applied-ai-018 commited on
Commit
f0ae5de
·
verified ·
1 Parent(s): 7626d99

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/pandas/_config/__init__.py +57 -0
  2. env-llmeval/lib/python3.10/site-packages/pandas/_config/localization.py +172 -0
  3. env-llmeval/lib/python3.10/site-packages/pandas/compat/__init__.py +197 -0
  4. env-llmeval/lib/python3.10/site-packages/pandas/compat/__pycache__/__init__.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/pandas/compat/__pycache__/_constants.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/pandas/compat/__pycache__/_optional.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/pandas/compat/__pycache__/compressors.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/pandas/compat/__pycache__/pickle_compat.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/pandas/compat/__pycache__/pyarrow.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/pandas/compat/_constants.py +30 -0
  11. env-llmeval/lib/python3.10/site-packages/pandas/compat/_optional.py +168 -0
  12. env-llmeval/lib/python3.10/site-packages/pandas/compat/compressors.py +77 -0
  13. env-llmeval/lib/python3.10/site-packages/pandas/compat/numpy/__init__.py +53 -0
  14. env-llmeval/lib/python3.10/site-packages/pandas/compat/numpy/__pycache__/__init__.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/pandas/compat/numpy/__pycache__/function.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/pandas/compat/numpy/function.py +418 -0
  17. env-llmeval/lib/python3.10/site-packages/pandas/compat/pickle_compat.py +262 -0
  18. env-llmeval/lib/python3.10/site-packages/pandas/compat/pyarrow.py +27 -0
  19. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/__init__.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_api.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_constructors.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_cumulative.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_formats.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_iteration.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_logical_ops.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_missing.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_npfuncs.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_reductions.cpython-310.pyc +0 -0
  30. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_subclass.cpython-310.pyc +0 -0
  31. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_ufunc.cpython-310.pyc +0 -0
  32. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_unary.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_validate.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__init__.py +0 -0
  35. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/__init__.cpython-310.pyc +0 -0
  36. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_cat_accessor.cpython-310.pyc +0 -0
  37. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_dt_accessor.cpython-310.pyc +0 -0
  38. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_list_accessor.cpython-310.pyc +0 -0
  39. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_sparse_accessor.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_str_accessor.cpython-310.pyc +0 -0
  41. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_struct_accessor.cpython-310.pyc +0 -0
  42. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/test_cat_accessor.py +258 -0
  43. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/test_dt_accessor.py +843 -0
  44. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/test_list_accessor.py +129 -0
  45. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/test_sparse_accessor.py +9 -0
  46. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/test_str_accessor.py +25 -0
  47. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/test_struct_accessor.py +196 -0
  48. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/__init__.py +0 -0
  49. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/__init__.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_datetime.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/pandas/_config/__init__.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ pandas._config is considered explicitly upstream of everything else in pandas,
3
+ should have no intra-pandas dependencies.
4
+
5
+ importing `dates` and `display` ensures that keys needed by _libs
6
+ are initialized.
7
+ """
8
+ __all__ = [
9
+ "config",
10
+ "detect_console_encoding",
11
+ "get_option",
12
+ "set_option",
13
+ "reset_option",
14
+ "describe_option",
15
+ "option_context",
16
+ "options",
17
+ "using_copy_on_write",
18
+ "warn_copy_on_write",
19
+ ]
20
+ from pandas._config import config
21
+ from pandas._config import dates # pyright: ignore[reportUnusedImport] # noqa: F401
22
+ from pandas._config.config import (
23
+ _global_config,
24
+ describe_option,
25
+ get_option,
26
+ option_context,
27
+ options,
28
+ reset_option,
29
+ set_option,
30
+ )
31
+ from pandas._config.display import detect_console_encoding
32
+
33
+
34
+ def using_copy_on_write() -> bool:
35
+ _mode_options = _global_config["mode"]
36
+ return (
37
+ _mode_options["copy_on_write"] is True
38
+ and _mode_options["data_manager"] == "block"
39
+ )
40
+
41
+
42
+ def warn_copy_on_write() -> bool:
43
+ _mode_options = _global_config["mode"]
44
+ return (
45
+ _mode_options["copy_on_write"] == "warn"
46
+ and _mode_options["data_manager"] == "block"
47
+ )
48
+
49
+
50
+ def using_nullable_dtypes() -> bool:
51
+ _mode_options = _global_config["mode"]
52
+ return _mode_options["nullable_dtypes"]
53
+
54
+
55
+ def using_pyarrow_string_dtype() -> bool:
56
+ _mode_options = _global_config["future"]
57
+ return _mode_options["infer_string"]
env-llmeval/lib/python3.10/site-packages/pandas/_config/localization.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Helpers for configuring locale settings.
3
+
4
+ Name `localization` is chosen to avoid overlap with builtin `locale` module.
5
+ """
6
+ from __future__ import annotations
7
+
8
+ from contextlib import contextmanager
9
+ import locale
10
+ import platform
11
+ import re
12
+ import subprocess
13
+ from typing import TYPE_CHECKING
14
+
15
+ from pandas._config.config import options
16
+
17
+ if TYPE_CHECKING:
18
+ from collections.abc import Generator
19
+
20
+
21
+ @contextmanager
22
+ def set_locale(
23
+ new_locale: str | tuple[str, str], lc_var: int = locale.LC_ALL
24
+ ) -> Generator[str | tuple[str, str], None, None]:
25
+ """
26
+ Context manager for temporarily setting a locale.
27
+
28
+ Parameters
29
+ ----------
30
+ new_locale : str or tuple
31
+ A string of the form <language_country>.<encoding>. For example to set
32
+ the current locale to US English with a UTF8 encoding, you would pass
33
+ "en_US.UTF-8".
34
+ lc_var : int, default `locale.LC_ALL`
35
+ The category of the locale being set.
36
+
37
+ Notes
38
+ -----
39
+ This is useful when you want to run a particular block of code under a
40
+ particular locale, without globally setting the locale. This probably isn't
41
+ thread-safe.
42
+ """
43
+ # getlocale is not always compliant with setlocale, use setlocale. GH#46595
44
+ current_locale = locale.setlocale(lc_var)
45
+
46
+ try:
47
+ locale.setlocale(lc_var, new_locale)
48
+ normalized_code, normalized_encoding = locale.getlocale()
49
+ if normalized_code is not None and normalized_encoding is not None:
50
+ yield f"{normalized_code}.{normalized_encoding}"
51
+ else:
52
+ yield new_locale
53
+ finally:
54
+ locale.setlocale(lc_var, current_locale)
55
+
56
+
57
+ def can_set_locale(lc: str, lc_var: int = locale.LC_ALL) -> bool:
58
+ """
59
+ Check to see if we can set a locale, and subsequently get the locale,
60
+ without raising an Exception.
61
+
62
+ Parameters
63
+ ----------
64
+ lc : str
65
+ The locale to attempt to set.
66
+ lc_var : int, default `locale.LC_ALL`
67
+ The category of the locale being set.
68
+
69
+ Returns
70
+ -------
71
+ bool
72
+ Whether the passed locale can be set
73
+ """
74
+ try:
75
+ with set_locale(lc, lc_var=lc_var):
76
+ pass
77
+ except (ValueError, locale.Error):
78
+ # horrible name for a Exception subclass
79
+ return False
80
+ else:
81
+ return True
82
+
83
+
84
+ def _valid_locales(locales: list[str] | str, normalize: bool) -> list[str]:
85
+ """
86
+ Return a list of normalized locales that do not throw an ``Exception``
87
+ when set.
88
+
89
+ Parameters
90
+ ----------
91
+ locales : str
92
+ A string where each locale is separated by a newline.
93
+ normalize : bool
94
+ Whether to call ``locale.normalize`` on each locale.
95
+
96
+ Returns
97
+ -------
98
+ valid_locales : list
99
+ A list of valid locales.
100
+ """
101
+ return [
102
+ loc
103
+ for loc in (
104
+ locale.normalize(loc.strip()) if normalize else loc.strip()
105
+ for loc in locales
106
+ )
107
+ if can_set_locale(loc)
108
+ ]
109
+
110
+
111
+ def get_locales(
112
+ prefix: str | None = None,
113
+ normalize: bool = True,
114
+ ) -> list[str]:
115
+ """
116
+ Get all the locales that are available on the system.
117
+
118
+ Parameters
119
+ ----------
120
+ prefix : str
121
+ If not ``None`` then return only those locales with the prefix
122
+ provided. For example to get all English language locales (those that
123
+ start with ``"en"``), pass ``prefix="en"``.
124
+ normalize : bool
125
+ Call ``locale.normalize`` on the resulting list of available locales.
126
+ If ``True``, only locales that can be set without throwing an
127
+ ``Exception`` are returned.
128
+
129
+ Returns
130
+ -------
131
+ locales : list of strings
132
+ A list of locale strings that can be set with ``locale.setlocale()``.
133
+ For example::
134
+
135
+ locale.setlocale(locale.LC_ALL, locale_string)
136
+
137
+ On error will return an empty list (no locale available, e.g. Windows)
138
+
139
+ """
140
+ if platform.system() in ("Linux", "Darwin"):
141
+ raw_locales = subprocess.check_output(["locale", "-a"])
142
+ else:
143
+ # Other platforms e.g. windows platforms don't define "locale -a"
144
+ # Note: is_platform_windows causes circular import here
145
+ return []
146
+
147
+ try:
148
+ # raw_locales is "\n" separated list of locales
149
+ # it may contain non-decodable parts, so split
150
+ # extract what we can and then rejoin.
151
+ split_raw_locales = raw_locales.split(b"\n")
152
+ out_locales = []
153
+ for x in split_raw_locales:
154
+ try:
155
+ out_locales.append(str(x, encoding=options.display.encoding))
156
+ except UnicodeError:
157
+ # 'locale -a' is used to populated 'raw_locales' and on
158
+ # Redhat 7 Linux (and maybe others) prints locale names
159
+ # using windows-1252 encoding. Bug only triggered by
160
+ # a few special characters and when there is an
161
+ # extensive list of installed locales.
162
+ out_locales.append(str(x, encoding="windows-1252"))
163
+
164
+ except TypeError:
165
+ pass
166
+
167
+ if prefix is None:
168
+ return _valid_locales(out_locales, normalize)
169
+
170
+ pattern = re.compile(f"{prefix}.*")
171
+ found = pattern.findall("\n".join(out_locales))
172
+ return _valid_locales(found, normalize)
env-llmeval/lib/python3.10/site-packages/pandas/compat/__init__.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ compat
3
+ ======
4
+
5
+ Cross-compatible functions for different versions of Python.
6
+
7
+ Other items:
8
+ * platform checker
9
+ """
10
+ from __future__ import annotations
11
+
12
+ import os
13
+ import platform
14
+ import sys
15
+ from typing import TYPE_CHECKING
16
+
17
+ from pandas.compat._constants import (
18
+ IS64,
19
+ ISMUSL,
20
+ PY310,
21
+ PY311,
22
+ PY312,
23
+ PYPY,
24
+ )
25
+ import pandas.compat.compressors
26
+ from pandas.compat.numpy import is_numpy_dev
27
+ from pandas.compat.pyarrow import (
28
+ pa_version_under10p1,
29
+ pa_version_under11p0,
30
+ pa_version_under13p0,
31
+ pa_version_under14p0,
32
+ pa_version_under14p1,
33
+ pa_version_under16p0,
34
+ )
35
+
36
+ if TYPE_CHECKING:
37
+ from pandas._typing import F
38
+
39
+
40
+ def set_function_name(f: F, name: str, cls: type) -> F:
41
+ """
42
+ Bind the name/qualname attributes of the function.
43
+ """
44
+ f.__name__ = name
45
+ f.__qualname__ = f"{cls.__name__}.{name}"
46
+ f.__module__ = cls.__module__
47
+ return f
48
+
49
+
50
+ def is_platform_little_endian() -> bool:
51
+ """
52
+ Checking if the running platform is little endian.
53
+
54
+ Returns
55
+ -------
56
+ bool
57
+ True if the running platform is little endian.
58
+ """
59
+ return sys.byteorder == "little"
60
+
61
+
62
+ def is_platform_windows() -> bool:
63
+ """
64
+ Checking if the running platform is windows.
65
+
66
+ Returns
67
+ -------
68
+ bool
69
+ True if the running platform is windows.
70
+ """
71
+ return sys.platform in ["win32", "cygwin"]
72
+
73
+
74
+ def is_platform_linux() -> bool:
75
+ """
76
+ Checking if the running platform is linux.
77
+
78
+ Returns
79
+ -------
80
+ bool
81
+ True if the running platform is linux.
82
+ """
83
+ return sys.platform == "linux"
84
+
85
+
86
+ def is_platform_mac() -> bool:
87
+ """
88
+ Checking if the running platform is mac.
89
+
90
+ Returns
91
+ -------
92
+ bool
93
+ True if the running platform is mac.
94
+ """
95
+ return sys.platform == "darwin"
96
+
97
+
98
+ def is_platform_arm() -> bool:
99
+ """
100
+ Checking if the running platform use ARM architecture.
101
+
102
+ Returns
103
+ -------
104
+ bool
105
+ True if the running platform uses ARM architecture.
106
+ """
107
+ return platform.machine() in ("arm64", "aarch64") or platform.machine().startswith(
108
+ "armv"
109
+ )
110
+
111
+
112
+ def is_platform_power() -> bool:
113
+ """
114
+ Checking if the running platform use Power architecture.
115
+
116
+ Returns
117
+ -------
118
+ bool
119
+ True if the running platform uses ARM architecture.
120
+ """
121
+ return platform.machine() in ("ppc64", "ppc64le")
122
+
123
+
124
+ def is_ci_environment() -> bool:
125
+ """
126
+ Checking if running in a continuous integration environment by checking
127
+ the PANDAS_CI environment variable.
128
+
129
+ Returns
130
+ -------
131
+ bool
132
+ True if the running in a continuous integration environment.
133
+ """
134
+ return os.environ.get("PANDAS_CI", "0") == "1"
135
+
136
+
137
+ def get_lzma_file() -> type[pandas.compat.compressors.LZMAFile]:
138
+ """
139
+ Importing the `LZMAFile` class from the `lzma` module.
140
+
141
+ Returns
142
+ -------
143
+ class
144
+ The `LZMAFile` class from the `lzma` module.
145
+
146
+ Raises
147
+ ------
148
+ RuntimeError
149
+ If the `lzma` module was not imported correctly, or didn't exist.
150
+ """
151
+ if not pandas.compat.compressors.has_lzma:
152
+ raise RuntimeError(
153
+ "lzma module not available. "
154
+ "A Python re-install with the proper dependencies, "
155
+ "might be required to solve this issue."
156
+ )
157
+ return pandas.compat.compressors.LZMAFile
158
+
159
+
160
+ def get_bz2_file() -> type[pandas.compat.compressors.BZ2File]:
161
+ """
162
+ Importing the `BZ2File` class from the `bz2` module.
163
+
164
+ Returns
165
+ -------
166
+ class
167
+ The `BZ2File` class from the `bz2` module.
