applied-ai-018 commited on
Commit
f0ab10c
·
verified ·
1 Parent(s): df5bf3b

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/mpmath/__init__.py +468 -0
  2. env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/ctx_mp_python.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/function_docs.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/mpmath/ctx_fp.py +253 -0
  5. env-llmeval/lib/python3.10/site-packages/mpmath/ctx_iv.py +551 -0
  6. env-llmeval/lib/python3.10/site-packages/mpmath/ctx_mp.py +1339 -0
  7. env-llmeval/lib/python3.10/site-packages/mpmath/function_docs.py +0 -0
  8. env-llmeval/lib/python3.10/site-packages/mpmath/math2.py +672 -0
  9. env-llmeval/lib/python3.10/site-packages/mpmath/matrices/__init__.py +2 -0
  10. env-llmeval/lib/python3.10/site-packages/mpmath/matrices/eigen_symmetric.py +1807 -0
  11. env-llmeval/lib/python3.10/site-packages/mpmath/rational.py +240 -0
  12. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__init__.py +0 -0
  13. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/extratest_zeta.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_basic_ops.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_bitwise.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_calculus.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_diff.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_division.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_eigen.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_eigen_symmetric.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_fp.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_functions.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_functions2.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_hp.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_identify.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_interval.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_levin.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_matrices.cpython-310.pyc +0 -0
  30. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_mpmath.cpython-310.pyc +0 -0
  31. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_ode.cpython-310.pyc +0 -0
  32. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_pickle.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_power.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_quad.cpython-310.pyc +0 -0
  35. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_rootfinding.cpython-310.pyc +0 -0
  36. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_special.cpython-310.pyc +0 -0
  37. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_trig.cpython-310.pyc +0 -0
  38. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_visualization.cpython-310.pyc +0 -0
  39. env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/torture.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/mpmath/tests/extratest_gamma.py +215 -0
  41. env-llmeval/lib/python3.10/site-packages/mpmath/tests/extratest_zeta.py +30 -0
  42. env-llmeval/lib/python3.10/site-packages/mpmath/tests/runtests.py +161 -0
  43. env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_basic_ops.py +451 -0
  44. env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_bitwise.py +188 -0
  45. env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_calculus.py +216 -0
  46. env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_compatibility.py +77 -0
  47. env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_convert.py +233 -0
  48. env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_diff.py +61 -0
  49. env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_division.py +143 -0
  50. env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_eigen.py +179 -0
env-llmeval/lib/python3.10/site-packages/mpmath/__init__.py ADDED
@@ -0,0 +1,468 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __version__ = '1.3.0'
2
+
3
+ from .usertools import monitor, timing
4
+
5
+ from .ctx_fp import FPContext
6
+ from .ctx_mp import MPContext
7
+ from .ctx_iv import MPIntervalContext
8
+
9
+ fp = FPContext()
10
+ mp = MPContext()
11
+ iv = MPIntervalContext()
12
+
13
+ fp._mp = mp
14
+ mp._mp = mp
15
+ iv._mp = mp
16
+ mp._fp = fp
17
+ fp._fp = fp
18
+ mp._iv = iv
19
+ fp._iv = iv
20
+ iv._iv = iv
21
+
22
+ # XXX: extremely bad pickle hack
23
+ from . import ctx_mp as _ctx_mp
24
+ _ctx_mp._mpf_module.mpf = mp.mpf
25
+ _ctx_mp._mpf_module.mpc = mp.mpc
26
+
27
+ make_mpf = mp.make_mpf
28
+ make_mpc = mp.make_mpc
29
+
30
+ extraprec = mp.extraprec
31
+ extradps = mp.extradps
32
+ workprec = mp.workprec
33
+ workdps = mp.workdps
34
+ autoprec = mp.autoprec
35
+ maxcalls = mp.maxcalls
36
+ memoize = mp.memoize
37
+
38
+ mag = mp.mag
39
+
40
+ bernfrac = mp.bernfrac
41
+
42
+ qfrom = mp.qfrom
43
+ mfrom = mp.mfrom
44
+ kfrom = mp.kfrom
45
+ taufrom = mp.taufrom
46
+ qbarfrom = mp.qbarfrom
47
+ ellipfun = mp.ellipfun
48
+ jtheta = mp.jtheta
49
+ kleinj = mp.kleinj
50
+ eta = mp.eta
51
+
52
+ qp = mp.qp
53
+ qhyper = mp.qhyper
54
+ qgamma = mp.qgamma
55
+ qfac = mp.qfac
56
+
57
+ nint_distance = mp.nint_distance
58
+
59
+ plot = mp.plot
60
+ cplot = mp.cplot
61
+ splot = mp.splot
62
+
63
+ odefun = mp.odefun
64
+
65
+ jacobian = mp.jacobian
66
+ findroot = mp.findroot
67
+ multiplicity = mp.multiplicity
68
+
69
+ isinf = mp.isinf
70
+ isnan = mp.isnan
71
+ isnormal = mp.isnormal
72
+ isint = mp.isint
73
+ isfinite = mp.isfinite
74
+ almosteq = mp.almosteq
75
+ nan = mp.nan
76
+ rand = mp.rand
77
+
78
+ absmin = mp.absmin
79
+ absmax = mp.absmax
80
+
81
+ fraction = mp.fraction
82
+
83
+ linspace = mp.linspace
84
+ arange = mp.arange
85
+
86
+ mpmathify = convert = mp.convert
87
+ mpc = mp.mpc
88
+
89
+ mpi = iv._mpi
90
+
91
+ nstr = mp.nstr
92
+ nprint = mp.nprint
93
+ chop = mp.chop
94
+
95
+ fneg = mp.fneg
96
+ fadd = mp.fadd
97
+ fsub = mp.fsub
98
+ fmul = mp.fmul
99
+ fdiv = mp.fdiv
100
+ fprod = mp.fprod
101
+
102
+ quad = mp.quad
103
+ quadgl = mp.quadgl
104
+ quadts = mp.quadts
105
+ quadosc = mp.quadosc
106
+ quadsubdiv = mp.quadsubdiv
107
+
108
+ invertlaplace = mp.invertlaplace
109
+ invlaptalbot = mp.invlaptalbot
110
+ invlapstehfest = mp.invlapstehfest
111
+ invlapdehoog = mp.invlapdehoog
112
+
113
+ pslq = mp.pslq
114
+ identify = mp.identify
115
+ findpoly = mp.findpoly
116
+
117
+ richardson = mp.richardson
118
+ shanks = mp.shanks
119
+ levin = mp.levin
120
+ cohen_alt = mp.cohen_alt
121
+ nsum = mp.nsum
122
+ nprod = mp.nprod
123
+ difference = mp.difference
124
+ diff = mp.diff
125
+ diffs = mp.diffs
126
+ diffs_prod = mp.diffs_prod
127
+ diffs_exp = mp.diffs_exp
128
+ diffun = mp.diffun
129
+ differint = mp.differint
130
+ taylor = mp.taylor
131
+ pade = mp.pade
132
+ polyval = mp.polyval
133
+ polyroots = mp.polyroots
134
+ fourier = mp.fourier
135
+ fourierval = mp.fourierval
136
+ sumem = mp.sumem
137
+ sumap = mp.sumap
138
+ chebyfit = mp.chebyfit
139
+ limit = mp.limit
140
+
141
+ matrix = mp.matrix
142
+ eye = mp.eye
143
+ diag = mp.diag
144
+ zeros = mp.zeros
145
+ ones = mp.ones
146
+ hilbert = mp.hilbert
147
+ randmatrix = mp.randmatrix
148
+ swap_row = mp.swap_row
149
+ extend = mp.extend
150
+ norm = mp.norm
151
+ mnorm = mp.mnorm
152
+
153
+ lu_solve = mp.lu_solve
154
+ lu = mp.lu
155
+ qr = mp.qr
156
+ unitvector = mp.unitvector
157
+ inverse = mp.inverse
158
+ residual = mp.residual
159
+ qr_solve = mp.qr_solve
160
+ cholesky = mp.cholesky
161
+ cholesky_solve = mp.cholesky_solve
162
+ det = mp.det
163
+ cond = mp.cond
164
+ hessenberg = mp.hessenberg
165
+ schur = mp.schur
166
+ eig = mp.eig
167
+ eig_sort = mp.eig_sort
168
+ eigsy = mp.eigsy
169
+ eighe = mp.eighe
170
+ eigh = mp.eigh
171
+ svd_r = mp.svd_r
172
+ svd_c = mp.svd_c
173
+ svd = mp.svd
174
+ gauss_quadrature = mp.gauss_quadrature
175
+
176
+ expm = mp.expm
177
+ sqrtm = mp.sqrtm
178
+ powm = mp.powm
179
+ logm = mp.logm
180
+ sinm = mp.sinm
181
+ cosm = mp.cosm
182
+
183
+ mpf = mp.mpf
184
+ j = mp.j
185
+ exp = mp.exp
186
+ expj = mp.expj
187
+ expjpi = mp.expjpi
188
+ ln = mp.ln
189
+ im = mp.im
190
+ re = mp.re
191
+ inf = mp.inf
192
+ ninf = mp.ninf
193
+ sign = mp.sign
194
+
195
+ eps = mp.eps
196
+ pi = mp.pi
197
+ ln2 = mp.ln2
198
+ ln10 = mp.ln10
199
+ phi = mp.phi
200
+ e = mp.e
201
+ euler = mp.euler
202
+ catalan = mp.catalan
203
+ khinchin = mp.khinchin
204
+ glaisher = mp.glaisher
205
+ apery = mp.apery
206
+ degree = mp.degree
207
+ twinprime = mp.twinprime
208
+ mertens = mp.mertens
209
+
210
+ ldexp = mp.ldexp
211
+ frexp = mp.frexp
212
+
213
+ fsum = mp.fsum
214
+ fdot = mp.fdot
215
+
216
+ sqrt = mp.sqrt
217
+ cbrt = mp.cbrt
218
+ exp = mp.exp
219
+ ln = mp.ln
220
+ log = mp.log
221
+ log10 = mp.log10
222
+ power = mp.power
223
+ cos = mp.cos
224
+ sin = mp.sin
225
+ tan = mp.tan
226
+ cosh = mp.cosh
227
+ sinh = mp.sinh
228
+ tanh = mp.tanh
229
+ acos = mp.acos
230
+ asin = mp.asin
231
+ atan = mp.atan
232
+ asinh = mp.asinh
233
+ acosh = mp.acosh
234
+ atanh = mp.atanh
235
+ sec = mp.sec
236
+ csc = mp.csc
237
+ cot = mp.cot
238
+ sech = mp.sech
239
+ csch = mp.csch
240
+ coth = mp.coth
241
+ asec = mp.asec
242
+ acsc = mp.acsc
243
+ acot = mp.acot
244
+ asech = mp.asech
245
+ acsch = mp.acsch
246
+ acoth = mp.acoth
247
+ cospi = mp.cospi
248
+ sinpi = mp.sinpi
249
+ sinc = mp.sinc
250
+ sincpi = mp.sincpi
251
+ cos_sin = mp.cos_sin
252
+ cospi_sinpi = mp.cospi_sinpi
253
+ fabs = mp.fabs
254
+ re = mp.re
255
+ im = mp.im
256
+ conj = mp.conj
257
+ floor = mp.floor
258
+ ceil = mp.ceil
259
+ nint = mp.nint
260
+ frac = mp.frac
261
+ root = mp.root
262
+ nthroot = mp.nthroot
263
+ hypot = mp.hypot
264
+ fmod = mp.fmod
265
+ ldexp = mp.ldexp
266
+ frexp = mp.frexp
267
+ sign = mp.sign
268
+ arg = mp.arg
269
+ phase = mp.phase
270
+ polar = mp.polar
271
+ rect = mp.rect
272
+ degrees = mp.degrees
273
+ radians = mp.radians
274
+ atan2 = mp.atan2
275
+ fib = mp.fib
276
+ fibonacci = mp.fibonacci
277
+ lambertw = mp.lambertw
278
+ zeta = mp.zeta
279
+ altzeta = mp.altzeta
280
+ gamma = mp.gamma
281
+ rgamma = mp.rgamma
282
+ factorial = mp.factorial
283
+ fac = mp.fac
284
+ fac2 = mp.fac2
285
+ beta = mp.beta
286
+ betainc = mp.betainc
287
+ psi = mp.psi
288
+ #psi0 = mp.psi0
289
+ #psi1 = mp.psi1
290
+ #psi2 = mp.psi2
291
+ #psi3 = mp.psi3
292
+ polygamma = mp.polygamma
293
+ digamma = mp.digamma
294
+ #trigamma = mp.trigamma
295
+ #tetragamma = mp.tetragamma
296
+ #pentagamma = mp.pentagamma
297
+ harmonic = mp.harmonic
298
+ bernoulli = mp.bernoulli
299
+ bernfrac = mp.bernfrac
300
+ stieltjes = mp.stieltjes
301
+ hurwitz = mp.hurwitz
302
+ dirichlet = mp.dirichlet
303
+ bernpoly = mp.bernpoly
304
+ eulerpoly = mp.eulerpoly
305
+ eulernum = mp.eulernum
306
+ polylog = mp.polylog
307
+ clsin = mp.clsin
308
+ clcos = mp.clcos
309
+ gammainc = mp.gammainc
310
+ gammaprod = mp.gammaprod
311
+ binomial = mp.binomial
312
+ rf = mp.rf
313
+ ff = mp.ff
314
+ hyper = mp.hyper
315
+ hyp0f1 = mp.hyp0f1
316
+ hyp1f1 = mp.hyp1f1
317
+ hyp1f2 = mp.hyp1f2
318
+ hyp2f1 = mp.hyp2f1
319
+ hyp2f2 = mp.hyp2f2
320
+ hyp2f0 = mp.hyp2f0
321
+ hyp2f3 = mp.hyp2f3
322
+ hyp3f2 = mp.hyp3f2
323
+ hyperu = mp.hyperu
324
+ hypercomb = mp.hypercomb
325
+ meijerg = mp.meijerg
326
+ appellf1 = mp.appellf1
327
+ appellf2 = mp.appellf2
328
+ appellf3 = mp.appellf3
329
+ appellf4 = mp.appellf4
330
+ hyper2d = mp.hyper2d
331
+ bihyper = mp.bihyper
332
+ erf = mp.erf
333
+ erfc = mp.erfc
334
+ erfi = mp.erfi
335
+ erfinv = mp.erfinv
336
+ npdf = mp.npdf
337
+ ncdf = mp.ncdf
338
+ expint = mp.expint
339
+ e1 = mp.e1
340
+ ei = mp.ei
341
+ li = mp.li
342
+ ci = mp.ci
343
+ si = mp.si
344
+ chi = mp.chi
345
+ shi = mp.shi
346
+ fresnels = mp.fresnels
347
+ fresnelc = mp.fresnelc
348
+ airyai = mp.airyai
349
+ airybi = mp.airybi
350
+ airyaizero = mp.airyaizero
351
+ airybizero = mp.airybizero
352
+ scorergi = mp.scorergi
353
+ scorerhi = mp.scorerhi
354
+ ellipk = mp.ellipk
355
+ ellipe = mp.ellipe
356
+ ellipf = mp.ellipf
357
+ ellippi = mp.ellippi
358
+ elliprc = mp.elliprc
359
+ elliprj = mp.elliprj
360
+ elliprf = mp.elliprf
361
+ elliprd = mp.elliprd
362
+ elliprg = mp.elliprg
363
+ agm = mp.agm
364
+ jacobi = mp.jacobi
365
+ chebyt = mp.chebyt
366
+ chebyu = mp.chebyu
367
+ legendre = mp.legendre
368
+ legenp = mp.legenp
369
+ legenq = mp.legenq
370
+ hermite = mp.hermite
371
+ pcfd = mp.pcfd
372
+ pcfu = mp.pcfu
373
+ pcfv = mp.pcfv
374
+ pcfw = mp.pcfw
375
+ gegenbauer = mp.gegenbauer
376
+ laguerre = mp.laguerre
377
+ spherharm = mp.spherharm
378
+ besselj = mp.besselj
379
+ j0 = mp.j0
380
+ j1 = mp.j1
381
+ besseli = mp.besseli
382
+ bessely = mp.bessely
383
+ besselk = mp.besselk
384
+ besseljzero = mp.besseljzero
385
+ besselyzero = mp.besselyzero
386
+ hankel1 = mp.hankel1
387
+ hankel2 = mp.hankel2
388
+ struveh = mp.struveh
389
+ struvel = mp.struvel
390
+ angerj = mp.angerj
391
+ webere = mp.webere
392
+ lommels1 = mp.lommels1
393
+ lommels2 = mp.lommels2
394
+ whitm = mp.whitm
395
+ whitw = mp.whitw
396
+ ber = mp.ber
397
+ bei = mp.bei
398
+ ker = mp.ker
399
+ kei = mp.kei
400
+ coulombc = mp.coulombc
401
+ coulombf = mp.coulombf
402
+ coulombg = mp.coulombg
403
+ barnesg = mp.barnesg
404
+ superfac = mp.superfac
405
+ hyperfac = mp.hyperfac
406
+ loggamma = mp.loggamma
407
+ siegeltheta = mp.siegeltheta
408
+ siegelz = mp.siegelz
409
+ grampoint = mp.grampoint
410
+ zetazero = mp.zetazero
411
+ riemannr = mp.riemannr
412
+ primepi = mp.primepi
413
+ primepi2 = mp.primepi2
414
+ primezeta = mp.primezeta
415
+ bell = mp.bell
416
+ polyexp = mp.polyexp
417
+ expm1 = mp.expm1
418
+ log1p = mp.log1p
419
+ powm1 = mp.powm1
420
+ unitroots = mp.unitroots
421
+ cyclotomic = mp.cyclotomic
422
+ mangoldt = mp.mangoldt
423
+ secondzeta = mp.secondzeta
424
+ nzeros = mp.nzeros
425
+ backlunds = mp.backlunds
426
+ lerchphi = mp.lerchphi
427
+ stirling1 = mp.stirling1
428
+ stirling2 = mp.stirling2
429
+ squarew = mp.squarew
430
+ trianglew = mp.trianglew
431
+ sawtoothw = mp.sawtoothw
432
+ unit_triangle = mp.unit_triangle
433
+ sigmoid = mp.sigmoid
434
+
435
+ # be careful when changing this name, don't use test*!
436
+ def runtests():
437
+ """
438
+ Run all mpmath tests and print output.
439
+ """
440
+ import os.path
441
+ from inspect import getsourcefile
442
+ from .tests import runtests as tests
443
+ testdir = os.path.dirname(os.path.abspath(getsourcefile(tests)))
444
+ importdir = os.path.abspath(testdir + '/../..')
445
+ tests.testit(importdir, testdir)
446
+
447
+ def doctests(filter=[]):
448
+ import sys
449
+ from timeit import default_timer as clock
450
+ for i, arg in enumerate(sys.argv):
451
+ if '__init__.py' in arg:
452
+ filter = [sn for sn in sys.argv[i+1:] if not sn.startswith("-")]
453
+ break
454
+ import doctest
455
+ globs = globals().copy()
456
+ for obj in globs: #sorted(globs.keys()):
457
+ if filter:
458
+ if not sum([pat in obj for pat in filter]):
459
+ continue
460
+ sys.stdout.write(str(obj) + " ")
461
+ sys.stdout.flush()
462
+ t1 = clock()
463
+ doctest.run_docstring_examples(globs[obj], {}, verbose=("-v" in sys.argv))
464
+ t2 = clock()
465
+ print(round(t2-t1, 3))
466
+
467
+ if __name__ == '__main__':
468
+ doctests()
env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/ctx_mp_python.cpython-310.pyc ADDED
Binary file (34.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/function_docs.cpython-310.pyc ADDED
Binary file (284 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/ctx_fp.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .ctx_base import StandardBaseContext
2
+
3
+ import math
4
+ import cmath
5
+ from . import math2
6
+
7
+ from . import function_docs
8
+
9
+ from .libmp import mpf_bernoulli, to_float, int_types
10
+ from . import libmp
11
+
12
+ class FPContext(StandardBaseContext):
13
+ """
14
+ Context for fast low-precision arithmetic (53-bit precision, giving at most
15
+ about 15-digit accuracy), using Python's builtin float and complex.
16
+ """
17
+
18
+ def __init__(ctx):
19
+ StandardBaseContext.__init__(ctx)
20
+
21
+ # Override SpecialFunctions implementation
22
+ ctx.loggamma = math2.loggamma
23
+ ctx._bernoulli_cache = {}
24
+ ctx.pretty = False
25
+
26
+ ctx._init_aliases()
27
+
28
+ _mpq = lambda cls, x: float(x[0])/x[1]
29
+
30
+ NoConvergence = libmp.NoConvergence
31
+
32
+ def _get_prec(ctx): return 53
33
+ def _set_prec(ctx, p): return
34
+ def _get_dps(ctx): return 15
35
+ def _set_dps(ctx, p): return
36
+
37
+ _fixed_precision = True
38
+
39
+ prec = property(_get_prec, _set_prec)
40
+ dps = property(_get_dps, _set_dps)
41
+
42
+ zero = 0.0
43
+ one = 1.0
44
+ eps = math2.EPS
45
+ inf = math2.INF
46
+ ninf = math2.NINF
47
+ nan = math2.NAN
48
+ j = 1j
49
+
50
+ # Called by SpecialFunctions.__init__()
51
+ @classmethod
52
+ def _wrap_specfun(cls, name, f, wrap):
53
+ if wrap:
54
+ def f_wrapped(ctx, *args, **kwargs):
55
+ convert = ctx.convert
56
+ args = [convert(a) for a in args]
57
+ return f(ctx, *args, **kwargs)
58
+ else:
59
+ f_wrapped = f
60
+ f_wrapped.__doc__ = function_docs.__dict__.get(name, f.__doc__)
61
+ setattr(cls, name, f_wrapped)
62
+
63
+ def bernoulli(ctx, n):
64
+ cache = ctx._bernoulli_cache
65
+ if n in cache:
66
+ return cache[n]
67
+ cache[n] = to_float(mpf_bernoulli(n, 53, 'n'), strict=True)
68
+ return cache[n]
69
+
70
+ pi = math2.pi
71
+ e = math2.e
72
+ euler = math2.euler
73
+ sqrt2 = 1.4142135623730950488
74
+ sqrt5 = 2.2360679774997896964
75
+ phi = 1.6180339887498948482
76
+ ln2 = 0.69314718055994530942
77
+ ln10 = 2.302585092994045684
78
+ euler = 0.57721566490153286061
79
+ catalan = 0.91596559417721901505
80
+ khinchin = 2.6854520010653064453
81
+ apery = 1.2020569031595942854
82
+ glaisher = 1.2824271291006226369
83
+
84
+ absmin = absmax = abs
85
+
86
+ def is_special(ctx, x):
87
+ return x - x != 0.0
88
+
89
+ def isnan(ctx, x):
90
+ return x != x
91
+
92
+ def isinf(ctx, x):
93
+ return abs(x) == math2.INF
94
+
95
+ def isnormal(ctx, x):
96
+ if x:
97
+ return x - x == 0.0
98
+ return False
99
+
100
+ def isnpint(ctx, x):
101
+ if type(x) is complex:
102
+ if x.imag:
103
+ return False
104
+ x = x.real
105
+ return x <= 0.0 and round(x) == x
106
+
107
+ mpf = float
108
+ mpc = complex
109
+
110
+ def convert(ctx, x):
111
+ try:
112
+ return float(x)
113
+ except:
114
+ return complex(x)
115
+
116
+ power = staticmethod(math2.pow)
117
+ sqrt = staticmethod(math2.sqrt)
118
+ exp = staticmethod(math2.exp)
119
+ ln = log = staticmethod(math2.log)
120
+ cos = staticmethod(math2.cos)
121
+ sin = staticmethod(math2.sin)
122
+ tan = staticmethod(math2.tan)
123
+ cos_sin = staticmethod(math2.cos_sin)
124
+ acos = staticmethod(math2.acos)
125
+ asin = staticmethod(math2.asin)
126
+ atan = staticmethod(math2.atan)
127
+ cosh = staticmethod(math2.cosh)
128
+ sinh = staticmethod(math2.sinh)
129
+ tanh = staticmethod(math2.tanh)
130
+ gamma = staticmethod(math2.gamma)
131
+ rgamma = staticmethod(math2.rgamma)
132
+ fac = factorial = staticmethod(math2.factorial)
133
+ floor = staticmethod(math2.floor)
134
+ ceil = staticmethod(math2.ceil)
135
+ cospi = staticmethod(math2.cospi)
136
+ sinpi = staticmethod(math2.sinpi)
137
+ cbrt = staticmethod(math2.cbrt)
138
+ _nthroot = staticmethod(math2.nthroot)
139
+ _ei = staticmethod(math2.ei)
140
+ _e1 = staticmethod(math2.e1)
141
+ _zeta = _zeta_int = staticmethod(math2.zeta)
142
+
143
+ # XXX: math2
144
+ def arg(ctx, z):
145
+ z = complex(z)
146
+ return math.atan2(z.imag, z.real)
147
+
148
+ def expj(ctx, x):
149
+ return ctx.exp(ctx.j*x)
150
+
151
+ def expjpi(ctx, x):
152
+ return ctx.exp(ctx.j*ctx.pi*x)
153
+
154
+ ldexp = math.ldexp
155
+ frexp = math.frexp
156
+
157
+ def mag(ctx, z):
158
+ if z:
159
+ return ctx.frexp(abs(z))[1]
160
+ return ctx.ninf
161
+
162
+ def isint(ctx, z):
163
+ if hasattr(z, "imag"): # float/int don't have .real/.imag in py2.5
164
+ if z.imag:
165
+ return False
166
+ z = z.real
167
+ try:
168
+ return z == int(z)
169
+ except:
170
+ return False
171
+
172
+ def nint_distance(ctx, z):
173
+ if hasattr(z, "imag"): # float/int don't have .real/.imag in py2.5
174
+ n = round(z.real)
175
+ else:
176
+ n = round(z)
177
+ if n == z:
178
+ return n, ctx.ninf
179
+ return n, ctx.mag(abs(z-n))
180
+
181
+ def _convert_param(ctx, z):
182
+ if type(z) is tuple:
183
+ p, q = z
184
+ return ctx.mpf(p) / q, 'R'
185
+ if hasattr(z, "imag"): # float/int don't have .real/.imag in py2.5
186
+ intz = int(z.real)
187
+ else:
188
+ intz = int(z)
189
+ if z == intz:
190
+ return intz, 'Z'
191
+ return z, 'R'
192
+
193
+ def _is_real_type(ctx, z):
194
+ return isinstance(z, float) or isinstance(z, int_types)
195
+
196
+ def _is_complex_type(ctx, z):
197
+ return isinstance(z, complex)
198
+
199
+ def hypsum(ctx, p, q, types, coeffs, z, maxterms=6000, **kwargs):
200
+ coeffs = list(coeffs)
201
+ num = range(p)
202
+ den = range(p,p+q)
203
+ tol = ctx.eps
204
+ s = t = 1.0
205
+ k = 0
206
+ while 1:
207
+ for i in num: t *= (coeffs[i]+k)
208
+ for i in den: t /= (coeffs[i]+k)
209
+ k += 1; t /= k; t *= z; s += t
210
+ if abs(t) < tol:
211
+ return s
212
+ if k > maxterms:
213
+ raise ctx.NoConvergence
214
+
215
+ def atan2(ctx, x, y):
216
+ return math.atan2(x, y)
217
+
218
+ def psi(ctx, m, z):
219
+ m = int(m)
220
+ if m == 0:
221
+ return ctx.digamma(z)
222
+ return (-1)**(m+1) * ctx.fac(m) * ctx.zeta(m+1, z)
223
+
224
+ digamma = staticmethod(math2.digamma)
225
+
226
+ def harmonic(ctx, x):
227
+ x = ctx.convert(x)
228
+ if x == 0 or x == 1:
229
+ return x
230
+ return ctx.digamma(x+1) + ctx.euler
231
+
232
+ nstr = str
233
+
234
+ def to_fixed(ctx, x, prec):
235
+ return int(math.ldexp(x, prec))
236
+
237
+ def rand(ctx):
238
+ import random
239
+ return random.random()
240
+
241
+ _erf = staticmethod(math2.erf)
242
+ _erfc = staticmethod(math2.erfc)
243
+
244
+ def sum_accurately(ctx, terms, check_step=1):
245
+ s = ctx.zero
246
+ k = 0
247
+ for term in terms():
248
+ s += term
249
+ if (not k % check_step) and term:
250
+ if abs(term) <= 1e-18*abs(s):
251
+ break
252
+ k += 1
253
+ return s
env-llmeval/lib/python3.10/site-packages/mpmath/ctx_iv.py ADDED
@@ -0,0 +1,551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+
3
+ from . import libmp
4
+
5
+ from .libmp.backend import basestring
6
+
7
+ from .libmp import (
8
+ int_types, MPZ_ONE,
9
+ prec_to_dps, dps_to_prec, repr_dps,
10
+ round_floor, round_ceiling,
11
+ fzero, finf, fninf, fnan,
12
+ mpf_le, mpf_neg,
13
+ from_int, from_float, from_str, from_rational,
14
+ mpi_mid, mpi_delta, mpi_str,
15
+ mpi_abs, mpi_pos, mpi_neg, mpi_add, mpi_sub,
16
+ mpi_mul, mpi_div, mpi_pow_int, mpi_pow,
17
+ mpi_from_str,
18
+ mpci_pos, mpci_neg, mpci_add, mpci_sub, mpci_mul, mpci_div, mpci_pow,
19
+ mpci_abs, mpci_pow, mpci_exp, mpci_log,
20
+ ComplexResult,
21
+ mpf_hash, mpc_hash)
22
+ from .matrices.matrices import _matrix
23
+
24
+ mpi_zero = (fzero, fzero)
25
+
26
+ from .ctx_base import StandardBaseContext
27
+
28
+ new = object.__new__
29
+
30
+ def convert_mpf_(x, prec, rounding):
31
+ if hasattr(x, "_mpf_"): return x._mpf_
32
+ if isinstance(x, int_types): return from_int(x, prec, rounding)
33
+ if isinstance(x, float): return from_float(x, prec, rounding)
34
+ if isinstance(x, basestring): return from_str(x, prec, rounding)
35
+ raise NotImplementedError
36
+
37
+
38
+ class ivmpf(object):
39
+ """
40
+ Interval arithmetic class. Precision is controlled by iv.prec.
