Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__init__.py +56 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_affinity_propagation.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_agglomerative.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_bicluster.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_birch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_bisect_k_means.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_dbscan.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_feature_agglomeration.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_kmeans.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_mean_shift.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_optics.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_spectral.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_affinity_propagation.py +604 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_agglomerative.py +1336 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_bicluster.py +622 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_birch.py +741 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_bisect_k_means.py +529 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_dbscan.py +476 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_dbscan_inner.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_feature_agglomeration.py +104 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/__pycache__/hdbscan.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/_linkage.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/_reachability.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/_tree.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/_tree.pxd +49 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/hdbscan.py +1018 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/tests/__pycache__/test_reachibility.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/tests/test_reachibility.py +63 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hierarchical_fast.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hierarchical_fast.pxd +9 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_k_means_common.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_k_means_common.pxd +48 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_k_means_elkan.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_k_means_lloyd.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_k_means_minibatch.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py +2318 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_mean_shift.py +575 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_optics.py +1199 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_spectral.py +799 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/tests/__pycache__/common.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/tests/__pycache__/test_affinity_propagation.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/tests/__pycache__/test_bicluster.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/cluster/tests/__pycache__/test_birch.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__init__.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The :mod:`sklearn.cluster` module gathers popular unsupervised clustering
|
3 |
+
algorithms.
|
4 |
+
"""
|
5 |
+
|
6 |
+
from ._affinity_propagation import AffinityPropagation, affinity_propagation
|
7 |
+
from ._agglomerative import (
|
8 |
+
AgglomerativeClustering,
|
9 |
+
FeatureAgglomeration,
|
10 |
+
linkage_tree,
|
11 |
+
ward_tree,
|
12 |
+
)
|
13 |
+
from ._bicluster import SpectralBiclustering, SpectralCoclustering
|
14 |
+
from ._birch import Birch
|
15 |
+
from ._bisect_k_means import BisectingKMeans
|
16 |
+
from ._dbscan import DBSCAN, dbscan
|
17 |
+
from ._hdbscan.hdbscan import HDBSCAN
|
18 |
+
from ._kmeans import KMeans, MiniBatchKMeans, k_means, kmeans_plusplus
|
19 |
+
from ._mean_shift import MeanShift, estimate_bandwidth, get_bin_seeds, mean_shift
|
20 |
+
from ._optics import (
|
21 |
+
OPTICS,
|
22 |
+
cluster_optics_dbscan,
|
23 |
+
cluster_optics_xi,
|
24 |
+
compute_optics_graph,
|
25 |
+
)
|
26 |
+
from ._spectral import SpectralClustering, spectral_clustering
|
27 |
+
|
28 |
+
__all__ = [
|
29 |
+
"AffinityPropagation",
|
30 |
+
"AgglomerativeClustering",
|
31 |
+
"Birch",
|
32 |
+
"DBSCAN",
|
33 |
+
"OPTICS",
|
34 |
+
"cluster_optics_dbscan",
|
35 |
+
"cluster_optics_xi",
|
36 |
+
"compute_optics_graph",
|
37 |
+
"KMeans",
|
38 |
+
"BisectingKMeans",
|
39 |
+
"FeatureAgglomeration",
|
40 |
+
"MeanShift",
|
41 |
+
"MiniBatchKMeans",
|
42 |
+
"SpectralClustering",
|
43 |
+
"affinity_propagation",
|
44 |
+
"dbscan",
|
45 |
+
"estimate_bandwidth",
|
46 |
+
"get_bin_seeds",
|
47 |
+
"k_means",
|
48 |
+
"kmeans_plusplus",
|
49 |
+
"linkage_tree",
|
50 |
+
"mean_shift",
|
51 |
+
"spectral_clustering",
|
52 |
+
"ward_tree",
|
53 |
+
"SpectralBiclustering",
|
54 |
+
"SpectralCoclustering",
|
55 |
+
"HDBSCAN",
|
56 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.39 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_affinity_propagation.cpython-310.pyc
ADDED
Binary file (17.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_agglomerative.cpython-310.pyc
ADDED
Binary file (37.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_bicluster.cpython-310.pyc
ADDED
Binary file (19.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_birch.cpython-310.pyc
ADDED
Binary file (19.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_bisect_k_means.cpython-310.pyc
ADDED
Binary file (16 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_dbscan.cpython-310.pyc
ADDED
Binary file (17.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_feature_agglomeration.cpython-310.pyc
ADDED
Binary file (3.33 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_kmeans.cpython-310.pyc
ADDED
Binary file (61.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_mean_shift.cpython-310.pyc
ADDED
Binary file (17.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_optics.cpython-310.pyc
ADDED
Binary file (35.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/__pycache__/_spectral.cpython-310.pyc
ADDED
Binary file (26.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_affinity_propagation.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Affinity Propagation clustering algorithm."""
|
2 |
+
|
3 |
+
# Author: Alexandre Gramfort [email protected]
|
4 |
+
# Gael Varoquaux [email protected]
|
5 |
+
|
6 |
+
# License: BSD 3 clause
|
7 |
+
|
8 |
+
import warnings
|
9 |
+
from numbers import Integral, Real
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from .._config import config_context
|
14 |
+
from ..base import BaseEstimator, ClusterMixin, _fit_context
|
15 |
+
from ..exceptions import ConvergenceWarning
|
16 |
+
from ..metrics import euclidean_distances, pairwise_distances_argmin
|
17 |
+
from ..utils import check_random_state
|
18 |
+
from ..utils._param_validation import Interval, StrOptions, validate_params
|
19 |
+
from ..utils.validation import check_is_fitted
|
20 |
+
|
21 |
+
|
22 |
+
def _equal_similarities_and_preferences(S, preference):
|
23 |
+
def all_equal_preferences():
|
24 |
+
return np.all(preference == preference.flat[0])
|
25 |
+
|
26 |
+
def all_equal_similarities():
|
27 |
+
# Create mask to ignore diagonal of S
|
28 |
+
mask = np.ones(S.shape, dtype=bool)
|
29 |
+
np.fill_diagonal(mask, 0)
|
30 |
+
|
31 |
+
return np.all(S[mask].flat == S[mask].flat[0])
|
32 |
+
|
33 |
+
return all_equal_preferences() and all_equal_similarities()
|
34 |
+
|
35 |
+
|
36 |
+
def _affinity_propagation(
|
37 |
+
S,
|
38 |
+
*,
|
39 |
+
preference,
|
40 |
+
convergence_iter,
|
41 |
+
max_iter,
|
42 |
+
damping,
|
43 |
+
verbose,
|
44 |
+
return_n_iter,
|
45 |
+
random_state,
|
46 |
+
):
|
47 |
+
"""Main affinity propagation algorithm."""
|
48 |
+
n_samples = S.shape[0]
|
49 |
+
if n_samples == 1 or _equal_similarities_and_preferences(S, preference):
|
50 |
+
# It makes no sense to run the algorithm in this case, so return 1 or
|
51 |
+
# n_samples clusters, depending on preferences
|
52 |
+
warnings.warn(
|
53 |
+
"All samples have mutually equal similarities. "
|
54 |
+
"Returning arbitrary cluster center(s)."
|
55 |
+
)
|
56 |
+
if preference.flat[0] > S.flat[n_samples - 1]:
|
57 |
+
return (
|
58 |
+
(np.arange(n_samples), np.arange(n_samples), 0)
|
59 |
+
if return_n_iter
|
60 |
+
else (np.arange(n_samples), np.arange(n_samples))
|
61 |
+
)
|
62 |
+
else:
|
63 |
+
return (
|
64 |
+
(np.array([0]), np.array([0] * n_samples), 0)
|
65 |
+
if return_n_iter
|
66 |
+
else (np.array([0]), np.array([0] * n_samples))
|
67 |
+
)
|
68 |
+
|
69 |
+
# Place preference on the diagonal of S
|
70 |
+
S.flat[:: (n_samples + 1)] = preference
|
71 |
+
|
72 |
+
A = np.zeros((n_samples, n_samples))
|
73 |
+
R = np.zeros((n_samples, n_samples)) # Initialize messages
|
74 |
+
# Intermediate results
|
75 |
+
tmp = np.zeros((n_samples, n_samples))
|
76 |
+
|
77 |
+
# Remove degeneracies
|
78 |
+
S += (
|
79 |
+
np.finfo(S.dtype).eps * S + np.finfo(S.dtype).tiny * 100
|
80 |
+
) * random_state.standard_normal(size=(n_samples, n_samples))
|
81 |
+
|
82 |
+
# Execute parallel affinity propagation updates
|
83 |
+
e = np.zeros((n_samples, convergence_iter))
|
84 |
+
|
85 |
+
ind = np.arange(n_samples)
|
86 |
+
|
87 |
+
for it in range(max_iter):
|
88 |
+
# tmp = A + S; compute responsibilities
|
89 |
+
np.add(A, S, tmp)
|
90 |
+
I = np.argmax(tmp, axis=1)
|
91 |
+
Y = tmp[ind, I] # np.max(A + S, axis=1)
|
92 |
+
tmp[ind, I] = -np.inf
|
93 |
+
Y2 = np.max(tmp, axis=1)
|
94 |
+
|
95 |
+
# tmp = Rnew
|
96 |
+
np.subtract(S, Y[:, None], tmp)
|
97 |
+
tmp[ind, I] = S[ind, I] - Y2
|
98 |
+
|
99 |
+
# Damping
|
100 |
+
tmp *= 1 - damping
|
101 |
+
R *= damping
|
102 |
+
R += tmp
|
103 |
+
|
104 |
+
# tmp = Rp; compute availabilities
|
105 |
+
np.maximum(R, 0, tmp)
|
106 |
+
tmp.flat[:: n_samples + 1] = R.flat[:: n_samples + 1]
|
107 |
+
|
108 |
+
# tmp = -Anew
|
109 |
+
tmp -= np.sum(tmp, axis=0)
|
110 |
+
dA = np.diag(tmp).copy()
|
111 |
+
tmp.clip(0, np.inf, tmp)
|
112 |
+
tmp.flat[:: n_samples + 1] = dA
|
113 |
+
|
114 |
+
# Damping
|
115 |
+
tmp *= 1 - damping
|
116 |
+
A *= damping
|
117 |
+
A -= tmp
|
118 |
+
|
119 |
+
# Check for convergence
|
120 |
+
E = (np.diag(A) + np.diag(R)) > 0
|
121 |
+
e[:, it % convergence_iter] = E
|
122 |
+
K = np.sum(E, axis=0)
|
123 |
+
|
124 |
+
if it >= convergence_iter:
|
125 |
+
se = np.sum(e, axis=1)
|
126 |
+
unconverged = np.sum((se == convergence_iter) + (se == 0)) != n_samples
|
127 |
+
if (not unconverged and (K > 0)) or (it == max_iter):
|
128 |
+
never_converged = False
|
129 |
+
if verbose:
|
130 |
+
print("Converged after %d iterations." % it)
|
131 |
+
break
|
132 |
+
else:
|
133 |
+
never_converged = True
|
134 |
+
if verbose:
|
135 |
+
print("Did not converge")
|
136 |
+
|
137 |
+
I = np.flatnonzero(E)
|
138 |
+
K = I.size # Identify exemplars
|
139 |
+
|
140 |
+
if K > 0:
|
141 |
+
if never_converged:
|
142 |
+
warnings.warn(
|
143 |
+
(
|
144 |
+
"Affinity propagation did not converge, this model "
|
145 |
+
"may return degenerate cluster centers and labels."
|
146 |
+
),
|
147 |
+
ConvergenceWarning,
|
148 |
+
)
|
149 |
+
c = np.argmax(S[:, I], axis=1)
|
150 |
+
c[I] = np.arange(K) # Identify clusters
|
151 |
+
# Refine the final set of exemplars and clusters and return results
|
152 |
+
for k in range(K):
|
153 |
+
ii = np.where(c == k)[0]
|
154 |
+
j = np.argmax(np.sum(S[ii[:, np.newaxis], ii], axis=0))
|
155 |
+
I[k] = ii[j]
|
156 |
+
|
157 |
+
c = np.argmax(S[:, I], axis=1)
|
158 |
+
c[I] = np.arange(K)
|
159 |
+
labels = I[c]
|
160 |
+
# Reduce labels to a sorted, gapless, list
|
161 |
+
cluster_centers_indices = np.unique(labels)
|
162 |
+
labels = np.searchsorted(cluster_centers_indices, labels)
|
163 |
+
else:
|
164 |
+
warnings.warn(
|
165 |
+
(
|
166 |
+
"Affinity propagation did not converge and this model "
|
167 |
+
"will not have any cluster centers."
|
168 |
+
),
|
169 |
+
ConvergenceWarning,
|
170 |
+
)
|
171 |
+
labels = np.array([-1] * n_samples)
|
172 |
+
cluster_centers_indices = []
|
173 |
+
|
174 |
+
if return_n_iter:
|
175 |
+
return cluster_centers_indices, labels, it + 1
|
176 |
+
else:
|
177 |
+
return cluster_centers_indices, labels
|
178 |
+
|
179 |
+
|
180 |
+
###############################################################################
|
181 |
+
# Public API
|
182 |
+
|
183 |
+
|
184 |
+
@validate_params(
|
185 |
+
{
|
186 |
+
"S": ["array-like"],
|
187 |
+
"return_n_iter": ["boolean"],
|
188 |
+
},
|
189 |
+
prefer_skip_nested_validation=False,
|
190 |
+
)
|
191 |
+
def affinity_propagation(
|
192 |
+
S,
|
193 |
+
*,
|
194 |
+
preference=None,
|
195 |
+
convergence_iter=15,
|
196 |
+
max_iter=200,
|
197 |
+
damping=0.5,
|
198 |
+
copy=True,
|
199 |
+
verbose=False,
|
200 |
+
return_n_iter=False,
|
201 |
+
random_state=None,
|
202 |
+
):
|
203 |
+
"""Perform Affinity Propagation Clustering of data.
|
204 |
+
|
205 |
+
Read more in the :ref:`User Guide <affinity_propagation>`.
|
206 |
+
|
207 |
+
Parameters
|
208 |
+
----------
|
209 |
+
S : array-like of shape (n_samples, n_samples)
|
210 |
+
Matrix of similarities between points.
|
211 |
+
|
212 |
+
preference : array-like of shape (n_samples,) or float, default=None
|
213 |
+
Preferences for each point - points with larger values of
|
214 |
+
preferences are more likely to be chosen as exemplars. The number of
|
215 |
+
exemplars, i.e. of clusters, is influenced by the input preferences
|
216 |
+
value. If the preferences are not passed as arguments, they will be
|
217 |
+
set to the median of the input similarities (resulting in a moderate
|
218 |
+
number of clusters). For a smaller amount of clusters, this can be set
|
219 |
+
to the minimum value of the similarities.
|
220 |
+
|
221 |
+
convergence_iter : int, default=15
|
222 |
+
Number of iterations with no change in the number
|
223 |
+
of estimated clusters that stops the convergence.
|
224 |
+
|
225 |
+
max_iter : int, default=200
|
226 |
+
Maximum number of iterations.
|
227 |
+
|
228 |
+
damping : float, default=0.5
|
229 |
+
Damping factor between 0.5 and 1.
|
230 |
+
|
231 |
+
copy : bool, default=True
|
232 |
+
If copy is False, the affinity matrix is modified inplace by the
|
233 |
+
algorithm, for memory efficiency.
|
234 |
+
|
235 |
+
verbose : bool, default=False
|
236 |
+
The verbosity level.
|
237 |
+
|
238 |
+
return_n_iter : bool, default=False
|
239 |
+
Whether or not to return the number of iterations.
|
240 |
+
|
241 |
+
random_state : int, RandomState instance or None, default=None
|
242 |
+
Pseudo-random number generator to control the starting state.
|
243 |
+
Use an int for reproducible results across function calls.
|
244 |
+
See the :term:`Glossary <random_state>`.
|
245 |
+
|
246 |
+
.. versionadded:: 0.23
|
247 |
+
this parameter was previously hardcoded as 0.
|
248 |
+
|
249 |
+
Returns
|
250 |
+
-------
|
251 |
+
cluster_centers_indices : ndarray of shape (n_clusters,)
|
252 |
+
Index of clusters centers.
|
253 |
+
|
254 |
+
labels : ndarray of shape (n_samples,)
|
255 |
+
Cluster labels for each point.
|
256 |
+
|
257 |
+
n_iter : int
|
258 |
+
Number of iterations run. Returned only if `return_n_iter` is
|
259 |
+
set to True.
|
260 |
+
|
261 |
+
Notes
|
262 |
+
-----
|
263 |
+
For an example, see :ref:`examples/cluster/plot_affinity_propagation.py
|
264 |
+
<sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`.
|
265 |
+
|
266 |
+
When the algorithm does not converge, it will still return a arrays of
|
267 |
+
``cluster_center_indices`` and labels if there are any exemplars/clusters,
|
268 |
+
however they may be degenerate and should be used with caution.
|
269 |
+
|
270 |
+
When all training samples have equal similarities and equal preferences,
|
271 |
+
the assignment of cluster centers and labels depends on the preference.
|
272 |
+
If the preference is smaller than the similarities, a single cluster center
|
273 |
+
and label ``0`` for every sample will be returned. Otherwise, every
|
274 |
+
training sample becomes its own cluster center and is assigned a unique
|
275 |
+
label.
|
276 |
+
|
277 |
+
References
|
278 |
+
----------
|
279 |
+
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
|
280 |
+
Between Data Points", Science Feb. 2007
|
281 |
+
|
282 |
+
Examples
|
283 |
+
--------
|
284 |
+
>>> import numpy as np
|
285 |
+
>>> from sklearn.cluster import affinity_propagation
|
286 |
+
>>> from sklearn.metrics.pairwise import euclidean_distances
|
287 |
+
>>> X = np.array([[1, 2], [1, 4], [1, 0],
|
288 |
+
... [4, 2], [4, 4], [4, 0]])
|
289 |
+
>>> S = -euclidean_distances(X, squared=True)
|
290 |
+
>>> cluster_centers_indices, labels = affinity_propagation(S, random_state=0)
|
291 |
+
>>> cluster_centers_indices
|
292 |
+
array([0, 3])
|
293 |
+
>>> labels
|
294 |
+
array([0, 0, 0, 1, 1, 1])
|
295 |
+
"""
|
296 |
+
estimator = AffinityPropagation(
|
297 |
+
damping=damping,
|
298 |
+
max_iter=max_iter,
|
299 |
+
convergence_iter=convergence_iter,
|
300 |
+
copy=copy,
|
301 |
+
preference=preference,
|
302 |
+
affinity="precomputed",
|
303 |
+
verbose=verbose,
|
304 |
+
random_state=random_state,
|
305 |
+
).fit(S)
|
306 |
+
|
307 |
+
if return_n_iter:
|
308 |
+
return estimator.cluster_centers_indices_, estimator.labels_, estimator.n_iter_
|
309 |
+
return estimator.cluster_centers_indices_, estimator.labels_
|
310 |
+
|
311 |
+
|
312 |
+
class AffinityPropagation(ClusterMixin, BaseEstimator):
|
313 |
+
"""Perform Affinity Propagation Clustering of data.
|
314 |
+
|
315 |
+
Read more in the :ref:`User Guide <affinity_propagation>`.
|
316 |
+
|
317 |
+
Parameters
|
318 |
+
----------
|
319 |
+
damping : float, default=0.5
|
320 |
+
Damping factor in the range `[0.5, 1.0)` is the extent to
|
321 |
+
which the current value is maintained relative to
|
322 |
+
incoming values (weighted 1 - damping). This in order
|
323 |
+
to avoid numerical oscillations when updating these
|
324 |
+
values (messages).
|
325 |
+
|
326 |
+
max_iter : int, default=200
|
327 |
+
Maximum number of iterations.
|
328 |
+
|
329 |
+
convergence_iter : int, default=15
|
330 |
+
Number of iterations with no change in the number
|
331 |
+
of estimated clusters that stops the convergence.
|
332 |
+
|
333 |
+
copy : bool, default=True
|
334 |
+
Make a copy of input data.
|
335 |
+
|
336 |
+
preference : array-like of shape (n_samples,) or float, default=None
|
337 |
+
Preferences for each point - points with larger values of
|
338 |
+
preferences are more likely to be chosen as exemplars. The number
|
339 |
+
of exemplars, ie of clusters, is influenced by the input
|
340 |
+
preferences value. If the preferences are not passed as arguments,
|
341 |
+
they will be set to the median of the input similarities.
|
342 |
+
|
343 |
+
affinity : {'euclidean', 'precomputed'}, default='euclidean'
|
344 |
+
Which affinity to use. At the moment 'precomputed' and
|
345 |
+
``euclidean`` are supported. 'euclidean' uses the
|
346 |
+
negative squared euclidean distance between points.
|
347 |
+
|
348 |
+
verbose : bool, default=False
|
349 |
+
Whether to be verbose.
|
350 |
+
|
351 |
+
random_state : int, RandomState instance or None, default=None
|
352 |
+
Pseudo-random number generator to control the starting state.
|
353 |
+
Use an int for reproducible results across function calls.
|
354 |
+
See the :term:`Glossary <random_state>`.
|
355 |
+
|
356 |
+
.. versionadded:: 0.23
|
357 |
+
this parameter was previously hardcoded as 0.
|
358 |
+
|
359 |
+
Attributes
|
360 |
+
----------
|
361 |
+
cluster_centers_indices_ : ndarray of shape (n_clusters,)
|
362 |
+
Indices of cluster centers.
|
363 |
+
|
364 |
+
cluster_centers_ : ndarray of shape (n_clusters, n_features)
|
365 |
+
Cluster centers (if affinity != ``precomputed``).
|
366 |
+
|
367 |
+
labels_ : ndarray of shape (n_samples,)
|
368 |
+
Labels of each point.
|
369 |
+
|
370 |
+
affinity_matrix_ : ndarray of shape (n_samples, n_samples)
|
371 |
+
Stores the affinity matrix used in ``fit``.
|
372 |
+
|
373 |
+
n_iter_ : int
|
374 |
+
Number of iterations taken to converge.
|
375 |
+
|
376 |
+
n_features_in_ : int
|
377 |
+
Number of features seen during :term:`fit`.
|
378 |
+
|
379 |
+
.. versionadded:: 0.24
|
380 |
+
|
381 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
382 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
383 |
+
has feature names that are all strings.
|
384 |
+
|
385 |
+
.. versionadded:: 1.0
|
386 |
+
|
387 |
+
See Also
|
388 |
+
--------
|
389 |
+
AgglomerativeClustering : Recursively merges the pair of
|
390 |
+
clusters that minimally increases a given linkage distance.
|
391 |
+
FeatureAgglomeration : Similar to AgglomerativeClustering,
|
392 |
+
but recursively merges features instead of samples.
|
393 |
+
KMeans : K-Means clustering.
|
394 |
+
MiniBatchKMeans : Mini-Batch K-Means clustering.
|
395 |
+
MeanShift : Mean shift clustering using a flat kernel.
|
396 |
+
SpectralClustering : Apply clustering to a projection
|
397 |
+
of the normalized Laplacian.
|
398 |
+
|
399 |
+
Notes
|
400 |
+
-----
|
401 |
+
For an example, see :ref:`examples/cluster/plot_affinity_propagation.py
|
402 |
+
<sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`.
|
403 |
+
|
404 |
+
The algorithmic complexity of affinity propagation is quadratic
|
405 |
+
in the number of points.
|
406 |
+
|
407 |
+
When the algorithm does not converge, it will still return a arrays of
|
408 |
+
``cluster_center_indices`` and labels if there are any exemplars/clusters,
|
409 |
+
however they may be degenerate and should be used with caution.
|
410 |
+
|
411 |
+
When ``fit`` does not converge, ``cluster_centers_`` is still populated
|
412 |
+
however it may be degenerate. In such a case, proceed with caution.
|
413 |
+
If ``fit`` does not converge and fails to produce any ``cluster_centers_``
|
414 |
+
then ``predict`` will label every sample as ``-1``.
|
415 |
+
|
416 |
+
When all training samples have equal similarities and equal preferences,
|
417 |
+
the assignment of cluster centers and labels depends on the preference.
|
418 |
+
If the preference is smaller than the similarities, ``fit`` will result in
|
419 |
+
a single cluster center and label ``0`` for every sample. Otherwise, every
|
420 |
+
training sample becomes its own cluster center and is assigned a unique
|
421 |
+
label.
|
422 |
+
|
423 |
+
References
|
424 |
+
----------
|
425 |
+
|
426 |
+
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
|
427 |
+
Between Data Points", Science Feb. 2007
|
428 |
+
|
429 |
+
Examples
|
430 |
+
--------
|
431 |
+
>>> from sklearn.cluster import AffinityPropagation
|
432 |
+
>>> import numpy as np
|
433 |
+
>>> X = np.array([[1, 2], [1, 4], [1, 0],
|
434 |
+
... [4, 2], [4, 4], [4, 0]])
|
435 |
+
>>> clustering = AffinityPropagation(random_state=5).fit(X)
|
436 |
+
>>> clustering
|
437 |
+
AffinityPropagation(random_state=5)
|
438 |
+
>>> clustering.labels_
|
439 |
+
array([0, 0, 0, 1, 1, 1])
|
440 |
+
>>> clustering.predict([[0, 0], [4, 4]])
|
441 |
+
array([0, 1])
|
442 |
+
>>> clustering.cluster_centers_
|
443 |
+
array([[1, 2],
|
444 |
+
[4, 2]])
|
445 |
+
"""
|
446 |
+
|
447 |
+
_parameter_constraints: dict = {
|
448 |
+
"damping": [Interval(Real, 0.5, 1.0, closed="left")],
|
449 |
+
"max_iter": [Interval(Integral, 1, None, closed="left")],
|
450 |
+
"convergence_iter": [Interval(Integral, 1, None, closed="left")],
|
451 |
+
"copy": ["boolean"],
|
452 |
+
"preference": [
|
453 |
+
"array-like",
|
454 |
+
Interval(Real, None, None, closed="neither"),
|
455 |
+
None,
|
456 |
+
],
|
457 |
+
"affinity": [StrOptions({"euclidean", "precomputed"})],
|
458 |
+
"verbose": ["verbose"],
|
459 |
+
"random_state": ["random_state"],
|
460 |
+
}
|
461 |
+
|
462 |
+
def __init__(
|
463 |
+
self,
|
464 |
+
*,
|
465 |
+
damping=0.5,
|
466 |
+
max_iter=200,
|
467 |
+
convergence_iter=15,
|
468 |
+
copy=True,
|
469 |
+
preference=None,
|
470 |
+
affinity="euclidean",
|
471 |
+
verbose=False,
|
472 |
+
random_state=None,
|
473 |
+
):
|
474 |
+
self.damping = damping
|
475 |
+
self.max_iter = max_iter
|
476 |
+
self.convergence_iter = convergence_iter
|
477 |
+
self.copy = copy
|
478 |
+
self.verbose = verbose
|
479 |
+
self.preference = preference
|
480 |
+
self.affinity = affinity
|
481 |
+
self.random_state = random_state
|
482 |
+
|
483 |
+
def _more_tags(self):
|
484 |
+
return {"pairwise": self.affinity == "precomputed"}
|
485 |
+
|
486 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
487 |
+
def fit(self, X, y=None):
|
488 |
+
"""Fit the clustering from features, or affinity matrix.
|
489 |
+
|
490 |
+
Parameters
|
491 |
+
----------
|
492 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
|
493 |
+
array-like of shape (n_samples, n_samples)
|
494 |
+
Training instances to cluster, or similarities / affinities between
|
495 |
+
instances if ``affinity='precomputed'``. If a sparse feature matrix
|
496 |
+
is provided, it will be converted into a sparse ``csr_matrix``.
|
497 |
+
|
498 |
+
y : Ignored
|
499 |
+
Not used, present here for API consistency by convention.
|
500 |
+
|
501 |
+
Returns
|
502 |
+
-------
|
503 |
+
self
|
504 |
+
Returns the instance itself.
|
505 |
+
"""
|
506 |
+
if self.affinity == "precomputed":
|
507 |
+
accept_sparse = False
|
508 |
+
else:
|
509 |
+
accept_sparse = "csr"
|
510 |
+
X = self._validate_data(X, accept_sparse=accept_sparse)
|
511 |
+
if self.affinity == "precomputed":
|
512 |
+
self.affinity_matrix_ = X.copy() if self.copy else X
|
513 |
+
else: # self.affinity == "euclidean"
|
514 |
+
self.affinity_matrix_ = -euclidean_distances(X, squared=True)
|
515 |
+
|
516 |
+
if self.affinity_matrix_.shape[0] != self.affinity_matrix_.shape[1]:
|
517 |
+
raise ValueError(
|
518 |
+
"The matrix of similarities must be a square array. "
|
519 |
+
f"Got {self.affinity_matrix_.shape} instead."
|
520 |
+
)
|
521 |
+
|
522 |
+
if self.preference is None:
|
523 |
+
preference = np.median(self.affinity_matrix_)
|
524 |
+
else:
|
525 |
+
preference = self.preference
|
526 |
+
preference = np.asarray(preference)
|
527 |
+
|
528 |
+
random_state = check_random_state(self.random_state)
|
529 |
+
|
530 |
+
(
|
531 |
+
self.cluster_centers_indices_,
|
532 |
+
self.labels_,
|
533 |
+
self.n_iter_,
|
534 |
+
) = _affinity_propagation(
|
535 |
+
self.affinity_matrix_,
|
536 |
+
max_iter=self.max_iter,
|
537 |
+
convergence_iter=self.convergence_iter,
|
538 |
+
preference=preference,
|
539 |
+
damping=self.damping,
|
540 |
+
verbose=self.verbose,
|
541 |
+
return_n_iter=True,
|
542 |
+
random_state=random_state,
|
543 |
+
)
|
544 |
+
|
545 |
+
if self.affinity != "precomputed":
|
546 |
+
self.cluster_centers_ = X[self.cluster_centers_indices_].copy()
|
547 |
+
|
548 |
+
return self
|
549 |
+
|
550 |
+
def predict(self, X):
|
551 |
+
"""Predict the closest cluster each sample in X belongs to.
|
552 |
+
|
553 |
+
Parameters
|
554 |
+
----------
|
555 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
556 |
+
New data to predict. If a sparse matrix is provided, it will be
|
557 |
+
converted into a sparse ``csr_matrix``.
|
558 |
+
|
559 |
+
Returns
|
560 |
+
-------
|
561 |
+
labels : ndarray of shape (n_samples,)
|
562 |
+
Cluster labels.
|
563 |
+
"""
|
564 |
+
check_is_fitted(self)
|
565 |
+
X = self._validate_data(X, reset=False, accept_sparse="csr")
|
566 |
+
if not hasattr(self, "cluster_centers_"):
|
567 |
+
raise ValueError(
|
568 |
+
"Predict method is not supported when affinity='precomputed'."
|
569 |
+
)
|
570 |
+
|
571 |
+
if self.cluster_centers_.shape[0] > 0:
|
572 |
+
with config_context(assume_finite=True):
|
573 |
+
return pairwise_distances_argmin(X, self.cluster_centers_)
|
574 |
+
else:
|
575 |
+
warnings.warn(
|
576 |
+
(
|
577 |
+
"This model does not have any cluster centers "
|
578 |
+
"because affinity propagation did not converge. "
|
579 |
+
"Labeling every sample as '-1'."
|
580 |
+
),
|
581 |
+
ConvergenceWarning,
|
582 |
+
)
|
583 |
+
return np.array([-1] * X.shape[0])
|
584 |
+
|
585 |
+
def fit_predict(self, X, y=None):
|
586 |
+
"""Fit clustering from features/affinity matrix; return cluster labels.
|
587 |
+
|
588 |
+
Parameters
|
589 |
+
----------
|
590 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
|
591 |
+
array-like of shape (n_samples, n_samples)
|
592 |
+
Training instances to cluster, or similarities / affinities between
|
593 |
+
instances if ``affinity='precomputed'``. If a sparse feature matrix
|
594 |
+
is provided, it will be converted into a sparse ``csr_matrix``.
|
595 |
+
|
596 |
+
y : Ignored
|
597 |
+
Not used, present here for API consistency by convention.
|
598 |
+
|
599 |
+
Returns
|
600 |
+
-------
|
601 |
+
labels : ndarray of shape (n_samples,)
|
602 |
+
Cluster labels.
|
603 |
+
"""
|
604 |
+
return super().fit_predict(X, y)
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_agglomerative.py
ADDED
@@ -0,0 +1,1336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Hierarchical Agglomerative Clustering
|
2 |
+
|
3 |
+
These routines perform some hierarchical agglomerative clustering of some
|
4 |
+
input data.
|
5 |
+
|
6 |
+
Authors : Vincent Michel, Bertrand Thirion, Alexandre Gramfort,
|
7 |
+
Gael Varoquaux
|
8 |
+
License: BSD 3 clause
|
9 |
+
"""
|
10 |
+
import warnings
|
11 |
+
from heapq import heapify, heappop, heappush, heappushpop
|
12 |
+
from numbers import Integral, Real
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
from scipy import sparse
|
16 |
+
from scipy.sparse.csgraph import connected_components
|
17 |
+
|
18 |
+
from ..base import (
|
19 |
+
BaseEstimator,
|
20 |
+
ClassNamePrefixFeaturesOutMixin,
|
21 |
+
ClusterMixin,
|
22 |
+
_fit_context,
|
23 |
+
)
|
24 |
+
from ..metrics import DistanceMetric
|
25 |
+
from ..metrics._dist_metrics import METRIC_MAPPING64
|
26 |
+
from ..metrics.pairwise import _VALID_METRICS, paired_distances
|
27 |
+
from ..utils import check_array
|
28 |
+
from ..utils._fast_dict import IntFloatDict
|
29 |
+
from ..utils._param_validation import (
|
30 |
+
HasMethods,
|
31 |
+
Hidden,
|
32 |
+
Interval,
|
33 |
+
StrOptions,
|
34 |
+
validate_params,
|
35 |
+
)
|
36 |
+
from ..utils.graph import _fix_connected_components
|
37 |
+
from ..utils.validation import check_memory
|
38 |
+
|
39 |
+
# mypy error: Module 'sklearn.cluster' has no attribute '_hierarchical_fast'
|
40 |
+
from . import _hierarchical_fast as _hierarchical # type: ignore
|
41 |
+
from ._feature_agglomeration import AgglomerationTransform
|
42 |
+
|
43 |
+
###############################################################################
|
44 |
+
# For non fully-connected graphs
|
45 |
+
|
46 |
+
|
47 |
+
def _fix_connectivity(X, connectivity, affinity):
|
48 |
+
"""
|
49 |
+
Fixes the connectivity matrix.
|
50 |
+
|
51 |
+
The different steps are:
|
52 |
+
|
53 |
+
- copies it
|
54 |
+
- makes it symmetric
|
55 |
+
- converts it to LIL if necessary
|
56 |
+
- completes it if necessary.
|
57 |
+
|
58 |
+
Parameters
|
59 |
+
----------
|
60 |
+
X : array-like of shape (n_samples, n_features)
|
61 |
+
Feature matrix representing `n_samples` samples to be clustered.
|
62 |
+
|
63 |
+
connectivity : sparse matrix, default=None
|
64 |
+
Connectivity matrix. Defines for each sample the neighboring samples
|
65 |
+
following a given structure of the data. The matrix is assumed to
|
66 |
+
be symmetric and only the upper triangular half is used.
|
67 |
+
Default is `None`, i.e, the Ward algorithm is unstructured.
|
68 |
+
|
69 |
+
affinity : {"euclidean", "precomputed"}, default="euclidean"
|
70 |
+
Which affinity to use. At the moment `precomputed` and
|
71 |
+
``euclidean`` are supported. `euclidean` uses the
|
72 |
+
negative squared Euclidean distance between points.
|
73 |
+
|
74 |
+
Returns
|
75 |
+
-------
|
76 |
+
connectivity : sparse matrix
|
77 |
+
The fixed connectivity matrix.
|
78 |
+
|
79 |
+
n_connected_components : int
|
80 |
+
The number of connected components in the graph.
|
81 |
+
"""
|
82 |
+
n_samples = X.shape[0]
|
83 |
+
if connectivity.shape[0] != n_samples or connectivity.shape[1] != n_samples:
|
84 |
+
raise ValueError(
|
85 |
+
"Wrong shape for connectivity matrix: %s when X is %s"
|
86 |
+
% (connectivity.shape, X.shape)
|
87 |
+
)
|
88 |
+
|
89 |
+
# Make the connectivity matrix symmetric:
|
90 |
+
connectivity = connectivity + connectivity.T
|
91 |
+
|
92 |
+
# Convert connectivity matrix to LIL
|
93 |
+
if not sparse.issparse(connectivity):
|
94 |
+
connectivity = sparse.lil_matrix(connectivity)
|
95 |
+
|
96 |
+
# `connectivity` is a sparse matrix at this point
|
97 |
+
if connectivity.format != "lil":
|
98 |
+
connectivity = connectivity.tolil()
|
99 |
+
|
100 |
+
# Compute the number of nodes
|
101 |
+
n_connected_components, labels = connected_components(connectivity)
|
102 |
+
|
103 |
+
if n_connected_components > 1:
|
104 |
+
warnings.warn(
|
105 |
+
"the number of connected components of the "
|
106 |
+
"connectivity matrix is %d > 1. Completing it to avoid "
|
107 |
+
"stopping the tree early." % n_connected_components,
|
108 |
+
stacklevel=2,
|
109 |
+
)
|
110 |
+
# XXX: Can we do without completing the matrix?
|
111 |
+
connectivity = _fix_connected_components(
|
112 |
+
X=X,
|
113 |
+
graph=connectivity,
|
114 |
+
n_connected_components=n_connected_components,
|
115 |
+
component_labels=labels,
|
116 |
+
metric=affinity,
|
117 |
+
mode="connectivity",
|
118 |
+
)
|
119 |
+
|
120 |
+
return connectivity, n_connected_components
|
121 |
+
|
122 |
+
|
123 |
+
def _single_linkage_tree(
|
124 |
+
connectivity,
|
125 |
+
n_samples,
|
126 |
+
n_nodes,
|
127 |
+
n_clusters,
|
128 |
+
n_connected_components,
|
129 |
+
return_distance,
|
130 |
+
):
|
131 |
+
"""
|
132 |
+
Perform single linkage clustering on sparse data via the minimum
|
133 |
+
spanning tree from scipy.sparse.csgraph, then using union-find to label.
|
134 |
+
The parent array is then generated by walking through the tree.
|
135 |
+
"""
|
136 |
+
from scipy.sparse.csgraph import minimum_spanning_tree
|
137 |
+
|
138 |
+
# explicitly cast connectivity to ensure safety
|
139 |
+
connectivity = connectivity.astype(np.float64, copy=False)
|
140 |
+
|
141 |
+
# Ensure zero distances aren't ignored by setting them to "epsilon"
|
142 |
+
epsilon_value = np.finfo(dtype=connectivity.data.dtype).eps
|
143 |
+
connectivity.data[connectivity.data == 0] = epsilon_value
|
144 |
+
|
145 |
+
# Use scipy.sparse.csgraph to generate a minimum spanning tree
|
146 |
+
mst = minimum_spanning_tree(connectivity.tocsr())
|
147 |
+
|
148 |
+
# Convert the graph to scipy.cluster.hierarchy array format
|
149 |
+
mst = mst.tocoo()
|
150 |
+
|
151 |
+
# Undo the epsilon values
|
152 |
+
mst.data[mst.data == epsilon_value] = 0
|
153 |
+
|
154 |
+
mst_array = np.vstack([mst.row, mst.col, mst.data]).T
|
155 |
+
|
156 |
+
# Sort edges of the min_spanning_tree by weight
|
157 |
+
mst_array = mst_array[np.argsort(mst_array.T[2], kind="mergesort"), :]
|
158 |
+
|
159 |
+
# Convert edge list into standard hierarchical clustering format
|
160 |
+
single_linkage_tree = _hierarchical._single_linkage_label(mst_array)
|
161 |
+
children_ = single_linkage_tree[:, :2].astype(int)
|
162 |
+
|
163 |
+
# Compute parents
|
164 |
+
parent = np.arange(n_nodes, dtype=np.intp)
|
165 |
+
for i, (left, right) in enumerate(children_, n_samples):
|
166 |
+
if n_clusters is not None and i >= n_nodes:
|
167 |
+
break
|
168 |
+
if left < n_nodes:
|
169 |
+
parent[left] = i
|
170 |
+
if right < n_nodes:
|
171 |
+
parent[right] = i
|
172 |
+
|
173 |
+
if return_distance:
|
174 |
+
distances = single_linkage_tree[:, 2]
|
175 |
+
return children_, n_connected_components, n_samples, parent, distances
|
176 |
+
return children_, n_connected_components, n_samples, parent
|
177 |
+
|
178 |
+
|
179 |
+
###############################################################################
|
180 |
+
# Hierarchical tree building functions
|
181 |
+
|
182 |
+
|
183 |
+
@validate_params(
|
184 |
+
{
|
185 |
+
"X": ["array-like"],
|
186 |
+
"connectivity": ["array-like", "sparse matrix", None],
|
187 |
+
"n_clusters": [Interval(Integral, 1, None, closed="left"), None],
|
188 |
+
"return_distance": ["boolean"],
|
189 |
+
},
|
190 |
+
prefer_skip_nested_validation=True,
|
191 |
+
)
|
192 |
+
def ward_tree(X, *, connectivity=None, n_clusters=None, return_distance=False):
|
193 |
+
"""Ward clustering based on a Feature matrix.
|
194 |
+
|
195 |
+
Recursively merges the pair of clusters that minimally increases
|
196 |
+
within-cluster variance.
|
197 |
+
|
198 |
+
The inertia matrix uses a Heapq-based representation.
|
199 |
+
|
200 |
+
This is the structured version, that takes into account some topological
|
201 |
+
structure between samples.
|
202 |
+
|
203 |
+
Read more in the :ref:`User Guide <hierarchical_clustering>`.
|
204 |
+
|
205 |
+
Parameters
|
206 |
+
----------
|
207 |
+
X : array-like of shape (n_samples, n_features)
|
208 |
+
Feature matrix representing `n_samples` samples to be clustered.
|
209 |
+
|
210 |
+
connectivity : {array-like, sparse matrix}, default=None
|
211 |
+
Connectivity matrix. Defines for each sample the neighboring samples
|
212 |
+
following a given structure of the data. The matrix is assumed to
|
213 |
+
be symmetric and only the upper triangular half is used.
|
214 |
+
Default is None, i.e, the Ward algorithm is unstructured.
|
215 |
+
|
216 |
+
n_clusters : int, default=None
|
217 |
+
`n_clusters` should be less than `n_samples`. Stop early the
|
218 |
+
construction of the tree at `n_clusters.` This is useful to decrease
|
219 |
+
computation time if the number of clusters is not small compared to the
|
220 |
+
number of samples. In this case, the complete tree is not computed, thus
|
221 |
+
the 'children' output is of limited use, and the 'parents' output should
|
222 |
+
rather be used. This option is valid only when specifying a connectivity
|
223 |
+
matrix.
|
224 |
+
|
225 |
+
return_distance : bool, default=False
|
226 |
+
If `True`, return the distance between the clusters.
|
227 |
+
|
228 |
+
Returns
|
229 |
+
-------
|
230 |
+
children : ndarray of shape (n_nodes-1, 2)
|
231 |
+
The children of each non-leaf node. Values less than `n_samples`
|
232 |
+
correspond to leaves of the tree which are the original samples.
|
233 |
+
A node `i` greater than or equal to `n_samples` is a non-leaf
|
234 |
+
node and has children `children_[i - n_samples]`. Alternatively
|
235 |
+
at the i-th iteration, children[i][0] and children[i][1]
|
236 |
+
are merged to form node `n_samples + i`.
|
237 |
+
|
238 |
+
n_connected_components : int
|
239 |
+
The number of connected components in the graph.
|
240 |
+
|
241 |
+
n_leaves : int
|
242 |
+
The number of leaves in the tree.
|
243 |
+
|
244 |
+
parents : ndarray of shape (n_nodes,) or None
|
245 |
+
The parent of each node. Only returned when a connectivity matrix
|
246 |
+
is specified, elsewhere 'None' is returned.
|
247 |
+
|
248 |
+
distances : ndarray of shape (n_nodes-1,)
|
249 |
+
Only returned if `return_distance` is set to `True` (for compatibility).
|
250 |
+
The distances between the centers of the nodes. `distances[i]`
|
251 |
+
corresponds to a weighted Euclidean distance between
|
252 |
+
the nodes `children[i, 1]` and `children[i, 2]`. If the nodes refer to
|
253 |
+
leaves of the tree, then `distances[i]` is their unweighted Euclidean
|
254 |
+
distance. Distances are updated in the following way
|
255 |
+
(from scipy.hierarchy.linkage):
|
256 |
+
|
257 |
+
The new entry :math:`d(u,v)` is computed as follows,
|
258 |
+
|
259 |
+
.. math::
|
260 |
+
|
261 |
+
d(u,v) = \\sqrt{\\frac{|v|+|s|}
|
262 |
+
{T}d(v,s)^2
|
263 |
+
+ \\frac{|v|+|t|}
|
264 |
+
{T}d(v,t)^2
|
265 |
+
- \\frac{|v|}
|
266 |
+
{T}d(s,t)^2}
|
267 |
+
|
268 |
+
where :math:`u` is the newly joined cluster consisting of
|
269 |
+
clusters :math:`s` and :math:`t`, :math:`v` is an unused
|
270 |
+
cluster in the forest, :math:`T=|v|+|s|+|t|`, and
|
271 |
+
:math:`|*|` is the cardinality of its argument. This is also
|
272 |
+
known as the incremental algorithm.
|
273 |
+
|
274 |
+
Examples
|
275 |
+
--------
|
276 |
+
>>> import numpy as np
|
277 |
+
>>> from sklearn.cluster import ward_tree
|
278 |
+
>>> X = np.array([[1, 2], [1, 4], [1, 0],
|
279 |
+
... [4, 2], [4, 4], [4, 0]])
|
280 |
+
>>> children, n_connected_components, n_leaves, parents = ward_tree(X)
|
281 |
+
>>> children
|
282 |
+
array([[0, 1],
|
283 |
+
[3, 5],
|
284 |
+
[2, 6],
|
285 |
+
[4, 7],
|
286 |
+
[8, 9]])
|
287 |
+
>>> n_connected_components
|
288 |
+
1
|
289 |
+
>>> n_leaves
|
290 |
+
6
|
291 |
+
"""
|
292 |
+
X = np.asarray(X)
|
293 |
+
if X.ndim == 1:
|
294 |
+
X = np.reshape(X, (-1, 1))
|
295 |
+
n_samples, n_features = X.shape
|
296 |
+
|
297 |
+
if connectivity is None:
|
298 |
+
from scipy.cluster import hierarchy # imports PIL
|
299 |
+
|
300 |
+
if n_clusters is not None:
|
301 |
+
warnings.warn(
|
302 |
+
(
|
303 |
+
"Partial build of the tree is implemented "
|
304 |
+
"only for structured clustering (i.e. with "
|
305 |
+
"explicit connectivity). The algorithm "
|
306 |
+
"will build the full tree and only "
|
307 |
+
"retain the lower branches required "
|
308 |
+
"for the specified number of clusters"
|
309 |
+
),
|
310 |
+
stacklevel=2,
|
311 |
+
)
|
312 |
+
X = np.require(X, requirements="W")
|
313 |
+
out = hierarchy.ward(X)
|
314 |
+
children_ = out[:, :2].astype(np.intp)
|
315 |
+
|
316 |
+
if return_distance:
|
317 |
+
distances = out[:, 2]
|
318 |
+
return children_, 1, n_samples, None, distances
|
319 |
+
else:
|
320 |
+
return children_, 1, n_samples, None
|
321 |
+
|
322 |
+
connectivity, n_connected_components = _fix_connectivity(
|
323 |
+
X, connectivity, affinity="euclidean"
|
324 |
+
)
|
325 |
+
if n_clusters is None:
|
326 |
+
n_nodes = 2 * n_samples - 1
|
327 |
+
else:
|
328 |
+
if n_clusters > n_samples:
|
329 |
+
raise ValueError(
|
330 |
+
"Cannot provide more clusters than samples. "
|
331 |
+
"%i n_clusters was asked, and there are %i "
|
332 |
+
"samples." % (n_clusters, n_samples)
|
333 |
+
)
|
334 |
+
n_nodes = 2 * n_samples - n_clusters
|
335 |
+
|
336 |
+
# create inertia matrix
|
337 |
+
coord_row = []
|
338 |
+
coord_col = []
|
339 |
+
A = []
|
340 |
+
for ind, row in enumerate(connectivity.rows):
|
341 |
+
A.append(row)
|
342 |
+
# We keep only the upper triangular for the moments
|
343 |
+
# Generator expressions are faster than arrays on the following
|
344 |
+
row = [i for i in row if i < ind]
|
345 |
+
coord_row.extend(
|
346 |
+
len(row)
|
347 |
+
* [
|
348 |
+
ind,
|
349 |
+
]
|
350 |
+
)
|
351 |
+
coord_col.extend(row)
|
352 |
+
|
353 |
+
coord_row = np.array(coord_row, dtype=np.intp, order="C")
|
354 |
+
coord_col = np.array(coord_col, dtype=np.intp, order="C")
|
355 |
+
|
356 |
+
# build moments as a list
|
357 |
+
moments_1 = np.zeros(n_nodes, order="C")
|
358 |
+
moments_1[:n_samples] = 1
|
359 |
+
moments_2 = np.zeros((n_nodes, n_features), order="C")
|
360 |
+
moments_2[:n_samples] = X
|
361 |
+
inertia = np.empty(len(coord_row), dtype=np.float64, order="C")
|
362 |
+
_hierarchical.compute_ward_dist(moments_1, moments_2, coord_row, coord_col, inertia)
|
363 |
+
inertia = list(zip(inertia, coord_row, coord_col))
|
364 |
+
heapify(inertia)
|
365 |
+
|
366 |
+
# prepare the main fields
|
367 |
+
parent = np.arange(n_nodes, dtype=np.intp)
|
368 |
+
used_node = np.ones(n_nodes, dtype=bool)
|
369 |
+
children = []
|
370 |
+
if return_distance:
|
371 |
+
distances = np.empty(n_nodes - n_samples)
|
372 |
+
|
373 |
+
not_visited = np.empty(n_nodes, dtype=bool, order="C")
|
374 |
+
|
375 |
+
# recursive merge loop
|
376 |
+
for k in range(n_samples, n_nodes):
|
377 |
+
# identify the merge
|
378 |
+
while True:
|
379 |
+
inert, i, j = heappop(inertia)
|
380 |
+
if used_node[i] and used_node[j]:
|
381 |
+
break
|
382 |
+
parent[i], parent[j] = k, k
|
383 |
+
children.append((i, j))
|
384 |
+
used_node[i] = used_node[j] = False
|
385 |
+
if return_distance: # store inertia value
|
386 |
+
distances[k - n_samples] = inert
|
387 |
+
|
388 |
+
# update the moments
|
389 |
+
moments_1[k] = moments_1[i] + moments_1[j]
|
390 |
+
moments_2[k] = moments_2[i] + moments_2[j]
|
391 |
+
|
392 |
+
# update the structure matrix A and the inertia matrix
|
393 |
+
coord_col = []
|
394 |
+
not_visited.fill(1)
|
395 |
+
not_visited[k] = 0
|
396 |
+
_hierarchical._get_parents(A[i], coord_col, parent, not_visited)
|
397 |
+
_hierarchical._get_parents(A[j], coord_col, parent, not_visited)
|
398 |
+
# List comprehension is faster than a for loop
|
399 |
+
[A[col].append(k) for col in coord_col]
|
400 |
+
A.append(coord_col)
|
401 |
+
coord_col = np.array(coord_col, dtype=np.intp, order="C")
|
402 |
+
coord_row = np.empty(coord_col.shape, dtype=np.intp, order="C")
|
403 |
+
coord_row.fill(k)
|
404 |
+
n_additions = len(coord_row)
|
405 |
+
ini = np.empty(n_additions, dtype=np.float64, order="C")
|
406 |
+
|
407 |
+
_hierarchical.compute_ward_dist(moments_1, moments_2, coord_row, coord_col, ini)
|
408 |
+
|
409 |
+
# List comprehension is faster than a for loop
|
410 |
+
[heappush(inertia, (ini[idx], k, coord_col[idx])) for idx in range(n_additions)]
|
411 |
+
|
412 |
+
# Separate leaves in children (empty lists up to now)
|
413 |
+
n_leaves = n_samples
|
414 |
+
# sort children to get consistent output with unstructured version
|
415 |
+
children = [c[::-1] for c in children]
|
416 |
+
children = np.array(children) # return numpy array for efficient caching
|
417 |
+
|
418 |
+
if return_distance:
|
419 |
+
# 2 is scaling factor to compare w/ unstructured version
|
420 |
+
distances = np.sqrt(2.0 * distances)
|
421 |
+
return children, n_connected_components, n_leaves, parent, distances
|
422 |
+
else:
|
423 |
+
return children, n_connected_components, n_leaves, parent
|
424 |
+
|
425 |
+
|
426 |
+
# single average and complete linkage
|
427 |
+
def linkage_tree(
|
428 |
+
X,
|
429 |
+
connectivity=None,
|
430 |
+
n_clusters=None,
|
431 |
+
linkage="complete",
|
432 |
+
affinity="euclidean",
|
433 |
+
return_distance=False,
|
434 |
+
):
|
435 |
+
"""Linkage agglomerative clustering based on a Feature matrix.
|
436 |
+
|
437 |
+
The inertia matrix uses a Heapq-based representation.
|
438 |
+
|
439 |
+
This is the structured version, that takes into account some topological
|
440 |
+
structure between samples.
|
441 |
+
|
442 |
+
Read more in the :ref:`User Guide <hierarchical_clustering>`.
|
443 |
+
|
444 |
+
Parameters
|
445 |
+
----------
|
446 |
+
X : array-like of shape (n_samples, n_features)
|
447 |
+
Feature matrix representing `n_samples` samples to be clustered.
|
448 |
+
|
449 |
+
connectivity : sparse matrix, default=None
|
450 |
+
Connectivity matrix. Defines for each sample the neighboring samples
|
451 |
+
following a given structure of the data. The matrix is assumed to
|
452 |
+
be symmetric and only the upper triangular half is used.
|
453 |
+
Default is `None`, i.e, the Ward algorithm is unstructured.
|
454 |
+
|
455 |
+
n_clusters : int, default=None
|
456 |
+
Stop early the construction of the tree at `n_clusters`. This is
|
457 |
+
useful to decrease computation time if the number of clusters is
|
458 |
+
not small compared to the number of samples. In this case, the
|
459 |
+
complete tree is not computed, thus the 'children' output is of
|
460 |
+
limited use, and the 'parents' output should rather be used.
|
461 |
+
This option is valid only when specifying a connectivity matrix.
|
462 |
+
|
463 |
+
linkage : {"average", "complete", "single"}, default="complete"
|
464 |
+
Which linkage criteria to use. The linkage criterion determines which
|
465 |
+
distance to use between sets of observation.
|
466 |
+
- "average" uses the average of the distances of each observation of
|
467 |
+
the two sets.
|
468 |
+
- "complete" or maximum linkage uses the maximum distances between
|
469 |
+
all observations of the two sets.
|
470 |
+
- "single" uses the minimum of the distances between all
|
471 |
+
observations of the two sets.
|
472 |
+
|
473 |
+
affinity : str or callable, default='euclidean'
|
474 |
+
Which metric to use. Can be 'euclidean', 'manhattan', or any
|
475 |
+
distance known to paired distance (see metric.pairwise).
|
476 |
+
|
477 |
+
return_distance : bool, default=False
|
478 |
+
Whether or not to return the distances between the clusters.
|
479 |
+
|
480 |
+
Returns
|
481 |
+
-------
|
482 |
+
children : ndarray of shape (n_nodes-1, 2)
|
483 |
+
The children of each non-leaf node. Values less than `n_samples`
|
484 |
+
correspond to leaves of the tree which are the original samples.
|
485 |
+
A node `i` greater than or equal to `n_samples` is a non-leaf
|
486 |
+
node and has children `children_[i - n_samples]`. Alternatively
|
487 |
+
at the i-th iteration, children[i][0] and children[i][1]
|
488 |
+
are merged to form node `n_samples + i`.
|
489 |
+
|
490 |
+
n_connected_components : int
|
491 |
+
The number of connected components in the graph.
|
492 |
+
|
493 |
+
n_leaves : int
|
494 |
+
The number of leaves in the tree.
|
495 |
+
|
496 |
+
parents : ndarray of shape (n_nodes, ) or None
|
497 |
+
The parent of each node. Only returned when a connectivity matrix
|
498 |
+
is specified, elsewhere 'None' is returned.
|
499 |
+
|
500 |
+
distances : ndarray of shape (n_nodes-1,)
|
501 |
+
Returned when `return_distance` is set to `True`.
|
502 |
+
|
503 |
+
distances[i] refers to the distance between children[i][0] and
|
504 |
+
children[i][1] when they are merged.
|
505 |
+
|
506 |
+
See Also
|
507 |
+
--------
|
508 |
+
ward_tree : Hierarchical clustering with ward linkage.
|
509 |
+
"""
|
510 |
+
X = np.asarray(X)
|
511 |
+
if X.ndim == 1:
|
512 |
+
X = np.reshape(X, (-1, 1))
|
513 |
+
n_samples, n_features = X.shape
|
514 |
+
|
515 |
+
linkage_choices = {
|
516 |
+
"complete": _hierarchical.max_merge,
|
517 |
+
"average": _hierarchical.average_merge,
|
518 |
+
"single": None,
|
519 |
+
} # Single linkage is handled differently
|
520 |
+
try:
|
521 |
+
join_func = linkage_choices[linkage]
|
522 |
+
except KeyError as e:
|
523 |
+
raise ValueError(
|
524 |
+
"Unknown linkage option, linkage should be one of %s, but %s was given"
|
525 |
+
% (linkage_choices.keys(), linkage)
|
526 |
+
) from e
|
527 |
+
|
528 |
+
if affinity == "cosine" and np.any(~np.any(X, axis=1)):
|
529 |
+
raise ValueError("Cosine affinity cannot be used when X contains zero vectors")
|
530 |
+
|
531 |
+
if connectivity is None:
|
532 |
+
from scipy.cluster import hierarchy # imports PIL
|
533 |
+
|
534 |
+
if n_clusters is not None:
|
535 |
+
warnings.warn(
|
536 |
+
(
|
537 |
+
"Partial build of the tree is implemented "
|
538 |
+
"only for structured clustering (i.e. with "
|
539 |
+
"explicit connectivity). The algorithm "
|
540 |
+
"will build the full tree and only "
|
541 |
+
"retain the lower branches required "
|
542 |
+
"for the specified number of clusters"
|
543 |
+
),
|
544 |
+
stacklevel=2,
|
545 |
+
)
|
546 |
+
|
547 |
+
if affinity == "precomputed":
|
548 |
+
# for the linkage function of hierarchy to work on precomputed
|
549 |
+
# data, provide as first argument an ndarray of the shape returned
|
550 |
+
# by sklearn.metrics.pairwise_distances.
|
551 |
+
if X.shape[0] != X.shape[1]:
|
552 |
+
raise ValueError(
|
553 |
+
f"Distance matrix should be square, got matrix of shape {X.shape}"
|
554 |
+
)
|
555 |
+
i, j = np.triu_indices(X.shape[0], k=1)
|
556 |
+
X = X[i, j]
|
557 |
+
elif affinity == "l2":
|
558 |
+
# Translate to something understood by scipy
|
559 |
+
affinity = "euclidean"
|
560 |
+
elif affinity in ("l1", "manhattan"):
|
561 |
+
affinity = "cityblock"
|
562 |
+
elif callable(affinity):
|
563 |
+
X = affinity(X)
|
564 |
+
i, j = np.triu_indices(X.shape[0], k=1)
|
565 |
+
X = X[i, j]
|
566 |
+
if (
|
567 |
+
linkage == "single"
|
568 |
+
and affinity != "precomputed"
|
569 |
+
and not callable(affinity)
|
570 |
+
and affinity in METRIC_MAPPING64
|
571 |
+
):
|
572 |
+
# We need the fast cythonized metric from neighbors
|
573 |
+
dist_metric = DistanceMetric.get_metric(affinity)
|
574 |
+
|
575 |
+
# The Cython routines used require contiguous arrays
|
576 |
+
X = np.ascontiguousarray(X, dtype=np.double)
|
577 |
+
|
578 |
+
mst = _hierarchical.mst_linkage_core(X, dist_metric)
|
579 |
+
# Sort edges of the min_spanning_tree by weight
|
580 |
+
mst = mst[np.argsort(mst.T[2], kind="mergesort"), :]
|
581 |
+
|
582 |
+
# Convert edge list into standard hierarchical clustering format
|
583 |
+
out = _hierarchical.single_linkage_label(mst)
|
584 |
+
else:
|
585 |
+
out = hierarchy.linkage(X, method=linkage, metric=affinity)
|
586 |
+
children_ = out[:, :2].astype(int, copy=False)
|
587 |
+
|
588 |
+
if return_distance:
|
589 |
+
distances = out[:, 2]
|
590 |
+
return children_, 1, n_samples, None, distances
|
591 |
+
return children_, 1, n_samples, None
|
592 |
+
|
593 |
+
connectivity, n_connected_components = _fix_connectivity(
|
594 |
+
X, connectivity, affinity=affinity
|
595 |
+
)
|
596 |
+
connectivity = connectivity.tocoo()
|
597 |
+
# Put the diagonal to zero
|
598 |
+
diag_mask = connectivity.row != connectivity.col
|
599 |
+
connectivity.row = connectivity.row[diag_mask]
|
600 |
+
connectivity.col = connectivity.col[diag_mask]
|
601 |
+
connectivity.data = connectivity.data[diag_mask]
|
602 |
+
del diag_mask
|
603 |
+
|
604 |
+
if affinity == "precomputed":
|
605 |
+
distances = X[connectivity.row, connectivity.col].astype(np.float64, copy=False)
|
606 |
+
else:
|
607 |
+
# FIXME We compute all the distances, while we could have only computed
|
608 |
+
# the "interesting" distances
|
609 |
+
distances = paired_distances(
|
610 |
+
X[connectivity.row], X[connectivity.col], metric=affinity
|
611 |
+
)
|
612 |
+
connectivity.data = distances
|
613 |
+
|
614 |
+
if n_clusters is None:
|
615 |
+
n_nodes = 2 * n_samples - 1
|
616 |
+
else:
|
617 |
+
assert n_clusters <= n_samples
|
618 |
+
n_nodes = 2 * n_samples - n_clusters
|
619 |
+
|
620 |
+
if linkage == "single":
|
621 |
+
return _single_linkage_tree(
|
622 |
+
connectivity,
|
623 |
+
n_samples,
|
624 |
+
n_nodes,
|
625 |
+
n_clusters,
|
626 |
+
n_connected_components,
|
627 |
+
return_distance,
|
628 |
+
)
|
629 |
+
|
630 |
+
if return_distance:
|
631 |
+
distances = np.empty(n_nodes - n_samples)
|
632 |
+
# create inertia heap and connection matrix
|
633 |
+
A = np.empty(n_nodes, dtype=object)
|
634 |
+
inertia = list()
|
635 |
+
|
636 |
+
# LIL seems to the best format to access the rows quickly,
|
637 |
+
# without the numpy overhead of slicing CSR indices and data.
|
638 |
+
connectivity = connectivity.tolil()
|
639 |
+
# We are storing the graph in a list of IntFloatDict
|
640 |
+
for ind, (data, row) in enumerate(zip(connectivity.data, connectivity.rows)):
|
641 |
+
A[ind] = IntFloatDict(
|
642 |
+
np.asarray(row, dtype=np.intp), np.asarray(data, dtype=np.float64)
|
643 |
+
)
|
644 |
+
# We keep only the upper triangular for the heap
|
645 |
+
# Generator expressions are faster than arrays on the following
|
646 |
+
inertia.extend(
|
647 |
+
_hierarchical.WeightedEdge(d, ind, r) for r, d in zip(row, data) if r < ind
|
648 |
+
)
|
649 |
+
del connectivity
|
650 |
+
|
651 |
+
heapify(inertia)
|
652 |
+
|
653 |
+
# prepare the main fields
|
654 |
+
parent = np.arange(n_nodes, dtype=np.intp)
|
655 |
+
used_node = np.ones(n_nodes, dtype=np.intp)
|
656 |
+
children = []
|
657 |
+
|
658 |
+
# recursive merge loop
|
659 |
+
for k in range(n_samples, n_nodes):
|
660 |
+
# identify the merge
|
661 |
+
while True:
|
662 |
+
edge = heappop(inertia)
|
663 |
+
if used_node[edge.a] and used_node[edge.b]:
|
664 |
+
break
|
665 |
+
i = edge.a
|
666 |
+
j = edge.b
|
667 |
+
|
668 |
+
if return_distance:
|
669 |
+
# store distances
|
670 |
+
distances[k - n_samples] = edge.weight
|
671 |
+
|
672 |
+
parent[i] = parent[j] = k
|
673 |
+
children.append((i, j))
|
674 |
+
# Keep track of the number of elements per cluster
|
675 |
+
n_i = used_node[i]
|
676 |
+
n_j = used_node[j]
|
677 |
+
used_node[k] = n_i + n_j
|
678 |
+
used_node[i] = used_node[j] = False
|
679 |
+
|
680 |
+
# update the structure matrix A and the inertia matrix
|
681 |
+
# a clever 'min', or 'max' operation between A[i] and A[j]
|
682 |
+
coord_col = join_func(A[i], A[j], used_node, n_i, n_j)
|
683 |
+
for col, d in coord_col:
|
684 |
+
A[col].append(k, d)
|
685 |
+
# Here we use the information from coord_col (containing the
|
686 |
+
# distances) to update the heap
|
687 |
+
heappush(inertia, _hierarchical.WeightedEdge(d, k, col))
|
688 |
+
A[k] = coord_col
|
689 |
+
# Clear A[i] and A[j] to save memory
|
690 |
+
A[i] = A[j] = 0
|
691 |
+
|
692 |
+
# Separate leaves in children (empty lists up to now)
|
693 |
+
n_leaves = n_samples
|
694 |
+
|
695 |
+
# # return numpy array for efficient caching
|
696 |
+
children = np.array(children)[:, ::-1]
|
697 |
+
|
698 |
+
if return_distance:
|
699 |
+
return children, n_connected_components, n_leaves, parent, distances
|
700 |
+
return children, n_connected_components, n_leaves, parent
|
701 |
+
|
702 |
+
|
703 |
+
# Matching names to tree-building strategies
|
704 |
+
def _complete_linkage(*args, **kwargs):
|
705 |
+
kwargs["linkage"] = "complete"
|
706 |
+
return linkage_tree(*args, **kwargs)
|
707 |
+
|
708 |
+
|
709 |
+
def _average_linkage(*args, **kwargs):
|
710 |
+
kwargs["linkage"] = "average"
|
711 |
+
return linkage_tree(*args, **kwargs)
|
712 |
+
|
713 |
+
|
714 |
+
def _single_linkage(*args, **kwargs):
|
715 |
+
kwargs["linkage"] = "single"
|
716 |
+
return linkage_tree(*args, **kwargs)
|
717 |
+
|
718 |
+
|
719 |
+
_TREE_BUILDERS = dict(
|
720 |
+
ward=ward_tree,
|
721 |
+
complete=_complete_linkage,
|
722 |
+
average=_average_linkage,
|
723 |
+
single=_single_linkage,
|
724 |
+
)
|
725 |
+
|
726 |
+
###############################################################################
|
727 |
+
# Functions for cutting hierarchical clustering tree
|
728 |
+
|
729 |
+
|
730 |
+
def _hc_cut(n_clusters, children, n_leaves):
|
731 |
+
"""Function cutting the ward tree for a given number of clusters.
