Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sympy/core/__init__.py +100 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/assumptions.py +692 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/backend.py +84 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/basic.py +2233 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/cache.py +210 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/compatibility.py +35 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/containers.py +410 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/core.py +63 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/coreerrors.py +9 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/evalf.py +1801 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/exprtools.py +1569 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/facts.py +634 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/kind.py +388 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/logic.py +427 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/mul.py +2195 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/numbers.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/operations.py +722 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/parameters.py +161 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/random.py +227 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/relational.py +1587 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/singleton.py +174 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/sorting.py +309 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/sympify.py +634 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_args.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_arit.py +2463 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_assumptions.py +1335 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_basic.py +319 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_cache.py +91 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_compatibility.py +6 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_complex.py +226 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_constructor_postprocessor.py +87 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_containers.py +217 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_count_ops.py +155 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_diff.py +160 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_equal.py +89 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_eval.py +95 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_evalf.py +732 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_expr.py +2261 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_exprtools.py +493 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_facts.py +312 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_function.py +1455 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_kind.py +57 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_logic.py +198 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_match.py +766 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_multidimensional.py +24 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_noncommutative.py +140 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_numbers.py +2266 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_operations.py +110 -0
- env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_parameters.py +90 -0
env-llmeval/lib/python3.10/site-packages/sympy/core/__init__.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Core module. Provides the basic operations needed in sympy.
|
2 |
+
"""
|
3 |
+
|
4 |
+
from .sympify import sympify, SympifyError
|
5 |
+
from .cache import cacheit
|
6 |
+
from .assumptions import assumptions, check_assumptions, failing_assumptions, common_assumptions
|
7 |
+
from .basic import Basic, Atom
|
8 |
+
from .singleton import S
|
9 |
+
from .expr import Expr, AtomicExpr, UnevaluatedExpr
|
10 |
+
from .symbol import Symbol, Wild, Dummy, symbols, var
|
11 |
+
from .numbers import Number, Float, Rational, Integer, NumberSymbol, \
|
12 |
+
RealNumber, igcd, ilcm, seterr, E, I, nan, oo, pi, zoo, \
|
13 |
+
AlgebraicNumber, comp, mod_inverse
|
14 |
+
from .power import Pow, integer_nthroot, integer_log
|
15 |
+
from .mul import Mul, prod
|
16 |
+
from .add import Add
|
17 |
+
from .mod import Mod
|
18 |
+
from .relational import ( Rel, Eq, Ne, Lt, Le, Gt, Ge,
|
19 |
+
Equality, GreaterThan, LessThan, Unequality, StrictGreaterThan,
|
20 |
+
StrictLessThan )
|
21 |
+
from .multidimensional import vectorize
|
22 |
+
from .function import Lambda, WildFunction, Derivative, diff, FunctionClass, \
|
23 |
+
Function, Subs, expand, PoleError, count_ops, \
|
24 |
+
expand_mul, expand_log, expand_func, \
|
25 |
+
expand_trig, expand_complex, expand_multinomial, nfloat, \
|
26 |
+
expand_power_base, expand_power_exp, arity
|
27 |
+
from .evalf import PrecisionExhausted, N
|
28 |
+
from .containers import Tuple, Dict
|
29 |
+
from .exprtools import gcd_terms, factor_terms, factor_nc
|
30 |
+
from .parameters import evaluate
|
31 |
+
from .kind import UndefinedKind, NumberKind, BooleanKind
|
32 |
+
from .traversal import preorder_traversal, bottom_up, use, postorder_traversal
|
33 |
+
from .sorting import default_sort_key, ordered
|
34 |
+
|
35 |
+
# expose singletons
|
36 |
+
Catalan = S.Catalan
|
37 |
+
EulerGamma = S.EulerGamma
|
38 |
+
GoldenRatio = S.GoldenRatio
|
39 |
+
TribonacciConstant = S.TribonacciConstant
|
40 |
+
|
41 |
+
__all__ = [
|
42 |
+
'sympify', 'SympifyError',
|
43 |
+
|
44 |
+
'cacheit',
|
45 |
+
|
46 |
+
'assumptions', 'check_assumptions', 'failing_assumptions',
|
47 |
+
'common_assumptions',
|
48 |
+
|
49 |
+
'Basic', 'Atom',
|
50 |
+
|
51 |
+
'S',
|
52 |
+
|
53 |
+
'Expr', 'AtomicExpr', 'UnevaluatedExpr',
|
54 |
+
|
55 |
+
'Symbol', 'Wild', 'Dummy', 'symbols', 'var',
|
56 |
+
|
57 |
+
'Number', 'Float', 'Rational', 'Integer', 'NumberSymbol', 'RealNumber',
|
58 |
+
'igcd', 'ilcm', 'seterr', 'E', 'I', 'nan', 'oo', 'pi', 'zoo',
|
59 |
+
'AlgebraicNumber', 'comp', 'mod_inverse',
|
60 |
+
|
61 |
+
'Pow', 'integer_nthroot', 'integer_log',
|
62 |
+
|
63 |
+
'Mul', 'prod',
|
64 |
+
|
65 |
+
'Add',
|
66 |
+
|
67 |
+
'Mod',
|
68 |
+
|
69 |
+
'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge', 'Equality', 'GreaterThan',
|
70 |
+
'LessThan', 'Unequality', 'StrictGreaterThan', 'StrictLessThan',
|
71 |
+
|
72 |
+
'vectorize',
|
73 |
+
|
74 |
+
'Lambda', 'WildFunction', 'Derivative', 'diff', 'FunctionClass',
|
75 |
+
'Function', 'Subs', 'expand', 'PoleError', 'count_ops', 'expand_mul',
|
76 |
+
'expand_log', 'expand_func', 'expand_trig', 'expand_complex',
|
77 |
+
'expand_multinomial', 'nfloat', 'expand_power_base', 'expand_power_exp',
|
78 |
+
'arity',
|
79 |
+
|
80 |
+
'PrecisionExhausted', 'N',
|
81 |
+
|
82 |
+
'evalf', # The module?
|
83 |
+
|
84 |
+
'Tuple', 'Dict',
|
85 |
+
|
86 |
+
'gcd_terms', 'factor_terms', 'factor_nc',
|
87 |
+
|
88 |
+
'evaluate',
|
89 |
+
|
90 |
+
'Catalan',
|
91 |
+
'EulerGamma',
|
92 |
+
'GoldenRatio',
|
93 |
+
'TribonacciConstant',
|
94 |
+
|
95 |
+
'UndefinedKind', 'NumberKind', 'BooleanKind',
|
96 |
+
|
97 |
+
'preorder_traversal', 'bottom_up', 'use', 'postorder_traversal',
|
98 |
+
|
99 |
+
'default_sort_key', 'ordered',
|
100 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/core/assumptions.py
ADDED
@@ -0,0 +1,692 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module contains the machinery handling assumptions.
|
3 |
+
Do also consider the guide :ref:`assumptions-guide`.
|
4 |
+
|
5 |
+
All symbolic objects have assumption attributes that can be accessed via
|
6 |
+
``.is_<assumption name>`` attribute.
|
7 |
+
|
8 |
+
Assumptions determine certain properties of symbolic objects and can
|
9 |
+
have 3 possible values: ``True``, ``False``, ``None``. ``True`` is returned if the
|
10 |
+
object has the property and ``False`` is returned if it does not or cannot
|
11 |
+
(i.e. does not make sense):
|
12 |
+
|
13 |
+
>>> from sympy import I
|
14 |
+
>>> I.is_algebraic
|
15 |
+
True
|
16 |
+
>>> I.is_real
|
17 |
+
False
|
18 |
+
>>> I.is_prime
|
19 |
+
False
|
20 |
+
|
21 |
+
When the property cannot be determined (or when a method is not
|
22 |
+
implemented) ``None`` will be returned. For example, a generic symbol, ``x``,
|
23 |
+
may or may not be positive so a value of ``None`` is returned for ``x.is_positive``.
|
24 |
+
|
25 |
+
By default, all symbolic values are in the largest set in the given context
|
26 |
+
without specifying the property. For example, a symbol that has a property
|
27 |
+
being integer, is also real, complex, etc.
|
28 |
+
|
29 |
+
Here follows a list of possible assumption names:
|
30 |
+
|
31 |
+
.. glossary::
|
32 |
+
|
33 |
+
commutative
|
34 |
+
object commutes with any other object with
|
35 |
+
respect to multiplication operation. See [12]_.
|
36 |
+
|
37 |
+
complex
|
38 |
+
object can have only values from the set
|
39 |
+
of complex numbers. See [13]_.
|
40 |
+
|
41 |
+
imaginary
|
42 |
+
object value is a number that can be written as a real
|
43 |
+
number multiplied by the imaginary unit ``I``. See
|
44 |
+
[3]_. Please note that ``0`` is not considered to be an
|
45 |
+
imaginary number, see
|
46 |
+
`issue #7649 <https://github.com/sympy/sympy/issues/7649>`_.
|
47 |
+
|
48 |
+
real
|
49 |
+
object can have only values from the set
|
50 |
+
of real numbers.
|
51 |
+
|
52 |
+
extended_real
|
53 |
+
object can have only values from the set
|
54 |
+
of real numbers, ``oo`` and ``-oo``.
|
55 |
+
|
56 |
+
integer
|
57 |
+
object can have only values from the set
|
58 |
+
of integers.
|
59 |
+
|
60 |
+
odd
|
61 |
+
even
|
62 |
+
object can have only values from the set of
|
63 |
+
odd (even) integers [2]_.
|
64 |
+
|
65 |
+
prime
|
66 |
+
object is a natural number greater than 1 that has
|
67 |
+
no positive divisors other than 1 and itself. See [6]_.
|
68 |
+
|
69 |
+
composite
|
70 |
+
object is a positive integer that has at least one positive
|
71 |
+
divisor other than 1 or the number itself. See [4]_.
|
72 |
+
|
73 |
+
zero
|
74 |
+
object has the value of 0.
|
75 |
+
|
76 |
+
nonzero
|
77 |
+
object is a real number that is not zero.
|
78 |
+
|
79 |
+
rational
|
80 |
+
object can have only values from the set
|
81 |
+
of rationals.
|
82 |
+
|
83 |
+
algebraic
|
84 |
+
object can have only values from the set
|
85 |
+
of algebraic numbers [11]_.
|
86 |
+
|
87 |
+
transcendental
|
88 |
+
object can have only values from the set
|
89 |
+
of transcendental numbers [10]_.
|
90 |
+
|
91 |
+
irrational
|
92 |
+
object value cannot be represented exactly by :class:`~.Rational`, see [5]_.
|
93 |
+
|
94 |
+
finite
|
95 |
+
infinite
|
96 |
+
object absolute value is bounded (arbitrarily large).
|
97 |
+
See [7]_, [8]_, [9]_.
|
98 |
+
|
99 |
+
negative
|
100 |
+
nonnegative
|
101 |
+
object can have only negative (nonnegative)
|
102 |
+
values [1]_.
|
103 |
+
|
104 |
+
positive
|
105 |
+
nonpositive
|
106 |
+
object can have only positive (nonpositive) values.
|
107 |
+
|
108 |
+
extended_negative
|
109 |
+
extended_nonnegative
|
110 |
+
extended_positive
|
111 |
+
extended_nonpositive
|
112 |
+
extended_nonzero
|
113 |
+
as without the extended part, but also including infinity with
|
114 |
+
corresponding sign, e.g., extended_positive includes ``oo``
|
115 |
+
|
116 |
+
hermitian
|
117 |
+
antihermitian
|
118 |
+
object belongs to the field of Hermitian
|
119 |
+
(antihermitian) operators.
|
120 |
+
|
121 |
+
Examples
|
122 |
+
========
|
123 |
+
|
124 |
+
>>> from sympy import Symbol
|
125 |
+
>>> x = Symbol('x', real=True); x
|
126 |
+
x
|
127 |
+
>>> x.is_real
|
128 |
+
True
|
129 |
+
>>> x.is_complex
|
130 |
+
True
|
131 |
+
|
132 |
+
See Also
|
133 |
+
========
|
134 |
+
|
135 |
+
.. seealso::
|
136 |
+
|
137 |
+
:py:class:`sympy.core.numbers.ImaginaryUnit`
|
138 |
+
:py:class:`sympy.core.numbers.Zero`
|
139 |
+
:py:class:`sympy.core.numbers.One`
|
140 |
+
:py:class:`sympy.core.numbers.Infinity`
|
141 |
+
:py:class:`sympy.core.numbers.NegativeInfinity`
|
142 |
+
:py:class:`sympy.core.numbers.ComplexInfinity`
|
143 |
+
|
144 |
+
Notes
|
145 |
+
=====
|
146 |
+
|
147 |
+
The fully-resolved assumptions for any SymPy expression
|
148 |
+
can be obtained as follows:
|
149 |
+
|
150 |
+
>>> from sympy.core.assumptions import assumptions
|
151 |
+
>>> x = Symbol('x',positive=True)
|
152 |
+
>>> assumptions(x + I)
|
153 |
+
{'commutative': True, 'complex': True, 'composite': False, 'even':
|
154 |
+
False, 'extended_negative': False, 'extended_nonnegative': False,
|
155 |
+
'extended_nonpositive': False, 'extended_nonzero': False,
|
156 |
+
'extended_positive': False, 'extended_real': False, 'finite': True,
|
157 |
+
'imaginary': False, 'infinite': False, 'integer': False, 'irrational':
|
158 |
+
False, 'negative': False, 'noninteger': False, 'nonnegative': False,
|
159 |
+
'nonpositive': False, 'nonzero': False, 'odd': False, 'positive':
|
160 |
+
False, 'prime': False, 'rational': False, 'real': False, 'zero':
|
161 |
+
False}
|
162 |
+
|
163 |
+
Developers Notes
|
164 |
+
================
|
165 |
+
|
166 |
+
The current (and possibly incomplete) values are stored
|
167 |
+
in the ``obj._assumptions dictionary``; queries to getter methods
|
168 |
+
(with property decorators) or attributes of objects/classes
|
169 |
+
will return values and update the dictionary.
|
170 |
+
|
171 |
+
>>> eq = x**2 + I
|
172 |
+
>>> eq._assumptions
|
173 |
+
{}
|
174 |
+
>>> eq.is_finite
|
175 |
+
True
|
176 |
+
>>> eq._assumptions
|
177 |
+
{'finite': True, 'infinite': False}
|
178 |
+
|
179 |
+
For a :class:`~.Symbol`, there are two locations for assumptions that may
|
180 |
+
be of interest. The ``assumptions0`` attribute gives the full set of
|
181 |
+
assumptions derived from a given set of initial assumptions. The
|
182 |
+
latter assumptions are stored as ``Symbol._assumptions_orig``
|
183 |
+
|
184 |
+
>>> Symbol('x', prime=True, even=True)._assumptions_orig
|
185 |
+
{'even': True, 'prime': True}
|
186 |
+
|
187 |
+
The ``_assumptions_orig`` are not necessarily canonical nor are they filtered
|
188 |
+
in any way: they records the assumptions used to instantiate a Symbol and (for
|
189 |
+
storage purposes) represent a more compact representation of the assumptions
|
190 |
+
needed to recreate the full set in ``Symbol.assumptions0``.
|
191 |
+
|
192 |
+
|
193 |
+
References
|
194 |
+
==========
|
195 |
+
|
196 |
+
.. [1] https://en.wikipedia.org/wiki/Negative_number
|
197 |
+
.. [2] https://en.wikipedia.org/wiki/Parity_%28mathematics%29
|
198 |
+
.. [3] https://en.wikipedia.org/wiki/Imaginary_number
|
199 |
+
.. [4] https://en.wikipedia.org/wiki/Composite_number
|
200 |
+
.. [5] https://en.wikipedia.org/wiki/Irrational_number
|
201 |
+
.. [6] https://en.wikipedia.org/wiki/Prime_number
|
202 |
+
.. [7] https://en.wikipedia.org/wiki/Finite
|
203 |
+
.. [8] https://docs.python.org/3/library/math.html#math.isfinite
|
204 |
+
.. [9] https://numpy.org/doc/stable/reference/generated/numpy.isfinite.html
|
205 |
+
.. [10] https://en.wikipedia.org/wiki/Transcendental_number
|
206 |
+
.. [11] https://en.wikipedia.org/wiki/Algebraic_number
|
207 |
+
.. [12] https://en.wikipedia.org/wiki/Commutative_property
|
208 |
+
.. [13] https://en.wikipedia.org/wiki/Complex_number
|
209 |
+
|
210 |
+
"""
|
211 |
+
|
212 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
213 |
+
|
214 |
+
from .facts import FactRules, FactKB
|
215 |
+
from .sympify import sympify
|
216 |
+
|
217 |
+
from sympy.core.random import _assumptions_shuffle as shuffle
|
218 |
+
from sympy.core.assumptions_generated import generated_assumptions as _assumptions
|
219 |
+
|
220 |
+
def _load_pre_generated_assumption_rules():
|
221 |
+
""" Load the assumption rules from pre-generated data
|
222 |
+
|
223 |
+
To update the pre-generated data, see :method::`_generate_assumption_rules`
|
224 |
+
"""
|
225 |
+
_assume_rules=FactRules._from_python(_assumptions)
|
226 |
+
return _assume_rules
|
227 |
+
|
228 |
+
def _generate_assumption_rules():
|
229 |
+
""" Generate the default assumption rules
|
230 |
+
|
231 |
+
This method should only be called to update the pre-generated
|
232 |
+
assumption rules.
|
233 |
+
|
234 |
+
To update the pre-generated assumptions run: bin/ask_update.py
|
235 |
+
|
236 |
+
"""
|
237 |
+
_assume_rules = FactRules([
|
238 |
+
|
239 |
+
'integer -> rational',
|
240 |
+
'rational -> real',
|
241 |
+
'rational -> algebraic',
|
242 |
+
'algebraic -> complex',
|
243 |
+
'transcendental == complex & !algebraic',
|
244 |
+
'real -> hermitian',
|
245 |
+
'imaginary -> complex',
|
246 |
+
'imaginary -> antihermitian',
|
247 |
+
'extended_real -> commutative',
|
248 |
+
'complex -> commutative',
|
249 |
+
'complex -> finite',
|
250 |
+
|
251 |
+
'odd == integer & !even',
|
252 |
+
'even == integer & !odd',
|
253 |
+
|
254 |
+
'real -> complex',
|
255 |
+
'extended_real -> real | infinite',
|
256 |
+
'real == extended_real & finite',
|
257 |
+
|
258 |
+
'extended_real == extended_negative | zero | extended_positive',
|
259 |
+
'extended_negative == extended_nonpositive & extended_nonzero',
|
260 |
+
'extended_positive == extended_nonnegative & extended_nonzero',
|
261 |
+
|
262 |
+
'extended_nonpositive == extended_real & !extended_positive',
|
263 |
+
'extended_nonnegative == extended_real & !extended_negative',
|
264 |
+
|
265 |
+
'real == negative | zero | positive',
|
266 |
+
'negative == nonpositive & nonzero',
|
267 |
+
'positive == nonnegative & nonzero',
|
268 |
+
|
269 |
+
'nonpositive == real & !positive',
|
270 |
+
'nonnegative == real & !negative',
|
271 |
+
|
272 |
+
'positive == extended_positive & finite',
|
273 |
+
'negative == extended_negative & finite',
|
274 |
+
'nonpositive == extended_nonpositive & finite',
|
275 |
+
'nonnegative == extended_nonnegative & finite',
|
276 |
+
'nonzero == extended_nonzero & finite',
|
277 |
+
|
278 |
+
'zero -> even & finite',
|
279 |
+
'zero == extended_nonnegative & extended_nonpositive',
|
280 |
+
'zero == nonnegative & nonpositive',
|
281 |
+
'nonzero -> real',
|
282 |
+
|
283 |
+
'prime -> integer & positive',
|
284 |
+
'composite -> integer & positive & !prime',
|
285 |
+
'!composite -> !positive | !even | prime',
|
286 |
+
|
287 |
+
'irrational == real & !rational',
|
288 |
+
|
289 |
+
'imaginary -> !extended_real',
|
290 |
+
|
291 |
+
'infinite == !finite',
|
292 |
+
'noninteger == extended_real & !integer',
|
293 |
+
'extended_nonzero == extended_real & !zero',
|
294 |
+
])
|
295 |
+
return _assume_rules
|
296 |
+
|
297 |
+
|
298 |
+
_assume_rules = _load_pre_generated_assumption_rules()
|
299 |
+
_assume_defined = _assume_rules.defined_facts.copy()
|
300 |
+
_assume_defined.add('polar')
|
301 |
+
_assume_defined = frozenset(_assume_defined)
|
302 |
+
|
303 |
+
|
304 |
+
def assumptions(expr, _check=None):
|
305 |
+
"""return the T/F assumptions of ``expr``"""
|
306 |
+
n = sympify(expr)
|
307 |
+
if n.is_Symbol:
|
308 |
+
rv = n.assumptions0 # are any important ones missing?
|
309 |
+
if _check is not None:
|
310 |
+
rv = {k: rv[k] for k in set(rv) & set(_check)}
|
311 |
+
return rv
|
312 |
+
rv = {}
|
313 |
+
for k in _assume_defined if _check is None else _check:
|
314 |
+
v = getattr(n, 'is_{}'.format(k))
|
315 |
+
if v is not None:
|
316 |
+
rv[k] = v
|
317 |
+
return rv
|
318 |
+
|
319 |
+
|
320 |
+
def common_assumptions(exprs, check=None):
|
321 |
+
"""return those assumptions which have the same True or False
|
322 |
+
value for all the given expressions.
|
323 |
+
|
324 |
+
Examples
|
325 |
+
========
|
326 |
+
|
327 |
+
>>> from sympy.core import common_assumptions
|
328 |
+
>>> from sympy import oo, pi, sqrt
|
329 |
+
>>> common_assumptions([-4, 0, sqrt(2), 2, pi, oo])
|
330 |
+
{'commutative': True, 'composite': False,
|
331 |
+
'extended_real': True, 'imaginary': False, 'odd': False}
|
332 |
+
|
333 |
+
By default, all assumptions are tested; pass an iterable of the
|
334 |
+
assumptions to limit those that are reported:
|
335 |
+
|
336 |
+
>>> common_assumptions([0, 1, 2], ['positive', 'integer'])
|
337 |
+
{'integer': True}
|
338 |
+
"""
|
339 |
+
check = _assume_defined if check is None else set(check)
|
340 |
+
if not check or not exprs:
|
341 |
+
return {}
|
342 |
+
|
343 |
+
# get all assumptions for each
|
344 |
+
assume = [assumptions(i, _check=check) for i in sympify(exprs)]
|
345 |
+
# focus on those of interest that are True
|
346 |
+
for i, e in enumerate(assume):
|
347 |
+
assume[i] = {k: e[k] for k in set(e) & check}
|
348 |
+
# what assumptions are in common?
|
349 |
+
common = set.intersection(*[set(i) for i in assume])
|
350 |
+
# which ones hold the same value
|
351 |
+
a = assume[0]
|
352 |
+
return {k: a[k] for k in common if all(a[k] == b[k]
|
353 |
+
for b in assume)}
|
354 |
+
|
355 |
+
|
356 |
+
def failing_assumptions(expr, **assumptions):
|
357 |
+
"""
|
358 |
+
Return a dictionary containing assumptions with values not
|
359 |
+
matching those of the passed assumptions.
|
360 |
+
|
361 |
+
Examples
|
362 |
+
========
|
363 |
+
|
364 |
+
>>> from sympy import failing_assumptions, Symbol
|
365 |
+
|
366 |
+
>>> x = Symbol('x', positive=True)
|
367 |
+
>>> y = Symbol('y')
|
368 |
+
>>> failing_assumptions(6*x + y, positive=True)
|
369 |
+
{'positive': None}
|
370 |
+
|
371 |
+
>>> failing_assumptions(x**2 - 1, positive=True)
|
372 |
+
{'positive': None}
|
373 |
+
|
374 |
+
If *expr* satisfies all of the assumptions, an empty dictionary is returned.
|
375 |
+
|
376 |
+
>>> failing_assumptions(x**2, positive=True)
|
377 |
+
{}
|
378 |
+
|
379 |
+
"""
|
380 |
+
expr = sympify(expr)
|
381 |
+
failed = {}
|
382 |
+
for k in assumptions:
|
383 |
+
test = getattr(expr, 'is_%s' % k, None)
|
384 |
+
if test is not assumptions[k]:
|
385 |
+
failed[k] = test
|
386 |
+
return failed # {} or {assumption: value != desired}
|
387 |
+
|
388 |
+
|
389 |
+
def check_assumptions(expr, against=None, **assume):
|
390 |
+
"""
|
391 |
+
Checks whether assumptions of ``expr`` match the T/F assumptions
|
392 |
+
given (or possessed by ``against``). True is returned if all
|
393 |
+
assumptions match; False is returned if there is a mismatch and
|
394 |
+
the assumption in ``expr`` is not None; else None is returned.
|
395 |
+
|
396 |
+
Explanation
|
397 |
+
===========
|
398 |
+
|
399 |
+
*assume* is a dict of assumptions with True or False values
|
400 |
+
|
401 |
+
Examples
|
402 |
+
========
|
403 |
+
|
404 |
+
>>> from sympy import Symbol, pi, I, exp, check_assumptions
|
405 |
+
>>> check_assumptions(-5, integer=True)
|
406 |
+
True
|
407 |
+
>>> check_assumptions(pi, real=True, integer=False)
|
408 |
+
True
|
409 |
+
>>> check_assumptions(pi, negative=True)
|
410 |
+
False
|
411 |
+
>>> check_assumptions(exp(I*pi/7), real=False)
|
412 |
+
True
|
413 |
+
>>> x = Symbol('x', positive=True)
|
414 |
+
>>> check_assumptions(2*x + 1, positive=True)
|
415 |
+
True
|
416 |
+
>>> check_assumptions(-2*x - 5, positive=True)
|
417 |
+
False
|
418 |
+
|
419 |
+
To check assumptions of *expr* against another variable or expression,
|
420 |
+
pass the expression or variable as ``against``.
|
421 |
+
|
422 |
+
>>> check_assumptions(2*x + 1, x)
|
423 |
+
True
|
424 |
+
|
425 |
+
To see if a number matches the assumptions of an expression, pass
|
426 |
+
the number as the first argument, else its specific assumptions
|
427 |
+
may not have a non-None value in the expression:
|
428 |
+
|
429 |
+
>>> check_assumptions(x, 3)
|
430 |
+
>>> check_assumptions(3, x)
|
431 |
+
True
|
432 |
+
|
433 |
+
``None`` is returned if ``check_assumptions()`` could not conclude.
|
434 |
+
|
435 |
+
>>> check_assumptions(2*x - 1, x)
|
436 |
+
|
437 |
+
>>> z = Symbol('z')
|
438 |
+
>>> check_assumptions(z, real=True)
|
439 |
+
|
440 |
+
See Also
|
441 |
+
========
|
442 |
+
|
443 |
+
failing_assumptions
|
444 |
+
|
445 |
+
"""
|
446 |
+
expr = sympify(expr)
|
447 |
+
if against is not None:
|
448 |
+
if assume:
|
449 |
+
raise ValueError(
|
450 |
+
'Expecting `against` or `assume`, not both.')
|
451 |
+
assume = assumptions(against)
|
452 |
+
known = True
|
453 |
+
for k, v in assume.items():
|
454 |
+
if v is None:
|
455 |
+
continue
|
456 |
+
e = getattr(expr, 'is_' + k, None)
|
457 |
+
if e is None:
|
458 |
+
known = None
|
459 |
+
elif v != e:
|
460 |
+
return False
|
461 |
+
return known
|
462 |
+
|
463 |
+
|
464 |
+
class StdFactKB(FactKB):
|
465 |
+
"""A FactKB specialized for the built-in rules
|
466 |
+
|
467 |
+
This is the only kind of FactKB that Basic objects should use.
|
468 |
+
"""
|
469 |
+
def __init__(self, facts=None):
|
470 |
+
super().__init__(_assume_rules)
|
471 |
+
# save a copy of the facts dict
|
472 |
+
if not facts:
|
473 |
+
self._generator = {}
|
474 |
+
elif not isinstance(facts, FactKB):
|
475 |
+
self._generator = facts.copy()
|
476 |
+
else:
|
477 |
+
self._generator = facts.generator
|
478 |
+
if facts:
|
479 |
+
self.deduce_all_facts(facts)
|
480 |
+
|
481 |
+
def copy(self):
|
482 |
+
return self.__class__(self)
|
483 |
+
|
484 |
+
@property
|
485 |
+
def generator(self):
|
486 |
+
return self._generator.copy()
|
487 |
+
|
488 |
+
|
489 |
+
def as_property(fact):
|
490 |
+
"""Convert a fact name to the name of the corresponding property"""
|
491 |
+
return 'is_%s' % fact
|
492 |
+
|
493 |
+
|
494 |
+
def make_property(fact):
|
495 |
+
"""Create the automagic property corresponding to a fact."""
|
496 |
+
|
497 |
+
def getit(self):
|
498 |
+
try:
|
499 |
+
return self._assumptions[fact]
|
500 |
+
except KeyError:
|
501 |
+
if self._assumptions is self.default_assumptions:
|
502 |
+
self._assumptions = self.default_assumptions.copy()
|
503 |
+
return _ask(fact, self)
|
504 |
+
|
505 |
+
getit.func_name = as_property(fact)
|
506 |
+
return property(getit)
|
507 |
+
|
508 |
+
|
509 |
+
def _ask(fact, obj):
|
510 |
+
"""
|
511 |
+
Find the truth value for a property of an object.
|
512 |
+
|
513 |
+
This function is called when a request is made to see what a fact
|
514 |
+
value is.
|
515 |
+
|
516 |
+
For this we use several techniques:
|
517 |
+
|
518 |
+
First, the fact-evaluation function is tried, if it exists (for
|
519 |
+
example _eval_is_integer). Then we try related facts. For example
|
520 |
+
|
521 |
+
rational --> integer
|
522 |
+
|
523 |
+
another example is joined rule:
|
524 |
+
|
525 |
+
integer & !odd --> even
|
526 |
+
|
527 |
+
so in the latter case if we are looking at what 'even' value is,
|
528 |
+
'integer' and 'odd' facts will be asked.
|
529 |
+
|
530 |
+
In all cases, when we settle on some fact value, its implications are
|
531 |
+
deduced, and the result is cached in ._assumptions.
|
532 |
+
"""
|
533 |
+
# FactKB which is dict-like and maps facts to their known values:
|
534 |
+
assumptions = obj._assumptions
|
535 |
+
|
536 |
+
# A dict that maps facts to their handlers:
|
537 |
+
handler_map = obj._prop_handler
|
538 |
+
|
539 |
+
# This is our queue of facts to check:
|
540 |
+
facts_to_check = [fact]
|
541 |
+
facts_queued = {fact}
|
542 |
+
|
543 |
+
# Loop over the queue as it extends
|
544 |
+
for fact_i in facts_to_check:
|
545 |
+
|
546 |
+
# If fact_i has already been determined then we don't need to rerun the
|
547 |
+
# handler. There is a potential race condition for multithreaded code
|
548 |
+
# though because it's possible that fact_i was checked in another
|
549 |
+
# thread. The main logic of the loop below would potentially skip
|
550 |
+
# checking assumptions[fact] in this case so we check it once after the
|
551 |
+
# loop to be sure.
|
552 |
+
if fact_i in assumptions:
|
553 |
+
continue
|
554 |
+
|
555 |
+
# Now we call the associated handler for fact_i if it exists.
|
556 |
+
fact_i_value = None
|
557 |
+
handler_i = handler_map.get(fact_i)
|
558 |
+
if handler_i is not None:
|
559 |
+
fact_i_value = handler_i(obj)
|
560 |
+
|
561 |
+
# If we get a new value for fact_i then we should update our knowledge
|
562 |
+
# of fact_i as well as any related facts that can be inferred using the
|
563 |
+
# inference rules connecting the fact_i and any other fact values that
|
564 |
+
# are already known.
|
565 |
+
if fact_i_value is not None:
|
566 |
+
assumptions.deduce_all_facts(((fact_i, fact_i_value),))
|
567 |
+
|
568 |
+
# Usually if assumptions[fact] is now not None then that is because of
|
569 |
+
# the call to deduce_all_facts above. The handler for fact_i returned
|
570 |
+
# True or False and knowing fact_i (which is equal to fact in the first
|
571 |
+
# iteration) implies knowing a value for fact. It is also possible
|
572 |
+
# though that independent code e.g. called indirectly by the handler or
|
573 |
+
# called in another thread in a multithreaded context might have
|
574 |
+
# resulted in assumptions[fact] being set. Either way we return it.
|
575 |
+
fact_value = assumptions.get(fact)
|
576 |
+
if fact_value is not None:
|
577 |
+
return fact_value
|
578 |
+
|
579 |
+
# Extend the queue with other facts that might determine fact_i. Here
|
580 |
+
# we randomise the order of the facts that are checked. This should not
|
581 |
+
# lead to any non-determinism if all handlers are logically consistent
|
582 |
+
# with the inference rules for the facts. Non-deterministic assumptions
|
583 |
+
# queries can result from bugs in the handlers that are exposed by this
|
584 |
+
# call to shuffle. These are pushed to the back of the queue meaning
|
585 |
+
# that the inference graph is traversed in breadth-first order.
|
586 |
+
new_facts_to_check = list(_assume_rules.prereq[fact_i] - facts_queued)
|
587 |
+
shuffle(new_facts_to_check)
|
588 |
+
facts_to_check.extend(new_facts_to_check)
|
589 |
+
facts_queued.update(new_facts_to_check)
|
590 |
+
|
591 |
+
# The above loop should be able to handle everything fine in a
|
592 |
+
# single-threaded context but in multithreaded code it is possible that
|
593 |
+
# this thread skipped computing a particular fact that was computed in
|
594 |
+
# another thread (due to the continue). In that case it is possible that
|
595 |
+
# fact was inferred and is now stored in the assumptions dict but it wasn't
|
596 |
+
# checked for in the body of the loop. This is an obscure case but to make
|
597 |
+
# sure we catch it we check once here at the end of the loop.
|
598 |
+
if fact in assumptions:
|
599 |
+
return assumptions[fact]
|
600 |
+
|
601 |
+
# This query can not be answered. It's possible that e.g. another thread
|
602 |
+
# has already stored None for fact but assumptions._tell does not mind if
|
603 |
+
# we call _tell twice setting the same value. If this raises
|
604 |
+
# InconsistentAssumptions then it probably means that another thread
|
605 |
+
# attempted to compute this and got a value of True or False rather than
|
606 |
+
# None. In that case there must be a bug in at least one of the handlers.
|
607 |
+
# If the handlers are all deterministic and are consistent with the
|
608 |
+
# inference rules then the same value should be computed for fact in all
|
609 |
+
# threads.
|
610 |
+
assumptions._tell(fact, None)
|
611 |
+
return None
|
612 |
+
|
613 |
+
|
614 |
+
def _prepare_class_assumptions(cls):
|
615 |
+
"""Precompute class level assumptions and generate handlers.
|
616 |
+
|
617 |
+
This is called by Basic.__init_subclass__ each time a Basic subclass is
|
618 |
+
defined.
|
619 |
+
"""
|
620 |
+
|
621 |
+
local_defs = {}
|
622 |
+
for k in _assume_defined:
|
623 |
+
attrname = as_property(k)
|
624 |
+
v = cls.__dict__.get(attrname, '')
|
625 |
+
if isinstance(v, (bool, int, type(None))):
|
626 |
+
if v is not None:
|
627 |
+
v = bool(v)
|
628 |
+
local_defs[k] = v
|
629 |
+
|
630 |
+
defs = {}
|
631 |
+
for base in reversed(cls.__bases__):
|
632 |
+
assumptions = getattr(base, '_explicit_class_assumptions', None)
|
633 |
+
if assumptions is not None:
|
634 |
+
defs.update(assumptions)
|
635 |
+
defs.update(local_defs)
|
636 |
+
|
637 |
+
cls._explicit_class_assumptions = defs
|
638 |
+
cls.default_assumptions = StdFactKB(defs)
|
639 |
+
|
640 |
+
cls._prop_handler = {}
|
641 |
+
for k in _assume_defined:
|
642 |
+
eval_is_meth = getattr(cls, '_eval_is_%s' % k, None)
|
643 |
+
if eval_is_meth is not None:
|
644 |
+
cls._prop_handler[k] = eval_is_meth
|
645 |
+
|
646 |
+
# Put definite results directly into the class dict, for speed
|
647 |
+
for k, v in cls.default_assumptions.items():
|
648 |
+
setattr(cls, as_property(k), v)
|
649 |
+
|
650 |
+
# protection e.g. for Integer.is_even=F <- (Rational.is_integer=F)
|
651 |
+
derived_from_bases = set()
|
652 |
+
for base in cls.__bases__:
|
653 |
+
default_assumptions = getattr(base, 'default_assumptions', None)
|
654 |
+
# is an assumption-aware class
|
655 |
+
if default_assumptions is not None:
|
656 |
+
derived_from_bases.update(default_assumptions)
|
657 |
+
|
658 |
+
for fact in derived_from_bases - set(cls.default_assumptions):
|
659 |
+
pname = as_property(fact)
|
660 |
+
if pname not in cls.__dict__:
|
661 |
+
setattr(cls, pname, make_property(fact))
|
662 |
+
|
663 |
+
# Finally, add any missing automagic property (e.g. for Basic)
|
664 |
+
for fact in _assume_defined:
|
665 |
+
pname = as_property(fact)
|
666 |
+
if not hasattr(cls, pname):
|
667 |
+
setattr(cls, pname, make_property(fact))
|
668 |
+
|
669 |
+
|
670 |
+
# XXX: ManagedProperties used to be the metaclass for Basic but now Basic does
|
671 |
+
# not use a metaclass. We leave this here for backwards compatibility for now
|
672 |
+
# in case someone has been using the ManagedProperties class in downstream
|
673 |
+
# code. The reason that it might have been used is that when subclassing a
|
674 |
+
# class and wanting to use a metaclass the metaclass must be a subclass of the
|
675 |
+
# metaclass for the class that is being subclassed. Anyone wanting to subclass
|
676 |
+
# Basic and use a metaclass in their subclass would have needed to subclass
|
677 |
+
# ManagedProperties. Here ManagedProperties is not the metaclass for Basic any
|
678 |
+
# more but it should still be usable as a metaclass for Basic subclasses since
|
679 |
+
# it is a subclass of type which is now the metaclass for Basic.
|
680 |
+
class ManagedProperties(type):
|
681 |
+
def __init__(cls, *args, **kwargs):
|
682 |
+
msg = ("The ManagedProperties metaclass. "
|
683 |
+
"Basic does not use metaclasses any more")
|
684 |
+
sympy_deprecation_warning(msg,
|
685 |
+
deprecated_since_version="1.12",
|
686 |
+
active_deprecations_target='managedproperties')
|
687 |
+
|
688 |
+
# Here we still call this function in case someone is using
|
689 |
+
# ManagedProperties for something that is not a Basic subclass. For
|
690 |
+
# Basic subclasses this function is now called by __init_subclass__ and
|
691 |
+
# so this metaclass is not needed any more.
|
692 |
+
_prepare_class_assumptions(cls)
|
env-llmeval/lib/python3.10/site-packages/sympy/core/backend.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
USE_SYMENGINE = os.getenv('USE_SYMENGINE', '0')
|
3 |
+
USE_SYMENGINE = USE_SYMENGINE.lower() in ('1', 't', 'true') # type: ignore
|
4 |
+
|
5 |
+
if USE_SYMENGINE:
|
6 |
+
from symengine import (Symbol, Integer, sympify, S,
|
7 |
+
SympifyError, exp, log, gamma, sqrt, I, E, pi, Matrix,
|
8 |
+
sin, cos, tan, cot, csc, sec, asin, acos, atan, acot, acsc, asec,
|
9 |
+
sinh, cosh, tanh, coth, asinh, acosh, atanh, acoth,
|
10 |
+
lambdify, symarray, diff, zeros, eye, diag, ones,
|
11 |
+
expand, Function, symbols, var, Add, Mul, Derivative,
|
12 |
+
ImmutableMatrix, MatrixBase, Rational, Basic)
|
13 |
+
from symengine.lib.symengine_wrapper import gcd as igcd
|
14 |
+
from symengine import AppliedUndef
|
15 |
+
else:
|
16 |
+
from sympy.core.add import Add
|
17 |
+
from sympy.core.basic import Basic
|
18 |
+
from sympy.core.function import (diff, Function, AppliedUndef,
|
19 |
+
expand, Derivative)
|
20 |
+
from sympy.core.mul import Mul
|
21 |
+
from sympy.core.numbers import igcd, pi, I, Integer, Rational, E
|
22 |
+
from sympy.core.singleton import S
|
23 |
+
from sympy.core.symbol import Symbol, var, symbols
|
24 |
+
from sympy.core.sympify import SympifyError, sympify
|
25 |
+
from sympy.functions.elementary.exponential import log, exp
|
26 |
+
from sympy.functions.elementary.hyperbolic import (coth, sinh,
|
27 |
+
acosh, acoth, tanh, asinh, atanh, cosh)
|
28 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
29 |
+
from sympy.functions.elementary.trigonometric import (csc,
|
30 |
+
asec, cos, atan, sec, acot, asin, tan, sin, cot, acsc, acos)
|
31 |
+
from sympy.functions.special.gamma_functions import gamma
|
32 |
+
from sympy.matrices.dense import (eye, zeros, diag, Matrix,
|
33 |
+
ones, symarray)
|
34 |
+
from sympy.matrices.immutable import ImmutableMatrix
|
35 |
+
from sympy.matrices.matrices import MatrixBase
|
36 |
+
from sympy.utilities.lambdify import lambdify
|
37 |
+
|
38 |
+
|
39 |
+
#
|
40 |
+
# XXX: Handling of immutable and mutable matrices in SymEngine is inconsistent
|
41 |
+
# with SymPy's matrix classes in at least SymEngine version 0.7.0. Until that
|
42 |
+
# is fixed the function below is needed for consistent behaviour when
|
43 |
+
# attempting to simplify a matrix.
|
44 |
+
#
|
45 |
+
# Expected behaviour of a SymPy mutable/immutable matrix .simplify() method:
|
46 |
+
#
|
47 |
+
# Matrix.simplify() : works in place, returns None
|
48 |
+
# ImmutableMatrix.simplify() : returns a simplified copy
|
49 |
+
#
|
50 |
+
# In SymEngine both mutable and immutable matrices simplify in place and return
|
51 |
+
# None. This is inconsistent with the matrix being "immutable" and also the
|
52 |
+
# returned None leads to problems in the mechanics module.
|
53 |
+
#
|
54 |
+
# The simplify function should not be used because simplify(M) sympifies the
|
55 |
+
# matrix M and the SymEngine matrices all sympify to SymPy matrices. If we want
|
56 |
+
# to work with SymEngine matrices then we need to use their .simplify() method
|
57 |
+
# but that method does not work correctly with immutable matrices.
|
58 |
+
#
|
59 |
+
# The _simplify_matrix function can be removed when the SymEngine bug is fixed.
|
60 |
+
# Since this should be a temporary problem we do not make this function part of
|
61 |
+
# the public API.
|
62 |
+
#
|
63 |
+
# SymEngine issue: https://github.com/symengine/symengine.py/issues/363
|
64 |
+
#
|
65 |
+
|
66 |
+
def _simplify_matrix(M):
|
67 |
+
"""Return a simplified copy of the matrix M"""
|
68 |
+
assert isinstance(M, (Matrix, ImmutableMatrix))
|
69 |
+
Mnew = M.as_mutable() # makes a copy if mutable
|
70 |
+
Mnew.simplify()
|
71 |
+
if isinstance(M, ImmutableMatrix):
|
72 |
+
Mnew = Mnew.as_immutable()
|
73 |
+
return Mnew
|
74 |
+
|
75 |
+
|
76 |
+
__all__ = [
|
77 |
+
'Symbol', 'Integer', 'sympify', 'S', 'SympifyError', 'exp', 'log',
|
78 |
+
'gamma', 'sqrt', 'I', 'E', 'pi', 'Matrix', 'sin', 'cos', 'tan', 'cot',
|
79 |
+
'csc', 'sec', 'asin', 'acos', 'atan', 'acot', 'acsc', 'asec', 'sinh',
|
80 |
+
'cosh', 'tanh', 'coth', 'asinh', 'acosh', 'atanh', 'acoth', 'lambdify',
|
81 |
+
'symarray', 'diff', 'zeros', 'eye', 'diag', 'ones', 'expand', 'Function',
|
82 |
+
'symbols', 'var', 'Add', 'Mul', 'Derivative', 'ImmutableMatrix',
|
83 |
+
'MatrixBase', 'Rational', 'Basic', 'igcd', 'AppliedUndef',
|
84 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/core/basic.py
ADDED
@@ -0,0 +1,2233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Base class for all the objects in SymPy"""
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
from collections import defaultdict
|
5 |
+
from collections.abc import Mapping
|
6 |
+
from itertools import chain, zip_longest
|
7 |
+
|
8 |
+
from .assumptions import _prepare_class_assumptions
|
9 |
+
from .cache import cacheit
|
10 |
+
from .core import ordering_of_classes
|
11 |
+
from .sympify import _sympify, sympify, SympifyError, _external_converter
|
12 |
+
from .sorting import ordered
|
13 |
+
from .kind import Kind, UndefinedKind
|
14 |
+
from ._print_helpers import Printable
|
15 |
+
|
16 |
+
from sympy.utilities.decorator import deprecated
|
17 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
18 |
+
from sympy.utilities.iterables import iterable, numbered_symbols
|
19 |
+
from sympy.utilities.misc import filldedent, func_name
|
20 |
+
|
21 |
+
from inspect import getmro
|
22 |
+
|
23 |
+
|
24 |
+
def as_Basic(expr):
|
25 |
+
"""Return expr as a Basic instance using strict sympify
|
26 |
+
or raise a TypeError; this is just a wrapper to _sympify,
|
27 |
+
raising a TypeError instead of a SympifyError."""
|
28 |
+
try:
|
29 |
+
return _sympify(expr)
|
30 |
+
except SympifyError:
|
31 |
+
raise TypeError(
|
32 |
+
'Argument must be a Basic object, not `%s`' % func_name(
|
33 |
+
expr))
|
34 |
+
|
35 |
+
|
36 |
+
def _old_compare(x: type, y: type) -> int:
|
37 |
+
# If the other object is not a Basic subclass, then we are not equal to it.
|
38 |
+
if not issubclass(y, Basic):
|
39 |
+
return -1
|
40 |
+
|
41 |
+
n1 = x.__name__
|
42 |
+
n2 = y.__name__
|
43 |
+
if n1 == n2:
|
44 |
+
return 0
|
45 |
+
|
46 |
+
UNKNOWN = len(ordering_of_classes) + 1
|
47 |
+
try:
|
48 |
+
i1 = ordering_of_classes.index(n1)
|
49 |
+
except ValueError:
|
50 |
+
i1 = UNKNOWN
|
51 |
+
try:
|
52 |
+
i2 = ordering_of_classes.index(n2)
|
53 |
+
except ValueError:
|
54 |
+
i2 = UNKNOWN
|
55 |
+
if i1 == UNKNOWN and i2 == UNKNOWN:
|
56 |
+
return (n1 > n2) - (n1 < n2)
|
57 |
+
return (i1 > i2) - (i1 < i2)
|
58 |
+
|
59 |
+
|
60 |
+
class Basic(Printable):
|
61 |
+
"""
|
62 |
+
Base class for all SymPy objects.
|
63 |
+
|
64 |
+
Notes and conventions
|
65 |
+
=====================
|
66 |
+
|
67 |
+
1) Always use ``.args``, when accessing parameters of some instance:
|
68 |
+
|
69 |
+
>>> from sympy import cot
|
70 |
+
>>> from sympy.abc import x, y
|
71 |
+
|
72 |
+
>>> cot(x).args
|
73 |
+
(x,)
|
74 |
+
|
75 |
+
>>> cot(x).args[0]
|
76 |
+
x
|
77 |
+
|
78 |
+
>>> (x*y).args
|
79 |
+
(x, y)
|
80 |
+
|
81 |
+
>>> (x*y).args[1]
|
82 |
+
y
|
83 |
+
|
84 |
+
|
85 |
+
2) Never use internal methods or variables (the ones prefixed with ``_``):
|
86 |
+
|
87 |
+
>>> cot(x)._args # do not use this, use cot(x).args instead
|
88 |
+
(x,)
|
89 |
+
|
90 |
+
|
91 |
+
3) By "SymPy object" we mean something that can be returned by
|
92 |
+
``sympify``. But not all objects one encounters using SymPy are
|
93 |
+
subclasses of Basic. For example, mutable objects are not:
|
94 |
+
|
95 |
+
>>> from sympy import Basic, Matrix, sympify
|
96 |
+
>>> A = Matrix([[1, 2], [3, 4]]).as_mutable()
|
97 |
+
>>> isinstance(A, Basic)
|
98 |
+
False
|
99 |
+
|
100 |
+
>>> B = sympify(A)
|
101 |
+
>>> isinstance(B, Basic)
|
102 |
+
True
|
103 |
+
"""
|
104 |
+
__slots__ = ('_mhash', # hash value
|
105 |
+
'_args', # arguments
|
106 |
+
'_assumptions'
|
107 |
+
)
|
108 |
+
|
109 |
+
_args: tuple[Basic, ...]
|
110 |
+
_mhash: int | None
|
111 |
+
|
112 |
+
@property
|
113 |
+
def __sympy__(self):
|
114 |
+
return True
|
115 |
+
|
116 |
+
def __init_subclass__(cls):
|
117 |
+
# Initialize the default_assumptions FactKB and also any assumptions
|
118 |
+
# property methods. This method will only be called for subclasses of
|
119 |
+
# Basic but not for Basic itself so we call
|
120 |
+
# _prepare_class_assumptions(Basic) below the class definition.
|
121 |
+
_prepare_class_assumptions(cls)
|
122 |
+
|
123 |
+
# To be overridden with True in the appropriate subclasses
|
124 |
+
is_number = False
|
125 |
+
is_Atom = False
|
126 |
+
is_Symbol = False
|
127 |
+
is_symbol = False
|
128 |
+
is_Indexed = False
|
129 |
+
is_Dummy = False
|
130 |
+
is_Wild = False
|
131 |
+
is_Function = False
|
132 |
+
is_Add = False
|
133 |
+
is_Mul = False
|
134 |
+
is_Pow = False
|
135 |
+
is_Number = False
|
136 |
+
is_Float = False
|
137 |
+
is_Rational = False
|
138 |
+
is_Integer = False
|
139 |
+
is_NumberSymbol = False
|
140 |
+
is_Order = False
|
141 |
+
is_Derivative = False
|
142 |
+
is_Piecewise = False
|
143 |
+
is_Poly = False
|
144 |
+
is_AlgebraicNumber = False
|
145 |
+
is_Relational = False
|
146 |
+
is_Equality = False
|
147 |
+
is_Boolean = False
|
148 |
+
is_Not = False
|
149 |
+
is_Matrix = False
|
150 |
+
is_Vector = False
|
151 |
+
is_Point = False
|
152 |
+
is_MatAdd = False
|
153 |
+
is_MatMul = False
|
154 |
+
is_real: bool | None
|
155 |
+
is_extended_real: bool | None
|
156 |
+
is_zero: bool | None
|
157 |
+
is_negative: bool | None
|
158 |
+
is_commutative: bool | None
|
159 |
+
|
160 |
+
kind: Kind = UndefinedKind
|
161 |
+
|
162 |
+
def __new__(cls, *args):
|
163 |
+
obj = object.__new__(cls)
|
164 |
+
obj._assumptions = cls.default_assumptions
|
165 |
+
obj._mhash = None # will be set by __hash__ method.
|
166 |
+
|
167 |
+
obj._args = args # all items in args must be Basic objects
|
168 |
+
return obj
|
169 |
+
|
170 |
+
def copy(self):
|
171 |
+
return self.func(*self.args)
|
172 |
+
|
173 |
+
def __getnewargs__(self):
|
174 |
+
return self.args
|
175 |
+
|
176 |
+
def __getstate__(self):
|
177 |
+
return None
|
178 |
+
|
179 |
+
def __setstate__(self, state):
|
180 |
+
for name, value in state.items():
|
181 |
+
setattr(self, name, value)
|
182 |
+
|
183 |
+
def __reduce_ex__(self, protocol):
|
184 |
+
if protocol < 2:
|
185 |
+
msg = "Only pickle protocol 2 or higher is supported by SymPy"
|
186 |
+
raise NotImplementedError(msg)
|
187 |
+
return super().__reduce_ex__(protocol)
|
188 |
+
|
189 |
+
def __hash__(self) -> int:
|
190 |
+
# hash cannot be cached using cache_it because infinite recurrence
|
191 |
+
# occurs as hash is needed for setting cache dictionary keys
|
192 |
+
h = self._mhash
|
193 |
+
if h is None:
|
194 |
+
h = hash((type(self).__name__,) + self._hashable_content())
|
195 |
+
self._mhash = h
|
196 |
+
return h
|
197 |
+
|
198 |
+
def _hashable_content(self):
|
199 |
+
"""Return a tuple of information about self that can be used to
|
200 |
+
compute the hash. If a class defines additional attributes,
|
201 |
+
like ``name`` in Symbol, then this method should be updated
|
202 |
+
accordingly to return such relevant attributes.
|
203 |
+
|
204 |
+
Defining more than _hashable_content is necessary if __eq__ has
|
205 |
+
been defined by a class. See note about this in Basic.__eq__."""
|
206 |
+
return self._args
|
207 |
+
|
208 |
+
@property
|
209 |
+
def assumptions0(self):
|
210 |
+
"""
|
211 |
+
Return object `type` assumptions.
|
212 |
+
|
213 |
+
For example:
|
214 |
+
|
215 |
+
Symbol('x', real=True)
|
216 |
+
Symbol('x', integer=True)
|
217 |
+
|
218 |
+
are different objects. In other words, besides Python type (Symbol in
|
219 |
+
this case), the initial assumptions are also forming their typeinfo.
|
220 |
+
|
221 |
+
Examples
|
222 |
+
========
|
223 |
+
|
224 |
+
>>> from sympy import Symbol
|
225 |
+
>>> from sympy.abc import x
|
226 |
+
>>> x.assumptions0
|
227 |
+
{'commutative': True}
|
228 |
+
>>> x = Symbol("x", positive=True)
|
229 |
+
>>> x.assumptions0
|
230 |
+
{'commutative': True, 'complex': True, 'extended_negative': False,
|
231 |
+
'extended_nonnegative': True, 'extended_nonpositive': False,
|
232 |
+
'extended_nonzero': True, 'extended_positive': True, 'extended_real':
|
233 |
+
True, 'finite': True, 'hermitian': True, 'imaginary': False,
|
234 |
+
'infinite': False, 'negative': False, 'nonnegative': True,
|
235 |
+
'nonpositive': False, 'nonzero': True, 'positive': True, 'real':
|
236 |
+
True, 'zero': False}
|
237 |
+
"""
|
238 |
+
return {}
|
239 |
+
|
240 |
+
def compare(self, other):
|
241 |
+
"""
|
242 |
+
Return -1, 0, 1 if the object is smaller, equal, or greater than other.
|
243 |
+
|
244 |
+
Not in the mathematical sense. If the object is of a different type
|
245 |
+
from the "other" then their classes are ordered according to
|
246 |
+
the sorted_classes list.
|
247 |
+
|
248 |
+
Examples
|
249 |
+
========
|
250 |
+
|
251 |
+
>>> from sympy.abc import x, y
|
252 |
+
>>> x.compare(y)
|
253 |
+
-1
|
254 |
+
>>> x.compare(x)
|
255 |
+
0
|
256 |
+
>>> y.compare(x)
|
257 |
+
1
|
258 |
+
|
259 |
+
"""
|
260 |
+
# all redefinitions of __cmp__ method should start with the
|
261 |
+
# following lines:
|
262 |
+
if self is other:
|
263 |
+
return 0
|
264 |
+
n1 = self.__class__
|
265 |
+
n2 = other.__class__
|
266 |
+
c = _old_compare(n1, n2)
|
267 |
+
if c:
|
268 |
+
return c
|
269 |
+
#
|
270 |
+
st = self._hashable_content()
|
271 |
+
ot = other._hashable_content()
|
272 |
+
c = (len(st) > len(ot)) - (len(st) < len(ot))
|
273 |
+
if c:
|
274 |
+
return c
|
275 |
+
for l, r in zip(st, ot):
|
276 |
+
l = Basic(*l) if isinstance(l, frozenset) else l
|
277 |
+
r = Basic(*r) if isinstance(r, frozenset) else r
|
278 |
+
if isinstance(l, Basic):
|
279 |
+
c = l.compare(r)
|
280 |
+
else:
|
281 |
+
c = (l > r) - (l < r)
|
282 |
+
if c:
|
283 |
+
return c
|
284 |
+
return 0
|
285 |
+
|
286 |
+
@staticmethod
|
287 |
+
def _compare_pretty(a, b):
|
288 |
+
from sympy.series.order import Order
|
289 |
+
if isinstance(a, Order) and not isinstance(b, Order):
|
290 |
+
return 1
|
291 |
+
if not isinstance(a, Order) and isinstance(b, Order):
|
292 |
+
return -1
|
293 |
+
|
294 |
+
if a.is_Rational and b.is_Rational:
|
295 |
+
l = a.p * b.q
|
296 |
+
r = b.p * a.q
|
297 |
+
return (l > r) - (l < r)
|
298 |
+
else:
|
299 |
+
from .symbol import Wild
|
300 |
+
p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3")
|
301 |
+
r_a = a.match(p1 * p2**p3)
|
302 |
+
if r_a and p3 in r_a:
|
303 |
+
a3 = r_a[p3]
|
304 |
+
r_b = b.match(p1 * p2**p3)
|
305 |
+
if r_b and p3 in r_b:
|
306 |
+
b3 = r_b[p3]
|
307 |
+
c = Basic.compare(a3, b3)
|
308 |
+
if c != 0:
|
309 |
+
return c
|
310 |
+
|
311 |
+
return Basic.compare(a, b)
|
312 |
+
|
313 |
+
@classmethod
|
314 |
+
def fromiter(cls, args, **assumptions):
|
315 |
+
"""
|
316 |
+
Create a new object from an iterable.
|
317 |
+
|
318 |
+
This is a convenience function that allows one to create objects from
|
319 |
+
any iterable, without having to convert to a list or tuple first.
|
320 |
+
|
321 |
+
Examples
|
322 |
+
========
|
323 |
+
|
324 |
+
>>> from sympy import Tuple
|
325 |
+
>>> Tuple.fromiter(i for i in range(5))
|
326 |
+
(0, 1, 2, 3, 4)
|
327 |
+
|
328 |
+
"""
|
329 |
+
return cls(*tuple(args), **assumptions)
|
330 |
+
|
331 |
+
@classmethod
|
332 |
+
def class_key(cls):
|
333 |
+
"""Nice order of classes."""
|
334 |
+
return 5, 0, cls.__name__
|
335 |
+
|
336 |
+
@cacheit
|
337 |
+
def sort_key(self, order=None):
|
338 |
+
"""
|
339 |
+
Return a sort key.
|
340 |
+
|
341 |
+
Examples
|
342 |
+
========
|
343 |
+
|
344 |
+
>>> from sympy import S, I
|
345 |
+
|
346 |
+
>>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key())
|
347 |
+
[1/2, -I, I]
|
348 |
+
|
349 |
+
>>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]")
|
350 |
+
[x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)]
|
351 |
+
>>> sorted(_, key=lambda x: x.sort_key())
|
352 |
+
[x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2]
|
353 |
+
|
354 |
+
"""
|
355 |
+
|
356 |
+
# XXX: remove this when issue 5169 is fixed
|
357 |
+
def inner_key(arg):
|
358 |
+
if isinstance(arg, Basic):
|
359 |
+
return arg.sort_key(order)
|
360 |
+
else:
|
361 |
+
return arg
|
362 |
+
|
363 |
+
args = self._sorted_args
|
364 |
+
args = len(args), tuple([inner_key(arg) for arg in args])
|
365 |
+
return self.class_key(), args, S.One.sort_key(), S.One
|
366 |
+
|
367 |
+
def _do_eq_sympify(self, other):
|
368 |
+
"""Returns a boolean indicating whether a == b when either a
|
369 |
+
or b is not a Basic. This is only done for types that were either
|
370 |
+
added to `converter` by a 3rd party or when the object has `_sympy_`
|
371 |
+
defined. This essentially reuses the code in `_sympify` that is
|
372 |
+
specific for this use case. Non-user defined types that are meant
|
373 |
+
to work with SymPy should be handled directly in the __eq__ methods
|
374 |
+
of the `Basic` classes it could equate to and not be converted. Note
|
375 |
+
that after conversion, `==` is used again since it is not
|
376 |
+
necessarily clear whether `self` or `other`'s __eq__ method needs
|
377 |
+
to be used."""
|
378 |
+
for superclass in type(other).__mro__:
|
379 |
+
conv = _external_converter.get(superclass)
|
380 |
+
if conv is not None:
|
381 |
+
return self == conv(other)
|
382 |
+
if hasattr(other, '_sympy_'):
|
383 |
+
return self == other._sympy_()
|
384 |
+
return NotImplemented
|
385 |
+
|
386 |
+
def __eq__(self, other):
|
387 |
+
"""Return a boolean indicating whether a == b on the basis of
|
388 |
+
their symbolic trees.
|
389 |
+
|
390 |
+
This is the same as a.compare(b) == 0 but faster.
|
391 |
+
|
392 |
+
Notes
|
393 |
+
=====
|
394 |
+
|
395 |
+
If a class that overrides __eq__() needs to retain the
|
396 |
+
implementation of __hash__() from a parent class, the
|
397 |
+
interpreter must be told this explicitly by setting
|
398 |
+
__hash__ : Callable[[object], int] = <ParentClass>.__hash__.
|
399 |
+
Otherwise the inheritance of __hash__() will be blocked,
|
400 |
+
just as if __hash__ had been explicitly set to None.
|
401 |
+
|
402 |
+
References
|
403 |
+
==========
|
404 |
+
|
405 |
+
from https://docs.python.org/dev/reference/datamodel.html#object.__hash__
|
406 |
+
"""
|
407 |
+
if self is other:
|
408 |
+
return True
|
409 |
+
|
410 |
+
if not isinstance(other, Basic):
|
411 |
+
return self._do_eq_sympify(other)
|
412 |
+
|
413 |
+
# check for pure number expr
|
414 |
+
if not (self.is_Number and other.is_Number) and (
|
415 |
+
type(self) != type(other)):
|
416 |
+
return False
|
417 |
+
a, b = self._hashable_content(), other._hashable_content()
|
418 |
+
if a != b:
|
419 |
+
return False
|
420 |
+
# check number *in* an expression
|
421 |
+
for a, b in zip(a, b):
|
422 |
+
if not isinstance(a, Basic):
|
423 |
+
continue
|
424 |
+
if a.is_Number and type(a) != type(b):
|
425 |
+
return False
|
426 |
+
return True
|
427 |
+
|
428 |
+
def __ne__(self, other):
|
429 |
+
"""``a != b`` -> Compare two symbolic trees and see whether they are different
|
430 |
+
|
431 |
+
this is the same as:
|
432 |
+
|
433 |
+
``a.compare(b) != 0``
|
434 |
+
|
435 |
+
but faster
|
436 |
+
"""
|
437 |
+
return not self == other
|
438 |
+
|
439 |
+
def dummy_eq(self, other, symbol=None):
|
440 |
+
"""
|
441 |
+
Compare two expressions and handle dummy symbols.
|
442 |
+
|
443 |
+
Examples
|
444 |
+
========
|
445 |
+
|
446 |
+
>>> from sympy import Dummy
|
447 |
+
>>> from sympy.abc import x, y
|
448 |
+
|
449 |
+
>>> u = Dummy('u')
|
450 |
+
|
451 |
+
>>> (u**2 + 1).dummy_eq(x**2 + 1)
|
452 |
+
True
|
453 |
+
>>> (u**2 + 1) == (x**2 + 1)
|
454 |
+
False
|
455 |
+
|
456 |
+
>>> (u**2 + y).dummy_eq(x**2 + y, x)
|
457 |
+
True
|
458 |
+
>>> (u**2 + y).dummy_eq(x**2 + y, y)
|
459 |
+
False
|
460 |
+
|
461 |
+
"""
|
462 |
+
s = self.as_dummy()
|
463 |
+
o = _sympify(other)
|
464 |
+
o = o.as_dummy()
|
465 |
+
|
466 |
+
dummy_symbols = [i for i in s.free_symbols if i.is_Dummy]
|
467 |
+
|
468 |
+
if len(dummy_symbols) == 1:
|
469 |
+
dummy = dummy_symbols.pop()
|
470 |
+
else:
|
471 |
+
return s == o
|
472 |
+
|
473 |
+
if symbol is None:
|
474 |
+
symbols = o.free_symbols
|
475 |
+
|
476 |
+
if len(symbols) == 1:
|
477 |
+
symbol = symbols.pop()
|
478 |
+
else:
|
479 |
+
return s == o
|
480 |
+
|
481 |
+
tmp = dummy.__class__()
|
482 |
+
|
483 |
+
return s.xreplace({dummy: tmp}) == o.xreplace({symbol: tmp})
|
484 |
+
|
485 |
+
def atoms(self, *types):
|
486 |
+
"""Returns the atoms that form the current object.
|
487 |
+
|
488 |
+
By default, only objects that are truly atomic and cannot
|
489 |
+
be divided into smaller pieces are returned: symbols, numbers,
|
490 |
+
and number symbols like I and pi. It is possible to request
|
491 |
+
atoms of any type, however, as demonstrated below.
|
492 |
+
|
493 |
+
Examples
|
494 |
+
========
|
495 |
+
|
496 |
+
>>> from sympy import I, pi, sin
|
497 |
+
>>> from sympy.abc import x, y
|
498 |
+
>>> (1 + x + 2*sin(y + I*pi)).atoms()
|
499 |
+
{1, 2, I, pi, x, y}
|
500 |
+
|
501 |
+
If one or more types are given, the results will contain only
|
502 |
+
those types of atoms.
|
503 |
+
|
504 |
+
>>> from sympy import Number, NumberSymbol, Symbol
|
505 |
+
>>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol)
|
506 |
+
{x, y}
|
507 |
+
|
508 |
+
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number)
|
509 |
+
{1, 2}
|
510 |
+
|
511 |
+
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol)
|
512 |
+
{1, 2, pi}
|
513 |
+
|
514 |
+
>>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I)
|
515 |
+
{1, 2, I, pi}
|
516 |
+
|
517 |
+
Note that I (imaginary unit) and zoo (complex infinity) are special
|
518 |
+
types of number symbols and are not part of the NumberSymbol class.
|
519 |
+
|
520 |
+
The type can be given implicitly, too:
|
521 |
+
|
522 |
+
>>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol
|
523 |
+
{x, y}
|
524 |
+
|
525 |
+
Be careful to check your assumptions when using the implicit option
|
526 |
+
since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type
|
527 |
+
of SymPy atom, while ``type(S(2))`` is type ``Integer`` and will find all
|
528 |
+
integers in an expression:
|
529 |
+
|
530 |
+
>>> from sympy import S
|
531 |
+
>>> (1 + x + 2*sin(y + I*pi)).atoms(S(1))
|
532 |
+
{1}
|
533 |
+
|
534 |
+
>>> (1 + x + 2*sin(y + I*pi)).atoms(S(2))
|
535 |
+
{1, 2}
|
536 |
+
|
537 |
+
Finally, arguments to atoms() can select more than atomic atoms: any
|
538 |
+
SymPy type (loaded in core/__init__.py) can be listed as an argument
|
539 |
+
and those types of "atoms" as found in scanning the arguments of the
|
540 |
+
expression recursively:
|
541 |
+
|
542 |
+
>>> from sympy import Function, Mul
|
543 |
+
>>> from sympy.core.function import AppliedUndef
|
544 |
+
>>> f = Function('f')
|
545 |
+
>>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function)
|
546 |
+
{f(x), sin(y + I*pi)}
|
547 |
+
>>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef)
|
548 |
+
{f(x)}
|
549 |
+
|
550 |
+
>>> (1 + x + 2*sin(y + I*pi)).atoms(Mul)
|
551 |
+
{I*pi, 2*sin(y + I*pi)}
|
552 |
+
|
553 |
+
"""
|
554 |
+
if types:
|
555 |
+
types = tuple(
|
556 |
+
[t if isinstance(t, type) else type(t) for t in types])
|
557 |
+
nodes = _preorder_traversal(self)
|
558 |
+
if types:
|
559 |
+
result = {node for node in nodes if isinstance(node, types)}
|
560 |
+
else:
|
561 |
+
result = {node for node in nodes if not node.args}
|
562 |
+
return result
|
563 |
+
|
564 |
+
@property
|
565 |
+
def free_symbols(self) -> set[Basic]:
|
566 |
+
"""Return from the atoms of self those which are free symbols.
|
567 |
+
|
568 |
+
Not all free symbols are ``Symbol``. Eg: IndexedBase('I')[0].free_symbols
|
569 |
+
|
570 |
+
For most expressions, all symbols are free symbols. For some classes
|
571 |
+
this is not true. e.g. Integrals use Symbols for the dummy variables
|
572 |
+
which are bound variables, so Integral has a method to return all
|
573 |
+
symbols except those. Derivative keeps track of symbols with respect
|
574 |
+
to which it will perform a derivative; those are
|
575 |
+
bound variables, too, so it has its own free_symbols method.
|
576 |
+
|
577 |
+
Any other method that uses bound variables should implement a
|
578 |
+
free_symbols method."""
|
579 |
+
empty: set[Basic] = set()
|
580 |
+
return empty.union(*(a.free_symbols for a in self.args))
|
581 |
+
|
582 |
+
@property
|
583 |
+
def expr_free_symbols(self):
|
584 |
+
sympy_deprecation_warning("""
|
585 |
+
The expr_free_symbols property is deprecated. Use free_symbols to get
|
586 |
+
the free symbols of an expression.
|
587 |
+
""",
|
588 |
+
deprecated_since_version="1.9",
|
589 |
+
active_deprecations_target="deprecated-expr-free-symbols")
|
590 |
+
return set()
|
591 |
+
|
592 |
+
def as_dummy(self):
|
593 |
+
"""Return the expression with any objects having structurally
|
594 |
+
bound symbols replaced with unique, canonical symbols within
|
595 |
+
the object in which they appear and having only the default
|
596 |
+
assumption for commutativity being True. When applied to a
|
597 |
+
symbol a new symbol having only the same commutativity will be
|
598 |
+
returned.
|
599 |
+
|
600 |
+
Examples
|
601 |
+
========
|
602 |
+
|
603 |
+
>>> from sympy import Integral, Symbol
|
604 |
+
>>> from sympy.abc import x
|
605 |
+
>>> r = Symbol('r', real=True)
|
606 |
+
>>> Integral(r, (r, x)).as_dummy()
|
607 |
+
Integral(_0, (_0, x))
|
608 |
+
>>> _.variables[0].is_real is None
|
609 |
+
True
|
610 |
+
>>> r.as_dummy()
|
611 |
+
_r
|
612 |
+
|
613 |
+
Notes
|
614 |
+
=====
|
615 |
+
|
616 |
+
Any object that has structurally bound variables should have
|
617 |
+
a property, `bound_symbols` that returns those symbols
|
618 |
+
appearing in the object.
|
619 |
+
"""
|
620 |
+
from .symbol import Dummy, Symbol
|
621 |
+
def can(x):
|
622 |
+
# mask free that shadow bound
|
623 |
+
free = x.free_symbols
|
624 |
+
bound = set(x.bound_symbols)
|
625 |
+
d = {i: Dummy() for i in bound & free}
|
626 |
+
x = x.subs(d)
|
627 |
+
# replace bound with canonical names
|
628 |
+
x = x.xreplace(x.canonical_variables)
|
629 |
+
# return after undoing masking
|
630 |
+
return x.xreplace({v: k for k, v in d.items()})
|
631 |
+
if not self.has(Symbol):
|
632 |
+
return self
|
633 |
+
return self.replace(
|
634 |
+
lambda x: hasattr(x, 'bound_symbols'),
|
635 |
+
can,
|
636 |
+
simultaneous=False)
|
637 |
+
|
638 |
+
@property
|
639 |
+
def canonical_variables(self):
|
640 |
+
"""Return a dictionary mapping any variable defined in
|
641 |
+
``self.bound_symbols`` to Symbols that do not clash
|
642 |
+
with any free symbols in the expression.
|
643 |
+
|
644 |
+
Examples
|
645 |
+
========
|
646 |
+
|
647 |
+
>>> from sympy import Lambda
|
648 |
+
>>> from sympy.abc import x
|
649 |
+
>>> Lambda(x, 2*x).canonical_variables
|
650 |
+
{x: _0}
|
651 |
+
"""
|
652 |
+
if not hasattr(self, 'bound_symbols'):
|
653 |
+
return {}
|
654 |
+
dums = numbered_symbols('_')
|
655 |
+
reps = {}
|
656 |
+
# watch out for free symbol that are not in bound symbols;
|
657 |
+
# those that are in bound symbols are about to get changed
|
658 |
+
bound = self.bound_symbols
|
659 |
+
names = {i.name for i in self.free_symbols - set(bound)}
|
660 |
+
for b in bound:
|
661 |
+
d = next(dums)
|
662 |
+
if b.is_Symbol:
|
663 |
+
while d.name in names:
|
664 |
+
d = next(dums)
|
665 |
+
reps[b] = d
|
666 |
+
return reps
|
667 |
+
|
668 |
+
def rcall(self, *args):
|
669 |
+
"""Apply on the argument recursively through the expression tree.
|
670 |
+
|
671 |
+
This method is used to simulate a common abuse of notation for
|
672 |
+
operators. For instance, in SymPy the following will not work:
|
673 |
+
|
674 |
+
``(x+Lambda(y, 2*y))(z) == x+2*z``,
|
675 |
+
|
676 |
+
however, you can use:
|
677 |
+
|
678 |
+
>>> from sympy import Lambda
|
679 |
+
>>> from sympy.abc import x, y, z
|
680 |
+
>>> (x + Lambda(y, 2*y)).rcall(z)
|
681 |
+
x + 2*z
|
682 |
+
"""
|
683 |
+
return Basic._recursive_call(self, args)
|
684 |
+
|
685 |
+
@staticmethod
|
686 |
+
def _recursive_call(expr_to_call, on_args):
|
687 |
+
"""Helper for rcall method."""
|
688 |
+
from .symbol import Symbol
|
689 |
+
def the_call_method_is_overridden(expr):
|
690 |
+
for cls in getmro(type(expr)):
|
691 |
+
if '__call__' in cls.__dict__:
|
692 |
+
return cls != Basic
|
693 |
+
|
694 |
+
if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call):
|
695 |
+
if isinstance(expr_to_call, Symbol): # XXX When you call a Symbol it is
|
696 |
+
return expr_to_call # transformed into an UndefFunction
|
697 |
+
else:
|
698 |
+
return expr_to_call(*on_args)
|
699 |
+
elif expr_to_call.args:
|
700 |
+
args = [Basic._recursive_call(
|
701 |
+
sub, on_args) for sub in expr_to_call.args]
|
702 |
+
return type(expr_to_call)(*args)
|
703 |
+
else:
|
704 |
+
return expr_to_call
|
705 |
+
|
706 |
+
def is_hypergeometric(self, k):
|
707 |
+
from sympy.simplify.simplify import hypersimp
|
708 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
709 |
+
if self.has(Piecewise):
|
710 |
+
return None
|
711 |
+
return hypersimp(self, k) is not None
|
712 |
+
|
713 |
+
@property
|
714 |
+
def is_comparable(self):
|
715 |
+
"""Return True if self can be computed to a real number
|
716 |
+
(or already is a real number) with precision, else False.
|
717 |
+
|
718 |
+
Examples
|
719 |
+
========
|
720 |
+
|
721 |
+
>>> from sympy import exp_polar, pi, I
|
722 |
+
>>> (I*exp_polar(I*pi/2)).is_comparable
|
723 |
+
True
|
724 |
+
>>> (I*exp_polar(I*pi*2)).is_comparable
|
725 |
+
False
|
726 |
+
|
727 |
+
A False result does not mean that `self` cannot be rewritten
|
728 |
+
into a form that would be comparable. For example, the
|
729 |
+
difference computed below is zero but without simplification
|
730 |
+
it does not evaluate to a zero with precision:
|
731 |
+
|
732 |
+
>>> e = 2**pi*(1 + 2**pi)
|
733 |
+
>>> dif = e - e.expand()
|
734 |
+
>>> dif.is_comparable
|
735 |
+
False
|
736 |
+
>>> dif.n(2)._prec
|
737 |
+
1
|
738 |
+
|
739 |
+
"""
|
740 |
+
is_extended_real = self.is_extended_real
|
741 |
+
if is_extended_real is False:
|
742 |
+
return False
|
743 |
+
if not self.is_number:
|
744 |
+
return False
|
745 |
+
# don't re-eval numbers that are already evaluated since
|
746 |
+
# this will create spurious precision
|
747 |
+
n, i = [p.evalf(2) if not p.is_Number else p
|
748 |
+
for p in self.as_real_imag()]
|
749 |
+
if not (i.is_Number and n.is_Number):
|
750 |
+
return False
|
751 |
+
if i:
|
752 |
+
# if _prec = 1 we can't decide and if not,
|
753 |
+
# the answer is False because numbers with
|
754 |
+
# imaginary parts can't be compared
|
755 |
+
# so return False
|
756 |
+
return False
|
757 |
+
else:
|
758 |
+
return n._prec != 1
|
759 |
+
|
760 |
+
@property
|
761 |
+
def func(self):
|
762 |
+
"""
|
763 |
+
The top-level function in an expression.
|
764 |
+
|
765 |
+
The following should hold for all objects::
|
766 |
+
|
767 |
+
>> x == x.func(*x.args)
|
768 |
+
|
769 |
+
Examples
|
770 |
+
========
|
771 |
+
|
772 |
+
>>> from sympy.abc import x
|
773 |
+
>>> a = 2*x
|
774 |
+
>>> a.func
|
775 |
+
<class 'sympy.core.mul.Mul'>
|
776 |
+
>>> a.args
|
777 |
+
(2, x)
|
778 |
+
>>> a.func(*a.args)
|
779 |
+
2*x
|
780 |
+
>>> a == a.func(*a.args)
|
781 |
+
True
|
782 |
+
|
783 |
+
"""
|
784 |
+
return self.__class__
|
785 |
+
|
786 |
+
@property
|
787 |
+
def args(self) -> tuple[Basic, ...]:
|
788 |
+
"""Returns a tuple of arguments of 'self'.
|
789 |
+
|
790 |
+
Examples
|
791 |
+
========
|
792 |
+
|
793 |
+
>>> from sympy import cot
|
794 |
+
>>> from sympy.abc import x, y
|
795 |
+
|
796 |
+
>>> cot(x).args
|
797 |
+
(x,)
|
798 |
+
|
799 |
+
>>> cot(x).args[0]
|
800 |
+
x
|
801 |
+
|
802 |
+
>>> (x*y).args
|
803 |
+
(x, y)
|
804 |
+
|
805 |
+
>>> (x*y).args[1]
|
806 |
+
y
|
807 |
+
|
808 |
+
Notes
|
809 |
+
=====
|
810 |
+
|
811 |
+
Never use self._args, always use self.args.
|
812 |
+
Only use _args in __new__ when creating a new function.
|
813 |
+
Do not override .args() from Basic (so that it is easy to
|
814 |
+
change the interface in the future if needed).
|
815 |
+
"""
|
816 |
+
return self._args
|
817 |
+
|
818 |
+
@property
|
819 |
+
def _sorted_args(self):
|
820 |
+
"""
|
821 |
+
The same as ``args``. Derived classes which do not fix an
|
822 |
+
order on their arguments should override this method to
|
823 |
+
produce the sorted representation.
|
824 |
+
"""
|
825 |
+
return self.args
|
826 |
+
|
827 |
+
def as_content_primitive(self, radical=False, clear=True):
|
828 |
+
"""A stub to allow Basic args (like Tuple) to be skipped when computing
|
829 |
+
the content and primitive components of an expression.
|
830 |
+
|
831 |
+
See Also
|
832 |
+
========
|
833 |
+
|
834 |
+
sympy.core.expr.Expr.as_content_primitive
|
835 |
+
"""
|
836 |
+
return S.One, self
|
837 |
+
|
838 |
+
def subs(self, *args, **kwargs):
|
839 |
+
"""
|
840 |
+
Substitutes old for new in an expression after sympifying args.
|
841 |
+
|
842 |
+
`args` is either:
|
843 |
+
- two arguments, e.g. foo.subs(old, new)
|
844 |
+
- one iterable argument, e.g. foo.subs(iterable). The iterable may be
|
845 |
+
o an iterable container with (old, new) pairs. In this case the
|
846 |
+
replacements are processed in the order given with successive
|
847 |
+
patterns possibly affecting replacements already made.
|
848 |
+
o a dict or set whose key/value items correspond to old/new pairs.
|
849 |
+
In this case the old/new pairs will be sorted by op count and in
|
850 |
+
case of a tie, by number of args and the default_sort_key. The
|
851 |
+
resulting sorted list is then processed as an iterable container
|
852 |
+
(see previous).
|
853 |
+
|
854 |
+
If the keyword ``simultaneous`` is True, the subexpressions will not be
|
855 |
+
evaluated until all the substitutions have been made.
|
856 |
+
|
857 |
+
Examples
|
858 |
+
========
|
859 |
+
|
860 |
+
>>> from sympy import pi, exp, limit, oo
|
861 |
+
>>> from sympy.abc import x, y
|
862 |
+
>>> (1 + x*y).subs(x, pi)
|
863 |
+
pi*y + 1
|
864 |
+
>>> (1 + x*y).subs({x:pi, y:2})
|
865 |
+
1 + 2*pi
|
866 |
+
>>> (1 + x*y).subs([(x, pi), (y, 2)])
|
867 |
+
1 + 2*pi
|
868 |
+
>>> reps = [(y, x**2), (x, 2)]
|
869 |
+
>>> (x + y).subs(reps)
|
870 |
+
6
|
871 |
+
>>> (x + y).subs(reversed(reps))
|
872 |
+
x**2 + 2
|
873 |
+
|
874 |
+
>>> (x**2 + x**4).subs(x**2, y)
|
875 |
+
y**2 + y
|
876 |
+
|
877 |
+
To replace only the x**2 but not the x**4, use xreplace:
|
878 |
+
|
879 |
+
>>> (x**2 + x**4).xreplace({x**2: y})
|
880 |
+
x**4 + y
|
881 |
+
|
882 |
+
To delay evaluation until all substitutions have been made,
|
883 |
+
set the keyword ``simultaneous`` to True:
|
884 |
+
|
885 |
+
>>> (x/y).subs([(x, 0), (y, 0)])
|
886 |
+
0
|
887 |
+
>>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True)
|
888 |
+
nan
|
889 |
+
|
890 |
+
This has the added feature of not allowing subsequent substitutions
|
891 |
+
to affect those already made:
|
892 |
+
|
893 |
+
>>> ((x + y)/y).subs({x + y: y, y: x + y})
|
894 |
+
1
|
895 |
+
>>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True)
|
896 |
+
y/(x + y)
|
897 |
+
|
898 |
+
In order to obtain a canonical result, unordered iterables are
|
899 |
+
sorted by count_op length, number of arguments and by the
|
900 |
+
default_sort_key to break any ties. All other iterables are left
|
901 |
+
unsorted.
|
902 |
+
|
903 |
+
>>> from sympy import sqrt, sin, cos
|
904 |
+
>>> from sympy.abc import a, b, c, d, e
|
905 |
+
|
906 |
+
>>> A = (sqrt(sin(2*x)), a)
|
907 |
+
>>> B = (sin(2*x), b)
|
908 |
+
>>> C = (cos(2*x), c)
|
909 |
+
>>> D = (x, d)
|
910 |
+
>>> E = (exp(x), e)
|
911 |
+
|
912 |
+
>>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x)
|
913 |
+
|
914 |
+
>>> expr.subs(dict([A, B, C, D, E]))
|
915 |
+
a*c*sin(d*e) + b
|
916 |
+
|
917 |
+
The resulting expression represents a literal replacement of the
|
918 |
+
old arguments with the new arguments. This may not reflect the
|
919 |
+
limiting behavior of the expression:
|
920 |
+
|
921 |
+
>>> (x**3 - 3*x).subs({x: oo})
|
922 |
+
nan
|
923 |
+
|
924 |
+
>>> limit(x**3 - 3*x, x, oo)
|
925 |
+
oo
|
926 |
+
|
927 |
+
If the substitution will be followed by numerical
|
928 |
+
evaluation, it is better to pass the substitution to
|
929 |
+
evalf as
|
930 |
+
|
931 |
+
>>> (1/x).evalf(subs={x: 3.0}, n=21)
|
932 |
+
0.333333333333333333333
|
933 |
+
|
934 |
+
rather than
|
935 |
+
|
936 |
+
>>> (1/x).subs({x: 3.0}).evalf(21)
|
937 |
+
0.333333333333333314830
|
938 |
+
|
939 |
+
as the former will ensure that the desired level of precision is
|
940 |
+
obtained.
|
941 |
+
|
942 |
+
See Also
|
943 |
+
========
|
944 |
+
replace: replacement capable of doing wildcard-like matching,
|
945 |
+
parsing of match, and conditional replacements
|
946 |
+
xreplace: exact node replacement in expr tree; also capable of
|
947 |
+
using matching rules
|
948 |
+
sympy.core.evalf.EvalfMixin.evalf: calculates the given formula to a desired level of precision
|
949 |
+
|
950 |
+
"""
|
951 |
+
from .containers import Dict
|
952 |
+
from .symbol import Dummy, Symbol
|
953 |
+
from .numbers import _illegal
|
954 |
+
|
955 |
+
unordered = False
|
956 |
+
if len(args) == 1:
|
957 |
+
|
958 |
+
sequence = args[0]
|
959 |
+
if isinstance(sequence, set):
|
960 |
+
unordered = True
|
961 |
+
elif isinstance(sequence, (Dict, Mapping)):
|
962 |
+
unordered = True
|
963 |
+
sequence = sequence.items()
|
964 |
+
elif not iterable(sequence):
|
965 |
+
raise ValueError(filldedent("""
|
966 |
+
When a single argument is passed to subs
|
967 |
+
it should be a dictionary of old: new pairs or an iterable
|
968 |
+
of (old, new) tuples."""))
|
969 |
+
elif len(args) == 2:
|
970 |
+
sequence = [args]
|
971 |
+
else:
|
972 |
+
raise ValueError("subs accepts either 1 or 2 arguments")
|
973 |
+
|
974 |
+
def sympify_old(old):
|
975 |
+
if isinstance(old, str):
|
976 |
+
# Use Symbol rather than parse_expr for old
|
977 |
+
return Symbol(old)
|
978 |
+
elif isinstance(old, type):
|
979 |
+
# Allow a type e.g. Function('f') or sin
|
980 |
+
return sympify(old, strict=False)
|
981 |
+
else:
|
982 |
+
return sympify(old, strict=True)
|
983 |
+
|
984 |
+
def sympify_new(new):
|
985 |
+
if isinstance(new, (str, type)):
|
986 |
+
# Allow a type or parse a string input
|
987 |
+
return sympify(new, strict=False)
|
988 |
+
else:
|
989 |
+
return sympify(new, strict=True)
|
990 |
+
|
991 |
+
sequence = [(sympify_old(s1), sympify_new(s2)) for s1, s2 in sequence]
|
992 |
+
|
993 |
+
# skip if there is no change
|
994 |
+
sequence = [(s1, s2) for s1, s2 in sequence if not _aresame(s1, s2)]
|
995 |
+
|
996 |
+
simultaneous = kwargs.pop('simultaneous', False)
|
997 |
+
|
998 |
+
if unordered:
|
999 |
+
from .sorting import _nodes, default_sort_key
|
1000 |
+
sequence = dict(sequence)
|
1001 |
+
# order so more complex items are first and items
|
1002 |
+
# of identical complexity are ordered so
|
1003 |
+
# f(x) < f(y) < x < y
|
1004 |
+
# \___ 2 __/ \_1_/ <- number of nodes
|
1005 |
+
#
|
1006 |
+
# For more complex ordering use an unordered sequence.
|
1007 |
+
k = list(ordered(sequence, default=False, keys=(
|
1008 |
+
lambda x: -_nodes(x),
|
1009 |
+
default_sort_key,
|
1010 |
+
)))
|
1011 |
+
sequence = [(k, sequence[k]) for k in k]
|
1012 |
+
# do infinities first
|
1013 |
+
if not simultaneous:
|
1014 |
+
redo = [i for i, seq in enumerate(sequence) if seq[1] in _illegal]
|
1015 |
+
for i in reversed(redo):
|
1016 |
+
sequence.insert(0, sequence.pop(i))
|
1017 |
+
|
1018 |
+
if simultaneous: # XXX should this be the default for dict subs?
|
1019 |
+
reps = {}
|
1020 |
+
rv = self
|
1021 |
+
kwargs['hack2'] = True
|
1022 |
+
m = Dummy('subs_m')
|
1023 |
+
for old, new in sequence:
|
1024 |
+
com = new.is_commutative
|
1025 |
+
if com is None:
|
1026 |
+
com = True
|
1027 |
+
d = Dummy('subs_d', commutative=com)
|
1028 |
+
# using d*m so Subs will be used on dummy variables
|
1029 |
+
# in things like Derivative(f(x, y), x) in which x
|
1030 |
+
# is both free and bound
|
1031 |
+
rv = rv._subs(old, d*m, **kwargs)
|
1032 |
+
if not isinstance(rv, Basic):
|
1033 |
+
break
|
1034 |
+
reps[d] = new
|
1035 |
+
reps[m] = S.One # get rid of m
|
1036 |
+
return rv.xreplace(reps)
|
1037 |
+
else:
|
1038 |
+
rv = self
|
1039 |
+
for old, new in sequence:
|
1040 |
+
rv = rv._subs(old, new, **kwargs)
|
1041 |
+
if not isinstance(rv, Basic):
|
1042 |
+
break
|
1043 |
+
return rv
|
1044 |
+
|
1045 |
+
@cacheit
|
1046 |
+
def _subs(self, old, new, **hints):
|
1047 |
+
"""Substitutes an expression old -> new.
|
1048 |
+
|
1049 |
+
If self is not equal to old then _eval_subs is called.
|
1050 |
+
If _eval_subs does not want to make any special replacement
|
1051 |
+
then a None is received which indicates that the fallback
|
1052 |
+
should be applied wherein a search for replacements is made
|
1053 |
+
amongst the arguments of self.
|
1054 |
+
|
1055 |
+
>>> from sympy import Add
|
1056 |
+
>>> from sympy.abc import x, y, z
|
1057 |
+
|
1058 |
+
Examples
|
1059 |
+
========
|
1060 |
+
|
1061 |
+
Add's _eval_subs knows how to target x + y in the following
|
1062 |
+
so it makes the change:
|
1063 |
+
|
1064 |
+
>>> (x + y + z).subs(x + y, 1)
|
1065 |
+
z + 1
|
1066 |
+
|
1067 |
+
Add's _eval_subs does not need to know how to find x + y in
|
1068 |
+
the following:
|
1069 |
+
|
1070 |
+
>>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None
|
1071 |
+
True
|
1072 |
+
|
1073 |
+
The returned None will cause the fallback routine to traverse the args and
|
1074 |
+
pass the z*(x + y) arg to Mul where the change will take place and the
|
1075 |
+
substitution will succeed:
|
1076 |
+
|
1077 |
+
>>> (z*(x + y) + 3).subs(x + y, 1)
|
1078 |
+
z + 3
|
1079 |
+
|
1080 |
+
** Developers Notes **
|
1081 |
+
|
1082 |
+
An _eval_subs routine for a class should be written if:
|
1083 |
+
|
1084 |
+
1) any arguments are not instances of Basic (e.g. bool, tuple);
|
1085 |
+
|
1086 |
+
2) some arguments should not be targeted (as in integration
|
1087 |
+
variables);
|
1088 |
+
|
1089 |
+
3) if there is something other than a literal replacement
|
1090 |
+
that should be attempted (as in Piecewise where the condition
|
1091 |
+
may be updated without doing a replacement).
|
1092 |
+
|
1093 |
+
If it is overridden, here are some special cases that might arise:
|
1094 |
+
|
1095 |
+
1) If it turns out that no special change was made and all
|
1096 |
+
the original sub-arguments should be checked for
|
1097 |
+
replacements then None should be returned.
|
1098 |
+
|
1099 |
+
2) If it is necessary to do substitutions on a portion of
|
1100 |
+
the expression then _subs should be called. _subs will
|
1101 |
+
handle the case of any sub-expression being equal to old
|
1102 |
+
(which usually would not be the case) while its fallback
|
1103 |
+
will handle the recursion into the sub-arguments. For
|
1104 |
+
example, after Add's _eval_subs removes some matching terms
|
1105 |
+
it must process the remaining terms so it calls _subs
|
1106 |
+
on each of the un-matched terms and then adds them
|
1107 |
+
onto the terms previously obtained.
|
1108 |
+
|
1109 |
+
3) If the initial expression should remain unchanged then
|
1110 |
+
the original expression should be returned. (Whenever an
|
1111 |
+
expression is returned, modified or not, no further
|
1112 |
+
substitution of old -> new is attempted.) Sum's _eval_subs
|
1113 |
+
routine uses this strategy when a substitution is attempted
|
1114 |
+
on any of its summation variables.
|
1115 |
+
"""
|
1116 |
+
|
1117 |
+
def fallback(self, old, new):
|
1118 |
+
"""
|
1119 |
+
Try to replace old with new in any of self's arguments.
|
1120 |
+
"""
|
1121 |
+
hit = False
|
1122 |
+
args = list(self.args)
|
1123 |
+
for i, arg in enumerate(args):
|
1124 |
+
if not hasattr(arg, '_eval_subs'):
|
1125 |
+
continue
|
1126 |
+
arg = arg._subs(old, new, **hints)
|
1127 |
+
if not _aresame(arg, args[i]):
|
1128 |
+
hit = True
|
1129 |
+
args[i] = arg
|
1130 |
+
if hit:
|
1131 |
+
rv = self.func(*args)
|
1132 |
+
hack2 = hints.get('hack2', False)
|
1133 |
+
if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack
|
1134 |
+
coeff = S.One
|
1135 |
+
nonnumber = []
|
1136 |
+
for i in args:
|
1137 |
+
if i.is_Number:
|
1138 |
+
coeff *= i
|
1139 |
+
else:
|
1140 |
+
nonnumber.append(i)
|
1141 |
+
nonnumber = self.func(*nonnumber)
|
1142 |
+
if coeff is S.One:
|
1143 |
+
return nonnumber
|
1144 |
+
else:
|
1145 |
+
return self.func(coeff, nonnumber, evaluate=False)
|
1146 |
+
return rv
|
1147 |
+
return self
|
1148 |
+
|
1149 |
+
if _aresame(self, old):
|
1150 |
+
return new
|
1151 |
+
|
1152 |
+
rv = self._eval_subs(old, new)
|
1153 |
+
if rv is None:
|
1154 |
+
rv = fallback(self, old, new)
|
1155 |
+
return rv
|
1156 |
+
|
1157 |
+
def _eval_subs(self, old, new):
|
1158 |
+
"""Override this stub if you want to do anything more than
|
1159 |
+
attempt a replacement of old with new in the arguments of self.
|
1160 |
+
|
1161 |
+
See also
|
1162 |
+
========
|
1163 |
+
|
1164 |
+
_subs
|
1165 |
+
"""
|
1166 |
+
return None
|
1167 |
+
|
1168 |
+
def xreplace(self, rule):
|
1169 |
+
"""
|
1170 |
+
Replace occurrences of objects within the expression.
|
1171 |
+
|
1172 |
+
Parameters
|
1173 |
+
==========
|
1174 |
+
|
1175 |
+
rule : dict-like
|
1176 |
+
Expresses a replacement rule
|
1177 |
+
|
1178 |
+
Returns
|
1179 |
+
=======
|
1180 |
+
|
1181 |
+
xreplace : the result of the replacement
|
1182 |
+
|
1183 |
+
Examples
|
1184 |
+
========
|
1185 |
+
|
1186 |
+
>>> from sympy import symbols, pi, exp
|
1187 |
+
>>> x, y, z = symbols('x y z')
|
1188 |
+
>>> (1 + x*y).xreplace({x: pi})
|
1189 |
+
pi*y + 1
|
1190 |
+
>>> (1 + x*y).xreplace({x: pi, y: 2})
|
1191 |
+
1 + 2*pi
|
1192 |
+
|
1193 |
+
Replacements occur only if an entire node in the expression tree is
|
1194 |
+
matched:
|
1195 |
+
|
1196 |
+
>>> (x*y + z).xreplace({x*y: pi})
|
1197 |
+
z + pi
|
1198 |
+
>>> (x*y*z).xreplace({x*y: pi})
|
1199 |
+
x*y*z
|
1200 |
+
>>> (2*x).xreplace({2*x: y, x: z})
|
1201 |
+
y
|
1202 |
+
>>> (2*2*x).xreplace({2*x: y, x: z})
|
1203 |
+
4*z
|
1204 |
+
>>> (x + y + 2).xreplace({x + y: 2})
|
1205 |
+
x + y + 2
|
1206 |
+
>>> (x + 2 + exp(x + 2)).xreplace({x + 2: y})
|
1207 |
+
x + exp(y) + 2
|
1208 |
+
|
1209 |
+
xreplace does not differentiate between free and bound symbols. In the
|
1210 |
+
following, subs(x, y) would not change x since it is a bound symbol,
|
1211 |
+
but xreplace does:
|
1212 |
+
|
1213 |
+
>>> from sympy import Integral
|
1214 |
+
>>> Integral(x, (x, 1, 2*x)).xreplace({x: y})
|
1215 |
+
Integral(y, (y, 1, 2*y))
|
1216 |
+
|
1217 |
+
Trying to replace x with an expression raises an error:
|
1218 |
+
|
1219 |
+
>>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) # doctest: +SKIP
|
1220 |
+
ValueError: Invalid limits given: ((2*y, 1, 4*y),)
|
1221 |
+
|
1222 |
+
See Also
|
1223 |
+
========
|
1224 |
+
replace: replacement capable of doing wildcard-like matching,
|
1225 |
+
parsing of match, and conditional replacements
|
1226 |
+
subs: substitution of subexpressions as defined by the objects
|
1227 |
+
themselves.
|
1228 |
+
|
1229 |
+
"""
|
1230 |
+
value, _ = self._xreplace(rule)
|
1231 |
+
return value
|
1232 |
+
|
1233 |
+
def _xreplace(self, rule):
|
1234 |
+
"""
|
1235 |
+
Helper for xreplace. Tracks whether a replacement actually occurred.
|
1236 |
+
"""
|
1237 |
+
if self in rule:
|
1238 |
+
return rule[self], True
|
1239 |
+
elif rule:
|
1240 |
+
args = []
|
1241 |
+
changed = False
|
1242 |
+
for a in self.args:
|
1243 |
+
_xreplace = getattr(a, '_xreplace', None)
|
1244 |
+
if _xreplace is not None:
|
1245 |
+
a_xr = _xreplace(rule)
|
1246 |
+
args.append(a_xr[0])
|
1247 |
+
changed |= a_xr[1]
|
1248 |
+
else:
|
1249 |
+
args.append(a)
|
1250 |
+
args = tuple(args)
|
1251 |
+
if changed:
|
1252 |
+
return self.func(*args), True
|
1253 |
+
return self, False
|
1254 |
+
|
1255 |
+
@cacheit
|
1256 |
+
def has(self, *patterns):
|
1257 |
+
"""
|
1258 |
+
Test whether any subexpression matches any of the patterns.
|
1259 |
+
|
1260 |
+
Examples
|
1261 |
+
========
|
1262 |
+
|
1263 |
+
>>> from sympy import sin
|
1264 |
+
>>> from sympy.abc import x, y, z
|
1265 |
+
>>> (x**2 + sin(x*y)).has(z)
|
1266 |
+
False
|
1267 |
+
>>> (x**2 + sin(x*y)).has(x, y, z)
|
1268 |
+
True
|
1269 |
+
>>> x.has(x)
|
1270 |
+
True
|
1271 |
+
|
1272 |
+
Note ``has`` is a structural algorithm with no knowledge of
|
1273 |
+
mathematics. Consider the following half-open interval:
|
1274 |
+
|
1275 |
+
>>> from sympy import Interval
|
1276 |
+
>>> i = Interval.Lopen(0, 5); i
|
1277 |
+
Interval.Lopen(0, 5)
|
1278 |
+
>>> i.args
|
1279 |
+
(0, 5, True, False)
|
1280 |
+
>>> i.has(4) # there is no "4" in the arguments
|
1281 |
+
False
|
1282 |
+
>>> i.has(0) # there *is* a "0" in the arguments
|
1283 |
+
True
|
1284 |
+
|
1285 |
+
Instead, use ``contains`` to determine whether a number is in the
|
1286 |
+
interval or not:
|
1287 |
+
|
1288 |
+
>>> i.contains(4)
|
1289 |
+
True
|
1290 |
+
>>> i.contains(0)
|
1291 |
+
False
|
1292 |
+
|
1293 |
+
|
1294 |
+
Note that ``expr.has(*patterns)`` is exactly equivalent to
|
1295 |
+
``any(expr.has(p) for p in patterns)``. In particular, ``False`` is
|
1296 |
+
returned when the list of patterns is empty.
|
1297 |
+
|
1298 |
+
>>> x.has()
|
1299 |
+
False
|
1300 |
+
|
1301 |
+
"""
|
1302 |
+
return self._has(iterargs, *patterns)
|
1303 |
+
|
1304 |
+
def has_xfree(self, s: set[Basic]):
|
1305 |
+
"""Return True if self has any of the patterns in s as a
|
1306 |
+
free argument, else False. This is like `Basic.has_free`
|
1307 |
+
but this will only report exact argument matches.
|
1308 |
+
|
1309 |
+
Examples
|
1310 |
+
========
|
1311 |
+
|
1312 |
+
>>> from sympy import Function
|
1313 |
+
>>> from sympy.abc import x, y
|
1314 |
+
>>> f = Function('f')
|
1315 |
+
>>> f(x).has_xfree({f})
|
1316 |
+
False
|
1317 |
+
>>> f(x).has_xfree({f(x)})
|
1318 |
+
True
|
1319 |
+
>>> f(x + 1).has_xfree({x})
|
1320 |
+
True
|
1321 |
+
>>> f(x + 1).has_xfree({x + 1})
|
1322 |
+
True
|
1323 |
+
>>> f(x + y + 1).has_xfree({x + 1})
|
1324 |
+
False
|
1325 |
+
"""
|
1326 |
+
# protect O(1) containment check by requiring:
|
1327 |
+
if type(s) is not set:
|
1328 |
+
raise TypeError('expecting set argument')
|
1329 |
+
return any(a in s for a in iterfreeargs(self))
|
1330 |
+
|
1331 |
+
@cacheit
|
1332 |
+
def has_free(self, *patterns):
|
1333 |
+
"""Return True if self has object(s) ``x`` as a free expression
|
1334 |
+
else False.
|
1335 |
+
|
1336 |
+
Examples
|
1337 |
+
========
|
1338 |
+
|
1339 |
+
>>> from sympy import Integral, Function
|
1340 |
+
>>> from sympy.abc import x, y
|
1341 |
+
>>> f = Function('f')
|
1342 |
+
>>> g = Function('g')
|
1343 |
+
>>> expr = Integral(f(x), (f(x), 1, g(y)))
|
1344 |
+
>>> expr.free_symbols
|
1345 |
+
{y}
|
1346 |
+
>>> expr.has_free(g(y))
|
1347 |
+
True
|
1348 |
+
>>> expr.has_free(*(x, f(x)))
|
1349 |
+
False
|
1350 |
+
|
1351 |
+
This works for subexpressions and types, too:
|
1352 |
+
|
1353 |
+
>>> expr.has_free(g)
|
1354 |
+
True
|
1355 |
+
>>> (x + y + 1).has_free(y + 1)
|
1356 |
+
True
|
1357 |
+
"""
|
1358 |
+
if not patterns:
|
1359 |
+
return False
|
1360 |
+
p0 = patterns[0]
|
1361 |
+
if len(patterns) == 1 and iterable(p0) and not isinstance(p0, Basic):
|
1362 |
+
# Basic can contain iterables (though not non-Basic, ideally)
|
1363 |
+
# but don't encourage mixed passing patterns
|
1364 |
+
raise TypeError(filldedent('''
|
1365 |
+
Expecting 1 or more Basic args, not a single
|
1366 |
+
non-Basic iterable. Don't forget to unpack
|
1367 |
+
iterables: `eq.has_free(*patterns)`'''))
|
1368 |
+
# try quick test first
|
1369 |
+
s = set(patterns)
|
1370 |
+
rv = self.has_xfree(s)
|
1371 |
+
if rv:
|
1372 |
+
return rv
|
1373 |
+
# now try matching through slower _has
|
1374 |
+
return self._has(iterfreeargs, *patterns)
|
1375 |
+
|
1376 |
+
def _has(self, iterargs, *patterns):
|
1377 |
+
# separate out types and unhashable objects
|
1378 |
+
type_set = set() # only types
|
1379 |
+
p_set = set() # hashable non-types
|
1380 |
+
for p in patterns:
|
1381 |
+
if isinstance(p, type) and issubclass(p, Basic):
|
1382 |
+
type_set.add(p)
|
1383 |
+
continue
|
1384 |
+
if not isinstance(p, Basic):
|
1385 |
+
try:
|
1386 |
+
p = _sympify(p)
|
1387 |
+
except SympifyError:
|
1388 |
+
continue # Basic won't have this in it
|
1389 |
+
p_set.add(p) # fails if object defines __eq__ but
|
1390 |
+
# doesn't define __hash__
|
1391 |
+
types = tuple(type_set) #
|
1392 |
+
for i in iterargs(self): #
|
1393 |
+
if i in p_set: # <--- here, too
|
1394 |
+
return True
|
1395 |
+
if isinstance(i, types):
|
1396 |
+
return True
|
1397 |
+
|
1398 |
+
# use matcher if defined, e.g. operations defines
|
1399 |
+
# matcher that checks for exact subset containment,
|
1400 |
+
# (x + y + 1).has(x + 1) -> True
|
1401 |
+
for i in p_set - type_set: # types don't have matchers
|
1402 |
+
if not hasattr(i, '_has_matcher'):
|
1403 |
+
continue
|
1404 |
+
match = i._has_matcher()
|
1405 |
+
if any(match(arg) for arg in iterargs(self)):
|
1406 |
+
return True
|
1407 |
+
|
1408 |
+
# no success
|
1409 |
+
return False
|
1410 |
+
|
1411 |
+
def replace(self, query, value, map=False, simultaneous=True, exact=None):
|
1412 |
+
"""
|
1413 |
+
Replace matching subexpressions of ``self`` with ``value``.
|
1414 |
+
|
1415 |
+
If ``map = True`` then also return the mapping {old: new} where ``old``
|
1416 |
+
was a sub-expression found with query and ``new`` is the replacement
|
1417 |
+
value for it. If the expression itself does not match the query, then
|
1418 |
+
the returned value will be ``self.xreplace(map)`` otherwise it should
|
1419 |
+
be ``self.subs(ordered(map.items()))``.
|
1420 |
+
|
1421 |
+
Traverses an expression tree and performs replacement of matching
|
1422 |
+
subexpressions from the bottom to the top of the tree. The default
|
1423 |
+
approach is to do the replacement in a simultaneous fashion so
|
1424 |
+
changes made are targeted only once. If this is not desired or causes
|
1425 |
+
problems, ``simultaneous`` can be set to False.
|
1426 |
+
|
1427 |
+
In addition, if an expression containing more than one Wild symbol
|
1428 |
+
is being used to match subexpressions and the ``exact`` flag is None
|
1429 |
+
it will be set to True so the match will only succeed if all non-zero
|
1430 |
+
values are received for each Wild that appears in the match pattern.
|
1431 |
+
Setting this to False accepts a match of 0; while setting it True
|
1432 |
+
accepts all matches that have a 0 in them. See example below for
|
1433 |
+
cautions.
|
1434 |
+
|
1435 |
+
The list of possible combinations of queries and replacement values
|
1436 |
+
is listed below:
|
1437 |
+
|
1438 |
+
Examples
|
1439 |
+
========
|
1440 |
+
|
1441 |
+
Initial setup
|
1442 |
+
|
1443 |
+
>>> from sympy import log, sin, cos, tan, Wild, Mul, Add
|
1444 |
+
>>> from sympy.abc import x, y
|
1445 |
+
>>> f = log(sin(x)) + tan(sin(x**2))
|
1446 |
+
|
1447 |
+
1.1. type -> type
|
1448 |
+
obj.replace(type, newtype)
|
1449 |
+
|
1450 |
+
When object of type ``type`` is found, replace it with the
|
1451 |
+
result of passing its argument(s) to ``newtype``.
|
1452 |
+
|
1453 |
+
>>> f.replace(sin, cos)
|
1454 |
+
log(cos(x)) + tan(cos(x**2))
|
1455 |
+
>>> sin(x).replace(sin, cos, map=True)
|
1456 |
+
(cos(x), {sin(x): cos(x)})
|
1457 |
+
>>> (x*y).replace(Mul, Add)
|
1458 |
+
x + y
|
1459 |
+
|
1460 |
+
1.2. type -> func
|
1461 |
+
obj.replace(type, func)
|
1462 |
+
|
1463 |
+
When object of type ``type`` is found, apply ``func`` to its
|
1464 |
+
argument(s). ``func`` must be written to handle the number
|
1465 |
+
of arguments of ``type``.
|
1466 |
+
|
1467 |
+
>>> f.replace(sin, lambda arg: sin(2*arg))
|
1468 |
+
log(sin(2*x)) + tan(sin(2*x**2))
|
1469 |
+
>>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args)))
|
1470 |
+
sin(2*x*y)
|
1471 |
+
|
1472 |
+
2.1. pattern -> expr
|
1473 |
+
obj.replace(pattern(wild), expr(wild))
|
1474 |
+
|
1475 |
+
Replace subexpressions matching ``pattern`` with the expression
|
1476 |
+
written in terms of the Wild symbols in ``pattern``.
|
1477 |
+
|
1478 |
+
>>> a, b = map(Wild, 'ab')
|
1479 |
+
>>> f.replace(sin(a), tan(a))
|
1480 |
+
log(tan(x)) + tan(tan(x**2))
|
1481 |
+
>>> f.replace(sin(a), tan(a/2))
|
1482 |
+
log(tan(x/2)) + tan(tan(x**2/2))
|
1483 |
+
>>> f.replace(sin(a), a)
|
1484 |
+
log(x) + tan(x**2)
|
1485 |
+
>>> (x*y).replace(a*x, a)
|
1486 |
+
y
|
1487 |
+
|
1488 |
+
Matching is exact by default when more than one Wild symbol
|
1489 |
+
is used: matching fails unless the match gives non-zero
|
1490 |
+
values for all Wild symbols:
|
1491 |
+
|
1492 |
+
>>> (2*x + y).replace(a*x + b, b - a)
|
1493 |
+
y - 2
|
1494 |
+
>>> (2*x).replace(a*x + b, b - a)
|
1495 |
+
2*x
|
1496 |
+
|
1497 |
+
When set to False, the results may be non-intuitive:
|
1498 |
+
|
1499 |
+
>>> (2*x).replace(a*x + b, b - a, exact=False)
|
1500 |
+
2/x
|
1501 |
+
|
1502 |
+
2.2. pattern -> func
|
1503 |
+
obj.replace(pattern(wild), lambda wild: expr(wild))
|
1504 |
+
|
1505 |
+
All behavior is the same as in 2.1 but now a function in terms of
|
1506 |
+
pattern variables is used rather than an expression:
|
1507 |
+
|
1508 |
+
>>> f.replace(sin(a), lambda a: sin(2*a))
|
1509 |
+
log(sin(2*x)) + tan(sin(2*x**2))
|
1510 |
+
|
1511 |
+
3.1. func -> func
|
1512 |
+
obj.replace(filter, func)
|
1513 |
+
|
1514 |
+
Replace subexpression ``e`` with ``func(e)`` if ``filter(e)``
|
1515 |
+
is True.
|
1516 |
+
|
1517 |
+
>>> g = 2*sin(x**3)
|
1518 |
+
>>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2)
|
1519 |
+
4*sin(x**9)
|
1520 |
+
|
1521 |
+
The expression itself is also targeted by the query but is done in
|
1522 |
+
such a fashion that changes are not made twice.
|
1523 |
+
|
1524 |
+
>>> e = x*(x*y + 1)
|
1525 |
+
>>> e.replace(lambda x: x.is_Mul, lambda x: 2*x)
|
1526 |
+
2*x*(2*x*y + 1)
|
1527 |
+
|
1528 |
+
When matching a single symbol, `exact` will default to True, but
|
1529 |
+
this may or may not be the behavior that is desired:
|
1530 |
+
|
1531 |
+
Here, we want `exact=False`:
|
1532 |
+
|
1533 |
+
>>> from sympy import Function
|
1534 |
+
>>> f = Function('f')
|
1535 |
+
>>> e = f(1) + f(0)
|
1536 |
+
>>> q = f(a), lambda a: f(a + 1)
|
1537 |
+
>>> e.replace(*q, exact=False)
|
1538 |
+
f(1) + f(2)
|
1539 |
+
>>> e.replace(*q, exact=True)
|
1540 |
+
f(0) + f(2)
|
1541 |
+
|
1542 |
+
But here, the nature of matching makes selecting
|
1543 |
+
the right setting tricky:
|
1544 |
+
|
1545 |
+
>>> e = x**(1 + y)
|
1546 |
+
>>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=False)
|
1547 |
+
x
|
1548 |
+
>>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=True)
|
1549 |
+
x**(-x - y + 1)
|
1550 |
+
>>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=False)
|
1551 |
+
x
|
1552 |
+
>>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=True)
|
1553 |
+
x**(1 - y)
|
1554 |
+
|
1555 |
+
It is probably better to use a different form of the query
|
1556 |
+
that describes the target expression more precisely:
|
1557 |
+
|
1558 |
+
>>> (1 + x**(1 + y)).replace(
|
1559 |
+
... lambda x: x.is_Pow and x.exp.is_Add and x.exp.args[0] == 1,
|
1560 |
+
... lambda x: x.base**(1 - (x.exp - 1)))
|
1561 |
+
...
|
1562 |
+
x**(1 - y) + 1
|
1563 |
+
|
1564 |
+
See Also
|
1565 |
+
========
|
1566 |
+
|
1567 |
+
subs: substitution of subexpressions as defined by the objects
|
1568 |
+
themselves.
|
1569 |
+
xreplace: exact node replacement in expr tree; also capable of
|
1570 |
+
using matching rules
|
1571 |
+
|
1572 |
+
"""
|
1573 |
+
|
1574 |
+
try:
|
1575 |
+
query = _sympify(query)
|
1576 |
+
except SympifyError:
|
1577 |
+
pass
|
1578 |
+
try:
|
1579 |
+
value = _sympify(value)
|
1580 |
+
except SympifyError:
|
1581 |
+
pass
|
1582 |
+
if isinstance(query, type):
|
1583 |
+
_query = lambda expr: isinstance(expr, query)
|
1584 |
+
|
1585 |
+
if isinstance(value, type):
|
1586 |
+
_value = lambda expr, result: value(*expr.args)
|
1587 |
+
elif callable(value):
|
1588 |
+
_value = lambda expr, result: value(*expr.args)
|
1589 |
+
else:
|
1590 |
+
raise TypeError(
|
1591 |
+
"given a type, replace() expects another "
|
1592 |
+
"type or a callable")
|
1593 |
+
elif isinstance(query, Basic):
|
1594 |
+
_query = lambda expr: expr.match(query)
|
1595 |
+
if exact is None:
|
1596 |
+
from .symbol import Wild
|
1597 |
+
exact = (len(query.atoms(Wild)) > 1)
|
1598 |
+
|
1599 |
+
if isinstance(value, Basic):
|
1600 |
+
if exact:
|
1601 |
+
_value = lambda expr, result: (value.subs(result)
|
1602 |
+
if all(result.values()) else expr)
|
1603 |
+
else:
|
1604 |
+
_value = lambda expr, result: value.subs(result)
|
1605 |
+
elif callable(value):
|
1606 |
+
# match dictionary keys get the trailing underscore stripped
|
1607 |
+
# from them and are then passed as keywords to the callable;
|
1608 |
+
# if ``exact`` is True, only accept match if there are no null
|
1609 |
+
# values amongst those matched.
|
1610 |
+
if exact:
|
1611 |
+
_value = lambda expr, result: (value(**
|
1612 |
+
{str(k)[:-1]: v for k, v in result.items()})
|
1613 |
+
if all(val for val in result.values()) else expr)
|
1614 |
+
else:
|
1615 |
+
_value = lambda expr, result: value(**
|
1616 |
+
{str(k)[:-1]: v for k, v in result.items()})
|
1617 |
+
else:
|
1618 |
+
raise TypeError(
|
1619 |
+
"given an expression, replace() expects "
|
1620 |
+
"another expression or a callable")
|
1621 |
+
elif callable(query):
|
1622 |
+
_query = query
|
1623 |
+
|
1624 |
+
if callable(value):
|
1625 |
+
_value = lambda expr, result: value(expr)
|
1626 |
+
else:
|
1627 |
+
raise TypeError(
|
1628 |
+
"given a callable, replace() expects "
|
1629 |
+
"another callable")
|
1630 |
+
else:
|
1631 |
+
raise TypeError(
|
1632 |
+
"first argument to replace() must be a "
|
1633 |
+
"type, an expression or a callable")
|
1634 |
+
|
1635 |
+
def walk(rv, F):
|
1636 |
+
"""Apply ``F`` to args and then to result.
|
1637 |
+
"""
|
1638 |
+
args = getattr(rv, 'args', None)
|
1639 |
+
if args is not None:
|
1640 |
+
if args:
|
1641 |
+
newargs = tuple([walk(a, F) for a in args])
|
1642 |
+
if args != newargs:
|
1643 |
+
rv = rv.func(*newargs)
|
1644 |
+
if simultaneous:
|
1645 |
+
# if rv is something that was already
|
1646 |
+
# matched (that was changed) then skip
|
1647 |
+
# applying F again
|
1648 |
+
for i, e in enumerate(args):
|
1649 |
+
if rv == e and e != newargs[i]:
|
1650 |
+
return rv
|
1651 |
+
rv = F(rv)
|
1652 |
+
return rv
|
1653 |
+
|
1654 |
+
mapping = {} # changes that took place
|
1655 |
+
|
1656 |
+
def rec_replace(expr):
|
1657 |
+
result = _query(expr)
|
1658 |
+
if result or result == {}:
|
1659 |
+
v = _value(expr, result)
|
1660 |
+
if v is not None and v != expr:
|
1661 |
+
if map:
|
1662 |
+
mapping[expr] = v
|
1663 |
+
expr = v
|
1664 |
+
return expr
|
1665 |
+
|
1666 |
+
rv = walk(self, rec_replace)
|
1667 |
+
return (rv, mapping) if map else rv
|
1668 |
+
|
1669 |
+
def find(self, query, group=False):
|
1670 |
+
"""Find all subexpressions matching a query."""
|
1671 |
+
query = _make_find_query(query)
|
1672 |
+
results = list(filter(query, _preorder_traversal(self)))
|
1673 |
+
|
1674 |
+
if not group:
|
1675 |
+
return set(results)
|
1676 |
+
else:
|
1677 |
+
groups = {}
|
1678 |
+
|
1679 |
+
for result in results:
|
1680 |
+
if result in groups:
|
1681 |
+
groups[result] += 1
|
1682 |
+
else:
|
1683 |
+
groups[result] = 1
|
1684 |
+
|
1685 |
+
return groups
|
1686 |
+
|
1687 |
+
def count(self, query):
|
1688 |
+
"""Count the number of matching subexpressions."""
|
1689 |
+
query = _make_find_query(query)
|
1690 |
+
return sum(bool(query(sub)) for sub in _preorder_traversal(self))
|
1691 |
+
|
1692 |
+
def matches(self, expr, repl_dict=None, old=False):
|
1693 |
+
"""
|
1694 |
+
Helper method for match() that looks for a match between Wild symbols
|
1695 |
+
in self and expressions in expr.
|
1696 |
+
|
1697 |
+
Examples
|
1698 |
+
========
|
1699 |
+
|
1700 |
+
>>> from sympy import symbols, Wild, Basic
|
1701 |
+
>>> a, b, c = symbols('a b c')
|
1702 |
+
>>> x = Wild('x')
|
1703 |
+
>>> Basic(a + x, x).matches(Basic(a + b, c)) is None
|
1704 |
+
True
|
1705 |
+
>>> Basic(a + x, x).matches(Basic(a + b + c, b + c))
|
1706 |
+
{x_: b + c}
|
1707 |
+
"""
|
1708 |
+
expr = sympify(expr)
|
1709 |
+
if not isinstance(expr, self.__class__):
|
1710 |
+
return None
|
1711 |
+
|
1712 |
+
if repl_dict is None:
|
1713 |
+
repl_dict = {}
|
1714 |
+
else:
|
1715 |
+
repl_dict = repl_dict.copy()
|
1716 |
+
|
1717 |
+
if self == expr:
|
1718 |
+
return repl_dict
|
1719 |
+
|
1720 |
+
if len(self.args) != len(expr.args):
|
1721 |
+
return None
|
1722 |
+
|
1723 |
+
d = repl_dict # already a copy
|
1724 |
+
for arg, other_arg in zip(self.args, expr.args):
|
1725 |
+
if arg == other_arg:
|
1726 |
+
continue
|
1727 |
+
if arg.is_Relational:
|
1728 |
+
try:
|
1729 |
+
d = arg.xreplace(d).matches(other_arg, d, old=old)
|
1730 |
+
except TypeError: # Should be InvalidComparisonError when introduced
|
1731 |
+
d = None
|
1732 |
+
else:
|
1733 |
+
d = arg.xreplace(d).matches(other_arg, d, old=old)
|
1734 |
+
if d is None:
|
1735 |
+
return None
|
1736 |
+
return d
|
1737 |
+
|
1738 |
+
def match(self, pattern, old=False):
|
1739 |
+
"""
|
1740 |
+
Pattern matching.
|
1741 |
+
|
1742 |
+
Wild symbols match all.
|
1743 |
+
|
1744 |
+
Return ``None`` when expression (self) does not match
|
1745 |
+
with pattern. Otherwise return a dictionary such that::
|
1746 |
+
|
1747 |
+
pattern.xreplace(self.match(pattern)) == self
|
1748 |
+
|
1749 |
+
Examples
|
1750 |
+
========
|
1751 |
+
|
1752 |
+
>>> from sympy import Wild, Sum
|
1753 |
+
>>> from sympy.abc import x, y
|
1754 |
+
>>> p = Wild("p")
|
1755 |
+
>>> q = Wild("q")
|
1756 |
+
>>> r = Wild("r")
|
1757 |
+
>>> e = (x+y)**(x+y)
|
1758 |
+
>>> e.match(p**p)
|
1759 |
+
{p_: x + y}
|
1760 |
+
>>> e.match(p**q)
|
1761 |
+
{p_: x + y, q_: x + y}
|
1762 |
+
>>> e = (2*x)**2
|
1763 |
+
>>> e.match(p*q**r)
|
1764 |
+
{p_: 4, q_: x, r_: 2}
|
1765 |
+
>>> (p*q**r).xreplace(e.match(p*q**r))
|
1766 |
+
4*x**2
|
1767 |
+
|
1768 |
+
Structurally bound symbols are ignored during matching:
|
1769 |
+
|
1770 |
+
>>> Sum(x, (x, 1, 2)).match(Sum(y, (y, 1, p)))
|
1771 |
+
{p_: 2}
|
1772 |
+
|
1773 |
+
But they can be identified if desired:
|
1774 |
+
|
1775 |
+
>>> Sum(x, (x, 1, 2)).match(Sum(q, (q, 1, p)))
|
1776 |
+
{p_: 2, q_: x}
|
1777 |
+
|
1778 |
+
The ``old`` flag will give the old-style pattern matching where
|
1779 |
+
expressions and patterns are essentially solved to give the
|
1780 |
+
match. Both of the following give None unless ``old=True``:
|
1781 |
+
|
1782 |
+
>>> (x - 2).match(p - x, old=True)
|
1783 |
+
{p_: 2*x - 2}
|
1784 |
+
>>> (2/x).match(p*x, old=True)
|
1785 |
+
{p_: 2/x**2}
|
1786 |
+
|
1787 |
+
"""
|
1788 |
+
pattern = sympify(pattern)
|
1789 |
+
# match non-bound symbols
|
1790 |
+
canonical = lambda x: x if x.is_Symbol else x.as_dummy()
|
1791 |
+
m = canonical(pattern).matches(canonical(self), old=old)
|
1792 |
+
if m is None:
|
1793 |
+
return m
|
1794 |
+
from .symbol import Wild
|
1795 |
+
from .function import WildFunction
|
1796 |
+
from ..tensor.tensor import WildTensor, WildTensorIndex, WildTensorHead
|
1797 |
+
wild = pattern.atoms(Wild, WildFunction, WildTensor, WildTensorIndex, WildTensorHead)
|
1798 |
+
# sanity check
|
1799 |
+
if set(m) - wild:
|
1800 |
+
raise ValueError(filldedent('''
|
1801 |
+
Some `matches` routine did not use a copy of repl_dict
|
1802 |
+
and injected unexpected symbols. Report this as an
|
1803 |
+
error at https://github.com/sympy/sympy/issues'''))
|
1804 |
+
# now see if bound symbols were requested
|
1805 |
+
bwild = wild - set(m)
|
1806 |
+
if not bwild:
|
1807 |
+
return m
|
1808 |
+
# replace free-Wild symbols in pattern with match result
|
1809 |
+
# so they will match but not be in the next match
|
1810 |
+
wpat = pattern.xreplace(m)
|
1811 |
+
# identify remaining bound wild
|
1812 |
+
w = wpat.matches(self, old=old)
|
1813 |
+
# add them to m
|
1814 |
+
if w:
|
1815 |
+
m.update(w)
|
1816 |
+
# done
|
1817 |
+
return m
|
1818 |
+
|
1819 |
+
def count_ops(self, visual=None):
|
1820 |
+
"""Wrapper for count_ops that returns the operation count."""
|
1821 |
+
from .function import count_ops
|
1822 |
+
return count_ops(self, visual)
|
1823 |
+
|
1824 |
+
def doit(self, **hints):
|
1825 |
+
"""Evaluate objects that are not evaluated by default like limits,
|
1826 |
+
integrals, sums and products. All objects of this kind will be
|
1827 |
+
evaluated recursively, unless some species were excluded via 'hints'
|
1828 |
+
or unless the 'deep' hint was set to 'False'.
|
1829 |
+
|
1830 |
+
>>> from sympy import Integral
|
1831 |
+
>>> from sympy.abc import x
|
1832 |
+
|
1833 |
+
>>> 2*Integral(x, x)
|
1834 |
+
2*Integral(x, x)
|
1835 |
+
|
1836 |
+
>>> (2*Integral(x, x)).doit()
|
1837 |
+
x**2
|
1838 |
+
|
1839 |
+
>>> (2*Integral(x, x)).doit(deep=False)
|
1840 |
+
2*Integral(x, x)
|
1841 |
+
|
1842 |
+
"""
|
1843 |
+
if hints.get('deep', True):
|
1844 |
+
terms = [term.doit(**hints) if isinstance(term, Basic) else term
|
1845 |
+
for term in self.args]
|
1846 |
+
return self.func(*terms)
|
1847 |
+
else:
|
1848 |
+
return self
|
1849 |
+
|
1850 |
+
def simplify(self, **kwargs):
|
1851 |
+
"""See the simplify function in sympy.simplify"""
|
1852 |
+
from sympy.simplify.simplify import simplify
|
1853 |
+
return simplify(self, **kwargs)
|
1854 |
+
|
1855 |
+
def refine(self, assumption=True):
|
1856 |
+
"""See the refine function in sympy.assumptions"""
|
1857 |
+
from sympy.assumptions.refine import refine
|
1858 |
+
return refine(self, assumption)
|
1859 |
+
|
1860 |
+
def _eval_derivative_n_times(self, s, n):
|
1861 |
+
# This is the default evaluator for derivatives (as called by `diff`
|
1862 |
+
# and `Derivative`), it will attempt a loop to derive the expression
|
1863 |
+
# `n` times by calling the corresponding `_eval_derivative` method,
|
1864 |
+
# while leaving the derivative unevaluated if `n` is symbolic. This
|
1865 |
+
# method should be overridden if the object has a closed form for its
|
1866 |
+
# symbolic n-th derivative.
|
1867 |
+
from .numbers import Integer
|
1868 |
+
if isinstance(n, (int, Integer)):
|
1869 |
+
obj = self
|
1870 |
+
for i in range(n):
|
1871 |
+
obj2 = obj._eval_derivative(s)
|
1872 |
+
if obj == obj2 or obj2 is None:
|
1873 |
+
break
|
1874 |
+
obj = obj2
|
1875 |
+
return obj2
|
1876 |
+
else:
|
1877 |
+
return None
|
1878 |
+
|
1879 |
+
def rewrite(self, *args, deep=True, **hints):
|
1880 |
+
"""
|
1881 |
+
Rewrite *self* using a defined rule.
|
1882 |
+
|
1883 |
+
Rewriting transforms an expression to another, which is mathematically
|
1884 |
+
equivalent but structurally different. For example you can rewrite
|
1885 |
+
trigonometric functions as complex exponentials or combinatorial
|
1886 |
+
functions as gamma function.
|
1887 |
+
|
1888 |
+
This method takes a *pattern* and a *rule* as positional arguments.
|
1889 |
+
*pattern* is optional parameter which defines the types of expressions
|
1890 |
+
that will be transformed. If it is not passed, all possible expressions
|
1891 |
+
will be rewritten. *rule* defines how the expression will be rewritten.
|
1892 |
+
|
1893 |
+
Parameters
|
1894 |
+
==========
|
1895 |
+
|
1896 |
+
args : Expr
|
1897 |
+
A *rule*, or *pattern* and *rule*.
|
1898 |
+
- *pattern* is a type or an iterable of types.
|
1899 |
+
- *rule* can be any object.
|
1900 |
+
|
1901 |
+
deep : bool, optional
|
1902 |
+
If ``True``, subexpressions are recursively transformed. Default is
|
1903 |
+
``True``.
|
1904 |
+
|
1905 |
+
Examples
|
1906 |
+
========
|
1907 |
+
|
1908 |
+
If *pattern* is unspecified, all possible expressions are transformed.
|
1909 |
+
|
1910 |
+
>>> from sympy import cos, sin, exp, I
|
1911 |
+
>>> from sympy.abc import x
|
1912 |
+
>>> expr = cos(x) + I*sin(x)
|
1913 |
+
>>> expr.rewrite(exp)
|
1914 |
+
exp(I*x)
|
1915 |
+
|
1916 |
+
Pattern can be a type or an iterable of types.
|
1917 |
+
|
1918 |
+
>>> expr.rewrite(sin, exp)
|
1919 |
+
exp(I*x)/2 + cos(x) - exp(-I*x)/2
|
1920 |
+
>>> expr.rewrite([cos,], exp)
|
1921 |
+
exp(I*x)/2 + I*sin(x) + exp(-I*x)/2
|
1922 |
+
>>> expr.rewrite([cos, sin], exp)
|
1923 |
+
exp(I*x)
|
1924 |
+
|
1925 |
+
Rewriting behavior can be implemented by defining ``_eval_rewrite()``
|
1926 |
+
method.
|
1927 |
+
|
1928 |
+
>>> from sympy import Expr, sqrt, pi
|
1929 |
+
>>> class MySin(Expr):
|
1930 |
+
... def _eval_rewrite(self, rule, args, **hints):
|
1931 |
+
... x, = args
|
1932 |
+
... if rule == cos:
|
1933 |
+
... return cos(pi/2 - x, evaluate=False)
|
1934 |
+
... if rule == sqrt:
|
1935 |
+
... return sqrt(1 - cos(x)**2)
|
1936 |
+
>>> MySin(MySin(x)).rewrite(cos)
|
1937 |
+
cos(-cos(-x + pi/2) + pi/2)
|
1938 |
+
>>> MySin(x).rewrite(sqrt)
|
1939 |
+
sqrt(1 - cos(x)**2)
|
1940 |
+
|
1941 |
+
Defining ``_eval_rewrite_as_[...]()`` method is supported for backwards
|
1942 |
+
compatibility reason. This may be removed in the future and using it is
|
1943 |
+
discouraged.
|
1944 |
+
|
1945 |
+
>>> class MySin(Expr):
|
1946 |
+
... def _eval_rewrite_as_cos(self, *args, **hints):
|
1947 |
+
... x, = args
|
1948 |
+
... return cos(pi/2 - x, evaluate=False)
|
1949 |
+
>>> MySin(x).rewrite(cos)
|
1950 |
+
cos(-x + pi/2)
|
1951 |
+
|
1952 |
+
"""
|
1953 |
+
if not args:
|
1954 |
+
return self
|
1955 |
+
|
1956 |
+
hints.update(deep=deep)
|
1957 |
+
|
1958 |
+
pattern = args[:-1]
|
1959 |
+
rule = args[-1]
|
1960 |
+
|
1961 |
+
# support old design by _eval_rewrite_as_[...] method
|
1962 |
+
if isinstance(rule, str):
|
1963 |
+
method = "_eval_rewrite_as_%s" % rule
|
1964 |
+
elif hasattr(rule, "__name__"):
|
1965 |
+
# rule is class or function
|
1966 |
+
clsname = rule.__name__
|
1967 |
+
method = "_eval_rewrite_as_%s" % clsname
|
1968 |
+
else:
|
1969 |
+
# rule is instance
|
1970 |
+
clsname = rule.__class__.__name__
|
1971 |
+
method = "_eval_rewrite_as_%s" % clsname
|
1972 |
+
|
1973 |
+
if pattern:
|
1974 |
+
if iterable(pattern[0]):
|
1975 |
+
pattern = pattern[0]
|
1976 |
+
pattern = tuple(p for p in pattern if self.has(p))
|
1977 |
+
if not pattern:
|
1978 |
+
return self
|
1979 |
+
# hereafter, empty pattern is interpreted as all pattern.
|
1980 |
+
|
1981 |
+
return self._rewrite(pattern, rule, method, **hints)
|
1982 |
+
|
1983 |
+
def _rewrite(self, pattern, rule, method, **hints):
|
1984 |
+
deep = hints.pop('deep', True)
|
1985 |
+
if deep:
|
1986 |
+
args = [a._rewrite(pattern, rule, method, **hints)
|
1987 |
+
for a in self.args]
|
1988 |
+
else:
|
1989 |
+
args = self.args
|
1990 |
+
if not pattern or any(isinstance(self, p) for p in pattern):
|
1991 |
+
meth = getattr(self, method, None)
|
1992 |
+
if meth is not None:
|
1993 |
+
rewritten = meth(*args, **hints)
|
1994 |
+
else:
|
1995 |
+
rewritten = self._eval_rewrite(rule, args, **hints)
|
1996 |
+
if rewritten is not None:
|
1997 |
+
return rewritten
|
1998 |
+
if not args:
|
1999 |
+
return self
|
2000 |
+
return self.func(*args)
|
2001 |
+
|
2002 |
+
def _eval_rewrite(self, rule, args, **hints):
|
2003 |
+
return None
|
2004 |
+
|
2005 |
+
_constructor_postprocessor_mapping = {} # type: ignore
|
2006 |
+
|
2007 |
+
@classmethod
|
2008 |
+
def _exec_constructor_postprocessors(cls, obj):
|
2009 |
+
# WARNING: This API is experimental.
|
2010 |
+
|
2011 |
+
# This is an experimental API that introduces constructor
|
2012 |
+
# postprosessors for SymPy Core elements. If an argument of a SymPy
|
2013 |
+
# expression has a `_constructor_postprocessor_mapping` attribute, it will
|
2014 |
+
# be interpreted as a dictionary containing lists of postprocessing
|
2015 |
+
# functions for matching expression node names.
|
2016 |
+
|
2017 |
+
clsname = obj.__class__.__name__
|
2018 |
+
postprocessors = defaultdict(list)
|
2019 |
+
for i in obj.args:
|
2020 |
+
try:
|
2021 |
+
postprocessor_mappings = (
|
2022 |
+
Basic._constructor_postprocessor_mapping[cls].items()
|
2023 |
+
for cls in type(i).mro()
|
2024 |
+
if cls in Basic._constructor_postprocessor_mapping
|
2025 |
+
)
|
2026 |
+
for k, v in chain.from_iterable(postprocessor_mappings):
|
2027 |
+
postprocessors[k].extend([j for j in v if j not in postprocessors[k]])
|
2028 |
+
except TypeError:
|
2029 |
+
pass
|
2030 |
+
|
2031 |
+
for f in postprocessors.get(clsname, []):
|
2032 |
+
obj = f(obj)
|
2033 |
+
|
2034 |
+
return obj
|
2035 |
+
|
2036 |
+
def _sage_(self):
|
2037 |
+
"""
|
2038 |
+
Convert *self* to a symbolic expression of SageMath.
|
2039 |
+
|
2040 |
+
This version of the method is merely a placeholder.
|
2041 |
+
"""
|
2042 |
+
old_method = self._sage_
|
2043 |
+
from sage.interfaces.sympy import sympy_init
|
2044 |
+
sympy_init() # may monkey-patch _sage_ method into self's class or superclasses
|
2045 |
+
if old_method == self._sage_:
|
2046 |
+
raise NotImplementedError('conversion to SageMath is not implemented')
|
2047 |
+
else:
|
2048 |
+
# call the freshly monkey-patched method
|
2049 |
+
return self._sage_()
|
2050 |
+
|
2051 |
+
def could_extract_minus_sign(self):
|
2052 |
+
return False # see Expr.could_extract_minus_sign
|
2053 |
+
|
2054 |
+
|
2055 |
+
# For all Basic subclasses _prepare_class_assumptions is called by
|
2056 |
+
# Basic.__init_subclass__ but that method is not called for Basic itself so we
|
2057 |
+
# call the function here instead.
|
2058 |
+
_prepare_class_assumptions(Basic)
|
2059 |
+
|
2060 |
+
|
2061 |
+
class Atom(Basic):
|
2062 |
+
"""
|
2063 |
+
A parent class for atomic things. An atom is an expression with no subexpressions.
|
2064 |
+
|
2065 |
+
Examples
|
2066 |
+
========
|
2067 |
+
|
2068 |
+
Symbol, Number, Rational, Integer, ...
|
2069 |
+
But not: Add, Mul, Pow, ...
|
2070 |
+
"""
|
2071 |
+
|
2072 |
+
is_Atom = True
|
2073 |
+
|
2074 |
+
__slots__ = ()
|
2075 |
+
|
2076 |
+
def matches(self, expr, repl_dict=None, old=False):
|
2077 |
+
if self == expr:
|
2078 |
+
if repl_dict is None:
|
2079 |
+
return {}
|
2080 |
+
return repl_dict.copy()
|
2081 |
+
|
2082 |
+
def xreplace(self, rule, hack2=False):
|
2083 |
+
return rule.get(self, self)
|
2084 |
+
|
2085 |
+
def doit(self, **hints):
|
2086 |
+
return self
|
2087 |
+
|
2088 |
+
@classmethod
|
2089 |
+
def class_key(cls):
|
2090 |
+
return 2, 0, cls.__name__
|
2091 |
+
|
2092 |
+
@cacheit
|
2093 |
+
def sort_key(self, order=None):
|
2094 |
+
return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One
|
2095 |
+
|
2096 |
+
def _eval_simplify(self, **kwargs):
|
2097 |
+
return self
|
2098 |
+
|
2099 |
+
@property
|
2100 |
+
def _sorted_args(self):
|
2101 |
+
# this is here as a safeguard against accidentally using _sorted_args
|
2102 |
+
# on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args)
|
2103 |
+
# since there are no args. So the calling routine should be checking
|
2104 |
+
# to see that this property is not called for Atoms.
|
2105 |
+
raise AttributeError('Atoms have no args. It might be necessary'
|
2106 |
+
' to make a check for Atoms in the calling code.')
|
2107 |
+
|
2108 |
+
|
2109 |
+
def _aresame(a, b):
|
2110 |
+
"""Return True if a and b are structurally the same, else False.
|
2111 |
+
|
2112 |
+
Examples
|
2113 |
+
========
|
2114 |
+
|
2115 |
+
In SymPy (as in Python) two numbers compare the same if they
|
2116 |
+
have the same underlying base-2 representation even though
|
2117 |
+
they may not be the same type:
|
2118 |
+
|
2119 |
+
>>> from sympy import S
|
2120 |
+
>>> 2.0 == S(2)
|
2121 |
+
True
|
2122 |
+
>>> 0.5 == S.Half
|
2123 |
+
True
|
2124 |
+
|
2125 |
+
This routine was written to provide a query for such cases that
|
2126 |
+
would give false when the types do not match:
|
2127 |
+
|
2128 |
+
>>> from sympy.core.basic import _aresame
|
2129 |
+
>>> _aresame(S(2.0), S(2))
|
2130 |
+
False
|
2131 |
+
|
2132 |
+
"""
|
2133 |
+
from .numbers import Number
|
2134 |
+
from .function import AppliedUndef, UndefinedFunction as UndefFunc
|
2135 |
+
if isinstance(a, Number) and isinstance(b, Number):
|
2136 |
+
return a == b and a.__class__ == b.__class__
|
2137 |
+
for i, j in zip_longest(_preorder_traversal(a), _preorder_traversal(b)):
|
2138 |
+
if i != j or type(i) != type(j):
|
2139 |
+
if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or
|
2140 |
+
(isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))):
|
2141 |
+
if i.class_key() != j.class_key():
|
2142 |
+
return False
|
2143 |
+
else:
|
2144 |
+
return False
|
2145 |
+
return True
|
2146 |
+
|
2147 |
+
|
2148 |
+
def _ne(a, b):
|
2149 |
+
# use this as a second test after `a != b` if you want to make
|
2150 |
+
# sure that things are truly equal, e.g.
|
2151 |
+
# a, b = 0.5, S.Half
|
2152 |
+
# a !=b or _ne(a, b) -> True
|
2153 |
+
from .numbers import Number
|
2154 |
+
# 0.5 == S.Half
|
2155 |
+
if isinstance(a, Number) and isinstance(b, Number):
|
2156 |
+
return a.__class__ != b.__class__
|
2157 |
+
|
2158 |
+
|
2159 |
+
def _atomic(e, recursive=False):
|
2160 |
+
"""Return atom-like quantities as far as substitution is
|
2161 |
+
concerned: Derivatives, Functions and Symbols. Do not
|
2162 |
+
return any 'atoms' that are inside such quantities unless
|
2163 |
+
they also appear outside, too, unless `recursive` is True.
|
2164 |
+
|
2165 |
+
Examples
|
2166 |
+
========
|
2167 |
+
|
2168 |
+
>>> from sympy import Derivative, Function, cos
|
2169 |
+
>>> from sympy.abc import x, y
|
2170 |
+
>>> from sympy.core.basic import _atomic
|
2171 |
+
>>> f = Function('f')
|
2172 |
+
>>> _atomic(x + y)
|
2173 |
+
{x, y}
|
2174 |
+
>>> _atomic(x + f(y))
|
2175 |
+
{x, f(y)}
|
2176 |
+
>>> _atomic(Derivative(f(x), x) + cos(x) + y)
|
2177 |
+
{y, cos(x), Derivative(f(x), x)}
|
2178 |
+
|
2179 |
+
"""
|
2180 |
+
pot = _preorder_traversal(e)
|
2181 |
+
seen = set()
|
2182 |
+
if isinstance(e, Basic):
|
2183 |
+
free = getattr(e, "free_symbols", None)
|
2184 |
+
if free is None:
|
2185 |
+
return {e}
|
2186 |
+
else:
|
2187 |
+
return set()
|
2188 |
+
from .symbol import Symbol
|
2189 |
+
from .function import Derivative, Function
|
2190 |
+
atoms = set()
|
2191 |
+
for p in pot:
|
2192 |
+
if p in seen:
|
2193 |
+
pot.skip()
|
2194 |
+
continue
|
2195 |
+
seen.add(p)
|
2196 |
+
if isinstance(p, Symbol) and p in free:
|
2197 |
+
atoms.add(p)
|
2198 |
+
elif isinstance(p, (Derivative, Function)):
|
2199 |
+
if not recursive:
|
2200 |
+
pot.skip()
|
2201 |
+
atoms.add(p)
|
2202 |
+
return atoms
|
2203 |
+
|
2204 |
+
|
2205 |
+
def _make_find_query(query):
|
2206 |
+
"""Convert the argument of Basic.find() into a callable"""
|
2207 |
+
try:
|
2208 |
+
query = _sympify(query)
|
2209 |
+
except SympifyError:
|
2210 |
+
pass
|
2211 |
+
if isinstance(query, type):
|
2212 |
+
return lambda expr: isinstance(expr, query)
|
2213 |
+
elif isinstance(query, Basic):
|
2214 |
+
return lambda expr: expr.match(query) is not None
|
2215 |
+
return query
|
2216 |
+
|
2217 |
+
# Delayed to avoid cyclic import
|
2218 |
+
from .singleton import S
|
2219 |
+
from .traversal import (preorder_traversal as _preorder_traversal,
|
2220 |
+
iterargs, iterfreeargs)
|
2221 |
+
|
2222 |
+
preorder_traversal = deprecated(
|
2223 |
+
"""
|
2224 |
+
Using preorder_traversal from the sympy.core.basic submodule is
|
2225 |
+
deprecated.
|
2226 |
+
|
2227 |
+
Instead, use preorder_traversal from the top-level sympy namespace, like
|
2228 |
+
|
2229 |
+
sympy.preorder_traversal
|
2230 |
+
""",
|
2231 |
+
deprecated_since_version="1.10",
|
2232 |
+
active_deprecations_target="deprecated-traversal-functions-moved",
|
2233 |
+
)(_preorder_traversal)
|
env-llmeval/lib/python3.10/site-packages/sympy/core/cache.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Caching facility for SymPy """
|
2 |
+
from importlib import import_module
|
3 |
+
from typing import Callable
|
4 |
+
|
5 |
+
class _cache(list):
|
6 |
+
""" List of cached functions """
|
7 |
+
|
8 |
+
def print_cache(self):
|
9 |
+
"""print cache info"""
|
10 |
+
|
11 |
+
for item in self:
|
12 |
+
name = item.__name__
|
13 |
+
myfunc = item
|
14 |
+
while hasattr(myfunc, '__wrapped__'):
|
15 |
+
if hasattr(myfunc, 'cache_info'):
|
16 |
+
info = myfunc.cache_info()
|
17 |
+
break
|
18 |
+
else:
|
19 |
+
myfunc = myfunc.__wrapped__
|
20 |
+
else:
|
21 |
+
info = None
|
22 |
+
|
23 |
+
print(name, info)
|
24 |
+
|
25 |
+
def clear_cache(self):
|
26 |
+
"""clear cache content"""
|
27 |
+
for item in self:
|
28 |
+
myfunc = item
|
29 |
+
while hasattr(myfunc, '__wrapped__'):
|
30 |
+
if hasattr(myfunc, 'cache_clear'):
|
31 |
+
myfunc.cache_clear()
|
32 |
+
break
|
33 |
+
else:
|
34 |
+
myfunc = myfunc.__wrapped__
|
35 |
+
|
36 |
+
|
37 |
+
# global cache registry:
|
38 |
+
CACHE = _cache()
|
39 |
+
# make clear and print methods available
|
40 |
+
print_cache = CACHE.print_cache
|
41 |
+
clear_cache = CACHE.clear_cache
|
42 |
+
|
43 |
+
from functools import lru_cache, wraps
|
44 |
+
|
45 |
+
def __cacheit(maxsize):
|
46 |
+
"""caching decorator.
|
47 |
+
|
48 |
+
important: the result of cached function must be *immutable*
|
49 |
+
|
50 |
+
|
51 |
+
Examples
|
52 |
+
========
|
53 |
+
|
54 |
+
>>> from sympy import cacheit
|
55 |
+
>>> @cacheit
|
56 |
+
... def f(a, b):
|
57 |
+
... return a+b
|
58 |
+
|
59 |
+
>>> @cacheit
|
60 |
+
... def f(a, b): # noqa: F811
|
61 |
+
... return [a, b] # <-- WRONG, returns mutable object
|
62 |
+
|
63 |
+
to force cacheit to check returned results mutability and consistency,
|
64 |
+
set environment variable SYMPY_USE_CACHE to 'debug'
|
65 |
+
"""
|
66 |
+
def func_wrapper(func):
|
67 |
+
cfunc = lru_cache(maxsize, typed=True)(func)
|
68 |
+
|
69 |
+
@wraps(func)
|
70 |
+
def wrapper(*args, **kwargs):
|
71 |
+
try:
|
72 |
+
retval = cfunc(*args, **kwargs)
|
73 |
+
except TypeError as e:
|
74 |
+
if not e.args or not e.args[0].startswith('unhashable type:'):
|
75 |
+
raise
|
76 |
+
retval = func(*args, **kwargs)
|
77 |
+
return retval
|
78 |
+
|
79 |
+
wrapper.cache_info = cfunc.cache_info
|
80 |
+
wrapper.cache_clear = cfunc.cache_clear
|
81 |
+
|
82 |
+
CACHE.append(wrapper)
|
83 |
+
return wrapper
|
84 |
+
|
85 |
+
return func_wrapper
|
86 |
+
########################################
|
87 |
+
|
88 |
+
|
89 |
+
def __cacheit_nocache(func):
|
90 |
+
return func
|
91 |
+
|
92 |
+
|
93 |
+
def __cacheit_debug(maxsize):
|
94 |
+
"""cacheit + code to check cache consistency"""
|
95 |
+
def func_wrapper(func):
|
96 |
+
cfunc = __cacheit(maxsize)(func)
|
97 |
+
|
98 |
+
@wraps(func)
|
99 |
+
def wrapper(*args, **kw_args):
|
100 |
+
# always call function itself and compare it with cached version
|
101 |
+
r1 = func(*args, **kw_args)
|
102 |
+
r2 = cfunc(*args, **kw_args)
|
103 |
+
|
104 |
+
# try to see if the result is immutable
|
105 |
+
#
|
106 |
+
# this works because:
|
107 |
+
#
|
108 |
+
# hash([1,2,3]) -> raise TypeError
|
109 |
+
# hash({'a':1, 'b':2}) -> raise TypeError
|
110 |
+
# hash((1,[2,3])) -> raise TypeError
|
111 |
+
#
|
112 |
+
# hash((1,2,3)) -> just computes the hash
|
113 |
+
hash(r1), hash(r2)
|
114 |
+
|
115 |
+
# also see if returned values are the same
|
116 |
+
if r1 != r2:
|
117 |
+
raise RuntimeError("Returned values are not the same")
|
118 |
+
return r1
|
119 |
+
return wrapper
|
120 |
+
return func_wrapper
|
121 |
+
|
122 |
+
|
123 |
+
def _getenv(key, default=None):
|
124 |
+
from os import getenv
|
125 |
+
return getenv(key, default)
|
126 |
+
|
127 |
+
# SYMPY_USE_CACHE=yes/no/debug
|
128 |
+
USE_CACHE = _getenv('SYMPY_USE_CACHE', 'yes').lower()
|
129 |
+
# SYMPY_CACHE_SIZE=some_integer/None
|
130 |
+
# special cases :
|
131 |
+
# SYMPY_CACHE_SIZE=0 -> No caching
|
132 |
+
# SYMPY_CACHE_SIZE=None -> Unbounded caching
|
133 |
+
scs = _getenv('SYMPY_CACHE_SIZE', '1000')
|
134 |
+
if scs.lower() == 'none':
|
135 |
+
SYMPY_CACHE_SIZE = None
|
136 |
+
else:
|
137 |
+
try:
|
138 |
+
SYMPY_CACHE_SIZE = int(scs)
|
139 |
+
except ValueError:
|
140 |
+
raise RuntimeError(
|
141 |
+
'SYMPY_CACHE_SIZE must be a valid integer or None. ' + \
|
142 |
+
'Got: %s' % SYMPY_CACHE_SIZE)
|
143 |
+
|
144 |
+
if USE_CACHE == 'no':
|
145 |
+
cacheit = __cacheit_nocache
|
146 |
+
elif USE_CACHE == 'yes':
|
147 |
+
cacheit = __cacheit(SYMPY_CACHE_SIZE)
|
148 |
+
elif USE_CACHE == 'debug':
|
149 |
+
cacheit = __cacheit_debug(SYMPY_CACHE_SIZE) # a lot slower
|
150 |
+
else:
|
151 |
+
raise RuntimeError(
|
152 |
+
'unrecognized value for SYMPY_USE_CACHE: %s' % USE_CACHE)
|
153 |
+
|
154 |
+
|
155 |
+
def cached_property(func):
|
156 |
+
'''Decorator to cache property method'''
|
157 |
+
attrname = '__' + func.__name__
|
158 |
+
_cached_property_sentinel = object()
|
159 |
+
def propfunc(self):
|
160 |
+
val = getattr(self, attrname, _cached_property_sentinel)
|
161 |
+
if val is _cached_property_sentinel:
|
162 |
+
val = func(self)
|
163 |
+
setattr(self, attrname, val)
|
164 |
+
return val
|
165 |
+
return property(propfunc)
|
166 |
+
|
167 |
+
|
168 |
+
def lazy_function(module : str, name : str) -> Callable:
|
169 |
+
"""Create a lazy proxy for a function in a module.
|
170 |
+
|
171 |
+
The module containing the function is not imported until the function is used.
|
172 |
+
|
173 |
+
"""
|
174 |
+
func = None
|
175 |
+
|
176 |
+
def _get_function():
|
177 |
+
nonlocal func
|
178 |
+
if func is None:
|
179 |
+
func = getattr(import_module(module), name)
|
180 |
+
return func
|
181 |
+
|
182 |
+
# The metaclass is needed so that help() shows the docstring
|
183 |
+
class LazyFunctionMeta(type):
|
184 |
+
@property
|
185 |
+
def __doc__(self):
|
186 |
+
docstring = _get_function().__doc__
|
187 |
+
docstring += f"\n\nNote: this is a {self.__class__.__name__} wrapper of '{module}.{name}'"
|
188 |
+
return docstring
|
189 |
+
|
190 |
+
class LazyFunction(metaclass=LazyFunctionMeta):
|
191 |
+
def __call__(self, *args, **kwargs):
|
192 |
+
# inline get of function for performance gh-23832
|
193 |
+
nonlocal func
|
194 |
+
if func is None:
|
195 |
+
func = getattr(import_module(module), name)
|
196 |
+
return func(*args, **kwargs)
|
197 |
+
|
198 |
+
@property
|
199 |
+
def __doc__(self):
|
200 |
+
docstring = _get_function().__doc__
|
201 |
+
docstring += f"\n\nNote: this is a {self.__class__.__name__} wrapper of '{module}.{name}'"
|
202 |
+
return docstring
|
203 |
+
|
204 |
+
def __str__(self):
|
205 |
+
return _get_function().__str__()
|
206 |
+
|
207 |
+
def __repr__(self):
|
208 |
+
return f"<{__class__.__name__} object at 0x{id(self):x}>: wrapping '{module}.{name}'"
|
209 |
+
|
210 |
+
return LazyFunction()
|
env-llmeval/lib/python3.10/site-packages/sympy/core/compatibility.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
.. deprecated:: 1.10
|
3 |
+
|
4 |
+
``sympy.core.compatibility`` is deprecated. See
|
5 |
+
:ref:`sympy-core-compatibility`.
|
6 |
+
|
7 |
+
Reimplementations of constructs introduced in later versions of Python than
|
8 |
+
we support. Also some functions that are needed SymPy-wide and are located
|
9 |
+
here for easy import.
|
10 |
+
|
11 |
+
"""
|
12 |
+
|
13 |
+
|
14 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
15 |
+
|
16 |
+
sympy_deprecation_warning("""
|
17 |
+
The sympy.core.compatibility submodule is deprecated.
|
18 |
+
|
19 |
+
This module was only ever intended for internal use. Some of the functions
|
20 |
+
that were in this module are available from the top-level SymPy namespace,
|
21 |
+
i.e.,
|
22 |
+
|
23 |
+
from sympy import ordered, default_sort_key
|
24 |
+
|
25 |
+
The remaining were only intended for internal SymPy use and should not be used
|
26 |
+
by user code.
|
27 |
+
""",
|
28 |
+
deprecated_since_version="1.10",
|
29 |
+
active_deprecations_target="deprecated-sympy-core-compatibility",
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
from .sorting import ordered, _nodes, default_sort_key # noqa:F401
|
34 |
+
from sympy.utilities.misc import as_int as _as_int # noqa:F401
|
35 |
+
from sympy.utilities.iterables import iterable, is_sequence, NotIterable # noqa:F401
|
env-llmeval/lib/python3.10/site-packages/sympy/core/containers.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module for SymPy containers
|
2 |
+
|
3 |
+
(SymPy objects that store other SymPy objects)
|
4 |
+
|
5 |
+
The containers implemented in this module are subclassed to Basic.
|
6 |
+
They are supposed to work seamlessly within the SymPy framework.
|
7 |
+
"""
|
8 |
+
|
9 |
+
from collections import OrderedDict
|
10 |
+
from collections.abc import MutableSet
|
11 |
+
from typing import Any, Callable
|
12 |
+
|
13 |
+
from .basic import Basic
|
14 |
+
from .sorting import default_sort_key, ordered
|
15 |
+
from .sympify import _sympify, sympify, _sympy_converter, SympifyError
|
16 |
+
from sympy.core.kind import Kind
|
17 |
+
from sympy.utilities.iterables import iterable
|
18 |
+
from sympy.utilities.misc import as_int
|
19 |
+
|
20 |
+
|
21 |
+
class Tuple(Basic):
|
22 |
+
"""
|
23 |
+
Wrapper around the builtin tuple object.
|
24 |
+
|
25 |
+
Explanation
|
26 |
+
===========
|
27 |
+
|
28 |
+
The Tuple is a subclass of Basic, so that it works well in the
|
29 |
+
SymPy framework. The wrapped tuple is available as self.args, but
|
30 |
+
you can also access elements or slices with [:] syntax.
|
31 |
+
|
32 |
+
Parameters
|
33 |
+
==========
|
34 |
+
|
35 |
+
sympify : bool
|
36 |
+
If ``False``, ``sympify`` is not called on ``args``. This
|
37 |
+
can be used for speedups for very large tuples where the
|
38 |
+
elements are known to already be SymPy objects.
|
39 |
+
|
40 |
+
Examples
|
41 |
+
========
|
42 |
+
|
43 |
+
>>> from sympy import Tuple, symbols
|
44 |
+
>>> a, b, c, d = symbols('a b c d')
|
45 |
+
>>> Tuple(a, b, c)[1:]
|
46 |
+
(b, c)
|
47 |
+
>>> Tuple(a, b, c).subs(a, d)
|
48 |
+
(d, b, c)
|
49 |
+
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __new__(cls, *args, **kwargs):
|
53 |
+
if kwargs.get('sympify', True):
|
54 |
+
args = (sympify(arg) for arg in args)
|
55 |
+
obj = Basic.__new__(cls, *args)
|
56 |
+
return obj
|
57 |
+
|
58 |
+
def __getitem__(self, i):
|
59 |
+
if isinstance(i, slice):
|
60 |
+
indices = i.indices(len(self))
|
61 |
+
return Tuple(*(self.args[j] for j in range(*indices)))
|
62 |
+
return self.args[i]
|
63 |
+
|
64 |
+
def __len__(self):
|
65 |
+
return len(self.args)
|
66 |
+
|
67 |
+
def __contains__(self, item):
|
68 |
+
return item in self.args
|
69 |
+
|
70 |
+
def __iter__(self):
|
71 |
+
return iter(self.args)
|
72 |
+
|
73 |
+
def __add__(self, other):
|
74 |
+
if isinstance(other, Tuple):
|
75 |
+
return Tuple(*(self.args + other.args))
|
76 |
+
elif isinstance(other, tuple):
|
77 |
+
return Tuple(*(self.args + other))
|
78 |
+
else:
|
79 |
+
return NotImplemented
|
80 |
+
|
81 |
+
def __radd__(self, other):
|
82 |
+
if isinstance(other, Tuple):
|
83 |
+
return Tuple(*(other.args + self.args))
|
84 |
+
elif isinstance(other, tuple):
|
85 |
+
return Tuple(*(other + self.args))
|
86 |
+
else:
|
87 |
+
return NotImplemented
|
88 |
+
|
89 |
+
def __mul__(self, other):
|
90 |
+
try:
|
91 |
+
n = as_int(other)
|
92 |
+
except ValueError:
|
93 |
+
raise TypeError("Can't multiply sequence by non-integer of type '%s'" % type(other))
|
94 |
+
return self.func(*(self.args*n))
|
95 |
+
|
96 |
+
__rmul__ = __mul__
|
97 |
+
|
98 |
+
def __eq__(self, other):
|
99 |
+
if isinstance(other, Basic):
|
100 |
+
return super().__eq__(other)
|
101 |
+
return self.args == other
|
102 |
+
|
103 |
+
def __ne__(self, other):
|
104 |
+
if isinstance(other, Basic):
|
105 |
+
return super().__ne__(other)
|
106 |
+
return self.args != other
|
107 |
+
|
108 |
+
def __hash__(self):
|
109 |
+
return hash(self.args)
|
110 |
+
|
111 |
+
def _to_mpmath(self, prec):
|
112 |
+
return tuple(a._to_mpmath(prec) for a in self.args)
|
113 |
+
|
114 |
+
def __lt__(self, other):
|
115 |
+
return _sympify(self.args < other.args)
|
116 |
+
|
117 |
+
def __le__(self, other):
|
118 |
+
return _sympify(self.args <= other.args)
|
119 |
+
|
120 |
+
# XXX: Basic defines count() as something different, so we can't
|
121 |
+
# redefine it here. Originally this lead to cse() test failure.
|
122 |
+
def tuple_count(self, value) -> int:
|
123 |
+
"""Return number of occurrences of value."""
|
124 |
+
return self.args.count(value)
|
125 |
+
|
126 |
+
def index(self, value, start=None, stop=None):
|
127 |
+
"""Searches and returns the first index of the value."""
|
128 |
+
# XXX: One would expect:
|
129 |
+
#
|
130 |
+
# return self.args.index(value, start, stop)
|
131 |
+
#
|
132 |
+
# here. Any trouble with that? Yes:
|
133 |
+
#
|
134 |
+
# >>> (1,).index(1, None, None)
|
135 |
+
# Traceback (most recent call last):
|
136 |
+
# File "<stdin>", line 1, in <module>
|
137 |
+
# TypeError: slice indices must be integers or None or have an __index__ method
|
138 |
+
#
|
139 |
+
# See: http://bugs.python.org/issue13340
|
140 |
+
|
141 |
+
if start is None and stop is None:
|
142 |
+
return self.args.index(value)
|
143 |
+
elif stop is None:
|
144 |
+
return self.args.index(value, start)
|
145 |
+
else:
|
146 |
+
return self.args.index(value, start, stop)
|
147 |
+
|
148 |
+
@property
|
149 |
+
def kind(self):
|
150 |
+
"""
|
151 |
+
The kind of a Tuple instance.
|
152 |
+
|
153 |
+
The kind of a Tuple is always of :class:`TupleKind` but
|
154 |
+
parametrised by the number of elements and the kind of each element.
|
155 |
+
|
156 |
+
Examples
|
157 |
+
========
|
158 |
+
|
159 |
+
>>> from sympy import Tuple, Matrix
|
160 |
+
>>> Tuple(1, 2).kind
|
161 |
+
TupleKind(NumberKind, NumberKind)
|
162 |
+
>>> Tuple(Matrix([1, 2]), 1).kind
|
163 |
+
TupleKind(MatrixKind(NumberKind), NumberKind)
|
164 |
+
>>> Tuple(1, 2).kind.element_kind
|
165 |
+
(NumberKind, NumberKind)
|
166 |
+
|
167 |
+
See Also
|
168 |
+
========
|
169 |
+
|
170 |
+
sympy.matrices.common.MatrixKind
|
171 |
+
sympy.core.kind.NumberKind
|
172 |
+
"""
|
173 |
+
return TupleKind(*(i.kind for i in self.args))
|
174 |
+
|
175 |
+
_sympy_converter[tuple] = lambda tup: Tuple(*tup)
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
def tuple_wrapper(method):
|
182 |
+
"""
|
183 |
+
Decorator that converts any tuple in the function arguments into a Tuple.
|
184 |
+
|
185 |
+
Explanation
|
186 |
+
===========
|
187 |
+
|
188 |
+
The motivation for this is to provide simple user interfaces. The user can
|
189 |
+
call a function with regular tuples in the argument, and the wrapper will
|
190 |
+
convert them to Tuples before handing them to the function.
|
191 |
+
|
192 |
+
Explanation
|
193 |
+
===========
|
194 |
+
|
195 |
+
>>> from sympy.core.containers import tuple_wrapper
|
196 |
+
>>> def f(*args):
|
197 |
+
... return args
|
198 |
+
>>> g = tuple_wrapper(f)
|
199 |
+
|
200 |
+
The decorated function g sees only the Tuple argument:
|
201 |
+
|
202 |
+
>>> g(0, (1, 2), 3)
|
203 |
+
(0, (1, 2), 3)
|
204 |
+
|
205 |
+
"""
|
206 |
+
def wrap_tuples(*args, **kw_args):
|
207 |
+
newargs = []
|
208 |
+
for arg in args:
|
209 |
+
if isinstance(arg, tuple):
|
210 |
+
newargs.append(Tuple(*arg))
|
211 |
+
else:
|
212 |
+
newargs.append(arg)
|
213 |
+
return method(*newargs, **kw_args)
|
214 |
+
return wrap_tuples
|
215 |
+
|
216 |
+
|
217 |
+
class Dict(Basic):
|
218 |
+
"""
|
219 |
+
Wrapper around the builtin dict object.
|
220 |
+
|
221 |
+
Explanation
|
222 |
+
===========
|
223 |
+
|
224 |
+
The Dict is a subclass of Basic, so that it works well in the
|
225 |
+
SymPy framework. Because it is immutable, it may be included
|
226 |
+
in sets, but its values must all be given at instantiation and
|
227 |
+
cannot be changed afterwards. Otherwise it behaves identically
|
228 |
+
to the Python dict.
|
229 |
+
|
230 |
+
Examples
|
231 |
+
========
|
232 |
+
|
233 |
+
>>> from sympy import Dict, Symbol
|
234 |
+
|
235 |
+
>>> D = Dict({1: 'one', 2: 'two'})
|
236 |
+
>>> for key in D:
|
237 |
+
... if key == 1:
|
238 |
+
... print('%s %s' % (key, D[key]))
|
239 |
+
1 one
|
240 |
+
|
241 |
+
The args are sympified so the 1 and 2 are Integers and the values
|
242 |
+
are Symbols. Queries automatically sympify args so the following work:
|
243 |
+
|
244 |
+
>>> 1 in D
|
245 |
+
True
|
246 |
+
>>> D.has(Symbol('one')) # searches keys and values
|
247 |
+
True
|
248 |
+
>>> 'one' in D # not in the keys
|
249 |
+
False
|
250 |
+
>>> D[1]
|
251 |
+
one
|
252 |
+
|
253 |
+
"""
|
254 |
+
|
255 |
+
def __new__(cls, *args):
|
256 |
+
if len(args) == 1 and isinstance(args[0], (dict, Dict)):
|
257 |
+
items = [Tuple(k, v) for k, v in args[0].items()]
|
258 |
+
elif iterable(args) and all(len(arg) == 2 for arg in args):
|
259 |
+
items = [Tuple(k, v) for k, v in args]
|
260 |
+
else:
|
261 |
+
raise TypeError('Pass Dict args as Dict((k1, v1), ...) or Dict({k1: v1, ...})')
|
262 |
+
elements = frozenset(items)
|
263 |
+
obj = Basic.__new__(cls, *ordered(items))
|
264 |
+
obj.elements = elements
|
265 |
+
obj._dict = dict(items) # In case Tuple decides it wants to sympify
|
266 |
+
return obj
|
267 |
+
|
268 |
+
def __getitem__(self, key):
|
269 |
+
"""x.__getitem__(y) <==> x[y]"""
|
270 |
+
try:
|
271 |
+
key = _sympify(key)
|
272 |
+
except SympifyError:
|
273 |
+
raise KeyError(key)
|
274 |
+
|
275 |
+
return self._dict[key]
|
276 |
+
|
277 |
+
def __setitem__(self, key, value):
|
278 |
+
raise NotImplementedError("SymPy Dicts are Immutable")
|
279 |
+
|
280 |
+
def items(self):
|
281 |
+
'''Returns a set-like object providing a view on dict's items.
|
282 |
+
'''
|
283 |
+
return self._dict.items()
|
284 |
+
|
285 |
+
def keys(self):
|
286 |
+
'''Returns the list of the dict's keys.'''
|
287 |
+
return self._dict.keys()
|
288 |
+
|
289 |
+
def values(self):
|
290 |
+
'''Returns the list of the dict's values.'''