41
+ """
42
+
43
+ def __new__(cls, x=0):
44
+ return cls.ctx.convert(x)
45
+
46
+ def cast(self, cls, f_convert):
47
+ a, b = self._mpi_
48
+ if a == b:
49
+ return cls(f_convert(a))
50
+ raise ValueError
51
+
52
+ def __int__(self):
53
+ return self.cast(int, libmp.to_int)
54
+
55
+ def __float__(self):
56
+ return self.cast(float, libmp.to_float)
57
+
58
+ def __complex__(self):
59
+ return self.cast(complex, libmp.to_float)
60
+
61
+ def __hash__(self):
62
+ a, b = self._mpi_
63
+ if a == b:
64
+ return mpf_hash(a)
65
+ else:
66
+ return hash(self._mpi_)
67
+
68
+ @property
69
+ def real(self): return self
70
+
71
+ @property
72
+ def imag(self): return self.ctx.zero
73
+
74
+ def conjugate(self): return self
75
+
76
+ @property
77
+ def a(self):
78
+ a, b = self._mpi_
79
+ return self.ctx.make_mpf((a, a))
80
+
81
+ @property
82
+ def b(self):
83
+ a, b = self._mpi_
84
+ return self.ctx.make_mpf((b, b))
85
+
86
+ @property
87
+ def mid(self):
88
+ ctx = self.ctx
89
+ v = mpi_mid(self._mpi_, ctx.prec)
90
+ return ctx.make_mpf((v, v))
91
+
92
+ @property
93
+ def delta(self):
94
+ ctx = self.ctx
95
+ v = mpi_delta(self._mpi_, ctx.prec)
96
+ return ctx.make_mpf((v,v))
97
+
98
+ @property
99
+ def _mpci_(self):
100
+ return self._mpi_, mpi_zero
101
+
102
+ def _compare(*args):
103
+ raise TypeError("no ordering relation is defined for intervals")
104
+
105
+ __gt__ = _compare
106
+ __le__ = _compare
107
+ __gt__ = _compare
108
+ __ge__ = _compare
109
+
110
+ def __contains__(self, t):
111
+ t = self.ctx.mpf(t)
112
+ return (self.a <= t.a) and (t.b <= self.b)
113
+
114
+ def __str__(self):
115
+ return mpi_str(self._mpi_, self.ctx.prec)
116
+
117
+ def __repr__(self):
118
+ if self.ctx.pretty:
119
+ return str(self)
120
+ a, b = self._mpi_
121
+ n = repr_dps(self.ctx.prec)
122
+ a = libmp.to_str(a, n)
123
+ b = libmp.to_str(b, n)
124
+ return "mpi(%r, %r)" % (a, b)
125
+
126
+ def _compare(s, t, cmpfun):
127
+ if not hasattr(t, "_mpi_"):
128
+ try:
129
+ t = s.ctx.convert(t)
130
+ except:
131
+ return NotImplemented
132
+ return cmpfun(s._mpi_, t._mpi_)
133
+
134
+ def __eq__(s, t): return s._compare(t, libmp.mpi_eq)
135
+ def __ne__(s, t): return s._compare(t, libmp.mpi_ne)
136
+ def __lt__(s, t): return s._compare(t, libmp.mpi_lt)
137
+ def __le__(s, t): return s._compare(t, libmp.mpi_le)
138
+ def __gt__(s, t): return s._compare(t, libmp.mpi_gt)
139
+ def __ge__(s, t): return s._compare(t, libmp.mpi_ge)
140
+
141
+ def __abs__(self):
142
+ return self.ctx.make_mpf(mpi_abs(self._mpi_, self.ctx.prec))
143
+ def __pos__(self):
144
+ return self.ctx.make_mpf(mpi_pos(self._mpi_, self.ctx.prec))
145
+ def __neg__(self):
146
+ return self.ctx.make_mpf(mpi_neg(self._mpi_, self.ctx.prec))
147
+
148
+ def ae(s, t, rel_eps=None, abs_eps=None):
149
+ return s.ctx.almosteq(s, t, rel_eps, abs_eps)
150
+
151
+ class ivmpc(object):
152
+
153
+ def __new__(cls, re=0, im=0):
154
+ re = cls.ctx.convert(re)
155
+ im = cls.ctx.convert(im)
156
+ y = new(cls)
157
+ y._mpci_ = re._mpi_, im._mpi_
158
+ return y
159
+
160
+ def __hash__(self):
161
+ (a, b), (c,d) = self._mpci_
162
+ if a == b and c == d:
163
+ return mpc_hash((a, c))
164
+ else:
165
+ return hash(self._mpci_)
166
+
167
+ def __repr__(s):
168
+ if s.ctx.pretty:
169
+ return str(s)
170
+ return "iv.mpc(%s, %s)" % (repr(s.real), repr(s.imag))
171
+
172
+ def __str__(s):
173
+ return "(%s + %s*j)" % (str(s.real), str(s.imag))
174
+
175
+ @property
176
+ def a(self):
177
+ (a, b), (c,d) = self._mpci_
178
+ return self.ctx.make_mpf((a, a))
179
+
180
+ @property
181
+ def b(self):
182
+ (a, b), (c,d) = self._mpci_
183
+ return self.ctx.make_mpf((b, b))
184
+
185
+ @property
186
+ def c(self):
187
+ (a, b), (c,d) = self._mpci_
188
+ return self.ctx.make_mpf((c, c))
189
+
190
+ @property
191
+ def d(self):
192
+ (a, b), (c,d) = self._mpci_
193
+ return self.ctx.make_mpf((d, d))
194
+
195
+ @property
196
+ def real(s):
197
+ return s.ctx.make_mpf(s._mpci_[0])
198
+
199
+ @property
200
+ def imag(s):
201
+ return s.ctx.make_mpf(s._mpci_[1])
202
+
203
+ def conjugate(s):
204
+ a, b = s._mpci_
205
+ return s.ctx.make_mpc((a, mpf_neg(b)))
206
+
207
+ def overlap(s, t):
208
+ t = s.ctx.convert(t)
209
+ real_overlap = (s.a <= t.a <= s.b) or (s.a <= t.b <= s.b) or (t.a <= s.a <= t.b) or (t.a <= s.b <= t.b)
210
+ imag_overlap = (s.c <= t.c <= s.d) or (s.c <= t.d <= s.d) or (t.c <= s.c <= t.d) or (t.c <= s.d <= t.d)
211
+ return real_overlap and imag_overlap
212
+
213
+ def __contains__(s, t):
214
+ t = s.ctx.convert(t)
215
+ return t.real in s.real and t.imag in s.imag
216
+
217
+ def _compare(s, t, ne=False):
218
+ if not isinstance(t, s.ctx._types):
219
+ try:
220
+ t = s.ctx.convert(t)
221
+ except:
222
+ return NotImplemented
223
+ if hasattr(t, '_mpi_'):
224
+ tval = t._mpi_, mpi_zero
225
+ elif hasattr(t, '_mpci_'):
226
+ tval = t._mpci_
227
+ if ne:
228
+ return s._mpci_ != tval
229
+ return s._mpci_ == tval
230
+
231
+ def __eq__(s, t): return s._compare(t)
232
+ def __ne__(s, t): return s._compare(t, True)
233
+
234
+ def __lt__(s, t): raise TypeError("complex intervals cannot be ordered")
235
+ __le__ = __gt__ = __ge__ = __lt__
236
+
237
+ def __neg__(s): return s.ctx.make_mpc(mpci_neg(s._mpci_, s.ctx.prec))
238
+ def __pos__(s): return s.ctx.make_mpc(mpci_pos(s._mpci_, s.ctx.prec))
239
+ def __abs__(s): return s.ctx.make_mpf(mpci_abs(s._mpci_, s.ctx.prec))
240
+
241
+ def ae(s, t, rel_eps=None, abs_eps=None):
242
+ return s.ctx.almosteq(s, t, rel_eps, abs_eps)
243
+
244
+ def _binary_op(f_real, f_complex):
245
+ def g_complex(ctx, sval, tval):
246
+ return ctx.make_mpc(f_complex(sval, tval, ctx.prec))
247
+ def g_real(ctx, sval, tval):
248
+ try:
249
+ return ctx.make_mpf(f_real(sval, tval, ctx.prec))
250
+ except ComplexResult:
251
+ sval = (sval, mpi_zero)
252
+ tval = (tval, mpi_zero)
253
+ return g_complex(ctx, sval, tval)
254
+ def lop_real(s, t):
255
+ if isinstance(t, _matrix): return NotImplemented
256
+ ctx = s.ctx
257
+ if not isinstance(t, ctx._types): t = ctx.convert(t)
258
+ if hasattr(t, "_mpi_"): return g_real(ctx, s._mpi_, t._mpi_)
259
+ if hasattr(t, "_mpci_"): return g_complex(ctx, (s._mpi_, mpi_zero), t._mpci_)
260
+ return NotImplemented
261
+ def rop_real(s, t):
262
+ ctx = s.ctx
263
+ if not isinstance(t, ctx._types): t = ctx.convert(t)
264
+ if hasattr(t, "_mpi_"): return g_real(ctx, t._mpi_, s._mpi_)
265
+ if hasattr(t, "_mpci_"): return g_complex(ctx, t._mpci_, (s._mpi_, mpi_zero))
266
+ return NotImplemented
267
+ def lop_complex(s, t):
268
+ if isinstance(t, _matrix): return NotImplemented
269
+ ctx = s.ctx
270
+ if not isinstance(t, s.ctx._types):
271
+ try:
272
+ t = s.ctx.convert(t)
273
+ except (ValueError, TypeError):
274
+ return NotImplemented
275
+ return g_complex(ctx, s._mpci_, t._mpci_)
276
+ def rop_complex(s, t):
277
+ ctx = s.ctx
278
+ if not isinstance(t, s.ctx._types):
279
+ t = s.ctx.convert(t)
280
+ return g_complex(ctx, t._mpci_, s._mpci_)
281
+ return lop_real, rop_real, lop_complex, rop_complex
282
+
283
+ ivmpf.__add__, ivmpf.__radd__, ivmpc.__add__, ivmpc.__radd__ = _binary_op(mpi_add, mpci_add)
284
+ ivmpf.__sub__, ivmpf.__rsub__, ivmpc.__sub__, ivmpc.__rsub__ = _binary_op(mpi_sub, mpci_sub)
285
+ ivmpf.__mul__, ivmpf.__rmul__, ivmpc.__mul__, ivmpc.__rmul__ = _binary_op(mpi_mul, mpci_mul)
286
+ ivmpf.__div__, ivmpf.__rdiv__, ivmpc.__div__, ivmpc.__rdiv__ = _binary_op(mpi_div, mpci_div)
287
+ ivmpf.__pow__, ivmpf.__rpow__, ivmpc.__pow__, ivmpc.__rpow__ = _binary_op(mpi_pow, mpci_pow)
288
+
289
+ ivmpf.__truediv__ = ivmpf.__div__; ivmpf.__rtruediv__ = ivmpf.__rdiv__
290
+ ivmpc.__truediv__ = ivmpc.__div__; ivmpc.__rtruediv__ = ivmpc.__rdiv__
291
+
292
+ class ivmpf_constant(ivmpf):
293
+ def __new__(cls, f):
294
+ self = new(cls)
295
+ self._f = f
296
+ return self
297
+ def _get_mpi_(self):
298
+ prec = self.ctx._prec[0]
299
+ a = self._f(prec, round_floor)
300
+ b = self._f(prec, round_ceiling)
301
+ return a, b
302
+ _mpi_ = property(_get_mpi_)
303
+
304
+ class MPIntervalContext(StandardBaseContext):
305
+
306
+ def __init__(ctx):
307
+ ctx.mpf = type('ivmpf', (ivmpf,), {})
308
+ ctx.mpc = type('ivmpc', (ivmpc,), {})
309
+ ctx._types = (ctx.mpf, ctx.mpc)
310
+ ctx._constant = type('ivmpf_constant', (ivmpf_constant,), {})
311
+ ctx._prec = [53]
312
+ ctx._set_prec(53)
313
+ ctx._constant._ctxdata = ctx.mpf._ctxdata = ctx.mpc._ctxdata = [ctx.mpf, new, ctx._prec]
314
+ ctx._constant.ctx = ctx.mpf.ctx = ctx.mpc.ctx = ctx
315
+ ctx.pretty = False
316
+ StandardBaseContext.__init__(ctx)
317
+ ctx._init_builtins()
318
+
319
+ def _mpi(ctx, a, b=None):
320
+ if b is None:
321
+ return ctx.mpf(a)
322
+ return ctx.mpf((a,b))
323
+
324
+ def _init_builtins(ctx):
325
+ ctx.one = ctx.mpf(1)
326
+ ctx.zero = ctx.mpf(0)
327
+ ctx.inf = ctx.mpf('inf')
328
+ ctx.ninf = -ctx.inf
329
+ ctx.nan = ctx.mpf('nan')
330
+ ctx.j = ctx.mpc(0,1)
331
+ ctx.exp = ctx._wrap_mpi_function(libmp.mpi_exp, libmp.mpci_exp)
332
+ ctx.sqrt = ctx._wrap_mpi_function(libmp.mpi_sqrt)
333
+ ctx.ln = ctx._wrap_mpi_function(libmp.mpi_log, libmp.mpci_log)
334
+ ctx.cos = ctx._wrap_mpi_function(libmp.mpi_cos, libmp.mpci_cos)
335
+ ctx.sin = ctx._wrap_mpi_function(libmp.mpi_sin, libmp.mpci_sin)
336
+ ctx.tan = ctx._wrap_mpi_function(libmp.mpi_tan)
337
+ ctx.gamma = ctx._wrap_mpi_function(libmp.mpi_gamma, libmp.mpci_gamma)
338
+ ctx.loggamma = ctx._wrap_mpi_function(libmp.mpi_loggamma, libmp.mpci_loggamma)
339
+ ctx.rgamma = ctx._wrap_mpi_function(libmp.mpi_rgamma, libmp.mpci_rgamma)
340
+ ctx.factorial = ctx._wrap_mpi_function(libmp.mpi_factorial, libmp.mpci_factorial)
341
+ ctx.fac = ctx.factorial
342
+
343
+ ctx.eps = ctx._constant(lambda prec, rnd: (0, MPZ_ONE, 1-prec, 1))
344
+ ctx.pi = ctx._constant(libmp.mpf_pi)
345
+ ctx.e = ctx._constant(libmp.mpf_e)
346
+ ctx.ln2 = ctx._constant(libmp.mpf_ln2)
347
+ ctx.ln10 = ctx._constant(libmp.mpf_ln10)
348
+ ctx.phi = ctx._constant(libmp.mpf_phi)
349
+ ctx.euler = ctx._constant(libmp.mpf_euler)
350
+ ctx.catalan = ctx._constant(libmp.mpf_catalan)
351
+ ctx.glaisher = ctx._constant(libmp.mpf_glaisher)
352
+ ctx.khinchin = ctx._constant(libmp.mpf_khinchin)
353
+ ctx.twinprime = ctx._constant(libmp.mpf_twinprime)
354
+
355
+ def _wrap_mpi_function(ctx, f_real, f_complex=None):
356
+ def g(x, **kwargs):
357
+ if kwargs:
358
+ prec = kwargs.get('prec', ctx._prec[0])
359
+ else:
360
+ prec = ctx._prec[0]
361
+ x = ctx.convert(x)
362
+ if hasattr(x, "_mpi_"):
363
+ return ctx.make_mpf(f_real(x._mpi_, prec))
364
+ if hasattr(x, "_mpci_"):
365
+ return ctx.make_mpc(f_complex(x._mpci_, prec))
366
+ raise ValueError
367
+ return g
368
+
369
+ @classmethod
370
+ def _wrap_specfun(cls, name, f, wrap):
371
+ if wrap:
372
+ def f_wrapped(ctx, *args, **kwargs):
373
+ convert = ctx.convert
374
+ args = [convert(a) for a in args]
375
+ prec = ctx.prec
376
+ try:
377
+ ctx.prec += 10
378
+ retval = f(ctx, *args, **kwargs)
379
+ finally:
380
+ ctx.prec = prec
381
+ return +retval
382
+ else:
383
+ f_wrapped = f
384
+ setattr(cls, name, f_wrapped)
385
+
386
+ def _set_prec(ctx, n):
387
+ ctx._prec[0] = max(1, int(n))
388
+ ctx._dps = prec_to_dps(n)
389
+
390
+ def _set_dps(ctx, n):
391
+ ctx._prec[0] = dps_to_prec(n)
392
+ ctx._dps = max(1, int(n))
393
+
394
+ prec = property(lambda ctx: ctx._prec[0], _set_prec)
395
+ dps = property(lambda ctx: ctx._dps, _set_dps)
396
+
397
+ def make_mpf(ctx, v):
398
+ a = new(ctx.mpf)
399
+ a._mpi_ = v
400
+ return a
401
+
402
+ def make_mpc(ctx, v):
403
+ a = new(ctx.mpc)
404
+ a._mpci_ = v
405
+ return a
406
+
407
+ def _mpq(ctx, pq):
408
+ p, q = pq
409
+ a = libmp.from_rational(p, q, ctx.prec, round_floor)
410
+ b = libmp.from_rational(p, q, ctx.prec, round_ceiling)
411
+ return ctx.make_mpf((a, b))
412
+
413
+ def convert(ctx, x):
414
+ if isinstance(x, (ctx.mpf, ctx.mpc)):
415
+ return x
416
+ if isinstance(x, ctx._constant):
417
+ return +x
418
+ if isinstance(x, complex) or hasattr(x, "_mpc_"):
419
+ re = ctx.convert(x.real)
420
+ im = ctx.convert(x.imag)
421
+ return ctx.mpc(re,im)
422
+ if isinstance(x, basestring):
423
+ v = mpi_from_str(x, ctx.prec)
424
+ return ctx.make_mpf(v)
425
+ if hasattr(x, "_mpi_"):
426
+ a, b = x._mpi_
427
+ else:
428
+ try:
429
+ a, b = x
430
+ except (TypeError, ValueError):
431
+ a = b = x
432
+ if hasattr(a, "_mpi_"):
433
+ a = a._mpi_[0]
434
+ else:
435
+ a = convert_mpf_(a, ctx.prec, round_floor)
436
+ if hasattr(b, "_mpi_"):
437
+ b = b._mpi_[1]
438
+ else:
439
+ b = convert_mpf_(b, ctx.prec, round_ceiling)
440
+ if a == fnan or b == fnan:
441
+ a = fninf
442
+ b = finf
443
+ assert mpf_le(a, b), "endpoints must be properly ordered"
444
+ return ctx.make_mpf((a, b))
445
+
446
+ def nstr(ctx, x, n=5, **kwargs):
447
+ x = ctx.convert(x)
448
+ if hasattr(x, "_mpi_"):
449
+ return libmp.mpi_to_str(x._mpi_, n, **kwargs)
450
+ if hasattr(x, "_mpci_"):
451
+ re = libmp.mpi_to_str(x._mpci_[0], n, **kwargs)
452
+ im = libmp.mpi_to_str(x._mpci_[1], n, **kwargs)
453
+ return "(%s + %s*j)" % (re, im)
454
+
455
+ def mag(ctx, x):
456
+ x = ctx.convert(x)
457
+ if isinstance(x, ctx.mpc):
458
+ return max(ctx.mag(x.real), ctx.mag(x.imag)) + 1
459
+ a, b = libmp.mpi_abs(x._mpi_)
460
+ sign, man, exp, bc = b
461
+ if man:
462
+ return exp+bc
463
+ if b == fzero:
464
+ return ctx.ninf
465
+ if b == fnan:
466
+ return ctx.nan
467
+ return ctx.inf
468
+
469
+ def isnan(ctx, x):
470
+ return False
471
+
472
+ def isinf(ctx, x):
473
+ return x == ctx.inf
474
+
475
+ def isint(ctx, x):
476
+ x = ctx.convert(x)
477
+ a, b = x._mpi_
478
+ if a == b:
479
+ sign, man, exp, bc = a
480
+ if man:
481
+ return exp >= 0
482
+ return a == fzero
483
+ return None
484
+
485
+ def ldexp(ctx, x, n):
486
+ a, b = ctx.convert(x)._mpi_
487
+ a = libmp.mpf_shift(a, n)
488
+ b = libmp.mpf_shift(b, n)
489
+ return ctx.make_mpf((a,b))
490
+
491
+ def absmin(ctx, x):
492
+ return abs(ctx.convert(x)).a
493
+
494
+ def absmax(ctx, x):
495
+ return abs(ctx.convert(x)).b
496
+
497
+ def atan2(ctx, y, x):
498
+ y = ctx.convert(y)._mpi_
499
+ x = ctx.convert(x)._mpi_
500
+ return ctx.make_mpf(libmp.mpi_atan2(y,x,ctx.prec))
501
+
502
+ def _convert_param(ctx, x):
503
+ if isinstance(x, libmp.int_types):
504
+ return x, 'Z'
505
+ if isinstance(x, tuple):
506
+ p, q = x
507
+ return (ctx.mpf(p) / ctx.mpf(q), 'R')
508
+ x = ctx.convert(x)
509
+ if isinstance(x, ctx.mpf):
510
+ return x, 'R'
511
+ if isinstance(x, ctx.mpc):
512
+ return x, 'C'
513
+ raise ValueError
514
+
515
+ def _is_real_type(ctx, z):
516
+ return isinstance(z, ctx.mpf) or isinstance(z, int_types)
517
+
518
+ def _is_complex_type(ctx, z):
519
+ return isinstance(z, ctx.mpc)
520
+
521
+ def hypsum(ctx, p, q, types, coeffs, z, maxterms=6000, **kwargs):
522
+ coeffs = list(coeffs)
523
+ num = range(p)
524
+ den = range(p,p+q)
525
+ #tol = ctx.eps
526
+ s = t = ctx.one
527
+ k = 0
528
+ while 1:
529
+ for i in num: t *= (coeffs[i]+k)
530
+ for i in den: t /= (coeffs[i]+k)
531
+ k += 1; t /= k; t *= z; s += t
532
+ if t == 0:
533
+ return s
534
+ #if abs(t) < tol:
535
+ # return s
536
+ if k > maxterms:
537
+ raise ctx.NoConvergence
538
+
539
+
540
+ # Register with "numbers" ABC
541
+ # We do not subclass, hence we do not use the @abstractmethod checks. While
542
+ # this is less invasive it may turn out that we do not actually support
543
+ # parts of the expected interfaces. See
544
+ # http://docs.python.org/2/library/numbers.html for list of abstract
545
+ # methods.
546
+ try:
547
+ import numbers
548
+ numbers.Complex.register(ivmpc)
549
+ numbers.Real.register(ivmpf)
550
+ except ImportError:
551
+ pass
env-llmeval/lib/python3.10/site-packages/mpmath/ctx_mp.py ADDED
@@ -0,0 +1,1339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module defines the mpf, mpc classes, and standard functions for
3
+ operating with them.
4
+ """
5
+ __docformat__ = 'plaintext'
6
+
7
+ import functools
8
+
9
+ import re
10
+
11
+ from .ctx_base import StandardBaseContext
12
+
13
+ from .libmp.backend import basestring, BACKEND
14
+
15
+ from . import libmp
16
+
17
+ from .libmp import (MPZ, MPZ_ZERO, MPZ_ONE, int_types, repr_dps,
18
+ round_floor, round_ceiling, dps_to_prec, round_nearest, prec_to_dps,
19
+ ComplexResult, to_pickable, from_pickable, normalize,
20
+ from_int, from_float, from_str, to_int, to_float, to_str,
21
+ from_rational, from_man_exp,
22
+ fone, fzero, finf, fninf, fnan,
23
+ mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_mul_int,
24
+ mpf_div, mpf_rdiv_int, mpf_pow_int, mpf_mod,
25
+ mpf_eq, mpf_cmp, mpf_lt, mpf_gt, mpf_le, mpf_ge,
26
+ mpf_hash, mpf_rand,
27
+ mpf_sum,
28
+ bitcount, to_fixed,
29
+ mpc_to_str,
30
+ mpc_to_complex, mpc_hash, mpc_pos, mpc_is_nonzero, mpc_neg, mpc_conjugate,
31
+ mpc_abs, mpc_add, mpc_add_mpf, mpc_sub, mpc_sub_mpf, mpc_mul, mpc_mul_mpf,
32
+ mpc_mul_int, mpc_div, mpc_div_mpf, mpc_pow, mpc_pow_mpf, mpc_pow_int,
33
+ mpc_mpf_div,
34
+ mpf_pow,
35
+ mpf_pi, mpf_degree, mpf_e, mpf_phi, mpf_ln2, mpf_ln10,
36
+ mpf_euler, mpf_catalan, mpf_apery, mpf_khinchin,
37
+ mpf_glaisher, mpf_twinprime, mpf_mertens,
38
+ int_types)
39
+
40
+ from . import function_docs
41
+ from . import rational
42
+
43
+ new = object.__new__
44
+
45
+ get_complex = re.compile(r'^\(?(?P<re>[\+\-]?\d*(\.\d*)?(e[\+\-]?\d+)?)??'
46
+ r'(?P<im>[\+\-]?\d*(\.\d*)?(e[\+\-]?\d+)?j)?\)?$')
47
+
48
+ if BACKEND == 'sage':
49
+ from sage.libs.mpmath.ext_main import Context as BaseMPContext
50
+ # pickle hack
51
+ import sage.libs.mpmath.ext_main as _mpf_module
52
+ else:
53
+ from .ctx_mp_python import PythonMPContext as BaseMPContext
54
+ from . import ctx_mp_python as _mpf_module
55
+
56
+ from .ctx_mp_python import _mpf, _mpc, mpnumeric
57
+
58
+ class MPContext(BaseMPContext, StandardBaseContext):
59
+ """
60
+ Context for multiprecision arithmetic with a global precision.
61
+ """
62
+
63
+ def __init__(ctx):
64
+ BaseMPContext.__init__(ctx)
65
+ ctx.trap_complex = False
66
+ ctx.pretty = False
67
+ ctx.types = [ctx.mpf, ctx.mpc, ctx.constant]
68
+ ctx._mpq = rational.mpq
69
+ ctx.default()
70
+ StandardBaseContext.__init__(ctx)
71
+
72
+ ctx.mpq = rational.mpq
73
+ ctx.init_builtins()
74
+
75
+ ctx.hyp_summators = {}
76
+
77
+ ctx._init_aliases()
78
+
79
+ # XXX: automate
80
+ try:
81
+ ctx.bernoulli.im_func.func_doc = function_docs.bernoulli
82
+ ctx.primepi.im_func.func_doc = function_docs.primepi
83
+ ctx.psi.im_func.func_doc = function_docs.psi
84
+ ctx.atan2.im_func.func_doc = function_docs.atan2
85
+ except AttributeError:
86
+ # python 3
87
+ ctx.bernoulli.__func__.func_doc = function_docs.bernoulli
88
+ ctx.primepi.__func__.func_doc = function_docs.primepi
89
+ ctx.psi.__func__.func_doc = function_docs.psi
90
+ ctx.atan2.__func__.func_doc = function_docs.atan2
91
+
92
+ ctx.digamma.func_doc = function_docs.digamma
93
+ ctx.cospi.func_doc = function_docs.cospi
94
+ ctx.sinpi.func_doc = function_docs.sinpi
95
+
96
+ def init_builtins(ctx):
97
+
98
+ mpf = ctx.mpf
99
+ mpc = ctx.mpc
100
+
101
+ # Exact constants
102
+ ctx.one = ctx.make_mpf(fone)
103
+ ctx.zero = ctx.make_mpf(fzero)
104
+ ctx.j = ctx.make_mpc((fzero,fone))
105
+ ctx.inf = ctx.make_mpf(finf)
106
+ ctx.ninf = ctx.make_mpf(fninf)
107
+ ctx.nan = ctx.make_mpf(fnan)
108
+
109
+ eps = ctx.constant(lambda prec, rnd: (0, MPZ_ONE, 1-prec, 1),
110
+ "epsilon of working precision", "eps")
111
+ ctx.eps = eps
112
+
113
+ # Approximate constants
114
+ ctx.pi = ctx.constant(mpf_pi, "pi", "pi")
115
+ ctx.ln2 = ctx.constant(mpf_ln2, "ln(2)", "ln2")
116
+ ctx.ln10 = ctx.constant(mpf_ln10, "ln(10)", "ln10")
117
+ ctx.phi = ctx.constant(mpf_phi, "Golden ratio phi", "phi")
118
+ ctx.e = ctx.constant(mpf_e, "e = exp(1)", "e")
119
+ ctx.euler = ctx.constant(mpf_euler, "Euler's constant", "euler")
120
+ ctx.catalan = ctx.constant(mpf_catalan, "Catalan's constant", "catalan")
121
+ ctx.khinchin = ctx.constant(mpf_khinchin, "Khinchin's constant", "khinchin")
122
+ ctx.glaisher = ctx.constant(mpf_glaisher, "Glaisher's constant", "glaisher")
123
+ ctx.apery = ctx.constant(mpf_apery, "Apery's constant", "apery")
124
+ ctx.degree = ctx.constant(mpf_degree, "1 deg = pi / 180", "degree")
125
+ ctx.twinprime = ctx.constant(mpf_twinprime, "Twin prime constant", "twinprime")
126
+ ctx.mertens = ctx.constant(mpf_mertens, "Mertens' constant", "mertens")
127
+
128
+ # Standard functions
129
+ ctx.sqrt = ctx._wrap_libmp_function(libmp.mpf_sqrt, libmp.mpc_sqrt)
130
+ ctx.cbrt = ctx._wrap_libmp_function(libmp.mpf_cbrt, libmp.mpc_cbrt)
131
+ ctx.ln = ctx._wrap_libmp_function(libmp.mpf_log, libmp.mpc_log)
132
+ ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan)
133
+ ctx.exp = ctx._wrap_libmp_function(libmp.mpf_exp, libmp.mpc_exp)
134
+ ctx.expj = ctx._wrap_libmp_function(libmp.mpf_expj, libmp.mpc_expj)
135
+ ctx.expjpi = ctx._wrap_libmp_function(libmp.mpf_expjpi, libmp.mpc_expjpi)
136
+ ctx.sin = ctx._wrap_libmp_function(libmp.mpf_sin, libmp.mpc_sin)
137
+ ctx.cos = ctx._wrap_libmp_function(libmp.mpf_cos, libmp.mpc_cos)
138
+ ctx.tan = ctx._wrap_libmp_function(libmp.mpf_tan, libmp.mpc_tan)
139
+ ctx.sinh = ctx._wrap_libmp_function(libmp.mpf_sinh, libmp.mpc_sinh)
140
+ ctx.cosh = ctx._wrap_libmp_function(libmp.mpf_cosh, libmp.mpc_cosh)
141
+ ctx.tanh = ctx._wrap_libmp_function(libmp.mpf_tanh, libmp.mpc_tanh)
142
+ ctx.asin = ctx._wrap_libmp_function(libmp.mpf_asin, libmp.mpc_asin)
143
+ ctx.acos = ctx._wrap_libmp_function(libmp.mpf_acos, libmp.mpc_acos)
144
+ ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan)
145
+ ctx.asinh = ctx._wrap_libmp_function(libmp.mpf_asinh, libmp.mpc_asinh)
146
+ ctx.acosh = ctx._wrap_libmp_function(libmp.mpf_acosh, libmp.mpc_acosh)
147
+ ctx.atanh = ctx._wrap_libmp_function(libmp.mpf_atanh, libmp.mpc_atanh)
148
+ ctx.sinpi = ctx._wrap_libmp_function(libmp.mpf_sin_pi, libmp.mpc_sin_pi)
149
+ ctx.cospi = ctx._wrap_libmp_function(libmp.mpf_cos_pi, libmp.mpc_cos_pi)
150
+ ctx.floor = ctx._wrap_libmp_function(libmp.mpf_floor, libmp.mpc_floor)
151
+ ctx.ceil = ctx._wrap_libmp_function(libmp.mpf_ceil, libmp.mpc_ceil)
152
+ ctx.nint = ctx._wrap_libmp_function(libmp.mpf_nint, libmp.mpc_nint)
153
+ ctx.frac = ctx._wrap_libmp_function(libmp.mpf_frac, libmp.mpc_frac)
154
+ ctx.fib = ctx.fibonacci = ctx._wrap_libmp_function(libmp.mpf_fibonacci, libmp.mpc_fibonacci)
155
+
156
+ ctx.gamma = ctx._wrap_libmp_function(libmp.mpf_gamma, libmp.mpc_gamma)
157
+ ctx.rgamma = ctx._wrap_libmp_function(libmp.mpf_rgamma, libmp.mpc_rgamma)
158
+ ctx.loggamma = ctx._wrap_libmp_function(libmp.mpf_loggamma, libmp.mpc_loggamma)
159
+ ctx.fac = ctx.factorial = ctx._wrap_libmp_function(libmp.mpf_factorial, libmp.mpc_factorial)
160
+
161
+ ctx.digamma = ctx._wrap_libmp_function(libmp.mpf_psi0, libmp.mpc_psi0)
162
+ ctx.harmonic = ctx._wrap_libmp_function(libmp.mpf_harmonic, libmp.mpc_harmonic)
163
+ ctx.ei = ctx._wrap_libmp_function(libmp.mpf_ei, libmp.mpc_ei)
164
+ ctx.e1 = ctx._wrap_libmp_function(libmp.mpf_e1, libmp.mpc_e1)
165
+ ctx._ci = ctx._wrap_libmp_function(libmp.mpf_ci, libmp.mpc_ci)
166
+ ctx._si = ctx._wrap_libmp_function(libmp.mpf_si, libmp.mpc_si)
167
+ ctx.ellipk = ctx._wrap_libmp_function(libmp.mpf_ellipk, libmp.mpc_ellipk)
168
+ ctx._ellipe = ctx._wrap_libmp_function(libmp.mpf_ellipe, libmp.mpc_ellipe)
169
+ ctx.agm1 = ctx._wrap_libmp_function(libmp.mpf_agm1, libmp.mpc_agm1)
170
+ ctx._erf = ctx._wrap_libmp_function(libmp.mpf_erf, None)
171
+ ctx._erfc = ctx._wrap_libmp_function(libmp.mpf_erfc, None)
172
+ ctx._zeta = ctx._wrap_libmp_function(libmp.mpf_zeta, libmp.mpc_zeta)
173
+ ctx._altzeta = ctx._wrap_libmp_function(libmp.mpf_altzeta, libmp.mpc_altzeta)
174
+
175
+ # Faster versions
176
+ ctx.sqrt = getattr(ctx, "_sage_sqrt", ctx.sqrt)
177
+ ctx.exp = getattr(ctx, "_sage_exp", ctx.exp)
178
+ ctx.ln = getattr(ctx, "_sage_ln", ctx.ln)
179
+ ctx.cos = getattr(ctx, "_sage_cos", ctx.cos)
180
+ ctx.sin = getattr(ctx, "_sage_sin", ctx.sin)
181
+
182
+ def to_fixed(ctx, x, prec):
183
+ return x.to_fixed(prec)
184
+
185
+ def hypot(ctx, x, y):
186
+ r"""
187
+ Computes the Euclidean norm of the vector `(x, y)`, equal
188
+ to `\sqrt{x^2 + y^2}`. Both `x` and `y` must be real."""
189
+ x = ctx.convert(x)
190
+ y = ctx.convert(y)
191
+ return ctx.make_mpf(libmp.mpf_hypot(x._mpf_, y._mpf_, *ctx._prec_rounding))
192
+
193
+ def _gamma_upper_int(ctx, n, z):
194
+ n = int(ctx._re(n))
195
+ if n == 0:
196
+ return ctx.e1(z)
197
+ if not hasattr(z, '_mpf_'):
198
+ raise NotImplementedError
199
+ prec, rounding = ctx._prec_rounding
200
+ real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding, gamma=True)
201
+ if imag is None:
202
+ return ctx.make_mpf(real)
203
+ else:
204
+ return ctx.make_mpc((real, imag))
205
+
206
+ def _expint_int(ctx, n, z):
207
+ n = int(n)
208
+ if n == 1:
209
+ return ctx.e1(z)
210
+ if not hasattr(z, '_mpf_'):
211
+ raise NotImplementedError
212
+ prec, rounding = ctx._prec_rounding
213
+ real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding)
214
+ if imag is None:
215
+ return ctx.make_mpf(real)
216
+ else:
217
+ return ctx.make_mpc((real, imag))
218
+
219
+ def _nthroot(ctx, x, n):
220
+ if hasattr(x, '_mpf_'):
221
+ try:
222
+ return ctx.make_mpf(libmp.mpf_nthroot(x._mpf_, n, *ctx._prec_rounding))
223
+ except ComplexResult:
224
+ if ctx.trap_complex:
225
+ raise
226
+ x = (x._mpf_, libmp.fzero)
227
+ else:
228
+ x = x._mpc_
229
+ return ctx.make_mpc(libmp.mpc_nthroot(x, n, *ctx._prec_rounding))
230
+
231
+ def _besselj(ctx, n, z):
232
+ prec, rounding = ctx._prec_rounding
233
+ if hasattr(z, '_mpf_'):
234
+ return ctx.make_mpf(libmp.mpf_besseljn(n, z._mpf_, prec, rounding))
235
+ elif hasattr(z, '_mpc_'):
236
+ return ctx.make_mpc(libmp.mpc_besseljn(n, z._mpc_, prec, rounding))
237
+
238
+ def _agm(ctx, a, b=1):
239
+ prec, rounding = ctx._prec_rounding
240
+ if hasattr(a, '_mpf_') and hasattr(b, '_mpf_'):
241
+ try:
242
+ v = libmp.mpf_agm(a._mpf_, b._mpf_, prec, rounding)
243
+ return ctx.make_mpf(v)
244
+ except ComplexResult:
245
+ pass
246
+ if hasattr(a, '_mpf_'): a = (a._mpf_, libmp.fzero)
247
+ else: a = a._mpc_
248
+ if hasattr(b, '_mpf_'): b = (b._mpf_, libmp.fzero)
249
+ else: b = b._mpc_
250
+ return ctx.make_mpc(libmp.mpc_agm(a, b, prec, rounding))
251
+
252
+ def bernoulli(ctx, n):
253
+ return ctx.make_mpf(libmp.mpf_bernoulli(int(n), *ctx._prec_rounding))
254
+
255
+ def _zeta_int(ctx, n):
256
+ return ctx.make_mpf(libmp.mpf_zeta_int(int(n), *ctx._prec_rounding))
257
+
258
+ def atan2(ctx, y, x):
259
+ x = ctx.convert(x)
260
+ y = ctx.convert(y)
261
+ return ctx.make_mpf(libmp.mpf_atan2(y._mpf_, x._mpf_, *ctx._prec_rounding))
262
+
263
+ def psi(ctx, m, z):
264
+ z = ctx.convert(z)
265
+ m = int(m)
266
+ if ctx._is_real_type(z):
267
+ return ctx.make_mpf(libmp.mpf_psi(m, z._mpf_, *ctx._prec_rounding))
268
+ else:
269
+ return ctx.make_mpc(libmp.mpc_psi(m, z._mpc_, *ctx._prec_rounding))
270
+
271
+ def cos_sin(ctx, x, **kwargs):
272
+ if type(x) not in ctx.types:
273
+ x = ctx.convert(x)
274
+ prec, rounding = ctx._parse_prec(kwargs)
275
+ if hasattr(x, '_mpf_'):
276
+ c, s = libmp.mpf_cos_sin(x._mpf_, prec, rounding)
277
+ return ctx.make_mpf(c), ctx.make_mpf(s)
278
+ elif hasattr(x, '_mpc_'):
279
+ c, s = libmp.mpc_cos_sin(x._mpc_, prec, rounding)
280
+ return ctx.make_mpc(c), ctx.make_mpc(s)
281
+ else:
282
+ return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs)
283
+
284
+ def cospi_sinpi(ctx, x, **kwargs):
285
+ if type(x) not in ctx.types:
286
+ x = ctx.convert(x)
287
+ prec, rounding = ctx._parse_prec(kwargs)
288
+ if hasattr(x, '_mpf_'):
289
+ c, s = libmp.mpf_cos_sin_pi(x._mpf_, prec, rounding)
290
+ return ctx.make_mpf(c), ctx.make_mpf(s)
291
+ elif hasattr(x, '_mpc_'):
292
+ c, s = libmp.mpc_cos_sin_pi(x._mpc_, prec, rounding)
293
+ return ctx.make_mpc(c), ctx.make_mpc(s)
294
+ else:
295
+ return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs)
296
+
297
+ def clone(ctx):
298
+ """
299
+ Create a copy of the context, with the same working precision.
300
+ """
301
+ a = ctx.__class__()
302
+ a.prec = ctx.prec
303
+ return a
304
+
305
+ # Several helper methods
306
+ # TODO: add more of these, make consistent, write docstrings, ...
307
+
308
+ def _is_real_type(ctx, x):
309
+ if hasattr(x, '_mpc_') or type(x) is complex:
310
+ return False
311
+ return True
312
+
313
+ def _is_complex_type(ctx, x):
314
+ if hasattr(x, '_mpc_') or type(x) is complex:
315
+ return True
316
+ return False
317
+
318
+ def isnan(ctx, x):
319
+ """
320
+ Return *True* if *x* is a NaN (not-a-number), or for a complex
321
+ number, whether either the real or complex part is NaN;
322
+ otherwise return *False*::
323
+
324
+ >>> from mpmath import *
325
+ >>> isnan(3.14)
326
+ False
327
+ >>> isnan(nan)
328
+ True
329
+ >>> isnan(mpc(3.14,2.72))
330
+ False
331
+ >>> isnan(mpc(3.14,nan))
332
+ True
333
+
334
+ """
335
+ if hasattr(x, "_mpf_"):
336
+ return x._mpf_ == fnan
337
+ if hasattr(x, "_mpc_"):
338
+ return fnan in x._mpc_
339
+ if isinstance(x, int_types) or isinstance(x, rational.mpq):
340
+ return False
341
+ x = ctx.convert(x)
342
+ if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
343
+ return ctx.isnan(x)
344
+ raise TypeError("isnan() needs a number as input")
345
+
346
+ def isfinite(ctx, x):
347
+ """
348
+ Return *True* if *x* is a finite number, i.e. neither
349
+ an infinity or a NaN.
350
+
351
+ >>> from mpmath import *
352
+ >>> isfinite(inf)
353
+ False
354
+ >>> isfinite(-inf)
355
+ False
356
+ >>> isfinite(3)
357
+ True
358
+ >>> isfinite(nan)
359
+ False
360
+ >>> isfinite(3+4j)
361
+ True
362
+ >>> isfinite(mpc(3,inf))
363
+ False
364
+ >>> isfinite(mpc(nan,3))
365
+ False
366
+
367
+ """
368
+ if ctx.isinf(x) or ctx.isnan(x):
369
+ return False
370
+ return True
371
+
372
+ def isnpint(ctx, x):
373
+ """
374
+ Determine if *x* is a nonpositive integer.
375
+ """
376
+ if not x:
377
+ return True
378
+ if hasattr(x, '_mpf_'):
379
+ sign, man, exp, bc = x._mpf_
380
+ return sign and exp >= 0
381
+ if hasattr(x, '_mpc_'):
382
+ return not x.imag and ctx.isnpint(x.real)
383
+ if type(x) in int_types:
384
+ return x <= 0
385
+ if isinstance(x, ctx.mpq):
386
+ p, q = x._mpq_
387
+ if not p:
388
+ return True
389
+ return q == 1 and p <= 0
390
+ return ctx.isnpint(ctx.convert(x))
391
+
392
+ def __str__(ctx):
393
+ lines = ["Mpmath settings:",
394
+ (" mp.prec = %s" % ctx.prec).ljust(30) + "[default: 53]",
395
+ (" mp.dps = %s" % ctx.dps).ljust(30) + "[default: 15]",
396
+ (" mp.trap_complex = %s" % ctx.trap_complex).ljust(30) + "[default: False]",
397
+ ]
398
+ return "\n".join(lines)
399
+
400
+ @property
401
+ def _repr_digits(ctx):
402
+ return repr_dps(ctx._prec)
403
+
404
+ @property
405
+ def _str_digits(ctx):
406
+ return ctx._dps
407
+
408
+ def extraprec(ctx, n, normalize_output=False):
409
+ """
410
+ The block
411
+
412
+ with extraprec(n):
413
+ <code>
414
+
415
+ increases the precision n bits, executes <code>, and then
416
+ restores the precision.
417
+
418
+ extraprec(n)(f) returns a decorated version of the function f
419
+ that increases the working precision by n bits before execution,
420
+ and restores the parent precision afterwards. With
421
+ normalize_output=True, it rounds the return value to the parent
422
+ precision.
423
+ """
424
+ return PrecisionManager(ctx, lambda p: p + n, None, normalize_output)
425
+
426
+ def extradps(ctx, n, normalize_output=False):
427
+ """
428
+ This function is analogous to extraprec (see documentation)
429
+ but changes the decimal precision instead of the number of bits.
430
+ """
431
+ return PrecisionManager(ctx, None, lambda d: d + n, normalize_output)
432
+
433
+ def workprec(ctx, n, normalize_output=False):
434
+ """
435
+ The block
436
+
437
+ with workprec(n):
438
+ <code>
439
+
440
+ sets the precision to n bits, executes <code>, and then restores
441
+ the precision.
442
+
443
+ workprec(n)(f) returns a decorated version of the function f
444
+ that sets the precision to n bits before execution,
445
+ and restores the precision afterwards. With normalize_output=True,
446
+ it rounds the return value to the parent precision.
447
+ """
448
+ return PrecisionManager(ctx, lambda p: n, None, normalize_output)
449
+
450
+ def workdps(ctx, n, normalize_output=False):
451
+ """
452
+ This function is analogous to workprec (see documentation)
453
+ but changes the decimal precision instead of the number of bits.
454
+ """
455
+ return PrecisionManager(ctx, None, lambda d: n, normalize_output)
456
+
457
+ def autoprec(ctx, f, maxprec=None, catch=(), verbose=False):
458
+ r"""
459
+ Return a wrapped copy of *f* that repeatedly evaluates *f*
460
+ with increasing precision until the result converges to the
461
+ full precision used at the point of the call.
462
+
463
+ This heuristically protects against rounding errors, at the cost of
464
+ roughly a 2x slowdown compared to manually setting the optimal
465
+ precision. This method can, however, easily be fooled if the results
466
+ from *f* depend "discontinuously" on the precision, for instance
467
+ if catastrophic cancellation can occur. Therefore, :func:`~mpmath.autoprec`
468
+ should be used judiciously.
469
+
470
+ **Examples**
471
+
472
+ Many functions are sensitive to perturbations of the input arguments.
473
+ If the arguments are decimal numbers, they may have to be converted
474
+ to binary at a much higher precision. If the amount of required
475
+ extra precision is unknown, :func:`~mpmath.autoprec` is convenient::
476
+
477
+ >>> from mpmath import *
478
+ >>> mp.dps = 15
479
+ >>> mp.pretty = True
480
+ >>> besselj(5, 125 * 10**28) # Exact input
481
+ -8.03284785591801e-17
482
+ >>> besselj(5, '1.25e30') # Bad
483
+ 7.12954868316652e-16
484
+ >>> autoprec(besselj)(5, '1.25e30') # Good
485
+ -8.03284785591801e-17
486
+
487
+ The following fails to converge because `\sin(\pi) = 0` whereas all
488
+ finite-precision approximations of `\pi` give nonzero values::
489
+
490
+ >>> autoprec(sin)(pi) # doctest: +IGNORE_EXCEPTION_DETAIL
491
+ Traceback (most recent call last):
492
+ ...
493
+ NoConvergence: autoprec: prec increased to 2910 without convergence
494
+
495
+ As the following example shows, :func:`~mpmath.autoprec` can protect against
496
+ cancellation, but is fooled by too severe cancellation::
497
+
498
+ >>> x = 1e-10
499
+ >>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x)
500
+ 1.00000008274037e-10
501
+ 1.00000000005e-10
502
+ 1.00000000005e-10
503
+ >>> x = 1e-50
504
+ >>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x)
505
+ 0.0
506
+ 1.0e-50
507
+ 0.0
508
+
509
+ With *catch*, an exception or list of exceptions to intercept
510
+ may be specified. The raised exception is interpreted
511
+ as signaling insufficient precision. This permits, for example,
512
+ evaluating a function where a too low precision results in a
513
+ division by zero::
514
+
515
+ >>> f = lambda x: 1/(exp(x)-1)
516
+ >>> f(1e-30)
517
+ Traceback (most recent call last):
518
+ ...
519
+ ZeroDivisionError
520
+ >>> autoprec(f, catch=ZeroDivisionError)(1e-30)
521
+ 1.0e+30
522
+
523
+
524
+ """
525
+ def f_autoprec_wrapped(*args, **kwargs):
526
+ prec = ctx.prec
527
+ if maxprec is None:
528
+ maxprec2 = ctx._default_hyper_maxprec(prec)
529
+ else:
530
+ maxprec2 = maxprec
531
+ try:
532
+ ctx.prec = prec + 10
533
+ try:
534
+ v1 = f(*args, **kwargs)
535
+ except catch:
536
+ v1 = ctx.nan
537
+ prec2 = prec + 20
538
+ while 1:
539
+ ctx.prec = prec2
540
+ try:
541
+ v2 = f(*args, **kwargs)
542
+ except catch:
543
+ v2 = ctx.nan
544
+ if v1 == v2:
545
+ break
546
+ err = ctx.mag(v2-v1) - ctx.mag(v2)
547
+ if err < (-prec):
548
+ break
549
+ if verbose:
550
+ print("autoprec: target=%s, prec=%s, accuracy=%s" \
551
+ % (prec, prec2, -err))
552
+ v1 = v2
553
+ if prec2 >= maxprec2:
554
+ raise ctx.NoConvergence(\
555
+ "autoprec: prec increased to %i without convergence"\
556
+ % prec2)
557
+ prec2 += int(prec2*2)
558
+ prec2 = min(prec2, maxprec2)
559
+ finally:
560
+ ctx.prec = prec
561
+ return +v2
562
+ return f_autoprec_wrapped
563
+
564
+ def nstr(ctx, x, n=6, **kwargs):
565
+ """
566
+ Convert an ``mpf`` or ``mpc`` to a decimal string literal with *n*
567
+ significant digits. The small default value for *n* is chosen to
568
+ make this function useful for printing collections of numbers
569
+ (lists, matrices, etc).