|
732 |
+
|
733 |
+
Parameters
|
734 |
+
----------
|
735 |
+
n_clusters : int or ndarray
|
736 |
+
The number of clusters to form.
|
737 |
+
|
738 |
+
children : ndarray of shape (n_nodes-1, 2)
|
739 |
+
The children of each non-leaf node. Values less than `n_samples`
|
740 |
+
correspond to leaves of the tree which are the original samples.
|
741 |
+
A node `i` greater than or equal to `n_samples` is a non-leaf
|
742 |
+
node and has children `children_[i - n_samples]`. Alternatively
|
743 |
+
at the i-th iteration, children[i][0] and children[i][1]
|
744 |
+
are merged to form node `n_samples + i`.
|
745 |
+
|
746 |
+
n_leaves : int
|
747 |
+
Number of leaves of the tree.
|
748 |
+
|
749 |
+
Returns
|
750 |
+
-------
|
751 |
+
labels : array [n_samples]
|
752 |
+
Cluster labels for each point.
|
753 |
+
"""
|
754 |
+
if n_clusters > n_leaves:
|
755 |
+
raise ValueError(
|
756 |
+
"Cannot extract more clusters than samples: "
|
757 |
+
"%s clusters where given for a tree with %s leaves."
|
758 |
+
% (n_clusters, n_leaves)
|
759 |
+
)
|
760 |
+
# In this function, we store nodes as a heap to avoid recomputing
|
761 |
+
# the max of the nodes: the first element is always the smallest
|
762 |
+
# We use negated indices as heaps work on smallest elements, and we
|
763 |
+
# are interested in largest elements
|
764 |
+
# children[-1] is the root of the tree
|
765 |
+
nodes = [-(max(children[-1]) + 1)]
|
766 |
+
for _ in range(n_clusters - 1):
|
767 |
+
# As we have a heap, nodes[0] is the smallest element
|
768 |
+
these_children = children[-nodes[0] - n_leaves]
|
769 |
+
# Insert the 2 children and remove the largest node
|
770 |
+
heappush(nodes, -these_children[0])
|
771 |
+
heappushpop(nodes, -these_children[1])
|
772 |
+
label = np.zeros(n_leaves, dtype=np.intp)
|
773 |
+
for i, node in enumerate(nodes):
|
774 |
+
label[_hierarchical._hc_get_descendent(-node, children, n_leaves)] = i
|
775 |
+
return label
|
776 |
+
|
777 |
+
|
778 |
+
###############################################################################
|
779 |
+
|
780 |
+
|
781 |
+
class AgglomerativeClustering(ClusterMixin, BaseEstimator):
|
782 |
+
"""
|
783 |
+
Agglomerative Clustering.
|
784 |
+
|
785 |
+
Recursively merges pair of clusters of sample data; uses linkage distance.
|
786 |
+
|
787 |
+
Read more in the :ref:`User Guide <hierarchical_clustering>`.
|
788 |
+
|
789 |
+
Parameters
|
790 |
+
----------
|
791 |
+
n_clusters : int or None, default=2
|
792 |
+
The number of clusters to find. It must be ``None`` if
|
793 |
+
``distance_threshold`` is not ``None``.
|
794 |
+
|
795 |
+
metric : str or callable, default="euclidean"
|
796 |
+
Metric used to compute the linkage. Can be "euclidean", "l1", "l2",
|
797 |
+
"manhattan", "cosine", or "precomputed". If linkage is "ward", only
|
798 |
+
"euclidean" is accepted. If "precomputed", a distance matrix is needed
|
799 |
+
as input for the fit method.
|
800 |
+
|
801 |
+
.. versionadded:: 1.2
|
802 |
+
|
803 |
+
.. deprecated:: 1.4
|
804 |
+
`metric=None` is deprecated in 1.4 and will be removed in 1.6.
|
805 |
+
Let `metric` be the default value (i.e. `"euclidean"`) instead.
|
806 |
+
|
807 |
+
memory : str or object with the joblib.Memory interface, default=None
|
808 |
+
Used to cache the output of the computation of the tree.
|
809 |
+
By default, no caching is done. If a string is given, it is the
|
810 |
+
path to the caching directory.
|
811 |
+
|
812 |
+
connectivity : array-like or callable, default=None
|
813 |
+
Connectivity matrix. Defines for each sample the neighboring
|
814 |
+
samples following a given structure of the data.
|
815 |
+
This can be a connectivity matrix itself or a callable that transforms
|
816 |
+
the data into a connectivity matrix, such as derived from
|
817 |
+
`kneighbors_graph`. Default is ``None``, i.e, the
|
818 |
+
hierarchical clustering algorithm is unstructured.
|
819 |
+
|
820 |
+
compute_full_tree : 'auto' or bool, default='auto'
|
821 |
+
Stop early the construction of the tree at ``n_clusters``. This is
|
822 |
+
useful to decrease computation time if the number of clusters is not
|
823 |
+
small compared to the number of samples. This option is useful only
|
824 |
+
when specifying a connectivity matrix. Note also that when varying the
|
825 |
+
number of clusters and using caching, it may be advantageous to compute
|
826 |
+
the full tree. It must be ``True`` if ``distance_threshold`` is not
|
827 |
+
``None``. By default `compute_full_tree` is "auto", which is equivalent
|
828 |
+
to `True` when `distance_threshold` is not `None` or that `n_clusters`
|
829 |
+
is inferior to the maximum between 100 or `0.02 * n_samples`.
|
830 |
+
Otherwise, "auto" is equivalent to `False`.
|
831 |
+
|
832 |
+
linkage : {'ward', 'complete', 'average', 'single'}, default='ward'
|
833 |
+
Which linkage criterion to use. The linkage criterion determines which
|
834 |
+
distance to use between sets of observation. The algorithm will merge
|
835 |
+
the pairs of cluster that minimize this criterion.
|
836 |
+
|
837 |
+
- 'ward' minimizes the variance of the clusters being merged.
|
838 |
+
- 'average' uses the average of the distances of each observation of
|
839 |
+
the two sets.
|
840 |
+
- 'complete' or 'maximum' linkage uses the maximum distances between
|
841 |
+
all observations of the two sets.
|
842 |
+
- 'single' uses the minimum of the distances between all observations
|
843 |
+
of the two sets.
|
844 |
+
|
845 |
+
.. versionadded:: 0.20
|
846 |
+
Added the 'single' option
|
847 |
+
|
848 |
+
distance_threshold : float, default=None
|
849 |
+
The linkage distance threshold at or above which clusters will not be
|
850 |
+
merged. If not ``None``, ``n_clusters`` must be ``None`` and
|
851 |
+
``compute_full_tree`` must be ``True``.
|
852 |
+
|
853 |
+
.. versionadded:: 0.21
|
854 |
+
|
855 |
+
compute_distances : bool, default=False
|
856 |
+
Computes distances between clusters even if `distance_threshold` is not
|
857 |
+
used. This can be used to make dendrogram visualization, but introduces
|
858 |
+
a computational and memory overhead.
|
859 |
+
|
860 |
+
.. versionadded:: 0.24
|
861 |
+
|
862 |
+
Attributes
|
863 |
+
----------
|
864 |
+
n_clusters_ : int
|
865 |
+
The number of clusters found by the algorithm. If
|
866 |
+
``distance_threshold=None``, it will be equal to the given
|
867 |
+
``n_clusters``.
|
868 |
+
|
869 |
+
labels_ : ndarray of shape (n_samples)
|
870 |
+
Cluster labels for each point.
|
871 |
+
|
872 |
+
n_leaves_ : int
|
873 |
+
Number of leaves in the hierarchical tree.
|
874 |
+
|
875 |
+
n_connected_components_ : int
|
876 |
+
The estimated number of connected components in the graph.
|
877 |
+
|
878 |
+
.. versionadded:: 0.21
|
879 |
+
``n_connected_components_`` was added to replace ``n_components_``.
|
880 |
+
|
881 |
+
n_features_in_ : int
|
882 |
+
Number of features seen during :term:`fit`.
|
883 |
+
|
884 |
+
.. versionadded:: 0.24
|
885 |
+
|
886 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
887 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
888 |
+
has feature names that are all strings.
|
889 |
+
|
890 |
+
.. versionadded:: 1.0
|
891 |
+
|
892 |
+
children_ : array-like of shape (n_samples-1, 2)
|
893 |
+
The children of each non-leaf node. Values less than `n_samples`
|
894 |
+
correspond to leaves of the tree which are the original samples.
|
895 |
+
A node `i` greater than or equal to `n_samples` is a non-leaf
|
896 |
+
node and has children `children_[i - n_samples]`. Alternatively
|
897 |
+
at the i-th iteration, children[i][0] and children[i][1]
|
898 |
+
are merged to form node `n_samples + i`.
|
899 |
+
|
900 |
+
distances_ : array-like of shape (n_nodes-1,)
|
901 |
+
Distances between nodes in the corresponding place in `children_`.
|
902 |
+
Only computed if `distance_threshold` is used or `compute_distances`
|
903 |
+
is set to `True`.
|
904 |
+
|
905 |
+
See Also
|
906 |
+
--------
|
907 |
+
FeatureAgglomeration : Agglomerative clustering but for features instead of
|
908 |
+
samples.
|
909 |
+
ward_tree : Hierarchical clustering with ward linkage.
|
910 |
+
|
911 |
+
Examples
|
912 |
+
--------
|
913 |
+
>>> from sklearn.cluster import AgglomerativeClustering
|
914 |
+
>>> import numpy as np
|
915 |
+
>>> X = np.array([[1, 2], [1, 4], [1, 0],
|
916 |
+
... [4, 2], [4, 4], [4, 0]])
|
917 |
+
>>> clustering = AgglomerativeClustering().fit(X)
|
918 |
+
>>> clustering
|
919 |
+
AgglomerativeClustering()
|
920 |
+
>>> clustering.labels_
|
921 |
+
array([1, 1, 1, 0, 0, 0])
|
922 |
+
"""
|
923 |
+
|
924 |
+
_parameter_constraints: dict = {
|
925 |
+
"n_clusters": [Interval(Integral, 1, None, closed="left"), None],
|
926 |
+
"metric": [
|
927 |
+
StrOptions(set(_VALID_METRICS) | {"precomputed"}),
|
928 |
+
callable,
|
929 |
+
Hidden(None),
|
930 |
+
],
|
931 |
+
"memory": [str, HasMethods("cache"), None],
|
932 |
+
"connectivity": ["array-like", callable, None],
|
933 |
+
"compute_full_tree": [StrOptions({"auto"}), "boolean"],
|
934 |
+
"linkage": [StrOptions(set(_TREE_BUILDERS.keys()))],
|
935 |
+
"distance_threshold": [Interval(Real, 0, None, closed="left"), None],
|
936 |
+
"compute_distances": ["boolean"],
|
937 |
+
}
|
938 |
+
|
939 |
+
def __init__(
|
940 |
+
self,
|
941 |
+
n_clusters=2,
|
942 |
+
*,
|
943 |
+
metric="euclidean",
|
944 |
+
memory=None,
|
945 |
+
connectivity=None,
|
946 |
+
compute_full_tree="auto",
|
947 |
+
linkage="ward",
|
948 |
+
distance_threshold=None,
|
949 |
+
compute_distances=False,
|
950 |
+
):
|
951 |
+
self.n_clusters = n_clusters
|
952 |
+
self.distance_threshold = distance_threshold
|
953 |
+
self.memory = memory
|
954 |
+
self.connectivity = connectivity
|
955 |
+
self.compute_full_tree = compute_full_tree
|
956 |
+
self.linkage = linkage
|
957 |
+
self.metric = metric
|
958 |
+
self.compute_distances = compute_distances
|
959 |
+
|
960 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
961 |
+
def fit(self, X, y=None):
|
962 |
+
"""Fit the hierarchical clustering from features, or distance matrix.
|
963 |
+
|
964 |
+
Parameters
|
965 |
+
----------
|
966 |
+
X : array-like, shape (n_samples, n_features) or \
|
967 |
+
(n_samples, n_samples)
|
968 |
+
Training instances to cluster, or distances between instances if
|
969 |
+
``metric='precomputed'``.
|
970 |
+
|
971 |
+
y : Ignored
|
972 |
+
Not used, present here for API consistency by convention.
|
973 |
+
|
974 |
+
Returns
|
975 |
+
-------
|
976 |
+
self : object
|
977 |
+
Returns the fitted instance.
|
978 |
+
"""
|
979 |
+
X = self._validate_data(X, ensure_min_samples=2)
|
980 |
+
return self._fit(X)
|
981 |
+
|
982 |
+
def _fit(self, X):
|
983 |
+
"""Fit without validation
|
984 |
+
|
985 |
+
Parameters
|
986 |
+
----------
|
987 |
+
X : ndarray of shape (n_samples, n_features) or (n_samples, n_samples)
|
988 |
+
Training instances to cluster, or distances between instances if
|
989 |
+
``affinity='precomputed'``.
|
990 |
+
|
991 |
+
Returns
|
992 |
+
-------
|
993 |
+
self : object
|
994 |
+
Returns the fitted instance.
|
995 |
+
"""
|
996 |
+
memory = check_memory(self.memory)
|
997 |
+
|
998 |
+
# TODO(1.6): remove in 1.6
|
999 |
+
if self.metric is None:
|
1000 |
+
warnings.warn(
|
1001 |
+
(
|
1002 |
+
"`metric=None` is deprecated in version 1.4 and will be removed in "
|
1003 |
+
"version 1.6. Let `metric` be the default value "
|
1004 |
+
"(i.e. `'euclidean'`) instead."
|
1005 |
+
),
|
1006 |
+
FutureWarning,
|
1007 |
+
)
|
1008 |
+
self._metric = "euclidean"
|
1009 |
+
else:
|
1010 |
+
self._metric = self.metric
|
1011 |
+
|
1012 |
+
if not ((self.n_clusters is None) ^ (self.distance_threshold is None)):
|
1013 |
+
raise ValueError(
|
1014 |
+
"Exactly one of n_clusters and "
|
1015 |
+
"distance_threshold has to be set, and the other "
|
1016 |
+
"needs to be None."
|
1017 |
+
)
|
1018 |
+
|
1019 |
+
if self.distance_threshold is not None and not self.compute_full_tree:
|
1020 |
+
raise ValueError(
|
1021 |
+
"compute_full_tree must be True if distance_threshold is set."
|
1022 |
+
)
|
1023 |
+
|
1024 |
+
if self.linkage == "ward" and self._metric != "euclidean":
|
1025 |
+
raise ValueError(
|
1026 |
+
f"{self._metric} was provided as metric. Ward can only "
|
1027 |
+
"work with euclidean distances."
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
tree_builder = _TREE_BUILDERS[self.linkage]
|
1031 |
+
|
1032 |
+
connectivity = self.connectivity
|
1033 |
+
if self.connectivity is not None:
|
1034 |
+
if callable(self.connectivity):
|
1035 |
+
connectivity = self.connectivity(X)
|
1036 |
+
connectivity = check_array(
|
1037 |
+
connectivity, accept_sparse=["csr", "coo", "lil"]
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
n_samples = len(X)
|
1041 |
+
compute_full_tree = self.compute_full_tree
|
1042 |
+
if self.connectivity is None:
|
1043 |
+
compute_full_tree = True
|
1044 |
+
if compute_full_tree == "auto":
|
1045 |
+
if self.distance_threshold is not None:
|
1046 |
+
compute_full_tree = True
|
1047 |
+
else:
|
1048 |
+
# Early stopping is likely to give a speed up only for
|
1049 |
+
# a large number of clusters. The actual threshold
|
1050 |
+
# implemented here is heuristic
|
1051 |
+
compute_full_tree = self.n_clusters < max(100, 0.02 * n_samples)
|
1052 |
+
n_clusters = self.n_clusters
|
1053 |
+
if compute_full_tree:
|
1054 |
+
n_clusters = None
|
1055 |
+
|
1056 |
+
# Construct the tree
|
1057 |
+
kwargs = {}
|
1058 |
+
if self.linkage != "ward":
|
1059 |
+
kwargs["linkage"] = self.linkage
|
1060 |
+
kwargs["affinity"] = self._metric
|
1061 |
+
|
1062 |
+
distance_threshold = self.distance_threshold
|
1063 |
+
|
1064 |
+
return_distance = (distance_threshold is not None) or self.compute_distances
|
1065 |
+
|
1066 |
+
out = memory.cache(tree_builder)(
|
1067 |
+
X,
|
1068 |
+
connectivity=connectivity,
|
1069 |
+
n_clusters=n_clusters,
|
1070 |
+
return_distance=return_distance,
|
1071 |
+
**kwargs,
|
1072 |
+
)
|
1073 |
+
(self.children_, self.n_connected_components_, self.n_leaves_, parents) = out[
|
1074 |
+
:4
|
1075 |
+
]
|
1076 |
+
|
1077 |
+
if return_distance:
|
1078 |
+
self.distances_ = out[-1]
|
1079 |
+
|
1080 |
+
if self.distance_threshold is not None: # distance_threshold is used
|
1081 |
+
self.n_clusters_ = (
|
1082 |
+
np.count_nonzero(self.distances_ >= distance_threshold) + 1
|
1083 |
+
)
|
1084 |
+
else: # n_clusters is used
|
1085 |
+
self.n_clusters_ = self.n_clusters
|
1086 |
+
|
1087 |
+
# Cut the tree
|
1088 |
+
if compute_full_tree:
|
1089 |
+
self.labels_ = _hc_cut(self.n_clusters_, self.children_, self.n_leaves_)
|
1090 |
+
else:
|
1091 |
+
labels = _hierarchical.hc_get_heads(parents, copy=False)
|
1092 |
+
# copy to avoid holding a reference on the original array
|
1093 |
+
labels = np.copy(labels[:n_samples])
|
1094 |
+
# Reassign cluster numbers
|
1095 |
+
self.labels_ = np.searchsorted(np.unique(labels), labels)
|
1096 |
+
return self
|
1097 |
+
|
1098 |
+
def fit_predict(self, X, y=None):
|
1099 |
+
"""Fit and return the result of each sample's clustering assignment.
|
1100 |
+
|
1101 |
+
In addition to fitting, this method also return the result of the
|
1102 |
+
clustering assignment for each sample in the training set.
|
1103 |
+
|
1104 |
+
Parameters
|
1105 |
+
----------
|
1106 |
+
X : array-like of shape (n_samples, n_features) or \
|
1107 |
+
(n_samples, n_samples)
|
1108 |
+
Training instances to cluster, or distances between instances if
|
1109 |
+
``affinity='precomputed'``.
|
1110 |
+
|
1111 |
+
y : Ignored
|
1112 |
+
Not used, present here for API consistency by convention.
|
1113 |
+
|
1114 |
+
Returns
|
1115 |
+
-------
|
1116 |
+
labels : ndarray of shape (n_samples,)
|
1117 |
+
Cluster labels.
|
1118 |
+
"""
|
1119 |
+
return super().fit_predict(X, y)
|
1120 |
+
|
1121 |
+
|
1122 |
+
class FeatureAgglomeration(
|
1123 |
+
ClassNamePrefixFeaturesOutMixin, AgglomerativeClustering, AgglomerationTransform
|
1124 |
+
):
|
1125 |
+
"""Agglomerate features.
|
1126 |
+
|
1127 |
+
Recursively merges pair of clusters of features.
|
1128 |
+
|
1129 |
+
Read more in the :ref:`User Guide <hierarchical_clustering>`.
|
1130 |
+
|
1131 |
+
Parameters
|
1132 |
+
----------
|
1133 |
+
n_clusters : int or None, default=2
|
1134 |
+
The number of clusters to find. It must be ``None`` if
|
1135 |
+
``distance_threshold`` is not ``None``.
|
1136 |
+
|
1137 |
+
metric : str or callable, default="euclidean"
|
1138 |
+
Metric used to compute the linkage. Can be "euclidean", "l1", "l2",
|
1139 |
+
"manhattan", "cosine", or "precomputed". If linkage is "ward", only
|
1140 |
+
"euclidean" is accepted. If "precomputed", a distance matrix is needed
|
1141 |
+
as input for the fit method.
|
1142 |
+
|
1143 |
+
.. versionadded:: 1.2
|
1144 |
+
|
1145 |
+
.. deprecated:: 1.4
|
1146 |
+
`metric=None` is deprecated in 1.4 and will be removed in 1.6.
|
1147 |
+
Let `metric` be the default value (i.e. `"euclidean"`) instead.
|
1148 |
+
|
1149 |
+
memory : str or object with the joblib.Memory interface, default=None
|
1150 |
+
Used to cache the output of the computation of the tree.
|
1151 |
+
By default, no caching is done. If a string is given, it is the
|
1152 |
+
path to the caching directory.
|
1153 |
+
|
1154 |
+
connectivity : array-like or callable, default=None
|
1155 |
+
Connectivity matrix. Defines for each feature the neighboring
|
1156 |
+
features following a given structure of the data.
|
1157 |
+
This can be a connectivity matrix itself or a callable that transforms
|
1158 |
+
the data into a connectivity matrix, such as derived from
|
1159 |
+
`kneighbors_graph`. Default is `None`, i.e, the
|
1160 |
+
hierarchical clustering algorithm is unstructured.
|
1161 |
+
|
1162 |
+
compute_full_tree : 'auto' or bool, default='auto'
|
1163 |
+
Stop early the construction of the tree at `n_clusters`. This is useful
|
1164 |
+
to decrease computation time if the number of clusters is not small
|
1165 |
+
compared to the number of features. This option is useful only when
|
1166 |
+
specifying a connectivity matrix. Note also that when varying the
|
1167 |
+
number of clusters and using caching, it may be advantageous to compute
|
1168 |
+
the full tree. It must be ``True`` if ``distance_threshold`` is not
|
1169 |
+
``None``. By default `compute_full_tree` is "auto", which is equivalent
|
1170 |
+
to `True` when `distance_threshold` is not `None` or that `n_clusters`
|
1171 |
+
is inferior to the maximum between 100 or `0.02 * n_samples`.
|
1172 |
+
Otherwise, "auto" is equivalent to `False`.
|
1173 |
+
|
1174 |
+
linkage : {"ward", "complete", "average", "single"}, default="ward"
|
1175 |
+
Which linkage criterion to use. The linkage criterion determines which
|
1176 |
+
distance to use between sets of features. The algorithm will merge
|
1177 |
+
the pairs of cluster that minimize this criterion.
|
1178 |
+
|
1179 |
+
- "ward" minimizes the variance of the clusters being merged.
|
1180 |
+
- "complete" or maximum linkage uses the maximum distances between
|
1181 |
+
all features of the two sets.
|
1182 |
+
- "average" uses the average of the distances of each feature of
|
1183 |
+
the two sets.
|
1184 |
+
- "single" uses the minimum of the distances between all features
|
1185 |
+
of the two sets.
|
1186 |
+
|
1187 |
+
pooling_func : callable, default=np.mean
|
1188 |
+
This combines the values of agglomerated features into a single
|
1189 |
+
value, and should accept an array of shape [M, N] and the keyword
|
1190 |
+
argument `axis=1`, and reduce it to an array of size [M].
|
1191 |
+
|
1192 |
+
distance_threshold : float, default=None
|
1193 |
+
The linkage distance threshold at or above which clusters will not be
|
1194 |
+
merged. If not ``None``, ``n_clusters`` must be ``None`` and
|
1195 |
+
``compute_full_tree`` must be ``True``.
|
1196 |
+
|
1197 |
+
.. versionadded:: 0.21
|
1198 |
+
|
1199 |
+
compute_distances : bool, default=False
|
1200 |
+
Computes distances between clusters even if `distance_threshold` is not
|
1201 |
+
used. This can be used to make dendrogram visualization, but introduces
|
1202 |
+
a computational and memory overhead.
|
1203 |
+
|
1204 |
+
.. versionadded:: 0.24
|
1205 |
+
|
1206 |
+
Attributes
|
1207 |
+
----------
|
1208 |
+
n_clusters_ : int
|
1209 |
+
The number of clusters found by the algorithm. If
|
1210 |
+
``distance_threshold=None``, it will be equal to the given
|
1211 |
+
``n_clusters``.
|
1212 |
+
|
1213 |
+
labels_ : array-like of (n_features,)
|
1214 |
+
Cluster labels for each feature.
|
1215 |
+
|
1216 |
+
n_leaves_ : int
|
1217 |
+
Number of leaves in the hierarchical tree.
|
1218 |
+
|
1219 |
+
n_connected_components_ : int
|
1220 |
+
The estimated number of connected components in the graph.
|
1221 |
+
|
1222 |
+
.. versionadded:: 0.21
|
1223 |
+
``n_connected_components_`` was added to replace ``n_components_``.
|
1224 |
+
|
1225 |
+
n_features_in_ : int
|
1226 |
+
Number of features seen during :term:`fit`.
|
1227 |
+
|
1228 |
+
.. versionadded:: 0.24
|
1229 |
+
|
1230 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1231 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1232 |
+
has feature names that are all strings.
|
1233 |
+
|
1234 |
+
.. versionadded:: 1.0
|
1235 |
+
|
1236 |
+
children_ : array-like of shape (n_nodes-1, 2)
|
1237 |
+
The children of each non-leaf node. Values less than `n_features`
|
1238 |
+
correspond to leaves of the tree which are the original samples.
|
1239 |
+
A node `i` greater than or equal to `n_features` is a non-leaf
|
1240 |
+
node and has children `children_[i - n_features]`. Alternatively
|
1241 |
+
at the i-th iteration, children[i][0] and children[i][1]
|
1242 |
+
are merged to form node `n_features + i`.
|
1243 |
+
|
1244 |
+
distances_ : array-like of shape (n_nodes-1,)
|
1245 |
+
Distances between nodes in the corresponding place in `children_`.
|
1246 |
+
Only computed if `distance_threshold` is used or `compute_distances`
|
1247 |
+
is set to `True`.
|
1248 |
+
|
1249 |
+
See Also
|
1250 |
+
--------
|
1251 |
+
AgglomerativeClustering : Agglomerative clustering samples instead of
|
1252 |
+
features.
|
1253 |
+
ward_tree : Hierarchical clustering with ward linkage.
|
1254 |
+
|
1255 |
+
Examples
|
1256 |
+
--------
|
1257 |
+
>>> import numpy as np
|
1258 |
+
>>> from sklearn import datasets, cluster
|
1259 |
+
>>> digits = datasets.load_digits()
|
1260 |
+
>>> images = digits.images
|
1261 |
+
>>> X = np.reshape(images, (len(images), -1))
|
1262 |
+
>>> agglo = cluster.FeatureAgglomeration(n_clusters=32)
|
1263 |
+
>>> agglo.fit(X)
|
1264 |
+
FeatureAgglomeration(n_clusters=32)
|
1265 |
+
>>> X_reduced = agglo.transform(X)
|
1266 |
+
>>> X_reduced.shape
|
1267 |
+
(1797, 32)
|
1268 |
+
"""
|
1269 |
+
|
1270 |
+
_parameter_constraints: dict = {
|
1271 |
+
"n_clusters": [Interval(Integral, 1, None, closed="left"), None],
|
1272 |
+
"metric": [
|
1273 |
+
StrOptions(set(_VALID_METRICS) | {"precomputed"}),
|
1274 |
+
callable,
|
1275 |
+
Hidden(None),
|
1276 |
+
],
|
1277 |
+
"memory": [str, HasMethods("cache"), None],
|
1278 |
+
"connectivity": ["array-like", callable, None],
|
1279 |
+
"compute_full_tree": [StrOptions({"auto"}), "boolean"],
|
1280 |
+
"linkage": [StrOptions(set(_TREE_BUILDERS.keys()))],
|
1281 |
+
"pooling_func": [callable],
|
1282 |
+
"distance_threshold": [Interval(Real, 0, None, closed="left"), None],
|
1283 |
+
"compute_distances": ["boolean"],
|
1284 |
+
}
|
1285 |
+
|
1286 |
+
def __init__(
|
1287 |
+
self,
|
1288 |
+
n_clusters=2,
|
1289 |
+
*,
|
1290 |
+
metric="euclidean",
|
1291 |
+
memory=None,
|
1292 |
+
connectivity=None,
|
1293 |
+
compute_full_tree="auto",
|
1294 |
+
linkage="ward",
|
1295 |
+
pooling_func=np.mean,
|
1296 |
+
distance_threshold=None,
|
1297 |
+
compute_distances=False,
|
1298 |
+
):
|
1299 |
+
super().__init__(
|
1300 |
+
n_clusters=n_clusters,
|
1301 |
+
memory=memory,
|
1302 |
+
connectivity=connectivity,
|
1303 |
+
compute_full_tree=compute_full_tree,
|
1304 |
+
linkage=linkage,
|
1305 |
+
metric=metric,
|
1306 |
+
distance_threshold=distance_threshold,
|
1307 |
+
compute_distances=compute_distances,
|
1308 |
+
)
|
1309 |
+
self.pooling_func = pooling_func
|
1310 |
+
|
1311 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
1312 |
+
def fit(self, X, y=None):
|
1313 |
+
"""Fit the hierarchical clustering on the data.
|
1314 |
+
|
1315 |
+
Parameters
|
1316 |
+
----------
|
1317 |
+
X : array-like of shape (n_samples, n_features)
|
1318 |
+
The data.
|
1319 |
+
|
1320 |
+
y : Ignored
|
1321 |
+
Not used, present here for API consistency by convention.
|
1322 |
+
|
1323 |
+
Returns
|
1324 |
+
-------
|
1325 |
+
self : object
|
1326 |
+
Returns the transformer.
|
1327 |
+
"""
|
1328 |
+
X = self._validate_data(X, ensure_min_features=2)
|
1329 |
+
super()._fit(X.T)
|
1330 |
+
self._n_features_out = self.n_clusters_
|
1331 |
+
return self
|
1332 |
+
|
1333 |
+
@property
|
1334 |
+
def fit_predict(self):
|
1335 |
+
"""Fit and return the result of each sample's clustering assignment."""
|
1336 |
+
raise AttributeError
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_bicluster.py
ADDED
@@ -0,0 +1,622 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Spectral biclustering algorithms."""
|
2 |
+
# Authors : Kemal Eren
|
3 |
+
# License: BSD 3 clause
|
4 |
+
|
5 |
+
from abc import ABCMeta, abstractmethod
|
6 |
+
from numbers import Integral
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from scipy.linalg import norm
|
10 |
+
from scipy.sparse import dia_matrix, issparse
|
11 |
+
from scipy.sparse.linalg import eigsh, svds
|
12 |
+
|
13 |
+
from ..base import BaseEstimator, BiclusterMixin, _fit_context
|
14 |
+
from ..utils import check_random_state, check_scalar
|
15 |
+
from ..utils._param_validation import Interval, StrOptions
|
16 |
+
from ..utils.extmath import make_nonnegative, randomized_svd, safe_sparse_dot
|
17 |
+
from ..utils.validation import assert_all_finite
|
18 |
+
from ._kmeans import KMeans, MiniBatchKMeans
|
19 |
+
|
20 |
+
__all__ = ["SpectralCoclustering", "SpectralBiclustering"]
|
21 |
+
|
22 |
+
|
23 |
+
def _scale_normalize(X):
|
24 |
+
"""Normalize ``X`` by scaling rows and columns independently.
|
25 |
+
|
26 |
+
Returns the normalized matrix and the row and column scaling
|
27 |
+
factors.
|
28 |
+
"""
|
29 |
+
X = make_nonnegative(X)
|
30 |
+
row_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=1))).squeeze()
|
31 |
+
col_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=0))).squeeze()
|
32 |
+
row_diag = np.where(np.isnan(row_diag), 0, row_diag)
|
33 |
+
col_diag = np.where(np.isnan(col_diag), 0, col_diag)
|
34 |
+
if issparse(X):
|
35 |
+
n_rows, n_cols = X.shape
|
36 |
+
r = dia_matrix((row_diag, [0]), shape=(n_rows, n_rows))
|
37 |
+
c = dia_matrix((col_diag, [0]), shape=(n_cols, n_cols))
|
38 |
+
an = r * X * c
|
39 |
+
else:
|
40 |
+
an = row_diag[:, np.newaxis] * X * col_diag
|
41 |
+
return an, row_diag, col_diag
|
42 |
+
|
43 |
+
|
44 |
+
def _bistochastic_normalize(X, max_iter=1000, tol=1e-5):
|
45 |
+
"""Normalize rows and columns of ``X`` simultaneously so that all
|
46 |
+
rows sum to one constant and all columns sum to a different
|
47 |
+
constant.
|
48 |
+
"""
|
49 |
+
# According to paper, this can also be done more efficiently with
|
50 |
+
# deviation reduction and balancing algorithms.
|
51 |
+
X = make_nonnegative(X)
|
52 |
+
X_scaled = X
|
53 |
+
for _ in range(max_iter):
|
54 |
+
X_new, _, _ = _scale_normalize(X_scaled)
|
55 |
+
if issparse(X):
|
56 |
+
dist = norm(X_scaled.data - X.data)
|
57 |
+
else:
|
58 |
+
dist = norm(X_scaled - X_new)
|
59 |
+
X_scaled = X_new
|
60 |
+
if dist is not None and dist < tol:
|
61 |
+
break
|
62 |
+
return X_scaled
|
63 |
+
|
64 |
+
|
65 |
+
def _log_normalize(X):
|
66 |
+
"""Normalize ``X`` according to Kluger's log-interactions scheme."""
|
67 |
+
X = make_nonnegative(X, min_value=1)
|
68 |
+
if issparse(X):
|
69 |
+
raise ValueError(
|
70 |
+
"Cannot compute log of a sparse matrix,"
|
71 |
+
" because log(x) diverges to -infinity as x"
|
72 |
+
" goes to 0."
|
73 |
+
)
|
74 |
+
L = np.log(X)
|
75 |
+
row_avg = L.mean(axis=1)[:, np.newaxis]
|
76 |
+
col_avg = L.mean(axis=0)
|
77 |
+
avg = L.mean()
|
78 |
+
return L - row_avg - col_avg + avg
|
79 |
+
|
80 |
+
|
81 |
+
class BaseSpectral(BiclusterMixin, BaseEstimator, metaclass=ABCMeta):
|
82 |
+
"""Base class for spectral biclustering."""
|
83 |
+
|
84 |
+
_parameter_constraints: dict = {
|
85 |
+
"svd_method": [StrOptions({"randomized", "arpack"})],
|
86 |
+
"n_svd_vecs": [Interval(Integral, 0, None, closed="left"), None],
|
87 |
+
"mini_batch": ["boolean"],
|
88 |
+
"init": [StrOptions({"k-means++", "random"}), np.ndarray],
|
89 |
+
"n_init": [Interval(Integral, 1, None, closed="left")],
|
90 |
+
"random_state": ["random_state"],
|
91 |
+
}
|
92 |
+
|
93 |
+
@abstractmethod
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
n_clusters=3,
|
97 |
+
svd_method="randomized",
|
98 |
+
n_svd_vecs=None,
|
99 |
+
mini_batch=False,
|
100 |
+
init="k-means++",
|
101 |
+
n_init=10,
|
102 |
+
random_state=None,
|
103 |
+
):
|
104 |
+
self.n_clusters = n_clusters
|
105 |
+
self.svd_method = svd_method
|
106 |
+
self.n_svd_vecs = n_svd_vecs
|
107 |
+
self.mini_batch = mini_batch
|
108 |
+
self.init = init
|
109 |
+
self.n_init = n_init
|
110 |
+
self.random_state = random_state
|
111 |
+
|
112 |
+
@abstractmethod
|
113 |
+
def _check_parameters(self, n_samples):
|
114 |
+
"""Validate parameters depending on the input data."""
|
115 |
+
|
116 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
117 |
+
def fit(self, X, y=None):
|
118 |
+
"""Create a biclustering for X.
|
119 |
+
|
120 |
+
Parameters
|
121 |
+
----------
|
122 |
+
X : array-like of shape (n_samples, n_features)
|
123 |
+
Training data.
|
124 |
+
|
125 |
+
y : Ignored
|
126 |
+
Not used, present for API consistency by convention.
|
127 |
+
|
128 |
+
Returns
|
129 |
+
-------
|
130 |
+
self : object
|
131 |
+
SpectralBiclustering instance.
|
132 |
+
"""
|
133 |
+
X = self._validate_data(X, accept_sparse="csr", dtype=np.float64)
|
134 |
+
self._check_parameters(X.shape[0])
|
135 |
+
self._fit(X)
|
136 |
+
return self
|
137 |
+
|
138 |
+
def _svd(self, array, n_components, n_discard):
|
139 |
+
"""Returns first `n_components` left and right singular
|
140 |
+
vectors u and v, discarding the first `n_discard`.
|
141 |
+
"""
|
142 |
+
if self.svd_method == "randomized":
|
143 |
+
kwargs = {}
|
144 |
+
if self.n_svd_vecs is not None:
|
145 |
+
kwargs["n_oversamples"] = self.n_svd_vecs
|
146 |
+
u, _, vt = randomized_svd(
|
147 |
+
array, n_components, random_state=self.random_state, **kwargs
|
148 |
+
)
|
149 |
+
|
150 |
+
elif self.svd_method == "arpack":
|
151 |
+
u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs)
|
152 |
+
if np.any(np.isnan(vt)):
|
153 |
+
# some eigenvalues of A * A.T are negative, causing
|
154 |
+
# sqrt() to be np.nan. This causes some vectors in vt
|
155 |
+
# to be np.nan.
|
156 |
+
A = safe_sparse_dot(array.T, array)
|
157 |
+
random_state = check_random_state(self.random_state)
|
158 |
+
# initialize with [-1,1] as in ARPACK
|
159 |
+
v0 = random_state.uniform(-1, 1, A.shape[0])
|
160 |
+
_, v = eigsh(A, ncv=self.n_svd_vecs, v0=v0)
|
161 |
+
vt = v.T
|
162 |
+
if np.any(np.isnan(u)):
|
163 |
+
A = safe_sparse_dot(array, array.T)
|
164 |
+
random_state = check_random_state(self.random_state)
|
165 |
+
# initialize with [-1,1] as in ARPACK
|
166 |
+
v0 = random_state.uniform(-1, 1, A.shape[0])
|
167 |
+
_, u = eigsh(A, ncv=self.n_svd_vecs, v0=v0)
|
168 |
+
|
169 |
+
assert_all_finite(u)
|
170 |
+
assert_all_finite(vt)
|
171 |
+
u = u[:, n_discard:]
|
172 |
+
vt = vt[n_discard:]
|
173 |
+
return u, vt.T
|
174 |
+
|
175 |
+
def _k_means(self, data, n_clusters):
|
176 |
+
if self.mini_batch:
|
177 |
+
model = MiniBatchKMeans(
|
178 |
+
n_clusters,
|
179 |
+
init=self.init,
|
180 |
+
n_init=self.n_init,
|
181 |
+
random_state=self.random_state,
|
182 |
+
)
|
183 |
+
else:
|
184 |
+
model = KMeans(
|
185 |
+
n_clusters,
|
186 |
+
init=self.init,
|
187 |
+
n_init=self.n_init,
|
188 |
+
random_state=self.random_state,
|
189 |
+
)
|
190 |
+
model.fit(data)
|
191 |
+
centroid = model.cluster_centers_
|
192 |
+
labels = model.labels_
|
193 |
+
return centroid, labels
|
194 |
+
|
195 |
+
def _more_tags(self):
|
196 |
+
return {
|
197 |
+
"_xfail_checks": {
|
198 |
+
"check_estimators_dtypes": "raises nan error",
|
199 |
+
"check_fit2d_1sample": "_scale_normalize fails",
|
200 |
+
"check_fit2d_1feature": "raises apply_along_axis error",
|
201 |
+
"check_estimator_sparse_data": "does not fail gracefully",
|
202 |
+
"check_methods_subset_invariance": "empty array passed inside",
|
203 |
+
"check_dont_overwrite_parameters": "empty array passed inside",
|
204 |
+
"check_fit2d_predict1d": "empty array passed inside",
|
205 |
+
}
|
206 |
+
}
|
207 |
+
|
208 |
+
|
209 |
+
class SpectralCoclustering(BaseSpectral):
|
210 |
+
"""Spectral Co-Clustering algorithm (Dhillon, 2001).
|
211 |
+
|
212 |
+
Clusters rows and columns of an array `X` to solve the relaxed
|
213 |
+
normalized cut of the bipartite graph created from `X` as follows:
|
214 |
+
the edge between row vertex `i` and column vertex `j` has weight
|
215 |
+
`X[i, j]`.
|
216 |
+
|
217 |
+
The resulting bicluster structure is block-diagonal, since each
|
218 |
+
row and each column belongs to exactly one bicluster.
|
219 |
+
|
220 |
+
Supports sparse matrices, as long as they are nonnegative.
|
221 |
+
|
222 |
+
Read more in the :ref:`User Guide <spectral_coclustering>`.
|
223 |
+
|
224 |
+
Parameters
|
225 |
+
----------
|
226 |
+
n_clusters : int, default=3
|
227 |
+
The number of biclusters to find.
|
228 |
+
|
229 |
+
svd_method : {'randomized', 'arpack'}, default='randomized'
|
230 |
+
Selects the algorithm for finding singular vectors. May be
|
231 |
+
'randomized' or 'arpack'. If 'randomized', use
|
232 |
+
:func:`sklearn.utils.extmath.randomized_svd`, which may be faster
|
233 |
+
for large matrices. If 'arpack', use
|
234 |
+
:func:`scipy.sparse.linalg.svds`, which is more accurate, but
|
235 |
+
possibly slower in some cases.
|
236 |
+
|
237 |
+
n_svd_vecs : int, default=None
|
238 |
+
Number of vectors to use in calculating the SVD. Corresponds
|
239 |
+
to `ncv` when `svd_method=arpack` and `n_oversamples` when
|
240 |
+
`svd_method` is 'randomized`.
|
241 |
+
|
242 |
+
mini_batch : bool, default=False
|
243 |
+
Whether to use mini-batch k-means, which is faster but may get
|
244 |
+
different results.
|
245 |
+
|
246 |
+
init : {'k-means++', 'random'}, or ndarray of shape \
|
247 |
+
(n_clusters, n_features), default='k-means++'
|
248 |
+
Method for initialization of k-means algorithm; defaults to
|
249 |
+
'k-means++'.
|
250 |
+
|
251 |
+
n_init : int, default=10
|
252 |
+
Number of random initializations that are tried with the
|
253 |
+
k-means algorithm.
|
254 |
+
|
255 |
+
If mini-batch k-means is used, the best initialization is
|
256 |
+
chosen and the algorithm runs once. Otherwise, the algorithm
|
257 |
+
is run for each initialization and the best solution chosen.
|
258 |
+
|
259 |
+
random_state : int, RandomState instance, default=None
|
260 |
+
Used for randomizing the singular value decomposition and the k-means
|
261 |
+
initialization. Use an int to make the randomness deterministic.
|
262 |
+
See :term:`Glossary <random_state>`.
|
263 |
+
|
264 |
+
Attributes
|
265 |
+
----------
|
266 |
+
rows_ : array-like of shape (n_row_clusters, n_rows)
|
267 |
+
Results of the clustering. `rows[i, r]` is True if
|
268 |
+
cluster `i` contains row `r`. Available only after calling ``fit``.
|
269 |
+
|
270 |
+
columns_ : array-like of shape (n_column_clusters, n_columns)
|
271 |
+
Results of the clustering, like `rows`.
|
272 |
+
|
273 |
+
row_labels_ : array-like of shape (n_rows,)
|
274 |
+
The bicluster label of each row.
|
275 |
+
|
276 |
+
column_labels_ : array-like of shape (n_cols,)
|
277 |
+
The bicluster label of each column.
|
278 |
+
|
279 |
+
biclusters_ : tuple of two ndarrays
|
280 |
+
The tuple contains the `rows_` and `columns_` arrays.
|
281 |
+
|
282 |
+
n_features_in_ : int
|
283 |
+
Number of features seen during :term:`fit`.
|
284 |
+
|
285 |
+
.. versionadded:: 0.24
|
286 |
+
|
287 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
288 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
289 |
+
has feature names that are all strings.
|
290 |
+
|
291 |
+
.. versionadded:: 1.0
|
292 |
+
|
293 |
+
See Also
|
294 |
+
--------
|
295 |
+
SpectralBiclustering : Partitions rows and columns under the assumption
|
296 |
+
that the data has an underlying checkerboard structure.
|
297 |
+
|
298 |
+
References
|
299 |
+
----------
|
300 |
+
* :doi:`Dhillon, Inderjit S, 2001. Co-clustering documents and words using
|
301 |
+
bipartite spectral graph partitioning.
|
302 |
+
<10.1145/502512.502550>`
|
303 |
+
|
304 |
+
Examples
|
305 |
+
--------
|
306 |
+
>>> from sklearn.cluster import SpectralCoclustering
|
307 |
+
>>> import numpy as np
|
308 |
+
>>> X = np.array([[1, 1], [2, 1], [1, 0],
|
309 |
+
... [4, 7], [3, 5], [3, 6]])
|
310 |
+
>>> clustering = SpectralCoclustering(n_clusters=2, random_state=0).fit(X)
|
311 |
+
>>> clustering.row_labels_ #doctest: +SKIP
|
312 |
+
array([0, 1, 1, 0, 0, 0], dtype=int32)
|
313 |
+
>>> clustering.column_labels_ #doctest: +SKIP
|
314 |
+
array([0, 0], dtype=int32)
|
315 |
+
>>> clustering
|
316 |
+
SpectralCoclustering(n_clusters=2, random_state=0)
|
317 |
+
"""
|
318 |
+
|
319 |
+
_parameter_constraints: dict = {
|
320 |
+
**BaseSpectral._parameter_constraints,
|
321 |
+
"n_clusters": [Interval(Integral, 1, None, closed="left")],
|
322 |
+
}
|
323 |
+
|
324 |
+
def __init__(
|
325 |
+
self,
|
326 |
+
n_clusters=3,
|
327 |
+
*,
|
328 |
+
svd_method="randomized",
|
329 |
+
n_svd_vecs=None,
|
330 |
+
mini_batch=False,
|
331 |
+
init="k-means++",
|
332 |
+
n_init=10,
|
333 |
+
random_state=None,
|
334 |
+
):
|
335 |
+
super().__init__(
|
336 |
+
n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, random_state
|
337 |
+
)
|
338 |
+
|
339 |
+
def _check_parameters(self, n_samples):
|
340 |
+
if self.n_clusters > n_samples:
|
341 |
+
raise ValueError(
|
342 |
+
f"n_clusters should be <= n_samples={n_samples}. Got"
|
343 |
+
f" {self.n_clusters} instead."
|
344 |
+
)
|
345 |
+
|
346 |
+
def _fit(self, X):
|
347 |
+
normalized_data, row_diag, col_diag = _scale_normalize(X)
|
348 |
+
n_sv = 1 + int(np.ceil(np.log2(self.n_clusters)))
|
349 |
+
u, v = self._svd(normalized_data, n_sv, n_discard=1)
|
350 |
+
z = np.vstack((row_diag[:, np.newaxis] * u, col_diag[:, np.newaxis] * v))
|
351 |
+
|
352 |
+
_, labels = self._k_means(z, self.n_clusters)
|
353 |
+
|
354 |
+
n_rows = X.shape[0]
|
355 |
+
self.row_labels_ = labels[:n_rows]
|
356 |
+
self.column_labels_ = labels[n_rows:]
|
357 |
+
|
358 |
+
self.rows_ = np.vstack([self.row_labels_ == c for c in range(self.n_clusters)])
|
359 |
+
self.columns_ = np.vstack(
|
360 |
+
[self.column_labels_ == c for c in range(self.n_clusters)]
|
361 |
+
)
|
362 |
+
|
363 |
+
|
364 |
+
class SpectralBiclustering(BaseSpectral):
|
365 |
+
"""Spectral biclustering (Kluger, 2003).
|
366 |
+
|
367 |
+
Partitions rows and columns under the assumption that the data has
|
368 |
+
an underlying checkerboard structure. For instance, if there are
|
369 |
+
two row partitions and three column partitions, each row will
|
370 |
+
belong to three biclusters, and each column will belong to two
|
371 |
+
biclusters. The outer product of the corresponding row and column
|
372 |
+
label vectors gives this checkerboard structure.
|
373 |
+
|
374 |
+
Read more in the :ref:`User Guide <spectral_biclustering>`.
|
375 |
+
|
376 |
+
Parameters
|
377 |
+
----------
|
378 |
+
n_clusters : int or tuple (n_row_clusters, n_column_clusters), default=3
|
379 |
+
The number of row and column clusters in the checkerboard
|
380 |
+
structure.
|
381 |
+
|
382 |
+
method : {'bistochastic', 'scale', 'log'}, default='bistochastic'
|
383 |
+
Method of normalizing and converting singular vectors into
|
384 |
+
biclusters. May be one of 'scale', 'bistochastic', or 'log'.
|
385 |
+
The authors recommend using 'log'. If the data is sparse,
|
386 |
+
however, log normalization will not work, which is why the
|
387 |
+
default is 'bistochastic'.
|
388 |
+
|
389 |
+
.. warning::
|
390 |
+
if `method='log'`, the data must not be sparse.
|
391 |
+
|
392 |
+
n_components : int, default=6
|
393 |
+
Number of singular vectors to check.
|
394 |
+
|
395 |
+
n_best : int, default=3
|
396 |
+
Number of best singular vectors to which to project the data
|
397 |
+
for clustering.
|
398 |
+
|
399 |
+
svd_method : {'randomized', 'arpack'}, default='randomized'
|
400 |
+
Selects the algorithm for finding singular vectors. May be
|
401 |
+
'randomized' or 'arpack'. If 'randomized', uses
|
402 |
+
:func:`~sklearn.utils.extmath.randomized_svd`, which may be faster
|
403 |
+
for large matrices. If 'arpack', uses
|
404 |
+
`scipy.sparse.linalg.svds`, which is more accurate, but
|
405 |
+
possibly slower in some cases.
|
406 |
+
|
407 |
+
n_svd_vecs : int, default=None
|
408 |
+
Number of vectors to use in calculating the SVD. Corresponds
|
409 |
+
to `ncv` when `svd_method=arpack` and `n_oversamples` when
|
410 |
+
`svd_method` is 'randomized`.
|
411 |
+
|
412 |
+
mini_batch : bool, default=False
|
413 |
+
Whether to use mini-batch k-means, which is faster but may get
|
414 |
+
different results.
|
415 |
+
|
416 |
+
init : {'k-means++', 'random'} or ndarray of shape (n_clusters, n_features), \
|
417 |
+
default='k-means++'
|
418 |
+
Method for initialization of k-means algorithm; defaults to
|
419 |
+
'k-means++'.
|
420 |
+
|
421 |
+
n_init : int, default=10
|
422 |
+
Number of random initializations that are tried with the
|
423 |
+
k-means algorithm.
|
424 |
+
|
425 |
+
If mini-batch k-means is used, the best initialization is
|
426 |
+
chosen and the algorithm runs once. Otherwise, the algorithm
|
427 |
+
is run for each initialization and the best solution chosen.
|
428 |
+
|
429 |
+
random_state : int, RandomState instance, default=None
|
430 |
+
Used for randomizing the singular value decomposition and the k-means
|
431 |
+
initialization. Use an int to make the randomness deterministic.
|
432 |
+
See :term:`Glossary <random_state>`.
|
433 |
+
|
434 |
+
Attributes
|
435 |
+
----------
|
436 |
+
rows_ : array-like of shape (n_row_clusters, n_rows)
|
437 |
+
Results of the clustering. `rows[i, r]` is True if
|
438 |
+
cluster `i` contains row `r`. Available only after calling ``fit``.
|
439 |
+
|
440 |
+
columns_ : array-like of shape (n_column_clusters, n_columns)
|
441 |
+
Results of the clustering, like `rows`.
|
442 |
+
|
443 |
+
row_labels_ : array-like of shape (n_rows,)
|
444 |
+
Row partition labels.
|
445 |
+
|
446 |
+
column_labels_ : array-like of shape (n_cols,)
|
447 |
+
Column partition labels.
|
448 |
+
|
449 |
+
biclusters_ : tuple of two ndarrays
|
450 |
+
The tuple contains the `rows_` and `columns_` arrays.
|
451 |
+
|
452 |
+
n_features_in_ : int
|
453 |
+
Number of features seen during :term:`fit`.
|
454 |
+
|
455 |
+
.. versionadded:: 0.24
|
456 |
+
|
457 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
458 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
459 |
+
has feature names that are all strings.
|
460 |
+
|
461 |
+
.. versionadded:: 1.0
|
462 |
+
|
463 |
+
See Also
|
464 |
+
--------
|
465 |
+
SpectralCoclustering : Spectral Co-Clustering algorithm (Dhillon, 2001).
|
466 |
+
|
467 |
+
References
|
468 |
+
----------
|
469 |
+
|
470 |
+
* :doi:`Kluger, Yuval, et. al., 2003. Spectral biclustering of microarray
|
471 |
+
data: coclustering genes and conditions.
|
472 |
+
<10.1101/gr.648603>`
|
473 |
+
|
474 |
+
Examples
|
475 |
+
--------
|
476 |
+
>>> from sklearn.cluster import SpectralBiclustering
|
477 |
+
>>> import numpy as np
|
478 |
+
>>> X = np.array([[1, 1], [2, 1], [1, 0],
|
479 |
+
... [4, 7], [3, 5], [3, 6]])
|
480 |
+
>>> clustering = SpectralBiclustering(n_clusters=2, random_state=0).fit(X)
|
481 |
+
>>> clustering.row_labels_
|
482 |
+
array([1, 1, 1, 0, 0, 0], dtype=int32)
|
483 |
+
>>> clustering.column_labels_
|
484 |
+
array([1, 0], dtype=int32)
|
485 |
+
>>> clustering
|
486 |
+
SpectralBiclustering(n_clusters=2, random_state=0)
|
487 |
+
"""
|
488 |
+
|
489 |
+
_parameter_constraints: dict = {
|
490 |
+
**BaseSpectral._parameter_constraints,
|
491 |
+
"n_clusters": [Interval(Integral, 1, None, closed="left"), tuple],
|
492 |
+
"method": [StrOptions({"bistochastic", "scale", "log"})],
|
493 |
+
"n_components": [Interval(Integral, 1, None, closed="left")],
|
494 |
+
"n_best": [Interval(Integral, 1, None, closed="left")],
|
495 |
+
}
|
496 |
+
|
497 |
+
def __init__(
|
498 |
+
self,
|
499 |
+
n_clusters=3,
|
500 |
+
*,
|
501 |
+
method="bistochastic",
|
502 |
+
n_components=6,
|
503 |
+
n_best=3,
|
504 |
+
svd_method="randomized",
|
505 |
+
n_svd_vecs=None,
|
506 |
+
mini_batch=False,
|
507 |
+
init="k-means++",
|
508 |
+
n_init=10,
|
509 |
+
random_state=None,
|
510 |
+
):
|
511 |
+
super().__init__(
|
512 |
+
n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, random_state
|
513 |
+
)
|
514 |
+
self.method = method
|
515 |
+
self.n_components = n_components
|
516 |
+
self.n_best = n_best
|
517 |
+
|
518 |
+
def _check_parameters(self, n_samples):
|
519 |
+
if isinstance(self.n_clusters, Integral):
|
520 |
+
if self.n_clusters > n_samples:
|
521 |
+
raise ValueError(
|
522 |
+
f"n_clusters should be <= n_samples={n_samples}. Got"
|
523 |
+
f" {self.n_clusters} instead."
|
524 |
+
)
|
525 |
+
else: # tuple
|
526 |
+
try:
|
527 |
+
n_row_clusters, n_column_clusters = self.n_clusters
|
528 |
+
check_scalar(
|
529 |
+
n_row_clusters,
|
530 |
+
"n_row_clusters",
|
531 |
+
target_type=Integral,
|
532 |
+
min_val=1,
|
533 |
+
max_val=n_samples,
|
534 |
+
)
|
535 |
+
check_scalar(
|
536 |
+
n_column_clusters,
|
537 |
+
"n_column_clusters",
|
538 |
+
target_type=Integral,
|
539 |
+
min_val=1,
|
540 |
+
max_val=n_samples,
|
541 |
+
)
|
542 |
+
except (ValueError, TypeError) as e:
|
543 |
+
raise ValueError(
|
544 |
+
"Incorrect parameter n_clusters has value:"
|
545 |
+
f" {self.n_clusters}. It should either be a single integer"
|
546 |
+
" or an iterable with two integers:"
|
547 |
+
" (n_row_clusters, n_column_clusters)"
|
548 |
+
" And the values are should be in the"
|
549 |
+
" range: (1, n_samples)"
|
550 |
+
) from e
|
551 |
+
|
552 |
+
if self.n_best > self.n_components:
|
553 |
+
raise ValueError(
|
554 |
+
f"n_best={self.n_best} must be <= n_components={self.n_components}."
|
555 |
+
)
|
556 |
+
|
557 |
+
def _fit(self, X):
|
558 |
+
n_sv = self.n_components
|
559 |
+
if self.method == "bistochastic":
|
560 |
+
normalized_data = _bistochastic_normalize(X)
|
561 |
+
n_sv += 1
|
562 |
+
elif self.method == "scale":
|
563 |
+
normalized_data, _, _ = _scale_normalize(X)
|
564 |
+
n_sv += 1
|
565 |
+
elif self.method == "log":
|
566 |
+
normalized_data = _log_normalize(X)
|
567 |
+
n_discard = 0 if self.method == "log" else 1
|
568 |
+
u, v = self._svd(normalized_data, n_sv, n_discard)
|
569 |
+
ut = u.T
|
570 |
+
vt = v.T
|
571 |
+
|
572 |
+
try:
|
573 |
+
n_row_clusters, n_col_clusters = self.n_clusters
|
574 |
+
except TypeError:
|
575 |
+
n_row_clusters = n_col_clusters = self.n_clusters
|
576 |
+
|
577 |
+
best_ut = self._fit_best_piecewise(ut, self.n_best, n_row_clusters)
|
578 |
+
|
579 |
+
best_vt = self._fit_best_piecewise(vt, self.n_best, n_col_clusters)
|
580 |
+
|
581 |
+
self.row_labels_ = self._project_and_cluster(X, best_vt.T, n_row_clusters)
|
582 |
+
|
583 |
+
self.column_labels_ = self._project_and_cluster(X.T, best_ut.T, n_col_clusters)
|
584 |
+
|
585 |
+
self.rows_ = np.vstack(
|
586 |
+
[
|
587 |
+
self.row_labels_ == label
|
588 |
+
for label in range(n_row_clusters)
|
589 |
+
for _ in range(n_col_clusters)
|
590 |
+
]
|
591 |
+
)
|
592 |
+
self.columns_ = np.vstack(
|
593 |
+
[
|
594 |
+
self.column_labels_ == label
|
595 |
+
for _ in range(n_row_clusters)
|
596 |
+
for label in range(n_col_clusters)
|
597 |
+
]
|
598 |
+
)
|
599 |
+
|
600 |
+
def _fit_best_piecewise(self, vectors, n_best, n_clusters):
|
601 |
+
"""Find the ``n_best`` vectors that are best approximated by piecewise
|
602 |
+
constant vectors.
|
603 |
+
|
604 |
+
The piecewise vectors are found by k-means; the best is chosen
|
605 |
+
according to Euclidean distance.
|
606 |
+
|
607 |
+
"""
|
608 |
+
|
609 |
+
def make_piecewise(v):
|
610 |
+
centroid, labels = self._k_means(v.reshape(-1, 1), n_clusters)
|
611 |
+
return centroid[labels].ravel()
|
612 |
+
|
613 |
+
piecewise_vectors = np.apply_along_axis(make_piecewise, axis=1, arr=vectors)
|
614 |
+
dists = np.apply_along_axis(norm, axis=1, arr=(vectors - piecewise_vectors))
|
615 |
+
result = vectors[np.argsort(dists)[:n_best]]
|
616 |
+
return result
|
617 |
+
|
618 |
+
def _project_and_cluster(self, data, vectors, n_clusters):
|
619 |
+
"""Project ``data`` to ``vectors`` and cluster the result."""
|
620 |
+
projected = safe_sparse_dot(data, vectors)
|
621 |
+
_, labels = self._k_means(projected, n_clusters)
|
622 |
+
return labels
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_birch.py
ADDED
@@ -0,0 +1,741 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Authors: Manoj Kumar <[email protected]>
|
2 |
+
# Alexandre Gramfort <[email protected]>
|
3 |
+
# Joel Nothman <[email protected]>
|
4 |
+
# License: BSD 3 clause
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from math import sqrt
|
8 |
+
from numbers import Integral, Real
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
from scipy import sparse
|
12 |
+
|
13 |
+
from .._config import config_context
|
14 |
+
from ..base import (
|
15 |
+
BaseEstimator,
|
16 |
+
ClassNamePrefixFeaturesOutMixin,
|
17 |
+
ClusterMixin,
|
18 |
+
TransformerMixin,
|
19 |
+
_fit_context,
|
20 |
+
)
|
21 |
+
from ..exceptions import ConvergenceWarning
|
22 |
+
from ..metrics import pairwise_distances_argmin
|
23 |
+
from ..metrics.pairwise import euclidean_distances
|
24 |
+
from ..utils._param_validation import Interval
|
25 |
+
from ..utils.extmath import row_norms
|
26 |
+
from ..utils.validation import check_is_fitted
|
27 |
+
from . import AgglomerativeClustering
|
28 |
+
|
29 |
+
|
30 |
+
def _iterate_sparse_X(X):
|
31 |
+
"""This little hack returns a densified row when iterating over a sparse
|
32 |
+
matrix, instead of constructing a sparse matrix for every row that is
|
33 |
+
expensive.
