Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__init__.py +179 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/configuration_albert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/convert_albert_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_albert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_tf_albert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/configuration_albert.py +167 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py +63 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_albert.py +1382 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_flax_albert.py +1121 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_tf_albert.py +1564 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert.py +346 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert_fast.py +210 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__init__.py +71 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/configuration_blip_2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/convert_blip_2_original_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/modeling_blip_2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/processing_blip_2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/configuration_blip_2.py +355 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/convert_blip_2_original_to_pytorch.py +291 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/modeling_blip_2.py +1853 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/processing_blip_2.py +155 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/configuration_jukebox.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/modeling_jukebox.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__init__.py +86 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/configuration_pix2struct.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/image_processing_pix2struct.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/modeling_pix2struct.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/processing_pix2struct.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/configuration_pix2struct.py +387 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py +155 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/image_processing_pix2struct.py +460 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/modeling_pix2struct.py +1786 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/processing_pix2struct.py +163 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__init__.py +105 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/configuration_sam.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/convert_sam_to_hf.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/image_processing_sam.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_sam.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_tf_sam.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/processing_sam.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/sam/configuration_sam.py +309 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/sam/convert_sam_to_hf.py +250 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/sam/image_processing_sam.py +1496 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_sam.py +1415 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_tf_sam.py +1656 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__init__.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_flax_available,
|
21 |
+
is_sentencepiece_available,
|
22 |
+
is_tf_available,
|
23 |
+
is_tokenizers_available,
|
24 |
+
is_torch_available,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
_import_structure = {
|
29 |
+
"configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"],
|
30 |
+
}
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_sentencepiece_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["tokenization_albert"] = ["AlbertTokenizer"]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_tokenizers_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["tokenization_albert_fast"] = ["AlbertTokenizerFast"]
|
47 |
+
|
48 |
+
try:
|
49 |
+
if not is_torch_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
_import_structure["modeling_albert"] = [
|
55 |
+
"ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
56 |
+
"AlbertForMaskedLM",
|
57 |
+
"AlbertForMultipleChoice",
|
58 |
+
"AlbertForPreTraining",
|
59 |
+
"AlbertForQuestionAnswering",
|
60 |
+
"AlbertForSequenceClassification",
|
61 |
+
"AlbertForTokenClassification",
|
62 |
+
"AlbertModel",
|
63 |
+
"AlbertPreTrainedModel",
|
64 |
+
"load_tf_weights_in_albert",
|
65 |
+
]
|
66 |
+
|
67 |
+
try:
|
68 |
+
if not is_tf_available():
|
69 |
+
raise OptionalDependencyNotAvailable()
|
70 |
+
except OptionalDependencyNotAvailable:
|
71 |
+
pass
|
72 |
+
else:
|
73 |
+
_import_structure["modeling_tf_albert"] = [
|
74 |
+
"TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
75 |
+
"TFAlbertForMaskedLM",
|
76 |
+
"TFAlbertForMultipleChoice",
|
77 |
+
"TFAlbertForPreTraining",
|
78 |
+
"TFAlbertForQuestionAnswering",
|
79 |
+
"TFAlbertForSequenceClassification",
|
80 |
+
"TFAlbertForTokenClassification",
|
81 |
+
"TFAlbertMainLayer",
|
82 |
+
"TFAlbertModel",
|
83 |
+
"TFAlbertPreTrainedModel",
|
84 |
+
]
|
85 |
+
|
86 |
+
try:
|
87 |
+
if not is_flax_available():
|
88 |
+
raise OptionalDependencyNotAvailable()
|
89 |
+
except OptionalDependencyNotAvailable:
|
90 |
+
pass
|
91 |
+
else:
|
92 |
+
_import_structure["modeling_flax_albert"] = [
|
93 |
+
"FlaxAlbertForMaskedLM",
|
94 |
+
"FlaxAlbertForMultipleChoice",
|
95 |
+
"FlaxAlbertForPreTraining",
|
96 |
+
"FlaxAlbertForQuestionAnswering",
|
97 |
+
"FlaxAlbertForSequenceClassification",
|
98 |
+
"FlaxAlbertForTokenClassification",
|
99 |
+
"FlaxAlbertModel",
|
100 |
+
"FlaxAlbertPreTrainedModel",
|
101 |
+
]
|
102 |
+
|
103 |
+
if TYPE_CHECKING:
|
104 |
+
from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig
|
105 |
+
|
106 |
+
try:
|
107 |
+
if not is_sentencepiece_available():
|
108 |
+
raise OptionalDependencyNotAvailable()
|
109 |
+
except OptionalDependencyNotAvailable:
|
110 |
+
pass
|
111 |
+
else:
|
112 |
+
from .tokenization_albert import AlbertTokenizer
|
113 |
+
|
114 |
+
try:
|
115 |
+
if not is_tokenizers_available():
|
116 |
+
raise OptionalDependencyNotAvailable()
|
117 |
+
except OptionalDependencyNotAvailable:
|
118 |
+
pass
|
119 |
+
else:
|
120 |
+
from .tokenization_albert_fast import AlbertTokenizerFast
|
121 |
+
|
122 |
+
try:
|
123 |
+
if not is_torch_available():
|
124 |
+
raise OptionalDependencyNotAvailable()
|
125 |
+
except OptionalDependencyNotAvailable:
|
126 |
+
pass
|
127 |
+
else:
|
128 |
+
from .modeling_albert import (
|
129 |
+
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
130 |
+
AlbertForMaskedLM,
|
131 |
+
AlbertForMultipleChoice,
|
132 |
+
AlbertForPreTraining,
|
133 |
+
AlbertForQuestionAnswering,
|
134 |
+
AlbertForSequenceClassification,
|
135 |
+
AlbertForTokenClassification,
|
136 |
+
AlbertModel,
|
137 |
+
AlbertPreTrainedModel,
|
138 |
+
load_tf_weights_in_albert,
|
139 |
+
)
|
140 |
+
|
141 |
+
try:
|
142 |
+
if not is_tf_available():
|
143 |
+
raise OptionalDependencyNotAvailable()
|
144 |
+
except OptionalDependencyNotAvailable:
|
145 |
+
pass
|
146 |
+
else:
|
147 |
+
from .modeling_tf_albert import (
|
148 |
+
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
149 |
+
TFAlbertForMaskedLM,
|
150 |
+
TFAlbertForMultipleChoice,
|
151 |
+
TFAlbertForPreTraining,
|
152 |
+
TFAlbertForQuestionAnswering,
|
153 |
+
TFAlbertForSequenceClassification,
|
154 |
+
TFAlbertForTokenClassification,
|
155 |
+
TFAlbertMainLayer,
|
156 |
+
TFAlbertModel,
|
157 |
+
TFAlbertPreTrainedModel,
|
158 |
+
)
|
159 |
+
|
160 |
+
try:
|
161 |
+
if not is_flax_available():
|
162 |
+
raise OptionalDependencyNotAvailable()
|
163 |
+
except OptionalDependencyNotAvailable:
|
164 |
+
pass
|
165 |
+
else:
|
166 |
+
from .modeling_flax_albert import (
|
167 |
+
FlaxAlbertForMaskedLM,
|
168 |
+
FlaxAlbertForMultipleChoice,
|
169 |
+
FlaxAlbertForPreTraining,
|
170 |
+
FlaxAlbertForQuestionAnswering,
|
171 |
+
FlaxAlbertForSequenceClassification,
|
172 |
+
FlaxAlbertForTokenClassification,
|
173 |
+
FlaxAlbertModel,
|
174 |
+
FlaxAlbertPreTrainedModel,
|
175 |
+
)
|
176 |
+
else:
|
177 |
+
import sys
|
178 |
+
|
179 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/configuration_albert.cpython-310.pyc
ADDED
Binary file (7.23 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/convert_albert_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (1.43 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_albert.cpython-310.pyc
ADDED
Binary file (41.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_tf_albert.cpython-310.pyc
ADDED
Binary file (47.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert.cpython-310.pyc
ADDED
Binary file (12.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert_fast.cpython-310.pyc
ADDED
Binary file (7.76 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/configuration_albert.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" ALBERT model configuration"""
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...onnx import OnnxConfig
|
22 |
+
from ..deprecated._archive_maps import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
23 |
+
|
24 |
+
|
25 |
+
class AlbertConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`AlbertModel`] or a [`TFAlbertModel`]. It is used
|
28 |
+
to instantiate an ALBERT model according to the specified arguments, defining the model architecture. Instantiating
|
29 |
+
a configuration with the defaults will yield a similar configuration to that of the ALBERT
|
30 |
+
[albert/albert-xxlarge-v2](https://huggingface.co/albert/albert-xxlarge-v2) architecture.
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
vocab_size (`int`, *optional*, defaults to 30000):
|
37 |
+
Vocabulary size of the ALBERT model. Defines the number of different tokens that can be represented by the
|
38 |
+
`inputs_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`].
|
39 |
+
embedding_size (`int`, *optional*, defaults to 128):
|
40 |
+
Dimensionality of vocabulary embeddings.
|
41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
42 |
+
Dimensionality of the encoder layers and the pooler layer.
|
43 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
44 |
+
Number of hidden layers in the Transformer encoder.
|
45 |
+
num_hidden_groups (`int`, *optional*, defaults to 1):
|
46 |
+
Number of groups for the hidden layers, parameters in the same group are shared.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
intermediate_size (`int`, *optional*, defaults to 16384):
|
50 |
+
The dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
51 |
+
inner_group_num (`int`, *optional*, defaults to 1):
|
52 |
+
The number of inner repetition of attention and ffn.
|
53 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu_new"`):
|
54 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
55 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
56 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0):
|
57 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
58 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0):
|
59 |
+
The dropout ratio for the attention probabilities.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
61 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
62 |
+
(e.g., 512 or 1024 or 2048).
|
63 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
64 |
+
The vocabulary size of the `token_type_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`].
|
65 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
66 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
68 |
+
The epsilon used by the layer normalization layers.
|
69 |
+
classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
|
70 |
+
The dropout ratio for attached classifiers.
|
71 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
72 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
73 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
74 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
75 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
76 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
77 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
78 |
+
Padding token id.
|
79 |
+
bos_token_id (`int`, *optional*, defaults to 2):
|
80 |
+
Beginning of stream token id.
|
81 |
+
eos_token_id (`int`, *optional*, defaults to 3):
|
82 |
+
End of stream token id.
|
83 |
+
|
84 |
+
Examples:
|
85 |
+
|
86 |
+
```python
|
87 |
+
>>> from transformers import AlbertConfig, AlbertModel
|
88 |
+
|
89 |
+
>>> # Initializing an ALBERT-xxlarge style configuration
|
90 |
+
>>> albert_xxlarge_configuration = AlbertConfig()
|
91 |
+
|
92 |
+
>>> # Initializing an ALBERT-base style configuration
|
93 |
+
>>> albert_base_configuration = AlbertConfig(
|
94 |
+
... hidden_size=768,
|
95 |
+
... num_attention_heads=12,
|
96 |
+
... intermediate_size=3072,
|
97 |
+
... )
|
98 |
+
|
99 |
+
>>> # Initializing a model (with random weights) from the ALBERT-base style configuration
|
100 |
+
>>> model = AlbertModel(albert_xxlarge_configuration)
|
101 |
+
|
102 |
+
>>> # Accessing the model configuration
|
103 |
+
>>> configuration = model.config
|
104 |
+
```"""
|
105 |
+
|
106 |
+
model_type = "albert"
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
vocab_size=30000,
|
111 |
+
embedding_size=128,
|
112 |
+
hidden_size=4096,
|
113 |
+
num_hidden_layers=12,
|
114 |
+
num_hidden_groups=1,
|
115 |
+
num_attention_heads=64,
|
116 |
+
intermediate_size=16384,
|
117 |
+
inner_group_num=1,
|
118 |
+
hidden_act="gelu_new",
|
119 |
+
hidden_dropout_prob=0,
|
120 |
+
attention_probs_dropout_prob=0,
|
121 |
+
max_position_embeddings=512,
|
122 |
+
type_vocab_size=2,
|
123 |
+
initializer_range=0.02,
|
124 |
+
layer_norm_eps=1e-12,
|
125 |
+
classifier_dropout_prob=0.1,
|
126 |
+
position_embedding_type="absolute",
|
127 |
+
pad_token_id=0,
|
128 |
+
bos_token_id=2,
|
129 |
+
eos_token_id=3,
|
130 |
+
**kwargs,
|
131 |
+
):
|
132 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
133 |
+
|
134 |
+
self.vocab_size = vocab_size
|
135 |
+
self.embedding_size = embedding_size
|
136 |
+
self.hidden_size = hidden_size
|
137 |
+
self.num_hidden_layers = num_hidden_layers
|
138 |
+
self.num_hidden_groups = num_hidden_groups
|
139 |
+
self.num_attention_heads = num_attention_heads
|
140 |
+
self.inner_group_num = inner_group_num
|
141 |
+
self.hidden_act = hidden_act
|
142 |
+
self.intermediate_size = intermediate_size
|
143 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
144 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
145 |
+
self.max_position_embeddings = max_position_embeddings
|
146 |
+
self.type_vocab_size = type_vocab_size
|
147 |
+
self.initializer_range = initializer_range
|
148 |
+
self.layer_norm_eps = layer_norm_eps
|
149 |
+
self.classifier_dropout_prob = classifier_dropout_prob
|
150 |
+
self.position_embedding_type = position_embedding_type
|
151 |
+
|
152 |
+
|
153 |
+
# Copied from transformers.models.bert.configuration_bert.BertOnnxConfig with Roberta->Albert
|
154 |
+
class AlbertOnnxConfig(OnnxConfig):
|
155 |
+
@property
|
156 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
157 |
+
if self.task == "multiple-choice":
|
158 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
159 |
+
else:
|
160 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
161 |
+
return OrderedDict(
|
162 |
+
[
|
163 |
+
("input_ids", dynamic_axis),
|
164 |
+
("attention_mask", dynamic_axis),
|
165 |
+
("token_type_ids", dynamic_axis),
|
166 |
+
]
|
167 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert ALBERT checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from ...utils import logging
|
23 |
+
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
|
24 |
+
|
25 |
+
|
26 |
+
logging.set_verbosity_info()
|
27 |
+
|
28 |
+
|
29 |
+
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, albert_config_file, pytorch_dump_path):
|
30 |
+
# Initialise PyTorch model
|
31 |
+
config = AlbertConfig.from_json_file(albert_config_file)
|
32 |
+
print(f"Building PyTorch model from configuration: {config}")
|
33 |
+
model = AlbertForPreTraining(config)
|
34 |
+
|
35 |
+
# Load weights from tf checkpoint
|
36 |
+
load_tf_weights_in_albert(model, config, tf_checkpoint_path)
|
37 |
+
|
38 |
+
# Save pytorch-model
|
39 |
+
print(f"Save PyTorch model to {pytorch_dump_path}")
|
40 |
+
torch.save(model.state_dict(), pytorch_dump_path)
|
41 |
+
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
parser = argparse.ArgumentParser()
|
45 |
+
# Required parameters
|
46 |
+
parser.add_argument(
|
47 |
+
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
48 |
+
)
|
49 |
+
parser.add_argument(
|
50 |
+
"--albert_config_file",
|
51 |
+
default=None,
|
52 |
+
type=str,
|
53 |
+
required=True,
|
54 |
+
help=(
|
55 |
+
"The config json file corresponding to the pre-trained ALBERT model. \n"
|
56 |
+
"This specifies the model architecture."
|
57 |
+
),
|
58 |
+
)
|
59 |
+
parser.add_argument(
|
60 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
61 |
+
)
|
62 |
+
args = parser.parse_args()
|
63 |
+
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_albert.py
ADDED
@@ -0,0 +1,1382 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch ALBERT model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import os
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from ...activations import ACT2FN
|
27 |
+
from ...modeling_outputs import (
|
28 |
+
BaseModelOutput,
|
29 |
+
BaseModelOutputWithPooling,
|
30 |
+
MaskedLMOutput,
|
31 |
+
MultipleChoiceModelOutput,
|
32 |
+
QuestionAnsweringModelOutput,
|
33 |
+
SequenceClassifierOutput,
|
34 |
+
TokenClassifierOutput,
|
35 |
+
)
|
36 |
+
from ...modeling_utils import PreTrainedModel
|
37 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
38 |
+
from ...utils import (
|
39 |
+
ModelOutput,
|
40 |
+
add_code_sample_docstrings,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
logging,
|
44 |
+
replace_return_docstrings,
|
45 |
+
)
|
46 |
+
from .configuration_albert import AlbertConfig
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
_CHECKPOINT_FOR_DOC = "albert/albert-base-v2"
|
52 |
+
_CONFIG_FOR_DOC = "AlbertConfig"
|
53 |
+
|
54 |
+
|
55 |
+
from ..deprecated._archive_maps import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
56 |
+
|
57 |
+
|
58 |
+
def load_tf_weights_in_albert(model, config, tf_checkpoint_path):
|
59 |
+
"""Load tf checkpoints in a pytorch model."""
|
60 |
+
try:
|
61 |
+
import re
|
62 |
+
|
63 |
+
import numpy as np
|
64 |
+
import tensorflow as tf
|
65 |
+
except ImportError:
|
66 |
+
logger.error(
|
67 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
68 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
69 |
+
)
|
70 |
+
raise
|
71 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
72 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
73 |
+
# Load weights from TF model
|
74 |
+
init_vars = tf.train.list_variables(tf_path)
|
75 |
+
names = []
|
76 |
+
arrays = []
|
77 |
+
for name, shape in init_vars:
|
78 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
79 |
+
array = tf.train.load_variable(tf_path, name)
|
80 |
+
names.append(name)
|
81 |
+
arrays.append(array)
|
82 |
+
|
83 |
+
for name, array in zip(names, arrays):
|
84 |
+
print(name)
|
85 |
+
|
86 |
+
for name, array in zip(names, arrays):
|
87 |
+
original_name = name
|
88 |
+
|
89 |
+
# If saved from the TF HUB module
|
90 |
+
name = name.replace("module/", "")
|
91 |
+
|
92 |
+
# Renaming and simplifying
|
93 |
+
name = name.replace("ffn_1", "ffn")
|
94 |
+
name = name.replace("bert/", "albert/")
|
95 |
+
name = name.replace("attention_1", "attention")
|
96 |
+
name = name.replace("transform/", "")
|
97 |
+
name = name.replace("LayerNorm_1", "full_layer_layer_norm")
|
98 |
+
name = name.replace("LayerNorm", "attention/LayerNorm")
|
99 |
+
name = name.replace("transformer/", "")
|
100 |
+
|
101 |
+
# The feed forward layer had an 'intermediate' step which has been abstracted away
|
102 |
+
name = name.replace("intermediate/dense/", "")
|
103 |
+
name = name.replace("ffn/intermediate/output/dense/", "ffn_output/")
|
104 |
+
|
105 |
+
# ALBERT attention was split between self and output which have been abstracted away
|
106 |
+
name = name.replace("/output/", "/")
|
107 |
+
name = name.replace("/self/", "/")
|
108 |
+
|
109 |
+
# The pooler is a linear layer
|
110 |
+
name = name.replace("pooler/dense", "pooler")
|
111 |
+
|
112 |
+
# The classifier was simplified to predictions from cls/predictions
|
113 |
+
name = name.replace("cls/predictions", "predictions")
|
114 |
+
name = name.replace("predictions/attention", "predictions")
|
115 |
+
|
116 |
+
# Naming was changed to be more explicit
|
117 |
+
name = name.replace("embeddings/attention", "embeddings")
|
118 |
+
name = name.replace("inner_group_", "albert_layers/")
|
119 |
+
name = name.replace("group_", "albert_layer_groups/")
|
120 |
+
|
121 |
+
# Classifier
|
122 |
+
if len(name.split("/")) == 1 and ("output_bias" in name or "output_weights" in name):
|
123 |
+
name = "classifier/" + name
|
124 |
+
|
125 |
+
# No ALBERT model currently handles the next sentence prediction task
|
126 |
+
if "seq_relationship" in name:
|
127 |
+
name = name.replace("seq_relationship/output_", "sop_classifier/classifier/")
|
128 |
+
name = name.replace("weights", "weight")
|
129 |
+
|
130 |
+
name = name.split("/")
|
131 |
+
|
132 |
+
# Ignore the gradients applied by the LAMB/ADAM optimizers.
|
133 |
+
if (
|
134 |
+
"adam_m" in name
|
135 |
+
or "adam_v" in name
|
136 |
+
or "AdamWeightDecayOptimizer" in name
|
137 |
+
or "AdamWeightDecayOptimizer_1" in name
|
138 |
+
or "global_step" in name
|
139 |
+
):
|
140 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
141 |
+
continue
|
142 |
+
|
143 |
+
pointer = model
|
144 |
+
for m_name in name:
|
145 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
146 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
147 |
+
else:
|
148 |
+
scope_names = [m_name]
|
149 |
+
|
150 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
151 |
+
pointer = getattr(pointer, "weight")
|
152 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
153 |
+
pointer = getattr(pointer, "bias")
|
154 |
+
elif scope_names[0] == "output_weights":
|
155 |
+
pointer = getattr(pointer, "weight")
|
156 |
+
elif scope_names[0] == "squad":
|
157 |
+
pointer = getattr(pointer, "classifier")
|
158 |
+
else:
|
159 |
+
try:
|
160 |
+
pointer = getattr(pointer, scope_names[0])
|
161 |
+
except AttributeError:
|
162 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
163 |
+
continue
|
164 |
+
if len(scope_names) >= 2:
|
165 |
+
num = int(scope_names[1])
|
166 |
+
pointer = pointer[num]
|
167 |
+
|
168 |
+
if m_name[-11:] == "_embeddings":
|
169 |
+
pointer = getattr(pointer, "weight")
|
170 |
+
elif m_name == "kernel":
|
171 |
+
array = np.transpose(array)
|
172 |
+
try:
|
173 |
+
if pointer.shape != array.shape:
|
174 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
175 |
+
except ValueError as e:
|
176 |
+
e.args += (pointer.shape, array.shape)
|
177 |
+
raise
|
178 |
+
print(f"Initialize PyTorch weight {name} from {original_name}")
|
179 |
+
pointer.data = torch.from_numpy(array)
|
180 |
+
|
181 |
+
return model
|
182 |
+
|
183 |
+
|
184 |
+
class AlbertEmbeddings(nn.Module):
|
185 |
+
"""
|
186 |
+
Construct the embeddings from word, position and token_type embeddings.
|
187 |
+
"""
|
188 |
+
|
189 |
+
def __init__(self, config: AlbertConfig):
|
190 |
+
super().__init__()
|
191 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
|
192 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
|
193 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
|
194 |
+
|
195 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
196 |
+
# any TensorFlow checkpoint file
|
197 |
+
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
|
198 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
199 |
+
|
200 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
201 |
+
self.register_buffer(
|
202 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
203 |
+
)
|
204 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
205 |
+
self.register_buffer(
|
206 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
207 |
+
)
|
208 |
+
|
209 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward
|
210 |
+
def forward(
|
211 |
+
self,
|
212 |
+
input_ids: Optional[torch.LongTensor] = None,
|
213 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
214 |
+
position_ids: Optional[torch.LongTensor] = None,
|
215 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
216 |
+
past_key_values_length: int = 0,
|
217 |
+
) -> torch.Tensor:
|
218 |
+
if input_ids is not None:
|
219 |
+
input_shape = input_ids.size()
|
220 |
+
else:
|
221 |
+
input_shape = inputs_embeds.size()[:-1]
|
222 |
+
|
223 |
+
seq_length = input_shape[1]
|
224 |
+
|
225 |
+
if position_ids is None:
|
226 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
227 |
+
|
228 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
229 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
230 |
+
# issue #5664
|
231 |
+
if token_type_ids is None:
|
232 |
+
if hasattr(self, "token_type_ids"):
|
233 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
234 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
235 |
+
token_type_ids = buffered_token_type_ids_expanded
|
236 |
+
else:
|
237 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
238 |
+
|
239 |
+
if inputs_embeds is None:
|
240 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
241 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
242 |
+
|
243 |
+
embeddings = inputs_embeds + token_type_embeddings
|
244 |
+
if self.position_embedding_type == "absolute":
|
245 |
+
position_embeddings = self.position_embeddings(position_ids)
|
246 |
+
embeddings += position_embeddings
|
247 |
+
embeddings = self.LayerNorm(embeddings)
|
248 |
+
embeddings = self.dropout(embeddings)
|
249 |
+
return embeddings
|
250 |
+
|
251 |
+
|
252 |
+
class AlbertAttention(nn.Module):
|
253 |
+
def __init__(self, config: AlbertConfig):
|
254 |
+
super().__init__()
|
255 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
256 |
+
raise ValueError(
|
257 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
258 |
+
f"heads ({config.num_attention_heads}"
|
259 |
+
)
|
260 |
+
|
261 |
+
self.num_attention_heads = config.num_attention_heads
|
262 |
+
self.hidden_size = config.hidden_size
|
263 |
+
self.attention_head_size = config.hidden_size // config.num_attention_heads
|
264 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
265 |
+
|
266 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
267 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
268 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
269 |
+
|
270 |
+
self.attention_dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
271 |
+
self.output_dropout = nn.Dropout(config.hidden_dropout_prob)
|
272 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
273 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
274 |
+
self.pruned_heads = set()
|
275 |
+
|
276 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
277 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
278 |
+
self.max_position_embeddings = config.max_position_embeddings
|
279 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
280 |
+
|
281 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention.transpose_for_scores
|
282 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
283 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
284 |
+
x = x.view(new_x_shape)
|
285 |
+
return x.permute(0, 2, 1, 3)
|
286 |
+
|
287 |
+
def prune_heads(self, heads: List[int]) -> None:
|
288 |
+
if len(heads) == 0:
|
289 |
+
return
|
290 |
+
heads, index = find_pruneable_heads_and_indices(
|
291 |
+
heads, self.num_attention_heads, self.attention_head_size, self.pruned_heads
|
292 |
+
)
|
293 |
+
|
294 |
+
# Prune linear layers
|
295 |
+
self.query = prune_linear_layer(self.query, index)
|
296 |
+
self.key = prune_linear_layer(self.key, index)
|
297 |
+
self.value = prune_linear_layer(self.value, index)
|
298 |
+
self.dense = prune_linear_layer(self.dense, index, dim=1)
|
299 |
+
|
300 |
+
# Update hyper params and store pruned heads
|
301 |
+
self.num_attention_heads = self.num_attention_heads - len(heads)
|
302 |
+
self.all_head_size = self.attention_head_size * self.num_attention_heads
|
303 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
304 |
+
|
305 |
+
def forward(
|
306 |
+
self,
|
307 |
+
hidden_states: torch.Tensor,
|
308 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
309 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
310 |
+
output_attentions: bool = False,
|
311 |
+
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
|
312 |
+
mixed_query_layer = self.query(hidden_states)
|
313 |
+
mixed_key_layer = self.key(hidden_states)
|
314 |
+
mixed_value_layer = self.value(hidden_states)
|
315 |
+
|
316 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
317 |
+
key_layer = self.transpose_for_scores(mixed_key_layer)
|
318 |
+
value_layer = self.transpose_for_scores(mixed_value_layer)
|
319 |
+
|
320 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
321 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
322 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
323 |
+
|
324 |
+
if attention_mask is not None:
|
325 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
326 |
+
attention_scores = attention_scores + attention_mask
|
327 |
+
|
328 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
329 |
+
seq_length = hidden_states.size()[1]
|
330 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
331 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
332 |
+
distance = position_ids_l - position_ids_r
|
333 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
334 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
335 |
+
|
336 |
+
if self.position_embedding_type == "relative_key":
|
337 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
338 |
+
attention_scores = attention_scores + relative_position_scores
|
339 |
+
elif self.position_embedding_type == "relative_key_query":
|
340 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
341 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
342 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
343 |
+
|
344 |
+
# Normalize the attention scores to probabilities.
|
345 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
346 |
+
|
347 |
+
# This is actually dropping out entire tokens to attend to, which might
|
348 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
349 |
+
attention_probs = self.attention_dropout(attention_probs)
|
350 |
+
|
351 |
+
# Mask heads if we want to
|
352 |
+
if head_mask is not None:
|
353 |
+
attention_probs = attention_probs * head_mask
|
354 |
+
|
355 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
356 |
+
context_layer = context_layer.transpose(2, 1).flatten(2)
|
357 |
+
|
358 |
+
projected_context_layer = self.dense(context_layer)
|
359 |
+
projected_context_layer_dropout = self.output_dropout(projected_context_layer)
|
360 |
+
layernormed_context_layer = self.LayerNorm(hidden_states + projected_context_layer_dropout)
|
361 |
+
return (layernormed_context_layer, attention_probs) if output_attentions else (layernormed_context_layer,)
|
362 |
+
|
363 |
+
|
364 |
+
class AlbertLayer(nn.Module):
|
365 |
+
def __init__(self, config: AlbertConfig):
|
366 |
+
super().__init__()
|
367 |
+
|
368 |
+
self.config = config
|
369 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
370 |
+
self.seq_len_dim = 1
|
371 |
+
self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
372 |
+
self.attention = AlbertAttention(config)
|
373 |
+
self.ffn = nn.Linear(config.hidden_size, config.intermediate_size)
|
374 |
+
self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size)
|
375 |
+
self.activation = ACT2FN[config.hidden_act]
|
376 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
377 |
+
|
378 |
+
def forward(
|
379 |
+
self,
|
380 |
+
hidden_states: torch.Tensor,
|
381 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
382 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
383 |
+
output_attentions: bool = False,
|
384 |
+
output_hidden_states: bool = False,
|
385 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
386 |
+
attention_output = self.attention(hidden_states, attention_mask, head_mask, output_attentions)
|
387 |
+
|
388 |
+
ffn_output = apply_chunking_to_forward(
|
389 |
+
self.ff_chunk,
|
390 |
+
self.chunk_size_feed_forward,
|
391 |
+
self.seq_len_dim,
|
392 |
+
attention_output[0],
|
393 |
+
)
|
394 |
+
hidden_states = self.full_layer_layer_norm(ffn_output + attention_output[0])
|
395 |
+
|
396 |
+
return (hidden_states,) + attention_output[1:] # add attentions if we output them
|
397 |
+
|
398 |
+
def ff_chunk(self, attention_output: torch.Tensor) -> torch.Tensor:
|
399 |
+
ffn_output = self.ffn(attention_output)
|
400 |
+
ffn_output = self.activation(ffn_output)
|
401 |
+
ffn_output = self.ffn_output(ffn_output)
|
402 |
+
return ffn_output
|
403 |
+
|
404 |
+
|
405 |
+
class AlbertLayerGroup(nn.Module):
|
406 |
+
def __init__(self, config: AlbertConfig):
|
407 |
+
super().__init__()
|
408 |
+
|
409 |
+
self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)])
|
410 |
+
|
411 |
+
def forward(
|
412 |
+
self,
|
413 |
+
hidden_states: torch.Tensor,
|
414 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
415 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
416 |
+
output_attentions: bool = False,
|
417 |
+
output_hidden_states: bool = False,
|
418 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
419 |
+
layer_hidden_states = ()
|
420 |
+
layer_attentions = ()
|
421 |
+
|
422 |
+
for layer_index, albert_layer in enumerate(self.albert_layers):
|
423 |
+
layer_output = albert_layer(hidden_states, attention_mask, head_mask[layer_index], output_attentions)
|
424 |
+
hidden_states = layer_output[0]
|
425 |
+
|
426 |
+
if output_attentions:
|
427 |
+
layer_attentions = layer_attentions + (layer_output[1],)
|
428 |
+
|
429 |
+
if output_hidden_states:
|
430 |
+
layer_hidden_states = layer_hidden_states + (hidden_states,)
|
431 |
+
|
432 |
+
outputs = (hidden_states,)
|
433 |
+
if output_hidden_states:
|
434 |
+
outputs = outputs + (layer_hidden_states,)
|
435 |
+
if output_attentions:
|
436 |
+
outputs = outputs + (layer_attentions,)
|
437 |
+
return outputs # last-layer hidden state, (layer hidden states), (layer attentions)
|
438 |
+
|
439 |
+
|
440 |
+
class AlbertTransformer(nn.Module):
|
441 |
+
def __init__(self, config: AlbertConfig):
|
442 |
+
super().__init__()
|
443 |
+
|
444 |
+
self.config = config
|
445 |
+
self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size)
|
446 |
+
self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)])
|
447 |
+
|
448 |
+
def forward(
|
449 |
+
self,
|
450 |
+
hidden_states: torch.Tensor,
|
451 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
452 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
453 |
+
output_attentions: bool = False,
|
454 |
+
output_hidden_states: bool = False,
|
455 |
+
return_dict: bool = True,
|
456 |
+
) -> Union[BaseModelOutput, Tuple]:
|
457 |
+
hidden_states = self.embedding_hidden_mapping_in(hidden_states)
|
458 |
+
|
459 |
+
all_hidden_states = (hidden_states,) if output_hidden_states else None
|
460 |
+
all_attentions = () if output_attentions else None
|
461 |
+
|
462 |
+
head_mask = [None] * self.config.num_hidden_layers if head_mask is None else head_mask
|
463 |
+
|
464 |
+
for i in range(self.config.num_hidden_layers):
|
465 |
+
# Number of layers in a hidden group
|
466 |
+
layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups)
|
467 |
+
|
468 |
+
# Index of the hidden group
|
469 |
+
group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups))
|
470 |
+
|
471 |
+
layer_group_output = self.albert_layer_groups[group_idx](
|
472 |
+
hidden_states,
|
473 |
+
attention_mask,
|
474 |
+
head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group],
|
475 |
+
output_attentions,
|
476 |
+
output_hidden_states,
|
477 |
+
)
|
478 |
+
hidden_states = layer_group_output[0]
|
479 |
+
|
480 |
+
if output_attentions:
|
481 |
+
all_attentions = all_attentions + layer_group_output[-1]
|
482 |
+
|
483 |
+
if output_hidden_states:
|
484 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
485 |
+
|
486 |
+
if not return_dict:
|
487 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
488 |
+
return BaseModelOutput(
|
489 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
490 |
+
)
|
491 |
+
|
492 |
+
|
493 |
+
class AlbertPreTrainedModel(PreTrainedModel):
|
494 |
+
"""
|
495 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
496 |
+
models.
|
497 |
+
"""
|
498 |
+
|
499 |
+
config_class = AlbertConfig
|
500 |
+
load_tf_weights = load_tf_weights_in_albert
|
501 |
+
base_model_prefix = "albert"
|
502 |
+
|
503 |
+
def _init_weights(self, module):
|
504 |
+
"""Initialize the weights."""
|
505 |
+
if isinstance(module, nn.Linear):
|
506 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
507 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
508 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
509 |
+
if module.bias is not None:
|
510 |
+
module.bias.data.zero_()
|
511 |
+
elif isinstance(module, nn.Embedding):
|
512 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
513 |
+
if module.padding_idx is not None:
|
514 |
+
module.weight.data[module.padding_idx].zero_()
|
515 |
+
elif isinstance(module, nn.LayerNorm):
|
516 |
+
module.bias.data.zero_()
|
517 |
+
module.weight.data.fill_(1.0)
|
518 |
+
|
519 |
+
|
520 |
+
@dataclass
|
521 |
+
class AlbertForPreTrainingOutput(ModelOutput):
|
522 |
+
"""
|
523 |
+
Output type of [`AlbertForPreTraining`].
|
524 |
+
|
525 |
+
Args:
|
526 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
527 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
528 |
+
(classification) loss.
|
529 |
+
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
530 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
531 |
+
sop_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
|
532 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
533 |
+
before SoftMax).
|
534 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
535 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
536 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
537 |
+
|
538 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
539 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
540 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
541 |
+
sequence_length)`.
|
542 |
+
|
543 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
544 |
+
heads.
|
545 |
+
"""
|
546 |
+
|
547 |
+
loss: Optional[torch.FloatTensor] = None
|
548 |
+
prediction_logits: torch.FloatTensor = None
|
549 |
+
sop_logits: torch.FloatTensor = None
|
550 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
551 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
552 |
+
|
553 |
+
|
554 |
+
ALBERT_START_DOCSTRING = r"""
|
555 |
+
|
556 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
557 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
558 |
+
etc.)
|
559 |
+
|
560 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
561 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
562 |
+
and behavior.
|
563 |
+
|
564 |
+
Args:
|
565 |
+
config ([`AlbertConfig`]): Model configuration class with all the parameters of the model.
|
566 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
567 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
568 |
+
"""
|
569 |
+
|
570 |
+
ALBERT_INPUTS_DOCSTRING = r"""
|
571 |
+
Args:
|
572 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
573 |
+
Indices of input sequence tokens in the vocabulary.
|
574 |
+
|
575 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
576 |
+
[`PreTrainedTokenizer.encode`] for details.
|
577 |
+
|
578 |
+
[What are input IDs?](../glossary#input-ids)
|
579 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
580 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
581 |
+
|
582 |
+
- 1 for tokens that are **not masked**,
|
583 |
+
- 0 for tokens that are **masked**.
|
584 |
+
|
585 |
+
[What are attention masks?](../glossary#attention-mask)
|
586 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
587 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
588 |
+
1]`:
|
589 |
+
|
590 |
+
- 0 corresponds to a *sentence A* token,
|
591 |
+
- 1 corresponds to a *sentence B* token.
|
592 |
+
|
593 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
594 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
595 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
596 |
+
config.max_position_embeddings - 1]`.
|
597 |
+
|
598 |
+
[What are position IDs?](../glossary#position-ids)
|
599 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
600 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
601 |
+
|
602 |
+
- 1 indicates the head is **not masked**,
|
603 |
+
- 0 indicates the head is **masked**.
|
604 |
+
|
605 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
606 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
607 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
608 |
+
model's internal embedding lookup matrix.
|
609 |
+
output_attentions (`bool`, *optional*):
|
610 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
611 |
+
tensors for more detail.
|
612 |
+
output_hidden_states (`bool`, *optional*):
|
613 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
614 |
+
more detail.
|
615 |
+
return_dict (`bool`, *optional*):
|
616 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
617 |
+
"""
|
618 |
+
|
619 |
+
|
620 |
+
@add_start_docstrings(
|
621 |
+
"The bare ALBERT Model transformer outputting raw hidden-states without any specific head on top.",
|
622 |
+
ALBERT_START_DOCSTRING,
|
623 |
+
)
|
624 |
+
class AlbertModel(AlbertPreTrainedModel):
|
625 |
+
config_class = AlbertConfig
|
626 |
+
base_model_prefix = "albert"
|
627 |
+
|
628 |
+
def __init__(self, config: AlbertConfig, add_pooling_layer: bool = True):
|
629 |
+
super().__init__(config)
|
630 |
+
|
631 |
+
self.config = config
|
632 |
+
self.embeddings = AlbertEmbeddings(config)
|
633 |
+
self.encoder = AlbertTransformer(config)
|
634 |
+
if add_pooling_layer:
|
635 |
+
self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
|
636 |
+
self.pooler_activation = nn.Tanh()
|
637 |
+
else:
|
638 |
+
self.pooler = None
|
639 |
+
self.pooler_activation = None
|
640 |
+
|
641 |
+
# Initialize weights and apply final processing
|
642 |
+
self.post_init()
|
643 |
+
|
644 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
645 |
+
return self.embeddings.word_embeddings
|
646 |
+
|
647 |
+
def set_input_embeddings(self, value: nn.Embedding) -> None:
|
648 |
+
self.embeddings.word_embeddings = value
|
649 |
+
|
650 |
+
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
|
651 |
+
"""
|
652 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} ALBERT has
|
653 |
+
a different architecture in that its layers are shared across groups, which then has inner groups. If an ALBERT
|
654 |
+
model has 12 hidden layers and 2 hidden groups, with two inner groups, there is a total of 4 different layers.
|
655 |
+
|
656 |
+
These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer,
|
657 |
+
while [2,3] correspond to the two inner groups of the second hidden layer.
|
658 |
+
|
659 |
+
Any layer with in index other than [0,1,2,3] will result in an error. See base class PreTrainedModel for more
|
660 |
+
information about head pruning
|
661 |
+
"""
|
662 |
+
for layer, heads in heads_to_prune.items():
|
663 |
+
group_idx = int(layer / self.config.inner_group_num)
|
664 |
+
inner_group_idx = int(layer - group_idx * self.config.inner_group_num)
|
665 |
+
self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads)
|
666 |
+
|
667 |
+
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
668 |
+
@add_code_sample_docstrings(
|
669 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
670 |
+
output_type=BaseModelOutputWithPooling,
|
671 |
+
config_class=_CONFIG_FOR_DOC,
|
672 |
+
)
|
673 |
+
def forward(
|
674 |
+
self,
|
675 |
+
input_ids: Optional[torch.LongTensor] = None,
|
676 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
677 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
678 |
+
position_ids: Optional[torch.LongTensor] = None,
|
679 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
680 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
681 |
+
output_attentions: Optional[bool] = None,
|
682 |
+
output_hidden_states: Optional[bool] = None,
|
683 |
+
return_dict: Optional[bool] = None,
|
684 |
+
) -> Union[BaseModelOutputWithPooling, Tuple]:
|
685 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
686 |
+
output_hidden_states = (
|
687 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
688 |
+
)
|
689 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
690 |
+
|
691 |
+
if input_ids is not None and inputs_embeds is not None:
|
692 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
693 |
+
elif input_ids is not None:
|
694 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
695 |
+
input_shape = input_ids.size()
|
696 |
+
elif inputs_embeds is not None:
|
697 |
+
input_shape = inputs_embeds.size()[:-1]
|
698 |
+
else:
|
699 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
700 |
+
|
701 |
+
batch_size, seq_length = input_shape
|
702 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
703 |
+
|
704 |
+
if attention_mask is None:
|
705 |
+
attention_mask = torch.ones(input_shape, device=device)
|
706 |
+
if token_type_ids is None:
|
707 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
708 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
709 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
710 |
+
token_type_ids = buffered_token_type_ids_expanded
|
711 |
+
else:
|
712 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
713 |
+
|
714 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
715 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
716 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
|
717 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
718 |
+
|
719 |
+
embedding_output = self.embeddings(
|
720 |
+
input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
|
721 |
+
)
|
722 |
+
encoder_outputs = self.encoder(
|
723 |
+
embedding_output,
|
724 |
+
extended_attention_mask,
|
725 |
+
head_mask=head_mask,
|
726 |
+
output_attentions=output_attentions,
|
727 |
+
output_hidden_states=output_hidden_states,
|
728 |
+
return_dict=return_dict,
|
729 |
+
)
|
730 |
+
|
731 |
+
sequence_output = encoder_outputs[0]
|
732 |
+
|
733 |
+
pooled_output = self.pooler_activation(self.pooler(sequence_output[:, 0])) if self.pooler is not None else None
|
734 |
+
|
735 |
+
if not return_dict:
|
736 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
737 |
+
|
738 |
+
return BaseModelOutputWithPooling(
|
739 |
+
last_hidden_state=sequence_output,
|
740 |
+
pooler_output=pooled_output,
|
741 |
+
hidden_states=encoder_outputs.hidden_states,
|
742 |
+
attentions=encoder_outputs.attentions,
|
743 |
+
)
|
744 |
+
|
745 |
+
|
746 |
+
@add_start_docstrings(
|
747 |
+
"""
|
748 |
+
Albert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a
|
749 |
+
`sentence order prediction (classification)` head.
|
750 |
+
""",
|
751 |
+
ALBERT_START_DOCSTRING,
|
752 |
+
)
|
753 |
+
class AlbertForPreTraining(AlbertPreTrainedModel):
|
754 |
+
_tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"]
|
755 |
+
|
756 |
+
def __init__(self, config: AlbertConfig):
|
757 |
+
super().__init__(config)
|
758 |
+
|
759 |
+
self.albert = AlbertModel(config)
|
760 |
+
self.predictions = AlbertMLMHead(config)
|
761 |
+
self.sop_classifier = AlbertSOPHead(config)
|
762 |
+
|
763 |
+
# Initialize weights and apply final processing
|
764 |
+
self.post_init()
|
765 |
+
|
766 |
+
def get_output_embeddings(self) -> nn.Linear:
|
767 |
+
return self.predictions.decoder
|
768 |
+
|
769 |
+
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
770 |
+
self.predictions.decoder = new_embeddings
|
771 |
+
|
772 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
773 |
+
return self.albert.embeddings.word_embeddings
|
774 |
+
|
775 |
+
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
776 |
+
@replace_return_docstrings(output_type=AlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
777 |
+
def forward(
|
778 |
+
self,
|
779 |
+
input_ids: Optional[torch.LongTensor] = None,
|
780 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
781 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
782 |
+
position_ids: Optional[torch.LongTensor] = None,
|
783 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
784 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
785 |
+
labels: Optional[torch.LongTensor] = None,
|
786 |
+
sentence_order_label: Optional[torch.LongTensor] = None,
|
787 |
+
output_attentions: Optional[bool] = None,
|
788 |
+
output_hidden_states: Optional[bool] = None,
|
789 |
+
return_dict: Optional[bool] = None,
|
790 |
+
) -> Union[AlbertForPreTrainingOutput, Tuple]:
|
791 |
+
r"""
|
792 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
793 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
794 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
795 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
796 |
+
sentence_order_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
797 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
798 |
+
(see `input_ids` docstring) Indices should be in `[0, 1]`. `0` indicates original order (sequence A, then
|
799 |
+
sequence B), `1` indicates switched order (sequence B, then sequence A).
|
800 |
+
|
801 |
+
Returns:
|
802 |
+
|
803 |
+
Example:
|
804 |
+
|
805 |
+
```python
|
806 |
+
>>> from transformers import AutoTokenizer, AlbertForPreTraining
|
807 |
+
>>> import torch
|
808 |
+
|
809 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
|
810 |
+
>>> model = AlbertForPreTraining.from_pretrained("albert/albert-base-v2")
|
811 |
+
|
812 |
+
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)
|
813 |
+
>>> # Batch size 1
|
814 |
+
>>> outputs = model(input_ids)
|
815 |
+
|
816 |
+
>>> prediction_logits = outputs.prediction_logits
|
817 |
+
>>> sop_logits = outputs.sop_logits
|
818 |
+
```"""
|
819 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
820 |
+
|
821 |
+
outputs = self.albert(
|
822 |
+
input_ids,
|
823 |
+
attention_mask=attention_mask,
|
824 |
+
token_type_ids=token_type_ids,
|
825 |
+
position_ids=position_ids,
|
826 |
+
head_mask=head_mask,
|
827 |
+
inputs_embeds=inputs_embeds,
|
828 |
+
output_attentions=output_attentions,
|
829 |
+
output_hidden_states=output_hidden_states,
|
830 |
+
return_dict=return_dict,
|
831 |
+
)
|
832 |
+
|
833 |
+
sequence_output, pooled_output = outputs[:2]
|
834 |
+
|
835 |
+
prediction_scores = self.predictions(sequence_output)
|
836 |
+
sop_scores = self.sop_classifier(pooled_output)
|
837 |
+
|
838 |
+
total_loss = None
|
839 |
+
if labels is not None and sentence_order_label is not None:
|
840 |
+
loss_fct = CrossEntropyLoss()
|
841 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
842 |
+
sentence_order_loss = loss_fct(sop_scores.view(-1, 2), sentence_order_label.view(-1))
|
843 |
+
total_loss = masked_lm_loss + sentence_order_loss
|
844 |
+
|
845 |
+
if not return_dict:
|
846 |
+
output = (prediction_scores, sop_scores) + outputs[2:]
|
847 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
848 |
+
|
849 |
+
return AlbertForPreTrainingOutput(
|
850 |
+
loss=total_loss,
|
851 |
+
prediction_logits=prediction_scores,
|
852 |
+
sop_logits=sop_scores,
|
853 |
+
hidden_states=outputs.hidden_states,
|
854 |
+
attentions=outputs.attentions,
|
855 |
+
)
|
856 |
+
|
857 |
+
|
858 |
+
class AlbertMLMHead(nn.Module):
|
859 |
+
def __init__(self, config: AlbertConfig):
|
860 |
+
super().__init__()
|
861 |
+
|
862 |
+
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
|
863 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
864 |
+
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
|
865 |
+
self.decoder = nn.Linear(config.embedding_size, config.vocab_size)
|
866 |
+
self.activation = ACT2FN[config.hidden_act]
|
867 |
+
self.decoder.bias = self.bias
|
868 |
+
|
869 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
870 |
+
hidden_states = self.dense(hidden_states)
|
871 |
+
hidden_states = self.activation(hidden_states)
|
872 |
+
hidden_states = self.LayerNorm(hidden_states)
|
873 |
+
hidden_states = self.decoder(hidden_states)
|
874 |
+
|
875 |
+
prediction_scores = hidden_states
|
876 |
+
|
877 |
+
return prediction_scores
|
878 |
+
|
879 |
+
def _tie_weights(self) -> None:
|
880 |
+
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
|
881 |
+
self.bias = self.decoder.bias
|
882 |
+
|
883 |
+
|
884 |
+
class AlbertSOPHead(nn.Module):
|
885 |
+
def __init__(self, config: AlbertConfig):
|
886 |
+
super().__init__()
|
887 |
+
|
888 |
+
self.dropout = nn.Dropout(config.classifier_dropout_prob)
|
889 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
890 |
+
|
891 |
+
def forward(self, pooled_output: torch.Tensor) -> torch.Tensor:
|
892 |
+
dropout_pooled_output = self.dropout(pooled_output)
|
893 |
+
logits = self.classifier(dropout_pooled_output)
|
894 |
+
return logits
|
895 |
+
|
896 |
+
|
897 |
+
@add_start_docstrings(
|
898 |
+
"Albert Model with a `language modeling` head on top.",
|
899 |
+
ALBERT_START_DOCSTRING,
|
900 |
+
)
|
901 |
+
class AlbertForMaskedLM(AlbertPreTrainedModel):
|
902 |
+
_tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"]
|
903 |
+
|
904 |
+
def __init__(self, config):
|
905 |
+
super().__init__(config)
|
906 |
+
|
907 |
+
self.albert = AlbertModel(config, add_pooling_layer=False)
|
908 |
+
self.predictions = AlbertMLMHead(config)
|
909 |
+
|
910 |
+
# Initialize weights and apply final processing
|
911 |
+
self.post_init()
|
912 |
+
|
913 |
+
def get_output_embeddings(self) -> nn.Linear:
|
914 |
+
return self.predictions.decoder
|
915 |
+
|
916 |
+
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
917 |
+
self.predictions.decoder = new_embeddings
|
918 |
+
|
919 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
920 |
+
return self.albert.embeddings.word_embeddings
|
921 |
+
|
922 |
+
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
923 |
+
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
|
924 |
+
def forward(
|
925 |
+
self,
|
926 |
+
input_ids: Optional[torch.LongTensor] = None,
|
927 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
928 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
929 |
+
position_ids: Optional[torch.LongTensor] = None,
|
930 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
931 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
932 |
+
labels: Optional[torch.LongTensor] = None,
|
933 |
+
output_attentions: Optional[bool] = None,
|
934 |
+
output_hidden_states: Optional[bool] = None,
|
935 |
+
return_dict: Optional[bool] = None,
|
936 |
+
) -> Union[MaskedLMOutput, Tuple]:
|
937 |
+
r"""
|
938 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
939 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
940 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
941 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
942 |
+
|
943 |
+
Returns:
|
944 |
+
|
945 |
+
Example:
|
946 |
+
|
947 |
+
```python
|
948 |
+
>>> import torch
|
949 |
+
>>> from transformers import AutoTokenizer, AlbertForMaskedLM
|
950 |
+
|
951 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
|
952 |
+
>>> model = AlbertForMaskedLM.from_pretrained("albert/albert-base-v2")
|
953 |
+
|
954 |
+
>>> # add mask_token
|
955 |
+
>>> inputs = tokenizer("The capital of [MASK] is Paris.", return_tensors="pt")
|
956 |
+
>>> with torch.no_grad():
|
957 |
+
... logits = model(**inputs).logits
|
958 |
+
|
959 |
+
>>> # retrieve index of [MASK]
|
960 |
+
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
|
961 |
+
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
|
962 |
+
>>> tokenizer.decode(predicted_token_id)
|
963 |
+
'france'
|
964 |
+
```
|
965 |
+
|
966 |
+
```python
|
967 |
+
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
|
968 |
+
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
|
969 |
+
>>> outputs = model(**inputs, labels=labels)
|
970 |
+
>>> round(outputs.loss.item(), 2)
|
971 |
+
0.81
|
972 |
+
```
|
973 |
+
"""
|
974 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
975 |
+
|
976 |
+
outputs = self.albert(
|
977 |
+
input_ids=input_ids,
|
978 |
+
attention_mask=attention_mask,
|
979 |
+
token_type_ids=token_type_ids,
|
980 |
+
position_ids=position_ids,
|
981 |
+
head_mask=head_mask,
|
982 |
+
inputs_embeds=inputs_embeds,
|
983 |
+
output_attentions=output_attentions,
|
984 |
+
output_hidden_states=output_hidden_states,
|
985 |
+
return_dict=return_dict,
|
986 |
+
)
|
987 |
+
sequence_outputs = outputs[0]
|
988 |
+
|
989 |
+
prediction_scores = self.predictions(sequence_outputs)
|
990 |
+
|
991 |
+
masked_lm_loss = None
|
992 |
+
if labels is not None:
|
993 |
+
loss_fct = CrossEntropyLoss()
|
994 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
995 |
+
|
996 |
+
if not return_dict:
|
997 |
+
output = (prediction_scores,) + outputs[2:]
|
998 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
999 |
+
|
1000 |
+
return MaskedLMOutput(
|
1001 |
+
loss=masked_lm_loss,
|
1002 |
+
logits=prediction_scores,
|
1003 |
+
hidden_states=outputs.hidden_states,
|
1004 |
+
attentions=outputs.attentions,
|
1005 |
+
)
|
1006 |
+
|
1007 |
+
|
1008 |
+
@add_start_docstrings(
|
1009 |
+
"""
|
1010 |
+
Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1011 |
+
output) e.g. for GLUE tasks.
|
1012 |
+
""",
|
1013 |
+
ALBERT_START_DOCSTRING,
|
1014 |
+
)
|
1015 |
+
class AlbertForSequenceClassification(AlbertPreTrainedModel):
|
1016 |
+
def __init__(self, config: AlbertConfig):
|
1017 |
+
super().__init__(config)
|
1018 |
+
self.num_labels = config.num_labels
|
1019 |
+
self.config = config
|
1020 |
+
|
1021 |
+
self.albert = AlbertModel(config)
|
1022 |
+
self.dropout = nn.Dropout(config.classifier_dropout_prob)
|
1023 |
+
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
|
1024 |
+
|
1025 |
+
# Initialize weights and apply final processing
|
1026 |
+
self.post_init()
|
1027 |
+
|
1028 |
+
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1029 |
+
@add_code_sample_docstrings(
|
1030 |
+
checkpoint="textattack/albert-base-v2-imdb",
|
1031 |
+
output_type=SequenceClassifierOutput,
|
1032 |
+
config_class=_CONFIG_FOR_DOC,
|
1033 |
+
expected_output="'LABEL_1'",
|
1034 |
+
expected_loss=0.12,
|
1035 |
+
)
|
1036 |
+
def forward(
|
1037 |
+
self,
|
1038 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1039 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1040 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1041 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1042 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1043 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1044 |
+
labels: Optional[torch.LongTensor] = None,
|
1045 |
+
output_attentions: Optional[bool] = None,
|
1046 |
+
output_hidden_states: Optional[bool] = None,
|
1047 |
+
return_dict: Optional[bool] = None,
|
1048 |
+
) -> Union[SequenceClassifierOutput, Tuple]:
|
1049 |
+
r"""
|
1050 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1051 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1052 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1053 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1054 |
+
"""
|
1055 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1056 |
+
|
1057 |
+
outputs = self.albert(
|
1058 |
+
input_ids=input_ids,
|
1059 |
+
attention_mask=attention_mask,
|
1060 |
+
token_type_ids=token_type_ids,
|
1061 |
+
position_ids=position_ids,
|
1062 |
+
head_mask=head_mask,
|
1063 |
+
inputs_embeds=inputs_embeds,
|
1064 |
+
output_attentions=output_attentions,
|
1065 |
+
output_hidden_states=output_hidden_states,
|
1066 |
+
return_dict=return_dict,
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
pooled_output = outputs[1]
|
1070 |
+
|
1071 |
+
pooled_output = self.dropout(pooled_output)
|
1072 |
+
logits = self.classifier(pooled_output)
|
1073 |
+
|
1074 |
+
loss = None
|
1075 |
+
if labels is not None:
|
1076 |
+
if self.config.problem_type is None:
|
1077 |
+
if self.num_labels == 1:
|
1078 |
+
self.config.problem_type = "regression"
|
1079 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1080 |
+
self.config.problem_type = "single_label_classification"
|
1081 |
+
else:
|
1082 |
+
self.config.problem_type = "multi_label_classification"
|
1083 |
+
|
1084 |
+
if self.config.problem_type == "regression":
|
1085 |
+
loss_fct = MSELoss()
|
1086 |
+
if self.num_labels == 1:
|
1087 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1088 |
+
else:
|
1089 |
+
loss = loss_fct(logits, labels)
|
1090 |
+
elif self.config.problem_type == "single_label_classification":
|
1091 |
+
loss_fct = CrossEntropyLoss()
|
1092 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1093 |
+
elif self.config.problem_type == "multi_label_classification":
|
1094 |
+
loss_fct = BCEWithLogitsLoss()
|
1095 |
+
loss = loss_fct(logits, labels)
|
1096 |
+
|
1097 |
+
if not return_dict:
|
1098 |
+
output = (logits,) + outputs[2:]
|
1099 |
+
return ((loss,) + output) if loss is not None else output
|
1100 |
+
|
1101 |
+
return SequenceClassifierOutput(
|
1102 |
+
loss=loss,
|
1103 |
+
logits=logits,
|
1104 |
+
hidden_states=outputs.hidden_states,
|
1105 |
+
attentions=outputs.attentions,
|
1106 |
+
)
|
1107 |
+
|
1108 |
+
|
1109 |
+
@add_start_docstrings(
|
1110 |
+
"""
|
1111 |
+
Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1112 |
+
Named-Entity-Recognition (NER) tasks.
|
1113 |
+
""",
|
1114 |
+
ALBERT_START_DOCSTRING,
|
1115 |
+
)
|
1116 |
+
class AlbertForTokenClassification(AlbertPreTrainedModel):
|
1117 |
+
def __init__(self, config: AlbertConfig):
|
1118 |
+
super().__init__(config)
|
1119 |
+
self.num_labels = config.num_labels
|
1120 |
+
|
1121 |
+
self.albert = AlbertModel(config, add_pooling_layer=False)
|
1122 |
+
classifier_dropout_prob = (
|
1123 |
+
config.classifier_dropout_prob
|
1124 |
+
if config.classifier_dropout_prob is not None
|
1125 |
+
else config.hidden_dropout_prob
|
1126 |
+
)
|
1127 |
+
self.dropout = nn.Dropout(classifier_dropout_prob)
|
1128 |
+
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
|
1129 |
+
|
1130 |
+
# Initialize weights and apply final processing
|
1131 |
+
self.post_init()
|
1132 |
+
|
1133 |
+
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1134 |
+
@add_code_sample_docstrings(
|
1135 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1136 |
+
output_type=TokenClassifierOutput,
|
1137 |
+
config_class=_CONFIG_FOR_DOC,
|
1138 |
+
)
|
1139 |
+
def forward(
|
1140 |
+
self,
|
1141 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1142 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1143 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1144 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1145 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1146 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1147 |
+
labels: Optional[torch.LongTensor] = None,
|
1148 |
+
output_attentions: Optional[bool] = None,
|
1149 |
+
output_hidden_states: Optional[bool] = None,
|
1150 |
+
return_dict: Optional[bool] = None,
|
1151 |
+
) -> Union[TokenClassifierOutput, Tuple]:
|
1152 |
+
r"""
|
1153 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1154 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1155 |
+
"""
|
1156 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1157 |
+
|
1158 |
+
outputs = self.albert(
|
1159 |
+
input_ids,
|
1160 |
+
attention_mask=attention_mask,
|
1161 |
+
token_type_ids=token_type_ids,
|
1162 |
+
position_ids=position_ids,
|
1163 |
+
head_mask=head_mask,
|
1164 |
+
inputs_embeds=inputs_embeds,
|
1165 |
+
output_attentions=output_attentions,
|
1166 |
+
output_hidden_states=output_hidden_states,
|
1167 |
+
return_dict=return_dict,
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
sequence_output = outputs[0]
|
1171 |
+
|
1172 |
+
sequence_output = self.dropout(sequence_output)
|
1173 |
+
logits = self.classifier(sequence_output)
|
1174 |
+
|
1175 |
+
loss = None
|
1176 |
+
if labels is not None:
|
1177 |
+
loss_fct = CrossEntropyLoss()
|
1178 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1179 |
+
|
1180 |
+
if not return_dict:
|
1181 |
+
output = (logits,) + outputs[2:]
|
1182 |
+
return ((loss,) + output) if loss is not None else output
|
1183 |
+
|
1184 |
+
return TokenClassifierOutput(
|
1185 |
+
loss=loss,
|
1186 |
+
logits=logits,
|
1187 |
+
hidden_states=outputs.hidden_states,
|
1188 |
+
attentions=outputs.attentions,
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
|
1192 |
+
@add_start_docstrings(
|
1193 |
+
"""
|
1194 |
+
Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1195 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1196 |
+
""",
|
1197 |
+
ALBERT_START_DOCSTRING,
|
1198 |
+
)
|
1199 |
+
class AlbertForQuestionAnswering(AlbertPreTrainedModel):
|
1200 |
+
def __init__(self, config: AlbertConfig):
|
1201 |
+
super().__init__(config)
|
1202 |
+
self.num_labels = config.num_labels
|
1203 |
+
|
1204 |
+
self.albert = AlbertModel(config, add_pooling_layer=False)
|
1205 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1206 |
+
|
1207 |
+
# Initialize weights and apply final processing
|
1208 |
+
self.post_init()
|
1209 |
+
|
1210 |
+
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1211 |
+
@add_code_sample_docstrings(
|
1212 |
+
checkpoint="twmkn9/albert-base-v2-squad2",
|
1213 |
+
output_type=QuestionAnsweringModelOutput,
|
1214 |
+
config_class=_CONFIG_FOR_DOC,
|
1215 |
+
qa_target_start_index=12,
|
1216 |
+
qa_target_end_index=13,
|
1217 |
+
expected_output="'a nice puppet'",
|
1218 |
+
expected_loss=7.36,
|
1219 |
+
)
|
1220 |
+
def forward(
|
1221 |
+
self,
|
1222 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1223 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1224 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1225 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1226 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1227 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1228 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1229 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1230 |
+
output_attentions: Optional[bool] = None,
|
1231 |
+
output_hidden_states: Optional[bool] = None,
|
1232 |
+
return_dict: Optional[bool] = None,
|
1233 |
+
) -> Union[AlbertForPreTrainingOutput, Tuple]:
|
1234 |
+
r"""
|
1235 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1236 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1237 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1238 |
+
are not taken into account for computing the loss.
|
1239 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1240 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1241 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1242 |
+
are not taken into account for computing the loss.
|
1243 |
+
"""
|
1244 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1245 |
+
|
1246 |
+
outputs = self.albert(
|
1247 |
+
input_ids=input_ids,
|
1248 |
+
attention_mask=attention_mask,
|
1249 |
+
token_type_ids=token_type_ids,
|
1250 |
+
position_ids=position_ids,
|
1251 |
+
head_mask=head_mask,
|
1252 |
+
inputs_embeds=inputs_embeds,
|
1253 |
+
output_attentions=output_attentions,
|
1254 |
+
output_hidden_states=output_hidden_states,
|
1255 |
+
return_dict=return_dict,
|
1256 |
+
)
|
1257 |
+
|
1258 |
+
sequence_output = outputs[0]
|
1259 |
+
|
1260 |
+
logits: torch.Tensor = self.qa_outputs(sequence_output)
|
1261 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1262 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1263 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1264 |
+
|
1265 |
+
total_loss = None
|
1266 |
+
if start_positions is not None and end_positions is not None:
|
1267 |
+
# If we are on multi-GPU, split add a dimension
|
1268 |
+
if len(start_positions.size()) > 1:
|
1269 |
+
start_positions = start_positions.squeeze(-1)
|
1270 |
+
if len(end_positions.size()) > 1:
|
1271 |
+
end_positions = end_positions.squeeze(-1)
|
1272 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1273 |
+
ignored_index = start_logits.size(1)
|
1274 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1275 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1276 |
+
|
1277 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1278 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1279 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1280 |
+
total_loss = (start_loss + end_loss) / 2
|
1281 |
+
|
1282 |
+
if not return_dict:
|
1283 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1284 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1285 |
+
|
1286 |
+
return QuestionAnsweringModelOutput(
|
1287 |
+
loss=total_loss,
|
1288 |
+
start_logits=start_logits,
|
1289 |
+
end_logits=end_logits,
|
1290 |
+
hidden_states=outputs.hidden_states,
|
1291 |
+
attentions=outputs.attentions,
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
|
1295 |
+
@add_start_docstrings(
|
1296 |
+
"""
|
1297 |
+
Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1298 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1299 |
+
""",
|
1300 |
+
ALBERT_START_DOCSTRING,
|
1301 |
+
)
|
1302 |
+
class AlbertForMultipleChoice(AlbertPreTrainedModel):
|
1303 |
+
def __init__(self, config: AlbertConfig):
|
1304 |
+
super().__init__(config)
|
1305 |
+
|
1306 |
+
self.albert = AlbertModel(config)
|
1307 |
+
self.dropout = nn.Dropout(config.classifier_dropout_prob)
|
1308 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1309 |
+
|
1310 |
+
# Initialize weights and apply final processing
|
1311 |
+
self.post_init()
|
1312 |
+
|
1313 |
+
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1314 |
+
@add_code_sample_docstrings(
|
1315 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1316 |
+
output_type=MultipleChoiceModelOutput,
|
1317 |
+
config_class=_CONFIG_FOR_DOC,
|
1318 |
+
)
|
1319 |
+
def forward(
|
1320 |
+
self,
|
1321 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1322 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1323 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1324 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1325 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1326 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1327 |
+
labels: Optional[torch.LongTensor] = None,
|
1328 |
+
output_attentions: Optional[bool] = None,
|
1329 |
+
output_hidden_states: Optional[bool] = None,
|
1330 |
+
return_dict: Optional[bool] = None,
|
1331 |
+
) -> Union[AlbertForPreTrainingOutput, Tuple]:
|
1332 |
+
r"""
|
1333 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1334 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1335 |
+
num_choices-1]` where *num_choices* is the size of the second dimension of the input tensors. (see
|
1336 |
+
*input_ids* above)
|
1337 |
+
"""
|
1338 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1339 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1340 |
+
|
1341 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1342 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1343 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1344 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1345 |
+
inputs_embeds = (
|
1346 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1347 |
+
if inputs_embeds is not None
|
1348 |
+
else None
|
1349 |
+
)
|
1350 |
+
outputs = self.albert(
|
1351 |
+
input_ids,
|
1352 |
+
attention_mask=attention_mask,
|
1353 |
+
token_type_ids=token_type_ids,
|
1354 |
+
position_ids=position_ids,
|
1355 |
+
head_mask=head_mask,
|
1356 |
+
inputs_embeds=inputs_embeds,
|
1357 |
+
output_attentions=output_attentions,
|
1358 |
+
output_hidden_states=output_hidden_states,
|
1359 |
+
return_dict=return_dict,
|
1360 |
+
)
|
1361 |
+
|
1362 |
+
pooled_output = outputs[1]
|
1363 |
+
|
1364 |
+
pooled_output = self.dropout(pooled_output)
|
1365 |
+
logits: torch.Tensor = self.classifier(pooled_output)
|
1366 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1367 |
+
|
1368 |
+
loss = None
|
1369 |
+
if labels is not None:
|
1370 |
+
loss_fct = CrossEntropyLoss()
|
1371 |
+
loss = loss_fct(reshaped_logits, labels)
|
1372 |
+
|
1373 |
+
if not return_dict:
|
1374 |
+
output = (reshaped_logits,) + outputs[2:]
|
1375 |
+
return ((loss,) + output) if loss is not None else output
|
1376 |
+
|
1377 |
+
return MultipleChoiceModelOutput(
|
1378 |
+
loss=loss,
|
1379 |
+
logits=reshaped_logits,
|
1380 |
+
hidden_states=outputs.hidden_states,
|
1381 |
+
attentions=outputs.attentions,
|
1382 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_flax_albert.py
ADDED
@@ -0,0 +1,1121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 Google AI, Google Brain and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Callable, Optional, Tuple
|
17 |
+
|
18 |
+
import flax
|
19 |
+
import flax.linen as nn
|
20 |
+
import jax
|
21 |
+
import jax.numpy as jnp
|
22 |
+
import numpy as np
|
23 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
24 |
+
from flax.linen.attention import dot_product_attention_weights
|
25 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
26 |
+
from jax import lax
|
27 |
+
|
28 |
+
from ...modeling_flax_outputs import (
|
29 |
+
FlaxBaseModelOutput,
|
30 |
+
FlaxBaseModelOutputWithPooling,
|
31 |
+
FlaxMaskedLMOutput,
|
32 |
+
FlaxMultipleChoiceModelOutput,
|
33 |
+
FlaxQuestionAnsweringModelOutput,
|
34 |
+
FlaxSequenceClassifierOutput,
|
35 |
+
FlaxTokenClassifierOutput,
|
36 |
+
)
|
37 |
+
from ...modeling_flax_utils import (
|
38 |
+
ACT2FN,
|
39 |
+
FlaxPreTrainedModel,
|
40 |
+
append_call_sample_docstring,
|
41 |
+
append_replace_return_docstrings,
|
42 |
+
overwrite_call_docstring,
|
43 |
+
)
|
44 |
+
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
45 |
+
from .configuration_albert import AlbertConfig
|
46 |
+
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__)
|
49 |
+
|
50 |
+
_CHECKPOINT_FOR_DOC = "albert/albert-base-v2"
|
51 |
+
_CONFIG_FOR_DOC = "AlbertConfig"
|
52 |
+
|
53 |
+
|
54 |
+
@flax.struct.dataclass
|
55 |
+
class FlaxAlbertForPreTrainingOutput(ModelOutput):
|
56 |
+
"""
|
57 |
+
Output type of [`FlaxAlbertForPreTraining`].
|
58 |
+
|
59 |
+
Args:
|
60 |
+
prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
61 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
62 |
+
sop_logits (`jnp.ndarray` of shape `(batch_size, 2)`):
|
63 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
64 |
+
before SoftMax).
|
65 |
+
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
66 |
+
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
|
67 |
+
`(batch_size, sequence_length, hidden_size)`.
|
68 |
+
|
69 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
70 |
+
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
71 |
+
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
72 |
+
sequence_length)`.
|
73 |
+
|
74 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
75 |
+
heads.
|
76 |
+
"""
|
77 |
+
|
78 |
+
prediction_logits: jnp.ndarray = None
|
79 |
+
sop_logits: jnp.ndarray = None
|
80 |
+
hidden_states: Optional[Tuple[jnp.ndarray]] = None
|
81 |
+
attentions: Optional[Tuple[jnp.ndarray]] = None
|
82 |
+
|
83 |
+
|
84 |
+
ALBERT_START_DOCSTRING = r"""
|
85 |
+
|
86 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
87 |
+
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
|
88 |
+
|
89 |
+
This model is also a
|
90 |
+
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
|
91 |
+
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
|
92 |
+
behavior.
|
93 |
+
|
94 |
+
Finally, this model supports inherent JAX features such as:
|
95 |
+
|
96 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
97 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
98 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
99 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
100 |
+
|
101 |
+
Parameters:
|
102 |
+
config ([`AlbertConfig`]): Model configuration class with all the parameters of the model.
|
103 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
104 |
+
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
|
105 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
106 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
107 |
+
`jax.numpy.bfloat16` (on TPUs).
|
108 |
+
|
109 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
110 |
+
specified all the computation will be performed with the given `dtype`.
|
111 |
+
|
112 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
113 |
+
parameters.**
|
114 |
+
|
115 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
116 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
117 |
+
"""
|
118 |
+
|
119 |
+
ALBERT_INPUTS_DOCSTRING = r"""
|
120 |
+
Args:
|
121 |
+
input_ids (`numpy.ndarray` of shape `({0})`):
|
122 |
+
Indices of input sequence tokens in the vocabulary.
|
123 |
+
|
124 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
125 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
126 |
+
|
127 |
+
[What are input IDs?](../glossary#input-ids)
|
128 |
+
attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
|
129 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
130 |
+
|
131 |
+
- 1 for tokens that are **not masked**,
|
132 |
+
- 0 for tokens that are **masked**.
|
133 |
+
|
134 |
+
[What are attention masks?](../glossary#attention-mask)
|
135 |
+
token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
|
136 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
137 |
+
1]`:
|
138 |
+
|
139 |
+
- 0 corresponds to a *sentence A* token,
|
140 |
+
- 1 corresponds to a *sentence B* token.
|
141 |
+
|
142 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
143 |
+
position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
|
144 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
145 |
+
config.max_position_embeddings - 1]`.
|
146 |
+
return_dict (`bool`, *optional*):
|
147 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
148 |
+
|
149 |
+
"""
|
150 |
+
|
151 |
+
|
152 |
+
class FlaxAlbertEmbeddings(nn.Module):
|
153 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
154 |
+
|
155 |
+
config: AlbertConfig
|
156 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
157 |
+
|
158 |
+
def setup(self):
|
159 |
+
self.word_embeddings = nn.Embed(
|
160 |
+
self.config.vocab_size,
|
161 |
+
self.config.embedding_size,
|
162 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
163 |
+
)
|
164 |
+
self.position_embeddings = nn.Embed(
|
165 |
+
self.config.max_position_embeddings,
|
166 |
+
self.config.embedding_size,
|
167 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
168 |
+
)
|
169 |
+
self.token_type_embeddings = nn.Embed(
|
170 |
+
self.config.type_vocab_size,
|
171 |
+
self.config.embedding_size,
|
172 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
173 |
+
)
|
174 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
175 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
176 |
+
|
177 |
+
def __call__(self, input_ids, token_type_ids, position_ids, deterministic: bool = True):
|
178 |
+
# Embed
|
179 |
+
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
|
180 |
+
position_embeds = self.position_embeddings(position_ids.astype("i4"))
|
181 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
|
182 |
+
|
183 |
+
# Sum all embeddings
|
184 |
+
hidden_states = inputs_embeds + token_type_embeddings + position_embeds
|
185 |
+
|
186 |
+
# Layer Norm
|
187 |
+
hidden_states = self.LayerNorm(hidden_states)
|
188 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
189 |
+
return hidden_states
|
190 |
+
|
191 |
+
|
192 |
+
class FlaxAlbertSelfAttention(nn.Module):
|
193 |
+
config: AlbertConfig
|
194 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
195 |
+
|
196 |
+
def setup(self):
|
197 |
+
if self.config.hidden_size % self.config.num_attention_heads != 0:
|
198 |
+
raise ValueError(
|
199 |
+
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
|
200 |
+
" : {self.config.num_attention_heads}"
|
201 |
+
)
|
202 |
+
|
203 |
+
self.query = nn.Dense(
|
204 |
+
self.config.hidden_size,
|
205 |
+
dtype=self.dtype,
|
206 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
207 |
+
)
|
208 |
+
self.key = nn.Dense(
|
209 |
+
self.config.hidden_size,
|
210 |
+
dtype=self.dtype,
|
211 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
212 |
+
)
|
213 |
+
self.value = nn.Dense(
|
214 |
+
self.config.hidden_size,
|
215 |
+
dtype=self.dtype,
|
216 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
217 |
+
)
|
218 |
+
self.dense = nn.Dense(
|
219 |
+
self.config.hidden_size,
|
220 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
221 |
+
dtype=self.dtype,
|
222 |
+
)
|
223 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
224 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
225 |
+
|
226 |
+
def __call__(self, hidden_states, attention_mask, deterministic=True, output_attentions: bool = False):
|
227 |
+
head_dim = self.config.hidden_size // self.config.num_attention_heads
|
228 |
+
|
229 |
+
query_states = self.query(hidden_states).reshape(
|
230 |
+
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
|
231 |
+
)
|
232 |
+
value_states = self.value(hidden_states).reshape(
|
233 |
+
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
|
234 |
+
)
|
235 |
+
key_states = self.key(hidden_states).reshape(
|
236 |
+
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
|
237 |
+
)
|
238 |
+
|
239 |
+
# Convert the boolean attention mask to an attention bias.
|
240 |
+
if attention_mask is not None:
|
241 |
+
# attention mask in the form of attention bias
|
242 |
+
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
243 |
+
attention_bias = lax.select(
|
244 |
+
attention_mask > 0,
|
245 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
246 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
247 |
+
)
|
248 |
+
else:
|
249 |
+
attention_bias = None
|
250 |
+
|
251 |
+
dropout_rng = None
|
252 |
+
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
|
253 |
+
dropout_rng = self.make_rng("dropout")
|
254 |
+
|
255 |
+
attn_weights = dot_product_attention_weights(
|
256 |
+
query_states,
|
257 |
+
key_states,
|
258 |
+
bias=attention_bias,
|
259 |
+
dropout_rng=dropout_rng,
|
260 |
+
dropout_rate=self.config.attention_probs_dropout_prob,
|
261 |
+
broadcast_dropout=True,
|
262 |
+
deterministic=deterministic,
|
263 |
+
dtype=self.dtype,
|
264 |
+
precision=None,
|
265 |
+
)
|
266 |
+
|
267 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
268 |
+
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
|
269 |
+
|
270 |
+
projected_attn_output = self.dense(attn_output)
|
271 |
+
projected_attn_output = self.dropout(projected_attn_output, deterministic=deterministic)
|
272 |
+
layernormed_attn_output = self.LayerNorm(projected_attn_output + hidden_states)
|
273 |
+
outputs = (layernormed_attn_output, attn_weights) if output_attentions else (layernormed_attn_output,)
|
274 |
+
return outputs
|
275 |
+
|
276 |
+
|
277 |
+
class FlaxAlbertLayer(nn.Module):
|
278 |
+
config: AlbertConfig
|
279 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
280 |
+
|
281 |
+
def setup(self):
|
282 |
+
self.attention = FlaxAlbertSelfAttention(self.config, dtype=self.dtype)
|
283 |
+
self.ffn = nn.Dense(
|
284 |
+
self.config.intermediate_size,
|
285 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
286 |
+
dtype=self.dtype,
|
287 |
+
)
|
288 |
+
self.activation = ACT2FN[self.config.hidden_act]
|
289 |
+
self.ffn_output = nn.Dense(
|
290 |
+
self.config.hidden_size,
|
291 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
292 |
+
dtype=self.dtype,
|
293 |
+
)
|
294 |
+
self.full_layer_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
295 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
296 |
+
|
297 |
+
def __call__(
|
298 |
+
self,
|
299 |
+
hidden_states,
|
300 |
+
attention_mask,
|
301 |
+
deterministic: bool = True,
|
302 |
+
output_attentions: bool = False,
|
303 |
+
):
|
304 |
+
attention_outputs = self.attention(
|
305 |
+
hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions
|
306 |
+
)
|
307 |
+
attention_output = attention_outputs[0]
|
308 |
+
ffn_output = self.ffn(attention_output)
|
309 |
+
ffn_output = self.activation(ffn_output)
|
310 |
+
ffn_output = self.ffn_output(ffn_output)
|
311 |
+
ffn_output = self.dropout(ffn_output, deterministic=deterministic)
|
312 |
+
hidden_states = self.full_layer_layer_norm(ffn_output + attention_output)
|
313 |
+
|
314 |
+
outputs = (hidden_states,)
|
315 |
+
|
316 |
+
if output_attentions:
|
317 |
+
outputs += (attention_outputs[1],)
|
318 |
+
return outputs
|
319 |
+
|
320 |
+
|
321 |
+
class FlaxAlbertLayerCollection(nn.Module):
|
322 |
+
config: AlbertConfig
|
323 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
324 |
+
|
325 |
+
def setup(self):
|
326 |
+
self.layers = [
|
327 |
+
FlaxAlbertLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.inner_group_num)
|
328 |
+
]
|
329 |
+
|
330 |
+
def __call__(
|
331 |
+
self,
|
332 |
+
hidden_states,
|
333 |
+
attention_mask,
|
334 |
+
deterministic: bool = True,
|
335 |
+
output_attentions: bool = False,
|
336 |
+
output_hidden_states: bool = False,
|
337 |
+
):
|
338 |
+
layer_hidden_states = ()
|
339 |
+
layer_attentions = ()
|
340 |
+
|
341 |
+
for layer_index, albert_layer in enumerate(self.layers):
|
342 |
+
layer_output = albert_layer(
|
343 |
+
hidden_states,
|
344 |
+
attention_mask,
|
345 |
+
deterministic=deterministic,
|
346 |
+
output_attentions=output_attentions,
|
347 |
+
)
|
348 |
+
hidden_states = layer_output[0]
|
349 |
+
|
350 |
+
if output_attentions:
|
351 |
+
layer_attentions = layer_attentions + (layer_output[1],)
|
352 |
+
|
353 |
+
if output_hidden_states:
|
354 |
+
layer_hidden_states = layer_hidden_states + (hidden_states,)
|
355 |
+
|
356 |
+
outputs = (hidden_states,)
|
357 |
+
if output_hidden_states:
|
358 |
+
outputs = outputs + (layer_hidden_states,)
|
359 |
+
if output_attentions:
|
360 |
+
outputs = outputs + (layer_attentions,)
|
361 |
+
return outputs # last-layer hidden state, (layer hidden states), (layer attentions)
|
362 |
+
|
363 |
+
|
364 |
+
class FlaxAlbertLayerCollections(nn.Module):
|
365 |
+
config: AlbertConfig
|
366 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
367 |
+
layer_index: Optional[str] = None
|
368 |
+
|
369 |
+
def setup(self):
|
370 |
+
self.albert_layers = FlaxAlbertLayerCollection(self.config, dtype=self.dtype)
|
371 |
+
|
372 |
+
def __call__(
|
373 |
+
self,
|
374 |
+
hidden_states,
|
375 |
+
attention_mask,
|
376 |
+
deterministic: bool = True,
|
377 |
+
output_attentions: bool = False,
|
378 |
+
output_hidden_states: bool = False,
|
379 |
+
):
|
380 |
+
outputs = self.albert_layers(
|
381 |
+
hidden_states,
|
382 |
+
attention_mask,
|
383 |
+
deterministic=deterministic,
|
384 |
+
output_attentions=output_attentions,
|
385 |
+
output_hidden_states=output_hidden_states,
|
386 |
+
)
|
387 |
+
return outputs
|
388 |
+
|
389 |
+
|
390 |
+
class FlaxAlbertLayerGroups(nn.Module):
|
391 |
+
config: AlbertConfig
|
392 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
393 |
+
|
394 |
+
def setup(self):
|
395 |
+
self.layers = [
|
396 |
+
FlaxAlbertLayerCollections(self.config, name=str(i), layer_index=str(i), dtype=self.dtype)
|
397 |
+
for i in range(self.config.num_hidden_groups)
|
398 |
+
]
|
399 |
+
|
400 |
+
def __call__(
|
401 |
+
self,
|
402 |
+
hidden_states,
|
403 |
+
attention_mask,
|
404 |
+
deterministic: bool = True,
|
405 |
+
output_attentions: bool = False,
|
406 |
+
output_hidden_states: bool = False,
|
407 |
+
return_dict: bool = True,
|
408 |
+
):
|
409 |
+
all_attentions = () if output_attentions else None
|
410 |
+
all_hidden_states = (hidden_states,) if output_hidden_states else None
|
411 |
+
|
412 |
+
for i in range(self.config.num_hidden_layers):
|
413 |
+
# Index of the hidden group
|
414 |
+
group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups))
|
415 |
+
layer_group_output = self.layers[group_idx](
|
416 |
+
hidden_states,
|
417 |
+
attention_mask,
|
418 |
+
deterministic=deterministic,
|
419 |
+
output_attentions=output_attentions,
|
420 |
+
output_hidden_states=output_hidden_states,
|
421 |
+
)
|
422 |
+
hidden_states = layer_group_output[0]
|
423 |
+
|
424 |
+
if output_attentions:
|
425 |
+
all_attentions = all_attentions + layer_group_output[-1]
|
426 |
+
|
427 |
+
if output_hidden_states:
|
428 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
429 |
+
|
430 |
+
if not return_dict:
|
431 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
432 |
+
return FlaxBaseModelOutput(
|
433 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
434 |
+
)
|
435 |
+
|
436 |
+
|
437 |
+
class FlaxAlbertEncoder(nn.Module):
|
438 |
+
config: AlbertConfig
|
439 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
440 |
+
|
441 |
+
def setup(self):
|
442 |
+
self.embedding_hidden_mapping_in = nn.Dense(
|
443 |
+
self.config.hidden_size,
|
444 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
445 |
+
dtype=self.dtype,
|
446 |
+
)
|
447 |
+
self.albert_layer_groups = FlaxAlbertLayerGroups(self.config, dtype=self.dtype)
|
448 |
+
|
449 |
+
def __call__(
|
450 |
+
self,
|
451 |
+
hidden_states,
|
452 |
+
attention_mask,
|
453 |
+
deterministic: bool = True,
|
454 |
+
output_attentions: bool = False,
|
455 |
+
output_hidden_states: bool = False,
|
456 |
+
return_dict: bool = True,
|
457 |
+
):
|
458 |
+
hidden_states = self.embedding_hidden_mapping_in(hidden_states)
|
459 |
+
return self.albert_layer_groups(
|
460 |
+
hidden_states,
|
461 |
+
attention_mask,
|
462 |
+
deterministic=deterministic,
|
463 |
+
output_attentions=output_attentions,
|
464 |
+
output_hidden_states=output_hidden_states,
|
465 |
+
)
|
466 |
+
|
467 |
+
|
468 |
+
class FlaxAlbertOnlyMLMHead(nn.Module):
|
469 |
+
config: AlbertConfig
|
470 |
+
dtype: jnp.dtype = jnp.float32
|
471 |
+
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
|
472 |
+
|
473 |
+
def setup(self):
|
474 |
+
self.dense = nn.Dense(self.config.embedding_size, dtype=self.dtype)
|
475 |
+
self.activation = ACT2FN[self.config.hidden_act]
|
476 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
477 |
+
self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False)
|
478 |
+
self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
|
479 |
+
|
480 |
+
def __call__(self, hidden_states, shared_embedding=None):
|
481 |
+
hidden_states = self.dense(hidden_states)
|
482 |
+
hidden_states = self.activation(hidden_states)
|
483 |
+
hidden_states = self.LayerNorm(hidden_states)
|
484 |
+
|
485 |
+
if shared_embedding is not None:
|
486 |
+
hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
|
487 |
+
else:
|
488 |
+
hidden_states = self.decoder(hidden_states)
|
489 |
+
|
490 |
+
hidden_states += self.bias
|
491 |
+
return hidden_states
|
492 |
+
|
493 |
+
|
494 |
+
class FlaxAlbertSOPHead(nn.Module):
|
495 |
+
config: AlbertConfig
|
496 |
+
dtype: jnp.dtype = jnp.float32
|
497 |
+
|
498 |
+
def setup(self):
|
499 |
+
self.dropout = nn.Dropout(self.config.classifier_dropout_prob)
|
500 |
+
self.classifier = nn.Dense(2, dtype=self.dtype)
|
501 |
+
|
502 |
+
def __call__(self, pooled_output, deterministic=True):
|
503 |
+
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
|
504 |
+
logits = self.classifier(pooled_output)
|
505 |
+
return logits
|
506 |
+
|
507 |
+
|
508 |
+
class FlaxAlbertPreTrainedModel(FlaxPreTrainedModel):
|
509 |
+
"""
|
510 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
511 |
+
models.
