applied-ai-018 commited on
Commit
e181668
·
verified ·
1 Parent(s): 125290e

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/common.cpython-310.pyc +0 -0
  2. llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/determinant.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/eigen.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/graph.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/matrices.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/reductions.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/sparse.cpython-310.pyc +0 -0
  8. llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/sparsetools.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/subspaces.cpython-310.pyc +0 -0
  10. llmeval-env/lib/python3.10/site-packages/sympy/matrices/determinant.py +898 -0
  11. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/__init__.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/_shape.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/adjoint.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/applyfunc.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/blockmatrix.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/companion.cpython-310.pyc +0 -0
  17. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/determinant.cpython-310.pyc +0 -0
  18. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/diagonal.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/dotproduct.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/factorizations.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/fourier.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/funcmatrix.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/hadamard.cpython-310.pyc +0 -0
  24. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/inverse.cpython-310.pyc +0 -0
  25. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/kronecker.cpython-310.pyc +0 -0
  26. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matadd.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matexpr.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matmul.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matpow.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/permutation.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/sets.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/slice.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/special.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/trace.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/transpose.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/kronecker.py +434 -0
  37. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_adjoint.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_applyfunc.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_blockmatrix.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_companion.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_derivatives.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_determinant.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_diagonal.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_dotproduct.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_factorizations.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_fourier.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_funcmatrix.cpython-310.pyc +0 -0
  49. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_hadamard.cpython-310.pyc +0 -0
  50. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_indexing.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/common.cpython-310.pyc ADDED
Binary file (99.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/determinant.cpython-310.pyc ADDED
Binary file (24 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/eigen.cpython-310.pyc ADDED
Binary file (36.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/graph.cpython-310.pyc ADDED
Binary file (9.12 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/matrices.cpython-310.pyc ADDED
Binary file (70.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/reductions.cpython-310.pyc ADDED
Binary file (9.83 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/sparse.cpython-310.pyc ADDED
Binary file (13.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/sparsetools.cpython-310.pyc ADDED
Binary file (8.53 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/__pycache__/subspaces.cpython-310.pyc ADDED
Binary file (4.36 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/determinant.py ADDED
@@ -0,0 +1,898 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from types import FunctionType
2
+
3
+ from sympy.core.numbers import Float, Integer
4
+ from sympy.core.singleton import S
5
+ from sympy.core.symbol import uniquely_named_symbol
6
+ from sympy.core.mul import Mul
7
+ from sympy.polys import PurePoly, cancel
8
+ from sympy.functions.combinatorial.numbers import nC
9
+ from sympy.polys.matrices.domainmatrix import DomainMatrix
10
+
11
+ from .common import NonSquareMatrixError
12
+ from .utilities import (
13
+ _get_intermediate_simp, _get_intermediate_simp_bool,
14
+ _iszero, _is_zero_after_expand_mul, _dotprodsimp, _simplify)
15
+
16
+
17
+ def _find_reasonable_pivot(col, iszerofunc=_iszero, simpfunc=_simplify):
18
+ """ Find the lowest index of an item in ``col`` that is
19
+ suitable for a pivot. If ``col`` consists only of
20
+ Floats, the pivot with the largest norm is returned.
21
+ Otherwise, the first element where ``iszerofunc`` returns
22
+ False is used. If ``iszerofunc`` does not return false,
23
+ items are simplified and retested until a suitable
24
+ pivot is found.
25
+
26
+ Returns a 4-tuple
27
+ (pivot_offset, pivot_val, assumed_nonzero, newly_determined)
28
+ where pivot_offset is the index of the pivot, pivot_val is
29
+ the (possibly simplified) value of the pivot, assumed_nonzero
30
+ is True if an assumption that the pivot was non-zero
31
+ was made without being proved, and newly_determined are
32
+ elements that were simplified during the process of pivot
33
+ finding."""
34
+
35
+ newly_determined = []
36
+ col = list(col)
37
+ # a column that contains a mix of floats and integers
38
+ # but at least one float is considered a numerical
39
+ # column, and so we do partial pivoting
40
+ if all(isinstance(x, (Float, Integer)) for x in col) and any(
41
+ isinstance(x, Float) for x in col):
42
+ col_abs = [abs(x) for x in col]
43
+ max_value = max(col_abs)
44
+ if iszerofunc(max_value):
45
+ # just because iszerofunc returned True, doesn't
46
+ # mean the value is numerically zero. Make sure
47
+ # to replace all entries with numerical zeros
48
+ if max_value != 0:
49
+ newly_determined = [(i, 0) for i, x in enumerate(col) if x != 0]
50
+ return (None, None, False, newly_determined)
51
+ index = col_abs.index(max_value)
52
+ return (index, col[index], False, newly_determined)
53
+
54
+ # PASS 1 (iszerofunc directly)
55
+ possible_zeros = []
56
+ for i, x in enumerate(col):
57
+ is_zero = iszerofunc(x)
58
+ # is someone wrote a custom iszerofunc, it may return
59
+ # BooleanFalse or BooleanTrue instead of True or False,
60
+ # so use == for comparison instead of `is`
61
+ if is_zero == False:
62
+ # we found something that is definitely not zero
63
+ return (i, x, False, newly_determined)
64
+ possible_zeros.append(is_zero)
65
+
66
+ # by this point, we've found no certain non-zeros
67
+ if all(possible_zeros):
68
+ # if everything is definitely zero, we have
69
+ # no pivot
70
+ return (None, None, False, newly_determined)
71
+
72
+ # PASS 2 (iszerofunc after simplify)
73
+ # we haven't found any for-sure non-zeros, so
74
+ # go through the elements iszerofunc couldn't
75
+ # make a determination about and opportunistically
76
+ # simplify to see if we find something
77
+ for i, x in enumerate(col):
78
+ if possible_zeros[i] is not None:
79
+ continue
80
+ simped = simpfunc(x)
81
+ is_zero = iszerofunc(simped)
82
+ if is_zero in (True, False):
83
+ newly_determined.append((i, simped))
84
+ if is_zero == False:
85
+ return (i, simped, False, newly_determined)
86
+ possible_zeros[i] = is_zero
87
+
88
+ # after simplifying, some things that were recognized
89
+ # as zeros might be zeros
90
+ if all(possible_zeros):
91
+ # if everything is definitely zero, we have
92
+ # no pivot
93
+ return (None, None, False, newly_determined)
94
+
95
+ # PASS 3 (.equals(0))
96
+ # some expressions fail to simplify to zero, but
97
+ # ``.equals(0)`` evaluates to True. As a last-ditch
98
+ # attempt, apply ``.equals`` to these expressions
99
+ for i, x in enumerate(col):
100
+ if possible_zeros[i] is not None:
101
+ continue
102
+ if x.equals(S.Zero):
103
+ # ``.iszero`` may return False with
104
+ # an implicit assumption (e.g., ``x.equals(0)``
105
+ # when ``x`` is a symbol), so only treat it
106
+ # as proved when ``.equals(0)`` returns True
107
+ possible_zeros[i] = True
108
+ newly_determined.append((i, S.Zero))
109
+
110
+ if all(possible_zeros):
111
+ return (None, None, False, newly_determined)
112
+
113
+ # at this point there is nothing that could definitely
114
+ # be a pivot. To maintain compatibility with existing
115
+ # behavior, we'll assume that an illdetermined thing is
116
+ # non-zero. We should probably raise a warning in this case
117
+ i = possible_zeros.index(None)
118
+ return (i, col[i], True, newly_determined)
119
+
120
+
121
+ def _find_reasonable_pivot_naive(col, iszerofunc=_iszero, simpfunc=None):
122
+ """
123
+ Helper that computes the pivot value and location from a
124
+ sequence of contiguous matrix column elements. As a side effect
125
+ of the pivot search, this function may simplify some of the elements
126
+ of the input column. A list of these simplified entries and their
127
+ indices are also returned.