168
+
169
+ Raises
170
+ ------
171
+ RuntimeError
172
+ If the `bz2` module was not imported correctly, or didn't exist.
173
+ """
174
+ if not pandas.compat.compressors.has_bz2:
175
+ raise RuntimeError(
176
+ "bz2 module not available. "
177
+ "A Python re-install with the proper dependencies, "
178
+ "might be required to solve this issue."
179
+ )
180
+ return pandas.compat.compressors.BZ2File
181
+
182
+
183
+ __all__ = [
184
+ "is_numpy_dev",
185
+ "pa_version_under10p1",
186
+ "pa_version_under11p0",
187
+ "pa_version_under13p0",
188
+ "pa_version_under14p0",
189
+ "pa_version_under14p1",
190
+ "pa_version_under16p0",
191
+ "IS64",
192
+ "ISMUSL",
193
+ "PY310",
194
+ "PY311",
195
+ "PY312",
196
+ "PYPY",
197
+ ]
env-llmeval/lib/python3.10/site-packages/pandas/compat/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (4.71 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/compat/__pycache__/_constants.cpython-310.pyc ADDED
Binary file (716 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/compat/__pycache__/_optional.cpython-310.pyc ADDED
Binary file (4.38 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/compat/__pycache__/compressors.cpython-310.pyc ADDED
Binary file (1.74 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/compat/__pycache__/pickle_compat.cpython-310.pyc ADDED
Binary file (5.67 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/compat/__pycache__/pyarrow.cpython-310.pyc ADDED
Binary file (857 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/compat/_constants.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ _constants
3
+ ======
4
+
5
+ Constants relevant for the Python implementation.
6
+ """
7
+
8
+ from __future__ import annotations
9
+
10
+ import platform
11
+ import sys
12
+ import sysconfig
13
+
14
+ IS64 = sys.maxsize > 2**32
15
+
16
+ PY310 = sys.version_info >= (3, 10)
17
+ PY311 = sys.version_info >= (3, 11)
18
+ PY312 = sys.version_info >= (3, 12)
19
+ PYPY = platform.python_implementation() == "PyPy"
20
+ ISMUSL = "musl" in (sysconfig.get_config_var("HOST_GNU_TYPE") or "")
21
+ REF_COUNT = 2 if PY311 else 3
22
+
23
+ __all__ = [
24
+ "IS64",
25
+ "ISMUSL",
26
+ "PY310",
27
+ "PY311",
28
+ "PY312",
29
+ "PYPY",
30
+ ]
env-llmeval/lib/python3.10/site-packages/pandas/compat/_optional.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import importlib
4
+ import sys
5
+ from typing import TYPE_CHECKING
6
+ import warnings
7
+
8
+ from pandas.util._exceptions import find_stack_level
9
+
10
+ from pandas.util.version import Version
11
+
12
+ if TYPE_CHECKING:
13
+ import types
14
+
15
+ # Update install.rst & setup.cfg when updating versions!
16
+
17
+ VERSIONS = {
18
+ "adbc-driver-postgresql": "0.8.0",
19
+ "adbc-driver-sqlite": "0.8.0",
20
+ "bs4": "4.11.2",
21
+ "blosc": "1.21.3",
22
+ "bottleneck": "1.3.6",
23
+ "dataframe-api-compat": "0.1.7",
24
+ "fastparquet": "2022.12.0",
25
+ "fsspec": "2022.11.0",
26
+ "html5lib": "1.1",
27
+ "hypothesis": "6.46.1",
28
+ "gcsfs": "2022.11.0",
29
+ "jinja2": "3.1.2",
30
+ "lxml.etree": "4.9.2",
31
+ "matplotlib": "3.6.3",
32
+ "numba": "0.56.4",
33
+ "numexpr": "2.8.4",
34
+ "odfpy": "1.4.1",
35
+ "openpyxl": "3.1.0",
36
+ "pandas_gbq": "0.19.0",
37
+ "psycopg2": "2.9.6", # (dt dec pq3 ext lo64)
38
+ "pymysql": "1.0.2",
39
+ "pyarrow": "10.0.1",
40
+ "pyreadstat": "1.2.0",
41
+ "pytest": "7.3.2",
42
+ "python-calamine": "0.1.7",
43
+ "pyxlsb": "1.0.10",
44
+ "s3fs": "2022.11.0",
45
+ "scipy": "1.10.0",
46
+ "sqlalchemy": "2.0.0",
47
+ "tables": "3.8.0",
48
+ "tabulate": "0.9.0",
49
+ "xarray": "2022.12.0",
50
+ "xlrd": "2.0.1",
51
+ "xlsxwriter": "3.0.5",
52
+ "zstandard": "0.19.0",
53
+ "tzdata": "2022.7",
54
+ "qtpy": "2.3.0",
55
+ "pyqt5": "5.15.9",
56
+ }
57
+
58
+ # A mapping from import name to package name (on PyPI) for packages where
59
+ # these two names are different.
60
+
61
+ INSTALL_MAPPING = {
62
+ "bs4": "beautifulsoup4",
63
+ "bottleneck": "Bottleneck",
64
+ "jinja2": "Jinja2",
65
+ "lxml.etree": "lxml",
66
+ "odf": "odfpy",
67
+ "pandas_gbq": "pandas-gbq",
68
+ "python_calamine": "python-calamine",
69
+ "sqlalchemy": "SQLAlchemy",
70
+ "tables": "pytables",
71
+ }
72
+
73
+
74
+ def get_version(module: types.ModuleType) -> str:
75
+ version = getattr(module, "__version__", None)
76
+
77
+ if version is None:
78
+ raise ImportError(f"Can't determine version for {module.__name__}")
79
+ if module.__name__ == "psycopg2":
80
+ # psycopg2 appends " (dt dec pq3 ext lo64)" to it's version
81
+ version = version.split()[0]
82
+ return version
83
+
84
+
85
+ def import_optional_dependency(
86
+ name: str,
87
+ extra: str = "",
88
+ errors: str = "raise",
89
+ min_version: str | None = None,
90
+ ):
91
+ """
92
+ Import an optional dependency.
93
+
94
+ By default, if a dependency is missing an ImportError with a nice
95
+ message will be raised. If a dependency is present, but too old,
96
+ we raise.
97
+
98
+ Parameters
99
+ ----------
100
+ name : str
101
+ The module name.
102
+ extra : str
103
+ Additional text to include in the ImportError message.
104
+ errors : str {'raise', 'warn', 'ignore'}
105
+ What to do when a dependency is not found or its version is too old.
106
+
107
+ * raise : Raise an ImportError
108
+ * warn : Only applicable when a module's version is to old.
109
+ Warns that the version is too old and returns None
110
+ * ignore: If the module is not installed, return None, otherwise,
111
+ return the module, even if the version is too old.
112
+ It's expected that users validate the version locally when
113
+ using ``errors="ignore"`` (see. ``io/html.py``)
114
+ min_version : str, default None
115
+ Specify a minimum version that is different from the global pandas
116
+ minimum version required.
117
+ Returns
118
+ -------
119
+ maybe_module : Optional[ModuleType]
120
+ The imported module, when found and the version is correct.
121
+ None is returned when the package is not found and `errors`
122
+ is False, or when the package's version is too old and `errors`
123
+ is ``'warn'`` or ``'ignore'``.
124
+ """
125
+ assert errors in {"warn", "raise", "ignore"}
126
+
127
+ package_name = INSTALL_MAPPING.get(name)
128
+ install_name = package_name if package_name is not None else name
129
+
130
+ msg = (
131
+ f"Missing optional dependency '{install_name}'. {extra} "
132
+ f"Use pip or conda to install {install_name}."
133
+ )
134
+ try:
135
+ module = importlib.import_module(name)
136
+ except ImportError:
137
+ if errors == "raise":
138
+ raise ImportError(msg)
139
+ return None
140
+
141
+ # Handle submodules: if we have submodule, grab parent module from sys.modules
142
+ parent = name.split(".")[0]
143
+ if parent != name:
144
+ install_name = parent
145
+ module_to_get = sys.modules[install_name]
146
+ else:
147
+ module_to_get = module
148
+ minimum_version = min_version if min_version is not None else VERSIONS.get(parent)
149
+ if minimum_version:
150
+ version = get_version(module_to_get)
151
+ if version and Version(version) < Version(minimum_version):
152
+ msg = (
153
+ f"Pandas requires version '{minimum_version}' or newer of '{parent}' "
154
+ f"(version '{version}' currently installed)."
155
+ )
156
+ if errors == "warn":
157
+ warnings.warn(
158
+ msg,
159
+ UserWarning,
160
+ stacklevel=find_stack_level(),
161
+ )
162
+ return None
163
+ elif errors == "raise":
164
+ raise ImportError(msg)
165
+ else:
166
+ return None
167
+
168
+ return module
env-llmeval/lib/python3.10/site-packages/pandas/compat/compressors.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Patched ``BZ2File`` and ``LZMAFile`` to handle pickle protocol 5.
3
+ """
4
+
5
+ from __future__ import annotations
6
+
7
+ from pickle import PickleBuffer
8
+
9
+ from pandas.compat._constants import PY310
10
+
11
+ try:
12
+ import bz2
13
+
14
+ has_bz2 = True
15
+ except ImportError:
16
+ has_bz2 = False
17
+
18
+ try:
19
+ import lzma
20
+
21
+ has_lzma = True
22
+ except ImportError:
23
+ has_lzma = False
24
+
25
+
26
+ def flatten_buffer(
27
+ b: bytes | bytearray | memoryview | PickleBuffer,
28
+ ) -> bytes | bytearray | memoryview:
29
+ """
30
+ Return some 1-D `uint8` typed buffer.
31
+
32
+ Coerces anything that does not match that description to one that does
33
+ without copying if possible (otherwise will copy).
34
+ """
35
+
36
+ if isinstance(b, (bytes, bytearray)):
37
+ return b
38
+
39
+ if not isinstance(b, PickleBuffer):
40
+ b = PickleBuffer(b)
41
+
42
+ try:
43
+ # coerce to 1-D `uint8` C-contiguous `memoryview` zero-copy
44
+ return b.raw()
45
+ except BufferError:
46
+ # perform in-memory copy if buffer is not contiguous
47
+ return memoryview(b).tobytes("A")
48
+
49
+
50
+ if has_bz2:
51
+
52
+ class BZ2File(bz2.BZ2File):
53
+ if not PY310:
54
+
55
+ def write(self, b) -> int:
56
+ # Workaround issue where `bz2.BZ2File` expects `len`
57
+ # to return the number of bytes in `b` by converting
58
+ # `b` into something that meets that constraint with
59
+ # minimal copying.
60
+ #
61
+ # Note: This is fixed in Python 3.10.
62
+ return super().write(flatten_buffer(b))
63
+
64
+
65
+ if has_lzma:
66
+
67
+ class LZMAFile(lzma.LZMAFile):
68
+ if not PY310:
69
+
70
+ def write(self, b) -> int:
71
+ # Workaround issue where `lzma.LZMAFile` expects `len`
72
+ # to return the number of bytes in `b` by converting
73
+ # `b` into something that meets that constraint with
74
+ # minimal copying.
75
+ #
76
+ # Note: This is fixed in Python 3.10.
77
+ return super().write(flatten_buffer(b))
env-llmeval/lib/python3.10/site-packages/pandas/compat/numpy/__init__.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ support numpy compatibility across versions """
2
+ import warnings
3
+
4
+ import numpy as np
5
+
6
+ from pandas.util.version import Version
7
+
8
+ # numpy versioning
9
+ _np_version = np.__version__
10
+ _nlv = Version(_np_version)
11
+ np_version_lt1p23 = _nlv < Version("1.23")
12
+ np_version_gte1p24 = _nlv >= Version("1.24")
13
+ np_version_gte1p24p3 = _nlv >= Version("1.24.3")
14
+ np_version_gte1p25 = _nlv >= Version("1.25")
15
+ np_version_gt2 = _nlv >= Version("2.0.0.dev0")
16
+ is_numpy_dev = _nlv.dev is not None
17
+ _min_numpy_ver = "1.22.4"
18
+
19
+
20
+ if _nlv < Version(_min_numpy_ver):
21
+ raise ImportError(
22
+ f"this version of pandas is incompatible with numpy < {_min_numpy_ver}\n"
23
+ f"your numpy version is {_np_version}.\n"
24
+ f"Please upgrade numpy to >= {_min_numpy_ver} to use this pandas version"
25
+ )
26
+
27
+
28
+ np_long: type
29
+ np_ulong: type
30
+
31
+ if np_version_gt2:
32
+ try:
33
+ with warnings.catch_warnings():
34
+ warnings.filterwarnings(
35
+ "ignore",
36
+ r".*In the future `np\.long` will be defined as.*",
37
+ FutureWarning,
38
+ )
39
+ np_long = np.long # type: ignore[attr-defined]
40
+ np_ulong = np.ulong # type: ignore[attr-defined]
41
+ except AttributeError:
42
+ np_long = np.int_
43
+ np_ulong = np.uint
44
+ else:
45
+ np_long = np.int_
46
+ np_ulong = np.uint
47
+
48
+
49
+ __all__ = [
50
+ "np",
51
+ "_np_version",
52
+ "is_numpy_dev",
53
+ ]
env-llmeval/lib/python3.10/site-packages/pandas/compat/numpy/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.27 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/compat/numpy/__pycache__/function.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/compat/numpy/function.py ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ For compatibility with numpy libraries, pandas functions or methods have to
3
+ accept '*args' and '**kwargs' parameters to accommodate numpy arguments that
4
+ are not actually used or respected in the pandas implementation.
5
+
6
+ To ensure that users do not abuse these parameters, validation is performed in
7
+ 'validators.py' to make sure that any extra parameters passed correspond ONLY
8
+ to those in the numpy signature. Part of that validation includes whether or
9
+ not the user attempted to pass in non-default values for these extraneous
10
+ parameters. As we want to discourage users from relying on these parameters
11
+ when calling the pandas implementation, we want them only to pass in the
12
+ default values for these parameters.
13
+
14
+ This module provides a set of commonly used default arguments for functions and
15
+ methods that are spread throughout the codebase. This module will make it
16
+ easier to adjust to future upstream changes in the analogous numpy signatures.