|
291 |
+
return self._dict.values()
|
292 |
+
|
293 |
+
def __iter__(self):
|
294 |
+
'''x.__iter__() <==> iter(x)'''
|
295 |
+
return iter(self._dict)
|
296 |
+
|
297 |
+
def __len__(self):
|
298 |
+
'''x.__len__() <==> len(x)'''
|
299 |
+
return self._dict.__len__()
|
300 |
+
|
301 |
+
def get(self, key, default=None):
|
302 |
+
'''Returns the value for key if the key is in the dictionary.'''
|
303 |
+
try:
|
304 |
+
key = _sympify(key)
|
305 |
+
except SympifyError:
|
306 |
+
return default
|
307 |
+
return self._dict.get(key, default)
|
308 |
+
|
309 |
+
def __contains__(self, key):
|
310 |
+
'''D.__contains__(k) -> True if D has a key k, else False'''
|
311 |
+
try:
|
312 |
+
key = _sympify(key)
|
313 |
+
except SympifyError:
|
314 |
+
return False
|
315 |
+
return key in self._dict
|
316 |
+
|
317 |
+
def __lt__(self, other):
|
318 |
+
return _sympify(self.args < other.args)
|
319 |
+
|
320 |
+
@property
|
321 |
+
def _sorted_args(self):
|
322 |
+
return tuple(sorted(self.args, key=default_sort_key))
|
323 |
+
|
324 |
+
def __eq__(self, other):
|
325 |
+
if isinstance(other, dict):
|
326 |
+
return self == Dict(other)
|
327 |
+
return super().__eq__(other)
|
328 |
+
|
329 |
+
__hash__ : Callable[[Basic], Any] = Basic.__hash__
|
330 |
+
|
331 |
+
# this handles dict, defaultdict, OrderedDict
|
332 |
+
_sympy_converter[dict] = lambda d: Dict(*d.items())
|
333 |
+
|
334 |
+
class OrderedSet(MutableSet):
|
335 |
+
def __init__(self, iterable=None):
|
336 |
+
if iterable:
|
337 |
+
self.map = OrderedDict((item, None) for item in iterable)
|
338 |
+
else:
|
339 |
+
self.map = OrderedDict()
|
340 |
+
|
341 |
+
def __len__(self):
|
342 |
+
return len(self.map)
|
343 |
+
|
344 |
+
def __contains__(self, key):
|
345 |
+
return key in self.map
|
346 |
+
|
347 |
+
def add(self, key):
|
348 |
+
self.map[key] = None
|
349 |
+
|
350 |
+
def discard(self, key):
|
351 |
+
self.map.pop(key)
|
352 |
+
|
353 |
+
def pop(self, last=True):
|
354 |
+
return self.map.popitem(last=last)[0]
|
355 |
+
|
356 |
+
def __iter__(self):
|
357 |
+
yield from self.map.keys()
|
358 |
+
|
359 |
+
def __repr__(self):
|
360 |
+
if not self.map:
|
361 |
+
return '%s()' % (self.__class__.__name__,)
|
362 |
+
return '%s(%r)' % (self.__class__.__name__, list(self.map.keys()))
|
363 |
+
|
364 |
+
def intersection(self, other):
|
365 |
+
return self.__class__([val for val in self if val in other])
|
366 |
+
|
367 |
+
def difference(self, other):
|
368 |
+
return self.__class__([val for val in self if val not in other])
|
369 |
+
|
370 |
+
def update(self, iterable):
|
371 |
+
for val in iterable:
|
372 |
+
self.add(val)
|
373 |
+
|
374 |
+
class TupleKind(Kind):
|
375 |
+
"""
|
376 |
+
TupleKind is a subclass of Kind, which is used to define Kind of ``Tuple``.
|
377 |
+
|
378 |
+
Parameters of TupleKind will be kinds of all the arguments in Tuples, for
|
379 |
+
example
|
380 |
+
|
381 |
+
Parameters
|
382 |
+
==========
|
383 |
+
|
384 |
+
args : tuple(element_kind)
|
385 |
+
element_kind is kind of element.
|
386 |
+
args is tuple of kinds of element
|
387 |
+
|
388 |
+
Examples
|
389 |
+
========
|
390 |
+
|
391 |
+
>>> from sympy import Tuple
|
392 |
+
>>> Tuple(1, 2).kind
|
393 |
+
TupleKind(NumberKind, NumberKind)
|
394 |
+
>>> Tuple(1, 2).kind.element_kind
|
395 |
+
(NumberKind, NumberKind)
|
396 |
+
|
397 |
+
See Also
|
398 |
+
========
|
399 |
+
|
400 |
+
sympy.core.kind.NumberKind
|
401 |
+
MatrixKind
|
402 |
+
sympy.sets.sets.SetKind
|
403 |
+
"""
|
404 |
+
def __new__(cls, *args):
|
405 |
+
obj = super().__new__(cls, *args)
|
406 |
+
obj.element_kind = args
|
407 |
+
return obj
|
408 |
+
|
409 |
+
def __repr__(self):
|
410 |
+
return "TupleKind{}".format(self.element_kind)
|
env-llmeval/lib/python3.10/site-packages/sympy/core/core.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" The core's core. """
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
|
5 |
+
# used for canonical ordering of symbolic sequences
|
6 |
+
# via __cmp__ method:
|
7 |
+
# FIXME this is *so* irrelevant and outdated!
|
8 |
+
ordering_of_classes = [
|
9 |
+
# singleton numbers
|
10 |
+
'Zero', 'One', 'Half', 'Infinity', 'NaN', 'NegativeOne', 'NegativeInfinity',
|
11 |
+
# numbers
|
12 |
+
'Integer', 'Rational', 'Float',
|
13 |
+
# singleton symbols
|
14 |
+
'Exp1', 'Pi', 'ImaginaryUnit',
|
15 |
+
# symbols
|
16 |
+
'Symbol', 'Wild', 'Temporary',
|
17 |
+
# arithmetic operations
|
18 |
+
'Pow', 'Mul', 'Add',
|
19 |
+
# function values
|
20 |
+
'Derivative', 'Integral',
|
21 |
+
# defined singleton functions
|
22 |
+
'Abs', 'Sign', 'Sqrt',
|
23 |
+
'Floor', 'Ceiling',
|
24 |
+
'Re', 'Im', 'Arg',
|
25 |
+
'Conjugate',
|
26 |
+
'Exp', 'Log',
|
27 |
+
'Sin', 'Cos', 'Tan', 'Cot', 'ASin', 'ACos', 'ATan', 'ACot',
|
28 |
+
'Sinh', 'Cosh', 'Tanh', 'Coth', 'ASinh', 'ACosh', 'ATanh', 'ACoth',
|
29 |
+
'RisingFactorial', 'FallingFactorial',
|
30 |
+
'factorial', 'binomial',
|
31 |
+
'Gamma', 'LowerGamma', 'UpperGamma', 'PolyGamma',
|
32 |
+
'Erf',
|
33 |
+
# special polynomials
|
34 |
+
'Chebyshev', 'Chebyshev2',
|
35 |
+
# undefined functions
|
36 |
+
'Function', 'WildFunction',
|
37 |
+
# anonymous functions
|
38 |
+
'Lambda',
|
39 |
+
# Landau O symbol
|
40 |
+
'Order',
|
41 |
+
# relational operations
|
42 |
+
'Equality', 'Unequality', 'StrictGreaterThan', 'StrictLessThan',
|
43 |
+
'GreaterThan', 'LessThan',
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
class Registry:
|
48 |
+
"""
|
49 |
+
Base class for registry objects.
|
50 |
+
|
51 |
+
Registries map a name to an object using attribute notation. Registry
|
52 |
+
classes behave singletonically: all their instances share the same state,
|
53 |
+
which is stored in the class object.
|
54 |
+
|
55 |
+
All subclasses should set `__slots__ = ()`.
|
56 |
+
"""
|
57 |
+
__slots__ = ()
|
58 |
+
|
59 |
+
def __setattr__(self, name, obj):
|
60 |
+
setattr(self.__class__, name, obj)
|
61 |
+
|
62 |
+
def __delattr__(self, name):
|
63 |
+
delattr(self.__class__, name)
|
env-llmeval/lib/python3.10/site-packages/sympy/core/coreerrors.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Definitions of common exceptions for :mod:`sympy.core` module. """
|
2 |
+
|
3 |
+
|
4 |
+
class BaseCoreError(Exception):
|
5 |
+
"""Base class for core related exceptions. """
|
6 |
+
|
7 |
+
|
8 |
+
class NonCommutativeExpression(BaseCoreError):
|
9 |
+
"""Raised when expression didn't have commutative property. """
|
env-llmeval/lib/python3.10/site-packages/sympy/core/evalf.py
ADDED
@@ -0,0 +1,1801 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Adaptive numerical evaluation of SymPy expressions, using mpmath
|
3 |
+
for mathematical functions.
|
4 |
+
"""
|
5 |
+
from __future__ import annotations
|
6 |
+
from typing import Tuple as tTuple, Optional, Union as tUnion, Callable, List, Dict as tDict, Type, TYPE_CHECKING, \
|
7 |
+
Any, overload
|
8 |
+
|
9 |
+
import math
|
10 |
+
|
11 |
+
import mpmath.libmp as libmp
|
12 |
+
from mpmath import (
|
13 |
+
make_mpc, make_mpf, mp, mpc, mpf, nsum, quadts, quadosc, workprec)
|
14 |
+
from mpmath import inf as mpmath_inf
|
15 |
+
from mpmath.libmp import (from_int, from_man_exp, from_rational, fhalf,
|
16 |
+
fnan, finf, fninf, fnone, fone, fzero, mpf_abs, mpf_add,
|
17 |
+
mpf_atan, mpf_atan2, mpf_cmp, mpf_cos, mpf_e, mpf_exp, mpf_log, mpf_lt,
|
18 |
+
mpf_mul, mpf_neg, mpf_pi, mpf_pow, mpf_pow_int, mpf_shift, mpf_sin,
|
19 |
+
mpf_sqrt, normalize, round_nearest, to_int, to_str)
|
20 |
+
from mpmath.libmp import bitcount as mpmath_bitcount
|
21 |
+
from mpmath.libmp.backend import MPZ
|
22 |
+
from mpmath.libmp.libmpc import _infs_nan
|
23 |
+
from mpmath.libmp.libmpf import dps_to_prec, prec_to_dps
|
24 |
+
|
25 |
+
from .sympify import sympify
|
26 |
+
from .singleton import S
|
27 |
+
from sympy.external.gmpy import SYMPY_INTS
|
28 |
+
from sympy.utilities.iterables import is_sequence
|
29 |
+
from sympy.utilities.lambdify import lambdify
|
30 |
+
from sympy.utilities.misc import as_int
|
31 |
+
|
32 |
+
if TYPE_CHECKING:
|
33 |
+
from sympy.core.expr import Expr
|
34 |
+
from sympy.core.add import Add
|
35 |
+
from sympy.core.mul import Mul
|
36 |
+
from sympy.core.power import Pow
|
37 |
+
from sympy.core.symbol import Symbol
|
38 |
+
from sympy.integrals.integrals import Integral
|
39 |
+
from sympy.concrete.summations import Sum
|
40 |
+
from sympy.concrete.products import Product
|
41 |
+
from sympy.functions.elementary.exponential import exp, log
|
42 |
+
from sympy.functions.elementary.complexes import Abs, re, im
|
43 |
+
from sympy.functions.elementary.integers import ceiling, floor
|
44 |
+
from sympy.functions.elementary.trigonometric import atan
|
45 |
+
from .numbers import Float, Rational, Integer, AlgebraicNumber, Number
|
46 |
+
|
47 |
+
LG10 = math.log(10, 2)
|
48 |
+
rnd = round_nearest
|
49 |
+
|
50 |
+
|
51 |
+
def bitcount(n):
|
52 |
+
"""Return smallest integer, b, such that |n|/2**b < 1.
|
53 |
+
"""
|
54 |
+
return mpmath_bitcount(abs(int(n)))
|
55 |
+
|
56 |
+
# Used in a few places as placeholder values to denote exponents and
|
57 |
+
# precision levels, e.g. of exact numbers. Must be careful to avoid
|
58 |
+
# passing these to mpmath functions or returning them in final results.
|
59 |
+
INF = float(mpmath_inf)
|
60 |
+
MINUS_INF = float(-mpmath_inf)
|
61 |
+
|
62 |
+
# ~= 100 digits. Real men set this to INF.
|
63 |
+
DEFAULT_MAXPREC = 333
|
64 |
+
|
65 |
+
|
66 |
+
class PrecisionExhausted(ArithmeticError):
|
67 |
+
pass
|
68 |
+
|
69 |
+
#----------------------------------------------------------------------------#
|
70 |
+
# #
|
71 |
+
# Helper functions for arithmetic and complex parts #
|
72 |
+
# #
|
73 |
+
#----------------------------------------------------------------------------#
|
74 |
+
|
75 |
+
"""
|
76 |
+
An mpf value tuple is a tuple of integers (sign, man, exp, bc)
|
77 |
+
representing a floating-point number: [1, -1][sign]*man*2**exp where
|
78 |
+
sign is 0 or 1 and bc should correspond to the number of bits used to
|
79 |
+
represent the mantissa (man) in binary notation, e.g.
|
80 |
+
"""
|
81 |
+
MPF_TUP = tTuple[int, int, int, int] # mpf value tuple
|
82 |
+
|
83 |
+
"""
|
84 |
+
Explanation
|
85 |
+
===========
|
86 |
+
|
87 |
+
>>> from sympy.core.evalf import bitcount
|
88 |
+
>>> sign, man, exp, bc = 0, 5, 1, 3
|
89 |
+
>>> n = [1, -1][sign]*man*2**exp
|
90 |
+
>>> n, bitcount(man)
|
91 |
+
(10, 3)
|
92 |
+
|
93 |
+
A temporary result is a tuple (re, im, re_acc, im_acc) where
|
94 |
+
re and im are nonzero mpf value tuples representing approximate
|
95 |
+
numbers, or None to denote exact zeros.
|
96 |
+
|
97 |
+
re_acc, im_acc are integers denoting log2(e) where e is the estimated
|
98 |
+
relative accuracy of the respective complex part, but may be anything
|
99 |
+
if the corresponding complex part is None.
|
100 |
+
|
101 |
+
"""
|
102 |
+
TMP_RES = Any # temporary result, should be some variant of
|
103 |
+
# tUnion[tTuple[Optional[MPF_TUP], Optional[MPF_TUP],
|
104 |
+
# Optional[int], Optional[int]],
|
105 |
+
# 'ComplexInfinity']
|
106 |
+
# but mypy reports error because it doesn't know as we know
|
107 |
+
# 1. re and re_acc are either both None or both MPF_TUP
|
108 |
+
# 2. sometimes the result can't be zoo
|
109 |
+
|
110 |
+
# type of the "options" parameter in internal evalf functions
|
111 |
+
OPT_DICT = tDict[str, Any]
|
112 |
+
|
113 |
+
|
114 |
+
def fastlog(x: Optional[MPF_TUP]) -> tUnion[int, Any]:
|
115 |
+
"""Fast approximation of log2(x) for an mpf value tuple x.
|
116 |
+
|
117 |
+
Explanation
|
118 |
+
===========
|
119 |
+
|
120 |
+
Calculated as exponent + width of mantissa. This is an
|
121 |
+
approximation for two reasons: 1) it gives the ceil(log2(abs(x)))
|
122 |
+
value and 2) it is too high by 1 in the case that x is an exact
|
123 |
+
power of 2. Although this is easy to remedy by testing to see if
|
124 |
+
the odd mpf mantissa is 1 (indicating that one was dealing with
|
125 |
+
an exact power of 2) that would decrease the speed and is not
|
126 |
+
necessary as this is only being used as an approximation for the
|
127 |
+
number of bits in x. The correct return value could be written as
|
128 |
+
"x[2] + (x[3] if x[1] != 1 else 0)".
|
129 |
+
Since mpf tuples always have an odd mantissa, no check is done
|
130 |
+
to see if the mantissa is a multiple of 2 (in which case the
|
131 |
+
result would be too large by 1).
|
132 |
+
|
133 |
+
Examples
|
134 |
+
========
|
135 |
+
|
136 |
+
>>> from sympy import log
|
137 |
+
>>> from sympy.core.evalf import fastlog, bitcount
|
138 |
+
>>> s, m, e = 0, 5, 1
|
139 |
+
>>> bc = bitcount(m)
|
140 |
+
>>> n = [1, -1][s]*m*2**e
|
141 |
+
>>> n, (log(n)/log(2)).evalf(2), fastlog((s, m, e, bc))
|
142 |
+
(10, 3.3, 4)
|
143 |
+
"""
|
144 |
+
|
145 |
+
if not x or x == fzero:
|
146 |
+
return MINUS_INF
|
147 |
+
return x[2] + x[3]
|
148 |
+
|
149 |
+
|
150 |
+
def pure_complex(v: 'Expr', or_real=False) -> tuple['Number', 'Number'] | None:
|
151 |
+
"""Return a and b if v matches a + I*b where b is not zero and
|
152 |
+
a and b are Numbers, else None. If `or_real` is True then 0 will
|
153 |
+
be returned for `b` if `v` is a real number.
|
154 |
+
|
155 |
+
Examples
|
156 |
+
========
|
157 |
+
|
158 |
+
>>> from sympy.core.evalf import pure_complex
|
159 |
+
>>> from sympy import sqrt, I, S
|
160 |
+
>>> a, b, surd = S(2), S(3), sqrt(2)
|
161 |
+
>>> pure_complex(a)
|
162 |
+
>>> pure_complex(a, or_real=True)
|
163 |
+
(2, 0)
|
164 |
+
>>> pure_complex(surd)
|
165 |
+
>>> pure_complex(a + b*I)
|
166 |
+
(2, 3)
|
167 |
+
>>> pure_complex(I)
|
168 |
+
(0, 1)
|
169 |
+
"""
|
170 |
+
h, t = v.as_coeff_Add()
|
171 |
+
if t:
|
172 |
+
c, i = t.as_coeff_Mul()
|
173 |
+
if i is S.ImaginaryUnit:
|
174 |
+
return h, c
|
175 |
+
elif or_real:
|
176 |
+
return h, S.Zero
|
177 |
+
return None
|
178 |
+
|
179 |
+
|
180 |
+
# I don't know what this is, see function scaled_zero below
|
181 |
+
SCALED_ZERO_TUP = tTuple[List[int], int, int, int]
|
182 |
+
|
183 |
+
|
184 |
+
@overload
|
185 |
+
def scaled_zero(mag: SCALED_ZERO_TUP, sign=1) -> MPF_TUP:
|
186 |
+
...
|
187 |
+
@overload
|
188 |
+
def scaled_zero(mag: int, sign=1) -> tTuple[SCALED_ZERO_TUP, int]:
|
189 |
+
...
|
190 |
+
def scaled_zero(mag: tUnion[SCALED_ZERO_TUP, int], sign=1) -> \
|
191 |
+
tUnion[MPF_TUP, tTuple[SCALED_ZERO_TUP, int]]:
|
192 |
+
"""Return an mpf representing a power of two with magnitude ``mag``
|
193 |
+
and -1 for precision. Or, if ``mag`` is a scaled_zero tuple, then just
|
194 |
+
remove the sign from within the list that it was initially wrapped
|
195 |
+
in.
|
196 |
+
|
197 |
+
Examples
|
198 |
+
========
|
199 |
+
|
200 |
+
>>> from sympy.core.evalf import scaled_zero
|
201 |
+
>>> from sympy import Float
|
202 |
+
>>> z, p = scaled_zero(100)
|
203 |
+
>>> z, p
|
204 |
+
(([0], 1, 100, 1), -1)
|
205 |
+
>>> ok = scaled_zero(z)
|
206 |
+
>>> ok
|
207 |
+
(0, 1, 100, 1)
|
208 |
+
>>> Float(ok)
|
209 |
+
1.26765060022823e+30
|
210 |
+
>>> Float(ok, p)
|
211 |
+
0.e+30
|
212 |
+
>>> ok, p = scaled_zero(100, -1)
|
213 |
+
>>> Float(scaled_zero(ok), p)
|
214 |
+
-0.e+30
|
215 |
+
"""
|
216 |
+
if isinstance(mag, tuple) and len(mag) == 4 and iszero(mag, scaled=True):
|
217 |
+
return (mag[0][0],) + mag[1:]
|
218 |
+
elif isinstance(mag, SYMPY_INTS):
|
219 |
+
if sign not in [-1, 1]:
|
220 |
+
raise ValueError('sign must be +/-1')
|
221 |
+
rv, p = mpf_shift(fone, mag), -1
|
222 |
+
s = 0 if sign == 1 else 1
|
223 |
+
rv = ([s],) + rv[1:]
|
224 |
+
return rv, p
|
225 |
+
else:
|
226 |
+
raise ValueError('scaled zero expects int or scaled_zero tuple.')
|
227 |
+
|
228 |
+
|
229 |
+
def iszero(mpf: tUnion[MPF_TUP, SCALED_ZERO_TUP, None], scaled=False) -> Optional[bool]:
|
230 |
+
if not scaled:
|
231 |
+
return not mpf or not mpf[1] and not mpf[-1]
|
232 |
+
return mpf and isinstance(mpf[0], list) and mpf[1] == mpf[-1] == 1
|
233 |
+
|
234 |
+
|
235 |
+
def complex_accuracy(result: TMP_RES) -> tUnion[int, Any]:
|
236 |
+
"""
|
237 |
+
Returns relative accuracy of a complex number with given accuracies
|
238 |
+
for the real and imaginary parts. The relative accuracy is defined
|
239 |
+
in the complex norm sense as ||z|+|error|| / |z| where error
|
240 |
+
is equal to (real absolute error) + (imag absolute error)*i.
|
241 |
+
|
242 |
+
The full expression for the (logarithmic) error can be approximated
|
243 |
+
easily by using the max norm to approximate the complex norm.
|
244 |
+
|
245 |
+
In the worst case (re and im equal), this is wrong by a factor
|
246 |
+
sqrt(2), or by log2(sqrt(2)) = 0.5 bit.
|
247 |
+
"""
|
248 |
+
if result is S.ComplexInfinity:
|
249 |
+
return INF
|
250 |
+
re, im, re_acc, im_acc = result
|
251 |
+
if not im:
|
252 |
+
if not re:
|
253 |
+
return INF
|
254 |
+
return re_acc
|
255 |
+
if not re:
|
256 |
+
return im_acc
|
257 |
+
re_size = fastlog(re)
|
258 |
+
im_size = fastlog(im)
|
259 |
+
absolute_error = max(re_size - re_acc, im_size - im_acc)
|
260 |
+
relative_error = absolute_error - max(re_size, im_size)
|
261 |
+
return -relative_error
|
262 |
+
|
263 |
+
|
264 |
+
def get_abs(expr: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
|
265 |
+
result = evalf(expr, prec + 2, options)
|
266 |
+
if result is S.ComplexInfinity:
|
267 |
+
return finf, None, prec, None
|
268 |
+
re, im, re_acc, im_acc = result
|
269 |
+
if not re:
|
270 |
+
re, re_acc, im, im_acc = im, im_acc, re, re_acc
|
271 |
+
if im:
|
272 |
+
if expr.is_number:
|
273 |
+
abs_expr, _, acc, _ = evalf(abs(N(expr, prec + 2)),
|
274 |
+
prec + 2, options)
|
275 |
+
return abs_expr, None, acc, None
|
276 |
+
else:
|
277 |
+
if 'subs' in options:
|
278 |
+
return libmp.mpc_abs((re, im), prec), None, re_acc, None
|
279 |
+
return abs(expr), None, prec, None
|
280 |
+
elif re:
|
281 |
+
return mpf_abs(re), None, re_acc, None
|
282 |
+
else:
|
283 |
+
return None, None, None, None
|
284 |
+
|
285 |
+
|
286 |
+
def get_complex_part(expr: 'Expr', no: int, prec: int, options: OPT_DICT) -> TMP_RES:
|
287 |
+
"""no = 0 for real part, no = 1 for imaginary part"""
|
288 |
+
workprec = prec
|
289 |
+
i = 0
|
290 |
+
while 1:
|
291 |
+
res = evalf(expr, workprec, options)
|
292 |
+
if res is S.ComplexInfinity:
|
293 |
+
return fnan, None, prec, None
|
294 |
+
value, accuracy = res[no::2]
|
295 |
+
# XXX is the last one correct? Consider re((1+I)**2).n()
|
296 |
+
if (not value) or accuracy >= prec or -value[2] > prec:
|
297 |
+
return value, None, accuracy, None
|
298 |
+
workprec += max(30, 2**i)
|
299 |
+
i += 1
|
300 |
+
|
301 |
+
|
302 |
+
def evalf_abs(expr: 'Abs', prec: int, options: OPT_DICT) -> TMP_RES:
|
303 |
+
return get_abs(expr.args[0], prec, options)
|
304 |
+
|
305 |
+
|
306 |
+
def evalf_re(expr: 're', prec: int, options: OPT_DICT) -> TMP_RES:
|
307 |
+
return get_complex_part(expr.args[0], 0, prec, options)
|
308 |
+
|
309 |
+
|
310 |
+
def evalf_im(expr: 'im', prec: int, options: OPT_DICT) -> TMP_RES:
|
311 |
+
return get_complex_part(expr.args[0], 1, prec, options)
|
312 |
+
|
313 |
+
|
314 |
+
def finalize_complex(re: MPF_TUP, im: MPF_TUP, prec: int) -> TMP_RES:
|
315 |
+
if re == fzero and im == fzero:
|
316 |
+
raise ValueError("got complex zero with unknown accuracy")
|
317 |
+
elif re == fzero:
|
318 |
+
return None, im, None, prec
|
319 |
+
elif im == fzero:
|
320 |
+
return re, None, prec, None
|
321 |
+
|
322 |
+
size_re = fastlog(re)
|
323 |
+
size_im = fastlog(im)
|
324 |
+
if size_re > size_im:
|
325 |
+
re_acc = prec
|
326 |
+
im_acc = prec + min(-(size_re - size_im), 0)
|
327 |
+
else:
|
328 |
+
im_acc = prec
|
329 |
+
re_acc = prec + min(-(size_im - size_re), 0)
|
330 |
+
return re, im, re_acc, im_acc
|
331 |
+
|
332 |
+
|
333 |
+
def chop_parts(value: TMP_RES, prec: int) -> TMP_RES:
|
334 |
+
"""
|
335 |
+
Chop off tiny real or complex parts.
|
336 |
+
"""
|
337 |
+
if value is S.ComplexInfinity:
|
338 |
+
return value
|
339 |
+
re, im, re_acc, im_acc = value
|
340 |
+
# Method 1: chop based on absolute value
|
341 |
+
if re and re not in _infs_nan and (fastlog(re) < -prec + 4):
|
342 |
+
re, re_acc = None, None
|
343 |
+
if im and im not in _infs_nan and (fastlog(im) < -prec + 4):
|
344 |
+
im, im_acc = None, None
|
345 |
+
# Method 2: chop if inaccurate and relatively small
|
346 |
+
if re and im:
|
347 |
+
delta = fastlog(re) - fastlog(im)
|
348 |
+
if re_acc < 2 and (delta - re_acc <= -prec + 4):
|
349 |
+
re, re_acc = None, None
|
350 |
+
if im_acc < 2 and (delta - im_acc >= prec - 4):
|
351 |
+
im, im_acc = None, None
|
352 |
+
return re, im, re_acc, im_acc
|
353 |
+
|
354 |
+
|
355 |
+
def check_target(expr: 'Expr', result: TMP_RES, prec: int):
|
356 |
+
a = complex_accuracy(result)
|
357 |
+
if a < prec:
|
358 |
+
raise PrecisionExhausted("Failed to distinguish the expression: \n\n%s\n\n"
|
359 |
+
"from zero. Try simplifying the input, using chop=True, or providing "
|
360 |
+
"a higher maxn for evalf" % (expr))
|
361 |
+
|
362 |
+
|
363 |
+
def get_integer_part(expr: 'Expr', no: int, options: OPT_DICT, return_ints=False) -> \
|
364 |
+
tUnion[TMP_RES, tTuple[int, int]]:
|
365 |
+
"""
|
366 |
+
With no = 1, computes ceiling(expr)
|
367 |
+
With no = -1, computes floor(expr)
|
368 |
+
|
369 |
+
Note: this function either gives the exact result or signals failure.
|
370 |
+
"""
|
371 |
+
from sympy.functions.elementary.complexes import re, im
|
372 |
+
# The expression is likely less than 2^30 or so
|
373 |
+
assumed_size = 30
|
374 |
+
result = evalf(expr, assumed_size, options)
|
375 |
+
if result is S.ComplexInfinity:
|
376 |
+
raise ValueError("Cannot get integer part of Complex Infinity")
|
377 |
+
ire, iim, ire_acc, iim_acc = result
|
378 |
+
|
379 |
+
# We now know the size, so we can calculate how much extra precision
|
380 |
+
# (if any) is needed to get within the nearest integer
|
381 |
+
if ire and iim:
|
382 |
+
gap = max(fastlog(ire) - ire_acc, fastlog(iim) - iim_acc)
|
383 |
+
elif ire:
|
384 |
+
gap = fastlog(ire) - ire_acc
|
385 |
+
elif iim:
|
386 |
+
gap = fastlog(iim) - iim_acc
|
387 |
+
else:
|
388 |
+
# ... or maybe the expression was exactly zero
|
389 |
+
if return_ints:
|
390 |
+
return 0, 0
|
391 |
+
else:
|
392 |
+
return None, None, None, None
|
393 |
+
|
394 |
+
margin = 10
|
395 |
+
|
396 |
+
if gap >= -margin:
|
397 |
+
prec = margin + assumed_size + gap
|
398 |
+
ire, iim, ire_acc, iim_acc = evalf(
|
399 |
+
expr, prec, options)
|
400 |
+
else:
|
401 |
+
prec = assumed_size
|
402 |
+
|
403 |
+
# We can now easily find the nearest integer, but to find floor/ceil, we
|
404 |
+
# must also calculate whether the difference to the nearest integer is
|
405 |
+
# positive or negative (which may fail if very close).
|
406 |
+
def calc_part(re_im: 'Expr', nexpr: MPF_TUP):
|
407 |
+
from .add import Add
|
408 |
+
_, _, exponent, _ = nexpr
|
409 |
+
is_int = exponent == 0
|
410 |
+
nint = int(to_int(nexpr, rnd))
|
411 |
+
if is_int:
|
412 |
+
# make sure that we had enough precision to distinguish
|
413 |
+
# between nint and the re or im part (re_im) of expr that
|
414 |
+
# was passed to calc_part
|
415 |
+
ire, iim, ire_acc, iim_acc = evalf(
|
416 |
+
re_im - nint, 10, options) # don't need much precision
|
417 |
+
assert not iim
|
418 |
+
size = -fastlog(ire) + 2 # -ve b/c ire is less than 1
|
419 |
+
if size > prec:
|
420 |
+
ire, iim, ire_acc, iim_acc = evalf(
|
421 |
+
re_im, size, options)
|
422 |
+
assert not iim
|
423 |
+
nexpr = ire
|
424 |
+
nint = int(to_int(nexpr, rnd))
|
425 |
+
_, _, new_exp, _ = ire
|
426 |
+
is_int = new_exp == 0
|
427 |
+
if not is_int:
|
428 |
+
# if there are subs and they all contain integer re/im parts
|
429 |
+
# then we can (hopefully) safely substitute them into the
|
430 |
+
# expression
|
431 |
+
s = options.get('subs', False)
|
432 |
+
if s:
|
433 |
+
doit = True
|
434 |
+
# use strict=False with as_int because we take
|
435 |
+
# 2.0 == 2
|
436 |
+
for v in s.values():
|
437 |
+
try:
|
438 |
+
as_int(v, strict=False)
|
439 |
+
except ValueError:
|
440 |
+
try:
|
441 |
+
[as_int(i, strict=False) for i in v.as_real_imag()]
|
442 |
+
continue
|
443 |
+
except (ValueError, AttributeError):
|
444 |
+
doit = False
|
445 |
+
break
|
446 |
+
if doit:
|
447 |
+
re_im = re_im.subs(s)
|
448 |
+
|
449 |
+
re_im = Add(re_im, -nint, evaluate=False)
|
450 |
+
x, _, x_acc, _ = evalf(re_im, 10, options)
|
451 |
+
try:
|
452 |
+
check_target(re_im, (x, None, x_acc, None), 3)
|
453 |
+
except PrecisionExhausted:
|
454 |
+
if not re_im.equals(0):
|
455 |
+
raise PrecisionExhausted
|
456 |
+
x = fzero
|
457 |
+
nint += int(no*(mpf_cmp(x or fzero, fzero) == no))
|
458 |
+
nint = from_int(nint)
|
459 |
+
return nint, INF
|
460 |
+
|
461 |
+
re_, im_, re_acc, im_acc = None, None, None, None
|
462 |
+
|
463 |
+
if ire:
|
464 |
+
re_, re_acc = calc_part(re(expr, evaluate=False), ire)
|
465 |
+
if iim:
|
466 |
+
im_, im_acc = calc_part(im(expr, evaluate=False), iim)
|
467 |
+
|
468 |
+
if return_ints:
|
469 |
+
return int(to_int(re_ or fzero)), int(to_int(im_ or fzero))
|
470 |
+
return re_, im_, re_acc, im_acc
|
471 |
+
|
472 |
+
|
473 |
+
def evalf_ceiling(expr: 'ceiling', prec: int, options: OPT_DICT) -> TMP_RES:
|
474 |
+
return get_integer_part(expr.args[0], 1, options)
|
475 |
+
|
476 |
+
|
477 |
+
def evalf_floor(expr: 'floor', prec: int, options: OPT_DICT) -> TMP_RES:
|
478 |
+
return get_integer_part(expr.args[0], -1, options)
|
479 |
+
|
480 |
+
|
481 |
+
def evalf_float(expr: 'Float', prec: int, options: OPT_DICT) -> TMP_RES:
|
482 |
+
return expr._mpf_, None, prec, None
|
483 |
+
|
484 |
+
|
485 |
+
def evalf_rational(expr: 'Rational', prec: int, options: OPT_DICT) -> TMP_RES:
|
486 |
+
return from_rational(expr.p, expr.q, prec), None, prec, None
|
487 |
+
|
488 |
+
|
489 |
+
def evalf_integer(expr: 'Integer', prec: int, options: OPT_DICT) -> TMP_RES:
|
490 |
+
return from_int(expr.p, prec), None, prec, None
|
491 |
+
|
492 |
+
#----------------------------------------------------------------------------#
|
493 |
+
# #
|
494 |
+
# Arithmetic operations #
|
495 |
+
# #
|
496 |
+
#----------------------------------------------------------------------------#
|
497 |
+
|
498 |
+
|
499 |
+
def add_terms(terms: list, prec: int, target_prec: int) -> \
|
500 |
+
tTuple[tUnion[MPF_TUP, SCALED_ZERO_TUP, None], Optional[int]]:
|
501 |
+
"""
|
502 |
+
Helper for evalf_add. Adds a list of (mpfval, accuracy) terms.
|
503 |
+
|
504 |
+
Returns
|
505 |
+
=======
|
506 |
+
|
507 |
+
- None, None if there are no non-zero terms;
|
508 |
+
- terms[0] if there is only 1 term;
|
509 |
+
- scaled_zero if the sum of the terms produces a zero by cancellation
|
510 |
+
e.g. mpfs representing 1 and -1 would produce a scaled zero which need
|
511 |
+
special handling since they are not actually zero and they are purposely
|
512 |
+
malformed to ensure that they cannot be used in anything but accuracy
|
513 |
+
calculations;
|
514 |
+
- a tuple that is scaled to target_prec that corresponds to the
|
515 |
+
sum of the terms.
|
516 |
+
|
517 |
+
The returned mpf tuple will be normalized to target_prec; the input
|
518 |
+
prec is used to define the working precision.
|
519 |
+
|
520 |
+
XXX explain why this is needed and why one cannot just loop using mpf_add
|
521 |
+
"""
|
522 |
+
|
523 |
+
terms = [t for t in terms if not iszero(t[0])]
|
524 |
+
if not terms:
|
525 |
+
return None, None
|
526 |
+
elif len(terms) == 1:
|
527 |
+
return terms[0]
|
528 |
+
|
529 |
+
# see if any argument is NaN or oo and thus warrants a special return
|
530 |
+
special = []
|
531 |
+
from .numbers import Float
|
532 |
+
for t in terms:
|
533 |
+
arg = Float._new(t[0], 1)
|
534 |
+
if arg is S.NaN or arg.is_infinite:
|
535 |
+
special.append(arg)
|
536 |
+
if special:
|
537 |
+
from .add import Add
|
538 |
+
rv = evalf(Add(*special), prec + 4, {})
|
539 |
+
return rv[0], rv[2]
|
540 |
+
|
541 |
+
working_prec = 2*prec
|
542 |
+
sum_man, sum_exp = 0, 0
|
543 |
+
absolute_err: List[int] = []
|
544 |
+
|
545 |
+
for x, accuracy in terms:
|
546 |
+
sign, man, exp, bc = x
|
547 |
+
if sign:
|
548 |
+
man = -man
|
549 |
+
absolute_err.append(bc + exp - accuracy)
|
550 |
+
delta = exp - sum_exp
|
551 |
+
if exp >= sum_exp:
|
552 |
+
# x much larger than existing sum?
|
553 |
+
# first: quick test
|
554 |
+
if ((delta > working_prec) and
|
555 |
+
((not sum_man) or
|
556 |
+
delta - bitcount(abs(sum_man)) > working_prec)):
|
557 |
+
sum_man = man
|
558 |
+
sum_exp = exp
|
559 |
+
else:
|
560 |
+
sum_man += (man << delta)
|
561 |
+
else:
|
562 |
+
delta = -delta
|
563 |
+
# x much smaller than existing sum?
|
564 |
+
if delta - bc > working_prec:
|
565 |
+
if not sum_man:
|
566 |
+
sum_man, sum_exp = man, exp
|
567 |
+
else:
|
568 |
+
sum_man = (sum_man << delta) + man
|
569 |
+
sum_exp = exp
|
570 |
+
absolute_error = max(absolute_err)
|
571 |
+
if not sum_man:
|
572 |
+
return scaled_zero(absolute_error)
|
573 |
+
if sum_man < 0:
|
574 |
+
sum_sign = 1
|
575 |
+
sum_man = -sum_man
|
576 |
+
else:
|
577 |
+
sum_sign = 0
|
578 |
+
sum_bc = bitcount(sum_man)
|
579 |
+
sum_accuracy = sum_exp + sum_bc - absolute_error
|
580 |
+
r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec,
|
581 |
+
rnd), sum_accuracy
|
582 |
+
return r
|
583 |
+
|
584 |
+
|
585 |
+
def evalf_add(v: 'Add', prec: int, options: OPT_DICT) -> TMP_RES:
|
586 |
+
res = pure_complex(v)
|
587 |
+
if res:
|
588 |
+
h, c = res
|
589 |
+
re, _, re_acc, _ = evalf(h, prec, options)
|
590 |
+
im, _, im_acc, _ = evalf(c, prec, options)
|
591 |
+
return re, im, re_acc, im_acc
|
592 |
+
|
593 |
+
oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
|
594 |
+
|
595 |
+
i = 0
|
596 |
+
target_prec = prec
|
597 |
+
while 1:
|
598 |
+
options['maxprec'] = min(oldmaxprec, 2*prec)
|
599 |
+
|
600 |
+
terms = [evalf(arg, prec + 10, options) for arg in v.args]
|
601 |
+
n = terms.count(S.ComplexInfinity)
|
602 |
+
if n >= 2:
|
603 |
+
return fnan, None, prec, None
|
604 |
+
re, re_acc = add_terms(
|
605 |
+
[a[0::2] for a in terms if isinstance(a, tuple) and a[0]], prec, target_prec)
|
606 |
+
im, im_acc = add_terms(
|
607 |
+
[a[1::2] for a in terms if isinstance(a, tuple) and a[1]], prec, target_prec)
|
608 |
+
if n == 1:
|
609 |
+
if re in (finf, fninf, fnan) or im in (finf, fninf, fnan):
|
610 |
+
return fnan, None, prec, None
|
611 |
+
return S.ComplexInfinity
|
612 |
+
acc = complex_accuracy((re, im, re_acc, im_acc))
|
613 |
+
if acc >= target_prec:
|
614 |
+
if options.get('verbose'):
|
615 |
+
print("ADD: wanted", target_prec, "accurate bits, got", re_acc, im_acc)
|
616 |
+
break
|
617 |
+
else:
|
618 |
+
if (prec - target_prec) > options['maxprec']:
|
619 |
+
break
|
620 |
+
|
621 |
+
prec = prec + max(10 + 2**i, target_prec - acc)
|
622 |
+
i += 1
|
623 |
+
if options.get('verbose'):
|
624 |
+
print("ADD: restarting with prec", prec)
|
625 |
+
|
626 |
+
options['maxprec'] = oldmaxprec
|
627 |
+
if iszero(re, scaled=True):
|
628 |
+
re = scaled_zero(re)
|
629 |
+
if iszero(im, scaled=True):
|
630 |
+
im = scaled_zero(im)
|
631 |
+
return re, im, re_acc, im_acc
|
632 |
+
|
633 |
+
|
634 |
+
def evalf_mul(v: 'Mul', prec: int, options: OPT_DICT) -> TMP_RES:
|
635 |
+
res = pure_complex(v)
|
636 |
+
if res:
|
637 |
+
# the only pure complex that is a mul is h*I
|
638 |
+
_, h = res
|
639 |
+
im, _, im_acc, _ = evalf(h, prec, options)
|
640 |
+
return None, im, None, im_acc
|
641 |
+
args = list(v.args)
|
642 |
+
|
643 |
+
# see if any argument is NaN or oo and thus warrants a special return
|
644 |
+
has_zero = False
|
645 |
+
special = []
|
646 |
+
from .numbers import Float
|
647 |
+
for arg in args:
|
648 |
+
result = evalf(arg, prec, options)
|
649 |
+
if result is S.ComplexInfinity:
|
650 |
+
special.append(result)
|
651 |
+
continue
|
652 |
+
if result[0] is None:
|
653 |
+
if result[1] is None:
|
654 |
+
has_zero = True
|
655 |
+
continue
|
656 |
+
num = Float._new(result[0], 1)
|
657 |
+
if num is S.NaN:
|
658 |
+
return fnan, None, prec, None
|
659 |
+
if num.is_infinite:
|
660 |
+
special.append(num)
|
661 |
+
if special:
|
662 |
+
if has_zero:
|
663 |
+
return fnan, None, prec, None
|
664 |
+
from .mul import Mul
|
665 |
+
return evalf(Mul(*special), prec + 4, {})
|
666 |
+
if has_zero:
|
667 |
+
return None, None, None, None
|
668 |
+
|
669 |
+
# With guard digits, multiplication in the real case does not destroy
|
670 |
+
# accuracy. This is also true in the complex case when considering the
|
671 |
+
# total accuracy; however accuracy for the real or imaginary parts
|
672 |
+
# separately may be lower.
|
673 |
+
acc = prec
|
674 |
+
|
675 |
+
# XXX: big overestimate
|
676 |
+
working_prec = prec + len(args) + 5
|
677 |
+
|
678 |
+
# Empty product is 1
|
679 |
+
start = man, exp, bc = MPZ(1), 0, 1
|
680 |
+
|
681 |
+
# First, we multiply all pure real or pure imaginary numbers.
|
682 |
+
# direction tells us that the result should be multiplied by
|
683 |
+
# I**direction; all other numbers get put into complex_factors
|
684 |
+
# to be multiplied out after the first phase.
|
685 |
+
last = len(args)
|
686 |
+
direction = 0
|
687 |
+
args.append(S.One)
|
688 |
+
complex_factors = []
|
689 |
+
|
690 |
+
for i, arg in enumerate(args):
|
691 |
+
if i != last and pure_complex(arg):
|
692 |
+
args[-1] = (args[-1]*arg).expand()
|
693 |
+
continue
|
694 |
+
elif i == last and arg is S.One:
|
695 |
+
continue
|
696 |
+
re, im, re_acc, im_acc = evalf(arg, working_prec, options)
|
697 |
+
if re and im:
|
698 |
+
complex_factors.append((re, im, re_acc, im_acc))
|
699 |
+
continue
|
700 |
+
elif re:
|
701 |
+
(s, m, e, b), w_acc = re, re_acc
|
702 |
+
elif im:
|
703 |
+
(s, m, e, b), w_acc = im, im_acc
|
704 |
+
direction += 1
|
705 |
+
else:
|
706 |
+
return None, None, None, None
|
707 |
+
direction += 2*s
|
708 |
+
man *= m
|
709 |
+
exp += e
|
710 |
+
bc += b
|
711 |
+
while bc > 3*working_prec:
|
712 |
+
man >>= working_prec
|
713 |
+
exp += working_prec
|
714 |
+
bc -= working_prec
|
715 |
+
acc = min(acc, w_acc)
|
716 |
+
sign = (direction & 2) >> 1
|
717 |
+
if not complex_factors:
|
718 |
+
v = normalize(sign, man, exp, bitcount(man), prec, rnd)
|
719 |
+
# multiply by i
|
720 |
+
if direction & 1:
|
721 |
+
return None, v, None, acc
|
722 |
+
else:
|
723 |
+
return v, None, acc, None
|
724 |
+
else:
|
725 |
+
# initialize with the first term
|
726 |
+
if (man, exp, bc) != start:
|
727 |
+
# there was a real part; give it an imaginary part
|
728 |
+
re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0)
|
729 |
+
i0 = 0
|
730 |
+
else:
|
731 |
+
# there is no real part to start (other than the starting 1)
|
732 |
+
wre, wim, wre_acc, wim_acc = complex_factors[0]
|
733 |
+
acc = min(acc,
|
734 |
+
complex_accuracy((wre, wim, wre_acc, wim_acc)))
|
735 |
+
re = wre
|
736 |
+
im = wim
|
737 |
+
i0 = 1
|
738 |
+
|
739 |
+
for wre, wim, wre_acc, wim_acc in complex_factors[i0:]:
|
740 |
+
# acc is the overall accuracy of the product; we aren't
|
741 |
+
# computing exact accuracies of the product.
|
742 |
+
acc = min(acc,
|
743 |
+
complex_accuracy((wre, wim, wre_acc, wim_acc)))
|
744 |
+
|
745 |
+
use_prec = working_prec
|
746 |
+
A = mpf_mul(re, wre, use_prec)
|
747 |
+
B = mpf_mul(mpf_neg(im), wim, use_prec)
|
748 |
+
C = mpf_mul(re, wim, use_prec)
|
749 |
+
D = mpf_mul(im, wre, use_prec)
|
750 |
+
re = mpf_add(A, B, use_prec)
|
751 |
+
im = mpf_add(C, D, use_prec)
|
752 |
+
if options.get('verbose'):
|
753 |
+
print("MUL: wanted", prec, "accurate bits, got", acc)
|
754 |
+
# multiply by I
|
755 |
+
if direction & 1:
|
756 |
+
re, im = mpf_neg(im), re
|
757 |
+
return re, im, acc, acc
|
758 |
+
|
759 |
+
|
760 |
+
def evalf_pow(v: 'Pow', prec: int, options) -> TMP_RES:
|
761 |
+
|
762 |
+
target_prec = prec
|
763 |
+
base, exp = v.args
|
764 |
+
|
765 |
+
# We handle x**n separately. This has two purposes: 1) it is much
|
766 |
+
# faster, because we avoid calling evalf on the exponent, and 2) it
|
767 |
+
# allows better handling of real/imaginary parts that are exactly zero
|
768 |
+
if exp.is_Integer:
|
769 |
+
p: int = exp.p # type: ignore
|
770 |
+
# Exact
|
771 |
+
if not p:
|
772 |
+
return fone, None, prec, None
|
773 |
+
# Exponentiation by p magnifies relative error by |p|, so the
|
774 |
+
# base must be evaluated with increased precision if p is large
|
775 |
+
prec += int(math.log(abs(p), 2))
|
776 |
+
result = evalf(base, prec + 5, options)
|
777 |
+
if result is S.ComplexInfinity:
|
778 |
+
if p < 0:
|
779 |
+
return None, None, None, None
|
780 |
+
return result
|
781 |
+
re, im, re_acc, im_acc = result
|
782 |
+
# Real to integer power
|
783 |
+
if re and not im:
|
784 |
+
return mpf_pow_int(re, p, target_prec), None, target_prec, None
|
785 |
+
# (x*I)**n = I**n * x**n
|
786 |
+
if im and not re:
|
787 |
+
z = mpf_pow_int(im, p, target_prec)
|
788 |
+
case = p % 4
|
789 |
+
if case == 0:
|
790 |
+
return z, None, target_prec, None
|
791 |
+
if case == 1:
|
792 |
+
return None, z, None, target_prec
|
793 |
+
if case == 2:
|
794 |
+
return mpf_neg(z), None, target_prec, None
|
795 |
+
if case == 3:
|
796 |
+
return None, mpf_neg(z), None, target_prec
|
797 |
+
# Zero raised to an integer power
|
798 |
+
if not re:
|
799 |
+
if p < 0:
|
800 |
+
return S.ComplexInfinity
|
801 |
+
return None, None, None, None
|
802 |
+
# General complex number to arbitrary integer power
|
803 |
+
re, im = libmp.mpc_pow_int((re, im), p, prec)
|
804 |
+
# Assumes full accuracy in input
|
805 |
+
return finalize_complex(re, im, target_prec)
|
806 |
+
|
807 |
+
result = evalf(base, prec + 5, options)
|
808 |
+
if result is S.ComplexInfinity:
|
809 |
+
if exp.is_Rational:
|
810 |
+
if exp < 0:
|
811 |
+
return None, None, None, None
|
812 |
+
return result
|
813 |
+
raise NotImplementedError
|
814 |
+
|
815 |
+
# Pure square root
|
816 |
+
if exp is S.Half:
|
817 |
+
xre, xim, _, _ = result
|
818 |
+
# General complex square root
|
819 |
+
if xim:
|
820 |
+
re, im = libmp.mpc_sqrt((xre or fzero, xim), prec)
|
821 |
+
return finalize_complex(re, im, prec)
|
822 |
+
if not xre:
|
823 |
+
return None, None, None, None
|
824 |
+
# Square root of a negative real number
|
825 |
+
if mpf_lt(xre, fzero):
|
826 |
+
return None, mpf_sqrt(mpf_neg(xre), prec), None, prec
|
827 |
+
# Positive square root
|
828 |
+
return mpf_sqrt(xre, prec), None, prec, None
|
829 |
+
|
830 |
+
# We first evaluate the exponent to find its magnitude
|
831 |
+
# This determines the working precision that must be used
|
832 |
+
prec += 10
|
833 |
+
result = evalf(exp, prec, options)
|
834 |
+
if result is S.ComplexInfinity:
|
835 |
+
return fnan, None, prec, None
|
836 |
+
yre, yim, _, _ = result
|
837 |
+
# Special cases: x**0
|
838 |
+
if not (yre or yim):
|
839 |
+
return fone, None, prec, None
|
840 |
+
|
841 |
+
ysize = fastlog(yre)
|
842 |
+
# Restart if too big
|
843 |
+
# XXX: prec + ysize might exceed maxprec
|
844 |
+
if ysize > 5:
|
845 |
+
prec += ysize
|
846 |
+
yre, yim, _, _ = evalf(exp, prec, options)
|
847 |
+
|
848 |
+
# Pure exponential function; no need to evalf the base
|
849 |
+
if base is S.Exp1:
|
850 |
+
if yim:
|
851 |
+
re, im = libmp.mpc_exp((yre or fzero, yim), prec)
|
852 |
+
return finalize_complex(re, im, target_prec)
|
853 |
+
return mpf_exp(yre, target_prec), None, target_prec, None
|
854 |
+
|
855 |
+
xre, xim, _, _ = evalf(base, prec + 5, options)
|
856 |
+
# 0**y
|
857 |
+
if not (xre or xim):
|
858 |
+
if yim:
|
859 |
+
return fnan, None, prec, None
|
860 |
+
if yre[0] == 1: # y < 0
|
861 |
+
return S.ComplexInfinity
|
862 |
+
return None, None, None, None
|
863 |
+
|
864 |
+
# (real ** complex) or (complex ** complex)
|
865 |
+
if yim:
|
866 |
+
re, im = libmp.mpc_pow(
|
867 |
+
(xre or fzero, xim or fzero), (yre or fzero, yim),
|
868 |
+
target_prec)
|
869 |
+
return finalize_complex(re, im, target_prec)
|
870 |
+
# complex ** real
|
871 |
+
if xim:
|
872 |
+
re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec)
|
873 |
+
return finalize_complex(re, im, target_prec)
|
874 |
+
# negative ** real
|
875 |
+
elif mpf_lt(xre, fzero):
|
876 |
+
re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec)
|
877 |
+
return finalize_complex(re, im, target_prec)
|
878 |
+
# positive ** real
|
879 |
+
else:
|
880 |
+
return mpf_pow(xre, yre, target_prec), None, target_prec, None
|
881 |
+
|
882 |
+
|
883 |
+
#----------------------------------------------------------------------------#
|
884 |
+
# #
|
885 |
+
# Special functions #
|
886 |
+
# #
|
887 |
+
#----------------------------------------------------------------------------#
|
888 |
+
|
889 |
+
|
890 |
+
def evalf_exp(expr: 'exp', prec: int, options: OPT_DICT) -> TMP_RES:
|
891 |
+
from .power import Pow
|
892 |
+
return evalf_pow(Pow(S.Exp1, expr.exp, evaluate=False), prec, options)
|
893 |
+
|
894 |
+
|
895 |
+
def evalf_trig(v: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
|
896 |
+
"""
|
897 |
+
This function handles sin and cos of complex arguments.
|
898 |
+
|
899 |
+
TODO: should also handle tan of complex arguments.
|
900 |
+
"""
|
901 |
+
from sympy.functions.elementary.trigonometric import cos, sin
|
902 |
+
if isinstance(v, cos):
|
903 |
+
func = mpf_cos
|
904 |
+
elif isinstance(v, sin):
|
905 |
+
func = mpf_sin
|
906 |
+
else:
|
907 |
+
raise NotImplementedError
|
908 |
+
arg = v.args[0]
|
909 |
+
# 20 extra bits is possibly overkill. It does make the need
|
910 |
+
# to restart very unlikely
|
911 |
+
xprec = prec + 20
|
912 |
+
re, im, re_acc, im_acc = evalf(arg, xprec, options)
|
913 |
+
if im:
|
914 |
+
if 'subs' in options:
|
915 |
+
v = v.subs(options['subs'])
|
916 |
+
return evalf(v._eval_evalf(prec), prec, options)
|
917 |
+
if not re:
|
918 |
+
if isinstance(v, cos):
|
919 |
+
return fone, None, prec, None
|
920 |
+
elif isinstance(v, sin):
|
921 |
+
return None, None, None, None
|
922 |
+
else:
|
923 |
+
raise NotImplementedError
|
924 |
+
# For trigonometric functions, we are interested in the
|
925 |
+
# fixed-point (absolute) accuracy of the argument.
|
926 |
+
xsize = fastlog(re)
|
927 |
+
# Magnitude <= 1.0. OK to compute directly, because there is no
|
928 |
+
# danger of hitting the first root of cos (with sin, magnitude
|
929 |
+
# <= 2.0 would actually be ok)
|
930 |
+
if xsize < 1:
|
931 |
+
return func(re, prec, rnd), None, prec, None
|
932 |
+
# Very large
|
933 |
+
if xsize >= 10:
|
934 |
+
xprec = prec + xsize
|
935 |
+
re, im, re_acc, im_acc = evalf(arg, xprec, options)
|
936 |
+
# Need to repeat in case the argument is very close to a
|
937 |
+
# multiple of pi (or pi/2), hitting close to a root
|
938 |
+
while 1:
|
939 |
+
y = func(re, prec, rnd)
|
940 |
+
ysize = fastlog(y)
|
941 |
+
gap = -ysize
|
942 |
+
accuracy = (xprec - xsize) - gap
|
943 |
+
if accuracy < prec:
|
944 |
+
if options.get('verbose'):
|
945 |
+
print("SIN/COS", accuracy, "wanted", prec, "gap", gap)
|
946 |
+
print(to_str(y, 10))
|
947 |
+
if xprec > options.get('maxprec', DEFAULT_MAXPREC):
|
948 |
+
return y, None, accuracy, None
|
949 |
+
xprec += gap
|
950 |
+
re, im, re_acc, im_acc = evalf(arg, xprec, options)
|
951 |
+
continue
|
952 |
+
else:
|
953 |
+
return y, None, prec, None
|
954 |
+
|
955 |
+
|
956 |
+
def evalf_log(expr: 'log', prec: int, options: OPT_DICT) -> TMP_RES:
|
957 |
+
if len(expr.args)>1:
|
958 |
+
expr = expr.doit()
|
959 |
+
return evalf(expr, prec, options)
|
960 |
+
arg = expr.args[0]
|
961 |
+
workprec = prec + 10
|
962 |
+
result = evalf(arg, workprec, options)
|
963 |
+
if result is S.ComplexInfinity:
|
964 |
+
return result
|
965 |
+
xre, xim, xacc, _ = result
|
966 |
+
|
967 |
+
# evalf can return NoneTypes if chop=True
|
968 |
+
# issue 18516, 19623
|
969 |
+
if xre is xim is None:
|
970 |
+
# Dear reviewer, I do not know what -inf is;
|
971 |
+
# it looks to be (1, 0, -789, -3)
|
972 |
+
# but I'm not sure in general,
|
973 |
+
# so we just let mpmath figure
|
974 |
+
# it out by taking log of 0 directly.
|
975 |
+
# It would be better to return -inf instead.
|
976 |
+
xre = fzero
|
977 |
+
|
978 |
+
if xim:
|
979 |
+
from sympy.functions.elementary.complexes import Abs
|
980 |
+
from sympy.functions.elementary.exponential import log
|
981 |
+
|
982 |
+
# XXX: use get_abs etc instead
|
983 |
+
re = evalf_log(
|
984 |
+
log(Abs(arg, evaluate=False), evaluate=False), prec, options)
|
985 |
+
im = mpf_atan2(xim, xre or fzero, prec)
|
986 |
+
return re[0], im, re[2], prec
|
987 |
+
|
988 |
+
imaginary_term = (mpf_cmp(xre, fzero) < 0)
|
989 |
+
|
990 |
+
re = mpf_log(mpf_abs(xre), prec, rnd)
|
991 |
+
size = fastlog(re)
|
992 |
+
if prec - size > workprec and re != fzero:
|
993 |
+
from .add import Add
|
994 |
+
# We actually need to compute 1+x accurately, not x
|
995 |
+
add = Add(S.NegativeOne, arg, evaluate=False)
|
996 |
+
xre, xim, _, _ = evalf_add(add, prec, options)
|
997 |
+
prec2 = workprec - fastlog(xre)
|
998 |
+
# xre is now x - 1 so we add 1 back here to calculate x
|
999 |
+
re = mpf_log(mpf_abs(mpf_add(xre, fone, prec2)), prec, rnd)
|
1000 |
+
|
1001 |
+
re_acc = prec
|
1002 |
+
|
1003 |
+
if imaginary_term:
|
1004 |
+
return re, mpf_pi(prec), re_acc, prec
|
1005 |
+
else:
|
1006 |
+
return re, None, re_acc, None
|
1007 |
+
|
1008 |
+
|
1009 |
+
def evalf_atan(v: 'atan', prec: int, options: OPT_DICT) -> TMP_RES:
|
1010 |
+
arg = v.args[0]
|
1011 |
+
xre, xim, reacc, imacc = evalf(arg, prec + 5, options)
|
1012 |
+
if xre is xim is None:
|
1013 |
+
return (None,)*4
|
1014 |
+
if xim:
|
1015 |
+
raise NotImplementedError
|
1016 |
+
return mpf_atan(xre, prec, rnd), None, prec, None
|
1017 |
+
|
1018 |
+
|
1019 |
+
def evalf_subs(prec: int, subs: dict) -> dict:
|
1020 |
+
""" Change all Float entries in `subs` to have precision prec. """
|
1021 |
+
newsubs = {}
|
1022 |
+
for a, b in subs.items():
|
1023 |
+
b = S(b)
|
1024 |
+
if b.is_Float:
|
1025 |
+
b = b._eval_evalf(prec)
|
1026 |
+
newsubs[a] = b
|
1027 |
+
return newsubs
|
1028 |
+
|
1029 |
+
|
1030 |
+
def evalf_piecewise(expr: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
|
1031 |
+
from .numbers import Float, Integer
|
1032 |
+
if 'subs' in options:
|
1033 |
+
expr = expr.subs(evalf_subs(prec, options['subs']))
|
1034 |
+
newopts = options.copy()
|
1035 |
+
del newopts['subs']
|
1036 |
+
if hasattr(expr, 'func'):
|
1037 |
+
return evalf(expr, prec, newopts)
|
1038 |
+
if isinstance(expr, float):
|
1039 |
+
return evalf(Float(expr), prec, newopts)
|
1040 |
+
if isinstance(expr, int):
|
1041 |
+
return evalf(Integer(expr), prec, newopts)
|
1042 |
+
|
1043 |
+
# We still have undefined symbols
|
1044 |
+
raise NotImplementedError
|
1045 |
+
|
1046 |
+
|
1047 |
+
def evalf_alg_num(a: 'AlgebraicNumber', prec: int, options: OPT_DICT) -> TMP_RES:
|
1048 |
+
return evalf(a.to_root(), prec, options)
|
1049 |
+
|
1050 |
+
#----------------------------------------------------------------------------#
|
1051 |
+
# #
|
1052 |
+
# High-level operations #
|
1053 |
+
# #
|
1054 |
+
#----------------------------------------------------------------------------#
|
1055 |
+
|
1056 |
+
|
1057 |
+
def as_mpmath(x: Any, prec: int, options: OPT_DICT) -> tUnion[mpc, mpf]:
|
1058 |
+
from .numbers import Infinity, NegativeInfinity, Zero
|
1059 |
+
x = sympify(x)
|
1060 |
+
if isinstance(x, Zero) or x == 0.0:
|
1061 |
+
return mpf(0)
|
1062 |
+
if isinstance(x, Infinity):
|
1063 |
+
return mpf('inf')
|
1064 |
+
if isinstance(x, NegativeInfinity):
|
1065 |
+
return mpf('-inf')
|
1066 |
+
# XXX
|
1067 |
+
result = evalf(x, prec, options)
|
1068 |
+
return quad_to_mpmath(result)
|
1069 |
+
|
1070 |
+
|
1071 |
+
def do_integral(expr: 'Integral', prec: int, options: OPT_DICT) -> TMP_RES:
|
1072 |
+
func = expr.args[0]
|
1073 |
+
x, xlow, xhigh = expr.args[1]
|
1074 |
+
if xlow == xhigh:
|
1075 |
+
xlow = xhigh = 0
|
1076 |
+
elif x not in func.free_symbols:
|
1077 |
+
# only the difference in limits matters in this case
|
1078 |
+
# so if there is a symbol in common that will cancel
|
1079 |
+
# out when taking the difference, then use that
|
1080 |
+
# difference
|
1081 |
+
if xhigh.free_symbols & xlow.free_symbols:
|
1082 |
+
diff = xhigh - xlow
|
1083 |
+
if diff.is_number:
|
1084 |
+
xlow, xhigh = 0, diff
|
1085 |
+
|
1086 |
+
oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
|
1087 |
+
options['maxprec'] = min(oldmaxprec, 2*prec)
|
1088 |
+
|
1089 |
+
with workprec(prec + 5):
|
1090 |
+
xlow = as_mpmath(xlow, prec + 15, options)
|
1091 |
+
xhigh = as_mpmath(xhigh, prec + 15, options)
|
1092 |
+
|
1093 |
+
# Integration is like summation, and we can phone home from
|
1094 |
+
# the integrand function to update accuracy summation style
|
1095 |
+
# Note that this accuracy is inaccurate, since it fails
|
1096 |
+
# to account for the variable quadrature weights,
|
1097 |
+
# but it is better than nothing
|
1098 |
+
|
1099 |
+
from sympy.functions.elementary.trigonometric import cos, sin
|
1100 |
+
from .symbol import Wild
|
1101 |
+
|
1102 |
+
have_part = [False, False]
|
1103 |
+
max_real_term: tUnion[float, int] = MINUS_INF
|
1104 |
+
max_imag_term: tUnion[float, int] = MINUS_INF
|
1105 |
+
|
1106 |
+
def f(t: 'Expr') -> tUnion[mpc, mpf]:
|
1107 |
+
nonlocal max_real_term, max_imag_term
|
1108 |
+
re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}})
|
1109 |
+
|
1110 |
+
have_part[0] = re or have_part[0]
|
1111 |
+
have_part[1] = im or have_part[1]
|
1112 |
+
|
1113 |
+
max_real_term = max(max_real_term, fastlog(re))
|
1114 |
+
max_imag_term = max(max_imag_term, fastlog(im))
|
1115 |
+
|
1116 |
+
if im:
|
1117 |
+
return mpc(re or fzero, im)
|
1118 |
+
return mpf(re or fzero)
|
1119 |
+
|
1120 |
+
if options.get('quad') == 'osc':
|
1121 |
+
A = Wild('A', exclude=[x])
|
1122 |
+
B = Wild('B', exclude=[x])
|
1123 |
+
D = Wild('D')
|
1124 |
+
m = func.match(cos(A*x + B)*D)
|
1125 |
+
if not m:
|
1126 |
+
m = func.match(sin(A*x + B)*D)
|
1127 |
+
if not m:
|
1128 |
+
raise ValueError("An integrand of the form sin(A*x+B)*f(x) "
|
1129 |
+
"or cos(A*x+B)*f(x) is required for oscillatory quadrature")
|
1130 |
+
period = as_mpmath(2*S.Pi/m[A], prec + 15, options)
|
1131 |
+
result = quadosc(f, [xlow, xhigh], period=period)
|
1132 |
+
# XXX: quadosc does not do error detection yet
|
1133 |
+
quadrature_error = MINUS_INF
|
1134 |
+
else:
|
1135 |
+
result, quadrature_err = quadts(f, [xlow, xhigh], error=1)
|
1136 |
+
quadrature_error = fastlog(quadrature_err._mpf_)
|
1137 |
+
|
1138 |
+
options['maxprec'] = oldmaxprec
|
1139 |
+
|
1140 |
+
if have_part[0]:
|
1141 |
+
re: Optional[MPF_TUP] = result.real._mpf_
|
1142 |
+
re_acc: Optional[int]
|
1143 |
+
if re == fzero:
|
1144 |
+
re_s, re_acc = scaled_zero(int(-max(prec, max_real_term, quadrature_error)))
|
1145 |
+
re = scaled_zero(re_s) # handled ok in evalf_integral
|
1146 |
+
else:
|
1147 |
+
re_acc = int(-max(max_real_term - fastlog(re) - prec, quadrature_error))
|
1148 |
+
else:
|
1149 |
+
re, re_acc = None, None
|
1150 |
+
|
1151 |
+
if have_part[1]:
|
1152 |
+
im: Optional[MPF_TUP] = result.imag._mpf_
|
1153 |
+
im_acc: Optional[int]
|
1154 |
+
if im == fzero:
|
1155 |
+
im_s, im_acc = scaled_zero(int(-max(prec, max_imag_term, quadrature_error)))
|
1156 |
+
im = scaled_zero(im_s) # handled ok in evalf_integral
|
1157 |
+
else:
|
1158 |
+
im_acc = int(-max(max_imag_term - fastlog(im) - prec, quadrature_error))
|
1159 |
+
else:
|
1160 |
+
im, im_acc = None, None
|
1161 |
+
|
1162 |
+
result = re, im, re_acc, im_acc
|
1163 |
+
return result
|
1164 |
+
|
1165 |
+
|
1166 |
+
def evalf_integral(expr: 'Integral', prec: int, options: OPT_DICT) -> TMP_RES:
|
1167 |
+
limits = expr.limits
|
1168 |
+
if len(limits) != 1 or len(limits[0]) != 3:
|
1169 |
+
raise NotImplementedError
|
1170 |
+
workprec = prec
|
1171 |
+
i = 0
|
1172 |
+
maxprec = options.get('maxprec', INF)
|
1173 |
+
while 1:
|
1174 |
+
result = do_integral(expr, workprec, options)
|
1175 |
+
accuracy = complex_accuracy(result)
|
1176 |
+
if accuracy >= prec: # achieved desired precision
|
1177 |
+
break
|
1178 |
+
if workprec >= maxprec: # can't increase accuracy any more
|
1179 |
+
break
|
1180 |
+
if accuracy == -1:
|
1181 |
+
# maybe the answer really is zero and maybe we just haven't increased
|
1182 |
+
# the precision enough. So increase by doubling to not take too long
|
1183 |
+
# to get to maxprec.
|
1184 |
+
workprec *= 2
|
1185 |
+
else:
|
1186 |
+
workprec += max(prec, 2**i)
|
1187 |
+
workprec = min(workprec, maxprec)
|
1188 |
+
i += 1
|
1189 |
+
return result
|
1190 |
+
|
1191 |
+
|
1192 |
+
def check_convergence(numer: 'Expr', denom: 'Expr', n: 'Symbol') -> tTuple[int, Any, Any]:
|
1193 |
+
"""
|
1194 |
+
Returns
|
1195 |
+
=======
|
1196 |
+
|
1197 |
+
(h, g, p) where
|
1198 |
+
-- h is:
|
1199 |
+
> 0 for convergence of rate 1/factorial(n)**h
|
1200 |
+
< 0 for divergence of rate factorial(n)**(-h)
|
1201 |
+
= 0 for geometric or polynomial convergence or divergence
|
1202 |
+
|
1203 |
+
-- abs(g) is:
|
1204 |
+
> 1 for geometric convergence of rate 1/h**n
|
1205 |
+
< 1 for geometric divergence of rate h**n
|
1206 |
+
= 1 for polynomial convergence or divergence
|
1207 |
+
|
1208 |
+
(g < 0 indicates an alternating series)
|
1209 |
+
|
1210 |
+
-- p is:
|
1211 |
+
> 1 for polynomial convergence of rate 1/n**h
|
1212 |
+
<= 1 for polynomial divergence of rate n**(-h)
|
1213 |
+
|
1214 |
+
"""
|
1215 |
+
from sympy.polys.polytools import Poly
|
1216 |
+
npol = Poly(numer, n)
|
1217 |
+
dpol = Poly(denom, n)
|
1218 |
+
p = npol.degree()
|
1219 |
+
q = dpol.degree()
|
1220 |
+
rate = q - p
|
1221 |
+
if rate:
|
1222 |
+
return rate, None, None
|
1223 |
+
constant = dpol.LC() / npol.LC()
|
1224 |
+
from .numbers import equal_valued
|
1225 |
+
if not equal_valued(abs(constant), 1):
|
1226 |
+
return rate, constant, None
|
1227 |
+
if npol.degree() == dpol.degree() == 0:
|
1228 |
+
return rate, constant, 0
|
1229 |
+
pc = npol.all_coeffs()[1]
|
1230 |
+
qc = dpol.all_coeffs()[1]
|
1231 |
+
return rate, constant, (qc - pc)/dpol.LC()
|
1232 |
+
|
1233 |
+
|
1234 |
+
def hypsum(expr: 'Expr', n: 'Symbol', start: int, prec: int) -> mpf:
|
1235 |
+
"""
|
1236 |
+
Sum a rapidly convergent infinite hypergeometric series with
|
1237 |
+
given general term, e.g. e = hypsum(1/factorial(n), n). The
|
1238 |
+
quotient between successive terms must be a quotient of integer
|
1239 |
+
polynomials.
|
1240 |
+
"""
|
1241 |
+
from .numbers import Float, equal_valued
|
1242 |
+
from sympy.simplify.simplify import hypersimp
|
1243 |
+
|
1244 |
+
if prec == float('inf'):
|
1245 |
+
raise NotImplementedError('does not support inf prec')
|
1246 |
+
|
1247 |
+
if start:
|
1248 |
+
expr = expr.subs(n, n + start)
|
1249 |
+
hs = hypersimp(expr, n)
|
1250 |
+
if hs is None:
|
1251 |
+
raise NotImplementedError("a hypergeometric series is required")
|
1252 |
+
num, den = hs.as_numer_denom()
|
1253 |
+
|
1254 |
+
func1 = lambdify(n, num)
|
1255 |
+
func2 = lambdify(n, den)
|
1256 |
+
|
1257 |
+
h, g, p = check_convergence(num, den, n)
|
1258 |
+
|
1259 |
+
if h < 0:
|
1260 |
+
raise ValueError("Sum diverges like (n!)^%i" % (-h))
|
1261 |
+
|
1262 |
+
term = expr.subs(n, 0)
|
1263 |
+
if not term.is_Rational:
|
1264 |
+
raise NotImplementedError("Non rational term functionality is not implemented.")
|
1265 |
+
|
1266 |
+
# Direct summation if geometric or faster
|
1267 |
+
if h > 0 or (h == 0 and abs(g) > 1):
|
1268 |
+
term = (MPZ(term.p) << prec) // term.q
|
1269 |
+
s = term
|
1270 |
+
k = 1
|
1271 |
+
while abs(term) > 5:
|
1272 |
+
term *= MPZ(func1(k - 1))
|
1273 |
+
term //= MPZ(func2(k - 1))
|
1274 |
+
s += term
|
1275 |
+
k += 1
|
1276 |
+
return from_man_exp(s, -prec)
|
1277 |
+
else:
|
1278 |
+
alt = g < 0
|
1279 |
+
if abs(g) < 1:
|
1280 |
+
raise ValueError("Sum diverges like (%i)^n" % abs(1/g))
|
1281 |
+
if p < 1 or (equal_valued(p, 1) and not alt):
|
1282 |
+
raise ValueError("Sum diverges like n^%i" % (-p))
|
1283 |
+
# We have polynomial convergence: use Richardson extrapolation
|
1284 |
+
vold = None
|
1285 |
+
ndig = prec_to_dps(prec)
|
1286 |
+
while True:
|
1287 |
+
# Need to use at least quad precision because a lot of cancellation
|
1288 |
+
# might occur in the extrapolation process; we check the answer to
|
1289 |
+
# make sure that the desired precision has been reached, too.
|
1290 |
+
prec2 = 4*prec
|
1291 |
+
term0 = (MPZ(term.p) << prec2) // term.q
|
1292 |
+
|
1293 |
+
def summand(k, _term=[term0]):
|
1294 |
+
if k:
|
1295 |
+
k = int(k)
|
1296 |
+
_term[0] *= MPZ(func1(k - 1))
|
1297 |
+
_term[0] //= MPZ(func2(k - 1))
|
1298 |
+
return make_mpf(from_man_exp(_term[0], -prec2))
|
1299 |
+
|
1300 |
+
with workprec(prec):
|
1301 |
+
v = nsum(summand, [0, mpmath_inf], method='richardson')
|
1302 |
+
vf = Float(v, ndig)
|
1303 |
+
if vold is not None and vold == vf:
|
1304 |
+
break
|
1305 |
+
prec += prec # double precision each time
|
1306 |
+
vold = vf
|
1307 |
+
|
1308 |
+
return v._mpf_
|
1309 |
+
|
1310 |
+
|
1311 |
+
def evalf_prod(expr: 'Product', prec: int, options: OPT_DICT) -> TMP_RES:
|
1312 |
+
if all((l[1] - l[2]).is_Integer for l in expr.limits):
|
1313 |
+
result = evalf(expr.doit(), prec=prec, options=options)
|
1314 |
+
else:
|
1315 |
+
from sympy.concrete.summations import Sum
|
1316 |
+
result = evalf(expr.rewrite(Sum), prec=prec, options=options)
|
1317 |
+
return result
|
1318 |
+
|
1319 |
+
|
1320 |
+
def evalf_sum(expr: 'Sum', prec: int, options: OPT_DICT) -> TMP_RES:
|
1321 |
+
from .numbers import Float
|
1322 |
+
if 'subs' in options:
|
1323 |
+
expr = expr.subs(options['subs'])
|
1324 |
+
func = expr.function
|
1325 |
+
limits = expr.limits
|
1326 |
+
if len(limits) != 1 or len(limits[0]) != 3:
|
1327 |
+
raise NotImplementedError
|
1328 |
+
if func.is_zero:
|
1329 |
+
return None, None, prec, None
|
1330 |
+
prec2 = prec + 10
|
1331 |
+
try:
|
1332 |
+
n, a, b = limits[0]
|
1333 |
+
if b is not S.Infinity or a is S.NegativeInfinity or a != int(a):
|
1334 |
+
raise NotImplementedError
|
1335 |
+
# Use fast hypergeometric summation if possible
|
1336 |
+
v = hypsum(func, n, int(a), prec2)
|
1337 |
+
delta = prec - fastlog(v)
|
1338 |
+
if fastlog(v) < -10:
|
1339 |
+
v = hypsum(func, n, int(a), delta)
|
1340 |
+
return v, None, min(prec, delta), None
|
1341 |
+
except NotImplementedError:
|
1342 |
+
# Euler-Maclaurin summation for general series
|
1343 |
+
eps = Float(2.0)**(-prec)
|
1344 |
+
for i in range(1, 5):
|
1345 |
+
m = n = 2**i * prec
|
1346 |
+
s, err = expr.euler_maclaurin(m=m, n=n, eps=eps,
|
1347 |
+
eval_integral=False)
|
1348 |
+
err = err.evalf()
|
1349 |
+
if err is S.NaN:
|
1350 |
+
raise NotImplementedError
|
1351 |
+
if err <= eps:
|
1352 |
+
break
|
1353 |
+
err = fastlog(evalf(abs(err), 20, options)[0])
|
1354 |
+
re, im, re_acc, im_acc = evalf(s, prec2, options)
|
1355 |
+
if re_acc is None:
|
1356 |
+
re_acc = -err
|
1357 |
+
if im_acc is None:
|
1358 |
+
im_acc = -err
|
1359 |
+
return re, im, re_acc, im_acc
|
1360 |
+
|
1361 |
+
|
1362 |
+
#----------------------------------------------------------------------------#
|
1363 |
+
# #
|
1364 |
+
# Symbolic interface #
|
1365 |
+
# #
|
1366 |
+
#----------------------------------------------------------------------------#
|
1367 |
+
|
1368 |
+
def evalf_symbol(x: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
|
1369 |
+
val = options['subs'][x]
|
1370 |
+
if isinstance(val, mpf):
|
1371 |
+
if not val:
|
1372 |
+
return None, None, None, None
|
1373 |
+
return val._mpf_, None, prec, None
|
1374 |
+
else:
|
1375 |
+
if '_cache' not in options:
|
1376 |
+
options['_cache'] = {}
|
1377 |
+
cache = options['_cache']
|
1378 |
+
cached, cached_prec = cache.get(x, (None, MINUS_INF))
|
1379 |
+
if cached_prec >= prec:
|
1380 |
+
return cached
|
1381 |
+
v = evalf(sympify(val), prec, options)
|
1382 |
+
cache[x] = (v, prec)
|
1383 |
+
return v
|
1384 |
+
|
1385 |
+
|
1386 |
+
evalf_table: tDict[Type['Expr'], Callable[['Expr', int, OPT_DICT], TMP_RES]] = {}
|
1387 |
+
|
1388 |
+
|
1389 |
+
def _create_evalf_table():
|
1390 |
+
global evalf_table
|
1391 |
+
from sympy.concrete.products import Product
|
1392 |
+
from sympy.concrete.summations import Sum
|
1393 |
+
from .add import Add
|
1394 |
+
from .mul import Mul
|
1395 |
+
from .numbers import Exp1, Float, Half, ImaginaryUnit, Integer, NaN, NegativeOne, One, Pi, Rational, \
|
1396 |
+
Zero, ComplexInfinity, AlgebraicNumber
|
1397 |
+
from .power import Pow
|
1398 |
+
from .symbol import Dummy, Symbol
|
1399 |
+
from sympy.functions.elementary.complexes import Abs, im, re
|
1400 |
+
from sympy.functions.elementary.exponential import exp, log
|
1401 |
+
from sympy.functions.elementary.integers import ceiling, floor
|
1402 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
1403 |
+
from sympy.functions.elementary.trigonometric import atan, cos, sin
|
1404 |
+
from sympy.integrals.integrals import Integral
|
1405 |
+
evalf_table = {
|
1406 |
+
Symbol: evalf_symbol,
|
1407 |
+
Dummy: evalf_symbol,
|
1408 |
+
Float: evalf_float,
|
1409 |
+
Rational: evalf_rational,
|
1410 |
+
Integer: evalf_integer,
|
1411 |
+
Zero: lambda x, prec, options: (None, None, prec, None),
|
1412 |
+
One: lambda x, prec, options: (fone, None, prec, None),
|
1413 |
+
Half: lambda x, prec, options: (fhalf, None, prec, None),
|
1414 |
+
Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None),
|
1415 |
+
Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None),
|
1416 |
+
ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec),
|
1417 |
+
NegativeOne: lambda x, prec, options: (fnone, None, prec, None),
|
1418 |
+
ComplexInfinity: lambda x, prec, options: S.ComplexInfinity,
|
1419 |
+
NaN: lambda x, prec, options: (fnan, None, prec, None),
|
1420 |
+
|
1421 |
+
exp: evalf_exp,
|
1422 |
+
|
1423 |
+
cos: evalf_trig,
|
1424 |
+
sin: evalf_trig,
|
1425 |
+
|
1426 |
+
Add: evalf_add,
|
1427 |
+
Mul: evalf_mul,
|
1428 |
+
Pow: evalf_pow,
|
1429 |
+
|
1430 |
+
log: evalf_log,
|
1431 |
+
atan: evalf_atan,
|
1432 |
+
Abs: evalf_abs,
|
1433 |
+
|
1434 |
+
re: evalf_re,
|
1435 |
+
im: evalf_im,
|
1436 |
+
floor: evalf_floor,
|
1437 |
+
ceiling: evalf_ceiling,
|
1438 |
+
|
1439 |
+
Integral: evalf_integral,
|
1440 |
+
Sum: evalf_sum,
|
1441 |
+
Product: evalf_prod,
|
1442 |
+
Piecewise: evalf_piecewise,
|
1443 |
+
|
1444 |
+
AlgebraicNumber: evalf_alg_num,
|
1445 |
+
}
|
1446 |
+
|
1447 |
+
|
1448 |
+
def evalf(x: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES:
|
1449 |
+
"""
|
1450 |
+
Evaluate the ``Expr`` instance, ``x``
|
1451 |
+
to a binary precision of ``prec``. This
|
1452 |
+
function is supposed to be used internally.
|
1453 |
+
|
1454 |
+
Parameters
|
1455 |
+
==========
|
1456 |
+
|
1457 |
+
x : Expr
|
1458 |
+
The formula to evaluate to a float.
|
1459 |
+
prec : int
|
1460 |
+
The binary precision that the output should have.
|
1461 |
+
options : dict
|
1462 |
+
A dictionary with the same entries as
|
1463 |
+
``EvalfMixin.evalf`` and in addition,
|
1464 |
+
``maxprec`` which is the maximum working precision.
|
1465 |
+
|
1466 |
+
Returns
|
1467 |
+
=======
|
1468 |
+
|
1469 |
+
An optional tuple, ``(re, im, re_acc, im_acc)``
|
1470 |
+
which are the real, imaginary, real accuracy
|
1471 |
+
and imaginary accuracy respectively. ``re`` is
|
1472 |
+
an mpf value tuple and so is ``im``. ``re_acc``
|
1473 |
+
and ``im_acc`` are ints.
|
1474 |
+
|
1475 |
+
NB: all these return values can be ``None``.
|
1476 |
+
If all values are ``None``, then that represents 0.
|
1477 |
+
Note that 0 is also represented as ``fzero = (0, 0, 0, 0)``.
|
1478 |
+
"""
|
1479 |
+
from sympy.functions.elementary.complexes import re as re_, im as im_
|
1480 |
+
try:
|
1481 |
+
rf = evalf_table[type(x)]
|
1482 |
+
r = rf(x, prec, options)
|
1483 |
+
except KeyError:
|
1484 |
+
# Fall back to ordinary evalf if possible
|
1485 |
+
if 'subs' in options:
|
1486 |
+
x = x.subs(evalf_subs(prec, options['subs']))
|
1487 |
+
xe = x._eval_evalf(prec)
|
1488 |
+
if xe is None:
|
1489 |
+
raise NotImplementedError
|
1490 |
+
as_real_imag = getattr(xe, "as_real_imag", None)
|
1491 |
+
if as_real_imag is None:
|
1492 |
+
raise NotImplementedError # e.g. FiniteSet(-1.0, 1.0).evalf()
|
1493 |
+
re, im = as_real_imag()
|
1494 |
+
if re.has(re_) or im.has(im_):
|
1495 |
+
raise NotImplementedError
|
1496 |
+
if re == 0.0:
|
1497 |
+
re = None
|
1498 |
+
reprec = None
|
1499 |
+
elif re.is_number:
|
1500 |
+
re = re._to_mpmath(prec, allow_ints=False)._mpf_
|
1501 |
+
reprec = prec
|
1502 |
+
else:
|
1503 |
+
raise NotImplementedError
|
1504 |
+
if im == 0.0:
|
1505 |
+
im = None
|
1506 |
+
imprec = None
|
1507 |
+
elif im.is_number:
|
1508 |
+
im = im._to_mpmath(prec, allow_ints=False)._mpf_
|
1509 |
+
imprec = prec
|
1510 |
+
else:
|
1511 |
+
raise NotImplementedError
|
1512 |
+
r = re, im, reprec, imprec
|
1513 |
+
|
1514 |
+
if options.get("verbose"):
|
1515 |
+
print("### input", x)
|
1516 |
+
print("### output", to_str(r[0] or fzero, 50) if isinstance(r, tuple) else r)
|
1517 |
+
print("### raw", r) # r[0], r[2]
|
1518 |
+
print()
|
1519 |
+
chop = options.get('chop', False)
|
1520 |
+
if chop:
|
1521 |
+
if chop is True:
|
1522 |
+
chop_prec = prec
|
1523 |
+
else:
|
1524 |
+
# convert (approximately) from given tolerance;
|
1525 |
+
# the formula here will will make 1e-i rounds to 0 for
|
1526 |
+
# i in the range +/-27 while 2e-i will not be chopped
|
1527 |
+
chop_prec = int(round(-3.321*math.log10(chop) + 2.5))
|
1528 |
+
if chop_prec == 3:
|
1529 |
+
chop_prec -= 1
|
1530 |
+
r = chop_parts(r, chop_prec)
|
1531 |
+
if options.get("strict"):
|
1532 |
+
check_target(x, r, prec)
|
1533 |
+
return r
|
1534 |
+
|
1535 |
+
|
1536 |
+
def quad_to_mpmath(q, ctx=None):
|
1537 |
+
"""Turn the quad returned by ``evalf`` into an ``mpf`` or ``mpc``. """
|
1538 |
+
mpc = make_mpc if ctx is None else ctx.make_mpc
|
1539 |
+
mpf = make_mpf if ctx is None else ctx.make_mpf
|
1540 |
+
if q is S.ComplexInfinity:
|
1541 |
+
raise NotImplementedError
|
1542 |
+
re, im, _, _ = q
|
1543 |
+
if im:
|
1544 |
+
if not re:
|
1545 |
+
re = fzero
|
1546 |
+
return mpc((re, im))
|
1547 |
+
elif re:
|
1548 |
+
return mpf(re)
|
1549 |
+
else:
|
1550 |
+
return mpf(fzero)
|
1551 |
+
|
1552 |
+
|
1553 |
+
class EvalfMixin:
|
1554 |
+
"""Mixin class adding evalf capability."""
|
1555 |
+
|
1556 |
+
__slots__ = () # type: tTuple[str, ...]
|
1557 |
+
|
1558 |
+
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
|
1559 |
+
"""
|
1560 |
+
Evaluate the given formula to an accuracy of *n* digits.
|
1561 |
+
|
1562 |
+
Parameters
|
1563 |
+
==========
|
1564 |
+
|
1565 |
+
subs : dict, optional
|
1566 |
+
Substitute numerical values for symbols, e.g.
|
1567 |
+
``subs={x:3, y:1+pi}``. The substitutions must be given as a
|
1568 |
+
dictionary.
|
1569 |
+
|
1570 |
+
maxn : int, optional
|
1571 |
+
Allow a maximum temporary working precision of maxn digits.
|
1572 |
+
|
1573 |
+
chop : bool or number, optional
|
1574 |
+
Specifies how to replace tiny real or imaginary parts in
|
1575 |
+
subresults by exact zeros.
|
1576 |
+
|
1577 |
+
When ``True`` the chop value defaults to standard precision.
|
1578 |
+
|
1579 |
+
Otherwise the chop value is used to determine the
|
1580 |
+
magnitude of "small" for purposes of chopping.
|
1581 |
+
|
1582 |
+
>>> from sympy import N
|
1583 |
+
>>> x = 1e-4
|
1584 |
+
>>> N(x, chop=True)
|
1585 |
+
0.000100000000000000
|
1586 |
+
>>> N(x, chop=1e-5)
|
1587 |
+
0.000100000000000000
|
1588 |
+
>>> N(x, chop=1e-4)
|
1589 |
+
0
|
1590 |
+
|
1591 |
+
strict : bool, optional
|
1592 |
+
Raise ``PrecisionExhausted`` if any subresult fails to
|
1593 |
+
evaluate to full accuracy, given the available maxprec.
|
1594 |
+
|
1595 |
+
quad : str, optional
|
1596 |
+
Choose algorithm for numerical quadrature. By default,
|
1597 |
+
tanh-sinh quadrature is used. For oscillatory
|
1598 |
+
integrals on an infinite interval, try ``quad='osc'``.
|
1599 |
+
|
1600 |
+
verbose : bool, optional
|
1601 |
+
Print debug information.
|
1602 |
+
|
1603 |
+
Notes
|
1604 |
+
=====
|
1605 |
+
|
1606 |
+
When Floats are naively substituted into an expression,
|
1607 |
+
precision errors may adversely affect the result. For example,
|
1608 |
+
adding 1e16 (a Float) to 1 will truncate to 1e16; if 1e16 is
|
1609 |
+
then subtracted, the result will be 0.
|
1610 |
+
That is exactly what happens in the following:
|
1611 |
+
|
1612 |
+
>>> from sympy.abc import x, y, z
|
1613 |
+
>>> values = {x: 1e16, y: 1, z: 1e16}
|
1614 |
+
>>> (x + y - z).subs(values)
|
1615 |
+
0
|
1616 |
+
|
1617 |
+
Using the subs argument for evalf is the accurate way to
|
1618 |
+
evaluate such an expression:
|
1619 |
+
|
1620 |
+
>>> (x + y - z).evalf(subs=values)
|
1621 |
+
1.00000000000000
|
1622 |
+
"""
|
1623 |
+
from .numbers import Float, Number
|
1624 |
+
n = n if n is not None else 15
|
1625 |
+
|
1626 |
+
if subs and is_sequence(subs):
|
1627 |
+
raise TypeError('subs must be given as a dictionary')
|
1628 |
+
|
1629 |
+
# for sake of sage that doesn't like evalf(1)
|
1630 |
+
if n == 1 and isinstance(self, Number):
|
1631 |
+
from .expr import _mag
|
1632 |
+
rv = self.evalf(2, subs, maxn, chop, strict, quad, verbose)
|
1633 |
+
m = _mag(rv)
|
1634 |
+
rv = rv.round(1 - m)
|
1635 |
+
return rv
|
1636 |
+
|
1637 |
+
if not evalf_table:
|
1638 |
+
_create_evalf_table()
|
1639 |
+
prec = dps_to_prec(n)
|
1640 |
+
options = {'maxprec': max(prec, int(maxn*LG10)), 'chop': chop,
|
1641 |
+
'strict': strict, 'verbose': verbose}
|
1642 |
+
if subs is not None:
|
1643 |
+
options['subs'] = subs
|
1644 |
+
if quad is not None:
|
1645 |
+
options['quad'] = quad
|
1646 |
+
try:
|
1647 |
+
result = evalf(self, prec + 4, options)
|
1648 |
+
except NotImplementedError:
|
1649 |
+
# Fall back to the ordinary evalf
|
1650 |
+
if hasattr(self, 'subs') and subs is not None: # issue 20291
|
1651 |
+
v = self.subs(subs)._eval_evalf(prec)
|
1652 |
+
else:
|
1653 |
+
v = self._eval_evalf(prec)
|
1654 |
+
if v is None:
|
1655 |
+
return self
|
1656 |
+
elif not v.is_number:
|
1657 |
+
return v
|
1658 |
+
try:
|
1659 |
+
# If the result is numerical, normalize it
|
1660 |
+
result = evalf(v, prec, options)
|
1661 |
+
except NotImplementedError:
|
1662 |
+
# Probably contains symbols or unknown functions
|
1663 |
+
return v
|
1664 |
+
if result is S.ComplexInfinity:
|
1665 |
+
return result
|
1666 |
+
re, im, re_acc, im_acc = result
|
1667 |
+
if re is S.NaN or im is S.NaN:
|
1668 |
+
return S.NaN
|
1669 |
+
if re:
|
1670 |
+
p = max(min(prec, re_acc), 1)
|
1671 |
+
re = Float._new(re, p)
|
1672 |
+
else:
|
1673 |
+
re = S.Zero
|
1674 |
+
if im:
|
1675 |
+
p = max(min(prec, im_acc), 1)
|
1676 |
+
im = Float._new(im, p)
|
1677 |
+
return re + im*S.ImaginaryUnit
|
1678 |
+
else:
|
1679 |
+
return re
|
1680 |
+
|
1681 |
+
n = evalf
|
1682 |
+
|
1683 |
+
def _evalf(self, prec):
|
1684 |
+
"""Helper for evalf. Does the same thing but takes binary precision"""
|
1685 |
+
r = self._eval_evalf(prec)
|
1686 |
+
if r is None:
|
1687 |
+
r = self
|
1688 |
+
return r
|
1689 |
+
|
1690 |
+
def _eval_evalf(self, prec):
|
1691 |
+
return
|
1692 |
+
|
1693 |
+
def _to_mpmath(self, prec, allow_ints=True):
|
1694 |
+
# mpmath functions accept ints as input
|
1695 |
+
errmsg = "cannot convert to mpmath number"
|
1696 |
+
if allow_ints and self.is_Integer:
|
1697 |
+
return self.p
|
1698 |
+
if hasattr(self, '_as_mpf_val'):
|
1699 |
+
return make_mpf(self._as_mpf_val(prec))
|
1700 |
+
try:
|
1701 |
+
result = evalf(self, prec, {})
|
1702 |
+
return quad_to_mpmath(result)
|
1703 |
+
except NotImplementedError:
|
1704 |
+
v = self._eval_evalf(prec)
|
1705 |
+
if v is None:
|
1706 |
+
raise ValueError(errmsg)
|
1707 |
+
if v.is_Float:
|
1708 |
+
return make_mpf(v._mpf_)
|
1709 |
+
# Number + Number*I is also fine
|
1710 |
+
re, im = v.as_real_imag()
|
1711 |
+
if allow_ints and re.is_Integer:
|
1712 |
+
re = from_int(re.p)
|
1713 |
+
elif re.is_Float:
|
1714 |
+
re = re._mpf_
|
1715 |
+
else:
|
1716 |
+
raise ValueError(errmsg)
|
1717 |
+
if allow_ints and im.is_Integer:
|
1718 |
+
im = from_int(im.p)
|
1719 |
+
elif im.is_Float:
|
1720 |
+
im = im._mpf_
|
1721 |
+
else:
|
1722 |
+
raise ValueError(errmsg)
|
1723 |
+
return make_mpc((re, im))
|
1724 |
+
|
1725 |
+
|
1726 |
+
def N(x, n=15, **options):
|
1727 |
+
r"""
|
1728 |
+
Calls x.evalf(n, \*\*options).
|
1729 |
+
|
1730 |
+
Explanations
|
1731 |
+
============
|
1732 |
+
|
1733 |
+
Both .n() and N() are equivalent to .evalf(); use the one that you like better.
|
1734 |
+
See also the docstring of .evalf() for information on the options.
|
1735 |
+
|
1736 |
+
Examples
|
1737 |
+
========
|
1738 |
+
|
1739 |
+
>>> from sympy import Sum, oo, N
|
1740 |
+
>>> from sympy.abc import k
|
1741 |
+
>>> Sum(1/k**k, (k, 1, oo))
|
1742 |
+
Sum(k**(-k), (k, 1, oo))
|
1743 |
+
>>> N(_, 4)
|
1744 |
+
1.291
|
1745 |
+
|
1746 |
+
"""
|
1747 |
+
# by using rational=True, any evaluation of a string
|
1748 |
+
# will be done using exact values for the Floats
|
1749 |
+
return sympify(x, rational=True).evalf(n, **options)
|
1750 |
+
|
1751 |
+
|
1752 |
+
def _evalf_with_bounded_error(x: 'Expr', eps: 'Optional[Expr]' = None,
|
1753 |
+
m: int = 0,
|
1754 |
+
options: Optional[OPT_DICT] = None) -> TMP_RES:
|
1755 |
+
"""
|
1756 |
+
Evaluate *x* to within a bounded absolute error.
|
1757 |
+
|
1758 |
+
Parameters
|
1759 |
+
==========
|
1760 |
+
|
1761 |
+
x : Expr
|
1762 |
+
The quantity to be evaluated.
|
1763 |
+
eps : Expr, None, optional (default=None)
|
1764 |
+
Positive real upper bound on the acceptable error.
|
1765 |
+
m : int, optional (default=0)
|
1766 |
+
If *eps* is None, then use 2**(-m) as the upper bound on the error.
|
1767 |
+
options: OPT_DICT
|
1768 |
+
As in the ``evalf`` function.
|
1769 |
+
|
1770 |
+
Returns
|
1771 |
+
=======
|
1772 |
+
|
1773 |
+
A tuple ``(re, im, re_acc, im_acc)``, as returned by ``evalf``.
|
1774 |
+
|
1775 |
+
See Also
|
1776 |
+
========
|
1777 |
+
|
1778 |
+
evalf
|
1779 |
+
|
1780 |
+
"""
|
1781 |
+
if eps is not None:
|
1782 |
+
if not (eps.is_Rational or eps.is_Float) or not eps > 0:
|
1783 |
+
raise ValueError("eps must be positive")
|
1784 |
+
r, _, _, _ = evalf(1/eps, 1, {})
|
1785 |
+
m = fastlog(r)
|
1786 |
+
|
1787 |
+
c, d, _, _ = evalf(x, 1, {})
|
1788 |
+
# Note: If x = a + b*I, then |a| <= 2|c| and |b| <= 2|d|, with equality
|
1789 |
+
# only in the zero case.
|
1790 |
+
# If a is non-zero, then |c| = 2**nc for some integer nc, and c has
|
1791 |
+
# bitcount 1. Therefore 2**fastlog(c) = 2**(nc+1) = 2|c| is an upper bound
|
1792 |
+
# on |a|. Likewise for b and d.
|
1793 |
+
nr, ni = fastlog(c), fastlog(d)
|
1794 |
+
n = max(nr, ni) + 1
|
1795 |
+
# If x is 0, then n is MINUS_INF, and p will be 1. Otherwise,
|
1796 |
+
# n - 1 bits get us past the integer parts of a and b, and +1 accounts for
|
1797 |
+
# the factor of <= sqrt(2) that is |x|/max(|a|, |b|).
|
1798 |
+
p = max(1, m + n + 1)
|
1799 |
+
|
1800 |
+
options = options or {}
|
1801 |
+
return evalf(x, p, options)
|
env-llmeval/lib/python3.10/site-packages/sympy/core/exprtools.py
ADDED
@@ -0,0 +1,1569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tools for manipulating of large commutative expressions. """
|
2 |
+
|
3 |
+
from .add import Add
|
4 |
+
from .mul import Mul, _keep_coeff
|
5 |
+
from .power import Pow
|
6 |
+
from .basic import Basic
|
7 |
+
from .expr import Expr
|
8 |
+
from .function import expand_power_exp
|
9 |
+
from .sympify import sympify
|
10 |
+
from .numbers import Rational, Integer, Number, I, equal_valued
|
11 |
+
from .singleton import S
|
12 |
+
from .sorting import default_sort_key, ordered
|
13 |
+
from .symbol import Dummy
|
14 |
+
from .traversal import preorder_traversal
|
15 |
+
from .coreerrors import NonCommutativeExpression
|
16 |
+
from .containers import Tuple, Dict
|
17 |
+
from sympy.external.gmpy import SYMPY_INTS
|
18 |
+
from sympy.utilities.iterables import (common_prefix, common_suffix,
|
19 |
+
variations, iterable, is_sequence)
|
20 |
+
|
21 |
+
from collections import defaultdict
|
22 |
+
from typing import Tuple as tTuple
|
23 |
+
|
24 |
+
|
25 |
+
_eps = Dummy(positive=True)
|
26 |
+
|
27 |
+
|
28 |
+
def _isnumber(i):
|
29 |
+
return isinstance(i, (SYMPY_INTS, float)) or i.is_Number
|
30 |
+
|
31 |
+
|
32 |
+
def _monotonic_sign(self):
|
33 |
+
"""Return the value closest to 0 that ``self`` may have if all symbols
|
34 |
+
are signed and the result is uniformly the same sign for all values of symbols.
|
35 |
+
If a symbol is only signed but not known to be an
|
36 |
+
integer or the result is 0 then a symbol representative of the sign of self
|
37 |
+
will be returned. Otherwise, None is returned if a) the sign could be positive
|
38 |
+
or negative or b) self is not in one of the following forms:
|
39 |
+
|
40 |
+
- L(x, y, ...) + A: a function linear in all symbols x, y, ... with an
|
41 |
+
additive constant; if A is zero then the function can be a monomial whose
|
42 |
+
sign is monotonic over the range of the variables, e.g. (x + 1)**3 if x is
|
43 |
+
nonnegative.
|
44 |
+
- A/L(x, y, ...) + B: the inverse of a function linear in all symbols x, y, ...
|
45 |
+
that does not have a sign change from positive to negative for any set
|
46 |
+
of values for the variables.
|
47 |
+
- M(x, y, ...) + A: a monomial M whose factors are all signed and a constant, A.
|
48 |
+
- A/M(x, y, ...) + B: the inverse of a monomial and constants A and B.
|
49 |
+
- P(x): a univariate polynomial
|
50 |
+
|
51 |
+
Examples
|
52 |
+
========
|
53 |
+
|
54 |
+
>>> from sympy.core.exprtools import _monotonic_sign as F
|
55 |
+
>>> from sympy import Dummy
|
56 |
+
>>> nn = Dummy(integer=True, nonnegative=True)
|
57 |
+
>>> p = Dummy(integer=True, positive=True)
|
58 |
+
>>> p2 = Dummy(integer=True, positive=True)
|
59 |
+
>>> F(nn + 1)
|
60 |
+
1
|
61 |
+
>>> F(p - 1)
|
62 |
+
_nneg
|
63 |
+
>>> F(nn*p + 1)
|
64 |
+
1
|
65 |
+
>>> F(p2*p + 1)
|
66 |
+
2
|
67 |
+
>>> F(nn - 1) # could be negative, zero or positive
|
68 |
+
"""
|
69 |
+
if not self.is_extended_real:
|
70 |
+
return
|
71 |
+
|
72 |
+
if (-self).is_Symbol:
|
73 |
+
rv = _monotonic_sign(-self)
|
74 |
+
return rv if rv is None else -rv
|
75 |
+
|
76 |
+
if not self.is_Add and self.as_numer_denom()[1].is_number:
|
77 |
+
s = self
|
78 |
+
if s.is_prime:
|
79 |
+
if s.is_odd:
|
80 |
+
return Integer(3)
|
81 |
+
else:
|
82 |
+
return Integer(2)
|
83 |
+
elif s.is_composite:
|
84 |
+
if s.is_odd:
|
85 |
+
return Integer(9)
|
86 |
+
else:
|
87 |
+
return Integer(4)
|
88 |
+
elif s.is_positive:
|
89 |
+
if s.is_even:
|
90 |
+
if s.is_prime is False:
|
91 |
+
return Integer(4)
|
92 |
+
else:
|
93 |
+
return Integer(2)
|
94 |
+
elif s.is_integer:
|
95 |
+
return S.One
|
96 |
+
else:
|
97 |
+
return _eps
|
98 |
+
elif s.is_extended_negative:
|
99 |
+
if s.is_even:
|
100 |
+
return Integer(-2)
|
101 |
+
elif s.is_integer:
|
102 |
+
return S.NegativeOne
|
103 |
+
else:
|
104 |
+
return -_eps
|
105 |
+
if s.is_zero or s.is_extended_nonpositive or s.is_extended_nonnegative:
|
106 |
+
return S.Zero
|
107 |
+
return None
|
108 |
+
|
109 |
+
# univariate polynomial
|
110 |
+
free = self.free_symbols
|
111 |
+
if len(free) == 1:
|
112 |
+
if self.is_polynomial():
|
113 |
+
from sympy.polys.polytools import real_roots
|
114 |
+
from sympy.polys.polyroots import roots
|
115 |
+
from sympy.polys.polyerrors import PolynomialError
|
116 |
+
x = free.pop()
|
117 |
+
x0 = _monotonic_sign(x)
|
118 |
+
if x0 in (_eps, -_eps):
|
119 |
+
x0 = S.Zero
|
120 |
+
if x0 is not None:
|
121 |
+
d = self.diff(x)
|
122 |
+
if d.is_number:
|
123 |
+
currentroots = []
|
124 |
+
else:
|
125 |
+
try:
|
126 |
+
currentroots = real_roots(d)
|
127 |
+
except (PolynomialError, NotImplementedError):
|
128 |
+
currentroots = [r for r in roots(d, x) if r.is_extended_real]
|
129 |
+
y = self.subs(x, x0)
|
130 |
+
if x.is_nonnegative and all(
|
131 |
+
(r - x0).is_nonpositive for r in currentroots):
|
132 |
+
if y.is_nonnegative and d.is_positive:
|
133 |
+
if y:
|
134 |
+
return y if y.is_positive else Dummy('pos', positive=True)
|
135 |
+
else:
|
136 |
+
return Dummy('nneg', nonnegative=True)
|
137 |
+
if y.is_nonpositive and d.is_negative:
|
138 |
+
if y:
|
139 |
+
return y if y.is_negative else Dummy('neg', negative=True)
|
140 |
+
else:
|
141 |
+
return Dummy('npos', nonpositive=True)
|
142 |
+
elif x.is_nonpositive and all(
|
143 |
+
(r - x0).is_nonnegative for r in currentroots):
|
144 |
+
if y.is_nonnegative and d.is_negative:
|
145 |
+
if y:
|
146 |
+
return Dummy('pos', positive=True)
|
147 |
+
else:
|
148 |
+
return Dummy('nneg', nonnegative=True)
|
149 |
+
if y.is_nonpositive and d.is_positive:
|
150 |
+
if y:
|
151 |
+
return Dummy('neg', negative=True)
|
152 |
+
else:
|
153 |
+
return Dummy('npos', nonpositive=True)
|
154 |
+
else:
|
155 |
+
n, d = self.as_numer_denom()
|
156 |
+
den = None
|
157 |
+
if n.is_number:
|
158 |
+
den = _monotonic_sign(d)
|
159 |
+
elif not d.is_number:
|
160 |
+
if _monotonic_sign(n) is not None:
|
161 |
+
den = _monotonic_sign(d)
|
162 |
+
if den is not None and (den.is_positive or den.is_negative):
|
163 |
+
v = n*den
|
164 |
+
if v.is_positive:
|
165 |
+
return Dummy('pos', positive=True)
|
166 |
+
elif v.is_nonnegative:
|
167 |
+
return Dummy('nneg', nonnegative=True)
|
168 |
+
elif v.is_negative:
|
169 |
+
return Dummy('neg', negative=True)
|
170 |
+
elif v.is_nonpositive:
|
171 |
+
return Dummy('npos', nonpositive=True)
|
172 |
+
return None
|
173 |
+
|
174 |
+
# multivariate
|
175 |
+
c, a = self.as_coeff_Add()
|
176 |
+
v = None
|
177 |
+
if not a.is_polynomial():
|
178 |
+
# F/A or A/F where A is a number and F is a signed, rational monomial
|
179 |
+
n, d = a.as_numer_denom()
|
180 |
+
if not (n.is_number or d.is_number):
|
181 |
+
return
|
182 |
+
if (
|
183 |
+
a.is_Mul or a.is_Pow) and \
|
184 |
+
a.is_rational and \
|
185 |
+
all(p.exp.is_Integer for p in a.atoms(Pow) if p.is_Pow) and \
|
186 |
+
(a.is_positive or a.is_negative):
|
187 |
+
v = S.One
|
188 |
+
for ai in Mul.make_args(a):
|
189 |
+
if ai.is_number:
|
190 |
+
v *= ai
|
191 |
+
continue
|
192 |
+
reps = {}
|
193 |
+
for x in ai.free_symbols:
|
194 |
+
reps[x] = _monotonic_sign(x)
|
195 |
+
if reps[x] is None:
|
196 |
+
return
|
197 |
+
v *= ai.subs(reps)
|
198 |
+
elif c:
|
199 |
+
# signed linear expression
|
200 |
+
if not any(p for p in a.atoms(Pow) if not p.is_number) and (a.is_nonpositive or a.is_nonnegative):
|
201 |
+
free = list(a.free_symbols)
|
202 |
+
p = {}
|
203 |
+
for i in free:
|
204 |
+
v = _monotonic_sign(i)
|
205 |
+
if v is None:
|
206 |
+
return
|
207 |
+
p[i] = v or (_eps if i.is_nonnegative else -_eps)
|
208 |
+
v = a.xreplace(p)
|
209 |
+
if v is not None:
|
210 |
+
rv = v + c
|
211 |
+
if v.is_nonnegative and rv.is_positive:
|
212 |
+
return rv.subs(_eps, 0)
|
213 |
+
if v.is_nonpositive and rv.is_negative:
|
214 |
+
return rv.subs(_eps, 0)
|
215 |
+
|
216 |
+
|
217 |
+
def decompose_power(expr: Expr) -> tTuple[Expr, int]:
|
218 |
+
"""
|
219 |
+
Decompose power into symbolic base and integer exponent.
|
220 |
+
|
221 |
+
Examples
|
222 |
+
========
|
223 |
+
|
224 |
+
>>> from sympy.core.exprtools import decompose_power
|
225 |
+
>>> from sympy.abc import x, y
|
226 |
+
>>> from sympy import exp
|
227 |
+
|
228 |
+
>>> decompose_power(x)
|
229 |
+
(x, 1)
|
230 |
+
>>> decompose_power(x**2)
|
231 |
+
(x, 2)
|
232 |
+
>>> decompose_power(exp(2*y/3))
|
233 |
+
(exp(y/3), 2)
|
234 |
+
|
235 |
+
"""
|
236 |
+
base, exp = expr.as_base_exp()
|
237 |
+
|
238 |
+
if exp.is_Number:
|
239 |
+
if exp.is_Rational:
|
240 |
+
if not exp.is_Integer:
|
241 |
+
base = Pow(base, Rational(1, exp.q)) # type: ignore
|
242 |
+
e = exp.p # type: ignore
|
243 |
+
else:
|
244 |
+
base, e = expr, 1
|
245 |
+
else:
|
246 |
+
exp, tail = exp.as_coeff_Mul(rational=True)
|
247 |
+
|
248 |
+
if exp is S.NegativeOne:
|
249 |
+
base, e = Pow(base, tail), -1
|
250 |
+
elif exp is not S.One:
|
251 |
+
# todo: after dropping python 3.7 support, use overload and Literal
|
252 |
+
# in as_coeff_Mul to make exp Rational, and remove these 2 ignores
|
253 |
+
tail = _keep_coeff(Rational(1, exp.q), tail) # type: ignore
|
254 |
+
base, e = Pow(base, tail), exp.p # type: ignore
|
255 |
+
else:
|
256 |
+
base, e = expr, 1
|
257 |
+
|
258 |
+
return base, e
|
259 |
+
|
260 |
+
|
261 |
+
def decompose_power_rat(expr: Expr) -> tTuple[Expr, Rational]:
|
262 |
+
"""
|
263 |
+
Decompose power into symbolic base and rational exponent;
|
264 |
+
if the exponent is not a Rational, then separate only the
|
265 |
+
integer coefficient.
|
266 |
+
|
267 |
+
Examples
|
268 |
+
========
|
269 |
+
|
270 |
+
>>> from sympy.core.exprtools import decompose_power_rat
|
271 |
+
>>> from sympy.abc import x
|
272 |
+
>>> from sympy import sqrt, exp
|
273 |
+
|
274 |
+
>>> decompose_power_rat(sqrt(x))
|
275 |
+
(x, 1/2)
|
276 |
+
>>> decompose_power_rat(exp(-3*x/2))
|
277 |
+
(exp(x/2), -3)
|
278 |
+
|
279 |
+
"""
|
280 |
+
_ = base, exp = expr.as_base_exp()
|
281 |
+
return _ if exp.is_Rational else decompose_power(expr)
|
282 |
+
|
283 |
+
|
284 |
+
class Factors:
|
285 |
+
"""Efficient representation of ``f_1*f_2*...*f_n``."""
|
286 |
+
|
287 |
+
__slots__ = ('factors', 'gens')
|
288 |
+
|
289 |
+
def __init__(self, factors=None): # Factors
|
290 |
+
"""Initialize Factors from dict or expr.
|
291 |
+
|
292 |
+
Examples
|
293 |
+
========
|
294 |
+
|
295 |
+
>>> from sympy.core.exprtools import Factors
|
296 |
+
>>> from sympy.abc import x
|
297 |
+
>>> from sympy import I
|
298 |
+
>>> e = 2*x**3
|
299 |
+
>>> Factors(e)
|
300 |
+
Factors({2: 1, x: 3})
|
301 |
+
>>> Factors(e.as_powers_dict())
|
302 |
+
Factors({2: 1, x: 3})
|
303 |
+
>>> f = _
|
304 |
+
>>> f.factors # underlying dictionary
|
305 |
+
{2: 1, x: 3}
|
306 |
+
>>> f.gens # base of each factor
|
307 |
+
frozenset({2, x})
|
308 |
+
>>> Factors(0)
|
309 |
+
Factors({0: 1})
|
310 |
+
>>> Factors(I)
|
311 |
+
Factors({I: 1})
|
312 |
+
|
313 |
+
Notes
|
314 |
+
=====
|
315 |
+
|
316 |
+
Although a dictionary can be passed, only minimal checking is
|
317 |
+
performed: powers of -1 and I are made canonical.
|
318 |
+
|
319 |
+
"""
|
320 |
+
if isinstance(factors, (SYMPY_INTS, float)):
|
321 |
+
factors = S(factors)
|
322 |
+
if isinstance(factors, Factors):
|
323 |
+
factors = factors.factors.copy()
|
324 |
+
elif factors in (None, S.One):
|
325 |
+
factors = {}
|
326 |
+
elif factors is S.Zero or factors == 0:
|
327 |
+
factors = {S.Zero: S.One}
|
328 |
+
elif isinstance(factors, Number):
|
329 |
+
n = factors
|
330 |
+
factors = {}
|
331 |
+
if n < 0:
|
332 |
+
factors[S.NegativeOne] = S.One
|
333 |
+
n = -n
|
334 |
+
if n is not S.One:
|
335 |
+
if n.is_Float or n.is_Integer or n is S.Infinity:
|
336 |
+
factors[n] = S.One
|
337 |
+
elif n.is_Rational:
|
338 |
+
# since we're processing Numbers, the denominator is
|
339 |
+
# stored with a negative exponent; all other factors
|
340 |
+
# are left .
|
341 |
+
if n.p != 1:
|
342 |
+
factors[Integer(n.p)] = S.One
|
343 |
+
factors[Integer(n.q)] = S.NegativeOne
|
344 |
+
else:
|
345 |
+
raise ValueError('Expected Float|Rational|Integer, not %s' % n)
|
346 |
+
elif isinstance(factors, Basic) and not factors.args:
|
347 |
+
factors = {factors: S.One}
|
348 |
+
elif isinstance(factors, Expr):
|
349 |
+
c, nc = factors.args_cnc()
|
350 |
+
i = c.count(I)
|
351 |
+
for _ in range(i):
|
352 |
+
c.remove(I)
|
353 |
+
factors = dict(Mul._from_args(c).as_powers_dict())
|
354 |
+
# Handle all rational Coefficients
|
355 |
+
for f in list(factors.keys()):
|
356 |
+
if isinstance(f, Rational) and not isinstance(f, Integer):
|
357 |
+
p, q = Integer(f.p), Integer(f.q)
|
358 |
+
factors[p] = (factors[p] if p in factors else S.Zero) + factors[f]
|
359 |
+
factors[q] = (factors[q] if q in factors else S.Zero) - factors[f]
|
360 |
+
factors.pop(f)
|
361 |
+
if i:
|
362 |
+
factors[I] = factors.get(I, S.Zero) + i
|
363 |
+
if nc:
|
364 |
+
factors[Mul(*nc, evaluate=False)] = S.One
|
365 |
+
else:
|
366 |
+
factors = factors.copy() # /!\ should be dict-like
|
367 |
+
|
368 |
+
# tidy up -/+1 and I exponents if Rational
|
369 |
+
|
370 |
+
handle = [k for k in factors if k is I or k in (-1, 1)]
|
371 |
+
if handle:
|
372 |
+
i1 = S.One
|
373 |
+
for k in handle:
|
374 |
+
if not _isnumber(factors[k]):
|
375 |
+
continue
|
376 |
+
i1 *= k**factors.pop(k)
|
377 |
+
if i1 is not S.One:
|
378 |
+
for a in i1.args if i1.is_Mul else [i1]: # at worst, -1.0*I*(-1)**e
|
379 |
+
if a is S.NegativeOne:
|
380 |
+
factors[a] = S.One
|
381 |
+
elif a is I:
|
382 |
+
factors[I] = S.One
|
383 |
+
elif a.is_Pow:
|
384 |
+
factors[a.base] = factors.get(a.base, S.Zero) + a.exp
|
385 |
+
elif equal_valued(a, 1):
|
386 |
+
factors[a] = S.One
|
387 |
+
elif equal_valued(a, -1):
|
388 |
+
factors[-a] = S.One
|
389 |
+
factors[S.NegativeOne] = S.One
|
390 |
+
else:
|
391 |
+
raise ValueError('unexpected factor in i1: %s' % a)
|
392 |
+
|
393 |
+
self.factors = factors
|
394 |
+
keys = getattr(factors, 'keys', None)
|
395 |
+
if keys is None:
|
396 |
+
raise TypeError('expecting Expr or dictionary')
|
397 |
+
self.gens = frozenset(keys())
|
398 |
+
|
399 |
+
def __hash__(self): # Factors
|
400 |
+
keys = tuple(ordered(self.factors.keys()))
|
401 |
+
values = [self.factors[k] for k in keys]
|
402 |
+
return hash((keys, values))
|
403 |
+
|
404 |
+
def __repr__(self): # Factors
|
405 |
+
return "Factors({%s})" % ', '.join(
|
406 |
+
['%s: %s' % (k, v) for k, v in ordered(self.factors.items())])
|
407 |
+
|
408 |
+
@property
|
409 |
+
def is_zero(self): # Factors
|
410 |
+
"""
|
411 |
+
>>> from sympy.core.exprtools import Factors
|
412 |
+
>>> Factors(0).is_zero
|
413 |
+
True
|
414 |
+
"""
|
415 |
+
f = self.factors
|
416 |
+
return len(f) == 1 and S.Zero in f
|
417 |
+
|
418 |
+
@property
|
419 |
+
def is_one(self): # Factors
|
420 |
+
"""
|
421 |
+
>>> from sympy.core.exprtools import Factors
|
422 |
+
>>> Factors(1).is_one
|
423 |
+
True
|
424 |
+
"""
|
425 |
+
return not self.factors
|
426 |
+
|
427 |
+
def as_expr(self): # Factors
|
428 |
+
"""Return the underlying expression.
|
429 |
+
|
430 |
+
Examples
|
431 |
+
========
|
432 |
+
|
433 |
+
>>> from sympy.core.exprtools import Factors
|
434 |
+
>>> from sympy.abc import x, y
|
435 |
+
>>> Factors((x*y**2).as_powers_dict()).as_expr()
|
436 |
+
x*y**2
|
437 |
+
|
438 |
+
"""
|
439 |
+
|
440 |
+
args = []
|
441 |
+
for factor, exp in self.factors.items():
|
442 |
+
if exp != 1:
|
443 |
+
if isinstance(exp, Integer):
|
444 |
+
b, e = factor.as_base_exp()
|
445 |
+
e = _keep_coeff(exp, e)
|
446 |
+
args.append(b**e)
|
447 |
+
else:
|
448 |
+
args.append(factor**exp)
|
449 |
+
else:
|
450 |
+
args.append(factor)
|
451 |
+
return Mul(*args)
|
452 |
+
|
453 |
+
def mul(self, other): # Factors
|
454 |
+
"""Return Factors of ``self * other``.
|
455 |
+
|
456 |
+
Examples
|
457 |
+
========
|
458 |
+
|
459 |
+
>>> from sympy.core.exprtools import Factors
|
460 |
+
>>> from sympy.abc import x, y, z
|
461 |
+
>>> a = Factors((x*y**2).as_powers_dict())
|
462 |
+
>>> b = Factors((x*y/z).as_powers_dict())
|
463 |
+
>>> a.mul(b)
|
464 |
+
Factors({x: 2, y: 3, z: -1})
|
465 |
+
>>> a*b
|
466 |
+
Factors({x: 2, y: 3, z: -1})
|
467 |
+
"""
|
468 |
+
if not isinstance(other, Factors):
|
469 |
+
other = Factors(other)
|
470 |
+
if any(f.is_zero for f in (self, other)):
|
471 |
+
return Factors(S.Zero)
|
472 |
+
factors = dict(self.factors)
|
473 |
+
|
474 |
+
for factor, exp in other.factors.items():
|
475 |
+
if factor in factors:
|
476 |
+
exp = factors[factor] + exp
|
477 |
+
|
478 |
+
if not exp:
|
479 |
+
del factors[factor]
|
480 |
+
continue
|
481 |
+
|
482 |
+
factors[factor] = exp
|
483 |
+
|
484 |
+
return Factors(factors)
|
485 |
+
|
486 |
+
def normal(self, other):
|
487 |
+
"""Return ``self`` and ``other`` with ``gcd`` removed from each.
|
488 |
+
The only differences between this and method ``div`` is that this
|
489 |
+
is 1) optimized for the case when there are few factors in common and
|
490 |
+
2) this does not raise an error if ``other`` is zero.
|
491 |
+
|
492 |
+
See Also
|
493 |
+
========
|
494 |
+
div
|
495 |
+
|
496 |
+
"""
|
497 |
+
if not isinstance(other, Factors):
|
498 |
+
other = Factors(other)
|
499 |
+
if other.is_zero:
|
500 |
+
return (Factors(), Factors(S.Zero))
|
501 |
+
if self.is_zero:
|
502 |
+
return (Factors(S.Zero), Factors())
|
503 |
+
|
504 |
+
self_factors = dict(self.factors)
|
505 |
+
other_factors = dict(other.factors)
|
506 |
+
|
507 |
+
for factor, self_exp in self.factors.items():
|
508 |
+
try:
|
509 |
+
other_exp = other.factors[factor]
|
510 |
+
except KeyError:
|
511 |
+
continue
|
512 |
+
|
513 |
+
exp = self_exp - other_exp
|
514 |
+
|
515 |
+
if not exp:
|
516 |
+
del self_factors[factor]
|
517 |
+
del other_factors[factor]
|
518 |
+
elif _isnumber(exp):
|
519 |
+
if exp > 0:
|
520 |
+
self_factors[factor] = exp
|
521 |
+
del other_factors[factor]
|
522 |
+
else:
|
523 |
+
del self_factors[factor]
|
524 |
+
other_factors[factor] = -exp
|
525 |
+
else:
|
526 |
+
r = self_exp.extract_additively(other_exp)
|
527 |
+
if r is not None:
|
528 |
+
if r:
|
529 |
+
self_factors[factor] = r
|
530 |
+
del other_factors[factor]
|
531 |
+
else: # should be handled already
|
532 |
+
del self_factors[factor]
|
533 |
+
del other_factors[factor]
|
534 |
+
else:
|
535 |
+
sc, sa = self_exp.as_coeff_Add()
|
536 |
+
if sc:
|
537 |
+
oc, oa = other_exp.as_coeff_Add()
|
538 |
+
diff = sc - oc
|
539 |
+
if diff > 0:
|
540 |
+
self_factors[factor] -= oc
|
541 |
+
other_exp = oa
|
542 |
+
elif diff < 0:
|
543 |
+
self_factors[factor] -= sc
|
544 |
+
other_factors[factor] -= sc
|
545 |
+
other_exp = oa - diff
|
546 |
+
else:
|
547 |
+
self_factors[factor] = sa
|
548 |
+
other_exp = oa
|
549 |
+
if other_exp:
|
550 |
+
other_factors[factor] = other_exp
|
551 |
+
else:
|
552 |
+
del other_factors[factor]
|
553 |
+
|
554 |
+
return Factors(self_factors), Factors(other_factors)
|
555 |
+
|
556 |
+
def div(self, other): # Factors
|
557 |
+
"""Return ``self`` and ``other`` with ``gcd`` removed from each.
|
558 |
+
This is optimized for the case when there are many factors in common.
|
559 |
+
|
560 |
+
Examples
|
561 |
+
========
|
562 |
+
|
563 |
+
>>> from sympy.core.exprtools import Factors
|
564 |
+
>>> from sympy.abc import x, y, z
|
565 |
+
>>> from sympy import S
|
566 |
+
|
567 |
+
>>> a = Factors((x*y**2).as_powers_dict())
|
568 |
+
>>> a.div(a)
|
569 |
+
(Factors({}), Factors({}))
|
570 |
+
>>> a.div(x*z)
|
571 |
+
(Factors({y: 2}), Factors({z: 1}))
|
572 |
+
|
573 |
+
The ``/`` operator only gives ``quo``:
|
574 |
+
|
575 |
+
>>> a/x
|
576 |
+
Factors({y: 2})
|
577 |
+
|
578 |
+
Factors treats its factors as though they are all in the numerator, so
|
579 |
+
if you violate this assumption the results will be correct but will
|
580 |
+
not strictly correspond to the numerator and denominator of the ratio:
|
581 |
+
|
582 |
+
>>> a.div(x/z)
|
583 |
+
(Factors({y: 2}), Factors({z: -1}))
|
584 |
+
|
585 |
+
Factors is also naive about bases: it does not attempt any denesting
|
586 |
+
of Rational-base terms, for example the following does not become
|
587 |
+
2**(2*x)/2.
|
588 |
+
|
589 |
+
>>> Factors(2**(2*x + 2)).div(S(8))
|
590 |
+
(Factors({2: 2*x + 2}), Factors({8: 1}))
|
591 |
+
|
592 |
+
factor_terms can clean up such Rational-bases powers:
|
593 |
+
|
594 |
+
>>> from sympy import factor_terms
|
595 |
+
>>> n, d = Factors(2**(2*x + 2)).div(S(8))
|
596 |
+
>>> n.as_expr()/d.as_expr()
|
597 |
+
2**(2*x + 2)/8
|
598 |
+
>>> factor_terms(_)
|
599 |
+
2**(2*x)/2
|
600 |
+
|
601 |
+
"""
|
602 |
+
quo, rem = dict(self.factors), {}
|
603 |
+
|
604 |
+
if not isinstance(other, Factors):
|
605 |
+
other = Factors(other)
|
606 |
+
if other.is_zero:
|
607 |
+
raise ZeroDivisionError
|
608 |
+
if self.is_zero:
|
609 |
+
return (Factors(S.Zero), Factors())
|
610 |
+
|
611 |
+
for factor, exp in other.factors.items():
|
612 |
+
if factor in quo:
|
613 |
+
d = quo[factor] - exp
|
614 |
+
if _isnumber(d):
|
615 |
+
if d <= 0:
|
616 |
+
del quo[factor]
|
617 |
+
|
618 |
+
if d >= 0:
|
619 |
+
if d:
|
620 |
+
quo[factor] = d
|
621 |
+
|
622 |
+
continue
|
623 |
+
|
624 |
+
exp = -d
|
625 |
+
|
626 |
+
else:
|
627 |
+
r = quo[factor].extract_additively(exp)
|
628 |
+
if r is not None:
|
629 |
+
if r:
|
630 |
+
quo[factor] = r
|
631 |
+
else: # should be handled already
|
632 |
+
del quo[factor]
|
633 |
+
else:
|
634 |
+
other_exp = exp
|
635 |
+
sc, sa = quo[factor].as_coeff_Add()
|
636 |
+
if sc:
|
637 |
+
oc, oa = other_exp.as_coeff_Add()
|
638 |
+
diff = sc - oc
|
639 |
+
if diff > 0:
|
640 |
+
quo[factor] -= oc
|
641 |
+
other_exp = oa
|
642 |
+
elif diff < 0:
|
643 |
+
quo[factor] -= sc
|
644 |
+
other_exp = oa - diff
|
645 |
+
else:
|
646 |
+
quo[factor] = sa
|
647 |
+
other_exp = oa
|
648 |
+
if other_exp:
|
649 |
+
rem[factor] = other_exp
|
650 |
+
else:
|
651 |
+
assert factor not in rem
|
652 |
+
continue
|
653 |
+
|
654 |
+
rem[factor] = exp
|
655 |
+
|
656 |
+
return Factors(quo), Factors(rem)
|
657 |
+
|
658 |
+
def quo(self, other): # Factors
|
659 |
+
"""Return numerator Factor of ``self / other``.
|
660 |
+
|
661 |
+
Examples
|
662 |
+
========
|
663 |
+
|
664 |
+
>>> from sympy.core.exprtools import Factors
|
665 |
+
>>> from sympy.abc import x, y, z
|
666 |
+
>>> a = Factors((x*y**2).as_powers_dict())
|
667 |
+
>>> b = Factors((x*y/z).as_powers_dict())
|
668 |
+
>>> a.quo(b) # same as a/b
|
669 |
+
Factors({y: 1})
|
670 |
+
"""
|
671 |
+
return self.div(other)[0]
|
672 |
+
|
673 |
+
def rem(self, other): # Factors
|
674 |
+
"""Return denominator Factors of ``self / other``.
|
675 |
+
|
676 |
+
Examples
|
677 |
+
========
|
678 |
+
|
679 |
+
>>> from sympy.core.exprtools import Factors
|
680 |
+
>>> from sympy.abc import x, y, z
|
681 |
+
>>> a = Factors((x*y**2).as_powers_dict())
|
682 |
+
>>> b = Factors((x*y/z).as_powers_dict())
|
683 |
+
>>> a.rem(b)
|
684 |
+
Factors({z: -1})
|
685 |
+
>>> a.rem(a)
|
686 |
+
Factors({})
|
687 |
+
"""
|
688 |
+
return self.div(other)[1]
|
689 |
+
|
690 |
+
def pow(self, other): # Factors
|
691 |
+
"""Return self raised to a non-negative integer power.
|
692 |
+
|
693 |
+
Examples
|
694 |
+
========
|
695 |
+
|
696 |
+
>>> from sympy.core.exprtools import Factors
|
697 |
+
>>> from sympy.abc import x, y
|
698 |
+
>>> a = Factors((x*y**2).as_powers_dict())
|
699 |
+
>>> a**2
|
700 |
+
Factors({x: 2, y: 4})
|
701 |
+
|
702 |
+
"""
|
703 |
+
if isinstance(other, Factors):
|
704 |
+
other = other.as_expr()
|
705 |
+
if other.is_Integer:
|
706 |
+
other = int(other)
|
707 |
+
if isinstance(other, SYMPY_INTS) and other >= 0:
|
708 |
+
factors = {}
|
709 |
+
|
710 |
+
if other:
|
711 |
+
for factor, exp in self.factors.items():
|
712 |
+
factors[factor] = exp*other
|
713 |
+
|
714 |
+
return Factors(factors)
|
715 |
+
else:
|
716 |
+
raise ValueError("expected non-negative integer, got %s" % other)
|
717 |
+
|
718 |
+
def gcd(self, other): # Factors
|
719 |
+
"""Return Factors of ``gcd(self, other)``. The keys are
|
720 |
+
the intersection of factors with the minimum exponent for
|
721 |
+
each factor.
|
722 |
+
|
723 |
+
Examples
|
724 |
+
========
|
725 |
+
|
726 |
+
>>> from sympy.core.exprtools import Factors
|
727 |
+
>>> from sympy.abc import x, y, z
|
728 |
+
>>> a = Factors((x*y**2).as_powers_dict())
|
729 |
+
>>> b = Factors((x*y/z).as_powers_dict())
|
730 |
+
>>> a.gcd(b)
|
731 |
+
Factors({x: 1, y: 1})
|
732 |
+
"""
|
733 |
+
if not isinstance(other, Factors):
|
734 |
+
other = Factors(other)
|
735 |
+
if other.is_zero:
|
736 |
+
return Factors(self.factors)
|
737 |
+
|
738 |
+
factors = {}
|
739 |
+
|
740 |
+
for factor, exp in self.factors.items():
|
741 |
+
factor, exp = sympify(factor), sympify(exp)
|
742 |
+
if factor in other.factors:
|
743 |
+
lt = (exp - other.factors[factor]).is_negative
|
744 |
+
if lt == True:
|
745 |
+
factors[factor] = exp
|
746 |
+
elif lt == False:
|
747 |
+
factors[factor] = other.factors[factor]
|
748 |
+
|
749 |
+
return Factors(factors)
|
750 |
+
|
751 |
+
def lcm(self, other): # Factors
|
752 |
+
"""Return Factors of ``lcm(self, other)`` which are
|
753 |
+
the union of factors with the maximum exponent for
|
754 |
+
each factor.
|
755 |
+
|
756 |
+
Examples
|
757 |
+
========
|
758 |
+
|
759 |
+
>>> from sympy.core.exprtools import Factors
|
760 |
+
>>> from sympy.abc import x, y, z
|
761 |
+
>>> a = Factors((x*y**2).as_powers_dict())
|
762 |
+
>>> b = Factors((x*y/z).as_powers_dict())
|
763 |
+
>>> a.lcm(b)
|
764 |
+
Factors({x: 1, y: 2, z: -1})
|
765 |
+
"""
|
766 |
+
if not isinstance(other, Factors):
|
767 |
+
other = Factors(other)
|
768 |
+
if any(f.is_zero for f in (self, other)):
|
769 |
+
return Factors(S.Zero)
|
770 |
+
|
771 |
+
factors = dict(self.factors)
|
772 |
+
|
773 |
+
for factor, exp in other.factors.items():
|
774 |
+
if factor in factors:
|
775 |
+
exp = max(exp, factors[factor])
|
776 |
+
|
777 |
+
factors[factor] = exp
|
778 |
+
|
779 |
+
return Factors(factors)
|
780 |
+
|
781 |
+
def __mul__(self, other): # Factors
|
782 |
+
return self.mul(other)
|
783 |
+
|
784 |
+
def __divmod__(self, other): # Factors
|
785 |
+
return self.div(other)
|
786 |
+
|
787 |
+
def __truediv__(self, other): # Factors
|
788 |
+
return self.quo(other)
|
789 |
+
|
790 |
+
def __mod__(self, other): # Factors
|
791 |
+
return self.rem(other)
|
792 |
+
|
793 |
+
def __pow__(self, other): # Factors
|
794 |
+
return self.pow(other)
|
795 |
+
|
796 |
+
def __eq__(self, other): # Factors
|
797 |
+
if not isinstance(other, Factors):
|
798 |
+
other = Factors(other)
|
799 |
+
return self.factors == other.factors
|
800 |
+
|
801 |
+
def __ne__(self, other): # Factors
|
802 |
+
return not self == other
|
803 |
+
|
804 |
+
|
805 |
+
class Term:
|
806 |
+
"""Efficient representation of ``coeff*(numer/denom)``. """
|
807 |
+
|
808 |
+
__slots__ = ('coeff', 'numer', 'denom')
|
809 |
+
|
810 |
+
def __init__(self, term, numer=None, denom=None): # Term
|
811 |
+
if numer is None and denom is None:
|
812 |
+
if not term.is_commutative:
|
813 |
+
raise NonCommutativeExpression(
|
814 |
+
'commutative expression expected')
|
815 |
+
|
816 |
+
coeff, factors = term.as_coeff_mul()
|
817 |
+
numer, denom = defaultdict(int), defaultdict(int)
|
818 |
+
|
819 |
+
for factor in factors:
|
820 |
+
base, exp = decompose_power(factor)
|
821 |
+
|
822 |
+
if base.is_Add:
|
823 |
+
cont, base = base.primitive()
|
824 |
+
coeff *= cont**exp
|
825 |
+
|
826 |
+
if exp > 0:
|
827 |
+
numer[base] += exp
|
828 |
+
else:
|
829 |
+
denom[base] += -exp
|
830 |
+
|
831 |
+
numer = Factors(numer)
|
832 |
+
denom = Factors(denom)
|
833 |
+
else:
|
834 |
+
coeff = term
|
835 |
+
|
836 |
+
if numer is None:
|
837 |
+
numer = Factors()
|
838 |
+
|
839 |
+
if denom is None:
|
840 |
+
denom = Factors()
|
841 |
+
|
842 |
+
self.coeff = coeff
|
843 |
+
self.numer = numer
|
844 |
+
self.denom = denom
|
845 |
+
|
846 |
+
def __hash__(self): # Term
|
847 |
+
return hash((self.coeff, self.numer, self.denom))
|
848 |
+
|
849 |
+
def __repr__(self): # Term
|
850 |
+
return "Term(%s, %s, %s)" % (self.coeff, self.numer, self.denom)
|
851 |
+
|
852 |
+
def as_expr(self): # Term
|
853 |
+
return self.coeff*(self.numer.as_expr()/self.denom.as_expr())
|
854 |
+
|
855 |
+
def mul(self, other): # Term
|
856 |
+
coeff = self.coeff*other.coeff
|
857 |
+
numer = self.numer.mul(other.numer)
|
858 |
+
denom = self.denom.mul(other.denom)
|
859 |
+
|
860 |
+
numer, denom = numer.normal(denom)
|
861 |
+
|
862 |
+
return Term(coeff, numer, denom)
|
863 |
+
|
864 |
+
def inv(self): # Term
|
865 |
+
return Term(1/self.coeff, self.denom, self.numer)
|
866 |
+
|
867 |
+
def quo(self, other): # Term
|
868 |
+
return self.mul(other.inv())
|
869 |
+
|
870 |
+
def pow(self, other): # Term
|
871 |
+
if other < 0:
|
872 |
+
return self.inv().pow(-other)
|
873 |
+
else:
|
874 |
+
return Term(self.coeff ** other,
|
875 |
+
self.numer.pow(other),
|
876 |
+
self.denom.pow(other))
|
877 |
+
|
878 |
+
def gcd(self, other): # Term
|
879 |
+
return Term(self.coeff.gcd(other.coeff),
|
880 |
+
self.numer.gcd(other.numer),
|
881 |
+
self.denom.gcd(other.denom))
|
882 |
+
|
883 |
+
def lcm(self, other): # Term
|
884 |
+
return Term(self.coeff.lcm(other.coeff),
|
885 |
+
self.numer.lcm(other.numer),
|
886 |
+
self.denom.lcm(other.denom))
|
887 |
+
|
888 |
+
def __mul__(self, other): # Term
|
889 |
+
if isinstance(other, Term):
|
890 |
+
return self.mul(other)
|
891 |
+
else:
|
892 |
+
return NotImplemented
|
893 |
+
|
894 |
+
def __truediv__(self, other): # Term
|
895 |
+
if isinstance(other, Term):
|
896 |
+
return self.quo(other)
|
897 |
+
else:
|
898 |
+
return NotImplemented
|
899 |
+
|
900 |
+
def __pow__(self, other): # Term
|
901 |
+
if isinstance(other, SYMPY_INTS):
|
902 |
+
return self.pow(other)
|
903 |
+
else:
|
904 |
+
return NotImplemented
|
905 |
+
|
906 |
+
def __eq__(self, other): # Term
|
907 |
+
return (self.coeff == other.coeff and
|
908 |
+
self.numer == other.numer and
|
909 |
+
self.denom == other.denom)
|
910 |
+
|
911 |
+
def __ne__(self, other): # Term
|
912 |
+
return not self == other
|
913 |
+
|
914 |
+
|
915 |
+
def _gcd_terms(terms, isprimitive=False, fraction=True):
|
916 |
+
"""Helper function for :func:`gcd_terms`.
|
917 |
+
|
918 |
+
Parameters
|
919 |
+
==========
|
920 |
+
|
921 |
+
isprimitive : boolean, optional
|
922 |
+
If ``isprimitive`` is True then the call to primitive
|
923 |
+
for an Add will be skipped. This is useful when the
|
924 |
+
content has already been extracted.
|
925 |
+
|
926 |
+
fraction : boolean, optional
|
927 |
+
If ``fraction`` is True then the expression will appear over a common
|
928 |
+
denominator, the lcm of all term denominators.
|
929 |
+
"""
|
930 |
+
|
931 |
+
if isinstance(terms, Basic) and not isinstance(terms, Tuple):
|
932 |
+
terms = Add.make_args(terms)
|
933 |
+
|
934 |
+
terms = list(map(Term, [t for t in terms if t]))
|
935 |
+
|
936 |
+
# there is some simplification that may happen if we leave this
|
937 |
+
# here rather than duplicate it before the mapping of Term onto
|
938 |
+
# the terms
|
939 |
+
if len(terms) == 0:
|
940 |
+
return S.Zero, S.Zero, S.One
|
941 |
+
|
942 |
+
if len(terms) == 1:
|
943 |
+
cont = terms[0].coeff
|
944 |
+
numer = terms[0].numer.as_expr()
|
945 |
+
denom = terms[0].denom.as_expr()
|
946 |
+
|
947 |
+
else:
|
948 |
+
cont = terms[0]
|
949 |
+
for term in terms[1:]:
|
950 |
+
cont = cont.gcd(term)
|
951 |
+
|
952 |
+
for i, term in enumerate(terms):
|
953 |
+
terms[i] = term.quo(cont)
|
954 |
+
|
955 |
+
if fraction:
|
956 |
+
denom = terms[0].denom
|
957 |
+
|
958 |
+
for term in terms[1:]:
|
959 |
+
denom = denom.lcm(term.denom)
|
960 |
+
|
961 |
+
numers = []
|
962 |
+
for term in terms:
|
963 |
+
numer = term.numer.mul(denom.quo(term.denom))
|
964 |
+
numers.append(term.coeff*numer.as_expr())
|
965 |
+
else:
|
966 |
+
numers = [t.as_expr() for t in terms]
|
967 |
+
denom = Term(S.One).numer
|
968 |
+
|
969 |
+
cont = cont.as_expr()
|
970 |
+
numer = Add(*numers)
|
971 |
+
denom = denom.as_expr()
|
972 |
+
|
973 |
+
if not isprimitive and numer.is_Add:
|
974 |
+
_cont, numer = numer.primitive()
|
975 |
+
cont *= _cont
|
976 |
+
|
977 |
+
return cont, numer, denom
|
978 |
+
|
979 |
+
|
980 |
+
def gcd_terms(terms, isprimitive=False, clear=True, fraction=True):
|
981 |
+
"""Compute the GCD of ``terms`` and put them together.
|
982 |
+
|
983 |
+
Parameters
|
984 |
+
==========
|
985 |
+
|
986 |
+
terms : Expr
|
987 |
+
Can be an expression or a non-Basic sequence of expressions
|
988 |
+
which will be handled as though they are terms from a sum.
|
989 |
+
|
990 |
+
isprimitive : bool, optional
|
991 |
+
If ``isprimitive`` is True the _gcd_terms will not run the primitive
|
992 |
+
method on the terms.
|
993 |
+
|
994 |
+
clear : bool, optional
|
995 |
+
It controls the removal of integers from the denominator of an Add
|
996 |
+
expression. When True (default), all numerical denominator will be cleared;
|
997 |
+
when False the denominators will be cleared only if all terms had numerical
|
998 |
+
denominators other than 1.
|
999 |
+
|
1000 |
+
fraction : bool, optional
|
1001 |
+
When True (default), will put the expression over a common
|
1002 |
+
denominator.
|
1003 |
+
|
1004 |
+
Examples
|
1005 |
+
========
|
1006 |
+
|
1007 |
+
>>> from sympy import gcd_terms
|
1008 |
+
>>> from sympy.abc import x, y
|
1009 |
+
|
1010 |
+
>>> gcd_terms((x + 1)**2*y + (x + 1)*y**2)
|
1011 |
+
y*(x + 1)*(x + y + 1)
|
1012 |
+
>>> gcd_terms(x/2 + 1)
|
1013 |
+
(x + 2)/2
|
1014 |
+
>>> gcd_terms(x/2 + 1, clear=False)
|
1015 |
+
x/2 + 1
|
1016 |
+
>>> gcd_terms(x/2 + y/2, clear=False)
|
1017 |
+
(x + y)/2
|
1018 |
+
>>> gcd_terms(x/2 + 1/x)
|
1019 |
+
(x**2 + 2)/(2*x)
|
1020 |
+
>>> gcd_terms(x/2 + 1/x, fraction=False)
|
1021 |
+
(x + 2/x)/2
|
1022 |
+
>>> gcd_terms(x/2 + 1/x, fraction=False, clear=False)
|
1023 |
+
x/2 + 1/x
|
1024 |
+
|
1025 |
+
>>> gcd_terms(x/2/y + 1/x/y)
|
1026 |
+
(x**2 + 2)/(2*x*y)
|
1027 |
+
>>> gcd_terms(x/2/y + 1/x/y, clear=False)
|
1028 |
+
(x**2/2 + 1)/(x*y)
|
1029 |
+
>>> gcd_terms(x/2/y + 1/x/y, clear=False, fraction=False)
|
1030 |
+
(x/2 + 1/x)/y
|
1031 |
+
|
1032 |
+
The ``clear`` flag was ignored in this case because the returned
|
1033 |
+
expression was a rational expression, not a simple sum.
|
1034 |
+
|
1035 |
+
See Also
|
1036 |
+
========
|
1037 |
+
|
1038 |
+
factor_terms, sympy.polys.polytools.terms_gcd
|
1039 |
+
|
1040 |
+
"""
|
1041 |
+
def mask(terms):
|
1042 |
+
"""replace nc portions of each term with a unique Dummy symbols
|
1043 |
+
and return the replacements to restore them"""
|
1044 |
+
args = [(a, []) if a.is_commutative else a.args_cnc() for a in terms]
|
1045 |
+
reps = []
|
1046 |
+
for i, (c, nc) in enumerate(args):
|
1047 |
+
if nc:
|
1048 |
+
nc = Mul(*nc)
|
1049 |
+
d = Dummy()
|
1050 |
+
reps.append((d, nc))
|
1051 |
+
c.append(d)
|
1052 |
+
args[i] = Mul(*c)
|
1053 |
+
else:
|
1054 |
+
args[i] = c
|
1055 |
+
return args, dict(reps)
|
1056 |
+
|
1057 |
+
isadd = isinstance(terms, Add)
|
1058 |
+
addlike = isadd or not isinstance(terms, Basic) and \
|
1059 |
+
is_sequence(terms, include=set) and \
|
1060 |
+
not isinstance(terms, Dict)
|
1061 |
+
|
1062 |
+
if addlike:
|
1063 |
+
if isadd: # i.e. an Add
|
1064 |
+
terms = list(terms.args)
|
1065 |
+
else:
|
1066 |
+
terms = sympify(terms)
|
1067 |
+
terms, reps = mask(terms)
|
1068 |
+
cont, numer, denom = _gcd_terms(terms, isprimitive, fraction)
|
1069 |
+
numer = numer.xreplace(reps)
|
1070 |
+
coeff, factors = cont.as_coeff_Mul()
|
1071 |
+
if not clear:
|
1072 |
+
c, _coeff = coeff.as_coeff_Mul()
|
1073 |
+
if not c.is_Integer and not clear and numer.is_Add:
|
1074 |
+
n, d = c.as_numer_denom()
|
1075 |
+
_numer = numer/d
|
1076 |
+
if any(a.as_coeff_Mul()[0].is_Integer
|
1077 |
+
for a in _numer.args):
|
1078 |
+
numer = _numer
|
1079 |
+
coeff = n*_coeff
|
1080 |
+
return _keep_coeff(coeff, factors*numer/denom, clear=clear)
|
1081 |
+
|
1082 |
+
if not isinstance(terms, Basic):
|
1083 |
+
return terms
|
1084 |
+
|
1085 |
+
if terms.is_Atom:
|
1086 |
+
return terms
|
1087 |
+
|
1088 |
+
if terms.is_Mul:
|
1089 |
+
c, args = terms.as_coeff_mul()
|
1090 |
+
return _keep_coeff(c, Mul(*[gcd_terms(i, isprimitive, clear, fraction)
|
1091 |
+
for i in args]), clear=clear)
|
1092 |
+
|
1093 |
+
def handle(a):
|
1094 |
+
# don't treat internal args like terms of an Add
|
1095 |
+
if not isinstance(a, Expr):
|
1096 |
+
if isinstance(a, Basic):
|
1097 |
+
if not a.args:
|
1098 |
+
return a
|
1099 |
+
return a.func(*[handle(i) for i in a.args])
|
1100 |
+
return type(a)([handle(i) for i in a])
|
1101 |
+
return gcd_terms(a, isprimitive, clear, fraction)
|
1102 |
+
|
1103 |
+
if isinstance(terms, Dict):
|
1104 |
+
return Dict(*[(k, handle(v)) for k, v in terms.args])
|
1105 |
+
return terms.func(*[handle(i) for i in terms.args])
|
1106 |
+
|
1107 |
+
|
1108 |
+
def _factor_sum_int(expr, **kwargs):
|
1109 |
+
"""Return Sum or Integral object with factors that are not
|
1110 |
+
in the wrt variables removed. In cases where there are additive
|
1111 |
+
terms in the function of the object that are independent, the
|
1112 |
+
object will be separated into two objects.
|
1113 |
+
|
1114 |
+
Examples
|
1115 |
+
========
|
1116 |
+
|
1117 |
+
>>> from sympy import Sum, factor_terms
|
1118 |
+
>>> from sympy.abc import x, y
|
1119 |
+
>>> factor_terms(Sum(x + y, (x, 1, 3)))
|
1120 |
+
y*Sum(1, (x, 1, 3)) + Sum(x, (x, 1, 3))
|
1121 |
+
>>> factor_terms(Sum(x*y, (x, 1, 3)))
|
1122 |
+
y*Sum(x, (x, 1, 3))
|
1123 |
+
|
1124 |
+
Notes
|
1125 |
+
=====
|
1126 |
+
|
1127 |
+
If a function in the summand or integrand is replaced
|
1128 |
+
with a symbol, then this simplification should not be
|
1129 |
+
done or else an incorrect result will be obtained when
|
1130 |
+
the symbol is replaced with an expression that depends
|
1131 |
+
on the variables of summation/integration:
|
1132 |
+
|
1133 |
+
>>> eq = Sum(y, (x, 1, 3))
|
1134 |
+
>>> factor_terms(eq).subs(y, x).doit()
|
1135 |
+
3*x
|
1136 |
+
>>> eq.subs(y, x).doit()
|
1137 |
+
6
|
1138 |
+
"""
|
1139 |
+
result = expr.function
|
1140 |
+
if result == 0:
|
1141 |
+
return S.Zero
|
1142 |
+
limits = expr.limits
|
1143 |
+
|
1144 |
+
# get the wrt variables
|
1145 |
+
wrt = {i.args[0] for i in limits}
|
1146 |
+
|
1147 |
+
# factor out any common terms that are independent of wrt
|
1148 |
+
f = factor_terms(result, **kwargs)
|
1149 |
+
i, d = f.as_independent(*wrt)
|
1150 |
+
if isinstance(f, Add):
|
1151 |
+
return i * expr.func(1, *limits) + expr.func(d, *limits)
|
1152 |
+
else:
|
1153 |
+
return i * expr.func(d, *limits)
|
1154 |
+
|
1155 |
+
|
1156 |
+
def factor_terms(expr, radical=False, clear=False, fraction=False, sign=True):
|
1157 |
+
"""Remove common factors from terms in all arguments without
|
1158 |
+
changing the underlying structure of the expr. No expansion or
|
1159 |
+
simplification (and no processing of non-commutatives) is performed.
|
1160 |
+
|
1161 |
+
Parameters
|
1162 |
+
==========
|
1163 |
+
|
1164 |
+
radical: bool, optional
|
1165 |
+
If radical=True then a radical common to all terms will be factored
|
1166 |
+
out of any Add sub-expressions of the expr.
|
1167 |
+
|
1168 |
+
clear : bool, optional
|
1169 |
+
If clear=False (default) then coefficients will not be separated
|
1170 |
+
from a single Add if they can be distributed to leave one or more
|
1171 |
+
terms with integer coefficients.
|
1172 |
+
|
1173 |
+
fraction : bool, optional
|
1174 |
+
If fraction=True (default is False) then a common denominator will be
|
1175 |
+
constructed for the expression.
|
1176 |
+
|
1177 |
+
sign : bool, optional
|
1178 |
+
If sign=True (default) then even if the only factor in common is a -1,
|
1179 |
+
it will be factored out of the expression.
|
1180 |
+
|
1181 |
+
Examples
|
1182 |
+
========
|
1183 |
+
|
1184 |
+
>>> from sympy import factor_terms, Symbol
|
1185 |
+
>>> from sympy.abc import x, y
|
1186 |
+
>>> factor_terms(x + x*(2 + 4*y)**3)
|
1187 |
+
x*(8*(2*y + 1)**3 + 1)
|
1188 |
+
>>> A = Symbol('A', commutative=False)
|
1189 |
+
>>> factor_terms(x*A + x*A + x*y*A)
|
1190 |
+
x*(y*A + 2*A)
|
1191 |
+
|
1192 |
+
When ``clear`` is False, a rational will only be factored out of an
|
1193 |
+
Add expression if all terms of the Add have coefficients that are
|
1194 |
+
fractions:
|
1195 |
+
|
1196 |
+
>>> factor_terms(x/2 + 1, clear=False)
|
1197 |
+
x/2 + 1
|
1198 |
+
>>> factor_terms(x/2 + 1, clear=True)
|
1199 |
+
(x + 2)/2
|
1200 |
+
|
1201 |
+
If a -1 is all that can be factored out, to *not* factor it out, the
|
1202 |
+
flag ``sign`` must be False:
|
1203 |
+
|
1204 |
+
>>> factor_terms(-x - y)
|
1205 |
+
-(x + y)
|
1206 |
+
>>> factor_terms(-x - y, sign=False)
|
1207 |
+
-x - y
|
1208 |
+
>>> factor_terms(-2*x - 2*y, sign=False)
|
1209 |
+
-2*(x + y)
|
1210 |
+
|
1211 |
+
See Also
|
1212 |
+
========
|
1213 |
+
|
1214 |
+
gcd_terms, sympy.polys.polytools.terms_gcd
|
1215 |
+
|
1216 |
+
"""
|
1217 |
+
def do(expr):
|
1218 |
+
from sympy.concrete.summations import Sum
|
1219 |
+
from sympy.integrals.integrals import Integral
|
1220 |
+
is_iterable = iterable(expr)
|
1221 |
+
|
1222 |
+
if not isinstance(expr, Basic) or expr.is_Atom:
|
1223 |
+
if is_iterable:
|
1224 |
+
return type(expr)([do(i) for i in expr])
|
1225 |
+
return expr
|
1226 |
+
|
1227 |
+
if expr.is_Pow or expr.is_Function or \
|
1228 |
+
is_iterable or not hasattr(expr, 'args_cnc'):
|
1229 |
+
args = expr.args
|
1230 |
+
newargs = tuple([do(i) for i in args])
|
1231 |
+
if newargs == args:
|
1232 |
+
return expr
|
1233 |
+
return expr.func(*newargs)
|
1234 |
+
|
1235 |
+
if isinstance(expr, (Sum, Integral)):
|
1236 |
+
return _factor_sum_int(expr,
|
1237 |
+
radical=radical, clear=clear,
|
1238 |
+
fraction=fraction, sign=sign)
|
1239 |
+
|
1240 |
+
cont, p = expr.as_content_primitive(radical=radical, clear=clear)
|
1241 |
+
if p.is_Add:
|
1242 |
+
list_args = [do(a) for a in Add.make_args(p)]
|
1243 |
+
# get a common negative (if there) which gcd_terms does not remove
|
1244 |
+
if not any(a.as_coeff_Mul()[0].extract_multiplicatively(-1) is None
|
1245 |
+
for a in list_args):
|
1246 |
+
cont = -cont
|
1247 |
+
list_args = [-a for a in list_args]
|
1248 |
+
# watch out for exp(-(x+2)) which gcd_terms will change to exp(-x-2)
|
1249 |
+
special = {}
|
1250 |
+
for i, a in enumerate(list_args):
|
1251 |
+
b, e = a.as_base_exp()
|
1252 |
+
if e.is_Mul and e != Mul(*e.args):
|
1253 |
+
list_args[i] = Dummy()
|
1254 |
+
special[list_args[i]] = a
|
1255 |
+
# rebuild p not worrying about the order which gcd_terms will fix
|
1256 |
+
p = Add._from_args(list_args)
|
1257 |
+
p = gcd_terms(p,
|
1258 |
+
isprimitive=True,
|
1259 |
+
clear=clear,
|
1260 |
+
fraction=fraction).xreplace(special)
|
1261 |
+
elif p.args:
|
1262 |
+
p = p.func(
|
1263 |
+
*[do(a) for a in p.args])
|
1264 |
+
rv = _keep_coeff(cont, p, clear=clear, sign=sign)
|
1265 |
+
return rv
|
1266 |
+
expr = sympify(expr)
|
1267 |
+
return do(expr)
|
1268 |
+
|
1269 |
+
|
1270 |
+
def _mask_nc(eq, name=None):
|
1271 |
+
"""
|
1272 |
+
Return ``eq`` with non-commutative objects replaced with Dummy
|
1273 |
+
symbols. A dictionary that can be used to restore the original
|
1274 |
+
values is returned: if it is None, the expression is noncommutative
|
1275 |
+
and cannot be made commutative. The third value returned is a list
|
1276 |
+
of any non-commutative symbols that appear in the returned equation.
|
1277 |
+
|
1278 |
+
Explanation
|
1279 |
+
===========
|
1280 |
+
|
1281 |
+
All non-commutative objects other than Symbols are replaced with
|
1282 |
+
a non-commutative Symbol. Identical objects will be identified
|
1283 |
+
by identical symbols.
|
1284 |
+
|
1285 |
+
If there is only 1 non-commutative object in an expression it will
|
1286 |
+
be replaced with a commutative symbol. Otherwise, the non-commutative
|
1287 |
+
entities are retained and the calling routine should handle
|
1288 |
+
replacements in this case since some care must be taken to keep
|
1289 |
+
track of the ordering of symbols when they occur within Muls.
|
1290 |
+
|
1291 |
+
Parameters
|
1292 |
+
==========
|
1293 |
+
|
1294 |
+
name : str
|
1295 |
+
``name``, if given, is the name that will be used with numbered Dummy
|
1296 |
+
variables that will replace the non-commutative objects and is mainly
|
1297 |
+
used for doctesting purposes.
|
1298 |
+
|
1299 |
+
Examples
|
1300 |
+
========
|
1301 |
+
|
1302 |
+
>>> from sympy.physics.secondquant import Commutator, NO, F, Fd
|
1303 |
+
>>> from sympy import symbols
|
1304 |
+
>>> from sympy.core.exprtools import _mask_nc
|
1305 |
+
>>> from sympy.abc import x, y
|
1306 |
+
>>> A, B, C = symbols('A,B,C', commutative=False)
|
1307 |
+
|
1308 |
+
One nc-symbol:
|
1309 |
+
|
1310 |
+
>>> _mask_nc(A**2 - x**2, 'd')
|
1311 |
+
(_d0**2 - x**2, {_d0: A}, [])
|
1312 |
+
|
1313 |
+
Multiple nc-symbols:
|
1314 |
+
|
1315 |
+
>>> _mask_nc(A**2 - B**2, 'd')
|
1316 |
+
(A**2 - B**2, {}, [A, B])
|
1317 |
+
|
1318 |
+
An nc-object with nc-symbols but no others outside of it:
|
1319 |
+
|
1320 |
+
>>> _mask_nc(1 + x*Commutator(A, B), 'd')
|
1321 |
+
(_d0*x + 1, {_d0: Commutator(A, B)}, [])
|
1322 |
+
>>> _mask_nc(NO(Fd(x)*F(y)), 'd')
|
1323 |
+
(_d0, {_d0: NO(CreateFermion(x)*AnnihilateFermion(y))}, [])
|
1324 |
+
|
1325 |
+
Multiple nc-objects:
|
1326 |
+
|
1327 |
+
>>> eq = x*Commutator(A, B) + x*Commutator(A, C)*Commutator(A, B)
|
1328 |
+
>>> _mask_nc(eq, 'd')
|
1329 |
+
(x*_d0 + x*_d1*_d0, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1])
|
1330 |
+
|
1331 |
+
Multiple nc-objects and nc-symbols:
|
1332 |
+
|
1333 |
+
>>> eq = A*Commutator(A, B) + B*Commutator(A, C)
|
1334 |
+
>>> _mask_nc(eq, 'd')
|
1335 |
+
(A*_d0 + B*_d1, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1, A, B])
|
1336 |
+
|
1337 |
+
"""
|
1338 |
+
name = name or 'mask'
|
1339 |
+
# Make Dummy() append sequential numbers to the name
|
1340 |
+
|
1341 |
+
def numbered_names():
|
1342 |
+
i = 0
|
1343 |
+
while True:
|
1344 |
+
yield name + str(i)
|
1345 |
+
i += 1
|
1346 |
+
|
1347 |
+
names = numbered_names()
|
1348 |
+
|
1349 |
+
def Dummy(*args, **kwargs):
|
1350 |
+
from .symbol import Dummy
|
1351 |
+
return Dummy(next(names), *args, **kwargs)
|
1352 |
+
|
1353 |
+
expr = eq
|
1354 |
+
if expr.is_commutative:
|
1355 |
+
return eq, {}, []
|
1356 |
+
|
1357 |
+
# identify nc-objects; symbols and other
|
1358 |
+
rep = []
|
1359 |
+
nc_obj = set()
|
1360 |
+
nc_syms = set()
|
1361 |
+
pot = preorder_traversal(expr, keys=default_sort_key)
|
1362 |
+
for i, a in enumerate(pot):
|
1363 |
+
if any(a == r[0] for r in rep):
|
1364 |
+
pot.skip()
|
1365 |
+
elif not a.is_commutative:
|
1366 |
+
if a.is_symbol:
|
1367 |
+
nc_syms.add(a)
|
1368 |
+
pot.skip()
|
1369 |
+
elif not (a.is_Add or a.is_Mul or a.is_Pow):
|
1370 |
+
nc_obj.add(a)
|
1371 |
+
pot.skip()
|
1372 |
+
|
1373 |
+
# If there is only one nc symbol or object, it can be factored regularly
|
1374 |
+
# but polys is going to complain, so replace it with a Dummy.
|
1375 |
+
if len(nc_obj) == 1 and not nc_syms:
|
1376 |
+
rep.append((nc_obj.pop(), Dummy()))
|
1377 |
+
elif len(nc_syms) == 1 and not nc_obj:
|
1378 |
+
rep.append((nc_syms.pop(), Dummy()))
|
1379 |
+
|
1380 |
+
# Any remaining nc-objects will be replaced with an nc-Dummy and
|
1381 |
+
# identified as an nc-Symbol to watch out for
|
1382 |
+
nc_obj = sorted(nc_obj, key=default_sort_key)
|
1383 |
+
for n in nc_obj:
|
1384 |
+
nc = Dummy(commutative=False)
|
1385 |
+
rep.append((n, nc))
|
1386 |
+
nc_syms.add(nc)
|
1387 |
+
expr = expr.subs(rep)
|
1388 |
+
|
1389 |
+
nc_syms = list(nc_syms)
|
1390 |
+
nc_syms.sort(key=default_sort_key)
|
1391 |
+
return expr, {v: k for k, v in rep}, nc_syms
|
1392 |
+
|
1393 |
+
|
1394 |
+
def factor_nc(expr):
|
1395 |
+
"""Return the factored form of ``expr`` while handling non-commutative
|
1396 |
+
expressions.
|
1397 |
+
|
1398 |
+
Examples
|
1399 |
+
========
|
1400 |
+
|
1401 |
+
>>> from sympy import factor_nc, Symbol
|
1402 |
+
>>> from sympy.abc import x
|
1403 |
+
>>> A = Symbol('A', commutative=False)
|
1404 |
+
>>> B = Symbol('B', commutative=False)
|
1405 |
+
>>> factor_nc((x**2 + 2*A*x + A**2).expand())
|
1406 |
+
(x + A)**2
|
1407 |
+
>>> factor_nc(((x + A)*(x + B)).expand())
|
1408 |
+
(x + A)*(x + B)
|
1409 |
+
"""
|
1410 |
+
expr = sympify(expr)
|
1411 |
+
if not isinstance(expr, Expr) or not expr.args:
|
1412 |
+
return expr
|
1413 |
+
if not expr.is_Add:
|
1414 |
+
return expr.func(*[factor_nc(a) for a in expr.args])
|
1415 |
+
expr = expr.func(*[expand_power_exp(i) for i in expr.args])
|
1416 |
+
|
1417 |
+
from sympy.polys.polytools import gcd, factor
|
1418 |
+
expr, rep, nc_symbols = _mask_nc(expr)
|
1419 |
+
|
1420 |
+
if rep:
|
1421 |
+
return factor(expr).subs(rep)
|
1422 |
+
else:
|
1423 |
+
args = [a.args_cnc() for a in Add.make_args(expr)]
|
1424 |
+
c = g = l = r = S.One
|
1425 |
+
hit = False
|
1426 |
+
# find any commutative gcd term
|
1427 |
+
for i, a in enumerate(args):
|
1428 |
+
if i == 0:
|
1429 |
+
c = Mul._from_args(a[0])
|
1430 |
+
elif a[0]:
|
1431 |
+
c = gcd(c, Mul._from_args(a[0]))
|
1432 |
+
else:
|
1433 |
+
c = S.One
|
1434 |
+
if c is not S.One:
|
1435 |
+
hit = True
|
1436 |
+
c, g = c.as_coeff_Mul()
|
1437 |
+
if g is not S.One:
|
1438 |
+
for i, (cc, _) in enumerate(args):
|
1439 |
+
cc = list(Mul.make_args(Mul._from_args(list(cc))/g))
|
1440 |
+
args[i][0] = cc
|
1441 |
+
for i, (cc, _) in enumerate(args):
|
1442 |
+
if cc:
|
1443 |
+
cc[0] = cc[0]/c
|
1444 |
+
else:
|
1445 |
+
cc = [1/c]
|
1446 |
+
args[i][0] = cc
|
1447 |
+
# find any noncommutative common prefix
|
1448 |
+
for i, a in enumerate(args):
|
1449 |
+
if i == 0:
|
1450 |
+
n = a[1][:]
|
1451 |
+
else:
|
1452 |
+
n = common_prefix(n, a[1])
|
1453 |
+
if not n:
|
1454 |
+
# is there a power that can be extracted?
|
1455 |
+
if not args[0][1]:
|
1456 |
+
break
|
1457 |
+
b, e = args[0][1][0].as_base_exp()
|
1458 |
+
ok = False
|
1459 |
+
if e.is_Integer:
|
1460 |
+
for t in args:
|
1461 |
+
if not t[1]:
|
1462 |
+
break
|
1463 |
+
bt, et = t[1][0].as_base_exp()
|
1464 |
+
if et.is_Integer and bt == b:
|
1465 |
+
e = min(e, et)
|
1466 |
+
else:
|
1467 |
+
break
|
1468 |
+
else:
|
1469 |
+
ok = hit = True
|
1470 |
+
l = b**e
|
1471 |
+
il = b**-e
|
1472 |
+
for _ in args:
|
1473 |
+
_[1][0] = il*_[1][0]
|
1474 |
+
break
|
1475 |
+
if not ok:
|
1476 |
+
break
|
1477 |
+
else:
|
1478 |
+
hit = True
|
1479 |
+
lenn = len(n)
|
1480 |
+
l = Mul(*n)
|
1481 |
+
for _ in args:
|
1482 |
+
_[1] = _[1][lenn:]
|
1483 |
+
# find any noncommutative common suffix
|
1484 |
+
for i, a in enumerate(args):
|
1485 |
+
if i == 0:
|
1486 |
+
n = a[1][:]
|
1487 |
+
else:
|
1488 |
+
n = common_suffix(n, a[1])
|
1489 |
+
if not n:
|
1490 |
+
# is there a power that can be extracted?
|
1491 |
+
if not args[0][1]:
|
1492 |
+
break
|
1493 |
+
b, e = args[0][1][-1].as_base_exp()
|
1494 |
+
ok = False
|
1495 |
+
if e.is_Integer:
|
1496 |
+
for t in args:
|
1497 |
+
if not t[1]:
|
1498 |
+
break
|
1499 |
+
bt, et = t[1][-1].as_base_exp()
|
1500 |
+
if et.is_Integer and bt == b:
|
1501 |
+
e = min(e, et)
|
1502 |
+
else:
|
1503 |
+
break
|
1504 |
+
else:
|
1505 |
+
ok = hit = True
|
1506 |
+
r = b**e
|
1507 |
+
il = b**-e
|
1508 |
+
for _ in args:
|
1509 |
+
_[1][-1] = _[1][-1]*il
|
1510 |
+
break
|
1511 |
+
if not ok:
|
1512 |
+
break
|
1513 |
+
else:
|
1514 |
+
hit = True
|
1515 |
+
lenn = len(n)
|
1516 |
+
r = Mul(*n)
|
1517 |
+
for _ in args:
|
1518 |
+
_[1] = _[1][:len(_[1]) - lenn]
|
1519 |
+
if hit:
|
1520 |
+
mid = Add(*[Mul(*cc)*Mul(*nc) for cc, nc in args])
|
1521 |
+
else:
|
1522 |
+
mid = expr
|
1523 |
+
|
1524 |
+
from sympy.simplify.powsimp import powsimp
|
1525 |
+
|
1526 |
+
# sort the symbols so the Dummys would appear in the same
|
1527 |
+
# order as the original symbols, otherwise you may introduce
|
1528 |
+
# a factor of -1, e.g. A**2 - B**2) -- {A:y, B:x} --> y**2 - x**2
|
1529 |
+
# and the former factors into two terms, (A - B)*(A + B) while the
|
1530 |
+
# latter factors into 3 terms, (-1)*(x - y)*(x + y)
|
1531 |
+
rep1 = [(n, Dummy()) for n in sorted(nc_symbols, key=default_sort_key)]
|
1532 |
+
unrep1 = [(v, k) for k, v in rep1]
|
1533 |
+
unrep1.reverse()
|
1534 |
+
new_mid, r2, _ = _mask_nc(mid.subs(rep1))
|
1535 |
+
new_mid = powsimp(factor(new_mid))
|
1536 |
+
|
1537 |
+
new_mid = new_mid.subs(r2).subs(unrep1)
|
1538 |
+
|
1539 |
+
if new_mid.is_Pow:
|
1540 |
+
return _keep_coeff(c, g*l*new_mid*r)
|
1541 |
+
|
1542 |
+
if new_mid.is_Mul:
|
1543 |
+
def _pemexpand(expr):
|
1544 |
+
"Expand with the minimal set of hints necessary to check the result."