|
34 |
+
"""
|
35 |
+
n_samples = X.shape[0]
|
36 |
+
X_indices = X.indices
|
37 |
+
X_data = X.data
|
38 |
+
X_indptr = X.indptr
|
39 |
+
|
40 |
+
for i in range(n_samples):
|
41 |
+
row = np.zeros(X.shape[1])
|
42 |
+
startptr, endptr = X_indptr[i], X_indptr[i + 1]
|
43 |
+
nonzero_indices = X_indices[startptr:endptr]
|
44 |
+
row[nonzero_indices] = X_data[startptr:endptr]
|
45 |
+
yield row
|
46 |
+
|
47 |
+
|
48 |
+
def _split_node(node, threshold, branching_factor):
|
49 |
+
"""The node has to be split if there is no place for a new subcluster
|
50 |
+
in the node.
|
51 |
+
1. Two empty nodes and two empty subclusters are initialized.
|
52 |
+
2. The pair of distant subclusters are found.
|
53 |
+
3. The properties of the empty subclusters and nodes are updated
|
54 |
+
according to the nearest distance between the subclusters to the
|
55 |
+
pair of distant subclusters.
|
56 |
+
4. The two nodes are set as children to the two subclusters.
|
57 |
+
"""
|
58 |
+
new_subcluster1 = _CFSubcluster()
|
59 |
+
new_subcluster2 = _CFSubcluster()
|
60 |
+
new_node1 = _CFNode(
|
61 |
+
threshold=threshold,
|
62 |
+
branching_factor=branching_factor,
|
63 |
+
is_leaf=node.is_leaf,
|
64 |
+
n_features=node.n_features,
|
65 |
+
dtype=node.init_centroids_.dtype,
|
66 |
+
)
|
67 |
+
new_node2 = _CFNode(
|
68 |
+
threshold=threshold,
|
69 |
+
branching_factor=branching_factor,
|
70 |
+
is_leaf=node.is_leaf,
|
71 |
+
n_features=node.n_features,
|
72 |
+
dtype=node.init_centroids_.dtype,
|
73 |
+
)
|
74 |
+
new_subcluster1.child_ = new_node1
|
75 |
+
new_subcluster2.child_ = new_node2
|
76 |
+
|
77 |
+
if node.is_leaf:
|
78 |
+
if node.prev_leaf_ is not None:
|
79 |
+
node.prev_leaf_.next_leaf_ = new_node1
|
80 |
+
new_node1.prev_leaf_ = node.prev_leaf_
|
81 |
+
new_node1.next_leaf_ = new_node2
|
82 |
+
new_node2.prev_leaf_ = new_node1
|
83 |
+
new_node2.next_leaf_ = node.next_leaf_
|
84 |
+
if node.next_leaf_ is not None:
|
85 |
+
node.next_leaf_.prev_leaf_ = new_node2
|
86 |
+
|
87 |
+
dist = euclidean_distances(
|
88 |
+
node.centroids_, Y_norm_squared=node.squared_norm_, squared=True
|
89 |
+
)
|
90 |
+
n_clusters = dist.shape[0]
|
91 |
+
|
92 |
+
farthest_idx = np.unravel_index(dist.argmax(), (n_clusters, n_clusters))
|
93 |
+
node1_dist, node2_dist = dist[(farthest_idx,)]
|
94 |
+
|
95 |
+
node1_closer = node1_dist < node2_dist
|
96 |
+
# make sure node1 is closest to itself even if all distances are equal.
|
97 |
+
# This can only happen when all node.centroids_ are duplicates leading to all
|
98 |
+
# distances between centroids being zero.
|
99 |
+
node1_closer[farthest_idx[0]] = True
|
100 |
+
|
101 |
+
for idx, subcluster in enumerate(node.subclusters_):
|
102 |
+
if node1_closer[idx]:
|
103 |
+
new_node1.append_subcluster(subcluster)
|
104 |
+
new_subcluster1.update(subcluster)
|
105 |
+
else:
|
106 |
+
new_node2.append_subcluster(subcluster)
|
107 |
+
new_subcluster2.update(subcluster)
|
108 |
+
return new_subcluster1, new_subcluster2
|
109 |
+
|
110 |
+
|
111 |
+
class _CFNode:
|
112 |
+
"""Each node in a CFTree is called a CFNode.
|
113 |
+
|
114 |
+
The CFNode can have a maximum of branching_factor
|
115 |
+
number of CFSubclusters.
|
116 |
+
|
117 |
+
Parameters
|
118 |
+
----------
|
119 |
+
threshold : float
|
120 |
+
Threshold needed for a new subcluster to enter a CFSubcluster.
|
121 |
+
|
122 |
+
branching_factor : int
|
123 |
+
Maximum number of CF subclusters in each node.
|
124 |
+
|
125 |
+
is_leaf : bool
|
126 |
+
We need to know if the CFNode is a leaf or not, in order to
|
127 |
+
retrieve the final subclusters.
|
128 |
+
|
129 |
+
n_features : int
|
130 |
+
The number of features.
|
131 |
+
|
132 |
+
Attributes
|
133 |
+
----------
|
134 |
+
subclusters_ : list
|
135 |
+
List of subclusters for a particular CFNode.
|
136 |
+
|
137 |
+
prev_leaf_ : _CFNode
|
138 |
+
Useful only if is_leaf is True.
|
139 |
+
|
140 |
+
next_leaf_ : _CFNode
|
141 |
+
next_leaf. Useful only if is_leaf is True.
|
142 |
+
the final subclusters.
|
143 |
+
|
144 |
+
init_centroids_ : ndarray of shape (branching_factor + 1, n_features)
|
145 |
+
Manipulate ``init_centroids_`` throughout rather than centroids_ since
|
146 |
+
the centroids are just a view of the ``init_centroids_`` .
|
147 |
+
|
148 |
+
init_sq_norm_ : ndarray of shape (branching_factor + 1,)
|
149 |
+
manipulate init_sq_norm_ throughout. similar to ``init_centroids_``.
|
150 |
+
|
151 |
+
centroids_ : ndarray of shape (branching_factor + 1, n_features)
|
152 |
+
View of ``init_centroids_``.
|
153 |
+
|
154 |
+
squared_norm_ : ndarray of shape (branching_factor + 1,)
|
155 |
+
View of ``init_sq_norm_``.
|
156 |
+
|
157 |
+
"""
|
158 |
+
|
159 |
+
def __init__(self, *, threshold, branching_factor, is_leaf, n_features, dtype):
|
160 |
+
self.threshold = threshold
|
161 |
+
self.branching_factor = branching_factor
|
162 |
+
self.is_leaf = is_leaf
|
163 |
+
self.n_features = n_features
|
164 |
+
|
165 |
+
# The list of subclusters, centroids and squared norms
|
166 |
+
# to manipulate throughout.
|
167 |
+
self.subclusters_ = []
|
168 |
+
self.init_centroids_ = np.zeros((branching_factor + 1, n_features), dtype=dtype)
|
169 |
+
self.init_sq_norm_ = np.zeros((branching_factor + 1), dtype)
|
170 |
+
self.squared_norm_ = []
|
171 |
+
self.prev_leaf_ = None
|
172 |
+
self.next_leaf_ = None
|
173 |
+
|
174 |
+
def append_subcluster(self, subcluster):
|
175 |
+
n_samples = len(self.subclusters_)
|
176 |
+
self.subclusters_.append(subcluster)
|
177 |
+
self.init_centroids_[n_samples] = subcluster.centroid_
|
178 |
+
self.init_sq_norm_[n_samples] = subcluster.sq_norm_
|
179 |
+
|
180 |
+
# Keep centroids and squared norm as views. In this way
|
181 |
+
# if we change init_centroids and init_sq_norm_, it is
|
182 |
+
# sufficient,
|
183 |
+
self.centroids_ = self.init_centroids_[: n_samples + 1, :]
|
184 |
+
self.squared_norm_ = self.init_sq_norm_[: n_samples + 1]
|
185 |
+
|
186 |
+
def update_split_subclusters(self, subcluster, new_subcluster1, new_subcluster2):
|
187 |
+
"""Remove a subcluster from a node and update it with the
|
188 |
+
split subclusters.
|
189 |
+
"""
|
190 |
+
ind = self.subclusters_.index(subcluster)
|
191 |
+
self.subclusters_[ind] = new_subcluster1
|
192 |
+
self.init_centroids_[ind] = new_subcluster1.centroid_
|
193 |
+
self.init_sq_norm_[ind] = new_subcluster1.sq_norm_
|
194 |
+
self.append_subcluster(new_subcluster2)
|
195 |
+
|
196 |
+
def insert_cf_subcluster(self, subcluster):
|
197 |
+
"""Insert a new subcluster into the node."""
|
198 |
+
if not self.subclusters_:
|
199 |
+
self.append_subcluster(subcluster)
|
200 |
+
return False
|
201 |
+
|
202 |
+
threshold = self.threshold
|
203 |
+
branching_factor = self.branching_factor
|
204 |
+
# We need to find the closest subcluster among all the
|
205 |
+
# subclusters so that we can insert our new subcluster.
|
206 |
+
dist_matrix = np.dot(self.centroids_, subcluster.centroid_)
|
207 |
+
dist_matrix *= -2.0
|
208 |
+
dist_matrix += self.squared_norm_
|
209 |
+
closest_index = np.argmin(dist_matrix)
|
210 |
+
closest_subcluster = self.subclusters_[closest_index]
|
211 |
+
|
212 |
+
# If the subcluster has a child, we need a recursive strategy.
|
213 |
+
if closest_subcluster.child_ is not None:
|
214 |
+
split_child = closest_subcluster.child_.insert_cf_subcluster(subcluster)
|
215 |
+
|
216 |
+
if not split_child:
|
217 |
+
# If it is determined that the child need not be split, we
|
218 |
+
# can just update the closest_subcluster
|
219 |
+
closest_subcluster.update(subcluster)
|
220 |
+
self.init_centroids_[closest_index] = self.subclusters_[
|
221 |
+
closest_index
|
222 |
+
].centroid_
|
223 |
+
self.init_sq_norm_[closest_index] = self.subclusters_[
|
224 |
+
closest_index
|
225 |
+
].sq_norm_
|
226 |
+
return False
|
227 |
+
|
228 |
+
# things not too good. we need to redistribute the subclusters in
|
229 |
+
# our child node, and add a new subcluster in the parent
|
230 |
+
# subcluster to accommodate the new child.
|
231 |
+
else:
|
232 |
+
new_subcluster1, new_subcluster2 = _split_node(
|
233 |
+
closest_subcluster.child_,
|
234 |
+
threshold,
|
235 |
+
branching_factor,
|
236 |
+
)
|
237 |
+
self.update_split_subclusters(
|
238 |
+
closest_subcluster, new_subcluster1, new_subcluster2
|
239 |
+
)
|
240 |
+
|
241 |
+
if len(self.subclusters_) > self.branching_factor:
|
242 |
+
return True
|
243 |
+
return False
|
244 |
+
|
245 |
+
# good to go!
|
246 |
+
else:
|
247 |
+
merged = closest_subcluster.merge_subcluster(subcluster, self.threshold)
|
248 |
+
if merged:
|
249 |
+
self.init_centroids_[closest_index] = closest_subcluster.centroid_
|
250 |
+
self.init_sq_norm_[closest_index] = closest_subcluster.sq_norm_
|
251 |
+
return False
|
252 |
+
|
253 |
+
# not close to any other subclusters, and we still
|
254 |
+
# have space, so add.
|
255 |
+
elif len(self.subclusters_) < self.branching_factor:
|
256 |
+
self.append_subcluster(subcluster)
|
257 |
+
return False
|
258 |
+
|
259 |
+
# We do not have enough space nor is it closer to an
|
260 |
+
# other subcluster. We need to split.
|
261 |
+
else:
|
262 |
+
self.append_subcluster(subcluster)
|
263 |
+
return True
|
264 |
+
|
265 |
+
|
266 |
+
class _CFSubcluster:
|
267 |
+
"""Each subcluster in a CFNode is called a CFSubcluster.
|
268 |
+
|
269 |
+
A CFSubcluster can have a CFNode has its child.
|
270 |
+
|
271 |
+
Parameters
|
272 |
+
----------
|
273 |
+
linear_sum : ndarray of shape (n_features,), default=None
|
274 |
+
Sample. This is kept optional to allow initialization of empty
|
275 |
+
subclusters.
|
276 |
+
|
277 |
+
Attributes
|
278 |
+
----------
|
279 |
+
n_samples_ : int
|
280 |
+
Number of samples that belong to each subcluster.
|
281 |
+
|
282 |
+
linear_sum_ : ndarray
|
283 |
+
Linear sum of all the samples in a subcluster. Prevents holding
|
284 |
+
all sample data in memory.
|
285 |
+
|
286 |
+
squared_sum_ : float
|
287 |
+
Sum of the squared l2 norms of all samples belonging to a subcluster.
|
288 |
+
|
289 |
+
centroid_ : ndarray of shape (branching_factor + 1, n_features)
|
290 |
+
Centroid of the subcluster. Prevent recomputing of centroids when
|
291 |
+
``CFNode.centroids_`` is called.
|
292 |
+
|
293 |
+
child_ : _CFNode
|
294 |
+
Child Node of the subcluster. Once a given _CFNode is set as the child
|
295 |
+
of the _CFNode, it is set to ``self.child_``.
|
296 |
+
|
297 |
+
sq_norm_ : ndarray of shape (branching_factor + 1,)
|
298 |
+
Squared norm of the subcluster. Used to prevent recomputing when
|
299 |
+
pairwise minimum distances are computed.
|
300 |
+
"""
|
301 |
+
|
302 |
+
def __init__(self, *, linear_sum=None):
|
303 |
+
if linear_sum is None:
|
304 |
+
self.n_samples_ = 0
|
305 |
+
self.squared_sum_ = 0.0
|
306 |
+
self.centroid_ = self.linear_sum_ = 0
|
307 |
+
else:
|
308 |
+
self.n_samples_ = 1
|
309 |
+
self.centroid_ = self.linear_sum_ = linear_sum
|
310 |
+
self.squared_sum_ = self.sq_norm_ = np.dot(
|
311 |
+
self.linear_sum_, self.linear_sum_
|
312 |
+
)
|
313 |
+
self.child_ = None
|
314 |
+
|
315 |
+
def update(self, subcluster):
|
316 |
+
self.n_samples_ += subcluster.n_samples_
|
317 |
+
self.linear_sum_ += subcluster.linear_sum_
|
318 |
+
self.squared_sum_ += subcluster.squared_sum_
|
319 |
+
self.centroid_ = self.linear_sum_ / self.n_samples_
|
320 |
+
self.sq_norm_ = np.dot(self.centroid_, self.centroid_)
|
321 |
+
|
322 |
+
def merge_subcluster(self, nominee_cluster, threshold):
|
323 |
+
"""Check if a cluster is worthy enough to be merged. If
|
324 |
+
yes then merge.
|
325 |
+
"""
|
326 |
+
new_ss = self.squared_sum_ + nominee_cluster.squared_sum_
|
327 |
+
new_ls = self.linear_sum_ + nominee_cluster.linear_sum_
|
328 |
+
new_n = self.n_samples_ + nominee_cluster.n_samples_
|
329 |
+
new_centroid = (1 / new_n) * new_ls
|
330 |
+
new_sq_norm = np.dot(new_centroid, new_centroid)
|
331 |
+
|
332 |
+
# The squared radius of the cluster is defined:
|
333 |
+
# r^2 = sum_i ||x_i - c||^2 / n
|
334 |
+
# with x_i the n points assigned to the cluster and c its centroid:
|
335 |
+
# c = sum_i x_i / n
|
336 |
+
# This can be expanded to:
|
337 |
+
# r^2 = sum_i ||x_i||^2 / n - 2 < sum_i x_i / n, c> + n ||c||^2 / n
|
338 |
+
# and therefore simplifies to:
|
339 |
+
# r^2 = sum_i ||x_i||^2 / n - ||c||^2
|
340 |
+
sq_radius = new_ss / new_n - new_sq_norm
|
341 |
+
|
342 |
+
if sq_radius <= threshold**2:
|
343 |
+
(
|
344 |
+
self.n_samples_,
|
345 |
+
self.linear_sum_,
|
346 |
+
self.squared_sum_,
|
347 |
+
self.centroid_,
|
348 |
+
self.sq_norm_,
|
349 |
+
) = (new_n, new_ls, new_ss, new_centroid, new_sq_norm)
|
350 |
+
return True
|
351 |
+
return False
|
352 |
+
|
353 |
+
@property
|
354 |
+
def radius(self):
|
355 |
+
"""Return radius of the subcluster"""
|
356 |
+
# Because of numerical issues, this could become negative
|
357 |
+
sq_radius = self.squared_sum_ / self.n_samples_ - self.sq_norm_
|
358 |
+
return sqrt(max(0, sq_radius))
|
359 |
+
|
360 |
+
|
361 |
+
class Birch(
|
362 |
+
ClassNamePrefixFeaturesOutMixin, ClusterMixin, TransformerMixin, BaseEstimator
|
363 |
+
):
|
364 |
+
"""Implements the BIRCH clustering algorithm.
|
365 |
+
|
366 |
+
It is a memory-efficient, online-learning algorithm provided as an
|
367 |
+
alternative to :class:`MiniBatchKMeans`. It constructs a tree
|
368 |
+
data structure with the cluster centroids being read off the leaf.
|
369 |
+
These can be either the final cluster centroids or can be provided as input
|
370 |
+
to another clustering algorithm such as :class:`AgglomerativeClustering`.
|
371 |
+
|
372 |
+
Read more in the :ref:`User Guide <birch>`.
|
373 |
+
|
374 |
+
.. versionadded:: 0.16
|
375 |
+
|
376 |
+
Parameters
|
377 |
+
----------
|
378 |
+
threshold : float, default=0.5
|
379 |
+
The radius of the subcluster obtained by merging a new sample and the
|
380 |
+
closest subcluster should be lesser than the threshold. Otherwise a new
|
381 |
+
subcluster is started. Setting this value to be very low promotes
|
382 |
+
splitting and vice-versa.
|
383 |
+
|
384 |
+
branching_factor : int, default=50
|
385 |
+
Maximum number of CF subclusters in each node. If a new samples enters
|
386 |
+
such that the number of subclusters exceed the branching_factor then
|
387 |
+
that node is split into two nodes with the subclusters redistributed
|
388 |
+
in each. The parent subcluster of that node is removed and two new
|
389 |
+
subclusters are added as parents of the 2 split nodes.
|
390 |
+
|
391 |
+
n_clusters : int, instance of sklearn.cluster model or None, default=3
|
392 |
+
Number of clusters after the final clustering step, which treats the
|
393 |
+
subclusters from the leaves as new samples.
|
394 |
+
|
395 |
+
- `None` : the final clustering step is not performed and the
|
396 |
+
subclusters are returned as they are.
|
397 |
+
|
398 |
+
- :mod:`sklearn.cluster` Estimator : If a model is provided, the model
|
399 |
+
is fit treating the subclusters as new samples and the initial data
|
400 |
+
is mapped to the label of the closest subcluster.
|
401 |
+
|
402 |
+
- `int` : the model fit is :class:`AgglomerativeClustering` with
|
403 |
+
`n_clusters` set to be equal to the int.
|
404 |
+
|
405 |
+
compute_labels : bool, default=True
|
406 |
+
Whether or not to compute labels for each fit.
|
407 |
+
|
408 |
+
copy : bool, default=True
|
409 |
+
Whether or not to make a copy of the given data. If set to False,
|
410 |
+
the initial data will be overwritten.
|
411 |
+
|
412 |
+
Attributes
|
413 |
+
----------
|
414 |
+
root_ : _CFNode
|
415 |
+
Root of the CFTree.
|
416 |
+
|
417 |
+
dummy_leaf_ : _CFNode
|
418 |
+
Start pointer to all the leaves.
|
419 |
+
|
420 |
+
subcluster_centers_ : ndarray
|
421 |
+
Centroids of all subclusters read directly from the leaves.
|
422 |
+
|
423 |
+
subcluster_labels_ : ndarray
|
424 |
+
Labels assigned to the centroids of the subclusters after
|
425 |
+
they are clustered globally.
|
426 |
+
|
427 |
+
labels_ : ndarray of shape (n_samples,)
|
428 |
+
Array of labels assigned to the input data.
|
429 |
+
if partial_fit is used instead of fit, they are assigned to the
|
430 |
+
last batch of data.
|
431 |
+
|
432 |
+
n_features_in_ : int
|
433 |
+
Number of features seen during :term:`fit`.
|
434 |
+
|
435 |
+
.. versionadded:: 0.24
|
436 |
+
|
437 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
438 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
439 |
+
has feature names that are all strings.
|
440 |
+
|
441 |
+
.. versionadded:: 1.0
|
442 |
+
|
443 |
+
See Also
|
444 |
+
--------
|
445 |
+
MiniBatchKMeans : Alternative implementation that does incremental updates
|
446 |
+
of the centers' positions using mini-batches.
|
447 |
+
|
448 |
+
Notes
|
449 |
+
-----
|
450 |
+
The tree data structure consists of nodes with each node consisting of
|
451 |
+
a number of subclusters. The maximum number of subclusters in a node
|
452 |
+
is determined by the branching factor. Each subcluster maintains a
|
453 |
+
linear sum, squared sum and the number of samples in that subcluster.
|
454 |
+
In addition, each subcluster can also have a node as its child, if the
|
455 |
+
subcluster is not a member of a leaf node.
|
456 |
+
|
457 |
+
For a new point entering the root, it is merged with the subcluster closest
|
458 |
+
to it and the linear sum, squared sum and the number of samples of that
|
459 |
+
subcluster are updated. This is done recursively till the properties of
|
460 |
+
the leaf node are updated.
|
461 |
+
|
462 |
+
References
|
463 |
+
----------
|
464 |
+
* Tian Zhang, Raghu Ramakrishnan, Maron Livny
|
465 |
+
BIRCH: An efficient data clustering method for large databases.
|
466 |
+
https://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf
|
467 |
+
|
468 |
+
* Roberto Perdisci
|
469 |
+
JBirch - Java implementation of BIRCH clustering algorithm
|
470 |
+
https://code.google.com/archive/p/jbirch
|
471 |
+
|
472 |
+
Examples
|
473 |
+
--------
|
474 |
+
>>> from sklearn.cluster import Birch
|
475 |
+
>>> X = [[0, 1], [0.3, 1], [-0.3, 1], [0, -1], [0.3, -1], [-0.3, -1]]
|
476 |
+
>>> brc = Birch(n_clusters=None)
|
477 |
+
>>> brc.fit(X)
|
478 |
+
Birch(n_clusters=None)
|
479 |
+
>>> brc.predict(X)
|
480 |
+
array([0, 0, 0, 1, 1, 1])
|
481 |
+
"""
|
482 |
+
|
483 |
+
_parameter_constraints: dict = {
|
484 |
+
"threshold": [Interval(Real, 0.0, None, closed="neither")],
|
485 |
+
"branching_factor": [Interval(Integral, 1, None, closed="neither")],
|
486 |
+
"n_clusters": [None, ClusterMixin, Interval(Integral, 1, None, closed="left")],
|
487 |
+
"compute_labels": ["boolean"],
|
488 |
+
"copy": ["boolean"],
|
489 |
+
}
|
490 |
+
|
491 |
+
def __init__(
|
492 |
+
self,
|
493 |
+
*,
|
494 |
+
threshold=0.5,
|
495 |
+
branching_factor=50,
|
496 |
+
n_clusters=3,
|
497 |
+
compute_labels=True,
|
498 |
+
copy=True,
|
499 |
+
):
|
500 |
+
self.threshold = threshold
|
501 |
+
self.branching_factor = branching_factor
|
502 |
+
self.n_clusters = n_clusters
|
503 |
+
self.compute_labels = compute_labels
|
504 |
+
self.copy = copy
|
505 |
+
|
506 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
507 |
+
def fit(self, X, y=None):
|
508 |
+
"""
|
509 |
+
Build a CF Tree for the input data.
|
510 |
+
|
511 |
+
Parameters
|
512 |
+
----------
|
513 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
514 |
+
Input data.
|
515 |
+
|
516 |
+
y : Ignored
|
517 |
+
Not used, present here for API consistency by convention.
|
518 |
+
|
519 |
+
Returns
|
520 |
+
-------
|
521 |
+
self
|
522 |
+
Fitted estimator.
|
523 |
+
"""
|
524 |
+
return self._fit(X, partial=False)
|
525 |
+
|
526 |
+
def _fit(self, X, partial):
|
527 |
+
has_root = getattr(self, "root_", None)
|
528 |
+
first_call = not (partial and has_root)
|
529 |
+
|
530 |
+
X = self._validate_data(
|
531 |
+
X,
|
532 |
+
accept_sparse="csr",
|
533 |
+
copy=self.copy,
|
534 |
+
reset=first_call,
|
535 |
+
dtype=[np.float64, np.float32],
|
536 |
+
)
|
537 |
+
threshold = self.threshold
|
538 |
+
branching_factor = self.branching_factor
|
539 |
+
|
540 |
+
n_samples, n_features = X.shape
|
541 |
+
|
542 |
+
# If partial_fit is called for the first time or fit is called, we
|
543 |
+
# start a new tree.
|
544 |
+
if first_call:
|
545 |
+
# The first root is the leaf. Manipulate this object throughout.
|
546 |
+
self.root_ = _CFNode(
|
547 |
+
threshold=threshold,
|
548 |
+
branching_factor=branching_factor,
|
549 |
+
is_leaf=True,
|
550 |
+
n_features=n_features,
|
551 |
+
dtype=X.dtype,
|
552 |
+
)
|
553 |
+
|
554 |
+
# To enable getting back subclusters.
|
555 |
+
self.dummy_leaf_ = _CFNode(
|
556 |
+
threshold=threshold,
|
557 |
+
branching_factor=branching_factor,
|
558 |
+
is_leaf=True,
|
559 |
+
n_features=n_features,
|
560 |
+
dtype=X.dtype,
|
561 |
+
)
|
562 |
+
self.dummy_leaf_.next_leaf_ = self.root_
|
563 |
+
self.root_.prev_leaf_ = self.dummy_leaf_
|
564 |
+
|
565 |
+
# Cannot vectorize. Enough to convince to use cython.
|
566 |
+
if not sparse.issparse(X):
|
567 |
+
iter_func = iter
|
568 |
+
else:
|
569 |
+
iter_func = _iterate_sparse_X
|
570 |
+
|
571 |
+
for sample in iter_func(X):
|
572 |
+
subcluster = _CFSubcluster(linear_sum=sample)
|
573 |
+
split = self.root_.insert_cf_subcluster(subcluster)
|
574 |
+
|
575 |
+
if split:
|
576 |
+
new_subcluster1, new_subcluster2 = _split_node(
|
577 |
+
self.root_, threshold, branching_factor
|
578 |
+
)
|
579 |
+
del self.root_
|
580 |
+
self.root_ = _CFNode(
|
581 |
+
threshold=threshold,
|
582 |
+
branching_factor=branching_factor,
|
583 |
+
is_leaf=False,
|
584 |
+
n_features=n_features,
|
585 |
+
dtype=X.dtype,
|
586 |
+
)
|
587 |
+
self.root_.append_subcluster(new_subcluster1)
|
588 |
+
self.root_.append_subcluster(new_subcluster2)
|
589 |
+
|
590 |
+
centroids = np.concatenate([leaf.centroids_ for leaf in self._get_leaves()])
|
591 |
+
self.subcluster_centers_ = centroids
|
592 |
+
self._n_features_out = self.subcluster_centers_.shape[0]
|
593 |
+
|
594 |
+
self._global_clustering(X)
|
595 |
+
return self
|
596 |
+
|
597 |
+
def _get_leaves(self):
|
598 |
+
"""
|
599 |
+
Retrieve the leaves of the CF Node.
|
600 |
+
|
601 |
+
Returns
|
602 |
+
-------
|
603 |
+
leaves : list of shape (n_leaves,)
|
604 |
+
List of the leaf nodes.
|
605 |
+
"""
|
606 |
+
leaf_ptr = self.dummy_leaf_.next_leaf_
|
607 |
+
leaves = []
|
608 |
+
while leaf_ptr is not None:
|
609 |
+
leaves.append(leaf_ptr)
|
610 |
+
leaf_ptr = leaf_ptr.next_leaf_
|
611 |
+
return leaves
|
612 |
+
|
613 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
614 |
+
def partial_fit(self, X=None, y=None):
|
615 |
+
"""
|
616 |
+
Online learning. Prevents rebuilding of CFTree from scratch.
|
617 |
+
|
618 |
+
Parameters
|
619 |
+
----------
|
620 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features), \
|
621 |
+
default=None
|
622 |
+
Input data. If X is not provided, only the global clustering
|
623 |
+
step is done.
|
624 |
+
|
625 |
+
y : Ignored
|
626 |
+
Not used, present here for API consistency by convention.
|
627 |
+
|
628 |
+
Returns
|
629 |
+
-------
|
630 |
+
self
|
631 |
+
Fitted estimator.
|
632 |
+
"""
|
633 |
+
if X is None:
|
634 |
+
# Perform just the final global clustering step.
|
635 |
+
self._global_clustering()
|
636 |
+
return self
|
637 |
+
else:
|
638 |
+
return self._fit(X, partial=True)
|
639 |
+
|
640 |
+
def _check_fit(self, X):
|
641 |
+
check_is_fitted(self)
|
642 |
+
|
643 |
+
if (
|
644 |
+
hasattr(self, "subcluster_centers_")
|
645 |
+
and X.shape[1] != self.subcluster_centers_.shape[1]
|
646 |
+
):
|
647 |
+
raise ValueError(
|
648 |
+
"Training data and predicted data do not have same number of features."
|
649 |
+
)
|
650 |
+
|
651 |
+
def predict(self, X):
|
652 |
+
"""
|
653 |
+
Predict data using the ``centroids_`` of subclusters.
|
654 |
+
|
655 |
+
Avoid computation of the row norms of X.
|
656 |
+
|
657 |
+
Parameters
|
658 |
+
----------
|
659 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
660 |
+
Input data.
|
661 |
+
|
662 |
+
Returns
|
663 |
+
-------
|
664 |
+
labels : ndarray of shape(n_samples,)
|
665 |
+
Labelled data.
|
666 |
+
"""
|
667 |
+
check_is_fitted(self)
|
668 |
+
X = self._validate_data(X, accept_sparse="csr", reset=False)
|
669 |
+
return self._predict(X)
|
670 |
+
|
671 |
+
def _predict(self, X):
|
672 |
+
"""Predict data using the ``centroids_`` of subclusters."""
|
673 |
+
kwargs = {"Y_norm_squared": self._subcluster_norms}
|
674 |
+
|
675 |
+
with config_context(assume_finite=True):
|
676 |
+
argmin = pairwise_distances_argmin(
|
677 |
+
X, self.subcluster_centers_, metric_kwargs=kwargs
|
678 |
+
)
|
679 |
+
return self.subcluster_labels_[argmin]
|
680 |
+
|
681 |
+
def transform(self, X):
|
682 |
+
"""
|
683 |
+
Transform X into subcluster centroids dimension.
|
684 |
+
|
685 |
+
Each dimension represents the distance from the sample point to each
|
686 |
+
cluster centroid.
|
687 |
+
|
688 |
+
Parameters
|
689 |
+
----------
|
690 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
691 |
+
Input data.
|
692 |
+
|
693 |
+
Returns
|
694 |
+
-------
|
695 |
+
X_trans : {array-like, sparse matrix} of shape (n_samples, n_clusters)
|
696 |
+
Transformed data.
|
697 |
+
"""
|
698 |
+
check_is_fitted(self)
|
699 |
+
X = self._validate_data(X, accept_sparse="csr", reset=False)
|
700 |
+
with config_context(assume_finite=True):
|
701 |
+
return euclidean_distances(X, self.subcluster_centers_)
|
702 |
+
|
703 |
+
def _global_clustering(self, X=None):
|
704 |
+
"""
|
705 |
+
Global clustering for the subclusters obtained after fitting
|
706 |
+
"""
|
707 |
+
clusterer = self.n_clusters
|
708 |
+
centroids = self.subcluster_centers_
|
709 |
+
compute_labels = (X is not None) and self.compute_labels
|
710 |
+
|
711 |
+
# Preprocessing for the global clustering.
|
712 |
+
not_enough_centroids = False
|
713 |
+
if isinstance(clusterer, Integral):
|
714 |
+
clusterer = AgglomerativeClustering(n_clusters=self.n_clusters)
|
715 |
+
# There is no need to perform the global clustering step.
|
716 |
+
if len(centroids) < self.n_clusters:
|
717 |
+
not_enough_centroids = True
|
718 |
+
|
719 |
+
# To use in predict to avoid recalculation.
|
720 |
+
self._subcluster_norms = row_norms(self.subcluster_centers_, squared=True)
|
721 |
+
|
722 |
+
if clusterer is None or not_enough_centroids:
|
723 |
+
self.subcluster_labels_ = np.arange(len(centroids))
|
724 |
+
if not_enough_centroids:
|
725 |
+
warnings.warn(
|
726 |
+
"Number of subclusters found (%d) by BIRCH is less "
|
727 |
+
"than (%d). Decrease the threshold."
|
728 |
+
% (len(centroids), self.n_clusters),
|
729 |
+
ConvergenceWarning,
|
730 |
+
)
|
731 |
+
else:
|
732 |
+
# The global clustering step that clusters the subclusters of
|
733 |
+
# the leaves. It assumes the centroids of the subclusters as
|
734 |
+
# samples and finds the final centroids.
|
735 |
+
self.subcluster_labels_ = clusterer.fit_predict(self.subcluster_centers_)
|
736 |
+
|
737 |
+
if compute_labels:
|
738 |
+
self.labels_ = self._predict(X)
|
739 |
+
|
740 |
+
def _more_tags(self):
|
741 |
+
return {"preserves_dtype": [np.float64, np.float32]}
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_bisect_k_means.py
ADDED
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Bisecting K-means clustering."""
|
2 |
+
# Author: Michal Krawczyk <[email protected]>
|
3 |
+
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import scipy.sparse as sp
|
8 |
+
|
9 |
+
from ..base import _fit_context
|
10 |
+
from ..utils._openmp_helpers import _openmp_effective_n_threads
|
11 |
+
from ..utils._param_validation import Integral, Interval, StrOptions
|
12 |
+
from ..utils.extmath import row_norms
|
13 |
+
from ..utils.validation import _check_sample_weight, check_is_fitted, check_random_state
|
14 |
+
from ._k_means_common import _inertia_dense, _inertia_sparse
|
15 |
+
from ._kmeans import (
|
16 |
+
_BaseKMeans,
|
17 |
+
_kmeans_single_elkan,
|
18 |
+
_kmeans_single_lloyd,
|
19 |
+
_labels_inertia_threadpool_limit,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
class _BisectingTree:
|
24 |
+
"""Tree structure representing the hierarchical clusters of BisectingKMeans."""
|
25 |
+
|
26 |
+
def __init__(self, center, indices, score):
|
27 |
+
"""Create a new cluster node in the tree.
|
28 |
+
|
29 |
+
The node holds the center of this cluster and the indices of the data points
|
30 |
+
that belong to it.
|
31 |
+
"""
|
32 |
+
self.center = center
|
33 |
+
self.indices = indices
|
34 |
+
self.score = score
|
35 |
+
|
36 |
+
self.left = None
|
37 |
+
self.right = None
|
38 |
+
|
39 |
+
def split(self, labels, centers, scores):
|
40 |
+
"""Split the cluster node into two subclusters."""
|
41 |
+
self.left = _BisectingTree(
|
42 |
+
indices=self.indices[labels == 0], center=centers[0], score=scores[0]
|
43 |
+
)
|
44 |
+
self.right = _BisectingTree(
|
45 |
+
indices=self.indices[labels == 1], center=centers[1], score=scores[1]
|
46 |
+
)
|
47 |
+
|
48 |
+
# reset the indices attribute to save memory
|
49 |
+
self.indices = None
|
50 |
+
|
51 |
+
def get_cluster_to_bisect(self):
|
52 |
+
"""Return the cluster node to bisect next.
|
53 |
+
|
54 |
+
It's based on the score of the cluster, which can be either the number of
|
55 |
+
data points assigned to that cluster or the inertia of that cluster
|
56 |
+
(see `bisecting_strategy` for details).
|
57 |
+
"""
|
58 |
+
max_score = None
|
59 |
+
|
60 |
+
for cluster_leaf in self.iter_leaves():
|
61 |
+
if max_score is None or cluster_leaf.score > max_score:
|
62 |
+
max_score = cluster_leaf.score
|
63 |
+
best_cluster_leaf = cluster_leaf
|
64 |
+
|
65 |
+
return best_cluster_leaf
|
66 |
+
|
67 |
+
def iter_leaves(self):
|
68 |
+
"""Iterate over all the cluster leaves in the tree."""
|
69 |
+
if self.left is None:
|
70 |
+
yield self
|
71 |
+
else:
|
72 |
+
yield from self.left.iter_leaves()
|
73 |
+
yield from self.right.iter_leaves()
|
74 |
+
|
75 |
+
|
76 |
+
class BisectingKMeans(_BaseKMeans):
|
77 |
+
"""Bisecting K-Means clustering.
|
78 |
+
|
79 |
+
Read more in the :ref:`User Guide <bisect_k_means>`.
|
80 |
+
|
81 |
+
.. versionadded:: 1.1
|
82 |
+
|
83 |
+
Parameters
|
84 |
+
----------
|
85 |
+
n_clusters : int, default=8
|
86 |
+
The number of clusters to form as well as the number of
|
87 |
+
centroids to generate.
|
88 |
+
|
89 |
+
init : {'k-means++', 'random'} or callable, default='random'
|
90 |
+
Method for initialization:
|
91 |
+
|
92 |
+
'k-means++' : selects initial cluster centers for k-mean
|
93 |
+
clustering in a smart way to speed up convergence. See section
|
94 |
+
Notes in k_init for more details.
|
95 |
+
|
96 |
+
'random': choose `n_clusters` observations (rows) at random from data
|
97 |
+
for the initial centroids.
|
98 |
+
|
99 |
+
If a callable is passed, it should take arguments X, n_clusters and a
|
100 |
+
random state and return an initialization.
|
101 |
+
|
102 |
+
n_init : int, default=1
|
103 |
+
Number of time the inner k-means algorithm will be run with different
|
104 |
+
centroid seeds in each bisection.
|
105 |
+
That will result producing for each bisection best output of n_init
|
106 |
+
consecutive runs in terms of inertia.
|
107 |
+
|
108 |
+
random_state : int, RandomState instance or None, default=None
|
109 |
+
Determines random number generation for centroid initialization
|
110 |
+
in inner K-Means. Use an int to make the randomness deterministic.
|
111 |
+
See :term:`Glossary <random_state>`.
|
112 |
+
|
113 |
+
max_iter : int, default=300
|
114 |
+
Maximum number of iterations of the inner k-means algorithm at each
|
115 |
+
bisection.
|
116 |
+
|
117 |
+
verbose : int, default=0
|
118 |
+
Verbosity mode.
|
119 |
+
|
120 |
+
tol : float, default=1e-4
|
121 |
+
Relative tolerance with regards to Frobenius norm of the difference
|
122 |
+
in the cluster centers of two consecutive iterations to declare
|
123 |
+
convergence. Used in inner k-means algorithm at each bisection to pick
|
124 |
+
best possible clusters.
|
125 |
+
|
126 |
+
copy_x : bool, default=True
|
127 |
+
When pre-computing distances it is more numerically accurate to center
|
128 |
+
the data first. If copy_x is True (default), then the original data is
|
129 |
+
not modified. If False, the original data is modified, and put back
|
130 |
+
before the function returns, but small numerical differences may be
|
131 |
+
introduced by subtracting and then adding the data mean. Note that if
|
132 |
+
the original data is not C-contiguous, a copy will be made even if
|
133 |
+
copy_x is False. If the original data is sparse, but not in CSR format,
|
134 |
+
a copy will be made even if copy_x is False.
|
135 |
+
|
136 |
+
algorithm : {"lloyd", "elkan"}, default="lloyd"
|
137 |
+
Inner K-means algorithm used in bisection.
|
138 |
+
The classical EM-style algorithm is `"lloyd"`.
|
139 |
+
The `"elkan"` variation can be more efficient on some datasets with
|
140 |
+
well-defined clusters, by using the triangle inequality. However it's
|
141 |
+
more memory intensive due to the allocation of an extra array of shape
|
142 |
+
`(n_samples, n_clusters)`.
|
143 |
+
|
144 |
+
bisecting_strategy : {"biggest_inertia", "largest_cluster"},\
|
145 |
+
default="biggest_inertia"
|
146 |
+
Defines how bisection should be performed:
|
147 |
+
|
148 |
+
- "biggest_inertia" means that BisectingKMeans will always check
|
149 |
+
all calculated cluster for cluster with biggest SSE
|
150 |
+
(Sum of squared errors) and bisect it. This approach concentrates on
|
151 |
+
precision, but may be costly in terms of execution time (especially for
|
152 |
+
larger amount of data points).
|
153 |
+
|
154 |
+
- "largest_cluster" - BisectingKMeans will always split cluster with
|
155 |
+
largest amount of points assigned to it from all clusters
|
156 |
+
previously calculated. That should work faster than picking by SSE
|
157 |
+
('biggest_inertia') and may produce similar results in most cases.
|
158 |
+
|
159 |
+
Attributes
|
160 |
+
----------
|
161 |
+
cluster_centers_ : ndarray of shape (n_clusters, n_features)
|
162 |
+
Coordinates of cluster centers. If the algorithm stops before fully
|
163 |
+
converging (see ``tol`` and ``max_iter``), these will not be
|
164 |
+
consistent with ``labels_``.
|
165 |
+
|
166 |
+
labels_ : ndarray of shape (n_samples,)
|
167 |
+
Labels of each point.
|
168 |
+
|
169 |
+
inertia_ : float
|
170 |
+
Sum of squared distances of samples to their closest cluster center,
|
171 |
+
weighted by the sample weights if provided.
|
172 |
+
|
173 |
+
n_features_in_ : int
|
174 |
+
Number of features seen during :term:`fit`.
|
175 |
+
|
176 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
177 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
178 |
+
has feature names that are all strings.
|
179 |
+
|
180 |
+
See Also
|
181 |
+
--------
|
182 |
+
KMeans : Original implementation of K-Means algorithm.
|
183 |
+
|
184 |
+
Notes
|
185 |
+
-----
|
186 |
+
It might be inefficient when n_cluster is less than 3, due to unnecessary
|
187 |
+
calculations for that case.
|
188 |
+
|
189 |
+
Examples
|
190 |
+
--------
|
191 |
+
>>> from sklearn.cluster import BisectingKMeans
|
192 |
+
>>> import numpy as np
|
193 |
+
>>> X = np.array([[1, 1], [10, 1], [3, 1],
|
194 |
+
... [10, 0], [2, 1], [10, 2],
|
195 |
+
... [10, 8], [10, 9], [10, 10]])
|
196 |
+
>>> bisect_means = BisectingKMeans(n_clusters=3, random_state=0).fit(X)
|
197 |
+
>>> bisect_means.labels_
|
198 |
+
array([0, 2, 0, 2, 0, 2, 1, 1, 1], dtype=int32)
|
199 |
+
>>> bisect_means.predict([[0, 0], [12, 3]])
|
200 |
+
array([0, 2], dtype=int32)
|
201 |
+
>>> bisect_means.cluster_centers_
|
202 |
+
array([[ 2., 1.],
|
203 |
+
[10., 9.],
|
204 |
+
[10., 1.]])
|
205 |
+
"""
|
206 |
+
|
207 |
+
_parameter_constraints: dict = {
|
208 |
+
**_BaseKMeans._parameter_constraints,
|
209 |
+
"init": [StrOptions({"k-means++", "random"}), callable],
|
210 |
+
"n_init": [Interval(Integral, 1, None, closed="left")],
|
211 |
+
"copy_x": ["boolean"],
|
212 |
+
"algorithm": [StrOptions({"lloyd", "elkan"})],
|
213 |
+
"bisecting_strategy": [StrOptions({"biggest_inertia", "largest_cluster"})],
|
214 |
+
}
|
215 |
+
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
n_clusters=8,
|
219 |
+
*,
|
220 |
+
init="random",
|
221 |
+
n_init=1,
|
222 |
+
random_state=None,
|
223 |
+
max_iter=300,
|
224 |
+
verbose=0,
|
225 |
+
tol=1e-4,
|
226 |
+
copy_x=True,
|
227 |
+
algorithm="lloyd",
|
228 |
+
bisecting_strategy="biggest_inertia",
|
229 |
+
):
|
230 |
+
super().__init__(
|
231 |
+
n_clusters=n_clusters,
|
232 |
+
init=init,
|
233 |
+
max_iter=max_iter,
|
234 |
+
verbose=verbose,
|
235 |
+
random_state=random_state,
|
236 |
+
tol=tol,
|
237 |
+
n_init=n_init,
|
238 |
+
)
|
239 |
+
|
240 |
+
self.copy_x = copy_x
|
241 |
+
self.algorithm = algorithm
|
242 |
+
self.bisecting_strategy = bisecting_strategy
|
243 |
+
|
244 |
+
def _warn_mkl_vcomp(self, n_active_threads):
|
245 |
+
"""Warn when vcomp and mkl are both present"""
|
246 |
+
warnings.warn(
|
247 |
+
"BisectingKMeans is known to have a memory leak on Windows "
|
248 |
+
"with MKL, when there are less chunks than available "
|
249 |
+
"threads. You can avoid it by setting the environment"
|
250 |
+
f" variable OMP_NUM_THREADS={n_active_threads}."
|
251 |
+
)
|
252 |
+
|
253 |
+
def _inertia_per_cluster(self, X, centers, labels, sample_weight):
|
254 |
+
"""Calculate the sum of squared errors (inertia) per cluster.
|
255 |
+
|
256 |
+
Parameters
|
257 |
+
----------
|
258 |
+
X : {ndarray, csr_matrix} of shape (n_samples, n_features)
|
259 |
+
The input samples.
|
260 |
+
|
261 |
+
centers : ndarray of shape (n_clusters=2, n_features)
|
262 |
+
The cluster centers.
|
263 |
+
|
264 |
+
labels : ndarray of shape (n_samples,)
|
265 |
+
Index of the cluster each sample belongs to.
|
266 |
+
|
267 |
+
sample_weight : ndarray of shape (n_samples,)
|
268 |
+
The weights for each observation in X.
|
269 |
+
|
270 |
+
Returns
|
271 |
+
-------
|
272 |
+
inertia_per_cluster : ndarray of shape (n_clusters=2,)
|
273 |
+
Sum of squared errors (inertia) for each cluster.
|
274 |
+
"""
|
275 |
+
n_clusters = centers.shape[0] # = 2 since centers comes from a bisection
|
276 |
+
_inertia = _inertia_sparse if sp.issparse(X) else _inertia_dense
|
277 |
+
|
278 |
+
inertia_per_cluster = np.empty(n_clusters)
|
279 |
+
for label in range(n_clusters):
|
280 |
+
inertia_per_cluster[label] = _inertia(
|
281 |
+
X, sample_weight, centers, labels, self._n_threads, single_label=label
|
282 |
+
)
|
283 |
+
|
284 |
+
return inertia_per_cluster
|
285 |
+
|
286 |
+
def _bisect(self, X, x_squared_norms, sample_weight, cluster_to_bisect):
|
287 |
+
"""Split a cluster into 2 subsclusters.
|
288 |
+
|
289 |
+
Parameters
|
290 |
+
----------
|
291 |
+
X : {ndarray, csr_matrix} of shape (n_samples, n_features)
|
292 |
+
Training instances to cluster.
|
293 |
+
|
294 |
+
x_squared_norms : ndarray of shape (n_samples,)
|
295 |
+
Squared euclidean norm of each data point.
|
296 |
+
|
297 |
+
sample_weight : ndarray of shape (n_samples,)
|
298 |
+
The weights for each observation in X.
|
299 |
+
|
300 |
+
cluster_to_bisect : _BisectingTree node object
|
301 |
+
The cluster node to split.
|
302 |
+
"""
|
303 |
+
X = X[cluster_to_bisect.indices]
|
304 |
+
x_squared_norms = x_squared_norms[cluster_to_bisect.indices]
|
305 |
+
sample_weight = sample_weight[cluster_to_bisect.indices]
|
306 |
+
|
307 |
+
best_inertia = None
|
308 |
+
|
309 |
+
# Split samples in X into 2 clusters.
|
310 |
+
# Repeating `n_init` times to obtain best clusters
|
311 |
+
for _ in range(self.n_init):
|
312 |
+
centers_init = self._init_centroids(
|
313 |
+
X,
|
314 |
+
x_squared_norms=x_squared_norms,
|
315 |
+
init=self.init,
|
316 |
+
random_state=self._random_state,
|
317 |
+
n_centroids=2,
|
318 |
+
sample_weight=sample_weight,
|
319 |
+
)
|
320 |
+
|
321 |
+
labels, inertia, centers, _ = self._kmeans_single(
|
322 |
+
X,
|
323 |
+
sample_weight,
|
324 |
+
centers_init,
|
325 |
+
max_iter=self.max_iter,
|
326 |
+
verbose=self.verbose,
|
327 |
+
tol=self.tol,
|
328 |
+
n_threads=self._n_threads,
|
329 |
+
)
|
330 |
+
|
331 |
+
# allow small tolerance on the inertia to accommodate for
|
332 |
+
# non-deterministic rounding errors due to parallel computation
|
333 |
+
if best_inertia is None or inertia < best_inertia * (1 - 1e-6):
|
334 |
+
best_labels = labels
|
335 |
+
best_centers = centers
|
336 |
+
best_inertia = inertia
|
337 |
+
|
338 |
+
if self.verbose:
|
339 |
+
print(f"New centroids from bisection: {best_centers}")
|
340 |
+
|
341 |
+
if self.bisecting_strategy == "biggest_inertia":
|
342 |
+
scores = self._inertia_per_cluster(
|
343 |
+
X, best_centers, best_labels, sample_weight
|
344 |
+
)
|
345 |
+
else: # bisecting_strategy == "largest_cluster"
|
346 |
+
# Using minlength to make sure that we have the counts for both labels even
|
347 |
+
# if all samples are labelled 0.
|
348 |
+
scores = np.bincount(best_labels, minlength=2)
|
349 |
+
|
350 |
+
cluster_to_bisect.split(best_labels, best_centers, scores)
|
351 |
+
|
352 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
353 |
+
def fit(self, X, y=None, sample_weight=None):
|
354 |
+
"""Compute bisecting k-means clustering.
|
355 |
+
|
356 |
+
Parameters
|
357 |
+
----------
|
358 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
359 |
+
|
360 |
+
Training instances to cluster.
|
361 |
+
|
362 |
+
.. note:: The data will be converted to C ordering,
|
363 |
+
which will cause a memory copy
|
364 |
+
if the given data is not C-contiguous.
|
365 |
+
|
366 |
+
y : Ignored
|
367 |
+
Not used, present here for API consistency by convention.
|
368 |
+
|
369 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
370 |
+
The weights for each observation in X. If None, all observations
|
371 |
+
are assigned equal weight. `sample_weight` is not used during
|
372 |
+
initialization if `init` is a callable.
|
373 |
+
|
374 |
+
Returns
|
375 |
+
-------
|
376 |
+
self
|
377 |
+
Fitted estimator.
|
378 |
+
"""
|
379 |
+
X = self._validate_data(
|
380 |
+
X,
|
381 |
+
accept_sparse="csr",
|
382 |
+
dtype=[np.float64, np.float32],
|
383 |
+
order="C",
|
384 |
+
copy=self.copy_x,
|
385 |
+
accept_large_sparse=False,
|
386 |
+
)
|
387 |
+
|
388 |
+
self._check_params_vs_input(X)
|
389 |
+
|
390 |
+
self._random_state = check_random_state(self.random_state)
|
391 |
+
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
|
392 |
+
self._n_threads = _openmp_effective_n_threads()
|
393 |
+
|
394 |
+
if self.algorithm == "lloyd" or self.n_clusters == 1:
|
395 |
+
self._kmeans_single = _kmeans_single_lloyd
|
396 |
+
self._check_mkl_vcomp(X, X.shape[0])
|
397 |
+
else:
|
398 |
+
self._kmeans_single = _kmeans_single_elkan
|
399 |
+
|
400 |
+
# Subtract of mean of X for more accurate distance computations
|
401 |
+
if not sp.issparse(X):
|
402 |
+
self._X_mean = X.mean(axis=0)
|
403 |
+
X -= self._X_mean
|
404 |
+
|
405 |
+
# Initialize the hierarchical clusters tree
|
406 |
+
self._bisecting_tree = _BisectingTree(
|
407 |
+
indices=np.arange(X.shape[0]),
|
408 |
+
center=X.mean(axis=0),
|
409 |
+
score=0,
|
410 |
+
)
|
411 |
+
|
412 |
+
x_squared_norms = row_norms(X, squared=True)
|
413 |
+
|
414 |
+
for _ in range(self.n_clusters - 1):
|
415 |
+
# Chose cluster to bisect
|
416 |
+
cluster_to_bisect = self._bisecting_tree.get_cluster_to_bisect()
|
417 |
+
|
418 |
+
# Split this cluster into 2 subclusters
|
419 |
+
self._bisect(X, x_squared_norms, sample_weight, cluster_to_bisect)
|
420 |
+
|
421 |
+
# Aggregate final labels and centers from the bisecting tree
|
422 |
+
self.labels_ = np.full(X.shape[0], -1, dtype=np.int32)
|
423 |
+
self.cluster_centers_ = np.empty((self.n_clusters, X.shape[1]), dtype=X.dtype)
|
424 |
+
|
425 |
+
for i, cluster_node in enumerate(self._bisecting_tree.iter_leaves()):
|
426 |
+
self.labels_[cluster_node.indices] = i
|
427 |
+
self.cluster_centers_[i] = cluster_node.center
|
428 |
+
cluster_node.label = i # label final clusters for future prediction
|
429 |
+
cluster_node.indices = None # release memory
|
430 |
+
|
431 |
+
# Restore original data
|
432 |
+
if not sp.issparse(X):
|
433 |
+
X += self._X_mean
|
434 |
+
self.cluster_centers_ += self._X_mean
|
435 |
+
|
436 |
+
_inertia = _inertia_sparse if sp.issparse(X) else _inertia_dense
|
437 |
+
self.inertia_ = _inertia(
|
438 |
+
X, sample_weight, self.cluster_centers_, self.labels_, self._n_threads
|
439 |
+
)
|
440 |
+
|
441 |
+
self._n_features_out = self.cluster_centers_.shape[0]
|
442 |
+
|
443 |
+
return self
|
444 |
+
|
445 |
+
def predict(self, X):
|
446 |
+
"""Predict which cluster each sample in X belongs to.
|
447 |
+
|
448 |
+
Prediction is made by going down the hierarchical tree
|
449 |
+
in searching of closest leaf cluster.
|
450 |
+
|
451 |
+
In the vector quantization literature, `cluster_centers_` is called
|
452 |
+
the code book and each value returned by `predict` is the index of
|
453 |
+
the closest code in the code book.
|
454 |
+
|
455 |
+
Parameters
|
456 |
+
----------
|
457 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
458 |
+
New data to predict.
|
459 |
+
|
460 |
+
Returns
|
461 |
+
-------
|
462 |
+
labels : ndarray of shape (n_samples,)
|
463 |
+
Index of the cluster each sample belongs to.
|
464 |
+
"""
|
465 |
+
check_is_fitted(self)
|
466 |
+
|
467 |
+
X = self._check_test_data(X)
|
468 |
+
x_squared_norms = row_norms(X, squared=True)
|
469 |
+
|
470 |
+
# sample weights are unused but necessary in cython helpers
|
471 |
+
sample_weight = np.ones_like(x_squared_norms)
|
472 |
+
|
473 |
+
labels = self._predict_recursive(X, sample_weight, self._bisecting_tree)
|
474 |
+
|
475 |
+
return labels
|
476 |
+
|
477 |
+
def _predict_recursive(self, X, sample_weight, cluster_node):
|
478 |
+
"""Predict recursively by going down the hierarchical tree.
|
479 |
+
|
480 |
+
Parameters
|
481 |
+
----------
|
482 |
+
X : {ndarray, csr_matrix} of shape (n_samples, n_features)
|
483 |
+
The data points, currently assigned to `cluster_node`, to predict between
|
484 |
+
the subclusters of this node.
|
485 |
+
|
486 |
+
sample_weight : ndarray of shape (n_samples,)
|
487 |
+
The weights for each observation in X.
|
488 |
+
|
489 |
+
cluster_node : _BisectingTree node object
|
490 |
+
The cluster node of the hierarchical tree.
|
491 |
+
|
492 |
+
Returns
|
493 |
+
-------
|
494 |
+
labels : ndarray of shape (n_samples,)
|
495 |
+
Index of the cluster each sample belongs to.
|
496 |
+
"""
|
497 |
+
if cluster_node.left is None:
|
498 |
+
# This cluster has no subcluster. Labels are just the label of the cluster.
|
499 |
+
return np.full(X.shape[0], cluster_node.label, dtype=np.int32)
|
500 |
+
|
501 |
+
# Determine if data points belong to the left or right subcluster
|
502 |
+
centers = np.vstack((cluster_node.left.center, cluster_node.right.center))
|
503 |
+
if hasattr(self, "_X_mean"):
|
504 |
+
centers += self._X_mean
|
505 |
+
|
506 |
+
cluster_labels = _labels_inertia_threadpool_limit(
|
507 |
+
X,
|
508 |
+
sample_weight,
|
509 |
+
centers,
|
510 |
+
self._n_threads,
|
511 |
+
return_inertia=False,
|
512 |
+
)
|
513 |
+
mask = cluster_labels == 0
|
514 |
+
|
515 |
+
# Compute the labels for each subset of the data points.
|
516 |
+
labels = np.full(X.shape[0], -1, dtype=np.int32)
|
517 |
+
|
518 |
+
labels[mask] = self._predict_recursive(
|
519 |
+
X[mask], sample_weight[mask], cluster_node.left
|
520 |
+
)
|
521 |
+
|
522 |
+
labels[~mask] = self._predict_recursive(
|
523 |
+
X[~mask], sample_weight[~mask], cluster_node.right
|
524 |
+
)
|
525 |
+
|
526 |
+
return labels
|
527 |
+
|
528 |
+
def _more_tags(self):
|
529 |
+
return {"preserves_dtype": [np.float64, np.float32]}
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_dbscan.py
ADDED
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
DBSCAN: Density-Based Spatial Clustering of Applications with Noise
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Author: Robert Layton <[email protected]>
|
6 |
+
# Joel Nothman <[email protected]>
|
7 |
+
# Lars Buitinck
|
8 |
+
#
|
9 |
+
# License: BSD 3 clause
|
10 |
+
|
11 |
+
import warnings
|
12 |
+
from numbers import Integral, Real
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
from scipy import sparse
|
16 |
+
|
17 |
+
from ..base import BaseEstimator, ClusterMixin, _fit_context
|
18 |
+
from ..metrics.pairwise import _VALID_METRICS
|
19 |
+
from ..neighbors import NearestNeighbors
|
20 |
+
from ..utils._param_validation import Interval, StrOptions, validate_params
|
21 |
+
from ..utils.validation import _check_sample_weight
|
22 |
+
from ._dbscan_inner import dbscan_inner
|
23 |
+
|
24 |
+
|
25 |
+
@validate_params(
|
26 |
+
{
|
27 |
+
"X": ["array-like", "sparse matrix"],
|
28 |
+
"sample_weight": ["array-like", None],
|
29 |
+
},
|
30 |
+
prefer_skip_nested_validation=False,
|
31 |
+
)
|
32 |
+
def dbscan(
|
33 |
+
X,
|
34 |
+
eps=0.5,
|
35 |
+
*,
|
36 |
+
min_samples=5,
|
37 |
+
metric="minkowski",
|
38 |
+
metric_params=None,
|
39 |
+
algorithm="auto",
|
40 |
+
leaf_size=30,
|
41 |
+
p=2,
|
42 |
+
sample_weight=None,
|
43 |
+
n_jobs=None,
|
44 |
+
):
|
45 |
+
"""Perform DBSCAN clustering from vector array or distance matrix.
|
46 |
+
|
47 |
+
Read more in the :ref:`User Guide <dbscan>`.
|
48 |
+
|
49 |
+
Parameters
|
50 |
+
----------
|
51 |
+
X : {array-like, sparse (CSR) matrix} of shape (n_samples, n_features) or \
|
52 |
+
(n_samples, n_samples)
|
53 |
+
A feature array, or array of distances between samples if
|
54 |
+
``metric='precomputed'``.
|
55 |
+
|
56 |
+
eps : float, default=0.5
|
57 |
+
The maximum distance between two samples for one to be considered
|
58 |
+
as in the neighborhood of the other. This is not a maximum bound
|
59 |
+
on the distances of points within a cluster. This is the most
|
60 |
+
important DBSCAN parameter to choose appropriately for your data set
|
61 |
+
and distance function.
|
62 |
+
|
63 |
+
min_samples : int, default=5
|
64 |
+
The number of samples (or total weight) in a neighborhood for a point
|
65 |
+
to be considered as a core point. This includes the point itself.
|
66 |
+
|
67 |
+
metric : str or callable, default='minkowski'
|
68 |
+
The metric to use when calculating distance between instances in a
|
69 |
+
feature array. If metric is a string or callable, it must be one of
|
70 |
+
the options allowed by :func:`sklearn.metrics.pairwise_distances` for
|
71 |
+
its metric parameter.
|
72 |
+
If metric is "precomputed", X is assumed to be a distance matrix and
|
73 |
+
must be square during fit.
|
74 |
+
X may be a :term:`sparse graph <sparse graph>`,
|
75 |
+
in which case only "nonzero" elements may be considered neighbors.
|
76 |
+
|
77 |
+
metric_params : dict, default=None
|
78 |
+
Additional keyword arguments for the metric function.
|
79 |
+
|
80 |
+
.. versionadded:: 0.19
|
81 |
+
|
82 |
+
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
|
83 |
+
The algorithm to be used by the NearestNeighbors module
|
84 |
+
to compute pointwise distances and find nearest neighbors.
|
85 |
+
See NearestNeighbors module documentation for details.
|
86 |
+
|
87 |
+
leaf_size : int, default=30
|
88 |
+
Leaf size passed to BallTree or cKDTree. This can affect the speed
|
89 |
+
of the construction and query, as well as the memory required
|
90 |
+
to store the tree. The optimal value depends
|
91 |
+
on the nature of the problem.
|
92 |
+
|
93 |
+
p : float, default=2
|
94 |
+
The power of the Minkowski metric to be used to calculate distance
|
95 |
+
between points.
|
96 |
+
|
97 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
98 |
+
Weight of each sample, such that a sample with a weight of at least
|
99 |
+
``min_samples`` is by itself a core sample; a sample with negative
|
100 |
+
weight may inhibit its eps-neighbor from being core.
|
101 |
+
Note that weights are absolute, and default to 1.
|
102 |
+
|
103 |
+
n_jobs : int, default=None
|
104 |
+
The number of parallel jobs to run for neighbors search. ``None`` means
|
105 |
+
1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means
|
106 |
+
using all processors. See :term:`Glossary <n_jobs>` for more details.
|
107 |
+
If precomputed distance are used, parallel execution is not available
|
108 |
+
and thus n_jobs will have no effect.
|
109 |
+
|
110 |
+
Returns
|
111 |
+
-------
|
112 |
+
core_samples : ndarray of shape (n_core_samples,)
|
113 |
+
Indices of core samples.