|
512 |
+
"""
|
513 |
+
|
514 |
+
config_class = AlbertConfig
|
515 |
+
base_model_prefix = "albert"
|
516 |
+
module_class: nn.Module = None
|
517 |
+
|
518 |
+
def __init__(
|
519 |
+
self,
|
520 |
+
config: AlbertConfig,
|
521 |
+
input_shape: Tuple = (1, 1),
|
522 |
+
seed: int = 0,
|
523 |
+
dtype: jnp.dtype = jnp.float32,
|
524 |
+
_do_init: bool = True,
|
525 |
+
**kwargs,
|
526 |
+
):
|
527 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
528 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
529 |
+
|
530 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
531 |
+
# init input tensors
|
532 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
533 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
534 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
|
535 |
+
attention_mask = jnp.ones_like(input_ids)
|
536 |
+
|
537 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
538 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
539 |
+
|
540 |
+
random_params = self.module.init(
|
541 |
+
rngs, input_ids, attention_mask, token_type_ids, position_ids, return_dict=False
|
542 |
+
)["params"]
|
543 |
+
|
544 |
+
if params is not None:
|
545 |
+
random_params = flatten_dict(unfreeze(random_params))
|
546 |
+
params = flatten_dict(unfreeze(params))
|
547 |
+
for missing_key in self._missing_keys:
|
548 |
+
params[missing_key] = random_params[missing_key]
|
549 |
+
self._missing_keys = set()
|
550 |
+
return freeze(unflatten_dict(params))
|
551 |
+
else:
|
552 |
+
return random_params
|
553 |
+
|
554 |
+
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
555 |
+
def __call__(
|
556 |
+
self,
|
557 |
+
input_ids,
|
558 |
+
attention_mask=None,
|
559 |
+
token_type_ids=None,
|
560 |
+
position_ids=None,
|
561 |
+
params: dict = None,
|
562 |
+
dropout_rng: jax.random.PRNGKey = None,
|
563 |
+
train: bool = False,
|
564 |
+
output_attentions: Optional[bool] = None,
|
565 |
+
output_hidden_states: Optional[bool] = None,
|
566 |
+
return_dict: Optional[bool] = None,
|
567 |
+
):
|
568 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
569 |
+
output_hidden_states = (
|
570 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
571 |
+
)
|
572 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
573 |
+
|
574 |
+
# init input tensors if not passed
|
575 |
+
if token_type_ids is None:
|
576 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
577 |
+
|
578 |
+
if position_ids is None:
|
579 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
580 |
+
|
581 |
+
if attention_mask is None:
|
582 |
+
attention_mask = jnp.ones_like(input_ids)
|
583 |
+
|
584 |
+
# Handle any PRNG if needed
|
585 |
+
rngs = {}
|
586 |
+
if dropout_rng is not None:
|
587 |
+
rngs["dropout"] = dropout_rng
|
588 |
+
|
589 |
+
return self.module.apply(
|
590 |
+
{"params": params or self.params},
|
591 |
+
jnp.array(input_ids, dtype="i4"),
|
592 |
+
jnp.array(attention_mask, dtype="i4"),
|
593 |
+
jnp.array(token_type_ids, dtype="i4"),
|
594 |
+
jnp.array(position_ids, dtype="i4"),
|
595 |
+
not train,
|
596 |
+
output_attentions,
|
597 |
+
output_hidden_states,
|
598 |
+
return_dict,
|
599 |
+
rngs=rngs,
|
600 |
+
)
|
601 |
+
|
602 |
+
|
603 |
+
class FlaxAlbertModule(nn.Module):
|
604 |
+
config: AlbertConfig
|
605 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
606 |
+
add_pooling_layer: bool = True
|
607 |
+
|
608 |
+
def setup(self):
|
609 |
+
self.embeddings = FlaxAlbertEmbeddings(self.config, dtype=self.dtype)
|
610 |
+
self.encoder = FlaxAlbertEncoder(self.config, dtype=self.dtype)
|
611 |
+
if self.add_pooling_layer:
|
612 |
+
self.pooler = nn.Dense(
|
613 |
+
self.config.hidden_size,
|
614 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
615 |
+
dtype=self.dtype,
|
616 |
+
name="pooler",
|
617 |
+
)
|
618 |
+
self.pooler_activation = nn.tanh
|
619 |
+
else:
|
620 |
+
self.pooler = None
|
621 |
+
self.pooler_activation = None
|
622 |
+
|
623 |
+
def __call__(
|
624 |
+
self,
|
625 |
+
input_ids,
|
626 |
+
attention_mask,
|
627 |
+
token_type_ids: Optional[np.ndarray] = None,
|
628 |
+
position_ids: Optional[np.ndarray] = None,
|
629 |
+
deterministic: bool = True,
|
630 |
+
output_attentions: bool = False,
|
631 |
+
output_hidden_states: bool = False,
|
632 |
+
return_dict: bool = True,
|
633 |
+
):
|
634 |
+
# make sure `token_type_ids` is correctly initialized when not passed
|
635 |
+
if token_type_ids is None:
|
636 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
637 |
+
|
638 |
+
# make sure `position_ids` is correctly initialized when not passed
|
639 |
+
if position_ids is None:
|
640 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
641 |
+
|
642 |
+
hidden_states = self.embeddings(input_ids, token_type_ids, position_ids, deterministic=deterministic)
|
643 |
+
|
644 |
+
outputs = self.encoder(
|
645 |
+
hidden_states,
|
646 |
+
attention_mask,
|
647 |
+
deterministic=deterministic,
|
648 |
+
output_attentions=output_attentions,
|
649 |
+
output_hidden_states=output_hidden_states,
|
650 |
+
return_dict=return_dict,
|
651 |
+
)
|
652 |
+
hidden_states = outputs[0]
|
653 |
+
if self.add_pooling_layer:
|
654 |
+
pooled = self.pooler(hidden_states[:, 0])
|
655 |
+
pooled = self.pooler_activation(pooled)
|
656 |
+
else:
|
657 |
+
pooled = None
|
658 |
+
|
659 |
+
if not return_dict:
|
660 |
+
# if pooled is None, don't return it
|
661 |
+
if pooled is None:
|
662 |
+
return (hidden_states,) + outputs[1:]
|
663 |
+
return (hidden_states, pooled) + outputs[1:]
|
664 |
+
|
665 |
+
return FlaxBaseModelOutputWithPooling(
|
666 |
+
last_hidden_state=hidden_states,
|
667 |
+
pooler_output=pooled,
|
668 |
+
hidden_states=outputs.hidden_states,
|
669 |
+
attentions=outputs.attentions,
|
670 |
+
)
|
671 |
+
|
672 |
+
|
673 |
+
@add_start_docstrings(
|
674 |
+
"The bare Albert Model transformer outputting raw hidden-states without any specific head on top.",
|
675 |
+
ALBERT_START_DOCSTRING,
|
676 |
+
)
|
677 |
+
class FlaxAlbertModel(FlaxAlbertPreTrainedModel):
|
678 |
+
module_class = FlaxAlbertModule
|
679 |
+
|
680 |
+
|
681 |
+
append_call_sample_docstring(FlaxAlbertModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC)
|
682 |
+
|
683 |
+
|
684 |
+
class FlaxAlbertForPreTrainingModule(nn.Module):
|
685 |
+
config: AlbertConfig
|
686 |
+
dtype: jnp.dtype = jnp.float32
|
687 |
+
|
688 |
+
def setup(self):
|
689 |
+
self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype)
|
690 |
+
self.predictions = FlaxAlbertOnlyMLMHead(config=self.config, dtype=self.dtype)
|
691 |
+
self.sop_classifier = FlaxAlbertSOPHead(config=self.config, dtype=self.dtype)
|
692 |
+
|
693 |
+
def __call__(
|
694 |
+
self,
|
695 |
+
input_ids,
|
696 |
+
attention_mask,
|
697 |
+
token_type_ids,
|
698 |
+
position_ids,
|
699 |
+
deterministic: bool = True,
|
700 |
+
output_attentions: bool = False,
|
701 |
+
output_hidden_states: bool = False,
|
702 |
+
return_dict: bool = True,
|
703 |
+
):
|
704 |
+
# Model
|
705 |
+
outputs = self.albert(
|
706 |
+
input_ids,
|
707 |
+
attention_mask,
|
708 |
+
token_type_ids,
|
709 |
+
position_ids,
|
710 |
+
deterministic=deterministic,
|
711 |
+
output_attentions=output_attentions,
|
712 |
+
output_hidden_states=output_hidden_states,
|
713 |
+
return_dict=return_dict,
|
714 |
+
)
|
715 |
+
|
716 |
+
if self.config.tie_word_embeddings:
|
717 |
+
shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
718 |
+
else:
|
719 |
+
shared_embedding = None
|
720 |
+
|
721 |
+
hidden_states = outputs[0]
|
722 |
+
pooled_output = outputs[1]
|
723 |
+
|
724 |
+
prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding)
|
725 |
+
sop_scores = self.sop_classifier(pooled_output, deterministic=deterministic)
|
726 |
+
|
727 |
+
if not return_dict:
|
728 |
+
return (prediction_scores, sop_scores) + outputs[2:]
|
729 |
+
|
730 |
+
return FlaxAlbertForPreTrainingOutput(
|
731 |
+
prediction_logits=prediction_scores,
|
732 |
+
sop_logits=sop_scores,
|
733 |
+
hidden_states=outputs.hidden_states,
|
734 |
+
attentions=outputs.attentions,
|
735 |
+
)
|
736 |
+
|
737 |
+
|
738 |
+
@add_start_docstrings(
|
739 |
+
"""
|
740 |
+
Albert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a
|
741 |
+
`sentence order prediction (classification)` head.
|
742 |
+
""",
|
743 |
+
ALBERT_START_DOCSTRING,
|
744 |
+
)
|
745 |
+
class FlaxAlbertForPreTraining(FlaxAlbertPreTrainedModel):
|
746 |
+
module_class = FlaxAlbertForPreTrainingModule
|
747 |
+
|
748 |
+
|
749 |
+
FLAX_ALBERT_FOR_PRETRAINING_DOCSTRING = """
|
750 |
+
Returns:
|
751 |
+
|
752 |
+
Example:
|
753 |
+
|
754 |
+
```python
|
755 |
+
>>> from transformers import AutoTokenizer, FlaxAlbertForPreTraining
|
756 |
+
|
757 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
|
758 |
+
>>> model = FlaxAlbertForPreTraining.from_pretrained("albert/albert-base-v2")
|
759 |
+
|
760 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
|
761 |
+
>>> outputs = model(**inputs)
|
762 |
+
|
763 |
+
>>> prediction_logits = outputs.prediction_logits
|
764 |
+
>>> seq_relationship_logits = outputs.sop_logits
|
765 |
+
```
|
766 |
+
"""
|
767 |
+
|
768 |
+
overwrite_call_docstring(
|
769 |
+
FlaxAlbertForPreTraining,
|
770 |
+
ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_ALBERT_FOR_PRETRAINING_DOCSTRING,
|
771 |
+
)
|
772 |
+
append_replace_return_docstrings(
|
773 |
+
FlaxAlbertForPreTraining, output_type=FlaxAlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
|
774 |
+
)
|
775 |
+
|
776 |
+
|
777 |
+
class FlaxAlbertForMaskedLMModule(nn.Module):
|
778 |
+
config: AlbertConfig
|
779 |
+
dtype: jnp.dtype = jnp.float32
|
780 |
+
|
781 |
+
def setup(self):
|
782 |
+
self.albert = FlaxAlbertModule(config=self.config, add_pooling_layer=False, dtype=self.dtype)
|
783 |
+
self.predictions = FlaxAlbertOnlyMLMHead(config=self.config, dtype=self.dtype)
|
784 |
+
|
785 |
+
def __call__(
|
786 |
+
self,
|
787 |
+
input_ids,
|
788 |
+
attention_mask,
|
789 |
+
token_type_ids,
|
790 |
+
position_ids,
|
791 |
+
deterministic: bool = True,
|
792 |
+
output_attentions: bool = False,
|
793 |
+
output_hidden_states: bool = False,
|
794 |
+
return_dict: bool = True,
|
795 |
+
):
|
796 |
+
# Model
|
797 |
+
outputs = self.albert(
|
798 |
+
input_ids,
|
799 |
+
attention_mask,
|
800 |
+
token_type_ids,
|
801 |
+
position_ids,
|
802 |
+
deterministic=deterministic,
|
803 |
+
output_attentions=output_attentions,
|
804 |
+
output_hidden_states=output_hidden_states,
|
805 |
+
return_dict=return_dict,
|
806 |
+
)
|
807 |
+
|
808 |
+
hidden_states = outputs[0]
|
809 |
+
if self.config.tie_word_embeddings:
|
810 |
+
shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
811 |
+
else:
|
812 |
+
shared_embedding = None
|
813 |
+
|
814 |
+
# Compute the prediction scores
|
815 |
+
logits = self.predictions(hidden_states, shared_embedding=shared_embedding)
|
816 |
+
|
817 |
+
if not return_dict:
|
818 |
+
return (logits,) + outputs[1:]
|
819 |
+
|
820 |
+
return FlaxMaskedLMOutput(
|
821 |
+
logits=logits,
|
822 |
+
hidden_states=outputs.hidden_states,
|
823 |
+
attentions=outputs.attentions,
|
824 |
+
)
|
825 |
+
|
826 |
+
|
827 |
+
@add_start_docstrings("""Albert Model with a `language modeling` head on top.""", ALBERT_START_DOCSTRING)
|
828 |
+
class FlaxAlbertForMaskedLM(FlaxAlbertPreTrainedModel):
|
829 |
+
module_class = FlaxAlbertForMaskedLMModule
|
830 |
+
|
831 |
+
|
832 |
+
append_call_sample_docstring(
|
833 |
+
FlaxAlbertForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC, revision="refs/pr/11"
|
834 |
+
)
|
835 |
+
|
836 |
+
|
837 |
+
class FlaxAlbertForSequenceClassificationModule(nn.Module):
|
838 |
+
config: AlbertConfig
|
839 |
+
dtype: jnp.dtype = jnp.float32
|
840 |
+
|
841 |
+
def setup(self):
|
842 |
+
self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype)
|
843 |
+
classifier_dropout = (
|
844 |
+
self.config.classifier_dropout_prob
|
845 |
+
if self.config.classifier_dropout_prob is not None
|
846 |
+
else self.config.hidden_dropout_prob
|
847 |
+
)
|
848 |
+
self.dropout = nn.Dropout(rate=classifier_dropout)
|
849 |
+
self.classifier = nn.Dense(
|
850 |
+
self.config.num_labels,
|
851 |
+
dtype=self.dtype,
|
852 |
+
)
|
853 |
+
|
854 |
+
def __call__(
|
855 |
+
self,
|
856 |
+
input_ids,
|
857 |
+
attention_mask,
|
858 |
+
token_type_ids,
|
859 |
+
position_ids,
|
860 |
+
deterministic: bool = True,
|
861 |
+
output_attentions: bool = False,
|
862 |
+
output_hidden_states: bool = False,
|
863 |
+
return_dict: bool = True,
|
864 |
+
):
|
865 |
+
# Model
|
866 |
+
outputs = self.albert(
|
867 |
+
input_ids,
|
868 |
+
attention_mask,
|
869 |
+
token_type_ids,
|
870 |
+
position_ids,
|
871 |
+
deterministic=deterministic,
|
872 |
+
output_attentions=output_attentions,
|
873 |
+
output_hidden_states=output_hidden_states,
|
874 |
+
return_dict=return_dict,
|
875 |
+
)
|
876 |
+
|
877 |
+
pooled_output = outputs[1]
|
878 |
+
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
|
879 |
+
logits = self.classifier(pooled_output)
|
880 |
+
|
881 |
+
if not return_dict:
|
882 |
+
return (logits,) + outputs[2:]
|
883 |
+
|
884 |
+
return FlaxSequenceClassifierOutput(
|
885 |
+
logits=logits,
|
886 |
+
hidden_states=outputs.hidden_states,
|
887 |
+
attentions=outputs.attentions,
|
888 |
+
)
|
889 |
+
|
890 |
+
|
891 |
+
@add_start_docstrings(
|
892 |
+
"""
|
893 |
+
Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
894 |
+
output) e.g. for GLUE tasks.
|
895 |
+
""",
|
896 |
+
ALBERT_START_DOCSTRING,
|
897 |
+
)
|
898 |
+
class FlaxAlbertForSequenceClassification(FlaxAlbertPreTrainedModel):
|
899 |
+
module_class = FlaxAlbertForSequenceClassificationModule
|
900 |
+
|
901 |
+
|
902 |
+
append_call_sample_docstring(
|
903 |
+
FlaxAlbertForSequenceClassification,
|
904 |
+
_CHECKPOINT_FOR_DOC,
|
905 |
+
FlaxSequenceClassifierOutput,
|
906 |
+
_CONFIG_FOR_DOC,
|
907 |
+
)
|
908 |
+
|
909 |
+
|
910 |
+
class FlaxAlbertForMultipleChoiceModule(nn.Module):
|
911 |
+
config: AlbertConfig
|
912 |
+
dtype: jnp.dtype = jnp.float32
|
913 |
+
|
914 |
+
def setup(self):
|
915 |
+
self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype)
|
916 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
917 |
+
self.classifier = nn.Dense(1, dtype=self.dtype)
|
918 |
+
|
919 |
+
def __call__(
|
920 |
+
self,
|
921 |
+
input_ids,
|
922 |
+
attention_mask,
|
923 |
+
token_type_ids,
|
924 |
+
position_ids,
|
925 |
+
deterministic: bool = True,
|
926 |
+
output_attentions: bool = False,
|
927 |
+
output_hidden_states: bool = False,
|
928 |
+
return_dict: bool = True,
|
929 |
+
):
|
930 |
+
num_choices = input_ids.shape[1]
|
931 |
+
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
|
932 |
+
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
|
933 |
+
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
|
934 |
+
position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
|
935 |
+
|
936 |
+
# Model
|
937 |
+
outputs = self.albert(
|
938 |
+
input_ids,
|
939 |
+
attention_mask,
|
940 |
+
token_type_ids,
|
941 |
+
position_ids,
|
942 |
+
deterministic=deterministic,
|
943 |
+
output_attentions=output_attentions,
|
944 |
+
output_hidden_states=output_hidden_states,
|
945 |
+
return_dict=return_dict,
|
946 |
+
)
|
947 |
+
|
948 |
+
pooled_output = outputs[1]
|
949 |
+
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
|
950 |
+
logits = self.classifier(pooled_output)
|
951 |
+
|
952 |
+
reshaped_logits = logits.reshape(-1, num_choices)
|
953 |
+
|
954 |
+
if not return_dict:
|
955 |
+
return (reshaped_logits,) + outputs[2:]
|
956 |
+
|
957 |
+
return FlaxMultipleChoiceModelOutput(
|
958 |
+
logits=reshaped_logits,
|
959 |
+
hidden_states=outputs.hidden_states,
|
960 |
+
attentions=outputs.attentions,
|
961 |
+
)
|
962 |
+
|
963 |
+
|
964 |
+
@add_start_docstrings(
|
965 |
+
"""
|
966 |
+
Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
967 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
968 |
+
""",
|
969 |
+
ALBERT_START_DOCSTRING,
|
970 |
+
)
|
971 |
+
class FlaxAlbertForMultipleChoice(FlaxAlbertPreTrainedModel):
|
972 |
+
module_class = FlaxAlbertForMultipleChoiceModule
|
973 |
+
|
974 |
+
|
975 |
+
overwrite_call_docstring(
|
976 |
+
FlaxAlbertForMultipleChoice, ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
977 |
+
)
|
978 |
+
append_call_sample_docstring(
|
979 |
+
FlaxAlbertForMultipleChoice,
|
980 |
+
_CHECKPOINT_FOR_DOC,
|
981 |
+
FlaxMultipleChoiceModelOutput,
|
982 |
+
_CONFIG_FOR_DOC,
|
983 |
+
)
|
984 |
+
|
985 |
+
|
986 |
+
class FlaxAlbertForTokenClassificationModule(nn.Module):
|
987 |
+
config: AlbertConfig
|
988 |
+
dtype: jnp.dtype = jnp.float32
|
989 |
+
|
990 |
+
def setup(self):
|
991 |
+
self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype, add_pooling_layer=False)
|
992 |
+
classifier_dropout = (
|
993 |
+
self.config.classifier_dropout_prob
|
994 |
+
if self.config.classifier_dropout_prob is not None
|
995 |
+
else self.config.hidden_dropout_prob
|
996 |
+
)
|
997 |
+
self.dropout = nn.Dropout(rate=classifier_dropout)
|
998 |
+
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
|
999 |
+
|
1000 |
+
def __call__(
|
1001 |
+
self,
|
1002 |
+
input_ids,
|
1003 |
+
attention_mask,
|
1004 |
+
token_type_ids,
|
1005 |
+
position_ids,
|
1006 |
+
deterministic: bool = True,
|
1007 |
+
output_attentions: bool = False,
|
1008 |
+
output_hidden_states: bool = False,
|
1009 |
+
return_dict: bool = True,
|
1010 |
+
):
|
1011 |
+
# Model
|
1012 |
+
outputs = self.albert(
|
1013 |
+
input_ids,
|
1014 |
+
attention_mask,
|
1015 |
+
token_type_ids,
|
1016 |
+
position_ids,
|
1017 |
+
deterministic=deterministic,
|
1018 |
+
output_attentions=output_attentions,
|
1019 |
+
output_hidden_states=output_hidden_states,
|
1020 |
+
return_dict=return_dict,
|
1021 |
+
)
|
1022 |
+
|
1023 |
+
hidden_states = outputs[0]
|
1024 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
1025 |
+
logits = self.classifier(hidden_states)
|
1026 |
+
|
1027 |
+
if not return_dict:
|
1028 |
+
return (logits,) + outputs[1:]
|
1029 |
+
|
1030 |
+
return FlaxTokenClassifierOutput(
|
1031 |
+
logits=logits,
|
1032 |
+
hidden_states=outputs.hidden_states,
|
1033 |
+
attentions=outputs.attentions,
|
1034 |
+
)
|
1035 |
+
|
1036 |
+
|
1037 |
+
@add_start_docstrings(
|
1038 |
+
"""
|
1039 |
+
Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1040 |
+
Named-Entity-Recognition (NER) tasks.
|
1041 |
+
""",
|
1042 |
+
ALBERT_START_DOCSTRING,
|
1043 |
+
)
|
1044 |
+
class FlaxAlbertForTokenClassification(FlaxAlbertPreTrainedModel):
|
1045 |
+
module_class = FlaxAlbertForTokenClassificationModule
|
1046 |
+
|
1047 |
+
|
1048 |
+
append_call_sample_docstring(
|
1049 |
+
FlaxAlbertForTokenClassification,
|
1050 |
+
_CHECKPOINT_FOR_DOC,
|
1051 |
+
FlaxTokenClassifierOutput,
|
1052 |
+
_CONFIG_FOR_DOC,
|
1053 |
+
)
|
1054 |
+
|
1055 |
+
|
1056 |
+
class FlaxAlbertForQuestionAnsweringModule(nn.Module):
|
1057 |
+
config: AlbertConfig
|
1058 |
+
dtype: jnp.dtype = jnp.float32
|
1059 |
+
|
1060 |
+
def setup(self):
|
1061 |
+
self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype, add_pooling_layer=False)
|
1062 |
+
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
|
1063 |
+
|
1064 |
+
def __call__(
|
1065 |
+
self,
|
1066 |
+
input_ids,
|
1067 |
+
attention_mask,
|
1068 |
+
token_type_ids,
|
1069 |
+
position_ids,
|
1070 |
+
deterministic: bool = True,
|
1071 |
+
output_attentions: bool = False,
|
1072 |
+
output_hidden_states: bool = False,
|
1073 |
+
return_dict: bool = True,
|
1074 |
+
):
|
1075 |
+
# Model
|
1076 |
+
outputs = self.albert(
|
1077 |
+
input_ids,
|
1078 |
+
attention_mask,
|
1079 |
+
token_type_ids,
|
1080 |
+
position_ids,
|
1081 |
+
deterministic=deterministic,
|
1082 |
+
output_attentions=output_attentions,
|
1083 |
+
output_hidden_states=output_hidden_states,
|
1084 |
+
return_dict=return_dict,
|
1085 |
+
)
|
1086 |
+
|
1087 |
+
hidden_states = outputs[0]
|
1088 |
+
|
1089 |
+
logits = self.qa_outputs(hidden_states)
|
1090 |
+
start_logits, end_logits = logits.split(self.config.num_labels, axis=-1)
|
1091 |
+
start_logits = start_logits.squeeze(-1)
|
1092 |
+
end_logits = end_logits.squeeze(-1)
|
1093 |
+
|
1094 |
+
if not return_dict:
|
1095 |
+
return (start_logits, end_logits) + outputs[1:]
|
1096 |
+
|
1097 |
+
return FlaxQuestionAnsweringModelOutput(
|
1098 |
+
start_logits=start_logits,
|
1099 |
+
end_logits=end_logits,
|
1100 |
+
hidden_states=outputs.hidden_states,
|
1101 |
+
attentions=outputs.attentions,
|
1102 |
+
)
|
1103 |
+
|
1104 |
+
|
1105 |
+
@add_start_docstrings(
|
1106 |
+
"""
|
1107 |
+
Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1108 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1109 |
+
""",
|
1110 |
+
ALBERT_START_DOCSTRING,
|
1111 |
+
)
|
1112 |
+
class FlaxAlbertForQuestionAnswering(FlaxAlbertPreTrainedModel):
|
1113 |
+
module_class = FlaxAlbertForQuestionAnsweringModule
|
1114 |
+
|
1115 |
+
|
1116 |
+
append_call_sample_docstring(
|
1117 |
+
FlaxAlbertForQuestionAnswering,
|
1118 |
+
_CHECKPOINT_FOR_DOC,
|
1119 |
+
FlaxQuestionAnsweringModelOutput,
|
1120 |
+
_CONFIG_FOR_DOC,
|
1121 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/modeling_tf_albert.py
ADDED
@@ -0,0 +1,1564 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" TF 2.0 ALBERT model."""
|
17 |
+
|
18 |
+
|
19 |
+
from __future__ import annotations
|
20 |
+
|
21 |
+
import math
|
22 |
+
from dataclasses import dataclass
|
23 |
+
from typing import Dict, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import tensorflow as tf
|
27 |
+
|
28 |
+
from ...activations_tf import get_tf_activation
|
29 |
+
from ...modeling_tf_outputs import (
|
30 |
+
TFBaseModelOutput,
|
31 |
+
TFBaseModelOutputWithPooling,
|
32 |
+
TFMaskedLMOutput,
|
33 |
+
TFMultipleChoiceModelOutput,
|
34 |
+
TFQuestionAnsweringModelOutput,
|
35 |
+
TFSequenceClassifierOutput,
|
36 |
+
TFTokenClassifierOutput,
|
37 |
+
)
|
38 |
+
from ...modeling_tf_utils import (
|
39 |
+
TFMaskedLanguageModelingLoss,
|
40 |
+
TFModelInputType,
|
41 |
+
TFMultipleChoiceLoss,
|
42 |
+
TFPreTrainedModel,
|
43 |
+
TFQuestionAnsweringLoss,
|
44 |
+
TFSequenceClassificationLoss,
|
45 |
+
TFTokenClassificationLoss,
|
46 |
+
get_initializer,
|
47 |
+
keras,
|
48 |
+
keras_serializable,
|
49 |
+
unpack_inputs,
|
50 |
+
)
|
51 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
52 |
+
from ...utils import (
|
53 |
+
ModelOutput,
|
54 |
+
add_code_sample_docstrings,
|
55 |
+
add_start_docstrings,
|
56 |
+
add_start_docstrings_to_model_forward,
|
57 |
+
logging,
|
58 |
+
replace_return_docstrings,
|
59 |
+
)
|
60 |
+
from .configuration_albert import AlbertConfig
|
61 |
+
|
62 |
+
|
63 |
+
logger = logging.get_logger(__name__)
|
64 |
+
|
65 |
+
_CHECKPOINT_FOR_DOC = "albert/albert-base-v2"
|
66 |
+
_CONFIG_FOR_DOC = "AlbertConfig"
|
67 |
+
|
68 |
+
|
69 |
+
from ..deprecated._archive_maps import TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
70 |
+
|
71 |
+
|
72 |
+
class TFAlbertPreTrainingLoss:
|
73 |
+
"""
|
74 |
+
Loss function suitable for ALBERT pretraining, that is, the task of pretraining a language model by combining SOP +
|
75 |
+
MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
|
76 |
+
"""
|
77 |
+
|
78 |
+
def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor:
|
79 |
+
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE)
|
80 |
+
if self.config.tf_legacy_loss:
|
81 |
+
# make sure only labels that are not equal to -100
|
82 |
+
# are taken into account as loss
|
83 |
+
masked_lm_active_loss = tf.not_equal(tf.reshape(tensor=labels["labels"], shape=(-1,)), -100)
|
84 |
+
masked_lm_reduced_logits = tf.boolean_mask(
|
85 |
+
tensor=tf.reshape(tensor=logits[0], shape=(-1, shape_list(logits[0])[2])),
|
86 |
+
mask=masked_lm_active_loss,
|
87 |
+
)
|
88 |
+
masked_lm_labels = tf.boolean_mask(
|
89 |
+
tensor=tf.reshape(tensor=labels["labels"], shape=(-1,)), mask=masked_lm_active_loss
|
90 |
+
)
|
91 |
+
sentence_order_active_loss = tf.not_equal(
|
92 |
+
tf.reshape(tensor=labels["sentence_order_label"], shape=(-1,)), -100
|
93 |
+
)
|
94 |
+
sentence_order_reduced_logits = tf.boolean_mask(
|
95 |
+
tensor=tf.reshape(tensor=logits[1], shape=(-1, 2)), mask=sentence_order_active_loss
|
96 |
+
)
|
97 |
+
sentence_order_label = tf.boolean_mask(
|
98 |
+
tensor=tf.reshape(tensor=labels["sentence_order_label"], shape=(-1,)), mask=sentence_order_active_loss
|
99 |
+
)
|
100 |
+
masked_lm_loss = loss_fn(y_true=masked_lm_labels, y_pred=masked_lm_reduced_logits)
|
101 |
+
sentence_order_loss = loss_fn(y_true=sentence_order_label, y_pred=sentence_order_reduced_logits)
|
102 |
+
masked_lm_loss = tf.reshape(tensor=masked_lm_loss, shape=(-1, shape_list(sentence_order_loss)[0]))
|
103 |
+
masked_lm_loss = tf.reduce_mean(input_tensor=masked_lm_loss, axis=0)
|
104 |
+
|
105 |
+
return masked_lm_loss + sentence_order_loss
|
106 |
+
|
107 |
+
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
|
108 |
+
unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0])
|
109 |
+
# make sure only labels that are not equal to -100
|
110 |
+
# are taken into account for the loss computation
|
111 |
+
lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype)
|
112 |
+
masked_lm_losses = unmasked_lm_losses * lm_loss_mask
|
113 |
+
reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask)
|
114 |
+
|
115 |
+
sop_logits = tf.reshape(logits[1], (-1, 2))
|
116 |
+
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
|
117 |
+
unmasked_sop_loss = loss_fn(y_true=tf.nn.relu(labels["sentence_order_label"]), y_pred=sop_logits)
|
118 |
+
sop_loss_mask = tf.cast(labels["sentence_order_label"] != -100, dtype=unmasked_sop_loss.dtype)
|
119 |
+
|
120 |
+
masked_sop_loss = unmasked_sop_loss * sop_loss_mask
|
121 |
+
reduced_masked_sop_loss = tf.reduce_sum(masked_sop_loss) / tf.reduce_sum(sop_loss_mask)
|
122 |
+
|
123 |
+
return tf.reshape(reduced_masked_lm_loss + reduced_masked_sop_loss, (1,))
|
124 |
+
|
125 |
+
|
126 |
+
class TFAlbertEmbeddings(keras.layers.Layer):
|
127 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
128 |
+
|
129 |
+
def __init__(self, config: AlbertConfig, **kwargs):
|
130 |
+
super().__init__(**kwargs)
|
131 |
+
|
132 |
+
self.config = config
|
133 |
+
self.embedding_size = config.embedding_size
|
134 |
+
self.max_position_embeddings = config.max_position_embeddings
|
135 |
+
self.initializer_range = config.initializer_range
|
136 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
137 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
138 |
+
|
139 |
+
def build(self, input_shape=None):
|
140 |
+
with tf.name_scope("word_embeddings"):
|
141 |
+
self.weight = self.add_weight(
|
142 |
+
name="weight",
|
143 |
+
shape=[self.config.vocab_size, self.embedding_size],
|
144 |
+
initializer=get_initializer(self.initializer_range),
|
145 |
+
)
|
146 |
+
|
147 |
+
with tf.name_scope("token_type_embeddings"):
|
148 |
+
self.token_type_embeddings = self.add_weight(
|
149 |
+
name="embeddings",
|
150 |
+
shape=[self.config.type_vocab_size, self.embedding_size],
|
151 |
+
initializer=get_initializer(self.initializer_range),
|
152 |
+
)
|
153 |
+
|
154 |
+
with tf.name_scope("position_embeddings"):
|
155 |
+
self.position_embeddings = self.add_weight(
|
156 |
+
name="embeddings",
|
157 |
+
shape=[self.max_position_embeddings, self.embedding_size],
|
158 |
+
initializer=get_initializer(self.initializer_range),
|
159 |
+
)
|
160 |
+
|
161 |
+
if self.built:
|
162 |
+
return
|
163 |
+
self.built = True
|
164 |
+
if getattr(self, "LayerNorm", None) is not None:
|
165 |
+
with tf.name_scope(self.LayerNorm.name):
|
166 |
+
self.LayerNorm.build([None, None, self.config.embedding_size])
|
167 |
+
|
168 |
+
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call
|
169 |
+
def call(
|
170 |
+
self,
|
171 |
+
input_ids: tf.Tensor = None,
|
172 |
+
position_ids: tf.Tensor = None,
|
173 |
+
token_type_ids: tf.Tensor = None,
|
174 |
+
inputs_embeds: tf.Tensor = None,
|
175 |
+
past_key_values_length=0,
|
176 |
+
training: bool = False,
|
177 |
+
) -> tf.Tensor:
|
178 |
+
"""
|
179 |
+
Applies embedding based on inputs tensor.
|
180 |
+
|
181 |
+
Returns:
|
182 |
+
final_embeddings (`tf.Tensor`): output embedding tensor.
|
183 |
+
"""
|
184 |
+
if input_ids is None and inputs_embeds is None:
|
185 |
+
raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
|
186 |
+
|
187 |
+
if input_ids is not None:
|
188 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
189 |
+
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
|
190 |
+
|
191 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
192 |
+
|
193 |
+
if token_type_ids is None:
|
194 |
+
token_type_ids = tf.fill(dims=input_shape, value=0)
|
195 |
+
|
196 |
+
if position_ids is None:
|
197 |
+
position_ids = tf.expand_dims(
|
198 |
+
tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0
|
199 |
+
)
|
200 |
+
|
201 |
+
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
|
202 |
+
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
|
203 |
+
final_embeddings = inputs_embeds + position_embeds + token_type_embeds
|
204 |
+
final_embeddings = self.LayerNorm(inputs=final_embeddings)
|
205 |
+
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
|
206 |
+
|
207 |
+
return final_embeddings
|
208 |
+
|
209 |
+
|
210 |
+
class TFAlbertAttention(keras.layers.Layer):
|
211 |
+
"""Contains the complete attention sublayer, including both dropouts and layer norm."""
|
212 |
+
|
213 |
+
def __init__(self, config: AlbertConfig, **kwargs):
|
214 |
+
super().__init__(**kwargs)
|
215 |
+
|
216 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
217 |
+
raise ValueError(
|
218 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
|
219 |
+
f"of attention heads ({config.num_attention_heads})"
|
220 |
+
)
|
221 |
+
|
222 |
+
self.num_attention_heads = config.num_attention_heads
|
223 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
224 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
225 |
+
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
|
226 |
+
self.output_attentions = config.output_attentions
|
227 |
+
|
228 |
+
self.query = keras.layers.Dense(
|
229 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
|
230 |
+
)
|
231 |
+
self.key = keras.layers.Dense(
|
232 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
|
233 |
+
)
|
234 |
+
self.value = keras.layers.Dense(
|
235 |
+
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
|
236 |
+
)
|
237 |
+
self.dense = keras.layers.Dense(
|
238 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
239 |
+
)
|
240 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
241 |
+
# Two different dropout probabilities; see https://github.com/google-research/albert/blob/master/modeling.py#L971-L993
|
242 |
+
self.attention_dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
|
243 |
+
self.output_dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
244 |
+
self.config = config
|
245 |
+
|
246 |
+
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
|
247 |
+
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
|
248 |
+
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
|
249 |
+
|
250 |
+
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
|
251 |
+
return tf.transpose(tensor, perm=[0, 2, 1, 3])
|
252 |
+
|
253 |
+
def call(
|
254 |
+
self,
|
255 |
+
input_tensor: tf.Tensor,
|
256 |
+
attention_mask: tf.Tensor,
|
257 |
+
head_mask: tf.Tensor,
|
258 |
+
output_attentions: bool,
|
259 |
+
training: bool = False,
|
260 |
+
) -> Tuple[tf.Tensor]:
|
261 |
+
batch_size = shape_list(input_tensor)[0]
|
262 |
+
mixed_query_layer = self.query(inputs=input_tensor)
|
263 |
+
mixed_key_layer = self.key(inputs=input_tensor)
|
264 |
+
mixed_value_layer = self.value(inputs=input_tensor)
|
265 |
+
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
|
266 |
+
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
|
267 |
+
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
|
268 |
+
|
269 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
270 |
+
# (batch size, num_heads, seq_len_q, seq_len_k)
|
271 |
+
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
|
272 |
+
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
|
273 |
+
attention_scores = tf.divide(attention_scores, dk)
|
274 |
+
|
275 |
+
if attention_mask is not None:
|
276 |
+
# Apply the attention mask is (precomputed for all layers in TFAlbertModel call() function)
|
277 |
+
attention_scores = tf.add(attention_scores, attention_mask)
|
278 |
+
|
279 |
+
# Normalize the attention scores to probabilities.
|
280 |
+
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
|
281 |
+
|
282 |
+
# This is actually dropping out entire tokens to attend to, which might
|
283 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
284 |
+
attention_probs = self.attention_dropout(inputs=attention_probs, training=training)
|
285 |
+
|
286 |
+
# Mask heads if we want to
|
287 |
+
if head_mask is not None:
|
288 |
+
attention_probs = tf.multiply(attention_probs, head_mask)
|
289 |
+
|
290 |
+
context_layer = tf.matmul(attention_probs, value_layer)
|
291 |
+
context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
|
292 |
+
|
293 |
+
# (batch_size, seq_len_q, all_head_size)
|
294 |
+
context_layer = tf.reshape(tensor=context_layer, shape=(batch_size, -1, self.all_head_size))
|
295 |
+
self_outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
296 |
+
hidden_states = self_outputs[0]
|
297 |
+
hidden_states = self.dense(inputs=hidden_states)
|
298 |
+
hidden_states = self.output_dropout(inputs=hidden_states, training=training)
|
299 |
+
attention_output = self.LayerNorm(inputs=hidden_states + input_tensor)
|
300 |
+
|
301 |
+
# add attentions if we output them
|
302 |
+
outputs = (attention_output,) + self_outputs[1:]
|
303 |
+
|
304 |
+
return outputs
|
305 |
+
|
306 |
+
def build(self, input_shape=None):
|
307 |
+
if self.built:
|
308 |
+
return
|
309 |
+
self.built = True
|
310 |
+
if getattr(self, "query", None) is not None:
|
311 |
+
with tf.name_scope(self.query.name):
|
312 |
+
self.query.build([None, None, self.config.hidden_size])
|
313 |
+
if getattr(self, "key", None) is not None:
|
314 |
+
with tf.name_scope(self.key.name):
|
315 |
+
self.key.build([None, None, self.config.hidden_size])
|
316 |
+
if getattr(self, "value", None) is not None:
|
317 |
+
with tf.name_scope(self.value.name):
|
318 |
+
self.value.build([None, None, self.config.hidden_size])
|
319 |
+
if getattr(self, "dense", None) is not None:
|
320 |
+
with tf.name_scope(self.dense.name):
|
321 |
+
self.dense.build([None, None, self.config.hidden_size])
|
322 |
+
if getattr(self, "LayerNorm", None) is not None:
|
323 |
+
with tf.name_scope(self.LayerNorm.name):
|
324 |
+
self.LayerNorm.build([None, None, self.config.hidden_size])
|
325 |
+
|
326 |
+
|
327 |
+
class TFAlbertLayer(keras.layers.Layer):
|
328 |
+
def __init__(self, config: AlbertConfig, **kwargs):
|
329 |
+
super().__init__(**kwargs)
|
330 |
+
|
331 |
+
self.attention = TFAlbertAttention(config, name="attention")
|
332 |
+
self.ffn = keras.layers.Dense(
|
333 |
+
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="ffn"
|
334 |
+
)
|
335 |
+
|
336 |
+
if isinstance(config.hidden_act, str):
|
337 |
+
self.activation = get_tf_activation(config.hidden_act)
|
338 |
+
else:
|
339 |
+
self.activation = config.hidden_act
|
340 |
+
|
341 |
+
self.ffn_output = keras.layers.Dense(
|
342 |
+
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="ffn_output"
|
343 |
+
)
|
344 |
+
self.full_layer_layer_norm = keras.layers.LayerNormalization(
|
345 |
+
epsilon=config.layer_norm_eps, name="full_layer_layer_norm"
|
346 |
+
)
|
347 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
348 |
+
self.config = config
|
349 |
+
|
350 |
+
def call(
|
351 |
+
self,
|
352 |
+
hidden_states: tf.Tensor,
|
353 |
+
attention_mask: tf.Tensor,
|
354 |
+
head_mask: tf.Tensor,
|
355 |
+
output_attentions: bool,
|
356 |
+
training: bool = False,
|
357 |
+
) -> Tuple[tf.Tensor]:
|
358 |
+
attention_outputs = self.attention(
|
359 |
+
input_tensor=hidden_states,
|
360 |
+
attention_mask=attention_mask,
|
361 |
+
head_mask=head_mask,
|
362 |
+
output_attentions=output_attentions,
|
363 |
+
training=training,
|
364 |
+
)
|
365 |
+
ffn_output = self.ffn(inputs=attention_outputs[0])
|
366 |
+
ffn_output = self.activation(ffn_output)
|
367 |
+
ffn_output = self.ffn_output(inputs=ffn_output)
|
368 |
+
ffn_output = self.dropout(inputs=ffn_output, training=training)
|
369 |
+
hidden_states = self.full_layer_layer_norm(inputs=ffn_output + attention_outputs[0])
|
370 |
+
|
371 |
+
# add attentions if we output them
|
372 |
+
outputs = (hidden_states,) + attention_outputs[1:]
|
373 |
+
|
374 |
+
return outputs
|
375 |
+
|
376 |
+
def build(self, input_shape=None):
|
377 |
+
if self.built:
|
378 |
+
return
|
379 |
+
self.built = True
|
380 |
+
if getattr(self, "attention", None) is not None:
|
381 |
+
with tf.name_scope(self.attention.name):
|
382 |
+
self.attention.build(None)
|
383 |
+
if getattr(self, "ffn", None) is not None:
|
384 |
+
with tf.name_scope(self.ffn.name):
|
385 |
+
self.ffn.build([None, None, self.config.hidden_size])
|
386 |
+
if getattr(self, "ffn_output", None) is not None:
|
387 |
+
with tf.name_scope(self.ffn_output.name):
|
388 |
+
self.ffn_output.build([None, None, self.config.intermediate_size])
|
389 |
+
if getattr(self, "full_layer_layer_norm", None) is not None:
|
390 |
+
with tf.name_scope(self.full_layer_layer_norm.name):
|
391 |
+
self.full_layer_layer_norm.build([None, None, self.config.hidden_size])
|
392 |
+
|
393 |
+
|
394 |
+
class TFAlbertLayerGroup(keras.layers.Layer):
|
395 |
+
def __init__(self, config: AlbertConfig, **kwargs):
|
396 |
+
super().__init__(**kwargs)
|
397 |
+
|
398 |
+
self.albert_layers = [
|
399 |
+
TFAlbertLayer(config, name=f"albert_layers_._{i}") for i in range(config.inner_group_num)
|
400 |
+
]
|
401 |
+
|
402 |
+
def call(
|
403 |
+
self,
|
404 |
+
hidden_states: tf.Tensor,
|
405 |
+
attention_mask: tf.Tensor,
|
406 |
+
head_mask: tf.Tensor,
|
407 |
+
output_attentions: bool,
|
408 |
+
output_hidden_states: bool,
|
409 |
+
training: bool = False,
|
410 |
+
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
|
411 |
+
layer_hidden_states = () if output_hidden_states else None
|
412 |
+
layer_attentions = () if output_attentions else None
|
413 |
+
|
414 |
+
for layer_index, albert_layer in enumerate(self.albert_layers):
|
415 |
+
if output_hidden_states:
|
416 |
+
layer_hidden_states = layer_hidden_states + (hidden_states,)
|
417 |
+
|
418 |
+
layer_output = albert_layer(
|
419 |
+
hidden_states=hidden_states,
|
420 |
+
attention_mask=attention_mask,
|
421 |
+
head_mask=head_mask[layer_index],
|
422 |
+
output_attentions=output_attentions,
|
423 |
+
training=training,
|
424 |
+
)
|
425 |
+
hidden_states = layer_output[0]
|
426 |
+
|
427 |
+
if output_attentions:
|
428 |
+
layer_attentions = layer_attentions + (layer_output[1],)
|
429 |
+
|
430 |
+
# Add last layer
|
431 |
+
if output_hidden_states:
|
432 |
+
layer_hidden_states = layer_hidden_states + (hidden_states,)
|
433 |
+
|
434 |
+
return tuple(v for v in [hidden_states, layer_hidden_states, layer_attentions] if v is not None)
|
435 |
+
|
436 |
+
def build(self, input_shape=None):
|
437 |
+
if self.built:
|
438 |
+
return
|
439 |
+
self.built = True
|
440 |
+
if getattr(self, "albert_layers", None) is not None:
|
441 |
+
for layer in self.albert_layers:
|
442 |
+
with tf.name_scope(layer.name):
|
443 |
+
layer.build(None)
|
444 |
+
|
445 |
+
|
446 |
+
class TFAlbertTransformer(keras.layers.Layer):
|
447 |
+
def __init__(self, config: AlbertConfig, **kwargs):
|
448 |
+
super().__init__(**kwargs)
|
449 |
+
|
450 |
+
self.num_hidden_layers = config.num_hidden_layers
|
451 |
+
self.num_hidden_groups = config.num_hidden_groups
|
452 |
+
# Number of layers in a hidden group
|
453 |
+
self.layers_per_group = int(config.num_hidden_layers / config.num_hidden_groups)
|
454 |
+
self.embedding_hidden_mapping_in = keras.layers.Dense(
|
455 |
+
units=config.hidden_size,
|
456 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
457 |
+
name="embedding_hidden_mapping_in",
|
458 |
+
)
|
459 |
+
self.albert_layer_groups = [
|
460 |
+
TFAlbertLayerGroup(config, name=f"albert_layer_groups_._{i}") for i in range(config.num_hidden_groups)
|
461 |
+
]
|
462 |
+
self.config = config
|
463 |
+
|
464 |
+
def call(
|
465 |
+
self,
|
466 |
+
hidden_states: tf.Tensor,
|
467 |
+
attention_mask: tf.Tensor,
|
468 |
+
head_mask: tf.Tensor,
|
469 |
+
output_attentions: bool,
|
470 |
+
output_hidden_states: bool,
|
471 |
+
return_dict: bool,
|
472 |
+
training: bool = False,
|
473 |
+
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
|
474 |
+
hidden_states = self.embedding_hidden_mapping_in(inputs=hidden_states)
|
475 |
+
all_attentions = () if output_attentions else None
|
476 |
+
all_hidden_states = (hidden_states,) if output_hidden_states else None
|
477 |
+
|
478 |
+
for i in range(self.num_hidden_layers):
|
479 |
+
# Index of the hidden group
|
480 |
+
group_idx = int(i / (self.num_hidden_layers / self.num_hidden_groups))
|
481 |
+
layer_group_output = self.albert_layer_groups[group_idx](
|
482 |
+
hidden_states=hidden_states,
|
483 |
+
attention_mask=attention_mask,
|
484 |
+
head_mask=head_mask[group_idx * self.layers_per_group : (group_idx + 1) * self.layers_per_group],
|
485 |
+
output_attentions=output_attentions,
|
486 |
+
output_hidden_states=output_hidden_states,
|
487 |
+
training=training,
|
488 |
+
)
|
489 |
+
hidden_states = layer_group_output[0]
|
490 |
+
|
491 |
+
if output_attentions:
|
492 |
+
all_attentions = all_attentions + layer_group_output[-1]
|
493 |
+
|
494 |
+
if output_hidden_states:
|
495 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
496 |
+
|
497 |
+
if not return_dict:
|
498 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
499 |
+
|
500 |
+
return TFBaseModelOutput(
|
501 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
502 |
+
)
|
503 |
+
|
504 |
+
def build(self, input_shape=None):
|
505 |
+
if self.built:
|
506 |
+
return
|
507 |
+
self.built = True
|
508 |
+
if getattr(self, "embedding_hidden_mapping_in", None) is not None:
|
509 |
+
with tf.name_scope(self.embedding_hidden_mapping_in.name):
|
510 |
+
self.embedding_hidden_mapping_in.build([None, None, self.config.embedding_size])
|
511 |
+
if getattr(self, "albert_layer_groups", None) is not None:
|
512 |
+
for layer in self.albert_layer_groups:
|
513 |
+
with tf.name_scope(layer.name):
|
514 |
+
layer.build(None)
|
515 |
+
|
516 |
+
|
517 |
+
class TFAlbertPreTrainedModel(TFPreTrainedModel):
|
518 |
+
"""
|
519 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
520 |
+
models.
|
521 |
+
"""
|
522 |
+
|
523 |
+
config_class = AlbertConfig
|
524 |
+
base_model_prefix = "albert"
|
525 |
+
|
526 |
+
|
527 |
+
class TFAlbertMLMHead(keras.layers.Layer):
|
528 |
+
def __init__(self, config: AlbertConfig, input_embeddings: keras.layers.Layer, **kwargs):
|
529 |
+
super().__init__(**kwargs)
|
530 |
+
|
531 |
+
self.config = config
|
532 |
+
self.embedding_size = config.embedding_size
|
533 |
+
self.dense = keras.layers.Dense(
|
534 |
+
config.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
|
535 |
+
)
|
536 |
+
if isinstance(config.hidden_act, str):
|
537 |
+
self.activation = get_tf_activation(config.hidden_act)
|
538 |
+
else:
|
539 |
+
self.activation = config.hidden_act
|
540 |
+
|
541 |
+
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
|
542 |
+
|
543 |
+
# The output weights are the same as the input embeddings, but there is
|
544 |
+
# an output-only bias for each token.
|
545 |
+
self.decoder = input_embeddings
|
546 |
+
|
547 |
+
def build(self, input_shape=None):
|
548 |
+
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
|
549 |
+
self.decoder_bias = self.add_weight(
|
550 |
+
shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="decoder/bias"
|
551 |
+
)
|
552 |
+
|
553 |
+
if self.built:
|
554 |
+
return
|
555 |
+
self.built = True
|
556 |
+
if getattr(self, "dense", None) is not None:
|
557 |
+
with tf.name_scope(self.dense.name):
|
558 |
+
self.dense.build([None, None, self.config.hidden_size])
|
559 |
+
if getattr(self, "LayerNorm", None) is not None:
|
560 |
+
with tf.name_scope(self.LayerNorm.name):
|
561 |
+
self.LayerNorm.build([None, None, self.config.embedding_size])
|
562 |
+
|
563 |
+
def get_output_embeddings(self) -> keras.layers.Layer:
|
564 |
+
return self.decoder
|
565 |
+
|
566 |
+
def set_output_embeddings(self, value: tf.Variable):
|
567 |
+
self.decoder.weight = value
|
568 |
+
self.decoder.vocab_size = shape_list(value)[0]
|
569 |
+
|
570 |
+
def get_bias(self) -> Dict[str, tf.Variable]:
|
571 |
+
return {"bias": self.bias, "decoder_bias": self.decoder_bias}
|
572 |
+
|
573 |
+
def set_bias(self, value: tf.Variable):
|
574 |
+
self.bias = value["bias"]
|
575 |
+
self.decoder_bias = value["decoder_bias"]
|
576 |
+
self.config.vocab_size = shape_list(value["bias"])[0]
|
577 |
+
|
578 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
579 |
+
hidden_states = self.dense(inputs=hidden_states)
|
580 |
+
hidden_states = self.activation(hidden_states)
|
581 |
+
hidden_states = self.LayerNorm(inputs=hidden_states)
|
582 |
+
seq_length = shape_list(tensor=hidden_states)[1]
|
583 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size])
|
584 |
+
hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True)
|
585 |
+
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
|
586 |
+
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.decoder_bias)
|
587 |
+
|
588 |
+
return hidden_states
|
589 |
+
|
590 |
+
|
591 |
+
@keras_serializable
|
592 |
+
class TFAlbertMainLayer(keras.layers.Layer):
|
593 |
+
config_class = AlbertConfig
|
594 |
+
|
595 |
+
def __init__(self, config: AlbertConfig, add_pooling_layer: bool = True, **kwargs):
|
596 |
+
super().__init__(**kwargs)
|
597 |
+
|
598 |
+
self.config = config
|
599 |
+
|
600 |
+
self.embeddings = TFAlbertEmbeddings(config, name="embeddings")
|
601 |
+
self.encoder = TFAlbertTransformer(config, name="encoder")
|
602 |
+
self.pooler = (
|
603 |
+
keras.layers.Dense(
|
604 |
+
units=config.hidden_size,
|
605 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
606 |
+
activation="tanh",
|
607 |
+
name="pooler",
|
608 |
+
)
|
609 |
+
if add_pooling_layer
|
610 |
+
else None
|
611 |
+
)
|
612 |
+
|
613 |
+
def get_input_embeddings(self) -> keras.layers.Layer:
|
614 |
+
return self.embeddings
|
615 |
+
|
616 |
+
def set_input_embeddings(self, value: tf.Variable):
|
617 |
+
self.embeddings.weight = value
|
618 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
619 |
+
|
620 |
+
def _prune_heads(self, heads_to_prune):
|
621 |
+
"""
|
622 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
623 |
+
class PreTrainedModel
|
624 |
+
"""
|
625 |
+
raise NotImplementedError
|
626 |
+
|
627 |
+
@unpack_inputs
|
628 |
+
def call(
|
629 |
+
self,
|
630 |
+
input_ids: TFModelInputType | None = None,
|
631 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
632 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
633 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
634 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
635 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
636 |
+
output_attentions: Optional[bool] = None,
|
637 |
+
output_hidden_states: Optional[bool] = None,
|
638 |
+
return_dict: Optional[bool] = None,
|
639 |
+
training: bool = False,
|
640 |
+
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
|
641 |
+
if input_ids is not None and inputs_embeds is not None:
|
642 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
643 |
+
elif input_ids is not None:
|
644 |
+
input_shape = shape_list(input_ids)
|
645 |
+
elif inputs_embeds is not None:
|
646 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
647 |
+
else:
|
648 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
649 |
+
|
650 |
+
if attention_mask is None:
|
651 |
+
attention_mask = tf.fill(dims=input_shape, value=1)
|
652 |
+
|
653 |
+
if token_type_ids is None:
|
654 |
+
token_type_ids = tf.fill(dims=input_shape, value=0)
|
655 |
+
|
656 |
+
embedding_output = self.embeddings(
|
657 |
+
input_ids=input_ids,
|
658 |
+
position_ids=position_ids,
|
659 |
+
token_type_ids=token_type_ids,
|
660 |
+
inputs_embeds=inputs_embeds,
|
661 |
+
training=training,
|
662 |
+
)
|
663 |
+
|
664 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
665 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
666 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
667 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
668 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
669 |
+
extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
|
670 |
+
|
671 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
672 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
673 |
+
# positions we want to attend and -10000.0 for masked positions.
|
674 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
675 |
+
# effectively the same as removing these entirely.
|
676 |
+
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
|
677 |
+
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
|
678 |
+
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
|
679 |
+
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
|
680 |
+
|
681 |
+
# Prepare head mask if needed
|
682 |
+
# 1.0 in head_mask indicate we keep the head
|
683 |
+
# attention_probs has shape bsz x n_heads x N x N
|
684 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
685 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
686 |
+
if head_mask is not None:
|
687 |
+
raise NotImplementedError
|
688 |
+
else:
|
689 |
+
head_mask = [None] * self.config.num_hidden_layers
|
690 |
+
|
691 |
+
encoder_outputs = self.encoder(
|
692 |
+
hidden_states=embedding_output,
|
693 |
+
attention_mask=extended_attention_mask,
|
694 |
+
head_mask=head_mask,
|
695 |
+
output_attentions=output_attentions,
|
696 |
+
output_hidden_states=output_hidden_states,
|
697 |
+
return_dict=return_dict,
|
698 |
+
training=training,
|
699 |
+
)
|
700 |
+
|
701 |
+
sequence_output = encoder_outputs[0]
|
702 |
+
pooled_output = self.pooler(inputs=sequence_output[:, 0]) if self.pooler is not None else None
|
703 |
+
|
704 |
+
if not return_dict:
|
705 |
+
return (
|
706 |
+
sequence_output,
|
707 |
+
pooled_output,
|
708 |
+
) + encoder_outputs[1:]
|
709 |
+
|
710 |
+
return TFBaseModelOutputWithPooling(
|
711 |
+
last_hidden_state=sequence_output,
|
712 |
+
pooler_output=pooled_output,
|
713 |
+
hidden_states=encoder_outputs.hidden_states,
|
714 |
+
attentions=encoder_outputs.attentions,
|
715 |
+
)
|
716 |
+
|
717 |
+
def build(self, input_shape=None):
|
718 |
+
if self.built:
|
719 |
+
return
|
720 |
+
self.built = True
|
721 |
+
if getattr(self, "embeddings", None) is not None:
|
722 |
+
with tf.name_scope(self.embeddings.name):
|
723 |
+
self.embeddings.build(None)
|
724 |
+
if getattr(self, "encoder", None) is not None:
|
725 |
+
with tf.name_scope(self.encoder.name):
|
726 |
+
self.encoder.build(None)
|
727 |
+
if getattr(self, "pooler", None) is not None:
|
728 |
+
with tf.name_scope(self.pooler.name):
|
729 |
+
self.pooler.build([None, None, self.config.hidden_size])
|
730 |
+
|
731 |
+
|
732 |
+
@dataclass
|
733 |
+
class TFAlbertForPreTrainingOutput(ModelOutput):
|
734 |
+
"""
|
735 |
+
Output type of [`TFAlbertForPreTraining`].
|
736 |
+
|
737 |
+
Args:
|
738 |
+
prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
739 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
740 |
+
sop_logits (`tf.Tensor` of shape `(batch_size, 2)`):
|
741 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
742 |
+
before SoftMax).
|
743 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
744 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
745 |
+
`(batch_size, sequence_length, hidden_size)`.
|
746 |
+
|
747 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
748 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
749 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
750 |
+
sequence_length)`.
|
751 |
+
|
752 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
753 |
+
heads.
|
754 |
+
"""
|
755 |
+
|
756 |
+
loss: tf.Tensor = None
|
757 |
+
prediction_logits: tf.Tensor = None
|
758 |
+
sop_logits: tf.Tensor = None
|
759 |
+
hidden_states: Tuple[tf.Tensor] | None = None
|
760 |
+
attentions: Tuple[tf.Tensor] | None = None
|
761 |
+
|
762 |
+
|
763 |
+
ALBERT_START_DOCSTRING = r"""
|
764 |
+
|
765 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
766 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
767 |
+
etc.)
|
768 |
+
|
769 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
770 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
771 |
+
behavior.
|
772 |
+
|
773 |
+
<Tip>
|
774 |
+
|
775 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
776 |
+
|
777 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
778 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
779 |
+
|
780 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
781 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
782 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
783 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
784 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
785 |
+
positional argument:
|
786 |
+
|
787 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
788 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
789 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
790 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
791 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
792 |
+
|
793 |
+
Note that when creating models and layers with
|
794 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
795 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
796 |
+
|
797 |
+
</Tip>
|
798 |
+
|
799 |
+
Args:
|
800 |
+
config ([`AlbertConfig`]): Model configuration class with all the parameters of the model.
|
801 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
802 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
803 |
+
"""
|
804 |
+
|
805 |
+
ALBERT_INPUTS_DOCSTRING = r"""
|
806 |
+
Args:
|
807 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
|
808 |
+
Indices of input sequence tokens in the vocabulary.
|
809 |
+
|
810 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
811 |
+
[`PreTrainedTokenizer.encode`] for details.
|
812 |
+
|
813 |
+
[What are input IDs?](../glossary#input-ids)
|
814 |
+
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
815 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
816 |
+
|
817 |
+
- 1 for tokens that are **not masked**,
|
818 |
+
- 0 for tokens that are **masked**.
|
819 |
+
|
820 |
+
[What are attention masks?](../glossary#attention-mask)
|
821 |
+
token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
822 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
823 |
+
1]`:
|
824 |
+
|
825 |
+
- 0 corresponds to a *sentence A* token,
|
826 |
+
- 1 corresponds to a *sentence B* token.
|
827 |
+
|
828 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
829 |
+
position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
|
830 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
831 |
+
config.max_position_embeddings - 1]`.
|
832 |
+
|
833 |
+
[What are position IDs?](../glossary#position-ids)
|
834 |
+
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
835 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
836 |
+
|
837 |
+
- 1 indicates the head is **not masked**,
|
838 |
+
- 0 indicates the head is **masked**.
|
839 |
+
|
840 |
+
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
|
841 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
842 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
843 |
+
model's internal embedding lookup matrix.
|
844 |
+
output_attentions (`bool`, *optional*):
|
845 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
846 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
847 |
+
config will be used instead.
|
848 |
+
output_hidden_states (`bool`, *optional*):
|
849 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
850 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
851 |
+
used instead.
|
852 |
+
return_dict (`bool`, *optional*):
|
853 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
854 |
+
eager mode, in graph mode the value will always be set to True.
|
855 |
+
training (`bool`, *optional*, defaults to `False`):
|
856 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
857 |
+
behaviors between training and evaluation).
|
858 |
+
"""
|
859 |
+
|
860 |
+
|
861 |
+
@add_start_docstrings(
|
862 |
+
"The bare Albert Model transformer outputting raw hidden-states without any specific head on top.",
|
863 |
+
ALBERT_START_DOCSTRING,
|
864 |
+
)
|
865 |
+
class TFAlbertModel(TFAlbertPreTrainedModel):
|
866 |
+
def __init__(self, config: AlbertConfig, *inputs, **kwargs):
|
867 |
+
super().__init__(config, *inputs, **kwargs)
|
868 |
+
|
869 |
+
self.albert = TFAlbertMainLayer(config, name="albert")
|
870 |
+
|
871 |
+
@unpack_inputs
|
872 |
+
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
873 |
+
@add_code_sample_docstrings(
|
874 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
875 |
+
output_type=TFBaseModelOutputWithPooling,
|
876 |
+
config_class=_CONFIG_FOR_DOC,
|
877 |
+
)
|
878 |
+
def call(
|
879 |
+
self,
|
880 |
+
input_ids: TFModelInputType | None = None,
|
881 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
882 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
883 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
884 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
885 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
886 |
+
output_attentions: Optional[bool] = None,
|
887 |
+
output_hidden_states: Optional[bool] = None,
|
888 |
+
return_dict: Optional[bool] = None,
|
889 |
+
training: Optional[bool] = False,
|
890 |
+
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
|
891 |
+
outputs = self.albert(
|
892 |
+
input_ids=input_ids,
|
893 |
+
attention_mask=attention_mask,
|
894 |
+
token_type_ids=token_type_ids,
|
895 |
+
position_ids=position_ids,
|
896 |
+
head_mask=head_mask,
|
897 |
+
inputs_embeds=inputs_embeds,
|
898 |
+
output_attentions=output_attentions,
|
899 |
+
output_hidden_states=output_hidden_states,
|
900 |
+
return_dict=return_dict,
|
901 |
+
training=training,
|
902 |
+
)
|
903 |
+
|
904 |
+
return outputs
|
905 |
+
|
906 |
+
def build(self, input_shape=None):
|
907 |
+
if self.built:
|
908 |
+
return
|
909 |
+
self.built = True
|
910 |
+
if getattr(self, "albert", None) is not None:
|
911 |
+
with tf.name_scope(self.albert.name):
|
912 |
+
self.albert.build(None)
|
913 |
+
|
914 |
+
|
915 |
+
@add_start_docstrings(
|
916 |
+
"""
|
917 |
+
Albert Model with two heads on top for pretraining: a `masked language modeling` head and a `sentence order
|
918 |
+
prediction` (classification) head.
|
919 |
+
""",
|
920 |
+
ALBERT_START_DOCSTRING,
|
921 |
+
)
|
922 |
+
class TFAlbertForPreTraining(TFAlbertPreTrainedModel, TFAlbertPreTrainingLoss):
|
923 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
924 |
+
_keys_to_ignore_on_load_unexpected = [r"predictions.decoder.weight"]
|
925 |
+
|
926 |
+
def __init__(self, config: AlbertConfig, *inputs, **kwargs):
|
927 |
+
super().__init__(config, *inputs, **kwargs)
|
928 |
+
|
929 |
+
self.num_labels = config.num_labels
|
930 |
+
|
931 |
+
self.albert = TFAlbertMainLayer(config, name="albert")
|
932 |
+
self.predictions = TFAlbertMLMHead(config, input_embeddings=self.albert.embeddings, name="predictions")
|
933 |
+
self.sop_classifier = TFAlbertSOPHead(config, name="sop_classifier")
|
934 |
+
|
935 |
+
def get_lm_head(self) -> keras.layers.Layer:
|
936 |
+
return self.predictions
|
937 |
+
|
938 |
+
@unpack_inputs
|
939 |
+
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
940 |
+
@replace_return_docstrings(output_type=TFAlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
941 |
+
def call(
|
942 |
+
self,
|
943 |
+
input_ids: TFModelInputType | None = None,
|
944 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
945 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
946 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
947 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
948 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
949 |
+
output_attentions: Optional[bool] = None,
|
950 |
+
output_hidden_states: Optional[bool] = None,
|
951 |
+
return_dict: Optional[bool] = None,
|
952 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
953 |
+
sentence_order_label: np.ndarray | tf.Tensor | None = None,
|
954 |
+
training: Optional[bool] = False,
|
955 |
+
) -> Union[TFAlbertForPreTrainingOutput, Tuple[tf.Tensor]]:
|
956 |
+
r"""
|
957 |
+
Return:
|
958 |
+
|
959 |
+
Example:
|
960 |
+
|
961 |
+
```python
|
962 |
+
>>> import tensorflow as tf
|
963 |
+
>>> from transformers import AutoTokenizer, TFAlbertForPreTraining
|
964 |
+
|
965 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
|
966 |
+
>>> model = TFAlbertForPreTraining.from_pretrained("albert/albert-base-v2")
|
967 |
+
|
968 |
+
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :]
|
969 |
+
>>> # Batch size 1
|
970 |
+
>>> outputs = model(input_ids)
|
971 |
+
|
972 |
+
>>> prediction_logits = outputs.prediction_logits
|
973 |
+
>>> sop_logits = outputs.sop_logits
|
974 |
+
```"""
|
975 |
+
|
976 |
+
outputs = self.albert(
|
977 |
+
input_ids=input_ids,
|
978 |
+
attention_mask=attention_mask,
|
979 |
+
token_type_ids=token_type_ids,
|
980 |
+
position_ids=position_ids,
|
981 |
+
head_mask=head_mask,
|
982 |
+
inputs_embeds=inputs_embeds,
|
983 |
+
output_attentions=output_attentions,
|
984 |
+
output_hidden_states=output_hidden_states,
|
985 |
+
return_dict=return_dict,
|
986 |
+
training=training,
|
987 |
+
)
|
988 |
+
sequence_output, pooled_output = outputs[:2]
|
989 |
+
prediction_scores = self.predictions(hidden_states=sequence_output)
|
990 |
+
sop_scores = self.sop_classifier(pooled_output=pooled_output, training=training)
|
991 |
+
total_loss = None
|
992 |
+
|
993 |
+
if labels is not None and sentence_order_label is not None:
|
994 |
+
d_labels = {"labels": labels}
|
995 |
+
d_labels["sentence_order_label"] = sentence_order_label
|
996 |
+
total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, sop_scores))
|
997 |
+
|
998 |
+
if not return_dict:
|
999 |
+
output = (prediction_scores, sop_scores) + outputs[2:]
|
1000 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1001 |
+
|
1002 |
+
return TFAlbertForPreTrainingOutput(
|
1003 |
+
loss=total_loss,
|
1004 |
+
prediction_logits=prediction_scores,
|
1005 |
+
sop_logits=sop_scores,
|
1006 |
+
hidden_states=outputs.hidden_states,
|
1007 |
+
attentions=outputs.attentions,
|
1008 |
+
)
|
1009 |
+
|
1010 |
+
def build(self, input_shape=None):
|
1011 |
+
if self.built:
|
1012 |
+
return
|
1013 |
+
self.built = True
|
1014 |
+
if getattr(self, "albert", None) is not None:
|
1015 |
+
with tf.name_scope(self.albert.name):
|
1016 |
+
self.albert.build(None)
|
1017 |
+
if getattr(self, "predictions", None) is not None:
|
1018 |
+
with tf.name_scope(self.predictions.name):
|
1019 |
+
self.predictions.build(None)
|
1020 |
+
if getattr(self, "sop_classifier", None) is not None:
|
1021 |
+
with tf.name_scope(self.sop_classifier.name):
|
1022 |
+
self.sop_classifier.build(None)
|
1023 |
+
|
1024 |
+
|
1025 |
+
class TFAlbertSOPHead(keras.layers.Layer):
|
1026 |
+
def __init__(self, config: AlbertConfig, **kwargs):
|
1027 |
+
super().__init__(**kwargs)
|
1028 |
+
|
1029 |
+
self.dropout = keras.layers.Dropout(rate=config.classifier_dropout_prob)
|
1030 |
+
self.classifier = keras.layers.Dense(
|
1031 |
+
units=config.num_labels,
|
1032 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1033 |
+
name="classifier",
|
1034 |
+
)
|
1035 |
+
self.config = config
|
1036 |
+
|
1037 |
+
def call(self, pooled_output: tf.Tensor, training: bool) -> tf.Tensor:
|
1038 |
+
dropout_pooled_output = self.dropout(inputs=pooled_output, training=training)
|
1039 |
+
logits = self.classifier(inputs=dropout_pooled_output)
|
1040 |
+
|
1041 |
+
return logits
|
1042 |
+
|
1043 |
+
def build(self, input_shape=None):
|
1044 |
+
if self.built:
|
1045 |
+
return
|
1046 |
+
self.built = True
|
1047 |
+
if getattr(self, "classifier", None) is not None:
|
1048 |
+
with tf.name_scope(self.classifier.name):
|
1049 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1050 |
+
|
1051 |
+
|
1052 |
+
@add_start_docstrings("""Albert Model with a `language modeling` head on top.""", ALBERT_START_DOCSTRING)
|
1053 |
+
class TFAlbertForMaskedLM(TFAlbertPreTrainedModel, TFMaskedLanguageModelingLoss):
|
1054 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1055 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions.decoder.weight"]
|
1056 |
+
|
1057 |
+
def __init__(self, config: AlbertConfig, *inputs, **kwargs):
|
1058 |
+
super().__init__(config, *inputs, **kwargs)
|
1059 |
+
|
1060 |
+
self.albert = TFAlbertMainLayer(config, add_pooling_layer=False, name="albert")
|
1061 |
+
self.predictions = TFAlbertMLMHead(config, input_embeddings=self.albert.embeddings, name="predictions")
|
1062 |
+
|
1063 |
+
def get_lm_head(self) -> keras.layers.Layer:
|
1064 |
+
return self.predictions
|
1065 |
+
|
1066 |
+
@unpack_inputs
|
1067 |
+
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1068 |
+
@replace_return_docstrings(output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
|
1069 |
+
def call(
|
1070 |
+
self,
|
1071 |
+
input_ids: TFModelInputType | None = None,
|
1072 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1073 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1074 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1075 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1076 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1077 |
+
output_attentions: Optional[bool] = None,
|
1078 |
+
output_hidden_states: Optional[bool] = None,
|
1079 |
+
return_dict: Optional[bool] = None,
|
1080 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1081 |
+
training: Optional[bool] = False,
|
1082 |
+
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
|
1083 |
+
r"""
|
1084 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1085 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1086 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1087 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1088 |
+
|
1089 |
+
Returns:
|
1090 |
+
|
1091 |
+
Example:
|
1092 |
+
|
1093 |
+
```python
|
1094 |
+
>>> import tensorflow as tf
|
1095 |
+
>>> from transformers import AutoTokenizer, TFAlbertForMaskedLM
|
1096 |
+
|
1097 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
|
1098 |
+
>>> model = TFAlbertForMaskedLM.from_pretrained("albert/albert-base-v2")
|
1099 |
+
|
1100 |
+
>>> # add mask_token
|
1101 |
+
>>> inputs = tokenizer(f"The capital of [MASK] is Paris.", return_tensors="tf")
|
1102 |
+
>>> logits = model(**inputs).logits
|
1103 |
+
|
1104 |
+
>>> # retrieve index of [MASK]
|
1105 |
+
>>> mask_token_index = tf.where(inputs.input_ids == tokenizer.mask_token_id)[0][1]
|
1106 |
+
>>> predicted_token_id = tf.math.argmax(logits[0, mask_token_index], axis=-1)
|
1107 |
+
>>> tokenizer.decode(predicted_token_id)
|
1108 |
+
'france'
|
1109 |
+
```
|
1110 |
+
|
1111 |
+
```python
|
1112 |
+
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
|
1113 |
+
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
|
1114 |
+
>>> outputs = model(**inputs, labels=labels)
|
1115 |
+
>>> round(float(outputs.loss), 2)
|
1116 |
+
0.81
|
1117 |
+
```
|
1118 |
+
"""
|
1119 |
+
outputs = self.albert(
|
1120 |
+
input_ids=input_ids,
|
1121 |
+
attention_mask=attention_mask,
|
1122 |
+
token_type_ids=token_type_ids,
|
1123 |
+
position_ids=position_ids,
|
1124 |
+
head_mask=head_mask,
|
1125 |
+
inputs_embeds=inputs_embeds,
|
1126 |
+
output_attentions=output_attentions,
|
1127 |
+
output_hidden_states=output_hidden_states,
|
1128 |
+
return_dict=return_dict,
|
1129 |
+
training=training,
|
1130 |
+
)
|
1131 |
+
sequence_output = outputs[0]
|
1132 |
+
prediction_scores = self.predictions(hidden_states=sequence_output, training=training)
|
1133 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores)
|
1134 |
+
|
1135 |
+
if not return_dict:
|
1136 |
+
output = (prediction_scores,) + outputs[2:]
|
1137 |
+
|
1138 |
+
return ((loss,) + output) if loss is not None else output
|
1139 |
+
|
1140 |
+
return TFMaskedLMOutput(
|
1141 |
+
loss=loss,
|
1142 |
+
logits=prediction_scores,
|
1143 |
+
hidden_states=outputs.hidden_states,
|
1144 |
+
attentions=outputs.attentions,
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
def build(self, input_shape=None):
|
1148 |
+
if self.built:
|
1149 |
+
return
|
1150 |
+
self.built = True
|
1151 |
+
if getattr(self, "albert", None) is not None:
|
1152 |
+
with tf.name_scope(self.albert.name):
|
1153 |
+
self.albert.build(None)
|
1154 |
+
if getattr(self, "predictions", None) is not None:
|
1155 |
+
with tf.name_scope(self.predictions.name):
|
1156 |
+
self.predictions.build(None)
|
1157 |
+
|
1158 |
+
|
1159 |
+
@add_start_docstrings(
|
1160 |
+
"""
|
1161 |
+
Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1162 |
+
output) e.g. for GLUE tasks.
|
1163 |
+
""",
|
1164 |
+
ALBERT_START_DOCSTRING,
|
1165 |
+
)
|
1166 |
+
class TFAlbertForSequenceClassification(TFAlbertPreTrainedModel, TFSequenceClassificationLoss):
|
1167 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1168 |
+
_keys_to_ignore_on_load_unexpected = [r"predictions"]
|
1169 |
+
_keys_to_ignore_on_load_missing = [r"dropout"]
|
1170 |
+
|
1171 |
+
def __init__(self, config: AlbertConfig, *inputs, **kwargs):
|
1172 |
+
super().__init__(config, *inputs, **kwargs)
|
1173 |
+
|
1174 |
+
self.num_labels = config.num_labels
|
1175 |
+
|
1176 |
+
self.albert = TFAlbertMainLayer(config, name="albert")
|
1177 |
+
self.dropout = keras.layers.Dropout(rate=config.classifier_dropout_prob)
|
1178 |
+
self.classifier = keras.layers.Dense(
|
1179 |
+
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
1180 |
+
)
|
1181 |
+
self.config = config
|
1182 |
+
|
1183 |
+
@unpack_inputs
|
1184 |
+
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1185 |
+
@add_code_sample_docstrings(
|
1186 |
+
checkpoint="vumichien/albert-base-v2-imdb",
|
1187 |
+
output_type=TFSequenceClassifierOutput,
|
1188 |
+
config_class=_CONFIG_FOR_DOC,
|
1189 |
+
expected_output="'LABEL_1'",
|
1190 |
+
expected_loss=0.12,
|
1191 |
+
)
|
1192 |
+
def call(
|
1193 |
+
self,
|
1194 |
+
input_ids: TFModelInputType | None = None,
|
1195 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1196 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1197 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1198 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1199 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1200 |
+
output_attentions: Optional[bool] = None,
|
1201 |
+
output_hidden_states: Optional[bool] = None,
|
1202 |
+
return_dict: Optional[bool] = None,
|
1203 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1204 |
+
training: Optional[bool] = False,
|
1205 |
+
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
1206 |
+
r"""
|
1207 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1208 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1209 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1210 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1211 |
+
"""
|
1212 |
+
outputs = self.albert(
|
1213 |
+
input_ids=input_ids,
|
1214 |
+
attention_mask=attention_mask,
|
1215 |
+
token_type_ids=token_type_ids,
|
1216 |
+
position_ids=position_ids,
|
1217 |
+
head_mask=head_mask,
|
1218 |
+
inputs_embeds=inputs_embeds,
|
1219 |
+
output_attentions=output_attentions,
|
1220 |
+
output_hidden_states=output_hidden_states,
|
1221 |
+
return_dict=return_dict,
|
1222 |
+
training=training,
|
1223 |
+
)
|
1224 |
+
pooled_output = outputs[1]
|
1225 |
+
pooled_output = self.dropout(inputs=pooled_output, training=training)
|
1226 |
+
logits = self.classifier(inputs=pooled_output)
|
1227 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
1228 |
+
|
1229 |
+
if not return_dict:
|
1230 |
+
output = (logits,) + outputs[2:]
|
1231 |
+
|
1232 |
+
return ((loss,) + output) if loss is not None else output
|
1233 |
+
|
1234 |
+
return TFSequenceClassifierOutput(
|
1235 |
+
loss=loss,
|
1236 |
+
logits=logits,
|
1237 |
+
hidden_states=outputs.hidden_states,
|
1238 |
+
attentions=outputs.attentions,
|
1239 |
+
)
|
1240 |
+
|
1241 |
+
def build(self, input_shape=None):
|
1242 |
+
if self.built:
|
1243 |
+
return
|
1244 |
+
self.built = True
|
1245 |
+
if getattr(self, "albert", None) is not None:
|
1246 |
+
with tf.name_scope(self.albert.name):
|
1247 |
+
self.albert.build(None)
|
1248 |
+
if getattr(self, "classifier", None) is not None:
|
1249 |
+
with tf.name_scope(self.classifier.name):
|
1250 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1251 |
+
|
1252 |
+
|
1253 |
+
@add_start_docstrings(
|
1254 |
+
"""
|
1255 |
+
Albert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1256 |
+
Named-Entity-Recognition (NER) tasks.
|
1257 |
+
""",
|
1258 |
+
ALBERT_START_DOCSTRING,
|
1259 |
+
)
|
1260 |
+
class TFAlbertForTokenClassification(TFAlbertPreTrainedModel, TFTokenClassificationLoss):
|
1261 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1262 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions"]
|
1263 |
+
_keys_to_ignore_on_load_missing = [r"dropout"]
|
1264 |
+
|
1265 |
+
def __init__(self, config: AlbertConfig, *inputs, **kwargs):
|
1266 |
+
super().__init__(config, *inputs, **kwargs)
|
1267 |
+
|
1268 |
+
self.num_labels = config.num_labels
|
1269 |
+
|
1270 |
+
self.albert = TFAlbertMainLayer(config, add_pooling_layer=False, name="albert")
|
1271 |
+
classifier_dropout_prob = (
|
1272 |
+
config.classifier_dropout_prob
|
1273 |
+
if config.classifier_dropout_prob is not None
|
1274 |
+
else config.hidden_dropout_prob
|
1275 |
+
)
|
1276 |
+
self.dropout = keras.layers.Dropout(rate=classifier_dropout_prob)
|
1277 |
+
self.classifier = keras.layers.Dense(
|
1278 |
+
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
1279 |
+
)
|
1280 |
+
self.config = config
|
1281 |
+
|
1282 |
+
@unpack_inputs
|
1283 |
+
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1284 |
+
@add_code_sample_docstrings(
|
1285 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1286 |
+
output_type=TFTokenClassifierOutput,
|
1287 |
+
config_class=_CONFIG_FOR_DOC,
|
1288 |
+
)
|
1289 |
+
def call(
|
1290 |
+
self,
|
1291 |
+
input_ids: TFModelInputType | None = None,
|
1292 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1293 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1294 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1295 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1296 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1297 |
+
output_attentions: Optional[bool] = None,
|
1298 |
+
output_hidden_states: Optional[bool] = None,
|
1299 |
+
return_dict: Optional[bool] = None,
|
1300 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1301 |
+
training: Optional[bool] = False,
|
1302 |
+
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
|
1303 |
+
r"""
|
1304 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1305 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1306 |
+
"""
|
1307 |
+
outputs = self.albert(
|
1308 |
+
input_ids=input_ids,
|
1309 |
+
attention_mask=attention_mask,
|
1310 |
+
token_type_ids=token_type_ids,
|
1311 |
+
position_ids=position_ids,
|
1312 |
+
head_mask=head_mask,
|
1313 |
+
inputs_embeds=inputs_embeds,
|
1314 |
+
output_attentions=output_attentions,
|
1315 |
+
output_hidden_states=output_hidden_states,
|
1316 |
+
return_dict=return_dict,
|
1317 |
+
training=training,
|
1318 |
+
)
|
1319 |
+
sequence_output = outputs[0]
|
1320 |
+
sequence_output = self.dropout(inputs=sequence_output, training=training)
|
1321 |
+
logits = self.classifier(inputs=sequence_output)
|
1322 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
1323 |
+
|
1324 |
+
if not return_dict:
|
1325 |
+
output = (logits,) + outputs[2:]
|
1326 |
+
|
1327 |
+
return ((loss,) + output) if loss is not None else output
|
1328 |
+
|
1329 |
+
return TFTokenClassifierOutput(
|
1330 |
+
loss=loss,
|
1331 |
+
logits=logits,
|
1332 |
+
hidden_states=outputs.hidden_states,
|
1333 |
+
attentions=outputs.attentions,
|
1334 |
+
)
|
1335 |
+
|
1336 |
+
def build(self, input_shape=None):
|
1337 |
+
if self.built:
|
1338 |
+
return
|
1339 |
+
self.built = True
|
1340 |
+
if getattr(self, "albert", None) is not None:
|
1341 |
+
with tf.name_scope(self.albert.name):
|
1342 |
+
self.albert.build(None)
|
1343 |
+
if getattr(self, "classifier", None) is not None:
|
1344 |
+
with tf.name_scope(self.classifier.name):
|
1345 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1346 |
+
|
1347 |
+
|
1348 |
+
@add_start_docstrings(
|
1349 |
+
"""
|
1350 |
+
Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1351 |
+
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1352 |
+
""",
|
1353 |
+
ALBERT_START_DOCSTRING,
|
1354 |
+
)
|
1355 |
+
class TFAlbertForQuestionAnswering(TFAlbertPreTrainedModel, TFQuestionAnsweringLoss):
|
1356 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1357 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions"]
|
1358 |
+
|
1359 |
+
def __init__(self, config: AlbertConfig, *inputs, **kwargs):
|
1360 |
+
super().__init__(config, *inputs, **kwargs)
|
1361 |
+
|
1362 |
+
self.num_labels = config.num_labels
|
1363 |
+
|
1364 |
+
self.albert = TFAlbertMainLayer(config, add_pooling_layer=False, name="albert")
|
1365 |
+
self.qa_outputs = keras.layers.Dense(
|
1366 |
+
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
|
1367 |
+
)
|
1368 |
+
self.config = config
|
1369 |
+
|
1370 |
+
@unpack_inputs
|
1371 |
+
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1372 |
+
@add_code_sample_docstrings(
|
1373 |
+
checkpoint="vumichien/albert-base-v2-squad2",
|
1374 |
+
output_type=TFQuestionAnsweringModelOutput,
|
1375 |
+
config_class=_CONFIG_FOR_DOC,
|
1376 |
+
qa_target_start_index=12,
|
1377 |
+
qa_target_end_index=13,
|
1378 |
+
expected_output="'a nice puppet'",
|
1379 |
+
expected_loss=7.36,
|
1380 |
+
)
|
1381 |
+
def call(
|
1382 |
+
self,
|
1383 |
+
input_ids: TFModelInputType | None = None,
|
1384 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1385 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1386 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1387 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1388 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1389 |
+
output_attentions: Optional[bool] = None,
|
1390 |
+
output_hidden_states: Optional[bool] = None,
|
1391 |
+
return_dict: Optional[bool] = None,
|
1392 |
+
start_positions: np.ndarray | tf.Tensor | None = None,
|
1393 |
+
end_positions: np.ndarray | tf.Tensor | None = None,
|
1394 |
+
training: Optional[bool] = False,
|
1395 |
+
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
|
1396 |
+
r"""
|
1397 |
+
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1398 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1399 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1400 |
+
are not taken into account for computing the loss.
|
1401 |
+
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1402 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1403 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1404 |
+
are not taken into account for computing the loss.