|
1545 |
+
return expr.expand(deep=True, mul=True, power_exp=True,
|
1546 |
+
power_base=False, basic=False, multinomial=True, log=False)
|
1547 |
+
# XXX TODO there should be a way to inspect what order the terms
|
1548 |
+
# must be in and just select the plausible ordering without
|
1549 |
+
# checking permutations
|
1550 |
+
cfac = []
|
1551 |
+
ncfac = []
|
1552 |
+
for f in new_mid.args:
|
1553 |
+
if f.is_commutative:
|
1554 |
+
cfac.append(f)
|
1555 |
+
else:
|
1556 |
+
b, e = f.as_base_exp()
|
1557 |
+
if e.is_Integer:
|
1558 |
+
ncfac.extend([b]*e)
|
1559 |
+
else:
|
1560 |
+
ncfac.append(f)
|
1561 |
+
pre_mid = g*Mul(*cfac)*l
|
1562 |
+
target = _pemexpand(expr/c)
|
1563 |
+
for s in variations(ncfac, len(ncfac)):
|
1564 |
+
ok = pre_mid*Mul(*s)*r
|
1565 |
+
if _pemexpand(ok) == target:
|
1566 |
+
return _keep_coeff(c, ok)
|
1567 |
+
|
1568 |
+
# mid was an Add that didn't factor successfully
|
1569 |
+
return _keep_coeff(c, g*l*mid*r)
|
env-llmeval/lib/python3.10/site-packages/sympy/core/facts.py
ADDED
@@ -0,0 +1,634 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""This is rule-based deduction system for SymPy
|
2 |
+
|
3 |
+
The whole thing is split into two parts
|
4 |
+
|
5 |
+
- rules compilation and preparation of tables
|
6 |
+
- runtime inference
|
7 |
+
|
8 |
+
For rule-based inference engines, the classical work is RETE algorithm [1],
|
9 |
+
[2] Although we are not implementing it in full (or even significantly)
|
10 |
+
it's still worth a read to understand the underlying ideas.
|
11 |
+
|
12 |
+
In short, every rule in a system of rules is one of two forms:
|
13 |
+
|
14 |
+
- atom -> ... (alpha rule)
|
15 |
+
- And(atom1, atom2, ...) -> ... (beta rule)
|
16 |
+
|
17 |
+
|
18 |
+
The major complexity is in efficient beta-rules processing and usually for an
|
19 |
+
expert system a lot of effort goes into code that operates on beta-rules.
|
20 |
+
|
21 |
+
|
22 |
+
Here we take minimalistic approach to get something usable first.
|
23 |
+
|
24 |
+
- (preparation) of alpha- and beta- networks, everything except
|
25 |
+
- (runtime) FactRules.deduce_all_facts
|
26 |
+
|
27 |
+
_____________________________________
|
28 |
+
( Kirr: I've never thought that doing )
|
29 |
+
( logic stuff is that difficult... )
|
30 |
+
-------------------------------------
|
31 |
+
o ^__^
|
32 |
+
o (oo)\_______
|
33 |
+
(__)\ )\/\
|
34 |
+
||----w |
|
35 |
+
|| ||
|
36 |
+
|
37 |
+
|
38 |
+
Some references on the topic
|
39 |
+
----------------------------
|
40 |
+
|
41 |
+
[1] https://en.wikipedia.org/wiki/Rete_algorithm
|
42 |
+
[2] http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf
|
43 |
+
|
44 |
+
https://en.wikipedia.org/wiki/Propositional_formula
|
45 |
+
https://en.wikipedia.org/wiki/Inference_rule
|
46 |
+
https://en.wikipedia.org/wiki/List_of_rules_of_inference
|
47 |
+
"""
|
48 |
+
|
49 |
+
from collections import defaultdict
|
50 |
+
from typing import Iterator
|
51 |
+
|
52 |
+
from .logic import Logic, And, Or, Not
|
53 |
+
|
54 |
+
|
55 |
+
def _base_fact(atom):
|
56 |
+
"""Return the literal fact of an atom.
|
57 |
+
|
58 |
+
Effectively, this merely strips the Not around a fact.
|
59 |
+
"""
|
60 |
+
if isinstance(atom, Not):
|
61 |
+
return atom.arg
|
62 |
+
else:
|
63 |
+
return atom
|
64 |
+
|
65 |
+
|
66 |
+
def _as_pair(atom):
|
67 |
+
if isinstance(atom, Not):
|
68 |
+
return (atom.arg, False)
|
69 |
+
else:
|
70 |
+
return (atom, True)
|
71 |
+
|
72 |
+
# XXX this prepares forward-chaining rules for alpha-network
|
73 |
+
|
74 |
+
|
75 |
+
def transitive_closure(implications):
|
76 |
+
"""
|
77 |
+
Computes the transitive closure of a list of implications
|
78 |
+
|
79 |
+
Uses Warshall's algorithm, as described at
|
80 |
+
http://www.cs.hope.edu/~cusack/Notes/Notes/DiscreteMath/Warshall.pdf.
|
81 |
+
"""
|
82 |
+
full_implications = set(implications)
|
83 |
+
literals = set().union(*map(set, full_implications))
|
84 |
+
|
85 |
+
for k in literals:
|
86 |
+
for i in literals:
|
87 |
+
if (i, k) in full_implications:
|
88 |
+
for j in literals:
|
89 |
+
if (k, j) in full_implications:
|
90 |
+
full_implications.add((i, j))
|
91 |
+
|
92 |
+
return full_implications
|
93 |
+
|
94 |
+
|
95 |
+
def deduce_alpha_implications(implications):
|
96 |
+
"""deduce all implications
|
97 |
+
|
98 |
+
Description by example
|
99 |
+
----------------------
|
100 |
+
|
101 |
+
given set of logic rules:
|
102 |
+
|
103 |
+
a -> b
|
104 |
+
b -> c
|
105 |
+
|
106 |
+
we deduce all possible rules:
|
107 |
+
|
108 |
+
a -> b, c
|
109 |
+
b -> c
|
110 |
+
|
111 |
+
|
112 |
+
implications: [] of (a,b)
|
113 |
+
return: {} of a -> set([b, c, ...])
|
114 |
+
"""
|
115 |
+
implications = implications + [(Not(j), Not(i)) for (i, j) in implications]
|
116 |
+
res = defaultdict(set)
|
117 |
+
full_implications = transitive_closure(implications)
|
118 |
+
for a, b in full_implications:
|
119 |
+
if a == b:
|
120 |
+
continue # skip a->a cyclic input
|
121 |
+
|
122 |
+
res[a].add(b)
|
123 |
+
|
124 |
+
# Clean up tautologies and check consistency
|
125 |
+
for a, impl in res.items():
|
126 |
+
impl.discard(a)
|
127 |
+
na = Not(a)
|
128 |
+
if na in impl:
|
129 |
+
raise ValueError(
|
130 |
+
'implications are inconsistent: %s -> %s %s' % (a, na, impl))
|
131 |
+
|
132 |
+
return res
|
133 |
+
|
134 |
+
|
135 |
+
def apply_beta_to_alpha_route(alpha_implications, beta_rules):
|
136 |
+
"""apply additional beta-rules (And conditions) to already-built
|
137 |
+
alpha implication tables
|
138 |
+
|
139 |
+
TODO: write about
|
140 |
+
|
141 |
+
- static extension of alpha-chains
|
142 |
+
- attaching refs to beta-nodes to alpha chains
|
143 |
+
|
144 |
+
|
145 |
+
e.g.
|
146 |
+
|
147 |
+
alpha_implications:
|
148 |
+
|
149 |
+
a -> [b, !c, d]
|
150 |
+
b -> [d]
|
151 |
+
...
|
152 |
+
|
153 |
+
|
154 |
+
beta_rules:
|
155 |
+
|
156 |
+
&(b,d) -> e
|
157 |
+
|
158 |
+
|
159 |
+
then we'll extend a's rule to the following
|
160 |
+
|
161 |
+
a -> [b, !c, d, e]
|
162 |
+
"""
|
163 |
+
x_impl = {}
|
164 |
+
for x in alpha_implications.keys():
|
165 |
+
x_impl[x] = (set(alpha_implications[x]), [])
|
166 |
+
for bcond, bimpl in beta_rules:
|
167 |
+
for bk in bcond.args:
|
168 |
+
if bk in x_impl:
|
169 |
+
continue
|
170 |
+
x_impl[bk] = (set(), [])
|
171 |
+
|
172 |
+
# static extensions to alpha rules:
|
173 |
+
# A: x -> a,b B: &(a,b) -> c ==> A: x -> a,b,c
|
174 |
+
seen_static_extension = True
|
175 |
+
while seen_static_extension:
|
176 |
+
seen_static_extension = False
|
177 |
+
|
178 |
+
for bcond, bimpl in beta_rules:
|
179 |
+
if not isinstance(bcond, And):
|
180 |
+
raise TypeError("Cond is not And")
|
181 |
+
bargs = set(bcond.args)
|
182 |
+
for x, (ximpls, bb) in x_impl.items():
|
183 |
+
x_all = ximpls | {x}
|
184 |
+
# A: ... -> a B: &(...) -> a is non-informative
|
185 |
+
if bimpl not in x_all and bargs.issubset(x_all):
|
186 |
+
ximpls.add(bimpl)
|
187 |
+
|
188 |
+
# we introduced new implication - now we have to restore
|
189 |
+
# completeness of the whole set.
|
190 |
+
bimpl_impl = x_impl.get(bimpl)
|
191 |
+
if bimpl_impl is not None:
|
192 |
+
ximpls |= bimpl_impl[0]
|
193 |
+
seen_static_extension = True
|
194 |
+
|
195 |
+
# attach beta-nodes which can be possibly triggered by an alpha-chain
|
196 |
+
for bidx, (bcond, bimpl) in enumerate(beta_rules):
|
197 |
+
bargs = set(bcond.args)
|
198 |
+
for x, (ximpls, bb) in x_impl.items():
|
199 |
+
x_all = ximpls | {x}
|
200 |
+
# A: ... -> a B: &(...) -> a (non-informative)
|
201 |
+
if bimpl in x_all:
|
202 |
+
continue
|
203 |
+
# A: x -> a... B: &(!a,...) -> ... (will never trigger)
|
204 |
+
# A: x -> a... B: &(...) -> !a (will never trigger)
|
205 |
+
if any(Not(xi) in bargs or Not(xi) == bimpl for xi in x_all):
|
206 |
+
continue
|
207 |
+
|
208 |
+
if bargs & x_all:
|
209 |
+
bb.append(bidx)
|
210 |
+
|
211 |
+
return x_impl
|
212 |
+
|
213 |
+
|
214 |
+
def rules_2prereq(rules):
|
215 |
+
"""build prerequisites table from rules
|
216 |
+
|
217 |
+
Description by example
|
218 |
+
----------------------
|
219 |
+
|
220 |
+
given set of logic rules:
|
221 |
+
|
222 |
+
a -> b, c
|
223 |
+
b -> c
|
224 |
+
|
225 |
+
we build prerequisites (from what points something can be deduced):
|
226 |
+
|
227 |
+
b <- a
|
228 |
+
c <- a, b
|
229 |
+
|
230 |
+
rules: {} of a -> [b, c, ...]
|
231 |
+
return: {} of c <- [a, b, ...]
|
232 |
+
|
233 |
+
Note however, that this prerequisites may be *not* enough to prove a
|
234 |
+
fact. An example is 'a -> b' rule, where prereq(a) is b, and prereq(b)
|
235 |
+
is a. That's because a=T -> b=T, and b=F -> a=F, but a=F -> b=?
|
236 |
+
"""
|
237 |
+
prereq = defaultdict(set)
|
238 |
+
for (a, _), impl in rules.items():
|
239 |
+
if isinstance(a, Not):
|
240 |
+
a = a.args[0]
|
241 |
+
for (i, _) in impl:
|
242 |
+
if isinstance(i, Not):
|
243 |
+
i = i.args[0]
|
244 |
+
prereq[i].add(a)
|
245 |
+
return prereq
|
246 |
+
|
247 |
+
################
|
248 |
+
# RULES PROVER #
|
249 |
+
################
|
250 |
+
|
251 |
+
|
252 |
+
class TautologyDetected(Exception):
|
253 |
+
"""(internal) Prover uses it for reporting detected tautology"""
|
254 |
+
pass
|
255 |
+
|
256 |
+
|
257 |
+
class Prover:
|
258 |
+
"""ai - prover of logic rules
|
259 |
+
|
260 |
+
given a set of initial rules, Prover tries to prove all possible rules
|
261 |
+
which follow from given premises.
|
262 |
+
|
263 |
+
As a result proved_rules are always either in one of two forms: alpha or
|
264 |
+
beta:
|
265 |
+
|
266 |
+
Alpha rules
|
267 |
+
-----------
|
268 |
+
|
269 |
+
This are rules of the form::
|
270 |
+
|
271 |
+
a -> b & c & d & ...
|
272 |
+
|
273 |
+
|
274 |
+
Beta rules
|
275 |
+
----------
|
276 |
+
|
277 |
+
This are rules of the form::
|
278 |
+
|
279 |
+
&(a,b,...) -> c & d & ...
|
280 |
+
|
281 |
+
|
282 |
+
i.e. beta rules are join conditions that say that something follows when
|
283 |
+
*several* facts are true at the same time.
|
284 |
+
"""
|
285 |
+
|
286 |
+
def __init__(self):
|
287 |
+
self.proved_rules = []
|
288 |
+
self._rules_seen = set()
|
289 |
+
|
290 |
+
def split_alpha_beta(self):
|
291 |
+
"""split proved rules into alpha and beta chains"""
|
292 |
+
rules_alpha = [] # a -> b
|
293 |
+
rules_beta = [] # &(...) -> b
|
294 |
+
for a, b in self.proved_rules:
|
295 |
+
if isinstance(a, And):
|
296 |
+
rules_beta.append((a, b))
|
297 |
+
else:
|
298 |
+
rules_alpha.append((a, b))
|
299 |
+
return rules_alpha, rules_beta
|
300 |
+
|
301 |
+
@property
|
302 |
+
def rules_alpha(self):
|
303 |
+
return self.split_alpha_beta()[0]
|
304 |
+
|
305 |
+
@property
|
306 |
+
def rules_beta(self):
|
307 |
+
return self.split_alpha_beta()[1]
|
308 |
+
|
309 |
+
def process_rule(self, a, b):
|
310 |
+
"""process a -> b rule""" # TODO write more?
|
311 |
+
if (not a) or isinstance(b, bool):
|
312 |
+
return
|
313 |
+
if isinstance(a, bool):
|
314 |
+
return
|
315 |
+
if (a, b) in self._rules_seen:
|
316 |
+
return
|
317 |
+
else:
|
318 |
+
self._rules_seen.add((a, b))
|
319 |
+
|
320 |
+
# this is the core of processing
|
321 |
+
try:
|
322 |
+
self._process_rule(a, b)
|
323 |
+
except TautologyDetected:
|
324 |
+
pass
|
325 |
+
|
326 |
+
def _process_rule(self, a, b):
|
327 |
+
# right part first
|
328 |
+
|
329 |
+
# a -> b & c --> a -> b ; a -> c
|
330 |
+
# (?) FIXME this is only correct when b & c != null !
|
331 |
+
|
332 |
+
if isinstance(b, And):
|
333 |
+
sorted_bargs = sorted(b.args, key=str)
|
334 |
+
for barg in sorted_bargs:
|
335 |
+
self.process_rule(a, barg)
|
336 |
+
|
337 |
+
# a -> b | c --> !b & !c -> !a
|
338 |
+
# --> a & !b -> c
|
339 |
+
# --> a & !c -> b
|
340 |
+
elif isinstance(b, Or):
|
341 |
+
sorted_bargs = sorted(b.args, key=str)
|
342 |
+
# detect tautology first
|
343 |
+
if not isinstance(a, Logic): # Atom
|
344 |
+
# tautology: a -> a|c|...
|
345 |
+
if a in sorted_bargs:
|
346 |
+
raise TautologyDetected(a, b, 'a -> a|c|...')
|
347 |
+
self.process_rule(And(*[Not(barg) for barg in b.args]), Not(a))
|
348 |
+
|
349 |
+
for bidx in range(len(sorted_bargs)):
|
350 |
+
barg = sorted_bargs[bidx]
|
351 |
+
brest = sorted_bargs[:bidx] + sorted_bargs[bidx + 1:]
|
352 |
+
self.process_rule(And(a, Not(barg)), Or(*brest))
|
353 |
+
|
354 |
+
# left part
|
355 |
+
|
356 |
+
# a & b -> c --> IRREDUCIBLE CASE -- WE STORE IT AS IS
|
357 |
+
# (this will be the basis of beta-network)
|
358 |
+
elif isinstance(a, And):
|
359 |
+
sorted_aargs = sorted(a.args, key=str)
|
360 |
+
if b in sorted_aargs:
|
361 |
+
raise TautologyDetected(a, b, 'a & b -> a')
|
362 |
+
self.proved_rules.append((a, b))
|
363 |
+
# XXX NOTE at present we ignore !c -> !a | !b
|
364 |
+
|
365 |
+
elif isinstance(a, Or):
|
366 |
+
sorted_aargs = sorted(a.args, key=str)
|
367 |
+
if b in sorted_aargs:
|
368 |
+
raise TautologyDetected(a, b, 'a | b -> a')
|
369 |
+
for aarg in sorted_aargs:
|
370 |
+
self.process_rule(aarg, b)
|
371 |
+
|
372 |
+
else:
|
373 |
+
# both `a` and `b` are atoms
|
374 |
+
self.proved_rules.append((a, b)) # a -> b
|
375 |
+
self.proved_rules.append((Not(b), Not(a))) # !b -> !a
|
376 |
+
|
377 |
+
########################################
|
378 |
+
|
379 |
+
|
380 |
+
class FactRules:
|
381 |
+
"""Rules that describe how to deduce facts in logic space
|
382 |
+
|
383 |
+
When defined, these rules allow implications to quickly be determined
|
384 |
+
for a set of facts. For this precomputed deduction tables are used.
|
385 |
+
see `deduce_all_facts` (forward-chaining)
|
386 |
+
|
387 |
+
Also it is possible to gather prerequisites for a fact, which is tried
|
388 |
+
to be proven. (backward-chaining)
|
389 |
+
|
390 |
+
|
391 |
+
Definition Syntax
|
392 |
+
-----------------
|
393 |
+
|
394 |
+
a -> b -- a=T -> b=T (and automatically b=F -> a=F)
|
395 |
+
a -> !b -- a=T -> b=F
|
396 |
+
a == b -- a -> b & b -> a
|
397 |
+
a -> b & c -- a=T -> b=T & c=T
|
398 |
+
# TODO b | c
|
399 |
+
|
400 |
+
|
401 |
+
Internals
|
402 |
+
---------
|
403 |
+
|
404 |
+
.full_implications[k, v]: all the implications of fact k=v
|
405 |
+
.beta_triggers[k, v]: beta rules that might be triggered when k=v
|
406 |
+
.prereq -- {} k <- [] of k's prerequisites
|
407 |
+
|
408 |
+
.defined_facts -- set of defined fact names
|
409 |
+
"""
|
410 |
+
|
411 |
+
def __init__(self, rules):
|
412 |
+
"""Compile rules into internal lookup tables"""
|
413 |
+
|
414 |
+
if isinstance(rules, str):
|
415 |
+
rules = rules.splitlines()
|
416 |
+
|
417 |
+
# --- parse and process rules ---
|
418 |
+
P = Prover()
|
419 |
+
|
420 |
+
for rule in rules:
|
421 |
+
# XXX `a` is hardcoded to be always atom
|
422 |
+
a, op, b = rule.split(None, 2)
|
423 |
+
|
424 |
+
a = Logic.fromstring(a)
|
425 |
+
b = Logic.fromstring(b)
|
426 |
+
|
427 |
+
if op == '->':
|
428 |
+
P.process_rule(a, b)
|
429 |
+
elif op == '==':
|
430 |
+
P.process_rule(a, b)
|
431 |
+
P.process_rule(b, a)
|
432 |
+
else:
|
433 |
+
raise ValueError('unknown op %r' % op)
|
434 |
+
|
435 |
+
# --- build deduction networks ---
|
436 |
+
self.beta_rules = []
|
437 |
+
for bcond, bimpl in P.rules_beta:
|
438 |
+
self.beta_rules.append(
|
439 |
+
({_as_pair(a) for a in bcond.args}, _as_pair(bimpl)))
|
440 |
+
|
441 |
+
# deduce alpha implications
|
442 |
+
impl_a = deduce_alpha_implications(P.rules_alpha)
|
443 |
+
|
444 |
+
# now:
|
445 |
+
# - apply beta rules to alpha chains (static extension), and
|
446 |
+
# - further associate beta rules to alpha chain (for inference
|
447 |
+
# at runtime)
|
448 |
+
impl_ab = apply_beta_to_alpha_route(impl_a, P.rules_beta)
|
449 |
+
|
450 |
+
# extract defined fact names
|
451 |
+
self.defined_facts = {_base_fact(k) for k in impl_ab.keys()}
|
452 |
+
|
453 |
+
# build rels (forward chains)
|
454 |
+
full_implications = defaultdict(set)
|
455 |
+
beta_triggers = defaultdict(set)
|
456 |
+
for k, (impl, betaidxs) in impl_ab.items():
|
457 |
+
full_implications[_as_pair(k)] = {_as_pair(i) for i in impl}
|
458 |
+
beta_triggers[_as_pair(k)] = betaidxs
|
459 |
+
|
460 |
+
self.full_implications = full_implications
|
461 |
+
self.beta_triggers = beta_triggers
|
462 |
+
|
463 |
+
# build prereq (backward chains)
|
464 |
+
prereq = defaultdict(set)
|
465 |
+
rel_prereq = rules_2prereq(full_implications)
|
466 |
+
for k, pitems in rel_prereq.items():
|
467 |
+
prereq[k] |= pitems
|
468 |
+
self.prereq = prereq
|
469 |
+
|
470 |
+
def _to_python(self) -> str:
|
471 |
+
""" Generate a string with plain python representation of the instance """
|
472 |
+
return '\n'.join(self.print_rules())
|
473 |
+
|
474 |
+
@classmethod
|
475 |
+
def _from_python(cls, data : dict):
|
476 |
+
""" Generate an instance from the plain python representation """
|
477 |
+
self = cls('')
|
478 |
+
for key in ['full_implications', 'beta_triggers', 'prereq']:
|
479 |
+
d=defaultdict(set)
|
480 |
+
d.update(data[key])
|
481 |
+
setattr(self, key, d)
|
482 |
+
self.beta_rules = data['beta_rules']
|
483 |
+
self.defined_facts = set(data['defined_facts'])
|
484 |
+
|
485 |
+
return self
|
486 |
+
|
487 |
+
def _defined_facts_lines(self):
|
488 |
+
yield 'defined_facts = ['
|
489 |
+
for fact in sorted(self.defined_facts):
|
490 |
+
yield f' {fact!r},'
|
491 |
+
yield '] # defined_facts'
|
492 |
+
|
493 |
+
def _full_implications_lines(self):
|
494 |
+
yield 'full_implications = dict( ['
|
495 |
+
for fact in sorted(self.defined_facts):
|
496 |
+
for value in (True, False):
|
497 |
+
yield f' # Implications of {fact} = {value}:'
|
498 |
+
yield f' (({fact!r}, {value!r}), set( ('
|
499 |
+
implications = self.full_implications[(fact, value)]
|
500 |
+
for implied in sorted(implications):
|
501 |
+
yield f' {implied!r},'
|
502 |
+
yield ' ) ),'
|
503 |
+
yield ' ),'
|
504 |
+
yield ' ] ) # full_implications'
|
505 |
+
|
506 |
+
def _prereq_lines(self):
|
507 |
+
yield 'prereq = {'
|
508 |
+
yield ''
|
509 |
+
for fact in sorted(self.prereq):
|
510 |
+
yield f' # facts that could determine the value of {fact}'
|
511 |
+
yield f' {fact!r}: {{'
|
512 |
+
for pfact in sorted(self.prereq[fact]):
|
513 |
+
yield f' {pfact!r},'
|
514 |
+
yield ' },'
|
515 |
+
yield ''
|
516 |
+
yield '} # prereq'
|
517 |
+
|
518 |
+
def _beta_rules_lines(self):
|
519 |
+
reverse_implications = defaultdict(list)
|
520 |
+
for n, (pre, implied) in enumerate(self.beta_rules):
|
521 |
+
reverse_implications[implied].append((pre, n))
|
522 |
+
|
523 |
+
yield '# Note: the order of the beta rules is used in the beta_triggers'
|
524 |
+
yield 'beta_rules = ['
|
525 |
+
yield ''
|
526 |
+
m = 0
|
527 |
+
indices = {}
|
528 |
+
for implied in sorted(reverse_implications):
|
529 |
+
fact, value = implied
|
530 |
+
yield f' # Rules implying {fact} = {value}'
|
531 |
+
for pre, n in reverse_implications[implied]:
|
532 |
+
indices[n] = m
|
533 |
+
m += 1
|
534 |
+
setstr = ", ".join(map(str, sorted(pre)))
|
535 |
+
yield f' ({{{setstr}}},'
|
536 |
+
yield f' {implied!r}),'
|
537 |
+
yield ''
|
538 |
+
yield '] # beta_rules'
|
539 |
+
|
540 |
+
yield 'beta_triggers = {'
|
541 |
+
for query in sorted(self.beta_triggers):
|
542 |
+
fact, value = query
|
543 |
+
triggers = [indices[n] for n in self.beta_triggers[query]]
|
544 |
+
yield f' {query!r}: {triggers!r},'
|
545 |
+
yield '} # beta_triggers'
|
546 |
+
|
547 |
+
def print_rules(self) -> Iterator[str]:
|
548 |
+
""" Returns a generator with lines to represent the facts and rules """
|
549 |
+
yield from self._defined_facts_lines()
|
550 |
+
yield ''
|
551 |
+
yield ''
|
552 |
+
yield from self._full_implications_lines()
|
553 |
+
yield ''
|
554 |
+
yield ''
|
555 |
+
yield from self._prereq_lines()
|
556 |
+
yield ''
|
557 |
+
yield ''
|
558 |
+
yield from self._beta_rules_lines()
|
559 |
+
yield ''
|
560 |
+
yield ''
|
561 |
+
yield "generated_assumptions = {'defined_facts': defined_facts, 'full_implications': full_implications,"
|
562 |
+
yield " 'prereq': prereq, 'beta_rules': beta_rules, 'beta_triggers': beta_triggers}"
|
563 |
+
|
564 |
+
|
565 |
+
class InconsistentAssumptions(ValueError):
|
566 |
+
def __str__(self):
|
567 |
+
kb, fact, value = self.args
|
568 |
+
return "%s, %s=%s" % (kb, fact, value)
|
569 |
+
|
570 |
+
|
571 |
+
class FactKB(dict):
|
572 |
+
"""
|
573 |
+
A simple propositional knowledge base relying on compiled inference rules.
|
574 |
+
"""
|
575 |
+
def __str__(self):
|
576 |
+
return '{\n%s}' % ',\n'.join(
|
577 |
+
["\t%s: %s" % i for i in sorted(self.items())])
|
578 |
+
|
579 |
+
def __init__(self, rules):
|
580 |
+
self.rules = rules
|
581 |
+
|
582 |
+
def _tell(self, k, v):
|
583 |
+
"""Add fact k=v to the knowledge base.
|
584 |
+
|
585 |
+
Returns True if the KB has actually been updated, False otherwise.
|
586 |
+
"""
|
587 |
+
if k in self and self[k] is not None:
|
588 |
+
if self[k] == v:
|
589 |
+
return False
|
590 |
+
else:
|
591 |
+
raise InconsistentAssumptions(self, k, v)
|
592 |
+
else:
|
593 |
+
self[k] = v
|
594 |
+
return True
|
595 |
+
|
596 |
+
# *********************************************
|
597 |
+
# * This is the workhorse, so keep it *fast*. *
|
598 |
+
# *********************************************
|
599 |
+
def deduce_all_facts(self, facts):
|
600 |
+
"""
|
601 |
+
Update the KB with all the implications of a list of facts.
|
602 |
+
|
603 |
+
Facts can be specified as a dictionary or as a list of (key, value)
|
604 |
+
pairs.
|
605 |
+
"""
|
606 |
+
# keep frequently used attributes locally, so we'll avoid extra
|
607 |
+
# attribute access overhead
|
608 |
+
full_implications = self.rules.full_implications
|
609 |
+
beta_triggers = self.rules.beta_triggers
|
610 |
+
beta_rules = self.rules.beta_rules
|
611 |
+
|
612 |
+
if isinstance(facts, dict):
|
613 |
+
facts = facts.items()
|
614 |
+
|
615 |
+
while facts:
|
616 |
+
beta_maytrigger = set()
|
617 |
+
|
618 |
+
# --- alpha chains ---
|
619 |
+
for k, v in facts:
|
620 |
+
if not self._tell(k, v) or v is None:
|
621 |
+
continue
|
622 |
+
|
623 |
+
# lookup routing tables
|
624 |
+
for key, value in full_implications[k, v]:
|
625 |
+
self._tell(key, value)
|
626 |
+
|
627 |
+
beta_maytrigger.update(beta_triggers[k, v])
|
628 |
+
|
629 |
+
# --- beta chains ---
|
630 |
+
facts = []
|
631 |
+
for bidx in beta_maytrigger:
|
632 |
+
bcond, bimpl = beta_rules[bidx]
|
633 |
+
if all(self.get(k) is v for k, v in bcond):
|
634 |
+
facts.append(bimpl)
|
env-llmeval/lib/python3.10/site-packages/sympy/core/kind.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Module to efficiently partition SymPy objects.
|
3 |
+
|
4 |
+
This system is introduced because class of SymPy object does not always
|
5 |
+
represent the mathematical classification of the entity. For example,
|
6 |
+
``Integral(1, x)`` and ``Integral(Matrix([1,2]), x)`` are both instance
|
7 |
+
of ``Integral`` class. However the former is number and the latter is
|
8 |
+
matrix.
|
9 |
+
|
10 |
+
One way to resolve this is defining subclass for each mathematical type,
|
11 |
+
such as ``MatAdd`` for the addition between matrices. Basic algebraic
|
12 |
+
operation such as addition or multiplication take this approach, but
|
13 |
+
defining every class for every mathematical object is not scalable.
|
14 |
+
|
15 |
+
Therefore, we define the "kind" of the object and let the expression
|
16 |
+
infer the kind of itself from its arguments. Function and class can
|
17 |
+
filter the arguments by their kind, and behave differently according to
|
18 |
+
the type of itself.
|
19 |
+
|
20 |
+
This module defines basic kinds for core objects. Other kinds such as
|
21 |
+
``ArrayKind`` or ``MatrixKind`` can be found in corresponding modules.
|
22 |
+
|
23 |
+
.. notes::
|
24 |
+
This approach is experimental, and can be replaced or deleted in the future.
|
25 |
+
See https://github.com/sympy/sympy/pull/20549.
|
26 |
+
"""
|
27 |
+
|
28 |
+
from collections import defaultdict
|
29 |
+
|
30 |
+
from .cache import cacheit
|
31 |
+
from sympy.multipledispatch.dispatcher import (Dispatcher,
|
32 |
+
ambiguity_warn, ambiguity_register_error_ignore_dup,
|
33 |
+
str_signature, RaiseNotImplementedError)
|
34 |
+
|
35 |
+
|
36 |
+
class KindMeta(type):
|
37 |
+
"""
|
38 |
+
Metaclass for ``Kind``.
|
39 |
+
|
40 |
+
Assigns empty ``dict`` as class attribute ``_inst`` for every class,
|
41 |
+
in order to endow singleton-like behavior.
|
42 |
+
"""
|
43 |
+
def __new__(cls, clsname, bases, dct):
|
44 |
+
dct['_inst'] = {}
|
45 |
+
return super().__new__(cls, clsname, bases, dct)
|
46 |
+
|
47 |
+
|
48 |
+
class Kind(object, metaclass=KindMeta):
|
49 |
+
"""
|
50 |
+
Base class for kinds.
|
51 |
+
|
52 |
+
Kind of the object represents the mathematical classification that
|
53 |
+
the entity falls into. It is expected that functions and classes
|
54 |
+
recognize and filter the argument by its kind.
|
55 |
+
|
56 |
+
Kind of every object must be carefully selected so that it shows the
|
57 |
+
intention of design. Expressions may have different kind according
|
58 |
+
to the kind of its arguments. For example, arguments of ``Add``
|
59 |
+
must have common kind since addition is group operator, and the
|
60 |
+
resulting ``Add()`` has the same kind.
|
61 |
+
|
62 |
+
For the performance, each kind is as broad as possible and is not
|
63 |
+
based on set theory. For example, ``NumberKind`` includes not only
|
64 |
+
complex number but expression containing ``S.Infinity`` or ``S.NaN``
|
65 |
+
which are not strictly number.
|
66 |
+
|
67 |
+
Kind may have arguments as parameter. For example, ``MatrixKind()``
|
68 |
+
may be constructed with one element which represents the kind of its
|
69 |
+
elements.
|
70 |
+
|
71 |
+
``Kind`` behaves in singleton-like fashion. Same signature will
|
72 |
+
return the same object.
|
73 |
+
|
74 |
+
"""
|
75 |
+
def __new__(cls, *args):
|
76 |
+
if args in cls._inst:
|
77 |
+
inst = cls._inst[args]
|
78 |
+
else:
|
79 |
+
inst = super().__new__(cls)
|
80 |
+
cls._inst[args] = inst
|
81 |
+
return inst
|
82 |
+
|
83 |
+
|
84 |
+
class _UndefinedKind(Kind):
|
85 |
+
"""
|
86 |
+
Default kind for all SymPy object. If the kind is not defined for
|
87 |
+
the object, or if the object cannot infer the kind from its
|
88 |
+
arguments, this will be returned.
|
89 |
+
|
90 |
+
Examples
|
91 |
+
========
|
92 |
+
|
93 |
+
>>> from sympy import Expr
|
94 |
+
>>> Expr().kind
|
95 |
+
UndefinedKind
|
96 |
+
"""
|
97 |
+
def __new__(cls):
|
98 |
+
return super().__new__(cls)
|
99 |
+
|
100 |
+
def __repr__(self):
|
101 |
+
return "UndefinedKind"
|
102 |
+
|
103 |
+
UndefinedKind = _UndefinedKind()
|
104 |
+
|
105 |
+
|
106 |
+
class _NumberKind(Kind):
|
107 |
+
"""
|
108 |
+
Kind for all numeric object.
|
109 |
+
|
110 |
+
This kind represents every number, including complex numbers,
|
111 |
+
infinity and ``S.NaN``. Other objects such as quaternions do not
|
112 |
+
have this kind.
|
113 |
+
|
114 |
+
Most ``Expr`` are initially designed to represent the number, so
|
115 |
+
this will be the most common kind in SymPy core. For example
|
116 |
+
``Symbol()``, which represents a scalar, has this kind as long as it
|
117 |
+
is commutative.
|
118 |
+
|
119 |
+
Numbers form a field. Any operation between number-kind objects will
|
120 |
+
result this kind as well.
|
121 |
+
|
122 |
+
Examples
|
123 |
+
========
|
124 |
+
|
125 |
+
>>> from sympy import S, oo, Symbol
|
126 |
+
>>> S.One.kind
|
127 |
+
NumberKind
|
128 |
+
>>> (-oo).kind
|
129 |
+
NumberKind
|
130 |
+
>>> S.NaN.kind
|
131 |
+
NumberKind
|
132 |
+
|
133 |
+
Commutative symbol are treated as number.
|
134 |
+
|
135 |
+
>>> x = Symbol('x')
|
136 |
+
>>> x.kind
|
137 |
+
NumberKind
|
138 |
+
>>> Symbol('y', commutative=False).kind
|
139 |
+
UndefinedKind
|
140 |
+
|
141 |
+
Operation between numbers results number.
|
142 |
+
|
143 |
+
>>> (x+1).kind
|
144 |
+
NumberKind
|
145 |
+
|
146 |
+
See Also
|
147 |
+
========
|
148 |
+
|
149 |
+
sympy.core.expr.Expr.is_Number : check if the object is strictly
|
150 |
+
subclass of ``Number`` class.
|
151 |
+
|
152 |
+
sympy.core.expr.Expr.is_number : check if the object is number
|
153 |
+
without any free symbol.
|
154 |
+
|
155 |
+
"""
|
156 |
+
def __new__(cls):
|
157 |
+
return super().__new__(cls)
|
158 |
+
|
159 |
+
def __repr__(self):
|
160 |
+
return "NumberKind"
|
161 |
+
|
162 |
+
NumberKind = _NumberKind()
|
163 |
+
|
164 |
+
|
165 |
+
class _BooleanKind(Kind):
|
166 |
+
"""
|
167 |
+
Kind for boolean objects.
|
168 |
+
|
169 |
+
SymPy's ``S.true``, ``S.false``, and built-in ``True`` and ``False``
|
170 |
+
have this kind. Boolean number ``1`` and ``0`` are not relevant.
|
171 |
+
|
172 |
+
Examples
|
173 |
+
========
|
174 |
+
|
175 |
+
>>> from sympy import S, Q
|
176 |
+
>>> S.true.kind
|
177 |
+
BooleanKind
|
178 |
+
>>> Q.even(3).kind
|
179 |
+
BooleanKind
|
180 |
+
"""
|
181 |
+
def __new__(cls):
|
182 |
+
return super().__new__(cls)
|
183 |
+
|
184 |
+
def __repr__(self):
|
185 |
+
return "BooleanKind"
|
186 |
+
|
187 |
+
BooleanKind = _BooleanKind()
|
188 |
+
|
189 |
+
|
190 |
+
class KindDispatcher:
|
191 |
+
"""
|
192 |
+
Dispatcher to select a kind from multiple kinds by binary dispatching.
|
193 |
+
|
194 |
+
.. notes::
|
195 |
+
This approach is experimental, and can be replaced or deleted in
|
196 |
+
the future.
|
197 |
+
|
198 |
+
Explanation
|
199 |
+
===========
|
200 |
+
|
201 |
+
SymPy object's :obj:`sympy.core.kind.Kind()` vaguely represents the
|
202 |
+
algebraic structure where the object belongs to. Therefore, with
|
203 |
+
given operation, we can always find a dominating kind among the
|
204 |
+
different kinds. This class selects the kind by recursive binary
|
205 |
+
dispatching. If the result cannot be determined, ``UndefinedKind``
|
206 |
+
is returned.
|
207 |
+
|
208 |
+
Examples
|
209 |
+
========
|
210 |
+
|
211 |
+
Multiplication between numbers return number.
|
212 |
+
|
213 |
+
>>> from sympy import NumberKind, Mul
|
214 |
+
>>> Mul._kind_dispatcher(NumberKind, NumberKind)
|
215 |
+
NumberKind
|
216 |
+
|
217 |
+
Multiplication between number and unknown-kind object returns unknown kind.
|
218 |
+
|
219 |
+
>>> from sympy import UndefinedKind
|
220 |
+
>>> Mul._kind_dispatcher(NumberKind, UndefinedKind)
|
221 |
+
UndefinedKind
|
222 |
+
|
223 |
+
Any number and order of kinds is allowed.
|
224 |
+
|
225 |
+
>>> Mul._kind_dispatcher(UndefinedKind, NumberKind)
|
226 |
+
UndefinedKind
|
227 |
+
>>> Mul._kind_dispatcher(NumberKind, UndefinedKind, NumberKind)
|
228 |
+
UndefinedKind
|
229 |
+
|
230 |
+
Since matrix forms a vector space over scalar field, multiplication
|
231 |
+
between matrix with numeric element and number returns matrix with
|
232 |
+
numeric element.
|
233 |
+
|
234 |
+
>>> from sympy.matrices import MatrixKind
|
235 |
+
>>> Mul._kind_dispatcher(MatrixKind(NumberKind), NumberKind)
|
236 |
+
MatrixKind(NumberKind)
|
237 |
+
|
238 |
+
If a matrix with number element and another matrix with unknown-kind
|
239 |
+
element are multiplied, we know that the result is matrix but the
|
240 |
+
kind of its elements is unknown.
|
241 |
+
|
242 |
+
>>> Mul._kind_dispatcher(MatrixKind(NumberKind), MatrixKind(UndefinedKind))
|
243 |
+
MatrixKind(UndefinedKind)
|
244 |
+
|
245 |
+
Parameters
|
246 |
+
==========
|
247 |
+
|
248 |
+
name : str
|
249 |
+
|
250 |
+
commutative : bool, optional
|
251 |
+
If True, binary dispatch will be automatically registered in
|
252 |
+
reversed order as well.
|
253 |
+
|
254 |
+
doc : str, optional
|
255 |
+
|
256 |
+
"""
|
257 |
+
def __init__(self, name, commutative=False, doc=None):
|
258 |
+
self.name = name
|
259 |
+
self.doc = doc
|
260 |
+
self.commutative = commutative
|
261 |
+
self._dispatcher = Dispatcher(name)
|
262 |
+
|
263 |
+
def __repr__(self):
|
264 |
+
return "<dispatched %s>" % self.name
|
265 |
+
|
266 |
+
def register(self, *types, **kwargs):
|
267 |
+
"""
|
268 |
+
Register the binary dispatcher for two kind classes.
|
269 |
+
|
270 |
+
If *self.commutative* is ``True``, signature in reversed order is
|
271 |
+
automatically registered as well.
|
272 |
+
"""
|
273 |
+
on_ambiguity = kwargs.pop("on_ambiguity", None)
|
274 |
+
if not on_ambiguity:
|
275 |
+
if self.commutative:
|
276 |
+
on_ambiguity = ambiguity_register_error_ignore_dup
|
277 |
+
else:
|
278 |
+
on_ambiguity = ambiguity_warn
|
279 |
+
kwargs.update(on_ambiguity=on_ambiguity)
|
280 |
+
|
281 |
+
if not len(types) == 2:
|
282 |
+
raise RuntimeError(
|
283 |
+
"Only binary dispatch is supported, but got %s types: <%s>." % (
|
284 |
+
len(types), str_signature(types)
|
285 |
+
))
|
286 |
+
|
287 |
+
def _(func):
|
288 |
+
self._dispatcher.add(types, func, **kwargs)
|
289 |
+
if self.commutative:
|
290 |
+
self._dispatcher.add(tuple(reversed(types)), func, **kwargs)
|
291 |
+
return _
|
292 |
+
|
293 |
+
def __call__(self, *args, **kwargs):
|
294 |
+
if self.commutative:
|
295 |
+
kinds = frozenset(args)
|
296 |
+
else:
|
297 |
+
kinds = []
|
298 |
+
prev = None
|
299 |
+
for a in args:
|
300 |
+
if prev is not a:
|
301 |
+
kinds.append(a)
|
302 |
+
prev = a
|
303 |
+
return self.dispatch_kinds(kinds, **kwargs)
|
304 |
+
|
305 |
+
@cacheit
|
306 |
+
def dispatch_kinds(self, kinds, **kwargs):
|
307 |
+
# Quick exit for the case where all kinds are same
|
308 |
+
if len(kinds) == 1:
|
309 |
+
result, = kinds
|
310 |
+
if not isinstance(result, Kind):
|
311 |
+
raise RuntimeError("%s is not a kind." % result)
|
312 |
+
return result
|
313 |
+
|
314 |
+
for i,kind in enumerate(kinds):
|
315 |
+
if not isinstance(kind, Kind):
|
316 |
+
raise RuntimeError("%s is not a kind." % kind)
|
317 |
+
|
318 |
+
if i == 0:
|
319 |
+
result = kind
|
320 |
+
else:
|
321 |
+
prev_kind = result
|
322 |
+
|
323 |
+
t1, t2 = type(prev_kind), type(kind)
|
324 |
+
k1, k2 = prev_kind, kind
|
325 |
+
func = self._dispatcher.dispatch(t1, t2)
|
326 |
+
if func is None and self.commutative:
|
327 |
+
# try reversed order
|
328 |
+
func = self._dispatcher.dispatch(t2, t1)
|
329 |
+
k1, k2 = k2, k1
|
330 |
+
if func is None:
|
331 |
+
# unregistered kind relation
|
332 |
+
result = UndefinedKind
|
333 |
+
else:
|
334 |
+
result = func(k1, k2)
|
335 |
+
if not isinstance(result, Kind):
|
336 |
+
raise RuntimeError(
|
337 |
+
"Dispatcher for {!r} and {!r} must return a Kind, but got {!r}".format(
|
338 |
+
prev_kind, kind, result
|
339 |
+
))
|
340 |
+
|
341 |
+
return result
|
342 |
+
|
343 |
+
@property
|
344 |
+
def __doc__(self):
|
345 |
+
docs = [
|
346 |
+
"Kind dispatcher : %s" % self.name,
|
347 |
+
"Note that support for this is experimental. See the docs for :class:`KindDispatcher` for details"
|
348 |
+
]
|
349 |
+
|
350 |
+
if self.doc:
|
351 |
+
docs.append(self.doc)
|
352 |
+
|
353 |
+
s = "Registered kind classes\n"
|
354 |
+
s += '=' * len(s)
|
355 |
+
docs.append(s)
|
356 |
+
|
357 |
+
amb_sigs = []
|
358 |
+
|
359 |
+
typ_sigs = defaultdict(list)
|
360 |
+
for sigs in self._dispatcher.ordering[::-1]:
|
361 |
+
key = self._dispatcher.funcs[sigs]
|
362 |
+
typ_sigs[key].append(sigs)
|
363 |
+
|
364 |
+
for func, sigs in typ_sigs.items():
|
365 |
+
|
366 |
+
sigs_str = ', '.join('<%s>' % str_signature(sig) for sig in sigs)
|
367 |
+
|
368 |
+
if isinstance(func, RaiseNotImplementedError):
|
369 |
+
amb_sigs.append(sigs_str)
|
370 |
+
continue
|
371 |
+
|
372 |
+
s = 'Inputs: %s\n' % sigs_str
|
373 |
+
s += '-' * len(s) + '\n'
|
374 |
+
if func.__doc__:
|
375 |
+
s += func.__doc__.strip()
|
376 |
+
else:
|
377 |
+
s += func.__name__
|
378 |
+
docs.append(s)
|
379 |
+
|
380 |
+
if amb_sigs:
|
381 |
+
s = "Ambiguous kind classes\n"
|
382 |
+
s += '=' * len(s)
|
383 |
+
docs.append(s)
|
384 |
+
|
385 |
+
s = '\n'.join(amb_sigs)
|
386 |
+
docs.append(s)
|
387 |
+
|
388 |
+
return '\n\n'.join(docs)
|
env-llmeval/lib/python3.10/site-packages/sympy/core/logic.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Logic expressions handling
|
2 |
+
|
3 |
+
NOTE
|
4 |
+
----
|
5 |
+
|
6 |
+
at present this is mainly needed for facts.py, feel free however to improve
|
7 |
+
this stuff for general purpose.
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
from typing import Optional
|
12 |
+
|
13 |
+
# Type of a fuzzy bool
|
14 |
+
FuzzyBool = Optional[bool]
|
15 |
+
|
16 |
+
|
17 |
+
def _torf(args):
|
18 |
+
"""Return True if all args are True, False if they
|
19 |
+
are all False, else None.
|
20 |
+
|
21 |
+
>>> from sympy.core.logic import _torf
|
22 |
+
>>> _torf((True, True))
|
23 |
+
True
|
24 |
+
>>> _torf((False, False))
|
25 |
+
False
|
26 |
+
>>> _torf((True, False))
|
27 |
+
"""
|
28 |
+
sawT = sawF = False
|
29 |
+
for a in args:
|
30 |
+
if a is True:
|
31 |
+
if sawF:
|
32 |
+
return
|
33 |
+
sawT = True
|
34 |
+
elif a is False:
|
35 |
+
if sawT:
|
36 |
+
return
|
37 |
+
sawF = True
|
38 |
+
else:
|
39 |
+
return
|
40 |
+
return sawT
|
41 |
+
|
42 |
+
|
43 |
+
def _fuzzy_group(args, quick_exit=False):
|
44 |
+
"""Return True if all args are True, None if there is any None else False
|
45 |
+
unless ``quick_exit`` is True (then return None as soon as a second False
|
46 |
+
is seen.
|
47 |
+
|
48 |
+
``_fuzzy_group`` is like ``fuzzy_and`` except that it is more
|
49 |
+
conservative in returning a False, waiting to make sure that all
|
50 |
+
arguments are True or False and returning None if any arguments are
|
51 |
+
None. It also has the capability of permiting only a single False and
|
52 |
+
returning None if more than one is seen. For example, the presence of a
|
53 |
+
single transcendental amongst rationals would indicate that the group is
|
54 |
+
no longer rational; but a second transcendental in the group would make the
|
55 |
+
determination impossible.
|
56 |
+
|
57 |
+
|
58 |
+
Examples
|
59 |
+
========
|
60 |
+
|
61 |
+
>>> from sympy.core.logic import _fuzzy_group
|
62 |
+
|
63 |
+
By default, multiple Falses mean the group is broken:
|
64 |
+
|
65 |
+
>>> _fuzzy_group([False, False, True])
|
66 |
+
False
|
67 |
+
|
68 |
+
If multiple Falses mean the group status is unknown then set
|
69 |
+
`quick_exit` to True so None can be returned when the 2nd False is seen:
|
70 |
+
|
71 |
+
>>> _fuzzy_group([False, False, True], quick_exit=True)
|
72 |
+
|
73 |
+
But if only a single False is seen then the group is known to
|
74 |
+
be broken:
|
75 |
+
|
76 |
+
>>> _fuzzy_group([False, True, True], quick_exit=True)
|
77 |
+
False
|
78 |
+
|
79 |
+
"""
|
80 |
+
saw_other = False
|
81 |
+
for a in args:
|
82 |
+
if a is True:
|
83 |
+
continue
|
84 |
+
if a is None:
|
85 |
+
return
|
86 |
+
if quick_exit and saw_other:
|
87 |
+
return
|
88 |
+
saw_other = True
|
89 |
+
return not saw_other
|
90 |
+
|
91 |
+
|
92 |
+
def fuzzy_bool(x):
|
93 |
+
"""Return True, False or None according to x.
|
94 |
+
|
95 |
+
Whereas bool(x) returns True or False, fuzzy_bool allows
|
96 |
+
for the None value and non-false values (which become None), too.
|
97 |
+
|
98 |
+
Examples
|
99 |
+
========
|
100 |
+
|
101 |
+
>>> from sympy.core.logic import fuzzy_bool
|
102 |
+
>>> from sympy.abc import x
|
103 |
+
>>> fuzzy_bool(x), fuzzy_bool(None)
|
104 |
+
(None, None)
|
105 |
+
>>> bool(x), bool(None)
|
106 |
+
(True, False)
|
107 |
+
|
108 |
+
"""
|
109 |
+
if x is None:
|
110 |
+
return None
|
111 |
+
if x in (True, False):
|
112 |
+
return bool(x)
|
113 |
+
|
114 |
+
|
115 |
+
def fuzzy_and(args):
|
116 |
+
"""Return True (all True), False (any False) or None.
|
117 |
+
|
118 |
+
Examples
|
119 |
+
========
|
120 |
+
|
121 |
+
>>> from sympy.core.logic import fuzzy_and
|
122 |
+
>>> from sympy import Dummy
|
123 |
+
|
124 |
+
If you had a list of objects to test the commutivity of
|
125 |
+
and you want the fuzzy_and logic applied, passing an
|
126 |
+
iterator will allow the commutativity to only be computed
|
127 |
+
as many times as necessary. With this list, False can be
|
128 |
+
returned after analyzing the first symbol:
|
129 |
+
|
130 |
+
>>> syms = [Dummy(commutative=False), Dummy()]
|
131 |
+
>>> fuzzy_and(s.is_commutative for s in syms)
|
132 |
+
False
|
133 |
+
|
134 |
+
That False would require less work than if a list of pre-computed
|
135 |
+
items was sent:
|
136 |
+
|
137 |
+
>>> fuzzy_and([s.is_commutative for s in syms])
|
138 |
+
False
|
139 |
+
"""
|
140 |
+
|
141 |
+
rv = True
|
142 |
+
for ai in args:
|
143 |
+
ai = fuzzy_bool(ai)
|
144 |
+
if ai is False:
|
145 |
+
return False
|
146 |
+
if rv: # this will stop updating if a None is ever trapped
|
147 |
+
rv = ai
|
148 |
+
return rv
|
149 |
+
|
150 |
+
|
151 |
+
def fuzzy_not(v):
|
152 |
+
"""
|
153 |
+
Not in fuzzy logic
|
154 |
+
|
155 |
+
Return None if `v` is None else `not v`.
|
156 |
+
|
157 |
+
Examples
|
158 |
+
========
|
159 |
+
|
160 |
+
>>> from sympy.core.logic import fuzzy_not
|
161 |
+
>>> fuzzy_not(True)
|
162 |
+
False
|
163 |
+
>>> fuzzy_not(None)
|
164 |
+
>>> fuzzy_not(False)
|
165 |
+
True
|
166 |
+
|
167 |
+
"""
|
168 |
+
if v is None:
|
169 |
+
return v
|
170 |
+
else:
|
171 |
+
return not v
|
172 |
+
|
173 |
+
|
174 |
+
def fuzzy_or(args):
|
175 |
+
"""
|
176 |
+
Or in fuzzy logic. Returns True (any True), False (all False), or None
|
177 |
+
|
178 |
+
See the docstrings of fuzzy_and and fuzzy_not for more info. fuzzy_or is
|
179 |
+
related to the two by the standard De Morgan's law.
|
180 |
+
|
181 |
+
>>> from sympy.core.logic import fuzzy_or
|
182 |
+
>>> fuzzy_or([True, False])
|
183 |
+
True
|
184 |
+
>>> fuzzy_or([True, None])
|
185 |
+
True
|
186 |
+
>>> fuzzy_or([False, False])
|
187 |
+
False
|
188 |
+
>>> print(fuzzy_or([False, None]))
|
189 |
+
None
|
190 |
+
|
191 |
+
"""
|
192 |
+
rv = False
|
193 |
+
for ai in args:
|
194 |
+
ai = fuzzy_bool(ai)
|
195 |
+
if ai is True:
|
196 |
+
return True
|
197 |
+
if rv is False: # this will stop updating if a None is ever trapped
|
198 |
+
rv = ai
|
199 |
+
return rv
|
200 |
+
|
201 |
+
|
202 |
+
def fuzzy_xor(args):
|
203 |
+
"""Return None if any element of args is not True or False, else
|
204 |
+
True (if there are an odd number of True elements), else False."""
|
205 |
+
t = f = 0
|
206 |
+
for a in args:
|
207 |
+
ai = fuzzy_bool(a)
|
208 |
+
if ai:
|
209 |
+
t += 1
|
210 |
+
elif ai is False:
|
211 |
+
f += 1
|
212 |
+
else:
|
213 |
+
return
|
214 |
+
return t % 2 == 1
|
215 |
+
|
216 |
+
|
217 |
+
def fuzzy_nand(args):
|
218 |
+
"""Return False if all args are True, True if they are all False,
|
219 |
+
else None."""
|
220 |
+
return fuzzy_not(fuzzy_and(args))
|
221 |
+
|
222 |
+
|
223 |
+
class Logic:
|
224 |
+
"""Logical expression"""
|
225 |
+
# {} 'op' -> LogicClass
|
226 |
+
op_2class: dict[str, type[Logic]] = {}
|
227 |
+
|
228 |
+
def __new__(cls, *args):
|
229 |
+
obj = object.__new__(cls)
|
230 |
+
obj.args = args
|
231 |
+
return obj
|
232 |
+
|
233 |
+
def __getnewargs__(self):
|
234 |
+
return self.args
|
235 |
+
|
236 |
+
def __hash__(self):
|
237 |
+
return hash((type(self).__name__,) + tuple(self.args))
|
238 |
+
|
239 |
+
def __eq__(a, b):
|
240 |
+
if not isinstance(b, type(a)):
|
241 |
+
return False
|
242 |
+
else:
|
243 |
+
return a.args == b.args
|
244 |
+
|
245 |
+
def __ne__(a, b):
|
246 |
+
if not isinstance(b, type(a)):
|
247 |
+
return True
|
248 |
+
else:
|
249 |
+
return a.args != b.args
|
250 |
+
|
251 |
+
def __lt__(self, other):
|
252 |
+
if self.__cmp__(other) == -1:
|
253 |
+
return True
|
254 |
+
return False
|
255 |
+
|
256 |
+
def __cmp__(self, other):
|
257 |
+
if type(self) is not type(other):
|
258 |
+
a = str(type(self))
|
259 |
+
b = str(type(other))
|
260 |
+
else:
|
261 |
+
a = self.args
|
262 |
+
b = other.args
|
263 |
+
return (a > b) - (a < b)
|
264 |
+
|
265 |
+
def __str__(self):
|
266 |
+
return '%s(%s)' % (self.__class__.__name__,
|
267 |
+
', '.join(str(a) for a in self.args))
|
268 |
+
|
269 |
+
__repr__ = __str__
|
270 |
+
|
271 |
+
@staticmethod
|
272 |
+
def fromstring(text):
|
273 |
+
"""Logic from string with space around & and | but none after !.
|
274 |
+
|
275 |
+
e.g.
|
276 |
+
|
277 |
+
!a & b | c
|
278 |
+
"""
|
279 |
+
lexpr = None # current logical expression
|
280 |
+
schedop = None # scheduled operation
|
281 |
+
for term in text.split():
|
282 |
+
# operation symbol
|
283 |
+
if term in '&|':
|
284 |
+
if schedop is not None:
|
285 |
+
raise ValueError(
|
286 |
+
'double op forbidden: "%s %s"' % (term, schedop))
|
287 |
+
if lexpr is None:
|
288 |
+
raise ValueError(
|
289 |
+
'%s cannot be in the beginning of expression' % term)
|
290 |
+
schedop = term
|
291 |
+
continue
|
292 |
+
if '&' in term or '|' in term:
|
293 |
+
raise ValueError('& and | must have space around them')
|
294 |
+
if term[0] == '!':
|
295 |
+
if len(term) == 1:
|
296 |
+
raise ValueError('do not include space after "!"')
|
297 |
+
term = Not(term[1:])
|
298 |
+
|
299 |
+
# already scheduled operation, e.g. '&'
|
300 |
+
if schedop:
|
301 |
+
lexpr = Logic.op_2class[schedop](lexpr, term)
|
302 |
+
schedop = None
|
303 |
+
continue
|
304 |
+
|
305 |
+
# this should be atom
|
306 |
+
if lexpr is not None:
|
307 |
+
raise ValueError(
|
308 |
+
'missing op between "%s" and "%s"' % (lexpr, term))
|
309 |
+
|
310 |
+
lexpr = term
|
311 |
+
|
312 |
+
# let's check that we ended up in correct state
|
313 |
+
if schedop is not None:
|
314 |
+
raise ValueError('premature end-of-expression in "%s"' % text)
|
315 |
+
if lexpr is None:
|
316 |
+
raise ValueError('"%s" is empty' % text)
|
317 |
+
|
318 |
+
# everything looks good now
|
319 |
+
return lexpr
|
320 |
+
|
321 |
+
|
322 |
+
class AndOr_Base(Logic):
|
323 |
+
|
324 |
+
def __new__(cls, *args):
|
325 |
+
bargs = []
|
326 |
+
for a in args:
|
327 |
+
if a == cls.op_x_notx:
|
328 |
+
return a
|
329 |
+
elif a == (not cls.op_x_notx):
|
330 |
+
continue # skip this argument
|
331 |
+
bargs.append(a)
|
332 |
+
|
333 |
+
args = sorted(set(cls.flatten(bargs)), key=hash)
|
334 |
+
|
335 |
+
for a in args:
|
336 |
+
if Not(a) in args:
|
337 |
+
return cls.op_x_notx
|
338 |
+
|
339 |
+
if len(args) == 1:
|
340 |
+
return args.pop()
|
341 |
+
elif len(args) == 0:
|
342 |
+
return not cls.op_x_notx
|
343 |
+
|
344 |
+
return Logic.__new__(cls, *args)
|
345 |
+
|
346 |
+
@classmethod
|
347 |
+
def flatten(cls, args):
|
348 |
+
# quick-n-dirty flattening for And and Or
|
349 |
+
args_queue = list(args)
|
350 |
+
res = []
|
351 |
+
|
352 |
+
while True:
|
353 |
+
try:
|
354 |
+
arg = args_queue.pop(0)
|
355 |
+
except IndexError:
|
356 |
+
break
|
357 |
+
if isinstance(arg, Logic):
|
358 |
+
if isinstance(arg, cls):
|
359 |
+
args_queue.extend(arg.args)
|
360 |
+
continue
|
361 |
+
res.append(arg)
|
362 |
+
|
363 |
+
args = tuple(res)
|
364 |
+
return args
|
365 |
+
|
366 |
+
|
367 |
+
class And(AndOr_Base):
|
368 |
+
op_x_notx = False
|
369 |
+
|
370 |
+
def _eval_propagate_not(self):
|
371 |
+
# !(a&b&c ...) == !a | !b | !c ...
|
372 |
+
return Or(*[Not(a) for a in self.args])
|
373 |
+
|
374 |
+
# (a|b|...) & c == (a&c) | (b&c) | ...
|
375 |
+
def expand(self):
|
376 |
+
|
377 |
+
# first locate Or
|
378 |
+
for i, arg in enumerate(self.args):
|
379 |
+
if isinstance(arg, Or):
|
380 |
+
arest = self.args[:i] + self.args[i + 1:]
|
381 |
+
|
382 |
+
orterms = [And(*(arest + (a,))) for a in arg.args]
|
383 |
+
for j in range(len(orterms)):
|
384 |
+
if isinstance(orterms[j], Logic):
|
385 |
+
orterms[j] = orterms[j].expand()
|
386 |
+
|
387 |
+
res = Or(*orterms)
|
388 |
+
return res
|
389 |
+
|
390 |
+
return self
|
391 |
+
|
392 |
+
|
393 |
+
class Or(AndOr_Base):
|
394 |
+
op_x_notx = True
|
395 |
+
|
396 |
+
def _eval_propagate_not(self):
|
397 |
+
# !(a|b|c ...) == !a & !b & !c ...
|
398 |
+
return And(*[Not(a) for a in self.args])
|
399 |
+
|
400 |
+
|
401 |
+
class Not(Logic):
|
402 |
+
|
403 |
+
def __new__(cls, arg):
|
404 |
+
if isinstance(arg, str):
|
405 |
+
return Logic.__new__(cls, arg)
|
406 |
+
|
407 |
+
elif isinstance(arg, bool):
|
408 |
+
return not arg
|
409 |
+
elif isinstance(arg, Not):
|
410 |
+
return arg.args[0]
|
411 |
+
|
412 |
+
elif isinstance(arg, Logic):
|
413 |
+
# XXX this is a hack to expand right from the beginning
|
414 |
+
arg = arg._eval_propagate_not()
|
415 |
+
return arg
|
416 |
+
|
417 |
+
else:
|
418 |
+
raise ValueError('Not: unknown argument %r' % (arg,))
|
419 |
+
|
420 |
+
@property
|
421 |
+
def arg(self):
|
422 |
+
return self.args[0]
|
423 |
+
|
424 |
+
|
425 |
+
Logic.op_2class['&'] = And
|
426 |
+
Logic.op_2class['|'] = Or
|
427 |
+
Logic.op_2class['!'] = Not
|
env-llmeval/lib/python3.10/site-packages/sympy/core/mul.py
ADDED
@@ -0,0 +1,2195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple as tTuple
|
2 |
+
from collections import defaultdict
|
3 |
+
from functools import cmp_to_key, reduce
|
4 |
+
from itertools import product
|
5 |
+
import operator
|
6 |
+
|
7 |
+
from .sympify import sympify
|
8 |
+
from .basic import Basic
|
9 |
+
from .singleton import S
|
10 |
+
from .operations import AssocOp, AssocOpDispatcher
|
11 |
+
from .cache import cacheit
|
12 |
+
from .logic import fuzzy_not, _fuzzy_group
|
13 |
+
from .expr import Expr
|
14 |
+
from .parameters import global_parameters
|
15 |
+
from .kind import KindDispatcher
|
16 |
+
from .traversal import bottom_up
|
17 |
+
|
18 |
+
from sympy.utilities.iterables import sift
|
19 |
+
|
20 |
+
# internal marker to indicate:
|
21 |
+
# "there are still non-commutative objects -- don't forget to process them"
|
22 |
+
class NC_Marker:
|
23 |
+
is_Order = False
|
24 |
+
is_Mul = False
|
25 |
+
is_Number = False
|
26 |
+
is_Poly = False
|
27 |
+
|
28 |
+
is_commutative = False
|
29 |
+
|
30 |
+
|
31 |
+
# Key for sorting commutative args in canonical order
|
32 |
+
_args_sortkey = cmp_to_key(Basic.compare)
|
33 |
+
def _mulsort(args):
|
34 |
+
# in-place sorting of args
|
35 |
+
args.sort(key=_args_sortkey)
|
36 |
+
|
37 |
+
|
38 |
+
def _unevaluated_Mul(*args):
|
39 |
+
"""Return a well-formed unevaluated Mul: Numbers are collected and
|
40 |
+
put in slot 0, any arguments that are Muls will be flattened, and args
|
41 |
+
are sorted. Use this when args have changed but you still want to return
|
42 |
+
an unevaluated Mul.
|
43 |
+
|
44 |
+
Examples
|
45 |
+
========
|
46 |
+
|
47 |
+
>>> from sympy.core.mul import _unevaluated_Mul as uMul
|
48 |
+
>>> from sympy import S, sqrt, Mul
|
49 |
+
>>> from sympy.abc import x
|
50 |
+
>>> a = uMul(*[S(3.0), x, S(2)])
|
51 |
+
>>> a.args[0]
|
52 |
+
6.00000000000000
|
53 |
+
>>> a.args[1]
|
54 |
+
x
|
55 |
+
|
56 |
+
Two unevaluated Muls with the same arguments will
|
57 |
+
always compare as equal during testing:
|
58 |
+
|
59 |
+
>>> m = uMul(sqrt(2), sqrt(3))
|
60 |
+
>>> m == uMul(sqrt(3), sqrt(2))
|
61 |
+
True
|
62 |
+
>>> u = Mul(sqrt(3), sqrt(2), evaluate=False)
|
63 |
+
>>> m == uMul(u)
|
64 |
+
True
|
65 |
+
>>> m == Mul(*m.args)
|
66 |
+
False
|
67 |
+
|
68 |
+
"""
|
69 |
+
args = list(args)
|
70 |
+
newargs = []
|
71 |
+
ncargs = []
|
72 |
+
co = S.One
|
73 |
+
while args:
|
74 |
+
a = args.pop()
|
75 |
+
if a.is_Mul:
|
76 |
+
c, nc = a.args_cnc()
|
77 |
+
args.extend(c)
|
78 |
+
if nc:
|
79 |
+
ncargs.append(Mul._from_args(nc))
|
80 |
+
elif a.is_Number:
|
81 |
+
co *= a
|
82 |
+
else:
|
83 |
+
newargs.append(a)
|
84 |
+
_mulsort(newargs)
|
85 |
+
if co is not S.One:
|
86 |
+
newargs.insert(0, co)
|
87 |
+
if ncargs:
|
88 |
+
newargs.append(Mul._from_args(ncargs))
|
89 |
+
return Mul._from_args(newargs)
|
90 |
+
|
91 |
+
|
92 |
+
class Mul(Expr, AssocOp):
|
93 |
+
"""
|
94 |
+
Expression representing multiplication operation for algebraic field.
|
95 |
+
|
96 |
+
.. deprecated:: 1.7
|
97 |
+
|
98 |
+
Using arguments that aren't subclasses of :class:`~.Expr` in core
|
99 |
+
operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
|
100 |
+
deprecated. See :ref:`non-expr-args-deprecated` for details.
|
101 |
+
|
102 |
+
Every argument of ``Mul()`` must be ``Expr``. Infix operator ``*``
|
103 |
+
on most scalar objects in SymPy calls this class.
|
104 |
+
|
105 |
+
Another use of ``Mul()`` is to represent the structure of abstract
|
106 |
+
multiplication so that its arguments can be substituted to return
|
107 |
+
different class. Refer to examples section for this.
|
108 |
+
|
109 |
+
``Mul()`` evaluates the argument unless ``evaluate=False`` is passed.
|
110 |
+
The evaluation logic includes:
|
111 |
+
|
112 |
+
1. Flattening
|
113 |
+
``Mul(x, Mul(y, z))`` -> ``Mul(x, y, z)``
|
114 |
+
|
115 |
+
2. Identity removing
|
116 |
+
``Mul(x, 1, y)`` -> ``Mul(x, y)``
|
117 |
+
|
118 |
+
3. Exponent collecting by ``.as_base_exp()``
|
119 |
+
``Mul(x, x**2)`` -> ``Pow(x, 3)``
|
120 |
+
|
121 |
+
4. Term sorting
|
122 |
+
``Mul(y, x, 2)`` -> ``Mul(2, x, y)``
|
123 |
+
|
124 |
+
Since multiplication can be vector space operation, arguments may
|
125 |
+
have the different :obj:`sympy.core.kind.Kind()`. Kind of the
|
126 |
+
resulting object is automatically inferred.
|
127 |
+
|
128 |
+
Examples
|
129 |
+
========
|
130 |
+
|
131 |
+
>>> from sympy import Mul
|
132 |
+
>>> from sympy.abc import x, y
|
133 |
+
>>> Mul(x, 1)
|
134 |
+
x
|
135 |
+
>>> Mul(x, x)
|
136 |
+
x**2
|
137 |
+
|
138 |
+
If ``evaluate=False`` is passed, result is not evaluated.
|
139 |
+
|
140 |
+
>>> Mul(1, 2, evaluate=False)
|
141 |
+
1*2
|
142 |
+
>>> Mul(x, x, evaluate=False)
|
143 |
+
x*x
|
144 |
+
|
145 |
+
``Mul()`` also represents the general structure of multiplication
|
146 |
+
operation.
|
147 |
+
|
148 |
+
>>> from sympy import MatrixSymbol
|
149 |
+
>>> A = MatrixSymbol('A', 2,2)
|
150 |
+
>>> expr = Mul(x,y).subs({y:A})
|
151 |
+
>>> expr
|
152 |
+
x*A
|
153 |
+
>>> type(expr)
|
154 |
+
<class 'sympy.matrices.expressions.matmul.MatMul'>
|
155 |
+
|
156 |
+
See Also
|
157 |
+
========
|
158 |
+
|
159 |
+
MatMul
|
160 |
+
|
161 |
+
"""
|
162 |
+
__slots__ = ()
|
163 |
+
|
164 |
+
args: tTuple[Expr]
|
165 |
+
|
166 |
+
is_Mul = True
|
167 |
+
|
168 |
+
_args_type = Expr
|
169 |
+
_kind_dispatcher = KindDispatcher("Mul_kind_dispatcher", commutative=True)
|
170 |
+
|
171 |
+
@property
|
172 |
+
def kind(self):
|
173 |
+
arg_kinds = (a.kind for a in self.args)
|
174 |
+
return self._kind_dispatcher(*arg_kinds)
|
175 |
+
|
176 |
+
def could_extract_minus_sign(self):
|
177 |
+
if self == (-self):
|
178 |
+
return False # e.g. zoo*x == -zoo*x
|
179 |
+
c = self.args[0]
|
180 |
+
return c.is_Number and c.is_extended_negative
|
181 |
+
|
182 |
+
def __neg__(self):
|
183 |
+
c, args = self.as_coeff_mul()
|
184 |
+
if args[0] is not S.ComplexInfinity:
|
185 |
+
c = -c
|
186 |
+
if c is not S.One:
|
187 |
+
if args[0].is_Number:
|
188 |
+
args = list(args)
|
189 |
+
if c is S.NegativeOne:
|
190 |
+
args[0] = -args[0]
|
191 |
+
else:
|
192 |
+
args[0] *= c
|
193 |
+
else:
|
194 |
+
args = (c,) + args
|
195 |
+
return self._from_args(args, self.is_commutative)
|
196 |
+
|
197 |
+
@classmethod
|
198 |
+
def flatten(cls, seq):
|
199 |
+
"""Return commutative, noncommutative and order arguments by
|
200 |
+
combining related terms.
|
201 |
+
|
202 |
+
Notes
|
203 |
+
=====
|
204 |
+
* In an expression like ``a*b*c``, Python process this through SymPy
|
205 |
+
as ``Mul(Mul(a, b), c)``. This can have undesirable consequences.
|
206 |
+
|
207 |
+
- Sometimes terms are not combined as one would like:
|
208 |
+
{c.f. https://github.com/sympy/sympy/issues/4596}
|
209 |
+
|
210 |
+
>>> from sympy import Mul, sqrt
|
211 |
+
>>> from sympy.abc import x, y, z
|
212 |
+
>>> 2*(x + 1) # this is the 2-arg Mul behavior
|
213 |
+
2*x + 2
|
214 |
+
>>> y*(x + 1)*2
|
215 |
+
2*y*(x + 1)
|
216 |
+
>>> 2*(x + 1)*y # 2-arg result will be obtained first
|
217 |
+
y*(2*x + 2)
|
218 |
+
>>> Mul(2, x + 1, y) # all 3 args simultaneously processed
|
219 |
+
2*y*(x + 1)
|
220 |
+
>>> 2*((x + 1)*y) # parentheses can control this behavior
|
221 |
+
2*y*(x + 1)
|
222 |
+
|
223 |
+
Powers with compound bases may not find a single base to
|
224 |
+
combine with unless all arguments are processed at once.
|
225 |
+
Post-processing may be necessary in such cases.
|
226 |
+
{c.f. https://github.com/sympy/sympy/issues/5728}
|
227 |
+
|
228 |
+
>>> a = sqrt(x*sqrt(y))
|
229 |
+
>>> a**3
|
230 |
+
(x*sqrt(y))**(3/2)
|
231 |
+
>>> Mul(a,a,a)
|
232 |
+
(x*sqrt(y))**(3/2)
|
233 |
+
>>> a*a*a
|
234 |
+
x*sqrt(y)*sqrt(x*sqrt(y))
|
235 |
+
>>> _.subs(a.base, z).subs(z, a.base)
|
236 |
+
(x*sqrt(y))**(3/2)
|
237 |
+
|
238 |
+
- If more than two terms are being multiplied then all the
|
239 |
+
previous terms will be re-processed for each new argument.
|
240 |
+
So if each of ``a``, ``b`` and ``c`` were :class:`Mul`
|
241 |
+
expression, then ``a*b*c`` (or building up the product
|
242 |
+
with ``*=``) will process all the arguments of ``a`` and
|
243 |
+
``b`` twice: once when ``a*b`` is computed and again when
|
244 |
+
``c`` is multiplied.
|
245 |
+
|
246 |
+
Using ``Mul(a, b, c)`` will process all arguments once.
|
247 |
+
|
248 |
+
* The results of Mul are cached according to arguments, so flatten
|
249 |
+
will only be called once for ``Mul(a, b, c)``. If you can
|
250 |
+
structure a calculation so the arguments are most likely to be
|
251 |
+
repeats then this can save time in computing the answer. For
|
252 |
+
example, say you had a Mul, M, that you wished to divide by ``d[i]``
|
253 |
+
and multiply by ``n[i]`` and you suspect there are many repeats
|
254 |
+
in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather
|
255 |
+
than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the
|
256 |
+
product, ``M*n[i]`` will be returned without flattening -- the
|
257 |
+
cached value will be returned. If you divide by the ``d[i]``
|
258 |
+
first (and those are more unique than the ``n[i]``) then that will
|
259 |
+
create a new Mul, ``M/d[i]`` the args of which will be traversed
|
260 |
+
again when it is multiplied by ``n[i]``.
|
261 |
+
|
262 |
+
{c.f. https://github.com/sympy/sympy/issues/5706}
|
263 |
+
|
264 |
+
This consideration is moot if the cache is turned off.
|
265 |
+
|
266 |
+
NB
|
267 |
+
--
|
268 |
+
The validity of the above notes depends on the implementation
|
269 |
+
details of Mul and flatten which may change at any time. Therefore,
|
270 |
+
you should only consider them when your code is highly performance
|
271 |
+
sensitive.
|
272 |
+
|
273 |
+
Removal of 1 from the sequence is already handled by AssocOp.__new__.
|
274 |
+
"""
|
275 |
+
|
276 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
277 |
+
from sympy.matrices.expressions import MatrixExpr
|
278 |
+
rv = None
|
279 |
+
if len(seq) == 2:
|
280 |
+
a, b = seq
|
281 |
+
if b.is_Rational:
|
282 |
+
a, b = b, a
|
283 |
+
seq = [a, b]
|
284 |
+
assert a is not S.One
|
285 |
+
if not a.is_zero and a.is_Rational:
|
286 |
+
r, b = b.as_coeff_Mul()
|
287 |
+
if b.is_Add:
|
288 |
+
if r is not S.One: # 2-arg hack
|
289 |
+
# leave the Mul as a Mul?
|
290 |
+
ar = a*r
|
291 |
+
if ar is S.One:
|
292 |
+
arb = b
|
293 |
+
else:
|
294 |
+
arb = cls(a*r, b, evaluate=False)
|
295 |
+
rv = [arb], [], None
|
296 |
+
elif global_parameters.distribute and b.is_commutative:
|
297 |
+
newb = Add(*[_keep_coeff(a, bi) for bi in b.args])
|
298 |
+
rv = [newb], [], None
|
299 |
+
if rv:
|
300 |
+
return rv
|
301 |
+
|
302 |
+
# apply associativity, separate commutative part of seq
|
303 |
+
c_part = [] # out: commutative factors
|
304 |
+
nc_part = [] # out: non-commutative factors
|
305 |
+
|
306 |
+
nc_seq = []
|
307 |
+
|
308 |
+
coeff = S.One # standalone term
|
309 |
+
# e.g. 3 * ...
|
310 |
+
|
311 |
+
c_powers = [] # (base,exp) n
|
312 |
+
# e.g. (x,n) for x
|
313 |
+
|
314 |
+
num_exp = [] # (num-base, exp) y
|
315 |
+
# e.g. (3, y) for ... * 3 * ...
|
316 |
+
|
317 |
+
neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I
|
318 |
+
|
319 |
+
pnum_rat = {} # (num-base, Rat-exp) 1/2
|
320 |
+
# e.g. (3, 1/2) for ... * 3 * ...
|
321 |
+
|
322 |
+
order_symbols = None
|
323 |
+
|
324 |
+
# --- PART 1 ---
|
325 |
+
#
|
326 |
+
# "collect powers and coeff":
|
327 |
+
#
|
328 |
+
# o coeff
|
329 |
+
# o c_powers
|
330 |
+
# o num_exp
|
331 |
+
# o neg1e
|
332 |
+
# o pnum_rat
|
333 |
+
#
|
334 |
+
# NOTE: this is optimized for all-objects-are-commutative case
|
335 |
+
for o in seq:
|
336 |
+
# O(x)
|
337 |
+
if o.is_Order:
|
338 |
+
o, order_symbols = o.as_expr_variables(order_symbols)
|
339 |
+
|
340 |
+
# Mul([...])
|
341 |
+
if o.is_Mul:
|
342 |
+
if o.is_commutative:
|
343 |
+
seq.extend(o.args) # XXX zerocopy?
|
344 |
+
|
345 |
+
else:
|
346 |
+
# NCMul can have commutative parts as well
|
347 |
+
for q in o.args:
|
348 |
+
if q.is_commutative:
|
349 |
+
seq.append(q)
|
350 |
+
else:
|
351 |
+
nc_seq.append(q)
|
352 |
+
|
353 |
+
# append non-commutative marker, so we don't forget to
|
354 |
+
# process scheduled non-commutative objects
|
355 |
+
seq.append(NC_Marker)
|
356 |
+
|
357 |
+
continue
|
358 |
+
|
359 |
+
# 3
|
360 |
+
elif o.is_Number:
|
361 |
+
if o is S.NaN or coeff is S.ComplexInfinity and o.is_zero:
|
362 |
+
# we know for sure the result will be nan
|
363 |
+
return [S.NaN], [], None
|
364 |
+
elif coeff.is_Number or isinstance(coeff, AccumBounds): # it could be zoo
|
365 |
+
coeff *= o
|
366 |
+
if coeff is S.NaN:
|
367 |
+
# we know for sure the result will be nan
|
368 |
+
return [S.NaN], [], None
|
369 |
+
continue
|
370 |
+
|
371 |
+
elif isinstance(o, AccumBounds):
|
372 |
+
coeff = o.__mul__(coeff)
|
373 |
+
continue
|
374 |
+
|
375 |
+
elif o is S.ComplexInfinity:
|
376 |
+
if not coeff:
|
377 |
+
# 0 * zoo = NaN
|
378 |
+
return [S.NaN], [], None
|
379 |
+
coeff = S.ComplexInfinity
|
380 |
+
continue
|
381 |
+
|
382 |
+
elif o is S.ImaginaryUnit:
|
383 |
+
neg1e += S.Half
|
384 |
+
continue
|
385 |
+
|
386 |
+
elif o.is_commutative:
|
387 |
+
# e
|
388 |
+
# o = b
|
389 |
+
b, e = o.as_base_exp()
|
390 |
+
|
391 |
+
# y
|
392 |
+
# 3
|
393 |
+
if o.is_Pow:
|
394 |
+
if b.is_Number:
|
395 |
+
|
396 |
+
# get all the factors with numeric base so they can be
|
397 |
+
# combined below, but don't combine negatives unless
|
398 |
+
# the exponent is an integer
|
399 |
+
if e.is_Rational:
|
400 |
+
if e.is_Integer:
|
401 |
+
coeff *= Pow(b, e) # it is an unevaluated power
|
402 |
+
continue
|
403 |
+
elif e.is_negative: # also a sign of an unevaluated power
|
404 |
+
seq.append(Pow(b, e))
|
405 |
+
continue
|
406 |
+
elif b.is_negative:
|
407 |
+
neg1e += e
|
408 |
+
b = -b
|
409 |
+
if b is not S.One:
|
410 |
+
pnum_rat.setdefault(b, []).append(e)
|
411 |
+
continue
|
412 |
+
elif b.is_positive or e.is_integer:
|
413 |
+
num_exp.append((b, e))
|
414 |
+
continue
|
415 |
+
|
416 |
+
c_powers.append((b, e))
|
417 |
+
|
418 |
+
# NON-COMMUTATIVE
|
419 |
+
# TODO: Make non-commutative exponents not combine automatically
|
420 |
+
else:
|
421 |
+
if o is not NC_Marker:
|
422 |
+
nc_seq.append(o)
|
423 |
+
|
424 |
+
# process nc_seq (if any)
|
425 |
+
while nc_seq:
|
426 |
+
o = nc_seq.pop(0)
|
427 |
+
if not nc_part:
|
428 |
+
nc_part.append(o)
|
429 |
+
continue
|
430 |
+
|
431 |
+
# b c b+c
|
432 |
+
# try to combine last terms: a * a -> a
|
433 |
+
o1 = nc_part.pop()
|
434 |
+
b1, e1 = o1.as_base_exp()
|
435 |
+
b2, e2 = o.as_base_exp()
|
436 |
+
new_exp = e1 + e2
|
437 |
+
# Only allow powers to combine if the new exponent is
|
438 |
+
# not an Add. This allow things like a**2*b**3 == a**5
|
439 |
+
# if a.is_commutative == False, but prohibits
|
440 |
+
# a**x*a**y and x**a*x**b from combining (x,y commute).
|
441 |
+
if b1 == b2 and (not new_exp.is_Add):
|
442 |
+
o12 = b1 ** new_exp
|
443 |
+
|
444 |
+
# now o12 could be a commutative object
|
445 |
+
if o12.is_commutative:
|
446 |
+
seq.append(o12)
|
447 |
+
continue
|
448 |
+
else:
|
449 |
+
nc_seq.insert(0, o12)
|
450 |
+
|
451 |
+
else:
|
452 |
+
nc_part.extend([o1, o])
|
453 |
+
|
454 |
+
# We do want a combined exponent if it would not be an Add, such as
|
455 |
+
# y 2y 3y
|
456 |
+
# x * x -> x
|
457 |
+
# We determine if two exponents have the same term by using
|
458 |
+
# as_coeff_Mul.
|
459 |
+
#
|
460 |
+
# Unfortunately, this isn't smart enough to consider combining into
|
461 |
+
# exponents that might already be adds, so things like:
|
462 |
+
# z - y y
|
463 |
+
# x * x will be left alone. This is because checking every possible
|
464 |
+
# combination can slow things down.
|
465 |
+
|
466 |
+
# gather exponents of common bases...
|
467 |
+
def _gather(c_powers):
|
468 |
+
common_b = {} # b:e
|
469 |
+
for b, e in c_powers:
|
470 |
+
co = e.as_coeff_Mul()
|
471 |
+
common_b.setdefault(b, {}).setdefault(
|
472 |
+
co[1], []).append(co[0])
|
473 |
+
for b, d in common_b.items():
|
474 |
+
for di, li in d.items():
|
475 |
+
d[di] = Add(*li)
|
476 |
+
new_c_powers = []
|
477 |
+
for b, e in common_b.items():
|
478 |
+
new_c_powers.extend([(b, c*t) for t, c in e.items()])
|
479 |
+
return new_c_powers
|
480 |
+
|
481 |
+
# in c_powers
|
482 |
+
c_powers = _gather(c_powers)
|
483 |
+
|
484 |
+
# and in num_exp
|
485 |
+
num_exp = _gather(num_exp)
|
486 |
+
|
487 |
+
# --- PART 2 ---
|
488 |
+
#
|
489 |
+
# o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow)
|
490 |
+
# o combine collected powers (2**x * 3**x -> 6**x)
|
491 |
+
# with numeric base
|
492 |
+
|
493 |
+
# ................................
|
494 |
+
# now we have:
|
495 |
+
# - coeff:
|
496 |
+
# - c_powers: (b, e)
|
497 |
+
# - num_exp: (2, e)
|
498 |
+
# - pnum_rat: {(1/3, [1/3, 2/3, 1/4])}
|
499 |
+
|
500 |
+
# 0 1
|
501 |
+
# x -> 1 x -> x
|
502 |
+
|
503 |
+
# this should only need to run twice; if it fails because
|
504 |
+
# it needs to be run more times, perhaps this should be
|
505 |
+
# changed to a "while True" loop -- the only reason it
|
506 |
+
# isn't such now is to allow a less-than-perfect result to
|
507 |
+
# be obtained rather than raising an error or entering an
|
508 |
+
# infinite loop
|
509 |
+
for i in range(2):
|
510 |
+
new_c_powers = []
|
511 |
+
changed = False
|
512 |
+
for b, e in c_powers:
|
513 |
+
if e.is_zero:
|
514 |
+
# canceling out infinities yields NaN
|
515 |
+
if (b.is_Add or b.is_Mul) and any(infty in b.args
|
516 |
+
for infty in (S.ComplexInfinity, S.Infinity,
|
517 |
+
S.NegativeInfinity)):
|
518 |
+
return [S.NaN], [], None
|
519 |
+
continue
|
520 |
+
if e is S.One:
|
521 |
+
if b.is_Number:
|
522 |
+
coeff *= b
|
523 |
+
continue
|
524 |
+
p = b
|
525 |
+
if e is not S.One:
|
526 |
+
p = Pow(b, e)
|
527 |
+
# check to make sure that the base doesn't change
|
528 |
+
# after exponentiation; to allow for unevaluated
|
529 |
+
# Pow, we only do so if b is not already a Pow
|
530 |
+
if p.is_Pow and not b.is_Pow:
|
531 |
+
bi = b
|
532 |
+
b, e = p.as_base_exp()
|
533 |
+
if b != bi:
|
534 |
+
changed = True
|
535 |
+
c_part.append(p)
|
536 |
+
new_c_powers.append((b, e))
|
537 |
+
# there might have been a change, but unless the base
|
538 |
+
# matches some other base, there is nothing to do
|
539 |
+
if changed and len({
|
540 |
+
b for b, e in new_c_powers}) != len(new_c_powers):
|
541 |
+
# start over again
|
542 |
+
c_part = []
|
543 |
+
c_powers = _gather(new_c_powers)
|
544 |
+
else:
|
545 |
+
break
|
546 |
+
|
547 |
+
# x x x
|
548 |
+
# 2 * 3 -> 6
|
549 |
+
inv_exp_dict = {} # exp:Mul(num-bases) x x
|
550 |
+
# e.g. x:6 for ... * 2 * 3 * ...
|
551 |
+
for b, e in num_exp:
|
552 |
+
inv_exp_dict.setdefault(e, []).append(b)
|
553 |
+
for e, b in inv_exp_dict.items():
|
554 |
+
inv_exp_dict[e] = cls(*b)
|
555 |
+
c_part.extend([Pow(b, e) for e, b in inv_exp_dict.items() if e])
|
556 |
+
|
557 |
+
# b, e -> e' = sum(e), b
|
558 |
+
# {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])}
|
559 |
+
comb_e = {}
|
560 |
+
for b, e in pnum_rat.items():
|
561 |
+
comb_e.setdefault(Add(*e), []).append(b)
|
562 |
+
del pnum_rat
|
563 |
+
# process them, reducing exponents to values less than 1
|
564 |
+
# and updating coeff if necessary else adding them to
|
565 |
+
# num_rat for further processing
|
566 |
+
num_rat = []
|
567 |
+
for e, b in comb_e.items():
|
568 |
+
b = cls(*b)
|
569 |
+
if e.q == 1:
|
570 |
+
coeff *= Pow(b, e)
|
571 |
+
continue
|
572 |
+
if e.p > e.q:
|
573 |
+
e_i, ep = divmod(e.p, e.q)
|
574 |
+
coeff *= Pow(b, e_i)
|
575 |
+
e = Rational(ep, e.q)
|
576 |
+
num_rat.append((b, e))
|
577 |
+
del comb_e
|
578 |
+
|
579 |
+
# extract gcd of bases in num_rat
|
580 |
+
# 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4)
|
581 |
+
pnew = defaultdict(list)
|
582 |
+
i = 0 # steps through num_rat which may grow
|
583 |
+
while i < len(num_rat):
|
584 |
+
bi, ei = num_rat[i]
|
585 |
+
grow = []
|
586 |
+
for j in range(i + 1, len(num_rat)):
|
587 |
+
bj, ej = num_rat[j]
|
588 |
+
g = bi.gcd(bj)
|
589 |
+
if g is not S.One:
|
590 |
+
# 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2
|
591 |
+
# this might have a gcd with something else
|
592 |
+
e = ei + ej
|
593 |
+
if e.q == 1:
|
594 |
+
coeff *= Pow(g, e)
|
595 |
+
else:
|
596 |
+
if e.p > e.q:
|
597 |
+
e_i, ep = divmod(e.p, e.q) # change e in place
|
598 |
+
coeff *= Pow(g, e_i)
|
599 |
+
e = Rational(ep, e.q)
|
600 |
+
grow.append((g, e))
|
601 |
+
# update the jth item
|
602 |
+
num_rat[j] = (bj/g, ej)
|
603 |
+
# update bi that we are checking with
|
604 |
+
bi = bi/g
|
605 |
+
if bi is S.One:
|
606 |
+
break
|
607 |
+
if bi is not S.One:
|
608 |
+
obj = Pow(bi, ei)
|
609 |
+
if obj.is_Number:
|
610 |
+
coeff *= obj
|
611 |
+
else:
|
612 |
+
# changes like sqrt(12) -> 2*sqrt(3)
|
613 |
+
for obj in Mul.make_args(obj):
|
614 |
+
if obj.is_Number:
|
615 |
+
coeff *= obj
|
616 |
+
else:
|
617 |
+
assert obj.is_Pow
|
618 |
+
bi, ei = obj.args
|
619 |
+
pnew[ei].append(bi)
|
620 |
+
|
621 |
+
num_rat.extend(grow)
|
622 |
+
i += 1
|
623 |
+
|
624 |
+
# combine bases of the new powers
|
625 |
+
for e, b in pnew.items():
|
626 |
+
pnew[e] = cls(*b)
|
627 |
+
|
628 |
+
# handle -1 and I
|
629 |
+
if neg1e:
|
630 |
+
# treat I as (-1)**(1/2) and compute -1's total exponent
|
631 |
+
p, q = neg1e.as_numer_denom()
|
632 |
+
# if the integer part is odd, extract -1
|
633 |
+
n, p = divmod(p, q)
|
634 |
+
if n % 2:
|
635 |
+
coeff = -coeff
|
636 |
+
# if it's a multiple of 1/2 extract I
|
637 |
+
if q == 2:
|
638 |
+
c_part.append(S.ImaginaryUnit)
|
639 |
+
elif p:
|
640 |
+
# see if there is any positive base this power of
|
641 |
+
# -1 can join
|
642 |
+
neg1e = Rational(p, q)
|
643 |
+
for e, b in pnew.items():
|
644 |
+
if e == neg1e and b.is_positive:
|
645 |
+
pnew[e] = -b
|
646 |
+
break
|
647 |
+
else:
|
648 |
+
# keep it separate; we've already evaluated it as
|
649 |
+
# much as possible so evaluate=False
|
650 |
+
c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False))
|
651 |
+
|
652 |
+
# add all the pnew powers
|
653 |
+
c_part.extend([Pow(b, e) for e, b in pnew.items()])
|
654 |
+
|
655 |
+
# oo, -oo
|
656 |
+
if coeff in (S.Infinity, S.NegativeInfinity):
|
657 |
+
def _handle_for_oo(c_part, coeff_sign):
|
658 |
+
new_c_part = []
|
659 |
+
for t in c_part:
|
660 |
+
if t.is_extended_positive:
|
661 |
+
continue
|
662 |
+
if t.is_extended_negative:
|
663 |
+
coeff_sign *= -1
|
664 |
+
continue
|
665 |
+
new_c_part.append(t)
|
666 |
+
return new_c_part, coeff_sign
|
667 |
+
c_part, coeff_sign = _handle_for_oo(c_part, 1)
|
668 |
+
nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign)
|
669 |
+
coeff *= coeff_sign
|
670 |
+
|
671 |
+
# zoo
|
672 |
+
if coeff is S.ComplexInfinity:
|
673 |
+
# zoo might be
|
674 |
+
# infinite_real + bounded_im
|
675 |
+
# bounded_real + infinite_im
|
676 |
+
# infinite_real + infinite_im
|
677 |
+
# and non-zero real or imaginary will not change that status.
|
678 |
+
c_part = [c for c in c_part if not (fuzzy_not(c.is_zero) and
|
679 |
+
c.is_extended_real is not None)]
|
680 |
+
nc_part = [c for c in nc_part if not (fuzzy_not(c.is_zero) and
|
681 |
+
c.is_extended_real is not None)]
|
682 |
+
|
683 |
+
# 0
|
684 |
+
elif coeff.is_zero:
|
685 |
+
# we know for sure the result will be 0 except the multiplicand
|
686 |
+
# is infinity or a matrix
|
687 |
+
if any(isinstance(c, MatrixExpr) for c in nc_part):
|
688 |
+
return [coeff], nc_part, order_symbols
|
689 |
+
if any(c.is_finite == False for c in c_part):
|
690 |
+
return [S.NaN], [], order_symbols
|
691 |
+
return [coeff], [], order_symbols
|
692 |
+
|
693 |
+
# check for straggling Numbers that were produced
|
694 |
+
_new = []
|
695 |
+
for i in c_part:
|
696 |
+
if i.is_Number:
|
697 |
+
coeff *= i
|
698 |
+
else:
|
699 |
+
_new.append(i)
|
700 |
+
c_part = _new
|
701 |
+
|
702 |
+
# order commutative part canonically
|
703 |
+
_mulsort(c_part)
|
704 |
+
|
705 |
+
# current code expects coeff to be always in slot-0
|
706 |
+
if coeff is not S.One:
|
707 |
+
c_part.insert(0, coeff)
|
708 |
+
|
709 |
+
# we are done
|
710 |
+
if (global_parameters.distribute and not nc_part and len(c_part) == 2 and
|
711 |
+
c_part[0].is_Number and c_part[0].is_finite and c_part[1].is_Add):
|
712 |
+
# 2*(1+a) -> 2 + 2 * a
|
713 |
+
coeff = c_part[0]
|
714 |
+
c_part = [Add(*[coeff*f for f in c_part[1].args])]
|
715 |
+
|
716 |
+
return c_part, nc_part, order_symbols
|
717 |
+
|
718 |
+
def _eval_power(self, e):
|
719 |
+
|
720 |
+
# don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B
|
721 |
+
cargs, nc = self.args_cnc(split_1=False)
|
722 |
+
|
723 |
+
if e.is_Integer:
|
724 |
+
return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \
|
725 |
+
Pow(Mul._from_args(nc), e, evaluate=False)
|
726 |
+
if e.is_Rational and e.q == 2:
|
727 |
+
if self.is_imaginary:
|
728 |
+
a = self.as_real_imag()[1]
|
729 |
+
if a.is_Rational:
|
730 |
+
from .power import integer_nthroot
|
731 |
+
n, d = abs(a/2).as_numer_denom()
|
732 |
+
n, t = integer_nthroot(n, 2)
|
733 |
+
if t:
|
734 |
+
d, t = integer_nthroot(d, 2)
|
735 |
+
if t:
|
736 |
+
from sympy.functions.elementary.complexes import sign
|
737 |
+
r = sympify(n)/d
|
738 |
+
return _unevaluated_Mul(r**e.p, (1 + sign(a)*S.ImaginaryUnit)**e.p)
|
739 |
+
|
740 |
+
p = Pow(self, e, evaluate=False)
|
741 |
+
|
742 |
+
if e.is_Rational or e.is_Float:
|
743 |
+
return p._eval_expand_power_base()
|
744 |
+
|
745 |
+
return p
|
746 |
+
|
747 |
+
@classmethod
|
748 |
+
def class_key(cls):
|
749 |
+
return 3, 0, cls.__name__
|
750 |
+
|
751 |
+
def _eval_evalf(self, prec):
|
752 |
+
c, m = self.as_coeff_Mul()
|
753 |
+
if c is S.NegativeOne:
|
754 |
+
if m.is_Mul:
|
755 |
+
rv = -AssocOp._eval_evalf(m, prec)
|
756 |
+
else:
|
757 |
+
mnew = m._eval_evalf(prec)
|
758 |
+
if mnew is not None:
|
759 |
+
m = mnew
|
760 |
+
rv = -m
|
761 |
+
else:
|
762 |
+
rv = AssocOp._eval_evalf(self, prec)
|
763 |
+
if rv.is_number:
|
764 |
+
return rv.expand()
|
765 |
+
return rv
|
766 |
+
|
767 |
+
@property
|
768 |
+
def _mpc_(self):
|
769 |
+
"""
|
770 |
+
Convert self to an mpmath mpc if possible
|
771 |
+
"""
|
772 |
+
from .numbers import Float
|
773 |
+
im_part, imag_unit = self.as_coeff_Mul()
|
774 |
+
if imag_unit is not S.ImaginaryUnit:
|
775 |
+
# ValueError may seem more reasonable but since it's a @property,
|
776 |
+
# we need to use AttributeError to keep from confusing things like
|
777 |
+
# hasattr.
|
778 |
+
raise AttributeError("Cannot convert Mul to mpc. Must be of the form Number*I")
|
779 |
+
|
780 |
+
return (Float(0)._mpf_, Float(im_part)._mpf_)
|
781 |
+
|
782 |
+
@cacheit
|
783 |
+
def as_two_terms(self):
|
784 |
+
"""Return head and tail of self.
|
785 |
+
|
786 |
+
This is the most efficient way to get the head and tail of an
|
787 |
+
expression.
|
788 |
+
|
789 |
+
- if you want only the head, use self.args[0];
|
790 |
+
- if you want to process the arguments of the tail then use
|
791 |
+
self.as_coef_mul() which gives the head and a tuple containing
|
792 |
+
the arguments of the tail when treated as a Mul.
|
793 |
+
- if you want the coefficient when self is treated as an Add
|
794 |
+
then use self.as_coeff_add()[0]
|
795 |
+
|
796 |
+
Examples
|
797 |
+
========
|
798 |
+
|
799 |
+
>>> from sympy.abc import x, y
|
800 |
+
>>> (3*x*y).as_two_terms()
|
801 |
+
(3, x*y)
|
802 |
+
"""
|
803 |
+
args = self.args
|
804 |
+
|
805 |
+
if len(args) == 1:
|
806 |
+
return S.One, self
|
807 |
+
elif len(args) == 2:
|
808 |
+
return args
|
809 |
+
|
810 |
+
else:
|
811 |
+
return args[0], self._new_rawargs(*args[1:])
|
812 |
+
|
813 |
+
@cacheit
|
814 |
+
def as_coeff_mul(self, *deps, rational=True, **kwargs):
|
815 |
+
if deps:
|
816 |
+
l1, l2 = sift(self.args, lambda x: x.has(*deps), binary=True)
|
817 |
+
return self._new_rawargs(*l2), tuple(l1)
|
818 |
+
args = self.args
|
819 |
+
if args[0].is_Number:
|
820 |
+
if not rational or args[0].is_Rational:
|
821 |
+
return args[0], args[1:]
|
822 |
+
elif args[0].is_extended_negative:
|
823 |
+
return S.NegativeOne, (-args[0],) + args[1:]
|
824 |
+
return S.One, args
|
825 |
+
|
826 |
+
def as_coeff_Mul(self, rational=False):
|
827 |
+
"""
|
828 |
+
Efficiently extract the coefficient of a product.
|
829 |
+
"""
|
830 |
+
coeff, args = self.args[0], self.args[1:]
|
831 |
+
|
832 |
+
if coeff.is_Number:
|
833 |
+
if not rational or coeff.is_Rational:
|
834 |
+
if len(args) == 1:
|
835 |
+
return coeff, args[0]
|
836 |
+
else:
|
837 |
+
return coeff, self._new_rawargs(*args)
|
838 |
+
elif coeff.is_extended_negative:
|
839 |
+
return S.NegativeOne, self._new_rawargs(*((-coeff,) + args))
|
840 |
+
return S.One, self
|
841 |
+
|
842 |
+
def as_real_imag(self, deep=True, **hints):
|
843 |
+
from sympy.functions.elementary.complexes import Abs, im, re
|
844 |
+
other = []
|
845 |
+
coeffr = []
|
846 |
+
coeffi = []
|
847 |
+
addterms = S.One
|
848 |
+
for a in self.args:
|
849 |
+
r, i = a.as_real_imag()
|
850 |
+
if i.is_zero:
|
851 |
+
coeffr.append(r)
|
852 |
+
elif r.is_zero:
|
853 |
+
coeffi.append(i*S.ImaginaryUnit)
|
854 |
+
elif a.is_commutative:
|
855 |
+
aconj = a.conjugate() if other else None
|
856 |
+
# search for complex conjugate pairs:
|
857 |
+
for i, x in enumerate(other):
|
858 |
+
if x == aconj:
|
859 |
+
coeffr.append(Abs(x)**2)
|
860 |
+
del other[i]
|
861 |
+
break
|
862 |
+
else:
|
863 |
+
if a.is_Add:
|
864 |
+
addterms *= a
|
865 |
+
else:
|
866 |
+
other.append(a)
|
867 |
+
else:
|
868 |
+
other.append(a)
|
869 |
+
m = self.func(*other)
|
870 |
+
if hints.get('ignore') == m:
|
871 |
+
return
|
872 |
+
if len(coeffi) % 2:
|
873 |
+
imco = im(coeffi.pop(0))
|
874 |
+
# all other pairs make a real factor; they will be
|
875 |
+
# put into reco below
|
876 |
+
else:
|
877 |
+
imco = S.Zero
|
878 |
+
reco = self.func(*(coeffr + coeffi))
|
879 |
+
r, i = (reco*re(m), reco*im(m))
|
880 |
+
if addterms == 1:
|
881 |
+
if m == 1:
|
882 |
+
if imco.is_zero:
|
883 |
+
return (reco, S.Zero)
|
884 |
+
else:
|
885 |
+
return (S.Zero, reco*imco)
|
886 |
+
if imco is S.Zero:
|
887 |
+
return (r, i)
|
888 |
+
return (-imco*i, imco*r)
|
889 |
+
from .function import expand_mul
|
890 |
+
addre, addim = expand_mul(addterms, deep=False).as_real_imag()
|
891 |
+
if imco is S.Zero:
|
892 |
+
return (r*addre - i*addim, i*addre + r*addim)
|
893 |
+
else:
|
894 |
+
r, i = -imco*i, imco*r
|
895 |
+
return (r*addre - i*addim, r*addim + i*addre)
|
896 |
+
|
897 |
+
@staticmethod
|
898 |
+
def _expandsums(sums):
|
899 |
+
"""
|
900 |
+
Helper function for _eval_expand_mul.
|
901 |
+
|
902 |
+
sums must be a list of instances of Basic.
|
903 |
+
"""
|
904 |
+
|
905 |
+
L = len(sums)
|
906 |
+
if L == 1:
|
907 |
+
return sums[0].args
|
908 |
+
terms = []
|
909 |
+
left = Mul._expandsums(sums[:L//2])
|
910 |
+
right = Mul._expandsums(sums[L//2:])
|
911 |
+
|
912 |
+
terms = [Mul(a, b) for a in left for b in right]
|
913 |
+
added = Add(*terms)
|
914 |
+
return Add.make_args(added) # it may have collapsed down to one term
|
915 |
+
|
916 |
+
def _eval_expand_mul(self, **hints):
|
917 |
+
from sympy.simplify.radsimp import fraction
|
918 |
+
|
919 |
+
# Handle things like 1/(x*(x + 1)), which are automatically converted
|
920 |
+
# to 1/x*1/(x + 1)
|
921 |
+
expr = self
|
922 |
+
n, d = fraction(expr)
|
923 |
+
if d.is_Mul:
|
924 |
+
n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i
|
925 |
+
for i in (n, d)]
|
926 |
+
expr = n/d
|
927 |
+
if not expr.is_Mul:
|
928 |
+
return expr
|
929 |
+
|
930 |
+
plain, sums, rewrite = [], [], False
|
931 |
+
for factor in expr.args:
|
932 |
+
if factor.is_Add:
|
933 |
+
sums.append(factor)
|
934 |
+
rewrite = True
|
935 |
+
else:
|
936 |
+
if factor.is_commutative:
|
937 |
+
plain.append(factor)
|
938 |
+
else:
|
939 |
+
sums.append(Basic(factor)) # Wrapper
|
940 |
+
|
941 |
+
if not rewrite:
|
942 |
+
return expr
|
943 |
+
else:
|
944 |
+
plain = self.func(*plain)
|
945 |
+
if sums:
|
946 |
+
deep = hints.get("deep", False)
|
947 |
+
terms = self.func._expandsums(sums)
|
948 |
+
args = []
|
949 |
+
for term in terms:
|
950 |
+
t = self.func(plain, term)
|
951 |
+
if t.is_Mul and any(a.is_Add for a in t.args) and deep:
|
952 |
+
t = t._eval_expand_mul()
|
953 |
+
args.append(t)
|
954 |
+
return Add(*args)
|
955 |
+
else:
|
956 |
+
return plain
|
957 |
+
|
958 |
+
@cacheit
|
959 |
+
def _eval_derivative(self, s):
|
960 |
+
args = list(self.args)
|
961 |
+
terms = []
|
962 |
+
for i in range(len(args)):
|
963 |
+
d = args[i].diff(s)
|
964 |
+
if d:
|
965 |
+
# Note: reduce is used in step of Mul as Mul is unable to
|
966 |
+
# handle subtypes and operation priority:
|
967 |
+
terms.append(reduce(lambda x, y: x*y, (args[:i] + [d] + args[i + 1:]), S.One))
|
968 |
+
return Add.fromiter(terms)
|
969 |
+
|
970 |
+
@cacheit
|
971 |
+
def _eval_derivative_n_times(self, s, n):
|
972 |
+
from .function import AppliedUndef
|
973 |
+
from .symbol import Symbol, symbols, Dummy
|
974 |
+
if not isinstance(s, (AppliedUndef, Symbol)):
|
975 |
+
# other types of s may not be well behaved, e.g.
|
976 |
+
# (cos(x)*sin(y)).diff([[x, y, z]])
|
977 |
+
return super()._eval_derivative_n_times(s, n)
|
978 |
+
from .numbers import Integer
|
979 |
+
args = self.args
|
980 |
+
m = len(args)
|
981 |
+
if isinstance(n, (int, Integer)):
|
982 |
+
# https://en.wikipedia.org/wiki/General_Leibniz_rule#More_than_two_factors
|
983 |
+
terms = []
|
984 |
+
from sympy.ntheory.multinomial import multinomial_coefficients_iterator
|
985 |
+
for kvals, c in multinomial_coefficients_iterator(m, n):
|
986 |
+
p = Mul(*[arg.diff((s, k)) for k, arg in zip(kvals, args)])
|
987 |
+
terms.append(c * p)
|
988 |
+
return Add(*terms)
|
989 |
+
from sympy.concrete.summations import Sum
|
990 |
+
from sympy.functions.combinatorial.factorials import factorial
|
991 |
+
from sympy.functions.elementary.miscellaneous import Max
|
992 |
+
kvals = symbols("k1:%i" % m, cls=Dummy)
|
993 |
+
klast = n - sum(kvals)
|
994 |
+
nfact = factorial(n)
|
995 |
+
e, l = (# better to use the multinomial?
|
996 |
+
nfact/prod(map(factorial, kvals))/factorial(klast)*\
|
997 |
+
Mul(*[args[t].diff((s, kvals[t])) for t in range(m-1)])*\
|
998 |
+
args[-1].diff((s, Max(0, klast))),
|
999 |
+
[(k, 0, n) for k in kvals])
|
1000 |
+
return Sum(e, *l)
|
1001 |
+
|
1002 |
+
def _eval_difference_delta(self, n, step):
|
1003 |
+
from sympy.series.limitseq import difference_delta as dd
|
1004 |
+
arg0 = self.args[0]
|
1005 |
+
rest = Mul(*self.args[1:])
|
1006 |
+
return (arg0.subs(n, n + step) * dd(rest, n, step) + dd(arg0, n, step) *
|
1007 |
+
rest)
|
1008 |
+
|
1009 |
+
def _matches_simple(self, expr, repl_dict):
|
1010 |
+
# handle (w*3).matches('x*5') -> {w: x*5/3}
|
1011 |
+
coeff, terms = self.as_coeff_Mul()
|
1012 |
+
terms = Mul.make_args(terms)
|
1013 |
+
if len(terms) == 1:
|
1014 |
+
newexpr = self.__class__._combine_inverse(expr, coeff)
|
1015 |
+
return terms[0].matches(newexpr, repl_dict)
|
1016 |
+
return
|
1017 |
+
|
1018 |
+
def matches(self, expr, repl_dict=None, old=False):
|
1019 |
+
expr = sympify(expr)
|
1020 |
+
if self.is_commutative and expr.is_commutative:
|
1021 |
+
return self._matches_commutative(expr, repl_dict, old)
|
1022 |
+
elif self.is_commutative is not expr.is_commutative:
|
1023 |
+
return None
|
1024 |
+
|
1025 |
+
# Proceed only if both both expressions are non-commutative
|
1026 |
+
c1, nc1 = self.args_cnc()
|
1027 |
+
c2, nc2 = expr.args_cnc()
|
1028 |
+
c1, c2 = [c or [1] for c in [c1, c2]]
|
1029 |
+
|
1030 |
+
# TODO: Should these be self.func?
|
1031 |
+
comm_mul_self = Mul(*c1)
|
1032 |
+
comm_mul_expr = Mul(*c2)
|
1033 |
+
|
1034 |
+
repl_dict = comm_mul_self.matches(comm_mul_expr, repl_dict, old)
|
1035 |
+
|
1036 |
+
# If the commutative arguments didn't match and aren't equal, then
|
1037 |
+
# then the expression as a whole doesn't match
|
1038 |
+
if not repl_dict and c1 != c2:
|
1039 |
+
return None
|
1040 |
+
|
1041 |
+
# Now match the non-commutative arguments, expanding powers to
|
1042 |
+
# multiplications
|
1043 |
+
nc1 = Mul._matches_expand_pows(nc1)
|
1044 |
+
nc2 = Mul._matches_expand_pows(nc2)
|
1045 |
+
|
1046 |
+
repl_dict = Mul._matches_noncomm(nc1, nc2, repl_dict)
|
1047 |
+
|
1048 |
+
return repl_dict or None
|
1049 |
+
|
1050 |
+
@staticmethod
|
1051 |
+
def _matches_expand_pows(arg_list):
|
1052 |
+
new_args = []
|
1053 |
+
for arg in arg_list:
|
1054 |
+
if arg.is_Pow and arg.exp > 0:
|
1055 |
+
new_args.extend([arg.base] * arg.exp)
|
1056 |
+
else:
|
1057 |
+
new_args.append(arg)
|
1058 |
+
return new_args
|
1059 |
+
|
1060 |
+
@staticmethod
|
1061 |
+
def _matches_noncomm(nodes, targets, repl_dict=None):
|
1062 |
+
"""Non-commutative multiplication matcher.
|
1063 |
+
|
1064 |
+
`nodes` is a list of symbols within the matcher multiplication
|
1065 |
+
expression, while `targets` is a list of arguments in the
|
1066 |
+
multiplication expression being matched against.
|
1067 |
+
"""
|
1068 |
+
if repl_dict is None:
|
1069 |
+
repl_dict = {}
|
1070 |
+
else:
|
1071 |
+
repl_dict = repl_dict.copy()
|
1072 |
+
|
1073 |
+
# List of possible future states to be considered
|
1074 |
+
agenda = []
|
1075 |
+
# The current matching state, storing index in nodes and targets
|
1076 |
+
state = (0, 0)
|
1077 |
+
node_ind, target_ind = state
|
1078 |
+
# Mapping between wildcard indices and the index ranges they match
|
1079 |
+
wildcard_dict = {}
|
1080 |
+
|
1081 |
+
while target_ind < len(targets) and node_ind < len(nodes):
|
1082 |
+
node = nodes[node_ind]
|
1083 |
+
|
1084 |
+
if node.is_Wild:
|
1085 |
+
Mul._matches_add_wildcard(wildcard_dict, state)
|
1086 |
+
|
1087 |
+
states_matches = Mul._matches_new_states(wildcard_dict, state,
|
1088 |
+
nodes, targets)
|
1089 |
+
if states_matches:
|
1090 |
+
new_states, new_matches = states_matches
|
1091 |
+
agenda.extend(new_states)
|
1092 |
+
if new_matches:
|
1093 |
+
for match in new_matches:
|
1094 |
+
repl_dict[match] = new_matches[match]
|
1095 |
+
if not agenda:
|
1096 |
+
return None
|
1097 |
+
else:
|
1098 |
+
state = agenda.pop()
|
1099 |
+
node_ind, target_ind = state
|
1100 |
+
|
1101 |
+
return repl_dict
|
1102 |
+
|
1103 |
+
@staticmethod
|
1104 |
+
def _matches_add_wildcard(dictionary, state):
|
1105 |
+
node_ind, target_ind = state
|
1106 |
+
if node_ind in dictionary:
|
1107 |
+
begin, end = dictionary[node_ind]
|
1108 |
+
dictionary[node_ind] = (begin, target_ind)
|
1109 |
+
else:
|
1110 |
+
dictionary[node_ind] = (target_ind, target_ind)
|
1111 |
+
|
1112 |
+
@staticmethod
|
1113 |
+
def _matches_new_states(dictionary, state, nodes, targets):
|
1114 |
+
node_ind, target_ind = state
|
1115 |
+
node = nodes[node_ind]
|
1116 |
+
target = targets[target_ind]
|
1117 |
+
|
1118 |
+
# Don't advance at all if we've exhausted the targets but not the nodes
|
1119 |
+
if target_ind >= len(targets) - 1 and node_ind < len(nodes) - 1:
|
1120 |
+
return None
|
1121 |
+
|
1122 |
+
if node.is_Wild:
|
1123 |
+
match_attempt = Mul._matches_match_wilds(dictionary, node_ind,
|
1124 |
+
nodes, targets)
|
1125 |
+
if match_attempt:
|
1126 |
+
# If the same node has been matched before, don't return
|
1127 |
+
# anything if the current match is diverging from the previous
|
1128 |
+
# match
|
1129 |
+
other_node_inds = Mul._matches_get_other_nodes(dictionary,
|
1130 |
+
nodes, node_ind)
|
1131 |
+
for ind in other_node_inds:
|
1132 |
+
other_begin, other_end = dictionary[ind]
|
1133 |
+
curr_begin, curr_end = dictionary[node_ind]
|
1134 |
+
|
1135 |
+
other_targets = targets[other_begin:other_end + 1]
|
1136 |
+
current_targets = targets[curr_begin:curr_end + 1]
|
1137 |
+
|
1138 |
+
for curr, other in zip(current_targets, other_targets):
|
1139 |
+
if curr != other:
|
1140 |
+
return None
|
1141 |
+
|
1142 |
+
# A wildcard node can match more than one target, so only the
|
1143 |
+
# target index is advanced
|
1144 |
+
new_state = [(node_ind, target_ind + 1)]
|
1145 |
+
# Only move on to the next node if there is one
|
1146 |
+
if node_ind < len(nodes) - 1:
|
1147 |
+
new_state.append((node_ind + 1, target_ind + 1))
|
1148 |
+
return new_state, match_attempt
|
1149 |
+
else:
|
1150 |
+
# If we're not at a wildcard, then make sure we haven't exhausted
|
1151 |
+
# nodes but not targets, since in this case one node can only match
|
1152 |
+
# one target
|
1153 |
+
if node_ind >= len(nodes) - 1 and target_ind < len(targets) - 1:
|
1154 |
+
return None
|
1155 |
+
|
1156 |
+
match_attempt = node.matches(target)
|
1157 |
+
|
1158 |
+
if match_attempt:
|
1159 |
+
return [(node_ind + 1, target_ind + 1)], match_attempt
|
1160 |
+
elif node == target:
|
1161 |
+
return [(node_ind + 1, target_ind + 1)], None
|
1162 |
+
else:
|
1163 |
+
return None
|
1164 |
+
|
1165 |
+
@staticmethod
|
1166 |
+
def _matches_match_wilds(dictionary, wildcard_ind, nodes, targets):
|
1167 |
+
"""Determine matches of a wildcard with sub-expression in `target`."""
|
1168 |
+
wildcard = nodes[wildcard_ind]
|
1169 |
+
begin, end = dictionary[wildcard_ind]
|
1170 |
+
terms = targets[begin:end + 1]
|
1171 |
+
# TODO: Should this be self.func?
|
1172 |
+
mult = Mul(*terms) if len(terms) > 1 else terms[0]
|
1173 |
+
return wildcard.matches(mult)
|
1174 |
+
|
1175 |
+
@staticmethod
|
1176 |
+
def _matches_get_other_nodes(dictionary, nodes, node_ind):
|
1177 |
+
"""Find other wildcards that may have already been matched."""
|
1178 |
+
ind_node = nodes[node_ind]
|
1179 |
+
return [ind for ind in dictionary if nodes[ind] == ind_node]
|
1180 |
+
|
1181 |
+
@staticmethod
|
1182 |
+
def _combine_inverse(lhs, rhs):
|
1183 |
+
"""
|
1184 |
+
Returns lhs/rhs, but treats arguments like symbols, so things
|
1185 |
+
like oo/oo return 1 (instead of a nan) and ``I`` behaves like
|
1186 |
+
a symbol instead of sqrt(-1).
|
1187 |
+
"""
|
1188 |
+
from sympy.simplify.simplify import signsimp
|
1189 |
+
from .symbol import Dummy
|
1190 |
+
if lhs == rhs:
|
1191 |
+
return S.One
|
1192 |
+
|
1193 |
+
def check(l, r):
|
1194 |
+
if l.is_Float and r.is_comparable:
|
1195 |
+
# if both objects are added to 0 they will share the same "normalization"
|
1196 |
+
# and are more likely to compare the same. Since Add(foo, 0) will not allow
|
1197 |
+
# the 0 to pass, we use __add__ directly.
|
1198 |
+
return l.__add__(0) == r.evalf().__add__(0)
|
1199 |
+
return False
|
1200 |
+
if check(lhs, rhs) or check(rhs, lhs):
|
1201 |
+
return S.One
|
1202 |
+
if any(i.is_Pow or i.is_Mul for i in (lhs, rhs)):
|
1203 |
+
# gruntz and limit wants a literal I to not combine
|
1204 |
+
# with a power of -1
|
1205 |
+
d = Dummy('I')
|
1206 |
+
_i = {S.ImaginaryUnit: d}
|
1207 |
+
i_ = {d: S.ImaginaryUnit}
|
1208 |
+
a = lhs.xreplace(_i).as_powers_dict()
|
1209 |
+
b = rhs.xreplace(_i).as_powers_dict()
|
1210 |
+
blen = len(b)
|
1211 |
+
for bi in tuple(b.keys()):
|
1212 |
+
if bi in a:
|
1213 |
+
a[bi] -= b.pop(bi)
|
1214 |
+
if not a[bi]:
|
1215 |
+
a.pop(bi)
|
1216 |
+
if len(b) != blen:
|
1217 |
+
lhs = Mul(*[k**v for k, v in a.items()]).xreplace(i_)
|
1218 |
+
rhs = Mul(*[k**v for k, v in b.items()]).xreplace(i_)
|
1219 |
+
rv = lhs/rhs
|
1220 |
+
srv = signsimp(rv)
|
1221 |
+
return srv if srv.is_Number else rv
|
1222 |
+
|
1223 |
+
def as_powers_dict(self):
|
1224 |
+
d = defaultdict(int)
|
1225 |
+
for term in self.args:
|
1226 |
+
for b, e in term.as_powers_dict().items():
|
1227 |
+
d[b] += e
|
1228 |
+
return d
|
1229 |
+
|
1230 |
+
def as_numer_denom(self):
|
1231 |
+
# don't use _from_args to rebuild the numerators and denominators
|
1232 |
+
# as the order is not guaranteed to be the same once they have
|
1233 |
+
# been separated from each other
|
1234 |
+
numers, denoms = list(zip(*[f.as_numer_denom() for f in self.args]))
|
1235 |
+
return self.func(*numers), self.func(*denoms)
|
1236 |
+
|
1237 |
+
def as_base_exp(self):
|
1238 |
+
e1 = None
|
1239 |
+
bases = []
|
1240 |
+
nc = 0
|
1241 |
+
for m in self.args:
|
1242 |
+
b, e = m.as_base_exp()
|
1243 |
+
if not b.is_commutative:
|
1244 |
+
nc += 1
|
1245 |
+
if e1 is None:
|
1246 |
+
e1 = e
|
1247 |
+
elif e != e1 or nc > 1:
|
1248 |
+
return self, S.One
|
1249 |
+
bases.append(b)
|
1250 |
+
return self.func(*bases), e1
|
1251 |
+
|
1252 |
+
def _eval_is_polynomial(self, syms):
|
1253 |
+
return all(term._eval_is_polynomial(syms) for term in self.args)
|
1254 |
+
|
1255 |
+
def _eval_is_rational_function(self, syms):
|
1256 |
+
return all(term._eval_is_rational_function(syms) for term in self.args)
|
1257 |
+
|
1258 |
+
def _eval_is_meromorphic(self, x, a):
|
1259 |
+
return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args),
|
1260 |
+
quick_exit=True)
|
1261 |
+
|
1262 |
+
def _eval_is_algebraic_expr(self, syms):
|
1263 |
+
return all(term._eval_is_algebraic_expr(syms) for term in self.args)
|
1264 |
+
|
1265 |
+
_eval_is_commutative = lambda self: _fuzzy_group(
|
1266 |
+
a.is_commutative for a in self.args)
|
1267 |
+
|
1268 |
+
def _eval_is_complex(self):
|
1269 |
+
comp = _fuzzy_group(a.is_complex for a in self.args)
|
1270 |
+
if comp is False:
|
1271 |
+
if any(a.is_infinite for a in self.args):
|
1272 |
+
if any(a.is_zero is not False for a in self.args):
|
1273 |
+
return None
|
1274 |
+
return False
|
1275 |
+
return comp
|
1276 |
+
|
1277 |
+
def _eval_is_zero_infinite_helper(self):
|
1278 |
+
#
|
1279 |
+
# Helper used by _eval_is_zero and _eval_is_infinite.
|
1280 |
+
#
|
1281 |
+
# Three-valued logic is tricky so let us reason this carefully. It
|
1282 |
+
# would be nice to say that we just check is_zero/is_infinite in all
|
1283 |
+
# args but we need to be careful about the case that one arg is zero
|
1284 |
+
# and another is infinite like Mul(0, oo) or more importantly a case
|
1285 |
+
# where it is not known if the arguments are zero or infinite like
|
1286 |
+
# Mul(y, 1/x). If either y or x could be zero then there is a
|
1287 |
+
# *possibility* that we have Mul(0, oo) which should give None for both
|
1288 |
+
# is_zero and is_infinite.
|
1289 |
+
#
|
1290 |
+
# We keep track of whether we have seen a zero or infinity but we also
|
1291 |
+
# need to keep track of whether we have *possibly* seen one which
|
1292 |
+
# would be indicated by None.
|
1293 |
+
#
|
1294 |
+
# For each argument there is the possibility that is_zero might give
|
1295 |
+
# True, False or None and likewise that is_infinite might give True,
|
1296 |
+
# False or None, giving 9 combinations. The True cases for is_zero and
|
1297 |
+
# is_infinite are mutually exclusive though so there are 3 main cases:
|
1298 |
+
#
|
1299 |
+
# - is_zero = True
|
1300 |
+
# - is_infinite = True
|
1301 |
+
# - is_zero and is_infinite are both either False or None
|
1302 |
+
#
|
1303 |
+
# At the end seen_zero and seen_infinite can be any of 9 combinations
|
1304 |
+
# of True/False/None. Unless one is False though we cannot return
|
1305 |
+
# anything except None:
|
1306 |
+
#
|
1307 |
+
# - is_zero=True needs seen_zero=True and seen_infinite=False
|
1308 |
+
# - is_zero=False needs seen_zero=False
|
1309 |
+
# - is_infinite=True needs seen_infinite=True and seen_zero=False
|
1310 |
+
# - is_infinite=False needs seen_infinite=False
|
1311 |
+
# - anything else gives both is_zero=None and is_infinite=None
|
1312 |
+
#
|
1313 |
+
# The loop only sets the flags to True or None and never back to False.
|
1314 |
+
# Hence as soon as neither flag is False we exit early returning None.
|
1315 |
+
# In particular as soon as we encounter a single arg that has
|
1316 |
+
# is_zero=is_infinite=None we exit. This is a common case since it is
|
1317 |
+
# the default assumptions for a Symbol and also the case for most
|
1318 |
+
# expressions containing such a symbol. The early exit gives a big
|
1319 |
+
# speedup for something like Mul(*symbols('x:1000')).is_zero.
|
1320 |
+
#
|
1321 |
+
seen_zero = seen_infinite = False
|
1322 |
+
|
1323 |
+
for a in self.args:
|
1324 |
+
if a.is_zero:
|
1325 |
+
if seen_infinite is not False:
|
1326 |
+
return None, None
|
1327 |
+
seen_zero = True
|
1328 |
+
elif a.is_infinite:
|
1329 |
+
if seen_zero is not False:
|
1330 |
+
return None, None
|
1331 |
+
seen_infinite = True
|
1332 |
+
else:
|
1333 |
+
if seen_zero is False and a.is_zero is None:
|
1334 |
+
if seen_infinite is not False:
|
1335 |
+
return None, None
|
1336 |
+
seen_zero = None
|
1337 |
+
if seen_infinite is False and a.is_infinite is None:
|
1338 |
+
if seen_zero is not False:
|
1339 |
+
return None, None
|
1340 |
+
seen_infinite = None
|
1341 |
+
|
1342 |
+
return seen_zero, seen_infinite
|
1343 |
+
|
1344 |
+
def _eval_is_zero(self):
|
1345 |
+
# True iff any arg is zero and no arg is infinite but need to handle
|
1346 |
+
# three valued logic carefully.
|
1347 |
+
seen_zero, seen_infinite = self._eval_is_zero_infinite_helper()
|
1348 |
+
|
1349 |
+
if seen_zero is False:
|
1350 |
+
return False
|
1351 |
+
elif seen_zero is True and seen_infinite is False:
|
1352 |
+
return True
|
1353 |
+
else:
|
1354 |
+
return None
|
1355 |
+
|
1356 |
+
def _eval_is_infinite(self):
|
1357 |
+
# True iff any arg is infinite and no arg is zero but need to handle
|
1358 |
+
# three valued logic carefully.
|
1359 |
+
seen_zero, seen_infinite = self._eval_is_zero_infinite_helper()
|
1360 |
+
|
1361 |
+
if seen_infinite is True and seen_zero is False:
|
1362 |
+
return True
|
1363 |
+
elif seen_infinite is False:
|
1364 |
+
return False
|
1365 |
+
else:
|
1366 |
+
return None
|
1367 |
+
|
1368 |
+
# We do not need to implement _eval_is_finite because the assumptions
|
1369 |
+
# system can infer it from finite = not infinite.
|
1370 |
+
|
1371 |
+
def _eval_is_rational(self):
|
1372 |
+
r = _fuzzy_group((a.is_rational for a in self.args), quick_exit=True)
|
1373 |
+
if r:
|
1374 |
+
return r
|
1375 |
+
elif r is False:
|
1376 |
+
# All args except one are rational
|
1377 |
+
if all(a.is_zero is False for a in self.args):
|
1378 |
+
return False
|
1379 |
+
|
1380 |
+
def _eval_is_algebraic(self):
|
1381 |
+
r = _fuzzy_group((a.is_algebraic for a in self.args), quick_exit=True)
|
1382 |
+
if r:
|
1383 |
+
return r
|
1384 |
+
elif r is False:
|
1385 |
+
# All args except one are algebraic
|
1386 |
+
if all(a.is_zero is False for a in self.args):
|
1387 |
+
return False
|
1388 |
+
|
1389 |
+
# without involving odd/even checks this code would suffice:
|
1390 |
+
#_eval_is_integer = lambda self: _fuzzy_group(
|
1391 |
+
# (a.is_integer for a in self.args), quick_exit=True)
|
1392 |
+
def _eval_is_integer(self):
|
1393 |
+
from sympy.ntheory.factor_ import trailing
|
1394 |
+
is_rational = self._eval_is_rational()
|
1395 |
+
if is_rational is False:
|
1396 |
+
return False
|
1397 |
+
|
1398 |
+
numerators = []
|
1399 |
+
denominators = []
|
1400 |
+
unknown = False
|
1401 |
+
for a in self.args:
|
1402 |
+
hit = False
|
1403 |
+
if a.is_integer:
|
1404 |
+
if abs(a) is not S.One:
|
1405 |
+
numerators.append(a)
|
1406 |
+
elif a.is_Rational:
|
1407 |
+
n, d = a.as_numer_denom()
|
1408 |
+
if abs(n) is not S.One:
|
1409 |
+
numerators.append(n)
|
1410 |
+
if d is not S.One:
|
1411 |
+
denominators.append(d)
|
1412 |
+
elif a.is_Pow:
|
1413 |
+
b, e = a.as_base_exp()
|
1414 |
+
if not b.is_integer or not e.is_integer:
|
1415 |
+
hit = unknown = True
|
1416 |
+
if e.is_negative:
|
1417 |
+
denominators.append(2 if a is S.Half else
|
1418 |
+
Pow(a, S.NegativeOne))
|
1419 |
+
elif not hit:
|
1420 |
+
# int b and pos int e: a = b**e is integer
|
1421 |
+
assert not e.is_positive
|
1422 |
+
# for rational self and e equal to zero: a = b**e is 1
|
1423 |
+
assert not e.is_zero
|
1424 |
+
return # sign of e unknown -> self.is_integer unknown
|
1425 |
+
else:
|
1426 |
+
# x**2, 2**x, or x**y with x and y int-unknown -> unknown
|
1427 |
+
return
|
1428 |
+
else:
|
1429 |
+
return
|
1430 |
+
|
1431 |
+
if not denominators and not unknown:
|
1432 |
+
return True
|
1433 |
+
|
1434 |
+
allodd = lambda x: all(i.is_odd for i in x)
|
1435 |
+
alleven = lambda x: all(i.is_even for i in x)
|
1436 |
+
anyeven = lambda x: any(i.is_even for i in x)
|
1437 |
+
|
1438 |
+
from .relational import is_gt
|
1439 |
+
if not numerators and denominators and all(
|
1440 |
+
is_gt(_, S.One) for _ in denominators):
|
1441 |
+
return False
|
1442 |
+
elif unknown:
|
1443 |
+
return
|
1444 |
+
elif allodd(numerators) and anyeven(denominators):
|
1445 |
+
return False
|
1446 |
+
elif anyeven(numerators) and denominators == [2]:
|
1447 |
+
return True
|
1448 |
+
elif alleven(numerators) and allodd(denominators
|
1449 |
+
) and (Mul(*denominators, evaluate=False) - 1
|
1450 |
+
).is_positive:
|
1451 |
+
return False
|
1452 |
+
if len(denominators) == 1:
|
1453 |
+
d = denominators[0]
|
1454 |
+
if d.is_Integer and d.is_even:
|
1455 |
+
# if minimal power of 2 in num vs den is not
|
1456 |
+
# negative then we have an integer
|
1457 |
+
if (Add(*[i.as_base_exp()[1] for i in
|
1458 |
+
numerators if i.is_even]) - trailing(d.p)
|
1459 |
+
).is_nonnegative:
|
1460 |
+
return True
|
1461 |
+
if len(numerators) == 1:
|
1462 |
+
n = numerators[0]
|
1463 |
+
if n.is_Integer and n.is_even:
|
1464 |
+
# if minimal power of 2 in den vs num is positive
|
1465 |
+
# then we have have a non-integer
|
1466 |
+
if (Add(*[i.as_base_exp()[1] for i in
|
1467 |
+
denominators if i.is_even]) - trailing(n.p)
|
1468 |
+
).is_positive:
|
1469 |
+
return False
|
1470 |
+
|
1471 |
+
def _eval_is_polar(self):
|
1472 |
+
has_polar = any(arg.is_polar for arg in self.args)
|
1473 |
+
return has_polar and \
|
1474 |
+
all(arg.is_polar or arg.is_positive for arg in self.args)
|
1475 |
+
|
1476 |
+
def _eval_is_extended_real(self):
|
1477 |
+
return self._eval_real_imag(True)
|
1478 |
+
|
1479 |
+
def _eval_real_imag(self, real):
|
1480 |
+
zero = False
|
1481 |
+
t_not_re_im = None
|
1482 |
+
|
1483 |
+
for t in self.args:
|
1484 |
+
if (t.is_complex or t.is_infinite) is False and t.is_extended_real is False:
|
1485 |
+
return False
|
1486 |
+
elif t.is_imaginary: # I
|
1487 |
+
real = not real
|
1488 |
+
elif t.is_extended_real: # 2
|
1489 |
+
if not zero:
|
1490 |
+
z = t.is_zero
|
1491 |
+
if not z and zero is False:
|
1492 |
+
zero = z
|
1493 |
+
elif z:
|
1494 |
+
if all(a.is_finite for a in self.args):
|
1495 |
+
return True
|
1496 |
+
return
|
1497 |
+
elif t.is_extended_real is False:
|
1498 |
+
# symbolic or literal like `2 + I` or symbolic imaginary
|
1499 |
+
if t_not_re_im:
|
1500 |
+
return # complex terms might cancel
|
1501 |
+
t_not_re_im = t
|
1502 |
+
elif t.is_imaginary is False: # symbolic like `2` or `2 + I`
|
1503 |
+
if t_not_re_im:
|
1504 |
+
return # complex terms might cancel
|
1505 |
+
t_not_re_im = t
|
1506 |
+
else:
|
1507 |
+
return
|
1508 |
+
|
1509 |
+
if t_not_re_im:
|
1510 |
+
if t_not_re_im.is_extended_real is False:
|
1511 |
+
if real: # like 3
|
1512 |
+
return zero # 3*(smthng like 2 + I or i) is not real
|
1513 |
+
if t_not_re_im.is_imaginary is False: # symbolic 2 or 2 + I
|
1514 |
+
if not real: # like I
|
1515 |
+
return zero # I*(smthng like 2 or 2 + I) is not real
|
1516 |
+
elif zero is False:
|
1517 |
+
return real # can't be trumped by 0
|
1518 |
+
elif real:
|
1519 |
+
return real # doesn't matter what zero is
|
1520 |
+
|
1521 |
+
def _eval_is_imaginary(self):
|
1522 |
+
if all(a.is_zero is False and a.is_finite for a in self.args):
|
1523 |
+
return self._eval_real_imag(False)
|
1524 |
+
|
1525 |
+
def _eval_is_hermitian(self):
|
1526 |
+
return self._eval_herm_antiherm(True)
|
1527 |
+
|
1528 |
+
def _eval_is_antihermitian(self):
|
1529 |
+
return self._eval_herm_antiherm(False)
|
1530 |
+
|
1531 |
+
def _eval_herm_antiherm(self, herm):
|
1532 |
+
for t in self.args:
|
1533 |
+
if t.is_hermitian is None or t.is_antihermitian is None:
|
1534 |
+
return
|
1535 |
+
if t.is_hermitian:
|
1536 |
+
continue
|
1537 |
+
elif t.is_antihermitian:
|
1538 |
+
herm = not herm
|
1539 |
+
else:
|
1540 |
+
return
|
1541 |
+
|
1542 |
+
if herm is not False:
|
1543 |
+
return herm
|
1544 |
+
|
1545 |
+
is_zero = self._eval_is_zero()
|
1546 |
+
if is_zero:
|
1547 |
+
return True
|
1548 |
+
elif is_zero is False:
|
1549 |
+
return herm
|
1550 |
+
|
1551 |
+
def _eval_is_irrational(self):
|
1552 |
+
for t in self.args:
|
1553 |
+
a = t.is_irrational
|
1554 |
+
if a:
|
1555 |
+
others = list(self.args)
|
1556 |
+
others.remove(t)
|
1557 |
+
if all((x.is_rational and fuzzy_not(x.is_zero)) is True for x in others):
|
1558 |
+
return True
|
1559 |
+
return
|
1560 |
+
if a is None:
|
1561 |
+
return
|
1562 |
+
if all(x.is_real for x in self.args):
|
1563 |
+
return False
|
1564 |
+
|
1565 |
+
def _eval_is_extended_positive(self):
|
1566 |
+
"""Return True if self is positive, False if not, and None if it
|
1567 |
+
cannot be determined.
|
1568 |
+
|
1569 |
+
Explanation
|
1570 |
+
===========
|
1571 |
+
|
1572 |
+
This algorithm is non-recursive and works by keeping track of the
|
1573 |
+
sign which changes when a negative or nonpositive is encountered.
|
1574 |
+
Whether a nonpositive or nonnegative is seen is also tracked since
|
1575 |
+
the presence of these makes it impossible to return True, but
|
1576 |
+
possible to return False if the end result is nonpositive. e.g.
|
1577 |
+
|
1578 |
+
pos * neg * nonpositive -> pos or zero -> None is returned
|
1579 |
+
pos * neg * nonnegative -> neg or zero -> False is returned
|
1580 |
+
"""
|
1581 |
+
return self._eval_pos_neg(1)
|
1582 |
+
|
1583 |
+
def _eval_pos_neg(self, sign):
|
1584 |
+
saw_NON = saw_NOT = False
|
1585 |
+
for t in self.args:
|
1586 |
+
if t.is_extended_positive:
|
1587 |
+
continue
|
1588 |
+
elif t.is_extended_negative:
|
1589 |
+
sign = -sign
|
1590 |
+
elif t.is_zero:
|
1591 |
+
if all(a.is_finite for a in self.args):
|
1592 |
+
return False
|
1593 |
+
return
|
1594 |
+
elif t.is_extended_nonpositive:
|
1595 |
+
sign = -sign
|
1596 |
+
saw_NON = True
|
1597 |
+
elif t.is_extended_nonnegative:
|
1598 |
+
saw_NON = True
|
1599 |
+
# FIXME: is_positive/is_negative is False doesn't take account of
|
1600 |
+
# Symbol('x', infinite=True, extended_real=True) which has
|
1601 |
+
# e.g. is_positive is False but has uncertain sign.
|
1602 |
+
elif t.is_positive is False:
|
1603 |
+
sign = -sign
|
1604 |
+
if saw_NOT:
|
1605 |
+
return
|
1606 |
+
saw_NOT = True
|
1607 |
+
elif t.is_negative is False:
|
1608 |
+
if saw_NOT:
|
1609 |
+
return
|
1610 |
+
saw_NOT = True
|
1611 |
+
else:
|
1612 |
+
return
|
1613 |
+
if sign == 1 and saw_NON is False and saw_NOT is False:
|
1614 |
+
return True
|
1615 |
+
if sign < 0:
|
1616 |
+
return False
|
1617 |
+
|
1618 |
+
def _eval_is_extended_negative(self):
|
1619 |
+
return self._eval_pos_neg(-1)
|
1620 |
+
|
1621 |
+
def _eval_is_odd(self):
|
1622 |
+
is_integer = self._eval_is_integer()
|
1623 |
+
if is_integer is not True:
|
1624 |
+
return is_integer
|
1625 |
+
|
1626 |
+
from sympy.simplify.radsimp import fraction
|
1627 |
+
n, d = fraction(self)
|
1628 |
+
if d.is_Integer and d.is_even:
|
1629 |
+
from sympy.ntheory.factor_ import trailing
|
1630 |
+
# if minimal power of 2 in num vs den is
|
1631 |
+
# positive then we have an even number
|
1632 |
+
if (Add(*[i.as_base_exp()[1] for i in
|
1633 |
+
Mul.make_args(n) if i.is_even]) - trailing(d.p)
|
1634 |
+
).is_positive:
|
1635 |
+
return False
|
1636 |
+
return
|
1637 |
+
r, acc = True, 1
|
1638 |
+
for t in self.args:
|
1639 |
+
if abs(t) is S.One:
|
1640 |
+
continue
|
1641 |
+
if t.is_even:
|
1642 |
+
return False
|
1643 |
+
if r is False:
|
1644 |
+
pass
|
1645 |
+
elif acc != 1 and (acc + t).is_odd:
|
1646 |
+
r = False
|
1647 |
+
elif t.is_even is None:
|
1648 |
+
r = None
|
1649 |
+
acc = t
|
1650 |
+
return r
|
1651 |
+
|
1652 |
+
def _eval_is_even(self):
|
1653 |
+
from sympy.simplify.radsimp import fraction
|
1654 |
+
n, d = fraction(self)
|
1655 |
+
if n.is_Integer and n.is_even:
|
1656 |
+
# if minimal power of 2 in den vs num is not
|
1657 |
+
# negative then this is not an integer and
|
1658 |
+
# can't be even
|
1659 |
+
from sympy.ntheory.factor_ import trailing
|
1660 |
+
if (Add(*[i.as_base_exp()[1] for i in
|
1661 |
+
Mul.make_args(d) if i.is_even]) - trailing(n.p)
|
1662 |
+
).is_nonnegative:
|
1663 |
+
return False
|
1664 |
+
|
1665 |
+
def _eval_is_composite(self):
|
1666 |
+
"""
|
1667 |
+
Here we count the number of arguments that have a minimum value
|
1668 |
+
greater than two.
|
1669 |
+
If there are more than one of such a symbol then the result is composite.
|
1670 |
+
Else, the result cannot be determined.
|
1671 |
+
"""
|
1672 |
+
number_of_args = 0 # count of symbols with minimum value greater than one
|
1673 |
+
for arg in self.args:
|
1674 |
+
if not (arg.is_integer and arg.is_positive):
|
1675 |
+
return None
|
1676 |
+
if (arg-1).is_positive:
|
1677 |
+
number_of_args += 1
|
1678 |
+
|
1679 |
+
if number_of_args > 1:
|
1680 |
+
return True
|
1681 |
+
|
1682 |
+
def _eval_subs(self, old, new):
|
1683 |
+
from sympy.functions.elementary.complexes import sign
|
1684 |
+
from sympy.ntheory.factor_ import multiplicity
|
1685 |
+
from sympy.simplify.powsimp import powdenest
|
1686 |
+
from sympy.simplify.radsimp import fraction
|
1687 |
+
|
1688 |
+
if not old.is_Mul:
|
1689 |
+
return None
|
1690 |
+
|
1691 |
+
# try keep replacement literal so -2*x doesn't replace 4*x
|
1692 |
+
if old.args[0].is_Number and old.args[0] < 0:
|
1693 |
+
if self.args[0].is_Number:
|
1694 |
+
if self.args[0] < 0:
|
1695 |
+
return self._subs(-old, -new)
|
1696 |
+
return None
|
1697 |
+
|
1698 |
+
def base_exp(a):
|
1699 |
+
# if I and -1 are in a Mul, they get both end up with
|
1700 |
+
# a -1 base (see issue 6421); all we want here are the
|
1701 |
+
# true Pow or exp separated into base and exponent
|
1702 |
+
from sympy.functions.elementary.exponential import exp
|
1703 |
+
if a.is_Pow or isinstance(a, exp):
|
1704 |
+
return a.as_base_exp()
|
1705 |
+
return a, S.One
|
1706 |
+
|
1707 |
+
def breakup(eq):
|
1708 |
+
"""break up powers of eq when treated as a Mul:
|
1709 |
+
b**(Rational*e) -> b**e, Rational
|
1710 |
+
commutatives come back as a dictionary {b**e: Rational}
|
1711 |
+
noncommutatives come back as a list [(b**e, Rational)]
|
1712 |
+
"""
|
1713 |
+
|
1714 |
+
(c, nc) = (defaultdict(int), [])
|
1715 |
+
for a in Mul.make_args(eq):
|
1716 |
+
a = powdenest(a)
|
1717 |
+
(b, e) = base_exp(a)
|
1718 |
+
if e is not S.One:
|
1719 |
+
(co, _) = e.as_coeff_mul()
|
1720 |
+
b = Pow(b, e/co)
|
1721 |
+
e = co
|
1722 |
+
if a.is_commutative:
|
1723 |
+
c[b] += e
|
1724 |
+
else:
|
1725 |
+
nc.append([b, e])
|
1726 |
+
return (c, nc)
|
1727 |
+
|
1728 |
+
def rejoin(b, co):
|
1729 |
+
"""
|
1730 |
+
Put rational back with exponent; in general this is not ok, but
|
1731 |
+
since we took it from the exponent for analysis, it's ok to put
|
1732 |
+
it back.
|
1733 |
+
"""
|
1734 |
+
|
1735 |
+
(b, e) = base_exp(b)
|
1736 |
+
return Pow(b, e*co)
|
1737 |
+
|
1738 |
+
def ndiv(a, b):
|
1739 |
+
"""if b divides a in an extractive way (like 1/4 divides 1/2
|
1740 |
+
but not vice versa, and 2/5 does not divide 1/3) then return
|
1741 |
+
the integer number of times it divides, else return 0.
|
1742 |
+
"""
|
1743 |
+
if not b.q % a.q or not a.q % b.q:
|
1744 |
+
return int(a/b)
|
1745 |
+
return 0
|
1746 |
+
|
1747 |
+
# give Muls in the denominator a chance to be changed (see issue 5651)
|
1748 |
+
# rv will be the default return value
|
1749 |
+
rv = None
|
1750 |
+
n, d = fraction(self)
|
1751 |
+
self2 = self
|
1752 |
+
if d is not S.One:
|
1753 |
+
self2 = n._subs(old, new)/d._subs(old, new)
|
1754 |
+
if not self2.is_Mul:
|
1755 |
+
return self2._subs(old, new)
|
1756 |
+
if self2 != self:
|
1757 |
+
rv = self2
|
1758 |
+
|
1759 |
+
# Now continue with regular substitution.
|
1760 |
+
|
1761 |
+
# handle the leading coefficient and use it to decide if anything
|
1762 |
+
# should even be started; we always know where to find the Rational
|
1763 |
+
# so it's a quick test
|
1764 |
+
|
1765 |
+
co_self = self2.args[0]
|
1766 |
+
co_old = old.args[0]
|
1767 |
+
co_xmul = None
|
1768 |
+
if co_old.is_Rational and co_self.is_Rational:
|
1769 |
+
# if coeffs are the same there will be no updating to do
|
1770 |
+
# below after breakup() step; so skip (and keep co_xmul=None)
|
1771 |
+
if co_old != co_self:
|
1772 |
+
co_xmul = co_self.extract_multiplicatively(co_old)
|
1773 |
+
elif co_old.is_Rational:
|
1774 |
+
return rv
|
1775 |
+
|
1776 |
+
# break self and old into factors
|
1777 |
+
|
1778 |
+
(c, nc) = breakup(self2)
|
1779 |
+
(old_c, old_nc) = breakup(old)
|
1780 |
+
|
1781 |
+
# update the coefficients if we had an extraction
|
1782 |
+
# e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5
|
1783 |
+
# then co_self in c is replaced by (3/5)**2 and co_residual
|
1784 |
+
# is 2*(1/7)**2
|
1785 |
+
|
1786 |
+
if co_xmul and co_xmul.is_Rational and abs(co_old) != 1:
|
1787 |
+
mult = S(multiplicity(abs(co_old), co_self))
|
1788 |
+
c.pop(co_self)
|
1789 |
+
if co_old in c:
|
1790 |
+
c[co_old] += mult
|
1791 |
+
else:
|
1792 |
+
c[co_old] = mult
|
1793 |
+
co_residual = co_self/co_old**mult
|
1794 |
+
else:
|
1795 |
+
co_residual = 1
|
1796 |
+
|
1797 |
+
# do quick tests to see if we can't succeed
|
1798 |
+
|
1799 |
+
ok = True
|
1800 |
+
if len(old_nc) > len(nc):
|
1801 |
+
# more non-commutative terms
|
1802 |
+
ok = False
|
1803 |
+
elif len(old_c) > len(c):
|
1804 |
+
# more commutative terms
|
1805 |
+
ok = False
|
1806 |
+
elif {i[0] for i in old_nc}.difference({i[0] for i in nc}):
|
1807 |
+
# unmatched non-commutative bases
|
1808 |
+
ok = False
|
1809 |
+
elif set(old_c).difference(set(c)):
|
1810 |
+
# unmatched commutative terms
|
1811 |
+
ok = False
|
1812 |
+
elif any(sign(c[b]) != sign(old_c[b]) for b in old_c):
|
1813 |
+
# differences in sign
|
1814 |
+
ok = False
|
1815 |
+
if not ok:
|
1816 |
+
return rv
|
1817 |
+
|
1818 |
+
if not old_c:
|
1819 |
+
cdid = None
|
1820 |
+
else:
|
1821 |
+
rat = []
|
1822 |
+
for (b, old_e) in old_c.items():
|
1823 |
+
c_e = c[b]
|
1824 |
+
rat.append(ndiv(c_e, old_e))
|
1825 |
+
if not rat[-1]:
|
1826 |
+
return rv
|
1827 |
+
cdid = min(rat)
|
1828 |
+
|
1829 |
+
if not old_nc:
|
1830 |
+
ncdid = None
|
1831 |
+
for i in range(len(nc)):
|
1832 |
+
nc[i] = rejoin(*nc[i])
|
1833 |
+
else:
|
1834 |
+
ncdid = 0 # number of nc replacements we did
|
1835 |
+
take = len(old_nc) # how much to look at each time
|
1836 |
+
limit = cdid or S.Infinity # max number that we can take
|
1837 |
+
failed = [] # failed terms will need subs if other terms pass
|
1838 |
+
i = 0
|
1839 |
+
while limit and i + take <= len(nc):
|
1840 |
+
hit = False
|
1841 |
+
|
1842 |
+
# the bases must be equivalent in succession, and
|
1843 |
+
# the powers must be extractively compatible on the
|
1844 |
+
# first and last factor but equal in between.
|
1845 |
+
|
1846 |
+
rat = []
|
1847 |
+
for j in range(take):
|
1848 |
+
if nc[i + j][0] != old_nc[j][0]:
|
1849 |
+
break
|
1850 |
+
elif j == 0:
|
1851 |
+
rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
|
1852 |
+
elif j == take - 1:
|
1853 |
+
rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
|
1854 |
+
elif nc[i + j][1] != old_nc[j][1]:
|
1855 |
+
break
|
1856 |
+
else:
|
1857 |
+
rat.append(1)
|
1858 |
+
j += 1
|
1859 |
+
else:
|
1860 |
+
ndo = min(rat)
|
1861 |
+
if ndo:
|
1862 |
+
if take == 1:
|
1863 |
+
if cdid:
|
1864 |
+
ndo = min(cdid, ndo)
|
1865 |
+
nc[i] = Pow(new, ndo)*rejoin(nc[i][0],
|
1866 |
+
nc[i][1] - ndo*old_nc[0][1])
|
1867 |
+
else:
|
1868 |
+
ndo = 1
|
1869 |
+
|
1870 |
+
# the left residual
|
1871 |
+
|
1872 |
+
l = rejoin(nc[i][0], nc[i][1] - ndo*
|
1873 |
+
old_nc[0][1])
|
1874 |
+
|
1875 |
+
# eliminate all middle terms
|
1876 |
+
|
1877 |
+
mid = new
|
1878 |
+
|
1879 |
+
# the right residual (which may be the same as the middle if take == 2)
|
1880 |
+
|
1881 |
+
ir = i + take - 1
|
1882 |
+
r = (nc[ir][0], nc[ir][1] - ndo*
|
1883 |
+
old_nc[-1][1])
|
1884 |
+
if r[1]:
|
1885 |
+
if i + take < len(nc):
|
1886 |
+
nc[i:i + take] = [l*mid, r]
|
1887 |
+
else:
|
1888 |
+
r = rejoin(*r)
|
1889 |
+
nc[i:i + take] = [l*mid*r]
|
1890 |
+
else:
|
1891 |
+
|
1892 |
+
# there was nothing left on the right
|
1893 |
+
|
1894 |
+
nc[i:i + take] = [l*mid]
|
1895 |
+
|
1896 |
+
limit -= ndo
|
1897 |
+
ncdid += ndo
|
1898 |
+
hit = True
|
1899 |
+
if not hit:
|
1900 |
+
|
1901 |
+
# do the subs on this failing factor
|
1902 |
+
|
1903 |
+
failed.append(i)
|
1904 |
+
i += 1
|
1905 |
+
else:
|
1906 |
+
|
1907 |
+
if not ncdid:
|
1908 |
+
return rv
|
1909 |
+
|
1910 |
+
# although we didn't fail, certain nc terms may have
|
1911 |
+
# failed so we rebuild them after attempting a partial
|
1912 |
+
# subs on them
|
1913 |
+
|
1914 |
+
failed.extend(range(i, len(nc)))
|
1915 |
+
for i in failed:
|
1916 |
+
nc[i] = rejoin(*nc[i]).subs(old, new)
|
1917 |
+
|
1918 |
+
# rebuild the expression
|
1919 |
+
|
1920 |
+
if cdid is None:
|
1921 |
+
do = ncdid
|
1922 |
+
elif ncdid is None:
|
1923 |
+
do = cdid
|
1924 |
+
else:
|
1925 |
+
do = min(ncdid, cdid)
|
1926 |
+
|
1927 |
+
margs = []
|
1928 |
+
for b in c:
|
1929 |
+
if b in old_c:
|
1930 |
+
|
1931 |
+
# calculate the new exponent
|
1932 |
+
|
1933 |
+
e = c[b] - old_c[b]*do
|
1934 |
+
margs.append(rejoin(b, e))
|
1935 |
+
else:
|
1936 |
+
margs.append(rejoin(b.subs(old, new), c[b]))
|
1937 |
+
if cdid and not ncdid:
|
1938 |
+
|
1939 |
+
# in case we are replacing commutative with non-commutative,
|
1940 |
+
# we want the new term to come at the front just like the
|
1941 |
+
# rest of this routine
|
1942 |
+
|
1943 |
+
margs = [Pow(new, cdid)] + margs
|
1944 |
+
return co_residual*self2.func(*margs)*self2.func(*nc)
|
1945 |
+
|
1946 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
1947 |
+
from .function import PoleError
|
1948 |
+
from sympy.functions.elementary.integers import ceiling
|
1949 |
+
from sympy.series.order import Order
|
1950 |
+
|
1951 |
+
def coeff_exp(term, x):
|
1952 |
+
lt = term.as_coeff_exponent(x)
|
1953 |
+
if lt[0].has(x):
|
1954 |
+
try:
|
1955 |
+
lt = term.leadterm(x)
|
1956 |
+
except ValueError:
|
1957 |
+
return term, S.Zero
|
1958 |
+
return lt
|
1959 |
+
|
1960 |
+
ords = []
|
1961 |
+
|
1962 |
+
try:
|
1963 |
+
for t in self.args:
|
1964 |
+
coeff, exp = t.leadterm(x)
|
1965 |
+
if not coeff.has(x):
|
1966 |
+
ords.append((t, exp))
|
1967 |
+
else:
|
1968 |
+
raise ValueError
|
1969 |
+
|
1970 |
+
n0 = sum(t[1] for t in ords if t[1].is_number)
|
1971 |
+
facs = []
|
1972 |
+
for t, m in ords:
|
1973 |
+
n1 = ceiling(n - n0 + (m if m.is_number else 0))
|
1974 |
+
s = t.nseries(x, n=n1, logx=logx, cdir=cdir)
|
1975 |
+
ns = s.getn()
|
1976 |
+
if ns is not None:
|
1977 |
+
if ns < n1: # less than expected
|
1978 |
+
n -= n1 - ns # reduce n
|
1979 |
+
facs.append(s)
|
1980 |
+
|
1981 |
+
except (ValueError, NotImplementedError, TypeError, AttributeError, PoleError):
|
1982 |
+
n0 = sympify(sum(t[1] for t in ords if t[1].is_number))
|
1983 |
+
if n0.is_nonnegative:
|
1984 |
+
n0 = S.Zero
|
1985 |
+
facs = [t.nseries(x, n=ceiling(n-n0), logx=logx, cdir=cdir) for t in self.args]
|
1986 |
+
from sympy.simplify.powsimp import powsimp
|
1987 |
+
res = powsimp(self.func(*facs).expand(), combine='exp', deep=True)
|
1988 |
+
if res.has(Order):
|
1989 |
+
res += Order(x**n, x)
|
1990 |
+
return res
|
1991 |
+
|
1992 |
+
res = S.Zero
|
1993 |
+
ords2 = [Add.make_args(factor) for factor in facs]
|
1994 |
+
|
1995 |
+
for fac in product(*ords2):
|
1996 |
+
ords3 = [coeff_exp(term, x) for term in fac]
|
1997 |
+
coeffs, powers = zip(*ords3)
|
1998 |
+
power = sum(powers)
|
1999 |
+
if (power - n).is_negative:
|
2000 |
+
res += Mul(*coeffs)*(x**power)
|
2001 |
+
|
2002 |
+
def max_degree(e, x):
|
2003 |
+
if e is x:
|
2004 |
+
return S.One
|
2005 |
+
if e.is_Atom:
|
2006 |
+
return S.Zero
|
2007 |
+
if e.is_Add:
|
2008 |
+
return max(max_degree(a, x) for a in e.args)
|
2009 |
+
if e.is_Mul:
|
2010 |
+
return Add(*[max_degree(a, x) for a in e.args])
|
2011 |
+
if e.is_Pow:
|
2012 |
+
return max_degree(e.base, x)*e.exp
|
2013 |
+
return S.Zero
|
2014 |
+
|
2015 |
+
if self.is_polynomial(x):
|
2016 |
+
from sympy.polys.polyerrors import PolynomialError
|
2017 |
+
from sympy.polys.polytools import degree
|
2018 |
+
try:
|
2019 |
+
if max_degree(self, x) >= n or degree(self, x) != degree(res, x):
|
2020 |
+
res += Order(x**n, x)
|
2021 |
+
except PolynomialError:
|
2022 |
+
pass
|
2023 |
+
else:
|
2024 |
+
return res
|
2025 |
+
|
2026 |
+
if res != self:
|
2027 |
+
if (self - res).subs(x, 0) == S.Zero and n > 0:
|
2028 |
+
lt = self._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
2029 |
+
if lt == S.Zero:
|
2030 |
+
return res
|
2031 |
+
res += Order(x**n, x)
|
2032 |
+
return res
|
2033 |
+
|
2034 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
2035 |
+
return self.func(*[t.as_leading_term(x, logx=logx, cdir=cdir) for t in self.args])
|
2036 |
+
|
2037 |
+
def _eval_conjugate(self):
|
2038 |
+
return self.func(*[t.conjugate() for t in self.args])
|
2039 |
+
|
2040 |
+
def _eval_transpose(self):
|
2041 |
+
return self.func(*[t.transpose() for t in self.args[::-1]])
|
2042 |
+
|
2043 |
+
def _eval_adjoint(self):
|
2044 |
+
return self.func(*[t.adjoint() for t in self.args[::-1]])
|
2045 |
+
|
2046 |
+
def as_content_primitive(self, radical=False, clear=True):
|
2047 |
+
"""Return the tuple (R, self/R) where R is the positive Rational
|
2048 |
+
extracted from self.
|
2049 |
+
|
2050 |
+
Examples
|
2051 |
+
========
|
2052 |
+
|
2053 |
+
>>> from sympy import sqrt
|
2054 |
+
>>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive()
|
2055 |
+
(6, -sqrt(2)*(1 - sqrt(2)))
|
2056 |
+
|
2057 |
+
See docstring of Expr.as_content_primitive for more examples.
|
2058 |
+
"""
|
2059 |
+
|
2060 |
+
coef = S.One
|
2061 |
+
args = []
|
2062 |
+
for a in self.args:
|
2063 |
+
c, p = a.as_content_primitive(radical=radical, clear=clear)
|
2064 |
+
coef *= c
|
2065 |
+
if p is not S.One:
|
2066 |
+
args.append(p)
|
2067 |
+
# don't use self._from_args here to reconstruct args
|
2068 |
+
# since there may be identical args now that should be combined
|
2069 |
+
# e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x))
|
2070 |
+
return coef, self.func(*args)
|
2071 |
+
|
2072 |
+
def as_ordered_factors(self, order=None):
|
2073 |
+
"""Transform an expression into an ordered list of factors.
|
2074 |
+
|
2075 |
+
Examples
|
2076 |
+
========
|
2077 |
+
|
2078 |
+
>>> from sympy import sin, cos
|
2079 |
+
>>> from sympy.abc import x, y
|
2080 |
+
|
2081 |
+
>>> (2*x*y*sin(x)*cos(x)).as_ordered_factors()
|
2082 |
+
[2, x, y, sin(x), cos(x)]
|
2083 |
+
|
2084 |
+
"""
|
2085 |
+
cpart, ncpart = self.args_cnc()
|
2086 |
+
cpart.sort(key=lambda expr: expr.sort_key(order=order))
|
2087 |
+
return cpart + ncpart
|
2088 |
+
|
2089 |
+
@property
|
2090 |
+
def _sorted_args(self):
|
2091 |
+
return tuple(self.as_ordered_factors())
|
2092 |
+
|
2093 |
+
mul = AssocOpDispatcher('mul')
|
2094 |
+
|
2095 |
+
|
2096 |
+
def prod(a, start=1):
|
2097 |
+
"""Return product of elements of a. Start with int 1 so if only
|
2098 |
+
ints are included then an int result is returned.
|
2099 |
+
|
2100 |
+
Examples
|
2101 |
+
========
|
2102 |
+
|
2103 |
+
>>> from sympy import prod, S
|
2104 |
+
>>> prod(range(3))
|
2105 |
+
0
|
2106 |
+
>>> type(_) is int
|
2107 |
+
True
|
2108 |
+
>>> prod([S(2), 3])
|
2109 |
+
6
|
2110 |
+
>>> _.is_Integer
|
2111 |
+
True
|
2112 |
+
|
2113 |
+
You can start the product at something other than 1:
|
2114 |
+
|
2115 |
+
>>> prod([1, 2], 3)
|
2116 |
+
6
|
2117 |
+
|
2118 |
+
"""
|
2119 |
+
return reduce(operator.mul, a, start)
|
2120 |
+
|
2121 |
+
|
2122 |
+
def _keep_coeff(coeff, factors, clear=True, sign=False):
|
2123 |
+
"""Return ``coeff*factors`` unevaluated if necessary.
|
2124 |
+
|
2125 |
+
If ``clear`` is False, do not keep the coefficient as a factor
|
2126 |
+
if it can be distributed on a single factor such that one or
|
2127 |
+
more terms will still have integer coefficients.
|
2128 |
+
|
2129 |
+
If ``sign`` is True, allow a coefficient of -1 to remain factored out.
|
2130 |
+
|
2131 |
+
Examples
|
2132 |
+
========
|
2133 |
+
|
2134 |
+
>>> from sympy.core.mul import _keep_coeff
|
2135 |
+
>>> from sympy.abc import x, y
|
2136 |
+
>>> from sympy import S
|
2137 |
+
|
2138 |
+
>>> _keep_coeff(S.Half, x + 2)
|
2139 |
+
(x + 2)/2
|
2140 |
+
>>> _keep_coeff(S.Half, x + 2, clear=False)
|
2141 |
+
x/2 + 1
|
2142 |
+
>>> _keep_coeff(S.Half, (x + 2)*y, clear=False)
|
2143 |
+
y*(x + 2)/2
|
2144 |
+
>>> _keep_coeff(S(-1), x + y)
|
2145 |
+
-x - y
|
2146 |
+
>>> _keep_coeff(S(-1), x + y, sign=True)
|
2147 |
+
-(x + y)
|
2148 |
+
"""
|
2149 |
+
if not coeff.is_Number:
|
2150 |
+
if factors.is_Number:
|
2151 |
+
factors, coeff = coeff, factors
|
2152 |
+
else:
|
2153 |
+
return coeff*factors
|
2154 |
+
if factors is S.One:
|
2155 |
+
return coeff
|
2156 |
+
if coeff is S.One:
|
2157 |
+
return factors
|
2158 |
+
elif coeff is S.NegativeOne and not sign:
|
2159 |
+
return -factors
|
2160 |
+
elif factors.is_Add:
|
2161 |
+
if not clear and coeff.is_Rational and coeff.q != 1:
|
2162 |
+
args = [i.as_coeff_Mul() for i in factors.args]
|
2163 |
+
args = [(_keep_coeff(c, coeff), m) for c, m in args]
|
2164 |
+
if any(c.is_Integer for c, _ in args):
|
2165 |
+
return Add._from_args([Mul._from_args(
|
2166 |
+
i[1:] if i[0] == 1 else i) for i in args])
|
2167 |
+
return Mul(coeff, factors, evaluate=False)
|
2168 |
+
elif factors.is_Mul:
|
2169 |
+
margs = list(factors.args)
|
2170 |
+
if margs[0].is_Number:
|
2171 |
+
margs[0] *= coeff
|
2172 |
+
if margs[0] == 1:
|
2173 |
+
margs.pop(0)
|
2174 |
+
else:
|
2175 |
+
margs.insert(0, coeff)
|
2176 |
+
return Mul._from_args(margs)
|
2177 |
+
else:
|
2178 |
+
m = coeff*factors
|
2179 |
+
if m.is_Number and not factors.is_Number:
|
2180 |
+
m = Mul._from_args((coeff, factors))
|
2181 |
+
return m
|
2182 |
+
|
2183 |
+
def expand_2arg(e):
|
2184 |
+
def do(e):
|
2185 |
+
if e.is_Mul:
|
2186 |
+
c, r = e.as_coeff_Mul()
|
2187 |
+
if c.is_Number and r.is_Add:
|
2188 |
+
return _unevaluated_Add(*[c*ri for ri in r.args])
|
2189 |
+
return e
|
2190 |
+
return bottom_up(e, do)
|
2191 |
+
|
2192 |
+
|
2193 |
+
from .numbers import Rational
|
2194 |
+
from .power import Pow
|
2195 |
+
from .add import Add, _unevaluated_Add
|
env-llmeval/lib/python3.10/site-packages/sympy/core/numbers.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/operations.py
ADDED
@@ -0,0 +1,722 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from operator import attrgetter
|
3 |
+
from collections import defaultdict
|
4 |
+
|
5 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
6 |
+
|
7 |
+
from .sympify import _sympify as _sympify_, sympify
|
8 |
+
from .basic import Basic
|
9 |
+
from .cache import cacheit
|
10 |
+
from .sorting import ordered
|
11 |
+
from .logic import fuzzy_and
|
12 |
+
from .parameters import global_parameters
|
13 |
+
from sympy.utilities.iterables import sift
|
14 |
+
from sympy.multipledispatch.dispatcher import (Dispatcher,
|
15 |
+
ambiguity_register_error_ignore_dup,
|
16 |
+
str_signature, RaiseNotImplementedError)
|
17 |
+
|
18 |
+
|
19 |
+
class AssocOp(Basic):
|
20 |
+
""" Associative operations, can separate noncommutative and
|
21 |
+
commutative parts.