17
+ """
18
+ from __future__ import annotations
19
+
20
+ from typing import (
21
+ TYPE_CHECKING,
22
+ Any,
23
+ TypeVar,
24
+ cast,
25
+ overload,
26
+ )
27
+
28
+ import numpy as np
29
+ from numpy import ndarray
30
+
31
+ from pandas._libs.lib import (
32
+ is_bool,
33
+ is_integer,
34
+ )
35
+ from pandas.errors import UnsupportedFunctionCall
36
+ from pandas.util._validators import (
37
+ validate_args,
38
+ validate_args_and_kwargs,
39
+ validate_kwargs,
40
+ )
41
+
42
+ if TYPE_CHECKING:
43
+ from pandas._typing import (
44
+ Axis,
45
+ AxisInt,
46
+ )
47
+
48
+ AxisNoneT = TypeVar("AxisNoneT", Axis, None)
49
+
50
+
51
+ class CompatValidator:
52
+ def __init__(
53
+ self,
54
+ defaults,
55
+ fname=None,
56
+ method: str | None = None,
57
+ max_fname_arg_count=None,
58
+ ) -> None:
59
+ self.fname = fname
60
+ self.method = method
61
+ self.defaults = defaults
62
+ self.max_fname_arg_count = max_fname_arg_count
63
+
64
+ def __call__(
65
+ self,
66
+ args,
67
+ kwargs,
68
+ fname=None,
69
+ max_fname_arg_count=None,
70
+ method: str | None = None,
71
+ ) -> None:
72
+ if not args and not kwargs:
73
+ return None
74
+
75
+ fname = self.fname if fname is None else fname
76
+ max_fname_arg_count = (
77
+ self.max_fname_arg_count
78
+ if max_fname_arg_count is None
79
+ else max_fname_arg_count
80
+ )
81
+ method = self.method if method is None else method
82
+
83
+ if method == "args":
84
+ validate_args(fname, args, max_fname_arg_count, self.defaults)
85
+ elif method == "kwargs":
86
+ validate_kwargs(fname, kwargs, self.defaults)
87
+ elif method == "both":
88
+ validate_args_and_kwargs(
89
+ fname, args, kwargs, max_fname_arg_count, self.defaults
90
+ )
91
+ else:
92
+ raise ValueError(f"invalid validation method '{method}'")
93
+
94
+
95
+ ARGMINMAX_DEFAULTS = {"out": None}
96
+ validate_argmin = CompatValidator(
97
+ ARGMINMAX_DEFAULTS, fname="argmin", method="both", max_fname_arg_count=1
98
+ )
99
+ validate_argmax = CompatValidator(
100
+ ARGMINMAX_DEFAULTS, fname="argmax", method="both", max_fname_arg_count=1
101
+ )
102
+
103
+
104
+ def process_skipna(skipna: bool | ndarray | None, args) -> tuple[bool, Any]:
105
+ if isinstance(skipna, ndarray) or skipna is None:
106
+ args = (skipna,) + args
107
+ skipna = True
108
+
109
+ return skipna, args
110
+
111
+
112
+ def validate_argmin_with_skipna(skipna: bool | ndarray | None, args, kwargs) -> bool:
113
+ """
114
+ If 'Series.argmin' is called via the 'numpy' library, the third parameter
115
+ in its signature is 'out', which takes either an ndarray or 'None', so
116
+ check if the 'skipna' parameter is either an instance of ndarray or is
117
+ None, since 'skipna' itself should be a boolean
118
+ """
119
+ skipna, args = process_skipna(skipna, args)
120
+ validate_argmin(args, kwargs)
121
+ return skipna
122
+
123
+
124
+ def validate_argmax_with_skipna(skipna: bool | ndarray | None, args, kwargs) -> bool:
125
+ """
126
+ If 'Series.argmax' is called via the 'numpy' library, the third parameter
127
+ in its signature is 'out', which takes either an ndarray or 'None', so
128
+ check if the 'skipna' parameter is either an instance of ndarray or is
129
+ None, since 'skipna' itself should be a boolean
130
+ """
131
+ skipna, args = process_skipna(skipna, args)
132
+ validate_argmax(args, kwargs)
133
+ return skipna
134
+
135
+
136
+ ARGSORT_DEFAULTS: dict[str, int | str | None] = {}
137
+ ARGSORT_DEFAULTS["axis"] = -1
138
+ ARGSORT_DEFAULTS["kind"] = "quicksort"
139
+ ARGSORT_DEFAULTS["order"] = None
140
+ ARGSORT_DEFAULTS["kind"] = None
141
+ ARGSORT_DEFAULTS["stable"] = None
142
+
143
+
144
+ validate_argsort = CompatValidator(
145
+ ARGSORT_DEFAULTS, fname="argsort", max_fname_arg_count=0, method="both"
146
+ )
147
+
148
+ # two different signatures of argsort, this second validation for when the
149
+ # `kind` param is supported
150
+ ARGSORT_DEFAULTS_KIND: dict[str, int | None] = {}
151
+ ARGSORT_DEFAULTS_KIND["axis"] = -1
152
+ ARGSORT_DEFAULTS_KIND["order"] = None
153
+ ARGSORT_DEFAULTS_KIND["stable"] = None
154
+ validate_argsort_kind = CompatValidator(
155
+ ARGSORT_DEFAULTS_KIND, fname="argsort", max_fname_arg_count=0, method="both"
156
+ )
157
+
158
+
159
+ def validate_argsort_with_ascending(ascending: bool | int | None, args, kwargs) -> bool:
160
+ """
161
+ If 'Categorical.argsort' is called via the 'numpy' library, the first
162
+ parameter in its signature is 'axis', which takes either an integer or
163
+ 'None', so check if the 'ascending' parameter has either integer type or is
164
+ None, since 'ascending' itself should be a boolean
165
+ """
166
+ if is_integer(ascending) or ascending is None:
167
+ args = (ascending,) + args
168
+ ascending = True
169
+
170
+ validate_argsort_kind(args, kwargs, max_fname_arg_count=3)
171
+ ascending = cast(bool, ascending)
172
+ return ascending
173
+
174
+
175
+ CLIP_DEFAULTS: dict[str, Any] = {"out": None}
176
+ validate_clip = CompatValidator(
177
+ CLIP_DEFAULTS, fname="clip", method="both", max_fname_arg_count=3
178
+ )
179
+
180
+
181
+ @overload
182
+ def validate_clip_with_axis(axis: ndarray, args, kwargs) -> None:
183
+ ...
184
+
185
+
186
+ @overload
187
+ def validate_clip_with_axis(axis: AxisNoneT, args, kwargs) -> AxisNoneT:
188
+ ...
189
+
190
+
191
+ def validate_clip_with_axis(
192
+ axis: ndarray | AxisNoneT, args, kwargs
193
+ ) -> AxisNoneT | None:
194
+ """
195
+ If 'NDFrame.clip' is called via the numpy library, the third parameter in
196
+ its signature is 'out', which can takes an ndarray, so check if the 'axis'
197
+ parameter is an instance of ndarray, since 'axis' itself should either be
198
+ an integer or None
199
+ """
200
+ if isinstance(axis, ndarray):
201
+ args = (axis,) + args
202
+ # error: Incompatible types in assignment (expression has type "None",
203
+ # variable has type "Union[ndarray[Any, Any], str, int]")
204
+ axis = None # type: ignore[assignment]
205
+
206
+ validate_clip(args, kwargs)
207
+ # error: Incompatible return value type (got "Union[ndarray[Any, Any],
208
+ # str, int]", expected "Union[str, int, None]")
209
+ return axis # type: ignore[return-value]
210
+
211
+
212
+ CUM_FUNC_DEFAULTS: dict[str, Any] = {}
213
+ CUM_FUNC_DEFAULTS["dtype"] = None
214
+ CUM_FUNC_DEFAULTS["out"] = None
215
+ validate_cum_func = CompatValidator(
216
+ CUM_FUNC_DEFAULTS, method="both", max_fname_arg_count=1
217
+ )
218
+ validate_cumsum = CompatValidator(
219
+ CUM_FUNC_DEFAULTS, fname="cumsum", method="both", max_fname_arg_count=1
220
+ )
221
+
222
+
223
+ def validate_cum_func_with_skipna(skipna: bool, args, kwargs, name) -> bool:
224
+ """
225
+ If this function is called via the 'numpy' library, the third parameter in
226
+ its signature is 'dtype', which takes either a 'numpy' dtype or 'None', so
227
+ check if the 'skipna' parameter is a boolean or not
228
+ """
229
+ if not is_bool(skipna):
230
+ args = (skipna,) + args
231
+ skipna = True
232
+ elif isinstance(skipna, np.bool_):
233
+ skipna = bool(skipna)
234
+
235
+ validate_cum_func(args, kwargs, fname=name)
236
+ return skipna
237
+
238
+
239
+ ALLANY_DEFAULTS: dict[str, bool | None] = {}
240
+ ALLANY_DEFAULTS["dtype"] = None
241
+ ALLANY_DEFAULTS["out"] = None
242
+ ALLANY_DEFAULTS["keepdims"] = False
243
+ ALLANY_DEFAULTS["axis"] = None
244
+ validate_all = CompatValidator(
245
+ ALLANY_DEFAULTS, fname="all", method="both", max_fname_arg_count=1
246
+ )
247
+ validate_any = CompatValidator(
248
+ ALLANY_DEFAULTS, fname="any", method="both", max_fname_arg_count=1
249
+ )
250
+
251
+ LOGICAL_FUNC_DEFAULTS = {"out": None, "keepdims": False}
252
+ validate_logical_func = CompatValidator(LOGICAL_FUNC_DEFAULTS, method="kwargs")
253
+
254
+ MINMAX_DEFAULTS = {"axis": None, "dtype": None, "out": None, "keepdims": False}
255
+ validate_min = CompatValidator(
256
+ MINMAX_DEFAULTS, fname="min", method="both", max_fname_arg_count=1
257
+ )
258
+ validate_max = CompatValidator(
259
+ MINMAX_DEFAULTS, fname="max", method="both", max_fname_arg_count=1
260
+ )
261
+
262
+ RESHAPE_DEFAULTS: dict[str, str] = {"order": "C"}
263
+ validate_reshape = CompatValidator(
264
+ RESHAPE_DEFAULTS, fname="reshape", method="both", max_fname_arg_count=1
265
+ )
266
+
267
+ REPEAT_DEFAULTS: dict[str, Any] = {"axis": None}
268
+ validate_repeat = CompatValidator(
269
+ REPEAT_DEFAULTS, fname="repeat", method="both", max_fname_arg_count=1
270
+ )
271
+
272
+ ROUND_DEFAULTS: dict[str, Any] = {"out": None}
273
+ validate_round = CompatValidator(
274
+ ROUND_DEFAULTS, fname="round", method="both", max_fname_arg_count=1
275
+ )
276
+
277
+ SORT_DEFAULTS: dict[str, int | str | None] = {}
278
+ SORT_DEFAULTS["axis"] = -1
279
+ SORT_DEFAULTS["kind"] = "quicksort"
280
+ SORT_DEFAULTS["order"] = None
281
+ validate_sort = CompatValidator(SORT_DEFAULTS, fname="sort", method="kwargs")
282
+
283
+ STAT_FUNC_DEFAULTS: dict[str, Any | None] = {}
284
+ STAT_FUNC_DEFAULTS["dtype"] = None
285
+ STAT_FUNC_DEFAULTS["out"] = None
286
+
287
+ SUM_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
288
+ SUM_DEFAULTS["axis"] = None
289
+ SUM_DEFAULTS["keepdims"] = False
290
+ SUM_DEFAULTS["initial"] = None
291
+
292
+ PROD_DEFAULTS = SUM_DEFAULTS.copy()
293
+
294
+ MEAN_DEFAULTS = SUM_DEFAULTS.copy()
295
+
296
+ MEDIAN_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
297
+ MEDIAN_DEFAULTS["overwrite_input"] = False
298
+ MEDIAN_DEFAULTS["keepdims"] = False
299
+
300
+ STAT_FUNC_DEFAULTS["keepdims"] = False
301
+
302
+ validate_stat_func = CompatValidator(STAT_FUNC_DEFAULTS, method="kwargs")
303
+ validate_sum = CompatValidator(
304
+ SUM_DEFAULTS, fname="sum", method="both", max_fname_arg_count=1
305
+ )
306
+ validate_prod = CompatValidator(
307
+ PROD_DEFAULTS, fname="prod", method="both", max_fname_arg_count=1
308
+ )
309
+ validate_mean = CompatValidator(
310
+ MEAN_DEFAULTS, fname="mean", method="both", max_fname_arg_count=1
311
+ )
312
+ validate_median = CompatValidator(
313
+ MEDIAN_DEFAULTS, fname="median", method="both", max_fname_arg_count=1
314
+ )
315
+
316
+ STAT_DDOF_FUNC_DEFAULTS: dict[str, bool | None] = {}
317
+ STAT_DDOF_FUNC_DEFAULTS["dtype"] = None
318
+ STAT_DDOF_FUNC_DEFAULTS["out"] = None
319
+ STAT_DDOF_FUNC_DEFAULTS["keepdims"] = False
320
+ validate_stat_ddof_func = CompatValidator(STAT_DDOF_FUNC_DEFAULTS, method="kwargs")
321
+
322
+ TAKE_DEFAULTS: dict[str, str | None] = {}
323
+ TAKE_DEFAULTS["out"] = None
324
+ TAKE_DEFAULTS["mode"] = "raise"
325
+ validate_take = CompatValidator(TAKE_DEFAULTS, fname="take", method="kwargs")
326
+
327
+
328
+ def validate_take_with_convert(convert: ndarray | bool | None, args, kwargs) -> bool:
329
+ """
330
+ If this function is called via the 'numpy' library, the third parameter in
331
+ its signature is 'axis', which takes either an ndarray or 'None', so check
332
+ if the 'convert' parameter is either an instance of ndarray or is None
333
+ """
334
+ if isinstance(convert, ndarray) or convert is None:
335
+ args = (convert,) + args
336
+ convert = True
337
+
338
+ validate_take(args, kwargs, max_fname_arg_count=3, method="both")
339
+ return convert
340
+
341
+
342
+ TRANSPOSE_DEFAULTS = {"axes": None}
343
+ validate_transpose = CompatValidator(
344
+ TRANSPOSE_DEFAULTS, fname="transpose", method="both", max_fname_arg_count=0
345
+ )
346
+
347
+
348
+ def validate_groupby_func(name: str, args, kwargs, allowed=None) -> None:
349
+ """
350
+ 'args' and 'kwargs' should be empty, except for allowed kwargs because all
351
+ of their necessary parameters are explicitly listed in the function
352
+ signature
353
+ """
354
+ if allowed is None:
355
+ allowed = []
356
+
357
+ kwargs = set(kwargs) - set(allowed)
358
+
359
+ if len(args) + len(kwargs) > 0:
360
+ raise UnsupportedFunctionCall(
361
+ "numpy operations are not valid with groupby. "
362
+ f"Use .groupby(...).{name}() instead"
363
+ )
364
+
365
+
366
+ RESAMPLER_NUMPY_OPS = ("min", "max", "sum", "prod", "mean", "std", "var")
367
+
368
+
369
+ def validate_resampler_func(method: str, args, kwargs) -> None:
370
+ """
371
+ 'args' and 'kwargs' should be empty because all of their necessary
372
+ parameters are explicitly listed in the function signature
373
+ """
374
+ if len(args) + len(kwargs) > 0:
375
+ if method in RESAMPLER_NUMPY_OPS:
376
+ raise UnsupportedFunctionCall(
377
+ "numpy operations are not valid with resample. "
378
+ f"Use .resample(...).{method}() instead"
379
+ )
380
+ raise TypeError("too many arguments passed in")
381
+
382
+
383
+ def validate_minmax_axis(axis: AxisInt | None, ndim: int = 1) -> None:
384
+ """
385
+ Ensure that the axis argument passed to min, max, argmin, or argmax is zero
386
+ or None, as otherwise it will be incorrectly ignored.