570
+
571
+ If *x* is a list or tuple, :func:`~mpmath.nstr` is applied recursively
572
+ to each element. For unrecognized classes, :func:`~mpmath.nstr`
573
+ simply returns ``str(x)``.
574
+
575
+ The companion function :func:`~mpmath.nprint` prints the result
576
+ instead of returning it.
577
+
578
+ The keyword arguments *strip_zeros*, *min_fixed*, *max_fixed*
579
+ and *show_zero_exponent* are forwarded to :func:`~mpmath.libmp.to_str`.
580
+
581
+ The number will be printed in fixed-point format if the position
582
+ of the leading digit is strictly between min_fixed
583
+ (default = min(-dps/3,-5)) and max_fixed (default = dps).
584
+
585
+ To force fixed-point format always, set min_fixed = -inf,
586
+ max_fixed = +inf. To force floating-point format, set
587
+ min_fixed >= max_fixed.
588
+
589
+ >>> from mpmath import *
590
+ >>> nstr([+pi, ldexp(1,-500)])
591
+ '[3.14159, 3.05494e-151]'
592
+ >>> nprint([+pi, ldexp(1,-500)])
593
+ [3.14159, 3.05494e-151]
594
+ >>> nstr(mpf("5e-10"), 5)
595
+ '5.0e-10'
596
+ >>> nstr(mpf("5e-10"), 5, strip_zeros=False)
597
+ '5.0000e-10'
598
+ >>> nstr(mpf("5e-10"), 5, strip_zeros=False, min_fixed=-11)
599
+ '0.00000000050000'
600
+ >>> nstr(mpf(0), 5, show_zero_exponent=True)
601
+ '0.0e+0'
602
+
603
+ """
604
+ if isinstance(x, list):
605
+ return "[%s]" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x))
606
+ if isinstance(x, tuple):
607
+ return "(%s)" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x))
608
+ if hasattr(x, '_mpf_'):
609
+ return to_str(x._mpf_, n, **kwargs)
610
+ if hasattr(x, '_mpc_'):
611
+ return "(" + mpc_to_str(x._mpc_, n, **kwargs) + ")"
612
+ if isinstance(x, basestring):
613
+ return repr(x)
614
+ if isinstance(x, ctx.matrix):
615
+ return x.__nstr__(n, **kwargs)
616
+ return str(x)
617
+
618
+ def _convert_fallback(ctx, x, strings):
619
+ if strings and isinstance(x, basestring):
620
+ if 'j' in x.lower():
621
+ x = x.lower().replace(' ', '')
622
+ match = get_complex.match(x)
623
+ re = match.group('re')
624
+ if not re:
625
+ re = 0
626
+ im = match.group('im').rstrip('j')
627
+ return ctx.mpc(ctx.convert(re), ctx.convert(im))
628
+ if hasattr(x, "_mpi_"):
629
+ a, b = x._mpi_
630
+ if a == b:
631
+ return ctx.make_mpf(a)
632
+ else:
633
+ raise ValueError("can only create mpf from zero-width interval")
634
+ raise TypeError("cannot create mpf from " + repr(x))
635
+
636
+ def mpmathify(ctx, *args, **kwargs):
637
+ return ctx.convert(*args, **kwargs)
638
+
639
+ def _parse_prec(ctx, kwargs):
640
+ if kwargs:
641
+ if kwargs.get('exact'):
642
+ return 0, 'f'
643
+ prec, rounding = ctx._prec_rounding
644
+ if 'rounding' in kwargs:
645
+ rounding = kwargs['rounding']
646
+ if 'prec' in kwargs:
647
+ prec = kwargs['prec']
648
+ if prec == ctx.inf:
649
+ return 0, 'f'
650
+ else:
651
+ prec = int(prec)
652
+ elif 'dps' in kwargs:
653
+ dps = kwargs['dps']
654
+ if dps == ctx.inf:
655
+ return 0, 'f'
656
+ prec = dps_to_prec(dps)
657
+ return prec, rounding
658
+ return ctx._prec_rounding
659
+
660
+ _exact_overflow_msg = "the exact result does not fit in memory"
661
+
662
+ _hypsum_msg = """hypsum() failed to converge to the requested %i bits of accuracy
663
+ using a working precision of %i bits. Try with a higher maxprec,
664
+ maxterms, or set zeroprec."""
665
+
666
+ def hypsum(ctx, p, q, flags, coeffs, z, accurate_small=True, **kwargs):
667
+ if hasattr(z, "_mpf_"):
668
+ key = p, q, flags, 'R'
669
+ v = z._mpf_
670
+ elif hasattr(z, "_mpc_"):
671
+ key = p, q, flags, 'C'
672
+ v = z._mpc_
673
+ if key not in ctx.hyp_summators:
674
+ ctx.hyp_summators[key] = libmp.make_hyp_summator(key)[1]
675
+ summator = ctx.hyp_summators[key]
676
+ prec = ctx.prec
677
+ maxprec = kwargs.get('maxprec', ctx._default_hyper_maxprec(prec))
678
+ extraprec = 50
679
+ epsshift = 25
680
+ # Jumps in magnitude occur when parameters are close to negative
681
+ # integers. We must ensure that these terms are included in
682
+ # the sum and added accurately
683
+ magnitude_check = {}
684
+ max_total_jump = 0
685
+ for i, c in enumerate(coeffs):
686
+ if flags[i] == 'Z':
687
+ if i >= p and c <= 0:
688
+ ok = False
689
+ for ii, cc in enumerate(coeffs[:p]):
690
+ # Note: c <= cc or c < cc, depending on convention
691
+ if flags[ii] == 'Z' and cc <= 0 and c <= cc:
692
+ ok = True
693
+ if not ok:
694
+ raise ZeroDivisionError("pole in hypergeometric series")
695
+ continue
696
+ n, d = ctx.nint_distance(c)
697
+ n = -int(n)
698
+ d = -d
699
+ if i >= p and n >= 0 and d > 4:
700
+ if n in magnitude_check:
701
+ magnitude_check[n] += d
702
+ else:
703
+ magnitude_check[n] = d
704
+ extraprec = max(extraprec, d - prec + 60)
705
+ max_total_jump += abs(d)
706
+ while 1:
707
+ if extraprec > maxprec:
708
+ raise ValueError(ctx._hypsum_msg % (prec, prec+extraprec))
709
+ wp = prec + extraprec
710
+ if magnitude_check:
711
+ mag_dict = dict((n,None) for n in magnitude_check)
712
+ else:
713
+ mag_dict = {}
714
+ zv, have_complex, magnitude = summator(coeffs, v, prec, wp, \
715
+ epsshift, mag_dict, **kwargs)
716
+ cancel = -magnitude
717
+ jumps_resolved = True
718
+ if extraprec < max_total_jump:
719
+ for n in mag_dict.values():
720
+ if (n is None) or (n < prec):
721
+ jumps_resolved = False
722
+ break
723
+ accurate = (cancel < extraprec-25-5 or not accurate_small)
724
+ if jumps_resolved:
725
+ if accurate:
726
+ break
727
+ # zero?
728
+ zeroprec = kwargs.get('zeroprec')
729
+ if zeroprec is not None:
730
+ if cancel > zeroprec:
731
+ if have_complex:
732
+ return ctx.mpc(0)
733
+ else:
734
+ return ctx.zero
735
+
736
+ # Some near-singularities were not included, so increase
737
+ # precision and repeat until they are
738
+ extraprec *= 2
739
+ # Possible workaround for bad roundoff in fixed-point arithmetic
740
+ epsshift += 5
741
+ extraprec += 5
742
+
743
+ if type(zv) is tuple:
744
+ if have_complex:
745
+ return ctx.make_mpc(zv)
746
+ else:
747
+ return ctx.make_mpf(zv)
748
+ else:
749
+ return zv
750
+
751
+ def ldexp(ctx, x, n):
752
+ r"""
753
+ Computes `x 2^n` efficiently. No rounding is performed.
754
+ The argument `x` must be a real floating-point number (or
755
+ possible to convert into one) and `n` must be a Python ``int``.
756
+
757
+ >>> from mpmath import *
758
+ >>> mp.dps = 15; mp.pretty = False
759
+ >>> ldexp(1, 10)
760
+ mpf('1024.0')
761
+ >>> ldexp(1, -3)
762
+ mpf('0.125')
763
+
764
+ """
765
+ x = ctx.convert(x)
766
+ return ctx.make_mpf(libmp.mpf_shift(x._mpf_, n))
767
+
768
+ def frexp(ctx, x):
769
+ r"""
770
+ Given a real number `x`, returns `(y, n)` with `y \in [0.5, 1)`,
771
+ `n` a Python integer, and such that `x = y 2^n`. No rounding is
772
+ performed.
773
+
774
+ >>> from mpmath import *
775
+ >>> mp.dps = 15; mp.pretty = False
776
+ >>> frexp(7.5)
777
+ (mpf('0.9375'), 3)
778
+
779
+ """
780
+ x = ctx.convert(x)
781
+ y, n = libmp.mpf_frexp(x._mpf_)
782
+ return ctx.make_mpf(y), n
783
+
784
+ def fneg(ctx, x, **kwargs):
785
+ """
786
+ Negates the number *x*, giving a floating-point result, optionally
787
+ using a custom precision and rounding mode.
788
+
789
+ See the documentation of :func:`~mpmath.fadd` for a detailed description
790
+ of how to specify precision and rounding.
791
+
792
+ **Examples**
793
+
794
+ An mpmath number is returned::
795
+
796
+ >>> from mpmath import *
797
+ >>> mp.dps = 15; mp.pretty = False
798
+ >>> fneg(2.5)
799
+ mpf('-2.5')
800
+ >>> fneg(-5+2j)
801
+ mpc(real='5.0', imag='-2.0')
802
+
803
+ Precise control over rounding is possible::
804
+
805
+ >>> x = fadd(2, 1e-100, exact=True)
806
+ >>> fneg(x)
807
+ mpf('-2.0')
808
+ >>> fneg(x, rounding='f')
809
+ mpf('-2.0000000000000004')
810
+
811
+ Negating with and without roundoff::
812
+
813
+ >>> n = 200000000000000000000001
814
+ >>> print(int(-mpf(n)))
815
+ -200000000000000016777216
816
+ >>> print(int(fneg(n)))
817
+ -200000000000000016777216
818
+ >>> print(int(fneg(n, prec=log(n,2)+1)))
819
+ -200000000000000000000001
820
+ >>> print(int(fneg(n, dps=log(n,10)+1)))
821
+ -200000000000000000000001
822
+ >>> print(int(fneg(n, prec=inf)))
823
+ -200000000000000000000001
824
+ >>> print(int(fneg(n, dps=inf)))
825
+ -200000000000000000000001
826
+ >>> print(int(fneg(n, exact=True)))
827
+ -200000000000000000000001
828
+
829
+ """
830
+ prec, rounding = ctx._parse_prec(kwargs)
831
+ x = ctx.convert(x)
832
+ if hasattr(x, '_mpf_'):
833
+ return ctx.make_mpf(mpf_neg(x._mpf_, prec, rounding))
834
+ if hasattr(x, '_mpc_'):
835
+ return ctx.make_mpc(mpc_neg(x._mpc_, prec, rounding))
836
+ raise ValueError("Arguments need to be mpf or mpc compatible numbers")
837
+
838
+ def fadd(ctx, x, y, **kwargs):
839
+ """
840
+ Adds the numbers *x* and *y*, giving a floating-point result,
841
+ optionally using a custom precision and rounding mode.
842
+
843
+ The default precision is the working precision of the context.
844
+ You can specify a custom precision in bits by passing the *prec* keyword
845
+ argument, or by providing an equivalent decimal precision with the *dps*
846
+ keyword argument. If the precision is set to ``+inf``, or if the flag
847
+ *exact=True* is passed, an exact addition with no rounding is performed.
848
+
849
+ When the precision is finite, the optional *rounding* keyword argument
850
+ specifies the direction of rounding. Valid options are ``'n'`` for
851
+ nearest (default), ``'f'`` for floor, ``'c'`` for ceiling, ``'d'``
852
+ for down, ``'u'`` for up.
853
+
854
+ **Examples**
855
+
856
+ Using :func:`~mpmath.fadd` with precision and rounding control::
857
+
858
+ >>> from mpmath import *
859
+ >>> mp.dps = 15; mp.pretty = False
860
+ >>> fadd(2, 1e-20)
861
+ mpf('2.0')
862
+ >>> fadd(2, 1e-20, rounding='u')
863
+ mpf('2.0000000000000004')
864
+ >>> nprint(fadd(2, 1e-20, prec=100), 25)
865
+ 2.00000000000000000001
866
+ >>> nprint(fadd(2, 1e-20, dps=15), 25)
867
+ 2.0
868
+ >>> nprint(fadd(2, 1e-20, dps=25), 25)
869
+ 2.00000000000000000001
870
+ >>> nprint(fadd(2, 1e-20, exact=True), 25)
871
+ 2.00000000000000000001
872
+
873
+ Exact addition avoids cancellation errors, enforcing familiar laws
874
+ of numbers such as `x+y-x = y`, which don't hold in floating-point
875
+ arithmetic with finite precision::
876
+
877
+ >>> x, y = mpf(2), mpf('1e-1000')
878
+ >>> print(x + y - x)
879
+ 0.0
880
+ >>> print(fadd(x, y, prec=inf) - x)
881
+ 1.0e-1000
882
+ >>> print(fadd(x, y, exact=True) - x)
883
+ 1.0e-1000
884
+
885
+ Exact addition can be inefficient and may be impossible to perform
886
+ with large magnitude differences::
887
+
888
+ >>> fadd(1, '1e-100000000000000000000', prec=inf)
889
+ Traceback (most recent call last):
890
+ ...
891
+ OverflowError: the exact result does not fit in memory
892
+
893
+ """
894
+ prec, rounding = ctx._parse_prec(kwargs)
895
+ x = ctx.convert(x)
896
+ y = ctx.convert(y)
897
+ try:
898
+ if hasattr(x, '_mpf_'):
899
+ if hasattr(y, '_mpf_'):
900
+ return ctx.make_mpf(mpf_add(x._mpf_, y._mpf_, prec, rounding))
901
+ if hasattr(y, '_mpc_'):
902
+ return ctx.make_mpc(mpc_add_mpf(y._mpc_, x._mpf_, prec, rounding))
903
+ if hasattr(x, '_mpc_'):
904
+ if hasattr(y, '_mpf_'):
905
+ return ctx.make_mpc(mpc_add_mpf(x._mpc_, y._mpf_, prec, rounding))
906
+ if hasattr(y, '_mpc_'):
907
+ return ctx.make_mpc(mpc_add(x._mpc_, y._mpc_, prec, rounding))
908
+ except (ValueError, OverflowError):
909
+ raise OverflowError(ctx._exact_overflow_msg)
910
+ raise ValueError("Arguments need to be mpf or mpc compatible numbers")
911
+
912
+ def fsub(ctx, x, y, **kwargs):
913
+ """
914
+ Subtracts the numbers *x* and *y*, giving a floating-point result,
915
+ optionally using a custom precision and rounding mode.
916
+
917
+ See the documentation of :func:`~mpmath.fadd` for a detailed description
918
+ of how to specify precision and rounding.
919
+
920
+ **Examples**
921
+
922
+ Using :func:`~mpmath.fsub` with precision and rounding control::
923
+
924
+ >>> from mpmath import *
925
+ >>> mp.dps = 15; mp.pretty = False
926
+ >>> fsub(2, 1e-20)
927
+ mpf('2.0')
928
+ >>> fsub(2, 1e-20, rounding='d')
929
+ mpf('1.9999999999999998')
930
+ >>> nprint(fsub(2, 1e-20, prec=100), 25)
931
+ 1.99999999999999999999
932
+ >>> nprint(fsub(2, 1e-20, dps=15), 25)
933
+ 2.0
934
+ >>> nprint(fsub(2, 1e-20, dps=25), 25)
935
+ 1.99999999999999999999
936
+ >>> nprint(fsub(2, 1e-20, exact=True), 25)
937
+ 1.99999999999999999999
938
+
939
+ Exact subtraction avoids cancellation errors, enforcing familiar laws
940
+ of numbers such as `x-y+y = x`, which don't hold in floating-point
941
+ arithmetic with finite precision::
942
+
943
+ >>> x, y = mpf(2), mpf('1e1000')
944
+ >>> print(x - y + y)
945
+ 0.0
946
+ >>> print(fsub(x, y, prec=inf) + y)
947
+ 2.0
948
+ >>> print(fsub(x, y, exact=True) + y)
949
+ 2.0
950
+
951
+ Exact addition can be inefficient and may be impossible to perform
952
+ with large magnitude differences::
953
+
954
+ >>> fsub(1, '1e-100000000000000000000', prec=inf)
955
+ Traceback (most recent call last):
956
+ ...
957
+ OverflowError: the exact result does not fit in memory
958
+
959
+ """
960
+ prec, rounding = ctx._parse_prec(kwargs)
961
+ x = ctx.convert(x)
962
+ y = ctx.convert(y)
963
+ try:
964
+ if hasattr(x, '_mpf_'):
965
+ if hasattr(y, '_mpf_'):
966
+ return ctx.make_mpf(mpf_sub(x._mpf_, y._mpf_, prec, rounding))
967
+ if hasattr(y, '_mpc_'):
968
+ return ctx.make_mpc(mpc_sub((x._mpf_, fzero), y._mpc_, prec, rounding))
969
+ if hasattr(x, '_mpc_'):
970
+ if hasattr(y, '_mpf_'):
971
+ return ctx.make_mpc(mpc_sub_mpf(x._mpc_, y._mpf_, prec, rounding))
972
+ if hasattr(y, '_mpc_'):
973
+ return ctx.make_mpc(mpc_sub(x._mpc_, y._mpc_, prec, rounding))
974
+ except (ValueError, OverflowError):
975
+ raise OverflowError(ctx._exact_overflow_msg)
976
+ raise ValueError("Arguments need to be mpf or mpc compatible numbers")
977
+
978
+ def fmul(ctx, x, y, **kwargs):
979
+ """
980
+ Multiplies the numbers *x* and *y*, giving a floating-point result,
981
+ optionally using a custom precision and rounding mode.
982
+
983
+ See the documentation of :func:`~mpmath.fadd` for a detailed description
984
+ of how to specify precision and rounding.
985
+
986
+ **Examples**
987
+
988
+ The result is an mpmath number::
989
+
990
+ >>> from mpmath import *
991
+ >>> mp.dps = 15; mp.pretty = False
992
+ >>> fmul(2, 5.0)
993
+ mpf('10.0')
994
+ >>> fmul(0.5j, 0.5)
995
+ mpc(real='0.0', imag='0.25')
996
+
997
+ Avoiding roundoff::
998
+
999
+ >>> x, y = 10**10+1, 10**15+1
1000
+ >>> print(x*y)
1001
+ 10000000001000010000000001
1002
+ >>> print(mpf(x) * mpf(y))
1003
+ 1.0000000001e+25
1004
+ >>> print(int(mpf(x) * mpf(y)))
1005
+ 10000000001000011026399232
1006
+ >>> print(int(fmul(x, y)))
1007
+ 10000000001000011026399232
1008
+ >>> print(int(fmul(x, y, dps=25)))
1009
+ 10000000001000010000000001
1010
+ >>> print(int(fmul(x, y, exact=True)))
1011
+ 10000000001000010000000001
1012
+
1013
+ Exact multiplication with complex numbers can be inefficient and may
1014
+ be impossible to perform with large magnitude differences between
1015
+ real and imaginary parts::
1016
+
1017
+ >>> x = 1+2j
1018
+ >>> y = mpc(2, '1e-100000000000000000000')
1019
+ >>> fmul(x, y)
1020
+ mpc(real='2.0', imag='4.0')
1021
+ >>> fmul(x, y, rounding='u')
1022
+ mpc(real='2.0', imag='4.0000000000000009')
1023
+ >>> fmul(x, y, exact=True)
1024
+ Traceback (most recent call last):
1025
+ ...
1026
+ OverflowError: the exact result does not fit in memory
1027
+
1028
+ """
1029
+ prec, rounding = ctx._parse_prec(kwargs)
1030
+ x = ctx.convert(x)
1031
+ y = ctx.convert(y)
1032
+ try:
1033
+ if hasattr(x, '_mpf_'):
1034
+ if hasattr(y, '_mpf_'):
1035
+ return ctx.make_mpf(mpf_mul(x._mpf_, y._mpf_, prec, rounding))
1036
+ if hasattr(y, '_mpc_'):
1037
+ return ctx.make_mpc(mpc_mul_mpf(y._mpc_, x._mpf_, prec, rounding))
1038
+ if hasattr(x, '_mpc_'):
1039
+ if hasattr(y, '_mpf_'):
1040
+ return ctx.make_mpc(mpc_mul_mpf(x._mpc_, y._mpf_, prec, rounding))
1041
+ if hasattr(y, '_mpc_'):
1042
+ return ctx.make_mpc(mpc_mul(x._mpc_, y._mpc_, prec, rounding))
1043
+ except (ValueError, OverflowError):
1044
+ raise OverflowError(ctx._exact_overflow_msg)
1045
+ raise ValueError("Arguments need to be mpf or mpc compatible numbers")
1046
+
1047
+ def fdiv(ctx, x, y, **kwargs):
1048
+ """
1049
+ Divides the numbers *x* and *y*, giving a floating-point result,
1050
+ optionally using a custom precision and rounding mode.
1051
+
1052
+ See the documentation of :func:`~mpmath.fadd` for a detailed description
1053
+ of how to specify precision and rounding.
1054
+
1055
+ **Examples**
1056
+
1057
+ The result is an mpmath number::
1058
+
1059
+ >>> from mpmath import *
1060
+ >>> mp.dps = 15; mp.pretty = False
1061
+ >>> fdiv(3, 2)
1062
+ mpf('1.5')
1063
+ >>> fdiv(2, 3)
1064
+ mpf('0.66666666666666663')
1065
+ >>> fdiv(2+4j, 0.5)
1066
+ mpc(real='4.0', imag='8.0')
1067
+
1068
+ The rounding direction and precision can be controlled::
1069
+
1070
+ >>> fdiv(2, 3, dps=3) # Should be accurate to at least 3 digits
1071
+ mpf('0.6666259765625')
1072
+ >>> fdiv(2, 3, rounding='d')
1073
+ mpf('0.66666666666666663')
1074
+ >>> fdiv(2, 3, prec=60)
1075
+ mpf('0.66666666666666667')
1076
+ >>> fdiv(2, 3, rounding='u')
1077
+ mpf('0.66666666666666674')
1078
+
1079
+ Checking the error of a division by performing it at higher precision::
1080
+
1081
+ >>> fdiv(2, 3) - fdiv(2, 3, prec=100)
1082
+ mpf('-3.7007434154172148e-17')
1083
+
1084
+ Unlike :func:`~mpmath.fadd`, :func:`~mpmath.fmul`, etc., exact division is not
1085
+ allowed since the quotient of two floating-point numbers generally
1086
+ does not have an exact floating-point representation. (In the
1087
+ future this might be changed to allow the case where the division
1088
+ is actually exact.)
1089
+
1090
+ >>> fdiv(2, 3, exact=True)
1091
+ Traceback (most recent call last):
1092
+ ...
1093
+ ValueError: division is not an exact operation
1094
+
1095
+ """
1096
+ prec, rounding = ctx._parse_prec(kwargs)
1097
+ if not prec:
1098
+ raise ValueError("division is not an exact operation")
1099
+ x = ctx.convert(x)
1100
+ y = ctx.convert(y)
1101
+ if hasattr(x, '_mpf_'):
1102
+ if hasattr(y, '_mpf_'):
1103
+ return ctx.make_mpf(mpf_div(x._mpf_, y._mpf_, prec, rounding))
1104
+ if hasattr(y, '_mpc_'):
1105
+ return ctx.make_mpc(mpc_div((x._mpf_, fzero), y._mpc_, prec, rounding))
1106
+ if hasattr(x, '_mpc_'):
1107
+ if hasattr(y, '_mpf_'):
1108
+ return ctx.make_mpc(mpc_div_mpf(x._mpc_, y._mpf_, prec, rounding))
1109
+ if hasattr(y, '_mpc_'):
1110
+ return ctx.make_mpc(mpc_div(x._mpc_, y._mpc_, prec, rounding))
1111
+ raise ValueError("Arguments need to be mpf or mpc compatible numbers")
1112
+
1113
+ def nint_distance(ctx, x):
1114
+ r"""
1115
+ Return `(n,d)` where `n` is the nearest integer to `x` and `d` is
1116
+ an estimate of `\log_2(|x-n|)`. If `d < 0`, `-d` gives the precision
1117
+ (measured in bits) lost to cancellation when computing `x-n`.
1118
+
1119
+ >>> from mpmath import *
1120
+ >>> n, d = nint_distance(5)
1121
+ >>> print(n); print(d)
1122
+ 5
1123
+ -inf
1124
+ >>> n, d = nint_distance(mpf(5))
1125
+ >>> print(n); print(d)
1126
+ 5
1127
+ -inf
1128
+ >>> n, d = nint_distance(mpf(5.00000001))
1129
+ >>> print(n); print(d)
1130
+ 5
1131
+ -26
1132
+ >>> n, d = nint_distance(mpf(4.99999999))
1133
+ >>> print(n); print(d)
1134
+ 5
1135
+ -26
1136
+ >>> n, d = nint_distance(mpc(5,10))
1137
+ >>> print(n); print(d)
1138
+ 5
1139
+ 4
1140
+ >>> n, d = nint_distance(mpc(5,0.000001))
1141
+ >>> print(n); print(d)
1142
+ 5
1143
+ -19
1144
+
1145
+ """
1146
+ typx = type(x)
1147
+ if typx in int_types:
1148
+ return int(x), ctx.ninf
1149
+ elif typx is rational.mpq:
1150
+ p, q = x._mpq_
1151
+ n, r = divmod(p, q)
1152
+ if 2*r >= q:
1153
+ n += 1
1154
+ elif not r:
1155
+ return n, ctx.ninf
1156
+ # log(p/q-n) = log((p-nq)/q) = log(p-nq) - log(q)
1157
+ d = bitcount(abs(p-n*q)) - bitcount(q)
1158
+ return n, d
1159
+ if hasattr(x, "_mpf_"):
1160
+ re = x._mpf_
1161
+ im_dist = ctx.ninf
1162
+ elif hasattr(x, "_mpc_"):
1163
+ re, im = x._mpc_
1164
+ isign, iman, iexp, ibc = im
1165
+ if iman:
1166
+ im_dist = iexp + ibc
1167
+ elif im == fzero:
1168
+ im_dist = ctx.ninf
1169
+ else:
1170
+ raise ValueError("requires a finite number")
1171
+ else:
1172
+ x = ctx.convert(x)
1173
+ if hasattr(x, "_mpf_") or hasattr(x, "_mpc_"):
1174
+ return ctx.nint_distance(x)
1175
+ else:
1176
+ raise TypeError("requires an mpf/mpc")
1177
+ sign, man, exp, bc = re
1178
+ mag = exp+bc
1179
+ # |x| < 0.5
1180
+ if mag < 0:
1181
+ n = 0
1182
+ re_dist = mag
1183
+ elif man:
1184
+ # exact integer
1185
+ if exp >= 0:
1186
+ n = man << exp
1187
+ re_dist = ctx.ninf
1188
+ # exact half-integer
1189
+ elif exp == -1:
1190
+ n = (man>>1)+1
1191
+ re_dist = 0
1192
+ else:
1193
+ d = (-exp-1)
1194
+ t = man >> d
1195
+ if t & 1:
1196
+ t += 1
1197
+ man = (t<<d) - man
1198
+ else:
1199
+ man -= (t<<d)
1200
+ n = t>>1 # int(t)>>1
1201
+ re_dist = exp+bitcount(man)
1202
+ if sign:
1203
+ n = -n
1204
+ elif re == fzero:
1205
+ re_dist = ctx.ninf
1206
+ n = 0
1207
+ else:
1208
+ raise ValueError("requires a finite number")
1209
+ return n, max(re_dist, im_dist)
1210
+
1211
+ def fprod(ctx, factors):
1212
+ r"""
1213
+ Calculates a product containing a finite number of factors (for
1214
+ infinite products, see :func:`~mpmath.nprod`). The factors will be
1215
+ converted to mpmath numbers.
1216
+
1217
+ >>> from mpmath import *
1218
+ >>> mp.dps = 15; mp.pretty = False
1219
+ >>> fprod([1, 2, 0.5, 7])
1220
+ mpf('7.0')
1221
+
1222
+ """
1223
+ orig = ctx.prec
1224
+ try:
1225
+ v = ctx.one
1226
+ for p in factors:
1227
+ v *= p
1228
+ finally:
1229
+ ctx.prec = orig
1230
+ return +v
1231
+
1232
+ def rand(ctx):
1233
+ """
1234
+ Returns an ``mpf`` with value chosen randomly from `[0, 1)`.
1235
+ The number of randomly generated bits in the mantissa is equal
1236
+ to the working precision.
1237
+ """
1238
+ return ctx.make_mpf(mpf_rand(ctx._prec))
1239
+
1240
+ def fraction(ctx, p, q):
1241
+ """
1242
+ Given Python integers `(p, q)`, returns a lazy ``mpf`` representing
1243
+ the fraction `p/q`. The value is updated with the precision.
1244
+
1245
+ >>> from mpmath import *
1246
+ >>> mp.dps = 15
1247
+ >>> a = fraction(1,100)
1248
+ >>> b = mpf(1)/100
1249
+ >>> print(a); print(b)
1250
+ 0.01
1251
+ 0.01
1252
+ >>> mp.dps = 30
1253
+ >>> print(a); print(b) # a will be accurate
1254
+ 0.01
1255
+ 0.0100000000000000002081668171172
1256
+ >>> mp.dps = 15
1257
+ """
1258
+ return ctx.constant(lambda prec, rnd: from_rational(p, q, prec, rnd),
1259
+ '%s/%s' % (p, q))
1260
+
1261
+ def absmin(ctx, x):
1262
+ return abs(ctx.convert(x))
1263
+
1264
+ def absmax(ctx, x):
1265
+ return abs(ctx.convert(x))
1266
+
1267
+ def _as_points(ctx, x):
1268
+ # XXX: remove this?
1269
+ if hasattr(x, '_mpi_'):
1270
+ a, b = x._mpi_
1271
+ return [ctx.make_mpf(a), ctx.make_mpf(b)]
1272
+ return x
1273
+
1274
+ '''
1275
+ def _zetasum(ctx, s, a, b):
1276
+ """
1277
+ Computes sum of k^(-s) for k = a, a+1, ..., b with a, b both small
1278
+ integers.
1279
+ """
1280
+ a = int(a)
1281
+ b = int(b)
1282
+ s = ctx.convert(s)
1283
+ prec, rounding = ctx._prec_rounding
1284
+ if hasattr(s, '_mpf_'):
1285
+ v = ctx.make_mpf(libmp.mpf_zetasum(s._mpf_, a, b, prec))
1286
+ elif hasattr(s, '_mpc_'):
1287
+ v = ctx.make_mpc(libmp.mpc_zetasum(s._mpc_, a, b, prec))
1288
+ return v
1289
+ '''
1290
+
1291
+ def _zetasum_fast(ctx, s, a, n, derivatives=[0], reflect=False):
1292
+ if not (ctx.isint(a) and hasattr(s, "_mpc_")):
1293
+ raise NotImplementedError
1294
+ a = int(a)
1295
+ prec = ctx._prec
1296
+ xs, ys = libmp.mpc_zetasum(s._mpc_, a, n, derivatives, reflect, prec)
1297
+ xs = [ctx.make_mpc(x) for x in xs]
1298
+ ys = [ctx.make_mpc(y) for y in ys]
1299
+ return xs, ys
1300
+
1301
+ class PrecisionManager:
1302
+ def __init__(self, ctx, precfun, dpsfun, normalize_output=False):
1303
+ self.ctx = ctx
1304
+ self.precfun = precfun
1305
+ self.dpsfun = dpsfun
1306
+ self.normalize_output = normalize_output
1307
+ def __call__(self, f):
1308
+ @functools.wraps(f)
1309
+ def g(*args, **kwargs):
1310
+ orig = self.ctx.prec
1311
+ try:
1312
+ if self.precfun:
1313
+ self.ctx.prec = self.precfun(self.ctx.prec)
1314
+ else:
1315
+ self.ctx.dps = self.dpsfun(self.ctx.dps)
1316
+ if self.normalize_output:
1317
+ v = f(*args, **kwargs)
1318
+ if type(v) is tuple:
1319
+ return tuple([+a for a in v])
1320
+ return +v
1321
+ else:
1322
+ return f(*args, **kwargs)
1323
+ finally:
1324
+ self.ctx.prec = orig
1325
+ return g
1326
+ def __enter__(self):
1327
+ self.origp = self.ctx.prec
1328
+ if self.precfun:
1329
+ self.ctx.prec = self.precfun(self.ctx.prec)
1330
+ else:
1331
+ self.ctx.dps = self.dpsfun(self.ctx.dps)
1332
+ def __exit__(self, exc_type, exc_val, exc_tb):
1333
+ self.ctx.prec = self.origp
1334
+ return False
1335
+
1336
+
1337
+ if __name__ == '__main__':
1338
+ import doctest
1339
+ doctest.testmod()
env-llmeval/lib/python3.10/site-packages/mpmath/function_docs.py ADDED
The diff for this file is too large to render. See raw diff
 
env-llmeval/lib/python3.10/site-packages/mpmath/math2.py ADDED
@@ -0,0 +1,672 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module complements the math and cmath builtin modules by providing
3
+ fast machine precision versions of some additional functions (gamma, ...)
4
+ and wrapping math/cmath functions so that they can be called with either
5
+ real or complex arguments.