|
22 |
+
|
23 |
+
(a op b) op c == a op (b op c) == a op b op c.
|
24 |
+
|
25 |
+
Base class for Add and Mul.
|
26 |
+
|
27 |
+
This is an abstract base class, concrete derived classes must define
|
28 |
+
the attribute `identity`.
|
29 |
+
|
30 |
+
.. deprecated:: 1.7
|
31 |
+
|
32 |
+
Using arguments that aren't subclasses of :class:`~.Expr` in core
|
33 |
+
operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
|
34 |
+
deprecated. See :ref:`non-expr-args-deprecated` for details.
|
35 |
+
|
36 |
+
Parameters
|
37 |
+
==========
|
38 |
+
|
39 |
+
*args :
|
40 |
+
Arguments which are operated
|
41 |
+
|
42 |
+
evaluate : bool, optional
|
43 |
+
Evaluate the operation. If not passed, refer to ``global_parameters.evaluate``.
|
44 |
+
"""
|
45 |
+
|
46 |
+
# for performance reason, we don't let is_commutative go to assumptions,
|
47 |
+
# and keep it right here
|
48 |
+
__slots__: tuple[str, ...] = ('is_commutative',)
|
49 |
+
|
50 |
+
_args_type: type[Basic] | None = None
|
51 |
+
|
52 |
+
@cacheit
|
53 |
+
def __new__(cls, *args, evaluate=None, _sympify=True):
|
54 |
+
# Allow faster processing by passing ``_sympify=False``, if all arguments
|
55 |
+
# are already sympified.
|
56 |
+
if _sympify:
|
57 |
+
args = list(map(_sympify_, args))
|
58 |
+
|
59 |
+
# Disallow non-Expr args in Add/Mul
|
60 |
+
typ = cls._args_type
|
61 |
+
if typ is not None:
|
62 |
+
from .relational import Relational
|
63 |
+
if any(isinstance(arg, Relational) for arg in args):
|
64 |
+
raise TypeError("Relational cannot be used in %s" % cls.__name__)
|
65 |
+
|
66 |
+
# This should raise TypeError once deprecation period is over:
|
67 |
+
for arg in args:
|
68 |
+
if not isinstance(arg, typ):
|
69 |
+
sympy_deprecation_warning(
|
70 |
+
f"""
|
71 |
+
|
72 |
+
Using non-Expr arguments in {cls.__name__} is deprecated (in this case, one of
|
73 |
+
the arguments has type {type(arg).__name__!r}).
|
74 |
+
|
75 |
+
If you really did intend to use a multiplication or addition operation with
|
76 |
+
this object, use the * or + operator instead.
|
77 |
+
|
78 |
+
""",
|
79 |
+
deprecated_since_version="1.7",
|
80 |
+
active_deprecations_target="non-expr-args-deprecated",
|
81 |
+
stacklevel=4,
|
82 |
+
)
|
83 |
+
|
84 |
+
if evaluate is None:
|
85 |
+
evaluate = global_parameters.evaluate
|
86 |
+
if not evaluate:
|
87 |
+
obj = cls._from_args(args)
|
88 |
+
obj = cls._exec_constructor_postprocessors(obj)
|
89 |
+
return obj
|
90 |
+
|
91 |
+
args = [a for a in args if a is not cls.identity]
|
92 |
+
|
93 |
+
if len(args) == 0:
|
94 |
+
return cls.identity
|
95 |
+
if len(args) == 1:
|
96 |
+
return args[0]
|
97 |
+
|
98 |
+
c_part, nc_part, order_symbols = cls.flatten(args)
|
99 |
+
is_commutative = not nc_part
|
100 |
+
obj = cls._from_args(c_part + nc_part, is_commutative)
|
101 |
+
obj = cls._exec_constructor_postprocessors(obj)
|
102 |
+
|
103 |
+
if order_symbols is not None:
|
104 |
+
from sympy.series.order import Order
|
105 |
+
return Order(obj, *order_symbols)
|
106 |
+
return obj
|
107 |
+
|
108 |
+
@classmethod
|
109 |
+
def _from_args(cls, args, is_commutative=None):
|
110 |
+
"""Create new instance with already-processed args.
|
111 |
+
If the args are not in canonical order, then a non-canonical
|
112 |
+
result will be returned, so use with caution. The order of
|
113 |
+
args may change if the sign of the args is changed."""
|
114 |
+
if len(args) == 0:
|
115 |
+
return cls.identity
|
116 |
+
elif len(args) == 1:
|
117 |
+
return args[0]
|
118 |
+
|
119 |
+
obj = super().__new__(cls, *args)
|
120 |
+
if is_commutative is None:
|
121 |
+
is_commutative = fuzzy_and(a.is_commutative for a in args)
|
122 |
+
obj.is_commutative = is_commutative
|
123 |
+
return obj
|
124 |
+
|
125 |
+
def _new_rawargs(self, *args, reeval=True, **kwargs):
|
126 |
+
"""Create new instance of own class with args exactly as provided by
|
127 |
+
caller but returning the self class identity if args is empty.
|
128 |
+
|
129 |
+
Examples
|
130 |
+
========
|
131 |
+
|
132 |
+
This is handy when we want to optimize things, e.g.
|
133 |
+
|
134 |
+
>>> from sympy import Mul, S
|
135 |
+
>>> from sympy.abc import x, y
|
136 |
+
>>> e = Mul(3, x, y)
|
137 |
+
>>> e.args
|
138 |
+
(3, x, y)
|
139 |
+
>>> Mul(*e.args[1:])
|
140 |
+
x*y
|
141 |
+
>>> e._new_rawargs(*e.args[1:]) # the same as above, but faster
|
142 |
+
x*y
|
143 |
+
|
144 |
+
Note: use this with caution. There is no checking of arguments at
|
145 |
+
all. This is best used when you are rebuilding an Add or Mul after
|
146 |
+
simply removing one or more args. If, for example, modifications,
|
147 |
+
result in extra 1s being inserted they will show up in the result:
|
148 |
+
|
149 |
+
>>> m = (x*y)._new_rawargs(S.One, x); m
|
150 |
+
1*x
|
151 |
+
>>> m == x
|
152 |
+
False
|
153 |
+
>>> m.is_Mul
|
154 |
+
True
|
155 |
+
|
156 |
+
Another issue to be aware of is that the commutativity of the result
|
157 |
+
is based on the commutativity of self. If you are rebuilding the
|
158 |
+
terms that came from a commutative object then there will be no
|
159 |
+
problem, but if self was non-commutative then what you are
|
160 |
+
rebuilding may now be commutative.
|
161 |
+
|
162 |
+
Although this routine tries to do as little as possible with the
|
163 |
+
input, getting the commutativity right is important, so this level
|
164 |
+
of safety is enforced: commutativity will always be recomputed if
|
165 |
+
self is non-commutative and kwarg `reeval=False` has not been
|
166 |
+
passed.
|
167 |
+
"""
|
168 |
+
if reeval and self.is_commutative is False:
|
169 |
+
is_commutative = None
|
170 |
+
else:
|
171 |
+
is_commutative = self.is_commutative
|
172 |
+
return self._from_args(args, is_commutative)
|
173 |
+
|
174 |
+
@classmethod
|
175 |
+
def flatten(cls, seq):
|
176 |
+
"""Return seq so that none of the elements are of type `cls`. This is
|
177 |
+
the vanilla routine that will be used if a class derived from AssocOp
|
178 |
+
does not define its own flatten routine."""
|
179 |
+
# apply associativity, no commutativity property is used
|
180 |
+
new_seq = []
|
181 |
+
while seq:
|
182 |
+
o = seq.pop()
|
183 |
+
if o.__class__ is cls: # classes must match exactly
|
184 |
+
seq.extend(o.args)
|
185 |
+
else:
|
186 |
+
new_seq.append(o)
|
187 |
+
new_seq.reverse()
|
188 |
+
|
189 |
+
# c_part, nc_part, order_symbols
|
190 |
+
return [], new_seq, None
|
191 |
+
|
192 |
+
def _matches_commutative(self, expr, repl_dict=None, old=False):
|
193 |
+
"""
|
194 |
+
Matches Add/Mul "pattern" to an expression "expr".
|
195 |
+
|
196 |
+
repl_dict ... a dictionary of (wild: expression) pairs, that get
|
197 |
+
returned with the results
|
198 |
+
|
199 |
+
This function is the main workhorse for Add/Mul.
|
200 |
+
|
201 |
+
Examples
|
202 |
+
========
|
203 |
+
|
204 |
+
>>> from sympy import symbols, Wild, sin
|
205 |
+
>>> a = Wild("a")
|
206 |
+
>>> b = Wild("b")
|
207 |
+
>>> c = Wild("c")
|
208 |
+
>>> x, y, z = symbols("x y z")
|
209 |
+
>>> (a+sin(b)*c)._matches_commutative(x+sin(y)*z)
|
210 |
+
{a_: x, b_: y, c_: z}
|
211 |
+
|
212 |
+
In the example above, "a+sin(b)*c" is the pattern, and "x+sin(y)*z" is
|
213 |
+
the expression.
|
214 |
+
|
215 |
+
The repl_dict contains parts that were already matched. For example
|
216 |
+
here:
|
217 |
+
|
218 |
+
>>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z, repl_dict={a: x})
|
219 |
+
{a_: x, b_: y, c_: z}
|
220 |
+
|
221 |
+
the only function of the repl_dict is to return it in the
|
222 |
+
result, e.g. if you omit it:
|
223 |
+
|
224 |
+
>>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z)
|
225 |
+
{b_: y, c_: z}
|
226 |
+
|
227 |
+
the "a: x" is not returned in the result, but otherwise it is
|
228 |
+
equivalent.
|
229 |
+
|
230 |
+
"""
|
231 |
+
from .function import _coeff_isneg
|
232 |
+
# make sure expr is Expr if pattern is Expr
|
233 |
+
from .expr import Expr
|
234 |
+
if isinstance(self, Expr) and not isinstance(expr, Expr):
|
235 |
+
return None
|
236 |
+
|
237 |
+
if repl_dict is None:
|
238 |
+
repl_dict = {}
|
239 |
+
|
240 |
+
# handle simple patterns
|
241 |
+
if self == expr:
|
242 |
+
return repl_dict
|
243 |
+
|
244 |
+
d = self._matches_simple(expr, repl_dict)
|
245 |
+
if d is not None:
|
246 |
+
return d
|
247 |
+
|
248 |
+
# eliminate exact part from pattern: (2+a+w1+w2).matches(expr) -> (w1+w2).matches(expr-a-2)
|
249 |
+
from .function import WildFunction
|
250 |
+
from .symbol import Wild
|
251 |
+
wild_part, exact_part = sift(self.args, lambda p:
|
252 |
+
p.has(Wild, WildFunction) and not expr.has(p),
|
253 |
+
binary=True)
|
254 |
+
if not exact_part:
|
255 |
+
wild_part = list(ordered(wild_part))
|
256 |
+
if self.is_Add:
|
257 |
+
# in addition to normal ordered keys, impose
|
258 |
+
# sorting on Muls with leading Number to put
|
259 |
+
# them in order
|
260 |
+
wild_part = sorted(wild_part, key=lambda x:
|
261 |
+
x.args[0] if x.is_Mul and x.args[0].is_Number else
|
262 |
+
0)
|
263 |
+
else:
|
264 |
+
exact = self._new_rawargs(*exact_part)
|
265 |
+
free = expr.free_symbols
|
266 |
+
if free and (exact.free_symbols - free):
|
267 |
+
# there are symbols in the exact part that are not
|
268 |
+
# in the expr; but if there are no free symbols, let
|
269 |
+
# the matching continue
|
270 |
+
return None
|
271 |
+
newexpr = self._combine_inverse(expr, exact)
|
272 |
+
if not old and (expr.is_Add or expr.is_Mul):
|
273 |
+
check = newexpr
|
274 |
+
if _coeff_isneg(check):
|
275 |
+
check = -check
|
276 |
+
if check.count_ops() > expr.count_ops():
|
277 |
+
return None
|
278 |
+
newpattern = self._new_rawargs(*wild_part)
|
279 |
+
return newpattern.matches(newexpr, repl_dict)
|
280 |
+
|
281 |
+
# now to real work ;)
|
282 |
+
i = 0
|
283 |
+
saw = set()
|
284 |
+
while expr not in saw:
|
285 |
+
saw.add(expr)
|
286 |
+
args = tuple(ordered(self.make_args(expr)))
|
287 |
+
if self.is_Add and expr.is_Add:
|
288 |
+
# in addition to normal ordered keys, impose
|
289 |
+
# sorting on Muls with leading Number to put
|
290 |
+
# them in order
|
291 |
+
args = tuple(sorted(args, key=lambda x:
|
292 |
+
x.args[0] if x.is_Mul and x.args[0].is_Number else
|
293 |
+
0))
|
294 |
+
expr_list = (self.identity,) + args
|
295 |
+
for last_op in reversed(expr_list):
|
296 |
+
for w in reversed(wild_part):
|
297 |
+
d1 = w.matches(last_op, repl_dict)
|
298 |
+
if d1 is not None:
|
299 |
+
d2 = self.xreplace(d1).matches(expr, d1)
|
300 |
+
if d2 is not None:
|
301 |
+
return d2
|
302 |
+
|
303 |
+
if i == 0:
|
304 |
+
if self.is_Mul:
|
305 |
+
# make e**i look like Mul
|
306 |
+
if expr.is_Pow and expr.exp.is_Integer:
|
307 |
+
from .mul import Mul
|
308 |
+
if expr.exp > 0:
|
309 |
+
expr = Mul(*[expr.base, expr.base**(expr.exp - 1)], evaluate=False)
|
310 |
+
else:
|
311 |
+
expr = Mul(*[1/expr.base, expr.base**(expr.exp + 1)], evaluate=False)
|
312 |
+
i += 1
|
313 |
+
continue
|
314 |
+
|
315 |
+
elif self.is_Add:
|
316 |
+
# make i*e look like Add
|
317 |
+
c, e = expr.as_coeff_Mul()
|
318 |
+
if abs(c) > 1:
|
319 |
+
from .add import Add
|
320 |
+
if c > 0:
|
321 |
+
expr = Add(*[e, (c - 1)*e], evaluate=False)
|
322 |
+
else:
|
323 |
+
expr = Add(*[-e, (c + 1)*e], evaluate=False)
|
324 |
+
i += 1
|
325 |
+
continue
|
326 |
+
|
327 |
+
# try collection on non-Wild symbols
|
328 |
+
from sympy.simplify.radsimp import collect
|
329 |
+
was = expr
|
330 |
+
did = set()
|
331 |
+
for w in reversed(wild_part):
|
332 |
+
c, w = w.as_coeff_mul(Wild)
|
333 |
+
free = c.free_symbols - did
|
334 |
+
if free:
|
335 |
+
did.update(free)
|
336 |
+
expr = collect(expr, free)
|
337 |
+
if expr != was:
|
338 |
+
i += 0
|
339 |
+
continue
|
340 |
+
|
341 |
+
break # if we didn't continue, there is nothing more to do
|
342 |
+
|
343 |
+
return
|
344 |
+
|
345 |
+
def _has_matcher(self):
|
346 |
+
"""Helper for .has() that checks for containment of
|
347 |
+
subexpressions within an expr by using sets of args
|
348 |
+
of similar nodes, e.g. x + 1 in x + y + 1 checks
|
349 |
+
to see that {x, 1} & {x, y, 1} == {x, 1}
|
350 |
+
"""
|
351 |
+
def _ncsplit(expr):
|
352 |
+
# this is not the same as args_cnc because here
|
353 |
+
# we don't assume expr is a Mul -- hence deal with args --
|
354 |
+
# and always return a set.
|
355 |
+
cpart, ncpart = sift(expr.args,
|
356 |
+
lambda arg: arg.is_commutative is True, binary=True)
|
357 |
+
return set(cpart), ncpart
|
358 |
+
|
359 |
+
c, nc = _ncsplit(self)
|
360 |
+
cls = self.__class__
|
361 |
+
|
362 |
+
def is_in(expr):
|
363 |
+
if isinstance(expr, cls):
|
364 |
+
if expr == self:
|
365 |
+
return True
|
366 |
+
_c, _nc = _ncsplit(expr)
|
367 |
+
if (c & _c) == c:
|
368 |
+
if not nc:
|
369 |
+
return True
|
370 |
+
elif len(nc) <= len(_nc):
|
371 |
+
for i in range(len(_nc) - len(nc) + 1):
|
372 |
+
if _nc[i:i + len(nc)] == nc:
|
373 |
+
return True
|
374 |
+
return False
|
375 |
+
return is_in
|
376 |
+
|
377 |
+
def _eval_evalf(self, prec):
|
378 |
+
"""
|
379 |
+
Evaluate the parts of self that are numbers; if the whole thing
|
380 |
+
was a number with no functions it would have been evaluated, but
|
381 |
+
it wasn't so we must judiciously extract the numbers and reconstruct
|
382 |
+
the object. This is *not* simply replacing numbers with evaluated
|
383 |
+
numbers. Numbers should be handled in the largest pure-number
|
384 |
+
expression as possible. So the code below separates ``self`` into
|
385 |
+
number and non-number parts and evaluates the number parts and
|
386 |
+
walks the args of the non-number part recursively (doing the same
|
387 |
+
thing).
|
388 |
+
"""
|
389 |
+
from .add import Add
|
390 |
+
from .mul import Mul
|
391 |
+
from .symbol import Symbol
|
392 |
+
from .function import AppliedUndef
|
393 |
+
if isinstance(self, (Mul, Add)):
|
394 |
+
x, tail = self.as_independent(Symbol, AppliedUndef)
|
395 |
+
# if x is an AssocOp Function then the _evalf below will
|
396 |
+
# call _eval_evalf (here) so we must break the recursion
|
397 |
+
if not (tail is self.identity or
|
398 |
+
isinstance(x, AssocOp) and x.is_Function or
|
399 |
+
x is self.identity and isinstance(tail, AssocOp)):
|
400 |
+
# here, we have a number so we just call to _evalf with prec;
|
401 |
+
# prec is not the same as n, it is the binary precision so
|
402 |
+
# that's why we don't call to evalf.
|
403 |
+
x = x._evalf(prec) if x is not self.identity else self.identity
|
404 |
+
args = []
|
405 |
+
tail_args = tuple(self.func.make_args(tail))
|
406 |
+
for a in tail_args:
|
407 |
+
# here we call to _eval_evalf since we don't know what we
|
408 |
+
# are dealing with and all other _eval_evalf routines should
|
409 |
+
# be doing the same thing (i.e. taking binary prec and
|
410 |
+
# finding the evalf-able args)
|
411 |
+
newa = a._eval_evalf(prec)
|
412 |
+
if newa is None:
|
413 |
+
args.append(a)
|
414 |
+
else:
|
415 |
+
args.append(newa)
|
416 |
+
return self.func(x, *args)
|
417 |
+
|
418 |
+
# this is the same as above, but there were no pure-number args to
|
419 |
+
# deal with
|
420 |
+
args = []
|
421 |
+
for a in self.args:
|
422 |
+
newa = a._eval_evalf(prec)
|
423 |
+
if newa is None:
|
424 |
+
args.append(a)
|
425 |
+
else:
|
426 |
+
args.append(newa)
|
427 |
+
return self.func(*args)
|
428 |
+
|
429 |
+
@classmethod
|
430 |
+
def make_args(cls, expr):
|
431 |
+
"""
|
432 |
+
Return a sequence of elements `args` such that cls(*args) == expr
|
433 |
+
|
434 |
+
Examples
|
435 |
+
========
|
436 |
+
|
437 |
+
>>> from sympy import Symbol, Mul, Add
|
438 |
+
>>> x, y = map(Symbol, 'xy')
|
439 |
+
|
440 |
+
>>> Mul.make_args(x*y)
|
441 |
+
(x, y)
|
442 |
+
>>> Add.make_args(x*y)
|
443 |
+
(x*y,)
|
444 |
+
>>> set(Add.make_args(x*y + y)) == set([y, x*y])
|
445 |
+
True
|
446 |
+
|
447 |
+
"""
|
448 |
+
if isinstance(expr, cls):
|
449 |
+
return expr.args
|
450 |
+
else:
|
451 |
+
return (sympify(expr),)
|
452 |
+
|
453 |
+
def doit(self, **hints):
|
454 |
+
if hints.get('deep', True):
|
455 |
+
terms = [term.doit(**hints) for term in self.args]
|
456 |
+
else:
|
457 |
+
terms = self.args
|
458 |
+
return self.func(*terms, evaluate=True)
|
459 |
+
|
460 |
+
class ShortCircuit(Exception):
|
461 |
+
pass
|
462 |
+
|
463 |
+
|
464 |
+
class LatticeOp(AssocOp):
|
465 |
+
"""
|
466 |
+
Join/meet operations of an algebraic lattice[1].
|
467 |
+
|
468 |
+
Explanation
|
469 |
+
===========
|
470 |
+
|
471 |
+
These binary operations are associative (op(op(a, b), c) = op(a, op(b, c))),
|
472 |
+
commutative (op(a, b) = op(b, a)) and idempotent (op(a, a) = op(a) = a).
|
473 |
+
Common examples are AND, OR, Union, Intersection, max or min. They have an
|
474 |
+
identity element (op(identity, a) = a) and an absorbing element
|
475 |
+
conventionally called zero (op(zero, a) = zero).
|
476 |
+
|
477 |
+
This is an abstract base class, concrete derived classes must declare
|
478 |
+
attributes zero and identity. All defining properties are then respected.
|
479 |
+
|
480 |
+
Examples
|
481 |
+
========
|
482 |
+
|
483 |
+
>>> from sympy import Integer
|
484 |
+
>>> from sympy.core.operations import LatticeOp
|
485 |
+
>>> class my_join(LatticeOp):
|
486 |
+
... zero = Integer(0)
|
487 |
+
... identity = Integer(1)
|
488 |
+
>>> my_join(2, 3) == my_join(3, 2)
|
489 |
+
True
|
490 |
+
>>> my_join(2, my_join(3, 4)) == my_join(2, 3, 4)
|
491 |
+
True
|
492 |
+
>>> my_join(0, 1, 4, 2, 3, 4)
|
493 |
+
0
|
494 |
+
>>> my_join(1, 2)
|
495 |
+
2
|
496 |
+
|
497 |
+
References
|
498 |
+
==========
|
499 |
+
|
500 |
+
.. [1] https://en.wikipedia.org/wiki/Lattice_%28order%29
|
501 |
+
"""
|
502 |
+
|
503 |
+
is_commutative = True
|
504 |
+
|
505 |
+
def __new__(cls, *args, **options):
|
506 |
+
args = (_sympify_(arg) for arg in args)
|
507 |
+
|
508 |
+
try:
|
509 |
+
# /!\ args is a generator and _new_args_filter
|
510 |
+
# must be careful to handle as such; this
|
511 |
+
# is done so short-circuiting can be done
|
512 |
+
# without having to sympify all values
|
513 |
+
_args = frozenset(cls._new_args_filter(args))
|
514 |
+
except ShortCircuit:
|
515 |
+
return sympify(cls.zero)
|
516 |
+
if not _args:
|
517 |
+
return sympify(cls.identity)
|
518 |
+
elif len(_args) == 1:
|
519 |
+
return set(_args).pop()
|
520 |
+
else:
|
521 |
+
# XXX in almost every other case for __new__, *_args is
|
522 |
+
# passed along, but the expectation here is for _args
|
523 |
+
obj = super(AssocOp, cls).__new__(cls, *ordered(_args))
|
524 |
+
obj._argset = _args
|
525 |
+
return obj
|
526 |
+
|
527 |
+
@classmethod
|
528 |
+
def _new_args_filter(cls, arg_sequence, call_cls=None):
|
529 |
+
"""Generator filtering args"""
|
530 |
+
ncls = call_cls or cls
|
531 |
+
for arg in arg_sequence:
|
532 |
+
if arg == ncls.zero:
|
533 |
+
raise ShortCircuit(arg)
|
534 |
+
elif arg == ncls.identity:
|
535 |
+
continue
|
536 |
+
elif arg.func == ncls:
|
537 |
+
yield from arg.args
|
538 |
+
else:
|
539 |
+
yield arg
|
540 |
+
|
541 |
+
@classmethod
|
542 |
+
def make_args(cls, expr):
|
543 |
+
"""
|
544 |
+
Return a set of args such that cls(*arg_set) == expr.
|
545 |
+
"""
|
546 |
+
if isinstance(expr, cls):
|
547 |
+
return expr._argset
|
548 |
+
else:
|
549 |
+
return frozenset([sympify(expr)])
|
550 |
+
|
551 |
+
@staticmethod
|
552 |
+
def _compare_pretty(a, b):
|
553 |
+
return (str(a) > str(b)) - (str(a) < str(b))
|
554 |
+
|
555 |
+
|
556 |
+
class AssocOpDispatcher:
|
557 |
+
"""
|
558 |
+
Handler dispatcher for associative operators
|
559 |
+
|
560 |
+
.. notes::
|
561 |
+
This approach is experimental, and can be replaced or deleted in the future.
|
562 |
+
See https://github.com/sympy/sympy/pull/19463.
|
563 |
+
|
564 |
+
Explanation
|
565 |
+
===========
|
566 |
+
|
567 |
+
If arguments of different types are passed, the classes which handle the operation for each type
|
568 |
+
are collected. Then, a class which performs the operation is selected by recursive binary dispatching.
|
569 |
+
Dispatching relation can be registered by ``register_handlerclass`` method.
|
570 |
+
|
571 |
+
Priority registration is unordered. You cannot make ``A*B`` and ``B*A`` refer to
|
572 |
+
different handler classes. All logic dealing with the order of arguments must be implemented
|
573 |
+
in the handler class.
|
574 |
+
|
575 |
+
Examples
|
576 |
+
========
|
577 |
+
|
578 |
+
>>> from sympy import Add, Expr, Symbol
|
579 |
+
>>> from sympy.core.add import add
|
580 |
+
|
581 |
+
>>> class NewExpr(Expr):
|
582 |
+
... @property
|
583 |
+
... def _add_handler(self):
|
584 |
+
... return NewAdd
|
585 |
+
>>> class NewAdd(NewExpr, Add):
|
586 |
+
... pass
|
587 |
+
>>> add.register_handlerclass((Add, NewAdd), NewAdd)
|
588 |
+
|
589 |
+
>>> a, b = Symbol('a'), NewExpr()
|
590 |
+
>>> add(a, b) == NewAdd(a, b)
|
591 |
+
True
|
592 |
+
|
593 |
+
"""
|
594 |
+
def __init__(self, name, doc=None):
|
595 |
+
self.name = name
|
596 |
+
self.doc = doc
|
597 |
+
self.handlerattr = "_%s_handler" % name
|
598 |
+
self._handlergetter = attrgetter(self.handlerattr)
|
599 |
+
self._dispatcher = Dispatcher(name)
|
600 |
+
|
601 |
+
def __repr__(self):
|
602 |
+
return "<dispatched %s>" % self.name
|
603 |
+
|
604 |
+
def register_handlerclass(self, classes, typ, on_ambiguity=ambiguity_register_error_ignore_dup):
|
605 |
+
"""
|
606 |
+
Register the handler class for two classes, in both straight and reversed order.
|
607 |
+
|
608 |
+
Paramteters
|
609 |
+
===========
|
610 |
+
|
611 |
+
classes : tuple of two types
|
612 |
+
Classes who are compared with each other.
|
613 |
+
|
614 |
+
typ:
|
615 |
+
Class which is registered to represent *cls1* and *cls2*.
|
616 |
+
Handler method of *self* must be implemented in this class.
|
617 |
+
"""
|
618 |
+
if not len(classes) == 2:
|
619 |
+
raise RuntimeError(
|
620 |
+
"Only binary dispatch is supported, but got %s types: <%s>." % (
|
621 |
+
len(classes), str_signature(classes)
|
622 |
+
))
|
623 |
+
if len(set(classes)) == 1:
|
624 |
+
raise RuntimeError(
|
625 |
+
"Duplicate types <%s> cannot be dispatched." % str_signature(classes)
|
626 |
+
)
|
627 |
+
self._dispatcher.add(tuple(classes), typ, on_ambiguity=on_ambiguity)
|
628 |
+
self._dispatcher.add(tuple(reversed(classes)), typ, on_ambiguity=on_ambiguity)
|
629 |
+
|
630 |
+
@cacheit
|
631 |
+
def __call__(self, *args, _sympify=True, **kwargs):
|
632 |
+
"""
|
633 |
+
Parameters
|
634 |
+
==========
|
635 |
+
|
636 |
+
*args :
|
637 |
+
Arguments which are operated
|
638 |
+
"""
|
639 |
+
if _sympify:
|
640 |
+
args = tuple(map(_sympify_, args))
|
641 |
+
handlers = frozenset(map(self._handlergetter, args))
|
642 |
+
|
643 |
+
# no need to sympify again
|
644 |
+
return self.dispatch(handlers)(*args, _sympify=False, **kwargs)
|
645 |
+
|
646 |
+
@cacheit
|
647 |
+
def dispatch(self, handlers):
|
648 |
+
"""
|
649 |
+
Select the handler class, and return its handler method.
|
650 |
+
"""
|
651 |
+
|
652 |
+
# Quick exit for the case where all handlers are same
|
653 |
+
if len(handlers) == 1:
|
654 |
+
h, = handlers
|
655 |
+
if not isinstance(h, type):
|
656 |
+
raise RuntimeError("Handler {!r} is not a type.".format(h))
|
657 |
+
return h
|
658 |
+
|
659 |
+
# Recursively select with registered binary priority
|
660 |
+
for i, typ in enumerate(handlers):
|
661 |
+
|
662 |
+
if not isinstance(typ, type):
|
663 |
+
raise RuntimeError("Handler {!r} is not a type.".format(typ))
|
664 |
+
|
665 |
+
if i == 0:
|
666 |
+
handler = typ
|
667 |
+
else:
|
668 |
+
prev_handler = handler
|
669 |
+
handler = self._dispatcher.dispatch(prev_handler, typ)
|
670 |
+
|
671 |
+
if not isinstance(handler, type):
|
672 |
+
raise RuntimeError(
|
673 |
+
"Dispatcher for {!r} and {!r} must return a type, but got {!r}".format(
|
674 |
+
prev_handler, typ, handler
|
675 |
+
))
|
676 |
+
|
677 |
+
# return handler class
|
678 |
+
return handler
|
679 |
+
|
680 |
+
@property
|
681 |
+
def __doc__(self):
|
682 |
+
docs = [
|
683 |
+
"Multiply dispatched associative operator: %s" % self.name,
|
684 |
+
"Note that support for this is experimental, see the docs for :class:`AssocOpDispatcher` for details"
|
685 |
+
]
|
686 |
+
|
687 |
+
if self.doc:
|
688 |
+
docs.append(self.doc)
|
689 |
+
|
690 |
+
s = "Registered handler classes\n"
|
691 |
+
s += '=' * len(s)
|
692 |
+
docs.append(s)
|
693 |
+
|
694 |
+
amb_sigs = []
|
695 |
+
|
696 |
+
typ_sigs = defaultdict(list)
|
697 |
+
for sigs in self._dispatcher.ordering[::-1]:
|
698 |
+
key = self._dispatcher.funcs[sigs]
|
699 |
+
typ_sigs[key].append(sigs)
|
700 |
+
|
701 |
+
for typ, sigs in typ_sigs.items():
|
702 |
+
|
703 |
+
sigs_str = ', '.join('<%s>' % str_signature(sig) for sig in sigs)
|
704 |
+
|
705 |
+
if isinstance(typ, RaiseNotImplementedError):
|
706 |
+
amb_sigs.append(sigs_str)
|
707 |
+
continue
|
708 |
+
|
709 |
+
s = 'Inputs: %s\n' % sigs_str
|
710 |
+
s += '-' * len(s) + '\n'
|
711 |
+
s += typ.__name__
|
712 |
+
docs.append(s)
|
713 |
+
|
714 |
+
if amb_sigs:
|
715 |
+
s = "Ambiguous handler classes\n"
|
716 |
+
s += '=' * len(s)
|
717 |
+
docs.append(s)
|
718 |
+
|
719 |
+
s = '\n'.join(amb_sigs)
|
720 |
+
docs.append(s)
|
721 |
+
|
722 |
+
return '\n\n'.join(docs)
|
env-llmeval/lib/python3.10/site-packages/sympy/core/parameters.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Thread-safe global parameters"""
|
2 |
+
|
3 |
+
from .cache import clear_cache
|
4 |
+
from contextlib import contextmanager
|
5 |
+
from threading import local
|
6 |
+
|
7 |
+
class _global_parameters(local):
|
8 |
+
"""
|
9 |
+
Thread-local global parameters.
|
10 |
+
|
11 |
+
Explanation
|
12 |
+
===========
|
13 |
+
|
14 |
+
This class generates thread-local container for SymPy's global parameters.
|
15 |
+
Every global parameters must be passed as keyword argument when generating
|
16 |
+
its instance.
|
17 |
+
A variable, `global_parameters` is provided as default instance for this class.
|
18 |
+
|
19 |
+
WARNING! Although the global parameters are thread-local, SymPy's cache is not
|
20 |
+
by now.
|
21 |
+
This may lead to undesired result in multi-threading operations.
|
22 |
+
|
23 |
+
Examples
|
24 |
+
========
|
25 |
+
|
26 |
+
>>> from sympy.abc import x
|
27 |
+
>>> from sympy.core.cache import clear_cache
|
28 |
+
>>> from sympy.core.parameters import global_parameters as gp
|
29 |
+
|
30 |
+
>>> gp.evaluate
|
31 |
+
True
|
32 |
+
>>> x+x
|
33 |
+
2*x
|
34 |
+
|
35 |
+
>>> log = []
|
36 |
+
>>> def f():
|
37 |
+
... clear_cache()
|
38 |
+
... gp.evaluate = False
|
39 |
+
... log.append(x+x)
|
40 |
+
... clear_cache()
|
41 |
+
>>> import threading
|
42 |
+
>>> thread = threading.Thread(target=f)
|
43 |
+
>>> thread.start()
|
44 |
+
>>> thread.join()
|
45 |
+
|
46 |
+
>>> print(log)
|
47 |
+
[x + x]
|
48 |
+
|
49 |
+
>>> gp.evaluate
|
50 |
+
True
|
51 |
+
>>> x+x
|
52 |
+
2*x
|
53 |
+
|
54 |
+
References
|
55 |
+
==========
|
56 |
+
|
57 |
+
.. [1] https://docs.python.org/3/library/threading.html
|
58 |
+
|
59 |
+
"""
|
60 |
+
def __init__(self, **kwargs):
|
61 |
+
self.__dict__.update(kwargs)
|
62 |
+
|
63 |
+
def __setattr__(self, name, value):
|
64 |
+
if getattr(self, name) != value:
|
65 |
+
clear_cache()
|
66 |
+
return super().__setattr__(name, value)
|
67 |
+
|
68 |
+
global_parameters = _global_parameters(evaluate=True, distribute=True, exp_is_pow=False)
|
69 |
+
|
70 |
+
@contextmanager
|
71 |
+
def evaluate(x):
|
72 |
+
""" Control automatic evaluation
|
73 |
+
|
74 |
+
Explanation
|
75 |
+
===========
|
76 |
+
|
77 |
+
This context manager controls whether or not all SymPy functions evaluate
|
78 |
+
by default.
|
79 |
+
|
80 |
+
Note that much of SymPy expects evaluated expressions. This functionality
|
81 |
+
is experimental and is unlikely to function as intended on large
|
82 |
+
expressions.
|
83 |
+
|
84 |
+
Examples
|
85 |
+
========
|
86 |
+
|
87 |
+
>>> from sympy import evaluate
|
88 |
+
>>> from sympy.abc import x
|
89 |
+
>>> print(x + x)
|
90 |
+
2*x
|
91 |
+
>>> with evaluate(False):
|
92 |
+
... print(x + x)
|
93 |
+
x + x
|
94 |
+
"""
|
95 |
+
|
96 |
+
old = global_parameters.evaluate
|
97 |
+
|
98 |
+
try:
|
99 |
+
global_parameters.evaluate = x
|
100 |
+
yield
|
101 |
+
finally:
|
102 |
+
global_parameters.evaluate = old
|
103 |
+
|
104 |
+
|
105 |
+
@contextmanager
|
106 |
+
def distribute(x):
|
107 |
+
""" Control automatic distribution of Number over Add
|
108 |
+
|
109 |
+
Explanation
|
110 |
+
===========
|
111 |
+
|
112 |
+
This context manager controls whether or not Mul distribute Number over
|
113 |
+
Add. Plan is to avoid distributing Number over Add in all of sympy. Once
|
114 |
+
that is done, this contextmanager will be removed.
|
115 |
+
|
116 |
+
Examples
|
117 |
+
========
|
118 |
+
|
119 |
+
>>> from sympy.abc import x
|
120 |
+
>>> from sympy.core.parameters import distribute
|
121 |
+
>>> print(2*(x + 1))
|
122 |
+
2*x + 2
|
123 |
+
>>> with distribute(False):
|
124 |
+
... print(2*(x + 1))
|
125 |
+
2*(x + 1)
|
126 |
+
"""
|
127 |
+
|
128 |
+
old = global_parameters.distribute
|
129 |
+
|
130 |
+
try:
|
131 |
+
global_parameters.distribute = x
|
132 |
+
yield
|
133 |
+
finally:
|
134 |
+
global_parameters.distribute = old
|
135 |
+
|
136 |
+
|
137 |
+
@contextmanager
|
138 |
+
def _exp_is_pow(x):
|
139 |
+
"""
|
140 |
+
Control whether `e^x` should be represented as ``exp(x)`` or a ``Pow(E, x)``.
|
141 |
+
|
142 |
+
Examples
|
143 |
+
========
|
144 |
+
|
145 |
+
>>> from sympy import exp
|
146 |
+
>>> from sympy.abc import x
|
147 |
+
>>> from sympy.core.parameters import _exp_is_pow
|
148 |
+
>>> with _exp_is_pow(True): print(type(exp(x)))
|
149 |
+
<class 'sympy.core.power.Pow'>
|
150 |
+
>>> with _exp_is_pow(False): print(type(exp(x)))
|
151 |
+
exp
|
152 |
+
"""
|
153 |
+
old = global_parameters.exp_is_pow
|
154 |
+
|
155 |
+
clear_cache()
|
156 |
+
try:
|
157 |
+
global_parameters.exp_is_pow = x
|
158 |
+
yield
|
159 |
+
finally:
|
160 |
+
clear_cache()
|
161 |
+
global_parameters.exp_is_pow = old
|
env-llmeval/lib/python3.10/site-packages/sympy/core/random.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
When you need to use random numbers in SymPy library code, import from here
|
3 |
+
so there is only one generator working for SymPy. Imports from here should
|
4 |
+
behave the same as if they were being imported from Python's random module.
|
5 |
+
But only the routines currently used in SymPy are included here. To use others
|
6 |
+
import ``rng`` and access the method directly. For example, to capture the
|
7 |
+
current state of the generator use ``rng.getstate()``.
|
8 |
+
|
9 |
+
There is intentionally no Random to import from here. If you want
|
10 |
+
to control the state of the generator, import ``seed`` and call it
|
11 |
+
with or without an argument to set the state.
|
12 |
+
|
13 |
+
Examples
|
14 |
+
========
|
15 |
+
|
16 |
+
>>> from sympy.core.random import random, seed
|
17 |
+
>>> assert random() < 1
|
18 |
+
>>> seed(1); a = random()
|
19 |
+
>>> b = random()
|
20 |
+
>>> seed(1); c = random()
|
21 |
+
>>> assert a == c
|
22 |
+
>>> assert a != b # remote possibility this will fail
|
23 |
+
|
24 |
+
"""
|
25 |
+
from sympy.utilities.iterables import is_sequence
|
26 |
+
from sympy.utilities.misc import as_int
|
27 |
+
|
28 |
+
import random as _random
|
29 |
+
rng = _random.Random()
|
30 |
+
|
31 |
+
choice = rng.choice
|
32 |
+
random = rng.random
|
33 |
+
randint = rng.randint
|
34 |
+
randrange = rng.randrange
|
35 |
+
sample = rng.sample
|
36 |
+
# seed = rng.seed
|
37 |
+
shuffle = rng.shuffle
|
38 |
+
uniform = rng.uniform
|
39 |
+
|
40 |
+
_assumptions_rng = _random.Random()
|
41 |
+
_assumptions_shuffle = _assumptions_rng.shuffle
|
42 |
+
|
43 |
+
|
44 |
+
def seed(a=None, version=2):
|
45 |
+
rng.seed(a=a, version=version)
|
46 |
+
_assumptions_rng.seed(a=a, version=version)
|
47 |
+
|
48 |
+
|
49 |
+
def random_complex_number(a=2, b=-1, c=3, d=1, rational=False, tolerance=None):
|
50 |
+
"""
|
51 |
+
Return a random complex number.
|
52 |
+
|
53 |
+
To reduce chance of hitting branch cuts or anything, we guarantee
|
54 |
+
b <= Im z <= d, a <= Re z <= c
|
55 |
+
|
56 |
+
When rational is True, a rational approximation to a random number
|
57 |
+
is obtained within specified tolerance, if any.
|
58 |
+
"""
|
59 |
+
from sympy.core.numbers import I
|
60 |
+
from sympy.simplify.simplify import nsimplify
|
61 |
+
A, B = uniform(a, c), uniform(b, d)
|
62 |
+
if not rational:
|
63 |
+
return A + I*B
|
64 |
+
return (nsimplify(A, rational=True, tolerance=tolerance) +
|
65 |
+
I*nsimplify(B, rational=True, tolerance=tolerance))
|
66 |
+
|
67 |
+
|
68 |
+
def verify_numerically(f, g, z=None, tol=1.0e-6, a=2, b=-1, c=3, d=1):
|
69 |
+
"""
|
70 |
+
Test numerically that f and g agree when evaluated in the argument z.
|
71 |
+
|
72 |
+
If z is None, all symbols will be tested. This routine does not test
|
73 |
+
whether there are Floats present with precision higher than 15 digits
|
74 |
+
so if there are, your results may not be what you expect due to round-
|
75 |
+
off errors.
|
76 |
+
|
77 |
+
Examples
|
78 |
+
========
|
79 |
+
|
80 |
+
>>> from sympy import sin, cos
|
81 |
+
>>> from sympy.abc import x
|
82 |
+
>>> from sympy.core.random import verify_numerically as tn
|
83 |
+
>>> tn(sin(x)**2 + cos(x)**2, 1, x)
|
84 |
+
True
|
85 |
+
"""
|
86 |
+
from sympy.core.symbol import Symbol
|
87 |
+
from sympy.core.sympify import sympify
|
88 |
+
from sympy.core.numbers import comp
|
89 |
+
f, g = (sympify(i) for i in (f, g))
|
90 |
+
if z is None:
|
91 |
+
z = f.free_symbols | g.free_symbols
|
92 |
+
elif isinstance(z, Symbol):
|
93 |
+
z = [z]
|
94 |
+
reps = list(zip(z, [random_complex_number(a, b, c, d) for _ in z]))
|
95 |
+
z1 = f.subs(reps).n()
|
96 |
+
z2 = g.subs(reps).n()
|
97 |
+
return comp(z1, z2, tol)
|
98 |
+
|
99 |
+
|
100 |
+
def test_derivative_numerically(f, z, tol=1.0e-6, a=2, b=-1, c=3, d=1):
|
101 |
+
"""
|
102 |
+
Test numerically that the symbolically computed derivative of f
|
103 |
+
with respect to z is correct.
|
104 |
+
|
105 |
+
This routine does not test whether there are Floats present with
|
106 |
+
precision higher than 15 digits so if there are, your results may
|
107 |
+
not be what you expect due to round-off errors.
|
108 |
+
|
109 |
+
Examples
|
110 |
+
========
|
111 |
+
|
112 |
+
>>> from sympy import sin
|
113 |
+
>>> from sympy.abc import x
|
114 |
+
>>> from sympy.core.random import test_derivative_numerically as td
|
115 |
+
>>> td(sin(x), x)
|
116 |
+
True
|
117 |
+
"""
|
118 |
+
from sympy.core.numbers import comp
|
119 |
+
from sympy.core.function import Derivative
|
120 |
+
z0 = random_complex_number(a, b, c, d)
|
121 |
+
f1 = f.diff(z).subs(z, z0)
|
122 |
+
f2 = Derivative(f, z).doit_numerically(z0)
|
123 |
+
return comp(f1.n(), f2.n(), tol)
|
124 |
+
|
125 |
+
|
126 |
+
def _randrange(seed=None):
|
127 |
+
"""Return a randrange generator.
|
128 |
+
|
129 |
+
``seed`` can be
|
130 |
+
|
131 |
+
* None - return randomly seeded generator
|
132 |
+
* int - return a generator seeded with the int
|
133 |
+
* list - the values to be returned will be taken from the list
|
134 |
+
in the order given; the provided list is not modified.
|
135 |
+
|
136 |
+
Examples
|
137 |
+
========
|
138 |
+
|
139 |
+
>>> from sympy.core.random import _randrange
|
140 |
+
>>> rr = _randrange()
|
141 |
+
>>> rr(1000) # doctest: +SKIP
|
142 |
+
999
|
143 |
+
>>> rr = _randrange(3)
|
144 |
+
>>> rr(1000) # doctest: +SKIP
|
145 |
+
238
|
146 |
+
>>> rr = _randrange([0, 5, 1, 3, 4])
|
147 |
+
>>> rr(3), rr(3)
|
148 |
+
(0, 1)
|
149 |
+
"""
|
150 |
+
if seed is None:
|
151 |
+
return randrange
|
152 |
+
elif isinstance(seed, int):
|
153 |
+
rng.seed(seed)
|
154 |
+
return randrange
|
155 |
+
elif is_sequence(seed):
|
156 |
+
seed = list(seed) # make a copy
|
157 |
+
seed.reverse()
|
158 |
+
|
159 |
+
def give(a, b=None, seq=seed):
|
160 |
+
if b is None:
|
161 |
+
a, b = 0, a
|
162 |
+
a, b = as_int(a), as_int(b)
|
163 |
+
w = b - a
|
164 |
+
if w < 1:
|
165 |
+
raise ValueError('_randrange got empty range')
|
166 |
+
try:
|
167 |
+
x = seq.pop()
|
168 |
+
except IndexError:
|
169 |
+
raise ValueError('_randrange sequence was too short')
|
170 |
+
if a <= x < b:
|
171 |
+
return x
|
172 |
+
else:
|
173 |
+
return give(a, b, seq)
|
174 |
+
return give
|
175 |
+
else:
|
176 |
+
raise ValueError('_randrange got an unexpected seed')
|
177 |
+
|
178 |
+
|
179 |
+
def _randint(seed=None):
|
180 |
+
"""Return a randint generator.
|
181 |
+
|
182 |
+
``seed`` can be
|
183 |
+
|
184 |
+
* None - return randomly seeded generator
|
185 |
+
* int - return a generator seeded with the int
|
186 |
+
* list - the values to be returned will be taken from the list
|
187 |
+
in the order given; the provided list is not modified.
|
188 |
+
|
189 |
+
Examples
|
190 |
+
========
|
191 |
+
|
192 |
+
>>> from sympy.core.random import _randint
|
193 |
+
>>> ri = _randint()
|
194 |
+
>>> ri(1, 1000) # doctest: +SKIP
|
195 |
+
999
|
196 |
+
>>> ri = _randint(3)
|
197 |
+
>>> ri(1, 1000) # doctest: +SKIP
|
198 |
+
238
|
199 |
+
>>> ri = _randint([0, 5, 1, 2, 4])
|
200 |
+
>>> ri(1, 3), ri(1, 3)
|
201 |
+
(1, 2)
|
202 |
+
"""
|
203 |
+
if seed is None:
|
204 |
+
return randint
|
205 |
+
elif isinstance(seed, int):
|
206 |
+
rng.seed(seed)
|
207 |
+
return randint
|
208 |
+
elif is_sequence(seed):
|
209 |
+
seed = list(seed) # make a copy
|
210 |
+
seed.reverse()
|
211 |
+
|
212 |
+
def give(a, b, seq=seed):
|
213 |
+
a, b = as_int(a), as_int(b)
|
214 |
+
w = b - a
|
215 |
+
if w < 0:
|
216 |
+
raise ValueError('_randint got empty range')
|
217 |
+
try:
|
218 |
+
x = seq.pop()
|
219 |
+
except IndexError:
|
220 |
+
raise ValueError('_randint sequence was too short')
|
221 |
+
if a <= x <= b:
|
222 |
+
return x
|
223 |
+
else:
|
224 |
+
return give(a, b, seq)
|
225 |
+
return give
|
226 |
+
else:
|
227 |
+
raise ValueError('_randint got an unexpected seed')
|
env-llmeval/lib/python3.10/site-packages/sympy/core/relational.py
ADDED
@@ -0,0 +1,1587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from .basic import Atom, Basic
|
4 |
+
from .sorting import ordered
|
5 |
+
from .evalf import EvalfMixin
|
6 |
+
from .function import AppliedUndef
|
7 |
+
from .singleton import S
|
8 |
+
from .sympify import _sympify, SympifyError
|
9 |
+
from .parameters import global_parameters
|
10 |
+
from .logic import fuzzy_bool, fuzzy_xor, fuzzy_and, fuzzy_not
|
11 |
+
from sympy.logic.boolalg import Boolean, BooleanAtom
|
12 |
+
from sympy.utilities.iterables import sift
|
13 |
+
from sympy.utilities.misc import filldedent
|
14 |
+
|
15 |
+
__all__ = (
|
16 |
+
'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge',
|
17 |
+
'Relational', 'Equality', 'Unequality', 'StrictLessThan', 'LessThan',
|
18 |
+
'StrictGreaterThan', 'GreaterThan',
|
19 |
+
)
|
20 |
+
|
21 |
+
from .expr import Expr
|
22 |
+
from sympy.multipledispatch import dispatch
|
23 |
+
from .containers import Tuple
|
24 |
+
from .symbol import Symbol
|
25 |
+
|
26 |
+
|
27 |
+
def _nontrivBool(side):
|
28 |
+
return isinstance(side, Boolean) and \
|
29 |
+
not isinstance(side, Atom)
|
30 |
+
|
31 |
+
|
32 |
+
# Note, see issue 4986. Ideally, we wouldn't want to subclass both Boolean
|
33 |
+
# and Expr.
|
34 |
+
# from .. import Expr
|
35 |
+
|
36 |
+
|
37 |
+
def _canonical(cond):
|
38 |
+
# return a condition in which all relationals are canonical
|
39 |
+
reps = {r: r.canonical for r in cond.atoms(Relational)}
|
40 |
+
return cond.xreplace(reps)
|
41 |
+
# XXX: AttributeError was being caught here but it wasn't triggered by any of
|
42 |
+
# the tests so I've removed it...
|
43 |
+
|
44 |
+
|
45 |
+
def _canonical_coeff(rel):
|
46 |
+
# return -2*x + 1 < 0 as x > 1/2
|
47 |
+
# XXX make this part of Relational.canonical?
|
48 |
+
rel = rel.canonical
|
49 |
+
if not rel.is_Relational or rel.rhs.is_Boolean:
|
50 |
+
return rel # Eq(x, True)
|
51 |
+
b, l = rel.lhs.as_coeff_Add(rational=True)
|
52 |
+
m, lhs = l.as_coeff_Mul(rational=True)
|
53 |
+
rhs = (rel.rhs - b)/m
|
54 |
+
if m < 0:
|
55 |
+
return rel.reversed.func(lhs, rhs)
|
56 |
+
return rel.func(lhs, rhs)
|
57 |
+
|
58 |
+
|
59 |
+
class Relational(Boolean, EvalfMixin):
|
60 |
+
"""Base class for all relation types.
|
61 |
+
|
62 |
+
Explanation
|
63 |
+
===========
|
64 |
+
|
65 |
+
Subclasses of Relational should generally be instantiated directly, but
|
66 |
+
Relational can be instantiated with a valid ``rop`` value to dispatch to
|
67 |
+
the appropriate subclass.
|
68 |
+
|
69 |
+
Parameters
|
70 |
+
==========
|
71 |
+
|
72 |
+
rop : str or None
|
73 |
+
Indicates what subclass to instantiate. Valid values can be found
|
74 |
+
in the keys of Relational.ValidRelationOperator.
|
75 |
+
|
76 |
+
Examples
|
77 |
+
========
|
78 |
+
|
79 |
+
>>> from sympy import Rel
|
80 |
+
>>> from sympy.abc import x, y
|
81 |
+
>>> Rel(y, x + x**2, '==')
|
82 |
+
Eq(y, x**2 + x)
|
83 |
+
|
84 |
+
A relation's type can be defined upon creation using ``rop``.
|
85 |
+
The relation type of an existing expression can be obtained
|
86 |
+
using its ``rel_op`` property.
|
87 |
+
Here is a table of all the relation types, along with their
|
88 |
+
``rop`` and ``rel_op`` values:
|
89 |
+
|
90 |
+
+---------------------+----------------------------+------------+
|
91 |
+
|Relation |``rop`` |``rel_op`` |
|
92 |
+
+=====================+============================+============+
|
93 |
+
|``Equality`` |``==`` or ``eq`` or ``None``|``==`` |
|
94 |
+
+---------------------+----------------------------+------------+
|
95 |
+
|``Unequality`` |``!=`` or ``ne`` |``!=`` |
|
96 |
+
+---------------------+----------------------------+------------+
|
97 |
+
|``GreaterThan`` |``>=`` or ``ge`` |``>=`` |
|
98 |
+
+---------------------+----------------------------+------------+
|
99 |
+
|``LessThan`` |``<=`` or ``le`` |``<=`` |
|
100 |
+
+---------------------+----------------------------+------------+
|
101 |
+
|``StrictGreaterThan``|``>`` or ``gt`` |``>`` |
|
102 |
+
+---------------------+----------------------------+------------+
|
103 |
+
|``StrictLessThan`` |``<`` or ``lt`` |``<`` |
|
104 |
+
+---------------------+----------------------------+------------+
|
105 |
+
|
106 |
+
For example, setting ``rop`` to ``==`` produces an
|
107 |
+
``Equality`` relation, ``Eq()``.
|
108 |
+
So does setting ``rop`` to ``eq``, or leaving ``rop`` unspecified.
|
109 |
+
That is, the first three ``Rel()`` below all produce the same result.
|
110 |
+
Using a ``rop`` from a different row in the table produces a
|
111 |
+
different relation type.
|
112 |
+
For example, the fourth ``Rel()`` below using ``lt`` for ``rop``
|
113 |
+
produces a ``StrictLessThan`` inequality:
|
114 |
+
|
115 |
+
>>> from sympy import Rel
|
116 |
+
>>> from sympy.abc import x, y
|
117 |
+
>>> Rel(y, x + x**2, '==')
|
118 |
+
Eq(y, x**2 + x)
|
119 |
+
>>> Rel(y, x + x**2, 'eq')
|
120 |
+
Eq(y, x**2 + x)
|
121 |
+
>>> Rel(y, x + x**2)
|
122 |
+
Eq(y, x**2 + x)
|
123 |
+
>>> Rel(y, x + x**2, 'lt')
|
124 |
+
y < x**2 + x
|
125 |
+
|
126 |
+
To obtain the relation type of an existing expression,
|
127 |
+
get its ``rel_op`` property.
|
128 |
+
For example, ``rel_op`` is ``==`` for the ``Equality`` relation above,
|
129 |
+
and ``<`` for the strict less than inequality above:
|
130 |
+
|
131 |
+
>>> from sympy import Rel
|
132 |
+
>>> from sympy.abc import x, y
|
133 |
+
>>> my_equality = Rel(y, x + x**2, '==')
|
134 |
+
>>> my_equality.rel_op
|
135 |
+
'=='
|
136 |
+
>>> my_inequality = Rel(y, x + x**2, 'lt')
|
137 |
+
>>> my_inequality.rel_op
|
138 |
+
'<'
|
139 |
+
|
140 |
+
"""
|
141 |
+
__slots__ = ()
|
142 |
+
|
143 |
+
ValidRelationOperator: dict[str | None, type[Relational]] = {}
|
144 |
+
|
145 |
+
is_Relational = True
|
146 |
+
|
147 |
+
# ValidRelationOperator - Defined below, because the necessary classes
|
148 |
+
# have not yet been defined
|
149 |
+
|
150 |
+
def __new__(cls, lhs, rhs, rop=None, **assumptions):
|
151 |
+
# If called by a subclass, do nothing special and pass on to Basic.
|
152 |
+
if cls is not Relational:
|
153 |
+
return Basic.__new__(cls, lhs, rhs, **assumptions)
|
154 |
+
|
155 |
+
# XXX: Why do this? There should be a separate function to make a
|
156 |
+
# particular subclass of Relational from a string.
|
157 |
+
#
|
158 |
+
# If called directly with an operator, look up the subclass
|
159 |
+
# corresponding to that operator and delegate to it
|
160 |
+
cls = cls.ValidRelationOperator.get(rop, None)
|
161 |
+
if cls is None:
|
162 |
+
raise ValueError("Invalid relational operator symbol: %r" % rop)
|
163 |
+
|
164 |
+
if not issubclass(cls, (Eq, Ne)):
|
165 |
+
# validate that Booleans are not being used in a relational
|
166 |
+
# other than Eq/Ne;
|
167 |
+
# Note: Symbol is a subclass of Boolean but is considered
|
168 |
+
# acceptable here.
|
169 |
+
if any(map(_nontrivBool, (lhs, rhs))):
|
170 |
+
raise TypeError(filldedent('''
|
171 |
+
A Boolean argument can only be used in
|
172 |
+
Eq and Ne; all other relationals expect
|
173 |
+
real expressions.
|
174 |
+
'''))
|
175 |
+
|
176 |
+
return cls(lhs, rhs, **assumptions)
|
177 |
+
|
178 |
+
@property
|
179 |
+
def lhs(self):
|
180 |
+
"""The left-hand side of the relation."""
|
181 |
+
return self._args[0]
|
182 |
+
|
183 |
+
@property
|
184 |
+
def rhs(self):
|
185 |
+
"""The right-hand side of the relation."""
|
186 |
+
return self._args[1]
|
187 |
+
|
188 |
+
@property
|
189 |
+
def reversed(self):
|
190 |
+
"""Return the relationship with sides reversed.
|
191 |
+
|
192 |
+
Examples
|
193 |
+
========
|
194 |
+
|
195 |
+
>>> from sympy import Eq
|
196 |
+
>>> from sympy.abc import x
|
197 |
+
>>> Eq(x, 1)
|
198 |
+
Eq(x, 1)
|
199 |
+
>>> _.reversed
|
200 |
+
Eq(1, x)
|
201 |
+
>>> x < 1
|
202 |
+
x < 1
|
203 |
+
>>> _.reversed
|
204 |
+
1 > x
|
205 |
+
"""
|
206 |
+
ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
|
207 |
+
a, b = self.args
|
208 |
+
return Relational.__new__(ops.get(self.func, self.func), b, a)
|
209 |
+
|
210 |
+
@property
|
211 |
+
def reversedsign(self):
|
212 |
+
"""Return the relationship with signs reversed.
|
213 |
+
|
214 |
+
Examples
|
215 |
+
========
|
216 |
+
|
217 |
+
>>> from sympy import Eq
|
218 |
+
>>> from sympy.abc import x
|
219 |
+
>>> Eq(x, 1)
|
220 |
+
Eq(x, 1)
|
221 |
+
>>> _.reversedsign
|
222 |
+
Eq(-x, -1)
|
223 |
+
>>> x < 1
|
224 |
+
x < 1
|
225 |
+
>>> _.reversedsign
|
226 |
+
-x > -1
|
227 |
+
"""
|
228 |
+
a, b = self.args
|
229 |
+
if not (isinstance(a, BooleanAtom) or isinstance(b, BooleanAtom)):
|
230 |
+
ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
|
231 |
+
return Relational.__new__(ops.get(self.func, self.func), -a, -b)
|
232 |
+
else:
|
233 |
+
return self
|
234 |
+
|
235 |
+
@property
|
236 |
+
def negated(self):
|
237 |
+
"""Return the negated relationship.
|
238 |
+
|
239 |
+
Examples
|
240 |
+
========
|
241 |
+
|
242 |
+
>>> from sympy import Eq
|
243 |
+
>>> from sympy.abc import x
|
244 |
+
>>> Eq(x, 1)
|
245 |
+
Eq(x, 1)
|
246 |
+
>>> _.negated
|
247 |
+
Ne(x, 1)
|
248 |
+
>>> x < 1
|
249 |
+
x < 1
|
250 |
+
>>> _.negated
|
251 |
+
x >= 1
|
252 |
+
|
253 |
+
Notes
|
254 |
+
=====
|
255 |
+
|
256 |
+
This works more or less identical to ``~``/``Not``. The difference is
|
257 |
+
that ``negated`` returns the relationship even if ``evaluate=False``.
|
258 |
+
Hence, this is useful in code when checking for e.g. negated relations
|
259 |
+
to existing ones as it will not be affected by the `evaluate` flag.
|
260 |
+
|
261 |
+
"""
|
262 |
+
ops = {Eq: Ne, Ge: Lt, Gt: Le, Le: Gt, Lt: Ge, Ne: Eq}
|
263 |
+
# If there ever will be new Relational subclasses, the following line
|
264 |
+
# will work until it is properly sorted out
|
265 |
+
# return ops.get(self.func, lambda a, b, evaluate=False: ~(self.func(a,
|
266 |
+
# b, evaluate=evaluate)))(*self.args, evaluate=False)
|
267 |
+
return Relational.__new__(ops.get(self.func), *self.args)
|
268 |
+
|
269 |
+
@property
|
270 |
+
def weak(self):
|
271 |
+
"""return the non-strict version of the inequality or self
|
272 |
+
|
273 |
+
EXAMPLES
|
274 |
+
========
|
275 |
+
|
276 |
+
>>> from sympy.abc import x
|
277 |
+
>>> (x < 1).weak
|
278 |
+
x <= 1
|
279 |
+
>>> _.weak
|
280 |
+
x <= 1
|
281 |
+
"""
|
282 |
+
return self
|
283 |
+
|
284 |
+
@property
|
285 |
+
def strict(self):
|
286 |
+
"""return the strict version of the inequality or self
|
287 |
+
|
288 |
+
EXAMPLES
|
289 |
+
========
|
290 |
+
|
291 |
+
>>> from sympy.abc import x
|
292 |
+
>>> (x <= 1).strict
|
293 |
+
x < 1
|
294 |
+
>>> _.strict
|
295 |
+
x < 1
|
296 |
+
"""
|
297 |
+
return self
|
298 |
+
|
299 |
+
def _eval_evalf(self, prec):
|
300 |
+
return self.func(*[s._evalf(prec) for s in self.args])
|
301 |
+
|
302 |
+
@property
|
303 |
+
def canonical(self):
|
304 |
+
"""Return a canonical form of the relational by putting a
|
305 |
+
number on the rhs, canonically removing a sign or else
|
306 |
+
ordering the args canonically. No other simplification is
|
307 |
+
attempted.
|
308 |
+
|
309 |
+
Examples
|
310 |
+
========
|
311 |
+
|
312 |
+
>>> from sympy.abc import x, y
|
313 |
+
>>> x < 2
|
314 |
+
x < 2
|
315 |
+
>>> _.reversed.canonical
|
316 |
+
x < 2
|
317 |
+
>>> (-y < x).canonical
|
318 |
+
x > -y
|
319 |
+
>>> (-y > x).canonical
|
320 |
+
x < -y
|
321 |
+
>>> (-y < -x).canonical
|
322 |
+
x < y
|
323 |
+
|
324 |
+
The canonicalization is recursively applied:
|
325 |
+
|
326 |
+
>>> from sympy import Eq
|
327 |
+
>>> Eq(x < y, y > x).canonical
|
328 |
+
True
|
329 |
+
"""
|
330 |
+
args = tuple([i.canonical if isinstance(i, Relational) else i for i in self.args])
|
331 |
+
if args != self.args:
|
332 |
+
r = self.func(*args)
|
333 |
+
if not isinstance(r, Relational):
|
334 |
+
return r
|
335 |
+
else:
|
336 |
+
r = self
|
337 |
+
if r.rhs.is_number:
|
338 |
+
if r.rhs.is_Number and r.lhs.is_Number and r.lhs > r.rhs:
|
339 |
+
r = r.reversed
|
340 |
+
elif r.lhs.is_number:
|
341 |
+
r = r.reversed
|
342 |
+
elif tuple(ordered(args)) != args:
|
343 |
+
r = r.reversed
|
344 |
+
|
345 |
+
LHS_CEMS = getattr(r.lhs, 'could_extract_minus_sign', None)
|
346 |
+
RHS_CEMS = getattr(r.rhs, 'could_extract_minus_sign', None)
|
347 |
+
|
348 |
+
if isinstance(r.lhs, BooleanAtom) or isinstance(r.rhs, BooleanAtom):
|
349 |
+
return r
|
350 |
+
|
351 |
+
# Check if first value has negative sign
|
352 |
+
if LHS_CEMS and LHS_CEMS():
|
353 |
+
return r.reversedsign
|
354 |
+
elif not r.rhs.is_number and RHS_CEMS and RHS_CEMS():
|
355 |
+
# Right hand side has a minus, but not lhs.
|
356 |
+
# How does the expression with reversed signs behave?
|
357 |
+
# This is so that expressions of the type
|
358 |
+
# Eq(x, -y) and Eq(-x, y)
|
359 |
+
# have the same canonical representation
|
360 |
+
expr1, _ = ordered([r.lhs, -r.rhs])
|
361 |
+
if expr1 != r.lhs:
|
362 |
+
return r.reversed.reversedsign
|
363 |
+
|
364 |
+
return r
|
365 |
+
|
366 |
+
def equals(self, other, failing_expression=False):
|
367 |
+
"""Return True if the sides of the relationship are mathematically
|
368 |
+
identical and the type of relationship is the same.
|
369 |
+
If failing_expression is True, return the expression whose truth value
|
370 |
+
was unknown."""
|
371 |
+
if isinstance(other, Relational):
|
372 |
+
if other in (self, self.reversed):
|
373 |
+
return True
|
374 |
+
a, b = self, other
|
375 |
+
if a.func in (Eq, Ne) or b.func in (Eq, Ne):
|
376 |
+
if a.func != b.func:
|
377 |
+
return False
|
378 |
+
left, right = [i.equals(j,
|
379 |
+
failing_expression=failing_expression)
|
380 |
+
for i, j in zip(a.args, b.args)]
|
381 |
+
if left is True:
|
382 |
+
return right
|
383 |
+
if right is True:
|
384 |
+
return left
|
385 |
+
lr, rl = [i.equals(j, failing_expression=failing_expression)
|
386 |
+
for i, j in zip(a.args, b.reversed.args)]
|
387 |
+
if lr is True:
|
388 |
+
return rl
|
389 |
+
if rl is True:
|
390 |
+
return lr
|
391 |
+
e = (left, right, lr, rl)
|
392 |
+
if all(i is False for i in e):
|
393 |
+
return False
|
394 |
+
for i in e:
|
395 |
+
if i not in (True, False):
|
396 |
+
return i
|
397 |
+
else:
|
398 |
+
if b.func != a.func:
|
399 |
+
b = b.reversed
|
400 |
+
if a.func != b.func:
|
401 |
+
return False
|
402 |
+
left = a.lhs.equals(b.lhs,
|
403 |
+
failing_expression=failing_expression)
|
404 |
+
if left is False:
|
405 |
+
return False
|
406 |
+
right = a.rhs.equals(b.rhs,
|
407 |
+
failing_expression=failing_expression)
|
408 |
+
if right is False:
|
409 |
+
return False
|
410 |
+
if left is True:
|
411 |
+
return right
|
412 |
+
return left
|
413 |
+
|
414 |
+
def _eval_simplify(self, **kwargs):
|
415 |
+
from .add import Add
|
416 |
+
from .expr import Expr
|
417 |
+
r = self
|
418 |
+
r = r.func(*[i.simplify(**kwargs) for i in r.args])
|
419 |
+
if r.is_Relational:
|
420 |
+
if not isinstance(r.lhs, Expr) or not isinstance(r.rhs, Expr):
|
421 |
+
return r
|
422 |
+
dif = r.lhs - r.rhs
|
423 |
+
# replace dif with a valid Number that will
|
424 |
+
# allow a definitive comparison with 0
|
425 |
+
v = None
|
426 |
+
if dif.is_comparable:
|
427 |
+
v = dif.n(2)
|
428 |
+
elif dif.equals(0): # XXX this is expensive
|
429 |
+
v = S.Zero
|
430 |
+
if v is not None:
|
431 |
+
r = r.func._eval_relation(v, S.Zero)
|
432 |
+
r = r.canonical
|
433 |
+
# If there is only one symbol in the expression,
|
434 |
+
# try to write it on a simplified form
|
435 |
+
free = list(filter(lambda x: x.is_real is not False, r.free_symbols))
|
436 |
+
if len(free) == 1:
|
437 |
+
try:
|
438 |
+
from sympy.solvers.solveset import linear_coeffs
|
439 |
+
x = free.pop()
|
440 |
+
dif = r.lhs - r.rhs
|
441 |
+
m, b = linear_coeffs(dif, x)
|
442 |
+
if m.is_zero is False:
|
443 |
+
if m.is_negative:
|
444 |
+
# Dividing with a negative number, so change order of arguments
|
445 |
+
# canonical will put the symbol back on the lhs later
|
446 |
+
r = r.func(-b / m, x)
|
447 |
+
else:
|
448 |
+
r = r.func(x, -b / m)
|
449 |
+
else:
|
450 |
+
r = r.func(b, S.Zero)
|
451 |
+
except ValueError:
|
452 |
+
# maybe not a linear function, try polynomial
|
453 |
+
from sympy.polys.polyerrors import PolynomialError
|
454 |
+
from sympy.polys.polytools import gcd, Poly, poly
|
455 |
+
try:
|
456 |
+
p = poly(dif, x)
|
457 |
+
c = p.all_coeffs()
|
458 |
+
constant = c[-1]
|
459 |
+
c[-1] = 0
|
460 |
+
scale = gcd(c)
|
461 |
+
c = [ctmp / scale for ctmp in c]
|
462 |
+
r = r.func(Poly.from_list(c, x).as_expr(), -constant / scale)
|
463 |
+
except PolynomialError:
|
464 |
+
pass
|
465 |
+
elif len(free) >= 2:
|
466 |
+
try:
|
467 |
+
from sympy.solvers.solveset import linear_coeffs
|
468 |
+
from sympy.polys.polytools import gcd
|
469 |
+
free = list(ordered(free))
|
470 |
+
dif = r.lhs - r.rhs
|
471 |
+
m = linear_coeffs(dif, *free)
|
472 |
+
constant = m[-1]
|
473 |
+
del m[-1]
|
474 |
+
scale = gcd(m)
|
475 |
+
m = [mtmp / scale for mtmp in m]
|
476 |
+
nzm = list(filter(lambda f: f[0] != 0, list(zip(m, free))))
|
477 |
+
if scale.is_zero is False:
|
478 |
+
if constant != 0:
|
479 |
+
# lhs: expression, rhs: constant
|
480 |
+
newexpr = Add(*[i * j for i, j in nzm])
|
481 |
+
r = r.func(newexpr, -constant / scale)
|
482 |
+
else:
|
483 |
+
# keep first term on lhs
|
484 |
+
lhsterm = nzm[0][0] * nzm[0][1]
|
485 |
+
del nzm[0]
|
486 |
+
newexpr = Add(*[i * j for i, j in nzm])
|
487 |
+
r = r.func(lhsterm, -newexpr)
|
488 |
+
|
489 |
+
else:
|
490 |
+
r = r.func(constant, S.Zero)
|
491 |
+
except ValueError:
|
492 |
+
pass
|
493 |
+
# Did we get a simplified result?
|
494 |
+
r = r.canonical
|
495 |
+
measure = kwargs['measure']
|
496 |
+
if measure(r) < kwargs['ratio'] * measure(self):
|
497 |
+
return r
|
498 |
+
else:
|
499 |
+
return self
|
500 |
+
|
501 |
+
def _eval_trigsimp(self, **opts):
|
502 |
+
from sympy.simplify.trigsimp import trigsimp
|
503 |
+
return self.func(trigsimp(self.lhs, **opts), trigsimp(self.rhs, **opts))
|
504 |
+
|
505 |
+
def expand(self, **kwargs):
|
506 |
+
args = (arg.expand(**kwargs) for arg in self.args)
|
507 |
+
return self.func(*args)
|
508 |
+
|
509 |
+
def __bool__(self):
|
510 |
+
raise TypeError("cannot determine truth value of Relational")
|
511 |
+
|
512 |
+
def _eval_as_set(self):
|
513 |
+
# self is univariate and periodicity(self, x) in (0, None)
|
514 |
+
from sympy.solvers.inequalities import solve_univariate_inequality
|
515 |
+
from sympy.sets.conditionset import ConditionSet
|
516 |
+
syms = self.free_symbols
|
517 |
+
assert len(syms) == 1
|
518 |
+
x = syms.pop()
|
519 |
+
try:
|
520 |
+
xset = solve_univariate_inequality(self, x, relational=False)
|
521 |
+
except NotImplementedError:
|
522 |
+
# solve_univariate_inequality raises NotImplementedError for
|
523 |
+
# unsolvable equations/inequalities.
|
524 |
+
xset = ConditionSet(x, self, S.Reals)
|
525 |
+
return xset
|
526 |
+
|
527 |
+
@property
|
528 |
+
def binary_symbols(self):
|
529 |
+
# override where necessary
|
530 |
+
return set()
|
531 |
+
|
532 |
+
|
533 |
+
Rel = Relational
|
534 |
+
|
535 |
+
|
536 |
+
class Equality(Relational):
|
537 |
+
"""
|
538 |
+
An equal relation between two objects.
|
539 |
+
|
540 |
+
Explanation
|
541 |
+
===========
|
542 |
+
|
543 |
+
Represents that two objects are equal. If they can be easily shown
|
544 |
+
to be definitively equal (or unequal), this will reduce to True (or
|
545 |
+
False). Otherwise, the relation is maintained as an unevaluated
|
546 |
+
Equality object. Use the ``simplify`` function on this object for
|
547 |
+
more nontrivial evaluation of the equality relation.
|
548 |
+
|
549 |
+
As usual, the keyword argument ``evaluate=False`` can be used to
|
550 |
+
prevent any evaluation.
|
551 |
+
|
552 |
+
Examples
|
553 |
+
========
|
554 |
+
|
555 |
+
>>> from sympy import Eq, simplify, exp, cos
|
556 |
+
>>> from sympy.abc import x, y
|
557 |
+
>>> Eq(y, x + x**2)
|
558 |
+
Eq(y, x**2 + x)
|
559 |
+
>>> Eq(2, 5)
|
560 |
+
False
|
561 |
+
>>> Eq(2, 5, evaluate=False)
|
562 |
+
Eq(2, 5)
|
563 |
+
>>> _.doit()
|
564 |
+
False
|
565 |
+
>>> Eq(exp(x), exp(x).rewrite(cos))
|
566 |
+
Eq(exp(x), sinh(x) + cosh(x))
|
567 |
+
>>> simplify(_)
|
568 |
+
True
|
569 |
+
|
570 |
+
See Also
|
571 |
+
========
|
572 |
+
|
573 |
+
sympy.logic.boolalg.Equivalent : for representing equality between two
|
574 |
+
boolean expressions
|
575 |
+
|
576 |
+
Notes
|
577 |
+
=====
|
578 |
+
|
579 |
+
Python treats 1 and True (and 0 and False) as being equal; SymPy
|
580 |
+
does not. And integer will always compare as unequal to a Boolean:
|
581 |
+
|
582 |
+
>>> Eq(True, 1), True == 1
|
583 |
+
(False, True)
|
584 |
+
|
585 |
+
This class is not the same as the == operator. The == operator tests
|
586 |
+
for exact structural equality between two expressions; this class
|
587 |
+
compares expressions mathematically.
|
588 |
+
|
589 |
+
If either object defines an ``_eval_Eq`` method, it can be used in place of
|
590 |
+
the default algorithm. If ``lhs._eval_Eq(rhs)`` or ``rhs._eval_Eq(lhs)``
|
591 |
+
returns anything other than None, that return value will be substituted for
|
592 |
+
the Equality. If None is returned by ``_eval_Eq``, an Equality object will
|
593 |
+
be created as usual.
|
594 |
+
|
595 |
+
Since this object is already an expression, it does not respond to
|
596 |
+
the method ``as_expr`` if one tries to create `x - y` from ``Eq(x, y)``.
|
597 |
+
This can be done with the ``rewrite(Add)`` method.
|
598 |
+
|
599 |
+
.. deprecated:: 1.5
|
600 |
+
|
601 |
+
``Eq(expr)`` with a single argument is a shorthand for ``Eq(expr, 0)``,
|
602 |
+
but this behavior is deprecated and will be removed in a future version
|
603 |
+
of SymPy.
|
604 |
+
|
605 |
+
"""
|
606 |
+
rel_op = '=='
|
607 |
+
|
608 |
+
__slots__ = ()
|
609 |
+
|
610 |
+
is_Equality = True
|
611 |
+
|
612 |
+
def __new__(cls, lhs, rhs, **options):
|
613 |
+
evaluate = options.pop('evaluate', global_parameters.evaluate)
|
614 |
+
lhs = _sympify(lhs)
|
615 |
+
rhs = _sympify(rhs)
|
616 |
+
if evaluate:
|
617 |
+
val = is_eq(lhs, rhs)
|
618 |
+
if val is None:
|
619 |
+
return cls(lhs, rhs, evaluate=False)
|
620 |
+
else:
|
621 |
+
return _sympify(val)
|
622 |
+
|
623 |
+
return Relational.__new__(cls, lhs, rhs)
|
624 |
+
|
625 |
+
@classmethod
|
626 |
+
def _eval_relation(cls, lhs, rhs):
|
627 |
+
return _sympify(lhs == rhs)
|
628 |
+
|
629 |
+
def _eval_rewrite_as_Add(self, *args, **kwargs):
|
630 |
+
"""
|
631 |
+
return Eq(L, R) as L - R. To control the evaluation of
|
632 |
+
the result set pass `evaluate=True` to give L - R;
|
633 |
+
if `evaluate=None` then terms in L and R will not cancel
|
634 |
+
but they will be listed in canonical order; otherwise
|
635 |
+
non-canonical args will be returned. If one side is 0, the
|
636 |
+
non-zero side will be returned.
|
637 |
+
|
638 |
+
Examples
|
639 |
+
========
|
640 |
+
|
641 |
+
>>> from sympy import Eq, Add
|
642 |
+
>>> from sympy.abc import b, x
|
643 |
+
>>> eq = Eq(x + b, x - b)
|
644 |
+
>>> eq.rewrite(Add)
|
645 |
+
2*b
|
646 |
+
>>> eq.rewrite(Add, evaluate=None).args
|
647 |
+
(b, b, x, -x)
|
648 |
+
>>> eq.rewrite(Add, evaluate=False).args
|
649 |
+
(b, x, b, -x)
|
650 |
+
"""
|
651 |
+
from .add import _unevaluated_Add, Add
|
652 |
+
L, R = args
|
653 |
+
if L == 0:
|
654 |
+
return R
|
655 |
+
if R == 0:
|
656 |
+
return L
|
657 |
+
evaluate = kwargs.get('evaluate', True)
|
658 |
+
if evaluate:
|
659 |
+
# allow cancellation of args
|
660 |
+
return L - R
|
661 |
+
args = Add.make_args(L) + Add.make_args(-R)
|
662 |
+
if evaluate is None:
|
663 |
+
# no cancellation, but canonical
|
664 |
+
return _unevaluated_Add(*args)
|
665 |
+
# no cancellation, not canonical
|
666 |
+
return Add._from_args(args)
|
667 |
+
|
668 |
+
@property
|
669 |
+
def binary_symbols(self):
|
670 |
+
if S.true in self.args or S.false in self.args:
|
671 |
+
if self.lhs.is_Symbol:
|
672 |
+
return {self.lhs}
|
673 |
+
elif self.rhs.is_Symbol:
|
674 |
+
return {self.rhs}
|
675 |
+
return set()
|
676 |
+
|
677 |
+
def _eval_simplify(self, **kwargs):
|
678 |
+
# standard simplify
|
679 |
+
e = super()._eval_simplify(**kwargs)
|
680 |
+
if not isinstance(e, Equality):
|
681 |
+
return e
|
682 |
+
from .expr import Expr
|
683 |
+
if not isinstance(e.lhs, Expr) or not isinstance(e.rhs, Expr):
|
684 |
+
return e
|
685 |
+
free = self.free_symbols
|
686 |
+
if len(free) == 1:
|
687 |
+
try:
|
688 |
+
from .add import Add
|
689 |
+
from sympy.solvers.solveset import linear_coeffs
|
690 |
+
x = free.pop()
|
691 |
+
m, b = linear_coeffs(
|
692 |
+
e.rewrite(Add, evaluate=False), x)
|
693 |
+
if m.is_zero is False:
|
694 |
+
enew = e.func(x, -b / m)
|
695 |
+
else:
|
696 |
+
enew = e.func(m * x, -b)
|
697 |
+
measure = kwargs['measure']
|
698 |
+
if measure(enew) <= kwargs['ratio'] * measure(e):
|
699 |
+
e = enew
|
700 |
+
except ValueError:
|
701 |
+
pass
|
702 |
+
return e.canonical
|
703 |
+
|
704 |
+
def integrate(self, *args, **kwargs):
|
705 |
+
"""See the integrate function in sympy.integrals"""
|
706 |
+
from sympy.integrals.integrals import integrate
|
707 |
+
return integrate(self, *args, **kwargs)
|
708 |
+
|
709 |
+
def as_poly(self, *gens, **kwargs):
|
710 |
+
'''Returns lhs-rhs as a Poly
|
711 |
+
|
712 |
+
Examples
|
713 |
+
========
|
714 |
+
|
715 |
+
>>> from sympy import Eq
|
716 |
+
>>> from sympy.abc import x
|
717 |
+
>>> Eq(x**2, 1).as_poly(x)
|
718 |
+
Poly(x**2 - 1, x, domain='ZZ')
|
719 |
+
'''
|
720 |
+
return (self.lhs - self.rhs).as_poly(*gens, **kwargs)
|
721 |
+
|
722 |
+
|
723 |
+
Eq = Equality
|
724 |
+
|
725 |
+
|
726 |
+
class Unequality(Relational):
|
727 |
+
"""An unequal relation between two objects.
|
728 |
+
|
729 |
+
Explanation
|
730 |
+
===========
|
731 |
+
|
732 |
+
Represents that two objects are not equal. If they can be shown to be
|
733 |
+
definitively equal, this will reduce to False; if definitively unequal,
|
734 |
+
this will reduce to True. Otherwise, the relation is maintained as an
|
735 |
+
Unequality object.
|
736 |
+
|
737 |
+
Examples
|
738 |
+
========
|
739 |
+
|
740 |
+
>>> from sympy import Ne
|
741 |
+
>>> from sympy.abc import x, y
|
742 |
+
>>> Ne(y, x+x**2)
|
743 |
+
Ne(y, x**2 + x)
|
744 |
+
|
745 |
+
See Also
|
746 |
+
========
|
747 |
+
Equality
|
748 |
+
|
749 |
+
Notes
|
750 |
+
=====
|
751 |
+
This class is not the same as the != operator. The != operator tests
|
752 |
+
for exact structural equality between two expressions; this class
|
753 |
+
compares expressions mathematically.
|
754 |
+
|
755 |
+
This class is effectively the inverse of Equality. As such, it uses the
|
756 |
+
same algorithms, including any available `_eval_Eq` methods.
|
757 |
+
|
758 |
+
"""
|
759 |
+
rel_op = '!='
|
760 |
+
|
761 |
+
__slots__ = ()
|
762 |
+
|
763 |
+
def __new__(cls, lhs, rhs, **options):
|
764 |
+
lhs = _sympify(lhs)
|
765 |
+
rhs = _sympify(rhs)
|
766 |
+
evaluate = options.pop('evaluate', global_parameters.evaluate)
|
767 |
+
if evaluate:
|
768 |
+
val = is_neq(lhs, rhs)
|
769 |
+
if val is None:
|
770 |
+
return cls(lhs, rhs, evaluate=False)
|
771 |
+
else:
|
772 |
+
return _sympify(val)
|
773 |
+
|
774 |
+
return Relational.__new__(cls, lhs, rhs, **options)
|
775 |
+
|
776 |
+
@classmethod
|
777 |
+
def _eval_relation(cls, lhs, rhs):
|
778 |
+
return _sympify(lhs != rhs)
|
779 |
+
|
780 |
+
@property
|
781 |
+
def binary_symbols(self):
|
782 |
+
if S.true in self.args or S.false in self.args:
|
783 |
+
if self.lhs.is_Symbol:
|
784 |
+
return {self.lhs}
|
785 |
+
elif self.rhs.is_Symbol:
|
786 |
+
return {self.rhs}
|
787 |
+
return set()
|
788 |
+
|
789 |
+
def _eval_simplify(self, **kwargs):
|
790 |
+
# simplify as an equality
|
791 |
+
eq = Equality(*self.args)._eval_simplify(**kwargs)
|
792 |
+
if isinstance(eq, Equality):
|
793 |
+
# send back Ne with the new args
|
794 |
+
return self.func(*eq.args)
|
795 |
+
return eq.negated # result of Ne is the negated Eq
|
796 |
+
|
797 |
+
|
798 |
+
Ne = Unequality
|
799 |
+
|
800 |
+
|
801 |
+
class _Inequality(Relational):
|
802 |
+
"""Internal base class for all *Than types.
|
803 |
+
|
804 |
+
Each subclass must implement _eval_relation to provide the method for
|
805 |
+
comparing two real numbers.
|
806 |
+
|
807 |
+
"""
|
808 |
+
__slots__ = ()
|
809 |
+
|
810 |
+
def __new__(cls, lhs, rhs, **options):
|
811 |
+
|
812 |
+
try:
|
813 |
+
lhs = _sympify(lhs)
|
814 |
+
rhs = _sympify(rhs)
|
815 |
+
except SympifyError:
|
816 |
+
return NotImplemented
|
817 |
+
|
818 |
+
evaluate = options.pop('evaluate', global_parameters.evaluate)
|
819 |
+
if evaluate:
|
820 |
+
for me in (lhs, rhs):
|
821 |
+
if me.is_extended_real is False:
|
822 |
+
raise TypeError("Invalid comparison of non-real %s" % me)
|
823 |
+
if me is S.NaN:
|
824 |
+
raise TypeError("Invalid NaN comparison")
|
825 |
+
# First we invoke the appropriate inequality method of `lhs`
|
826 |
+
# (e.g., `lhs.__lt__`). That method will try to reduce to
|
827 |
+
# boolean or raise an exception. It may keep calling
|
828 |
+
# superclasses until it reaches `Expr` (e.g., `Expr.__lt__`).
|
829 |
+
# In some cases, `Expr` will just invoke us again (if neither it
|
830 |
+
# nor a subclass was able to reduce to boolean or raise an
|
831 |
+
# exception). In that case, it must call us with
|
832 |
+
# `evaluate=False` to prevent infinite recursion.
|
833 |
+
return cls._eval_relation(lhs, rhs, **options)
|
834 |
+
|
835 |
+
# make a "non-evaluated" Expr for the inequality
|
836 |
+
return Relational.__new__(cls, lhs, rhs, **options)
|
837 |
+
|
838 |
+
@classmethod
|
839 |
+
def _eval_relation(cls, lhs, rhs, **options):
|
840 |
+
val = cls._eval_fuzzy_relation(lhs, rhs)
|
841 |
+
if val is None:
|
842 |
+
return cls(lhs, rhs, evaluate=False)
|
843 |
+
else:
|
844 |
+
return _sympify(val)
|
845 |
+
|
846 |
+
|
847 |
+
class _Greater(_Inequality):
|
848 |
+
"""Not intended for general use
|
849 |
+
|
850 |
+
_Greater is only used so that GreaterThan and StrictGreaterThan may
|
851 |
+
subclass it for the .gts and .lts properties.
|
852 |
+
|
853 |
+
"""
|
854 |
+
__slots__ = ()
|
855 |
+
|
856 |
+
@property
|
857 |
+
def gts(self):
|
858 |
+
return self._args[0]
|
859 |
+
|
860 |
+
@property
|
861 |
+
def lts(self):
|
862 |
+
return self._args[1]
|
863 |
+
|
864 |
+
|
865 |
+
class _Less(_Inequality):
|
866 |
+
"""Not intended for general use.
|
867 |
+
|
868 |
+
_Less is only used so that LessThan and StrictLessThan may subclass it for
|
869 |
+
the .gts and .lts properties.
|
870 |
+
|
871 |
+
"""
|
872 |
+
__slots__ = ()
|
873 |
+
|
874 |
+
@property
|
875 |
+
def gts(self):
|
876 |
+
return self._args[1]
|
877 |
+
|
878 |
+
@property
|
879 |
+
def lts(self):
|
880 |
+
return self._args[0]
|
881 |
+
|
882 |
+
|
883 |
+
class GreaterThan(_Greater):
|
884 |
+
r"""Class representations of inequalities.
|
885 |
+
|
886 |
+
Explanation
|
887 |
+
===========
|
888 |
+
|
889 |
+
The ``*Than`` classes represent inequal relationships, where the left-hand
|
890 |
+
side is generally bigger or smaller than the right-hand side. For example,
|
891 |
+
the GreaterThan class represents an inequal relationship where the
|
892 |
+
left-hand side is at least as big as the right side, if not bigger. In
|
893 |
+
mathematical notation:
|
894 |
+
|
895 |
+
lhs $\ge$ rhs
|
896 |
+
|
897 |
+
In total, there are four ``*Than`` classes, to represent the four
|
898 |
+
inequalities:
|
899 |
+
|
900 |
+
+-----------------+--------+
|
901 |
+
|Class Name | Symbol |
|
902 |
+
+=================+========+
|
903 |
+
|GreaterThan | ``>=`` |
|
904 |
+
+-----------------+--------+
|
905 |
+
|LessThan | ``<=`` |
|
906 |
+
+-----------------+--------+
|
907 |
+
|StrictGreaterThan| ``>`` |
|
908 |
+
+-----------------+--------+
|
909 |
+
|StrictLessThan | ``<`` |
|
910 |
+
+-----------------+--------+
|
911 |
+
|
912 |
+
All classes take two arguments, lhs and rhs.
|
913 |
+
|
914 |
+
+----------------------------+-----------------+
|
915 |
+
|Signature Example | Math Equivalent |
|
916 |
+
+============================+=================+
|
917 |
+
|GreaterThan(lhs, rhs) | lhs $\ge$ rhs |
|
918 |
+
+----------------------------+-----------------+
|
919 |
+
|LessThan(lhs, rhs) | lhs $\le$ rhs |
|
920 |
+
+----------------------------+-----------------+
|
921 |
+
|StrictGreaterThan(lhs, rhs) | lhs $>$ rhs |
|
922 |
+
+----------------------------+-----------------+
|
923 |
+
|StrictLessThan(lhs, rhs) | lhs $<$ rhs |
|
924 |
+
+----------------------------+-----------------+
|
925 |
+
|
926 |
+
In addition to the normal .lhs and .rhs of Relations, ``*Than`` inequality
|
927 |
+
objects also have the .lts and .gts properties, which represent the "less
|
928 |
+
than side" and "greater than side" of the operator. Use of .lts and .gts
|
929 |
+
in an algorithm rather than .lhs and .rhs as an assumption of inequality
|
930 |
+
direction will make more explicit the intent of a certain section of code,
|
931 |
+
and will make it similarly more robust to client code changes:
|
932 |
+
|
933 |
+
>>> from sympy import GreaterThan, StrictGreaterThan
|
934 |
+
>>> from sympy import LessThan, StrictLessThan
|
935 |
+
>>> from sympy import And, Ge, Gt, Le, Lt, Rel, S
|
936 |
+
>>> from sympy.abc import x, y, z
|
937 |
+
>>> from sympy.core.relational import Relational
|
938 |
+
|
939 |
+
>>> e = GreaterThan(x, 1)
|
940 |
+
>>> e
|
941 |
+
x >= 1
|
942 |
+
>>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts)
|
943 |
+
'x >= 1 is the same as 1 <= x'
|
944 |
+
|
945 |
+
Examples
|
946 |
+
========
|
947 |
+
|
948 |
+
One generally does not instantiate these classes directly, but uses various
|
949 |
+
convenience methods:
|
950 |
+
|
951 |
+
>>> for f in [Ge, Gt, Le, Lt]: # convenience wrappers
|
952 |
+
... print(f(x, 2))
|
953 |
+
x >= 2
|
954 |
+
x > 2
|
955 |
+
x <= 2
|
956 |
+
x < 2
|
957 |
+
|
958 |
+
Another option is to use the Python inequality operators (``>=``, ``>``,
|
959 |
+
``<=``, ``<``) directly. Their main advantage over the ``Ge``, ``Gt``,
|
960 |
+
``Le``, and ``Lt`` counterparts, is that one can write a more
|
961 |
+
"mathematical looking" statement rather than littering the math with
|
962 |
+
oddball function calls. However there are certain (minor) caveats of
|
963 |
+
which to be aware (search for 'gotcha', below).
|
964 |
+
|
965 |
+
>>> x >= 2
|
966 |
+
x >= 2
|
967 |
+
>>> _ == Ge(x, 2)
|
968 |
+
True
|
969 |
+
|
970 |
+
However, it is also perfectly valid to instantiate a ``*Than`` class less
|
971 |
+
succinctly and less conveniently:
|
972 |
+
|
973 |
+
>>> Rel(x, 1, ">")
|
974 |
+
x > 1
|
975 |
+
>>> Relational(x, 1, ">")
|
976 |
+
x > 1
|
977 |
+
|
978 |
+
>>> StrictGreaterThan(x, 1)
|
979 |
+
x > 1
|
980 |
+
>>> GreaterThan(x, 1)
|
981 |
+
x >= 1
|
982 |
+
>>> LessThan(x, 1)
|
983 |
+
x <= 1
|
984 |
+
>>> StrictLessThan(x, 1)
|
985 |
+
x < 1
|
986 |
+
|
987 |
+
Notes
|
988 |
+
=====
|
989 |
+
|
990 |
+
There are a couple of "gotchas" to be aware of when using Python's
|
991 |
+
operators.
|
992 |
+
|
993 |
+
The first is that what your write is not always what you get:
|
994 |
+
|
995 |
+
>>> 1 < x
|
996 |
+
x > 1
|
997 |
+
|
998 |
+
Due to the order that Python parses a statement, it may
|
999 |
+
not immediately find two objects comparable. When ``1 < x``
|
1000 |
+
is evaluated, Python recognizes that the number 1 is a native
|
1001 |
+
number and that x is *not*. Because a native Python number does
|
1002 |
+
not know how to compare itself with a SymPy object
|
1003 |
+
Python will try the reflective operation, ``x > 1`` and that is the
|
1004 |
+
form that gets evaluated, hence returned.
|
1005 |
+
|
1006 |
+
If the order of the statement is important (for visual output to
|
1007 |
+
the console, perhaps), one can work around this annoyance in a
|
1008 |
+
couple ways:
|
1009 |
+
|
1010 |
+
(1) "sympify" the literal before comparison
|
1011 |
+
|
1012 |
+
>>> S(1) < x
|
1013 |
+
1 < x
|
1014 |
+
|
1015 |
+
(2) use one of the wrappers or less succinct methods described
|
1016 |
+
above
|
1017 |
+
|
1018 |
+
>>> Lt(1, x)
|
1019 |
+
1 < x
|
1020 |
+
>>> Relational(1, x, "<")
|
1021 |
+
1 < x
|
1022 |
+
|
1023 |
+
The second gotcha involves writing equality tests between relationals
|
1024 |
+
when one or both sides of the test involve a literal relational:
|
1025 |
+
|
1026 |
+
>>> e = x < 1; e
|
1027 |
+
x < 1
|
1028 |
+
>>> e == e # neither side is a literal
|
1029 |
+
True
|
1030 |
+
>>> e == x < 1 # expecting True, too
|
1031 |
+
False
|
1032 |
+
>>> e != x < 1 # expecting False
|
1033 |
+
x < 1
|
1034 |
+
>>> x < 1 != x < 1 # expecting False or the same thing as before
|
1035 |
+
Traceback (most recent call last):
|
1036 |
+
...
|
1037 |
+
TypeError: cannot determine truth value of Relational
|
1038 |
+
|
1039 |
+
The solution for this case is to wrap literal relationals in
|
1040 |
+
parentheses:
|
1041 |
+
|
1042 |
+
>>> e == (x < 1)
|
1043 |
+
True
|
1044 |
+
>>> e != (x < 1)
|
1045 |
+
False
|
1046 |
+
>>> (x < 1) != (x < 1)
|
1047 |
+
False
|
1048 |
+
|
1049 |
+
The third gotcha involves chained inequalities not involving
|
1050 |
+
``==`` or ``!=``. Occasionally, one may be tempted to write:
|
1051 |
+
|
1052 |
+
>>> e = x < y < z
|
1053 |
+
Traceback (most recent call last):
|
1054 |
+
...
|
1055 |
+
TypeError: symbolic boolean expression has no truth value.
|
1056 |
+
|
1057 |
+
Due to an implementation detail or decision of Python [1]_,
|
1058 |
+
there is no way for SymPy to create a chained inequality with
|
1059 |
+
that syntax so one must use And:
|
1060 |
+
|
1061 |
+
>>> e = And(x < y, y < z)
|
1062 |
+
>>> type( e )
|
1063 |
+
And
|
1064 |
+
>>> e
|
1065 |
+
(x < y) & (y < z)
|
1066 |
+
|
1067 |
+
Although this can also be done with the '&' operator, it cannot
|
1068 |
+
be done with the 'and' operarator:
|
1069 |
+
|
1070 |
+
>>> (x < y) & (y < z)
|
1071 |
+
(x < y) & (y < z)
|
1072 |
+
>>> (x < y) and (y < z)
|
1073 |
+
Traceback (most recent call last):
|
1074 |
+
...
|
1075 |
+
TypeError: cannot determine truth value of Relational
|
1076 |
+
|
1077 |
+
.. [1] This implementation detail is that Python provides no reliable
|
1078 |
+
method to determine that a chained inequality is being built.
|
1079 |
+
Chained comparison operators are evaluated pairwise, using "and"
|
1080 |
+
logic (see
|
1081 |
+
https://docs.python.org/3/reference/expressions.html#not-in). This
|
1082 |
+
is done in an efficient way, so that each object being compared
|
1083 |
+
is only evaluated once and the comparison can short-circuit. For
|
1084 |
+
example, ``1 > 2 > 3`` is evaluated by Python as ``(1 > 2) and (2
|
1085 |
+
> 3)``. The ``and`` operator coerces each side into a bool,
|
1086 |
+
returning the object itself when it short-circuits. The bool of
|
1087 |
+
the --Than operators will raise TypeError on purpose, because
|
1088 |
+
SymPy cannot determine the mathematical ordering of symbolic
|
1089 |
+
expressions. Thus, if we were to compute ``x > y > z``, with
|
1090 |
+
``x``, ``y``, and ``z`` being Symbols, Python converts the
|
1091 |
+
statement (roughly) into these steps:
|
1092 |
+
|
1093 |
+
(1) x > y > z
|
1094 |
+
(2) (x > y) and (y > z)
|
1095 |
+
(3) (GreaterThanObject) and (y > z)
|
1096 |
+
(4) (GreaterThanObject.__bool__()) and (y > z)
|
1097 |
+
(5) TypeError
|
1098 |
+
|
1099 |
+
Because of the ``and`` added at step 2, the statement gets turned into a
|
1100 |
+
weak ternary statement, and the first object's ``__bool__`` method will
|
1101 |
+
raise TypeError. Thus, creating a chained inequality is not possible.
|
1102 |
+
|
1103 |
+
In Python, there is no way to override the ``and`` operator, or to
|
1104 |
+
control how it short circuits, so it is impossible to make something
|
1105 |
+
like ``x > y > z`` work. There was a PEP to change this,
|
1106 |
+
:pep:`335`, but it was officially closed in March, 2012.
|
1107 |
+
|
1108 |
+
"""
|
1109 |
+
__slots__ = ()
|
1110 |
+
|
1111 |
+
rel_op = '>='
|
1112 |
+
|
1113 |
+
@classmethod
|
1114 |
+
def _eval_fuzzy_relation(cls, lhs, rhs):
|
1115 |
+
return is_ge(lhs, rhs)
|
1116 |
+
|
1117 |
+
@property
|
1118 |
+
def strict(self):
|
1119 |
+
return Gt(*self.args)
|
1120 |
+
|
1121 |
+
Ge = GreaterThan
|
1122 |
+
|
1123 |
+
|
1124 |
+
class LessThan(_Less):
|
1125 |
+
__doc__ = GreaterThan.__doc__
|
1126 |
+
__slots__ = ()
|
1127 |
+
|
1128 |
+
rel_op = '<='
|
1129 |
+
|
1130 |
+
@classmethod
|
1131 |
+
def _eval_fuzzy_relation(cls, lhs, rhs):
|
1132 |
+
return is_le(lhs, rhs)
|
1133 |
+
|
1134 |
+
@property
|
1135 |
+
def strict(self):
|
1136 |
+
return Lt(*self.args)
|
1137 |
+
|
1138 |
+
Le = LessThan
|
1139 |
+
|
1140 |
+
|
1141 |
+
class StrictGreaterThan(_Greater):
|
1142 |
+
__doc__ = GreaterThan.__doc__
|
1143 |
+
__slots__ = ()
|
1144 |
+
|
1145 |
+
rel_op = '>'
|
1146 |
+
|
1147 |
+
@classmethod
|
1148 |
+
def _eval_fuzzy_relation(cls, lhs, rhs):
|
1149 |
+
return is_gt(lhs, rhs)
|
1150 |
+
|
1151 |
+
@property
|
1152 |
+
def weak(self):
|
1153 |
+
return Ge(*self.args)
|
1154 |
+
|
1155 |
+
|
1156 |
+
Gt = StrictGreaterThan
|
1157 |
+
|
1158 |
+
|
1159 |
+
class StrictLessThan(_Less):
|
1160 |
+
__doc__ = GreaterThan.__doc__
|
1161 |
+
__slots__ = ()
|
1162 |
+
|
1163 |
+
rel_op = '<'
|
1164 |
+
|
1165 |
+
@classmethod
|
1166 |
+
def _eval_fuzzy_relation(cls, lhs, rhs):
|
1167 |
+
return is_lt(lhs, rhs)
|
1168 |
+
|
1169 |
+
@property
|
1170 |
+
def weak(self):
|
1171 |
+
return Le(*self.args)
|
1172 |
+
|
1173 |
+
Lt = StrictLessThan
|
1174 |
+
|
1175 |
+
# A class-specific (not object-specific) data item used for a minor speedup.
|
1176 |
+
# It is defined here, rather than directly in the class, because the classes
|
1177 |
+
# that it references have not been defined until now (e.g. StrictLessThan).
|
1178 |
+
Relational.ValidRelationOperator = {
|
1179 |
+
None: Equality,
|
1180 |
+
'==': Equality,
|
1181 |
+
'eq': Equality,
|
1182 |
+
'!=': Unequality,
|
1183 |
+
'<>': Unequality,
|
1184 |
+
'ne': Unequality,
|
1185 |
+
'>=': GreaterThan,
|
1186 |
+
'ge': GreaterThan,
|
1187 |
+
'<=': LessThan,
|
1188 |
+
'le': LessThan,
|
1189 |
+
'>': StrictGreaterThan,
|
1190 |
+
'gt': StrictGreaterThan,
|
1191 |
+
'<': StrictLessThan,
|
1192 |
+
'lt': StrictLessThan,
|
1193 |
+
}
|
1194 |
+
|
1195 |
+
|
1196 |
+
def _n2(a, b):
|
1197 |
+
"""Return (a - b).evalf(2) if a and b are comparable, else None.
|
1198 |
+
This should only be used when a and b are already sympified.
|
1199 |
+
"""
|
1200 |
+
# /!\ it is very important (see issue 8245) not to
|
1201 |
+
# use a re-evaluated number in the calculation of dif
|
1202 |
+
if a.is_comparable and b.is_comparable:
|
1203 |
+
dif = (a - b).evalf(2)
|
1204 |
+
if dif.is_comparable:
|
1205 |
+
return dif
|
1206 |
+
|
1207 |
+
|
1208 |
+
@dispatch(Expr, Expr)
|
1209 |
+
def _eval_is_ge(lhs, rhs):
|
1210 |
+
return None
|
1211 |
+
|
1212 |
+
|
1213 |
+
@dispatch(Basic, Basic)
|
1214 |
+
def _eval_is_eq(lhs, rhs):
|
1215 |
+
return None
|
1216 |
+
|
1217 |
+
|
1218 |
+
@dispatch(Tuple, Expr) # type: ignore
|
1219 |
+
def _eval_is_eq(lhs, rhs): # noqa:F811
|
1220 |
+
return False
|
1221 |
+
|
1222 |
+
|
1223 |
+
@dispatch(Tuple, AppliedUndef) # type: ignore
|
1224 |
+
def _eval_is_eq(lhs, rhs): # noqa:F811
|
1225 |
+
return None
|
1226 |
+
|
1227 |
+
|
1228 |
+
@dispatch(Tuple, Symbol) # type: ignore
|
1229 |
+
def _eval_is_eq(lhs, rhs): # noqa:F811
|
1230 |
+
return None
|
1231 |
+
|
1232 |
+
|
1233 |
+
@dispatch(Tuple, Tuple) # type: ignore
|
1234 |
+
def _eval_is_eq(lhs, rhs): # noqa:F811
|
1235 |
+
if len(lhs) != len(rhs):
|
1236 |
+
return False
|
1237 |
+
|
1238 |
+
return fuzzy_and(fuzzy_bool(is_eq(s, o)) for s, o in zip(lhs, rhs))
|
1239 |
+
|
1240 |
+
|
1241 |
+
def is_lt(lhs, rhs, assumptions=None):
|
1242 |
+
"""Fuzzy bool for lhs is strictly less than rhs.
|
1243 |
+
|
1244 |
+
See the docstring for :func:`~.is_ge` for more.
|
1245 |
+
"""
|
1246 |
+
return fuzzy_not(is_ge(lhs, rhs, assumptions))
|
1247 |
+
|
1248 |
+
|
1249 |
+
def is_gt(lhs, rhs, assumptions=None):
|
1250 |
+
"""Fuzzy bool for lhs is strictly greater than rhs.
|
1251 |
+
|
1252 |
+
See the docstring for :func:`~.is_ge` for more.
|
1253 |
+
"""
|
1254 |
+
return fuzzy_not(is_le(lhs, rhs, assumptions))
|
1255 |
+
|
1256 |
+
|
1257 |
+
def is_le(lhs, rhs, assumptions=None):
|
1258 |
+
"""Fuzzy bool for lhs is less than or equal to rhs.
|
1259 |
+
|
1260 |
+
See the docstring for :func:`~.is_ge` for more.
|
1261 |
+
"""
|
1262 |
+
return is_ge(rhs, lhs, assumptions)
|
1263 |
+
|
1264 |
+
|
1265 |
+
def is_ge(lhs, rhs, assumptions=None):
|
1266 |
+
"""
|
1267 |
+
Fuzzy bool for *lhs* is greater than or equal to *rhs*.
|
1268 |
+
|
1269 |
+
Parameters
|
1270 |
+
==========
|
1271 |
+
|
1272 |
+
lhs : Expr
|
1273 |
+
The left-hand side of the expression, must be sympified,
|
1274 |
+
and an instance of expression. Throws an exception if
|
1275 |
+
lhs is not an instance of expression.
|
1276 |
+
|
1277 |
+
rhs : Expr
|
1278 |
+
The right-hand side of the expression, must be sympified
|
1279 |
+
and an instance of expression. Throws an exception if
|
1280 |
+
lhs is not an instance of expression.
|
1281 |
+
|
1282 |
+
assumptions: Boolean, optional
|
1283 |
+
Assumptions taken to evaluate the inequality.
|
1284 |
+
|
1285 |
+
Returns
|
1286 |
+
=======
|
1287 |
+
|
1288 |
+
``True`` if *lhs* is greater than or equal to *rhs*, ``False`` if *lhs*
|
1289 |
+
is less than *rhs*, and ``None`` if the comparison between *lhs* and
|
1290 |
+
*rhs* is indeterminate.
|
1291 |
+
|
1292 |
+
Explanation
|
1293 |
+
===========
|
1294 |
+
|
1295 |
+
This function is intended to give a relatively fast determination and
|
1296 |
+
deliberately does not attempt slow calculations that might help in
|
1297 |
+
obtaining a determination of True or False in more difficult cases.
|
1298 |
+
|
1299 |
+
The four comparison functions ``is_le``, ``is_lt``, ``is_ge``, and ``is_gt`` are
|
1300 |
+
each implemented in terms of ``is_ge`` in the following way:
|
1301 |
+
|
1302 |
+
is_ge(x, y) := is_ge(x, y)
|
1303 |
+
is_le(x, y) := is_ge(y, x)
|
1304 |
+
is_lt(x, y) := fuzzy_not(is_ge(x, y))
|
1305 |
+
is_gt(x, y) := fuzzy_not(is_ge(y, x))
|
1306 |
+
|
1307 |
+
Therefore, supporting new type with this function will ensure behavior for
|
1308 |
+
other three functions as well.
|
1309 |
+
|
1310 |
+
To maintain these equivalences in fuzzy logic it is important that in cases where
|
1311 |
+
either x or y is non-real all comparisons will give None.
|
1312 |
+
|
1313 |
+
Examples
|
1314 |
+
========
|
1315 |
+
|
1316 |
+
>>> from sympy import S, Q
|
1317 |
+
>>> from sympy.core.relational import is_ge, is_le, is_gt, is_lt
|
1318 |
+
>>> from sympy.abc import x
|
1319 |
+
>>> is_ge(S(2), S(0))
|
1320 |
+
True
|
1321 |
+
>>> is_ge(S(0), S(2))
|
1322 |
+
False
|
1323 |
+
>>> is_le(S(0), S(2))
|
1324 |
+
True
|
1325 |
+
>>> is_gt(S(0), S(2))
|
1326 |
+
False
|
1327 |
+
>>> is_lt(S(2), S(0))
|
1328 |
+
False
|
1329 |
+
|
1330 |
+
Assumptions can be passed to evaluate the quality which is otherwise
|
1331 |
+
indeterminate.
|
1332 |
+
|
1333 |
+
>>> print(is_ge(x, S(0)))
|
1334 |
+
None
|
1335 |
+
>>> is_ge(x, S(0), assumptions=Q.positive(x))
|
1336 |
+
True
|
1337 |
+
|
1338 |
+
New types can be supported by dispatching to ``_eval_is_ge``.
|
1339 |
+
|
1340 |
+
>>> from sympy import Expr, sympify
|
1341 |
+
>>> from sympy.multipledispatch import dispatch
|
1342 |
+
>>> class MyExpr(Expr):
|
1343 |
+
... def __new__(cls, arg):
|
1344 |
+
... return super().__new__(cls, sympify(arg))
|
1345 |
+
... @property
|
1346 |
+
... def value(self):
|
1347 |
+
... return self.args[0]
|
1348 |
+
>>> @dispatch(MyExpr, MyExpr)
|
1349 |
+
... def _eval_is_ge(a, b):
|
1350 |
+
... return is_ge(a.value, b.value)
|
1351 |
+
>>> a = MyExpr(1)
|
1352 |
+
>>> b = MyExpr(2)
|
1353 |
+
>>> is_ge(b, a)
|
1354 |
+
True
|
1355 |
+
>>> is_le(a, b)
|
1356 |
+
True
|
1357 |
+
"""
|
1358 |
+
from sympy.assumptions.wrapper import AssumptionsWrapper, is_extended_nonnegative
|
1359 |
+
|
1360 |
+
if not (isinstance(lhs, Expr) and isinstance(rhs, Expr)):
|
1361 |
+
raise TypeError("Can only compare inequalities with Expr")
|
1362 |
+
|
1363 |
+
retval = _eval_is_ge(lhs, rhs)
|
1364 |
+
|
1365 |
+
if retval is not None:
|
1366 |
+
return retval
|
1367 |
+
else:
|
1368 |
+
n2 = _n2(lhs, rhs)
|
1369 |
+
if n2 is not None:
|
1370 |
+
# use float comparison for infinity.
|
1371 |
+
# otherwise get stuck in infinite recursion
|
1372 |
+
if n2 in (S.Infinity, S.NegativeInfinity):
|
1373 |
+
n2 = float(n2)
|
1374 |
+
return n2 >= 0
|
1375 |
+
|
1376 |
+
_lhs = AssumptionsWrapper(lhs, assumptions)
|
1377 |
+
_rhs = AssumptionsWrapper(rhs, assumptions)
|
1378 |
+
if _lhs.is_extended_real and _rhs.is_extended_real:
|
1379 |
+
if (_lhs.is_infinite and _lhs.is_extended_positive) or (_rhs.is_infinite and _rhs.is_extended_negative):
|
1380 |
+
return True
|
1381 |
+
diff = lhs - rhs
|
1382 |
+
if diff is not S.NaN:
|
1383 |
+
rv = is_extended_nonnegative(diff, assumptions)
|
1384 |
+
if rv is not None:
|
1385 |
+
return rv
|
1386 |
+
|
1387 |
+
|
1388 |
+
def is_neq(lhs, rhs, assumptions=None):
|
1389 |
+
"""Fuzzy bool for lhs does not equal rhs.
|
1390 |
+
|
1391 |
+
See the docstring for :func:`~.is_eq` for more.
|
1392 |
+
"""
|
1393 |
+
return fuzzy_not(is_eq(lhs, rhs, assumptions))
|
1394 |
+
|
1395 |
+
|
1396 |
+
def is_eq(lhs, rhs, assumptions=None):
|
1397 |
+
"""
|
1398 |
+
Fuzzy bool representing mathematical equality between *lhs* and *rhs*.
|
1399 |
+
|
1400 |
+
Parameters
|
1401 |
+
==========
|
1402 |
+
|
1403 |
+
lhs : Expr
|
1404 |
+
The left-hand side of the expression, must be sympified.
|
1405 |
+
|
1406 |
+
rhs : Expr
|
1407 |
+
The right-hand side of the expression, must be sympified.
|
1408 |
+
|
1409 |
+
assumptions: Boolean, optional
|
1410 |
+
Assumptions taken to evaluate the equality.
|
1411 |
+
|
1412 |
+
Returns
|
1413 |
+
=======
|
1414 |
+
|
1415 |
+
``True`` if *lhs* is equal to *rhs*, ``False`` is *lhs* is not equal to *rhs*,
|
1416 |
+
and ``None`` if the comparison between *lhs* and *rhs* is indeterminate.
|
1417 |
+
|
1418 |
+
Explanation
|
1419 |
+
===========
|
1420 |
+
|
1421 |
+
This function is intended to give a relatively fast determination and
|
1422 |
+
deliberately does not attempt slow calculations that might help in
|
1423 |
+
obtaining a determination of True or False in more difficult cases.
|
1424 |
+
|
1425 |
+
:func:`~.is_neq` calls this function to return its value, so supporting
|
1426 |
+
new type with this function will ensure correct behavior for ``is_neq``
|
1427 |
+
as well.
|
1428 |
+
|
1429 |
+
Examples
|
1430 |
+
========
|
1431 |
+
|
1432 |
+
>>> from sympy import Q, S
|
1433 |
+
>>> from sympy.core.relational import is_eq, is_neq
|
1434 |
+
>>> from sympy.abc import x
|
1435 |
+
>>> is_eq(S(0), S(0))
|
1436 |
+
True
|
1437 |
+
>>> is_neq(S(0), S(0))
|
1438 |
+
False
|
1439 |
+
>>> is_eq(S(0), S(2))
|
1440 |
+
False
|
1441 |
+
>>> is_neq(S(0), S(2))
|
1442 |
+
True
|
1443 |
+
|
1444 |
+
Assumptions can be passed to evaluate the equality which is otherwise
|
1445 |
+
indeterminate.
|
1446 |
+
|
1447 |
+
>>> print(is_eq(x, S(0)))
|
1448 |
+
None
|
1449 |
+
>>> is_eq(x, S(0), assumptions=Q.zero(x))
|
1450 |
+
True
|
1451 |
+
|
1452 |
+
New types can be supported by dispatching to ``_eval_is_eq``.
|
1453 |
+
|
1454 |
+
>>> from sympy import Basic, sympify
|
1455 |
+
>>> from sympy.multipledispatch import dispatch
|
1456 |
+
>>> class MyBasic(Basic):
|
1457 |
+
... def __new__(cls, arg):
|
1458 |
+
... return Basic.__new__(cls, sympify(arg))
|
1459 |
+
... @property
|
1460 |
+
... def value(self):
|
1461 |
+
... return self.args[0]
|
1462 |
+
...
|
1463 |
+
>>> @dispatch(MyBasic, MyBasic)
|
1464 |
+
... def _eval_is_eq(a, b):
|
1465 |
+
... return is_eq(a.value, b.value)
|
1466 |
+
...
|
1467 |
+
>>> a = MyBasic(1)
|
1468 |
+
>>> b = MyBasic(1)
|
1469 |
+
>>> is_eq(a, b)
|
1470 |
+
True
|
1471 |
+
>>> is_neq(a, b)
|
1472 |
+
False
|
1473 |
+
|
1474 |
+
"""
|
1475 |
+
# here, _eval_Eq is only called for backwards compatibility
|
1476 |
+
# new code should use is_eq with multiple dispatch as
|
1477 |
+
# outlined in the docstring
|
1478 |
+
for side1, side2 in (lhs, rhs), (rhs, lhs):
|
1479 |
+
eval_func = getattr(side1, '_eval_Eq', None)
|
1480 |
+
if eval_func is not None:
|
1481 |
+
retval = eval_func(side2)
|
1482 |
+
if retval is not None:
|
1483 |
+
return retval
|
1484 |
+
|
1485 |
+
retval = _eval_is_eq(lhs, rhs)
|
1486 |
+
if retval is not None:
|
1487 |
+
return retval
|
1488 |
+
|
1489 |
+
if dispatch(type(lhs), type(rhs)) != dispatch(type(rhs), type(lhs)):
|
1490 |
+
retval = _eval_is_eq(rhs, lhs)
|
1491 |
+
if retval is not None:
|
1492 |
+
return retval
|
1493 |
+
|
1494 |
+
# retval is still None, so go through the equality logic
|
1495 |
+
# If expressions have the same structure, they must be equal.
|
1496 |
+
if lhs == rhs:
|
1497 |
+
return True # e.g. True == True
|
1498 |
+
elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
|
1499 |
+
return False # True != False
|
1500 |
+
elif not (lhs.is_Symbol or rhs.is_Symbol) and (
|
1501 |
+
isinstance(lhs, Boolean) !=
|
1502 |
+
isinstance(rhs, Boolean)):
|
1503 |
+
return False # only Booleans can equal Booleans
|
1504 |
+
|
1505 |
+
from sympy.assumptions.wrapper import (AssumptionsWrapper,
|
1506 |
+
is_infinite, is_extended_real)
|
1507 |
+
from .add import Add
|
1508 |
+
|
1509 |
+
_lhs = AssumptionsWrapper(lhs, assumptions)
|
1510 |
+
_rhs = AssumptionsWrapper(rhs, assumptions)
|
1511 |
+
|
1512 |
+
if _lhs.is_infinite or _rhs.is_infinite:
|
1513 |
+
if fuzzy_xor([_lhs.is_infinite, _rhs.is_infinite]):
|
1514 |
+
return False
|
1515 |
+
if fuzzy_xor([_lhs.is_extended_real, _rhs.is_extended_real]):
|
1516 |
+
return False
|
1517 |
+
if fuzzy_and([_lhs.is_extended_real, _rhs.is_extended_real]):
|
1518 |
+
return fuzzy_xor([_lhs.is_extended_positive, fuzzy_not(_rhs.is_extended_positive)])
|
1519 |
+
|
1520 |
+
# Try to split real/imaginary parts and equate them
|
1521 |
+
I = S.ImaginaryUnit
|
1522 |
+
|
1523 |
+
def split_real_imag(expr):
|
1524 |
+
real_imag = lambda t: (
|
1525 |
+
'real' if is_extended_real(t, assumptions) else
|
1526 |
+
'imag' if is_extended_real(I*t, assumptions) else None)
|
1527 |
+
return sift(Add.make_args(expr), real_imag)
|
1528 |
+
|
1529 |
+
lhs_ri = split_real_imag(lhs)
|
1530 |
+
if not lhs_ri[None]:
|
1531 |
+
rhs_ri = split_real_imag(rhs)
|
1532 |
+
if not rhs_ri[None]:
|
1533 |
+
eq_real = is_eq(Add(*lhs_ri['real']), Add(*rhs_ri['real']), assumptions)
|
1534 |
+
eq_imag = is_eq(I * Add(*lhs_ri['imag']), I * Add(*rhs_ri['imag']), assumptions)
|
1535 |
+
return fuzzy_and(map(fuzzy_bool, [eq_real, eq_imag]))
|
1536 |
+
|
1537 |
+
from sympy.functions.elementary.complexes import arg
|
1538 |
+
# Compare e.g. zoo with 1+I*oo by comparing args
|
1539 |
+
arglhs = arg(lhs)
|
1540 |
+
argrhs = arg(rhs)
|
1541 |
+
# Guard against Eq(nan, nan) -> False
|
1542 |
+
if not (arglhs == S.NaN and argrhs == S.NaN):
|
1543 |
+
return fuzzy_bool(is_eq(arglhs, argrhs, assumptions))
|
1544 |
+
|
1545 |
+
if all(isinstance(i, Expr) for i in (lhs, rhs)):
|
1546 |
+
# see if the difference evaluates
|
1547 |
+
dif = lhs - rhs
|
1548 |
+
_dif = AssumptionsWrapper(dif, assumptions)
|
1549 |
+
z = _dif.is_zero
|
1550 |
+
if z is not None:
|
1551 |
+
if z is False and _dif.is_commutative: # issue 10728
|
1552 |
+
return False
|
1553 |
+
if z:
|
1554 |
+
return True
|
1555 |
+
|
1556 |
+
n2 = _n2(lhs, rhs)
|
1557 |
+
if n2 is not None:
|
1558 |
+
return _sympify(n2 == 0)
|
1559 |
+
|
1560 |
+
# see if the ratio evaluates
|
1561 |
+
n, d = dif.as_numer_denom()
|
1562 |
+
rv = None
|
1563 |
+
_n = AssumptionsWrapper(n, assumptions)
|
1564 |
+
_d = AssumptionsWrapper(d, assumptions)
|
1565 |
+
if _n.is_zero:
|
1566 |
+
rv = _d.is_nonzero
|
1567 |
+
elif _n.is_finite:
|
1568 |
+
if _d.is_infinite:
|
1569 |
+
rv = True
|
1570 |
+
elif _n.is_zero is False:
|
1571 |
+
rv = _d.is_infinite
|
1572 |
+
if rv is None:
|
1573 |
+
# if the condition that makes the denominator
|
1574 |
+
# infinite does not make the original expression
|
1575 |
+
# True then False can be returned
|
1576 |
+
from sympy.simplify.simplify import clear_coefficients
|
1577 |
+
l, r = clear_coefficients(d, S.Infinity)
|
1578 |
+
args = [_.subs(l, r) for _ in (lhs, rhs)]
|
1579 |
+
if args != [lhs, rhs]:
|
1580 |
+
rv = fuzzy_bool(is_eq(*args, assumptions))
|
1581 |
+
if rv is True:
|
1582 |
+
rv = None
|
1583 |
+
elif any(is_infinite(a, assumptions) for a in Add.make_args(n)):
|
1584 |
+
# (inf or nan)/x != 0
|
1585 |
+
rv = False
|
1586 |
+
if rv is not None:
|
1587 |
+
return rv
|
env-llmeval/lib/python3.10/site-packages/sympy/core/singleton.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Singleton mechanism"""
|
2 |
+
|
3 |
+
|
4 |
+
from .core import Registry
|
5 |
+
from .sympify import sympify
|
6 |
+
|
7 |
+
|
8 |
+
class SingletonRegistry(Registry):
|
9 |
+
"""
|
10 |
+
The registry for the singleton classes (accessible as ``S``).
|
11 |
+
|
12 |
+
Explanation
|
13 |
+
===========
|
14 |
+
|
15 |
+
This class serves as two separate things.
|
16 |
+
|
17 |
+
The first thing it is is the ``SingletonRegistry``. Several classes in
|
18 |
+
SymPy appear so often that they are singletonized, that is, using some
|
19 |
+
metaprogramming they are made so that they can only be instantiated once
|
20 |
+
(see the :class:`sympy.core.singleton.Singleton` class for details). For
|
21 |
+
instance, every time you create ``Integer(0)``, this will return the same
|
22 |
+
instance, :class:`sympy.core.numbers.Zero`. All singleton instances are
|
23 |
+
attributes of the ``S`` object, so ``Integer(0)`` can also be accessed as
|
24 |
+
``S.Zero``.
|
25 |
+
|
26 |
+
Singletonization offers two advantages: it saves memory, and it allows
|
27 |
+
fast comparison. It saves memory because no matter how many times the
|
28 |
+
singletonized objects appear in expressions in memory, they all point to
|
29 |
+
the same single instance in memory. The fast comparison comes from the
|
30 |
+
fact that you can use ``is`` to compare exact instances in Python
|
31 |
+
(usually, you need to use ``==`` to compare things). ``is`` compares
|
32 |
+
objects by memory address, and is very fast.
|
33 |
+
|
34 |
+
Examples
|
35 |
+
========
|
36 |
+
|
37 |
+
>>> from sympy import S, Integer
|
38 |
+
>>> a = Integer(0)
|
39 |
+
>>> a is S.Zero
|
40 |
+
True
|
41 |
+
|
42 |
+
For the most part, the fact that certain objects are singletonized is an
|
43 |
+
implementation detail that users should not need to worry about. In SymPy
|
44 |
+
library code, ``is`` comparison is often used for performance purposes
|
45 |
+
The primary advantage of ``S`` for end users is the convenient access to
|
46 |
+
certain instances that are otherwise difficult to type, like ``S.Half``
|
47 |
+
(instead of ``Rational(1, 2)``).
|
48 |
+
|
49 |
+
When using ``is`` comparison, make sure the argument is sympified. For
|
50 |
+
instance,
|
51 |
+
|
52 |
+
>>> x = 0
|
53 |
+
>>> x is S.Zero
|
54 |
+
False
|
55 |
+
|
56 |
+
This problem is not an issue when using ``==``, which is recommended for
|
57 |
+
most use-cases:
|
58 |
+
|
59 |
+
>>> 0 == S.Zero
|
60 |
+
True
|
61 |
+
|
62 |
+
The second thing ``S`` is is a shortcut for
|
63 |
+
:func:`sympy.core.sympify.sympify`. :func:`sympy.core.sympify.sympify` is
|
64 |
+
the function that converts Python objects such as ``int(1)`` into SymPy
|
65 |
+
objects such as ``Integer(1)``. It also converts the string form of an
|
66 |
+
expression into a SymPy expression, like ``sympify("x**2")`` ->
|
67 |
+
``Symbol("x")**2``. ``S(1)`` is the same thing as ``sympify(1)``
|
68 |
+
(basically, ``S.__call__`` has been defined to call ``sympify``).
|
69 |
+
|
70 |
+
This is for convenience, since ``S`` is a single letter. It's mostly
|
71 |
+
useful for defining rational numbers. Consider an expression like ``x +
|
72 |
+
1/2``. If you enter this directly in Python, it will evaluate the ``1/2``
|
73 |
+
and give ``0.5``, because both arguments are ints (see also
|
74 |
+
:ref:`tutorial-gotchas-final-notes`). However, in SymPy, you usually want
|
75 |
+
the quotient of two integers to give an exact rational number. The way
|
76 |
+
Python's evaluation works, at least one side of an operator needs to be a
|
77 |
+
SymPy object for the SymPy evaluation to take over. You could write this
|
78 |
+
as ``x + Rational(1, 2)``, but this is a lot more typing. A shorter
|
79 |
+
version is ``x + S(1)/2``. Since ``S(1)`` returns ``Integer(1)``, the
|
80 |
+
division will return a ``Rational`` type, since it will call
|
81 |
+
``Integer.__truediv__``, which knows how to return a ``Rational``.
|
82 |
+
|
83 |
+
"""
|
84 |
+
__slots__ = ()
|
85 |
+
|
86 |
+
# Also allow things like S(5)
|
87 |
+
__call__ = staticmethod(sympify)
|
88 |
+
|
89 |
+
def __init__(self):
|
90 |
+
self._classes_to_install = {}
|
91 |
+
# Dict of classes that have been registered, but that have not have been
|
92 |
+
# installed as an attribute of this SingletonRegistry.
|
93 |
+
# Installation automatically happens at the first attempt to access the
|
94 |
+
# attribute.
|
95 |
+
# The purpose of this is to allow registration during class
|
96 |
+
# initialization during import, but not trigger object creation until
|
97 |
+
# actual use (which should not happen until after all imports are
|
98 |
+
# finished).
|
99 |
+
|
100 |
+
def register(self, cls):
|
101 |
+
# Make sure a duplicate class overwrites the old one
|
102 |
+
if hasattr(self, cls.__name__):
|
103 |
+
delattr(self, cls.__name__)
|
104 |
+
self._classes_to_install[cls.__name__] = cls
|
105 |
+
|
106 |
+
def __getattr__(self, name):
|
107 |
+
"""Python calls __getattr__ if no attribute of that name was installed
|
108 |
+
yet.
|
109 |
+
|
110 |
+
Explanation
|
111 |
+
===========
|
112 |
+
|
113 |
+
This __getattr__ checks whether a class with the requested name was
|
114 |
+
already registered but not installed; if no, raises an AttributeError.
|
115 |
+
Otherwise, retrieves the class, calculates its singleton value, installs
|
116 |
+
it as an attribute of the given name, and unregisters the class."""
|
117 |
+
if name not in self._classes_to_install:
|
118 |
+
raise AttributeError(
|
119 |
+
"Attribute '%s' was not installed on SymPy registry %s" % (
|
120 |
+
name, self))
|
121 |
+
class_to_install = self._classes_to_install[name]
|
122 |
+
value_to_install = class_to_install()
|
123 |
+
self.__setattr__(name, value_to_install)
|
124 |
+
del self._classes_to_install[name]
|
125 |
+
return value_to_install
|
126 |
+
|
127 |
+
def __repr__(self):
|
128 |
+
return "S"
|
129 |
+
|
130 |
+
S = SingletonRegistry()
|
131 |
+
|
132 |
+
|
133 |
+
class Singleton(type):
|
134 |
+
"""
|
135 |
+
Metaclass for singleton classes.
|
136 |
+
|
137 |
+
Explanation
|
138 |
+
===========
|
139 |
+
|
140 |
+
A singleton class has only one instance which is returned every time the
|
141 |
+
class is instantiated. Additionally, this instance can be accessed through
|
142 |
+
the global registry object ``S`` as ``S.<class_name>``.
|
143 |
+
|
144 |
+
Examples
|
145 |
+
========
|
146 |
+
|
147 |
+
>>> from sympy import S, Basic
|
148 |
+
>>> from sympy.core.singleton import Singleton
|
149 |
+
>>> class MySingleton(Basic, metaclass=Singleton):
|
150 |
+
... pass
|
151 |
+
>>> Basic() is Basic()
|
152 |
+
False
|
153 |
+
>>> MySingleton() is MySingleton()
|
154 |
+
True
|
155 |
+
>>> S.MySingleton is MySingleton()
|
156 |
+
True
|
157 |
+
|
158 |
+
Notes
|
159 |
+
=====
|
160 |
+
|
161 |
+
Instance creation is delayed until the first time the value is accessed.
|
162 |
+
(SymPy versions before 1.0 would create the instance during class
|
163 |
+
creation time, which would be prone to import cycles.)
|
164 |
+
"""
|
165 |
+
def __init__(cls, *args, **kwargs):
|
166 |
+
cls._instance = obj = Basic.__new__(cls)
|
167 |
+
cls.__new__ = lambda cls: obj
|
168 |
+
cls.__getnewargs__ = lambda obj: ()
|
169 |
+
cls.__getstate__ = lambda obj: None
|
170 |
+
S.register(cls)
|
171 |
+
|
172 |
+
|
173 |
+
# Delayed to avoid cyclic import
|
174 |
+
from .basic import Basic
|
env-llmeval/lib/python3.10/site-packages/sympy/core/sorting.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
|
3 |
+
from .sympify import sympify, SympifyError
|
4 |
+
from sympy.utilities.iterables import iterable, uniq
|
5 |
+
|
6 |
+
|
7 |
+
__all__ = ['default_sort_key', 'ordered']
|
8 |
+
|
9 |
+
|
10 |
+
def default_sort_key(item, order=None):
|
11 |
+
"""Return a key that can be used for sorting.
|
12 |
+
|
13 |
+
The key has the structure:
|
14 |
+
|
15 |
+
(class_key, (len(args), args), exponent.sort_key(), coefficient)
|
16 |
+
|
17 |
+
This key is supplied by the sort_key routine of Basic objects when
|
18 |
+
``item`` is a Basic object or an object (other than a string) that
|
19 |
+
sympifies to a Basic object. Otherwise, this function produces the
|
20 |
+
key.
|
21 |
+
|
22 |
+
The ``order`` argument is passed along to the sort_key routine and is
|
23 |
+
used to determine how the terms *within* an expression are ordered.
|
24 |
+
(See examples below) ``order`` options are: 'lex', 'grlex', 'grevlex',
|
25 |
+
and reversed values of the same (e.g. 'rev-lex'). The default order
|
26 |
+
value is None (which translates to 'lex').
|
27 |
+
|
28 |
+
Examples
|
29 |
+
========
|
30 |
+
|
31 |
+
>>> from sympy import S, I, default_sort_key, sin, cos, sqrt
|
32 |
+
>>> from sympy.core.function import UndefinedFunction
|
33 |
+
>>> from sympy.abc import x
|
34 |
+
|
35 |
+
The following are equivalent ways of getting the key for an object:
|
36 |
+
|
37 |
+
>>> x.sort_key() == default_sort_key(x)
|
38 |
+
True
|
39 |
+
|
40 |
+
Here are some examples of the key that is produced:
|
41 |
+
|
42 |
+
>>> default_sort_key(UndefinedFunction('f'))
|
43 |
+
((0, 0, 'UndefinedFunction'), (1, ('f',)), ((1, 0, 'Number'),
|
44 |
+
(0, ()), (), 1), 1)
|
45 |
+
>>> default_sort_key('1')
|
46 |
+
((0, 0, 'str'), (1, ('1',)), ((1, 0, 'Number'), (0, ()), (), 1), 1)
|
47 |
+
>>> default_sort_key(S.One)
|
48 |
+
((1, 0, 'Number'), (0, ()), (), 1)
|
49 |
+
>>> default_sort_key(2)
|
50 |
+
((1, 0, 'Number'), (0, ()), (), 2)
|
51 |
+
|
52 |
+
While sort_key is a method only defined for SymPy objects,
|
53 |
+
default_sort_key will accept anything as an argument so it is
|
54 |
+
more robust as a sorting key. For the following, using key=
|
55 |
+
lambda i: i.sort_key() would fail because 2 does not have a sort_key
|
56 |
+
method; that's why default_sort_key is used. Note, that it also
|
57 |
+
handles sympification of non-string items likes ints:
|
58 |
+
|
59 |
+
>>> a = [2, I, -I]
|
60 |
+
>>> sorted(a, key=default_sort_key)
|
61 |
+
[2, -I, I]
|
62 |
+
|
63 |
+
The returned key can be used anywhere that a key can be specified for
|
64 |
+
a function, e.g. sort, min, max, etc...:
|
65 |
+
|
66 |
+
>>> a.sort(key=default_sort_key); a[0]
|
67 |
+
2
|
68 |
+
>>> min(a, key=default_sort_key)
|
69 |
+
2
|
70 |
+
|
71 |
+
Notes
|
72 |
+
=====
|
73 |
+
|
74 |
+
The key returned is useful for getting items into a canonical order
|
75 |
+
that will be the same across platforms. It is not directly useful for
|
76 |
+
sorting lists of expressions:
|
77 |
+
|
78 |
+
>>> a, b = x, 1/x
|
79 |
+
|
80 |
+
Since ``a`` has only 1 term, its value of sort_key is unaffected by
|
81 |
+
``order``:
|
82 |
+
|
83 |
+
>>> a.sort_key() == a.sort_key('rev-lex')
|
84 |
+
True
|
85 |
+
|
86 |
+
If ``a`` and ``b`` are combined then the key will differ because there
|
87 |
+
are terms that can be ordered:
|
88 |
+
|
89 |
+
>>> eq = a + b
|
90 |
+
>>> eq.sort_key() == eq.sort_key('rev-lex')
|
91 |
+
False
|
92 |
+
>>> eq.as_ordered_terms()
|
93 |
+
[x, 1/x]
|
94 |
+
>>> eq.as_ordered_terms('rev-lex')
|
95 |
+
[1/x, x]
|
96 |
+
|
97 |
+
But since the keys for each of these terms are independent of ``order``'s
|
98 |
+
value, they do not sort differently when they appear separately in a list:
|
99 |
+
|
100 |
+
>>> sorted(eq.args, key=default_sort_key)
|
101 |
+
[1/x, x]
|
102 |
+
>>> sorted(eq.args, key=lambda i: default_sort_key(i, order='rev-lex'))
|
103 |
+
[1/x, x]
|
104 |
+
|
105 |
+
The order of terms obtained when using these keys is the order that would
|
106 |
+
be obtained if those terms were *factors* in a product.
|
107 |
+
|
108 |
+
Although it is useful for quickly putting expressions in canonical order,
|
109 |
+
it does not sort expressions based on their complexity defined by the
|
110 |
+
number of operations, power of variables and others:
|
111 |
+
|
112 |
+
>>> sorted([sin(x)*cos(x), sin(x)], key=default_sort_key)
|
113 |
+
[sin(x)*cos(x), sin(x)]
|
114 |
+
>>> sorted([x, x**2, sqrt(x), x**3], key=default_sort_key)
|
115 |
+
[sqrt(x), x, x**2, x**3]
|
116 |
+
|
117 |
+
See Also
|
118 |
+
========
|
119 |
+
|
120 |
+
ordered, sympy.core.expr.Expr.as_ordered_factors, sympy.core.expr.Expr.as_ordered_terms
|
121 |
+
|
122 |
+
"""
|
123 |
+
from .basic import Basic
|
124 |
+
from .singleton import S
|
125 |
+
|
126 |
+
if isinstance(item, Basic):
|
127 |
+
return item.sort_key(order=order)
|
128 |
+
|
129 |
+
if iterable(item, exclude=str):
|
130 |
+
if isinstance(item, dict):
|
131 |
+
args = item.items()
|
132 |
+
unordered = True
|
133 |
+
elif isinstance(item, set):
|
134 |
+
args = item
|
135 |
+
unordered = True
|
136 |
+
else:
|
137 |
+
# e.g. tuple, list
|
138 |
+
args = list(item)
|
139 |
+
unordered = False
|
140 |
+
|
141 |
+
args = [default_sort_key(arg, order=order) for arg in args]
|
142 |
+
|
143 |
+
if unordered:
|
144 |
+
# e.g. dict, set
|
145 |
+
args = sorted(args)
|
146 |
+
|
147 |
+
cls_index, args = 10, (len(args), tuple(args))
|
148 |
+
else:
|
149 |
+
if not isinstance(item, str):
|
150 |
+
try:
|
151 |
+
item = sympify(item, strict=True)
|
152 |
+
except SympifyError:
|
153 |
+
# e.g. lambda x: x
|
154 |
+
pass
|
155 |
+
else:
|
156 |
+
if isinstance(item, Basic):
|
157 |
+
# e.g int -> Integer
|
158 |
+
return default_sort_key(item)
|
159 |
+
# e.g. UndefinedFunction
|
160 |
+
|
161 |
+
# e.g. str
|
162 |
+
cls_index, args = 0, (1, (str(item),))
|
163 |
+
|
164 |
+
return (cls_index, 0, item.__class__.__name__
|
165 |
+
), args, S.One.sort_key(), S.One
|
166 |
+
|
167 |
+
|
168 |
+
def _node_count(e):
|
169 |
+
# this not only counts nodes, it affirms that the
|
170 |
+
# args are Basic (i.e. have an args property). If
|
171 |
+
# some object has a non-Basic arg, it needs to be
|
172 |
+
# fixed since it is intended that all Basic args
|
173 |
+
# are of Basic type (though this is not easy to enforce).
|
174 |
+
if e.is_Float:
|
175 |
+
return 0.5
|
176 |
+
return 1 + sum(map(_node_count, e.args))
|
177 |
+
|
178 |
+
|
179 |
+
def _nodes(e):
|
180 |
+
"""
|
181 |
+
A helper for ordered() which returns the node count of ``e`` which
|
182 |
+
for Basic objects is the number of Basic nodes in the expression tree
|
183 |
+
but for other objects is 1 (unless the object is an iterable or dict
|
184 |
+
for which the sum of nodes is returned).
|
185 |
+
"""
|
186 |
+
from .basic import Basic
|
187 |
+
from .function import Derivative
|
188 |
+
|
189 |
+
if isinstance(e, Basic):
|
190 |
+
if isinstance(e, Derivative):
|
191 |
+
return _nodes(e.expr) + sum(i[1] if i[1].is_Number else
|
192 |
+
_nodes(i[1]) for i in e.variable_count)
|
193 |
+
return _node_count(e)
|
194 |
+
elif iterable(e):
|
195 |
+
return 1 + sum(_nodes(ei) for ei in e)
|
196 |
+
elif isinstance(e, dict):
|
197 |
+
return 1 + sum(_nodes(k) + _nodes(v) for k, v in e.items())
|
198 |
+
else:
|
199 |
+
return 1
|
200 |
+
|
201 |
+
|
202 |
+
def ordered(seq, keys=None, default=True, warn=False):
|
203 |
+
"""Return an iterator of the seq where keys are used to break ties in
|
204 |
+
a conservative fashion: if, after applying a key, there are no ties
|
205 |
+
then no other keys will be computed.
|
206 |
+
|
207 |
+
Two default keys will be applied if 1) keys are not provided or 2) the
|
208 |
+
given keys do not resolve all ties (but only if ``default`` is True). The
|
209 |
+
two keys are ``_nodes`` (which places smaller expressions before large) and
|
210 |
+
``default_sort_key`` which (if the ``sort_key`` for an object is defined
|
211 |
+
properly) should resolve any ties.
|
212 |
+
|
213 |
+
If ``warn`` is True then an error will be raised if there were no
|
214 |
+
keys remaining to break ties. This can be used if it was expected that
|
215 |
+
there should be no ties between items that are not identical.
|
216 |
+
|
217 |
+
Examples
|
218 |
+
========
|
219 |
+
|
220 |
+
>>> from sympy import ordered, count_ops
|
221 |
+
>>> from sympy.abc import x, y
|
222 |
+
|
223 |
+
The count_ops is not sufficient to break ties in this list and the first
|
224 |
+
two items appear in their original order (i.e. the sorting is stable):
|
225 |
+
|
226 |
+
>>> list(ordered([y + 2, x + 2, x**2 + y + 3],
|
227 |
+
... count_ops, default=False, warn=False))
|
228 |
+
...
|
229 |
+
[y + 2, x + 2, x**2 + y + 3]
|
230 |
+
|
231 |
+
The default_sort_key allows the tie to be broken:
|
232 |
+
|
233 |
+
>>> list(ordered([y + 2, x + 2, x**2 + y + 3]))
|
234 |
+
...
|
235 |
+
[x + 2, y + 2, x**2 + y + 3]
|
236 |
+
|
237 |
+
Here, sequences are sorted by length, then sum:
|
238 |
+
|
239 |
+
>>> seq, keys = [[[1, 2, 1], [0, 3, 1], [1, 1, 3], [2], [1]], [
|
240 |
+
... lambda x: len(x),
|
241 |
+
... lambda x: sum(x)]]
|
242 |
+
...
|
243 |
+
>>> list(ordered(seq, keys, default=False, warn=False))
|
244 |
+
[[1], [2], [1, 2, 1], [0, 3, 1], [1, 1, 3]]
|
245 |
+
|
246 |
+
If ``warn`` is True, an error will be raised if there were not
|
247 |
+
enough keys to break ties:
|
248 |
+
|
249 |
+
>>> list(ordered(seq, keys, default=False, warn=True))
|
250 |
+
Traceback (most recent call last):
|
251 |
+
...
|
252 |
+
ValueError: not enough keys to break ties
|
253 |
+
|
254 |
+
|
255 |
+
Notes
|
256 |
+
=====
|
257 |
+
|
258 |
+
The decorated sort is one of the fastest ways to sort a sequence for
|
259 |
+
which special item comparison is desired: the sequence is decorated,
|
260 |
+
sorted on the basis of the decoration (e.g. making all letters lower
|
261 |
+
case) and then undecorated. If one wants to break ties for items that
|
262 |
+
have the same decorated value, a second key can be used. But if the
|
263 |
+
second key is expensive to compute then it is inefficient to decorate
|
264 |
+
all items with both keys: only those items having identical first key
|
265 |
+
values need to be decorated. This function applies keys successively
|
266 |
+
only when needed to break ties. By yielding an iterator, use of the
|
267 |
+
tie-breaker is delayed as long as possible.
|
268 |
+
|
269 |
+
This function is best used in cases when use of the first key is
|
270 |
+
expected to be a good hashing function; if there are no unique hashes
|
271 |
+
from application of a key, then that key should not have been used. The
|
272 |
+
exception, however, is that even if there are many collisions, if the
|
273 |
+
first group is small and one does not need to process all items in the
|
274 |
+
list then time will not be wasted sorting what one was not interested
|
275 |
+
in. For example, if one were looking for the minimum in a list and
|
276 |
+
there were several criteria used to define the sort order, then this
|
277 |
+
function would be good at returning that quickly if the first group
|
278 |
+
of candidates is small relative to the number of items being processed.
|
279 |
+
|
280 |
+
"""
|
281 |
+
|
282 |
+
d = defaultdict(list)
|
283 |
+
if keys:
|
284 |
+
if isinstance(keys, (list, tuple)):
|
285 |
+
keys = list(keys)
|
286 |
+
f = keys.pop(0)
|
287 |
+
else:
|
288 |
+
f = keys
|
289 |
+
keys = []
|
290 |
+
for a in seq:
|
291 |
+
d[f(a)].append(a)
|
292 |
+
else:
|
293 |
+
if not default:
|
294 |
+
raise ValueError('if default=False then keys must be provided')
|
295 |
+
d[None].extend(seq)
|
296 |
+
|
297 |
+
for k, value in sorted(d.items()):
|
298 |
+
if len(value) > 1:
|
299 |
+
if keys:
|
300 |
+
value = ordered(value, keys, default, warn)
|
301 |
+
elif default:
|
302 |
+
value = ordered(value, (_nodes, default_sort_key,),
|
303 |
+
default=False, warn=warn)
|
304 |
+
elif warn:
|
305 |
+
u = list(uniq(value))
|
306 |
+
if len(u) > 1:
|
307 |
+
raise ValueError(
|
308 |
+
'not enough keys to break ties: %s' % u)
|
309 |
+
yield from value
|
env-llmeval/lib/python3.10/site-packages/sympy/core/sympify.py
ADDED
@@ -0,0 +1,634 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""sympify -- convert objects SymPy internal format"""
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
from typing import Any, Callable
|
5 |
+
|
6 |
+
from inspect import getmro
|
7 |
+
import string
|
8 |
+
from sympy.core.random import choice
|
9 |
+
|
10 |
+
from .parameters import global_parameters
|
11 |
+
|
12 |
+
from sympy.utilities.exceptions import sympy_deprecation_warning
|
13 |
+
from sympy.utilities.iterables import iterable
|
14 |
+
|
15 |
+
|
16 |
+
class SympifyError(ValueError):
|
17 |
+
def __init__(self, expr, base_exc=None):
|
18 |
+
self.expr = expr
|
19 |
+
self.base_exc = base_exc
|
20 |
+
|
21 |
+
def __str__(self):
|
22 |
+
if self.base_exc is None:
|
23 |
+
return "SympifyError: %r" % (self.expr,)
|
24 |
+
|
25 |
+
return ("Sympify of expression '%s' failed, because of exception being "
|
26 |
+
"raised:\n%s: %s" % (self.expr, self.base_exc.__class__.__name__,
|
27 |
+
str(self.base_exc)))
|
28 |
+
|
29 |
+
|
30 |
+
converter: dict[type[Any], Callable[[Any], Basic]] = {}
|
31 |
+
|
32 |
+
#holds the conversions defined in SymPy itself, i.e. non-user defined conversions
|
33 |
+
_sympy_converter: dict[type[Any], Callable[[Any], Basic]] = {}
|
34 |
+
|
35 |
+
#alias for clearer use in the library
|
36 |
+
_external_converter = converter
|
37 |
+
|
38 |
+
class CantSympify:
|
39 |
+
"""
|
40 |
+
Mix in this trait to a class to disallow sympification of its instances.
|
41 |
+
|
42 |
+
Examples
|
43 |
+
========
|
44 |
+
|
45 |
+
>>> from sympy import sympify
|
46 |
+
>>> from sympy.core.sympify import CantSympify
|
47 |
+
|
48 |
+
>>> class Something(dict):
|
49 |
+
... pass
|
50 |
+
...
|
51 |
+
>>> sympify(Something())
|
52 |
+
{}
|
53 |
+
|
54 |
+
>>> class Something(dict, CantSympify):
|
55 |
+
... pass
|
56 |
+
...
|
57 |
+
>>> sympify(Something())
|
58 |
+
Traceback (most recent call last):
|
59 |
+
...
|
60 |
+
SympifyError: SympifyError: {}
|
61 |
+
|
62 |
+
"""
|
63 |
+
|
64 |
+
__slots__ = ()
|
65 |
+
|
66 |
+
|
67 |
+
def _is_numpy_instance(a):
|
68 |
+
"""
|
69 |
+
Checks if an object is an instance of a type from the numpy module.
|
70 |
+
"""
|
71 |
+
# This check avoids unnecessarily importing NumPy. We check the whole
|
72 |
+
# __mro__ in case any base type is a numpy type.
|
73 |
+
return any(type_.__module__ == 'numpy'
|
74 |
+
for type_ in type(a).__mro__)
|
75 |
+
|
76 |
+
|
77 |
+
def _convert_numpy_types(a, **sympify_args):
|
78 |
+
"""
|
79 |
+
Converts a numpy datatype input to an appropriate SymPy type.
|
80 |
+
"""
|
81 |
+
import numpy as np
|
82 |
+
if not isinstance(a, np.floating):
|
83 |
+
if np.iscomplex(a):
|
84 |
+
return _sympy_converter[complex](a.item())
|
85 |
+
else:
|
86 |
+
return sympify(a.item(), **sympify_args)
|
87 |
+
else:
|
88 |
+
try:
|
89 |
+
from .numbers import Float
|
90 |
+
prec = np.finfo(a).nmant + 1
|
91 |
+
# E.g. double precision means prec=53 but nmant=52
|
92 |
+
# Leading bit of mantissa is always 1, so is not stored
|
93 |
+
a = str(list(np.reshape(np.asarray(a),
|
94 |
+
(1, np.size(a)))[0]))[1:-1]
|
95 |
+
return Float(a, precision=prec)
|
96 |
+
except NotImplementedError:
|
97 |
+
raise SympifyError('Translation for numpy float : %s '
|
98 |
+
'is not implemented' % a)
|
99 |
+
|
100 |
+
|
101 |
+
def sympify(a, locals=None, convert_xor=True, strict=False, rational=False,
|
102 |
+
evaluate=None):
|
103 |
+
"""
|
104 |
+
Converts an arbitrary expression to a type that can be used inside SymPy.
|
105 |
+
|
106 |
+
Explanation
|
107 |
+
===========
|
108 |
+
|
109 |
+
It will convert Python ints into instances of :class:`~.Integer`, floats
|
110 |
+
into instances of :class:`~.Float`, etc. It is also able to coerce
|
111 |
+
symbolic expressions which inherit from :class:`~.Basic`. This can be
|
112 |
+
useful in cooperation with SAGE.
|
113 |
+
|
114 |
+
.. warning::
|
115 |
+
Note that this function uses ``eval``, and thus shouldn't be used on
|
116 |
+
unsanitized input.
|
117 |
+
|
118 |
+
If the argument is already a type that SymPy understands, it will do
|
119 |
+
nothing but return that value. This can be used at the beginning of a
|
120 |
+
function to ensure you are working with the correct type.
|
121 |
+
|
122 |
+
Examples
|
123 |
+
========
|
124 |
+
|
125 |
+
>>> from sympy import sympify
|
126 |
+
|
127 |
+
>>> sympify(2).is_integer
|
128 |
+
True
|
129 |
+
>>> sympify(2).is_real
|
130 |
+
True
|
131 |
+
|
132 |
+
>>> sympify(2.0).is_real
|
133 |
+
True
|
134 |
+
>>> sympify("2.0").is_real
|
135 |
+
True
|
136 |
+
>>> sympify("2e-45").is_real
|
137 |
+
True
|
138 |
+
|
139 |
+
If the expression could not be converted, a SympifyError is raised.
|
140 |
+
|
141 |
+
>>> sympify("x***2")
|
142 |
+
Traceback (most recent call last):
|
143 |
+
...
|
144 |
+
SympifyError: SympifyError: "could not parse 'x***2'"
|
145 |
+
|
146 |
+
Locals
|
147 |
+
------
|
148 |
+
|
149 |
+
The sympification happens with access to everything that is loaded
|
150 |
+
by ``from sympy import *``; anything used in a string that is not
|
151 |
+
defined by that import will be converted to a symbol. In the following,
|
152 |
+
the ``bitcount`` function is treated as a symbol and the ``O`` is
|
153 |
+
interpreted as the :class:`~.Order` object (used with series) and it raises
|
154 |
+
an error when used improperly:
|
155 |
+
|
156 |
+
>>> s = 'bitcount(42)'
|
157 |
+
>>> sympify(s)
|
158 |
+
bitcount(42)
|
159 |
+
>>> sympify("O(x)")
|
160 |
+
O(x)
|
161 |
+
>>> sympify("O + 1")
|
162 |
+
Traceback (most recent call last):
|
163 |
+
...
|
164 |
+
TypeError: unbound method...
|
165 |
+
|
166 |
+
In order to have ``bitcount`` be recognized it can be imported into a
|
167 |
+
namespace dictionary and passed as locals:
|
168 |
+
|
169 |
+
>>> ns = {}
|
170 |
+
>>> exec('from sympy.core.evalf import bitcount', ns)
|
171 |
+
>>> sympify(s, locals=ns)
|
172 |
+
6
|
173 |
+
|
174 |
+
In order to have the ``O`` interpreted as a Symbol, identify it as such
|
175 |
+
in the namespace dictionary. This can be done in a variety of ways; all
|
176 |
+
three of the following are possibilities:
|
177 |
+
|
178 |
+
>>> from sympy import Symbol
|
179 |
+
>>> ns["O"] = Symbol("O") # method 1
|
180 |
+
>>> exec('from sympy.abc import O', ns) # method 2
|
181 |
+
>>> ns.update(dict(O=Symbol("O"))) # method 3
|
182 |
+
>>> sympify("O + 1", locals=ns)
|
183 |
+
O + 1
|
184 |
+
|
185 |
+
If you want *all* single-letter and Greek-letter variables to be symbols
|
186 |
+
then you can use the clashing-symbols dictionaries that have been defined
|
187 |
+
there as private variables: ``_clash1`` (single-letter variables),
|
188 |
+
``_clash2`` (the multi-letter Greek names) or ``_clash`` (both single and
|
189 |
+
multi-letter names that are defined in ``abc``).
|
190 |
+
|
191 |
+
>>> from sympy.abc import _clash1
|
192 |
+
>>> set(_clash1) # if this fails, see issue #23903
|
193 |
+
{'E', 'I', 'N', 'O', 'Q', 'S'}
|
194 |
+
>>> sympify('I & Q', _clash1)
|
195 |
+
I & Q
|
196 |
+
|
197 |
+
Strict
|
198 |
+
------
|
199 |
+
|
200 |
+
If the option ``strict`` is set to ``True``, only the types for which an
|
201 |
+
explicit conversion has been defined are converted. In the other
|
202 |
+
cases, a SympifyError is raised.
|
203 |
+
|
204 |
+
>>> print(sympify(None))
|
205 |
+
None
|
206 |
+
>>> sympify(None, strict=True)
|
207 |
+
Traceback (most recent call last):
|
208 |
+
...
|
209 |
+
SympifyError: SympifyError: None
|
210 |
+
|
211 |
+
.. deprecated:: 1.6
|
212 |
+
|
213 |
+
``sympify(obj)`` automatically falls back to ``str(obj)`` when all
|
214 |
+
other conversion methods fail, but this is deprecated. ``strict=True``
|
215 |
+
will disable this deprecated behavior. See
|
216 |
+
:ref:`deprecated-sympify-string-fallback`.
|
217 |
+
|
218 |
+
Evaluation
|
219 |
+
----------
|
220 |
+
|
221 |
+
If the option ``evaluate`` is set to ``False``, then arithmetic and
|
222 |
+
operators will be converted into their SymPy equivalents and the
|
223 |
+
``evaluate=False`` option will be added. Nested ``Add`` or ``Mul`` will
|
224 |
+
be denested first. This is done via an AST transformation that replaces
|
225 |
+
operators with their SymPy equivalents, so if an operand redefines any
|
226 |
+
of those operations, the redefined operators will not be used. If
|
227 |
+
argument a is not a string, the mathematical expression is evaluated
|
228 |
+
before being passed to sympify, so adding ``evaluate=False`` will still
|
229 |
+
return the evaluated result of expression.
|
230 |
+
|
231 |
+
>>> sympify('2**2 / 3 + 5')
|
232 |
+
19/3
|
233 |
+
>>> sympify('2**2 / 3 + 5', evaluate=False)
|
234 |
+
2**2/3 + 5
|
235 |
+
>>> sympify('4/2+7', evaluate=True)
|
236 |
+
9
|
237 |
+
>>> sympify('4/2+7', evaluate=False)
|
238 |
+
4/2 + 7
|
239 |
+
>>> sympify(4/2+7, evaluate=False)
|
240 |
+
9.00000000000000
|
241 |
+
|
242 |
+
Extending
|
243 |
+
---------
|
244 |
+
|
245 |
+
To extend ``sympify`` to convert custom objects (not derived from ``Basic``),
|
246 |
+
just define a ``_sympy_`` method to your class. You can do that even to
|
247 |
+
classes that you do not own by subclassing or adding the method at runtime.
|
248 |
+
|
249 |
+
>>> from sympy import Matrix
|
250 |
+
>>> class MyList1(object):
|
251 |
+
... def __iter__(self):
|
252 |
+
... yield 1
|
253 |
+
... yield 2
|
254 |
+
... return
|
255 |
+
... def __getitem__(self, i): return list(self)[i]
|
256 |
+
... def _sympy_(self): return Matrix(self)
|
257 |
+
>>> sympify(MyList1())
|
258 |
+
Matrix([
|
259 |
+
[1],
|
260 |
+
[2]])
|
261 |
+
|
262 |
+
If you do not have control over the class definition you could also use the
|
263 |
+
``converter`` global dictionary. The key is the class and the value is a
|
264 |
+
function that takes a single argument and returns the desired SymPy
|
265 |
+
object, e.g. ``converter[MyList] = lambda x: Matrix(x)``.
|
266 |
+
|
267 |
+
>>> class MyList2(object): # XXX Do not do this if you control the class!
|
268 |
+
... def __iter__(self): # Use _sympy_!
|
269 |
+
... yield 1
|
270 |
+
... yield 2
|
271 |
+
... return
|
272 |
+
... def __getitem__(self, i): return list(self)[i]
|
273 |
+
>>> from sympy.core.sympify import converter
|
274 |
+
>>> converter[MyList2] = lambda x: Matrix(x)
|
275 |
+
>>> sympify(MyList2())
|
276 |
+
Matrix([
|
277 |
+
[1],
|
278 |
+
[2]])
|
279 |
+
|
280 |
+
Notes
|
281 |
+
=====
|
282 |
+
|
283 |
+
The keywords ``rational`` and ``convert_xor`` are only used
|
284 |
+
when the input is a string.
|
285 |
+
|
286 |
+
convert_xor
|
287 |
+
-----------
|
288 |
+
|
289 |
+
>>> sympify('x^y',convert_xor=True)
|
290 |
+
x**y
|
291 |
+
>>> sympify('x^y',convert_xor=False)
|
292 |
+
x ^ y
|
293 |
+
|
294 |
+
rational
|
295 |
+
--------
|
296 |
+
|
297 |
+
>>> sympify('0.1',rational=False)
|
298 |
+
0.1
|
299 |
+
>>> sympify('0.1',rational=True)
|
300 |
+
1/10
|
301 |
+
|
302 |
+
Sometimes autosimplification during sympification results in expressions
|
303 |
+
that are very different in structure than what was entered. Until such
|
304 |
+
autosimplification is no longer done, the ``kernS`` function might be of
|
305 |
+
some use. In the example below you can see how an expression reduces to
|
306 |
+
$-1$ by autosimplification, but does not do so when ``kernS`` is used.
|
307 |
+
|
308 |
+
>>> from sympy.core.sympify import kernS
|
309 |
+
>>> from sympy.abc import x
|
310 |
+
>>> -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
|
311 |
+
-1
|
312 |
+
>>> s = '-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1'
|
313 |
+
>>> sympify(s)
|
314 |
+
-1
|
315 |
+
>>> kernS(s)
|
316 |
+
-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
|
317 |
+
|
318 |
+
Parameters
|
319 |
+
==========
|
320 |
+
|
321 |
+
a :
|
322 |
+
- any object defined in SymPy
|
323 |
+
- standard numeric Python types: ``int``, ``long``, ``float``, ``Decimal``
|
324 |
+
- strings (like ``"0.09"``, ``"2e-19"`` or ``'sin(x)'``)
|
325 |
+
- booleans, including ``None`` (will leave ``None`` unchanged)
|
326 |
+
- dicts, lists, sets or tuples containing any of the above
|
327 |
+
|
328 |
+
convert_xor : bool, optional
|
329 |
+
If true, treats ``^`` as exponentiation.
|
330 |
+
If False, treats ``^`` as XOR itself.
|
331 |
+
Used only when input is a string.
|
332 |
+
|
333 |
+
locals : any object defined in SymPy, optional
|
334 |
+
In order to have strings be recognized it can be imported
|
335 |
+
into a namespace dictionary and passed as locals.
|
336 |
+
|
337 |
+
strict : bool, optional
|
338 |
+
If the option strict is set to ``True``, only the types for which
|
339 |
+
an explicit conversion has been defined are converted. In the
|
340 |
+
other cases, a SympifyError is raised.
|
341 |
+
|
342 |
+
rational : bool, optional
|
343 |
+
If ``True``, converts floats into :class:`~.Rational`.
|
344 |
+
If ``False``, it lets floats remain as it is.
|
345 |
+
Used only when input is a string.
|
346 |
+
|
347 |
+
evaluate : bool, optional
|
348 |
+
If False, then arithmetic and operators will be converted into
|
349 |
+
their SymPy equivalents. If True the expression will be evaluated
|
350 |
+
and the result will be returned.
|
351 |
+
|
352 |
+
"""
|
353 |
+
# XXX: If a is a Basic subclass rather than instance (e.g. sin rather than
|
354 |
+
# sin(x)) then a.__sympy__ will be the property. Only on the instance will
|
355 |
+
# a.__sympy__ give the *value* of the property (True). Since sympify(sin)
|
356 |
+
# was used for a long time we allow it to pass. However if strict=True as
|
357 |
+
# is the case in internal calls to _sympify then we only allow
|
358 |
+
# is_sympy=True.
|
359 |
+
#
|
360 |
+
# https://github.com/sympy/sympy/issues/20124
|
361 |
+
is_sympy = getattr(a, '__sympy__', None)
|
362 |
+
if is_sympy is True:
|
363 |
+
return a
|
364 |
+
elif is_sympy is not None:
|
365 |
+
if not strict:
|
366 |
+
return a
|
367 |
+
else:
|
368 |
+
raise SympifyError(a)
|
369 |
+
|
370 |
+
if isinstance(a, CantSympify):
|
371 |
+
raise SympifyError(a)
|
372 |
+
|
373 |
+
cls = getattr(a, "__class__", None)
|
374 |
+
|
375 |
+
#Check if there exists a converter for any of the types in the mro
|
376 |
+
for superclass in getmro(cls):
|
377 |
+
#First check for user defined converters
|
378 |
+
conv = _external_converter.get(superclass)
|
379 |
+
if conv is None:
|
380 |
+
#if none exists, check for SymPy defined converters
|
381 |
+
conv = _sympy_converter.get(superclass)
|
382 |
+
if conv is not None:
|
383 |
+
return conv(a)
|
384 |
+
|
385 |
+
if cls is type(None):
|
386 |
+
if strict:
|
387 |
+
raise SympifyError(a)
|
388 |
+
else:
|
389 |
+
return a
|
390 |
+
|
391 |
+
if evaluate is None:
|
392 |
+
evaluate = global_parameters.evaluate
|
393 |
+
|
394 |
+
# Support for basic numpy datatypes
|
395 |
+
if _is_numpy_instance(a):
|
396 |
+
import numpy as np
|
397 |
+
if np.isscalar(a):
|
398 |
+
return _convert_numpy_types(a, locals=locals,
|
399 |
+
convert_xor=convert_xor, strict=strict, rational=rational,
|
400 |
+
evaluate=evaluate)
|
401 |
+
|
402 |
+
_sympy_ = getattr(a, "_sympy_", None)
|
403 |
+
if _sympy_ is not None:
|
404 |
+
try:
|
405 |
+
return a._sympy_()
|
406 |
+
# XXX: Catches AttributeError: 'SymPyConverter' object has no
|
407 |
+
# attribute 'tuple'
|
408 |
+
# This is probably a bug somewhere but for now we catch it here.
|
409 |
+
except AttributeError:
|
410 |
+
pass
|
411 |
+
|
412 |
+
if not strict:
|
413 |
+
# Put numpy array conversion _before_ float/int, see
|
414 |
+
# <https://github.com/sympy/sympy/issues/13924>.
|
415 |
+
flat = getattr(a, "flat", None)
|
416 |
+
if flat is not None:
|
417 |
+
shape = getattr(a, "shape", None)
|
418 |
+
if shape is not None:
|
419 |
+
from sympy.tensor.array import Array
|
420 |
+
return Array(a.flat, a.shape) # works with e.g. NumPy arrays
|
421 |
+
|
422 |
+
if not isinstance(a, str):
|
423 |
+
if _is_numpy_instance(a):
|
424 |
+
import numpy as np
|
425 |
+
assert not isinstance(a, np.number)
|
426 |
+
if isinstance(a, np.ndarray):
|
427 |
+
# Scalar arrays (those with zero dimensions) have sympify
|
428 |
+
# called on the scalar element.
|
429 |
+
if a.ndim == 0:
|
430 |
+
try:
|
431 |
+
return sympify(a.item(),
|
432 |
+
locals=locals,
|
433 |
+
convert_xor=convert_xor,
|
434 |
+
strict=strict,
|
435 |
+
rational=rational,
|
436 |
+
evaluate=evaluate)
|
437 |
+
except SympifyError:
|
438 |
+
pass
|
439 |
+
else:
|
440 |
+
# float and int can coerce size-one numpy arrays to their lone
|
441 |
+
# element. See issue https://github.com/numpy/numpy/issues/10404.
|
442 |
+
for coerce in (float, int):
|
443 |
+
try:
|
444 |
+
return sympify(coerce(a))
|
445 |
+
except (TypeError, ValueError, AttributeError, SympifyError):
|
446 |
+
continue
|
447 |
+
|
448 |
+
if strict:
|
449 |
+
raise SympifyError(a)
|
450 |
+
|
451 |
+
if iterable(a):
|
452 |
+
try:
|
453 |
+
return type(a)([sympify(x, locals=locals, convert_xor=convert_xor,
|
454 |
+
rational=rational, evaluate=evaluate) for x in a])
|
455 |
+
except TypeError:
|
456 |
+
# Not all iterables are rebuildable with their type.
|
457 |
+
pass
|
458 |
+
|
459 |
+
if not isinstance(a, str):
|
460 |
+
try:
|
461 |
+
a = str(a)
|
462 |
+
except Exception as exc:
|
463 |
+
raise SympifyError(a, exc)
|
464 |
+
sympy_deprecation_warning(
|
465 |
+
f"""
|
466 |
+
The string fallback in sympify() is deprecated.