387
+
388
+ Parameters
389
+ ----------
390
+ axis : int or None
391
+ ndim : int, default 1
392
+
393
+ Raises
394
+ ------
395
+ ValueError
396
+ """
397
+ if axis is None:
398
+ return
399
+ if axis >= ndim or (axis < 0 and ndim + axis < 0):
400
+ raise ValueError(f"`axis` must be fewer than the number of dimensions ({ndim})")
401
+
402
+
403
+ _validation_funcs = {
404
+ "median": validate_median,
405
+ "mean": validate_mean,
406
+ "min": validate_min,
407
+ "max": validate_max,
408
+ "sum": validate_sum,
409
+ "prod": validate_prod,
410
+ }
411
+
412
+
413
+ def validate_func(fname, args, kwargs) -> None:
414
+ if fname not in _validation_funcs:
415
+ return validate_stat_func(args, kwargs, fname=fname)
416
+
417
+ validation_func = _validation_funcs[fname]
418
+ return validation_func(args, kwargs)
env-llmeval/lib/python3.10/site-packages/pandas/compat/pickle_compat.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Support pre-0.12 series pickle compatibility.
3
+ """
4
+ from __future__ import annotations
5
+
6
+ import contextlib
7
+ import copy
8
+ import io
9
+ import pickle as pkl
10
+ from typing import TYPE_CHECKING
11
+
12
+ import numpy as np
13
+
14
+ from pandas._libs.arrays import NDArrayBacked
15
+ from pandas._libs.tslibs import BaseOffset
16
+
17
+ from pandas import Index
18
+ from pandas.core.arrays import (
19
+ DatetimeArray,
20
+ PeriodArray,
21
+ TimedeltaArray,
22
+ )
23
+ from pandas.core.internals import BlockManager
24
+
25
+ if TYPE_CHECKING:
26
+ from collections.abc import Generator
27
+
28
+
29
+ def load_reduce(self) -> None:
30
+ stack = self.stack
31
+ args = stack.pop()
32
+ func = stack[-1]
33
+
34
+ try:
35
+ stack[-1] = func(*args)
36
+ return
37
+ except TypeError as err:
38
+ # If we have a deprecated function,
39
+ # try to replace and try again.
40
+
41
+ msg = "_reconstruct: First argument must be a sub-type of ndarray"
42
+
43
+ if msg in str(err):
44
+ try:
45
+ cls = args[0]
46
+ stack[-1] = object.__new__(cls)
47
+ return
48
+ except TypeError:
49
+ pass
50
+ elif args and isinstance(args[0], type) and issubclass(args[0], BaseOffset):
51
+ # TypeError: object.__new__(Day) is not safe, use Day.__new__()
52
+ cls = args[0]
53
+ stack[-1] = cls.__new__(*args)
54
+ return
55
+ elif args and issubclass(args[0], PeriodArray):
56
+ cls = args[0]
57
+ stack[-1] = NDArrayBacked.__new__(*args)
58
+ return
59
+
60
+ raise
61
+
62
+
63
+ # If classes are moved, provide compat here.
64
+ _class_locations_map = {
65
+ ("pandas.core.sparse.array", "SparseArray"): ("pandas.core.arrays", "SparseArray"),
66
+ # 15477
67
+ ("pandas.core.base", "FrozenNDArray"): ("numpy", "ndarray"),
68
+ # Re-routing unpickle block logic to go through _unpickle_block instead
69
+ # for pandas <= 1.3.5
70
+ ("pandas.core.internals.blocks", "new_block"): (
71
+ "pandas._libs.internals",
72
+ "_unpickle_block",
73
+ ),
74
+ ("pandas.core.indexes.frozen", "FrozenNDArray"): ("numpy", "ndarray"),
75
+ ("pandas.core.base", "FrozenList"): ("pandas.core.indexes.frozen", "FrozenList"),
76
+ # 10890
77
+ ("pandas.core.series", "TimeSeries"): ("pandas.core.series", "Series"),
78
+ ("pandas.sparse.series", "SparseTimeSeries"): (
79
+ "pandas.core.sparse.series",
80
+ "SparseSeries",
81
+ ),
82
+ # 12588, extensions moving
83
+ ("pandas._sparse", "BlockIndex"): ("pandas._libs.sparse", "BlockIndex"),
84
+ ("pandas.tslib", "Timestamp"): ("pandas._libs.tslib", "Timestamp"),
85
+ # 18543 moving period
86
+ ("pandas._period", "Period"): ("pandas._libs.tslibs.period", "Period"),
87
+ ("pandas._libs.period", "Period"): ("pandas._libs.tslibs.period", "Period"),
88
+ # 18014 moved __nat_unpickle from _libs.tslib-->_libs.tslibs.nattype
89
+ ("pandas.tslib", "__nat_unpickle"): (
90
+ "pandas._libs.tslibs.nattype",
91
+ "__nat_unpickle",
92
+ ),
93
+ ("pandas._libs.tslib", "__nat_unpickle"): (
94
+ "pandas._libs.tslibs.nattype",
95
+ "__nat_unpickle",
96
+ ),
97
+ # 15998 top-level dirs moving
98
+ ("pandas.sparse.array", "SparseArray"): (
99
+ "pandas.core.arrays.sparse",
100
+ "SparseArray",
101
+ ),
102
+ ("pandas.indexes.base", "_new_Index"): ("pandas.core.indexes.base", "_new_Index"),
103
+ ("pandas.indexes.base", "Index"): ("pandas.core.indexes.base", "Index"),
104
+ ("pandas.indexes.numeric", "Int64Index"): (
105
+ "pandas.core.indexes.base",
106
+ "Index", # updated in 50775
107
+ ),
108
+ ("pandas.indexes.range", "RangeIndex"): ("pandas.core.indexes.range", "RangeIndex"),
109
+ ("pandas.indexes.multi", "MultiIndex"): ("pandas.core.indexes.multi", "MultiIndex"),
110
+ ("pandas.tseries.index", "_new_DatetimeIndex"): (
111
+ "pandas.core.indexes.datetimes",
112
+ "_new_DatetimeIndex",
113
+ ),
114
+ ("pandas.tseries.index", "DatetimeIndex"): (
115
+ "pandas.core.indexes.datetimes",
116
+ "DatetimeIndex",
117
+ ),
118
+ ("pandas.tseries.period", "PeriodIndex"): (
119
+ "pandas.core.indexes.period",
120
+ "PeriodIndex",
121
+ ),
122
+ # 19269, arrays moving
123
+ ("pandas.core.categorical", "Categorical"): ("pandas.core.arrays", "Categorical"),
124
+ # 19939, add timedeltaindex, float64index compat from 15998 move
125
+ ("pandas.tseries.tdi", "TimedeltaIndex"): (
126
+ "pandas.core.indexes.timedeltas",
127
+ "TimedeltaIndex",
128
+ ),
129
+ ("pandas.indexes.numeric", "Float64Index"): (
130
+ "pandas.core.indexes.base",
131
+ "Index", # updated in 50775
132
+ ),
133
+ # 50775, remove Int64Index, UInt64Index & Float64Index from codabase
134
+ ("pandas.core.indexes.numeric", "Int64Index"): (
135
+ "pandas.core.indexes.base",
136
+ "Index",
137
+ ),
138
+ ("pandas.core.indexes.numeric", "UInt64Index"): (
139
+ "pandas.core.indexes.base",
140
+ "Index",
141
+ ),
142
+ ("pandas.core.indexes.numeric", "Float64Index"): (
143
+ "pandas.core.indexes.base",
144
+ "Index",
145
+ ),
146
+ ("pandas.core.arrays.sparse.dtype", "SparseDtype"): (
147
+ "pandas.core.dtypes.dtypes",
148
+ "SparseDtype",
149
+ ),
150
+ }
151
+
152
+
153
+ # our Unpickler sub-class to override methods and some dispatcher
154
+ # functions for compat and uses a non-public class of the pickle module.
155
+
156
+
157
+ class Unpickler(pkl._Unpickler):
158
+ def find_class(self, module, name):
159
+ # override superclass
160
+ key = (module, name)
161
+ module, name = _class_locations_map.get(key, key)
162
+ return super().find_class(module, name)
163
+
164
+
165
+ Unpickler.dispatch = copy.copy(Unpickler.dispatch)
166
+ Unpickler.dispatch[pkl.REDUCE[0]] = load_reduce
167
+
168
+
169
+ def load_newobj(self) -> None:
170
+ args = self.stack.pop()
171
+ cls = self.stack[-1]
172
+
173
+ # compat
174
+ if issubclass(cls, Index):
175
+ obj = object.__new__(cls)
176
+ elif issubclass(cls, DatetimeArray) and not args:
177
+ arr = np.array([], dtype="M8[ns]")
178
+ obj = cls.__new__(cls, arr, arr.dtype)
179
+ elif issubclass(cls, TimedeltaArray) and not args:
180
+ arr = np.array([], dtype="m8[ns]")
181
+ obj = cls.__new__(cls, arr, arr.dtype)
182
+ elif cls is BlockManager and not args:
183
+ obj = cls.__new__(cls, (), [], False)
184
+ else:
185
+ obj = cls.__new__(cls, *args)
186
+
187
+ self.stack[-1] = obj
188
+
189
+
190
+ Unpickler.dispatch[pkl.NEWOBJ[0]] = load_newobj
191
+
192
+
193
+ def load_newobj_ex(self) -> None:
194
+ kwargs = self.stack.pop()
195
+ args = self.stack.pop()
196
+ cls = self.stack.pop()
197
+
198
+ # compat
199
+ if issubclass(cls, Index):
200
+ obj = object.__new__(cls)
201
+ else:
202
+ obj = cls.__new__(cls, *args, **kwargs)
203
+ self.append(obj)
204
+
205
+
206
+ try:
207
+ Unpickler.dispatch[pkl.NEWOBJ_EX[0]] = load_newobj_ex
208
+ except (AttributeError, KeyError):
209
+ pass
210
+
211
+
212
+ def load(fh, encoding: str | None = None, is_verbose: bool = False):
213
+ """
214
+ Load a pickle, with a provided encoding,
215
+
216
+ Parameters
217
+ ----------
218
+ fh : a filelike object
219
+ encoding : an optional encoding
220
+ is_verbose : show exception output
221
+ """
222
+ try:
223
+ fh.seek(0)
224
+ if encoding is not None:
225
+ up = Unpickler(fh, encoding=encoding)
226
+ else:
227
+ up = Unpickler(fh)
228
+ # "Unpickler" has no attribute "is_verbose" [attr-defined]
229
+ up.is_verbose = is_verbose # type: ignore[attr-defined]
230
+
231
+ return up.load()
232
+ except (ValueError, TypeError):
233
+ raise
234
+
235
+
236
+ def loads(
237
+ bytes_object: bytes,
238
+ *,
239
+ fix_imports: bool = True,
240
+ encoding: str = "ASCII",
241
+ errors: str = "strict",
242
+ ):
243
+ """
244
+ Analogous to pickle._loads.
245
+ """
246
+ fd = io.BytesIO(bytes_object)
247
+ return Unpickler(
248
+ fd, fix_imports=fix_imports, encoding=encoding, errors=errors
249
+ ).load()
250
+
251
+
252
+ @contextlib.contextmanager
253
+ def patch_pickle() -> Generator[None, None, None]:
254
+ """
255
+ Temporarily patch pickle to use our unpickler.