128
+ This function mimics the behavior of _find_reasonable_pivot(),
129
+ but does less work trying to determine if an indeterminate candidate
130
+ pivot simplifies to zero. This more naive approach can be much faster,
131
+ with the trade-off that it may erroneously return a pivot that is zero.
132
+
133
+ ``col`` is a sequence of contiguous column entries to be searched for
134
+ a suitable pivot.
135
+ ``iszerofunc`` is a callable that returns a Boolean that indicates
136
+ if its input is zero, or None if no such determination can be made.
137
+ ``simpfunc`` is a callable that simplifies its input. It must return
138
+ its input if it does not simplify its input. Passing in
139
+ ``simpfunc=None`` indicates that the pivot search should not attempt
140
+ to simplify any candidate pivots.
141
+
142
+ Returns a 4-tuple:
143
+ (pivot_offset, pivot_val, assumed_nonzero, newly_determined)
144
+ ``pivot_offset`` is the sequence index of the pivot.
145
+ ``pivot_val`` is the value of the pivot.
146
+ pivot_val and col[pivot_index] are equivalent, but will be different
147
+ when col[pivot_index] was simplified during the pivot search.
148
+ ``assumed_nonzero`` is a boolean indicating if the pivot cannot be
149
+ guaranteed to be zero. If assumed_nonzero is true, then the pivot
150
+ may or may not be non-zero. If assumed_nonzero is false, then
151
+ the pivot is non-zero.
152
+ ``newly_determined`` is a list of index-value pairs of pivot candidates
153
+ that were simplified during the pivot search.
154
+ """
155
+
156
+ # indeterminates holds the index-value pairs of each pivot candidate
157
+ # that is neither zero or non-zero, as determined by iszerofunc().
158
+ # If iszerofunc() indicates that a candidate pivot is guaranteed
159
+ # non-zero, or that every candidate pivot is zero then the contents
160
+ # of indeterminates are unused.
161
+ # Otherwise, the only viable candidate pivots are symbolic.
162
+ # In this case, indeterminates will have at least one entry,
163
+ # and all but the first entry are ignored when simpfunc is None.
164
+ indeterminates = []
165
+ for i, col_val in enumerate(col):
166
+ col_val_is_zero = iszerofunc(col_val)
167
+ if col_val_is_zero == False:
168
+ # This pivot candidate is non-zero.
169
+ return i, col_val, False, []
170
+ elif col_val_is_zero is None:
171
+ # The candidate pivot's comparison with zero
172
+ # is indeterminate.
173
+ indeterminates.append((i, col_val))
174
+
175
+ if len(indeterminates) == 0:
176
+ # All candidate pivots are guaranteed to be zero, i.e. there is
177
+ # no pivot.
178
+ return None, None, False, []
179
+
180
+ if simpfunc is None:
181
+ # Caller did not pass in a simplification function that might
182
+ # determine if an indeterminate pivot candidate is guaranteed
183
+ # to be nonzero, so assume the first indeterminate candidate
184
+ # is non-zero.
185
+ return indeterminates[0][0], indeterminates[0][1], True, []
186
+
187
+ # newly_determined holds index-value pairs of candidate pivots
188
+ # that were simplified during the search for a non-zero pivot.
189
+ newly_determined = []
190
+ for i, col_val in indeterminates:
191
+ tmp_col_val = simpfunc(col_val)
192
+ if id(col_val) != id(tmp_col_val):
193
+ # simpfunc() simplified this candidate pivot.
194
+ newly_determined.append((i, tmp_col_val))
195
+ if iszerofunc(tmp_col_val) == False:
196
+ # Candidate pivot simplified to a guaranteed non-zero value.
197
+ return i, tmp_col_val, False, newly_determined
198
+
199
+ return indeterminates[0][0], indeterminates[0][1], True, newly_determined
200
+
201
+
202
+ # This functions is a candidate for caching if it gets implemented for matrices.
203
+ def _berkowitz_toeplitz_matrix(M):
204
+ """Return (A,T) where T the Toeplitz matrix used in the Berkowitz algorithm
205
+ corresponding to ``M`` and A is the first principal submatrix.
206
+ """
207
+
208
+ # the 0 x 0 case is trivial
209
+ if M.rows == 0 and M.cols == 0:
210
+ return M._new(1,1, [M.one])
211
+
212
+ #
213
+ # Partition M = [ a_11 R ]
214
+ # [ C A ]
215
+ #
216
+
217
+ a, R = M[0,0], M[0, 1:]
218
+ C, A = M[1:, 0], M[1:,1:]
219
+
220
+ #
221
+ # The Toeplitz matrix looks like
222
+ #
223
+ # [ 1 ]
224
+ # [ -a 1 ]
225
+ # [ -RC -a 1 ]
226
+ # [ -RAC -RC -a 1 ]
227
+ # [ -RA**2C -RAC -RC -a 1 ]
228
+ # etc.
229
+
230
+ # Compute the diagonal entries.
231
+ # Because multiplying matrix times vector is so much
232
+ # more efficient than matrix times matrix, recursively
233
+ # compute -R * A**n * C.
234
+ diags = [C]
235
+ for i in range(M.rows - 2):
236
+ diags.append(A.multiply(diags[i], dotprodsimp=None))
237
+ diags = [(-R).multiply(d, dotprodsimp=None)[0, 0] for d in diags]
238
+ diags = [M.one, -a] + diags
239
+
240
+ def entry(i,j):
241
+ if j > i:
242
+ return M.zero
243
+ return diags[i - j]
244
+
245
+ toeplitz = M._new(M.cols + 1, M.rows, entry)
246
+ return (A, toeplitz)
247
+
248
+
249
+ # This functions is a candidate for caching if it gets implemented for matrices.
250
+ def _berkowitz_vector(M):
251
+ """ Run the Berkowitz algorithm and return a vector whose entries
252
+ are the coefficients of the characteristic polynomial of ``M``.
253
+
254
+ Given N x N matrix, efficiently compute
255
+ coefficients of characteristic polynomials of ``M``
256
+ without division in the ground domain.
257
+
258
+ This method is particularly useful for computing determinant,
259
+ principal minors and characteristic polynomial when ``M``
260
+ has complicated coefficients e.g. polynomials. Semi-direct
261
+ usage of this algorithm is also important in computing
262
+ efficiently sub-resultant PRS.
263
+
264
+ Assuming that M is a square matrix of dimension N x N and
265
+ I is N x N identity matrix, then the Berkowitz vector is
266
+ an N x 1 vector whose entries are coefficients of the
267
+ polynomial
268
+
269
+ charpoly(M) = det(t*I - M)
270
+
271
+ As a consequence, all polynomials generated by Berkowitz
272
+ algorithm are monic.