|
114 |
+
|
115 |
+
labels : ndarray of shape (n_samples,)
|
116 |
+
Cluster labels for each point. Noisy samples are given the label -1.
|
117 |
+
|
118 |
+
See Also
|
119 |
+
--------
|
120 |
+
DBSCAN : An estimator interface for this clustering algorithm.
|
121 |
+
OPTICS : A similar estimator interface clustering at multiple values of
|
122 |
+
eps. Our implementation is optimized for memory usage.
|
123 |
+
|
124 |
+
Notes
|
125 |
+
-----
|
126 |
+
For an example, see :ref:`examples/cluster/plot_dbscan.py
|
127 |
+
<sphx_glr_auto_examples_cluster_plot_dbscan.py>`.
|
128 |
+
|
129 |
+
This implementation bulk-computes all neighborhood queries, which increases
|
130 |
+
the memory complexity to O(n.d) where d is the average number of neighbors,
|
131 |
+
while original DBSCAN had memory complexity O(n). It may attract a higher
|
132 |
+
memory complexity when querying these nearest neighborhoods, depending
|
133 |
+
on the ``algorithm``.
|
134 |
+
|
135 |
+
One way to avoid the query complexity is to pre-compute sparse
|
136 |
+
neighborhoods in chunks using
|
137 |
+
:func:`NearestNeighbors.radius_neighbors_graph
|
138 |
+
<sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with
|
139 |
+
``mode='distance'``, then using ``metric='precomputed'`` here.
|
140 |
+
|
141 |
+
Another way to reduce memory and computation time is to remove
|
142 |
+
(near-)duplicate points and use ``sample_weight`` instead.
|
143 |
+
|
144 |
+
:class:`~sklearn.cluster.OPTICS` provides a similar clustering with lower
|
145 |
+
memory usage.
|
146 |
+
|
147 |
+
References
|
148 |
+
----------
|
149 |
+
Ester, M., H. P. Kriegel, J. Sander, and X. Xu, `"A Density-Based
|
150 |
+
Algorithm for Discovering Clusters in Large Spatial Databases with Noise"
|
151 |
+
<https://www.dbs.ifi.lmu.de/Publikationen/Papers/KDD-96.final.frame.pdf>`_.
|
152 |
+
In: Proceedings of the 2nd International Conference on Knowledge Discovery
|
153 |
+
and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996
|
154 |
+
|
155 |
+
Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017).
|
156 |
+
:doi:`"DBSCAN revisited, revisited: why and how you should (still) use DBSCAN."
|
157 |
+
<10.1145/3068335>`
|
158 |
+
ACM Transactions on Database Systems (TODS), 42(3), 19.
|
159 |
+
|
160 |
+
Examples
|
161 |
+
--------
|
162 |
+
>>> from sklearn.cluster import dbscan
|
163 |
+
>>> X = [[1, 2], [2, 2], [2, 3], [8, 7], [8, 8], [25, 80]]
|
164 |
+
>>> core_samples, labels = dbscan(X, eps=3, min_samples=2)
|
165 |
+
>>> core_samples
|
166 |
+
array([0, 1, 2, 3, 4])
|
167 |
+
>>> labels
|
168 |
+
array([ 0, 0, 0, 1, 1, -1])
|
169 |
+
"""
|
170 |
+
|
171 |
+
est = DBSCAN(
|
172 |
+
eps=eps,
|
173 |
+
min_samples=min_samples,
|
174 |
+
metric=metric,
|
175 |
+
metric_params=metric_params,
|
176 |
+
algorithm=algorithm,
|
177 |
+
leaf_size=leaf_size,
|
178 |
+
p=p,
|
179 |
+
n_jobs=n_jobs,
|
180 |
+
)
|
181 |
+
est.fit(X, sample_weight=sample_weight)
|
182 |
+
return est.core_sample_indices_, est.labels_
|
183 |
+
|
184 |
+
|
185 |
+
class DBSCAN(ClusterMixin, BaseEstimator):
|
186 |
+
"""Perform DBSCAN clustering from vector array or distance matrix.
|
187 |
+
|
188 |
+
DBSCAN - Density-Based Spatial Clustering of Applications with Noise.
|
189 |
+
Finds core samples of high density and expands clusters from them.
|
190 |
+
Good for data which contains clusters of similar density.
|
191 |
+
|
192 |
+
The worst case memory complexity of DBSCAN is :math:`O({n}^2)`, which can
|
193 |
+
occur when the `eps` param is large and `min_samples` is low.
|
194 |
+
|
195 |
+
Read more in the :ref:`User Guide <dbscan>`.
|
196 |
+
|
197 |
+
Parameters
|
198 |
+
----------
|
199 |
+
eps : float, default=0.5
|
200 |
+
The maximum distance between two samples for one to be considered
|
201 |
+
as in the neighborhood of the other. This is not a maximum bound
|
202 |
+
on the distances of points within a cluster. This is the most
|
203 |
+
important DBSCAN parameter to choose appropriately for your data set
|
204 |
+
and distance function.
|
205 |
+
|
206 |
+
min_samples : int, default=5
|
207 |
+
The number of samples (or total weight) in a neighborhood for a point to
|
208 |
+
be considered as a core point. This includes the point itself. If
|
209 |
+
`min_samples` is set to a higher value, DBSCAN will find denser clusters,
|
210 |
+
whereas if it is set to a lower value, the found clusters will be more
|
211 |
+
sparse.
|
212 |
+
|
213 |
+
metric : str, or callable, default='euclidean'
|
214 |
+
The metric to use when calculating distance between instances in a
|
215 |
+
feature array. If metric is a string or callable, it must be one of
|
216 |
+
the options allowed by :func:`sklearn.metrics.pairwise_distances` for
|
217 |
+
its metric parameter.
|
218 |
+
If metric is "precomputed", X is assumed to be a distance matrix and
|
219 |
+
must be square. X may be a :term:`sparse graph`, in which
|
220 |
+
case only "nonzero" elements may be considered neighbors for DBSCAN.
|
221 |
+
|
222 |
+
.. versionadded:: 0.17
|
223 |
+
metric *precomputed* to accept precomputed sparse matrix.
|
224 |
+
|
225 |
+
metric_params : dict, default=None
|
226 |
+
Additional keyword arguments for the metric function.
|
227 |
+
|
228 |
+
.. versionadded:: 0.19
|
229 |
+
|
230 |
+
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
|
231 |
+
The algorithm to be used by the NearestNeighbors module
|
232 |
+
to compute pointwise distances and find nearest neighbors.
|
233 |
+
See NearestNeighbors module documentation for details.
|
234 |
+
|
235 |
+
leaf_size : int, default=30
|
236 |
+
Leaf size passed to BallTree or cKDTree. This can affect the speed
|
237 |
+
of the construction and query, as well as the memory required
|
238 |
+
to store the tree. The optimal value depends
|
239 |
+
on the nature of the problem.
|
240 |
+
|
241 |
+
p : float, default=None
|
242 |
+
The power of the Minkowski metric to be used to calculate distance
|
243 |
+
between points. If None, then ``p=2`` (equivalent to the Euclidean
|
244 |
+
distance).
|
245 |
+
|
246 |
+
n_jobs : int, default=None
|
247 |
+
The number of parallel jobs to run.
|
248 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
249 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
250 |
+
for more details.
|
251 |
+
|
252 |
+
Attributes
|
253 |
+
----------
|
254 |
+
core_sample_indices_ : ndarray of shape (n_core_samples,)
|
255 |
+
Indices of core samples.
|
256 |
+
|
257 |
+
components_ : ndarray of shape (n_core_samples, n_features)
|
258 |
+
Copy of each core sample found by training.
|
259 |
+
|
260 |
+
labels_ : ndarray of shape (n_samples)
|
261 |
+
Cluster labels for each point in the dataset given to fit().
|
262 |
+
Noisy samples are given the label -1.
|
263 |
+
|
264 |
+
n_features_in_ : int
|
265 |
+
Number of features seen during :term:`fit`.
|
266 |
+
|
267 |
+
.. versionadded:: 0.24
|
268 |
+
|
269 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
270 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
271 |
+
has feature names that are all strings.
|
272 |
+
|
273 |
+
.. versionadded:: 1.0
|
274 |
+
|
275 |
+
See Also
|
276 |
+
--------
|
277 |
+
OPTICS : A similar clustering at multiple values of eps. Our implementation
|
278 |
+
is optimized for memory usage.
|
279 |
+
|
280 |
+
Notes
|
281 |
+
-----
|
282 |
+
For an example, see :ref:`examples/cluster/plot_dbscan.py
|
283 |
+
<sphx_glr_auto_examples_cluster_plot_dbscan.py>`.
|
284 |
+
|
285 |
+
This implementation bulk-computes all neighborhood queries, which increases
|
286 |
+
the memory complexity to O(n.d) where d is the average number of neighbors,
|
287 |
+
while original DBSCAN had memory complexity O(n). It may attract a higher
|
288 |
+
memory complexity when querying these nearest neighborhoods, depending
|
289 |
+
on the ``algorithm``.
|
290 |
+
|
291 |
+
One way to avoid the query complexity is to pre-compute sparse
|
292 |
+
neighborhoods in chunks using
|
293 |
+
:func:`NearestNeighbors.radius_neighbors_graph
|
294 |
+
<sklearn.neighbors.NearestNeighbors.radius_neighbors_graph>` with
|
295 |
+
``mode='distance'``, then using ``metric='precomputed'`` here.
|
296 |
+
|
297 |
+
Another way to reduce memory and computation time is to remove
|
298 |
+
(near-)duplicate points and use ``sample_weight`` instead.
|
299 |
+
|
300 |
+
:class:`~sklearn.cluster.OPTICS` provides a similar clustering with lower memory
|
301 |
+
usage.
|
302 |
+
|
303 |
+
References
|
304 |
+
----------
|
305 |
+
Ester, M., H. P. Kriegel, J. Sander, and X. Xu, `"A Density-Based
|
306 |
+
Algorithm for Discovering Clusters in Large Spatial Databases with Noise"
|
307 |
+
<https://www.dbs.ifi.lmu.de/Publikationen/Papers/KDD-96.final.frame.pdf>`_.
|
308 |
+
In: Proceedings of the 2nd International Conference on Knowledge Discovery
|
309 |
+
and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996
|
310 |
+
|
311 |
+
Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017).
|
312 |
+
:doi:`"DBSCAN revisited, revisited: why and how you should (still) use DBSCAN."
|
313 |
+
<10.1145/3068335>`
|
314 |
+
ACM Transactions on Database Systems (TODS), 42(3), 19.
|
315 |
+
|
316 |
+
Examples
|
317 |
+
--------
|
318 |
+
>>> from sklearn.cluster import DBSCAN
|
319 |
+
>>> import numpy as np
|
320 |
+
>>> X = np.array([[1, 2], [2, 2], [2, 3],
|
321 |
+
... [8, 7], [8, 8], [25, 80]])
|
322 |
+
>>> clustering = DBSCAN(eps=3, min_samples=2).fit(X)
|
323 |
+
>>> clustering.labels_
|
324 |
+
array([ 0, 0, 0, 1, 1, -1])
|
325 |
+
>>> clustering
|
326 |
+
DBSCAN(eps=3, min_samples=2)
|
327 |
+
"""
|
328 |
+
|
329 |
+
_parameter_constraints: dict = {
|
330 |
+
"eps": [Interval(Real, 0.0, None, closed="neither")],
|
331 |
+
"min_samples": [Interval(Integral, 1, None, closed="left")],
|
332 |
+
"metric": [
|
333 |
+
StrOptions(set(_VALID_METRICS) | {"precomputed"}),
|
334 |
+
callable,
|
335 |
+
],
|
336 |
+
"metric_params": [dict, None],
|
337 |
+
"algorithm": [StrOptions({"auto", "ball_tree", "kd_tree", "brute"})],
|
338 |
+
"leaf_size": [Interval(Integral, 1, None, closed="left")],
|
339 |
+
"p": [Interval(Real, 0.0, None, closed="left"), None],
|
340 |
+
"n_jobs": [Integral, None],
|
341 |
+
}
|
342 |
+
|
343 |
+
def __init__(
|
344 |
+
self,
|
345 |
+
eps=0.5,
|
346 |
+
*,
|
347 |
+
min_samples=5,
|
348 |
+
metric="euclidean",
|
349 |
+
metric_params=None,
|
350 |
+
algorithm="auto",
|
351 |
+
leaf_size=30,
|
352 |
+
p=None,
|
353 |
+
n_jobs=None,
|
354 |
+
):
|
355 |
+
self.eps = eps
|
356 |
+
self.min_samples = min_samples
|
357 |
+
self.metric = metric
|
358 |
+
self.metric_params = metric_params
|
359 |
+
self.algorithm = algorithm
|
360 |
+
self.leaf_size = leaf_size
|
361 |
+
self.p = p
|
362 |
+
self.n_jobs = n_jobs
|
363 |
+
|
364 |
+
@_fit_context(
|
365 |
+
# DBSCAN.metric is not validated yet
|
366 |
+
prefer_skip_nested_validation=False
|
367 |
+
)
|
368 |
+
def fit(self, X, y=None, sample_weight=None):
|
369 |
+
"""Perform DBSCAN clustering from features, or distance matrix.
|
370 |
+
|
371 |
+
Parameters
|
372 |
+
----------
|
373 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
|
374 |
+
(n_samples, n_samples)
|
375 |
+
Training instances to cluster, or distances between instances if
|
376 |
+
``metric='precomputed'``. If a sparse matrix is provided, it will
|
377 |
+
be converted into a sparse ``csr_matrix``.
|
378 |
+
|
379 |
+
y : Ignored
|
380 |
+
Not used, present here for API consistency by convention.
|
381 |
+
|
382 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
383 |
+
Weight of each sample, such that a sample with a weight of at least
|
384 |
+
``min_samples`` is by itself a core sample; a sample with a
|
385 |
+
negative weight may inhibit its eps-neighbor from being core.
|
386 |
+
Note that weights are absolute, and default to 1.
|
387 |
+
|
388 |
+
Returns
|
389 |
+
-------
|
390 |
+
self : object
|
391 |
+
Returns a fitted instance of self.
|
392 |
+
"""
|
393 |
+
X = self._validate_data(X, accept_sparse="csr")
|
394 |
+
|
395 |
+
if sample_weight is not None:
|
396 |
+
sample_weight = _check_sample_weight(sample_weight, X)
|
397 |
+
|
398 |
+
# Calculate neighborhood for all samples. This leaves the original
|
399 |
+
# point in, which needs to be considered later (i.e. point i is in the
|
400 |
+
# neighborhood of point i. While True, its useless information)
|
401 |
+
if self.metric == "precomputed" and sparse.issparse(X):
|
402 |
+
# set the diagonal to explicit values, as a point is its own
|
403 |
+
# neighbor
|
404 |
+
X = X.copy() # copy to avoid in-place modification
|
405 |
+
with warnings.catch_warnings():
|
406 |
+
warnings.simplefilter("ignore", sparse.SparseEfficiencyWarning)
|
407 |
+
X.setdiag(X.diagonal())
|
408 |
+
|
409 |
+
neighbors_model = NearestNeighbors(
|
410 |
+
radius=self.eps,
|
411 |
+
algorithm=self.algorithm,
|
412 |
+
leaf_size=self.leaf_size,
|
413 |
+
metric=self.metric,
|
414 |
+
metric_params=self.metric_params,
|
415 |
+
p=self.p,
|
416 |
+
n_jobs=self.n_jobs,
|
417 |
+
)
|
418 |
+
neighbors_model.fit(X)
|
419 |
+
# This has worst case O(n^2) memory complexity
|
420 |
+
neighborhoods = neighbors_model.radius_neighbors(X, return_distance=False)
|
421 |
+
|
422 |
+
if sample_weight is None:
|
423 |
+
n_neighbors = np.array([len(neighbors) for neighbors in neighborhoods])
|
424 |
+
else:
|
425 |
+
n_neighbors = np.array(
|
426 |
+
[np.sum(sample_weight[neighbors]) for neighbors in neighborhoods]
|
427 |
+
)
|
428 |
+
|
429 |
+
# Initially, all samples are noise.
|
430 |
+
labels = np.full(X.shape[0], -1, dtype=np.intp)
|
431 |
+
|
432 |
+
# A list of all core samples found.
|
433 |
+
core_samples = np.asarray(n_neighbors >= self.min_samples, dtype=np.uint8)
|
434 |
+
dbscan_inner(core_samples, neighborhoods, labels)
|
435 |
+
|
436 |
+
self.core_sample_indices_ = np.where(core_samples)[0]
|
437 |
+
self.labels_ = labels
|
438 |
+
|
439 |
+
if len(self.core_sample_indices_):
|
440 |
+
# fix for scipy sparse indexing issue
|
441 |
+
self.components_ = X[self.core_sample_indices_].copy()
|
442 |
+
else:
|
443 |
+
# no core samples
|
444 |
+
self.components_ = np.empty((0, X.shape[1]))
|
445 |
+
return self
|
446 |
+
|
447 |
+
def fit_predict(self, X, y=None, sample_weight=None):
|
448 |
+
"""Compute clusters from a data or distance matrix and predict labels.
|
449 |
+
|
450 |
+
Parameters
|
451 |
+
----------
|
452 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
|
453 |
+
(n_samples, n_samples)
|
454 |
+
Training instances to cluster, or distances between instances if
|
455 |
+
``metric='precomputed'``. If a sparse matrix is provided, it will
|
456 |
+
be converted into a sparse ``csr_matrix``.
|
457 |
+
|
458 |
+
y : Ignored
|
459 |
+
Not used, present here for API consistency by convention.
|
460 |
+
|
461 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
462 |
+
Weight of each sample, such that a sample with a weight of at least
|
463 |
+
``min_samples`` is by itself a core sample; a sample with a
|
464 |
+
negative weight may inhibit its eps-neighbor from being core.
|
465 |
+
Note that weights are absolute, and default to 1.
|
466 |
+
|
467 |
+
Returns
|
468 |
+
-------
|
469 |
+
labels : ndarray of shape (n_samples,)
|
470 |
+
Cluster labels. Noisy samples are given the label -1.
|
471 |
+
"""
|
472 |
+
self.fit(X, sample_weight=sample_weight)
|
473 |
+
return self.labels_
|
474 |
+
|
475 |
+
def _more_tags(self):
|
476 |
+
return {"pairwise": self.metric == "precomputed"}
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_dbscan_inner.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (221 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_feature_agglomeration.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Feature agglomeration. Base classes and functions for performing feature
|
3 |
+
agglomeration.
|
4 |
+
"""
|
5 |
+
# Author: V. Michel, A. Gramfort
|
6 |
+
# License: BSD 3 clause
|
7 |
+
|
8 |
+
import warnings
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
from scipy.sparse import issparse
|
12 |
+
|
13 |
+
from ..base import TransformerMixin
|
14 |
+
from ..utils import metadata_routing
|
15 |
+
from ..utils.validation import check_is_fitted
|
16 |
+
|
17 |
+
###############################################################################
|
18 |
+
# Mixin class for feature agglomeration.
|
19 |
+
|
20 |
+
|
21 |
+
class AgglomerationTransform(TransformerMixin):
|
22 |
+
"""
|
23 |
+
A class for feature agglomeration via the transform interface.
|
24 |
+
"""
|
25 |
+
|
26 |
+
# This prevents ``set_split_inverse_transform`` to be generated for the
|
27 |
+
# non-standard ``Xred`` arg on ``inverse_transform``.
|
28 |
+
# TODO(1.5): remove when Xred is removed for inverse_transform.
|
29 |
+
__metadata_request__inverse_transform = {"Xred": metadata_routing.UNUSED}
|
30 |
+
|
31 |
+
def transform(self, X):
|
32 |
+
"""
|
33 |
+
Transform a new matrix using the built clustering.
|
34 |
+
|
35 |
+
Parameters
|
36 |
+
----------
|
37 |
+
X : array-like of shape (n_samples, n_features) or \
|
38 |
+
(n_samples, n_samples)
|
39 |
+
A M by N array of M observations in N dimensions or a length
|
40 |
+
M array of M one-dimensional observations.
|
41 |
+
|
42 |
+
Returns
|
43 |
+
-------
|
44 |
+
Y : ndarray of shape (n_samples, n_clusters) or (n_clusters,)
|
45 |
+
The pooled values for each feature cluster.
|
46 |
+
"""
|
47 |
+
check_is_fitted(self)
|
48 |
+
|
49 |
+
X = self._validate_data(X, reset=False)
|
50 |
+
if self.pooling_func == np.mean and not issparse(X):
|
51 |
+
size = np.bincount(self.labels_)
|
52 |
+
n_samples = X.shape[0]
|
53 |
+
# a fast way to compute the mean of grouped features
|
54 |
+
nX = np.array(
|
55 |
+
[np.bincount(self.labels_, X[i, :]) / size for i in range(n_samples)]
|
56 |
+
)
|
57 |
+
else:
|
58 |
+
nX = [
|
59 |
+
self.pooling_func(X[:, self.labels_ == l], axis=1)
|
60 |
+
for l in np.unique(self.labels_)
|
61 |
+
]
|
62 |
+
nX = np.array(nX).T
|
63 |
+
return nX
|
64 |
+
|
65 |
+
def inverse_transform(self, Xt=None, Xred=None):
|
66 |
+
"""
|
67 |
+
Inverse the transformation and return a vector of size `n_features`.
|
68 |
+
|
69 |
+
Parameters
|
70 |
+
----------
|
71 |
+
Xt : array-like of shape (n_samples, n_clusters) or (n_clusters,)
|
72 |
+
The values to be assigned to each cluster of samples.
|
73 |
+
|
74 |
+
Xred : deprecated
|
75 |
+
Use `Xt` instead.
|
76 |
+
|
77 |
+
.. deprecated:: 1.3
|
78 |
+
|
79 |
+
Returns
|
80 |
+
-------
|
81 |
+
X : ndarray of shape (n_samples, n_features) or (n_features,)
|
82 |
+
A vector of size `n_samples` with the values of `Xred` assigned to
|
83 |
+
each of the cluster of samples.
|
84 |
+
"""
|
85 |
+
if Xt is None and Xred is None:
|
86 |
+
raise TypeError("Missing required positional argument: Xt")
|
87 |
+
|
88 |
+
if Xred is not None and Xt is not None:
|
89 |
+
raise ValueError("Please provide only `Xt`, and not `Xred`.")
|
90 |
+
|
91 |
+
if Xred is not None:
|
92 |
+
warnings.warn(
|
93 |
+
(
|
94 |
+
"Input argument `Xred` was renamed to `Xt` in v1.3 and will be"
|
95 |
+
" removed in v1.5."
|
96 |
+
),
|
97 |
+
FutureWarning,
|
98 |
+
)
|
99 |
+
Xt = Xred
|
100 |
+
|
101 |
+
check_is_fitted(self)
|
102 |
+
|
103 |
+
unil, inverse = np.unique(self.labels_, return_inverse=True)
|
104 |
+
return Xt[..., inverse]
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (189 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/__pycache__/hdbscan.cpython-310.pyc
ADDED
Binary file (31 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/_linkage.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (258 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/_reachability.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (365 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/_tree.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (385 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/_tree.pxd
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2015, Leland McInnes
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# Redistribution and use in source and binary forms, with or without
|
5 |
+
# modification, are permitted provided that the following conditions are met:
|
6 |
+
|
7 |
+
# 1. Redistributions of source code must retain the above copyright notice,
|
8 |
+
# this list of conditions and the following disclaimer.
|
9 |
+
|
10 |
+
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
11 |
+
# this list of conditions and the following disclaimer in the documentation
|
12 |
+
# and/or other materials provided with the distribution.
|
13 |
+
|
14 |
+
# 3. Neither the name of the copyright holder nor the names of its contributors
|
15 |
+
# may be used to endorse or promote products derived from this software without
|
16 |
+
# specific prior written permission.
|
17 |
+
|
18 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
19 |
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
20 |
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
21 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
22 |
+
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
23 |
+
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
24 |
+
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
25 |
+
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
26 |
+
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
27 |
+
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
28 |
+
# POSSIBILITY OF SUCH DAMAGE.
|
29 |
+
|
30 |
+
from ...utils._typedefs cimport intp_t, float64_t, uint8_t
|
31 |
+
cimport numpy as cnp
|
32 |
+
|
33 |
+
# This corresponds to the scipy.cluster.hierarchy format
|
34 |
+
ctypedef packed struct HIERARCHY_t:
|
35 |
+
intp_t left_node
|
36 |
+
intp_t right_node
|
37 |
+
float64_t value
|
38 |
+
intp_t cluster_size
|
39 |
+
|
40 |
+
# Effectively an edgelist encoding a parent/child pair, along with a value and
|
41 |
+
# the corresponding cluster_size in each row providing a tree structure.
|
42 |
+
ctypedef packed struct CONDENSED_t:
|
43 |
+
intp_t parent
|
44 |
+
intp_t child
|
45 |
+
float64_t value
|
46 |
+
intp_t cluster_size
|
47 |
+
|
48 |
+
cdef extern from "numpy/arrayobject.h":
|
49 |
+
intp_t * PyArray_SHAPE(cnp.PyArrayObject *)
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/hdbscan.py
ADDED
@@ -0,0 +1,1018 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
HDBSCAN: Hierarchical Density-Based Spatial Clustering
|
3 |
+
of Applications with Noise
|
4 |
+
"""
|
5 |
+
# Authors: Leland McInnes <[email protected]>
|
6 |
+
# Steve Astels <[email protected]>
|
7 |
+
# John Healy <[email protected]>
|
8 |
+
# Meekail Zain <[email protected]>
|
9 |
+
# Copyright (c) 2015, Leland McInnes
|
10 |
+
# All rights reserved.
|
11 |
+
|
12 |
+
# Redistribution and use in source and binary forms, with or without
|
13 |
+
# modification, are permitted provided that the following conditions are met:
|
14 |
+
|
15 |
+
# 1. Redistributions of source code must retain the above copyright notice,
|
16 |
+
# this list of conditions and the following disclaimer.
|
17 |
+
|
18 |
+
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
19 |
+
# this list of conditions and the following disclaimer in the documentation
|
20 |
+
# and/or other materials provided with the distribution.
|
21 |
+
|
22 |
+
# 3. Neither the name of the copyright holder nor the names of its contributors
|
23 |
+
# may be used to endorse or promote products derived from this software without
|
24 |
+
# specific prior written permission.
|
25 |
+
|
26 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
27 |
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
28 |
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
29 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
30 |
+
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
31 |
+
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
32 |
+
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
33 |
+
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
34 |
+
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
35 |
+
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
36 |
+
# POSSIBILITY OF SUCH DAMAGE.
|
37 |
+
|
38 |
+
from numbers import Integral, Real
|
39 |
+
from warnings import warn
|
40 |
+
|
41 |
+
import numpy as np
|
42 |
+
from scipy.sparse import csgraph, issparse
|
43 |
+
|
44 |
+
from ...base import BaseEstimator, ClusterMixin, _fit_context
|
45 |
+
from ...metrics import pairwise_distances
|
46 |
+
from ...metrics._dist_metrics import DistanceMetric
|
47 |
+
from ...neighbors import BallTree, KDTree, NearestNeighbors
|
48 |
+
from ...utils._param_validation import Interval, StrOptions
|
49 |
+
from ...utils.validation import _allclose_dense_sparse, _assert_all_finite
|
50 |
+
from ._linkage import (
|
51 |
+
MST_edge_dtype,
|
52 |
+
make_single_linkage,
|
53 |
+
mst_from_data_matrix,
|
54 |
+
mst_from_mutual_reachability,
|
55 |
+
)
|
56 |
+
from ._reachability import mutual_reachability_graph
|
57 |
+
from ._tree import HIERARCHY_dtype, labelling_at_cut, tree_to_labels
|
58 |
+
|
59 |
+
FAST_METRICS = set(KDTree.valid_metrics + BallTree.valid_metrics)
|
60 |
+
|
61 |
+
# Encodings are arbitrary but must be strictly negative.
|
62 |
+
# The current encodings are chosen as extensions to the -1 noise label.
|
63 |
+
# Avoided enums so that the end user only deals with simple labels.
|
64 |
+
_OUTLIER_ENCODING: dict = {
|
65 |
+
"infinite": {
|
66 |
+
"label": -2,
|
67 |
+
# The probability could also be 1, since infinite points are certainly
|
68 |
+
# infinite outliers, however 0 is convention from the HDBSCAN library
|
69 |
+
# implementation.
|
70 |
+
"prob": 0,
|
71 |
+
},
|
72 |
+
"missing": {
|
73 |
+
"label": -3,
|
74 |
+
# A nan probability is chosen to emphasize the fact that the
|
75 |
+
# corresponding data was not considered in the clustering problem.
|
76 |
+
"prob": np.nan,
|
77 |
+
},
|
78 |
+
}
|
79 |
+
|
80 |
+
|
81 |
+
def _brute_mst(mutual_reachability, min_samples):
|
82 |
+
"""
|
83 |
+
Builds a minimum spanning tree (MST) from the provided mutual-reachability
|
84 |
+
values. This function dispatches to a custom Cython implementation for
|
85 |
+
dense arrays, and `scipy.sparse.csgraph.minimum_spanning_tree` for sparse
|
86 |
+
arrays/matrices.
|
87 |
+
|
88 |
+
Parameters
|
89 |
+
----------
|
90 |
+
mututal_reachability_graph: {ndarray, sparse matrix} of shape \
|
91 |
+
(n_samples, n_samples)
|
92 |
+
Weighted adjacency matrix of the mutual reachability graph.
|
93 |
+
|
94 |
+
min_samples : int, default=None
|
95 |
+
The number of samples in a neighborhood for a point
|
96 |
+
to be considered as a core point. This includes the point itself.
|
97 |
+
|
98 |
+
Returns
|
99 |
+
-------
|
100 |
+
mst : ndarray of shape (n_samples - 1,), dtype=MST_edge_dtype
|
101 |
+
The MST representation of the mutual-reachability graph. The MST is
|
102 |
+
represented as a collection of edges.
|
103 |
+
"""
|
104 |
+
if not issparse(mutual_reachability):
|
105 |
+
return mst_from_mutual_reachability(mutual_reachability)
|
106 |
+
|
107 |
+
# Check if the mutual reachability matrix has any rows which have
|
108 |
+
# less than `min_samples` non-zero elements.
|
109 |
+
indptr = mutual_reachability.indptr
|
110 |
+
num_points = mutual_reachability.shape[0]
|
111 |
+
if any((indptr[i + 1] - indptr[i]) < min_samples for i in range(num_points)):
|
112 |
+
raise ValueError(
|
113 |
+
f"There exists points with fewer than {min_samples} neighbors. Ensure"
|
114 |
+
" your distance matrix has non-zero values for at least"
|
115 |
+
f" `min_sample`={min_samples} neighbors for each points (i.e. K-nn"
|
116 |
+
" graph), or specify a `max_distance` in `metric_params` to use when"
|
117 |
+
" distances are missing."
|
118 |
+
)
|
119 |
+
# Check connected component on mutual reachability.
|
120 |
+
# If more than one connected component is present,
|
121 |
+
# it means that the graph is disconnected.
|
122 |
+
n_components = csgraph.connected_components(
|
123 |
+
mutual_reachability, directed=False, return_labels=False
|
124 |
+
)
|
125 |
+
if n_components > 1:
|
126 |
+
raise ValueError(
|
127 |
+
f"Sparse mutual reachability matrix has {n_components} connected"
|
128 |
+
" components. HDBSCAN cannot be perfomed on a disconnected graph. Ensure"
|
129 |
+
" that the sparse distance matrix has only one connected component."
|
130 |
+
)
|
131 |
+
|
132 |
+
# Compute the minimum spanning tree for the sparse graph
|
133 |
+
sparse_min_spanning_tree = csgraph.minimum_spanning_tree(mutual_reachability)
|
134 |
+
rows, cols = sparse_min_spanning_tree.nonzero()
|
135 |
+
mst = np.rec.fromarrays(
|
136 |
+
[rows, cols, sparse_min_spanning_tree.data],
|
137 |
+
dtype=MST_edge_dtype,
|
138 |
+
)
|
139 |
+
return mst
|
140 |
+
|
141 |
+
|
142 |
+
def _process_mst(min_spanning_tree):
|
143 |
+
"""
|
144 |
+
Builds a single-linkage tree (SLT) from the provided minimum spanning tree
|
145 |
+
(MST). The MST is first sorted then processed by a custom Cython routine.
|
146 |
+
|
147 |
+
Parameters
|
148 |
+
----------
|
149 |
+
min_spanning_tree : ndarray of shape (n_samples - 1,), dtype=MST_edge_dtype
|
150 |
+
The MST representation of the mutual-reachability graph. The MST is
|
151 |
+
represented as a collection of edges.
|
152 |
+
|
153 |
+
Returns
|
154 |
+
-------
|
155 |
+
single_linkage : ndarray of shape (n_samples - 1,), dtype=HIERARCHY_dtype
|
156 |
+
The single-linkage tree tree (dendrogram) built from the MST.
|
157 |
+
"""
|
158 |
+
# Sort edges of the min_spanning_tree by weight
|
159 |
+
row_order = np.argsort(min_spanning_tree["distance"])
|
160 |
+
min_spanning_tree = min_spanning_tree[row_order]
|
161 |
+
# Convert edge list into standard hierarchical clustering format
|
162 |
+
return make_single_linkage(min_spanning_tree)
|
163 |
+
|
164 |
+
|
165 |
+
def _hdbscan_brute(
|
166 |
+
X,
|
167 |
+
min_samples=5,
|
168 |
+
alpha=None,
|
169 |
+
metric="euclidean",
|
170 |
+
n_jobs=None,
|
171 |
+
copy=False,
|
172 |
+
**metric_params,
|
173 |
+
):
|
174 |
+
"""
|
175 |
+
Builds a single-linkage tree (SLT) from the input data `X`. If
|
176 |
+
`metric="precomputed"` then `X` must be a symmetric array of distances.
|
177 |
+
Otherwise, the pairwise distances are calculated directly and passed to
|
178 |
+
`mutual_reachability_graph`.
|
179 |
+
|
180 |
+
Parameters
|
181 |
+
----------
|
182 |
+
X : ndarray of shape (n_samples, n_features) or (n_samples, n_samples)
|
183 |
+
Either the raw data from which to compute the pairwise distances,
|
184 |
+
or the precomputed distances.
|
185 |
+
|
186 |
+
min_samples : int, default=None
|
187 |
+
The number of samples in a neighborhood for a point
|
188 |
+
to be considered as a core point. This includes the point itself.
|
189 |
+
|
190 |
+
alpha : float, default=1.0
|
191 |
+
A distance scaling parameter as used in robust single linkage.
|
192 |
+
|
193 |
+
metric : str or callable, default='euclidean'
|
194 |
+
The metric to use when calculating distance between instances in a
|
195 |
+
feature array.
|
196 |
+
|
197 |
+
- If metric is a string or callable, it must be one of
|
198 |
+
the options allowed by :func:`~sklearn.metrics.pairwise_distances`
|
199 |
+
for its metric parameter.
|
200 |
+
|
201 |
+
- If metric is "precomputed", X is assumed to be a distance matrix and
|
202 |
+
must be square.
|
203 |
+
|
204 |
+
n_jobs : int, default=None
|
205 |
+
The number of jobs to use for computing the pairwise distances. This
|
206 |
+
works by breaking down the pairwise matrix into n_jobs even slices and
|
207 |
+
computing them in parallel. This parameter is passed directly to
|
208 |
+
:func:`~sklearn.metrics.pairwise_distances`.
|
209 |
+
|
210 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
211 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
212 |
+
for more details.
|
213 |
+
|
214 |
+
copy : bool, default=False
|
215 |
+
If `copy=True` then any time an in-place modifications would be made
|
216 |
+
that would overwrite `X`, a copy will first be made, guaranteeing that
|
217 |
+
the original data will be unchanged. Currently, it only applies when
|
218 |
+
`metric="precomputed"`, when passing a dense array or a CSR sparse
|
219 |
+
array/matrix.
|
220 |
+
|
221 |
+
metric_params : dict, default=None
|
222 |
+
Arguments passed to the distance metric.
|
223 |
+
|
224 |
+
Returns
|
225 |
+
-------
|
226 |
+
single_linkage : ndarray of shape (n_samples - 1,), dtype=HIERARCHY_dtype
|
227 |
+
The single-linkage tree tree (dendrogram) built from the MST.
|
228 |
+
"""
|
229 |
+
if metric == "precomputed":
|
230 |
+
if X.shape[0] != X.shape[1]:
|
231 |
+
raise ValueError(
|
232 |
+
"The precomputed distance matrix is expected to be symmetric, however"
|
233 |
+
f" it has shape {X.shape}. Please verify that the"
|
234 |
+
" distance matrix was constructed correctly."
|
235 |
+
)
|
236 |
+
if not _allclose_dense_sparse(X, X.T):
|
237 |
+
raise ValueError(
|
238 |
+
"The precomputed distance matrix is expected to be symmetric, however"
|
239 |
+
" its values appear to be asymmetric. Please verify that the distance"
|
240 |
+
" matrix was constructed correctly."
|
241 |
+
)
|
242 |
+
|
243 |
+
distance_matrix = X.copy() if copy else X
|
244 |
+
else:
|
245 |
+
distance_matrix = pairwise_distances(
|
246 |
+
X, metric=metric, n_jobs=n_jobs, **metric_params
|
247 |
+
)
|
248 |
+
distance_matrix /= alpha
|
249 |
+
|
250 |
+
max_distance = metric_params.get("max_distance", 0.0)
|
251 |
+
if issparse(distance_matrix) and distance_matrix.format != "csr":
|
252 |
+
# we need CSR format to avoid a conversion in `_brute_mst` when calling
|
253 |
+
# `csgraph.connected_components`
|
254 |
+
distance_matrix = distance_matrix.tocsr()
|
255 |
+
|
256 |
+
# Note that `distance_matrix` is manipulated in-place, however we do not
|
257 |
+
# need it for anything else past this point, hence the operation is safe.
|
258 |
+
mutual_reachability_ = mutual_reachability_graph(
|
259 |
+
distance_matrix, min_samples=min_samples, max_distance=max_distance
|
260 |
+
)
|
261 |
+
min_spanning_tree = _brute_mst(mutual_reachability_, min_samples=min_samples)
|
262 |
+
# Warn if the MST couldn't be constructed around the missing distances
|
263 |
+
if np.isinf(min_spanning_tree["distance"]).any():
|
264 |
+
warn(
|
265 |
+
(
|
266 |
+
"The minimum spanning tree contains edge weights with value "
|
267 |
+
"infinity. Potentially, you are missing too many distances "
|
268 |
+
"in the initial distance matrix for the given neighborhood "
|
269 |
+
"size."
|
270 |
+
),
|
271 |
+
UserWarning,
|
272 |
+
)
|
273 |
+
return _process_mst(min_spanning_tree)
|
274 |
+
|
275 |
+
|
276 |
+
def _hdbscan_prims(
|
277 |
+
X,
|
278 |
+
algo,
|
279 |
+
min_samples=5,
|
280 |
+
alpha=1.0,
|
281 |
+
metric="euclidean",
|
282 |
+
leaf_size=40,
|
283 |
+
n_jobs=None,
|
284 |
+
**metric_params,
|
285 |
+
):
|
286 |
+
"""
|
287 |
+
Builds a single-linkage tree (SLT) from the input data `X`. If
|
288 |
+
`metric="precomputed"` then `X` must be a symmetric array of distances.
|
289 |
+
Otherwise, the pairwise distances are calculated directly and passed to
|
290 |
+
`mutual_reachability_graph`.
|
291 |
+
|
292 |
+
Parameters
|
293 |
+
----------
|
294 |
+
X : ndarray of shape (n_samples, n_features)
|
295 |
+
The raw data.
|
296 |
+
|
297 |
+
min_samples : int, default=None
|
298 |
+
The number of samples in a neighborhood for a point
|
299 |
+
to be considered as a core point. This includes the point itself.
|
300 |
+
|
301 |
+
alpha : float, default=1.0
|
302 |
+
A distance scaling parameter as used in robust single linkage.
|
303 |
+
|
304 |
+
metric : str or callable, default='euclidean'
|
305 |
+
The metric to use when calculating distance between instances in a
|
306 |
+
feature array. `metric` must be one of the options allowed by
|
307 |
+
:func:`~sklearn.metrics.pairwise_distances` for its metric
|
308 |
+
parameter.
|
309 |
+
|
310 |
+
n_jobs : int, default=None
|
311 |
+
The number of jobs to use for computing the pairwise distances. This
|
312 |
+
works by breaking down the pairwise matrix into n_jobs even slices and
|
313 |
+
computing them in parallel. This parameter is passed directly to
|
314 |
+
:func:`~sklearn.metrics.pairwise_distances`.
|
315 |
+
|
316 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
317 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
318 |
+
for more details.
|
319 |
+
|
320 |
+
copy : bool, default=False
|
321 |
+
If `copy=True` then any time an in-place modifications would be made
|
322 |
+
that would overwrite `X`, a copy will first be made, guaranteeing that
|
323 |
+
the original data will be unchanged. Currently, it only applies when
|
324 |
+
`metric="precomputed"`, when passing a dense array or a CSR sparse
|
325 |
+
array/matrix.
|
326 |
+
|
327 |
+
metric_params : dict, default=None
|
328 |
+
Arguments passed to the distance metric.
|
329 |
+
|
330 |
+
Returns
|
331 |
+
-------
|
332 |
+
single_linkage : ndarray of shape (n_samples - 1,), dtype=HIERARCHY_dtype
|
333 |
+
The single-linkage tree tree (dendrogram) built from the MST.
|
334 |
+
"""
|
335 |
+
# The Cython routines used require contiguous arrays
|
336 |
+
X = np.asarray(X, order="C")
|
337 |
+
|
338 |
+
# Get distance to kth nearest neighbour
|
339 |
+
nbrs = NearestNeighbors(
|
340 |
+
n_neighbors=min_samples,
|
341 |
+
algorithm=algo,
|
342 |
+
leaf_size=leaf_size,
|
343 |
+
metric=metric,
|
344 |
+
metric_params=metric_params,
|
345 |
+
n_jobs=n_jobs,
|
346 |
+
p=None,
|
347 |
+
).fit(X)
|
348 |
+
|
349 |
+
neighbors_distances, _ = nbrs.kneighbors(X, min_samples, return_distance=True)
|
350 |
+
core_distances = np.ascontiguousarray(neighbors_distances[:, -1])
|
351 |
+
dist_metric = DistanceMetric.get_metric(metric, **metric_params)
|
352 |
+
|
353 |
+
# Mutual reachability distance is implicit in mst_from_data_matrix
|
354 |
+
min_spanning_tree = mst_from_data_matrix(X, core_distances, dist_metric, alpha)
|
355 |
+
return _process_mst(min_spanning_tree)
|
356 |
+
|
357 |
+
|
358 |
+
def remap_single_linkage_tree(tree, internal_to_raw, non_finite):
|
359 |
+
"""
|
360 |
+
Takes an internal single_linkage_tree structure and adds back in a set of points
|
361 |
+
that were initially detected as non-finite and returns that new tree.
|
362 |
+
These points will all be merged into the final node at np.inf distance and
|
363 |
+
considered noise points.
|
364 |
+
|
365 |
+
Parameters
|
366 |
+
----------
|
367 |
+
tree : ndarray of shape (n_samples - 1,), dtype=HIERARCHY_dtype
|
368 |
+
The single-linkage tree tree (dendrogram) built from the MST.
|
369 |
+
internal_to_raw: dict
|
370 |
+
A mapping from internal integer index to the raw integer index
|
371 |
+
non_finite : ndarray
|
372 |
+
Boolean array of which entries in the raw data are non-finite
|
373 |
+
"""
|
374 |
+
finite_count = len(internal_to_raw)
|
375 |
+
|
376 |
+
outlier_count = len(non_finite)
|
377 |
+
for i, _ in enumerate(tree):
|
378 |
+
left = tree[i]["left_node"]
|
379 |
+
right = tree[i]["right_node"]
|
380 |
+
|
381 |
+
if left < finite_count:
|
382 |
+
tree[i]["left_node"] = internal_to_raw[left]
|
383 |
+
else:
|
384 |
+
tree[i]["left_node"] = left + outlier_count
|
385 |
+
if right < finite_count:
|
386 |
+
tree[i]["right_node"] = internal_to_raw[right]
|
387 |
+
else:
|
388 |
+
tree[i]["right_node"] = right + outlier_count
|
389 |
+
|
390 |
+
outlier_tree = np.zeros(len(non_finite), dtype=HIERARCHY_dtype)
|
391 |
+
last_cluster_id = max(
|
392 |
+
tree[tree.shape[0] - 1]["left_node"], tree[tree.shape[0] - 1]["right_node"]
|
393 |
+
)
|
394 |
+
last_cluster_size = tree[tree.shape[0] - 1]["cluster_size"]
|
395 |
+
for i, outlier in enumerate(non_finite):
|
396 |
+
outlier_tree[i] = (outlier, last_cluster_id + 1, np.inf, last_cluster_size + 1)
|
397 |
+
last_cluster_id += 1
|
398 |
+
last_cluster_size += 1
|
399 |
+
tree = np.concatenate([tree, outlier_tree])
|
400 |
+
return tree
|
401 |
+
|
402 |
+
|
403 |
+
def _get_finite_row_indices(matrix):
|
404 |
+
"""
|
405 |
+
Returns the indices of the purely finite rows of a
|
406 |
+
sparse matrix or dense ndarray
|
407 |
+
"""
|
408 |
+
if issparse(matrix):
|
409 |
+
row_indices = np.array(
|
410 |
+
[i for i, row in enumerate(matrix.tolil().data) if np.all(np.isfinite(row))]
|
411 |
+
)
|
412 |
+
else:
|
413 |
+
(row_indices,) = np.isfinite(matrix.sum(axis=1)).nonzero()
|
414 |
+
return row_indices
|
415 |
+
|
416 |
+
|
417 |
+
class HDBSCAN(ClusterMixin, BaseEstimator):
|
418 |
+
"""Cluster data using hierarchical density-based clustering.
|
419 |
+
|
420 |
+
HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications
|
421 |
+
with Noise. Performs :class:`~sklearn.cluster.DBSCAN` over varying epsilon
|
422 |
+
values and integrates the result to find a clustering that gives the best
|
423 |
+
stability over epsilon.
|
424 |
+
This allows HDBSCAN to find clusters of varying densities (unlike
|
425 |
+
:class:`~sklearn.cluster.DBSCAN`), and be more robust to parameter selection.
|
426 |
+
Read more in the :ref:`User Guide <hdbscan>`.
|
427 |
+
|
428 |
+
For an example of how to use HDBSCAN, as well as a comparison to
|
429 |
+
:class:`~sklearn.cluster.DBSCAN`, please see the :ref:`plotting demo
|
430 |
+
<sphx_glr_auto_examples_cluster_plot_hdbscan.py>`.
|
431 |
+
|
432 |
+
.. versionadded:: 1.3
|
433 |
+
|
434 |
+
Parameters
|
435 |
+
----------
|
436 |
+
min_cluster_size : int, default=5
|
437 |
+
The minimum number of samples in a group for that group to be
|
438 |
+
considered a cluster; groupings smaller than this size will be left
|
439 |
+
as noise.
|
440 |
+
|
441 |
+
min_samples : int, default=None
|
442 |
+
The number of samples in a neighborhood for a point
|
443 |
+
to be considered as a core point. This includes the point itself.
|
444 |
+
When `None`, defaults to `min_cluster_size`.
|
445 |
+
|
446 |
+
cluster_selection_epsilon : float, default=0.0
|
447 |
+
A distance threshold. Clusters below this value will be merged.
|
448 |
+
See [5]_ for more information.
|
449 |
+
|
450 |
+
max_cluster_size : int, default=None
|
451 |
+
A limit to the size of clusters returned by the `"eom"` cluster
|
452 |
+
selection algorithm. There is no limit when `max_cluster_size=None`.
|
453 |
+
Has no effect if `cluster_selection_method="leaf"`.
|
454 |
+
|
455 |
+
metric : str or callable, default='euclidean'
|
456 |
+
The metric to use when calculating distance between instances in a
|
457 |
+
feature array.
|
458 |
+
|
459 |
+
- If metric is a string or callable, it must be one of
|
460 |
+
the options allowed by :func:`~sklearn.metrics.pairwise_distances`
|
461 |
+
for its metric parameter.
|
462 |
+
|
463 |
+
- If metric is "precomputed", X is assumed to be a distance matrix and
|
464 |
+
must be square.
|
465 |
+
|
466 |
+
metric_params : dict, default=None
|
467 |
+
Arguments passed to the distance metric.
|
468 |
+
|
469 |
+
alpha : float, default=1.0
|
470 |
+
A distance scaling parameter as used in robust single linkage.
|
471 |
+
See [3]_ for more information.
|
472 |
+
|
473 |
+
algorithm : {"auto", "brute", "kd_tree", "ball_tree"}, default="auto"
|
474 |
+
Exactly which algorithm to use for computing core distances; By default
|
475 |
+
this is set to `"auto"` which attempts to use a
|
476 |
+
:class:`~sklearn.neighbors.KDTree` tree if possible, otherwise it uses
|
477 |
+
a :class:`~sklearn.neighbors.BallTree` tree. Both `"kd_tree"` and
|
478 |
+
`"ball_tree"` algorithms use the
|
479 |
+
:class:`~sklearn.neighbors.NearestNeighbors` estimator.
|
480 |
+
|
481 |
+
If the `X` passed during `fit` is sparse or `metric` is invalid for
|
482 |
+
both :class:`~sklearn.neighbors.KDTree` and
|
483 |
+
:class:`~sklearn.neighbors.BallTree`, then it resolves to use the
|
484 |
+
`"brute"` algorithm.
|
485 |
+
|
486 |
+
.. deprecated:: 1.4
|
487 |
+
The `'kdtree'` option was deprecated in version 1.4,
|
488 |
+
and will be renamed to `'kd_tree'` in 1.6.
|
489 |
+
|
490 |
+
.. deprecated:: 1.4
|
491 |
+
The `'balltree'` option was deprecated in version 1.4,
|
492 |
+
and will be renamed to `'ball_tree'` in 1.6.
|
493 |
+
|
494 |
+
leaf_size : int, default=40
|
495 |
+
Leaf size for trees responsible for fast nearest neighbour queries when
|
496 |
+
a KDTree or a BallTree are used as core-distance algorithms. A large
|
497 |
+
dataset size and small `leaf_size` may induce excessive memory usage.
|
498 |
+
If you are running out of memory consider increasing the `leaf_size`
|
499 |
+
parameter. Ignored for `algorithm="brute"`.
|
500 |
+
|
501 |
+
n_jobs : int, default=None
|
502 |
+
Number of jobs to run in parallel to calculate distances.
|
503 |
+
`None` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
504 |
+
`-1` means using all processors. See :term:`Glossary <n_jobs>`
|
505 |
+
for more details.
|
506 |
+
|
507 |
+
cluster_selection_method : {"eom", "leaf"}, default="eom"
|
508 |
+
The method used to select clusters from the condensed tree. The
|
509 |
+
standard approach for HDBSCAN* is to use an Excess of Mass (`"eom"`)
|
510 |
+
algorithm to find the most persistent clusters. Alternatively you can
|
511 |
+
instead select the clusters at the leaves of the tree -- this provides
|
512 |
+
the most fine grained and homogeneous clusters.
|
513 |
+
|
514 |
+
allow_single_cluster : bool, default=False
|
515 |
+
By default HDBSCAN* will not produce a single cluster, setting this
|
516 |
+
to True will override this and allow single cluster results in
|
517 |
+
the case that you feel this is a valid result for your dataset.
|
518 |
+
|
519 |
+
store_centers : str, default=None
|
520 |
+
Which, if any, cluster centers to compute and store. The options are:
|
521 |
+
|
522 |
+
- `None` which does not compute nor store any centers.
|
523 |
+
- `"centroid"` which calculates the center by taking the weighted
|
524 |
+
average of their positions. Note that the algorithm uses the
|
525 |
+
euclidean metric and does not guarantee that the output will be
|
526 |
+
an observed data point.
|
527 |
+
- `"medoid"` which calculates the center by taking the point in the
|
528 |
+
fitted data which minimizes the distance to all other points in
|
529 |
+
the cluster. This is slower than "centroid" since it requires
|
530 |
+
computing additional pairwise distances between points of the
|
531 |
+
same cluster but guarantees the output is an observed data point.
|
532 |
+
The medoid is also well-defined for arbitrary metrics, and does not
|
533 |
+
depend on a euclidean metric.
|
534 |
+
- `"both"` which computes and stores both forms of centers.
|
535 |
+
|
536 |
+
copy : bool, default=False
|
537 |
+
If `copy=True` then any time an in-place modifications would be made
|
538 |
+
that would overwrite data passed to :term:`fit`, a copy will first be
|
539 |
+
made, guaranteeing that the original data will be unchanged.
|
540 |
+
Currently, it only applies when `metric="precomputed"`, when passing
|
541 |
+
a dense array or a CSR sparse matrix and when `algorithm="brute"`.
|
542 |
+
|
543 |
+
Attributes
|
544 |
+
----------
|
545 |
+
labels_ : ndarray of shape (n_samples,)
|
546 |
+
Cluster labels for each point in the dataset given to :term:`fit`.
|
547 |
+
Outliers are labeled as follows:
|
548 |
+
|
549 |
+
- Noisy samples are given the label -1.
|
550 |
+
- Samples with infinite elements (+/- np.inf) are given the label -2.
|
551 |
+
- Samples with missing data are given the label -3, even if they
|
552 |
+
also have infinite elements.
|
553 |
+
|
554 |
+
probabilities_ : ndarray of shape (n_samples,)
|
555 |
+
The strength with which each sample is a member of its assigned
|
556 |
+
cluster.
|
557 |
+
|
558 |
+
- Clustered samples have probabilities proportional to the degree that
|
559 |
+
they persist as part of the cluster.
|
560 |
+
- Noisy samples have probability zero.
|
561 |
+
- Samples with infinite elements (+/- np.inf) have probability 0.
|
562 |
+
- Samples with missing data have probability `np.nan`.
|
563 |
+
|
564 |
+
n_features_in_ : int
|
565 |
+
Number of features seen during :term:`fit`.
|
566 |
+
|
567 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
568 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
569 |
+
has feature names that are all strings.
|
570 |
+
|
571 |
+
centroids_ : ndarray of shape (n_clusters, n_features)
|
572 |
+
A collection containing the centroid of each cluster calculated under
|
573 |
+
the standard euclidean metric. The centroids may fall "outside" their
|
574 |
+
respective clusters if the clusters themselves are non-convex.
|
575 |
+
|
576 |
+
Note that `n_clusters` only counts non-outlier clusters. That is to
|
577 |
+
say, the `-1, -2, -3` labels for the outlier clusters are excluded.
|
578 |
+
|
579 |
+
medoids_ : ndarray of shape (n_clusters, n_features)
|
580 |
+
A collection containing the medoid of each cluster calculated under
|
581 |
+
the whichever metric was passed to the `metric` parameter. The
|
582 |
+
medoids are points in the original cluster which minimize the average
|
583 |
+
distance to all other points in that cluster under the chosen metric.
|
584 |
+
These can be thought of as the result of projecting the `metric`-based
|
585 |
+
centroid back onto the cluster.
|
586 |
+
|
587 |
+
Note that `n_clusters` only counts non-outlier clusters. That is to
|
588 |
+
say, the `-1, -2, -3` labels for the outlier clusters are excluded.
|
589 |
+
|
590 |
+
See Also
|
591 |
+
--------
|
592 |
+
DBSCAN : Density-Based Spatial Clustering of Applications
|
593 |
+
with Noise.
|
594 |
+
OPTICS : Ordering Points To Identify the Clustering Structure.
|
595 |
+
Birch : Memory-efficient, online-learning algorithm.
|
596 |
+
|
597 |
+
References
|
598 |
+
----------
|
599 |
+
|
600 |
+
.. [1] :doi:`Campello, R. J., Moulavi, D., & Sander, J. Density-based clustering
|
601 |
+
based on hierarchical density estimates.
|
602 |
+
<10.1007/978-3-642-37456-2_14>`
|
603 |
+
.. [2] :doi:`Campello, R. J., Moulavi, D., Zimek, A., & Sander, J.
|
604 |
+
Hierarchical density estimates for data clustering, visualization,
|
605 |
+
and outlier detection.<10.1145/2733381>`
|
606 |
+
|
607 |
+
.. [3] `Chaudhuri, K., & Dasgupta, S. Rates of convergence for the
|
608 |
+
cluster tree.
|
609 |
+
<https://papers.nips.cc/paper/2010/hash/
|
610 |
+
b534ba68236ba543ae44b22bd110a1d6-Abstract.html>`_
|
611 |
+
|
612 |
+
.. [4] `Moulavi, D., Jaskowiak, P.A., Campello, R.J., Zimek, A. and
|
613 |
+
Sander, J. Density-Based Clustering Validation.
|
614 |
+
<https://www.dbs.ifi.lmu.de/~zimek/publications/SDM2014/DBCV.pdf>`_
|
615 |
+
|
616 |
+
.. [5] :arxiv:`Malzer, C., & Baum, M. "A Hybrid Approach To Hierarchical
|
617 |
+
Density-based Cluster Selection."<1911.02282>`.
|
618 |
+
|
619 |
+
Examples
|
620 |
+
--------
|
621 |
+
>>> from sklearn.cluster import HDBSCAN
|
622 |
+
>>> from sklearn.datasets import load_digits
|
623 |
+
>>> X, _ = load_digits(return_X_y=True)
|
624 |
+
>>> hdb = HDBSCAN(min_cluster_size=20)
|
625 |
+
>>> hdb.fit(X)
|
626 |
+
HDBSCAN(min_cluster_size=20)
|
627 |
+
>>> hdb.labels_
|
628 |
+
array([ 2, 6, -1, ..., -1, -1, -1])
|
629 |
+
"""
|
630 |
+
|
631 |
+
_parameter_constraints = {
|
632 |
+
"min_cluster_size": [Interval(Integral, left=2, right=None, closed="left")],
|
633 |
+
"min_samples": [Interval(Integral, left=1, right=None, closed="left"), None],
|
634 |
+
"cluster_selection_epsilon": [
|
635 |
+
Interval(Real, left=0, right=None, closed="left")
|
636 |
+
],
|
637 |
+
"max_cluster_size": [
|
638 |
+
None,
|
639 |
+
Interval(Integral, left=1, right=None, closed="left"),
|
640 |
+
],
|
641 |
+
"metric": [StrOptions(FAST_METRICS | {"precomputed"}), callable],
|
642 |
+
"metric_params": [dict, None],
|
643 |
+
"alpha": [Interval(Real, left=0, right=None, closed="neither")],
|
644 |
+
# TODO(1.6): Remove "kdtree" and "balltree" option
|
645 |
+
"algorithm": [
|
646 |
+
StrOptions(
|
647 |
+
{"auto", "brute", "kd_tree", "ball_tree", "kdtree", "balltree"},
|
648 |
+
deprecated={"kdtree", "balltree"},
|
649 |
+
),
|
650 |
+
],
|
651 |
+
"leaf_size": [Interval(Integral, left=1, right=None, closed="left")],
|
652 |
+
"n_jobs": [Integral, None],
|
653 |
+
"cluster_selection_method": [StrOptions({"eom", "leaf"})],
|
654 |
+
"allow_single_cluster": ["boolean"],
|
655 |
+
"store_centers": [None, StrOptions({"centroid", "medoid", "both"})],
|
656 |
+
"copy": ["boolean"],
|
657 |
+
}
|
658 |
+
|
659 |
+
def __init__(
|
660 |
+
self,
|
661 |
+
min_cluster_size=5,
|
662 |
+
min_samples=None,
|
663 |
+
cluster_selection_epsilon=0.0,
|
664 |
+
max_cluster_size=None,
|
665 |
+
metric="euclidean",
|
666 |
+
metric_params=None,
|
667 |
+
alpha=1.0,
|
668 |
+
algorithm="auto",
|
669 |
+
leaf_size=40,
|
670 |
+
n_jobs=None,
|
671 |
+
cluster_selection_method="eom",
|
672 |
+
allow_single_cluster=False,
|
673 |
+
store_centers=None,
|
674 |
+
copy=False,
|
675 |
+
):
|
676 |
+
self.min_cluster_size = min_cluster_size
|
677 |
+
self.min_samples = min_samples
|
678 |
+
self.alpha = alpha
|
679 |
+
self.max_cluster_size = max_cluster_size
|
680 |
+
self.cluster_selection_epsilon = cluster_selection_epsilon
|
681 |
+
self.metric = metric
|
682 |
+
self.metric_params = metric_params
|
683 |
+
self.algorithm = algorithm
|
684 |
+
self.leaf_size = leaf_size
|
685 |
+
self.n_jobs = n_jobs
|
686 |
+
self.cluster_selection_method = cluster_selection_method
|
687 |
+
self.allow_single_cluster = allow_single_cluster
|
688 |
+
self.store_centers = store_centers
|
689 |
+
self.copy = copy
|
690 |
+
|
691 |
+
@_fit_context(
|
692 |
+
# HDBSCAN.metric is not validated yet
|
693 |
+
prefer_skip_nested_validation=False
|
694 |
+
)
|
695 |
+
def fit(self, X, y=None):
|
696 |
+
"""Find clusters based on hierarchical density-based clustering.
|
697 |
+
|
698 |
+
Parameters
|
699 |
+
----------
|
700 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
|
701 |
+
ndarray of shape (n_samples, n_samples)
|
702 |
+
A feature array, or array of distances between samples if
|
703 |
+
`metric='precomputed'`.
|
704 |
+
|
705 |
+
y : None
|
706 |
+
Ignored.
|
707 |
+
|
708 |
+
Returns
|
709 |
+
-------
|
710 |
+
self : object
|
711 |
+
Returns self.
|
712 |
+
"""
|
713 |
+
if self.metric == "precomputed" and self.store_centers is not None:
|
714 |
+
raise ValueError(
|
715 |
+
"Cannot store centers when using a precomputed distance matrix."
|
716 |
+
)
|
717 |
+
|
718 |
+
self._metric_params = self.metric_params or {}
|
719 |
+
if self.metric != "precomputed":
|
720 |
+
# Non-precomputed matrices may contain non-finite values.
|
721 |
+
X = self._validate_data(
|
722 |
+
X,
|
723 |
+
accept_sparse=["csr", "lil"],
|
724 |
+
force_all_finite=False,
|
725 |
+
dtype=np.float64,
|
726 |
+
)
|
727 |
+
self._raw_data = X
|
728 |
+
all_finite = True
|
729 |
+
try:
|
730 |
+
_assert_all_finite(X.data if issparse(X) else X)
|
731 |
+
except ValueError:
|
732 |
+
all_finite = False
|
733 |
+
|
734 |
+
if not all_finite:
|
735 |
+
# Pass only the purely finite indices into hdbscan
|
736 |
+
# We will later assign all non-finite points their
|
737 |
+
# corresponding labels, as specified in `_OUTLIER_ENCODING`
|
738 |
+
|
739 |
+
# Reduce X to make the checks for missing/outlier samples more
|
740 |
+
# convenient.
|
741 |
+
reduced_X = X.sum(axis=1)
|
742 |
+
|
743 |
+
# Samples with missing data are denoted by the presence of
|
744 |
+
# `np.nan`
|
745 |
+
missing_index = np.isnan(reduced_X).nonzero()[0]
|
746 |
+
|
747 |
+
# Outlier samples are denoted by the presence of `np.inf`
|
748 |
+
infinite_index = np.isinf(reduced_X).nonzero()[0]
|
749 |
+
|
750 |
+
# Continue with only finite samples
|
751 |
+
finite_index = _get_finite_row_indices(X)
|
752 |
+
internal_to_raw = {x: y for x, y in enumerate(finite_index)}
|
753 |
+
X = X[finite_index]
|
754 |
+
elif issparse(X):
|
755 |
+
# Handle sparse precomputed distance matrices separately
|
756 |
+
X = self._validate_data(
|
757 |
+
X,
|
758 |
+
accept_sparse=["csr", "lil"],
|
759 |
+
dtype=np.float64,
|
760 |
+
)
|
761 |
+
else:
|
762 |
+
# Only non-sparse, precomputed distance matrices are handled here
|
763 |
+
# and thereby allowed to contain numpy.inf for missing distances
|
764 |
+
|
765 |
+
# Perform data validation after removing infinite values (numpy.inf)
|
766 |
+
# from the given distance matrix.
|
767 |
+
X = self._validate_data(X, force_all_finite=False, dtype=np.float64)
|
768 |
+
if np.isnan(X).any():
|
769 |
+
# TODO: Support np.nan in Cython implementation for precomputed
|
770 |
+
# dense HDBSCAN
|
771 |
+
raise ValueError("np.nan values found in precomputed-dense")
|
772 |
+
if X.shape[0] == 1:
|
773 |
+
raise ValueError("n_samples=1 while HDBSCAN requires more than one sample")
|
774 |
+
self._min_samples = (
|
775 |
+
self.min_cluster_size if self.min_samples is None else self.min_samples
|
776 |
+
)
|
777 |
+
|
778 |
+
if self._min_samples > X.shape[0]:
|
779 |
+
raise ValueError(
|
780 |
+
f"min_samples ({self._min_samples}) must be at most the number of"
|
781 |
+
f" samples in X ({X.shape[0]})"
|
782 |
+
)
|
783 |
+
|
784 |
+
# TODO(1.6): Remove
|
785 |
+
if self.algorithm == "kdtree":
|
786 |
+
warn(
|
787 |
+
(
|
788 |
+
"`algorithm='kdtree'`has been deprecated in 1.4 and will be renamed"
|
789 |
+
" to'kd_tree'`in 1.6. To keep the past behaviour, set"
|
790 |
+
" `algorithm='kd_tree'`."