|
1405 |
+
"""
|
1406 |
+
outputs = self.albert(
|
1407 |
+
input_ids=input_ids,
|
1408 |
+
attention_mask=attention_mask,
|
1409 |
+
token_type_ids=token_type_ids,
|
1410 |
+
position_ids=position_ids,
|
1411 |
+
head_mask=head_mask,
|
1412 |
+
inputs_embeds=inputs_embeds,
|
1413 |
+
output_attentions=output_attentions,
|
1414 |
+
output_hidden_states=output_hidden_states,
|
1415 |
+
return_dict=return_dict,
|
1416 |
+
training=training,
|
1417 |
+
)
|
1418 |
+
sequence_output = outputs[0]
|
1419 |
+
logits = self.qa_outputs(inputs=sequence_output)
|
1420 |
+
start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1)
|
1421 |
+
start_logits = tf.squeeze(input=start_logits, axis=-1)
|
1422 |
+
end_logits = tf.squeeze(input=end_logits, axis=-1)
|
1423 |
+
loss = None
|
1424 |
+
|
1425 |
+
if start_positions is not None and end_positions is not None:
|
1426 |
+
labels = {"start_position": start_positions}
|
1427 |
+
labels["end_position"] = end_positions
|
1428 |
+
loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits))
|
1429 |
+
|
1430 |
+
if not return_dict:
|
1431 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1432 |
+
|
1433 |
+
return ((loss,) + output) if loss is not None else output
|
1434 |
+
|
1435 |
+
return TFQuestionAnsweringModelOutput(
|
1436 |
+
loss=loss,
|
1437 |
+
start_logits=start_logits,
|
1438 |
+
end_logits=end_logits,
|
1439 |
+
hidden_states=outputs.hidden_states,
|
1440 |
+
attentions=outputs.attentions,
|
1441 |
+
)
|
1442 |
+
|
1443 |
+
def build(self, input_shape=None):
|
1444 |
+
if self.built:
|
1445 |
+
return
|
1446 |
+
self.built = True
|
1447 |
+
if getattr(self, "albert", None) is not None:
|
1448 |
+
with tf.name_scope(self.albert.name):
|
1449 |
+
self.albert.build(None)
|
1450 |
+
if getattr(self, "qa_outputs", None) is not None:
|
1451 |
+
with tf.name_scope(self.qa_outputs.name):
|
1452 |
+
self.qa_outputs.build([None, None, self.config.hidden_size])
|
1453 |
+
|
1454 |
+
|
1455 |
+
@add_start_docstrings(
|
1456 |
+
"""
|
1457 |
+
Albert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1458 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1459 |
+
""",
|
1460 |
+
ALBERT_START_DOCSTRING,
|
1461 |
+
)
|
1462 |
+
class TFAlbertForMultipleChoice(TFAlbertPreTrainedModel, TFMultipleChoiceLoss):
|
1463 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
1464 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions"]
|
1465 |
+
_keys_to_ignore_on_load_missing = [r"dropout"]
|
1466 |
+
|
1467 |
+
def __init__(self, config: AlbertConfig, *inputs, **kwargs):
|
1468 |
+
super().__init__(config, *inputs, **kwargs)
|
1469 |
+
|
1470 |
+
self.albert = TFAlbertMainLayer(config, name="albert")
|
1471 |
+
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
|
1472 |
+
self.classifier = keras.layers.Dense(
|
1473 |
+
units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
|
1474 |
+
)
|
1475 |
+
self.config = config
|
1476 |
+
|
1477 |
+
@unpack_inputs
|
1478 |
+
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1479 |
+
@add_code_sample_docstrings(
|
1480 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1481 |
+
output_type=TFMultipleChoiceModelOutput,
|
1482 |
+
config_class=_CONFIG_FOR_DOC,
|
1483 |
+
)
|
1484 |
+
def call(
|
1485 |
+
self,
|
1486 |
+
input_ids: TFModelInputType | None = None,
|
1487 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1488 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1489 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1490 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1491 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1492 |
+
output_attentions: Optional[bool] = None,
|
1493 |
+
output_hidden_states: Optional[bool] = None,
|
1494 |
+
return_dict: Optional[bool] = None,
|
1495 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1496 |
+
training: Optional[bool] = False,
|
1497 |
+
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
|
1498 |
+
r"""
|
1499 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1500 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
1501 |
+
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
|
1502 |
+
"""
|
1503 |
+
|
1504 |
+
if input_ids is not None:
|
1505 |
+
num_choices = shape_list(input_ids)[1]
|
1506 |
+
seq_length = shape_list(input_ids)[2]
|
1507 |
+
else:
|
1508 |
+
num_choices = shape_list(inputs_embeds)[1]
|
1509 |
+
seq_length = shape_list(inputs_embeds)[2]
|
1510 |
+
|
1511 |
+
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
|
1512 |
+
flat_attention_mask = (
|
1513 |
+
tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None
|
1514 |
+
)
|
1515 |
+
flat_token_type_ids = (
|
1516 |
+
tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None
|
1517 |
+
)
|
1518 |
+
flat_position_ids = (
|
1519 |
+
tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None
|
1520 |
+
)
|
1521 |
+
flat_inputs_embeds = (
|
1522 |
+
tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3]))
|
1523 |
+
if inputs_embeds is not None
|
1524 |
+
else None
|
1525 |
+
)
|
1526 |
+
outputs = self.albert(
|
1527 |
+
input_ids=flat_input_ids,
|
1528 |
+
attention_mask=flat_attention_mask,
|
1529 |
+
token_type_ids=flat_token_type_ids,
|
1530 |
+
position_ids=flat_position_ids,
|
1531 |
+
head_mask=head_mask,
|
1532 |
+
inputs_embeds=flat_inputs_embeds,
|
1533 |
+
output_attentions=output_attentions,
|
1534 |
+
output_hidden_states=output_hidden_states,
|
1535 |
+
return_dict=return_dict,
|
1536 |
+
training=training,
|
1537 |
+
)
|
1538 |
+
pooled_output = outputs[1]
|
1539 |
+
pooled_output = self.dropout(inputs=pooled_output, training=training)
|
1540 |
+
logits = self.classifier(inputs=pooled_output)
|
1541 |
+
reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices))
|
1542 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits)
|
1543 |
+
|
1544 |
+
if not return_dict:
|
1545 |
+
output = (reshaped_logits,) + outputs[2:]
|
1546 |
+
return ((loss,) + output) if loss is not None else output
|
1547 |
+
|
1548 |
+
return TFMultipleChoiceModelOutput(
|
1549 |
+
loss=loss,
|
1550 |
+
logits=reshaped_logits,
|
1551 |
+
hidden_states=outputs.hidden_states,
|
1552 |
+
attentions=outputs.attentions,
|
1553 |
+
)
|
1554 |
+
|
1555 |
+
def build(self, input_shape=None):
|
1556 |
+
if self.built:
|
1557 |
+
return
|
1558 |
+
self.built = True
|
1559 |
+
if getattr(self, "albert", None) is not None:
|
1560 |
+
with tf.name_scope(self.albert.name):
|
1561 |
+
self.albert.build(None)
|
1562 |
+
if getattr(self, "classifier", None) is not None:
|
1563 |
+
with tf.name_scope(self.classifier.name):
|
1564 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization classes for ALBERT model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
import unicodedata
|
20 |
+
from shutil import copyfile
|
21 |
+
from typing import Any, Dict, List, Optional, Tuple
|
22 |
+
|
23 |
+
import sentencepiece as spm
|
24 |
+
|
25 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
26 |
+
from ...utils import logging
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
31 |
+
|
32 |
+
|
33 |
+
SPIECE_UNDERLINE = "▁"
|
34 |
+
|
35 |
+
|
36 |
+
class AlbertTokenizer(PreTrainedTokenizer):
|
37 |
+
"""
|
38 |
+
Construct an ALBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
39 |
+
|
40 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
41 |
+
this superclass for more information regarding those methods.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
vocab_file (`str`):
|
45 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
46 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
47 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
48 |
+
Whether or not to lowercase the input when tokenizing.
|
49 |
+
remove_space (`bool`, *optional*, defaults to `True`):
|
50 |
+
Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
|
51 |
+
keep_accents (`bool`, *optional*, defaults to `False`):
|
52 |
+
Whether or not to keep accents when tokenizing.
|
53 |
+
bos_token (`str`, *optional*, defaults to `"[CLS]"`):
|
54 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
55 |
+
|
56 |
+
<Tip>
|
57 |
+
|
58 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
59 |
+
sequence. The token used is the `cls_token`.
|
60 |
+
|
61 |
+
</Tip>
|
62 |
+
|
63 |
+
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
|
64 |
+
The end of sequence token.
|
65 |
+
|
66 |
+
<Tip>
|
67 |
+
|
68 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
69 |
+
The token used is the `sep_token`.
|
70 |
+
|
71 |
+
</Tip>
|
72 |
+
|
73 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
74 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
75 |
+
token instead.
|
76 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
77 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
78 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
79 |
+
token of a sequence built with special tokens.
|
80 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
81 |
+
The token used for padding, for example when batching sequences of different lengths.
|
82 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
83 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
84 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
85 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
86 |
+
The token used for masking values. This is the token used when training this model with masked language
|
87 |
+
modeling. This is the token which the model will try to predict.
|
88 |
+
sp_model_kwargs (`dict`, *optional*):
|
89 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
90 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
91 |
+
to set:
|
92 |
+
|
93 |
+
- `enable_sampling`: Enable subword regularization.
|
94 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
95 |
+
|
96 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
97 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
98 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
99 |
+
using forward-filtering-and-backward-sampling algorithm.
|
100 |
+
|
101 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
102 |
+
BPE-dropout.
|
103 |
+
|
104 |
+
Attributes:
|
105 |
+
sp_model (`SentencePieceProcessor`):
|
106 |
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
107 |
+
"""
|
108 |
+
|
109 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vocab_file,
|
114 |
+
do_lower_case=True,
|
115 |
+
remove_space=True,
|
116 |
+
keep_accents=False,
|
117 |
+
bos_token="[CLS]",
|
118 |
+
eos_token="[SEP]",
|
119 |
+
unk_token="<unk>",
|
120 |
+
sep_token="[SEP]",
|
121 |
+
pad_token="<pad>",
|
122 |
+
cls_token="[CLS]",
|
123 |
+
mask_token="[MASK]",
|
124 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
125 |
+
**kwargs,
|
126 |
+
) -> None:
|
127 |
+
# Mask token behave like a normal word, i.e. include the space before it and
|
128 |
+
# is included in the raw text, there should be a match in a non-normalized sentence.
|
129 |
+
mask_token = (
|
130 |
+
AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
|
131 |
+
if isinstance(mask_token, str)
|
132 |
+
else mask_token
|
133 |
+
)
|
134 |
+
|
135 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
136 |
+
|
137 |
+
self.do_lower_case = do_lower_case
|
138 |
+
self.remove_space = remove_space
|
139 |
+
self.keep_accents = keep_accents
|
140 |
+
self.vocab_file = vocab_file
|
141 |
+
|
142 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
143 |
+
self.sp_model.Load(vocab_file)
|
144 |
+
|
145 |
+
super().__init__(
|
146 |
+
do_lower_case=do_lower_case,
|
147 |
+
remove_space=remove_space,
|
148 |
+
keep_accents=keep_accents,
|
149 |
+
bos_token=bos_token,
|
150 |
+
eos_token=eos_token,
|
151 |
+
unk_token=unk_token,
|
152 |
+
sep_token=sep_token,
|
153 |
+
pad_token=pad_token,
|
154 |
+
cls_token=cls_token,
|
155 |
+
mask_token=mask_token,
|
156 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
157 |
+
**kwargs,
|
158 |
+
)
|
159 |
+
|
160 |
+
@property
|
161 |
+
def vocab_size(self) -> int:
|
162 |
+
return len(self.sp_model)
|
163 |
+
|
164 |
+
def get_vocab(self) -> Dict[str, int]:
|
165 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
166 |
+
vocab.update(self.added_tokens_encoder)
|
167 |
+
return vocab
|
168 |
+
|
169 |
+
def __getstate__(self):
|
170 |
+
state = self.__dict__.copy()
|
171 |
+
state["sp_model"] = None
|
172 |
+
return state
|
173 |
+
|
174 |
+
def __setstate__(self, d):
|
175 |
+
self.__dict__ = d
|
176 |
+
|
177 |
+
# for backward compatibility
|
178 |
+
if not hasattr(self, "sp_model_kwargs"):
|
179 |
+
self.sp_model_kwargs = {}
|
180 |
+
|
181 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
182 |
+
self.sp_model.Load(self.vocab_file)
|
183 |
+
|
184 |
+
def preprocess_text(self, inputs):
|
185 |
+
if self.remove_space:
|
186 |
+
outputs = " ".join(inputs.strip().split())
|
187 |
+
else:
|
188 |
+
outputs = inputs
|
189 |
+
outputs = outputs.replace("``", '"').replace("''", '"')
|
190 |
+
|
191 |
+
if not self.keep_accents:
|
192 |
+
outputs = unicodedata.normalize("NFKD", outputs)
|
193 |
+
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
|
194 |
+
if self.do_lower_case:
|
195 |
+
outputs = outputs.lower()
|
196 |
+
|
197 |
+
return outputs
|
198 |
+
|
199 |
+
def _tokenize(self, text: str) -> List[str]:
|
200 |
+
"""Tokenize a string."""
|
201 |
+
text = self.preprocess_text(text)
|
202 |
+
pieces = self.sp_model.encode(text, out_type=str)
|
203 |
+
new_pieces = []
|
204 |
+
for piece in pieces:
|
205 |
+
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
|
206 |
+
# Logic to handle special cases see https://github.com/google-research/bert/blob/master/README.md#tokenization
|
207 |
+
# `9,9` -> ['▁9', ',', '9'] instead of [`_9,`, '9']
|
208 |
+
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
|
209 |
+
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
|
210 |
+
if len(cur_pieces[0]) == 1:
|
211 |
+
cur_pieces = cur_pieces[1:]
|
212 |
+
else:
|
213 |
+
cur_pieces[0] = cur_pieces[0][1:]
|
214 |
+
cur_pieces.append(piece[-1])
|
215 |
+
new_pieces.extend(cur_pieces)
|
216 |
+
else:
|
217 |
+
new_pieces.append(piece)
|
218 |
+
|
219 |
+
return new_pieces
|
220 |
+
|
221 |
+
def _convert_token_to_id(self, token):
|
222 |
+
"""Converts a token (str) in an id using the vocab."""
|
223 |
+
return self.sp_model.PieceToId(token)
|
224 |
+
|
225 |
+
def _convert_id_to_token(self, index):
|
226 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
227 |
+
return self.sp_model.IdToPiece(index)
|
228 |
+
|
229 |
+
def convert_tokens_to_string(self, tokens):
|
230 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
231 |
+
current_sub_tokens = []
|
232 |
+
out_string = ""
|
233 |
+
prev_is_special = False
|
234 |
+
for token in tokens:
|
235 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
236 |
+
if token in self.all_special_tokens:
|
237 |
+
if not prev_is_special:
|
238 |
+
out_string += " "
|
239 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
240 |
+
prev_is_special = True
|
241 |
+
current_sub_tokens = []
|
242 |
+
else:
|
243 |
+
current_sub_tokens.append(token)
|
244 |
+
prev_is_special = False
|
245 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
246 |
+
return out_string.strip()
|
247 |
+
|
248 |
+
def build_inputs_with_special_tokens(
|
249 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
250 |
+
) -> List[int]:
|
251 |
+
"""
|
252 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
253 |
+
adding special tokens. An ALBERT sequence has the following format:
|
254 |
+
|
255 |
+
- single sequence: `[CLS] X [SEP]`
|
256 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
257 |
+
|
258 |
+
Args:
|
259 |
+
token_ids_0 (`List[int]`):
|
260 |
+
List of IDs to which the special tokens will be added.
|
261 |
+
token_ids_1 (`List[int]`, *optional*):
|
262 |
+
Optional second list of IDs for sequence pairs.
|
263 |
+
|
264 |
+
Returns:
|
265 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
266 |
+
"""
|
267 |
+
sep = [self.sep_token_id]
|
268 |
+
cls = [self.cls_token_id]
|
269 |
+
if token_ids_1 is None:
|
270 |
+
return cls + token_ids_0 + sep
|
271 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
272 |
+
|
273 |
+
def get_special_tokens_mask(
|
274 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
275 |
+
) -> List[int]:
|
276 |
+
"""
|
277 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
278 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
token_ids_0 (`List[int]`):
|
282 |
+
List of IDs.
|
283 |
+
token_ids_1 (`List[int]`, *optional*):
|
284 |
+
Optional second list of IDs for sequence pairs.
|
285 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
286 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
287 |
+
|
288 |
+
Returns:
|
289 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
290 |
+
"""
|
291 |
+
|
292 |
+
if already_has_special_tokens:
|
293 |
+
return super().get_special_tokens_mask(
|
294 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
295 |
+
)
|
296 |
+
|
297 |
+
if token_ids_1 is not None:
|
298 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
299 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
300 |
+
|
301 |
+
def create_token_type_ids_from_sequences(
|
302 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
303 |
+
) -> List[int]:
|
304 |
+
"""
|
305 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
306 |
+
sequence pair mask has the following format:
|
307 |
+
|
308 |
+
```
|
309 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
310 |
+
| first sequence | second sequence |
|
311 |
+
```
|
312 |
+
|
313 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
314 |
+
|
315 |
+
Args:
|
316 |
+
token_ids_0 (`List[int]`):
|
317 |
+
List of IDs.
|
318 |
+
token_ids_1 (`List[int]`, *optional*):
|
319 |
+
Optional second list of IDs for sequence pairs.
|
320 |
+
|
321 |
+
Returns:
|
322 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
323 |
+
"""
|
324 |
+
sep = [self.sep_token_id]
|
325 |
+
cls = [self.cls_token_id]
|
326 |
+
|
327 |
+
if token_ids_1 is None:
|
328 |
+
return len(cls + token_ids_0 + sep) * [0]
|
329 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
330 |
+
|
331 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
332 |
+
if not os.path.isdir(save_directory):
|
333 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
334 |
+
return
|
335 |
+
out_vocab_file = os.path.join(
|
336 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
337 |
+
)
|
338 |
+
|
339 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
340 |
+
copyfile(self.vocab_file, out_vocab_file)
|
341 |
+
elif not os.path.isfile(self.vocab_file):
|
342 |
+
with open(out_vocab_file, "wb") as fi:
|
343 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
344 |
+
fi.write(content_spiece_model)
|
345 |
+
|
346 |
+
return (out_vocab_file,)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/tokenization_albert_fast.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization classes for ALBERT model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import List, Optional, Tuple
|
21 |
+
|
22 |
+
from ...tokenization_utils import AddedToken
|
23 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
24 |
+
from ...utils import is_sentencepiece_available, logging
|
25 |
+
|
26 |
+
|
27 |
+
if is_sentencepiece_available():
|
28 |
+
from .tokenization_albert import AlbertTokenizer
|
29 |
+
else:
|
30 |
+
AlbertTokenizer = None
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
|
34 |
+
|
35 |
+
|
36 |
+
SPIECE_UNDERLINE = "▁"
|
37 |
+
|
38 |
+
|
39 |
+
class AlbertTokenizerFast(PreTrainedTokenizerFast):
|
40 |
+
"""
|
41 |
+
Construct a "fast" ALBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on
|
42 |
+
[Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This
|
43 |
+
tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to
|
44 |
+
this superclass for more information regarding those methods
|
45 |
+
|
46 |
+
Args:
|
47 |
+
vocab_file (`str`):
|
48 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
49 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
50 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
51 |
+
Whether or not to lowercase the input when tokenizing.
|
52 |
+
remove_space (`bool`, *optional*, defaults to `True`):
|
53 |
+
Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
|
54 |
+
keep_accents (`bool`, *optional*, defaults to `False`):
|
55 |
+
Whether or not to keep accents when tokenizing.
|
56 |
+
bos_token (`str`, *optional*, defaults to `"[CLS]"`):
|
57 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
58 |
+
|
59 |
+
<Tip>
|
60 |
+
|
61 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
62 |
+
sequence. The token used is the `cls_token`.
|
63 |
+
|
64 |
+
</Tip>
|
65 |
+
|
66 |
+
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
|
67 |
+
The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token
|
68 |
+
that is used for the end of sequence. The token used is the `sep_token`.
|
69 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
70 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
71 |
+
token instead.
|
72 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
73 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
74 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
75 |
+
token of a sequence built with special tokens.
|
76 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
77 |
+
The token used for padding, for example when batching sequences of different lengths.
|
78 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
79 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
80 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
81 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
82 |
+
The token used for masking values. This is the token used when training this model with masked language
|
83 |
+
modeling. This is the token which the model will try to predict.
|
84 |
+
"""
|
85 |
+
|
86 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
87 |
+
slow_tokenizer_class = AlbertTokenizer
|
88 |
+
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
vocab_file=None,
|
92 |
+
tokenizer_file=None,
|
93 |
+
do_lower_case=True,
|
94 |
+
remove_space=True,
|
95 |
+
keep_accents=False,
|
96 |
+
bos_token="[CLS]",
|
97 |
+
eos_token="[SEP]",
|
98 |
+
unk_token="<unk>",
|
99 |
+
sep_token="[SEP]",
|
100 |
+
pad_token="<pad>",
|
101 |
+
cls_token="[CLS]",
|
102 |
+
mask_token="[MASK]",
|
103 |
+
**kwargs,
|
104 |
+
):
|
105 |
+
# Mask token behave like a normal word, i.e. include the space before it and
|
106 |
+
# is included in the raw text, there should be a match in a non-normalized sentence.
|
107 |
+
mask_token = (
|
108 |
+
AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
|
109 |
+
if isinstance(mask_token, str)
|
110 |
+
else mask_token
|
111 |
+
)
|
112 |
+
|
113 |
+
super().__init__(
|
114 |
+
vocab_file,
|
115 |
+
tokenizer_file=tokenizer_file,
|
116 |
+
do_lower_case=do_lower_case,
|
117 |
+
remove_space=remove_space,
|
118 |
+
keep_accents=keep_accents,
|
119 |
+
bos_token=bos_token,
|
120 |
+
eos_token=eos_token,
|
121 |
+
unk_token=unk_token,
|
122 |
+
sep_token=sep_token,
|
123 |
+
pad_token=pad_token,
|
124 |
+
cls_token=cls_token,
|
125 |
+
mask_token=mask_token,
|
126 |
+
**kwargs,
|
127 |
+
)
|
128 |
+
|
129 |
+
self.do_lower_case = do_lower_case
|
130 |
+
self.remove_space = remove_space
|
131 |
+
self.keep_accents = keep_accents
|
132 |
+
self.vocab_file = vocab_file
|
133 |
+
|
134 |
+
@property
|
135 |
+
def can_save_slow_tokenizer(self) -> bool:
|
136 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
137 |
+
|
138 |
+
def build_inputs_with_special_tokens(
|
139 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
140 |
+
) -> List[int]:
|
141 |
+
"""
|
142 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
143 |
+
adding special tokens. An ALBERT sequence has the following format:
|
144 |
+
|
145 |
+
- single sequence: `[CLS] X [SEP]`
|
146 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
147 |
+
|
148 |
+
Args:
|
149 |
+
token_ids_0 (`List[int]`):
|
150 |
+
List of IDs to which the special tokens will be added
|
151 |
+
token_ids_1 (`List[int]`, *optional*):
|
152 |
+
Optional second list of IDs for sequence pairs.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
156 |
+
"""
|
157 |
+
sep = [self.sep_token_id]
|
158 |
+
cls = [self.cls_token_id]
|
159 |
+
if token_ids_1 is None:
|
160 |
+
return cls + token_ids_0 + sep
|
161 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
162 |
+
|
163 |
+
def create_token_type_ids_from_sequences(
|
164 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
165 |
+
) -> List[int]:
|
166 |
+
"""
|
167 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
168 |
+
sequence pair mask has the following format:
|
169 |
+
|
170 |
+
```
|
171 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
172 |
+
| first sequence | second sequence |
|
173 |
+
```
|
174 |
+
|
175 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
176 |
+
|
177 |
+
Args:
|
178 |
+
token_ids_0 (`List[int]`):
|
179 |
+
List of ids.
|
180 |
+
token_ids_1 (`List[int]`, *optional*):
|
181 |
+
Optional second list of IDs for sequence pairs.
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
185 |
+
"""
|
186 |
+
sep = [self.sep_token_id]
|
187 |
+
cls = [self.cls_token_id]
|
188 |
+
|
189 |
+
if token_ids_1 is None:
|
190 |
+
return len(cls + token_ids_0 + sep) * [0]
|
191 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
192 |
+
|
193 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
194 |
+
if not self.can_save_slow_tokenizer:
|
195 |
+
raise ValueError(
|
196 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
197 |
+
"tokenizer."
|
198 |
+
)
|
199 |
+
|
200 |
+
if not os.path.isdir(save_directory):
|
201 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
202 |
+
return
|
203 |
+
out_vocab_file = os.path.join(
|
204 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
205 |
+
)
|
206 |
+
|
207 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
208 |
+
copyfile(self.vocab_file, out_vocab_file)
|
209 |
+
|
210 |
+
return (out_vocab_file,)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__init__.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_blip_2": [
|
21 |
+
"BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"Blip2Config",
|
23 |
+
"Blip2QFormerConfig",
|
24 |
+
"Blip2VisionConfig",
|
25 |
+
],
|
26 |
+
"processing_blip_2": ["Blip2Processor"],
|
27 |
+
}
|
28 |
+
|
29 |
+
try:
|
30 |
+
if not is_torch_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["modeling_blip_2"] = [
|
36 |
+
"BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
37 |
+
"Blip2Model",
|
38 |
+
"Blip2QFormerModel",
|
39 |
+
"Blip2PreTrainedModel",
|
40 |
+
"Blip2ForConditionalGeneration",
|
41 |
+
"Blip2VisionModel",
|
42 |
+
]
|
43 |
+
|
44 |
+
if TYPE_CHECKING:
|
45 |
+
from .configuration_blip_2 import (
|
46 |
+
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
47 |
+
Blip2Config,
|
48 |
+
Blip2QFormerConfig,
|
49 |
+
Blip2VisionConfig,
|
50 |
+
)
|
51 |
+
from .processing_blip_2 import Blip2Processor
|
52 |
+
|
53 |
+
try:
|
54 |
+
if not is_torch_available():
|
55 |
+
raise OptionalDependencyNotAvailable()
|
56 |
+
except OptionalDependencyNotAvailable:
|
57 |
+
pass
|
58 |
+
else:
|
59 |
+
from .modeling_blip_2 import (
|
60 |
+
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
61 |
+
Blip2ForConditionalGeneration,
|
62 |
+
Blip2Model,
|
63 |
+
Blip2PreTrainedModel,
|
64 |
+
Blip2QFormerModel,
|
65 |
+
Blip2VisionModel,
|
66 |
+
)
|
67 |
+
|
68 |
+
else:
|
69 |
+
import sys
|
70 |
+
|
71 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.13 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/configuration_blip_2.cpython-310.pyc
ADDED
Binary file (14.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/convert_blip_2_original_to_pytorch.cpython-310.pyc
ADDED
Binary file (7.97 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/modeling_blip_2.cpython-310.pyc
ADDED
Binary file (55 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/__pycache__/processing_blip_2.cpython-310.pyc
ADDED
Binary file (4.35 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/configuration_blip_2.py
ADDED
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" BLIP-2 model configuration"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from typing import Union
|
19 |
+
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
22 |
+
from ...utils import logging
|
23 |
+
from ..auto import CONFIG_MAPPING
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
from ..deprecated._archive_maps import BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
30 |
+
|
31 |
+
|
32 |
+
class Blip2VisionConfig(PretrainedConfig):
|
33 |
+
r"""
|
34 |
+
This is the configuration class to store the configuration of a [`Blip2VisionModel`]. It is used to instantiate a
|
35 |
+
BLIP-2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
36 |
+
configuration defaults will yield a similar configuration to that of the BLIP-2
|
37 |
+
[Salesforce/blip2-opt-2.7b](https://huggingface.co/Salesforce/blip2-opt-2.7b) architecture.
|
38 |
+
|
39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
40 |
+
documentation from [`PretrainedConfig`] for more information.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
hidden_size (`int`, *optional*, defaults to 1408):
|
44 |
+
Dimensionality of the encoder layers and the pooler layer.
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 6144):
|
46 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 39):
|
48 |
+
Number of hidden layers in the Transformer encoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 16):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
image_size (`int`, *optional*, defaults to 224):
|
52 |
+
The size (resolution) of each image.
|
53 |
+
patch_size (`int`, *optional*, defaults to 14):
|
54 |
+
The size (resolution) of each patch.
|
55 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
56 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
57 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults
|
58 |
+
to 1e-5): The epsilon used by the layer normalization layers.
|
59 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
60 |
+
The dropout ratio for the attention probabilities.
|
61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
63 |
+
qkv_bias (`bool`, *optional*, defaults to `True`):
|
64 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
65 |
+
|
66 |
+
Example:
|
67 |
+
|
68 |
+
```python
|
69 |
+
>>> from transformers import Blip2VisionConfig, Blip2VisionModel
|
70 |
+
|
71 |
+
>>> # Initializing a Blip2VisionConfig with Salesforce/blip2-opt-2.7b style configuration
|
72 |
+
>>> configuration = Blip2VisionConfig()
|
73 |
+
|
74 |
+
>>> # Initializing a Blip2VisionModel (with random weights) from the Salesforce/blip2-opt-2.7b style configuration
|
75 |
+
>>> model = Blip2VisionModel(configuration)
|
76 |
+
|
77 |
+
>>> # Accessing the model configuration
|
78 |
+
>>> configuration = model.config
|
79 |
+
```"""
|
80 |
+
|
81 |
+
model_type = "blip_2_vision_model"
|
82 |
+
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
hidden_size=1408,
|
86 |
+
intermediate_size=6144,
|
87 |
+
num_hidden_layers=39,
|
88 |
+
num_attention_heads=16,
|
89 |
+
image_size=224,
|
90 |
+
patch_size=14,
|
91 |
+
hidden_act="gelu",
|
92 |
+
layer_norm_eps=1e-6,
|
93 |
+
attention_dropout=0.0,
|
94 |
+
initializer_range=1e-10,
|
95 |
+
qkv_bias=True,
|
96 |
+
**kwargs,
|
97 |
+
):
|
98 |
+
super().__init__(**kwargs)
|
99 |
+
|
100 |
+
self.hidden_size = hidden_size
|
101 |
+
self.intermediate_size = intermediate_size
|
102 |
+
self.num_hidden_layers = num_hidden_layers
|
103 |
+
self.num_attention_heads = num_attention_heads
|
104 |
+
self.patch_size = patch_size
|
105 |
+
self.image_size = image_size
|
106 |
+
self.initializer_range = initializer_range
|
107 |
+
self.attention_dropout = attention_dropout
|
108 |
+
self.layer_norm_eps = layer_norm_eps
|
109 |
+
self.hidden_act = hidden_act
|
110 |
+
self.qkv_bias = qkv_bias
|
111 |
+
|
112 |
+
@classmethod
|
113 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
114 |
+
cls._set_token_in_kwargs(kwargs)
|
115 |
+
|
116 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
117 |
+
|
118 |
+
# get the vision config dict if we are loading from Blip2Config
|
119 |
+
if config_dict.get("model_type") == "blip-2":
|
120 |
+
config_dict = config_dict["vision_config"]
|
121 |
+
|
122 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
123 |
+
logger.warning(
|
124 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
125 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
126 |
+
)
|
127 |
+
|
128 |
+
return cls.from_dict(config_dict, **kwargs)
|
129 |
+
|
130 |
+
|
131 |
+
class Blip2QFormerConfig(PretrainedConfig):
|
132 |
+
r"""
|
133 |
+
This is the configuration class to store the configuration of a [`Blip2QFormerModel`]. It is used to instantiate a
|
134 |
+
BLIP-2 Querying Transformer (Q-Former) model according to the specified arguments, defining the model architecture.
|
135 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the BLIP-2
|
136 |
+
[Salesforce/blip2-opt-2.7b](https://huggingface.co/Salesforce/blip2-opt-2.7b) architecture. Configuration objects
|
137 |
+
inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from
|
138 |
+
[`PretrainedConfig`] for more information.
|
139 |
+
|
140 |
+
Note that [`Blip2QFormerModel`] is very similar to [`BertLMHeadModel`] with interleaved cross-attention.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
144 |
+
Vocabulary size of the Q-Former model. Defines the number of different tokens that can be represented by
|
145 |
+
the `inputs_ids` passed when calling the model.
|
146 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
147 |
+
Dimensionality of the encoder layers and the pooler layer.
|
148 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
149 |
+
Number of hidden layers in the Transformer encoder.
|
150 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
151 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
152 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
153 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
154 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
155 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
156 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
157 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
158 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
159 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
160 |
+
The dropout ratio for the attention probabilities.
|
161 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
162 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
163 |
+
just in case (e.g., 512 or 1024 or 2048).
|
164 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
165 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
166 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
167 |
+
The epsilon used by the layer normalization layers.
|
168 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
169 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
170 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
171 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
172 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
173 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
174 |
+
cross_attention_frequency (`int`, *optional*, defaults to 2):
|
175 |
+
The frequency of adding cross-attention to the Transformer layers.
|
176 |
+
encoder_hidden_size (`int`, *optional*, defaults to 1408):
|
177 |
+
The hidden size of the hidden states for cross-attention.
|
178 |
+
|
179 |
+
Examples:
|
180 |
+
|
181 |
+
```python
|
182 |
+
>>> from transformers import Blip2QFormerConfig, Blip2QFormerModel
|
183 |
+
|
184 |
+
>>> # Initializing a BLIP-2 Salesforce/blip2-opt-2.7b style configuration
|
185 |
+
>>> configuration = Blip2QFormerConfig()
|
186 |
+
|
187 |
+
>>> # Initializing a model (with random weights) from the Salesforce/blip2-opt-2.7b style configuration
|
188 |
+
>>> model = Blip2QFormerModel(configuration)
|
189 |
+
>>> # Accessing the model configuration
|
190 |
+
>>> configuration = model.config
|
191 |
+
```"""
|
192 |
+
|
193 |
+
model_type = "blip_2_qformer"
|
194 |
+
|
195 |
+
def __init__(
|
196 |
+
self,
|
197 |
+
vocab_size=30522,
|
198 |
+
hidden_size=768,
|
199 |
+
num_hidden_layers=12,
|
200 |
+
num_attention_heads=12,
|
201 |
+
intermediate_size=3072,
|
202 |
+
hidden_act="gelu",
|
203 |
+
hidden_dropout_prob=0.1,
|
204 |
+
attention_probs_dropout_prob=0.1,
|
205 |
+
max_position_embeddings=512,
|
206 |
+
initializer_range=0.02,
|
207 |
+
layer_norm_eps=1e-12,
|
208 |
+
pad_token_id=0,
|
209 |
+
position_embedding_type="absolute",
|
210 |
+
cross_attention_frequency=2,
|
211 |
+
encoder_hidden_size=1408,
|
212 |
+
**kwargs,
|
213 |
+
):
|
214 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
215 |
+
|
216 |
+
self.vocab_size = vocab_size
|
217 |
+
self.hidden_size = hidden_size
|
218 |
+
self.num_hidden_layers = num_hidden_layers
|
219 |
+
self.num_attention_heads = num_attention_heads
|
220 |
+
self.hidden_act = hidden_act
|
221 |
+
self.intermediate_size = intermediate_size
|
222 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
223 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
224 |
+
self.max_position_embeddings = max_position_embeddings
|
225 |
+
self.initializer_range = initializer_range
|
226 |
+
self.layer_norm_eps = layer_norm_eps
|
227 |
+
self.position_embedding_type = position_embedding_type
|
228 |
+
self.cross_attention_frequency = cross_attention_frequency
|
229 |
+
self.encoder_hidden_size = encoder_hidden_size
|
230 |
+
|
231 |
+
@classmethod
|
232 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
233 |
+
cls._set_token_in_kwargs(kwargs)
|
234 |
+
|
235 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
236 |
+
|
237 |
+
# get the qformer config dict if we are loading from Blip2Config
|
238 |
+
if config_dict.get("model_type") == "blip-2":
|
239 |
+
config_dict = config_dict["qformer_config"]
|
240 |
+
|
241 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
242 |
+
logger.warning(
|
243 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
244 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
245 |
+
)
|
246 |
+
|
247 |
+
return cls.from_dict(config_dict, **kwargs)
|
248 |
+
|
249 |
+
|
250 |
+
class Blip2Config(PretrainedConfig):
|
251 |
+
r"""
|
252 |
+
[`Blip2Config`] is the configuration class to store the configuration of a [`Blip2ForConditionalGeneration`]. It is
|
253 |
+
used to instantiate a BLIP-2 model according to the specified arguments, defining the vision model, Q-Former model
|
254 |
+
and language model configs. Instantiating a configuration with the defaults will yield a similar configuration to
|
255 |
+
that of the BLIP-2 [Salesforce/blip2-opt-2.7b](https://huggingface.co/Salesforce/blip2-opt-2.7b) architecture.
|
256 |
+
|
257 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
258 |
+
documentation from [`PretrainedConfig`] for more information.
|
259 |
+
|
260 |
+
Args:
|
261 |
+
vision_config (`dict`, *optional*):
|
262 |
+
Dictionary of configuration options used to initialize [`Blip2VisionConfig`].
|
263 |
+
qformer_config (`dict`, *optional*):
|
264 |
+
Dictionary of configuration options used to initialize [`Blip2QFormerConfig`].
|
265 |
+
text_config (`dict`, *optional*):
|
266 |
+
Dictionary of configuration options used to initialize any [`PretrainedConfig`].
|
267 |
+
num_query_tokens (`int`, *optional*, defaults to 32):
|
268 |
+
The number of query tokens passed through the Transformer.
|
269 |
+
|
270 |
+
kwargs (*optional*):
|
271 |
+
Dictionary of keyword arguments.
|
272 |
+
|
273 |
+
Example:
|
274 |
+
|
275 |
+
```python
|
276 |
+
>>> from transformers import (
|
277 |
+
... Blip2VisionConfig,
|
278 |
+
... Blip2QFormerConfig,
|
279 |
+
... OPTConfig,
|
280 |
+
... Blip2Config,
|
281 |
+
... Blip2ForConditionalGeneration,
|
282 |
+
... )
|
283 |
+
|
284 |
+
>>> # Initializing a Blip2Config with Salesforce/blip2-opt-2.7b style configuration
|
285 |
+
>>> configuration = Blip2Config()
|
286 |
+
|
287 |
+
>>> # Initializing a Blip2ForConditionalGeneration (with random weights) from the Salesforce/blip2-opt-2.7b style configuration
|
288 |
+
>>> model = Blip2ForConditionalGeneration(configuration)
|
289 |
+
|
290 |
+
>>> # Accessing the model configuration
|
291 |
+
>>> configuration = model.config
|
292 |
+
|
293 |
+
>>> # We can also initialize a Blip2Config from a Blip2VisionConfig, Blip2QFormerConfig and any PretrainedConfig
|
294 |
+
|
295 |
+
>>> # Initializing BLIP-2 vision, BLIP-2 Q-Former and language model configurations
|
296 |
+
>>> vision_config = Blip2VisionConfig()
|
297 |
+
>>> qformer_config = Blip2QFormerConfig()
|
298 |
+
>>> text_config = OPTConfig()
|
299 |
+
|
300 |
+
>>> config = Blip2Config.from_text_vision_configs(vision_config, qformer_config, text_config)
|
301 |
+
```"""
|
302 |
+
|
303 |
+
model_type = "blip-2"
|
304 |
+
|
305 |
+
def __init__(self, vision_config=None, qformer_config=None, text_config=None, num_query_tokens=32, **kwargs):
|
306 |
+
super().__init__(**kwargs)
|
307 |
+
|
308 |
+
if vision_config is None:
|
309 |
+
vision_config = {}
|
310 |
+
logger.info("vision_config is None. initializing the Blip2VisionConfig with default values.")
|
311 |
+
|
312 |
+
if qformer_config is None:
|
313 |
+
qformer_config = {}
|
314 |
+
logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values.")
|
315 |
+
|
316 |
+
if text_config is None:
|
317 |
+
text_config = {}
|
318 |
+
logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).")
|
319 |
+
|
320 |
+
self.vision_config = Blip2VisionConfig(**vision_config)
|
321 |
+
self.qformer_config = Blip2QFormerConfig(**qformer_config)
|
322 |
+
text_model_type = text_config["model_type"] if "model_type" in text_config else "opt"
|
323 |
+
self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
|
324 |
+
|
325 |
+
self.tie_word_embeddings = self.text_config.tie_word_embeddings
|
326 |
+
self.is_encoder_decoder = self.text_config.is_encoder_decoder
|
327 |
+
|
328 |
+
self.num_query_tokens = num_query_tokens
|
329 |
+
self.qformer_config.encoder_hidden_size = self.vision_config.hidden_size
|
330 |
+
self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
331 |
+
self.initializer_factor = 1.0
|
332 |
+
self.initializer_range = 0.02
|
333 |
+
|
334 |
+
@classmethod
|
335 |
+
def from_vision_qformer_text_configs(
|
336 |
+
cls,
|
337 |
+
vision_config: Blip2VisionConfig,
|
338 |
+
qformer_config: Blip2QFormerConfig,
|
339 |
+
text_config: PretrainedConfig,
|
340 |
+
**kwargs,
|
341 |
+
):
|
342 |
+
r"""
|
343 |
+
Instantiate a [`Blip2Config`] (or a derived class) from a BLIP-2 vision model, Q-Former and language model
|
344 |
+
configurations.
|
345 |
+
|
346 |
+
Returns:
|
347 |
+
[`Blip2Config`]: An instance of a configuration object
|
348 |
+
"""
|
349 |
+
|
350 |
+
return cls(
|
351 |
+
vision_config=vision_config.to_dict(),
|
352 |
+
qformer_config=qformer_config.to_dict(),
|
353 |
+
text_config=text_config.to_dict(),
|
354 |
+
**kwargs,
|
355 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/convert_blip_2_original_to_pytorch.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Convert BLIP-2 checkpoints from the original repository.
|
17 |
+
|
18 |
+
URL: https://github.com/salesforce/LAVIS/tree/main/projects/blip2
|
19 |
+
"""
|
20 |
+
|
21 |
+
import argparse
|
22 |
+
|
23 |
+
import requests
|
24 |
+
import torch
|
25 |
+
|
26 |
+
# pip3 install salesforce-lavis
|
27 |
+
# I'm actually installing a slightly modified version: pip3 install -U git+https://github.com/nielsrogge/LAVIS.git@blip2_float32
|
28 |
+
# to make sure we can compare both original and HF implementation in float32
|
29 |
+
from lavis.models import load_model_and_preprocess
|
30 |
+
from PIL import Image
|
31 |
+
|
32 |
+
from transformers import (
|
33 |
+
AutoTokenizer,
|
34 |
+
Blip2Config,
|
35 |
+
Blip2ForConditionalGeneration,
|
36 |
+
Blip2Processor,
|
37 |
+
Blip2VisionConfig,
|
38 |
+
BlipImageProcessor,
|
39 |
+
OPTConfig,
|
40 |
+
T5Config,
|
41 |
+
set_seed,
|
42 |
+
)
|
43 |
+
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
|
44 |
+
|
45 |
+
|
46 |
+
def load_demo_image():
|
47 |
+
url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png"
|
48 |
+
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
49 |
+
|
50 |
+
return image
|
51 |
+
|
52 |
+
|
53 |
+
# here we list all keys to be renamed (original name on the left, our name on the right)
|
54 |
+
def create_rename_keys(config):
|
55 |
+
rename_keys = []
|
56 |
+
# fmt: off
|
57 |
+
|
58 |
+
# vision encoder
|
59 |
+
rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding"))
|
60 |
+
rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding"))
|
61 |
+
rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight"))
|
62 |
+
rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias"))
|
63 |
+
rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight"))
|
64 |
+
rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias"))
|
65 |
+
|
66 |
+
for i in range(config.vision_config.num_hidden_layers):
|
67 |
+
rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight"))
|
68 |
+
rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias"))
|
69 |
+
rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight"))
|
70 |
+
rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias"))
|
71 |
+
rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight"))
|
72 |
+
rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",))
|
73 |
+
rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias"))
|
74 |
+
rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight"))
|
75 |
+
rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias"))
|
76 |
+
rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight"))
|
77 |
+
rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias"))
|
78 |
+
|
79 |
+
# QFormer
|
80 |
+
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight"))
|
81 |
+
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias"))
|
82 |
+
|
83 |
+
# fmt: on
|
84 |
+
return rename_keys
|
85 |
+
|
86 |
+
|
87 |
+
def rename_key(dct, old, new):
|
88 |
+
val = dct.pop(old)
|
89 |
+
dct[new] = val
|
90 |
+
|
91 |
+
|
92 |
+
def read_in_q_v_bias(state_dict, config):
|
93 |
+
for i in range(config.vision_config.num_hidden_layers):
|
94 |
+
# read in original q and v biases
|
95 |
+
q_bias = state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias")
|
96 |
+
v_bias = state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias")
|
97 |
+
|
98 |
+
# next, set bias in the state dict
|
99 |
+
qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias))
|
100 |
+
state_dict[f"vision_model.encoder.layers.{i}.self_attn.qkv.bias"] = qkv_bias
|
101 |
+
|
102 |
+
|
103 |
+
def get_blip2_config(model_name, eos_token_id):
|
104 |
+
image_size = 364 if "coco" in model_name else 224
|
105 |
+
vision_config = Blip2VisionConfig(image_size=image_size).to_dict()
|
106 |
+
|
107 |
+
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
|
108 |
+
# seems like flan-T5 models don't have bos_token_id properly set?
|
109 |
+
if "opt-2.7b" in model_name:
|
110 |
+
text_config = OPTConfig.from_pretrained("facebook/opt-2.7b", eos_token_id=eos_token_id).to_dict()
|
111 |
+
elif "opt-6.7b" in model_name:
|
112 |
+
text_config = OPTConfig.from_pretrained("facebook/opt-6.7b", eos_token_id=eos_token_id).to_dict()
|
113 |
+
elif "t5-xl" in model_name:
|
114 |
+
text_config = T5Config.from_pretrained("google/flan-t5-xl", dense_act_fn="gelu", bos_token_id=1).to_dict()
|
115 |
+
elif "t5-xxl" in model_name:
|
116 |
+
text_config = T5Config.from_pretrained("google/flan-t5-xxl", dense_act_fn="gelu", bos_token_id=1).to_dict()
|
117 |
+
|
118 |
+
config = Blip2Config(vision_config=vision_config, text_config=text_config)
|
119 |
+
|
120 |
+
return config, image_size
|
121 |
+
|
122 |
+
|
123 |
+
@torch.no_grad()
|
124 |
+
def convert_blip2_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False):
|
125 |
+
"""
|
126 |
+
Copy/paste/tweak model's weights to Transformers design.
|
127 |
+
"""
|
128 |
+
tokenizer = (
|
129 |
+
AutoTokenizer.from_pretrained("facebook/opt-2.7b")
|
130 |
+
if "opt" in model_name
|
131 |
+
else AutoTokenizer.from_pretrained("google/flan-t5-xl")
|
132 |
+
)
|
133 |
+
eos_token_id = tokenizer("\n", add_special_tokens=False).input_ids[0]
|
134 |
+
config, image_size = get_blip2_config(model_name, eos_token_id=eos_token_id)
|
135 |
+
|
136 |
+
hf_model = Blip2ForConditionalGeneration(config).eval()
|
137 |
+
|
138 |
+
model_name_to_original = {
|
139 |
+
"blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"),
|
140 |
+
"blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"),
|
141 |
+
"blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"),
|
142 |
+
"blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"),
|
143 |
+
"blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"),
|
144 |
+
"blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"),
|
145 |
+
"blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"),
|
146 |
+
}
|
147 |
+
|
148 |
+
name, type = model_name_to_original[model_name]
|
149 |
+
|
150 |
+
# note: this script is tested on 2 GPUs, as models are compared in float32,
|
151 |
+
# which requires quite some memory. Hence loading both on a
|
152 |
+
# separate device is the easiest to compare
|
153 |
+
hf_model_device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
154 |
+
lavis_device = "cuda:1" if torch.cuda.is_available() else "cpu"
|
155 |
+
|
156 |
+
# load original model
|
157 |
+
print("Loading original model...")
|
158 |
+
original_model, vis_processors, _ = load_model_and_preprocess(
|
159 |
+
name=name, model_type=type, is_eval=True, device=lavis_device
|
160 |
+
)
|
161 |
+
original_model.eval()
|
162 |
+
print("Done!")
|
163 |
+
|
164 |
+
# update state dict keys
|
165 |
+
state_dict = original_model.state_dict()
|
166 |
+
rename_keys = create_rename_keys(config)
|
167 |
+
for src, dest in rename_keys:
|
168 |
+
rename_key(state_dict, src, dest)
|
169 |
+
|
170 |
+
# some keys can be renamed efficiently
|
171 |
+
for key, val in state_dict.copy().items():
|
172 |
+
val = state_dict.pop(key)
|
173 |
+
if key.startswith("Qformer.bert"):
|
174 |
+
key = key.replace("Qformer.bert", "qformer")
|
175 |
+
if "attention.self" in key:
|
176 |
+
key = key.replace("self", "attention")
|
177 |
+
if "opt_proj" in key:
|
178 |
+
key = key.replace("opt_proj", "language_projection")
|
179 |
+
if "t5_proj" in key:
|
180 |
+
key = key.replace("t5_proj", "language_projection")
|
181 |
+
if key.startswith("opt"):
|
182 |
+
key = key.replace("opt", "language")
|
183 |
+
if key.startswith("t5"):
|
184 |
+
key = key.replace("t5", "language")
|
185 |
+
state_dict[key] = val
|
186 |
+
|
187 |
+
# read in qv biases
|
188 |
+
read_in_q_v_bias(state_dict, config)
|
189 |
+
|
190 |
+
missing_keys, unexpected_keys = hf_model.load_state_dict(state_dict, strict=False)
|
191 |
+
assert len(missing_keys) == 0
|
192 |
+
assert unexpected_keys == ["qformer.embeddings.position_ids"]
|
193 |
+
|
194 |
+
image = load_demo_image()
|
195 |
+
original_pixel_values = vis_processors["eval"](image).unsqueeze(0).to(lavis_device)
|
196 |
+
input_ids = tokenizer(["\n"], return_tensors="pt").input_ids.to(hf_model_device)
|
197 |
+
|
198 |
+
# create processor
|
199 |
+
image_processor = BlipImageProcessor(
|
200 |
+
size={"height": image_size, "width": image_size}, image_mean=OPENAI_CLIP_MEAN, image_std=OPENAI_CLIP_STD
|
201 |
+
)
|
202 |
+
processor = Blip2Processor(image_processor=image_processor, tokenizer=tokenizer)
|
203 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(hf_model_device)
|
204 |
+
|
205 |
+
# make sure processor creates exact same pixel values
|
206 |
+
assert torch.allclose(pixel_values, original_pixel_values.to(pixel_values.device))
|
207 |
+
|
208 |
+
original_model.to(lavis_device)
|
209 |
+
hf_model.to(hf_model_device)
|
210 |
+
with torch.no_grad():
|
211 |
+
if "opt" in model_name:
|
212 |
+
original_logits = original_model({"image": original_pixel_values, "text_input": [""]}).logits
|
213 |
+
logits = hf_model(pixel_values, input_ids).logits
|
214 |
+
else:
|
215 |
+
original_logits = original_model(
|
216 |
+
{"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]}
|
217 |
+
).logits
|
218 |
+
labels = input_ids.masked_fill(input_ids == tokenizer.pad_token_id, -100)
|
219 |
+
logits = hf_model(pixel_values, input_ids, labels=labels).logits
|
220 |
+
|
221 |
+
assert original_logits.shape == logits.shape
|
222 |
+
print("First values of original logits:", original_logits[0, :3, :3])
|
223 |
+
print("First values of HF logits:", logits[0, :3, :3])
|
224 |
+
|
225 |
+
# assert values
|
226 |
+
assert torch.allclose(original_logits.to(logits.device), logits, atol=1e-4)
|
227 |
+
print("Looks ok!")
|
228 |
+
|
229 |
+
print("Generating a caption...")
|
230 |
+
prompt = "Question: what object is in this image? Answer:"
|
231 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(hf_model_device)
|
232 |
+
|
233 |
+
set_seed(42)
|
234 |
+
|
235 |
+
original_outputs = original_model.generate(
|
236 |
+
{"image": original_pixel_values, "prompt": prompt}, use_nucleus_sampling=True
|
237 |
+
)
|
238 |
+
outputs = hf_model.generate(
|
239 |
+
pixel_values,
|
240 |
+
input_ids,
|
241 |
+
do_sample=True,
|
242 |
+
num_beams=5,
|
243 |
+
max_length=30,
|
244 |
+
min_length=1,
|
245 |
+
top_p=0.9,
|
246 |
+
repetition_penalty=1.0,
|
247 |
+
length_penalty=1.0,
|
248 |
+
temperature=1,
|
249 |
+
)
|
250 |
+
output_text = processor.batch_decode(outputs, skip_special_tokens=True)
|
251 |
+
output_text = [text.strip() for text in output_text]
|
252 |
+
print("Original generation:", original_outputs)
|
253 |
+
print("HF generation:", output_text)
|
254 |
+
|
255 |
+
if pytorch_dump_folder_path is not None:
|
256 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
257 |
+
hf_model.save_pretrained(pytorch_dump_folder_path)
|
258 |
+
|
259 |
+
if push_to_hub:
|
260 |
+
processor.push_to_hub(f"nielsr/{model_name}")
|
261 |
+
hf_model.push_to_hub(f"nielsr/{model_name}")
|
262 |
+
|
263 |
+
|
264 |
+
if __name__ == "__main__":
|
265 |
+
parser = argparse.ArgumentParser()
|
266 |
+
choices = [
|
267 |
+
"blip2-opt-2.7b",
|
268 |
+
"blip2-opt-6.7b",
|
269 |
+
"blip2-opt-2.7b-coco",
|
270 |
+
"blip2-opt-6.7b-coco",
|
271 |
+
"blip2-flan-t5-xl",
|
272 |
+
"blip2-flan-t5-xl-coco",
|
273 |
+
"blip2-flan-t5-xxl",
|
274 |
+
]
|
275 |
+
parser.add_argument(
|
276 |
+
"--model_name",
|
277 |
+
default="blip2-opt-2.7b",
|
278 |
+
choices=choices,
|
279 |
+
type=str,
|
280 |
+
help="Path to hf config.json of model to convert",
|
281 |
+
)
|
282 |
+
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
|
283 |
+
parser.add_argument(
|
284 |
+
"--push_to_hub",
|
285 |
+
action="store_true",
|
286 |
+
help="Whether to push the model and processor to the hub after converting",
|
287 |
+
)
|
288 |
+
|
289 |
+
args = parser.parse_args()
|
290 |
+
|
291 |
+
convert_blip2_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/modeling_blip_2.py
ADDED
@@ -0,0 +1,1853 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The Salesforce Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch BLIP-2 model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Any, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import CrossEntropyLoss
|
25 |
+
|
26 |
+
from ...activations import ACT2FN
|
27 |
+
from ...modeling_outputs import (
|
28 |
+
BaseModelOutput,
|
29 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
BaseModelOutputWithPooling,
|
31 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
32 |
+
)
|
33 |
+
from ...modeling_utils import PreTrainedModel
|
34 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
35 |
+
from ...utils import (
|
36 |
+
ModelOutput,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
logging,
|
40 |
+
replace_return_docstrings,
|
41 |
+
)
|
42 |
+
from ..auto import AutoModelForCausalLM, AutoModelForSeq2SeqLM
|
43 |
+
from .configuration_blip_2 import Blip2Config, Blip2QFormerConfig, Blip2VisionConfig
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__)
|
47 |
+
|
48 |
+
_CHECKPOINT_FOR_DOC = "Salesforce/blip2-opt-2.7b"
|
49 |
+
|
50 |
+
|
51 |
+
from ..deprecated._archive_maps import BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
52 |
+
|
53 |
+
|
54 |
+
@dataclass
|
55 |
+
class Blip2ForConditionalGenerationModelOutput(ModelOutput):
|
56 |
+
"""
|
57 |
+
Class defining the outputs of [`Blip2ForConditionalGeneration`].
|
58 |
+
|
59 |
+
Args:
|
60 |
+
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
61 |
+
Language modeling loss from the language model.
|
62 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
63 |
+
Prediction scores of the language modeling head of the language model.
|
64 |
+
vision_outputs (`BaseModelOutputWithPooling`):
|
65 |
+
Outputs of the vision encoder.
|
66 |
+
qformer_outputs (`BaseModelOutputWithPoolingAndCrossAttentions`):
|
67 |
+
Outputs of the Q-Former (Querying Transformer).
|
68 |
+
language_model_outputs (`CausalLMOutputWithPast` or `Seq2SeqLMOutput`):
|
69 |
+
Outputs of the language model.
|
70 |
+
"""
|
71 |
+
|
72 |
+
loss: Optional[Tuple[torch.FloatTensor]] = None
|
73 |
+
logits: Optional[Tuple[torch.FloatTensor]] = None
|
74 |
+
vision_outputs: Optional[torch.FloatTensor] = None
|
75 |
+
qformer_outputs: Optional[Tuple[torch.FloatTensor]] = None
|
76 |
+
language_model_outputs: Optional[Tuple[torch.FloatTensor]] = None
|
77 |
+
|
78 |
+
def to_tuple(self) -> Tuple[Any]:
|
79 |
+
return tuple(
|
80 |
+
self[k]
|
81 |
+
if k not in ["vision_outputs", "qformer_outputs", "language_model_outputs"]
|
82 |
+
else getattr(self, k).to_tuple()
|
83 |
+
for k in self.keys()
|
84 |
+
)
|
85 |
+
|
86 |
+
|
87 |
+
# Copied from transformers.models.blip.modeling_blip.BlipVisionEmbeddings with Blip->Blip2
|
88 |
+
class Blip2VisionEmbeddings(nn.Module):
|
89 |
+
def __init__(self, config: Blip2VisionConfig):
|
90 |
+
super().__init__()
|
91 |
+
self.config = config
|
92 |
+
self.embed_dim = config.hidden_size
|
93 |
+
self.image_size = config.image_size
|
94 |
+
self.patch_size = config.patch_size
|
95 |
+
|
96 |
+
self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim))
|
97 |
+
|
98 |
+
self.patch_embedding = nn.Conv2d(
|
99 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
100 |
+
)
|
101 |
+
|
102 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
103 |
+
self.num_positions = self.num_patches + 1
|
104 |
+
|
105 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
106 |
+
|
107 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
108 |
+
batch_size = pixel_values.shape[0]
|
109 |
+
target_dtype = self.patch_embedding.weight.dtype
|
110 |
+
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
111 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
112 |
+
|
113 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
114 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
115 |
+
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype)
|
116 |
+
return embeddings
|
117 |
+
|
118 |
+
|
119 |
+
class Blip2Attention(nn.Module):
|
120 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
121 |
+
|
122 |
+
def __init__(self, config):
|
123 |
+
super().__init__()
|
124 |
+
self.config = config
|
125 |
+
self.embed_dim = config.hidden_size
|
126 |
+
self.num_heads = config.num_attention_heads
|
127 |
+
self.head_dim = self.embed_dim // self.num_heads
|
128 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
129 |
+
raise ValueError(
|
130 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
131 |
+
f" {self.num_heads})."
|
132 |
+
)
|
133 |
+
self.scale = self.head_dim**-0.5
|
134 |
+
self.dropout = nn.Dropout(config.attention_dropout)
|
135 |
+
|
136 |
+
# small tweak here compared to CLIP, no bias here
|
137 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=False)
|
138 |
+
|
139 |
+
if config.qkv_bias:
|
140 |
+
q_bias = nn.Parameter(torch.zeros(self.embed_dim))
|
141 |
+
v_bias = nn.Parameter(torch.zeros(self.embed_dim))
|
142 |
+
else:
|
143 |
+
q_bias = None
|
144 |
+
v_bias = None
|
145 |
+
|
146 |
+
if q_bias is not None:
|
147 |
+
qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias))
|
148 |
+
self.qkv.bias = nn.Parameter(qkv_bias)
|
149 |
+
|
150 |
+
self.projection = nn.Linear(self.embed_dim, self.embed_dim)
|
151 |
+
|
152 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
153 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
154 |
+
|
155 |
+
def forward(
|
156 |
+
self,
|
157 |
+
hidden_states: torch.Tensor,
|
158 |
+
head_mask: Optional[torch.Tensor] = None,
|
159 |
+
output_attentions: Optional[bool] = False,
|
160 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
161 |
+
"""Input shape: Batch x Time x Channel"""
|
162 |
+
|
163 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
164 |
+
|
165 |
+
mixed_qkv = self.qkv(hidden_states)
|
166 |
+
|
167 |
+
mixed_qkv = mixed_qkv.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads).permute(
|
168 |
+
2, 0, 3, 1, 4
|
169 |
+
)
|
170 |
+
query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2]
|
171 |
+
|
172 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
173 |
+
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
174 |
+
|
175 |
+
attention_scores = attention_scores * self.scale
|
176 |
+
|
177 |
+
# Normalize the attention scores to probabilities.
|
178 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
179 |
+
|
180 |
+
# This is actually dropping out entire tokens to attend to, which might
|
181 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
182 |
+
attention_probs = self.dropout(attention_probs)
|
183 |
+
|
184 |
+
# Mask heads if we want to
|
185 |
+
if head_mask is not None:
|
186 |
+
attention_probs = attention_probs * head_mask
|
187 |
+
|
188 |
+
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
|
189 |
+
|
190 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
|
191 |
+
context_layer = context_layer.reshape(new_context_layer_shape)
|
192 |
+
|
193 |
+
output = self.projection(context_layer)
|
194 |
+
|
195 |
+
outputs = (output, attention_probs) if output_attentions else (output, None)
|
196 |
+
|
197 |
+
return outputs
|
198 |
+
|
199 |
+
|
200 |
+
# Copied from transformers.models.blip.modeling_blip.BlipMLP
|
201 |
+
class Blip2MLP(nn.Module):
|
202 |
+
def __init__(self, config):
|
203 |
+
super().__init__()
|
204 |
+
self.config = config
|
205 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
206 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
207 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
208 |
+
|
209 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
210 |
+
hidden_states = self.fc1(hidden_states)
|
211 |
+
hidden_states = self.activation_fn(hidden_states)
|
212 |
+
hidden_states = self.fc2(hidden_states)
|
213 |
+
return hidden_states
|
214 |
+
|
215 |
+
|
216 |
+
# Copied from transformers.models.blip.modeling_blip.BlipEncoderLayer with Blip->Blip2
|
217 |
+
class Blip2EncoderLayer(nn.Module):
|
218 |
+
def __init__(self, config: Blip2Config):
|
219 |
+
super().__init__()
|
220 |
+
self.embed_dim = config.hidden_size
|
221 |
+
self.self_attn = Blip2Attention(config)
|
222 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
223 |
+
self.mlp = Blip2MLP(config)
|
224 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
225 |
+
|
226 |
+
def forward(
|
227 |
+
self,
|
228 |
+
hidden_states: torch.Tensor,
|
229 |
+
attention_mask: torch.Tensor,
|
230 |
+
output_attentions: Optional[bool] = False,
|
231 |
+
) -> Tuple[torch.FloatTensor]:
|
232 |
+
"""
|
233 |
+
Args:
|
234 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
235 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
236 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
237 |
+
`(config.encoder_attention_heads,)`.
|
238 |
+
output_attentions (`bool`, *optional*):
|
239 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
240 |
+
returned tensors for more detail.
|
241 |
+
"""
|
242 |
+
residual = hidden_states
|
243 |
+
|
244 |
+
hidden_states = self.layer_norm1(hidden_states)
|
245 |
+
hidden_states, attn_weights = self.self_attn(
|
246 |
+
hidden_states=hidden_states,
|
247 |
+
head_mask=attention_mask,
|
248 |
+
output_attentions=output_attentions,
|
249 |
+
)
|
250 |
+
hidden_states = hidden_states + residual
|
251 |
+
residual = hidden_states
|
252 |
+
hidden_states = self.layer_norm2(hidden_states)
|
253 |
+
hidden_states = self.mlp(hidden_states)
|
254 |
+
|
255 |
+
hidden_states = hidden_states + residual
|
256 |
+
|
257 |
+
outputs = (hidden_states,)
|
258 |
+
|
259 |
+
if output_attentions:
|
260 |
+
outputs += (attn_weights,)
|
261 |
+
|
262 |
+
return outputs
|
263 |
+
|
264 |
+
|
265 |
+
class Blip2PreTrainedModel(PreTrainedModel):
|
266 |
+
"""
|
267 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
268 |
+
models.
|
269 |
+
"""
|
270 |
+
|
271 |
+
config_class = Blip2Config
|
272 |
+
base_model_prefix = "blip"
|
273 |
+
supports_gradient_checkpointing = True
|
274 |
+
_no_split_modules = ["Blip2Attention", "T5Block", "OPTDecoderLayer"]
|
275 |
+
_skip_keys_device_placement = "past_key_values"
|
276 |
+
_keep_in_fp32_modules = ["wo"]
|
277 |
+
|
278 |
+
def _init_weights(self, module):
|
279 |
+
"""Initialize the weights"""
|
280 |
+
factor = self.config.initializer_range
|
281 |
+
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear):
|
282 |
+
module.weight.data.normal_(mean=0.0, std=factor)
|
283 |
+
if hasattr(module, "bias") and module.bias is not None:
|
284 |
+
module.bias.data.zero_()
|
285 |
+
|
286 |
+
if isinstance(module, Blip2VisionEmbeddings):
|
287 |
+
if hasattr(self.config, "vision_config"):
|
288 |
+
factor = self.config.vision_config.initializer_range
|
289 |
+
nn.init.trunc_normal_(module.position_embedding, mean=0.0, std=factor)
|
290 |
+
nn.init.trunc_normal_(module.class_embedding, mean=0.0, std=factor)
|
291 |
+
|
292 |
+
elif isinstance(module, nn.LayerNorm):
|
293 |
+
module.bias.data.zero_()
|
294 |
+
module.weight.data.fill_(1.0)
|
295 |
+
elif isinstance(module, nn.Linear) and module.bias is not None:
|
296 |
+
module.bias.data.zero_()
|
297 |
+
|
298 |
+
|
299 |
+
BLIP_2_START_DOCSTRING = r"""
|
300 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
301 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
302 |
+
etc.)
|
303 |
+
|
304 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
305 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
306 |
+
and behavior.
|
307 |
+
|
308 |
+
Parameters:
|
309 |
+
config ([`Blip2Config`]): Model configuration class with all the parameters of the model.
|
310 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
311 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
312 |
+
"""
|
313 |
+
|
314 |
+
BLIP_2_VISION_INPUTS_DOCSTRING = r"""
|
315 |
+
Args:
|
316 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
317 |
+
Pixel values. Pixel values can be obtained using [`Blip2Processor`]. See [`Blip2Processor.__call__`] for
|
318 |
+
details.
|
319 |
+
output_attentions (`bool`, *optional*):
|
320 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
321 |
+
tensors for more detail.
|
322 |
+
output_hidden_states (`bool`, *optional*):
|
323 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
324 |
+
more detail.
|
325 |
+
return_dict (`bool`, *optional*):
|
326 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
327 |
+
"""
|
328 |
+
|
329 |
+
BLIP_2_TEXT_INPUTS_DOCSTRING = r"""
|
330 |
+
Args:
|
331 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
332 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
333 |
+
it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
334 |
+
[`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
|
335 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
336 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
337 |
+
- 1 for tokens that are **not masked**,
|
338 |
+
- 0 for tokens that are **masked**.
|
339 |
+
[What are attention masks?](../glossary#attention-mask)
|
340 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
341 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
342 |
+
|
343 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
344 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
345 |
+
|
346 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
347 |
+
|
348 |
+
T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
|
349 |
+
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
|
350 |
+
|
351 |
+
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5
|
352 |
+
Training](./t5#training).
|
353 |
+
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
354 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
355 |
+
be used by default.
|
356 |
+
output_attentions (`bool`, *optional*):
|
357 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
358 |
+
tensors for more detail.
|
359 |
+
output_hidden_states (`bool`, *optional*):
|
360 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
361 |
+
more detail.
|
362 |
+
return_dict (`bool`, *optional*):
|
363 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
364 |
+
"""
|
365 |
+
|
366 |
+
BLIP_2_INPUTS_DOCSTRING = r"""
|
367 |
+
Args:
|
368 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
369 |
+
Pixel values. Pixel values can be obtained using [`Blip2Processor`]. See [`Blip2Processor.__call__`] for
|
370 |
+
details.
|
371 |
+
|
372 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
373 |
+
Indices of input sequence tokens in the vocabulary of the language model. Input tokens can optionally be
|
374 |
+
provided to serve as text prompt, which the language model can continue.
|
375 |
+
|
376 |
+
Indices can be obtained using [`Blip2Processor`]. See [`Blip2Processor.__call__`] for details.
|
377 |
+
|
378 |
+
[What are input IDs?](../glossary#input-ids)
|
379 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
380 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
381 |
+
|
382 |
+
- 1 for tokens that are **not masked**,
|
383 |
+
- 0 for tokens that are **masked**.
|
384 |
+
|
385 |
+
[What are attention masks?](../glossary#attention-mask)
|
386 |
+
|
387 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
388 |
+
Indices of decoder input sequence tokens in the vocabulary of the language model. Only relevant in case an
|
389 |
+
encoder-decoder language model (like T5) is used.
|
390 |
+
|
391 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
392 |
+
[`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids)
|
393 |
+
|
394 |
+
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
395 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
396 |
+
be used by default.
|
397 |
+
|
398 |
+
Only relevant in case an encoder-decoder language model (like T5) is used.
|
399 |
+
|
400 |
+
output_attentions (`bool`, *optional*):
|
401 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
402 |
+
tensors for more detail.
|
403 |
+
output_hidden_states (`bool`, *optional*):
|
404 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
405 |
+
more detail.
|
406 |
+
return_dict (`bool`, *optional*):
|
407 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
408 |
+
"""
|
409 |
+
|
410 |
+
|
411 |
+
# Copied from transformers.models.blip.modeling_blip.BlipEncoder with Blip->Blip2
|
412 |
+
class Blip2Encoder(nn.Module):
|
413 |
+
"""
|
414 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
415 |
+
[`Blip2EncoderLayer`].
|
416 |
+
|
417 |
+
Args:
|
418 |
+
config (`Blip2Config`):
|
419 |
+
The corresponding vision configuration for the `Blip2Encoder`.
|
420 |
+
"""
|
421 |
+
|
422 |
+
def __init__(self, config: Blip2Config):
|
423 |
+
super().__init__()
|
424 |
+
self.config = config
|
425 |
+
self.layers = nn.ModuleList([Blip2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
426 |
+
self.gradient_checkpointing = False
|
427 |
+
|
428 |
+
def forward(
|
429 |
+
self,
|
430 |
+
inputs_embeds,
|
431 |
+
attention_mask: Optional[torch.Tensor] = None,
|
432 |
+
output_attentions: Optional[bool] = None,
|
433 |
+
output_hidden_states: Optional[bool] = None,
|
434 |
+
return_dict: Optional[bool] = None,
|
435 |
+
) -> Union[Tuple, BaseModelOutput]:
|
436 |
+
r"""
|
437 |
+
Args:
|
438 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
439 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
440 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
441 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
442 |
+
|
443 |
+
- 1 for tokens that are **not masked**,
|
444 |
+
- 0 for tokens that are **masked**.
|
445 |
+
|
446 |
+
[What are attention masks?](../glossary#attention-mask)
|
447 |
+
output_attentions (`bool`, *optional*):
|
448 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
449 |
+
returned tensors for more detail.
|
450 |
+
output_hidden_states (`bool`, *optional*):
|
451 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
452 |
+
for more detail.
|
453 |
+
return_dict (`bool`, *optional*):
|
454 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
455 |
+
"""
|
456 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
457 |
+
output_hidden_states = (
|
458 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
459 |
+
)
|
460 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
461 |
+
|
462 |
+
encoder_states = () if output_hidden_states else None
|
463 |
+
all_attentions = () if output_attentions else None
|
464 |
+
|
465 |
+
hidden_states = inputs_embeds
|
466 |
+
for idx, encoder_layer in enumerate(self.layers):
|
467 |
+
if output_hidden_states:
|
468 |
+
encoder_states = encoder_states + (hidden_states,)
|
469 |
+
if self.gradient_checkpointing and self.training:
|
470 |
+
layer_outputs = self._gradient_checkpointing_func(
|
471 |
+
encoder_layer.__call__,
|
472 |
+
hidden_states,
|
473 |
+
attention_mask,
|
474 |
+
output_attentions,
|
475 |
+
)
|
476 |
+
else:
|
477 |
+
layer_outputs = encoder_layer(
|
478 |
+
hidden_states,
|
479 |
+
attention_mask,
|
480 |
+
output_attentions=output_attentions,
|
481 |
+
)
|
482 |
+
|
483 |
+
hidden_states = layer_outputs[0]
|
484 |
+
|
485 |
+
if output_attentions:
|
486 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
487 |
+
|
488 |
+
if output_hidden_states:
|
489 |
+
encoder_states = encoder_states + (hidden_states,)
|
490 |
+
|
491 |
+
if not return_dict:
|
492 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
493 |
+
return BaseModelOutput(
|
494 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
495 |
+
)
|
496 |
+
|
497 |
+
|
498 |
+
# Copied from transformers.models.blip.modeling_blip.BlipVisionModel with Blip->Blip2, BLIP->BLIP_2
|
499 |
+
class Blip2VisionModel(Blip2PreTrainedModel):
|
500 |
+
main_input_name = "pixel_values"
|
501 |
+
config_class = Blip2VisionConfig
|
502 |
+
|
503 |
+
def __init__(self, config: Blip2VisionConfig):
|
504 |
+
super().__init__(config)
|
505 |
+
self.config = config
|
506 |
+
embed_dim = config.hidden_size
|
507 |
+
|
508 |
+
self.embeddings = Blip2VisionEmbeddings(config)
|
509 |
+
self.encoder = Blip2Encoder(config)
|
510 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
511 |
+
|
512 |
+
self.post_init()
|
513 |
+
|
514 |
+
@add_start_docstrings_to_model_forward(BLIP_2_VISION_INPUTS_DOCSTRING)
|
515 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Blip2VisionConfig)
|
516 |
+
def forward(
|
517 |
+
self,
|
518 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
519 |
+
output_attentions: Optional[bool] = None,
|
520 |
+
output_hidden_states: Optional[bool] = None,
|
521 |
+
return_dict: Optional[bool] = None,
|
522 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
523 |
+
r"""
|
524 |
+
Returns:
|
525 |
+
|
526 |
+
"""
|
527 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
528 |
+
output_hidden_states = (
|
529 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
530 |
+
)
|
531 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
532 |
+
|
533 |
+
if pixel_values is None:
|
534 |
+
raise ValueError("You have to specify pixel_values")
|
535 |
+
|
536 |
+
hidden_states = self.embeddings(pixel_values)
|
537 |
+
|
538 |
+
encoder_outputs = self.encoder(
|
539 |
+
inputs_embeds=hidden_states,
|
540 |
+
output_attentions=output_attentions,
|
541 |
+
output_hidden_states=output_hidden_states,
|
542 |
+
return_dict=return_dict,
|
543 |
+
)
|
544 |
+
|
545 |
+
last_hidden_state = encoder_outputs[0]
|
546 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
547 |
+
|
548 |
+
pooled_output = last_hidden_state[:, 0, :]
|
549 |
+
pooled_output = self.post_layernorm(pooled_output)
|
550 |
+
|
551 |
+
if not return_dict:
|
552 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
553 |
+
|
554 |
+
return BaseModelOutputWithPooling(
|
555 |
+
last_hidden_state=last_hidden_state,
|
556 |
+
pooler_output=pooled_output,
|
557 |
+
hidden_states=encoder_outputs.hidden_states,
|
558 |
+
attentions=encoder_outputs.attentions,
|
559 |
+
)
|
560 |
+
|
561 |
+
def get_input_embeddings(self):
|
562 |
+
return self.embeddings
|
563 |
+
|
564 |
+
|
565 |
+
class Blip2QFormerMultiHeadAttention(nn.Module):
|
566 |
+
def __init__(self, config, is_cross_attention=False):
|
567 |
+
super().__init__()
|
568 |
+
self.config = config
|
569 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
570 |
+
raise ValueError(
|
571 |
+
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
|
572 |
+
% (config.hidden_size, config.num_attention_heads)
|
573 |
+
)
|
574 |
+
|
575 |
+
self.num_attention_heads = config.num_attention_heads
|
576 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
577 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
578 |
+
|
579 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
580 |
+
if is_cross_attention:
|
581 |
+
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
582 |
+
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
583 |
+
else:
|
584 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
585 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
586 |
+
|
587 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
588 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
589 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
590 |
+
self.max_position_embeddings = config.max_position_embeddings
|
591 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
592 |
+
self.save_attention = False
|
593 |
+
|
594 |
+
def save_attn_gradients(self, attn_gradients):
|
595 |
+
self.attn_gradients = attn_gradients
|
596 |
+
|
597 |
+
def get_attn_gradients(self):
|
598 |
+
return self.attn_gradients
|
599 |
+
|
600 |
+
def save_attention_map(self, attention_map):
|
601 |
+
self.attention_map = attention_map
|
602 |
+
|
603 |
+
def get_attention_map(self):
|
604 |
+
return self.attention_map
|
605 |
+
|
606 |
+
def transpose_for_scores(self, x):
|
607 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
608 |
+
x = x.view(*new_x_shape)
|
609 |
+
return x.permute(0, 2, 1, 3)
|
610 |
+
|
611 |
+
def forward(
|
612 |
+
self,
|
613 |
+
hidden_states,
|
614 |
+
attention_mask=None,
|
615 |
+
head_mask=None,
|
616 |
+
encoder_hidden_states=None,
|
617 |
+
encoder_attention_mask=None,
|
618 |
+
past_key_value=None,
|
619 |
+
output_attentions=False,
|
620 |
+
):
|
621 |
+
# If this is instantiated as a cross-attention module, the keys
|
622 |
+
# and values come from an encoder; the attention mask needs to be
|
623 |
+
# such that the encoder's padding tokens are not attended to.
|
624 |
+
is_cross_attention = encoder_hidden_states is not None
|
625 |
+
|
626 |
+
if is_cross_attention:
|
627 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
628 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
629 |
+
attention_mask = encoder_attention_mask
|
630 |
+
elif past_key_value is not None:
|
631 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
632 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
633 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
634 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
635 |
+
else:
|
636 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
637 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
638 |
+
|
639 |
+
mixed_query_layer = self.query(hidden_states)
|
640 |
+
|
641 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
642 |
+
|
643 |
+
past_key_value = (key_layer, value_layer)
|
644 |
+
|
645 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
646 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
647 |
+
|
648 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
649 |
+
seq_length = hidden_states.size()[1]
|
650 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
651 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
652 |
+
distance = position_ids_l - position_ids_r
|
653 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
654 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
655 |
+
|
656 |
+
if self.position_embedding_type == "relative_key":
|
657 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
658 |
+
attention_scores = attention_scores + relative_position_scores
|
659 |
+
elif self.position_embedding_type == "relative_key_query":
|
660 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
661 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
662 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
663 |
+
|
664 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
665 |
+
|
666 |
+
if attention_mask is not None:
|
667 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
668 |
+
attention_scores = attention_scores + attention_mask
|
669 |
+
|
670 |
+
# Normalize the attention scores to probabilities.
|
671 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
672 |
+
|
673 |
+
if is_cross_attention and self.save_attention:
|
674 |
+
self.save_attention_map(attention_probs)
|
675 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
676 |
+
|
677 |
+
# This is actually dropping out entire tokens to attend to, which might
|
678 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
679 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
680 |
+
|
681 |
+
# Mask heads if we want to
|
682 |
+
if head_mask is not None:
|
683 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
684 |
+
|
685 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
686 |
+
|
687 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
688 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
689 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
690 |
+
|
691 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
692 |
+
|
693 |
+
outputs = outputs + (past_key_value,)
|
694 |
+
return outputs
|
695 |
+
|
696 |
+
|
697 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Blip2QFormer
|
698 |
+
class Blip2QFormerSelfOutput(nn.Module):
|
699 |
+
def __init__(self, config):
|
700 |
+
super().__init__()
|
701 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
702 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
703 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
704 |
+
|
705 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
706 |
+
hidden_states = self.dense(hidden_states)
|
707 |
+
hidden_states = self.dropout(hidden_states)
|
708 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
709 |
+
return hidden_states
|
710 |
+
|
711 |
+
|
712 |
+
class Blip2QFormerAttention(nn.Module):
|
713 |
+
def __init__(self, config, is_cross_attention=False):
|
714 |
+
super().__init__()
|
715 |
+
self.attention = Blip2QFormerMultiHeadAttention(config, is_cross_attention)
|
716 |
+
self.output = Blip2QFormerSelfOutput(config)
|
717 |
+
self.pruned_heads = set()
|
718 |
+
|
719 |
+
def prune_heads(self, heads):
|
720 |
+
if len(heads) == 0:
|
721 |
+
return
|
722 |
+
heads, index = find_pruneable_heads_and_indices(
|
723 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
724 |
+
)
|
725 |
+
|
726 |
+
# Prune linear layers
|
727 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
728 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
729 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
730 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
731 |
+
|
732 |
+
# Update hyper params and store pruned heads
|
733 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
734 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
735 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
736 |
+
|
737 |
+
def forward(
|
738 |
+
self,
|
739 |
+
hidden_states: torch.Tensor,
|
740 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
741 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
742 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
743 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
744 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
745 |
+
output_attentions: Optional[bool] = False,
|
746 |
+
) -> Tuple[torch.Tensor]:
|
747 |
+
self_outputs = self.attention(
|
748 |
+
hidden_states,
|
749 |
+
attention_mask,
|
750 |
+
head_mask,
|
751 |
+
encoder_hidden_states,
|
752 |
+
encoder_attention_mask,
|
753 |
+
past_key_value,
|
754 |
+
output_attentions,
|
755 |
+
)
|
756 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
757 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
758 |
+
return outputs
|
759 |
+
|
760 |
+
|
761 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Blip2QFormer
|
762 |
+
class Blip2QFormerIntermediate(nn.Module):
|
763 |
+
def __init__(self, config):
|
764 |
+
super().__init__()
|
765 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
766 |
+
if isinstance(config.hidden_act, str):
|
767 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
768 |
+
else:
|
769 |
+
self.intermediate_act_fn = config.hidden_act
|
770 |
+
|
771 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
772 |
+
hidden_states = self.dense(hidden_states)
|
773 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
774 |
+
return hidden_states
|
775 |
+
|
776 |
+
|
777 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Blip2QFormer
|
778 |
+
class Blip2QFormerOutput(nn.Module):
|
779 |
+
def __init__(self, config):
|
780 |
+
super().__init__()
|
781 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
782 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
783 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
784 |
+
|
785 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
786 |
+
hidden_states = self.dense(hidden_states)
|
787 |
+
hidden_states = self.dropout(hidden_states)
|
788 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
789 |
+
return hidden_states
|
790 |
+
|
791 |
+
|
792 |
+
class Blip2QFormerLayer(nn.Module):
|
793 |
+
def __init__(self, config, layer_idx):
|
794 |
+
super().__init__()
|
795 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
796 |
+
self.seq_len_dim = 1
|
797 |
+
self.attention = Blip2QFormerAttention(config)
|
798 |
+
|
799 |
+
self.layer_idx = layer_idx
|
800 |
+
|
801 |
+
if layer_idx % config.cross_attention_frequency == 0:
|
802 |
+
self.crossattention = Blip2QFormerAttention(config, is_cross_attention=True)
|
803 |
+
self.has_cross_attention = True
|
804 |
+
else:
|
805 |
+
self.has_cross_attention = False
|
806 |
+
|
807 |
+
self.intermediate_query = Blip2QFormerIntermediate(config)
|
808 |
+
self.output_query = Blip2QFormerOutput(config)
|
809 |
+
|
810 |
+
def forward(
|
811 |
+
self,
|
812 |
+
hidden_states,
|
813 |
+
attention_mask=None,
|
814 |
+
head_mask=None,
|
815 |
+
encoder_hidden_states=None,
|
816 |
+
encoder_attention_mask=None,
|
817 |
+
past_key_value=None,
|
818 |
+
output_attentions=False,
|
819 |
+
query_length=0,
|
820 |
+
):
|
821 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
822 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
823 |
+
self_attention_outputs = self.attention(
|
824 |
+
hidden_states,
|
825 |
+
attention_mask,
|
826 |
+
head_mask,
|
827 |
+
output_attentions=output_attentions,
|
828 |
+
past_key_value=self_attn_past_key_value,
|
829 |
+
)
|
830 |
+
attention_output = self_attention_outputs[0]
|
831 |
+
outputs = self_attention_outputs[1:-1]
|
832 |
+
|
833 |
+
present_key_value = self_attention_outputs[-1]
|
834 |
+
|
835 |
+
if query_length > 0:
|
836 |
+
query_attention_output = attention_output[:, :query_length, :]
|
837 |
+
|
838 |
+
if self.has_cross_attention:
|
839 |
+
if encoder_hidden_states is None:
|
840 |
+
raise ValueError("encoder_hidden_states must be given for cross-attention layers")
|
841 |
+
cross_attention_outputs = self.crossattention(
|
842 |
+
query_attention_output,
|
843 |
+
attention_mask,
|
844 |
+
head_mask,
|
845 |
+
encoder_hidden_states,
|
846 |
+
encoder_attention_mask,
|
847 |
+
output_attentions=output_attentions,
|
848 |
+
)
|
849 |
+
query_attention_output = cross_attention_outputs[0]
|
850 |
+
# add cross attentions if we output attention weights
|
851 |
+
outputs = outputs + cross_attention_outputs[1:-1]
|
852 |
+
|
853 |
+
layer_output = apply_chunking_to_forward(
|
854 |
+
self.feed_forward_chunk_query,
|
855 |
+
self.chunk_size_feed_forward,
|
856 |
+
self.seq_len_dim,
|
857 |
+
query_attention_output,
|
858 |
+
)
|
859 |
+
|
860 |
+
if attention_output.shape[1] > query_length:
|
861 |
+
layer_output_text = apply_chunking_to_forward(
|
862 |
+
self.feed_forward_chunk,
|
863 |
+
self.chunk_size_feed_forward,
|
864 |
+
self.seq_len_dim,
|
865 |
+
attention_output[:, query_length:, :],
|
866 |
+
)
|
867 |
+
layer_output = torch.cat([layer_output, layer_output_text], dim=1)
|
868 |
+
else:
|
869 |
+
layer_output = apply_chunking_to_forward(
|
870 |
+
self.feed_forward_chunk,
|
871 |
+
self.chunk_size_feed_forward,
|
872 |
+
self.seq_len_dim,
|
873 |
+
attention_output,
|
874 |
+
)
|
875 |
+
outputs = (layer_output,) + outputs
|
876 |
+
|
877 |
+
outputs = outputs + (present_key_value,)
|
878 |
+
|
879 |
+
return outputs
|
880 |
+
|
881 |
+
def feed_forward_chunk(self, attention_output):
|
882 |
+
intermediate_output = self.intermediate(attention_output)
|
883 |
+
layer_output = self.output(intermediate_output, attention_output)
|
884 |
+
return layer_output
|
885 |
+
|
886 |
+
def feed_forward_chunk_query(self, attention_output):
|
887 |
+
intermediate_output = self.intermediate_query(attention_output)
|
888 |
+
layer_output = self.output_query(intermediate_output, attention_output)
|
889 |
+
return layer_output
|
890 |
+
|
891 |
+
|
892 |
+
class Blip2QFormerEncoder(nn.Module):
|
893 |
+
def __init__(self, config):
|
894 |
+
super().__init__()
|
895 |
+
self.config = config
|
896 |
+
self.layer = nn.ModuleList(
|
897 |
+
[Blip2QFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
898 |
+
)
|
899 |
+
self.gradient_checkpointing = False
|
900 |
+
|
901 |
+
def forward(
|
902 |
+
self,
|
903 |
+
hidden_states,
|
904 |
+
attention_mask=None,
|
905 |
+
head_mask=None,
|
906 |
+
encoder_hidden_states=None,
|
907 |
+
encoder_attention_mask=None,
|
908 |
+
past_key_values=None,
|
909 |
+
use_cache=None,
|
910 |
+
output_attentions=False,
|
911 |
+
output_hidden_states=False,
|
912 |
+
return_dict=True,
|
913 |
+
query_length=0,
|
914 |
+
):
|
915 |
+
all_hidden_states = () if output_hidden_states else None
|
916 |
+
all_self_attentions = () if output_attentions else None
|
917 |
+
all_cross_attentions = () if output_attentions else None
|
918 |
+
|
919 |
+
next_decoder_cache = () if use_cache else None
|
920 |
+
|
921 |
+
for i in range(self.config.num_hidden_layers):
|
922 |
+
layer_module = self.layer[i]
|
923 |
+
if output_hidden_states:
|
924 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
925 |
+
|
926 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
927 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
928 |
+
|
929 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
930 |
+
if use_cache:
|
931 |
+
logger.warning(
|
932 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
933 |
+
)
|
934 |
+
use_cache = False
|
935 |
+
layer_outputs = self._gradient_checkpointing_func(
|
936 |
+
layer_module.__call__,
|
937 |
+
hidden_states,
|
938 |
+
attention_mask,
|
939 |
+
layer_head_mask,
|
940 |
+
encoder_hidden_states,
|
941 |
+
encoder_attention_mask,
|
942 |
+
)
|
943 |
+
else:
|
944 |
+
layer_outputs = layer_module(
|
945 |
+
hidden_states,
|
946 |
+
attention_mask,
|
947 |
+
layer_head_mask,
|
948 |
+
encoder_hidden_states,
|
949 |
+
encoder_attention_mask,
|
950 |
+
past_key_value,
|
951 |
+
output_attentions,
|
952 |
+
query_length,
|
953 |
+
)
|
954 |
+
|
955 |
+
hidden_states = layer_outputs[0]
|
956 |
+
if use_cache:
|
957 |
+
next_decoder_cache += (layer_outputs[-1],)
|
958 |
+
if output_attentions:
|
959 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
960 |
+
if layer_module.has_cross_attention:
|
961 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
962 |
+
|
963 |
+
if output_hidden_states:
|
964 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
965 |
+
|
966 |
+
if not return_dict:
|
967 |
+
return tuple(
|
968 |
+
v
|
969 |
+
for v in [
|
970 |
+
hidden_states,
|
971 |
+
next_decoder_cache,
|
972 |
+
all_hidden_states,
|
973 |
+
all_self_attentions,
|
974 |
+
all_cross_attentions,
|
975 |
+
]
|
976 |
+
if v is not None
|
977 |
+
)
|
978 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
979 |
+
last_hidden_state=hidden_states,
|
980 |
+
past_key_values=next_decoder_cache,
|
981 |
+
hidden_states=all_hidden_states,
|
982 |
+
attentions=all_self_attentions,
|
983 |
+
cross_attentions=all_cross_attentions,
|
984 |
+
)
|
985 |
+
|
986 |
+
|
987 |
+
class Blip2QFormerModel(Blip2PreTrainedModel):
|
988 |
+
"""
|
989 |
+
Querying Transformer (Q-Former), used in BLIP-2.