273
+
274
+ For more information on the implemented algorithm refer to:
275
+
276
+ [1] S.J. Berkowitz, On computing the determinant in small
277
+ parallel time using a small number of processors, ACM,
278
+ Information Processing Letters 18, 1984, pp. 147-150
279
+
280
+ [2] M. Keber, Division-Free computation of sub-resultants
281
+ using Bezout matrices, Tech. Report MPI-I-2006-1-006,
282
+ Saarbrucken, 2006
283
+ """
284
+
285
+ # handle the trivial cases
286
+ if M.rows == 0 and M.cols == 0:
287
+ return M._new(1, 1, [M.one])
288
+ elif M.rows == 1 and M.cols == 1:
289
+ return M._new(2, 1, [M.one, -M[0,0]])
290
+
291
+ submat, toeplitz = _berkowitz_toeplitz_matrix(M)
292
+
293
+ return toeplitz.multiply(_berkowitz_vector(submat), dotprodsimp=None)
294
+
295
+
296
+ def _adjugate(M, method="berkowitz"):
297
+ """Returns the adjugate, or classical adjoint, of
298
+ a matrix. That is, the transpose of the matrix of cofactors.
299
+
300
+ https://en.wikipedia.org/wiki/Adjugate
301
+
302
+ Parameters
303
+ ==========
304
+
305
+ method : string, optional
306
+ Method to use to find the cofactors, can be "bareiss", "berkowitz" or
307
+ "lu".
308
+
309
+ Examples
310
+ ========
311
+
312
+ >>> from sympy import Matrix
313
+ >>> M = Matrix([[1, 2], [3, 4]])
314
+ >>> M.adjugate()
315
+ Matrix([
316
+ [ 4, -2],
317
+ [-3, 1]])
318
+
319
+ See Also
320
+ ========
321
+
322
+ cofactor_matrix
323
+ sympy.matrices.common.MatrixCommon.transpose
324
+ """
325
+
326
+ return M.cofactor_matrix(method=method).transpose()
327
+
328
+
329
+ # This functions is a candidate for caching if it gets implemented for matrices.
330
+ def _charpoly(M, x='lambda', simplify=_simplify):
331
+ """Computes characteristic polynomial det(x*I - M) where I is
332
+ the identity matrix.
333
+
334
+ A PurePoly is returned, so using different variables for ``x`` does
335
+ not affect the comparison or the polynomials:
336
+
337
+ Parameters
338
+ ==========
339
+
340
+ x : string, optional
341
+ Name for the "lambda" variable, defaults to "lambda".
342
+
343
+ simplify : function, optional
344
+ Simplification function to use on the characteristic polynomial
345
+ calculated. Defaults to ``simplify``.
346
+
347
+ Examples
348
+ ========
349
+
350
+ >>> from sympy import Matrix
351
+ >>> from sympy.abc import x, y
352
+ >>> M = Matrix([[1, 3], [2, 0]])
353
+ >>> M.charpoly()
354
+ PurePoly(lambda**2 - lambda - 6, lambda, domain='ZZ')
355
+ >>> M.charpoly(x) == M.charpoly(y)
356
+ True
357
+ >>> M.charpoly(x) == M.charpoly(y)
358
+ True
359
+
360
+ Specifying ``x`` is optional; a symbol named ``lambda`` is used by
361
+ default (which looks good when pretty-printed in unicode):
362
+
363
+ >>> M.charpoly().as_expr()
364
+ lambda**2 - lambda - 6
365
+
366
+ And if ``x`` clashes with an existing symbol, underscores will
367
+ be prepended to the name to make it unique:
368
+
369
+ >>> M = Matrix([[1, 2], [x, 0]])
370
+ >>> M.charpoly(x).as_expr()
371
+ _x**2 - _x - 2*x
372
+
373
+ Whether you pass a symbol or not, the generator can be obtained
374
+ with the gen attribute since it may not be the same as the symbol
375
+ that was passed:
376
+
377
+ >>> M.charpoly(x).gen
378
+ _x
379
+ >>> M.charpoly(x).gen == x
380
+ False
381
+
382
+ Notes
383
+ =====
384
+
385
+ The Samuelson-Berkowitz algorithm is used to compute
386
+ the characteristic polynomial efficiently and without any
387
+ division operations. Thus the characteristic polynomial over any
388
+ commutative ring without zero divisors can be computed.
389
+
390
+ If the determinant det(x*I - M) can be found out easily as
391
+ in the case of an upper or a lower triangular matrix, then
392
+ instead of Samuelson-Berkowitz algorithm, eigenvalues are computed
393
+ and the characteristic polynomial with their help.
394
+
395
+ See Also
396
+ ========
397
+
398
+ det
399
+ """
400
+
401
+ if not M.is_square:
402
+ raise NonSquareMatrixError()
403
+ if M.is_lower or M.is_upper:
404
+ diagonal_elements = M.diagonal()
405
+ x = uniquely_named_symbol(x, diagonal_elements, modify=lambda s: '_' + s)
406
+ m = 1
407
+ for i in diagonal_elements:
408
+ m = m * (x - simplify(i))
409
+ return PurePoly(m, x)
410
+
411
+ berk_vector = _berkowitz_vector(M)
412
+ x = uniquely_named_symbol(x, berk_vector, modify=lambda s: '_' + s)
413
+
414
+ return PurePoly([simplify(a) for a in berk_vector], x)
415
+
416
+
417
+ def _cofactor(M, i, j, method="berkowitz"):
418
+ """Calculate the cofactor of an element.
419
+
420
+ Parameters
421
+ ==========
422
+
423
+ method : string, optional
424
+ Method to use to find the cofactors, can be "bareiss", "berkowitz" or
425
+ "lu".
426
+
427
+ Examples
428
+ ========
429
+
430
+ >>> from sympy import Matrix
431
+ >>> M = Matrix([[1, 2], [3, 4]])
432
+ >>> M.cofactor(0, 1)
433
+ -3
434
+
435
+ See Also
436
+ ========
437
+
438
+ cofactor_matrix
439
+ minor
440
+ minor_submatrix
441
+ """
442
+
443
+ if not M.is_square or M.rows < 1:
444
+ raise NonSquareMatrixError()
445
+
446
+ return S.NegativeOne**((i + j) % 2) * M.minor(i, j, method)
447
+
448
+
449
+ def _cofactor_matrix(M, method="berkowitz"):
450
+ """Return a matrix containing the cofactor of each element.
451
+
452
+ Parameters
453
+ ==========
454
+
455
+ method : string, optional
456
+ Method to use to find the cofactors, can be "bareiss", "berkowitz" or
457
+ "lu".
458
+
459
+ Examples
460
+ ========
461
+
462
+ >>> from sympy import Matrix
463
+ >>> M = Matrix([[1, 2], [3, 4]])
464
+ >>> M.cofactor_matrix()
465
+ Matrix([
466
+ [ 4, -3],
467
+ [-2, 1]])
468
+
469
+ See Also
470
+ ========
471
+
472
+ cofactor
473
+ minor
474
+ minor_submatrix
475
+ """
476
+
477
+ if not M.is_square or M.rows < 1:
478
+ raise NonSquareMatrixError()
479
+
480
+ return M._new(M.rows, M.cols,
481
+ lambda i, j: M.cofactor(i, j, method))
482
+
483
+ def _per(M):
484
+ """Returns the permanent of a matrix. Unlike determinant,
485
+ permanent is defined for both square and non-square matrices.
