_points:
420
+ syms = Tuple(*spoint).free_symbols
421
+ rep = {s: 2 for s in syms}
422
+
423
+ if len(syms) != 0:
424
+ spoint = tuple(s.subs(rep) for s in spoint)
425
+
426
+ if self.multiplicity(spoint) == degree - 1:
427
+ point = spoint
428
+ break
429
+
430
+ if len(point) == 0:
431
+ # The region in not a monoid
432
+ raise NotImplementedError()
433
+
434
+ modified_eq = equation
435
+
436
+ # Shifting the region such that fold point moves to origin
437
+ for i, var in enumerate(self.variables):
438
+ modified_eq = modified_eq.subs(var, var + point[i])
439
+ modified_eq = expand(modified_eq)
440
+
441
+ hn = hn_1 = 0
442
+ for term in modified_eq.args:
443
+ if total_degree(term) == degree:
444
+ hn += term
445
+ else:
446
+ hn_1 += term
447
+
448
+ hn_1 = -1*hn_1
449
+
450
+ if not isinstance(parameters, tuple):
451
+ parameters = (parameters,)
452
+
453
+ if len(self.variables) == 2:
454
+
455
+ parameter1 = parameters[0]
456
+ if parameter1 == 's':
457
+ # To avoid name conflict between parameters
458
+ s = _symbol('s_', real=True)
459
+ else:
460
+ s = _symbol('s', real=True)
461
+ t = _symbol(parameter1, real=True)
462
+
463
+ hn = hn.subs({self.variables[0]: s, self.variables[1]: t})
464
+ hn_1 = hn_1.subs({self.variables[0]: s, self.variables[1]: t})
465
+
466
+ x_par = (s*(hn_1/hn)).subs(s, 1) + point[0]
467
+ y_par = (t*(hn_1/hn)).subs(s, 1) + point[1]
468
+
469
+ return x_par, y_par
470
+
471
+ elif len(self.variables) == 3:
472
+
473
+ parameter1, parameter2 = parameters
474
+ if 'r' in parameters:
475
+ # To avoid name conflict between parameters
476
+ r = _symbol('r_', real=True)
477
+ else:
478
+ r = _symbol('r', real=True)
479
+ s = _symbol(parameter2, real=True)
480
+ t = _symbol(parameter1, real=True)
481
+
482
+ hn = hn.subs({self.variables[0]: r, self.variables[1]: s, self.variables[2]: t})
483
+ hn_1 = hn_1.subs({self.variables[0]: r, self.variables[1]: s, self.variables[2]: t})
484
+
485
+ x_par = (r*(hn_1/hn)).subs(r, 1) + point[0]
486
+ y_par = (s*(hn_1/hn)).subs(r, 1) + point[1]
487
+ z_par = (t*(hn_1/hn)).subs(r, 1) + point[2]
488
+
489
+ return x_par, y_par, z_par
490
+
491
+ raise NotImplementedError()
492
+
493
+ def conic_coeff(variables, equation):
494
+ if total_degree(equation) != 2:
495
+ raise ValueError()
496
+ x = variables[0]
497
+ y = variables[1]
498
+
499
+ equation = expand(equation)
500
+ a = equation.coeff(x**2)
501
+ b = equation.coeff(x*y)
502
+ c = equation.coeff(y**2)
503
+ d = equation.coeff(x, 1).coeff(y, 0)
504
+ e = equation.coeff(y, 1).coeff(x, 0)
505
+ f = equation.coeff(x, 0).coeff(y, 0)
506
+ return a, b, c, d, e, f
env-llmeval/lib/python3.10/site-packages/sympy/vector/integrals.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Basic, diff
2
+ from sympy.core.singleton import S
3