|
467 |
+
|
468 |
+
To explicitly convert the string form of an object, use
|
469 |
+
sympify(str(obj)). To add define sympify behavior on custom
|
470 |
+
objects, use sympy.core.sympify.converter or define obj._sympy_
|
471 |
+
(see the sympify() docstring).
|
472 |
+
|
473 |
+
sympify() performed the string fallback resulting in the following string:
|
474 |
+
|
475 |
+
{a!r}
|
476 |
+
""",
|
477 |
+
deprecated_since_version='1.6',
|
478 |
+
active_deprecations_target="deprecated-sympify-string-fallback",
|
479 |
+
)
|
480 |
+
|
481 |
+
from sympy.parsing.sympy_parser import (parse_expr, TokenError,
|
482 |
+
standard_transformations)
|
483 |
+
from sympy.parsing.sympy_parser import convert_xor as t_convert_xor
|
484 |
+
from sympy.parsing.sympy_parser import rationalize as t_rationalize
|
485 |
+
|
486 |
+
transformations = standard_transformations
|
487 |
+
|
488 |
+
if rational:
|
489 |
+
transformations += (t_rationalize,)
|
490 |
+
if convert_xor:
|
491 |
+
transformations += (t_convert_xor,)
|
492 |
+
|
493 |
+
try:
|
494 |
+
a = a.replace('\n', '')
|
495 |
+
expr = parse_expr(a, local_dict=locals, transformations=transformations, evaluate=evaluate)
|
496 |
+
except (TokenError, SyntaxError) as exc:
|
497 |
+
raise SympifyError('could not parse %r' % a, exc)
|
498 |
+
|
499 |
+
return expr
|
500 |
+
|
501 |
+
|
502 |
+
def _sympify(a):
|
503 |
+
"""
|
504 |
+
Short version of :func:`~.sympify` for internal usage for ``__add__`` and
|
505 |
+
``__eq__`` methods where it is ok to allow some things (like Python
|
506 |
+
integers and floats) in the expression. This excludes things (like strings)
|
507 |
+
that are unwise to allow into such an expression.
|
508 |
+
|
509 |
+
>>> from sympy import Integer
|
510 |
+
>>> Integer(1) == 1
|
511 |
+
True
|
512 |
+
|
513 |
+
>>> Integer(1) == '1'
|
514 |
+
False
|
515 |
+
|
516 |
+
>>> from sympy.abc import x
|
517 |
+
>>> x + 1
|
518 |
+
x + 1
|
519 |
+
|
520 |
+
>>> x + '1'
|
521 |
+
Traceback (most recent call last):
|
522 |
+
...
|
523 |
+
TypeError: unsupported operand type(s) for +: 'Symbol' and 'str'
|
524 |
+
|
525 |
+
see: sympify
|
526 |
+
|
527 |
+
"""
|
528 |
+
return sympify(a, strict=True)
|
529 |
+
|
530 |
+
|
531 |
+
def kernS(s):
|
532 |
+
"""Use a hack to try keep autosimplification from distributing a
|
533 |
+
a number into an Add; this modification does not
|
534 |
+
prevent the 2-arg Mul from becoming an Add, however.
|
535 |
+
|
536 |
+
Examples
|
537 |
+
========
|
538 |
+
|
539 |
+
>>> from sympy.core.sympify import kernS
|
540 |
+
>>> from sympy.abc import x, y
|
541 |
+
|
542 |
+
The 2-arg Mul distributes a number (or minus sign) across the terms
|
543 |
+
of an expression, but kernS will prevent that:
|
544 |
+
|
545 |
+
>>> 2*(x + y), -(x + 1)
|
546 |
+
(2*x + 2*y, -x - 1)
|
547 |
+
>>> kernS('2*(x + y)')
|
548 |
+
2*(x + y)
|
549 |
+
>>> kernS('-(x + 1)')
|
550 |
+
-(x + 1)
|
551 |
+
|
552 |
+
If use of the hack fails, the un-hacked string will be passed to sympify...
|
553 |
+
and you get what you get.
|
554 |
+
|
555 |
+
XXX This hack should not be necessary once issue 4596 has been resolved.
|
556 |
+
"""
|
557 |
+
hit = False
|
558 |
+
quoted = '"' in s or "'" in s
|
559 |
+
if '(' in s and not quoted:
|
560 |
+
if s.count('(') != s.count(")"):
|
561 |
+
raise SympifyError('unmatched left parenthesis')
|
562 |
+
|
563 |
+
# strip all space from s
|
564 |
+
s = ''.join(s.split())
|
565 |
+
olds = s
|
566 |
+
# now use space to represent a symbol that
|
567 |
+
# will
|
568 |
+
# step 1. turn potential 2-arg Muls into 3-arg versions
|
569 |
+
# 1a. *( -> * *(
|
570 |
+
s = s.replace('*(', '* *(')
|
571 |
+
# 1b. close up exponentials
|
572 |
+
s = s.replace('** *', '**')
|
573 |
+
# 2. handle the implied multiplication of a negated
|
574 |
+
# parenthesized expression in two steps
|
575 |
+
# 2a: -(...) --> -( *(...)
|
576 |
+
target = '-( *('
|
577 |
+
s = s.replace('-(', target)
|
578 |
+
# 2b: double the matching closing parenthesis
|
579 |
+
# -( *(...) --> -( *(...))
|
580 |
+
i = nest = 0
|
581 |
+
assert target.endswith('(') # assumption below
|
582 |
+
while True:
|
583 |
+
j = s.find(target, i)
|
584 |
+
if j == -1:
|
585 |
+
break
|
586 |
+
j += len(target) - 1
|
587 |
+
for j in range(j, len(s)):
|
588 |
+
if s[j] == "(":
|
589 |
+
nest += 1
|
590 |
+
elif s[j] == ")":
|
591 |
+
nest -= 1
|
592 |
+
if nest == 0:
|
593 |
+
break
|
594 |
+
s = s[:j] + ")" + s[j:]
|
595 |
+
i = j + 2 # the first char after 2nd )
|
596 |
+
if ' ' in s:
|
597 |
+
# get a unique kern
|
598 |
+
kern = '_'
|
599 |
+
while kern in s:
|
600 |
+
kern += choice(string.ascii_letters + string.digits)
|
601 |
+
s = s.replace(' ', kern)
|
602 |
+
hit = kern in s
|
603 |
+
else:
|
604 |
+
hit = False
|
605 |
+
|
606 |
+
for i in range(2):
|
607 |
+
try:
|
608 |
+
expr = sympify(s)
|
609 |
+
break
|
610 |
+
except TypeError: # the kern might cause unknown errors...
|
611 |
+
if hit:
|
612 |
+
s = olds # maybe it didn't like the kern; use un-kerned s
|
613 |
+
hit = False
|
614 |
+
continue
|
615 |
+
expr = sympify(s) # let original error raise
|
616 |
+
|
617 |
+
if not hit:
|
618 |
+
return expr
|
619 |
+
|
620 |
+
from .symbol import Symbol
|
621 |
+
rep = {Symbol(kern): 1}
|
622 |
+
def _clear(expr):
|
623 |
+
if isinstance(expr, (list, tuple, set)):
|
624 |
+
return type(expr)([_clear(e) for e in expr])
|
625 |
+
if hasattr(expr, 'subs'):
|
626 |
+
return expr.subs(rep, hack2=True)
|
627 |
+
return expr
|
628 |
+
expr = _clear(expr)
|
629 |
+
# hope that kern is not there anymore
|
630 |
+
return expr
|
631 |
+
|
632 |
+
|
633 |
+
# Avoid circular import
|
634 |
+
from .basic import Basic
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_args.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_arit.py
ADDED
@@ -0,0 +1,2463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.add import Add
|
2 |
+
from sympy.core.basic import Basic
|
3 |
+
from sympy.core.mod import Mod
|
4 |
+
from sympy.core.mul import Mul
|
5 |
+
from sympy.core.numbers import (Float, I, Integer, Rational, comp, nan,
|
6 |
+
oo, pi, zoo)
|
7 |
+
from sympy.core.power import Pow
|
8 |
+
from sympy.core.singleton import S
|
9 |
+
from sympy.core.symbol import (Dummy, Symbol, symbols)
|
10 |
+
from sympy.core.sympify import sympify
|
11 |
+
from sympy.functions.combinatorial.factorials import factorial
|
12 |
+
from sympy.functions.elementary.complexes import (im, re, sign)
|
13 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
14 |
+
from sympy.functions.elementary.integers import floor
|
15 |
+
from sympy.functions.elementary.miscellaneous import (Max, sqrt)
|
16 |
+
from sympy.functions.elementary.trigonometric import (atan, cos, sin)
|
17 |
+
from sympy.polys.polytools import Poly
|
18 |
+
from sympy.sets.sets import FiniteSet
|
19 |
+
|
20 |
+
from sympy.core.parameters import distribute, evaluate
|
21 |
+
from sympy.core.expr import unchanged
|
22 |
+
from sympy.utilities.iterables import permutations
|
23 |
+
from sympy.testing.pytest import XFAIL, raises, warns
|
24 |
+
from sympy.utilities.exceptions import SymPyDeprecationWarning
|
25 |
+
from sympy.core.random import verify_numerically
|
26 |
+
from sympy.functions.elementary.trigonometric import asin
|
27 |
+
|
28 |
+
from itertools import product
|
29 |
+
|
30 |
+
a, c, x, y, z = symbols('a,c,x,y,z')
|
31 |
+
b = Symbol("b", positive=True)
|
32 |
+
|
33 |
+
|
34 |
+
def same_and_same_prec(a, b):
|
35 |
+
# stricter matching for Floats
|
36 |
+
return a == b and a._prec == b._prec
|
37 |
+
|
38 |
+
|
39 |
+
def test_bug1():
|
40 |
+
assert re(x) != x
|
41 |
+
x.series(x, 0, 1)
|
42 |
+
assert re(x) != x
|
43 |
+
|
44 |
+
|
45 |
+
def test_Symbol():
|
46 |
+
e = a*b
|
47 |
+
assert e == a*b
|
48 |
+
assert a*b*b == a*b**2
|
49 |
+
assert a*b*b + c == c + a*b**2
|
50 |
+
assert a*b*b - c == -c + a*b**2
|
51 |
+
|
52 |
+
x = Symbol('x', complex=True, real=False)
|
53 |
+
assert x.is_imaginary is None # could be I or 1 + I
|
54 |
+
x = Symbol('x', complex=True, imaginary=False)
|
55 |
+
assert x.is_real is None # could be 1 or 1 + I
|
56 |
+
x = Symbol('x', real=True)
|
57 |
+
assert x.is_complex
|
58 |
+
x = Symbol('x', imaginary=True)
|
59 |
+
assert x.is_complex
|
60 |
+
x = Symbol('x', real=False, imaginary=False)
|
61 |
+
assert x.is_complex is None # might be a non-number
|
62 |
+
|
63 |
+
|
64 |
+
def test_arit0():
|
65 |
+
p = Rational(5)
|
66 |
+
e = a*b
|
67 |
+
assert e == a*b
|
68 |
+
e = a*b + b*a
|
69 |
+
assert e == 2*a*b
|
70 |
+
e = a*b + b*a + a*b + p*b*a
|
71 |
+
assert e == 8*a*b
|
72 |
+
e = a*b + b*a + a*b + p*b*a + a
|
73 |
+
assert e == a + 8*a*b
|
74 |
+
e = a + a
|
75 |
+
assert e == 2*a
|
76 |
+
e = a + b + a
|
77 |
+
assert e == b + 2*a
|
78 |
+
e = a + b*b + a + b*b
|
79 |
+
assert e == 2*a + 2*b**2
|
80 |
+
e = a + Rational(2) + b*b + a + b*b + p
|
81 |
+
assert e == 7 + 2*a + 2*b**2
|
82 |
+
e = (a + b*b + a + b*b)*p
|
83 |
+
assert e == 5*(2*a + 2*b**2)
|
84 |
+
e = (a*b*c + c*b*a + b*a*c)*p
|
85 |
+
assert e == 15*a*b*c
|
86 |
+
e = (a*b*c + c*b*a + b*a*c)*p - Rational(15)*a*b*c
|
87 |
+
assert e == Rational(0)
|
88 |
+
e = Rational(50)*(a - a)
|
89 |
+
assert e == Rational(0)
|
90 |
+
e = b*a - b - a*b + b
|
91 |
+
assert e == Rational(0)
|
92 |
+
e = a*b + c**p
|
93 |
+
assert e == a*b + c**5
|
94 |
+
e = a/b
|
95 |
+
assert e == a*b**(-1)
|
96 |
+
e = a*2*2
|
97 |
+
assert e == 4*a
|
98 |
+
e = 2 + a*2/2
|
99 |
+
assert e == 2 + a
|
100 |
+
e = 2 - a - 2
|
101 |
+
assert e == -a
|
102 |
+
e = 2*a*2
|
103 |
+
assert e == 4*a
|
104 |
+
e = 2/a/2
|
105 |
+
assert e == a**(-1)
|
106 |
+
e = 2**a**2
|
107 |
+
assert e == 2**(a**2)
|
108 |
+
e = -(1 + a)
|
109 |
+
assert e == -1 - a
|
110 |
+
e = S.Half*(1 + a)
|
111 |
+
assert e == S.Half + a/2
|
112 |
+
|
113 |
+
|
114 |
+
def test_div():
|
115 |
+
e = a/b
|
116 |
+
assert e == a*b**(-1)
|
117 |
+
e = a/b + c/2
|
118 |
+
assert e == a*b**(-1) + Rational(1)/2*c
|
119 |
+
e = (1 - b)/(b - 1)
|
120 |
+
assert e == (1 + -b)*((-1) + b)**(-1)
|
121 |
+
|
122 |
+
|
123 |
+
def test_pow_arit():
|
124 |
+
n1 = Rational(1)
|
125 |
+
n2 = Rational(2)
|
126 |
+
n5 = Rational(5)
|
127 |
+
e = a*a
|
128 |
+
assert e == a**2
|
129 |
+
e = a*a*a
|
130 |
+
assert e == a**3
|
131 |
+
e = a*a*a*a**Rational(6)
|
132 |
+
assert e == a**9
|
133 |
+
e = a*a*a*a**Rational(6) - a**Rational(9)
|
134 |
+
assert e == Rational(0)
|
135 |
+
e = a**(b - b)
|
136 |
+
assert e == Rational(1)
|
137 |
+
e = (a + Rational(1) - a)**b
|
138 |
+
assert e == Rational(1)
|
139 |
+
|
140 |
+
e = (a + b + c)**n2
|
141 |
+
assert e == (a + b + c)**2
|
142 |
+
assert e.expand() == 2*b*c + 2*a*c + 2*a*b + a**2 + c**2 + b**2
|
143 |
+
|
144 |
+
e = (a + b)**n2
|
145 |
+
assert e == (a + b)**2
|
146 |
+
assert e.expand() == 2*a*b + a**2 + b**2
|
147 |
+
|
148 |
+
e = (a + b)**(n1/n2)
|
149 |
+
assert e == sqrt(a + b)
|
150 |
+
assert e.expand() == sqrt(a + b)
|
151 |
+
|
152 |
+
n = n5**(n1/n2)
|
153 |
+
assert n == sqrt(5)
|
154 |
+
e = n*a*b - n*b*a
|
155 |
+
assert e == Rational(0)
|
156 |
+
e = n*a*b + n*b*a
|
157 |
+
assert e == 2*a*b*sqrt(5)
|
158 |
+
assert e.diff(a) == 2*b*sqrt(5)
|
159 |
+
assert e.diff(a) == 2*b*sqrt(5)
|
160 |
+
e = a/b**2
|
161 |
+
assert e == a*b**(-2)
|
162 |
+
|
163 |
+
assert sqrt(2*(1 + sqrt(2))) == (2*(1 + 2**S.Half))**S.Half
|
164 |
+
|
165 |
+
x = Symbol('x')
|
166 |
+
y = Symbol('y')
|
167 |
+
|
168 |
+
assert ((x*y)**3).expand() == y**3 * x**3
|
169 |
+
assert ((x*y)**-3).expand() == y**-3 * x**-3
|
170 |
+
|
171 |
+
assert (x**5*(3*x)**(3)).expand() == 27 * x**8
|
172 |
+
assert (x**5*(-3*x)**(3)).expand() == -27 * x**8
|
173 |
+
assert (x**5*(3*x)**(-3)).expand() == x**2 * Rational(1, 27)
|
174 |
+
assert (x**5*(-3*x)**(-3)).expand() == x**2 * Rational(-1, 27)
|
175 |
+
|
176 |
+
# expand_power_exp
|
177 |
+
_x = Symbol('x', zero=False)
|
178 |
+
_y = Symbol('y', zero=False)
|
179 |
+
assert (_x**(y**(x + exp(x + y)) + z)).expand(deep=False) == \
|
180 |
+
_x**z*_x**(y**(x + exp(x + y)))
|
181 |
+
assert (_x**(_y**(x + exp(x + y)) + z)).expand() == \
|
182 |
+
_x**z*_x**(_y**x*_y**(exp(x)*exp(y)))
|
183 |
+
|
184 |
+
n = Symbol('n', even=False)
|
185 |
+
k = Symbol('k', even=True)
|
186 |
+
o = Symbol('o', odd=True)
|
187 |
+
|
188 |
+
assert unchanged(Pow, -1, x)
|
189 |
+
assert unchanged(Pow, -1, n)
|
190 |
+
assert (-2)**k == 2**k
|
191 |
+
assert (-1)**k == 1
|
192 |
+
assert (-1)**o == -1
|
193 |
+
|
194 |
+
|
195 |
+
def test_pow2():
|
196 |
+
# x**(2*y) is always (x**y)**2 but is only (x**2)**y if
|
197 |
+
# x.is_positive or y.is_integer
|
198 |
+
# let x = 1 to see why the following are not true.
|
199 |
+
assert (-x)**Rational(2, 3) != x**Rational(2, 3)
|
200 |
+
assert (-x)**Rational(5, 7) != -x**Rational(5, 7)
|
201 |
+
assert ((-x)**2)**Rational(1, 3) != ((-x)**Rational(1, 3))**2
|
202 |
+
assert sqrt(x**2) != x
|
203 |
+
|
204 |
+
|
205 |
+
def test_pow3():
|
206 |
+
assert sqrt(2)**3 == 2 * sqrt(2)
|
207 |
+
assert sqrt(2)**3 == sqrt(8)
|
208 |
+
|
209 |
+
|
210 |
+
def test_mod_pow():
|
211 |
+
for s, t, u, v in [(4, 13, 497, 445), (4, -3, 497, 365),
|
212 |
+
(3.2, 2.1, 1.9, 0.1031015682350942), (S(3)/2, 5, S(5)/6, S(3)/32)]:
|
213 |
+
assert pow(S(s), t, u) == v
|
214 |
+
assert pow(S(s), S(t), u) == v
|
215 |
+
assert pow(S(s), t, S(u)) == v
|
216 |
+
assert pow(S(s), S(t), S(u)) == v
|
217 |
+
assert pow(S(2), S(10000000000), S(3)) == 1
|
218 |
+
assert pow(x, y, z) == x**y%z
|
219 |
+
raises(TypeError, lambda: pow(S(4), "13", 497))
|
220 |
+
raises(TypeError, lambda: pow(S(4), 13, "497"))
|
221 |
+
|
222 |
+
|
223 |
+
def test_pow_E():
|
224 |
+
assert 2**(y/log(2)) == S.Exp1**y
|
225 |
+
assert 2**(y/log(2)/3) == S.Exp1**(y/3)
|
226 |
+
assert 3**(1/log(-3)) != S.Exp1
|
227 |
+
assert (3 + 2*I)**(1/(log(-3 - 2*I) + I*pi)) == S.Exp1
|
228 |
+
assert (4 + 2*I)**(1/(log(-4 - 2*I) + I*pi)) == S.Exp1
|
229 |
+
assert (3 + 2*I)**(1/(log(-3 - 2*I, 3)/2 + I*pi/log(3)/2)) == 9
|
230 |
+
assert (3 + 2*I)**(1/(log(3 + 2*I, 3)/2)) == 9
|
231 |
+
# every time tests are run they will affirm with a different random
|
232 |
+
# value that this identity holds
|
233 |
+
while 1:
|
234 |
+
b = x._random()
|
235 |
+
r, i = b.as_real_imag()
|
236 |
+
if i:
|
237 |
+
break
|
238 |
+
assert verify_numerically(b**(1/(log(-b) + sign(i)*I*pi).n()), S.Exp1)
|
239 |
+
|
240 |
+
|
241 |
+
def test_pow_issue_3516():
|
242 |
+
assert 4**Rational(1, 4) == sqrt(2)
|
243 |
+
|
244 |
+
|
245 |
+
def test_pow_im():
|
246 |
+
for m in (-2, -1, 2):
|
247 |
+
for d in (3, 4, 5):
|
248 |
+
b = m*I
|
249 |
+
for i in range(1, 4*d + 1):
|
250 |
+
e = Rational(i, d)
|
251 |
+
assert (b**e - b.n()**e.n()).n(2, chop=1e-10) == 0
|
252 |
+
|
253 |
+
e = Rational(7, 3)
|
254 |
+
assert (2*x*I)**e == 4*2**Rational(1, 3)*(I*x)**e # same as Wolfram Alpha
|
255 |
+
im = symbols('im', imaginary=True)
|
256 |
+
assert (2*im*I)**e == 4*2**Rational(1, 3)*(I*im)**e
|
257 |
+
|
258 |
+
args = [I, I, I, I, 2]
|
259 |
+
e = Rational(1, 3)
|
260 |
+
ans = 2**e
|
261 |
+
assert Mul(*args, evaluate=False)**e == ans
|
262 |
+
assert Mul(*args)**e == ans
|
263 |
+
args = [I, I, I, 2]
|
264 |
+
e = Rational(1, 3)
|
265 |
+
ans = 2**e*(-I)**e
|
266 |
+
assert Mul(*args, evaluate=False)**e == ans
|
267 |
+
assert Mul(*args)**e == ans
|
268 |
+
args.append(-3)
|
269 |
+
ans = (6*I)**e
|
270 |
+
assert Mul(*args, evaluate=False)**e == ans
|
271 |
+
assert Mul(*args)**e == ans
|
272 |
+
args.append(-1)
|
273 |
+
ans = (-6*I)**e
|
274 |
+
assert Mul(*args, evaluate=False)**e == ans
|
275 |
+
assert Mul(*args)**e == ans
|
276 |
+
|
277 |
+
args = [I, I, 2]
|
278 |
+
e = Rational(1, 3)
|
279 |
+
ans = (-2)**e
|
280 |
+
assert Mul(*args, evaluate=False)**e == ans
|
281 |
+
assert Mul(*args)**e == ans
|
282 |
+
args.append(-3)
|
283 |
+
ans = (6)**e
|
284 |
+
assert Mul(*args, evaluate=False)**e == ans
|
285 |
+
assert Mul(*args)**e == ans
|
286 |
+
args.append(-1)
|
287 |
+
ans = (-6)**e
|
288 |
+
assert Mul(*args, evaluate=False)**e == ans
|
289 |
+
assert Mul(*args)**e == ans
|
290 |
+
assert Mul(Pow(-1, Rational(3, 2), evaluate=False), I, I) == I
|
291 |
+
assert Mul(I*Pow(I, S.Half, evaluate=False)) == sqrt(I)*I
|
292 |
+
|
293 |
+
|
294 |
+
def test_real_mul():
|
295 |
+
assert Float(0) * pi * x == 0
|
296 |
+
assert set((Float(1) * pi * x).args) == {Float(1), pi, x}
|
297 |
+
|
298 |
+
|
299 |
+
def test_ncmul():
|
300 |
+
A = Symbol("A", commutative=False)
|
301 |
+
B = Symbol("B", commutative=False)
|
302 |
+
C = Symbol("C", commutative=False)
|
303 |
+
assert A*B != B*A
|
304 |
+
assert A*B*C != C*B*A
|
305 |
+
assert A*b*B*3*C == 3*b*A*B*C
|
306 |
+
assert A*b*B*3*C != 3*b*B*A*C
|
307 |
+
assert A*b*B*3*C == 3*A*B*C*b
|
308 |
+
|
309 |
+
assert A + B == B + A
|
310 |
+
assert (A + B)*C != C*(A + B)
|
311 |
+
|
312 |
+
assert C*(A + B)*C != C*C*(A + B)
|
313 |
+
|
314 |
+
assert A*A == A**2
|
315 |
+
assert (A + B)*(A + B) == (A + B)**2
|
316 |
+
|
317 |
+
assert A**-1 * A == 1
|
318 |
+
assert A/A == 1
|
319 |
+
assert A/(A**2) == 1/A
|
320 |
+
|
321 |
+
assert A/(1 + A) == A/(1 + A)
|
322 |
+
|
323 |
+
assert set((A + B + 2*(A + B)).args) == \
|
324 |
+
{A, B, 2*(A + B)}
|
325 |
+
|
326 |
+
|
327 |
+
def test_mul_add_identity():
|
328 |
+
m = Mul(1, 2)
|
329 |
+
assert isinstance(m, Rational) and m.p == 2 and m.q == 1
|
330 |
+
m = Mul(1, 2, evaluate=False)
|
331 |
+
assert isinstance(m, Mul) and m.args == (1, 2)
|
332 |
+
m = Mul(0, 1)
|
333 |
+
assert m is S.Zero
|
334 |
+
m = Mul(0, 1, evaluate=False)
|
335 |
+
assert isinstance(m, Mul) and m.args == (0, 1)
|
336 |
+
m = Add(0, 1)
|
337 |
+
assert m is S.One
|
338 |
+
m = Add(0, 1, evaluate=False)
|
339 |
+
assert isinstance(m, Add) and m.args == (0, 1)
|
340 |
+
|
341 |
+
|
342 |
+
def test_ncpow():
|
343 |
+
x = Symbol('x', commutative=False)
|
344 |
+
y = Symbol('y', commutative=False)
|
345 |
+
z = Symbol('z', commutative=False)
|
346 |
+
a = Symbol('a')
|
347 |
+
b = Symbol('b')
|
348 |
+
c = Symbol('c')
|
349 |
+
|
350 |
+
assert (x**2)*(y**2) != (y**2)*(x**2)
|
351 |
+
assert (x**-2)*y != y*(x**2)
|
352 |
+
assert 2**x*2**y != 2**(x + y)
|
353 |
+
assert 2**x*2**y*2**z != 2**(x + y + z)
|
354 |
+
assert 2**x*2**(2*x) == 2**(3*x)
|
355 |
+
assert 2**x*2**(2*x)*2**x == 2**(4*x)
|
356 |
+
assert exp(x)*exp(y) != exp(y)*exp(x)
|
357 |
+
assert exp(x)*exp(y)*exp(z) != exp(y)*exp(x)*exp(z)
|
358 |
+
assert exp(x)*exp(y)*exp(z) != exp(x + y + z)
|
359 |
+
assert x**a*x**b != x**(a + b)
|
360 |
+
assert x**a*x**b*x**c != x**(a + b + c)
|
361 |
+
assert x**3*x**4 == x**7
|
362 |
+
assert x**3*x**4*x**2 == x**9
|
363 |
+
assert x**a*x**(4*a) == x**(5*a)
|
364 |
+
assert x**a*x**(4*a)*x**a == x**(6*a)
|
365 |
+
|
366 |
+
|
367 |
+
def test_powerbug():
|
368 |
+
x = Symbol("x")
|
369 |
+
assert x**1 != (-x)**1
|
370 |
+
assert x**2 == (-x)**2
|
371 |
+
assert x**3 != (-x)**3
|
372 |
+
assert x**4 == (-x)**4
|
373 |
+
assert x**5 != (-x)**5
|
374 |
+
assert x**6 == (-x)**6
|
375 |
+
|
376 |
+
assert x**128 == (-x)**128
|
377 |
+
assert x**129 != (-x)**129
|
378 |
+
|
379 |
+
assert (2*x)**2 == (-2*x)**2
|
380 |
+
|
381 |
+
|
382 |
+
def test_Mul_doesnt_expand_exp():
|
383 |
+
x = Symbol('x')
|
384 |
+
y = Symbol('y')
|
385 |
+
assert unchanged(Mul, exp(x), exp(y))
|
386 |
+
assert unchanged(Mul, 2**x, 2**y)
|
387 |
+
assert x**2*x**3 == x**5
|
388 |
+
assert 2**x*3**x == 6**x
|
389 |
+
assert x**(y)*x**(2*y) == x**(3*y)
|
390 |
+
assert sqrt(2)*sqrt(2) == 2
|
391 |
+
assert 2**x*2**(2*x) == 2**(3*x)
|
392 |
+
assert sqrt(2)*2**Rational(1, 4)*5**Rational(3, 4) == 10**Rational(3, 4)
|
393 |
+
assert (x**(-log(5)/log(3))*x)/(x*x**( - log(5)/log(3))) == sympify(1)
|
394 |
+
|
395 |
+
|
396 |
+
def test_Mul_is_integer():
|
397 |
+
k = Symbol('k', integer=True)
|
398 |
+
n = Symbol('n', integer=True)
|
399 |
+
nr = Symbol('nr', rational=False)
|
400 |
+
ir = Symbol('ir', irrational=True)
|
401 |
+
nz = Symbol('nz', integer=True, zero=False)
|
402 |
+
e = Symbol('e', even=True)
|
403 |
+
o = Symbol('o', odd=True)
|
404 |
+
i2 = Symbol('2', prime=True, even=True)
|
405 |
+
|
406 |
+
assert (k/3).is_integer is None
|
407 |
+
assert (nz/3).is_integer is None
|
408 |
+
assert (nr/3).is_integer is False
|
409 |
+
assert (ir/3).is_integer is False
|
410 |
+
assert (x*k*n).is_integer is None
|
411 |
+
assert (e/2).is_integer is True
|
412 |
+
assert (e**2/2).is_integer is True
|
413 |
+
assert (2/k).is_integer is None
|
414 |
+
assert (2/k**2).is_integer is None
|
415 |
+
assert ((-1)**k*n).is_integer is True
|
416 |
+
assert (3*k*e/2).is_integer is True
|
417 |
+
assert (2*k*e/3).is_integer is None
|
418 |
+
assert (e/o).is_integer is None
|
419 |
+
assert (o/e).is_integer is False
|
420 |
+
assert (o/i2).is_integer is False
|
421 |
+
assert Mul(k, 1/k, evaluate=False).is_integer is None
|
422 |
+
assert Mul(2., S.Half, evaluate=False).is_integer is None
|
423 |
+
assert (2*sqrt(k)).is_integer is None
|
424 |
+
assert (2*k**n).is_integer is None
|
425 |
+
|
426 |
+
s = 2**2**2**Pow(2, 1000, evaluate=False)
|
427 |
+
m = Mul(s, s, evaluate=False)
|
428 |
+
assert m.is_integer
|
429 |
+
|
430 |
+
# broken in 1.6 and before, see #20161
|
431 |
+
xq = Symbol('xq', rational=True)
|
432 |
+
yq = Symbol('yq', rational=True)
|
433 |
+
assert (xq*yq).is_integer is None
|
434 |
+
e_20161 = Mul(-1,Mul(1,Pow(2,-1,evaluate=False),evaluate=False),evaluate=False)
|
435 |
+
assert e_20161.is_integer is not True # expand(e_20161) -> -1/2, but no need to see that in the assumption without evaluation
|
436 |
+
|
437 |
+
|
438 |
+
def test_Add_Mul_is_integer():
|
439 |
+
x = Symbol('x')
|
440 |
+
|
441 |
+
k = Symbol('k', integer=True)
|
442 |
+
n = Symbol('n', integer=True)
|
443 |
+
nk = Symbol('nk', integer=False)
|
444 |
+
nr = Symbol('nr', rational=False)
|
445 |
+
nz = Symbol('nz', integer=True, zero=False)
|
446 |
+
|
447 |
+
assert (-nk).is_integer is None
|
448 |
+
assert (-nr).is_integer is False
|
449 |
+
assert (2*k).is_integer is True
|
450 |
+
assert (-k).is_integer is True
|
451 |
+
|
452 |
+
assert (k + nk).is_integer is False
|
453 |
+
assert (k + n).is_integer is True
|
454 |
+
assert (k + x).is_integer is None
|
455 |
+
assert (k + n*x).is_integer is None
|
456 |
+
assert (k + n/3).is_integer is None
|
457 |
+
assert (k + nz/3).is_integer is None
|
458 |
+
assert (k + nr/3).is_integer is False
|
459 |
+
|
460 |
+
assert ((1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False
|
461 |
+
assert (1 + (1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False
|
462 |
+
|
463 |
+
|
464 |
+
def test_Add_Mul_is_finite():
|
465 |
+
x = Symbol('x', extended_real=True, finite=False)
|
466 |
+
|
467 |
+
assert sin(x).is_finite is True
|
468 |
+
assert (x*sin(x)).is_finite is None
|
469 |
+
assert (x*atan(x)).is_finite is False
|
470 |
+
assert (1024*sin(x)).is_finite is True
|
471 |
+
assert (sin(x)*exp(x)).is_finite is None
|
472 |
+
assert (sin(x)*cos(x)).is_finite is True
|
473 |
+
assert (x*sin(x)*exp(x)).is_finite is None
|
474 |
+
|
475 |
+
assert (sin(x) - 67).is_finite is True
|
476 |
+
assert (sin(x) + exp(x)).is_finite is not True
|
477 |
+
assert (1 + x).is_finite is False
|
478 |
+
assert (1 + x**2 + (1 + x)*(1 - x)).is_finite is None
|
479 |
+
assert (sqrt(2)*(1 + x)).is_finite is False
|
480 |
+
assert (sqrt(2)*(1 + x)*(1 - x)).is_finite is False
|
481 |
+
|
482 |
+
|
483 |
+
def test_Mul_is_even_odd():
|
484 |
+
x = Symbol('x', integer=True)
|
485 |
+
y = Symbol('y', integer=True)
|
486 |
+
|
487 |
+
k = Symbol('k', odd=True)
|
488 |
+
n = Symbol('n', odd=True)
|
489 |
+
m = Symbol('m', even=True)
|
490 |
+
|
491 |
+
assert (2*x).is_even is True
|
492 |
+
assert (2*x).is_odd is False
|
493 |
+
|
494 |
+
assert (3*x).is_even is None
|
495 |
+
assert (3*x).is_odd is None
|
496 |
+
|
497 |
+
assert (k/3).is_integer is None
|
498 |
+
assert (k/3).is_even is None
|
499 |
+
assert (k/3).is_odd is None
|
500 |
+
|
501 |
+
assert (2*n).is_even is True
|
502 |
+
assert (2*n).is_odd is False
|
503 |
+
|
504 |
+
assert (2*m).is_even is True
|
505 |
+
assert (2*m).is_odd is False
|
506 |
+
|
507 |
+
assert (-n).is_even is False
|
508 |
+
assert (-n).is_odd is True
|
509 |
+
|
510 |
+
assert (k*n).is_even is False
|
511 |
+
assert (k*n).is_odd is True
|
512 |
+
|
513 |
+
assert (k*m).is_even is True
|
514 |
+
assert (k*m).is_odd is False
|
515 |
+
|
516 |
+
assert (k*n*m).is_even is True
|
517 |
+
assert (k*n*m).is_odd is False
|
518 |
+
|
519 |
+
assert (k*m*x).is_even is True
|
520 |
+
assert (k*m*x).is_odd is False
|
521 |
+
|
522 |
+
# issue 6791:
|
523 |
+
assert (x/2).is_integer is None
|
524 |
+
assert (k/2).is_integer is False
|
525 |
+
assert (m/2).is_integer is True
|
526 |
+
|
527 |
+
assert (x*y).is_even is None
|
528 |
+
assert (x*x).is_even is None
|
529 |
+
assert (x*(x + k)).is_even is True
|
530 |
+
assert (x*(x + m)).is_even is None
|
531 |
+
|
532 |
+
assert (x*y).is_odd is None
|
533 |
+
assert (x*x).is_odd is None
|
534 |
+
assert (x*(x + k)).is_odd is False
|
535 |
+
assert (x*(x + m)).is_odd is None
|
536 |
+
|
537 |
+
# issue 8648
|
538 |
+
assert (m**2/2).is_even
|
539 |
+
assert (m**2/3).is_even is False
|
540 |
+
assert (2/m**2).is_odd is False
|
541 |
+
assert (2/m).is_odd is None
|
542 |
+
|
543 |
+
|
544 |
+
@XFAIL
|
545 |
+
def test_evenness_in_ternary_integer_product_with_odd():
|
546 |
+
# Tests that oddness inference is independent of term ordering.
|
547 |
+
# Term ordering at the point of testing depends on SymPy's symbol order, so
|
548 |
+
# we try to force a different order by modifying symbol names.
|
549 |
+
x = Symbol('x', integer=True)
|
550 |
+
y = Symbol('y', integer=True)
|
551 |
+
k = Symbol('k', odd=True)
|
552 |
+
assert (x*y*(y + k)).is_even is True
|
553 |
+
assert (y*x*(x + k)).is_even is True
|
554 |
+
|
555 |
+
|
556 |
+
def test_evenness_in_ternary_integer_product_with_even():
|
557 |
+
x = Symbol('x', integer=True)
|
558 |
+
y = Symbol('y', integer=True)
|
559 |
+
m = Symbol('m', even=True)
|
560 |
+
assert (x*y*(y + m)).is_even is None
|
561 |
+
|
562 |
+
|
563 |
+
@XFAIL
|
564 |
+
def test_oddness_in_ternary_integer_product_with_odd():
|
565 |
+
# Tests that oddness inference is independent of term ordering.
|
566 |
+
# Term ordering at the point of testing depends on SymPy's symbol order, so
|
567 |
+
# we try to force a different order by modifying symbol names.
|
568 |
+
x = Symbol('x', integer=True)
|
569 |
+
y = Symbol('y', integer=True)
|
570 |
+
k = Symbol('k', odd=True)
|
571 |
+
assert (x*y*(y + k)).is_odd is False
|
572 |
+
assert (y*x*(x + k)).is_odd is False
|
573 |
+
|
574 |
+
|
575 |
+
def test_oddness_in_ternary_integer_product_with_even():
|
576 |
+
x = Symbol('x', integer=True)
|
577 |
+
y = Symbol('y', integer=True)
|
578 |
+
m = Symbol('m', even=True)
|
579 |
+
assert (x*y*(y + m)).is_odd is None
|
580 |
+
|
581 |
+
|
582 |
+
def test_Mul_is_rational():
|
583 |
+
x = Symbol('x')
|
584 |
+
n = Symbol('n', integer=True)
|
585 |
+
m = Symbol('m', integer=True, nonzero=True)
|
586 |
+
|
587 |
+
assert (n/m).is_rational is True
|
588 |
+
assert (x/pi).is_rational is None
|
589 |
+
assert (x/n).is_rational is None
|
590 |
+
assert (m/pi).is_rational is False
|
591 |
+
|
592 |
+
r = Symbol('r', rational=True)
|
593 |
+
assert (pi*r).is_rational is None
|
594 |
+
|
595 |
+
# issue 8008
|
596 |
+
z = Symbol('z', zero=True)
|
597 |
+
i = Symbol('i', imaginary=True)
|
598 |
+
assert (z*i).is_rational is True
|
599 |
+
bi = Symbol('i', imaginary=True, finite=True)
|
600 |
+
assert (z*bi).is_zero is True
|
601 |
+
|
602 |
+
|
603 |
+
def test_Add_is_rational():
|
604 |
+
x = Symbol('x')
|
605 |
+
n = Symbol('n', rational=True)
|
606 |
+
m = Symbol('m', rational=True)
|
607 |
+
|
608 |
+
assert (n + m).is_rational is True
|
609 |
+
assert (x + pi).is_rational is None
|
610 |
+
assert (x + n).is_rational is None
|
611 |
+
assert (n + pi).is_rational is False
|
612 |
+
|
613 |
+
|
614 |
+
def test_Add_is_even_odd():
|
615 |
+
x = Symbol('x', integer=True)
|
616 |
+
|
617 |
+
k = Symbol('k', odd=True)
|
618 |
+
n = Symbol('n', odd=True)
|
619 |
+
m = Symbol('m', even=True)
|
620 |
+
|
621 |
+
assert (k + 7).is_even is True
|
622 |
+
assert (k + 7).is_odd is False
|
623 |
+
|
624 |
+
assert (-k + 7).is_even is True
|
625 |
+
assert (-k + 7).is_odd is False
|
626 |
+
|
627 |
+
assert (k - 12).is_even is False
|
628 |
+
assert (k - 12).is_odd is True
|
629 |
+
|
630 |
+
assert (-k - 12).is_even is False
|
631 |
+
assert (-k - 12).is_odd is True
|
632 |
+
|
633 |
+
assert (k + n).is_even is True
|
634 |
+
assert (k + n).is_odd is False
|
635 |
+
|
636 |
+
assert (k + m).is_even is False
|
637 |
+
assert (k + m).is_odd is True
|
638 |
+
|
639 |
+
assert (k + n + m).is_even is True
|
640 |
+
assert (k + n + m).is_odd is False
|
641 |
+
|
642 |
+
assert (k + n + x + m).is_even is None
|
643 |
+
assert (k + n + x + m).is_odd is None
|
644 |
+
|
645 |
+
|
646 |
+
def test_Mul_is_negative_positive():
|
647 |
+
x = Symbol('x', real=True)
|
648 |
+
y = Symbol('y', extended_real=False, complex=True)
|
649 |
+
z = Symbol('z', zero=True)
|
650 |
+
|
651 |
+
e = 2*z
|
652 |
+
assert e.is_Mul and e.is_positive is False and e.is_negative is False
|
653 |
+
|
654 |
+
neg = Symbol('neg', negative=True)
|
655 |
+
pos = Symbol('pos', positive=True)
|
656 |
+
nneg = Symbol('nneg', nonnegative=True)
|
657 |
+
npos = Symbol('npos', nonpositive=True)
|
658 |
+
|
659 |
+
assert neg.is_negative is True
|
660 |
+
assert (-neg).is_negative is False
|
661 |
+
assert (2*neg).is_negative is True
|
662 |
+
|
663 |
+
assert (2*pos)._eval_is_extended_negative() is False
|
664 |
+
assert (2*pos).is_negative is False
|
665 |
+
|
666 |
+
assert pos.is_negative is False
|
667 |
+
assert (-pos).is_negative is True
|
668 |
+
assert (2*pos).is_negative is False
|
669 |
+
|
670 |
+
assert (pos*neg).is_negative is True
|
671 |
+
assert (2*pos*neg).is_negative is True
|
672 |
+
assert (-pos*neg).is_negative is False
|
673 |
+
assert (pos*neg*y).is_negative is False # y.is_real=F; !real -> !neg
|
674 |
+
|
675 |
+
assert nneg.is_negative is False
|
676 |
+
assert (-nneg).is_negative is None
|
677 |
+
assert (2*nneg).is_negative is False
|
678 |
+
|
679 |
+
assert npos.is_negative is None
|
680 |
+
assert (-npos).is_negative is False
|
681 |
+
assert (2*npos).is_negative is None
|
682 |
+
|
683 |
+
assert (nneg*npos).is_negative is None
|
684 |
+
|
685 |
+
assert (neg*nneg).is_negative is None
|
686 |
+
assert (neg*npos).is_negative is False
|
687 |
+
|
688 |
+
assert (pos*nneg).is_negative is False
|
689 |
+
assert (pos*npos).is_negative is None
|
690 |
+
|
691 |
+
assert (npos*neg*nneg).is_negative is False
|
692 |
+
assert (npos*pos*nneg).is_negative is None
|
693 |
+
|
694 |
+
assert (-npos*neg*nneg).is_negative is None
|
695 |
+
assert (-npos*pos*nneg).is_negative is False
|
696 |
+
|
697 |
+
assert (17*npos*neg*nneg).is_negative is False
|
698 |
+
assert (17*npos*pos*nneg).is_negative is None
|
699 |
+
|
700 |
+
assert (neg*npos*pos*nneg).is_negative is False
|
701 |
+
|
702 |
+
assert (x*neg).is_negative is None
|
703 |
+
assert (nneg*npos*pos*x*neg).is_negative is None
|
704 |
+
|
705 |
+
assert neg.is_positive is False
|
706 |
+
assert (-neg).is_positive is True
|
707 |
+
assert (2*neg).is_positive is False
|
708 |
+
|
709 |
+
assert pos.is_positive is True
|
710 |
+
assert (-pos).is_positive is False
|
711 |
+
assert (2*pos).is_positive is True
|
712 |
+
|
713 |
+
assert (pos*neg).is_positive is False
|
714 |
+
assert (2*pos*neg).is_positive is False
|
715 |
+
assert (-pos*neg).is_positive is True
|
716 |
+
assert (-pos*neg*y).is_positive is False # y.is_real=F; !real -> !neg
|
717 |
+
|
718 |
+
assert nneg.is_positive is None
|
719 |
+
assert (-nneg).is_positive is False
|
720 |
+
assert (2*nneg).is_positive is None
|
721 |
+
|
722 |
+
assert npos.is_positive is False
|
723 |
+
assert (-npos).is_positive is None
|
724 |
+
assert (2*npos).is_positive is False
|
725 |
+
|
726 |
+
assert (nneg*npos).is_positive is False
|
727 |
+
|
728 |
+
assert (neg*nneg).is_positive is False
|
729 |
+
assert (neg*npos).is_positive is None
|
730 |
+
|
731 |
+
assert (pos*nneg).is_positive is None
|
732 |
+
assert (pos*npos).is_positive is False
|
733 |
+
|
734 |
+
assert (npos*neg*nneg).is_positive is None
|
735 |
+
assert (npos*pos*nneg).is_positive is False
|
736 |
+
|
737 |
+
assert (-npos*neg*nneg).is_positive is False
|
738 |
+
assert (-npos*pos*nneg).is_positive is None
|
739 |
+
|
740 |
+
assert (17*npos*neg*nneg).is_positive is None
|
741 |
+
assert (17*npos*pos*nneg).is_positive is False
|
742 |
+
|
743 |
+
assert (neg*npos*pos*nneg).is_positive is None
|
744 |
+
|
745 |
+
assert (x*neg).is_positive is None
|
746 |
+
assert (nneg*npos*pos*x*neg).is_positive is None
|
747 |
+
|
748 |
+
|
749 |
+
def test_Mul_is_negative_positive_2():
|
750 |
+
a = Symbol('a', nonnegative=True)
|
751 |
+
b = Symbol('b', nonnegative=True)
|
752 |
+
c = Symbol('c', nonpositive=True)
|
753 |
+
d = Symbol('d', nonpositive=True)
|
754 |
+
|
755 |
+
assert (a*b).is_nonnegative is True
|
756 |
+
assert (a*b).is_negative is False
|
757 |
+
assert (a*b).is_zero is None
|
758 |
+
assert (a*b).is_positive is None
|
759 |
+
|
760 |
+
assert (c*d).is_nonnegative is True
|
761 |
+
assert (c*d).is_negative is False
|
762 |
+
assert (c*d).is_zero is None
|
763 |
+
assert (c*d).is_positive is None
|
764 |
+
|
765 |
+
assert (a*c).is_nonpositive is True
|
766 |
+
assert (a*c).is_positive is False
|
767 |
+
assert (a*c).is_zero is None
|
768 |
+
assert (a*c).is_negative is None
|
769 |
+
|
770 |
+
|
771 |
+
def test_Mul_is_nonpositive_nonnegative():
|
772 |
+
x = Symbol('x', real=True)
|
773 |
+
|
774 |
+
k = Symbol('k', negative=True)
|
775 |
+
n = Symbol('n', positive=True)
|
776 |
+
u = Symbol('u', nonnegative=True)
|
777 |
+
v = Symbol('v', nonpositive=True)
|
778 |
+
|
779 |
+
assert k.is_nonpositive is True
|
780 |
+
assert (-k).is_nonpositive is False
|
781 |
+
assert (2*k).is_nonpositive is True
|
782 |
+
|
783 |
+
assert n.is_nonpositive is False
|
784 |
+
assert (-n).is_nonpositive is True
|
785 |
+
assert (2*n).is_nonpositive is False
|
786 |
+
|
787 |
+
assert (n*k).is_nonpositive is True
|
788 |
+
assert (2*n*k).is_nonpositive is True
|
789 |
+
assert (-n*k).is_nonpositive is False
|
790 |
+
|
791 |
+
assert u.is_nonpositive is None
|
792 |
+
assert (-u).is_nonpositive is True
|
793 |
+
assert (2*u).is_nonpositive is None
|
794 |
+
|
795 |
+
assert v.is_nonpositive is True
|
796 |
+
assert (-v).is_nonpositive is None
|
797 |
+
assert (2*v).is_nonpositive is True
|
798 |
+
|
799 |
+
assert (u*v).is_nonpositive is True
|
800 |
+
|
801 |
+
assert (k*u).is_nonpositive is True
|
802 |
+
assert (k*v).is_nonpositive is None
|
803 |
+
|
804 |
+
assert (n*u).is_nonpositive is None
|
805 |
+
assert (n*v).is_nonpositive is True
|
806 |
+
|
807 |
+
assert (v*k*u).is_nonpositive is None
|
808 |
+
assert (v*n*u).is_nonpositive is True
|
809 |
+
|
810 |
+
assert (-v*k*u).is_nonpositive is True
|
811 |
+
assert (-v*n*u).is_nonpositive is None
|
812 |
+
|
813 |
+
assert (17*v*k*u).is_nonpositive is None
|
814 |
+
assert (17*v*n*u).is_nonpositive is True
|
815 |
+
|
816 |
+
assert (k*v*n*u).is_nonpositive is None
|
817 |
+
|
818 |
+
assert (x*k).is_nonpositive is None
|
819 |
+
assert (u*v*n*x*k).is_nonpositive is None
|
820 |
+
|
821 |
+
assert k.is_nonnegative is False
|
822 |
+
assert (-k).is_nonnegative is True
|
823 |
+
assert (2*k).is_nonnegative is False
|
824 |
+
|
825 |
+
assert n.is_nonnegative is True
|
826 |
+
assert (-n).is_nonnegative is False
|
827 |
+
assert (2*n).is_nonnegative is True
|
828 |
+
|
829 |
+
assert (n*k).is_nonnegative is False
|
830 |
+
assert (2*n*k).is_nonnegative is False
|
831 |
+
assert (-n*k).is_nonnegative is True
|
832 |
+
|
833 |
+
assert u.is_nonnegative is True
|
834 |
+
assert (-u).is_nonnegative is None
|
835 |
+
assert (2*u).is_nonnegative is True
|
836 |
+
|
837 |
+
assert v.is_nonnegative is None
|
838 |
+
assert (-v).is_nonnegative is True
|
839 |
+
assert (2*v).is_nonnegative is None
|
840 |
+
|
841 |
+
assert (u*v).is_nonnegative is None
|
842 |
+
|
843 |
+
assert (k*u).is_nonnegative is None
|
844 |
+
assert (k*v).is_nonnegative is True
|
845 |
+
|
846 |
+
assert (n*u).is_nonnegative is True
|
847 |
+
assert (n*v).is_nonnegative is None
|
848 |
+
|
849 |
+
assert (v*k*u).is_nonnegative is True
|
850 |
+
assert (v*n*u).is_nonnegative is None
|
851 |
+
|
852 |
+
assert (-v*k*u).is_nonnegative is None
|
853 |
+
assert (-v*n*u).is_nonnegative is True
|
854 |
+
|
855 |
+
assert (17*v*k*u).is_nonnegative is True
|
856 |
+
assert (17*v*n*u).is_nonnegative is None
|
857 |
+
|
858 |
+
assert (k*v*n*u).is_nonnegative is True
|
859 |
+
|
860 |
+
assert (x*k).is_nonnegative is None
|
861 |
+
assert (u*v*n*x*k).is_nonnegative is None
|
862 |
+
|
863 |
+
|
864 |
+
def test_Add_is_negative_positive():
|
865 |
+
x = Symbol('x', real=True)
|
866 |
+
|
867 |
+
k = Symbol('k', negative=True)
|
868 |
+
n = Symbol('n', positive=True)
|
869 |
+
u = Symbol('u', nonnegative=True)
|
870 |
+
v = Symbol('v', nonpositive=True)
|
871 |
+
|
872 |
+
assert (k - 2).is_negative is True
|
873 |
+
assert (k + 17).is_negative is None
|
874 |
+
assert (-k - 5).is_negative is None
|
875 |
+
assert (-k + 123).is_negative is False
|
876 |
+
|
877 |
+
assert (k - n).is_negative is True
|
878 |
+
assert (k + n).is_negative is None
|
879 |
+
assert (-k - n).is_negative is None
|
880 |
+
assert (-k + n).is_negative is False
|
881 |
+
|
882 |
+
assert (k - n - 2).is_negative is True
|
883 |
+
assert (k + n + 17).is_negative is None
|
884 |
+
assert (-k - n - 5).is_negative is None
|
885 |
+
assert (-k + n + 123).is_negative is False
|
886 |
+
|
887 |
+
assert (-2*k + 123*n + 17).is_negative is False
|
888 |
+
|
889 |
+
assert (k + u).is_negative is None
|
890 |
+
assert (k + v).is_negative is True
|
891 |
+
assert (n + u).is_negative is False
|
892 |
+
assert (n + v).is_negative is None
|
893 |
+
|
894 |
+
assert (u - v).is_negative is False
|
895 |
+
assert (u + v).is_negative is None
|
896 |
+
assert (-u - v).is_negative is None
|
897 |
+
assert (-u + v).is_negative is None
|
898 |
+
|
899 |
+
assert (u - v + n + 2).is_negative is False
|
900 |
+
assert (u + v + n + 2).is_negative is None
|
901 |
+
assert (-u - v + n + 2).is_negative is None
|
902 |
+
assert (-u + v + n + 2).is_negative is None
|
903 |
+
|
904 |
+
assert (k + x).is_negative is None
|
905 |
+
assert (k + x - n).is_negative is None
|
906 |
+
|
907 |
+
assert (k - 2).is_positive is False
|
908 |
+
assert (k + 17).is_positive is None
|
909 |
+
assert (-k - 5).is_positive is None
|
910 |
+
assert (-k + 123).is_positive is True
|
911 |
+
|
912 |
+
assert (k - n).is_positive is False
|
913 |
+
assert (k + n).is_positive is None
|
914 |
+
assert (-k - n).is_positive is None
|
915 |
+
assert (-k + n).is_positive is True
|
916 |
+
|
917 |
+
assert (k - n - 2).is_positive is False
|
918 |
+
assert (k + n + 17).is_positive is None
|
919 |
+
assert (-k - n - 5).is_positive is None
|
920 |
+
assert (-k + n + 123).is_positive is True
|
921 |
+
|
922 |
+
assert (-2*k + 123*n + 17).is_positive is True
|
923 |
+
|
924 |
+
assert (k + u).is_positive is None
|
925 |
+
assert (k + v).is_positive is False
|
926 |
+
assert (n + u).is_positive is True
|
927 |
+
assert (n + v).is_positive is None
|
928 |
+
|
929 |
+
assert (u - v).is_positive is None
|
930 |
+
assert (u + v).is_positive is None
|
931 |
+
assert (-u - v).is_positive is None
|
932 |
+
assert (-u + v).is_positive is False
|
933 |
+
|
934 |
+
assert (u - v - n - 2).is_positive is None
|
935 |
+
assert (u + v - n - 2).is_positive is None
|
936 |
+
assert (-u - v - n - 2).is_positive is None
|
937 |
+
assert (-u + v - n - 2).is_positive is False
|
938 |
+
|
939 |
+
assert (n + x).is_positive is None
|
940 |
+
assert (n + x - k).is_positive is None
|
941 |
+
|
942 |
+
z = (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2)
|
943 |
+
assert z.is_zero
|
944 |
+
z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
|
945 |
+
assert z.is_zero
|
946 |
+
|
947 |
+
|
948 |
+
def test_Add_is_nonpositive_nonnegative():
|
949 |
+
x = Symbol('x', real=True)
|
950 |
+
|
951 |
+
k = Symbol('k', negative=True)
|
952 |
+
n = Symbol('n', positive=True)
|
953 |
+
u = Symbol('u', nonnegative=True)
|
954 |
+
v = Symbol('v', nonpositive=True)
|
955 |
+
|
956 |
+
assert (u - 2).is_nonpositive is None
|
957 |
+
assert (u + 17).is_nonpositive is False
|
958 |
+
assert (-u - 5).is_nonpositive is True
|
959 |
+
assert (-u + 123).is_nonpositive is None
|
960 |
+
|
961 |
+
assert (u - v).is_nonpositive is None
|
962 |
+
assert (u + v).is_nonpositive is None
|
963 |
+
assert (-u - v).is_nonpositive is None
|
964 |
+
assert (-u + v).is_nonpositive is True
|
965 |
+
|
966 |
+
assert (u - v - 2).is_nonpositive is None
|
967 |
+
assert (u + v + 17).is_nonpositive is None
|
968 |
+
assert (-u - v - 5).is_nonpositive is None
|
969 |
+
assert (-u + v - 123).is_nonpositive is True
|
970 |
+
|
971 |
+
assert (-2*u + 123*v - 17).is_nonpositive is True
|
972 |
+
|
973 |
+
assert (k + u).is_nonpositive is None
|
974 |
+
assert (k + v).is_nonpositive is True
|
975 |
+
assert (n + u).is_nonpositive is False
|
976 |
+
assert (n + v).is_nonpositive is None
|
977 |
+
|
978 |
+
assert (k - n).is_nonpositive is True
|
979 |
+
assert (k + n).is_nonpositive is None
|
980 |
+
assert (-k - n).is_nonpositive is None
|
981 |
+
assert (-k + n).is_nonpositive is False
|
982 |
+
|
983 |
+
assert (k - n + u + 2).is_nonpositive is None
|
984 |
+
assert (k + n + u + 2).is_nonpositive is None
|
985 |
+
assert (-k - n + u + 2).is_nonpositive is None
|
986 |
+
assert (-k + n + u + 2).is_nonpositive is False
|
987 |
+
|
988 |
+
assert (u + x).is_nonpositive is None
|
989 |
+
assert (v - x - n).is_nonpositive is None
|
990 |
+
|
991 |
+
assert (u - 2).is_nonnegative is None
|
992 |
+
assert (u + 17).is_nonnegative is True
|
993 |
+
assert (-u - 5).is_nonnegative is False
|
994 |
+
assert (-u + 123).is_nonnegative is None
|
995 |
+
|
996 |
+
assert (u - v).is_nonnegative is True
|
997 |
+
assert (u + v).is_nonnegative is None
|
998 |
+
assert (-u - v).is_nonnegative is None
|
999 |
+
assert (-u + v).is_nonnegative is None
|
1000 |
+
|
1001 |
+
assert (u - v + 2).is_nonnegative is True
|
1002 |
+
assert (u + v + 17).is_nonnegative is None
|
1003 |
+
assert (-u - v - 5).is_nonnegative is None
|
1004 |
+
assert (-u + v - 123).is_nonnegative is False
|
1005 |
+
|
1006 |
+
assert (2*u - 123*v + 17).is_nonnegative is True
|
1007 |
+
|
1008 |
+
assert (k + u).is_nonnegative is None
|
1009 |
+
assert (k + v).is_nonnegative is False
|
1010 |
+
assert (n + u).is_nonnegative is True
|
1011 |
+
assert (n + v).is_nonnegative is None
|
1012 |
+
|
1013 |
+
assert (k - n).is_nonnegative is False
|
1014 |
+
assert (k + n).is_nonnegative is None
|
1015 |
+
assert (-k - n).is_nonnegative is None
|
1016 |
+
assert (-k + n).is_nonnegative is True
|
1017 |
+
|
1018 |
+
assert (k - n - u - 2).is_nonnegative is False
|
1019 |
+
assert (k + n - u - 2).is_nonnegative is None
|
1020 |
+
assert (-k - n - u - 2).is_nonnegative is None
|
1021 |
+
assert (-k + n - u - 2).is_nonnegative is None
|
1022 |
+
|
1023 |
+
assert (u - x).is_nonnegative is None
|
1024 |
+
assert (v + x + n).is_nonnegative is None
|
1025 |
+
|
1026 |
+
|
1027 |
+
def test_Pow_is_integer():
|
1028 |
+
x = Symbol('x')
|
1029 |
+
|
1030 |
+
k = Symbol('k', integer=True)
|
1031 |
+
n = Symbol('n', integer=True, nonnegative=True)
|
1032 |
+
m = Symbol('m', integer=True, positive=True)
|
1033 |
+
|
1034 |
+
assert (k**2).is_integer is True
|
1035 |
+
assert (k**(-2)).is_integer is None
|
1036 |
+
assert ((m + 1)**(-2)).is_integer is False
|
1037 |
+
assert (m**(-1)).is_integer is None # issue 8580
|
1038 |
+
|
1039 |
+
assert (2**k).is_integer is None
|
1040 |
+
assert (2**(-k)).is_integer is None
|
1041 |
+
|
1042 |
+
assert (2**n).is_integer is True
|
1043 |
+
assert (2**(-n)).is_integer is None
|
1044 |
+
|
1045 |
+
assert (2**m).is_integer is True
|
1046 |
+
assert (2**(-m)).is_integer is False
|
1047 |
+
|
1048 |
+
assert (x**2).is_integer is None
|
1049 |
+
assert (2**x).is_integer is None
|
1050 |
+
|
1051 |
+
assert (k**n).is_integer is True
|
1052 |
+
assert (k**(-n)).is_integer is None
|
1053 |
+
|
1054 |
+
assert (k**x).is_integer is None
|
1055 |
+
assert (x**k).is_integer is None
|
1056 |
+
|
1057 |
+
assert (k**(n*m)).is_integer is True
|
1058 |
+
assert (k**(-n*m)).is_integer is None
|
1059 |
+
|
1060 |
+
assert sqrt(3).is_integer is False
|
1061 |
+
assert sqrt(.3).is_integer is False
|
1062 |
+
assert Pow(3, 2, evaluate=False).is_integer is True
|
1063 |
+
assert Pow(3, 0, evaluate=False).is_integer is True
|
1064 |
+
assert Pow(3, -2, evaluate=False).is_integer is False
|
1065 |
+
assert Pow(S.Half, 3, evaluate=False).is_integer is False
|
1066 |
+
# decided by re-evaluating
|
1067 |
+
assert Pow(3, S.Half, evaluate=False).is_integer is False
|
1068 |
+
assert Pow(3, S.Half, evaluate=False).is_integer is False
|
1069 |
+
assert Pow(4, S.Half, evaluate=False).is_integer is True
|
1070 |
+
assert Pow(S.Half, -2, evaluate=False).is_integer is True
|
1071 |
+
|
1072 |
+
assert ((-1)**k).is_integer
|
1073 |
+
|
1074 |
+
# issue 8641
|
1075 |
+
x = Symbol('x', real=True, integer=False)
|
1076 |
+
assert (x**2).is_integer is None
|
1077 |
+
|
1078 |
+
# issue 10458
|
1079 |
+
x = Symbol('x', positive=True)
|
1080 |
+
assert (1/(x + 1)).is_integer is False
|
1081 |
+
assert (1/(-x - 1)).is_integer is False
|
1082 |
+
assert (-1/(x + 1)).is_integer is False
|
1083 |
+
# issue 23287
|
1084 |
+
assert (x**2/2).is_integer is None
|
1085 |
+
|
1086 |
+
# issue 8648-like
|
1087 |
+
k = Symbol('k', even=True)
|
1088 |
+
assert (k**3/2).is_integer
|
1089 |
+
assert (k**3/8).is_integer
|
1090 |
+
assert (k**3/16).is_integer is None
|
1091 |
+
assert (2/k).is_integer is None
|
1092 |
+
assert (2/k**2).is_integer is False
|
1093 |
+
o = Symbol('o', odd=True)
|
1094 |
+
assert (k/o).is_integer is None
|
1095 |
+
o = Symbol('o', odd=True, prime=True)
|
1096 |
+
assert (k/o).is_integer is False
|
1097 |
+
|
1098 |
+
|
1099 |
+
def test_Pow_is_real():
|
1100 |
+
x = Symbol('x', real=True)
|
1101 |
+
y = Symbol('y', positive=True)
|
1102 |
+
|
1103 |
+
assert (x**2).is_real is True
|
1104 |
+
assert (x**3).is_real is True
|
1105 |
+
assert (x**x).is_real is None
|
1106 |
+
assert (y**x).is_real is True
|
1107 |
+
|
1108 |
+
assert (x**Rational(1, 3)).is_real is None
|
1109 |
+
assert (y**Rational(1, 3)).is_real is True
|
1110 |
+
|
1111 |
+
assert sqrt(-1 - sqrt(2)).is_real is False
|
1112 |
+
|
1113 |
+
i = Symbol('i', imaginary=True)
|
1114 |
+
assert (i**i).is_real is None
|
1115 |
+
assert (I**i).is_extended_real is True
|
1116 |
+
assert ((-I)**i).is_extended_real is True
|
1117 |
+
assert (2**i).is_real is None # (2**(pi/log(2) * I)) is real, 2**I is not
|
1118 |
+
assert (2**I).is_real is False
|
1119 |
+
assert (2**-I).is_real is False
|
1120 |
+
assert (i**2).is_extended_real is True
|
1121 |
+
assert (i**3).is_extended_real is False
|
1122 |
+
assert (i**x).is_real is None # could be (-I)**(2/3)
|
1123 |
+
e = Symbol('e', even=True)
|
1124 |
+
o = Symbol('o', odd=True)
|
1125 |
+
k = Symbol('k', integer=True)
|
1126 |
+
assert (i**e).is_extended_real is True
|
1127 |
+
assert (i**o).is_extended_real is False
|
1128 |
+
assert (i**k).is_real is None
|
1129 |
+
assert (i**(4*k)).is_extended_real is True
|
1130 |
+
|
1131 |
+
x = Symbol("x", nonnegative=True)
|
1132 |
+
y = Symbol("y", nonnegative=True)
|
1133 |
+
assert im(x**y).expand(complex=True) is S.Zero
|
1134 |
+
assert (x**y).is_real is True
|
1135 |
+
i = Symbol('i', imaginary=True)
|
1136 |
+
assert (exp(i)**I).is_extended_real is True
|
1137 |
+
assert log(exp(i)).is_imaginary is None # i could be 2*pi*I
|
1138 |
+
c = Symbol('c', complex=True)
|
1139 |
+
assert log(c).is_real is None # c could be 0 or 2, too
|
1140 |
+
assert log(exp(c)).is_real is None # log(0), log(E), ...
|
1141 |
+
n = Symbol('n', negative=False)
|
1142 |
+
assert log(n).is_real is None
|
1143 |
+
n = Symbol('n', nonnegative=True)
|
1144 |
+
assert log(n).is_real is None
|
1145 |
+
|
1146 |
+
assert sqrt(-I).is_real is False # issue 7843
|
1147 |
+
|
1148 |
+
i = Symbol('i', integer=True)
|
1149 |
+
assert (1/(i-1)).is_real is None
|
1150 |
+
assert (1/(i-1)).is_extended_real is None
|
1151 |
+
|
1152 |
+
# test issue 20715
|
1153 |
+
from sympy.core.parameters import evaluate
|
1154 |
+
x = S(-1)
|
1155 |
+
with evaluate(False):
|
1156 |
+
assert x.is_negative is True
|
1157 |
+
|
1158 |
+
f = Pow(x, -1)
|
1159 |
+
with evaluate(False):
|
1160 |
+
assert f.is_imaginary is False
|
1161 |
+
|
1162 |
+
|
1163 |
+
def test_real_Pow():
|
1164 |
+
k = Symbol('k', integer=True, nonzero=True)
|
1165 |
+
assert (k**(I*pi/log(k))).is_real
|
1166 |
+
|
1167 |
+
|
1168 |
+
def test_Pow_is_finite():
|
1169 |
+
xe = Symbol('xe', extended_real=True)
|
1170 |
+
xr = Symbol('xr', real=True)
|
1171 |
+
p = Symbol('p', positive=True)
|
1172 |
+
n = Symbol('n', negative=True)
|
1173 |
+
i = Symbol('i', integer=True)
|
1174 |
+
|
1175 |
+
assert (xe**2).is_finite is None # xe could be oo
|
1176 |
+
assert (xr**2).is_finite is True
|
1177 |
+
|
1178 |
+
assert (xe**xe).is_finite is None
|
1179 |
+
assert (xr**xe).is_finite is None
|
1180 |
+
assert (xe**xr).is_finite is None
|
1181 |
+
# FIXME: The line below should be True rather than None
|
1182 |
+
# assert (xr**xr).is_finite is True
|
1183 |
+
assert (xr**xr).is_finite is None
|
1184 |
+
|
1185 |
+
assert (p**xe).is_finite is None
|
1186 |
+
assert (p**xr).is_finite is True
|
1187 |
+
|
1188 |
+
assert (n**xe).is_finite is None
|
1189 |
+
assert (n**xr).is_finite is True
|
1190 |
+
|
1191 |
+
assert (sin(xe)**2).is_finite is True
|
1192 |
+
assert (sin(xr)**2).is_finite is True
|
1193 |
+
|
1194 |
+
assert (sin(xe)**xe).is_finite is None # xe, xr could be -pi
|
1195 |
+
assert (sin(xr)**xr).is_finite is None
|
1196 |
+
|
1197 |
+
# FIXME: Should the line below be True rather than None?
|
1198 |
+
assert (sin(xe)**exp(xe)).is_finite is None
|
1199 |
+
assert (sin(xr)**exp(xr)).is_finite is True
|
1200 |
+
|
1201 |
+
assert (1/sin(xe)).is_finite is None # if zero, no, otherwise yes
|
1202 |
+
assert (1/sin(xr)).is_finite is None
|
1203 |
+
|
1204 |
+
assert (1/exp(xe)).is_finite is None # xe could be -oo
|
1205 |
+
assert (1/exp(xr)).is_finite is True
|
1206 |
+
|
1207 |
+
assert (1/S.Pi).is_finite is True
|
1208 |
+
|
1209 |
+
assert (1/(i-1)).is_finite is None
|
1210 |
+
|
1211 |
+
|
1212 |
+
def test_Pow_is_even_odd():
|
1213 |
+
x = Symbol('x')
|
1214 |
+
|
1215 |
+
k = Symbol('k', even=True)
|
1216 |
+
n = Symbol('n', odd=True)
|
1217 |
+
m = Symbol('m', integer=True, nonnegative=True)
|
1218 |
+
p = Symbol('p', integer=True, positive=True)
|
1219 |
+
|
1220 |
+
assert ((-1)**n).is_odd
|
1221 |
+
assert ((-1)**k).is_odd
|
1222 |
+
assert ((-1)**(m - p)).is_odd
|
1223 |
+
|
1224 |
+
assert (k**2).is_even is True
|
1225 |
+
assert (n**2).is_even is False
|
1226 |
+
assert (2**k).is_even is None
|
1227 |
+
assert (x**2).is_even is None
|
1228 |
+
|
1229 |
+
assert (k**m).is_even is None
|
1230 |
+
assert (n**m).is_even is False
|
1231 |
+
|
1232 |
+
assert (k**p).is_even is True
|
1233 |
+
assert (n**p).is_even is False
|
1234 |
+
|
1235 |
+
assert (m**k).is_even is None
|
1236 |
+
assert (p**k).is_even is None
|
1237 |
+
|
1238 |
+
assert (m**n).is_even is None
|
1239 |
+
assert (p**n).is_even is None
|
1240 |
+
|
1241 |
+
assert (k**x).is_even is None
|
1242 |
+
assert (n**x).is_even is None
|
1243 |
+
|
1244 |
+
assert (k**2).is_odd is False
|
1245 |
+
assert (n**2).is_odd is True
|
1246 |
+
assert (3**k).is_odd is None
|
1247 |
+
|
1248 |
+
assert (k**m).is_odd is None
|
1249 |
+
assert (n**m).is_odd is True
|
1250 |
+
|
1251 |
+
assert (k**p).is_odd is False
|
1252 |
+
assert (n**p).is_odd is True
|
1253 |
+
|
1254 |
+
assert (m**k).is_odd is None
|
1255 |
+
assert (p**k).is_odd is None
|
1256 |
+
|
1257 |
+
assert (m**n).is_odd is None
|
1258 |
+
assert (p**n).is_odd is None
|
1259 |
+
|
1260 |
+
assert (k**x).is_odd is None
|
1261 |
+
assert (n**x).is_odd is None
|
1262 |
+
|
1263 |
+
|
1264 |
+
def test_Pow_is_negative_positive():
|
1265 |
+
r = Symbol('r', real=True)
|
1266 |
+
|
1267 |
+
k = Symbol('k', integer=True, positive=True)
|
1268 |
+
n = Symbol('n', even=True)
|
1269 |
+
m = Symbol('m', odd=True)
|
1270 |
+
|
1271 |
+
x = Symbol('x')
|
1272 |
+
|
1273 |
+
assert (2**r).is_positive is True
|
1274 |
+
assert ((-2)**r).is_positive is None
|
1275 |
+
assert ((-2)**n).is_positive is True
|
1276 |
+
assert ((-2)**m).is_positive is False
|
1277 |
+
|
1278 |
+
assert (k**2).is_positive is True
|
1279 |
+
assert (k**(-2)).is_positive is True
|
1280 |
+
|
1281 |
+
assert (k**r).is_positive is True
|
1282 |
+
assert ((-k)**r).is_positive is None
|
1283 |
+
assert ((-k)**n).is_positive is True
|
1284 |
+
assert ((-k)**m).is_positive is False
|
1285 |
+
|
1286 |
+
assert (2**r).is_negative is False
|
1287 |
+
assert ((-2)**r).is_negative is None
|
1288 |
+
assert ((-2)**n).is_negative is False
|
1289 |
+
assert ((-2)**m).is_negative is True
|
1290 |
+
|
1291 |
+
assert (k**2).is_negative is False
|
1292 |
+
assert (k**(-2)).is_negative is False
|
1293 |
+
|
1294 |
+
assert (k**r).is_negative is False
|
1295 |
+
assert ((-k)**r).is_negative is None
|
1296 |
+
assert ((-k)**n).is_negative is False
|
1297 |
+
assert ((-k)**m).is_negative is True
|
1298 |
+
|
1299 |
+
assert (2**x).is_positive is None
|
1300 |
+
assert (2**x).is_negative is None
|
1301 |
+
|
1302 |
+
|
1303 |
+
def test_Pow_is_zero():
|
1304 |
+
z = Symbol('z', zero=True)
|
1305 |
+
e = z**2
|
1306 |
+
assert e.is_zero
|
1307 |
+
assert e.is_positive is False
|
1308 |
+
assert e.is_negative is False
|
1309 |
+
|
1310 |
+
assert Pow(0, 0, evaluate=False).is_zero is False
|
1311 |
+
assert Pow(0, 3, evaluate=False).is_zero
|
1312 |
+
assert Pow(0, oo, evaluate=False).is_zero
|
1313 |
+
assert Pow(0, -3, evaluate=False).is_zero is False
|
1314 |
+
assert Pow(0, -oo, evaluate=False).is_zero is False
|
1315 |
+
assert Pow(2, 2, evaluate=False).is_zero is False
|
1316 |
+
|
1317 |
+
a = Symbol('a', zero=False)
|
1318 |
+
assert Pow(a, 3).is_zero is False # issue 7965
|
1319 |
+
|
1320 |
+
assert Pow(2, oo, evaluate=False).is_zero is False
|
1321 |
+
assert Pow(2, -oo, evaluate=False).is_zero
|
1322 |
+
assert Pow(S.Half, oo, evaluate=False).is_zero
|
1323 |
+
assert Pow(S.Half, -oo, evaluate=False).is_zero is False
|
1324 |
+
|
1325 |
+
# All combinations of real/complex base/exponent
|
1326 |
+
h = S.Half
|
1327 |
+
T = True
|
1328 |
+
F = False
|
1329 |
+
N = None
|
1330 |
+
|
1331 |
+
pow_iszero = [
|
1332 |
+
['**', 0, h, 1, 2, -h, -1,-2,-2*I,-I/2,I/2,1+I,oo,-oo,zoo],
|
1333 |
+
[ 0, F, T, T, T, F, F, F, F, F, F, N, T, F, N],
|
1334 |
+
[ h, F, F, F, F, F, F, F, F, F, F, F, T, F, N],
|
1335 |
+
[ 1, F, F, F, F, F, F, F, F, F, F, F, F, F, N],
|
1336 |
+
[ 2, F, F, F, F, F, F, F, F, F, F, F, F, T, N],
|
1337 |
+
[ -h, F, F, F, F, F, F, F, F, F, F, F, T, F, N],
|
1338 |
+
[ -1, F, F, F, F, F, F, F, F, F, F, F, F, F, N],
|
1339 |
+
[ -2, F, F, F, F, F, F, F, F, F, F, F, F, T, N],
|
1340 |
+
[-2*I, F, F, F, F, F, F, F, F, F, F, F, F, T, N],
|
1341 |
+
[-I/2, F, F, F, F, F, F, F, F, F, F, F, T, F, N],
|
1342 |
+
[ I/2, F, F, F, F, F, F, F, F, F, F, F, T, F, N],
|
1343 |
+
[ 1+I, F, F, F, F, F, F, F, F, F, F, F, F, T, N],
|
1344 |
+
[ oo, F, F, F, F, T, T, T, F, F, F, F, F, T, N],
|
1345 |
+
[ -oo, F, F, F, F, T, T, T, F, F, F, F, F, T, N],
|
1346 |
+
[ zoo, F, F, F, F, T, T, T, N, N, N, N, F, T, N]
|
1347 |
+
]
|
1348 |
+
|
1349 |
+
def test_table(table):
|
1350 |
+
n = len(table[0])
|
1351 |
+
for row in range(1, n):
|
1352 |
+
base = table[row][0]
|
1353 |
+
for col in range(1, n):
|
1354 |
+
exp = table[0][col]
|
1355 |
+
is_zero = table[row][col]
|
1356 |
+
# The actual test here:
|
1357 |
+
assert Pow(base, exp, evaluate=False).is_zero is is_zero
|
1358 |
+
|
1359 |
+
test_table(pow_iszero)
|
1360 |
+
|
1361 |
+
# A zero symbol...
|
1362 |
+
zo, zo2 = symbols('zo, zo2', zero=True)
|
1363 |
+
|
1364 |
+
# All combinations of finite symbols
|
1365 |
+
zf, zf2 = symbols('zf, zf2', finite=True)
|
1366 |
+
wf, wf2 = symbols('wf, wf2', nonzero=True)
|
1367 |
+
xf, xf2 = symbols('xf, xf2', real=True)
|
1368 |
+
yf, yf2 = symbols('yf, yf2', nonzero=True)
|
1369 |
+
af, af2 = symbols('af, af2', positive=True)
|
1370 |
+
bf, bf2 = symbols('bf, bf2', nonnegative=True)
|
1371 |
+
cf, cf2 = symbols('cf, cf2', negative=True)
|
1372 |
+
df, df2 = symbols('df, df2', nonpositive=True)
|
1373 |
+
|
1374 |
+
# Without finiteness:
|
1375 |
+
zi, zi2 = symbols('zi, zi2')
|
1376 |
+
wi, wi2 = symbols('wi, wi2', zero=False)
|
1377 |
+
xi, xi2 = symbols('xi, xi2', extended_real=True)
|
1378 |
+
yi, yi2 = symbols('yi, yi2', zero=False, extended_real=True)
|
1379 |
+
ai, ai2 = symbols('ai, ai2', extended_positive=True)
|
1380 |
+
bi, bi2 = symbols('bi, bi2', extended_nonnegative=True)
|
1381 |
+
ci, ci2 = symbols('ci, ci2', extended_negative=True)
|
1382 |
+
di, di2 = symbols('di, di2', extended_nonpositive=True)
|
1383 |
+
|
1384 |
+
pow_iszero_sym = [
|
1385 |
+
['**',zo,wf,yf,af,cf,zf,xf,bf,df,zi,wi,xi,yi,ai,bi,ci,di],
|
1386 |
+
[ zo2, F, N, N, T, F, N, N, N, F, N, N, N, N, T, N, F, F],
|
1387 |
+
[ wf2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N],
|
1388 |
+
[ yf2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N],
|
1389 |
+
[ af2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N],
|
1390 |
+
[ cf2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N],
|
1391 |
+
[ zf2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N],
|
1392 |
+
[ xf2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N],
|
1393 |
+
[ bf2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N],
|
1394 |
+
[ df2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N],
|
1395 |
+
[ zi2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N],
|
1396 |
+
[ wi2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N],
|
1397 |
+
[ xi2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N],
|
1398 |
+
[ yi2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N],
|
1399 |
+
[ ai2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N],
|
1400 |
+
[ bi2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N],
|
1401 |
+
[ ci2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N],
|
1402 |
+
[ di2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N]
|
1403 |
+
]
|
1404 |
+
|
1405 |
+
test_table(pow_iszero_sym)
|
1406 |
+
|
1407 |
+
# In some cases (x**x).is_zero is different from (x**y).is_zero even if y
|
1408 |
+
# has the same assumptions as x.
|
1409 |
+
assert (zo ** zo).is_zero is False
|
1410 |
+
assert (wf ** wf).is_zero is False
|
1411 |
+
assert (yf ** yf).is_zero is False
|
1412 |
+
assert (af ** af).is_zero is False
|
1413 |
+
assert (cf ** cf).is_zero is False
|
1414 |
+
assert (zf ** zf).is_zero is None
|
1415 |
+
assert (xf ** xf).is_zero is None
|
1416 |
+
assert (bf ** bf).is_zero is False # None in table
|
1417 |
+
assert (df ** df).is_zero is None
|
1418 |
+
assert (zi ** zi).is_zero is None
|
1419 |
+
assert (wi ** wi).is_zero is None
|
1420 |
+
assert (xi ** xi).is_zero is None
|
1421 |
+
assert (yi ** yi).is_zero is None
|
1422 |
+
assert (ai ** ai).is_zero is False # None in table
|
1423 |
+
assert (bi ** bi).is_zero is False # None in table
|
1424 |
+
assert (ci ** ci).is_zero is None
|
1425 |
+
assert (di ** di).is_zero is None
|
1426 |
+
|
1427 |
+
|
1428 |
+
def test_Pow_is_nonpositive_nonnegative():
|
1429 |
+
x = Symbol('x', real=True)
|
1430 |
+
|
1431 |
+
k = Symbol('k', integer=True, nonnegative=True)
|
1432 |
+
l = Symbol('l', integer=True, positive=True)
|
1433 |
+
n = Symbol('n', even=True)
|
1434 |
+
m = Symbol('m', odd=True)
|
1435 |
+
|
1436 |
+
assert (x**(4*k)).is_nonnegative is True
|
1437 |
+
assert (2**x).is_nonnegative is True
|
1438 |
+
assert ((-2)**x).is_nonnegative is None
|
1439 |
+
assert ((-2)**n).is_nonnegative is True
|
1440 |
+
assert ((-2)**m).is_nonnegative is False
|
1441 |
+
|
1442 |
+
assert (k**2).is_nonnegative is True
|
1443 |
+
assert (k**(-2)).is_nonnegative is None
|
1444 |
+
assert (k**k).is_nonnegative is True
|
1445 |
+
|
1446 |
+
assert (k**x).is_nonnegative is None # NOTE (0**x).is_real = U
|
1447 |
+
assert (l**x).is_nonnegative is True
|
1448 |
+
assert (l**x).is_positive is True
|
1449 |
+
assert ((-k)**x).is_nonnegative is None
|
1450 |
+
|
1451 |
+
assert ((-k)**m).is_nonnegative is None
|
1452 |
+
|
1453 |
+
assert (2**x).is_nonpositive is False
|
1454 |
+
assert ((-2)**x).is_nonpositive is None
|
1455 |
+
assert ((-2)**n).is_nonpositive is False
|
1456 |
+
assert ((-2)**m).is_nonpositive is True
|
1457 |
+
|
1458 |
+
assert (k**2).is_nonpositive is None
|
1459 |
+
assert (k**(-2)).is_nonpositive is None
|
1460 |
+
|
1461 |
+
assert (k**x).is_nonpositive is None
|
1462 |
+
assert ((-k)**x).is_nonpositive is None
|
1463 |
+
assert ((-k)**n).is_nonpositive is None
|
1464 |
+
|
1465 |
+
|
1466 |
+
assert (x**2).is_nonnegative is True
|
1467 |
+
i = symbols('i', imaginary=True)
|
1468 |
+
assert (i**2).is_nonpositive is True
|
1469 |
+
assert (i**4).is_nonpositive is False
|
1470 |
+
assert (i**3).is_nonpositive is False
|
1471 |
+
assert (I**i).is_nonnegative is True
|
1472 |
+
assert (exp(I)**i).is_nonnegative is True
|
1473 |
+
|
1474 |
+
assert ((-l)**n).is_nonnegative is True
|
1475 |
+
assert ((-l)**m).is_nonpositive is True
|
1476 |
+
assert ((-k)**n).is_nonnegative is None
|
1477 |
+
assert ((-k)**m).is_nonpositive is None
|
1478 |
+
|
1479 |
+
|
1480 |
+
def test_Mul_is_imaginary_real():
|
1481 |
+
r = Symbol('r', real=True)
|
1482 |
+
p = Symbol('p', positive=True)
|
1483 |
+
i1 = Symbol('i1', imaginary=True)
|
1484 |
+
i2 = Symbol('i2', imaginary=True)
|
1485 |
+
x = Symbol('x')
|
1486 |
+
|
1487 |
+
assert I.is_imaginary is True
|
1488 |
+
assert I.is_real is False
|
1489 |
+
assert (-I).is_imaginary is True
|
1490 |
+
assert (-I).is_real is False
|
1491 |
+
assert (3*I).is_imaginary is True
|
1492 |
+
assert (3*I).is_real is False
|
1493 |
+
assert (I*I).is_imaginary is False
|
1494 |
+
assert (I*I).is_real is True
|
1495 |
+
|
1496 |
+
e = (p + p*I)
|
1497 |
+
j = Symbol('j', integer=True, zero=False)
|
1498 |
+
assert (e**j).is_real is None
|
1499 |
+
assert (e**(2*j)).is_real is None
|
1500 |
+
assert (e**j).is_imaginary is None
|
1501 |
+
assert (e**(2*j)).is_imaginary is None
|
1502 |
+
|
1503 |
+
assert (e**-1).is_imaginary is False
|
1504 |
+
assert (e**2).is_imaginary
|
1505 |
+
assert (e**3).is_imaginary is False
|
1506 |
+
assert (e**4).is_imaginary is False
|
1507 |
+
assert (e**5).is_imaginary is False
|
1508 |
+
assert (e**-1).is_real is False
|
1509 |
+
assert (e**2).is_real is False
|
1510 |
+
assert (e**3).is_real is False
|
1511 |
+
assert (e**4).is_real is True
|
1512 |
+
assert (e**5).is_real is False
|
1513 |
+
assert (e**3).is_complex
|
1514 |
+
|
1515 |
+
assert (r*i1).is_imaginary is None
|
1516 |
+
assert (r*i1).is_real is None
|
1517 |
+
|
1518 |
+
assert (x*i1).is_imaginary is None
|
1519 |
+
assert (x*i1).is_real is None
|
1520 |
+
|
1521 |
+
assert (i1*i2).is_imaginary is False
|
1522 |
+
assert (i1*i2).is_real is True
|
1523 |
+
|
1524 |
+
assert (r*i1*i2).is_imaginary is False
|
1525 |
+
assert (r*i1*i2).is_real is True
|
1526 |
+
|
1527 |
+
# Github's issue 5874:
|
1528 |
+
nr = Symbol('nr', real=False, complex=True) # e.g. I or 1 + I
|
1529 |
+
a = Symbol('a', real=True, nonzero=True)
|
1530 |
+
b = Symbol('b', real=True)
|
1531 |
+
assert (i1*nr).is_real is None
|
1532 |
+
assert (a*nr).is_real is False
|
1533 |
+
assert (b*nr).is_real is None
|
1534 |
+
|
1535 |
+
ni = Symbol('ni', imaginary=False, complex=True) # e.g. 2 or 1 + I
|
1536 |
+
a = Symbol('a', real=True, nonzero=True)
|
1537 |
+
b = Symbol('b', real=True)
|
1538 |
+
assert (i1*ni).is_real is False
|
1539 |
+
assert (a*ni).is_real is None
|
1540 |
+
assert (b*ni).is_real is None
|
1541 |
+
|
1542 |
+
|
1543 |
+
def test_Mul_hermitian_antihermitian():
|
1544 |
+
xz, yz = symbols('xz, yz', zero=True, antihermitian=True)
|
1545 |
+
xf, yf = symbols('xf, yf', hermitian=False, antihermitian=False, finite=True)
|
1546 |
+
xh, yh = symbols('xh, yh', hermitian=True, antihermitian=False, nonzero=True)
|
1547 |
+
xa, ya = symbols('xa, ya', hermitian=False, antihermitian=True, zero=False, finite=True)
|
1548 |
+
assert (xz*xh).is_hermitian is True
|
1549 |
+
assert (xz*xh).is_antihermitian is True
|
1550 |
+
assert (xz*xa).is_hermitian is True
|
1551 |
+
assert (xz*xa).is_antihermitian is True
|
1552 |
+
assert (xf*yf).is_hermitian is None
|
1553 |
+
assert (xf*yf).is_antihermitian is None
|
1554 |
+
assert (xh*yh).is_hermitian is True
|
1555 |
+
assert (xh*yh).is_antihermitian is False
|
1556 |
+
assert (xh*ya).is_hermitian is False
|
1557 |
+
assert (xh*ya).is_antihermitian is True
|
1558 |
+
assert (xa*ya).is_hermitian is True
|
1559 |
+
assert (xa*ya).is_antihermitian is False
|
1560 |
+
|
1561 |
+
a = Symbol('a', hermitian=True, zero=False)
|
1562 |
+
b = Symbol('b', hermitian=True)
|
1563 |
+
c = Symbol('c', hermitian=False)
|
1564 |
+
d = Symbol('d', antihermitian=True)
|
1565 |
+
e1 = Mul(a, b, c, evaluate=False)
|
1566 |
+
e2 = Mul(b, a, c, evaluate=False)
|
1567 |
+
e3 = Mul(a, b, c, d, evaluate=False)
|
1568 |
+
e4 = Mul(b, a, c, d, evaluate=False)
|
1569 |
+
e5 = Mul(a, c, evaluate=False)
|
1570 |
+
e6 = Mul(a, c, d, evaluate=False)
|
1571 |
+
assert e1.is_hermitian is None
|
1572 |
+
assert e2.is_hermitian is None
|
1573 |
+
assert e1.is_antihermitian is None
|
1574 |
+
assert e2.is_antihermitian is None
|
1575 |
+
assert e3.is_antihermitian is None
|
1576 |
+
assert e4.is_antihermitian is None
|
1577 |
+
assert e5.is_antihermitian is None
|
1578 |
+
assert e6.is_antihermitian is None
|
1579 |
+
|
1580 |
+
|
1581 |
+
def test_Add_is_comparable():
|
1582 |
+
assert (x + y).is_comparable is False
|
1583 |
+
assert (x + 1).is_comparable is False
|
1584 |
+
assert (Rational(1, 3) - sqrt(8)).is_comparable is True
|
1585 |
+
|
1586 |
+
|
1587 |
+
def test_Mul_is_comparable():
|
1588 |
+
assert (x*y).is_comparable is False
|
1589 |
+
assert (x*2).is_comparable is False
|
1590 |
+
assert (sqrt(2)*Rational(1, 3)).is_comparable is True
|
1591 |
+
|
1592 |
+
|
1593 |
+
def test_Pow_is_comparable():
|
1594 |
+
assert (x**y).is_comparable is False
|
1595 |
+
assert (x**2).is_comparable is False
|
1596 |
+
assert (sqrt(Rational(1, 3))).is_comparable is True
|
1597 |
+
|
1598 |
+
|
1599 |
+
def test_Add_is_positive_2():
|
1600 |
+
e = Rational(1, 3) - sqrt(8)
|
1601 |
+
assert e.is_positive is False
|
1602 |
+
assert e.is_negative is True
|
1603 |
+
|
1604 |
+
e = pi - 1
|
1605 |
+
assert e.is_positive is True
|
1606 |
+
assert e.is_negative is False
|
1607 |
+
|
1608 |
+
|
1609 |
+
def test_Add_is_irrational():
|
1610 |
+
i = Symbol('i', irrational=True)
|
1611 |
+
|
1612 |
+
assert i.is_irrational is True
|
1613 |
+
assert i.is_rational is False
|
1614 |
+
|
1615 |
+
assert (i + 1).is_irrational is True
|
1616 |
+
assert (i + 1).is_rational is False
|
1617 |
+
|
1618 |
+
|
1619 |
+
def test_Mul_is_irrational():
|
1620 |
+
expr = Mul(1, 2, 3, evaluate=False)
|
1621 |
+
assert expr.is_irrational is False
|
1622 |
+
expr = Mul(1, I, I, evaluate=False)
|
1623 |
+
assert expr.is_rational is None # I * I = -1 but *no evaluation allowed*
|
1624 |
+
# sqrt(2) * I * I = -sqrt(2) is irrational but
|
1625 |
+
# this can't be determined without evaluating the
|
1626 |
+
# expression and the eval_is routines shouldn't do that
|
1627 |
+
expr = Mul(sqrt(2), I, I, evaluate=False)
|
1628 |
+
assert expr.is_irrational is None
|
1629 |
+
|
1630 |
+
|
1631 |
+
def test_issue_3531():
|
1632 |
+
# https://github.com/sympy/sympy/issues/3531
|
1633 |
+
# https://github.com/sympy/sympy/pull/18116
|
1634 |
+
class MightyNumeric(tuple):
|
1635 |
+
def __rtruediv__(self, other):
|
1636 |
+
return "something"
|
1637 |
+
|
1638 |
+
assert sympify(1)/MightyNumeric((1, 2)) == "something"
|
1639 |
+
|
1640 |
+
|
1641 |
+
def test_issue_3531b():
|
1642 |
+
class Foo:
|
1643 |
+
def __init__(self):
|
1644 |
+
self.field = 1.0
|
1645 |
+
|
1646 |
+
def __mul__(self, other):
|
1647 |
+
self.field = self.field * other
|
1648 |
+
|
1649 |
+
def __rmul__(self, other):
|
1650 |
+
self.field = other * self.field
|
1651 |
+
f = Foo()
|
1652 |
+
x = Symbol("x")
|
1653 |
+
assert f*x == x*f
|
1654 |
+
|
1655 |
+
|
1656 |
+
def test_bug3():
|
1657 |
+
a = Symbol("a")
|
1658 |
+
b = Symbol("b", positive=True)
|
1659 |
+
e = 2*a + b
|
1660 |
+
f = b + 2*a
|
1661 |
+
assert e == f
|
1662 |
+
|
1663 |
+
|
1664 |
+
def test_suppressed_evaluation():
|
1665 |
+
a = Add(0, 3, 2, evaluate=False)
|
1666 |
+
b = Mul(1, 3, 2, evaluate=False)
|
1667 |
+
c = Pow(3, 2, evaluate=False)
|
1668 |
+
assert a != 6
|
1669 |
+
assert a.func is Add
|
1670 |
+
assert a.args == (0, 3, 2)
|
1671 |
+
assert b != 6
|
1672 |
+
assert b.func is Mul
|
1673 |
+
assert b.args == (1, 3, 2)
|
1674 |
+
assert c != 9
|
1675 |
+
assert c.func is Pow
|
1676 |
+
assert c.args == (3, 2)
|
1677 |
+
|
1678 |
+
|
1679 |
+
def test_AssocOp_doit():
|
1680 |
+
a = Add(x,x, evaluate=False)
|
1681 |
+
b = Mul(y,y, evaluate=False)
|
1682 |
+
c = Add(b,b, evaluate=False)
|
1683 |
+
d = Mul(a,a, evaluate=False)
|
1684 |
+
assert c.doit(deep=False).func == Mul
|
1685 |
+
assert c.doit(deep=False).args == (2,y,y)
|
1686 |
+
assert c.doit().func == Mul
|
1687 |
+
assert c.doit().args == (2, Pow(y,2))
|
1688 |
+
assert d.doit(deep=False).func == Pow
|
1689 |
+
assert d.doit(deep=False).args == (a, 2*S.One)
|
1690 |
+
assert d.doit().func == Mul
|
1691 |
+
assert d.doit().args == (4*S.One, Pow(x,2))
|
1692 |
+
|
1693 |
+
|
1694 |
+
def test_Add_Mul_Expr_args():
|
1695 |
+
nonexpr = [Basic(), Poly(x, x), FiniteSet(x)]
|
1696 |
+
for typ in [Add, Mul]:
|
1697 |
+
for obj in nonexpr:
|
1698 |
+
# The cache can mess with the stacklevel check
|
1699 |
+
with warns(SymPyDeprecationWarning, test_stacklevel=False):
|
1700 |
+
typ(obj, 1)
|
1701 |
+
|
1702 |
+
|
1703 |
+
def test_Add_as_coeff_mul():
|
1704 |
+
# issue 5524. These should all be (1, self)
|
1705 |
+
assert (x + 1).as_coeff_mul() == (1, (x + 1,))
|
1706 |
+
assert (x + 2).as_coeff_mul() == (1, (x + 2,))
|
1707 |
+
assert (x + 3).as_coeff_mul() == (1, (x + 3,))
|
1708 |
+
|
1709 |
+
assert (x - 1).as_coeff_mul() == (1, (x - 1,))
|
1710 |
+
assert (x - 2).as_coeff_mul() == (1, (x - 2,))
|
1711 |
+
assert (x - 3).as_coeff_mul() == (1, (x - 3,))
|
1712 |
+
|
1713 |
+
n = Symbol('n', integer=True)
|
1714 |
+
assert (n + 1).as_coeff_mul() == (1, (n + 1,))
|
1715 |
+
assert (n + 2).as_coeff_mul() == (1, (n + 2,))
|
1716 |
+
assert (n + 3).as_coeff_mul() == (1, (n + 3,))
|
1717 |
+
|
1718 |
+
assert (n - 1).as_coeff_mul() == (1, (n - 1,))
|
1719 |
+
assert (n - 2).as_coeff_mul() == (1, (n - 2,))
|
1720 |
+
assert (n - 3).as_coeff_mul() == (1, (n - 3,))
|
1721 |
+
|
1722 |
+
|
1723 |
+
def test_Pow_as_coeff_mul_doesnt_expand():
|
1724 |
+
assert exp(x + y).as_coeff_mul() == (1, (exp(x + y),))
|
1725 |
+
assert exp(x + exp(x + y)) != exp(x + exp(x)*exp(y))
|
1726 |
+
|
1727 |
+
def test_issue_24751():
|
1728 |
+
expr = Add(-2, -3, evaluate=False)
|
1729 |
+
expr1 = Add(-1, expr, evaluate=False)
|
1730 |
+
assert int(expr1) == int((-3 - 2) - 1)
|
1731 |
+
|
1732 |
+
|
1733 |
+
def test_issue_3514_18626():
|
1734 |
+
assert sqrt(S.Half) * sqrt(6) == 2 * sqrt(3)/2
|
1735 |
+
assert S.Half*sqrt(6)*sqrt(2) == sqrt(3)
|
1736 |
+
assert sqrt(6)/2*sqrt(2) == sqrt(3)
|
1737 |
+
assert sqrt(6)*sqrt(2)/2 == sqrt(3)
|
1738 |
+
assert sqrt(8)**Rational(2, 3) == 2
|
1739 |
+
|
1740 |
+
|
1741 |
+
def test_make_args():
|
1742 |
+
assert Add.make_args(x) == (x,)
|
1743 |
+
assert Mul.make_args(x) == (x,)
|
1744 |
+
|
1745 |
+
assert Add.make_args(x*y*z) == (x*y*z,)
|
1746 |
+
assert Mul.make_args(x*y*z) == (x*y*z).args
|
1747 |
+
|
1748 |
+
assert Add.make_args(x + y + z) == (x + y + z).args
|
1749 |
+
assert Mul.make_args(x + y + z) == (x + y + z,)
|
1750 |
+
|
1751 |
+
assert Add.make_args((x + y)**z) == ((x + y)**z,)
|
1752 |
+
assert Mul.make_args((x + y)**z) == ((x + y)**z,)
|
1753 |
+
|
1754 |
+
|
1755 |
+
def test_issue_5126():
|
1756 |
+
assert (-2)**x*(-3)**x != 6**x
|
1757 |
+
i = Symbol('i', integer=1)
|
1758 |
+
assert (-2)**i*(-3)**i == 6**i
|
1759 |
+
|
1760 |
+
|
1761 |
+
def test_Rational_as_content_primitive():
|
1762 |
+
c, p = S.One, S.Zero
|
1763 |
+
assert (c*p).as_content_primitive() == (c, p)
|
1764 |
+
c, p = S.Half, S.One
|
1765 |
+
assert (c*p).as_content_primitive() == (c, p)
|
1766 |
+
|
1767 |
+
|
1768 |
+
def test_Add_as_content_primitive():
|
1769 |
+
assert (x + 2).as_content_primitive() == (1, x + 2)
|
1770 |
+
|
1771 |
+
assert (3*x + 2).as_content_primitive() == (1, 3*x + 2)
|
1772 |
+
assert (3*x + 3).as_content_primitive() == (3, x + 1)
|
1773 |
+
assert (3*x + 6).as_content_primitive() == (3, x + 2)
|
1774 |
+
|
1775 |
+
assert (3*x + 2*y).as_content_primitive() == (1, 3*x + 2*y)
|
1776 |
+
assert (3*x + 3*y).as_content_primitive() == (3, x + y)
|
1777 |
+
assert (3*x + 6*y).as_content_primitive() == (3, x + 2*y)
|
1778 |
+
|
1779 |
+
assert (3/x + 2*x*y*z**2).as_content_primitive() == (1, 3/x + 2*x*y*z**2)
|
1780 |
+
assert (3/x + 3*x*y*z**2).as_content_primitive() == (3, 1/x + x*y*z**2)
|
1781 |
+
assert (3/x + 6*x*y*z**2).as_content_primitive() == (3, 1/x + 2*x*y*z**2)
|
1782 |
+
|
1783 |
+
assert (2*x/3 + 4*y/9).as_content_primitive() == \
|
1784 |
+
(Rational(2, 9), 3*x + 2*y)
|
1785 |
+
assert (2*x/3 + 2.5*y).as_content_primitive() == \
|
1786 |
+
(Rational(1, 3), 2*x + 7.5*y)
|
1787 |
+
|
1788 |
+
# the coefficient may sort to a position other than 0
|
1789 |
+
p = 3 + x + y
|
1790 |
+
assert (2*p).expand().as_content_primitive() == (2, p)
|
1791 |
+
assert (2.0*p).expand().as_content_primitive() == (1, 2.*p)
|
1792 |
+
p *= -1
|
1793 |
+
assert (2*p).expand().as_content_primitive() == (2, p)
|
1794 |
+
|
1795 |
+
|
1796 |
+
def test_Mul_as_content_primitive():
|
1797 |
+
assert (2*x).as_content_primitive() == (2, x)
|
1798 |
+
assert (x*(2 + 2*x)).as_content_primitive() == (2, x*(1 + x))
|
1799 |
+
assert (x*(2 + 2*y)*(3*x + 3)**2).as_content_primitive() == \
|
1800 |
+
(18, x*(1 + y)*(x + 1)**2)
|
1801 |
+
assert ((2 + 2*x)**2*(3 + 6*x) + S.Half).as_content_primitive() == \
|
1802 |
+
(S.Half, 24*(x + 1)**2*(2*x + 1) + 1)
|
1803 |
+
|
1804 |
+
|
1805 |
+
def test_Pow_as_content_primitive():
|
1806 |
+
assert (x**y).as_content_primitive() == (1, x**y)
|
1807 |
+
assert ((2*x + 2)**y).as_content_primitive() == \
|
1808 |
+
(1, (Mul(2, (x + 1), evaluate=False))**y)
|
1809 |
+
assert ((2*x + 2)**3).as_content_primitive() == (8, (x + 1)**3)
|
1810 |
+
|
1811 |
+
|
1812 |
+
def test_issue_5460():
|
1813 |
+
u = Mul(2, (1 + x), evaluate=False)
|
1814 |
+
assert (2 + u).args == (2, u)
|
1815 |
+
|
1816 |
+
|
1817 |
+
def test_product_irrational():
|
1818 |
+
assert (I*pi).is_irrational is False
|
1819 |
+
# The following used to be deduced from the above bug:
|
1820 |
+
assert (I*pi).is_positive is False
|
1821 |
+
|
1822 |
+
|
1823 |
+
def test_issue_5919():
|
1824 |
+
assert (x/(y*(1 + y))).expand() == x/(y**2 + y)
|
1825 |
+
|
1826 |
+
|
1827 |
+
def test_Mod():
|
1828 |
+
assert Mod(x, 1).func is Mod
|
1829 |
+
assert pi % pi is S.Zero
|
1830 |
+
assert Mod(5, 3) == 2
|
1831 |
+
assert Mod(-5, 3) == 1
|
1832 |
+
assert Mod(5, -3) == -1
|
1833 |
+
assert Mod(-5, -3) == -2
|
1834 |
+
assert type(Mod(3.2, 2, evaluate=False)) == Mod
|
1835 |
+
assert 5 % x == Mod(5, x)
|
1836 |
+
assert x % 5 == Mod(x, 5)
|
1837 |
+
assert x % y == Mod(x, y)
|
1838 |
+
assert (x % y).subs({x: 5, y: 3}) == 2
|
1839 |
+
assert Mod(nan, 1) is nan
|
1840 |
+
assert Mod(1, nan) is nan
|
1841 |
+
assert Mod(nan, nan) is nan
|
1842 |
+
|
1843 |
+
assert Mod(0, x) == 0
|
1844 |
+
with raises(ZeroDivisionError):
|
1845 |
+
Mod(x, 0)
|
1846 |
+
|
1847 |
+
k = Symbol('k', integer=True)
|
1848 |
+
m = Symbol('m', integer=True, positive=True)
|
1849 |
+
assert (x**m % x).func is Mod
|
1850 |
+
assert (k**(-m) % k).func is Mod
|
1851 |
+
assert k**m % k == 0
|
1852 |
+
assert (-2*k)**m % k == 0
|
1853 |
+
|
1854 |
+
# Float handling
|
1855 |
+
point3 = Float(3.3) % 1
|
1856 |
+
assert (x - 3.3) % 1 == Mod(1.*x + 1 - point3, 1)
|
1857 |
+
assert Mod(-3.3, 1) == 1 - point3
|
1858 |
+
assert Mod(0.7, 1) == Float(0.7)
|
1859 |
+
e = Mod(1.3, 1)
|
1860 |
+
assert comp(e, .3) and e.is_Float
|
1861 |
+
e = Mod(1.3, .7)
|
1862 |
+
assert comp(e, .6) and e.is_Float
|
1863 |
+
e = Mod(1.3, Rational(7, 10))
|
1864 |
+
assert comp(e, .6) and e.is_Float
|
1865 |
+
e = Mod(Rational(13, 10), 0.7)
|
1866 |
+
assert comp(e, .6) and e.is_Float
|
1867 |
+
e = Mod(Rational(13, 10), Rational(7, 10))
|
1868 |
+
assert comp(e, .6) and e.is_Rational
|
1869 |
+
|
1870 |
+
# check that sign is right
|
1871 |
+
r2 = sqrt(2)
|
1872 |
+
r3 = sqrt(3)
|
1873 |
+
for i in [-r3, -r2, r2, r3]:
|
1874 |
+
for j in [-r3, -r2, r2, r3]:
|
1875 |
+
assert verify_numerically(i % j, i.n() % j.n())
|
1876 |
+
for _x in range(4):
|
1877 |
+
for _y in range(9):
|
1878 |
+
reps = [(x, _x), (y, _y)]
|
1879 |
+
assert Mod(3*x + y, 9).subs(reps) == (3*_x + _y) % 9
|
1880 |
+
|
1881 |
+
# denesting
|
1882 |
+
t = Symbol('t', real=True)
|
1883 |
+
assert Mod(Mod(x, t), t) == Mod(x, t)
|
1884 |
+
assert Mod(-Mod(x, t), t) == Mod(-x, t)
|
1885 |
+
assert Mod(Mod(x, 2*t), t) == Mod(x, t)
|
1886 |
+
assert Mod(-Mod(x, 2*t), t) == Mod(-x, t)
|
1887 |
+
assert Mod(Mod(x, t), 2*t) == Mod(x, t)
|
1888 |
+
assert Mod(-Mod(x, t), -2*t) == -Mod(x, t)
|
1889 |
+
for i in [-4, -2, 2, 4]:
|
1890 |
+
for j in [-4, -2, 2, 4]:
|
1891 |
+
for k in range(4):
|
1892 |
+
assert Mod(Mod(x, i), j).subs({x: k}) == (k % i) % j
|
1893 |
+
assert Mod(-Mod(x, i), j).subs({x: k}) == -(k % i) % j
|
1894 |
+
|
1895 |
+
# known difference
|
1896 |
+
assert Mod(5*sqrt(2), sqrt(5)) == 5*sqrt(2) - 3*sqrt(5)
|
1897 |
+
p = symbols('p', positive=True)
|
1898 |
+
assert Mod(2, p + 3) == 2
|
1899 |
+
assert Mod(-2, p + 3) == p + 1
|
1900 |
+
assert Mod(2, -p - 3) == -p - 1
|
1901 |
+
assert Mod(-2, -p - 3) == -2
|
1902 |
+
assert Mod(p + 5, p + 3) == 2
|
1903 |
+
assert Mod(-p - 5, p + 3) == p + 1
|
1904 |
+
assert Mod(p + 5, -p - 3) == -p - 1
|
1905 |
+
assert Mod(-p - 5, -p - 3) == -2
|
1906 |
+
assert Mod(p + 1, p - 1).func is Mod
|
1907 |
+
|
1908 |
+
# handling sums
|
1909 |
+
assert (x + 3) % 1 == Mod(x, 1)
|
1910 |
+
assert (x + 3.0) % 1 == Mod(1.*x, 1)
|
1911 |
+
assert (x - S(33)/10) % 1 == Mod(x + S(7)/10, 1)
|
1912 |
+
|
1913 |
+
a = Mod(.6*x + y, .3*y)
|
1914 |
+
b = Mod(0.1*y + 0.6*x, 0.3*y)
|
1915 |
+
# Test that a, b are equal, with 1e-14 accuracy in coefficients
|
1916 |
+
eps = 1e-14
|
1917 |
+
assert abs((a.args[0] - b.args[0]).subs({x: 1, y: 1})) < eps
|
1918 |
+
assert abs((a.args[1] - b.args[1]).subs({x: 1, y: 1})) < eps
|
1919 |
+
|
1920 |
+
assert (x + 1) % x == 1 % x
|
1921 |
+
assert (x + y) % x == y % x
|
1922 |
+
assert (x + y + 2) % x == (y + 2) % x
|
1923 |
+
assert (a + 3*x + 1) % (2*x) == Mod(a + x + 1, 2*x)
|
1924 |
+
assert (12*x + 18*y) % (3*x) == 3*Mod(6*y, x)
|
1925 |
+
|
1926 |
+
# gcd extraction
|
1927 |
+
assert (-3*x) % (-2*y) == -Mod(3*x, 2*y)
|
1928 |
+
assert (.6*pi) % (.3*x*pi) == 0.3*pi*Mod(2, x)
|
1929 |
+
assert (.6*pi) % (.31*x*pi) == pi*Mod(0.6, 0.31*x)
|
1930 |
+
assert (6*pi) % (.3*x*pi) == 0.3*pi*Mod(20, x)
|
1931 |
+
assert (6*pi) % (.31*x*pi) == pi*Mod(6, 0.31*x)
|
1932 |
+
assert (6*pi) % (.42*x*pi) == pi*Mod(6, 0.42*x)
|
1933 |
+
assert (12*x) % (2*y) == 2*Mod(6*x, y)
|
1934 |
+
assert (12*x) % (3*5*y) == 3*Mod(4*x, 5*y)
|
1935 |
+
assert (12*x) % (15*x*y) == 3*x*Mod(4, 5*y)
|
1936 |
+
assert (-2*pi) % (3*pi) == pi
|
1937 |
+
assert (2*x + 2) % (x + 1) == 0
|
1938 |
+
assert (x*(x + 1)) % (x + 1) == (x + 1)*Mod(x, 1)
|
1939 |
+
assert Mod(5.0*x, 0.1*y) == 0.1*Mod(50*x, y)
|
1940 |
+
i = Symbol('i', integer=True)
|
1941 |
+
assert (3*i*x) % (2*i*y) == i*Mod(3*x, 2*y)
|
1942 |
+
assert Mod(4*i, 4) == 0
|
1943 |
+
|
1944 |
+
# issue 8677
|
1945 |
+
n = Symbol('n', integer=True, positive=True)
|
1946 |
+
assert factorial(n) % n == 0
|
1947 |
+
assert factorial(n + 2) % n == 0
|
1948 |
+
assert (factorial(n + 4) % (n + 5)).func is Mod
|
1949 |
+
|
1950 |
+
# Wilson's theorem
|
1951 |
+
assert factorial(18042, evaluate=False) % 18043 == 18042
|
1952 |
+
p = Symbol('n', prime=True)
|
1953 |
+
assert factorial(p - 1) % p == p - 1
|
1954 |
+
assert factorial(p - 1) % -p == -1
|
1955 |
+
assert (factorial(3, evaluate=False) % 4).doit() == 2
|
1956 |
+
n = Symbol('n', composite=True, odd=True)
|
1957 |
+
assert factorial(n - 1) % n == 0
|
1958 |
+
|
1959 |
+
# symbolic with known parity
|
1960 |
+
n = Symbol('n', even=True)
|
1961 |
+
assert Mod(n, 2) == 0
|
1962 |
+
n = Symbol('n', odd=True)
|
1963 |
+
assert Mod(n, 2) == 1
|
1964 |
+
|
1965 |
+
# issue 10963
|
1966 |
+
assert (x**6000%400).args[1] == 400
|
1967 |
+
|
1968 |
+
#issue 13543
|
1969 |
+
assert Mod(Mod(x + 1, 2) + 1, 2) == Mod(x, 2)
|
1970 |
+
|
1971 |
+
x1 = Symbol('x1', integer=True)
|
1972 |
+
assert Mod(Mod(x1 + 2, 4)*(x1 + 4), 4) == Mod(x1*(x1 + 2), 4)
|
1973 |
+
assert Mod(Mod(x1 + 2, 4)*4, 4) == 0
|
1974 |
+
|
1975 |
+
# issue 15493
|
1976 |
+
i, j = symbols('i j', integer=True, positive=True)
|
1977 |
+
assert Mod(3*i, 2) == Mod(i, 2)
|
1978 |
+
assert Mod(8*i/j, 4) == 4*Mod(2*i/j, 1)
|
1979 |
+
assert Mod(8*i, 4) == 0
|
1980 |
+
|
1981 |
+
# rewrite
|
1982 |
+
assert Mod(x, y).rewrite(floor) == x - y*floor(x/y)
|
1983 |
+
assert ((x - Mod(x, y))/y).rewrite(floor) == floor(x/y)
|
1984 |
+
|
1985 |
+
# issue 21373
|
1986 |
+
from sympy.functions.elementary.hyperbolic import sinh
|
1987 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
1988 |
+
|
1989 |
+
x_r, y_r = symbols('x_r y_r', real=True)
|
1990 |
+
assert (Piecewise((x_r, y_r > x_r), (y_r, True)) / z) % 1
|
1991 |
+
expr = exp(sinh(Piecewise((x_r, y_r > x_r), (y_r, True)) / z))
|
1992 |
+
expr.subs({1: 1.0})
|
1993 |
+
sinh(Piecewise((x_r, y_r > x_r), (y_r, True)) * z ** -1.0).is_zero
|
1994 |
+
|
1995 |
+
# issue 24215
|
1996 |
+
from sympy.abc import phi
|
1997 |
+
assert Mod(4.0*Mod(phi, 1) , 2) == 2.0*(Mod(2*(Mod(phi, 1)), 1))
|
1998 |
+
|
1999 |
+
|
2000 |
+
def test_Mod_Pow():
|
2001 |
+
# modular exponentiation
|
2002 |
+
assert isinstance(Mod(Pow(2, 2, evaluate=False), 3), Integer)
|
2003 |
+
|
2004 |
+
assert Mod(Pow(4, 13, evaluate=False), 497) == Mod(Pow(4, 13), 497)
|
2005 |
+
assert Mod(Pow(2, 10000000000, evaluate=False), 3) == 1
|
2006 |
+
assert Mod(Pow(32131231232, 9**10**6, evaluate=False),10**12) == \
|
2007 |
+
pow(32131231232,9**10**6,10**12)
|
2008 |
+
assert Mod(Pow(33284959323, 123**999, evaluate=False),11**13) == \
|
2009 |
+
pow(33284959323,123**999,11**13)
|
2010 |
+
assert Mod(Pow(78789849597, 333**555, evaluate=False),12**9) == \
|
2011 |
+
pow(78789849597,333**555,12**9)
|
2012 |
+
|
2013 |
+
# modular nested exponentiation
|
2014 |
+
expr = Pow(2, 2, evaluate=False)
|
2015 |
+
expr = Pow(2, expr, evaluate=False)
|
2016 |
+
assert Mod(expr, 3**10) == 16
|
2017 |
+
expr = Pow(2, expr, evaluate=False)
|
2018 |
+
assert Mod(expr, 3**10) == 6487
|
2019 |
+
expr = Pow(2, expr, evaluate=False)
|
2020 |
+
assert Mod(expr, 3**10) == 32191
|
2021 |
+
expr = Pow(2, expr, evaluate=False)
|
2022 |
+
assert Mod(expr, 3**10) == 18016
|
2023 |
+
expr = Pow(2, expr, evaluate=False)
|
2024 |
+
assert Mod(expr, 3**10) == 5137
|
2025 |
+
|
2026 |
+
expr = Pow(2, 2, evaluate=False)
|
2027 |
+
expr = Pow(expr, 2, evaluate=False)
|
2028 |
+
assert Mod(expr, 3**10) == 16
|
2029 |
+
expr = Pow(expr, 2, evaluate=False)
|
2030 |
+
assert Mod(expr, 3**10) == 256
|
2031 |
+
expr = Pow(expr, 2, evaluate=False)
|
2032 |
+
assert Mod(expr, 3**10) == 6487
|
2033 |
+
expr = Pow(expr, 2, evaluate=False)
|
2034 |
+
assert Mod(expr, 3**10) == 38281
|
2035 |
+
expr = Pow(expr, 2, evaluate=False)
|
2036 |
+
assert Mod(expr, 3**10) == 15928
|
2037 |
+
|
2038 |
+
expr = Pow(2, 2, evaluate=False)
|
2039 |
+
expr = Pow(expr, expr, evaluate=False)
|
2040 |
+
assert Mod(expr, 3**10) == 256
|
2041 |
+
expr = Pow(expr, expr, evaluate=False)
|
2042 |
+
assert Mod(expr, 3**10) == 9229
|
2043 |
+
expr = Pow(expr, expr, evaluate=False)
|
2044 |
+
assert Mod(expr, 3**10) == 25708
|
2045 |
+
expr = Pow(expr, expr, evaluate=False)
|
2046 |
+
assert Mod(expr, 3**10) == 26608
|
2047 |
+
expr = Pow(expr, expr, evaluate=False)
|
2048 |
+
# XXX This used to fail in a nondeterministic way because of overflow
|
2049 |
+
# error.
|
2050 |
+
assert Mod(expr, 3**10) == 1966
|
2051 |
+
|
2052 |
+
|
2053 |
+
def test_Mod_is_integer():
|
2054 |
+
p = Symbol('p', integer=True)
|
2055 |
+
q1 = Symbol('q1', integer=True)
|
2056 |
+
q2 = Symbol('q2', integer=True, nonzero=True)
|
2057 |
+
assert Mod(x, y).is_integer is None
|
2058 |
+
assert Mod(p, q1).is_integer is None
|
2059 |
+
assert Mod(x, q2).is_integer is None
|
2060 |
+
assert Mod(p, q2).is_integer
|
2061 |
+
|
2062 |
+
|
2063 |
+
def test_Mod_is_nonposneg():
|
2064 |
+
n = Symbol('n', integer=True)
|
2065 |
+
k = Symbol('k', integer=True, positive=True)
|
2066 |
+
assert (n%3).is_nonnegative
|
2067 |
+
assert Mod(n, -3).is_nonpositive
|
2068 |
+
assert Mod(n, k).is_nonnegative
|
2069 |
+
assert Mod(n, -k).is_nonpositive
|
2070 |
+
assert Mod(k, n).is_nonnegative is None
|
2071 |
+
|
2072 |
+
|
2073 |
+
def test_issue_6001():
|
2074 |
+
A = Symbol("A", commutative=False)
|
2075 |
+
eq = A + A**2
|
2076 |
+
# it doesn't matter whether it's True or False; they should
|
2077 |
+
# just all be the same
|
2078 |
+
assert (
|
2079 |
+
eq.is_commutative ==
|
2080 |
+
(eq + 1).is_commutative ==
|
2081 |
+
(A + 1).is_commutative)
|
2082 |
+
|
2083 |
+
B = Symbol("B", commutative=False)
|
2084 |
+
# Although commutative terms could cancel we return True
|
2085 |
+
# meaning "there are non-commutative symbols; aftersubstitution
|
2086 |
+
# that definition can change, e.g. (A*B).subs(B,A**-1) -> 1
|
2087 |
+
assert (sqrt(2)*A).is_commutative is False
|
2088 |
+
assert (sqrt(2)*A*B).is_commutative is False
|
2089 |
+
|
2090 |
+
|
2091 |
+
def test_polar():
|
2092 |
+
from sympy.functions.elementary.complexes import polar_lift
|
2093 |
+
p = Symbol('p', polar=True)
|
2094 |
+
x = Symbol('x')
|
2095 |
+
assert p.is_polar
|
2096 |
+
assert x.is_polar is None
|
2097 |
+
assert S.One.is_polar is None
|
2098 |
+
assert (p**x).is_polar is True
|
2099 |
+
assert (x**p).is_polar is None
|
2100 |
+
assert ((2*p)**x).is_polar is True
|
2101 |
+
assert (2*p).is_polar is True
|
2102 |
+
assert (-2*p).is_polar is not True
|
2103 |
+
assert (polar_lift(-2)*p).is_polar is True
|
2104 |
+
|
2105 |
+
q = Symbol('q', polar=True)
|
2106 |
+
assert (p*q)**2 == p**2 * q**2
|
2107 |
+
assert (2*q)**2 == 4 * q**2
|
2108 |
+
assert ((p*q)**x).expand() == p**x * q**x
|
2109 |
+
|
2110 |
+
|
2111 |
+
def test_issue_6040():
|
2112 |
+
a, b = Pow(1, 2, evaluate=False), S.One
|
2113 |
+
assert a != b
|
2114 |
+
assert b != a
|
2115 |
+
assert not (a == b)
|
2116 |
+
assert not (b == a)
|
2117 |
+
|
2118 |
+
|
2119 |
+
def test_issue_6082():
|
2120 |
+
# Comparison is symmetric
|
2121 |
+
assert Basic.compare(Max(x, 1), Max(x, 2)) == \
|
2122 |
+
- Basic.compare(Max(x, 2), Max(x, 1))
|
2123 |
+
# Equal expressions compare equal
|
2124 |
+
assert Basic.compare(Max(x, 1), Max(x, 1)) == 0
|
2125 |
+
# Basic subtypes (such as Max) compare different than standard types
|
2126 |
+
assert Basic.compare(Max(1, x), frozenset((1, x))) != 0
|
2127 |
+
|
2128 |
+
|
2129 |
+
def test_issue_6077():
|
2130 |
+
assert x**2.0/x == x**1.0
|
2131 |
+
assert x/x**2.0 == x**-1.0
|
2132 |
+
assert x*x**2.0 == x**3.0
|
2133 |
+
assert x**1.5*x**2.5 == x**4.0
|
2134 |
+
|
2135 |
+
assert 2**(2.0*x)/2**x == 2**(1.0*x)
|
2136 |
+
assert 2**x/2**(2.0*x) == 2**(-1.0*x)
|
2137 |
+
assert 2**x*2**(2.0*x) == 2**(3.0*x)
|
2138 |
+
assert 2**(1.5*x)*2**(2.5*x) == 2**(4.0*x)
|
2139 |
+
|
2140 |
+
|
2141 |
+
def test_mul_flatten_oo():
|
2142 |
+
p = symbols('p', positive=True)
|
2143 |
+
n, m = symbols('n,m', negative=True)
|
2144 |
+
x_im = symbols('x_im', imaginary=True)
|
2145 |
+
assert n*oo is -oo
|
2146 |
+
assert n*m*oo is oo
|
2147 |
+
assert p*oo is oo
|
2148 |
+
assert x_im*oo != I*oo # i could be +/- 3*I -> +/-oo
|
2149 |
+
|
2150 |
+
|
2151 |
+
def test_add_flatten():
|
2152 |
+
# see https://github.com/sympy/sympy/issues/2633#issuecomment-29545524
|
2153 |
+
a = oo + I*oo
|
2154 |
+
b = oo - I*oo
|
2155 |
+
assert a + b is nan
|
2156 |
+
assert a - b is nan
|
2157 |
+
# FIXME: This evaluates as:
|
2158 |
+
# >>> 1/a
|
2159 |
+
# 0*(oo + oo*I)
|
2160 |
+
# which should not simplify to 0. Should be fixed in Pow.eval
|
2161 |
+
#assert (1/a).simplify() == (1/b).simplify() == 0
|
2162 |
+
|
2163 |
+
a = Pow(2, 3, evaluate=False)
|
2164 |
+
assert a + a == 16
|
2165 |
+
|
2166 |
+
|
2167 |
+
def test_issue_5160_6087_6089_6090():
|
2168 |
+
# issue 6087
|
2169 |
+
assert ((-2*x*y**y)**3.2).n(2) == (2**3.2*(-x*y**y)**3.2).n(2)
|
2170 |
+
# issue 6089
|
2171 |
+
A, B, C = symbols('A,B,C', commutative=False)
|
2172 |
+
assert (2.*B*C)**3 == 8.0*(B*C)**3
|
2173 |
+
assert (-2.*B*C)**3 == -8.0*(B*C)**3
|
2174 |
+
assert (-2*B*C)**2 == 4*(B*C)**2
|
2175 |
+
# issue 5160
|
2176 |
+
assert sqrt(-1.0*x) == 1.0*sqrt(-x)
|
2177 |
+
assert sqrt(1.0*x) == 1.0*sqrt(x)
|
2178 |
+
# issue 6090
|
2179 |
+
assert (-2*x*y*A*B)**2 == 4*x**2*y**2*(A*B)**2
|
2180 |
+
|
2181 |
+
|
2182 |
+
def test_float_int_round():
|
2183 |
+
assert int(float(sqrt(10))) == int(sqrt(10))
|
2184 |
+
assert int(pi**1000) % 10 == 2
|
2185 |
+
assert int(Float('1.123456789012345678901234567890e20', '')) == \
|
2186 |
+
int(112345678901234567890)
|
2187 |
+
assert int(Float('1.123456789012345678901234567890e25', '')) == \
|
2188 |
+
int(11234567890123456789012345)
|
2189 |
+
# decimal forces float so it's not an exact integer ending in 000000
|
2190 |
+
assert int(Float('1.123456789012345678901234567890e35', '')) == \
|
2191 |
+
112345678901234567890123456789000192
|
2192 |
+
assert int(Float('123456789012345678901234567890e5', '')) == \
|
2193 |
+
12345678901234567890123456789000000
|
2194 |
+
assert Integer(Float('1.123456789012345678901234567890e20', '')) == \
|
2195 |
+
112345678901234567890
|
2196 |
+
assert Integer(Float('1.123456789012345678901234567890e25', '')) == \
|
2197 |
+
11234567890123456789012345
|
2198 |
+
# decimal forces float so it's not an exact integer ending in 000000
|
2199 |
+
assert Integer(Float('1.123456789012345678901234567890e35', '')) == \
|
2200 |
+
112345678901234567890123456789000192
|
2201 |
+
assert Integer(Float('123456789012345678901234567890e5', '')) == \
|
2202 |
+
12345678901234567890123456789000000
|
2203 |
+
assert same_and_same_prec(Float('123000e-2',''), Float('1230.00', ''))
|
2204 |
+
assert same_and_same_prec(Float('123000e2',''), Float('12300000', ''))
|
2205 |
+
|
2206 |
+
assert int(1 + Rational('.9999999999999999999999999')) == 1
|
2207 |
+
assert int(pi/1e20) == 0
|
2208 |
+
assert int(1 + pi/1e20) == 1
|
2209 |
+
assert int(Add(1.2, -2, evaluate=False)) == int(1.2 - 2)
|
2210 |
+
assert int(Add(1.2, +2, evaluate=False)) == int(1.2 + 2)
|
2211 |
+
assert int(Add(1 + Float('.99999999999999999', ''), evaluate=False)) == 1
|
2212 |
+
raises(TypeError, lambda: float(x))
|
2213 |
+
raises(TypeError, lambda: float(sqrt(-1)))
|
2214 |
+
|
2215 |
+
assert int(12345678901234567890 + cos(1)**2 + sin(1)**2) == \
|
2216 |
+
12345678901234567891
|
2217 |
+
|
2218 |
+
|
2219 |
+
def test_issue_6611a():
|
2220 |
+
assert Mul.flatten([3**Rational(1, 3),
|
2221 |
+
Pow(-Rational(1, 9), Rational(2, 3), evaluate=False)]) == \
|
2222 |
+
([Rational(1, 3), (-1)**Rational(2, 3)], [], None)
|
2223 |
+
|
2224 |
+
|
2225 |
+
def test_denest_add_mul():
|
2226 |
+
# when working with evaluated expressions make sure they denest
|
2227 |
+
eq = x + 1
|
2228 |
+
eq = Add(eq, 2, evaluate=False)
|
2229 |
+
eq = Add(eq, 2, evaluate=False)
|
2230 |
+
assert Add(*eq.args) == x + 5
|
2231 |
+
eq = x*2
|
2232 |
+
eq = Mul(eq, 2, evaluate=False)
|
2233 |
+
eq = Mul(eq, 2, evaluate=False)
|
2234 |
+
assert Mul(*eq.args) == 8*x
|
2235 |
+
# but don't let them denest unnecessarily
|
2236 |
+
eq = Mul(-2, x - 2, evaluate=False)
|
2237 |
+
assert 2*eq == Mul(-4, x - 2, evaluate=False)
|
2238 |
+
assert -eq == Mul(2, x - 2, evaluate=False)
|
2239 |
+
|
2240 |
+
|
2241 |
+
def test_mul_coeff():
|
2242 |
+
# It is important that all Numbers be removed from the seq;
|
2243 |
+
# This can be tricky when powers combine to produce those numbers
|
2244 |
+
p = exp(I*pi/3)
|
2245 |
+
assert p**2*x*p*y*p*x*p**2 == x**2*y
|
2246 |
+
|
2247 |
+
|
2248 |
+
def test_mul_zero_detection():
|
2249 |
+
nz = Dummy(real=True, zero=False)
|
2250 |
+
r = Dummy(extended_real=True)
|
2251 |
+
c = Dummy(real=False, complex=True)
|
2252 |
+
c2 = Dummy(real=False, complex=True)
|
2253 |
+
i = Dummy(imaginary=True)
|
2254 |
+
e = nz*r*c
|
2255 |
+
assert e.is_imaginary is None
|
2256 |
+
assert e.is_extended_real is None
|
2257 |
+
e = nz*c
|
2258 |
+
assert e.is_imaginary is None
|
2259 |
+
assert e.is_extended_real is False
|
2260 |
+
e = nz*i*c
|
2261 |
+
assert e.is_imaginary is False
|
2262 |
+
assert e.is_extended_real is None
|
2263 |
+
# check for more than one complex; it is important to use
|
2264 |
+
# uniquely named Symbols to ensure that two factors appear
|
2265 |
+
# e.g. if the symbols have the same name they just become
|
2266 |
+
# a single factor, a power.
|
2267 |
+
e = nz*i*c*c2
|
2268 |
+
assert e.is_imaginary is None
|
2269 |
+
assert e.is_extended_real is None
|
2270 |
+
|
2271 |
+
# _eval_is_extended_real and _eval_is_zero both employ trapping of the
|
2272 |
+
# zero value so args should be tested in both directions and
|
2273 |
+
# TO AVOID GETTING THE CACHED RESULT, Dummy MUST BE USED
|
2274 |
+
|
2275 |
+
# real is unknown
|
2276 |
+
def test(z, b, e):
|
2277 |
+
if z.is_zero and b.is_finite:
|
2278 |
+
assert e.is_extended_real and e.is_zero
|
2279 |
+
else:
|
2280 |
+
assert e.is_extended_real is None
|
2281 |
+
if b.is_finite:
|
2282 |
+
if z.is_zero:
|
2283 |
+
assert e.is_zero
|
2284 |
+
else:
|
2285 |
+
assert e.is_zero is None
|
2286 |
+
elif b.is_finite is False:
|
2287 |
+
if z.is_zero is None:
|
2288 |
+
assert e.is_zero is None
|
2289 |
+
else:
|
2290 |
+
assert e.is_zero is False
|
2291 |
+
|
2292 |
+
|
2293 |
+
for iz, ib in product(*[[True, False, None]]*2):
|
2294 |
+
z = Dummy('z', nonzero=iz)
|
2295 |
+
b = Dummy('f', finite=ib)
|
2296 |
+
e = Mul(z, b, evaluate=False)
|
2297 |
+
test(z, b, e)
|
2298 |
+
z = Dummy('nz', nonzero=iz)
|
2299 |
+
b = Dummy('f', finite=ib)
|
2300 |
+
e = Mul(b, z, evaluate=False)
|
2301 |
+
test(z, b, e)
|
2302 |
+
|
2303 |
+
# real is True
|
2304 |
+
def test(z, b, e):
|
2305 |
+
if z.is_zero and not b.is_finite:
|
2306 |
+
assert e.is_extended_real is None
|
2307 |
+
else:
|
2308 |
+
assert e.is_extended_real is True
|
2309 |
+
|
2310 |
+
for iz, ib in product(*[[True, False, None]]*2):
|
2311 |
+
z = Dummy('z', nonzero=iz, extended_real=True)
|
2312 |
+
b = Dummy('b', finite=ib, extended_real=True)
|
2313 |
+
e = Mul(z, b, evaluate=False)
|
2314 |
+
test(z, b, e)
|
2315 |
+
z = Dummy('z', nonzero=iz, extended_real=True)
|
2316 |
+
b = Dummy('b', finite=ib, extended_real=True)
|
2317 |
+
e = Mul(b, z, evaluate=False)
|
2318 |
+
test(z, b, e)
|
2319 |
+
|
2320 |
+
|
2321 |
+
def test_Mul_with_zero_infinite():
|
2322 |
+
zer = Dummy(zero=True)
|
2323 |
+
inf = Dummy(finite=False)
|
2324 |
+
|
2325 |
+
e = Mul(zer, inf, evaluate=False)
|
2326 |
+
assert e.is_extended_positive is None
|
2327 |
+
assert e.is_hermitian is None
|
2328 |
+
|
2329 |
+
e = Mul(inf, zer, evaluate=False)
|
2330 |
+
assert e.is_extended_positive is None
|
2331 |
+
assert e.is_hermitian is None
|
2332 |
+
|
2333 |
+
|
2334 |
+
def test_Mul_does_not_cancel_infinities():
|
2335 |
+
a, b = symbols('a b')
|
2336 |
+
assert ((zoo + 3*a)/(3*a + zoo)) is nan
|
2337 |
+
assert ((b - oo)/(b - oo)) is nan
|
2338 |
+
# issue 13904
|
2339 |
+
expr = (1/(a+b) + 1/(a-b))/(1/(a+b) - 1/(a-b))
|
2340 |
+
assert expr.subs(b, a) is nan
|
2341 |
+
|
2342 |
+
|
2343 |
+
def test_Mul_does_not_distribute_infinity():
|
2344 |
+
a, b = symbols('a b')
|
2345 |
+
assert ((1 + I)*oo).is_Mul
|
2346 |
+
assert ((a + b)*(-oo)).is_Mul
|
2347 |
+
assert ((a + 1)*zoo).is_Mul
|
2348 |
+
assert ((1 + I)*oo).is_finite is False
|
2349 |
+
z = (1 + I)*oo
|
2350 |
+
assert ((1 - I)*z).expand() is oo
|
2351 |
+
|
2352 |
+
|
2353 |
+
def test_issue_8247_8354():
|
2354 |
+
from sympy.functions.elementary.trigonometric import tan
|
2355 |
+
z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
|
2356 |
+
assert z.is_positive is False # it's 0
|
2357 |
+
z = S('''-2**(1/3)*(3*sqrt(93) + 29)**2 - 4*(3*sqrt(93) + 29)**(4/3) +
|
2358 |
+
12*sqrt(93)*(3*sqrt(93) + 29)**(1/3) + 116*(3*sqrt(93) + 29)**(1/3) +
|
2359 |
+
174*2**(1/3)*sqrt(93) + 1678*2**(1/3)''')
|
2360 |
+
assert z.is_positive is False # it's 0
|
2361 |
+
z = 2*(-3*tan(19*pi/90) + sqrt(3))*cos(11*pi/90)*cos(19*pi/90) - \
|
2362 |
+
sqrt(3)*(-3 + 4*cos(19*pi/90)**2)
|
2363 |
+
assert z.is_positive is not True # it's zero and it shouldn't hang
|
2364 |
+
z = S('''9*(3*sqrt(93) + 29)**(2/3)*((3*sqrt(93) +
|
2365 |
+
29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) - 2) - 2*2**(1/3))**3 +
|
2366 |
+
72*(3*sqrt(93) + 29)**(2/3)*(81*sqrt(93) + 783) + (162*sqrt(93) +
|
2367 |
+
1566)*((3*sqrt(93) + 29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) -
|
2368 |
+
2) - 2*2**(1/3))**2''')
|
2369 |
+
assert z.is_positive is False # it's 0 (and a single _mexpand isn't enough)
|
2370 |
+
|
2371 |
+
|
2372 |
+
def test_Add_is_zero():
|
2373 |
+
x, y = symbols('x y', zero=True)
|
2374 |
+
assert (x + y).is_zero
|
2375 |
+
|
2376 |
+
# Issue 15873
|
2377 |
+
e = -2*I + (1 + I)**2
|
2378 |
+
assert e.is_zero is None
|
2379 |
+
|
2380 |
+
|
2381 |
+
def test_issue_14392():
|
2382 |
+
assert (sin(zoo)**2).as_real_imag() == (nan, nan)
|
2383 |
+
|
2384 |
+
|
2385 |
+
def test_divmod():
|
2386 |
+
assert divmod(x, y) == (x//y, x % y)
|
2387 |
+
assert divmod(x, 3) == (x//3, x % 3)
|
2388 |
+
assert divmod(3, x) == (3//x, 3 % x)
|
2389 |
+
|
2390 |
+
|
2391 |
+
def test__neg__():
|
2392 |
+
assert -(x*y) == -x*y
|
2393 |
+
assert -(-x*y) == x*y
|
2394 |
+
assert -(1.*x) == -1.*x
|
2395 |
+
assert -(-1.*x) == 1.*x
|
2396 |
+
assert -(2.*x) == -2.*x
|
2397 |
+
assert -(-2.*x) == 2.*x
|
2398 |
+
with distribute(False):
|
2399 |
+
eq = -(x + y)
|
2400 |
+
assert eq.is_Mul and eq.args == (-1, x + y)
|
2401 |
+
with evaluate(False):
|
2402 |
+
eq = -(x + y)
|
2403 |
+
assert eq.is_Mul and eq.args == (-1, x + y)
|
2404 |
+
|
2405 |
+
|
2406 |
+
def test_issue_18507():
|
2407 |
+
assert Mul(zoo, zoo, 0) is nan
|
2408 |
+
|
2409 |
+
|
2410 |
+
def test_issue_17130():
|
2411 |
+
e = Add(b, -b, I, -I, evaluate=False)
|
2412 |
+
assert e.is_zero is None # ideally this would be True
|
2413 |
+
|
2414 |
+
|
2415 |
+
def test_issue_21034():
|
2416 |
+
e = -I*log((re(asin(5)) + I*im(asin(5)))/sqrt(re(asin(5))**2 + im(asin(5))**2))/pi
|
2417 |
+
assert e.round(2)
|
2418 |
+
|
2419 |
+
|
2420 |
+
def test_issue_22021():
|
2421 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
2422 |
+
# these objects are special cases in Mul
|
2423 |
+
from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
|
2424 |
+
L = TensorIndexType("L")
|
2425 |
+
i = tensor_indices("i", L)
|
2426 |
+
A, B = tensor_heads("A B", [L])
|
2427 |
+
e = A(i) + B(i)
|
2428 |
+
assert -e == -1*e
|
2429 |
+
e = zoo + x
|
2430 |
+
assert -e == -1*e
|
2431 |
+
a = AccumBounds(1, 2)
|
2432 |
+
e = a + x
|
2433 |
+
assert -e == -1*e
|
2434 |
+
for args in permutations((zoo, a, x)):
|
2435 |
+
e = Add(*args, evaluate=False)
|
2436 |
+
assert -e == -1*e
|
2437 |
+
assert 2*Add(1, x, x, evaluate=False) == 4*x + 2
|
2438 |
+
|
2439 |
+
|
2440 |
+
def test_issue_22244():
|
2441 |
+
assert -(zoo*x) == zoo*x
|
2442 |
+
|
2443 |
+
|
2444 |
+
def test_issue_22453():
|
2445 |
+
from sympy.utilities.iterables import cartes
|
2446 |
+
e = Symbol('e', extended_positive=True)
|
2447 |
+
for a, b in cartes(*[[oo, -oo, 3]]*2):
|
2448 |
+
if a == b == 3:
|
2449 |
+
continue
|
2450 |
+
i = a + I*b
|
2451 |
+
assert i**(1 + e) is S.ComplexInfinity
|
2452 |
+
assert i**-e is S.Zero
|
2453 |
+
assert unchanged(Pow, i, e)
|
2454 |
+
assert 1/(oo + I*oo) is S.Zero
|
2455 |
+
r, i = [Dummy(infinite=True, extended_real=True) for _ in range(2)]
|
2456 |
+
assert 1/(r + I*i) is S.Zero
|
2457 |
+
assert 1/(3 + I*i) is S.Zero
|
2458 |
+
assert 1/(r + I*3) is S.Zero
|
2459 |
+
|
2460 |
+
|
2461 |
+
def test_issue_22613():
|
2462 |
+
assert (0**(x - 2)).as_content_primitive() == (1, 0**(x - 2))
|
2463 |
+
assert (0**(x + 2)).as_content_primitive() == (1, 0**(x + 2))
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_assumptions.py
ADDED
@@ -0,0 +1,1335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.mod import Mod
|
2 |
+
from sympy.core.numbers import (I, oo, pi)
|
3 |
+
from sympy.functions.combinatorial.factorials import factorial
|
4 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
from sympy.functions.elementary.trigonometric import (asin, sin)
|
7 |
+
from sympy.simplify.simplify import simplify
|
8 |
+
from sympy.core import Symbol, S, Rational, Integer, Dummy, Wild, Pow
|
9 |
+
from sympy.core.assumptions import (assumptions, check_assumptions,
|
10 |
+
failing_assumptions, common_assumptions, _generate_assumption_rules,
|
11 |
+
_load_pre_generated_assumption_rules)
|
12 |
+
from sympy.core.facts import InconsistentAssumptions
|
13 |
+
from sympy.core.random import seed
|
14 |
+
from sympy.combinatorics import Permutation
|
15 |
+
from sympy.combinatorics.perm_groups import PermutationGroup
|
16 |
+
|
17 |
+
from sympy.testing.pytest import raises, XFAIL
|
18 |
+
|
19 |
+
|
20 |
+
def test_symbol_unset():
|
21 |
+
x = Symbol('x', real=True, integer=True)
|
22 |
+
assert x.is_real is True
|
23 |
+
assert x.is_integer is True
|
24 |
+
assert x.is_imaginary is False
|
25 |
+
assert x.is_noninteger is False
|
26 |
+
assert x.is_number is False
|
27 |
+
|
28 |
+
|
29 |
+
def test_zero():
|
30 |
+
z = Integer(0)
|
31 |
+
assert z.is_commutative is True
|
32 |
+
assert z.is_integer is True
|
33 |
+
assert z.is_rational is True
|
34 |
+
assert z.is_algebraic is True
|
35 |
+
assert z.is_transcendental is False
|
36 |
+
assert z.is_real is True
|
37 |
+
assert z.is_complex is True
|
38 |
+
assert z.is_noninteger is False
|
39 |
+
assert z.is_irrational is False
|
40 |
+
assert z.is_imaginary is False
|
41 |
+
assert z.is_positive is False
|
42 |
+
assert z.is_negative is False
|
43 |
+
assert z.is_nonpositive is True
|
44 |
+
assert z.is_nonnegative is True
|
45 |
+
assert z.is_even is True
|
46 |
+
assert z.is_odd is False
|
47 |
+
assert z.is_finite is True
|
48 |
+
assert z.is_infinite is False
|
49 |
+
assert z.is_comparable is True
|
50 |
+
assert z.is_prime is False
|
51 |
+
assert z.is_composite is False
|
52 |
+
assert z.is_number is True
|
53 |
+
|
54 |
+
|
55 |
+
def test_one():
|
56 |
+
z = Integer(1)
|
57 |
+
assert z.is_commutative is True
|
58 |
+
assert z.is_integer is True
|
59 |
+
assert z.is_rational is True
|
60 |
+
assert z.is_algebraic is True
|
61 |
+
assert z.is_transcendental is False
|
62 |
+
assert z.is_real is True
|
63 |
+
assert z.is_complex is True
|
64 |
+
assert z.is_noninteger is False
|
65 |
+
assert z.is_irrational is False
|
66 |
+
assert z.is_imaginary is False
|
67 |
+
assert z.is_positive is True
|
68 |
+
assert z.is_negative is False
|
69 |
+
assert z.is_nonpositive is False
|
70 |
+
assert z.is_nonnegative is True
|
71 |
+
assert z.is_even is False
|
72 |
+
assert z.is_odd is True
|
73 |
+
assert z.is_finite is True
|
74 |
+
assert z.is_infinite is False
|
75 |
+
assert z.is_comparable is True
|
76 |
+
assert z.is_prime is False
|
77 |
+
assert z.is_number is True
|
78 |
+
assert z.is_composite is False # issue 8807
|
79 |
+
|
80 |
+
|
81 |
+
def test_negativeone():
|
82 |
+
z = Integer(-1)
|
83 |
+
assert z.is_commutative is True
|
84 |
+
assert z.is_integer is True
|
85 |
+
assert z.is_rational is True
|
86 |
+
assert z.is_algebraic is True
|
87 |
+
assert z.is_transcendental is False
|
88 |
+
assert z.is_real is True
|
89 |
+
assert z.is_complex is True
|
90 |
+
assert z.is_noninteger is False
|
91 |
+
assert z.is_irrational is False
|
92 |
+
assert z.is_imaginary is False
|
93 |
+
assert z.is_positive is False
|
94 |
+
assert z.is_negative is True
|
95 |
+
assert z.is_nonpositive is True
|
96 |
+
assert z.is_nonnegative is False
|
97 |
+
assert z.is_even is False
|
98 |
+
assert z.is_odd is True
|
99 |
+
assert z.is_finite is True
|
100 |
+
assert z.is_infinite is False
|
101 |
+
assert z.is_comparable is True
|
102 |
+
assert z.is_prime is False
|
103 |
+
assert z.is_composite is False
|
104 |
+
assert z.is_number is True
|
105 |
+
|
106 |
+
|
107 |
+
def test_infinity():
|
108 |
+
oo = S.Infinity
|
109 |
+
|
110 |
+
assert oo.is_commutative is True
|
111 |
+
assert oo.is_integer is False
|
112 |
+
assert oo.is_rational is False
|
113 |
+
assert oo.is_algebraic is False
|
114 |
+
assert oo.is_transcendental is False
|
115 |
+
assert oo.is_extended_real is True
|
116 |
+
assert oo.is_real is False
|
117 |
+
assert oo.is_complex is False
|
118 |
+
assert oo.is_noninteger is True
|
119 |
+
assert oo.is_irrational is False
|
120 |
+
assert oo.is_imaginary is False
|
121 |
+
assert oo.is_nonzero is False
|
122 |
+
assert oo.is_positive is False
|
123 |
+
assert oo.is_negative is False
|
124 |
+
assert oo.is_nonpositive is False
|
125 |
+
assert oo.is_nonnegative is False
|
126 |
+
assert oo.is_extended_nonzero is True
|
127 |
+
assert oo.is_extended_positive is True
|
128 |
+
assert oo.is_extended_negative is False
|
129 |
+
assert oo.is_extended_nonpositive is False
|
130 |
+
assert oo.is_extended_nonnegative is True
|
131 |
+
assert oo.is_even is False
|
132 |
+
assert oo.is_odd is False
|
133 |
+
assert oo.is_finite is False
|
134 |
+
assert oo.is_infinite is True
|
135 |
+
assert oo.is_comparable is True
|
136 |
+
assert oo.is_prime is False
|
137 |
+
assert oo.is_composite is False
|
138 |
+
assert oo.is_number is True
|
139 |
+
|
140 |
+
|
141 |
+
def test_neg_infinity():
|
142 |
+
mm = S.NegativeInfinity
|
143 |
+
|
144 |
+
assert mm.is_commutative is True
|
145 |
+
assert mm.is_integer is False
|
146 |
+
assert mm.is_rational is False
|
147 |
+
assert mm.is_algebraic is False
|
148 |
+
assert mm.is_transcendental is False
|
149 |
+
assert mm.is_extended_real is True
|
150 |
+
assert mm.is_real is False
|
151 |
+
assert mm.is_complex is False
|
152 |
+
assert mm.is_noninteger is True
|
153 |
+
assert mm.is_irrational is False
|
154 |
+
assert mm.is_imaginary is False
|
155 |
+
assert mm.is_nonzero is False
|
156 |
+
assert mm.is_positive is False
|
157 |
+
assert mm.is_negative is False
|
158 |
+
assert mm.is_nonpositive is False
|
159 |
+
assert mm.is_nonnegative is False
|
160 |
+
assert mm.is_extended_nonzero is True
|
161 |
+
assert mm.is_extended_positive is False
|
162 |
+
assert mm.is_extended_negative is True
|
163 |
+
assert mm.is_extended_nonpositive is True
|
164 |
+
assert mm.is_extended_nonnegative is False
|
165 |
+
assert mm.is_even is False
|
166 |
+
assert mm.is_odd is False
|
167 |
+
assert mm.is_finite is False
|
168 |
+
assert mm.is_infinite is True
|
169 |
+
assert mm.is_comparable is True
|
170 |
+
assert mm.is_prime is False
|
171 |
+
assert mm.is_composite is False
|
172 |
+
assert mm.is_number is True
|
173 |
+
|
174 |
+
|
175 |
+
def test_zoo():
|
176 |
+
zoo = S.ComplexInfinity
|
177 |
+
assert zoo.is_complex is False
|
178 |
+
assert zoo.is_real is False
|
179 |
+
assert zoo.is_prime is False
|
180 |
+
|
181 |
+
|
182 |
+
def test_nan():
|
183 |
+
nan = S.NaN
|
184 |
+
|
185 |
+
assert nan.is_commutative is True
|
186 |
+
assert nan.is_integer is None
|
187 |
+
assert nan.is_rational is None
|
188 |
+
assert nan.is_algebraic is None
|
189 |
+
assert nan.is_transcendental is None
|
190 |
+
assert nan.is_real is None
|
191 |
+
assert nan.is_complex is None
|
192 |
+
assert nan.is_noninteger is None
|
193 |
+
assert nan.is_irrational is None
|
194 |
+
assert nan.is_imaginary is None
|
195 |
+
assert nan.is_positive is None
|
196 |
+
assert nan.is_negative is None
|
197 |
+
assert nan.is_nonpositive is None
|
198 |
+
assert nan.is_nonnegative is None
|
199 |
+
assert nan.is_even is None
|
200 |
+
assert nan.is_odd is None
|
201 |
+
assert nan.is_finite is None
|
202 |
+
assert nan.is_infinite is None
|
203 |
+
assert nan.is_comparable is False
|
204 |
+
assert nan.is_prime is None
|
205 |
+
assert nan.is_composite is None
|
206 |
+
assert nan.is_number is True
|
207 |
+
|
208 |
+
|
209 |
+
def test_pos_rational():
|
210 |
+
r = Rational(3, 4)
|
211 |
+
assert r.is_commutative is True
|
212 |
+
assert r.is_integer is False
|
213 |
+
assert r.is_rational is True
|
214 |
+
assert r.is_algebraic is True
|
215 |
+
assert r.is_transcendental is False
|
216 |
+
assert r.is_real is True
|
217 |
+
assert r.is_complex is True
|
218 |
+
assert r.is_noninteger is True
|
219 |
+
assert r.is_irrational is False
|
220 |
+
assert r.is_imaginary is False
|
221 |
+
assert r.is_positive is True
|
222 |
+
assert r.is_negative is False
|
223 |
+
assert r.is_nonpositive is False
|
224 |
+
assert r.is_nonnegative is True
|
225 |
+
assert r.is_even is False
|
226 |
+
assert r.is_odd is False
|
227 |
+
assert r.is_finite is True
|
228 |
+
assert r.is_infinite is False
|
229 |
+
assert r.is_comparable is True
|
230 |
+
assert r.is_prime is False
|
231 |
+
assert r.is_composite is False
|
232 |
+
|
233 |
+
r = Rational(1, 4)
|
234 |
+
assert r.is_nonpositive is False
|
235 |
+
assert r.is_positive is True
|
236 |
+
assert r.is_negative is False
|
237 |
+
assert r.is_nonnegative is True
|
238 |
+
r = Rational(5, 4)
|
239 |
+
assert r.is_negative is False
|
240 |
+
assert r.is_positive is True
|
241 |
+
assert r.is_nonpositive is False
|
242 |
+
assert r.is_nonnegative is True
|
243 |
+
r = Rational(5, 3)
|
244 |
+
assert r.is_nonnegative is True
|
245 |
+
assert r.is_positive is True
|
246 |
+
assert r.is_negative is False
|
247 |
+
assert r.is_nonpositive is False
|
248 |
+
|
249 |
+
|
250 |
+
def test_neg_rational():
|
251 |
+
r = Rational(-3, 4)
|
252 |
+
assert r.is_positive is False
|
253 |
+
assert r.is_nonpositive is True
|
254 |
+
assert r.is_negative is True
|
255 |
+
assert r.is_nonnegative is False
|
256 |
+
r = Rational(-1, 4)
|
257 |
+
assert r.is_nonpositive is True
|
258 |
+
assert r.is_positive is False
|
259 |
+
assert r.is_negative is True
|
260 |
+
assert r.is_nonnegative is False
|
261 |
+
r = Rational(-5, 4)
|
262 |
+
assert r.is_negative is True
|
263 |
+
assert r.is_positive is False
|
264 |
+
assert r.is_nonpositive is True
|
265 |
+
assert r.is_nonnegative is False
|
266 |
+
r = Rational(-5, 3)
|
267 |
+
assert r.is_nonnegative is False
|
268 |
+
assert r.is_positive is False
|
269 |
+
assert r.is_negative is True
|
270 |
+
assert r.is_nonpositive is True
|
271 |
+
|
272 |
+
|
273 |
+
def test_pi():
|
274 |
+
z = S.Pi
|
275 |
+
assert z.is_commutative is True
|
276 |
+
assert z.is_integer is False
|
277 |
+
assert z.is_rational is False
|
278 |
+
assert z.is_algebraic is False
|
279 |
+
assert z.is_transcendental is True
|
280 |
+
assert z.is_real is True
|
281 |
+
assert z.is_complex is True
|
282 |
+
assert z.is_noninteger is True
|
283 |
+
assert z.is_irrational is True
|
284 |
+
assert z.is_imaginary is False
|
285 |
+
assert z.is_positive is True
|
286 |
+
assert z.is_negative is False
|
287 |
+
assert z.is_nonpositive is False
|
288 |
+
assert z.is_nonnegative is True
|
289 |
+
assert z.is_even is False
|
290 |
+
assert z.is_odd is False
|
291 |
+
assert z.is_finite is True
|
292 |
+
assert z.is_infinite is False
|
293 |
+
assert z.is_comparable is True
|
294 |
+
assert z.is_prime is False
|
295 |
+
assert z.is_composite is False
|
296 |
+
|
297 |
+
|
298 |
+
def test_E():
|
299 |
+
z = S.Exp1
|
300 |
+
assert z.is_commutative is True
|
301 |
+
assert z.is_integer is False
|
302 |
+
assert z.is_rational is False
|
303 |
+
assert z.is_algebraic is False
|
304 |
+
assert z.is_transcendental is True
|
305 |
+
assert z.is_real is True
|
306 |
+
assert z.is_complex is True
|
307 |
+
assert z.is_noninteger is True
|
308 |
+
assert z.is_irrational is True
|
309 |
+
assert z.is_imaginary is False
|
310 |
+
assert z.is_positive is True
|
311 |
+
assert z.is_negative is False
|
312 |
+
assert z.is_nonpositive is False
|
313 |
+
assert z.is_nonnegative is True
|
314 |
+
assert z.is_even is False
|
315 |
+
assert z.is_odd is False
|
316 |
+
assert z.is_finite is True
|
317 |
+
assert z.is_infinite is False
|
318 |
+
assert z.is_comparable is True
|
319 |
+
assert z.is_prime is False
|
320 |
+
assert z.is_composite is False
|
321 |
+
|
322 |
+
|
323 |
+
def test_I():
|
324 |
+
z = S.ImaginaryUnit
|
325 |
+
assert z.is_commutative is True
|
326 |
+
assert z.is_integer is False
|
327 |
+
assert z.is_rational is False
|
328 |
+
assert z.is_algebraic is True
|
329 |
+
assert z.is_transcendental is False
|
330 |
+
assert z.is_real is False
|
331 |
+
assert z.is_complex is True
|
332 |
+
assert z.is_noninteger is False
|
333 |
+
assert z.is_irrational is False
|
334 |
+
assert z.is_imaginary is True
|
335 |
+
assert z.is_positive is False
|
336 |
+
assert z.is_negative is False
|
337 |
+
assert z.is_nonpositive is False
|
338 |
+
assert z.is_nonnegative is False
|
339 |
+
assert z.is_even is False
|
340 |
+
assert z.is_odd is False
|
341 |
+
assert z.is_finite is True
|
342 |
+
assert z.is_infinite is False
|
343 |
+
assert z.is_comparable is False
|
344 |
+
assert z.is_prime is False
|
345 |
+
assert z.is_composite is False
|
346 |
+
|
347 |
+
|
348 |
+
def test_symbol_real_false():
|
349 |
+
# issue 3848
|
350 |
+
a = Symbol('a', real=False)
|
351 |
+
|
352 |
+
assert a.is_real is False
|
353 |
+
assert a.is_integer is False
|
354 |
+
assert a.is_zero is False
|
355 |
+
|
356 |
+
assert a.is_negative is False
|
357 |
+
assert a.is_positive is False
|
358 |
+
assert a.is_nonnegative is False
|
359 |
+
assert a.is_nonpositive is False
|
360 |
+
assert a.is_nonzero is False
|
361 |
+
|
362 |
+
assert a.is_extended_negative is None
|
363 |
+
assert a.is_extended_positive is None
|
364 |
+
assert a.is_extended_nonnegative is None
|
365 |
+
assert a.is_extended_nonpositive is None
|
366 |
+
assert a.is_extended_nonzero is None
|
367 |
+
|
368 |
+
|
369 |
+
def test_symbol_extended_real_false():
|
370 |
+
# issue 3848
|
371 |
+
a = Symbol('a', extended_real=False)
|
372 |
+
|
373 |
+
assert a.is_real is False
|
374 |
+
assert a.is_integer is False
|
375 |
+
assert a.is_zero is False
|
376 |
+
|
377 |
+
assert a.is_negative is False
|
378 |
+
assert a.is_positive is False
|
379 |
+
assert a.is_nonnegative is False
|
380 |
+
assert a.is_nonpositive is False
|
381 |
+
assert a.is_nonzero is False
|
382 |
+
|
383 |
+
assert a.is_extended_negative is False
|
384 |
+
assert a.is_extended_positive is False
|
385 |
+
assert a.is_extended_nonnegative is False
|
386 |
+
assert a.is_extended_nonpositive is False
|
387 |
+
assert a.is_extended_nonzero is False
|
388 |
+
|
389 |
+
|
390 |
+
def test_symbol_imaginary():
|
391 |
+
a = Symbol('a', imaginary=True)
|
392 |
+
|
393 |
+
assert a.is_real is False
|
394 |
+
assert a.is_integer is False
|
395 |
+
assert a.is_negative is False
|
396 |
+
assert a.is_positive is False
|
397 |
+
assert a.is_nonnegative is False
|
398 |
+
assert a.is_nonpositive is False
|
399 |
+
assert a.is_zero is False
|
400 |
+
assert a.is_nonzero is False # since nonzero -> real
|
401 |
+
|
402 |
+
|
403 |
+
def test_symbol_zero():
|
404 |
+
x = Symbol('x', zero=True)
|
405 |
+
assert x.is_positive is False
|
406 |
+
assert x.is_nonpositive
|
407 |
+
assert x.is_negative is False
|
408 |
+
assert x.is_nonnegative
|
409 |
+
assert x.is_zero is True
|
410 |
+
# TODO Change to x.is_nonzero is None
|
411 |
+
# See https://github.com/sympy/sympy/pull/9583
|
412 |
+
assert x.is_nonzero is False
|
413 |
+
assert x.is_finite is True
|
414 |
+
|
415 |
+
|
416 |
+
def test_symbol_positive():
|
417 |
+
x = Symbol('x', positive=True)
|
418 |
+
assert x.is_positive is True
|
419 |
+
assert x.is_nonpositive is False
|
420 |
+
assert x.is_negative is False
|
421 |
+
assert x.is_nonnegative is True
|
422 |
+
assert x.is_zero is False
|
423 |
+
assert x.is_nonzero is True
|
424 |
+
|
425 |
+
|
426 |
+
def test_neg_symbol_positive():
|
427 |
+
x = -Symbol('x', positive=True)
|
428 |
+
assert x.is_positive is False
|
429 |
+
assert x.is_nonpositive is True
|
430 |
+
assert x.is_negative is True
|
431 |
+
assert x.is_nonnegative is False
|
432 |
+
assert x.is_zero is False
|
433 |
+
assert x.is_nonzero is True
|
434 |
+
|
435 |
+
|
436 |
+
def test_symbol_nonpositive():
|
437 |
+
x = Symbol('x', nonpositive=True)
|
438 |
+
assert x.is_positive is False
|
439 |
+
assert x.is_nonpositive is True
|
440 |
+
assert x.is_negative is None
|
441 |
+
assert x.is_nonnegative is None
|
442 |
+
assert x.is_zero is None
|
443 |
+
assert x.is_nonzero is None
|
444 |
+
|
445 |
+
|
446 |
+
def test_neg_symbol_nonpositive():
|
447 |
+
x = -Symbol('x', nonpositive=True)
|
448 |
+
assert x.is_positive is None
|
449 |
+
assert x.is_nonpositive is None
|
450 |
+
assert x.is_negative is False
|
451 |
+
assert x.is_nonnegative is True
|
452 |
+
assert x.is_zero is None
|
453 |
+
assert x.is_nonzero is None
|
454 |
+
|
455 |
+
|
456 |
+
def test_symbol_falsepositive():
|
457 |
+
x = Symbol('x', positive=False)
|
458 |
+
assert x.is_positive is False
|
459 |
+
assert x.is_nonpositive is None
|
460 |
+
assert x.is_negative is None
|
461 |
+
assert x.is_nonnegative is None
|
462 |
+
assert x.is_zero is None
|
463 |
+
assert x.is_nonzero is None
|
464 |
+
|
465 |
+
|
466 |
+
def test_symbol_falsepositive_mul():
|
467 |
+
# To test pull request 9379
|
468 |
+
# Explicit handling of arg.is_positive=False was added to Mul._eval_is_positive
|
469 |
+
x = 2*Symbol('x', positive=False)
|
470 |
+
assert x.is_positive is False # This was None before
|
471 |
+
assert x.is_nonpositive is None
|
472 |
+
assert x.is_negative is None
|
473 |
+
assert x.is_nonnegative is None
|
474 |
+
assert x.is_zero is None
|
475 |
+
assert x.is_nonzero is None
|
476 |
+
|
477 |
+
|
478 |
+
@XFAIL
|
479 |
+
def test_symbol_infinitereal_mul():
|
480 |
+
ix = Symbol('ix', infinite=True, extended_real=True)
|
481 |
+
assert (-ix).is_extended_positive is None
|
482 |
+
|
483 |
+
|
484 |
+
def test_neg_symbol_falsepositive():
|
485 |
+
x = -Symbol('x', positive=False)
|
486 |
+
assert x.is_positive is None
|
487 |
+
assert x.is_nonpositive is None
|
488 |
+
assert x.is_negative is False
|
489 |
+
assert x.is_nonnegative is None
|
490 |
+
assert x.is_zero is None
|
491 |
+
assert x.is_nonzero is None
|
492 |
+
|
493 |
+
|
494 |
+
def test_neg_symbol_falsenegative():
|
495 |
+
# To test pull request 9379
|
496 |
+
# Explicit handling of arg.is_negative=False was added to Mul._eval_is_positive
|
497 |
+
x = -Symbol('x', negative=False)
|
498 |
+
assert x.is_positive is False # This was None before
|
499 |
+
assert x.is_nonpositive is None
|
500 |
+
assert x.is_negative is None
|
501 |
+
assert x.is_nonnegative is None
|
502 |
+
assert x.is_zero is None
|
503 |
+
assert x.is_nonzero is None
|
504 |
+
|
505 |
+
|
506 |
+
def test_symbol_falsepositive_real():
|
507 |
+
x = Symbol('x', positive=False, real=True)
|
508 |
+
assert x.is_positive is False
|
509 |
+
assert x.is_nonpositive is True
|
510 |
+
assert x.is_negative is None
|
511 |
+
assert x.is_nonnegative is None
|
512 |
+
assert x.is_zero is None
|
513 |
+
assert x.is_nonzero is None
|
514 |
+
|
515 |
+
|
516 |
+
def test_neg_symbol_falsepositive_real():
|
517 |
+
x = -Symbol('x', positive=False, real=True)
|
518 |
+
assert x.is_positive is None
|
519 |
+
assert x.is_nonpositive is None
|
520 |
+
assert x.is_negative is False
|
521 |
+
assert x.is_nonnegative is True
|
522 |
+
assert x.is_zero is None
|
523 |
+
assert x.is_nonzero is None
|
524 |
+
|
525 |
+
|
526 |
+
def test_symbol_falsenonnegative():
|
527 |
+
x = Symbol('x', nonnegative=False)
|
528 |
+
assert x.is_positive is False
|
529 |
+
assert x.is_nonpositive is None
|
530 |
+
assert x.is_negative is None
|
531 |
+
assert x.is_nonnegative is False
|
532 |
+
assert x.is_zero is False
|
533 |
+
assert x.is_nonzero is None
|
534 |
+
|
535 |
+
|
536 |
+
@XFAIL
|
537 |
+
def test_neg_symbol_falsenonnegative():
|
538 |
+
x = -Symbol('x', nonnegative=False)
|
539 |
+
assert x.is_positive is None
|
540 |
+
assert x.is_nonpositive is False # this currently returns None
|
541 |
+
assert x.is_negative is False # this currently returns None
|
542 |
+
assert x.is_nonnegative is None
|
543 |
+
assert x.is_zero is False # this currently returns None
|
544 |
+
assert x.is_nonzero is True # this currently returns None
|
545 |
+
|
546 |
+
|
547 |
+
def test_symbol_falsenonnegative_real():
|
548 |
+
x = Symbol('x', nonnegative=False, real=True)
|
549 |
+
assert x.is_positive is False
|
550 |
+
assert x.is_nonpositive is True
|
551 |
+
assert x.is_negative is True
|
552 |
+
assert x.is_nonnegative is False
|
553 |
+
assert x.is_zero is False
|
554 |
+
assert x.is_nonzero is True
|
555 |
+
|
556 |
+
|
557 |
+
def test_neg_symbol_falsenonnegative_real():
|
558 |
+
x = -Symbol('x', nonnegative=False, real=True)
|
559 |
+
assert x.is_positive is True
|
560 |
+
assert x.is_nonpositive is False
|
561 |
+
assert x.is_negative is False
|
562 |
+
assert x.is_nonnegative is True
|
563 |
+
assert x.is_zero is False
|
564 |
+
assert x.is_nonzero is True
|
565 |
+
|
566 |
+
|
567 |
+
def test_prime():
|
568 |
+
assert S.NegativeOne.is_prime is False
|
569 |
+
assert S(-2).is_prime is False
|
570 |
+
assert S(-4).is_prime is False
|
571 |
+
assert S.Zero.is_prime is False
|
572 |
+
assert S.One.is_prime is False
|
573 |
+
assert S(2).is_prime is True
|
574 |
+
assert S(17).is_prime is True
|
575 |
+
assert S(4).is_prime is False
|
576 |
+
|
577 |
+
|
578 |
+
def test_composite():
|
579 |
+
assert S.NegativeOne.is_composite is False
|
580 |
+
assert S(-2).is_composite is False
|
581 |
+
assert S(-4).is_composite is False
|
582 |
+
assert S.Zero.is_composite is False
|
583 |
+
assert S(2).is_composite is False
|
584 |
+
assert S(17).is_composite is False
|
585 |
+
assert S(4).is_composite is True
|
586 |
+
x = Dummy(integer=True, positive=True, prime=False)
|
587 |
+
assert x.is_composite is None # x could be 1
|
588 |
+
assert (x + 1).is_composite is None
|
589 |
+
x = Dummy(positive=True, even=True, prime=False)
|
590 |
+
assert x.is_integer is True
|
591 |
+
assert x.is_composite is True
|
592 |
+
|
593 |
+
|
594 |
+
def test_prime_symbol():
|
595 |
+
x = Symbol('x', prime=True)
|
596 |
+
assert x.is_prime is True
|
597 |
+
assert x.is_integer is True
|
598 |
+
assert x.is_positive is True
|
599 |
+
assert x.is_negative is False
|
600 |
+
assert x.is_nonpositive is False
|
601 |
+
assert x.is_nonnegative is True
|
602 |
+
|
603 |
+
x = Symbol('x', prime=False)
|
604 |
+
assert x.is_prime is False
|
605 |
+
assert x.is_integer is None
|
606 |
+
assert x.is_positive is None
|
607 |
+
assert x.is_negative is None
|
608 |
+
assert x.is_nonpositive is None
|
609 |
+
assert x.is_nonnegative is None
|
610 |
+
|
611 |
+
|
612 |
+
def test_symbol_noncommutative():
|
613 |
+
x = Symbol('x', commutative=True)
|
614 |
+
assert x.is_complex is None
|
615 |
+
|
616 |
+
x = Symbol('x', commutative=False)
|
617 |
+
assert x.is_integer is False
|
618 |
+
assert x.is_rational is False
|
619 |
+
assert x.is_algebraic is False
|
620 |
+
assert x.is_irrational is False
|
621 |
+
assert x.is_real is False
|
622 |
+
assert x.is_complex is False
|
623 |
+
|
624 |
+
|
625 |
+
def test_other_symbol():
|
626 |
+
x = Symbol('x', integer=True)
|
627 |
+
assert x.is_integer is True
|
628 |
+
assert x.is_real is True
|
629 |
+
assert x.is_finite is True
|
630 |
+
|
631 |
+
x = Symbol('x', integer=True, nonnegative=True)
|
632 |
+
assert x.is_integer is True
|
633 |
+
assert x.is_nonnegative is True
|
634 |
+
assert x.is_negative is False
|
635 |
+
assert x.is_positive is None
|
636 |
+
assert x.is_finite is True
|
637 |
+
|
638 |
+
x = Symbol('x', integer=True, nonpositive=True)
|
639 |
+
assert x.is_integer is True
|
640 |
+
assert x.is_nonpositive is True
|
641 |
+
assert x.is_positive is False
|
642 |
+
assert x.is_negative is None
|
643 |
+
assert x.is_finite is True
|
644 |
+
|
645 |
+
x = Symbol('x', odd=True)
|
646 |
+
assert x.is_odd is True
|
647 |
+
assert x.is_even is False
|
648 |
+
assert x.is_integer is True
|
649 |
+
assert x.is_finite is True
|
650 |
+
|
651 |
+
x = Symbol('x', odd=False)
|
652 |
+
assert x.is_odd is False
|
653 |
+
assert x.is_even is None
|
654 |
+
assert x.is_integer is None
|
655 |
+
assert x.is_finite is None
|
656 |
+
|
657 |
+
x = Symbol('x', even=True)
|
658 |
+
assert x.is_even is True
|
659 |
+
assert x.is_odd is False
|
660 |
+
assert x.is_integer is True
|
661 |
+
assert x.is_finite is True
|
662 |
+
|
663 |
+
x = Symbol('x', even=False)
|
664 |
+
assert x.is_even is False
|
665 |
+
assert x.is_odd is None
|
666 |
+
assert x.is_integer is None
|
667 |
+
assert x.is_finite is None
|
668 |
+
|
669 |
+
x = Symbol('x', integer=True, nonnegative=True)
|
670 |
+
assert x.is_integer is True
|
671 |
+
assert x.is_nonnegative is True
|
672 |
+
assert x.is_finite is True
|
673 |
+
|
674 |
+
x = Symbol('x', integer=True, nonpositive=True)
|
675 |
+
assert x.is_integer is True
|
676 |
+
assert x.is_nonpositive is True
|
677 |
+
assert x.is_finite is True
|
678 |
+
|
679 |
+
x = Symbol('x', rational=True)
|
680 |
+
assert x.is_real is True
|
681 |
+
assert x.is_finite is True
|
682 |
+
|
683 |
+
x = Symbol('x', rational=False)
|
684 |
+
assert x.is_real is None
|
685 |
+
assert x.is_finite is None
|
686 |
+
|
687 |
+
x = Symbol('x', irrational=True)
|
688 |
+
assert x.is_real is True
|
689 |
+
assert x.is_finite is True
|
690 |
+
|
691 |
+
x = Symbol('x', irrational=False)
|
692 |
+
assert x.is_real is None
|
693 |
+
assert x.is_finite is None
|
694 |
+
|
695 |
+
with raises(AttributeError):
|
696 |
+
x.is_real = False
|
697 |
+
|
698 |
+
x = Symbol('x', algebraic=True)
|
699 |
+
assert x.is_transcendental is False
|
700 |
+
x = Symbol('x', transcendental=True)
|
701 |
+
assert x.is_algebraic is False
|
702 |
+
assert x.is_rational is False
|
703 |
+
assert x.is_integer is False
|
704 |
+
|
705 |
+
|
706 |
+
def test_evaluate_false():