|
791 |
+
),
|
792 |
+
FutureWarning,
|
793 |
+
)
|
794 |
+
self.algorithm = "kd_tree"
|
795 |
+
|
796 |
+
# TODO(1.6): Remove
|
797 |
+
if self.algorithm == "balltree":
|
798 |
+
warn(
|
799 |
+
(
|
800 |
+
"`algorithm='balltree'`has been deprecated in 1.4 and will be"
|
801 |
+
" renamed to'ball_tree'`in 1.6. To keep the past behaviour, set"
|
802 |
+
" `algorithm='ball_tree'`."
|
803 |
+
),
|
804 |
+
FutureWarning,
|
805 |
+
)
|
806 |
+
self.algorithm = "ball_tree"
|
807 |
+
|
808 |
+
mst_func = None
|
809 |
+
kwargs = dict(
|
810 |
+
X=X,
|
811 |
+
min_samples=self._min_samples,
|
812 |
+
alpha=self.alpha,
|
813 |
+
metric=self.metric,
|
814 |
+
n_jobs=self.n_jobs,
|
815 |
+
**self._metric_params,
|
816 |
+
)
|
817 |
+
if self.algorithm == "kd_tree" and self.metric not in KDTree.valid_metrics:
|
818 |
+
raise ValueError(
|
819 |
+
f"{self.metric} is not a valid metric for a KDTree-based algorithm."
|
820 |
+
" Please select a different metric."
|
821 |
+
)
|
822 |
+
elif (
|
823 |
+
self.algorithm == "ball_tree" and self.metric not in BallTree.valid_metrics
|
824 |
+
):
|
825 |
+
raise ValueError(
|
826 |
+
f"{self.metric} is not a valid metric for a BallTree-based algorithm."
|
827 |
+
" Please select a different metric."
|
828 |
+
)
|
829 |
+
|
830 |
+
if self.algorithm != "auto":
|
831 |
+
if (
|
832 |
+
self.metric != "precomputed"
|
833 |
+
and issparse(X)
|
834 |
+
and self.algorithm != "brute"
|
835 |
+
):
|
836 |
+
raise ValueError("Sparse data matrices only support algorithm `brute`.")
|
837 |
+
|
838 |
+
if self.algorithm == "brute":
|
839 |
+
mst_func = _hdbscan_brute
|
840 |
+
kwargs["copy"] = self.copy
|
841 |
+
elif self.algorithm == "kd_tree":
|
842 |
+
mst_func = _hdbscan_prims
|
843 |
+
kwargs["algo"] = "kd_tree"
|
844 |
+
kwargs["leaf_size"] = self.leaf_size
|
845 |
+
else:
|
846 |
+
mst_func = _hdbscan_prims
|
847 |
+
kwargs["algo"] = "ball_tree"
|
848 |
+
kwargs["leaf_size"] = self.leaf_size
|
849 |
+
else:
|
850 |
+
if issparse(X) or self.metric not in FAST_METRICS:
|
851 |
+
# We can't do much with sparse matrices ...
|
852 |
+
mst_func = _hdbscan_brute
|
853 |
+
kwargs["copy"] = self.copy
|
854 |
+
elif self.metric in KDTree.valid_metrics:
|
855 |
+
# TODO: Benchmark KD vs Ball Tree efficiency
|
856 |
+
mst_func = _hdbscan_prims
|
857 |
+
kwargs["algo"] = "kd_tree"
|
858 |
+
kwargs["leaf_size"] = self.leaf_size
|
859 |
+
else:
|
860 |
+
# Metric is a valid BallTree metric
|
861 |
+
mst_func = _hdbscan_prims
|
862 |
+
kwargs["algo"] = "ball_tree"
|
863 |
+
kwargs["leaf_size"] = self.leaf_size
|
864 |
+
|
865 |
+
self._single_linkage_tree_ = mst_func(**kwargs)
|
866 |
+
|
867 |
+
self.labels_, self.probabilities_ = tree_to_labels(
|
868 |
+
self._single_linkage_tree_,
|
869 |
+
self.min_cluster_size,
|
870 |
+
self.cluster_selection_method,
|
871 |
+
self.allow_single_cluster,
|
872 |
+
self.cluster_selection_epsilon,
|
873 |
+
self.max_cluster_size,
|
874 |
+
)
|
875 |
+
if self.metric != "precomputed" and not all_finite:
|
876 |
+
# Remap indices to align with original data in the case of
|
877 |
+
# non-finite entries. Samples with np.inf are mapped to -1 and
|
878 |
+
# those with np.nan are mapped to -2.
|
879 |
+
self._single_linkage_tree_ = remap_single_linkage_tree(
|
880 |
+
self._single_linkage_tree_,
|
881 |
+
internal_to_raw,
|
882 |
+
# There may be overlap for points w/ both `np.inf` and `np.nan`
|
883 |
+
non_finite=set(np.hstack([infinite_index, missing_index])),
|
884 |
+
)
|
885 |
+
new_labels = np.empty(self._raw_data.shape[0], dtype=np.int32)
|
886 |
+
new_labels[finite_index] = self.labels_
|
887 |
+
new_labels[infinite_index] = _OUTLIER_ENCODING["infinite"]["label"]
|
888 |
+
new_labels[missing_index] = _OUTLIER_ENCODING["missing"]["label"]
|
889 |
+
self.labels_ = new_labels
|
890 |
+
|
891 |
+
new_probabilities = np.zeros(self._raw_data.shape[0], dtype=np.float64)
|
892 |
+
new_probabilities[finite_index] = self.probabilities_
|
893 |
+
# Infinite outliers have probability 0 by convention, though this
|
894 |
+
# is arbitrary.
|
895 |
+
new_probabilities[infinite_index] = _OUTLIER_ENCODING["infinite"]["prob"]
|
896 |
+
new_probabilities[missing_index] = _OUTLIER_ENCODING["missing"]["prob"]
|
897 |
+
self.probabilities_ = new_probabilities
|
898 |
+
|
899 |
+
if self.store_centers:
|
900 |
+
self._weighted_cluster_center(X)
|
901 |
+
return self
|
902 |
+
|
903 |
+
def fit_predict(self, X, y=None):
|
904 |
+
"""Cluster X and return the associated cluster labels.
|
905 |
+
|
906 |
+
Parameters
|
907 |
+
----------
|
908 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features), or \
|
909 |
+
ndarray of shape (n_samples, n_samples)
|
910 |
+
A feature array, or array of distances between samples if
|
911 |
+
`metric='precomputed'`.
|
912 |
+
|
913 |
+
y : None
|
914 |
+
Ignored.
|
915 |
+
|
916 |
+
Returns
|
917 |
+
-------
|
918 |
+
y : ndarray of shape (n_samples,)
|
919 |
+
Cluster labels.
|
920 |
+
"""
|
921 |
+
self.fit(X)
|
922 |
+
return self.labels_
|
923 |
+
|
924 |
+
def _weighted_cluster_center(self, X):
|
925 |
+
"""Calculate and store the centroids/medoids of each cluster.
|
926 |
+
|
927 |
+
This requires `X` to be a raw feature array, not precomputed
|
928 |
+
distances. Rather than return outputs directly, this helper method
|
929 |
+
instead stores them in the `self.{centroids, medoids}_` attributes.
|
930 |
+
The choice for which attributes are calculated and stored is mediated
|
931 |
+
by the value of `self.store_centers`.
|
932 |
+
|
933 |
+
Parameters
|
934 |
+
----------
|
935 |
+
X : ndarray of shape (n_samples, n_features)
|
936 |
+
The feature array that the estimator was fit with.
|
937 |
+
|
938 |
+
"""
|
939 |
+
# Number of non-noise clusters
|
940 |
+
n_clusters = len(set(self.labels_) - {-1, -2})
|
941 |
+
mask = np.empty((X.shape[0],), dtype=np.bool_)
|
942 |
+
make_centroids = self.store_centers in ("centroid", "both")
|
943 |
+
make_medoids = self.store_centers in ("medoid", "both")
|
944 |
+
|
945 |
+
if make_centroids:
|
946 |
+
self.centroids_ = np.empty((n_clusters, X.shape[1]), dtype=np.float64)
|
947 |
+
if make_medoids:
|
948 |
+
self.medoids_ = np.empty((n_clusters, X.shape[1]), dtype=np.float64)
|
949 |
+
|
950 |
+
# Need to handle iteratively seen each cluster may have a different
|
951 |
+
# number of samples, hence we can't create a homogeneous 3D array.
|
952 |
+
for idx in range(n_clusters):
|
953 |
+
mask = self.labels_ == idx
|
954 |
+
data = X[mask]
|
955 |
+
strength = self.probabilities_[mask]
|
956 |
+
if make_centroids:
|
957 |
+
self.centroids_[idx] = np.average(data, weights=strength, axis=0)
|
958 |
+
if make_medoids:
|
959 |
+
# TODO: Implement weighted argmin PWD backend
|
960 |
+
dist_mat = pairwise_distances(
|
961 |
+
data, metric=self.metric, **self._metric_params
|
962 |
+
)
|
963 |
+
dist_mat = dist_mat * strength
|
964 |
+
medoid_index = np.argmin(dist_mat.sum(axis=1))
|
965 |
+
self.medoids_[idx] = data[medoid_index]
|
966 |
+
return
|
967 |
+
|
968 |
+
def dbscan_clustering(self, cut_distance, min_cluster_size=5):
|
969 |
+
"""Return clustering given by DBSCAN without border points.
|
970 |
+
|
971 |
+
Return clustering that would be equivalent to running DBSCAN* for a
|
972 |
+
particular cut_distance (or epsilon) DBSCAN* can be thought of as
|
973 |
+
DBSCAN without the border points. As such these results may differ
|
974 |
+
slightly from `cluster.DBSCAN` due to the difference in implementation
|
975 |
+
over the non-core points.
|
976 |
+
|
977 |
+
This can also be thought of as a flat clustering derived from constant
|
978 |
+
height cut through the single linkage tree.
|
979 |
+
|
980 |
+
This represents the result of selecting a cut value for robust single linkage
|
981 |
+
clustering. The `min_cluster_size` allows the flat clustering to declare noise
|
982 |
+
points (and cluster smaller than `min_cluster_size`).
|
983 |
+
|
984 |
+
Parameters
|
985 |
+
----------
|
986 |
+
cut_distance : float
|
987 |
+
The mutual reachability distance cut value to use to generate a
|
988 |
+
flat clustering.
|
989 |
+
|
990 |
+
min_cluster_size : int, default=5
|
991 |
+
Clusters smaller than this value with be called 'noise' and remain
|
992 |
+
unclustered in the resulting flat clustering.
|
993 |
+
|
994 |
+
Returns
|
995 |
+
-------
|
996 |
+
labels : ndarray of shape (n_samples,)
|
997 |
+
An array of cluster labels, one per datapoint.
|
998 |
+
Outliers are labeled as follows:
|
999 |
+
|
1000 |
+
- Noisy samples are given the label -1.
|
1001 |
+
- Samples with infinite elements (+/- np.inf) are given the label -2.
|
1002 |
+
- Samples with missing data are given the label -3, even if they
|
1003 |
+
also have infinite elements.
|
1004 |
+
"""
|
1005 |
+
labels = labelling_at_cut(
|
1006 |
+
self._single_linkage_tree_, cut_distance, min_cluster_size
|
1007 |
+
)
|
1008 |
+
# Infer indices from labels generated during `fit`
|
1009 |
+
infinite_index = self.labels_ == _OUTLIER_ENCODING["infinite"]["label"]
|
1010 |
+
missing_index = self.labels_ == _OUTLIER_ENCODING["missing"]["label"]
|
1011 |
+
|
1012 |
+
# Overwrite infinite/missing outlier samples (otherwise simple noise)
|
1013 |
+
labels[infinite_index] = _OUTLIER_ENCODING["infinite"]["label"]
|
1014 |
+
labels[missing_index] = _OUTLIER_ENCODING["missing"]["label"]
|
1015 |
+
return labels
|
1016 |
+
|
1017 |
+
def _more_tags(self):
|
1018 |
+
return {"allow_nan": self.metric != "precomputed"}
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (195 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/tests/__pycache__/test_reachibility.cpython-310.pyc
ADDED
Binary file (2.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hdbscan/tests/test_reachibility.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from sklearn.cluster._hdbscan._reachability import mutual_reachability_graph
|
5 |
+
from sklearn.utils._testing import (
|
6 |
+
_convert_container,
|
7 |
+
assert_allclose,
|
8 |
+
)
|
9 |
+
|
10 |
+
|
11 |
+
def test_mutual_reachability_graph_error_sparse_format():
|
12 |
+
"""Check that we raise an error if the sparse format is not CSR."""
|
13 |
+
rng = np.random.RandomState(0)
|
14 |
+
X = rng.randn(10, 10)
|
15 |
+
X = X.T @ X
|
16 |
+
np.fill_diagonal(X, 0.0)
|
17 |
+
X = _convert_container(X, "sparse_csc")
|
18 |
+
|
19 |
+
err_msg = "Only sparse CSR matrices are supported"
|
20 |
+
with pytest.raises(ValueError, match=err_msg):
|
21 |
+
mutual_reachability_graph(X)
|
22 |
+
|
23 |
+
|
24 |
+
@pytest.mark.parametrize("array_type", ["array", "sparse_csr"])
|
25 |
+
def test_mutual_reachability_graph_inplace(array_type):
|
26 |
+
"""Check that the operation is happening inplace."""
|
27 |
+
rng = np.random.RandomState(0)
|
28 |
+
X = rng.randn(10, 10)
|
29 |
+
X = X.T @ X
|
30 |
+
np.fill_diagonal(X, 0.0)
|
31 |
+
X = _convert_container(X, array_type)
|
32 |
+
|
33 |
+
mr_graph = mutual_reachability_graph(X)
|
34 |
+
|
35 |
+
assert id(mr_graph) == id(X)
|
36 |
+
|
37 |
+
|
38 |
+
def test_mutual_reachability_graph_equivalence_dense_sparse():
|
39 |
+
"""Check that we get the same results for dense and sparse implementation."""
|
40 |
+
rng = np.random.RandomState(0)
|
41 |
+
X = rng.randn(5, 5)
|
42 |
+
X_dense = X.T @ X
|
43 |
+
X_sparse = _convert_container(X_dense, "sparse_csr")
|
44 |
+
|
45 |
+
mr_graph_dense = mutual_reachability_graph(X_dense, min_samples=3)
|
46 |
+
mr_graph_sparse = mutual_reachability_graph(X_sparse, min_samples=3)
|
47 |
+
|
48 |
+
assert_allclose(mr_graph_dense, mr_graph_sparse.toarray())
|
49 |
+
|
50 |
+
|
51 |
+
@pytest.mark.parametrize("array_type", ["array", "sparse_csr"])
|
52 |
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
53 |
+
def test_mutual_reachability_graph_preserve_dtype(array_type, dtype):
|
54 |
+
"""Check that the computation preserve dtype thanks to fused types."""
|
55 |
+
rng = np.random.RandomState(0)
|
56 |
+
X = rng.randn(10, 10)
|
57 |
+
X = (X.T @ X).astype(dtype)
|
58 |
+
np.fill_diagonal(X, 0.0)
|
59 |
+
X = _convert_container(X, array_type)
|
60 |
+
|
61 |
+
assert X.dtype == dtype
|
62 |
+
mr_graph = mutual_reachability_graph(X)
|
63 |
+
assert mr_graph.dtype == dtype
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hierarchical_fast.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (332 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_hierarchical_fast.pxd
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils._typedefs cimport intp_t
|
2 |
+
|
3 |
+
cdef class UnionFind:
|
4 |
+
cdef intp_t next_label
|
5 |
+
cdef intp_t[:] parent
|
6 |
+
cdef intp_t[:] size
|
7 |
+
|
8 |
+
cdef void union(self, intp_t m, intp_t n) noexcept
|
9 |
+
cdef intp_t fast_find(self, intp_t n) noexcept
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_k_means_common.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (529 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_k_means_common.pxd
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from cython cimport floating
|
2 |
+
|
3 |
+
|
4 |
+
cdef floating _euclidean_dense_dense(
|
5 |
+
const floating*,
|
6 |
+
const floating*,
|
7 |
+
int,
|
8 |
+
bint
|
9 |
+
) noexcept nogil
|
10 |
+
|
11 |
+
cdef floating _euclidean_sparse_dense(
|
12 |
+
const floating[::1],
|
13 |
+
const int[::1],
|
14 |
+
const floating[::1],
|
15 |
+
floating,
|
16 |
+
bint
|
17 |
+
) noexcept nogil
|
18 |
+
|
19 |
+
cpdef void _relocate_empty_clusters_dense(
|
20 |
+
const floating[:, ::1],
|
21 |
+
const floating[::1],
|
22 |
+
const floating[:, ::1],
|
23 |
+
floating[:, ::1],
|
24 |
+
floating[::1],
|
25 |
+
const int[::1]
|
26 |
+
)
|
27 |
+
|
28 |
+
cpdef void _relocate_empty_clusters_sparse(
|
29 |
+
const floating[::1],
|
30 |
+
const int[::1],
|
31 |
+
const int[::1],
|
32 |
+
const floating[::1],
|
33 |
+
const floating[:, ::1],
|
34 |
+
floating[:, ::1],
|
35 |
+
floating[::1],
|
36 |
+
const int[::1]
|
37 |
+
)
|
38 |
+
|
39 |
+
cdef void _average_centers(
|
40 |
+
floating[:, ::1],
|
41 |
+
const floating[::1]
|
42 |
+
)
|
43 |
+
|
44 |
+
cdef void _center_shift(
|
45 |
+
const floating[:, ::1],
|
46 |
+
const floating[:, ::1],
|
47 |
+
floating[::1]
|
48 |
+
)
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_k_means_elkan.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (526 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_k_means_lloyd.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (381 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_k_means_minibatch.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (324 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py
ADDED
@@ -0,0 +1,2318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""K-means clustering."""
|
2 |
+
|
3 |
+
# Authors: Gael Varoquaux <[email protected]>
|
4 |
+
# Thomas Rueckstiess <[email protected]>
|
5 |
+
# James Bergstra <[email protected]>
|
6 |
+
# Jan Schlueter <[email protected]>
|
7 |
+
# Nelle Varoquaux
|
8 |
+
# Peter Prettenhofer <[email protected]>
|
9 |
+
# Olivier Grisel <[email protected]>
|
10 |
+
# Mathieu Blondel <[email protected]>
|
11 |
+
# Robert Layton <[email protected]>
|
12 |
+
# License: BSD 3 clause
|
13 |
+
|
14 |
+
import warnings
|
15 |
+
from abc import ABC, abstractmethod
|
16 |
+
from numbers import Integral, Real
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import scipy.sparse as sp
|
20 |
+
|
21 |
+
from ..base import (
|
22 |
+
BaseEstimator,
|
23 |
+
ClassNamePrefixFeaturesOutMixin,
|
24 |
+
ClusterMixin,
|
25 |
+
TransformerMixin,
|
26 |
+
_fit_context,
|
27 |
+
)
|
28 |
+
from ..exceptions import ConvergenceWarning
|
29 |
+
from ..metrics.pairwise import _euclidean_distances, euclidean_distances
|
30 |
+
from ..utils import check_array, check_random_state
|
31 |
+
from ..utils._openmp_helpers import _openmp_effective_n_threads
|
32 |
+
from ..utils._param_validation import Interval, StrOptions, validate_params
|
33 |
+
from ..utils.extmath import row_norms, stable_cumsum
|
34 |
+
from ..utils.fixes import threadpool_info, threadpool_limits
|
35 |
+
from ..utils.sparsefuncs import mean_variance_axis
|
36 |
+
from ..utils.sparsefuncs_fast import assign_rows_csr
|
37 |
+
from ..utils.validation import (
|
38 |
+
_check_sample_weight,
|
39 |
+
_is_arraylike_not_scalar,
|
40 |
+
check_is_fitted,
|
41 |
+
)
|
42 |
+
from ._k_means_common import (
|
43 |
+
CHUNK_SIZE,
|
44 |
+
_inertia_dense,
|
45 |
+
_inertia_sparse,
|
46 |
+
_is_same_clustering,
|
47 |
+
)
|
48 |
+
from ._k_means_elkan import (
|
49 |
+
elkan_iter_chunked_dense,
|
50 |
+
elkan_iter_chunked_sparse,
|
51 |
+
init_bounds_dense,
|
52 |
+
init_bounds_sparse,
|
53 |
+
)
|
54 |
+
from ._k_means_lloyd import lloyd_iter_chunked_dense, lloyd_iter_chunked_sparse
|
55 |
+
from ._k_means_minibatch import _minibatch_update_dense, _minibatch_update_sparse
|
56 |
+
|
57 |
+
###############################################################################
|
58 |
+
# Initialization heuristic
|
59 |
+
|
60 |
+
|
61 |
+
@validate_params(
|
62 |
+
{
|
63 |
+
"X": ["array-like", "sparse matrix"],
|
64 |
+
"n_clusters": [Interval(Integral, 1, None, closed="left")],
|
65 |
+
"sample_weight": ["array-like", None],
|
66 |
+
"x_squared_norms": ["array-like", None],
|
67 |
+
"random_state": ["random_state"],
|
68 |
+
"n_local_trials": [Interval(Integral, 1, None, closed="left"), None],
|
69 |
+
},
|
70 |
+
prefer_skip_nested_validation=True,
|
71 |
+
)
|
72 |
+
def kmeans_plusplus(
|
73 |
+
X,
|
74 |
+
n_clusters,
|
75 |
+
*,
|
76 |
+
sample_weight=None,
|
77 |
+
x_squared_norms=None,
|
78 |
+
random_state=None,
|
79 |
+
n_local_trials=None,
|
80 |
+
):
|
81 |
+
"""Init n_clusters seeds according to k-means++.
|
82 |
+
|
83 |
+
.. versionadded:: 0.24
|
84 |
+
|
85 |
+
Parameters
|
86 |
+
----------
|
87 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
88 |
+
The data to pick seeds from.
|
89 |
+
|
90 |
+
n_clusters : int
|
91 |
+
The number of centroids to initialize.
|
92 |
+
|
93 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
94 |
+
The weights for each observation in `X`. If `None`, all observations
|
95 |
+
are assigned equal weight. `sample_weight` is ignored if `init`
|
96 |
+
is a callable or a user provided array.
|
97 |
+
|
98 |
+
.. versionadded:: 1.3
|
99 |
+
|
100 |
+
x_squared_norms : array-like of shape (n_samples,), default=None
|
101 |
+
Squared Euclidean norm of each data point.
|
102 |
+
|
103 |
+
random_state : int or RandomState instance, default=None
|
104 |
+
Determines random number generation for centroid initialization. Pass
|
105 |
+
an int for reproducible output across multiple function calls.
|
106 |
+
See :term:`Glossary <random_state>`.
|
107 |
+
|
108 |
+
n_local_trials : int, default=None
|
109 |
+
The number of seeding trials for each center (except the first),
|
110 |
+
of which the one reducing inertia the most is greedily chosen.
|
111 |
+
Set to None to make the number of trials depend logarithmically
|
112 |
+
on the number of seeds (2+log(k)) which is the recommended setting.
|
113 |
+
Setting to 1 disables the greedy cluster selection and recovers the
|
114 |
+
vanilla k-means++ algorithm which was empirically shown to work less
|
115 |
+
well than its greedy variant.
|
116 |
+
|
117 |
+
Returns
|
118 |
+
-------
|
119 |
+
centers : ndarray of shape (n_clusters, n_features)
|
120 |
+
The initial centers for k-means.
|
121 |
+
|
122 |
+
indices : ndarray of shape (n_clusters,)
|
123 |
+
The index location of the chosen centers in the data array X. For a
|
124 |
+
given index and center, X[index] = center.
|
125 |
+
|
126 |
+
Notes
|
127 |
+
-----
|
128 |
+
Selects initial cluster centers for k-mean clustering in a smart way
|
129 |
+
to speed up convergence. see: Arthur, D. and Vassilvitskii, S.
|
130 |
+
"k-means++: the advantages of careful seeding". ACM-SIAM symposium
|
131 |
+
on Discrete algorithms. 2007
|
132 |
+
|
133 |
+
Examples
|
134 |
+
--------
|
135 |
+
|
136 |
+
>>> from sklearn.cluster import kmeans_plusplus
|
137 |
+
>>> import numpy as np
|
138 |
+
>>> X = np.array([[1, 2], [1, 4], [1, 0],
|
139 |
+
... [10, 2], [10, 4], [10, 0]])
|
140 |
+
>>> centers, indices = kmeans_plusplus(X, n_clusters=2, random_state=0)
|
141 |
+
>>> centers
|
142 |
+
array([[10, 2],
|
143 |
+
[ 1, 0]])
|
144 |
+
>>> indices
|
145 |
+
array([3, 2])
|
146 |
+
"""
|
147 |
+
# Check data
|
148 |
+
check_array(X, accept_sparse="csr", dtype=[np.float64, np.float32])
|
149 |
+
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
|
150 |
+
|
151 |
+
if X.shape[0] < n_clusters:
|
152 |
+
raise ValueError(
|
153 |
+
f"n_samples={X.shape[0]} should be >= n_clusters={n_clusters}."
|
154 |
+
)
|
155 |
+
|
156 |
+
# Check parameters
|
157 |
+
if x_squared_norms is None:
|
158 |
+
x_squared_norms = row_norms(X, squared=True)
|
159 |
+
else:
|
160 |
+
x_squared_norms = check_array(x_squared_norms, dtype=X.dtype, ensure_2d=False)
|
161 |
+
|
162 |
+
if x_squared_norms.shape[0] != X.shape[0]:
|
163 |
+
raise ValueError(
|
164 |
+
f"The length of x_squared_norms {x_squared_norms.shape[0]} should "
|
165 |
+
f"be equal to the length of n_samples {X.shape[0]}."
|
166 |
+
)
|
167 |
+
|
168 |
+
random_state = check_random_state(random_state)
|
169 |
+
|
170 |
+
# Call private k-means++
|
171 |
+
centers, indices = _kmeans_plusplus(
|
172 |
+
X, n_clusters, x_squared_norms, sample_weight, random_state, n_local_trials
|
173 |
+
)
|
174 |
+
|
175 |
+
return centers, indices
|
176 |
+
|
177 |
+
|
178 |
+
def _kmeans_plusplus(
|
179 |
+
X, n_clusters, x_squared_norms, sample_weight, random_state, n_local_trials=None
|
180 |
+
):
|
181 |
+
"""Computational component for initialization of n_clusters by
|
182 |
+
k-means++. Prior validation of data is assumed.
|
183 |
+
|
184 |
+
Parameters
|
185 |
+
----------
|
186 |
+
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
187 |
+
The data to pick seeds for.
|
188 |
+
|
189 |
+
n_clusters : int
|
190 |
+
The number of seeds to choose.
|
191 |
+
|
192 |
+
sample_weight : ndarray of shape (n_samples,)
|
193 |
+
The weights for each observation in `X`.
|
194 |
+
|
195 |
+
x_squared_norms : ndarray of shape (n_samples,)
|
196 |
+
Squared Euclidean norm of each data point.
|
197 |
+
|
198 |
+
random_state : RandomState instance
|
199 |
+
The generator used to initialize the centers.
|
200 |
+
See :term:`Glossary <random_state>`.
|
201 |
+
|
202 |
+
n_local_trials : int, default=None
|
203 |
+
The number of seeding trials for each center (except the first),
|
204 |
+
of which the one reducing inertia the most is greedily chosen.
|
205 |
+
Set to None to make the number of trials depend logarithmically
|
206 |
+
on the number of seeds (2+log(k)); this is the default.
|
207 |
+
|
208 |
+
Returns
|
209 |
+
-------
|
210 |
+
centers : ndarray of shape (n_clusters, n_features)
|
211 |
+
The initial centers for k-means.
|
212 |
+
|
213 |
+
indices : ndarray of shape (n_clusters,)
|
214 |
+
The index location of the chosen centers in the data array X. For a
|
215 |
+
given index and center, X[index] = center.
|
216 |
+
"""
|
217 |
+
n_samples, n_features = X.shape
|
218 |
+
|
219 |
+
centers = np.empty((n_clusters, n_features), dtype=X.dtype)
|
220 |
+
|
221 |
+
# Set the number of local seeding trials if none is given
|
222 |
+
if n_local_trials is None:
|
223 |
+
# This is what Arthur/Vassilvitskii tried, but did not report
|
224 |
+
# specific results for other than mentioning in the conclusion
|
225 |
+
# that it helped.
|
226 |
+
n_local_trials = 2 + int(np.log(n_clusters))
|
227 |
+
|
228 |
+
# Pick first center randomly and track index of point
|
229 |
+
center_id = random_state.choice(n_samples, p=sample_weight / sample_weight.sum())
|
230 |
+
indices = np.full(n_clusters, -1, dtype=int)
|
231 |
+
if sp.issparse(X):
|
232 |
+
centers[0] = X[[center_id]].toarray()
|
233 |
+
else:
|
234 |
+
centers[0] = X[center_id]
|
235 |
+
indices[0] = center_id
|
236 |
+
|
237 |
+
# Initialize list of closest distances and calculate current potential
|
238 |
+
closest_dist_sq = _euclidean_distances(
|
239 |
+
centers[0, np.newaxis], X, Y_norm_squared=x_squared_norms, squared=True
|
240 |
+
)
|
241 |
+
current_pot = closest_dist_sq @ sample_weight
|
242 |
+
|
243 |
+
# Pick the remaining n_clusters-1 points
|
244 |
+
for c in range(1, n_clusters):
|
245 |
+
# Choose center candidates by sampling with probability proportional
|
246 |
+
# to the squared distance to the closest existing center
|
247 |
+
rand_vals = random_state.uniform(size=n_local_trials) * current_pot
|
248 |
+
candidate_ids = np.searchsorted(
|
249 |
+
stable_cumsum(sample_weight * closest_dist_sq), rand_vals
|
250 |
+
)
|
251 |
+
# XXX: numerical imprecision can result in a candidate_id out of range
|
252 |
+
np.clip(candidate_ids, None, closest_dist_sq.size - 1, out=candidate_ids)
|
253 |
+
|
254 |
+
# Compute distances to center candidates
|
255 |
+
distance_to_candidates = _euclidean_distances(
|
256 |
+
X[candidate_ids], X, Y_norm_squared=x_squared_norms, squared=True
|
257 |
+
)
|
258 |
+
|
259 |
+
# update closest distances squared and potential for each candidate
|
260 |
+
np.minimum(closest_dist_sq, distance_to_candidates, out=distance_to_candidates)
|
261 |
+
candidates_pot = distance_to_candidates @ sample_weight.reshape(-1, 1)
|
262 |
+
|
263 |
+
# Decide which candidate is the best
|
264 |
+
best_candidate = np.argmin(candidates_pot)
|
265 |
+
current_pot = candidates_pot[best_candidate]
|
266 |
+
closest_dist_sq = distance_to_candidates[best_candidate]
|
267 |
+
best_candidate = candidate_ids[best_candidate]
|
268 |
+
|
269 |
+
# Permanently add best center candidate found in local tries
|
270 |
+
if sp.issparse(X):
|
271 |
+
centers[c] = X[[best_candidate]].toarray()
|
272 |
+
else:
|
273 |
+
centers[c] = X[best_candidate]
|
274 |
+
indices[c] = best_candidate
|
275 |
+
|
276 |
+
return centers, indices
|
277 |
+
|
278 |
+
|
279 |
+
###############################################################################
|
280 |
+
# K-means batch estimation by EM (expectation maximization)
|
281 |
+
|
282 |
+
|
283 |
+
def _tolerance(X, tol):
|
284 |
+
"""Return a tolerance which is dependent on the dataset."""
|
285 |
+
if tol == 0:
|
286 |
+
return 0
|
287 |
+
if sp.issparse(X):
|
288 |
+
variances = mean_variance_axis(X, axis=0)[1]
|
289 |
+
else:
|
290 |
+
variances = np.var(X, axis=0)
|
291 |
+
return np.mean(variances) * tol
|
292 |
+
|
293 |
+
|
294 |
+
@validate_params(
|
295 |
+
{
|
296 |
+
"X": ["array-like", "sparse matrix"],
|
297 |
+
"sample_weight": ["array-like", None],
|
298 |
+
"return_n_iter": [bool],
|
299 |
+
},
|
300 |
+
prefer_skip_nested_validation=False,
|
301 |
+
)
|
302 |
+
def k_means(
|
303 |
+
X,
|
304 |
+
n_clusters,
|
305 |
+
*,
|
306 |
+
sample_weight=None,
|
307 |
+
init="k-means++",
|
308 |
+
n_init="auto",
|
309 |
+
max_iter=300,
|
310 |
+
verbose=False,
|
311 |
+
tol=1e-4,
|
312 |
+
random_state=None,
|
313 |
+
copy_x=True,
|
314 |
+
algorithm="lloyd",
|
315 |
+
return_n_iter=False,
|
316 |
+
):
|
317 |
+
"""Perform K-means clustering algorithm.
|
318 |
+
|
319 |
+
Read more in the :ref:`User Guide <k_means>`.
|
320 |
+
|
321 |
+
Parameters
|
322 |
+
----------
|
323 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
324 |
+
The observations to cluster. It must be noted that the data
|
325 |
+
will be converted to C ordering, which will cause a memory copy
|
326 |
+
if the given data is not C-contiguous.
|
327 |
+
|
328 |
+
n_clusters : int
|
329 |
+
The number of clusters to form as well as the number of
|
330 |
+
centroids to generate.
|
331 |
+
|
332 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
333 |
+
The weights for each observation in `X`. If `None`, all observations
|
334 |
+
are assigned equal weight. `sample_weight` is not used during
|
335 |
+
initialization if `init` is a callable or a user provided array.
|
336 |
+
|
337 |
+
init : {'k-means++', 'random'}, callable or array-like of shape \
|
338 |
+
(n_clusters, n_features), default='k-means++'
|
339 |
+
Method for initialization:
|
340 |
+
|
341 |
+
- `'k-means++'` : selects initial cluster centers for k-mean
|
342 |
+
clustering in a smart way to speed up convergence. See section
|
343 |
+
Notes in k_init for more details.
|
344 |
+
- `'random'`: choose `n_clusters` observations (rows) at random from data
|
345 |
+
for the initial centroids.
|
346 |
+
- If an array is passed, it should be of shape `(n_clusters, n_features)`
|
347 |
+
and gives the initial centers.
|
348 |
+
- If a callable is passed, it should take arguments `X`, `n_clusters` and a
|
349 |
+
random state and return an initialization.
|
350 |
+
|
351 |
+
n_init : 'auto' or int, default="auto"
|
352 |
+
Number of time the k-means algorithm will be run with different
|
353 |
+
centroid seeds. The final results will be the best output of
|
354 |
+
n_init consecutive runs in terms of inertia.
|
355 |
+
|
356 |
+
When `n_init='auto'`, the number of runs depends on the value of init:
|
357 |
+
10 if using `init='random'` or `init` is a callable;
|
358 |
+
1 if using `init='k-means++'` or `init` is an array-like.
|
359 |
+
|
360 |
+
.. versionadded:: 1.2
|
361 |
+
Added 'auto' option for `n_init`.
|
362 |
+
|
363 |
+
.. versionchanged:: 1.4
|
364 |
+
Default value for `n_init` changed to `'auto'`.
|
365 |
+
|
366 |
+
max_iter : int, default=300
|
367 |
+
Maximum number of iterations of the k-means algorithm to run.
|
368 |
+
|
369 |
+
verbose : bool, default=False
|
370 |
+
Verbosity mode.
|
371 |
+
|
372 |
+
tol : float, default=1e-4
|
373 |
+
Relative tolerance with regards to Frobenius norm of the difference
|
374 |
+
in the cluster centers of two consecutive iterations to declare
|
375 |
+
convergence.
|
376 |
+
|
377 |
+
random_state : int, RandomState instance or None, default=None
|
378 |
+
Determines random number generation for centroid initialization. Use
|
379 |
+
an int to make the randomness deterministic.
|
380 |
+
See :term:`Glossary <random_state>`.
|
381 |
+
|
382 |
+
copy_x : bool, default=True
|
383 |
+
When pre-computing distances it is more numerically accurate to center
|
384 |
+
the data first. If `copy_x` is True (default), then the original data is
|
385 |
+
not modified. If False, the original data is modified, and put back
|
386 |
+
before the function returns, but small numerical differences may be
|
387 |
+
introduced by subtracting and then adding the data mean. Note that if
|
388 |
+
the original data is not C-contiguous, a copy will be made even if
|
389 |
+
`copy_x` is False. If the original data is sparse, but not in CSR format,
|
390 |
+
a copy will be made even if `copy_x` is False.
|
391 |
+
|
392 |
+
algorithm : {"lloyd", "elkan"}, default="lloyd"
|
393 |
+
K-means algorithm to use. The classical EM-style algorithm is `"lloyd"`.
|
394 |
+
The `"elkan"` variation can be more efficient on some datasets with
|
395 |
+
well-defined clusters, by using the triangle inequality. However it's
|
396 |
+
more memory intensive due to the allocation of an extra array of shape
|
397 |
+
`(n_samples, n_clusters)`.
|
398 |
+
|
399 |
+
.. versionchanged:: 0.18
|
400 |
+
Added Elkan algorithm
|
401 |
+
|
402 |
+
.. versionchanged:: 1.1
|
403 |
+
Renamed "full" to "lloyd", and deprecated "auto" and "full".
|
404 |
+
Changed "auto" to use "lloyd" instead of "elkan".
|
405 |
+
|
406 |
+
return_n_iter : bool, default=False
|
407 |
+
Whether or not to return the number of iterations.
|
408 |
+
|
409 |
+
Returns
|
410 |
+
-------
|
411 |
+
centroid : ndarray of shape (n_clusters, n_features)
|
412 |
+
Centroids found at the last iteration of k-means.
|
413 |
+
|
414 |
+
label : ndarray of shape (n_samples,)
|
415 |
+
The `label[i]` is the code or index of the centroid the
|
416 |
+
i'th observation is closest to.
|
417 |
+
|
418 |
+
inertia : float
|
419 |
+
The final value of the inertia criterion (sum of squared distances to
|
420 |
+
the closest centroid for all observations in the training set).
|
421 |
+
|
422 |
+
best_n_iter : int
|
423 |
+
Number of iterations corresponding to the best results.
|
424 |
+
Returned only if `return_n_iter` is set to True.
|
425 |
+
|
426 |
+
Examples
|
427 |
+
--------
|
428 |
+
>>> import numpy as np
|
429 |
+
>>> from sklearn.cluster import k_means
|
430 |
+
>>> X = np.array([[1, 2], [1, 4], [1, 0],
|
431 |
+
... [10, 2], [10, 4], [10, 0]])
|
432 |
+
>>> centroid, label, inertia = k_means(
|
433 |
+
... X, n_clusters=2, n_init="auto", random_state=0
|
434 |
+
... )
|
435 |
+
>>> centroid
|
436 |
+
array([[10., 2.],
|
437 |
+
[ 1., 2.]])
|
438 |
+
>>> label
|
439 |
+
array([1, 1, 1, 0, 0, 0], dtype=int32)
|
440 |
+
>>> inertia
|
441 |
+
16.0
|
442 |
+
"""
|
443 |
+
est = KMeans(
|
444 |
+
n_clusters=n_clusters,
|
445 |
+
init=init,
|
446 |
+
n_init=n_init,
|
447 |
+
max_iter=max_iter,
|
448 |
+
verbose=verbose,
|
449 |
+
tol=tol,
|
450 |
+
random_state=random_state,
|
451 |
+
copy_x=copy_x,
|
452 |
+
algorithm=algorithm,
|
453 |
+
).fit(X, sample_weight=sample_weight)
|
454 |
+
if return_n_iter:
|
455 |
+
return est.cluster_centers_, est.labels_, est.inertia_, est.n_iter_
|
456 |
+
else:
|
457 |
+
return est.cluster_centers_, est.labels_, est.inertia_
|
458 |
+
|
459 |
+
|
460 |
+
def _kmeans_single_elkan(
|
461 |
+
X,
|
462 |
+
sample_weight,
|
463 |
+
centers_init,
|
464 |
+
max_iter=300,
|
465 |
+
verbose=False,
|
466 |
+
tol=1e-4,
|
467 |
+
n_threads=1,
|
468 |
+
):
|
469 |
+
"""A single run of k-means elkan, assumes preparation completed prior.
|
470 |
+
|
471 |
+
Parameters
|
472 |
+
----------
|
473 |
+
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
474 |
+
The observations to cluster. If sparse matrix, must be in CSR format.
|
475 |
+
|
476 |
+
sample_weight : array-like of shape (n_samples,)
|
477 |
+
The weights for each observation in X.
|
478 |
+
|
479 |
+
centers_init : ndarray of shape (n_clusters, n_features)
|
480 |
+
The initial centers.
|
481 |
+
|
482 |
+
max_iter : int, default=300
|
483 |
+
Maximum number of iterations of the k-means algorithm to run.
|
484 |
+
|
485 |
+
verbose : bool, default=False
|
486 |
+
Verbosity mode.
|
487 |
+
|
488 |
+
tol : float, default=1e-4
|
489 |
+
Relative tolerance with regards to Frobenius norm of the difference
|
490 |
+
in the cluster centers of two consecutive iterations to declare
|
491 |
+
convergence.
|
492 |
+
It's not advised to set `tol=0` since convergence might never be
|
493 |
+
declared due to rounding errors. Use a very small number instead.
|
494 |
+
|
495 |
+
n_threads : int, default=1
|
496 |
+
The number of OpenMP threads to use for the computation. Parallelism is
|
497 |
+
sample-wise on the main cython loop which assigns each sample to its
|
498 |
+
closest center.
|
499 |
+
|
500 |
+
Returns
|
501 |
+
-------
|
502 |
+
centroid : ndarray of shape (n_clusters, n_features)
|
503 |
+
Centroids found at the last iteration of k-means.
|
504 |
+
|
505 |
+
label : ndarray of shape (n_samples,)
|
506 |
+
label[i] is the code or index of the centroid the
|
507 |
+
i'th observation is closest to.
|
508 |
+
|
509 |
+
inertia : float
|
510 |
+
The final value of the inertia criterion (sum of squared distances to
|
511 |
+
the closest centroid for all observations in the training set).
|
512 |
+
|
513 |
+
n_iter : int
|
514 |
+
Number of iterations run.
|
515 |
+
"""
|
516 |
+
n_samples = X.shape[0]
|
517 |
+
n_clusters = centers_init.shape[0]
|
518 |
+
|
519 |
+
# Buffers to avoid new allocations at each iteration.
|
520 |
+
centers = centers_init
|
521 |
+
centers_new = np.zeros_like(centers)
|
522 |
+
weight_in_clusters = np.zeros(n_clusters, dtype=X.dtype)
|
523 |
+
labels = np.full(n_samples, -1, dtype=np.int32)
|
524 |
+
labels_old = labels.copy()
|
525 |
+
center_half_distances = euclidean_distances(centers) / 2
|
526 |
+
distance_next_center = np.partition(
|
527 |
+
np.asarray(center_half_distances), kth=1, axis=0
|
528 |
+
)[1]
|
529 |
+
upper_bounds = np.zeros(n_samples, dtype=X.dtype)
|
530 |
+
lower_bounds = np.zeros((n_samples, n_clusters), dtype=X.dtype)
|
531 |
+
center_shift = np.zeros(n_clusters, dtype=X.dtype)
|
532 |
+
|
533 |
+
if sp.issparse(X):
|
534 |
+
init_bounds = init_bounds_sparse
|
535 |
+
elkan_iter = elkan_iter_chunked_sparse
|
536 |
+
_inertia = _inertia_sparse
|
537 |
+
else:
|
538 |
+
init_bounds = init_bounds_dense
|
539 |
+
elkan_iter = elkan_iter_chunked_dense
|
540 |
+
_inertia = _inertia_dense
|
541 |
+
|
542 |
+
init_bounds(
|
543 |
+
X,
|
544 |
+
centers,
|
545 |
+
center_half_distances,
|
546 |
+
labels,
|
547 |
+
upper_bounds,
|
548 |
+
lower_bounds,
|
549 |
+
n_threads=n_threads,
|
550 |
+
)
|
551 |
+
|
552 |
+
strict_convergence = False
|
553 |
+
|
554 |
+
for i in range(max_iter):
|
555 |
+
elkan_iter(
|
556 |
+
X,
|
557 |
+
sample_weight,
|
558 |
+
centers,
|
559 |
+
centers_new,
|
560 |
+
weight_in_clusters,
|
561 |
+
center_half_distances,
|
562 |
+
distance_next_center,
|
563 |
+
upper_bounds,
|
564 |
+
lower_bounds,
|
565 |
+
labels,
|
566 |
+
center_shift,
|
567 |
+
n_threads,
|
568 |
+
)
|
569 |
+
|
570 |
+
# compute new pairwise distances between centers and closest other
|
571 |
+
# center of each center for next iterations
|
572 |
+
center_half_distances = euclidean_distances(centers_new) / 2
|
573 |
+
distance_next_center = np.partition(
|
574 |
+
np.asarray(center_half_distances), kth=1, axis=0
|
575 |
+
)[1]
|
576 |
+
|
577 |
+
if verbose:
|
578 |
+
inertia = _inertia(X, sample_weight, centers, labels, n_threads)
|
579 |
+
print(f"Iteration {i}, inertia {inertia}")
|
580 |
+
|
581 |
+
centers, centers_new = centers_new, centers
|
582 |
+
|
583 |
+
if np.array_equal(labels, labels_old):
|
584 |
+
# First check the labels for strict convergence.
|
585 |
+
if verbose:
|
586 |
+
print(f"Converged at iteration {i}: strict convergence.")
|
587 |
+
strict_convergence = True
|
588 |
+
break
|
589 |
+
else:
|
590 |
+
# No strict convergence, check for tol based convergence.
|
591 |
+
center_shift_tot = (center_shift**2).sum()
|
592 |
+
if center_shift_tot <= tol:
|
593 |
+
if verbose:
|
594 |
+
print(
|
595 |
+
f"Converged at iteration {i}: center shift "
|
596 |
+
f"{center_shift_tot} within tolerance {tol}."
|
597 |
+
)
|
598 |
+
break
|
599 |
+
|
600 |
+
labels_old[:] = labels
|
601 |
+
|
602 |
+
if not strict_convergence:
|
603 |
+
# rerun E-step so that predicted labels match cluster centers
|
604 |
+
elkan_iter(
|
605 |
+
X,
|
606 |
+
sample_weight,
|
607 |
+
centers,
|
608 |
+
centers,
|
609 |
+
weight_in_clusters,
|
610 |
+
center_half_distances,
|
611 |
+
distance_next_center,
|
612 |
+
upper_bounds,
|
613 |
+
lower_bounds,
|
614 |
+
labels,
|
615 |
+
center_shift,
|
616 |
+
n_threads,
|
617 |
+
update_centers=False,
|
618 |
+
)
|
619 |
+
|
620 |
+
inertia = _inertia(X, sample_weight, centers, labels, n_threads)
|
621 |
+
|
622 |
+
return labels, inertia, centers, i + 1
|
623 |
+
|
624 |
+
|
625 |
+
def _kmeans_single_lloyd(
|
626 |
+
X,
|
627 |
+
sample_weight,
|
628 |
+
centers_init,
|
629 |
+
max_iter=300,
|
630 |
+
verbose=False,
|
631 |
+
tol=1e-4,
|
632 |
+
n_threads=1,
|
633 |
+
):
|
634 |
+
"""A single run of k-means lloyd, assumes preparation completed prior.
|
635 |
+
|
636 |
+
Parameters
|
637 |
+
----------
|
638 |
+
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
639 |
+
The observations to cluster. If sparse matrix, must be in CSR format.
|
640 |
+
|
641 |
+
sample_weight : ndarray of shape (n_samples,)
|
642 |
+
The weights for each observation in X.
|
643 |
+
|
644 |
+
centers_init : ndarray of shape (n_clusters, n_features)
|
645 |
+
The initial centers.
|
646 |
+
|
647 |
+
max_iter : int, default=300
|
648 |
+
Maximum number of iterations of the k-means algorithm to run.
|
649 |
+
|
650 |
+
verbose : bool, default=False
|
651 |
+
Verbosity mode
|
652 |
+
|
653 |
+
tol : float, default=1e-4
|
654 |
+
Relative tolerance with regards to Frobenius norm of the difference
|
655 |
+
in the cluster centers of two consecutive iterations to declare
|
656 |
+
convergence.
|
657 |
+
It's not advised to set `tol=0` since convergence might never be
|
658 |
+
declared due to rounding errors. Use a very small number instead.
|
659 |
+
|
660 |
+
n_threads : int, default=1
|
661 |
+
The number of OpenMP threads to use for the computation. Parallelism is
|
662 |
+
sample-wise on the main cython loop which assigns each sample to its
|
663 |
+
closest center.
|
664 |
+
|
665 |
+
Returns
|
666 |
+
-------
|
667 |
+
centroid : ndarray of shape (n_clusters, n_features)
|
668 |
+
Centroids found at the last iteration of k-means.
|
669 |
+
|
670 |
+
label : ndarray of shape (n_samples,)
|
671 |
+
label[i] is the code or index of the centroid the
|
672 |
+
i'th observation is closest to.
|
673 |
+
|
674 |
+
inertia : float
|
675 |
+
The final value of the inertia criterion (sum of squared distances to
|
676 |
+
the closest centroid for all observations in the training set).
|
677 |
+
|
678 |
+
n_iter : int
|
679 |
+
Number of iterations run.
|
680 |
+
"""
|
681 |
+
n_clusters = centers_init.shape[0]
|
682 |
+
|
683 |
+
# Buffers to avoid new allocations at each iteration.
|
684 |
+
centers = centers_init
|
685 |
+
centers_new = np.zeros_like(centers)
|
686 |
+
labels = np.full(X.shape[0], -1, dtype=np.int32)
|
687 |
+
labels_old = labels.copy()
|
688 |
+
weight_in_clusters = np.zeros(n_clusters, dtype=X.dtype)
|
689 |
+
center_shift = np.zeros(n_clusters, dtype=X.dtype)
|
690 |
+
|
691 |
+
if sp.issparse(X):
|
692 |
+
lloyd_iter = lloyd_iter_chunked_sparse
|
693 |
+
_inertia = _inertia_sparse
|
694 |
+
else:
|
695 |
+
lloyd_iter = lloyd_iter_chunked_dense
|
696 |
+
_inertia = _inertia_dense
|
697 |
+
|
698 |
+
strict_convergence = False
|
699 |
+
|
700 |
+
# Threadpoolctl context to limit the number of threads in second level of
|
701 |
+
# nested parallelism (i.e. BLAS) to avoid oversubscription.
|
702 |
+
with threadpool_limits(limits=1, user_api="blas"):
|
703 |
+
for i in range(max_iter):
|
704 |
+
lloyd_iter(
|
705 |
+
X,
|
706 |
+
sample_weight,
|
707 |
+
centers,
|
708 |
+
centers_new,
|
709 |
+
weight_in_clusters,
|
710 |
+
labels,
|
711 |
+
center_shift,
|
712 |
+
n_threads,
|
713 |
+
)
|
714 |
+
|
715 |
+
if verbose:
|
716 |
+
inertia = _inertia(X, sample_weight, centers, labels, n_threads)
|
717 |
+
print(f"Iteration {i}, inertia {inertia}.")
|
718 |
+
|
719 |
+
centers, centers_new = centers_new, centers
|
720 |
+
|
721 |
+
if np.array_equal(labels, labels_old):
|
722 |
+
# First check the labels for strict convergence.
|
723 |
+
if verbose:
|
724 |
+
print(f"Converged at iteration {i}: strict convergence.")
|
725 |
+
strict_convergence = True
|
726 |
+
break
|
727 |
+
else:
|
728 |
+
# No strict convergence, check for tol based convergence.
|
729 |
+
center_shift_tot = (center_shift**2).sum()
|
730 |
+
if center_shift_tot <= tol:
|
731 |
+
if verbose:
|
732 |
+
print(
|
733 |
+
f"Converged at iteration {i}: center shift "
|
734 |
+
f"{center_shift_tot} within tolerance {tol}."
|
735 |
+
)
|
736 |
+
break
|
737 |
+
|
738 |
+
labels_old[:] = labels
|
739 |
+
|
740 |
+
if not strict_convergence:
|
741 |
+
# rerun E-step so that predicted labels match cluster centers
|
742 |
+
lloyd_iter(
|
743 |
+
X,
|
744 |
+
sample_weight,
|
745 |
+
centers,
|
746 |
+
centers,
|
747 |
+
weight_in_clusters,
|
748 |
+
labels,
|
749 |
+
center_shift,
|
750 |
+
n_threads,
|
751 |
+
update_centers=False,
|
752 |
+
)
|
753 |
+
|
754 |
+
inertia = _inertia(X, sample_weight, centers, labels, n_threads)
|
755 |
+
|
756 |
+
return labels, inertia, centers, i + 1
|
757 |
+
|
758 |
+
|
759 |
+
def _labels_inertia(X, sample_weight, centers, n_threads=1, return_inertia=True):
|
760 |
+
"""E step of the K-means EM algorithm.
|
761 |
+
|
762 |
+
Compute the labels and the inertia of the given samples and centers.
|
763 |
+
|
764 |
+
Parameters
|
765 |
+
----------
|
766 |
+
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
767 |
+
The input samples to assign to the labels. If sparse matrix, must
|
768 |
+
be in CSR format.
|
769 |
+
|
770 |
+
sample_weight : ndarray of shape (n_samples,)
|
771 |
+
The weights for each observation in X.
|
772 |
+
|
773 |
+
x_squared_norms : ndarray of shape (n_samples,)
|
774 |
+
Precomputed squared euclidean norm of each data point, to speed up
|
775 |
+
computations.
|
776 |
+
|
777 |
+
centers : ndarray of shape (n_clusters, n_features)
|
778 |
+
The cluster centers.
|
779 |
+
|
780 |
+
n_threads : int, default=1
|
781 |
+
The number of OpenMP threads to use for the computation. Parallelism is
|
782 |
+
sample-wise on the main cython loop which assigns each sample to its
|
783 |
+
closest center.
|
784 |
+
|
785 |
+
return_inertia : bool, default=True
|
786 |
+
Whether to compute and return the inertia.
|
787 |
+
|
788 |
+
Returns
|
789 |
+
-------
|
790 |
+
labels : ndarray of shape (n_samples,)
|
791 |
+
The resulting assignment.
|
792 |
+
|
793 |
+
inertia : float
|
794 |
+
Sum of squared distances of samples to their closest cluster center.
|
795 |
+
Inertia is only returned if return_inertia is True.
|
796 |
+
"""
|
797 |
+
n_samples = X.shape[0]
|
798 |
+
n_clusters = centers.shape[0]
|
799 |
+
|
800 |
+
labels = np.full(n_samples, -1, dtype=np.int32)
|
801 |
+
center_shift = np.zeros(n_clusters, dtype=centers.dtype)
|
802 |
+
|
803 |
+
if sp.issparse(X):
|
804 |
+
_labels = lloyd_iter_chunked_sparse
|
805 |
+
_inertia = _inertia_sparse
|
806 |
+
else:
|
807 |
+
_labels = lloyd_iter_chunked_dense
|
808 |
+
_inertia = _inertia_dense
|
809 |
+
|
810 |
+
_labels(
|
811 |
+
X,
|
812 |
+
sample_weight,
|
813 |
+
centers,
|
814 |
+
centers_new=None,
|
815 |
+
weight_in_clusters=None,
|
816 |
+
labels=labels,
|
817 |
+
center_shift=center_shift,
|
818 |
+
n_threads=n_threads,
|
819 |
+
update_centers=False,
|
820 |
+
)
|
821 |
+
|
822 |
+
if return_inertia:
|
823 |
+
inertia = _inertia(X, sample_weight, centers, labels, n_threads)
|
824 |
+
return labels, inertia
|
825 |
+
|
826 |
+
return labels
|
827 |
+
|
828 |
+
|
829 |
+
def _labels_inertia_threadpool_limit(
|
830 |
+
X, sample_weight, centers, n_threads=1, return_inertia=True
|
831 |
+
):
|
832 |
+
"""Same as _labels_inertia but in a threadpool_limits context."""
|
833 |
+
with threadpool_limits(limits=1, user_api="blas"):
|
834 |
+
result = _labels_inertia(X, sample_weight, centers, n_threads, return_inertia)
|
835 |
+
|
836 |
+
return result
|
837 |
+
|
838 |
+
|
839 |
+
class _BaseKMeans(
|
840 |
+
ClassNamePrefixFeaturesOutMixin, TransformerMixin, ClusterMixin, BaseEstimator, ABC
|
841 |
+
):
|
842 |
+
"""Base class for KMeans and MiniBatchKMeans"""
|
843 |
+
|
844 |
+
_parameter_constraints: dict = {
|
845 |
+
"n_clusters": [Interval(Integral, 1, None, closed="left")],
|
846 |
+
"init": [StrOptions({"k-means++", "random"}), callable, "array-like"],
|
847 |
+
"n_init": [
|
848 |
+
StrOptions({"auto"}),
|
849 |
+
Interval(Integral, 1, None, closed="left"),
|
850 |
+
],
|
851 |
+
"max_iter": [Interval(Integral, 1, None, closed="left")],
|
852 |
+
"tol": [Interval(Real, 0, None, closed="left")],
|
853 |
+
"verbose": ["verbose"],
|
854 |
+
"random_state": ["random_state"],
|
855 |
+
}
|
856 |
+
|
857 |
+
def __init__(
|
858 |
+
self,
|
859 |
+
n_clusters,
|
860 |
+
*,
|
861 |
+
init,
|
862 |
+
n_init,
|
863 |
+
max_iter,
|
864 |
+
tol,
|
865 |
+
verbose,
|
866 |
+
random_state,
|
867 |
+
):
|
868 |
+
self.n_clusters = n_clusters
|
869 |
+
self.init = init
|
870 |
+
self.max_iter = max_iter
|
871 |
+
self.tol = tol
|
872 |
+
self.n_init = n_init
|
873 |
+
self.verbose = verbose
|
874 |
+
self.random_state = random_state
|
875 |
+
|
876 |
+
def _check_params_vs_input(self, X, default_n_init=None):
|
877 |
+
# n_clusters
|
878 |
+
if X.shape[0] < self.n_clusters:
|
879 |
+
raise ValueError(
|
880 |
+
f"n_samples={X.shape[0]} should be >= n_clusters={self.n_clusters}."
|
881 |
+
)
|
882 |
+
|
883 |
+
# tol
|
884 |
+
self._tol = _tolerance(X, self.tol)
|
885 |
+
|
886 |
+
# n-init
|
887 |
+
if self.n_init == "auto":
|
888 |
+
if isinstance(self.init, str) and self.init == "k-means++":
|
889 |
+
self._n_init = 1
|
890 |
+
elif isinstance(self.init, str) and self.init == "random":
|
891 |
+
self._n_init = default_n_init
|
892 |
+
elif callable(self.init):
|
893 |
+
self._n_init = default_n_init
|
894 |
+
else: # array-like
|
895 |
+
self._n_init = 1
|
896 |
+
else:
|
897 |
+
self._n_init = self.n_init
|
898 |
+
|
899 |
+
if _is_arraylike_not_scalar(self.init) and self._n_init != 1:
|
900 |
+
warnings.warn(
|
901 |
+
(
|
902 |
+
"Explicit initial center position passed: performing only"
|
903 |
+
f" one init in {self.__class__.__name__} instead of "
|
904 |
+
f"n_init={self._n_init}."
|
905 |
+
),
|
906 |
+
RuntimeWarning,
|
907 |
+
stacklevel=2,
|
908 |
+
)
|
909 |
+
self._n_init = 1
|
910 |
+
|
911 |
+
@abstractmethod
|
912 |
+
def _warn_mkl_vcomp(self, n_active_threads):
|
913 |
+
"""Issue an estimator specific warning when vcomp and mkl are both present
|
914 |
+
|
915 |
+
This method is called by `_check_mkl_vcomp`.
|
916 |
+
"""
|
917 |
+
|
918 |
+
def _check_mkl_vcomp(self, X, n_samples):
|
919 |
+
"""Check when vcomp and mkl are both present"""
|
920 |
+
# The BLAS call inside a prange in lloyd_iter_chunked_dense is known to
|
921 |
+
# cause a small memory leak when there are less chunks than the number
|
922 |
+
# of available threads. It only happens when the OpenMP library is
|
923 |
+
# vcomp (microsoft OpenMP) and the BLAS library is MKL. see #18653
|
924 |
+
if sp.issparse(X):
|
925 |
+
return
|
926 |
+
|
927 |
+
n_active_threads = int(np.ceil(n_samples / CHUNK_SIZE))
|
928 |
+
if n_active_threads < self._n_threads:
|
929 |
+
modules = threadpool_info()
|
930 |
+
has_vcomp = "vcomp" in [module["prefix"] for module in modules]
|
931 |
+
has_mkl = ("mkl", "intel") in [
|
932 |
+
(module["internal_api"], module.get("threading_layer", None))
|
933 |
+
for module in modules
|
934 |
+
]
|
935 |
+
if has_vcomp and has_mkl:
|
936 |
+
self._warn_mkl_vcomp(n_active_threads)
|
937 |
+
|
938 |
+
def _validate_center_shape(self, X, centers):
|
939 |
+
"""Check if centers is compatible with X and n_clusters."""
|
940 |
+
if centers.shape[0] != self.n_clusters:
|
941 |
+
raise ValueError(
|
942 |
+
f"The shape of the initial centers {centers.shape} does not "
|
943 |
+
f"match the number of clusters {self.n_clusters}."
|
944 |
+
)
|
945 |
+
if centers.shape[1] != X.shape[1]:
|
946 |
+
raise ValueError(
|
947 |
+
f"The shape of the initial centers {centers.shape} does not "
|
948 |
+
f"match the number of features of the data {X.shape[1]}."
|
949 |
+
)
|
950 |
+
|
951 |
+
def _check_test_data(self, X):
|
952 |
+
X = self._validate_data(
|
953 |
+
X,
|
954 |
+
accept_sparse="csr",
|
955 |
+
reset=False,
|
956 |
+
dtype=[np.float64, np.float32],
|
957 |
+
order="C",
|
958 |
+
accept_large_sparse=False,
|
959 |
+
)
|
960 |
+
return X
|
961 |
+
|
962 |
+
def _init_centroids(
|
963 |
+
self,
|
964 |
+
X,
|
965 |
+
x_squared_norms,
|
966 |
+
init,
|
967 |
+
random_state,
|
968 |
+
sample_weight,
|
969 |
+
init_size=None,
|
970 |
+
n_centroids=None,
|
971 |
+
):
|
972 |
+
"""Compute the initial centroids.
|
973 |
+
|
974 |
+
Parameters
|
975 |
+
----------
|
976 |
+
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
977 |
+
The input samples.
|
978 |
+
|
979 |
+
x_squared_norms : ndarray of shape (n_samples,)
|
980 |
+
Squared euclidean norm of each data point. Pass it if you have it
|
981 |
+
at hands already to avoid it being recomputed here.