+ from sympy.core.sorting import default_sort_key
4
+ from sympy.matrices import Matrix
5
+ from sympy.integrals import Integral, integrate
6
+ from sympy.geometry.entity import GeometryEntity
7
+ from sympy.simplify.simplify import simplify
8
+ from sympy.utilities.iterables import topological_sort
9
+ from sympy.vector import (CoordSys3D, Vector, ParametricRegion,
10
+ parametric_region_list, ImplicitRegion)
11
+ from sympy.vector.operators import _get_coord_systems
12
+
13
+
14
+ class ParametricIntegral(Basic):
15
+ """
16
+ Represents integral of a scalar or vector field
17
+ over a Parametric Region
18
+
19
+ Examples
20
+ ========
21
+
22
+ >>> from sympy import cos, sin, pi
23
+ >>> from sympy.vector import CoordSys3D, ParametricRegion, ParametricIntegral
24
+ >>> from sympy.abc import r, t, theta, phi
25
+
26
+ >>> C = CoordSys3D('C')
27
+ >>> curve = ParametricRegion((3*t - 2, t + 1), (t, 1, 2))
28
+ >>> ParametricIntegral(C.x, curve)
29
+ 5*sqrt(10)/2
30
+ >>> length = ParametricIntegral(1, curve)
31
+ >>> length
32
+ sqrt(10)
33
+ >>> semisphere = ParametricRegion((2*sin(phi)*cos(theta), 2*sin(phi)*sin(theta), 2*cos(phi)),\
34
+ (theta, 0, 2*pi), (phi, 0, pi/2))
35
+ >>> ParametricIntegral(C.z, semisphere)
36
+ 8*pi
37
+
38
+ >>> ParametricIntegral(C.j + C.k, ParametricRegion((r*cos(theta), r*sin(theta)), r, theta))
39
+ 0
40
+
41
+ """
42
+
43
+ def __new__(cls, field, parametricregion):
44
+
45
+ coord_set = _get_coord_systems(field)
46
+
47
+ if len(coord_set) == 0:
48
+ coord_sys = CoordSys3D('C')
49
+ elif len(coord_set) > 1:
50
+ raise ValueError
51
+ else:
52
+ coord_sys = next(iter(coord_set))
53
+
54
+ if parametricregion.dimensions == 0:
55
+ return S.Zero
56
+
57
+ base_vectors = coord_sys.base_vectors()
58
+ base_scalars = coord_sys.base_scalars()
59
+
60
+ parametricfield = field
61
+
62
+ r = Vector.zero
63
+ for i in range(len(parametricregion.definition)):
64
+ r += base_vectors[i]*parametricregion.definition[i]
65
+
66
+ if len(coord_set) != 0:
67
+ for i in range(len(parametricregion.definition)):
68
+ parametricfield = parametricfield.subs(base_scalars[i], parametricregion.definition[i])
69
+
70
+ if parametricregion.dimensions == 1:
71
+ parameter = parametricregion.parameters[0]
72
+
73
+ r_diff = diff(r, parameter)
74
+ lower, upper = parametricregion.limits[parameter][0], parametricregion.limits[parameter][1]
75
+
76
+ if isinstance(parametricfield, Vector):
77
+ integrand = simplify(r_diff.dot(parametricfield))
78
+ else:
79
+ integrand = simplify(r_diff.magnitude()*parametricfield)
80
+
81
+ result = integrate(integrand, (parameter, lower, upper))
82
+
83
+ elif parametricregion.dimensions == 2:
84
+ u, v = cls._bounds_case(parametricregion.parameters, parametricregion.limits)
85
+
86
+ r_u = diff(r, u)
87