6
+ """
7
+
8
+ import operator
9
+ import math
10
+ import cmath
11
+
12
+ # Irrational (?) constants
13
+ pi = 3.1415926535897932385
14
+ e = 2.7182818284590452354
15
+ sqrt2 = 1.4142135623730950488
16
+ sqrt5 = 2.2360679774997896964
17
+ phi = 1.6180339887498948482
18
+ ln2 = 0.69314718055994530942
19
+ ln10 = 2.302585092994045684
20
+ euler = 0.57721566490153286061
21
+ catalan = 0.91596559417721901505
22
+ khinchin = 2.6854520010653064453
23
+ apery = 1.2020569031595942854
24
+
25
+ logpi = 1.1447298858494001741
26
+
27
+ def _mathfun_real(f_real, f_complex):
28
+ def f(x, **kwargs):
29
+ if type(x) is float:
30
+ return f_real(x)
31
+ if type(x) is complex:
32
+ return f_complex(x)
33
+ try:
34
+ x = float(x)
35
+ return f_real(x)
36
+ except (TypeError, ValueError):
37
+ x = complex(x)
38
+ return f_complex(x)
39
+ f.__name__ = f_real.__name__
40
+ return f
41
+
42
+ def _mathfun(f_real, f_complex):
43
+ def f(x, **kwargs):
44
+ if type(x) is complex:
45
+ return f_complex(x)
46
+ try:
47
+ return f_real(float(x))
48
+ except (TypeError, ValueError):
49
+ return f_complex(complex(x))
50
+ f.__name__ = f_real.__name__
51
+ return f
52
+
53
+ def _mathfun_n(f_real, f_complex):
54
+ def f(*args, **kwargs):
55
+ try:
56
+ return f_real(*(float(x) for x in args))
57
+ except (TypeError, ValueError):
58
+ return f_complex(*(complex(x) for x in args))
59
+ f.__name__ = f_real.__name__
60
+ return f
61
+
62
+ # Workaround for non-raising log and sqrt in Python 2.5 and 2.4
63
+ # on Unix system
64
+ try:
65
+ math.log(-2.0)
66
+ def math_log(x):
67
+ if x <= 0.0:
68
+ raise ValueError("math domain error")
69
+ return math.log(x)
70
+ def math_sqrt(x):
71
+ if x < 0.0:
72
+ raise ValueError("math domain error")
73
+ return math.sqrt(x)
74
+ except (ValueError, TypeError):
75
+ math_log = math.log
76
+ math_sqrt = math.sqrt
77
+
78
+ pow = _mathfun_n(operator.pow, lambda x, y: complex(x)**y)
79
+ log = _mathfun_n(math_log, cmath.log)
80
+ sqrt = _mathfun(math_sqrt, cmath.sqrt)
81
+ exp = _mathfun_real(math.exp, cmath.exp)
82
+
83
+ cos = _mathfun_real(math.cos, cmath.cos)
84
+ sin = _mathfun_real(math.sin, cmath.sin)
85
+ tan = _mathfun_real(math.tan, cmath.tan)
86
+
87
+ acos = _mathfun(math.acos, cmath.acos)
88
+ asin = _mathfun(math.asin, cmath.asin)
89
+ atan = _mathfun_real(math.atan, cmath.atan)
90
+
91
+ cosh = _mathfun_real(math.cosh, cmath.cosh)
92
+ sinh = _mathfun_real(math.sinh, cmath.sinh)
93
+ tanh = _mathfun_real(math.tanh, cmath.tanh)
94
+
95
+ floor = _mathfun_real(math.floor,
96
+ lambda z: complex(math.floor(z.real), math.floor(z.imag)))
97
+ ceil = _mathfun_real(math.ceil,
98
+ lambda z: complex(math.ceil(z.real), math.ceil(z.imag)))
99
+
100
+
101
+ cos_sin = _mathfun_real(lambda x: (math.cos(x), math.sin(x)),
102
+ lambda z: (cmath.cos(z), cmath.sin(z)))
103
+
104
+ cbrt = _mathfun(lambda x: x**(1./3), lambda z: z**(1./3))
105
+
106
+ def nthroot(x, n):
107
+ r = 1./n
108
+ try:
109
+ return float(x) ** r
110
+ except (ValueError, TypeError):
111
+ return complex(x) ** r
112
+
113
+ def _sinpi_real(x):
114
+ if x < 0:
115
+ return -_sinpi_real(-x)
116
+ n, r = divmod(x, 0.5)
117
+ r *= pi
118
+ n %= 4
119
+ if n == 0: return math.sin(r)
120
+ if n == 1: return math.cos(r)
121
+ if n == 2: return -math.sin(r)
122
+ if n == 3: return -math.cos(r)
123
+
124
+ def _cospi_real(x):
125
+ if x < 0:
126
+ x = -x
127
+ n, r = divmod(x, 0.5)
128
+ r *= pi
129
+ n %= 4
130
+ if n == 0: return math.cos(r)
131
+ if n == 1: return -math.sin(r)
132
+ if n == 2: return -math.cos(r)
133
+ if n == 3: return math.sin(r)
134
+
135
+ def _sinpi_complex(z):
136
+ if z.real < 0:
137
+ return -_sinpi_complex(-z)
138
+ n, r = divmod(z.real, 0.5)
139
+ z = pi*complex(r, z.imag)
140
+ n %= 4
141
+ if n == 0: return cmath.sin(z)
142
+ if n == 1: return cmath.cos(z)
143
+ if n == 2: return -cmath.sin(z)
144
+ if n == 3: return -cmath.cos(z)
145
+
146
+ def _cospi_complex(z):
147
+ if z.real < 0:
148
+ z = -z
149
+ n, r = divmod(z.real, 0.5)
150
+ z = pi*complex(r, z.imag)
151
+ n %= 4
152
+ if n == 0: return cmath.cos(z)
153
+ if n == 1: return -cmath.sin(z)
154
+ if n == 2: return -cmath.cos(z)
155
+ if n == 3: return cmath.sin(z)
156
+
157
+ cospi = _mathfun_real(_cospi_real, _cospi_complex)
158
+ sinpi = _mathfun_real(_sinpi_real, _sinpi_complex)
159
+
160
+ def tanpi(x):
161
+ try:
162
+ return sinpi(x) / cospi(x)
163
+ except OverflowError:
164
+ if complex(x).imag > 10:
165
+ return 1j
166
+ if complex(x).imag < 10:
167
+ return -1j
168
+ raise
169
+
170
+ def cotpi(x):
171
+ try:
172
+ return cospi(x) / sinpi(x)
173
+ except OverflowError:
174
+ if complex(x).imag > 10:
175
+ return -1j
176
+ if complex(x).imag < 10:
177
+ return 1j
178
+ raise
179
+
180
+ INF = 1e300*1e300
181
+ NINF = -INF
182
+ NAN = INF-INF
183
+ EPS = 2.2204460492503131e-16
184
+
185
+ _exact_gamma = (INF, 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0,
186
+ 362880.0, 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
187
+ 1307674368000.0, 20922789888000.0, 355687428096000.0, 6402373705728000.0,
188
+ 121645100408832000.0, 2432902008176640000.0)
189
+
190
+ _max_exact_gamma = len(_exact_gamma)-1
191
+
192
+ # Lanczos coefficients used by the GNU Scientific Library
193
+ _lanczos_g = 7
194
+ _lanczos_p = (0.99999999999980993, 676.5203681218851, -1259.1392167224028,
195
+ 771.32342877765313, -176.61502916214059, 12.507343278686905,
196
+ -0.13857109526572012, 9.9843695780195716e-6, 1.5056327351493116e-7)
197
+
198
+ def _gamma_real(x):
199
+ _intx = int(x)
200
+ if _intx == x:
201
+ if _intx <= 0:
202
+ #return (-1)**_intx * INF
203
+ raise ZeroDivisionError("gamma function pole")
204
+ if _intx <= _max_exact_gamma:
205
+ return _exact_gamma[_intx]
206
+ if x < 0.5:
207
+ # TODO: sinpi
208
+ return pi / (_sinpi_real(x)*_gamma_real(1-x))
209
+ else:
210
+ x -= 1.0
211
+ r = _lanczos_p[0]
212
+ for i in range(1, _lanczos_g+2):
213
+ r += _lanczos_p[i]/(x+i)
214
+ t = x + _lanczos_g + 0.5
215
+ return 2.506628274631000502417 * t**(x+0.5) * math.exp(-t) * r
216
+
217
+ def _gamma_complex(x):
218
+ if not x.imag:
219
+ return complex(_gamma_real(x.real))
220
+ if x.real < 0.5:
221
+ # TODO: sinpi
222
+ return pi / (_sinpi_complex(x)*_gamma_complex(1-x))
223
+ else:
224
+ x -= 1.0
225
+ r = _lanczos_p[0]
226
+ for i in range(1, _lanczos_g+2):
227
+ r += _lanczos_p[i]/(x+i)
228
+ t = x + _lanczos_g + 0.5
229
+ return 2.506628274631000502417 * t**(x+0.5) * cmath.exp(-t) * r
230
+
231
+ gamma = _mathfun_real(_gamma_real, _gamma_complex)
232
+
233
+ def rgamma(x):
234
+ try:
235
+ return 1./gamma(x)
236
+ except ZeroDivisionError:
237
+ return x*0.0
238
+
239
+ def factorial(x):
240
+ return gamma(x+1.0)
241
+
242
+ def arg(x):
243
+ if type(x) is float:
244
+ return math.atan2(0.0,x)
245
+ return math.atan2(x.imag,x.real)
246
+
247
+ # XXX: broken for negatives
248
+ def loggamma(x):
249
+ if type(x) not in (float, complex):
250
+ try:
251
+ x = float(x)
252
+ except (ValueError, TypeError):
253
+ x = complex(x)
254
+ try:
255
+ xreal = x.real
256
+ ximag = x.imag
257
+ except AttributeError: # py2.5
258
+ xreal = x
259
+ ximag = 0.0
260
+ # Reflection formula
261
+ # http://functions.wolfram.com/GammaBetaErf/LogGamma/16/01/01/0003/
262
+ if xreal < 0.0:
263
+ if abs(x) < 0.5:
264
+ v = log(gamma(x))
265
+ if ximag == 0:
266
+ v = v.conjugate()
267
+ return v
268
+ z = 1-x
269
+ try:
270
+ re = z.real
271
+ im = z.imag
272
+ except AttributeError: # py2.5
273
+ re = z
274
+ im = 0.0
275
+ refloor = floor(re)
276
+ if im == 0.0:
277
+ imsign = 0
278
+ elif im < 0.0:
279
+ imsign = -1
280
+ else:
281
+ imsign = 1
282
+ return (-pi*1j)*abs(refloor)*(1-abs(imsign)) + logpi - \
283
+ log(sinpi(z-refloor)) - loggamma(z) + 1j*pi*refloor*imsign
284
+ if x == 1.0 or x == 2.0:
285
+ return x*0
286
+ p = 0.
287
+ while abs(x) < 11:
288
+ p -= log(x)
289
+ x += 1.0
290
+ s = 0.918938533204672742 + (x-0.5)*log(x) - x
291
+ r = 1./x
292
+ r2 = r*r
293
+ s += 0.083333333333333333333*r; r *= r2
294
+ s += -0.0027777777777777777778*r; r *= r2
295
+ s += 0.00079365079365079365079*r; r *= r2
296
+ s += -0.0005952380952380952381*r; r *= r2
297
+ s += 0.00084175084175084175084*r; r *= r2
298
+ s += -0.0019175269175269175269*r; r *= r2
299
+ s += 0.0064102564102564102564*r; r *= r2
300
+ s += -0.02955065359477124183*r
301
+ return s + p
302
+
303
+ _psi_coeff = [
304
+ 0.083333333333333333333,
305
+ -0.0083333333333333333333,
306
+ 0.003968253968253968254,
307
+ -0.0041666666666666666667,
308
+ 0.0075757575757575757576,
309
+ -0.021092796092796092796,
310
+ 0.083333333333333333333,
311
+ -0.44325980392156862745,
312
+ 3.0539543302701197438,
313
+ -26.456212121212121212]
314
+
315
+ def _digamma_real(x):
316
+ _intx = int(x)
317
+ if _intx == x:
318
+ if _intx <= 0:
319
+ raise ZeroDivisionError("polygamma pole")
320
+ if x < 0.5:
321
+ x = 1.0-x
322
+ s = pi*cotpi(x)
323
+ else:
324
+ s = 0.0
325
+ while x < 10.0:
326
+ s -= 1.0/x
327
+ x += 1.0
328
+ x2 = x**-2
329
+ t = x2
330
+ for c in _psi_coeff:
331
+ s -= c*t
332
+ if t < 1e-20:
333
+ break
334
+ t *= x2
335
+ return s + math_log(x) - 0.5/x
336
+
337
+ def _digamma_complex(x):
338
+ if not x.imag:
339
+ return complex(_digamma_real(x.real))
340
+ if x.real < 0.5:
341
+ x = 1.0-x
342
+ s = pi*cotpi(x)
343
+ else:
344
+ s = 0.0
345
+ while abs(x) < 10.0:
346
+ s -= 1.0/x
347
+ x += 1.0
348
+ x2 = x**-2
349
+ t = x2
350
+ for c in _psi_coeff:
351
+ s -= c*t
352
+ if abs(t) < 1e-20:
353
+ break
354
+ t *= x2
355
+ return s + cmath.log(x) - 0.5/x
356
+
357
+ digamma = _mathfun_real(_digamma_real, _digamma_complex)
358
+
359
+ # TODO: could implement complex erf and erfc here. Need
360
+ # to find an accurate method (avoiding cancellation)
361
+ # for approx. 1 < abs(x) < 9.
362
+
363
+ _erfc_coeff_P = [
364
+ 1.0000000161203922312,
365
+ 2.1275306946297962644,
366
+ 2.2280433377390253297,
367
+ 1.4695509105618423961,
368
+ 0.66275911699770787537,
369
+ 0.20924776504163751585,
370
+ 0.045459713768411264339,
371
+ 0.0063065951710717791934,
372
+ 0.00044560259661560421715][::-1]
373
+
374
+ _erfc_coeff_Q = [
375
+ 1.0000000000000000000,
376
+ 3.2559100272784894318,
377
+ 4.9019435608903239131,
378
+ 4.4971472894498014205,
379
+ 2.7845640601891186528,
380
+ 1.2146026030046904138,
381
+ 0.37647108453729465912,
382
+ 0.080970149639040548613,
383
+ 0.011178148899483545902,
384
+ 0.00078981003831980423513][::-1]
385
+
386
+ def _polyval(coeffs, x):
387
+ p = coeffs[0]
388
+ for c in coeffs[1:]:
389
+ p = c + x*p
390
+ return p
391
+
392
+ def _erf_taylor(x):
393
+ # Taylor series assuming 0 <= x <= 1
394
+ x2 = x*x
395
+ s = t = x
396
+ n = 1
397
+ while abs(t) > 1e-17:
398
+ t *= x2/n
399
+ s -= t/(n+n+1)
400
+ n += 1
401
+ t *= x2/n
402
+ s += t/(n+n+1)
403
+ n += 1
404
+ return 1.1283791670955125739*s
405
+
406
+ def _erfc_mid(x):
407
+ # Rational approximation assuming 0 <= x <= 9
408
+ return exp(-x*x)*_polyval(_erfc_coeff_P,x)/_polyval(_erfc_coeff_Q,x)
409
+
410
+ def _erfc_asymp(x):
411
+ # Asymptotic expansion assuming x >= 9
412
+ x2 = x*x
413
+ v = exp(-x2)/x*0.56418958354775628695
414
+ r = t = 0.5 / x2
415
+ s = 1.0
416
+ for n in range(1,22,4):
417
+ s -= t
418
+ t *= r * (n+2)
419
+ s += t
420
+ t *= r * (n+4)
421
+ if abs(t) < 1e-17:
422
+ break
423
+ return s * v
424
+
425
+ def erf(x):
426
+ """
427
+ erf of a real number.
428
+ """
429
+ x = float(x)
430
+ if x != x:
431
+ return x
432
+ if x < 0.0:
433
+ return -erf(-x)
434
+ if x >= 1.0:
435
+ if x >= 6.0:
436
+ return 1.0
437
+ return 1.0 - _erfc_mid(x)
438
+ return _erf_taylor(x)
439
+
440
+ def erfc(x):
441
+ """
442
+ erfc of a real number.
443
+ """
444
+ x = float(x)
445
+ if x != x:
446
+ return x
447
+ if x < 0.0:
448
+ if x < -6.0:
449
+ return 2.0
450
+ return 2.0-erfc(-x)
451
+ if x > 9.0:
452
+ return _erfc_asymp(x)
453
+ if x >= 1.0:
454
+ return _erfc_mid(x)
455
+ return 1.0 - _erf_taylor(x)
456
+
457
+ gauss42 = [\
458
+ (0.99839961899006235, 0.0041059986046490839),
459
+ (-0.99839961899006235, 0.0041059986046490839),
460
+ (0.9915772883408609, 0.009536220301748501),
461
+ (-0.9915772883408609,0.009536220301748501),
462
+ (0.97934250806374812, 0.014922443697357493),
463
+ (-0.97934250806374812, 0.014922443697357493),
464
+ (0.96175936533820439,0.020227869569052644),
465
+ (-0.96175936533820439, 0.020227869569052644),
466
+ (0.93892355735498811, 0.025422959526113047),
467
+ (-0.93892355735498811,0.025422959526113047),
468
+ (0.91095972490412735, 0.030479240699603467),
469
+ (-0.91095972490412735, 0.030479240699603467),
470
+ (0.87802056981217269,0.03536907109759211),
471
+ (-0.87802056981217269, 0.03536907109759211),
472
+ (0.8402859832618168, 0.040065735180692258),
473
+ (-0.8402859832618168,0.040065735180692258),
474
+ (0.7979620532554873, 0.044543577771965874),
475
+ (-0.7979620532554873, 0.044543577771965874),
476
+ (0.75127993568948048,0.048778140792803244),
477
+ (-0.75127993568948048, 0.048778140792803244),
478
+ (0.70049459055617114, 0.052746295699174064),
479
+ (-0.70049459055617114,0.052746295699174064),
480
+ (0.64588338886924779, 0.056426369358018376),
481
+ (-0.64588338886924779, 0.056426369358018376),
482
+ (0.58774459748510932, 0.059798262227586649),
483
+ (-0.58774459748510932, 0.059798262227586649),
484
+ (0.5263957499311922, 0.062843558045002565),
485
+ (-0.5263957499311922, 0.062843558045002565),
486
+ (0.46217191207042191, 0.065545624364908975),
487
+ (-0.46217191207042191, 0.065545624364908975),
488
+ (0.39542385204297503, 0.067889703376521934),
489
+ (-0.39542385204297503, 0.067889703376521934),
490
+ (0.32651612446541151, 0.069862992492594159),
491
+ (-0.32651612446541151, 0.069862992492594159),
492
+ (0.25582507934287907, 0.071454714265170971),
493
+ (-0.25582507934287907, 0.071454714265170971),
494
+ (0.18373680656485453, 0.072656175243804091),
495
+ (-0.18373680656485453, 0.072656175243804091),
496
+ (0.11064502720851986, 0.073460813453467527),
497
+ (-0.11064502720851986, 0.073460813453467527),
498
+ (0.036948943165351772, 0.073864234232172879),
499
+ (-0.036948943165351772, 0.073864234232172879)]
500
+
501
+ EI_ASYMP_CONVERGENCE_RADIUS = 40.0
502
+
503
+ def ei_asymp(z, _e1=False):
504
+ r = 1./z
505
+ s = t = 1.0
506
+ k = 1
507
+ while 1:
508
+ t *= k*r
509
+ s += t
510
+ if abs(t) < 1e-16:
511
+ break
512
+ k += 1
513
+ v = s*exp(z)/z
514
+ if _e1:
515
+ if type(z) is complex:
516
+ zreal = z.real
517
+ zimag = z.imag
518
+ else:
519
+ zreal = z
520
+ zimag = 0.0
521
+ if zimag == 0.0 and zreal > 0.0:
522
+ v += pi*1j
523
+ else:
524
+ if type(z) is complex:
525
+ if z.imag > 0:
526
+ v += pi*1j
527
+ if z.imag < 0:
528
+ v -= pi*1j
529
+ return v
530
+
531
+ def ei_taylor(z, _e1=False):
532
+ s = t = z
533
+ k = 2
534
+ while 1:
535
+ t = t*z/k
536
+ term = t/k
537
+ if abs(term) < 1e-17:
538
+ break
539
+ s += term
540
+ k += 1
541
+ s += euler
542
+ if _e1:
543
+ s += log(-z)
544
+ else:
545
+ if type(z) is float or z.imag == 0.0:
546
+ s += math_log(abs(z))
547
+ else:
548
+ s += cmath.log(z)
549
+ return s
550
+
551
+ def ei(z, _e1=False):
552
+ typez = type(z)
553
+ if typez not in (float, complex):
554
+ try:
555
+ z = float(z)
556
+ typez = float
557
+ except (TypeError, ValueError):
558
+ z = complex(z)
559
+ typez = complex
560
+ if not z:
561
+ return -INF
562
+ absz = abs(z)
563
+ if absz > EI_ASYMP_CONVERGENCE_RADIUS:
564
+ return ei_asymp(z, _e1)
565
+ elif absz <= 2.0 or (typez is float and z > 0.0):
566
+ return ei_taylor(z, _e1)
567
+ # Integrate, starting from whichever is smaller of a Taylor
568
+ # series value or an asymptotic series value
569
+ if typez is complex and z.real > 0.0:
570
+ zref = z / absz
571
+ ref = ei_taylor(zref, _e1)
572
+ else:
573
+ zref = EI_ASYMP_CONVERGENCE_RADIUS * z / absz
574
+ ref = ei_asymp(zref, _e1)
575
+ C = (zref-z)*0.5
576
+ D = (zref+z)*0.5
577
+ s = 0.0
578
+ if type(z) is complex:
579
+ _exp = cmath.exp
580
+ else:
581
+ _exp = math.exp
582
+ for x,w in gauss42:
583
+ t = C*x+D
584
+ s += w*_exp(t)/t
585
+ ref -= C*s
586
+ return ref
587
+
588
+ def e1(z):
589
+ # hack to get consistent signs if the imaginary part if 0
590
+ # and signed
591
+ typez = type(z)
592
+ if type(z) not in (float, complex):
593
+ try:
594
+ z = float(z)
595
+ typez = float
596
+ except (TypeError, ValueError):
597
+ z = complex(z)
598
+ typez = complex
599
+ if typez is complex and not z.imag:
600
+ z = complex(z.real, 0.0)
601
+ # end hack
602
+ return -ei(-z, _e1=True)
603
+
604
+ _zeta_int = [\
605
+ -0.5,
606
+ 0.0,
607
+ 1.6449340668482264365,1.2020569031595942854,1.0823232337111381915,
608
+ 1.0369277551433699263,1.0173430619844491397,1.0083492773819228268,
609
+ 1.0040773561979443394,1.0020083928260822144,1.0009945751278180853,
610
+ 1.0004941886041194646,1.0002460865533080483,1.0001227133475784891,
611
+ 1.0000612481350587048,1.0000305882363070205,1.0000152822594086519,
612
+ 1.0000076371976378998,1.0000038172932649998,1.0000019082127165539,
613
+ 1.0000009539620338728,1.0000004769329867878,1.0000002384505027277,
614
+ 1.0000001192199259653,1.0000000596081890513,1.0000000298035035147,
615
+ 1.0000000149015548284]
616
+
617
+ _zeta_P = [-3.50000000087575873, -0.701274355654678147,
618
+ -0.0672313458590012612, -0.00398731457954257841,
619
+ -0.000160948723019303141, -4.67633010038383371e-6,
620
+ -1.02078104417700585e-7, -1.68030037095896287e-9,
621
+ -1.85231868742346722e-11][::-1]
622
+
623
+ _zeta_Q = [1.00000000000000000, -0.936552848762465319,
624
+ -0.0588835413263763741, -0.00441498861482948666,
625
+ -0.000143416758067432622, -5.10691659585090782e-6,
626
+ -9.58813053268913799e-8, -1.72963791443181972e-9,
627
+ -1.83527919681474132e-11][::-1]
628
+
629
+ _zeta_1 = [3.03768838606128127e-10, -1.21924525236601262e-8,
630
+ 2.01201845887608893e-7, -1.53917240683468381e-6,
631
+ -5.09890411005967954e-7, 0.000122464707271619326,
632
+ -0.000905721539353130232, -0.00239315326074843037,
633
+ 0.084239750013159168, 0.418938517907442414, 0.500000001921884009]
634
+
635
+ _zeta_0 = [-3.46092485016748794e-10, -6.42610089468292485e-9,
636
+ 1.76409071536679773e-7, -1.47141263991560698e-6, -6.38880222546167613e-7,
637
+ 0.000122641099800668209, -0.000905894913516772796, -0.00239303348507992713,
638
+ 0.0842396947501199816, 0.418938533204660256, 0.500000000000000052]
639
+
640
+ def zeta(s):
641
+ """
642
+ Riemann zeta function, real argument
643
+ """
644
+ if not isinstance(s, (float, int)):
645
+ try:
646
+ s = float(s)
647
+ except (ValueError, TypeError):
648
+ try:
649
+ s = complex(s)
650
+ if not s.imag:
651
+ return complex(zeta(s.real))
652
+ except (ValueError, TypeError):
653
+ pass
654
+ raise NotImplementedError
655
+ if s == 1:
656
+ raise ValueError("zeta(1) pole")
657
+ if s >= 27:
658
+ return 1.0 + 2.0**(-s) + 3.0**(-s)
659
+ n = int(s)
660
+ if n == s:
661
+ if n >= 0:
662
+ return _zeta_int[n]
663
+ if not (n % 2):
664
+ return 0.0
665
+ if s <= 0.0:
666
+ return 2.**s*pi**(s-1)*_sinpi_real(0.5*s)*_gamma_real(1-s)*zeta(1-s)
667
+ if s <= 2.0:
668
+ if s <= 1.0:
669
+ return _polyval(_zeta_0,s)/(s-1)
670
+ return _polyval(_zeta_1,s)/(s-1)
671
+ z = _polyval(_zeta_P,s) / _polyval(_zeta_Q,s)
672
+ return 1.0 + 2.0**(-s) + 3.0**(-s) + 4.0**(-s)*z
env-llmeval/lib/python3.10/site-packages/mpmath/matrices/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from . import eigen # to set methods
2
+ from . import eigen_symmetric # to set methods
env-llmeval/lib/python3.10/site-packages/mpmath/matrices/eigen_symmetric.py ADDED
@@ -0,0 +1,1807 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/python
2
+ # -*- coding: utf-8 -*-
3
+
4
+ ##################################################################################################
5
+ # module for the symmetric eigenvalue problem
6
+ # Copyright 2013 Timo Hartmann (thartmann15 at gmail.com)
7
+ #
8
+ # todo:
9
+ # - implement balancing
10
+ #
11
+ ##################################################################################################
12
+
13
+ """
14
+ The symmetric eigenvalue problem.
15
+ ---------------------------------
16
+
17
+ This file contains routines for the symmetric eigenvalue problem.
18
+
19
+ high level routines:
20
+
21
+ eigsy : real symmetric (ordinary) eigenvalue problem
22
+ eighe : complex hermitian (ordinary) eigenvalue problem
23
+ eigh : unified interface for eigsy and eighe
24
+ svd_r : singular value decomposition for real matrices
25
+ svd_c : singular value decomposition for complex matrices
26
+ svd : unified interface for svd_r and svd_c
27
+
28
+
29
+ low level routines:
30
+
31
+ r_sy_tridiag : reduction of real symmetric matrix to real symmetric tridiagonal matrix
32
+ c_he_tridiag_0 : reduction of complex hermitian matrix to real symmetric tridiagonal matrix
33
+ c_he_tridiag_1 : auxiliary routine to c_he_tridiag_0
34
+ c_he_tridiag_2 : auxiliary routine to c_he_tridiag_0
35
+ tridiag_eigen : solves the real symmetric tridiagonal matrix eigenvalue problem
36
+ svd_r_raw : raw singular value decomposition for real matrices
37
+ svd_c_raw : raw singular value decomposition for complex matrices
38
+ """
39
+
40
+ from ..libmp.backend import xrange
41
+ from .eigen import defun
42
+
43
+
44
+ def r_sy_tridiag(ctx, A, D, E, calc_ev = True):
45
+ """
46
+ This routine transforms a real symmetric matrix A to a real symmetric
47
+ tridiagonal matrix T using an orthogonal similarity transformation:
48
+ Q' * A * Q = T (here ' denotes the matrix transpose).
49
+ The orthogonal matrix Q is build up from Householder reflectors.
50
+
51
+ parameters:
52
+ A (input/output) On input, A contains the real symmetric matrix of
53
+ dimension (n,n). On output, if calc_ev is true, A contains the
54
+ orthogonal matrix Q, otherwise A is destroyed.
55
+
56
+ D (output) real array of length n, contains the diagonal elements
57
+ of the tridiagonal matrix
58
+
59
+ E (output) real array of length n, contains the offdiagonal elements
60
+ of the tridiagonal matrix in E[0:(n-1)] where is the dimension of
61
+ the matrix A. E[n-1] is undefined.
62
+
63
+ calc_ev (input) If calc_ev is true, this routine explicitly calculates the
64
+ orthogonal matrix Q which is then returned in A. If calc_ev is
65
+ false, Q is not explicitly calculated resulting in a shorter run time.
66
+
67
+ This routine is a python translation of the fortran routine tred2.f in the
68
+ software library EISPACK (see netlib.org) which itself is based on the algol
69
+ procedure tred2 described in:
70
+ - Num. Math. 11, p.181-195 (1968) by Martin, Reinsch and Wilkonson
71
+ - Handbook for auto. comp., Vol II, Linear Algebra, p.212-226 (1971)
72
+
73
+ For a good introduction to Householder reflections, see also
74
+ Stoer, Bulirsch - Introduction to Numerical Analysis.
75
+ """
76
+
77
+ # note : the vector v of the i-th houshoulder reflector is stored in a[(i+1):,i]
78
+ # whereas v/<v,v> is stored in a[i,(i+1):]
79
+
80
+ n = A.rows
81
+ for i in xrange(n - 1, 0, -1):
82
+ # scale the vector
83
+
84
+ scale = 0
85
+ for k in xrange(0, i):
86
+ scale += abs(A[k,i])
87
+
88
+ scale_inv = 0
89
+ if scale != 0:
90
+ scale_inv = 1/scale
91
+
92
+ # sadly there are floating point numbers not equal to zero whose reciprocal is infinity
93
+
94
+ if i == 1 or scale == 0 or ctx.isinf(scale_inv):
95
+ E[i] = A[i-1,i] # nothing to do
96
+ D[i] = 0
97
+ continue
98
+
99
+ # calculate parameters for housholder transformation
100
+
101
+ H = 0
102
+ for k in xrange(0, i):
103
+ A[k,i] *= scale_inv
104
+ H += A[k,i] * A[k,i]
105
+
106
+ F = A[i-1,i]
107
+ G = ctx.sqrt(H)
108
+ if F > 0:
109
+ G = -G
110
+ E[i] = scale * G
111
+ H -= F * G
112
+ A[i-1,i] = F - G
113
+ F = 0
114
+
115
+ # apply housholder transformation
116
+
117
+ for j in xrange(0, i):
118
+ if calc_ev:
119
+ A[i,j] = A[j,i] / H
120
+
121
+ G = 0 # calculate A*U
122
+ for k in xrange(0, j + 1):
123
+ G += A[k,j] * A[k,i]
124
+ for k in xrange(j + 1, i):
125
+ G += A[j,k] * A[k,i]
126
+
127
+ E[j] = G / H # calculate P
128
+ F += E[j] * A[j,i]
129
+
130
+ HH = F / (2 * H)
131
+
132
+ for j in xrange(0, i): # calculate reduced A
133
+ F = A[j,i]
134
+ G = E[j] - HH * F # calculate Q
135
+ E[j] = G
136
+
137
+ for k in xrange(0, j + 1):
138
+ A[k,j] -= F * E[k] + G * A[k,i]
139
+
140
+ D[i] = H
141
+
142
+ for i in xrange(1, n): # better for compatibility
143
+ E[i-1] = E[i]
144
+ E[n-1] = 0
145
+
146
+ if calc_ev:
147
+ D[0] = 0
148
+ for i in xrange(0, n):
149
+ if D[i] != 0:
150
+ for j in xrange(0, i): # accumulate transformation matrices
151
+ G = 0
152
+ for k in xrange(0, i):
153
+ G += A[i,k] * A[k,j]
154
+ for k in xrange(0, i):
155
+ A[k,j] -= G * A[k,i]
156
+
157
+ D[i] = A[i,i]
158
+ A[i,i] = 1
159
+
160
+ for j in xrange(0, i):
161
+ A[j,i] = A[i,j] = 0
162
+ else:
163
+ for i in xrange(0, n):
164
+ D[i] = A[i,i]
165
+
166
+
167
+
168
+
169
+
170
+ def c_he_tridiag_0(ctx, A, D, E, T):
171
+ """
172
+ This routine transforms a complex hermitian matrix A to a real symmetric
173
+ tridiagonal matrix T using an unitary similarity transformation:
174
+ Q' * A * Q = T (here ' denotes the hermitian matrix transpose,
175
+ i.e. transposition und conjugation).
176
+ The unitary matrix Q is build up from Householder reflectors and
177
+ an unitary diagonal matrix.
178
+
179
+ parameters:
180
+ A (input/output) On input, A contains the complex hermitian matrix
181
+ of dimension (n,n). On output, A contains the unitary matrix Q
182
+ in compressed form.
183
+
184
+ D (output) real array of length n, contains the diagonal elements
185
+ of the tridiagonal matrix.
186
+
187
+ E (output) real array of length n, contains the offdiagonal elements
188
+ of the tridiagonal matrix in E[0:(n-1)] where is the dimension of
189
+ the matrix A. E[n-1] is undefined.
190
+
191
+ T (output) complex array of length n, contains a unitary diagonal
192
+ matrix.
193
+
194
+ This routine is a python translation (in slightly modified form) of the fortran
195
+ routine htridi.f in the software library EISPACK (see netlib.org) which itself
196
+ is a complex version of the algol procedure tred1 described in:
197
+ - Num. Math. 11, p.181-195 (1968) by Martin, Reinsch and Wilkonson
198
+ - Handbook for auto. comp., Vol II, Linear Algebra, p.212-226 (1971)
199
+
200
+ For a good introduction to Householder reflections, see also
201
+ Stoer, Bulirsch - Introduction to Numerical Analysis.
202
+ """
203
+
204
+ n = A.rows
205
+ T[n-1] = 1
206
+ for i in xrange(n - 1, 0, -1):
207
+
208
+ # scale the vector
209
+
210
+ scale = 0
211
+ for k in xrange(0, i):
212
+ scale += abs(ctx.re(A[k,i])) + abs(ctx.im(A[k,i]))
213
+
214
+ scale_inv = 0
215
+ if scale != 0:
216
+ scale_inv = 1 / scale
217
+
218
+ # sadly there are floating point numbers not equal to zero whose reciprocal is infinity
219
+
220
+ if scale == 0 or ctx.isinf(scale_inv):
221
+ E[i] = 0
222
+ D[i] = 0
223
+ T[i-1] = 1
224
+ continue
225
+
226
+ if i == 1:
227
+ F = A[i-1,i]
228
+ f = abs(F)
229
+ E[i] = f
230
+ D[i] = 0
231
+ if f != 0:
232
+ T[i-1] = T[i] * F / f
233
+ else:
234
+ T[i-1] = T[i]
235
+ continue
236
+
237
+ # calculate parameters for housholder transformation
238
+
239
+ H = 0
240
+ for k in xrange(0, i):
241
+ A[k,i] *= scale_inv
242
+ rr = ctx.re(A[k,i])
243
+ ii = ctx.im(A[k,i])
244
+ H += rr * rr + ii * ii
245
+
246
+ F = A[i-1,i]
247
+ f = abs(F)
248
+ G = ctx.sqrt(H)
249
+ H += G * f
250
+ E[i] = scale * G
251
+ if f != 0:
252
+ F = F / f
253
+ TZ = - T[i] * F # T[i-1]=-T[i]*F, but we need T[i-1] as temporary storage
254
+ G *= F
255
+ else:
256
+ TZ = -T[i] # T[i-1]=-T[i]
257
+ A[i-1,i] += G
258
+ F = 0
259
+
260
+ # apply housholder transformation
261
+
262
+ for j in xrange(0, i):
263
+ A[i,j] = A[j,i] / H
264
+
265
+ G = 0 # calculate A*U
266
+ for k in xrange(0, j + 1):
267
+ G += ctx.conj(A[k,j]) * A[k,i]
268
+ for k in xrange(j + 1, i):
269
+ G += A[j,k] * A[k,i]
270
+
271
+ T[j] = G / H # calculate P
272
+ F += ctx.conj(T[j]) * A[j,i]
273
+
274
+ HH = F / (2 * H)
275
+
276
+ for j in xrange(0, i): # calculate reduced A
277
+ F = A[j,i]
278
+ G = T[j] - HH * F # calculate Q
279
+ T[j] = G
280
+
281
+ for k in xrange(0, j + 1):
282
+ A[k,j] -= ctx.conj(F) * T[k] + ctx.conj(G) * A[k,i]
283
+ # as we use the lower left part for storage
284
+ # we have to use the transpose of the normal formula
285
+
286
+ T[i-1] = TZ
287
+ D[i] = H
288
+
289
+ for i in xrange(1, n): # better for compatibility
290
+ E[i-1] = E[i]
291
+ E[n-1] = 0
292
+
293
+ D[0] = 0
294
+ for i in xrange(0, n):
295
+ zw = D[i]
296
+ D[i] = ctx.re(A[i,i])
297
+ A[i,i] = zw
298
+
299
+
300
+
301
+
302
+
303
+
304
+
305
+ def c_he_tridiag_1(ctx, A, T):
306
+ """
307
+ This routine forms the unitary matrix Q described in c_he_tridiag_0.
308
+
309
+ parameters:
310
+ A (input/output) On input, A is the same matrix as delivered by
311
+ c_he_tridiag_0. On output, A is set to Q.
312
+
313
+ T (input) On input, T is the same array as delivered by c_he_tridiag_0.
314
+
315
+ """
316
+
317
+ n = A.rows
318
+
319
+ for i in xrange(0, n):
320
+ if A[i,i] != 0:
321
+ for j in xrange(0, i):
322
+ G = 0
323
+ for k in xrange(0, i):
324
+ G += ctx.conj(A[i,k]) * A[k,j]
325
+ for k in xrange(0, i):
326
+ A[k,j] -= G * A[k,i]
327
+
328
+ A[i,i] = 1
329
+
330
+ for j in xrange(0, i):
331
+ A[j,i] = A[i,j] = 0
332
+
333
+ for i in xrange(0, n):
334
+ for k in xrange(0, n):
335
+ A[i,k] *= T[k]
336
+
337
+
338
+
339
+
340
+ def c_he_tridiag_2(ctx, A, T, B):
341
+ """
342
+ This routine applied the unitary matrix Q described in c_he_tridiag_0
343
+ onto the the matrix B, i.e. it forms Q*B.
344
+
345
+ parameters:
346
+ A (input) On input, A is the same matrix as delivered by c_he_tridiag_0.
347
+
348
+ T (input) On input, T is the same array as delivered by c_he_tridiag_0.
349
+
350
+ B (input/output) On input, B is a complex matrix. On output B is replaced
351
+ by Q*B.
352
+
353
+ This routine is a python translation of the fortran routine htribk.f in the
354
+ software library EISPACK (see netlib.org). See c_he_tridiag_0 for more
355
+ references.
356
+ """
357
+
358
+ n = A.rows
359
+
360
+ for i in xrange(0, n):
361
+ for k in xrange(0, n):
362
+ B[k,i] *= T[k]
363
+
364
+ for i in xrange(0, n):
365
+ if A[i,i] != 0:
366
+ for j in xrange(0, n):
367
+ G = 0
368
+ for k in xrange(0, i):
369
+ G += ctx.conj(A[i,k]) * B[k,j]
370
+ for k in xrange(0, i):
371
+ B[k,j] -= G * A[k,i]
372
+
373
+
374
+
375
+
376
+
377
+ def tridiag_eigen(ctx, d, e, z = False):
378
+ """
379
+ This subroutine find the eigenvalues and the first components of the
380
+ eigenvectors of a real symmetric tridiagonal matrix using the implicit
381
+ QL method.
382
+
383
+ parameters:
384
+
385
+ d (input/output) real array of length n. on input, d contains the diagonal
386
+ elements of the input matrix. on output, d contains the eigenvalues in
387
+ ascending order.
388
+
389
+ e (input) real array of length n. on input, e contains the offdiagonal
390
+ elements of the input matrix in e[0:(n-1)]. On output, e has been
391
+ destroyed.
392
+
393
+ z (input/output) If z is equal to False, no eigenvectors will be computed.
394
+ Otherwise on input z should have the format z[0:m,0:n] (i.e. a real or
395
+ complex matrix of dimension (m,n) ). On output this matrix will be
396
+ multiplied by the matrix of the eigenvectors (i.e. the columns of this
397
+ matrix are the eigenvectors): z --> z*EV
398
+ That means if z[i,j]={1 if j==j; 0 otherwise} on input, then on output
399
+ z will contain the first m components of the eigenvectors. That means
400
+ if m is equal to n, the i-th eigenvector will be z[:,i].
401
+
402
+ This routine is a python translation (in slightly modified form) of the
403
+ fortran routine imtql2.f in the software library EISPACK (see netlib.org)
404
+ which itself is based on the algol procudure imtql2 desribed in:
405
+ - num. math. 12, p. 377-383(1968) by matrin and wilkinson
406
+ - modified in num. math. 15, p. 450(1970) by dubrulle
407
+ - handbook for auto. comp., vol. II-linear algebra, p. 241-248 (1971)
408
+ See also the routine gaussq.f in netlog.org or acm algorithm 726.
409
+ """
410
+
411
+ n = len(d)
412
+ e[n-1] = 0
413
+ iterlim = 2 * ctx.dps
414
+
415
+ for l in xrange(n):
416
+ j = 0
417
+ while 1:
418
+ m = l
419
+ while 1:
420
+ # look for a small subdiagonal element
421
+ if m + 1 == n:
422
+ break
423
+ if abs(e[m]) <= ctx.eps * (abs(d[m]) + abs(d[m + 1])):
424
+ break
425
+ m = m + 1
426
+ if m == l:
427
+ break
428
+
429
+ if j >= iterlim:
430
+ raise RuntimeError("tridiag_eigen: no convergence to an eigenvalue after %d iterations" % iterlim)
431
+
432
+ j += 1
433
+
434
+ # form shift
435
+
436
+ p = d[l]
437
+ g = (d[l + 1] - p) / (2 * e[l])
438
+ r = ctx.hypot(g, 1)
439
+
440
+ if g < 0:
441
+ s = g - r
442
+ else:
443
+ s = g + r
444
+
445
+ g = d[m] - p + e[l] / s
446
+
447
+ s, c, p = 1, 1, 0
448
+
449
+ for i in xrange(m - 1, l - 1, -1):
450
+ f = s * e[i]
451
+ b = c * e[i]
452
+ if abs(f) > abs(g): # this here is a slight improvement also used in gaussq.f or acm algorithm 726.
453
+ c = g / f
454
+ r = ctx.hypot(c, 1)
455
+ e[i + 1] = f * r
456
+ s = 1 / r
457
+ c = c * s
458
+ else:
459
+ s = f / g
460
+ r = ctx.hypot(s, 1)
461
+ e[i + 1] = g * r
462
+ c = 1 / r
463
+ s = s * c
464
+ g = d[i + 1] - p
465
+ r = (d[i] - g) * s + 2 * c * b
466
+ p = s * r
467
+ d[i + 1] = g + p
468
+ g = c * r - b
469
+
470
+ if not isinstance(z, bool):
471
+ # calculate eigenvectors
472
+ for w in xrange(z.rows):
473
+ f = z[w,i+1]
474
+ z[w,i+1] = s * z[w,i] + c * f
475
+ z[w,i ] = c * z[w,i] - s * f
476
+
477
+ d[l] = d[l] - p
478
+ e[l] = g
479
+ e[m] = 0
480
+
481
+ for ii in xrange(1, n):
482
+ # sort eigenvalues and eigenvectors (bubble-sort)
483
+ i = ii - 1
484
+ k = i
485
+ p = d[i]
486
+ for j in xrange(ii, n):
487
+ if d[j] >= p:
488
+ continue
489
+ k = j
490
+ p = d[k]
491
+ if k == i:
492
+ continue
493
+ d[k] = d[i]
494
+ d[i] = p
495
+
496
+ if not isinstance(z, bool):
497
+ for w in xrange(z.rows):
498
+ p = z[w,i]
499
+ z[w,i] = z[w,k]
500
+ z[w,k] = p
501
+
502
+ ########################################################################################
503
+
504
+ @defun
505
+ def eigsy(ctx, A, eigvals_only = False, overwrite_a = False):
506
+ """
507
+ This routine solves the (ordinary) eigenvalue problem for a real symmetric
508
+ square matrix A. Given A, an orthogonal matrix Q is calculated which
509
+ diagonalizes A:
510
+
511
+ Q' A Q = diag(E) and Q Q' = Q' Q = 1
512
+
513
+ Here diag(E) is a diagonal matrix whose diagonal is E.