|
982 |
+
|
983 |
+
init : {'k-means++', 'random'}, callable or ndarray of shape \
|
984 |
+
(n_clusters, n_features)
|
985 |
+
Method for initialization.
|
986 |
+
|
987 |
+
random_state : RandomState instance
|
988 |
+
Determines random number generation for centroid initialization.
|
989 |
+
See :term:`Glossary <random_state>`.
|
990 |
+
|
991 |
+
sample_weight : ndarray of shape (n_samples,)
|
992 |
+
The weights for each observation in X. `sample_weight` is not used
|
993 |
+
during initialization if `init` is a callable or a user provided
|
994 |
+
array.
|
995 |
+
|
996 |
+
init_size : int, default=None
|
997 |
+
Number of samples to randomly sample for speeding up the
|
998 |
+
initialization (sometimes at the expense of accuracy).
|
999 |
+
|
1000 |
+
n_centroids : int, default=None
|
1001 |
+
Number of centroids to initialize.
|
1002 |
+
If left to 'None' the number of centroids will be equal to
|
1003 |
+
number of clusters to form (self.n_clusters).
|
1004 |
+
|
1005 |
+
Returns
|
1006 |
+
-------
|
1007 |
+
centers : ndarray of shape (n_clusters, n_features)
|
1008 |
+
Initial centroids of clusters.
|
1009 |
+
"""
|
1010 |
+
n_samples = X.shape[0]
|
1011 |
+
n_clusters = self.n_clusters if n_centroids is None else n_centroids
|
1012 |
+
|
1013 |
+
if init_size is not None and init_size < n_samples:
|
1014 |
+
init_indices = random_state.randint(0, n_samples, init_size)
|
1015 |
+
X = X[init_indices]
|
1016 |
+
x_squared_norms = x_squared_norms[init_indices]
|
1017 |
+
n_samples = X.shape[0]
|
1018 |
+
sample_weight = sample_weight[init_indices]
|
1019 |
+
|
1020 |
+
if isinstance(init, str) and init == "k-means++":
|
1021 |
+
centers, _ = _kmeans_plusplus(
|
1022 |
+
X,
|
1023 |
+
n_clusters,
|
1024 |
+
random_state=random_state,
|
1025 |
+
x_squared_norms=x_squared_norms,
|
1026 |
+
sample_weight=sample_weight,
|
1027 |
+
)
|
1028 |
+
elif isinstance(init, str) and init == "random":
|
1029 |
+
seeds = random_state.choice(
|
1030 |
+
n_samples,
|
1031 |
+
size=n_clusters,
|
1032 |
+
replace=False,
|
1033 |
+
p=sample_weight / sample_weight.sum(),
|
1034 |
+
)
|
1035 |
+
centers = X[seeds]
|
1036 |
+
elif _is_arraylike_not_scalar(self.init):
|
1037 |
+
centers = init
|
1038 |
+
elif callable(init):
|
1039 |
+
centers = init(X, n_clusters, random_state=random_state)
|
1040 |
+
centers = check_array(centers, dtype=X.dtype, copy=False, order="C")
|
1041 |
+
self._validate_center_shape(X, centers)
|
1042 |
+
|
1043 |
+
if sp.issparse(centers):
|
1044 |
+
centers = centers.toarray()
|
1045 |
+
|
1046 |
+
return centers
|
1047 |
+
|
1048 |
+
def fit_predict(self, X, y=None, sample_weight=None):
|
1049 |
+
"""Compute cluster centers and predict cluster index for each sample.
|
1050 |
+
|
1051 |
+
Convenience method; equivalent to calling fit(X) followed by
|
1052 |
+
predict(X).
|
1053 |
+
|
1054 |
+
Parameters
|
1055 |
+
----------
|
1056 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1057 |
+
New data to transform.
|
1058 |
+
|
1059 |
+
y : Ignored
|
1060 |
+
Not used, present here for API consistency by convention.
|
1061 |
+
|
1062 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
1063 |
+
The weights for each observation in X. If None, all observations
|
1064 |
+
are assigned equal weight.
|
1065 |
+
|
1066 |
+
Returns
|
1067 |
+
-------
|
1068 |
+
labels : ndarray of shape (n_samples,)
|
1069 |
+
Index of the cluster each sample belongs to.
|
1070 |
+
"""
|
1071 |
+
return self.fit(X, sample_weight=sample_weight).labels_
|
1072 |
+
|
1073 |
+
def predict(self, X, sample_weight="deprecated"):
|
1074 |
+
"""Predict the closest cluster each sample in X belongs to.
|
1075 |
+
|
1076 |
+
In the vector quantization literature, `cluster_centers_` is called
|
1077 |
+
the code book and each value returned by `predict` is the index of
|
1078 |
+
the closest code in the code book.
|
1079 |
+
|
1080 |
+
Parameters
|
1081 |
+
----------
|
1082 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1083 |
+
New data to predict.
|
1084 |
+
|
1085 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
1086 |
+
The weights for each observation in X. If None, all observations
|
1087 |
+
are assigned equal weight.
|
1088 |
+
|
1089 |
+
.. deprecated:: 1.3
|
1090 |
+
The parameter `sample_weight` is deprecated in version 1.3
|
1091 |
+
and will be removed in 1.5.
|
1092 |
+
|
1093 |
+
Returns
|
1094 |
+
-------
|
1095 |
+
labels : ndarray of shape (n_samples,)
|
1096 |
+
Index of the cluster each sample belongs to.
|
1097 |
+
"""
|
1098 |
+
check_is_fitted(self)
|
1099 |
+
|
1100 |
+
X = self._check_test_data(X)
|
1101 |
+
if not (isinstance(sample_weight, str) and sample_weight == "deprecated"):
|
1102 |
+
warnings.warn(
|
1103 |
+
(
|
1104 |
+
"'sample_weight' was deprecated in version 1.3 and "
|
1105 |
+
"will be removed in 1.5."
|
1106 |
+
),
|
1107 |
+
FutureWarning,
|
1108 |
+
)
|
1109 |
+
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
|
1110 |
+
else:
|
1111 |
+
sample_weight = _check_sample_weight(None, X, dtype=X.dtype)
|
1112 |
+
|
1113 |
+
labels = _labels_inertia_threadpool_limit(
|
1114 |
+
X,
|
1115 |
+
sample_weight,
|
1116 |
+
self.cluster_centers_,
|
1117 |
+
n_threads=self._n_threads,
|
1118 |
+
return_inertia=False,
|
1119 |
+
)
|
1120 |
+
|
1121 |
+
return labels
|
1122 |
+
|
1123 |
+
def fit_transform(self, X, y=None, sample_weight=None):
|
1124 |
+
"""Compute clustering and transform X to cluster-distance space.
|
1125 |
+
|
1126 |
+
Equivalent to fit(X).transform(X), but more efficiently implemented.
|
1127 |
+
|
1128 |
+
Parameters
|
1129 |
+
----------
|
1130 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1131 |
+
New data to transform.
|
1132 |
+
|
1133 |
+
y : Ignored
|
1134 |
+
Not used, present here for API consistency by convention.
|
1135 |
+
|
1136 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
1137 |
+
The weights for each observation in X. If None, all observations
|
1138 |
+
are assigned equal weight.
|
1139 |
+
|
1140 |
+
Returns
|
1141 |
+
-------
|
1142 |
+
X_new : ndarray of shape (n_samples, n_clusters)
|
1143 |
+
X transformed in the new space.
|
1144 |
+
"""
|
1145 |
+
return self.fit(X, sample_weight=sample_weight)._transform(X)
|
1146 |
+
|
1147 |
+
def transform(self, X):
|
1148 |
+
"""Transform X to a cluster-distance space.
|
1149 |
+
|
1150 |
+
In the new space, each dimension is the distance to the cluster
|
1151 |
+
centers. Note that even if X is sparse, the array returned by
|
1152 |
+
`transform` will typically be dense.
|
1153 |
+
|
1154 |
+
Parameters
|
1155 |
+
----------
|
1156 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1157 |
+
New data to transform.
|
1158 |
+
|
1159 |
+
Returns
|
1160 |
+
-------
|
1161 |
+
X_new : ndarray of shape (n_samples, n_clusters)
|
1162 |
+
X transformed in the new space.
|
1163 |
+
"""
|
1164 |
+
check_is_fitted(self)
|
1165 |
+
|
1166 |
+
X = self._check_test_data(X)
|
1167 |
+
return self._transform(X)
|
1168 |
+
|
1169 |
+
def _transform(self, X):
|
1170 |
+
"""Guts of transform method; no input validation."""
|
1171 |
+
return euclidean_distances(X, self.cluster_centers_)
|
1172 |
+
|
1173 |
+
def score(self, X, y=None, sample_weight=None):
|
1174 |
+
"""Opposite of the value of X on the K-means objective.
|
1175 |
+
|
1176 |
+
Parameters
|
1177 |
+
----------
|
1178 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1179 |
+
New data.
|
1180 |
+
|
1181 |
+
y : Ignored
|
1182 |
+
Not used, present here for API consistency by convention.
|
1183 |
+
|
1184 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
1185 |
+
The weights for each observation in X. If None, all observations
|
1186 |
+
are assigned equal weight.
|
1187 |
+
|
1188 |
+
Returns
|
1189 |
+
-------
|
1190 |
+
score : float
|
1191 |
+
Opposite of the value of X on the K-means objective.
|
1192 |
+
"""
|
1193 |
+
check_is_fitted(self)
|
1194 |
+
|
1195 |
+
X = self._check_test_data(X)
|
1196 |
+
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
|
1197 |
+
|
1198 |
+
_, scores = _labels_inertia_threadpool_limit(
|
1199 |
+
X, sample_weight, self.cluster_centers_, self._n_threads
|
1200 |
+
)
|
1201 |
+
return -scores
|
1202 |
+
|
1203 |
+
def _more_tags(self):
|
1204 |
+
return {
|
1205 |
+
"_xfail_checks": {
|
1206 |
+
"check_sample_weights_invariance": (
|
1207 |
+
"zero sample_weight is not equivalent to removing samples"
|
1208 |
+
),
|
1209 |
+
},
|
1210 |
+
}
|
1211 |
+
|
1212 |
+
|
1213 |
+
class KMeans(_BaseKMeans):
|
1214 |
+
"""K-Means clustering.
|
1215 |
+
|
1216 |
+
Read more in the :ref:`User Guide <k_means>`.
|
1217 |
+
|
1218 |
+
Parameters
|
1219 |
+
----------
|
1220 |
+
|
1221 |
+
n_clusters : int, default=8
|
1222 |
+
The number of clusters to form as well as the number of
|
1223 |
+
centroids to generate.
|
1224 |
+
|
1225 |
+
For an example of how to choose an optimal value for `n_clusters` refer to
|
1226 |
+
:ref:`sphx_glr_auto_examples_cluster_plot_kmeans_silhouette_analysis.py`.
|
1227 |
+
|
1228 |
+
init : {'k-means++', 'random'}, callable or array-like of shape \
|
1229 |
+
(n_clusters, n_features), default='k-means++'
|
1230 |
+
Method for initialization:
|
1231 |
+
|
1232 |
+
* 'k-means++' : selects initial cluster centroids using sampling \
|
1233 |
+
based on an empirical probability distribution of the points' \
|
1234 |
+
contribution to the overall inertia. This technique speeds up \
|
1235 |
+
convergence. The algorithm implemented is "greedy k-means++". It \
|
1236 |
+
differs from the vanilla k-means++ by making several trials at \
|
1237 |
+
each sampling step and choosing the best centroid among them.
|
1238 |
+
|
1239 |
+
* 'random': choose `n_clusters` observations (rows) at random from \
|
1240 |
+
data for the initial centroids.
|
1241 |
+
|
1242 |
+
* If an array is passed, it should be of shape (n_clusters, n_features)\
|
1243 |
+
and gives the initial centers.
|
1244 |
+
|
1245 |
+
* If a callable is passed, it should take arguments X, n_clusters and a\
|
1246 |
+
random state and return an initialization.
|
1247 |
+
|
1248 |
+
For an example of how to use the different `init` strategy, see the example
|
1249 |
+
entitled :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_digits.py`.
|
1250 |
+
|
1251 |
+
n_init : 'auto' or int, default='auto'
|
1252 |
+
Number of times the k-means algorithm is run with different centroid
|
1253 |
+
seeds. The final results is the best output of `n_init` consecutive runs
|
1254 |
+
in terms of inertia. Several runs are recommended for sparse
|
1255 |
+
high-dimensional problems (see :ref:`kmeans_sparse_high_dim`).
|
1256 |
+
|
1257 |
+
When `n_init='auto'`, the number of runs depends on the value of init:
|
1258 |
+
10 if using `init='random'` or `init` is a callable;
|
1259 |
+
1 if using `init='k-means++'` or `init` is an array-like.
|
1260 |
+
|
1261 |
+
.. versionadded:: 1.2
|
1262 |
+
Added 'auto' option for `n_init`.
|
1263 |
+
|
1264 |
+
.. versionchanged:: 1.4
|
1265 |
+
Default value for `n_init` changed to `'auto'`.
|
1266 |
+
|
1267 |
+
max_iter : int, default=300
|
1268 |
+
Maximum number of iterations of the k-means algorithm for a
|
1269 |
+
single run.
|
1270 |
+
|
1271 |
+
tol : float, default=1e-4
|
1272 |
+
Relative tolerance with regards to Frobenius norm of the difference
|
1273 |
+
in the cluster centers of two consecutive iterations to declare
|
1274 |
+
convergence.
|
1275 |
+
|
1276 |
+
verbose : int, default=0
|
1277 |
+
Verbosity mode.
|
1278 |
+
|
1279 |
+
random_state : int, RandomState instance or None, default=None
|
1280 |
+
Determines random number generation for centroid initialization. Use
|
1281 |
+
an int to make the randomness deterministic.
|
1282 |
+
See :term:`Glossary <random_state>`.
|
1283 |
+
|
1284 |
+
copy_x : bool, default=True
|
1285 |
+
When pre-computing distances it is more numerically accurate to center
|
1286 |
+
the data first. If copy_x is True (default), then the original data is
|
1287 |
+
not modified. If False, the original data is modified, and put back
|
1288 |
+
before the function returns, but small numerical differences may be
|
1289 |
+
introduced by subtracting and then adding the data mean. Note that if
|
1290 |
+
the original data is not C-contiguous, a copy will be made even if
|
1291 |
+
copy_x is False. If the original data is sparse, but not in CSR format,
|
1292 |
+
a copy will be made even if copy_x is False.
|
1293 |
+
|
1294 |
+
algorithm : {"lloyd", "elkan"}, default="lloyd"
|
1295 |
+
K-means algorithm to use. The classical EM-style algorithm is `"lloyd"`.
|
1296 |
+
The `"elkan"` variation can be more efficient on some datasets with
|
1297 |
+
well-defined clusters, by using the triangle inequality. However it's
|
1298 |
+
more memory intensive due to the allocation of an extra array of shape
|
1299 |
+
`(n_samples, n_clusters)`.
|
1300 |
+
|
1301 |
+
.. versionchanged:: 0.18
|
1302 |
+
Added Elkan algorithm
|
1303 |
+
|
1304 |
+
.. versionchanged:: 1.1
|
1305 |
+
Renamed "full" to "lloyd", and deprecated "auto" and "full".
|
1306 |
+
Changed "auto" to use "lloyd" instead of "elkan".
|
1307 |
+
|
1308 |
+
Attributes
|
1309 |
+
----------
|
1310 |
+
cluster_centers_ : ndarray of shape (n_clusters, n_features)
|
1311 |
+
Coordinates of cluster centers. If the algorithm stops before fully
|
1312 |
+
converging (see ``tol`` and ``max_iter``), these will not be
|
1313 |
+
consistent with ``labels_``.
|
1314 |
+
|
1315 |
+
labels_ : ndarray of shape (n_samples,)
|
1316 |
+
Labels of each point
|
1317 |
+
|
1318 |
+
inertia_ : float
|
1319 |
+
Sum of squared distances of samples to their closest cluster center,
|
1320 |
+
weighted by the sample weights if provided.
|
1321 |
+
|
1322 |
+
n_iter_ : int
|
1323 |
+
Number of iterations run.
|
1324 |
+
|
1325 |
+
n_features_in_ : int
|
1326 |
+
Number of features seen during :term:`fit`.
|
1327 |
+
|
1328 |
+
.. versionadded:: 0.24
|
1329 |
+
|
1330 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1331 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1332 |
+
has feature names that are all strings.
|
1333 |
+
|
1334 |
+
.. versionadded:: 1.0
|
1335 |
+
|
1336 |
+
See Also
|
1337 |
+
--------
|
1338 |
+
MiniBatchKMeans : Alternative online implementation that does incremental
|
1339 |
+
updates of the centers positions using mini-batches.
|
1340 |
+
For large scale learning (say n_samples > 10k) MiniBatchKMeans is
|
1341 |
+
probably much faster than the default batch implementation.
|
1342 |
+
|
1343 |
+
Notes
|
1344 |
+
-----
|
1345 |
+
The k-means problem is solved using either Lloyd's or Elkan's algorithm.
|
1346 |
+
|
1347 |
+
The average complexity is given by O(k n T), where n is the number of
|
1348 |
+
samples and T is the number of iteration.
|
1349 |
+
|
1350 |
+
The worst case complexity is given by O(n^(k+2/p)) with
|
1351 |
+
n = n_samples, p = n_features.
|
1352 |
+
Refer to :doi:`"How slow is the k-means method?" D. Arthur and S. Vassilvitskii -
|
1353 |
+
SoCG2006.<10.1145/1137856.1137880>` for more details.
|
1354 |
+
|
1355 |
+
In practice, the k-means algorithm is very fast (one of the fastest
|
1356 |
+
clustering algorithms available), but it falls in local minima. That's why
|
1357 |
+
it can be useful to restart it several times.
|
1358 |
+
|
1359 |
+
If the algorithm stops before fully converging (because of ``tol`` or
|
1360 |
+
``max_iter``), ``labels_`` and ``cluster_centers_`` will not be consistent,
|
1361 |
+
i.e. the ``cluster_centers_`` will not be the means of the points in each
|
1362 |
+
cluster. Also, the estimator will reassign ``labels_`` after the last
|
1363 |
+
iteration to make ``labels_`` consistent with ``predict`` on the training
|
1364 |
+
set.
|
1365 |
+
|
1366 |
+
Examples
|
1367 |
+
--------
|
1368 |
+
|
1369 |
+
>>> from sklearn.cluster import KMeans
|
1370 |
+
>>> import numpy as np
|
1371 |
+
>>> X = np.array([[1, 2], [1, 4], [1, 0],
|
1372 |
+
... [10, 2], [10, 4], [10, 0]])
|
1373 |
+
>>> kmeans = KMeans(n_clusters=2, random_state=0, n_init="auto").fit(X)
|
1374 |
+
>>> kmeans.labels_
|
1375 |
+
array([1, 1, 1, 0, 0, 0], dtype=int32)
|
1376 |
+
>>> kmeans.predict([[0, 0], [12, 3]])
|
1377 |
+
array([1, 0], dtype=int32)
|
1378 |
+
>>> kmeans.cluster_centers_
|
1379 |
+
array([[10., 2.],
|
1380 |
+
[ 1., 2.]])
|
1381 |
+
|
1382 |
+
For a more detailed example of K-Means using the iris dataset see
|
1383 |
+
:ref:`sphx_glr_auto_examples_cluster_plot_cluster_iris.py`.
|
1384 |
+
|
1385 |
+
For examples of common problems with K-Means and how to address them see
|
1386 |
+
:ref:`sphx_glr_auto_examples_cluster_plot_kmeans_assumptions.py`.
|
1387 |
+
|
1388 |
+
For an example of how to use K-Means to perform color quantization see
|
1389 |
+
:ref:`sphx_glr_auto_examples_cluster_plot_color_quantization.py`.
|
1390 |
+
|
1391 |
+
For a demonstration of how K-Means can be used to cluster text documents see
|
1392 |
+
:ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`.
|
1393 |
+
|
1394 |
+
For a comparison between K-Means and MiniBatchKMeans refer to example
|
1395 |
+
:ref:`sphx_glr_auto_examples_cluster_plot_mini_batch_kmeans.py`.
|
1396 |
+
"""
|
1397 |
+
|
1398 |
+
_parameter_constraints: dict = {
|
1399 |
+
**_BaseKMeans._parameter_constraints,
|
1400 |
+
"copy_x": ["boolean"],
|
1401 |
+
"algorithm": [StrOptions({"lloyd", "elkan"})],
|
1402 |
+
}
|
1403 |
+
|
1404 |
+
def __init__(
|
1405 |
+
self,
|
1406 |
+
n_clusters=8,
|
1407 |
+
*,
|
1408 |
+
init="k-means++",
|
1409 |
+
n_init="auto",
|
1410 |
+
max_iter=300,
|
1411 |
+
tol=1e-4,
|
1412 |
+
verbose=0,
|
1413 |
+
random_state=None,
|
1414 |
+
copy_x=True,
|
1415 |
+
algorithm="lloyd",
|
1416 |
+
):
|
1417 |
+
super().__init__(
|
1418 |
+
n_clusters=n_clusters,
|
1419 |
+
init=init,
|
1420 |
+
n_init=n_init,
|
1421 |
+
max_iter=max_iter,
|
1422 |
+
tol=tol,
|
1423 |
+
verbose=verbose,
|
1424 |
+
random_state=random_state,
|
1425 |
+
)
|
1426 |
+
|
1427 |
+
self.copy_x = copy_x
|
1428 |
+
self.algorithm = algorithm
|
1429 |
+
|
1430 |
+
def _check_params_vs_input(self, X):
|
1431 |
+
super()._check_params_vs_input(X, default_n_init=10)
|
1432 |
+
|
1433 |
+
self._algorithm = self.algorithm
|
1434 |
+
if self._algorithm == "elkan" and self.n_clusters == 1:
|
1435 |
+
warnings.warn(
|
1436 |
+
(
|
1437 |
+
"algorithm='elkan' doesn't make sense for a single "
|
1438 |
+
"cluster. Using 'lloyd' instead."
|
1439 |
+
),
|
1440 |
+
RuntimeWarning,
|
1441 |
+
)
|
1442 |
+
self._algorithm = "lloyd"
|
1443 |
+
|
1444 |
+
def _warn_mkl_vcomp(self, n_active_threads):
|
1445 |
+
"""Warn when vcomp and mkl are both present"""
|
1446 |
+
warnings.warn(
|
1447 |
+
"KMeans is known to have a memory leak on Windows "
|
1448 |
+
"with MKL, when there are less chunks than available "
|
1449 |
+
"threads. You can avoid it by setting the environment"
|
1450 |
+
f" variable OMP_NUM_THREADS={n_active_threads}."
|
1451 |
+
)
|
1452 |
+
|
1453 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
1454 |
+
def fit(self, X, y=None, sample_weight=None):
|
1455 |
+
"""Compute k-means clustering.
|
1456 |
+
|
1457 |
+
Parameters
|
1458 |
+
----------
|
1459 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
1460 |
+
Training instances to cluster. It must be noted that the data
|
1461 |
+
will be converted to C ordering, which will cause a memory
|
1462 |
+
copy if the given data is not C-contiguous.
|
1463 |
+
If a sparse matrix is passed, a copy will be made if it's not in
|
1464 |
+
CSR format.
|
1465 |
+
|
1466 |
+
y : Ignored
|
1467 |
+
Not used, present here for API consistency by convention.
|
1468 |
+
|
1469 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
1470 |
+
The weights for each observation in X. If None, all observations
|
1471 |
+
are assigned equal weight. `sample_weight` is not used during
|
1472 |
+
initialization if `init` is a callable or a user provided array.
|
1473 |
+
|
1474 |
+
.. versionadded:: 0.20
|
1475 |
+
|
1476 |
+
Returns
|
1477 |
+
-------
|
1478 |
+
self : object
|
1479 |
+
Fitted estimator.
|
1480 |
+
"""
|
1481 |
+
X = self._validate_data(
|
1482 |
+
X,
|
1483 |
+
accept_sparse="csr",
|
1484 |
+
dtype=[np.float64, np.float32],
|
1485 |
+
order="C",
|
1486 |
+
copy=self.copy_x,
|
1487 |
+
accept_large_sparse=False,
|
1488 |
+
)
|
1489 |
+
|
1490 |
+
self._check_params_vs_input(X)
|
1491 |
+
|
1492 |
+
random_state = check_random_state(self.random_state)
|
1493 |
+
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
|
1494 |
+
self._n_threads = _openmp_effective_n_threads()
|
1495 |
+
|
1496 |
+
# Validate init array
|
1497 |
+
init = self.init
|
1498 |
+
init_is_array_like = _is_arraylike_not_scalar(init)
|
1499 |
+
if init_is_array_like:
|
1500 |
+
init = check_array(init, dtype=X.dtype, copy=True, order="C")
|
1501 |
+
self._validate_center_shape(X, init)
|
1502 |
+
|
1503 |
+
# subtract of mean of x for more accurate distance computations
|
1504 |
+
if not sp.issparse(X):
|
1505 |
+
X_mean = X.mean(axis=0)
|
1506 |
+
# The copy was already done above
|
1507 |
+
X -= X_mean
|
1508 |
+
|
1509 |
+
if init_is_array_like:
|
1510 |
+
init -= X_mean
|
1511 |
+
|
1512 |
+
# precompute squared norms of data points
|
1513 |
+
x_squared_norms = row_norms(X, squared=True)
|
1514 |
+
|
1515 |
+
if self._algorithm == "elkan":
|
1516 |
+
kmeans_single = _kmeans_single_elkan
|
1517 |
+
else:
|
1518 |
+
kmeans_single = _kmeans_single_lloyd
|
1519 |
+
self._check_mkl_vcomp(X, X.shape[0])
|
1520 |
+
|
1521 |
+
best_inertia, best_labels = None, None
|
1522 |
+
|
1523 |
+
for i in range(self._n_init):
|
1524 |
+
# Initialize centers
|
1525 |
+
centers_init = self._init_centroids(
|
1526 |
+
X,
|
1527 |
+
x_squared_norms=x_squared_norms,
|
1528 |
+
init=init,
|
1529 |
+
random_state=random_state,
|
1530 |
+
sample_weight=sample_weight,
|
1531 |
+
)
|
1532 |
+
if self.verbose:
|
1533 |
+
print("Initialization complete")
|
1534 |
+
|
1535 |
+
# run a k-means once
|
1536 |
+
labels, inertia, centers, n_iter_ = kmeans_single(
|
1537 |
+
X,
|
1538 |
+
sample_weight,
|
1539 |
+
centers_init,
|
1540 |
+
max_iter=self.max_iter,
|
1541 |
+
verbose=self.verbose,
|
1542 |
+
tol=self._tol,
|
1543 |
+
n_threads=self._n_threads,
|
1544 |
+
)
|
1545 |
+
|
1546 |
+
# determine if these results are the best so far
|
1547 |
+
# we chose a new run if it has a better inertia and the clustering is
|
1548 |
+
# different from the best so far (it's possible that the inertia is
|
1549 |
+
# slightly better even if the clustering is the same with potentially
|
1550 |
+
# permuted labels, due to rounding errors)
|
1551 |
+
if best_inertia is None or (
|
1552 |
+
inertia < best_inertia
|
1553 |
+
and not _is_same_clustering(labels, best_labels, self.n_clusters)
|
1554 |
+
):
|
1555 |
+
best_labels = labels
|
1556 |
+
best_centers = centers
|
1557 |
+
best_inertia = inertia
|
1558 |
+
best_n_iter = n_iter_
|
1559 |
+
|
1560 |
+
if not sp.issparse(X):
|
1561 |
+
if not self.copy_x:
|
1562 |
+
X += X_mean
|
1563 |
+
best_centers += X_mean
|
1564 |
+
|
1565 |
+
distinct_clusters = len(set(best_labels))
|
1566 |
+
if distinct_clusters < self.n_clusters:
|
1567 |
+
warnings.warn(
|
1568 |
+
"Number of distinct clusters ({}) found smaller than "
|
1569 |
+
"n_clusters ({}). Possibly due to duplicate points "
|
1570 |
+
"in X.".format(distinct_clusters, self.n_clusters),
|
1571 |
+
ConvergenceWarning,
|
1572 |
+
stacklevel=2,
|
1573 |
+
)
|
1574 |
+
|
1575 |
+
self.cluster_centers_ = best_centers
|
1576 |
+
self._n_features_out = self.cluster_centers_.shape[0]
|
1577 |
+
self.labels_ = best_labels
|
1578 |
+
self.inertia_ = best_inertia
|
1579 |
+
self.n_iter_ = best_n_iter
|
1580 |
+
return self
|
1581 |
+
|
1582 |
+
|
1583 |
+
def _mini_batch_step(
|
1584 |
+
X,
|
1585 |
+
sample_weight,
|
1586 |
+
centers,
|
1587 |
+
centers_new,
|
1588 |
+
weight_sums,
|
1589 |
+
random_state,
|
1590 |
+
random_reassign=False,
|
1591 |
+
reassignment_ratio=0.01,
|
1592 |
+
verbose=False,
|
1593 |
+
n_threads=1,
|
1594 |
+
):
|
1595 |
+
"""Incremental update of the centers for the Minibatch K-Means algorithm.
|
1596 |
+
|
1597 |
+
Parameters
|
1598 |
+
----------
|
1599 |
+
|
1600 |
+
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
1601 |
+
The original data array. If sparse, must be in CSR format.
|
1602 |
+
|
1603 |
+
x_squared_norms : ndarray of shape (n_samples,)
|
1604 |
+
Squared euclidean norm of each data point.
|
1605 |
+
|
1606 |
+
sample_weight : ndarray of shape (n_samples,)
|
1607 |
+
The weights for each observation in `X`.
|
1608 |
+
|
1609 |
+
centers : ndarray of shape (n_clusters, n_features)
|
1610 |
+
The cluster centers before the current iteration
|
1611 |
+
|
1612 |
+
centers_new : ndarray of shape (n_clusters, n_features)
|
1613 |
+
The cluster centers after the current iteration. Modified in-place.
|
1614 |
+
|
1615 |
+
weight_sums : ndarray of shape (n_clusters,)
|
1616 |
+
The vector in which we keep track of the numbers of points in a
|
1617 |
+
cluster. This array is modified in place.
|
1618 |
+
|
1619 |
+
random_state : RandomState instance
|
1620 |
+
Determines random number generation for low count centers reassignment.
|
1621 |
+
See :term:`Glossary <random_state>`.
|
1622 |
+
|
1623 |
+
random_reassign : boolean, default=False
|
1624 |
+
If True, centers with very low counts are randomly reassigned
|
1625 |
+
to observations.
|
1626 |
+
|
1627 |
+
reassignment_ratio : float, default=0.01
|
1628 |
+
Control the fraction of the maximum number of counts for a
|
1629 |
+
center to be reassigned. A higher value means that low count
|
1630 |
+
centers are more likely to be reassigned, which means that the
|
1631 |
+
model will take longer to converge, but should converge in a
|
1632 |
+
better clustering.
|
1633 |
+
|
1634 |
+
verbose : bool, default=False
|
1635 |
+
Controls the verbosity.
|
1636 |
+
|
1637 |
+
n_threads : int, default=1
|
1638 |
+
The number of OpenMP threads to use for the computation.
|
1639 |
+
|
1640 |
+
Returns
|
1641 |
+
-------
|
1642 |
+
inertia : float
|
1643 |
+
Sum of squared distances of samples to their closest cluster center.
|
1644 |
+
The inertia is computed after finding the labels and before updating
|
1645 |
+
the centers.
|
1646 |
+
"""
|
1647 |
+
# Perform label assignment to nearest centers
|
1648 |
+
# For better efficiency, it's better to run _mini_batch_step in a
|
1649 |
+
# threadpool_limit context than using _labels_inertia_threadpool_limit here
|
1650 |
+
labels, inertia = _labels_inertia(X, sample_weight, centers, n_threads=n_threads)
|
1651 |
+
|
1652 |
+
# Update centers according to the labels
|
1653 |
+
if sp.issparse(X):
|
1654 |
+
_minibatch_update_sparse(
|
1655 |
+
X, sample_weight, centers, centers_new, weight_sums, labels, n_threads
|
1656 |
+
)
|
1657 |
+
else:
|
1658 |
+
_minibatch_update_dense(
|
1659 |
+
X,
|
1660 |
+
sample_weight,
|
1661 |
+
centers,
|
1662 |
+
centers_new,
|
1663 |
+
weight_sums,
|
1664 |
+
labels,
|
1665 |
+
n_threads,
|
1666 |
+
)
|
1667 |
+
|
1668 |
+
# Reassign clusters that have very low weight
|
1669 |
+
if random_reassign and reassignment_ratio > 0:
|
1670 |
+
to_reassign = weight_sums < reassignment_ratio * weight_sums.max()
|
1671 |
+
|
1672 |
+
# pick at most .5 * batch_size samples as new centers
|
1673 |
+
if to_reassign.sum() > 0.5 * X.shape[0]:
|
1674 |
+
indices_dont_reassign = np.argsort(weight_sums)[int(0.5 * X.shape[0]) :]
|
1675 |
+
to_reassign[indices_dont_reassign] = False
|
1676 |
+
n_reassigns = to_reassign.sum()
|
1677 |
+
|
1678 |
+
if n_reassigns:
|
1679 |
+
# Pick new clusters amongst observations with uniform probability
|
1680 |
+
new_centers = random_state.choice(
|
1681 |
+
X.shape[0], replace=False, size=n_reassigns
|
1682 |
+
)
|
1683 |
+
if verbose:
|
1684 |
+
print(f"[MiniBatchKMeans] Reassigning {n_reassigns} cluster centers.")
|
1685 |
+
|
1686 |
+
if sp.issparse(X):
|
1687 |
+
assign_rows_csr(
|
1688 |
+
X,
|
1689 |
+
new_centers.astype(np.intp, copy=False),
|
1690 |
+
np.where(to_reassign)[0].astype(np.intp, copy=False),
|
1691 |
+
centers_new,
|
1692 |
+
)
|
1693 |
+
else:
|
1694 |
+
centers_new[to_reassign] = X[new_centers]
|
1695 |
+
|
1696 |
+
# reset counts of reassigned centers, but don't reset them too small
|
1697 |
+
# to avoid instant reassignment. This is a pretty dirty hack as it
|
1698 |
+
# also modifies the learning rates.
|
1699 |
+
weight_sums[to_reassign] = np.min(weight_sums[~to_reassign])
|
1700 |
+
|
1701 |
+
return inertia
|
1702 |
+
|
1703 |
+
|
1704 |
+
class MiniBatchKMeans(_BaseKMeans):
|
1705 |
+
"""
|
1706 |
+
Mini-Batch K-Means clustering.
|
1707 |
+
|
1708 |
+
Read more in the :ref:`User Guide <mini_batch_kmeans>`.
|
1709 |
+
|
1710 |
+
Parameters
|
1711 |
+
----------
|
1712 |
+
|
1713 |
+
n_clusters : int, default=8
|
1714 |
+
The number of clusters to form as well as the number of
|
1715 |
+
centroids to generate.
|
1716 |
+
|
1717 |
+
init : {'k-means++', 'random'}, callable or array-like of shape \
|
1718 |
+
(n_clusters, n_features), default='k-means++'
|
1719 |
+
Method for initialization:
|
1720 |
+
|
1721 |
+
'k-means++' : selects initial cluster centroids using sampling based on
|
1722 |
+
an empirical probability distribution of the points' contribution to the
|
1723 |
+
overall inertia. This technique speeds up convergence. The algorithm
|
1724 |
+
implemented is "greedy k-means++". It differs from the vanilla k-means++
|
1725 |
+
by making several trials at each sampling step and choosing the best centroid
|
1726 |
+
among them.
|
1727 |
+
|
1728 |
+
'random': choose `n_clusters` observations (rows) at random from data
|
1729 |
+
for the initial centroids.
|
1730 |
+
|
1731 |
+
If an array is passed, it should be of shape (n_clusters, n_features)
|
1732 |
+
and gives the initial centers.
|
1733 |
+
|
1734 |
+
If a callable is passed, it should take arguments X, n_clusters and a
|
1735 |
+
random state and return an initialization.
|
1736 |
+
|
1737 |
+
max_iter : int, default=100
|
1738 |
+
Maximum number of iterations over the complete dataset before
|
1739 |
+
stopping independently of any early stopping criterion heuristics.
|
1740 |
+
|
1741 |
+
batch_size : int, default=1024
|
1742 |
+
Size of the mini batches.
|
1743 |
+
For faster computations, you can set the ``batch_size`` greater than
|
1744 |
+
256 * number of cores to enable parallelism on all cores.
|
1745 |
+
|
1746 |
+
.. versionchanged:: 1.0
|
1747 |
+
`batch_size` default changed from 100 to 1024.
|
1748 |
+
|
1749 |
+
verbose : int, default=0
|
1750 |
+
Verbosity mode.
|
1751 |
+
|
1752 |
+
compute_labels : bool, default=True
|
1753 |
+
Compute label assignment and inertia for the complete dataset
|
1754 |
+
once the minibatch optimization has converged in fit.
|
1755 |
+
|
1756 |
+
random_state : int, RandomState instance or None, default=None
|
1757 |
+
Determines random number generation for centroid initialization and
|
1758 |
+
random reassignment. Use an int to make the randomness deterministic.
|
1759 |
+
See :term:`Glossary <random_state>`.
|
1760 |
+
|
1761 |
+
tol : float, default=0.0
|
1762 |
+
Control early stopping based on the relative center changes as
|
1763 |
+
measured by a smoothed, variance-normalized of the mean center
|
1764 |
+
squared position changes. This early stopping heuristics is
|
1765 |
+
closer to the one used for the batch variant of the algorithms
|
1766 |
+
but induces a slight computational and memory overhead over the
|
1767 |
+
inertia heuristic.
|
1768 |
+
|
1769 |
+
To disable convergence detection based on normalized center
|
1770 |
+
change, set tol to 0.0 (default).
|
1771 |
+
|
1772 |
+
max_no_improvement : int, default=10
|
1773 |
+
Control early stopping based on the consecutive number of mini
|
1774 |
+
batches that does not yield an improvement on the smoothed inertia.
|
1775 |
+
|
1776 |
+
To disable convergence detection based on inertia, set
|
1777 |
+
max_no_improvement to None.
|
1778 |
+
|
1779 |
+
init_size : int, default=None
|
1780 |
+
Number of samples to randomly sample for speeding up the
|
1781 |
+
initialization (sometimes at the expense of accuracy): the
|
1782 |
+
only algorithm is initialized by running a batch KMeans on a
|
1783 |
+
random subset of the data. This needs to be larger than n_clusters.
|
1784 |
+
|
1785 |
+
If `None`, the heuristic is `init_size = 3 * batch_size` if
|
1786 |
+
`3 * batch_size < n_clusters`, else `init_size = 3 * n_clusters`.
|
1787 |
+
|
1788 |
+
n_init : 'auto' or int, default="auto"
|
1789 |
+
Number of random initializations that are tried.
|
1790 |
+
In contrast to KMeans, the algorithm is only run once, using the best of
|
1791 |
+
the `n_init` initializations as measured by inertia. Several runs are
|
1792 |
+
recommended for sparse high-dimensional problems (see
|
1793 |
+
:ref:`kmeans_sparse_high_dim`).
|
1794 |
+
|
1795 |
+
When `n_init='auto'`, the number of runs depends on the value of init:
|
1796 |
+
3 if using `init='random'` or `init` is a callable;
|
1797 |
+
1 if using `init='k-means++'` or `init` is an array-like.
|
1798 |
+
|
1799 |
+
.. versionadded:: 1.2
|
1800 |
+
Added 'auto' option for `n_init`.
|
1801 |
+
|
1802 |
+
.. versionchanged:: 1.4
|
1803 |
+
Default value for `n_init` changed to `'auto'` in version.
|
1804 |
+
|
1805 |
+
reassignment_ratio : float, default=0.01
|
1806 |
+
Control the fraction of the maximum number of counts for a center to
|
1807 |
+
be reassigned. A higher value means that low count centers are more
|
1808 |
+
easily reassigned, which means that the model will take longer to
|
1809 |
+
converge, but should converge in a better clustering. However, too high
|
1810 |
+
a value may cause convergence issues, especially with a small batch
|
1811 |
+
size.
|
1812 |
+
|
1813 |
+
Attributes
|
1814 |
+
----------
|
1815 |
+
|
1816 |
+
cluster_centers_ : ndarray of shape (n_clusters, n_features)
|
1817 |
+
Coordinates of cluster centers.
|
1818 |
+
|
1819 |
+
labels_ : ndarray of shape (n_samples,)
|
1820 |
+
Labels of each point (if compute_labels is set to True).
|
1821 |
+
|
1822 |
+
inertia_ : float
|
1823 |
+
The value of the inertia criterion associated with the chosen
|
1824 |
+
partition if compute_labels is set to True. If compute_labels is set to
|
1825 |
+
False, it's an approximation of the inertia based on an exponentially
|
1826 |
+
weighted average of the batch inertiae.
|
1827 |
+
The inertia is defined as the sum of square distances of samples to
|
1828 |
+
their cluster center, weighted by the sample weights if provided.
|
1829 |
+
|
1830 |
+
n_iter_ : int
|
1831 |
+
Number of iterations over the full dataset.
|
1832 |
+
|
1833 |
+
n_steps_ : int
|
1834 |
+
Number of minibatches processed.
|
1835 |
+
|
1836 |
+
.. versionadded:: 1.0
|
1837 |
+
|
1838 |
+
n_features_in_ : int
|
1839 |
+
Number of features seen during :term:`fit`.
|
1840 |
+
|
1841 |
+
.. versionadded:: 0.24
|
1842 |
+
|
1843 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
1844 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
1845 |
+
has feature names that are all strings.
|
1846 |
+
|
1847 |
+
.. versionadded:: 1.0
|
1848 |
+
|
1849 |
+
See Also
|
1850 |
+
--------
|
1851 |
+
KMeans : The classic implementation of the clustering method based on the
|
1852 |
+
Lloyd's algorithm. It consumes the whole set of input data at each
|
1853 |
+
iteration.
|
1854 |
+
|
1855 |
+
Notes
|
1856 |
+
-----
|
1857 |
+
See https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
|
1858 |
+
|
1859 |
+
When there are too few points in the dataset, some centers may be
|
1860 |
+
duplicated, which means that a proper clustering in terms of the number
|
1861 |
+
of requesting clusters and the number of returned clusters will not
|
1862 |
+
always match. One solution is to set `reassignment_ratio=0`, which
|
1863 |
+
prevents reassignments of clusters that are too small.
|
1864 |
+
|
1865 |
+
Examples
|
1866 |
+
--------
|
1867 |
+
>>> from sklearn.cluster import MiniBatchKMeans
|
1868 |
+
>>> import numpy as np
|
1869 |
+
>>> X = np.array([[1, 2], [1, 4], [1, 0],
|
1870 |
+
... [4, 2], [4, 0], [4, 4],
|
1871 |
+
... [4, 5], [0, 1], [2, 2],
|
1872 |
+
... [3, 2], [5, 5], [1, -1]])
|
1873 |
+
>>> # manually fit on batches
|
1874 |
+
>>> kmeans = MiniBatchKMeans(n_clusters=2,
|
1875 |
+
... random_state=0,
|
1876 |
+
... batch_size=6,
|
1877 |
+
... n_init="auto")
|
1878 |
+
>>> kmeans = kmeans.partial_fit(X[0:6,:])
|
1879 |
+
>>> kmeans = kmeans.partial_fit(X[6:12,:])
|
1880 |
+
>>> kmeans.cluster_centers_
|
1881 |
+
array([[3.375, 3. ],
|
1882 |
+
[0.75 , 0.5 ]])
|
1883 |
+
>>> kmeans.predict([[0, 0], [4, 4]])
|
1884 |
+
array([1, 0], dtype=int32)
|
1885 |
+
>>> # fit on the whole data
|
1886 |
+
>>> kmeans = MiniBatchKMeans(n_clusters=2,
|
1887 |
+
... random_state=0,
|
1888 |
+
... batch_size=6,
|
1889 |
+
... max_iter=10,
|
1890 |
+
... n_init="auto").fit(X)
|
1891 |
+
>>> kmeans.cluster_centers_
|
1892 |
+
array([[3.55102041, 2.48979592],
|
1893 |
+
[1.06896552, 1. ]])
|
1894 |
+
>>> kmeans.predict([[0, 0], [4, 4]])
|
1895 |
+
array([1, 0], dtype=int32)
|
1896 |
+
"""
|
1897 |
+
|
1898 |
+
_parameter_constraints: dict = {
|
1899 |
+
**_BaseKMeans._parameter_constraints,
|
1900 |
+
"batch_size": [Interval(Integral, 1, None, closed="left")],
|
1901 |
+
"compute_labels": ["boolean"],
|
1902 |
+
"max_no_improvement": [Interval(Integral, 0, None, closed="left"), None],
|
1903 |
+
"init_size": [Interval(Integral, 1, None, closed="left"), None],
|
1904 |
+
"reassignment_ratio": [Interval(Real, 0, None, closed="left")],
|
1905 |
+
}
|
1906 |
+
|
1907 |
+
def __init__(
|
1908 |
+
self,
|
1909 |
+
n_clusters=8,
|
1910 |
+
*,
|
1911 |
+
init="k-means++",
|
1912 |
+
max_iter=100,
|
1913 |
+
batch_size=1024,
|
1914 |
+
verbose=0,
|
1915 |
+
compute_labels=True,
|
1916 |
+
random_state=None,
|
1917 |
+
tol=0.0,
|
1918 |
+
max_no_improvement=10,
|
1919 |
+
init_size=None,
|
1920 |
+
n_init="auto",
|
1921 |
+
reassignment_ratio=0.01,
|
1922 |
+
):
|
1923 |
+
super().__init__(
|
1924 |
+
n_clusters=n_clusters,
|
1925 |
+
init=init,
|
1926 |
+
max_iter=max_iter,
|
1927 |
+
verbose=verbose,
|
1928 |
+
random_state=random_state,
|
1929 |
+
tol=tol,
|
1930 |
+
n_init=n_init,
|
1931 |
+
)
|
1932 |
+
|
1933 |
+
self.max_no_improvement = max_no_improvement
|
1934 |
+
self.batch_size = batch_size
|
1935 |
+
self.compute_labels = compute_labels
|
1936 |
+
self.init_size = init_size
|
1937 |
+
self.reassignment_ratio = reassignment_ratio
|
1938 |
+
|
1939 |
+
def _check_params_vs_input(self, X):
|
1940 |
+
super()._check_params_vs_input(X, default_n_init=3)
|
1941 |
+
|
1942 |
+
self._batch_size = min(self.batch_size, X.shape[0])
|
1943 |
+
|
1944 |
+
# init_size
|
1945 |
+
self._init_size = self.init_size
|
1946 |
+
if self._init_size is None:
|
1947 |
+
self._init_size = 3 * self._batch_size
|
1948 |
+
if self._init_size < self.n_clusters:
|
1949 |
+
self._init_size = 3 * self.n_clusters
|
1950 |
+
elif self._init_size < self.n_clusters:
|
1951 |
+
warnings.warn(
|
1952 |
+
(
|
1953 |
+
f"init_size={self._init_size} should be larger than "
|
1954 |
+
f"n_clusters={self.n_clusters}. Setting it to "
|
1955 |
+
"min(3*n_clusters, n_samples)"
|
1956 |
+
),
|
1957 |
+
RuntimeWarning,
|
1958 |
+
stacklevel=2,
|
1959 |
+
)
|
1960 |
+
self._init_size = 3 * self.n_clusters
|
1961 |
+
self._init_size = min(self._init_size, X.shape[0])
|
1962 |
+
|
1963 |
+
# reassignment_ratio
|
1964 |
+
if self.reassignment_ratio < 0:
|
1965 |
+
raise ValueError(
|
1966 |
+
"reassignment_ratio should be >= 0, got "
|
1967 |
+
f"{self.reassignment_ratio} instead."
|
1968 |
+
)
|
1969 |
+
|
1970 |
+
def _warn_mkl_vcomp(self, n_active_threads):
|
1971 |
+
"""Warn when vcomp and mkl are both present"""
|
1972 |
+
warnings.warn(
|
1973 |
+
"MiniBatchKMeans is known to have a memory leak on "
|
1974 |
+
"Windows with MKL, when there are less chunks than "
|
1975 |
+
"available threads. You can prevent it by setting "
|
1976 |
+
f"batch_size >= {self._n_threads * CHUNK_SIZE} or by "
|
1977 |
+
"setting the environment variable "
|
1978 |
+
f"OMP_NUM_THREADS={n_active_threads}"
|
1979 |
+
)
|
1980 |
+
|
1981 |
+
def _mini_batch_convergence(
|
1982 |
+
self, step, n_steps, n_samples, centers_squared_diff, batch_inertia
|
1983 |
+
):
|
1984 |
+
"""Helper function to encapsulate the early stopping logic"""
|
1985 |
+
# Normalize inertia to be able to compare values when
|
1986 |
+
# batch_size changes
|
1987 |
+
batch_inertia /= self._batch_size
|
1988 |
+
|
1989 |
+
# count steps starting from 1 for user friendly verbose mode.
|
1990 |
+
step = step + 1
|
1991 |
+
|
1992 |
+
# Ignore first iteration because it's inertia from initialization.
|
1993 |
+
if step == 1:
|
1994 |
+
if self.verbose:
|
1995 |
+
print(
|
1996 |
+
f"Minibatch step {step}/{n_steps}: mean batch "
|
1997 |
+
f"inertia: {batch_inertia}"
|
1998 |
+
)
|
1999 |
+
return False
|
2000 |
+
|
2001 |
+
# Compute an Exponentially Weighted Average of the inertia to
|
2002 |
+
# monitor the convergence while discarding minibatch-local stochastic
|
2003 |
+
# variability: https://en.wikipedia.org/wiki/Moving_average
|
2004 |
+
if self._ewa_inertia is None:
|
2005 |
+
self._ewa_inertia = batch_inertia
|
2006 |
+
else:
|
2007 |
+
alpha = self._batch_size * 2.0 / (n_samples + 1)
|
2008 |
+
alpha = min(alpha, 1)
|
2009 |
+
self._ewa_inertia = self._ewa_inertia * (1 - alpha) + batch_inertia * alpha
|
2010 |
+
|
2011 |
+
# Log progress to be able to monitor convergence
|
2012 |
+
if self.verbose:
|
2013 |
+
print(
|
2014 |
+
f"Minibatch step {step}/{n_steps}: mean batch inertia: "
|
2015 |
+
f"{batch_inertia}, ewa inertia: {self._ewa_inertia}"
|
2016 |
+
)
|
2017 |
+
|
2018 |
+
# Early stopping based on absolute tolerance on squared change of
|
2019 |
+
# centers position
|
2020 |
+
if self._tol > 0.0 and centers_squared_diff <= self._tol:
|
2021 |
+
if self.verbose:
|
2022 |
+
print(f"Converged (small centers change) at step {step}/{n_steps}")
|
2023 |
+
return True
|
2024 |
+
|
2025 |
+
# Early stopping heuristic due to lack of improvement on smoothed
|
2026 |
+
# inertia
|
2027 |
+
if self._ewa_inertia_min is None or self._ewa_inertia < self._ewa_inertia_min:
|
2028 |
+
self._no_improvement = 0
|
2029 |
+
self._ewa_inertia_min = self._ewa_inertia
|
2030 |
+
else:
|
2031 |
+
self._no_improvement += 1
|
2032 |
+
|
2033 |
+
if (
|
2034 |
+
self.max_no_improvement is not None
|
2035 |
+
and self._no_improvement >= self.max_no_improvement
|
2036 |
+
):
|
2037 |
+
if self.verbose:
|
2038 |
+
print(
|
2039 |
+
"Converged (lack of improvement in inertia) at step "
|
2040 |
+
f"{step}/{n_steps}"
|
2041 |
+
)
|
2042 |
+
return True
|
2043 |
+
|
2044 |
+
return False
|
2045 |
+
|
2046 |
+
def _random_reassign(self):
|
2047 |
+
"""Check if a random reassignment needs to be done.
|
2048 |
+
|
2049 |
+
Do random reassignments each time 10 * n_clusters samples have been
|
2050 |
+
processed.
|
2051 |
+
|
2052 |
+
If there are empty clusters we always want to reassign.
|
2053 |
+
"""
|
2054 |
+
self._n_since_last_reassign += self._batch_size
|
2055 |
+
if (self._counts == 0).any() or self._n_since_last_reassign >= (
|
2056 |
+
10 * self.n_clusters
|
2057 |
+
):
|
2058 |
+
self._n_since_last_reassign = 0
|
2059 |
+
return True
|
2060 |
+
return False
|
2061 |
+
|
2062 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
2063 |
+
def fit(self, X, y=None, sample_weight=None):
|
2064 |
+
"""Compute the centroids on X by chunking it into mini-batches.
|
2065 |
+
|
2066 |
+
Parameters
|
2067 |
+
----------
|
2068 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
2069 |
+
Training instances to cluster. It must be noted that the data
|
2070 |
+
will be converted to C ordering, which will cause a memory copy
|
2071 |
+
if the given data is not C-contiguous.
|
2072 |
+
If a sparse matrix is passed, a copy will be made if it's not in
|
2073 |
+
CSR format.
|
2074 |
+
|
2075 |
+
y : Ignored
|
2076 |
+
Not used, present here for API consistency by convention.
|
2077 |
+
|
2078 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
2079 |
+
The weights for each observation in X. If None, all observations
|
2080 |
+
are assigned equal weight. `sample_weight` is not used during
|
2081 |
+
initialization if `init` is a callable or a user provided array.
|
2082 |
+
|
2083 |
+
.. versionadded:: 0.20
|
2084 |
+
|
2085 |
+
Returns
|
2086 |
+
-------
|
2087 |
+
self : object
|
2088 |
+
Fitted estimator.
|
2089 |
+
"""
|
2090 |
+
X = self._validate_data(
|
2091 |
+
X,
|
2092 |
+
accept_sparse="csr",
|
2093 |
+
dtype=[np.float64, np.float32],
|
2094 |
+
order="C",
|
2095 |
+
accept_large_sparse=False,
|
2096 |
+
)
|
2097 |
+
|
2098 |
+
self._check_params_vs_input(X)
|
2099 |
+
random_state = check_random_state(self.random_state)
|
2100 |
+
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
|
2101 |
+
self._n_threads = _openmp_effective_n_threads()
|
2102 |
+
n_samples, n_features = X.shape
|
2103 |
+
|
2104 |
+
# Validate init array
|
2105 |
+
init = self.init
|
2106 |
+
if _is_arraylike_not_scalar(init):
|
2107 |
+
init = check_array(init, dtype=X.dtype, copy=True, order="C")
|
2108 |
+
self._validate_center_shape(X, init)
|
2109 |
+
|
2110 |
+
self._check_mkl_vcomp(X, self._batch_size)
|
2111 |
+
|
2112 |
+
# precompute squared norms of data points
|
2113 |
+
x_squared_norms = row_norms(X, squared=True)
|
2114 |
+
|
2115 |
+
# Validation set for the init
|
2116 |
+
validation_indices = random_state.randint(0, n_samples, self._init_size)
|
2117 |
+
X_valid = X[validation_indices]
|
2118 |
+
sample_weight_valid = sample_weight[validation_indices]
|
2119 |
+
|
2120 |
+
# perform several inits with random subsets
|
2121 |
+
best_inertia = None
|
2122 |
+
for init_idx in range(self._n_init):
|
2123 |
+
if self.verbose:
|
2124 |
+
print(f"Init {init_idx + 1}/{self._n_init} with method {init}")
|
2125 |
+
|
2126 |
+
# Initialize the centers using only a fraction of the data as we
|
2127 |
+
# expect n_samples to be very large when using MiniBatchKMeans.
|
2128 |
+
cluster_centers = self._init_centroids(
|
2129 |
+
X,
|
2130 |
+
x_squared_norms=x_squared_norms,
|
2131 |
+
init=init,
|
2132 |
+
random_state=random_state,
|
2133 |
+
init_size=self._init_size,
|
2134 |
+
sample_weight=sample_weight,
|
2135 |
+
)
|
2136 |
+
|
2137 |
+
# Compute inertia on a validation set.
|
2138 |
+
_, inertia = _labels_inertia_threadpool_limit(
|
2139 |
+
X_valid,
|
2140 |
+
sample_weight_valid,
|
2141 |
+
cluster_centers,
|
2142 |
+
n_threads=self._n_threads,
|
2143 |
+
)
|
2144 |
+
|
2145 |
+
if self.verbose:
|
2146 |
+
print(f"Inertia for init {init_idx + 1}/{self._n_init}: {inertia}")
|
2147 |
+
if best_inertia is None or inertia < best_inertia:
|
2148 |
+
init_centers = cluster_centers
|
2149 |
+
best_inertia = inertia
|
2150 |
+
|
2151 |
+
centers = init_centers
|
2152 |
+
centers_new = np.empty_like(centers)
|
2153 |
+
|
2154 |
+
# Initialize counts
|
2155 |
+
self._counts = np.zeros(self.n_clusters, dtype=X.dtype)
|
2156 |
+
|
2157 |
+
# Attributes to monitor the convergence
|
2158 |
+
self._ewa_inertia = None
|
2159 |
+
self._ewa_inertia_min = None
|
2160 |
+
self._no_improvement = 0
|
2161 |
+
|
2162 |
+
# Initialize number of samples seen since last reassignment
|
2163 |
+
self._n_since_last_reassign = 0
|
2164 |
+
|
2165 |
+
n_steps = (self.max_iter * n_samples) // self._batch_size
|
2166 |
+
|
2167 |
+
with threadpool_limits(limits=1, user_api="blas"):
|
2168 |
+
# Perform the iterative optimization until convergence
|
2169 |
+
for i in range(n_steps):
|
2170 |
+
# Sample a minibatch from the full dataset
|
2171 |
+
minibatch_indices = random_state.randint(0, n_samples, self._batch_size)
|
2172 |
+
|
2173 |
+
# Perform the actual update step on the minibatch data
|
2174 |
+
batch_inertia = _mini_batch_step(
|
2175 |
+
X=X[minibatch_indices],
|
2176 |
+
sample_weight=sample_weight[minibatch_indices],
|
2177 |
+
centers=centers,
|
2178 |
+
centers_new=centers_new,
|
2179 |
+
weight_sums=self._counts,
|
2180 |
+
random_state=random_state,
|
2181 |
+
random_reassign=self._random_reassign(),
|
2182 |
+
reassignment_ratio=self.reassignment_ratio,
|
2183 |
+
verbose=self.verbose,
|
2184 |
+
n_threads=self._n_threads,
|
2185 |
+
)
|
2186 |
+
|
2187 |
+
if self._tol > 0.0:
|
2188 |
+
centers_squared_diff = np.sum((centers_new - centers) ** 2)
|
2189 |
+
else:
|
2190 |
+
centers_squared_diff = 0
|
2191 |
+
|
2192 |
+
centers, centers_new = centers_new, centers
|
2193 |
+
|
2194 |
+
# Monitor convergence and do early stopping if necessary
|
2195 |
+
if self._mini_batch_convergence(
|
2196 |
+
i, n_steps, n_samples, centers_squared_diff, batch_inertia
|
2197 |
+
):
|
2198 |
+
break
|
2199 |
+
|
2200 |
+
self.cluster_centers_ = centers
|
2201 |
+
self._n_features_out = self.cluster_centers_.shape[0]
|
2202 |
+
|
2203 |
+
self.n_steps_ = i + 1
|
2204 |
+
self.n_iter_ = int(np.ceil(((i + 1) * self._batch_size) / n_samples))
|
2205 |
+
|
2206 |
+
if self.compute_labels:
|
2207 |
+
self.labels_, self.inertia_ = _labels_inertia_threadpool_limit(
|
2208 |
+
X,
|
2209 |
+
sample_weight,
|
2210 |
+
self.cluster_centers_,
|
2211 |
+
n_threads=self._n_threads,
|
2212 |
+
)
|
2213 |
+
else:
|
2214 |
+
self.inertia_ = self._ewa_inertia * n_samples
|
2215 |
+
|
2216 |
+
return self
|
2217 |
+
|
2218 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
2219 |
+
def partial_fit(self, X, y=None, sample_weight=None):
|
2220 |
+
"""Update k means estimate on a single mini-batch X.
|
2221 |
+
|
2222 |
+
Parameters
|
2223 |
+
----------
|
2224 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
2225 |
+
Training instances to cluster. It must be noted that the data
|
2226 |
+
will be converted to C ordering, which will cause a memory copy
|
2227 |
+
if the given data is not C-contiguous.
|
2228 |
+
If a sparse matrix is passed, a copy will be made if it's not in
|
2229 |
+
CSR format.
|
2230 |
+
|
2231 |
+
y : Ignored
|
2232 |
+
Not used, present here for API consistency by convention.
|
2233 |
+
|
2234 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
2235 |
+
The weights for each observation in X. If None, all observations
|
2236 |
+
are assigned equal weight. `sample_weight` is not used during
|
2237 |
+
initialization if `init` is a callable or a user provided array.
|
2238 |
+
|
2239 |
+
Returns
|
2240 |
+
-------
|
2241 |
+
self : object
|
2242 |
+
Return updated estimator.
|
2243 |
+
"""
|
2244 |
+
has_centers = hasattr(self, "cluster_centers_")
|
2245 |
+
|
2246 |
+
X = self._validate_data(
|
2247 |
+
X,
|
2248 |
+
accept_sparse="csr",
|
2249 |
+
dtype=[np.float64, np.float32],
|
2250 |
+
order="C",
|
2251 |
+
accept_large_sparse=False,
|
2252 |
+
reset=not has_centers,
|
2253 |
+
)
|
2254 |
+
|
2255 |
+
self._random_state = getattr(
|
2256 |
+
self, "_random_state", check_random_state(self.random_state)
|
2257 |
+
)
|
2258 |
+
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
|
2259 |
+
self.n_steps_ = getattr(self, "n_steps_", 0)
|
2260 |
+
|
2261 |
+
# precompute squared norms of data points
|
2262 |
+
x_squared_norms = row_norms(X, squared=True)
|
2263 |
+
|
2264 |
+
if not has_centers:
|
2265 |
+
# this instance has not been fitted yet (fit or partial_fit)
|
2266 |
+
self._check_params_vs_input(X)
|
2267 |
+
self._n_threads = _openmp_effective_n_threads()
|
2268 |
+
|
2269 |
+
# Validate init array
|
2270 |
+
init = self.init
|
2271 |
+
if _is_arraylike_not_scalar(init):
|
2272 |
+
init = check_array(init, dtype=X.dtype, copy=True, order="C")
|
2273 |
+
self._validate_center_shape(X, init)
|
2274 |
+
|
2275 |
+
self._check_mkl_vcomp(X, X.shape[0])
|
2276 |
+
|
2277 |
+
# initialize the cluster centers
|
2278 |
+
self.cluster_centers_ = self._init_centroids(
|
2279 |
+
X,
|
2280 |
+
x_squared_norms=x_squared_norms,
|
2281 |
+
init=init,
|
2282 |
+
random_state=self._random_state,
|
2283 |
+
init_size=self._init_size,
|
2284 |
+
sample_weight=sample_weight,
|
2285 |
+
)
|
2286 |
+
|
2287 |
+
# Initialize counts
|
2288 |
+
self._counts = np.zeros(self.n_clusters, dtype=X.dtype)
|
2289 |
+
|
2290 |
+
# Initialize number of samples seen since last reassignment
|
2291 |
+
self._n_since_last_reassign = 0
|
2292 |
+
|
2293 |
+
with threadpool_limits(limits=1, user_api="blas"):
|
2294 |
+
_mini_batch_step(
|
2295 |
+
X,
|
2296 |
+
sample_weight=sample_weight,
|
2297 |
+
centers=self.cluster_centers_,
|
2298 |
+
centers_new=self.cluster_centers_,
|
2299 |
+
weight_sums=self._counts,
|
2300 |
+
random_state=self._random_state,
|
2301 |
+
random_reassign=self._random_reassign(),
|
2302 |
+
reassignment_ratio=self.reassignment_ratio,
|
2303 |
+
verbose=self.verbose,
|
2304 |
+
n_threads=self._n_threads,
|
2305 |
+
)
|
2306 |
+
|
2307 |
+
if self.compute_labels:
|
2308 |
+
self.labels_, self.inertia_ = _labels_inertia_threadpool_limit(
|
2309 |
+
X,
|
2310 |
+
sample_weight,
|
2311 |
+
self.cluster_centers_,
|
2312 |
+
n_threads=self._n_threads,
|
2313 |
+
)
|
2314 |
+
|
2315 |
+
self.n_steps_ += 1
|
2316 |
+
self._n_features_out = self.cluster_centers_.shape[0]
|
2317 |
+
|
2318 |
+
return self
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_mean_shift.py
ADDED
@@ -0,0 +1,575 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Mean shift clustering algorithm.