+ r_v = diff(r, v)
88
+ normal_vector = simplify(r_u.cross(r_v))
89
+
90
+ if isinstance(parametricfield, Vector):
91
+ integrand = parametricfield.dot(normal_vector)
92
+ else:
93
+ integrand = parametricfield*normal_vector.magnitude()
94
+
95
+ integrand = simplify(integrand)
96
+
97
+ lower_u, upper_u = parametricregion.limits[u][0], parametricregion.limits[u][1]
98
+ lower_v, upper_v = parametricregion.limits[v][0], parametricregion.limits[v][1]
99
+
100
+ result = integrate(integrand, (u, lower_u, upper_u), (v, lower_v, upper_v))
101
+
102
+ else:
103
+ variables = cls._bounds_case(parametricregion.parameters, parametricregion.limits)
104
+ coeff = Matrix(parametricregion.definition).jacobian(variables).det()
105
+ integrand = simplify(parametricfield*coeff)
106
+
107
+ l = [(var, parametricregion.limits[var][0], parametricregion.limits[var][1]) for var in variables]
108
+ result = integrate(integrand, *l)
109
+
110
+ if not isinstance(result, Integral):
111
+ return result
112
+ else:
113
+ return super().__new__(cls, field, parametricregion)
114
+
115
+ @classmethod
116
+ def _bounds_case(cls, parameters, limits):
117
+
118
+ V = list(limits.keys())
119
+ E = []
120
+
121
+ for p in V:
122
+ lower_p = limits[p][0]
123
+ upper_p = limits[p][1]
124
+
125
+ lower_p = lower_p.atoms()
126
+ upper_p = upper_p.atoms()
127
+ E.extend((p, q) for q in V if p != q and
128
+ (lower_p.issuperset({q}) or upper_p.issuperset({q})))
129
+
130
+ if not E:
131
+ return parameters
132
+ else:
133
+ return topological_sort((V, E), key=default_sort_key)
134
+
135
+ @property
136
+ def field(self):
137
+ return self.args[0]
138
+
139
+ @property
140
+ def parametricregion(self):
141
+ return self.args[1]
142
+
143
+
144
+ def vector_integrate(field, *region):
145
+ """
146
+ Compute the integral of a vector/scalar field
147
+ over a a region or a set of parameters.
148
+
149
+ Examples
150
+ ========
151
+ >>> from sympy.vector import CoordSys3D, ParametricRegion, vector_integrate
152
+ >>> from sympy.abc import x, y, t
153
+ >>> C = CoordSys3D('C')
154
+
155
+ >>> region = ParametricRegion((t, t**2), (t, 1, 5))
156
+ >>> vector_integrate(C.x*C.i, region)
157
+ 12
158
+
159
+ Integrals over some objects of geometry module can also be calculated.
160
+
161
+ >>> from sympy.geometry import Point, Circle, Triangle
162
+ >>> c = Circle(Point(0, 2), 5)
163
+ >>> vector_integrate(C.x**2 + C.y**2, c)
164
+ 290*pi
165
+ >>> triangle = Triangle(Point(-2, 3), Point(2, 3), Point(0, 5))
166
+ >>> vector_integrate(3*C.x**2*C.y*C.i + C.j, triangle)
167
+ -8
168
+
169
+ Integrals over some simple implicit regions can be computed. But in most cases,
170
+ it takes too long to compute over them. This is due to the expressions of parametric
171
+ representation becoming large.