|
990 |
+
"""
|
991 |
+
|
992 |
+
def __init__(self, config: Blip2QFormerConfig):
|
993 |
+
super().__init__(config)
|
994 |
+
self.config = config
|
995 |
+
|
996 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
997 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
998 |
+
|
999 |
+
self.encoder = Blip2QFormerEncoder(config)
|
1000 |
+
|
1001 |
+
self.post_init()
|
1002 |
+
|
1003 |
+
def get_input_embeddings(self):
|
1004 |
+
return self.embeddings.word_embeddings
|
1005 |
+
|
1006 |
+
def set_input_embeddings(self, value):
|
1007 |
+
self.embeddings.word_embeddings = value
|
1008 |
+
|
1009 |
+
def _prune_heads(self, heads_to_prune):
|
1010 |
+
"""
|
1011 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1012 |
+
class PreTrainedModel
|
1013 |
+
"""
|
1014 |
+
for layer, heads in heads_to_prune.items():
|
1015 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1016 |
+
|
1017 |
+
def get_extended_attention_mask(
|
1018 |
+
self,
|
1019 |
+
attention_mask: torch.Tensor,
|
1020 |
+
input_shape: Tuple[int],
|
1021 |
+
device: torch.device,
|
1022 |
+
has_query: bool = False,
|
1023 |
+
) -> torch.Tensor:
|
1024 |
+
"""
|
1025 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
1026 |
+
|
1027 |
+
Arguments:
|
1028 |
+
attention_mask (`torch.Tensor`):
|
1029 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
1030 |
+
input_shape (`Tuple[int]`):
|
1031 |
+
The shape of the input to the model.
|
1032 |
+
device (`torch.device`):
|
1033 |
+
The device of the input to the model.
|
1034 |
+
|
1035 |
+
Returns:
|
1036 |
+
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
|
1037 |
+
"""
|
1038 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1039 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1040 |
+
if attention_mask.dim() == 3:
|
1041 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
1042 |
+
elif attention_mask.dim() == 2:
|
1043 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
1044 |
+
# - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1045 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
1046 |
+
else:
|
1047 |
+
raise ValueError(
|
1048 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
1049 |
+
input_shape, attention_mask.shape
|
1050 |
+
)
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
1054 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
1055 |
+
# positions we want to attend and -10000.0 for masked positions.
|
1056 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
1057 |
+
# effectively the same as removing these entirely.
|
1058 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
1059 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
1060 |
+
return extended_attention_mask
|
1061 |
+
|
1062 |
+
def forward(
|
1063 |
+
self,
|
1064 |
+
query_embeds: torch.FloatTensor,
|
1065 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1066 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1067 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1068 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1069 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1070 |
+
use_cache: Optional[bool] = None,
|
1071 |
+
output_attentions: Optional[bool] = None,
|
1072 |
+
output_hidden_states: Optional[bool] = None,
|
1073 |
+
return_dict: Optional[bool] = None,
|
1074 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
1075 |
+
r"""
|
1076 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`):
|
1077 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1078 |
+
the model is configured as a decoder.
|
1079 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`):
|
1080 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1081 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1082 |
+
- 1 for tokens that are **not masked**,
|
1083 |
+
- 0 for tokens that are **masked**.
|
1084 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of:
|
1085 |
+
shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and
|
1086 |
+
value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are
|
1087 |
+
used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key
|
1088 |
+
value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape
|
1089 |
+
`(batch_size, sequence_length)`.
|
1090 |
+
use_cache (`bool`, `optional`):
|
1091 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1092 |
+
`past_key_values`).
|
1093 |
+
"""
|
1094 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1095 |
+
output_hidden_states = (
|
1096 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1097 |
+
)
|
1098 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1099 |
+
|
1100 |
+
# past_key_values_length
|
1101 |
+
past_key_values_length = (
|
1102 |
+
past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0
|
1103 |
+
)
|
1104 |
+
|
1105 |
+
query_length = query_embeds.shape[1] if query_embeds is not None else 0
|
1106 |
+
|
1107 |
+
embedding_output = self.layernorm(query_embeds)
|
1108 |
+
embedding_output = self.dropout(embedding_output)
|
1109 |
+
|
1110 |
+
input_shape = embedding_output.size()[:-1]
|
1111 |
+
batch_size, seq_length = input_shape
|
1112 |
+
device = embedding_output.device
|
1113 |
+
|
1114 |
+
if attention_mask is None:
|
1115 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
1116 |
+
|
1117 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1118 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1119 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
1120 |
+
|
1121 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1122 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1123 |
+
if encoder_hidden_states is not None:
|
1124 |
+
if isinstance(encoder_hidden_states, list):
|
1125 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
1126 |
+
else:
|
1127 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
1128 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1129 |
+
|
1130 |
+
if isinstance(encoder_attention_mask, list):
|
1131 |
+
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
1132 |
+
elif encoder_attention_mask is None:
|
1133 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
1134 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1135 |
+
else:
|
1136 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1137 |
+
else:
|
1138 |
+
encoder_extended_attention_mask = None
|
1139 |
+
|
1140 |
+
# Prepare head mask if needed
|
1141 |
+
# 1.0 in head_mask indicate we keep the head
|
1142 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1143 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1144 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1145 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1146 |
+
|
1147 |
+
encoder_outputs = self.encoder(
|
1148 |
+
embedding_output,
|
1149 |
+
attention_mask=extended_attention_mask,
|
1150 |
+
head_mask=head_mask,
|
1151 |
+
encoder_hidden_states=encoder_hidden_states,
|
1152 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1153 |
+
past_key_values=past_key_values,
|
1154 |
+
use_cache=use_cache,
|
1155 |
+
output_attentions=output_attentions,
|
1156 |
+
output_hidden_states=output_hidden_states,
|
1157 |
+
return_dict=return_dict,
|
1158 |
+
query_length=query_length,
|
1159 |
+
)
|
1160 |
+
sequence_output = encoder_outputs[0]
|
1161 |
+
pooled_output = sequence_output[:, 0, :]
|
1162 |
+
|
1163 |
+
if not return_dict:
|
1164 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1165 |
+
|
1166 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1167 |
+
last_hidden_state=sequence_output,
|
1168 |
+
pooler_output=pooled_output,
|
1169 |
+
past_key_values=encoder_outputs.past_key_values,
|
1170 |
+
hidden_states=encoder_outputs.hidden_states,
|
1171 |
+
attentions=encoder_outputs.attentions,
|
1172 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1173 |
+
)
|
1174 |
+
|
1175 |
+
|
1176 |
+
@add_start_docstrings(
|
1177 |
+
"""
|
1178 |
+
BLIP-2 Model for generating text and image features. The model consists of a vision encoder, Querying Transformer
|
1179 |
+
(Q-Former) and a language model.
|
1180 |
+
""",
|
1181 |
+
BLIP_2_START_DOCSTRING,
|
1182 |
+
)
|
1183 |
+
class Blip2Model(Blip2PreTrainedModel):
|
1184 |
+
config_class = Blip2Config
|
1185 |
+
main_input_name = "pixel_values"
|
1186 |
+
|
1187 |
+
def __init__(self, config: Blip2Config):
|
1188 |
+
super().__init__(config)
|
1189 |
+
|
1190 |
+
self.vision_model = Blip2VisionModel(config.vision_config)
|
1191 |
+
|
1192 |
+
self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size))
|
1193 |
+
self.qformer = Blip2QFormerModel(config.qformer_config)
|
1194 |
+
|
1195 |
+
self.language_projection = nn.Linear(config.qformer_config.hidden_size, config.text_config.hidden_size)
|
1196 |
+
if config.use_decoder_only_language_model:
|
1197 |
+
language_model = AutoModelForCausalLM.from_config(config.text_config)
|
1198 |
+
else:
|
1199 |
+
language_model = AutoModelForSeq2SeqLM.from_config(config.text_config)
|
1200 |
+
|
1201 |
+
# Update _tied_weights_keys using the base model used.
|
1202 |
+
if language_model._tied_weights_keys is not None:
|
1203 |
+
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
|
1204 |
+
|
1205 |
+
self.language_model = language_model
|
1206 |
+
|
1207 |
+
# Initialize weights and apply final processing
|
1208 |
+
self.post_init()
|
1209 |
+
|
1210 |
+
def get_input_embeddings(self):
|
1211 |
+
return self.language_model.get_input_embeddings()
|
1212 |
+
|
1213 |
+
def set_input_embeddings(self, value):
|
1214 |
+
self.language_model.set_input_embeddings(value)
|
1215 |
+
|
1216 |
+
def set_output_embeddings(self, new_embeddings):
|
1217 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
1218 |
+
|
1219 |
+
def get_output_embeddings(self) -> nn.Module:
|
1220 |
+
return self.language_model.get_output_embeddings()
|
1221 |
+
|
1222 |
+
def get_encoder(self):
|
1223 |
+
return self.language_model.get_encoder()
|
1224 |
+
|
1225 |
+
def get_decoder(self):
|
1226 |
+
return self.language_model.get_decoder()
|
1227 |
+
|
1228 |
+
def _tie_weights(self):
|
1229 |
+
if not self.config.use_decoder_only_language_model:
|
1230 |
+
self.language_model.encoder.embed_tokens = self.language_model.shared
|
1231 |
+
self.language_model.decoder.embed_tokens = self.language_model.shared
|
1232 |
+
|
1233 |
+
@add_start_docstrings_to_model_forward(BLIP_2_TEXT_INPUTS_DOCSTRING)
|
1234 |
+
def get_text_features(
|
1235 |
+
self,
|
1236 |
+
input_ids: Optional[torch.Tensor] = None,
|
1237 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1238 |
+
decoder_input_ids: Optional[torch.Tensor] = None,
|
1239 |
+
decoder_attention_mask: Optional[torch.Tensor] = None,
|
1240 |
+
labels: Optional[torch.Tensor] = None,
|
1241 |
+
output_attentions: Optional[bool] = None,
|
1242 |
+
output_hidden_states: Optional[bool] = None,
|
1243 |
+
return_dict: Optional[bool] = None,
|
1244 |
+
):
|
1245 |
+
r"""
|
1246 |
+
Returns:
|
1247 |
+
text_outputs (`CausalLMOutputWithPast`, or `tuple(torch.FloatTensor)` if `return_dict=False`):
|
1248 |
+
The language model outputs. If `return_dict=True`, the output is a [`CausalLMOutputWithPast`] that
|
1249 |
+
contains the language model logits, the past key values and the hidden states if
|
1250 |
+
`output_hidden_states=True`.
|
1251 |
+
Examples:
|
1252 |
+
```python
|
1253 |
+
>>> import torch
|
1254 |
+
>>> from transformers import AutoTokenizer, Blip2Model
|
1255 |
+
|
1256 |
+
>>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b")
|
1257 |
+
|
1258 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/blip2-opt-2.7b")
|
1259 |
+
>>> inputs = tokenizer(["a photo of a cat"], padding=True, return_tensors="pt")
|
1260 |
+
>>> text_features = model.get_text_features(**inputs)
|
1261 |
+
```"""
|
1262 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1263 |
+
output_hidden_states = (
|
1264 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1265 |
+
)
|
1266 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1267 |
+
|
1268 |
+
if self.config.use_decoder_only_language_model:
|
1269 |
+
text_outputs = self.language_model(
|
1270 |
+
input_ids=input_ids,
|
1271 |
+
attention_mask=attention_mask,
|
1272 |
+
output_attentions=output_attentions,
|
1273 |
+
output_hidden_states=output_hidden_states,
|
1274 |
+
return_dict=return_dict,
|
1275 |
+
)
|
1276 |
+
else:
|
1277 |
+
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
|
1278 |
+
|
1279 |
+
text_outputs = self.language_model(
|
1280 |
+
inputs_embeds=inputs_embeds,
|
1281 |
+
attention_mask=attention_mask,
|
1282 |
+
decoder_input_ids=decoder_input_ids,
|
1283 |
+
decoder_attention_mask=decoder_attention_mask,
|
1284 |
+
output_attentions=output_attentions,
|
1285 |
+
output_hidden_states=output_hidden_states,
|
1286 |
+
return_dict=return_dict,
|
1287 |
+
labels=labels,
|
1288 |
+
)
|
1289 |
+
|
1290 |
+
return text_outputs
|
1291 |
+
|
1292 |
+
@add_start_docstrings_to_model_forward(BLIP_2_VISION_INPUTS_DOCSTRING)
|
1293 |
+
def get_image_features(
|
1294 |
+
self,
|
1295 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1296 |
+
output_attentions: Optional[bool] = None,
|
1297 |
+
output_hidden_states: Optional[bool] = None,
|
1298 |
+
return_dict: Optional[bool] = None,
|
1299 |
+
):
|
1300 |
+
r"""
|
1301 |
+
Returns:
|
1302 |
+
vision_outputs (`BaseModelOutputWithPooling` or tuple of `torch.FloatTensor`):
|
1303 |
+
The vision model outputs. If `return_dict=True`, the output is a [`BaseModelOutputWithPooling`] that
|
1304 |
+
contains the image features, the pooled image features and the hidden states if
|
1305 |
+
`output_hidden_states=True`.
|
1306 |
+
Examples:
|
1307 |
+
```python
|
1308 |
+
>>> import torch
|
1309 |
+
>>> from PIL import Image
|
1310 |
+
>>> import requests
|
1311 |
+
>>> from transformers import AutoProcessor, Blip2Model
|
1312 |
+
|
1313 |
+
>>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b")
|
1314 |
+
|
1315 |
+
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
1316 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1317 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1318 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1319 |
+
>>> image_outputs = model.get_image_features(**inputs)
|
1320 |
+
```"""
|
1321 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1322 |
+
output_hidden_states = (
|
1323 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1324 |
+
)
|
1325 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1326 |
+
|
1327 |
+
vision_outputs = self.vision_model(
|
1328 |
+
pixel_values=pixel_values,
|
1329 |
+
output_attentions=output_attentions,
|
1330 |
+
output_hidden_states=output_hidden_states,
|
1331 |
+
return_dict=return_dict,
|
1332 |
+
)
|
1333 |
+
|
1334 |
+
return vision_outputs
|
1335 |
+
|
1336 |
+
@add_start_docstrings_to_model_forward(BLIP_2_INPUTS_DOCSTRING)
|
1337 |
+
def get_qformer_features(
|
1338 |
+
self,
|
1339 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1340 |
+
output_attentions: Optional[bool] = None,
|
1341 |
+
output_hidden_states: Optional[bool] = None,
|
1342 |
+
return_dict: Optional[bool] = None,
|
1343 |
+
):
|
1344 |
+
r"""
|
1345 |
+
Returns:
|
1346 |
+
vision_outputs (`BaseModelOutputWithPooling` or tuple of `torch.FloatTensor`):
|
1347 |
+
The vision model outputs. If `return_dict=True`, the output is a [`BaseModelOutputWithPooling`] that
|
1348 |
+
contains the image features, the pooled image features and the hidden states if
|
1349 |
+
`output_hidden_states=True`.
|
1350 |
+
Examples:
|
1351 |
+
```python
|
1352 |
+
>>> import torch
|
1353 |
+
>>> from PIL import Image
|
1354 |
+
>>> import requests
|
1355 |
+
>>> from transformers import Blip2Processor, Blip2Model
|
1356 |
+
|
1357 |
+
>>> processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
1358 |
+
>>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b")
|
1359 |
+
|
1360 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1361 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1362 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1363 |
+
>>> qformer_outputs = model.get_qformer_features(**inputs)
|
1364 |
+
```"""
|
1365 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1366 |
+
output_hidden_states = (
|
1367 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1368 |
+
)
|
1369 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1370 |
+
|
1371 |
+
vision_outputs = self.vision_model(
|
1372 |
+
pixel_values=pixel_values,
|
1373 |
+
output_attentions=output_attentions,
|
1374 |
+
output_hidden_states=output_hidden_states,
|
1375 |
+
return_dict=return_dict,
|
1376 |
+
)
|
1377 |
+
|
1378 |
+
image_embeds = vision_outputs[0]
|
1379 |
+
|
1380 |
+
# step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
|
1381 |
+
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
|
1382 |
+
|
1383 |
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
1384 |
+
query_outputs = self.qformer(
|
1385 |
+
query_embeds=query_tokens,
|
1386 |
+
encoder_hidden_states=image_embeds,
|
1387 |
+
encoder_attention_mask=image_attention_mask,
|
1388 |
+
output_attentions=output_attentions,
|
1389 |
+
output_hidden_states=output_hidden_states,
|
1390 |
+
return_dict=return_dict,
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
return query_outputs
|
1394 |
+
|
1395 |
+
@add_start_docstrings_to_model_forward(BLIP_2_INPUTS_DOCSTRING)
|
1396 |
+
@replace_return_docstrings(output_type=Blip2ForConditionalGenerationModelOutput, config_class=Blip2VisionConfig)
|
1397 |
+
def forward(
|
1398 |
+
self,
|
1399 |
+
pixel_values: torch.FloatTensor,
|
1400 |
+
input_ids: torch.FloatTensor,
|
1401 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1402 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1403 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1404 |
+
output_attentions: Optional[bool] = None,
|
1405 |
+
output_hidden_states: Optional[bool] = None,
|
1406 |
+
labels: Optional[torch.LongTensor] = None,
|
1407 |
+
return_dict: Optional[bool] = None,
|
1408 |
+
) -> Union[Tuple, Blip2ForConditionalGenerationModelOutput]:
|
1409 |
+
r"""
|
1410 |
+
Returns:
|
1411 |
+
|
1412 |
+
Examples:
|
1413 |
+
|
1414 |
+
```python
|
1415 |
+
>>> from PIL import Image
|
1416 |
+
>>> import requests
|
1417 |
+
>>> from transformers import Blip2Processor, Blip2Model
|
1418 |
+
>>> import torch
|
1419 |
+
|
1420 |
+
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
|
1421 |
+
|
1422 |
+
>>> processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
1423 |
+
>>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
|
1424 |
+
>>> model.to(device) # doctest: +IGNORE_RESULT
|
1425 |
+
|
1426 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1427 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1428 |
+
|
1429 |
+
>>> prompt = "Question: how many cats are there? Answer:"
|
1430 |
+
>>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16)
|
1431 |
+
|
1432 |
+
>>> outputs = model(**inputs)
|
1433 |
+
```"""
|
1434 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1435 |
+
|
1436 |
+
# step 1: forward the images through the vision encoder,
|
1437 |
+
# to get image embeddings of shape (batch_size, seq_len, hidden_size)
|
1438 |
+
vision_outputs = self.vision_model(
|
1439 |
+
pixel_values=pixel_values,
|
1440 |
+
output_attentions=output_attentions,
|
1441 |
+
output_hidden_states=output_hidden_states,
|
1442 |
+
return_dict=return_dict,
|
1443 |
+
)
|
1444 |
+
image_embeds = vision_outputs[0]
|
1445 |
+
|
1446 |
+
# step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
|
1447 |
+
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
|
1448 |
+
|
1449 |
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
1450 |
+
query_outputs = self.qformer(
|
1451 |
+
query_embeds=query_tokens,
|
1452 |
+
encoder_hidden_states=image_embeds,
|
1453 |
+
encoder_attention_mask=image_attention_mask,
|
1454 |
+
output_attentions=output_attentions,
|
1455 |
+
output_hidden_states=output_hidden_states,
|
1456 |
+
return_dict=return_dict,
|
1457 |
+
)
|
1458 |
+
query_output = query_outputs[0]
|
1459 |
+
|
1460 |
+
# step 3: use the language model, conditioned on the query outputs and the prompt
|
1461 |
+
language_model_inputs = self.language_projection(query_output)
|
1462 |
+
language_model_attention_mask = torch.ones(
|
1463 |
+
language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device
|
1464 |
+
)
|
1465 |
+
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
|
1466 |
+
inputs_embeds = torch.cat([language_model_inputs, inputs_embeds], dim=1)
|
1467 |
+
|
1468 |
+
if attention_mask is None:
|
1469 |
+
attention_mask = torch.ones_like(input_ids)
|
1470 |
+
expected_device = language_model_attention_mask.device
|
1471 |
+
attention_mask = torch.cat([language_model_attention_mask, attention_mask.to(expected_device)], dim=1)
|
1472 |
+
|
1473 |
+
if self.config.use_decoder_only_language_model:
|
1474 |
+
outputs = self.language_model(
|
1475 |
+
inputs_embeds=inputs_embeds,
|
1476 |
+
attention_mask=attention_mask,
|
1477 |
+
output_attentions=output_attentions,
|
1478 |
+
output_hidden_states=output_hidden_states,
|
1479 |
+
return_dict=return_dict,
|
1480 |
+
)
|
1481 |
+
logits = outputs.logits if return_dict else outputs[0]
|
1482 |
+
loss = None
|
1483 |
+
# we compute the loss here since we need to take into account the sequence length of the query embeds
|
1484 |
+
if labels is not None:
|
1485 |
+
labels = labels.to(logits.device)
|
1486 |
+
logits = logits[:, -labels.size(1) :, :]
|
1487 |
+
# Shift so that tokens < n predict n
|
1488 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1489 |
+
shift_labels = labels[..., 1:].contiguous().to(logits.device)
|
1490 |
+
|
1491 |
+
# Flatten the tokens
|
1492 |
+
loss_fct = CrossEntropyLoss(reduction="mean")
|
1493 |
+
|
1494 |
+
loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1))
|
1495 |
+
else:
|
1496 |
+
outputs = self.language_model(
|
1497 |
+
inputs_embeds=inputs_embeds,
|
1498 |
+
attention_mask=attention_mask,
|
1499 |
+
decoder_input_ids=decoder_input_ids,
|
1500 |
+
decoder_attention_mask=decoder_attention_mask,
|
1501 |
+
output_attentions=output_attentions,
|
1502 |
+
output_hidden_states=output_hidden_states,
|
1503 |
+
return_dict=return_dict,
|
1504 |
+
labels=labels,
|
1505 |
+
)
|
1506 |
+
loss = outputs.loss if return_dict else outputs[0]
|
1507 |
+
logits = outputs.logits if return_dict else outputs[1]
|
1508 |
+
|
1509 |
+
if not return_dict:
|
1510 |
+
output = (logits, vision_outputs, query_outputs, outputs)
|
1511 |
+
return ((loss,) + output) if loss is not None else output
|
1512 |
+
|
1513 |
+
return Blip2ForConditionalGenerationModelOutput(
|
1514 |
+
loss=loss,
|
1515 |
+
logits=logits,
|
1516 |
+
vision_outputs=vision_outputs,
|
1517 |
+
qformer_outputs=query_outputs,
|
1518 |
+
language_model_outputs=outputs,
|
1519 |
+
)
|
1520 |
+
|
1521 |
+
|
1522 |
+
@add_start_docstrings(
|
1523 |
+
"""
|
1524 |
+
BLIP-2 Model for generating text given an image and an optional text prompt. The model consists of a vision
|
1525 |
+
encoder, Querying Transformer (Q-Former) and a language model.
|
1526 |
+
|
1527 |
+
One can optionally pass `input_ids` to the model, which serve as a text prompt, to make the language model continue
|
1528 |
+
the prompt. Otherwise, the language model starts generating text from the [BOS] (beginning-of-sequence) token.
|
1529 |
+
|
1530 |
+
<Tip>
|
1531 |
+
|
1532 |
+
Note that Flan-T5 checkpoints cannot be cast to float16. They are pre-trained using bfloat16.
|
1533 |
+
|
1534 |
+
</Tip>
|
1535 |
+
""",
|
1536 |
+
BLIP_2_START_DOCSTRING,
|
1537 |
+
)
|
1538 |
+
class Blip2ForConditionalGeneration(Blip2PreTrainedModel):
|
1539 |
+
config_class = Blip2Config
|
1540 |
+
main_input_name = "pixel_values"
|
1541 |
+
|
1542 |
+
def __init__(self, config: Blip2Config):
|
1543 |
+
super().__init__(config)
|
1544 |
+
|
1545 |
+
self.vision_model = Blip2VisionModel(config.vision_config)
|
1546 |
+
|
1547 |
+
self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size))
|
1548 |
+
self.qformer = Blip2QFormerModel(config.qformer_config)
|
1549 |
+
|
1550 |
+
self.language_projection = nn.Linear(config.qformer_config.hidden_size, config.text_config.hidden_size)
|
1551 |
+
if config.use_decoder_only_language_model:
|
1552 |
+
language_model = AutoModelForCausalLM.from_config(config.text_config)
|
1553 |
+
else:
|
1554 |
+
language_model = AutoModelForSeq2SeqLM.from_config(config.text_config)
|
1555 |
+
|
1556 |
+
# Update _tied_weights_keys using the base model used.
|
1557 |
+
if language_model._tied_weights_keys is not None:
|
1558 |
+
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
|
1559 |
+
|
1560 |
+
self.language_model = language_model
|
1561 |
+
|
1562 |
+
# Initialize weights and apply final processing
|
1563 |
+
self.post_init()
|
1564 |
+
|
1565 |
+
def get_input_embeddings(self):
|
1566 |
+
return self.language_model.get_input_embeddings()
|
1567 |
+
|
1568 |
+
def set_input_embeddings(self, value):
|
1569 |
+
self.language_model.set_input_embeddings(value)
|
1570 |
+
|
1571 |
+
def set_output_embeddings(self, new_embeddings):
|
1572 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
1573 |
+
|
1574 |
+
def get_output_embeddings(self) -> nn.Module:
|
1575 |
+
return self.language_model.get_output_embeddings()
|
1576 |
+
|
1577 |
+
def get_encoder(self):
|
1578 |
+
return self.language_model.get_encoder()
|
1579 |
+
|
1580 |
+
def get_decoder(self):
|
1581 |
+
return self.language_model.get_decoder()
|
1582 |
+
|
1583 |
+
def _tie_weights(self):
|
1584 |
+
if not self.config.use_decoder_only_language_model:
|
1585 |
+
self.language_model.encoder.embed_tokens = self.language_model.shared
|
1586 |
+
self.language_model.decoder.embed_tokens = self.language_model.shared
|
1587 |
+
|
1588 |
+
def _preprocess_accelerate(self):
|
1589 |
+
r"""
|
1590 |
+
Some pre-processing hacks to make the model `accelerate` compatible. Check
|
1591 |
+
https://github.com/huggingface/transformers/pull/21707 for more details.
|
1592 |
+
"""
|
1593 |
+
hf_device_map = self.hf_device_map
|
1594 |
+
|
1595 |
+
if len(hf_device_map) > 1 and "language_model" not in hf_device_map and torch.cuda.device_count() > 1:
|
1596 |
+
# warn users about unexpected behavior when using multi-GPU + BLIP-2 + `accelerate`.
|
1597 |
+
logger.warning(
|
1598 |
+
"The `language_model` is not in the `hf_device_map` dictionary and you are running your script"
|
1599 |
+
" in a multi-GPU environment. this may lead to unexpected behavior when using `accelerate`."
|
1600 |
+
" Please pass a `device_map` that contains `language_model` to remove this warning."
|
1601 |
+
" Please refer to https://github.com/huggingface/blog/blob/main/accelerate-large-models.md for"
|
1602 |
+
" more details on creating a `device_map` for large models.",
|
1603 |
+
)
|
1604 |
+
|
1605 |
+
if hasattr(self.language_model, "_hf_hook"):
|
1606 |
+
self.language_model._hf_hook.io_same_device = True # For `generate` compatibility
|
1607 |
+
|
1608 |
+
@add_start_docstrings_to_model_forward(BLIP_2_INPUTS_DOCSTRING)
|
1609 |
+
@replace_return_docstrings(output_type=Blip2ForConditionalGenerationModelOutput, config_class=Blip2VisionConfig)
|
1610 |
+
def forward(
|
1611 |
+
self,
|
1612 |
+
pixel_values: torch.FloatTensor,
|
1613 |
+
input_ids: torch.FloatTensor,
|
1614 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1615 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1616 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1617 |
+
output_attentions: Optional[bool] = None,
|
1618 |
+
output_hidden_states: Optional[bool] = None,
|
1619 |
+
labels: Optional[torch.LongTensor] = None,
|
1620 |
+
return_dict: Optional[bool] = None,
|
1621 |
+
) -> Union[Tuple, Blip2ForConditionalGenerationModelOutput]:
|
1622 |
+
r"""
|
1623 |
+
Returns:
|
1624 |
+
|
1625 |
+
Examples:
|
1626 |
+
|
1627 |
+
Prepare processor, model and image input
|
1628 |
+
|
1629 |
+
```python
|
1630 |
+
>>> from PIL import Image
|
1631 |
+
>>> import requests
|
1632 |
+
>>> from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
1633 |
+
>>> import torch
|
1634 |
+
|
1635 |
+
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
|
1636 |
+
|
1637 |
+
>>> processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
1638 |
+
>>> model = Blip2ForConditionalGeneration.from_pretrained(
|
1639 |
+
... "Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map={"": 0}, torch_dtype=torch.float16
|
1640 |
+
... ) # doctest: +IGNORE_RESULT
|
1641 |
+
|
1642 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1643 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1644 |
+
```
|
1645 |
+
|
1646 |
+
Image captioning (without providing a text prompt):
|
1647 |
+
|
1648 |
+
```python
|
1649 |
+
>>> inputs = processor(images=image, return_tensors="pt").to(device, torch.float16)
|
1650 |
+
|
1651 |
+
>>> generated_ids = model.generate(**inputs)
|
1652 |
+
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
1653 |
+
>>> print(generated_text)
|
1654 |
+
two cats laying on a couch
|
1655 |
+
```
|
1656 |
+
|
1657 |
+
Visual question answering (prompt = question):
|
1658 |
+
|
1659 |
+
```python
|
1660 |
+
>>> prompt = "Question: how many cats are there? Answer:"
|
1661 |
+
>>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device="cuda", dtype=torch.float16)
|
1662 |
+
|
1663 |
+
>>> generated_ids = model.generate(**inputs)
|
1664 |
+
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
1665 |
+
>>> print(generated_text)
|
1666 |
+
two
|
1667 |
+
```
|
1668 |
+
|
1669 |
+
Note that int8 inference is also supported through [bitsandbytes](https://github.com/TimDettmers/bitsandbytes).
|
1670 |
+
This greatly reduces the amount of memory used by the model while maintaining the same performance.
|
1671 |
+
|
1672 |
+
```python
|
1673 |
+
>>> model = Blip2ForConditionalGeneration.from_pretrained(
|
1674 |
+
... "Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map={"": 0}, torch_dtype=torch.bfloat16
|
1675 |
+
... ) # doctest: +IGNORE_RESULT
|
1676 |
+
|
1677 |
+
>>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device="cuda", dtype=torch.bfloat16)
|
1678 |
+
|
1679 |
+
>>> generated_ids = model.generate(**inputs)
|
1680 |
+
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
1681 |
+
>>> print(generated_text)
|
1682 |
+
two
|
1683 |
+
```"""
|
1684 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1685 |
+
|
1686 |
+
# step 1: forward the images through the vision encoder,
|
1687 |
+
# to get image embeddings of shape (batch_size, seq_len, hidden_size)
|
1688 |
+
vision_outputs = self.vision_model(
|
1689 |
+
pixel_values=pixel_values,
|
1690 |
+
output_attentions=output_attentions,
|
1691 |
+
output_hidden_states=output_hidden_states,
|
1692 |
+
return_dict=return_dict,
|
1693 |
+
)
|
1694 |
+
image_embeds = vision_outputs[0]
|
1695 |
+
|
1696 |
+
# step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
|
1697 |
+
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
|
1698 |
+
|
1699 |
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
1700 |
+
query_outputs = self.qformer(
|
1701 |
+
query_embeds=query_tokens,
|
1702 |
+
encoder_hidden_states=image_embeds,
|
1703 |
+
encoder_attention_mask=image_attention_mask,
|
1704 |
+
output_attentions=output_attentions,
|
1705 |
+
output_hidden_states=output_hidden_states,
|
1706 |
+
return_dict=return_dict,
|
1707 |
+
)
|
1708 |
+
query_output = query_outputs[0]
|
1709 |
+
|
1710 |
+
# step 3: use the language model, conditioned on the query outputs and the prompt
|
1711 |
+
language_model_inputs = self.language_projection(query_output)
|
1712 |
+
language_model_attention_mask = torch.ones(
|
1713 |
+
language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device
|
1714 |
+
)
|
1715 |
+
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
|
1716 |
+
inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1)
|
1717 |
+
|
1718 |
+
if attention_mask is None:
|
1719 |
+
attention_mask = torch.ones_like(input_ids)
|
1720 |
+
expected_device = language_model_attention_mask.device
|
1721 |
+
attention_mask = torch.cat([language_model_attention_mask, attention_mask.to(expected_device)], dim=1)
|
1722 |
+
|
1723 |
+
if self.config.use_decoder_only_language_model:
|
1724 |
+
outputs = self.language_model(
|
1725 |
+
inputs_embeds=inputs_embeds,
|
1726 |
+
attention_mask=attention_mask,
|
1727 |
+
output_attentions=output_attentions,
|
1728 |
+
output_hidden_states=output_hidden_states,
|
1729 |
+
return_dict=return_dict,
|
1730 |
+
)
|
1731 |
+
logits = outputs.logits if return_dict else outputs[0]
|
1732 |
+
loss = None
|
1733 |
+
# we compute the loss here since we need to take into account the sequence length of the query embeds
|
1734 |
+
if labels is not None:
|
1735 |
+
labels = labels.to(logits.device)
|
1736 |
+
logits = logits[:, -labels.size(1) :, :]
|
1737 |
+
# Shift so that tokens < n predict n
|
1738 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1739 |
+
shift_labels = labels[..., 1:].contiguous().to(logits.device)
|
1740 |
+
|
1741 |
+
# Flatten the tokens
|
1742 |
+
loss_fct = CrossEntropyLoss(reduction="mean")
|
1743 |
+
|
1744 |
+
loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1))
|
1745 |
+
else:
|
1746 |
+
outputs = self.language_model(
|
1747 |
+
inputs_embeds=inputs_embeds,
|
1748 |
+
attention_mask=attention_mask,
|
1749 |
+
decoder_input_ids=decoder_input_ids,
|
1750 |
+
decoder_attention_mask=decoder_attention_mask,
|
1751 |
+
output_attentions=output_attentions,
|
1752 |
+
output_hidden_states=output_hidden_states,
|
1753 |
+
return_dict=return_dict,
|
1754 |
+
labels=labels,
|
1755 |
+
)
|
1756 |
+
loss = outputs.loss if return_dict else outputs[0]
|
1757 |
+
logits = outputs.logits if return_dict else outputs[1]
|
1758 |
+
|
1759 |
+
if not return_dict:
|
1760 |
+
output = (logits, vision_outputs, query_outputs, outputs)
|
1761 |
+
return ((loss,) + output) if loss is not None else output
|
1762 |
+
|
1763 |
+
return Blip2ForConditionalGenerationModelOutput(
|
1764 |
+
loss=loss,
|
1765 |
+
logits=logits,
|
1766 |
+
vision_outputs=vision_outputs,
|
1767 |
+
qformer_outputs=query_outputs,
|
1768 |
+
language_model_outputs=outputs,
|
1769 |
+
)
|
1770 |
+
|
1771 |
+
@torch.no_grad()
|
1772 |
+
def generate(
|
1773 |
+
self,
|
1774 |
+
pixel_values: torch.FloatTensor,
|
1775 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1776 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
1777 |
+
**generate_kwargs,
|
1778 |
+
) -> torch.LongTensor:
|
1779 |
+
"""
|
1780 |
+
Overrides `generate` function to be able to use the model as a conditional generator.
|
1781 |
+
|
1782 |
+
Args:
|
1783 |
+
pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width)):
|
1784 |
+
Input images to be processed.
|
1785 |
+
input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
|
1786 |
+
The sequence used as a prompt for the generation.
|
1787 |
+
attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
|
1788 |
+
Mask to avoid performing attention on padding token indices
|
1789 |
+
|
1790 |
+
Returns:
|
1791 |
+
captions (list): A list of strings of length batch_size * num_captions.
|
1792 |
+
"""
|
1793 |
+
if hasattr(self, "hf_device_map"):
|
1794 |
+
# preprocess for `accelerate`
|
1795 |
+
self._preprocess_accelerate()
|
1796 |
+
|
1797 |
+
batch_size = pixel_values.shape[0]
|
1798 |
+
image_embeds = self.vision_model(pixel_values, return_dict=True).last_hidden_state
|
1799 |
+
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
|
1800 |
+
|
1801 |
+
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
1802 |
+
query_outputs = self.qformer(
|
1803 |
+
query_embeds=query_tokens,
|
1804 |
+
encoder_hidden_states=image_embeds,
|
1805 |
+
encoder_attention_mask=image_attention_mask,
|
1806 |
+
return_dict=True,
|
1807 |
+
)
|
1808 |
+
query_output = query_outputs.last_hidden_state
|
1809 |
+
|
1810 |
+
language_model_inputs = self.language_projection(query_output)
|
1811 |
+
language_attention_mask = torch.ones(
|
1812 |
+
language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device
|
1813 |
+
)
|
1814 |
+
if input_ids is None:
|
1815 |
+
input_ids = (
|
1816 |
+
torch.LongTensor([[self.config.text_config.bos_token_id]])
|
1817 |
+
.repeat(batch_size, 1)
|
1818 |
+
.to(image_embeds.device)
|
1819 |
+
)
|
1820 |
+
if attention_mask is None:
|
1821 |
+
attention_mask = torch.ones_like(input_ids)
|
1822 |
+
attention_mask = torch.cat([language_attention_mask, attention_mask.to(language_attention_mask.device)], dim=1)
|
1823 |
+
|
1824 |
+
# concatenate query embeddings with prompt embeddings
|
1825 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
1826 |
+
inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1)
|
1827 |
+
|
1828 |
+
# add image_embeds length to max_length, so that the final max_length in counted only on token embeds
|
1829 |
+
# -1 is to account for the prepended BOS after `generate.`
|
1830 |
+
# TODO (joao, raushan): refactor `generate` to avoid these operations with VLMs
|
1831 |
+
if not self.language_model.config.is_encoder_decoder:
|
1832 |
+
generate_kwargs["max_length"] = generate_kwargs.get("max_length", 20) + language_model_inputs.shape[1] - 1
|
1833 |
+
generate_kwargs["min_length"] = generate_kwargs.get("min_length", 0) + language_model_inputs.shape[1]
|
1834 |
+
|
1835 |
+
outputs = self.language_model.generate(
|
1836 |
+
inputs_embeds=inputs_embeds,
|
1837 |
+
attention_mask=attention_mask,
|
1838 |
+
**generate_kwargs,
|
1839 |
+
)
|
1840 |
+
|
1841 |
+
# this is a temporary workaround to be consistent with other generation models and
|
1842 |
+
# have BOS as the first token, even though under the hood we are calling LM with embeds
|
1843 |
+
if not self.language_model.config.is_encoder_decoder:
|
1844 |
+
bos_tokens = (
|
1845 |
+
torch.LongTensor([[self.config.text_config.bos_token_id]])
|
1846 |
+
.repeat(batch_size, 1)
|
1847 |
+
.to(image_embeds.device)
|
1848 |
+
)
|
1849 |
+
if not isinstance(outputs, torch.Tensor):
|
1850 |
+
outputs.sequences = torch.cat([bos_tokens, outputs.sequences], dim=-1)
|
1851 |
+
else:
|
1852 |
+
outputs = torch.cat([bos_tokens, outputs], dim=-1)
|
1853 |
+
return outputs
|
llmeval-env/lib/python3.10/site-packages/transformers/models/blip_2/processing_blip_2.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for BLIP-2.
|
17 |
+
"""
|
18 |
+
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
from ...image_utils import ImageInput
|
22 |
+
from ...processing_utils import ProcessorMixin
|
23 |
+
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
24 |
+
from ...utils import TensorType
|
25 |
+
|
26 |
+
|
27 |
+
class Blip2Processor(ProcessorMixin):
|
28 |
+
r"""
|
29 |
+
Constructs a BLIP-2 processor which wraps a BLIP image processor and an OPT/T5 tokenizer into a single processor.
|
30 |
+
|
31 |
+
[`BlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`AutoTokenizer`]. See the docstring
|
32 |
+
of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
image_processor (`BlipImageProcessor`):
|
36 |
+
An instance of [`BlipImageProcessor`]. The image processor is a required input.
|
37 |
+
tokenizer (`AutoTokenizer`):
|
38 |
+
An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input.
|
39 |
+
"""
|
40 |
+
|
41 |
+
attributes = ["image_processor", "tokenizer"]
|
42 |
+
image_processor_class = "BlipImageProcessor"
|
43 |
+
tokenizer_class = "AutoTokenizer"
|
44 |
+
|
45 |
+
# Copied from transformers.models.blip.processing_blip.BlipProcessor.__init__
|
46 |
+
def __init__(self, image_processor, tokenizer):
|
47 |
+
tokenizer.return_token_type_ids = False
|
48 |
+
super().__init__(image_processor, tokenizer)
|
49 |
+
self.current_processor = self.image_processor
|
50 |
+
|
51 |
+
# Copied from transformers.models.blip.processing_blip.BlipProcessor.__call__
|
52 |
+
def __call__(
|
53 |
+
self,
|
54 |
+
images: ImageInput = None,
|
55 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
56 |
+
add_special_tokens: bool = True,
|
57 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
58 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
59 |
+
max_length: Optional[int] = None,
|
60 |
+
stride: int = 0,
|
61 |
+
pad_to_multiple_of: Optional[int] = None,
|
62 |
+
return_attention_mask: Optional[bool] = None,
|
63 |
+
return_overflowing_tokens: bool = False,
|
64 |
+
return_special_tokens_mask: bool = False,
|
65 |
+
return_offsets_mapping: bool = False,
|
66 |
+
return_token_type_ids: bool = False,
|
67 |
+
return_length: bool = False,
|
68 |
+
verbose: bool = True,
|
69 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
70 |
+
**kwargs,
|
71 |
+
) -> BatchEncoding:
|
72 |
+
"""
|
73 |
+
This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and
|
74 |
+
[`BertTokenizerFast.__call__`] to prepare text for the model.
|
75 |
+
|
76 |
+
Please refer to the docstring of the above two methods for more information.
|
77 |
+
"""
|
78 |
+
if images is None and text is None:
|
79 |
+
raise ValueError("You have to specify either images or text.")
|
80 |
+
|
81 |
+
# Get only text
|
82 |
+
if images is None:
|
83 |
+
self.current_processor = self.tokenizer
|
84 |
+
text_encoding = self.tokenizer(
|
85 |
+
text=text,
|
86 |
+
add_special_tokens=add_special_tokens,
|
87 |
+
padding=padding,
|
88 |
+
truncation=truncation,
|
89 |
+
max_length=max_length,
|
90 |
+
stride=stride,
|
91 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
92 |
+
return_attention_mask=return_attention_mask,
|
93 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
94 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
95 |
+
return_offsets_mapping=return_offsets_mapping,
|
96 |
+
return_token_type_ids=return_token_type_ids,
|
97 |
+
return_length=return_length,
|
98 |
+
verbose=verbose,
|
99 |
+
return_tensors=return_tensors,
|
100 |
+
**kwargs,
|
101 |
+
)
|
102 |
+
return text_encoding
|
103 |
+
|
104 |
+
# add pixel_values
|
105 |
+
encoding_image_processor = self.image_processor(images, return_tensors=return_tensors)
|
106 |
+
|
107 |
+
if text is not None:
|
108 |
+
text_encoding = self.tokenizer(
|
109 |
+
text=text,
|
110 |
+
add_special_tokens=add_special_tokens,
|
111 |
+
padding=padding,
|
112 |
+
truncation=truncation,
|
113 |
+
max_length=max_length,
|
114 |
+
stride=stride,
|
115 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
116 |
+
return_attention_mask=return_attention_mask,
|
117 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
118 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
119 |
+
return_offsets_mapping=return_offsets_mapping,
|
120 |
+
return_token_type_ids=return_token_type_ids,
|
121 |
+
return_length=return_length,
|
122 |
+
verbose=verbose,
|
123 |
+
return_tensors=return_tensors,
|
124 |
+
**kwargs,
|
125 |
+
)
|
126 |
+
else:
|
127 |
+
text_encoding = None
|
128 |
+
|
129 |
+
if text_encoding is not None:
|
130 |
+
encoding_image_processor.update(text_encoding)
|
131 |
+
|
132 |
+
return encoding_image_processor
|
133 |
+
|
134 |
+
# Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer
|
135 |
+
def batch_decode(self, *args, **kwargs):
|
136 |
+
"""
|
137 |
+
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
138 |
+
refer to the docstring of this method for more information.
|
139 |
+
"""
|
140 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
141 |
+
|
142 |
+
# Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer
|
143 |
+
def decode(self, *args, **kwargs):
|
144 |
+
"""
|
145 |
+
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
146 |
+
the docstring of this method for more information.
|
147 |
+
"""
|
148 |
+
return self.tokenizer.decode(*args, **kwargs)
|
149 |
+
|
150 |
+
@property
|
151 |
+
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
|
152 |
+
def model_input_names(self):
|
153 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
154 |
+
image_processor_input_names = self.image_processor.model_input_names
|
155 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/configuration_jukebox.cpython-310.pyc
ADDED
Binary file (21.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/modeling_jukebox.cpython-310.pyc
ADDED
Binary file (81.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__init__.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_pix2struct": [
|
21 |
+
"PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"Pix2StructConfig",
|
23 |
+
"Pix2StructTextConfig",
|
24 |
+
"Pix2StructVisionConfig",
|
25 |
+
],
|
26 |
+
"processing_pix2struct": ["Pix2StructProcessor"],
|
27 |
+
}
|
28 |
+
|
29 |
+
try:
|
30 |
+
if not is_vision_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["image_processing_pix2struct"] = ["Pix2StructImageProcessor"]
|
36 |
+
|
37 |
+
|
38 |
+
try:
|
39 |
+
if not is_torch_available():
|
40 |
+
raise OptionalDependencyNotAvailable()
|
41 |
+
except OptionalDependencyNotAvailable:
|
42 |
+
pass
|
43 |
+
else:
|
44 |
+
_import_structure["modeling_pix2struct"] = [
|
45 |
+
"PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
46 |
+
"Pix2StructPreTrainedModel",
|
47 |
+
"Pix2StructForConditionalGeneration",
|
48 |
+
"Pix2StructVisionModel",
|
49 |
+
"Pix2StructTextModel",
|
50 |
+
]
|
51 |
+
|
52 |
+
if TYPE_CHECKING:
|
53 |
+
from .configuration_pix2struct import (
|
54 |
+
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
55 |
+
Pix2StructConfig,
|
56 |
+
Pix2StructTextConfig,
|
57 |
+
Pix2StructVisionConfig,
|
58 |
+
)
|
59 |
+
from .processing_pix2struct import Pix2StructProcessor
|
60 |
+
|
61 |
+
try:
|
62 |
+
if not is_vision_available():
|
63 |
+
raise OptionalDependencyNotAvailable()
|
64 |
+
except OptionalDependencyNotAvailable:
|
65 |
+
pass
|
66 |
+
else:
|
67 |
+
from .image_processing_pix2struct import Pix2StructImageProcessor
|
68 |
+
|
69 |
+
try:
|
70 |
+
if not is_torch_available():
|
71 |
+
raise OptionalDependencyNotAvailable()
|
72 |
+
except OptionalDependencyNotAvailable:
|
73 |
+
pass
|
74 |
+
else:
|
75 |
+
from .modeling_pix2struct import (
|
76 |
+
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
77 |
+
Pix2StructForConditionalGeneration,
|
78 |
+
Pix2StructPreTrainedModel,
|
79 |
+
Pix2StructTextModel,
|
80 |
+
Pix2StructVisionModel,
|
81 |
+
)
|
82 |
+
|
83 |
+
else:
|
84 |
+
import sys
|
85 |
+
|
86 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.39 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/configuration_pix2struct.cpython-310.pyc
ADDED
Binary file (14.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/image_processing_pix2struct.cpython-310.pyc
ADDED
Binary file (15.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/modeling_pix2struct.cpython-310.pyc
ADDED
Binary file (52.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/__pycache__/processing_pix2struct.cpython-310.pyc
ADDED
Binary file (4.73 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/configuration_pix2struct.py
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Pix2Struct model configuration"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from typing import Union
|
19 |
+
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
from ..deprecated._archive_maps import PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
28 |
+
|
29 |
+
|
30 |
+
class Pix2StructTextConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`Pix2StructTextModel`]. It is used to instantiate
|
33 |
+
a Pix2Struct text model according to the specified arguments, defining the model architecture. Instantiating a
|
34 |
+
configuration with the defaults will yield a similar configuration to that of the Pix2Struct text decoder used by
|
35 |
+
the [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 50244):
|
42 |
+
Vocabulary size of the `Pix2Struct` text model. Defines the number of different tokens that can be
|
43 |
+
represented by the `inputs_ids` passed when calling [`Pix2StructTextModel`].
|
44 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
45 |
+
Dimensionality of the encoder layers and the pooler layer.
|
46 |
+
d_kv (`int`, *optional*, defaults to 64):
|
47 |
+
Dimensionality of the key, query, value projections in each attention head.
|
48 |
+
d_ff (`int`, *optional*, defaults to 2048):
|
49 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
50 |
+
num_layers (`int`, *optional*, defaults to 12):
|
51 |
+
Number of hidden layers in the Transformer encoder.
|
52 |
+
num_heads (`int`, *optional*, defaults to 12):
|
53 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
54 |
+
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
|
55 |
+
The number of buckets to use for each attention layer.
|
56 |
+
relative_attention_max_distance (`int`, *optional*, defaults to 128):
|
57 |
+
The maximum distance of the longer sequences for the bucket separation.
|
58 |
+
dropout_rate (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
60 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-6):
|
61 |
+
The epsilon used by the layer normalization layers.
|
62 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
63 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
64 |
+
testing).
|
65 |
+
dense_act_fn (`Union[Callable, str]`, *optional*, defaults to `"gelu_new"`):
|
66 |
+
The non-linear activation function (function or string).
|
67 |
+
decoder_start_token_id (`int`, *optional*, defaults to 0):
|
68 |
+
The id of the `decoder_start_token_id` token.
|
69 |
+
use_cache (`bool`, *optional*, defaults to `False`):
|
70 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
71 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
72 |
+
The id of the `padding` token.
|
73 |
+
eos_token_id (`int`, *optional*, defaults to 1):
|
74 |
+
The id of the `end-of-sequence` token.
|
75 |
+
|
76 |
+
Example:
|
77 |
+
|
78 |
+
```python
|
79 |
+
>>> from transformers import Pix2StructTextConfig, Pix2StructTextModel
|
80 |
+
|
81 |
+
>>> # Initializing a Pix2StructTextConfig with google/pix2struct-base style configuration
|
82 |
+
>>> configuration = Pix2StructTextConfig()
|
83 |
+
|
84 |
+
>>> # Initializing a Pix2StructTextModel (with random weights) from the google/pix2struct-base style configuration
|
85 |
+
>>> model = Pix2StructTextModel(configuration)
|
86 |
+
|
87 |
+
>>> # Accessing the model configuration
|
88 |
+
>>> configuration = model.config
|
89 |
+
```"""
|
90 |
+
|
91 |
+
model_type = "pix2struct_text_model"
|
92 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
93 |
+
attribute_map = {
|
94 |
+
"hidden_size": "hidden_size",
|
95 |
+
"num_attention_heads": "num_heads",
|
96 |
+
"num_hidden_layers": "num_layers",
|
97 |
+
}
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
vocab_size=50244,
|
102 |
+
hidden_size=768,
|
103 |
+
d_kv=64,
|
104 |
+
d_ff=2048,
|
105 |
+
num_layers=12,
|
106 |
+
num_heads=12,
|
107 |
+
relative_attention_num_buckets=32,
|
108 |
+
relative_attention_max_distance=128,
|
109 |
+
dropout_rate=0.1,
|
110 |
+
layer_norm_epsilon=1e-6,
|
111 |
+
initializer_factor=1.0,
|
112 |
+
dense_act_fn="gelu_new",
|
113 |
+
decoder_start_token_id=0,
|
114 |
+
use_cache=False,
|
115 |
+
pad_token_id=0,
|
116 |
+
eos_token_id=1,
|
117 |
+
tie_word_embeddings=False,
|
118 |
+
is_decoder=True,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
self.vocab_size = vocab_size
|
122 |
+
self.hidden_size = hidden_size
|
123 |
+
self.d_kv = d_kv
|
124 |
+
self.d_ff = d_ff
|
125 |
+
self.num_layers = num_layers
|
126 |
+
self.num_heads = num_heads
|
127 |
+
self.relative_attention_num_buckets = relative_attention_num_buckets
|
128 |
+
self.relative_attention_max_distance = relative_attention_max_distance
|
129 |
+
self.dropout_rate = dropout_rate
|
130 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
131 |
+
self.initializer_factor = initializer_factor
|
132 |
+
self.use_cache = use_cache
|
133 |
+
|
134 |
+
self.eos_token_id = eos_token_id
|
135 |
+
self.decoder_start_token_id = decoder_start_token_id
|
136 |
+
|
137 |
+
# for backwards compatibility
|
138 |
+
self.dense_act_fn = dense_act_fn
|
139 |
+
|
140 |
+
super().__init__(
|
141 |
+
pad_token_id=pad_token_id,
|
142 |
+
eos_token_id=eos_token_id,
|
143 |
+
decoder_start_token_id=decoder_start_token_id,
|
144 |
+
tie_word_embeddings=tie_word_embeddings,
|
145 |
+
is_decoder=is_decoder,
|
146 |
+
**kwargs,
|
147 |
+
)
|
148 |
+
|
149 |
+
@classmethod
|
150 |
+
def from_pretrained(
|
151 |
+
cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs
|
152 |
+
) -> "PretrainedConfig":
|
153 |
+
cls._set_token_in_kwargs(kwargs)
|
154 |
+
|
155 |
+
config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs)
|
156 |
+
|
157 |
+
# get the text config dict if we are loading from Pix2StructConfig
|
158 |
+
if config_dict.get("model_type") == "pix2struct":
|
159 |
+
config_dict = config_dict["text_config"]
|
160 |
+
|
161 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
162 |
+
logger.warning(
|
163 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
164 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
165 |
+
)
|
166 |
+
|
167 |
+
return cls.from_dict(config_dict, **kwargs)
|
168 |
+
|
169 |
+
|
170 |
+
class Pix2StructVisionConfig(PretrainedConfig):
|
171 |
+
r"""
|
172 |
+
This is the configuration class to store the configuration of a [`Pix2StructVisionModel`]. It is used to
|
173 |
+
instantiate a Pix2Struct vision model according to the specified arguments, defining the model architecture.
|
174 |
+
Instantiating a configuration defaults will yield a similar configuration to that of the Pix2Struct-base
|
175 |
+
[google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
|
176 |
+
|
177 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
178 |
+
documentation from [`PretrainedConfig`] for more information.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
182 |
+
Dimensionality of the encoder layers and the pooler layer.
|
183 |
+
patch_embed_hidden_size (`int`, *optional*, defaults to 768):
|
184 |
+
Dimensionality of the input patch_embedding layer in the Transformer encoder.
|
185 |
+
d_ff (`int`, *optional*, defaults to 2048):
|
186 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
187 |
+
d_kv (`int`, *optional*, defaults to 64):
|
188 |
+
Dimensionality of the key, query, value projections per attention head.
|
189 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
190 |
+
Number of hidden layers in the Transformer encoder.
|
191 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
192 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
193 |
+
dense_act_fn (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
194 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
195 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
196 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
197 |
+
The epsilon used by the layer normalization layers.
|
198 |
+
dropout_rate (`float`, *optional*, defaults to 0.0):
|
199 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
200 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
201 |
+
The dropout ratio for the attention probabilities.
|
202 |
+
initializer_range (`float`, *optional*, defaults to 1e-10):
|
203 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
204 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
205 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
206 |
+
testing).
|
207 |
+
seq_len (`int`, *optional*, defaults to 4096):
|
208 |
+
Maximum sequence length (here number of patches) supported by the model.
|
209 |
+
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
|
210 |
+
The number of buckets to use for each attention layer.
|
211 |
+
relative_attention_max_distance (`int`, *optional*, defaults to 128):
|
212 |
+
The maximum distance (in tokens) to use for each attention layer.
|
213 |
+
|
214 |
+
Example:
|
215 |
+
|
216 |
+
```python
|
217 |
+
>>> from transformers import Pix2StructVisionConfig, Pix2StructVisionModel
|
218 |
+
|
219 |
+
>>> # Initializing a Pix2StructVisionConfig with google/pix2struct-base style configuration
|
220 |
+
>>> configuration = Pix2StructVisionConfig()
|
221 |
+
|
222 |
+
>>> # Initializing a Pix2StructVisionModel (with random weights) from the google/pix2struct-base style configuration
|
223 |
+
>>> model = Pix2StructVisionModel(configuration)
|
224 |
+
|
225 |
+
>>> # Accessing the model configuration
|
226 |
+
>>> configuration = model.config
|
227 |
+
```"""
|
228 |
+
|
229 |
+
model_type = "pix2struct_vision_model"
|
230 |
+
|
231 |
+
def __init__(
|
232 |
+
self,
|
233 |
+
hidden_size=768,
|
234 |
+
patch_embed_hidden_size=768,
|
235 |
+
d_ff=2048,
|
236 |
+
d_kv=64,
|
237 |
+
num_hidden_layers=12,
|
238 |
+
num_attention_heads=12,
|
239 |
+
dense_act_fn="gelu_new",
|
240 |
+
layer_norm_eps=1e-6,
|
241 |
+
dropout_rate=0.0,
|
242 |
+
attention_dropout=0.0,
|
243 |
+
initializer_range=1e-10,
|
244 |
+
initializer_factor=1.0,
|
245 |
+
seq_len=4096,
|
246 |
+
relative_attention_num_buckets=32,
|
247 |
+
relative_attention_max_distance=128,
|
248 |
+
**kwargs,
|
249 |
+
):
|
250 |
+
super().__init__(**kwargs)
|
251 |
+
|
252 |
+
self.hidden_size = hidden_size
|
253 |
+
self.patch_embed_hidden_size = patch_embed_hidden_size
|
254 |
+
self.d_ff = d_ff
|
255 |
+
self.dropout_rate = dropout_rate
|
256 |
+
self.num_hidden_layers = num_hidden_layers
|
257 |
+
self.num_attention_heads = num_attention_heads
|
258 |
+
self.initializer_range = initializer_range
|
259 |
+
self.initializer_factor = initializer_factor
|
260 |
+
self.attention_dropout = attention_dropout
|
261 |
+
self.layer_norm_eps = layer_norm_eps
|
262 |
+
self.dense_act_fn = dense_act_fn
|
263 |
+
self.seq_len = seq_len
|
264 |
+
self.relative_attention_num_buckets = relative_attention_num_buckets
|
265 |
+
self.relative_attention_max_distance = relative_attention_max_distance
|
266 |
+
self.d_kv = d_kv
|
267 |
+
|
268 |
+
@classmethod
|
269 |
+
def from_pretrained(
|
270 |
+
cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs
|
271 |
+
) -> "PretrainedConfig":
|
272 |
+
cls._set_token_in_kwargs(kwargs)
|
273 |
+
|
274 |
+
config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs)
|
275 |
+
|
276 |
+
# get the vision config dict if we are loading from Pix2StructConfig
|
277 |
+
if config_dict.get("model_type") == "pix2struct":
|
278 |
+
config_dict = config_dict["vision_config"]
|
279 |
+
|
280 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
281 |
+
logger.warning(
|
282 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
283 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
284 |
+
)
|
285 |
+
|
286 |
+
return cls.from_dict(config_dict, **kwargs)
|
287 |
+
|
288 |
+
|
289 |
+
class Pix2StructConfig(PretrainedConfig):
|
290 |
+
r"""
|
291 |
+
[`Pix2StructConfig`] is the configuration class to store the configuration of a
|
292 |
+
[`Pix2StructForConditionalGeneration`]. It is used to instantiate a Pix2Struct model according to the specified
|
293 |
+
arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will
|
294 |
+
yield a similar configuration to that of the Pix2Struct-base
|
295 |
+
[google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
|
296 |
+
|
297 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
298 |
+
documentation from [`PretrainedConfig`] for more information.
|
299 |
+
|
300 |
+
Args:
|
301 |
+
text_config (`dict`, *optional*):
|
302 |
+
Dictionary of configuration options used to initialize [`Pix2StructTextConfig`].
|
303 |
+
vision_config (`dict`, *optional*):
|
304 |
+
Dictionary of configuration options used to initialize [`Pix2StructVisionConfig`].
|
305 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
306 |
+
Factor to multiply the initialization range with.
|
307 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
308 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
309 |
+
is_vqa (`bool`, *optional*, defaults to `False`):
|
310 |
+
Whether the model has been fine-tuned for VQA or not.
|
311 |
+
kwargs (*optional*):
|
312 |
+
Dictionary of keyword arguments.
|
313 |
+
|
314 |
+
Example:
|
315 |
+
|
316 |
+
```python
|
317 |
+
>>> from transformers import Pix2StructConfig, Pix2StructForConditionalGeneration
|
318 |
+
|
319 |
+
>>> # Initializing a Pix2StructConfig with google/pix2struct-base style configuration
|
320 |
+
>>> configuration = Pix2StructConfig()
|
321 |
+
|
322 |
+
>>> # Initializing a Pix2StructForConditionalGeneration (with random weights) from the google/pix2struct-base style configuration
|
323 |
+
>>> model = Pix2StructForConditionalGeneration(configuration)
|
324 |
+
|
325 |
+
>>> # Accessing the model configuration
|
326 |
+
>>> configuration = model.config
|
327 |
+
|
328 |
+
>>> # We can also initialize a Pix2StructConfig from a Pix2StructTextConfig and a Pix2StructVisionConfig
|
329 |
+
|
330 |
+
>>> # Initializing a Pix2Struct text and Pix2Struct vision configuration
|
331 |
+
>>> config_text = Pix2StructTextConfig()
|
332 |
+
>>> config_vision = Pix2StructVisionConfig()
|
333 |
+
|
334 |
+
>>> config = Pix2StructConfig.from_text_vision_configs(config_text, config_vision)
|
335 |
+
```"""
|
336 |
+
|
337 |
+
model_type = "pix2struct"
|
338 |
+
|
339 |
+
def __init__(
|
340 |
+
self,
|
341 |
+
text_config=None,
|
342 |
+
vision_config=None,
|
343 |
+
initializer_factor=1.0,
|
344 |
+
initializer_range=0.02,
|
345 |
+
is_vqa=False,
|
346 |
+
tie_word_embeddings=False,
|
347 |
+
is_encoder_decoder=True,
|
348 |
+
**kwargs,
|
349 |
+
):
|
350 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, is_encoder_decoder=is_encoder_decoder, **kwargs)
|
351 |
+
|
352 |
+
if text_config is None:
|
353 |
+
text_config = {}
|
354 |
+
logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values.")
|
355 |
+
|
356 |
+
if vision_config is None:
|
357 |
+
vision_config = {}
|
358 |
+
logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values.")
|
359 |
+
|
360 |
+
self.text_config = Pix2StructTextConfig(**text_config)
|
361 |
+
self.vision_config = Pix2StructVisionConfig(**vision_config)
|
362 |
+
|
363 |
+
self.decoder_start_token_id = self.text_config.decoder_start_token_id
|
364 |
+
self.pad_token_id = self.text_config.pad_token_id
|
365 |
+
self.eos_token_id = self.text_config.eos_token_id
|
366 |
+
|
367 |
+
self.initializer_factor = initializer_factor
|
368 |
+
self.initializer_range = initializer_range
|
369 |
+
|
370 |
+
self.text_config.initializer_range = self.initializer_range
|
371 |
+
self.vision_config.initializer_range = self.initializer_range
|
372 |
+
|
373 |
+
self.is_vqa = is_vqa
|
374 |
+
|
375 |
+
@classmethod
|
376 |
+
def from_text_vision_configs(
|
377 |
+
cls, text_config: Pix2StructTextConfig, vision_config: Pix2StructVisionConfig, **kwargs
|
378 |
+
):
|
379 |
+
r"""
|
380 |
+
Instantiate a [`Pix2StructConfig`] (or a derived class) from pix2struct text model configuration and pix2struct
|
381 |
+
vision model configuration.
|
382 |
+
|
383 |
+
Returns:
|
384 |
+
[`Pix2StructConfig`]: An instance of a configuration object
|
385 |
+
"""
|
386 |
+
|
387 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import argparse
|
16 |
+
import os
|
17 |
+
import re
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from flax.traverse_util import flatten_dict
|
21 |
+
from t5x import checkpoints
|
22 |
+
|
23 |
+
from transformers import (
|
24 |
+
AutoTokenizer,
|
25 |
+
Pix2StructConfig,
|
26 |
+
Pix2StructForConditionalGeneration,
|
27 |
+
Pix2StructImageProcessor,
|
28 |
+
Pix2StructProcessor,
|
29 |
+
Pix2StructTextConfig,
|
30 |
+
Pix2StructVisionConfig,
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
def get_flax_param(t5x_checkpoint_path):
|
35 |
+
flax_params = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path)
|
36 |
+
flax_params = flatten_dict(flax_params)
|
37 |
+
return flax_params
|
38 |
+
|
39 |
+
|
40 |
+
def rename_and_convert_flax_params(flax_dict):
|
41 |
+
converted_dict = {}
|
42 |
+
|
43 |
+
CONVERSION_MAPPING = {
|
44 |
+
"token_embedder": "embeddings",
|
45 |
+
"encoder_norm": "layernorm",
|
46 |
+
"kernel": "weight",
|
47 |
+
".out": ".output",
|
48 |
+
"scale": "weight",
|
49 |
+
"embedders_0.pos_embedding": "row_embedder.weight",
|
50 |
+
"embedders_1.pos_embedding": "column_embedder.weight",
|
51 |
+
}
|
52 |
+
|
53 |
+
DECODER_CONVERSION_MAPPING = {
|
54 |
+
"query": "attention.query",
|
55 |
+
"key": "attention.key",
|
56 |
+
"value": "attention.value",
|
57 |
+
"output.dense": "output",
|
58 |
+
"encoder_decoder_attention.o": "encoder_decoder_attention.attention.o",
|
59 |
+
"pre_self_attention_layer_norm": "self_attention.layer_norm",
|
60 |
+
"pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm",
|
61 |
+
"mlp.": "mlp.DenseReluDense.",
|
62 |
+
"pre_mlp_layer_norm": "mlp.layer_norm",
|
63 |
+
"self_attention.o": "self_attention.attention.o",
|
64 |
+
"decoder.embeddings.embedding": "decoder.embed_tokens.weight",
|
65 |
+
"decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight",
|
66 |
+
"decoder.decoder_norm.weight": "decoder.final_layer_norm.weight",
|
67 |
+
"decoder.logits_dense.weight": "decoder.lm_head.weight",
|
68 |
+
}
|
69 |
+
|
70 |
+
for key in flax_dict.keys():
|
71 |
+
if "target" in key:
|
72 |
+
# remove the first prefix from the key
|
73 |
+
new_key = ".".join(key[1:])
|
74 |
+
|
75 |
+
# rename the key
|
76 |
+
for old, new in CONVERSION_MAPPING.items():
|
77 |
+
new_key = new_key.replace(old, new)
|
78 |
+
|
79 |
+
if "decoder" in new_key:
|
80 |
+
for old, new in DECODER_CONVERSION_MAPPING.items():
|
81 |
+
new_key = new_key.replace(old, new)
|
82 |
+
|
83 |
+
if "layers" in new_key and "decoder" not in new_key:
|
84 |
+
# use regex to replace the layer number
|
85 |
+
new_key = re.sub(r"layers_(\d+)", r"layer.\1", new_key)
|
86 |
+
new_key = new_key.replace("encoder", "encoder.encoder")
|
87 |
+
|
88 |
+
elif "layers" in new_key and "decoder" in new_key:
|
89 |
+
# use regex to replace the layer number
|
90 |
+
new_key = re.sub(r"layers_(\d+)", r"layer.\1", new_key)
|
91 |
+
|
92 |
+
converted_dict[new_key] = flax_dict[key]
|
93 |
+
|
94 |
+
converted_torch_dict = {}
|
95 |
+
# convert converted_dict into torch format
|
96 |
+
for key in converted_dict.keys():
|
97 |
+
if ("embed_tokens" not in key) and ("embedder" not in key):
|
98 |
+
converted_torch_dict[key] = torch.from_numpy(converted_dict[key].T)
|
99 |
+
else:
|
100 |
+
converted_torch_dict[key] = torch.from_numpy(converted_dict[key])
|
101 |
+
|
102 |
+
return converted_torch_dict
|
103 |
+
|
104 |
+
|
105 |
+
def convert_pix2struct_original_pytorch_checkpoint_to_hf(
|
106 |
+
t5x_checkpoint_path, pytorch_dump_folder_path, use_large=False, is_vqa=False
|
107 |
+
):
|
108 |
+
flax_params = get_flax_param(t5x_checkpoint_path)
|
109 |
+
|
110 |
+
if not use_large:
|
111 |
+
encoder_config = Pix2StructVisionConfig()
|
112 |
+
decoder_config = Pix2StructTextConfig()
|
113 |
+
else:
|
114 |
+
encoder_config = Pix2StructVisionConfig(
|
115 |
+
hidden_size=1536, d_ff=3968, num_attention_heads=24, num_hidden_layers=18
|
116 |
+
)
|
117 |
+
decoder_config = Pix2StructTextConfig(hidden_size=1536, d_ff=3968, num_heads=24, num_layers=18)
|
118 |
+
config = Pix2StructConfig(
|
119 |
+
vision_config=encoder_config.to_dict(), text_config=decoder_config.to_dict(), is_vqa=is_vqa
|
120 |
+
)
|
121 |
+
|
122 |
+
model = Pix2StructForConditionalGeneration(config)
|
123 |
+
|
124 |
+
torch_params = rename_and_convert_flax_params(flax_params)
|
125 |
+
model.load_state_dict(torch_params)
|
126 |
+
|
127 |
+
tok = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer")
|
128 |
+
image_processor = Pix2StructImageProcessor()
|
129 |
+
processor = Pix2StructProcessor(image_processor=image_processor, tokenizer=tok)
|
130 |
+
|
131 |
+
if use_large:
|
132 |
+
processor.image_processor.max_patches = 4096
|
133 |
+
|
134 |
+
processor.image_processor.is_vqa = True
|
135 |
+
|
136 |
+
# mkdir if needed
|
137 |
+
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
|
138 |
+
|
139 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
140 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
141 |
+
|
142 |
+
print("Model saved in {}".format(pytorch_dump_folder_path))
|
143 |
+
|
144 |
+
|
145 |
+
if __name__ == "__main__":
|
146 |
+
parser = argparse.ArgumentParser()
|
147 |
+
parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.")
|
148 |
+
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
|
149 |
+
parser.add_argument("--use_large", action="store_true", help="Use large model.")
|
150 |
+
parser.add_argument("--is_vqa", action="store_true", help="Use large model.")
|
151 |
+
args = parser.parse_args()
|
152 |
+
|
153 |
+
convert_pix2struct_original_pytorch_checkpoint_to_hf(
|
154 |
+
args.t5x_checkpoint_path, args.pytorch_dump_folder_path, args.use_large
|
155 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/image_processing_pix2struct.py
ADDED
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for Pix2Struct."""
|
16 |
+
import io
|
17 |
+
import math
|
18 |
+
from typing import Dict, Optional, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
from huggingface_hub import hf_hub_download
|
22 |
+
|
23 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature
|
24 |
+
from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
|
25 |
+
from ...image_utils import (
|
26 |
+
ChannelDimension,
|
27 |
+
ImageInput,
|
28 |
+
get_image_size,
|
29 |
+
infer_channel_dimension_format,
|
30 |
+
make_list_of_images,
|
31 |
+
to_numpy_array,
|
32 |
+
valid_images,
|
33 |
+
)
|
34 |
+
from ...utils import TensorType, is_torch_available, is_vision_available, logging
|
35 |
+
from ...utils.import_utils import requires_backends
|
36 |
+
|
37 |
+
|
38 |
+
if is_vision_available():
|
39 |
+
import textwrap
|
40 |
+
|
41 |
+
from PIL import Image, ImageDraw, ImageFont
|
42 |
+
|
43 |
+
if is_torch_available():
|
44 |
+
import torch
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__)
|
47 |
+
DEFAULT_FONT_PATH = "ybelkada/fonts"
|
48 |
+
|
49 |
+
|
50 |
+
# adapted from: https://discuss.pytorch.org/t/tf-image-extract-patches-in-pytorch/171409/2
|
51 |
+
def torch_extract_patches(image_tensor, patch_height, patch_width):
|
52 |
+
"""
|
53 |
+
Utiliy function to extract patches from a given image tensor. Returns a tensor of shape (1, `patch_height`,
|
54 |
+
`patch_width`, `num_channels`x `patch_height` x `patch_width`)
|
55 |
+
|
56 |
+
Args:
|
57 |
+
image_tensor (torch.Tensor):
|
58 |
+
The image tensor to extract patches from.
|
59 |
+
patch_height (int):
|
60 |
+
The height of the patches to extract.
|
61 |
+
patch_width (int):
|
62 |
+
The width of the patches to extract.
|
63 |
+
"""
|
64 |
+
requires_backends(torch_extract_patches, ["torch"])
|
65 |
+
|
66 |
+
image_tensor = image_tensor.unsqueeze(0)
|
67 |
+
patches = torch.nn.functional.unfold(image_tensor, (patch_height, patch_width), stride=(patch_height, patch_width))
|
68 |
+
patches = patches.reshape(image_tensor.size(0), image_tensor.size(1), patch_height, patch_width, -1)
|
69 |
+
patches = patches.permute(0, 4, 2, 3, 1).reshape(
|
70 |
+
image_tensor.size(2) // patch_height,
|
71 |
+
image_tensor.size(3) // patch_width,
|
72 |
+
image_tensor.size(1) * patch_height * patch_width,
|
73 |
+
)
|
74 |
+
return patches.unsqueeze(0)
|
75 |
+
|
76 |
+
|
77 |
+
# Adapted from https://github.com/google-research/pix2struct/blob/0e1779af0f4db4b652c1d92b3bbd2550a7399123/pix2struct/preprocessing/preprocessing_utils.py#L106
|
78 |
+
def render_text(
|
79 |
+
text: str,
|
80 |
+
text_size: int = 36,
|
81 |
+
text_color: str = "black",
|
82 |
+
background_color: str = "white",
|
83 |
+
left_padding: int = 5,
|
84 |
+
right_padding: int = 5,
|
85 |
+
top_padding: int = 5,
|
86 |
+
bottom_padding: int = 5,
|
87 |
+
font_bytes: Optional[bytes] = None,
|
88 |
+
font_path: Optional[str] = None,
|
89 |
+
) -> Image.Image:
|
90 |
+
"""
|
91 |
+
Render text. This script is entirely adapted from the original script that can be found here:
|
92 |
+
https://github.com/google-research/pix2struct/blob/main/pix2struct/preprocessing/preprocessing_utils.py
|
93 |
+
|
94 |
+
Args:
|
95 |
+
text (`str`, *optional*, defaults to ):
|
96 |
+
Text to render.
|
97 |
+
text_size (`int`, *optional*, defaults to 36):
|
98 |
+
Size of the text.
|
99 |
+
text_color (`str`, *optional*, defaults to `"black"`):
|
100 |
+
Color of the text.
|
101 |
+
background_color (`str`, *optional*, defaults to `"white"`):
|
102 |
+
Color of the background.
|
103 |
+
left_padding (`int`, *optional*, defaults to 5):
|
104 |
+
Padding on the left.
|
105 |
+
right_padding (`int`, *optional*, defaults to 5):
|
106 |
+
Padding on the right.
|
107 |
+
top_padding (`int`, *optional*, defaults to 5):
|
108 |
+
Padding on the top.
|
109 |
+
bottom_padding (`int`, *optional*, defaults to 5):
|
110 |
+
Padding on the bottom.
|
111 |
+
font_bytes (`bytes`, *optional*):
|
112 |
+
Bytes of the font to use. If `None`, the default font will be used.
|
113 |
+
font_path (`str`, *optional*):
|
114 |
+
Path to the font to use. If `None`, the default font will be used.
|
115 |
+
"""
|
116 |
+
requires_backends(render_text, "vision")
|
117 |
+
# Add new lines so that each line is no more than 80 characters.
|
118 |
+
|
119 |
+
wrapper = textwrap.TextWrapper(width=80)
|
120 |
+
lines = wrapper.wrap(text=text)
|
121 |
+
wrapped_text = "\n".join(lines)
|
122 |
+
|
123 |
+
if font_bytes is not None and font_path is None:
|
124 |
+
font = io.BytesIO(font_bytes)
|
125 |
+
elif font_path is not None:
|
126 |
+
font = font_path
|
127 |
+
else:
|
128 |
+
font = hf_hub_download(DEFAULT_FONT_PATH, "Arial.TTF")
|
129 |
+
font = ImageFont.truetype(font, encoding="UTF-8", size=text_size)
|
130 |
+
|
131 |
+
# Use a temporary canvas to determine the width and height in pixels when
|
132 |
+
# rendering the text.
|
133 |
+
temp_draw = ImageDraw.Draw(Image.new("RGB", (1, 1), background_color))
|
134 |
+
_, _, text_width, text_height = temp_draw.textbbox((0, 0), wrapped_text, font)
|
135 |
+
|
136 |
+
# Create the actual image with a bit of padding around the text.
|
137 |
+
image_width = text_width + left_padding + right_padding
|
138 |
+
image_height = text_height + top_padding + bottom_padding
|
139 |
+
image = Image.new("RGB", (image_width, image_height), background_color)
|
140 |
+
draw = ImageDraw.Draw(image)
|
141 |
+
draw.text(xy=(left_padding, top_padding), text=wrapped_text, fill=text_color, font=font)
|
142 |
+
return image
|
143 |
+
|
144 |
+
|
145 |
+
# Adapted from https://github.com/google-research/pix2struct/blob/0e1779af0f4db4b652c1d92b3bbd2550a7399123/pix2struct/preprocessing/preprocessing_utils.py#L87
|
146 |
+
def render_header(
|
147 |
+
image: np.ndarray, header: str, input_data_format: Optional[Union[str, ChildProcessError]] = None, **kwargs
|
148 |
+
):
|
149 |
+
"""
|
150 |
+
Renders the input text as a header on the input image.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
image (`np.ndarray`):
|
154 |
+
The image to render the header on.
|
155 |
+
header (`str`):
|
156 |
+
The header text.
|
157 |
+
data_format (`Union[ChannelDimension, str]`, *optional*):
|
158 |
+
The data format of the image. Can be either "ChannelDimension.channels_first" or
|
159 |
+
"ChannelDimension.channels_last".