|
707 |
+
# Previously this failed because the assumptions query would make new
|
708 |
+
# expressions and some of the evaluation logic would fail under
|
709 |
+
# evaluate(False).
|
710 |
+
from sympy.core.parameters import evaluate
|
711 |
+
from sympy.abc import x, h
|
712 |
+
f = 2**x**7
|
713 |
+
with evaluate(False):
|
714 |
+
fh = f.xreplace({x: x+h})
|
715 |
+
assert fh.exp.is_rational is None
|
716 |
+
|
717 |
+
|
718 |
+
def test_issue_3825():
|
719 |
+
"""catch: hash instability"""
|
720 |
+
x = Symbol("x")
|
721 |
+
y = Symbol("y")
|
722 |
+
a1 = x + y
|
723 |
+
a2 = y + x
|
724 |
+
a2.is_comparable
|
725 |
+
|
726 |
+
h1 = hash(a1)
|
727 |
+
h2 = hash(a2)
|
728 |
+
assert h1 == h2
|
729 |
+
|
730 |
+
|
731 |
+
def test_issue_4822():
|
732 |
+
z = (-1)**Rational(1, 3)*(1 - I*sqrt(3))
|
733 |
+
assert z.is_real in [True, None]
|
734 |
+
|
735 |
+
|
736 |
+
def test_hash_vs_typeinfo():
|
737 |
+
"""seemingly different typeinfo, but in fact equal"""
|
738 |
+
|
739 |
+
# the following two are semantically equal
|
740 |
+
x1 = Symbol('x', even=True)
|
741 |
+
x2 = Symbol('x', integer=True, odd=False)
|
742 |
+
|
743 |
+
assert hash(x1) == hash(x2)
|
744 |
+
assert x1 == x2
|
745 |
+
|
746 |
+
|
747 |
+
def test_hash_vs_typeinfo_2():
|
748 |
+
"""different typeinfo should mean !eq"""
|
749 |
+
# the following two are semantically different
|
750 |
+
x = Symbol('x')
|
751 |
+
x1 = Symbol('x', even=True)
|
752 |
+
|
753 |
+
assert x != x1
|
754 |
+
assert hash(x) != hash(x1) # This might fail with very low probability
|
755 |
+
|
756 |
+
|
757 |
+
def test_hash_vs_eq():
|
758 |
+
"""catch: different hash for equal objects"""
|
759 |
+
a = 1 + S.Pi # important: do not fold it into a Number instance
|
760 |
+
ha = hash(a) # it should be Add/Mul/... to trigger the bug
|
761 |
+
|
762 |
+
a.is_positive # this uses .evalf() and deduces it is positive
|
763 |
+
assert a.is_positive is True
|
764 |
+
|
765 |
+
# be sure that hash stayed the same
|
766 |
+
assert ha == hash(a)
|
767 |
+
|
768 |
+
# now b should be the same expression
|
769 |
+
b = a.expand(trig=True)
|
770 |
+
hb = hash(b)
|
771 |
+
|
772 |
+
assert a == b
|
773 |
+
assert ha == hb
|
774 |
+
|
775 |
+
|
776 |
+
def test_Add_is_pos_neg():
|
777 |
+
# these cover lines not covered by the rest of tests in core
|
778 |
+
n = Symbol('n', extended_negative=True, infinite=True)
|
779 |
+
nn = Symbol('n', extended_nonnegative=True, infinite=True)
|
780 |
+
np = Symbol('n', extended_nonpositive=True, infinite=True)
|
781 |
+
p = Symbol('p', extended_positive=True, infinite=True)
|
782 |
+
r = Dummy(extended_real=True, finite=False)
|
783 |
+
x = Symbol('x')
|
784 |
+
xf = Symbol('xf', finite=True)
|
785 |
+
assert (n + p).is_extended_positive is None
|
786 |
+
assert (n + x).is_extended_positive is None
|
787 |
+
assert (p + x).is_extended_positive is None
|
788 |
+
assert (n + p).is_extended_negative is None
|
789 |
+
assert (n + x).is_extended_negative is None
|
790 |
+
assert (p + x).is_extended_negative is None
|
791 |
+
|
792 |
+
assert (n + xf).is_extended_positive is False
|
793 |
+
assert (p + xf).is_extended_positive is True
|
794 |
+
assert (n + xf).is_extended_negative is True
|
795 |
+
assert (p + xf).is_extended_negative is False
|
796 |
+
|
797 |
+
assert (x - S.Infinity).is_extended_negative is None # issue 7798
|
798 |
+
# issue 8046, 16.2
|
799 |
+
assert (p + nn).is_extended_positive
|
800 |
+
assert (n + np).is_extended_negative
|
801 |
+
assert (p + r).is_extended_positive is None
|
802 |
+
|
803 |
+
|
804 |
+
def test_Add_is_imaginary():
|
805 |
+
nn = Dummy(nonnegative=True)
|
806 |
+
assert (I*nn + I).is_imaginary # issue 8046, 17
|
807 |
+
|
808 |
+
|
809 |
+
def test_Add_is_algebraic():
|
810 |
+
a = Symbol('a', algebraic=True)
|
811 |
+
b = Symbol('a', algebraic=True)
|
812 |
+
na = Symbol('na', algebraic=False)
|
813 |
+
nb = Symbol('nb', algebraic=False)
|
814 |
+
x = Symbol('x')
|
815 |
+
assert (a + b).is_algebraic
|
816 |
+
assert (na + nb).is_algebraic is None
|
817 |
+
assert (a + na).is_algebraic is False
|
818 |
+
assert (a + x).is_algebraic is None
|
819 |
+
assert (na + x).is_algebraic is None
|
820 |
+
|
821 |
+
|
822 |
+
def test_Mul_is_algebraic():
|
823 |
+
a = Symbol('a', algebraic=True)
|
824 |
+
b = Symbol('b', algebraic=True)
|
825 |
+
na = Symbol('na', algebraic=False)
|
826 |
+
an = Symbol('an', algebraic=True, nonzero=True)
|
827 |
+
nb = Symbol('nb', algebraic=False)
|
828 |
+
x = Symbol('x')
|
829 |
+
assert (a*b).is_algebraic is True
|
830 |
+
assert (na*nb).is_algebraic is None
|
831 |
+
assert (a*na).is_algebraic is None
|
832 |
+
assert (an*na).is_algebraic is False
|
833 |
+
assert (a*x).is_algebraic is None
|
834 |
+
assert (na*x).is_algebraic is None
|
835 |
+
|
836 |
+
|
837 |
+
def test_Pow_is_algebraic():
|
838 |
+
e = Symbol('e', algebraic=True)
|
839 |
+
|
840 |
+
assert Pow(1, e, evaluate=False).is_algebraic
|
841 |
+
assert Pow(0, e, evaluate=False).is_algebraic
|
842 |
+
|
843 |
+
a = Symbol('a', algebraic=True)
|
844 |
+
azf = Symbol('azf', algebraic=True, zero=False)
|
845 |
+
na = Symbol('na', algebraic=False)
|
846 |
+
ia = Symbol('ia', algebraic=True, irrational=True)
|
847 |
+
ib = Symbol('ib', algebraic=True, irrational=True)
|
848 |
+
r = Symbol('r', rational=True)
|
849 |
+
x = Symbol('x')
|
850 |
+
assert (a**2).is_algebraic is True
|
851 |
+
assert (a**r).is_algebraic is None
|
852 |
+
assert (azf**r).is_algebraic is True
|
853 |
+
assert (a**x).is_algebraic is None
|
854 |
+
assert (na**r).is_algebraic is None
|
855 |
+
assert (ia**r).is_algebraic is True
|
856 |
+
assert (ia**ib).is_algebraic is False
|
857 |
+
|
858 |
+
assert (a**e).is_algebraic is None
|
859 |
+
|
860 |
+
# Gelfond-Schneider constant:
|
861 |
+
assert Pow(2, sqrt(2), evaluate=False).is_algebraic is False
|
862 |
+
|
863 |
+
assert Pow(S.GoldenRatio, sqrt(3), evaluate=False).is_algebraic is False
|
864 |
+
|
865 |
+
# issue 8649
|
866 |
+
t = Symbol('t', real=True, transcendental=True)
|
867 |
+
n = Symbol('n', integer=True)
|
868 |
+
assert (t**n).is_algebraic is None
|
869 |
+
assert (t**n).is_integer is None
|
870 |
+
|
871 |
+
assert (pi**3).is_algebraic is False
|
872 |
+
r = Symbol('r', zero=True)
|
873 |
+
assert (pi**r).is_algebraic is True
|
874 |
+
|
875 |
+
|
876 |
+
def test_Mul_is_prime_composite():
|
877 |
+
x = Symbol('x', positive=True, integer=True)
|
878 |
+
y = Symbol('y', positive=True, integer=True)
|
879 |
+
assert (x*y).is_prime is None
|
880 |
+
assert ( (x+1)*(y+1) ).is_prime is False
|
881 |
+
assert ( (x+1)*(y+1) ).is_composite is True
|
882 |
+
|
883 |
+
x = Symbol('x', positive=True)
|
884 |
+
assert ( (x+1)*(y+1) ).is_prime is None
|
885 |
+
assert ( (x+1)*(y+1) ).is_composite is None
|
886 |
+
|
887 |
+
|
888 |
+
def test_Pow_is_pos_neg():
|
889 |
+
z = Symbol('z', real=True)
|
890 |
+
w = Symbol('w', nonpositive=True)
|
891 |
+
|
892 |
+
assert (S.NegativeOne**S(2)).is_positive is True
|
893 |
+
assert (S.One**z).is_positive is True
|
894 |
+
assert (S.NegativeOne**S(3)).is_positive is False
|
895 |
+
assert (S.Zero**S.Zero).is_positive is True # 0**0 is 1
|
896 |
+
assert (w**S(3)).is_positive is False
|
897 |
+
assert (w**S(2)).is_positive is None
|
898 |
+
assert (I**2).is_positive is False
|
899 |
+
assert (I**4).is_positive is True
|
900 |
+
|
901 |
+
# tests emerging from #16332 issue
|
902 |
+
p = Symbol('p', zero=True)
|
903 |
+
q = Symbol('q', zero=False, real=True)
|
904 |
+
j = Symbol('j', zero=False, even=True)
|
905 |
+
x = Symbol('x', zero=True)
|
906 |
+
y = Symbol('y', zero=True)
|
907 |
+
assert (p**q).is_positive is False
|
908 |
+
assert (p**q).is_negative is False
|
909 |
+
assert (p**j).is_positive is False
|
910 |
+
assert (x**y).is_positive is True # 0**0
|
911 |
+
assert (x**y).is_negative is False
|
912 |
+
|
913 |
+
|
914 |
+
def test_Pow_is_prime_composite():
|
915 |
+
x = Symbol('x', positive=True, integer=True)
|
916 |
+
y = Symbol('y', positive=True, integer=True)
|
917 |
+
assert (x**y).is_prime is None
|
918 |
+
assert ( x**(y+1) ).is_prime is False
|
919 |
+
assert ( x**(y+1) ).is_composite is None
|
920 |
+
assert ( (x+1)**(y+1) ).is_composite is True
|
921 |
+
assert ( (-x-1)**(2*y) ).is_composite is True
|
922 |
+
|
923 |
+
x = Symbol('x', positive=True)
|
924 |
+
assert (x**y).is_prime is None
|
925 |
+
|
926 |
+
|
927 |
+
def test_Mul_is_infinite():
|
928 |
+
x = Symbol('x')
|
929 |
+
f = Symbol('f', finite=True)
|
930 |
+
i = Symbol('i', infinite=True)
|
931 |
+
z = Dummy(zero=True)
|
932 |
+
nzf = Dummy(finite=True, zero=False)
|
933 |
+
from sympy.core.mul import Mul
|
934 |
+
assert (x*f).is_finite is None
|
935 |
+
assert (x*i).is_finite is None
|
936 |
+
assert (f*i).is_finite is None
|
937 |
+
assert (x*f*i).is_finite is None
|
938 |
+
assert (z*i).is_finite is None
|
939 |
+
assert (nzf*i).is_finite is False
|
940 |
+
assert (z*f).is_finite is True
|
941 |
+
assert Mul(0, f, evaluate=False).is_finite is True
|
942 |
+
assert Mul(0, i, evaluate=False).is_finite is None
|
943 |
+
|
944 |
+
assert (x*f).is_infinite is None
|
945 |
+
assert (x*i).is_infinite is None
|
946 |
+
assert (f*i).is_infinite is None
|
947 |
+
assert (x*f*i).is_infinite is None
|
948 |
+
assert (z*i).is_infinite is S.NaN.is_infinite
|
949 |
+
assert (nzf*i).is_infinite is True
|
950 |
+
assert (z*f).is_infinite is False
|
951 |
+
assert Mul(0, f, evaluate=False).is_infinite is False
|
952 |
+
assert Mul(0, i, evaluate=False).is_infinite is S.NaN.is_infinite
|
953 |
+
|
954 |
+
|
955 |
+
def test_Add_is_infinite():
|
956 |
+
x = Symbol('x')
|
957 |
+
f = Symbol('f', finite=True)
|
958 |
+
i = Symbol('i', infinite=True)
|
959 |
+
i2 = Symbol('i2', infinite=True)
|
960 |
+
z = Dummy(zero=True)
|
961 |
+
nzf = Dummy(finite=True, zero=False)
|
962 |
+
from sympy.core.add import Add
|
963 |
+
assert (x+f).is_finite is None
|
964 |
+
assert (x+i).is_finite is None
|
965 |
+
assert (f+i).is_finite is False
|
966 |
+
assert (x+f+i).is_finite is None
|
967 |
+
assert (z+i).is_finite is False
|
968 |
+
assert (nzf+i).is_finite is False
|
969 |
+
assert (z+f).is_finite is True
|
970 |
+
assert (i+i2).is_finite is None
|
971 |
+
assert Add(0, f, evaluate=False).is_finite is True
|
972 |
+
assert Add(0, i, evaluate=False).is_finite is False
|
973 |
+
|
974 |
+
assert (x+f).is_infinite is None
|
975 |
+
assert (x+i).is_infinite is None
|
976 |
+
assert (f+i).is_infinite is True
|
977 |
+
assert (x+f+i).is_infinite is None
|
978 |
+
assert (z+i).is_infinite is True
|
979 |
+
assert (nzf+i).is_infinite is True
|
980 |
+
assert (z+f).is_infinite is False
|
981 |
+
assert (i+i2).is_infinite is None
|
982 |
+
assert Add(0, f, evaluate=False).is_infinite is False
|
983 |
+
assert Add(0, i, evaluate=False).is_infinite is True
|
984 |
+
|
985 |
+
|
986 |
+
def test_special_is_rational():
|
987 |
+
i = Symbol('i', integer=True)
|
988 |
+
i2 = Symbol('i2', integer=True)
|
989 |
+
ni = Symbol('ni', integer=True, nonzero=True)
|
990 |
+
r = Symbol('r', rational=True)
|
991 |
+
rn = Symbol('r', rational=True, nonzero=True)
|
992 |
+
nr = Symbol('nr', irrational=True)
|
993 |
+
x = Symbol('x')
|
994 |
+
assert sqrt(3).is_rational is False
|
995 |
+
assert (3 + sqrt(3)).is_rational is False
|
996 |
+
assert (3*sqrt(3)).is_rational is False
|
997 |
+
assert exp(3).is_rational is False
|
998 |
+
assert exp(ni).is_rational is False
|
999 |
+
assert exp(rn).is_rational is False
|
1000 |
+
assert exp(x).is_rational is None
|
1001 |
+
assert exp(log(3), evaluate=False).is_rational is True
|
1002 |
+
assert log(exp(3), evaluate=False).is_rational is True
|
1003 |
+
assert log(3).is_rational is False
|
1004 |
+
assert log(ni + 1).is_rational is False
|
1005 |
+
assert log(rn + 1).is_rational is False
|
1006 |
+
assert log(x).is_rational is None
|
1007 |
+
assert (sqrt(3) + sqrt(5)).is_rational is None
|
1008 |
+
assert (sqrt(3) + S.Pi).is_rational is False
|
1009 |
+
assert (x**i).is_rational is None
|
1010 |
+
assert (i**i).is_rational is True
|
1011 |
+
assert (i**i2).is_rational is None
|
1012 |
+
assert (r**i).is_rational is None
|
1013 |
+
assert (r**r).is_rational is None
|
1014 |
+
assert (r**x).is_rational is None
|
1015 |
+
assert (nr**i).is_rational is None # issue 8598
|
1016 |
+
assert (nr**Symbol('z', zero=True)).is_rational
|
1017 |
+
assert sin(1).is_rational is False
|
1018 |
+
assert sin(ni).is_rational is False
|
1019 |
+
assert sin(rn).is_rational is False
|
1020 |
+
assert sin(x).is_rational is None
|
1021 |
+
assert asin(r).is_rational is False
|
1022 |
+
assert sin(asin(3), evaluate=False).is_rational is True
|
1023 |
+
|
1024 |
+
|
1025 |
+
@XFAIL
|
1026 |
+
def test_issue_6275():
|
1027 |
+
x = Symbol('x')
|
1028 |
+
# both zero or both Muls...but neither "change would be very appreciated.
|
1029 |
+
# This is similar to x/x => 1 even though if x = 0, it is really nan.
|
1030 |
+
assert isinstance(x*0, type(0*S.Infinity))
|
1031 |
+
if 0*S.Infinity is S.NaN:
|
1032 |
+
b = Symbol('b', finite=None)
|
1033 |
+
assert (b*0).is_zero is None
|
1034 |
+
|
1035 |
+
|
1036 |
+
def test_sanitize_assumptions():
|
1037 |
+
# issue 6666
|
1038 |
+
for cls in (Symbol, Dummy, Wild):
|
1039 |
+
x = cls('x', real=1, positive=0)
|
1040 |
+
assert x.is_real is True
|
1041 |
+
assert x.is_positive is False
|
1042 |
+
assert cls('', real=True, positive=None).is_positive is None
|
1043 |
+
raises(ValueError, lambda: cls('', commutative=None))
|
1044 |
+
raises(ValueError, lambda: Symbol._sanitize({"commutative": None}))
|
1045 |
+
|
1046 |
+
|
1047 |
+
def test_special_assumptions():
|
1048 |
+
e = -3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2
|
1049 |
+
assert simplify(e < 0) is S.false
|
1050 |
+
assert simplify(e > 0) is S.false
|
1051 |
+
assert (e == 0) is False # it's not a literal 0
|
1052 |
+
assert e.equals(0) is True
|
1053 |
+
|
1054 |
+
|
1055 |
+
def test_inconsistent():
|
1056 |
+
# cf. issues 5795 and 5545
|
1057 |
+
raises(InconsistentAssumptions, lambda: Symbol('x', real=True,
|
1058 |
+
commutative=False))
|
1059 |
+
|
1060 |
+
|
1061 |
+
def test_issue_6631():
|
1062 |
+
assert ((-1)**(I)).is_real is True
|
1063 |
+
assert ((-1)**(I*2)).is_real is True
|
1064 |
+
assert ((-1)**(I/2)).is_real is True
|
1065 |
+
assert ((-1)**(I*S.Pi)).is_real is True
|
1066 |
+
assert (I**(I + 2)).is_real is True
|
1067 |
+
|
1068 |
+
|
1069 |
+
def test_issue_2730():
|
1070 |
+
assert (1/(1 + I)).is_real is False
|
1071 |
+
|
1072 |
+
|
1073 |
+
def test_issue_4149():
|
1074 |
+
assert (3 + I).is_complex
|
1075 |
+
assert (3 + I).is_imaginary is False
|
1076 |
+
assert (3*I + S.Pi*I).is_imaginary
|
1077 |
+
# as Zero.is_imaginary is False, see issue 7649
|
1078 |
+
y = Symbol('y', real=True)
|
1079 |
+
assert (3*I + S.Pi*I + y*I).is_imaginary is None
|
1080 |
+
p = Symbol('p', positive=True)
|
1081 |
+
assert (3*I + S.Pi*I + p*I).is_imaginary
|
1082 |
+
n = Symbol('n', negative=True)
|
1083 |
+
assert (-3*I - S.Pi*I + n*I).is_imaginary
|
1084 |
+
|
1085 |
+
i = Symbol('i', imaginary=True)
|
1086 |
+
assert ([(i**a).is_imaginary for a in range(4)] ==
|
1087 |
+
[False, True, False, True])
|
1088 |
+
|
1089 |
+
# tests from the PR #7887:
|
1090 |
+
e = S("-sqrt(3)*I/2 + 0.866025403784439*I")
|
1091 |
+
assert e.is_real is False
|
1092 |
+
assert e.is_imaginary
|
1093 |
+
|
1094 |
+
|
1095 |
+
def test_issue_2920():
|
1096 |
+
n = Symbol('n', negative=True)
|
1097 |
+
assert sqrt(n).is_imaginary
|
1098 |
+
|
1099 |
+
|
1100 |
+
def test_issue_7899():
|
1101 |
+
x = Symbol('x', real=True)
|
1102 |
+
assert (I*x).is_real is None
|
1103 |
+
assert ((x - I)*(x - 1)).is_zero is None
|
1104 |
+
assert ((x - I)*(x - 1)).is_real is None
|
1105 |
+
|
1106 |
+
|
1107 |
+
@XFAIL
|
1108 |
+
def test_issue_7993():
|
1109 |
+
x = Dummy(integer=True)
|
1110 |
+
y = Dummy(noninteger=True)
|
1111 |
+
assert (x - y).is_zero is False
|
1112 |
+
|
1113 |
+
|
1114 |
+
def test_issue_8075():
|
1115 |
+
raises(InconsistentAssumptions, lambda: Dummy(zero=True, finite=False))
|
1116 |
+
raises(InconsistentAssumptions, lambda: Dummy(zero=True, infinite=True))
|
1117 |
+
|
1118 |
+
|
1119 |
+
def test_issue_8642():
|
1120 |
+
x = Symbol('x', real=True, integer=False)
|
1121 |
+
assert (x*2).is_integer is None, (x*2).is_integer
|
1122 |
+
|
1123 |
+
|
1124 |
+
def test_issues_8632_8633_8638_8675_8992():
|
1125 |
+
p = Dummy(integer=True, positive=True)
|
1126 |
+
nn = Dummy(integer=True, nonnegative=True)
|
1127 |
+
assert (p - S.Half).is_positive
|
1128 |
+
assert (p - 1).is_nonnegative
|
1129 |
+
assert (nn + 1).is_positive
|
1130 |
+
assert (-p + 1).is_nonpositive
|
1131 |
+
assert (-nn - 1).is_negative
|
1132 |
+
prime = Dummy(prime=True)
|
1133 |
+
assert (prime - 2).is_nonnegative
|
1134 |
+
assert (prime - 3).is_nonnegative is None
|
1135 |
+
even = Dummy(positive=True, even=True)
|
1136 |
+
assert (even - 2).is_nonnegative
|
1137 |
+
|
1138 |
+
p = Dummy(positive=True)
|
1139 |
+
assert (p/(p + 1) - 1).is_negative
|
1140 |
+
assert ((p + 2)**3 - S.Half).is_positive
|
1141 |
+
n = Dummy(negative=True)
|
1142 |
+
assert (n - 3).is_nonpositive
|
1143 |
+
|
1144 |
+
|
1145 |
+
def test_issue_9115_9150():
|
1146 |
+
n = Dummy('n', integer=True, nonnegative=True)
|
1147 |
+
assert (factorial(n) >= 1) == True
|
1148 |
+
assert (factorial(n) < 1) == False
|
1149 |
+
|
1150 |
+
assert factorial(n + 1).is_even is None
|
1151 |
+
assert factorial(n + 2).is_even is True
|
1152 |
+
assert factorial(n + 2) >= 2
|
1153 |
+
|
1154 |
+
|
1155 |
+
def test_issue_9165():
|
1156 |
+
z = Symbol('z', zero=True)
|
1157 |
+
f = Symbol('f', finite=False)
|
1158 |
+
assert 0/z is S.NaN
|
1159 |
+
assert 0*(1/z) is S.NaN
|
1160 |
+
assert 0*f is S.NaN
|
1161 |
+
|
1162 |
+
|
1163 |
+
def test_issue_10024():
|
1164 |
+
x = Dummy('x')
|
1165 |
+
assert Mod(x, 2*pi).is_zero is None
|
1166 |
+
|
1167 |
+
|
1168 |
+
def test_issue_10302():
|
1169 |
+
x = Symbol('x')
|
1170 |
+
r = Symbol('r', real=True)
|
1171 |
+
u = -(3*2**pi)**(1/pi) + 2*3**(1/pi)
|
1172 |
+
i = u + u*I
|
1173 |
+
|
1174 |
+
assert i.is_real is None # w/o simplification this should fail
|
1175 |
+
assert (u + i).is_zero is None
|
1176 |
+
assert (1 + i).is_zero is False
|
1177 |
+
|
1178 |
+
a = Dummy('a', zero=True)
|
1179 |
+
assert (a + I).is_zero is False
|
1180 |
+
assert (a + r*I).is_zero is None
|
1181 |
+
assert (a + I).is_imaginary
|
1182 |
+
assert (a + x + I).is_imaginary is None
|
1183 |
+
assert (a + r*I + I).is_imaginary is None
|
1184 |
+
|
1185 |
+
|
1186 |
+
def test_complex_reciprocal_imaginary():
|
1187 |
+
assert (1 / (4 + 3*I)).is_imaginary is False
|
1188 |
+
|
1189 |
+
|
1190 |
+
def test_issue_16313():
|
1191 |
+
x = Symbol('x', extended_real=False)
|
1192 |
+
k = Symbol('k', real=True)
|
1193 |
+
l = Symbol('l', real=True, zero=False)
|
1194 |
+
assert (-x).is_real is False
|
1195 |
+
assert (k*x).is_real is None # k can be zero also
|
1196 |
+
assert (l*x).is_real is False
|
1197 |
+
assert (l*x*x).is_real is None # since x*x can be a real number
|
1198 |
+
assert (-x).is_positive is False
|
1199 |
+
|
1200 |
+
|
1201 |
+
def test_issue_16579():
|
1202 |
+
# extended_real -> finite | infinite
|
1203 |
+
x = Symbol('x', extended_real=True, infinite=False)
|
1204 |
+
y = Symbol('y', extended_real=True, finite=False)
|
1205 |
+
assert x.is_finite is True
|
1206 |
+
assert y.is_infinite is True
|
1207 |
+
|
1208 |
+
# With PR 16978, complex now implies finite
|
1209 |
+
c = Symbol('c', complex=True)
|
1210 |
+
assert c.is_finite is True
|
1211 |
+
raises(InconsistentAssumptions, lambda: Dummy(complex=True, finite=False))
|
1212 |
+
|
1213 |
+
# Now infinite == !finite
|
1214 |
+
nf = Symbol('nf', finite=False)
|
1215 |
+
assert nf.is_infinite is True
|
1216 |
+
|
1217 |
+
|
1218 |
+
def test_issue_17556():
|
1219 |
+
z = I*oo
|
1220 |
+
assert z.is_imaginary is False
|
1221 |
+
assert z.is_finite is False
|
1222 |
+
|
1223 |
+
|
1224 |
+
def test_issue_21651():
|
1225 |
+
k = Symbol('k', positive=True, integer=True)
|
1226 |
+
exp = 2*2**(-k)
|
1227 |
+
assert exp.is_integer is None
|
1228 |
+
|
1229 |
+
|
1230 |
+
def test_assumptions_copy():
|
1231 |
+
assert assumptions(Symbol('x'), {"commutative": True}
|
1232 |
+
) == {'commutative': True}
|
1233 |
+
assert assumptions(Symbol('x'), ['integer']) == {}
|
1234 |
+
assert assumptions(Symbol('x'), ['commutative']
|
1235 |
+
) == {'commutative': True}
|
1236 |
+
assert assumptions(Symbol('x')) == {'commutative': True}
|
1237 |
+
assert assumptions(1)['positive']
|
1238 |
+
assert assumptions(3 + I) == {
|
1239 |
+
'algebraic': True,
|
1240 |
+
'commutative': True,
|
1241 |
+
'complex': True,
|
1242 |
+
'composite': False,
|
1243 |
+
'even': False,
|
1244 |
+
'extended_negative': False,
|
1245 |
+
'extended_nonnegative': False,
|
1246 |
+
'extended_nonpositive': False,
|
1247 |
+
'extended_nonzero': False,
|
1248 |
+
'extended_positive': False,
|
1249 |
+
'extended_real': False,
|
1250 |
+
'finite': True,
|
1251 |
+
'imaginary': False,
|
1252 |
+
'infinite': False,
|
1253 |
+
'integer': False,
|
1254 |
+
'irrational': False,
|
1255 |
+
'negative': False,
|
1256 |
+
'noninteger': False,
|
1257 |
+
'nonnegative': False,
|
1258 |
+
'nonpositive': False,
|
1259 |
+
'nonzero': False,
|
1260 |
+
'odd': False,
|
1261 |
+
'positive': False,
|
1262 |
+
'prime': False,
|
1263 |
+
'rational': False,
|
1264 |
+
'real': False,
|
1265 |
+
'transcendental': False,
|
1266 |
+
'zero': False}
|
1267 |
+
|
1268 |
+
|
1269 |
+
def test_check_assumptions():
|
1270 |
+
assert check_assumptions(1, 0) is False
|
1271 |
+
x = Symbol('x', positive=True)
|
1272 |
+
assert check_assumptions(1, x) is True
|
1273 |
+
assert check_assumptions(1, 1) is True
|
1274 |
+
assert check_assumptions(-1, 1) is False
|
1275 |
+
i = Symbol('i', integer=True)
|
1276 |
+
# don't know if i is positive (or prime, etc...)
|
1277 |
+
assert check_assumptions(i, 1) is None
|
1278 |
+
assert check_assumptions(Dummy(integer=None), integer=True) is None
|
1279 |
+
assert check_assumptions(Dummy(integer=None), integer=False) is None
|
1280 |
+
assert check_assumptions(Dummy(integer=False), integer=True) is False
|
1281 |
+
assert check_assumptions(Dummy(integer=True), integer=False) is False
|
1282 |
+
# no T/F assumptions to check
|
1283 |
+
assert check_assumptions(Dummy(integer=False), integer=None) is True
|
1284 |
+
raises(ValueError, lambda: check_assumptions(2*x, x, positive=True))
|
1285 |
+
|
1286 |
+
|
1287 |
+
def test_failing_assumptions():
|
1288 |
+
x = Symbol('x', positive=True)
|
1289 |
+
y = Symbol('y')
|
1290 |
+
assert failing_assumptions(6*x + y, **x.assumptions0) == \
|
1291 |
+
{'real': None, 'imaginary': None, 'complex': None, 'hermitian': None,
|
1292 |
+
'positive': None, 'nonpositive': None, 'nonnegative': None, 'nonzero': None,
|
1293 |
+
'negative': None, 'zero': None, 'extended_real': None, 'finite': None,
|
1294 |
+
'infinite': None, 'extended_negative': None, 'extended_nonnegative': None,
|
1295 |
+
'extended_nonpositive': None, 'extended_nonzero': None,
|
1296 |
+
'extended_positive': None }
|
1297 |
+
|
1298 |
+
|
1299 |
+
def test_common_assumptions():
|
1300 |
+
assert common_assumptions([0, 1, 2]
|
1301 |
+
) == {'algebraic': True, 'irrational': False, 'hermitian':
|
1302 |
+
True, 'extended_real': True, 'real': True, 'extended_negative':
|
1303 |
+
False, 'extended_nonnegative': True, 'integer': True,
|
1304 |
+
'rational': True, 'imaginary': False, 'complex': True,
|
1305 |
+
'commutative': True,'noninteger': False, 'composite': False,
|
1306 |
+
'infinite': False, 'nonnegative': True, 'finite': True,
|
1307 |
+
'transcendental': False,'negative': False}
|
1308 |
+
assert common_assumptions([0, 1, 2], 'positive integer'.split()
|
1309 |
+
) == {'integer': True}
|
1310 |
+
assert common_assumptions([0, 1, 2], []) == {}
|
1311 |
+
assert common_assumptions([], ['integer']) == {}
|
1312 |
+
assert common_assumptions([0], ['integer']) == {'integer': True}
|
1313 |
+
|
1314 |
+
def test_pre_generated_assumption_rules_are_valid():
|
1315 |
+
# check the pre-generated assumptions match freshly generated assumptions
|
1316 |
+
# if this check fails, consider updating the assumptions
|
1317 |
+
# see sympy.core.assumptions._generate_assumption_rules
|
1318 |
+
pre_generated_assumptions =_load_pre_generated_assumption_rules()
|
1319 |
+
generated_assumptions =_generate_assumption_rules()
|
1320 |
+
assert pre_generated_assumptions._to_python() == generated_assumptions._to_python(), "pre-generated assumptions are invalid, see sympy.core.assumptions._generate_assumption_rules"
|
1321 |
+
|
1322 |
+
|
1323 |
+
def test_ask_shuffle():
|
1324 |
+
grp = PermutationGroup(Permutation(1, 0, 2), Permutation(2, 1, 3))
|
1325 |
+
|
1326 |
+
seed(123)
|
1327 |
+
first = grp.random()
|
1328 |
+
seed(123)
|
1329 |
+
simplify(I)
|
1330 |
+
second = grp.random()
|
1331 |
+
seed(123)
|
1332 |
+
simplify(-I)
|
1333 |
+
third = grp.random()
|
1334 |
+
|
1335 |
+
assert first == second == third
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_basic.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This tests sympy/core/basic.py with (ideally) no reference to subclasses
|
2 |
+
of Basic or Atom."""
|
3 |
+
|
4 |
+
import collections
|
5 |
+
|
6 |
+
from sympy.assumptions.ask import Q
|
7 |
+
from sympy.core.basic import (Basic, Atom, as_Basic,
|
8 |
+
_atomic, _aresame)
|
9 |
+
from sympy.core.containers import Tuple
|
10 |
+
from sympy.core.function import Function, Lambda
|
11 |
+
from sympy.core.numbers import I, pi
|
12 |
+
from sympy.core.singleton import S
|
13 |
+
from sympy.core.symbol import symbols, Symbol, Dummy
|
14 |
+
from sympy.concrete.summations import Sum
|
15 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
16 |
+
from sympy.functions.special.gamma_functions import gamma
|
17 |
+
from sympy.integrals.integrals import Integral
|
18 |
+
from sympy.functions.elementary.exponential import exp
|
19 |
+
from sympy.testing.pytest import raises, warns_deprecated_sympy
|
20 |
+
|
21 |
+
b1 = Basic()
|
22 |
+
b2 = Basic(b1)
|
23 |
+
b3 = Basic(b2)
|
24 |
+
b21 = Basic(b2, b1)
|
25 |
+
|
26 |
+
|
27 |
+
def test__aresame():
|
28 |
+
assert not _aresame(Basic(Tuple()), Basic())
|
29 |
+
assert not _aresame(Basic(S(2)), Basic(S(2.)))
|
30 |
+
|
31 |
+
|
32 |
+
def test_structure():
|
33 |
+
assert b21.args == (b2, b1)
|
34 |
+
assert b21.func(*b21.args) == b21
|
35 |
+
assert bool(b1)
|
36 |
+
|
37 |
+
|
38 |
+
def test_immutable():
|
39 |
+
assert not hasattr(b1, '__dict__')
|
40 |
+
with raises(AttributeError):
|
41 |
+
b1.x = 1
|
42 |
+
|
43 |
+
|
44 |
+
def test_equality():
|
45 |
+
instances = [b1, b2, b3, b21, Basic(b1, b1, b1), Basic]
|
46 |
+
for i, b_i in enumerate(instances):
|
47 |
+
for j, b_j in enumerate(instances):
|
48 |
+
assert (b_i == b_j) == (i == j)
|
49 |
+
assert (b_i != b_j) == (i != j)
|
50 |
+
|
51 |
+
assert Basic() != []
|
52 |
+
assert not(Basic() == [])
|
53 |
+
assert Basic() != 0
|
54 |
+
assert not(Basic() == 0)
|
55 |
+
|
56 |
+
class Foo:
|
57 |
+
"""
|
58 |
+
Class that is unaware of Basic, and relies on both classes returning
|
59 |
+
the NotImplemented singleton for equivalence to evaluate to False.
|
60 |
+
|
61 |
+
"""
|
62 |
+
|
63 |
+
b = Basic()
|
64 |
+
foo = Foo()
|
65 |
+
|
66 |
+
assert b != foo
|
67 |
+
assert foo != b
|
68 |
+
assert not b == foo
|
69 |
+
assert not foo == b
|
70 |
+
|
71 |
+
class Bar:
|
72 |
+
"""
|
73 |
+
Class that considers itself equal to any instance of Basic, and relies
|
74 |
+
on Basic returning the NotImplemented singleton in order to achieve
|
75 |
+
a symmetric equivalence relation.
|
76 |
+
|
77 |
+
"""
|
78 |
+
def __eq__(self, other):
|
79 |
+
if isinstance(other, Basic):
|
80 |
+
return True
|
81 |
+
return NotImplemented
|
82 |
+
|
83 |
+
def __ne__(self, other):
|
84 |
+
return not self == other
|
85 |
+
|
86 |
+
bar = Bar()
|
87 |
+
|
88 |
+
assert b == bar
|
89 |
+
assert bar == b
|
90 |
+
assert not b != bar
|
91 |
+
assert not bar != b
|
92 |
+
|
93 |
+
|
94 |
+
def test_matches_basic():
|
95 |
+
instances = [Basic(b1, b1, b2), Basic(b1, b2, b1), Basic(b2, b1, b1),
|
96 |
+
Basic(b1, b2), Basic(b2, b1), b2, b1]
|
97 |
+
for i, b_i in enumerate(instances):
|
98 |
+
for j, b_j in enumerate(instances):
|
99 |
+
if i == j:
|
100 |
+
assert b_i.matches(b_j) == {}
|
101 |
+
else:
|
102 |
+
assert b_i.matches(b_j) is None
|
103 |
+
assert b1.match(b1) == {}
|
104 |
+
|
105 |
+
|
106 |
+
def test_has():
|
107 |
+
assert b21.has(b1)
|
108 |
+
assert b21.has(b3, b1)
|
109 |
+
assert b21.has(Basic)
|
110 |
+
assert not b1.has(b21, b3)
|
111 |
+
assert not b21.has()
|
112 |
+
assert not b21.has(str)
|
113 |
+
assert not Symbol("x").has("x")
|
114 |
+
|
115 |
+
|
116 |
+
def test_subs():
|
117 |
+
assert b21.subs(b2, b1) == Basic(b1, b1)
|
118 |
+
assert b21.subs(b2, b21) == Basic(b21, b1)
|
119 |
+
assert b3.subs(b2, b1) == b2
|
120 |
+
|
121 |
+
assert b21.subs([(b2, b1), (b1, b2)]) == Basic(b2, b2)
|
122 |
+
|
123 |
+
assert b21.subs({b1: b2, b2: b1}) == Basic(b2, b2)
|
124 |
+
assert b21.subs(collections.ChainMap({b1: b2}, {b2: b1})) == Basic(b2, b2)
|
125 |
+
assert b21.subs(collections.OrderedDict([(b2, b1), (b1, b2)])) == Basic(b2, b2)
|
126 |
+
|
127 |
+
raises(ValueError, lambda: b21.subs('bad arg'))
|
128 |
+
raises(ValueError, lambda: b21.subs(b1, b2, b3))
|
129 |
+
# dict(b1=foo) creates a string 'b1' but leaves foo unchanged; subs
|
130 |
+
# will convert the first to a symbol but will raise an error if foo
|
131 |
+
# cannot be sympified; sympification is strict if foo is not string
|
132 |
+
raises(ValueError, lambda: b21.subs(b1='bad arg'))
|
133 |
+
|
134 |
+
assert Symbol("text").subs({"text": b1}) == b1
|
135 |
+
assert Symbol("s").subs({"s": 1}) == 1
|
136 |
+
|
137 |
+
|
138 |
+
def test_subs_with_unicode_symbols():
|
139 |
+
expr = Symbol('var1')
|
140 |
+
replaced = expr.subs('var1', 'x')
|
141 |
+
assert replaced.name == 'x'
|
142 |
+
|
143 |
+
replaced = expr.subs('var1', 'x')
|
144 |
+
assert replaced.name == 'x'
|
145 |
+
|
146 |
+
|
147 |
+
def test_atoms():
|
148 |
+
assert b21.atoms() == {Basic()}
|
149 |
+
|
150 |
+
|
151 |
+
def test_free_symbols_empty():
|
152 |
+
assert b21.free_symbols == set()
|
153 |
+
|
154 |
+
|
155 |
+
def test_doit():
|
156 |
+
assert b21.doit() == b21
|
157 |
+
assert b21.doit(deep=False) == b21
|
158 |
+
|
159 |
+
|
160 |
+
def test_S():
|
161 |
+
assert repr(S) == 'S'
|
162 |
+
|
163 |
+
|
164 |
+
def test_xreplace():
|
165 |
+
assert b21.xreplace({b2: b1}) == Basic(b1, b1)
|
166 |
+
assert b21.xreplace({b2: b21}) == Basic(b21, b1)
|
167 |
+
assert b3.xreplace({b2: b1}) == b2
|
168 |
+
assert Basic(b1, b2).xreplace({b1: b2, b2: b1}) == Basic(b2, b1)
|
169 |
+
assert Atom(b1).xreplace({b1: b2}) == Atom(b1)
|
170 |
+
assert Atom(b1).xreplace({Atom(b1): b2}) == b2
|
171 |
+
raises(TypeError, lambda: b1.xreplace())
|
172 |
+
raises(TypeError, lambda: b1.xreplace([b1, b2]))
|
173 |
+
for f in (exp, Function('f')):
|
174 |
+
assert f.xreplace({}) == f
|
175 |
+
assert f.xreplace({}, hack2=True) == f
|
176 |
+
assert f.xreplace({f: b1}) == b1
|
177 |
+
assert f.xreplace({f: b1}, hack2=True) == b1
|
178 |
+
|
179 |
+
|
180 |
+
def test_sorted_args():
|
181 |
+
x = symbols('x')
|
182 |
+
assert b21._sorted_args == b21.args
|
183 |
+
raises(AttributeError, lambda: x._sorted_args)
|
184 |
+
|
185 |
+
def test_call():
|
186 |
+
x, y = symbols('x y')
|
187 |
+
# See the long history of this in issues 5026 and 5105.
|
188 |
+
|
189 |
+
raises(TypeError, lambda: sin(x)({ x : 1, sin(x) : 2}))
|
190 |
+
raises(TypeError, lambda: sin(x)(1))
|
191 |
+
|
192 |
+
# No effect as there are no callables
|
193 |
+
assert sin(x).rcall(1) == sin(x)
|
194 |
+
assert (1 + sin(x)).rcall(1) == 1 + sin(x)
|
195 |
+
|
196 |
+
# Effect in the pressence of callables
|
197 |
+
l = Lambda(x, 2*x)
|
198 |
+
assert (l + x).rcall(y) == 2*y + x
|
199 |
+
assert (x**l).rcall(2) == x**4
|
200 |
+
# TODO UndefinedFunction does not subclass Expr
|
201 |
+
#f = Function('f')
|
202 |
+
#assert (2*f)(x) == 2*f(x)
|
203 |
+
|
204 |
+
assert (Q.real & Q.positive).rcall(x) == Q.real(x) & Q.positive(x)
|
205 |
+
|
206 |
+
|
207 |
+
def test_rewrite():
|
208 |
+
x, y, z = symbols('x y z')
|
209 |
+
a, b = symbols('a b')
|
210 |
+
f1 = sin(x) + cos(x)
|
211 |
+
assert f1.rewrite(cos,exp) == exp(I*x)/2 + sin(x) + exp(-I*x)/2
|
212 |
+
assert f1.rewrite([cos],sin) == sin(x) + sin(x + pi/2, evaluate=False)
|
213 |
+
f2 = sin(x) + cos(y)/gamma(z)
|
214 |
+
assert f2.rewrite(sin,exp) == -I*(exp(I*x) - exp(-I*x))/2 + cos(y)/gamma(z)
|
215 |
+
|
216 |
+
assert f1.rewrite() == f1
|
217 |
+
|
218 |
+
def test_literal_evalf_is_number_is_zero_is_comparable():
|
219 |
+
x = symbols('x')
|
220 |
+
f = Function('f')
|
221 |
+
|
222 |
+
# issue 5033
|
223 |
+
assert f.is_number is False
|
224 |
+
# issue 6646
|
225 |
+
assert f(1).is_number is False
|
226 |
+
i = Integral(0, (x, x, x))
|
227 |
+
# expressions that are symbolically 0 can be difficult to prove
|
228 |
+
# so in case there is some easy way to know if something is 0
|
229 |
+
# it should appear in the is_zero property for that object;
|
230 |
+
# if is_zero is true evalf should always be able to compute that
|
231 |
+
# zero
|
232 |
+
assert i.n() == 0
|
233 |
+
assert i.is_zero
|
234 |
+
assert i.is_number is False
|
235 |
+
assert i.evalf(2, strict=False) == 0
|
236 |
+
|
237 |
+
# issue 10268
|
238 |
+
n = sin(1)**2 + cos(1)**2 - 1
|
239 |
+
assert n.is_comparable is False
|
240 |
+
assert n.n(2).is_comparable is False
|
241 |
+
assert n.n(2).n(2).is_comparable
|
242 |
+
|
243 |
+
|
244 |
+
def test_as_Basic():
|
245 |
+
assert as_Basic(1) is S.One
|
246 |
+
assert as_Basic(()) == Tuple()
|
247 |
+
raises(TypeError, lambda: as_Basic([]))
|
248 |
+
|
249 |
+
|
250 |
+
def test_atomic():
|
251 |
+
g, h = map(Function, 'gh')
|
252 |
+
x = symbols('x')
|
253 |
+
assert _atomic(g(x + h(x))) == {g(x + h(x))}
|
254 |
+
assert _atomic(g(x + h(x)), recursive=True) == {h(x), x, g(x + h(x))}
|
255 |
+
assert _atomic(1) == set()
|
256 |
+
assert _atomic(Basic(S(1), S(2))) == set()
|
257 |
+
|
258 |
+
|
259 |
+
def test_as_dummy():
|
260 |
+
u, v, x, y, z, _0, _1 = symbols('u v x y z _0 _1')
|
261 |
+
assert Lambda(x, x + 1).as_dummy() == Lambda(_0, _0 + 1)
|
262 |
+
assert Lambda(x, x + _0).as_dummy() == Lambda(_1, _0 + _1)
|
263 |
+
eq = (1 + Sum(x, (x, 1, x)))
|
264 |
+
ans = 1 + Sum(_0, (_0, 1, x))
|
265 |
+
once = eq.as_dummy()
|
266 |
+
assert once == ans
|
267 |
+
twice = once.as_dummy()
|
268 |
+
assert twice == ans
|
269 |
+
assert Integral(x + _0, (x, x + 1), (_0, 1, 2)
|
270 |
+
).as_dummy() == Integral(_0 + _1, (_0, x + 1), (_1, 1, 2))
|
271 |
+
for T in (Symbol, Dummy):
|
272 |
+
d = T('x', real=True)
|
273 |
+
D = d.as_dummy()
|
274 |
+
assert D != d and D.func == Dummy and D.is_real is None
|
275 |
+
assert Dummy().as_dummy().is_commutative
|
276 |
+
assert Dummy(commutative=False).as_dummy().is_commutative is False
|
277 |
+
|
278 |
+
|
279 |
+
def test_canonical_variables():
|
280 |
+
x, i0, i1 = symbols('x _:2')
|
281 |
+
assert Integral(x, (x, x + 1)).canonical_variables == {x: i0}
|
282 |
+
assert Integral(x, (x, x + 1), (i0, 1, 2)).canonical_variables == {
|
283 |
+
x: i0, i0: i1}
|
284 |
+
assert Integral(x, (x, x + i0)).canonical_variables == {x: i1}
|
285 |
+
|
286 |
+
|
287 |
+
def test_replace_exceptions():
|
288 |
+
from sympy.core.symbol import Wild
|
289 |
+
x, y = symbols('x y')
|
290 |
+
e = (x**2 + x*y)
|
291 |
+
raises(TypeError, lambda: e.replace(sin, 2))
|
292 |
+
b = Wild('b')
|
293 |
+
c = Wild('c')
|
294 |
+
raises(TypeError, lambda: e.replace(b*c, c.is_real))
|
295 |
+
raises(TypeError, lambda: e.replace(b.is_real, 1))
|
296 |
+
raises(TypeError, lambda: e.replace(lambda d: d.is_Number, 1))
|
297 |
+
|
298 |
+
|
299 |
+
def test_ManagedProperties():
|
300 |
+
# ManagedProperties is now deprecated. Here we do our best to check that if
|
301 |
+
# someone is using it then it does work in the way that it previously did
|
302 |
+
# but gives a deprecation warning.
|
303 |
+
from sympy.core.assumptions import ManagedProperties
|
304 |
+
|
305 |
+
myclasses = []
|
306 |
+
|
307 |
+
class MyMeta(ManagedProperties):
|
308 |
+
def __init__(cls, *args, **kwargs):
|
309 |
+
myclasses.append('executed')
|
310 |
+
super().__init__(*args, **kwargs)
|
311 |
+
|
312 |
+
code = """
|
313 |
+
class MySubclass(Basic, metaclass=MyMeta):
|
314 |
+
pass
|
315 |
+
"""
|
316 |
+
with warns_deprecated_sympy():
|
317 |
+
exec(code)
|
318 |
+
|
319 |
+
assert myclasses == ['executed']
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_cache.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from sympy.core.cache import cacheit, cached_property, lazy_function
|
3 |
+
from sympy.testing.pytest import raises
|
4 |
+
|
5 |
+
def test_cacheit_doc():
|
6 |
+
@cacheit
|
7 |
+
def testfn():
|
8 |
+
"test docstring"
|
9 |
+
pass
|
10 |
+
|
11 |
+
assert testfn.__doc__ == "test docstring"
|
12 |
+
assert testfn.__name__ == "testfn"
|
13 |
+
|
14 |
+
def test_cacheit_unhashable():
|
15 |
+
@cacheit
|
16 |
+
def testit(x):
|
17 |
+
return x
|
18 |
+
|
19 |
+
assert testit(1) == 1
|
20 |
+
assert testit(1) == 1
|
21 |
+
a = {}
|
22 |
+
assert testit(a) == {}
|
23 |
+
a[1] = 2
|
24 |
+
assert testit(a) == {1: 2}
|
25 |
+
|
26 |
+
def test_cachit_exception():
|
27 |
+
# Make sure the cache doesn't call functions multiple times when they
|
28 |
+
# raise TypeError
|
29 |
+
|
30 |
+
a = []
|
31 |
+
|
32 |
+
@cacheit
|
33 |
+
def testf(x):
|
34 |
+
a.append(0)
|
35 |
+
raise TypeError
|
36 |
+
|
37 |
+
raises(TypeError, lambda: testf(1))
|
38 |
+
assert len(a) == 1
|
39 |
+
|
40 |
+
a.clear()
|
41 |
+
# Unhashable type
|
42 |
+
raises(TypeError, lambda: testf([]))
|
43 |
+
assert len(a) == 1
|
44 |
+
|
45 |
+
@cacheit
|
46 |
+
def testf2(x):
|
47 |
+
a.append(0)
|
48 |
+
raise TypeError("Error")
|
49 |
+
|
50 |
+
a.clear()
|
51 |
+
raises(TypeError, lambda: testf2(1))
|
52 |
+
assert len(a) == 1
|
53 |
+
|
54 |
+
a.clear()
|
55 |
+
# Unhashable type
|
56 |
+
raises(TypeError, lambda: testf2([]))
|
57 |
+
assert len(a) == 1
|
58 |
+
|
59 |
+
def test_cached_property():
|
60 |
+
class A:
|
61 |
+
def __init__(self, value):
|
62 |
+
self.value = value
|
63 |
+
self.calls = 0
|
64 |
+
|
65 |
+
@cached_property
|
66 |
+
def prop(self):
|
67 |
+
self.calls = self.calls + 1
|
68 |
+
return self.value
|
69 |
+
|
70 |
+
a = A(2)
|
71 |
+
assert a.calls == 0
|
72 |
+
assert a.prop == 2
|
73 |
+
assert a.calls == 1
|
74 |
+
assert a.prop == 2
|
75 |
+
assert a.calls == 1
|
76 |
+
b = A(None)
|
77 |
+
assert b.prop == None
|
78 |
+
|
79 |
+
|
80 |
+
def test_lazy_function():
|
81 |
+
module_name='xmlrpc.client'
|
82 |
+
function_name = 'gzip_decode'
|
83 |
+
lazy = lazy_function(module_name, function_name)
|
84 |
+
assert lazy(b'') == b''
|
85 |
+
assert module_name in sys.modules
|
86 |
+
assert function_name in str(lazy)
|
87 |
+
repr_lazy = repr(lazy)
|
88 |
+
assert 'LazyFunction' in repr_lazy
|
89 |
+
assert function_name in repr_lazy
|
90 |
+
|
91 |
+
lazy = lazy_function('sympy.core.cache', 'cheap')
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_compatibility.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.testing.pytest import warns_deprecated_sympy
|
2 |
+
|
3 |
+
def test_compatibility_submodule():
|
4 |
+
# Test the sympy.core.compatibility deprecation warning
|
5 |
+
with warns_deprecated_sympy():
|
6 |
+
import sympy.core.compatibility # noqa:F401
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_complex.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.function import expand_complex
|
2 |
+
from sympy.core.numbers import (I, Integer, Rational, pi)
|
3 |
+
from sympy.core.power import Pow
|
4 |
+
from sympy.core.singleton import S
|
5 |
+
from sympy.core.symbol import (Symbol, symbols)
|
6 |
+
from sympy.functions.elementary.complexes import (Abs, conjugate, im, re, sign)
|
7 |
+
from sympy.functions.elementary.exponential import exp
|
8 |
+
from sympy.functions.elementary.hyperbolic import (cosh, coth, sinh, tanh)
|
9 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
10 |
+
from sympy.functions.elementary.trigonometric import (cos, cot, sin, tan)
|
11 |
+
|
12 |
+
def test_complex():
|
13 |
+
a = Symbol("a", real=True)
|
14 |
+
b = Symbol("b", real=True)
|
15 |
+
e = (a + I*b)*(a - I*b)
|
16 |
+
assert e.expand() == a**2 + b**2
|
17 |
+
assert sqrt(I) == Pow(I, S.Half)
|
18 |
+
|
19 |
+
|
20 |
+
def test_conjugate():
|
21 |
+
a = Symbol("a", real=True)
|
22 |
+
b = Symbol("b", real=True)
|
23 |
+
c = Symbol("c", imaginary=True)
|
24 |
+
d = Symbol("d", imaginary=True)
|
25 |
+
x = Symbol('x')
|
26 |
+
z = a + I*b + c + I*d
|
27 |
+
zc = a - I*b - c + I*d
|
28 |
+
assert conjugate(z) == zc
|
29 |
+
assert conjugate(exp(z)) == exp(zc)
|
30 |
+
assert conjugate(exp(I*x)) == exp(-I*conjugate(x))
|
31 |
+
assert conjugate(z**5) == zc**5
|
32 |
+
assert conjugate(abs(x)) == abs(x)
|
33 |
+
assert conjugate(sign(z)) == sign(zc)
|
34 |
+
assert conjugate(sin(z)) == sin(zc)
|
35 |
+
assert conjugate(cos(z)) == cos(zc)
|
36 |
+
assert conjugate(tan(z)) == tan(zc)
|
37 |
+
assert conjugate(cot(z)) == cot(zc)
|
38 |
+
assert conjugate(sinh(z)) == sinh(zc)
|
39 |
+
assert conjugate(cosh(z)) == cosh(zc)
|
40 |
+
assert conjugate(tanh(z)) == tanh(zc)
|
41 |
+
assert conjugate(coth(z)) == coth(zc)
|
42 |
+
|
43 |
+
|
44 |
+
def test_abs1():
|
45 |
+
a = Symbol("a", real=True)
|
46 |
+
b = Symbol("b", real=True)
|
47 |
+
assert abs(a) == Abs(a)
|
48 |
+
assert abs(-a) == abs(a)
|
49 |
+
assert abs(a + I*b) == sqrt(a**2 + b**2)
|
50 |
+
|
51 |
+
|
52 |
+
def test_abs2():
|
53 |
+
a = Symbol("a", real=False)
|
54 |
+
b = Symbol("b", real=False)
|
55 |
+
assert abs(a) != a
|
56 |
+
assert abs(-a) != a
|
57 |
+
assert abs(a + I*b) != sqrt(a**2 + b**2)
|
58 |
+
|
59 |
+
|
60 |
+
def test_evalc():
|
61 |
+
x = Symbol("x", real=True)
|
62 |
+
y = Symbol("y", real=True)
|
63 |
+
z = Symbol("z")
|
64 |
+
assert ((x + I*y)**2).expand(complex=True) == x**2 + 2*I*x*y - y**2
|
65 |
+
assert expand_complex(z**(2*I)) == (re((re(z) + I*im(z))**(2*I)) +
|
66 |
+
I*im((re(z) + I*im(z))**(2*I)))
|
67 |
+
assert expand_complex(
|
68 |
+
z**(2*I), deep=False) == I*im(z**(2*I)) + re(z**(2*I))
|
69 |
+
|
70 |
+
assert exp(I*x) != cos(x) + I*sin(x)
|
71 |
+
assert exp(I*x).expand(complex=True) == cos(x) + I*sin(x)
|
72 |
+
assert exp(I*x + y).expand(complex=True) == exp(y)*cos(x) + I*sin(x)*exp(y)
|
73 |
+
|
74 |
+
assert sin(I*x).expand(complex=True) == I * sinh(x)
|
75 |
+
assert sin(x + I*y).expand(complex=True) == sin(x)*cosh(y) + \
|
76 |
+
I * sinh(y) * cos(x)
|
77 |
+
|
78 |
+
assert cos(I*x).expand(complex=True) == cosh(x)
|
79 |
+
assert cos(x + I*y).expand(complex=True) == cos(x)*cosh(y) - \
|
80 |
+
I * sinh(y) * sin(x)
|
81 |
+
|
82 |
+
assert tan(I*x).expand(complex=True) == tanh(x) * I
|
83 |
+
assert tan(x + I*y).expand(complex=True) == (
|
84 |
+
sin(2*x)/(cos(2*x) + cosh(2*y)) +
|
85 |
+
I*sinh(2*y)/(cos(2*x) + cosh(2*y)))
|
86 |
+
|
87 |
+
assert sinh(I*x).expand(complex=True) == I * sin(x)
|
88 |
+
assert sinh(x + I*y).expand(complex=True) == sinh(x)*cos(y) + \
|
89 |
+
I * sin(y) * cosh(x)
|
90 |
+
|
91 |
+
assert cosh(I*x).expand(complex=True) == cos(x)
|
92 |
+
assert cosh(x + I*y).expand(complex=True) == cosh(x)*cos(y) + \
|
93 |
+
I * sin(y) * sinh(x)
|
94 |
+
|
95 |
+
assert tanh(I*x).expand(complex=True) == tan(x) * I
|
96 |
+
assert tanh(x + I*y).expand(complex=True) == (
|
97 |
+
(sinh(x)*cosh(x) + I*cos(y)*sin(y)) /
|
98 |
+
(sinh(x)**2 + cos(y)**2)).expand()
|
99 |
+
|
100 |
+
|
101 |
+
def test_pythoncomplex():
|
102 |
+
x = Symbol("x")
|
103 |
+
assert 4j*x != 4*x*I
|
104 |
+
assert 4j*x == 4.0*x*I
|
105 |
+
assert 4.1j*x != 4*x*I
|
106 |
+
|
107 |
+
|
108 |
+
def test_rootcomplex():
|
109 |
+
R = Rational
|
110 |
+
assert ((+1 + I)**R(1, 2)).expand(
|
111 |
+
complex=True) == 2**R(1, 4)*cos( pi/8) + 2**R(1, 4)*sin( pi/8)*I
|
112 |
+
assert ((-1 - I)**R(1, 2)).expand(
|
113 |
+
complex=True) == 2**R(1, 4)*cos(3*pi/8) - 2**R(1, 4)*sin(3*pi/8)*I
|
114 |
+
assert (sqrt(-10)*I).as_real_imag() == (-sqrt(10), 0)
|
115 |
+
|
116 |
+
|
117 |
+
def test_expand_inverse():
|
118 |
+
assert (1/(1 + I)).expand(complex=True) == (1 - I)/2
|
119 |
+
assert ((1 + 2*I)**(-2)).expand(complex=True) == (-3 - 4*I)/25
|
120 |
+
assert ((1 + I)**(-8)).expand(complex=True) == Rational(1, 16)
|
121 |
+
|
122 |
+
|
123 |
+
def test_expand_complex():
|
124 |
+
assert ((2 + 3*I)**10).expand(complex=True) == -341525 - 145668*I
|
125 |
+
# the following two tests are to ensure the SymPy uses an efficient
|
126 |
+
# algorithm for calculating powers of complex numbers. They should execute
|
127 |
+
# in something like 0.01s.
|
128 |
+
assert ((2 + 3*I)**1000).expand(complex=True) == \
|
129 |
+
-81079464736246615951519029367296227340216902563389546989376269312984127074385455204551402940331021387412262494620336565547972162814110386834027871072723273110439771695255662375718498785908345629702081336606863762777939617745464755635193139022811989314881997210583159045854968310911252660312523907616129080027594310008539817935736331124833163907518549408018652090650537035647520296539436440394920287688149200763245475036722326561143851304795139005599209239350981457301460233967137708519975586996623552182807311159141501424576682074392689622074945519232029999 + \
|
130 |
+
46938745946789557590804551905243206242164799136976022474337918748798900569942573265747576032611189047943842446167719177749107138603040963603119861476016947257034472364028585381714774667326478071264878108114128915685688115488744955550920239128462489496563930809677159214598114273887061533057125164518549173898349061972857446844052995037423459472376202251620778517659247970283904820245958198842631651569984310559418135975795868314764489884749573052997832686979294085577689571149679540256349988338406458116270429842222666345146926395233040564229555893248370000*I
|
131 |
+
assert ((2 + 3*I/4)**1000).expand(complex=True) == \
|
132 |
+
Integer(1)*37079892761199059751745775382463070250205990218394308874593455293485167797989691280095867197640410033222367257278387021789651672598831503296531725827158233077451476545928116965316544607115843772405184272449644892857783761260737279675075819921259597776770965829089907990486964515784097181964312256560561065607846661496055417619388874421218472707497847700629822858068783288579581649321248495739224020822198695759609598745114438265083593711851665996586461937988748911532242908776883696631067311443171682974330675406616373422505939887984366289623091300746049101284856530270685577940283077888955692921951247230006346681086274961362500646889925803654263491848309446197554307105991537357310209426736453173441104334496173618419659521888945605315751089087820455852582920963561495787655250624781448951403353654348109893478206364632640344111022531861683064175862889459084900614967785405977231549003280842218501570429860550379522498497412180001/114813069527425452423283320117768198402231770208869520047764273682576626139237031385665948631650626991844596463898746277344711896086305533142593135616665318539129989145312280000688779148240044871428926990063486244781615463646388363947317026040466353970904996558162398808944629605623311649536164221970332681344168908984458505602379484807914058900934776500429002716706625830522008132236281291761267883317206598995396418127021779858404042159853183251540889433902091920554957783589672039160081957216630582755380425583726015528348786419432054508915275783882625175435528800822842770817965453762184851149029376 + \
|
133 |
+
I*421638390580169706973991429333213477486930178424989246669892530737775352519112934278994501272111385966211392610029433824534634841747911783746811994443436271013377059560245191441549885048056920190833693041257216263519792201852046825443439142932464031501882145407459174948712992271510309541474392303461939389368955986650538525895866713074543004916049550090364398070215427272240155060576252568700906004691224321432509053286859100920489253598392100207663785243368195857086816912514025693453058403158416856847185079684216151337200057494966741268925263085619240941610301610538225414050394612058339070756009433535451561664522479191267503989904464718368605684297071150902631208673621618217106272361061676184840810762902463998065947687814692402219182668782278472952758690939877465065070481351343206840649517150634973307937551168752642148704904383991876969408056379195860410677814566225456558230131911142229028179902418223009651437985670625/1793954211366022694113801876840128100034871409513586250746316776290259783425578615401030447369541046747571819748417910583511123376348523955353017744010395602173906080395504375010762174191250701116076984219741972574712741619474818186676828531882286780795390571221287481389759837587864244524002565968286448146002639202882164150037179450123657170327105882819203167448541028601906377066191895183769810676831353109303069033234715310287563158747705988305326397404720186258671215368588625611876280581509852855552819149745718992630449787803625851701801184123166018366180137512856918294030710215034138299203584
|
134 |
+
assert ((2 + 3*I)**-1000).expand(complex=True) == \
|
135 |
+
Integer(1)*-81079464736246615951519029367296227340216902563389546989376269312984127074385455204551402940331021387412262494620336565547972162814110386834027871072723273110439771695255662375718498785908345629702081336606863762777939617745464755635193139022811989314881997210583159045854968310911252660312523907616129080027594310008539817935736331124833163907518549408018652090650537035647520296539436440394920287688149200763245475036722326561143851304795139005599209239350981457301460233967137708519975586996623552182807311159141501424576682074392689622074945519232029999/8777125472973511649630750050295188683351430110097915876250894978429797369155961290321829625004920141758416719066805645579710744290541337680113772670040386863849283653078324415471816788604945889094925784900885812724984087843737442111926413818245854362613018058774368703971604921858023116665586358870612944209398056562604561248859926344335598822815885851096698226775053153403320782439987679978321289537645645163767251396759519805603090332694449553371530571613352311006350058217982509738362083094920649452123351717366337410243853659113315547584871655479914439219520157174729130746351059075207407866012574386726064196992865627149566238044625779078186624347183905913357718850537058578084932880569701242598663149911276357125355850792073635533676541250531086757377369962506979378337216411188347761901006460813413505861461267545723590468627854202034450569581626648934062198718362303420281555886394558137408159453103395918783625713213314350531051312551733021627153081075080140680608080529736975658786227362251632725009435866547613598753584705455955419696609282059191031962604169242974038517575645939316377801594539335940001 - Integer(1)*46938745946789557590804551905243206242164799136976022474337918748798900569942573265747576032611189047943842446167719177749107138603040963603119861476016947257034472364028585381714774667326478071264878108114128915685688115488744955550920239128462489496563930809677159214598114273887061533057125164518549173898349061972857446844052995037423459472376202251620778517659247970283904820245958198842631651569984310559418135975795868314764489884749573052997832686979294085577689571149679540256349988338406458116270429842222666345146926395233040564229555893248370000*I/8777125472973511649630750050295188683351430110097915876250894978429797369155961290321829625004920141758416719066805645579710744290541337680113772670040386863849283653078324415471816788604945889094925784900885812724984087843737442111926413818245854362613018058774368703971604921858023116665586358870612944209398056562604561248859926344335598822815885851096698226775053153403320782439987679978321289537645645163767251396759519805603090332694449553371530571613352311006350058217982509738362083094920649452123351717366337410243853659113315547584871655479914439219520157174729130746351059075207407866012574386726064196992865627149566238044625779078186624347183905913357718850537058578084932880569701242598663149911276357125355850792073635533676541250531086757377369962506979378337216411188347761901006460813413505861461267545723590468627854202034450569581626648934062198718362303420281555886394558137408159453103395918783625713213314350531051312551733021627153081075080140680608080529736975658786227362251632725009435866547613598753584705455955419696609282059191031962604169242974038517575645939316377801594539335940001
|
136 |
+
assert ((2 + 3*I/4)**-1000).expand(complex=True) == \
|
137 |
+
Integer(1)*4257256305661027385394552848555894604806501409793288342610746813288539790051927148781268212212078237301273165351052934681382567968787279534591114913777456610214738290619922068269909423637926549603264174216950025398244509039145410016404821694746262142525173737175066432954496592560621330313807235750500564940782099283410261748370262433487444897446779072067625787246390824312580440138770014838135245148574339248259670887549732495841810961088930810608893772914812838358159009303794863047635845688453859317690488124382253918725010358589723156019888846606295866740117645571396817375322724096486161308083462637370825829567578309445855481578518239186117686659177284332344643124760453112513611749309168470605289172320376911472635805822082051716625171429727162039621902266619821870482519063133136820085579315127038372190224739238686708451840610064871885616258831386810233957438253532027049148030157164346719204500373766157143311767338973363806106967439378604898250533766359989107510507493549529158818602327525235240510049484816090584478644771183158342479140194633579061295740839490629457435283873180259847394582069479062820225159699506175855369539201399183443253793905149785994830358114153241481884290274629611529758663543080724574566578220908907477622643689220814376054314972190402285121776593824615083669045183404206291739005554569305329760211752815718335731118664756831942466773261465213581616104242113894521054475516019456867271362053692785300826523328020796670205463390909136593859765912483565093461468865534470710132881677639651348709376/2103100954337624833663208713697737151593634525061637972297915388685604042449504336765884978184588688426595940401280828953096857809292320006227881797146858511436638446932833617514351442216409828605662238790280753075176269765767010004889778647709740770757817960711900340755635772183674511158570690702969774966791073165467918123298694584729211212414462628433370481195120564586361368504153395406845170075275051749019600057116719726628746724489572189061061036426955163696859127711110719502594479795200686212257570291758725259007379710596548777812659422174199194837355646482046783616494013289495563083118517507178847555801163089723056310287760875135196081975602765511153122381201303871673391366630940702817360340900568748719988954847590748960761446218262344767250783946365392689256634180417145926390656439421745644011831124277463643383712803287985472471755648426749842410972650924240795946699346613614779460399530274263580007672855851663196114585312432954432654691485867618908420370875753749297487803461900447407917655296784879220450937110470920633595689721819488638484547259978337741496090602390463594556401615298457456112485536498177883358587125449801777718900375736758266215245325999241624148841915093787519330809347240990363802360596034171167818310322276373120180985148650099673289383722502488957717848531612020897298448601714154586319660314294591620415272119454982220034319689607295960162971300417552364254983071768070124456169427638371140064235083443242844616326538396503937972586505546495649094344512270582463639152160238137952390380581401171977159154009407415523525096743009110916334144716516647041176989758534635251844947906038080852185583742296318878233394998111078843229681030277039104786225656992262073797524057992347971177720807155842376332851559276430280477639539393920006008737472164850104411971830120295750221200029811143140323763349636629725073624360001 - Integer(1)*3098214262599218784594285246258841485430681674561917573155883806818465520660668045042109232930382494608383663464454841313154390741655282039877410154577448327874989496074260116195788919037407420625081798124301494353693248757853222257918294662198297114746822817460991242508743651430439120439020484502408313310689912381846149597061657483084652685283853595100434135149479564507015504022249330340259111426799121454516345905101620532787348293877485702600390665276070250119465888154331218827342488849948540687659846652377277250614246402784754153678374932540789808703029043827352976139228402417432199779415751301480406673762521987999573209628597459357964214510139892316208670927074795773830798600837815329291912002136924506221066071242281626618211060464126372574400100990746934953437169840312584285942093951405864225230033279614235191326102697164613004299868695519642598882914862568516635347204441042798206770888274175592401790040170576311989738272102077819127459014286741435419468254146418098278519775722104890854275995510700298782146199325790002255362719776098816136732897323406228294203133323296591166026338391813696715894870956511298793595675308998014158717167429941371979636895553724830981754579086664608880698350866487717403917070872269853194118364230971216854931998642990452908852258008095741042117326241406479532880476938937997238098399302185675832474590293188864060116934035867037219176916416481757918864533515526389079998129329045569609325290897577497835388451456680707076072624629697883854217331728051953671643278797380171857920000*I/2103100954337624833663208713697737151593634525061637972297915388685604042449504336765884978184588688426595940401280828953096857809292320006227881797146858511436638446932833617514351442216409828605662238790280753075176269765767010004889778647709740770757817960711900340755635772183674511158570690702969774966791073165467918123298694584729211212414462628433370481195120564586361368504153395406845170075275051749019600057116719726628746724489572189061061036426955163696859127711110719502594479795200686212257570291758725259007379710596548777812659422174199194837355646482046783616494013289495563083118517507178847555801163089723056310287760875135196081975602765511153122381201303871673391366630940702817360340900568748719988954847590748960761446218262344767250783946365392689256634180417145926390656439421745644011831124277463643383712803287985472471755648426749842410972650924240795946699346613614779460399530274263580007672855851663196114585312432954432654691485867618908420370875753749297487803461900447407917655296784879220450937110470920633595689721819488638484547259978337741496090602390463594556401615298457456112485536498177883358587125449801777718900375736758266215245325999241624148841915093787519330809347240990363802360596034171167818310322276373120180985148650099673289383722502488957717848531612020897298448601714154586319660314294591620415272119454982220034319689607295960162971300417552364254983071768070124456169427638371140064235083443242844616326538396503937972586505546495649094344512270582463639152160238137952390380581401171977159154009407415523525096743009110916334144716516647041176989758534635251844947906038080852185583742296318878233394998111078843229681030277039104786225656992262073797524057992347971177720807155842376332851559276430280477639539393920006008737472164850104411971830120295750221200029811143140323763349636629725073624360001
|
138 |
+
|
139 |
+
a = Symbol('a', real=True)
|
140 |
+
b = Symbol('b', real=True)
|
141 |
+
assert exp(a*(2 + I*b)).expand(complex=True) == \
|
142 |
+
I*exp(2*a)*sin(a*b) + exp(2*a)*cos(a*b)
|
143 |
+
|
144 |
+
|
145 |
+
def test_expand():
|
146 |
+
f = (16 - 2*sqrt(29))**2
|
147 |
+
assert f.expand() == 372 - 64*sqrt(29)
|
148 |
+
f = (Integer(1)/2 + I/2)**10
|
149 |
+
assert f.expand() == I/32
|
150 |
+
f = (Integer(1)/2 + I)**10
|
151 |
+
assert f.expand() == Integer(237)/1024 - 779*I/256
|
152 |
+
|
153 |
+
|
154 |
+
def test_re_im1652():
|
155 |
+
x = Symbol('x')
|
156 |
+
assert re(x) == re(conjugate(x))
|
157 |
+
assert im(x) == - im(conjugate(x))
|
158 |
+
assert im(x)*re(conjugate(x)) + im(conjugate(x)) * re(x) == 0
|
159 |
+
|
160 |
+
|
161 |
+
def test_issue_5084():
|
162 |
+
x = Symbol('x')
|
163 |
+
assert ((x + x*I)/(1 + I)).as_real_imag() == (re((x + I*x)/(1 + I)
|
164 |
+
), im((x + I*x)/(1 + I)))
|
165 |
+
|
166 |
+
|
167 |
+
def test_issue_5236():
|
168 |
+
assert (cos(1 + I)**3).as_real_imag() == (-3*sin(1)**2*sinh(1)**2*cos(1)*cosh(1) +
|
169 |
+
cos(1)**3*cosh(1)**3, -3*cos(1)**2*cosh(1)**2*sin(1)*sinh(1) + sin(1)**3*sinh(1)**3)
|
170 |
+
|
171 |
+
|
172 |
+
def test_real_imag():
|
173 |
+
x, y, z = symbols('x, y, z')
|
174 |
+
X, Y, Z = symbols('X, Y, Z', commutative=False)
|
175 |
+
a = Symbol('a', real=True)
|
176 |
+
assert (2*a*x).as_real_imag() == (2*a*re(x), 2*a*im(x))
|
177 |
+
|
178 |
+
# issue 5395:
|
179 |
+
assert (x*x.conjugate()).as_real_imag() == (Abs(x)**2, 0)
|
180 |
+
assert im(x*x.conjugate()) == 0
|
181 |
+
assert im(x*y.conjugate()*z*y) == im(x*z)*Abs(y)**2
|
182 |
+
assert im(x*y.conjugate()*x*y) == im(x**2)*Abs(y)**2
|
183 |
+
assert im(Z*y.conjugate()*X*y) == im(Z*X)*Abs(y)**2
|
184 |
+
assert im(X*X.conjugate()) == im(X*X.conjugate(), evaluate=False)
|
185 |
+
assert (sin(x)*sin(x).conjugate()).as_real_imag() == \
|
186 |
+
(Abs(sin(x))**2, 0)
|
187 |
+
|
188 |
+
# issue 6573:
|
189 |
+
assert (x**2).as_real_imag() == (re(x)**2 - im(x)**2, 2*re(x)*im(x))
|
190 |
+
|
191 |
+
# issue 6428:
|
192 |
+
r = Symbol('r', real=True)
|
193 |
+
i = Symbol('i', imaginary=True)
|
194 |
+
assert (i*r*x).as_real_imag() == (I*i*r*im(x), -I*i*r*re(x))
|
195 |
+
assert (i*r*x*(y + 2)).as_real_imag() == (
|
196 |
+
I*i*r*(re(y) + 2)*im(x) + I*i*r*re(x)*im(y),
|
197 |
+
-I*i*r*(re(y) + 2)*re(x) + I*i*r*im(x)*im(y))
|
198 |
+
|
199 |
+
# issue 7106:
|
200 |
+
assert ((1 + I)/(1 - I)).as_real_imag() == (0, 1)
|
201 |
+
assert ((1 + 2*I)*(1 + 3*I)).as_real_imag() == (-5, 5)
|
202 |
+
|
203 |
+
|
204 |
+
def test_pow_issue_1724():
|
205 |
+
e = ((S.NegativeOne)**(S.One/3))
|
206 |
+
assert e.conjugate().n() == e.n().conjugate()
|
207 |
+
e = S('-2/3 - (-29/54 + sqrt(93)/18)**(1/3) - 1/(9*(-29/54 + sqrt(93)/18)**(1/3))')
|
208 |
+
assert e.conjugate().n() == e.n().conjugate()
|
209 |
+
e = 2**I
|
210 |
+
assert e.conjugate().n() == e.n().conjugate()
|
211 |
+
|
212 |
+
|
213 |
+
def test_issue_5429():
|
214 |
+
assert sqrt(I).conjugate() != sqrt(I)
|
215 |
+
|
216 |
+
def test_issue_4124():
|
217 |
+
from sympy.core.numbers import oo
|
218 |
+
assert expand_complex(I*oo) == oo*I
|
219 |
+
|
220 |
+
def test_issue_11518():
|
221 |
+
x = Symbol("x", real=True)
|
222 |
+
y = Symbol("y", real=True)
|
223 |
+
r = sqrt(x**2 + y**2)
|
224 |
+
assert conjugate(r) == r
|
225 |
+
s = abs(x + I * y)
|
226 |
+
assert conjugate(s) == r
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_constructor_postprocessor.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.basic import Basic
|
2 |
+
from sympy.core.mul import Mul
|
3 |
+
from sympy.core.symbol import (Symbol, symbols)
|
4 |
+
|
5 |
+
from sympy.testing.pytest import XFAIL
|
6 |
+
|
7 |
+
class SymbolInMulOnce(Symbol):
|
8 |
+
# Test class for a symbol that can only appear once in a `Mul` expression.
|
9 |
+
pass
|
10 |
+
|
11 |
+
|
12 |
+
Basic._constructor_postprocessor_mapping[SymbolInMulOnce] = {
|
13 |
+
"Mul": [lambda x: x],
|
14 |
+
"Pow": [lambda x: x.base if isinstance(x.base, SymbolInMulOnce) else x],
|
15 |
+
"Add": [lambda x: x],
|
16 |
+
}
|
17 |
+
|
18 |
+
|
19 |
+
def _postprocess_SymbolRemovesOtherSymbols(expr):
|
20 |
+
args = tuple(i for i in expr.args if not isinstance(i, Symbol) or isinstance(i, SymbolRemovesOtherSymbols))
|
21 |
+
if args == expr.args:
|
22 |
+
return expr
|
23 |
+
return Mul.fromiter(args)
|
24 |
+
|
25 |
+
|
26 |
+
class SymbolRemovesOtherSymbols(Symbol):
|
27 |
+
# Test class for a symbol that removes other symbols in `Mul`.
|
28 |
+
pass
|
29 |
+
|
30 |
+
Basic._constructor_postprocessor_mapping[SymbolRemovesOtherSymbols] = {
|
31 |
+
"Mul": [_postprocess_SymbolRemovesOtherSymbols],
|
32 |
+
}
|
33 |
+
|
34 |
+
class SubclassSymbolInMulOnce(SymbolInMulOnce):
|
35 |
+
pass
|
36 |
+
|
37 |
+
class SubclassSymbolRemovesOtherSymbols(SymbolRemovesOtherSymbols):
|
38 |
+
pass
|
39 |
+
|
40 |
+
|
41 |
+
def test_constructor_postprocessors1():
|
42 |
+
x = SymbolInMulOnce("x")
|
43 |
+
y = SymbolInMulOnce("y")
|
44 |
+
assert isinstance(3*x, Mul)
|
45 |
+
assert (3*x).args == (3, x)
|
46 |
+
assert x*x == x
|
47 |
+
assert 3*x*x == 3*x
|
48 |
+
assert 2*x*x + x == 3*x
|
49 |
+
assert x**3*y*y == x*y
|
50 |
+
assert x**5 + y*x**3 == x + x*y
|
51 |
+
|
52 |
+
w = SymbolRemovesOtherSymbols("w")
|
53 |
+
assert x*w == w
|
54 |
+
assert (3*w).args == (3, w)
|
55 |
+
assert set((w + x).args) == {x, w}
|
56 |
+
|
57 |
+
def test_constructor_postprocessors2():
|
58 |
+
x = SubclassSymbolInMulOnce("x")
|
59 |
+
y = SubclassSymbolInMulOnce("y")
|
60 |
+
assert isinstance(3*x, Mul)
|
61 |
+
assert (3*x).args == (3, x)
|
62 |
+
assert x*x == x
|
63 |
+
assert 3*x*x == 3*x
|
64 |
+
assert 2*x*x + x == 3*x
|
65 |
+
assert x**3*y*y == x*y
|
66 |
+
assert x**5 + y*x**3 == x + x*y
|
67 |
+
|
68 |
+
w = SubclassSymbolRemovesOtherSymbols("w")
|
69 |
+
assert x*w == w
|
70 |
+
assert (3*w).args == (3, w)
|
71 |
+
assert set((w + x).args) == {x, w}
|
72 |
+
|
73 |
+
|
74 |
+
@XFAIL
|
75 |
+
def test_subexpression_postprocessors():
|
76 |
+
# The postprocessors used to work with subexpressions, but the
|
77 |
+
# functionality was removed. See #15948.
|
78 |
+
a = symbols("a")
|
79 |
+
x = SymbolInMulOnce("x")
|
80 |
+
w = SymbolRemovesOtherSymbols("w")
|
81 |
+
assert 3*a*w**2 == 3*w**2
|
82 |
+
assert 3*a*x**3*w**2 == 3*w**2
|
83 |
+
|
84 |
+
x = SubclassSymbolInMulOnce("x")
|
85 |
+
w = SubclassSymbolRemovesOtherSymbols("w")
|
86 |
+
assert 3*a*w**2 == 3*w**2
|
87 |
+
assert 3*a*x**3*w**2 == 3*w**2
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_containers.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
|
3 |
+
from sympy.core.basic import Basic
|
4 |
+
from sympy.core.containers import (Dict, Tuple)
|
5 |
+
from sympy.core.numbers import Integer
|
6 |
+
from sympy.core.kind import NumberKind
|
7 |
+
from sympy.matrices.common import MatrixKind
|
8 |
+
from sympy.core.singleton import S
|
9 |
+
from sympy.core.symbol import symbols
|
10 |
+
from sympy.core.sympify import sympify
|
11 |
+
from sympy.matrices.dense import Matrix
|
12 |
+
from sympy.sets.sets import FiniteSet
|
13 |
+
from sympy.core.containers import tuple_wrapper, TupleKind
|
14 |
+
from sympy.core.expr import unchanged
|
15 |
+
from sympy.core.function import Function, Lambda
|
16 |
+
from sympy.core.relational import Eq
|
17 |
+
from sympy.testing.pytest import raises
|
18 |
+
from sympy.utilities.iterables import is_sequence, iterable
|
19 |
+
|
20 |
+
from sympy.abc import x, y
|
21 |
+
|
22 |
+
|
23 |
+
def test_Tuple():
|
24 |
+
t = (1, 2, 3, 4)
|
25 |
+
st = Tuple(*t)
|
26 |
+
assert set(sympify(t)) == set(st)
|
27 |
+
assert len(t) == len(st)
|
28 |
+
assert set(sympify(t[:2])) == set(st[:2])
|
29 |
+
assert isinstance(st[:], Tuple)
|
30 |
+
assert st == Tuple(1, 2, 3, 4)
|
31 |
+
assert st.func(*st.args) == st
|
32 |
+
p, q, r, s = symbols('p q r s')
|
33 |
+
t2 = (p, q, r, s)
|
34 |
+
st2 = Tuple(*t2)
|
35 |
+
assert st2.atoms() == set(t2)
|
36 |
+
assert st == st2.subs({p: 1, q: 2, r: 3, s: 4})
|
37 |
+
# issue 5505
|
38 |
+
assert all(isinstance(arg, Basic) for arg in st.args)
|
39 |
+
assert Tuple(p, 1).subs(p, 0) == Tuple(0, 1)
|
40 |
+
assert Tuple(p, Tuple(p, 1)).subs(p, 0) == Tuple(0, Tuple(0, 1))
|
41 |
+
|
42 |
+
assert Tuple(t2) == Tuple(Tuple(*t2))
|
43 |
+
assert Tuple.fromiter(t2) == Tuple(*t2)
|
44 |
+
assert Tuple.fromiter(x for x in range(4)) == Tuple(0, 1, 2, 3)
|
45 |
+
assert st2.fromiter(st2.args) == st2
|
46 |
+
|
47 |
+
|
48 |
+
def test_Tuple_contains():
|
49 |
+
t1, t2 = Tuple(1), Tuple(2)
|
50 |
+
assert t1 in Tuple(1, 2, 3, t1, Tuple(t2))
|
51 |
+
assert t2 not in Tuple(1, 2, 3, t1, Tuple(t2))
|
52 |
+
|
53 |
+
|
54 |
+
def test_Tuple_concatenation():
|
55 |
+
assert Tuple(1, 2) + Tuple(3, 4) == Tuple(1, 2, 3, 4)
|
56 |
+
assert (1, 2) + Tuple(3, 4) == Tuple(1, 2, 3, 4)
|
57 |
+
assert Tuple(1, 2) + (3, 4) == Tuple(1, 2, 3, 4)
|
58 |
+
raises(TypeError, lambda: Tuple(1, 2) + 3)
|
59 |
+
raises(TypeError, lambda: 1 + Tuple(2, 3))
|
60 |
+
|
61 |
+
#the Tuple case in __radd__ is only reached when a subclass is involved
|
62 |
+
class Tuple2(Tuple):
|
63 |
+
def __radd__(self, other):
|
64 |
+
return Tuple.__radd__(self, other + other)
|
65 |
+
assert Tuple(1, 2) + Tuple2(3, 4) == Tuple(1, 2, 1, 2, 3, 4)
|
66 |
+
assert Tuple2(1, 2) + Tuple(3, 4) == Tuple(1, 2, 3, 4)
|
67 |
+
|
68 |
+
|
69 |
+
def test_Tuple_equality():
|
70 |
+
assert not isinstance(Tuple(1, 2), tuple)
|
71 |
+
assert (Tuple(1, 2) == (1, 2)) is True
|
72 |
+
assert (Tuple(1, 2) != (1, 2)) is False
|
73 |
+
assert (Tuple(1, 2) == (1, 3)) is False
|
74 |
+
assert (Tuple(1, 2) != (1, 3)) is True
|
75 |
+
assert (Tuple(1, 2) == Tuple(1, 2)) is True
|
76 |
+
assert (Tuple(1, 2) != Tuple(1, 2)) is False
|
77 |
+
assert (Tuple(1, 2) == Tuple(1, 3)) is False
|
78 |
+
assert (Tuple(1, 2) != Tuple(1, 3)) is True
|
79 |
+
|
80 |
+
|
81 |
+
def test_Tuple_Eq():
|
82 |
+
assert Eq(Tuple(), Tuple()) is S.true
|
83 |
+
assert Eq(Tuple(1), 1) is S.false
|
84 |
+
assert Eq(Tuple(1, 2), Tuple(1)) is S.false
|
85 |
+
assert Eq(Tuple(1), Tuple(1)) is S.true
|
86 |
+
assert Eq(Tuple(1, 2), Tuple(1, 3)) is S.false
|
87 |
+
assert Eq(Tuple(1, 2), Tuple(1, 2)) is S.true
|
88 |
+
assert unchanged(Eq, Tuple(1, x), Tuple(1, 2))
|
89 |
+
assert Eq(Tuple(1, x), Tuple(1, 2)).subs(x, 2) is S.true
|
90 |
+
assert unchanged(Eq, Tuple(1, 2), x)
|
91 |
+
f = Function('f')
|
92 |
+
assert unchanged(Eq, Tuple(1), f(x))
|
93 |
+
assert Eq(Tuple(1), f(x)).subs(x, 1).subs(f, Lambda(y, (y,))) is S.true
|
94 |
+
|
95 |
+
|
96 |
+
def test_Tuple_comparision():
|
97 |
+
assert (Tuple(1, 3) >= Tuple(-10, 30)) is S.true
|
98 |
+
assert (Tuple(1, 3) <= Tuple(-10, 30)) is S.false
|
99 |
+
assert (Tuple(1, 3) >= Tuple(1, 3)) is S.true
|
100 |
+
assert (Tuple(1, 3) <= Tuple(1, 3)) is S.true
|
101 |
+
|
102 |
+
|
103 |
+
def test_Tuple_tuple_count():
|
104 |
+
assert Tuple(0, 1, 2, 3).tuple_count(4) == 0
|
105 |
+
assert Tuple(0, 4, 1, 2, 3).tuple_count(4) == 1
|
106 |
+
assert Tuple(0, 4, 1, 4, 2, 3).tuple_count(4) == 2
|
107 |
+
assert Tuple(0, 4, 1, 4, 2, 4, 3).tuple_count(4) == 3
|
108 |
+
|
109 |
+
|
110 |
+
def test_Tuple_index():
|
111 |
+
assert Tuple(4, 0, 1, 2, 3).index(4) == 0
|
112 |
+
assert Tuple(0, 4, 1, 2, 3).index(4) == 1
|
113 |
+
assert Tuple(0, 1, 4, 2, 3).index(4) == 2
|
114 |
+
assert Tuple(0, 1, 2, 4, 3).index(4) == 3
|
115 |
+
assert Tuple(0, 1, 2, 3, 4).index(4) == 4
|
116 |
+
|
117 |
+
raises(ValueError, lambda: Tuple(0, 1, 2, 3).index(4))
|
118 |
+
raises(ValueError, lambda: Tuple(4, 0, 1, 2, 3).index(4, 1))
|
119 |
+
raises(ValueError, lambda: Tuple(0, 1, 2, 3, 4).index(4, 1, 4))
|
120 |
+
|
121 |
+
|
122 |
+
def test_Tuple_mul():
|
123 |
+
assert Tuple(1, 2, 3)*2 == Tuple(1, 2, 3, 1, 2, 3)
|
124 |
+
assert 2*Tuple(1, 2, 3) == Tuple(1, 2, 3, 1, 2, 3)
|
125 |
+
assert Tuple(1, 2, 3)*Integer(2) == Tuple(1, 2, 3, 1, 2, 3)
|
126 |
+
assert Integer(2)*Tuple(1, 2, 3) == Tuple(1, 2, 3, 1, 2, 3)
|
127 |
+
|
128 |
+
raises(TypeError, lambda: Tuple(1, 2, 3)*S.Half)
|
129 |
+
raises(TypeError, lambda: S.Half*Tuple(1, 2, 3))
|
130 |
+
|
131 |
+
|
132 |
+
def test_tuple_wrapper():
|
133 |
+
|
134 |
+
@tuple_wrapper
|
135 |
+
def wrap_tuples_and_return(*t):
|
136 |
+
return t
|
137 |
+
|
138 |
+
p = symbols('p')
|
139 |
+
assert wrap_tuples_and_return(p, 1) == (p, 1)
|
140 |
+
assert wrap_tuples_and_return((p, 1)) == (Tuple(p, 1),)
|
141 |
+
assert wrap_tuples_and_return(1, (p, 2), 3) == (1, Tuple(p, 2), 3)
|
142 |
+
|
143 |
+
|
144 |
+
def test_iterable_is_sequence():
|
145 |
+
ordered = [[], (), Tuple(), Matrix([[]])]
|
146 |
+
unordered = [set()]
|
147 |
+
not_sympy_iterable = [{}, '', '']
|
148 |
+
assert all(is_sequence(i) for i in ordered)
|
149 |
+
assert all(not is_sequence(i) for i in unordered)
|
150 |
+
assert all(iterable(i) for i in ordered + unordered)
|
151 |
+
assert all(not iterable(i) for i in not_sympy_iterable)
|
152 |
+
assert all(iterable(i, exclude=None) for i in not_sympy_iterable)
|
153 |
+
|
154 |
+
|
155 |
+
def test_TupleKind():
|
156 |
+
kind = TupleKind(NumberKind, MatrixKind(NumberKind))
|
157 |
+
assert Tuple(1, Matrix([1, 2])).kind is kind
|
158 |
+
assert Tuple(1, 2).kind is TupleKind(NumberKind, NumberKind)
|
159 |
+
assert Tuple(1, 2).kind.element_kind == (NumberKind, NumberKind)
|
160 |
+
|
161 |
+
|
162 |
+
def test_Dict():
|
163 |
+
x, y, z = symbols('x y z')
|
164 |
+
d = Dict({x: 1, y: 2, z: 3})
|
165 |
+
assert d[x] == 1
|
166 |
+
assert d[y] == 2
|
167 |
+
raises(KeyError, lambda: d[2])
|
168 |
+
raises(KeyError, lambda: d['2'])
|
169 |
+
assert len(d) == 3
|
170 |
+
assert set(d.keys()) == {x, y, z}
|
171 |
+
assert set(d.values()) == {S.One, S(2), S(3)}
|
172 |
+
assert d.get(5, 'default') == 'default'
|
173 |
+
assert d.get('5', 'default') == 'default'
|
174 |
+
assert x in d and z in d and 5 not in d and '5' not in d
|
175 |
+
assert d.has(x) and d.has(1) # SymPy Basic .has method
|
176 |
+
|
177 |
+
# Test input types
|
178 |
+
# input - a Python dict
|
179 |
+
# input - items as args - SymPy style
|
180 |
+
assert (Dict({x: 1, y: 2, z: 3}) ==
|
181 |
+
Dict((x, 1), (y, 2), (z, 3)))
|
182 |
+
|
183 |
+
raises(TypeError, lambda: Dict(((x, 1), (y, 2), (z, 3))))
|
184 |
+
with raises(NotImplementedError):
|
185 |
+
d[5] = 6 # assert immutability
|
186 |
+
|
187 |
+
assert set(
|
188 |
+
d.items()) == {Tuple(x, S.One), Tuple(y, S(2)), Tuple(z, S(3))}
|
189 |
+
assert set(d) == {x, y, z}
|
190 |
+
assert str(d) == '{x: 1, y: 2, z: 3}'
|
191 |
+
assert d.__repr__() == '{x: 1, y: 2, z: 3}'
|
192 |
+
|
193 |
+
# Test creating a Dict from a Dict.
|
194 |
+
d = Dict({x: 1, y: 2, z: 3})
|
195 |
+
assert d == Dict(d)
|
196 |
+
|
197 |
+
# Test for supporting defaultdict
|
198 |
+
d = defaultdict(int)
|
199 |
+
assert d[x] == 0
|
200 |
+
assert d[y] == 0
|
201 |
+
assert d[z] == 0
|
202 |
+
assert Dict(d)
|
203 |
+
d = Dict(d)
|
204 |
+
assert len(d) == 3
|
205 |
+
assert set(d.keys()) == {x, y, z}
|
206 |
+
assert set(d.values()) == {S.Zero, S.Zero, S.Zero}
|
207 |
+
|
208 |
+
|
209 |
+
def test_issue_5788():
|
210 |
+
args = [(1, 2), (2, 1)]
|
211 |
+
for o in [Dict, Tuple, FiniteSet]:
|
212 |
+
# __eq__ and arg handling
|
213 |
+
if o != Tuple:
|
214 |
+
assert o(*args) == o(*reversed(args))
|
215 |
+
pair = [o(*args), o(*reversed(args))]
|
216 |
+
assert sorted(pair) == sorted(pair)
|
217 |
+
assert set(o(*args)) # doesn't fail
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_count_ops.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.summations import Sum
|
2 |
+
from sympy.core.basic import Basic
|
3 |
+
from sympy.core.function import (Derivative, Function, count_ops)
|
4 |
+
from sympy.core.numbers import (I, Rational, pi)
|
5 |
+
from sympy.core.relational import (Eq, Rel)
|
6 |
+
from sympy.core.singleton import S
|
7 |
+
from sympy.core.symbol import (Symbol, symbols)
|
8 |
+
from sympy.functions.elementary.exponential import exp
|
9 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
10 |
+
from sympy.integrals.integrals import Integral
|
11 |
+
from sympy.logic.boolalg import (And, Equivalent, ITE, Implies, Nand,
|
12 |
+
Nor, Not, Or, Xor)
|
13 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
14 |
+
from sympy.core.containers import Tuple
|
15 |
+
|
16 |
+
x, y, z = symbols('x,y,z')
|
17 |
+
a, b, c = symbols('a,b,c')
|
18 |
+
|
19 |
+
def test_count_ops_non_visual():
|
20 |
+
def count(val):
|
21 |
+
return count_ops(val, visual=False)
|
22 |
+
assert count(x) == 0
|
23 |
+
assert count(x) is not S.Zero
|
24 |
+
assert count(x + y) == 1
|
25 |
+
assert count(x + y) is not S.One
|
26 |
+
assert count(x + y*x + 2*y) == 4
|
27 |
+
assert count({x + y: x}) == 1
|
28 |
+
assert count({x + y: S(2) + x}) is not S.One
|
29 |
+
assert count(x < y) == 1
|
30 |
+
assert count(Or(x,y)) == 1
|
31 |
+
assert count(And(x,y)) == 1
|
32 |
+
assert count(Not(x)) == 1
|
33 |
+
assert count(Nor(x,y)) == 2
|
34 |
+
assert count(Nand(x,y)) == 2
|
35 |
+
assert count(Xor(x,y)) == 1
|
36 |
+
assert count(Implies(x,y)) == 1
|
37 |
+
assert count(Equivalent(x,y)) == 1
|
38 |
+
assert count(ITE(x,y,z)) == 1
|
39 |
+
assert count(ITE(True,x,y)) == 0
|
40 |
+
|
41 |
+
|
42 |
+
def test_count_ops_visual():
|
43 |
+
ADD, MUL, POW, SIN, COS, EXP, AND, D, G, M = symbols(
|
44 |
+
'Add Mul Pow sin cos exp And Derivative Integral Sum'.upper())
|
45 |
+
DIV, SUB, NEG = symbols('DIV SUB NEG')
|
46 |
+
LT, LE, GT, GE, EQ, NE = symbols('LT LE GT GE EQ NE')
|
47 |
+
NOT, OR, AND, XOR, IMPLIES, EQUIVALENT, _ITE, BASIC, TUPLE = symbols(
|
48 |
+
'Not Or And Xor Implies Equivalent ITE Basic Tuple'.upper())
|
49 |
+
|
50 |
+
def count(val):
|
51 |
+
return count_ops(val, visual=True)
|
52 |
+
|
53 |
+
assert count(7) is S.Zero
|
54 |
+
assert count(S(7)) is S.Zero
|
55 |
+
assert count(-1) == NEG
|
56 |
+
assert count(-2) == NEG
|
57 |
+
assert count(S(2)/3) == DIV
|
58 |
+
assert count(Rational(2, 3)) == DIV
|
59 |
+
assert count(pi/3) == DIV
|
60 |
+
assert count(-pi/3) == DIV + NEG
|
61 |
+
assert count(I - 1) == SUB
|
62 |
+
assert count(1 - I) == SUB
|
63 |
+
assert count(1 - 2*I) == SUB + MUL
|
64 |
+
|
65 |
+
assert count(x) is S.Zero
|
66 |
+
assert count(-x) == NEG
|
67 |
+
assert count(-2*x/3) == NEG + DIV + MUL
|
68 |
+
assert count(Rational(-2, 3)*x) == NEG + DIV + MUL
|
69 |
+
assert count(1/x) == DIV
|
70 |
+
assert count(1/(x*y)) == DIV + MUL
|
71 |
+
assert count(-1/x) == NEG + DIV
|
72 |
+
assert count(-2/x) == NEG + DIV
|
73 |
+
assert count(x/y) == DIV
|
74 |
+
assert count(-x/y) == NEG + DIV
|
75 |
+
|
76 |
+
assert count(x**2) == POW
|
77 |
+
assert count(-x**2) == POW + NEG
|
78 |
+
assert count(-2*x**2) == POW + MUL + NEG
|
79 |
+
|
80 |
+
assert count(x + pi/3) == ADD + DIV
|
81 |
+
assert count(x + S.One/3) == ADD + DIV
|
82 |
+
assert count(x + Rational(1, 3)) == ADD + DIV
|
83 |
+
assert count(x + y) == ADD
|
84 |
+
assert count(x - y) == SUB
|
85 |
+
assert count(y - x) == SUB
|
86 |
+
assert count(-1/(x - y)) == DIV + NEG + SUB
|
87 |
+
assert count(-1/(y - x)) == DIV + NEG + SUB
|
88 |
+
assert count(1 + x**y) == ADD + POW
|
89 |
+
assert count(1 + x + y) == 2*ADD
|
90 |
+
assert count(1 + x + y + z) == 3*ADD
|
91 |
+
assert count(1 + x**y + 2*x*y + y**2) == 3*ADD + 2*POW + 2*MUL
|
92 |
+
assert count(2*z + y + x + 1) == 3*ADD + MUL
|
93 |
+
assert count(2*z + y**17 + x + 1) == 3*ADD + MUL + POW
|
94 |
+
assert count(2*z + y**17 + x + sin(x)) == 3*ADD + POW + MUL + SIN
|
95 |
+
assert count(2*z + y**17 + x + sin(x**2)) == 3*ADD + MUL + 2*POW + SIN
|
96 |
+
assert count(2*z + y**17 + x + sin(
|
97 |
+
x**2) + exp(cos(x))) == 4*ADD + MUL + 2*POW + EXP + COS + SIN
|
98 |
+
|
99 |
+
assert count(Derivative(x, x)) == D
|
100 |
+
assert count(Integral(x, x) + 2*x/(1 + x)) == G + DIV + MUL + 2*ADD
|
101 |
+
assert count(Sum(x, (x, 1, x + 1)) + 2*x/(1 + x)) == M + DIV + MUL + 3*ADD
|
102 |
+
assert count(Basic()) is S.Zero
|
103 |
+
|
104 |
+
assert count({x + 1: sin(x)}) == ADD + SIN
|
105 |
+
assert count([x + 1, sin(x) + y, None]) == ADD + SIN + ADD
|
106 |
+
assert count({x + 1: sin(x), y: cos(x) + 1}) == SIN + COS + 2*ADD
|
107 |
+
assert count({}) is S.Zero
|
108 |
+
assert count([x + 1, sin(x)*y, None]) == SIN + ADD + MUL
|
109 |
+
assert count([]) is S.Zero
|
110 |
+
|
111 |
+
assert count(Basic()) == 0
|
112 |
+
assert count(Basic(Basic(),Basic(x,x+y))) == ADD + 2*BASIC
|
113 |
+
assert count(Basic(x, x + y)) == ADD + BASIC
|
114 |
+
assert [count(Rel(x, y, op)) for op in '< <= > >= == <> !='.split()
|
115 |
+
] == [LT, LE, GT, GE, EQ, NE, NE]
|
116 |
+
assert count(Or(x, y)) == OR
|
117 |
+
assert count(And(x, y)) == AND
|
118 |
+
assert count(Or(x, Or(y, And(z, a)))) == AND + OR
|
119 |
+
assert count(Nor(x, y)) == NOT + OR
|
120 |
+
assert count(Nand(x, y)) == NOT + AND
|
121 |
+
assert count(Xor(x, y)) == XOR
|
122 |
+
assert count(Implies(x, y)) == IMPLIES
|
123 |
+
assert count(Equivalent(x, y)) == EQUIVALENT
|
124 |
+
assert count(ITE(x, y, z)) == _ITE
|
125 |
+
assert count([Or(x, y), And(x, y), Basic(x + y)]
|
126 |
+
) == ADD + AND + BASIC + OR
|
127 |
+
|
128 |
+
assert count(Basic(Tuple(x))) == BASIC + TUPLE
|
129 |
+
#It checks that TUPLE is counted as an operation.
|
130 |
+
|
131 |
+
assert count(Eq(x + y, S(2))) == ADD + EQ
|
132 |
+
|
133 |
+
|
134 |
+
def test_issue_9324():
|
135 |
+
def count(val):
|
136 |
+
return count_ops(val, visual=False)
|
137 |
+
|
138 |
+
M = MatrixSymbol('M', 10, 10)
|
139 |
+
assert count(M[0, 0]) == 0
|
140 |
+
assert count(2 * M[0, 0] + M[5, 7]) == 2
|
141 |
+
P = MatrixSymbol('P', 3, 3)
|
142 |
+
Q = MatrixSymbol('Q', 3, 3)
|
143 |
+
assert count(P + Q) == 1
|
144 |
+
m = Symbol('m', integer=True)
|
145 |
+
n = Symbol('n', integer=True)
|
146 |
+
M = MatrixSymbol('M', m + n, m * m)
|
147 |
+
assert count(M[0, 1]) == 2
|
148 |
+
|
149 |
+
|
150 |
+
def test_issue_21532():
|
151 |
+
f = Function('f')
|
152 |
+
g = Function('g')
|
153 |
+
FUNC_F, FUNC_G = symbols('FUNC_F, FUNC_G')
|
154 |
+
assert f(x).count_ops(visual=True) == FUNC_F
|
155 |
+
assert g(x).count_ops(visual=True) == FUNC_G
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_diff.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.summations import Sum
|
2 |
+
from sympy.core.expr import Expr
|
3 |
+
from sympy.core.function import (Derivative, Function, diff, Subs)
|
4 |
+
from sympy.core.numbers import (I, Rational, pi)
|
5 |
+
from sympy.core.relational import Eq
|
6 |
+
from sympy.core.singleton import S
|
7 |
+
from sympy.core.symbol import Symbol
|
8 |
+
from sympy.functions.combinatorial.factorials import factorial
|
9 |
+
from sympy.functions.elementary.complexes import (im, re)
|
10 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
11 |
+
from sympy.functions.elementary.miscellaneous import Max
|
12 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
13 |
+
from sympy.functions.elementary.trigonometric import (cos, cot, sin, tan)
|
14 |
+
from sympy.tensor.array.ndim_array import NDimArray
|
15 |
+
from sympy.testing.pytest import raises
|
16 |
+
from sympy.abc import a, b, c, x, y, z
|
17 |
+
|
18 |
+
def test_diff():
|
19 |
+
assert Rational(1, 3).diff(x) is S.Zero
|
20 |
+
assert I.diff(x) is S.Zero
|
21 |
+
assert pi.diff(x) is S.Zero
|
22 |
+
assert x.diff(x, 0) == x
|
23 |
+
assert (x**2).diff(x, 2, x) == 0
|
24 |
+
assert (x**2).diff((x, 2), x) == 0
|
25 |
+
assert (x**2).diff((x, 1), x) == 2
|
26 |
+
assert (x**2).diff((x, 1), (x, 1)) == 2
|
27 |
+
assert (x**2).diff((x, 2)) == 2
|
28 |
+
assert (x**2).diff(x, y, 0) == 2*x
|
29 |
+
assert (x**2).diff(x, (y, 0)) == 2*x
|
30 |
+
assert (x**2).diff(x, y) == 0
|
31 |
+
raises(ValueError, lambda: x.diff(1, x))
|
32 |
+
|
33 |
+
p = Rational(5)
|
34 |
+
e = a*b + b**p
|
35 |
+
assert e.diff(a) == b
|
36 |
+
assert e.diff(b) == a + 5*b**4
|
37 |
+
assert e.diff(b).diff(a) == Rational(1)
|
38 |
+
e = a*(b + c)
|
39 |
+
assert e.diff(a) == b + c
|
40 |
+
assert e.diff(b) == a
|
41 |
+
assert e.diff(b).diff(a) == Rational(1)
|
42 |
+
e = c**p
|
43 |
+
assert e.diff(c, 6) == Rational(0)
|
44 |
+
assert e.diff(c, 5) == Rational(120)
|
45 |
+
e = c**Rational(2)
|
46 |
+
assert e.diff(c) == 2*c
|
47 |
+
e = a*b*c
|
48 |
+
assert e.diff(c) == a*b
|
49 |
+
|
50 |
+
|
51 |
+
def test_diff2():
|
52 |
+
n3 = Rational(3)
|
53 |
+
n2 = Rational(2)
|
54 |
+
n6 = Rational(6)
|
55 |
+
|
56 |
+
e = n3*(-n2 + x**n2)*cos(x) + x*(-n6 + x**n2)*sin(x)
|
57 |
+
assert e == 3*(-2 + x**2)*cos(x) + x*(-6 + x**2)*sin(x)
|
58 |
+
assert e.diff(x).expand() == x**3*cos(x)
|
59 |
+
|
60 |
+
e = (x + 1)**3
|
61 |
+
assert e.diff(x) == 3*(x + 1)**2
|
62 |
+
e = x*(x + 1)**3
|
63 |
+
assert e.diff(x) == (x + 1)**3 + 3*x*(x + 1)**2
|
64 |
+
e = 2*exp(x*x)*x
|
65 |
+
assert e.diff(x) == 2*exp(x**2) + 4*x**2*exp(x**2)
|
66 |
+
|
67 |
+
|
68 |
+
def test_diff3():
|
69 |
+
p = Rational(5)
|
70 |
+
e = a*b + sin(b**p)
|
71 |
+
assert e == a*b + sin(b**5)
|
72 |
+
assert e.diff(a) == b
|
73 |
+
assert e.diff(b) == a + 5*b**4*cos(b**5)
|
74 |
+
e = tan(c)
|
75 |
+
assert e == tan(c)
|
76 |
+
assert e.diff(c) in [cos(c)**(-2), 1 + sin(c)**2/cos(c)**2, 1 + tan(c)**2]
|
77 |
+
e = c*log(c) - c
|
78 |
+
assert e == -c + c*log(c)
|
79 |
+
assert e.diff(c) == log(c)
|
80 |
+
e = log(sin(c))
|
81 |
+
assert e == log(sin(c))
|
82 |
+
assert e.diff(c) in [sin(c)**(-1)*cos(c), cot(c)]
|
83 |
+
e = (Rational(2)**a/log(Rational(2)))
|
84 |
+
assert e == 2**a*log(Rational(2))**(-1)
|
85 |
+
assert e.diff(a) == 2**a
|
86 |
+
|
87 |
+
|
88 |
+
def test_diff_no_eval_derivative():
|
89 |
+
class My(Expr):
|
90 |
+
def __new__(cls, x):
|
91 |
+
return Expr.__new__(cls, x)
|
92 |
+
|
93 |
+
# My doesn't have its own _eval_derivative method
|
94 |
+
assert My(x).diff(x).func is Derivative
|
95 |
+
assert My(x).diff(x, 3).func is Derivative
|
96 |
+
assert re(x).diff(x, 2) == Derivative(re(x), (x, 2)) # issue 15518
|
97 |
+
assert diff(NDimArray([re(x), im(x)]), (x, 2)) == NDimArray(
|
98 |
+
[Derivative(re(x), (x, 2)), Derivative(im(x), (x, 2))])
|
99 |
+
# it doesn't have y so it shouldn't need a method for this case
|
100 |
+
assert My(x).diff(y) == 0
|
101 |
+
|
102 |
+
|
103 |
+
def test_speed():
|
104 |
+
# this should return in 0.0s. If it takes forever, it's wrong.
|
105 |
+
assert x.diff(x, 10**8) == 0
|
106 |
+
|
107 |
+
|
108 |
+
def test_deriv_noncommutative():
|
109 |
+
A = Symbol("A", commutative=False)
|
110 |
+
f = Function("f")
|
111 |
+
assert A*f(x)*A == f(x)*A**2
|
112 |
+
assert A*f(x).diff(x)*A == f(x).diff(x) * A**2
|
113 |
+
|
114 |
+
|
115 |
+
def test_diff_nth_derivative():
|
116 |
+
f = Function("f")
|
117 |
+
n = Symbol("n", integer=True)
|
118 |
+
|
119 |
+
expr = diff(sin(x), (x, n))
|
120 |
+
expr2 = diff(f(x), (x, 2))
|
121 |
+
expr3 = diff(f(x), (x, n))
|
122 |
+
|
123 |
+
assert expr.subs(sin(x), cos(-x)) == Derivative(cos(-x), (x, n))
|
124 |
+
assert expr.subs(n, 1).doit() == cos(x)
|
125 |
+
assert expr.subs(n, 2).doit() == -sin(x)
|
126 |
+
|
127 |
+
assert expr2.subs(Derivative(f(x), x), y) == Derivative(y, x)
|
128 |
+
# Currently not supported (cannot determine if `n > 1`):
|
129 |
+
#assert expr3.subs(Derivative(f(x), x), y) == Derivative(y, (x, n-1))
|
130 |
+
assert expr3 == Derivative(f(x), (x, n))
|
131 |
+
|
132 |
+
assert diff(x, (x, n)) == Piecewise((x, Eq(n, 0)), (1, Eq(n, 1)), (0, True))
|
133 |
+
assert diff(2*x, (x, n)).dummy_eq(
|
134 |
+
Sum(Piecewise((2*x*factorial(n)/(factorial(y)*factorial(-y + n)),
|
135 |
+
Eq(y, 0) & Eq(Max(0, -y + n), 0)),
|
136 |
+
(2*factorial(n)/(factorial(y)*factorial(-y + n)), Eq(y, 0) & Eq(Max(0,
|
137 |
+
-y + n), 1)), (0, True)), (y, 0, n)))
|
138 |
+
# TODO: assert diff(x**2, (x, n)) == x**(2-n)*ff(2, n)
|
139 |
+
exprm = x*sin(x)
|
140 |
+
mul_diff = diff(exprm, (x, n))
|
141 |
+
assert isinstance(mul_diff, Sum)
|
142 |
+
for i in range(5):
|
143 |
+
assert mul_diff.subs(n, i).doit() == exprm.diff((x, i)).expand()
|
144 |
+
|
145 |
+
exprm2 = 2*y*x*sin(x)*cos(x)*log(x)*exp(x)
|
146 |
+
dex = exprm2.diff((x, n))
|
147 |
+
assert isinstance(dex, Sum)
|
148 |
+
for i in range(7):
|
149 |
+
assert dex.subs(n, i).doit().expand() == \
|
150 |
+
exprm2.diff((x, i)).expand()
|
151 |
+
|
152 |
+
assert (cos(x)*sin(y)).diff([[x, y, z]]) == NDimArray([
|
153 |
+
-sin(x)*sin(y), cos(x)*cos(y), 0])
|
154 |
+
|
155 |
+
|
156 |
+
def test_issue_16160():
|
157 |
+
assert Derivative(x**3, (x, x)).subs(x, 2) == Subs(
|
158 |
+
Derivative(x**3, (x, 2)), x, 2)
|
159 |
+
assert Derivative(1 + x**3, (x, x)).subs(x, 0
|
160 |
+
) == Derivative(1 + y**3, (y, 0)).subs(y, 0)
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_equal.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import Rational
|
2 |
+
from sympy.core.symbol import (Dummy, Symbol)
|
3 |
+
from sympy.functions.elementary.exponential import exp
|
4 |
+
|
5 |
+
|
6 |
+
def test_equal():
|
7 |
+
b = Symbol("b")
|
8 |
+
a = Symbol("a")
|
9 |
+
e1 = a + b
|
10 |
+
e2 = 2*a*b
|
11 |
+
e3 = a**3*b**2
|
12 |
+
e4 = a*b + b*a
|
13 |
+
assert not e1 == e2
|
14 |
+
assert not e1 == e2
|
15 |
+
assert e1 != e2
|
16 |
+
assert e2 == e4
|
17 |
+
assert e2 != e3
|
18 |
+
assert not e2 == e3
|
19 |
+
|
20 |
+
x = Symbol("x")
|
21 |
+
e1 = exp(x + 1/x)
|
22 |
+
y = Symbol("x")
|
23 |
+
e2 = exp(y + 1/y)
|
24 |
+
assert e1 == e2
|
25 |
+
assert not e1 != e2
|
26 |
+
y = Symbol("y")
|
27 |
+
e2 = exp(y + 1/y)
|
28 |
+
assert not e1 == e2
|
29 |
+
assert e1 != e2
|
30 |
+
|
31 |
+
e5 = Rational(3) + 2*x - x - x
|
32 |
+
assert e5 == 3
|
33 |
+
assert 3 == e5
|
34 |
+
assert e5 != 4
|
35 |
+
assert 4 != e5
|
36 |
+
assert e5 != 3 + x
|
37 |
+
assert 3 + x != e5
|
38 |
+
|
39 |
+
|
40 |
+
def test_expevalbug():
|
41 |
+
x = Symbol("x")
|
42 |
+
e1 = exp(1*x)
|
43 |
+
e3 = exp(x)
|
44 |
+
assert e1 == e3
|
45 |
+
|
46 |
+
|
47 |
+
def test_cmp_bug1():
|
48 |
+
class T:
|
49 |
+
pass
|
50 |
+
|
51 |
+
t = T()
|
52 |
+
x = Symbol("x")
|
53 |
+
|
54 |
+
assert not (x == t)
|
55 |
+
assert (x != t)
|
56 |
+
|
57 |
+
|
58 |
+
def test_cmp_bug2():
|
59 |
+
class T:
|
60 |
+
pass
|
61 |
+
|
62 |
+
t = T()
|
63 |
+
|
64 |
+
assert not (Symbol == t)
|
65 |
+
assert (Symbol != t)
|
66 |
+
|
67 |
+
|
68 |
+
def test_cmp_issue_4357():
|
69 |
+
""" Check that Basic subclasses can be compared with sympifiable objects.
|
70 |
+
|
71 |
+
https://github.com/sympy/sympy/issues/4357
|
72 |
+
"""
|
73 |
+
assert not (Symbol == 1)
|
74 |
+
assert (Symbol != 1)
|
75 |
+
assert not (Symbol == 'x')
|
76 |
+
assert (Symbol != 'x')
|
77 |
+
|
78 |
+
|
79 |
+
def test_dummy_eq():
|
80 |
+
x = Symbol('x')
|
81 |
+
y = Symbol('y')
|
82 |
+
|
83 |
+
u = Dummy('u')
|
84 |
+
|
85 |
+
assert (u**2 + 1).dummy_eq(x**2 + 1) is True
|
86 |
+
assert ((u**2 + 1) == (x**2 + 1)) is False
|
87 |
+
|
88 |
+
assert (u**2 + y).dummy_eq(x**2 + y, x) is True
|
89 |
+
assert (u**2 + y).dummy_eq(x**2 + y, y) is False
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_eval.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.function import Function
|
2 |
+
from sympy.core.numbers import (I, Rational)
|
3 |
+
from sympy.core.singleton import S
|
4 |
+
from sympy.core.symbol import Symbol
|
5 |
+
from sympy.functions.elementary.exponential import exp
|
6 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
7 |
+
from sympy.functions.elementary.trigonometric import (cos, tan)
|
8 |
+
from sympy.testing.pytest import XFAIL
|
9 |
+
|
10 |
+
|
11 |
+
def test_add_eval():
|
12 |
+
a = Symbol("a")
|
13 |
+
b = Symbol("b")
|
14 |
+
c = Rational(1)
|
15 |
+
p = Rational(5)
|
16 |
+
assert a*b + c + p == a*b + 6
|
17 |
+
assert c + a + p == a + 6
|
18 |
+
assert c + a - p == a + (-4)
|
19 |
+
assert a + a == 2*a
|
20 |
+
assert a + p + a == 2*a + 5
|
21 |
+
assert c + p == Rational(6)
|
22 |
+
assert b + a - b == a
|
23 |
+
|
24 |
+
|
25 |
+
def test_addmul_eval():
|
26 |
+
a = Symbol("a")
|
27 |
+
b = Symbol("b")
|
28 |
+
c = Rational(1)
|
29 |
+
p = Rational(5)
|
30 |
+
assert c + a + b*c + a - p == 2*a + b + (-4)
|
31 |
+
assert a*2 + p + a == a*2 + 5 + a
|
32 |
+
assert a*2 + p + a == 3*a + 5
|
33 |
+
assert a*2 + a == 3*a
|
34 |
+
|
35 |
+
|
36 |
+
def test_pow_eval():
|
37 |
+
# XXX Pow does not fully support conversion of negative numbers
|
38 |
+
# to their complex equivalent
|
39 |
+
|
40 |
+
assert sqrt(-1) == I
|
41 |
+
|
42 |
+
assert sqrt(-4) == 2*I
|
43 |
+
assert sqrt( 4) == 2
|
44 |
+
assert (8)**Rational(1, 3) == 2
|
45 |
+
assert (-8)**Rational(1, 3) == 2*((-1)**Rational(1, 3))
|
46 |
+
|
47 |
+
assert sqrt(-2) == I*sqrt(2)
|
48 |
+
assert (-1)**Rational(1, 3) != I
|
49 |
+
assert (-10)**Rational(1, 3) != I*((10)**Rational(1, 3))
|
50 |
+
assert (-2)**Rational(1, 4) != (2)**Rational(1, 4)
|
51 |
+
|
52 |
+
assert 64**Rational(1, 3) == 4
|
53 |
+
assert 64**Rational(2, 3) == 16
|
54 |
+
assert 24/sqrt(64) == 3
|
55 |
+
assert (-27)**Rational(1, 3) == 3*(-1)**Rational(1, 3)
|
56 |
+
|
57 |
+
assert (cos(2) / tan(2))**2 == (cos(2) / tan(2))**2
|
58 |
+
|
59 |
+
|
60 |
+
@XFAIL
|
61 |
+
def test_pow_eval_X1():
|
62 |
+
assert (-1)**Rational(1, 3) == S.Half + S.Half*I*sqrt(3)
|
63 |
+
|
64 |
+
|
65 |
+
def test_mulpow_eval():
|
66 |
+
x = Symbol('x')
|
67 |
+
assert sqrt(50)/(sqrt(2)*x) == 5/x
|
68 |
+
assert sqrt(27)/sqrt(3) == 3
|
69 |
+
|
70 |
+
|
71 |
+
def test_evalpow_bug():
|
72 |
+
x = Symbol("x")
|
73 |
+
assert 1/(1/x) == x
|
74 |
+
assert 1/(-1/x) == -x
|
75 |
+
|
76 |
+
|
77 |
+
def test_symbol_expand():
|
78 |
+
x = Symbol('x')
|
79 |
+
y = Symbol('y')
|
80 |
+
|
81 |
+
f = x**4*y**4
|
82 |
+
assert f == x**4*y**4
|
83 |
+
assert f == f.expand()
|
84 |
+
|
85 |
+
g = (x*y)**4
|
86 |
+
assert g == f
|
87 |
+
assert g.expand() == f
|
88 |
+
assert g.expand() == g.expand().expand()
|
89 |
+
|
90 |
+
|
91 |
+
def test_function():
|
92 |
+
f, l = map(Function, 'fl')
|
93 |
+
x = Symbol('x')
|
94 |
+
assert exp(l(x))*l(x)/exp(l(x)) == l(x)
|
95 |
+
assert exp(f(x))*f(x)/exp(f(x)) == f(x)
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_evalf.py
ADDED
@@ -0,0 +1,732 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
from sympy.concrete.products import (Product, product)
|
4 |
+
from sympy.concrete.summations import Sum
|
5 |
+
from sympy.core.add import Add
|
6 |
+
from sympy.core.evalf import N
|
7 |
+
from sympy.core.function import (Function, nfloat)
|
8 |
+
from sympy.core.mul import Mul
|
9 |
+
from sympy.core import (GoldenRatio)
|
10 |
+
from sympy.core.numbers import (AlgebraicNumber, E, Float, I, Rational,
|
11 |
+
oo, zoo, nan, pi)
|
12 |
+
from sympy.core.power import Pow
|
13 |
+
from sympy.core.relational import Eq
|
14 |
+
from sympy.core.singleton import S
|
15 |
+
from sympy.core.symbol import Symbol
|
16 |
+
from sympy.core.sympify import sympify
|
17 |
+
from sympy.functions.combinatorial.factorials import factorial
|
18 |
+
from sympy.functions.combinatorial.numbers import fibonacci
|
19 |
+
from sympy.functions.elementary.complexes import (Abs, re, im)
|
20 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
21 |
+
from sympy.functions.elementary.hyperbolic import (acosh, cosh)
|
22 |
+
from sympy.functions.elementary.integers import (ceiling, floor)
|
23 |
+
from sympy.functions.elementary.miscellaneous import (Max, sqrt)
|
24 |
+
from sympy.functions.elementary.trigonometric import (acos, atan, cos, sin, tan)
|
25 |
+
from sympy.integrals.integrals import (Integral, integrate)
|
26 |
+
from sympy.polys.polytools import factor
|
27 |
+
from sympy.polys.rootoftools import CRootOf
|
28 |
+
from sympy.polys.specialpolys import cyclotomic_poly
|
29 |
+
from sympy.printing import srepr
|
30 |
+
from sympy.printing.str import sstr
|
31 |
+
from sympy.simplify.simplify import simplify
|
32 |
+
from sympy.core.numbers import comp
|
33 |
+
from sympy.core.evalf import (complex_accuracy, PrecisionExhausted,
|
34 |
+
scaled_zero, get_integer_part, as_mpmath, evalf, _evalf_with_bounded_error)
|
35 |
+
from mpmath import inf, ninf, make_mpc
|
36 |
+
from mpmath.libmp.libmpf import from_float, fzero
|
37 |
+
from sympy.core.expr import unchanged
|
38 |
+
from sympy.testing.pytest import raises, XFAIL
|
39 |
+
from sympy.abc import n, x, y
|
40 |
+
|
41 |
+
|
42 |
+
def NS(e, n=15, **options):
|
43 |
+
return sstr(sympify(e).evalf(n, **options), full_prec=True)
|
44 |
+
|
45 |
+
|
46 |
+
def test_evalf_helpers():
|
47 |
+
from mpmath.libmp import finf
|
48 |
+
assert complex_accuracy((from_float(2.0), None, 35, None)) == 35
|
49 |
+
assert complex_accuracy((from_float(2.0), from_float(10.0), 35, 100)) == 37
|
50 |
+
assert complex_accuracy(
|
51 |
+
(from_float(2.0), from_float(1000.0), 35, 100)) == 43
|
52 |
+
assert complex_accuracy((from_float(2.0), from_float(10.0), 100, 35)) == 35
|
53 |
+
assert complex_accuracy(
|
54 |
+
(from_float(2.0), from_float(1000.0), 100, 35)) == 35
|
55 |
+
assert complex_accuracy(finf) == math.inf
|
56 |
+
assert complex_accuracy(zoo) == math.inf
|
57 |
+
raises(ValueError, lambda: get_integer_part(zoo, 1, {}))
|
58 |
+
|
59 |
+
|
60 |
+
def test_evalf_basic():
|
61 |
+
assert NS('pi', 15) == '3.14159265358979'
|
62 |
+
assert NS('2/3', 10) == '0.6666666667'
|
63 |
+
assert NS('355/113-pi', 6) == '2.66764e-7'
|
64 |
+
assert NS('16*atan(1/5)-4*atan(1/239)', 15) == '3.14159265358979'
|
65 |
+
|
66 |
+
|
67 |
+
def test_cancellation():
|
68 |
+
assert NS(Add(pi, Rational(1, 10**1000), -pi, evaluate=False), 15,
|
69 |
+
maxn=1200) == '1.00000000000000e-1000'
|
70 |
+
|
71 |
+
|
72 |
+
def test_evalf_powers():
|
73 |
+
assert NS('pi**(10**20)', 10) == '1.339148777e+49714987269413385435'
|
74 |
+
assert NS(pi**(10**100), 10) == ('4.946362032e+4971498726941338543512682882'
|
75 |
+
'9089887365167832438044244613405349992494711208'
|
76 |
+
'95526746555473864642912223')
|
77 |
+
assert NS('2**(1/10**50)', 15) == '1.00000000000000'
|
78 |
+
assert NS('2**(1/10**50)-1', 15) == '6.93147180559945e-51'
|
79 |
+
|
80 |
+
# Evaluation of Rump's ill-conditioned polynomial
|
81 |
+
|
82 |
+
|
83 |
+
def test_evalf_rump():
|
84 |
+
a = 1335*y**6/4 + x**2*(11*x**2*y**2 - y**6 - 121*y**4 - 2) + 11*y**8/2 + x/(2*y)
|
85 |
+
assert NS(a, 15, subs={x: 77617, y: 33096}) == '-0.827396059946821'
|
86 |
+
|
87 |
+
|
88 |
+
def test_evalf_complex():
|
89 |
+
assert NS('2*sqrt(pi)*I', 10) == '3.544907702*I'
|
90 |
+
assert NS('3+3*I', 15) == '3.00000000000000 + 3.00000000000000*I'
|
91 |
+
assert NS('E+pi*I', 15) == '2.71828182845905 + 3.14159265358979*I'
|
92 |
+
assert NS('pi * (3+4*I)', 15) == '9.42477796076938 + 12.5663706143592*I'
|
93 |
+
assert NS('I*(2+I)', 15) == '-1.00000000000000 + 2.00000000000000*I'
|
94 |
+
|
95 |
+
|
96 |
+
@XFAIL
|
97 |
+
def test_evalf_complex_bug():
|
98 |
+
assert NS('(pi+E*I)*(E+pi*I)', 15) in ('0.e-15 + 17.25866050002*I',
|
99 |
+
'0.e-17 + 17.25866050002*I', '-0.e-17 + 17.25866050002*I')
|
100 |
+
|
101 |
+
|
102 |
+
def test_evalf_complex_powers():
|
103 |
+
assert NS('(E+pi*I)**100000000000000000') == \
|
104 |
+
'-3.58896782867793e+61850354284995199 + 4.58581754997159e+61850354284995199*I'
|
105 |
+
# XXX: rewrite if a+a*I simplification introduced in SymPy
|
106 |
+
#assert NS('(pi + pi*I)**2') in ('0.e-15 + 19.7392088021787*I', '0.e-16 + 19.7392088021787*I')
|
107 |
+
assert NS('(pi + pi*I)**2', chop=True) == '19.7392088021787*I'
|
108 |
+
assert NS(
|
109 |
+
'(pi + 1/10**8 + pi*I)**2') == '6.2831853e-8 + 19.7392088650106*I'
|
110 |
+
assert NS('(pi + 1/10**12 + pi*I)**2') == '6.283e-12 + 19.7392088021850*I'
|
111 |
+
assert NS('(pi + pi*I)**4', chop=True) == '-389.636364136010'
|
112 |
+
assert NS(
|
113 |
+
'(pi + 1/10**8 + pi*I)**4') == '-389.636366616512 + 2.4805021e-6*I'
|
114 |
+
assert NS('(pi + 1/10**12 + pi*I)**4') == '-389.636364136258 + 2.481e-10*I'
|
115 |
+
assert NS(
|
116 |
+
'(10000*pi + 10000*pi*I)**4', chop=True) == '-3.89636364136010e+18'
|
117 |
+
|
118 |
+
|
119 |
+
@XFAIL
|
120 |
+
def test_evalf_complex_powers_bug():
|
121 |
+
assert NS('(pi + pi*I)**4') == '-389.63636413601 + 0.e-14*I'
|
122 |
+
|
123 |
+
|
124 |
+
def test_evalf_exponentiation():
|
125 |
+
assert NS(sqrt(-pi)) == '1.77245385090552*I'
|
126 |
+
assert NS(Pow(pi*I, Rational(
|
127 |
+
1, 2), evaluate=False)) == '1.25331413731550 + 1.25331413731550*I'
|
128 |
+
assert NS(pi**I) == '0.413292116101594 + 0.910598499212615*I'
|
129 |
+
assert NS(pi**(E + I/3)) == '20.8438653991931 + 8.36343473930031*I'
|
130 |
+
assert NS((pi + I/3)**(E + I/3)) == '17.2442906093590 + 13.6839376767037*I'
|
131 |
+
assert NS(exp(pi)) == '23.1406926327793'
|
132 |
+
assert NS(exp(pi + E*I)) == '-21.0981542849657 + 9.50576358282422*I'
|
133 |
+
assert NS(pi**pi) == '36.4621596072079'
|
134 |
+
assert NS((-pi)**pi) == '-32.9138577418939 - 15.6897116534332*I'
|
135 |
+
assert NS((-pi)**(-pi)) == '-0.0247567717232697 + 0.0118013091280262*I'
|
136 |
+
|
137 |
+
# An example from Smith, "Multiple Precision Complex Arithmetic and Functions"
|
138 |
+
|
139 |
+
|
140 |
+
def test_evalf_complex_cancellation():
|
141 |
+
A = Rational('63287/100000')
|
142 |
+
B = Rational('52498/100000')
|
143 |
+
C = Rational('69301/100000')
|
144 |
+
D = Rational('83542/100000')
|
145 |
+
F = Rational('2231321613/2500000000')
|
146 |
+
# XXX: the number of returned mantissa digits in the real part could
|
147 |
+
# change with the implementation. What matters is that the returned digits are
|
148 |
+
# correct; those that are showing now are correct.
|
149 |
+
# >>> ((A+B*I)*(C+D*I)).expand()
|
150 |
+
# 64471/10000000000 + 2231321613*I/2500000000
|
151 |
+
# >>> 2231321613*4
|
152 |
+
# 8925286452L
|
153 |
+
assert NS((A + B*I)*(C + D*I), 6) == '6.44710e-6 + 0.892529*I'
|
154 |
+
assert NS((A + B*I)*(C + D*I), 10) == '6.447100000e-6 + 0.8925286452*I'
|
155 |
+
assert NS((A + B*I)*(
|
156 |
+
C + D*I) - F*I, 5) in ('6.4471e-6 + 0.e-14*I', '6.4471e-6 - 0.e-14*I')
|
157 |
+
|
158 |
+
|
159 |
+
def test_evalf_logs():
|
160 |
+
assert NS("log(3+pi*I)", 15) == '1.46877619736226 + 0.808448792630022*I'
|
161 |
+
assert NS("log(pi*I)", 15) == '1.14472988584940 + 1.57079632679490*I'
|
162 |
+
assert NS('log(-1 + 0.00001)', 2) == '-1.0e-5 + 3.1*I'
|
163 |
+
assert NS('log(100, 10, evaluate=False)', 15) == '2.00000000000000'
|
164 |
+
assert NS('-2*I*log(-(-1)**(S(1)/9))', 15) == '-5.58505360638185'
|
165 |
+
|
166 |
+
|
167 |
+
def test_evalf_trig():
|
168 |
+
assert NS('sin(1)', 15) == '0.841470984807897'
|
169 |
+
assert NS('cos(1)', 15) == '0.540302305868140'
|
170 |
+
assert NS('sin(10**-6)', 15) == '9.99999999999833e-7'
|
171 |
+
assert NS('cos(10**-6)', 15) == '0.999999999999500'
|
172 |
+
assert NS('sin(E*10**100)', 15) == '0.409160531722613'
|
173 |
+
# Some input near roots
|
174 |
+
assert NS(sin(exp(pi*sqrt(163))*pi), 15) == '-2.35596641936785e-12'
|
175 |
+
assert NS(sin(pi*10**100 + Rational(7, 10**5), evaluate=False), 15, maxn=120) == \
|
176 |
+
'6.99999999428333e-5'
|
177 |
+
assert NS(sin(Rational(7, 10**5), evaluate=False), 15) == \
|
178 |
+
'6.99999999428333e-5'
|
179 |
+
|
180 |
+
# Check detection of various false identities
|
181 |
+
|
182 |
+
|
183 |
+
def test_evalf_near_integers():
|
184 |
+
# Binet's formula
|
185 |
+
f = lambda n: ((1 + sqrt(5))**n)/(2**n * sqrt(5))
|
186 |
+
assert NS(f(5000) - fibonacci(5000), 10, maxn=1500) == '5.156009964e-1046'
|
187 |
+
# Some near-integer identities from
|
188 |
+
# http://mathworld.wolfram.com/AlmostInteger.html
|
189 |
+
assert NS('sin(2017*2**(1/5))', 15) == '-1.00000000000000'
|
190 |
+
assert NS('sin(2017*2**(1/5))', 20) == '-0.99999999999999997857'
|
191 |
+
assert NS('1+sin(2017*2**(1/5))', 15) == '2.14322287389390e-17'
|
192 |
+
assert NS('45 - 613*E/37 + 35/991', 15) == '6.03764498766326e-11'
|
193 |
+
|
194 |
+
|
195 |
+
def test_evalf_ramanujan():
|
196 |
+
assert NS(exp(pi*sqrt(163)) - 640320**3 - 744, 10) == '-7.499274028e-13'
|
197 |
+
# A related identity
|
198 |
+
A = 262537412640768744*exp(-pi*sqrt(163))
|
199 |
+
B = 196884*exp(-2*pi*sqrt(163))
|
200 |
+
C = 103378831900730205293632*exp(-3*pi*sqrt(163))
|
201 |
+
assert NS(1 - A - B + C, 10) == '1.613679005e-59'
|
202 |
+
|
203 |
+
# Input that for various reasons have failed at some point
|
204 |
+
|
205 |
+
|
206 |
+
def test_evalf_bugs():
|
207 |
+
assert NS(sin(1) + exp(-10**10), 10) == NS(sin(1), 10)
|
208 |
+
assert NS(exp(10**10) + sin(1), 10) == NS(exp(10**10), 10)
|
209 |
+
assert NS('expand_log(log(1+1/10**50))', 20) == '1.0000000000000000000e-50'
|
210 |
+
assert NS('log(10**100,10)', 10) == '100.0000000'
|
211 |
+
assert NS('log(2)', 10) == '0.6931471806'
|
212 |
+
assert NS(
|
213 |
+
'(sin(x)-x)/x**3', 15, subs={x: '1/10**50'}) == '-0.166666666666667'
|
214 |
+
assert NS(sin(1) + Rational(
|
215 |
+
1, 10**100)*I, 15) == '0.841470984807897 + 1.00000000000000e-100*I'
|
216 |
+
assert x.evalf() == x
|
217 |
+
assert NS((1 + I)**2*I, 6) == '-2.00000'
|
218 |
+
d = {n: (
|
219 |
+
-1)**Rational(6, 7), y: (-1)**Rational(4, 7), x: (-1)**Rational(2, 7)}
|
220 |
+
assert NS((x*(1 + y*(1 + n))).subs(d).evalf(), 6) == '0.346011 + 0.433884*I'
|
221 |
+
assert NS(((-I - sqrt(2)*I)**2).evalf()) == '-5.82842712474619'
|
222 |
+
assert NS((1 + I)**2*I, 15) == '-2.00000000000000'
|
223 |
+
# issue 4758 (1/2):
|
224 |
+
assert NS(pi.evalf(69) - pi) == '-4.43863937855894e-71'
|
225 |
+
# issue 4758 (2/2): With the bug present, this still only fails if the
|
226 |
+
# terms are in the order given here. This is not generally the case,
|
227 |
+
# because the order depends on the hashes of the terms.
|
228 |
+
assert NS(20 - 5008329267844*n**25 - 477638700*n**37 - 19*n,
|
229 |
+
subs={n: .01}) == '19.8100000000000'
|
230 |
+
assert NS(((x - 1)*(1 - x)**1000).n()
|
231 |
+
) == '(1.00000000000000 - x)**1000*(x - 1.00000000000000)'
|
232 |
+
assert NS((-x).n()) == '-x'
|
233 |
+
assert NS((-2*x).n()) == '-2.00000000000000*x'
|
234 |
+
assert NS((-2*x*y).n()) == '-2.00000000000000*x*y'
|
235 |
+
assert cos(x).n(subs={x: 1+I}) == cos(x).subs(x, 1+I).n()
|
236 |
+
# issue 6660. Also NaN != mpmath.nan
|
237 |
+
# In this order:
|
238 |
+
# 0*nan, 0/nan, 0*inf, 0/inf
|
239 |
+
# 0+nan, 0-nan, 0+inf, 0-inf
|
240 |
+
# >>> n = Some Number
|
241 |
+
# n*nan, n/nan, n*inf, n/inf
|
242 |
+
# n+nan, n-nan, n+inf, n-inf
|
243 |
+
assert (0*E**(oo)).n() is S.NaN
|
244 |
+
assert (0/E**(oo)).n() is S.Zero
|
245 |
+
|
246 |
+
assert (0+E**(oo)).n() is S.Infinity
|
247 |
+
assert (0-E**(oo)).n() is S.NegativeInfinity
|
248 |
+
|
249 |
+
assert (5*E**(oo)).n() is S.Infinity
|
250 |
+
assert (5/E**(oo)).n() is S.Zero
|
251 |
+
|
252 |
+
assert (5+E**(oo)).n() is S.Infinity
|
253 |
+
assert (5-E**(oo)).n() is S.NegativeInfinity
|
254 |
+
|
255 |
+
#issue 7416
|
256 |
+
assert as_mpmath(0.0, 10, {'chop': True}) == 0
|
257 |
+
|
258 |
+
#issue 5412
|
259 |
+
assert ((oo*I).n() == S.Infinity*I)
|
260 |
+
assert ((oo+oo*I).n() == S.Infinity + S.Infinity*I)
|
261 |
+
|
262 |
+
#issue 11518
|
263 |
+
assert NS(2*x**2.5, 5) == '2.0000*x**2.5000'
|
264 |
+
|
265 |
+
#issue 13076
|
266 |
+
assert NS(Mul(Max(0, y), x, evaluate=False).evalf()) == 'x*Max(0, y)'
|
267 |
+
|
268 |
+
#issue 18516
|
269 |
+
assert NS(log(S(3273390607896141870013189696827599152216642046043064789483291368096133796404674554883270092325904157150886684127560071009217256545885393053328527589376)/36360291795869936842385267079543319118023385026001623040346035832580600191583895484198508262979388783308179702534403855752855931517013066142992430916562025780021771247847643450125342836565813209972590371590152578728008385990139795377610001).evalf(15, chop=True)) == '-oo'
|
270 |
+
|
271 |
+
|
272 |
+
def test_evalf_integer_parts():
|
273 |
+
a = floor(log(8)/log(2) - exp(-1000), evaluate=False)
|
274 |
+
b = floor(log(8)/log(2), evaluate=False)
|
275 |
+
assert a.evalf() == 3.0
|
276 |
+
assert b.evalf() == 3.0
|
277 |
+
# equals, as a fallback, can still fail but it might succeed as here
|
278 |
+
assert ceiling(10*(sin(1)**2 + cos(1)**2)) == 10
|
279 |
+
|
280 |
+
assert int(floor(factorial(50)/E, evaluate=False).evalf(70)) == \
|
281 |
+
int(11188719610782480504630258070757734324011354208865721592720336800)
|
282 |
+
assert int(ceiling(factorial(50)/E, evaluate=False).evalf(70)) == \
|
283 |
+
int(11188719610782480504630258070757734324011354208865721592720336801)
|
284 |
+
assert int(floor(GoldenRatio**999 / sqrt(5) + S.Half)
|
285 |
+
.evalf(1000)) == fibonacci(999)
|
286 |
+
assert int(floor(GoldenRatio**1000 / sqrt(5) + S.Half)
|
287 |
+
.evalf(1000)) == fibonacci(1000)
|
288 |
+
|
289 |
+
assert ceiling(x).evalf(subs={x: 3}) == 3.0
|
290 |
+
assert ceiling(x).evalf(subs={x: 3*I}) == 3.0*I
|
291 |
+
assert ceiling(x).evalf(subs={x: 2 + 3*I}) == 2.0 + 3.0*I
|
292 |
+
assert ceiling(x).evalf(subs={x: 3.}) == 3.0
|
293 |
+
assert ceiling(x).evalf(subs={x: 3.*I}) == 3.0*I
|
294 |
+
assert ceiling(x).evalf(subs={x: 2. + 3*I}) == 2.0 + 3.0*I
|
295 |
+
|
296 |
+
assert float((floor(1.5, evaluate=False)+1/9).evalf()) == 1 + 1/9
|
297 |
+
assert float((floor(0.5, evaluate=False)+20).evalf()) == 20
|
298 |
+
|
299 |
+
# issue 19991
|
300 |
+
n = 1169809367327212570704813632106852886389036911
|
301 |
+
r = 744723773141314414542111064094745678855643068
|
302 |
+
|
303 |
+
assert floor(n / (pi / 2)) == r
|
304 |
+
assert floor(80782 * sqrt(2)) == 114242
|
305 |
+
|
306 |
+
# issue 20076
|
307 |
+
assert 260515 - floor(260515/pi + 1/2) * pi == atan(tan(260515))
|
308 |
+
|
309 |
+
|
310 |
+
def test_evalf_trig_zero_detection():
|
311 |
+
a = sin(160*pi, evaluate=False)
|
312 |
+
t = a.evalf(maxn=100)
|
313 |
+
assert abs(t) < 1e-100
|
314 |
+
assert t._prec < 2
|
315 |
+
assert a.evalf(chop=True) == 0
|
316 |
+
raises(PrecisionExhausted, lambda: a.evalf(strict=True))
|
317 |
+
|
318 |
+
|
319 |
+
def test_evalf_sum():
|
320 |
+
assert Sum(n,(n,1,2)).evalf() == 3.
|
321 |
+
assert Sum(n,(n,1,2)).doit().evalf() == 3.
|
322 |
+
# the next test should return instantly
|
323 |
+
assert Sum(1/n,(n,1,2)).evalf() == 1.5
|
324 |
+
|
325 |
+
# issue 8219
|
326 |
+
assert Sum(E/factorial(n), (n, 0, oo)).evalf() == (E*E).evalf()
|
327 |
+
# issue 8254
|
328 |
+
assert Sum(2**n*n/factorial(n), (n, 0, oo)).evalf() == (2*E*E).evalf()
|
329 |
+
# issue 8411
|
330 |
+
s = Sum(1/x**2, (x, 100, oo))
|
331 |
+
assert s.n() == s.doit().n()
|
332 |
+
|
333 |
+
|
334 |
+
def test_evalf_divergent_series():
|
335 |
+
raises(ValueError, lambda: Sum(1/n, (n, 1, oo)).evalf())
|
336 |
+
raises(ValueError, lambda: Sum(n/(n**2 + 1), (n, 1, oo)).evalf())
|
337 |
+
raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf())
|
338 |
+
raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf())
|
339 |
+
raises(ValueError, lambda: Sum(n**2, (n, 1, oo)).evalf())
|
340 |
+
raises(ValueError, lambda: Sum(2**n, (n, 1, oo)).evalf())
|
341 |
+
raises(ValueError, lambda: Sum((-2)**n, (n, 1, oo)).evalf())
|
342 |
+
raises(ValueError, lambda: Sum((2*n + 3)/(3*n**2 + 4), (n, 0, oo)).evalf())
|
343 |
+
raises(ValueError, lambda: Sum((0.5*n**3)/(n**4 + 1), (n, 0, oo)).evalf())
|
344 |
+
|
345 |
+
|
346 |
+
def test_evalf_product():
|
347 |
+
assert Product(n, (n, 1, 10)).evalf() == 3628800.
|
348 |
+
assert comp(Product(1 - S.Half**2/n**2, (n, 1, oo)).n(5), 0.63662)
|
349 |
+
assert Product(n, (n, -1, 3)).evalf() == 0
|
350 |
+
|
351 |
+
|
352 |
+
def test_evalf_py_methods():
|
353 |
+
assert abs(float(pi + 1) - 4.1415926535897932) < 1e-10
|
354 |
+
assert abs(complex(pi + 1) - 4.1415926535897932) < 1e-10
|
355 |
+
assert abs(
|
356 |
+
complex(pi + E*I) - (3.1415926535897931 + 2.7182818284590451j)) < 1e-10
|
357 |
+
raises(TypeError, lambda: float(pi + x))
|
358 |
+
|
359 |
+
|
360 |
+
def test_evalf_power_subs_bugs():
|
361 |
+
assert (x**2).evalf(subs={x: 0}) == 0
|
362 |
+
assert sqrt(x).evalf(subs={x: 0}) == 0
|
363 |
+
assert (x**Rational(2, 3)).evalf(subs={x: 0}) == 0
|
364 |
+
assert (x**x).evalf(subs={x: 0}) == 1.0
|
365 |
+
assert (3**x).evalf(subs={x: 0}) == 1.0
|
366 |
+
assert exp(x).evalf(subs={x: 0}) == 1.0
|
367 |
+
assert ((2 + I)**x).evalf(subs={x: 0}) == 1.0
|
368 |
+
assert (0**x).evalf(subs={x: 0}) == 1.0
|
369 |
+
|
370 |
+
|
371 |
+
def test_evalf_arguments():
|
372 |
+
raises(TypeError, lambda: pi.evalf(method="garbage"))
|
373 |
+
|
374 |
+
|
375 |
+
def test_implemented_function_evalf():
|
376 |
+
from sympy.utilities.lambdify import implemented_function
|
377 |
+
f = Function('f')
|
378 |
+
f = implemented_function(f, lambda x: x + 1)
|
379 |
+
assert str(f(x)) == "f(x)"
|
380 |
+
assert str(f(2)) == "f(2)"
|
381 |
+
assert f(2).evalf() == 3.0
|
382 |
+
assert f(x).evalf() == f(x)
|
383 |
+
f = implemented_function(Function('sin'), lambda x: x + 1)
|
384 |
+
assert f(2).evalf() != sin(2)
|
385 |
+
del f._imp_ # XXX: due to caching _imp_ would influence all other tests
|
386 |
+
|
387 |
+
|
388 |
+
def test_evaluate_false():
|
389 |
+
for no in [0, False]:
|
390 |
+
assert Add(3, 2, evaluate=no).is_Add
|
391 |
+
assert Mul(3, 2, evaluate=no).is_Mul
|
392 |
+
assert Pow(3, 2, evaluate=no).is_Pow
|
393 |
+
assert Pow(y, 2, evaluate=True) - Pow(y, 2, evaluate=True) == 0
|
394 |
+
|
395 |
+
|
396 |
+
def test_evalf_relational():
|
397 |
+
assert Eq(x/5, y/10).evalf() == Eq(0.2*x, 0.1*y)
|
398 |
+
# if this first assertion fails it should be replaced with
|
399 |
+
# one that doesn't
|
400 |
+
assert unchanged(Eq, (3 - I)**2/2 + I, 0)
|
401 |
+
assert Eq((3 - I)**2/2 + I, 0).n() is S.false
|
402 |
+
assert nfloat(Eq((3 - I)**2 + I, 0)) == S.false
|
403 |
+
|
404 |
+
|
405 |
+
def test_issue_5486():
|
406 |
+
assert not cos(sqrt(0.5 + I)).n().is_Function
|
407 |
+
|
408 |
+
|
409 |
+
def test_issue_5486_bug():
|
410 |
+
from sympy.core.expr import Expr
|
411 |
+
from sympy.core.numbers import I
|
412 |
+
assert abs(Expr._from_mpmath(I._to_mpmath(15), 15) - I) < 1.0e-15
|
413 |
+
|
414 |
+
|
415 |
+
def test_bugs():
|
416 |
+
from sympy.functions.elementary.complexes import (polar_lift, re)
|
417 |
+
|
418 |
+
assert abs(re((1 + I)**2)) < 1e-15
|
419 |
+
|
420 |
+
# anything that evalf's to 0 will do in place of polar_lift
|
421 |
+
assert abs(polar_lift(0)).n() == 0
|
422 |
+
|
423 |
+
|
424 |
+
def test_subs():
|
425 |
+
assert NS('besseli(-x, y) - besseli(x, y)', subs={x: 3.5, y: 20.0}) == \
|
426 |
+
'-4.92535585957223e-10'
|
427 |
+
assert NS('Piecewise((x, x>0)) + Piecewise((1-x, x>0))', subs={x: 0.1}) == \
|
428 |
+
'1.00000000000000'
|
429 |
+
raises(TypeError, lambda: x.evalf(subs=(x, 1)))
|
430 |
+
|
431 |
+
|
432 |
+
def test_issue_4956_5204():
|
433 |
+
# issue 4956
|
434 |
+
v = S('''(-27*12**(1/3)*sqrt(31)*I +
|
435 |
+
27*2**(2/3)*3**(1/3)*sqrt(31)*I)/(-2511*2**(2/3)*3**(1/3) +
|
436 |
+
(29*18**(1/3) + 9*2**(1/3)*3**(2/3)*sqrt(31)*I +
|
437 |
+
87*2**(1/3)*3**(1/6)*I)**2)''')
|
438 |
+
assert NS(v, 1) == '0.e-118 - 0.e-118*I'
|
439 |
+
|
440 |
+
# issue 5204
|
441 |
+
v = S('''-(357587765856 + 18873261792*249**(1/2) + 56619785376*I*83**(1/2) +
|
442 |
+
108755765856*I*3**(1/2) + 41281887168*6**(1/3)*(1422 +
|
443 |
+
54*249**(1/2))**(1/3) - 1239810624*6**(1/3)*249**(1/2)*(1422 +
|
444 |
+
54*249**(1/2))**(1/3) - 3110400000*I*6**(1/3)*83**(1/2)*(1422 +
|
445 |
+
54*249**(1/2))**(1/3) + 13478400000*I*3**(1/2)*6**(1/3)*(1422 +
|
446 |
+
54*249**(1/2))**(1/3) + 1274950152*6**(2/3)*(1422 +
|
447 |
+
54*249**(1/2))**(2/3) + 32347944*6**(2/3)*249**(1/2)*(1422 +
|
448 |
+
54*249**(1/2))**(2/3) - 1758790152*I*3**(1/2)*6**(2/3)*(1422 +
|
449 |
+
54*249**(1/2))**(2/3) - 304403832*I*6**(2/3)*83**(1/2)*(1422 +
|
450 |
+
4*249**(1/2))**(2/3))/(175732658352 + (1106028 + 25596*249**(1/2) +
|
451 |
+
76788*I*83**(1/2))**2)''')
|
452 |
+
assert NS(v, 5) == '0.077284 + 1.1104*I'
|
453 |
+
assert NS(v, 1) == '0.08 + 1.*I'
|
454 |
+
|
455 |
+
|
456 |
+
def test_old_docstring():
|
457 |
+
a = (E + pi*I)*(E - pi*I)
|
458 |
+
assert NS(a) == '17.2586605000200'
|
459 |
+
assert a.n() == 17.25866050002001
|
460 |
+
|
461 |
+
|
462 |
+
def test_issue_4806():
|
463 |
+
assert integrate(atan(x)**2, (x, -1, 1)).evalf().round(1) == Float(0.5, 1)
|
464 |
+
assert atan(0, evaluate=False).n() == 0
|
465 |
+
|
466 |
+
|
467 |
+
def test_evalf_mul():
|
468 |
+
# SymPy should not try to expand this; it should be handled term-wise
|
469 |
+
# in evalf through mpmath
|
470 |
+
assert NS(product(1 + sqrt(n)*I, (n, 1, 500)), 1) == '5.e+567 + 2.e+568*I'
|
471 |
+
|
472 |
+
|
473 |
+
def test_scaled_zero():
|
474 |
+
a, b = (([0], 1, 100, 1), -1)
|
475 |
+
assert scaled_zero(100) == (a, b)
|
476 |
+
assert scaled_zero(a) == (0, 1, 100, 1)
|
477 |
+
a, b = (([1], 1, 100, 1), -1)
|
478 |
+
assert scaled_zero(100, -1) == (a, b)
|
479 |
+
assert scaled_zero(a) == (1, 1, 100, 1)
|
480 |
+
raises(ValueError, lambda: scaled_zero(scaled_zero(100)))
|
481 |
+
raises(ValueError, lambda: scaled_zero(100, 2))
|
482 |
+
raises(ValueError, lambda: scaled_zero(100, 0))
|
483 |
+
raises(ValueError, lambda: scaled_zero((1, 5, 1, 3)))
|
484 |
+
|
485 |
+
|
486 |
+
def test_chop_value():
|
487 |
+
for i in range(-27, 28):
|
488 |
+
assert (Pow(10, i)*2).n(chop=10**i) and not (Pow(10, i)).n(chop=10**i)
|
489 |
+
|
490 |
+
|
491 |
+
def test_infinities():
|
492 |
+
assert oo.evalf(chop=True) == inf
|
493 |
+
assert (-oo).evalf(chop=True) == ninf
|
494 |
+
|
495 |
+
|
496 |
+
def test_to_mpmath():
|
497 |
+
assert sqrt(3)._to_mpmath(20)._mpf_ == (0, int(908093), -19, 20)
|
498 |
+
assert S(3.2)._to_mpmath(20)._mpf_ == (0, int(838861), -18, 20)
|
499 |
+
|
500 |
+
|
501 |
+
def test_issue_6632_evalf():
|
502 |
+
add = (-100000*sqrt(2500000001) + 5000000001)
|
503 |
+
assert add.n() == 9.999999998e-11
|
504 |
+
assert (add*add).n() == 9.999999996e-21
|
505 |
+
|
506 |
+
|
507 |
+
def test_issue_4945():
|
508 |
+
from sympy.abc import H
|
509 |
+
assert (H/0).evalf(subs={H:1}) == zoo
|
510 |
+
|
511 |
+
|
512 |
+
def test_evalf_integral():
|
513 |
+
# test that workprec has to increase in order to get a result other than 0
|
514 |
+
eps = Rational(1, 1000000)
|
515 |
+
assert Integral(sin(x), (x, -pi, pi + eps)).n(2)._prec == 10
|
516 |
+
|
517 |
+
|
518 |
+
def test_issue_8821_highprec_from_str():
|
519 |
+
s = str(pi.evalf(128))
|
520 |
+
p = N(s)
|
521 |
+
assert Abs(sin(p)) < 1e-15
|
522 |
+
p = N(s, 64)
|
523 |
+
assert Abs(sin(p)) < 1e-64
|
524 |
+
|
525 |
+
|
526 |
+
def test_issue_8853():
|
527 |
+
p = Symbol('x', even=True, positive=True)
|
528 |
+
assert floor(-p - S.Half).is_even == False
|
529 |
+
assert floor(-p + S.Half).is_even == True
|
530 |
+
assert ceiling(p - S.Half).is_even == True
|
531 |
+
assert ceiling(p + S.Half).is_even == False
|
532 |
+
|
533 |
+
assert get_integer_part(S.Half, -1, {}, True) == (0, 0)
|
534 |
+
assert get_integer_part(S.Half, 1, {}, True) == (1, 0)
|
535 |
+
assert get_integer_part(Rational(-1, 2), -1, {}, True) == (-1, 0)
|
536 |
+
assert get_integer_part(Rational(-1, 2), 1, {}, True) == (0, 0)
|
537 |
+
|
538 |
+
|
539 |
+
def test_issue_17681():
|
540 |
+
class identity_func(Function):
|
541 |
+
|
542 |
+
def _eval_evalf(self, *args, **kwargs):
|
543 |
+
return self.args[0].evalf(*args, **kwargs)
|
544 |
+
|
545 |
+
assert floor(identity_func(S(0))) == 0
|
546 |
+
assert get_integer_part(S(0), 1, {}, True) == (0, 0)
|
547 |
+
|
548 |
+
|
549 |
+
def test_issue_9326():
|
550 |
+
from sympy.core.symbol import Dummy
|
551 |
+
d1 = Dummy('d')
|
552 |
+
d2 = Dummy('d')
|
553 |
+
e = d1 + d2
|
554 |
+
assert e.evalf(subs = {d1: 1, d2: 2}) == 3.0
|
555 |
+
|
556 |
+
|
557 |
+
def test_issue_10323():
|
558 |
+
assert ceiling(sqrt(2**30 + 1)) == 2**15 + 1
|
559 |
+
|
560 |
+
|
561 |
+
def test_AssocOp_Function():
|
562 |
+
# the first arg of Min is not comparable in the imaginary part
|
563 |
+
raises(ValueError, lambda: S('''
|
564 |
+
Min(-sqrt(3)*cos(pi/18)/6 + re(1/((-1/2 - sqrt(3)*I/2)*(1/6 +
|
565 |
+
sqrt(3)*I/18)**(1/3)))/3 + sin(pi/18)/2 + 2 + I*(-cos(pi/18)/2 -
|
566 |
+
sqrt(3)*sin(pi/18)/6 + im(1/((-1/2 - sqrt(3)*I/2)*(1/6 +
|
567 |
+
sqrt(3)*I/18)**(1/3)))/3), re(1/((-1/2 + sqrt(3)*I/2)*(1/6 +
|
568 |
+
sqrt(3)*I/18)**(1/3)))/3 - sqrt(3)*cos(pi/18)/6 - sin(pi/18)/2 + 2 +
|
569 |
+
I*(im(1/((-1/2 + sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 -
|
570 |
+
sqrt(3)*sin(pi/18)/6 + cos(pi/18)/2))'''))
|
571 |
+
# if that is changed so a non-comparable number remains as
|
572 |
+
# an arg, then the Min/Max instantiation needs to be changed
|
573 |
+
# to watch out for non-comparable args when making simplifications
|
574 |
+
# and the following test should be added instead (with e being
|
575 |
+
# the sympified expression above):
|
576 |
+
# raises(ValueError, lambda: e._eval_evalf(2))
|
577 |
+
|
578 |
+
|
579 |
+
def test_issue_10395():
|
580 |
+
eq = x*Max(0, y)
|
581 |
+
assert nfloat(eq) == eq
|
582 |
+
eq = x*Max(y, -1.1)
|
583 |
+
assert nfloat(eq) == eq
|
584 |
+
assert Max(y, 4).n() == Max(4.0, y)
|
585 |
+
|
586 |
+
|
587 |
+
def test_issue_13098():
|
588 |
+
assert floor(log(S('9.'+'9'*20), 10)) == 0
|
589 |
+
assert ceiling(log(S('9.'+'9'*20), 10)) == 1
|
590 |
+
assert floor(log(20 - S('9.'+'9'*20), 10)) == 1
|
591 |
+
assert ceiling(log(20 - S('9.'+'9'*20), 10)) == 2
|
592 |
+
|
593 |
+
|
594 |
+
def test_issue_14601():
|
595 |
+
e = 5*x*y/2 - y*(35*(x**3)/2 - 15*x/2)
|
596 |
+
subst = {x:0.0, y:0.0}
|
597 |
+
e2 = e.evalf(subs=subst)
|
598 |
+
assert float(e2) == 0.0
|
599 |
+
assert float((x + x*(x**2 + x)).evalf(subs={x: 0.0})) == 0.0
|
600 |
+
|
601 |
+
|
602 |
+
def test_issue_11151():
|
603 |
+
z = S.Zero
|
604 |
+
e = Sum(z, (x, 1, 2))
|
605 |
+
assert e != z # it shouldn't evaluate
|
606 |
+
# when it does evaluate, this is what it should give
|
607 |
+
assert evalf(e, 15, {}) == \
|
608 |
+
evalf(z, 15, {}) == (None, None, 15, None)
|
609 |
+
# so this shouldn't fail
|
610 |
+
assert (e/2).n() == 0
|
611 |
+
# this was where the issue appeared
|
612 |
+
expr0 = Sum(x**2 + x, (x, 1, 2))
|
613 |
+
expr1 = Sum(0, (x, 1, 2))
|
614 |
+
expr2 = expr1/expr0
|
615 |
+
assert simplify(factor(expr2) - expr2) == 0
|
616 |
+
|
617 |
+
|
618 |
+
def test_issue_13425():
|
619 |
+
assert N('2**.5', 30) == N('sqrt(2)', 30)
|
620 |
+
assert N('x - x', 30) == 0
|
621 |
+
assert abs((N('pi*.1', 22)*10 - pi).n()) < 1e-22
|
622 |
+
|
623 |
+
|
624 |
+
def test_issue_17421():
|
625 |
+
assert N(acos(-I + acosh(cosh(cosh(1) + I)))) == 1.0*I
|
626 |
+
|
627 |
+
|
628 |
+
def test_issue_20291():
|
629 |
+
from sympy.sets import EmptySet, Reals
|
630 |
+
from sympy.sets.sets import (Complement, FiniteSet, Intersection)
|
631 |
+
a = Symbol('a')
|
632 |
+
b = Symbol('b')
|
633 |
+
A = FiniteSet(a, b)
|
634 |
+
assert A.evalf(subs={a: 1, b: 2}) == FiniteSet(1.0, 2.0)
|
635 |
+
B = FiniteSet(a-b, 1)
|
636 |
+
assert B.evalf(subs={a: 1, b: 2}) == FiniteSet(-1.0, 1.0)
|
637 |
+
|
638 |
+
sol = Complement(Intersection(FiniteSet(-b/2 - sqrt(b**2-4*pi)/2), Reals), FiniteSet(0))
|
639 |
+
assert sol.evalf(subs={b: 1}) == EmptySet
|
640 |
+
|
641 |
+
|
642 |
+
def test_evalf_with_zoo():
|
643 |
+
assert (1/x).evalf(subs={x: 0}) == zoo # issue 8242
|
644 |
+
assert (-1/x).evalf(subs={x: 0}) == zoo # PR 16150
|
645 |
+
assert (0 ** x).evalf(subs={x: -1}) == zoo # PR 16150
|
646 |
+
assert (0 ** x).evalf(subs={x: -1 + I}) == nan
|
647 |
+
assert Mul(2, Pow(0, -1, evaluate=False), evaluate=False).evalf() == zoo # issue 21147
|
648 |
+
assert Mul(x, 1/x, evaluate=False).evalf(subs={x: 0}) == Mul(x, 1/x, evaluate=False).subs(x, 0) == nan
|
649 |
+
assert Mul(1/x, 1/x, evaluate=False).evalf(subs={x: 0}) == zoo
|
650 |
+
assert Mul(1/x, Abs(1/x), evaluate=False).evalf(subs={x: 0}) == zoo
|
651 |
+
assert Abs(zoo, evaluate=False).evalf() == oo
|
652 |
+
assert re(zoo, evaluate=False).evalf() == nan
|
653 |
+
assert im(zoo, evaluate=False).evalf() == nan
|
654 |
+
assert Add(zoo, zoo, evaluate=False).evalf() == nan
|
655 |
+
assert Add(oo, zoo, evaluate=False).evalf() == nan
|
656 |
+
assert Pow(zoo, -1, evaluate=False).evalf() == 0
|
657 |
+
assert Pow(zoo, Rational(-1, 3), evaluate=False).evalf() == 0
|
658 |
+
assert Pow(zoo, Rational(1, 3), evaluate=False).evalf() == zoo
|
659 |
+
assert Pow(zoo, S.Half, evaluate=False).evalf() == zoo
|
660 |
+
assert Pow(zoo, 2, evaluate=False).evalf() == zoo
|
661 |
+
assert Pow(0, zoo, evaluate=False).evalf() == nan
|
662 |
+
assert log(zoo, evaluate=False).evalf() == zoo
|
663 |
+
assert zoo.evalf(chop=True) == zoo
|
664 |
+
assert x.evalf(subs={x: zoo}) == zoo
|
665 |
+
|
666 |
+
|
667 |
+
def test_evalf_with_bounded_error():
|
668 |
+
cases = [
|
669 |
+
# zero
|
670 |
+
(Rational(0), None, 1),
|
671 |
+
# zero im part
|
672 |
+
(pi, None, 10),
|
673 |
+
# zero real part
|
674 |
+
(pi*I, None, 10),
|
675 |
+
# re and im nonzero
|
676 |
+
(2-3*I, None, 5),
|
677 |
+
# similar tests again, but using eps instead of m
|
678 |
+
(Rational(0), Rational(1, 2), None),
|
679 |
+
(pi, Rational(1, 1000), None),
|
680 |
+
(pi * I, Rational(1, 1000), None),
|
681 |
+
(2 - 3 * I, Rational(1, 1000), None),
|
682 |
+
# very large eps
|
683 |
+
(2 - 3 * I, Rational(1000), None),
|
684 |
+
# case where x already small, hence some cancellation in p = m + n - 1
|
685 |
+
(Rational(1234, 10**8), Rational(1, 10**12), None),
|
686 |
+
]
|
687 |
+
for x0, eps, m in cases:
|
688 |
+
a, b, _, _ = evalf(x0, 53, {})
|
689 |
+
c, d, _, _ = _evalf_with_bounded_error(x0, eps, m)
|
690 |
+
if eps is None:
|
691 |
+
eps = 2**(-m)
|
692 |
+
z = make_mpc((a or fzero, b or fzero))
|
693 |
+
w = make_mpc((c or fzero, d or fzero))
|
694 |
+
assert abs(w - z) < eps
|
695 |
+
|
696 |
+
# eps must be positive
|
697 |
+
raises(ValueError, lambda: _evalf_with_bounded_error(pi, Rational(0)))
|
698 |
+
raises(ValueError, lambda: _evalf_with_bounded_error(pi, -pi))
|
699 |
+
raises(ValueError, lambda: _evalf_with_bounded_error(pi, I))
|
700 |
+
|
701 |
+
|
702 |
+
def test_issue_22849():
|
703 |
+
a = -8 + 3 * sqrt(3)
|
704 |
+
x = AlgebraicNumber(a)
|
705 |
+
assert evalf(a, 1, {}) == evalf(x, 1, {})
|
706 |
+
|
707 |
+
|
708 |
+
def test_evalf_real_alg_num():
|
709 |
+
# This test demonstrates why the entry for `AlgebraicNumber` in
|
710 |
+
# `sympy.core.evalf._create_evalf_table()` has to use `x.to_root()`,
|
711 |
+
# instead of `x.as_expr()`. If the latter is used, then `z` will be
|
712 |
+
# a complex number with `0.e-20` for imaginary part, even though `a5`
|
713 |
+
# is a real number.
|
714 |
+
zeta = Symbol('zeta')
|
715 |
+
a5 = AlgebraicNumber(CRootOf(cyclotomic_poly(5), -1), [-1, -1, 0, 0], alias=zeta)
|
716 |
+
z = a5.evalf()
|
717 |
+
assert isinstance(z, Float)
|
718 |
+
assert not hasattr(z, '_mpc_')
|
719 |
+
assert hasattr(z, '_mpf_')
|
720 |
+
|
721 |
+
|
722 |
+
def test_issue_20733():
|
723 |
+
expr = 1/((x - 9)*(x - 8)*(x - 7)*(x - 4)**2*(x - 3)**3*(x - 2))
|
724 |
+
assert str(expr.evalf(1, subs={x:1})) == '-4.e-5'
|
725 |
+
assert str(expr.evalf(2, subs={x:1})) == '-4.1e-5'
|
726 |
+
assert str(expr.evalf(11, subs={x:1})) == '-4.1335978836e-5'
|
727 |
+
assert str(expr.evalf(20, subs={x:1})) == '-0.000041335978835978835979'
|
728 |
+
|
729 |
+
expr = Mul(*((x - i) for i in range(2, 1000)))
|
730 |
+
assert srepr(expr.evalf(2, subs={x: 1})) == "Float('4.0271e+2561', precision=10)"
|
731 |
+
assert srepr(expr.evalf(10, subs={x: 1})) == "Float('4.02790050126e+2561', precision=37)"
|
732 |
+
assert srepr(expr.evalf(53, subs={x: 1})) == "Float('4.0279005012722099453824067459760158730668154575647110393e+2561', precision=179)"
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_expr.py
ADDED
@@ -0,0 +1,2261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.assumptions.refine import refine
|
2 |
+
from sympy.concrete.summations import Sum
|
3 |
+
from sympy.core.add import Add
|
4 |
+
from sympy.core.basic import Basic
|
5 |
+
from sympy.core.containers import Tuple
|
6 |
+
from sympy.core.expr import (ExprBuilder, unchanged, Expr,
|
7 |
+
UnevaluatedExpr)
|
8 |
+
from sympy.core.function import (Function, expand, WildFunction,
|
9 |
+
AppliedUndef, Derivative, diff, Subs)
|
10 |
+
from sympy.core.mul import Mul
|
11 |
+
from sympy.core.numbers import (NumberSymbol, E, zoo, oo, Float, I,
|
12 |
+
Rational, nan, Integer, Number, pi, _illegal)
|
13 |
+
from sympy.core.power import Pow
|
14 |
+
from sympy.core.relational import Ge, Lt, Gt, Le
|
15 |
+
from sympy.core.singleton import S
|
16 |
+
from sympy.core.sorting import default_sort_key
|
17 |
+
from sympy.core.symbol import Symbol, symbols, Dummy, Wild
|
18 |
+
from sympy.core.sympify import sympify
|
19 |
+
from sympy.functions.combinatorial.factorials import factorial
|
20 |
+
from sympy.functions.elementary.exponential import exp_polar, exp, log
|
21 |
+
from sympy.functions.elementary.miscellaneous import sqrt, Max
|
22 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
23 |
+
from sympy.functions.elementary.trigonometric import tan, sin, cos
|
24 |
+
from sympy.functions.special.delta_functions import (Heaviside,
|
25 |
+
DiracDelta)
|
26 |
+
from sympy.functions.special.error_functions import Si
|
27 |
+
from sympy.functions.special.gamma_functions import gamma
|
28 |
+
from sympy.integrals.integrals import integrate, Integral
|
29 |
+
from sympy.physics.secondquant import FockState
|
30 |
+
from sympy.polys.partfrac import apart
|
31 |
+
from sympy.polys.polytools import factor, cancel, Poly
|
32 |
+
from sympy.polys.rationaltools import together
|
33 |
+
from sympy.series.order import O
|
34 |
+
from sympy.sets.sets import FiniteSet
|
35 |
+
from sympy.simplify.combsimp import combsimp
|
36 |
+
from sympy.simplify.gammasimp import gammasimp
|
37 |
+
from sympy.simplify.powsimp import powsimp
|
38 |
+
from sympy.simplify.radsimp import collect, radsimp
|
39 |
+
from sympy.simplify.ratsimp import ratsimp
|
40 |
+
from sympy.simplify.simplify import simplify, nsimplify
|
41 |
+
from sympy.simplify.trigsimp import trigsimp
|
42 |
+
from sympy.tensor.indexed import Indexed
|
43 |
+
from sympy.physics.units import meter
|
44 |
+
|
45 |
+
from sympy.testing.pytest import raises, XFAIL
|
46 |
+
|
47 |
+
from sympy.abc import a, b, c, n, t, u, x, y, z
|
48 |
+
|
49 |
+
|
50 |
+
f, g, h = symbols('f,g,h', cls=Function)
|
51 |
+
|
52 |
+
|
53 |
+
class DummyNumber:
|
54 |
+
"""
|
55 |
+
Minimal implementation of a number that works with SymPy.
|
56 |
+
|
57 |
+
If one has a Number class (e.g. Sage Integer, or some other custom class)
|
58 |
+
that one wants to work well with SymPy, one has to implement at least the
|
59 |
+
methods of this class DummyNumber, resp. its subclasses I5 and F1_1.
|
60 |
+
|
61 |
+
Basically, one just needs to implement either __int__() or __float__() and
|
62 |
+
then one needs to make sure that the class works with Python integers and
|
63 |
+
with itself.