172
+
173
+ >>> from sympy.vector import ImplicitRegion
174
+ >>> c2 = ImplicitRegion((x, y), (x - 2)**2 + (y - 1)**2 - 9)
175
+ >>> vector_integrate(1, c2)
176
+ 6*pi
177
+
178
+ Integral of fields with respect to base scalars:
179
+
180
+ >>> vector_integrate(12*C.y**3, (C.y, 1, 3))
181
+ 240
182
+ >>> vector_integrate(C.x**2*C.z, C.x)
183
+ C.x**3*C.z/3
184
+ >>> vector_integrate(C.x*C.i - C.y*C.k, C.x)
185
+ (Integral(C.x, C.x))*C.i + (Integral(-C.y, C.x))*C.k
186
+ >>> _.doit()
187
+ C.x**2/2*C.i + (-C.x*C.y)*C.k
188
+
189
+ """
190
+ if len(region) == 1:
191
+ if isinstance(region[0], ParametricRegion):
192
+ return ParametricIntegral(field, region[0])
193
+
194
+ if isinstance(region[0], ImplicitRegion):
195
+ region = parametric_region_list(region[0])[0]
196
+ return vector_integrate(field, region)
197
+
198
+ if isinstance(region[0], GeometryEntity):
199
+ regions_list = parametric_region_list(region[0])
200
+
201
+ result = 0
202
+ for reg in regions_list:
203
+ result += vector_integrate(field, reg)
204
+ return result
205
+
206
+ return integrate(field, *region)
env-llmeval/lib/python3.10/site-packages/sympy/vector/orienters.py ADDED
@@ -0,0 +1,398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.basic import Basic
2
+ from sympy.core.sympify import sympify
3
+ from sympy.functions.elementary.trigonometric import (cos, sin)
4
+ from sympy.matrices.dense import (eye, rot_axis1, rot_axis2, rot_axis3)
5
+ from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix
6
+ from sympy.core.cache import cacheit
7
+ from sympy.core.symbol import Str
8
+ import sympy.vector
9
+
10
+
11
+ class Orienter(Basic):
12
+ """
13
+ Super-class for all orienter classes.
14
+ """
15
+
16
+ def rotation_matrix(self):
17
+ """
18
+ The rotation matrix corresponding to this orienter
19
+ instance.
20
+ """
21
+ return self._parent_orient
22
+
23
+
24
+ class AxisOrienter(Orienter):
25
+ """
26
+ Class to denote an axis orienter.
27
+ """
28
+
29
+ def __new__(cls, angle, axis):
30
+ if not isinstance(axis, sympy.vector.Vector):
31
+ raise TypeError("axis should be a Vector")
32
+ angle = sympify(angle)
33
+
34
+ obj = super().__new__(cls, angle, axis)
35
+ obj._angle = angle
36
+ obj._axis = axis
37
+
38
+ return obj
39
+
40
+ def __init__(self, angle, axis):
41
+ """
42
+ Axis rotation is a rotation about an arbitrary axis by
43
+ some angle. The angle is supplied as a SymPy expr scalar, and
44
+ the axis is supplied as a Vector.
45
+
46
+ Parameters
47
+ ==========
48
+
49
+ angle : Expr
50
+ The angle by which the new system is to be rotated
51
+
52
+ axis : Vector
53
+ The axis around which the rotation has to be performed
54
+
55
+ Examples
56
+ ========
57
+
58
+ >>> from sympy.vector import CoordSys3D
59
+ >>> from sympy import symbols
60
+ >>> q1 = symbols('q1')
61
+ >>> N = CoordSys3D('N')
62
+ >>> from sympy.vector import AxisOrienter
63
+ >>> orienter = AxisOrienter(q1, N.i + 2 * N.j)
64
+ >>> B = N.orient_new('B', (orienter, ))
65
+
66
+ """
67
+ # Dummy initializer for docstrings
68
+ pass
69
+
70
+ @cacheit
71
+ def rotation_matrix(self, system):
72
+ """
73
+ The rotation matrix corresponding to this orienter
74
+ instance.
75
+
76
+ Parameters
77
+ ==========
78
+
79
+ system : CoordSys3D
80
+ The coordinate system wrt which the rotation matrix
81
+ is to be computed
82
+ """
83
+
84
+ axis = sympy.vector.express(self.axis, system).normalize()
85
+ axis = axis.to_matrix(system)
86
+ theta = self.angle
87
+ parent_orient = ((eye(3) - axis * axis.T) * cos(theta) +
88
+ Matrix([[0, -axis[2], axis[1]],
89
+ [axis[2], 0, -axis[0]],
90
+ [-axis[1], axis[0], 0]]) * sin(theta) +
91
+ axis * axis.T)
92
+ parent_orient = parent_orient.T
93
+ return parent_orient
94
+
95
+ @property
96
+ def angle(self):
97
+ return self._angle
98
+
99
+ @property
100
+ def axis(self):
101
+ return self._axis
102
+
103
+
104
+ class ThreeAngleOrienter(Orienter):
105
+ """
106
+ Super-class for Body and Space orienters.