486
+
487
+ For an m x n matrix, with m less than or equal to n,
488
+ it is given as the sum over the permutations s of size
489
+ less than or equal to m on [1, 2, . . . n] of the product
490
+ from i = 1 to m of M[i, s[i]]. Taking the transpose will
491
+ not affect the value of the permanent.
492
+
493
+ In the case of a square matrix, this is the same as the permutation
494
+ definition of the determinant, but it does not take the sign of the
495
+ permutation into account. Computing the permanent with this definition
496
+ is quite inefficient, so here the Ryser formula is used.
497
+
498
+ Examples
499
+ ========
500
+
501
+ >>> from sympy import Matrix
502
+ >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
503
+ >>> M.per()
504
+ 450
505
+ >>> M = Matrix([1, 5, 7])
506
+ >>> M.per()
507
+ 13
508
+
509
+ References
510
+ ==========
511
+
512
+ .. [1] Prof. Frank Ben's notes: https://math.berkeley.edu/~bernd/ban275.pdf
513
+ .. [2] Wikipedia article on Permanent: https://en.wikipedia.org/wiki/Permanent_%28mathematics%29
514
+ .. [3] https://reference.wolfram.com/language/ref/Permanent.html
515
+ .. [4] Permanent of a rectangular matrix : https://arxiv.org/pdf/0904.3251.pdf
516
+ """
517
+ import itertools
518
+
519
+ m, n = M.shape
520
+ if m > n:
521
+ M = M.T
522
+ m, n = n, m
523
+ s = list(range(n))
524
+
525
+ subsets = []
526
+ for i in range(1, m + 1):
527
+ subsets += list(map(list, itertools.combinations(s, i)))
528
+
529
+ perm = 0
530
+ for subset in subsets:
531
+ prod = 1
532
+ sub_len = len(subset)
533
+ for i in range(m):
534
+ prod *= sum([M[i, j] for j in subset])
535
+ perm += prod * S.NegativeOne**sub_len * nC(n - sub_len, m - sub_len)
536
+ perm *= S.NegativeOne**m
537
+ return perm.simplify()
538
+
539
+ def _det_DOM(M):
540
+ DOM = DomainMatrix.from_Matrix(M, field=True, extension=True)
541
+ K = DOM.domain
542
+ return K.to_sympy(DOM.det())
543
+
544
+ # This functions is a candidate for caching if it gets implemented for matrices.
545
+ def _det(M, method="bareiss", iszerofunc=None):
546
+ """Computes the determinant of a matrix if ``M`` is a concrete matrix object
547
+ otherwise return an expressions ``Determinant(M)`` if ``M`` is a
548
+ ``MatrixSymbol`` or other expression.
549
+
550
+ Parameters
551
+ ==========
552
+
553
+ method : string, optional
554
+ Specifies the algorithm used for computing the matrix determinant.
555
+
556
+ If the matrix is at most 3x3, a hard-coded formula is used and the
557
+ specified method is ignored. Otherwise, it defaults to
558
+ ``'bareiss'``.
559
+
560
+ Also, if the matrix is an upper or a lower triangular matrix, determinant
561
+ is computed by simple multiplication of diagonal elements, and the
562
+ specified method is ignored.
563
+
564
+ If it is set to ``'domain-ge'``, then Gaussian elimination method will
565
+ be used via using DomainMatrix.
566
+
567
+ If it is set to ``'bareiss'``, Bareiss' fraction-free algorithm will
568
+ be used.
569
+
570
+ If it is set to ``'berkowitz'``, Berkowitz' algorithm will be used.
571
+
572
+ Otherwise, if it is set to ``'lu'``, LU decomposition will be used.
573
+
574
+ .. note::
575
+ For backward compatibility, legacy keys like "bareis" and
576
+ "det_lu" can still be used to indicate the corresponding
577
+ methods.
578
+ And the keys are also case-insensitive for now. However, it is
579
+ suggested to use the precise keys for specifying the method.
580
+
581
+ iszerofunc : FunctionType or None, optional
582
+ If it is set to ``None``, it will be defaulted to ``_iszero`` if the
583
+ method is set to ``'bareiss'``, and ``_is_zero_after_expand_mul`` if
584
+ the method is set to ``'lu'``.
585
+
586
+ It can also accept any user-specified zero testing function, if it
587
+ is formatted as a function which accepts a single symbolic argument
588
+ and returns ``True`` if it is tested as zero and ``False`` if it
589
+ tested as non-zero, and also ``None`` if it is undecidable.
590
+
591
+ Returns
592
+ =======
593
+
594
+ det : Basic
595
+ Result of determinant.
596
+
597
+ Raises
598
+ ======
599
+
600
+ ValueError
601
+ If unrecognized keys are given for ``method`` or ``iszerofunc``.
602
+
603
+ NonSquareMatrixError
604
+ If attempted to calculate determinant from a non-square matrix.
605
+
606
+ Examples
607
+ ========
608
+
609
+ >>> from sympy import Matrix, eye, det
610
+ >>> I3 = eye(3)
611
+ >>> det(I3)
612
+ 1
613
+ >>> M = Matrix([[1, 2], [3, 4]])
614
+ >>> det(M)
615
+ -2
616
+ >>> det(M) == M.det()
617
+ True
618
+ >>> M.det(method="domain-ge")
619
+ -2
620
+ """
621
+
622
+ # sanitize `method`
623
+ method = method.lower()
624
+
625
+ if method == "bareis":
626
+ method = "bareiss"
627
+ elif method == "det_lu":
628
+ method = "lu"
629
+
630
+ if method not in ("bareiss", "berkowitz", "lu", "domain-ge"):
631
+ raise ValueError("Determinant method '%s' unrecognized" % method)
632
+
633
+ if iszerofunc is None:
634
+ if method == "bareiss":
635
+ iszerofunc = _is_zero_after_expand_mul
636
+ elif method == "lu":
637
+ iszerofunc = _iszero
638
+
639
+ elif not isinstance(iszerofunc, FunctionType):
640
+ raise ValueError("Zero testing method '%s' unrecognized" % iszerofunc)
641
+
642
+ n = M.rows
643
+
644
+ if n == M.cols: # square check is done in individual method functions
645
+ if n == 0:
646
+ return M.one
647
+ elif n == 1:
648
+ return M[0, 0]
649
+ elif n == 2:
650
+ m = M[0, 0] * M[1, 1] - M[0, 1] * M[1, 0]
651
+ return _get_intermediate_simp(_dotprodsimp)(m)
652
+ elif n == 3:
653
+ m = (M[0, 0] * M[1, 1] * M[2, 2]
654
+ + M[0, 1] * M[1, 2] * M[2, 0]
655
+ + M[0, 2] * M[1, 0] * M[2, 1]
656
+ - M[0, 2] * M[1, 1] * M[2, 0]
657
+ - M[0, 0] * M[1, 2] * M[2, 1]
658
+ - M[0, 1] * M[1, 0] * M[2, 2])
659
+ return _get_intermediate_simp(_dotprodsimp)(m)
660
+
661
+ dets = []
662
+ for b in M.strongly_connected_components():
663
+ if method == "domain-ge": # uses DomainMatrix to evaluate determinant
664
+ det = _det_DOM(M[b, b])
665
+ elif method == "bareiss":
666
+ det = M[b, b]._eval_det_bareiss(iszerofunc=iszerofunc)
667
+ elif method == "berkowitz":
668
+ det = M[b, b]._eval_det_berkowitz()
669
+ elif method == "lu":
670
+ det = M[b, b]._eval_det_lu(iszerofunc=iszerofunc)
671
+ dets.append(det)
672
+ return Mul(*dets)
673
+
674
+
675
+ # This functions is a candidate for caching if it gets implemented for matrices.