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
`np.ndarray`: The image with the header rendered.
|
163 |
+
"""
|
164 |
+
requires_backends(render_header, "vision")
|
165 |
+
|
166 |
+
# Convert to PIL image if necessary
|
167 |
+
image = to_pil_image(image, input_data_format=input_data_format)
|
168 |
+
|
169 |
+
header_image = render_text(header, **kwargs)
|
170 |
+
new_width = max(header_image.width, image.width)
|
171 |
+
|
172 |
+
new_height = int(image.height * (new_width / image.width))
|
173 |
+
new_header_height = int(header_image.height * (new_width / header_image.width))
|
174 |
+
|
175 |
+
new_image = Image.new("RGB", (new_width, new_height + new_header_height), "white")
|
176 |
+
new_image.paste(header_image.resize((new_width, new_header_height)), (0, 0))
|
177 |
+
new_image.paste(image.resize((new_width, new_height)), (0, new_header_height))
|
178 |
+
|
179 |
+
# Convert back to the original framework if necessary
|
180 |
+
new_image = to_numpy_array(new_image)
|
181 |
+
|
182 |
+
if infer_channel_dimension_format(new_image) == ChannelDimension.LAST:
|
183 |
+
new_image = to_channel_dimension_format(new_image, ChannelDimension.LAST)
|
184 |
+
|
185 |
+
return new_image
|
186 |
+
|
187 |
+
|
188 |
+
class Pix2StructImageProcessor(BaseImageProcessor):
|
189 |
+
r"""
|
190 |
+
Constructs a Pix2Struct image processor.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
194 |
+
Whether to convert the image to RGB.
|
195 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
196 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
197 |
+
method. According to Pix2Struct paper and code, the image is normalized with its own mean and standard
|
198 |
+
deviation.
|
199 |
+
patch_size (`Dict[str, int]`, *optional*, defaults to `{"height": 16, "width": 16}`):
|
200 |
+
The patch size to use for the image. According to Pix2Struct paper and code, the patch size is 16x16.
|
201 |
+
max_patches (`int`, *optional*, defaults to 2048):
|
202 |
+
The maximum number of patches to extract from the image as per the [Pix2Struct
|
203 |
+
paper](https://arxiv.org/pdf/2210.03347.pdf).
|
204 |
+
is_vqa (`bool`, *optional*, defaults to `False`):
|
205 |
+
Whether or not the image processor is for the VQA task. If `True` and `header_text` is passed in, text is
|
206 |
+
rendered onto the input images.
|
207 |
+
"""
|
208 |
+
|
209 |
+
model_input_names = ["flattened_patches"]
|
210 |
+
|
211 |
+
def __init__(
|
212 |
+
self,
|
213 |
+
do_convert_rgb: bool = True,
|
214 |
+
do_normalize: bool = True,
|
215 |
+
patch_size: Dict[str, int] = None,
|
216 |
+
max_patches: int = 2048,
|
217 |
+
is_vqa: bool = False,
|
218 |
+
**kwargs,
|
219 |
+
) -> None:
|
220 |
+
super().__init__(**kwargs)
|
221 |
+
self.patch_size = patch_size if patch_size is not None else {"height": 16, "width": 16}
|
222 |
+
self.do_normalize = do_normalize
|
223 |
+
self.do_convert_rgb = do_convert_rgb
|
224 |
+
self.max_patches = max_patches
|
225 |
+
self.is_vqa = is_vqa
|
226 |
+
|
227 |
+
def extract_flattened_patches(
|
228 |
+
self,
|
229 |
+
image: np.ndarray,
|
230 |
+
max_patches: int,
|
231 |
+
patch_size: dict,
|
232 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
233 |
+
**kwargs,
|
234 |
+
) -> np.ndarray:
|
235 |
+
"""
|
236 |
+
Extract flattened patches from an image.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
image (`np.ndarray`):
|
240 |
+
Image to extract flattened patches from.
|
241 |
+
max_patches (`int`):
|
242 |
+
Maximum number of patches to extract.
|
243 |
+
patch_size (`dict`):
|
244 |
+
Dictionary containing the patch height and width.
|
245 |
+
|
246 |
+
Returns:
|
247 |
+
result (`np.ndarray`):
|
248 |
+
A sequence of `max_patches` flattened patches.
|
249 |
+
"""
|
250 |
+
requires_backends(self.extract_flattened_patches, "torch")
|
251 |
+
|
252 |
+
# convert to torch
|
253 |
+
image = to_channel_dimension_format(image, ChannelDimension.FIRST, input_data_format)
|
254 |
+
image = torch.from_numpy(image)
|
255 |
+
|
256 |
+
patch_height, patch_width = patch_size["height"], patch_size["width"]
|
257 |
+
image_height, image_width = get_image_size(image, ChannelDimension.FIRST)
|
258 |
+
|
259 |
+
# maximize scale s.t.
|
260 |
+
scale = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width))
|
261 |
+
num_feasible_rows = max(min(math.floor(scale * image_height / patch_height), max_patches), 1)
|
262 |
+
num_feasible_cols = max(min(math.floor(scale * image_width / patch_width), max_patches), 1)
|
263 |
+
resized_height = max(num_feasible_rows * patch_height, 1)
|
264 |
+
resized_width = max(num_feasible_cols * patch_width, 1)
|
265 |
+
|
266 |
+
image = torch.nn.functional.interpolate(
|
267 |
+
image.unsqueeze(0),
|
268 |
+
size=(resized_height, resized_width),
|
269 |
+
mode="bilinear",
|
270 |
+
align_corners=False,
|
271 |
+
antialias=True,
|
272 |
+
).squeeze(0)
|
273 |
+
|
274 |
+
# [1, rows, columns, patch_height * patch_width * image_channels]
|
275 |
+
patches = torch_extract_patches(image, patch_height, patch_width)
|
276 |
+
|
277 |
+
patches_shape = patches.shape
|
278 |
+
rows = patches_shape[1]
|
279 |
+
columns = patches_shape[2]
|
280 |
+
depth = patches_shape[3]
|
281 |
+
|
282 |
+
# [rows * columns, patch_height * patch_width * image_channels]
|
283 |
+
patches = patches.reshape([rows * columns, depth])
|
284 |
+
|
285 |
+
# [rows * columns, 1]
|
286 |
+
row_ids = torch.arange(rows).reshape([rows, 1]).repeat(1, columns).reshape([rows * columns, 1])
|
287 |
+
col_ids = torch.arange(columns).reshape([1, columns]).repeat(rows, 1).reshape([rows * columns, 1])
|
288 |
+
|
289 |
+
# Offset by 1 so the ids do not contain zeros, which represent padding.
|
290 |
+
row_ids += 1
|
291 |
+
col_ids += 1
|
292 |
+
|
293 |
+
# Prepare additional patch features.
|
294 |
+
# [rows * columns, 1]
|
295 |
+
row_ids = row_ids.to(torch.float32)
|
296 |
+
col_ids = col_ids.to(torch.float32)
|
297 |
+
|
298 |
+
# [rows * columns, 2 + patch_height * patch_width * image_channels]
|
299 |
+
result = torch.cat([row_ids, col_ids, patches], -1)
|
300 |
+
|
301 |
+
# [max_patches, 2 + patch_height * patch_width * image_channels]
|
302 |
+
result = torch.nn.functional.pad(result, [0, 0, 0, max_patches - (rows * columns)]).float()
|
303 |
+
|
304 |
+
result = to_numpy_array(result)
|
305 |
+
|
306 |
+
return result
|
307 |
+
|
308 |
+
def normalize(
|
309 |
+
self,
|
310 |
+
image: np.ndarray,
|
311 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
312 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
313 |
+
**kwargs,
|
314 |
+
) -> np.ndarray:
|
315 |
+
"""
|
316 |
+
Normalize an image. image = (image - image_mean) / image_std.
|
317 |
+
|
318 |
+
The image std is to mimic the tensorflow implementation of the `per_image_standardization`:
|
319 |
+
https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization
|
320 |
+
|
321 |
+
Args:
|
322 |
+
image (`np.ndarray`):
|
323 |
+
Image to normalize.
|
324 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
325 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
326 |
+
image is used.
|
327 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
328 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
329 |
+
"""
|
330 |
+
if image.dtype == np.uint8:
|
331 |
+
image = image.astype(np.float32)
|
332 |
+
|
333 |
+
# take mean across the whole `image`
|
334 |
+
mean = np.mean(image)
|
335 |
+
std = np.std(image)
|
336 |
+
adjusted_stddev = max(std, 1.0 / math.sqrt(np.prod(image.shape)))
|
337 |
+
|
338 |
+
return normalize(
|
339 |
+
image,
|
340 |
+
mean=mean,
|
341 |
+
std=adjusted_stddev,
|
342 |
+
data_format=data_format,
|
343 |
+
input_data_format=input_data_format,
|
344 |
+
**kwargs,
|
345 |
+
)
|
346 |
+
|
347 |
+
def preprocess(
|
348 |
+
self,
|
349 |
+
images: ImageInput,
|
350 |
+
header_text: Optional[str] = None,
|
351 |
+
do_convert_rgb: bool = None,
|
352 |
+
do_normalize: Optional[bool] = None,
|
353 |
+
max_patches: Optional[int] = None,
|
354 |
+
patch_size: Optional[Dict[str, int]] = None,
|
355 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
356 |
+
data_format: ChannelDimension = ChannelDimension.FIRST,
|
357 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
358 |
+
**kwargs,
|
359 |
+
) -> ImageInput:
|
360 |
+
"""
|
361 |
+
Preprocess an image or batch of images. The processor first computes the maximum possible number of
|
362 |
+
aspect-ratio preserving patches of size `patch_size` that can be extracted from the image. It then pads the
|
363 |
+
image with zeros to make the image respect the constraint of `max_patches`. Before extracting the patches the
|
364 |
+
images are standardized following the tensorflow implementation of `per_image_standardization`
|
365 |
+
(https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization).
|
366 |
+
|
367 |
+
|
368 |
+
Args:
|
369 |
+
images (`ImageInput`):
|
370 |
+
Image to preprocess. Expects a single or batch of images.
|
371 |
+
header_text (`Union[List[str], str]`, *optional*):
|
372 |
+
Text to render as a header. Only has an effect if `image_processor.is_vqa` is `True`.
|
373 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
374 |
+
Whether to convert the image to RGB.
|
375 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
376 |
+
Whether to normalize the image.
|
377 |
+
max_patches (`int`, *optional*, defaults to `self.max_patches`):
|
378 |
+
Maximum number of patches to extract.
|
379 |
+
patch_size (`dict`, *optional*, defaults to `self.patch_size`):
|
380 |
+
Dictionary containing the patch height and width.
|
381 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
382 |
+
The type of tensors to return. Can be one of:
|
383 |
+
- Unset: Return a list of `np.ndarray`.
|
384 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
385 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
386 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
387 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
388 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
389 |
+
The channel dimension format for the output image. Can be one of:
|
390 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
391 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
392 |
+
- Unset: Use the channel dimension format of the input image.
|
393 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
394 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
395 |
+
from the input image. Can be one of:
|
396 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
397 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
398 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
399 |
+
"""
|
400 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
401 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
402 |
+
patch_size = patch_size if patch_size is not None else self.patch_size
|
403 |
+
max_patches = max_patches if max_patches is not None else self.max_patches
|
404 |
+
is_vqa = self.is_vqa
|
405 |
+
|
406 |
+
if kwargs.get("data_format", None) is not None:
|
407 |
+
raise ValueError("data_format is not an accepted input as the outputs are ")
|
408 |
+
|
409 |
+
images = make_list_of_images(images)
|
410 |
+
|
411 |
+
if not valid_images(images):
|
412 |
+
raise ValueError(
|
413 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
414 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
415 |
+
)
|
416 |
+
|
417 |
+
# PIL RGBA images are converted to RGB
|
418 |
+
if do_convert_rgb:
|
419 |
+
images = [convert_to_rgb(image) for image in images]
|
420 |
+
|
421 |
+
# All transformations expect numpy arrays.
|
422 |
+
images = [to_numpy_array(image) for image in images]
|
423 |
+
|
424 |
+
if input_data_format is None:
|
425 |
+
# We assume that all images have the same channel dimension format.
|
426 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
427 |
+
|
428 |
+
if is_vqa:
|
429 |
+
if header_text is None:
|
430 |
+
raise ValueError("A header text must be provided for VQA models.")
|
431 |
+
font_bytes = kwargs.pop("font_bytes", None)
|
432 |
+
font_path = kwargs.pop("font_path", None)
|
433 |
+
|
434 |
+
if isinstance(header_text, str):
|
435 |
+
header_text = [header_text] * len(images)
|
436 |
+
|
437 |
+
images = [
|
438 |
+
render_header(image, header_text[i], font_bytes=font_bytes, font_path=font_path)
|
439 |
+
for i, image in enumerate(images)
|
440 |
+
]
|
441 |
+
|
442 |
+
if do_normalize:
|
443 |
+
images = [self.normalize(image=image, input_data_format=input_data_format) for image in images]
|
444 |
+
|
445 |
+
# convert to torch tensor and permute
|
446 |
+
images = [
|
447 |
+
self.extract_flattened_patches(
|
448 |
+
image=image, max_patches=max_patches, patch_size=patch_size, input_data_format=input_data_format
|
449 |
+
)
|
450 |
+
for image in images
|
451 |
+
]
|
452 |
+
|
453 |
+
# create attention mask in numpy
|
454 |
+
attention_masks = [(image.sum(axis=-1) != 0).astype(np.float32) for image in images]
|
455 |
+
|
456 |
+
encoded_outputs = BatchFeature(
|
457 |
+
data={"flattened_patches": images, "attention_mask": attention_masks}, tensor_type=return_tensors
|
458 |
+
)
|
459 |
+
|
460 |
+
return encoded_outputs
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/modeling_pix2struct.py
ADDED
@@ -0,0 +1,1786 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. & Google team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Pix2Struct modeling file"""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import Dict, List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
|
24 |
+
from ...activations import ACT2FN
|
25 |
+
from ...modeling_outputs import (
|
26 |
+
BaseModelOutput,
|
27 |
+
BaseModelOutputWithPooling,
|
28 |
+
CausalLMOutputWithCrossAttentions,
|
29 |
+
Seq2SeqLMOutput,
|
30 |
+
Seq2SeqModelOutput,
|
31 |
+
)
|
32 |
+
from ...modeling_utils import PreTrainedModel
|
33 |
+
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
|
34 |
+
from ...utils import (
|
35 |
+
DUMMY_INPUTS,
|
36 |
+
DUMMY_MASK,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
is_torch_fx_proxy,
|
40 |
+
logging,
|
41 |
+
replace_return_docstrings,
|
42 |
+
)
|
43 |
+
from .configuration_pix2struct import Pix2StructConfig, Pix2StructTextConfig, Pix2StructVisionConfig
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__)
|
47 |
+
|
48 |
+
# General docstring
|
49 |
+
_CONFIG_FOR_DOC = "Pix2StructConfig"
|
50 |
+
|
51 |
+
|
52 |
+
from ..deprecated._archive_maps import PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
53 |
+
|
54 |
+
|
55 |
+
# Adapted from transformers.models.t5.modeling_t5.T5LayerNorm with T5->Pix2Struct
|
56 |
+
class Pix2StructLayerNorm(nn.Module):
|
57 |
+
def __init__(self, hidden_size, eps=1e-6):
|
58 |
+
"""
|
59 |
+
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
|
60 |
+
"""
|
61 |
+
super().__init__()
|
62 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
63 |
+
self.variance_epsilon = eps
|
64 |
+
|
65 |
+
def forward(self, hidden_states):
|
66 |
+
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
|
67 |
+
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
|
68 |
+
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
|
69 |
+
# half-precision inputs is done in fp32
|
70 |
+
|
71 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
72 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
73 |
+
|
74 |
+
# convert into half-precision if necessary
|
75 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
76 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
77 |
+
|
78 |
+
return self.weight * hidden_states
|
79 |
+
|
80 |
+
|
81 |
+
try:
|
82 |
+
from apex.normalization import FusedRMSNorm
|
83 |
+
|
84 |
+
Pix2StructLayerNorm = FusedRMSNorm # noqa
|
85 |
+
|
86 |
+
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of Pix2StructLayerNorm")
|
87 |
+
except ImportError:
|
88 |
+
# using the normal Pix2StructLayerNorm
|
89 |
+
pass
|
90 |
+
except Exception:
|
91 |
+
logger.warning("Discovered apex but it failed to load, falling back to Pix2StructLayerNorm")
|
92 |
+
pass
|
93 |
+
|
94 |
+
ALL_LAYERNORM_LAYERS.append(Pix2StructLayerNorm)
|
95 |
+
|
96 |
+
|
97 |
+
class Pix2StructVisionEmbeddings(nn.Module):
|
98 |
+
r"""
|
99 |
+
Construct the embeddings from patch. In `Pix2Struct` the input is different from classic Vision-transformer models.
|
100 |
+
Here the input is a sequence of `seq_len` flattened patches that also combines padding patches (tokens). Each patch
|
101 |
+
is represented by a vector of `hidden_size` values.
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(self, config: Pix2StructConfig) -> None:
|
105 |
+
super().__init__()
|
106 |
+
self.patch_projection = nn.Linear(config.patch_embed_hidden_size, config.hidden_size)
|
107 |
+
|
108 |
+
self.row_embedder = nn.Embedding(config.seq_len, config.hidden_size)
|
109 |
+
self.column_embedder = nn.Embedding(config.seq_len, config.hidden_size)
|
110 |
+
|
111 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
112 |
+
|
113 |
+
def forward(self, flattened_patches: torch.Tensor) -> torch.Tensor:
|
114 |
+
# the row and column indices are stored in the first and second position of the flattened_patches
|
115 |
+
# flattened_patches: `batch_size`, `seq_len`, `hidden_size` + 2
|
116 |
+
row_indices = flattened_patches[:, :, 0].long()
|
117 |
+
col_indices = flattened_patches[:, :, 1].long()
|
118 |
+
|
119 |
+
flattened_patches = flattened_patches[:, :, 2:]
|
120 |
+
|
121 |
+
embeddings = self.patch_projection(flattened_patches)
|
122 |
+
row_embeddings = self.row_embedder(row_indices)
|
123 |
+
col_embeddings = self.column_embedder(col_indices)
|
124 |
+
|
125 |
+
# sum all embeddings together
|
126 |
+
embeddings = embeddings + row_embeddings + col_embeddings
|
127 |
+
|
128 |
+
embeddings = self.dropout(embeddings)
|
129 |
+
|
130 |
+
return embeddings
|
131 |
+
|
132 |
+
|
133 |
+
class Pix2StructVisionAttention(nn.Module):
|
134 |
+
def __init__(self, config):
|
135 |
+
super().__init__()
|
136 |
+
self.hidden_size = config.hidden_size
|
137 |
+
self.key_value_proj_dim = config.d_kv
|
138 |
+
self.n_heads = config.num_attention_heads
|
139 |
+
self.dropout = config.attention_dropout
|
140 |
+
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
141 |
+
|
142 |
+
# Mesh TensorFlow initialization to avoid scaling before softmax
|
143 |
+
self.query = nn.Linear(self.hidden_size, self.inner_dim, bias=False)
|
144 |
+
self.key = nn.Linear(self.hidden_size, self.inner_dim, bias=False)
|
145 |
+
self.value = nn.Linear(self.hidden_size, self.inner_dim, bias=False)
|
146 |
+
self.output = nn.Linear(self.inner_dim, self.hidden_size, bias=False)
|
147 |
+
|
148 |
+
self.gradient_checkpointing = False
|
149 |
+
|
150 |
+
def forward(
|
151 |
+
self,
|
152 |
+
hidden_states,
|
153 |
+
attention_mask=None,
|
154 |
+
position_bias=None,
|
155 |
+
layer_head_mask=None,
|
156 |
+
output_attentions=False,
|
157 |
+
):
|
158 |
+
"""
|
159 |
+
Self-attention block
|
160 |
+
"""
|
161 |
+
# Input is (batch_size, seq_length, dim)
|
162 |
+
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
163 |
+
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
|
164 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
165 |
+
|
166 |
+
def to_projection_shape(states):
|
167 |
+
"""projection"""
|
168 |
+
return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
|
169 |
+
|
170 |
+
# get query states
|
171 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
172 |
+
query_states = to_projection_shape(self.query(hidden_states))
|
173 |
+
|
174 |
+
# get key/value states
|
175 |
+
key_states = to_projection_shape(self.key(hidden_states))
|
176 |
+
value_states = to_projection_shape(self.value(hidden_states))
|
177 |
+
|
178 |
+
# compute scores
|
179 |
+
# equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
180 |
+
scores = torch.matmul(query_states, key_states.transpose(3, 2))
|
181 |
+
|
182 |
+
if position_bias is None:
|
183 |
+
position_bias = torch.zeros(
|
184 |
+
(1, self.n_heads, seq_length, seq_length), device=scores.device, dtype=scores.dtype
|
185 |
+
)
|
186 |
+
if self.gradient_checkpointing and self.training:
|
187 |
+
position_bias.requires_grad = True
|
188 |
+
|
189 |
+
if attention_mask is None:
|
190 |
+
attention_mask = torch.ones((batch_size, seq_length), device=scores.device, dtype=scores.dtype)
|
191 |
+
|
192 |
+
if attention_mask.dim() == 2:
|
193 |
+
position_bias = position_bias + attention_mask[:, None, None, :].to(position_bias.device)
|
194 |
+
else:
|
195 |
+
# (batch_size, n_heads, seq_length, key_length)
|
196 |
+
position_bias = position_bias + attention_mask.to(position_bias.device)
|
197 |
+
position_bias = 1 - position_bias
|
198 |
+
|
199 |
+
position_bias_masked = position_bias.masked_fill(position_bias == 1, torch.finfo(scores.dtype).min)
|
200 |
+
scores += position_bias_masked
|
201 |
+
scores = torch.max(scores, torch.tensor(torch.finfo(scores.dtype).min))
|
202 |
+
|
203 |
+
# (batch_size, n_heads, seq_length, key_length)
|
204 |
+
attn_weights = nn.functional.softmax(scores, dim=-1, dtype=torch.float32).type_as(scores)
|
205 |
+
|
206 |
+
# (batch_size, n_heads, seq_length, key_length)
|
207 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
208 |
+
|
209 |
+
# Mask heads if we want to
|
210 |
+
if layer_head_mask is not None:
|
211 |
+
attn_weights = attn_weights * layer_head_mask
|
212 |
+
|
213 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
214 |
+
|
215 |
+
# (batch_size, seq_length, dim)
|
216 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
|
217 |
+
|
218 |
+
attn_output = self.output(attn_output)
|
219 |
+
|
220 |
+
outputs = (attn_output,) + (position_bias,)
|
221 |
+
|
222 |
+
if output_attentions:
|
223 |
+
outputs = outputs + (attn_weights,)
|
224 |
+
return outputs
|
225 |
+
|
226 |
+
|
227 |
+
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5DenseGatedActDense->Pix2StructVisionMlp,T5Config->Pix2StructVisionConfig,config.d_model->config.hidden_size,dropout_rate->dropout_rate
|
228 |
+
class Pix2StructVisionMlp(nn.Module):
|
229 |
+
def __init__(self, config: Pix2StructVisionConfig):
|
230 |
+
super().__init__()
|
231 |
+
self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
|
232 |
+
self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
|
233 |
+
self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False)
|
234 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
235 |
+
self.act = ACT2FN[config.dense_act_fn]
|
236 |
+
|
237 |
+
def forward(self, hidden_states):
|
238 |
+
hidden_gelu = self.act(self.wi_0(hidden_states))
|
239 |
+
hidden_linear = self.wi_1(hidden_states)
|
240 |
+
hidden_states = hidden_gelu * hidden_linear
|
241 |
+
hidden_states = self.dropout(hidden_states)
|
242 |
+
|
243 |
+
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
|
244 |
+
# See https://github.com/huggingface/transformers/issues/20287
|
245 |
+
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
|
246 |
+
if (
|
247 |
+
isinstance(self.wo.weight, torch.Tensor)
|
248 |
+
and hidden_states.dtype != self.wo.weight.dtype
|
249 |
+
and self.wo.weight.dtype != torch.int8
|
250 |
+
):
|
251 |
+
hidden_states = hidden_states.to(self.wo.weight.dtype)
|
252 |
+
|
253 |
+
hidden_states = self.wo(hidden_states)
|
254 |
+
return hidden_states
|
255 |
+
|
256 |
+
|
257 |
+
class Pix2StructVisionLayer(nn.Module):
|
258 |
+
def __init__(self, config: Pix2StructConfig) -> None:
|
259 |
+
super().__init__()
|
260 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
261 |
+
self.seq_len_dim = 1
|
262 |
+
self.attention = Pix2StructVisionAttention(config)
|
263 |
+
self.mlp = Pix2StructVisionMlp(config)
|
264 |
+
self.pre_mlp_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
265 |
+
self.pre_attention_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
266 |
+
|
267 |
+
def forward(
|
268 |
+
self,
|
269 |
+
hidden_states: torch.Tensor,
|
270 |
+
attention_mask: Optional[torch.Tensor] = None,
|
271 |
+
head_mask: Optional[torch.Tensor] = None,
|
272 |
+
output_attentions: bool = False,
|
273 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
274 |
+
residual = hidden_states
|
275 |
+
|
276 |
+
# in Pix2StructVision, layernorm is applied before self-attention
|
277 |
+
hidden_states = self.pre_attention_layer_norm(hidden_states)
|
278 |
+
|
279 |
+
self_attention_outputs = self.attention(
|
280 |
+
hidden_states,
|
281 |
+
attention_mask=attention_mask,
|
282 |
+
layer_head_mask=head_mask,
|
283 |
+
output_attentions=output_attentions,
|
284 |
+
)
|
285 |
+
attention_output = self_attention_outputs[0]
|
286 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
287 |
+
|
288 |
+
# first residual connection
|
289 |
+
hidden_states = attention_output + residual
|
290 |
+
|
291 |
+
# in Pix2StructVision, layernorm is also applied after self-attention
|
292 |
+
layer_output = self.pre_mlp_layer_norm(hidden_states)
|
293 |
+
layer_output = self.mlp(layer_output) + hidden_states # second residual connection
|
294 |
+
|
295 |
+
outputs = (layer_output,) + outputs
|
296 |
+
|
297 |
+
return outputs
|
298 |
+
|
299 |
+
|
300 |
+
class Pix2StructVisionEncoder(nn.Module):
|
301 |
+
def __init__(self, config: Pix2StructConfig) -> None:
|
302 |
+
super().__init__()
|
303 |
+
self.config = config
|
304 |
+
self.layer = nn.ModuleList([Pix2StructVisionLayer(config) for _ in range(config.num_hidden_layers)])
|
305 |
+
self.gradient_checkpointing = False
|
306 |
+
|
307 |
+
def forward(
|
308 |
+
self,
|
309 |
+
hidden_states: torch.Tensor,
|
310 |
+
attention_mask: Optional[torch.Tensor] = None,
|
311 |
+
head_mask: Optional[torch.Tensor] = None,
|
312 |
+
output_attentions: bool = False,
|
313 |
+
output_hidden_states: bool = False,
|
314 |
+
return_dict: bool = True,
|
315 |
+
) -> Union[tuple, BaseModelOutput]:
|
316 |
+
all_hidden_states = () if output_hidden_states else None
|
317 |
+
all_self_attentions = () if output_attentions else None
|
318 |
+
|
319 |
+
for i, layer_module in enumerate(self.layer):
|
320 |
+
if output_hidden_states:
|
321 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
322 |
+
|
323 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
324 |
+
|
325 |
+
if self.gradient_checkpointing and self.training:
|
326 |
+
layer_outputs = self._gradient_checkpointing_func(
|
327 |
+
layer_module.__call__,
|
328 |
+
hidden_states,
|
329 |
+
attention_mask,
|
330 |
+
layer_head_mask,
|
331 |
+
output_attentions,
|
332 |
+
)
|
333 |
+
else:
|
334 |
+
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
|
335 |
+
|
336 |
+
hidden_states = layer_outputs[0]
|
337 |
+
|
338 |
+
if output_attentions:
|
339 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
340 |
+
|
341 |
+
if output_hidden_states:
|
342 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
343 |
+
|
344 |
+
if not return_dict:
|
345 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
346 |
+
return BaseModelOutput(
|
347 |
+
last_hidden_state=hidden_states,
|
348 |
+
hidden_states=all_hidden_states,
|
349 |
+
attentions=all_self_attentions,
|
350 |
+
)
|
351 |
+
|
352 |
+
|
353 |
+
class Pix2StructPreTrainedModel(PreTrainedModel):
|
354 |
+
"""
|
355 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
356 |
+
models.
|
357 |
+
"""
|
358 |
+
|
359 |
+
config_class = Pix2StructConfig
|
360 |
+
|
361 |
+
@property
|
362 |
+
def dummy_inputs(self):
|
363 |
+
input_ids = torch.tensor(DUMMY_INPUTS)
|
364 |
+
input_mask = torch.tensor(DUMMY_MASK)
|
365 |
+
dummy_inputs = {
|
366 |
+
"decoder_input_ids": input_ids,
|
367 |
+
"input_ids": input_ids,
|
368 |
+
"decoder_attention_mask": input_mask,
|
369 |
+
}
|
370 |
+
return dummy_inputs
|
371 |
+
|
372 |
+
def _init_weights(self, module):
|
373 |
+
"""Initialize the weights"""
|
374 |
+
factor = self.config.initializer_factor # Used for testing weights initialization
|
375 |
+
if isinstance(module, Pix2StructLayerNorm):
|
376 |
+
module.weight.data.fill_(factor * 1.0)
|
377 |
+
elif isinstance(module, Pix2StructTextDenseGatedActDense):
|
378 |
+
hidden_size = (
|
379 |
+
self.config.text_config.hidden_size
|
380 |
+
if isinstance(self.config, Pix2StructConfig)
|
381 |
+
else self.config.hidden_size
|
382 |
+
)
|
383 |
+
d_ff = self.config.text_config.d_ff if isinstance(self.config, Pix2StructConfig) else self.config.d_ff
|
384 |
+
|
385 |
+
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
|
386 |
+
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
|
387 |
+
module.wi_0.bias.data.zero_()
|
388 |
+
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
|
389 |
+
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
|
390 |
+
module.wi_1.bias.data.zero_()
|
391 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((d_ff) ** -0.5))
|
392 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
393 |
+
module.wo.bias.data.zero_()
|
394 |
+
elif isinstance(module, Pix2StructTextAttention):
|
395 |
+
# Mesh TensorFlow attention initialization to avoid scaling before softmax
|
396 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
|
397 |
+
hidden_size = (
|
398 |
+
self.config.text_config.hidden_size
|
399 |
+
if isinstance(self.config, Pix2StructConfig)
|
400 |
+
else self.config.hidden_size
|
401 |
+
)
|
402 |
+
key_value_proj_dim = (
|
403 |
+
self.config.text_config.d_kv if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size
|
404 |
+
)
|
405 |
+
n_heads = (
|
406 |
+
self.config.text_config.num_heads
|
407 |
+
if isinstance(self.config, Pix2StructConfig)
|
408 |
+
else self.config.num_heads
|
409 |
+
)
|
410 |
+
|
411 |
+
module.query.weight.data.normal_(mean=0.0, std=factor * ((hidden_size * key_value_proj_dim) ** -0.5))
|
412 |
+
module.key.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5))
|
413 |
+
module.value.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5))
|
414 |
+
module.output.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
|
415 |
+
if module.has_relative_attention_bias:
|
416 |
+
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
|
417 |
+
elif isinstance(module, nn.Embedding):
|
418 |
+
hidden_size = (
|
419 |
+
self.config.text_config.hidden_size
|
420 |
+
if isinstance(self.config, Pix2StructConfig)
|
421 |
+
else self.config.hidden_size
|
422 |
+
)
|
423 |
+
|
424 |
+
module.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
|
425 |
+
if module.padding_idx is not None:
|
426 |
+
module.weight.data[module.padding_idx].zero_()
|
427 |
+
elif isinstance(module, Pix2StructTextModel):
|
428 |
+
hidden_size = (
|
429 |
+
self.config.text_config.hidden_size
|
430 |
+
if isinstance(self.config, Pix2StructConfig)
|
431 |
+
else self.config.hidden_size
|
432 |
+
)
|
433 |
+
|
434 |
+
module.lm_head.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
|
435 |
+
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
436 |
+
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
|
437 |
+
# `trunc_normal_cpu` not implemented in `half` issues
|
438 |
+
module.weight.data = nn.init.trunc_normal_(
|
439 |
+
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
|
440 |
+
).to(module.weight.dtype)
|
441 |
+
if module.bias is not None:
|
442 |
+
module.bias.data.zero_()
|
443 |
+
elif isinstance(module, Pix2StructLayerNorm):
|
444 |
+
if module.weight is not None:
|
445 |
+
module.weight.data.fill_(1.0)
|
446 |
+
elif isinstance(module, nn.Embedding):
|
447 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
448 |
+
if module.padding_idx is not None:
|
449 |
+
module.weight.data[module.padding_idx].zero_()
|
450 |
+
|
451 |
+
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->Pix2Struct
|
452 |
+
def _shift_right(self, input_ids):
|
453 |
+
decoder_start_token_id = self.config.decoder_start_token_id
|
454 |
+
pad_token_id = self.config.pad_token_id
|
455 |
+
|
456 |
+
if decoder_start_token_id is None:
|
457 |
+
raise ValueError(
|
458 |
+
"self.model.config.decoder_start_token_id has to be defined. In Pix2Struct it is usually set to the pad_token_id. "
|
459 |
+
"See Pix2Struct docs for more information."
|
460 |
+
)
|
461 |
+
|
462 |
+
# shift inputs to the right
|
463 |
+
if is_torch_fx_proxy(input_ids):
|
464 |
+
# Item assignment is not supported natively for proxies.
|
465 |
+
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
|
466 |
+
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
|
467 |
+
else:
|
468 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
469 |
+
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
470 |
+
shifted_input_ids[..., 0] = decoder_start_token_id
|
471 |
+
|
472 |
+
if pad_token_id is None:
|
473 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
474 |
+
# replace possible -100 values in labels by `pad_token_id`
|
475 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
476 |
+
|
477 |
+
return shifted_input_ids
|
478 |
+
|
479 |
+
|
480 |
+
PIX2STRUCT_VISION_START_DOCSTRING = r"""
|
481 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
482 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
483 |
+
behavior.
|
484 |
+
|
485 |
+
Parameters:
|
486 |
+
config ([`Pix2StructConfig`]): Model configuration class with all the parameters of the model.
|
487 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
488 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
489 |
+
"""
|
490 |
+
|
491 |
+
PIX2STRUCT_VISION_INPUTS_DOCSTRING = r"""
|
492 |
+
Args:
|
493 |
+
flattened_patches (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_channels x patch_height x patch_width)`):
|
494 |
+
Flattened and padded pixel values. These values can be obtained using [`AutoImageProcessor`]. See
|
495 |
+
[`Pix2StructVisionImageProcessor.__call__`] for details. Check the [original
|
496 |
+
paper](https://arxiv.org/abs/2210.03347) (figure 5) for more details.
|
497 |
+
|
498 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
499 |
+
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
|
500 |
+
|
501 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
502 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
503 |
+
|
504 |
+
- 1 indicates the head is **not masked**,
|
505 |
+
- 0 indicates the head is **masked**.
|
506 |
+
|
507 |
+
output_attentions (`bool`, *optional*):
|
508 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
509 |
+
tensors for more detail.
|
510 |
+
output_hidden_states (`bool`, *optional*):
|
511 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
512 |
+
more detail.
|
513 |
+
return_dict (`bool`, *optional*):
|
514 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
515 |
+
"""
|
516 |
+
|
517 |
+
|
518 |
+
@add_start_docstrings(
|
519 |
+
"The bare Pix2StructVision Model transformer outputting raw hidden-states without any specific head on top.",
|
520 |
+
PIX2STRUCT_VISION_START_DOCSTRING,
|
521 |
+
)
|
522 |
+
class Pix2StructVisionModel(Pix2StructPreTrainedModel):
|
523 |
+
config_class = Pix2StructVisionConfig
|
524 |
+
main_input_name = "flattened_patches"
|
525 |
+
supports_gradient_checkpointing = True
|
526 |
+
_no_split_modules = ["Pix2StructVisionLayer"]
|
527 |
+
|
528 |
+
def __init__(self, config: Pix2StructConfig):
|
529 |
+
super().__init__(config)
|
530 |
+
self.config = config
|
531 |
+
|
532 |
+
self.embeddings = Pix2StructVisionEmbeddings(config)
|
533 |
+
self.encoder = Pix2StructVisionEncoder(config)
|
534 |
+
|
535 |
+
self.layernorm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
536 |
+
|
537 |
+
# Initialize weights and apply final processing
|
538 |
+
self.post_init()
|
539 |
+
|
540 |
+
def get_input_embeddings(self):
|
541 |
+
return self.embeddings.patch_projection
|
542 |
+
|
543 |
+
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
|
544 |
+
"""
|
545 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
546 |
+
class PreTrainedModel
|
547 |
+
"""
|
548 |
+
for layer, heads in heads_to_prune.items():
|
549 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
550 |
+
|
551 |
+
@add_start_docstrings_to_model_forward(PIX2STRUCT_VISION_INPUTS_DOCSTRING)
|
552 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
|
553 |
+
def forward(
|
554 |
+
self,
|
555 |
+
flattened_patches: Optional[torch.Tensor] = None,
|
556 |
+
attention_mask: Optional[torch.Tensor] = None,
|
557 |
+
head_mask: Optional[torch.Tensor] = None,
|
558 |
+
output_attentions: Optional[bool] = None,
|
559 |
+
output_hidden_states: Optional[bool] = None,
|
560 |
+
return_dict: Optional[bool] = None,
|
561 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
562 |
+
r"""
|
563 |
+
Returns:
|
564 |
+
|
565 |
+
Example:
|
566 |
+
|
567 |
+
```python
|
568 |
+
>>> import requests
|
569 |
+
>>> from PIL import Image
|
570 |
+
>>> from transformers import AutoProcessor, Pix2StructVisionModel
|
571 |
+
|
572 |
+
>>> image_processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
|
573 |
+
>>> model = Pix2StructVisionModel.from_pretrained("google/pix2struct-textcaps-base")
|
574 |
+
|
575 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
576 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
577 |
+
|
578 |
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
579 |
+
>>> with torch.no_grad():
|
580 |
+
... outputs = model(**inputs)
|
581 |
+
|
582 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
583 |
+
>>> list(last_hidden_states.shape)
|
584 |
+
[1, 2048, 768]
|
585 |
+
```
|
586 |
+
"""
|
587 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
588 |
+
output_hidden_states = (
|
589 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
590 |
+
)
|
591 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
592 |
+
|
593 |
+
if flattened_patches is None:
|
594 |
+
raise ValueError("You have to specify flattened_patches")
|
595 |
+
|
596 |
+
if attention_mask is None:
|
597 |
+
# check where `flattened_patches` is not 0
|
598 |
+
attention_mask = (flattened_patches.sum(dim=-1) != 0).float()
|
599 |
+
|
600 |
+
# Prepare head mask if needed
|
601 |
+
# 1.0 in head_mask indicate we keep the head
|
602 |
+
# attention_probs has shape bsz x n_heads x N x N
|
603 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
604 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
605 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
606 |
+
|
607 |
+
embedding_output = self.embeddings(flattened_patches)
|
608 |
+
|
609 |
+
encoder_outputs = self.encoder(
|
610 |
+
embedding_output,
|
611 |
+
attention_mask=attention_mask,
|
612 |
+
head_mask=head_mask,
|
613 |
+
output_attentions=output_attentions,
|
614 |
+
output_hidden_states=output_hidden_states,
|
615 |
+
return_dict=return_dict,
|
616 |
+
)
|
617 |
+
sequence_output = encoder_outputs[0]
|
618 |
+
sequence_output = self.layernorm(sequence_output)
|
619 |
+
|
620 |
+
if not return_dict:
|
621 |
+
head_outputs = (sequence_output,)
|
622 |
+
return head_outputs + encoder_outputs[1:]
|
623 |
+
|
624 |
+
return BaseModelOutput(
|
625 |
+
last_hidden_state=sequence_output,
|
626 |
+
hidden_states=encoder_outputs.hidden_states,
|
627 |
+
attentions=encoder_outputs.attentions,
|
628 |
+
)
|
629 |
+
|
630 |
+
|
631 |
+
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->Pix2StructText,d_model->hidden_size
|
632 |
+
class Pix2StructTextDenseGatedActDense(nn.Module):
|
633 |
+
def __init__(self, config: Pix2StructTextConfig):
|
634 |
+
super().__init__()
|
635 |
+
self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
|
636 |
+
self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
|
637 |
+
self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False)
|
638 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
639 |
+
self.act = ACT2FN[config.dense_act_fn]
|
640 |
+
|
641 |
+
def forward(self, hidden_states):
|
642 |
+
hidden_gelu = self.act(self.wi_0(hidden_states))
|
643 |
+
hidden_linear = self.wi_1(hidden_states)
|
644 |
+
hidden_states = hidden_gelu * hidden_linear
|
645 |
+
hidden_states = self.dropout(hidden_states)
|
646 |
+
|
647 |
+
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
|
648 |
+
# See https://github.com/huggingface/transformers/issues/20287
|
649 |
+
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
|
650 |
+
if (
|
651 |
+
isinstance(self.wo.weight, torch.Tensor)
|
652 |
+
and hidden_states.dtype != self.wo.weight.dtype
|
653 |
+
and self.wo.weight.dtype != torch.int8
|
654 |
+
):
|
655 |
+
hidden_states = hidden_states.to(self.wo.weight.dtype)
|
656 |
+
|
657 |
+
hidden_states = self.wo(hidden_states)
|
658 |
+
return hidden_states
|
659 |
+
|
660 |
+
|
661 |
+
class Pix2StructTextLayerFF(nn.Module):
|
662 |
+
def __init__(self, config: Pix2StructTextConfig):
|
663 |
+
super().__init__()
|
664 |
+
self.DenseReluDense = Pix2StructTextDenseGatedActDense(config)
|
665 |
+
|
666 |
+
self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
667 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
668 |
+
|
669 |
+
# Copied from transformers.models.t5.modeling_t5.T5LayerFF.forward
|
670 |
+
def forward(self, hidden_states):
|
671 |
+
forwarded_states = self.layer_norm(hidden_states)
|
672 |
+
forwarded_states = self.DenseReluDense(forwarded_states)
|
673 |
+
hidden_states = hidden_states + self.dropout(forwarded_states)
|
674 |
+
return hidden_states
|
675 |
+
|
676 |
+
|
677 |
+
class Pix2StructTextAttention(nn.Module):
|
678 |
+
def __init__(self, config: Pix2StructTextConfig, has_relative_attention_bias=False):
|
679 |
+
super().__init__()
|
680 |
+
self.has_relative_attention_bias = has_relative_attention_bias
|
681 |
+
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
682 |
+
self.relative_attention_max_distance = config.relative_attention_max_distance
|
683 |
+
self.hidden_size = config.hidden_size
|
684 |
+
self.key_value_proj_dim = config.d_kv
|
685 |
+
self.n_heads = config.num_heads
|
686 |
+
self.dropout = config.dropout_rate
|
687 |
+
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
688 |
+
|
689 |
+
# Mesh TensorFlow initialization to avoid scaling before softmax
|
690 |
+
self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
691 |
+
self.key = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
692 |
+
self.value = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
693 |
+
self.output = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
694 |
+
|
695 |
+
if self.has_relative_attention_bias:
|
696 |
+
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
|
697 |
+
self.pruned_heads = set()
|
698 |
+
self.gradient_checkpointing = False
|
699 |
+
|
700 |
+
@staticmethod
|
701 |
+
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket
|
702 |
+
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
|
703 |
+
"""
|
704 |
+
Adapted from Mesh Tensorflow:
|
705 |
+
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
706 |
+
|
707 |
+
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
708 |
+
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
709 |
+
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
710 |
+
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
711 |
+
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
712 |
+
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
713 |
+
|
714 |
+
Args:
|
715 |
+
relative_position: an int32 Tensor
|
716 |
+
bidirectional: a boolean - whether the attention is bidirectional
|
717 |
+
num_buckets: an integer
|
718 |
+
max_distance: an integer
|
719 |
+
|
720 |
+
Returns:
|
721 |
+
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
722 |
+
"""
|
723 |
+
relative_buckets = 0
|
724 |
+
if bidirectional:
|
725 |
+
num_buckets //= 2
|
726 |
+
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
727 |
+
relative_position = torch.abs(relative_position)
|
728 |
+
else:
|
729 |
+
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
|
730 |
+
# now relative_position is in the range [0, inf)
|
731 |
+
|
732 |
+
# half of the buckets are for exact increments in positions
|
733 |
+
max_exact = num_buckets // 2
|
734 |
+
is_small = relative_position < max_exact
|
735 |
+
|
736 |
+
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
737 |
+
relative_position_if_large = max_exact + (
|
738 |
+
torch.log(relative_position.float() / max_exact)
|
739 |
+
/ math.log(max_distance / max_exact)
|
740 |
+
* (num_buckets - max_exact)
|
741 |
+
).to(torch.long)
|
742 |
+
relative_position_if_large = torch.min(
|
743 |
+
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
|
744 |
+
)
|
745 |
+
|
746 |
+
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
|
747 |
+
return relative_buckets
|
748 |
+
|
749 |
+
# Adapted from transformers.models.t5.modeling_t5.T5Attention.compute_bias
|
750 |
+
def compute_bias(self, query_length, key_length, device=None):
|
751 |
+
"""Compute binned relative position bias"""
|
752 |
+
if device is None:
|
753 |
+
device = self.relative_attention_bias.weight.device
|
754 |
+
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
|
755 |
+
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
|
756 |
+
relative_position = memory_position - context_position # shape (query_length, key_length)
|
757 |
+
relative_position_bucket = self._relative_position_bucket(
|
758 |
+
relative_position, # shape (query_length, key_length)
|
759 |
+
bidirectional=False,
|
760 |
+
num_buckets=self.relative_attention_num_buckets,
|
761 |
+
max_distance=self.relative_attention_max_distance,
|
762 |
+
)
|
763 |
+
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
|
764 |
+
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
765 |
+
return values
|
766 |
+
|
767 |
+
def forward(
|
768 |
+
self,
|
769 |
+
hidden_states,
|
770 |
+
mask=None,
|
771 |
+
key_value_states=None,
|
772 |
+
position_bias=None,
|
773 |
+
past_key_value=None,
|
774 |
+
layer_head_mask=None,
|
775 |
+
query_length=None,
|
776 |
+
use_cache=False,
|
777 |
+
output_attentions=False,
|
778 |
+
):
|
779 |
+
"""
|
780 |
+
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
|
781 |
+
"""
|
782 |
+
# Input is (batch_size, seq_length, dim)
|
783 |
+
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
784 |
+
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
|
785 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
786 |
+
|
787 |
+
real_seq_length = seq_length
|
788 |
+
|
789 |
+
if past_key_value is not None:
|
790 |
+
if len(past_key_value) != 2:
|
791 |
+
raise ValueError(
|
792 |
+
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
|
793 |
+
)
|
794 |
+
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
|
795 |
+
|
796 |
+
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
|
797 |
+
|
798 |
+
def to_projection_shape(states):
|
799 |
+
"""projection"""
|
800 |
+
return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
|
801 |
+
|
802 |
+
def project(hidden_states, proj_layer, key_value_states, past_key_value):
|
803 |
+
"""projects hidden states correctly to key/query states"""
|
804 |
+
if key_value_states is None:
|
805 |
+
# self-attn
|
806 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
807 |
+
hidden_states = to_projection_shape(proj_layer(hidden_states))
|
808 |
+
elif past_key_value is None:
|
809 |
+
# cross-attn
|
810 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
811 |
+
hidden_states = to_projection_shape(proj_layer(key_value_states))
|
812 |
+
|
813 |
+
if past_key_value is not None:
|
814 |
+
if key_value_states is None:
|
815 |
+
# self-attn
|
816 |
+
# (batch_size, n_heads, key_length, dim_per_head)
|
817 |
+
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
|
818 |
+
elif past_key_value.shape[2] != key_value_states.shape[1]:
|
819 |
+
# checking that the `sequence_length` of the `past_key_value` is the same as
|
820 |
+
# the provided `key_value_states` to support prefix tuning
|
821 |
+
# cross-attn
|
822 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
823 |
+
hidden_states = to_projection_shape(proj_layer(key_value_states))
|
824 |
+
else:
|
825 |
+
# cross-attn
|
826 |
+
hidden_states = past_key_value
|
827 |
+
return hidden_states
|
828 |
+
|
829 |
+
# get query states
|
830 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
831 |
+
query_states = to_projection_shape(self.query(hidden_states))
|
832 |
+
|
833 |
+
# get key/value states
|
834 |
+
key_states = project(
|
835 |
+
hidden_states, self.key, key_value_states, past_key_value[0] if past_key_value is not None else None
|
836 |
+
)
|
837 |
+
value_states = project(
|
838 |
+
hidden_states, self.value, key_value_states, past_key_value[1] if past_key_value is not None else None
|
839 |
+
)
|
840 |
+
|
841 |
+
# compute scores
|
842 |
+
scores = torch.matmul(
|
843 |
+
query_states, key_states.transpose(3, 2)
|
844 |
+
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
845 |
+
|
846 |
+
if position_bias is None:
|
847 |
+
if not self.has_relative_attention_bias:
|
848 |
+
position_bias = torch.zeros(
|
849 |
+
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
|
850 |
+
)
|
851 |
+
if self.gradient_checkpointing and self.training:
|
852 |
+
position_bias.requires_grad = True
|
853 |
+
else:
|
854 |
+
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device)
|
855 |
+
|
856 |
+
# if key and values are already calculated
|
857 |
+
# we want only the last query position bias
|
858 |
+
if past_key_value is not None:
|
859 |
+
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
|
860 |
+
|
861 |
+
if mask is not None:
|
862 |
+
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
|
863 |
+
|
864 |
+
if self.pruned_heads:
|
865 |
+
mask = torch.ones(position_bias.shape[1])
|
866 |
+
mask[list(self.pruned_heads)] = 0
|
867 |
+
position_bias_masked = position_bias[:, mask.bool()]
|
868 |
+
else:
|
869 |
+
position_bias_masked = position_bias
|
870 |
+
|
871 |
+
scores += position_bias_masked
|
872 |
+
# (batch_size, n_heads, seq_length, key_length)
|
873 |
+
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
|
874 |
+
|
875 |
+
# (batch_size, n_heads, seq_length, key_length)
|
876 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
877 |
+
|
878 |
+
# Mask heads if we want to
|
879 |
+
if layer_head_mask is not None:
|
880 |
+
attn_weights = attn_weights * layer_head_mask
|
881 |
+
|
882 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
883 |
+
# (batch_size, seq_length, dim)
|
884 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
|
885 |
+
|
886 |
+
attn_output = self.output(attn_output)
|
887 |
+
|
888 |
+
present_key_value_state = (key_states, value_states) if use_cache else None
|
889 |
+
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
|
890 |
+
|
891 |
+
if output_attentions:
|
892 |
+
outputs = outputs + (attn_weights,)
|
893 |
+
return outputs
|
894 |
+
|
895 |
+
|
896 |
+
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,self.SelfAttention->self.attention,config.d_model->config.hidden_size
|
897 |
+
class Pix2StructTextLayerSelfAttention(nn.Module):
|
898 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
899 |
+
super().__init__()
|
900 |
+
self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=has_relative_attention_bias)
|
901 |
+
self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
902 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
903 |
+
|
904 |
+
def forward(
|
905 |
+
self,
|
906 |
+
hidden_states,
|
907 |
+
attention_mask=None,
|
908 |
+
position_bias=None,
|
909 |
+
layer_head_mask=None,
|
910 |
+
past_key_value=None,
|
911 |
+
use_cache=False,
|
912 |
+
output_attentions=False,
|
913 |
+
):
|
914 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
915 |
+
attention_output = self.attention(
|
916 |
+
normed_hidden_states,
|
917 |
+
mask=attention_mask,
|
918 |
+
position_bias=position_bias,
|
919 |
+
layer_head_mask=layer_head_mask,
|
920 |
+
past_key_value=past_key_value,
|
921 |
+
use_cache=use_cache,
|
922 |
+
output_attentions=output_attentions,
|
923 |
+
)
|
924 |
+
hidden_states = hidden_states + self.dropout(attention_output[0])
|
925 |
+
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
|
926 |
+
return outputs
|
927 |
+
|
928 |
+
|
929 |
+
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,self.EncDecAttention->self.attention,config.d_model->config.hidden_size
|
930 |
+
class Pix2StructTextLayerCrossAttention(nn.Module):
|
931 |
+
def __init__(self, config):
|
932 |
+
super().__init__()
|
933 |
+
self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=False)
|
934 |
+
self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
935 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
936 |
+
|
937 |
+
def forward(
|
938 |
+
self,
|
939 |
+
hidden_states,
|
940 |
+
key_value_states,
|
941 |
+
attention_mask=None,
|
942 |
+
position_bias=None,
|
943 |
+
layer_head_mask=None,
|
944 |
+
past_key_value=None,
|
945 |
+
use_cache=False,
|
946 |
+
query_length=None,
|
947 |
+
output_attentions=False,
|
948 |
+
):
|
949 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
950 |
+
attention_output = self.attention(
|
951 |
+
normed_hidden_states,
|
952 |
+
mask=attention_mask,
|
953 |
+
key_value_states=key_value_states,
|
954 |
+
position_bias=position_bias,
|
955 |
+
layer_head_mask=layer_head_mask,
|
956 |
+
past_key_value=past_key_value,
|
957 |
+
use_cache=use_cache,
|
958 |
+
query_length=query_length,
|
959 |
+
output_attentions=output_attentions,
|
960 |
+
)
|
961 |
+
layer_output = hidden_states + self.dropout(attention_output[0])
|
962 |
+
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
|
963 |
+
return outputs
|
964 |
+
|
965 |
+
|
966 |
+
class Pix2StructTextBlock(nn.Module):
|
967 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
968 |
+
super().__init__()
|
969 |
+
|
970 |
+
self.self_attention = Pix2StructTextLayerSelfAttention(
|
971 |
+
config, has_relative_attention_bias=has_relative_attention_bias
|
972 |
+
)
|
973 |
+
|
974 |
+
self.encoder_decoder_attention = Pix2StructTextLayerCrossAttention(config)
|
975 |
+
|
976 |
+
self.mlp = Pix2StructTextLayerFF(config)
|
977 |
+
|
978 |
+
def forward(
|
979 |
+
self,
|
980 |
+
hidden_states,
|
981 |
+
attention_mask=None,
|
982 |
+
position_bias=None,
|
983 |
+
encoder_hidden_states=None,
|
984 |
+
encoder_attention_mask=None,
|
985 |
+
encoder_decoder_position_bias=None,
|
986 |
+
layer_head_mask=None,
|
987 |
+
cross_attn_layer_head_mask=None,
|
988 |
+
past_key_value=None,
|
989 |
+
use_cache=False,
|
990 |
+
output_attentions=False,
|
991 |
+
return_dict=True,
|
992 |
+
):
|
993 |
+
if past_key_value is not None:
|
994 |
+
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
|
995 |
+
|
996 |
+
if len(past_key_value) != expected_num_past_key_values:
|
997 |
+
raise ValueError(
|
998 |
+
f"There should be {expected_num_past_key_values} past states. "
|
999 |
+
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
|
1000 |
+
f"Got {len(past_key_value)} past key / value states"
|
1001 |
+
)
|
1002 |
+
|
1003 |
+
self_attn_past_key_value = past_key_value[:2]
|
1004 |
+
cross_attn_past_key_value = past_key_value[2:]
|
1005 |
+
else:
|
1006 |
+
self_attn_past_key_value, cross_attn_past_key_value = None, None
|
1007 |
+
|
1008 |
+
self_attention_outputs = self.self_attention(
|
1009 |
+
hidden_states,
|
1010 |
+
attention_mask=attention_mask,
|
1011 |
+
position_bias=position_bias,
|
1012 |
+
layer_head_mask=layer_head_mask,
|
1013 |
+
past_key_value=self_attn_past_key_value,
|
1014 |
+
use_cache=use_cache,
|
1015 |
+
output_attentions=output_attentions,
|
1016 |
+
)
|
1017 |
+
hidden_states, present_key_value_state = self_attention_outputs[:2]
|
1018 |
+
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
|
1019 |
+
|
1020 |
+
# clamp inf values to enable fp16 training
|
1021 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
1022 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
1023 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
1024 |
+
|
1025 |
+
do_cross_attention = encoder_hidden_states is not None
|
1026 |
+
if do_cross_attention:
|
1027 |
+
# the actual query length is unknown for cross attention
|
1028 |
+
# if using past key value states. Need to inject it here
|
1029 |
+
if present_key_value_state is not None:
|
1030 |
+
query_length = present_key_value_state[0].shape[2]
|
1031 |
+
else:
|
1032 |
+
query_length = None
|
1033 |
+
|
1034 |
+
cross_attention_outputs = self.encoder_decoder_attention(
|
1035 |
+
hidden_states,
|
1036 |
+
key_value_states=encoder_hidden_states,
|
1037 |
+
attention_mask=encoder_attention_mask,
|
1038 |
+
position_bias=encoder_decoder_position_bias,
|
1039 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
1040 |
+
past_key_value=cross_attn_past_key_value,
|
1041 |
+
query_length=query_length,
|
1042 |
+
use_cache=use_cache,
|
1043 |
+
output_attentions=output_attentions,
|
1044 |
+
)
|
1045 |
+
hidden_states = cross_attention_outputs[0]
|
1046 |
+
|
1047 |
+
# clamp inf values to enable fp16 training
|
1048 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
1049 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
1050 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
1051 |
+
|
1052 |
+
# Combine self attn and cross attn key value states
|
1053 |
+
if present_key_value_state is not None:
|
1054 |
+
present_key_value_state = present_key_value_state + cross_attention_outputs[1]
|
1055 |
+
|
1056 |
+
# Keep cross-attention outputs and relative position weights
|
1057 |
+
attention_outputs = attention_outputs + cross_attention_outputs[2:]
|
1058 |
+
|
1059 |
+
# Apply Feed Forward layer
|
1060 |
+
hidden_states = self.mlp(hidden_states)
|
1061 |
+
|
1062 |
+
# clamp inf values to enable fp16 training
|
1063 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
1064 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
1065 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
1066 |
+
|
1067 |
+
outputs = (hidden_states,)
|
1068 |
+
|
1069 |
+
if use_cache:
|
1070 |
+
outputs = outputs + (present_key_value_state,) + attention_outputs
|
1071 |
+
else:
|
1072 |
+
outputs = outputs + attention_outputs
|
1073 |
+
|
1074 |
+
return outputs
|
1075 |
+
|
1076 |
+
|
1077 |
+
PIX2STRUCT_START_DOCSTRING = r"""
|
1078 |
+
|
1079 |
+
The Pix2Struct model was proposed in [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language
|
1080 |
+
Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu,
|
1081 |
+
Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. It's an encoder decoder
|
1082 |
+
transformer pre-trained in a image-to-text setting.
|
1083 |
+
|
1084 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1085 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1086 |
+
etc.)
|
1087 |
+
|
1088 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1089 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1090 |
+
and behavior.
|
1091 |
+
|
1092 |
+
Parameters:
|
1093 |
+
config (Union[`Pix2StructConfig`, `Pix2StructTextConfig`]):
|
1094 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
1095 |
+
load the weights associated with the model, only the configuration. Check out the
|
1096 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1097 |
+
"""
|
1098 |
+
|
1099 |
+
PIX2STRUCT_TEXT_INPUTS_DOCSTRING = r"""
|
1100 |
+
Args:
|
1101 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1102 |
+
Indices of input sequence tokens in the vocabulary. Pix2StructText is a model with relative position
|
1103 |
+
embeddings so you should be able to pad the inputs on both the right and the left.
|
1104 |
+
|
1105 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1106 |
+
[`PreTrainedTokenizer.__call__`] for detail.
|
1107 |
+
|
1108 |
+
[What are input IDs?](../glossary#input-ids)
|
1109 |
+
|
1110 |
+
To know more on how to prepare `input_ids` for pretraining take a look a [Pix2StructText
|
1111 |
+
Training](./t5#training).
|
1112 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1113 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1114 |
+
|
1115 |
+
- 1 for tokens that are **not masked**,
|
1116 |
+
- 0 for tokens that are **masked**.
|
1117 |
+
|
1118 |
+
[What are attention masks?](../glossary#attention-mask)
|
1119 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
1120 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
1121 |
+
|
1122 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1123 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1124 |
+
|
1125 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
1126 |
+
|
1127 |
+
Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
|
1128 |
+
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
1129 |
+
`past_key_values`).
|
1130 |
+
|
1131 |
+
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText
|
1132 |
+
Training](./t5#training).
|
1133 |
+
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
1134 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
1135 |
+
be used by default.
|
1136 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1137 |
+
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
|
1138 |
+
1]`:
|
1139 |
+
|
1140 |
+
- 1 indicates the head is **not masked**,
|
1141 |
+
- 0 indicates the head is **masked**.
|
1142 |
+
|
1143 |
+
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1144 |
+
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
|
1145 |
+
1]`:
|
1146 |
+
|
1147 |
+
- 1 indicates the head is **not masked**,
|
1148 |
+
- 0 indicates the head is **masked**.
|
1149 |
+
|
1150 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1151 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
|
1152 |
+
`[0, 1]`:
|
1153 |
+
|
1154 |
+
- 1 indicates the head is **not masked**,
|
1155 |
+
- 0 indicates the head is **masked**.
|
1156 |
+
|
1157 |
+
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
1158 |
+
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
|
1159 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
|
1160 |
+
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
1161 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1162 |
+
Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding.
|
1163 |
+
|
1164 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1165 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1166 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1167 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1168 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1169 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1170 |
+
model's internal embedding lookup matrix.
|
1171 |
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
1172 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
1173 |
+
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
1174 |
+
input (see `past_key_values`). This is useful if you want more control over how to convert
|
1175 |
+
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
1176 |
+
|
1177 |
+
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
|
1178 |
+
of `inputs_embeds`.
|
1179 |
+
|
1180 |
+
use_cache (`bool`, *optional*):
|
1181 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1182 |
+
`past_key_values`).
|
1183 |
+
|
1184 |
+
output_attentions (`bool`, *optional*):
|
1185 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1186 |
+
tensors for more detail.
|
1187 |
+
output_hidden_states (`bool`, *optional*):
|
1188 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1189 |
+
more detail.
|
1190 |
+
return_dict (`bool`, *optional*):
|
1191 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1192 |
+
"""
|
1193 |
+
|
1194 |
+
PIX2STRUCT_INPUTS_DOCSTRING = r"""
|
1195 |
+
Args:
|
1196 |
+
flattened_patches (`torch.FloatTensor` of shape `(batch_size, seq_length, hidden_size)`):
|
1197 |
+
Flattened pixel patches. the `hidden_size` is obtained by the following formula: `hidden_size` =
|
1198 |
+
`num_channels` * `patch_size` * `patch_size`
|
1199 |
+
|
1200 |
+
The process of flattening the pixel patches is done by `Pix2StructProcessor`.
|
1201 |
+
|
1202 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1203 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1204 |
+
|
1205 |
+
- 1 for tokens that are **not masked**,
|
1206 |
+
- 0 for tokens that are **masked**.
|
1207 |
+
|
1208 |
+
[What are attention masks?](../glossary#attention-mask)
|
1209 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
1210 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
1211 |
+
|
1212 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1213 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1214 |
+
|
1215 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
1216 |
+
|
1217 |
+
Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
|
1218 |
+
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
1219 |
+
`past_key_values`).
|
1220 |
+
|
1221 |
+
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText
|
1222 |
+
Training](./t5#training).
|
1223 |
+
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
1224 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
1225 |
+
be used by default.
|
1226 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1227 |
+
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
|
1228 |
+
1]`:
|
1229 |
+
|
1230 |
+
- 1 indicates the head is **not masked**,
|
1231 |
+
- 0 indicates the head is **masked**.
|
1232 |
+
|
1233 |
+
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1234 |
+
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
|
1235 |
+
1]`:
|
1236 |
+
|
1237 |
+
- 1 indicates the head is **not masked**,
|
1238 |
+
- 0 indicates the head is **masked**.
|
1239 |
+
|
1240 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1241 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
|
1242 |
+
`[0, 1]`:
|
1243 |
+
|
1244 |
+
- 1 indicates the head is **not masked**,
|
1245 |
+
- 0 indicates the head is **masked**.
|
1246 |
+
|
1247 |
+
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
1248 |
+
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
|
1249 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
|
1250 |
+
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
1251 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1252 |
+
Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding.
|
1253 |
+
|
1254 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1255 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1256 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1257 |
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
1258 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
1259 |
+
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
1260 |
+
input (see `past_key_values`). This is useful if you want more control over how to convert
|
1261 |
+
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
1262 |
+
|
1263 |
+
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
|
1264 |
+
of `inputs_embeds`.
|
1265 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1266 |
+
Labels for computing the masked language modeling loss for the decoder.
|
1267 |
+
|
1268 |
+
use_cache (`bool`, *optional*):
|
1269 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1270 |
+
`past_key_values`).
|
1271 |
+
|
1272 |
+
output_attentions (`bool`, *optional*):
|
1273 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1274 |
+
tensors for more detail.
|
1275 |
+
output_hidden_states (`bool`, *optional*):
|
1276 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1277 |
+
more detail.
|
1278 |
+
return_dict (`bool`, *optional*):
|
1279 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1280 |
+
"""
|
1281 |
+
|
1282 |
+
|
1283 |
+
@add_start_docstrings(
|
1284 |
+
"The standalone text decoder of Pix2Struct",
|
1285 |
+
PIX2STRUCT_START_DOCSTRING,
|
1286 |
+
)
|
1287 |
+
class Pix2StructTextModel(Pix2StructPreTrainedModel):
|
1288 |
+
config_class = Pix2StructTextConfig
|
1289 |
+
_no_split_modules = ["Pix2StructTextBlock"]
|
1290 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1291 |
+
supports_gradient_checkpointing = True
|
1292 |
+
|
1293 |
+
def __init__(self, config):
|
1294 |
+
super().__init__(config)
|
1295 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
1296 |
+
|
1297 |
+
self.layer = nn.ModuleList(
|
1298 |
+
[Pix2StructTextBlock(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
|
1299 |
+
)
|
1300 |
+
self.final_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
1301 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
1302 |
+
|
1303 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1304 |
+
|
1305 |
+
# Initialize weights and apply final processing
|
1306 |
+
self.post_init()
|
1307 |
+
self.gradient_checkpointing = False
|
1308 |
+
|
1309 |
+
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._reorder_cache
|
1310 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1311 |
+
# if decoder past is not included in output
|
1312 |
+
# speedy decoding is disabled and no need to reorder
|
1313 |
+
if past_key_values is None:
|
1314 |
+
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
|
1315 |
+
return past_key_values
|
1316 |
+
|
1317 |
+
reordered_decoder_past = ()
|
1318 |
+
for layer_past_states in past_key_values:
|
1319 |
+
# get the correct batch idx from layer past batch dim
|
1320 |
+
# batch dim of `past` is at 2nd position
|
1321 |
+
reordered_layer_past_states = ()
|
1322 |
+
for layer_past_state in layer_past_states:
|
1323 |
+
# need to set correct `past` for each of the four key / value states
|
1324 |
+
reordered_layer_past_states = reordered_layer_past_states + (
|
1325 |
+
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
|
1326 |
+
)
|
1327 |
+
|
1328 |
+
if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
|
1329 |
+
raise ValueError(
|
1330 |
+
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
|
1331 |
+
)
|
1332 |
+
if len(reordered_layer_past_states) != len(layer_past_states):
|
1333 |
+
raise ValueError(
|
1334 |
+
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
|
1335 |
+
)
|
1336 |
+
|
1337 |
+
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
|
1338 |
+
return reordered_decoder_past
|
1339 |
+
|
1340 |
+
def get_input_embeddings(self):
|
1341 |
+
return self.embed_tokens
|
1342 |
+
|
1343 |
+
def set_input_embeddings(self, new_embeddings):
|
1344 |
+
self.embed_tokens = new_embeddings
|
1345 |
+
|
1346 |
+
def get_output_embeddings(self):
|
1347 |
+
return self.lm_head
|
1348 |
+
|
1349 |
+
def set_output_embeddings(self, new_embeddings):
|
1350 |
+
self.lm_head = new_embeddings
|
1351 |
+
|
1352 |
+
@add_start_docstrings_to_model_forward(PIX2STRUCT_TEXT_INPUTS_DOCSTRING)
|
1353 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
1354 |
+
def forward(
|
1355 |
+
self,
|
1356 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1357 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1358 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1359 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1360 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
1361 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1362 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1363 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1364 |
+
use_cache: Optional[bool] = None,
|
1365 |
+
output_attentions: Optional[bool] = None,
|
1366 |
+
output_hidden_states: Optional[bool] = None,
|
1367 |
+
labels: Optional[torch.LongTensor] = None,
|
1368 |
+
return_dict: Optional[bool] = None,
|
1369 |
+
**kwargs,
|
1370 |
+
) -> Union[Tuple[torch.FloatTensor, ...], CausalLMOutputWithCrossAttentions]:
|
1371 |
+
r"""
|
1372 |
+
Returns:
|
1373 |
+
|
1374 |
+
Example:
|
1375 |
+
|
1376 |
+
```python
|
1377 |
+
>>> from transformers import AutoProcessor, Pix2StructTextModel
|
1378 |
+
|
1379 |
+
>>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
|
1380 |
+
>>> model = Pix2StructTextModel.from_pretrained("google/pix2struct-textcaps-base")
|
1381 |
+
|
1382 |
+
>>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt")
|
1383 |
+
>>> outputs = model(**inputs)
|
1384 |
+
>>> loss = outputs.loss
|
1385 |
+
```
|
1386 |
+
"""
|
1387 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1388 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1389 |
+
output_hidden_states = (
|
1390 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1391 |
+
)
|
1392 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1393 |
+
|
1394 |
+
if input_ids is not None and inputs_embeds is not None:
|
1395 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1396 |
+
elif input_ids is not None:
|
1397 |
+
input_shape = input_ids.size()
|
1398 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
1399 |
+
elif inputs_embeds is not None:
|
1400 |
+
input_shape = inputs_embeds.size()[:-1]
|
1401 |
+
else:
|
1402 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1403 |
+
|
1404 |
+
if inputs_embeds is None:
|
1405 |
+
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
|
1406 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1407 |
+
|
1408 |
+
batch_size, seq_length = input_shape
|
1409 |
+
|
1410 |
+
# required mask seq length can be calculated via length of past
|
1411 |
+
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
|
1412 |
+
|
1413 |
+
if attention_mask is None:
|
1414 |
+
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
|
1415 |
+
if encoder_attention_mask is None and encoder_hidden_states is not None:
|
1416 |
+
encoder_seq_length = encoder_hidden_states.shape[1]
|
1417 |
+
encoder_attention_mask = torch.ones(
|
1418 |
+
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
|
1419 |
+
)
|
1420 |
+
|
1421 |
+
# initialize past_key_values with `None` if past does not exist
|
1422 |
+
if past_key_values is None:
|
1423 |
+
past_key_values = [None] * len(self.layer)
|
1424 |
+
|
1425 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1426 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1427 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
1428 |
+
|
1429 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1430 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1431 |
+
if encoder_hidden_states is not None:
|
1432 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
1433 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1434 |
+
if encoder_attention_mask is None:
|
1435 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
|
1436 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1437 |
+
else:
|
1438 |
+
encoder_extended_attention_mask = None
|
1439 |
+
|
1440 |
+
# Prepare head mask if needed
|
1441 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
1442 |
+
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
|
1443 |
+
present_key_value_states = () if use_cache else None
|
1444 |
+
all_hidden_states = () if output_hidden_states else None
|
1445 |
+
all_attentions = () if output_attentions else None
|
1446 |
+
all_cross_attentions = () if (output_attentions) else None
|
1447 |
+
position_bias = None
|
1448 |
+
encoder_decoder_position_bias = None
|
1449 |
+
|
1450 |
+
hidden_states = self.dropout(inputs_embeds)
|
1451 |
+
|
1452 |
+
for i, (layer_module, past_key_value) in enumerate(zip(self.layer, past_key_values)):
|
1453 |
+
layer_head_mask = head_mask[i]
|
1454 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
1455 |
+
if output_hidden_states:
|
1456 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1457 |
+
|
1458 |
+
if self.gradient_checkpointing and self.training:
|
1459 |
+
if use_cache:
|
1460 |
+
logger.warning(
|
1461 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1462 |
+
)
|
1463 |
+
use_cache = False
|
1464 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1465 |
+
layer_module.forward,
|
1466 |
+
hidden_states,
|
1467 |
+
extended_attention_mask,
|
1468 |
+
position_bias,
|
1469 |
+
encoder_hidden_states,
|
1470 |
+
encoder_extended_attention_mask,
|
1471 |
+
encoder_decoder_position_bias,
|
1472 |
+
layer_head_mask,
|
1473 |
+
cross_attn_layer_head_mask,
|
1474 |
+
None, # past_key_value is always None with gradient checkpointing
|
1475 |
+
use_cache,
|
1476 |
+
output_attentions,
|
1477 |
+
)
|
1478 |
+
else:
|
1479 |
+
layer_outputs = layer_module(
|
1480 |
+
hidden_states,
|
1481 |
+
attention_mask=extended_attention_mask,
|
1482 |
+
position_bias=position_bias,
|
1483 |
+
encoder_hidden_states=encoder_hidden_states,
|
1484 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1485 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
1486 |
+
layer_head_mask=layer_head_mask,
|
1487 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
1488 |
+
past_key_value=past_key_value,
|
1489 |
+
use_cache=use_cache,
|
1490 |
+
output_attentions=output_attentions,
|
1491 |
+
)
|
1492 |
+
|
1493 |
+
# layer_outputs is a tuple with:
|
1494 |
+
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
1495 |
+
if use_cache is False:
|
1496 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
1497 |
+
|
1498 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
1499 |
+
|
1500 |
+
# We share the position biases between the layers - the first layer store them
|
1501 |
+
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
1502 |
+
# (cross-attention position bias), (cross-attention weights)
|
1503 |
+
position_bias = layer_outputs[2]
|
1504 |
+
if encoder_hidden_states is not None:
|
1505 |
+
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
|
1506 |
+
# append next layer key value states
|
1507 |
+
if use_cache:
|
1508 |
+
present_key_value_states = present_key_value_states + (present_key_value_state,)
|
1509 |
+
|
1510 |
+
if output_attentions:
|
1511 |
+
all_attentions = all_attentions + (layer_outputs[3],)
|
1512 |
+
if encoder_hidden_states is not None:
|
1513 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
1514 |
+
|
1515 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
1516 |
+
hidden_states = self.dropout(hidden_states)
|
1517 |
+
|
1518 |
+
logits = self.lm_head(hidden_states)
|
1519 |
+
|
1520 |
+
# Add last layer
|
1521 |
+
if output_hidden_states:
|
1522 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1523 |
+
|
1524 |
+
loss = None
|
1525 |
+
if labels is not None:
|
1526 |
+
# move labels to correct device to enable model parallelism
|
1527 |
+
labels = labels.to(logits.device)
|
1528 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=-100, reduction="mean")
|
1529 |
+
|
1530 |
+
loss = loss_fct(logits.contiguous().view(-1, logits.size(-1)), labels.contiguous().view(-1))
|
1531 |
+
|
1532 |
+
if not return_dict:
|
1533 |
+
return tuple(
|
1534 |
+
v
|
1535 |
+
for v in [
|
1536 |
+
loss,
|
1537 |
+
logits,
|
1538 |
+
present_key_value_states,
|
1539 |
+
all_hidden_states,
|
1540 |
+
all_attentions,
|
1541 |
+
all_cross_attentions,
|
1542 |
+
]
|
1543 |
+
if v is not None
|
1544 |
+
)
|
1545 |
+
return CausalLMOutputWithCrossAttentions(
|
1546 |
+
loss=loss,
|
1547 |
+
logits=logits,
|
1548 |
+
past_key_values=present_key_value_states,
|
1549 |
+
hidden_states=all_hidden_states,
|
1550 |
+
attentions=all_attentions,
|
1551 |
+
cross_attentions=all_cross_attentions,
|
1552 |
+
)
|
1553 |
+
|
1554 |
+
|
1555 |
+
@add_start_docstrings(
|
1556 |
+
"A conditional generation model with a language modeling head. Can be used for sequence generation tasks.",
|
1557 |
+
PIX2STRUCT_START_DOCSTRING,
|
1558 |
+
)
|
1559 |
+
class Pix2StructForConditionalGeneration(Pix2StructPreTrainedModel):
|
1560 |
+
config_class = Pix2StructConfig
|
1561 |
+
main_input_name = "flattened_patches"
|
1562 |
+
_tied_weights_keys = ["decoder.lm_head.weight"]
|
1563 |
+
|
1564 |
+
def __init__(self, config: Pix2StructConfig):
|
1565 |
+
super().__init__(config)
|
1566 |
+
|
1567 |
+
self.encoder = Pix2StructVisionModel(config.vision_config)
|
1568 |
+
self.decoder = Pix2StructTextModel(config.text_config)
|
1569 |
+
|
1570 |
+
self.is_vqa = config.is_vqa
|
1571 |
+
|
1572 |
+
# Initialize weights and apply final processing
|
1573 |
+
self.post_init()
|
1574 |
+
|
1575 |
+
def get_input_embeddings(self):
|
1576 |
+
return self.decoder.get_input_embeddings()
|
1577 |
+
|
1578 |
+
def set_input_embeddings(self, new_embeddings):
|
1579 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
1580 |
+
|
1581 |
+
def get_output_embeddings(self) -> nn.Module:
|
1582 |
+
return self.decoder.get_output_embeddings()
|
1583 |
+
|
1584 |
+
def set_output_embeddings(self, new_embeddings):
|
1585 |
+
self.decoder.set_output_embeddings(new_embeddings)
|
1586 |
+
|
1587 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding:
|
1588 |
+
model_embeds = self.decoder.resize_token_embeddings(new_num_tokens)
|
1589 |
+
|
1590 |
+
# update vocab size
|
1591 |
+
self.config.text_config.vocab_size = new_num_tokens
|
1592 |
+
|
1593 |
+
return model_embeds
|
1594 |
+
|
1595 |
+
def get_decoder(self):
|
1596 |
+
return self.decoder
|
1597 |
+
|
1598 |
+
def get_encoder(self):
|
1599 |
+
return self.encoder
|
1600 |
+
|
1601 |
+
@add_start_docstrings_to_model_forward(PIX2STRUCT_INPUTS_DOCSTRING)
|
1602 |
+
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
|
1603 |
+
def forward(
|
1604 |
+
self,
|
1605 |
+
flattened_patches: Optional[torch.FloatTensor] = None,
|
1606 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1607 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1608 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
1609 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1610 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
1611 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1612 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1613 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1614 |
+
labels: Optional[torch.LongTensor] = None,
|
1615 |
+
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
1616 |
+
use_cache: Optional[bool] = None,
|
1617 |
+
output_attentions: Optional[bool] = None,
|
1618 |
+
output_hidden_states: Optional[bool] = None,
|
1619 |
+
return_dict: Optional[bool] = None,
|
1620 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
|
1621 |
+
r"""
|
1622 |
+
Returns:
|
1623 |
+
|
1624 |
+
Example:
|
1625 |
+
|
1626 |
+
Inference:
|
1627 |
+
|
1628 |
+
```python
|
1629 |
+
>>> from PIL import Image
|
1630 |
+
>>> import requests
|
1631 |
+
>>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration
|
1632 |
+
|
1633 |
+
>>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
|
1634 |
+
>>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base")
|
1635 |
+
|
1636 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
1637 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1638 |
+
|
1639 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1640 |
+
|
1641 |
+
>>> # autoregressive generation
|
1642 |
+
>>> generated_ids = model.generate(**inputs, max_new_tokens=50)
|
1643 |
+
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
1644 |
+
>>> print(generated_text)
|
1645 |
+
A stop sign is on a street corner.
|
1646 |
+
|
1647 |
+
>>> # conditional generation
|
1648 |
+
>>> text = "A picture of"
|
1649 |
+
>>> inputs = processor(text=text, images=image, return_tensors="pt", add_special_tokens=False)
|
1650 |
+
|
1651 |
+
>>> generated_ids = model.generate(**inputs, max_new_tokens=50)
|
1652 |
+
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
1653 |
+
>>> print(generated_text)
|
1654 |
+
A picture of a stop sign with a red stop sign
|
1655 |
+
```
|
1656 |
+
|
1657 |
+
Training:
|
1658 |
+
|
1659 |
+
```python
|
1660 |
+
>>> from PIL import Image
|
1661 |
+
>>> import requests
|
1662 |
+
>>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration
|
1663 |
+
|
1664 |
+
>>> processor = AutoProcessor.from_pretrained("google/pix2struct-base")
|
1665 |
+
>>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-base")
|
1666 |
+
|
1667 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
1668 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1669 |
+
>>> text = "A stop sign is on the street corner."
|
1670 |
+
|
1671 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1672 |
+
>>> labels = processor(text=text, return_tensors="pt").input_ids
|
1673 |
+
|
1674 |
+
>>> # forward pass
|
1675 |
+
>>> outputs = model(**inputs, labels=labels)
|
1676 |
+
>>> loss = outputs.loss
|
1677 |
+
>>> print(f"{loss.item():.5f}")
|
1678 |
+
5.94282
|
1679 |
+
```"""
|
1680 |
+
use_cache = use_cache if use_cache is not None else self.config.text_config.use_cache
|
1681 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1682 |
+
|
1683 |
+
# Encode if needed (training, first prediction pass)
|
1684 |
+
if encoder_outputs is None:
|
1685 |
+
encoder_outputs = self.encoder(
|
1686 |
+
flattened_patches=flattened_patches,
|
1687 |
+
attention_mask=attention_mask,
|
1688 |
+
head_mask=head_mask,
|
1689 |
+
output_attentions=output_attentions,
|
1690 |
+
output_hidden_states=output_hidden_states,
|
1691 |
+
return_dict=return_dict,
|
1692 |
+
)
|
1693 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1694 |
+
encoder_outputs = BaseModelOutput(
|
1695 |
+
last_hidden_state=encoder_outputs[0],
|
1696 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1697 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1698 |
+
)
|
1699 |
+
|
1700 |
+
hidden_states = encoder_outputs[0]
|
1701 |
+
|
1702 |
+
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
1703 |
+
# get decoder inputs from shifting lm labels to the right
|
1704 |
+
decoder_input_ids = self._shift_right(labels)
|
1705 |
+
decoder_attention_mask = (
|
1706 |
+
decoder_attention_mask
|
1707 |
+
if decoder_attention_mask is not None
|
1708 |
+
else decoder_input_ids.ne(self.config.pad_token_id).float()
|
1709 |
+
)
|
1710 |
+
# Always attend to the first token
|
1711 |
+
decoder_attention_mask[:, 0] = 1
|
1712 |
+
|
1713 |
+
# Decode
|
1714 |
+
decoder_outputs = self.decoder(
|
1715 |
+
input_ids=decoder_input_ids,
|
1716 |
+
attention_mask=decoder_attention_mask,
|
1717 |
+
inputs_embeds=decoder_inputs_embeds,
|
1718 |
+
past_key_values=past_key_values,
|
1719 |
+
encoder_hidden_states=hidden_states,
|
1720 |
+
encoder_attention_mask=attention_mask,
|
1721 |
+
head_mask=decoder_head_mask,
|
1722 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1723 |
+
use_cache=use_cache,
|
1724 |
+
output_attentions=output_attentions,
|
1725 |
+
output_hidden_states=output_hidden_states,
|
1726 |
+
labels=labels,
|
1727 |
+
return_dict=return_dict,
|
1728 |
+
)
|
1729 |
+
|
1730 |
+
if not return_dict:
|
1731 |
+
return decoder_outputs + encoder_outputs
|
1732 |
+
|
1733 |
+
return Seq2SeqLMOutput(
|
1734 |
+
loss=decoder_outputs.loss,
|
1735 |
+
logits=decoder_outputs.logits,
|
1736 |
+
past_key_values=decoder_outputs.past_key_values,
|
1737 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1738 |
+
decoder_attentions=decoder_outputs.attentions,
|
1739 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1740 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1741 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1742 |
+
encoder_attentions=encoder_outputs.attentions,
|
1743 |
+
)
|
1744 |
+
|
1745 |
+
def prepare_inputs_for_generation(
|
1746 |
+
self,
|
1747 |
+
input_ids,
|
1748 |
+
flattened_patches: Optional[torch.FloatTensor] = None,
|
1749 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1750 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
1751 |
+
past_key_values=None,
|
1752 |
+
head_mask=None,
|
1753 |
+
decoder_head_mask=None,
|
1754 |
+
cross_attn_head_mask=None,
|
1755 |
+
use_cache=None,
|
1756 |
+
encoder_outputs=None,
|
1757 |
+
**kwargs,
|
1758 |
+
):
|
1759 |
+
if decoder_attention_mask is None:
|
1760 |
+
decoder_attention_mask = torch.ones_like(input_ids).to(input_ids.device)
|
1761 |
+
|
1762 |
+
# cut decoder_input_ids if past_key_values is used
|
1763 |
+
if past_key_values is not None:
|
1764 |
+
past_length = past_key_values[0][0].shape[2]
|
1765 |
+
|
1766 |
+
# Some generation methods already pass only the last input ID
|
1767 |
+
if input_ids.shape[1] > past_length:
|
1768 |
+
remove_prefix_length = past_length
|
1769 |
+
else:
|
1770 |
+
# Default to old behavior: keep only final ID
|
1771 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1772 |
+
|
1773 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1774 |
+
|
1775 |
+
return {
|
1776 |
+
"flattened_patches": flattened_patches,
|
1777 |
+
"decoder_input_ids": input_ids,
|
1778 |
+
"past_key_values": past_key_values,
|
1779 |
+
"encoder_outputs": encoder_outputs,
|
1780 |
+
"attention_mask": attention_mask,
|
1781 |
+
"decoder_attention_mask": decoder_attention_mask,
|
1782 |
+
"head_mask": head_mask,
|
1783 |
+
"decoder_head_mask": decoder_head_mask,
|
1784 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1785 |
+
"use_cache": use_cache,
|
1786 |
+
}
|
llmeval-env/lib/python3.10/site-packages/transformers/models/pix2struct/processing_pix2struct.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for Pix2Struct.
|
17 |
+
"""
|
18 |
+
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
from ...processing_utils import ProcessorMixin
|
22 |
+
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
23 |
+
from ...utils import TensorType
|
24 |
+
|
25 |
+
|
26 |
+
class Pix2StructProcessor(ProcessorMixin):
|
27 |
+
r"""
|
28 |
+
Constructs a PIX2STRUCT processor which wraps a BERT tokenizer and PIX2STRUCT image processor into a single
|
29 |
+
processor.
|
30 |
+
|
31 |
+
[`Pix2StructProcessor`] offers all the functionalities of [`Pix2StructImageProcessor`] and [`T5TokenizerFast`]. See
|
32 |
+
the docstring of [`~Pix2StructProcessor.__call__`] and [`~Pix2StructProcessor.decode`] for more information.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
image_processor (`Pix2StructImageProcessor`):
|
36 |
+
An instance of [`Pix2StructImageProcessor`]. The image processor is a required input.
|
37 |
+
tokenizer (Union[`T5TokenizerFast`, `T5Tokenizer`]):
|
38 |
+
An instance of ['T5TokenizerFast`] or ['T5Tokenizer`]. The tokenizer is a required input.
|
39 |
+
"""
|
40 |
+
|
41 |
+
attributes = ["image_processor", "tokenizer"]
|
42 |
+
image_processor_class = "Pix2StructImageProcessor"
|
43 |
+
tokenizer_class = ("T5Tokenizer", "T5TokenizerFast")
|
44 |
+
|
45 |
+
def __init__(self, image_processor, tokenizer):
|
46 |
+
tokenizer.return_token_type_ids = False
|
47 |
+
super().__init__(image_processor, tokenizer)
|
48 |
+
|
49 |
+
def __call__(
|
50 |
+
self,
|
51 |
+
images=None,
|
52 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
53 |
+
add_special_tokens: bool = True,
|
54 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
55 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
56 |
+
max_length: Optional[int] = None,
|
57 |
+
max_patches: Optional[int] = 2048,
|
58 |
+
stride: int = 0,
|
59 |
+
pad_to_multiple_of: Optional[int] = None,
|
60 |
+
return_attention_mask: Optional[bool] = None,
|
61 |
+
return_overflowing_tokens: bool = False,
|
62 |
+
return_special_tokens_mask: bool = False,
|
63 |
+
return_offsets_mapping: bool = False,
|
64 |
+
return_token_type_ids: bool = False,
|
65 |
+
return_length: bool = False,
|
66 |
+
verbose: bool = True,
|
67 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
68 |
+
**kwargs,
|
69 |
+
) -> BatchEncoding:
|
70 |
+
"""
|
71 |
+
This method uses [`Pix2StructImageProcessor.preprocess`] method to prepare image(s) for the model, and
|
72 |
+
[`T5TokenizerFast.__call__`] to prepare text for the model.
|
73 |
+
|
74 |
+
Please refer to the docstring of the above two methods for more information.
|
75 |
+
"""
|
76 |
+
if images is None and text is None:
|
77 |
+
raise ValueError("You have to specify either images or text.")
|
78 |
+
|
79 |
+
# Get only text
|
80 |
+
if images is None and not self.image_processor.is_vqa:
|
81 |
+
self.current_processor = self.tokenizer
|
82 |
+
text_encoding = self.tokenizer(
|
83 |
+
text=text,
|
84 |
+
add_special_tokens=add_special_tokens,
|
85 |
+
padding=padding,
|
86 |
+
truncation=truncation,
|
87 |
+
max_length=max_length,
|
88 |
+
stride=stride,
|
89 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
90 |
+
return_attention_mask=return_attention_mask,
|
91 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
92 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
93 |
+
return_offsets_mapping=return_offsets_mapping,
|
94 |
+
return_token_type_ids=return_token_type_ids,
|
95 |
+
return_length=return_length,
|
96 |
+
verbose=verbose,
|
97 |
+
return_tensors=return_tensors,
|
98 |
+
**kwargs,
|
99 |
+
)
|
100 |
+
return text_encoding
|
101 |
+
|
102 |
+
if not self.image_processor.is_vqa:
|
103 |
+
# add pixel_values
|
104 |
+
encoding_image_processor = self.image_processor(
|
105 |
+
images, return_tensors=return_tensors, max_patches=max_patches, **kwargs
|
106 |
+
)
|
107 |
+
else:
|
108 |
+
# add pixel_values and bbox
|
109 |
+
encoding_image_processor = self.image_processor(
|
110 |
+
images, return_tensors=return_tensors, max_patches=max_patches, header_text=text, **kwargs
|
111 |
+
)
|
112 |
+
|
113 |
+
if text is not None and not self.image_processor.is_vqa:
|
114 |
+
text_encoding = self.tokenizer(
|
115 |
+
text=text,
|
116 |
+
add_special_tokens=add_special_tokens,
|
117 |
+
padding=padding,
|
118 |
+
truncation=truncation,
|
119 |
+
max_length=max_length,
|
120 |
+
stride=stride,
|
121 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
122 |
+
return_attention_mask=return_attention_mask,
|
123 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
124 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
125 |
+
return_offsets_mapping=return_offsets_mapping,
|
126 |
+
return_token_type_ids=return_token_type_ids,
|
127 |
+
return_length=return_length,
|
128 |
+
verbose=verbose,
|
129 |
+
return_tensors=return_tensors,
|
130 |
+
**kwargs,
|
131 |
+
)
|
132 |
+
|
133 |
+
if "attention_mask" in text_encoding:
|
134 |
+
text_encoding["decoder_attention_mask"] = text_encoding.pop("attention_mask")
|
135 |
+
if "input_ids" in text_encoding:
|
136 |
+
text_encoding["decoder_input_ids"] = text_encoding.pop("input_ids")
|
137 |
+
else:
|
138 |
+
text_encoding = None
|
139 |
+
|
140 |
+
if text_encoding is not None:
|
141 |
+
encoding_image_processor.update(text_encoding)
|
142 |
+
|
143 |
+
return encoding_image_processor
|
144 |
+
|
145 |
+
def batch_decode(self, *args, **kwargs):
|
146 |
+
"""
|
147 |
+
This method forwards all its arguments to Pix2StructTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
|
148 |
+
Please refer to the docstring of this method for more information.
|
149 |
+
"""
|
150 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
151 |
+
|
152 |
+
def decode(self, *args, **kwargs):
|
153 |
+
"""
|
154 |
+
This method forwards all its arguments to Pix2StructTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
|
155 |
+
refer to the docstring of this method for more information.
|
156 |
+
"""
|
157 |
+
return self.tokenizer.decode(*args, **kwargs)
|
158 |
+
|
159 |
+
@property
|
160 |
+
def model_input_names(self):
|
161 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
162 |
+
image_processor_input_names = self.image_processor.model_input_names
|
163 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__init__.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_tf_available,
|
20 |
+
is_torch_available,
|
21 |
+
is_vision_available,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
_import_structure = {
|
26 |
+
"configuration_sam": [
|
27 |
+
"SAM_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
28 |
+
"SamConfig",
|
29 |
+
"SamMaskDecoderConfig",
|
30 |
+
"SamPromptEncoderConfig",
|
31 |
+
"SamVisionConfig",
|
32 |
+
],
|
33 |
+
"processing_sam": ["SamProcessor"],
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
try:
|
38 |
+
if not is_torch_available():
|
39 |
+
raise OptionalDependencyNotAvailable()
|
40 |
+
except OptionalDependencyNotAvailable:
|
41 |
+
pass
|
42 |
+
else:
|
43 |
+
_import_structure["modeling_sam"] = [
|
44 |
+
"SAM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
45 |
+
"SamModel",
|
46 |
+
"SamPreTrainedModel",
|
47 |
+
]
|
48 |
+
try:
|
49 |
+
if not is_tf_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
_import_structure["modeling_tf_sam"] = [
|
55 |
+
"TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
56 |
+
"TFSamModel",
|
57 |
+
"TFSamPreTrainedModel",
|
58 |
+
]
|
59 |
+
try:
|
60 |
+
if not is_vision_available():
|
61 |
+
raise OptionalDependencyNotAvailable()
|
62 |
+
except OptionalDependencyNotAvailable:
|
63 |
+
pass
|
64 |
+
else:
|
65 |
+
_import_structure["image_processing_sam"] = ["SamImageProcessor"]
|
66 |
+
|
67 |
+
|
68 |
+
if TYPE_CHECKING:
|
69 |
+
from .configuration_sam import (
|
70 |
+
SAM_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
71 |
+
SamConfig,
|
72 |
+
SamMaskDecoderConfig,
|
73 |
+
SamPromptEncoderConfig,
|
74 |
+
SamVisionConfig,
|
75 |
+
)
|
76 |
+
from .processing_sam import SamProcessor
|
77 |
+
|
78 |
+
try:
|
79 |
+
if not is_torch_available():
|
80 |
+
raise OptionalDependencyNotAvailable()
|
81 |
+
except OptionalDependencyNotAvailable:
|
82 |
+
pass
|
83 |
+
else:
|
84 |
+
from .modeling_sam import SAM_PRETRAINED_MODEL_ARCHIVE_LIST, SamModel, SamPreTrainedModel
|
85 |
+
|
86 |
+
try:
|
87 |
+
if not is_tf_available():
|
88 |
+
raise OptionalDependencyNotAvailable()
|
89 |
+
except OptionalDependencyNotAvailable:
|
90 |
+
pass
|
91 |
+
else:
|
92 |
+
from .modeling_tf_sam import TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST, TFSamModel, TFSamPreTrainedModel
|
93 |
+
|
94 |
+
try:
|
95 |
+
if not is_vision_available():
|
96 |
+
raise OptionalDependencyNotAvailable()
|
97 |
+
except OptionalDependencyNotAvailable:
|
98 |
+
pass
|
99 |
+
else:
|
100 |
+
from .image_processing_sam import SamImageProcessor
|
101 |
+
|
102 |
+
else:
|
103 |
+
import sys
|
104 |
+
|
105 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/configuration_sam.cpython-310.pyc
ADDED
Binary file (12.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/convert_sam_to_hf.cpython-310.pyc
ADDED
Binary file (5.96 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/image_processing_sam.cpython-310.pyc
ADDED
Binary file (49.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_sam.cpython-310.pyc
ADDED
Binary file (48.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/modeling_tf_sam.cpython-310.pyc
ADDED
Binary file (54.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/sam/__pycache__/processing_sam.cpython-310.pyc
ADDED
Binary file (7.47 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/sam/configuration_sam.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" SAM model configuration"""
|
16 |
+
|
17 |
+
|
18 |
+
from ...configuration_utils import PretrainedConfig
|
19 |
+
from ...utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
from ..deprecated._archive_maps import SAM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
26 |
+
|
27 |
+
|
28 |
+
class SamPromptEncoderConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`SamPromptEncoder`]. The [`SamPromptEncoder`]
|
31 |
+
module is used to encode the input 2D points and bounding boxes. Instantiating a configuration defaults will yield
|
32 |
+
a similar configuration to that of the SAM-vit-h
|
33 |
+
[facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
hidden_size (`int`, *optional*, defaults to 256):
|
40 |
+
Dimensionality of the hidden states.
|
41 |
+
image_size (`int`, *optional*, defaults to 1024):
|
42 |
+
The expected output resolution of the image.
|
43 |
+
patch_size (`int`, *optional*, defaults to 16):
|
44 |
+
The size (resolution) of each patch.
|
45 |
+
mask_input_channels (`int`, *optional*, defaults to 16):
|
46 |
+
The number of channels to be fed to the `MaskDecoder` module.
|
47 |
+
num_point_embeddings (`int`, *optional*, defaults to 4):
|
48 |
+
The number of point embeddings to be used.
|
49 |
+
hidden_act (`str`, *optional*, defaults to `"gelu"`):
|
50 |
+
The non-linear activation function in the encoder and pooler.