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __radd__(self, a):
|
67 |
+
if isinstance(a, (int, float)):
|
68 |
+
return a + self.number
|
69 |
+
return NotImplemented
|
70 |
+
|
71 |
+
def __add__(self, a):
|
72 |
+
if isinstance(a, (int, float, DummyNumber)):
|
73 |
+
return self.number + a
|
74 |
+
return NotImplemented
|
75 |
+
|
76 |
+
def __rsub__(self, a):
|
77 |
+
if isinstance(a, (int, float)):
|
78 |
+
return a - self.number
|
79 |
+
return NotImplemented
|
80 |
+
|
81 |
+
def __sub__(self, a):
|
82 |
+
if isinstance(a, (int, float, DummyNumber)):
|
83 |
+
return self.number - a
|
84 |
+
return NotImplemented
|
85 |
+
|
86 |
+
def __rmul__(self, a):
|
87 |
+
if isinstance(a, (int, float)):
|
88 |
+
return a * self.number
|
89 |
+
return NotImplemented
|
90 |
+
|
91 |
+
def __mul__(self, a):
|
92 |
+
if isinstance(a, (int, float, DummyNumber)):
|
93 |
+
return self.number * a
|
94 |
+
return NotImplemented
|
95 |
+
|
96 |
+
def __rtruediv__(self, a):
|
97 |
+
if isinstance(a, (int, float)):
|
98 |
+
return a / self.number
|
99 |
+
return NotImplemented
|
100 |
+
|
101 |
+
def __truediv__(self, a):
|
102 |
+
if isinstance(a, (int, float, DummyNumber)):
|
103 |
+
return self.number / a
|
104 |
+
return NotImplemented
|
105 |
+
|
106 |
+
def __rpow__(self, a):
|
107 |
+
if isinstance(a, (int, float)):
|
108 |
+
return a ** self.number
|
109 |
+
return NotImplemented
|
110 |
+
|
111 |
+
def __pow__(self, a):
|
112 |
+
if isinstance(a, (int, float, DummyNumber)):
|
113 |
+
return self.number ** a
|
114 |
+
return NotImplemented
|
115 |
+
|
116 |
+
def __pos__(self):
|
117 |
+
return self.number
|
118 |
+
|
119 |
+
def __neg__(self):
|
120 |
+
return - self.number
|
121 |
+
|
122 |
+
|
123 |
+
class I5(DummyNumber):
|
124 |
+
number = 5
|
125 |
+
|
126 |
+
def __int__(self):
|
127 |
+
return self.number
|
128 |
+
|
129 |
+
|
130 |
+
class F1_1(DummyNumber):
|
131 |
+
number = 1.1
|
132 |
+
|
133 |
+
def __float__(self):
|
134 |
+
return self.number
|
135 |
+
|
136 |
+
i5 = I5()
|
137 |
+
f1_1 = F1_1()
|
138 |
+
|
139 |
+
# basic SymPy objects
|
140 |
+
basic_objs = [
|
141 |
+
Rational(2),
|
142 |
+
Float("1.3"),
|
143 |
+
x,
|
144 |
+
y,
|
145 |
+
pow(x, y)*y,
|
146 |
+
]
|
147 |
+
|
148 |
+
# all supported objects
|
149 |
+
all_objs = basic_objs + [
|
150 |
+
5,
|
151 |
+
5.5,
|
152 |
+
i5,
|
153 |
+
f1_1
|
154 |
+
]
|
155 |
+
|
156 |
+
|
157 |
+
def dotest(s):
|
158 |
+
for xo in all_objs:
|
159 |
+
for yo in all_objs:
|
160 |
+
s(xo, yo)
|
161 |
+
return True
|
162 |
+
|
163 |
+
|
164 |
+
def test_basic():
|
165 |
+
def j(a, b):
|
166 |
+
x = a
|
167 |
+
x = +a
|
168 |
+
x = -a
|
169 |
+
x = a + b
|
170 |
+
x = a - b
|
171 |
+
x = a*b
|
172 |
+
x = a/b
|
173 |
+
x = a**b
|
174 |
+
del x
|
175 |
+
assert dotest(j)
|
176 |
+
|
177 |
+
|
178 |
+
def test_ibasic():
|
179 |
+
def s(a, b):
|
180 |
+
x = a
|
181 |
+
x += b
|
182 |
+
x = a
|
183 |
+
x -= b
|
184 |
+
x = a
|
185 |
+
x *= b
|
186 |
+
x = a
|
187 |
+
x /= b
|
188 |
+
assert dotest(s)
|
189 |
+
|
190 |
+
|
191 |
+
class NonBasic:
|
192 |
+
'''This class represents an object that knows how to implement binary
|
193 |
+
operations like +, -, etc with Expr but is not a subclass of Basic itself.
|
194 |
+
The NonExpr subclass below does subclass Basic but not Expr.
|
195 |
+
|
196 |
+
For both NonBasic and NonExpr it should be possible for them to override
|
197 |
+
Expr.__add__ etc because Expr.__add__ should be returning NotImplemented
|
198 |
+
for non Expr classes. Otherwise Expr.__add__ would create meaningless
|
199 |
+
objects like Add(Integer(1), FiniteSet(2)) and it wouldn't be possible for
|
200 |
+
other classes to override these operations when interacting with Expr.
|
201 |
+
'''
|
202 |
+
def __add__(self, other):
|
203 |
+
return SpecialOp('+', self, other)
|
204 |
+
|
205 |
+
def __radd__(self, other):
|
206 |
+
return SpecialOp('+', other, self)
|
207 |
+
|
208 |
+
def __sub__(self, other):
|
209 |
+
return SpecialOp('-', self, other)
|
210 |
+
|
211 |
+
def __rsub__(self, other):
|
212 |
+
return SpecialOp('-', other, self)
|
213 |
+
|
214 |
+
def __mul__(self, other):
|
215 |
+
return SpecialOp('*', self, other)
|
216 |
+
|
217 |
+
def __rmul__(self, other):
|
218 |
+
return SpecialOp('*', other, self)
|
219 |
+
|
220 |
+
def __truediv__(self, other):
|
221 |
+
return SpecialOp('/', self, other)
|
222 |
+
|
223 |
+
def __rtruediv__(self, other):
|
224 |
+
return SpecialOp('/', other, self)
|
225 |
+
|
226 |
+
def __floordiv__(self, other):
|
227 |
+
return SpecialOp('//', self, other)
|
228 |
+
|
229 |
+
def __rfloordiv__(self, other):
|
230 |
+
return SpecialOp('//', other, self)
|
231 |
+
|
232 |
+
def __mod__(self, other):
|
233 |
+
return SpecialOp('%', self, other)
|
234 |
+
|
235 |
+
def __rmod__(self, other):
|
236 |
+
return SpecialOp('%', other, self)
|
237 |
+
|
238 |
+
def __divmod__(self, other):
|
239 |
+
return SpecialOp('divmod', self, other)
|
240 |
+
|
241 |
+
def __rdivmod__(self, other):
|
242 |
+
return SpecialOp('divmod', other, self)
|
243 |
+
|
244 |
+
def __pow__(self, other):
|
245 |
+
return SpecialOp('**', self, other)
|
246 |
+
|
247 |
+
def __rpow__(self, other):
|
248 |
+
return SpecialOp('**', other, self)
|
249 |
+
|
250 |
+
def __lt__(self, other):
|
251 |
+
return SpecialOp('<', self, other)
|
252 |
+
|
253 |
+
def __gt__(self, other):
|
254 |
+
return SpecialOp('>', self, other)
|
255 |
+
|
256 |
+
def __le__(self, other):
|
257 |
+
return SpecialOp('<=', self, other)
|
258 |
+
|
259 |
+
def __ge__(self, other):
|
260 |
+
return SpecialOp('>=', self, other)
|
261 |
+
|
262 |
+
|
263 |
+
class NonExpr(Basic, NonBasic):
|
264 |
+
'''Like NonBasic above except this is a subclass of Basic but not Expr'''
|
265 |
+
pass
|
266 |
+
|
267 |
+
|
268 |
+
class SpecialOp():
|
269 |
+
'''Represents the results of operations with NonBasic and NonExpr'''
|
270 |
+
def __new__(cls, op, arg1, arg2):
|
271 |
+
obj = object.__new__(cls)
|
272 |
+
obj.args = (op, arg1, arg2)
|
273 |
+
return obj
|
274 |
+
|
275 |
+
|
276 |
+
class NonArithmetic(Basic):
|
277 |
+
'''Represents a Basic subclass that does not support arithmetic operations'''
|
278 |
+
pass
|
279 |
+
|
280 |
+
|
281 |
+
def test_cooperative_operations():
|
282 |
+
'''Tests that Expr uses binary operations cooperatively.
|
283 |
+
|
284 |
+
In particular it should be possible for non-Expr classes to override
|
285 |
+
binary operators like +, - etc when used with Expr instances. This should
|
286 |
+
work for non-Expr classes whether they are Basic subclasses or not. Also
|
287 |
+
non-Expr classes that do not define binary operators with Expr should give
|
288 |
+
TypeError.
|
289 |
+
'''
|
290 |
+
# A bunch of instances of Expr subclasses
|
291 |
+
exprs = [
|
292 |
+
Expr(),
|
293 |
+
S.Zero,
|
294 |
+
S.One,
|
295 |
+
S.Infinity,
|
296 |
+
S.NegativeInfinity,
|
297 |
+
S.ComplexInfinity,
|
298 |
+
S.Half,
|
299 |
+
Float(0.5),
|
300 |
+
Integer(2),
|
301 |
+
Symbol('x'),
|
302 |
+
Mul(2, Symbol('x')),
|
303 |
+
Add(2, Symbol('x')),
|
304 |
+
Pow(2, Symbol('x')),
|
305 |
+
]
|
306 |
+
|
307 |
+
for e in exprs:
|
308 |
+
# Test that these classes can override arithmetic operations in
|
309 |
+
# combination with various Expr types.
|
310 |
+
for ne in [NonBasic(), NonExpr()]:
|
311 |
+
|
312 |
+
results = [
|
313 |
+
(ne + e, ('+', ne, e)),
|
314 |
+
(e + ne, ('+', e, ne)),
|
315 |
+
(ne - e, ('-', ne, e)),
|
316 |
+
(e - ne, ('-', e, ne)),
|
317 |
+
(ne * e, ('*', ne, e)),
|
318 |
+
(e * ne, ('*', e, ne)),
|
319 |
+
(ne / e, ('/', ne, e)),
|
320 |
+
(e / ne, ('/', e, ne)),
|
321 |
+
(ne // e, ('//', ne, e)),
|
322 |
+
(e // ne, ('//', e, ne)),
|
323 |
+
(ne % e, ('%', ne, e)),
|
324 |
+
(e % ne, ('%', e, ne)),
|
325 |
+
(divmod(ne, e), ('divmod', ne, e)),
|
326 |
+
(divmod(e, ne), ('divmod', e, ne)),
|
327 |
+
(ne ** e, ('**', ne, e)),
|
328 |
+
(e ** ne, ('**', e, ne)),
|
329 |
+
(e < ne, ('>', ne, e)),
|
330 |
+
(ne < e, ('<', ne, e)),
|
331 |
+
(e > ne, ('<', ne, e)),
|
332 |
+
(ne > e, ('>', ne, e)),
|
333 |
+
(e <= ne, ('>=', ne, e)),
|
334 |
+
(ne <= e, ('<=', ne, e)),
|
335 |
+
(e >= ne, ('<=', ne, e)),
|
336 |
+
(ne >= e, ('>=', ne, e)),
|
337 |
+
]
|
338 |
+
|
339 |
+
for res, args in results:
|
340 |
+
assert type(res) is SpecialOp and res.args == args
|
341 |
+
|
342 |
+
# These classes do not support binary operators with Expr. Every
|
343 |
+
# operation should raise in combination with any of the Expr types.
|
344 |
+
for na in [NonArithmetic(), object()]:
|
345 |
+
|
346 |
+
raises(TypeError, lambda : e + na)
|
347 |
+
raises(TypeError, lambda : na + e)
|
348 |
+
raises(TypeError, lambda : e - na)
|
349 |
+
raises(TypeError, lambda : na - e)
|
350 |
+
raises(TypeError, lambda : e * na)
|
351 |
+
raises(TypeError, lambda : na * e)
|
352 |
+
raises(TypeError, lambda : e / na)
|
353 |
+
raises(TypeError, lambda : na / e)
|
354 |
+
raises(TypeError, lambda : e // na)
|
355 |
+
raises(TypeError, lambda : na // e)
|
356 |
+
raises(TypeError, lambda : e % na)
|
357 |
+
raises(TypeError, lambda : na % e)
|
358 |
+
raises(TypeError, lambda : divmod(e, na))
|
359 |
+
raises(TypeError, lambda : divmod(na, e))
|
360 |
+
raises(TypeError, lambda : e ** na)
|
361 |
+
raises(TypeError, lambda : na ** e)
|
362 |
+
raises(TypeError, lambda : e > na)
|
363 |
+
raises(TypeError, lambda : na > e)
|
364 |
+
raises(TypeError, lambda : e < na)
|
365 |
+
raises(TypeError, lambda : na < e)
|
366 |
+
raises(TypeError, lambda : e >= na)
|
367 |
+
raises(TypeError, lambda : na >= e)
|
368 |
+
raises(TypeError, lambda : e <= na)
|
369 |
+
raises(TypeError, lambda : na <= e)
|
370 |
+
|
371 |
+
|
372 |
+
def test_relational():
|
373 |
+
from sympy.core.relational import Lt
|
374 |
+
assert (pi < 3) is S.false
|
375 |
+
assert (pi <= 3) is S.false
|
376 |
+
assert (pi > 3) is S.true
|
377 |
+
assert (pi >= 3) is S.true
|
378 |
+
assert (-pi < 3) is S.true
|
379 |
+
assert (-pi <= 3) is S.true
|
380 |
+
assert (-pi > 3) is S.false
|
381 |
+
assert (-pi >= 3) is S.false
|
382 |
+
r = Symbol('r', real=True)
|
383 |
+
assert (r - 2 < r - 3) is S.false
|
384 |
+
assert Lt(x + I, x + I + 2).func == Lt # issue 8288
|
385 |
+
|
386 |
+
|
387 |
+
def test_relational_assumptions():
|
388 |
+
m1 = Symbol("m1", nonnegative=False)
|
389 |
+
m2 = Symbol("m2", positive=False)
|
390 |
+
m3 = Symbol("m3", nonpositive=False)
|
391 |
+
m4 = Symbol("m4", negative=False)
|
392 |
+
assert (m1 < 0) == Lt(m1, 0)
|
393 |
+
assert (m2 <= 0) == Le(m2, 0)
|
394 |
+
assert (m3 > 0) == Gt(m3, 0)
|
395 |
+
assert (m4 >= 0) == Ge(m4, 0)
|
396 |
+
m1 = Symbol("m1", nonnegative=False, real=True)
|
397 |
+
m2 = Symbol("m2", positive=False, real=True)
|
398 |
+
m3 = Symbol("m3", nonpositive=False, real=True)
|
399 |
+
m4 = Symbol("m4", negative=False, real=True)
|
400 |
+
assert (m1 < 0) is S.true
|
401 |
+
assert (m2 <= 0) is S.true
|
402 |
+
assert (m3 > 0) is S.true
|
403 |
+
assert (m4 >= 0) is S.true
|
404 |
+
m1 = Symbol("m1", negative=True)
|
405 |
+
m2 = Symbol("m2", nonpositive=True)
|
406 |
+
m3 = Symbol("m3", positive=True)
|
407 |
+
m4 = Symbol("m4", nonnegative=True)
|
408 |
+
assert (m1 < 0) is S.true
|
409 |
+
assert (m2 <= 0) is S.true
|
410 |
+
assert (m3 > 0) is S.true
|
411 |
+
assert (m4 >= 0) is S.true
|
412 |
+
m1 = Symbol("m1", negative=False, real=True)
|
413 |
+
m2 = Symbol("m2", nonpositive=False, real=True)
|
414 |
+
m3 = Symbol("m3", positive=False, real=True)
|
415 |
+
m4 = Symbol("m4", nonnegative=False, real=True)
|
416 |
+
assert (m1 < 0) is S.false
|
417 |
+
assert (m2 <= 0) is S.false
|
418 |
+
assert (m3 > 0) is S.false
|
419 |
+
assert (m4 >= 0) is S.false
|
420 |
+
|
421 |
+
|
422 |
+
# See https://github.com/sympy/sympy/issues/17708
|
423 |
+
#def test_relational_noncommutative():
|
424 |
+
# from sympy import Lt, Gt, Le, Ge
|
425 |
+
# A, B = symbols('A,B', commutative=False)
|
426 |
+
# assert (A < B) == Lt(A, B)
|
427 |
+
# assert (A <= B) == Le(A, B)
|
428 |
+
# assert (A > B) == Gt(A, B)
|
429 |
+
# assert (A >= B) == Ge(A, B)
|
430 |
+
|
431 |
+
|
432 |
+
def test_basic_nostr():
|
433 |
+
for obj in basic_objs:
|
434 |
+
raises(TypeError, lambda: obj + '1')
|
435 |
+
raises(TypeError, lambda: obj - '1')
|
436 |
+
if obj == 2:
|
437 |
+
assert obj * '1' == '11'
|
438 |
+
else:
|
439 |
+
raises(TypeError, lambda: obj * '1')
|
440 |
+
raises(TypeError, lambda: obj / '1')
|
441 |
+
raises(TypeError, lambda: obj ** '1')
|
442 |
+
|
443 |
+
|
444 |
+
def test_series_expansion_for_uniform_order():
|
445 |
+
assert (1/x + y + x).series(x, 0, 0) == 1/x + O(1, x)
|
446 |
+
assert (1/x + y + x).series(x, 0, 1) == 1/x + y + O(x)
|
447 |
+
assert (1/x + 1 + x).series(x, 0, 0) == 1/x + O(1, x)
|
448 |
+
assert (1/x + 1 + x).series(x, 0, 1) == 1/x + 1 + O(x)
|
449 |
+
assert (1/x + x).series(x, 0, 0) == 1/x + O(1, x)
|
450 |
+
assert (1/x + y + y*x + x).series(x, 0, 0) == 1/x + O(1, x)
|
451 |
+
assert (1/x + y + y*x + x).series(x, 0, 1) == 1/x + y + O(x)
|
452 |
+
|
453 |
+
|
454 |
+
def test_leadterm():
|
455 |
+
assert (3 + 2*x**(log(3)/log(2) - 1)).leadterm(x) == (3, 0)
|
456 |
+
|
457 |
+
assert (1/x**2 + 1 + x + x**2).leadterm(x)[1] == -2
|
458 |
+
assert (1/x + 1 + x + x**2).leadterm(x)[1] == -1
|
459 |
+
assert (x**2 + 1/x).leadterm(x)[1] == -1
|
460 |
+
assert (1 + x**2).leadterm(x)[1] == 0
|
461 |
+
assert (x + 1).leadterm(x)[1] == 0
|
462 |
+
assert (x + x**2).leadterm(x)[1] == 1
|
463 |
+
assert (x**2).leadterm(x)[1] == 2
|
464 |
+
|
465 |
+
|
466 |
+
def test_as_leading_term():
|
467 |
+
assert (3 + 2*x**(log(3)/log(2) - 1)).as_leading_term(x) == 3
|
468 |
+
assert (1/x**2 + 1 + x + x**2).as_leading_term(x) == 1/x**2
|
469 |
+
assert (1/x + 1 + x + x**2).as_leading_term(x) == 1/x
|
470 |
+
assert (x**2 + 1/x).as_leading_term(x) == 1/x
|
471 |
+
assert (1 + x**2).as_leading_term(x) == 1
|
472 |
+
assert (x + 1).as_leading_term(x) == 1
|
473 |
+
assert (x + x**2).as_leading_term(x) == x
|
474 |
+
assert (x**2).as_leading_term(x) == x**2
|
475 |
+
assert (x + oo).as_leading_term(x) is oo
|
476 |
+
|
477 |
+
raises(ValueError, lambda: (x + 1).as_leading_term(1))
|
478 |
+
|
479 |
+
# https://github.com/sympy/sympy/issues/21177
|
480 |
+
e = -3*x + (x + Rational(3, 2) - sqrt(3)*S.ImaginaryUnit/2)**2\
|
481 |
+
- Rational(3, 2) + 3*sqrt(3)*S.ImaginaryUnit/2
|
482 |
+
assert e.as_leading_term(x) == \
|
483 |
+
(12*sqrt(3)*x - 12*S.ImaginaryUnit*x)/(4*sqrt(3) + 12*S.ImaginaryUnit)
|
484 |
+
|
485 |
+
# https://github.com/sympy/sympy/issues/21245
|
486 |
+
e = 1 - x - x**2
|
487 |
+
d = (1 + sqrt(5))/2
|
488 |
+
assert e.subs(x, y + 1/d).as_leading_term(y) == \
|
489 |
+
(-576*sqrt(5)*y - 1280*y)/(256*sqrt(5) + 576)
|
490 |
+
|
491 |
+
|
492 |
+
def test_leadterm2():
|
493 |
+
assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).leadterm(x) == \
|
494 |
+
(sin(1 + sin(1)), 0)
|
495 |
+
|
496 |
+
|
497 |
+
def test_leadterm3():
|
498 |
+
assert (y + z + x).leadterm(x) == (y + z, 0)
|
499 |
+
|
500 |
+
|
501 |
+
def test_as_leading_term2():
|
502 |
+
assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).as_leading_term(x) == \
|
503 |
+
sin(1 + sin(1))
|
504 |
+
|
505 |
+
|
506 |
+
def test_as_leading_term3():
|
507 |
+
assert (2 + pi + x).as_leading_term(x) == 2 + pi
|
508 |
+
assert (2*x + pi*x + x**2).as_leading_term(x) == 2*x + pi*x
|
509 |
+
|
510 |
+
|
511 |
+
def test_as_leading_term4():
|
512 |
+
# see issue 6843
|
513 |
+
n = Symbol('n', integer=True, positive=True)
|
514 |
+
r = -n**3/(2*n**2 + 4*n + 2) - n**2/(n**2 + 2*n + 1) + \
|
515 |
+
n**2/(n + 1) - n/(2*n**2 + 4*n + 2) + n/(n*x + x) + 2*n/(n + 1) - \
|
516 |
+
1 + 1/(n*x + x) + 1/(n + 1) - 1/x
|
517 |
+
assert r.as_leading_term(x).cancel() == n/2
|
518 |
+
|
519 |
+
|
520 |
+
def test_as_leading_term_stub():
|
521 |
+
class foo(Function):
|
522 |
+
pass
|
523 |
+
assert foo(1/x).as_leading_term(x) == foo(1/x)
|
524 |
+
assert foo(1).as_leading_term(x) == foo(1)
|
525 |
+
raises(NotImplementedError, lambda: foo(x).as_leading_term(x))
|
526 |
+
|
527 |
+
|
528 |
+
def test_as_leading_term_deriv_integral():
|
529 |
+
# related to issue 11313
|
530 |
+
assert Derivative(x ** 3, x).as_leading_term(x) == 3*x**2
|
531 |
+
assert Derivative(x ** 3, y).as_leading_term(x) == 0
|
532 |
+
|
533 |
+
assert Integral(x ** 3, x).as_leading_term(x) == x**4/4
|
534 |
+
assert Integral(x ** 3, y).as_leading_term(x) == y*x**3
|
535 |
+
|
536 |
+
assert Derivative(exp(x), x).as_leading_term(x) == 1
|
537 |
+
assert Derivative(log(x), x).as_leading_term(x) == (1/x).as_leading_term(x)
|
538 |
+
|
539 |
+
|
540 |
+
def test_atoms():
|
541 |
+
assert x.atoms() == {x}
|
542 |
+
assert (1 + x).atoms() == {x, S.One}
|
543 |
+
|
544 |
+
assert (1 + 2*cos(x)).atoms(Symbol) == {x}
|
545 |
+
assert (1 + 2*cos(x)).atoms(Symbol, Number) == {S.One, S(2), x}
|
546 |
+
|
547 |
+
assert (2*(x**(y**x))).atoms() == {S(2), x, y}
|
548 |
+
|
549 |
+
assert S.Half.atoms() == {S.Half}
|
550 |
+
assert S.Half.atoms(Symbol) == set()
|
551 |
+
|
552 |
+
assert sin(oo).atoms(oo) == set()
|
553 |
+
|
554 |
+
assert Poly(0, x).atoms() == {S.Zero, x}
|
555 |
+
assert Poly(1, x).atoms() == {S.One, x}
|
556 |
+
|
557 |
+
assert Poly(x, x).atoms() == {x}
|
558 |
+
assert Poly(x, x, y).atoms() == {x, y}
|
559 |
+
assert Poly(x + y, x, y).atoms() == {x, y}
|
560 |
+
assert Poly(x + y, x, y, z).atoms() == {x, y, z}
|
561 |
+
assert Poly(x + y*t, x, y, z).atoms() == {t, x, y, z}
|
562 |
+
|
563 |
+
assert (I*pi).atoms(NumberSymbol) == {pi}
|
564 |
+
assert (I*pi).atoms(NumberSymbol, I) == \
|
565 |
+
(I*pi).atoms(I, NumberSymbol) == {pi, I}
|
566 |
+
|
567 |
+
assert exp(exp(x)).atoms(exp) == {exp(exp(x)), exp(x)}
|
568 |
+
assert (1 + x*(2 + y) + exp(3 + z)).atoms(Add) == \
|
569 |
+
{1 + x*(2 + y) + exp(3 + z), 2 + y, 3 + z}
|
570 |
+
|
571 |
+
# issue 6132
|
572 |
+
e = (f(x) + sin(x) + 2)
|
573 |
+
assert e.atoms(AppliedUndef) == \
|
574 |
+
{f(x)}
|
575 |
+
assert e.atoms(AppliedUndef, Function) == \
|
576 |
+
{f(x), sin(x)}
|
577 |
+
assert e.atoms(Function) == \
|
578 |
+
{f(x), sin(x)}
|
579 |
+
assert e.atoms(AppliedUndef, Number) == \
|
580 |
+
{f(x), S(2)}
|
581 |
+
assert e.atoms(Function, Number) == \
|
582 |
+
{S(2), sin(x), f(x)}
|
583 |
+
|
584 |
+
|
585 |
+
def test_is_polynomial():
|
586 |
+
k = Symbol('k', nonnegative=True, integer=True)
|
587 |
+
|
588 |
+
assert Rational(2).is_polynomial(x, y, z) is True
|
589 |
+
assert (S.Pi).is_polynomial(x, y, z) is True
|
590 |
+
|
591 |
+
assert x.is_polynomial(x) is True
|
592 |
+
assert x.is_polynomial(y) is True
|
593 |
+
|
594 |
+
assert (x**2).is_polynomial(x) is True
|
595 |
+
assert (x**2).is_polynomial(y) is True
|
596 |
+
|
597 |
+
assert (x**(-2)).is_polynomial(x) is False
|
598 |
+
assert (x**(-2)).is_polynomial(y) is True
|
599 |
+
|
600 |
+
assert (2**x).is_polynomial(x) is False
|
601 |
+
assert (2**x).is_polynomial(y) is True
|
602 |
+
|
603 |
+
assert (x**k).is_polynomial(x) is False
|
604 |
+
assert (x**k).is_polynomial(k) is False
|
605 |
+
assert (x**x).is_polynomial(x) is False
|
606 |
+
assert (k**k).is_polynomial(k) is False
|
607 |
+
assert (k**x).is_polynomial(k) is False
|
608 |
+
|
609 |
+
assert (x**(-k)).is_polynomial(x) is False
|
610 |
+
assert ((2*x)**k).is_polynomial(x) is False
|
611 |
+
|
612 |
+
assert (x**2 + 3*x - 8).is_polynomial(x) is True
|
613 |
+
assert (x**2 + 3*x - 8).is_polynomial(y) is True
|
614 |
+
|
615 |
+
assert (x**2 + 3*x - 8).is_polynomial() is True
|
616 |
+
|
617 |
+
assert sqrt(x).is_polynomial(x) is False
|
618 |
+
assert (sqrt(x)**3).is_polynomial(x) is False
|
619 |
+
|
620 |
+
assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(x) is True
|
621 |
+
assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(y) is False
|
622 |
+
|
623 |
+
assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial() is True
|
624 |
+
assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial() is False
|
625 |
+
|
626 |
+
assert (
|
627 |
+
(x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial(x, y) is True
|
628 |
+
assert (
|
629 |
+
(x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial(x, y) is False
|
630 |
+
|
631 |
+
assert (1/f(x) + 1).is_polynomial(f(x)) is False
|
632 |
+
|
633 |
+
|
634 |
+
def test_is_rational_function():
|
635 |
+
assert Integer(1).is_rational_function() is True
|
636 |
+
assert Integer(1).is_rational_function(x) is True
|
637 |
+
|
638 |
+
assert Rational(17, 54).is_rational_function() is True
|
639 |
+
assert Rational(17, 54).is_rational_function(x) is True
|
640 |
+
|
641 |
+
assert (12/x).is_rational_function() is True
|
642 |
+
assert (12/x).is_rational_function(x) is True
|
643 |
+
|
644 |
+
assert (x/y).is_rational_function() is True
|
645 |
+
assert (x/y).is_rational_function(x) is True
|
646 |
+
assert (x/y).is_rational_function(x, y) is True
|
647 |
+
|
648 |
+
assert (x**2 + 1/x/y).is_rational_function() is True
|
649 |
+
assert (x**2 + 1/x/y).is_rational_function(x) is True
|
650 |
+
assert (x**2 + 1/x/y).is_rational_function(x, y) is True
|
651 |
+
|
652 |
+
assert (sin(y)/x).is_rational_function() is False
|
653 |
+
assert (sin(y)/x).is_rational_function(y) is False
|
654 |
+
assert (sin(y)/x).is_rational_function(x) is True
|
655 |
+
assert (sin(y)/x).is_rational_function(x, y) is False
|
656 |
+
|
657 |
+
for i in _illegal:
|
658 |
+
assert not i.is_rational_function()
|
659 |
+
for d in (1, x):
|
660 |
+
assert not (i/d).is_rational_function()
|
661 |
+
|
662 |
+
|
663 |
+
def test_is_meromorphic():
|
664 |
+
f = a/x**2 + b + x + c*x**2
|
665 |
+
assert f.is_meromorphic(x, 0) is True
|
666 |
+
assert f.is_meromorphic(x, 1) is True
|
667 |
+
assert f.is_meromorphic(x, zoo) is True
|
668 |
+
|
669 |
+
g = 3 + 2*x**(log(3)/log(2) - 1)
|
670 |
+
assert g.is_meromorphic(x, 0) is False
|
671 |
+
assert g.is_meromorphic(x, 1) is True
|
672 |
+
assert g.is_meromorphic(x, zoo) is False
|
673 |
+
|
674 |
+
n = Symbol('n', integer=True)
|
675 |
+
e = sin(1/x)**n*x
|
676 |
+
assert e.is_meromorphic(x, 0) is False
|
677 |
+
assert e.is_meromorphic(x, 1) is True
|
678 |
+
assert e.is_meromorphic(x, zoo) is False
|
679 |
+
|
680 |
+
e = log(x)**pi
|
681 |
+
assert e.is_meromorphic(x, 0) is False
|
682 |
+
assert e.is_meromorphic(x, 1) is False
|
683 |
+
assert e.is_meromorphic(x, 2) is True
|
684 |
+
assert e.is_meromorphic(x, zoo) is False
|
685 |
+
|
686 |
+
assert (log(x)**a).is_meromorphic(x, 0) is False
|
687 |
+
assert (log(x)**a).is_meromorphic(x, 1) is False
|
688 |
+
assert (a**log(x)).is_meromorphic(x, 0) is None
|
689 |
+
assert (3**log(x)).is_meromorphic(x, 0) is False
|
690 |
+
assert (3**log(x)).is_meromorphic(x, 1) is True
|
691 |
+
|
692 |
+
def test_is_algebraic_expr():
|
693 |
+
assert sqrt(3).is_algebraic_expr(x) is True
|
694 |
+
assert sqrt(3).is_algebraic_expr() is True
|
695 |
+
|
696 |
+
eq = ((1 + x**2)/(1 - y**2))**(S.One/3)
|
697 |
+
assert eq.is_algebraic_expr(x) is True
|
698 |
+
assert eq.is_algebraic_expr(y) is True
|
699 |
+
|
700 |
+
assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(x) is True
|
701 |
+
assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(y) is True
|
702 |
+
assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr() is True
|
703 |
+
|
704 |
+
assert (cos(y)/sqrt(x)).is_algebraic_expr() is False
|
705 |
+
assert (cos(y)/sqrt(x)).is_algebraic_expr(x) is True
|
706 |
+
assert (cos(y)/sqrt(x)).is_algebraic_expr(y) is False
|
707 |
+
assert (cos(y)/sqrt(x)).is_algebraic_expr(x, y) is False
|
708 |
+
|
709 |
+
|
710 |
+
def test_SAGE1():
|
711 |
+
#see https://github.com/sympy/sympy/issues/3346
|
712 |
+
class MyInt:
|
713 |
+
def _sympy_(self):
|
714 |
+
return Integer(5)
|
715 |
+
m = MyInt()
|
716 |
+
e = Rational(2)*m
|
717 |
+
assert e == 10
|
718 |
+
|
719 |
+
raises(TypeError, lambda: Rational(2)*MyInt)
|
720 |
+
|
721 |
+
|
722 |
+
def test_SAGE2():
|
723 |
+
class MyInt:
|
724 |
+
def __int__(self):
|
725 |
+
return 5
|
726 |
+
assert sympify(MyInt()) == 5
|
727 |
+
e = Rational(2)*MyInt()
|
728 |
+
assert e == 10
|
729 |
+
|
730 |
+
raises(TypeError, lambda: Rational(2)*MyInt)
|
731 |
+
|
732 |
+
|
733 |
+
def test_SAGE3():
|
734 |
+
class MySymbol:
|
735 |
+
def __rmul__(self, other):
|
736 |
+
return ('mys', other, self)
|
737 |
+
|
738 |
+
o = MySymbol()
|
739 |
+
e = x*o
|
740 |
+
|
741 |
+
assert e == ('mys', x, o)
|
742 |
+
|
743 |
+
|
744 |
+
def test_len():
|
745 |
+
e = x*y
|
746 |
+
assert len(e.args) == 2
|
747 |
+
e = x + y + z
|
748 |
+
assert len(e.args) == 3
|
749 |
+
|
750 |
+
|
751 |
+
def test_doit():
|
752 |
+
a = Integral(x**2, x)
|
753 |
+
|
754 |
+
assert isinstance(a.doit(), Integral) is False
|
755 |
+
|
756 |
+
assert isinstance(a.doit(integrals=True), Integral) is False
|
757 |
+
assert isinstance(a.doit(integrals=False), Integral) is True
|
758 |
+
|
759 |
+
assert (2*Integral(x, x)).doit() == x**2
|
760 |
+
|
761 |
+
|
762 |
+
def test_attribute_error():
|
763 |
+
raises(AttributeError, lambda: x.cos())
|
764 |
+
raises(AttributeError, lambda: x.sin())
|
765 |
+
raises(AttributeError, lambda: x.exp())
|
766 |
+
|
767 |
+
|
768 |
+
def test_args():
|
769 |
+
assert (x*y).args in ((x, y), (y, x))
|
770 |
+
assert (x + y).args in ((x, y), (y, x))
|
771 |
+
assert (x*y + 1).args in ((x*y, 1), (1, x*y))
|
772 |
+
assert sin(x*y).args == (x*y,)
|
773 |
+
assert sin(x*y).args[0] == x*y
|
774 |
+
assert (x**y).args == (x, y)
|
775 |
+
assert (x**y).args[0] == x
|
776 |
+
assert (x**y).args[1] == y
|
777 |
+
|
778 |
+
|
779 |
+
def test_noncommutative_expand_issue_3757():
|
780 |
+
A, B, C = symbols('A,B,C', commutative=False)
|
781 |
+
assert A*B - B*A != 0
|
782 |
+
assert (A*(A + B)*B).expand() == A**2*B + A*B**2
|
783 |
+
assert (A*(A + B + C)*B).expand() == A**2*B + A*B**2 + A*C*B
|
784 |
+
|
785 |
+
|
786 |
+
def test_as_numer_denom():
|
787 |
+
a, b, c = symbols('a, b, c')
|
788 |
+
|
789 |
+
assert nan.as_numer_denom() == (nan, 1)
|
790 |
+
assert oo.as_numer_denom() == (oo, 1)
|
791 |
+
assert (-oo).as_numer_denom() == (-oo, 1)
|
792 |
+
assert zoo.as_numer_denom() == (zoo, 1)
|
793 |
+
assert (-zoo).as_numer_denom() == (zoo, 1)
|
794 |
+
|
795 |
+
assert x.as_numer_denom() == (x, 1)
|
796 |
+
assert (1/x).as_numer_denom() == (1, x)
|
797 |
+
assert (x/y).as_numer_denom() == (x, y)
|
798 |
+
assert (x/2).as_numer_denom() == (x, 2)
|
799 |
+
assert (x*y/z).as_numer_denom() == (x*y, z)
|
800 |
+
assert (x/(y*z)).as_numer_denom() == (x, y*z)
|
801 |
+
assert S.Half.as_numer_denom() == (1, 2)
|
802 |
+
assert (1/y**2).as_numer_denom() == (1, y**2)
|
803 |
+
assert (x/y**2).as_numer_denom() == (x, y**2)
|
804 |
+
assert ((x**2 + 1)/y).as_numer_denom() == (x**2 + 1, y)
|
805 |
+
assert (x*(y + 1)/y**7).as_numer_denom() == (x*(y + 1), y**7)
|
806 |
+
assert (x**-2).as_numer_denom() == (1, x**2)
|
807 |
+
assert (a/x + b/2/x + c/3/x).as_numer_denom() == \
|
808 |
+
(6*a + 3*b + 2*c, 6*x)
|
809 |
+
assert (a/x + b/2/x + c/3/y).as_numer_denom() == \
|
810 |
+
(2*c*x + y*(6*a + 3*b), 6*x*y)
|
811 |
+
assert (a/x + b/2/x + c/.5/x).as_numer_denom() == \
|
812 |
+
(2*a + b + 4.0*c, 2*x)
|
813 |
+
# this should take no more than a few seconds
|
814 |
+
assert int(log(Add(*[Dummy()/i/x for i in range(1, 705)]
|
815 |
+
).as_numer_denom()[1]/x).n(4)) == 705
|
816 |
+
for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
|
817 |
+
assert (i + x/3).as_numer_denom() == \
|
818 |
+
(x + i, 3)
|
819 |
+
assert (S.Infinity + x/3 + y/4).as_numer_denom() == \
|
820 |
+
(4*x + 3*y + S.Infinity, 12)
|
821 |
+
assert (oo*x + zoo*y).as_numer_denom() == \
|
822 |
+
(zoo*y + oo*x, 1)
|
823 |
+
|
824 |
+
A, B, C = symbols('A,B,C', commutative=False)
|
825 |
+
|
826 |
+
assert (A*B*C**-1).as_numer_denom() == (A*B*C**-1, 1)
|
827 |
+
assert (A*B*C**-1/x).as_numer_denom() == (A*B*C**-1, x)
|
828 |
+
assert (C**-1*A*B).as_numer_denom() == (C**-1*A*B, 1)
|
829 |
+
assert (C**-1*A*B/x).as_numer_denom() == (C**-1*A*B, x)
|
830 |
+
assert ((A*B*C)**-1).as_numer_denom() == ((A*B*C)**-1, 1)
|
831 |
+
assert ((A*B*C)**-1/x).as_numer_denom() == ((A*B*C)**-1, x)
|
832 |
+
|
833 |
+
# the following morphs from Add to Mul during processing
|
834 |
+
assert Add(0, (x + y)/z/-2, evaluate=False).as_numer_denom(
|
835 |
+
) == (-x - y, 2*z)
|
836 |
+
|
837 |
+
|
838 |
+
def test_trunc():
|
839 |
+
import math
|
840 |
+
x, y = symbols('x y')
|
841 |
+
assert math.trunc(2) == 2
|
842 |
+
assert math.trunc(4.57) == 4
|
843 |
+
assert math.trunc(-5.79) == -5
|
844 |
+
assert math.trunc(pi) == 3
|
845 |
+
assert math.trunc(log(7)) == 1
|
846 |
+
assert math.trunc(exp(5)) == 148
|
847 |
+
assert math.trunc(cos(pi)) == -1
|
848 |
+
assert math.trunc(sin(5)) == 0
|
849 |
+
|
850 |
+
raises(TypeError, lambda: math.trunc(x))
|
851 |
+
raises(TypeError, lambda: math.trunc(x + y**2))
|
852 |
+
raises(TypeError, lambda: math.trunc(oo))
|
853 |
+
|
854 |
+
|
855 |
+
def test_as_independent():
|
856 |
+
assert S.Zero.as_independent(x, as_Add=True) == (0, 0)
|
857 |
+
assert S.Zero.as_independent(x, as_Add=False) == (0, 0)
|
858 |
+
assert (2*x*sin(x) + y + x).as_independent(x) == (y, x + 2*x*sin(x))
|
859 |
+
assert (2*x*sin(x) + y + x).as_independent(y) == (x + 2*x*sin(x), y)
|
860 |
+
|
861 |
+
assert (2*x*sin(x) + y + x).as_independent(x, y) == (0, y + x + 2*x*sin(x))
|
862 |
+
|
863 |
+
assert (x*sin(x)*cos(y)).as_independent(x) == (cos(y), x*sin(x))
|
864 |
+
assert (x*sin(x)*cos(y)).as_independent(y) == (x*sin(x), cos(y))
|
865 |
+
|
866 |
+
assert (x*sin(x)*cos(y)).as_independent(x, y) == (1, x*sin(x)*cos(y))
|
867 |
+
|
868 |
+
assert (sin(x)).as_independent(x) == (1, sin(x))
|
869 |
+
assert (sin(x)).as_independent(y) == (sin(x), 1)
|
870 |
+
|
871 |
+
assert (2*sin(x)).as_independent(x) == (2, sin(x))
|
872 |
+
assert (2*sin(x)).as_independent(y) == (2*sin(x), 1)
|
873 |
+
|
874 |
+
# issue 4903 = 1766b
|
875 |
+
n1, n2, n3 = symbols('n1 n2 n3', commutative=False)
|
876 |
+
assert (n1 + n1*n2).as_independent(n2) == (n1, n1*n2)
|
877 |
+
assert (n2*n1 + n1*n2).as_independent(n2) == (0, n1*n2 + n2*n1)
|
878 |
+
assert (n1*n2*n1).as_independent(n2) == (n1, n2*n1)
|
879 |
+
assert (n1*n2*n1).as_independent(n1) == (1, n1*n2*n1)
|
880 |
+
|
881 |
+
assert (3*x).as_independent(x, as_Add=True) == (0, 3*x)
|
882 |
+
assert (3*x).as_independent(x, as_Add=False) == (3, x)
|
883 |
+
assert (3 + x).as_independent(x, as_Add=True) == (3, x)
|
884 |
+
assert (3 + x).as_independent(x, as_Add=False) == (1, 3 + x)
|
885 |
+
|
886 |
+
# issue 5479
|
887 |
+
assert (3*x).as_independent(Symbol) == (3, x)
|
888 |
+
|
889 |
+
# issue 5648
|
890 |
+
assert (n1*x*y).as_independent(x) == (n1*y, x)
|
891 |
+
assert ((x + n1)*(x - y)).as_independent(x) == (1, (x + n1)*(x - y))
|
892 |
+
assert ((x + n1)*(x - y)).as_independent(y) == (x + n1, x - y)
|
893 |
+
assert (DiracDelta(x - n1)*DiracDelta(x - y)).as_independent(x) \
|
894 |
+
== (1, DiracDelta(x - n1)*DiracDelta(x - y))
|
895 |
+
assert (x*y*n1*n2*n3).as_independent(n2) == (x*y*n1, n2*n3)
|
896 |
+
assert (x*y*n1*n2*n3).as_independent(n1) == (x*y, n1*n2*n3)
|
897 |
+
assert (x*y*n1*n2*n3).as_independent(n3) == (x*y*n1*n2, n3)
|
898 |
+
assert (DiracDelta(x - n1)*DiracDelta(y - n1)*DiracDelta(x - n2)).as_independent(y) == \
|
899 |
+
(DiracDelta(x - n1)*DiracDelta(x - n2), DiracDelta(y - n1))
|
900 |
+
|
901 |
+
# issue 5784
|
902 |
+
assert (x + Integral(x, (x, 1, 2))).as_independent(x, strict=True) == \
|
903 |
+
(Integral(x, (x, 1, 2)), x)
|
904 |
+
|
905 |
+
eq = Add(x, -x, 2, -3, evaluate=False)
|
906 |
+
assert eq.as_independent(x) == (-1, Add(x, -x, evaluate=False))
|
907 |
+
eq = Mul(x, 1/x, 2, -3, evaluate=False)
|
908 |
+
assert eq.as_independent(x) == (-6, Mul(x, 1/x, evaluate=False))
|
909 |
+
|
910 |
+
assert (x*y).as_independent(z, as_Add=True) == (x*y, 0)
|
911 |
+
|
912 |
+
@XFAIL
|
913 |
+
def test_call_2():
|
914 |
+
# TODO UndefinedFunction does not subclass Expr
|
915 |
+
assert (2*f)(x) == 2*f(x)
|
916 |
+
|
917 |
+
|
918 |
+
def test_replace():
|
919 |
+
e = log(sin(x)) + tan(sin(x**2))
|
920 |
+
|
921 |
+
assert e.replace(sin, cos) == log(cos(x)) + tan(cos(x**2))
|
922 |
+
assert e.replace(
|
923 |
+
sin, lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2))
|
924 |
+
|
925 |
+
a = Wild('a')
|
926 |
+
b = Wild('b')
|
927 |
+
|
928 |
+
assert e.replace(sin(a), cos(a)) == log(cos(x)) + tan(cos(x**2))
|
929 |
+
assert e.replace(
|
930 |
+
sin(a), lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2))
|
931 |
+
# test exact
|
932 |
+
assert (2*x).replace(a*x + b, b - a, exact=True) == 2*x
|
933 |
+
assert (2*x).replace(a*x + b, b - a) == 2*x
|
934 |
+
assert (2*x).replace(a*x + b, b - a, exact=False) == 2/x
|
935 |
+
assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=True) == 2*x
|
936 |
+
assert (2*x).replace(a*x + b, lambda a, b: b - a) == 2*x
|
937 |
+
assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=False) == 2/x
|
938 |
+
|
939 |
+
g = 2*sin(x**3)
|
940 |
+
|
941 |
+
assert g.replace(
|
942 |
+
lambda expr: expr.is_Number, lambda expr: expr**2) == 4*sin(x**9)
|
943 |
+
|
944 |
+
assert cos(x).replace(cos, sin, map=True) == (sin(x), {cos(x): sin(x)})
|
945 |
+
assert sin(x).replace(cos, sin) == sin(x)
|
946 |
+
|
947 |
+
cond, func = lambda x: x.is_Mul, lambda x: 2*x
|
948 |
+
assert (x*y).replace(cond, func, map=True) == (2*x*y, {x*y: 2*x*y})
|
949 |
+
assert (x*(1 + x*y)).replace(cond, func, map=True) == \
|
950 |
+
(2*x*(2*x*y + 1), {x*(2*x*y + 1): 2*x*(2*x*y + 1), x*y: 2*x*y})
|
951 |
+
assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y, map=True) == \
|
952 |
+
(sin(x), {sin(x): sin(x)/y})
|
953 |
+
# if not simultaneous then y*sin(x) -> y*sin(x)/y = sin(x) -> sin(x)/y
|
954 |
+
assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y,
|
955 |
+
simultaneous=False) == sin(x)/y
|
956 |
+
assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e
|
957 |
+
) == x**2/2 + O(x**3)
|
958 |
+
assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e,
|
959 |
+
simultaneous=False) == x**2/2 + O(x**3)
|
960 |
+
assert (x*(x*y + 3)).replace(lambda x: x.is_Mul, lambda x: 2 + x) == \
|
961 |
+
x*(x*y + 5) + 2
|
962 |
+
e = (x*y + 1)*(2*x*y + 1) + 1
|
963 |
+
assert e.replace(cond, func, map=True) == (
|
964 |
+
2*((2*x*y + 1)*(4*x*y + 1)) + 1,
|
965 |
+
{2*x*y: 4*x*y, x*y: 2*x*y, (2*x*y + 1)*(4*x*y + 1):
|
966 |
+
2*((2*x*y + 1)*(4*x*y + 1))})
|
967 |
+
assert x.replace(x, y) == y
|
968 |
+
assert (x + 1).replace(1, 2) == x + 2
|
969 |
+
|
970 |
+
# https://groups.google.com/forum/#!topic/sympy/8wCgeC95tz0
|
971 |
+
n1, n2, n3 = symbols('n1:4', commutative=False)
|
972 |
+
assert (n1*f(n2)).replace(f, lambda x: x) == n1*n2
|
973 |
+
assert (n3*f(n2)).replace(f, lambda x: x) == n3*n2
|
974 |
+
|
975 |
+
# issue 16725
|
976 |
+
assert S.Zero.replace(Wild('x'), 1) == 1
|
977 |
+
# let the user override the default decision of False
|
978 |
+
assert S.Zero.replace(Wild('x'), 1, exact=True) == 0
|
979 |
+
|
980 |
+
|
981 |
+
def test_find():
|
982 |
+
expr = (x + y + 2 + sin(3*x))
|
983 |
+
|
984 |
+
assert expr.find(lambda u: u.is_Integer) == {S(2), S(3)}
|
985 |
+
assert expr.find(lambda u: u.is_Symbol) == {x, y}
|
986 |
+
|
987 |
+
assert expr.find(lambda u: u.is_Integer, group=True) == {S(2): 1, S(3): 1}
|
988 |
+
assert expr.find(lambda u: u.is_Symbol, group=True) == {x: 2, y: 1}
|
989 |
+
|
990 |
+
assert expr.find(Integer) == {S(2), S(3)}
|
991 |
+
assert expr.find(Symbol) == {x, y}
|
992 |
+
|
993 |
+
assert expr.find(Integer, group=True) == {S(2): 1, S(3): 1}
|
994 |
+
assert expr.find(Symbol, group=True) == {x: 2, y: 1}
|
995 |
+
|
996 |
+
a = Wild('a')
|
997 |
+
|
998 |
+
expr = sin(sin(x)) + sin(x) + cos(x) + x
|
999 |
+
|
1000 |
+
assert expr.find(lambda u: type(u) is sin) == {sin(x), sin(sin(x))}
|
1001 |
+
assert expr.find(
|
1002 |
+
lambda u: type(u) is sin, group=True) == {sin(x): 2, sin(sin(x)): 1}
|
1003 |
+
|
1004 |
+
assert expr.find(sin(a)) == {sin(x), sin(sin(x))}
|
1005 |
+
assert expr.find(sin(a), group=True) == {sin(x): 2, sin(sin(x)): 1}
|
1006 |
+
|
1007 |
+
assert expr.find(sin) == {sin(x), sin(sin(x))}
|
1008 |
+
assert expr.find(sin, group=True) == {sin(x): 2, sin(sin(x)): 1}
|
1009 |
+
|
1010 |
+
|
1011 |
+
def test_count():
|
1012 |
+
expr = (x + y + 2 + sin(3*x))
|
1013 |
+
|
1014 |
+
assert expr.count(lambda u: u.is_Integer) == 2
|
1015 |
+
assert expr.count(lambda u: u.is_Symbol) == 3
|
1016 |
+
|
1017 |
+
assert expr.count(Integer) == 2
|
1018 |
+
assert expr.count(Symbol) == 3
|
1019 |
+
assert expr.count(2) == 1
|
1020 |
+
|
1021 |
+
a = Wild('a')
|
1022 |
+
|
1023 |
+
assert expr.count(sin) == 1
|
1024 |
+
assert expr.count(sin(a)) == 1
|
1025 |
+
assert expr.count(lambda u: type(u) is sin) == 1
|
1026 |
+
|
1027 |
+
assert f(x).count(f(x)) == 1
|
1028 |
+
assert f(x).diff(x).count(f(x)) == 1
|
1029 |
+
assert f(x).diff(x).count(x) == 2
|
1030 |
+
|
1031 |
+
|
1032 |
+
def test_has_basics():
|
1033 |
+
p = Wild('p')
|
1034 |
+
|
1035 |
+
assert sin(x).has(x)
|
1036 |
+
assert sin(x).has(sin)
|
1037 |
+
assert not sin(x).has(y)
|
1038 |
+
assert not sin(x).has(cos)
|
1039 |
+
assert f(x).has(x)
|
1040 |
+
assert f(x).has(f)
|
1041 |
+
assert not f(x).has(y)
|
1042 |
+
assert not f(x).has(g)
|
1043 |
+
|
1044 |
+
assert f(x).diff(x).has(x)
|
1045 |
+
assert f(x).diff(x).has(f)
|
1046 |
+
assert f(x).diff(x).has(Derivative)
|
1047 |
+
assert not f(x).diff(x).has(y)
|
1048 |
+
assert not f(x).diff(x).has(g)
|
1049 |
+
assert not f(x).diff(x).has(sin)
|
1050 |
+
|
1051 |
+
assert (x**2).has(Symbol)
|
1052 |
+
assert not (x**2).has(Wild)
|
1053 |
+
assert (2*p).has(Wild)
|
1054 |
+
|
1055 |
+
assert not x.has()
|
1056 |
+
|
1057 |
+
|
1058 |
+
def test_has_multiple():
|
1059 |
+
f = x**2*y + sin(2**t + log(z))
|
1060 |
+
|
1061 |
+
assert f.has(x)
|
1062 |
+
assert f.has(y)
|
1063 |
+
assert f.has(z)
|
1064 |
+
assert f.has(t)
|
1065 |
+
|
1066 |
+
assert not f.has(u)
|
1067 |
+
|
1068 |
+
assert f.has(x, y, z, t)
|
1069 |
+
assert f.has(x, y, z, t, u)
|
1070 |
+
|
1071 |
+
i = Integer(4400)
|
1072 |
+
|
1073 |
+
assert not i.has(x)
|
1074 |
+
|
1075 |
+
assert (i*x**i).has(x)
|
1076 |
+
assert not (i*y**i).has(x)
|
1077 |
+
assert (i*y**i).has(x, y)
|
1078 |
+
assert not (i*y**i).has(x, z)
|
1079 |
+
|
1080 |
+
|
1081 |
+
def test_has_piecewise():
|
1082 |
+
f = (x*y + 3/y)**(3 + 2)
|
1083 |
+
p = Piecewise((g(x), x < -1), (1, x <= 1), (f, True))
|
1084 |
+
|
1085 |
+
assert p.has(x)
|
1086 |
+
assert p.has(y)
|
1087 |
+
assert not p.has(z)
|
1088 |
+
assert p.has(1)
|
1089 |
+
assert p.has(3)
|
1090 |
+
assert not p.has(4)
|
1091 |
+
assert p.has(f)
|
1092 |
+
assert p.has(g)
|
1093 |
+
assert not p.has(h)
|
1094 |
+
|
1095 |
+
|
1096 |
+
def test_has_iterative():
|
1097 |
+
A, B, C = symbols('A,B,C', commutative=False)
|
1098 |
+
f = x*gamma(x)*sin(x)*exp(x*y)*A*B*C*cos(x*A*B)
|
1099 |
+
|
1100 |
+
assert f.has(x)
|
1101 |
+
assert f.has(x*y)
|
1102 |
+
assert f.has(x*sin(x))
|
1103 |
+
assert not f.has(x*sin(y))
|
1104 |
+
assert f.has(x*A)
|
1105 |
+
assert f.has(x*A*B)
|
1106 |
+
assert not f.has(x*A*C)
|
1107 |
+
assert f.has(x*A*B*C)
|
1108 |
+
assert not f.has(x*A*C*B)
|
1109 |
+
assert f.has(x*sin(x)*A*B*C)
|
1110 |
+
assert not f.has(x*sin(x)*A*C*B)
|
1111 |
+
assert not f.has(x*sin(y)*A*B*C)
|
1112 |
+
assert f.has(x*gamma(x))
|
1113 |
+
assert not f.has(x + sin(x))
|
1114 |
+
|
1115 |
+
assert (x & y & z).has(x & z)
|
1116 |
+
|
1117 |
+
|
1118 |
+
def test_has_integrals():
|
1119 |
+
f = Integral(x**2 + sin(x*y*z), (x, 0, x + y + z))
|
1120 |
+
|
1121 |
+
assert f.has(x + y)
|
1122 |
+
assert f.has(x + z)
|
1123 |
+
assert f.has(y + z)
|
1124 |
+
|
1125 |
+
assert f.has(x*y)
|
1126 |
+
assert f.has(x*z)
|
1127 |
+
assert f.has(y*z)
|
1128 |
+
|
1129 |
+
assert not f.has(2*x + y)
|
1130 |
+
assert not f.has(2*x*y)
|
1131 |
+
|
1132 |
+
|
1133 |
+
def test_has_tuple():
|
1134 |
+
assert Tuple(x, y).has(x)
|
1135 |
+
assert not Tuple(x, y).has(z)
|
1136 |
+
assert Tuple(f(x), g(x)).has(x)
|
1137 |
+
assert not Tuple(f(x), g(x)).has(y)
|
1138 |
+
assert Tuple(f(x), g(x)).has(f)
|
1139 |
+
assert Tuple(f(x), g(x)).has(f(x))
|
1140 |
+
# XXX to be deprecated
|
1141 |
+
#assert not Tuple(f, g).has(x)
|
1142 |
+
#assert Tuple(f, g).has(f)
|
1143 |
+
#assert not Tuple(f, g).has(h)
|
1144 |
+
assert Tuple(True).has(True)
|
1145 |
+
assert Tuple(True).has(S.true)
|
1146 |
+
assert not Tuple(True).has(1)
|
1147 |
+
|
1148 |
+
|
1149 |
+
def test_has_units():
|
1150 |
+
from sympy.physics.units import m, s
|
1151 |
+
|
1152 |
+
assert (x*m/s).has(x)
|
1153 |
+
assert (x*m/s).has(y, z) is False
|
1154 |
+
|
1155 |
+
|
1156 |
+
def test_has_polys():
|
1157 |
+
poly = Poly(x**2 + x*y*sin(z), x, y, t)
|
1158 |
+
|
1159 |
+
assert poly.has(x)
|
1160 |
+
assert poly.has(x, y, z)
|
1161 |
+
assert poly.has(x, y, z, t)
|
1162 |
+
|
1163 |
+
|
1164 |
+
def test_has_physics():
|
1165 |
+
assert FockState((x, y)).has(x)
|
1166 |
+
|
1167 |
+
|
1168 |
+
def test_as_poly_as_expr():
|
1169 |
+
f = x**2 + 2*x*y
|
1170 |
+
|
1171 |
+
assert f.as_poly().as_expr() == f
|
1172 |
+
assert f.as_poly(x, y).as_expr() == f
|
1173 |
+
|
1174 |
+
assert (f + sin(x)).as_poly(x, y) is None
|
1175 |
+
|
1176 |
+
p = Poly(f, x, y)
|
1177 |
+
|
1178 |
+
assert p.as_poly() == p
|
1179 |
+
|
1180 |
+
# https://github.com/sympy/sympy/issues/20610
|
1181 |
+
assert S(2).as_poly() is None
|
1182 |
+
assert sqrt(2).as_poly(extension=True) is None
|
1183 |
+
|
1184 |
+
raises(AttributeError, lambda: Tuple(x, x).as_poly(x))
|
1185 |
+
raises(AttributeError, lambda: Tuple(x ** 2, x, y).as_poly(x))
|
1186 |
+
|
1187 |
+
|
1188 |
+
def test_nonzero():
|
1189 |
+
assert bool(S.Zero) is False
|
1190 |
+
assert bool(S.One) is True
|
1191 |
+
assert bool(x) is True
|
1192 |
+
assert bool(x + y) is True
|
1193 |
+
assert bool(x - x) is False
|
1194 |
+
assert bool(x*y) is True
|
1195 |
+
assert bool(x*1) is True
|
1196 |
+
assert bool(x*0) is False
|
1197 |
+
|
1198 |
+
|
1199 |
+
def test_is_number():
|
1200 |
+
assert Float(3.14).is_number is True
|
1201 |
+
assert Integer(737).is_number is True
|
1202 |
+
assert Rational(3, 2).is_number is True
|
1203 |
+
assert Rational(8).is_number is True
|
1204 |
+
assert x.is_number is False
|
1205 |
+
assert (2*x).is_number is False
|
1206 |
+
assert (x + y).is_number is False
|
1207 |
+
assert log(2).is_number is True
|
1208 |
+
assert log(x).is_number is False
|
1209 |
+
assert (2 + log(2)).is_number is True
|
1210 |
+
assert (8 + log(2)).is_number is True
|
1211 |
+
assert (2 + log(x)).is_number is False
|
1212 |
+
assert (8 + log(2) + x).is_number is False
|
1213 |
+
assert (1 + x**2/x - x).is_number is True
|
1214 |
+
assert Tuple(Integer(1)).is_number is False
|
1215 |
+
assert Add(2, x).is_number is False
|
1216 |
+
assert Mul(3, 4).is_number is True
|
1217 |
+
assert Pow(log(2), 2).is_number is True
|
1218 |
+
assert oo.is_number is True
|
1219 |
+
g = WildFunction('g')
|
1220 |
+
assert g.is_number is False
|
1221 |
+
assert (2*g).is_number is False
|
1222 |
+
assert (x**2).subs(x, 3).is_number is True
|
1223 |
+
|
1224 |
+
# test extensibility of .is_number
|
1225 |
+
# on subinstances of Basic
|
1226 |
+
class A(Basic):
|
1227 |
+
pass
|
1228 |
+
a = A()
|
1229 |
+
assert a.is_number is False
|
1230 |
+
|
1231 |
+
|
1232 |
+
def test_as_coeff_add():
|
1233 |
+
assert S(2).as_coeff_add() == (2, ())
|
1234 |
+
assert S(3.0).as_coeff_add() == (0, (S(3.0),))
|
1235 |
+
assert S(-3.0).as_coeff_add() == (0, (S(-3.0),))
|
1236 |
+
assert x.as_coeff_add() == (0, (x,))
|
1237 |
+
assert (x - 1).as_coeff_add() == (-1, (x,))
|
1238 |
+
assert (x + 1).as_coeff_add() == (1, (x,))
|
1239 |
+
assert (x + 2).as_coeff_add() == (2, (x,))
|
1240 |
+
assert (x + y).as_coeff_add(y) == (x, (y,))
|
1241 |
+
assert (3*x).as_coeff_add(y) == (3*x, ())
|
1242 |
+
# don't do expansion
|
1243 |
+
e = (x + y)**2
|
1244 |
+
assert e.as_coeff_add(y) == (0, (e,))
|
1245 |
+
|
1246 |
+
|
1247 |
+
def test_as_coeff_mul():
|
1248 |
+
assert S(2).as_coeff_mul() == (2, ())
|
1249 |
+
assert S(3.0).as_coeff_mul() == (1, (S(3.0),))
|
1250 |
+
assert S(-3.0).as_coeff_mul() == (-1, (S(3.0),))
|
1251 |
+
assert S(-3.0).as_coeff_mul(rational=False) == (-S(3.0), ())
|
1252 |
+
assert x.as_coeff_mul() == (1, (x,))
|
1253 |
+
assert (-x).as_coeff_mul() == (-1, (x,))
|
1254 |
+
assert (2*x).as_coeff_mul() == (2, (x,))
|
1255 |
+
assert (x*y).as_coeff_mul(y) == (x, (y,))
|
1256 |
+
assert (3 + x).as_coeff_mul() == (1, (3 + x,))
|
1257 |
+
assert (3 + x).as_coeff_mul(y) == (3 + x, ())
|
1258 |
+
# don't do expansion
|
1259 |
+
e = exp(x + y)
|
1260 |
+
assert e.as_coeff_mul(y) == (1, (e,))
|
1261 |
+
e = 2**(x + y)
|
1262 |
+
assert e.as_coeff_mul(y) == (1, (e,))
|
1263 |
+
assert (1.1*x).as_coeff_mul(rational=False) == (1.1, (x,))
|
1264 |
+
assert (1.1*x).as_coeff_mul() == (1, (1.1, x))
|
1265 |
+
assert (-oo*x).as_coeff_mul(rational=True) == (-1, (oo, x))
|
1266 |
+
|
1267 |
+
|
1268 |
+
def test_as_coeff_exponent():
|
1269 |
+
assert (3*x**4).as_coeff_exponent(x) == (3, 4)
|
1270 |
+
assert (2*x**3).as_coeff_exponent(x) == (2, 3)
|
1271 |
+
assert (4*x**2).as_coeff_exponent(x) == (4, 2)
|
1272 |
+
assert (6*x**1).as_coeff_exponent(x) == (6, 1)
|
1273 |
+
assert (3*x**0).as_coeff_exponent(x) == (3, 0)
|
1274 |
+
assert (2*x**0).as_coeff_exponent(x) == (2, 0)
|
1275 |
+
assert (1*x**0).as_coeff_exponent(x) == (1, 0)
|
1276 |
+
assert (0*x**0).as_coeff_exponent(x) == (0, 0)
|
1277 |
+
assert (-1*x**0).as_coeff_exponent(x) == (-1, 0)
|
1278 |
+
assert (-2*x**0).as_coeff_exponent(x) == (-2, 0)
|
1279 |
+
assert (2*x**3 + pi*x**3).as_coeff_exponent(x) == (2 + pi, 3)
|
1280 |
+
assert (x*log(2)/(2*x + pi*x)).as_coeff_exponent(x) == \
|
1281 |
+
(log(2)/(2 + pi), 0)
|
1282 |
+
# issue 4784
|
1283 |
+
D = Derivative
|
1284 |
+
fx = D(f(x), x)
|
1285 |
+
assert fx.as_coeff_exponent(f(x)) == (fx, 0)
|
1286 |
+
|
1287 |
+
|
1288 |
+
def test_extractions():
|
1289 |
+
for base in (2, S.Exp1):
|
1290 |
+
assert Pow(base**x, 3, evaluate=False
|
1291 |
+
).extract_multiplicatively(base**x) == base**(2*x)
|
1292 |
+
assert (base**(5*x)).extract_multiplicatively(
|
1293 |
+
base**(3*x)) == base**(2*x)
|
1294 |
+
assert ((x*y)**3).extract_multiplicatively(x**2 * y) == x*y**2
|
1295 |
+
assert ((x*y)**3).extract_multiplicatively(x**4 * y) is None
|
1296 |
+
assert (2*x).extract_multiplicatively(2) == x
|
1297 |
+
assert (2*x).extract_multiplicatively(3) is None
|
1298 |
+
assert (2*x).extract_multiplicatively(-1) is None
|
1299 |
+
assert (S.Half*x).extract_multiplicatively(3) == x/6
|
1300 |
+
assert (sqrt(x)).extract_multiplicatively(x) is None
|
1301 |
+
assert (sqrt(x)).extract_multiplicatively(1/x) is None
|
1302 |
+
assert x.extract_multiplicatively(-x) is None
|
1303 |
+
assert (-2 - 4*I).extract_multiplicatively(-2) == 1 + 2*I
|
1304 |
+
assert (-2 - 4*I).extract_multiplicatively(3) is None
|
1305 |
+
assert (-2*x - 4*y - 8).extract_multiplicatively(-2) == x + 2*y + 4
|
1306 |
+
assert (-2*x*y - 4*x**2*y).extract_multiplicatively(-2*y) == 2*x**2 + x
|
1307 |
+
assert (2*x*y + 4*x**2*y).extract_multiplicatively(2*y) == 2*x**2 + x
|
1308 |
+
assert (-4*y**2*x).extract_multiplicatively(-3*y) is None
|
1309 |
+
assert (2*x).extract_multiplicatively(1) == 2*x
|
1310 |
+
assert (-oo).extract_multiplicatively(5) is -oo
|
1311 |
+
assert (oo).extract_multiplicatively(5) is oo
|
1312 |
+
|
1313 |
+
assert ((x*y)**3).extract_additively(1) is None
|
1314 |
+
assert (x + 1).extract_additively(x) == 1
|
1315 |
+
assert (x + 1).extract_additively(2*x) is None
|
1316 |
+
assert (x + 1).extract_additively(-x) is None
|
1317 |
+
assert (-x + 1).extract_additively(2*x) is None
|
1318 |
+
assert (2*x + 3).extract_additively(x) == x + 3
|
1319 |
+
assert (2*x + 3).extract_additively(2) == 2*x + 1
|
1320 |
+
assert (2*x + 3).extract_additively(3) == 2*x
|
1321 |
+
assert (2*x + 3).extract_additively(-2) is None
|
1322 |
+
assert (2*x + 3).extract_additively(3*x) is None
|
1323 |
+
assert (2*x + 3).extract_additively(2*x) == 3
|
1324 |
+
assert x.extract_additively(0) == x
|
1325 |
+
assert S(2).extract_additively(x) is None
|
1326 |
+
assert S(2.).extract_additively(2.) is S.Zero
|
1327 |
+
assert S(2.).extract_additively(2) is S.Zero
|
1328 |
+
assert S(2*x + 3).extract_additively(x + 1) == x + 2
|
1329 |
+
assert S(2*x + 3).extract_additively(y + 1) is None
|
1330 |
+
assert S(2*x - 3).extract_additively(x + 1) is None
|
1331 |
+
assert S(2*x - 3).extract_additively(y + z) is None
|
1332 |
+
assert ((a + 1)*x*4 + y).extract_additively(x).expand() == \
|
1333 |
+
4*a*x + 3*x + y
|
1334 |
+
assert ((a + 1)*x*4 + 3*y).extract_additively(x + 2*y).expand() == \
|
1335 |
+
4*a*x + 3*x + y
|
1336 |
+
assert (y*(x + 1)).extract_additively(x + 1) is None
|
1337 |
+
assert ((y + 1)*(x + 1) + 3).extract_additively(x + 1) == \
|
1338 |
+
y*(x + 1) + 3
|
1339 |
+
assert ((x + y)*(x + 1) + x + y + 3).extract_additively(x + y) == \
|
1340 |
+
x*(x + y) + 3
|
1341 |
+
assert (x + y + 2*((x + y)*(x + 1)) + 3).extract_additively((x + y)*(x + 1)) == \
|
1342 |
+
x + y + (x + 1)*(x + y) + 3
|
1343 |
+
assert ((y + 1)*(x + 2*y + 1) + 3).extract_additively(y + 1) == \
|
1344 |
+
(x + 2*y)*(y + 1) + 3
|
1345 |
+
assert (-x - x*I).extract_additively(-x) == -I*x
|
1346 |
+
# extraction does not leave artificats, now
|
1347 |
+
assert (4*x*(y + 1) + y).extract_additively(x) == x*(4*y + 3) + y
|
1348 |
+
|
1349 |
+
n = Symbol("n", integer=True)
|
1350 |
+
assert (Integer(-3)).could_extract_minus_sign() is True
|
1351 |
+
assert (-n*x + x).could_extract_minus_sign() != \
|
1352 |
+
(n*x - x).could_extract_minus_sign()
|
1353 |
+
assert (x - y).could_extract_minus_sign() != \
|
1354 |
+
(-x + y).could_extract_minus_sign()
|
1355 |
+
assert (1 - x - y).could_extract_minus_sign() is True
|
1356 |
+
assert (1 - x + y).could_extract_minus_sign() is False
|
1357 |
+
assert ((-x - x*y)/y).could_extract_minus_sign() is False
|
1358 |
+
assert ((x + x*y)/(-y)).could_extract_minus_sign() is True
|
1359 |
+
assert ((x + x*y)/y).could_extract_minus_sign() is False
|
1360 |
+
assert ((-x - y)/(x + y)).could_extract_minus_sign() is False
|
1361 |
+
|
1362 |
+
class sign_invariant(Function, Expr):
|
1363 |
+
nargs = 1
|
1364 |
+
def __neg__(self):
|
1365 |
+
return self
|
1366 |
+
foo = sign_invariant(x)
|
1367 |
+
assert foo == -foo
|
1368 |
+
assert foo.could_extract_minus_sign() is False
|
1369 |
+
assert (x - y).could_extract_minus_sign() is False
|
1370 |
+
assert (-x + y).could_extract_minus_sign() is True
|
1371 |
+
assert (x - 1).could_extract_minus_sign() is False
|
1372 |
+
assert (1 - x).could_extract_minus_sign() is True
|
1373 |
+
assert (sqrt(2) - 1).could_extract_minus_sign() is True
|
1374 |
+
assert (1 - sqrt(2)).could_extract_minus_sign() is False
|
1375 |
+
# check that result is canonical
|
1376 |
+
eq = (3*x + 15*y).extract_multiplicatively(3)
|
1377 |
+
assert eq.args == eq.func(*eq.args).args
|
1378 |
+
|
1379 |
+
|
1380 |
+
def test_nan_extractions():
|
1381 |
+
for r in (1, 0, I, nan):
|
1382 |
+
assert nan.extract_additively(r) is None
|
1383 |
+
assert nan.extract_multiplicatively(r) is None
|
1384 |
+
|
1385 |
+
|
1386 |
+
def test_coeff():
|
1387 |
+
assert (x + 1).coeff(x + 1) == 1
|
1388 |
+
assert (3*x).coeff(0) == 0
|
1389 |
+
assert (z*(1 + x)*x**2).coeff(1 + x) == z*x**2
|
1390 |
+
assert (1 + 2*x*x**(1 + x)).coeff(x*x**(1 + x)) == 2
|
1391 |
+
assert (1 + 2*x**(y + z)).coeff(x**(y + z)) == 2
|
1392 |
+
assert (3 + 2*x + 4*x**2).coeff(1) == 0
|
1393 |
+
assert (3 + 2*x + 4*x**2).coeff(-1) == 0
|
1394 |
+
assert (3 + 2*x + 4*x**2).coeff(x) == 2
|
1395 |
+
assert (3 + 2*x + 4*x**2).coeff(x**2) == 4
|
1396 |
+
assert (3 + 2*x + 4*x**2).coeff(x**3) == 0
|
1397 |
+
|
1398 |
+
assert (-x/8 + x*y).coeff(x) == Rational(-1, 8) + y
|
1399 |
+
assert (-x/8 + x*y).coeff(-x) == S.One/8
|
1400 |
+
assert (4*x).coeff(2*x) == 0
|
1401 |
+
assert (2*x).coeff(2*x) == 1
|
1402 |
+
assert (-oo*x).coeff(x*oo) == -1
|
1403 |
+
assert (10*x).coeff(x, 0) == 0
|
1404 |
+
assert (10*x).coeff(10*x, 0) == 0
|
1405 |
+
|
1406 |
+
n1, n2 = symbols('n1 n2', commutative=False)
|
1407 |
+
assert (n1*n2).coeff(n1) == 1
|
1408 |
+
assert (n1*n2).coeff(n2) == n1
|
1409 |
+
assert (n1*n2 + x*n1).coeff(n1) == 1 # 1*n1*(n2+x)
|
1410 |
+
assert (n2*n1 + x*n1).coeff(n1) == n2 + x
|
1411 |
+
assert (n2*n1 + x*n1**2).coeff(n1) == n2
|
1412 |
+
assert (n1**x).coeff(n1) == 0
|
1413 |
+
assert (n1*n2 + n2*n1).coeff(n1) == 0
|
1414 |
+
assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=1) == n2
|
1415 |
+
assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=0) == 2
|
1416 |
+
|
1417 |
+
assert (2*f(x) + 3*f(x).diff(x)).coeff(f(x)) == 2
|
1418 |
+
|
1419 |
+
expr = z*(x + y)**2
|
1420 |
+
expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2
|
1421 |
+
assert expr.coeff(z) == (x + y)**2
|
1422 |
+
assert expr.coeff(x + y) == 0
|
1423 |
+
assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2
|
1424 |
+
|
1425 |
+
assert (x + y + 3*z).coeff(1) == x + y
|
1426 |
+
assert (-x + 2*y).coeff(-1) == x
|
1427 |
+
assert (x - 2*y).coeff(-1) == 2*y
|
1428 |
+
assert (3 + 2*x + 4*x**2).coeff(1) == 0
|
1429 |
+
assert (-x - 2*y).coeff(2) == -y
|
1430 |
+
assert (x + sqrt(2)*x).coeff(sqrt(2)) == x
|
1431 |
+
assert (3 + 2*x + 4*x**2).coeff(x) == 2
|
1432 |
+
assert (3 + 2*x + 4*x**2).coeff(x**2) == 4
|
1433 |
+
assert (3 + 2*x + 4*x**2).coeff(x**3) == 0
|
1434 |
+
assert (z*(x + y)**2).coeff((x + y)**2) == z
|
1435 |
+
assert (z*(x + y)**2).coeff(x + y) == 0
|
1436 |
+
assert (2 + 2*x + (x + 1)*y).coeff(x + 1) == y
|
1437 |
+
|
1438 |
+
assert (x + 2*y + 3).coeff(1) == x
|
1439 |
+
assert (x + 2*y + 3).coeff(x, 0) == 2*y + 3
|
1440 |
+
assert (x**2 + 2*y + 3*x).coeff(x**2, 0) == 2*y + 3*x
|
1441 |
+
assert x.coeff(0, 0) == 0
|
1442 |
+
assert x.coeff(x, 0) == 0
|
1443 |
+
|
1444 |
+
n, m, o, l = symbols('n m o l', commutative=False)
|
1445 |
+
assert n.coeff(n) == 1
|
1446 |
+
assert y.coeff(n) == 0
|
1447 |
+
assert (3*n).coeff(n) == 3
|
1448 |
+
assert (2 + n).coeff(x*m) == 0
|
1449 |
+
assert (2*x*n*m).coeff(x) == 2*n*m
|
1450 |
+
assert (2 + n).coeff(x*m*n + y) == 0
|
1451 |
+
assert (2*x*n*m).coeff(3*n) == 0
|
1452 |
+
assert (n*m + m*n*m).coeff(n) == 1 + m
|
1453 |
+
assert (n*m + m*n*m).coeff(n, right=True) == m # = (1 + m)*n*m
|
1454 |
+
assert (n*m + m*n).coeff(n) == 0
|
1455 |
+
assert (n*m + o*m*n).coeff(m*n) == o
|
1456 |
+
assert (n*m + o*m*n).coeff(m*n, right=True) == 1
|
1457 |
+
assert (n*m + n*m*n).coeff(n*m, right=True) == 1 + n # = n*m*(n + 1)
|
1458 |
+
|
1459 |
+
assert (x*y).coeff(z, 0) == x*y
|
1460 |
+
|
1461 |
+
assert (x*n + y*n + z*m).coeff(n) == x + y
|
1462 |
+
assert (n*m + n*o + o*l).coeff(n, right=True) == m + o
|
1463 |
+
assert (x*n*m*n + y*n*m*o + z*l).coeff(m, right=True) == x*n + y*o
|
1464 |
+
assert (x*n*m*n + x*n*m*o + z*l).coeff(m, right=True) == n + o
|
1465 |
+
assert (x*n*m*n + x*n*m*o + z*l).coeff(m) == x*n
|
1466 |
+
|
1467 |
+
|
1468 |
+
def test_coeff2():
|
1469 |
+
r, kappa = symbols('r, kappa')
|
1470 |
+
psi = Function("psi")
|
1471 |
+
g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2))
|
1472 |
+
g = g.expand()
|
1473 |
+
assert g.coeff(psi(r).diff(r)) == 2/r
|
1474 |
+
|
1475 |
+
|
1476 |
+
def test_coeff2_0():
|
1477 |
+
r, kappa = symbols('r, kappa')
|
1478 |
+
psi = Function("psi")
|
1479 |
+
g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2))
|
1480 |
+
g = g.expand()
|
1481 |
+
|
1482 |
+
assert g.coeff(psi(r).diff(r, 2)) == 1
|
1483 |
+
|
1484 |
+
|
1485 |
+
def test_coeff_expand():
|
1486 |
+
expr = z*(x + y)**2
|
1487 |
+
expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2
|
1488 |
+
assert expr.coeff(z) == (x + y)**2
|
1489 |
+
assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2
|
1490 |
+
|
1491 |
+
|
1492 |
+
def test_integrate():
|
1493 |
+
assert x.integrate(x) == x**2/2
|
1494 |
+
assert x.integrate((x, 0, 1)) == S.Half
|
1495 |
+
|
1496 |
+
|
1497 |
+
def test_as_base_exp():
|
1498 |
+
assert x.as_base_exp() == (x, S.One)
|
1499 |
+
assert (x*y*z).as_base_exp() == (x*y*z, S.One)
|
1500 |
+
assert (x + y + z).as_base_exp() == (x + y + z, S.One)
|
1501 |
+
assert ((x + y)**z).as_base_exp() == (x + y, z)
|
1502 |
+
|
1503 |
+
|
1504 |
+
def test_issue_4963():
|
1505 |
+
assert hasattr(Mul(x, y), "is_commutative")
|
1506 |
+
assert hasattr(Mul(x, y, evaluate=False), "is_commutative")
|
1507 |
+
assert hasattr(Pow(x, y), "is_commutative")
|
1508 |
+
assert hasattr(Pow(x, y, evaluate=False), "is_commutative")
|
1509 |
+
expr = Mul(Pow(2, 2, evaluate=False), 3, evaluate=False) + 1
|
1510 |
+
assert hasattr(expr, "is_commutative")
|
1511 |
+
|
1512 |
+
|
1513 |
+
def test_action_verbs():
|
1514 |
+
assert nsimplify(1/(exp(3*pi*x/5) + 1)) == \
|
1515 |
+
(1/(exp(3*pi*x/5) + 1)).nsimplify()
|
1516 |
+
assert ratsimp(1/x + 1/y) == (1/x + 1/y).ratsimp()
|
1517 |
+
assert trigsimp(log(x), deep=True) == (log(x)).trigsimp(deep=True)
|
1518 |
+
assert radsimp(1/(2 + sqrt(2))) == (1/(2 + sqrt(2))).radsimp()
|
1519 |
+
assert radsimp(1/(a + b*sqrt(c)), symbolic=False) == \
|
1520 |
+
(1/(a + b*sqrt(c))).radsimp(symbolic=False)
|
1521 |
+
assert powsimp(x**y*x**z*y**z, combine='all') == \
|
1522 |
+
(x**y*x**z*y**z).powsimp(combine='all')
|
1523 |
+
assert (x**t*y**t).powsimp(force=True) == (x*y)**t
|
1524 |
+
assert simplify(x**y*x**z*y**z) == (x**y*x**z*y**z).simplify()
|
1525 |
+
assert together(1/x + 1/y) == (1/x + 1/y).together()
|
1526 |
+
assert collect(a*x**2 + b*x**2 + a*x - b*x + c, x) == \
|
1527 |
+
(a*x**2 + b*x**2 + a*x - b*x + c).collect(x)
|
1528 |
+
assert apart(y/(y + 2)/(y + 1), y) == (y/(y + 2)/(y + 1)).apart(y)
|
1529 |
+
assert combsimp(y/(x + 2)/(x + 1)) == (y/(x + 2)/(x + 1)).combsimp()
|
1530 |
+
assert gammasimp(gamma(x)/gamma(x-5)) == (gamma(x)/gamma(x-5)).gammasimp()
|
1531 |
+
assert factor(x**2 + 5*x + 6) == (x**2 + 5*x + 6).factor()
|
1532 |
+
assert refine(sqrt(x**2)) == sqrt(x**2).refine()
|
1533 |
+
assert cancel((x**2 + 5*x + 6)/(x + 2)) == ((x**2 + 5*x + 6)/(x + 2)).cancel()
|
1534 |
+
|
1535 |
+
|
1536 |
+
def test_as_powers_dict():
|
1537 |
+
assert x.as_powers_dict() == {x: 1}
|
1538 |
+
assert (x**y*z).as_powers_dict() == {x: y, z: 1}
|
1539 |
+
assert Mul(2, 2, evaluate=False).as_powers_dict() == {S(2): S(2)}
|
1540 |
+
assert (x*y).as_powers_dict()[z] == 0
|
1541 |
+
assert (x + y).as_powers_dict()[z] == 0
|
1542 |
+
|
1543 |
+
|
1544 |
+
def test_as_coefficients_dict():
|
1545 |
+
check = [S.One, x, y, x*y, 1]
|
1546 |
+
assert [Add(3*x, 2*x, y, 3).as_coefficients_dict()[i] for i in check] == \
|
1547 |
+
[3, 5, 1, 0, 3]
|
1548 |
+
assert [Add(3*x, 2*x, y, 3, evaluate=False).as_coefficients_dict()[i]
|
1549 |
+
for i in check] == [3, 5, 1, 0, 3]
|
1550 |
+
assert [(3*x*y).as_coefficients_dict()[i] for i in check] == \
|
1551 |
+
[0, 0, 0, 3, 0]
|
1552 |
+
assert [(3.0*x*y).as_coefficients_dict()[i] for i in check] == \
|
1553 |
+
[0, 0, 0, 3.0, 0]
|
1554 |
+
assert (3.0*x*y).as_coefficients_dict()[3.0*x*y] == 0
|
1555 |
+
eq = x*(x + 1)*a + x*b + c/x
|
1556 |
+
assert eq.as_coefficients_dict(x) == {x: b, 1/x: c,
|
1557 |
+
x*(x + 1): a}
|
1558 |
+
assert eq.expand().as_coefficients_dict(x) == {x**2: a, x: a + b, 1/x: c}
|
1559 |
+
assert x.as_coefficients_dict() == {x: S.One}
|
1560 |
+
|
1561 |
+
|
1562 |
+
def test_args_cnc():
|
1563 |
+
A = symbols('A', commutative=False)
|
1564 |
+
assert (x + A).args_cnc() == \
|
1565 |
+
[[], [x + A]]
|
1566 |
+
assert (x + a).args_cnc() == \
|
1567 |
+
[[a + x], []]
|
1568 |
+
assert (x*a).args_cnc() == \
|
1569 |
+
[[a, x], []]
|
1570 |
+
assert (x*y*A*(A + 1)).args_cnc(cset=True) == \
|
1571 |
+
[{x, y}, [A, 1 + A]]
|
1572 |
+
assert Mul(x, x, evaluate=False).args_cnc(cset=True, warn=False) == \
|
1573 |
+
[{x}, []]
|
1574 |
+
assert Mul(x, x**2, evaluate=False).args_cnc(cset=True, warn=False) == \
|
1575 |
+
[{x, x**2}, []]
|
1576 |
+
raises(ValueError, lambda: Mul(x, x, evaluate=False).args_cnc(cset=True))
|
1577 |
+
assert Mul(x, y, x, evaluate=False).args_cnc() == \
|
1578 |
+
[[x, y, x], []]
|
1579 |
+
# always split -1 from leading number
|
1580 |
+
assert (-1.*x).args_cnc() == [[-1, 1.0, x], []]
|
1581 |
+
|
1582 |
+
|
1583 |
+
def test_new_rawargs():
|
1584 |
+
n = Symbol('n', commutative=False)
|
1585 |
+
a = x + n
|
1586 |
+
assert a.is_commutative is False
|
1587 |
+
assert a._new_rawargs(x).is_commutative
|
1588 |
+
assert a._new_rawargs(x, y).is_commutative
|
1589 |
+
assert a._new_rawargs(x, n).is_commutative is False
|
1590 |
+
assert a._new_rawargs(x, y, n).is_commutative is False
|
1591 |
+
m = x*n
|
1592 |
+
assert m.is_commutative is False
|
1593 |
+
assert m._new_rawargs(x).is_commutative
|
1594 |
+
assert m._new_rawargs(n).is_commutative is False
|
1595 |
+
assert m._new_rawargs(x, y).is_commutative
|
1596 |
+
assert m._new_rawargs(x, n).is_commutative is False
|
1597 |
+
assert m._new_rawargs(x, y, n).is_commutative is False
|
1598 |
+
|
1599 |
+
assert m._new_rawargs(x, n, reeval=False).is_commutative is False
|
1600 |
+
assert m._new_rawargs(S.One) is S.One
|
1601 |
+
|
1602 |
+
|
1603 |
+
def test_issue_5226():
|
1604 |
+
assert Add(evaluate=False) == 0
|
1605 |
+
assert Mul(evaluate=False) == 1
|
1606 |
+
assert Mul(x + y, evaluate=False).is_Add
|
1607 |
+
|
1608 |
+
|
1609 |
+
def test_free_symbols():
|
1610 |
+
# free_symbols should return the free symbols of an object
|
1611 |
+
assert S.One.free_symbols == set()
|
1612 |
+
assert x.free_symbols == {x}
|
1613 |
+
assert Integral(x, (x, 1, y)).free_symbols == {y}
|
1614 |
+
assert (-Integral(x, (x, 1, y))).free_symbols == {y}
|
1615 |
+
assert meter.free_symbols == set()
|
1616 |
+
assert (meter**x).free_symbols == {x}
|
1617 |
+
|
1618 |
+
|
1619 |
+
def test_has_free():
|
1620 |
+
assert x.has_free(x)
|
1621 |
+
assert not x.has_free(y)
|
1622 |
+
assert (x + y).has_free(x)
|
1623 |
+
assert (x + y).has_free(*(x, z))
|
1624 |
+
assert f(x).has_free(x)
|
1625 |
+
assert f(x).has_free(f(x))
|
1626 |
+
assert Integral(f(x), (f(x), 1, y)).has_free(y)
|
1627 |
+
assert not Integral(f(x), (f(x), 1, y)).has_free(x)
|
1628 |
+
assert not Integral(f(x), (f(x), 1, y)).has_free(f(x))
|
1629 |
+
# simple extraction
|
1630 |
+
assert (x + 1 + y).has_free(x + 1)
|
1631 |
+
assert not (x + 2 + y).has_free(x + 1)
|
1632 |
+
assert (2 + 3*x*y).has_free(3*x)
|
1633 |
+
raises(TypeError, lambda: x.has_free({x, y}))
|
1634 |
+
s = FiniteSet(1, 2)
|
1635 |
+
assert Piecewise((s, x > 3), (4, True)).has_free(s)
|
1636 |
+
assert not Piecewise((1, x > 3), (4, True)).has_free(s)
|
1637 |
+
# can't make set of these, but fallback will handle
|
1638 |
+
raises(TypeError, lambda: x.has_free(y, []))
|
1639 |
+
|
1640 |
+
|
1641 |
+
def test_has_xfree():
|
1642 |
+
assert (x + 1).has_xfree({x})
|
1643 |
+
assert ((x + 1)**2).has_xfree({x + 1})
|
1644 |
+
assert not (x + y + 1).has_xfree({x + 1})
|
1645 |
+
raises(TypeError, lambda: x.has_xfree(x))
|
1646 |
+
raises(TypeError, lambda: x.has_xfree([x]))
|
1647 |
+
|
1648 |
+
|
1649 |
+
def test_issue_5300():
|
1650 |
+
x = Symbol('x', commutative=False)
|
1651 |
+
assert x*sqrt(2)/sqrt(6) == x*sqrt(3)/3
|
1652 |
+
|
1653 |
+
|
1654 |
+
def test_floordiv():
|
1655 |
+
from sympy.functions.elementary.integers import floor
|
1656 |
+
assert x // y == floor(x / y)
|
1657 |
+
|
1658 |
+
|
1659 |
+
def test_as_coeff_Mul():
|
1660 |
+
assert Integer(3).as_coeff_Mul() == (Integer(3), Integer(1))
|
1661 |
+
assert Rational(3, 4).as_coeff_Mul() == (Rational(3, 4), Integer(1))
|
1662 |
+
assert Float(5.0).as_coeff_Mul() == (Float(5.0), Integer(1))
|
1663 |
+
|
1664 |
+
assert (Integer(3)*x).as_coeff_Mul() == (Integer(3), x)
|
1665 |
+
assert (Rational(3, 4)*x).as_coeff_Mul() == (Rational(3, 4), x)
|
1666 |
+
assert (Float(5.0)*x).as_coeff_Mul() == (Float(5.0), x)
|
1667 |
+
|
1668 |
+
assert (Integer(3)*x*y).as_coeff_Mul() == (Integer(3), x*y)
|
1669 |
+
assert (Rational(3, 4)*x*y).as_coeff_Mul() == (Rational(3, 4), x*y)
|
1670 |
+
assert (Float(5.0)*x*y).as_coeff_Mul() == (Float(5.0), x*y)
|
1671 |
+
|
1672 |
+
assert (x).as_coeff_Mul() == (S.One, x)
|
1673 |
+
assert (x*y).as_coeff_Mul() == (S.One, x*y)
|
1674 |
+
assert (-oo*x).as_coeff_Mul(rational=True) == (-1, oo*x)
|
1675 |
+
|
1676 |
+
|
1677 |
+
def test_as_coeff_Add():
|
1678 |
+
assert Integer(3).as_coeff_Add() == (Integer(3), Integer(0))
|
1679 |
+
assert Rational(3, 4).as_coeff_Add() == (Rational(3, 4), Integer(0))
|
1680 |
+
assert Float(5.0).as_coeff_Add() == (Float(5.0), Integer(0))
|
1681 |
+
|
1682 |
+
assert (Integer(3) + x).as_coeff_Add() == (Integer(3), x)
|
1683 |
+
assert (Rational(3, 4) + x).as_coeff_Add() == (Rational(3, 4), x)
|
1684 |
+
assert (Float(5.0) + x).as_coeff_Add() == (Float(5.0), x)
|
1685 |
+
assert (Float(5.0) + x).as_coeff_Add(rational=True) == (0, Float(5.0) + x)
|
1686 |
+
|
1687 |
+
assert (Integer(3) + x + y).as_coeff_Add() == (Integer(3), x + y)
|
1688 |
+
assert (Rational(3, 4) + x + y).as_coeff_Add() == (Rational(3, 4), x + y)
|
1689 |
+
assert (Float(5.0) + x + y).as_coeff_Add() == (Float(5.0), x + y)
|
1690 |
+
|
1691 |
+
assert (x).as_coeff_Add() == (S.Zero, x)
|
1692 |
+
assert (x*y).as_coeff_Add() == (S.Zero, x*y)
|
1693 |
+
|
1694 |
+
|
1695 |
+
def test_expr_sorting():
|
1696 |
+
|
1697 |
+
exprs = [1/x**2, 1/x, sqrt(sqrt(x)), sqrt(x), x, sqrt(x)**3, x**2]
|
1698 |
+
assert sorted(exprs, key=default_sort_key) == exprs
|
1699 |
+
|
1700 |
+
exprs = [x, 2*x, 2*x**2, 2*x**3, x**n, 2*x**n, sin(x), sin(x)**n,
|
1701 |
+
sin(x**2), cos(x), cos(x**2), tan(x)]
|
1702 |
+
assert sorted(exprs, key=default_sort_key) == exprs
|
1703 |
+
|
1704 |
+
exprs = [x + 1, x**2 + x + 1, x**3 + x**2 + x + 1]
|
1705 |
+
assert sorted(exprs, key=default_sort_key) == exprs
|
1706 |
+
|
1707 |
+
exprs = [S(4), x - 3*I/2, x + 3*I/2, x - 4*I + 1, x + 4*I + 1]
|
1708 |
+
assert sorted(exprs, key=default_sort_key) == exprs
|
1709 |
+
|
1710 |
+
exprs = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
|
1711 |
+
assert sorted(exprs, key=default_sort_key) == exprs
|
1712 |
+
|
1713 |
+
exprs = [f(x), g(x), exp(x), sin(x), cos(x), factorial(x)]
|
1714 |
+
assert sorted(exprs, key=default_sort_key) == exprs
|
1715 |
+
|
1716 |
+
exprs = [Tuple(x, y), Tuple(x, z), Tuple(x, y, z)]
|
1717 |
+
assert sorted(exprs, key=default_sort_key) == exprs
|
1718 |
+
|
1719 |
+
exprs = [[3], [1, 2]]
|
1720 |
+
assert sorted(exprs, key=default_sort_key) == exprs
|
1721 |
+
|
1722 |
+
exprs = [[1, 2], [2, 3]]
|
1723 |
+
assert sorted(exprs, key=default_sort_key) == exprs
|
1724 |
+
|
1725 |
+
exprs = [[1, 2], [1, 2, 3]]
|
1726 |
+
assert sorted(exprs, key=default_sort_key) == exprs
|
1727 |
+
|
1728 |
+
exprs = [{x: -y}, {x: y}]
|
1729 |
+
assert sorted(exprs, key=default_sort_key) == exprs
|
1730 |
+
|
1731 |
+
exprs = [{1}, {1, 2}]
|
1732 |
+
assert sorted(exprs, key=default_sort_key) == exprs
|
1733 |
+
|
1734 |
+
a, b = exprs = [Dummy('x'), Dummy('x')]
|
1735 |
+
assert sorted([b, a], key=default_sort_key) == exprs
|
1736 |
+
|
1737 |
+
|
1738 |
+
def test_as_ordered_factors():
|
1739 |
+
|
1740 |
+
assert x.as_ordered_factors() == [x]
|
1741 |
+
assert (2*x*x**n*sin(x)*cos(x)).as_ordered_factors() \
|
1742 |
+
== [Integer(2), x, x**n, sin(x), cos(x)]
|
1743 |
+
|
1744 |
+
args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
|
1745 |
+
expr = Mul(*args)
|
1746 |
+
|
1747 |
+
assert expr.as_ordered_factors() == args
|
1748 |
+
|
1749 |
+
A, B = symbols('A,B', commutative=False)
|
1750 |
+
|
1751 |
+
assert (A*B).as_ordered_factors() == [A, B]
|
1752 |
+
assert (B*A).as_ordered_factors() == [B, A]
|
1753 |
+
|
1754 |
+
|
1755 |
+
def test_as_ordered_terms():
|
1756 |
+
|
1757 |
+
assert x.as_ordered_terms() == [x]
|
1758 |
+
assert (sin(x)**2*cos(x) + sin(x)*cos(x)**2 + 1).as_ordered_terms() \
|
1759 |
+
== [sin(x)**2*cos(x), sin(x)*cos(x)**2, 1]
|
1760 |
+
|
1761 |
+
args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
|
1762 |
+
expr = Add(*args)
|
1763 |
+
|
1764 |
+
assert expr.as_ordered_terms() == args
|
1765 |
+
|
1766 |
+
assert (1 + 4*sqrt(3)*pi*x).as_ordered_terms() == [4*pi*x*sqrt(3), 1]
|
1767 |
+
|
1768 |
+
assert ( 2 + 3*I).as_ordered_terms() == [2, 3*I]
|
1769 |
+
assert (-2 + 3*I).as_ordered_terms() == [-2, 3*I]
|
1770 |
+
assert ( 2 - 3*I).as_ordered_terms() == [2, -3*I]
|
1771 |
+
assert (-2 - 3*I).as_ordered_terms() == [-2, -3*I]
|
1772 |
+
|
1773 |
+
assert ( 4 + 3*I).as_ordered_terms() == [4, 3*I]
|
1774 |
+
assert (-4 + 3*I).as_ordered_terms() == [-4, 3*I]
|
1775 |
+
assert ( 4 - 3*I).as_ordered_terms() == [4, -3*I]
|
1776 |
+
assert (-4 - 3*I).as_ordered_terms() == [-4, -3*I]
|
1777 |
+
|
1778 |
+
e = x**2*y**2 + x*y**4 + y + 2
|
1779 |
+
|
1780 |
+
assert e.as_ordered_terms(order="lex") == [x**2*y**2, x*y**4, y, 2]
|
1781 |
+
assert e.as_ordered_terms(order="grlex") == [x*y**4, x**2*y**2, y, 2]
|
1782 |
+
assert e.as_ordered_terms(order="rev-lex") == [2, y, x*y**4, x**2*y**2]
|
1783 |
+
assert e.as_ordered_terms(order="rev-grlex") == [2, y, x**2*y**2, x*y**4]
|
1784 |
+
|
1785 |
+
k = symbols('k')
|
1786 |
+
assert k.as_ordered_terms(data=True) == ([(k, ((1.0, 0.0), (1,), ()))], [k])
|
1787 |
+
|
1788 |
+
|
1789 |
+
def test_sort_key_atomic_expr():
|
1790 |
+
from sympy.physics.units import m, s
|
1791 |
+
assert sorted([-m, s], key=lambda arg: arg.sort_key()) == [-m, s]
|
1792 |
+
|
1793 |
+
|
1794 |
+
def test_eval_interval():
|
1795 |
+
assert exp(x)._eval_interval(*Tuple(x, 0, 1)) == exp(1) - exp(0)
|
1796 |
+
|
1797 |
+
# issue 4199
|
1798 |
+
a = x/y
|
1799 |
+
raises(NotImplementedError, lambda: a._eval_interval(x, S.Zero, oo)._eval_interval(y, oo, S.Zero))
|
1800 |
+
raises(NotImplementedError, lambda: a._eval_interval(x, S.Zero, oo)._eval_interval(y, S.Zero, oo))
|
1801 |
+
a = x - y
|
1802 |
+
raises(NotImplementedError, lambda: a._eval_interval(x, S.One, oo)._eval_interval(y, oo, S.One))
|
1803 |
+
raises(ValueError, lambda: x._eval_interval(x, None, None))
|
1804 |
+
a = -y*Heaviside(x - y)
|
1805 |
+
assert a._eval_interval(x, -oo, oo) == -y
|
1806 |
+
assert a._eval_interval(x, oo, -oo) == y
|
1807 |
+
|
1808 |
+
|
1809 |
+
def test_eval_interval_zoo():
|
1810 |
+
# Test that limit is used when zoo is returned
|
1811 |
+
assert Si(1/x)._eval_interval(x, S.Zero, S.One) == -pi/2 + Si(1)
|
1812 |
+
|
1813 |
+
|
1814 |
+
def test_primitive():
|
1815 |
+
assert (3*(x + 1)**2).primitive() == (3, (x + 1)**2)
|
1816 |
+
assert (6*x + 2).primitive() == (2, 3*x + 1)
|
1817 |
+
assert (x/2 + 3).primitive() == (S.Half, x + 6)
|
1818 |
+
eq = (6*x + 2)*(x/2 + 3)
|
1819 |
+
assert eq.primitive()[0] == 1
|
1820 |
+
eq = (2 + 2*x)**2
|
1821 |
+
assert eq.primitive()[0] == 1
|
1822 |
+
assert (4.0*x).primitive() == (1, 4.0*x)
|
1823 |
+
assert (4.0*x + y/2).primitive() == (S.Half, 8.0*x + y)
|
1824 |
+
assert (-2*x).primitive() == (2, -x)
|
1825 |
+
assert Add(5*z/7, 0.5*x, 3*y/2, evaluate=False).primitive() == \
|
1826 |
+
(S.One/14, 7.0*x + 21*y + 10*z)
|
1827 |
+
for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
|
1828 |
+
assert (i + x/3).primitive() == \
|
1829 |
+
(S.One/3, i + x)
|
1830 |
+
assert (S.Infinity + 2*x/3 + 4*y/7).primitive() == \
|
1831 |
+
(S.One/21, 14*x + 12*y + oo)
|
1832 |
+
assert S.Zero.primitive() == (S.One, S.Zero)
|
1833 |
+
|
1834 |
+
|
1835 |
+
def test_issue_5843():
|
1836 |
+
a = 1 + x
|
1837 |
+
assert (2*a).extract_multiplicatively(a) == 2
|
1838 |
+
assert (4*a).extract_multiplicatively(2*a) == 2
|
1839 |
+
assert ((3*a)*(2*a)).extract_multiplicatively(a) == 6*a
|
1840 |
+
|
1841 |
+
|
1842 |
+
def test_is_constant():
|
1843 |
+
from sympy.solvers.solvers import checksol
|
1844 |
+
assert Sum(x, (x, 1, 10)).is_constant() is True
|
1845 |
+
assert Sum(x, (x, 1, n)).is_constant() is False
|
1846 |
+
assert Sum(x, (x, 1, n)).is_constant(y) is True
|
1847 |
+
assert Sum(x, (x, 1, n)).is_constant(n) is False
|
1848 |
+
assert Sum(x, (x, 1, n)).is_constant(x) is True
|
1849 |
+
eq = a*cos(x)**2 + a*sin(x)**2 - a
|
1850 |
+
assert eq.is_constant() is True
|
1851 |
+
assert eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0
|
1852 |
+
assert x.is_constant() is False
|
1853 |
+
assert x.is_constant(y) is True
|
1854 |
+
assert log(x/y).is_constant() is False
|
1855 |
+
|
1856 |
+
assert checksol(x, x, Sum(x, (x, 1, n))) is False
|
1857 |
+
assert checksol(x, x, Sum(x, (x, 1, n))) is False
|
1858 |
+
assert f(1).is_constant
|
1859 |
+
assert checksol(x, x, f(x)) is False
|
1860 |
+
|
1861 |
+
assert Pow(x, S.Zero, evaluate=False).is_constant() is True # == 1
|
1862 |
+
assert Pow(S.Zero, x, evaluate=False).is_constant() is False # == 0 or 1
|
1863 |
+
assert (2**x).is_constant() is False
|
1864 |
+
assert Pow(S(2), S(3), evaluate=False).is_constant() is True
|
1865 |
+
|
1866 |
+
z1, z2 = symbols('z1 z2', zero=True)
|
1867 |
+
assert (z1 + 2*z2).is_constant() is True
|
1868 |
+
|
1869 |
+
assert meter.is_constant() is True
|
1870 |
+
assert (3*meter).is_constant() is True
|
1871 |
+
assert (x*meter).is_constant() is False
|
1872 |
+
|
1873 |
+
|
1874 |
+
def test_equals():
|
1875 |
+
assert (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2).equals(0)
|
1876 |
+
assert (x**2 - 1).equals((x + 1)*(x - 1))
|
1877 |
+
assert (cos(x)**2 + sin(x)**2).equals(1)
|
1878 |
+
assert (a*cos(x)**2 + a*sin(x)**2).equals(a)
|
1879 |
+
r = sqrt(2)
|
1880 |
+
assert (-1/(r + r*x) + 1/r/(1 + x)).equals(0)
|
1881 |
+
assert factorial(x + 1).equals((x + 1)*factorial(x))
|
1882 |
+
assert sqrt(3).equals(2*sqrt(3)) is False
|
1883 |
+
assert (sqrt(5)*sqrt(3)).equals(sqrt(3)) is False
|
1884 |
+
assert (sqrt(5) + sqrt(3)).equals(0) is False
|
1885 |
+
assert (sqrt(5) + pi).equals(0) is False
|
1886 |
+
assert meter.equals(0) is False
|
1887 |
+
assert (3*meter**2).equals(0) is False
|
1888 |
+
eq = -(-1)**(S(3)/4)*6**(S.One/4) + (-6)**(S.One/4)*I
|
1889 |
+
if eq != 0: # if canonicalization makes this zero, skip the test
|
1890 |
+
assert eq.equals(0)
|
1891 |
+
assert sqrt(x).equals(0) is False
|
1892 |
+
|
1893 |
+
# from integrate(x*sqrt(1 + 2*x), x);
|
1894 |
+
# diff is zero only when assumptions allow
|
1895 |
+
i = 2*sqrt(2)*x**(S(5)/2)*(1 + 1/(2*x))**(S(5)/2)/5 + \
|
1896 |
+
2*sqrt(2)*x**(S(3)/2)*(1 + 1/(2*x))**(S(5)/2)/(-6 - 3/x)
|
1897 |
+
ans = sqrt(2*x + 1)*(6*x**2 + x - 1)/15
|
1898 |
+
diff = i - ans
|
1899 |
+
assert diff.equals(0) is None # should be False, but previously this was False due to wrong intermediate result
|
1900 |
+
assert diff.subs(x, Rational(-1, 2)/2) == 7*sqrt(2)/120
|
1901 |
+
# there are regions for x for which the expression is True, for
|
1902 |
+
# example, when x < -1/2 or x > 0 the expression is zero
|
1903 |
+
p = Symbol('p', positive=True)
|
1904 |
+
assert diff.subs(x, p).equals(0) is True
|
1905 |
+
assert diff.subs(x, -1).equals(0) is True
|
1906 |
+
|
1907 |
+
# prove via minimal_polynomial or self-consistency
|
1908 |
+
eq = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
|
1909 |
+
assert eq.equals(0)
|
1910 |
+
q = 3**Rational(1, 3) + 3
|
1911 |
+
p = expand(q**3)**Rational(1, 3)
|
1912 |
+
assert (p - q).equals(0)
|
1913 |
+
|
1914 |
+
# issue 6829
|
1915 |
+
# eq = q*x + q/4 + x**4 + x**3 + 2*x**2 - S.One/3
|
1916 |
+
# z = eq.subs(x, solve(eq, x)[0])
|
1917 |
+
q = symbols('q')
|
1918 |
+
z = (q*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) -
|
1919 |
+
S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 -
|
1920 |
+
S(2197)/13824)**(S.One/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 -
|
1921 |
+
S(2197)/13824)**(S.One/3) - S(13)/6)/2 - S.One/4) + q/4 + (-sqrt(-2*(-(q
|
1922 |
+
- S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q
|
1923 |
+
- S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) -
|
1924 |
+
S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) -
|
1925 |
+
S(13)/6)/2 - S.One/4)**4 + (-sqrt(-2*(-(q - S(7)/8)**S(2)/8 -
|
1926 |
+
S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q -
|
1927 |
+
S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) -
|
1928 |
+
S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) -
|
1929 |
+
S(13)/6)/2 - S.One/4)**3 + 2*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 -
|
1930 |
+
S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q -
|
1931 |
+
S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) -
|
1932 |
+
S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) -
|
1933 |
+
S(13)/6)/2 - S.One/4)**2 - Rational(1, 3))
|
1934 |
+
assert z.equals(0)
|
1935 |
+
|
1936 |
+
|
1937 |
+
def test_random():
|
1938 |
+
from sympy.functions.combinatorial.numbers import lucas
|
1939 |
+
from sympy.simplify.simplify import posify
|
1940 |
+
assert posify(x)[0]._random() is not None
|
1941 |
+
assert lucas(n)._random(2, -2, 0, -1, 1) is None
|
1942 |
+
|
1943 |
+
# issue 8662
|
1944 |
+
assert Piecewise((Max(x, y), z))._random() is None
|
1945 |
+
|
1946 |
+
|
1947 |
+
def test_round():
|
1948 |
+
assert str(Float('0.1249999').round(2)) == '0.12'
|
1949 |
+
d20 = 12345678901234567890
|
1950 |
+
ans = S(d20).round(2)
|
1951 |
+
assert ans.is_Integer and ans == d20
|
1952 |
+
ans = S(d20).round(-2)
|
1953 |
+
assert ans.is_Integer and ans == 12345678901234567900
|
1954 |
+
assert str(S('1/7').round(4)) == '0.1429'
|
1955 |
+
assert str(S('.[12345]').round(4)) == '0.1235'
|
1956 |
+
assert str(S('.1349').round(2)) == '0.13'
|
1957 |
+
n = S(12345)
|
1958 |
+
ans = n.round()
|
1959 |
+
assert ans.is_Integer
|
1960 |
+
assert ans == n
|
1961 |
+
ans = n.round(1)
|
1962 |
+
assert ans.is_Integer
|
1963 |
+
assert ans == n
|
1964 |
+
ans = n.round(4)
|
1965 |
+
assert ans.is_Integer
|
1966 |
+
assert ans == n
|
1967 |
+
assert n.round(-1) == 12340
|
1968 |
+
|
1969 |
+
r = Float(str(n)).round(-4)
|
1970 |
+
assert r == 10000.0
|
1971 |
+
|
1972 |
+
assert n.round(-5) == 0
|
1973 |
+
|
1974 |
+
assert str((pi + sqrt(2)).round(2)) == '4.56'
|
1975 |
+
assert (10*(pi + sqrt(2))).round(-1) == 50.0
|
1976 |
+
raises(TypeError, lambda: round(x + 2, 2))
|
1977 |
+
assert str(S(2.3).round(1)) == '2.3'
|
1978 |
+
# rounding in SymPy (as in Decimal) should be
|
1979 |
+
# exact for the given precision; we check here
|
1980 |
+
# that when a 5 follows the last digit that
|
1981 |
+
# the rounded digit will be even.
|
1982 |
+
for i in range(-99, 100):
|
1983 |
+
# construct a decimal that ends in 5, e.g. 123 -> 0.1235
|
1984 |
+
s = str(abs(i))
|
1985 |
+
p = len(s) # we are going to round to the last digit of i
|
1986 |
+
n = '0.%s5' % s # put a 5 after i's digits
|
1987 |
+
j = p + 2 # 2 for '0.'
|
1988 |
+
if i < 0: # 1 for '-'
|
1989 |
+
j += 1
|
1990 |
+
n = '-' + n
|
1991 |
+
v = str(Float(n).round(p))[:j] # pertinent digits
|
1992 |
+
if v.endswith('.'):
|
1993 |
+
continue # it ends with 0 which is even
|
1994 |
+
L = int(v[-1]) # last digit
|
1995 |
+
assert L % 2 == 0, (n, '->', v)
|
1996 |
+
|
1997 |
+
assert (Float(.3, 3) + 2*pi).round() == 7
|
1998 |
+
assert (Float(.3, 3) + 2*pi*100).round() == 629
|
1999 |
+
assert (pi + 2*E*I).round() == 3 + 5*I
|
2000 |
+
# don't let request for extra precision give more than
|
2001 |
+
# what is known (in this case, only 3 digits)
|
2002 |
+
assert str((Float(.03, 3) + 2*pi/100).round(5)) == '0.0928'
|
2003 |
+
assert str((Float(.03, 3) + 2*pi/100).round(4)) == '0.0928'
|
2004 |
+
|
2005 |
+
assert S.Zero.round() == 0
|
2006 |
+
|
2007 |
+
a = (Add(1, Float('1.' + '9'*27, ''), evaluate=0))
|
2008 |
+
assert a.round(10) == Float('3.000000000000000000000000000', '')
|
2009 |
+
assert a.round(25) == Float('3.000000000000000000000000000', '')
|
2010 |
+
assert a.round(26) == Float('3.000000000000000000000000000', '')
|
2011 |
+
assert a.round(27) == Float('2.999999999999999999999999999', '')
|
2012 |
+
assert a.round(30) == Float('2.999999999999999999999999999', '')
|
2013 |
+
|
2014 |
+
# XXX: Should round set the precision of the result?
|
2015 |
+
# The previous version of the tests above is this but they only pass
|
2016 |
+
# because Floats with unequal precision compare equal:
|
2017 |
+
#
|
2018 |
+
# assert a.round(10) == Float('3.0000000000', '')
|
2019 |
+
# assert a.round(25) == Float('3.0000000000000000000000000', '')
|
2020 |
+
# assert a.round(26) == Float('3.00000000000000000000000000', '')
|
2021 |
+
# assert a.round(27) == Float('2.999999999999999999999999999', '')
|
2022 |
+
# assert a.round(30) == Float('2.999999999999999999999999999', '')
|
2023 |
+
|
2024 |
+
raises(TypeError, lambda: x.round())
|
2025 |
+
raises(TypeError, lambda: f(1).round())
|
2026 |
+
|
2027 |
+
# exact magnitude of 10
|
2028 |
+
assert str(S.One.round()) == '1'
|
2029 |
+
assert str(S(100).round()) == '100'
|
2030 |
+
|
2031 |
+
# applied to real and imaginary portions
|
2032 |
+
assert (2*pi + E*I).round() == 6 + 3*I
|
2033 |
+
assert (2*pi + I/10).round() == 6
|
2034 |
+
assert (pi/10 + 2*I).round() == 2*I
|
2035 |
+
# the lhs re and im parts are Float with dps of 2
|
2036 |
+
# and those on the right have dps of 15 so they won't compare
|
2037 |
+
# equal unless we use string or compare components (which will
|
2038 |
+
# then coerce the floats to the same precision) or re-create
|
2039 |
+
# the floats
|
2040 |
+
assert str((pi/10 + E*I).round(2)) == '0.31 + 2.72*I'
|
2041 |
+
assert str((pi/10 + E*I).round(2).as_real_imag()) == '(0.31, 2.72)'
|
2042 |
+
assert str((pi/10 + E*I).round(2)) == '0.31 + 2.72*I'
|
2043 |
+
|
2044 |
+
# issue 6914
|
2045 |
+
assert (I**(I + 3)).round(3) == Float('-0.208', '')*I
|
2046 |
+
|
2047 |
+
# issue 8720
|
2048 |
+
assert S(-123.6).round() == -124
|
2049 |
+
assert S(-1.5).round() == -2
|
2050 |
+
assert S(-100.5).round() == -100
|
2051 |
+
assert S(-1.5 - 10.5*I).round() == -2 - 10*I
|
2052 |
+
|
2053 |
+
# issue 7961
|
2054 |
+
assert str(S(0.006).round(2)) == '0.01'
|
2055 |
+
assert str(S(0.00106).round(4)) == '0.0011'
|
2056 |
+
|
2057 |
+
# issue 8147
|
2058 |
+
assert S.NaN.round() is S.NaN
|
2059 |
+
assert S.Infinity.round() is S.Infinity
|
2060 |
+
assert S.NegativeInfinity.round() is S.NegativeInfinity
|
2061 |
+
assert S.ComplexInfinity.round() is S.ComplexInfinity
|
2062 |
+
|
2063 |
+
# check that types match
|
2064 |
+
for i in range(2):
|
2065 |
+
fi = float(i)
|
2066 |
+
# 2 args
|
2067 |
+
assert all(type(round(i, p)) is int for p in (-1, 0, 1))
|
2068 |
+
assert all(S(i).round(p).is_Integer for p in (-1, 0, 1))
|
2069 |
+
assert all(type(round(fi, p)) is float for p in (-1, 0, 1))
|
2070 |
+
assert all(S(fi).round(p).is_Float for p in (-1, 0, 1))
|
2071 |
+
# 1 arg (p is None)
|
2072 |
+
assert type(round(i)) is int
|
2073 |
+
assert S(i).round().is_Integer
|
2074 |
+
assert type(round(fi)) is int
|
2075 |
+
assert S(fi).round().is_Integer
|
2076 |
+
|
2077 |
+
|
2078 |
+
def test_held_expression_UnevaluatedExpr():
|
2079 |
+
x = symbols("x")
|
2080 |
+
he = UnevaluatedExpr(1/x)
|
2081 |
+
e1 = x*he
|
2082 |
+
|
2083 |
+
assert isinstance(e1, Mul)
|
2084 |
+
assert e1.args == (x, he)
|
2085 |
+
assert e1.doit() == 1
|
2086 |
+
assert UnevaluatedExpr(Derivative(x, x)).doit(deep=False
|
2087 |
+
) == Derivative(x, x)
|
2088 |
+
assert UnevaluatedExpr(Derivative(x, x)).doit() == 1
|
2089 |
+
|
2090 |
+
xx = Mul(x, x, evaluate=False)
|
2091 |
+
assert xx != x**2
|
2092 |
+
|
2093 |
+
ue2 = UnevaluatedExpr(xx)
|
2094 |
+
assert isinstance(ue2, UnevaluatedExpr)
|
2095 |
+
assert ue2.args == (xx,)
|
2096 |
+
assert ue2.doit() == x**2
|
2097 |
+
assert ue2.doit(deep=False) == xx
|
2098 |
+
|
2099 |
+
x2 = UnevaluatedExpr(2)*2
|
2100 |
+
assert type(x2) is Mul
|
2101 |
+
assert x2.args == (2, UnevaluatedExpr(2))
|
2102 |
+
|
2103 |
+
def test_round_exception_nostr():
|
2104 |
+
# Don't use the string form of the expression in the round exception, as
|
2105 |
+
# it's too slow
|
2106 |
+
s = Symbol('bad')
|
2107 |
+
try:
|
2108 |
+
s.round()
|
2109 |
+
except TypeError as e:
|
2110 |
+
assert 'bad' not in str(e)
|
2111 |
+
else:
|
2112 |
+
# Did not raise
|
2113 |
+
raise AssertionError("Did not raise")
|
2114 |
+
|
2115 |
+
|
2116 |
+
def test_extract_branch_factor():
|
2117 |
+
assert exp_polar(2.0*I*pi).extract_branch_factor() == (1, 1)
|
2118 |
+
|
2119 |
+
|
2120 |
+
def test_identity_removal():
|
2121 |
+
assert Add.make_args(x + 0) == (x,)
|
2122 |
+
assert Mul.make_args(x*1) == (x,)
|
2123 |
+
|
2124 |
+
|
2125 |
+
def test_float_0():
|
2126 |
+
assert Float(0.0) + 1 == Float(1.0)
|
2127 |
+
|
2128 |
+
|
2129 |
+
@XFAIL
|
2130 |
+
def test_float_0_fail():
|
2131 |
+
assert Float(0.0)*x == Float(0.0)
|
2132 |
+
assert (x + Float(0.0)).is_Add
|
2133 |
+
|
2134 |
+
|
2135 |
+
def test_issue_6325():
|
2136 |
+
ans = (b**2 + z**2 - (b*(a + b*t) + z*(c + t*z))**2/(
|
2137 |
+
(a + b*t)**2 + (c + t*z)**2))/sqrt((a + b*t)**2 + (c + t*z)**2)
|
2138 |
+
e = sqrt((a + b*t)**2 + (c + z*t)**2)
|
2139 |
+
assert diff(e, t, 2) == ans
|
2140 |
+
assert e.diff(t, 2) == ans
|
2141 |
+
assert diff(e, t, 2, simplify=False) != ans
|
2142 |
+
|
2143 |
+
|
2144 |
+
def test_issue_7426():
|
2145 |
+
f1 = a % c
|
2146 |
+
f2 = x % z
|
2147 |
+
assert f1.equals(f2) is None
|
2148 |
+
|
2149 |
+
|
2150 |
+
def test_issue_11122():
|
2151 |
+
x = Symbol('x', extended_positive=False)
|
2152 |
+
assert unchanged(Gt, x, 0) # (x > 0)
|
2153 |
+
# (x > 0) should remain unevaluated after PR #16956
|
2154 |
+
|
2155 |
+
x = Symbol('x', positive=False, real=True)
|
2156 |
+
assert (x > 0) is S.false
|
2157 |
+
|
2158 |
+
|
2159 |
+
def test_issue_10651():
|
2160 |
+
x = Symbol('x', real=True)
|
2161 |
+
e1 = (-1 + x)/(1 - x)
|
2162 |
+
e3 = (4*x**2 - 4)/((1 - x)*(1 + x))
|
2163 |
+
e4 = 1/(cos(x)**2) - (tan(x))**2
|
2164 |
+
x = Symbol('x', positive=True)
|
2165 |
+
e5 = (1 + x)/x
|
2166 |
+
assert e1.is_constant() is None
|
2167 |
+
assert e3.is_constant() is None
|
2168 |
+
assert e4.is_constant() is None
|
2169 |
+
assert e5.is_constant() is False
|
2170 |
+
|
2171 |
+
|
2172 |
+
def test_issue_10161():
|
2173 |
+
x = symbols('x', real=True)
|
2174 |
+
assert x*abs(x)*abs(x) == x**3
|
2175 |
+
|
2176 |
+
|
2177 |
+
def test_issue_10755():
|
2178 |
+
x = symbols('x')
|
2179 |
+
raises(TypeError, lambda: int(log(x)))
|
2180 |
+
raises(TypeError, lambda: log(x).round(2))
|
2181 |
+
|
2182 |
+
|
2183 |
+
def test_issue_11877():
|
2184 |
+
x = symbols('x')
|
2185 |
+
assert integrate(log(S.Half - x), (x, 0, S.Half)) == Rational(-1, 2) -log(2)/2
|
2186 |
+
|
2187 |
+
|
2188 |
+
def test_normal():
|
2189 |
+
x = symbols('x')
|
2190 |
+
e = Mul(S.Half, 1 + x, evaluate=False)
|
2191 |
+
assert e.normal() == e
|
2192 |
+
|
2193 |
+
|
2194 |
+
def test_expr():
|
2195 |
+
x = symbols('x')
|
2196 |
+
raises(TypeError, lambda: tan(x).series(x, 2, oo, "+"))
|
2197 |
+
|
2198 |
+
|
2199 |
+
def test_ExprBuilder():
|
2200 |
+
eb = ExprBuilder(Mul)
|
2201 |
+
eb.args.extend([x, x])
|
2202 |
+
assert eb.build() == x**2
|
2203 |
+
|
2204 |
+
|
2205 |
+
def test_issue_22020():
|
2206 |
+
from sympy.parsing.sympy_parser import parse_expr
|
2207 |
+
x = parse_expr("log((2*V/3-V)/C)/-(R+r)*C")
|
2208 |
+
y = parse_expr("log((2*V/3-V)/C)/-(R+r)*2")
|
2209 |
+
assert x.equals(y) is False
|
2210 |
+
|
2211 |
+
|
2212 |
+
def test_non_string_equality():
|
2213 |
+
# Expressions should not compare equal to strings
|
2214 |
+
x = symbols('x')
|
2215 |
+
one = sympify(1)
|
2216 |
+
assert (x == 'x') is False
|
2217 |
+
assert (x != 'x') is True
|
2218 |
+
assert (one == '1') is False
|
2219 |
+
assert (one != '1') is True
|
2220 |
+
assert (x + 1 == 'x + 1') is False
|
2221 |
+
assert (x + 1 != 'x + 1') is True
|
2222 |
+
|
2223 |
+
# Make sure == doesn't try to convert the resulting expression to a string
|
2224 |
+
# (e.g., by calling sympify() instead of _sympify())
|
2225 |
+
|
2226 |
+
class BadRepr:
|
2227 |
+
def __repr__(self):
|
2228 |
+
raise RuntimeError
|
2229 |
+
|
2230 |
+
assert (x == BadRepr()) is False
|
2231 |
+
assert (x != BadRepr()) is True
|
2232 |
+
|
2233 |
+
|
2234 |
+
def test_21494():
|
2235 |
+
from sympy.testing.pytest import warns_deprecated_sympy
|
2236 |
+
|
2237 |
+
with warns_deprecated_sympy():
|
2238 |
+
assert x.expr_free_symbols == {x}
|
2239 |
+
|
2240 |
+
with warns_deprecated_sympy():
|
2241 |
+
assert Basic().expr_free_symbols == set()
|
2242 |
+
|
2243 |
+
with warns_deprecated_sympy():
|
2244 |
+
assert S(2).expr_free_symbols == {S(2)}
|
2245 |
+
|
2246 |
+
with warns_deprecated_sympy():
|
2247 |
+
assert Indexed("A", x).expr_free_symbols == {Indexed("A", x)}
|
2248 |
+
|
2249 |
+
with warns_deprecated_sympy():
|
2250 |
+
assert Subs(x, x, 0).expr_free_symbols == set()
|
2251 |
+
|
2252 |
+
|
2253 |
+
def test_Expr__eq__iterable_handling():
|
2254 |
+
assert x != range(3)
|
2255 |
+
|
2256 |
+
|
2257 |
+
def test_format():
|
2258 |
+
assert '{:1.2f}'.format(S.Zero) == '0.00'
|
2259 |
+
assert '{:+3.0f}'.format(S(3)) == ' +3'
|
2260 |
+
assert '{:23.20f}'.format(pi) == ' 3.14159265358979323846'
|
2261 |
+
assert '{:50.48f}'.format(exp(sin(1))) == '2.319776824715853173956590377503266813254904772376'
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_exprtools.py
ADDED
@@ -0,0 +1,493 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for tools for manipulating of large commutative expressions. """
|
2 |
+
|
3 |
+
from sympy.concrete.summations import Sum
|
4 |
+
from sympy.core.add import Add
|
5 |
+
from sympy.core.basic import Basic
|
6 |
+
from sympy.core.containers import (Dict, Tuple)
|
7 |
+
from sympy.core.function import Function
|
8 |
+
from sympy.core.mul import Mul
|
9 |
+
from sympy.core.numbers import (I, Rational, oo)
|
10 |
+
from sympy.core.singleton import S
|
11 |
+
from sympy.core.symbol import (Dummy, Symbol, symbols)
|
12 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
13 |
+
from sympy.functions.elementary.miscellaneous import (root, sqrt)
|
14 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
15 |
+
from sympy.integrals.integrals import Integral
|
16 |
+
from sympy.series.order import O
|
17 |
+
from sympy.sets.sets import Interval
|
18 |
+
from sympy.simplify.radsimp import collect
|
19 |
+
from sympy.simplify.simplify import simplify
|
20 |
+
from sympy.core.exprtools import (decompose_power, Factors, Term, _gcd_terms,
|
21 |
+
gcd_terms, factor_terms, factor_nc, _mask_nc,
|
22 |
+
_monotonic_sign)
|
23 |
+
from sympy.core.mul import _keep_coeff as _keep_coeff
|
24 |
+
from sympy.simplify.cse_opts import sub_pre
|
25 |
+
from sympy.testing.pytest import raises
|
26 |
+
|
27 |
+
from sympy.abc import a, b, t, x, y, z
|
28 |
+
|
29 |
+
|
30 |
+
def test_decompose_power():
|
31 |
+
assert decompose_power(x) == (x, 1)
|
32 |
+
assert decompose_power(x**2) == (x, 2)
|
33 |
+
assert decompose_power(x**(2*y)) == (x**y, 2)
|
34 |
+
assert decompose_power(x**(2*y/3)) == (x**(y/3), 2)
|
35 |
+
assert decompose_power(x**(y*Rational(2, 3))) == (x**(y/3), 2)
|
36 |
+
|
37 |
+
|
38 |
+
def test_Factors():
|
39 |
+
assert Factors() == Factors({}) == Factors(S.One)
|
40 |
+
assert Factors().as_expr() is S.One
|
41 |
+
assert Factors({x: 2, y: 3, sin(x): 4}).as_expr() == x**2*y**3*sin(x)**4
|
42 |
+
assert Factors(S.Infinity) == Factors({oo: 1})
|
43 |
+
assert Factors(S.NegativeInfinity) == Factors({oo: 1, -1: 1})
|
44 |
+
# issue #18059:
|
45 |
+
assert Factors((x**2)**S.Half).as_expr() == (x**2)**S.Half
|
46 |
+
|
47 |
+
a = Factors({x: 5, y: 3, z: 7})
|
48 |
+
b = Factors({ y: 4, z: 3, t: 10})
|
49 |
+
|
50 |
+
assert a.mul(b) == a*b == Factors({x: 5, y: 7, z: 10, t: 10})
|
51 |
+
|
52 |
+
assert a.div(b) == divmod(a, b) == \
|
53 |
+
(Factors({x: 5, z: 4}), Factors({y: 1, t: 10}))
|
54 |
+
assert a.quo(b) == a/b == Factors({x: 5, z: 4})
|
55 |
+
assert a.rem(b) == a % b == Factors({y: 1, t: 10})
|
56 |
+
|
57 |
+
assert a.pow(3) == a**3 == Factors({x: 15, y: 9, z: 21})
|
58 |
+
assert b.pow(3) == b**3 == Factors({y: 12, z: 9, t: 30})
|
59 |
+
|
60 |
+
assert a.gcd(b) == Factors({y: 3, z: 3})
|
61 |
+
assert a.lcm(b) == Factors({x: 5, y: 4, z: 7, t: 10})
|
62 |
+
|
63 |
+
a = Factors({x: 4, y: 7, t: 7})
|
64 |
+
b = Factors({z: 1, t: 3})
|
65 |
+
|
66 |
+
assert a.normal(b) == (Factors({x: 4, y: 7, t: 4}), Factors({z: 1}))
|
67 |
+
|
68 |
+
assert Factors(sqrt(2)*x).as_expr() == sqrt(2)*x
|
69 |
+
|
70 |
+
assert Factors(-I)*I == Factors()
|
71 |
+
assert Factors({S.NegativeOne: S(3)})*Factors({S.NegativeOne: S.One, I: S(5)}) == \
|
72 |
+
Factors(I)
|
73 |
+
assert Factors(sqrt(I)*I) == Factors(I**(S(3)/2)) == Factors({I: S(3)/2})
|
74 |
+
assert Factors({I: S(3)/2}).as_expr() == I**(S(3)/2)
|
75 |
+
|
76 |
+
assert Factors(S(2)**x).div(S(3)**x) == \
|
77 |
+
(Factors({S(2): x}), Factors({S(3): x}))
|
78 |
+
assert Factors(2**(2*x + 2)).div(S(8)) == \
|
79 |
+
(Factors({S(2): 2*x + 2}), Factors({S(8): S.One}))
|
80 |
+
|
81 |
+
# coverage
|
82 |
+
# /!\ things break if this is not True
|
83 |
+
assert Factors({S.NegativeOne: Rational(3, 2)}) == Factors({I: S.One, S.NegativeOne: S.One})
|
84 |
+
assert Factors({I: S.One, S.NegativeOne: Rational(1, 3)}).as_expr() == I*(-1)**Rational(1, 3)
|
85 |
+
|
86 |
+
assert Factors(-1.) == Factors({S.NegativeOne: S.One, S(1.): 1})
|
87 |
+
assert Factors(-2.) == Factors({S.NegativeOne: S.One, S(2.): 1})
|
88 |
+
assert Factors((-2.)**x) == Factors({S(-2.): x})
|
89 |
+
assert Factors(S(-2)) == Factors({S.NegativeOne: S.One, S(2): 1})
|
90 |
+
assert Factors(S.Half) == Factors({S(2): -S.One})
|
91 |
+
assert Factors(Rational(3, 2)) == Factors({S(3): S.One, S(2): S.NegativeOne})
|
92 |
+
assert Factors({I: S.One}) == Factors(I)
|
93 |
+
assert Factors({-1.0: 2, I: 1}) == Factors({S(1.0): 1, I: 1})
|
94 |
+
assert Factors({S.NegativeOne: Rational(-3, 2)}).as_expr() == I
|
95 |
+
A = symbols('A', commutative=False)
|
96 |
+
assert Factors(2*A**2) == Factors({S(2): 1, A**2: 1})
|
97 |
+
assert Factors(I) == Factors({I: S.One})
|
98 |
+
assert Factors(x).normal(S(2)) == (Factors(x), Factors(S(2)))
|
99 |
+
assert Factors(x).normal(S.Zero) == (Factors(), Factors(S.Zero))
|
100 |
+
raises(ZeroDivisionError, lambda: Factors(x).div(S.Zero))
|
101 |
+
assert Factors(x).mul(S(2)) == Factors(2*x)
|
102 |
+
assert Factors(x).mul(S.Zero).is_zero
|
103 |
+
assert Factors(x).mul(1/x).is_one
|
104 |
+
assert Factors(x**sqrt(2)**3).as_expr() == x**(2*sqrt(2))
|
105 |
+
assert Factors(x)**Factors(S(2)) == Factors(x**2)
|
106 |
+
assert Factors(x).gcd(S.Zero) == Factors(x)
|
107 |
+
assert Factors(x).lcm(S.Zero).is_zero
|
108 |
+
assert Factors(S.Zero).div(x) == (Factors(S.Zero), Factors())
|
109 |
+
assert Factors(x).div(x) == (Factors(), Factors())
|
110 |
+
assert Factors({x: .2})/Factors({x: .2}) == Factors()
|
111 |
+
assert Factors(x) != Factors()
|
112 |
+
assert Factors(S.Zero).normal(x) == (Factors(S.Zero), Factors())
|
113 |
+
n, d = x**(2 + y), x**2
|
114 |
+
f = Factors(n)
|
115 |
+
assert f.div(d) == f.normal(d) == (Factors(x**y), Factors())
|
116 |
+
assert f.gcd(d) == Factors()
|
117 |
+
d = x**y
|
118 |
+
assert f.div(d) == f.normal(d) == (Factors(x**2), Factors())
|
119 |
+
assert f.gcd(d) == Factors(d)
|
120 |
+
n = d = 2**x
|
121 |
+
f = Factors(n)
|
122 |
+
assert f.div(d) == f.normal(d) == (Factors(), Factors())
|
123 |
+
assert f.gcd(d) == Factors(d)
|
124 |
+
n, d = 2**x, 2**y
|
125 |
+
f = Factors(n)
|
126 |
+
assert f.div(d) == f.normal(d) == (Factors({S(2): x}), Factors({S(2): y}))
|
127 |
+
assert f.gcd(d) == Factors()
|
128 |
+
|
129 |
+
# extraction of constant only
|
130 |
+
n = x**(x + 3)
|
131 |
+
assert Factors(n).normal(x**-3) == (Factors({x: x + 6}), Factors({}))
|
132 |
+
assert Factors(n).normal(x**3) == (Factors({x: x}), Factors({}))
|
133 |
+
assert Factors(n).normal(x**4) == (Factors({x: x}), Factors({x: 1}))
|
134 |
+
assert Factors(n).normal(x**(y - 3)) == \
|
135 |
+
(Factors({x: x + 6}), Factors({x: y}))
|
136 |
+
assert Factors(n).normal(x**(y + 3)) == (Factors({x: x}), Factors({x: y}))
|
137 |
+
assert Factors(n).normal(x**(y + 4)) == \
|
138 |
+
(Factors({x: x}), Factors({x: y + 1}))
|
139 |
+
|
140 |
+
assert Factors(n).div(x**-3) == (Factors({x: x + 6}), Factors({}))
|
141 |
+
assert Factors(n).div(x**3) == (Factors({x: x}), Factors({}))
|
142 |
+
assert Factors(n).div(x**4) == (Factors({x: x}), Factors({x: 1}))
|
143 |
+
assert Factors(n).div(x**(y - 3)) == \
|
144 |
+
(Factors({x: x + 6}), Factors({x: y}))
|
145 |
+
assert Factors(n).div(x**(y + 3)) == (Factors({x: x}), Factors({x: y}))
|
146 |
+
assert Factors(n).div(x**(y + 4)) == \
|
147 |
+
(Factors({x: x}), Factors({x: y + 1}))
|
148 |
+
|
149 |
+
assert Factors(3 * x / 2) == Factors({3: 1, 2: -1, x: 1})
|
150 |
+
assert Factors(x * x / y) == Factors({x: 2, y: -1})
|
151 |
+
assert Factors(27 * x / y**9) == Factors({27: 1, x: 1, y: -9})
|
152 |
+
|
153 |
+
|
154 |
+
def test_Term():
|
155 |
+
a = Term(4*x*y**2/z/t**3)
|
156 |
+
b = Term(2*x**3*y**5/t**3)
|
157 |
+
|
158 |
+
assert a == Term(4, Factors({x: 1, y: 2}), Factors({z: 1, t: 3}))
|
159 |
+
assert b == Term(2, Factors({x: 3, y: 5}), Factors({t: 3}))
|
160 |
+
|
161 |
+
assert a.as_expr() == 4*x*y**2/z/t**3
|
162 |
+
assert b.as_expr() == 2*x**3*y**5/t**3
|
163 |
+
|
164 |
+
assert a.inv() == \
|
165 |
+
Term(S.One/4, Factors({z: 1, t: 3}), Factors({x: 1, y: 2}))
|
166 |
+
assert b.inv() == Term(S.Half, Factors({t: 3}), Factors({x: 3, y: 5}))
|
167 |
+
|
168 |
+
assert a.mul(b) == a*b == \
|
169 |
+
Term(8, Factors({x: 4, y: 7}), Factors({z: 1, t: 6}))
|
170 |
+
assert a.quo(b) == a/b == Term(2, Factors({}), Factors({x: 2, y: 3, z: 1}))
|
171 |
+
|
172 |
+
assert a.pow(3) == a**3 == \
|
173 |
+
Term(64, Factors({x: 3, y: 6}), Factors({z: 3, t: 9}))
|
174 |
+
assert b.pow(3) == b**3 == Term(8, Factors({x: 9, y: 15}), Factors({t: 9}))
|
175 |
+
|
176 |
+
assert a.pow(-3) == a**(-3) == \
|
177 |
+
Term(S.One/64, Factors({z: 3, t: 9}), Factors({x: 3, y: 6}))
|
178 |
+
assert b.pow(-3) == b**(-3) == \
|
179 |
+
Term(S.One/8, Factors({t: 9}), Factors({x: 9, y: 15}))
|
180 |
+
|
181 |
+
assert a.gcd(b) == Term(2, Factors({x: 1, y: 2}), Factors({t: 3}))
|
182 |
+
assert a.lcm(b) == Term(4, Factors({x: 3, y: 5}), Factors({z: 1, t: 3}))
|
183 |
+
|
184 |
+
a = Term(4*x*y**2/z/t**3)
|
185 |
+
b = Term(2*x**3*y**5*t**7)
|
186 |
+
|
187 |
+
assert a.mul(b) == Term(8, Factors({x: 4, y: 7, t: 4}), Factors({z: 1}))
|
188 |
+
|
189 |
+
assert Term((2*x + 2)**3) == Term(8, Factors({x + 1: 3}), Factors({}))
|
190 |
+
assert Term((2*x + 2)*(3*x + 6)**2) == \
|
191 |
+
Term(18, Factors({x + 1: 1, x + 2: 2}), Factors({}))
|
192 |
+
|
193 |
+
|
194 |
+
def test_gcd_terms():
|
195 |
+
f = 2*(x + 1)*(x + 4)/(5*x**2 + 5) + (2*x + 2)*(x + 5)/(x**2 + 1)/5 + \
|
196 |
+
(2*x + 2)*(x + 6)/(5*x**2 + 5)
|
197 |
+
|
198 |
+
assert _gcd_terms(f) == ((Rational(6, 5))*((1 + x)/(1 + x**2)), 5 + x, 1)
|
199 |
+
assert _gcd_terms(Add.make_args(f)) == \
|
200 |
+
((Rational(6, 5))*((1 + x)/(1 + x**2)), 5 + x, 1)
|
201 |
+
|
202 |
+
newf = (Rational(6, 5))*((1 + x)*(5 + x)/(1 + x**2))
|
203 |
+
assert gcd_terms(f) == newf
|
204 |
+
args = Add.make_args(f)
|
205 |
+
# non-Basic sequences of terms treated as terms of Add
|
206 |
+
assert gcd_terms(list(args)) == newf
|
207 |
+
assert gcd_terms(tuple(args)) == newf
|
208 |
+
assert gcd_terms(set(args)) == newf
|
209 |
+
# but a Basic sequence is treated as a container
|
210 |
+
assert gcd_terms(Tuple(*args)) != newf
|
211 |
+
assert gcd_terms(Basic(Tuple(S(1), 3*y + 3*x*y), Tuple(S(1), S(3)))) == \
|
212 |
+
Basic(Tuple(S(1), 3*y*(x + 1)), Tuple(S(1), S(3)))
|
213 |
+
# but we shouldn't change keys of a dictionary or some may be lost
|
214 |
+
assert gcd_terms(Dict((x*(1 + y), S(2)), (x + x*y, y + x*y))) == \
|
215 |
+
Dict({x*(y + 1): S(2), x + x*y: y*(1 + x)})
|
216 |
+
|
217 |
+
assert gcd_terms((2*x + 2)**3 + (2*x + 2)**2) == 4*(x + 1)**2*(2*x + 3)
|
218 |
+
|
219 |
+
assert gcd_terms(0) == 0
|
220 |
+
assert gcd_terms(1) == 1
|
221 |
+
assert gcd_terms(x) == x
|
222 |
+
assert gcd_terms(2 + 2*x) == Mul(2, 1 + x, evaluate=False)
|
223 |
+
arg = x*(2*x + 4*y)
|
224 |
+
garg = 2*x*(x + 2*y)
|
225 |
+
assert gcd_terms(arg) == garg
|
226 |
+
assert gcd_terms(sin(arg)) == sin(garg)
|
227 |
+
|
228 |
+
# issue 6139-like
|
229 |
+
alpha, alpha1, alpha2, alpha3 = symbols('alpha:4')
|
230 |
+
a = alpha**2 - alpha*x**2 + alpha + x**3 - x*(alpha + 1)
|
231 |
+
rep = (alpha, (1 + sqrt(5))/2 + alpha1*x + alpha2*x**2 + alpha3*x**3)
|
232 |
+
s = (a/(x - alpha)).subs(*rep).series(x, 0, 1)
|
233 |
+
assert simplify(collect(s, x)) == -sqrt(5)/2 - Rational(3, 2) + O(x)
|
234 |
+
|
235 |
+
# issue 5917
|
236 |
+
assert _gcd_terms([S.Zero, S.Zero]) == (0, 0, 1)
|
237 |
+
assert _gcd_terms([2*x + 4]) == (2, x + 2, 1)
|
238 |
+
|
239 |
+
eq = x/(x + 1/x)
|
240 |
+
assert gcd_terms(eq, fraction=False) == eq
|
241 |
+
eq = x/2/y + 1/x/y
|
242 |
+
assert gcd_terms(eq, fraction=True, clear=True) == \
|
243 |
+
(x**2 + 2)/(2*x*y)
|
244 |
+
assert gcd_terms(eq, fraction=True, clear=False) == \
|
245 |
+
(x**2/2 + 1)/(x*y)
|
246 |
+
assert gcd_terms(eq, fraction=False, clear=True) == \
|
247 |
+
(x + 2/x)/(2*y)
|
248 |
+
assert gcd_terms(eq, fraction=False, clear=False) == \
|
249 |
+
(x/2 + 1/x)/y
|
250 |
+
|
251 |
+
|
252 |
+
def test_factor_terms():
|
253 |
+
A = Symbol('A', commutative=False)
|
254 |
+
assert factor_terms(9*(x + x*y + 1) + (3*x + 3)**(2 + 2*x)) == \
|
255 |
+
9*x*y + 9*x + _keep_coeff(S(3), x + 1)**_keep_coeff(S(2), x + 1) + 9
|
256 |
+
assert factor_terms(9*(x + x*y + 1) + (3)**(2 + 2*x)) == \
|
257 |
+
_keep_coeff(S(9), 3**(2*x) + x*y + x + 1)
|
258 |
+
assert factor_terms(3**(2 + 2*x) + a*3**(2 + 2*x)) == \
|
259 |
+
9*3**(2*x)*(a + 1)
|
260 |
+
assert factor_terms(x + x*A) == \
|
261 |
+
x*(1 + A)
|
262 |
+
assert factor_terms(sin(x + x*A)) == \
|
263 |
+
sin(x*(1 + A))
|
264 |
+
assert factor_terms((3*x + 3)**((2 + 2*x)/3)) == \
|
265 |
+
_keep_coeff(S(3), x + 1)**_keep_coeff(Rational(2, 3), x + 1)
|
266 |
+
assert factor_terms(x + (x*y + x)**(3*x + 3)) == \
|
267 |
+
x + (x*(y + 1))**_keep_coeff(S(3), x + 1)
|
268 |
+
assert factor_terms(a*(x + x*y) + b*(x*2 + y*x*2)) == \
|
269 |
+
x*(a + 2*b)*(y + 1)
|
270 |
+
i = Integral(x, (x, 0, oo))
|
271 |
+
assert factor_terms(i) == i
|
272 |
+
|
273 |
+
assert factor_terms(x/2 + y) == x/2 + y
|
274 |
+
# fraction doesn't apply to integer denominators
|
275 |
+
assert factor_terms(x/2 + y, fraction=True) == x/2 + y
|
276 |
+
# clear *does* apply to the integer denominators
|
277 |
+
assert factor_terms(x/2 + y, clear=True) == Mul(S.Half, x + 2*y, evaluate=False)
|
278 |
+
|
279 |
+
# check radical extraction
|
280 |
+
eq = sqrt(2) + sqrt(10)
|
281 |
+
assert factor_terms(eq) == eq
|
282 |
+
assert factor_terms(eq, radical=True) == sqrt(2)*(1 + sqrt(5))
|
283 |
+
eq = root(-6, 3) + root(6, 3)
|
284 |
+
assert factor_terms(eq, radical=True) == 6**(S.One/3)*(1 + (-1)**(S.One/3))
|
285 |
+
|
286 |
+
eq = [x + x*y]
|
287 |
+
ans = [x*(y + 1)]
|
288 |
+
for c in [list, tuple, set]:
|
289 |
+
assert factor_terms(c(eq)) == c(ans)
|
290 |
+
assert factor_terms(Tuple(x + x*y)) == Tuple(x*(y + 1))
|
291 |
+
assert factor_terms(Interval(0, 1)) == Interval(0, 1)
|
292 |
+
e = 1/sqrt(a/2 + 1)
|
293 |
+
assert factor_terms(e, clear=False) == 1/sqrt(a/2 + 1)
|
294 |
+
assert factor_terms(e, clear=True) == sqrt(2)/sqrt(a + 2)
|
295 |
+
|
296 |
+
eq = x/(x + 1/x) + 1/(x**2 + 1)
|
297 |
+
assert factor_terms(eq, fraction=False) == eq
|
298 |
+
assert factor_terms(eq, fraction=True) == 1
|
299 |
+
|
300 |
+
assert factor_terms((1/(x**3 + x**2) + 2/x**2)*y) == \
|
301 |
+
y*(2 + 1/(x + 1))/x**2
|
302 |
+
|
303 |
+
# if not True, then processesing for this in factor_terms is not necessary
|
304 |
+
assert gcd_terms(-x - y) == -x - y
|
305 |
+
assert factor_terms(-x - y) == Mul(-1, x + y, evaluate=False)
|
306 |
+
|
307 |
+
# if not True, then "special" processesing in factor_terms is not necessary
|
308 |
+
assert gcd_terms(exp(Mul(-1, x + 1))) == exp(-x - 1)
|
309 |
+
e = exp(-x - 2) + x
|
310 |
+
assert factor_terms(e) == exp(Mul(-1, x + 2, evaluate=False)) + x
|
311 |
+
assert factor_terms(e, sign=False) == e
|
312 |
+
assert factor_terms(exp(-4*x - 2) - x) == -x + exp(Mul(-2, 2*x + 1, evaluate=False))
|
313 |
+
|
314 |
+
# sum/integral tests
|
315 |
+
for F in (Sum, Integral):
|
316 |
+
assert factor_terms(F(x, (y, 1, 10))) == x * F(1, (y, 1, 10))
|
317 |
+
assert factor_terms(F(x, (y, 1, 10)) + x) == x * (1 + F(1, (y, 1, 10)))
|
318 |
+
assert factor_terms(F(x*y + x*y**2, (y, 1, 10))) == x*F(y*(y + 1), (y, 1, 10))
|
319 |
+
|
320 |
+
# expressions involving Pow terms with base 0
|
321 |
+
assert factor_terms(0**(x - 2) - 1) == 0**(x - 2) - 1
|
322 |
+
assert factor_terms(0**(x + 2) - 1) == 0**(x + 2) - 1
|
323 |
+
assert factor_terms((0**(x + 2) - 1).subs(x,-2)) == 0
|
324 |
+
|
325 |
+
|
326 |
+
def test_xreplace():
|
327 |
+
e = Mul(2, 1 + x, evaluate=False)
|
328 |
+
assert e.xreplace({}) == e
|
329 |
+
assert e.xreplace({y: x}) == e
|
330 |
+
|
331 |
+
|
332 |
+
def test_factor_nc():
|
333 |
+
x, y = symbols('x,y')
|
334 |
+
k = symbols('k', integer=True)
|
335 |
+
n, m, o = symbols('n,m,o', commutative=False)
|
336 |
+
|
337 |
+
# mul and multinomial expansion is needed
|
338 |
+
from sympy.core.function import _mexpand
|
339 |
+
e = x*(1 + y)**2
|
340 |
+
assert _mexpand(e) == x + x*2*y + x*y**2
|
341 |
+
|
342 |
+
def factor_nc_test(e):
|
343 |
+
ex = _mexpand(e)
|
344 |
+
assert ex.is_Add
|
345 |
+
f = factor_nc(ex)
|
346 |
+
assert not f.is_Add and _mexpand(f) == ex
|
347 |
+
|
348 |
+
factor_nc_test(x*(1 + y))
|
349 |
+
factor_nc_test(n*(x + 1))
|
350 |
+
factor_nc_test(n*(x + m))
|
351 |
+
factor_nc_test((x + m)*n)
|
352 |
+
factor_nc_test(n*m*(x*o + n*o*m)*n)
|
353 |
+
s = Sum(x, (x, 1, 2))
|
354 |
+
factor_nc_test(x*(1 + s))
|
355 |
+
factor_nc_test(x*(1 + s)*s)
|
356 |
+
factor_nc_test(x*(1 + sin(s)))
|
357 |
+
factor_nc_test((1 + n)**2)
|
358 |
+
|
359 |
+
factor_nc_test((x + n)*(x + m)*(x + y))
|
360 |
+
factor_nc_test(x*(n*m + 1))
|
361 |
+
factor_nc_test(x*(n*m + x))
|
362 |
+
factor_nc_test(x*(x*n*m + 1))
|
363 |
+
factor_nc_test(n*(m/x + o))
|
364 |
+
factor_nc_test(m*(n + o/2))
|
365 |
+
factor_nc_test(x*n*(x*m + 1))
|
366 |
+
factor_nc_test(x*(m*n + x*n*m))
|
367 |
+
factor_nc_test(n*(1 - m)*n**2)
|
368 |
+
|
369 |
+
factor_nc_test((n + m)**2)
|
370 |
+
factor_nc_test((n - m)*(n + m)**2)
|
371 |
+
factor_nc_test((n + m)**2*(n - m))
|
372 |
+
factor_nc_test((m - n)*(n + m)**2*(n - m))
|
373 |
+
|
374 |
+
assert factor_nc(n*(n + n*m)) == n**2*(1 + m)
|
375 |
+
assert factor_nc(m*(m*n + n*m*n**2)) == m*(m + n*m*n)*n
|
376 |
+
eq = m*sin(n) - sin(n)*m
|
377 |
+
assert factor_nc(eq) == eq
|
378 |
+
|
379 |
+
# for coverage:
|
380 |
+
from sympy.physics.secondquant import Commutator
|
381 |
+
from sympy.polys.polytools import factor
|
382 |
+
eq = 1 + x*Commutator(m, n)
|
383 |
+
assert factor_nc(eq) == eq
|
384 |
+
eq = x*Commutator(m, n) + x*Commutator(m, o)*Commutator(m, n)
|
385 |
+
assert factor(eq) == x*(1 + Commutator(m, o))*Commutator(m, n)
|
386 |
+
|
387 |
+
# issue 6534
|
388 |
+
assert (2*n + 2*m).factor() == 2*(n + m)
|
389 |
+
|
390 |
+
# issue 6701
|
391 |
+
_n = symbols('nz', zero=False, commutative=False)
|
392 |
+
assert factor_nc(_n**k + _n**(k + 1)) == _n**k*(1 + _n)
|
393 |
+
assert factor_nc((m*n)**k + (m*n)**(k + 1)) == (1 + m*n)*(m*n)**k
|
394 |
+
|
395 |
+
# issue 6918
|
396 |
+
assert factor_nc(-n*(2*x**2 + 2*x)) == -2*n*x*(x + 1)
|
397 |
+
|
398 |
+
|
399 |
+
def test_issue_6360():
|
400 |
+
a, b = symbols("a b")
|
401 |
+
apb = a + b
|
402 |
+
eq = apb + apb**2*(-2*a - 2*b)
|
403 |
+
assert factor_terms(sub_pre(eq)) == a + b - 2*(a + b)**3
|
404 |
+
|
405 |
+
|
406 |
+
def test_issue_7903():
|
407 |
+
a = symbols(r'a', real=True)
|
408 |
+
t = exp(I*cos(a)) + exp(-I*sin(a))
|
409 |
+
assert t.simplify()
|
410 |
+
|
411 |
+
def test_issue_8263():
|
412 |
+
F, G = symbols('F, G', commutative=False, cls=Function)
|
413 |
+
x, y = symbols('x, y')
|
414 |
+
expr, dummies, _ = _mask_nc(F(x)*G(y) - G(y)*F(x))
|
415 |
+
for v in dummies.values():
|
416 |
+
assert not v.is_commutative
|
417 |
+
assert not expr.is_zero
|
418 |
+
|
419 |
+
def test_monotonic_sign():
|
420 |
+
F = _monotonic_sign
|
421 |
+
x = symbols('x')
|
422 |
+
assert F(x) is None
|
423 |
+
assert F(-x) is None
|
424 |
+
assert F(Dummy(prime=True)) == 2
|
425 |
+
assert F(Dummy(prime=True, odd=True)) == 3
|
426 |
+
assert F(Dummy(composite=True)) == 4
|
427 |
+
assert F(Dummy(composite=True, odd=True)) == 9
|
428 |
+
assert F(Dummy(positive=True, integer=True)) == 1
|
429 |
+
assert F(Dummy(positive=True, even=True)) == 2
|
430 |
+
assert F(Dummy(positive=True, even=True, prime=False)) == 4
|
431 |
+
assert F(Dummy(negative=True, integer=True)) == -1
|
432 |
+
assert F(Dummy(negative=True, even=True)) == -2
|
433 |
+
assert F(Dummy(zero=True)) == 0
|
434 |
+
assert F(Dummy(nonnegative=True)) == 0
|
435 |
+
assert F(Dummy(nonpositive=True)) == 0
|
436 |
+
|
437 |
+
assert F(Dummy(positive=True) + 1).is_positive
|
438 |
+
assert F(Dummy(positive=True, integer=True) - 1).is_nonnegative
|
439 |
+
assert F(Dummy(positive=True) - 1) is None
|
440 |
+
assert F(Dummy(negative=True) + 1) is None
|
441 |
+
assert F(Dummy(negative=True, integer=True) - 1).is_nonpositive
|
442 |
+
assert F(Dummy(negative=True) - 1).is_negative
|
443 |
+
assert F(-Dummy(positive=True) + 1) is None
|
444 |
+
assert F(-Dummy(positive=True, integer=True) - 1).is_negative
|
445 |
+
assert F(-Dummy(positive=True) - 1).is_negative
|
446 |
+
assert F(-Dummy(negative=True) + 1).is_positive
|
447 |
+
assert F(-Dummy(negative=True, integer=True) - 1).is_nonnegative
|
448 |
+
assert F(-Dummy(negative=True) - 1) is None
|
449 |
+
x = Dummy(negative=True)
|
450 |
+
assert F(x**3).is_nonpositive
|
451 |
+
assert F(x**3 + log(2)*x - 1).is_negative
|
452 |
+
x = Dummy(positive=True)
|
453 |
+
assert F(-x**3).is_nonpositive
|
454 |
+
|
455 |
+
p = Dummy(positive=True)
|
456 |
+
assert F(1/p).is_positive
|
457 |
+
assert F(p/(p + 1)).is_positive
|
458 |
+
p = Dummy(nonnegative=True)
|
459 |
+
assert F(p/(p + 1)).is_nonnegative
|
460 |
+
p = Dummy(positive=True)
|
461 |
+
assert F(-1/p).is_negative
|
462 |
+
p = Dummy(nonpositive=True)
|
463 |
+
assert F(p/(-p + 1)).is_nonpositive
|
464 |
+
|
465 |
+
p = Dummy(positive=True, integer=True)
|
466 |
+
q = Dummy(positive=True, integer=True)
|
467 |
+
assert F(-2/p/q).is_negative
|
468 |
+
assert F(-2/(p - 1)/q) is None
|
469 |
+
|
470 |
+
assert F((p - 1)*q + 1).is_positive
|
471 |
+
assert F(-(p - 1)*q - 1).is_negative
|
472 |
+
|
473 |
+
def test_issue_17256():
|
474 |
+
from sympy.sets.fancysets import Range
|
475 |
+
x = Symbol('x')
|
476 |
+
s1 = Sum(x + 1, (x, 1, 9))
|
477 |
+
s2 = Sum(x + 1, (x, Range(1, 10)))
|
478 |
+
a = Symbol('a')
|
479 |
+
r1 = s1.xreplace({x:a})
|
480 |
+
r2 = s2.xreplace({x:a})
|
481 |
+
|
482 |
+
assert r1.doit() == r2.doit()
|
483 |
+
s1 = Sum(x + 1, (x, 0, 9))
|
484 |
+
s2 = Sum(x + 1, (x, Range(10)))
|
485 |
+
a = Symbol('a')
|
486 |
+
r1 = s1.xreplace({x:a})
|
487 |
+
r2 = s2.xreplace({x:a})
|
488 |
+
assert r1 == r2
|
489 |
+
|
490 |
+
def test_issue_21623():
|
491 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
492 |
+
M = MatrixSymbol('X', 2, 2)
|
493 |
+
assert gcd_terms(M[0,0], 1) == M[0,0]
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_facts.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.facts import (deduce_alpha_implications,
|
2 |
+
apply_beta_to_alpha_route, rules_2prereq, FactRules, FactKB)
|
3 |
+
from sympy.core.logic import And, Not
|
4 |
+
from sympy.testing.pytest import raises
|
5 |
+
|
6 |
+
T = True
|
7 |
+
F = False
|
8 |
+
U = None
|
9 |
+
|
10 |
+
|
11 |
+
def test_deduce_alpha_implications():
|
12 |
+
def D(i):
|
13 |
+
I = deduce_alpha_implications(i)
|
14 |
+
P = rules_2prereq({
|
15 |
+
(k, True): {(v, True) for v in S} for k, S in I.items()})
|
16 |
+
return I, P
|
17 |
+
|
18 |
+
# transitivity
|
19 |
+
I, P = D([('a', 'b'), ('b', 'c')])
|
20 |
+
assert I == {'a': {'b', 'c'}, 'b': {'c'}, Not('b'):
|
21 |
+
{Not('a')}, Not('c'): {Not('a'), Not('b')}}
|
22 |
+
assert P == {'a': {'b', 'c'}, 'b': {'a', 'c'}, 'c': {'a', 'b'}}
|
23 |
+
|
24 |
+
# Duplicate entry
|
25 |
+
I, P = D([('a', 'b'), ('b', 'c'), ('b', 'c')])
|
26 |
+
assert I == {'a': {'b', 'c'}, 'b': {'c'}, Not('b'): {Not('a')}, Not('c'): {Not('a'), Not('b')}}
|
27 |
+
assert P == {'a': {'b', 'c'}, 'b': {'a', 'c'}, 'c': {'a', 'b'}}
|
28 |
+
|
29 |
+
# see if it is tolerant to cycles
|
30 |
+
assert D([('a', 'a'), ('a', 'a')]) == ({}, {})
|
31 |
+
assert D([('a', 'b'), ('b', 'a')]) == (
|
32 |
+
{'a': {'b'}, 'b': {'a'}, Not('a'): {Not('b')}, Not('b'): {Not('a')}},
|
33 |
+
{'a': {'b'}, 'b': {'a'}})
|
34 |
+
|
35 |
+
# see if it catches inconsistency
|
36 |
+
raises(ValueError, lambda: D([('a', Not('a'))]))
|
37 |
+
raises(ValueError, lambda: D([('a', 'b'), ('b', Not('a'))]))
|
38 |
+
raises(ValueError, lambda: D([('a', 'b'), ('b', 'c'), ('b', 'na'),
|
39 |
+
('na', Not('a'))]))
|
40 |
+
|
41 |
+
# see if it handles implications with negations
|
42 |
+
I, P = D([('a', Not('b')), ('c', 'b')])
|
43 |
+
assert I == {'a': {Not('b'), Not('c')}, 'b': {Not('a')}, 'c': {'b', Not('a')}, Not('b'): {Not('c')}}
|
44 |
+
assert P == {'a': {'b', 'c'}, 'b': {'a', 'c'}, 'c': {'a', 'b'}}
|
45 |
+
I, P = D([(Not('a'), 'b'), ('a', 'c')])
|
46 |
+
assert I == {'a': {'c'}, Not('a'): {'b'}, Not('b'): {'a',
|
47 |
+
'c'}, Not('c'): {Not('a'), 'b'},}
|
48 |
+
assert P == {'a': {'b', 'c'}, 'b': {'a', 'c'}, 'c': {'a', 'b'}}
|
49 |
+
|
50 |
+
|
51 |
+
# Long deductions
|
52 |
+
I, P = D([('a', 'b'), ('b', 'c'), ('c', 'd'), ('d', 'e')])
|
53 |
+
assert I == {'a': {'b', 'c', 'd', 'e'}, 'b': {'c', 'd', 'e'},
|
54 |
+
'c': {'d', 'e'}, 'd': {'e'}, Not('b'): {Not('a')},
|
55 |
+
Not('c'): {Not('a'), Not('b')}, Not('d'): {Not('a'), Not('b'),
|
56 |
+
Not('c')}, Not('e'): {Not('a'), Not('b'), Not('c'), Not('d')}}
|
57 |
+
assert P == {'a': {'b', 'c', 'd', 'e'}, 'b': {'a', 'c', 'd',
|
58 |
+
'e'}, 'c': {'a', 'b', 'd', 'e'}, 'd': {'a', 'b', 'c', 'e'},
|
59 |
+
'e': {'a', 'b', 'c', 'd'}}
|
60 |
+
|
61 |
+
# something related to real-world
|
62 |
+
I, P = D([('rat', 'real'), ('int', 'rat')])
|
63 |
+
|
64 |
+
assert I == {'int': {'rat', 'real'}, 'rat': {'real'},
|
65 |
+
Not('real'): {Not('rat'), Not('int')}, Not('rat'): {Not('int')}}
|
66 |
+
assert P == {'rat': {'int', 'real'}, 'real': {'int', 'rat'},
|
67 |
+
'int': {'rat', 'real'}}
|
68 |
+
|
69 |
+
|
70 |
+
# TODO move me to appropriate place
|
71 |
+
def test_apply_beta_to_alpha_route():
|
72 |
+
APPLY = apply_beta_to_alpha_route
|
73 |
+
|
74 |
+
# indicates empty alpha-chain with attached beta-rule #bidx
|
75 |
+
def Q(bidx):
|
76 |
+
return (set(), [bidx])
|
77 |
+
|
78 |
+
# x -> a &(a,b) -> x -- x -> a
|
79 |
+
A = {'x': {'a'}}
|
80 |
+
B = [(And('a', 'b'), 'x')]
|
81 |
+
assert APPLY(A, B) == {'x': ({'a'}, []), 'a': Q(0), 'b': Q(0)}
|
82 |
+
|
83 |
+
# x -> a &(a,!x) -> b -- x -> a
|
84 |
+
A = {'x': {'a'}}
|
85 |
+
B = [(And('a', Not('x')), 'b')]
|
86 |
+
assert APPLY(A, B) == {'x': ({'a'}, []), Not('x'): Q(0), 'a': Q(0)}
|
87 |
+
|
88 |
+
# x -> a b &(a,b) -> c -- x -> a b c
|
89 |
+
A = {'x': {'a', 'b'}}
|
90 |
+
B = [(And('a', 'b'), 'c')]
|
91 |
+
assert APPLY(A, B) == \
|
92 |
+
{'x': ({'a', 'b', 'c'}, []), 'a': Q(0), 'b': Q(0)}
|
93 |
+
|
94 |
+
# x -> a &(a,b) -> y -- x -> a [#0]
|
95 |
+
A = {'x': {'a'}}
|
96 |
+
B = [(And('a', 'b'), 'y')]
|
97 |
+
assert APPLY(A, B) == {'x': ({'a'}, [0]), 'a': Q(0), 'b': Q(0)}
|
98 |
+
|
99 |
+
# x -> a b c &(a,b) -> c -- x -> a b c
|
100 |
+
A = {'x': {'a', 'b', 'c'}}
|
101 |
+
B = [(And('a', 'b'), 'c')]
|
102 |
+
assert APPLY(A, B) == \
|
103 |
+
{'x': ({'a', 'b', 'c'}, []), 'a': Q(0), 'b': Q(0)}
|
104 |
+
|
105 |
+
# x -> a b &(a,b,c) -> y -- x -> a b [#0]
|
106 |
+
A = {'x': {'a', 'b'}}
|
107 |
+
B = [(And('a', 'b', 'c'), 'y')]
|
108 |
+
assert APPLY(A, B) == \
|
109 |
+
{'x': ({'a', 'b'}, [0]), 'a': Q(0), 'b': Q(0), 'c': Q(0)}
|
110 |
+
|
111 |
+
# x -> a b &(a,b) -> c -- x -> a b c d
|
112 |
+
# c -> d c -> d
|
113 |
+
A = {'x': {'a', 'b'}, 'c': {'d'}}
|
114 |
+
B = [(And('a', 'b'), 'c')]
|
115 |
+
assert APPLY(A, B) == {'x': ({'a', 'b', 'c', 'd'}, []),
|
116 |
+
'c': ({'d'}, []), 'a': Q(0), 'b': Q(0)}
|
117 |
+
|
118 |
+
# x -> a b &(a,b) -> c -- x -> a b c d e
|
119 |
+
# c -> d &(c,d) -> e c -> d e
|
120 |
+
A = {'x': {'a', 'b'}, 'c': {'d'}}
|
121 |
+
B = [(And('a', 'b'), 'c'), (And('c', 'd'), 'e')]
|
122 |
+
assert APPLY(A, B) == {'x': ({'a', 'b', 'c', 'd', 'e'}, []),
|
123 |
+
'c': ({'d', 'e'}, []), 'a': Q(0), 'b': Q(0), 'd': Q(1)}
|
124 |
+
|
125 |
+
# x -> a b &(a,y) -> z -- x -> a b y z
|
126 |
+
# &(a,b) -> y
|
127 |
+
A = {'x': {'a', 'b'}}
|
128 |
+
B = [(And('a', 'y'), 'z'), (And('a', 'b'), 'y')]
|
129 |
+
assert APPLY(A, B) == {'x': ({'a', 'b', 'y', 'z'}, []),
|
130 |
+
'a': (set(), [0, 1]), 'y': Q(0), 'b': Q(1)}
|
131 |
+
|
132 |
+
# x -> a b &(a,!b) -> c -- x -> a b
|
133 |
+
A = {'x': {'a', 'b'}}
|
134 |
+
B = [(And('a', Not('b')), 'c')]
|
135 |
+
assert APPLY(A, B) == \
|
136 |
+
{'x': ({'a', 'b'}, []), 'a': Q(0), Not('b'): Q(0)}
|
137 |
+
|
138 |
+
# !x -> !a !b &(!a,b) -> c -- !x -> !a !b
|
139 |
+
A = {Not('x'): {Not('a'), Not('b')}}
|
140 |
+
B = [(And(Not('a'), 'b'), 'c')]
|
141 |
+
assert APPLY(A, B) == \
|
142 |
+
{Not('x'): ({Not('a'), Not('b')}, []), Not('a'): Q(0), 'b': Q(0)}
|
143 |
+
|
144 |
+
# x -> a b &(b,c) -> !a -- x -> a b
|
145 |
+
A = {'x': {'a', 'b'}}
|
146 |
+
B = [(And('b', 'c'), Not('a'))]
|
147 |
+
assert APPLY(A, B) == {'x': ({'a', 'b'}, []), 'b': Q(0), 'c': Q(0)}
|
148 |
+
|
149 |
+
# x -> a b &(a, b) -> c -- x -> a b c p
|
150 |
+
# c -> p a
|
151 |
+
A = {'x': {'a', 'b'}, 'c': {'p', 'a'}}
|
152 |
+
B = [(And('a', 'b'), 'c')]
|
153 |
+
assert APPLY(A, B) == {'x': ({'a', 'b', 'c', 'p'}, []),
|
154 |
+
'c': ({'p', 'a'}, []), 'a': Q(0), 'b': Q(0)}
|
155 |
+
|
156 |
+
|
157 |
+
def test_FactRules_parse():
|
158 |
+
f = FactRules('a -> b')
|
159 |
+
assert f.prereq == {'b': {'a'}, 'a': {'b'}}
|
160 |
+
|
161 |
+
f = FactRules('a -> !b')
|
162 |
+
assert f.prereq == {'b': {'a'}, 'a': {'b'}}
|
163 |
+
|
164 |
+
f = FactRules('!a -> b')
|
165 |
+
assert f.prereq == {'b': {'a'}, 'a': {'b'}}
|
166 |
+
|
167 |
+
f = FactRules('!a -> !b')
|
168 |
+
assert f.prereq == {'b': {'a'}, 'a': {'b'}}
|
169 |
+
|
170 |
+
f = FactRules('!z == nz')
|
171 |
+
assert f.prereq == {'z': {'nz'}, 'nz': {'z'}}
|
172 |
+
|
173 |
+
|
174 |
+
def test_FactRules_parse2():
|
175 |
+
raises(ValueError, lambda: FactRules('a -> !a'))
|
176 |
+
|
177 |
+
|
178 |
+
def test_FactRules_deduce():
|
179 |
+
f = FactRules(['a -> b', 'b -> c', 'b -> d', 'c -> e'])
|
180 |
+
|
181 |
+
def D(facts):
|
182 |
+
kb = FactKB(f)
|
183 |
+
kb.deduce_all_facts(facts)
|
184 |
+
return kb
|
185 |
+
|
186 |
+
assert D({'a': T}) == {'a': T, 'b': T, 'c': T, 'd': T, 'e': T}
|
187 |
+
assert D({'b': T}) == { 'b': T, 'c': T, 'd': T, 'e': T}
|
188 |
+
assert D({'c': T}) == { 'c': T, 'e': T}
|
189 |
+
assert D({'d': T}) == { 'd': T }
|
190 |
+
assert D({'e': T}) == { 'e': T}
|
191 |
+
|
192 |
+
assert D({'a': F}) == {'a': F }
|
193 |
+
assert D({'b': F}) == {'a': F, 'b': F }
|
194 |
+
assert D({'c': F}) == {'a': F, 'b': F, 'c': F }
|
195 |
+
assert D({'d': F}) == {'a': F, 'b': F, 'd': F }
|
196 |
+
|
197 |
+
assert D({'a': U}) == {'a': U} # XXX ok?