256
+ """
257
+ orig_loads = pkl.loads
258
+ try:
259
+ setattr(pkl, "loads", loads)
260
+ yield
261
+ finally:
262
+ setattr(pkl, "loads", orig_loads)
env-llmeval/lib/python3.10/site-packages/pandas/compat/pyarrow.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ support pyarrow compatibility across versions """
2
+
3
+ from __future__ import annotations
4
+
5
+ from pandas.util.version import Version
6
+
7
+ try:
8
+ import pyarrow as pa
9
+
10
+ _palv = Version(Version(pa.__version__).base_version)
11
+ pa_version_under10p1 = _palv < Version("10.0.1")
12
+ pa_version_under11p0 = _palv < Version("11.0.0")
13
+ pa_version_under12p0 = _palv < Version("12.0.0")
14
+ pa_version_under13p0 = _palv < Version("13.0.0")
15
+ pa_version_under14p0 = _palv < Version("14.0.0")
16
+ pa_version_under14p1 = _palv < Version("14.0.1")
17
+ pa_version_under15p0 = _palv < Version("15.0.0")
18
+ pa_version_under16p0 = _palv < Version("16.0.0")
19
+ except ImportError:
20
+ pa_version_under10p1 = True
21
+ pa_version_under11p0 = True
22
+ pa_version_under12p0 = True
23
+ pa_version_under13p0 = True
24
+ pa_version_under14p0 = True
25
+ pa_version_under14p1 = True
26
+ pa_version_under15p0 = True
27
+ pa_version_under16p0 = True
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (184 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_api.cpython-310.pyc ADDED
Binary file (10.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_arithmetic.cpython-310.pyc ADDED
Binary file (30.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_constructors.cpython-310.pyc ADDED
Binary file (78.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_cumulative.cpython-310.pyc ADDED
Binary file (4.45 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_formats.cpython-310.pyc ADDED
Binary file (18.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_iteration.cpython-310.pyc ADDED
Binary file (1.63 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_logical_ops.cpython-310.pyc ADDED
Binary file (14.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_missing.cpython-310.pyc ADDED
Binary file (3.71 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_npfuncs.cpython-310.pyc ADDED
Binary file (1.75 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_reductions.cpython-310.pyc ADDED
Binary file (6.81 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_subclass.cpython-310.pyc ADDED
Binary file (3.57 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_ufunc.cpython-310.pyc ADDED
Binary file (11.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_unary.cpython-310.pyc ADDED
Binary file (1.94 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/__pycache__/test_validate.cpython-310.pyc ADDED
Binary file (857 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (194 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_cat_accessor.cpython-310.pyc ADDED
Binary file (8.63 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_dt_accessor.cpython-310.pyc ADDED
Binary file (24.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_list_accessor.cpython-310.pyc ADDED
Binary file (3.82 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_sparse_accessor.cpython-310.pyc ADDED
Binary file (787 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_str_accessor.cpython-310.pyc ADDED
Binary file (1.51 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_struct_accessor.cpython-310.pyc ADDED
Binary file (4.05 kB). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/test_cat_accessor.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ Categorical,
6
+ DataFrame,
7
+ Index,
8
+ Series,
9
+ Timestamp,
10
+ date_range,
11
+ period_range,
12
+ timedelta_range,
13
+ )
14
+ import pandas._testing as tm
15
+ from pandas.core.arrays.categorical import CategoricalAccessor
16
+ from pandas.core.indexes.accessors import Properties
17
+
18
+
19
+ class TestCatAccessor:
20
+ @pytest.mark.parametrize(
21
+ "method",
22
+ [
23
+ lambda x: x.cat.set_categories([1, 2, 3]),
24
+ lambda x: x.cat.reorder_categories([2, 3, 1], ordered=True),
25
+ lambda x: x.cat.rename_categories([1, 2, 3]),
26
+ lambda x: x.cat.remove_unused_categories(),
27
+ lambda x: x.cat.remove_categories([2]),
28
+ lambda x: x.cat.add_categories([4]),
29
+ lambda x: x.cat.as_ordered(),
30
+ lambda x: x.cat.as_unordered(),
31
+ ],
32
+ )
33
+ def test_getname_categorical_accessor(self, method):
34
+ # GH#17509
35
+ ser = Series([1, 2, 3], name="A").astype("category")
36
+ expected = "A"
37
+ result = method(ser).name
38
+ assert result == expected
39
+
40
+ def test_cat_accessor(self):
41
+ ser = Series(Categorical(["a", "b", np.nan, "a"]))
42
+ tm.assert_index_equal(ser.cat.categories, Index(["a", "b"]))
43
+ assert not ser.cat.ordered, False
44
+
45
+ exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"])
46
+
47
+ res = ser.cat.set_categories(["b", "a"])
48
+ tm.assert_categorical_equal(res.values, exp)
49
+
50
+ ser[:] = "a"
51
+ ser = ser.cat.remove_unused_categories()
52
+ tm.assert_index_equal(ser.cat.categories, Index(["a"]))
53
+
54
+ def test_cat_accessor_api(self):
55
+ # GH#9322
56
+
57
+ assert Series.cat is CategoricalAccessor
58
+ ser = Series(list("aabbcde")).astype("category")
59
+ assert isinstance(ser.cat, CategoricalAccessor)
60
+
61
+ invalid = Series([1])
62
+ with pytest.raises(AttributeError, match="only use .cat accessor"):
63
+ invalid.cat
64
+ assert not hasattr(invalid, "cat")
65
+
66
+ def test_cat_accessor_no_new_attributes(self):
67
+ # https://github.com/pandas-dev/pandas/issues/10673
68
+ cat = Series(list("aabbcde")).astype("category")
69
+ with pytest.raises(AttributeError, match="You cannot add any new attribute"):
70
+ cat.cat.xlabel = "a"
71
+
72
+ def test_categorical_delegations(self):
73
+ # invalid accessor
74
+ msg = r"Can only use \.cat accessor with a 'category' dtype"
75
+ with pytest.raises(AttributeError, match=msg):
76
+ Series([1, 2, 3]).cat
77
+ with pytest.raises(AttributeError, match=msg):
78
+ Series([1, 2, 3]).cat()
79
+ with pytest.raises(AttributeError, match=msg):
80
+ Series(["a", "b", "c"]).cat
81
+ with pytest.raises(AttributeError, match=msg):
82
+ Series(np.arange(5.0)).cat
83
+ with pytest.raises(AttributeError, match=msg):
84
+ Series([Timestamp("20130101")]).cat
85
+
86
+ # Series should delegate calls to '.categories', '.codes', '.ordered'
87
+ # and the methods '.set_categories()' 'drop_unused_categories()' to the
88
+ # categorical
89
+ ser = Series(Categorical(["a", "b", "c", "a"], ordered=True))
90
+ exp_categories = Index(["a", "b", "c"])
91
+ tm.assert_index_equal(ser.cat.categories, exp_categories)
92
+ ser = ser.cat.rename_categories([1, 2, 3])
93
+ exp_categories = Index([1, 2, 3])
94
+ tm.assert_index_equal(ser.cat.categories, exp_categories)
95
+
96
+ exp_codes = Series([0, 1, 2, 0], dtype="int8")
97
+ tm.assert_series_equal(ser.cat.codes, exp_codes)
98
+
99
+ assert ser.cat.ordered
100
+ ser = ser.cat.as_unordered()
101
+ assert not ser.cat.ordered
102
+
103
+ ser = ser.cat.as_ordered()
104
+ assert ser.cat.ordered
105
+
106
+ # reorder
107
+ ser = Series(Categorical(["a", "b", "c", "a"], ordered=True))
108
+ exp_categories = Index(["c", "b", "a"])
109
+ exp_values = np.array(["a", "b", "c", "a"], dtype=np.object_)
110
+ ser = ser.cat.set_categories(["c", "b", "a"])
111
+ tm.assert_index_equal(ser.cat.categories, exp_categories)
112
+ tm.assert_numpy_array_equal(ser.values.__array__(), exp_values)
113
+ tm.assert_numpy_array_equal(ser.__array__(), exp_values)
114
+
115
+ # remove unused categories
116
+ ser = Series(Categorical(["a", "b", "b", "a"], categories=["a", "b", "c"]))
117
+ exp_categories = Index(["a", "b"])
118
+ exp_values = np.array(["a", "b", "b", "a"], dtype=np.object_)
119
+ ser = ser.cat.remove_unused_categories()
120
+ tm.assert_index_equal(ser.cat.categories, exp_categories)
121
+ tm.assert_numpy_array_equal(ser.values.__array__(), exp_values)
122
+ tm.assert_numpy_array_equal(ser.__array__(), exp_values)
123
+
124
+ # This method is likely to be confused, so test that it raises an error
125
+ # on wrong inputs:
126
+ msg = "'Series' object has no attribute 'set_categories'"
127
+ with pytest.raises(AttributeError, match=msg):
128
+ ser.set_categories([4, 3, 2, 1])
129
+
130
+ # right: ser.cat.set_categories([4,3,2,1])
131
+
132
+ # GH#18862 (let Series.cat.rename_categories take callables)
133
+ ser = Series(Categorical(["a", "b", "c", "a"], ordered=True))
134
+ result = ser.cat.rename_categories(lambda x: x.upper())
135
+ expected = Series(
136
+ Categorical(["A", "B", "C", "A"], categories=["A", "B", "C"], ordered=True)
137
+ )
138
+ tm.assert_series_equal(result, expected)
139
+
140
+ @pytest.mark.parametrize(
141
+ "idx",
142
+ [
143
+ date_range("1/1/2015", periods=5),
144
+ date_range("1/1/2015", periods=5, tz="MET"),
145
+ period_range("1/1/2015", freq="D", periods=5),
146
+ timedelta_range("1 days", "10 days"),
147
+ ],
148
+ )
149
+ def test_dt_accessor_api_for_categorical(self, idx):
150
+ # https://github.com/pandas-dev/pandas/issues/10661
151
+
152
+ ser = Series(idx)
153
+ cat = ser.astype("category")
154
+
155
+ # only testing field (like .day)
156
+ # and bool (is_month_start)
157
+ attr_names = type(ser._values)._datetimelike_ops
158
+
159
+ assert isinstance(cat.dt, Properties)
160
+
161
+ special_func_defs = [
162
+ ("strftime", ("%Y-%m-%d",), {}),
163
+ ("round", ("D",), {}),
164
+ ("floor", ("D",), {}),
165
+ ("ceil", ("D",), {}),
166
+ ("asfreq", ("D",), {}),
167
+ ("as_unit", ("s"), {}),
168
+ ]
169
+ if idx.dtype == "M8[ns]":
170
+ # exclude dt64tz since that is already localized and would raise
171
+ tup = ("tz_localize", ("UTC",), {})
172
+ special_func_defs.append(tup)
173
+ elif idx.dtype.kind == "M":
174
+ # exclude dt64 since that is not localized so would raise
175
+ tup = ("tz_convert", ("EST",), {})
176
+ special_func_defs.append(tup)
177
+
178
+ _special_func_names = [f[0] for f in special_func_defs]
179
+
180
+ _ignore_names = ["components", "tz_localize", "tz_convert"]
181
+
182
+ func_names = [
183
+ fname
184
+ for fname in dir(ser.dt)
185
+ if not (
186
+ fname.startswith("_")
187
+ or fname in attr_names
188
+ or fname in _special_func_names
189
+ or fname in _ignore_names
190
+ )
191
+ ]
192
+
193
+ func_defs = [(fname, (), {}) for fname in func_names]
194
+ func_defs.extend(
195
+ f_def for f_def in special_func_defs if f_def[0] in dir(ser.dt)
196
+ )
197
+
198
+ for func, args, kwargs in func_defs:
199
+ warn_cls = []
200
+ if func == "to_period" and getattr(idx, "tz", None) is not None:
201
+ # dropping TZ
202
+ warn_cls.append(UserWarning)
203
+ if func == "to_pydatetime":
204
+ # deprecated to return Index[object]
205
+ warn_cls.append(FutureWarning)
206
+ if warn_cls:
207
+ warn_cls = tuple(warn_cls)
208
+ else:
209
+ warn_cls = None
210
+ with tm.assert_produces_warning(warn_cls):
211
+ res = getattr(cat.dt, func)(*args, **kwargs)
212
+ exp = getattr(ser.dt, func)(*args, **kwargs)
213
+
214
+ tm.assert_equal(res, exp)
215
+
216
+ for attr in attr_names:
217
+ res = getattr(cat.dt, attr)
218
+ exp = getattr(ser.dt, attr)
219
+
220
+ tm.assert_equal(res, exp)
221
+
222
+ def test_dt_accessor_api_for_categorical_invalid(self):
223
+ invalid = Series([1, 2, 3]).astype("category")
224
+ msg = "Can only use .dt accessor with datetimelike"
225
+
226
+ with pytest.raises(AttributeError, match=msg):
227
+ invalid.dt
228
+ assert not hasattr(invalid, "str")
229
+
230
+ def test_set_categories_setitem(self):
231
+ # GH#43334
232
+
233
+ df = DataFrame({"Survived": [1, 0, 1], "Sex": [0, 1, 1]}, dtype="category")
234
+
235
+ df["Survived"] = df["Survived"].cat.rename_categories(["No", "Yes"])
236
+ df["Sex"] = df["Sex"].cat.rename_categories(["female", "male"])
237
+
238
+ # values should not be coerced to NaN
239
+ assert list(df["Sex"]) == ["female", "male", "male"]
240
+ assert list(df["Survived"]) == ["Yes", "No", "Yes"]
241
+
242
+ df["Sex"] = Categorical(df["Sex"], categories=["female", "male"], ordered=False)
243
+ df["Survived"] = Categorical(
244
+ df["Survived"], categories=["No", "Yes"], ordered=False
245
+ )
246
+
247
+ # values should not be coerced to NaN
248
+ assert list(df["Sex"]) == ["female", "male", "male"]
249
+ assert list(df["Survived"]) == ["Yes", "No", "Yes"]
250
+
251
+ def test_categorical_of_booleans_is_boolean(self):
252
+ # https://github.com/pandas-dev/pandas/issues/46313
253
+ df = DataFrame(
254
+ {"int_cat": [1, 2, 3], "bool_cat": [True, False, False]}, dtype="category"
255
+ )
256
+ value = df["bool_cat"].cat.categories.dtype
257
+ expected = np.dtype(np.bool_)
258
+ assert value is expected
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/test_dt_accessor.py ADDED
@@ -0,0 +1,843 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import calendar