|
2 |
+
|
3 |
+
Mean shift clustering aims to discover *blobs* in a smooth density of
|
4 |
+
samples. It is a centroid based algorithm, which works by updating candidates
|
5 |
+
for centroids to be the mean of the points within a given region. These
|
6 |
+
candidates are then filtered in a post-processing stage to eliminate
|
7 |
+
near-duplicates to form the final set of centroids.
|
8 |
+
|
9 |
+
Seeding is performed using a binning technique for scalability.
|
10 |
+
"""
|
11 |
+
|
12 |
+
# Authors: Conrad Lee <[email protected]>
|
13 |
+
# Alexandre Gramfort <[email protected]>
|
14 |
+
# Gael Varoquaux <[email protected]>
|
15 |
+
# Martino Sorbaro <[email protected]>
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
from collections import defaultdict
|
19 |
+
from numbers import Integral, Real
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
from .._config import config_context
|
24 |
+
from ..base import BaseEstimator, ClusterMixin, _fit_context
|
25 |
+
from ..metrics.pairwise import pairwise_distances_argmin
|
26 |
+
from ..neighbors import NearestNeighbors
|
27 |
+
from ..utils import check_array, check_random_state, gen_batches
|
28 |
+
from ..utils._param_validation import Interval, validate_params
|
29 |
+
from ..utils.parallel import Parallel, delayed
|
30 |
+
from ..utils.validation import check_is_fitted
|
31 |
+
|
32 |
+
|
33 |
+
@validate_params(
|
34 |
+
{
|
35 |
+
"X": ["array-like"],
|
36 |
+
"quantile": [Interval(Real, 0, 1, closed="both")],
|
37 |
+
"n_samples": [Interval(Integral, 1, None, closed="left"), None],
|
38 |
+
"random_state": ["random_state"],
|
39 |
+
"n_jobs": [Integral, None],
|
40 |
+
},
|
41 |
+
prefer_skip_nested_validation=True,
|
42 |
+
)
|
43 |
+
def estimate_bandwidth(X, *, quantile=0.3, n_samples=None, random_state=0, n_jobs=None):
|
44 |
+
"""Estimate the bandwidth to use with the mean-shift algorithm.
|
45 |
+
|
46 |
+
This function takes time at least quadratic in `n_samples`. For large
|
47 |
+
datasets, it is wise to subsample by setting `n_samples`. Alternatively,
|
48 |
+
the parameter `bandwidth` can be set to a small value without estimating
|
49 |
+
it.
|
50 |
+
|
51 |
+
Parameters
|
52 |
+
----------
|
53 |
+
X : array-like of shape (n_samples, n_features)
|
54 |
+
Input points.
|
55 |
+
|
56 |
+
quantile : float, default=0.3
|
57 |
+
Should be between [0, 1]
|
58 |
+
0.5 means that the median of all pairwise distances is used.
|
59 |
+
|
60 |
+
n_samples : int, default=None
|
61 |
+
The number of samples to use. If not given, all samples are used.
|
62 |
+
|
63 |
+
random_state : int, RandomState instance, default=None
|
64 |
+
The generator used to randomly select the samples from input points
|
65 |
+
for bandwidth estimation. Use an int to make the randomness
|
66 |
+
deterministic.
|
67 |
+
See :term:`Glossary <random_state>`.
|
68 |
+
|
69 |
+
n_jobs : int, default=None
|
70 |
+
The number of parallel jobs to run for neighbors search.
|
71 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
72 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
73 |
+
for more details.
|
74 |
+
|
75 |
+
Returns
|
76 |
+
-------
|
77 |
+
bandwidth : float
|
78 |
+
The bandwidth parameter.
|
79 |
+
|
80 |
+
Examples
|
81 |
+
--------
|
82 |
+
>>> import numpy as np
|
83 |
+
>>> from sklearn.cluster import estimate_bandwidth
|
84 |
+
>>> X = np.array([[1, 1], [2, 1], [1, 0],
|
85 |
+
... [4, 7], [3, 5], [3, 6]])
|
86 |
+
>>> estimate_bandwidth(X, quantile=0.5)
|
87 |
+
1.61...
|
88 |
+
"""
|
89 |
+
X = check_array(X)
|
90 |
+
|
91 |
+
random_state = check_random_state(random_state)
|
92 |
+
if n_samples is not None:
|
93 |
+
idx = random_state.permutation(X.shape[0])[:n_samples]
|
94 |
+
X = X[idx]
|
95 |
+
n_neighbors = int(X.shape[0] * quantile)
|
96 |
+
if n_neighbors < 1: # cannot fit NearestNeighbors with n_neighbors = 0
|
97 |
+
n_neighbors = 1
|
98 |
+
nbrs = NearestNeighbors(n_neighbors=n_neighbors, n_jobs=n_jobs)
|
99 |
+
nbrs.fit(X)
|
100 |
+
|
101 |
+
bandwidth = 0.0
|
102 |
+
for batch in gen_batches(len(X), 500):
|
103 |
+
d, _ = nbrs.kneighbors(X[batch, :], return_distance=True)
|
104 |
+
bandwidth += np.max(d, axis=1).sum()
|
105 |
+
|
106 |
+
return bandwidth / X.shape[0]
|
107 |
+
|
108 |
+
|
109 |
+
# separate function for each seed's iterative loop
|
110 |
+
def _mean_shift_single_seed(my_mean, X, nbrs, max_iter):
|
111 |
+
# For each seed, climb gradient until convergence or max_iter
|
112 |
+
bandwidth = nbrs.get_params()["radius"]
|
113 |
+
stop_thresh = 1e-3 * bandwidth # when mean has converged
|
114 |
+
completed_iterations = 0
|
115 |
+
while True:
|
116 |
+
# Find mean of points within bandwidth
|
117 |
+
i_nbrs = nbrs.radius_neighbors([my_mean], bandwidth, return_distance=False)[0]
|
118 |
+
points_within = X[i_nbrs]
|
119 |
+
if len(points_within) == 0:
|
120 |
+
break # Depending on seeding strategy this condition may occur
|
121 |
+
my_old_mean = my_mean # save the old mean
|
122 |
+
my_mean = np.mean(points_within, axis=0)
|
123 |
+
# If converged or at max_iter, adds the cluster
|
124 |
+
if (
|
125 |
+
np.linalg.norm(my_mean - my_old_mean) < stop_thresh
|
126 |
+
or completed_iterations == max_iter
|
127 |
+
):
|
128 |
+
break
|
129 |
+
completed_iterations += 1
|
130 |
+
return tuple(my_mean), len(points_within), completed_iterations
|
131 |
+
|
132 |
+
|
133 |
+
@validate_params(
|
134 |
+
{"X": ["array-like"]},
|
135 |
+
prefer_skip_nested_validation=False,
|
136 |
+
)
|
137 |
+
def mean_shift(
|
138 |
+
X,
|
139 |
+
*,
|
140 |
+
bandwidth=None,
|
141 |
+
seeds=None,
|
142 |
+
bin_seeding=False,
|
143 |
+
min_bin_freq=1,
|
144 |
+
cluster_all=True,
|
145 |
+
max_iter=300,
|
146 |
+
n_jobs=None,
|
147 |
+
):
|
148 |
+
"""Perform mean shift clustering of data using a flat kernel.
|
149 |
+
|
150 |
+
Read more in the :ref:`User Guide <mean_shift>`.
|
151 |
+
|
152 |
+
Parameters
|
153 |
+
----------
|
154 |
+
|
155 |
+
X : array-like of shape (n_samples, n_features)
|
156 |
+
Input data.
|
157 |
+
|
158 |
+
bandwidth : float, default=None
|
159 |
+
Kernel bandwidth. If not None, must be in the range [0, +inf).
|
160 |
+
|
161 |
+
If None, the bandwidth is determined using a heuristic based on
|
162 |
+
the median of all pairwise distances. This will take quadratic time in
|
163 |
+
the number of samples. The sklearn.cluster.estimate_bandwidth function
|
164 |
+
can be used to do this more efficiently.
|
165 |
+
|
166 |
+
seeds : array-like of shape (n_seeds, n_features) or None
|
167 |
+
Point used as initial kernel locations. If None and bin_seeding=False,
|
168 |
+
each data point is used as a seed. If None and bin_seeding=True,
|
169 |
+
see bin_seeding.
|
170 |
+
|
171 |
+
bin_seeding : bool, default=False
|
172 |
+
If true, initial kernel locations are not locations of all
|
173 |
+
points, but rather the location of the discretized version of
|
174 |
+
points, where points are binned onto a grid whose coarseness
|
175 |
+
corresponds to the bandwidth. Setting this option to True will speed
|
176 |
+
up the algorithm because fewer seeds will be initialized.
|
177 |
+
Ignored if seeds argument is not None.
|
178 |
+
|
179 |
+
min_bin_freq : int, default=1
|
180 |
+
To speed up the algorithm, accept only those bins with at least
|
181 |
+
min_bin_freq points as seeds.
|
182 |
+
|
183 |
+
cluster_all : bool, default=True
|
184 |
+
If true, then all points are clustered, even those orphans that are
|
185 |
+
not within any kernel. Orphans are assigned to the nearest kernel.
|
186 |
+
If false, then orphans are given cluster label -1.
|
187 |
+
|
188 |
+
max_iter : int, default=300
|
189 |
+
Maximum number of iterations, per seed point before the clustering
|
190 |
+
operation terminates (for that seed point), if has not converged yet.
|
191 |
+
|
192 |
+
n_jobs : int, default=None
|
193 |
+
The number of jobs to use for the computation. The following tasks benefit
|
194 |
+
from the parallelization:
|
195 |
+
|
196 |
+
- The search of nearest neighbors for bandwidth estimation and label
|
197 |
+
assignments. See the details in the docstring of the
|
198 |
+
``NearestNeighbors`` class.
|
199 |
+
- Hill-climbing optimization for all seeds.
|
200 |
+
|
201 |
+
See :term:`Glossary <n_jobs>` for more details.
|
202 |
+
|
203 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
204 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
205 |
+
for more details.
|
206 |
+
|
207 |
+
.. versionadded:: 0.17
|
208 |
+
Parallel Execution using *n_jobs*.
|
209 |
+
|
210 |
+
Returns
|
211 |
+
-------
|
212 |
+
|
213 |
+
cluster_centers : ndarray of shape (n_clusters, n_features)
|
214 |
+
Coordinates of cluster centers.
|
215 |
+
|
216 |
+
labels : ndarray of shape (n_samples,)
|
217 |
+
Cluster labels for each point.
|
218 |
+
|
219 |
+
Notes
|
220 |
+
-----
|
221 |
+
For an example, see :ref:`examples/cluster/plot_mean_shift.py
|
222 |
+
<sphx_glr_auto_examples_cluster_plot_mean_shift.py>`.
|
223 |
+
|
224 |
+
Examples
|
225 |
+
--------
|
226 |
+
>>> import numpy as np
|
227 |
+
>>> from sklearn.cluster import mean_shift
|
228 |
+
>>> X = np.array([[1, 1], [2, 1], [1, 0],
|
229 |
+
... [4, 7], [3, 5], [3, 6]])
|
230 |
+
>>> cluster_centers, labels = mean_shift(X, bandwidth=2)
|
231 |
+
>>> cluster_centers
|
232 |
+
array([[3.33..., 6. ],
|
233 |
+
[1.33..., 0.66...]])
|
234 |
+
>>> labels
|
235 |
+
array([1, 1, 1, 0, 0, 0])
|
236 |
+
"""
|
237 |
+
model = MeanShift(
|
238 |
+
bandwidth=bandwidth,
|
239 |
+
seeds=seeds,
|
240 |
+
min_bin_freq=min_bin_freq,
|
241 |
+
bin_seeding=bin_seeding,
|
242 |
+
cluster_all=cluster_all,
|
243 |
+
n_jobs=n_jobs,
|
244 |
+
max_iter=max_iter,
|
245 |
+
).fit(X)
|
246 |
+
return model.cluster_centers_, model.labels_
|
247 |
+
|
248 |
+
|
249 |
+
def get_bin_seeds(X, bin_size, min_bin_freq=1):
|
250 |
+
"""Find seeds for mean_shift.
|
251 |
+
|
252 |
+
Finds seeds by first binning data onto a grid whose lines are
|
253 |
+
spaced bin_size apart, and then choosing those bins with at least
|
254 |
+
min_bin_freq points.
|
255 |
+
|
256 |
+
Parameters
|
257 |
+
----------
|
258 |
+
|
259 |
+
X : array-like of shape (n_samples, n_features)
|
260 |
+
Input points, the same points that will be used in mean_shift.
|
261 |
+
|
262 |
+
bin_size : float
|
263 |
+
Controls the coarseness of the binning. Smaller values lead
|
264 |
+
to more seeding (which is computationally more expensive). If you're
|
265 |
+
not sure how to set this, set it to the value of the bandwidth used
|
266 |
+
in clustering.mean_shift.
|
267 |
+
|
268 |
+
min_bin_freq : int, default=1
|
269 |
+
Only bins with at least min_bin_freq will be selected as seeds.
|
270 |
+
Raising this value decreases the number of seeds found, which
|
271 |
+
makes mean_shift computationally cheaper.
|
272 |
+
|
273 |
+
Returns
|
274 |
+
-------
|
275 |
+
bin_seeds : array-like of shape (n_samples, n_features)
|
276 |
+
Points used as initial kernel positions in clustering.mean_shift.
|
277 |
+
"""
|
278 |
+
if bin_size == 0:
|
279 |
+
return X
|
280 |
+
|
281 |
+
# Bin points
|
282 |
+
bin_sizes = defaultdict(int)
|
283 |
+
for point in X:
|
284 |
+
binned_point = np.round(point / bin_size)
|
285 |
+
bin_sizes[tuple(binned_point)] += 1
|
286 |
+
|
287 |
+
# Select only those bins as seeds which have enough members
|
288 |
+
bin_seeds = np.array(
|
289 |
+
[point for point, freq in bin_sizes.items() if freq >= min_bin_freq],
|
290 |
+
dtype=np.float32,
|
291 |
+
)
|
292 |
+
if len(bin_seeds) == len(X):
|
293 |
+
warnings.warn(
|
294 |
+
"Binning data failed with provided bin_size=%f, using data points as seeds."
|
295 |
+
% bin_size
|
296 |
+
)
|
297 |
+
return X
|
298 |
+
bin_seeds = bin_seeds * bin_size
|
299 |
+
return bin_seeds
|
300 |
+
|
301 |
+
|
302 |
+
class MeanShift(ClusterMixin, BaseEstimator):
|
303 |
+
"""Mean shift clustering using a flat kernel.
|
304 |
+
|
305 |
+
Mean shift clustering aims to discover "blobs" in a smooth density of
|
306 |
+
samples. It is a centroid-based algorithm, which works by updating
|
307 |
+
candidates for centroids to be the mean of the points within a given
|
308 |
+
region. These candidates are then filtered in a post-processing stage to
|
309 |
+
eliminate near-duplicates to form the final set of centroids.
|
310 |
+
|
311 |
+
Seeding is performed using a binning technique for scalability.
|
312 |
+
|
313 |
+
Read more in the :ref:`User Guide <mean_shift>`.
|
314 |
+
|
315 |
+
Parameters
|
316 |
+
----------
|
317 |
+
bandwidth : float, default=None
|
318 |
+
Bandwidth used in the flat kernel.
|
319 |
+
|
320 |
+
If not given, the bandwidth is estimated using
|
321 |
+
sklearn.cluster.estimate_bandwidth; see the documentation for that
|
322 |
+
function for hints on scalability (see also the Notes, below).
|
323 |
+
|
324 |
+
seeds : array-like of shape (n_samples, n_features), default=None
|
325 |
+
Seeds used to initialize kernels. If not set,
|
326 |
+
the seeds are calculated by clustering.get_bin_seeds
|
327 |
+
with bandwidth as the grid size and default values for
|
328 |
+
other parameters.
|
329 |
+
|
330 |
+
bin_seeding : bool, default=False
|
331 |
+
If true, initial kernel locations are not locations of all
|
332 |
+
points, but rather the location of the discretized version of
|
333 |
+
points, where points are binned onto a grid whose coarseness
|
334 |
+
corresponds to the bandwidth. Setting this option to True will speed
|
335 |
+
up the algorithm because fewer seeds will be initialized.
|
336 |
+
The default value is False.
|
337 |
+
Ignored if seeds argument is not None.
|
338 |
+
|
339 |
+
min_bin_freq : int, default=1
|
340 |
+
To speed up the algorithm, accept only those bins with at least
|
341 |
+
min_bin_freq points as seeds.
|
342 |
+
|
343 |
+
cluster_all : bool, default=True
|
344 |
+
If true, then all points are clustered, even those orphans that are
|
345 |
+
not within any kernel. Orphans are assigned to the nearest kernel.
|
346 |
+
If false, then orphans are given cluster label -1.
|
347 |
+
|
348 |
+
n_jobs : int, default=None
|
349 |
+
The number of jobs to use for the computation. The following tasks benefit
|
350 |
+
from the parallelization:
|
351 |
+
|
352 |
+
- The search of nearest neighbors for bandwidth estimation and label
|
353 |
+
assignments. See the details in the docstring of the
|
354 |
+
``NearestNeighbors`` class.
|
355 |
+
- Hill-climbing optimization for all seeds.
|
356 |
+
|
357 |
+
See :term:`Glossary <n_jobs>` for more details.
|
358 |
+
|
359 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
360 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
361 |
+
for more details.
|
362 |
+
|
363 |
+
max_iter : int, default=300
|
364 |
+
Maximum number of iterations, per seed point before the clustering
|
365 |
+
operation terminates (for that seed point), if has not converged yet.
|
366 |
+
|
367 |
+
.. versionadded:: 0.22
|
368 |
+
|
369 |
+
Attributes
|
370 |
+
----------
|
371 |
+
cluster_centers_ : ndarray of shape (n_clusters, n_features)
|
372 |
+
Coordinates of cluster centers.
|
373 |
+
|
374 |
+
labels_ : ndarray of shape (n_samples,)
|
375 |
+
Labels of each point.
|
376 |
+
|
377 |
+
n_iter_ : int
|
378 |
+
Maximum number of iterations performed on each seed.
|
379 |
+
|
380 |
+
.. versionadded:: 0.22
|
381 |
+
|
382 |
+
n_features_in_ : int
|
383 |
+
Number of features seen during :term:`fit`.
|
384 |
+
|
385 |
+
.. versionadded:: 0.24
|
386 |
+
|
387 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
388 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
389 |
+
has feature names that are all strings.
|
390 |
+
|
391 |
+
.. versionadded:: 1.0
|
392 |
+
|
393 |
+
See Also
|
394 |
+
--------
|
395 |
+
KMeans : K-Means clustering.
|
396 |
+
|
397 |
+
Notes
|
398 |
+
-----
|
399 |
+
|
400 |
+
Scalability:
|
401 |
+
|
402 |
+
Because this implementation uses a flat kernel and
|
403 |
+
a Ball Tree to look up members of each kernel, the complexity will tend
|
404 |
+
towards O(T*n*log(n)) in lower dimensions, with n the number of samples
|
405 |
+
and T the number of points. In higher dimensions the complexity will
|
406 |
+
tend towards O(T*n^2).
|
407 |
+
|
408 |
+
Scalability can be boosted by using fewer seeds, for example by using
|
409 |
+
a higher value of min_bin_freq in the get_bin_seeds function.
|
410 |
+
|
411 |
+
Note that the estimate_bandwidth function is much less scalable than the
|
412 |
+
mean shift algorithm and will be the bottleneck if it is used.
|
413 |
+
|
414 |
+
References
|
415 |
+
----------
|
416 |
+
|
417 |
+
Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward
|
418 |
+
feature space analysis". IEEE Transactions on Pattern Analysis and
|
419 |
+
Machine Intelligence. 2002. pp. 603-619.
|
420 |
+
|
421 |
+
Examples
|
422 |
+
--------
|
423 |
+
>>> from sklearn.cluster import MeanShift
|
424 |
+
>>> import numpy as np
|
425 |
+
>>> X = np.array([[1, 1], [2, 1], [1, 0],
|
426 |
+
... [4, 7], [3, 5], [3, 6]])
|
427 |
+
>>> clustering = MeanShift(bandwidth=2).fit(X)
|
428 |
+
>>> clustering.labels_
|
429 |
+
array([1, 1, 1, 0, 0, 0])
|
430 |
+
>>> clustering.predict([[0, 0], [5, 5]])
|
431 |
+
array([1, 0])
|
432 |
+
>>> clustering
|
433 |
+
MeanShift(bandwidth=2)
|
434 |
+
"""
|
435 |
+
|
436 |
+
_parameter_constraints: dict = {
|
437 |
+
"bandwidth": [Interval(Real, 0, None, closed="neither"), None],
|
438 |
+
"seeds": ["array-like", None],
|
439 |
+
"bin_seeding": ["boolean"],
|
440 |
+
"min_bin_freq": [Interval(Integral, 1, None, closed="left")],
|
441 |
+
"cluster_all": ["boolean"],
|
442 |
+
"n_jobs": [Integral, None],
|
443 |
+
"max_iter": [Interval(Integral, 0, None, closed="left")],
|
444 |
+
}
|
445 |
+
|
446 |
+
def __init__(
|
447 |
+
self,
|
448 |
+
*,
|
449 |
+
bandwidth=None,
|
450 |
+
seeds=None,
|
451 |
+
bin_seeding=False,
|
452 |
+
min_bin_freq=1,
|
453 |
+
cluster_all=True,
|
454 |
+
n_jobs=None,
|
455 |
+
max_iter=300,
|
456 |
+
):
|
457 |
+
self.bandwidth = bandwidth
|
458 |
+
self.seeds = seeds
|
459 |
+
self.bin_seeding = bin_seeding
|
460 |
+
self.cluster_all = cluster_all
|
461 |
+
self.min_bin_freq = min_bin_freq
|
462 |
+
self.n_jobs = n_jobs
|
463 |
+
self.max_iter = max_iter
|
464 |
+
|
465 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
466 |
+
def fit(self, X, y=None):
|
467 |
+
"""Perform clustering.
|
468 |
+
|
469 |
+
Parameters
|
470 |
+
----------
|
471 |
+
X : array-like of shape (n_samples, n_features)
|
472 |
+
Samples to cluster.
|
473 |
+
|
474 |
+
y : Ignored
|
475 |
+
Not used, present for API consistency by convention.
|
476 |
+
|
477 |
+
Returns
|
478 |
+
-------
|
479 |
+
self : object
|
480 |
+
Fitted instance.
|
481 |
+
"""
|
482 |
+
X = self._validate_data(X)
|
483 |
+
bandwidth = self.bandwidth
|
484 |
+
if bandwidth is None:
|
485 |
+
bandwidth = estimate_bandwidth(X, n_jobs=self.n_jobs)
|
486 |
+
|
487 |
+
seeds = self.seeds
|
488 |
+
if seeds is None:
|
489 |
+
if self.bin_seeding:
|
490 |
+
seeds = get_bin_seeds(X, bandwidth, self.min_bin_freq)
|
491 |
+
else:
|
492 |
+
seeds = X
|
493 |
+
n_samples, n_features = X.shape
|
494 |
+
center_intensity_dict = {}
|
495 |
+
|
496 |
+
# We use n_jobs=1 because this will be used in nested calls under
|
497 |
+
# parallel calls to _mean_shift_single_seed so there is no need for
|
498 |
+
# for further parallelism.
|
499 |
+
nbrs = NearestNeighbors(radius=bandwidth, n_jobs=1).fit(X)
|
500 |
+
|
501 |
+
# execute iterations on all seeds in parallel
|
502 |
+
all_res = Parallel(n_jobs=self.n_jobs)(
|
503 |
+
delayed(_mean_shift_single_seed)(seed, X, nbrs, self.max_iter)
|
504 |
+
for seed in seeds
|
505 |
+
)
|
506 |
+
# copy results in a dictionary
|
507 |
+
for i in range(len(seeds)):
|
508 |
+
if all_res[i][1]: # i.e. len(points_within) > 0
|
509 |
+
center_intensity_dict[all_res[i][0]] = all_res[i][1]
|
510 |
+
|
511 |
+
self.n_iter_ = max([x[2] for x in all_res])
|
512 |
+
|
513 |
+
if not center_intensity_dict:
|
514 |
+
# nothing near seeds
|
515 |
+
raise ValueError(
|
516 |
+
"No point was within bandwidth=%f of any seed. Try a different seeding"
|
517 |
+
" strategy or increase the bandwidth."
|
518 |
+
% bandwidth
|
519 |
+
)
|
520 |
+
|
521 |
+
# POST PROCESSING: remove near duplicate points
|
522 |
+
# If the distance between two kernels is less than the bandwidth,
|
523 |
+
# then we have to remove one because it is a duplicate. Remove the
|
524 |
+
# one with fewer points.
|
525 |
+
|
526 |
+
sorted_by_intensity = sorted(
|
527 |
+
center_intensity_dict.items(),
|
528 |
+
key=lambda tup: (tup[1], tup[0]),
|
529 |
+
reverse=True,
|
530 |
+
)
|
531 |
+
sorted_centers = np.array([tup[0] for tup in sorted_by_intensity])
|
532 |
+
unique = np.ones(len(sorted_centers), dtype=bool)
|
533 |
+
nbrs = NearestNeighbors(radius=bandwidth, n_jobs=self.n_jobs).fit(
|
534 |
+
sorted_centers
|
535 |
+
)
|
536 |
+
for i, center in enumerate(sorted_centers):
|
537 |
+
if unique[i]:
|
538 |
+
neighbor_idxs = nbrs.radius_neighbors([center], return_distance=False)[
|
539 |
+
0
|
540 |
+
]
|
541 |
+
unique[neighbor_idxs] = 0
|
542 |
+
unique[i] = 1 # leave the current point as unique
|
543 |
+
cluster_centers = sorted_centers[unique]
|
544 |
+
|
545 |
+
# ASSIGN LABELS: a point belongs to the cluster that it is closest to
|
546 |
+
nbrs = NearestNeighbors(n_neighbors=1, n_jobs=self.n_jobs).fit(cluster_centers)
|
547 |
+
labels = np.zeros(n_samples, dtype=int)
|
548 |
+
distances, idxs = nbrs.kneighbors(X)
|
549 |
+
if self.cluster_all:
|
550 |
+
labels = idxs.flatten()
|
551 |
+
else:
|
552 |
+
labels.fill(-1)
|
553 |
+
bool_selector = distances.flatten() <= bandwidth
|
554 |
+
labels[bool_selector] = idxs.flatten()[bool_selector]
|
555 |
+
|
556 |
+
self.cluster_centers_, self.labels_ = cluster_centers, labels
|
557 |
+
return self
|
558 |
+
|
559 |
+
def predict(self, X):
|
560 |
+
"""Predict the closest cluster each sample in X belongs to.
|
561 |
+
|
562 |
+
Parameters
|
563 |
+
----------
|
564 |
+
X : array-like of shape (n_samples, n_features)
|
565 |
+
New data to predict.
|
566 |
+
|
567 |
+
Returns
|
568 |
+
-------
|
569 |
+
labels : ndarray of shape (n_samples,)
|
570 |
+
Index of the cluster each sample belongs to.
|
571 |
+
"""
|
572 |
+
check_is_fitted(self)
|
573 |
+
X = self._validate_data(X, reset=False)
|
574 |
+
with config_context(assume_finite=True):
|
575 |
+
return pairwise_distances_argmin(X, self.cluster_centers_)
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_optics.py
ADDED
@@ -0,0 +1,1199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Ordering Points To Identify the Clustering Structure (OPTICS)
|
2 |
+
|
3 |
+
These routines execute the OPTICS algorithm, and implement various
|
4 |
+
cluster extraction methods of the ordered list.
|
5 |
+
|
6 |
+
Authors: Shane Grigsby <[email protected]>
|
7 |
+
Adrin Jalali <[email protected]>
|
8 |
+
Erich Schubert <[email protected]>
|
9 |
+
Hanmin Qin <[email protected]>
|
10 |
+
License: BSD 3 clause
|
11 |
+
"""
|
12 |
+
|
13 |
+
import warnings
|
14 |
+
from numbers import Integral, Real
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
from scipy.sparse import SparseEfficiencyWarning, issparse
|
18 |
+
|
19 |
+
from ..base import BaseEstimator, ClusterMixin, _fit_context
|
20 |
+
from ..exceptions import DataConversionWarning
|
21 |
+
from ..metrics import pairwise_distances
|
22 |
+
from ..metrics.pairwise import _VALID_METRICS, PAIRWISE_BOOLEAN_FUNCTIONS
|
23 |
+
from ..neighbors import NearestNeighbors
|
24 |
+
from ..utils import gen_batches, get_chunk_n_rows
|
25 |
+
from ..utils._param_validation import (
|
26 |
+
HasMethods,
|
27 |
+
Interval,
|
28 |
+
RealNotInt,
|
29 |
+
StrOptions,
|
30 |
+
validate_params,
|
31 |
+
)
|
32 |
+
from ..utils.validation import check_memory
|
33 |
+
|
34 |
+
|
35 |
+
class OPTICS(ClusterMixin, BaseEstimator):
|
36 |
+
"""Estimate clustering structure from vector array.
|
37 |
+
|
38 |
+
OPTICS (Ordering Points To Identify the Clustering Structure), closely
|
39 |
+
related to DBSCAN, finds core sample of high density and expands clusters
|
40 |
+
from them [1]_. Unlike DBSCAN, keeps cluster hierarchy for a variable
|
41 |
+
neighborhood radius. Better suited for usage on large datasets than the
|
42 |
+
current sklearn implementation of DBSCAN.
|
43 |
+
|
44 |
+
Clusters are then extracted using a DBSCAN-like method
|
45 |
+
(cluster_method = 'dbscan') or an automatic
|
46 |
+
technique proposed in [1]_ (cluster_method = 'xi').
|
47 |
+
|
48 |
+
This implementation deviates from the original OPTICS by first performing
|
49 |
+
k-nearest-neighborhood searches on all points to identify core sizes, then
|
50 |
+
computing only the distances to unprocessed points when constructing the
|
51 |
+
cluster order. Note that we do not employ a heap to manage the expansion
|
52 |
+
candidates, so the time complexity will be O(n^2).
|
53 |
+
|
54 |
+
Read more in the :ref:`User Guide <optics>`.
|
55 |
+
|
56 |
+
Parameters
|
57 |
+
----------
|
58 |
+
min_samples : int > 1 or float between 0 and 1, default=5
|
59 |
+
The number of samples in a neighborhood for a point to be considered as
|
60 |
+
a core point. Also, up and down steep regions can't have more than
|
61 |
+
``min_samples`` consecutive non-steep points. Expressed as an absolute
|
62 |
+
number or a fraction of the number of samples (rounded to be at least
|
63 |
+
2).
|
64 |
+
|
65 |
+
max_eps : float, default=np.inf
|
66 |
+
The maximum distance between two samples for one to be considered as
|
67 |
+
in the neighborhood of the other. Default value of ``np.inf`` will
|
68 |
+
identify clusters across all scales; reducing ``max_eps`` will result
|
69 |
+
in shorter run times.
|
70 |
+
|
71 |
+
metric : str or callable, default='minkowski'
|
72 |
+
Metric to use for distance computation. Any metric from scikit-learn
|
73 |
+
or scipy.spatial.distance can be used.
|
74 |
+
|
75 |
+
If metric is a callable function, it is called on each
|
76 |
+
pair of instances (rows) and the resulting value recorded. The callable
|
77 |
+
should take two arrays as input and return one value indicating the
|
78 |
+
distance between them. This works for Scipy's metrics, but is less
|
79 |
+
efficient than passing the metric name as a string. If metric is
|
80 |
+
"precomputed", `X` is assumed to be a distance matrix and must be
|
81 |
+
square.
|
82 |
+
|
83 |
+
Valid values for metric are:
|
84 |
+
|
85 |
+
- from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
|
86 |
+
'manhattan']
|
87 |
+
|
88 |
+
- from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
|
89 |
+
'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
|
90 |
+
'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao',
|
91 |
+
'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
|
92 |
+
'yule']
|
93 |
+
|
94 |
+
Sparse matrices are only supported by scikit-learn metrics.
|
95 |
+
See the documentation for scipy.spatial.distance for details on these
|
96 |
+
metrics.
|
97 |
+
|
98 |
+
.. note::
|
99 |
+
`'kulsinski'` is deprecated from SciPy 1.9 and will removed in SciPy 1.11.
|
100 |
+
|
101 |
+
p : float, default=2
|
102 |
+
Parameter for the Minkowski metric from
|
103 |
+
:class:`~sklearn.metrics.pairwise_distances`. When p = 1, this is
|
104 |
+
equivalent to using manhattan_distance (l1), and euclidean_distance
|
105 |
+
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
|
106 |
+
|
107 |
+
metric_params : dict, default=None
|
108 |
+
Additional keyword arguments for the metric function.
|
109 |
+
|
110 |
+
cluster_method : str, default='xi'
|
111 |
+
The extraction method used to extract clusters using the calculated
|
112 |
+
reachability and ordering. Possible values are "xi" and "dbscan".
|
113 |
+
|
114 |
+
eps : float, default=None
|
115 |
+
The maximum distance between two samples for one to be considered as
|
116 |
+
in the neighborhood of the other. By default it assumes the same value
|
117 |
+
as ``max_eps``.
|
118 |
+
Used only when ``cluster_method='dbscan'``.
|
119 |
+
|
120 |
+
xi : float between 0 and 1, default=0.05
|
121 |
+
Determines the minimum steepness on the reachability plot that
|
122 |
+
constitutes a cluster boundary. For example, an upwards point in the
|
123 |
+
reachability plot is defined by the ratio from one point to its
|
124 |
+
successor being at most 1-xi.
|
125 |
+
Used only when ``cluster_method='xi'``.
|
126 |
+
|
127 |
+
predecessor_correction : bool, default=True
|
128 |
+
Correct clusters according to the predecessors calculated by OPTICS
|
129 |
+
[2]_. This parameter has minimal effect on most datasets.
|
130 |
+
Used only when ``cluster_method='xi'``.
|
131 |
+
|
132 |
+
min_cluster_size : int > 1 or float between 0 and 1, default=None
|
133 |
+
Minimum number of samples in an OPTICS cluster, expressed as an
|
134 |
+
absolute number or a fraction of the number of samples (rounded to be
|
135 |
+
at least 2). If ``None``, the value of ``min_samples`` is used instead.
|
136 |
+
Used only when ``cluster_method='xi'``.
|
137 |
+
|
138 |
+
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
|
139 |
+
Algorithm used to compute the nearest neighbors:
|
140 |
+
|
141 |
+
- 'ball_tree' will use :class:`~sklearn.neighbors.BallTree`.
|
142 |
+
- 'kd_tree' will use :class:`~sklearn.neighbors.KDTree`.
|
143 |
+
- 'brute' will use a brute-force search.
|
144 |
+
- 'auto' (default) will attempt to decide the most appropriate
|
145 |
+
algorithm based on the values passed to :meth:`fit` method.
|
146 |
+
|
147 |
+
Note: fitting on sparse input will override the setting of
|
148 |
+
this parameter, using brute force.
|
149 |
+
|
150 |
+
leaf_size : int, default=30
|
151 |
+
Leaf size passed to :class:`~sklearn.neighbors.BallTree` or
|
152 |
+
:class:`~sklearn.neighbors.KDTree`. This can affect the speed of the
|
153 |
+
construction and query, as well as the memory required to store the
|
154 |
+
tree. The optimal value depends on the nature of the problem.
|
155 |
+
|
156 |
+
memory : str or object with the joblib.Memory interface, default=None
|
157 |
+
Used to cache the output of the computation of the tree.
|
158 |
+
By default, no caching is done. If a string is given, it is the
|
159 |
+
path to the caching directory.
|
160 |
+
|
161 |
+
n_jobs : int, default=None
|
162 |
+
The number of parallel jobs to run for neighbors search.
|
163 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
164 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
165 |
+
for more details.
|
166 |
+
|
167 |
+
Attributes
|
168 |
+
----------
|
169 |
+
labels_ : ndarray of shape (n_samples,)
|
170 |
+
Cluster labels for each point in the dataset given to fit().
|
171 |
+
Noisy samples and points which are not included in a leaf cluster
|
172 |
+
of ``cluster_hierarchy_`` are labeled as -1.
|
173 |
+
|
174 |
+
reachability_ : ndarray of shape (n_samples,)
|
175 |
+
Reachability distances per sample, indexed by object order. Use
|
176 |
+
``clust.reachability_[clust.ordering_]`` to access in cluster order.
|
177 |
+
|
178 |
+
ordering_ : ndarray of shape (n_samples,)
|
179 |
+
The cluster ordered list of sample indices.
|
180 |
+
|
181 |
+
core_distances_ : ndarray of shape (n_samples,)
|
182 |
+
Distance at which each sample becomes a core point, indexed by object
|
183 |
+
order. Points which will never be core have a distance of inf. Use
|
184 |
+
``clust.core_distances_[clust.ordering_]`` to access in cluster order.
|
185 |
+
|
186 |
+
predecessor_ : ndarray of shape (n_samples,)
|
187 |
+
Point that a sample was reached from, indexed by object order.
|
188 |
+
Seed points have a predecessor of -1.
|
189 |
+
|
190 |
+
cluster_hierarchy_ : ndarray of shape (n_clusters, 2)
|
191 |
+
The list of clusters in the form of ``[start, end]`` in each row, with
|
192 |
+
all indices inclusive. The clusters are ordered according to
|
193 |
+
``(end, -start)`` (ascending) so that larger clusters encompassing
|
194 |
+
smaller clusters come after those smaller ones. Since ``labels_`` does
|
195 |
+
not reflect the hierarchy, usually
|
196 |
+
``len(cluster_hierarchy_) > np.unique(optics.labels_)``. Please also
|
197 |
+
note that these indices are of the ``ordering_``, i.e.
|
198 |
+
``X[ordering_][start:end + 1]`` form a cluster.
|
199 |
+
Only available when ``cluster_method='xi'``.
|
200 |
+
|
201 |
+
n_features_in_ : int
|
202 |
+
Number of features seen during :term:`fit`.
|
203 |
+
|
204 |
+
.. versionadded:: 0.24
|
205 |
+
|
206 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
207 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
208 |
+
has feature names that are all strings.
|
209 |
+
|
210 |
+
.. versionadded:: 1.0
|
211 |
+
|
212 |
+
See Also
|
213 |
+
--------
|
214 |
+
DBSCAN : A similar clustering for a specified neighborhood radius (eps).
|
215 |
+
Our implementation is optimized for runtime.
|
216 |
+
|
217 |
+
References
|
218 |
+
----------
|
219 |
+
.. [1] Ankerst, Mihael, Markus M. Breunig, Hans-Peter Kriegel,
|
220 |
+
and Jörg Sander. "OPTICS: ordering points to identify the clustering
|
221 |
+
structure." ACM SIGMOD Record 28, no. 2 (1999): 49-60.
|
222 |
+
|
223 |
+
.. [2] Schubert, Erich, Michael Gertz.
|
224 |
+
"Improving the Cluster Structure Extracted from OPTICS Plots." Proc. of
|
225 |
+
the Conference "Lernen, Wissen, Daten, Analysen" (LWDA) (2018): 318-329.
|
226 |
+
|
227 |
+
Examples
|
228 |
+
--------
|
229 |
+
>>> from sklearn.cluster import OPTICS
|
230 |
+
>>> import numpy as np
|
231 |
+
>>> X = np.array([[1, 2], [2, 5], [3, 6],
|
232 |
+
... [8, 7], [8, 8], [7, 3]])
|
233 |
+
>>> clustering = OPTICS(min_samples=2).fit(X)
|
234 |
+
>>> clustering.labels_
|
235 |
+
array([0, 0, 0, 1, 1, 1])
|
236 |
+
|
237 |
+
For a more detailed example see
|
238 |
+
:ref:`sphx_glr_auto_examples_cluster_plot_optics.py`.
|
239 |
+
"""
|
240 |
+
|
241 |
+
_parameter_constraints: dict = {
|
242 |
+
"min_samples": [
|
243 |
+
Interval(Integral, 2, None, closed="left"),
|
244 |
+
Interval(RealNotInt, 0, 1, closed="both"),
|
245 |
+
],
|
246 |
+
"max_eps": [Interval(Real, 0, None, closed="both")],
|
247 |
+
"metric": [StrOptions(set(_VALID_METRICS) | {"precomputed"}), callable],
|
248 |
+
"p": [Interval(Real, 1, None, closed="left")],
|
249 |
+
"metric_params": [dict, None],
|
250 |
+
"cluster_method": [StrOptions({"dbscan", "xi"})],
|
251 |
+
"eps": [Interval(Real, 0, None, closed="both"), None],
|
252 |
+
"xi": [Interval(Real, 0, 1, closed="both")],
|
253 |
+
"predecessor_correction": ["boolean"],
|
254 |
+
"min_cluster_size": [
|
255 |
+
Interval(Integral, 2, None, closed="left"),
|
256 |
+
Interval(RealNotInt, 0, 1, closed="right"),
|
257 |
+
None,
|
258 |
+
],
|
259 |
+
"algorithm": [StrOptions({"auto", "brute", "ball_tree", "kd_tree"})],
|
260 |
+
"leaf_size": [Interval(Integral, 1, None, closed="left")],
|
261 |
+
"memory": [str, HasMethods("cache"), None],
|
262 |
+
"n_jobs": [Integral, None],
|
263 |
+
}
|
264 |
+
|
265 |
+
def __init__(
|
266 |
+
self,
|
267 |
+
*,
|
268 |
+
min_samples=5,
|
269 |
+
max_eps=np.inf,
|
270 |
+
metric="minkowski",
|
271 |
+
p=2,
|
272 |
+
metric_params=None,
|
273 |
+
cluster_method="xi",
|
274 |
+
eps=None,
|
275 |
+
xi=0.05,
|
276 |
+
predecessor_correction=True,
|
277 |
+
min_cluster_size=None,
|
278 |
+
algorithm="auto",
|
279 |
+
leaf_size=30,
|
280 |
+
memory=None,
|
281 |
+
n_jobs=None,
|
282 |
+
):
|
283 |
+
self.max_eps = max_eps
|
284 |
+
self.min_samples = min_samples
|
285 |
+
self.min_cluster_size = min_cluster_size
|
286 |
+
self.algorithm = algorithm
|
287 |
+
self.metric = metric
|
288 |
+
self.metric_params = metric_params
|
289 |
+
self.p = p
|
290 |
+
self.leaf_size = leaf_size
|
291 |
+
self.cluster_method = cluster_method
|
292 |
+
self.eps = eps
|
293 |
+
self.xi = xi
|
294 |
+
self.predecessor_correction = predecessor_correction
|
295 |
+
self.memory = memory
|
296 |
+
self.n_jobs = n_jobs
|
297 |
+
|
298 |
+
@_fit_context(
|
299 |
+
# Optics.metric is not validated yet
|
300 |
+
prefer_skip_nested_validation=False
|
301 |
+
)
|
302 |
+
def fit(self, X, y=None):
|
303 |
+
"""Perform OPTICS clustering.
|
304 |
+
|
305 |
+
Extracts an ordered list of points and reachability distances, and
|
306 |
+
performs initial clustering using ``max_eps`` distance specified at
|
307 |
+
OPTICS object instantiation.
|
308 |
+
|
309 |
+
Parameters
|
310 |
+
----------
|
311 |
+
X : {ndarray, sparse matrix} of shape (n_samples, n_features), or \
|
312 |
+
(n_samples, n_samples) if metric='precomputed'
|
313 |
+
A feature array, or array of distances between samples if
|
314 |
+
metric='precomputed'. If a sparse matrix is provided, it will be
|
315 |
+
converted into CSR format.
|
316 |
+
|
317 |
+
y : Ignored
|
318 |
+
Not used, present for API consistency by convention.
|
319 |
+
|
320 |
+
Returns
|
321 |
+
-------
|
322 |
+
self : object
|
323 |
+
Returns a fitted instance of self.
|
324 |
+
"""
|
325 |
+
dtype = bool if self.metric in PAIRWISE_BOOLEAN_FUNCTIONS else float
|
326 |
+
if dtype == bool and X.dtype != bool:
|
327 |
+
msg = (
|
328 |
+
"Data will be converted to boolean for"
|
329 |
+
f" metric {self.metric}, to avoid this warning,"
|
330 |
+
" you may convert the data prior to calling fit."
|
331 |
+
)
|
332 |
+
warnings.warn(msg, DataConversionWarning)
|
333 |
+
|
334 |
+
X = self._validate_data(X, dtype=dtype, accept_sparse="csr")
|
335 |
+
if self.metric == "precomputed" and issparse(X):
|
336 |
+
with warnings.catch_warnings():
|
337 |
+
warnings.simplefilter("ignore", SparseEfficiencyWarning)
|
338 |
+
# Set each diagonal to an explicit value so each point is its
|
339 |
+
# own neighbor
|
340 |
+
X.setdiag(X.diagonal())
|
341 |
+
memory = check_memory(self.memory)
|
342 |
+
|
343 |
+
(
|
344 |
+
self.ordering_,
|
345 |
+
self.core_distances_,
|
346 |
+
self.reachability_,
|
347 |
+
self.predecessor_,
|
348 |
+
) = memory.cache(compute_optics_graph)(
|
349 |
+
X=X,
|
350 |
+
min_samples=self.min_samples,
|
351 |
+
algorithm=self.algorithm,
|
352 |
+
leaf_size=self.leaf_size,
|
353 |
+
metric=self.metric,
|
354 |
+
metric_params=self.metric_params,
|
355 |
+
p=self.p,
|
356 |
+
n_jobs=self.n_jobs,
|
357 |
+
max_eps=self.max_eps,
|
358 |
+
)
|
359 |
+
|
360 |
+
# Extract clusters from the calculated orders and reachability
|
361 |
+
if self.cluster_method == "xi":
|
362 |
+
labels_, clusters_ = cluster_optics_xi(
|
363 |
+
reachability=self.reachability_,
|
364 |
+
predecessor=self.predecessor_,
|
365 |
+
ordering=self.ordering_,
|
366 |
+
min_samples=self.min_samples,
|
367 |
+
min_cluster_size=self.min_cluster_size,
|
368 |
+
xi=self.xi,
|
369 |
+
predecessor_correction=self.predecessor_correction,
|
370 |
+
)
|
371 |
+
self.cluster_hierarchy_ = clusters_
|
372 |
+
elif self.cluster_method == "dbscan":
|
373 |
+
if self.eps is None:
|
374 |
+
eps = self.max_eps
|
375 |
+
else:
|
376 |
+
eps = self.eps
|
377 |
+
|
378 |
+
if eps > self.max_eps:
|
379 |
+
raise ValueError(
|
380 |
+
"Specify an epsilon smaller than %s. Got %s." % (self.max_eps, eps)
|
381 |
+
)
|
382 |
+
|
383 |
+
labels_ = cluster_optics_dbscan(
|
384 |
+
reachability=self.reachability_,
|
385 |
+
core_distances=self.core_distances_,
|
386 |
+
ordering=self.ordering_,
|
387 |
+
eps=eps,
|
388 |
+
)
|
389 |
+
|
390 |
+
self.labels_ = labels_
|
391 |
+
return self
|
392 |
+
|
393 |
+
|
394 |
+
def _validate_size(size, n_samples, param_name):
|
395 |
+
if size > n_samples:
|
396 |
+
raise ValueError(
|
397 |
+
"%s must be no greater than the number of samples (%d). Got %d"
|
398 |
+
% (param_name, n_samples, size)
|
399 |
+
)
|
400 |
+
|
401 |
+
|
402 |
+
# OPTICS helper functions
|
403 |
+
def _compute_core_distances_(X, neighbors, min_samples, working_memory):
|
404 |
+
"""Compute the k-th nearest neighbor of each sample.
|
405 |
+
|
406 |
+
Equivalent to neighbors.kneighbors(X, self.min_samples)[0][:, -1]
|
407 |
+
but with more memory efficiency.
|
408 |
+
|
409 |
+
Parameters
|
410 |
+
----------
|
411 |
+
X : array-like of shape (n_samples, n_features)
|
412 |
+
The data.
|
413 |
+
neighbors : NearestNeighbors instance
|
414 |
+
The fitted nearest neighbors estimator.
|
415 |
+
working_memory : int, default=None
|
416 |
+
The sought maximum memory for temporary distance matrix chunks.
|
417 |
+
When None (default), the value of
|
418 |
+
``sklearn.get_config()['working_memory']`` is used.
|
419 |
+
|
420 |
+
Returns
|
421 |
+
-------
|
422 |
+
core_distances : ndarray of shape (n_samples,)
|
423 |
+
Distance at which each sample becomes a core point.
|
424 |
+
Points which will never be core have a distance of inf.
|
425 |
+
"""
|
426 |
+
n_samples = X.shape[0]
|
427 |
+
core_distances = np.empty(n_samples)
|
428 |
+
core_distances.fill(np.nan)
|
429 |
+
|
430 |
+
chunk_n_rows = get_chunk_n_rows(
|
431 |
+
row_bytes=16 * min_samples, max_n_rows=n_samples, working_memory=working_memory
|
432 |
+
)
|
433 |
+
slices = gen_batches(n_samples, chunk_n_rows)
|
434 |
+
for sl in slices:
|
435 |
+
core_distances[sl] = neighbors.kneighbors(X[sl], min_samples)[0][:, -1]
|
436 |
+
return core_distances
|
437 |
+
|
438 |
+
|
439 |
+
@validate_params(
|
440 |
+
{
|
441 |
+
"X": [np.ndarray, "sparse matrix"],
|
442 |
+
"min_samples": [
|
443 |
+
Interval(Integral, 2, None, closed="left"),
|
444 |
+
Interval(RealNotInt, 0, 1, closed="both"),
|
445 |
+
],
|
446 |
+
"max_eps": [Interval(Real, 0, None, closed="both")],
|
447 |
+
"metric": [StrOptions(set(_VALID_METRICS) | {"precomputed"}), callable],
|
448 |
+
"p": [Interval(Real, 0, None, closed="right"), None],
|
449 |
+
"metric_params": [dict, None],
|
450 |
+
"algorithm": [StrOptions({"auto", "brute", "ball_tree", "kd_tree"})],
|
451 |
+
"leaf_size": [Interval(Integral, 1, None, closed="left")],
|
452 |
+
"n_jobs": [Integral, None],
|
453 |
+
},
|
454 |
+
prefer_skip_nested_validation=False, # metric is not validated yet
|
455 |
+
)
|
456 |
+
def compute_optics_graph(
|
457 |
+
X, *, min_samples, max_eps, metric, p, metric_params, algorithm, leaf_size, n_jobs
|
458 |
+
):
|
459 |
+
"""Compute the OPTICS reachability graph.
|
460 |
+
|
461 |
+
Read more in the :ref:`User Guide <optics>`.
|
462 |
+
|
463 |
+
Parameters
|
464 |
+
----------
|
465 |
+
X : {ndarray, sparse matrix} of shape (n_samples, n_features), or \
|
466 |
+
(n_samples, n_samples) if metric='precomputed'
|
467 |
+
A feature array, or array of distances between samples if
|
468 |
+
metric='precomputed'.
|
469 |
+
|
470 |
+
min_samples : int > 1 or float between 0 and 1
|
471 |
+
The number of samples in a neighborhood for a point to be considered
|
472 |
+
as a core point. Expressed as an absolute number or a fraction of the
|
473 |
+
number of samples (rounded to be at least 2).
|
474 |
+
|
475 |
+
max_eps : float, default=np.inf
|
476 |
+
The maximum distance between two samples for one to be considered as
|
477 |
+
in the neighborhood of the other. Default value of ``np.inf`` will
|
478 |
+
identify clusters across all scales; reducing ``max_eps`` will result
|
479 |
+
in shorter run times.
|
480 |
+
|
481 |
+
metric : str or callable, default='minkowski'
|
482 |
+
Metric to use for distance computation. Any metric from scikit-learn
|
483 |
+
or scipy.spatial.distance can be used.
|
484 |
+
|
485 |
+
If metric is a callable function, it is called on each
|
486 |
+
pair of instances (rows) and the resulting value recorded. The callable
|
487 |
+
should take two arrays as input and return one value indicating the
|
488 |
+
distance between them. This works for Scipy's metrics, but is less
|
489 |
+
efficient than passing the metric name as a string. If metric is
|
490 |
+
"precomputed", X is assumed to be a distance matrix and must be square.
|
491 |
+
|
492 |
+
Valid values for metric are:
|
493 |
+
|
494 |
+
- from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
|
495 |
+
'manhattan']
|
496 |
+
|
497 |
+
- from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
|
498 |
+
'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
|
499 |
+
'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao',
|
500 |
+
'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
|
501 |
+
'yule']
|
502 |
+
|
503 |
+
See the documentation for scipy.spatial.distance for details on these
|
504 |
+
metrics.
|
505 |
+
|
506 |
+
.. note::
|
507 |
+
`'kulsinski'` is deprecated from SciPy 1.9 and will be removed in SciPy 1.11.
|
508 |
+
|
509 |
+
p : float, default=2
|
510 |
+
Parameter for the Minkowski metric from
|
511 |
+
:class:`~sklearn.metrics.pairwise_distances`. When p = 1, this is
|
512 |
+
equivalent to using manhattan_distance (l1), and euclidean_distance
|
513 |
+
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
|
514 |
+
|
515 |
+
metric_params : dict, default=None
|
516 |
+
Additional keyword arguments for the metric function.
|
517 |
+
|
518 |
+
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
|
519 |
+
Algorithm used to compute the nearest neighbors:
|
520 |
+
|
521 |
+
- 'ball_tree' will use :class:`~sklearn.neighbors.BallTree`.
|
522 |
+
- 'kd_tree' will use :class:`~sklearn.neighbors.KDTree`.
|
523 |
+
- 'brute' will use a brute-force search.
|
524 |
+
- 'auto' will attempt to decide the most appropriate algorithm
|
525 |
+
based on the values passed to `fit` method. (default)
|
526 |
+
|
527 |
+
Note: fitting on sparse input will override the setting of
|
528 |
+
this parameter, using brute force.
|
529 |
+
|
530 |
+
leaf_size : int, default=30
|
531 |
+
Leaf size passed to :class:`~sklearn.neighbors.BallTree` or
|
532 |
+
:class:`~sklearn.neighbors.KDTree`. This can affect the speed of the
|
533 |
+
construction and query, as well as the memory required to store the
|
534 |
+
tree. The optimal value depends on the nature of the problem.
|
535 |
+
|
536 |
+
n_jobs : int, default=None
|
537 |
+
The number of parallel jobs to run for neighbors search.
|
538 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
539 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
540 |
+
for more details.
|
541 |
+
|
542 |
+
Returns
|
543 |
+
-------
|
544 |
+
ordering_ : array of shape (n_samples,)
|
545 |
+
The cluster ordered list of sample indices.
|
546 |
+
|
547 |
+
core_distances_ : array of shape (n_samples,)
|
548 |
+
Distance at which each sample becomes a core point, indexed by object
|
549 |
+
order. Points which will never be core have a distance of inf. Use
|
550 |
+
``clust.core_distances_[clust.ordering_]`` to access in cluster order.
|
551 |
+
|
552 |
+
reachability_ : array of shape (n_samples,)
|
553 |
+
Reachability distances per sample, indexed by object order. Use
|
554 |
+
``clust.reachability_[clust.ordering_]`` to access in cluster order.
|
555 |
+
|
556 |
+
predecessor_ : array of shape (n_samples,)
|
557 |
+
Point that a sample was reached from, indexed by object order.
|
558 |
+
Seed points have a predecessor of -1.
|
559 |
+
|
560 |
+
References
|
561 |
+
----------
|
562 |
+
.. [1] Ankerst, Mihael, Markus M. Breunig, Hans-Peter Kriegel,
|
563 |
+
and Jörg Sander. "OPTICS: ordering points to identify the clustering
|
564 |
+
structure." ACM SIGMOD Record 28, no. 2 (1999): 49-60.
|
565 |
+
|
566 |
+
Examples
|
567 |
+
--------
|
568 |
+
>>> import numpy as np
|
569 |
+
>>> from sklearn.cluster import compute_optics_graph
|
570 |
+
>>> X = np.array([[1, 2], [2, 5], [3, 6],
|
571 |
+
... [8, 7], [8, 8], [7, 3]])
|
572 |
+
>>> ordering, core_distances, reachability, predecessor = compute_optics_graph(
|
573 |
+
... X,
|
574 |
+
... min_samples=2,
|
575 |
+
... max_eps=np.inf,
|
576 |
+
... metric="minkowski",
|
577 |
+
... p=2,
|
578 |
+
... metric_params=None,
|
579 |
+
... algorithm="auto",
|
580 |
+
... leaf_size=30,
|
581 |
+
... n_jobs=None,
|
582 |
+
... )
|
583 |
+
>>> ordering
|
584 |
+
array([0, 1, 2, 5, 3, 4])
|
585 |
+
>>> core_distances
|
586 |
+
array([3.16..., 1.41..., 1.41..., 1. , 1. ,
|
587 |
+
4.12...])
|
588 |
+
>>> reachability
|
589 |
+
array([ inf, 3.16..., 1.41..., 4.12..., 1. ,
|
590 |
+
5. ])
|
591 |
+
>>> predecessor
|
592 |
+
array([-1, 0, 1, 5, 3, 2])
|
593 |
+
"""
|
594 |
+
n_samples = X.shape[0]
|
595 |
+
_validate_size(min_samples, n_samples, "min_samples")
|
596 |
+
if min_samples <= 1:
|
597 |
+
min_samples = max(2, int(min_samples * n_samples))
|
598 |
+
|
599 |
+
# Start all points as 'unprocessed' ##
|
600 |
+
reachability_ = np.empty(n_samples)
|
601 |
+
reachability_.fill(np.inf)
|
602 |
+
predecessor_ = np.empty(n_samples, dtype=int)
|
603 |
+
predecessor_.fill(-1)
|
604 |
+
|
605 |
+
nbrs = NearestNeighbors(
|
606 |
+
n_neighbors=min_samples,
|
607 |
+
algorithm=algorithm,
|
608 |
+
leaf_size=leaf_size,
|
609 |
+
metric=metric,
|
610 |
+
metric_params=metric_params,
|
611 |
+
p=p,
|
612 |
+
n_jobs=n_jobs,
|
613 |
+
)
|
614 |
+
|
615 |
+
nbrs.fit(X)
|
616 |
+
# Here we first do a kNN query for each point, this differs from
|
617 |
+
# the original OPTICS that only used epsilon range queries.
|
618 |
+
# TODO: handle working_memory somehow?
|
619 |
+
core_distances_ = _compute_core_distances_(
|
620 |
+
X=X, neighbors=nbrs, min_samples=min_samples, working_memory=None
|
621 |
+
)
|
622 |
+
# OPTICS puts an upper limit on these, use inf for undefined.
|
623 |
+
core_distances_[core_distances_ > max_eps] = np.inf
|
624 |
+
np.around(
|
625 |
+
core_distances_,
|
626 |
+
decimals=np.finfo(core_distances_.dtype).precision,
|
627 |
+
out=core_distances_,
|
628 |
+
)
|
629 |
+
|
630 |
+
# Main OPTICS loop. Not parallelizable. The order that entries are
|
631 |
+
# written to the 'ordering_' list is important!
|
632 |
+
# Note that this implementation is O(n^2) theoretically, but
|
633 |
+
# supposedly with very low constant factors.
|
634 |
+
processed = np.zeros(X.shape[0], dtype=bool)
|
635 |
+
ordering = np.zeros(X.shape[0], dtype=int)
|
636 |
+
for ordering_idx in range(X.shape[0]):
|
637 |
+
# Choose next based on smallest reachability distance
|
638 |
+
# (And prefer smaller ids on ties, possibly np.inf!)
|
639 |
+
index = np.where(processed == 0)[0]
|
640 |
+
point = index[np.argmin(reachability_[index])]
|
641 |
+
|
642 |
+
processed[point] = True
|
643 |
+
ordering[ordering_idx] = point
|
644 |
+
if core_distances_[point] != np.inf:
|
645 |
+
_set_reach_dist(
|
646 |
+
core_distances_=core_distances_,
|
647 |
+
reachability_=reachability_,
|
648 |
+
predecessor_=predecessor_,
|
649 |
+
point_index=point,
|
650 |
+
processed=processed,
|
651 |
+
X=X,
|
652 |
+
nbrs=nbrs,
|
653 |
+
metric=metric,
|
654 |
+
metric_params=metric_params,
|
655 |
+
p=p,
|
656 |
+
max_eps=max_eps,
|
657 |
+
)
|
658 |
+
if np.all(np.isinf(reachability_)):
|
659 |
+
warnings.warn(
|
660 |
+
(
|
661 |
+
"All reachability values are inf. Set a larger"
|
662 |
+
" max_eps or all data will be considered outliers."
|
663 |
+
),
|
664 |
+
UserWarning,
|
665 |
+
)
|
666 |
+
return ordering, core_distances_, reachability_, predecessor_
|
667 |
+
|
668 |
+
|
669 |
+
def _set_reach_dist(
|
670 |
+
core_distances_,
|
671 |
+
reachability_,
|
672 |
+
predecessor_,
|
673 |
+
point_index,
|
674 |
+
processed,
|
675 |
+
X,
|
676 |
+
nbrs,
|
677 |
+
metric,
|
678 |
+
metric_params,
|
679 |
+
p,
|
680 |
+
max_eps,
|
681 |
+
):
|
682 |
+
P = X[point_index : point_index + 1]
|
683 |
+
# Assume that radius_neighbors is faster without distances
|
684 |
+
# and we don't need all distances, nevertheless, this means
|
685 |
+
# we may be doing some work twice.
|
686 |
+
indices = nbrs.radius_neighbors(P, radius=max_eps, return_distance=False)[0]
|
687 |
+
|
688 |
+
# Getting indices of neighbors that have not been processed
|
689 |
+
unproc = np.compress(~np.take(processed, indices), indices)
|
690 |
+
# Neighbors of current point are already processed.
|
691 |
+
if not unproc.size:
|
692 |
+
return
|
693 |
+
|
694 |
+
# Only compute distances to unprocessed neighbors:
|
695 |
+
if metric == "precomputed":
|
696 |
+
dists = X[[point_index], unproc]
|
697 |
+
if isinstance(dists, np.matrix):
|
698 |
+
dists = np.asarray(dists)
|
699 |
+
dists = dists.ravel()
|
700 |
+
else:
|
701 |
+
_params = dict() if metric_params is None else metric_params.copy()
|
702 |
+
if metric == "minkowski" and "p" not in _params:
|
703 |
+
# the same logic as neighbors, p is ignored if explicitly set
|
704 |
+
# in the dict params
|
705 |
+
_params["p"] = p
|
706 |
+
dists = pairwise_distances(P, X[unproc], metric, n_jobs=None, **_params).ravel()
|
707 |
+
|
708 |
+
rdists = np.maximum(dists, core_distances_[point_index])
|
709 |
+
np.around(rdists, decimals=np.finfo(rdists.dtype).precision, out=rdists)
|
710 |
+
improved = np.where(rdists < np.take(reachability_, unproc))
|
711 |
+
reachability_[unproc[improved]] = rdists[improved]
|
712 |
+
predecessor_[unproc[improved]] = point_index
|
713 |
+
|
714 |
+
|
715 |
+
@validate_params(
|
716 |
+
{
|
717 |
+
"reachability": [np.ndarray],
|
718 |
+
"core_distances": [np.ndarray],
|
719 |
+
"ordering": [np.ndarray],
|
720 |
+
"eps": [Interval(Real, 0, None, closed="both")],
|
721 |
+
},
|
722 |
+
prefer_skip_nested_validation=True,
|
723 |
+
)
|
724 |
+
def cluster_optics_dbscan(*, reachability, core_distances, ordering, eps):
|
725 |
+
"""Perform DBSCAN extraction for an arbitrary epsilon.