107
+ """
108
+
109
+ def __new__(cls, angle1, angle2, angle3, rot_order):
110
+ if isinstance(rot_order, Str):
111
+ rot_order = rot_order.name
112
+
113
+ approved_orders = ('123', '231', '312', '132', '213',
114
+ '321', '121', '131', '212', '232',
115
+ '313', '323', '')
116
+ original_rot_order = rot_order
117
+ rot_order = str(rot_order).upper()
118
+ if not (len(rot_order) == 3):
119
+ raise TypeError('rot_order should be a str of length 3')
120
+ rot_order = [i.replace('X', '1') for i in rot_order]
121
+ rot_order = [i.replace('Y', '2') for i in rot_order]
122
+ rot_order = [i.replace('Z', '3') for i in rot_order]
123
+ rot_order = ''.join(rot_order)
124
+ if rot_order not in approved_orders:
125
+ raise TypeError('Invalid rot_type parameter')
126
+ a1 = int(rot_order[0])
127
+ a2 = int(rot_order[1])
128
+ a3 = int(rot_order[2])
129
+ angle1 = sympify(angle1)
130
+ angle2 = sympify(angle2)
131
+ angle3 = sympify(angle3)
132
+ if cls._in_order:
133
+ parent_orient = (_rot(a1, angle1) *
134
+ _rot(a2, angle2) *
135
+ _rot(a3, angle3))
136
+ else:
137
+ parent_orient = (_rot(a3, angle3) *
138
+ _rot(a2, angle2) *
139
+ _rot(a1, angle1))
140
+ parent_orient = parent_orient.T
141
+
142
+ obj = super().__new__(
143
+ cls, angle1, angle2, angle3, Str(rot_order))
144
+ obj._angle1 = angle1
145
+ obj._angle2 = angle2
146
+ obj._angle3 = angle3
147
+ obj._rot_order = original_rot_order
148
+ obj._parent_orient = parent_orient
149
+
150
+ return obj
151
+
152
+ @property
153
+ def angle1(self):
154
+ return self._angle1
155
+
156
+ @property
157
+ def angle2(self):
158
+ return self._angle2
159
+
160
+ @property
161
+ def angle3(self):
162
+ return self._angle3
163
+
164
+ @property
165
+ def rot_order(self):
166
+ return self._rot_order
167
+
168
+
169
+ class BodyOrienter(ThreeAngleOrienter):
170
+ """
171
+ Class to denote a body-orienter.
172
+ """
173
+
174
+ _in_order = True
175
+
176
+ def __new__(cls, angle1, angle2, angle3, rot_order):
177
+ obj = ThreeAngleOrienter.__new__(cls, angle1, angle2, angle3,
178
+ rot_order)
179
+ return obj
180
+
181
+ def __init__(self, angle1, angle2, angle3, rot_order):
182
+ """
183
+ Body orientation takes this coordinate system through three
184
+ successive simple rotations.
185
+
186
+ Body fixed rotations include both Euler Angles and
187
+ Tait-Bryan Angles, see https://en.wikipedia.org/wiki/Euler_angles.