676
+ def _det_bareiss(M, iszerofunc=_is_zero_after_expand_mul):
677
+ """Compute matrix determinant using Bareiss' fraction-free
678
+ algorithm which is an extension of the well known Gaussian
679
+ elimination method. This approach is best suited for dense
680
+ symbolic matrices and will result in a determinant with
681
+ minimal number of fractions. It means that less term
682
+ rewriting is needed on resulting formulae.
683
+
684
+ Parameters
685
+ ==========
686
+
687
+ iszerofunc : function, optional
688
+ The function to use to determine zeros when doing an LU decomposition.
689
+ Defaults to ``lambda x: x.is_zero``.
690
+
691
+ TODO: Implement algorithm for sparse matrices (SFF),
692
+ http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
693
+ """
694
+
695
+ # Recursively implemented Bareiss' algorithm as per Deanna Richelle Leggett's
696
+ # thesis http://www.math.usm.edu/perry/Research/Thesis_DRL.pdf
697
+ def bareiss(mat, cumm=1):
698
+ if mat.rows == 0:
699
+ return mat.one
700
+ elif mat.rows == 1:
701
+ return mat[0, 0]
702
+
703
+ # find a pivot and extract the remaining matrix
704
+ # With the default iszerofunc, _find_reasonable_pivot slows down
705
+ # the computation by the factor of 2.5 in one test.
706
+ # Relevant issues: #10279 and #13877.
707
+ pivot_pos, pivot_val, _, _ = _find_reasonable_pivot(mat[:, 0], iszerofunc=iszerofunc)
708
+ if pivot_pos is None:
709
+ return mat.zero
710
+
711
+ # if we have a valid pivot, we'll do a "row swap", so keep the
712
+ # sign of the det
713
+ sign = (-1) ** (pivot_pos % 2)
714
+
715
+ # we want every row but the pivot row and every column
716
+ rows = [i for i in range(mat.rows) if i != pivot_pos]
717
+ cols = list(range(mat.cols))
718
+ tmp_mat = mat.extract(rows, cols)
719
+
720
+ def entry(i, j):
721
+ ret = (pivot_val*tmp_mat[i, j + 1] - mat[pivot_pos, j + 1]*tmp_mat[i, 0]) / cumm
722
+ if _get_intermediate_simp_bool(True):
723
+ return _dotprodsimp(ret)
724
+ elif not ret.is_Atom:
725
+ return cancel(ret)
726
+ return ret
727
+
728
+ return sign*bareiss(M._new(mat.rows - 1, mat.cols - 1, entry), pivot_val)
729
+
730
+ if not M.is_square:
731
+ raise NonSquareMatrixError()
732
+
733
+ if M.rows == 0:
734
+ return M.one
735
+ # sympy/matrices/tests/test_matrices.py contains a test that
736
+ # suggests that the determinant of a 0 x 0 matrix is one, by
737
+ # convention.
738
+
739
+ return bareiss(M)
740
+
741
+
742
+ def _det_berkowitz(M):
743
+ """ Use the Berkowitz algorithm to compute the determinant."""
744
+
745
+ if not M.is_square:
746
+ raise NonSquareMatrixError()
747
+
748
+ if M.rows == 0:
749
+ return M.one
750
+ # sympy/matrices/tests/test_matrices.py contains a test that
751
+ # suggests that the determinant of a 0 x 0 matrix is one, by
752
+ # convention.
753
+
754
+ berk_vector = _berkowitz_vector(M)
755
+ return (-1)**(len(berk_vector) - 1) * berk_vector[-1]
756
+
757
+
758
+ # This functions is a candidate for caching if it gets implemented for matrices.
759
+ def _det_LU(M, iszerofunc=_iszero, simpfunc=None):
760
+ """ Computes the determinant of a matrix from its LU decomposition.
761
+ This function uses the LU decomposition computed by
762
+ LUDecomposition_Simple().
763
+
764
+ The keyword arguments iszerofunc and simpfunc are passed to
765
+ LUDecomposition_Simple().
766
+ iszerofunc is a callable that returns a boolean indicating if its
767
+ input is zero, or None if it cannot make the determination.
768
+ simpfunc is a callable that simplifies its input.
769
+ The default is simpfunc=None, which indicate that the pivot search
770
+ algorithm should not attempt to simplify any candidate pivots.
771
+ If simpfunc fails to simplify its input, then it must return its input
772
+ instead of a copy.
773
+
774
+ Parameters
775
+ ==========
776
+
777
+ iszerofunc : function, optional
778
+ The function to use to determine zeros when doing an LU decomposition.
779
+ Defaults to ``lambda x: x.is_zero``.
780
+
781
+ simpfunc : function, optional
782
+ The simplification function to use when looking for zeros for pivots.
783
+ """
784
+
785
+ if not M.is_square:
786
+ raise NonSquareMatrixError()
787
+
788
+ if M.rows == 0:
789
+ return M.one
790
+ # sympy/matrices/tests/test_matrices.py contains a test that
791
+ # suggests that the determinant of a 0 x 0 matrix is one, by
792
+ # convention.
793
+
794
+ lu, row_swaps = M.LUdecomposition_Simple(iszerofunc=iszerofunc,
795
+ simpfunc=simpfunc)
796
+ # P*A = L*U => det(A) = det(L)*det(U)/det(P) = det(P)*det(U).
797
+ # Lower triangular factor L encoded in lu has unit diagonal => det(L) = 1.
798
+ # P is a permutation matrix => det(P) in {-1, 1} => 1/det(P) = det(P).
799
+ # LUdecomposition_Simple() returns a list of row exchange index pairs, rather
800
+ # than a permutation matrix, but det(P) = (-1)**len(row_swaps).
801
+
802
+ # Avoid forming the potentially time consuming product of U's diagonal entries
803
+ # if the product is zero.
804
+ # Bottom right entry of U is 0 => det(A) = 0.
805
+ # It may be impossible to determine if this entry of U is zero when it is symbolic.
806
+ if iszerofunc(lu[lu.rows-1, lu.rows-1]):
807
+ return M.zero
808
+
809
+ # Compute det(P)
810
+ det = -M.one if len(row_swaps)%2 else M.one
811
+
812
+ # Compute det(U) by calculating the product of U's diagonal entries.
813
+ # The upper triangular portion of lu is the upper triangular portion of the
814
+ # U factor in the LU decomposition.
815
+ for k in range(lu.rows):
816
+ det *= lu[k, k]
817
+
818
+ # return det(P)*det(U)
819
+ return det
820
+
821
+
822
+ def _minor(M, i, j, method="berkowitz"):
823
+ """Return the (i,j) minor of ``M``. That is,
824
+ return the determinant of the matrix obtained by deleting
825
+ the `i`th row and `j`th column from ``M``.
826
+
827
+ Parameters
828
+ ==========
829
+
830
+ i, j : int
831
+ The row and column to exclude to obtain the submatrix.
832
+
833
+ method : string, optional
834
+ Method to use to find the determinant of the submatrix, can be
835
+ "bareiss", "berkowitz" or "lu".