|
726 |
+
|
727 |
+
Extracting the clusters runs in linear time. Note that this results in
|
728 |
+
``labels_`` which are close to a :class:`~sklearn.cluster.DBSCAN` with
|
729 |
+
similar settings and ``eps``, only if ``eps`` is close to ``max_eps``.
|
730 |
+
|
731 |
+
Parameters
|
732 |
+
----------
|
733 |
+
reachability : ndarray of shape (n_samples,)
|
734 |
+
Reachability distances calculated by OPTICS (``reachability_``).
|
735 |
+
|
736 |
+
core_distances : ndarray of shape (n_samples,)
|
737 |
+
Distances at which points become core (``core_distances_``).
|
738 |
+
|
739 |
+
ordering : ndarray of shape (n_samples,)
|
740 |
+
OPTICS ordered point indices (``ordering_``).
|
741 |
+
|
742 |
+
eps : float
|
743 |
+
DBSCAN ``eps`` parameter. Must be set to < ``max_eps``. Results
|
744 |
+
will be close to DBSCAN algorithm if ``eps`` and ``max_eps`` are close
|
745 |
+
to one another.
|
746 |
+
|
747 |
+
Returns
|
748 |
+
-------
|
749 |
+
labels_ : array of shape (n_samples,)
|
750 |
+
The estimated labels.
|
751 |
+
|
752 |
+
Examples
|
753 |
+
--------
|
754 |
+
>>> import numpy as np
|
755 |
+
>>> from sklearn.cluster import cluster_optics_dbscan, compute_optics_graph
|
756 |
+
>>> X = np.array([[1, 2], [2, 5], [3, 6],
|
757 |
+
... [8, 7], [8, 8], [7, 3]])
|
758 |
+
>>> ordering, core_distances, reachability, predecessor = compute_optics_graph(
|
759 |
+
... X,
|
760 |
+
... min_samples=2,
|
761 |
+
... max_eps=np.inf,
|
762 |
+
... metric="minkowski",
|
763 |
+
... p=2,
|
764 |
+
... metric_params=None,
|
765 |
+
... algorithm="auto",
|
766 |
+
... leaf_size=30,
|
767 |
+
... n_jobs=None,
|
768 |
+
... )
|
769 |
+
>>> eps = 4.5
|
770 |
+
>>> labels = cluster_optics_dbscan(
|
771 |
+
... reachability=reachability,
|
772 |
+
... core_distances=core_distances,
|
773 |
+
... ordering=ordering,
|
774 |
+
... eps=eps,
|
775 |
+
... )
|
776 |
+
>>> labels
|
777 |
+
array([0, 0, 0, 1, 1, 1])
|
778 |
+
"""
|
779 |
+
n_samples = len(core_distances)
|
780 |
+
labels = np.zeros(n_samples, dtype=int)
|
781 |
+
|
782 |
+
far_reach = reachability > eps
|
783 |
+
near_core = core_distances <= eps
|
784 |
+
labels[ordering] = np.cumsum(far_reach[ordering] & near_core[ordering]) - 1
|
785 |
+
labels[far_reach & ~near_core] = -1
|
786 |
+
return labels
|
787 |
+
|
788 |
+
|
789 |
+
@validate_params(
|
790 |
+
{
|
791 |
+
"reachability": [np.ndarray],
|
792 |
+
"predecessor": [np.ndarray],
|
793 |
+
"ordering": [np.ndarray],
|
794 |
+
"min_samples": [
|
795 |
+
Interval(Integral, 2, None, closed="left"),
|
796 |
+
Interval(RealNotInt, 0, 1, closed="both"),
|
797 |
+
],
|
798 |
+
"min_cluster_size": [
|
799 |
+
Interval(Integral, 2, None, closed="left"),
|
800 |
+
Interval(RealNotInt, 0, 1, closed="both"),
|
801 |
+
None,
|
802 |
+
],
|
803 |
+
"xi": [Interval(Real, 0, 1, closed="both")],
|
804 |
+
"predecessor_correction": ["boolean"],
|
805 |
+
},
|
806 |
+
prefer_skip_nested_validation=True,
|
807 |
+
)
|
808 |
+
def cluster_optics_xi(
|
809 |
+
*,
|
810 |
+
reachability,
|
811 |
+
predecessor,
|
812 |
+
ordering,
|
813 |
+
min_samples,
|
814 |
+
min_cluster_size=None,
|
815 |
+
xi=0.05,
|
816 |
+
predecessor_correction=True,
|
817 |
+
):
|
818 |
+
"""Automatically extract clusters according to the Xi-steep method.
|
819 |
+
|
820 |
+
Parameters
|
821 |
+
----------
|
822 |
+
reachability : ndarray of shape (n_samples,)
|
823 |
+
Reachability distances calculated by OPTICS (`reachability_`).
|
824 |
+
|
825 |
+
predecessor : ndarray of shape (n_samples,)
|
826 |
+
Predecessors calculated by OPTICS.
|
827 |
+
|
828 |
+
ordering : ndarray of shape (n_samples,)
|
829 |
+
OPTICS ordered point indices (`ordering_`).
|
830 |
+
|
831 |
+
min_samples : int > 1 or float between 0 and 1
|
832 |
+
The same as the min_samples given to OPTICS. Up and down steep regions
|
833 |
+
can't have more then ``min_samples`` consecutive non-steep points.
|
834 |
+
Expressed as an absolute number or a fraction of the number of samples
|
835 |
+
(rounded to be at least 2).
|
836 |
+
|
837 |
+
min_cluster_size : int > 1 or float between 0 and 1, default=None
|
838 |
+
Minimum number of samples in an OPTICS cluster, expressed as an
|
839 |
+
absolute number or a fraction of the number of samples (rounded to be
|
840 |
+
at least 2). If ``None``, the value of ``min_samples`` is used instead.
|
841 |
+
|
842 |
+
xi : float between 0 and 1, default=0.05
|
843 |
+
Determines the minimum steepness on the reachability plot that
|
844 |
+
constitutes a cluster boundary. For example, an upwards point in the
|
845 |
+
reachability plot is defined by the ratio from one point to its
|
846 |
+
successor being at most 1-xi.
|
847 |
+
|
848 |
+
predecessor_correction : bool, default=True
|
849 |
+
Correct clusters based on the calculated predecessors.
|
850 |
+
|
851 |
+
Returns
|
852 |
+
-------
|
853 |
+
labels : ndarray of shape (n_samples,)
|
854 |
+
The labels assigned to samples. Points which are not included
|
855 |
+
in any cluster are labeled as -1.
|
856 |
+
|
857 |
+
clusters : ndarray of shape (n_clusters, 2)
|
858 |
+
The list of clusters in the form of ``[start, end]`` in each row, with
|
859 |
+
all indices inclusive. The clusters are ordered according to ``(end,
|
860 |
+
-start)`` (ascending) so that larger clusters encompassing smaller
|
861 |
+
clusters come after such nested smaller clusters. Since ``labels`` does
|
862 |
+
not reflect the hierarchy, usually ``len(clusters) >
|
863 |
+
np.unique(labels)``.
|
864 |
+
|
865 |
+
Examples
|
866 |
+
--------
|
867 |
+
>>> import numpy as np
|
868 |
+
>>> from sklearn.cluster import cluster_optics_xi, compute_optics_graph
|
869 |
+
>>> X = np.array([[1, 2], [2, 5], [3, 6],
|
870 |
+
... [8, 7], [8, 8], [7, 3]])
|
871 |
+
>>> ordering, core_distances, reachability, predecessor = compute_optics_graph(
|
872 |
+
... X,
|
873 |
+
... min_samples=2,
|
874 |
+
... max_eps=np.inf,
|
875 |
+
... metric="minkowski",
|
876 |
+
... p=2,
|
877 |
+
... metric_params=None,
|
878 |
+
... algorithm="auto",
|
879 |
+
... leaf_size=30,
|
880 |
+
... n_jobs=None
|
881 |
+
... )
|
882 |
+
>>> min_samples = 2
|
883 |
+
>>> labels, clusters = cluster_optics_xi(
|
884 |
+
... reachability=reachability,
|
885 |
+
... predecessor=predecessor,
|
886 |
+
... ordering=ordering,
|
887 |
+
... min_samples=min_samples,
|
888 |
+
... )
|
889 |
+
>>> labels
|
890 |
+
array([0, 0, 0, 1, 1, 1])
|
891 |
+
>>> clusters
|
892 |
+
array([[0, 2],
|
893 |
+
[3, 5],
|
894 |
+
[0, 5]])
|
895 |
+
"""
|
896 |
+
n_samples = len(reachability)
|
897 |
+
_validate_size(min_samples, n_samples, "min_samples")
|
898 |
+
if min_samples <= 1:
|
899 |
+
min_samples = max(2, int(min_samples * n_samples))
|
900 |
+
if min_cluster_size is None:
|
901 |
+
min_cluster_size = min_samples
|
902 |
+
_validate_size(min_cluster_size, n_samples, "min_cluster_size")
|
903 |
+
if min_cluster_size <= 1:
|
904 |
+
min_cluster_size = max(2, int(min_cluster_size * n_samples))
|
905 |
+
|
906 |
+
clusters = _xi_cluster(
|
907 |
+
reachability[ordering],
|
908 |
+
predecessor[ordering],
|
909 |
+
ordering,
|
910 |
+
xi,
|
911 |
+
min_samples,
|
912 |
+
min_cluster_size,
|
913 |
+
predecessor_correction,
|
914 |
+
)
|
915 |
+
labels = _extract_xi_labels(ordering, clusters)
|
916 |
+
return labels, clusters
|
917 |
+
|
918 |
+
|
919 |
+
def _extend_region(steep_point, xward_point, start, min_samples):
|
920 |
+
"""Extend the area until it's maximal.
|
921 |
+
|
922 |
+
It's the same function for both upward and downward reagions, depending on
|
923 |
+
the given input parameters. Assuming:
|
924 |
+
|
925 |
+
- steep_{upward/downward}: bool array indicating whether a point is a
|
926 |
+
steep {upward/downward};
|
927 |
+
- upward/downward: bool array indicating whether a point is
|
928 |
+
upward/downward;
|
929 |
+
|
930 |
+
To extend an upward reagion, ``steep_point=steep_upward`` and
|
931 |
+
``xward_point=downward`` are expected, and to extend a downward region,
|
932 |
+
``steep_point=steep_downward`` and ``xward_point=upward``.
|
933 |
+
|
934 |
+
Parameters
|
935 |
+
----------
|
936 |
+
steep_point : ndarray of shape (n_samples,), dtype=bool
|
937 |
+
True if the point is steep downward (upward).
|
938 |
+
|
939 |
+
xward_point : ndarray of shape (n_samples,), dtype=bool
|
940 |
+
True if the point is an upward (respectively downward) point.
|
941 |
+
|
942 |
+
start : int
|
943 |
+
The start of the xward region.
|
944 |
+
|
945 |
+
min_samples : int
|
946 |
+
The same as the min_samples given to OPTICS. Up and down steep
|
947 |
+
regions can't have more then ``min_samples`` consecutive non-steep
|
948 |
+
points.
|
949 |
+
|
950 |
+
Returns
|
951 |
+
-------
|
952 |
+
index : int
|
953 |
+
The current index iterating over all the samples, i.e. where we are up
|
954 |
+
to in our search.
|
955 |
+
|
956 |
+
end : int
|
957 |
+
The end of the region, which can be behind the index. The region
|
958 |
+
includes the ``end`` index.
|
959 |
+
"""
|
960 |
+
n_samples = len(steep_point)
|
961 |
+
non_xward_points = 0
|
962 |
+
index = start
|
963 |
+
end = start
|
964 |
+
# find a maximal area
|
965 |
+
while index < n_samples:
|
966 |
+
if steep_point[index]:
|
967 |
+
non_xward_points = 0
|
968 |
+
end = index
|
969 |
+
elif not xward_point[index]:
|
970 |
+
# it's not a steep point, but still goes up.
|
971 |
+
non_xward_points += 1
|
972 |
+
# region should include no more than min_samples consecutive
|
973 |
+
# non steep xward points.
|
974 |
+
if non_xward_points > min_samples:
|
975 |
+
break
|
976 |
+
else:
|
977 |
+
return end
|
978 |
+
index += 1
|
979 |
+
return end
|
980 |
+
|
981 |
+
|
982 |
+
def _update_filter_sdas(sdas, mib, xi_complement, reachability_plot):
|
983 |
+
"""Update steep down areas (SDAs) using the new maximum in between (mib)
|
984 |
+
value, and the given complement of xi, i.e. ``1 - xi``.
|
985 |
+
"""
|
986 |
+
if np.isinf(mib):
|
987 |
+
return []
|
988 |
+
res = [
|
989 |
+
sda for sda in sdas if mib <= reachability_plot[sda["start"]] * xi_complement
|
990 |
+
]
|
991 |
+
for sda in res:
|
992 |
+
sda["mib"] = max(sda["mib"], mib)
|
993 |
+
return res
|
994 |
+
|
995 |
+
|
996 |
+
def _correct_predecessor(reachability_plot, predecessor_plot, ordering, s, e):
|
997 |
+
"""Correct for predecessors.
|
998 |
+
|
999 |
+
Applies Algorithm 2 of [1]_.
|
1000 |
+
|
1001 |
+
Input parameters are ordered by the computer OPTICS ordering.
|
1002 |
+
|
1003 |
+
.. [1] Schubert, Erich, Michael Gertz.
|
1004 |
+
"Improving the Cluster Structure Extracted from OPTICS Plots." Proc. of
|
1005 |
+
the Conference "Lernen, Wissen, Daten, Analysen" (LWDA) (2018): 318-329.
|
1006 |
+
"""
|
1007 |
+
while s < e:
|
1008 |
+
if reachability_plot[s] > reachability_plot[e]:
|
1009 |
+
return s, e
|
1010 |
+
p_e = predecessor_plot[e]
|
1011 |
+
for i in range(s, e):
|
1012 |
+
if p_e == ordering[i]:
|
1013 |
+
return s, e
|
1014 |
+
e -= 1
|
1015 |
+
return None, None
|
1016 |
+
|
1017 |
+
|
1018 |
+
def _xi_cluster(
|
1019 |
+
reachability_plot,
|
1020 |
+
predecessor_plot,
|
1021 |
+
ordering,
|
1022 |
+
xi,
|
1023 |
+
min_samples,
|
1024 |
+
min_cluster_size,
|
1025 |
+
predecessor_correction,
|
1026 |
+
):
|
1027 |
+
"""Automatically extract clusters according to the Xi-steep method.
|
1028 |
+
|
1029 |
+
This is rouphly an implementation of Figure 19 of the OPTICS paper.
|
1030 |
+
|
1031 |
+
Parameters
|
1032 |
+
----------
|
1033 |
+
reachability_plot : array-like of shape (n_samples,)
|
1034 |
+
The reachability plot, i.e. reachability ordered according to
|
1035 |
+
the calculated ordering, all computed by OPTICS.
|
1036 |
+
|
1037 |
+
predecessor_plot : array-like of shape (n_samples,)
|
1038 |
+
Predecessors ordered according to the calculated ordering.
|
1039 |
+
|
1040 |
+
xi : float, between 0 and 1
|
1041 |
+
Determines the minimum steepness on the reachability plot that
|
1042 |
+
constitutes a cluster boundary. For example, an upwards point in the
|
1043 |
+
reachability plot is defined by the ratio from one point to its
|
1044 |
+
successor being at most 1-xi.
|
1045 |
+
|
1046 |
+
min_samples : int > 1
|
1047 |
+
The same as the min_samples given to OPTICS. Up and down steep regions
|
1048 |
+
can't have more then ``min_samples`` consecutive non-steep points.
|
1049 |
+
|
1050 |
+
min_cluster_size : int > 1
|
1051 |
+
Minimum number of samples in an OPTICS cluster.
|
1052 |
+
|
1053 |
+
predecessor_correction : bool
|
1054 |
+
Correct clusters based on the calculated predecessors.
|
1055 |
+
|
1056 |
+
Returns
|
1057 |
+
-------
|
1058 |
+
clusters : ndarray of shape (n_clusters, 2)
|
1059 |
+
The list of clusters in the form of [start, end] in each row, with all
|
1060 |
+
indices inclusive. The clusters are ordered in a way that larger
|
1061 |
+
clusters encompassing smaller clusters come after those smaller
|
1062 |
+
clusters.
|
1063 |
+
"""
|
1064 |
+
|
1065 |
+
# Our implementation adds an inf to the end of reachability plot
|
1066 |
+
# this helps to find potential clusters at the end of the
|
1067 |
+
# reachability plot even if there's no upward region at the end of it.
|
1068 |
+
reachability_plot = np.hstack((reachability_plot, np.inf))
|
1069 |
+
|
1070 |
+
xi_complement = 1 - xi
|
1071 |
+
sdas = [] # steep down areas, introduced in section 4.3.2 of the paper
|
1072 |
+
clusters = []
|
1073 |
+
index = 0
|
1074 |
+
mib = 0.0 # maximum in between, section 4.3.2
|
1075 |
+
|
1076 |
+
# Our implementation corrects a mistake in the original
|
1077 |
+
# paper, i.e., in Definition 9 steep downward point,
|
1078 |
+
# r(p) * (1 - x1) <= r(p + 1) should be
|
1079 |
+
# r(p) * (1 - x1) >= r(p + 1)
|
1080 |
+
with np.errstate(invalid="ignore"):
|
1081 |
+
ratio = reachability_plot[:-1] / reachability_plot[1:]
|
1082 |
+
steep_upward = ratio <= xi_complement
|
1083 |
+
steep_downward = ratio >= 1 / xi_complement
|
1084 |
+
downward = ratio > 1
|
1085 |
+
upward = ratio < 1
|
1086 |
+
|
1087 |
+
# the following loop is almost exactly as Figure 19 of the paper.
|
1088 |
+
# it jumps over the areas which are not either steep down or up areas
|
1089 |
+
for steep_index in iter(np.flatnonzero(steep_upward | steep_downward)):
|
1090 |
+
# just continue if steep_index has been a part of a discovered xward
|
1091 |
+
# area.
|
1092 |
+
if steep_index < index:
|
1093 |
+
continue
|
1094 |
+
|
1095 |
+
mib = max(mib, np.max(reachability_plot[index : steep_index + 1]))
|
1096 |
+
|
1097 |
+
# steep downward areas
|
1098 |
+
if steep_downward[steep_index]:
|
1099 |
+
sdas = _update_filter_sdas(sdas, mib, xi_complement, reachability_plot)
|
1100 |
+
D_start = steep_index
|
1101 |
+
D_end = _extend_region(steep_downward, upward, D_start, min_samples)
|
1102 |
+
D = {"start": D_start, "end": D_end, "mib": 0.0}
|
1103 |
+
sdas.append(D)
|
1104 |
+
index = D_end + 1
|
1105 |
+
mib = reachability_plot[index]
|
1106 |
+
|
1107 |
+
# steep upward areas
|
1108 |
+
else:
|
1109 |
+
sdas = _update_filter_sdas(sdas, mib, xi_complement, reachability_plot)
|
1110 |
+
U_start = steep_index
|
1111 |
+
U_end = _extend_region(steep_upward, downward, U_start, min_samples)
|
1112 |
+
index = U_end + 1
|
1113 |
+
mib = reachability_plot[index]
|
1114 |
+
|
1115 |
+
U_clusters = []
|
1116 |
+
for D in sdas:
|
1117 |
+
c_start = D["start"]
|
1118 |
+
c_end = U_end
|
1119 |
+
|
1120 |
+
# line (**), sc2*
|
1121 |
+
if reachability_plot[c_end + 1] * xi_complement < D["mib"]:
|
1122 |
+
continue
|
1123 |
+
|
1124 |
+
# Definition 11: criterion 4
|
1125 |
+
D_max = reachability_plot[D["start"]]
|
1126 |
+
if D_max * xi_complement >= reachability_plot[c_end + 1]:
|
1127 |
+
# Find the first index from the left side which is almost
|
1128 |
+
# at the same level as the end of the detected cluster.
|
1129 |
+
while (
|
1130 |
+
reachability_plot[c_start + 1] > reachability_plot[c_end + 1]
|
1131 |
+
and c_start < D["end"]
|
1132 |
+
):
|
1133 |
+
c_start += 1
|
1134 |
+
elif reachability_plot[c_end + 1] * xi_complement >= D_max:
|
1135 |
+
# Find the first index from the right side which is almost
|
1136 |
+
# at the same level as the beginning of the detected
|
1137 |
+
# cluster.
|
1138 |
+
# Our implementation corrects a mistake in the original
|
1139 |
+
# paper, i.e., in Definition 11 4c, r(x) < r(sD) should be
|
1140 |
+
# r(x) > r(sD).
|
1141 |
+
while reachability_plot[c_end - 1] > D_max and c_end > U_start:
|
1142 |
+
c_end -= 1
|
1143 |
+
|
1144 |
+
# predecessor correction
|
1145 |
+
if predecessor_correction:
|
1146 |
+
c_start, c_end = _correct_predecessor(
|
1147 |
+
reachability_plot, predecessor_plot, ordering, c_start, c_end
|
1148 |
+
)
|
1149 |
+
if c_start is None:
|
1150 |
+
continue
|
1151 |
+
|
1152 |
+
# Definition 11: criterion 3.a
|
1153 |
+
if c_end - c_start + 1 < min_cluster_size:
|
1154 |
+
continue
|
1155 |
+
|
1156 |
+
# Definition 11: criterion 1
|
1157 |
+
if c_start > D["end"]:
|
1158 |
+
continue
|
1159 |
+
|
1160 |
+
# Definition 11: criterion 2
|
1161 |
+
if c_end < U_start:
|
1162 |
+
continue
|
1163 |
+
|
1164 |
+
U_clusters.append((c_start, c_end))
|
1165 |
+
|
1166 |
+
# add smaller clusters first.
|
1167 |
+
U_clusters.reverse()
|
1168 |
+
clusters.extend(U_clusters)
|
1169 |
+
|
1170 |
+
return np.array(clusters)
|
1171 |
+
|
1172 |
+
|
1173 |
+
def _extract_xi_labels(ordering, clusters):
|
1174 |
+
"""Extracts the labels from the clusters returned by `_xi_cluster`.
|
1175 |
+
We rely on the fact that clusters are stored
|
1176 |
+
with the smaller clusters coming before the larger ones.
|
1177 |
+
|
1178 |
+
Parameters
|
1179 |
+
----------
|
1180 |
+
ordering : array-like of shape (n_samples,)
|
1181 |
+
The ordering of points calculated by OPTICS
|
1182 |
+
|
1183 |
+
clusters : array-like of shape (n_clusters, 2)
|
1184 |
+
List of clusters i.e. (start, end) tuples,
|
1185 |
+
as returned by `_xi_cluster`.
|
1186 |
+
|
1187 |
+
Returns
|
1188 |
+
-------
|
1189 |
+
labels : ndarray of shape (n_samples,)
|
1190 |
+
"""
|
1191 |
+
|
1192 |
+
labels = np.full(len(ordering), -1, dtype=int)
|
1193 |
+
label = 0
|
1194 |
+
for c in clusters:
|
1195 |
+
if not np.any(labels[c[0] : (c[1] + 1)] != -1):
|
1196 |
+
labels[c[0] : (c[1] + 1)] = label
|
1197 |
+
label += 1
|
1198 |
+
labels[ordering] = labels.copy()
|
1199 |
+
return labels
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/_spectral.py
ADDED
@@ -0,0 +1,799 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Algorithms for spectral clustering"""
|
2 |
+
|
3 |
+
# Author: Gael Varoquaux <[email protected]>
|
4 |
+
# Brian Cheung
|
5 |
+
# Wei LI <[email protected]>
|
6 |
+
# Andrew Knyazev <[email protected]>
|
7 |
+
# License: BSD 3 clause
|
8 |
+
|
9 |
+
import warnings
|
10 |
+
from numbers import Integral, Real
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
from scipy.linalg import LinAlgError, qr, svd
|
14 |
+
from scipy.sparse import csc_matrix
|
15 |
+
|
16 |
+
from ..base import BaseEstimator, ClusterMixin, _fit_context
|
17 |
+
from ..manifold import spectral_embedding
|
18 |
+
from ..metrics.pairwise import KERNEL_PARAMS, pairwise_kernels
|
19 |
+
from ..neighbors import NearestNeighbors, kneighbors_graph
|
20 |
+
from ..utils import as_float_array, check_random_state
|
21 |
+
from ..utils._param_validation import Interval, StrOptions, validate_params
|
22 |
+
from ._kmeans import k_means
|
23 |
+
|
24 |
+
|
25 |
+
def cluster_qr(vectors):
|
26 |
+
"""Find the discrete partition closest to the eigenvector embedding.
|
27 |
+
|
28 |
+
This implementation was proposed in [1]_.
|
29 |
+
|
30 |
+
.. versionadded:: 1.1
|
31 |
+
|
32 |
+
Parameters
|
33 |
+
----------
|
34 |
+
vectors : array-like, shape: (n_samples, n_clusters)
|
35 |
+
The embedding space of the samples.
|
36 |
+
|
37 |
+
Returns
|
38 |
+
-------
|
39 |
+
labels : array of integers, shape: n_samples
|
40 |
+
The cluster labels of vectors.
|
41 |
+
|
42 |
+
References
|
43 |
+
----------
|
44 |
+
.. [1] :doi:`Simple, direct, and efficient multi-way spectral clustering, 2019
|
45 |
+
Anil Damle, Victor Minden, Lexing Ying
|
46 |
+
<10.1093/imaiai/iay008>`
|
47 |
+
|
48 |
+
"""
|
49 |
+
|
50 |
+
k = vectors.shape[1]
|
51 |
+
_, _, piv = qr(vectors.T, pivoting=True)
|
52 |
+
ut, _, v = svd(vectors[piv[:k], :].T)
|
53 |
+
vectors = abs(np.dot(vectors, np.dot(ut, v.conj())))
|
54 |
+
return vectors.argmax(axis=1)
|
55 |
+
|
56 |
+
|
57 |
+
def discretize(
|
58 |
+
vectors, *, copy=True, max_svd_restarts=30, n_iter_max=20, random_state=None
|
59 |
+
):
|
60 |
+
"""Search for a partition matrix which is closest to the eigenvector embedding.
|
61 |
+
|
62 |
+
This implementation was proposed in [1]_.
|
63 |
+
|
64 |
+
Parameters
|
65 |
+
----------
|
66 |
+
vectors : array-like of shape (n_samples, n_clusters)
|
67 |
+
The embedding space of the samples.
|
68 |
+
|
69 |
+
copy : bool, default=True
|
70 |
+
Whether to copy vectors, or perform in-place normalization.
|
71 |
+
|
72 |
+
max_svd_restarts : int, default=30
|
73 |
+
Maximum number of attempts to restart SVD if convergence fails
|
74 |
+
|
75 |
+
n_iter_max : int, default=30
|
76 |
+
Maximum number of iterations to attempt in rotation and partition
|
77 |
+
matrix search if machine precision convergence is not reached
|
78 |
+
|
79 |
+
random_state : int, RandomState instance, default=None
|
80 |
+
Determines random number generation for rotation matrix initialization.
|
81 |
+
Use an int to make the randomness deterministic.
|
82 |
+
See :term:`Glossary <random_state>`.
|
83 |
+
|
84 |
+
Returns
|
85 |
+
-------
|
86 |
+
labels : array of integers, shape: n_samples
|
87 |
+
The labels of the clusters.
|
88 |
+
|
89 |
+
References
|
90 |
+
----------
|
91 |
+
|
92 |
+
.. [1] `Multiclass spectral clustering, 2003
|
93 |
+
Stella X. Yu, Jianbo Shi
|
94 |
+
<https://people.eecs.berkeley.edu/~jordan/courses/281B-spring04/readings/yu-shi.pdf>`_
|
95 |
+
|
96 |
+
Notes
|
97 |
+
-----
|
98 |
+
|
99 |
+
The eigenvector embedding is used to iteratively search for the
|
100 |
+
closest discrete partition. First, the eigenvector embedding is
|
101 |
+
normalized to the space of partition matrices. An optimal discrete
|
102 |
+
partition matrix closest to this normalized embedding multiplied by
|
103 |
+
an initial rotation is calculated. Fixing this discrete partition
|
104 |
+
matrix, an optimal rotation matrix is calculated. These two
|
105 |
+
calculations are performed until convergence. The discrete partition
|
106 |
+
matrix is returned as the clustering solution. Used in spectral
|
107 |
+
clustering, this method tends to be faster and more robust to random
|
108 |
+
initialization than k-means.
|
109 |
+
|
110 |
+
"""
|
111 |
+
|
112 |
+
random_state = check_random_state(random_state)
|
113 |
+
|
114 |
+
vectors = as_float_array(vectors, copy=copy)
|
115 |
+
|
116 |
+
eps = np.finfo(float).eps
|
117 |
+
n_samples, n_components = vectors.shape
|
118 |
+
|
119 |
+
# Normalize the eigenvectors to an equal length of a vector of ones.
|
120 |
+
# Reorient the eigenvectors to point in the negative direction with respect
|
121 |
+
# to the first element. This may have to do with constraining the
|
122 |
+
# eigenvectors to lie in a specific quadrant to make the discretization
|
123 |
+
# search easier.
|
124 |
+
norm_ones = np.sqrt(n_samples)
|
125 |
+
for i in range(vectors.shape[1]):
|
126 |
+
vectors[:, i] = (vectors[:, i] / np.linalg.norm(vectors[:, i])) * norm_ones
|
127 |
+
if vectors[0, i] != 0:
|
128 |
+
vectors[:, i] = -1 * vectors[:, i] * np.sign(vectors[0, i])
|
129 |
+
|
130 |
+
# Normalize the rows of the eigenvectors. Samples should lie on the unit
|
131 |
+
# hypersphere centered at the origin. This transforms the samples in the
|
132 |
+
# embedding space to the space of partition matrices.
|
133 |
+
vectors = vectors / np.sqrt((vectors**2).sum(axis=1))[:, np.newaxis]
|
134 |
+
|
135 |
+
svd_restarts = 0
|
136 |
+
has_converged = False
|
137 |
+
|
138 |
+
# If there is an exception we try to randomize and rerun SVD again
|
139 |
+
# do this max_svd_restarts times.
|
140 |
+
while (svd_restarts < max_svd_restarts) and not has_converged:
|
141 |
+
# Initialize first column of rotation matrix with a row of the
|
142 |
+
# eigenvectors
|
143 |
+
rotation = np.zeros((n_components, n_components))
|
144 |
+
rotation[:, 0] = vectors[random_state.randint(n_samples), :].T
|
145 |
+
|
146 |
+
# To initialize the rest of the rotation matrix, find the rows
|
147 |
+
# of the eigenvectors that are as orthogonal to each other as
|
148 |
+
# possible
|
149 |
+
c = np.zeros(n_samples)
|
150 |
+
for j in range(1, n_components):
|
151 |
+
# Accumulate c to ensure row is as orthogonal as possible to
|
152 |
+
# previous picks as well as current one
|
153 |
+
c += np.abs(np.dot(vectors, rotation[:, j - 1]))
|
154 |
+
rotation[:, j] = vectors[c.argmin(), :].T
|
155 |
+
|
156 |
+
last_objective_value = 0.0
|
157 |
+
n_iter = 0
|
158 |
+
|
159 |
+
while not has_converged:
|
160 |
+
n_iter += 1
|
161 |
+
|
162 |
+
t_discrete = np.dot(vectors, rotation)
|
163 |
+
|
164 |
+
labels = t_discrete.argmax(axis=1)
|
165 |
+
vectors_discrete = csc_matrix(
|
166 |
+
(np.ones(len(labels)), (np.arange(0, n_samples), labels)),
|
167 |
+
shape=(n_samples, n_components),
|
168 |
+
)
|
169 |
+
|
170 |
+
t_svd = vectors_discrete.T * vectors
|
171 |
+
|
172 |
+
try:
|
173 |
+
U, S, Vh = np.linalg.svd(t_svd)
|
174 |
+
except LinAlgError:
|
175 |
+
svd_restarts += 1
|
176 |
+
print("SVD did not converge, randomizing and trying again")
|
177 |
+
break
|
178 |
+
|
179 |
+
ncut_value = 2.0 * (n_samples - S.sum())
|
180 |
+
if (abs(ncut_value - last_objective_value) < eps) or (n_iter > n_iter_max):
|
181 |
+
has_converged = True
|
182 |
+
else:
|
183 |
+
# otherwise calculate rotation and continue
|
184 |
+
last_objective_value = ncut_value
|
185 |
+
rotation = np.dot(Vh.T, U.T)
|
186 |
+
|
187 |
+
if not has_converged:
|
188 |
+
raise LinAlgError("SVD did not converge")
|
189 |
+
return labels
|
190 |
+
|
191 |
+
|
192 |
+
@validate_params(
|
193 |
+
{"affinity": ["array-like", "sparse matrix"]},
|
194 |
+
prefer_skip_nested_validation=False,
|
195 |
+
)
|
196 |
+
def spectral_clustering(
|
197 |
+
affinity,
|
198 |
+
*,
|
199 |
+
n_clusters=8,
|
200 |
+
n_components=None,
|
201 |
+
eigen_solver=None,
|
202 |
+
random_state=None,
|
203 |
+
n_init=10,
|
204 |
+
eigen_tol="auto",
|
205 |
+
assign_labels="kmeans",
|
206 |
+
verbose=False,
|
207 |
+
):
|
208 |
+
"""Apply clustering to a projection of the normalized Laplacian.
|
209 |
+
|
210 |
+
In practice Spectral Clustering is very useful when the structure of
|
211 |
+
the individual clusters is highly non-convex or more generally when
|
212 |
+
a measure of the center and spread of the cluster is not a suitable
|
213 |
+
description of the complete cluster. For instance, when clusters are
|
214 |
+
nested circles on the 2D plane.
|
215 |
+
|
216 |
+
If affinity is the adjacency matrix of a graph, this method can be
|
217 |
+
used to find normalized graph cuts [1]_, [2]_.
|
218 |
+
|
219 |
+
Read more in the :ref:`User Guide <spectral_clustering>`.
|
220 |
+
|
221 |
+
Parameters
|
222 |
+
----------
|
223 |
+
affinity : {array-like, sparse matrix} of shape (n_samples, n_samples)
|
224 |
+
The affinity matrix describing the relationship of the samples to
|
225 |
+
embed. **Must be symmetric**.
|
226 |
+
|
227 |
+
Possible examples:
|
228 |
+
- adjacency matrix of a graph,
|
229 |
+
- heat kernel of the pairwise distance matrix of the samples,
|
230 |
+
- symmetric k-nearest neighbours connectivity matrix of the samples.
|
231 |
+
|
232 |
+
n_clusters : int, default=None
|
233 |
+
Number of clusters to extract.
|
234 |
+
|
235 |
+
n_components : int, default=n_clusters
|
236 |
+
Number of eigenvectors to use for the spectral embedding.
|
237 |
+
|
238 |
+
eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'}
|
239 |
+
The eigenvalue decomposition method. If None then ``'arpack'`` is used.
|
240 |
+
See [4]_ for more details regarding ``'lobpcg'``.
|
241 |
+
Eigensolver ``'amg'`` runs ``'lobpcg'`` with optional
|
242 |
+
Algebraic MultiGrid preconditioning and requires pyamg to be installed.
|
243 |
+
It can be faster on very large sparse problems [6]_ and [7]_.
|
244 |
+
|
245 |
+
random_state : int, RandomState instance, default=None
|
246 |
+
A pseudo random number generator used for the initialization
|
247 |
+
of the lobpcg eigenvectors decomposition when `eigen_solver ==
|
248 |
+
'amg'`, and for the K-Means initialization. Use an int to make
|
249 |
+
the results deterministic across calls (See
|
250 |
+
:term:`Glossary <random_state>`).
|
251 |
+
|
252 |
+
.. note::
|
253 |
+
When using `eigen_solver == 'amg'`,
|
254 |
+
it is necessary to also fix the global numpy seed with
|
255 |
+
`np.random.seed(int)` to get deterministic results. See
|
256 |
+
https://github.com/pyamg/pyamg/issues/139 for further
|
257 |
+
information.
|
258 |
+
|
259 |
+
n_init : int, default=10
|
260 |
+
Number of time the k-means algorithm will be run with different
|
261 |
+
centroid seeds. The final results will be the best output of n_init
|
262 |
+
consecutive runs in terms of inertia. Only used if
|
263 |
+
``assign_labels='kmeans'``.
|
264 |
+
|
265 |
+
eigen_tol : float, default="auto"
|
266 |
+
Stopping criterion for eigendecomposition of the Laplacian matrix.
|
267 |
+
If `eigen_tol="auto"` then the passed tolerance will depend on the
|
268 |
+
`eigen_solver`:
|
269 |
+
|
270 |
+
- If `eigen_solver="arpack"`, then `eigen_tol=0.0`;
|
271 |
+
- If `eigen_solver="lobpcg"` or `eigen_solver="amg"`, then
|
272 |
+
`eigen_tol=None` which configures the underlying `lobpcg` solver to
|
273 |
+
automatically resolve the value according to their heuristics. See,
|
274 |
+
:func:`scipy.sparse.linalg.lobpcg` for details.
|
275 |
+
|
276 |
+
Note that when using `eigen_solver="lobpcg"` or `eigen_solver="amg"`
|
277 |
+
values of `tol<1e-5` may lead to convergence issues and should be
|
278 |
+
avoided.
|
279 |
+
|
280 |
+
.. versionadded:: 1.2
|
281 |
+
Added 'auto' option.
|
282 |
+
|
283 |
+
assign_labels : {'kmeans', 'discretize', 'cluster_qr'}, default='kmeans'
|
284 |
+
The strategy to use to assign labels in the embedding
|
285 |
+
space. There are three ways to assign labels after the Laplacian
|
286 |
+
embedding. k-means can be applied and is a popular choice. But it can
|
287 |
+
also be sensitive to initialization. Discretization is another
|
288 |
+
approach which is less sensitive to random initialization [3]_.
|
289 |
+
The cluster_qr method [5]_ directly extracts clusters from eigenvectors
|
290 |
+
in spectral clustering. In contrast to k-means and discretization, cluster_qr
|
291 |
+
has no tuning parameters and is not an iterative method, yet may outperform
|
292 |
+
k-means and discretization in terms of both quality and speed.
|
293 |
+
|
294 |
+
.. versionchanged:: 1.1
|
295 |
+
Added new labeling method 'cluster_qr'.
|
296 |
+
|
297 |
+
verbose : bool, default=False
|
298 |
+
Verbosity mode.
|
299 |
+
|
300 |
+
.. versionadded:: 0.24
|
301 |
+
|
302 |
+
Returns
|
303 |
+
-------
|
304 |
+
labels : array of integers, shape: n_samples
|
305 |
+
The labels of the clusters.
|
306 |
+
|
307 |
+
Notes
|
308 |
+
-----
|
309 |
+
The graph should contain only one connected component, elsewhere
|
310 |
+
the results make little sense.
|
311 |
+
|
312 |
+
This algorithm solves the normalized cut for `k=2`: it is a
|
313 |
+
normalized spectral clustering.
|
314 |
+
|
315 |
+
References
|
316 |
+
----------
|
317 |
+
|
318 |
+
.. [1] :doi:`Normalized cuts and image segmentation, 2000
|
319 |
+
Jianbo Shi, Jitendra Malik
|
320 |
+
<10.1109/34.868688>`
|
321 |
+
|
322 |
+
.. [2] :doi:`A Tutorial on Spectral Clustering, 2007
|
323 |
+
Ulrike von Luxburg
|
324 |
+
<10.1007/s11222-007-9033-z>`
|
325 |
+
|
326 |
+
.. [3] `Multiclass spectral clustering, 2003
|
327 |
+
Stella X. Yu, Jianbo Shi
|
328 |
+
<https://people.eecs.berkeley.edu/~jordan/courses/281B-spring04/readings/yu-shi.pdf>`_
|
329 |
+
|
330 |
+
.. [4] :doi:`Toward the Optimal Preconditioned Eigensolver:
|
331 |
+
Locally Optimal Block Preconditioned Conjugate Gradient Method, 2001
|
332 |
+
A. V. Knyazev
|
333 |
+
SIAM Journal on Scientific Computing 23, no. 2, pp. 517-541.
|
334 |
+
<10.1137/S1064827500366124>`
|
335 |
+
|
336 |
+
.. [5] :doi:`Simple, direct, and efficient multi-way spectral clustering, 2019
|
337 |
+
Anil Damle, Victor Minden, Lexing Ying
|
338 |
+
<10.1093/imaiai/iay008>`
|
339 |
+
|
340 |
+
.. [6] :doi:`Multiscale Spectral Image Segmentation Multiscale preconditioning
|
341 |
+
for computing eigenvalues of graph Laplacians in image segmentation, 2006
|
342 |
+
Andrew Knyazev
|
343 |
+
<10.13140/RG.2.2.35280.02565>`
|
344 |
+
|
345 |
+
.. [7] :doi:`Preconditioned spectral clustering for stochastic block partition
|
346 |
+
streaming graph challenge (Preliminary version at arXiv.)
|
347 |
+
David Zhuzhunashvili, Andrew Knyazev
|
348 |
+
<10.1109/HPEC.2017.8091045>`
|
349 |
+
|
350 |
+
Examples
|
351 |
+
--------
|
352 |
+
>>> import numpy as np
|
353 |
+
>>> from sklearn.metrics.pairwise import pairwise_kernels
|
354 |
+
>>> from sklearn.cluster import spectral_clustering
|
355 |
+
>>> X = np.array([[1, 1], [2, 1], [1, 0],
|
356 |
+
... [4, 7], [3, 5], [3, 6]])
|
357 |
+
>>> affinity = pairwise_kernels(X, metric='rbf')
|
358 |
+
>>> spectral_clustering(
|
359 |
+
... affinity=affinity, n_clusters=2, assign_labels="discretize", random_state=0
|
360 |
+
... )
|
361 |
+
array([1, 1, 1, 0, 0, 0])
|
362 |
+
"""
|
363 |
+
|
364 |
+
clusterer = SpectralClustering(
|
365 |
+
n_clusters=n_clusters,
|
366 |
+
n_components=n_components,
|
367 |
+
eigen_solver=eigen_solver,
|
368 |
+
random_state=random_state,
|
369 |
+
n_init=n_init,
|
370 |
+
affinity="precomputed",
|
371 |
+
eigen_tol=eigen_tol,
|
372 |
+
assign_labels=assign_labels,
|
373 |
+
verbose=verbose,
|
374 |
+
).fit(affinity)
|
375 |
+
|
376 |
+
return clusterer.labels_
|
377 |
+
|
378 |
+
|
379 |
+
class SpectralClustering(ClusterMixin, BaseEstimator):
|
380 |
+
"""Apply clustering to a projection of the normalized Laplacian.
|
381 |
+
|
382 |
+
In practice Spectral Clustering is very useful when the structure of
|
383 |
+
the individual clusters is highly non-convex, or more generally when
|
384 |
+
a measure of the center and spread of the cluster is not a suitable
|
385 |
+
description of the complete cluster, such as when clusters are
|
386 |
+
nested circles on the 2D plane.
|
387 |
+
|
388 |
+
If the affinity matrix is the adjacency matrix of a graph, this method
|
389 |
+
can be used to find normalized graph cuts [1]_, [2]_.
|
390 |
+
|
391 |
+
When calling ``fit``, an affinity matrix is constructed using either
|
392 |
+
a kernel function such the Gaussian (aka RBF) kernel with Euclidean
|
393 |
+
distance ``d(X, X)``::
|
394 |
+
|
395 |
+
np.exp(-gamma * d(X,X) ** 2)
|
396 |
+
|
397 |
+
or a k-nearest neighbors connectivity matrix.
|
398 |
+
|
399 |
+
Alternatively, a user-provided affinity matrix can be specified by
|
400 |
+
setting ``affinity='precomputed'``.
|
401 |
+
|
402 |
+
Read more in the :ref:`User Guide <spectral_clustering>`.
|
403 |
+
|
404 |
+
Parameters
|
405 |
+
----------
|
406 |
+
n_clusters : int, default=8
|
407 |
+
The dimension of the projection subspace.
|
408 |
+
|
409 |
+
eigen_solver : {'arpack', 'lobpcg', 'amg'}, default=None
|
410 |
+
The eigenvalue decomposition strategy to use. AMG requires pyamg
|
411 |
+
to be installed. It can be faster on very large, sparse problems,
|
412 |
+
but may also lead to instabilities. If None, then ``'arpack'`` is
|
413 |
+
used. See [4]_ for more details regarding `'lobpcg'`.
|
414 |
+
|
415 |
+
n_components : int, default=None
|
416 |
+
Number of eigenvectors to use for the spectral embedding. If None,
|
417 |
+
defaults to `n_clusters`.
|
418 |
+
|
419 |
+
random_state : int, RandomState instance, default=None
|
420 |
+
A pseudo random number generator used for the initialization
|
421 |
+
of the lobpcg eigenvectors decomposition when `eigen_solver ==
|
422 |
+
'amg'`, and for the K-Means initialization. Use an int to make
|
423 |
+
the results deterministic across calls (See
|
424 |
+
:term:`Glossary <random_state>`).
|
425 |
+
|
426 |
+
.. note::
|
427 |
+
When using `eigen_solver == 'amg'`,
|
428 |
+
it is necessary to also fix the global numpy seed with
|
429 |
+
`np.random.seed(int)` to get deterministic results. See
|
430 |
+
https://github.com/pyamg/pyamg/issues/139 for further
|
431 |
+
information.
|
432 |
+
|
433 |
+
n_init : int, default=10
|
434 |
+
Number of time the k-means algorithm will be run with different
|
435 |
+
centroid seeds. The final results will be the best output of n_init
|
436 |
+
consecutive runs in terms of inertia. Only used if
|
437 |
+
``assign_labels='kmeans'``.
|
438 |
+
|
439 |
+
gamma : float, default=1.0
|
440 |
+
Kernel coefficient for rbf, poly, sigmoid, laplacian and chi2 kernels.
|
441 |
+
Ignored for ``affinity='nearest_neighbors'``.
|
442 |
+
|
443 |
+
affinity : str or callable, default='rbf'
|
444 |
+
How to construct the affinity matrix.
|
445 |
+
- 'nearest_neighbors': construct the affinity matrix by computing a
|
446 |
+
graph of nearest neighbors.
|
447 |
+
- 'rbf': construct the affinity matrix using a radial basis function
|
448 |
+
(RBF) kernel.
|
449 |
+
- 'precomputed': interpret ``X`` as a precomputed affinity matrix,
|
450 |
+
where larger values indicate greater similarity between instances.
|
451 |
+
- 'precomputed_nearest_neighbors': interpret ``X`` as a sparse graph
|
452 |
+
of precomputed distances, and construct a binary affinity matrix
|
453 |
+
from the ``n_neighbors`` nearest neighbors of each instance.
|
454 |
+
- one of the kernels supported by
|
455 |
+
:func:`~sklearn.metrics.pairwise.pairwise_kernels`.
|
456 |
+
|
457 |
+
Only kernels that produce similarity scores (non-negative values that
|
458 |
+
increase with similarity) should be used. This property is not checked
|
459 |
+
by the clustering algorithm.
|
460 |
+
|
461 |
+
n_neighbors : int, default=10
|
462 |
+
Number of neighbors to use when constructing the affinity matrix using
|
463 |
+
the nearest neighbors method. Ignored for ``affinity='rbf'``.
|
464 |
+
|
465 |
+
eigen_tol : float, default="auto"
|
466 |
+
Stopping criterion for eigen decomposition of the Laplacian matrix.
|
467 |
+
If `eigen_tol="auto"` then the passed tolerance will depend on the
|
468 |
+
`eigen_solver`:
|
469 |
+
|
470 |
+
- If `eigen_solver="arpack"`, then `eigen_tol=0.0`;
|
471 |
+
- If `eigen_solver="lobpcg"` or `eigen_solver="amg"`, then
|
472 |
+
`eigen_tol=None` which configures the underlying `lobpcg` solver to
|
473 |
+
automatically resolve the value according to their heuristics. See,
|
474 |
+
:func:`scipy.sparse.linalg.lobpcg` for details.
|
475 |
+
|
476 |
+
Note that when using `eigen_solver="lobpcg"` or `eigen_solver="amg"`
|
477 |
+
values of `tol<1e-5` may lead to convergence issues and should be
|
478 |
+
avoided.
|
479 |
+
|
480 |
+
.. versionadded:: 1.2
|
481 |
+
Added 'auto' option.
|
482 |
+
|
483 |
+
assign_labels : {'kmeans', 'discretize', 'cluster_qr'}, default='kmeans'
|
484 |
+
The strategy for assigning labels in the embedding space. There are two
|
485 |
+
ways to assign labels after the Laplacian embedding. k-means is a
|
486 |
+
popular choice, but it can be sensitive to initialization.
|
487 |
+
Discretization is another approach which is less sensitive to random
|
488 |
+
initialization [3]_.
|
489 |
+
The cluster_qr method [5]_ directly extract clusters from eigenvectors
|
490 |
+
in spectral clustering. In contrast to k-means and discretization, cluster_qr
|
491 |
+
has no tuning parameters and runs no iterations, yet may outperform
|
492 |
+
k-means and discretization in terms of both quality and speed.
|
493 |
+
|
494 |
+
.. versionchanged:: 1.1
|
495 |
+
Added new labeling method 'cluster_qr'.
|
496 |
+
|
497 |
+
degree : float, default=3
|
498 |
+
Degree of the polynomial kernel. Ignored by other kernels.
|
499 |
+
|
500 |
+
coef0 : float, default=1
|
501 |
+
Zero coefficient for polynomial and sigmoid kernels.
|
502 |
+
Ignored by other kernels.
|
503 |
+
|
504 |
+
kernel_params : dict of str to any, default=None
|
505 |
+
Parameters (keyword arguments) and values for kernel passed as
|
506 |
+
callable object. Ignored by other kernels.
|
507 |
+
|
508 |
+
n_jobs : int, default=None
|
509 |
+
The number of parallel jobs to run when `affinity='nearest_neighbors'`
|
510 |
+
or `affinity='precomputed_nearest_neighbors'`. The neighbors search
|
511 |
+
will be done in parallel.
|
512 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
513 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
514 |
+
for more details.
|
515 |
+
|
516 |
+
verbose : bool, default=False
|
517 |
+
Verbosity mode.
|
518 |
+
|
519 |
+
.. versionadded:: 0.24
|
520 |
+
|
521 |
+
Attributes
|
522 |
+
----------
|
523 |
+
affinity_matrix_ : array-like of shape (n_samples, n_samples)
|
524 |
+
Affinity matrix used for clustering. Available only after calling
|
525 |
+
``fit``.
|
526 |
+
|
527 |
+
labels_ : ndarray of shape (n_samples,)
|
528 |
+
Labels of each point
|
529 |
+
|
530 |
+
n_features_in_ : int
|
531 |
+
Number of features seen during :term:`fit`.
|
532 |
+
|
533 |
+
.. versionadded:: 0.24
|
534 |
+
|
535 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
536 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
537 |
+
has feature names that are all strings.
|
538 |
+
|
539 |
+
.. versionadded:: 1.0
|
540 |
+
|
541 |
+
See Also
|
542 |
+
--------
|
543 |
+
sklearn.cluster.KMeans : K-Means clustering.
|
544 |
+
sklearn.cluster.DBSCAN : Density-Based Spatial Clustering of
|
545 |
+
Applications with Noise.
|
546 |
+
|
547 |
+
Notes
|
548 |
+
-----
|
549 |
+
A distance matrix for which 0 indicates identical elements and high values
|
550 |
+
indicate very dissimilar elements can be transformed into an affinity /
|
551 |
+
similarity matrix that is well-suited for the algorithm by
|
552 |
+
applying the Gaussian (aka RBF, heat) kernel::
|
553 |
+
|
554 |
+
np.exp(- dist_matrix ** 2 / (2. * delta ** 2))
|
555 |
+
|
556 |
+
where ``delta`` is a free parameter representing the width of the Gaussian
|
557 |
+
kernel.
|
558 |
+
|
559 |
+
An alternative is to take a symmetric version of the k-nearest neighbors
|
560 |
+
connectivity matrix of the points.
|
561 |
+
|
562 |
+
If the pyamg package is installed, it is used: this greatly
|
563 |
+
speeds up computation.
|
564 |
+
|
565 |
+
References
|
566 |
+
----------
|
567 |
+
.. [1] :doi:`Normalized cuts and image segmentation, 2000
|
568 |
+
Jianbo Shi, Jitendra Malik
|
569 |
+
<10.1109/34.868688>`
|
570 |
+
|
571 |
+
.. [2] :doi:`A Tutorial on Spectral Clustering, 2007
|
572 |
+
Ulrike von Luxburg
|
573 |
+
<10.1007/s11222-007-9033-z>`
|
574 |
+
|
575 |
+
.. [3] `Multiclass spectral clustering, 2003
|
576 |
+
Stella X. Yu, Jianbo Shi
|
577 |
+
<https://people.eecs.berkeley.edu/~jordan/courses/281B-spring04/readings/yu-shi.pdf>`_
|
578 |
+
|
579 |
+
.. [4] :doi:`Toward the Optimal Preconditioned Eigensolver:
|
580 |
+
Locally Optimal Block Preconditioned Conjugate Gradient Method, 2001
|
581 |
+
A. V. Knyazev
|
582 |
+
SIAM Journal on Scientific Computing 23, no. 2, pp. 517-541.
|
583 |
+
<10.1137/S1064827500366124>`
|
584 |
+
|
585 |
+
.. [5] :doi:`Simple, direct, and efficient multi-way spectral clustering, 2019
|
586 |
+
Anil Damle, Victor Minden, Lexing Ying
|
587 |
+
<10.1093/imaiai/iay008>`
|
588 |
+
|
589 |
+
Examples
|
590 |
+
--------
|
591 |
+
>>> from sklearn.cluster import SpectralClustering
|
592 |
+
>>> import numpy as np
|
593 |
+
>>> X = np.array([[1, 1], [2, 1], [1, 0],
|
594 |
+
... [4, 7], [3, 5], [3, 6]])
|
595 |
+
>>> clustering = SpectralClustering(n_clusters=2,
|
596 |
+
... assign_labels='discretize',
|
597 |
+
... random_state=0).fit(X)
|
598 |
+
>>> clustering.labels_
|
599 |
+
array([1, 1, 1, 0, 0, 0])
|
600 |
+
>>> clustering
|
601 |
+
SpectralClustering(assign_labels='discretize', n_clusters=2,
|
602 |
+
random_state=0)
|
603 |
+
"""
|
604 |
+
|
605 |
+
_parameter_constraints: dict = {
|
606 |
+
"n_clusters": [Interval(Integral, 1, None, closed="left")],
|
607 |
+
"eigen_solver": [StrOptions({"arpack", "lobpcg", "amg"}), None],
|
608 |
+
"n_components": [Interval(Integral, 1, None, closed="left"), None],
|
609 |
+
"random_state": ["random_state"],
|
610 |
+
"n_init": [Interval(Integral, 1, None, closed="left")],
|
611 |
+
"gamma": [Interval(Real, 0, None, closed="left")],
|
612 |
+
"affinity": [
|
613 |
+
callable,
|
614 |
+
StrOptions(
|
615 |
+
set(KERNEL_PARAMS)
|
616 |
+
| {"nearest_neighbors", "precomputed", "precomputed_nearest_neighbors"}
|
617 |
+
),
|
618 |
+
],
|
619 |
+
"n_neighbors": [Interval(Integral, 1, None, closed="left")],
|
620 |
+
"eigen_tol": [
|
621 |
+
Interval(Real, 0.0, None, closed="left"),
|
622 |
+
StrOptions({"auto"}),
|
623 |
+
],
|
624 |
+
"assign_labels": [StrOptions({"kmeans", "discretize", "cluster_qr"})],
|
625 |
+
"degree": [Interval(Real, 0, None, closed="left")],
|
626 |
+
"coef0": [Interval(Real, None, None, closed="neither")],
|
627 |
+
"kernel_params": [dict, None],
|
628 |
+
"n_jobs": [Integral, None],
|
629 |
+
"verbose": ["verbose"],
|
630 |
+
}
|
631 |
+
|
632 |
+
def __init__(
|
633 |
+
self,
|
634 |
+
n_clusters=8,
|
635 |
+
*,
|
636 |
+
eigen_solver=None,
|
637 |
+
n_components=None,
|
638 |
+
random_state=None,
|
639 |
+
n_init=10,
|
640 |
+
gamma=1.0,
|
641 |
+
affinity="rbf",
|
642 |
+
n_neighbors=10,
|
643 |
+
eigen_tol="auto",
|
644 |
+
assign_labels="kmeans",
|
645 |
+
degree=3,
|
646 |
+
coef0=1,
|
647 |
+
kernel_params=None,
|
648 |
+
n_jobs=None,
|
649 |
+
verbose=False,
|
650 |
+
):
|
651 |
+
self.n_clusters = n_clusters
|
652 |
+
self.eigen_solver = eigen_solver
|
653 |
+
self.n_components = n_components
|
654 |
+
self.random_state = random_state
|
655 |
+
self.n_init = n_init
|
656 |
+
self.gamma = gamma
|
657 |
+
self.affinity = affinity
|
658 |
+
self.n_neighbors = n_neighbors
|
659 |
+
self.eigen_tol = eigen_tol
|
660 |
+
self.assign_labels = assign_labels
|
661 |
+
self.degree = degree
|
662 |
+
self.coef0 = coef0
|
663 |
+
self.kernel_params = kernel_params
|
664 |
+
self.n_jobs = n_jobs
|
665 |
+
self.verbose = verbose
|
666 |
+
|
667 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
668 |
+
def fit(self, X, y=None):
|
669 |
+
"""Perform spectral clustering from features, or affinity matrix.
|
670 |
+
|
671 |
+
Parameters
|
672 |
+
----------
|
673 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
|
674 |
+
(n_samples, n_samples)
|
675 |
+
Training instances to cluster, similarities / affinities between
|
676 |
+
instances if ``affinity='precomputed'``, or distances between
|
677 |
+
instances if ``affinity='precomputed_nearest_neighbors``. If a
|
678 |
+
sparse matrix is provided in a format other than ``csr_matrix``,
|
679 |
+
``csc_matrix``, or ``coo_matrix``, it will be converted into a
|
680 |
+
sparse ``csr_matrix``.
|
681 |
+
|
682 |
+
y : Ignored
|
683 |
+
Not used, present here for API consistency by convention.
|
684 |
+
|
685 |
+
Returns
|
686 |
+
-------
|
687 |
+
self : object
|
688 |
+
A fitted instance of the estimator.
|
689 |
+
"""
|
690 |
+
X = self._validate_data(
|
691 |
+
X,
|
692 |
+
accept_sparse=["csr", "csc", "coo"],
|
693 |
+
dtype=np.float64,
|
694 |
+
ensure_min_samples=2,
|
695 |
+
)
|
696 |
+
allow_squared = self.affinity in [
|
697 |
+
"precomputed",
|
698 |
+
"precomputed_nearest_neighbors",
|
699 |
+
]
|
700 |
+
if X.shape[0] == X.shape[1] and not allow_squared:
|
701 |
+
warnings.warn(
|
702 |
+
"The spectral clustering API has changed. ``fit``"
|
703 |
+
"now constructs an affinity matrix from data. To use"
|
704 |
+
" a custom affinity matrix, "
|
705 |
+
"set ``affinity=precomputed``."
|
706 |
+
)
|
707 |
+
|
708 |
+
if self.affinity == "nearest_neighbors":
|
709 |
+
connectivity = kneighbors_graph(
|
710 |
+
X, n_neighbors=self.n_neighbors, include_self=True, n_jobs=self.n_jobs
|
711 |
+
)
|
712 |
+
self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)
|
713 |
+
elif self.affinity == "precomputed_nearest_neighbors":
|
714 |
+
estimator = NearestNeighbors(
|
715 |
+
n_neighbors=self.n_neighbors, n_jobs=self.n_jobs, metric="precomputed"
|
716 |
+
).fit(X)
|
717 |
+
connectivity = estimator.kneighbors_graph(X=X, mode="connectivity")
|
718 |
+
self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)
|
719 |
+
elif self.affinity == "precomputed":
|
720 |
+
self.affinity_matrix_ = X
|
721 |
+
else:
|
722 |
+
params = self.kernel_params
|
723 |
+
if params is None:
|
724 |
+
params = {}
|
725 |
+
if not callable(self.affinity):
|
726 |
+
params["gamma"] = self.gamma
|
727 |
+
params["degree"] = self.degree
|
728 |
+
params["coef0"] = self.coef0
|
729 |
+
self.affinity_matrix_ = pairwise_kernels(
|
730 |
+
X, metric=self.affinity, filter_params=True, **params
|
731 |
+
)
|
732 |
+
|
733 |
+
random_state = check_random_state(self.random_state)
|
734 |
+
n_components = (
|
735 |
+
self.n_clusters if self.n_components is None else self.n_components
|
736 |
+
)
|
737 |
+
# We now obtain the real valued solution matrix to the
|
738 |
+
# relaxed Ncut problem, solving the eigenvalue problem
|
739 |
+
# L_sym x = lambda x and recovering u = D^-1/2 x.
|
740 |
+
# The first eigenvector is constant only for fully connected graphs
|
741 |
+
# and should be kept for spectral clustering (drop_first = False)
|
742 |
+
# See spectral_embedding documentation.
|
743 |
+
maps = spectral_embedding(
|
744 |
+
self.affinity_matrix_,
|
745 |
+
n_components=n_components,
|
746 |
+
eigen_solver=self.eigen_solver,
|
747 |
+
random_state=random_state,
|
748 |
+
eigen_tol=self.eigen_tol,
|
749 |
+
drop_first=False,
|
750 |
+
)
|
751 |
+
if self.verbose:
|
752 |
+
print(f"Computing label assignment using {self.assign_labels}")
|
753 |
+
|
754 |
+
if self.assign_labels == "kmeans":
|
755 |
+
_, self.labels_, _ = k_means(
|
756 |
+
maps,
|
757 |
+
self.n_clusters,
|
758 |
+
random_state=random_state,
|
759 |
+
n_init=self.n_init,
|
760 |
+
verbose=self.verbose,
|
761 |
+
)
|
762 |
+
elif self.assign_labels == "cluster_qr":
|
763 |
+
self.labels_ = cluster_qr(maps)
|
764 |
+
else:
|
765 |
+
self.labels_ = discretize(maps, random_state=random_state)
|
766 |
+
|
767 |
+
return self
|
768 |
+
|
769 |
+
def fit_predict(self, X, y=None):
|
770 |
+
"""Perform spectral clustering on `X` and return cluster labels.
|
771 |
+
|
772 |
+
Parameters
|
773 |
+
----------
|
774 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
|
775 |
+
(n_samples, n_samples)
|
776 |
+
Training instances to cluster, similarities / affinities between
|
777 |
+
instances if ``affinity='precomputed'``, or distances between
|
778 |
+
instances if ``affinity='precomputed_nearest_neighbors``. If a
|
779 |
+
sparse matrix is provided in a format other than ``csr_matrix``,
|
780 |
+
``csc_matrix``, or ``coo_matrix``, it will be converted into a
|
781 |
+
sparse ``csr_matrix``.
|
782 |
+
|
783 |
+
y : Ignored
|
784 |
+
Not used, present here for API consistency by convention.
|
785 |
+
|
786 |
+
Returns
|
787 |
+
-------
|
788 |
+
labels : ndarray of shape (n_samples,)
|
789 |
+
Cluster labels.
|
790 |
+
"""
|
791 |
+
return super().fit_predict(X, y)
|
792 |
+
|
793 |
+
def _more_tags(self):
|
794 |
+
return {
|
795 |
+
"pairwise": self.affinity in [
|
796 |
+
"precomputed",
|
797 |
+
"precomputed_nearest_neighbors",
|
798 |
+
]
|
799 |
+
}
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/tests/__pycache__/common.cpython-310.pyc
ADDED
Binary file (823 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/tests/__pycache__/test_affinity_propagation.cpython-310.pyc
ADDED
Binary file (9.64 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/tests/__pycache__/test_bicluster.cpython-310.pyc
ADDED
Binary file (7.73 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/cluster/tests/__pycache__/test_birch.cpython-310.pyc
ADDED
Binary file (7.2 kB). View file
|
|