514
+ ' denotes the transpose.
515
+
516
+ The columns of Q are the eigenvectors of A and E contains the eigenvalues:
517
+
518
+ A Q[:,i] = E[i] Q[:,i]
519
+
520
+
521
+ input:
522
+
523
+ A: real matrix of format (n,n) which is symmetric
524
+ (i.e. A=A' or A[i,j]=A[j,i])
525
+
526
+ eigvals_only: if true, calculates only the eigenvalues E.
527
+ if false, calculates both eigenvectors and eigenvalues.
528
+
529
+ overwrite_a: if true, allows modification of A which may improve
530
+ performance. if false, A is not modified.
531
+
532
+ output:
533
+
534
+ E: vector of format (n). contains the eigenvalues of A in ascending order.
535
+
536
+ Q: orthogonal matrix of format (n,n). contains the eigenvectors
537
+ of A as columns.
538
+
539
+ return value:
540
+
541
+ E if eigvals_only is true
542
+ (E, Q) if eigvals_only is false
543
+
544
+ example:
545
+ >>> from mpmath import mp
546
+ >>> A = mp.matrix([[3, 2], [2, 0]])
547
+ >>> E = mp.eigsy(A, eigvals_only = True)
548
+ >>> print(E)
549
+ [-1.0]
550
+ [ 4.0]
551
+
552
+ >>> A = mp.matrix([[1, 2], [2, 3]])
553
+ >>> E, Q = mp.eigsy(A)
554
+ >>> print(mp.chop(A * Q[:,0] - E[0] * Q[:,0]))
555
+ [0.0]
556
+ [0.0]
557
+
558
+ see also: eighe, eigh, eig
559
+ """
560
+
561
+ if not overwrite_a:
562
+ A = A.copy()
563
+
564
+ d = ctx.zeros(A.rows, 1)
565
+ e = ctx.zeros(A.rows, 1)
566
+
567
+ if eigvals_only:
568
+ r_sy_tridiag(ctx, A, d, e, calc_ev = False)
569
+ tridiag_eigen(ctx, d, e, False)
570
+ return d
571
+ else:
572
+ r_sy_tridiag(ctx, A, d, e, calc_ev = True)
573
+ tridiag_eigen(ctx, d, e, A)
574
+ return (d, A)
575
+
576
+
577
+ @defun
578
+ def eighe(ctx, A, eigvals_only = False, overwrite_a = False):
579
+ """
580
+ This routine solves the (ordinary) eigenvalue problem for a complex
581
+ hermitian square matrix A. Given A, an unitary matrix Q is calculated which
582
+ diagonalizes A:
583
+
584
+ Q' A Q = diag(E) and Q Q' = Q' Q = 1
585
+
586
+ Here diag(E) a is diagonal matrix whose diagonal is E.
587
+ ' denotes the hermitian transpose (i.e. ordinary transposition and
588
+ complex conjugation).
589
+
590
+ The columns of Q are the eigenvectors of A and E contains the eigenvalues:
591
+
592
+ A Q[:,i] = E[i] Q[:,i]
593
+
594
+
595
+ input:
596
+
597
+ A: complex matrix of format (n,n) which is hermitian
598
+ (i.e. A=A' or A[i,j]=conj(A[j,i]))
599
+
600
+ eigvals_only: if true, calculates only the eigenvalues E.
601
+ if false, calculates both eigenvectors and eigenvalues.
602
+
603
+ overwrite_a: if true, allows modification of A which may improve
604
+ performance. if false, A is not modified.
605
+
606
+ output:
607
+
608
+ E: vector of format (n). contains the eigenvalues of A in ascending order.
609
+
610
+ Q: unitary matrix of format (n,n). contains the eigenvectors
611
+ of A as columns.
612
+
613
+ return value:
614
+
615
+ E if eigvals_only is true
616
+ (E, Q) if eigvals_only is false
617
+
618
+ example:
619
+ >>> from mpmath import mp
620
+ >>> A = mp.matrix([[1, -3 - 1j], [-3 + 1j, -2]])
621
+ >>> E = mp.eighe(A, eigvals_only = True)
622
+ >>> print(E)
623
+ [-4.0]
624
+ [ 3.0]
625
+
626
+ >>> A = mp.matrix([[1, 2 + 5j], [2 - 5j, 3]])
627
+ >>> E, Q = mp.eighe(A)
628
+ >>> print(mp.chop(A * Q[:,0] - E[0] * Q[:,0]))
629
+ [0.0]
630
+ [0.0]
631
+
632
+ see also: eigsy, eigh, eig
633
+ """
634
+
635
+ if not overwrite_a:
636
+ A = A.copy()
637
+
638
+ d = ctx.zeros(A.rows, 1)
639
+ e = ctx.zeros(A.rows, 1)
640
+ t = ctx.zeros(A.rows, 1)
641
+
642
+ if eigvals_only:
643
+ c_he_tridiag_0(ctx, A, d, e, t)
644
+ tridiag_eigen(ctx, d, e, False)
645
+ return d
646
+ else:
647
+ c_he_tridiag_0(ctx, A, d, e, t)
648
+ B = ctx.eye(A.rows)
649
+ tridiag_eigen(ctx, d, e, B)
650
+ c_he_tridiag_2(ctx, A, t, B)
651
+ return (d, B)
652
+
653
+ @defun
654
+ def eigh(ctx, A, eigvals_only = False, overwrite_a = False):
655
+ """
656
+ "eigh" is a unified interface for "eigsy" and "eighe". Depending on
657
+ whether A is real or complex the appropriate function is called.
658
+
659
+ This routine solves the (ordinary) eigenvalue problem for a real symmetric
660
+ or complex hermitian square matrix A. Given A, an orthogonal (A real) or
661
+ unitary (A complex) matrix Q is calculated which diagonalizes A:
662
+
663
+ Q' A Q = diag(E) and Q Q' = Q' Q = 1
664
+
665
+ Here diag(E) a is diagonal matrix whose diagonal is E.
666
+ ' denotes the hermitian transpose (i.e. ordinary transposition and
667
+ complex conjugation).
668
+
669
+ The columns of Q are the eigenvectors of A and E contains the eigenvalues:
670
+
671
+ A Q[:,i] = E[i] Q[:,i]
672
+
673
+ input:
674
+
675
+ A: a real or complex square matrix of format (n,n) which is symmetric
676
+ (i.e. A[i,j]=A[j,i]) or hermitian (i.e. A[i,j]=conj(A[j,i])).
677
+
678
+ eigvals_only: if true, calculates only the eigenvalues E.
679
+ if false, calculates both eigenvectors and eigenvalues.
680
+
681
+ overwrite_a: if true, allows modification of A which may improve
682
+ performance. if false, A is not modified.
683
+
684
+ output:
685
+
686
+ E: vector of format (n). contains the eigenvalues of A in ascending order.
687
+
688
+ Q: an orthogonal or unitary matrix of format (n,n). contains the
689
+ eigenvectors of A as columns.
690
+
691
+ return value:
692
+
693
+ E if eigvals_only is true
694
+ (E, Q) if eigvals_only is false
695
+
696
+ example:
697
+ >>> from mpmath import mp
698
+ >>> A = mp.matrix([[3, 2], [2, 0]])
699
+ >>> E = mp.eigh(A, eigvals_only = True)
700
+ >>> print(E)
701
+ [-1.0]
702
+ [ 4.0]
703
+
704
+ >>> A = mp.matrix([[1, 2], [2, 3]])
705
+ >>> E, Q = mp.eigh(A)
706
+ >>> print(mp.chop(A * Q[:,0] - E[0] * Q[:,0]))
707
+ [0.0]
708
+ [0.0]
709
+
710
+ >>> A = mp.matrix([[1, 2 + 5j], [2 - 5j, 3]])
711
+ >>> E, Q = mp.eigh(A)
712
+ >>> print(mp.chop(A * Q[:,0] - E[0] * Q[:,0]))
713
+ [0.0]
714
+ [0.0]
715
+
716
+ see also: eigsy, eighe, eig
717
+ """
718
+
719
+ iscomplex = any(type(x) is ctx.mpc for x in A)
720
+
721
+ if iscomplex:
722
+ return ctx.eighe(A, eigvals_only = eigvals_only, overwrite_a = overwrite_a)
723
+ else:
724
+ return ctx.eigsy(A, eigvals_only = eigvals_only, overwrite_a = overwrite_a)
725
+
726
+
727
+ @defun
728
+ def gauss_quadrature(ctx, n, qtype = "legendre", alpha = 0, beta = 0):
729
+ """
730
+ This routine calulates gaussian quadrature rules for different
731
+ families of orthogonal polynomials. Let (a, b) be an interval,
732
+ W(x) a positive weight function and n a positive integer.
733
+ Then the purpose of this routine is to calculate pairs (x_k, w_k)
734
+ for k=0, 1, 2, ... (n-1) which give
735
+
736
+ int(W(x) * F(x), x = a..b) = sum(w_k * F(x_k),k = 0..(n-1))
737
+
738
+ exact for all polynomials F(x) of degree (strictly) less than 2*n. For all
739
+ integrable functions F(x) the sum is a (more or less) good approximation to
740
+ the integral. The x_k are called nodes (which are the zeros of the
741
+ related orthogonal polynomials) and the w_k are called the weights.
742
+
743
+ parameters
744
+ n (input) The degree of the quadrature rule, i.e. its number of
745
+ nodes.
746
+
747
+ qtype (input) The family of orthogonal polynmomials for which to
748
+ compute the quadrature rule. See the list below.
749
+
750
+ alpha (input) real number, used as parameter for some orthogonal
751
+ polynomials
752
+
753
+ beta (input) real number, used as parameter for some orthogonal
754
+ polynomials.
755
+
756
+ return value
757
+
758
+ (X, W) a pair of two real arrays where x_k = X[k] and w_k = W[k].
759
+
760
+
761
+ orthogonal polynomials:
762
+
763
+ qtype polynomial
764
+ ----- ----------
765
+
766
+ "legendre" Legendre polynomials, W(x)=1 on the interval (-1, +1)
767
+ "legendre01" shifted Legendre polynomials, W(x)=1 on the interval (0, +1)
768
+ "hermite" Hermite polynomials, W(x)=exp(-x*x) on (-infinity,+infinity)
769
+ "laguerre" Laguerre polynomials, W(x)=exp(-x) on (0,+infinity)
770
+ "glaguerre" generalized Laguerre polynomials, W(x)=exp(-x)*x**alpha
771
+ on (0, +infinity)
772
+ "chebyshev1" Chebyshev polynomials of the first kind, W(x)=1/sqrt(1-x*x)
773
+ on (-1, +1)
774
+ "chebyshev2" Chebyshev polynomials of the second kind, W(x)=sqrt(1-x*x)
775
+ on (-1, +1)
776
+ "jacobi" Jacobi polynomials, W(x)=(1-x)**alpha * (1+x)**beta on (-1, +1)
777
+ with alpha>-1 and beta>-1
778
+
779
+ examples:
780
+ >>> from mpmath import mp
781
+ >>> f = lambda x: x**8 + 2 * x**6 - 3 * x**4 + 5 * x**2 - 7
782
+ >>> X, W = mp.gauss_quadrature(5, "hermite")
783
+ >>> A = mp.fdot([(f(x), w) for x, w in zip(X, W)])
784
+ >>> B = mp.sqrt(mp.pi) * 57 / 16
785
+ >>> C = mp.quad(lambda x: mp.exp(- x * x) * f(x), [-mp.inf, +mp.inf])
786
+ >>> mp.nprint((mp.chop(A-B, tol = 1e-10), mp.chop(A-C, tol = 1e-10)))
787
+ (0.0, 0.0)
788
+
789
+ >>> f = lambda x: x**5 - 2 * x**4 + 3 * x**3 - 5 * x**2 + 7 * x - 11
790
+ >>> X, W = mp.gauss_quadrature(3, "laguerre")
791
+ >>> A = mp.fdot([(f(x), w) for x, w in zip(X, W)])
792
+ >>> B = 76
793
+ >>> C = mp.quad(lambda x: mp.exp(-x) * f(x), [0, +mp.inf])
794
+ >>> mp.nprint(mp.chop(A-B, tol = 1e-10), mp.chop(A-C, tol = 1e-10))
795
+ .0
796
+
797
+ # orthogonality of the chebyshev polynomials:
798
+ >>> f = lambda x: mp.chebyt(3, x) * mp.chebyt(2, x)
799
+ >>> X, W = mp.gauss_quadrature(3, "chebyshev1")
800
+ >>> A = mp.fdot([(f(x), w) for x, w in zip(X, W)])
801
+ >>> print(mp.chop(A, tol = 1e-10))
802
+ 0.0
803
+
804
+ references:
805
+ - golub and welsch, "calculations of gaussian quadrature rules", mathematics of
806
+ computation 23, p. 221-230 (1969)
807
+ - golub, "some modified matrix eigenvalue problems", siam review 15, p. 318-334 (1973)
808
+ - stroud and secrest, "gaussian quadrature formulas", prentice-hall (1966)
809
+
810
+ See also the routine gaussq.f in netlog.org or ACM Transactions on
811
+ Mathematical Software algorithm 726.
812
+ """
813
+
814
+ d = ctx.zeros(n, 1)
815
+ e = ctx.zeros(n, 1)
816
+ z = ctx.zeros(1, n)
817
+
818
+ z[0,0] = 1
819
+
820
+ if qtype == "legendre":
821
+ # legendre on the range -1 +1 , abramowitz, table 25.4, p.916
822
+ w = 2
823
+ for i in xrange(n):
824
+ j = i + 1
825
+ e[i] = ctx.sqrt(j * j / (4 * j * j - ctx.mpf(1)))
826
+ elif qtype == "legendre01":
827
+ # legendre shifted to 0 1 , abramowitz, table 25.8, p.921
828
+ w = 1
829
+ for i in xrange(n):
830
+ d[i] = 1 / ctx.mpf(2)
831
+ j = i + 1
832
+ e[i] = ctx.sqrt(j * j / (16 * j * j - ctx.mpf(4)))
833
+ elif qtype == "hermite":
834
+ # hermite on the range -inf +inf , abramowitz, table 25.10,p.924
835
+ w = ctx.sqrt(ctx.pi)
836
+ for i in xrange(n):
837
+ j = i + 1
838
+ e[i] = ctx.sqrt(j / ctx.mpf(2))
839
+ elif qtype == "laguerre":
840
+ # laguerre on the range 0 +inf , abramowitz, table 25.9, p. 923
841
+ w = 1
842
+ for i in xrange(n):
843
+ j = i + 1
844
+ d[i] = 2 * j - 1
845
+ e[i] = j
846
+ elif qtype=="chebyshev1":
847
+ # chebyshev polynimials of the first kind
848
+ w = ctx.pi
849
+ for i in xrange(n):
850
+ e[i] = 1 / ctx.mpf(2)
851
+ e[0] = ctx.sqrt(1 / ctx.mpf(2))
852
+ elif qtype == "chebyshev2":
853
+ # chebyshev polynimials of the second kind
854
+ w = ctx.pi / 2
855
+ for i in xrange(n):
856
+ e[i] = 1 / ctx.mpf(2)
857
+ elif qtype == "glaguerre":
858
+ # generalized laguerre on the range 0 +inf
859
+ w = ctx.gamma(1 + alpha)
860
+ for i in xrange(n):
861
+ j = i + 1
862
+ d[i] = 2 * j - 1 + alpha
863
+ e[i] = ctx.sqrt(j * (j + alpha))
864
+ elif qtype == "jacobi":
865
+ # jacobi polynomials
866
+ alpha = ctx.mpf(alpha)
867
+ beta = ctx.mpf(beta)
868
+ ab = alpha + beta
869
+ abi = ab + 2
870
+ w = (2**(ab+1)) * ctx.gamma(alpha + 1) * ctx.gamma(beta + 1) / ctx.gamma(abi)
871
+ d[0] = (beta - alpha) / abi
872
+ e[0] = ctx.sqrt(4 * (1 + alpha) * (1 + beta) / ((abi + 1) * (abi * abi)))
873
+ a2b2 = beta * beta - alpha * alpha
874
+ for i in xrange(1, n):
875
+ j = i + 1
876
+ abi = 2 * j + ab
877
+ d[i] = a2b2 / ((abi - 2) * abi)
878
+ e[i] = ctx.sqrt(4 * j * (j + alpha) * (j + beta) * (j + ab) / ((abi * abi - 1) * abi * abi))
879
+ elif isinstance(qtype, str):
880
+ raise ValueError("unknown quadrature rule \"%s\"" % qtype)
881
+ elif not isinstance(qtype, str):
882
+ w = qtype(d, e)
883
+ else:
884
+ assert 0
885
+
886
+ tridiag_eigen(ctx, d, e, z)
887
+
888
+ for i in xrange(len(z)):
889
+ z[i] *= z[i]
890
+
891
+ z = z.transpose()
892
+ return (d, w * z)
893
+
894
+ ##################################################################################################
895
+ ##################################################################################################
896
+ ##################################################################################################
897
+
898
+ def svd_r_raw(ctx, A, V = False, calc_u = False):
899
+ """
900
+ This routine computes the singular value decomposition of a matrix A.
901
+ Given A, two orthogonal matrices U and V are calculated such that
902
+
903
+ A = U S V
904
+
905
+ where S is a suitable shaped matrix whose off-diagonal elements are zero.
906
+ The diagonal elements of S are the singular values of A, i.e. the
907
+ squareroots of the eigenvalues of A' A or A A'. Here ' denotes the transpose.
908
+ Householder bidiagonalization and a variant of the QR algorithm is used.
909
+
910
+ overview of the matrices :
911
+
912
+ A : m*n A gets replaced by U
913
+ U : m*n U replaces A. If n>m then only the first m*m block of U is
914
+ non-zero. column-orthogonal: U' U = B
915
+ here B is a n*n matrix whose first min(m,n) diagonal
916
+ elements are 1 and all other elements are zero.
917
+ S : n*n diagonal matrix, only the diagonal elements are stored in
918
+ the array S. only the first min(m,n) diagonal elements are non-zero.
919
+ V : n*n orthogonal: V V' = V' V = 1
920
+
921
+ parameters:
922
+ A (input/output) On input, A contains a real matrix of shape m*n.
923
+ On output, if calc_u is true A contains the column-orthogonal
924
+ matrix U; otherwise A is simply used as workspace and thus destroyed.
925
+
926
+ V (input/output) if false, the matrix V is not calculated. otherwise
927
+ V must be a matrix of shape n*n.
928
+
929
+ calc_u (input) If true, the matrix U is calculated and replaces A.
930
+ if false, U is not calculated and A is simply destroyed
931
+
932
+ return value:
933
+ S an array of length n containing the singular values of A sorted by
934
+ decreasing magnitude. only the first min(m,n) elements are non-zero.
935
+
936
+ This routine is a python translation of the fortran routine svd.f in the
937
+ software library EISPACK (see netlib.org) which itself is based on the
938
+ algol procedure svd described in:
939
+ - num. math. 14, 403-420(1970) by golub and reinsch.
940
+ - wilkinson/reinsch: handbook for auto. comp., vol ii-linear algebra, 134-151(1971).
941
+
942
+ """
943
+
944
+ m, n = A.rows, A.cols
945
+
946
+ S = ctx.zeros(n, 1)
947
+
948
+ # work is a temporary array of size n
949
+ work = ctx.zeros(n, 1)
950
+
951
+ g = scale = anorm = 0
952
+ maxits = 3 * ctx.dps
953
+
954
+ for i in xrange(n): # householder reduction to bidiagonal form
955
+ work[i] = scale*g
956
+ g = s = scale = 0
957
+ if i < m:
958
+ for k in xrange(i, m):
959
+ scale += ctx.fabs(A[k,i])
960
+ if scale != 0:
961
+ for k in xrange(i, m):
962
+ A[k,i] /= scale
963
+ s += A[k,i] * A[k,i]
964
+ f = A[i,i]
965
+ g = -ctx.sqrt(s)
966
+ if f < 0:
967
+ g = -g
968
+ h = f * g - s
969
+ A[i,i] = f - g
970
+ for j in xrange(i+1, n):
971
+ s = 0
972
+ for k in xrange(i, m):
973
+ s += A[k,i] * A[k,j]
974
+ f = s / h
975
+ for k in xrange(i, m):
976
+ A[k,j] += f * A[k,i]
977
+ for k in xrange(i,m):
978
+ A[k,i] *= scale
979
+
980
+ S[i] = scale * g
981
+ g = s = scale = 0
982
+
983
+ if i < m and i != n - 1:
984
+ for k in xrange(i+1, n):
985
+ scale += ctx.fabs(A[i,k])
986
+ if scale:
987
+ for k in xrange(i+1, n):
988
+ A[i,k] /= scale
989
+ s += A[i,k] * A[i,k]
990
+ f = A[i,i+1]
991
+ g = -ctx.sqrt(s)
992
+ if f < 0:
993
+ g = -g
994
+ h = f * g - s
995
+ A[i,i+1] = f - g
996
+
997
+ for k in xrange(i+1, n):
998
+ work[k] = A[i,k] / h
999
+
1000
+ for j in xrange(i+1, m):
1001
+ s = 0
1002
+ for k in xrange(i+1, n):
1003
+ s += A[j,k] * A[i,k]
1004
+ for k in xrange(i+1, n):
1005
+ A[j,k] += s * work[k]
1006
+
1007
+ for k in xrange(i+1, n):
1008
+ A[i,k] *= scale
1009
+
1010
+ anorm = max(anorm, ctx.fabs(S[i]) + ctx.fabs(work[i]))
1011
+
1012
+ if not isinstance(V, bool):
1013
+ for i in xrange(n-2, -1, -1): # accumulation of right hand transformations
1014
+ V[i+1,i+1] = 1
1015
+
1016
+ if work[i+1] != 0:
1017
+ for j in xrange(i+1, n):
1018
+ V[i,j] = (A[i,j] / A[i,i+1]) / work[i+1]
1019
+ for j in xrange(i+1, n):
1020
+ s = 0
1021
+ for k in xrange(i+1, n):
1022
+ s += A[i,k] * V[j,k]
1023
+ for k in xrange(i+1, n):
1024
+ V[j,k] += s * V[i,k]
1025
+
1026
+ for j in xrange(i+1, n):
1027
+ V[j,i] = V[i,j] = 0
1028
+
1029
+ V[0,0] = 1
1030
+
1031
+ if m<n : minnm = m
1032
+ else : minnm = n
1033
+
1034
+ if calc_u:
1035
+ for i in xrange(minnm-1, -1, -1): # accumulation of left hand transformations
1036
+ g = S[i]
1037
+ for j in xrange(i+1, n):
1038
+ A[i,j] = 0
1039
+ if g != 0:
1040
+ g = 1 / g
1041
+ for j in xrange(i+1, n):
1042
+ s = 0
1043
+ for k in xrange(i+1, m):
1044
+ s += A[k,i] * A[k,j]
1045
+ f = (s / A[i,i]) * g
1046
+ for k in xrange(i, m):
1047
+ A[k,j] += f * A[k,i]
1048
+ for j in xrange(i, m):
1049
+ A[j,i] *= g
1050
+ else:
1051
+ for j in xrange(i, m):
1052
+ A[j,i] = 0
1053
+ A[i,i] += 1
1054
+
1055
+ for k in xrange(n - 1, -1, -1):
1056
+ # diagonalization of the bidiagonal form:
1057
+ # loop over singular values, and over allowed itations
1058
+
1059
+ its = 0
1060
+ while 1:
1061
+ its += 1
1062
+ flag = True
1063
+
1064
+ for l in xrange(k, -1, -1):
1065
+ nm = l-1
1066
+
1067
+ if ctx.fabs(work[l]) + anorm == anorm:
1068
+ flag = False
1069
+ break
1070
+
1071
+ if ctx.fabs(S[nm]) + anorm == anorm:
1072
+ break
1073
+
1074
+ if flag:
1075
+ c = 0
1076
+ s = 1
1077
+ for i in xrange(l, k + 1):
1078
+ f = s * work[i]
1079
+ work[i] *= c
1080
+ if ctx.fabs(f) + anorm == anorm:
1081
+ break
1082
+ g = S[i]
1083
+ h = ctx.hypot(f, g)
1084
+ S[i] = h
1085
+ h = 1 / h
1086
+ c = g * h
1087
+ s = - f * h
1088
+
1089
+ if calc_u:
1090
+ for j in xrange(m):
1091
+ y = A[j,nm]
1092
+ z = A[j,i]
1093
+ A[j,nm] = y * c + z * s
1094
+ A[j,i] = z * c - y * s
1095
+
1096
+ z = S[k]
1097
+
1098
+ if l == k: # convergence
1099
+ if z < 0: # singular value is made nonnegative
1100
+ S[k] = -z
1101
+ if not isinstance(V, bool):
1102
+ for j in xrange(n):
1103
+ V[k,j] = -V[k,j]
1104
+ break
1105
+
1106
+ if its >= maxits:
1107
+ raise RuntimeError("svd: no convergence to an eigenvalue after %d iterations" % its)
1108
+
1109
+ x = S[l] # shift from bottom 2 by 2 minor
1110
+ nm = k-1
1111
+ y = S[nm]
1112
+ g = work[nm]
1113
+ h = work[k]
1114
+ f = ((y - z) * (y + z) + (g - h) * (g + h))/(2 * h * y)
1115
+ g = ctx.hypot(f, 1)
1116
+ if f >= 0: f = ((x - z) * (x + z) + h * ((y / (f + g)) - h)) / x
1117
+ else: f = ((x - z) * (x + z) + h * ((y / (f - g)) - h)) / x
1118
+
1119
+ c = s = 1 # next qt transformation
1120
+
1121
+ for j in xrange(l, nm + 1):
1122
+ g = work[j+1]
1123
+ y = S[j+1]
1124
+ h = s * g
1125
+ g = c * g
1126
+ z = ctx.hypot(f, h)
1127
+ work[j] = z
1128
+ c = f / z
1129
+ s = h / z
1130
+ f = x * c + g * s
1131
+ g = g * c - x * s
1132
+ h = y * s
1133
+ y *= c
1134
+ if not isinstance(V, bool):
1135
+ for jj in xrange(n):
1136
+ x = V[j ,jj]
1137
+ z = V[j+1,jj]
1138
+ V[j ,jj]= x * c + z * s
1139
+ V[j+1 ,jj]= z * c - x * s
1140
+ z = ctx.hypot(f, h)
1141
+ S[j] = z
1142
+ if z != 0: # rotation can be arbitray if z=0
1143
+ z = 1 / z
1144
+ c = f * z
1145
+ s = h * z
1146
+ f = c * g + s * y
1147
+ x = c * y - s * g
1148
+
1149
+ if calc_u:
1150
+ for jj in xrange(m):
1151
+ y = A[jj,j ]
1152
+ z = A[jj,j+1]
1153
+ A[jj,j ] = y * c + z * s
1154
+ A[jj,j+1 ] = z * c - y * s
1155
+
1156
+ work[l] = 0
1157
+ work[k] = f
1158
+ S[k] = x
1159
+
1160
+ ##########################
1161
+
1162
+ # Sort singular values into decreasing order (bubble-sort)
1163
+
1164
+ for i in xrange(n):
1165
+ imax = i
1166
+ s = ctx.fabs(S[i]) # s is the current maximal element
1167
+
1168
+ for j in xrange(i + 1, n):
1169
+ c = ctx.fabs(S[j])
1170
+ if c > s:
1171
+ s = c
1172
+ imax = j
1173
+
1174
+ if imax != i:
1175
+ # swap singular values
1176
+
1177
+ z = S[i]
1178
+ S[i] = S[imax]
1179
+ S[imax] = z
1180
+
1181
+ if calc_u:
1182
+ for j in xrange(m):
1183
+ z = A[j,i]
1184
+ A[j,i] = A[j,imax]
1185
+ A[j,imax] = z
1186
+
1187
+ if not isinstance(V, bool):
1188
+ for j in xrange(n):
1189
+ z = V[i,j]
1190
+ V[i,j] = V[imax,j]
1191
+ V[imax,j] = z
1192
+
1193
+ return S
1194
+
1195
+ #######################
1196
+
1197
+ def svd_c_raw(ctx, A, V = False, calc_u = False):
1198
+ """
1199
+ This routine computes the singular value decomposition of a matrix A.
1200
+ Given A, two unitary matrices U and V are calculated such that
1201
+
1202
+ A = U S V
1203
+
1204
+ where S is a suitable shaped matrix whose off-diagonal elements are zero.
1205
+ The diagonal elements of S are the singular values of A, i.e. the
1206
+ squareroots of the eigenvalues of A' A or A A'. Here ' denotes the hermitian
1207
+ transpose (i.e. transposition and conjugation). Householder bidiagonalization
1208
+ and a variant of the QR algorithm is used.
1209
+
1210
+ overview of the matrices :
1211
+
1212
+ A : m*n A gets replaced by U
1213
+ U : m*n U replaces A. If n>m then only the first m*m block of U is
1214
+ non-zero. column-unitary: U' U = B
1215
+ here B is a n*n matrix whose first min(m,n) diagonal
1216
+ elements are 1 and all other elements are zero.
1217
+ S : n*n diagonal matrix, only the diagonal elements are stored in
1218
+ the array S. only the first min(m,n) diagonal elements are non-zero.
1219
+ V : n*n unitary: V V' = V' V = 1
1220
+
1221
+ parameters:
1222
+ A (input/output) On input, A contains a complex matrix of shape m*n.
1223
+ On output, if calc_u is true A contains the column-unitary
1224
+ matrix U; otherwise A is simply used as workspace and thus destroyed.
1225
+
1226
+ V (input/output) if false, the matrix V is not calculated. otherwise
1227
+ V must be a matrix of shape n*n.
1228
+
1229
+ calc_u (input) If true, the matrix U is calculated and replaces A.
1230
+ if false, U is not calculated and A is simply destroyed
1231
+
1232
+ return value:
1233
+ S an array of length n containing the singular values of A sorted by
1234
+ decreasing magnitude. only the first min(m,n) elements are non-zero.
1235
+
1236
+ This routine is a python translation of the fortran routine svd.f in the
1237
+ software library EISPACK (see netlib.org) which itself is based on the
1238
+ algol procedure svd described in:
1239
+ - num. math. 14, 403-420(1970) by golub and reinsch.
1240
+ - wilkinson/reinsch: handbook for auto. comp., vol ii-linear algebra, 134-151(1971).
1241
+
1242
+ """
1243
+
1244
+ m, n = A.rows, A.cols
1245
+
1246
+ S = ctx.zeros(n, 1)
1247
+
1248
+ # work is a temporary array of size n
1249
+ work = ctx.zeros(n, 1)
1250
+ lbeta = ctx.zeros(n, 1)
1251
+ rbeta = ctx.zeros(n, 1)
1252
+ dwork = ctx.zeros(n, 1)
1253
+
1254
+ g = scale = anorm = 0
1255
+ maxits = 3 * ctx.dps
1256
+
1257
+ for i in xrange(n): # householder reduction to bidiagonal form
1258
+ dwork[i] = scale * g # dwork are the side-diagonal elements
1259
+ g = s = scale = 0
1260
+ if i < m:
1261
+ for k in xrange(i, m):
1262
+ scale += ctx.fabs(ctx.re(A[k,i])) + ctx.fabs(ctx.im(A[k,i]))
1263
+ if scale != 0:
1264
+ for k in xrange(i, m):
1265
+ A[k,i] /= scale
1266
+ ar = ctx.re(A[k,i])
1267
+ ai = ctx.im(A[k,i])
1268
+ s += ar * ar + ai * ai
1269
+ f = A[i,i]
1270
+ g = -ctx.sqrt(s)
1271
+ if ctx.re(f) < 0:
1272
+ beta = -g - ctx.conj(f)
1273
+ g = -g
1274
+ else:
1275
+ beta = -g + ctx.conj(f)
1276
+ beta /= ctx.conj(beta)
1277
+ beta += 1
1278
+ h = 2 * (ctx.re(f) * g - s)
1279
+ A[i,i] = f - g
1280
+ beta /= h
1281
+ lbeta[i] = (beta / scale) / scale
1282
+ for j in xrange(i+1, n):
1283
+ s = 0
1284
+ for k in xrange(i, m):
1285
+ s += ctx.conj(A[k,i]) * A[k,j]
1286
+ f = beta * s
1287
+ for k in xrange(i, m):
1288
+ A[k,j] += f * A[k,i]
1289
+ for k in xrange(i, m):
1290
+ A[k,i] *= scale
1291
+
1292
+ S[i] = scale * g # S are the diagonal elements
1293
+ g = s = scale = 0
1294
+
1295
+ if i < m and i != n - 1:
1296
+ for k in xrange(i+1, n):
1297
+ scale += ctx.fabs(ctx.re(A[i,k])) + ctx.fabs(ctx.im(A[i,k]))
1298
+ if scale:
1299
+ for k in xrange(i+1, n):
1300
+ A[i,k] /= scale
1301
+ ar = ctx.re(A[i,k])
1302
+ ai = ctx.im(A[i,k])
1303
+ s += ar * ar + ai * ai
1304
+ f = A[i,i+1]
1305
+ g = -ctx.sqrt(s)
1306
+ if ctx.re(f) < 0:
1307
+ beta = -g - ctx.conj(f)
1308
+ g = -g
1309
+ else:
1310
+ beta = -g + ctx.conj(f)
1311
+
1312
+ beta /= ctx.conj(beta)
1313
+ beta += 1
1314
+
1315
+ h = 2 * (ctx.re(f) * g - s)
1316
+ A[i,i+1] = f - g
1317
+
1318
+ beta /= h
1319
+ rbeta[i] = (beta / scale) / scale
1320
+
1321
+ for k in xrange(i+1, n):
1322
+ work[k] = A[i, k]
1323
+
1324
+ for j in xrange(i+1, m):
1325
+ s = 0
1326
+ for k in xrange(i+1, n):
1327
+ s += ctx.conj(A[i,k]) * A[j,k]
1328
+ f = s * beta
1329
+ for k in xrange(i+1,n):
1330
+ A[j,k] += f * work[k]
1331
+
1332
+ for k in xrange(i+1, n):
1333
+ A[i,k] *= scale
1334
+
1335
+ anorm = max(anorm,ctx.fabs(S[i]) + ctx.fabs(dwork[i]))
1336
+
1337
+ if not isinstance(V, bool):
1338
+ for i in xrange(n-2, -1, -1): # accumulation of right hand transformations
1339
+ V[i+1,i+1] = 1
1340
+
1341
+ if dwork[i+1] != 0:
1342
+ f = ctx.conj(rbeta[i])
1343
+ for j in xrange(i+1, n):
1344
+ V[i,j] = A[i,j] * f
1345
+ for j in xrange(i+1, n):
1346
+ s = 0
1347
+ for k in xrange(i+1, n):
1348
+ s += ctx.conj(A[i,k]) * V[j,k]
1349
+ for k in xrange(i+1, n):
1350
+ V[j,k] += s * V[i,k]
1351
+
1352
+ for j in xrange(i+1,n):
1353
+ V[j,i] = V[i,j] = 0
1354
+
1355
+ V[0,0] = 1
1356
+
1357
+ if m < n : minnm = m
1358
+ else : minnm = n
1359
+
1360
+ if calc_u:
1361
+ for i in xrange(minnm-1, -1, -1): # accumulation of left hand transformations
1362
+ g = S[i]
1363
+ for j in xrange(i+1, n):
1364
+ A[i,j] = 0
1365
+ if g != 0:
1366
+ g = 1 / g
1367
+ for j in xrange(i+1, n):
1368
+ s = 0
1369
+ for k in xrange(i+1, m):
1370
+ s += ctx.conj(A[k,i]) * A[k,j]
1371
+ f = s * ctx.conj(lbeta[i])
1372
+ for k in xrange(i, m):
1373
+ A[k,j] += f * A[k,i]
1374
+ for j in xrange(i, m):
1375
+ A[j,i] *= g
1376
+ else:
1377
+ for j in xrange(i, m):
1378
+ A[j,i] = 0
1379
+ A[i,i] += 1
1380
+
1381
+ for k in xrange(n-1, -1, -1):
1382
+ # diagonalization of the bidiagonal form:
1383
+ # loop over singular values, and over allowed itations
1384
+
1385
+ its = 0
1386
+ while 1:
1387
+ its += 1
1388
+ flag = True
1389
+
1390
+ for l in xrange(k, -1, -1):
1391
+ nm = l - 1
1392
+
1393
+ if ctx.fabs(dwork[l]) + anorm == anorm:
1394
+ flag = False
1395
+ break
1396
+
1397
+ if ctx.fabs(S[nm]) + anorm == anorm:
1398
+ break
1399
+
1400
+ if flag:
1401
+ c = 0
1402
+ s = 1
1403
+ for i in xrange(l, k+1):
1404
+ f = s * dwork[i]
1405
+ dwork[i] *= c
1406
+ if ctx.fabs(f) + anorm == anorm:
1407
+ break
1408
+ g = S[i]
1409
+ h = ctx.hypot(f, g)
1410
+ S[i] = h
1411
+ h = 1 / h
1412
+ c = g * h
1413
+ s = -f * h
1414
+
1415
+ if calc_u:
1416
+ for j in xrange(m):
1417
+ y = A[j,nm]
1418
+ z = A[j,i]
1419
+ A[j,nm]= y * c + z * s
1420
+ A[j,i] = z * c - y * s
1421
+
1422
+ z = S[k]
1423
+
1424
+ if l == k: # convergence
1425
+ if z < 0: # singular value is made nonnegative
1426
+ S[k] = -z
1427
+ if not isinstance(V, bool):
1428
+ for j in xrange(n):
1429
+ V[k,j] = -V[k,j]
1430
+ break
1431
+
1432
+ if its >= maxits:
1433
+ raise RuntimeError("svd: no convergence to an eigenvalue after %d iterations" % its)
1434
+
1435
+ x = S[l] # shift from bottom 2 by 2 minor
1436
+ nm = k-1
1437
+ y = S[nm]
1438
+ g = dwork[nm]
1439
+ h = dwork[k]
1440
+ f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2 * h * y)
1441
+ g = ctx.hypot(f, 1)
1442
+ if f >=0: f = (( x - z) *( x + z) + h *((y / (f + g)) - h)) / x
1443
+ else: f = (( x - z) *( x + z) + h *((y / (f - g)) - h)) / x
1444
+
1445
+ c = s = 1 # next qt transformation
1446
+
1447
+ for j in xrange(l, nm + 1):
1448
+ g = dwork[j+1]
1449
+ y = S[j+1]
1450
+ h = s * g
1451
+ g = c * g
1452
+ z = ctx.hypot(f, h)
1453
+ dwork[j] = z
1454
+ c = f / z
1455
+ s = h / z
1456
+ f = x * c + g * s
1457
+ g = g * c - x * s
1458
+ h = y * s
1459
+ y *= c
1460
+ if not isinstance(V, bool):
1461
+ for jj in xrange(n):
1462
+ x = V[j ,jj]
1463
+ z = V[j+1,jj]
1464
+ V[j ,jj]= x * c + z * s
1465
+ V[j+1,jj ]= z * c - x * s
1466
+ z = ctx.hypot(f, h)
1467
+ S[j] = z
1468
+ if z != 0: # rotation can be arbitray if z=0
1469
+ z = 1 / z
1470
+ c = f * z
1471
+ s = h * z
1472
+ f = c * g + s * y
1473
+ x = c * y - s * g
1474
+ if calc_u:
1475
+ for jj in xrange(m):
1476
+ y = A[jj,j ]
1477
+ z = A[jj,j+1]
1478
+ A[jj,j ]= y * c + z * s
1479
+ A[jj,j+1 ]= z * c - y * s
1480
+
1481
+ dwork[l] = 0
1482
+ dwork[k] = f
1483
+ S[k] = x
1484
+
1485
+ ##########################
1486
+
1487
+ # Sort singular values into decreasing order (bubble-sort)
1488
+
1489
+ for i in xrange(n):
1490
+ imax = i
1491
+ s = ctx.fabs(S[i]) # s is the current maximal element
1492
+
1493
+ for j in xrange(i + 1, n):
1494
+ c = ctx.fabs(S[j])
1495
+ if c > s:
1496
+ s = c
1497
+ imax = j
1498
+
1499
+ if imax != i:
1500
+ # swap singular values
1501
+
1502
+ z = S[i]
1503
+ S[i] = S[imax]
1504
+ S[imax] = z
1505
+
1506
+ if calc_u:
1507
+ for j in xrange(m):
1508
+ z = A[j,i]
1509
+ A[j,i] = A[j,imax]
1510
+ A[j,imax] = z
1511
+
1512
+ if not isinstance(V, bool):
1513
+ for j in xrange(n):
1514
+ z = V[i,j]
1515
+ V[i,j] = V[imax,j]
1516
+ V[imax,j] = z
1517
+
1518
+ return S
1519
+
1520
+ ##################################################################################################
1521
+
1522
+ @defun
1523
+ def svd_r(ctx, A, full_matrices = False, compute_uv = True, overwrite_a = False):
1524
+ """
1525
+ This routine computes the singular value decomposition of a matrix A.