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
hidden_size=256,
|
56 |
+
image_size=1024,
|
57 |
+
patch_size=16,
|
58 |
+
mask_input_channels=16,
|
59 |
+
num_point_embeddings=4,
|
60 |
+
hidden_act="gelu",
|
61 |
+
layer_norm_eps=1e-6,
|
62 |
+
**kwargs,
|
63 |
+
):
|
64 |
+
super().__init__(**kwargs)
|
65 |
+
self.hidden_size = hidden_size
|
66 |
+
self.image_size = image_size
|
67 |
+
self.patch_size = patch_size
|
68 |
+
self.image_embedding_size = image_size // patch_size
|
69 |
+
self.mask_input_channels = mask_input_channels
|
70 |
+
self.num_point_embeddings = num_point_embeddings
|
71 |
+
self.hidden_act = hidden_act
|
72 |
+
self.layer_norm_eps = layer_norm_eps
|
73 |
+
|
74 |
+
|
75 |
+
class SamMaskDecoderConfig(PretrainedConfig):
|
76 |
+
r"""
|
77 |
+
This is the configuration class to store the configuration of a [`SamMaskDecoder`]. It is used to instantiate a SAM
|
78 |
+
mask decoder to the specified arguments, defining the model architecture. Instantiating a configuration defaults
|
79 |
+
will yield a similar configuration to that of the SAM-vit-h
|
80 |
+
[facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
|
81 |
+
|
82 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
83 |
+
documentation from [`PretrainedConfig`] for more information.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
hidden_size (`int`, *optional*, defaults to 256):
|
87 |
+
Dimensionality of the hidden states.
|
88 |
+
hidden_act (`str`, *optional*, defaults to `"relu"`):
|
89 |
+
The non-linear activation function used inside the `SamMaskDecoder` module.
|
90 |
+
mlp_dim (`int`, *optional*, defaults to 2048):
|
91 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
92 |
+
num_hidden_layers (`int`, *optional*, defaults to 2):
|
93 |
+
Number of hidden layers in the Transformer encoder.
|
94 |
+
num_attention_heads (`int`, *optional*, defaults to 8):
|
95 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
96 |
+
attention_downsample_rate (`int`, *optional*, defaults to 2):
|
97 |
+
The downsampling rate of the attention layer.
|
98 |
+
num_multimask_outputs (`int`, *optional*, defaults to 3):
|
99 |
+
The number of outputs from the `SamMaskDecoder` module. In the Segment Anything paper, this is set to 3.
|
100 |
+
iou_head_depth (`int`, *optional*, defaults to 3):
|
101 |
+
The number of layers in the IoU head module.
|
102 |
+
iou_head_hidden_dim (`int`, *optional*, defaults to 256):
|
103 |
+
The dimensionality of the hidden states in the IoU head module.
|
104 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
105 |
+
The epsilon used by the layer normalization layers.
|
106 |
+
|
107 |
+
"""
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
hidden_size=256,
|
112 |
+
hidden_act="relu",
|
113 |
+
mlp_dim=2048,
|
114 |
+
num_hidden_layers=2,
|
115 |
+
num_attention_heads=8,
|
116 |
+
attention_downsample_rate=2,
|
117 |
+
num_multimask_outputs=3,
|
118 |
+
iou_head_depth=3,
|
119 |
+
iou_head_hidden_dim=256,
|
120 |
+
layer_norm_eps=1e-6,
|
121 |
+
**kwargs,
|
122 |
+
):
|
123 |
+
super().__init__(**kwargs)
|
124 |
+
self.hidden_size = hidden_size
|
125 |
+
self.hidden_act = hidden_act
|
126 |
+
self.mlp_dim = mlp_dim
|
127 |
+
self.num_hidden_layers = num_hidden_layers
|
128 |
+
self.num_attention_heads = num_attention_heads
|
129 |
+
self.attention_downsample_rate = attention_downsample_rate
|
130 |
+
self.num_multimask_outputs = num_multimask_outputs
|
131 |
+
self.iou_head_depth = iou_head_depth
|
132 |
+
self.iou_head_hidden_dim = iou_head_hidden_dim
|
133 |
+
self.layer_norm_eps = layer_norm_eps
|
134 |
+
|
135 |
+
|
136 |
+
class SamVisionConfig(PretrainedConfig):
|
137 |
+
r"""
|
138 |
+
This is the configuration class to store the configuration of a [`SamVisionModel`]. It is used to instantiate a SAM
|
139 |
+
vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
|
140 |
+
defaults will yield a similar configuration to that of the SAM ViT-h
|
141 |
+
[facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
|
142 |
+
|
143 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
144 |
+
documentation from [`PretrainedConfig`] for more information.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
148 |
+
Dimensionality of the encoder layers and the pooler layer.
|
149 |
+
output_channels (`int`, *optional*, defaults to 256):
|
150 |
+
Dimensionality of the output channels in the Patch Encoder.
|
151 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
152 |
+
Number of hidden layers in the Transformer encoder.
|
153 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
154 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
155 |
+
num_channels (`int`, *optional*, defaults to 3):
|
156 |
+
Number of channels in the input image.
|
157 |
+
image_size (`int`, *optional*, defaults to 1024):
|
158 |
+
Expected resolution. Target size of the resized input image.
|
159 |
+
patch_size (`int`, *optional*, defaults to 16):
|
160 |
+
Size of the patches to be extracted from the input image.
|
161 |
+
hidden_act (`str`, *optional*, defaults to `"gelu"`):
|
162 |
+
The non-linear activation function (function or string)
|
163 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
164 |
+
The epsilon used by the layer normalization layers.
|
165 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
166 |
+
The dropout ratio for the attention probabilities.
|
167 |
+
initializer_range (`float`, *optional*, defaults to 1e-10):
|
168 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
169 |
+
qkv_bias (`bool`, *optional*, defaults to `True`):
|
170 |
+
Whether to add a bias to query, key, value projections.
|
171 |
+
mlp_ratio (`float`, *optional*, defaults to 4.0):
|
172 |
+
Ratio of mlp hidden dim to embedding dim.
|
173 |
+
use_abs_pos (`bool`, *optional*, defaults to `True`):
|
174 |
+
Whether to use absolute position embedding.
|
175 |
+
use_rel_pos (`bool`, *optional*, defaults to `True`):
|
176 |
+
Whether to use relative position embedding.
|
177 |
+
window_size (`int`, *optional*, defaults to 14):
|
178 |
+
Window size for relative position.
|
179 |
+
global_attn_indexes (`List[int]`, *optional*, defaults to `[2, 5, 8, 11]`):
|
180 |
+
The indexes of the global attention layers.
|
181 |
+
num_pos_feats (`int`, *optional*, defaults to 128):
|
182 |
+
The dimensionality of the position embedding.
|
183 |
+
mlp_dim (`int`, *optional*):
|
184 |
+
The dimensionality of the MLP layer in the Transformer encoder. If `None`, defaults to `mlp_ratio *
|
185 |
+
hidden_size`.
|
186 |
+
"""
|
187 |
+
|
188 |
+
def __init__(
|
189 |
+
self,
|
190 |
+
hidden_size=768,
|
191 |
+
output_channels=256,
|
192 |
+
num_hidden_layers=12,
|
193 |
+
num_attention_heads=12,
|
194 |
+
num_channels=3,
|
195 |
+
image_size=1024,
|
196 |
+
patch_size=16,
|
197 |
+
hidden_act="gelu",
|
198 |
+
layer_norm_eps=1e-06,
|
199 |
+
attention_dropout=0.0,
|
200 |
+
initializer_range=1e-10,
|
201 |
+
qkv_bias=True,
|
202 |
+
mlp_ratio=4.0,
|
203 |
+
use_abs_pos=True,
|
204 |
+
use_rel_pos=True,
|
205 |
+
window_size=14,
|
206 |
+
global_attn_indexes=[2, 5, 8, 11],
|
207 |
+
num_pos_feats=128,
|
208 |
+
mlp_dim=None,
|
209 |
+
**kwargs,
|
210 |
+
):
|
211 |
+
super().__init__(**kwargs)
|
212 |
+
|
213 |
+
self.hidden_size = hidden_size
|
214 |
+
self.output_channels = output_channels
|
215 |
+
self.num_hidden_layers = num_hidden_layers
|
216 |
+
self.num_attention_heads = num_attention_heads
|
217 |
+
self.num_channels = num_channels
|
218 |
+
self.image_size = image_size
|
219 |
+
self.patch_size = patch_size
|
220 |
+
self.hidden_act = hidden_act
|
221 |
+
self.layer_norm_eps = layer_norm_eps
|
222 |
+
self.attention_dropout = attention_dropout
|
223 |
+
self.initializer_range = initializer_range
|
224 |
+
self.qkv_bias = qkv_bias
|
225 |
+
self.mlp_ratio = mlp_ratio
|
226 |
+
self.use_abs_pos = use_abs_pos
|
227 |
+
self.use_rel_pos = use_rel_pos
|
228 |
+
self.window_size = window_size
|
229 |
+
self.global_attn_indexes = global_attn_indexes
|
230 |
+
self.num_pos_feats = num_pos_feats
|
231 |
+
self.mlp_dim = int(hidden_size * mlp_ratio) if mlp_dim is None else mlp_dim
|
232 |
+
|
233 |
+
|
234 |
+
class SamConfig(PretrainedConfig):
|
235 |
+
r"""
|
236 |
+
[`SamConfig`] is the configuration class to store the configuration of a [`SamModel`]. It is used to instantiate a
|
237 |
+
SAM model according to the specified arguments, defining the vision model, prompt-encoder model and mask decoder
|
238 |
+
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the
|
239 |
+
SAM-ViT-H [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
|
240 |
+
|
241 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
242 |
+
documentation from [`PretrainedConfig`] for more information.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
vision_config (Union[`dict`, `SamVisionConfig`], *optional*):
|
246 |
+
Dictionary of configuration options used to initialize [`SamVisionConfig`].
|
247 |
+
prompt_encoder_config (Union[`dict`, `SamPromptEncoderConfig`], *optional*):
|
248 |
+
Dictionary of configuration options used to initialize [`SamPromptEncoderConfig`].
|
249 |
+
mask_decoder_config (Union[`dict`, `SamMaskDecoderConfig`], *optional*):
|
250 |
+
Dictionary of configuration options used to initialize [`SamMaskDecoderConfig`].
|
251 |
+
|
252 |
+
kwargs (*optional*):
|
253 |
+
Dictionary of keyword arguments.
|
254 |
+
|
255 |
+
Example:
|
256 |
+
|
257 |
+
```python
|
258 |
+
>>> from transformers import (
|
259 |
+
... SamVisionConfig,
|
260 |
+
... SamPromptEncoderConfig,
|
261 |
+
... SamMaskDecoderConfig,
|
262 |
+
... SamModel,
|
263 |
+
... )
|
264 |
+
|
265 |
+
>>> # Initializing a SamConfig with `"facebook/sam-vit-huge"` style configuration
|
266 |
+
>>> configuration = SamConfig()
|
267 |
+
|
268 |
+
>>> # Initializing a SamModel (with random weights) from the `"facebook/sam-vit-huge"` style configuration
|
269 |
+
>>> model = SamModel(configuration)
|
270 |
+
|
271 |
+
>>> # Accessing the model configuration
|
272 |
+
>>> configuration = model.config
|
273 |
+
|
274 |
+
>>> # We can also initialize a SamConfig from a SamVisionConfig, SamPromptEncoderConfig, and SamMaskDecoderConfig
|
275 |
+
|
276 |
+
>>> # Initializing SAM vision, SAM Q-Former and language model configurations
|
277 |
+
>>> vision_config = SamVisionConfig()
|
278 |
+
>>> prompt_encoder_config = SamPromptEncoderConfig()
|
279 |
+
>>> mask_decoder_config = SamMaskDecoderConfig()
|
280 |
+
|
281 |
+
>>> config = SamConfig(vision_config, prompt_encoder_config, mask_decoder_config)
|
282 |
+
```"""
|
283 |
+
|
284 |
+
model_type = "sam"
|
285 |
+
|
286 |
+
def __init__(
|
287 |
+
self,
|
288 |
+
vision_config=None,
|
289 |
+
prompt_encoder_config=None,
|
290 |
+
mask_decoder_config=None,
|
291 |
+
initializer_range=0.02,
|
292 |
+
**kwargs,
|
293 |
+
):
|
294 |
+
super().__init__(**kwargs)
|
295 |
+
vision_config = vision_config if vision_config is not None else {}
|
296 |
+
prompt_encoder_config = prompt_encoder_config if prompt_encoder_config is not None else {}
|
297 |
+
mask_decoder_config = mask_decoder_config if mask_decoder_config is not None else {}
|
298 |
+
|
299 |
+
if isinstance(vision_config, SamVisionConfig):
|
300 |
+
vision_config = vision_config.to_dict()
|
301 |
+
if isinstance(prompt_encoder_config, SamPromptEncoderConfig):
|
302 |
+
prompt_encoder_config = prompt_encoder_config.to_dict()
|
303 |
+
if isinstance(mask_decoder_config, SamMaskDecoderConfig):
|
304 |
+
mask_decoder_config = mask_decoder_config.to_dict()
|
305 |
+
|
306 |
+
self.vision_config = SamVisionConfig(**vision_config)
|
307 |
+
self.prompt_encoder_config = SamPromptEncoderConfig(**prompt_encoder_config)
|
308 |
+
self.mask_decoder_config = SamMaskDecoderConfig(**mask_decoder_config)
|
309 |
+
self.initializer_range = initializer_range
|
llmeval-env/lib/python3.10/site-packages/transformers/models/sam/convert_sam_to_hf.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Convert SAM checkpoints from the original repository.
|
17 |
+
|
18 |
+
URL: https://github.com/facebookresearch/segment-anything.
|
19 |
+
|
20 |
+
Also supports converting the SlimSAM checkpoints from https://github.com/czg1225/SlimSAM/tree/master.
|
21 |
+
"""
|
22 |
+
import argparse
|
23 |
+
import re
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import requests
|
27 |
+
import torch
|
28 |
+
from huggingface_hub import hf_hub_download
|
29 |
+
from PIL import Image
|
30 |
+
|
31 |
+
from transformers import (
|
32 |
+
SamConfig,
|
33 |
+
SamImageProcessor,
|
34 |
+
SamModel,
|
35 |
+
SamProcessor,
|
36 |
+
SamVisionConfig,
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
def get_config(model_name):
|
41 |
+
if "slimsam-50" in model_name:
|
42 |
+
vision_config = SamVisionConfig(
|
43 |
+
hidden_size=384,
|
44 |
+
mlp_dim=1536,
|
45 |
+
num_hidden_layers=12,
|
46 |
+
num_attention_heads=12,
|
47 |
+
global_attn_indexes=[2, 5, 8, 11],
|
48 |
+
)
|
49 |
+
elif "slimsam-77" in model_name:
|
50 |
+
vision_config = SamVisionConfig(
|
51 |
+
hidden_size=168,
|
52 |
+
mlp_dim=696,
|
53 |
+
num_hidden_layers=12,
|
54 |
+
num_attention_heads=12,
|
55 |
+
global_attn_indexes=[2, 5, 8, 11],
|
56 |
+
)
|
57 |
+
elif "sam_vit_b" in model_name:
|
58 |
+
vision_config = SamVisionConfig()
|
59 |
+
elif "sam_vit_l" in model_name:
|
60 |
+
vision_config = SamVisionConfig(
|
61 |
+
hidden_size=1024,
|
62 |
+
num_hidden_layers=24,
|
63 |
+
num_attention_heads=16,
|
64 |
+
global_attn_indexes=[5, 11, 17, 23],
|
65 |
+
)
|
66 |
+
elif "sam_vit_h" in model_name:
|
67 |
+
vision_config = SamVisionConfig(
|
68 |
+
hidden_size=1280,
|
69 |
+
num_hidden_layers=32,
|
70 |
+
num_attention_heads=16,
|
71 |
+
global_attn_indexes=[7, 15, 23, 31],
|
72 |
+
)
|
73 |
+
|
74 |
+
config = SamConfig(
|
75 |
+
vision_config=vision_config,
|
76 |
+
)
|
77 |
+
|
78 |
+
return config
|
79 |
+
|
80 |
+
|
81 |
+
KEYS_TO_MODIFY_MAPPING = {
|
82 |
+
"iou_prediction_head.layers.0": "iou_prediction_head.proj_in",
|
83 |
+
"iou_prediction_head.layers.1": "iou_prediction_head.layers.0",
|
84 |
+
"iou_prediction_head.layers.2": "iou_prediction_head.proj_out",
|
85 |
+
"mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1",
|
86 |
+
"mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm",
|
87 |
+
"mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2",
|
88 |
+
"mask_downscaling.0": "mask_embed.conv1",
|
89 |
+
"mask_downscaling.1": "mask_embed.layer_norm1",
|
90 |
+
"mask_downscaling.3": "mask_embed.conv2",
|
91 |
+
"mask_downscaling.4": "mask_embed.layer_norm2",
|
92 |
+
"mask_downscaling.6": "mask_embed.conv3",
|
93 |
+
"point_embeddings": "point_embed",
|
94 |
+
"pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding",
|
95 |
+
"image_encoder": "vision_encoder",
|
96 |
+
"neck.0": "neck.conv1",
|
97 |
+
"neck.1": "neck.layer_norm1",
|
98 |
+
"neck.2": "neck.conv2",
|
99 |
+
"neck.3": "neck.layer_norm2",
|
100 |
+
"patch_embed.proj": "patch_embed.projection",
|
101 |
+
".norm": ".layer_norm",
|
102 |
+
"blocks": "layers",
|
103 |
+
}
|
104 |
+
|
105 |
+
|
106 |
+
def replace_keys(state_dict):
|
107 |
+
model_state_dict = {}
|
108 |
+
state_dict.pop("pixel_mean", None)
|
109 |
+
state_dict.pop("pixel_std", None)
|
110 |
+
|
111 |
+
output_hypernetworks_mlps_pattern = r".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*"
|
112 |
+
|
113 |
+
for key, value in state_dict.items():
|
114 |
+
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
|
115 |
+
if key_to_modify in key:
|
116 |
+
key = key.replace(key_to_modify, new_key)
|
117 |
+
|
118 |
+
if re.match(output_hypernetworks_mlps_pattern, key):
|
119 |
+
layer_nb = int(re.match(output_hypernetworks_mlps_pattern, key).group(2))
|
120 |
+
if layer_nb == 0:
|
121 |
+
key = key.replace("layers.0", "proj_in")
|
122 |
+
elif layer_nb == 1:
|
123 |
+
key = key.replace("layers.1", "layers.0")
|
124 |
+
elif layer_nb == 2:
|
125 |
+
key = key.replace("layers.2", "proj_out")
|
126 |
+
|
127 |
+
model_state_dict[key] = value
|
128 |
+
|
129 |
+
model_state_dict["shared_image_embedding.positional_embedding"] = model_state_dict[
|
130 |
+
"prompt_encoder.shared_embedding.positional_embedding"
|
131 |
+
]
|
132 |
+
|
133 |
+
return model_state_dict
|
134 |
+
|
135 |
+
|
136 |
+
def convert_sam_checkpoint(model_name, checkpoint_path, pytorch_dump_folder, push_to_hub):
|
137 |
+
config = get_config(model_name)
|
138 |
+
|
139 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")
|
140 |
+
state_dict = replace_keys(state_dict)
|
141 |
+
|
142 |
+
image_processor = SamImageProcessor()
|
143 |
+
processor = SamProcessor(image_processor=image_processor)
|
144 |
+
hf_model = SamModel(config)
|
145 |
+
hf_model.eval()
|
146 |
+
|
147 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
148 |
+
|
149 |
+
hf_model.load_state_dict(state_dict)
|
150 |
+
hf_model = hf_model.to(device)
|
151 |
+
|
152 |
+
img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
|
153 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
154 |
+
|
155 |
+
input_points = [[[500, 375]]]
|
156 |
+
input_labels = [[1]]
|
157 |
+
|
158 |
+
inputs = processor(images=np.array(raw_image), return_tensors="pt").to(device)
|
159 |
+
|
160 |
+
with torch.no_grad():
|
161 |
+
output = hf_model(**inputs)
|
162 |
+
scores = output.iou_scores.squeeze()
|
163 |
+
|
164 |
+
if model_name == "sam_vit_b_01ec64":
|
165 |
+
inputs = processor(
|
166 |
+
images=np.array(raw_image), input_points=input_points, input_labels=input_labels, return_tensors="pt"
|
167 |
+
).to(device)
|
168 |
+
|
169 |
+
with torch.no_grad():
|
170 |
+
output = hf_model(**inputs)
|
171 |
+
scores = output.iou_scores.squeeze()
|
172 |
+
|
173 |
+
elif model_name == "sam_vit_h_4b8939":
|
174 |
+
inputs = processor(
|
175 |
+
images=np.array(raw_image), input_points=input_points, input_labels=input_labels, return_tensors="pt"
|
176 |
+
).to(device)
|
177 |
+
|
178 |
+
with torch.no_grad():
|
179 |
+
output = hf_model(**inputs)
|
180 |
+
scores = output.iou_scores.squeeze()
|
181 |
+
|
182 |
+
assert scores[-1].item() == 0.9712603092193604
|
183 |
+
|
184 |
+
input_boxes = ((75, 275, 1725, 850),)
|
185 |
+
|
186 |
+
inputs = processor(images=np.array(raw_image), input_boxes=input_boxes, return_tensors="pt").to(device)
|
187 |
+
|
188 |
+
with torch.no_grad():
|
189 |
+
output = hf_model(**inputs)
|
190 |
+
scores = output.iou_scores.squeeze()
|
191 |
+
|
192 |
+
assert scores[-1].item() == 0.8686015605926514
|
193 |
+
|
194 |
+
# Test with 2 points and 1 image.
|
195 |
+
input_points = [[[400, 650], [800, 650]]]
|
196 |
+
input_labels = [[1, 1]]
|
197 |
+
|
198 |
+
inputs = processor(
|
199 |
+
images=np.array(raw_image), input_points=input_points, input_labels=input_labels, return_tensors="pt"
|
200 |
+
).to(device)
|
201 |
+
|
202 |
+
with torch.no_grad():
|
203 |
+
output = hf_model(**inputs)
|
204 |
+
scores = output.iou_scores.squeeze()
|
205 |
+
|
206 |
+
assert scores[-1].item() == 0.9936047792434692
|
207 |
+
|
208 |
+
if pytorch_dump_folder is not None:
|
209 |
+
processor.save_pretrained(pytorch_dump_folder)
|
210 |
+
hf_model.save_pretrained(pytorch_dump_folder)
|
211 |
+
|
212 |
+
if push_to_hub:
|
213 |
+
repo_id = f"nielsr/{model_name}" if "slimsam" in model_name else f"meta/{model_name}"
|
214 |
+
processor.push_to_hub(repo_id)
|
215 |
+
hf_model.push_to_hub(repo_id)
|
216 |
+
|
217 |
+
|
218 |
+
if __name__ == "__main__":
|
219 |
+
parser = argparse.ArgumentParser()
|
220 |
+
choices = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195", "slimsam-50-uniform", "slimsam-77-uniform"]
|
221 |
+
parser.add_argument(
|
222 |
+
"--model_name",
|
223 |
+
default="sam_vit_h_4b8939",
|
224 |
+
choices=choices,
|
225 |
+
type=str,
|
226 |
+
help="Name of the original model to convert",
|
227 |
+
)
|
228 |
+
parser.add_argument(
|
229 |
+
"--checkpoint_path",
|
230 |
+
type=str,
|
231 |
+
required=False,
|
232 |
+
help="Path to the original checkpoint",
|
233 |
+
)
|
234 |
+
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
|
235 |
+
parser.add_argument(
|
236 |
+
"--push_to_hub",
|
237 |
+
action="store_true",
|
238 |
+
help="Whether to push the model and processor to the hub after converting",
|
239 |
+
)
|
240 |
+
|
241 |
+
args = parser.parse_args()
|
242 |
+
|
243 |
+
if "slimsam" in args.model_name:
|
244 |
+
checkpoint_path = args.checkpoint_path
|
245 |
+
if checkpoint_path is None:
|
246 |
+
raise ValueError("You need to provide a checkpoint path for SlimSAM models.")
|
247 |
+
else:
|
248 |
+
checkpoint_path = hf_hub_download("ybelkada/segment-anything", f"checkpoints/{args.model_name}.pth")
|
249 |
+
|
250 |
+
convert_sam_checkpoint(args.model_name, checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/sam/image_processing_sam.py
ADDED
@@ -0,0 +1,1496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for SAM."""
|
16 |
+
import math
|
17 |
+
from copy import deepcopy
|
18 |
+
from itertools import product
|
19 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
24 |
+
from ...image_transforms import convert_to_rgb, pad, resize, to_channel_dimension_format
|
25 |
+
from ...image_utils import (
|
26 |
+
IMAGENET_DEFAULT_MEAN,
|
27 |
+
IMAGENET_DEFAULT_STD,
|
28 |
+
ChannelDimension,
|
29 |
+
ImageInput,
|
30 |
+
PILImageResampling,
|
31 |
+
get_image_size,
|
32 |
+
infer_channel_dimension_format,
|
33 |
+
is_scaled_image,
|
34 |
+
make_list_of_images,
|
35 |
+
to_numpy_array,
|
36 |
+
valid_images,
|
37 |
+
validate_kwargs,
|
38 |
+
validate_preprocess_arguments,
|
39 |
+
)
|
40 |
+
from ...utils import (
|
41 |
+
TensorType,
|
42 |
+
is_tf_available,
|
43 |
+
is_torch_available,
|
44 |
+
is_torchvision_available,
|
45 |
+
logging,
|
46 |
+
requires_backends,
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
if is_torch_available():
|
51 |
+
import torch
|
52 |
+
import torch.nn.functional as F
|
53 |
+
|
54 |
+
if is_torchvision_available():
|
55 |
+
from torchvision.ops.boxes import batched_nms
|
56 |
+
|
57 |
+
if is_tf_available():
|
58 |
+
import tensorflow as tf
|
59 |
+
from tensorflow.experimental import numpy as tnp
|
60 |
+
|
61 |
+
from ...tf_utils import flatten, shape_list
|
62 |
+
|
63 |
+
logger = logging.get_logger(__name__)
|
64 |
+
|
65 |
+
|
66 |
+
class SamImageProcessor(BaseImageProcessor):
|
67 |
+
r"""
|
68 |
+
Constructs a SAM image processor.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
|
73 |
+
`do_resize` parameter in the `preprocess` method.
|
74 |
+
size (`dict`, *optional*, defaults to `{"longest_edge": 1024}`):
|
75 |
+
Size of the output image after resizing. Resizes the longest edge of the image to match
|
76 |
+
`size["longest_edge"]` while maintaining the aspect ratio. Can be overridden by the `size` parameter in the
|
77 |
+
`preprocess` method.
|
78 |
+
mask_size (`dict`, *optional*, defaults to `{"longest_edge": 256}`):
|
79 |
+
Size of the output segmentation map after resizing. Resizes the longest edge of the image to match
|
80 |
+
`size["longest_edge"]` while maintaining the aspect ratio. Can be overridden by the `mask_size` parameter
|
81 |
+
in the `preprocess` method.
|
82 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
|
83 |
+
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
|
84 |
+
`preprocess` method.
|
85 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
86 |
+
Wwhether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
|
87 |
+
`do_rescale` parameter in the `preprocess` method.
|
88 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
89 |
+
Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
|
90 |
+
overridden by the `rescale_factor` parameter in the `preprocess` method.
|
91 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
92 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
93 |
+
method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
|
94 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
|
95 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
96 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
|
97 |
+
overridden by the `image_mean` parameter in the `preprocess` method.
|
98 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
|
99 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
100 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
101 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
102 |
+
do_pad (`bool`, *optional*, defaults to `True`):
|
103 |
+
Whether to pad the image to the specified `pad_size`. Can be overridden by the `do_pad` parameter in the
|
104 |
+
`preprocess` method.
|
105 |
+
pad_size (`dict`, *optional*, defaults to `{"height": 1024, "width": 1024}`):
|
106 |
+
Size of the output image after padding. Can be overridden by the `pad_size` parameter in the `preprocess`
|
107 |
+
method.
|
108 |
+
mask_pad_size (`dict`, *optional*, defaults to `{"height": 256, "width": 256}`):
|
109 |
+
Size of the output segmentation map after padding. Can be overridden by the `mask_pad_size` parameter in
|
110 |
+
the `preprocess` method.
|
111 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
112 |
+
Whether to convert the image to RGB.
|
113 |
+
"""
|
114 |
+
|
115 |
+
model_input_names = ["pixel_values"]
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
do_resize: bool = True,
|
120 |
+
size: Dict[str, int] = None,
|
121 |
+
mask_size: Dict[str, int] = None,
|
122 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
123 |
+
do_rescale: bool = True,
|
124 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
125 |
+
do_normalize: bool = True,
|
126 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
127 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
128 |
+
do_pad: bool = True,
|
129 |
+
pad_size: int = None,
|
130 |
+
mask_pad_size: int = None,
|
131 |
+
do_convert_rgb: bool = True,
|
132 |
+
**kwargs,
|
133 |
+
) -> None:
|
134 |
+
super().__init__(**kwargs)
|
135 |
+
size = size if size is not None else {"longest_edge": 1024}
|
136 |
+
size = get_size_dict(max_size=size, default_to_square=False) if not isinstance(size, dict) else size
|
137 |
+
|
138 |
+
pad_size = pad_size if pad_size is not None else {"height": 1024, "width": 1024}
|
139 |
+
pad_size = get_size_dict(pad_size, default_to_square=True)
|
140 |
+
|
141 |
+
mask_size = mask_size if mask_size is not None else {"longest_edge": 256}
|
142 |
+
mask_size = (
|
143 |
+
get_size_dict(max_size=mask_size, default_to_square=False)
|
144 |
+
if not isinstance(mask_size, dict)
|
145 |
+
else mask_size
|
146 |
+
)
|
147 |
+
|
148 |
+
mask_pad_size = mask_pad_size if mask_pad_size is not None else {"height": 256, "width": 256}
|
149 |
+
mask_pad_size = get_size_dict(mask_pad_size, default_to_square=True)
|
150 |
+
|
151 |
+
self.do_resize = do_resize
|
152 |
+
self.size = size
|
153 |
+
self.mask_size = mask_size
|
154 |
+
self.resample = resample
|
155 |
+
self.do_rescale = do_rescale
|
156 |
+
self.rescale_factor = rescale_factor
|
157 |
+
self.do_normalize = do_normalize
|
158 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
159 |
+
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
160 |
+
self.do_pad = do_pad
|
161 |
+
self.pad_size = pad_size
|
162 |
+
self.mask_pad_size = mask_pad_size
|
163 |
+
self.do_convert_rgb = do_convert_rgb
|
164 |
+
self._valid_processor_keys = [
|
165 |
+
"images",
|
166 |
+
"segmentation_maps",
|
167 |
+
"do_resize",
|
168 |
+
"size",
|
169 |
+
"mask_size",
|
170 |
+
"resample",
|
171 |
+
"do_rescale",
|
172 |
+
"rescale_factor",
|
173 |
+
"do_normalize",
|
174 |
+
"image_mean",
|
175 |
+
"image_std",
|
176 |
+
"do_pad",
|
177 |
+
"pad_size",
|
178 |
+
"mask_pad_size",
|
179 |
+
"do_convert_rgb",
|
180 |
+
"return_tensors",
|
181 |
+
"data_format",
|
182 |
+
"input_data_format",
|
183 |
+
]
|
184 |
+
|
185 |
+
def pad_image(
|
186 |
+
self,
|
187 |
+
image: np.ndarray,
|
188 |
+
pad_size: Dict[str, int],
|
189 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
190 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
191 |
+
**kwargs,
|
192 |
+
) -> np.ndarray:
|
193 |
+
"""
|
194 |
+
Pad an image to `(pad_size["height"], pad_size["width"])` with zeros to the right and bottom.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
image (`np.ndarray`):
|
198 |
+
Image to pad.
|
199 |
+
pad_size (`Dict[str, int]`):
|
200 |
+
Size of the output image after padding.
|
201 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
202 |
+
The data format of the image. Can be either "channels_first" or "channels_last". If `None`, the
|
203 |
+
`data_format` of the `image` will be used.
|
204 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
205 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
206 |
+
"""
|
207 |
+
output_height, output_width = pad_size["height"], pad_size["width"]
|
208 |
+
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
|
209 |
+
|
210 |
+
pad_width = output_width - input_width
|
211 |
+
pad_height = output_height - input_height
|
212 |
+
|
213 |
+
padded_image = pad(
|
214 |
+
image,
|
215 |
+
((0, pad_height), (0, pad_width)),
|
216 |
+
data_format=data_format,
|
217 |
+
input_data_format=input_data_format,
|
218 |
+
**kwargs,
|
219 |
+
)
|
220 |
+
return padded_image
|
221 |
+
|
222 |
+
def _get_preprocess_shape(self, old_shape: Tuple[int, int], longest_edge: int):
|
223 |
+
"""
|
224 |
+
Compute the output size given input size and target long side length.
|
225 |
+
"""
|
226 |
+
oldh, oldw = old_shape
|
227 |
+
scale = longest_edge * 1.0 / max(oldh, oldw)
|
228 |
+
newh, neww = oldh * scale, oldw * scale
|
229 |
+
newh = int(newh + 0.5)
|
230 |
+
neww = int(neww + 0.5)
|
231 |
+
return (newh, neww)
|
232 |
+
|
233 |
+
def resize(
|
234 |
+
self,
|
235 |
+
image: np.ndarray,
|
236 |
+
size: Dict[str, int],
|
237 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
238 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
239 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
240 |
+
**kwargs,
|
241 |
+
) -> np.ndarray:
|
242 |
+
"""
|
243 |
+
Resize an image to `(size["height"], size["width"])`.
|
244 |
+
|
245 |
+
Args:
|
246 |
+
image (`np.ndarray`):
|
247 |
+
Image to resize.
|
248 |
+
size (`Dict[str, int]`):
|
249 |
+
Dictionary in the format `{"longest_edge": int}` specifying the size of the output image. The longest
|
250 |
+
edge of the image will be resized to the specified size, while the other edge will be resized to
|
251 |
+
maintain the aspect ratio.
|
252 |
+
resample:
|
253 |
+
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
|
254 |
+
data_format (`ChannelDimension` or `str`, *optional*):
|
255 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
256 |
+
image is used. Can be one of:
|
257 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
258 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
259 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
260 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
261 |
+
from the input image. Can be one of:
|
262 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
263 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
264 |
+
|
265 |
+
Returns:
|
266 |
+
`np.ndarray`: The resized image.
|
267 |
+
"""
|
268 |
+
size = get_size_dict(size)
|
269 |
+
if "longest_edge" not in size:
|
270 |
+
raise ValueError(f"The `size` dictionary must contain the key `longest_edge`. Got {size.keys()}")
|
271 |
+
input_size = get_image_size(image, channel_dim=input_data_format)
|
272 |
+
output_height, output_width = self._get_preprocess_shape(input_size, size["longest_edge"])
|
273 |
+
return resize(
|
274 |
+
image,
|
275 |
+
size=(output_height, output_width),
|
276 |
+
resample=resample,
|
277 |
+
data_format=data_format,
|
278 |
+
input_data_format=input_data_format,
|
279 |
+
**kwargs,
|
280 |
+
)
|
281 |
+
|
282 |
+
def _preprocess(
|
283 |
+
self,
|
284 |
+
image: ImageInput,
|
285 |
+
do_resize: bool,
|
286 |
+
do_rescale: bool,
|
287 |
+
do_normalize: bool,
|
288 |
+
size: Optional[Dict[str, int]] = None,
|
289 |
+
resample: PILImageResampling = None,
|
290 |
+
rescale_factor: Optional[float] = None,
|
291 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
292 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
293 |
+
do_pad: Optional[bool] = None,
|
294 |
+
pad_size: Optional[Dict[str, int]] = None,
|
295 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
296 |
+
):
|
297 |
+
if do_resize:
|
298 |
+
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
299 |
+
reshaped_input_size = get_image_size(image, channel_dim=input_data_format)
|
300 |
+
|
301 |
+
if do_rescale:
|
302 |
+
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
303 |
+
|
304 |
+
if do_normalize:
|
305 |
+
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
306 |
+
|
307 |
+
if do_pad:
|
308 |
+
image = self.pad_image(image=image, pad_size=pad_size, input_data_format=input_data_format)
|
309 |
+
|
310 |
+
return image, reshaped_input_size
|
311 |
+
|
312 |
+
def _preprocess_image(
|
313 |
+
self,
|
314 |
+
image: ImageInput,
|
315 |
+
do_resize: Optional[bool] = None,
|
316 |
+
size: Dict[str, int] = None,
|
317 |
+
resample: PILImageResampling = None,
|
318 |
+
do_rescale: bool = None,
|
319 |
+
rescale_factor: Optional[float] = None,
|
320 |
+
do_normalize: Optional[bool] = None,
|
321 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
322 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
323 |
+
do_pad: Optional[bool] = None,
|
324 |
+
pad_size: Optional[Dict[str, int]] = None,
|
325 |
+
do_convert_rgb: Optional[bool] = None,
|
326 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
327 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
328 |
+
) -> Tuple[np.ndarray, Tuple[int, int], Tuple[int, int]]:
|
329 |
+
image = to_numpy_array(image)
|
330 |
+
|
331 |
+
# PIL RGBA images are converted to RGB
|
332 |
+
if do_convert_rgb:
|
333 |
+
image = convert_to_rgb(image)
|
334 |
+
|
335 |
+
# All transformations expect numpy arrays.
|
336 |
+
image = to_numpy_array(image)
|
337 |
+
|
338 |
+
if is_scaled_image(image) and do_rescale:
|
339 |
+
logger.warning_once(
|
340 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
341 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
342 |
+
)
|
343 |
+
|
344 |
+
if input_data_format is None:
|
345 |
+
input_data_format = infer_channel_dimension_format(image)
|
346 |
+
|
347 |
+
original_size = get_image_size(image, channel_dim=input_data_format)
|
348 |
+
|
349 |
+
image, reshaped_input_size = self._preprocess(
|
350 |
+
image=image,
|
351 |
+
do_resize=do_resize,
|
352 |
+
size=size,
|
353 |
+
resample=resample,
|
354 |
+
do_rescale=do_rescale,
|
355 |
+
rescale_factor=rescale_factor,
|
356 |
+
do_normalize=do_normalize,
|
357 |
+
image_mean=image_mean,
|
358 |
+
image_std=image_std,
|
359 |
+
do_pad=do_pad,
|
360 |
+
pad_size=pad_size,
|
361 |
+
input_data_format=input_data_format,
|
362 |
+
)
|
363 |
+
|
364 |
+
if data_format is not None:
|
365 |
+
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
366 |
+
|
367 |
+
return image, original_size, reshaped_input_size
|
368 |
+
|
369 |
+
def _preprocess_mask(
|
370 |
+
self,
|
371 |
+
segmentation_map: ImageInput,
|
372 |
+
do_resize: Optional[bool] = None,
|
373 |
+
mask_size: Dict[str, int] = None,
|
374 |
+
do_pad: Optional[bool] = None,
|
375 |
+
mask_pad_size: Optional[Dict[str, int]] = None,
|
376 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
377 |
+
) -> np.ndarray:
|
378 |
+
segmentation_map = to_numpy_array(segmentation_map)
|
379 |
+
|
380 |
+
# Add channel dimension if missing - needed for certain transformations
|
381 |
+
if segmentation_map.ndim == 2:
|
382 |
+
added_channel_dim = True
|
383 |
+
segmentation_map = segmentation_map[None, ...]
|
384 |
+
input_data_format = ChannelDimension.FIRST
|
385 |
+
else:
|
386 |
+
added_channel_dim = False
|
387 |
+
if input_data_format is None:
|
388 |
+
input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
|
389 |
+
|
390 |
+
original_size = get_image_size(segmentation_map, channel_dim=input_data_format)
|
391 |
+
|
392 |
+
segmentation_map, _ = self._preprocess(
|
393 |
+
image=segmentation_map,
|
394 |
+
do_resize=do_resize,
|
395 |
+
size=mask_size,
|
396 |
+
resample=PILImageResampling.NEAREST,
|
397 |
+
do_rescale=False,
|
398 |
+
do_normalize=False,
|
399 |
+
do_pad=do_pad,
|
400 |
+
pad_size=mask_pad_size,
|
401 |
+
input_data_format=input_data_format,
|
402 |
+
)
|
403 |
+
|
404 |
+
# Remove extra channel dimension if added for processing
|
405 |
+
if added_channel_dim:
|
406 |
+
segmentation_map = segmentation_map.squeeze(0)
|
407 |
+
segmentation_map = segmentation_map.astype(np.int64)
|
408 |
+
|
409 |
+
return segmentation_map, original_size
|
410 |
+
|
411 |
+
def preprocess(
|
412 |
+
self,
|
413 |
+
images: ImageInput,
|
414 |
+
segmentation_maps: Optional[ImageInput] = None,
|
415 |
+
do_resize: Optional[bool] = None,
|
416 |
+
size: Optional[Dict[str, int]] = None,
|
417 |
+
mask_size: Optional[Dict[str, int]] = None,
|
418 |
+
resample: Optional["PILImageResampling"] = None,
|
419 |
+
do_rescale: Optional[bool] = None,
|
420 |
+
rescale_factor: Optional[Union[int, float]] = None,
|
421 |
+
do_normalize: Optional[bool] = None,
|
422 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
423 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
424 |
+
do_pad: Optional[bool] = None,
|
425 |
+
pad_size: Optional[Dict[str, int]] = None,
|
426 |
+
mask_pad_size: Optional[Dict[str, int]] = None,
|
427 |
+
do_convert_rgb: Optional[bool] = None,
|
428 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
429 |
+
data_format: ChannelDimension = ChannelDimension.FIRST,
|
430 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
431 |
+
**kwargs,
|
432 |
+
):
|
433 |
+
"""
|
434 |
+
Preprocess an image or batch of images.
|
435 |
+
|
436 |
+
Args:
|
437 |
+
images (`ImageInput`):
|
438 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
439 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
440 |
+
segmentation_maps (`ImageInput`, *optional*):
|
441 |
+
Segmentation map to preprocess.
|
442 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
443 |
+
Whether to resize the image.
|
444 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
445 |
+
Controls the size of the image after `resize`. The longest edge of the image is resized to
|
446 |
+
`size["longest_edge"]` whilst preserving the aspect ratio.
|
447 |
+
mask_size (`Dict[str, int]`, *optional*, defaults to `self.mask_size`):
|
448 |
+
Controls the size of the segmentation map after `resize`. The longest edge of the image is resized to
|
449 |
+
`size["longest_edge"]` whilst preserving the aspect ratio.
|
450 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
451 |
+
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
|
452 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
453 |
+
Whether to rescale the image pixel values by rescaling factor.
|
454 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `self.rescale_factor`):
|
455 |
+
Rescale factor to apply to the image pixel values.
|
456 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
457 |
+
Whether to normalize the image.
|
458 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
459 |
+
Image mean to normalize the image by if `do_normalize` is set to `True`.
|
460 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
461 |
+
Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
|
462 |
+
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
|
463 |
+
Whether to pad the image.
|
464 |
+
pad_size (`Dict[str, int]`, *optional*, defaults to `self.pad_size`):
|
465 |
+
Controls the size of the padding applied to the image. The image is padded to `pad_size["height"]` and
|
466 |
+
`pad_size["width"]` if `do_pad` is set to `True`.
|
467 |
+
mask_pad_size (`Dict[str, int]`, *optional*, defaults to `self.mask_pad_size`):
|
468 |
+
Controls the size of the padding applied to the segmentation map. The image is padded to
|
469 |
+
`mask_pad_size["height"]` and `mask_pad_size["width"]` if `do_pad` is set to `True`.
|
470 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
471 |
+
Whether to convert the image to RGB.
|
472 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
473 |
+
The type of tensors to return. Can be one of:
|
474 |
+
- Unset: Return a list of `np.ndarray`.
|
475 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
476 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
477 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
478 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
479 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
480 |
+
The channel dimension format for the output image. Can be one of:
|
481 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
482 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
483 |
+
- Unset: Use the channel dimension format of the input image.
|
484 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
485 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
486 |
+
from the input image. Can be one of:
|
487 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
488 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
489 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
490 |
+
"""
|
491 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
492 |
+
size = size if size is not None else self.size
|
493 |
+
size = get_size_dict(max_size=size, default_to_square=False) if not isinstance(size, dict) else size
|
494 |
+
mask_size = mask_size if mask_size is not None else self.mask_size
|
495 |
+
mask_size = (
|
496 |
+
get_size_dict(max_size=mask_size, default_to_square=False)
|
497 |
+
if not isinstance(mask_size, dict)
|
498 |
+
else mask_size
|
499 |
+
)
|
500 |
+
resample = resample if resample is not None else self.resample
|
501 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
502 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
503 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
504 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
505 |
+
image_std = image_std if image_std is not None else self.image_std
|
506 |
+
do_pad = do_pad if do_pad is not None else self.do_pad
|
507 |
+
pad_size = pad_size if pad_size is not None else self.pad_size
|
508 |
+
pad_size = get_size_dict(pad_size, default_to_square=True)
|
509 |
+
mask_pad_size = mask_pad_size if mask_pad_size is not None else self.mask_pad_size
|
510 |
+
mask_pad_size = get_size_dict(mask_pad_size, default_to_square=True)
|
511 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
512 |
+
|
513 |
+
images = make_list_of_images(images)
|
514 |
+
|
515 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
516 |
+
|
517 |
+
if not valid_images(images):
|
518 |
+
raise ValueError(
|
519 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
520 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
521 |
+
)
|
522 |
+
|
523 |
+
if segmentation_maps is not None:
|
524 |
+
segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
|
525 |
+
|
526 |
+
if not valid_images(segmentation_maps):
|
527 |
+
raise ValueError(
|
528 |
+
"Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
529 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
530 |
+
)
|
531 |
+
validate_preprocess_arguments(
|
532 |
+
do_rescale=do_rescale,
|
533 |
+
rescale_factor=rescale_factor,
|
534 |
+
do_normalize=do_normalize,
|
535 |
+
image_mean=image_mean,
|
536 |
+
image_std=image_std,
|
537 |
+
do_pad=do_pad,
|
538 |
+
size_divisibility=pad_size, # Here _preprocess needs do_pad and pad_size.
|
539 |
+
do_resize=do_resize,
|
540 |
+
size=size,
|
541 |
+
resample=resample,
|
542 |
+
)
|
543 |
+
|
544 |
+
images, original_sizes, reshaped_input_sizes = zip(
|
545 |
+
*(
|
546 |
+
self._preprocess_image(
|
547 |
+
image=img,
|
548 |
+
do_resize=do_resize,
|
549 |
+
size=size,
|
550 |
+
resample=resample,
|
551 |
+
do_rescale=do_rescale,
|
552 |
+
rescale_factor=rescale_factor,
|
553 |
+
do_normalize=do_normalize,
|
554 |
+
image_mean=image_mean,
|
555 |
+
image_std=image_std,
|
556 |
+
do_pad=do_pad,
|
557 |
+
pad_size=pad_size,
|
558 |
+
do_convert_rgb=do_convert_rgb,
|
559 |
+
data_format=data_format,
|
560 |
+
input_data_format=input_data_format,
|
561 |
+
)
|
562 |
+
for img in images
|
563 |
+
)
|
564 |
+
)
|
565 |
+
|
566 |
+
data = {
|
567 |
+
"pixel_values": images,
|
568 |
+
"original_sizes": original_sizes,
|
569 |
+
"reshaped_input_sizes": reshaped_input_sizes,
|
570 |
+
}
|
571 |
+
|
572 |
+
if segmentation_maps is not None:
|
573 |
+
segmentation_maps, original_mask_sizes = zip(
|
574 |
+
*(
|
575 |
+
self._preprocess_mask(
|
576 |
+
segmentation_map=mask,
|
577 |
+
do_resize=do_resize,
|
578 |
+
mask_size=mask_size,
|
579 |
+
do_pad=do_pad,
|
580 |
+
mask_pad_size=mask_pad_size,
|
581 |
+
input_data_format=input_data_format,
|
582 |
+
)
|
583 |
+
for mask in segmentation_maps
|
584 |
+
)
|
585 |
+
)
|
586 |
+
|
587 |
+
# masks should start out the same size as input images
|
588 |
+
assert all(
|
589 |
+
original_im_size == original_mask_size
|
590 |
+
for original_im_size, original_mask_size in zip(original_sizes, original_mask_sizes)
|
591 |
+
), "Segmentation maps should be the same size as input images."
|
592 |
+
|
593 |
+
data["labels"] = segmentation_maps
|
594 |
+
|
595 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
596 |
+
|
597 |
+
def post_process_masks(
|
598 |
+
self,
|
599 |
+
masks,
|
600 |
+
original_sizes,
|
601 |
+
reshaped_input_sizes,
|
602 |
+
mask_threshold=0.0,
|
603 |
+
binarize=True,
|
604 |
+
pad_size=None,
|
605 |
+
return_tensors="pt",
|
606 |
+
):
|
607 |
+
"""
|
608 |
+
Remove padding and upscale masks to the original image size.
|
609 |
+
|
610 |
+
Args:
|
611 |
+
masks (`Union[List[torch.Tensor], List[np.ndarray], List[tf.Tensor]]`):
|
612 |
+
Batched masks from the mask_decoder in (batch_size, num_channels, height, width) format.
|
613 |
+
original_sizes (`Union[torch.Tensor, tf.Tensor, List[Tuple[int,int]]]`):
|
614 |
+
The original sizes of each image before it was resized to the model's expected input shape, in (height,
|
615 |
+
width) format.
|
616 |
+
reshaped_input_sizes (`Union[torch.Tensor, tf.Tensor, List[Tuple[int,int]]]`):
|
617 |
+
The size of each image as it is fed to the model, in (height, width) format. Used to remove padding.
|
618 |
+
mask_threshold (`float`, *optional*, defaults to 0.0):
|
619 |
+
The threshold to use for binarizing the masks.
|
620 |
+
binarize (`bool`, *optional*, defaults to `True`):
|
621 |
+
Whether to binarize the masks.
|
622 |
+
pad_size (`int`, *optional*, defaults to `self.pad_size`):
|
623 |
+
The target size the images were padded to before being passed to the model. If None, the target size is
|
624 |
+
assumed to be the processor's `pad_size`.
|
625 |
+
return_tensors (`str`, *optional*, defaults to `"pt"`):
|
626 |
+
If `"pt"`, return PyTorch tensors. If `"tf"`, return TensorFlow tensors.
|
627 |
+
Returns:
|
628 |
+
(`Union[torch.Tensor, tf.Tensor]`): Batched masks in batch_size, num_channels, height, width) format, where
|
629 |
+
(height, width) is given by original_size.
|
630 |
+
"""
|
631 |
+
if return_tensors == "pt":
|
632 |
+
return self._post_process_masks_pt(
|
633 |
+
masks=masks,
|
634 |
+
original_sizes=original_sizes,
|
635 |
+
reshaped_input_sizes=reshaped_input_sizes,
|
636 |
+
mask_threshold=mask_threshold,
|
637 |
+
binarize=binarize,
|
638 |
+
pad_size=pad_size,
|
639 |
+
)
|
640 |
+
elif return_tensors == "tf":
|
641 |
+
return self._post_process_masks_tf(
|
642 |
+
masks=masks,
|
643 |
+
original_sizes=original_sizes,
|
644 |
+
reshaped_input_sizes=reshaped_input_sizes,
|
645 |
+
mask_threshold=mask_threshold,
|
646 |
+
binarize=binarize,
|
647 |
+
pad_size=pad_size,
|
648 |
+
)
|
649 |
+
else:
|
650 |
+
raise ValueError("return_tensors must be either 'pt' or 'tf'")
|
651 |
+
|
652 |
+
def _post_process_masks_pt(
|
653 |
+
self, masks, original_sizes, reshaped_input_sizes, mask_threshold=0.0, binarize=True, pad_size=None
|
654 |
+
):
|
655 |
+
"""
|
656 |
+
Remove padding and upscale masks to the original image size.
|
657 |
+
|
658 |
+
Args:
|
659 |
+
masks (`Union[List[torch.Tensor], List[np.ndarray]]`):
|
660 |
+
Batched masks from the mask_decoder in (batch_size, num_channels, height, width) format.
|
661 |
+
original_sizes (`Union[torch.Tensor, List[Tuple[int,int]]]`):
|
662 |
+
The original sizes of each image before it was resized to the model's expected input shape, in (height,
|
663 |
+
width) format.
|
664 |
+
reshaped_input_sizes (`Union[torch.Tensor, List[Tuple[int,int]]]`):
|
665 |
+
The size of each image as it is fed to the model, in (height, width) format. Used to remove padding.
|
666 |
+
mask_threshold (`float`, *optional*, defaults to 0.0):
|
667 |
+
The threshold to use for binarizing the masks.
|
668 |
+
binarize (`bool`, *optional*, defaults to `True`):
|
669 |
+
Whether to binarize the masks.
|
670 |
+
pad_size (`int`, *optional*, defaults to `self.pad_size`):
|
671 |
+
The target size the images were padded to before being passed to the model. If None, the target size is
|
672 |
+
assumed to be the processor's `pad_size`.
|
673 |
+
Returns:
|
674 |
+
(`torch.Tensor`): Batched masks in batch_size, num_channels, height, width) format, where (height, width)
|
675 |
+
is given by original_size.
|
676 |
+
"""
|
677 |
+
requires_backends(self, ["torch"])
|
678 |
+
pad_size = self.pad_size if pad_size is None else pad_size
|
679 |
+
target_image_size = (pad_size["height"], pad_size["width"])
|
680 |
+
if isinstance(original_sizes, (torch.Tensor, np.ndarray)):
|
681 |
+
original_sizes = original_sizes.tolist()
|
682 |
+
if isinstance(reshaped_input_sizes, (torch.Tensor, np.ndarray)):
|
683 |
+
reshaped_input_sizes = reshaped_input_sizes.tolist()
|
684 |
+
output_masks = []
|
685 |
+
for i, original_size in enumerate(original_sizes):
|
686 |
+
if isinstance(masks[i], np.ndarray):
|
687 |
+
masks[i] = torch.from_numpy(masks[i])
|
688 |
+
elif not isinstance(masks[i], torch.Tensor):
|
689 |
+
raise ValueError("Input masks should be a list of `torch.tensors` or a list of `np.ndarray`")
|
690 |
+
interpolated_mask = F.interpolate(masks[i], target_image_size, mode="bilinear", align_corners=False)
|
691 |
+
interpolated_mask = interpolated_mask[..., : reshaped_input_sizes[i][0], : reshaped_input_sizes[i][1]]
|
692 |
+
interpolated_mask = F.interpolate(interpolated_mask, original_size, mode="bilinear", align_corners=False)
|
693 |
+
if binarize:
|
694 |
+
interpolated_mask = interpolated_mask > mask_threshold
|
695 |
+
output_masks.append(interpolated_mask)
|
696 |
+
|
697 |
+
return output_masks
|
698 |
+
|
699 |
+
def _post_process_masks_tf(
|
700 |
+
self, masks, original_sizes, reshaped_input_sizes, mask_threshold=0.0, binarize=True, pad_size=None
|
701 |
+
):
|
702 |
+
"""
|
703 |
+
Remove padding and upscale masks to the original image size.
|
704 |
+
|
705 |
+
Args:
|
706 |
+
masks (`tf.Tensor`):
|
707 |
+
Batched masks from the mask_decoder in (batch_size, num_channels, height, width) format.
|
708 |
+
original_sizes (`tf.Tensor`):
|
709 |
+
The original size of the images before resizing for input to the model, in (height, width) format.
|
710 |
+
reshaped_input_sizes (`tf.Tensor`):
|
711 |
+
The size of the image input to the model, in (height, width) format. Used to remove padding.
|
712 |
+
mask_threshold (`float`, *optional*, defaults to 0.0):
|
713 |
+
The threshold to use for binarizing the masks.
|
714 |
+
binarize (`bool`, *optional*, defaults to `True`):
|
715 |
+
Whether to binarize the masks.
|
716 |
+
pad_size (`int`, *optional*, defaults to `self.pad_size`):
|
717 |
+
The target size the images were padded to before being passed to the model. If None, the target size is
|
718 |
+
assumed to be the processor's `pad_size`.
|
719 |
+
Returns:
|
720 |
+
(`tf.Tensor`): Batched masks in batch_size, num_channels, height, width) format, where (height, width) is
|
721 |
+
given by original_size.
|
722 |
+
"""
|
723 |
+
requires_backends(self, ["tf"])
|
724 |
+
pad_size = self.pad_size if pad_size is None else pad_size
|
725 |
+
target_image_size = (pad_size["height"], pad_size["width"])
|
726 |
+
|
727 |
+
output_masks = []
|
728 |
+
for i, original_size in enumerate(original_sizes):
|
729 |
+
# tf.image expects NHWC, we transpose the NCHW inputs for it
|
730 |
+
mask = tf.transpose(masks[i], perm=[0, 2, 3, 1])
|
731 |
+
interpolated_mask = tf.image.resize(mask, target_image_size, method="bilinear")
|
732 |
+
interpolated_mask = interpolated_mask[:, : reshaped_input_sizes[i][0], : reshaped_input_sizes[i][1], :]
|
733 |
+
interpolated_mask = tf.image.resize(interpolated_mask, original_size, method="bilinear")
|
734 |
+
if binarize:
|
735 |
+
interpolated_mask = interpolated_mask > mask_threshold
|
736 |
+
# And then we transpose them back at the end
|
737 |
+
output_masks.append(tf.transpose(interpolated_mask, perm=[0, 3, 1, 2]))
|
738 |
+
|
739 |
+
return output_masks
|
740 |
+
|
741 |
+
def post_process_for_mask_generation(
|
742 |
+
self, all_masks, all_scores, all_boxes, crops_nms_thresh, return_tensors="pt"
|
743 |
+
):
|
744 |
+
"""
|
745 |
+
Post processes mask that are generated by calling the Non Maximum Suppression algorithm on the predicted masks.
|
746 |
+
|
747 |
+
Args:
|
748 |
+
all_masks (`Union[List[torch.Tensor], List[tf.Tensor]]`):
|
749 |
+
List of all predicted segmentation masks
|
750 |
+
all_scores (`Union[List[torch.Tensor], List[tf.Tensor]]`):
|
751 |
+
List of all predicted iou scores
|
752 |
+
all_boxes (`Union[List[torch.Tensor], List[tf.Tensor]]`):
|
753 |
+
List of all bounding boxes of the predicted masks
|
754 |
+
crops_nms_thresh (`float`):
|
755 |
+
Threshold for NMS (Non Maximum Suppression) algorithm.
|
756 |
+
return_tensors (`str`, *optional*, defaults to `pt`):
|
757 |
+
If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`.
|
758 |
+
"""
|
759 |
+
if return_tensors == "pt":
|
760 |
+
return _postprocess_for_mg(all_masks, all_scores, all_boxes, crops_nms_thresh)
|
761 |
+
elif return_tensors == "tf":
|
762 |
+
return _postprocess_for_mg_tf(all_masks, all_scores, all_boxes, crops_nms_thresh)
|
763 |
+
|
764 |
+
def generate_crop_boxes(
|
765 |
+
self,
|
766 |
+
image,
|
767 |
+
target_size,
|
768 |
+
crop_n_layers: int = 0,
|
769 |
+
overlap_ratio: float = 512 / 1500,
|
770 |
+
points_per_crop: Optional[int] = 32,
|
771 |
+
crop_n_points_downscale_factor: Optional[List[int]] = 1,
|
772 |
+
device: Optional["torch.device"] = None,
|
773 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
774 |
+
return_tensors: str = "pt",
|
775 |
+
):
|
776 |
+
"""
|
777 |
+
Generates a list of crop boxes of different sizes. Each layer has (2**i)**2 boxes for the ith layer.
|
778 |
+
|
779 |
+
Args:
|
780 |
+
image (`np.array`):
|
781 |
+
Input original image
|
782 |
+
target_size (`int`):
|
783 |
+
Target size of the resized image
|
784 |
+
crop_n_layers (`int`, *optional*, defaults to 0):
|
785 |
+
If >0, mask prediction will be run again on crops of the image. Sets the number of layers to run, where
|
786 |
+
each layer has 2**i_layer number of image crops.
|
787 |
+
overlap_ratio (`float`, *optional*, defaults to 512/1500):
|
788 |
+
Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of
|
789 |
+
the image length. Later layers with more crops scale down this overlap.
|
790 |
+
points_per_crop (`int`, *optional*, defaults to 32):
|
791 |
+
Number of points to sample from each crop.
|
792 |
+
crop_n_points_downscale_factor (`List[int]`, *optional*, defaults to 1):
|
793 |
+
The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
|
794 |
+
device (`torch.device`, *optional*, defaults to None):
|
795 |
+
Device to use for the computation. If None, cpu will be used.
|
796 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
797 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
798 |
+
return_tensors (`str`, *optional*, defaults to `pt`):
|
799 |
+
If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`.
|
800 |
+
"""
|
801 |
+
crop_boxes, points_per_crop, cropped_images, input_labels = _generate_crop_boxes(
|
802 |
+
image,
|
803 |
+
target_size,
|
804 |
+
crop_n_layers,
|
805 |
+
overlap_ratio,
|
806 |
+
points_per_crop,
|
807 |
+
crop_n_points_downscale_factor,
|
808 |
+
input_data_format,
|
809 |
+
)
|
810 |
+
if return_tensors == "pt":
|
811 |
+
if device is None:
|
812 |
+
device = torch.device("cpu")
|
813 |
+
crop_boxes = torch.tensor(crop_boxes, device=device)
|
814 |
+
points_per_crop = torch.tensor(points_per_crop, device=device)
|
815 |
+
# cropped_images stays as np
|
816 |
+
input_labels = torch.tensor(input_labels, device=device)
|
817 |
+
|
818 |
+
elif return_tensors == "tf":
|
819 |
+
if device is not None:
|
820 |
+
raise ValueError("device is not a supported argument when return_tensors is tf!")
|
821 |
+
crop_boxes = tf.convert_to_tensor(crop_boxes)
|
822 |
+
points_per_crop = tf.convert_to_tensor(points_per_crop)
|
823 |
+
# cropped_images stays as np
|
824 |
+
input_labels = tf.convert_to_tensor(input_labels)
|
825 |
+
else:
|
826 |
+
raise ValueError("return_tensors must be either 'pt' or 'tf'.")
|
827 |
+
return crop_boxes, points_per_crop, cropped_images, input_labels
|
828 |
+
|
829 |
+
def filter_masks(
|
830 |
+
self,
|
831 |
+
masks,
|
832 |
+
iou_scores,
|
833 |
+
original_size,
|
834 |
+
cropped_box_image,
|
835 |
+
pred_iou_thresh=0.88,
|
836 |
+
stability_score_thresh=0.95,
|
837 |
+
mask_threshold=0,
|
838 |
+
stability_score_offset=1,
|
839 |
+
return_tensors="pt",
|
840 |
+
):
|
841 |
+
"""
|
842 |
+
Filters the predicted masks by selecting only the ones that meets several criteria. The first criterion being
|
843 |
+
that the iou scores needs to be greater than `pred_iou_thresh`. The second criterion is that the stability
|
844 |
+
score needs to be greater than `stability_score_thresh`. The method also converts the predicted masks to
|
845 |
+
bounding boxes and pad the predicted masks if necessary.
|
846 |
+
|
847 |
+
Args:
|
848 |
+
masks (`Union[torch.Tensor, tf.Tensor]`):
|
849 |
+
Input masks.
|
850 |
+
iou_scores (`Union[torch.Tensor, tf.Tensor]`):
|
851 |
+
List of IoU scores.
|
852 |
+
original_size (`Tuple[int,int]`):
|
853 |
+
Size of the orginal image.
|
854 |
+
cropped_box_image (`np.array`):
|
855 |
+
The cropped image.
|
856 |
+
pred_iou_thresh (`float`, *optional*, defaults to 0.88):
|
857 |
+
The threshold for the iou scores.
|
858 |
+
stability_score_thresh (`float`, *optional*, defaults to 0.95):
|
859 |
+
The threshold for the stability score.
|
860 |
+
mask_threshold (`float`, *optional*, defaults to 0):
|
861 |
+
The threshold for the predicted masks.
|
862 |
+
stability_score_offset (`float`, *optional*, defaults to 1):
|
863 |
+
The offset for the stability score used in the `_compute_stability_score` method.
|
864 |
+
return_tensors (`str`, *optional*, defaults to `pt`):
|
865 |
+
If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`.
|
866 |
+
"""
|
867 |
+
if return_tensors == "pt":
|
868 |
+
return self._filter_masks_pt(
|
869 |
+
masks=masks,
|
870 |
+
iou_scores=iou_scores,
|
871 |
+
original_size=original_size,
|
872 |
+
cropped_box_image=cropped_box_image,
|
873 |
+
pred_iou_thresh=pred_iou_thresh,
|
874 |
+
stability_score_thresh=stability_score_thresh,
|
875 |
+
mask_threshold=mask_threshold,
|
876 |
+
stability_score_offset=stability_score_offset,
|
877 |
+
)
|
878 |
+
elif return_tensors == "tf":
|
879 |
+
return self._filter_masks_tf(
|
880 |
+
masks=masks,
|
881 |
+
iou_scores=iou_scores,
|
882 |
+
original_size=original_size,
|
883 |
+
cropped_box_image=cropped_box_image,
|
884 |
+
pred_iou_thresh=pred_iou_thresh,
|
885 |
+
stability_score_thresh=stability_score_thresh,
|
886 |
+
mask_threshold=mask_threshold,
|
887 |
+
stability_score_offset=stability_score_offset,
|
888 |
+
)
|
889 |
+
|
890 |
+
def _filter_masks_pt(
|
891 |
+
self,
|
892 |
+
masks,
|
893 |
+
iou_scores,
|
894 |
+
original_size,
|
895 |
+
cropped_box_image,
|
896 |
+
pred_iou_thresh=0.88,
|
897 |
+
stability_score_thresh=0.95,
|
898 |
+
mask_threshold=0,
|
899 |
+
stability_score_offset=1,
|
900 |
+
):
|
901 |
+
"""
|
902 |
+
Filters the predicted masks by selecting only the ones that meets several criteria. The first criterion being
|
903 |
+
that the iou scores needs to be greater than `pred_iou_thresh`. The second criterion is that the stability
|
904 |
+
score needs to be greater than `stability_score_thresh`. The method also converts the predicted masks to
|
905 |
+
bounding boxes and pad the predicted masks if necessary.
|
906 |
+
|
907 |
+
Args:
|
908 |
+
masks (`torch.Tensor`):
|
909 |
+
Input masks.
|
910 |
+
iou_scores (`torch.Tensor`):
|
911 |
+
List of IoU scores.
|
912 |
+
original_size (`Tuple[int,int]`):
|
913 |
+
Size of the orginal image.
|
914 |
+
cropped_box_image (`np.array`):
|
915 |
+
The cropped image.
|
916 |
+
pred_iou_thresh (`float`, *optional*, defaults to 0.88):
|
917 |
+
The threshold for the iou scores.
|
918 |
+
stability_score_thresh (`float`, *optional*, defaults to 0.95):
|
919 |
+
The threshold for the stability score.
|
920 |
+
mask_threshold (`float`, *optional*, defaults to 0):
|
921 |
+
The threshold for the predicted masks.
|
922 |
+
stability_score_offset (`float`, *optional*, defaults to 1):
|
923 |
+
The offset for the stability score used in the `_compute_stability_score` method.
|
924 |
+
|
925 |
+
"""
|
926 |
+
requires_backends(self, ["torch"])
|
927 |
+
original_height, original_width = original_size
|
928 |
+
iou_scores = iou_scores.flatten(0, 1)
|
929 |
+
masks = masks.flatten(0, 1)
|
930 |
+
|
931 |
+
if masks.shape[0] != iou_scores.shape[0]:
|
932 |
+
raise ValueError("masks and iou_scores must have the same batch size.")
|
933 |
+
|
934 |
+
if masks.device != iou_scores.device:
|
935 |
+
iou_scores = iou_scores.to(masks.device)
|
936 |
+
|
937 |
+
batch_size = masks.shape[0]
|
938 |
+
|
939 |
+
keep_mask = torch.ones(batch_size, dtype=torch.bool, device=masks.device)
|
940 |
+
|
941 |
+
if pred_iou_thresh > 0.0:
|
942 |
+
keep_mask = keep_mask & (iou_scores > pred_iou_thresh)
|
943 |
+
|
944 |
+
# compute stability score
|
945 |
+
if stability_score_thresh > 0.0:
|
946 |
+
stability_scores = _compute_stability_score_pt(masks, mask_threshold, stability_score_offset)
|
947 |
+
keep_mask = keep_mask & (stability_scores > stability_score_thresh)
|
948 |
+
|
949 |
+
scores = iou_scores[keep_mask]
|
950 |
+
masks = masks[keep_mask]
|
951 |
+
|
952 |
+
# binarize masks
|
953 |
+
masks = masks > mask_threshold
|
954 |
+
converted_boxes = _batched_mask_to_box(masks)
|
955 |
+
|
956 |
+
keep_mask = ~_is_box_near_crop_edge(
|
957 |
+
converted_boxes, cropped_box_image, [0, 0, original_width, original_height]
|
958 |
+
)
|
959 |
+
|
960 |
+
scores = scores[keep_mask]
|
961 |
+
masks = masks[keep_mask]
|
962 |
+
converted_boxes = converted_boxes[keep_mask]
|
963 |
+
|
964 |
+
masks = _pad_masks(masks, cropped_box_image, original_height, original_width)
|
965 |
+
# conversion to rle is necessary to run non-maximum suppresion
|
966 |
+
masks = _mask_to_rle_pytorch(masks)
|
967 |
+
|
968 |
+
return masks, scores, converted_boxes
|
969 |
+
|
970 |
+
def _filter_masks_tf(
|
971 |
+
self,
|
972 |
+
masks,
|
973 |
+
iou_scores,
|
974 |
+
original_size,
|
975 |
+
cropped_box_image,
|
976 |
+
pred_iou_thresh=0.88,
|
977 |
+
stability_score_thresh=0.95,
|
978 |
+
mask_threshold=0,
|
979 |
+
stability_score_offset=1,
|
980 |
+
):
|
981 |
+
"""
|
982 |
+
Filters the predicted masks by selecting only the ones that meets several criteria. The first criterion being
|
983 |
+
that the iou scores needs to be greater than `pred_iou_thresh`. The second criterion is that the stability
|
984 |
+
score needs to be greater than `stability_score_thresh`. The method also converts the predicted masks to
|
985 |
+
bounding boxes and pad the predicted masks if necessary.
|
986 |
+
|
987 |
+
Args:
|
988 |
+
masks (`tf.Tensor`):
|
989 |
+
Input masks.
|
990 |
+
iou_scores (`tf.Tensor`):
|
991 |
+
List of IoU scores.
|
992 |
+
original_size (`Tuple[int,int]`):
|
993 |
+
Size of the orginal image.
|
994 |
+
cropped_box_image (`np.array`):
|
995 |
+
The cropped image.
|
996 |
+
pred_iou_thresh (`float`, *optional*, defaults to 0.88):
|
997 |
+
The threshold for the iou scores.
|
998 |
+
stability_score_thresh (`float`, *optional*, defaults to 0.95):
|
999 |
+
The threshold for the stability score.
|
1000 |
+
mask_threshold (`float`, *optional*, defaults to 0):
|
1001 |
+
The threshold for the predicted masks.
|
1002 |
+
stability_score_offset (`float`, *optional*, defaults to 1):
|
1003 |
+
The offset for the stability score used in the `_compute_stability_score` method.
|
1004 |
+
|
1005 |
+
"""
|
1006 |
+
requires_backends(self, ["tf"])
|
1007 |
+
original_height, original_width = original_size
|
1008 |
+
iou_scores = tf.reshape(iou_scores, [iou_scores.shape[0] * iou_scores.shape[1], iou_scores.shape[2:]])
|
1009 |
+
masks = tf.reshape(masks, [masks.shape[0] * masks.shape[1], masks.shape[2:]])
|
1010 |
+
|
1011 |
+
if masks.shape[0] != iou_scores.shape[0]:
|
1012 |
+
raise ValueError("masks and iou_scores must have the same batch size.")
|
1013 |
+
|
1014 |
+
batch_size = masks.shape[0]
|
1015 |
+
|
1016 |
+
keep_mask = tf.ones(batch_size, dtype=tf.bool)
|
1017 |
+
|
1018 |
+
if pred_iou_thresh > 0.0:
|
1019 |
+
keep_mask = keep_mask & (iou_scores > pred_iou_thresh)
|
1020 |
+
|
1021 |
+
# compute stability score
|
1022 |
+
if stability_score_thresh > 0.0:
|
1023 |
+
stability_scores = _compute_stability_score_tf(masks, mask_threshold, stability_score_offset)
|
1024 |
+
keep_mask = keep_mask & (stability_scores > stability_score_thresh)
|
1025 |
+
|
1026 |
+
scores = iou_scores[keep_mask]
|
1027 |
+
masks = masks[keep_mask]
|
1028 |
+
|
1029 |
+
# binarize masks
|
1030 |
+
masks = masks > mask_threshold
|
1031 |
+
converted_boxes = _batched_mask_to_box_tf(masks)
|
1032 |
+
|
1033 |
+
keep_mask = ~_is_box_near_crop_edge_tf(
|
1034 |
+
converted_boxes, cropped_box_image, [0, 0, original_width, original_height]
|
1035 |
+
)
|
1036 |
+
|
1037 |
+
scores = scores[keep_mask]
|
1038 |
+
masks = masks[keep_mask]
|
1039 |
+
converted_boxes = converted_boxes[keep_mask]
|
1040 |
+
|
1041 |
+
masks = _pad_masks_tf(masks, cropped_box_image, original_height, original_width)
|
1042 |
+
# conversion to rle is necessary to run non-maximum suppresion
|
1043 |
+
masks = _mask_to_rle_tf(masks)
|
1044 |
+
|
1045 |
+
return masks, scores, converted_boxes
|
1046 |
+
|
1047 |
+
|
1048 |
+
def _compute_stability_score_pt(masks: "torch.Tensor", mask_threshold: float, stability_score_offset: int):
|
1049 |
+
# One mask is always contained inside the other.
|
1050 |
+
# Save memory by preventing unnecesary cast to torch.int64
|
1051 |
+
intersections = (
|
1052 |
+
(masks > (mask_threshold + stability_score_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
|
1053 |
+
)
|
1054 |
+
unions = (masks > (mask_threshold - stability_score_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
|
1055 |
+
stability_scores = intersections / unions
|
1056 |
+
return stability_scores
|
1057 |
+
|
1058 |
+
|
1059 |
+
def _compute_stability_score_tf(masks: "tf.Tensor", mask_threshold: float, stability_score_offset: int):
|
1060 |
+
# Torch does Py3-style division but TF does floor division with ints. We cast to float32 in TF to make sure
|
1061 |
+
# we get the right division results.
|
1062 |
+
intersections = tf.count_nonzero(
|
1063 |
+
masks > (mask_threshold + stability_score_offset), axis=[-1, -2], dtype=tf.float32
|
1064 |
+
)
|
1065 |
+
unions = tf.count_nonzero(masks > (mask_threshold - stability_score_offset), axis=[-1, -2], dtype=tf.float32)
|
1066 |
+
stability_scores = intersections / unions
|
1067 |
+
return stability_scores
|
1068 |
+
|
1069 |
+
|
1070 |
+
def _build_point_grid(n_per_side: int) -> np.ndarray:
|
1071 |
+
"""Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
|
1072 |
+
offset = 1 / (2 * n_per_side)
|
1073 |
+
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
|
1074 |
+
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
|
1075 |
+
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
|
1076 |
+
points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
|
1077 |
+
return points
|
1078 |
+
|
1079 |
+
|
1080 |
+
def _normalize_coordinates(
|
1081 |
+
target_size: int, coords: np.ndarray, original_size: Tuple[int, int], is_bounding_box=False
|
1082 |
+
) -> np.ndarray:
|
1083 |
+
"""
|
1084 |
+
Expects a numpy array of length 2 in the final dimension. Requires the original image size in (height, width)
|
1085 |
+
format.
|
1086 |
+
"""
|
1087 |
+
old_height, old_width = original_size
|
1088 |
+
|
1089 |
+
scale = target_size * 1.0 / max(old_height, old_width)
|
1090 |
+
new_height, new_width = old_height * scale, old_width * scale
|
1091 |
+
new_width = int(new_width + 0.5)
|
1092 |
+
new_height = int(new_height + 0.5)
|
1093 |
+
|
1094 |
+
coords = deepcopy(coords).astype(float)
|
1095 |
+
|
1096 |
+
if is_bounding_box:
|
1097 |
+
coords = coords.reshape(-1, 2, 2)
|
1098 |
+
|
1099 |
+
coords[..., 0] = coords[..., 0] * (new_width / old_width)
|
1100 |
+
coords[..., 1] = coords[..., 1] * (new_height / old_height)
|
1101 |
+
|
1102 |
+
if is_bounding_box:
|
1103 |
+
coords = coords.reshape(-1, 4)
|
1104 |
+
|
1105 |
+
return coords
|
1106 |
+
|
1107 |
+
|
1108 |
+
def _generate_crop_boxes(
|
1109 |
+
image,
|
1110 |
+
target_size: int, # Is it tuple here?
|
1111 |
+
crop_n_layers: int = 0,
|
1112 |
+
overlap_ratio: float = 512 / 1500,
|
1113 |
+
points_per_crop: Optional[int] = 32,
|
1114 |
+
crop_n_points_downscale_factor: Optional[List[int]] = 1,
|
1115 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1116 |
+
) -> Tuple[List[List[int]], List[int]]:
|
1117 |
+
"""
|
1118 |
+
Generates a list of crop boxes of different sizes. Each layer has (2**i)**2 boxes for the ith layer.
|
1119 |
+
|
1120 |
+
Args:
|
1121 |
+
image (Union[`numpy.ndarray`, `PIL.Image`, `torch.Tensor`]):
|
1122 |
+
Image to generate crops for.
|
1123 |
+
target_size (`int`):
|
1124 |
+
Size of the smallest crop.
|
1125 |
+
crop_n_layers (`int`, *optional*):
|
1126 |
+
If `crops_n_layers>0`, mask prediction will be run again on crops of the image. Sets the number of layers
|
1127 |
+
to run, where each layer has 2**i_layer number of image crops.
|
1128 |
+
overlap_ratio (`int`, *optional*):
|
1129 |
+
Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of the
|
1130 |
+
image length. Later layers with more crops scale down this overlap.
|
1131 |
+
points_per_crop (`int`, *optional*):
|
1132 |
+
Number of points to sample per crop.
|
1133 |
+
crop_n_points_downscale_factor (`int`, *optional*):
|
1134 |
+
The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
|
1135 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
1136 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
1137 |
+
"""
|
1138 |
+
|
1139 |
+
if isinstance(image, list):
|
1140 |
+
raise ValueError("Only one image is allowed for crop generation.")
|
1141 |
+
image = to_numpy_array(image)
|
1142 |
+
original_size = get_image_size(image, input_data_format)
|
1143 |
+
|
1144 |
+
points_grid = []
|
1145 |
+
for i in range(crop_n_layers + 1):
|
1146 |
+
n_points = int(points_per_crop / (crop_n_points_downscale_factor**i))
|
1147 |
+
points_grid.append(_build_point_grid(n_points))
|
1148 |
+
|
1149 |
+
crop_boxes, layer_idxs = _generate_per_layer_crops(crop_n_layers, overlap_ratio, original_size)
|
1150 |
+
|
1151 |
+
cropped_images, point_grid_per_crop = _generate_crop_images(
|
1152 |
+
crop_boxes, image, points_grid, layer_idxs, target_size, original_size, input_data_format
|
1153 |
+
)
|
1154 |
+
crop_boxes = np.array(crop_boxes)
|
1155 |
+
crop_boxes = crop_boxes.astype(np.float32)
|
1156 |
+
points_per_crop = np.array([point_grid_per_crop])
|
1157 |
+
points_per_crop = np.transpose(points_per_crop, axes=(0, 2, 1, 3))
|
1158 |
+
|
1159 |
+
input_labels = np.ones_like(points_per_crop[:, :, :, 0], dtype=np.int64)
|
1160 |
+
|
1161 |
+
return crop_boxes, points_per_crop, cropped_images, input_labels
|
1162 |
+
|
1163 |
+
|
1164 |
+
def _generate_per_layer_crops(crop_n_layers, overlap_ratio, original_size):
|
1165 |
+
"""
|
1166 |
+
Generates 2 ** (layers idx + 1) crops for each crop_n_layers. Crops are in the XYWH format : The XYWH format
|
1167 |
+
consists of the following required indices:
|
1168 |
+
- X: X coordinate of the top left of the bounding box
|
1169 |
+
- Y: Y coordinate of the top left of the bounding box
|
1170 |
+
- W: width of the bounding box
|
1171 |
+
- H: height of the bounding box
|
1172 |
+
"""
|
1173 |
+
crop_boxes, layer_idxs = [], []
|
1174 |
+
im_height, im_width = original_size
|
1175 |
+
short_side = min(im_height, im_width)
|
1176 |
+
|
1177 |
+
# Original image
|
1178 |
+
crop_boxes.append([0, 0, im_width, im_height])
|
1179 |
+
layer_idxs.append(0)
|
1180 |
+
for i_layer in range(crop_n_layers):
|
1181 |
+
n_crops_per_side = 2 ** (i_layer + 1)
|
1182 |
+
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
|
1183 |
+
|
1184 |
+
crop_width = int(math.ceil((overlap * (n_crops_per_side - 1) + im_width) / n_crops_per_side))
|
1185 |
+
crop_height = int(math.ceil((overlap * (n_crops_per_side - 1) + im_height) / n_crops_per_side))
|
1186 |
+
|
1187 |
+
crop_box_x0 = [int((crop_width - overlap) * i) for i in range(n_crops_per_side)]
|
1188 |
+
crop_box_y0 = [int((crop_height - overlap) * i) for i in range(n_crops_per_side)]
|
1189 |
+
|
1190 |
+
for left, top in product(crop_box_x0, crop_box_y0):
|
1191 |
+
box = [left, top, min(left + crop_width, im_width), min(top + crop_height, im_height)]
|
1192 |
+
crop_boxes.append(box)
|
1193 |
+
layer_idxs.append(i_layer + 1)
|
1194 |
+
|
1195 |
+
return crop_boxes, layer_idxs
|
1196 |
+
|
1197 |
+
|
1198 |
+
def _generate_crop_images(
|
1199 |
+
crop_boxes, image, points_grid, layer_idxs, target_size, original_size, input_data_format=None
|
1200 |
+
):
|
1201 |
+
"""
|
1202 |
+
Takes as an input bounding boxes that are used to crop the image. Based in the crops, the corresponding points are
|
1203 |
+
also passed.