2
+ from datetime import (
3
+ date,
4
+ datetime,
5
+ time,
6
+ )
7
+ import locale
8
+ import unicodedata
9
+
10
+ import numpy as np
11
+ import pytest
12
+ import pytz
13
+
14
+ from pandas._libs.tslibs.timezones import maybe_get_tz
15
+ from pandas.errors import SettingWithCopyError
16
+
17
+ from pandas.core.dtypes.common import (
18
+ is_integer_dtype,
19
+ is_list_like,
20
+ )
21
+
22
+ import pandas as pd
23
+ from pandas import (
24
+ DataFrame,
25
+ DatetimeIndex,
26
+ Index,
27
+ Period,
28
+ PeriodIndex,
29
+ Series,
30
+ TimedeltaIndex,
31
+ date_range,
32
+ period_range,
33
+ timedelta_range,
34
+ )
35
+ import pandas._testing as tm
36
+ from pandas.core.arrays import (
37
+ DatetimeArray,
38
+ PeriodArray,
39
+ TimedeltaArray,
40
+ )
41
+
42
+ ok_for_period = PeriodArray._datetimelike_ops
43
+ ok_for_period_methods = ["strftime", "to_timestamp", "asfreq"]
44
+ ok_for_dt = DatetimeArray._datetimelike_ops
45
+ ok_for_dt_methods = [
46
+ "to_period",
47
+ "to_pydatetime",
48
+ "tz_localize",
49
+ "tz_convert",
50
+ "normalize",
51
+ "strftime",
52
+ "round",
53
+ "floor",
54
+ "ceil",
55
+ "day_name",
56
+ "month_name",
57
+ "isocalendar",
58
+ "as_unit",
59
+ ]
60
+ ok_for_td = TimedeltaArray._datetimelike_ops
61
+ ok_for_td_methods = [
62
+ "components",
63
+ "to_pytimedelta",
64
+ "total_seconds",
65
+ "round",
66
+ "floor",
67
+ "ceil",
68
+ "as_unit",
69
+ ]
70
+
71
+
72
+ def get_dir(ser):
73
+ # check limited display api
74
+ results = [r for r in ser.dt.__dir__() if not r.startswith("_")]
75
+ return sorted(set(results))
76
+
77
+
78
+ class TestSeriesDatetimeValues:
79
+ def _compare(self, ser, name):
80
+ # GH 7207, 11128
81
+ # test .dt namespace accessor
82
+
83
+ def get_expected(ser, prop):
84
+ result = getattr(Index(ser._values), prop)
85
+ if isinstance(result, np.ndarray):
86
+ if is_integer_dtype(result):
87
+ result = result.astype("int64")
88
+ elif not is_list_like(result) or isinstance(result, DataFrame):
89
+ return result
90
+ return Series(result, index=ser.index, name=ser.name)
91
+
92
+ left = getattr(ser.dt, name)
93
+ right = get_expected(ser, name)
94
+ if not (is_list_like(left) and is_list_like(right)):
95
+ assert left == right
96
+ elif isinstance(left, DataFrame):
97
+ tm.assert_frame_equal(left, right)
98
+ else:
99
+ tm.assert_series_equal(left, right)
100
+
101
+ @pytest.mark.parametrize("freq", ["D", "s", "ms"])
102
+ def test_dt_namespace_accessor_datetime64(self, freq):
103
+ # GH#7207, GH#11128
104
+ # test .dt namespace accessor
105
+
106
+ # datetimeindex
107
+ dti = date_range("20130101", periods=5, freq=freq)
108
+ ser = Series(dti, name="xxx")
109
+
110
+ for prop in ok_for_dt:
111
+ # we test freq below
112
+ if prop != "freq":
113
+ self._compare(ser, prop)
114
+
115
+ for prop in ok_for_dt_methods:
116
+ getattr(ser.dt, prop)
117
+
118
+ msg = "The behavior of DatetimeProperties.to_pydatetime is deprecated"
119
+ with tm.assert_produces_warning(FutureWarning, match=msg):
120
+ result = ser.dt.to_pydatetime()
121
+ assert isinstance(result, np.ndarray)
122
+ assert result.dtype == object
123
+
124
+ result = ser.dt.tz_localize("US/Eastern")
125
+ exp_values = DatetimeIndex(ser.values).tz_localize("US/Eastern")
126
+ expected = Series(exp_values, index=ser.index, name="xxx")
127
+ tm.assert_series_equal(result, expected)
128
+
129
+ tz_result = result.dt.tz
130
+ assert str(tz_result) == "US/Eastern"
131
+ freq_result = ser.dt.freq
132
+ assert freq_result == DatetimeIndex(ser.values, freq="infer").freq
133
+
134
+ # let's localize, then convert
135
+ result = ser.dt.tz_localize("UTC").dt.tz_convert("US/Eastern")
136
+ exp_values = (
137
+ DatetimeIndex(ser.values).tz_localize("UTC").tz_convert("US/Eastern")
138
+ )
139
+ expected = Series(exp_values, index=ser.index, name="xxx")
140
+ tm.assert_series_equal(result, expected)
141
+
142
+ def test_dt_namespace_accessor_datetime64tz(self):
143
+ # GH#7207, GH#11128
144
+ # test .dt namespace accessor
145
+
146
+ # datetimeindex with tz
147
+ dti = date_range("20130101", periods=5, tz="US/Eastern")
148
+ ser = Series(dti, name="xxx")
149
+ for prop in ok_for_dt:
150
+ # we test freq below
151
+ if prop != "freq":
152
+ self._compare(ser, prop)
153
+
154
+ for prop in ok_for_dt_methods:
155
+ getattr(ser.dt, prop)
156
+
157
+ msg = "The behavior of DatetimeProperties.to_pydatetime is deprecated"
158
+ with tm.assert_produces_warning(FutureWarning, match=msg):
159
+ result = ser.dt.to_pydatetime()
160
+ assert isinstance(result, np.ndarray)
161
+ assert result.dtype == object
162
+
163
+ result = ser.dt.tz_convert("CET")
164
+ expected = Series(ser._values.tz_convert("CET"), index=ser.index, name="xxx")
165
+ tm.assert_series_equal(result, expected)
166
+
167
+ tz_result = result.dt.tz
168
+ assert str(tz_result) == "CET"
169
+ freq_result = ser.dt.freq
170
+ assert freq_result == DatetimeIndex(ser.values, freq="infer").freq
171
+
172
+ def test_dt_namespace_accessor_timedelta(self):
173
+ # GH#7207, GH#11128
174
+ # test .dt namespace accessor
175
+
176
+ # timedelta index
177
+ cases = [
178
+ Series(
179
+ timedelta_range("1 day", periods=5), index=list("abcde"), name="xxx"
180
+ ),
181
+ Series(timedelta_range("1 day 01:23:45", periods=5, freq="s"), name="xxx"),
182
+ Series(
183
+ timedelta_range("2 days 01:23:45.012345", periods=5, freq="ms"),
184
+ name="xxx",
185
+ ),
186
+ ]
187
+ for ser in cases:
188
+ for prop in ok_for_td:
189
+ # we test freq below
190
+ if prop != "freq":
191
+ self._compare(ser, prop)
192
+
193
+ for prop in ok_for_td_methods:
194
+ getattr(ser.dt, prop)
195
+
196
+ result = ser.dt.components
197
+ assert isinstance(result, DataFrame)
198
+ tm.assert_index_equal(result.index, ser.index)
199
+
200
+ result = ser.dt.to_pytimedelta()
201
+ assert isinstance(result, np.ndarray)
202
+ assert result.dtype == object
203
+
204
+ result = ser.dt.total_seconds()
205
+ assert isinstance(result, Series)
206
+ assert result.dtype == "float64"
207
+
208
+ freq_result = ser.dt.freq
209
+ assert freq_result == TimedeltaIndex(ser.values, freq="infer").freq
210
+
211
+ def test_dt_namespace_accessor_period(self):
212
+ # GH#7207, GH#11128
213
+ # test .dt namespace accessor
214
+
215
+ # periodindex
216
+ pi = period_range("20130101", periods=5, freq="D")
217
+ ser = Series(pi, name="xxx")
218
+
219
+ for prop in ok_for_period:
220
+ # we test freq below
221
+ if prop != "freq":
222
+ self._compare(ser, prop)
223
+
224
+ for prop in ok_for_period_methods:
225
+ getattr(ser.dt, prop)
226
+
227
+ freq_result = ser.dt.freq
228
+ assert freq_result == PeriodIndex(ser.values).freq
229
+
230
+ def test_dt_namespace_accessor_index_and_values(self):
231
+ # both
232
+ index = date_range("20130101", periods=3, freq="D")
233
+ dti = date_range("20140204", periods=3, freq="s")
234
+ ser = Series(dti, index=index, name="xxx")
235
+ exp = Series(
236
+ np.array([2014, 2014, 2014], dtype="int32"), index=index, name="xxx"
237
+ )
238
+ tm.assert_series_equal(ser.dt.year, exp)
239
+
240
+ exp = Series(np.array([2, 2, 2], dtype="int32"), index=index, name="xxx")
241
+ tm.assert_series_equal(ser.dt.month, exp)
242
+
243
+ exp = Series(np.array([0, 1, 2], dtype="int32"), index=index, name="xxx")
244
+ tm.assert_series_equal(ser.dt.second, exp)
245
+
246
+ exp = Series([ser.iloc[0]] * 3, index=index, name="xxx")
247
+ tm.assert_series_equal(ser.dt.normalize(), exp)
248
+
249
+ def test_dt_accessor_limited_display_api(self):
250
+ # tznaive
251
+ ser = Series(date_range("20130101", periods=5, freq="D"), name="xxx")
252
+ results = get_dir(ser)
253
+ tm.assert_almost_equal(results, sorted(set(ok_for_dt + ok_for_dt_methods)))
254
+
255
+ # tzaware
256
+ ser = Series(date_range("2015-01-01", "2016-01-01", freq="min"), name="xxx")
257
+ ser = ser.dt.tz_localize("UTC").dt.tz_convert("America/Chicago")
258
+ results = get_dir(ser)
259
+ tm.assert_almost_equal(results, sorted(set(ok_for_dt + ok_for_dt_methods)))
260
+
261
+ # Period
262
+ idx = period_range("20130101", periods=5, freq="D", name="xxx").astype(object)
263
+ with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
264
+ ser = Series(idx)
265
+ results = get_dir(ser)
266
+ tm.assert_almost_equal(
267
+ results, sorted(set(ok_for_period + ok_for_period_methods))
268
+ )
269
+
270
+ def test_dt_accessor_ambiguous_freq_conversions(self):
271
+ # GH#11295
272
+ # ambiguous time error on the conversions
273
+ ser = Series(date_range("2015-01-01", "2016-01-01", freq="min"), name="xxx")
274
+ ser = ser.dt.tz_localize("UTC").dt.tz_convert("America/Chicago")
275
+
276
+ exp_values = date_range(
277
+ "2015-01-01", "2016-01-01", freq="min", tz="UTC"
278
+ ).tz_convert("America/Chicago")
279
+ # freq not preserved by tz_localize above
280
+ exp_values = exp_values._with_freq(None)
281
+ expected = Series(exp_values, name="xxx")
282
+ tm.assert_series_equal(ser, expected)
283
+
284
+ def test_dt_accessor_not_writeable(self, using_copy_on_write, warn_copy_on_write):
285
+ # no setting allowed
286
+ ser = Series(date_range("20130101", periods=5, freq="D"), name="xxx")
287
+ with pytest.raises(ValueError, match="modifications"):
288
+ ser.dt.hour = 5
289
+
290
+ # trying to set a copy
291
+ msg = "modifications to a property of a datetimelike.+not supported"
292
+ with pd.option_context("chained_assignment", "raise"):
293
+ if using_copy_on_write:
294
+ with tm.raises_chained_assignment_error():
295
+ ser.dt.hour[0] = 5
296
+ elif warn_copy_on_write:
297
+ with tm.assert_produces_warning(
298
+ FutureWarning, match="ChainedAssignmentError"
299
+ ):
300
+ ser.dt.hour[0] = 5
301
+ else:
302
+ with pytest.raises(SettingWithCopyError, match=msg):
303
+ ser.dt.hour[0] = 5
304
+
305
+ @pytest.mark.parametrize(
306
+ "method, dates",
307
+ [
308
+ ["round", ["2012-01-02", "2012-01-02", "2012-01-01"]],
309
+ ["floor", ["2012-01-01", "2012-01-01", "2012-01-01"]],
310
+ ["ceil", ["2012-01-02", "2012-01-02", "2012-01-02"]],
311
+ ],
312
+ )
313
+ def test_dt_round(self, method, dates):
314
+ # round
315
+ ser = Series(
316
+ pd.to_datetime(
317
+ ["2012-01-01 13:00:00", "2012-01-01 12:01:00", "2012-01-01 08:00:00"]
318
+ ),
319
+ name="xxx",
320
+ )
321
+ result = getattr(ser.dt, method)("D")
322
+ expected = Series(pd.to_datetime(dates), name="xxx")
323
+ tm.assert_series_equal(result, expected)
324
+
325
+ def test_dt_round_tz(self):
326
+ ser = Series(
327
+ pd.to_datetime(
328
+ ["2012-01-01 13:00:00", "2012-01-01 12:01:00", "2012-01-01 08:00:00"]
329
+ ),
330
+ name="xxx",
331
+ )
332
+ result = ser.dt.tz_localize("UTC").dt.tz_convert("US/Eastern").dt.round("D")
333
+
334
+ exp_values = pd.to_datetime(
335
+ ["2012-01-01", "2012-01-01", "2012-01-01"]
336
+ ).tz_localize("US/Eastern")
337
+ expected = Series(exp_values, name="xxx")
338
+ tm.assert_series_equal(result, expected)
339
+
340
+ @pytest.mark.parametrize("method", ["ceil", "round", "floor"])
341
+ def test_dt_round_tz_ambiguous(self, method):
342
+ # GH 18946 round near "fall back" DST
343
+ df1 = DataFrame(
344
+ [
345
+ pd.to_datetime("2017-10-29 02:00:00+02:00", utc=True),
346
+ pd.to_datetime("2017-10-29 02:00:00+01:00", utc=True),
347
+ pd.to_datetime("2017-10-29 03:00:00+01:00", utc=True),
348
+ ],
349
+ columns=["date"],
350
+ )
351
+ df1["date"] = df1["date"].dt.tz_convert("Europe/Madrid")
352
+ # infer
353
+ result = getattr(df1.date.dt, method)("h", ambiguous="infer")
354
+ expected = df1["date"]
355
+ tm.assert_series_equal(result, expected)
356
+
357
+ # bool-array
358
+ result = getattr(df1.date.dt, method)("h", ambiguous=[True, False, False])
359
+ tm.assert_series_equal(result, expected)
360
+
361
+ # NaT
362
+ result = getattr(df1.date.dt, method)("h", ambiguous="NaT")
363
+ expected = df1["date"].copy()
364
+ expected.iloc[0:2] = pd.NaT
365
+ tm.assert_series_equal(result, expected)
366
+
367
+ # raise
368
+ with tm.external_error_raised(pytz.AmbiguousTimeError):
369
+ getattr(df1.date.dt, method)("h", ambiguous="raise")
370
+
371
+ @pytest.mark.parametrize(
372
+ "method, ts_str, freq",
373
+ [
374
+ ["ceil", "2018-03-11 01:59:00-0600", "5min"],
375
+ ["round", "2018-03-11 01:59:00-0600", "5min"],
376
+ ["floor", "2018-03-11 03:01:00-0500", "2h"],
377
+ ],
378
+ )
379
+ def test_dt_round_tz_nonexistent(self, method, ts_str, freq):
380
+ # GH 23324 round near "spring forward" DST
381
+ ser = Series([pd.Timestamp(ts_str, tz="America/Chicago")])
382
+ result = getattr(ser.dt, method)(freq, nonexistent="shift_forward")
383
+ expected = Series([pd.Timestamp("2018-03-11 03:00:00", tz="America/Chicago")])
384
+ tm.assert_series_equal(result, expected)
385
+
386
+ result = getattr(ser.dt, method)(freq, nonexistent="NaT")
387
+ expected = Series([pd.NaT]).dt.tz_localize(result.dt.tz)
388
+ tm.assert_series_equal(result, expected)