836
+
837
+ Examples
838
+ ========
839
+
840
+ >>> from sympy import Matrix
841
+ >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
842
+ >>> M.minor(1, 1)
843
+ -12
844
+
845
+ See Also
846
+ ========
847
+
848
+ minor_submatrix
849
+ cofactor
850
+ det
851
+ """
852
+
853
+ if not M.is_square:
854
+ raise NonSquareMatrixError()
855
+
856
+ return M.minor_submatrix(i, j).det(method=method)
857
+
858
+
859
+ def _minor_submatrix(M, i, j):
860
+ """Return the submatrix obtained by removing the `i`th row
861
+ and `j`th column from ``M`` (works with Pythonic negative indices).
862
+
863
+ Parameters
864
+ ==========
865
+
866
+ i, j : int
867
+ The row and column to exclude to obtain the submatrix.
868
+
869
+ Examples
870
+ ========
871
+
872
+ >>> from sympy import Matrix
873
+ >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
874
+ >>> M.minor_submatrix(1, 1)
875
+ Matrix([
876
+ [1, 3],
877
+ [7, 9]])
878
+
879
+ See Also
880
+ ========
881
+
882
+ minor
883
+ cofactor
884
+ """
885
+
886
+ if i < 0:
887
+ i += M.rows
888
+ if j < 0:
889
+ j += M.cols
890
+
891
+ if not 0 <= i < M.rows or not 0 <= j < M.cols:
892
+ raise ValueError("`i` and `j` must satisfy 0 <= i < ``M.rows`` "
893
+ "(%d)" % M.rows + "and 0 <= j < ``M.cols`` (%d)." % M.cols)
894
+
895
+ rows = [a for a in range(M.rows) if a != i]
896
+ cols = [a for a in range(M.cols) if a != j]
897
+
898
+ return M.extract(rows, cols)
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.79 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/_shape.cpython-310.pyc ADDED
Binary file (4.26 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/adjoint.cpython-310.pyc ADDED
Binary file (2.49 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/applyfunc.cpython-310.pyc ADDED
Binary file (5.53 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/blockmatrix.cpython-310.pyc ADDED
Binary file (33.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/companion.cpython-310.pyc ADDED
Binary file (2.23 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/determinant.cpython-310.pyc ADDED
Binary file (3.99 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/diagonal.cpython-310.pyc ADDED
Binary file (7.07 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/dotproduct.cpython-310.pyc ADDED
Binary file (2.04 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/factorizations.cpython-310.pyc ADDED
Binary file (3.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/fourier.cpython-310.pyc ADDED
Binary file (3.09 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/funcmatrix.cpython-310.pyc ADDED
Binary file (4.25 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/hadamard.cpython-310.pyc ADDED
Binary file (14.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/inverse.cpython-310.pyc ADDED
Binary file (3.32 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/kronecker.cpython-310.pyc ADDED
Binary file (16.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matadd.cpython-310.pyc ADDED
Binary file (6.93 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matexpr.cpython-310.pyc ADDED
Binary file (29.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matmul.cpython-310.pyc ADDED
Binary file (16.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matpow.cpython-310.pyc ADDED
Binary file (4.96 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/permutation.cpython-310.pyc ADDED
Binary file (7.67 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/sets.cpython-310.pyc ADDED
Binary file (2.82 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/slice.cpython-310.pyc ADDED
Binary file (3.57 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/special.cpython-310.pyc ADDED
Binary file (10.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/trace.cpython-310.pyc ADDED
Binary file (4.87 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/transpose.cpython-310.pyc ADDED
Binary file (3.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/kronecker.py ADDED
@@ -0,0 +1,434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of the Kronecker product"""
2
+ from functools import reduce
3
+ from math import prod
4
+
5
+ from sympy.core import Mul, sympify
6
+ from sympy.functions import adjoint
7
+ from sympy.matrices.common import ShapeError
8
+ from sympy.matrices.expressions.matexpr import MatrixExpr
9
+ from sympy.matrices.expressions.transpose import transpose
10
+ from sympy.matrices.expressions.special import Identity
11
+ from sympy.matrices.matrices import MatrixBase
12
+ from sympy.strategies import (
13
+ canon, condition, distribute, do_one, exhaust, flatten, typed, unpack)
14
+ from sympy.strategies.traverse import bottom_up
15
+ from sympy.utilities import sift
16
+
17
+ from .matadd import MatAdd
18
+ from .matmul import MatMul
19
+ from .matpow import MatPow
20
+
21
+
22
+ def kronecker_product(*matrices):
23
+ """
24
+ The Kronecker product of two or more arguments.
25
+
26
+ This computes the explicit Kronecker product for subclasses of
27
+ ``MatrixBase`` i.e. explicit matrices. Otherwise, a symbolic
28
+ ``KroneckerProduct`` object is returned.
29
+
30
+
31
+ Examples
32
+ ========
33
+
34
+ For ``MatrixSymbol`` arguments a ``KroneckerProduct`` object is returned.
35
+ Elements of this matrix can be obtained by indexing, or for MatrixSymbols
36
+ with known dimension the explicit matrix can be obtained with
37
+ ``.as_explicit()``
38
+
39
+ >>> from sympy import kronecker_product, MatrixSymbol
40
+ >>> A = MatrixSymbol('A', 2, 2)
41
+ >>> B = MatrixSymbol('B', 2, 2)
42
+ >>> kronecker_product(A)
43
+ A
44
+ >>> kronecker_product(A, B)
45
+ KroneckerProduct(A, B)
46
+ >>> kronecker_product(A, B)[0, 1]
47
+ A[0, 0]*B[0, 1]
48
+ >>> kronecker_product(A, B).as_explicit()
49
+ Matrix([
50
+ [A[0, 0]*B[0, 0], A[0, 0]*B[0, 1], A[0, 1]*B[0, 0], A[0, 1]*B[0, 1]],
51
+ [A[0, 0]*B[1, 0], A[0, 0]*B[1, 1], A[0, 1]*B[1, 0], A[0, 1]*B[1, 1]],
52
+ [A[1, 0]*B[0, 0], A[1, 0]*B[0, 1], A[1, 1]*B[0, 0], A[1, 1]*B[0, 1]],
53
+ [A[1, 0]*B[1, 0], A[1, 0]*B[1, 1], A[1, 1]*B[1, 0], A[1, 1]*B[1, 1]]])
54
+
55
+ For explicit matrices the Kronecker product is returned as a Matrix
56
+
57
+ >>> from sympy import Matrix, kronecker_product
58
+ >>> sigma_x = Matrix([
59
+ ... [0, 1],
60
+ ... [1, 0]])
61
+ ...
62
+ >>> Isigma_y = Matrix([
63
+ ... [0, 1],
64
+ ... [-1, 0]])
65
+ ...
66
+ >>> kronecker_product(sigma_x, Isigma_y)
67
+ Matrix([
68
+ [ 0, 0, 0, 1],
69
+ [ 0, 0, -1, 0],
70
+ [ 0, 1, 0, 0],
71
+ [-1, 0, 0, 0]])
72
+
73
+ See Also
74
+ ========
75
+ KroneckerProduct
76
+
77
+ """
78
+ if not matrices:
79
+ raise TypeError("Empty Kronecker product is undefined")
80
+ if len(matrices) == 1:
81
+ return matrices[0]
82
+ else:
83
+ return KroneckerProduct(*matrices).doit()
84
+
85
+
86
+ class KroneckerProduct(MatrixExpr):
87
+ """
88
+ The Kronecker product of two or more arguments.