1526
+ Given A, two orthogonal matrices U and V are calculated such that
1527
+
1528
+ A = U S V and U' U = 1 and V V' = 1
1529
+
1530
+ where S is a suitable shaped matrix whose off-diagonal elements are zero.
1531
+ Here ' denotes the transpose. The diagonal elements of S are the singular
1532
+ values of A, i.e. the squareroots of the eigenvalues of A' A or A A'.
1533
+
1534
+ input:
1535
+ A : a real matrix of shape (m, n)
1536
+ full_matrices : if true, U and V are of shape (m, m) and (n, n).
1537
+ if false, U and V are of shape (m, min(m, n)) and (min(m, n), n).
1538
+ compute_uv : if true, U and V are calculated. if false, only S is calculated.
1539
+ overwrite_a : if true, allows modification of A which may improve
1540
+ performance. if false, A is not modified.
1541
+
1542
+ output:
1543
+ U : an orthogonal matrix: U' U = 1. if full_matrices is true, U is of
1544
+ shape (m, m). ortherwise it is of shape (m, min(m, n)).
1545
+
1546
+ S : an array of length min(m, n) containing the singular values of A sorted by
1547
+ decreasing magnitude.
1548
+
1549
+ V : an orthogonal matrix: V V' = 1. if full_matrices is true, V is of
1550
+ shape (n, n). ortherwise it is of shape (min(m, n), n).
1551
+
1552
+ return value:
1553
+
1554
+ S if compute_uv is false
1555
+ (U, S, V) if compute_uv is true
1556
+
1557
+ overview of the matrices:
1558
+
1559
+ full_matrices true:
1560
+ A : m*n
1561
+ U : m*m U' U = 1
1562
+ S as matrix : m*n
1563
+ V : n*n V V' = 1
1564
+
1565
+ full_matrices false:
1566
+ A : m*n
1567
+ U : m*min(n,m) U' U = 1
1568
+ S as matrix : min(m,n)*min(m,n)
1569
+ V : min(m,n)*n V V' = 1
1570
+
1571
+ examples:
1572
+
1573
+ >>> from mpmath import mp
1574
+ >>> A = mp.matrix([[2, -2, -1], [3, 4, -2], [-2, -2, 0]])
1575
+ >>> S = mp.svd_r(A, compute_uv = False)
1576
+ >>> print(S)
1577
+ [6.0]
1578
+ [3.0]
1579
+ [1.0]
1580
+
1581
+ >>> U, S, V = mp.svd_r(A)
1582
+ >>> print(mp.chop(A - U * mp.diag(S) * V))
1583
+ [0.0 0.0 0.0]
1584
+ [0.0 0.0 0.0]
1585
+ [0.0 0.0 0.0]
1586
+
1587
+
1588
+ see also: svd, svd_c
1589
+ """
1590
+
1591
+ m, n = A.rows, A.cols
1592
+
1593
+ if not compute_uv:
1594
+ if not overwrite_a:
1595
+ A = A.copy()
1596
+ S = svd_r_raw(ctx, A, V = False, calc_u = False)
1597
+ S = S[:min(m,n)]
1598
+ return S
1599
+
1600
+ if full_matrices and n < m:
1601
+ V = ctx.zeros(m, m)
1602
+ A0 = ctx.zeros(m, m)
1603
+ A0[:,:n] = A
1604
+ S = svd_r_raw(ctx, A0, V, calc_u = True)
1605
+
1606
+ S = S[:n]
1607
+ V = V[:n,:n]
1608
+
1609
+ return (A0, S, V)
1610
+ else:
1611
+ if not overwrite_a:
1612
+ A = A.copy()
1613
+ V = ctx.zeros(n, n)
1614
+ S = svd_r_raw(ctx, A, V, calc_u = True)
1615
+
1616
+ if n > m:
1617
+ if full_matrices == False:
1618
+ V = V[:m,:]
1619
+
1620
+ S = S[:m]
1621
+ A = A[:,:m]
1622
+
1623
+ return (A, S, V)
1624
+
1625
+ ##############################
1626
+
1627
+ @defun
1628
+ def svd_c(ctx, A, full_matrices = False, compute_uv = True, overwrite_a = False):
1629
+ """
1630
+ This routine computes the singular value decomposition of a matrix A.
1631
+ Given A, two unitary matrices U and V are calculated such that
1632
+
1633
+ A = U S V and U' U = 1 and V V' = 1
1634
+
1635
+ where S is a suitable shaped matrix whose off-diagonal elements are zero.
1636
+ Here ' denotes the hermitian transpose (i.e. transposition and complex
1637
+ conjugation). The diagonal elements of S are the singular values of A,
1638
+ i.e. the squareroots of the eigenvalues of A' A or A A'.
1639
+
1640
+ input:
1641
+ A : a complex matrix of shape (m, n)
1642
+ full_matrices : if true, U and V are of shape (m, m) and (n, n).
1643
+ if false, U and V are of shape (m, min(m, n)) and (min(m, n), n).
1644
+ compute_uv : if true, U and V are calculated. if false, only S is calculated.
1645
+ overwrite_a : if true, allows modification of A which may improve
1646
+ performance. if false, A is not modified.
1647
+
1648
+ output:
1649
+ U : an unitary matrix: U' U = 1. if full_matrices is true, U is of
1650
+ shape (m, m). ortherwise it is of shape (m, min(m, n)).
1651
+
1652
+ S : an array of length min(m, n) containing the singular values of A sorted by
1653
+ decreasing magnitude.
1654
+
1655
+ V : an unitary matrix: V V' = 1. if full_matrices is true, V is of
1656
+ shape (n, n). ortherwise it is of shape (min(m, n), n).
1657
+
1658
+ return value:
1659
+
1660
+ S if compute_uv is false
1661
+ (U, S, V) if compute_uv is true
1662
+
1663
+ overview of the matrices:
1664
+
1665
+ full_matrices true:
1666
+ A : m*n
1667
+ U : m*m U' U = 1
1668
+ S as matrix : m*n
1669
+ V : n*n V V' = 1
1670
+
1671
+ full_matrices false:
1672
+ A : m*n
1673
+ U : m*min(n,m) U' U = 1
1674
+ S as matrix : min(m,n)*min(m,n)
1675
+ V : min(m,n)*n V V' = 1
1676
+
1677
+ example:
1678
+ >>> from mpmath import mp
1679
+ >>> A = mp.matrix([[-2j, -1-3j, -2+2j], [2-2j, -1-3j, 1], [-3+1j,-2j,0]])
1680
+ >>> S = mp.svd_c(A, compute_uv = False)
1681
+ >>> print(mp.chop(S - mp.matrix([mp.sqrt(34), mp.sqrt(15), mp.sqrt(6)])))
1682
+ [0.0]
1683
+ [0.0]
1684
+ [0.0]
1685
+
1686
+ >>> U, S, V = mp.svd_c(A)
1687
+ >>> print(mp.chop(A - U * mp.diag(S) * V))
1688
+ [0.0 0.0 0.0]
1689
+ [0.0 0.0 0.0]
1690
+ [0.0 0.0 0.0]
1691
+
1692
+ see also: svd, svd_r
1693
+ """
1694
+
1695
+ m, n = A.rows, A.cols
1696
+
1697
+ if not compute_uv:
1698
+ if not overwrite_a:
1699
+ A = A.copy()
1700
+ S = svd_c_raw(ctx, A, V = False, calc_u = False)
1701
+ S = S[:min(m,n)]
1702
+ return S
1703
+
1704
+ if full_matrices and n < m:
1705
+ V = ctx.zeros(m, m)
1706
+ A0 = ctx.zeros(m, m)
1707
+ A0[:,:n] = A
1708
+ S = svd_c_raw(ctx, A0, V, calc_u = True)
1709
+
1710
+ S = S[:n]
1711
+ V = V[:n,:n]
1712
+
1713
+ return (A0, S, V)
1714
+ else:
1715
+ if not overwrite_a:
1716
+ A = A.copy()
1717
+ V = ctx.zeros(n, n)
1718
+ S = svd_c_raw(ctx, A, V, calc_u = True)
1719
+
1720
+ if n > m:
1721
+ if full_matrices == False:
1722
+ V = V[:m,:]
1723
+
1724
+ S = S[:m]
1725
+ A = A[:,:m]
1726
+
1727
+ return (A, S, V)
1728
+
1729
+ @defun
1730
+ def svd(ctx, A, full_matrices = False, compute_uv = True, overwrite_a = False):
1731
+ """
1732
+ "svd" is a unified interface for "svd_r" and "svd_c". Depending on
1733
+ whether A is real or complex the appropriate function is called.
1734
+
1735
+ This routine computes the singular value decomposition of a matrix A.
1736
+ Given A, two orthogonal (A real) or unitary (A complex) matrices U and V
1737
+ are calculated such that
1738
+
1739
+ A = U S V and U' U = 1 and V V' = 1
1740
+
1741
+ where S is a suitable shaped matrix whose off-diagonal elements are zero.
1742
+ Here ' denotes the hermitian transpose (i.e. transposition and complex
1743
+ conjugation). The diagonal elements of S are the singular values of A,
1744
+ i.e. the squareroots of the eigenvalues of A' A or A A'.
1745
+
1746
+ input:
1747
+ A : a real or complex matrix of shape (m, n)
1748
+ full_matrices : if true, U and V are of shape (m, m) and (n, n).
1749
+ if false, U and V are of shape (m, min(m, n)) and (min(m, n), n).
1750
+ compute_uv : if true, U and V are calculated. if false, only S is calculated.
1751
+ overwrite_a : if true, allows modification of A which may improve
1752
+ performance. if false, A is not modified.
1753
+
1754
+ output:
1755
+ U : an orthogonal or unitary matrix: U' U = 1. if full_matrices is true, U is of
1756
+ shape (m, m). ortherwise it is of shape (m, min(m, n)).
1757
+
1758
+ S : an array of length min(m, n) containing the singular values of A sorted by
1759
+ decreasing magnitude.
1760
+
1761
+ V : an orthogonal or unitary matrix: V V' = 1. if full_matrices is true, V is of
1762
+ shape (n, n). ortherwise it is of shape (min(m, n), n).
1763
+
1764
+ return value:
1765
+
1766
+ S if compute_uv is false
1767
+ (U, S, V) if compute_uv is true
1768
+
1769
+ overview of the matrices:
1770
+
1771
+ full_matrices true:
1772
+ A : m*n
1773
+ U : m*m U' U = 1
1774
+ S as matrix : m*n
1775
+ V : n*n V V' = 1
1776
+
1777
+ full_matrices false:
1778
+ A : m*n
1779
+ U : m*min(n,m) U' U = 1
1780
+ S as matrix : min(m,n)*min(m,n)
1781
+ V : min(m,n)*n V V' = 1
1782
+
1783
+ examples:
1784
+
1785
+ >>> from mpmath import mp
1786
+ >>> A = mp.matrix([[2, -2, -1], [3, 4, -2], [-2, -2, 0]])
1787
+ >>> S = mp.svd(A, compute_uv = False)
1788
+ >>> print(S)
1789
+ [6.0]
1790
+ [3.0]
1791
+ [1.0]
1792
+
1793
+ >>> U, S, V = mp.svd(A)
1794
+ >>> print(mp.chop(A - U * mp.diag(S) * V))
1795
+ [0.0 0.0 0.0]
1796
+ [0.0 0.0 0.0]
1797
+ [0.0 0.0 0.0]
1798
+
1799
+ see also: svd_r, svd_c
1800
+ """
1801
+
1802
+ iscomplex = any(type(x) is ctx.mpc for x in A)
1803
+
1804
+ if iscomplex:
1805
+ return ctx.svd_c(A, full_matrices = full_matrices, compute_uv = compute_uv, overwrite_a = overwrite_a)
1806
+ else:
1807
+ return ctx.svd_r(A, full_matrices = full_matrices, compute_uv = compute_uv, overwrite_a = overwrite_a)
env-llmeval/lib/python3.10/site-packages/mpmath/rational.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+ import sys
3
+ from .libmp import int_types, mpf_hash, bitcount, from_man_exp, HASH_MODULUS
4
+
5
+ new = object.__new__
6
+
7
+ def create_reduced(p, q, _cache={}):
8
+ key = p, q
9
+ if key in _cache:
10
+ return _cache[key]
11
+ x, y = p, q
12
+ while y:
13
+ x, y = y, x % y
14
+ if x != 1:
15
+ p //= x
16
+ q //= x
17
+ v = new(mpq)
18
+ v._mpq_ = p, q
19
+ # Speedup integers, half-integers and other small fractions
20
+ if q <= 4 and abs(key[0]) < 100:
21
+ _cache[key] = v
22
+ return v
23
+
24
+ class mpq(object):
25
+ """
26
+ Exact rational type, currently only intended for internal use.
27
+ """
28
+
29
+ __slots__ = ["_mpq_"]
30
+
31
+ def __new__(cls, p, q=1):
32
+ if type(p) is tuple:
33
+ p, q = p
34
+ elif hasattr(p, '_mpq_'):
35
+ p, q = p._mpq_
36
+ return create_reduced(p, q)
37
+
38
+ def __repr__(s):
39
+ return "mpq(%s,%s)" % s._mpq_
40
+
41
+ def __str__(s):
42
+ return "(%s/%s)" % s._mpq_
43
+
44
+ def __int__(s):
45
+ a, b = s._mpq_
46
+ return a // b
47
+
48
+ def __nonzero__(s):
49
+ return bool(s._mpq_[0])
50
+
51
+ __bool__ = __nonzero__
52
+
53
+ def __hash__(s):
54
+ a, b = s._mpq_
55
+ if sys.version_info >= (3, 2):
56
+ inverse = pow(b, HASH_MODULUS-2, HASH_MODULUS)
57
+ if not inverse:
58
+ h = sys.hash_info.inf
59
+ else:
60
+ h = (abs(a) * inverse) % HASH_MODULUS
61
+ if a < 0: h = -h
62
+ if h == -1: h = -2
63
+ return h
64
+ else:
65
+ if b == 1:
66
+ return hash(a)
67
+ # Power of two: mpf compatible hash
68
+ if not (b & (b-1)):
69
+ return mpf_hash(from_man_exp(a, 1-bitcount(b)))
70
+ return hash((a,b))
71
+
72
+ def __eq__(s, t):
73
+ ttype = type(t)
74
+ if ttype is mpq:
75
+ return s._mpq_ == t._mpq_
76
+ if ttype in int_types:
77
+ a, b = s._mpq_
78
+ if b != 1:
79
+ return False
80
+ return a == t
81
+ return NotImplemented
82
+
83
+ def __ne__(s, t):
84
+ ttype = type(t)
85
+ if ttype is mpq:
86
+ return s._mpq_ != t._mpq_
87
+ if ttype in int_types:
88
+ a, b = s._mpq_
89
+ if b != 1:
90
+ return True
91
+ return a != t
92
+ return NotImplemented
93
+
94
+ def _cmp(s, t, op):
95
+ ttype = type(t)
96
+ if ttype in int_types:
97
+ a, b = s._mpq_
98
+ return op(a, t*b)
99
+ if ttype is mpq:
100
+ a, b = s._mpq_
101
+ c, d = t._mpq_
102
+ return op(a*d, b*c)
103
+ return NotImplementedError
104
+
105
+ def __lt__(s, t): return s._cmp(t, operator.lt)
106
+ def __le__(s, t): return s._cmp(t, operator.le)
107
+ def __gt__(s, t): return s._cmp(t, operator.gt)
108
+ def __ge__(s, t): return s._cmp(t, operator.ge)
109
+
110
+ def __abs__(s):
111
+ a, b = s._mpq_
112
+ if a >= 0:
113
+ return s
114
+ v = new(mpq)
115
+ v._mpq_ = -a, b
116
+ return v
117
+
118
+ def __neg__(s):
119
+ a, b = s._mpq_
120
+ v = new(mpq)
121
+ v._mpq_ = -a, b
122
+ return v
123
+
124
+ def __pos__(s):
125
+ return s
126
+
127
+ def __add__(s, t):
128
+ ttype = type(t)
129
+ if ttype is mpq:
130
+ a, b = s._mpq_
131
+ c, d = t._mpq_
132
+ return create_reduced(a*d+b*c, b*d)
133
+ if ttype in int_types:
134
+ a, b = s._mpq_
135
+ v = new(mpq)
136
+ v._mpq_ = a+b*t, b
137
+ return v
138
+ return NotImplemented
139
+
140
+ __radd__ = __add__
141
+
142
+ def __sub__(s, t):
143
+ ttype = type(t)
144
+ if ttype is mpq:
145
+ a, b = s._mpq_
146
+ c, d = t._mpq_
147
+ return create_reduced(a*d-b*c, b*d)
148
+ if ttype in int_types:
149
+ a, b = s._mpq_
150
+ v = new(mpq)
151
+ v._mpq_ = a-b*t, b
152
+ return v
153
+ return NotImplemented
154
+
155
+ def __rsub__(s, t):
156
+ ttype = type(t)
157
+ if ttype is mpq:
158
+ a, b = s._mpq_
159
+ c, d = t._mpq_
160
+ return create_reduced(b*c-a*d, b*d)
161
+ if ttype in int_types:
162
+ a, b = s._mpq_
163
+ v = new(mpq)
164
+ v._mpq_ = b*t-a, b
165
+ return v
166
+ return NotImplemented
167
+
168
+ def __mul__(s, t):
169
+ ttype = type(t)
170
+ if ttype is mpq:
171
+ a, b = s._mpq_
172
+ c, d = t._mpq_
173
+ return create_reduced(a*c, b*d)
174
+ if ttype in int_types:
175
+ a, b = s._mpq_
176
+ return create_reduced(a*t, b)
177
+ return NotImplemented
178
+
179
+ __rmul__ = __mul__
180
+
181
+ def __div__(s, t):
182
+ ttype = type(t)
183
+ if ttype is mpq:
184
+ a, b = s._mpq_
185
+ c, d = t._mpq_
186
+ return create_reduced(a*d, b*c)
187
+ if ttype in int_types:
188
+ a, b = s._mpq_
189
+ return create_reduced(a, b*t)
190
+ return NotImplemented
191
+
192
+ def __rdiv__(s, t):
193
+ ttype = type(t)
194
+ if ttype is mpq:
195
+ a, b = s._mpq_
196
+ c, d = t._mpq_
197
+ return create_reduced(b*c, a*d)
198
+ if ttype in int_types:
199
+ a, b = s._mpq_
200
+ return create_reduced(b*t, a)
201
+ return NotImplemented
202
+
203
+ def __pow__(s, t):
204
+ ttype = type(t)
205
+ if ttype in int_types:
206
+ a, b = s._mpq_
207
+ if t:
208
+ if t < 0:
209
+ a, b, t = b, a, -t
210
+ v = new(mpq)
211
+ v._mpq_ = a**t, b**t
212
+ return v
213
+ raise ZeroDivisionError
214
+ return NotImplemented
215
+
216
+
217
+ mpq_1 = mpq((1,1))
218
+ mpq_0 = mpq((0,1))
219
+ mpq_1_2 = mpq((1,2))
220
+ mpq_3_2 = mpq((3,2))
221
+ mpq_1_4 = mpq((1,4))
222
+ mpq_1_16 = mpq((1,16))
223
+ mpq_3_16 = mpq((3,16))
224
+ mpq_5_2 = mpq((5,2))
225
+ mpq_3_4 = mpq((3,4))
226
+ mpq_7_4 = mpq((7,4))
227
+ mpq_5_4 = mpq((5,4))
228
+
229
+
230
+ # Register with "numbers" ABC
231
+ # We do not subclass, hence we do not use the @abstractmethod checks. While
232
+ # this is less invasive it may turn out that we do not actually support
233
+ # parts of the expected interfaces. See
234
+ # http://docs.python.org/2/library/numbers.html for list of abstract
235
+ # methods.
236
+ try:
237
+ import numbers
238
+ numbers.Rational.register(mpq)
239
+ except ImportError:
240
+ pass
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (177 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/extratest_zeta.cpython-310.pyc ADDED
Binary file (968 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_basic_ops.cpython-310.pyc ADDED
Binary file (14 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_bitwise.cpython-310.pyc ADDED
Binary file (6.66 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_calculus.cpython-310.pyc ADDED
Binary file (7.35 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_diff.cpython-310.pyc ADDED
Binary file (3.64 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_division.cpython-310.pyc ADDED
Binary file (4.45 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_eigen.cpython-310.pyc ADDED
Binary file (3.58 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_eigen_symmetric.cpython-310.pyc ADDED
Binary file (8.96 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_fp.cpython-310.pyc ADDED
Binary file (53.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_functions.cpython-310.pyc ADDED
Binary file (31.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_functions2.cpython-310.pyc ADDED
Binary file (66.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_hp.cpython-310.pyc ADDED
Binary file (8.72 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_identify.cpython-310.pyc ADDED
Binary file (1.06 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_interval.cpython-310.pyc ADDED
Binary file (16.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_levin.cpython-310.pyc ADDED
Binary file (5.96 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_matrices.cpython-310.pyc ADDED
Binary file (8.88 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_mpmath.cpython-310.pyc ADDED
Binary file (461 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_ode.cpython-310.pyc ADDED
Binary file (1.63 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_pickle.cpython-310.pyc ADDED
Binary file (711 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_power.cpython-310.pyc ADDED
Binary file (4.35 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_quad.cpython-310.pyc ADDED
Binary file (8.62 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_rootfinding.cpython-310.pyc ADDED
Binary file (5.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_special.cpython-310.pyc ADDED
Binary file (2.88 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_trig.cpython-310.pyc ADDED
Binary file (4.09 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_visualization.cpython-310.pyc ADDED
Binary file (1.43 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/torture.cpython-310.pyc ADDED
Binary file (8.18 kB). View file
 
env-llmeval/lib/python3.10/site-packages/mpmath/tests/extratest_gamma.py ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from mpmath import *
2
+ from mpmath.libmp import ifac
3
+
4
+ import sys
5
+ if "-dps" in sys.argv:
6
+ maxdps = int(sys.argv[sys.argv.index("-dps")+1])
7
+ else:
8
+ maxdps = 1000
9
+
10
+ raise_ = "-raise" in sys.argv
11
+
12
+ errcount = 0
13
+
14
+ def check(name, func, z, y):
15
+ global errcount
16
+ try:
17
+ x = func(z)
18
+ except:
19
+ errcount += 1
20
+ if raise_:
21
+ raise
22
+ print()
23
+ print(name)
24
+ print("EXCEPTION")
25
+ import traceback
26
+ traceback.print_tb(sys.exc_info()[2])
27
+ print()
28
+ return
29
+ xre = x.real
30
+ xim = x.imag
31
+ yre = y.real
32
+ yim = y.imag
33
+ tol = eps*8
34
+ err = 0
35
+ if abs(xre-yre) > abs(yre)*tol:
36
+ err = 1
37
+ print()
38
+ print("Error! %s (re = %s, wanted %s, err=%s)" % (name, nstr(xre,10), nstr(yre,10), nstr(abs(xre-yre))))
39
+ errcount += 1
40
+ if raise_:
41
+ raise SystemExit
42
+ if abs(xim-yim) > abs(yim)*tol:
43
+ err = 1
44
+ print()
45
+ print("Error! %s (im = %s, wanted %s, err=%s)" % (name, nstr(xim,10), nstr(yim,10), nstr(abs(xim-yim))))
46
+ errcount += 1
47
+ if raise_:
48
+ raise SystemExit
49
+ if not err:
50
+ sys.stdout.write("%s ok; " % name)
51
+
52
+ def testcase(case):
53
+ z, result = case
54
+ print("Testing z =", z)
55
+ mp.dps = 1010
56
+ z = eval(z)
57
+ mp.dps = maxdps + 50
58
+ if result is None:
59
+ gamma_val = gamma(z)
60
+ loggamma_val = loggamma(z)
61
+ factorial_val = factorial(z)
62
+ rgamma_val = rgamma(z)
63
+ else:
64
+ loggamma_val = eval(result)
65
+ gamma_val = exp(loggamma_val)
66
+ factorial_val = z * gamma_val
67
+ rgamma_val = 1/gamma_val
68
+ for dps in [5, 10, 15, 25, 40, 60, 90, 120, 250, 600, 1000, 1800, 3600]:
69
+ if dps > maxdps:
70
+ break
71
+ mp.dps = dps
72
+ print("dps = %s" % dps)
73
+ check("gamma", gamma, z, gamma_val)
74
+ check("rgamma", rgamma, z, rgamma_val)
75
+ check("loggamma", loggamma, z, loggamma_val)
76
+ check("factorial", factorial, z, factorial_val)
77
+ print()
78
+ mp.dps = 15
79
+
80
+ testcases = []
81
+
82
+ # Basic values
83
+ for n in list(range(1,200)) + list(range(201,2000,17)):
84
+ testcases.append(["%s" % n, None])
85
+ for n in range(-200,200):
86
+ testcases.append(["%s+0.5" % n, None])
87
+ testcases.append(["%s+0.37" % n, None])
88
+
89
+ testcases += [\
90
+ ["(0.1+1j)", None],
91
+ ["(-0.1+1j)", None],
92
+ ["(0.1-1j)", None],
93
+ ["(-0.1-1j)", None],
94
+ ["10j", None],
95
+ ["-10j", None],
96
+ ["100j", None],
97
+ ["10000j", None],
98
+ ["-10000000j", None],
99
+ ["(10**100)*j", None],
100
+ ["125+(10**100)*j", None],
101
+ ["-125+(10**100)*j", None],
102
+ ["(10**10)*(1+j)", None],
103
+ ["(10**10)*(-1+j)", None],
104
+ ["(10**100)*(1+j)", None],
105
+ ["(10**100)*(-1+j)", None],
106
+ ["(1.5-1j)", None],
107
+ ["(6+4j)", None],
108
+ ["(4+1j)", None],
109
+ ["(3.5+2j)", None],
110
+ ["(1.5-1j)", None],
111
+ ["(-6-4j)", None],
112
+ ["(-2-3j)", None],
113
+ ["(-2.5-2j)", None],
114
+ ["(4+1j)", None],
115
+ ["(3+3j)", None],
116
+ ["(2-2j)", None],
117
+ ["1", "0"],
118
+ ["2", "0"],
119
+ ["3", "log(2)"],
120
+ ["4", "log(6)"],
121
+ ["5", "log(24)"],
122
+ ["0.5", "log(pi)/2"],
123
+ ["1.5", "log(sqrt(pi)/2)"],
124
+ ["2.5", "log(3*sqrt(pi)/4)"],
125
+ ["mpf('0.37')", None],
126
+ ["0.25", "log(sqrt(2*sqrt(2*pi**3)/agm(1,sqrt(2))))"],
127
+ ["-0.4", None],
128
+ ["mpf('-1.9')", None],
129
+ ["mpf('12.8')", None],
130
+ ["mpf('33.7')", None],
131
+ ["mpf('95.2')", None],
132
+ ["mpf('160.3')", None],
133
+ ["mpf('2057.8')", None],
134
+ ["25", "log(ifac(24))"],
135
+ ["80", "log(ifac(79))"],
136
+ ["500", "log(ifac(500-1))"],
137
+ ["8000", "log(ifac(8000-1))"],
138
+ ["8000.5", None],
139
+ ["mpf('8000.1')", None],
140
+ ["mpf('1.37e10')", None],
141
+ ["mpf('1.37e10')*(1+j)", None],
142
+ ["mpf('1.37e10')*(-1+j)", None],
143
+ ["mpf('1.37e10')*(-1-j)", None],
144
+ ["mpf('1.37e10')*(-1+j)", None],
145
+ ["mpf('1.37e100')", None],
146
+ ["mpf('1.37e100')*(1+j)", None],
147
+ ["mpf('1.37e100')*(-1+j)", None],
148
+ ["mpf('1.37e100')*(-1-j)", None],
149
+ ["mpf('1.37e100')*(-1+j)", None],
150
+ ["3+4j",
151
+ "mpc('"
152
+ "-1.7566267846037841105306041816232757851567066070613445016197619371316057169"
153
+ "4723618263960834804618463052988607348289672535780644470689771115236512106002"
154
+ "5970873471563240537307638968509556191696167970488390423963867031934333890838"
155
+ "8009531786948197210025029725361069435208930363494971027388382086721660805397"
156
+ "9163230643216054580167976201709951509519218635460317367338612500626714783631"
157
+ "7498317478048447525674016344322545858832610325861086336204591943822302971823"
158
+ "5161814175530618223688296232894588415495615809337292518431903058265147109853"
159
+ "1710568942184987827643886816200452860853873815413367529829631430146227470517"
160
+ "6579967222200868632179482214312673161276976117132204633283806161971389519137"
161
+ "1243359764435612951384238091232760634271570950240717650166551484551654327989"
162
+ "9360285030081716934130446150245110557038117075172576825490035434069388648124"
163
+ "6678152254554001586736120762641422590778766100376515737713938521275749049949"
164
+ "1284143906816424244705094759339932733567910991920631339597278805393743140853"
165
+ "391550313363278558195609260225928','"
166
+ "4.74266443803465792819488940755002274088830335171164611359052405215840070271"
167
+ "5906813009373171139767051863542508136875688550817670379002790304870822775498"
168
+ "2809996675877564504192565392367259119610438951593128982646945990372179860613"
169
+ "4294436498090428077839141927485901735557543641049637962003652638924845391650"
170
+ "9546290137755550107224907606529385248390667634297183361902055842228798984200"
171
+ "9591180450211798341715874477629099687609819466457990642030707080894518168924"
172
+ "6805549314043258530272479246115112769957368212585759640878745385160943755234"
173
+ "9398036774908108204370323896757543121853650025529763655312360354244898913463"
174
+ "7115955702828838923393113618205074162812089732064414530813087483533203244056"
175
+ "0546577484241423134079056537777170351934430586103623577814746004431994179990"
176
+ "5318522939077992613855205801498201930221975721246498720895122345420698451980"
177
+ "0051215797310305885845964334761831751370672996984756815410977750799748813563"
178
+ "8784405288158432214886648743541773208808731479748217023665577802702269468013"
179
+ "673719173759245720489020315779001')"],
180
+ ]
181
+
182
+ for z in [4, 14, 34, 64]:
183
+ testcases.append(["(2+j)*%s/3" % z, None])
184
+ testcases.append(["(-2+j)*%s/3" % z, None])
185
+ testcases.append(["(1+2*j)*%s/3" % z, None])
186
+ testcases.append(["(2-j)*%s/3" % z, None])
187
+ testcases.append(["(20+j)*%s/3" % z, None])
188
+ testcases.append(["(-20+j)*%s/3" % z, None])
189
+ testcases.append(["(1+20*j)*%s/3" % z, None])
190
+ testcases.append(["(20-j)*%s/3" % z, None])
191
+ testcases.append(["(200+j)*%s/3" % z, None])
192
+ testcases.append(["(-200+j)*%s/3" % z, None])
193
+ testcases.append(["(1+200*j)*%s/3" % z, None])
194
+ testcases.append(["(200-j)*%s/3" % z, None])
195
+
196
+ # Poles
197
+ for n in [0,1,2,3,4,25,-1,-2,-3,-4,-20,-21,-50,-51,-200,-201,-20000,-20001]:
198
+ for t in ['1e-5', '1e-20', '1e-100', '1e-10000']:
199
+ testcases.append(["fadd(%s,'%s',exact=True)" % (n, t), None])
200
+ testcases.append(["fsub(%s,'%s',exact=True)" % (n, t), None])
201
+ testcases.append(["fadd(%s,'%sj',exact=True)" % (n, t), None])
202
+ testcases.append(["fsub(%s,'%sj',exact=True)" % (n, t), None])
203
+
204
+ if __name__ == "__main__":
205
+ from timeit import default_timer as clock
206
+ tot_time = 0.0
207
+ for case in testcases:
208
+ t1 = clock()
209
+ testcase(case)
210
+ t2 = clock()
211
+ print("Test time:", t2-t1)
212
+ print()
213
+ tot_time += (t2-t1)
214
+ print("Total time:", tot_time)
215
+ print("Errors:", errcount)
env-llmeval/lib/python3.10/site-packages/mpmath/tests/extratest_zeta.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from mpmath import zetazero
2
+ from timeit import default_timer as clock
3
+
4
+ def test_zetazero():
5
+ cases = [\
6
+ (399999999, 156762524.6750591511),
7
+ (241389216, 97490234.2276711795),
8
+ (526196239, 202950727.691229534),
9
+ (542964976, 209039046.578535272),
10
+ (1048449112, 388858885.231056486),
11
+ (1048449113, 388858885.384337406),
12
+ (1048449114, 388858886.002285122),
13
+ (1048449115, 388858886.00239369),
14
+ (1048449116, 388858886.690745053)
15
+ ]
16
+ for n, v in cases:
17
+ print(n, v)
18
+ t1 = clock()
19
+ ok = zetazero(n).ae(complex(0.5,v))
20
+ t2 = clock()
21
+ print("ok =", ok, ("(time = %s)" % round(t2-t1,3)))
22
+ print("Now computing two huge zeros (this may take hours)")
23
+ print("Computing zetazero(8637740722917)")
24
+ ok = zetazero(8637740722917).ae(complex(0.5,2124447368584.39296466152))
25
+ print("ok =", ok)
26
+ ok = zetazero(8637740722918).ae(complex(0.5,2124447368584.39298170604))
27
+ print("ok =", ok)
28
+
29
+ if __name__ == "__main__":
30
+ test_zetazero()
env-llmeval/lib/python3.10/site-packages/mpmath/tests/runtests.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ """
4
+ python runtests.py -py
5
+ Use py.test to run tests (more useful for debugging)
6
+
7
+ python runtests.py -coverage
8
+ Generate test coverage report. Statistics are written to /tmp
9
+
10
+ python runtests.py -profile
11
+ Generate profile stats (this is much slower)
12
+
13
+ python runtests.py -nogmpy
14
+ Run tests without using GMPY even if it exists
15
+
16
+ python runtests.py -strict
17
+ Enforce extra tests in normalize()
18
+
19
+ python runtests.py -local
20
+ Insert '../..' at the beginning of sys.path to use local mpmath
21
+
22
+ python runtests.py -skip ...
23
+ Skip tests from the listed modules
24
+
25
+ Additional arguments are used to filter the tests to run. Only files that have
26
+ one of the arguments in their name are executed.
27
+
28
+ """
29
+
30
+ import sys, os, traceback
31
+
32
+ profile = False
33
+ if "-profile" in sys.argv:
34
+ sys.argv.remove('-profile')
35
+ profile = True
36
+
37
+ coverage = False
38
+ if "-coverage" in sys.argv:
39
+ sys.argv.remove('-coverage')
40
+ coverage = True
41
+
42
+ if "-nogmpy" in sys.argv:
43
+ sys.argv.remove('-nogmpy')
44
+ os.environ['MPMATH_NOGMPY'] = 'Y'
45
+
46
+ if "-strict" in sys.argv:
47
+ sys.argv.remove('-strict')
48
+ os.environ['MPMATH_STRICT'] = 'Y'
49
+
50
+ if "-local" in sys.argv:
51
+ sys.argv.remove('-local')
52
+ importdir = os.path.abspath(os.path.join(os.path.dirname(sys.argv[0]),
53
+ '../..'))
54
+ else:
55
+ importdir = ''
56
+
57
+ # TODO: add a flag for this
58
+ testdir = ''
59
+
60
+ def testit(importdir='', testdir='', exit_on_fail=False):
61
+ """Run all tests in testdir while importing from importdir."""
62
+ if importdir:
63
+ sys.path.insert(1, importdir)
64
+ if testdir:
65
+ sys.path.insert(1, testdir)
66
+ import os.path
67
+ import mpmath
68
+ print("mpmath imported from %s" % os.path.dirname(mpmath.__file__))
69
+ print("mpmath backend: %s" % mpmath.libmp.backend.BACKEND)
70
+ print("mpmath mp class: %s" % repr(mpmath.mp))
71
+ print("mpmath version: %s" % mpmath.__version__)
72
+ print("Python version: %s" % sys.version)
73
+ print("")
74
+ if "-py" in sys.argv:
75
+ sys.argv.remove('-py')
76
+ import py
77
+ py.test.cmdline.main()
78
+ else:
79
+ import glob
80
+ from timeit import default_timer as clock
81
+ modules = []
82
+ args = sys.argv[1:]
83
+ excluded = []
84
+ if '-skip' in args:
85
+ excluded = args[args.index('-skip')+1:]
86
+ args = args[:args.index('-skip')]
87
+ # search for tests in directory of this file if not otherwise specified
88
+ if not testdir:
89
+ pattern = os.path.dirname(sys.argv[0])
90
+ else:
91
+ pattern = testdir
92
+ if pattern:
93
+ pattern += '/'
94
+ pattern += 'test*.py'
95
+ # look for tests (respecting specified filter)
96
+ for f in glob.glob(pattern):
97
+ name = os.path.splitext(os.path.basename(f))[0]
98
+ # If run as a script, only run tests given as args, if any are given
99
+ if args and __name__ == "__main__":
100
+ ok = False
101
+ for arg in args:
102
+ if arg in name:
103
+ ok = True
104
+ break
105
+ if not ok:
106
+ continue
107
+ elif name in excluded:
108
+ continue
109
+ module = __import__(name)
110
+ priority = module.__dict__.get('priority', 100)
111
+ if priority == 666:
112
+ modules = [[priority, name, module]]
113
+ break
114
+ modules.append([priority, name, module])
115
+ # execute tests
116
+ modules.sort()
117
+ tstart = clock()
118
+ for priority, name, module in modules:
119
+ print(name)
120
+ for f in sorted(module.__dict__.keys()):
121
+ if f.startswith('test_'):
122
+ if coverage and ('numpy' in f):
123
+ continue
124
+ sys.stdout.write(" " + f[5:].ljust(25) + " ")
125
+ t1 = clock()
126
+ try:
127
+ module.__dict__[f]()
128
+ except:
129
+ etype, evalue, trb = sys.exc_info()
130
+ if etype in (KeyboardInterrupt, SystemExit):
131
+ raise
132
+ print("")
133
+ print("TEST FAILED!")