|
1204 |
+
"""
|
1205 |
+
cropped_images = []
|
1206 |
+
total_points_per_crop = []
|
1207 |
+
for i, crop_box in enumerate(crop_boxes):
|
1208 |
+
left, top, right, bottom = crop_box
|
1209 |
+
|
1210 |
+
channel_dim = infer_channel_dimension_format(image, input_data_format)
|
1211 |
+
if channel_dim == ChannelDimension.LAST:
|
1212 |
+
cropped_im = image[top:bottom, left:right, :]
|
1213 |
+
else:
|
1214 |
+
cropped_im = image[:, top:bottom, left:right]
|
1215 |
+
|
1216 |
+
cropped_images.append(cropped_im)
|
1217 |
+
|
1218 |
+
cropped_im_size = get_image_size(cropped_im, channel_dim)
|
1219 |
+
points_scale = np.array(cropped_im_size)[None, ::-1]
|
1220 |
+
|
1221 |
+
points = points_grid[layer_idxs[i]] * points_scale
|
1222 |
+
normalized_points = _normalize_coordinates(target_size, points, original_size)
|
1223 |
+
total_points_per_crop.append(normalized_points)
|
1224 |
+
|
1225 |
+
return cropped_images, total_points_per_crop
|
1226 |
+
|
1227 |
+
|
1228 |
+
def _pad_masks(masks, crop_box: List[int], orig_height: int, orig_width: int):
|
1229 |
+
left, top, right, bottom = crop_box
|
1230 |
+
if left == 0 and top == 0 and right == orig_width and bottom == orig_height:
|
1231 |
+
return masks
|
1232 |
+
# Coordinate transform masks
|
1233 |
+
pad_x, pad_y = orig_width - (right - left), orig_height - (bottom - top)
|
1234 |
+
pad = (left, pad_x - left, top, pad_y - top)
|
1235 |
+
return torch.nn.functional.pad(masks, pad, value=0)
|
1236 |
+
|
1237 |
+
|
1238 |
+
def _pad_masks_tf(masks, crop_box: List[int], orig_height: int, orig_width: int):
|
1239 |
+
left, top, right, bottom = crop_box
|
1240 |
+
if left == 0 and top == 0 and right == orig_width and bottom == orig_height:
|
1241 |
+
return masks
|
1242 |
+
# Coordinate transform masks
|
1243 |
+
pad_x, pad_y = orig_width - (right - left), orig_height - (bottom - top)
|
1244 |
+
pad = (left, pad_x - left, top, pad_y - top)
|
1245 |
+
return tf.pad(masks, pad, constant_values=0)
|
1246 |
+
|
1247 |
+
|
1248 |
+
def _is_box_near_crop_edge(boxes, crop_box, orig_box, atol=20.0):
|
1249 |
+
"""Filter masks at the edge of a crop, but not at the edge of the original image."""
|
1250 |
+
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
|
1251 |
+
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
|
1252 |
+
|
1253 |
+
left, top, _, _ = crop_box
|
1254 |
+
offset = torch.tensor([[left, top, left, top]], device=boxes.device)
|
1255 |
+
# Check if boxes has a channel dimension
|
1256 |
+
if len(boxes.shape) == 3:
|
1257 |
+
offset = offset.unsqueeze(1)
|
1258 |
+
boxes = (boxes + offset).float()
|
1259 |
+
|
1260 |
+
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
|
1261 |
+
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
|
1262 |
+
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
|
1263 |
+
return torch.any(near_crop_edge, dim=1)
|
1264 |
+
|
1265 |
+
|
1266 |
+
def _is_box_near_crop_edge_tf(boxes, crop_box, orig_box, atol=20.0):
|
1267 |
+
"""Filter masks at the edge of a crop, but not at the edge of the original image."""
|
1268 |
+
crop_box_tf = tf.convert_to_tensor(crop_box, dtype=tf.float32)
|
1269 |
+
orig_box_tf = tf.convert_to_tensor(orig_box, dtype=tf.float32)
|
1270 |
+
|
1271 |
+
left, top, _, _ = crop_box
|
1272 |
+
offset = tf.convert_to_tensor([[left, top, left, top]])
|
1273 |
+
# Check if boxes has a channel dimension
|
1274 |
+
if len(boxes.shape) == 3:
|
1275 |
+
offset = tf.expand_dims(offset, 1)
|
1276 |
+
boxes = tf.cast(boxes + offset, tf.float32)
|
1277 |
+
|
1278 |
+
near_crop_edge = tnp.isclose(boxes, crop_box_tf[None, :], atol=atol, rtol=0)
|
1279 |
+
near_image_edge = tnp.isclose(boxes, orig_box_tf[None, :], atol=atol, rtol=0)
|
1280 |
+
near_crop_edge = tf.math.logical_and(near_crop_edge, ~near_image_edge)
|
1281 |
+
return tf.reduce_any(near_crop_edge, axis=1)
|
1282 |
+
|
1283 |
+
|
1284 |
+
def _batched_mask_to_box(masks: "torch.Tensor"):
|
1285 |
+
"""
|
1286 |
+
Computes the bounding boxes around the given input masks. The bounding boxes are in the XYXY format which
|
1287 |
+
corresponds the following required indices:
|
1288 |
+
- LEFT: left hand side of the bounding box
|
1289 |
+
- TOP: top of the bounding box
|
1290 |
+
- RIGHT: right of the bounding box
|
1291 |
+
- BOTTOM: bottom of the bounding box
|
1292 |
+
|
1293 |
+
Return [0,0,0,0] for an empty mask. For input shape channel_1 x channel_2 x ... x height x width, the output shape
|
1294 |
+
is channel_1 x channel_2 x ... x 4.
|
1295 |
+
|
1296 |
+
Args:
|
1297 |
+
- masks (`torch.Tensor` of shape `(batch, nb_mask, height, width)`)
|
1298 |
+
"""
|
1299 |
+
# torch.max below raises an error on empty inputs, just skip in this case
|
1300 |
+
|
1301 |
+
if torch.numel(masks) == 0:
|
1302 |
+
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
|
1303 |
+
|
1304 |
+
# Normalize shape to Cxheightxwidth
|
1305 |
+
shape = masks.shape
|
1306 |
+
height, width = shape[-2:]
|
1307 |
+
|
1308 |
+
# Get top and bottom edges
|
1309 |
+
in_height, _ = torch.max(masks, dim=-1)
|
1310 |
+
in_height_coords = in_height * torch.arange(height, device=in_height.device)[None, :]
|
1311 |
+
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
|
1312 |
+
in_height_coords = in_height_coords + height * (~in_height)
|
1313 |
+
top_edges, _ = torch.min(in_height_coords, dim=-1)
|
1314 |
+
|
1315 |
+
# Get left and right edges
|
1316 |
+
in_width, _ = torch.max(masks, dim=-2)
|
1317 |
+
in_width_coords = in_width * torch.arange(width, device=in_width.device)[None, :]
|
1318 |
+
right_edges, _ = torch.max(in_width_coords, dim=-1)
|
1319 |
+
in_width_coords = in_width_coords + width * (~in_width)
|
1320 |
+
left_edges, _ = torch.min(in_width_coords, dim=-1)
|
1321 |
+
|
1322 |
+
# If the mask is empty the right edge will be to the left of the left edge.
|
1323 |
+
# Replace these boxes with [0, 0, 0, 0]
|
1324 |
+
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
|
1325 |
+
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
|
1326 |
+
out = out * (~empty_filter).unsqueeze(-1)
|
1327 |
+
|
1328 |
+
# Return to original shape
|
1329 |
+
out = out.reshape(*shape[:-2], 4)
|
1330 |
+
return out
|
1331 |
+
|
1332 |
+
|
1333 |
+
def _batched_mask_to_box_tf(masks: "tf.Tensor"):
|
1334 |
+
"""
|
1335 |
+
Computes the bounding boxes around the given input masks. The bounding boxes are in the XYXY format which
|
1336 |
+
corresponds the following required indices:
|
1337 |
+
- LEFT: left hand side of the bounding box
|
1338 |
+
- TOP: top of the bounding box
|
1339 |
+
- RIGHT: right of the bounding box
|
1340 |
+
- BOTTOM: bottom of the bounding box
|
1341 |
+
|
1342 |
+
Return [0,0,0,0] for an empty mask. For input shape channel_1 x channel_2 x ... x height x width, the output shape
|
1343 |
+
is channel_1 x channel_2 x ... x 4.
|
1344 |
+
|
1345 |
+
Args:
|
1346 |
+
- masks (`tf.Tensor` of shape `(batch, nb_mask, height, width)`)
|
1347 |
+
"""
|
1348 |
+
|
1349 |
+
if tf.size(masks) == 0:
|
1350 |
+
return tf.zeros([*masks.shape[:-2], 4])
|
1351 |
+
|
1352 |
+
# Normalize shape to Cxheightxwidth
|
1353 |
+
shape = shape_list(masks)
|
1354 |
+
height, width = shape[-2:]
|
1355 |
+
|
1356 |
+
# Get top and bottom edges
|
1357 |
+
in_height = tf.reduce_max(masks, axis=-1)
|
1358 |
+
in_height_coords = in_height * tf.range(height)[None, :]
|
1359 |
+
bottom_edges = tf.reduce_max(in_height_coords, axis=-1)
|
1360 |
+
in_height_coords = in_height_coords + height * (~in_height)
|
1361 |
+
top_edges = tf.reduce_min(in_height_coords, axis=-1)
|
1362 |
+
|
1363 |
+
# Get left and right edges
|
1364 |
+
in_width, _ = tf.reduce_max(masks, axis=-2)
|
1365 |
+
in_width_coords = in_width * tf.range(width)[None, :]
|
1366 |
+
right_edges, _ = tf.reduce_max(in_width_coords, axis=-1)
|
1367 |
+
in_width_coords = in_width_coords + width * (~in_width)
|
1368 |
+
left_edges, _ = tf.reduce_min(in_width_coords, axis=-1)
|
1369 |
+
|
1370 |
+
# If the mask is empty the right edge will be to the left of the left edge.
|
1371 |
+
# Replace these boxes with [0, 0, 0, 0]
|
1372 |
+
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
|
1373 |
+
out = tf.stack([left_edges, top_edges, right_edges, bottom_edges], axis=-1)
|
1374 |
+
out = out * tf.expand_dims(~empty_filter, -1)
|
1375 |
+
|
1376 |
+
# Return to original shape
|
1377 |
+
out = tf.reshape(out, *shape[:-2], 4)
|
1378 |
+
return out
|
1379 |
+
|
1380 |
+
|
1381 |
+
def _mask_to_rle_pytorch(input_mask: "torch.Tensor"):
|
1382 |
+
"""
|
1383 |
+
Encodes masks the run-length encoding (RLE), in the format expected by pycoco tools.
|
1384 |
+
"""
|
1385 |
+
# Put in fortran order and flatten height and width
|
1386 |
+
batch_size, height, width = input_mask.shape
|
1387 |
+
input_mask = input_mask.permute(0, 2, 1).flatten(1)
|
1388 |
+
|
1389 |
+
# Compute change indices
|
1390 |
+
diff = input_mask[:, 1:] ^ input_mask[:, :-1]
|
1391 |
+
change_indices = diff.nonzero()
|
1392 |
+
|
1393 |
+
# Encode run length
|
1394 |
+
out = []
|
1395 |
+
for i in range(batch_size):
|
1396 |
+
cur_idxs = change_indices[change_indices[:, 0] == i, 1] + 1
|
1397 |
+
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
|
1398 |
+
counts = [] if input_mask[i, 0] == 0 else [0]
|
1399 |
+
counts += [cur_idxs[0].item()] + btw_idxs.tolist() + [height * width - cur_idxs[-1]]
|
1400 |
+
out.append({"size": [height, width], "counts": counts})
|
1401 |
+
return out
|
1402 |
+
|
1403 |
+
|
1404 |
+
def _mask_to_rle_tf(input_mask: "tf.Tensor"):
|
1405 |
+
"""
|
1406 |
+
Encodes masks the run-length encoding (RLE), in the format expected by pycoco tools.
|
1407 |
+
"""
|
1408 |
+
# Put in fortran order and flatten height and width
|
1409 |
+
batch_size, height, width = input_mask.shape
|
1410 |
+
input_mask = flatten(tf.transpose(input_mask, perm=(0, 2, 1)), 1)
|
1411 |
+
|
1412 |
+
# Compute change indices
|
1413 |
+
diff = input_mask[:, 1:] ^ input_mask[:, :-1]
|
1414 |
+
change_indices = tf.where(diff)
|
1415 |
+
|
1416 |
+
# Encode run length
|
1417 |
+
out = []
|
1418 |
+
for i in range(batch_size):
|
1419 |
+
cur_idxs = change_indices[change_indices[:, 0] == i, 1] + 1
|
1420 |
+
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
|
1421 |
+
counts = [] if input_mask[i, 0] == 0 else [0]
|
1422 |
+
counts += [cur_idxs[0].item()] + btw_idxs.tolist() + [height * width - cur_idxs[-1]]
|
1423 |
+
out.append({"size": [height, width], "counts": counts})
|
1424 |
+
return out
|
1425 |
+
|
1426 |
+
|
1427 |
+
def _rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
|
1428 |
+
"""Compute a binary mask from an uncompressed RLE."""
|
1429 |
+
height, width = rle["size"]
|
1430 |
+
mask = np.empty(height * width, dtype=bool)
|
1431 |
+
idx = 0
|
1432 |
+
parity = False
|
1433 |
+
for count in rle["counts"]:
|
1434 |
+
mask[idx : idx + count] = parity
|
1435 |
+
idx += count
|
1436 |
+
parity = not parity
|
1437 |
+
mask = mask.reshape(width, height)
|
1438 |
+
return mask.transpose() # Reshape to original shape
|
1439 |
+
|
1440 |
+
|
1441 |
+
def _postprocess_for_mg(rle_masks, iou_scores, mask_boxes, amg_crops_nms_thresh=0.7):
|
1442 |
+
"""
|
1443 |
+
Perform NMS (Non Maximum Suppression) on the outputs.
|
1444 |
+
|
1445 |
+
Args:
|
1446 |
+
rle_masks (`torch.Tensor`):
|
1447 |
+
binary masks in the RLE format
|
1448 |
+
iou_scores (`torch.Tensor` of shape (nb_masks, 1)):
|
1449 |
+
iou_scores predicted by the model
|
1450 |
+
mask_boxes (`torch.Tensor`):
|
1451 |
+
The bounding boxes corresponding to segmentation masks
|
1452 |
+
amg_crops_nms_thresh (`float`, *optional*, defaults to 0.7):
|
1453 |
+
NMS threshold.
|
1454 |
+
"""
|
1455 |
+
keep_by_nms = batched_nms(
|
1456 |
+
boxes=mask_boxes.float(),
|
1457 |
+
scores=iou_scores,
|
1458 |
+
idxs=torch.zeros(mask_boxes.shape[0]),
|
1459 |
+
iou_threshold=amg_crops_nms_thresh,
|
1460 |
+
)
|
1461 |
+
|
1462 |
+
iou_scores = iou_scores[keep_by_nms]
|
1463 |
+
rle_masks = [rle_masks[i] for i in keep_by_nms]
|
1464 |
+
mask_boxes = mask_boxes[keep_by_nms]
|
1465 |
+
masks = [_rle_to_mask(rle) for rle in rle_masks]
|
1466 |
+
|
1467 |
+
return masks, iou_scores, rle_masks, mask_boxes
|
1468 |
+
|
1469 |
+
|
1470 |
+
def _postprocess_for_mg_tf(rle_masks, iou_scores, mask_boxes, amg_crops_nms_thresh=0.7):
|
1471 |
+
"""
|
1472 |
+
Perform NMS (Non Maximum Suppression) on the outputs.
|
1473 |
+
|
1474 |
+
Args:
|
1475 |
+
rle_masks (`tf.Tensor`):
|
1476 |
+
binary masks in the RLE format
|
1477 |
+
iou_scores (`tf.Tensor` of shape (nb_masks, 1)):
|
1478 |
+
iou_scores predicted by the model
|
1479 |
+
mask_boxes (`tf.Tensor`):
|
1480 |
+
The bounding boxes corresponding to segmentation masks
|
1481 |
+
amg_crops_nms_thresh (`float`, *optional*, defaults to 0.7):
|
1482 |
+
NMS threshold.
|
1483 |
+
"""
|
1484 |
+
keep_by_nms = tf.image.combined_non_max_suppression(
|
1485 |
+
boxes=mask_boxes.float(),
|
1486 |
+
scores=iou_scores,
|
1487 |
+
idxs=torch.zeros(mask_boxes.shape[0]),
|
1488 |
+
iou_threshold=amg_crops_nms_thresh,
|
1489 |
+
)
|
1490 |
+
|
1491 |
+
iou_scores = iou_scores[keep_by_nms]
|
1492 |
+
rle_masks = [rle_masks[i] for i in keep_by_nms]
|
1493 |
+
mask_boxes = mask_boxes[keep_by_nms]
|
1494 |
+
masks = [_rle_to_mask(rle) for rle in rle_masks]
|
1495 |
+
|
1496 |
+
return masks, iou_scores, rle_masks, mask_boxes
|
llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_sam.py
ADDED
@@ -0,0 +1,1415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The Meta AI Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch SAM model."""
|
16 |
+
|
17 |
+
import collections
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import Tensor, nn
|
27 |
+
|
28 |
+
from ...activations import ACT2FN
|
29 |
+
from ...modeling_outputs import BaseModelOutput
|
30 |
+
from ...modeling_utils import PreTrainedModel
|
31 |
+
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
32 |
+
from .configuration_sam import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig
|
33 |
+
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__)
|
36 |
+
|
37 |
+
_CONFIG_FOR_DOC = "SamConfig"
|
38 |
+
_CHECKPOINT_FOR_DOC = "facebook/sam-vit-huge"
|
39 |
+
|
40 |
+
|
41 |
+
from ..deprecated._archive_maps import SAM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class SamVisionEncoderOutput(ModelOutput):
|
46 |
+
"""
|
47 |
+
Base class for sam vision model's outputs that also contains image embeddings obtained by applying the projection
|
48 |
+
layer to the pooler_output.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
52 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
53 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
54 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
55 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
56 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
57 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
58 |
+
|
59 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
60 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
61 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
62 |
+
sequence_length)`.
|
63 |
+
|
64 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
65 |
+
heads.
|
66 |
+
"""
|
67 |
+
|
68 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
69 |
+
last_hidden_state: torch.FloatTensor = None
|
70 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
71 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
72 |
+
|
73 |
+
|
74 |
+
@dataclass
|
75 |
+
class SamImageSegmentationOutput(ModelOutput):
|
76 |
+
"""
|
77 |
+
Base class for Segment-Anything model's output
|
78 |
+
|
79 |
+
Args:
|
80 |
+
iou_scores (`torch.FloatTensor` of shape `(batch_size, num_masks)`):
|
81 |
+
The iou scores of the predicted masks.
|
82 |
+
pred_masks (`torch.FloatTensor` of shape `(batch_size, num_masks, height, width)`):
|
83 |
+
The predicted low resolutions masks. Needs to be post-processed by the processor
|
84 |
+
vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
85 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
86 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
87 |
+
|
88 |
+
Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs.
|
89 |
+
vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
90 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
91 |
+
sequence_length)`.
|
92 |
+
|
93 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
94 |
+
heads.
|
95 |
+
mask_decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
96 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
97 |
+
sequence_length)`.
|
98 |
+
|
99 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
100 |
+
heads.
|
101 |
+
"""
|
102 |
+
|
103 |
+
iou_scores: torch.FloatTensor = None
|
104 |
+
pred_masks: torch.FloatTensor = None
|
105 |
+
vision_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
106 |
+
vision_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
107 |
+
mask_decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
108 |
+
|
109 |
+
|
110 |
+
class SamPatchEmbeddings(nn.Module):
|
111 |
+
"""
|
112 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
113 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
114 |
+
Transformer.
|
115 |
+
"""
|
116 |
+
|
117 |
+
def __init__(self, config):
|
118 |
+
super().__init__()
|
119 |
+
image_size, patch_size = config.image_size, config.patch_size
|
120 |
+
num_channels, hidden_size = config.num_channels, config.hidden_size
|
121 |
+
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
122 |
+
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
123 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
124 |
+
self.image_size = image_size
|
125 |
+
self.patch_size = patch_size
|
126 |
+
self.num_channels = num_channels
|
127 |
+
self.num_patches = num_patches
|
128 |
+
|
129 |
+
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
130 |
+
|
131 |
+
def forward(self, pixel_values):
|
132 |
+
batch_size, num_channels, height, width = pixel_values.shape
|
133 |
+
if num_channels != self.num_channels:
|
134 |
+
raise ValueError(
|
135 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
136 |
+
)
|
137 |
+
if height != self.image_size[0] or width != self.image_size[1]:
|
138 |
+
raise ValueError(
|
139 |
+
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
|
140 |
+
)
|
141 |
+
embeddings = self.projection(pixel_values).permute(0, 2, 3, 1)
|
142 |
+
return embeddings
|
143 |
+
|
144 |
+
|
145 |
+
class SamMLPBlock(nn.Module):
|
146 |
+
def __init__(self, config):
|
147 |
+
super().__init__()
|
148 |
+
self.lin1 = nn.Linear(config.hidden_size, config.mlp_dim)
|
149 |
+
self.lin2 = nn.Linear(config.mlp_dim, config.hidden_size)
|
150 |
+
self.act = ACT2FN[config.hidden_act]
|
151 |
+
|
152 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
153 |
+
hidden_states = self.lin1(hidden_states)
|
154 |
+
hidden_states = self.act(hidden_states)
|
155 |
+
hidden_states = self.lin2(hidden_states)
|
156 |
+
return hidden_states
|
157 |
+
|
158 |
+
|
159 |
+
# Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->Sam
|
160 |
+
class SamLayerNorm(nn.Module):
|
161 |
+
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
162 |
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
|
163 |
+
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
|
164 |
+
"""
|
165 |
+
|
166 |
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
167 |
+
super().__init__()
|
168 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
169 |
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
170 |
+
self.eps = eps
|
171 |
+
self.data_format = data_format
|
172 |
+
if self.data_format not in ["channels_last", "channels_first"]:
|
173 |
+
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
|
174 |
+
self.normalized_shape = (normalized_shape,)
|
175 |
+
|
176 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
177 |
+
if self.data_format == "channels_last":
|
178 |
+
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
179 |
+
elif self.data_format == "channels_first":
|
180 |
+
input_dtype = x.dtype
|
181 |
+
x = x.float()
|
182 |
+
u = x.mean(1, keepdim=True)
|
183 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
184 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
185 |
+
x = x.to(dtype=input_dtype)
|
186 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
187 |
+
return x
|
188 |
+
|
189 |
+
|
190 |
+
class SamAttention(nn.Module):
|
191 |
+
"""
|
192 |
+
SAM's attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and
|
193 |
+
values.
|
194 |
+
"""
|
195 |
+
|
196 |
+
def __init__(self, config, downsample_rate=None):
|
197 |
+
super().__init__()
|
198 |
+
self.hidden_size = config.hidden_size
|
199 |
+
|
200 |
+
downsample_rate = config.attention_downsample_rate if downsample_rate is None else downsample_rate
|
201 |
+
|
202 |
+
self.internal_dim = config.hidden_size // downsample_rate
|
203 |
+
self.num_attention_heads = config.num_attention_heads
|
204 |
+
if self.internal_dim % config.num_attention_heads != 0:
|
205 |
+
raise ValueError("num_attention_heads must divide hidden_size.")
|
206 |
+
|
207 |
+
self.q_proj = nn.Linear(self.hidden_size, self.internal_dim)
|
208 |
+
self.k_proj = nn.Linear(self.hidden_size, self.internal_dim)
|
209 |
+
self.v_proj = nn.Linear(self.hidden_size, self.internal_dim)
|
210 |
+
self.out_proj = nn.Linear(self.internal_dim, self.hidden_size)
|
211 |
+
|
212 |
+
def _separate_heads(self, hidden_states: Tensor, num_attention_heads: int) -> Tensor:
|
213 |
+
batch, point_batch_size, n_tokens, channel = hidden_states.shape
|
214 |
+
c_per_head = channel // num_attention_heads
|
215 |
+
hidden_states = hidden_states.reshape(batch * point_batch_size, n_tokens, num_attention_heads, c_per_head)
|
216 |
+
return hidden_states.transpose(1, 2)
|
217 |
+
|
218 |
+
def _recombine_heads(self, hidden_states: Tensor, point_batch_size: int) -> Tensor:
|
219 |
+
batch, n_heads, n_tokens, c_per_head = hidden_states.shape
|
220 |
+
hidden_states = hidden_states.transpose(1, 2)
|
221 |
+
return hidden_states.reshape(batch // point_batch_size, point_batch_size, n_tokens, n_heads * c_per_head)
|
222 |
+
|
223 |
+
def forward(self, query: Tensor, key: Tensor, value: Tensor, attention_similarity: Tensor = None) -> Tensor:
|
224 |
+
# Input projections
|
225 |
+
query = self.q_proj(query)
|
226 |
+
key = self.k_proj(key)
|
227 |
+
value = self.v_proj(value)
|
228 |
+
|
229 |
+
point_batch_size = query.shape[1]
|
230 |
+
# Separate into heads
|
231 |
+
query = self._separate_heads(query, self.num_attention_heads)
|
232 |
+
key = self._separate_heads(key, self.num_attention_heads)
|
233 |
+
value = self._separate_heads(value, self.num_attention_heads)
|
234 |
+
|
235 |
+
# SamAttention
|
236 |
+
_, _, _, c_per_head = query.shape
|
237 |
+
attn = query @ key.permute(0, 1, 3, 2) # batch_size * point_batch_size x N_heads x N_tokens x N_tokens
|
238 |
+
attn = attn / math.sqrt(c_per_head)
|
239 |
+
attn = torch.softmax(attn, dim=-1)
|
240 |
+
|
241 |
+
if attention_similarity is not None:
|
242 |
+
attn = attn + attention_similarity
|
243 |
+
attn = torch.softmax(attn, dim=-1)
|
244 |
+
|
245 |
+
# Get output
|
246 |
+
out = attn @ value
|
247 |
+
out = self._recombine_heads(out, point_batch_size)
|
248 |
+
out = self.out_proj(out)
|
249 |
+
|
250 |
+
return out
|
251 |
+
|
252 |
+
|
253 |
+
class SamTwoWayAttentionBlock(nn.Module):
|
254 |
+
def __init__(self, config, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False):
|
255 |
+
"""
|
256 |
+
A transformer block with four layers:
|
257 |
+
(1) self-attention of sparse inputs (2) cross attention of sparse inputs -> dense inputs (3) mlp block on
|
258 |
+
sparse inputs (4) cross attention of dense inputs -> sparse inputs
|
259 |
+
|
260 |
+
Arguments:
|
261 |
+
config (`SamMaskDecoderConfig`):
|
262 |
+
The configuration file used to instantiate the block
|
263 |
+
attention_downsample_rate (*optionalk*, int, defaults to 2):
|
264 |
+
The downsample ratio of the block used to reduce the inner dim of the attention.
|
265 |
+
skip_first_layer_pe (*optional*, bool, defaults to `False`):
|
266 |
+
Whether or not to skip the addition of the query_point_embedding on the first layer.
|
267 |
+
"""
|
268 |
+
super().__init__()
|
269 |
+
|
270 |
+
self.hidden_size = config.hidden_size
|
271 |
+
self.layer_norm_eps = config.layer_norm_eps
|
272 |
+
|
273 |
+
self.self_attn = SamAttention(config, downsample_rate=1)
|
274 |
+
self.layer_norm1 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
|
275 |
+
|
276 |
+
self.cross_attn_token_to_image = SamAttention(config, downsample_rate=attention_downsample_rate)
|
277 |
+
self.layer_norm2 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
|
278 |
+
|
279 |
+
self.mlp = SamMLPBlock(config)
|
280 |
+
self.layer_norm3 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
|
281 |
+
|
282 |
+
self.layer_norm4 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
|
283 |
+
self.cross_attn_image_to_token = SamAttention(config, downsample_rate=attention_downsample_rate)
|
284 |
+
|
285 |
+
self.skip_first_layer_pe = skip_first_layer_pe
|
286 |
+
|
287 |
+
def forward(
|
288 |
+
self,
|
289 |
+
queries: Tensor,
|
290 |
+
keys: Tensor,
|
291 |
+
query_point_embedding: Tensor,
|
292 |
+
key_point_embedding: Tensor,
|
293 |
+
attention_similarity: Tensor,
|
294 |
+
output_attentions: bool = False,
|
295 |
+
):
|
296 |
+
# Self attention block
|
297 |
+
if self.skip_first_layer_pe:
|
298 |
+
queries = self.self_attn(query=queries, key=queries, value=queries)
|
299 |
+
else:
|
300 |
+
query = queries + query_point_embedding
|
301 |
+
attn_out = self.self_attn(query=query, key=query, value=queries)
|
302 |
+
queries = queries + attn_out
|
303 |
+
queries = self.layer_norm1(queries)
|
304 |
+
|
305 |
+
# Cross attention block, tokens attending to image embedding
|
306 |
+
query = queries + query_point_embedding
|
307 |
+
key = keys + key_point_embedding
|
308 |
+
|
309 |
+
attn_out = self.cross_attn_token_to_image(
|
310 |
+
query=query, key=key, value=keys, attention_similarity=attention_similarity
|
311 |
+
)
|
312 |
+
queries = queries + attn_out
|
313 |
+
|
314 |
+
queries = self.layer_norm2(queries)
|
315 |
+
|
316 |
+
# MLP block
|
317 |
+
mlp_out = self.mlp(queries)
|
318 |
+
queries = queries + mlp_out
|
319 |
+
queries = self.layer_norm3(queries)
|
320 |
+
|
321 |
+
# Cross attention block, image embedding attending to tokens
|
322 |
+
query = queries + query_point_embedding
|
323 |
+
key = keys + key_point_embedding
|
324 |
+
|
325 |
+
attn_out = self.cross_attn_image_to_token(query=key, key=query, value=queries)
|
326 |
+
keys = keys + attn_out
|
327 |
+
|
328 |
+
keys = self.layer_norm4(keys)
|
329 |
+
|
330 |
+
outputs = (queries, keys)
|
331 |
+
|
332 |
+
if output_attentions:
|
333 |
+
outputs = outputs + (attn_out,)
|
334 |
+
else:
|
335 |
+
outputs = outputs + (None,)
|
336 |
+
|
337 |
+
return outputs
|
338 |
+
|
339 |
+
|
340 |
+
class SamTwoWayTransformer(nn.Module):
|
341 |
+
def __init__(self, config: SamMaskDecoderConfig):
|
342 |
+
super().__init__()
|
343 |
+
self.config = config
|
344 |
+
|
345 |
+
self.num_hidden_layers = config.num_hidden_layers
|
346 |
+
self.layers = nn.ModuleList()
|
347 |
+
|
348 |
+
for i in range(self.num_hidden_layers):
|
349 |
+
self.layers.append(SamTwoWayAttentionBlock(config, skip_first_layer_pe=(i == 0)))
|
350 |
+
|
351 |
+
self.final_attn_token_to_image = SamAttention(config)
|
352 |
+
self.layer_norm_final_attn = nn.LayerNorm(config.hidden_size)
|
353 |
+
|
354 |
+
def forward(
|
355 |
+
self,
|
356 |
+
point_embeddings: Tensor,
|
357 |
+
image_embeddings: Tensor,
|
358 |
+
image_positional_embeddings: Tensor,
|
359 |
+
attention_similarity: Tensor,
|
360 |
+
target_embedding=None,
|
361 |
+
output_attentions: Optional[bool] = None,
|
362 |
+
output_hidden_states: Optional[bool] = None,
|
363 |
+
return_dict: Optional[bool] = None,
|
364 |
+
) -> Union[Tuple, BaseModelOutput]:
|
365 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
366 |
+
output_hidden_states = (
|
367 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
368 |
+
)
|
369 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
370 |
+
|
371 |
+
all_attentions = ()
|
372 |
+
|
373 |
+
if image_embeddings is None:
|
374 |
+
raise ValueError("You have to specify an image_embedding")
|
375 |
+
|
376 |
+
image_embeddings = image_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1)
|
377 |
+
image_positional_embeddings = image_positional_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1)
|
378 |
+
|
379 |
+
# Prepare queries
|
380 |
+
queries = point_embeddings
|
381 |
+
keys = image_embeddings
|
382 |
+
|
383 |
+
# Apply transformer blocks and final layernorm
|
384 |
+
for layer in self.layers:
|
385 |
+
if target_embedding is not None:
|
386 |
+
queries += target_embedding
|
387 |
+
|
388 |
+
queries, keys, attention_outputs = layer(
|
389 |
+
queries=queries,
|
390 |
+
keys=keys,
|
391 |
+
query_point_embedding=point_embeddings,
|
392 |
+
key_point_embedding=image_positional_embeddings,
|
393 |
+
attention_similarity=attention_similarity,
|
394 |
+
output_attentions=output_attentions,
|
395 |
+
)
|
396 |
+
|
397 |
+
if output_attentions:
|
398 |
+
all_attentions = all_attentions + (attention_outputs,)
|
399 |
+
|
400 |
+
# Apply the final attenion layer from the points to the image
|
401 |
+
query = queries + point_embeddings
|
402 |
+
key = keys + image_positional_embeddings
|
403 |
+
|
404 |
+
attn_out = self.final_attn_token_to_image(query=query, key=key, value=keys)
|
405 |
+
|
406 |
+
queries = queries + attn_out
|
407 |
+
queries = self.layer_norm_final_attn(queries)
|
408 |
+
return queries, keys, all_attentions
|
409 |
+
|
410 |
+
|
411 |
+
class SamFeedForward(nn.Module):
|
412 |
+
def __init__(
|
413 |
+
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False
|
414 |
+
):
|
415 |
+
super().__init__()
|
416 |
+
self.num_layers = num_layers
|
417 |
+
self.activation = nn.ReLU()
|
418 |
+
self.proj_in = nn.Linear(input_dim, hidden_dim)
|
419 |
+
self.proj_out = nn.Linear(hidden_dim, output_dim)
|
420 |
+
self.layers = nn.ModuleList([nn.Linear(hidden_dim, hidden_dim) for _ in range(num_layers - 2)])
|
421 |
+
self.sigmoid_output = sigmoid_output
|
422 |
+
|
423 |
+
def forward(self, hidden_states):
|
424 |
+
hidden_states = self.proj_in(hidden_states)
|
425 |
+
hidden_states = self.activation(hidden_states)
|
426 |
+
for layer in self.layers:
|
427 |
+
hidden_states = self.activation(layer(hidden_states))
|
428 |
+
|
429 |
+
hidden_states = self.proj_out(hidden_states)
|
430 |
+
if self.sigmoid_output:
|
431 |
+
hidden_states = F.sigmoid(hidden_states)
|
432 |
+
return hidden_states
|
433 |
+
|
434 |
+
|
435 |
+
class SamMaskDecoder(nn.Module):
|
436 |
+
def __init__(self, config: SamMaskDecoderConfig):
|
437 |
+
super().__init__()
|
438 |
+
|
439 |
+
self.hidden_size = config.hidden_size
|
440 |
+
|
441 |
+
self.num_multimask_outputs = config.num_multimask_outputs
|
442 |
+
self.num_mask_tokens = config.num_multimask_outputs + 1
|
443 |
+
|
444 |
+
self.iou_token = nn.Embedding(1, self.hidden_size)
|
445 |
+
self.mask_tokens = nn.Embedding(self.num_mask_tokens, self.hidden_size)
|
446 |
+
|
447 |
+
self.transformer = SamTwoWayTransformer(config)
|
448 |
+
|
449 |
+
# should we create a new class for this?
|
450 |
+
self.upscale_conv1 = nn.ConvTranspose2d(self.hidden_size, self.hidden_size // 4, kernel_size=2, stride=2)
|
451 |
+
self.upscale_conv2 = nn.ConvTranspose2d(self.hidden_size // 4, self.hidden_size // 8, kernel_size=2, stride=2)
|
452 |
+
self.upscale_layer_norm = SamLayerNorm(self.hidden_size // 4, data_format="channels_first")
|
453 |
+
self.activation = nn.GELU()
|
454 |
+
|
455 |
+
mlps_list = []
|
456 |
+
for _ in range(self.num_mask_tokens):
|
457 |
+
mlps_list += [SamFeedForward(self.hidden_size, self.hidden_size, self.hidden_size // 8, 3)]
|
458 |
+
self.output_hypernetworks_mlps = nn.ModuleList(mlps_list)
|
459 |
+
|
460 |
+
self.iou_prediction_head = SamFeedForward(
|
461 |
+
self.hidden_size, config.iou_head_hidden_dim, self.num_mask_tokens, config.iou_head_depth
|
462 |
+
)
|
463 |
+
|
464 |
+
def forward(
|
465 |
+
self,
|
466 |
+
image_embeddings: torch.Tensor,
|
467 |
+
image_positional_embeddings: torch.Tensor,
|
468 |
+
sparse_prompt_embeddings: torch.Tensor,
|
469 |
+
dense_prompt_embeddings: torch.Tensor,
|
470 |
+
multimask_output: bool,
|
471 |
+
output_attentions: Optional[bool] = None,
|
472 |
+
attention_similarity: torch.Tensor = None,
|
473 |
+
target_embedding: torch.Tensor = None,
|
474 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
475 |
+
"""
|
476 |
+
Predict masks given image and prompt embeddings.
|
477 |
+
|
478 |
+
Args:
|
479 |
+
image_embeddings (`torch.Tensor`):
|
480 |
+
the embeddings from the image encoder
|
481 |
+
image_positional_embedding (`torch.Tensor`):
|
482 |
+
positional encoding with the shape of image_embeddings
|
483 |
+
sparse_prompt_embeddings (`torch.Tensor`):
|
484 |
+
The embeddings of the points and boxes
|
485 |
+
dense_prompt_embeddings (`torch.Tensor`):
|
486 |
+
the embeddings of the mask inputs
|
487 |
+
multimask_output (bool):
|
488 |
+
Whether to return multiple masks or a single mask.
|
489 |
+
output_attentions (bool, *optional*):
|
490 |
+
Whether or not to return the attentions tensors of all attention layers.
|
491 |
+
"""
|
492 |
+
batch_size, num_channels, height, width = image_embeddings.shape
|
493 |
+
point_batch_size = sparse_prompt_embeddings.shape[1]
|
494 |
+
# Concatenate output tokens
|
495 |
+
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
496 |
+
output_tokens = output_tokens.repeat(batch_size, point_batch_size, 1, 1)
|
497 |
+
|
498 |
+
if sparse_prompt_embeddings.sum().item() != 0:
|
499 |
+
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=2)
|
500 |
+
else:
|
501 |
+
tokens = output_tokens
|
502 |
+
point_embeddings = tokens.to(self.iou_token.weight.dtype)
|
503 |
+
|
504 |
+
# Expand per-image data in batch direction to be per-point
|
505 |
+
image_embeddings = image_embeddings + dense_prompt_embeddings
|
506 |
+
image_embeddings = image_embeddings.repeat_interleave(point_batch_size, 0)
|
507 |
+
image_positional_embeddings = image_positional_embeddings.repeat_interleave(point_batch_size, 0)
|
508 |
+
|
509 |
+
# Run the transformer, image_positional_embedding are consumed
|
510 |
+
point_embedding, image_embeddings, attentions = self.transformer(
|
511 |
+
point_embeddings=point_embeddings,
|
512 |
+
image_embeddings=image_embeddings,
|
513 |
+
image_positional_embeddings=image_positional_embeddings,
|
514 |
+
attention_similarity=attention_similarity,
|
515 |
+
target_embedding=target_embedding,
|
516 |
+
output_attentions=output_attentions,
|
517 |
+
)
|
518 |
+
iou_token_out = point_embedding[:, :, 0, :]
|
519 |
+
mask_tokens_out = point_embedding[:, :, 1 : (1 + self.num_mask_tokens), :]
|
520 |
+
|
521 |
+
# Upscale mask embeddings and predict masks using the mask tokens
|
522 |
+
image_embeddings = image_embeddings.transpose(2, 3).reshape(
|
523 |
+
batch_size * point_batch_size, num_channels, height, width
|
524 |
+
)
|
525 |
+
|
526 |
+
upscaled_embedding = self.upscale_conv1(image_embeddings)
|
527 |
+
upscaled_embedding = self.activation(self.upscale_layer_norm(upscaled_embedding))
|
528 |
+
upscaled_embedding = self.activation(self.upscale_conv2(upscaled_embedding))
|
529 |
+
|
530 |
+
hyper_in_list = []
|
531 |
+
for i in range(self.num_mask_tokens):
|
532 |
+
current_mlp = self.output_hypernetworks_mlps[i]
|
533 |
+
hyper_in_list += [current_mlp(mask_tokens_out[:, :, i, :])]
|
534 |
+
hyper_in = torch.stack(hyper_in_list, dim=2)
|
535 |
+
|
536 |
+
_, num_channels, height, width = upscaled_embedding.shape
|
537 |
+
upscaled_embedding = upscaled_embedding.reshape(batch_size, point_batch_size, num_channels, height * width)
|
538 |
+
masks = (hyper_in @ upscaled_embedding).reshape(batch_size, point_batch_size, -1, height, width)
|
539 |
+
|
540 |
+
# Generate mask quality predictions
|
541 |
+
iou_pred = self.iou_prediction_head(iou_token_out)
|
542 |
+
|
543 |
+
# Select the correct mask or masks for output
|
544 |
+
if multimask_output:
|
545 |
+
mask_slice = slice(1, None)
|
546 |
+
else:
|
547 |
+
mask_slice = slice(0, 1)
|
548 |
+
masks = masks[:, :, mask_slice, :, :]
|
549 |
+
iou_pred = iou_pred[:, :, mask_slice]
|
550 |
+
|
551 |
+
outputs = (masks, iou_pred)
|
552 |
+
|
553 |
+
if output_attentions:
|
554 |
+
outputs = outputs + (attentions,)
|
555 |
+
else:
|
556 |
+
outputs = outputs + (None,)
|
557 |
+
|
558 |
+
return outputs
|
559 |
+
|
560 |
+
|
561 |
+
class SamPositionalEmbedding(nn.Module):
|
562 |
+
def __init__(self, config):
|
563 |
+
super().__init__()
|
564 |
+
self.scale = config.hidden_size // 2
|
565 |
+
self.register_buffer("positional_embedding", self.scale * torch.randn((2, config.num_pos_feats)))
|
566 |
+
|
567 |
+
def forward(self, input_coords, input_shape=None):
|
568 |
+
"""Positionally encode points that are normalized to [0,1]."""
|
569 |
+
coordinates = input_coords.clone()
|
570 |
+
|
571 |
+
if input_shape is not None:
|
572 |
+
coordinates[:, :, :, 0] = coordinates[:, :, :, 0] / input_shape[1]
|
573 |
+
coordinates[:, :, :, 1] = coordinates[:, :, :, 1] / input_shape[0]
|
574 |
+
|
575 |
+
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
576 |
+
coordinates = 2 * coordinates - 1
|
577 |
+
coordinates = coordinates.to(self.positional_embedding.dtype)
|
578 |
+
coordinates = coordinates @ self.positional_embedding
|
579 |
+
coordinates = 2 * np.pi * coordinates
|
580 |
+
# outputs d_1 x ... x d_n x channel shape
|
581 |
+
return torch.cat([torch.sin(coordinates), torch.cos(coordinates)], dim=-1)
|
582 |
+
|
583 |
+
|
584 |
+
class SamMaskEmbedding(nn.Module):
|
585 |
+
def __init__(self, config: SamPromptEncoderConfig):
|
586 |
+
super().__init__()
|
587 |
+
self.mask_input_channels = config.mask_input_channels // 4
|
588 |
+
self.activation = ACT2FN[config.hidden_act]
|
589 |
+
self.conv1 = nn.Conv2d(1, self.mask_input_channels, kernel_size=2, stride=2)
|
590 |
+
self.conv2 = nn.Conv2d(self.mask_input_channels, config.mask_input_channels, kernel_size=2, stride=2)
|
591 |
+
self.conv3 = nn.Conv2d(config.mask_input_channels, config.hidden_size, kernel_size=1)
|
592 |
+
self.layer_norm1 = SamLayerNorm(
|
593 |
+
self.mask_input_channels, eps=config.layer_norm_eps, data_format="channels_first"
|
594 |
+
)
|
595 |
+
self.layer_norm2 = SamLayerNorm(
|
596 |
+
self.mask_input_channels * 4, eps=config.layer_norm_eps, data_format="channels_first"
|
597 |
+
)
|
598 |
+
|
599 |
+
def forward(self, masks):
|
600 |
+
hidden_states = self.conv1(masks)
|
601 |
+
hidden_states = self.layer_norm1(hidden_states)
|
602 |
+
hidden_states = self.activation(hidden_states)
|
603 |
+
|
604 |
+
hidden_states = self.conv2(hidden_states)
|
605 |
+
hidden_states = self.layer_norm2(hidden_states)
|
606 |
+
hidden_states = self.activation(hidden_states)
|
607 |
+
dense_embeddings = self.conv3(hidden_states)
|
608 |
+
return dense_embeddings
|
609 |
+
|
610 |
+
|
611 |
+
class SamPromptEncoder(nn.Module):
|
612 |
+
def __init__(self, config: SamPromptEncoderConfig, shared_patch_embedding):
|
613 |
+
super().__init__()
|
614 |
+
self.shared_embedding = shared_patch_embedding
|
615 |
+
self.mask_embed = SamMaskEmbedding(config)
|
616 |
+
self.no_mask_embed = nn.Embedding(1, config.hidden_size)
|
617 |
+
|
618 |
+
self.image_embedding_size = (config.image_embedding_size, config.image_embedding_size)
|
619 |
+
self.input_image_size = config.image_size
|
620 |
+
|
621 |
+
self.point_embed = nn.ModuleList(
|
622 |
+
[nn.Embedding(1, config.hidden_size) for i in range(config.num_point_embeddings)]
|
623 |
+
)
|
624 |
+
self.hidden_size = config.hidden_size
|
625 |
+
self.not_a_point_embed = nn.Embedding(1, config.hidden_size)
|
626 |
+
|
627 |
+
def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor:
|
628 |
+
"""Embeds point prompts."""
|
629 |
+
points = points + 0.5 # Shift to center of pixel
|
630 |
+
if pad:
|
631 |
+
target_point_shape = (points.shape[0], points.shape[1], 1, points.shape[-1])
|
632 |
+
target_labels_shape = (points.shape[0], points.shape[1], 1)
|
633 |
+
padding_point = torch.zeros(target_point_shape, device=points.device)
|
634 |
+
padding_label = -torch.ones(target_labels_shape, device=labels.device)
|
635 |
+
points = torch.cat([points, padding_point], dim=2)
|
636 |
+
labels = torch.cat([labels, padding_label], dim=2)
|
637 |
+
input_shape = (self.input_image_size, self.input_image_size)
|
638 |
+
point_embedding = self.shared_embedding(points, input_shape)
|
639 |
+
|
640 |
+
# torch.where and expanding the labels tensor is required by the ONNX export
|
641 |
+
point_embedding = torch.where(labels[..., None] == -1, self.not_a_point_embed.weight, point_embedding)
|
642 |
+
|
643 |
+
# This is required for the ONNX export. The dtype, device need to be explicitely
|
644 |
+
# specificed as otherwise torch.onnx.export interprets as double
|
645 |
+
point_embedding = torch.where(
|
646 |
+
labels[..., None] != -10,
|
647 |
+
point_embedding,
|
648 |
+
torch.tensor(0.0, dtype=point_embedding.dtype, device=point_embedding.device),
|
649 |
+
)
|
650 |
+
|
651 |
+
point_embedding = torch.where(
|
652 |
+
(labels == 0)[:, :, :, None],
|
653 |
+
point_embedding + self.point_embed[0].weight[None, None, :, :],
|
654 |
+
point_embedding,
|
655 |
+
)
|
656 |
+
|
657 |
+
point_embedding = torch.where(
|
658 |
+
(labels == 1)[:, :, :, None],
|
659 |
+
point_embedding + self.point_embed[1].weight[None, None, :, :],
|
660 |
+
point_embedding,
|
661 |
+
)
|
662 |
+
|
663 |
+
return point_embedding
|
664 |
+
|
665 |
+
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
666 |
+
"""Embeds box prompts."""
|
667 |
+
boxes = boxes + 0.5 # Shift to center of pixel
|
668 |
+
batch_size, nb_boxes = boxes.shape[:2]
|
669 |
+
coords = boxes.reshape(batch_size, nb_boxes, 2, 2)
|
670 |
+
input_shape = (self.input_image_size, self.input_image_size)
|
671 |
+
corner_embedding = self.shared_embedding(coords, input_shape)
|
672 |
+
corner_embedding[:, :, 0, :] += self.point_embed[2].weight
|
673 |
+
corner_embedding[:, :, 1, :] += self.point_embed[3].weight
|
674 |
+
return corner_embedding
|
675 |
+
|
676 |
+
def forward(
|
677 |
+
self,
|
678 |
+
input_points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
679 |
+
input_labels: Optional[torch.Tensor],
|
680 |
+
input_boxes: Optional[torch.Tensor],
|
681 |
+
input_masks: Optional[torch.Tensor],
|
682 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
683 |
+
"""
|
684 |
+
Embeds different types of prompts, returning both sparse and dense embeddings.
|
685 |
+
|
686 |
+
Args:
|
687 |
+
points (`torch.Tensor`, *optional*):
|
688 |
+
point coordinates and labels to embed.
|
689 |
+
boxes (`torch.Tensor`, *optional*):
|
690 |
+
boxes to embed
|
691 |
+
masks (`torch.Tensor`, *optional*):
|
692 |
+
masks to embed
|
693 |
+
"""
|
694 |
+
sparse_embeddings = None
|
695 |
+
batch_size = 1
|
696 |
+
target_device = self.shared_embedding.positional_embedding.device
|
697 |
+
if input_points is not None:
|
698 |
+
batch_size, point_batch_size = input_points.shape[:2]
|
699 |
+
if input_labels is None:
|
700 |
+
raise ValueError("If points are provided, labels must also be provided.")
|
701 |
+
point_embeddings = self._embed_points(input_points, input_labels, pad=(input_boxes is None))
|
702 |
+
sparse_embeddings = point_embeddings
|
703 |
+
if input_boxes is not None:
|
704 |
+
batch_size = input_boxes.shape[0]
|
705 |
+
box_embeddings = self._embed_boxes(input_boxes)
|
706 |
+
if sparse_embeddings is None:
|
707 |
+
sparse_embeddings = box_embeddings
|
708 |
+
else:
|
709 |
+
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=2)
|
710 |
+
if input_masks is not None:
|
711 |
+
dense_embeddings = self.mask_embed(input_masks)
|
712 |
+
else:
|
713 |
+
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
714 |
+
batch_size, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
715 |
+
)
|
716 |
+
|
717 |
+
if sparse_embeddings is None:
|
718 |
+
sparse_embeddings = torch.zeros((batch_size, 1, 1, self.hidden_size), device=target_device)
|
719 |
+
|
720 |
+
return sparse_embeddings, dense_embeddings
|
721 |
+
|
722 |
+
|
723 |
+
class SamVisionAttention(nn.Module):
|
724 |
+
"""Multi-head Attention block with relative position embeddings."""
|
725 |
+
|
726 |
+
def __init__(self, config, window_size):
|
727 |
+
super().__init__()
|
728 |
+
input_size = (
|
729 |
+
(config.image_size // config.patch_size, config.image_size // config.patch_size)
|
730 |
+
if window_size == 0
|
731 |
+
else (window_size, window_size)
|
732 |
+
)
|
733 |
+
|
734 |
+
self.num_attention_heads = config.num_attention_heads
|
735 |
+
head_dim = config.hidden_size // config.num_attention_heads
|
736 |
+
self.scale = head_dim**-0.5
|
737 |
+
self.dropout = config.attention_dropout
|
738 |
+
|
739 |
+
self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias)
|
740 |
+
self.proj = nn.Linear(config.hidden_size, config.hidden_size)
|
741 |
+
|
742 |
+
self.use_rel_pos = config.use_rel_pos
|
743 |
+
if self.use_rel_pos:
|
744 |
+
if input_size is None:
|
745 |
+
raise ValueError("Input size must be provided if using relative positional encoding.")
|
746 |
+
|
747 |
+
# initialize relative positional embeddings
|
748 |
+
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
749 |
+
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
750 |
+
|
751 |
+
def get_rel_pos(self, q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
752 |
+
"""
|
753 |
+
Get relative positional embeddings according to the relative positions of
|
754 |
+
query and key sizes.
|
755 |
+
|
756 |
+
Args:
|
757 |
+
q_size (int):
|
758 |
+
size of the query.
|
759 |
+
k_size (int):
|
760 |
+
size of key k.
|
761 |
+
rel_pos (`torch.Tensor`):
|
762 |
+
relative position embeddings (L, channel).
|
763 |
+
|
764 |
+
Returns:
|
765 |
+
Extracted positional embeddings according to relative positions.
|
766 |
+
"""
|
767 |
+
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
768 |
+
# Interpolate rel pos.
|
769 |
+
rel_pos_resized = F.interpolate(
|
770 |
+
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
771 |
+
size=max_rel_dist,
|
772 |
+
mode="linear",
|
773 |
+
)
|
774 |
+
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
775 |
+
|
776 |
+
# Scale the coords with short length if shapes for q and k are different.
|
777 |
+
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
778 |
+
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
779 |
+
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
780 |
+
|
781 |
+
return rel_pos_resized[relative_coords.long()]
|
782 |
+
|
783 |
+
def add_decomposed_rel_pos(
|
784 |
+
self,
|
785 |
+
attn: torch.Tensor,
|
786 |
+
query: torch.Tensor,
|
787 |
+
rel_pos_h: torch.Tensor,
|
788 |
+
rel_pos_w: torch.Tensor,
|
789 |
+
q_size: Tuple[int, int],
|
790 |
+
k_size: Tuple[int, int],
|
791 |
+
) -> torch.Tensor:
|
792 |
+
"""
|
793 |
+
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
794 |
+
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py
|
795 |
+
|
796 |
+
Args:
|
797 |
+
attn (`torch.Tensor`):
|
798 |
+
attention map.
|
799 |
+
query (`torch.Tensor`):
|
800 |
+
query q in the attention layer with shape (batch_size, query_height * query_width, channel).
|
801 |
+
rel_pos_h (`torch.Tensor`):
|
802 |
+
relative position embeddings (Lh, channel) for height axis.
|
803 |
+
rel_pos_w (`torch.Tensor`):
|
804 |
+
relative position embeddings (Lw, channel) for width axis.
|
805 |
+
q_size (tuple):
|
806 |
+
spatial sequence size of query q with (query_height, query_width).
|
807 |
+
k_size (tuple):
|
808 |
+
spatial sequence size of key k with (key_height, key_width).
|
809 |
+
|
810 |
+
Returns:
|
811 |
+
attn (`torch.Tensor`):
|
812 |
+
attention map with added relative positional embeddings.
|
813 |
+
"""
|
814 |
+
query_height, query_width = q_size
|
815 |
+
key_height, key_width = k_size
|
816 |
+
relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h)
|
817 |
+
relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w)
|
818 |
+
|
819 |
+
batch_size, _, dim = query.shape
|
820 |
+
reshaped_query = query.reshape(batch_size, query_height, query_width, dim)
|
821 |
+
rel_h = torch.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height)
|
822 |
+
rel_w = torch.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width)
|
823 |
+
attn = attn.reshape(batch_size, query_height, query_width, key_height, key_width)
|
824 |
+
attn = attn + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
825 |
+
attn = attn.reshape(batch_size, query_height * query_width, key_height * key_width)
|
826 |
+
return attn
|
827 |
+
|
828 |
+
def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor:
|
829 |
+
batch_size, height, width, _ = hidden_states.shape
|
830 |
+
# qkv with shape (3, batch_size, nHead, height * width, channel)
|
831 |
+
qkv = (
|
832 |
+
self.qkv(hidden_states)
|
833 |
+
.reshape(batch_size, height * width, 3, self.num_attention_heads, -1)
|
834 |
+
.permute(2, 0, 3, 1, 4)
|
835 |
+
)
|
836 |
+
# q, k, v with shape (batch_size * nHead, height * width, channel)
|
837 |
+
query, key, value = qkv.reshape(3, batch_size * self.num_attention_heads, height * width, -1).unbind(0)
|
838 |
+
|
839 |
+
attn_weights = (query * self.scale) @ key.transpose(-2, -1)
|
840 |
+
|
841 |
+
if self.use_rel_pos:
|
842 |
+
attn_weights = self.add_decomposed_rel_pos(
|
843 |
+
attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
|
844 |
+
)
|
845 |
+
|
846 |
+
attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)
|
847 |
+
|
848 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
849 |
+
|
850 |
+
attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
|
851 |
+
attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1)
|
852 |
+
|
853 |
+
attn_output = self.proj(attn_output)
|
854 |
+
|
855 |
+
if output_attentions:
|
856 |
+
outputs = (attn_output, attn_weights)
|
857 |
+
else:
|
858 |
+
outputs = (attn_output, None)
|
859 |
+
|
860 |
+
return outputs
|
861 |
+
|
862 |
+
|
863 |
+
class SamVisionLayer(nn.Module):
|
864 |
+
def __init__(self, config, window_size):
|
865 |
+
super().__init__()
|
866 |
+
self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
867 |
+
self.attn = SamVisionAttention(config, window_size)
|
868 |
+
self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
869 |
+
self.mlp = SamMLPBlock(config)
|
870 |
+
self.window_size = window_size
|
871 |
+
|
872 |
+
def window_partition(self, hidden_states: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
873 |
+
"""
|
874 |
+
Args:
|
875 |
+
Partition into non-overlapping windows with padding if needed.
|
876 |
+
hidden_states (tensor): input tokens with [batch_size, height, width, channel]. window_size (int): window
|
877 |
+
size.
|
878 |
+
|
879 |
+
Returns:
|
880 |
+
windows: windows after partition with [batch_size * num_windows, window_size, window_size, channel].
|
881 |
+
(pad_height, pad_width): padded height and width before partition
|
882 |
+
"""
|
883 |
+
batch_size, height, width, channel = hidden_states.shape
|
884 |
+
|
885 |
+
pad_h = (window_size - height % window_size) % window_size
|
886 |
+
pad_w = (window_size - width % window_size) % window_size
|
887 |
+
hidden_states = F.pad(hidden_states, (0, 0, 0, pad_w, 0, pad_h))
|
888 |
+
pad_height, pad_width = height + pad_h, width + pad_w
|
889 |
+
|
890 |
+
hidden_states = hidden_states.reshape(
|
891 |
+
batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel
|
892 |
+
)
|
893 |
+
windows = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().reshape(-1, window_size, window_size, channel)
|
894 |
+
return windows, (pad_height, pad_width)
|
895 |
+
|
896 |
+
def window_unpartition(
|
897 |
+
self, windows: torch.Tensor, window_size: int, padding_shape: Tuple[int, int], original_shape: Tuple[int, int]
|
898 |
+
) -> torch.Tensor:
|
899 |
+
"""
|
900 |
+
Args:
|
901 |
+
Window unpartition into original sequences and removing padding.
|
902 |
+
hidden_states (tensor):
|
903 |
+
input tokens with [batch_size * num_windows, window_size, window_size, channel].
|
904 |
+
window_size (int):
|
905 |
+
window size.
|
906 |
+
padding_shape (Tuple):
|
907 |
+
padded height and width (pad_height, pad_width).
|
908 |
+
original_shape (Tuple): original height and width (height, width) before padding.
|
909 |
+
|
910 |
+
Returns:
|
911 |
+
hidden_states: unpartitioned sequences with [batch_size, height, width, channel].
|
912 |
+
"""
|
913 |
+
pad_height, pad_width = padding_shape
|
914 |
+
height, width = original_shape
|
915 |
+
batch_size = windows.shape[0] // (pad_height * pad_width // window_size // window_size)
|
916 |
+
hidden_states = windows.reshape(
|
917 |
+
batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1
|
918 |
+
)
|
919 |
+
hidden_states = (
|
920 |
+
hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().reshape(batch_size, pad_height, pad_width, -1)
|
921 |
+
)
|
922 |
+
|
923 |
+
hidden_states = hidden_states[:, :height, :width, :].contiguous()
|
924 |
+
return hidden_states
|
925 |
+
|
926 |
+
def forward(
|
927 |
+
self,
|
928 |
+
hidden_states: torch.Tensor,
|
929 |
+
output_attentions: Optional[bool] = False,
|
930 |
+
) -> Tuple[torch.FloatTensor]:
|
931 |
+
residual = hidden_states
|
932 |
+
|
933 |
+
hidden_states = self.layer_norm1(hidden_states)
|
934 |
+
# Window partition
|
935 |
+
if self.window_size > 0:
|
936 |
+
height, width = hidden_states.shape[1], hidden_states.shape[2]
|
937 |
+
hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size)
|
938 |
+
|
939 |
+
hidden_states, attn_weights = self.attn(
|
940 |
+
hidden_states=hidden_states,
|
941 |
+
output_attentions=output_attentions,
|
942 |
+
)
|
943 |
+
# Reverse window partition
|
944 |
+
if self.window_size > 0:
|
945 |
+
hidden_states = self.window_unpartition(hidden_states, self.window_size, padding_shape, (height, width))
|
946 |
+
|
947 |
+
hidden_states = residual + hidden_states
|
948 |
+
layernorm_output = self.layer_norm2(hidden_states)
|
949 |
+
hidden_states = hidden_states + self.mlp(layernorm_output)
|
950 |
+
|
951 |
+
outputs = (hidden_states,)
|
952 |
+
if output_attentions:
|
953 |
+
outputs += (attn_weights,)
|
954 |
+
|
955 |
+
return outputs
|
956 |
+
|
957 |
+
|
958 |
+
class SamVisionNeck(nn.Module):
|
959 |
+
def __init__(self, config: SamVisionConfig):
|
960 |
+
super().__init__()
|
961 |
+
self.config = config
|
962 |
+
|
963 |
+
self.conv1 = nn.Conv2d(config.hidden_size, config.output_channels, kernel_size=1, bias=False)
|
964 |
+
self.layer_norm1 = SamLayerNorm(config.output_channels, data_format="channels_first")
|
965 |
+
self.conv2 = nn.Conv2d(config.output_channels, config.output_channels, kernel_size=3, padding=1, bias=False)
|
966 |
+
self.layer_norm2 = SamLayerNorm(config.output_channels, data_format="channels_first")
|
967 |
+
|
968 |
+
def forward(self, hidden_states):
|
969 |
+
hidden_states = hidden_states.permute(0, 3, 1, 2)
|
970 |
+
hidden_states = self.conv1(hidden_states)
|
971 |
+
hidden_states = self.layer_norm1(hidden_states)
|
972 |
+
|
973 |
+
hidden_states = self.conv2(hidden_states)
|
974 |
+
hidden_states = self.layer_norm2(hidden_states)
|
975 |
+
return hidden_states
|
976 |
+
|
977 |
+
|
978 |
+
class SamVisionEncoder(nn.Module):
|
979 |
+
def __init__(self, config: SamVisionConfig):
|
980 |
+
super().__init__()
|
981 |
+
self.config = config
|
982 |
+
self.image_size = config.image_size
|
983 |
+
|
984 |
+
self.patch_embed = SamPatchEmbeddings(config)
|
985 |
+
|
986 |
+
self.pos_embed = None
|
987 |
+
if config.use_abs_pos:
|
988 |
+
# Initialize absolute positional embedding with pretrain image size.
|
989 |
+
self.pos_embed = nn.Parameter(
|
990 |
+
torch.zeros(
|
991 |
+
1,
|
992 |
+
config.image_size // config.patch_size,
|
993 |
+
config.image_size // config.patch_size,
|
994 |
+
config.hidden_size,
|
995 |
+
)
|
996 |
+
)
|
997 |
+
|
998 |
+
self.layers = nn.ModuleList()
|
999 |
+
for i in range(config.num_hidden_layers):
|
1000 |
+
layer = SamVisionLayer(
|
1001 |
+
config,
|
1002 |
+
window_size=config.window_size if i not in config.global_attn_indexes else 0,
|
1003 |
+
)
|
1004 |
+
self.layers.append(layer)
|
1005 |
+
|
1006 |
+
self.neck = SamVisionNeck(config)
|
1007 |
+
|
1008 |
+
self.gradient_checkpointing = False
|
1009 |
+
|
1010 |
+
def get_input_embeddings(self):
|
1011 |
+
return self.patch_embed
|
1012 |
+
|
1013 |
+
def forward(
|
1014 |
+
self,
|
1015 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1016 |
+
output_attentions: Optional[bool] = None,
|
1017 |
+
output_hidden_states: Optional[bool] = None,
|
1018 |
+
return_dict: Optional[bool] = None,
|
1019 |
+
) -> Union[Tuple, SamVisionEncoderOutput]:
|
1020 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1021 |
+
output_hidden_states = (
|
1022 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1023 |
+
)
|
1024 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1025 |
+
|
1026 |
+
if pixel_values is None:
|
1027 |
+
raise ValueError("You have to specify pixel_values")
|
1028 |
+
|
1029 |
+
hidden_states = self.patch_embed(pixel_values)
|
1030 |
+
if self.pos_embed is not None:
|
1031 |
+
hidden_states = hidden_states + self.pos_embed
|
1032 |
+
|
1033 |
+
all_hidden_states = () if output_hidden_states else None
|
1034 |
+
all_self_attentions = () if output_attentions else None
|
1035 |
+
|
1036 |
+
for i, layer_module in enumerate(self.layers):
|
1037 |
+
if output_hidden_states:
|
1038 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1039 |
+
|
1040 |
+
if self.gradient_checkpointing and self.training:
|
1041 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1042 |
+
layer_module.__call__,
|
1043 |
+
hidden_states,
|
1044 |
+
)
|
1045 |
+
else:
|
1046 |
+
layer_outputs = layer_module(hidden_states, output_attentions=output_attentions)
|
1047 |
+
|
1048 |
+
hidden_states = layer_outputs[0]
|
1049 |
+
|
1050 |
+
if output_attentions:
|
1051 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
1052 |
+
|
1053 |
+
if output_hidden_states:
|
1054 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1055 |
+
|
1056 |
+
hidden_states = self.neck(hidden_states)
|
1057 |
+
|
1058 |
+
if not return_dict:
|
1059 |
+
outputs = (hidden_states,)
|
1060 |
+
if output_hidden_states:
|
1061 |
+
outputs = outputs + (all_hidden_states,)
|
1062 |
+
if output_attentions:
|
1063 |
+
outputs = outputs + (all_self_attentions,)
|
1064 |
+
return outputs
|
1065 |
+
|
1066 |
+
return SamVisionEncoderOutput(
|
1067 |
+
last_hidden_state=hidden_states,
|
1068 |
+
hidden_states=all_hidden_states,
|
1069 |
+
attentions=all_self_attentions,
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
|
1073 |
+
class SamPreTrainedModel(PreTrainedModel):
|
1074 |
+
config_class = SamConfig
|
1075 |
+
base_model_prefix = "sam"
|
1076 |
+
main_input_name = "pixel_values"
|
1077 |
+
|
1078 |
+
def _init_weights(self, module):
|
1079 |
+
std = self.config.initializer_range
|
1080 |
+
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
|
1081 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1082 |
+
if module.bias is not None:
|
1083 |
+
module.bias.data.zero_()
|
1084 |
+
elif isinstance(module, nn.Embedding):
|
1085 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1086 |
+
if module.padding_idx is not None:
|
1087 |
+
module.weight.data[module.padding_idx].zero_()
|
1088 |
+
|
1089 |
+
|
1090 |
+
SAM_START_DOCSTRING = r"""
|
1091 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1092 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1093 |
+
etc.)
|
1094 |
+
|
1095 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1096 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1097 |
+
and behavior.
|
1098 |
+
|
1099 |
+
Parameters:
|
1100 |
+
config ([`SamConfig`]): Model configuration class with all the parameters of the model.
|
1101 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1102 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1103 |
+
"""
|
1104 |
+
|
1105 |
+
|
1106 |
+
SAM_INPUTS_DOCSTRING = r"""
|
1107 |
+
Args:
|
1108 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
1109 |
+
Pixel values. Pixel values can be obtained using [`SamProcessor`]. See [`SamProcessor.__call__`] for
|
1110 |
+
details.
|
1111 |
+
input_points (`torch.FloatTensor` of shape `(batch_size, num_points, 2)`):
|
1112 |
+
Input 2D spatial points, this is used by the prompt encoder to encode the prompt. Generally yields to much
|
1113 |
+
better results. The points can be obtained by passing a list of list of list to the processor that will
|
1114 |
+
create corresponding `torch` tensors of dimension 4. The first dimension is the image batch size, the
|
1115 |
+
second dimension is the point batch size (i.e. how many segmentation masks do we want the model to predict
|
1116 |
+
per input point), the third dimension is the number of points per segmentation mask (it is possible to pass
|
1117 |
+
multiple points for a single mask), and the last dimension is the x (vertical) and y (horizontal)
|
1118 |
+
coordinates of the point. If a different number of points is passed either for each image, or for each
|
1119 |
+
mask, the processor will create "PAD" points that will correspond to the (0, 0) coordinate, and the
|
1120 |
+
computation of the embedding will be skipped for these points using the labels.
|
1121 |
+
input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points)`):
|
1122 |
+
Input labels for the points, this is used by the prompt encoder to encode the prompt. According to the
|
1123 |
+
official implementation, there are 3 types of labels
|
1124 |
+
|
1125 |
+
- `1`: the point is a point that contains the object of interest
|
1126 |
+
- `0`: the point is a point that does not contain the object of interest
|
1127 |
+
- `-1`: the point corresponds to the background
|
1128 |
+
|
1129 |
+
We added the label:
|
1130 |
+
|
1131 |
+
- `-10`: the point is a padding point, thus should be ignored by the prompt encoder
|
1132 |
+
|
1133 |
+
The padding labels should be automatically done by the processor.
|
1134 |
+
input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes, 4)`):
|
1135 |
+
Input boxes for the points, this is used by the prompt encoder to encode the prompt. Generally yields to
|
1136 |
+
much better generated masks. The boxes can be obtained by passing a list of list of list to the processor,
|
1137 |
+
that will generate a `torch` tensor, with each dimension corresponding respectively to the image batch
|
1138 |
+
size, the number of boxes per image and the coordinates of the top left and botton right point of the box.
|
1139 |
+
In the order (`x1`, `y1`, `x2`, `y2`):
|
1140 |
+
|
1141 |
+
- `x1`: the x coordinate of the top left point of the input box
|
1142 |
+
- `y1`: the y coordinate of the top left point of the input box
|
1143 |
+
- `x2`: the x coordinate of the bottom right point of the input box
|
1144 |
+
- `y2`: the y coordinate of the bottom right point of the input box
|
1145 |
+
|
1146 |
+
input_masks (`torch.FloatTensor` of shape `(batch_size, image_size, image_size)`):
|
1147 |
+
SAM model also accepts segmentation masks as input. The mask will be embedded by the prompt encoder to
|
1148 |
+
generate a corresponding embedding, that will be fed later on to the mask decoder. These masks needs to be
|
1149 |
+
manually fed by the user, and they need to be of shape (`batch_size`, `image_size`, `image_size`).
|
1150 |
+
|
1151 |
+
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_channels, window_size, window_size)`):
|
1152 |
+
Image embeddings, this is used by the mask decder to generate masks and iou scores. For more memory
|
1153 |
+
efficient computation, users can first retrieve the image embeddings using the `get_image_embeddings`
|
1154 |
+
method, and then feed them to the `forward` method instead of feeding the `pixel_values`.
|
1155 |
+
multimask_output (`bool`, *optional*):
|
1156 |
+
In the original implementation and paper, the model always outputs 3 masks per image (or per point / per
|
1157 |
+
bounding box if relevant). However, it is possible to just output a single mask, that corresponds to the
|
1158 |
+
"best" mask, by specifying `multimask_output=False`.
|
1159 |
+
attention_similarity (`torch.FloatTensor`, *optional*):
|
1160 |
+
Attention similarity tensor, to be provided to the mask decoder for target-guided attention in case the
|
1161 |
+
model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048).
|
1162 |
+
target_embedding (`torch.FloatTensor`, *optional*):
|
1163 |
+
Embedding of the target concept, to be provided to the mask decoder for target-semantic prompting in case
|
1164 |
+
the model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048).
|
1165 |
+
output_attentions (`bool`, *optional*):
|
1166 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1167 |
+
tensors for more detail.
|
1168 |
+
output_hidden_states (`bool`, *optional*):
|
1169 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1170 |
+
more detail.
|
1171 |
+
return_dict (`bool`, *optional*):
|
1172 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1173 |
+
"""
|
1174 |
+
|
1175 |
+
|
1176 |
+
@add_start_docstrings(
|
1177 |
+
"Segment Anything Model (SAM) for generating segmentation masks, given an input image and ",
|
1178 |
+
" optional 2D location and bounding boxes.",
|
1179 |
+
SAM_START_DOCSTRING,
|
1180 |
+
)
|
1181 |
+
class SamModel(SamPreTrainedModel):
|
1182 |
+
_tied_weights_keys = ["prompt_encoder.shared_embedding.positional_embedding"]
|
1183 |
+
|
1184 |
+
def __init__(self, config):
|
1185 |
+
super().__init__(config)
|
1186 |
+
self.shared_image_embedding = SamPositionalEmbedding(config.vision_config)
|
1187 |
+
|
1188 |
+
self.vision_encoder = SamVisionEncoder(config.vision_config)
|
1189 |
+
self.prompt_encoder = SamPromptEncoder(config.prompt_encoder_config, self.shared_image_embedding)
|
1190 |
+
self.mask_decoder = SamMaskDecoder(config.mask_decoder_config)
|
1191 |
+
|
1192 |
+
self.post_init()
|
1193 |
+
|
1194 |
+
def get_input_embeddings(self):
|
1195 |
+
return self.vision_encoder.get_input_embeddings()
|
1196 |
+
|
1197 |
+
def get_image_wide_positional_embeddings(self):
|
1198 |
+
size = self.config.prompt_encoder_config.image_embedding_size
|
1199 |
+
target_device = self.shared_image_embedding.positional_embedding.device
|
1200 |
+
target_dtype = self.shared_image_embedding.positional_embedding.dtype
|
1201 |
+
grid = torch.ones((size, size), device=target_device, dtype=target_dtype)
|
1202 |
+
y_embed = grid.cumsum(dim=0) - 0.5
|
1203 |
+
x_embed = grid.cumsum(dim=1) - 0.5
|
1204 |
+
y_embed = y_embed / size
|
1205 |
+
x_embed = x_embed / size
|
1206 |
+
|
1207 |
+
positional_embedding = self.shared_image_embedding(torch.stack([x_embed, y_embed], dim=-1))
|
1208 |
+
return positional_embedding.permute(2, 0, 1).unsqueeze(0) # channel x height x width
|
1209 |
+
|
1210 |
+
@torch.no_grad()
|
1211 |
+
def get_image_embeddings(
|
1212 |
+
self,
|
1213 |
+
pixel_values,
|
1214 |
+
output_attentions: Optional[bool] = None,
|
1215 |
+
output_hidden_states: Optional[bool] = None,
|
1216 |
+
return_dict: Optional[bool] = None,
|
1217 |
+
):
|
1218 |
+
r"""
|
1219 |
+
Returns the image embeddings by passing the pixel values through the vision encoder.
|
1220 |
+
|
1221 |
+
Args:
|
1222 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
1223 |
+
Input pixel values
|
1224 |
+
output_attentions (`bool`, *optional*):
|
1225 |
+
Whether or not to return the attentions tensors of all attention layers.
|
1226 |
+
output_hidden_states (`bool`, *optional*):
|
1227 |
+
Whether or not to return the hidden states of all layers.
|
1228 |
+
return_dict (`bool`, *optional*):
|
1229 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1230 |
+
|
1231 |
+
"""
|
1232 |
+
vision_output = self.vision_encoder(
|
1233 |
+
pixel_values,
|
1234 |
+
output_attentions=output_attentions,
|
1235 |
+
output_hidden_states=output_hidden_states,
|
1236 |
+
return_dict=return_dict,
|
1237 |
+
)
|
1238 |
+
image_embeddings = vision_output[0]
|
1239 |
+
return image_embeddings
|
1240 |
+
|
1241 |
+
@torch.no_grad()
|
1242 |
+
def get_prompt_embeddings(
|
1243 |
+
self,
|
1244 |
+
input_points: Optional[torch.FloatTensor] = None,
|
1245 |
+
input_labels: Optional[torch.LongTensor] = None,
|
1246 |
+
input_boxes: Optional[torch.FloatTensor] = None,
|
1247 |
+
input_masks: Optional[torch.LongTensor] = None,
|
1248 |
+
):
|
1249 |
+
r"""
|
1250 |
+
Returns the prompt embeddings by passing the input points, labels, boxes and masks through the prompt encoder.
|
1251 |
+
|
1252 |
+
Args:
|
1253 |
+
input_points (`torch.FloatTensor` of shape `(batch_size, point_batch_size, num_points_per_image, 2)`):
|
1254 |
+
Optional input points for the prompt encoder. The padding of the point is automatically done by the
|
1255 |
+
processor. `point_batch_size` refers to the number of masks that we want the model to predict per
|
1256 |
+
point. The model will output `point_batch_size` times 3 masks in total.
|
1257 |
+
input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points_per_image)`):
|
1258 |
+
Optional input labels for the prompt encoder. The padding of the labels is automatically done by the
|
1259 |
+
processor, or can be fed by the user.
|
1260 |
+
input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes_per_image, 4)`):
|
1261 |
+
Optional input boxes for the prompt encoder. The padding of the boxes is automatically done by the
|
1262 |
+
processor. users can also pass manually the input boxes.
|
1263 |
+
input_masks (`torch.LongTensor` of shape `(batch_size, image_size, image_size)`):
|
1264 |
+
Optional input masks for the prompt encoder.
|
1265 |
+
"""
|
1266 |
+
prompt_output = self.prompt_encoder(
|
1267 |
+
input_points=input_points,
|
1268 |
+
input_labels=input_labels,
|
1269 |
+
input_boxes=input_boxes,
|
1270 |
+
input_masks=input_masks,
|
1271 |
+
)
|
1272 |
+
return prompt_output
|
1273 |
+
|
1274 |
+
@add_start_docstrings_to_model_forward(SAM_INPUTS_DOCSTRING)
|
1275 |
+
def forward(
|
1276 |
+
self,
|
1277 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1278 |
+
input_points: Optional[torch.FloatTensor] = None,
|
1279 |
+
input_labels: Optional[torch.LongTensor] = None,
|
1280 |
+
input_boxes: Optional[torch.FloatTensor] = None,
|
1281 |
+
input_masks: Optional[torch.LongTensor] = None,
|
1282 |
+
image_embeddings: Optional[torch.FloatTensor] = None,
|
1283 |
+
multimask_output: bool = True,
|
1284 |
+
attention_similarity: Optional[torch.FloatTensor] = None,
|
1285 |
+
target_embedding: Optional[torch.FloatTensor] = None,
|
1286 |
+
output_attentions: Optional[bool] = None,
|
1287 |
+
output_hidden_states: Optional[bool] = None,
|
1288 |
+
return_dict: Optional[bool] = None,
|
1289 |
+
**kwargs,
|
1290 |
+
) -> List[Dict[str, torch.Tensor]]:
|
1291 |
+
r"""
|
1292 |
+
Example:
|
1293 |
+
|
1294 |
+
```python
|
1295 |
+
>>> from PIL import Image
|
1296 |
+
>>> import requests
|
1297 |
+
>>> from transformers import AutoModel, AutoProcessor
|
1298 |
+
|
1299 |
+
>>> model = AutoModel.from_pretrained("facebook/sam-vit-base")
|
1300 |
+
>>> processor = AutoProcessor.from_pretrained("facebook/sam-vit-base")
|
1301 |
+
|
1302 |
+
>>> img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-car.png"
|
1303 |
+
>>> raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
1304 |
+
>>> input_points = [[[400, 650]]] # 2D location of a window on the car
|
1305 |
+
>>> inputs = processor(images=raw_image, input_points=input_points, return_tensors="pt")
|
1306 |
+
|
1307 |
+
>>> # Get segmentation mask
|
1308 |
+
>>> outputs = model(**inputs)
|
1309 |
+
|
1310 |
+
>>> # Postprocess masks
|
1311 |
+
>>> masks = processor.post_process_masks(
|
1312 |
+
... outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"]
|
1313 |
+
... )
|
1314 |
+
```
|
1315 |
+
"""
|
1316 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1317 |
+
output_hidden_states = (
|
1318 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1319 |
+
)
|
1320 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1321 |
+
|
1322 |
+
if pixel_values is None and image_embeddings is None:
|
1323 |
+
raise ValueError("Either pixel_values or image_embeddings must be provided.")
|
1324 |
+
|
1325 |
+
if pixel_values is not None and image_embeddings is not None:
|
1326 |
+
raise ValueError("Only one of pixel_values and image_embeddings can be provided.")
|
1327 |
+
|
1328 |
+
if input_points is not None and len(input_points.shape) != 4:
|
1329 |
+
raise ValueError(
|
1330 |
+
"The input_points must be a 4D tensor. Of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.",
|
1331 |
+
" got {}.".format(input_points.shape),
|
1332 |
+
)
|
1333 |
+
if input_boxes is not None and len(input_boxes.shape) != 3:
|
1334 |
+
raise ValueError(
|
1335 |
+
"The input_points must be a 3D tensor. Of shape `batch_size`, `nb_boxes`, `4`.",
|
1336 |
+
" got {}.".format(input_boxes.shape),
|
1337 |
+
)
|
1338 |
+
if input_points is not None and input_boxes is not None:
|
1339 |
+
point_batch_size = input_points.shape[1]
|
1340 |
+
box_batch_size = input_boxes.shape[1]
|
1341 |
+
if point_batch_size != box_batch_size:
|
1342 |
+
raise ValueError(
|
1343 |
+
"You should provide as many bounding boxes as input points per box. Got {} and {}.".format(
|
1344 |
+
point_batch_size, box_batch_size
|
1345 |
+
)
|
1346 |
+
)
|
1347 |
+
|
1348 |
+
image_positional_embeddings = self.get_image_wide_positional_embeddings()
|
1349 |
+
# repeat with batch size
|
1350 |
+
batch_size = pixel_values.shape[0] if pixel_values is not None else image_embeddings.shape[0]
|
1351 |
+
image_positional_embeddings = image_positional_embeddings.repeat(batch_size, 1, 1, 1)
|
1352 |
+
|
1353 |
+
vision_attentions = None
|
1354 |
+
vision_hidden_states = None
|
1355 |
+
|
1356 |
+
if pixel_values is not None:
|
1357 |
+
vision_outputs = self.vision_encoder(
|
1358 |
+
pixel_values,
|
1359 |
+
output_attentions=output_attentions,
|
1360 |
+
output_hidden_states=output_hidden_states,
|
1361 |
+
return_dict=return_dict,
|
1362 |
+
)
|
1363 |
+
image_embeddings = vision_outputs[0]
|
1364 |
+
|
1365 |
+
if output_hidden_states:
|
1366 |
+
vision_hidden_states = vision_outputs[1]
|
1367 |
+
if output_attentions:
|
1368 |
+
vision_attentions = vision_outputs[-1]
|
1369 |
+
|
1370 |
+
if input_points is not None and input_labels is None:
|
1371 |
+
input_labels = torch.ones_like(input_points[:, :, :, 0], dtype=torch.int, device=input_points.device)
|
1372 |
+
|
1373 |
+
if input_points is not None and image_embeddings.shape[0] != input_points.shape[0]:
|
1374 |
+
raise ValueError(
|
1375 |
+
"The batch size of the image embeddings and the input points must be the same. ",
|
1376 |
+
"Got {} and {} respectively.".format(image_embeddings.shape[0], input_points.shape[0]),
|
1377 |
+
" if you want to pass multiple points for the same image, make sure that you passed ",
|
1378 |
+
" input_points of shape (batch_size, point_batch_size, num_points_per_image, 3) and ",
|
1379 |
+
" input_labels of shape (batch_size, point_batch_size, num_points_per_image)",
|
1380 |
+
)
|
1381 |
+
|
1382 |
+
sparse_embeddings, dense_embeddings = self.prompt_encoder(
|
1383 |
+
input_points=input_points,
|
1384 |
+
input_labels=input_labels,
|
1385 |
+
input_boxes=input_boxes,
|
1386 |
+
input_masks=input_masks,
|
1387 |
+
)
|
1388 |
+
|
1389 |
+
low_res_masks, iou_predictions, mask_decoder_attentions = self.mask_decoder(
|
1390 |
+
image_embeddings=image_embeddings,
|
1391 |
+
image_positional_embeddings=image_positional_embeddings,
|
1392 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
1393 |
+
dense_prompt_embeddings=dense_embeddings,
|
1394 |
+
multimask_output=multimask_output,
|
1395 |
+
attention_similarity=attention_similarity,
|
1396 |
+
target_embedding=target_embedding,
|
1397 |
+
output_attentions=output_attentions,
|
1398 |
+
)
|
1399 |
+
|
1400 |
+
if not return_dict:
|
1401 |
+
output = (iou_predictions, low_res_masks)
|
1402 |
+
if output_hidden_states:
|
1403 |
+
output = output + (vision_hidden_states,)
|
1404 |
+
|
1405 |
+
if output_attentions:
|
1406 |
+
output = output + (vision_attentions, mask_decoder_attentions)
|
1407 |
+
return output
|
1408 |
+
|
1409 |
+
return SamImageSegmentationOutput(
|
1410 |
+
iou_scores=iou_predictions,
|
1411 |
+
pred_masks=low_res_masks,
|
1412 |
+
vision_hidden_states=vision_hidden_states,
|
1413 |
+
vision_attentions=vision_attentions,
|
1414 |
+
mask_decoder_attentions=mask_decoder_attentions,
|
1415 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/sam/modeling_tf_sam.py
ADDED
@@ -0,0 +1,1656 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The Meta AI Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
TensorFlow SAM model. This file was mostly generated by auto-translation from the PyTorch original. In the event of a
|
17 |
+
discrepancy, the original file should be regarded as the 'reference' version.
|
18 |
+
"""
|
19 |
+
|
20 |
+
|
21 |
+
from __future__ import annotations
|
22 |
+
|
23 |
+
import collections
|
24 |
+
from dataclasses import dataclass
|
25 |
+
from typing import Optional, Tuple, Union
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
import tensorflow as tf
|
29 |
+
|
30 |
+
from ...activations_tf import ACT2FN
|
31 |
+
from ...modeling_tf_outputs import TFBaseModelOutput
|
32 |
+
from ...modeling_tf_utils import TFModelInputType, TFPreTrainedModel, keras, shape_list, unpack_inputs
|
33 |
+
from ...tf_utils import flatten, functional_layernorm
|
34 |
+
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
35 |
+
from .configuration_sam import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
_CONFIG_FOR_DOC = "SamConfig"
|
41 |
+
_CHECKPOINT_FOR_DOC = "facebook/sam-vit-huge"
|
42 |
+
|
43 |
+
|
44 |
+
from ..deprecated._archive_maps import TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
45 |
+
|
46 |
+
|
47 |
+
@dataclass
|
48 |
+
class TFSamVisionEncoderOutput(ModelOutput):
|
49 |
+
"""
|
50 |
+
Base class for sam vision model's outputs that also contains image embeddings obtained by applying the projection
|
51 |
+
layer to the pooler_output.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
55 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
56 |
+
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
57 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
58 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
59 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
|
60 |
+
the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
61 |
+
|
62 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
63 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
64 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
65 |
+
sequence_length)`.