89
+
90
+ The Kronecker product is a non-commutative product of matrices.
91
+ Given two matrices of dimension (m, n) and (s, t) it produces a matrix
92
+ of dimension (m s, n t).
93
+
94
+ This is a symbolic object that simply stores its argument without
95
+ evaluating it. To actually compute the product, use the function
96
+ ``kronecker_product()`` or call the ``.doit()`` or ``.as_explicit()``
97
+ methods.
98
+
99
+ >>> from sympy import KroneckerProduct, MatrixSymbol
100
+ >>> A = MatrixSymbol('A', 5, 5)
101
+ >>> B = MatrixSymbol('B', 5, 5)
102
+ >>> isinstance(KroneckerProduct(A, B), KroneckerProduct)
103
+ True
104
+ """
105
+ is_KroneckerProduct = True
106
+
107
+ def __new__(cls, *args, check=True):
108
+ args = list(map(sympify, args))
109
+ if all(a.is_Identity for a in args):
110
+ ret = Identity(prod(a.rows for a in args))
111
+ if all(isinstance(a, MatrixBase) for a in args):
112
+ return ret.as_explicit()
113
+ else:
114
+ return ret
115
+
116
+ if check:
117
+ validate(*args)
118
+ return super().__new__(cls, *args)
119
+
120
+ @property
121
+ def shape(self):
122
+ rows, cols = self.args[0].shape
123
+ for mat in self.args[1:]:
124
+ rows *= mat.rows
125
+ cols *= mat.cols
126
+ return (rows, cols)
127
+
128
+ def _entry(self, i, j, **kwargs):
129
+ result = 1
130
+ for mat in reversed(self.args):
131
+ i, m = divmod(i, mat.rows)
132
+ j, n = divmod(j, mat.cols)
133
+ result *= mat[m, n]
134
+ return result
135
+
136
+ def _eval_adjoint(self):
137
+ return KroneckerProduct(*list(map(adjoint, self.args))).doit()
138
+
139
+ def _eval_conjugate(self):
140
+ return KroneckerProduct(*[a.conjugate() for a in self.args]).doit()
141
+
142
+ def _eval_transpose(self):
143
+ return KroneckerProduct(*list(map(transpose, self.args))).doit()
144
+
145
+ def _eval_trace(self):
146
+ from .trace import trace
147
+ return Mul(*[trace(a) for a in self.args])
148
+
149
+ def _eval_determinant(self):
150
+ from .determinant import det, Determinant
151
+ if not all(a.is_square for a in self.args):
152
+ return Determinant(self)
153
+
154
+ m = self.rows
155
+ return Mul(*[det(a)**(m/a.rows) for a in self.args])
156
+
157
+ def _eval_inverse(self):
158
+ try:
159
+ return KroneckerProduct(*[a.inverse() for a in self.args])
160
+ except ShapeError:
161
+ from sympy.matrices.expressions.inverse import Inverse
162
+ return Inverse(self)
163
+
164
+ def structurally_equal(self, other):
165
+ '''Determine whether two matrices have the same Kronecker product structure
166
+
167
+ Examples
168
+ ========
169
+
170
+ >>> from sympy import KroneckerProduct, MatrixSymbol, symbols
171
+ >>> m, n = symbols(r'm, n', integer=True)
172
+ >>> A = MatrixSymbol('A', m, m)
173
+ >>> B = MatrixSymbol('B', n, n)
174
+ >>> C = MatrixSymbol('C', m, m)
175
+ >>> D = MatrixSymbol('D', n, n)
176
+ >>> KroneckerProduct(A, B).structurally_equal(KroneckerProduct(C, D))
177
+ True
178
+ >>> KroneckerProduct(A, B).structurally_equal(KroneckerProduct(D, C))
179
+ False
180
+ >>> KroneckerProduct(A, B).structurally_equal(C)
181
+ False
182
+ '''
183
+ # Inspired by BlockMatrix
184
+ return (isinstance(other, KroneckerProduct)
185
+ and self.shape == other.shape
186
+ and len(self.args) == len(other.args)
187
+ and all(a.shape == b.shape for (a, b) in zip(self.args, other.args)))
188
+
189
+ def has_matching_shape(self, other):
190
+ '''Determine whether two matrices have the appropriate structure to bring matrix
191
+ multiplication inside the KroneckerProdut
192
+
193
+ Examples
194
+ ========
195
+ >>> from sympy import KroneckerProduct, MatrixSymbol, symbols
196
+ >>> m, n = symbols(r'm, n', integer=True)
197
+ >>> A = MatrixSymbol('A', m, n)
198
+ >>> B = MatrixSymbol('B', n, m)
199
+ >>> KroneckerProduct(A, B).has_matching_shape(KroneckerProduct(B, A))
200
+ True
201
+ >>> KroneckerProduct(A, B).has_matching_shape(KroneckerProduct(A, B))
202
+ False
203
+ >>> KroneckerProduct(A, B).has_matching_shape(A)
204
+ False
205
+ '''
206
+ return (isinstance(other, KroneckerProduct)
207
+ and self.cols == other.rows
208
+ and len(self.args) == len(other.args)
209
+ and all(a.cols == b.rows for (a, b) in zip(self.args, other.args)))
210
+
211
+ def _eval_expand_kroneckerproduct(self, **hints):
212
+ return flatten(canon(typed({KroneckerProduct: distribute(KroneckerProduct, MatAdd)}))(self))
213
+
214
+ def _kronecker_add(self, other):
215
+ if self.structurally_equal(other):
216
+ return self.__class__(*[a + b for (a, b) in zip(self.args, other.args)])
217
+ else:
218
+ return self + other
219
+
220
+ def _kronecker_mul(self, other):
221
+ if self.has_matching_shape(other):
222
+ return self.__class__(*[a*b for (a, b) in zip(self.args, other.args)])
223
+ else:
224
+ return self * other
225
+
226
+ def doit(self, **hints):
227
+ deep = hints.get('deep', True)
228
+ if deep:
229
+ args = [arg.doit(**hints) for arg in self.args]
230
+ else:
231
+ args = self.args
232
+ return canonicalize(KroneckerProduct(*args))
233
+
234
+
235
+ def validate(*args):
236
+ if not all(arg.is_Matrix for arg in args):
237
+ raise TypeError("Mix of Matrix and Scalar symbols")
238
+
239
+
240
+ # rules
241
+
242
+ def extract_commutative(kron):
243
+ c_part = []
244
+ nc_part = []
245
+ for arg in kron.args:
246
+ c, nc = arg.args_cnc()
247
+ c_part.extend(c)
248
+ nc_part.append(Mul._from_args(nc))
249
+
250
+ c_part = Mul(*c_part)
251
+ if c_part != 1:
252
+ return c_part*KroneckerProduct(*nc_part)
253
+ return kron
254
+
255
+
256
+ def matrix_kronecker_product(*matrices):
257
+ """Compute the Kronecker product of a sequence of SymPy Matrices.
258
+
259
+ This is the standard Kronecker product of matrices [1].
260
+
261
+ Parameters
262
+ ==========
263
+
264
+ matrices : tuple of MatrixBase instances
265
+ The matrices to take the Kronecker product of.
266
+
267
+ Returns
268
+ =======
269
+
270
+ matrix : MatrixBase
271
+ The Kronecker product matrix.