389
+
390
+ with pytest.raises(pytz.NonExistentTimeError, match="2018-03-11 02:00:00"):
391
+ getattr(ser.dt, method)(freq, nonexistent="raise")
392
+
393
+ @pytest.mark.parametrize("freq", ["ns", "us", "1000us"])
394
+ def test_dt_round_nonnano_higher_resolution_no_op(self, freq):
395
+ # GH 52761
396
+ ser = Series(
397
+ ["2020-05-31 08:00:00", "2000-12-31 04:00:05", "1800-03-14 07:30:20"],
398
+ dtype="datetime64[ms]",
399
+ )
400
+ expected = ser.copy()
401
+ result = ser.dt.round(freq)
402
+ tm.assert_series_equal(result, expected)
403
+
404
+ assert not np.shares_memory(ser.array._ndarray, result.array._ndarray)
405
+
406
+ def test_dt_namespace_accessor_categorical(self):
407
+ # GH 19468
408
+ dti = DatetimeIndex(["20171111", "20181212"]).repeat(2)
409
+ ser = Series(pd.Categorical(dti), name="foo")
410
+ result = ser.dt.year
411
+ expected = Series([2017, 2017, 2018, 2018], dtype="int32", name="foo")
412
+ tm.assert_series_equal(result, expected)
413
+
414
+ def test_dt_tz_localize_categorical(self, tz_aware_fixture):
415
+ # GH 27952
416
+ tz = tz_aware_fixture
417
+ datetimes = Series(
418
+ ["2019-01-01", "2019-01-01", "2019-01-02"], dtype="datetime64[ns]"
419
+ )
420
+ categorical = datetimes.astype("category")
421
+ result = categorical.dt.tz_localize(tz)
422
+ expected = datetimes.dt.tz_localize(tz)
423
+ tm.assert_series_equal(result, expected)
424
+
425
+ def test_dt_tz_convert_categorical(self, tz_aware_fixture):
426
+ # GH 27952
427
+ tz = tz_aware_fixture
428
+ datetimes = Series(
429
+ ["2019-01-01", "2019-01-01", "2019-01-02"], dtype="datetime64[ns, MET]"
430
+ )
431
+ categorical = datetimes.astype("category")
432
+ result = categorical.dt.tz_convert(tz)
433
+ expected = datetimes.dt.tz_convert(tz)
434
+ tm.assert_series_equal(result, expected)
435
+
436
+ @pytest.mark.parametrize("accessor", ["year", "month", "day"])
437
+ def test_dt_other_accessors_categorical(self, accessor):
438
+ # GH 27952
439
+ datetimes = Series(
440
+ ["2018-01-01", "2018-01-01", "2019-01-02"], dtype="datetime64[ns]"
441
+ )
442
+ categorical = datetimes.astype("category")
443
+ result = getattr(categorical.dt, accessor)
444
+ expected = getattr(datetimes.dt, accessor)
445
+ tm.assert_series_equal(result, expected)
446
+
447
+ def test_dt_accessor_no_new_attributes(self):
448
+ # https://github.com/pandas-dev/pandas/issues/10673
449
+ ser = Series(date_range("20130101", periods=5, freq="D"))
450
+ with pytest.raises(AttributeError, match="You cannot add any new attribute"):
451
+ ser.dt.xlabel = "a"
452
+
453
+ # error: Unsupported operand types for + ("List[None]" and "List[str]")
454
+ @pytest.mark.parametrize(
455
+ "time_locale", [None] + tm.get_locales() # type: ignore[operator]
456
+ )
457
+ def test_dt_accessor_datetime_name_accessors(self, time_locale):
458
+ # Test Monday -> Sunday and January -> December, in that sequence
459
+ if time_locale is None:
460
+ # If the time_locale is None, day-name and month_name should
461
+ # return the english attributes
462
+ expected_days = [
463
+ "Monday",
464
+ "Tuesday",
465
+ "Wednesday",
466
+ "Thursday",
467
+ "Friday",
468
+ "Saturday",
469
+ "Sunday",
470
+ ]
471
+ expected_months = [
472
+ "January",
473
+ "February",
474
+ "March",
475
+ "April",
476
+ "May",
477
+ "June",
478
+ "July",
479
+ "August",
480
+ "September",
481
+ "October",
482
+ "November",
483
+ "December",
484
+ ]
485
+ else:
486
+ with tm.set_locale(time_locale, locale.LC_TIME):
487
+ expected_days = calendar.day_name[:]
488
+ expected_months = calendar.month_name[1:]
489
+
490
+ ser = Series(date_range(freq="D", start=datetime(1998, 1, 1), periods=365))
491
+ english_days = [
492
+ "Monday",
493
+ "Tuesday",
494
+ "Wednesday",
495
+ "Thursday",
496
+ "Friday",
497
+ "Saturday",
498
+ "Sunday",
499
+ ]
500
+ for day, name, eng_name in zip(range(4, 11), expected_days, english_days):
501
+ name = name.capitalize()
502
+ assert ser.dt.day_name(locale=time_locale)[day] == name
503
+ assert ser.dt.day_name(locale=None)[day] == eng_name
504
+ ser = pd.concat([ser, Series([pd.NaT])])
505
+ assert np.isnan(ser.dt.day_name(locale=time_locale).iloc[-1])
506
+
507
+ ser = Series(date_range(freq="ME", start="2012", end="2013"))
508
+ result = ser.dt.month_name(locale=time_locale)
509
+ expected = Series([month.capitalize() for month in expected_months])
510
+
511
+ # work around https://github.com/pandas-dev/pandas/issues/22342
512
+ result = result.str.normalize("NFD")
513
+ expected = expected.str.normalize("NFD")
514
+
515
+ tm.assert_series_equal(result, expected)
516
+
517
+ for s_date, expected in zip(ser, expected_months):
518
+ result = s_date.month_name(locale=time_locale)
519
+ expected = expected.capitalize()
520
+
521
+ result = unicodedata.normalize("NFD", result)
522
+ expected = unicodedata.normalize("NFD", expected)
523
+
524
+ assert result == expected
525
+
526
+ ser = pd.concat([ser, Series([pd.NaT])])
527
+ assert np.isnan(ser.dt.month_name(locale=time_locale).iloc[-1])
528
+
529
+ def test_strftime(self):
530
+ # GH 10086
531
+ ser = Series(date_range("20130101", periods=5))
532
+ result = ser.dt.strftime("%Y/%m/%d")
533
+ expected = Series(
534
+ ["2013/01/01", "2013/01/02", "2013/01/03", "2013/01/04", "2013/01/05"]
535
+ )
536
+ tm.assert_series_equal(result, expected)
537
+
538
+ ser = Series(date_range("2015-02-03 11:22:33.4567", periods=5))
539
+ result = ser.dt.strftime("%Y/%m/%d %H-%M-%S")
540
+ expected = Series(
541
+ [
542
+ "2015/02/03 11-22-33",
543
+ "2015/02/04 11-22-33",
544
+ "2015/02/05 11-22-33",
545
+ "2015/02/06 11-22-33",
546
+ "2015/02/07 11-22-33",
547
+ ]
548
+ )
549
+ tm.assert_series_equal(result, expected)
550
+
551
+ ser = Series(period_range("20130101", periods=5))
552
+ result = ser.dt.strftime("%Y/%m/%d")
553
+ expected = Series(
554
+ ["2013/01/01", "2013/01/02", "2013/01/03", "2013/01/04", "2013/01/05"]
555
+ )
556
+ tm.assert_series_equal(result, expected)
557
+
558
+ ser = Series(period_range("2015-02-03 11:22:33.4567", periods=5, freq="s"))
559
+ result = ser.dt.strftime("%Y/%m/%d %H-%M-%S")
560
+ expected = Series(
561
+ [
562
+ "2015/02/03 11-22-33",
563
+ "2015/02/03 11-22-34",
564
+ "2015/02/03 11-22-35",
565
+ "2015/02/03 11-22-36",
566
+ "2015/02/03 11-22-37",
567
+ ]
568
+ )
569
+ tm.assert_series_equal(result, expected)
570
+
571
+ def test_strftime_dt64_days(self):
572
+ ser = Series(date_range("20130101", periods=5))
573
+ ser.iloc[0] = pd.NaT
574
+ result = ser.dt.strftime("%Y/%m/%d")
575
+ expected = Series(
576
+ [np.nan, "2013/01/02", "2013/01/03", "2013/01/04", "2013/01/05"]
577
+ )
578
+ tm.assert_series_equal(result, expected)
579
+
580
+ datetime_index = date_range("20150301", periods=5)
581
+ result = datetime_index.strftime("%Y/%m/%d")
582
+
583
+ expected = Index(
584
+ ["2015/03/01", "2015/03/02", "2015/03/03", "2015/03/04", "2015/03/05"],
585
+ dtype=np.object_,
586
+ )
587
+ # dtype may be S10 or U10 depending on python version
588
+ tm.assert_index_equal(result, expected)
589
+
590
+ def test_strftime_period_days(self, using_infer_string):
591
+ period_index = period_range("20150301", periods=5)
592
+ result = period_index.strftime("%Y/%m/%d")
593
+ expected = Index(
594
+ ["2015/03/01", "2015/03/02", "2015/03/03", "2015/03/04", "2015/03/05"],
595
+ dtype="=U10",
596
+ )
597
+ if using_infer_string:
598
+ expected = expected.astype("string[pyarrow_numpy]")
599
+ tm.assert_index_equal(result, expected)
600
+
601
+ def test_strftime_dt64_microsecond_resolution(self):
602
+ ser = Series([datetime(2013, 1, 1, 2, 32, 59), datetime(2013, 1, 2, 14, 32, 1)])
603
+ result = ser.dt.strftime("%Y-%m-%d %H:%M:%S")
604
+ expected = Series(["2013-01-01 02:32:59", "2013-01-02 14:32:01"])
605
+ tm.assert_series_equal(result, expected)
606
+
607
+ def test_strftime_period_hours(self):
608
+ ser = Series(period_range("20130101", periods=4, freq="h"))
609
+ result = ser.dt.strftime("%Y/%m/%d %H:%M:%S")
610
+ expected = Series(
611
+ [
612
+ "2013/01/01 00:00:00",
613
+ "2013/01/01 01:00:00",
614
+ "2013/01/01 02:00:00",
615
+ "2013/01/01 03:00:00",
616
+ ]
617
+ )
618
+ tm.assert_series_equal(result, expected)
619
+
620
+ def test_strftime_period_minutes(self):
621
+ ser = Series(period_range("20130101", periods=4, freq="ms"))
622
+ result = ser.dt.strftime("%Y/%m/%d %H:%M:%S.%l")
623
+ expected = Series(
624
+ [
625
+ "2013/01/01 00:00:00.000",
626
+ "2013/01/01 00:00:00.001",
627
+ "2013/01/01 00:00:00.002",
628
+ "2013/01/01 00:00:00.003",
629
+ ]
630
+ )
631
+ tm.assert_series_equal(result, expected)
632
+
633
+ @pytest.mark.parametrize(
634
+ "data",
635
+ [
636
+ DatetimeIndex(["2019-01-01", pd.NaT]),
637
+ PeriodIndex(["2019-01-01", pd.NaT], dtype="period[D]"),
638
+ ],
639
+ )
640
+ def test_strftime_nat(self, data):
641
+ # GH 29578
642
+ ser = Series(data)
643
+ result = ser.dt.strftime("%Y-%m-%d")
644
+ expected = Series(["2019-01-01", np.nan])
645
+ tm.assert_series_equal(result, expected)
646
+
647
+ @pytest.mark.parametrize(
648
+ "data", [DatetimeIndex([pd.NaT]), PeriodIndex([pd.NaT], dtype="period[D]")]
649
+ )
650
+ def test_strftime_all_nat(self, data):
651
+ # https://github.com/pandas-dev/pandas/issues/45858
652
+ ser = Series(data)
653
+ with tm.assert_produces_warning(None):
654
+ result = ser.dt.strftime("%Y-%m-%d")
655
+ expected = Series([np.nan], dtype=object)
656
+ tm.assert_series_equal(result, expected)
657
+
658
+ def test_valid_dt_with_missing_values(self):
659
+ # GH 8689
660
+ ser = Series(date_range("20130101", periods=5, freq="D"))
661
+ ser.iloc[2] = pd.NaT
662
+
663
+ for attr in ["microsecond", "nanosecond", "second", "minute", "hour", "day"]:
664
+ expected = getattr(ser.dt, attr).copy()
665
+ expected.iloc[2] = np.nan
666
+ result = getattr(ser.dt, attr)
667
+ tm.assert_series_equal(result, expected)
668
+
669
+ result = ser.dt.date
670
+ expected = Series(
671
+ [
672
+ date(2013, 1, 1),
673
+ date(2013, 1, 2),
674
+ pd.NaT,
675
+ date(2013, 1, 4),
676
+ date(2013, 1, 5),
677
+ ],
678
+ dtype="object",
679
+ )
680
+ tm.assert_series_equal(result, expected)
681
+
682
+ result = ser.dt.time
683
+ expected = Series([time(0), time(0), pd.NaT, time(0), time(0)], dtype="object")
684
+ tm.assert_series_equal(result, expected)
685
+
686
+ def test_dt_accessor_api(self):
687
+ # GH 9322
688
+ from pandas.core.indexes.accessors import (
689
+ CombinedDatetimelikeProperties,
690
+ DatetimeProperties,
691
+ )
692
+
693
+ assert Series.dt is CombinedDatetimelikeProperties
694
+
695
+ ser = Series(date_range("2000-01-01", periods=3))
696
+ assert isinstance(ser.dt, DatetimeProperties)
697
+
698
+ @pytest.mark.parametrize(
699
+ "ser",
700
+ [
701
+ Series(np.arange(5)),
702
+ Series(list("abcde")),
703
+ Series(np.random.default_rng(2).standard_normal(5)),
704
+ ],
705
+ )
706
+ def test_dt_accessor_invalid(self, ser):
707
+ # GH#9322 check that series with incorrect dtypes don't have attr
708
+ with pytest.raises(AttributeError, match="only use .dt accessor"):
709
+ ser.dt
710
+ assert not hasattr(ser, "dt")
711
+
712
+ def test_dt_accessor_updates_on_inplace(self):
713
+ ser = Series(date_range("2018-01-01", periods=10))
714
+ ser[2] = None
715
+ return_value = ser.fillna(pd.Timestamp("2018-01-01"), inplace=True)
716
+ assert return_value is None
717
+ result = ser.dt.date
718
+ assert result[0] == result[2]
719
+
720
+ def test_date_tz(self):
721
+ # GH11757
722
+ rng = DatetimeIndex(
723
+ ["2014-04-04 23:56", "2014-07-18 21:24", "2015-11-22 22:14"],
724
+ tz="US/Eastern",
725
+ )
726
+ ser = Series(rng)
727
+ expected = Series([date(2014, 4, 4), date(2014, 7, 18), date(2015, 11, 22)])
728
+ tm.assert_series_equal(ser.dt.date, expected)
729
+ tm.assert_series_equal(ser.apply(lambda x: x.date()), expected)
730
+
731
+ def test_dt_timetz_accessor(self, tz_naive_fixture):
732
+ # GH21358
733
+ tz = maybe_get_tz(tz_naive_fixture)
734
+
735
+ dtindex = DatetimeIndex(
736
+ ["2014-04-04 23:56", "2014-07-18 21:24", "2015-11-22 22:14"], tz=tz
737
+ )
738
+ ser = Series(dtindex)
739
+ expected = Series(
740
+ [time(23, 56, tzinfo=tz), time(21, 24, tzinfo=tz), time(22, 14, tzinfo=tz)]
741
+ )
742
+ result = ser.dt.timetz
743
+ tm.assert_series_equal(result, expected)
744
+
745
+ @pytest.mark.parametrize(
746
+ "input_series, expected_output",
747
+ [
748
+ [["2020-01-01"], [[2020, 1, 3]]],
749
+ [[pd.NaT], [[np.nan, np.nan, np.nan]]],
750
+ [["2019-12-31", "2019-12-29"], [[2020, 1, 2], [2019, 52, 7]]],
751
+ [["2010-01-01", pd.NaT], [[2009, 53, 5], [np.nan, np.nan, np.nan]]],
752
+ # see GH#36032
753
+ [["2016-01-08", "2016-01-04"], [[2016, 1, 5], [2016, 1, 1]]],
754
+ [["2016-01-07", "2016-01-01"], [[2016, 1, 4], [2015, 53, 5]]],
755
+ ],
756
+ )
757
+ def test_isocalendar(self, input_series, expected_output):
758