134
+ print("")
135
+ traceback.print_exc()
136
+ if exit_on_fail:
137
+ return
138
+ t2 = clock()
139
+ print("ok " + " " + ("%.7f" % (t2-t1)) + " s")
140
+ tend = clock()
141
+ print("")
142
+ print("finished tests in " + ("%.2f" % (tend-tstart)) + " seconds")
143
+ # clean sys.path
144
+ if importdir:
145
+ sys.path.remove(importdir)
146
+ if testdir:
147
+ sys.path.remove(testdir)
148
+
149
+ if __name__ == '__main__':
150
+ if profile:
151
+ import cProfile
152
+ cProfile.run("testit('%s', '%s')" % (importdir, testdir), sort=1)
153
+ elif coverage:
154
+ import trace
155
+ tracer = trace.Trace(ignoredirs=[sys.prefix, sys.exec_prefix],
156
+ trace=0, count=1)
157
+ tracer.run('testit(importdir, testdir)')
158
+ r = tracer.results()
159
+ r.write_results(show_missing=True, summary=True, coverdir="/tmp")
160
+ else:
161
+ testit(importdir, testdir)
env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_basic_ops.py ADDED
@@ -0,0 +1,451 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import mpmath
2
+ from mpmath import *
3
+ from mpmath.libmp import *
4
+ import random
5
+ import sys
6
+
7
+ try:
8
+ long = long
9
+ except NameError:
10
+ long = int
11
+
12
+ def test_type_compare():
13
+ assert mpf(2) == mpc(2,0)
14
+ assert mpf(0) == mpc(0)
15
+ assert mpf(2) != mpc(2, 0.00001)
16
+ assert mpf(2) == 2.0
17
+ assert mpf(2) != 3.0
18
+ assert mpf(2) == 2
19
+ assert mpf(2) != '2.0'
20
+ assert mpc(2) != '2.0'
21
+
22
+ def test_add():
23
+ assert mpf(2.5) + mpf(3) == 5.5
24
+ assert mpf(2.5) + 3 == 5.5
25
+ assert mpf(2.5) + 3.0 == 5.5
26
+ assert 3 + mpf(2.5) == 5.5
27
+ assert 3.0 + mpf(2.5) == 5.5
28
+ assert (3+0j) + mpf(2.5) == 5.5
29
+ assert mpc(2.5) + mpf(3) == 5.5
30
+ assert mpc(2.5) + 3 == 5.5
31
+ assert mpc(2.5) + 3.0 == 5.5
32
+ assert mpc(2.5) + (3+0j) == 5.5
33
+ assert 3 + mpc(2.5) == 5.5
34
+ assert 3.0 + mpc(2.5) == 5.5
35
+ assert (3+0j) + mpc(2.5) == 5.5
36
+
37
+ def test_sub():
38
+ assert mpf(2.5) - mpf(3) == -0.5
39
+ assert mpf(2.5) - 3 == -0.5
40
+ assert mpf(2.5) - 3.0 == -0.5
41
+ assert 3 - mpf(2.5) == 0.5
42
+ assert 3.0 - mpf(2.5) == 0.5
43
+ assert (3+0j) - mpf(2.5) == 0.5
44
+ assert mpc(2.5) - mpf(3) == -0.5
45
+ assert mpc(2.5) - 3 == -0.5
46
+ assert mpc(2.5) - 3.0 == -0.5
47
+ assert mpc(2.5) - (3+0j) == -0.5
48
+ assert 3 - mpc(2.5) == 0.5
49
+ assert 3.0 - mpc(2.5) == 0.5
50
+ assert (3+0j) - mpc(2.5) == 0.5
51
+
52
+ def test_mul():
53
+ assert mpf(2.5) * mpf(3) == 7.5
54
+ assert mpf(2.5) * 3 == 7.5
55
+ assert mpf(2.5) * 3.0 == 7.5
56
+ assert 3 * mpf(2.5) == 7.5
57
+ assert 3.0 * mpf(2.5) == 7.5
58
+ assert (3+0j) * mpf(2.5) == 7.5
59
+ assert mpc(2.5) * mpf(3) == 7.5
60
+ assert mpc(2.5) * 3 == 7.5
61
+ assert mpc(2.5) * 3.0 == 7.5
62
+ assert mpc(2.5) * (3+0j) == 7.5
63
+ assert 3 * mpc(2.5) == 7.5
64
+ assert 3.0 * mpc(2.5) == 7.5
65
+ assert (3+0j) * mpc(2.5) == 7.5
66
+
67
+ def test_div():
68
+ assert mpf(6) / mpf(3) == 2.0
69
+ assert mpf(6) / 3 == 2.0
70
+ assert mpf(6) / 3.0 == 2.0
71
+ assert 6 / mpf(3) == 2.0
72
+ assert 6.0 / mpf(3) == 2.0
73
+ assert (6+0j) / mpf(3.0) == 2.0
74
+ assert mpc(6) / mpf(3) == 2.0
75
+ assert mpc(6) / 3 == 2.0
76
+ assert mpc(6) / 3.0 == 2.0
77
+ assert mpc(6) / (3+0j) == 2.0
78
+ assert 6 / mpc(3) == 2.0
79
+ assert 6.0 / mpc(3) == 2.0
80
+ assert (6+0j) / mpc(3) == 2.0
81
+
82
+ def test_pow():
83
+ assert mpf(6) ** mpf(3) == 216.0
84
+ assert mpf(6) ** 3 == 216.0
85
+ assert mpf(6) ** 3.0 == 216.0
86
+ assert 6 ** mpf(3) == 216.0
87
+ assert 6.0 ** mpf(3) == 216.0
88
+ assert (6+0j) ** mpf(3.0) == 216.0
89
+ assert mpc(6) ** mpf(3) == 216.0
90
+ assert mpc(6) ** 3 == 216.0
91
+ assert mpc(6) ** 3.0 == 216.0
92
+ assert mpc(6) ** (3+0j) == 216.0
93
+ assert 6 ** mpc(3) == 216.0
94
+ assert 6.0 ** mpc(3) == 216.0
95
+ assert (6+0j) ** mpc(3) == 216.0
96
+
97
+ def test_mixed_misc():
98
+ assert 1 + mpf(3) == mpf(3) + 1 == 4
99
+ assert 1 - mpf(3) == -(mpf(3) - 1) == -2
100
+ assert 3 * mpf(2) == mpf(2) * 3 == 6
101
+ assert 6 / mpf(2) == mpf(6) / 2 == 3
102
+ assert 1.0 + mpf(3) == mpf(3) + 1.0 == 4
103
+ assert 1.0 - mpf(3) == -(mpf(3) - 1.0) == -2
104
+ assert 3.0 * mpf(2) == mpf(2) * 3.0 == 6
105
+ assert 6.0 / mpf(2) == mpf(6) / 2.0 == 3
106
+
107
+ def test_add_misc():
108
+ mp.dps = 15
109
+ assert mpf(4) + mpf(-70) == -66
110
+ assert mpf(1) + mpf(1.1)/80 == 1 + 1.1/80
111
+ assert mpf((1, 10000000000)) + mpf(3) == mpf((1, 10000000000))
112
+ assert mpf(3) + mpf((1, 10000000000)) == mpf((1, 10000000000))
113
+ assert mpf((1, -10000000000)) + mpf(3) == mpf(3)
114
+ assert mpf(3) + mpf((1, -10000000000)) == mpf(3)
115
+ assert mpf(1) + 1e-15 != 1
116
+ assert mpf(1) + 1e-20 == 1
117
+ assert mpf(1.07e-22) + 0 == mpf(1.07e-22)
118
+ assert mpf(0) + mpf(1.07e-22) == mpf(1.07e-22)
119
+
120
+ def test_complex_misc():
121
+ # many more tests needed
122
+ assert 1 + mpc(2) == 3
123
+ assert not mpc(2).ae(2 + 1e-13)
124
+ assert mpc(2+1e-15j).ae(2)
125
+
126
+ def test_complex_zeros():
127
+ for a in [0,2]:
128
+ for b in [0,3]:
129
+ for c in [0,4]:
130
+ for d in [0,5]:
131
+ assert mpc(a,b)*mpc(c,d) == complex(a,b)*complex(c,d)
132
+
133
+ def test_hash():
134
+ for i in range(-256, 256):
135
+ assert hash(mpf(i)) == hash(i)
136
+ assert hash(mpf(0.5)) == hash(0.5)
137
+ assert hash(mpc(2,3)) == hash(2+3j)
138
+ # Check that this doesn't fail
139
+ assert hash(inf)
140
+ # Check that overflow doesn't assign equal hashes to large numbers
141
+ assert hash(mpf('1e1000')) != hash('1e10000')
142
+ assert hash(mpc(100,'1e1000')) != hash(mpc(200,'1e1000'))
143
+ from mpmath.rational import mpq
144
+ assert hash(mp.mpq(1,3))
145
+ assert hash(mp.mpq(0,1)) == 0
146
+ assert hash(mp.mpq(-1,1)) == hash(-1)
147
+ assert hash(mp.mpq(1,1)) == hash(1)
148
+ assert hash(mp.mpq(5,1)) == hash(5)
149
+ assert hash(mp.mpq(1,2)) == hash(0.5)
150
+ if sys.version_info >= (3, 2):
151
+ assert hash(mpf(1)*2**2000) == hash(2**2000)
152
+ assert hash(mpf(1)/2**2000) == hash(mpq(1,2**2000))
153
+
154
+ # Advanced rounding test
155
+ def test_add_rounding():
156
+ mp.dps = 15
157
+ a = from_float(1e-50)
158
+ assert mpf_sub(mpf_add(fone, a, 53, round_up), fone, 53, round_up) == from_float(2.2204460492503131e-16)
159
+ assert mpf_sub(fone, a, 53, round_up) == fone
160
+ assert mpf_sub(fone, mpf_sub(fone, a, 53, round_down), 53, round_down) == from_float(1.1102230246251565e-16)
161
+ assert mpf_add(fone, a, 53, round_down) == fone
162
+
163
+ def test_almost_equal():
164
+ assert mpf(1.2).ae(mpf(1.20000001), 1e-7)
165
+ assert not mpf(1.2).ae(mpf(1.20000001), 1e-9)
166
+ assert not mpf(-0.7818314824680298).ae(mpf(-0.774695868667929))
167
+
168
+ def test_arithmetic_functions():
169
+ import operator
170
+ ops = [(operator.add, fadd), (operator.sub, fsub), (operator.mul, fmul),
171
+ (operator.truediv, fdiv)]
172
+ a = mpf(0.27)
173
+ b = mpf(1.13)
174
+ c = mpc(0.51+2.16j)
175
+ d = mpc(1.08-0.99j)
176
+ for x in [a,b,c,d]:
177
+ for y in [a,b,c,d]:
178
+ for op, fop in ops:
179
+ if fop is not fdiv:
180
+ mp.prec = 200
181
+ z0 = op(x,y)
182
+ mp.prec = 60
183
+ z1 = op(x,y)
184
+ mp.prec = 53
185
+ z2 = op(x,y)
186
+ assert fop(x, y, prec=60) == z1
187
+ assert fop(x, y) == z2
188
+ if fop is not fdiv:
189
+ assert fop(x, y, prec=inf) == z0
190
+ assert fop(x, y, dps=inf) == z0
191
+ assert fop(x, y, exact=True) == z0
192
+ assert fneg(fneg(z1, exact=True), prec=inf) == z1
193
+ assert fneg(z1) == -(+z1)
194
+ mp.dps = 15
195
+
196
+ def test_exact_integer_arithmetic():
197
+ # XXX: re-fix this so that all operations are tested with all rounding modes
198
+ random.seed(0)
199
+ for prec in [6, 10, 25, 40, 100, 250, 725]:
200
+ for rounding in ['d', 'u', 'f', 'c', 'n']:
201
+ mp.dps = prec
202
+ M = 10**(prec-2)
203
+ M2 = 10**(prec//2-2)
204
+ for i in range(10):
205
+ a = random.randint(-M, M)
206
+ b = random.randint(-M, M)
207
+ assert mpf(a, rounding=rounding) == a
208
+ assert int(mpf(a, rounding=rounding)) == a
209
+ assert int(mpf(str(a), rounding=rounding)) == a
210
+ assert mpf(a) + mpf(b) == a + b
211
+ assert mpf(a) - mpf(b) == a - b
212
+ assert -mpf(a) == -a
213
+ a = random.randint(-M2, M2)
214
+ b = random.randint(-M2, M2)
215
+ assert mpf(a) * mpf(b) == a*b
216
+ assert mpf_mul(from_int(a), from_int(b), mp.prec, rounding) == from_int(a*b)
217
+ mp.dps = 15
218
+
219
+ def test_odd_int_bug():
220
+ assert to_int(from_int(3), round_nearest) == 3
221
+
222
+ def test_str_1000_digits():
223
+ mp.dps = 1001
224
+ # last digit may be wrong
225
+ assert str(mpf(2)**0.5)[-10:-1] == '9518488472'[:9]
226
+ assert str(pi)[-10:-1] == '2164201989'[:9]
227
+ mp.dps = 15
228
+
229
+ def test_str_10000_digits():
230
+ mp.dps = 10001
231
+ # last digit may be wrong
232
+ assert str(mpf(2)**0.5)[-10:-1] == '5873258351'[:9]
233
+ assert str(pi)[-10:-1] == '5256375678'[:9]
234
+ mp.dps = 15
235
+
236
+ def test_monitor():
237
+ f = lambda x: x**2
238
+ a = []
239
+ b = []
240
+ g = monitor(f, a.append, b.append)
241
+ assert g(3) == 9
242
+ assert g(4) == 16
243
+ assert a[0] == ((3,), {})
244
+ assert b[0] == 9
245
+
246
+ def test_nint_distance():
247
+ assert nint_distance(mpf(-3)) == (-3, -inf)
248
+ assert nint_distance(mpc(-3)) == (-3, -inf)
249
+ assert nint_distance(mpf(-3.1)) == (-3, -3)
250
+ assert nint_distance(mpf(-3.01)) == (-3, -6)
251
+ assert nint_distance(mpf(-3.001)) == (-3, -9)
252
+ assert nint_distance(mpf(-3.0001)) == (-3, -13)
253
+ assert nint_distance(mpf(-2.9)) == (-3, -3)
254
+ assert nint_distance(mpf(-2.99)) == (-3, -6)
255
+ assert nint_distance(mpf(-2.999)) == (-3, -9)
256
+ assert nint_distance(mpf(-2.9999)) == (-3, -13)
257
+ assert nint_distance(mpc(-3+0.1j)) == (-3, -3)
258
+ assert nint_distance(mpc(-3+0.01j)) == (-3, -6)
259
+ assert nint_distance(mpc(-3.1+0.1j)) == (-3, -3)
260
+ assert nint_distance(mpc(-3.01+0.01j)) == (-3, -6)
261
+ assert nint_distance(mpc(-3.001+0.001j)) == (-3, -9)
262
+ assert nint_distance(mpf(0)) == (0, -inf)
263
+ assert nint_distance(mpf(0.01)) == (0, -6)
264
+ assert nint_distance(mpf('1e-100')) == (0, -332)
265
+
266
+ def test_floor_ceil_nint_frac():
267
+ mp.dps = 15
268
+ for n in range(-10,10):
269
+ assert floor(n) == n
270
+ assert floor(n+0.5) == n
271
+ assert ceil(n) == n
272
+ assert ceil(n+0.5) == n+1
273
+ assert nint(n) == n
274
+ # nint rounds to even
275
+ if n % 2 == 1:
276
+ assert nint(n+0.5) == n+1
277
+ else:
278
+ assert nint(n+0.5) == n
279
+ assert floor(inf) == inf
280
+ assert floor(ninf) == ninf
281
+ assert isnan(floor(nan))
282
+ assert ceil(inf) == inf
283
+ assert ceil(ninf) == ninf
284
+ assert isnan(ceil(nan))
285
+ assert nint(inf) == inf
286
+ assert nint(ninf) == ninf
287
+ assert isnan(nint(nan))
288
+ assert floor(0.1) == 0
289
+ assert floor(0.9) == 0
290
+ assert floor(-0.1) == -1
291
+ assert floor(-0.9) == -1
292
+ assert floor(10000000000.1) == 10000000000
293
+ assert floor(10000000000.9) == 10000000000
294
+ assert floor(-10000000000.1) == -10000000000-1
295
+ assert floor(-10000000000.9) == -10000000000-1
296
+ assert floor(1e-100) == 0
297
+ assert floor(-1e-100) == -1
298
+ assert floor(1e100) == 1e100
299
+ assert floor(-1e100) == -1e100
300
+ assert ceil(0.1) == 1
301
+ assert ceil(0.9) == 1
302
+ assert ceil(-0.1) == 0
303
+ assert ceil(-0.9) == 0
304
+ assert ceil(10000000000.1) == 10000000000+1
305
+ assert ceil(10000000000.9) == 10000000000+1
306
+ assert ceil(-10000000000.1) == -10000000000
307
+ assert ceil(-10000000000.9) == -10000000000
308
+ assert ceil(1e-100) == 1
309
+ assert ceil(-1e-100) == 0
310
+ assert ceil(1e100) == 1e100
311
+ assert ceil(-1e100) == -1e100
312
+ assert nint(0.1) == 0
313
+ assert nint(0.9) == 1
314
+ assert nint(-0.1) == 0
315
+ assert nint(-0.9) == -1
316
+ assert nint(10000000000.1) == 10000000000
317
+ assert nint(10000000000.9) == 10000000000+1
318
+ assert nint(-10000000000.1) == -10000000000
319
+ assert nint(-10000000000.9) == -10000000000-1
320
+ assert nint(1e-100) == 0
321
+ assert nint(-1e-100) == 0
322
+ assert nint(1e100) == 1e100
323
+ assert nint(-1e100) == -1e100
324
+ assert floor(3.2+4.6j) == 3+4j
325
+ assert ceil(3.2+4.6j) == 4+5j
326
+ assert nint(3.2+4.6j) == 3+5j
327
+ for n in range(-10,10):
328
+ assert frac(n) == 0
329
+ assert frac(0.25) == 0.25
330
+ assert frac(1.25) == 0.25
331
+ assert frac(2.25) == 0.25
332
+ assert frac(-0.25) == 0.75
333
+ assert frac(-1.25) == 0.75
334
+ assert frac(-2.25) == 0.75
335
+ assert frac('1e100000000000000') == 0
336
+ u = mpf('1e-100000000000000')
337
+ assert frac(u) == u
338
+ assert frac(-u) == 1 # rounding!
339
+ u = mpf('1e-400')
340
+ assert frac(-u, prec=0) == fsub(1, u, exact=True)
341
+ assert frac(3.25+4.75j) == 0.25+0.75j
342
+
343
+ def test_isnan_etc():
344
+ from mpmath.rational import mpq
345
+ assert isnan(nan) == True
346
+ assert isnan(3) == False
347
+ assert isnan(mpf(3)) == False
348
+ assert isnan(inf) == False
349
+ assert isnan(mpc(2,nan)) == True
350
+ assert isnan(mpc(2,nan)) == True
351
+ assert isnan(mpc(nan,nan)) == True
352
+ assert isnan(mpc(2,2)) == False
353
+ assert isnan(mpc(nan,inf)) == True
354
+ assert isnan(mpc(inf,inf)) == False
355
+ assert isnan(mpq((3,2))) == False
356
+ assert isnan(mpq((0,1))) == False
357
+ assert isinf(inf) == True
358
+ assert isinf(-inf) == True
359
+ assert isinf(3) == False
360
+ assert isinf(nan) == False
361
+ assert isinf(3+4j) == False
362
+ assert isinf(mpc(inf)) == True
363
+ assert isinf(mpc(3,inf)) == True
364
+ assert isinf(mpc(inf,3)) == True
365
+ assert isinf(mpc(inf,inf)) == True
366
+ assert isinf(mpc(nan,inf)) == True
367
+ assert isinf(mpc(inf,nan)) == True
368
+ assert isinf(mpc(nan,nan)) == False
369
+ assert isinf(mpq((3,2))) == False
370
+ assert isinf(mpq((0,1))) == False
371
+ assert isnormal(3) == True
372
+ assert isnormal(3.5) == True
373
+ assert isnormal(mpf(3.5)) == True
374
+ assert isnormal(0) == False
375
+ assert isnormal(mpf(0)) == False
376
+ assert isnormal(0.0) == False
377
+ assert isnormal(inf) == False
378
+ assert isnormal(-inf) == False
379
+ assert isnormal(nan) == False
380
+ assert isnormal(float(inf)) == False
381
+ assert isnormal(mpc(0,0)) == False
382
+ assert isnormal(mpc(3,0)) == True
383
+ assert isnormal(mpc(0,3)) == True
384
+ assert isnormal(mpc(3,3)) == True
385
+ assert isnormal(mpc(0,nan)) == False
386
+ assert isnormal(mpc(0,inf)) == False
387
+ assert isnormal(mpc(3,nan)) == False
388
+ assert isnormal(mpc(3,inf)) == False
389
+ assert isnormal(mpc(3,-inf)) == False
390
+ assert isnormal(mpc(nan,0)) == False
391
+ assert isnormal(mpc(inf,0)) == False
392
+ assert isnormal(mpc(nan,3)) == False
393
+ assert isnormal(mpc(inf,3)) == False
394
+ assert isnormal(mpc(inf,nan)) == False
395
+ assert isnormal(mpc(nan,inf)) == False
396
+ assert isnormal(mpc(nan,nan)) == False
397
+ assert isnormal(mpc(inf,inf)) == False
398
+ assert isnormal(mpq((3,2))) == True
399
+ assert isnormal(mpq((0,1))) == False
400
+ assert isint(3) == True
401
+ assert isint(0) == True
402
+ assert isint(long(3)) == True
403
+ assert isint(long(0)) == True
404
+ assert isint(mpf(3)) == True
405
+ assert isint(mpf(0)) == True
406
+ assert isint(mpf(-3)) == True
407
+ assert isint(mpf(3.2)) == False
408
+ assert isint(3.2) == False
409
+ assert isint(nan) == False
410
+ assert isint(inf) == False
411
+ assert isint(-inf) == False
412
+ assert isint(mpc(0)) == True
413
+ assert isint(mpc(3)) == True
414
+ assert isint(mpc(3.2)) == False
415
+ assert isint(mpc(3,inf)) == False
416
+ assert isint(mpc(inf)) == False
417
+ assert isint(mpc(3,2)) == False
418
+ assert isint(mpc(0,2)) == False
419
+ assert isint(mpc(3,2),gaussian=True) == True
420
+ assert isint(mpc(3,0),gaussian=True) == True
421
+ assert isint(mpc(0,3),gaussian=True) == True
422
+ assert isint(3+4j) == False
423
+ assert isint(3+4j, gaussian=True) == True
424
+ assert isint(3+0j) == True
425
+ assert isint(mpq((3,2))) == False
426
+ assert isint(mpq((3,9))) == False
427
+ assert isint(mpq((9,3))) == True
428
+ assert isint(mpq((0,4))) == True
429
+ assert isint(mpq((1,1))) == True
430
+ assert isint(mpq((-1,1))) == True
431
+ assert mp.isnpint(0) == True
432
+ assert mp.isnpint(1) == False
433
+ assert mp.isnpint(-1) == True
434
+ assert mp.isnpint(-1.1) == False
435
+ assert mp.isnpint(-1.0) == True
436
+ assert mp.isnpint(mp.mpq(1,2)) == False
437
+ assert mp.isnpint(mp.mpq(-1,2)) == False
438
+ assert mp.isnpint(mp.mpq(-3,1)) == True
439
+ assert mp.isnpint(mp.mpq(0,1)) == True
440
+ assert mp.isnpint(mp.mpq(1,1)) == False
441
+ assert mp.isnpint(0+0j) == True
442
+ assert mp.isnpint(-1+0j) == True
443
+ assert mp.isnpint(-1.1+0j) == False
444
+ assert mp.isnpint(-1+0.1j) == False
445
+ assert mp.isnpint(0+0.1j) == False
446
+
447
+
448
+ def test_issue_438():
449
+ assert mpf(finf) == mpf('inf')
450
+ assert mpf(fninf) == mpf('-inf')
451
+ assert mpf(fnan)._mpf_ == mpf('nan')._mpf_
env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_bitwise.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Test bit-level integer and mpf operations
3
+ """
4
+
5
+ from mpmath import *
6
+ from mpmath.libmp import *
7
+
8
+ def test_bitcount():
9
+ assert bitcount(0) == 0
10
+ assert bitcount(1) == 1
11
+ assert bitcount(7) == 3
12
+ assert bitcount(8) == 4
13
+ assert bitcount(2**100) == 101
14
+ assert bitcount(2**100-1) == 100
15
+
16
+ def test_trailing():
17
+ assert trailing(0) == 0
18
+ assert trailing(1) == 0
19
+ assert trailing(2) == 1
20
+ assert trailing(7) == 0
21
+ assert trailing(8) == 3
22
+ assert trailing(2**100) == 100
23
+ assert trailing(2**100-1) == 0
24
+
25
+ def test_round_down():
26
+ assert from_man_exp(0, -4, 4, round_down)[:3] == (0, 0, 0)
27
+ assert from_man_exp(0xf0, -4, 4, round_down)[:3] == (0, 15, 0)
28
+ assert from_man_exp(0xf1, -4, 4, round_down)[:3] == (0, 15, 0)
29
+ assert from_man_exp(0xff, -4, 4, round_down)[:3] == (0, 15, 0)
30
+ assert from_man_exp(-0xf0, -4, 4, round_down)[:3] == (1, 15, 0)
31
+ assert from_man_exp(-0xf1, -4, 4, round_down)[:3] == (1, 15, 0)
32
+ assert from_man_exp(-0xff, -4, 4, round_down)[:3] == (1, 15, 0)
33
+
34
+ def test_round_up():
35
+ assert from_man_exp(0, -4, 4, round_up)[:3] == (0, 0, 0)
36
+ assert from_man_exp(0xf0, -4, 4, round_up)[:3] == (0, 15, 0)
37
+ assert from_man_exp(0xf1, -4, 4, round_up)[:3] == (0, 1, 4)
38
+ assert from_man_exp(0xff, -4, 4, round_up)[:3] == (0, 1, 4)
39
+ assert from_man_exp(-0xf0, -4, 4, round_up)[:3] == (1, 15, 0)
40
+ assert from_man_exp(-0xf1, -4, 4, round_up)[:3] == (1, 1, 4)
41
+ assert from_man_exp(-0xff, -4, 4, round_up)[:3] == (1, 1, 4)
42
+
43
+ def test_round_floor():
44
+ assert from_man_exp(0, -4, 4, round_floor)[:3] == (0, 0, 0)
45
+ assert from_man_exp(0xf0, -4, 4, round_floor)[:3] == (0, 15, 0)
46
+ assert from_man_exp(0xf1, -4, 4, round_floor)[:3] == (0, 15, 0)
47
+ assert from_man_exp(0xff, -4, 4, round_floor)[:3] == (0, 15, 0)
48
+ assert from_man_exp(-0xf0, -4, 4, round_floor)[:3] == (1, 15, 0)
49
+ assert from_man_exp(-0xf1, -4, 4, round_floor)[:3] == (1, 1, 4)
50
+ assert from_man_exp(-0xff, -4, 4, round_floor)[:3] == (1, 1, 4)
51
+
52
+ def test_round_ceiling():
53
+ assert from_man_exp(0, -4, 4, round_ceiling)[:3] == (0, 0, 0)
54
+ assert from_man_exp(0xf0, -4, 4, round_ceiling)[:3] == (0, 15, 0)
55
+ assert from_man_exp(0xf1, -4, 4, round_ceiling)[:3] == (0, 1, 4)
56
+ assert from_man_exp(0xff, -4, 4, round_ceiling)[:3] == (0, 1, 4)
57
+ assert from_man_exp(-0xf0, -4, 4, round_ceiling)[:3] == (1, 15, 0)
58
+ assert from_man_exp(-0xf1, -4, 4, round_ceiling)[:3] == (1, 15, 0)
59
+ assert from_man_exp(-0xff, -4, 4, round_ceiling)[:3] == (1, 15, 0)
60
+
61
+ def test_round_nearest():
62
+ assert from_man_exp(0, -4, 4, round_nearest)[:3] == (0, 0, 0)
63
+ assert from_man_exp(0xf0, -4, 4, round_nearest)[:3] == (0, 15, 0)
64
+ assert from_man_exp(0xf7, -4, 4, round_nearest)[:3] == (0, 15, 0)
65
+ assert from_man_exp(0xf8, -4, 4, round_nearest)[:3] == (0, 1, 4) # 1111.1000 -> 10000.0
66
+ assert from_man_exp(0xf9, -4, 4, round_nearest)[:3] == (0, 1, 4) # 1111.1001 -> 10000.0
67
+ assert from_man_exp(0xe8, -4, 4, round_nearest)[:3] == (0, 7, 1) # 1110.1000 -> 1110.0
68
+ assert from_man_exp(0xe9, -4, 4, round_nearest)[:3] == (0, 15, 0) # 1110.1001 -> 1111.0
69
+ assert from_man_exp(-0xf0, -4, 4, round_nearest)[:3] == (1, 15, 0)
70
+ assert from_man_exp(-0xf7, -4, 4, round_nearest)[:3] == (1, 15, 0)
71
+ assert from_man_exp(-0xf8, -4, 4, round_nearest)[:3] == (1, 1, 4)
72
+ assert from_man_exp(-0xf9, -4, 4, round_nearest)[:3] == (1, 1, 4)
73
+ assert from_man_exp(-0xe8, -4, 4, round_nearest)[:3] == (1, 7, 1)
74
+ assert from_man_exp(-0xe9, -4, 4, round_nearest)[:3] == (1, 15, 0)
75
+
76
+ def test_rounding_bugs():
77
+ # 1 less than power-of-two cases
78
+ assert from_man_exp(72057594037927935, -56, 53, round_up) == (0, 1, 0, 1)
79
+ assert from_man_exp(73786976294838205979, -65, 53, round_nearest) == (0, 1, 1, 1)
80
+ assert from_man_exp(31, 0, 4, round_up) == (0, 1, 5, 1)
81
+ assert from_man_exp(-31, 0, 4, round_floor) == (1, 1, 5, 1)
82
+ assert from_man_exp(255, 0, 7, round_up) == (0, 1, 8, 1)
83
+ assert from_man_exp(-255, 0, 7, round_floor) == (1, 1, 8, 1)
84
+
85
+ def test_rounding_issue_200():
86
+ a = from_man_exp(9867,-100)
87
+ b = from_man_exp(9867,-200)
88
+ c = from_man_exp(-1,0)
89
+ z = (1, 1023, -10, 10)
90
+ assert mpf_add(a, c, 10, 'd') == z
91
+ assert mpf_add(b, c, 10, 'd') == z
92
+ assert mpf_add(c, a, 10, 'd') == z
93
+ assert mpf_add(c, b, 10, 'd') == z
94
+
95
+ def test_perturb():
96
+ a = fone
97
+ b = from_float(0.99999999999999989)
98
+ c = from_float(1.0000000000000002)
99
+ assert mpf_perturb(a, 0, 53, round_nearest) == a
100
+ assert mpf_perturb(a, 1, 53, round_nearest) == a
101
+ assert mpf_perturb(a, 0, 53, round_up) == c
102
+ assert mpf_perturb(a, 0, 53, round_ceiling) == c
103
+ assert mpf_perturb(a, 0, 53, round_down) == a
104
+ assert mpf_perturb(a, 0, 53, round_floor) == a
105
+ assert mpf_perturb(a, 1, 53, round_up) == a
106
+ assert mpf_perturb(a, 1, 53, round_ceiling) == a
107
+ assert mpf_perturb(a, 1, 53, round_down) == b
108
+ assert mpf_perturb(a, 1, 53, round_floor) == b
109
+ a = mpf_neg(a)
110
+ b = mpf_neg(b)
111
+ c = mpf_neg(c)
112
+ assert mpf_perturb(a, 0, 53, round_nearest) == a
113
+ assert mpf_perturb(a, 1, 53, round_nearest) == a
114
+ assert mpf_perturb(a, 0, 53, round_up) == a
115
+ assert mpf_perturb(a, 0, 53, round_floor) == a
116
+ assert mpf_perturb(a, 0, 53, round_down) == b
117
+ assert mpf_perturb(a, 0, 53, round_ceiling) == b
118
+ assert mpf_perturb(a, 1, 53, round_up) == c
119
+ assert mpf_perturb(a, 1, 53, round_floor) == c
120
+ assert mpf_perturb(a, 1, 53, round_down) == a
121
+ assert mpf_perturb(a, 1, 53, round_ceiling) == a
122
+
123
+ def test_add_exact():
124
+ ff = from_float
125
+ assert mpf_add(ff(3.0), ff(2.5)) == ff(5.5)
126
+ assert mpf_add(ff(3.0), ff(-2.5)) == ff(0.5)
127
+ assert mpf_add(ff(-3.0), ff(2.5)) == ff(-0.5)
128
+ assert mpf_add(ff(-3.0), ff(-2.5)) == ff(-5.5)
129
+ assert mpf_sub(mpf_add(fone, ff(1e-100)), fone) == ff(1e-100)
130
+ assert mpf_sub(mpf_add(ff(1e-100), fone), fone) == ff(1e-100)
131
+ assert mpf_sub(mpf_add(fone, ff(-1e-100)), fone) == ff(-1e-100)
132
+ assert mpf_sub(mpf_add(ff(-1e-100), fone), fone) == ff(-1e-100)
133
+ assert mpf_add(fone, fzero) == fone
134
+ assert mpf_add(fzero, fone) == fone
135
+ assert mpf_add(fzero, fzero) == fzero
136
+
137
+ def test_long_exponent_shifts():
138
+ mp.dps = 15
139
+ # Check for possible bugs due to exponent arithmetic overflow
140
+ # in a C implementation
141
+ x = mpf(1)
142
+ for p in [32, 64]:
143
+ a = ldexp(1,2**(p-1))
144
+ b = ldexp(1,2**p)
145
+ c = ldexp(1,2**(p+1))
146
+ d = ldexp(1,-2**(p-1))
147
+ e = ldexp(1,-2**p)
148
+ f = ldexp(1,-2**(p+1))
149
+ assert (x+a) == a
150
+ assert (x+b) == b
151
+ assert (x+c) == c
152
+ assert (x+d) == x
153
+ assert (x+e) == x
154
+ assert (x+f) == x
155
+ assert (a+x) == a
156
+ assert (b+x) == b
157
+ assert (c+x) == c
158
+ assert (d+x) == x
159
+ assert (e+x) == x
160
+ assert (f+x) == x
161
+ assert (x-a) == -a
162
+ assert (x-b) == -b
163
+ assert (x-c) == -c
164
+ assert (x-d) == x
165
+ assert (x-e) == x
166
+ assert (x-f) == x
167
+ assert (a-x) == a
168
+ assert (b-x) == b
169
+ assert (c-x) == c
170
+ assert (d-x) == -x
171
+ assert (e-x) == -x
172
+ assert (f-x) == -x
173
+
174
+ def test_float_rounding():
175
+ mp.prec = 64
176
+ for x in [mpf(1), mpf(1)+eps, mpf(1)-eps, -mpf(1)+eps, -mpf(1)-eps]:
177
+ fa = float(x)
178
+ fb = float(fadd(x,0,prec=53,rounding='n'))
179
+ assert fa == fb
180
+ z = mpc(x,x)
181
+ ca = complex(z)
182
+ cb = complex(fadd(z,0,prec=53,rounding='n'))
183
+ assert ca == cb
184
+ for rnd in ['n', 'd', 'u', 'f', 'c']:
185
+ fa = to_float(x._mpf_, rnd=rnd)
186
+ fb = to_float(fadd(x,0,prec=53,rounding=rnd)._mpf_, rnd=rnd)
187
+ assert fa == fb
188
+ mp.prec = 53
env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_calculus.py ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+ from mpmath import *
3
+
4
+ def test_approximation():
5
+ mp.dps = 15
6
+ f = lambda x: cos(2-2*x)/x
7
+ p, err = chebyfit(f, [2, 4], 8, error=True)
8
+ assert err < 1e-5
9
+ for i in range(10):
10
+ x = 2 + i/5.