188
+
189
+ Parameters
190
+ ==========
191
+
192
+ angle1, angle2, angle3 : Expr
193
+ Three successive angles to rotate the coordinate system by
194
+
195
+ rotation_order : string
196
+ String defining the order of axes for rotation
197
+
198
+ Examples
199
+ ========
200
+
201
+ >>> from sympy.vector import CoordSys3D, BodyOrienter
202
+ >>> from sympy import symbols
203
+ >>> q1, q2, q3 = symbols('q1 q2 q3')
204
+ >>> N = CoordSys3D('N')
205
+
206
+ A 'Body' fixed rotation is described by three angles and
207
+ three body-fixed rotation axes. To orient a coordinate system D
208
+ with respect to N, each sequential rotation is always about
209
+ the orthogonal unit vectors fixed to D. For example, a '123'
210
+ rotation will specify rotations about N.i, then D.j, then
211
+ D.k. (Initially, D.i is same as N.i)
212
+ Therefore,
213
+
214
+ >>> body_orienter = BodyOrienter(q1, q2, q3, '123')
215
+ >>> D = N.orient_new('D', (body_orienter, ))
216
+
217
+ is same as
218
+
219
+ >>> from sympy.vector import AxisOrienter
220
+ >>> axis_orienter1 = AxisOrienter(q1, N.i)
221
+ >>> D = N.orient_new('D', (axis_orienter1, ))
222
+ >>> axis_orienter2 = AxisOrienter(q2, D.j)
223
+ >>> D = D.orient_new('D', (axis_orienter2, ))
224
+ >>> axis_orienter3 = AxisOrienter(q3, D.k)
225
+ >>> D = D.orient_new('D', (axis_orienter3, ))
226
+
227
+ Acceptable rotation orders are of length 3, expressed in XYZ or
228
+ 123, and cannot have a rotation about about an axis twice in a row.
229
+
230
+ >>> body_orienter1 = BodyOrienter(q1, q2, q3, '123')
231
+ >>> body_orienter2 = BodyOrienter(q1, q2, 0, 'ZXZ')
232
+ >>> body_orienter3 = BodyOrienter(0, 0, 0, 'XYX')
233
+
234
+ """
235
+ # Dummy initializer for docstrings
236
+ pass
237
+
238
+
239
+ class SpaceOrienter(ThreeAngleOrienter):
240
+ """
241
+ Class to denote a space-orienter.
242
+ """
243
+
244
+ _in_order = False
245
+
246
+ def __new__(cls, angle1, angle2, angle3, rot_order):
247
+ obj = ThreeAngleOrienter.__new__(cls, angle1, angle2, angle3,
248
+ rot_order)
249
+ return obj
250
+
251
+ def __init__(self, angle1, angle2, angle3, rot_order):
252
+ """
253
+ Space rotation is similar to Body rotation, but the rotations
254
+ are applied in the opposite order.
255
+
256
+ Parameters
257
+ ==========
258
+
259
+ angle1, angle2, angle3 : Expr
260
+ Three successive angles to rotate the coordinate system by
261
+
262
+ rotation_order : string
263
+ String defining the order of axes for rotation
264
+
265
+ See Also
266
+ ========
267
+
268
+ BodyOrienter : Orienter to orient systems wrt Euler angles.
269
+
270
+ Examples
271
+ ========
272
+
273
+ >>> from sympy.vector import CoordSys3D, SpaceOrienter
274
+ >>> from sympy import symbols
275
+ >>> q1, q2, q3 = symbols('q1 q2 q3')
276
+ >>> N = CoordSys3D('N')
277
+
278
+ To orient a coordinate system D with respect to N, each
279
+ sequential rotation is always about N's orthogonal unit vectors.
280
+ For example, a '123' rotation will specify rotations about
281
+ N.i, then N.j, then N.k.
282
+ Therefore,
283
+
284
+ >>> space_orienter = SpaceOrienter(q1, q2, q3, '312')
285
+ >>> D = N.orient_new('D', (space_orienter, ))
286
+
287
+ is same as
288
+
289
+ >>> from sympy.vector import AxisOrienter
290
+ >>> axis_orienter1 = AxisOrienter(q1, N.i)
291
+ >>> B = N.orient_new('B', (axis_orienter1, ))
292
+ >>> axis_orienter2 = AxisOrienter(q2, N.j)
293
+ >>> C = B.orient_new('C', (axis_orienter2, ))
294
+ >>> axis_orienter3 = AxisOrienter(q3, N.k)
295
+ >>> D = C.orient_new('C', (axis_orienter3, ))
296
+
297
+ """
298
+ # Dummy initializer for docstrings
299
+ pass
300
+
301
+
302
+ class QuaternionOrienter(Orienter):
303
+ """
304
+ Class to denote a quaternion-orienter.