|
66 |
+
|
67 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
68 |
+
heads.
|
69 |
+
"""
|
70 |
+
|
71 |
+
image_embeds: tf.Tensor | None = None
|
72 |
+
last_hidden_state: tf.Tensor = None
|
73 |
+
hidden_states: Tuple[tf.Tensor, ...] | None = None
|
74 |
+
attentions: Tuple[tf.Tensor, ...] | None = None
|
75 |
+
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
class TFSamImageSegmentationOutput(ModelOutput):
|
79 |
+
"""
|
80 |
+
Base class for Segment-Anything model's output
|
81 |
+
|
82 |
+
Args:
|
83 |
+
iou_scores (`tf.Tensor` of shape `(batch_size, num_masks)`):
|
84 |
+
The iou scores of the predicted masks.
|
85 |
+
pred_masks (`tf.Tensor` of shape `(batch_size, num_masks, height, width)`):
|
86 |
+
The predicted low resolutions masks. Needs to be post-processed by the processor
|
87 |
+
vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
88 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
|
89 |
+
the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
90 |
+
|
91 |
+
Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs.
|
92 |
+
vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
93 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
94 |
+
sequence_length)`.
|
95 |
+
|
96 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
97 |
+
heads.
|
98 |
+
mask_decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
99 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
100 |
+
sequence_length)`.
|
101 |
+
|
102 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
103 |
+
heads.
|
104 |
+
"""
|
105 |
+
|
106 |
+
iou_scores: tf.Tensor = None
|
107 |
+
pred_masks: tf.Tensor = None
|
108 |
+
vision_hidden_states: Tuple[tf.Tensor, ...] | None = None
|
109 |
+
vision_attentions: Tuple[tf.Tensor, ...] | None = None
|
110 |
+
mask_decoder_attentions: Tuple[tf.Tensor, ...] | None = None
|
111 |
+
|
112 |
+
|
113 |
+
class TFSamPatchEmbeddings(keras.layers.Layer):
|
114 |
+
"""
|
115 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
116 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
117 |
+
Transformer.
|
118 |
+
"""
|
119 |
+
|
120 |
+
def __init__(self, config, **kwargs):
|
121 |
+
super().__init__(**kwargs)
|
122 |
+
image_size, patch_size = config.image_size, config.patch_size
|
123 |
+
num_channels, hidden_size = config.num_channels, config.hidden_size
|
124 |
+
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
125 |
+
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
126 |
+
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
127 |
+
self.image_size = image_size
|
128 |
+
self.patch_size = patch_size
|
129 |
+
self.num_channels = num_channels
|
130 |
+
self.num_patches = num_patches
|
131 |
+
|
132 |
+
self.projection = keras.layers.Conv2D(
|
133 |
+
hidden_size, kernel_size=patch_size, strides=patch_size, name="projection"
|
134 |
+
)
|
135 |
+
|
136 |
+
def call(self, pixel_values):
|
137 |
+
batch_size, num_channels, height, width = shape_list(pixel_values)
|
138 |
+
if num_channels != self.num_channels:
|
139 |
+
raise ValueError(
|
140 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
141 |
+
)
|
142 |
+
if height != self.image_size[0] or width != self.image_size[1]:
|
143 |
+
raise ValueError(
|
144 |
+
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
|
145 |
+
)
|
146 |
+
embeddings = self.projection(tf.transpose(pixel_values, perm=[0, 2, 3, 1]))
|
147 |
+
return embeddings
|
148 |
+
|
149 |
+
def build(self, input_shape=None):
|
150 |
+
if self.built:
|
151 |
+
return
|
152 |
+
self.built = True
|
153 |
+
if getattr(self, "projection", None) is not None:
|
154 |
+
with tf.name_scope(self.projection.name):
|
155 |
+
self.projection.build([None, None, None, self.num_channels])
|
156 |
+
|
157 |
+
|
158 |
+
class TFSamMLPBlock(keras.layers.Layer):
|
159 |
+
def __init__(self, config, **kwargs):
|
160 |
+
super().__init__(**kwargs)
|
161 |
+
self.lin1 = keras.layers.Dense(config.mlp_dim, name="lin1")
|
162 |
+
self.lin2 = keras.layers.Dense(config.hidden_size, name="lin2")
|
163 |
+
self.act = ACT2FN[config.hidden_act]
|
164 |
+
self.config = config
|
165 |
+
|
166 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
167 |
+
hidden_states = self.lin1(hidden_states)
|
168 |
+
hidden_states = self.act(hidden_states)
|
169 |
+
hidden_states = self.lin2(hidden_states)
|
170 |
+
return hidden_states
|
171 |
+
|
172 |
+
def build(self, input_shape=None):
|
173 |
+
if self.built:
|
174 |
+
return
|
175 |
+
self.built = True
|
176 |
+
if getattr(self, "lin1", None) is not None:
|
177 |
+
with tf.name_scope(self.lin1.name):
|
178 |
+
self.lin1.build([None, None, self.config.hidden_size])
|
179 |
+
if getattr(self, "lin2", None) is not None:
|
180 |
+
with tf.name_scope(self.lin2.name):
|
181 |
+
self.lin2.build([None, None, self.config.mlp_dim])
|
182 |
+
|
183 |
+
|
184 |
+
class TFSamLayerNorm(keras.layers.Layer):
|
185 |
+
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
186 |
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
|
187 |
+
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
|
188 |
+
"""
|
189 |
+
|
190 |
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last", **kwargs):
|
191 |
+
super().__init__(**kwargs)
|
192 |
+
self.eps = eps
|
193 |
+
self.data_format = data_format
|
194 |
+
self.normalized_shape = normalized_shape
|
195 |
+
if self.data_format not in ["channels_last", "channels_first"]:
|
196 |
+
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
|
197 |
+
|
198 |
+
def build(self, input_shape):
|
199 |
+
self.weight = self.add_weight(shape=self.normalized_shape, initializer="ones", name="weight")
|
200 |
+
self.bias = self.add_weight(shape=self.normalized_shape, initializer="zeros", name="bias")
|
201 |
+
super().build(input_shape)
|
202 |
+
|
203 |
+
def call(self, x: tf.Tensor) -> tf.Tensor:
|
204 |
+
if self.data_format == "channels_last":
|
205 |
+
x = functional_layernorm(x, weight=self.weight, bias=self.bias, epsilon=self.eps, axis=-1)
|
206 |
+
elif self.data_format == "channels_first":
|
207 |
+
x = functional_layernorm(x, weight=self.weight, bias=self.bias, epsilon=self.eps, axis=1)
|
208 |
+
return x
|
209 |
+
|
210 |
+
|
211 |
+
class TFSamAttention(keras.layers.Layer):
|
212 |
+
"""
|
213 |
+
SAM's attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and
|
214 |
+
values.
|
215 |
+
"""
|
216 |
+
|
217 |
+
def __init__(self, config, downsample_rate=None, **kwargs):
|
218 |
+
super().__init__(**kwargs)
|
219 |
+
self.hidden_size = config.hidden_size
|
220 |
+
|
221 |
+
downsample_rate = config.attention_downsample_rate if downsample_rate is None else downsample_rate
|
222 |
+
|
223 |
+
self.internal_dim = config.hidden_size // downsample_rate
|
224 |
+
self.num_attention_heads = config.num_attention_heads
|
225 |
+
if self.internal_dim % config.num_attention_heads != 0:
|
226 |
+
raise ValueError("num_attention_heads must divide hidden_size.")
|
227 |
+
|
228 |
+
self.q_proj = keras.layers.Dense(self.internal_dim, name="q_proj")
|
229 |
+
self.k_proj = keras.layers.Dense(self.internal_dim, name="k_proj")
|
230 |
+
self.v_proj = keras.layers.Dense(self.internal_dim, name="v_proj")
|
231 |
+
self.out_proj = keras.layers.Dense(self.hidden_size, name="out_proj")
|
232 |
+
|
233 |
+
def _separate_heads(self, hidden_states: tf.Tensor, num_attention_heads: int) -> tf.Tensor:
|
234 |
+
batch, point_batch_size, n_tokens, channel = shape_list(hidden_states)
|
235 |
+
c_per_head = channel // num_attention_heads
|
236 |
+
hidden_states = tf.reshape(
|
237 |
+
hidden_states, (batch * point_batch_size, n_tokens, num_attention_heads, c_per_head)
|
238 |
+
)
|
239 |
+
return tf.transpose(hidden_states, perm=[0, 2, 1, 3])
|
240 |
+
|
241 |
+
def _recombine_heads(self, hidden_states: tf.Tensor, point_batch_size: int) -> tf.Tensor:
|
242 |
+
batch, n_heads, n_tokens, c_per_head = shape_list(hidden_states)
|
243 |
+
hidden_states = tf.transpose(hidden_states, perm=[0, 2, 1, 3])
|
244 |
+
return tf.reshape(
|
245 |
+
hidden_states,
|
246 |
+
(batch // tf.reduce_max([1, point_batch_size]), point_batch_size, n_tokens, n_heads * c_per_head),
|
247 |
+
)
|
248 |
+
|
249 |
+
def call(self, query: tf.Tensor, key: tf.Tensor, value: tf.Tensor) -> tf.Tensor:
|
250 |
+
# Input projections
|
251 |
+
query = self.q_proj(query)
|
252 |
+
key = self.k_proj(key)
|
253 |
+
value = self.v_proj(value)
|
254 |
+
|
255 |
+
point_batch_size = shape_list(query)[1]
|
256 |
+
# Separate into heads
|
257 |
+
query = self._separate_heads(query, self.num_attention_heads)
|
258 |
+
key = self._separate_heads(key, self.num_attention_heads)
|
259 |
+
value = self._separate_heads(value, self.num_attention_heads)
|
260 |
+
|
261 |
+
# SamAttention
|
262 |
+
_, _, _, c_per_head = shape_list(query)
|
263 |
+
attn = tf.matmul(
|
264 |
+
query, tf.transpose(key, perm=[0, 1, 3, 2])
|
265 |
+
) # batch_size * point_batch_size x N_heads x N_tokens x N_tokens
|
266 |
+
attn = attn / tf.math.sqrt(float(c_per_head))
|
267 |
+
attn = tf.nn.softmax(attn, axis=-1)
|
268 |
+
|
269 |
+
# Get output
|
270 |
+
out = tf.matmul(attn, value)
|
271 |
+
out = self._recombine_heads(out, point_batch_size)
|
272 |
+
out = self.out_proj(out)
|
273 |
+
|
274 |
+
return out
|
275 |
+
|
276 |
+
def build(self, input_shape=None):
|
277 |
+
if self.built:
|
278 |
+
return
|
279 |
+
self.built = True
|
280 |
+
if getattr(self, "q_proj", None) is not None:
|
281 |
+
with tf.name_scope(self.q_proj.name):
|
282 |
+
self.q_proj.build([None, None, self.hidden_size])
|
283 |
+
if getattr(self, "k_proj", None) is not None:
|
284 |
+
with tf.name_scope(self.k_proj.name):
|
285 |
+
self.k_proj.build([None, None, self.hidden_size])
|
286 |
+
if getattr(self, "v_proj", None) is not None:
|
287 |
+
with tf.name_scope(self.v_proj.name):
|
288 |
+
self.v_proj.build([None, None, self.hidden_size])
|
289 |
+
if getattr(self, "out_proj", None) is not None:
|
290 |
+
with tf.name_scope(self.out_proj.name):
|
291 |
+
self.out_proj.build([None, None, self.internal_dim])
|
292 |
+
|
293 |
+
|
294 |
+
class TFSamTwoWayAttentionBlock(keras.layers.Layer):
|
295 |
+
def __init__(self, config, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False, **kwargs):
|
296 |
+
"""
|
297 |
+
A transformer block with four layers:
|
298 |
+
(1) self-attention of sparse inputs (2) cross attention of sparse inputs -> dense inputs (3) mlp block on
|
299 |
+
sparse inputs (4) cross attention of dense inputs -> sparse inputs
|
300 |
+
|
301 |
+
Arguments:
|
302 |
+
config (`SamMaskDecoderConfig`):
|
303 |
+
The configuration file used to instantiate the block
|
304 |
+
attention_downsample_rate (*optionalk*, int, defaults to 2):
|
305 |
+
The downsample ratio of the block used to reduce the inner dim of the attention.
|
306 |
+
skip_first_layer_pe (*optional*, bool, defaults to `False`):
|
307 |
+
Whether or not to skip the addition of the query_point_embedding on the first layer.
|
308 |
+
"""
|
309 |
+
super().__init__(**kwargs)
|
310 |
+
|
311 |
+
self.hidden_size = config.hidden_size
|
312 |
+
self.layer_norm_eps = config.layer_norm_eps
|
313 |
+
|
314 |
+
self.self_attn = TFSamAttention(config, downsample_rate=1, name="self_attn")
|
315 |
+
self.layer_norm1 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm1")
|
316 |
+
|
317 |
+
self.cross_attn_token_to_image = TFSamAttention(
|
318 |
+
config, downsample_rate=attention_downsample_rate, name="cross_attn_token_to_image"
|
319 |
+
)
|
320 |
+
self.layer_norm2 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm2")
|
321 |
+
|
322 |
+
self.mlp = TFSamMLPBlock(config, name="mlp")
|
323 |
+
self.layer_norm3 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm3")
|
324 |
+
|
325 |
+
self.layer_norm4 = keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm4")
|
326 |
+
self.cross_attn_image_to_token = TFSamAttention(
|
327 |
+
config, downsample_rate=attention_downsample_rate, name="cross_attn_image_to_token"
|
328 |
+
)
|
329 |
+
|
330 |
+
self.skip_first_layer_pe = skip_first_layer_pe
|
331 |
+
|
332 |
+
def call(
|
333 |
+
self,
|
334 |
+
queries: tf.Tensor,
|
335 |
+
keys: tf.Tensor,
|
336 |
+
query_point_embedding: tf.Tensor,
|
337 |
+
key_point_embedding: tf.Tensor,
|
338 |
+
output_attentions: bool = False,
|
339 |
+
):
|
340 |
+
# Self attention block
|
341 |
+
if self.skip_first_layer_pe:
|
342 |
+
queries = self.self_attn(query=queries, key=queries, value=queries)
|
343 |
+
else:
|
344 |
+
query = queries + query_point_embedding
|
345 |
+
attn_out = self.self_attn(query=query, key=query, value=queries)
|
346 |
+
queries = queries + attn_out
|
347 |
+
queries = self.layer_norm1(queries)
|
348 |
+
|
349 |
+
# Cross attention block, tokens attending to image embedding
|
350 |
+
query = queries + query_point_embedding
|
351 |
+
key = keys + key_point_embedding
|
352 |
+
|
353 |
+
attn_out = self.cross_attn_token_to_image(query=query, key=key, value=keys)
|
354 |
+
queries = queries + attn_out
|
355 |
+
|
356 |
+
queries = self.layer_norm2(queries)
|
357 |
+
|
358 |
+
# MLP block
|
359 |
+
mlp_out = self.mlp(queries)
|
360 |
+
queries = queries + mlp_out
|
361 |
+
queries = self.layer_norm3(queries)
|
362 |
+
|
363 |
+
# Cross attention block, image embedding attending to tokens
|
364 |
+
query = queries + query_point_embedding
|
365 |
+
key = keys + key_point_embedding
|
366 |
+
|
367 |
+
attn_out = self.cross_attn_image_to_token(query=key, key=query, value=queries)
|
368 |
+
keys = keys + attn_out
|
369 |
+
|
370 |
+
keys = self.layer_norm4(keys)
|
371 |
+
|
372 |
+
outputs = (queries, keys)
|
373 |
+
|
374 |
+
if output_attentions:
|
375 |
+
outputs = outputs + (attn_out,)
|
376 |
+
else:
|
377 |
+
outputs = outputs + (None,)
|
378 |
+
|
379 |
+
return outputs
|
380 |
+
|
381 |
+
def build(self, input_shape=None):
|
382 |
+
if self.built:
|
383 |
+
return
|
384 |
+
self.built = True
|
385 |
+
if getattr(self, "self_attn", None) is not None:
|
386 |
+
with tf.name_scope(self.self_attn.name):
|
387 |
+
self.self_attn.build(None)
|
388 |
+
if getattr(self, "layer_norm1", None) is not None:
|
389 |
+
with tf.name_scope(self.layer_norm1.name):
|
390 |
+
self.layer_norm1.build([None, None, None, self.hidden_size])
|
391 |
+
if getattr(self, "cross_attn_token_to_image", None) is not None:
|
392 |
+
with tf.name_scope(self.cross_attn_token_to_image.name):
|
393 |
+
self.cross_attn_token_to_image.build(None)
|
394 |
+
if getattr(self, "layer_norm2", None) is not None:
|
395 |
+
with tf.name_scope(self.layer_norm2.name):
|
396 |
+
self.layer_norm2.build([None, None, None, self.hidden_size])
|
397 |
+
if getattr(self, "mlp", None) is not None:
|
398 |
+
with tf.name_scope(self.mlp.name):
|
399 |
+
self.mlp.build(None)
|
400 |
+
if getattr(self, "layer_norm3", None) is not None:
|
401 |
+
with tf.name_scope(self.layer_norm3.name):
|
402 |
+
self.layer_norm3.build([None, None, None, self.hidden_size])
|
403 |
+
if getattr(self, "layer_norm4", None) is not None:
|
404 |
+
with tf.name_scope(self.layer_norm4.name):
|
405 |
+
self.layer_norm4.build([None, None, None, self.hidden_size])
|
406 |
+
if getattr(self, "cross_attn_image_to_token", None) is not None:
|
407 |
+
with tf.name_scope(self.cross_attn_image_to_token.name):
|
408 |
+
self.cross_attn_image_to_token.build(None)
|
409 |
+
|
410 |
+
|
411 |
+
class TFSamTwoWayTransformer(keras.layers.Layer):
|
412 |
+
def __init__(self, config: SamMaskDecoderConfig, **kwargs):
|
413 |
+
super().__init__(**kwargs)
|
414 |
+
self.config = config
|
415 |
+
|
416 |
+
self.num_hidden_layers = config.num_hidden_layers
|
417 |
+
self.layers = []
|
418 |
+
|
419 |
+
for i in range(self.num_hidden_layers):
|
420 |
+
self.layers.append(TFSamTwoWayAttentionBlock(config, skip_first_layer_pe=(i == 0), name=f"layers_._{i}"))
|
421 |
+
|
422 |
+
self.final_attn_token_to_image = TFSamAttention(config, name="final_attn_token_to_image")
|
423 |
+
self.layer_norm_final_attn = keras.layers.LayerNormalization(
|
424 |
+
epsilon=config.layer_norm_eps, name="layer_norm_final_attn"
|
425 |
+
)
|
426 |
+
|
427 |
+
def call(
|
428 |
+
self,
|
429 |
+
point_embeddings: tf.Tensor,
|
430 |
+
image_embeddings: tf.Tensor,
|
431 |
+
image_positional_embeddings: tf.Tensor,
|
432 |
+
output_attentions: Optional[bool] = None,
|
433 |
+
output_hidden_states: Optional[bool] = None,
|
434 |
+
return_dict: Optional[bool] = None,
|
435 |
+
) -> Union[Tuple, TFBaseModelOutput]:
|
436 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
437 |
+
output_hidden_states = (
|
438 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
439 |
+
)
|
440 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
441 |
+
|
442 |
+
all_attentions = ()
|
443 |
+
|
444 |
+
if image_embeddings is None:
|
445 |
+
raise ValueError("You have to specify an image_embedding")
|
446 |
+
|
447 |
+
image_embeddings = tf.transpose(flatten(image_embeddings, 2), perm=(0, 2, 1))[:, None]
|
448 |
+
image_positional_embeddings = tf.transpose(flatten(image_positional_embeddings, 2), (0, 2, 1))[:, None]
|
449 |
+
|
450 |
+
# Prepare queries
|
451 |
+
queries = point_embeddings
|
452 |
+
keys = image_embeddings
|
453 |
+
|
454 |
+
# Apply transformer blocks and final layernorm
|
455 |
+
for layer in self.layers:
|
456 |
+
queries, keys, attention_outputs = layer(
|
457 |
+
queries=queries,
|
458 |
+
keys=keys,
|
459 |
+
query_point_embedding=point_embeddings,
|
460 |
+
key_point_embedding=image_positional_embeddings,
|
461 |
+
output_attentions=output_attentions,
|
462 |
+
)
|
463 |
+
|
464 |
+
if output_attentions:
|
465 |
+
all_attentions = all_attentions + (attention_outputs,)
|
466 |
+
|
467 |
+
# Apply the final attenion layer from the points to the image
|
468 |
+
query = queries + point_embeddings
|
469 |
+
key = keys + image_positional_embeddings
|
470 |
+
|
471 |
+
attn_out = self.final_attn_token_to_image(query=query, key=key, value=keys)
|
472 |
+
|
473 |
+
queries = queries + attn_out
|
474 |
+
queries = self.layer_norm_final_attn(queries)
|
475 |
+
return queries, keys, all_attentions
|
476 |
+
|
477 |
+
def build(self, input_shape=None):
|
478 |
+
if self.built:
|
479 |
+
return
|
480 |
+
self.built = True
|
481 |
+
if getattr(self, "final_attn_token_to_image", None) is not None:
|
482 |
+
with tf.name_scope(self.final_attn_token_to_image.name):
|
483 |
+
self.final_attn_token_to_image.build(None)
|
484 |
+
if getattr(self, "layer_norm_final_attn", None) is not None:
|
485 |
+
with tf.name_scope(self.layer_norm_final_attn.name):
|
486 |
+
self.layer_norm_final_attn.build([None, None, None, self.config.hidden_size])
|
487 |
+
for layer in self.layers:
|
488 |
+
with tf.name_scope(layer.name):
|
489 |
+
layer.build(None)
|
490 |
+
|
491 |
+
|
492 |
+
class TFSamFeedForward(keras.layers.Layer):
|
493 |
+
def __init__(
|
494 |
+
self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False, **kwargs
|
495 |
+
):
|
496 |
+
super().__init__(**kwargs)
|
497 |
+
self.num_layers = num_layers
|
498 |
+
self.activation = keras.layers.ReLU()
|
499 |
+
self.proj_in = keras.layers.Dense(hidden_dim, input_shape=(input_dim,), name="proj_in")
|
500 |
+
self.proj_out = keras.layers.Dense(output_dim, input_shape=(hidden_dim,), name="proj_out")
|
501 |
+
self.layers = [
|
502 |
+
keras.layers.Dense(hidden_dim, input_shape=(hidden_dim,), name=f"layers_._{i}")
|
503 |
+
for i in range(num_layers - 2)
|
504 |
+
]
|
505 |
+
self.sigmoid_output = sigmoid_output
|
506 |
+
self.hidden_dim = hidden_dim
|
507 |
+
self.input_dim = input_dim
|
508 |
+
|
509 |
+
def call(self, hidden_states):
|
510 |
+
hidden_states = self.proj_in(hidden_states)
|
511 |
+
hidden_states = self.activation(hidden_states)
|
512 |
+
for layer in self.layers:
|
513 |
+
hidden_states = self.activation(layer(hidden_states))
|
514 |
+
|
515 |
+
hidden_states = self.proj_out(hidden_states)
|
516 |
+
if self.sigmoid_output:
|
517 |
+
hidden_states = tf.sigmoid(hidden_states)
|
518 |
+
return hidden_states
|
519 |
+
|
520 |
+
def build(self, input_shape=None):
|
521 |
+
if self.built:
|
522 |
+
return
|
523 |
+
self.built = True
|
524 |
+
if getattr(self, "proj_in", None) is not None:
|
525 |
+
with tf.name_scope(self.proj_in.name):
|
526 |
+
self.proj_in.build([None, None, self.input_dim])
|
527 |
+
if getattr(self, "proj_out", None) is not None:
|
528 |
+
with tf.name_scope(self.proj_out.name):
|
529 |
+
self.proj_out.build([None, None, self.hidden_dim])
|
530 |
+
if getattr(self, "layers", None) is not None:
|
531 |
+
for layer in self.layers:
|
532 |
+
with tf.name_scope(layer.name):
|
533 |
+
layer.build([None, None, self.hidden_dim])
|
534 |
+
|
535 |
+
|
536 |
+
class TFSamMaskDecoder(keras.layers.Layer):
|
537 |
+
def __init__(self, config: SamMaskDecoderConfig, **kwargs):
|
538 |
+
super().__init__(**kwargs)
|
539 |
+
|
540 |
+
self.hidden_size = config.hidden_size
|
541 |
+
|
542 |
+
self.num_multimask_outputs = config.num_multimask_outputs
|
543 |
+
self.num_mask_tokens = config.num_multimask_outputs + 1
|
544 |
+
|
545 |
+
self.transformer = TFSamTwoWayTransformer(config, name="transformer")
|
546 |
+
|
547 |
+
self.upscale_conv1 = keras.layers.Conv2DTranspose(
|
548 |
+
self.hidden_size // 4, kernel_size=2, strides=2, name="upscale_conv1", data_format="channels_first"
|
549 |
+
)
|
550 |
+
self.upscale_conv2 = keras.layers.Conv2DTranspose(
|
551 |
+
self.hidden_size // 8, kernel_size=2, strides=2, name="upscale_conv2", data_format="channels_first"
|
552 |
+
)
|
553 |
+
self.upscale_layer_norm = TFSamLayerNorm(
|
554 |
+
self.hidden_size // 4, data_format="channels_first", name="upscale_layer_norm"
|
555 |
+
)
|
556 |
+
self.activation = tf.nn.gelu
|
557 |
+
|
558 |
+
mlps_list = []
|
559 |
+
for i in range(self.num_mask_tokens):
|
560 |
+
mlps_list += [
|
561 |
+
TFSamFeedForward(
|
562 |
+
self.hidden_size,
|
563 |
+
self.hidden_size,
|
564 |
+
self.hidden_size // 8,
|
565 |
+
3,
|
566 |
+
name=f"output_hypernetworks_mlps_._{i}",
|
567 |
+
)
|
568 |
+
]
|
569 |
+
self.output_hypernetworks_mlps = mlps_list
|
570 |
+
|
571 |
+
self.iou_prediction_head = TFSamFeedForward(
|
572 |
+
self.hidden_size,
|
573 |
+
config.iou_head_hidden_dim,
|
574 |
+
self.num_mask_tokens,
|
575 |
+
config.iou_head_depth,
|
576 |
+
name="iou_prediction_head",
|
577 |
+
)
|
578 |
+
|
579 |
+
def build(self, input_shape=None):
|
580 |
+
if self.built:
|
581 |
+
return
|
582 |
+
self.built = True
|
583 |
+
self.iou_token = self.add_weight(shape=(1, self.hidden_size), name="iou_token.weight", trainable=True)
|
584 |
+
self.mask_tokens = self.add_weight(
|
585 |
+
shape=(self.num_mask_tokens, self.hidden_size), name="mask_tokens.weight", trainable=True
|
586 |
+
)
|
587 |
+
|
588 |
+
if getattr(self, "transformer", None) is not None:
|
589 |
+
with tf.name_scope(self.transformer.name):
|
590 |
+
self.transformer.build(None)
|
591 |
+
if getattr(self, "upscale_conv1", None) is not None:
|
592 |
+
with tf.name_scope(self.upscale_conv1.name):
|
593 |
+
self.upscale_conv1.build([None, self.hidden_size, None, None])
|
594 |
+
if getattr(self, "upscale_conv2", None) is not None:
|
595 |
+
with tf.name_scope(self.upscale_conv2.name):
|
596 |
+
self.upscale_conv2.build([None, self.hidden_size // 4, None, None])
|
597 |
+
if getattr(self, "upscale_layer_norm", None) is not None:
|
598 |
+
with tf.name_scope(self.upscale_layer_norm.name):
|
599 |
+
self.upscale_layer_norm.build(None)
|
600 |
+
if getattr(self, "iou_prediction_head", None) is not None:
|
601 |
+
with tf.name_scope(self.iou_prediction_head.name):
|
602 |
+
self.iou_prediction_head.build(None)
|
603 |
+
for mlp in self.output_hypernetworks_mlps:
|
604 |
+
with tf.name_scope(mlp.name):
|
605 |
+
mlp.build(None)
|
606 |
+
|
607 |
+
def call(
|
608 |
+
self,
|
609 |
+
image_embeddings: tf.Tensor,
|
610 |
+
image_positional_embeddings: tf.Tensor,
|
611 |
+
sparse_prompt_embeddings: tf.Tensor,
|
612 |
+
dense_prompt_embeddings: tf.Tensor,
|
613 |
+
multimask_output: bool,
|
614 |
+
output_attentions: Optional[bool] = None,
|
615 |
+
) -> Tuple[tf.Tensor, tf.Tensor]:
|
616 |
+
batch_size, num_channels, height, width = shape_list(image_embeddings)
|
617 |
+
point_batch_size = tf.math.maximum(1, tf.shape(sparse_prompt_embeddings)[1])
|
618 |
+
|
619 |
+
output_tokens = tf.concat([self.iou_token, self.mask_tokens], axis=0) # Should be (1, 32) + (4, 32) = (5, 32)
|
620 |
+
output_tokens = tf.tile(
|
621 |
+
output_tokens[None, None, :], [batch_size, point_batch_size, 1, 1]
|
622 |
+
) # Should be (batch_size, point_size, 5, 32)
|
623 |
+
|
624 |
+
# Matt: The original Torch code checked that the sum of sparse_prompt_embeddings equalled 0. However, this only
|
625 |
+
# happens when the sparse prompt embeddings are an empty tensor with shape[1] == 0. I replaced
|
626 |
+
# it with an explicit shape check to avoid data-dependent control flow which breaks XLA.
|
627 |
+
if shape_list(sparse_prompt_embeddings)[1] != 0:
|
628 |
+
tokens = tf.concat((output_tokens, sparse_prompt_embeddings), axis=2)
|
629 |
+
else:
|
630 |
+
tokens = output_tokens
|
631 |
+
point_embeddings = tf.cast(tokens, self.iou_token.dtype)
|
632 |
+
|
633 |
+
image_embeddings = image_embeddings + dense_prompt_embeddings
|
634 |
+
image_embeddings = tf.repeat(image_embeddings, point_batch_size, axis=0)
|
635 |
+
image_positional_embeddings = tf.repeat(image_positional_embeddings, point_batch_size, axis=0)
|
636 |
+
|
637 |
+
point_embedding, image_embeddings, attentions = self.transformer(
|
638 |
+
point_embeddings=point_embeddings,
|
639 |
+
image_embeddings=image_embeddings,
|
640 |
+
image_positional_embeddings=image_positional_embeddings,
|
641 |
+
output_attentions=output_attentions,
|
642 |
+
)
|
643 |
+
iou_token_out = point_embedding[:, :, 0, :]
|
644 |
+
mask_tokens_out = point_embedding[:, :, 1 : (1 + self.num_mask_tokens), :]
|
645 |
+
|
646 |
+
image_embeddings = tf.transpose(image_embeddings, perm=(0, 1, 3, 2))
|
647 |
+
image_embeddings = tf.reshape(image_embeddings, [batch_size * point_batch_size, num_channels, height, width])
|
648 |
+
|
649 |
+
upscaled_embedding = self.upscale_conv1(image_embeddings)
|
650 |
+
upscaled_embedding = self.activation(self.upscale_layer_norm(upscaled_embedding))
|
651 |
+
upscaled_embedding = self.activation(self.upscale_conv2(upscaled_embedding))
|
652 |
+
|
653 |
+
hyper_in_list = []
|
654 |
+
for i in range(self.num_mask_tokens):
|
655 |
+
current_mlp = self.output_hypernetworks_mlps[i]
|
656 |
+
hyper_in_list += [current_mlp(mask_tokens_out[:, :, i, :])]
|
657 |
+
hyper_in = tf.stack(hyper_in_list, axis=2)
|
658 |
+
|
659 |
+
_, num_channels, height, width = shape_list(upscaled_embedding)
|
660 |
+
upscaled_embedding = tf.reshape(
|
661 |
+
upscaled_embedding, [batch_size, point_batch_size, num_channels, height * width]
|
662 |
+
)
|
663 |
+
masks = tf.reshape(hyper_in @ upscaled_embedding, [batch_size, point_batch_size, -1, height, width])
|
664 |
+
|
665 |
+
iou_pred = self.iou_prediction_head(iou_token_out)
|
666 |
+
|
667 |
+
if multimask_output:
|
668 |
+
mask_slice = slice(1, None)
|
669 |
+
else:
|
670 |
+
mask_slice = slice(0, 1)
|
671 |
+
masks = masks[:, :, mask_slice, :, :]
|
672 |
+
iou_pred = iou_pred[:, :, mask_slice]
|
673 |
+
|
674 |
+
outputs = (masks, iou_pred)
|
675 |
+
|
676 |
+
if output_attentions:
|
677 |
+
outputs = outputs + (attentions,)
|
678 |
+
else:
|
679 |
+
outputs = outputs + (None,)
|
680 |
+
|
681 |
+
return outputs
|
682 |
+
|
683 |
+
|
684 |
+
class TFSamPositionalEmbedding(keras.layers.Layer):
|
685 |
+
def __init__(self, config, **kwargs):
|
686 |
+
super().__init__(**kwargs)
|
687 |
+
self.scale = config.hidden_size // 2
|
688 |
+
self.config = config
|
689 |
+
|
690 |
+
def build(self, input_shape):
|
691 |
+
# TODO Matt: What is going on here? Why is a non-trainable weight randomly initialized?
|
692 |
+
self.positional_embedding = self.add_weight(
|
693 |
+
name="positional_embedding",
|
694 |
+
shape=(2, self.config.num_pos_feats),
|
695 |
+
initializer=keras.initializers.RandomNormal(mean=0.0, stddev=self.scale),
|
696 |
+
trainable=False,
|
697 |
+
)
|
698 |
+
super().build(input_shape)
|
699 |
+
|
700 |
+
def call(self, input_coords, input_shape=None):
|
701 |
+
"""Positionally encode points that are normalized to [0,1]."""
|
702 |
+
coordinates = tf.identity(input_coords)
|
703 |
+
|
704 |
+
if input_shape is not None:
|
705 |
+
coordinates = tf.stack(
|
706 |
+
[
|
707 |
+
tf.cast(coordinates[:, :, :, 0], tf.float32) / input_shape[1],
|
708 |
+
tf.cast(coordinates[:, :, :, 1], tf.float32) / input_shape[0],
|
709 |
+
],
|
710 |
+
axis=-1,
|
711 |
+
)
|
712 |
+
|
713 |
+
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
714 |
+
coordinates = 2 * coordinates - 1
|
715 |
+
coordinates = tf.cast(coordinates, self.positional_embedding.dtype)
|
716 |
+
coordinates = tf.matmul(coordinates, self.positional_embedding)
|
717 |
+
coordinates = 2 * np.pi * coordinates
|
718 |
+
# outputs d_1 x ... x d_n x channel shape
|
719 |
+
return tf.concat([tf.sin(coordinates), tf.cos(coordinates)], axis=-1)
|
720 |
+
|
721 |
+
|
722 |
+
class TFSamMaskEmbedding(keras.layers.Layer):
|
723 |
+
def __init__(self, config: SamPromptEncoderConfig, **kwargs):
|
724 |
+
super().__init__(**kwargs)
|
725 |
+
self.mask_input_channels = config.mask_input_channels // 4
|
726 |
+
self.activation = ACT2FN[config.hidden_act]
|
727 |
+
self.conv1 = keras.layers.Conv2D(self.mask_input_channels, kernel_size=2, strides=2, name="conv1")
|
728 |
+
self.conv2 = keras.layers.Conv2D(config.mask_input_channels, kernel_size=2, strides=2, name="conv2")
|
729 |
+
self.conv3 = keras.layers.Conv2D(config.hidden_size, kernel_size=1, name="conv3")
|
730 |
+
self.layer_norm1 = TFSamLayerNorm(self.mask_input_channels, config.layer_norm_eps, name="layer_norm1")
|
731 |
+
self.layer_norm2 = TFSamLayerNorm(self.mask_input_channels * 4, config.layer_norm_eps, name="layer_norm2")
|
732 |
+
self.config = config
|
733 |
+
|
734 |
+
def call(self, masks):
|
735 |
+
masks = tf.transpose(masks, perm=(0, 2, 3, 1)) # Convert to channels-last
|
736 |
+
hidden_states = self.conv1(masks)
|
737 |
+
hidden_states = self.layer_norm1(hidden_states)
|
738 |
+
hidden_states = self.activation(hidden_states)
|
739 |
+
|
740 |
+
hidden_states = self.conv2(hidden_states)
|
741 |
+
hidden_states = self.layer_norm2(hidden_states)
|
742 |
+
hidden_states = self.activation(hidden_states)
|
743 |
+
dense_embeddings = self.conv3(hidden_states)
|
744 |
+
dense_embeddings = tf.transpose(dense_embeddings, perm=(0, 3, 1, 2)) # Convert back to channels-first
|
745 |
+
return dense_embeddings
|
746 |
+
|
747 |
+
def build(self, input_shape=None):
|
748 |
+
# This class needs an explicit build method because it isn't called with the standard dummy inputs
|
749 |
+
if self.built:
|
750 |
+
return
|
751 |
+
self.built = True
|
752 |
+
with tf.name_scope("conv1"):
|
753 |
+
self.conv1.build([None, None, None, 1])
|
754 |
+
with tf.name_scope("conv2"):
|
755 |
+
self.conv2.build([None, None, None, self.mask_input_channels])
|
756 |
+
with tf.name_scope("conv3"):
|
757 |
+
self.conv3.build([None, None, None, self.mask_input_channels * 4])
|
758 |
+
with tf.name_scope("layer_norm1"):
|
759 |
+
self.layer_norm1.build([None, None, None, self.mask_input_channels])
|
760 |
+
with tf.name_scope("layer_norm2"):
|
761 |
+
self.layer_norm2.build([None, None, None, self.mask_input_channels * 4])
|
762 |
+
|
763 |
+
|
764 |
+
class TFSamPromptEncoder(keras.layers.Layer):
|
765 |
+
def __init__(self, config: SamPromptEncoderConfig, shared_patch_embedding, **kwargs):
|
766 |
+
super().__init__(**kwargs)
|
767 |
+
self.shared_embedding = shared_patch_embedding
|
768 |
+
self.mask_embed = TFSamMaskEmbedding(config, name="mask_embed")
|
769 |
+
self.no_mask_embed = None
|
770 |
+
|
771 |
+
self.image_embedding_size = (config.image_embedding_size, config.image_embedding_size)
|
772 |
+
self.input_image_size = config.image_size
|
773 |
+
|
774 |
+
self.point_embed = []
|
775 |
+
self.hidden_size = config.hidden_size
|
776 |
+
self.not_a_point_embed = None
|
777 |
+
self.config = config
|
778 |
+
|
779 |
+
def build(self, input_shape=None):
|
780 |
+
self.no_mask_embed = self.add_weight(
|
781 |
+
name="no_mask_embed.weight",
|
782 |
+
shape=(1, self.hidden_size),
|
783 |
+
initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.02),
|
784 |
+
trainable=True,
|
785 |
+
)
|
786 |
+
self.point_embed = [
|
787 |
+
self.add_weight(
|
788 |
+
name=f"point_embed_._{i}.weight",
|
789 |
+
shape=(1, self.hidden_size),
|
790 |
+
initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.02),
|
791 |
+
trainable=True,
|
792 |
+
)
|
793 |
+
for i in range(self.config.num_point_embeddings)
|
794 |
+
]
|
795 |
+
self.not_a_point_embed = self.add_weight(
|
796 |
+
name="not_a_point_embed.weight",
|
797 |
+
shape=(1, self.hidden_size),
|
798 |
+
initializer=keras.initializers.RandomNormal(mean=0.0, stddev=0.02),
|
799 |
+
trainable=True,
|
800 |
+
)
|
801 |
+
with tf.name_scope("mask_embed"):
|
802 |
+
# We must explicitly build the mask embed because it isn't touched by the standard dummy inputs
|
803 |
+
self.mask_embed.build(
|
804 |
+
(None, self.config.mask_input_channels, self.config.image_size, self.config.image_size)
|
805 |
+
)
|
806 |
+
|
807 |
+
if self.built:
|
808 |
+
return
|
809 |
+
self.built = True
|
810 |
+
if getattr(self, "mask_embed", None) is not None:
|
811 |
+
with tf.name_scope(self.mask_embed.name):
|
812 |
+
self.mask_embed.build(None)
|
813 |
+
|
814 |
+
def _embed_points(self, points: tf.Tensor, labels: tf.Tensor, pad: bool) -> tf.Tensor:
|
815 |
+
"""Embeds point prompts."""
|
816 |
+
points = points + 0.5 # Shift to center of pixel
|
817 |
+
if pad:
|
818 |
+
target_point_shape = (shape_list(points)[0], shape_list(points)[1], 1, shape_list(points)[-1])
|
819 |
+
target_labels_shape = (shape_list(points)[0], shape_list(points)[1], 1)
|
820 |
+
padding_point = tf.zeros(target_point_shape, dtype=points.dtype)
|
821 |
+
padding_label = -tf.ones(target_labels_shape, dtype=labels.dtype)
|
822 |
+
points = tf.concat([points, padding_point], axis=2)
|
823 |
+
labels = tf.concat([labels, padding_label], axis=2)
|
824 |
+
input_shape = (self.input_image_size, self.input_image_size)
|
825 |
+
point_embedding = self.shared_embedding(points, input_shape)
|
826 |
+
|
827 |
+
point_embedding = tf.where(labels[..., None] == -1, self.not_a_point_embed[0], point_embedding)
|
828 |
+
|
829 |
+
point_embedding = tf.where(
|
830 |
+
labels[..., None] != -10,
|
831 |
+
point_embedding,
|
832 |
+
tf.zeros_like(point_embedding),
|
833 |
+
)
|
834 |
+
point_embedding = tf.where(
|
835 |
+
(labels == 0)[:, :, :, None], point_embedding + self.point_embed[0], point_embedding
|
836 |
+
)
|
837 |
+
point_embedding = tf.where(
|
838 |
+
(labels == 1)[:, :, :, None], point_embedding + self.point_embed[1], point_embedding
|
839 |
+
)
|
840 |
+
return point_embedding
|
841 |
+
|
842 |
+
def _embed_boxes(self, boxes: tf.Tensor) -> tf.Tensor:
|
843 |
+
"""Embeds box prompts."""
|
844 |
+
boxes = boxes + 0.5 # Shift to center of pixel
|
845 |
+
batch_size, nb_boxes = shape_list(boxes)[:2]
|
846 |
+
coords = tf.reshape(boxes, (batch_size, nb_boxes, 2, 2))
|
847 |
+
input_shape = (self.input_image_size, self.input_image_size)
|
848 |
+
corner_embedding = self.shared_embedding(coords, input_shape)
|
849 |
+
corner_embedding += tf.where(
|
850 |
+
tf.range(shape_list(corner_embedding)[2])[None, None, :, None] == 0,
|
851 |
+
self.point_embed[2][0],
|
852 |
+
self.point_embed[3][0],
|
853 |
+
)
|
854 |
+
return corner_embedding
|
855 |
+
|
856 |
+
def call(
|
857 |
+
self,
|
858 |
+
batch_size: Optional[int],
|
859 |
+
input_points: Optional[Tuple[tf.Tensor, tf.Tensor]],
|
860 |
+
input_labels: tf.Tensor | None,
|
861 |
+
input_boxes: tf.Tensor | None,
|
862 |
+
input_masks: tf.Tensor | None,
|
863 |
+
) -> Tuple[tf.Tensor, tf.Tensor]:
|
864 |
+
"""
|
865 |
+
Embeds different types of prompts, returning both sparse and dense embeddings.
|
866 |
+
|
867 |
+
Args:
|
868 |
+
points (`tf.Tensor`, *optional*):
|
869 |
+
point coordinates and labels to embed.
|
870 |
+
boxes (`tf.Tensor`, *optional*):
|
871 |
+
boxes to embed
|
872 |
+
masks (`tf.Tensor`, *optional*):
|
873 |
+
masks to embed
|
874 |
+
"""
|
875 |
+
sparse_embeddings = None
|
876 |
+
if input_points is not None:
|
877 |
+
batch_size, point_batch_size = shape_list(input_points)[:2]
|
878 |
+
if input_labels is None:
|
879 |
+
raise ValueError("If points are provided, labels must also be provided.")
|
880 |
+
point_embeddings = self._embed_points(input_points, input_labels, pad=(input_boxes is None))
|
881 |
+
sparse_embeddings = tf.zeros(
|
882 |
+
(batch_size, point_batch_size, 0, self.hidden_size), dtype=point_embeddings.dtype
|
883 |
+
)
|
884 |
+
sparse_embeddings = tf.concat([sparse_embeddings, point_embeddings], axis=2)
|
885 |
+
if input_boxes is not None:
|
886 |
+
batch_size = shape_list(input_boxes)[0]
|
887 |
+
box_embeddings = self._embed_boxes(input_boxes)
|
888 |
+
if sparse_embeddings is None:
|
889 |
+
sparse_embeddings = box_embeddings
|
890 |
+
else:
|
891 |
+
sparse_embeddings = tf.concat([sparse_embeddings, box_embeddings], axis=2)
|
892 |
+
if input_masks is not None:
|
893 |
+
dense_embeddings = self.mask_embed(input_masks)
|
894 |
+
else:
|
895 |
+
dense_embeddings = self.no_mask_embed[0]
|
896 |
+
dense_embeddings = tf.reshape(dense_embeddings, (1, -1, 1, 1))
|
897 |
+
dense_embeddings = tf.tile(
|
898 |
+
dense_embeddings, (batch_size, 1, self.image_embedding_size[0], self.image_embedding_size[1])
|
899 |
+
)
|
900 |
+
if sparse_embeddings is None:
|
901 |
+
sparse_embeddings = tf.zeros((batch_size, 0, 1, self.hidden_size), dtype=dense_embeddings.dtype)
|
902 |
+
|
903 |
+
return sparse_embeddings, dense_embeddings
|
904 |
+
|
905 |
+
|
906 |
+
class TFSamVisionAttention(keras.layers.Layer):
|
907 |
+
"""Multi-head Attention block with relative position embeddings."""
|
908 |
+
|
909 |
+
def __init__(self, config, window_size, **kwargs):
|
910 |
+
super().__init__(**kwargs)
|
911 |
+
input_size = (
|
912 |
+
(config.image_size // config.patch_size, config.image_size // config.patch_size)
|
913 |
+
if window_size == 0
|
914 |
+
else (window_size, window_size)
|
915 |
+
)
|
916 |
+
self.input_size = input_size
|
917 |
+
|
918 |
+
self.num_attention_heads = config.num_attention_heads
|
919 |
+
head_dim = config.hidden_size // config.num_attention_heads
|
920 |
+
self.head_dim = head_dim
|
921 |
+
self.scale = head_dim**-0.5
|
922 |
+
self.dropout = config.attention_dropout
|
923 |
+
|
924 |
+
self.qkv = keras.layers.Dense(config.hidden_size * 3, use_bias=config.qkv_bias, name="qkv")
|
925 |
+
self.proj = keras.layers.Dense(config.hidden_size, name="proj")
|
926 |
+
|
927 |
+
self.use_rel_pos = config.use_rel_pos
|
928 |
+
if self.use_rel_pos:
|
929 |
+
if input_size is None:
|
930 |
+
raise ValueError("Input size must be provided if using relative positional encoding.")
|
931 |
+
self.config = config
|
932 |
+
|
933 |
+
def build(self, input_shape=None):
|
934 |
+
if self.input_size is not None:
|
935 |
+
# initialize relative positional embeddings
|
936 |
+
self.rel_pos_h = self.add_weight(
|
937 |
+
shape=(2 * self.input_size[0] - 1, self.head_dim), initializer="zeros", name="rel_pos_h"
|
938 |
+
)
|
939 |
+
self.rel_pos_w = self.add_weight(
|
940 |
+
shape=(2 * self.input_size[1] - 1, self.head_dim), initializer="zeros", name="rel_pos_w"
|
941 |
+
)
|
942 |
+
|
943 |
+
if self.built:
|
944 |
+
return
|
945 |
+
self.built = True
|
946 |
+
if getattr(self, "qkv", None) is not None:
|
947 |
+
with tf.name_scope(self.qkv.name):
|
948 |
+
self.qkv.build([None, None, self.config.hidden_size])
|
949 |
+
if getattr(self, "proj", None) is not None:
|
950 |
+
with tf.name_scope(self.proj.name):
|
951 |
+
self.proj.build([None, None, self.config.hidden_size])
|
952 |
+
|
953 |
+
def get_rel_pos(self, q_size: int, k_size: int, rel_pos: tf.Tensor) -> tf.Tensor:
|
954 |
+
"""
|
955 |
+
Get relative positional embeddings according to the relative positions of
|
956 |
+
query and key sizes.
|
957 |
+
|
958 |
+
Args:
|
959 |
+
q_size (int):
|
960 |
+
size of the query.
|
961 |
+
k_size (int):
|
962 |
+
size of key k.
|
963 |
+
rel_pos (`tf.Tensor`):
|
964 |
+
relative position embeddings (L, channel).
|
965 |
+
|
966 |
+
Returns:
|
967 |
+
Extracted positional embeddings according to relative positions.
|
968 |
+
"""
|
969 |
+
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
970 |
+
# Interpolate rel pos if needed.
|
971 |
+
if rel_pos.shape[0] != max_rel_dist:
|
972 |
+
# Interpolate rel pos.
|
973 |
+
rel_pos_resized = tf.image.resize(
|
974 |
+
tf.reshape(rel_pos, (1, rel_pos.shape[0], -1)),
|
975 |
+
size=(max_rel_dist, rel_pos.shape[1]),
|
976 |
+
method="bilinear",
|
977 |
+
)
|
978 |
+
rel_pos_resized = tf.reshape(rel_pos_resized, (-1, max_rel_dist))
|
979 |
+
else:
|
980 |
+
rel_pos_resized = rel_pos
|
981 |
+
|
982 |
+
# Scale the coords with short length if shapes for q and k are different.
|
983 |
+
q_coords = tf.expand_dims(tf.range(q_size, dtype=tf.float32), 1) * max(k_size / q_size, 1.0)
|
984 |
+
k_coords = tf.expand_dims(tf.range(k_size, dtype=tf.float32), 0) * max(q_size / k_size, 1.0)
|
985 |
+
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
986 |
+
|
987 |
+
return tf.gather(rel_pos_resized, tf.cast(relative_coords, tf.int32))
|
988 |
+
|
989 |
+
def add_decomposed_rel_pos(
|
990 |
+
self,
|
991 |
+
attn: tf.Tensor,
|
992 |
+
query: tf.Tensor,
|
993 |
+
rel_pos_h: tf.Tensor,
|
994 |
+
rel_pos_w: tf.Tensor,
|
995 |
+
q_size: Tuple[int, int],
|
996 |
+
k_size: Tuple[int, int],
|
997 |
+
) -> tf.Tensor:
|
998 |
+
"""
|
999 |
+
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
1000 |
+
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py
|
1001 |
+
|
1002 |
+
Args:
|
1003 |
+
attn (`tf.Tensor`):
|
1004 |
+
attention map.
|
1005 |
+
query (`tf.Tensor`):
|
1006 |
+
query q in the attention layer with shape (batch_size, query_height * query_width, channel).
|
1007 |
+
rel_pos_h (`tf.Tensor`):
|
1008 |
+
relative position embeddings (Lh, channel) for height axis.
|
1009 |
+
rel_pos_w (`tf.Tensor`):
|
1010 |
+
relative position embeddings (Lw, channel) for width axis.
|
1011 |
+
q_size (tuple):
|
1012 |
+
spatial sequence size of query q with (query_height, query_width).
|
1013 |
+
k_size (tuple):
|
1014 |
+
spatial sequence size of key k with (key_height, key_width).
|
1015 |
+
|
1016 |
+
Returns:
|
1017 |
+
attn (`tf.Tensor`):
|
1018 |
+
attention map with added relative positional embeddings.
|
1019 |
+
"""
|
1020 |
+
query_height, query_width = q_size
|
1021 |
+
key_height, key_width = k_size
|
1022 |
+
relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h)
|
1023 |
+
relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w)
|
1024 |
+
|
1025 |
+
batch_size, _, dim = shape_list(query)
|
1026 |
+
reshaped_query = tf.reshape(query, (batch_size, query_height, query_width, dim))
|
1027 |
+
rel_h = tf.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height)
|
1028 |
+
rel_w = tf.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width)
|
1029 |
+
attn = tf.reshape(attn, (batch_size, query_height, query_width, key_height, key_width))
|
1030 |
+
attn = attn + tf.expand_dims(rel_h, axis=-1) + tf.expand_dims(rel_w, axis=-2)
|
1031 |
+
attn = tf.reshape(attn, (batch_size, query_height * query_width, key_height * key_width))
|
1032 |
+
return attn
|
1033 |
+
|
1034 |
+
def call(self, hidden_states: tf.Tensor, output_attentions=False, training=False) -> tf.Tensor:
|
1035 |
+
batch_size, height, width, _ = shape_list(hidden_states)
|
1036 |
+
# qkv with shape (3, batch_size, nHead, height * width, channel)
|
1037 |
+
qkv = tf.reshape(self.qkv(hidden_states), (batch_size, height * width, 3, self.num_attention_heads, -1))
|
1038 |
+
qkv = tf.transpose(qkv, perm=(2, 0, 3, 1, 4))
|
1039 |
+
# q, k, v with shape (batch_size * nHead, height * width, channel)
|
1040 |
+
query, key, value = tf.unstack(
|
1041 |
+
tf.reshape(qkv, (3, batch_size * self.num_attention_heads, height * width, -1)), axis=0
|
1042 |
+
)
|
1043 |
+
attn_weights = tf.matmul(query * self.scale, key, transpose_b=True)
|
1044 |
+
|
1045 |
+
if self.use_rel_pos:
|
1046 |
+
attn_weights = self.add_decomposed_rel_pos(
|
1047 |
+
attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
|
1048 |
+
)
|
1049 |
+
|
1050 |
+
attn_weights = tf.nn.softmax(attn_weights, axis=-1)
|
1051 |
+
|
1052 |
+
if training:
|
1053 |
+
attn_probs = tf.nn.dropout(attn_weights, rate=self.dropout)
|
1054 |
+
else:
|
1055 |
+
attn_probs = attn_weights
|
1056 |
+
|
1057 |
+
attn_output = tf.reshape(attn_probs @ value, (batch_size, self.num_attention_heads, height, width, -1))
|
1058 |
+
attn_output = tf.transpose(attn_output, perm=(0, 2, 3, 1, 4))
|
1059 |
+
attn_output = tf.reshape(attn_output, (batch_size, height, width, self.config.hidden_size))
|
1060 |
+
|
1061 |
+
attn_output = self.proj(attn_output)
|
1062 |
+
|
1063 |
+
if output_attentions:
|
1064 |
+
outputs = (attn_output, attn_weights)
|
1065 |
+
else:
|
1066 |
+
outputs = (attn_output, None)
|
1067 |
+
|
1068 |
+
return outputs
|
1069 |
+
|
1070 |
+
|
1071 |
+
class TFSamVisionLayer(keras.layers.Layer):
|
1072 |
+
def __init__(self, config, window_size, **kwargs):
|
1073 |
+
super().__init__(**kwargs)
|
1074 |
+
self.layer_norm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1")
|
1075 |
+
self.attn = TFSamVisionAttention(config, window_size, name="attn")
|
1076 |
+
self.layer_norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2")
|
1077 |
+
self.mlp = TFSamMLPBlock(config, name="mlp")
|
1078 |
+
self.window_size = window_size
|
1079 |
+
self.config = config
|
1080 |
+
|
1081 |
+
def window_partition(self, hidden_states: tf.Tensor, window_size: int) -> Tuple[tf.Tensor, Tuple[int, int]]:
|
1082 |
+
batch_size, height, width, channel = shape_list(hidden_states)
|
1083 |
+
|
1084 |
+
pad_h = (window_size - height % window_size) % window_size
|
1085 |
+
pad_w = (window_size - width % window_size) % window_size
|
1086 |
+
if pad_h > 0 or pad_w > 0:
|
1087 |
+
hidden_states = tf.pad(hidden_states, [[0, 0], [0, pad_h], [0, pad_w], [0, 0]])
|
1088 |
+
pad_height, pad_width = height + pad_h, width + pad_w
|
1089 |
+
|
1090 |
+
hidden_states = tf.reshape(
|
1091 |
+
hidden_states,
|
1092 |
+
[batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel],
|
1093 |
+
)
|
1094 |
+
windows = tf.reshape(
|
1095 |
+
tf.transpose(hidden_states, perm=[0, 1, 3, 2, 4, 5]), [-1, window_size, window_size, channel]
|
1096 |
+
)
|
1097 |
+
return windows, (pad_height, pad_width)
|
1098 |
+
|
1099 |
+
def window_unpartition(
|
1100 |
+
self, windows: tf.Tensor, window_size: int, padding_shape: Tuple[int, int], original_shape: Tuple[int, int]
|
1101 |
+
) -> tf.Tensor:
|
1102 |
+
pad_height, pad_width = padding_shape
|
1103 |
+
height, width = original_shape
|
1104 |
+
batch_size = shape_list(windows)[0] // (pad_height * pad_width // window_size // window_size)
|
1105 |
+
hidden_states = tf.reshape(
|
1106 |
+
windows, [batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1]
|
1107 |
+
)
|
1108 |
+
hidden_states = tf.reshape(
|
1109 |
+
tf.transpose(hidden_states, perm=[0, 1, 3, 2, 4, 5]), [batch_size, pad_height, pad_width, -1]
|
1110 |
+
)
|
1111 |
+
|
1112 |
+
if pad_height > height or pad_width > width:
|
1113 |
+
hidden_states = hidden_states[:, :height, :width, :]
|
1114 |
+
return hidden_states
|
1115 |
+
|
1116 |
+
def call(
|
1117 |
+
self,
|
1118 |
+
hidden_states: tf.Tensor,
|
1119 |
+
output_attentions: Optional[bool] = False,
|
1120 |
+
training: Optional[bool] = False,
|
1121 |
+
) -> Tuple[tf.Tensor]:
|
1122 |
+
residual = hidden_states
|
1123 |
+
|
1124 |
+
hidden_states = self.layer_norm1(hidden_states)
|
1125 |
+
if self.window_size > 0:
|
1126 |
+
height, width = hidden_states.shape[1], hidden_states.shape[2]
|
1127 |
+
hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size)
|
1128 |
+
|
1129 |
+
hidden_states, attn_weights = self.attn(
|
1130 |
+
hidden_states=hidden_states,
|
1131 |
+
output_attentions=output_attentions,
|
1132 |
+
training=training,
|
1133 |
+
)
|
1134 |
+
if self.window_size > 0:
|
1135 |
+
hidden_states = self.window_unpartition(hidden_states, self.window_size, padding_shape, (height, width))
|
1136 |
+
|
1137 |
+
hidden_states = residual + hidden_states
|
1138 |
+
layernorm_output = self.layer_norm2(hidden_states)
|
1139 |
+
hidden_states = hidden_states + self.mlp(layernorm_output)
|
1140 |
+
|
1141 |
+
outputs = (hidden_states,)
|
1142 |
+
if output_attentions:
|
1143 |
+
outputs += (attn_weights,)
|
1144 |
+
|
1145 |
+
return outputs
|
1146 |
+
|
1147 |
+
def build(self, input_shape=None):
|
1148 |
+
if self.built:
|
1149 |
+
return
|
1150 |
+
self.built = True
|
1151 |
+
if getattr(self, "layer_norm1", None) is not None:
|
1152 |
+
with tf.name_scope(self.layer_norm1.name):
|
1153 |
+
self.layer_norm1.build([None, None, None, self.config.hidden_size])
|
1154 |
+
if getattr(self, "attn", None) is not None:
|
1155 |
+
with tf.name_scope(self.attn.name):
|
1156 |
+
self.attn.build(None)
|
1157 |
+
if getattr(self, "layer_norm2", None) is not None:
|
1158 |
+
with tf.name_scope(self.layer_norm2.name):
|
1159 |
+
self.layer_norm2.build([None, None, None, self.config.hidden_size])
|
1160 |
+
if getattr(self, "mlp", None) is not None:
|
1161 |
+
with tf.name_scope(self.mlp.name):
|
1162 |
+
self.mlp.build(None)
|
1163 |
+
|
1164 |
+
|
1165 |
+
class TFSamVisionNeck(keras.layers.Layer):
|
1166 |
+
def __init__(self, config: SamVisionConfig, **kwargs):
|
1167 |
+
super().__init__(**kwargs)
|
1168 |
+
self.config = config
|
1169 |
+
|
1170 |
+
self.conv1 = keras.layers.Conv2D(
|
1171 |
+
config.output_channels,
|
1172 |
+
kernel_size=1,
|
1173 |
+
use_bias=False,
|
1174 |
+
name="conv1",
|
1175 |
+
)
|
1176 |
+
self.layer_norm1 = TFSamLayerNorm(config.output_channels, name="layer_norm1")
|
1177 |
+
self.conv2 = keras.layers.Conv2D(
|
1178 |
+
config.output_channels,
|
1179 |
+
kernel_size=3,
|
1180 |
+
padding="same",
|
1181 |
+
use_bias=False,
|
1182 |
+
name="conv2",
|
1183 |
+
)
|
1184 |
+
self.layer_norm2 = TFSamLayerNorm(config.output_channels, name="layer_norm2")
|
1185 |
+
|
1186 |
+
def call(self, hidden_states):
|
1187 |
+
hidden_states = self.conv1(hidden_states)
|
1188 |
+
hidden_states = self.layer_norm1(hidden_states)
|
1189 |
+
|
1190 |
+
hidden_states = self.conv2(hidden_states)
|
1191 |
+
hidden_states = self.layer_norm2(hidden_states)
|
1192 |
+
hidden_states = tf.transpose(hidden_states, perm=[0, 3, 1, 2])
|
1193 |
+
return hidden_states
|
1194 |
+
|
1195 |
+
def build(self, input_shape=None):
|
1196 |
+
if self.built:
|
1197 |
+
return
|
1198 |
+
self.built = True
|
1199 |
+
if getattr(self, "conv1", None) is not None:
|
1200 |
+
with tf.name_scope(self.conv1.name):
|
1201 |
+
self.conv1.build([None, None, None, self.config.hidden_size])
|
1202 |
+
if getattr(self, "layer_norm1", None) is not None:
|
1203 |
+
with tf.name_scope(self.layer_norm1.name):
|
1204 |
+
self.layer_norm1.build(None)
|
1205 |
+
if getattr(self, "conv2", None) is not None:
|
1206 |
+
with tf.name_scope(self.conv2.name):
|
1207 |
+
self.conv2.build([None, None, None, self.config.output_channels])
|
1208 |
+
if getattr(self, "layer_norm2", None) is not None:
|
1209 |
+
with tf.name_scope(self.layer_norm2.name):
|
1210 |
+
self.layer_norm2.build(None)
|
1211 |
+
|
1212 |
+
|
1213 |
+
class TFSamVisionEncoder(keras.layers.Layer):
|
1214 |
+
def __init__(self, config: SamVisionConfig, **kwargs):
|
1215 |
+
super().__init__(**kwargs)
|
1216 |
+
self.config = config
|
1217 |
+
self.image_size = config.image_size
|
1218 |
+
|
1219 |
+
self.patch_embed = TFSamPatchEmbeddings(config, name="patch_embed")
|
1220 |
+
|
1221 |
+
self.pos_embed = None
|
1222 |
+
|
1223 |
+
self.layers = []
|
1224 |
+
for i in range(config.num_hidden_layers):
|
1225 |
+
layer = TFSamVisionLayer(
|
1226 |
+
config,
|
1227 |
+
window_size=config.window_size if i not in config.global_attn_indexes else 0,
|
1228 |
+
name=f"layers_._{i}",
|
1229 |
+
)
|
1230 |
+
self.layers.append(layer)
|
1231 |
+
|
1232 |
+
self.neck = TFSamVisionNeck(config, name="neck")
|
1233 |
+
|
1234 |
+
def build(self, input_shape=None):
|
1235 |
+
if self.built:
|
1236 |
+
return
|
1237 |
+
self.built = True
|
1238 |
+
if self.config.use_abs_pos:
|
1239 |
+
# Initialize absolute positional embedding with pretrain image size.
|
1240 |
+
self.pos_embed = self.add_weight(
|
1241 |
+
shape=[
|
1242 |
+
1,
|
1243 |
+
self.config.image_size // self.config.patch_size,
|
1244 |
+
self.config.image_size // self.config.patch_size,
|
1245 |
+
self.config.hidden_size,
|
1246 |
+
],
|
1247 |
+
initializer="zeros",
|
1248 |
+
trainable=True,
|
1249 |
+
name="pos_embed",
|
1250 |
+
)
|
1251 |
+
|
1252 |
+
if getattr(self, "patch_embed", None) is not None:
|
1253 |
+
with tf.name_scope(self.patch_embed.name):
|
1254 |
+
self.patch_embed.build(None)
|
1255 |
+
if getattr(self, "neck", None) is not None:
|
1256 |
+
with tf.name_scope(self.neck.name):
|
1257 |
+
self.neck.build(None)
|
1258 |
+
for layer in self.layers:
|
1259 |
+
with tf.name_scope(layer.name):
|
1260 |
+
layer.build(None)
|
1261 |
+
|
1262 |
+
def get_input_embeddings(self):
|
1263 |
+
return self.patch_embed
|
1264 |
+
|
1265 |
+
def call(
|
1266 |
+
self,
|
1267 |
+
pixel_values: tf.Tensor | None = None,
|
1268 |
+
output_attentions: Optional[bool] = None,
|
1269 |
+
output_hidden_states: Optional[bool] = None,
|
1270 |
+
return_dict: Optional[bool] = None,
|
1271 |
+
training: Optional[bool] = False,
|
1272 |
+
) -> Union[Tuple, TFSamVisionEncoderOutput]:
|
1273 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1274 |
+
output_hidden_states = (
|
1275 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1276 |
+
)
|
1277 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1278 |
+
|
1279 |
+
if pixel_values is None:
|
1280 |
+
raise ValueError("You have to specify pixel_values")
|
1281 |
+
|
1282 |
+
hidden_states = self.patch_embed(pixel_values)
|
1283 |
+
if self.pos_embed is not None:
|
1284 |
+
hidden_states = hidden_states + self.pos_embed
|
1285 |
+
|
1286 |
+
all_hidden_states = () if output_hidden_states else None
|
1287 |
+
all_self_attentions = () if output_attentions else None
|
1288 |
+
|
1289 |
+
for i, layer_module in enumerate(self.layers):
|
1290 |
+
if output_hidden_states:
|
1291 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1292 |
+
|
1293 |
+
layer_outputs = layer_module(hidden_states, output_attentions=output_attentions, training=training)
|
1294 |
+
|
1295 |
+
hidden_states = layer_outputs[0]
|
1296 |
+
|
1297 |
+
if output_attentions:
|
1298 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
1299 |
+
|
1300 |
+
if output_hidden_states:
|
1301 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1302 |
+
|
1303 |
+
hidden_states = self.neck(hidden_states)
|
1304 |
+
|
1305 |
+
if not return_dict:
|
1306 |
+
outputs = (hidden_states,)
|
1307 |
+
if output_hidden_states:
|
1308 |
+
outputs = outputs + (all_hidden_states,)
|
1309 |
+
if output_attentions:
|
1310 |
+
outputs = outputs + (all_self_attentions,)
|
1311 |
+
return outputs
|
1312 |
+
|
1313 |
+
return TFSamVisionEncoderOutput(
|
1314 |
+
last_hidden_state=hidden_states,
|
1315 |
+
hidden_states=all_hidden_states,
|
1316 |
+
attentions=all_self_attentions,
|
1317 |
+
)
|
1318 |
+
|
1319 |
+
|
1320 |
+
class TFSamPreTrainedModel(TFPreTrainedModel):
|
1321 |
+
config_class = SamConfig
|
1322 |
+
base_model_prefix = "sam"
|
1323 |
+
main_input_name = "pixel_values"
|
1324 |
+
|
1325 |
+
|
1326 |
+
SAM_START_DOCSTRING = r"""
|
1327 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1328 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1329 |
+
etc.)
|
1330 |
+
|
1331 |
+
This model is also a TensorFlow [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)
|
1332 |
+
subclass. Use it as a regular TensorFlow Model and refer to the TensorFlow documentation for all matter related to
|
1333 |
+
general usage and behavior.
|
1334 |
+
|
1335 |
+
Parameters:
|
1336 |
+
config ([`SamConfig`]): Model configuration class with all the parameters of the model.
|
1337 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1338 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
1339 |
+
"""
|
1340 |
+
|
1341 |
+
|
1342 |
+
SAM_INPUTS_DOCSTRING = r"""
|
1343 |
+
Args:
|
1344 |
+
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
1345 |
+
Pixel values. Pixel values can be obtained using [`SamProcessor`]. See [`SamProcessor.__call__`] for
|
1346 |
+
details.
|
1347 |
+
input_points (`tf.Tensor` of shape `(batch_size, num_points, 2)`):
|
1348 |
+
Input 2D spatial points, this is used by the prompt encoder to encode the prompt. Generally yields to much
|
1349 |
+
better results. The points can be obtained by passing a list of list of list to the processor that will
|
1350 |
+
create corresponding `tf` tensors of dimension 4. The first dimension is the image batch size, the second
|
1351 |
+
dimension is the point batch size (i.e. how many segmentation masks do we want the model to predict per
|
1352 |
+
input point), the third dimension is the number of points per segmentation mask (it is possible to pass
|
1353 |
+
multiple points for a single mask), and the last dimension is the x (vertical) and y (horizontal)
|
1354 |
+
coordinates of the point. If a different number of points is passed either for each image, or for each
|
1355 |
+
mask, the processor will create "PAD" points that will correspond to the (0, 0) coordinate, and the
|
1356 |
+
computation of the embedding will be skipped for these points using the labels.
|
1357 |
+
input_labels (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points)`):
|
1358 |
+
Input labels for the points, this is used by the prompt encoder to encode the prompt. According to the
|
1359 |
+
official implementation, there are 3 types of labels
|
1360 |
+
|
1361 |
+
- `1`: the point is a point that contains the object of interest
|
1362 |
+
- `0`: the point is a point that does not contain the object of interest
|
1363 |
+
- `-1`: the point corresponds to the background
|
1364 |
+
|
1365 |
+
We added the label:
|
1366 |
+
|
1367 |
+
- `-10`: the point is a padding point, thus should be ignored by the prompt encoder
|
1368 |
+
|
1369 |
+
The padding labels should be automatically done by the processor.
|
1370 |
+
input_boxes (`tf.Tensor` of shape `(batch_size, num_boxes, 4)`):
|
1371 |
+
Input boxes for the points, this is used by the prompt encoder to encode the prompt. Generally yields to
|
1372 |
+
much better generated masks. The boxes can be obtained by passing a list of list of list to the processor,
|
1373 |
+
that will generate a `tf` tensor, with each dimension corresponding respectively to the image batch size,
|
1374 |
+
the number of boxes per image and the coordinates of the top left and botton right point of the box. In the
|
1375 |
+
order (`x1`, `y1`, `x2`, `y2`):
|
1376 |
+
|
1377 |
+
- `x1`: the x coordinate of the top left point of the input box
|
1378 |
+
- `y1`: the y coordinate of the top left point of the input box
|
1379 |
+
- `x2`: the x coordinate of the bottom right point of the input box
|
1380 |
+
- `y2`: the y coordinate of the bottom right point of the input box
|
1381 |
+
|
1382 |
+
input_masks (`tf.Tensor` of shape `(batch_size, image_size, image_size)`):
|
1383 |
+
SAM model also accepts segmentation masks as input. The mask will be embedded by the prompt encoder to
|
1384 |
+
generate a corresponding embedding, that will be fed later on to the mask decoder. These masks needs to be
|
1385 |
+
manually fed by the user, and they need to be of shape (`batch_size`, `image_size`, `image_size`).
|
1386 |
+
|
1387 |
+
image_embeddings (`tf.Tensor` of shape `(batch_size, output_channels, window_size, window_size)`):
|
1388 |
+
Image embeddings, this is used by the mask decder to generate masks and iou scores. For more memory
|
1389 |
+
efficient computation, users can first retrieve the image embeddings using the `get_image_embeddings`
|
1390 |
+
method, and then feed them to the `call` method instead of feeding the `pixel_values`.
|
1391 |
+
multimask_output (`bool`, *optional*):
|
1392 |
+
In the original implementation and paper, the model always outputs 3 masks per image (or per point / per
|
1393 |
+
bounding box if relevant). However, it is possible to just output a single mask, that corresponds to the
|
1394 |
+
"best" mask, by specifying `multimask_output=False`.
|
1395 |
+
output_attentions (`bool`, *optional*):
|
1396 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1397 |
+
tensors for more detail.
|
1398 |
+
output_hidden_states (`bool`, *optional*):
|
1399 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1400 |
+
more detail.
|
1401 |
+
return_dict (`bool`, *optional*):
|
1402 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1403 |
+
"""
|
1404 |
+
|
1405 |
+
|
1406 |
+
@add_start_docstrings(
|
1407 |
+
"Segment Anything Model (SAM) for generating segmentation masks, given an input image and ",
|
1408 |
+
" optional 2D location and bounding boxes.",
|
1409 |
+
SAM_START_DOCSTRING,
|
1410 |
+
)
|
1411 |
+
class TFSamModel(TFSamPreTrainedModel):
|
1412 |
+
_keys_to_ignore_on_load_missing = [r"prompt_encoder.shared_embedding.positional_embedding"]
|
1413 |
+
|
1414 |
+
def __init__(self, config, **kwargs):
|
1415 |
+
super().__init__(config, **kwargs)
|
1416 |
+
self.shared_image_embedding = TFSamPositionalEmbedding(config.vision_config, name="shared_image_embedding")
|
1417 |
+
|
1418 |
+
self.vision_encoder = TFSamVisionEncoder(config.vision_config, name="vision_encoder")
|
1419 |
+
self.prompt_encoder = TFSamPromptEncoder(
|
1420 |
+
config.prompt_encoder_config, self.shared_image_embedding, name="prompt_encoder"
|
1421 |
+
)
|
1422 |
+
self.mask_decoder = TFSamMaskDecoder(config.mask_decoder_config, name="mask_decoder")
|
1423 |
+
self.config = config
|
1424 |
+
|
1425 |
+
def get_input_embeddings(self):
|
1426 |
+
return self.vision_encoder.get_input_embeddings()
|
1427 |
+
|
1428 |
+
def get_image_wide_positional_embeddings(self):
|
1429 |
+
size = self.config.prompt_encoder_config.image_embedding_size
|
1430 |
+
grid = tf.ones((size, size))
|
1431 |
+
y_embed = tf.math.cumsum(grid, axis=0) - 0.5
|
1432 |
+
x_embed = tf.math.cumsum(grid, axis=1) - 0.5
|
1433 |
+
y_embed = y_embed / size
|
1434 |
+
x_embed = x_embed / size
|
1435 |
+
|
1436 |
+
positional_embedding = self.shared_image_embedding(tf.stack([x_embed, y_embed], axis=-1))
|
1437 |
+
return tf.expand_dims(tf.transpose(positional_embedding, perm=[2, 0, 1]), axis=0) # channel x height x width
|
1438 |
+
|
1439 |
+
def get_image_embeddings(
|
1440 |
+
self,
|
1441 |
+
pixel_values,
|
1442 |
+
output_attentions: Optional[bool] = None,
|
1443 |
+
output_hidden_states: Optional[bool] = None,
|
1444 |
+
return_dict: Optional[bool] = None,
|
1445 |
+
):
|
1446 |
+
r"""
|
1447 |
+
Returns the image embeddings by passing the pixel values through the vision encoder.
|
1448 |
+
|
1449 |
+
Args:
|
1450 |
+
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
1451 |
+
Input pixel values
|
1452 |
+
output_attentions (`bool`, *optional*):
|
1453 |
+
Whether or not to return the attentions tensors of all attention layers.
|
1454 |
+
output_hidden_states (`bool`, *optional*):
|
1455 |
+
Whether or not to return the hidden states of all layers.
|
1456 |
+
return_dict (`bool`, *optional*):
|
1457 |
+
Whether or not to return a [`~utils.TFModelOutput`] instead of a plain tuple.
|
1458 |
+
|
1459 |
+
"""
|
1460 |
+
vision_output = self.vision_encoder(
|
1461 |
+
pixel_values,
|
1462 |
+
output_attentions=output_attentions,
|
1463 |
+
output_hidden_states=output_hidden_states,
|
1464 |
+
return_dict=return_dict,
|
1465 |
+
)
|
1466 |
+
image_embeddings = vision_output[0]
|
1467 |
+
return image_embeddings
|
1468 |
+
|
1469 |
+
def get_prompt_embeddings(
|
1470 |
+
self,
|
1471 |
+
input_points: tf.Tensor | None = None,
|
1472 |
+
input_labels: tf.Tensor | None = None,
|
1473 |
+
input_boxes: tf.Tensor | None = None,
|
1474 |
+
input_masks: tf.Tensor | None = None,
|
1475 |
+
):
|
1476 |
+
r"""
|
1477 |
+
Returns the prompt embeddings by passing the input points, labels, boxes and masks through the prompt encoder.
|
1478 |
+
|
1479 |
+
Args:
|
1480 |
+
input_points (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points_per_image, 2)`):
|
1481 |
+
Optional input points for the prompt encoder. The padding of the point is automatically done by the
|
1482 |
+
processor. `point_batch_size` refers to the number of masks that we want the model to predict per
|
1483 |
+
point. The model will output `point_batch_size` times 3 masks in total.
|
1484 |
+
input_labels (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points_per_image)`):
|
1485 |
+
Optional input labels for the prompt encoder. The padding of the labels is automatically done by the
|
1486 |
+
processor, or can be fed by the user.
|
1487 |
+
input_boxes (`tf.Tensor` of shape `(batch_size, num_boxes_per_image, 4)`):
|
1488 |
+
Optional input boxes for the prompt encoder. The padding of the boxes is automatically done by the
|
1489 |
+
processor. users can also pass manually the input boxes.
|
1490 |
+
input_masks (`tf.Tensor` of shape `(batch_size, image_size, image_size)`):
|
1491 |
+
Optional input masks for the prompt encoder.
|
1492 |
+
"""
|
1493 |
+
prompt_output = self.prompt_encoder(
|
1494 |
+
input_points=input_points,
|
1495 |
+
input_labels=input_labels,
|
1496 |
+
input_boxes=input_boxes,
|
1497 |
+
input_masks=input_masks,
|
1498 |
+
)
|
1499 |
+
return prompt_output
|
1500 |
+
|
1501 |
+
@unpack_inputs
|
1502 |
+
@add_start_docstrings_to_model_forward(SAM_INPUTS_DOCSTRING)
|
1503 |
+
def call(
|
1504 |
+
self,
|
1505 |
+
pixel_values: TFModelInputType | None = None,
|
1506 |
+
input_points: tf.Tensor | None = None,
|
1507 |
+
input_labels: tf.Tensor | None = None,
|
1508 |
+
input_boxes: tf.Tensor | None = None,
|
1509 |
+
input_masks: tf.Tensor | None = None,
|
1510 |
+
image_embeddings: tf.Tensor | None = None,
|
1511 |
+
multimask_output: bool = True,
|
1512 |
+
output_attentions: bool | None = None,
|
1513 |
+
output_hidden_states: bool | None = None,
|
1514 |
+
return_dict: bool | None = None,
|
1515 |
+
training: bool = False,
|
1516 |
+
**kwargs,
|
1517 |
+
) -> TFSamImageSegmentationOutput | Tuple[tf.Tensor]:
|
1518 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1519 |
+
output_hidden_states = (
|
1520 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1521 |
+
)
|
1522 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1523 |
+
|
1524 |
+
if pixel_values is None and image_embeddings is None:
|
1525 |
+
raise ValueError("Either pixel_values or image_embeddings must be provided.")
|
1526 |
+
|
1527 |
+
if pixel_values is not None and image_embeddings is not None:
|
1528 |
+
raise ValueError("Only one of pixel_values and image_embeddings can be provided.")
|
1529 |
+
|
1530 |
+
if input_points is not None and len(input_points.shape) != 4:
|
1531 |
+
raise ValueError(
|
1532 |
+
"The input_points must be a 4D tensor. Of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.",
|
1533 |
+
" got {}.".format(input_points.shape),
|
1534 |
+
)
|
1535 |
+
if input_boxes is not None and len(input_boxes.shape) != 3:
|
1536 |
+
raise ValueError(
|
1537 |
+
"The input_points must be a 3D tensor. Of shape `batch_size`, `nb_boxes`, `4`.",
|
1538 |
+
" got {}.".format(input_boxes.shape),
|
1539 |
+
)
|
1540 |
+
if input_points is not None and input_boxes is not None:
|
1541 |
+
point_batch_size = shape_list(input_points)[1]
|
1542 |
+
box_batch_size = shape_list(input_boxes)[1]
|
1543 |
+
if point_batch_size != box_batch_size:
|
1544 |
+
raise ValueError(
|
1545 |
+
"You should provide as many bounding boxes as input points per box. Got {} and {}.".format(
|
1546 |
+
point_batch_size, box_batch_size
|
1547 |
+
)
|
1548 |
+
)
|
1549 |
+
if pixel_values is not None:
|
1550 |
+
# Ensures that later checks pass even with an all-None shape from the serving signature
|
1551 |
+
pixel_values = tf.ensure_shape(
|
1552 |
+
pixel_values,
|
1553 |
+
[
|
1554 |
+
None,
|
1555 |
+
self.config.vision_config.num_channels,
|
1556 |
+
self.config.vision_config.image_size,
|
1557 |
+
self.config.vision_config.image_size,
|
1558 |
+
],
|
1559 |
+
)
|
1560 |
+
image_positional_embeddings = self.get_image_wide_positional_embeddings()
|
1561 |
+
# repeat with batch size
|
1562 |
+
batch_size = shape_list(pixel_values)[0] if pixel_values is not None else shape_list(image_embeddings)[0]
|
1563 |
+
image_positional_embeddings = tf.repeat(image_positional_embeddings, batch_size, axis=0)
|
1564 |
+
|
1565 |
+
vision_attentions = None
|
1566 |
+
vision_hidden_states = None
|
1567 |
+
|
1568 |
+
if pixel_values is not None:
|
1569 |
+
vision_outputs = self.vision_encoder(
|
1570 |
+
pixel_values,
|
1571 |
+
output_attentions=output_attentions,
|
1572 |
+
output_hidden_states=output_hidden_states,
|
1573 |
+
return_dict=True,
|
1574 |
+
training=training,
|
1575 |
+
)
|
1576 |
+
image_embeddings = vision_outputs["last_hidden_state"]
|
1577 |
+
|
1578 |
+
if output_hidden_states:
|
1579 |
+
vision_hidden_states = vision_outputs["hidden_states"]
|
1580 |
+
if output_attentions:
|
1581 |
+
vision_attentions = vision_outputs["attentions"]
|
1582 |
+
|
1583 |
+
if input_points is not None and input_labels is None:
|
1584 |
+
input_labels = tf.ones_like(input_points[:, :, :, 0], dtype=tf.int32)
|
1585 |
+
|
1586 |
+
if input_points is not None and image_embeddings.shape[0] != input_points.shape[0]:
|
1587 |
+
raise ValueError(
|
1588 |
+
"The batch size of the image embeddings and the input points must be the same. ",
|
1589 |
+
"Got {} and {} respectively.".format(image_embeddings.shape[0], input_points.shape[0]),
|
1590 |
+
" if you want to pass multiple points for the same image, make sure that you passed ",
|
1591 |
+
" input_points of shape (batch_size, point_batch_size, num_points_per_image, 3) and ",
|
1592 |
+
" input_labels of shape (batch_size, point_batch_size, num_points_per_image)",
|
1593 |
+
)
|
1594 |
+
|
1595 |
+
sparse_embeddings, dense_embeddings = self.prompt_encoder(
|
1596 |
+
batch_size=shape_list(image_embeddings)[0],
|
1597 |
+
input_points=input_points,
|
1598 |
+
input_labels=input_labels,
|
1599 |
+
input_boxes=input_boxes,
|
1600 |
+
input_masks=input_masks,
|
1601 |
+
)
|
1602 |
+
|
1603 |
+
low_res_masks, iou_predictions, mask_decoder_attentions = self.mask_decoder(
|
1604 |
+
image_embeddings=image_embeddings,
|
1605 |
+
image_positional_embeddings=image_positional_embeddings,
|
1606 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
1607 |
+
dense_prompt_embeddings=dense_embeddings,
|
1608 |
+
multimask_output=multimask_output,
|
1609 |
+
output_attentions=output_attentions,
|
1610 |
+
)
|
1611 |
+
|
1612 |
+
if not return_dict:
|
1613 |
+
output = (iou_predictions, low_res_masks)
|
1614 |
+
if output_hidden_states:
|
1615 |
+
output = output + (vision_hidden_states,)
|
1616 |
+
|
1617 |
+
if output_attentions:
|
1618 |
+
output = output + (vision_attentions, mask_decoder_attentions)
|
1619 |
+
return output
|
1620 |
+
|
1621 |
+
return TFSamImageSegmentationOutput(
|
1622 |
+
iou_scores=iou_predictions,
|
1623 |
+
pred_masks=low_res_masks,
|
1624 |
+
vision_hidden_states=vision_hidden_states,
|
1625 |
+
vision_attentions=vision_attentions,
|
1626 |
+
mask_decoder_attentions=mask_decoder_attentions,
|
1627 |
+
)
|
1628 |
+
|
1629 |
+
def serving_output(self, output: TFSamImageSegmentationOutput) -> TFSamImageSegmentationOutput:
|
1630 |
+
hs = tf.convert_to_tensor(output.vision_hidden_states) if self.config.output_hidden_states else None
|
1631 |
+
attns = tf.convert_to_tensor(output.vision_attentions) if self.config.output_attentions else None
|
1632 |
+
|
1633 |
+
return TFSamImageSegmentationOutput(
|
1634 |
+
iou_scores=output.iou_scores,
|
1635 |
+
pred_masks=output.pred_masks,
|
1636 |
+
vision_hidden_states=hs if self.config.output_hidden_states else None,
|
1637 |
+
vision_attentions=attns if self.config.output_attentions else None,
|
1638 |
+
mask_decoder_attentions=output.mask_decoder_attentions if self.config.output_attentions else None,
|
1639 |
+
)
|
1640 |
+
|
1641 |
+
def build(self, input_shape=None):
|
1642 |
+
if self.built:
|
1643 |
+
return
|
1644 |
+
self.built = True
|
1645 |
+
if getattr(self, "shared_image_embedding", None) is not None:
|
1646 |
+
with tf.name_scope(self.shared_image_embedding.name):
|
1647 |
+
self.shared_image_embedding.build(None)
|
1648 |
+
if getattr(self, "vision_encoder", None) is not None:
|
1649 |
+
with tf.name_scope(self.vision_encoder.name):
|
1650 |
+
self.vision_encoder.build(None)
|
1651 |
+
if getattr(self, "prompt_encoder", None) is not None:
|
1652 |
+
with tf.name_scope(self.prompt_encoder.name):
|
1653 |
+
self.prompt_encoder.build(None)
|
1654 |
+
if getattr(self, "mask_decoder", None) is not None:
|
1655 |
+
with tf.name_scope(self.mask_decoder.name):
|
1656 |
+
self.mask_decoder.build(None)
|