11
+ assert abs(polyval(p, x) - f(x)) < err
12
+
13
+ def test_limits():
14
+ mp.dps = 15
15
+ assert limit(lambda x: (x-sin(x))/x**3, 0).ae(mpf(1)/6)
16
+ assert limit(lambda n: (1+1/n)**n, inf).ae(e)
17
+
18
+ def test_polyval():
19
+ assert polyval([], 3) == 0
20
+ assert polyval([0], 3) == 0
21
+ assert polyval([5], 3) == 5
22
+ # 4x^3 - 2x + 5
23
+ p = [4, 0, -2, 5]
24
+ assert polyval(p,4) == 253
25
+ assert polyval(p,4,derivative=True) == (253, 190)
26
+
27
+ def test_polyroots():
28
+ p = polyroots([1,-4])
29
+ assert p[0].ae(4)
30
+ p, q = polyroots([1,2,3])
31
+ assert p.ae(-1 - sqrt(2)*j)
32
+ assert q.ae(-1 + sqrt(2)*j)
33
+ #this is not a real test, it only tests a specific case
34
+ assert polyroots([1]) == []
35
+ pytest.raises(ValueError, lambda: polyroots([0]))
36
+
37
+ def test_polyroots_legendre():
38
+ n = 64
39
+ coeffs = [11975573020964041433067793888190275875, 0,
40
+ -190100434726484311252477736051902332000, 0,
41
+ 1437919688271127330313741595496589239248, 0,
42
+ -6897338342113537600691931230430793911840, 0,
43
+ 23556405536185284408974715545252277554280, 0,
44
+ -60969520211303089058522793175947071316960, 0,
45
+ 124284021969194758465450309166353645376880, 0,
46
+ -204721258548015217049921875719981284186016, 0,
47
+ 277415422258095841688223780704620656114900, 0,
48
+ -313237834141273382807123548182995095192800, 0,
49
+ 297432255354328395601259515935229287637200, 0,
50
+ -239057700565161140389797367947941296605600, 0,
51
+ 163356095386193445933028201431093219347160, 0,
52
+ -95158890516229191805647495979277603503200, 0,
53
+ 47310254620162038075933656063247634556400, 0,
54
+ -20071017111583894941305187420771723751200, 0,
55
+ 7255051932731034189479516844750603752850, 0,
56
+ -2228176940331017311443863996901733412640, 0,
57
+ 579006552594977616773047095969088431600, 0,
58
+ -126584428502545713788439446082310831200, 0,
59
+ 23112325428835593809686977515028663000, 0,
60
+ -3491517141958743235617737161547844000, 0,
61
+ 431305058712550634988073414073557200, 0,
62
+ -42927166660756742088912492757452000, 0,
63
+ 3378527005707706553294038781836500, 0,
64
+ -205277590220215081719131470288800, 0,
65
+ 9330799555464321896324157740400, 0,
66
+ -304114948474392713657972548576, 0,
67
+ 6695289961520387531608984680, 0,
68
+ -91048139350447232095702560, 0,
69
+ 659769125727878493447120, 0,
70
+ -1905929106580294155360, 0,
71
+ 916312070471295267]
72
+
73
+ with mp.workdps(3):
74
+ with pytest.raises(mp.NoConvergence):
75
+ polyroots(coeffs, maxsteps=5, cleanup=True, error=False,
76
+ extraprec=n*10)
77
+
78
+ roots = polyroots(coeffs, maxsteps=50, cleanup=True, error=False,
79
+ extraprec=n*10)
80
+ roots = [str(r) for r in roots]
81
+ assert roots == \
82
+ ['-0.999', '-0.996', '-0.991', '-0.983', '-0.973', '-0.961',
83
+ '-0.946', '-0.93', '-0.911', '-0.889', '-0.866', '-0.841',
84
+ '-0.813', '-0.784', '-0.753', '-0.72', '-0.685', '-0.649',
85
+ '-0.611', '-0.572', '-0.531', '-0.489', '-0.446', '-0.402',
86
+ '-0.357', '-0.311', '-0.265', '-0.217', '-0.17', '-0.121',
87
+ '-0.073', '-0.0243', '0.0243', '0.073', '0.121', '0.17', '0.217',
88
+ '0.265', '0.311', '0.357', '0.402', '0.446', '0.489', '0.531',
89
+ '0.572', '0.611', '0.649', '0.685', '0.72', '0.753', '0.784',
90
+ '0.813', '0.841', '0.866', '0.889', '0.911', '0.93', '0.946',
91
+ '0.961', '0.973', '0.983', '0.991', '0.996', '0.999']
92
+
93
+ def test_polyroots_legendre_init():
94
+ extra_prec = 100
95
+ coeffs = [11975573020964041433067793888190275875, 0,
96
+ -190100434726484311252477736051902332000, 0,
97
+ 1437919688271127330313741595496589239248, 0,
98
+ -6897338342113537600691931230430793911840, 0,
99
+ 23556405536185284408974715545252277554280, 0,
100
+ -60969520211303089058522793175947071316960, 0,
101
+ 124284021969194758465450309166353645376880, 0,
102
+ -204721258548015217049921875719981284186016, 0,
103
+ 277415422258095841688223780704620656114900, 0,
104
+ -313237834141273382807123548182995095192800, 0,
105
+ 297432255354328395601259515935229287637200, 0,
106
+ -239057700565161140389797367947941296605600, 0,
107
+ 163356095386193445933028201431093219347160, 0,
108
+ -95158890516229191805647495979277603503200, 0,
109
+ 47310254620162038075933656063247634556400, 0,
110
+ -20071017111583894941305187420771723751200, 0,
111
+ 7255051932731034189479516844750603752850, 0,
112
+ -2228176940331017311443863996901733412640, 0,
113
+ 579006552594977616773047095969088431600, 0,
114
+ -126584428502545713788439446082310831200, 0,
115
+ 23112325428835593809686977515028663000, 0,
116
+ -3491517141958743235617737161547844000, 0,
117
+ 431305058712550634988073414073557200, 0,
118
+ -42927166660756742088912492757452000, 0,
119
+ 3378527005707706553294038781836500, 0,
120
+ -205277590220215081719131470288800, 0,
121
+ 9330799555464321896324157740400, 0,
122
+ -304114948474392713657972548576, 0,
123
+ 6695289961520387531608984680, 0,
124
+ -91048139350447232095702560, 0,
125
+ 659769125727878493447120, 0,
126
+ -1905929106580294155360, 0,
127
+ 916312070471295267]
128
+
129
+ roots_init = matrix(['-0.999', '-0.996', '-0.991', '-0.983', '-0.973',
130
+ '-0.961', '-0.946', '-0.93', '-0.911', '-0.889',
131
+ '-0.866', '-0.841', '-0.813', '-0.784', '-0.753',
132
+ '-0.72', '-0.685', '-0.649', '-0.611', '-0.572',
133
+ '-0.531', '-0.489', '-0.446', '-0.402', '-0.357',
134
+ '-0.311', '-0.265', '-0.217', '-0.17', '-0.121',
135
+ '-0.073', '-0.0243', '0.0243', '0.073', '0.121',
136
+ '0.17', '0.217', '0.265', ' 0.311', '0.357',
137
+ '0.402', '0.446', '0.489', '0.531', '0.572',
138
+ '0.611', '0.649', '0.685', '0.72', '0.753',
139
+ '0.784', '0.813', '0.841', '0.866', '0.889',
140
+ '0.911', '0.93', '0.946', '0.961', '0.973',
141
+ '0.983', '0.991', '0.996', '0.999', '1.0'])
142
+ with mp.workdps(2*mp.dps):
143
+ roots_exact = polyroots(coeffs, maxsteps=50, cleanup=True, error=False,
144
+ extraprec=2*extra_prec)
145
+ with pytest.raises(mp.NoConvergence):
146
+ polyroots(coeffs, maxsteps=5, cleanup=True, error=False,
147
+ extraprec=extra_prec)
148
+ roots,err = polyroots(coeffs, maxsteps=5, cleanup=True, error=True,
149
+ extraprec=extra_prec,roots_init=roots_init)
150
+ assert max(matrix(roots_exact)-matrix(roots).apply(abs)) < err
151
+ roots1,err1 = polyroots(coeffs, maxsteps=25, cleanup=True, error=True,
152
+ extraprec=extra_prec,roots_init=roots_init[:60])
153
+ assert max(matrix(roots_exact)-matrix(roots1).apply(abs)) < err1
154
+
155
+ def test_pade():
156
+ one = mpf(1)
157
+ mp.dps = 20
158
+ N = 10
159
+ a = [one]
160
+ k = 1
161
+ for i in range(1, N+1):
162
+ k *= i
163
+ a.append(one/k)
164
+ p, q = pade(a, N//2, N//2)
165
+ for x in arange(0, 1, 0.1):
166
+ r = polyval(p[::-1], x)/polyval(q[::-1], x)
167
+ assert(r.ae(exp(x), 1.0e-10))
168
+ mp.dps = 15
169
+
170
+ def test_fourier():
171
+ mp.dps = 15
172
+ c, s = fourier(lambda x: x+1, [-1, 2], 2)
173
+ #plot([lambda x: x+1, lambda x: fourierval((c, s), [-1, 2], x)], [-1, 2])
174
+ assert c[0].ae(1.5)
175
+ assert c[1].ae(-3*sqrt(3)/(2*pi))
176
+ assert c[2].ae(3*sqrt(3)/(4*pi))
177
+ assert s[0] == 0
178
+ assert s[1].ae(3/(2*pi))
179
+ assert s[2].ae(3/(4*pi))
180
+ assert fourierval((c, s), [-1, 2], 1).ae(1.9134966715663442)
181
+
182
+ def test_differint():
183
+ mp.dps = 15
184
+ assert differint(lambda t: t, 2, -0.5).ae(8*sqrt(2/pi)/3)
185
+
186
+ def test_invlap():
187
+ mp.dps = 15
188
+ t = 0.01
189
+ fp = lambda p: 1/(p+1)**2
190
+ ft = lambda t: t*exp(-t)
191
+ ftt = ft(t)
192
+ assert invertlaplace(fp,t,method='talbot').ae(ftt)
193
+ assert invertlaplace(fp,t,method='stehfest').ae(ftt)
194
+ assert invertlaplace(fp,t,method='dehoog').ae(ftt)
195
+ assert invertlaplace(fp,t,method='cohen').ae(ftt)
196
+ t = 1.0
197
+ ftt = ft(t)
198
+ assert invertlaplace(fp,t,method='talbot').ae(ftt)
199
+ assert invertlaplace(fp,t,method='stehfest').ae(ftt)
200
+ assert invertlaplace(fp,t,method='dehoog').ae(ftt)
201
+ assert invertlaplace(fp,t,method='cohen').ae(ftt)
202
+
203
+ t = 0.01
204
+ fp = lambda p: log(p)/p
205
+ ft = lambda t: -euler-log(t)
206
+ ftt = ft(t)
207
+ assert invertlaplace(fp,t,method='talbot').ae(ftt)
208
+ assert invertlaplace(fp,t,method='stehfest').ae(ftt)
209
+ assert invertlaplace(fp,t,method='dehoog').ae(ftt)
210
+ assert invertlaplace(fp,t,method='cohen').ae(ftt)
211
+ t = 1.0
212
+ ftt = ft(t)
213
+ assert invertlaplace(fp,t,method='talbot').ae(ftt)
214
+ assert invertlaplace(fp,t,method='stehfest').ae(ftt)
215
+ assert invertlaplace(fp,t,method='dehoog').ae(ftt)
216
+ assert invertlaplace(fp,t,method='cohen').ae(ftt)
env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_compatibility.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from mpmath import *
2
+ from random import seed, randint, random
3
+ import math
4
+
5
+ # Test compatibility with Python floats, which are
6
+ # IEEE doubles (53-bit)
7
+
8
+ N = 5000
9
+ seed(1)
10
+
11
+ # Choosing exponents between roughly -140, 140 ensures that
12
+ # the Python floats don't overflow or underflow
13
+ xs = [(random()-1) * 10**randint(-140, 140) for x in range(N)]
14
+ ys = [(random()-1) * 10**randint(-140, 140) for x in range(N)]
15
+
16
+ # include some equal values
17
+ ys[int(N*0.8):] = xs[int(N*0.8):]
18
+
19
+ # Detect whether Python is compiled to use 80-bit floating-point
20
+ # instructions, in which case the double compatibility test breaks
21
+ uses_x87 = -4.1974624032366689e+117 / -8.4657370748010221e-47 \
22
+ == 4.9581771393902231e+163
23
+
24
+ def test_double_compatibility():
25
+ mp.prec = 53
26
+ for x, y in zip(xs, ys):
27
+ mpx = mpf(x)
28
+ mpy = mpf(y)
29
+ assert mpf(x) == x
30
+ assert (mpx < mpy) == (x < y)
31
+ assert (mpx > mpy) == (x > y)
32
+ assert (mpx == mpy) == (x == y)
33
+ assert (mpx != mpy) == (x != y)
34
+ assert (mpx <= mpy) == (x <= y)
35
+ assert (mpx >= mpy) == (x >= y)
36
+ assert mpx == mpx
37
+ if uses_x87:
38
+ mp.prec = 64
39
+ a = mpx + mpy
40
+ b = mpx * mpy
41
+ c = mpx / mpy
42
+ d = mpx % mpy
43
+ mp.prec = 53
44
+ assert +a == x + y
45
+ assert +b == x * y
46
+ assert +c == x / y
47
+ assert +d == x % y
48
+ else:
49
+ assert mpx + mpy == x + y
50
+ assert mpx * mpy == x * y
51
+ assert mpx / mpy == x / y
52
+ assert mpx % mpy == x % y
53
+ assert abs(mpx) == abs(x)
54
+ assert mpf(repr(x)) == x
55
+ assert ceil(mpx) == math.ceil(x)
56
+ assert floor(mpx) == math.floor(x)
57
+
58
+ def test_sqrt():
59
+ # this fails quite often. it appers to be float
60
+ # that rounds the wrong way, not mpf
61
+ fail = 0
62
+ mp.prec = 53
63
+ for x in xs:
64
+ x = abs(x)
65
+ mp.prec = 100
66
+ mp_high = mpf(x)**0.5
67
+ mp.prec = 53
68
+ mp_low = mpf(x)**0.5
69
+ fp = x**0.5
70
+ assert abs(mp_low-mp_high) <= abs(fp-mp_high)
71
+ fail += mp_low != fp
72
+ assert fail < N/10
73
+
74
+ def test_bugs():
75
+ # particular bugs
76
+ assert mpf(4.4408920985006262E-16) < mpf(1.7763568394002505E-15)
77
+ assert mpf(-4.4408920985006262E-16) > mpf(-1.7763568394002505E-15)
env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_convert.py ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ from mpmath import *
3
+ from mpmath.libmp import *
4
+
5
+
6
+ def test_basic_string():
7
+ """
8
+ Test basic string conversion
9
+ """
10
+ mp.dps = 15
11
+ assert mpf('3') == mpf('3.0') == mpf('0003.') == mpf('0.03e2') == mpf(3.0)
12
+ assert mpf('30') == mpf('30.0') == mpf('00030.') == mpf(30.0)
13
+ for i in range(10):
14
+ for j in range(10):
15
+ assert mpf('%ie%i' % (i,j)) == i * 10**j
16
+ assert str(mpf('25000.0')) == '25000.0'
17
+ assert str(mpf('2500.0')) == '2500.0'
18
+ assert str(mpf('250.0')) == '250.0'
19
+ assert str(mpf('25.0')) == '25.0'
20
+ assert str(mpf('2.5')) == '2.5'
21
+ assert str(mpf('0.25')) == '0.25'
22
+ assert str(mpf('0.025')) == '0.025'
23
+ assert str(mpf('0.0025')) == '0.0025'
24
+ assert str(mpf('0.00025')) == '0.00025'
25
+ assert str(mpf('0.000025')) == '2.5e-5'
26
+ assert str(mpf(0)) == '0.0'
27
+ assert str(mpf('2.5e1000000000000000000000')) == '2.5e+1000000000000000000000'
28
+ assert str(mpf('2.6e-1000000000000000000000')) == '2.6e-1000000000000000000000'
29
+ assert str(mpf(1.23402834e-15)) == '1.23402834e-15'
30
+ assert str(mpf(-1.23402834e-15)) == '-1.23402834e-15'
31
+ assert str(mpf(-1.2344e-15)) == '-1.2344e-15'
32
+ assert repr(mpf(-1.2344e-15)) == "mpf('-1.2343999999999999e-15')"
33
+ assert str(mpf("2163048125L")) == '2163048125.0'
34
+ assert str(mpf("-2163048125l")) == '-2163048125.0'
35
+ assert str(mpf("-2163048125L/1088391168")) == '-1.98738118113799'
36
+ assert str(mpf("2163048125/1088391168l")) == '1.98738118113799'
37
+
38
+ def test_pretty():
39
+ mp.pretty = True
40
+ assert repr(mpf(2.5)) == '2.5'
41
+ assert repr(mpc(2.5,3.5)) == '(2.5 + 3.5j)'
42
+ mp.pretty = False
43
+ iv.pretty = True
44
+ assert repr(mpi(2.5,3.5)) == '[2.5, 3.5]'
45
+ iv.pretty = False
46
+
47
+ def test_str_whitespace():
48
+ assert mpf('1.26 ') == 1.26
49
+
50
+ def test_unicode():
51
+ mp.dps = 15
52
+ try:
53
+ unicode = unicode
54
+ except NameError:
55
+ unicode = str
56
+ assert mpf(unicode('2.76')) == 2.76
57
+ assert mpf(unicode('inf')) == inf
58
+
59
+ def test_str_format():
60
+ assert to_str(from_float(0.1),15,strip_zeros=False) == '0.100000000000000'
61
+ assert to_str(from_float(0.0),15,show_zero_exponent=True) == '0.0e+0'
62
+ assert to_str(from_float(0.0),0,show_zero_exponent=True) == '.0e+0'
63
+ assert to_str(from_float(0.0),0,show_zero_exponent=False) == '.0'
64
+ assert to_str(from_float(0.0),1,show_zero_exponent=True) == '0.0e+0'
65
+ assert to_str(from_float(0.0),1,show_zero_exponent=False) == '0.0'
66
+ assert to_str(from_float(1.23),3,show_zero_exponent=True) == '1.23e+0'
67
+ assert to_str(from_float(1.23456789000000e-2),15,strip_zeros=False,min_fixed=0,max_fixed=0) == '1.23456789000000e-2'
68
+ assert to_str(from_float(1.23456789000000e+2),15,strip_zeros=False,min_fixed=0,max_fixed=0) == '1.23456789000000e+2'
69
+ assert to_str(from_float(2.1287e14), 15, max_fixed=1000) == '212870000000000.0'
70
+ assert to_str(from_float(2.1287e15), 15, max_fixed=1000) == '2128700000000000.0'
71
+ assert to_str(from_float(2.1287e16), 15, max_fixed=1000) == '21287000000000000.0'
72
+ assert to_str(from_float(2.1287e30), 15, max_fixed=1000) == '2128700000000000000000000000000.0'
73
+
74
+ def test_tight_string_conversion():
75
+ mp.dps = 15
76
+ # In an old version, '0.5' wasn't recognized as representing
77
+ # an exact binary number and was erroneously rounded up or down
78
+ assert from_str('0.5', 10, round_floor) == fhalf
79
+ assert from_str('0.5', 10, round_ceiling) == fhalf
80
+
81
+ def test_eval_repr_invariant():
82
+ """Test that eval(repr(x)) == x"""
83
+ random.seed(123)
84
+ for dps in [10, 15, 20, 50, 100]:
85
+ mp.dps = dps
86
+ for i in range(1000):
87
+ a = mpf(random.random())**0.5 * 10**random.randint(-100, 100)
88
+ assert eval(repr(a)) == a
89
+ mp.dps = 15
90
+
91
+ def test_str_bugs():
92
+ mp.dps = 15
93
+ # Decimal rounding used to give the wrong exponent in some cases
94
+ assert str(mpf('1e600')) == '1.0e+600'
95
+ assert str(mpf('1e10000')) == '1.0e+10000'
96
+
97
+ def test_str_prec0():
98
+ assert to_str(from_float(1.234), 0) == '.0e+0'
99
+ assert to_str(from_float(1e-15), 0) == '.0e-15'
100
+ assert to_str(from_float(1e+15), 0) == '.0e+15'
101
+ assert to_str(from_float(-1e-15), 0) == '-.0e-15'
102
+ assert to_str(from_float(-1e+15), 0) == '-.0e+15'
103
+
104
+ def test_convert_rational():
105
+ mp.dps = 15
106
+ assert from_rational(30, 5, 53, round_nearest) == (0, 3, 1, 2)
107
+ assert from_rational(-7, 4, 53, round_nearest) == (1, 7, -2, 3)
108
+ assert to_rational((0, 1, -1, 1)) == (1, 2)
109
+
110
+ def test_custom_class():
111
+ class mympf:
112
+ @property
113
+ def _mpf_(self):
114
+ return mpf(3.5)._mpf_
115
+ class mympc:
116
+ @property
117
+ def _mpc_(self):
118
+ return mpf(3.5)._mpf_, mpf(2.5)._mpf_
119
+ assert mpf(2) + mympf() == 5.5
120
+ assert mympf() + mpf(2) == 5.5
121
+ assert mpf(mympf()) == 3.5
122
+ assert mympc() + mpc(2) == mpc(5.5, 2.5)
123
+ assert mpc(2) + mympc() == mpc(5.5, 2.5)
124
+ assert mpc(mympc()) == (3.5+2.5j)
125
+
126
+ def test_conversion_methods():
127
+ class SomethingRandom:
128
+ pass
129
+ class SomethingReal:
130
+ def _mpmath_(self, prec, rounding):
131
+ return mp.make_mpf(from_str('1.3', prec, rounding))
132
+ class SomethingComplex:
133
+ def _mpmath_(self, prec, rounding):
134
+ return mp.make_mpc((from_str('1.3', prec, rounding), \
135
+ from_str('1.7', prec, rounding)))
136
+ x = mpf(3)
137
+ z = mpc(3)
138
+ a = SomethingRandom()
139
+ y = SomethingReal()
140
+ w = SomethingComplex()
141
+ for d in [15, 45]:
142
+ mp.dps = d
143
+ assert (x+y).ae(mpf('4.3'))
144
+ assert (y+x).ae(mpf('4.3'))
145
+ assert (x+w).ae(mpc('4.3', '1.7'))
146
+ assert (w+x).ae(mpc('4.3', '1.7'))
147
+ assert (z+y).ae(mpc('4.3'))
148
+ assert (y+z).ae(mpc('4.3'))
149
+ assert (z+w).ae(mpc('4.3', '1.7'))
150
+ assert (w+z).ae(mpc('4.3', '1.7'))
151
+ x-y; y-x; x-w; w-x; z-y; y-z; z-w; w-z
152
+ x*y; y*x; x*w; w*x; z*y; y*z; z*w; w*z
153
+ x/y; y/x; x/w; w/x; z/y; y/z; z/w; w/z
154
+ x**y; y**x; x**w; w**x; z**y; y**z; z**w; w**z
155
+ x==y; y==x; x==w; w==x; z==y; y==z; z==w; w==z
156
+ mp.dps = 15
157
+ assert x.__add__(a) is NotImplemented
158
+ assert x.__radd__(a) is NotImplemented
159
+ assert x.__lt__(a) is NotImplemented
160
+ assert x.__gt__(a) is NotImplemented
161
+ assert x.__le__(a) is NotImplemented
162
+ assert x.__ge__(a) is NotImplemented
163
+ assert x.__eq__(a) is NotImplemented
164
+ assert x.__ne__(a) is NotImplemented
165
+ # implementation detail
166
+ if hasattr(x, "__cmp__"):
167
+ assert x.__cmp__(a) is NotImplemented
168
+ assert x.__sub__(a) is NotImplemented
169
+ assert x.__rsub__(a) is NotImplemented
170
+ assert x.__mul__(a) is NotImplemented
171
+ assert x.__rmul__(a) is NotImplemented
172
+ assert x.__div__(a) is NotImplemented
173
+ assert x.__rdiv__(a) is NotImplemented
174
+ assert x.__mod__(a) is NotImplemented
175
+ assert x.__rmod__(a) is NotImplemented
176
+ assert x.__pow__(a) is NotImplemented
177
+ assert x.__rpow__(a) is NotImplemented
178
+ assert z.__add__(a) is NotImplemented
179
+ assert z.__radd__(a) is NotImplemented
180
+ assert z.__eq__(a) is NotImplemented
181
+ assert z.__ne__(a) is NotImplemented
182
+ assert z.__sub__(a) is NotImplemented
183
+ assert z.__rsub__(a) is NotImplemented
184
+ assert z.__mul__(a) is NotImplemented
185
+ assert z.__rmul__(a) is NotImplemented
186
+ assert z.__div__(a) is NotImplemented
187
+ assert z.__rdiv__(a) is NotImplemented
188
+ assert z.__pow__(a) is NotImplemented
189
+ assert z.__rpow__(a) is NotImplemented
190
+
191
+ def test_mpmathify():
192
+ assert mpmathify('1/2') == 0.5
193
+ assert mpmathify('(1.0+1.0j)') == mpc(1, 1)
194
+ assert mpmathify('(1.2e-10 - 3.4e5j)') == mpc('1.2e-10', '-3.4e5')
195
+ assert mpmathify('1j') == mpc(1j)
196
+
197
+ def test_issue548():
198
+ try:
199
+ # This expression is invalid, but may trigger the ReDOS vulnerability
200
+ # in the regular expression for parsing complex numbers.
201
+ mpmathify('(' + '1' * 5000 + '!j')
202
+ except:
203
+ return
204
+ # The expression is invalid and should raise an exception.
205
+ assert False
206
+
207
+ def test_compatibility():
208
+ try:
209
+ import numpy as np
210
+ from fractions import Fraction
211
+ from decimal import Decimal
212
+ import decimal
213
+ except ImportError:
214
+ return
215
+ # numpy types
216
+ for nptype in np.core.numerictypes.typeDict.values():
217
+ if issubclass(nptype, np.complexfloating):
218
+ x = nptype(complex(0.5, -0.5))
219
+ elif issubclass(nptype, np.floating):
220
+ x = nptype(0.5)
221
+ elif issubclass(nptype, np.integer):
222
+ x = nptype(2)
223
+ # Handle the weird types
224
+ try: diff = np.abs(type(np.sqrt(x))(sqrt(x)) - np.sqrt(x))
225
+ except: continue
226
+ assert diff < 2.0**-53
227
+ #Fraction and Decimal
228
+ oldprec = mp.prec
229
+ mp.prec = 1000
230
+ decimal.getcontext().prec = mp.dps
231
+ assert sqrt(Fraction(2, 3)).ae(sqrt(mpf('2/3')))
232
+ assert sqrt(Decimal(2)/Decimal(3)).ae(sqrt(mpf('2/3')))
233
+ mp.prec = oldprec
env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_diff.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from mpmath import *
2
+
3
+ def test_diff():
4
+ mp.dps = 15
5
+ assert diff(log, 2.0, n=0).ae(log(2))
6
+ assert diff(cos, 1.0).ae(-sin(1))
7
+ assert diff(abs, 0.0) == 0
8
+ assert diff(abs, 0.0, direction=1) == 1
9
+ assert diff(abs, 0.0, direction=-1) == -1
10
+ assert diff(exp, 1.0).ae(e)
11
+ assert diff(exp, 1.0, n=5).ae(e)
12
+ assert diff(exp, 2.0, n=5, direction=3*j).ae(e**2)
13
+ assert diff(lambda x: x**2, 3.0, method='quad').ae(6)
14
+ assert diff(lambda x: 3+x**5, 3.0, n=2, method='quad').ae(540)
15
+ assert diff(lambda x: 3+x**5, 3.0, n=2, method='step').ae(540)
16
+ assert diffun(sin)(2).ae(cos(2))
17
+ assert diffun(sin, n=2)(2).ae(-sin(2))
18
+
19
+ def test_diffs():
20
+ mp.dps = 15
21
+ assert [chop(d) for d in diffs(sin, 0, 1)] == [0, 1]
22
+ assert [chop(d) for d in diffs(sin, 0, 1, method='quad')] == [0, 1]
23
+ assert [chop(d) for d in diffs(sin, 0, 2)] == [0, 1, 0]
24
+ assert [chop(d) for d in diffs(sin, 0, 2, method='quad')] == [0, 1, 0]
25
+
26
+ def test_taylor():
27
+ mp.dps = 15
28
+ # Easy to test since the coefficients are exact in floating-point
29
+ assert taylor(sqrt, 1, 4) == [1, 0.5, -0.125, 0.0625, -0.0390625]
30
+
31
+ def test_diff_partial():
32
+ mp.dps = 15
33
+ x,y,z = xyz = 2,3,7
34
+ f = lambda x,y,z: 3*x**2 * (y+2)**3 * z**5
35
+ assert diff(f, xyz, (0,0,0)).ae(25210500)
36
+ assert diff(f, xyz, (0,0,1)).ae(18007500)
37
+ assert diff(f, xyz, (0,0,2)).ae(10290000)
38
+ assert diff(f, xyz, (0,1,0)).ae(15126300)
39
+ assert diff(f, xyz, (0,1,1)).ae(10804500)
40
+ assert diff(f, xyz, (0,1,2)).ae(6174000)
41
+ assert diff(f, xyz, (0,2,0)).ae(6050520)
42
+ assert diff(f, xyz, (0,2,1)).ae(4321800)
43
+ assert diff(f, xyz, (0,2,2)).ae(2469600)
44
+ assert diff(f, xyz, (1,0,0)).ae(25210500)
45
+ assert diff(f, xyz, (1,0,1)).ae(18007500)
46
+ assert diff(f, xyz, (1,0,2)).ae(10290000)
47
+ assert diff(f, xyz, (1,1,0)).ae(15126300)
48
+ assert diff(f, xyz, (1,1,1)).ae(10804500)
49
+ assert diff(f, xyz, (1,1,2)).ae(6174000)
50
+ assert diff(f, xyz, (1,2,0)).ae(6050520)
51
+ assert diff(f, xyz, (1,2,1)).ae(4321800)
52
+ assert diff(f, xyz, (1,2,2)).ae(2469600)
53
+ assert diff(f, xyz, (2,0,0)).ae(12605250)
54
+ assert diff(f, xyz, (2,0,1)).ae(9003750)
55
+ assert diff(f, xyz, (2,0,2)).ae(5145000)
56
+ assert diff(f, xyz, (2,1,0)).ae(7563150)
57
+ assert diff(f, xyz, (2,1,1)).ae(5402250)
58
+ assert diff(f, xyz, (2,1,2)).ae(3087000)
59
+ assert diff(f, xyz, (2,2,0)).ae(3025260)
60
+ assert diff(f, xyz, (2,2,1)).ae(2160900)
61
+ assert diff(f, xyz, (2,2,2)).ae(1234800)
env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_division.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from mpmath.libmp import *
2
+ from mpmath import mpf, mp
3
+
4
+ from random import randint, choice, seed
5
+
6
+ all_modes = [round_floor, round_ceiling, round_down, round_up, round_nearest]
7
+
8
+ fb = from_bstr
9
+ fi = from_int
10
+ ff = from_float
11
+
12
+
13
+ def test_div_1_3():
14
+ a = fi(1)
15
+ b = fi(3)
16
+ c = fi(-1)
17
+
18
+ # floor rounds down, ceiling rounds up
19
+ assert mpf_div(a, b, 7, round_floor) == fb('0.01010101')
20
+ assert mpf_div(a, b, 7, round_ceiling) == fb('0.01010110')
21
+ assert mpf_div(a, b, 7, round_down) == fb('0.01010101')
22
+ assert mpf_div(a, b, 7, round_up) == fb('0.01010110')
23
+ assert mpf_div(a, b, 7, round_nearest) == fb('0.01010101')
24
+
25
+ # floor rounds up, ceiling rounds down
26
+ assert mpf_div(c, b, 7, round_floor) == fb('-0.01010110')
27
+ assert mpf_div(c, b, 7, round_ceiling) == fb('-0.01010101')
28
+ assert mpf_div(c, b, 7, round_down) == fb('-0.01010101')
29
+ assert mpf_div(c, b, 7, round_up) == fb('-0.01010110')
30
+ assert mpf_div(c, b, 7, round_nearest) == fb('-0.01010101')
31
+
32
+ def test_mpf_divi_1_3():
33
+ a = 1
34
+ b = fi(3)
35
+ c = -1
36
+ assert mpf_rdiv_int(a, b, 7, round_floor) == fb('0.01010101')
37
+ assert mpf_rdiv_int(a, b, 7, round_ceiling) == fb('0.01010110')
38
+ assert mpf_rdiv_int(a, b, 7, round_down) == fb('0.01010101')
39
+ assert mpf_rdiv_int(a, b, 7, round_up) == fb('0.01010110')
40
+ assert mpf_rdiv_int(a, b, 7, round_nearest) == fb('0.01010101')
41
+ assert mpf_rdiv_int(c, b, 7, round_floor) == fb('-0.01010110')
42
+ assert mpf_rdiv_int(c, b, 7, round_ceiling) == fb('-0.01010101')
43
+ assert mpf_rdiv_int(c, b, 7, round_down) == fb('-0.01010101')
44
+ assert mpf_rdiv_int(c, b, 7, round_up) == fb('-0.01010110')
45
+ assert mpf_rdiv_int(c, b, 7, round_nearest) == fb('-0.01010101')
46
+
47
+
48
+ def test_div_300():
49
+
50
+ q = fi(1000000)
51
+ a = fi(300499999) # a/q is a little less than a half-integer
52
+ b = fi(300500000) # b/q exactly a half-integer
53
+ c = fi(300500001) # c/q is a little more than a half-integer
54
+
55
+ # Check nearest integer rounding (prec=9 as 2**8 < 300 < 2**9)
56
+
57
+ assert mpf_div(a, q, 9, round_down) == fi(300)
58
+ assert mpf_div(b, q, 9, round_down) == fi(300)
59
+ assert mpf_div(c, q, 9, round_down) == fi(300)
60
+ assert mpf_div(a, q, 9, round_up) == fi(301)
61
+ assert mpf_div(b, q, 9, round_up) == fi(301)
62
+ assert mpf_div(c, q, 9, round_up) == fi(301)
63
+
64
+ # Nearest even integer is down
65
+ assert mpf_div(a, q, 9, round_nearest) == fi(300)
66
+ assert mpf_div(b, q, 9, round_nearest) == fi(300)
67
+ assert mpf_div(c, q, 9, round_nearest) == fi(301)
68
+
69
+ # Nearest even integer is up
70
+ a = fi(301499999)
71
+ b = fi(301500000)
72
+ c = fi(301500001)
73
+ assert mpf_div(a, q, 9, round_nearest) == fi(301)
74
+ assert mpf_div(b, q, 9, round_nearest) == fi(302)
75
+ assert mpf_div(c, q, 9, round_nearest) == fi(302)
76
+
77
+
78
+ def test_tight_integer_division():
79
+ # Test that integer division at tightest possible precision is exact
80
+ N = 100
81
+ seed(1)
82
+ for i in range(N):
83
+ a = choice([1, -1]) * randint(1, 1<<randint(10, 100))
84
+ b = choice([1, -1]) * randint(1, 1<<randint(10, 100))
85
+ p = a * b
86
+ width = bitcount(abs(b)) - trailing(b)
87
+ a = fi(a); b = fi(b); p = fi(p)
88
+ for mode in all_modes:
89
+ assert mpf_div(p, a, width, mode) == b
90
+
91
+
92
+ def test_epsilon_rounding():
93
+ # Verify that mpf_div uses infinite precision; this result will
94
+ # appear to be exactly 0.101 to a near-sighted algorithm
95
+
96
+ a = fb('0.101' + ('0'*200) + '1')
97
+ b = fb('1.10101')
98
+ c = mpf_mul(a, b, 250, round_floor) # exact
99
+ assert mpf_div(c, b, bitcount(a[1]), round_floor) == a # exact
100
+
101
+ assert mpf_div(c, b, 2, round_down) == fb('0.10')
102
+ assert mpf_div(c, b, 3, round_down) == fb('0.101')
103
+ assert mpf_div(c, b, 2, round_up) == fb('0.11')
104
+ assert mpf_div(c, b, 3, round_up) == fb('0.110')
105
+ assert mpf_div(c, b, 2, round_floor) == fb('0.10')
106
+ assert mpf_div(c, b, 3, round_floor) == fb('0.101')
107
+ assert mpf_div(c, b, 2, round_ceiling) == fb('0.11')
108
+ assert mpf_div(c, b, 3, round_ceiling) == fb('0.110')
109
+
110
+ # The same for negative numbers
111
+ a = fb('-0.101' + ('0'*200) + '1')
112
+ b = fb('1.10101')
113
+ c = mpf_mul(a, b, 250, round_floor)
114
+ assert mpf_div(c, b, bitcount(a[1]), round_floor) == a
115
+
116
+ assert mpf_div(c, b, 2, round_down) == fb('-0.10')
117
+ assert mpf_div(c, b, 3, round_up) == fb('-0.110')
118
+
119
+ # Floor goes up, ceiling goes down
120
+ assert mpf_div(c, b, 2, round_floor) == fb('-0.11')
121
+ assert mpf_div(c, b, 3, round_floor) == fb('-0.110')
122
+ assert mpf_div(c, b, 2, round_ceiling) == fb('-0.10')
123
+ assert mpf_div(c, b, 3, round_ceiling) == fb('-0.101')
124
+
125
+
126
+ def test_mod():
127
+ mp.dps = 15
128
+ assert mpf(234) % 1 == 0
129
+ assert mpf(-3) % 256 == 253
130
+ assert mpf(0.25) % 23490.5 == 0.25
131
+ assert mpf(0.25) % -23490.5 == -23490.25
132
+ assert mpf(-0.25) % 23490.5 == 23490.25
133
+ assert mpf(-0.25) % -23490.5 == -0.25
134
+ # Check that these cases are handled efficiently
135
+ assert mpf('1e10000000000') % 1 == 0
136
+ assert mpf('1.23e-1000000000') % 1 == mpf('1.23e-1000000000')
137
+ # test __rmod__
138
+ assert 3 % mpf('1.75') == 1.25
139
+
140
+ def test_div_negative_rnd_bug():
141
+ mp.dps = 15
142
+ assert (-3) / mpf('0.1531879017645047') == mpf('-19.583791966887116')
143
+ assert mpf('-2.6342475750861301') / mpf('0.35126216427941814') == mpf('-7.4993775104985909')
env-llmeval/lib/python3.10/site-packages/mpmath/tests/test_eigen.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/python
2
+ # -*- coding: utf-8 -*-
3
+
4
+ from mpmath import mp
5
+ from mpmath import libmp
6
+
7
+ xrange = libmp.backend.xrange
8
+
9
+ def run_hessenberg(A, verbose = 0):
10
+ if verbose > 1:
11
+ print("original matrix (hessenberg):\n", A)
12
+
13
+ n = A.rows
14
+
15
+ Q, H = mp.hessenberg(A)
16
+
17
+ if verbose > 1:
18
+ print("Q:\n",Q)
19
+ print("H:\n",H)
20
+
21
+ B = Q * H * Q.transpose_conj()
22
+
23
+ eps = mp.exp(0.8 * mp.log(mp.eps))
24
+
25
+ err0 = 0
26
+ for x in xrange(n):
27
+ for y in xrange(n):
28
+ err0 += abs(A[y,x] - B[y,x])
29
+ err0 /= n * n
30
+
31
+ err1 = 0
32
+ for x in xrange(n):
33
+ for y in xrange(x + 2, n):
34
+ err1 += abs(H[y,x])
35
+
36
+ if verbose > 0:
37
+ print("difference (H):", err0, err1)
38
+
39
+ if verbose > 1:
40
+ print("B:\n", B)
41
+
42
+ assert err0 < eps
43
+ assert err1 == 0
44
+
45
+
46
+ def run_schur(A, verbose = 0):
47
+ if verbose > 1:
48
+ print("original matrix (schur):\n", A)
49
+
50
+ n = A.rows
51
+
52
+ Q, R = mp.schur(A)
53
+
54
+ if verbose > 1:
55
+ print("Q:\n", Q)
56
+ print("R:\n", R)
57
+
58
+ B = Q * R * Q.transpose_conj()
59
+ C = Q * Q.transpose_conj()
60
+
61
+ eps = mp.exp(0.8 * mp.log(mp.eps))
62
+
63
+ err0 = 0
64
+ for x in xrange(n):
65
+ for y in xrange(n):
66
+ err0 += abs(A[y,x] - B[y,x])
67
+ err0 /= n * n
68
+
69
+ err1 = 0
70
+ for x in xrange(n):
71
+ for y in xrange(n):
72
+ if x == y:
73
+ C[y,x] -= 1
74
+ err1 += abs(C[y,x])
75
+ err1 /= n * n
76
+
77
+ err2 = 0
78
+ for x in xrange(n):
79
+ for y in xrange(x + 1, n):
80
+ err2 += abs(R[y,x])
81
+
82
+ if verbose > 0:
83
+ print("difference (S):", err0, err1, err2)
84
+
85
+ if verbose > 1:
86
+ print("B:\n", B)
87
+
88
+ assert err0 < eps
89
+ assert err1 < eps
90
+ assert err2 == 0
91
+
92
+ def run_eig(A, verbose = 0):
93
+ if verbose > 1:
94
+ print("original matrix (eig):\n", A)
95
+
96
+ n = A.rows
97
+
98
+ E, EL, ER = mp.eig(A, left = True, right = True)
99
+
100
+ if verbose > 1:
101
+ print("E:\n", E)
102
+ print("EL:\n", EL)
103
+ print("ER:\n", ER)
104
+
105
+ eps = mp.exp(0.8 * mp.log(mp.eps))
106
+
107
+ err0 = 0
108
+ for i in xrange(n):
109
+ B = A * ER[:,i] - E[i] * ER[:,i]
110
+ err0 = max(err0, mp.mnorm(B))
111
+
112
+ B = EL[i,:] * A - EL[i,:] * E[i]
113
+ err0 = max(err0, mp.mnorm(B))
114
+
115
+ err0 /= n * n
116
+
117
+ if verbose > 0:
118
+ print("difference (E):", err0)
119
+
120
+ assert err0 < eps
121
+
122
+ #####################
123
+
124
+ def test_eig_dyn():
125
+ v = 0
126
+ for i in xrange(5):
127
+ n = 1 + int(mp.rand() * 5)
128
+ if mp.rand() > 0.5:
129
+ # real
130
+ A = 2 * mp.randmatrix(n, n) - 1
131
+ if mp.rand() > 0.5:
132
+ A *= 10
133
+ for x in xrange(n):
134
+ for y in xrange(n):
135
+ A[x,y] = int(A[x,y])
136
+ else:
137
+ A = (2 * mp.randmatrix(n, n) - 1) + 1j * (2 * mp.randmatrix(n, n) - 1)
138
+ if mp.rand() > 0.5:
139
+ A *= 10
140
+ for x in xrange(n):
141
+ for y in xrange(n):
142
+ A[x,y] = int(mp.re(A[x,y])) + 1j * int(mp.im(A[x,y]))
143
+
144
+ run_hessenberg(A, verbose = v)
145
+ run_schur(A, verbose = v)
146
+ run_eig(A, verbose = v)
147
+
148
+ def test_eig():
149
+ v = 0
150
+ AS = []
151
+
152
+ A = mp.matrix([[2, 1, 0], # jordan block of size 3
153
+ [0, 2, 1],
154
+ [0, 0, 2]])
155
+ AS.append(A)
156
+ AS.append(A.transpose())
157
+
158
+ A = mp.matrix([[2, 0, 0], # jordan block of size 2
159
+ [0, 2, 1],
160
+ [0, 0, 2]])
161
+ AS.append(A)
162
+ AS.append(A.transpose())
163
+
164
+ A = mp.matrix([[2, 0, 1], # jordan block of size 2
165
+ [0, 2, 0],
166
+ [0, 0, 2]])
167
+ AS.append(A)
168
+ AS.append(A.transpose())
169
+
170
+ A= mp.matrix([[0, 0, 1], # cyclic
171
+ [1, 0, 0],
172
+ [0, 1, 0]])
173
+ AS.append(A)
174
+ AS.append(A.transpose())
175
+
176
+ for A in AS:
177
+ run_hessenberg(A, verbose = v)
178
+ run_schur(A, verbose = v)
179
+ run_eig(A, verbose = v)