305
+ """
306
+
307
+ def __new__(cls, q0, q1, q2, q3):
308
+ q0 = sympify(q0)
309
+ q1 = sympify(q1)
310
+ q2 = sympify(q2)
311
+ q3 = sympify(q3)
312
+ parent_orient = (Matrix([[q0 ** 2 + q1 ** 2 - q2 ** 2 -
313
+ q3 ** 2,
314
+ 2 * (q1 * q2 - q0 * q3),
315
+ 2 * (q0 * q2 + q1 * q3)],
316
+ [2 * (q1 * q2 + q0 * q3),
317
+ q0 ** 2 - q1 ** 2 +
318
+ q2 ** 2 - q3 ** 2,
319
+ 2 * (q2 * q3 - q0 * q1)],
320
+ [2 * (q1 * q3 - q0 * q2),
321
+ 2 * (q0 * q1 + q2 * q3),
322
+ q0 ** 2 - q1 ** 2 -
323
+ q2 ** 2 + q3 ** 2]]))
324
+ parent_orient = parent_orient.T
325
+
326
+ obj = super().__new__(cls, q0, q1, q2, q3)
327
+ obj._q0 = q0
328
+ obj._q1 = q1
329
+ obj._q2 = q2
330
+ obj._q3 = q3
331
+ obj._parent_orient = parent_orient
332
+
333
+ return obj
334
+
335
+ def __init__(self, angle1, angle2, angle3, rot_order):
336
+ """
337
+ Quaternion orientation orients the new CoordSys3D with
338
+ Quaternions, defined as a finite rotation about lambda, a unit
339
+ vector, by some amount theta.
340
+
341
+ This orientation is described by four parameters:
342
+
343
+ q0 = cos(theta/2)
344
+
345
+ q1 = lambda_x sin(theta/2)
346
+
347
+ q2 = lambda_y sin(theta/2)
348
+
349
+ q3 = lambda_z sin(theta/2)
350
+
351
+ Quaternion does not take in a rotation order.
352
+
353
+ Parameters
354
+ ==========
355
+
356
+ q0, q1, q2, q3 : Expr
357
+ The quaternions to rotate the coordinate system by
358
+
359
+ Examples
360
+ ========
361
+
362
+ >>> from sympy.vector import CoordSys3D
363
+ >>> from sympy import symbols
364
+ >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
365
+ >>> N = CoordSys3D('N')
366
+ >>> from sympy.vector import QuaternionOrienter
367
+ >>> q_orienter = QuaternionOrienter(q0, q1, q2, q3)
368
+ >>> B = N.orient_new('B', (q_orienter, ))
369
+
370
+ """
371
+ # Dummy initializer for docstrings
372
+ pass
373
+
374
+ @property
375
+ def q0(self):
376
+ return self._q0
377
+
378
+ @property
379
+ def q1(self):
380
+ return self._q1
381
+
382
+ @property
383
+ def q2(self):
384
+ return self._q2
385
+
386
+ @property
387
+ def q3(self):
388
+ return self._q3
389
+
390
+
391
+ def _rot(axis, angle):
392
+ """DCM for simple axis 1, 2 or 3 rotations. """
393
+ if axis == 1:
394
+ return Matrix(rot_axis1(angle).T)
395
+ elif axis == 2:
396
+ return Matrix(rot_axis2(angle).T)
397
+ elif axis == 3:
398
+ return Matrix(rot_axis3(angle).T)