272
+
273
+ Examples
274
+ ========
275
+
276
+ >>> from sympy import Matrix
277
+ >>> from sympy.matrices.expressions.kronecker import (
278
+ ... matrix_kronecker_product)
279
+
280
+ >>> m1 = Matrix([[1,2],[3,4]])
281
+ >>> m2 = Matrix([[1,0],[0,1]])
282
+ >>> matrix_kronecker_product(m1, m2)
283
+ Matrix([
284
+ [1, 0, 2, 0],
285
+ [0, 1, 0, 2],
286
+ [3, 0, 4, 0],
287
+ [0, 3, 0, 4]])
288
+ >>> matrix_kronecker_product(m2, m1)
289
+ Matrix([
290
+ [1, 2, 0, 0],
291
+ [3, 4, 0, 0],
292
+ [0, 0, 1, 2],
293
+ [0, 0, 3, 4]])
294
+
295
+ References
296
+ ==========
297
+
298
+ .. [1] https://en.wikipedia.org/wiki/Kronecker_product
299
+ """
300
+ # Make sure we have a sequence of Matrices
301
+ if not all(isinstance(m, MatrixBase) for m in matrices):
302
+ raise TypeError(
303
+ 'Sequence of Matrices expected, got: %s' % repr(matrices)
304
+ )
305
+
306
+ # Pull out the first element in the product.
307
+ matrix_expansion = matrices[-1]
308
+ # Do the kronecker product working from right to left.
309
+ for mat in reversed(matrices[:-1]):
310
+ rows = mat.rows
311
+ cols = mat.cols
312
+ # Go through each row appending kronecker product to.
313
+ # running matrix_expansion.
314
+ for i in range(rows):
315
+ start = matrix_expansion*mat[i*cols]
316
+ # Go through each column joining each item
317
+ for j in range(cols - 1):
318
+ start = start.row_join(
319
+ matrix_expansion*mat[i*cols + j + 1]
320
+ )
321
+ # If this is the first element, make it the start of the
322
+ # new row.
323
+ if i == 0:
324
+ next = start
325
+ else:
326
+ next = next.col_join(start)
327
+ matrix_expansion = next
328
+
329
+ MatrixClass = max(matrices, key=lambda M: M._class_priority).__class__
330
+ if isinstance(matrix_expansion, MatrixClass):
331
+ return matrix_expansion
332
+ else:
333
+ return MatrixClass(matrix_expansion)
334
+
335
+
336
+ def explicit_kronecker_product(kron):
337
+ # Make sure we have a sequence of Matrices
338
+ if not all(isinstance(m, MatrixBase) for m in kron.args):
339
+ return kron
340
+
341
+ return matrix_kronecker_product(*kron.args)
342
+
343
+
344
+ rules = (unpack,
345
+ explicit_kronecker_product,
346
+ flatten,
347
+ extract_commutative)
348
+
349
+ canonicalize = exhaust(condition(lambda x: isinstance(x, KroneckerProduct),
350
+ do_one(*rules)))
351
+
352
+
353
+ def _kronecker_dims_key(expr):
354
+ if isinstance(expr, KroneckerProduct):
355
+ return tuple(a.shape for a in expr.args)
356
+ else:
357
+ return (0,)
358
+
359
+
360
+ def kronecker_mat_add(expr):
361
+ args = sift(expr.args, _kronecker_dims_key)
362
+ nonkrons = args.pop((0,), None)
363
+ if not args:
364
+ return expr
365
+
366
+ krons = [reduce(lambda x, y: x._kronecker_add(y), group)
367
+ for group in args.values()]
368
+
369
+ if not nonkrons:
370
+ return MatAdd(*krons)
371
+ else:
372
+ return MatAdd(*krons) + nonkrons
373
+
374
+
375
+ def kronecker_mat_mul(expr):
376
+ # modified from block matrix code
377
+ factor, matrices = expr.as_coeff_matrices()
378
+
379
+ i = 0
380
+ while i < len(matrices) - 1:
381
+ A, B = matrices[i:i+2]
382
+ if isinstance(A, KroneckerProduct) and isinstance(B, KroneckerProduct):
383
+ matrices[i] = A._kronecker_mul(B)
384
+ matrices.pop(i+1)
385
+ else:
386
+ i += 1
387
+
388
+ return factor*MatMul(*matrices)
389
+
390
+
391
+ def kronecker_mat_pow(expr):
392
+ if isinstance(expr.base, KroneckerProduct) and all(a.is_square for a in expr.base.args):
393
+ return KroneckerProduct(*[MatPow(a, expr.exp) for a in expr.base.args])
394
+ else:
395
+ return expr
396
+
397
+
398
+ def combine_kronecker(expr):
399
+ """Combine KronekeckerProduct with expression.
400
+
401
+ If possible write operations on KroneckerProducts of compatible shapes
402
+ as a single KroneckerProduct.
403
+
404
+ Examples
405
+ ========
406
+
407
+ >>> from sympy.matrices.expressions import combine_kronecker
408
+ >>> from sympy import MatrixSymbol, KroneckerProduct, symbols
409
+ >>> m, n = symbols(r'm, n', integer=True)
410
+ >>> A = MatrixSymbol('A', m, n)
411
+ >>> B = MatrixSymbol('B', n, m)
412
+ >>> combine_kronecker(KroneckerProduct(A, B)*KroneckerProduct(B, A))
413
+ KroneckerProduct(A*B, B*A)
414
+ >>> combine_kronecker(KroneckerProduct(A, B)+KroneckerProduct(B.T, A.T))
415
+ KroneckerProduct(A + B.T, B + A.T)
416
+ >>> C = MatrixSymbol('C', n, n)
417
+ >>> D = MatrixSymbol('D', m, m)
418
+ >>> combine_kronecker(KroneckerProduct(C, D)**m)
419
+ KroneckerProduct(C**m, D**m)
420
+ """
421
+ def haskron(expr):
422
+ return isinstance(expr, MatrixExpr) and expr.has(KroneckerProduct)
423
+
424
+ rule = exhaust(
425
+ bottom_up(exhaust(condition(haskron, typed(
426
+ {MatAdd: kronecker_mat_add,
427
+ MatMul: kronecker_mat_mul,
428
+ MatPow: kronecker_mat_pow})))))
429
+ result = rule(expr)
430
+ doit = getattr(result, 'doit', None)
431
+ if doit is not None:
432
+ return doit()
433
+ else:
434
+ return result
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (205 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_adjoint.cpython-310.pyc ADDED
Binary file (1.32 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_applyfunc.cpython-310.pyc ADDED
Binary file (3.67 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_blockmatrix.cpython-310.pyc ADDED
Binary file (15.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_companion.cpython-310.pyc ADDED
Binary file (2.38 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_derivatives.cpython-310.pyc ADDED
Binary file (13.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_determinant.cpython-310.pyc ADDED
Binary file (2.82 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_diagonal.cpython-310.pyc ADDED
Binary file (4.38 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_dotproduct.cpython-310.pyc ADDED
Binary file (1.92 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_factorizations.cpython-310.pyc ADDED
Binary file (1.34 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_fourier.cpython-310.pyc ADDED
Binary file (2.48 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_funcmatrix.cpython-310.pyc ADDED
Binary file (3.83 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_hadamard.cpython-310.pyc ADDED
Binary file (5.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__pycache__/test_indexing.cpython-310.pyc ADDED
Binary file (12 kB). View file