+ result = pd.to_datetime(Series(input_series)).dt.isocalendar()
759
+ expected_frame = DataFrame(
760
+ expected_output, columns=["year", "week", "day"], dtype="UInt32"
761
+ )
762
+ tm.assert_frame_equal(result, expected_frame)
763
+
764
+ def test_hour_index(self):
765
+ dt_series = Series(
766
+ date_range(start="2021-01-01", periods=5, freq="h"),
767
+ index=[2, 6, 7, 8, 11],
768
+ dtype="category",
769
+ )
770
+ result = dt_series.dt.hour
771
+ expected = Series(
772
+ [0, 1, 2, 3, 4],
773
+ dtype="int32",
774
+ index=[2, 6, 7, 8, 11],
775
+ )
776
+ tm.assert_series_equal(result, expected)
777
+
778
+
779
+ class TestSeriesPeriodValuesDtAccessor:
780
+ @pytest.mark.parametrize(
781
+ "input_vals",
782
+ [
783
+ [Period("2016-01", freq="M"), Period("2016-02", freq="M")],
784
+ [Period("2016-01-01", freq="D"), Period("2016-01-02", freq="D")],
785
+ [
786
+ Period("2016-01-01 00:00:00", freq="h"),
787
+ Period("2016-01-01 01:00:00", freq="h"),
788
+ ],
789
+ [
790
+ Period("2016-01-01 00:00:00", freq="M"),
791
+ Period("2016-01-01 00:01:00", freq="M"),
792
+ ],
793
+ [
794
+ Period("2016-01-01 00:00:00", freq="s"),
795
+ Period("2016-01-01 00:00:01", freq="s"),
796
+ ],
797
+ ],
798
+ )
799
+ def test_end_time_timevalues(self, input_vals):
800
+ # GH#17157
801
+ # Check that the time part of the Period is adjusted by end_time
802
+ # when using the dt accessor on a Series
803
+ input_vals = PeriodArray._from_sequence(np.asarray(input_vals))
804
+
805
+ ser = Series(input_vals)
806
+ result = ser.dt.end_time
807
+ expected = ser.apply(lambda x: x.end_time)
808
+ tm.assert_series_equal(result, expected)
809
+
810
+ @pytest.mark.parametrize("input_vals", [("2001"), ("NaT")])
811
+ def test_to_period(self, input_vals):
812
+ # GH#21205
813
+ expected = Series([input_vals], dtype="Period[D]")
814
+ result = Series([input_vals], dtype="datetime64[ns]").dt.to_period("D")
815
+ tm.assert_series_equal(result, expected)
816
+
817
+
818
+ def test_normalize_pre_epoch_dates():
819
+ # GH: 36294
820
+ ser = pd.to_datetime(Series(["1969-01-01 09:00:00", "2016-01-01 09:00:00"]))
821
+ result = ser.dt.normalize()
822
+ expected = pd.to_datetime(Series(["1969-01-01", "2016-01-01"]))
823
+ tm.assert_series_equal(result, expected)
824
+
825
+
826
+ def test_day_attribute_non_nano_beyond_int32():
827
+ # GH 52386
828
+ data = np.array(
829
+ [
830
+ 136457654736252,
831
+ 134736784364431,
832
+ 245345345545332,
833
+ 223432411,
834
+ 2343241,
835
+ 3634548734,
836
+ 23234,
837
+ ],
838
+ dtype="timedelta64[s]",
839
+ )
840
+ ser = Series(data)
841
+ result = ser.dt.days
842
+ expected = Series([1579371003, 1559453522, 2839645203, 2586, 27, 42066, 0])
843
+ tm.assert_series_equal(result, expected)
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/test_list_accessor.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import pytest
4
+
5
+ from pandas import (
6
+ ArrowDtype,
7
+ Series,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+ pa = pytest.importorskip("pyarrow")
12
+
13
+ from pandas.compat import pa_version_under11p0
14
+
15
+
16
+ @pytest.mark.parametrize(
17
+ "list_dtype",
18
+ (
19
+ pa.list_(pa.int64()),
20
+ pa.list_(pa.int64(), list_size=3),
21
+ pa.large_list(pa.int64()),
22
+ ),
23
+ )
24
+ def test_list_getitem(list_dtype):
25
+ ser = Series(
26
+ [[1, 2, 3], [4, None, 5], None],
27
+ dtype=ArrowDtype(list_dtype),
28
+ )
29
+ actual = ser.list[1]
30
+ expected = Series([2, None, None], dtype="int64[pyarrow]")
31
+ tm.assert_series_equal(actual, expected)
32
+
33
+
34
+ def test_list_getitem_slice():
35
+ ser = Series(
36
+ [[1, 2, 3], [4, None, 5], None],
37
+ dtype=ArrowDtype(pa.list_(pa.int64())),
38
+ )
39
+ if pa_version_under11p0:
40
+ with pytest.raises(
41
+ NotImplementedError, match="List slice not supported by pyarrow "
42
+ ):
43
+ ser.list[1:None:None]
44
+ else:
45
+ actual = ser.list[1:None:None]
46
+ expected = Series(
47
+ [[2, 3], [None, 5], None], dtype=ArrowDtype(pa.list_(pa.int64()))
48
+ )
49
+ tm.assert_series_equal(actual, expected)
50
+
51
+
52
+ def test_list_len():
53
+ ser = Series(
54
+ [[1, 2, 3], [4, None], None],
55
+ dtype=ArrowDtype(pa.list_(pa.int64())),
56
+ )
57
+ actual = ser.list.len()
58
+ expected = Series([3, 2, None], dtype=ArrowDtype(pa.int32()))
59
+ tm.assert_series_equal(actual, expected)
60
+
61
+
62
+ def test_list_flatten():
63
+ ser = Series(
64
+ [[1, 2, 3], [4, None], None],
65
+ dtype=ArrowDtype(pa.list_(pa.int64())),
66
+ )
67
+ actual = ser.list.flatten()
68
+ expected = Series([1, 2, 3, 4, None], dtype=ArrowDtype(pa.int64()))
69
+ tm.assert_series_equal(actual, expected)
70
+
71
+
72
+ def test_list_getitem_slice_invalid():
73
+ ser = Series(
74
+ [[1, 2, 3], [4, None, 5], None],
75
+ dtype=ArrowDtype(pa.list_(pa.int64())),
76
+ )
77
+ if pa_version_under11p0:
78
+ with pytest.raises(
79
+ NotImplementedError, match="List slice not supported by pyarrow "
80
+ ):
81
+ ser.list[1:None:0]
82
+ else:
83
+ with pytest.raises(pa.lib.ArrowInvalid, match=re.escape("`step` must be >= 1")):
84
+ ser.list[1:None:0]
85
+
86
+
87
+ def test_list_accessor_non_list_dtype():
88
+ ser = Series(
89
+ [1, 2, 4],
90
+ dtype=ArrowDtype(pa.int64()),
91
+ )
92
+ with pytest.raises(
93
+ AttributeError,
94
+ match=re.escape(
95
+ "Can only use the '.list' accessor with 'list[pyarrow]' dtype, "
96
+ "not int64[pyarrow]."
97
+ ),
98
+ ):
99
+ ser.list[1:None:0]
100
+
101
+
102
+ @pytest.mark.parametrize(
103
+ "list_dtype",
104
+ (
105
+ pa.list_(pa.int64()),
106
+ pa.list_(pa.int64(), list_size=3),
107
+ pa.large_list(pa.int64()),
108
+ ),
109
+ )
110
+ def test_list_getitem_invalid_index(list_dtype):
111
+ ser = Series(
112
+ [[1, 2, 3], [4, None, 5], None],
113
+ dtype=ArrowDtype(list_dtype),
114
+ )
115
+ with pytest.raises(pa.lib.ArrowInvalid, match="Index -1 is out of bounds"):
116
+ ser.list[-1]
117
+ with pytest.raises(pa.lib.ArrowInvalid, match="Index 5 is out of bounds"):
118
+ ser.list[5]
119
+ with pytest.raises(ValueError, match="key must be an int or slice, got str"):
120
+ ser.list["abc"]
121
+
122
+
123
+ def test_list_accessor_not_iterable():
124
+ ser = Series(
125
+ [[1, 2, 3], [4, None], None],
126
+ dtype=ArrowDtype(pa.list_(pa.int64())),
127
+ )
128
+ with pytest.raises(TypeError, match="'ListAccessor' object is not iterable"):
129
+ iter(ser.list)
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/test_sparse_accessor.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from pandas import Series
2
+
3
+
4
+ class TestSparseAccessor:
5
+ def test_sparse_accessor_updates_on_inplace(self):
6
+ ser = Series([1, 1, 2, 3], dtype="Sparse[int]")
7
+ return_value = ser.drop([0, 1], inplace=True)
8
+ assert return_value is None
9
+ assert ser.sparse.density == 1.0
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/test_str_accessor.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas import Series
4
+ import pandas._testing as tm
5
+
6
+
7
+ class TestStrAccessor:
8
+ def test_str_attribute(self):
9
+ # GH#9068
10
+ methods = ["strip", "rstrip", "lstrip"]
11
+ ser = Series([" jack", "jill ", " jesse ", "frank"])
12
+ for method in methods:
13
+ expected = Series([getattr(str, method)(x) for x in ser.values])
14
+ tm.assert_series_equal(getattr(Series.str, method)(ser.str), expected)
15
+
16
+ # str accessor only valid with string values
17
+ ser = Series(range(5))
18
+ with pytest.raises(AttributeError, match="only use .str accessor"):
19
+ ser.str.repeat(2)
20
+
21
+ def test_str_accessor_updates_on_inplace(self):
22
+ ser = Series(list("abc"))
23
+ return_value = ser.drop([0], inplace=True)
24
+ assert return_value is None
25
+ assert len(ser.str.lower()) == 2
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/accessors/test_struct_accessor.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import pytest
4
+
5
+ from pandas.compat.pyarrow import (
6
+ pa_version_under11p0,
7
+ pa_version_under13p0,
8
+ )
9
+
10
+ from pandas import (
11
+ ArrowDtype,
12
+ DataFrame,
13
+ Index,
14
+ Series,
15
+ )
16
+ import pandas._testing as tm
17
+
18
+ pa = pytest.importorskip("pyarrow")
19
+ pc = pytest.importorskip("pyarrow.compute")
20
+
21
+
22
+ def test_struct_accessor_dtypes():
23
+ ser = Series(
24
+ [],
25
+ dtype=ArrowDtype(
26
+ pa.struct(
27
+ [
28
+ ("int_col", pa.int64()),
29
+ ("string_col", pa.string()),
30
+ (
31
+ "struct_col",
32
+ pa.struct(
33
+ [
34
+ ("int_col", pa.int64()),
35
+ ("float_col", pa.float64()),
36
+ ]
37
+ ),
38
+ ),
39
+ ]
40
+ )
41
+ ),
42
+ )
43
+ actual = ser.struct.dtypes
44
+ expected = Series(
45
+ [
46
+ ArrowDtype(pa.int64()),
47
+ ArrowDtype(pa.string()),
48
+ ArrowDtype(
49
+ pa.struct(
50
+ [
51
+ ("int_col", pa.int64()),
52
+ ("float_col", pa.float64()),
53
+ ]
54
+ )
55
+ ),
56
+ ],
57
+ index=Index(["int_col", "string_col", "struct_col"]),
58
+ )
59
+ tm.assert_series_equal(actual, expected)
60
+
61
+
62
+ @pytest.mark.skipif(pa_version_under13p0, reason="pyarrow>=13.0.0 required")
63
+ def test_struct_accessor_field():
64
+ index = Index([-100, 42, 123])
65
+ ser = Series(
66
+ [
67
+ {"rice": 1.0, "maize": -1, "wheat": "a"},
68
+ {"rice": 2.0, "maize": 0, "wheat": "b"},
69
+ {"rice": 3.0, "maize": 1, "wheat": "c"},
70
+ ],
71
+ dtype=ArrowDtype(
72
+ pa.struct(
73
+ [
74
+ ("rice", pa.float64()),
75
+ ("maize", pa.int64()),
76
+ ("wheat", pa.string()),
77
+ ]
78
+ )
79
+ ),
80
+ index=index,
81
+ )
82
+ by_name = ser.struct.field("maize")
83
+ by_name_expected = Series(
84
+ [-1, 0, 1],
85
+ dtype=ArrowDtype(pa.int64()),
86
+ index=index,
87
+ name="maize",
88
+ )
89
+ tm.assert_series_equal(by_name, by_name_expected)
90
+
91
+ by_index = ser.struct.field(2)
92
+ by_index_expected = Series(
93
+ ["a", "b", "c"],
94
+ dtype=ArrowDtype(pa.string()),
95
+ index=index,
96
+ name="wheat",
97
+ )
98
+ tm.assert_series_equal(by_index, by_index_expected)
99
+
100
+
101
+ def test_struct_accessor_field_with_invalid_name_or_index():
102
+ ser = Series([], dtype=ArrowDtype(pa.struct([("field", pa.int64())])))
103
+
104
+ with pytest.raises(ValueError, match="name_or_index must be an int, str,"):
105
+ ser.struct.field(1.1)
106
+
107
+
108
+ @pytest.mark.skipif(pa_version_under11p0, reason="pyarrow>=11.0.0 required")
109
+ def test_struct_accessor_explode():
110
+ index = Index([-100, 42, 123])
111
+ ser = Series(
112
+ [
113
+ {"painted": 1, "snapping": {"sea": "green"}},
114
+ {"painted": 2, "snapping": {"sea": "leatherback"}},
115
+ {"painted": 3, "snapping": {"sea": "hawksbill"}},
116
+ ],
117
+ dtype=ArrowDtype(
118
+ pa.struct(
119
+ [
120
+ ("painted", pa.int64()),
121
+ ("snapping", pa.struct([("sea", pa.string())])),
122
+ ]
123
+ )
124
+ ),
125
+ index=index,
126
+ )
127
+ actual = ser.struct.explode()
128
+ expected = DataFrame(
129
+ {
130
+ "painted": Series([1, 2, 3], index=index, dtype=ArrowDtype(pa.int64())),
131
+ "snapping": Series(
132
+ [{"sea": "green"}, {"sea": "leatherback"}, {"sea": "hawksbill"}],
133
+ index=index,
134
+ dtype=ArrowDtype(pa.struct([("sea", pa.string())])),
135
+ ),
136
+ },
137
+ )
138
+ tm.assert_frame_equal(actual, expected)
139
+
140
+
141
+ @pytest.mark.parametrize(
142
+ "invalid",
143
+ [
144
+ pytest.param(Series([1, 2, 3], dtype="int64"), id="int64"),
145
+ pytest.param(
146
+ Series(["a", "b", "c"], dtype="string[pyarrow]"), id="string-pyarrow"
147
+ ),
148
+ ],
149
+ )
150
+ def test_struct_accessor_api_for_invalid(invalid):
151
+ with pytest.raises(
152
+ AttributeError,
153
+ match=re.escape(
154
+ "Can only use the '.struct' accessor with 'struct[pyarrow]' dtype, "
155
+ f"not {invalid.dtype}."
156
+ ),
157
+ ):
158
+ invalid.struct
159
+
160
+
161
+ @pytest.mark.parametrize(
162
+ ["indices", "name"],
163
+ [
164
+ (0, "int_col"),
165
+ ([1, 2], "str_col"),
166
+ (pc.field("int_col"), "int_col"),
167
+ ("int_col", "int_col"),
168
+ (b"string_col", b"string_col"),
169
+ ([b"string_col"], "string_col"),
170
+ ],
171
+ )
172
+ @pytest.mark.skipif(pa_version_under13p0, reason="pyarrow>=13.0.0 required")
173
+ def test_struct_accessor_field_expanded(indices, name):
174
+ arrow_type = pa.struct(
175
+ [
176
+ ("int_col", pa.int64()),
177
+ (
178
+ "struct_col",
179
+ pa.struct(
180
+ [
181
+ ("int_col", pa.int64()),
182
+ ("float_col", pa.float64()),
183
+ ("str_col", pa.string()),
184
+ ]
185
+ ),
186
+ ),
187
+ (b"string_col", pa.string()),
188
+ ]
189
+ )
190
+
191
+ data = pa.array([], type=arrow_type)
192
+ ser = Series(data, dtype=ArrowDtype(arrow_type))
193
+ expected = pc.struct_field(data, indices)
194
+ result = ser.struct.field(indices)
195
+ tm.assert_equal(result.array._pa_array.combine_chunks(), expected)
196
+ assert result.name == name
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (193 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_datetime.cpython-310.pyc ADDED
Binary file (11.8 kB). View file