|
198 |
+
|
199 |
+
|
200 |
+
def test_FactRules_deduce2():
|
201 |
+
# pos/neg/zero, but the rules are not sufficient to derive all relations
|
202 |
+
f = FactRules(['pos -> !neg', 'pos -> !z'])
|
203 |
+
|
204 |
+
def D(facts):
|
205 |
+
kb = FactKB(f)
|
206 |
+
kb.deduce_all_facts(facts)
|
207 |
+
return kb
|
208 |
+
|
209 |
+
assert D({'pos': T}) == {'pos': T, 'neg': F, 'z': F}
|
210 |
+
assert D({'pos': F}) == {'pos': F }
|
211 |
+
assert D({'neg': T}) == {'pos': F, 'neg': T }
|
212 |
+
assert D({'neg': F}) == { 'neg': F }
|
213 |
+
assert D({'z': T}) == {'pos': F, 'z': T}
|
214 |
+
assert D({'z': F}) == { 'z': F}
|
215 |
+
|
216 |
+
# pos/neg/zero. rules are sufficient to derive all relations
|
217 |
+
f = FactRules(['pos -> !neg', 'neg -> !pos', 'pos -> !z', 'neg -> !z'])
|
218 |
+
|
219 |
+
assert D({'pos': T}) == {'pos': T, 'neg': F, 'z': F}
|
220 |
+
assert D({'pos': F}) == {'pos': F }
|
221 |
+
assert D({'neg': T}) == {'pos': F, 'neg': T, 'z': F}
|
222 |
+
assert D({'neg': F}) == { 'neg': F }
|
223 |
+
assert D({'z': T}) == {'pos': F, 'neg': F, 'z': T}
|
224 |
+
assert D({'z': F}) == { 'z': F}
|
225 |
+
|
226 |
+
|
227 |
+
def test_FactRules_deduce_multiple():
|
228 |
+
# deduction that involves _several_ starting points
|
229 |
+
f = FactRules(['real == pos | npos'])
|
230 |
+
|
231 |
+
def D(facts):
|
232 |
+
kb = FactKB(f)
|
233 |
+
kb.deduce_all_facts(facts)
|
234 |
+
return kb
|
235 |
+
|
236 |
+
assert D({'real': T}) == {'real': T}
|
237 |
+
assert D({'real': F}) == {'real': F, 'pos': F, 'npos': F}
|
238 |
+
assert D({'pos': T}) == {'real': T, 'pos': T}
|
239 |
+
assert D({'npos': T}) == {'real': T, 'npos': T}
|
240 |
+
|
241 |
+
# --- key tests below ---
|
242 |
+
assert D({'pos': F, 'npos': F}) == {'real': F, 'pos': F, 'npos': F}
|
243 |
+
assert D({'real': T, 'pos': F}) == {'real': T, 'pos': F, 'npos': T}
|
244 |
+
assert D({'real': T, 'npos': F}) == {'real': T, 'pos': T, 'npos': F}
|
245 |
+
|
246 |
+
assert D({'pos': T, 'npos': F}) == {'real': T, 'pos': T, 'npos': F}
|
247 |
+
assert D({'pos': F, 'npos': T}) == {'real': T, 'pos': F, 'npos': T}
|
248 |
+
|
249 |
+
|
250 |
+
def test_FactRules_deduce_multiple2():
|
251 |
+
f = FactRules(['real == neg | zero | pos'])
|
252 |
+
|
253 |
+
def D(facts):
|
254 |
+
kb = FactKB(f)
|
255 |
+
kb.deduce_all_facts(facts)
|
256 |
+
return kb
|
257 |
+
|
258 |
+
assert D({'real': T}) == {'real': T}
|
259 |
+
assert D({'real': F}) == {'real': F, 'neg': F, 'zero': F, 'pos': F}
|
260 |
+
assert D({'neg': T}) == {'real': T, 'neg': T}
|
261 |
+
assert D({'zero': T}) == {'real': T, 'zero': T}
|
262 |
+
assert D({'pos': T}) == {'real': T, 'pos': T}
|
263 |
+
|
264 |
+
# --- key tests below ---
|
265 |
+
assert D({'neg': F, 'zero': F, 'pos': F}) == {'real': F, 'neg': F,
|
266 |
+
'zero': F, 'pos': F}
|
267 |
+
assert D({'real': T, 'neg': F}) == {'real': T, 'neg': F}
|
268 |
+
assert D({'real': T, 'zero': F}) == {'real': T, 'zero': F}
|
269 |
+
assert D({'real': T, 'pos': F}) == {'real': T, 'pos': F}
|
270 |
+
|
271 |
+
assert D({'real': T, 'zero': F, 'pos': F}) == {'real': T,
|
272 |
+
'neg': T, 'zero': F, 'pos': F}
|
273 |
+
assert D({'real': T, 'neg': F, 'pos': F}) == {'real': T,
|
274 |
+
'neg': F, 'zero': T, 'pos': F}
|
275 |
+
assert D({'real': T, 'neg': F, 'zero': F }) == {'real': T,
|
276 |
+
'neg': F, 'zero': F, 'pos': T}
|
277 |
+
|
278 |
+
assert D({'neg': T, 'zero': F, 'pos': F}) == {'real': T, 'neg': T,
|
279 |
+
'zero': F, 'pos': F}
|
280 |
+
assert D({'neg': F, 'zero': T, 'pos': F}) == {'real': T, 'neg': F,
|
281 |
+
'zero': T, 'pos': F}
|
282 |
+
assert D({'neg': F, 'zero': F, 'pos': T}) == {'real': T, 'neg': F,
|
283 |
+
'zero': F, 'pos': T}
|
284 |
+
|
285 |
+
|
286 |
+
def test_FactRules_deduce_base():
|
287 |
+
# deduction that starts from base
|
288 |
+
|
289 |
+
f = FactRules(['real == neg | zero | pos',
|
290 |
+
'neg -> real & !zero & !pos',
|
291 |
+
'pos -> real & !zero & !neg'])
|
292 |
+
base = FactKB(f)
|
293 |
+
|
294 |
+
base.deduce_all_facts({'real': T, 'neg': F})
|
295 |
+
assert base == {'real': T, 'neg': F}
|
296 |
+
|
297 |
+
base.deduce_all_facts({'zero': F})
|
298 |
+
assert base == {'real': T, 'neg': F, 'zero': F, 'pos': T}
|
299 |
+
|
300 |
+
|
301 |
+
def test_FactRules_deduce_staticext():
|
302 |
+
# verify that static beta-extensions deduction takes place
|
303 |
+
f = FactRules(['real == neg | zero | pos',
|
304 |
+
'neg -> real & !zero & !pos',
|
305 |
+
'pos -> real & !zero & !neg',
|
306 |
+
'nneg == real & !neg',
|
307 |
+
'npos == real & !pos'])
|
308 |
+
|
309 |
+
assert ('npos', True) in f.full_implications[('neg', True)]
|
310 |
+
assert ('nneg', True) in f.full_implications[('pos', True)]
|
311 |
+
assert ('nneg', True) in f.full_implications[('zero', True)]
|
312 |
+
assert ('npos', True) in f.full_implications[('zero', True)]
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_function.py
ADDED
@@ -0,0 +1,1455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.summations import Sum
|
2 |
+
from sympy.core.basic import Basic, _aresame
|
3 |
+
from sympy.core.cache import clear_cache
|
4 |
+
from sympy.core.containers import Dict, Tuple
|
5 |
+
from sympy.core.expr import Expr, unchanged
|
6 |
+
from sympy.core.function import (Subs, Function, diff, Lambda, expand,
|
7 |
+
nfloat, Derivative)
|
8 |
+
from sympy.core.numbers import E, Float, zoo, Rational, pi, I, oo, nan
|
9 |
+
from sympy.core.power import Pow
|
10 |
+
from sympy.core.relational import Eq
|
11 |
+
from sympy.core.singleton import S
|
12 |
+
from sympy.core.symbol import symbols, Dummy, Symbol
|
13 |
+
from sympy.functions.elementary.complexes import im, re
|
14 |
+
from sympy.functions.elementary.exponential import log, exp
|
15 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
16 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
17 |
+
from sympy.functions.elementary.trigonometric import sin, cos, acos
|
18 |
+
from sympy.functions.special.error_functions import expint
|
19 |
+
from sympy.functions.special.gamma_functions import loggamma, polygamma
|
20 |
+
from sympy.matrices.dense import Matrix
|
21 |
+
from sympy.printing.str import sstr
|
22 |
+
from sympy.series.order import O
|
23 |
+
from sympy.tensor.indexed import Indexed
|
24 |
+
from sympy.core.function import (PoleError, _mexpand, arity,
|
25 |
+
BadSignatureError, BadArgumentsError)
|
26 |
+
from sympy.core.parameters import _exp_is_pow
|
27 |
+
from sympy.core.sympify import sympify, SympifyError
|
28 |
+
from sympy.matrices import MutableMatrix, ImmutableMatrix
|
29 |
+
from sympy.sets.sets import FiniteSet
|
30 |
+
from sympy.solvers.solveset import solveset
|
31 |
+
from sympy.tensor.array import NDimArray
|
32 |
+
from sympy.utilities.iterables import subsets, variations
|
33 |
+
from sympy.testing.pytest import XFAIL, raises, warns_deprecated_sympy, _both_exp_pow
|
34 |
+
|
35 |
+
from sympy.abc import t, w, x, y, z
|
36 |
+
f, g, h = symbols('f g h', cls=Function)
|
37 |
+
_xi_1, _xi_2, _xi_3 = [Dummy() for i in range(3)]
|
38 |
+
|
39 |
+
def test_f_expand_complex():
|
40 |
+
x = Symbol('x', real=True)
|
41 |
+
|
42 |
+
assert f(x).expand(complex=True) == I*im(f(x)) + re(f(x))
|
43 |
+
assert exp(x).expand(complex=True) == exp(x)
|
44 |
+
assert exp(I*x).expand(complex=True) == cos(x) + I*sin(x)
|
45 |
+
assert exp(z).expand(complex=True) == cos(im(z))*exp(re(z)) + \
|
46 |
+
I*sin(im(z))*exp(re(z))
|
47 |
+
|
48 |
+
|
49 |
+
def test_bug1():
|
50 |
+
e = sqrt(-log(w))
|
51 |
+
assert e.subs(log(w), -x) == sqrt(x)
|
52 |
+
|
53 |
+
e = sqrt(-5*log(w))
|
54 |
+
assert e.subs(log(w), -x) == sqrt(5*x)
|
55 |
+
|
56 |
+
|
57 |
+
def test_general_function():
|
58 |
+
nu = Function('nu')
|
59 |
+
|
60 |
+
e = nu(x)
|
61 |
+
edx = e.diff(x)
|
62 |
+
edy = e.diff(y)
|
63 |
+
edxdx = e.diff(x).diff(x)
|
64 |
+
edxdy = e.diff(x).diff(y)
|
65 |
+
assert e == nu(x)
|
66 |
+
assert edx != nu(x)
|
67 |
+
assert edx == diff(nu(x), x)
|
68 |
+
assert edy == 0
|
69 |
+
assert edxdx == diff(diff(nu(x), x), x)
|
70 |
+
assert edxdy == 0
|
71 |
+
|
72 |
+
def test_general_function_nullary():
|
73 |
+
nu = Function('nu')
|
74 |
+
|
75 |
+
e = nu()
|
76 |
+
edx = e.diff(x)
|
77 |
+
edxdx = e.diff(x).diff(x)
|
78 |
+
assert e == nu()
|
79 |
+
assert edx != nu()
|
80 |
+
assert edx == 0
|
81 |
+
assert edxdx == 0
|
82 |
+
|
83 |
+
|
84 |
+
def test_derivative_subs_bug():
|
85 |
+
e = diff(g(x), x)
|
86 |
+
assert e.subs(g(x), f(x)) != e
|
87 |
+
assert e.subs(g(x), f(x)) == Derivative(f(x), x)
|
88 |
+
assert e.subs(g(x), -f(x)) == Derivative(-f(x), x)
|
89 |
+
|
90 |
+
assert e.subs(x, y) == Derivative(g(y), y)
|
91 |
+
|
92 |
+
|
93 |
+
def test_derivative_subs_self_bug():
|
94 |
+
d = diff(f(x), x)
|
95 |
+
|
96 |
+
assert d.subs(d, y) == y
|
97 |
+
|
98 |
+
|
99 |
+
def test_derivative_linearity():
|
100 |
+
assert diff(-f(x), x) == -diff(f(x), x)
|
101 |
+
assert diff(8*f(x), x) == 8*diff(f(x), x)
|
102 |
+
assert diff(8*f(x), x) != 7*diff(f(x), x)
|
103 |
+
assert diff(8*f(x)*x, x) == 8*f(x) + 8*x*diff(f(x), x)
|
104 |
+
assert diff(8*f(x)*y*x, x).expand() == 8*y*f(x) + 8*y*x*diff(f(x), x)
|
105 |
+
|
106 |
+
|
107 |
+
def test_derivative_evaluate():
|
108 |
+
assert Derivative(sin(x), x) != diff(sin(x), x)
|
109 |
+
assert Derivative(sin(x), x).doit() == diff(sin(x), x)
|
110 |
+
|
111 |
+
assert Derivative(Derivative(f(x), x), x) == diff(f(x), x, x)
|
112 |
+
assert Derivative(sin(x), x, 0) == sin(x)
|
113 |
+
assert Derivative(sin(x), (x, y), (x, -y)) == sin(x)
|
114 |
+
|
115 |
+
|
116 |
+
def test_diff_symbols():
|
117 |
+
assert diff(f(x, y, z), x, y, z) == Derivative(f(x, y, z), x, y, z)
|
118 |
+
assert diff(f(x, y, z), x, x, x) == Derivative(f(x, y, z), x, x, x) == Derivative(f(x, y, z), (x, 3))
|
119 |
+
assert diff(f(x, y, z), x, 3) == Derivative(f(x, y, z), x, 3)
|
120 |
+
|
121 |
+
# issue 5028
|
122 |
+
assert [diff(-z + x/y, sym) for sym in (z, x, y)] == [-1, 1/y, -x/y**2]
|
123 |
+
assert diff(f(x, y, z), x, y, z, 2) == Derivative(f(x, y, z), x, y, z, z)
|
124 |
+
assert diff(f(x, y, z), x, y, z, 2, evaluate=False) == \
|
125 |
+
Derivative(f(x, y, z), x, y, z, z)
|
126 |
+
assert Derivative(f(x, y, z), x, y, z)._eval_derivative(z) == \
|
127 |
+
Derivative(f(x, y, z), x, y, z, z)
|
128 |
+
assert Derivative(Derivative(f(x, y, z), x), y)._eval_derivative(z) == \
|
129 |
+
Derivative(f(x, y, z), x, y, z)
|
130 |
+
|
131 |
+
raises(TypeError, lambda: cos(x).diff((x, y)).variables)
|
132 |
+
assert cos(x).diff((x, y))._wrt_variables == [x]
|
133 |
+
|
134 |
+
# issue 23222
|
135 |
+
assert sympify("a*x+b").diff("x") == sympify("a")
|
136 |
+
|
137 |
+
def test_Function():
|
138 |
+
class myfunc(Function):
|
139 |
+
@classmethod
|
140 |
+
def eval(cls): # zero args
|
141 |
+
return
|
142 |
+
|
143 |
+
assert myfunc.nargs == FiniteSet(0)
|
144 |
+
assert myfunc().nargs == FiniteSet(0)
|
145 |
+
raises(TypeError, lambda: myfunc(x).nargs)
|
146 |
+
|
147 |
+
class myfunc(Function):
|
148 |
+
@classmethod
|
149 |
+
def eval(cls, x): # one arg
|
150 |
+
return
|
151 |
+
|
152 |
+
assert myfunc.nargs == FiniteSet(1)
|
153 |
+
assert myfunc(x).nargs == FiniteSet(1)
|
154 |
+
raises(TypeError, lambda: myfunc(x, y).nargs)
|
155 |
+
|
156 |
+
class myfunc(Function):
|
157 |
+
@classmethod
|
158 |
+
def eval(cls, *x): # star args
|
159 |
+
return
|
160 |
+
|
161 |
+
assert myfunc.nargs == S.Naturals0
|
162 |
+
assert myfunc(x).nargs == S.Naturals0
|
163 |
+
|
164 |
+
|
165 |
+
def test_nargs():
|
166 |
+
f = Function('f')
|
167 |
+
assert f.nargs == S.Naturals0
|
168 |
+
assert f(1).nargs == S.Naturals0
|
169 |
+
assert Function('f', nargs=2)(1, 2).nargs == FiniteSet(2)
|
170 |
+
assert sin.nargs == FiniteSet(1)
|
171 |
+
assert sin(2).nargs == FiniteSet(1)
|
172 |
+
assert log.nargs == FiniteSet(1, 2)
|
173 |
+
assert log(2).nargs == FiniteSet(1, 2)
|
174 |
+
assert Function('f', nargs=2).nargs == FiniteSet(2)
|
175 |
+
assert Function('f', nargs=0).nargs == FiniteSet(0)
|
176 |
+
assert Function('f', nargs=(0, 1)).nargs == FiniteSet(0, 1)
|
177 |
+
assert Function('f', nargs=None).nargs == S.Naturals0
|
178 |
+
raises(ValueError, lambda: Function('f', nargs=()))
|
179 |
+
|
180 |
+
def test_nargs_inheritance():
|
181 |
+
class f1(Function):
|
182 |
+
nargs = 2
|
183 |
+
class f2(f1):
|
184 |
+
pass
|
185 |
+
class f3(f2):
|
186 |
+
pass
|
187 |
+
class f4(f3):
|
188 |
+
nargs = 1,2
|
189 |
+
class f5(f4):
|
190 |
+
pass
|
191 |
+
class f6(f5):
|
192 |
+
pass
|
193 |
+
class f7(f6):
|
194 |
+
nargs=None
|
195 |
+
class f8(f7):
|
196 |
+
pass
|
197 |
+
class f9(f8):
|
198 |
+
pass
|
199 |
+
class f10(f9):
|
200 |
+
nargs = 1
|
201 |
+
class f11(f10):
|
202 |
+
pass
|
203 |
+
assert f1.nargs == FiniteSet(2)
|
204 |
+
assert f2.nargs == FiniteSet(2)
|
205 |
+
assert f3.nargs == FiniteSet(2)
|
206 |
+
assert f4.nargs == FiniteSet(1, 2)
|
207 |
+
assert f5.nargs == FiniteSet(1, 2)
|
208 |
+
assert f6.nargs == FiniteSet(1, 2)
|
209 |
+
assert f7.nargs == S.Naturals0
|
210 |
+
assert f8.nargs == S.Naturals0
|
211 |
+
assert f9.nargs == S.Naturals0
|
212 |
+
assert f10.nargs == FiniteSet(1)
|
213 |
+
assert f11.nargs == FiniteSet(1)
|
214 |
+
|
215 |
+
def test_arity():
|
216 |
+
f = lambda x, y: 1
|
217 |
+
assert arity(f) == 2
|
218 |
+
def f(x, y, z=None):
|
219 |
+
pass
|
220 |
+
assert arity(f) == (2, 3)
|
221 |
+
assert arity(lambda *x: x) is None
|
222 |
+
assert arity(log) == (1, 2)
|
223 |
+
|
224 |
+
|
225 |
+
def test_Lambda():
|
226 |
+
e = Lambda(x, x**2)
|
227 |
+
assert e(4) == 16
|
228 |
+
assert e(x) == x**2
|
229 |
+
assert e(y) == y**2
|
230 |
+
|
231 |
+
assert Lambda((), 42)() == 42
|
232 |
+
assert unchanged(Lambda, (), 42)
|
233 |
+
assert Lambda((), 42) != Lambda((), 43)
|
234 |
+
assert Lambda((), f(x))() == f(x)
|
235 |
+
assert Lambda((), 42).nargs == FiniteSet(0)
|
236 |
+
|
237 |
+
assert unchanged(Lambda, (x,), x**2)
|
238 |
+
assert Lambda(x, x**2) == Lambda((x,), x**2)
|
239 |
+
assert Lambda(x, x**2) != Lambda(x, x**2 + 1)
|
240 |
+
assert Lambda((x, y), x**y) != Lambda((y, x), y**x)
|
241 |
+
assert Lambda((x, y), x**y) != Lambda((x, y), y**x)
|
242 |
+
|
243 |
+
assert Lambda((x, y), x**y)(x, y) == x**y
|
244 |
+
assert Lambda((x, y), x**y)(3, 3) == 3**3
|
245 |
+
assert Lambda((x, y), x**y)(x, 3) == x**3
|
246 |
+
assert Lambda((x, y), x**y)(3, y) == 3**y
|
247 |
+
assert Lambda(x, f(x))(x) == f(x)
|
248 |
+
assert Lambda(x, x**2)(e(x)) == x**4
|
249 |
+
assert e(e(x)) == x**4
|
250 |
+
|
251 |
+
x1, x2 = (Indexed('x', i) for i in (1, 2))
|
252 |
+
assert Lambda((x1, x2), x1 + x2)(x, y) == x + y
|
253 |
+
|
254 |
+
assert Lambda((x, y), x + y).nargs == FiniteSet(2)
|
255 |
+
|
256 |
+
p = x, y, z, t
|
257 |
+
assert Lambda(p, t*(x + y + z))(*p) == t * (x + y + z)
|
258 |
+
|
259 |
+
eq = Lambda(x, 2*x) + Lambda(y, 2*y)
|
260 |
+
assert eq != 2*Lambda(x, 2*x)
|
261 |
+
assert eq.as_dummy() == 2*Lambda(x, 2*x).as_dummy()
|
262 |
+
assert Lambda(x, 2*x) not in [ Lambda(x, x) ]
|
263 |
+
raises(BadSignatureError, lambda: Lambda(1, x))
|
264 |
+
assert Lambda(x, 1)(1) is S.One
|
265 |
+
|
266 |
+
raises(BadSignatureError, lambda: Lambda((x, x), x + 2))
|
267 |
+
raises(BadSignatureError, lambda: Lambda(((x, x), y), x))
|
268 |
+
raises(BadSignatureError, lambda: Lambda(((y, x), x), x))
|
269 |
+
raises(BadSignatureError, lambda: Lambda(((y, 1), 2), x))
|
270 |
+
|
271 |
+
with warns_deprecated_sympy():
|
272 |
+
assert Lambda([x, y], x+y) == Lambda((x, y), x+y)
|
273 |
+
|
274 |
+
flam = Lambda(((x, y),), x + y)
|
275 |
+
assert flam((2, 3)) == 5
|
276 |
+
flam = Lambda(((x, y), z), x + y + z)
|
277 |
+
assert flam((2, 3), 1) == 6
|
278 |
+
flam = Lambda((((x, y), z),), x + y + z)
|
279 |
+
assert flam(((2, 3), 1)) == 6
|
280 |
+
raises(BadArgumentsError, lambda: flam(1, 2, 3))
|
281 |
+
flam = Lambda( (x,), (x, x))
|
282 |
+
assert flam(1,) == (1, 1)
|
283 |
+
assert flam((1,)) == ((1,), (1,))
|
284 |
+
flam = Lambda( ((x,),), (x, x))
|
285 |
+
raises(BadArgumentsError, lambda: flam(1))
|
286 |
+
assert flam((1,)) == (1, 1)
|
287 |
+
|
288 |
+
# Previously TypeError was raised so this is potentially needed for
|
289 |
+
# backwards compatibility.
|
290 |
+
assert issubclass(BadSignatureError, TypeError)
|
291 |
+
assert issubclass(BadArgumentsError, TypeError)
|
292 |
+
|
293 |
+
# These are tested to see they don't raise:
|
294 |
+
hash(Lambda(x, 2*x))
|
295 |
+
hash(Lambda(x, x)) # IdentityFunction subclass
|
296 |
+
|
297 |
+
|
298 |
+
def test_IdentityFunction():
|
299 |
+
assert Lambda(x, x) is Lambda(y, y) is S.IdentityFunction
|
300 |
+
assert Lambda(x, 2*x) is not S.IdentityFunction
|
301 |
+
assert Lambda((x, y), x) is not S.IdentityFunction
|
302 |
+
|
303 |
+
|
304 |
+
def test_Lambda_symbols():
|
305 |
+
assert Lambda(x, 2*x).free_symbols == set()
|
306 |
+
assert Lambda(x, x*y).free_symbols == {y}
|
307 |
+
assert Lambda((), 42).free_symbols == set()
|
308 |
+
assert Lambda((), x*y).free_symbols == {x,y}
|
309 |
+
|
310 |
+
|
311 |
+
def test_functionclas_symbols():
|
312 |
+
assert f.free_symbols == set()
|
313 |
+
|
314 |
+
|
315 |
+
def test_Lambda_arguments():
|
316 |
+
raises(TypeError, lambda: Lambda(x, 2*x)(x, y))
|
317 |
+
raises(TypeError, lambda: Lambda((x, y), x + y)(x))
|
318 |
+
raises(TypeError, lambda: Lambda((), 42)(x))
|
319 |
+
|
320 |
+
|
321 |
+
def test_Lambda_equality():
|
322 |
+
assert Lambda((x, y), 2*x) == Lambda((x, y), 2*x)
|
323 |
+
# these, of course, should never be equal
|
324 |
+
assert Lambda(x, 2*x) != Lambda((x, y), 2*x)
|
325 |
+
assert Lambda(x, 2*x) != 2*x
|
326 |
+
# But it is tempting to want expressions that differ only
|
327 |
+
# in bound symbols to compare the same. But this is not what
|
328 |
+
# Python's `==` is intended to do; two objects that compare
|
329 |
+
# as equal means that they are indistibguishable and cache to the
|
330 |
+
# same value. We wouldn't want to expression that are
|
331 |
+
# mathematically the same but written in different variables to be
|
332 |
+
# interchanged else what is the point of allowing for different
|
333 |
+
# variable names?
|
334 |
+
assert Lambda(x, 2*x) != Lambda(y, 2*y)
|
335 |
+
|
336 |
+
|
337 |
+
def test_Subs():
|
338 |
+
assert Subs(1, (), ()) is S.One
|
339 |
+
# check null subs influence on hashing
|
340 |
+
assert Subs(x, y, z) != Subs(x, y, 1)
|
341 |
+
# neutral subs works
|
342 |
+
assert Subs(x, x, 1).subs(x, y).has(y)
|
343 |
+
# self mapping var/point
|
344 |
+
assert Subs(Derivative(f(x), (x, 2)), x, x).doit() == f(x).diff(x, x)
|
345 |
+
assert Subs(x, x, 0).has(x) # it's a structural answer
|
346 |
+
assert not Subs(x, x, 0).free_symbols
|
347 |
+
assert Subs(Subs(x + y, x, 2), y, 1) == Subs(x + y, (x, y), (2, 1))
|
348 |
+
assert Subs(x, (x,), (0,)) == Subs(x, x, 0)
|
349 |
+
assert Subs(x, x, 0) == Subs(y, y, 0)
|
350 |
+
assert Subs(x, x, 0).subs(x, 1) == Subs(x, x, 0)
|
351 |
+
assert Subs(y, x, 0).subs(y, 1) == Subs(1, x, 0)
|
352 |
+
assert Subs(f(x), x, 0).doit() == f(0)
|
353 |
+
assert Subs(f(x**2), x**2, 0).doit() == f(0)
|
354 |
+
assert Subs(f(x, y, z), (x, y, z), (0, 1, 1)) != \
|
355 |
+
Subs(f(x, y, z), (x, y, z), (0, 0, 1))
|
356 |
+
assert Subs(x, y, 2).subs(x, y).doit() == 2
|
357 |
+
assert Subs(f(x, y), (x, y, z), (0, 1, 1)) != \
|
358 |
+
Subs(f(x, y) + z, (x, y, z), (0, 1, 0))
|
359 |
+
assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1)
|
360 |
+
assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1)
|
361 |
+
raises(ValueError, lambda: Subs(f(x, y), (x, y), (0, 0, 1)))
|
362 |
+
raises(ValueError, lambda: Subs(f(x, y), (x, x, y), (0, 0, 1)))
|
363 |
+
|
364 |
+
assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2
|
365 |
+
assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1)
|
366 |
+
|
367 |
+
assert Subs(f(x), x, 0) == Subs(f(y), y, 0)
|
368 |
+
assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0))
|
369 |
+
assert Subs(f(x)*y, (x, y), (0, 1)) == Subs(f(y)*x, (y, x), (0, 1))
|
370 |
+
assert Subs(f(x)*y, (x, y), (1, 1)) == Subs(f(y)*x, (x, y), (1, 1))
|
371 |
+
|
372 |
+
assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0)
|
373 |
+
assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0)
|
374 |
+
assert Subs(y*f(x), x, y).subs(y, 2) == Subs(2*f(x), x, 2)
|
375 |
+
assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2*y
|
376 |
+
|
377 |
+
assert Subs(f(x), x, 0).free_symbols == set()
|
378 |
+
assert Subs(f(x, y), x, z).free_symbols == {y, z}
|
379 |
+
|
380 |
+
assert Subs(f(x).diff(x), x, 0).doit(), Subs(f(x).diff(x), x, 0)
|
381 |
+
assert Subs(1 + f(x).diff(x), x, 0).doit(), 1 + Subs(f(x).diff(x), x, 0)
|
382 |
+
assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \
|
383 |
+
2*Subs(Derivative(f(x, 2), x), x, 0)
|
384 |
+
assert Subs(y**2*f(x), x, 0).diff(y) == 2*y*f(0)
|
385 |
+
|
386 |
+
e = Subs(y**2*f(x), x, y)
|
387 |
+
assert e.diff(y) == e.doit().diff(y) == y**2*Derivative(f(y), y) + 2*y*f(y)
|
388 |
+
|
389 |
+
assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2*Subs(f(x), x, 0)
|
390 |
+
e1 = Subs(z*f(x), x, 1)
|
391 |
+
e2 = Subs(z*f(y), y, 1)
|
392 |
+
assert e1 + e2 == 2*e1
|
393 |
+
assert e1.__hash__() == e2.__hash__()
|
394 |
+
assert Subs(z*f(x + 1), x, 1) not in [ e1, e2 ]
|
395 |
+
assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x))
|
396 |
+
assert Derivative(f(x), x).subs(x, x + y) == Subs(Derivative(f(x), x),
|
397 |
+
x, x + y)
|
398 |
+
assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(2) == \
|
399 |
+
Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(2) == \
|
400 |
+
z + Rational('1/2').n(2)*f(0)
|
401 |
+
|
402 |
+
assert f(x).diff(x).subs(x, 0).subs(x, y) == f(x).diff(x).subs(x, 0)
|
403 |
+
assert (x*f(x).diff(x).subs(x, 0)).subs(x, y) == y*f(x).diff(x).subs(x, 0)
|
404 |
+
assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x)
|
405 |
+
).doit() == 2*exp(x)
|
406 |
+
assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x)
|
407 |
+
).doit(deep=False) == 2*Derivative(exp(x), x)
|
408 |
+
assert Derivative(f(x, g(x)), x).doit() == Derivative(
|
409 |
+
f(x, g(x)), g(x))*Derivative(g(x), x) + Subs(Derivative(
|
410 |
+
f(y, g(x)), y), y, x)
|
411 |
+
|
412 |
+
def test_doitdoit():
|
413 |
+
done = Derivative(f(x, g(x)), x, g(x)).doit()
|
414 |
+
assert done == done.doit()
|
415 |
+
|
416 |
+
|
417 |
+
@XFAIL
|
418 |
+
def test_Subs2():
|
419 |
+
# this reflects a limitation of subs(), probably won't fix
|
420 |
+
assert Subs(f(x), x**2, x).doit() == f(sqrt(x))
|
421 |
+
|
422 |
+
|
423 |
+
def test_expand_function():
|
424 |
+
assert expand(x + y) == x + y
|
425 |
+
assert expand(x + y, complex=True) == I*im(x) + I*im(y) + re(x) + re(y)
|
426 |
+
assert expand((x + y)**11, modulus=11) == x**11 + y**11
|
427 |
+
|
428 |
+
|
429 |
+
def test_function_comparable():
|
430 |
+
assert sin(x).is_comparable is False
|
431 |
+
assert cos(x).is_comparable is False
|
432 |
+
|
433 |
+
assert sin(Float('0.1')).is_comparable is True
|
434 |
+
assert cos(Float('0.1')).is_comparable is True
|
435 |
+
|
436 |
+
assert sin(E).is_comparable is True
|
437 |
+
assert cos(E).is_comparable is True
|
438 |
+
|
439 |
+
assert sin(Rational(1, 3)).is_comparable is True
|
440 |
+
assert cos(Rational(1, 3)).is_comparable is True
|
441 |
+
|
442 |
+
|
443 |
+
def test_function_comparable_infinities():
|
444 |
+
assert sin(oo).is_comparable is False
|
445 |
+
assert sin(-oo).is_comparable is False
|
446 |
+
assert sin(zoo).is_comparable is False
|
447 |
+
assert sin(nan).is_comparable is False
|
448 |
+
|
449 |
+
|
450 |
+
def test_deriv1():
|
451 |
+
# These all require derivatives evaluated at a point (issue 4719) to work.
|
452 |
+
# See issue 4624
|
453 |
+
assert f(2*x).diff(x) == 2*Subs(Derivative(f(x), x), x, 2*x)
|
454 |
+
assert (f(x)**3).diff(x) == 3*f(x)**2*f(x).diff(x)
|
455 |
+
assert (f(2*x)**3).diff(x) == 6*f(2*x)**2*Subs(
|
456 |
+
Derivative(f(x), x), x, 2*x)
|
457 |
+
|
458 |
+
assert f(2 + x).diff(x) == Subs(Derivative(f(x), x), x, x + 2)
|
459 |
+
assert f(2 + 3*x).diff(x) == 3*Subs(
|
460 |
+
Derivative(f(x), x), x, 3*x + 2)
|
461 |
+
assert f(3*sin(x)).diff(x) == 3*cos(x)*Subs(
|
462 |
+
Derivative(f(x), x), x, 3*sin(x))
|
463 |
+
|
464 |
+
# See issue 8510
|
465 |
+
assert f(x, x + z).diff(x) == (
|
466 |
+
Subs(Derivative(f(y, x + z), y), y, x) +
|
467 |
+
Subs(Derivative(f(x, y), y), y, x + z))
|
468 |
+
assert f(x, x**2).diff(x) == (
|
469 |
+
2*x*Subs(Derivative(f(x, y), y), y, x**2) +
|
470 |
+
Subs(Derivative(f(y, x**2), y), y, x))
|
471 |
+
# but Subs is not always necessary
|
472 |
+
assert f(x, g(y)).diff(g(y)) == Derivative(f(x, g(y)), g(y))
|
473 |
+
|
474 |
+
|
475 |
+
def test_deriv2():
|
476 |
+
assert (x**3).diff(x) == 3*x**2
|
477 |
+
assert (x**3).diff(x, evaluate=False) != 3*x**2
|
478 |
+
assert (x**3).diff(x, evaluate=False) == Derivative(x**3, x)
|
479 |
+
|
480 |
+
assert diff(x**3, x) == 3*x**2
|
481 |
+
assert diff(x**3, x, evaluate=False) != 3*x**2
|
482 |
+
assert diff(x**3, x, evaluate=False) == Derivative(x**3, x)
|
483 |
+
|
484 |
+
|
485 |
+
def test_func_deriv():
|
486 |
+
assert f(x).diff(x) == Derivative(f(x), x)
|
487 |
+
# issue 4534
|
488 |
+
assert f(x, y).diff(x, y) - f(x, y).diff(y, x) == 0
|
489 |
+
assert Derivative(f(x, y), x, y).args[1:] == ((x, 1), (y, 1))
|
490 |
+
assert Derivative(f(x, y), y, x).args[1:] == ((y, 1), (x, 1))
|
491 |
+
assert (Derivative(f(x, y), x, y) - Derivative(f(x, y), y, x)).doit() == 0
|
492 |
+
|
493 |
+
|
494 |
+
def test_suppressed_evaluation():
|
495 |
+
a = sin(0, evaluate=False)
|
496 |
+
assert a != 0
|
497 |
+
assert a.func is sin
|
498 |
+
assert a.args == (0,)
|
499 |
+
|
500 |
+
|
501 |
+
def test_function_evalf():
|
502 |
+
def eq(a, b, eps):
|
503 |
+
return abs(a - b) < eps
|
504 |
+
assert eq(sin(1).evalf(15), Float("0.841470984807897"), 1e-13)
|
505 |
+
assert eq(
|
506 |
+
sin(2).evalf(25), Float("0.9092974268256816953960199", 25), 1e-23)
|
507 |
+
assert eq(sin(1 + I).evalf(
|
508 |
+
15), Float("1.29845758141598") + Float("0.634963914784736")*I, 1e-13)
|
509 |
+
assert eq(exp(1 + I).evalf(15), Float(
|
510 |
+
"1.46869393991588") + Float("2.28735528717884239")*I, 1e-13)
|
511 |
+
assert eq(exp(-0.5 + 1.5*I).evalf(15), Float(
|
512 |
+
"0.0429042815937374") + Float("0.605011292285002")*I, 1e-13)
|
513 |
+
assert eq(log(pi + sqrt(2)*I).evalf(
|
514 |
+
15), Float("1.23699044022052") + Float("0.422985442737893")*I, 1e-13)
|
515 |
+
assert eq(cos(100).evalf(15), Float("0.86231887228768"), 1e-13)
|
516 |
+
|
517 |
+
|
518 |
+
def test_extensibility_eval():
|
519 |
+
class MyFunc(Function):
|
520 |
+
@classmethod
|
521 |
+
def eval(cls, *args):
|
522 |
+
return (0, 0, 0)
|
523 |
+
assert MyFunc(0) == (0, 0, 0)
|
524 |
+
|
525 |
+
|
526 |
+
@_both_exp_pow
|
527 |
+
def test_function_non_commutative():
|
528 |
+
x = Symbol('x', commutative=False)
|
529 |
+
assert f(x).is_commutative is False
|
530 |
+
assert sin(x).is_commutative is False
|
531 |
+
assert exp(x).is_commutative is False
|
532 |
+
assert log(x).is_commutative is False
|
533 |
+
assert f(x).is_complex is False
|
534 |
+
assert sin(x).is_complex is False
|
535 |
+
assert exp(x).is_complex is False
|
536 |
+
assert log(x).is_complex is False
|
537 |
+
|
538 |
+
|
539 |
+
def test_function_complex():
|
540 |
+
x = Symbol('x', complex=True)
|
541 |
+
xzf = Symbol('x', complex=True, zero=False)
|
542 |
+
assert f(x).is_commutative is True
|
543 |
+
assert sin(x).is_commutative is True
|
544 |
+
assert exp(x).is_commutative is True
|
545 |
+
assert log(x).is_commutative is True
|
546 |
+
assert f(x).is_complex is None
|
547 |
+
assert sin(x).is_complex is True
|
548 |
+
assert exp(x).is_complex is True
|
549 |
+
assert log(x).is_complex is None
|
550 |
+
assert log(xzf).is_complex is True
|
551 |
+
|
552 |
+
|
553 |
+
def test_function__eval_nseries():
|
554 |
+
n = Symbol('n')
|
555 |
+
|
556 |
+
assert sin(x)._eval_nseries(x, 2, None) == x + O(x**2)
|
557 |
+
assert sin(x + 1)._eval_nseries(x, 2, None) == x*cos(1) + sin(1) + O(x**2)
|
558 |
+
assert sin(pi*(1 - x))._eval_nseries(x, 2, None) == pi*x + O(x**2)
|
559 |
+
assert acos(1 - x**2)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x**2) + O(x**2)
|
560 |
+
assert polygamma(n, x + 1)._eval_nseries(x, 2, None) == \
|
561 |
+
polygamma(n, 1) + polygamma(n + 1, 1)*x + O(x**2)
|
562 |
+
raises(PoleError, lambda: sin(1/x)._eval_nseries(x, 2, None))
|
563 |
+
assert acos(1 - x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x) + sqrt(2)*x**(S(3)/2)/12 + O(x**2)
|
564 |
+
assert acos(1 + x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(-x) + sqrt(2)*(-x)**(S(3)/2)/12 + O(x**2)
|
565 |
+
assert loggamma(1/x)._eval_nseries(x, 0, None) == \
|
566 |
+
log(x)/2 - log(x)/x - 1/x + O(1, x)
|
567 |
+
assert loggamma(log(1/x)).nseries(x, n=1, logx=y) == loggamma(-y)
|
568 |
+
|
569 |
+
# issue 6725:
|
570 |
+
assert expint(Rational(3, 2), -x)._eval_nseries(x, 5, None) == \
|
571 |
+
2 - 2*sqrt(pi)*sqrt(-x) - 2*x + x**2 + x**3/3 + x**4/12 + 4*I*x**(S(3)/2)*sqrt(-x)/3 + \
|
572 |
+
2*I*x**(S(5)/2)*sqrt(-x)/5 + 2*I*x**(S(7)/2)*sqrt(-x)/21 + O(x**5)
|
573 |
+
assert sin(sqrt(x))._eval_nseries(x, 3, None) == \
|
574 |
+
sqrt(x) - x**Rational(3, 2)/6 + x**Rational(5, 2)/120 + O(x**3)
|
575 |
+
|
576 |
+
# issue 19065:
|
577 |
+
s1 = f(x,y).series(y, n=2)
|
578 |
+
assert {i.name for i in s1.atoms(Symbol)} == {'x', 'xi', 'y'}
|
579 |
+
xi = Symbol('xi')
|
580 |
+
s2 = f(xi, y).series(y, n=2)
|
581 |
+
assert {i.name for i in s2.atoms(Symbol)} == {'xi', 'xi0', 'y'}
|
582 |
+
|
583 |
+
def test_doit():
|
584 |
+
n = Symbol('n', integer=True)
|
585 |
+
f = Sum(2 * n * x, (n, 1, 3))
|
586 |
+
d = Derivative(f, x)
|
587 |
+
assert d.doit() == 12
|
588 |
+
assert d.doit(deep=False) == Sum(2*n, (n, 1, 3))
|
589 |
+
|
590 |
+
|
591 |
+
def test_evalf_default():
|
592 |
+
from sympy.functions.special.gamma_functions import polygamma
|
593 |
+
assert type(sin(4.0)) == Float
|
594 |
+
assert type(re(sin(I + 1.0))) == Float
|
595 |
+
assert type(im(sin(I + 1.0))) == Float
|
596 |
+
assert type(sin(4)) == sin
|
597 |
+
assert type(polygamma(2.0, 4.0)) == Float
|
598 |
+
assert type(sin(Rational(1, 4))) == sin
|
599 |
+
|
600 |
+
|
601 |
+
def test_issue_5399():
|
602 |
+
args = [x, y, S(2), S.Half]
|
603 |
+
|
604 |
+
def ok(a):
|
605 |
+
"""Return True if the input args for diff are ok"""
|
606 |
+
if not a:
|
607 |
+
return False
|
608 |
+
if a[0].is_Symbol is False:
|
609 |
+
return False
|
610 |
+
s_at = [i for i in range(len(a)) if a[i].is_Symbol]
|
611 |
+
n_at = [i for i in range(len(a)) if not a[i].is_Symbol]
|
612 |
+
# every symbol is followed by symbol or int
|
613 |
+
# every number is followed by a symbol
|
614 |
+
return (all(a[i + 1].is_Symbol or a[i + 1].is_Integer
|
615 |
+
for i in s_at if i + 1 < len(a)) and
|
616 |
+
all(a[i + 1].is_Symbol
|
617 |
+
for i in n_at if i + 1 < len(a)))
|
618 |
+
eq = x**10*y**8
|
619 |
+
for a in subsets(args):
|
620 |
+
for v in variations(a, len(a)):
|
621 |
+
if ok(v):
|
622 |
+
eq.diff(*v) # does not raise
|
623 |
+
else:
|
624 |
+
raises(ValueError, lambda: eq.diff(*v))
|
625 |
+
|
626 |
+
|
627 |
+
def test_derivative_numerically():
|
628 |
+
z0 = x._random()
|
629 |
+
assert abs(Derivative(sin(x), x).doit_numerically(z0) - cos(z0)) < 1e-15
|
630 |
+
|
631 |
+
|
632 |
+
def test_fdiff_argument_index_error():
|
633 |
+
from sympy.core.function import ArgumentIndexError
|
634 |
+
|
635 |
+
class myfunc(Function):
|
636 |
+
nargs = 1 # define since there is no eval routine
|
637 |
+
|
638 |
+
def fdiff(self, idx):
|
639 |
+
raise ArgumentIndexError
|
640 |
+
mf = myfunc(x)
|
641 |
+
assert mf.diff(x) == Derivative(mf, x)
|
642 |
+
raises(TypeError, lambda: myfunc(x, x))
|
643 |
+
|
644 |
+
|
645 |
+
def test_deriv_wrt_function():
|
646 |
+
x = f(t)
|
647 |
+
xd = diff(x, t)
|
648 |
+
xdd = diff(xd, t)
|
649 |
+
y = g(t)
|
650 |
+
yd = diff(y, t)
|
651 |
+
|
652 |
+
assert diff(x, t) == xd
|
653 |
+
assert diff(2 * x + 4, t) == 2 * xd
|
654 |
+
assert diff(2 * x + 4 + y, t) == 2 * xd + yd
|
655 |
+
assert diff(2 * x + 4 + y * x, t) == 2 * xd + x * yd + xd * y
|
656 |
+
assert diff(2 * x + 4 + y * x, x) == 2 + y
|
657 |
+
assert (diff(4 * x**2 + 3 * x + x * y, t) == 3 * xd + x * yd + xd * y +
|
658 |
+
8 * x * xd)
|
659 |
+
assert (diff(4 * x**2 + 3 * xd + x * y, t) == 3 * xdd + x * yd + xd * y +
|
660 |
+
8 * x * xd)
|
661 |
+
assert diff(4 * x**2 + 3 * xd + x * y, xd) == 3
|
662 |
+
assert diff(4 * x**2 + 3 * xd + x * y, xdd) == 0
|
663 |
+
assert diff(sin(x), t) == xd * cos(x)
|
664 |
+
assert diff(exp(x), t) == xd * exp(x)
|
665 |
+
assert diff(sqrt(x), t) == xd / (2 * sqrt(x))
|
666 |
+
|
667 |
+
|
668 |
+
def test_diff_wrt_value():
|
669 |
+
assert Expr()._diff_wrt is False
|
670 |
+
assert x._diff_wrt is True
|
671 |
+
assert f(x)._diff_wrt is True
|
672 |
+
assert Derivative(f(x), x)._diff_wrt is True
|
673 |
+
assert Derivative(x**2, x)._diff_wrt is False
|
674 |
+
|
675 |
+
|
676 |
+
def test_diff_wrt():
|
677 |
+
fx = f(x)
|
678 |
+
dfx = diff(f(x), x)
|
679 |
+
ddfx = diff(f(x), x, x)
|
680 |
+
|
681 |
+
assert diff(sin(fx) + fx**2, fx) == cos(fx) + 2*fx
|
682 |
+
assert diff(sin(dfx) + dfx**2, dfx) == cos(dfx) + 2*dfx
|
683 |
+
assert diff(sin(ddfx) + ddfx**2, ddfx) == cos(ddfx) + 2*ddfx
|
684 |
+
assert diff(fx**2, dfx) == 0
|
685 |
+
assert diff(fx**2, ddfx) == 0
|
686 |
+
assert diff(dfx**2, fx) == 0
|
687 |
+
assert diff(dfx**2, ddfx) == 0
|
688 |
+
assert diff(ddfx**2, dfx) == 0
|
689 |
+
|
690 |
+
assert diff(fx*dfx*ddfx, fx) == dfx*ddfx
|
691 |
+
assert diff(fx*dfx*ddfx, dfx) == fx*ddfx
|
692 |
+
assert diff(fx*dfx*ddfx, ddfx) == fx*dfx
|
693 |
+
|
694 |
+
assert diff(f(x), x).diff(f(x)) == 0
|
695 |
+
assert (sin(f(x)) - cos(diff(f(x), x))).diff(f(x)) == cos(f(x))
|
696 |
+
|
697 |
+
assert diff(sin(fx), fx, x) == diff(sin(fx), x, fx)
|
698 |
+
|
699 |
+
# Chain rule cases
|
700 |
+
assert f(g(x)).diff(x) == \
|
701 |
+
Derivative(g(x), x)*Derivative(f(g(x)), g(x))
|
702 |
+
assert diff(f(g(x), h(y)), x) == \
|
703 |
+
Derivative(g(x), x)*Derivative(f(g(x), h(y)), g(x))
|
704 |
+
assert diff(f(g(x), h(x)), x) == (
|
705 |
+
Derivative(f(g(x), h(x)), g(x))*Derivative(g(x), x) +
|
706 |
+
Derivative(f(g(x), h(x)), h(x))*Derivative(h(x), x))
|
707 |
+
assert f(
|
708 |
+
sin(x)).diff(x) == cos(x)*Subs(Derivative(f(x), x), x, sin(x))
|
709 |
+
|
710 |
+
assert diff(f(g(x)), g(x)) == Derivative(f(g(x)), g(x))
|
711 |
+
|
712 |
+
|
713 |
+
def test_diff_wrt_func_subs():
|
714 |
+
assert f(g(x)).diff(x).subs(g, Lambda(x, 2*x)).doit() == f(2*x).diff(x)
|
715 |
+
|
716 |
+
|
717 |
+
def test_subs_in_derivative():
|
718 |
+
expr = sin(x*exp(y))
|
719 |
+
u = Function('u')
|
720 |
+
v = Function('v')
|
721 |
+
assert Derivative(expr, y).subs(expr, y) == Derivative(y, y)
|
722 |
+
assert Derivative(expr, y).subs(y, x).doit() == \
|
723 |
+
Derivative(expr, y).doit().subs(y, x)
|
724 |
+
assert Derivative(f(x, y), y).subs(y, x) == Subs(Derivative(f(x, y), y), y, x)
|
725 |
+
assert Derivative(f(x, y), y).subs(x, y) == Subs(Derivative(f(x, y), y), x, y)
|
726 |
+
assert Derivative(f(x, y), y).subs(y, g(x, y)) == Subs(Derivative(f(x, y), y), y, g(x, y)).doit()
|
727 |
+
assert Derivative(f(x, y), y).subs(x, g(x, y)) == Subs(Derivative(f(x, y), y), x, g(x, y))
|
728 |
+
assert Derivative(f(x, y), g(y)).subs(x, g(x, y)) == Derivative(f(g(x, y), y), g(y))
|
729 |
+
assert Derivative(f(u(x), h(y)), h(y)).subs(h(y), g(x, y)) == \
|
730 |
+
Subs(Derivative(f(u(x), h(y)), h(y)), h(y), g(x, y)).doit()
|
731 |
+
assert Derivative(f(x, y), y).subs(y, z) == Derivative(f(x, z), z)
|
732 |
+
assert Derivative(f(x, y), y).subs(y, g(y)) == Derivative(f(x, g(y)), g(y))
|
733 |
+
assert Derivative(f(g(x), h(y)), h(y)).subs(h(y), u(y)) == \
|
734 |
+
Derivative(f(g(x), u(y)), u(y))
|
735 |
+
assert Derivative(f(x, f(x, x)), f(x, x)).subs(
|
736 |
+
f, Lambda((x, y), x + y)) == Subs(
|
737 |
+
Derivative(z + x, z), z, 2*x)
|
738 |
+
assert Subs(Derivative(f(f(x)), x), f, cos).doit() == sin(x)*sin(cos(x))
|
739 |
+
assert Subs(Derivative(f(f(x)), f(x)), f, cos).doit() == -sin(cos(x))
|
740 |
+
# Issue 13791. No comparison (it's a long formula) but this used to raise an exception.
|
741 |
+
assert isinstance(v(x, y, u(x, y)).diff(y).diff(x).diff(y), Expr)
|
742 |
+
# This is also related to issues 13791 and 13795; issue 15190
|
743 |
+
F = Lambda((x, y), exp(2*x + 3*y))
|
744 |
+
abstract = f(x, f(x, x)).diff(x, 2)
|
745 |
+
concrete = F(x, F(x, x)).diff(x, 2)
|
746 |
+
assert (abstract.subs(f, F).doit() - concrete).simplify() == 0
|
747 |
+
# don't introduce a new symbol if not necessary
|
748 |
+
assert x in f(x).diff(x).subs(x, 0).atoms()
|
749 |
+
# case (4)
|
750 |
+
assert Derivative(f(x,f(x,y)), x, y).subs(x, g(y)
|
751 |
+
) == Subs(Derivative(f(x, f(x, y)), x, y), x, g(y))
|
752 |
+
|
753 |
+
assert Derivative(f(x, x), x).subs(x, 0
|
754 |
+
) == Subs(Derivative(f(x, x), x), x, 0)
|
755 |
+
# issue 15194
|
756 |
+
assert Derivative(f(y, g(x)), (x, z)).subs(z, x
|
757 |
+
) == Derivative(f(y, g(x)), (x, x))
|
758 |
+
|
759 |
+
df = f(x).diff(x)
|
760 |
+
assert df.subs(df, 1) is S.One
|
761 |
+
assert df.diff(df) is S.One
|
762 |
+
dxy = Derivative(f(x, y), x, y)
|
763 |
+
dyx = Derivative(f(x, y), y, x)
|
764 |
+
assert dxy.subs(Derivative(f(x, y), y, x), 1) is S.One
|
765 |
+
assert dxy.diff(dyx) is S.One
|
766 |
+
assert Derivative(f(x, y), x, 2, y, 3).subs(
|
767 |
+
dyx, g(x, y)) == Derivative(g(x, y), x, 1, y, 2)
|
768 |
+
assert Derivative(f(x, x - y), y).subs(x, x + y) == Subs(
|
769 |
+
Derivative(f(x, x - y), y), x, x + y)
|
770 |
+
|
771 |
+
|
772 |
+
def test_diff_wrt_not_allowed():
|
773 |
+
# issue 7027 included
|
774 |
+
for wrt in (
|
775 |
+
cos(x), re(x), x**2, x*y, 1 + x,
|
776 |
+
Derivative(cos(x), x), Derivative(f(f(x)), x)):
|
777 |
+
raises(ValueError, lambda: diff(f(x), wrt))
|
778 |
+
# if we don't differentiate wrt then don't raise error
|
779 |
+
assert diff(exp(x*y), x*y, 0) == exp(x*y)
|
780 |
+
|
781 |
+
|
782 |
+
def test_diff_wrt_intlike():
|
783 |
+
class Two:
|
784 |
+
def __int__(self):
|
785 |
+
return 2
|
786 |
+
|
787 |
+
assert cos(x).diff(x, Two()) == -cos(x)
|
788 |
+
|
789 |
+
|
790 |
+
def test_klein_gordon_lagrangian():
|
791 |
+
m = Symbol('m')
|
792 |
+
phi = f(x, t)
|
793 |
+
|
794 |
+
L = -(diff(phi, t)**2 - diff(phi, x)**2 - m**2*phi**2)/2
|
795 |
+
eqna = Eq(
|
796 |
+
diff(L, phi) - diff(L, diff(phi, x), x) - diff(L, diff(phi, t), t), 0)
|
797 |
+
eqnb = Eq(diff(phi, t, t) - diff(phi, x, x) + m**2*phi, 0)
|
798 |
+
assert eqna == eqnb
|
799 |
+
|
800 |
+
|
801 |
+
def test_sho_lagrangian():
|
802 |
+
m = Symbol('m')
|
803 |
+
k = Symbol('k')
|
804 |
+
x = f(t)
|
805 |
+
|
806 |
+
L = m*diff(x, t)**2/2 - k*x**2/2
|
807 |
+
eqna = Eq(diff(L, x), diff(L, diff(x, t), t))
|
808 |
+
eqnb = Eq(-k*x, m*diff(x, t, t))
|
809 |
+
assert eqna == eqnb
|
810 |
+
|
811 |
+
assert diff(L, x, t) == diff(L, t, x)
|
812 |
+
assert diff(L, diff(x, t), t) == m*diff(x, t, 2)
|
813 |
+
assert diff(L, t, diff(x, t)) == -k*x + m*diff(x, t, 2)
|
814 |
+
|
815 |
+
|
816 |
+
def test_straight_line():
|
817 |
+
F = f(x)
|
818 |
+
Fd = F.diff(x)
|
819 |
+
L = sqrt(1 + Fd**2)
|
820 |
+
assert diff(L, F) == 0
|
821 |
+
assert diff(L, Fd) == Fd/sqrt(1 + Fd**2)
|
822 |
+
|
823 |
+
|
824 |
+
def test_sort_variable():
|
825 |
+
vsort = Derivative._sort_variable_count
|
826 |
+
def vsort0(*v, reverse=False):
|
827 |
+
return [i[0] for i in vsort([(i, 0) for i in (
|
828 |
+
reversed(v) if reverse else v)])]
|
829 |
+
|
830 |
+
for R in range(2):
|
831 |
+
assert vsort0(y, x, reverse=R) == [x, y]
|
832 |
+
assert vsort0(f(x), x, reverse=R) == [x, f(x)]
|
833 |
+
assert vsort0(f(y), f(x), reverse=R) == [f(x), f(y)]
|
834 |
+
assert vsort0(g(x), f(y), reverse=R) == [f(y), g(x)]
|
835 |
+
assert vsort0(f(x, y), f(x), reverse=R) == [f(x), f(x, y)]
|
836 |
+
fx = f(x).diff(x)
|
837 |
+
assert vsort0(fx, y, reverse=R) == [y, fx]
|
838 |
+
fy = f(y).diff(y)
|
839 |
+
assert vsort0(fy, fx, reverse=R) == [fx, fy]
|
840 |
+
fxx = fx.diff(x)
|
841 |
+
assert vsort0(fxx, fx, reverse=R) == [fx, fxx]
|
842 |
+
assert vsort0(Basic(x), f(x), reverse=R) == [f(x), Basic(x)]
|
843 |
+
assert vsort0(Basic(y), Basic(x), reverse=R) == [Basic(x), Basic(y)]
|
844 |
+
assert vsort0(Basic(y, z), Basic(x), reverse=R) == [
|
845 |
+
Basic(x), Basic(y, z)]
|
846 |
+
assert vsort0(fx, x, reverse=R) == [
|
847 |
+
x, fx] if R else [fx, x]
|
848 |
+
assert vsort0(Basic(x), x, reverse=R) == [
|
849 |
+
x, Basic(x)] if R else [Basic(x), x]
|
850 |
+
assert vsort0(Basic(f(x)), f(x), reverse=R) == [
|
851 |
+
f(x), Basic(f(x))] if R else [Basic(f(x)), f(x)]
|
852 |
+
assert vsort0(Basic(x, z), Basic(x), reverse=R) == [
|
853 |
+
Basic(x), Basic(x, z)] if R else [Basic(x, z), Basic(x)]
|
854 |
+
assert vsort([]) == []
|
855 |
+
assert _aresame(vsort([(x, 1)]), [Tuple(x, 1)])
|
856 |
+
assert vsort([(x, y), (x, z)]) == [(x, y + z)]
|
857 |
+
assert vsort([(y, 1), (x, 1 + y)]) == [(x, 1 + y), (y, 1)]
|
858 |
+
# coverage complete; legacy tests below
|
859 |
+
assert vsort([(x, 3), (y, 2), (z, 1)]) == [(x, 3), (y, 2), (z, 1)]
|
860 |
+
assert vsort([(h(x), 1), (g(x), 1), (f(x), 1)]) == [
|
861 |
+
(f(x), 1), (g(x), 1), (h(x), 1)]
|
862 |
+
assert vsort([(z, 1), (y, 2), (x, 3), (h(x), 1), (g(x), 1),
|
863 |
+
(f(x), 1)]) == [(x, 3), (y, 2), (z, 1), (f(x), 1), (g(x), 1),
|
864 |
+
(h(x), 1)]
|
865 |
+
assert vsort([(x, 1), (f(x), 1), (y, 1), (f(y), 1)]) == [(x, 1),
|
866 |
+
(y, 1), (f(x), 1), (f(y), 1)]
|
867 |
+
assert vsort([(y, 1), (x, 2), (g(x), 1), (f(x), 1), (z, 1),
|
868 |
+
(h(x), 1), (y, 2), (x, 1)]) == [(x, 3), (y, 3), (z, 1),
|
869 |
+
(f(x), 1), (g(x), 1), (h(x), 1)]
|
870 |
+
assert vsort([(z, 1), (y, 1), (f(x), 1), (x, 1), (f(x), 1),
|
871 |
+
(g(x), 1)]) == [(x, 1), (y, 1), (z, 1), (f(x), 2), (g(x), 1)]
|
872 |
+
assert vsort([(z, 1), (y, 2), (f(x), 1), (x, 2), (f(x), 2),
|
873 |
+
(g(x), 1), (z, 2), (z, 1), (y, 1), (x, 1)]) == [(x, 3), (y, 3),
|
874 |
+
(z, 4), (f(x), 3), (g(x), 1)]
|
875 |
+
assert vsort(((y, 2), (x, 1), (y, 1), (x, 1))) == [(x, 2), (y, 3)]
|
876 |
+
assert isinstance(vsort([(x, 3), (y, 2), (z, 1)])[0], Tuple)
|
877 |
+
assert vsort([(x, 1), (f(x), 1), (x, 1)]) == [(x, 2), (f(x), 1)]
|
878 |
+
assert vsort([(y, 2), (x, 3), (z, 1)]) == [(x, 3), (y, 2), (z, 1)]
|
879 |
+
assert vsort([(h(y), 1), (g(x), 1), (f(x), 1)]) == [
|
880 |
+
(f(x), 1), (g(x), 1), (h(y), 1)]
|
881 |
+
assert vsort([(x, 1), (y, 1), (x, 1)]) == [(x, 2), (y, 1)]
|
882 |
+
assert vsort([(f(x), 1), (f(y), 1), (f(x), 1)]) == [
|
883 |
+
(f(x), 2), (f(y), 1)]
|
884 |
+
dfx = f(x).diff(x)
|
885 |
+
self = [(dfx, 1), (x, 1)]
|
886 |
+
assert vsort(self) == self
|
887 |
+
assert vsort([
|
888 |
+
(dfx, 1), (y, 1), (f(x), 1), (x, 1), (f(y), 1), (x, 1)]) == [
|
889 |
+
(y, 1), (f(x), 1), (f(y), 1), (dfx, 1), (x, 2)]
|
890 |
+
dfy = f(y).diff(y)
|
891 |
+
assert vsort([(dfy, 1), (dfx, 1)]) == [(dfx, 1), (dfy, 1)]
|
892 |
+
d2fx = dfx.diff(x)
|
893 |
+
assert vsort([(d2fx, 1), (dfx, 1)]) == [(dfx, 1), (d2fx, 1)]
|
894 |
+
|
895 |
+
|
896 |
+
def test_multiple_derivative():
|
897 |
+
# Issue #15007
|
898 |
+
assert f(x, y).diff(y, y, x, y, x
|
899 |
+
) == Derivative(f(x, y), (x, 2), (y, 3))
|
900 |
+
|
901 |
+
|
902 |
+
def test_unhandled():
|
903 |
+
class MyExpr(Expr):
|
904 |
+
def _eval_derivative(self, s):
|
905 |
+
if not s.name.startswith('xi'):
|
906 |
+
return self
|
907 |
+
else:
|
908 |
+
return None
|
909 |
+
|
910 |
+
eq = MyExpr(f(x), y, z)
|
911 |
+
assert diff(eq, x, y, f(x), z) == Derivative(eq, f(x))
|
912 |
+
assert diff(eq, f(x), x) == Derivative(eq, f(x))
|
913 |
+
assert f(x, y).diff(x,(y, z)) == Derivative(f(x, y), x, (y, z))
|
914 |
+
assert f(x, y).diff(x,(y, 0)) == Derivative(f(x, y), x)
|
915 |
+
|
916 |
+
|
917 |
+
def test_nfloat():
|
918 |
+
from sympy.core.basic import _aresame
|
919 |
+
from sympy.polys.rootoftools import rootof
|
920 |
+
|
921 |
+
x = Symbol("x")
|
922 |
+
eq = x**Rational(4, 3) + 4*x**(S.One/3)/3
|
923 |
+
assert _aresame(nfloat(eq), x**Rational(4, 3) + (4.0/3)*x**(S.One/3))
|
924 |
+
assert _aresame(nfloat(eq, exponent=True), x**(4.0/3) + (4.0/3)*x**(1.0/3))
|
925 |
+
eq = x**Rational(4, 3) + 4*x**(x/3)/3
|
926 |
+
assert _aresame(nfloat(eq), x**Rational(4, 3) + (4.0/3)*x**(x/3))
|
927 |
+
big = 12345678901234567890
|
928 |
+
# specify precision to match value used in nfloat
|
929 |
+
Float_big = Float(big, 15)
|
930 |
+
assert _aresame(nfloat(big), Float_big)
|
931 |
+
assert _aresame(nfloat(big*x), Float_big*x)
|
932 |
+
assert _aresame(nfloat(x**big, exponent=True), x**Float_big)
|
933 |
+
assert nfloat(cos(x + sqrt(2))) == cos(x + nfloat(sqrt(2)))
|
934 |
+
|
935 |
+
# issue 6342
|
936 |
+
f = S('x*lamda + lamda**3*(x/2 + 1/2) + lamda**2 + 1/4')
|
937 |
+
assert not any(a.free_symbols for a in solveset(f.subs(x, -0.139)))
|
938 |
+
|
939 |
+
# issue 6632
|
940 |
+
assert nfloat(-100000*sqrt(2500000001) + 5000000001) == \
|
941 |
+
9.99999999800000e-11
|
942 |
+
|
943 |
+
# issue 7122
|
944 |
+
eq = cos(3*x**4 + y)*rootof(x**5 + 3*x**3 + 1, 0)
|
945 |
+
assert str(nfloat(eq, exponent=False, n=1)) == '-0.7*cos(3.0*x**4 + y)'
|
946 |
+
|
947 |
+
# issue 10933
|
948 |
+
for ti in (dict, Dict):
|
949 |
+
d = ti({S.Half: S.Half})
|
950 |
+
n = nfloat(d)
|
951 |
+
assert isinstance(n, ti)
|
952 |
+
assert _aresame(list(n.items()).pop(), (S.Half, Float(.5)))
|
953 |
+
for ti in (dict, Dict):
|
954 |
+
d = ti({S.Half: S.Half})
|
955 |
+
n = nfloat(d, dkeys=True)
|
956 |
+
assert isinstance(n, ti)
|
957 |
+
assert _aresame(list(n.items()).pop(), (Float(.5), Float(.5)))
|
958 |
+
d = [S.Half]
|
959 |
+
n = nfloat(d)
|
960 |
+
assert type(n) is list
|
961 |
+
assert _aresame(n[0], Float(.5))
|
962 |
+
assert _aresame(nfloat(Eq(x, S.Half)).rhs, Float(.5))
|
963 |
+
assert _aresame(nfloat(S(True)), S(True))
|
964 |
+
assert _aresame(nfloat(Tuple(S.Half))[0], Float(.5))
|
965 |
+
assert nfloat(Eq((3 - I)**2/2 + I, 0)) == S.false
|
966 |
+
# pass along kwargs
|
967 |
+
assert nfloat([{S.Half: x}], dkeys=True) == [{Float(0.5): x}]
|
968 |
+
|
969 |
+
# Issue 17706
|
970 |
+
A = MutableMatrix([[1, 2], [3, 4]])
|
971 |
+
B = MutableMatrix(
|
972 |
+
[[Float('1.0', precision=53), Float('2.0', precision=53)],
|
973 |
+
[Float('3.0', precision=53), Float('4.0', precision=53)]])
|
974 |
+
assert _aresame(nfloat(A), B)
|
975 |
+
A = ImmutableMatrix([[1, 2], [3, 4]])
|
976 |
+
B = ImmutableMatrix(
|
977 |
+
[[Float('1.0', precision=53), Float('2.0', precision=53)],
|
978 |
+
[Float('3.0', precision=53), Float('4.0', precision=53)]])
|
979 |
+
assert _aresame(nfloat(A), B)
|
980 |
+
|
981 |
+
# issue 22524
|
982 |
+
f = Function('f')
|
983 |
+
assert not nfloat(f(2)).atoms(Float)
|
984 |
+
|
985 |
+
|
986 |
+
def test_issue_7068():
|
987 |
+
from sympy.abc import a, b
|
988 |
+
f = Function('f')
|
989 |
+
y1 = Dummy('y')
|
990 |
+
y2 = Dummy('y')
|
991 |
+
func1 = f(a + y1 * b)
|
992 |
+
func2 = f(a + y2 * b)
|
993 |
+
func1_y = func1.diff(y1)
|
994 |
+
func2_y = func2.diff(y2)
|
995 |
+
assert func1_y != func2_y
|
996 |
+
z1 = Subs(f(a), a, y1)
|
997 |
+
z2 = Subs(f(a), a, y2)
|
998 |
+
assert z1 != z2
|
999 |
+
|
1000 |
+
|
1001 |
+
def test_issue_7231():
|
1002 |
+
from sympy.abc import a
|
1003 |
+
ans1 = f(x).series(x, a)
|
1004 |
+
res = (f(a) + (-a + x)*Subs(Derivative(f(y), y), y, a) +
|
1005 |
+
(-a + x)**2*Subs(Derivative(f(y), y, y), y, a)/2 +
|
1006 |
+
(-a + x)**3*Subs(Derivative(f(y), y, y, y),
|
1007 |
+
y, a)/6 +
|
1008 |
+
(-a + x)**4*Subs(Derivative(f(y), y, y, y, y),
|
1009 |
+
y, a)/24 +
|
1010 |
+
(-a + x)**5*Subs(Derivative(f(y), y, y, y, y, y),
|
1011 |
+
y, a)/120 + O((-a + x)**6, (x, a)))
|
1012 |
+
assert res == ans1
|
1013 |
+
ans2 = f(x).series(x, a)
|
1014 |
+
assert res == ans2
|
1015 |
+
|
1016 |
+
|
1017 |
+
def test_issue_7687():
|
1018 |
+
from sympy.core.function import Function
|
1019 |
+
from sympy.abc import x
|
1020 |
+
f = Function('f')(x)
|
1021 |
+
ff = Function('f')(x)
|
1022 |
+
match_with_cache = ff.matches(f)
|
1023 |
+
assert isinstance(f, type(ff))
|
1024 |
+
clear_cache()
|
1025 |
+
ff = Function('f')(x)
|
1026 |
+
assert isinstance(f, type(ff))
|
1027 |
+
assert match_with_cache == ff.matches(f)
|
1028 |
+
|
1029 |
+
|
1030 |
+
def test_issue_7688():
|
1031 |
+
from sympy.core.function import Function, UndefinedFunction
|
1032 |
+
|
1033 |
+
f = Function('f') # actually an UndefinedFunction
|
1034 |
+
clear_cache()
|
1035 |
+
class A(UndefinedFunction):
|
1036 |
+
pass
|
1037 |
+
a = A('f')
|
1038 |
+
assert isinstance(a, type(f))
|
1039 |
+
|
1040 |
+
|
1041 |
+
def test_mexpand():
|
1042 |
+
from sympy.abc import x
|
1043 |
+
assert _mexpand(None) is None
|
1044 |
+
assert _mexpand(1) is S.One
|
1045 |
+
assert _mexpand(x*(x + 1)**2) == (x*(x + 1)**2).expand()
|
1046 |
+
|
1047 |
+
|
1048 |
+
def test_issue_8469():
|
1049 |
+
# This should not take forever to run
|
1050 |
+
N = 40
|
1051 |
+
def g(w, theta):
|
1052 |
+
return 1/(1+exp(w-theta))
|
1053 |
+
|
1054 |
+
ws = symbols(['w%i'%i for i in range(N)])
|
1055 |
+
import functools
|
1056 |
+
expr = functools.reduce(g, ws)
|
1057 |
+
assert isinstance(expr, Pow)
|
1058 |
+
|
1059 |
+
|
1060 |
+
def test_issue_12996():
|
1061 |
+
# foo=True imitates the sort of arguments that Derivative can get
|
1062 |
+
# from Integral when it passes doit to the expression
|
1063 |
+
assert Derivative(im(x), x).doit(foo=True) == Derivative(im(x), x)
|
1064 |
+
|
1065 |
+
|
1066 |
+
def test_should_evalf():
|
1067 |
+
# This should not take forever to run (see #8506)
|
1068 |
+
assert isinstance(sin((1.0 + 1.0*I)**10000 + 1), sin)
|
1069 |
+
|
1070 |
+
|
1071 |
+
def test_Derivative_as_finite_difference():
|
1072 |
+
# Central 1st derivative at gridpoint
|
1073 |
+
x, h = symbols('x h', real=True)
|
1074 |
+
dfdx = f(x).diff(x)
|
1075 |
+
assert (dfdx.as_finite_difference([x-2, x-1, x, x+1, x+2]) -
|
1076 |
+
(S.One/12*(f(x-2)-f(x+2)) + Rational(2, 3)*(f(x+1)-f(x-1)))).simplify() == 0
|
1077 |
+
|
1078 |
+
# Central 1st derivative "half-way"
|
1079 |
+
assert (dfdx.as_finite_difference() -
|
1080 |
+
(f(x + S.Half)-f(x - S.Half))).simplify() == 0
|
1081 |
+
assert (dfdx.as_finite_difference(h) -
|
1082 |
+
(f(x + h/S(2))-f(x - h/S(2)))/h).simplify() == 0
|
1083 |
+
assert (dfdx.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) -
|
1084 |
+
(S(9)/(8*2*h)*(f(x+h) - f(x-h)) +
|
1085 |
+
S.One/(24*2*h)*(f(x - 3*h) - f(x + 3*h)))).simplify() == 0
|
1086 |
+
|
1087 |
+
# One sided 1st derivative at gridpoint
|
1088 |
+
assert (dfdx.as_finite_difference([0, 1, 2], 0) -
|
1089 |
+
(Rational(-3, 2)*f(0) + 2*f(1) - f(2)/2)).simplify() == 0
|
1090 |
+
assert (dfdx.as_finite_difference([x, x+h], x) -
|
1091 |
+
(f(x+h) - f(x))/h).simplify() == 0
|
1092 |
+
assert (dfdx.as_finite_difference([x-h, x, x+h], x-h) -
|
1093 |
+
(-S(3)/(2*h)*f(x-h) + 2/h*f(x) -
|
1094 |
+
S.One/(2*h)*f(x+h))).simplify() == 0
|
1095 |
+
|
1096 |
+
# One sided 1st derivative "half-way"
|
1097 |
+
assert (dfdx.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h, x + 7*h])
|
1098 |
+
- 1/(2*h)*(-S(11)/(12)*f(x-h) + S(17)/(24)*f(x+h)
|
1099 |
+
+ Rational(3, 8)*f(x + 3*h) - Rational(5, 24)*f(x + 5*h)
|
1100 |
+
+ S.One/24*f(x + 7*h))).simplify() == 0
|
1101 |
+
|
1102 |
+
d2fdx2 = f(x).diff(x, 2)
|
1103 |
+
# Central 2nd derivative at gridpoint
|
1104 |
+
assert (d2fdx2.as_finite_difference([x-h, x, x+h]) -
|
1105 |
+
h**-2 * (f(x-h) + f(x+h) - 2*f(x))).simplify() == 0
|
1106 |
+
|
1107 |
+
assert (d2fdx2.as_finite_difference([x - 2*h, x-h, x, x+h, x + 2*h]) -
|
1108 |
+
h**-2 * (Rational(-1, 12)*(f(x - 2*h) + f(x + 2*h)) +
|
1109 |
+
Rational(4, 3)*(f(x+h) + f(x-h)) - Rational(5, 2)*f(x))).simplify() == 0
|
1110 |
+
|
1111 |
+
# Central 2nd derivative "half-way"
|
1112 |
+
assert (d2fdx2.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) -
|
1113 |
+
(2*h)**-2 * (S.Half*(f(x - 3*h) + f(x + 3*h)) -
|
1114 |
+
S.Half*(f(x+h) + f(x-h)))).simplify() == 0
|
1115 |
+
|
1116 |
+
# One sided 2nd derivative at gridpoint
|
1117 |
+
assert (d2fdx2.as_finite_difference([x, x+h, x + 2*h, x + 3*h]) -
|
1118 |
+
h**-2 * (2*f(x) - 5*f(x+h) +
|
1119 |
+
4*f(x+2*h) - f(x+3*h))).simplify() == 0
|
1120 |
+
|
1121 |
+
# One sided 2nd derivative at "half-way"
|
1122 |
+
assert (d2fdx2.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h]) -
|
1123 |
+
(2*h)**-2 * (Rational(3, 2)*f(x-h) - Rational(7, 2)*f(x+h) + Rational(5, 2)*f(x + 3*h) -
|
1124 |
+
S.Half*f(x + 5*h))).simplify() == 0
|
1125 |
+
|
1126 |
+
d3fdx3 = f(x).diff(x, 3)
|
1127 |
+
# Central 3rd derivative at gridpoint
|
1128 |
+
assert (d3fdx3.as_finite_difference() -
|
1129 |
+
(-f(x - Rational(3, 2)) + 3*f(x - S.Half) -
|
1130 |
+
3*f(x + S.Half) + f(x + Rational(3, 2)))).simplify() == 0
|
1131 |
+
|
1132 |
+
assert (d3fdx3.as_finite_difference(
|
1133 |
+
[x - 3*h, x - 2*h, x-h, x, x+h, x + 2*h, x + 3*h]) -
|
1134 |
+
h**-3 * (S.One/8*(f(x - 3*h) - f(x + 3*h)) - f(x - 2*h) +
|
1135 |
+
f(x + 2*h) + Rational(13, 8)*(f(x-h) - f(x+h)))).simplify() == 0
|
1136 |
+
|
1137 |
+
# Central 3rd derivative at "half-way"
|
1138 |
+
assert (d3fdx3.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) -
|
1139 |
+
(2*h)**-3 * (f(x + 3*h)-f(x - 3*h) +
|
1140 |
+
3*(f(x-h)-f(x+h)))).simplify() == 0
|
1141 |
+
|
1142 |
+
# One sided 3rd derivative at gridpoint
|
1143 |
+
assert (d3fdx3.as_finite_difference([x, x+h, x + 2*h, x + 3*h]) -
|
1144 |
+
h**-3 * (f(x + 3*h)-f(x) + 3*(f(x+h)-f(x + 2*h)))).simplify() == 0
|
1145 |
+
|
1146 |
+
# One sided 3rd derivative at "half-way"
|
1147 |
+
assert (d3fdx3.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h]) -
|
1148 |
+
(2*h)**-3 * (f(x + 5*h)-f(x-h) +
|
1149 |
+
3*(f(x+h)-f(x + 3*h)))).simplify() == 0
|
1150 |
+
|
1151 |
+
# issue 11007
|
1152 |
+
y = Symbol('y', real=True)
|
1153 |
+
d2fdxdy = f(x, y).diff(x, y)
|
1154 |
+
|
1155 |
+
ref0 = Derivative(f(x + S.Half, y), y) - Derivative(f(x - S.Half, y), y)
|
1156 |
+
assert (d2fdxdy.as_finite_difference(wrt=x) - ref0).simplify() == 0
|
1157 |
+
|
1158 |
+
half = S.Half
|
1159 |
+
xm, xp, ym, yp = x-half, x+half, y-half, y+half
|
1160 |
+
ref2 = f(xm, ym) + f(xp, yp) - f(xp, ym) - f(xm, yp)
|
1161 |
+
assert (d2fdxdy.as_finite_difference() - ref2).simplify() == 0
|
1162 |
+
|
1163 |
+
|
1164 |
+
def test_issue_11159():
|
1165 |
+
# Tests Application._eval_subs
|
1166 |
+
with _exp_is_pow(False):
|
1167 |
+
expr1 = E
|
1168 |
+
expr0 = expr1 * expr1
|
1169 |
+
expr1 = expr0.subs(expr1,expr0)
|
1170 |
+
assert expr0 == expr1
|
1171 |
+
with _exp_is_pow(True):
|
1172 |
+
expr1 = E
|
1173 |
+
expr0 = expr1 * expr1
|
1174 |
+
expr2 = expr0.subs(expr1, expr0)
|
1175 |
+
assert expr2 == E ** 4
|
1176 |
+
|
1177 |
+
|
1178 |
+
def test_issue_12005():
|
1179 |
+
e1 = Subs(Derivative(f(x), x), x, x)
|
1180 |
+
assert e1.diff(x) == Derivative(f(x), x, x)
|
1181 |
+
e2 = Subs(Derivative(f(x), x), x, x**2 + 1)
|
1182 |
+
assert e2.diff(x) == 2*x*Subs(Derivative(f(x), x, x), x, x**2 + 1)
|
1183 |
+
e3 = Subs(Derivative(f(x) + y**2 - y, y), y, y**2)
|
1184 |
+
assert e3.diff(y) == 4*y
|
1185 |
+
e4 = Subs(Derivative(f(x + y), y), y, (x**2))
|
1186 |
+
assert e4.diff(y) is S.Zero
|
1187 |
+
e5 = Subs(Derivative(f(x), x), (y, z), (y, z))
|
1188 |
+
assert e5.diff(x) == Derivative(f(x), x, x)
|
1189 |
+
assert f(g(x)).diff(g(x), g(x)) == Derivative(f(g(x)), g(x), g(x))
|
1190 |
+
|
1191 |
+
|
1192 |
+
def test_issue_13843():
|
1193 |
+
x = symbols('x')
|
1194 |
+
f = Function('f')
|
1195 |
+
m, n = symbols('m n', integer=True)
|
1196 |
+
assert Derivative(Derivative(f(x), (x, m)), (x, n)) == Derivative(f(x), (x, m + n))
|
1197 |
+
assert Derivative(Derivative(f(x), (x, m+5)), (x, n+3)) == Derivative(f(x), (x, m + n + 8))
|
1198 |
+
|
1199 |
+
assert Derivative(f(x), (x, n)).doit() == Derivative(f(x), (x, n))
|
1200 |
+
|
1201 |
+
|
1202 |
+
def test_order_could_be_zero():
|
1203 |
+
x, y = symbols('x, y')
|
1204 |
+
n = symbols('n', integer=True, nonnegative=True)
|
1205 |
+
m = symbols('m', integer=True, positive=True)
|
1206 |
+
assert diff(y, (x, n)) == Piecewise((y, Eq(n, 0)), (0, True))
|
1207 |
+
assert diff(y, (x, n + 1)) is S.Zero
|
1208 |
+
assert diff(y, (x, m)) is S.Zero
|
1209 |
+
|
1210 |
+
|
1211 |
+
def test_undefined_function_eq():
|
1212 |
+
f = Function('f')
|
1213 |
+
f2 = Function('f')
|
1214 |
+
g = Function('g')
|
1215 |
+
f_real = Function('f', is_real=True)
|
1216 |
+
|
1217 |
+
# This test may only be meaningful if the cache is turned off
|
1218 |
+
assert f == f2
|
1219 |
+
assert hash(f) == hash(f2)
|
1220 |
+
assert f == f
|
1221 |
+
|
1222 |
+
assert f != g
|
1223 |
+
|
1224 |
+
assert f != f_real
|
1225 |
+
|
1226 |
+
|
1227 |
+
def test_function_assumptions():
|
1228 |
+
x = Symbol('x')
|
1229 |
+
f = Function('f')
|
1230 |
+
f_real = Function('f', real=True)
|
1231 |
+
f_real1 = Function('f', real=1)
|
1232 |
+
f_real_inherit = Function(Symbol('f', real=True))
|
1233 |
+
|
1234 |
+
assert f_real == f_real1 # assumptions are sanitized
|
1235 |
+
assert f != f_real
|
1236 |
+
assert f(x) != f_real(x)
|
1237 |
+
|
1238 |
+
assert f(x).is_real is None
|
1239 |
+
assert f_real(x).is_real is True
|
1240 |
+
assert f_real_inherit(x).is_real is True and f_real_inherit.name == 'f'
|
1241 |
+
|
1242 |
+
# Can also do it this way, but it won't be equal to f_real because of the
|
1243 |
+
# way UndefinedFunction.__new__ works. Any non-recognized assumptions
|
1244 |
+
# are just added literally as something which is used in the hash
|
1245 |
+
f_real2 = Function('f', is_real=True)
|
1246 |
+
assert f_real2(x).is_real is True
|
1247 |
+
|
1248 |
+
|
1249 |
+
def test_undef_fcn_float_issue_6938():
|
1250 |
+
f = Function('ceil')
|
1251 |
+
assert not f(0.3).is_number
|
1252 |
+
f = Function('sin')
|
1253 |
+
assert not f(0.3).is_number
|
1254 |
+
assert not f(pi).evalf().is_number
|
1255 |
+
x = Symbol('x')
|
1256 |
+
assert not f(x).evalf(subs={x:1.2}).is_number
|
1257 |
+
|
1258 |
+
|
1259 |
+
def test_undefined_function_eval():
|
1260 |
+
# Issue 15170. Make sure UndefinedFunction with eval defined works
|
1261 |
+
# properly.
|
1262 |
+
|
1263 |
+
fdiff = lambda self, argindex=1: cos(self.args[argindex - 1])
|
1264 |
+
eval = classmethod(lambda cls, t: None)
|
1265 |
+
_imp_ = classmethod(lambda cls, t: sin(t))
|
1266 |
+
|
1267 |
+
temp = Function('temp', fdiff=fdiff, eval=eval, _imp_=_imp_)
|
1268 |
+
|
1269 |
+
expr = temp(t)
|
1270 |
+
assert sympify(expr) == expr
|
1271 |
+
assert type(sympify(expr)).fdiff.__name__ == "<lambda>"
|
1272 |
+
assert expr.diff(t) == cos(t)
|
1273 |
+
|
1274 |
+
|
1275 |
+
def test_issue_15241():
|
1276 |
+
F = f(x)
|
1277 |
+
Fx = F.diff(x)
|
1278 |
+
assert (F + x*Fx).diff(x, Fx) == 2
|
1279 |
+
assert (F + x*Fx).diff(Fx, x) == 1
|
1280 |
+
assert (x*F + x*Fx*F).diff(F, x) == x*Fx.diff(x) + Fx + 1
|
1281 |
+
assert (x*F + x*Fx*F).diff(x, F) == x*Fx.diff(x) + Fx + 1
|
1282 |
+
y = f(x)
|
1283 |
+
G = f(y)
|
1284 |
+
Gy = G.diff(y)
|
1285 |
+
assert (G + y*Gy).diff(y, Gy) == 2
|
1286 |
+
assert (G + y*Gy).diff(Gy, y) == 1
|
1287 |
+
assert (y*G + y*Gy*G).diff(G, y) == y*Gy.diff(y) + Gy + 1
|
1288 |
+
assert (y*G + y*Gy*G).diff(y, G) == y*Gy.diff(y) + Gy + 1
|
1289 |
+
|
1290 |
+
|
1291 |
+
def test_issue_15226():
|
1292 |
+
assert Subs(Derivative(f(y), x, y), y, g(x)).doit() != 0
|
1293 |
+
|
1294 |
+
|
1295 |
+
def test_issue_7027():
|
1296 |
+
for wrt in (cos(x), re(x), Derivative(cos(x), x)):
|
1297 |
+
raises(ValueError, lambda: diff(f(x), wrt))
|
1298 |
+
|
1299 |
+
|
1300 |
+
def test_derivative_quick_exit():
|
1301 |
+
assert f(x).diff(y) == 0
|
1302 |
+
assert f(x).diff(y, f(x)) == 0
|
1303 |
+
assert f(x).diff(x, f(y)) == 0
|
1304 |
+
assert f(f(x)).diff(x, f(x), f(y)) == 0
|
1305 |
+
assert f(f(x)).diff(x, f(x), y) == 0
|
1306 |
+
assert f(x).diff(g(x)) == 0
|
1307 |
+
assert f(x).diff(x, f(x).diff(x)) == 1
|
1308 |
+
df = f(x).diff(x)
|
1309 |
+
assert f(x).diff(df) == 0
|
1310 |
+
dg = g(x).diff(x)
|
1311 |
+
assert dg.diff(df).doit() == 0
|
1312 |
+
|
1313 |
+
|
1314 |
+
def test_issue_15084_13166():
|
1315 |
+
eq = f(x, g(x))
|
1316 |
+
assert eq.diff((g(x), y)) == Derivative(f(x, g(x)), (g(x), y))
|
1317 |
+
# issue 13166
|
1318 |
+
assert eq.diff(x, 2).doit() == (
|
1319 |
+
(Derivative(f(x, g(x)), (g(x), 2))*Derivative(g(x), x) +
|
1320 |
+
Subs(Derivative(f(x, _xi_2), _xi_2, x), _xi_2, g(x)))*Derivative(g(x),
|
1321 |
+
x) + Derivative(f(x, g(x)), g(x))*Derivative(g(x), (x, 2)) +
|
1322 |
+
Derivative(g(x), x)*Subs(Derivative(f(_xi_1, g(x)), _xi_1, g(x)),
|
1323 |
+
_xi_1, x) + Subs(Derivative(f(_xi_1, g(x)), (_xi_1, 2)), _xi_1, x))
|
1324 |
+
# issue 6681
|
1325 |
+
assert diff(f(x, t, g(x, t)), x).doit() == (
|
1326 |
+
Derivative(f(x, t, g(x, t)), g(x, t))*Derivative(g(x, t), x) +
|
1327 |
+
Subs(Derivative(f(_xi_1, t, g(x, t)), _xi_1), _xi_1, x))
|
1328 |
+
# make sure the order doesn't matter when using diff
|
1329 |
+
assert eq.diff(x, g(x)) == eq.diff(g(x), x)
|
1330 |
+
|
1331 |
+
|
1332 |
+
def test_negative_counts():
|
1333 |
+
# issue 13873
|
1334 |
+
raises(ValueError, lambda: sin(x).diff(x, -1))
|
1335 |
+
|
1336 |
+
|
1337 |
+
def test_Derivative__new__():
|
1338 |
+
raises(TypeError, lambda: f(x).diff((x, 2), 0))
|
1339 |
+
assert f(x, y).diff([(x, y), 0]) == f(x, y)
|
1340 |
+
assert f(x, y).diff([(x, y), 1]) == NDimArray([
|
1341 |
+
Derivative(f(x, y), x), Derivative(f(x, y), y)])
|
1342 |
+
assert f(x,y).diff(y, (x, z), y, x) == Derivative(
|
1343 |
+
f(x, y), (x, z + 1), (y, 2))
|
1344 |
+
assert Matrix([x]).diff(x, 2) == Matrix([0]) # is_zero exit
|
1345 |
+
|
1346 |
+
|
1347 |
+
def test_issue_14719_10150():
|
1348 |
+
class V(Expr):
|
1349 |
+
_diff_wrt = True
|
1350 |
+
is_scalar = False
|
1351 |
+
assert V().diff(V()) == Derivative(V(), V())
|
1352 |
+
assert (2*V()).diff(V()) == 2*Derivative(V(), V())
|
1353 |
+
class X(Expr):
|
1354 |
+
_diff_wrt = True
|
1355 |
+
assert X().diff(X()) == 1
|
1356 |
+
assert (2*X()).diff(X()) == 2
|
1357 |
+
|
1358 |
+
|
1359 |
+
def test_noncommutative_issue_15131():
|
1360 |
+
x = Symbol('x', commutative=False)
|
1361 |
+
t = Symbol('t', commutative=False)
|
1362 |
+
fx = Function('Fx', commutative=False)(x)
|
1363 |
+
ft = Function('Ft', commutative=False)(t)
|
1364 |
+
A = Symbol('A', commutative=False)
|
1365 |
+
eq = fx * A * ft
|
1366 |
+
eqdt = eq.diff(t)
|
1367 |
+
assert eqdt.args[-1] == ft.diff(t)
|
1368 |
+
|
1369 |
+
|
1370 |
+
def test_Subs_Derivative():
|
1371 |
+
a = Derivative(f(g(x), h(x)), g(x), h(x),x)
|
1372 |
+
b = Derivative(Derivative(f(g(x), h(x)), g(x), h(x)),x)
|
1373 |
+
c = f(g(x), h(x)).diff(g(x), h(x), x)
|
1374 |
+
d = f(g(x), h(x)).diff(g(x), h(x)).diff(x)
|
1375 |
+
e = Derivative(f(g(x), h(x)), x)
|
1376 |
+
eqs = (a, b, c, d, e)
|
1377 |
+
subs = lambda arg: arg.subs(f, Lambda((x, y), exp(x + y))
|
1378 |
+
).subs(g(x), 1/x).subs(h(x), x**3)
|
1379 |
+
ans = 3*x**2*exp(1/x)*exp(x**3) - exp(1/x)*exp(x**3)/x**2
|
1380 |
+
assert all(subs(i).doit().expand() == ans for i in eqs)
|
1381 |
+
assert all(subs(i.doit()).doit().expand() == ans for i in eqs)
|
1382 |
+
|
1383 |
+
def test_issue_15360():
|
1384 |
+
f = Function('f')
|
1385 |
+
assert f.name == 'f'
|
1386 |
+
|
1387 |
+
|
1388 |
+
def test_issue_15947():
|
1389 |
+
assert f._diff_wrt is False
|
1390 |
+
raises(TypeError, lambda: f(f))
|
1391 |
+
raises(TypeError, lambda: f(x).diff(f))
|
1392 |
+
|
1393 |
+
|
1394 |
+
def test_Derivative_free_symbols():
|
1395 |
+
f = Function('f')
|
1396 |
+
n = Symbol('n', integer=True, positive=True)
|
1397 |
+
assert diff(f(x), (x, n)).free_symbols == {n, x}
|
1398 |
+
|
1399 |
+
|
1400 |
+
def test_issue_20683():
|
1401 |
+
x = Symbol('x')
|
1402 |
+
y = Symbol('y')
|
1403 |
+
z = Symbol('z')
|
1404 |
+
y = Derivative(z, x).subs(x,0)
|
1405 |
+
assert y.doit() == 0
|
1406 |
+
y = Derivative(8, x).subs(x,0)
|
1407 |
+
assert y.doit() == 0
|
1408 |
+
|
1409 |
+
|
1410 |
+
def test_issue_10503():
|
1411 |
+
f = exp(x**3)*cos(x**6)
|
1412 |
+
assert f.series(x, 0, 14) == 1 + x**3 + x**6/2 + x**9/6 - 11*x**12/24 + O(x**14)
|
1413 |
+
|
1414 |
+
|
1415 |
+
def test_issue_17382():
|
1416 |
+
# copied from sympy/core/tests/test_evalf.py
|
1417 |
+
def NS(e, n=15, **options):
|
1418 |
+
return sstr(sympify(e).evalf(n, **options), full_prec=True)
|
1419 |
+
|
1420 |
+
x = Symbol('x')
|
1421 |
+
expr = solveset(2 * cos(x) * cos(2 * x) - 1, x, S.Reals)
|
1422 |
+
expected = "Union(" \
|
1423 |
+
"ImageSet(Lambda(_n, 6.28318530717959*_n + 5.79812359592087), Integers), " \
|
1424 |
+
"ImageSet(Lambda(_n, 6.28318530717959*_n + 0.485061711258717), Integers))"
|
1425 |
+
assert NS(expr) == expected
|
1426 |
+
|
1427 |
+
def test_eval_sympified():
|
1428 |
+
# Check both arguments and return types from eval are sympified
|
1429 |
+
|
1430 |
+
class F(Function):
|
1431 |
+
@classmethod
|
1432 |
+
def eval(cls, x):
|
1433 |
+
assert x is S.One
|
1434 |
+
return 1
|
1435 |
+
|
1436 |
+
assert F(1) is S.One
|
1437 |
+
|
1438 |
+
# String arguments are not allowed
|
1439 |
+
class F2(Function):
|
1440 |
+
@classmethod
|
1441 |
+
def eval(cls, x):
|
1442 |
+
if x == 0:
|
1443 |
+
return '1'
|
1444 |
+
|
1445 |
+
raises(SympifyError, lambda: F2(0))
|
1446 |
+
F2(1) # Doesn't raise
|
1447 |
+
|
1448 |
+
# TODO: Disable string inputs (https://github.com/sympy/sympy/issues/11003)
|
1449 |
+
# raises(SympifyError, lambda: F2('2'))
|
1450 |
+
|
1451 |
+
def test_eval_classmethod_check():
|
1452 |
+
with raises(TypeError):
|
1453 |
+
class F(Function):
|
1454 |
+
def eval(self, x):
|
1455 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_kind.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.add import Add
|
2 |
+
from sympy.core.kind import NumberKind, UndefinedKind
|
3 |
+
from sympy.core.mul import Mul
|
4 |
+
from sympy.core.numbers import pi, zoo, I, AlgebraicNumber
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.core.symbol import Symbol
|
7 |
+
from sympy.integrals.integrals import Integral
|
8 |
+
from sympy.core.function import Derivative
|
9 |
+
from sympy.matrices import (Matrix, SparseMatrix, ImmutableMatrix,
|
10 |
+
ImmutableSparseMatrix, MatrixSymbol, MatrixKind, MatMul)
|
11 |
+
|
12 |
+
comm_x = Symbol('x')
|
13 |
+
noncomm_x = Symbol('x', commutative=False)
|
14 |
+
|
15 |
+
def test_NumberKind():
|
16 |
+
assert S.One.kind is NumberKind
|
17 |
+
assert pi.kind is NumberKind
|
18 |
+
assert S.NaN.kind is NumberKind
|
19 |
+
assert zoo.kind is NumberKind
|
20 |
+
assert I.kind is NumberKind
|
21 |
+
assert AlgebraicNumber(1).kind is NumberKind
|
22 |
+
|
23 |
+
def test_Add_kind():
|
24 |
+
assert Add(2, 3, evaluate=False).kind is NumberKind
|
25 |
+
assert Add(2,comm_x).kind is NumberKind
|
26 |
+
assert Add(2,noncomm_x).kind is UndefinedKind
|
27 |
+
|
28 |
+
def test_mul_kind():
|
29 |
+
assert Mul(2,comm_x, evaluate=False).kind is NumberKind
|
30 |
+
assert Mul(2,3, evaluate=False).kind is NumberKind
|
31 |
+
assert Mul(noncomm_x,2, evaluate=False).kind is UndefinedKind
|
32 |
+
assert Mul(2,noncomm_x, evaluate=False).kind is UndefinedKind
|
33 |
+
|
34 |
+
def test_Symbol_kind():
|
35 |
+
assert comm_x.kind is NumberKind
|
36 |
+
assert noncomm_x.kind is UndefinedKind
|
37 |
+
|
38 |
+
def test_Integral_kind():
|
39 |
+
A = MatrixSymbol('A', 2,2)
|
40 |
+
assert Integral(comm_x, comm_x).kind is NumberKind
|
41 |
+
assert Integral(A, comm_x).kind is MatrixKind(NumberKind)
|
42 |
+
|
43 |
+
def test_Derivative_kind():
|
44 |
+
A = MatrixSymbol('A', 2,2)
|
45 |
+
assert Derivative(comm_x, comm_x).kind is NumberKind
|
46 |
+
assert Derivative(A, comm_x).kind is MatrixKind(NumberKind)
|
47 |
+
|
48 |
+
def test_Matrix_kind():
|
49 |
+
classes = (Matrix, SparseMatrix, ImmutableMatrix, ImmutableSparseMatrix)
|
50 |
+
for cls in classes:
|
51 |
+
m = cls.zeros(3, 2)
|
52 |
+
assert m.kind is MatrixKind(NumberKind)
|
53 |
+
|
54 |
+
def test_MatMul_kind():
|
55 |
+
M = Matrix([[1,2],[3,4]])
|
56 |
+
assert MatMul(2, M).kind is MatrixKind(NumberKind)
|
57 |
+
assert MatMul(comm_x, M).kind is MatrixKind(NumberKind)
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_logic.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.logic import (fuzzy_not, Logic, And, Or, Not, fuzzy_and,
|
2 |
+
fuzzy_or, _fuzzy_group, _torf, fuzzy_nand, fuzzy_xor)
|
3 |
+
from sympy.testing.pytest import raises
|
4 |
+
|
5 |
+
from itertools import product
|
6 |
+
|
7 |
+
T = True
|
8 |
+
F = False
|
9 |
+
U = None
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
def test_torf():
|
14 |
+
v = [T, F, U]
|
15 |
+
for i in product(*[v]*3):
|
16 |
+
assert _torf(i) is (True if all(j for j in i) else
|
17 |
+
(False if all(j is False for j in i) else None))
|
18 |
+
|
19 |
+
|
20 |
+
def test_fuzzy_group():
|
21 |
+
v = [T, F, U]
|
22 |
+
for i in product(*[v]*3):
|
23 |
+
assert _fuzzy_group(i) is (None if None in i else
|
24 |
+
(True if all(j for j in i) else False))
|
25 |
+
assert _fuzzy_group(i, quick_exit=True) is \
|
26 |
+
(None if (i.count(False) > 1) else
|
27 |
+
(None if None in i else (True if all(j for j in i) else False)))
|
28 |
+
it = (True if (i == 0) else None for i in range(2))
|
29 |
+
assert _torf(it) is None
|
30 |
+
it = (True if (i == 1) else None for i in range(2))
|
31 |
+
assert _torf(it) is None
|
32 |
+
|
33 |
+
|
34 |
+
def test_fuzzy_not():
|
35 |
+
assert fuzzy_not(T) == F
|
36 |
+
assert fuzzy_not(F) == T
|
37 |
+
assert fuzzy_not(U) == U
|
38 |
+
|
39 |
+
|
40 |
+
def test_fuzzy_and():
|
41 |
+
assert fuzzy_and([T, T]) == T
|
42 |
+
assert fuzzy_and([T, F]) == F
|
43 |
+
assert fuzzy_and([T, U]) == U
|
44 |
+
assert fuzzy_and([F, F]) == F
|
45 |
+
assert fuzzy_and([F, U]) == F
|
46 |
+
assert fuzzy_and([U, U]) == U
|
47 |
+
assert [fuzzy_and([w]) for w in [U, T, F]] == [U, T, F]
|
48 |
+
assert fuzzy_and([T, F, U]) == F
|
49 |
+
assert fuzzy_and([]) == T
|
50 |
+
raises(TypeError, lambda: fuzzy_and())
|
51 |
+
|
52 |
+
|
53 |
+
def test_fuzzy_or():
|
54 |
+
assert fuzzy_or([T, T]) == T
|
55 |
+
assert fuzzy_or([T, F]) == T
|
56 |
+
assert fuzzy_or([T, U]) == T
|
57 |
+
assert fuzzy_or([F, F]) == F
|
58 |
+
assert fuzzy_or([F, U]) == U
|
59 |
+
assert fuzzy_or([U, U]) == U
|
60 |
+
assert [fuzzy_or([w]) for w in [U, T, F]] == [U, T, F]
|
61 |
+
assert fuzzy_or([T, F, U]) == T
|
62 |
+
assert fuzzy_or([]) == F
|
63 |
+
raises(TypeError, lambda: fuzzy_or())
|
64 |
+
|
65 |
+
|
66 |
+
def test_logic_cmp():
|
67 |
+
l1 = And('a', Not('b'))
|
68 |
+
l2 = And('a', Not('b'))
|
69 |
+
|
70 |
+
assert hash(l1) == hash(l2)
|
71 |
+
assert (l1 == l2) == T
|
72 |
+
assert (l1 != l2) == F
|
73 |
+
|
74 |
+
assert And('a', 'b', 'c') == And('b', 'a', 'c')
|
75 |
+
assert And('a', 'b', 'c') == And('c', 'b', 'a')
|
76 |
+
assert And('a', 'b', 'c') == And('c', 'a', 'b')
|
77 |
+
|
78 |
+
assert Not('a') < Not('b')
|
79 |
+
assert (Not('b') < Not('a')) is False
|
80 |
+
assert (Not('a') < 2) is False
|
81 |
+
|
82 |
+
|
83 |
+
def test_logic_onearg():
|
84 |
+
assert And() is True
|
85 |
+
assert Or() is False
|
86 |
+
|
87 |
+
assert And(T) == T
|
88 |
+
assert And(F) == F
|
89 |
+
assert Or(T) == T
|
90 |
+
assert Or(F) == F
|
91 |
+
|
92 |
+
assert And('a') == 'a'
|
93 |
+
assert Or('a') == 'a'
|
94 |
+
|
95 |
+
|
96 |
+
def test_logic_xnotx():
|
97 |
+
assert And('a', Not('a')) == F
|
98 |
+
assert Or('a', Not('a')) == T
|
99 |
+
|
100 |
+
|
101 |
+
def test_logic_eval_TF():
|
102 |
+
assert And(F, F) == F
|
103 |
+
assert And(F, T) == F
|
104 |
+
assert And(T, F) == F
|
105 |
+
assert And(T, T) == T
|
106 |
+
|
107 |
+
assert Or(F, F) == F
|
108 |
+
assert Or(F, T) == T
|
109 |
+
assert Or(T, F) == T
|
110 |
+
assert Or(T, T) == T
|
111 |
+
|
112 |
+
assert And('a', T) == 'a'
|
113 |
+
assert And('a', F) == F
|
114 |
+
assert Or('a', T) == T
|
115 |
+
assert Or('a', F) == 'a'
|
116 |
+
|
117 |
+
|
118 |
+
def test_logic_combine_args():
|
119 |
+
assert And('a', 'b', 'a') == And('a', 'b')
|
120 |
+
assert Or('a', 'b', 'a') == Or('a', 'b')
|
121 |
+
|
122 |
+
assert And(And('a', 'b'), And('c', 'd')) == And('a', 'b', 'c', 'd')
|
123 |
+
assert Or(Or('a', 'b'), Or('c', 'd')) == Or('a', 'b', 'c', 'd')
|
124 |
+
|
125 |
+
assert Or('t', And('n', 'p', 'r'), And('n', 'r'), And('n', 'p', 'r'), 't',
|
126 |
+
And('n', 'r')) == Or('t', And('n', 'p', 'r'), And('n', 'r'))
|
127 |
+
|
128 |
+
|
129 |
+
def test_logic_expand():
|
130 |
+
t = And(Or('a', 'b'), 'c')
|
131 |
+
assert t.expand() == Or(And('a', 'c'), And('b', 'c'))
|
132 |
+
|
133 |
+
t = And(Or('a', Not('b')), 'b')
|
134 |
+
assert t.expand() == And('a', 'b')
|
135 |
+
|
136 |
+
t = And(Or('a', 'b'), Or('c', 'd'))
|
137 |
+
assert t.expand() == \
|
138 |
+
Or(And('a', 'c'), And('a', 'd'), And('b', 'c'), And('b', 'd'))
|
139 |
+
|
140 |
+
|
141 |
+
def test_logic_fromstring():
|
142 |
+
S = Logic.fromstring
|
143 |
+
|
144 |
+
assert S('a') == 'a'
|
145 |
+
assert S('!a') == Not('a')
|
146 |
+
assert S('a & b') == And('a', 'b')
|
147 |
+
assert S('a | b') == Or('a', 'b')
|
148 |
+
assert S('a | b & c') == And(Or('a', 'b'), 'c')
|
149 |
+
assert S('a & b | c') == Or(And('a', 'b'), 'c')
|
150 |
+
assert S('a & b & c') == And('a', 'b', 'c')
|
151 |
+
assert S('a | b | c') == Or('a', 'b', 'c')
|
152 |
+
|
153 |
+
raises(ValueError, lambda: S('| a'))
|
154 |
+
raises(ValueError, lambda: S('& a'))
|
155 |
+
raises(ValueError, lambda: S('a | | b'))
|
156 |
+
raises(ValueError, lambda: S('a | & b'))
|
157 |
+
raises(ValueError, lambda: S('a & & b'))
|
158 |
+
raises(ValueError, lambda: S('a |'))
|
159 |
+
raises(ValueError, lambda: S('a|b'))
|
160 |
+
raises(ValueError, lambda: S('!'))
|
161 |
+
raises(ValueError, lambda: S('! a'))
|
162 |
+
raises(ValueError, lambda: S('!(a + 1)'))
|
163 |
+
raises(ValueError, lambda: S(''))
|
164 |
+
|
165 |
+
|
166 |
+
def test_logic_not():
|
167 |
+
assert Not('a') != '!a'
|
168 |
+
assert Not('!a') != 'a'
|
169 |
+
assert Not(True) == False
|
170 |
+
assert Not(False) == True
|
171 |
+
|
172 |
+
# NOTE: we may want to change default Not behaviour and put this
|
173 |
+
# functionality into some method.
|
174 |
+
assert Not(And('a', 'b')) == Or(Not('a'), Not('b'))
|
175 |
+
assert Not(Or('a', 'b')) == And(Not('a'), Not('b'))
|
176 |
+
|
177 |
+
raises(ValueError, lambda: Not(1))
|
178 |
+
|
179 |
+
|
180 |
+
def test_formatting():
|
181 |
+
S = Logic.fromstring
|
182 |
+
raises(ValueError, lambda: S('a&b'))
|
183 |
+
raises(ValueError, lambda: S('a|b'))
|
184 |
+
raises(ValueError, lambda: S('! a'))
|
185 |
+
|
186 |
+
|
187 |
+
def test_fuzzy_xor():
|
188 |
+
assert fuzzy_xor((None,)) is None
|
189 |
+
assert fuzzy_xor((None, True)) is None
|
190 |
+
assert fuzzy_xor((None, False)) is None
|
191 |
+
assert fuzzy_xor((True, False)) is True
|
192 |
+
assert fuzzy_xor((True, True)) is False
|
193 |
+
assert fuzzy_xor((True, True, False)) is False
|
194 |
+
assert fuzzy_xor((True, True, False, True)) is True
|
195 |
+
|
196 |
+
def test_fuzzy_nand():
|
197 |
+
for args in [(1, 0), (1, 1), (0, 0)]:
|
198 |
+
assert fuzzy_nand(args) == fuzzy_not(fuzzy_and(args))
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_match.py
ADDED
@@ -0,0 +1,766 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy import abc
|
2 |
+
from sympy.concrete.summations import Sum
|
3 |
+
from sympy.core.add import Add
|
4 |
+
from sympy.core.function import (Derivative, Function, diff)
|
5 |
+
from sympy.core.mul import Mul
|
6 |
+
from sympy.core.numbers import (Float, I, Integer, Rational, oo, pi)
|
7 |
+
from sympy.core.singleton import S
|
8 |
+
from sympy.core.symbol import (Symbol, Wild, symbols)
|
9 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
10 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
11 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
12 |
+
from sympy.functions.special.hyper import meijerg
|
13 |
+
from sympy.polys.polytools import Poly
|
14 |
+
from sympy.simplify.radsimp import collect
|
15 |
+
from sympy.simplify.simplify import signsimp
|
16 |
+
|
17 |
+
from sympy.testing.pytest import XFAIL
|
18 |
+
|
19 |
+
|
20 |
+
def test_symbol():
|
21 |
+
x = Symbol('x')
|
22 |
+
a, b, c, p, q = map(Wild, 'abcpq')
|
23 |
+
|
24 |
+
e = x
|
25 |
+
assert e.match(x) == {}
|
26 |
+
assert e.matches(x) == {}
|
27 |
+
assert e.match(a) == {a: x}
|
28 |
+
|
29 |
+
e = Rational(5)
|
30 |
+
assert e.match(c) == {c: 5}
|
31 |
+
assert e.match(e) == {}
|
32 |
+
assert e.match(e + 1) is None
|
33 |
+
|
34 |
+
|
35 |
+
def test_add():
|
36 |
+
x, y, a, b, c = map(Symbol, 'xyabc')
|
37 |
+
p, q, r = map(Wild, 'pqr')
|
38 |
+
|
39 |
+
e = a + b
|
40 |
+
assert e.match(p + b) == {p: a}
|
41 |
+
assert e.match(p + a) == {p: b}
|
42 |
+
|
43 |
+
e = 1 + b
|
44 |
+
assert e.match(p + b) == {p: 1}
|
45 |
+
|
46 |
+
e = a + b + c
|
47 |
+
assert e.match(a + p + c) == {p: b}
|
48 |
+
assert e.match(b + p + c) == {p: a}
|
49 |
+
|
50 |
+
e = a + b + c + x
|
51 |
+
assert e.match(a + p + x + c) == {p: b}
|
52 |
+
assert e.match(b + p + c + x) == {p: a}
|
53 |
+
assert e.match(b) is None
|
54 |
+
assert e.match(b + p) == {p: a + c + x}
|
55 |
+
assert e.match(a + p + c) == {p: b + x}
|
56 |
+
assert e.match(b + p + c) == {p: a + x}
|
57 |
+
|
58 |
+
e = 4*x + 5
|
59 |
+
assert e.match(4*x + p) == {p: 5}
|
60 |
+
assert e.match(3*x + p) == {p: x + 5}
|
61 |
+
assert e.match(p*x + 5) == {p: 4}
|
62 |
+
|
63 |
+
|
64 |
+
def test_power():
|
65 |
+
x, y, a, b, c = map(Symbol, 'xyabc')
|
66 |
+
p, q, r = map(Wild, 'pqr')
|
67 |
+
|
68 |
+
e = (x + y)**a
|
69 |
+
assert e.match(p**q) == {p: x + y, q: a}
|
70 |
+
assert e.match(p**p) is None
|
71 |
+
|
72 |
+
e = (x + y)**(x + y)
|
73 |
+
assert e.match(p**p) == {p: x + y}
|
74 |
+
assert e.match(p**q) == {p: x + y, q: x + y}
|
75 |
+
|
76 |
+
e = (2*x)**2
|
77 |
+
assert e.match(p*q**r) == {p: 4, q: x, r: 2}
|
78 |
+
|
79 |
+
e = Integer(1)
|
80 |
+
assert e.match(x**p) == {p: 0}
|
81 |
+
|
82 |
+
|
83 |
+
def test_match_exclude():
|
84 |
+
x = Symbol('x')
|
85 |
+
y = Symbol('y')
|
86 |
+
p = Wild("p")
|
87 |
+
q = Wild("q")
|
88 |
+
r = Wild("r")
|
89 |
+
|
90 |
+
e = Rational(6)
|
91 |
+
assert e.match(2*p) == {p: 3}
|
92 |
+
|
93 |
+
e = 3/(4*x + 5)
|
94 |
+
assert e.match(3/(p*x + q)) == {p: 4, q: 5}
|
95 |
+
|
96 |
+
e = 3/(4*x + 5)
|
97 |
+
assert e.match(p/(q*x + r)) == {p: 3, q: 4, r: 5}
|
98 |
+
|
99 |
+
e = 2/(x + 1)
|
100 |
+
assert e.match(p/(q*x + r)) == {p: 2, q: 1, r: 1}
|
101 |
+
|
102 |
+
e = 1/(x + 1)
|
103 |
+
assert e.match(p/(q*x + r)) == {p: 1, q: 1, r: 1}
|
104 |
+
|
105 |
+
e = 4*x + 5
|
106 |
+
assert e.match(p*x + q) == {p: 4, q: 5}
|
107 |
+
|
108 |
+
e = 4*x + 5*y + 6
|
109 |
+
assert e.match(p*x + q*y + r) == {p: 4, q: 5, r: 6}
|
110 |
+
|
111 |
+
a = Wild('a', exclude=[x])
|
112 |
+
|
113 |
+
e = 3*x
|
114 |
+
assert e.match(p*x) == {p: 3}
|
115 |
+
assert e.match(a*x) == {a: 3}
|
116 |
+
|
117 |
+
e = 3*x**2
|
118 |
+
assert e.match(p*x) == {p: 3*x}
|
119 |
+
assert e.match(a*x) is None
|
120 |
+
|
121 |
+
e = 3*x + 3 + 6/x
|
122 |
+
assert e.match(p*x**2 + p*x + 2*p) == {p: 3/x}
|
123 |
+
assert e.match(a*x**2 + a*x + 2*a) is None
|
124 |
+
|
125 |
+
|
126 |
+
def test_mul():
|
127 |
+
x, y, a, b, c = map(Symbol, 'xyabc')
|
128 |
+
p, q = map(Wild, 'pq')
|
129 |
+
|
130 |
+
e = 4*x
|
131 |
+
assert e.match(p*x) == {p: 4}
|
132 |
+
assert e.match(p*y) is None
|
133 |
+
assert e.match(e + p*y) == {p: 0}
|
134 |
+
|
135 |
+
e = a*x*b*c
|
136 |
+
assert e.match(p*x) == {p: a*b*c}
|
137 |
+
assert e.match(c*p*x) == {p: a*b}
|
138 |
+
|
139 |
+
e = (a + b)*(a + c)
|
140 |
+
assert e.match((p + b)*(p + c)) == {p: a}
|
141 |
+
|
142 |
+
e = x
|
143 |
+
assert e.match(p*x) == {p: 1}
|
144 |
+
|
145 |
+
e = exp(x)
|
146 |
+
assert e.match(x**p*exp(x*q)) == {p: 0, q: 1}
|
147 |
+
|
148 |
+
e = I*Poly(x, x)
|
149 |
+
assert e.match(I*p) == {p: x}
|
150 |
+
|
151 |
+
|
152 |
+
def test_mul_noncommutative():
|
153 |
+
x, y = symbols('x y')
|
154 |
+
A, B, C = symbols('A B C', commutative=False)
|
155 |
+
u, v = symbols('u v', cls=Wild)
|
156 |
+
w, z = symbols('w z', cls=Wild, commutative=False)
|
157 |
+
|
158 |
+
assert (u*v).matches(x) in ({v: x, u: 1}, {u: x, v: 1})
|
159 |
+
assert (u*v).matches(x*y) in ({v: y, u: x}, {u: y, v: x})
|
160 |
+
assert (u*v).matches(A) is None
|
161 |
+
assert (u*v).matches(A*B) is None
|
162 |
+
assert (u*v).matches(x*A) is None
|
163 |
+
assert (u*v).matches(x*y*A) is None
|
164 |
+
assert (u*v).matches(x*A*B) is None
|
165 |
+
assert (u*v).matches(x*y*A*B) is None
|
166 |
+
|
167 |
+
assert (v*w).matches(x) is None
|
168 |
+
assert (v*w).matches(x*y) is None
|
169 |
+
assert (v*w).matches(A) == {w: A, v: 1}
|
170 |
+
assert (v*w).matches(A*B) == {w: A*B, v: 1}
|
171 |
+
assert (v*w).matches(x*A) == {w: A, v: x}
|
172 |
+
assert (v*w).matches(x*y*A) == {w: A, v: x*y}
|
173 |
+
assert (v*w).matches(x*A*B) == {w: A*B, v: x}
|
174 |
+
assert (v*w).matches(x*y*A*B) == {w: A*B, v: x*y}
|
175 |
+
|
176 |
+
assert (v*w).matches(-x) is None
|
177 |
+
assert (v*w).matches(-x*y) is None
|
178 |
+
assert (v*w).matches(-A) == {w: A, v: -1}
|
179 |
+
assert (v*w).matches(-A*B) == {w: A*B, v: -1}
|
180 |
+
assert (v*w).matches(-x*A) == {w: A, v: -x}
|
181 |
+
assert (v*w).matches(-x*y*A) == {w: A, v: -x*y}
|
182 |
+
assert (v*w).matches(-x*A*B) == {w: A*B, v: -x}
|
183 |
+
assert (v*w).matches(-x*y*A*B) == {w: A*B, v: -x*y}
|
184 |
+
|
185 |
+
assert (w*z).matches(x) is None
|
186 |
+
assert (w*z).matches(x*y) is None
|
187 |
+
assert (w*z).matches(A) is None
|
188 |
+
assert (w*z).matches(A*B) == {w: A, z: B}
|
189 |
+
assert (w*z).matches(B*A) == {w: B, z: A}
|
190 |
+
assert (w*z).matches(A*B*C) in [{w: A, z: B*C}, {w: A*B, z: C}]
|
191 |
+
assert (w*z).matches(x*A) is None
|
192 |
+
assert (w*z).matches(x*y*A) is None
|
193 |
+
assert (w*z).matches(x*A*B) is None
|
194 |
+
assert (w*z).matches(x*y*A*B) is None
|
195 |
+
|
196 |
+
assert (w*A).matches(A) is None
|
197 |
+
assert (A*w*B).matches(A*B) is None
|
198 |
+
|
199 |
+
assert (u*w*z).matches(x) is None
|
200 |
+
assert (u*w*z).matches(x*y) is None
|
201 |
+
assert (u*w*z).matches(A) is None
|
202 |
+
assert (u*w*z).matches(A*B) == {u: 1, w: A, z: B}
|
203 |
+
assert (u*w*z).matches(B*A) == {u: 1, w: B, z: A}
|
204 |
+
assert (u*w*z).matches(x*A) is None
|
205 |
+
assert (u*w*z).matches(x*y*A) is None
|
206 |
+
assert (u*w*z).matches(x*A*B) == {u: x, w: A, z: B}
|
207 |
+
assert (u*w*z).matches(x*B*A) == {u: x, w: B, z: A}
|
208 |
+
assert (u*w*z).matches(x*y*A*B) == {u: x*y, w: A, z: B}
|
209 |
+
assert (u*w*z).matches(x*y*B*A) == {u: x*y, w: B, z: A}
|
210 |
+
|
211 |
+
assert (u*A).matches(x*A) == {u: x}
|
212 |
+
assert (u*A).matches(x*A*B) is None
|
213 |
+
assert (u*B).matches(x*A) is None
|
214 |
+
assert (u*A*B).matches(x*A*B) == {u: x}
|
215 |
+
assert (u*A*B).matches(x*B*A) is None
|
216 |
+
assert (u*A*B).matches(x*A) is None
|
217 |
+
|
218 |
+
assert (u*w*A).matches(x*A*B) is None
|
219 |
+
assert (u*w*B).matches(x*A*B) == {u: x, w: A}
|
220 |
+
|
221 |
+
assert (u*v*A*B).matches(x*A*B) in [{u: x, v: 1}, {v: x, u: 1}]
|
222 |
+
assert (u*v*A*B).matches(x*B*A) is None
|
223 |
+
assert (u*v*A*B).matches(u*v*A*C) is None
|
224 |
+
|
225 |
+
|
226 |
+
def test_mul_noncommutative_mismatch():
|
227 |
+
A, B, C = symbols('A B C', commutative=False)
|
228 |
+
w = symbols('w', cls=Wild, commutative=False)
|
229 |
+
|
230 |
+
assert (w*B*w).matches(A*B*A) == {w: A}
|
231 |
+
assert (w*B*w).matches(A*C*B*A*C) == {w: A*C}
|
232 |
+
assert (w*B*w).matches(A*C*B*A*B) is None
|
233 |
+
assert (w*B*w).matches(A*B*C) is None
|
234 |
+
assert (w*w*C).matches(A*B*C) is None
|
235 |
+
|
236 |
+
|
237 |
+
def test_mul_noncommutative_pow():
|
238 |
+
A, B, C = symbols('A B C', commutative=False)
|
239 |
+
w = symbols('w', cls=Wild, commutative=False)
|
240 |
+
|
241 |
+
assert (A*B*w).matches(A*B**2) == {w: B}
|
242 |
+
assert (A*(B**2)*w*(B**3)).matches(A*B**8) == {w: B**3}
|
243 |
+
assert (A*B*w*C).matches(A*(B**4)*C) == {w: B**3}
|
244 |
+
|
245 |
+
assert (A*B*(w**(-1))).matches(A*B*(C**(-1))) == {w: C}
|
246 |
+
assert (A*(B*w)**(-1)*C).matches(A*(B*C)**(-1)*C) == {w: C}
|
247 |
+
|
248 |
+
assert ((w**2)*B*C).matches((A**2)*B*C) == {w: A}
|
249 |
+
assert ((w**2)*B*(w**3)).matches((A**2)*B*(A**3)) == {w: A}
|
250 |
+
assert ((w**2)*B*(w**4)).matches((A**2)*B*(A**2)) is None
|
251 |
+
|
252 |
+
def test_complex():
|
253 |
+
a, b, c = map(Symbol, 'abc')
|
254 |
+
x, y = map(Wild, 'xy')
|
255 |
+
|
256 |
+
assert (1 + I).match(x + I) == {x: 1}
|
257 |
+
assert (a + I).match(x + I) == {x: a}
|
258 |
+
assert (2*I).match(x*I) == {x: 2}
|
259 |
+
assert (a*I).match(x*I) == {x: a}
|
260 |
+
assert (a*I).match(x*y) == {x: I, y: a}
|
261 |
+
assert (2*I).match(x*y) == {x: 2, y: I}
|
262 |
+
assert (a + b*I).match(x + y*I) == {x: a, y: b}
|
263 |
+
|
264 |
+
|
265 |
+
def test_functions():
|
266 |
+
from sympy.core.function import WildFunction
|
267 |
+
x = Symbol('x')
|
268 |
+
g = WildFunction('g')
|
269 |
+
p = Wild('p')
|
270 |
+
q = Wild('q')
|
271 |
+
|
272 |
+
f = cos(5*x)
|
273 |
+
notf = x
|
274 |
+
assert f.match(p*cos(q*x)) == {p: 1, q: 5}
|
275 |
+
assert f.match(p*g) == {p: 1, g: cos(5*x)}
|
276 |
+
assert notf.match(g) is None
|
277 |
+
|
278 |
+
|
279 |
+
@XFAIL
|
280 |
+
def test_functions_X1():
|
281 |
+
from sympy.core.function import WildFunction
|
282 |
+
x = Symbol('x')
|
283 |
+
g = WildFunction('g')
|
284 |
+
p = Wild('p')
|
285 |
+
q = Wild('q')
|
286 |
+
|
287 |
+
f = cos(5*x)
|
288 |
+
assert f.match(p*g(q*x)) == {p: 1, g: cos, q: 5}
|
289 |
+
|
290 |
+
|
291 |
+
def test_interface():
|
292 |
+
x, y = map(Symbol, 'xy')
|
293 |
+
p, q = map(Wild, 'pq')
|
294 |
+
|
295 |
+
assert (x + 1).match(p + 1) == {p: x}
|
296 |
+
assert (x*3).match(p*3) == {p: x}
|
297 |
+
assert (x**3).match(p**3) == {p: x}
|
298 |
+
assert (x*cos(y)).match(p*cos(q)) == {p: x, q: y}
|
299 |
+
|
300 |
+
assert (x*y).match(p*q) in [{p:x, q:y}, {p:y, q:x}]
|
301 |
+
assert (x + y).match(p + q) in [{p:x, q:y}, {p:y, q:x}]
|
302 |
+
assert (x*y + 1).match(p*q) in [{p:1, q:1 + x*y}, {p:1 + x*y, q:1}]
|
303 |
+
|
304 |
+
|
305 |
+
def test_derivative1():
|
306 |
+
x, y = map(Symbol, 'xy')
|
307 |
+
p, q = map(Wild, 'pq')
|
308 |
+
|
309 |
+
f = Function('f', nargs=1)
|
310 |
+
fd = Derivative(f(x), x)
|
311 |
+
|
312 |
+
assert fd.match(p) == {p: fd}
|
313 |
+
assert (fd + 1).match(p + 1) == {p: fd}
|
314 |
+
assert (fd).match(fd) == {}
|
315 |
+
assert (3*fd).match(p*fd) is not None
|
316 |
+
assert (3*fd - 1).match(p*fd + q) == {p: 3, q: -1}
|
317 |
+
|
318 |
+
|
319 |
+
def test_derivative_bug1():
|
320 |
+
f = Function("f")
|
321 |
+
x = Symbol("x")
|
322 |
+
a = Wild("a", exclude=[f, x])
|
323 |
+
b = Wild("b", exclude=[f])
|
324 |
+
pattern = a * Derivative(f(x), x, x) + b
|
325 |
+
expr = Derivative(f(x), x) + x**2
|
326 |
+
d1 = {b: x**2}
|
327 |
+
d2 = pattern.xreplace(d1).matches(expr, d1)
|
328 |
+
assert d2 is None
|
329 |
+
|
330 |
+
|
331 |
+
def test_derivative2():
|
332 |
+
f = Function("f")
|
333 |
+
x = Symbol("x")
|
334 |
+
a = Wild("a", exclude=[f, x])
|
335 |
+
b = Wild("b", exclude=[f])
|
336 |
+
e = Derivative(f(x), x)
|
337 |
+
assert e.match(Derivative(f(x), x)) == {}
|
338 |
+
assert e.match(Derivative(f(x), x, x)) is None
|
339 |
+
e = Derivative(f(x), x, x)
|
340 |
+
assert e.match(Derivative(f(x), x)) is None
|
341 |
+
assert e.match(Derivative(f(x), x, x)) == {}
|
342 |
+
e = Derivative(f(x), x) + x**2
|
343 |
+
assert e.match(a*Derivative(f(x), x) + b) == {a: 1, b: x**2}
|
344 |
+
assert e.match(a*Derivative(f(x), x, x) + b) is None
|
345 |
+
e = Derivative(f(x), x, x) + x**2
|
346 |
+
assert e.match(a*Derivative(f(x), x) + b) is None
|
347 |
+
assert e.match(a*Derivative(f(x), x, x) + b) == {a: 1, b: x**2}
|
348 |
+
|
349 |
+
|
350 |
+
def test_match_deriv_bug1():
|
351 |
+
n = Function('n')
|
352 |
+
l = Function('l')
|
353 |
+
|
354 |
+
x = Symbol('x')
|
355 |
+
p = Wild('p')
|
356 |
+
|
357 |
+
e = diff(l(x), x)/x - diff(diff(n(x), x), x)/2 - \
|
358 |
+
diff(n(x), x)**2/4 + diff(n(x), x)*diff(l(x), x)/4
|
359 |
+
e = e.subs(n(x), -l(x)).doit()
|
360 |
+
t = x*exp(-l(x))
|
361 |
+
t2 = t.diff(x, x)/t
|
362 |
+
assert e.match( (p*t2).expand() ) == {p: Rational(-1, 2)}
|
363 |
+
|
364 |
+
|
365 |
+
def test_match_bug2():
|
366 |
+
x, y = map(Symbol, 'xy')
|
367 |
+
p, q, r = map(Wild, 'pqr')
|
368 |
+
res = (x + y).match(p + q + r)
|
369 |
+
assert (p + q + r).subs(res) == x + y
|
370 |
+
|
371 |
+
|
372 |
+
def test_match_bug3():
|
373 |
+
x, a, b = map(Symbol, 'xab')
|
374 |
+
p = Wild('p')
|
375 |
+
assert (b*x*exp(a*x)).match(x*exp(p*x)) is None
|
376 |
+
|
377 |
+
|
378 |
+
def test_match_bug4():
|
379 |
+
x = Symbol('x')
|
380 |
+
p = Wild('p')
|
381 |
+
e = x
|
382 |
+
assert e.match(-p*x) == {p: -1}
|
383 |
+
|
384 |
+
|
385 |
+
def test_match_bug5():
|
386 |
+
x = Symbol('x')
|
387 |
+
p = Wild('p')
|
388 |
+
e = -x
|
389 |
+
assert e.match(-p*x) == {p: 1}
|
390 |
+
|
391 |
+
|
392 |
+
def test_match_bug6():
|
393 |
+
x = Symbol('x')
|
394 |
+
p = Wild('p')
|
395 |
+
e = x
|
396 |
+
assert e.match(3*p*x) == {p: Rational(1)/3}
|
397 |
+
|
398 |
+
|
399 |
+
def test_match_polynomial():
|
400 |
+
x = Symbol('x')
|
401 |
+
a = Wild('a', exclude=[x])
|
402 |
+
b = Wild('b', exclude=[x])
|
403 |
+
c = Wild('c', exclude=[x])
|
404 |
+
d = Wild('d', exclude=[x])
|
405 |
+
|
406 |
+
eq = 4*x**3 + 3*x**2 + 2*x + 1
|
407 |
+
pattern = a*x**3 + b*x**2 + c*x + d
|
408 |
+
assert eq.match(pattern) == {a: 4, b: 3, c: 2, d: 1}
|
409 |
+
assert (eq - 3*x**2).match(pattern) == {a: 4, b: 0, c: 2, d: 1}
|
410 |
+
assert (x + sqrt(2) + 3).match(a + b*x + c*x**2) == \
|
411 |
+
{b: 1, a: sqrt(2) + 3, c: 0}
|
412 |
+
|
413 |
+
|
414 |
+
def test_exclude():
|
415 |
+
x, y, a = map(Symbol, 'xya')
|
416 |
+
p = Wild('p', exclude=[1, x])
|
417 |
+
q = Wild('q')
|
418 |
+
r = Wild('r', exclude=[sin, y])
|
419 |
+
|
420 |
+
assert sin(x).match(r) is None
|
421 |
+
assert cos(y).match(r) is None
|
422 |
+
|
423 |
+
e = 3*x**2 + y*x + a
|
424 |
+
assert e.match(p*x**2 + q*x + r) == {p: 3, q: y, r: a}
|
425 |
+
|
426 |
+
e = x + 1
|
427 |
+
assert e.match(x + p) is None
|
428 |
+
assert e.match(p + 1) is None
|
429 |
+
assert e.match(x + 1 + p) == {p: 0}
|
430 |
+
|
431 |
+
e = cos(x) + 5*sin(y)
|
432 |
+
assert e.match(r) is None
|
433 |
+
assert e.match(cos(y) + r) is None
|
434 |
+
assert e.match(r + p*sin(q)) == {r: cos(x), p: 5, q: y}
|
435 |
+
|
436 |
+
|
437 |
+
def test_floats():
|
438 |
+
a, b = map(Wild, 'ab')
|
439 |
+
|
440 |
+
e = cos(0.12345, evaluate=False)**2
|
441 |
+
r = e.match(a*cos(b)**2)
|
442 |
+
assert r == {a: 1, b: Float(0.12345)}
|
443 |
+
|
444 |
+
|
445 |
+
def test_Derivative_bug1():
|
446 |
+
f = Function("f")
|
447 |
+
x = abc.x
|
448 |
+
a = Wild("a", exclude=[f(x)])
|
449 |
+
b = Wild("b", exclude=[f(x)])
|
450 |
+
eq = f(x).diff(x)
|
451 |
+
assert eq.match(a*Derivative(f(x), x) + b) == {a: 1, b: 0}
|
452 |
+
|
453 |
+
|
454 |
+
def test_match_wild_wild():
|
455 |
+
p = Wild('p')
|
456 |
+
q = Wild('q')
|
457 |
+
r = Wild('r')
|
458 |
+
|
459 |
+
assert p.match(q + r) in [ {q: p, r: 0}, {q: 0, r: p} ]
|
460 |
+
assert p.match(q*r) in [ {q: p, r: 1}, {q: 1, r: p} ]
|
461 |
+
|
462 |
+
p = Wild('p')
|
463 |
+
q = Wild('q', exclude=[p])
|
464 |
+
r = Wild('r')
|
465 |
+
|
466 |
+
assert p.match(q + r) == {q: 0, r: p}
|
467 |
+
assert p.match(q*r) == {q: 1, r: p}
|
468 |
+
|
469 |
+
p = Wild('p')
|
470 |
+
q = Wild('q', exclude=[p])
|
471 |
+
r = Wild('r', exclude=[p])
|
472 |
+
|
473 |
+
assert p.match(q + r) is None
|
474 |
+
assert p.match(q*r) is None
|
475 |
+
|
476 |
+
|
477 |
+
def test__combine_inverse():
|
478 |
+
x, y = symbols("x y")
|
479 |
+
assert Mul._combine_inverse(x*I*y, x*I) == y
|
480 |
+
assert Mul._combine_inverse(x*x**(1 + y), x**(1 + y)) == x
|
481 |
+
assert Mul._combine_inverse(x*I*y, y*I) == x
|
482 |
+
assert Mul._combine_inverse(oo*I*y, y*I) is oo
|
483 |
+
assert Mul._combine_inverse(oo*I*y, oo*I) == y
|
484 |
+
assert Mul._combine_inverse(oo*I*y, oo*I) == y
|
485 |
+
assert Mul._combine_inverse(oo*y, -oo) == -y
|
486 |
+
assert Mul._combine_inverse(-oo*y, oo) == -y
|
487 |
+
assert Mul._combine_inverse((1-exp(x/y)),(exp(x/y)-1)) == -1
|
488 |
+
assert Add._combine_inverse(oo, oo) is S.Zero
|
489 |
+
assert Add._combine_inverse(oo*I, oo*I) is S.Zero
|
490 |
+
assert Add._combine_inverse(x*oo, x*oo) is S.Zero
|
491 |
+
assert Add._combine_inverse(-x*oo, -x*oo) is S.Zero
|
492 |
+
assert Add._combine_inverse((x - oo)*(x + oo), -oo)
|
493 |
+
|
494 |
+
|
495 |
+
def test_issue_3773():
|
496 |
+
x = symbols('x')
|
497 |
+
z, phi, r = symbols('z phi r')
|
498 |
+
c, A, B, N = symbols('c A B N', cls=Wild)
|
499 |
+
l = Wild('l', exclude=(0,))
|
500 |
+
|
501 |
+
eq = z * sin(2*phi) * r**7
|
502 |
+
matcher = c * sin(phi*N)**l * r**A * log(r)**B
|
503 |
+
|
504 |
+
assert eq.match(matcher) == {c: z, l: 1, N: 2, A: 7, B: 0}
|
505 |
+
assert (-eq).match(matcher) == {c: -z, l: 1, N: 2, A: 7, B: 0}
|
506 |
+
assert (x*eq).match(matcher) == {c: x*z, l: 1, N: 2, A: 7, B: 0}
|
507 |
+
assert (-7*x*eq).match(matcher) == {c: -7*x*z, l: 1, N: 2, A: 7, B: 0}
|
508 |
+
|
509 |
+
matcher = c*sin(phi*N)**l * r**A
|
510 |
+
|
511 |
+
assert eq.match(matcher) == {c: z, l: 1, N: 2, A: 7}
|
512 |
+
assert (-eq).match(matcher) == {c: -z, l: 1, N: 2, A: 7}
|
513 |
+
assert (x*eq).match(matcher) == {c: x*z, l: 1, N: 2, A: 7}
|
514 |
+
assert (-7*x*eq).match(matcher) == {c: -7*x*z, l: 1, N: 2, A: 7}
|
515 |
+
|
516 |
+
|
517 |
+
def test_issue_3883():
|
518 |
+
from sympy.abc import gamma, mu, x
|
519 |
+
f = (-gamma * (x - mu)**2 - log(gamma) + log(2*pi))/2
|
520 |
+
a, b, c = symbols('a b c', cls=Wild, exclude=(gamma,))
|
521 |
+
|
522 |
+
assert f.match(a * log(gamma) + b * gamma + c) == \
|
523 |
+
{a: Rational(-1, 2), b: -(-mu + x)**2/2, c: log(2*pi)/2}
|
524 |
+
assert f.expand().collect(gamma).match(a * log(gamma) + b * gamma + c) == \
|
525 |
+
{a: Rational(-1, 2), b: (-(x - mu)**2/2).expand(), c: (log(2*pi)/2).expand()}
|
526 |
+
g1 = Wild('g1', exclude=[gamma])
|
527 |
+
g2 = Wild('g2', exclude=[gamma])
|
528 |
+
g3 = Wild('g3', exclude=[gamma])
|
529 |
+
assert f.expand().match(g1 * log(gamma) + g2 * gamma + g3) == \
|
530 |
+
{g3: log(2)/2 + log(pi)/2, g1: Rational(-1, 2), g2: -mu**2/2 + mu*x - x**2/2}
|
531 |
+
|
532 |
+
|
533 |
+
def test_issue_4418():
|
534 |
+
x = Symbol('x')
|
535 |
+
a, b, c = symbols('a b c', cls=Wild, exclude=(x,))
|
536 |
+
f, g = symbols('f g', cls=Function)
|
537 |
+
|
538 |
+
eq = diff(g(x)*f(x).diff(x), x)
|
539 |
+
|
540 |
+
assert eq.match(
|
541 |
+
g(x).diff(x)*f(x).diff(x) + g(x)*f(x).diff(x, x) + c) == {c: 0}
|
542 |
+
assert eq.match(a*g(x).diff(
|
543 |
+
x)*f(x).diff(x) + b*g(x)*f(x).diff(x, x) + c) == {a: 1, b: 1, c: 0}
|
544 |
+
|
545 |
+
|
546 |
+
def test_issue_4700():
|
547 |
+
f = Function('f')
|
548 |
+
x = Symbol('x')
|
549 |
+
a, b = symbols('a b', cls=Wild, exclude=(f(x),))
|
550 |
+
|
551 |
+
p = a*f(x) + b
|
552 |
+
eq1 = sin(x)
|
553 |
+
eq2 = f(x) + sin(x)
|
554 |
+
eq3 = f(x) + x + sin(x)
|
555 |
+
eq4 = x + sin(x)
|
556 |
+
|
557 |
+
assert eq1.match(p) == {a: 0, b: sin(x)}
|
558 |
+
assert eq2.match(p) == {a: 1, b: sin(x)}
|
559 |
+
assert eq3.match(p) == {a: 1, b: x + sin(x)}
|
560 |
+
assert eq4.match(p) == {a: 0, b: x + sin(x)}
|
561 |
+
|
562 |
+
|
563 |
+
def test_issue_5168():
|
564 |
+
a, b, c = symbols('a b c', cls=Wild)
|
565 |
+
x = Symbol('x')
|
566 |
+
f = Function('f')
|
567 |
+
|
568 |
+
assert x.match(a) == {a: x}
|
569 |
+
assert x.match(a*f(x)**c) == {a: x, c: 0}
|
570 |
+
assert x.match(a*b) == {a: 1, b: x}
|
571 |
+
assert x.match(a*b*f(x)**c) == {a: 1, b: x, c: 0}
|
572 |
+
|
573 |
+
assert (-x).match(a) == {a: -x}
|
574 |
+
assert (-x).match(a*f(x)**c) == {a: -x, c: 0}
|
575 |
+
assert (-x).match(a*b) == {a: -1, b: x}
|
576 |
+
assert (-x).match(a*b*f(x)**c) == {a: -1, b: x, c: 0}
|
577 |
+
|
578 |
+
assert (2*x).match(a) == {a: 2*x}
|
579 |
+
assert (2*x).match(a*f(x)**c) == {a: 2*x, c: 0}
|
580 |
+
assert (2*x).match(a*b) == {a: 2, b: x}
|
581 |
+
assert (2*x).match(a*b*f(x)**c) == {a: 2, b: x, c: 0}
|
582 |
+
|
583 |
+
assert (-2*x).match(a) == {a: -2*x}
|
584 |
+
assert (-2*x).match(a*f(x)**c) == {a: -2*x, c: 0}
|
585 |
+
assert (-2*x).match(a*b) == {a: -2, b: x}
|
586 |
+
assert (-2*x).match(a*b*f(x)**c) == {a: -2, b: x, c: 0}
|
587 |
+
|
588 |
+
|
589 |
+
def test_issue_4559():
|
590 |
+
x = Symbol('x')
|
591 |
+
e = Symbol('e')
|
592 |
+
w = Wild('w', exclude=[x])
|
593 |
+
y = Wild('y')
|
594 |
+
|
595 |
+
# this is as it should be
|
596 |
+
|
597 |
+
assert (3/x).match(w/y) == {w: 3, y: x}
|
598 |
+
assert (3*x).match(w*y) == {w: 3, y: x}
|
599 |
+
assert (x/3).match(y/w) == {w: 3, y: x}
|
600 |
+
assert (3*x).match(y/w) == {w: S.One/3, y: x}
|
601 |
+
assert (3*x).match(y/w) == {w: Rational(1, 3), y: x}
|
602 |
+
|
603 |
+
# these could be allowed to fail
|
604 |
+
|
605 |
+
assert (x/3).match(w/y) == {w: S.One/3, y: 1/x}
|
606 |
+
assert (3*x).match(w/y) == {w: 3, y: 1/x}
|
607 |
+
assert (3/x).match(w*y) == {w: 3, y: 1/x}
|
608 |
+
|
609 |
+
# Note that solve will give
|
610 |
+
# multiple roots but match only gives one:
|
611 |
+
#
|
612 |
+
# >>> solve(x**r-y**2,y)
|
613 |
+
# [-x**(r/2), x**(r/2)]
|
614 |
+
|
615 |
+
r = Symbol('r', rational=True)
|
616 |
+
assert (x**r).match(y**2) == {y: x**(r/2)}
|
617 |
+
assert (x**e).match(y**2) == {y: sqrt(x**e)}
|
618 |
+
|
619 |
+
# since (x**i = y) -> x = y**(1/i) where i is an integer
|
620 |
+
# the following should also be valid as long as y is not
|
621 |
+
# zero when i is negative.
|
622 |
+
|
623 |
+
a = Wild('a')
|
624 |
+
|
625 |
+
e = S.Zero
|
626 |
+
assert e.match(a) == {a: e}
|
627 |
+
assert e.match(1/a) is None
|
628 |
+
assert e.match(a**.3) is None
|
629 |
+
|
630 |
+
e = S(3)
|
631 |
+
assert e.match(1/a) == {a: 1/e}
|
632 |
+
assert e.match(1/a**2) == {a: 1/sqrt(e)}
|
633 |
+
e = pi
|
634 |
+
assert e.match(1/a) == {a: 1/e}
|
635 |
+
assert e.match(1/a**2) == {a: 1/sqrt(e)}
|
636 |
+
assert (-e).match(sqrt(a)) is None
|
637 |
+
assert (-e).match(a**2) == {a: I*sqrt(pi)}
|
638 |
+
|
639 |
+
# The pattern matcher doesn't know how to handle (x - a)**2 == (a - x)**2. To
|
640 |
+
# avoid ambiguity in actual applications, don't put a coefficient (including a
|
641 |
+
# minus sign) in front of a wild.
|
642 |
+
@XFAIL
|
643 |
+
def test_issue_4883():
|
644 |
+
a = Wild('a')
|
645 |
+
x = Symbol('x')
|
646 |
+
|
647 |
+
e = [i**2 for i in (x - 2, 2 - x)]
|
648 |
+
p = [i**2 for i in (x - a, a- x)]
|
649 |
+
for eq in e:
|
650 |
+
for pat in p:
|
651 |
+
assert eq.match(pat) == {a: 2}
|
652 |
+
|
653 |
+
|
654 |
+
def test_issue_4319():
|
655 |
+
x, y = symbols('x y')
|
656 |
+
|
657 |
+
p = -x*(S.One/8 - y)
|
658 |
+
ans = {S.Zero, y - S.One/8}
|
659 |
+
|
660 |
+
def ok(pat):
|
661 |
+
assert set(p.match(pat).values()) == ans
|
662 |
+
|
663 |
+
ok(Wild("coeff", exclude=[x])*x + Wild("rest"))
|
664 |
+
ok(Wild("w", exclude=[x])*x + Wild("rest"))
|
665 |
+
ok(Wild("coeff", exclude=[x])*x + Wild("rest"))
|
666 |
+
ok(Wild("w", exclude=[x])*x + Wild("rest"))
|
667 |
+
ok(Wild("e", exclude=[x])*x + Wild("rest"))
|
668 |
+
ok(Wild("ress", exclude=[x])*x + Wild("rest"))
|
669 |
+
ok(Wild("resu", exclude=[x])*x + Wild("rest"))
|
670 |
+
|
671 |
+
|
672 |
+
def test_issue_3778():
|
673 |
+
p, c, q = symbols('p c q', cls=Wild)
|
674 |
+
x = Symbol('x')
|
675 |
+
|
676 |
+
assert (sin(x)**2).match(sin(p)*sin(q)*c) == {q: x, c: 1, p: x}
|
677 |
+
assert (2*sin(x)).match(sin(p) + sin(q) + c) == {q: x, c: 0, p: x}
|
678 |
+
|
679 |
+
|
680 |
+
def test_issue_6103():
|
681 |
+
x = Symbol('x')
|
682 |
+
a = Wild('a')
|
683 |
+
assert (-I*x*oo).match(I*a*oo) == {a: -x}
|
684 |
+
|
685 |
+
|
686 |
+
def test_issue_3539():
|
687 |
+
a = Wild('a')
|
688 |
+
x = Symbol('x')
|
689 |
+
assert (x - 2).match(a - x) is None
|
690 |
+
assert (6/x).match(a*x) is None
|
691 |
+
assert (6/x**2).match(a/x) == {a: 6/x}
|
692 |
+
|
693 |
+
def test_gh_issue_2711():
|
694 |
+
x = Symbol('x')
|
695 |
+
f = meijerg(((), ()), ((0,), ()), x)
|
696 |
+
a = Wild('a')
|
697 |
+
b = Wild('b')
|
698 |
+
|
699 |
+
assert f.find(a) == {(S.Zero,), ((), ()), ((S.Zero,), ()), x, S.Zero,
|
700 |
+
(), meijerg(((), ()), ((S.Zero,), ()), x)}
|
701 |
+
assert f.find(a + b) == \
|
702 |
+
{meijerg(((), ()), ((S.Zero,), ()), x), x, S.Zero}
|
703 |
+
assert f.find(a**2) == {meijerg(((), ()), ((S.Zero,), ()), x), x}
|
704 |
+
|
705 |
+
|
706 |
+
def test_issue_17354():
|
707 |
+
from sympy.core.symbol import (Wild, symbols)
|
708 |
+
x, y = symbols("x y", real=True)
|
709 |
+
a, b = symbols("a b", cls=Wild)
|
710 |
+
assert ((0 <= x).reversed | (y <= x)).match((1/a <= b) | (a <= b)) is None
|
711 |
+
|
712 |
+
|
713 |
+
def test_match_issue_17397():
|
714 |
+
f = Function("f")
|
715 |
+
x = Symbol("x")
|
716 |
+
a3 = Wild('a3', exclude=[f(x), f(x).diff(x), f(x).diff(x, 2)])
|
717 |
+
b3 = Wild('b3', exclude=[f(x), f(x).diff(x), f(x).diff(x, 2)])
|
718 |
+
c3 = Wild('c3', exclude=[f(x), f(x).diff(x), f(x).diff(x, 2)])
|
719 |
+
deq = a3*(f(x).diff(x, 2)) + b3*f(x).diff(x) + c3*f(x)
|
720 |
+
|
721 |
+
eq = (x-2)**2*(f(x).diff(x, 2)) + (x-2)*(f(x).diff(x)) + ((x-2)**2 - 4)*f(x)
|
722 |
+
r = collect(eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq)
|
723 |
+
assert r == {a3: (x - 2)**2, c3: (x - 2)**2 - 4, b3: x - 2}
|
724 |
+
|
725 |
+
eq =x*f(x) + x*Derivative(f(x), (x, 2)) - 4*f(x) + Derivative(f(x), x) \
|
726 |
+
- 4*Derivative(f(x), (x, 2)) - 2*Derivative(f(x), x)/x + 4*Derivative(f(x), (x, 2))/x
|
727 |
+
r = collect(eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq)
|
728 |
+
assert r == {a3: x - 4 + 4/x, b3: 1 - 2/x, c3: x - 4}
|
729 |
+
|
730 |
+
|
731 |
+
def test_match_issue_21942():
|
732 |
+
a, r, w = symbols('a, r, w', nonnegative=True)
|
733 |
+
p = symbols('p', positive=True)
|
734 |
+
g_ = Wild('g')
|
735 |
+
pattern = g_ ** (1 / (1 - p))
|
736 |
+
eq = (a * r ** (1 - p) + w ** (1 - p) * (1 - a)) ** (1 / (1 - p))
|
737 |
+
m = {g_: a * r ** (1 - p) + w ** (1 - p) * (1 - a)}
|
738 |
+
assert pattern.matches(eq) == m
|
739 |
+
assert (-pattern).matches(-eq) == m
|
740 |
+
assert pattern.matches(signsimp(eq)) is None
|
741 |
+
|
742 |
+
|
743 |
+
def test_match_terms():
|
744 |
+
X, Y = map(Wild, "XY")
|
745 |
+
x, y, z = symbols('x y z')
|
746 |
+
assert (5*y - x).match(5*X - Y) == {X: y, Y: x}
|
747 |
+
# 15907
|
748 |
+
assert (x + (y - 1)*z).match(x + X*z) == {X: y - 1}
|
749 |
+
# 20747
|
750 |
+
assert (x - log(x/y)*(1-exp(x/y))).match(x - log(X/y)*(1-exp(x/y))) == {X: x}
|
751 |
+
|
752 |
+
|
753 |
+
def test_match_bound():
|
754 |
+
V, W = map(Wild, "VW")
|
755 |
+
x, y = symbols('x y')
|
756 |
+
assert Sum(x, (x, 1, 2)).match(Sum(y, (y, 1, W))) == {W: 2}
|
757 |
+
assert Sum(x, (x, 1, 2)).match(Sum(V, (V, 1, W))) == {W: 2, V:x}
|
758 |
+
assert Sum(x, (x, 1, 2)).match(Sum(V, (V, 1, 2))) == {V:x}
|
759 |
+
|
760 |
+
|
761 |
+
def test_issue_22462():
|
762 |
+
x, f = symbols('x'), Function('f')
|
763 |
+
n, Q = symbols('n Q', cls=Wild)
|
764 |
+
pattern = -Q*f(x)**n
|
765 |
+
eq = 5*f(x)**2
|
766 |
+
assert pattern.matches(eq) == {n: 2, Q: -5}
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_multidimensional.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.function import (Derivative, Function, diff)
|
2 |
+
from sympy.core.symbol import symbols
|
3 |
+
from sympy.functions.elementary.trigonometric import sin
|
4 |
+
from sympy.core.multidimensional import vectorize
|
5 |
+
x, y, z = symbols('x y z')
|
6 |
+
f, g, h = list(map(Function, 'fgh'))
|
7 |
+
|
8 |
+
|
9 |
+
def test_vectorize():
|
10 |
+
@vectorize(0)
|
11 |
+
def vsin(x):
|
12 |
+
return sin(x)
|
13 |
+
|
14 |
+
assert vsin([1, x, y]) == [sin(1), sin(x), sin(y)]
|
15 |
+
|
16 |
+
@vectorize(0, 1)
|
17 |
+
def vdiff(f, y):
|
18 |
+
return diff(f, y)
|
19 |
+
|
20 |
+
assert vdiff([f(x, y, z), g(x, y, z), h(x, y, z)], [x, y, z]) == \
|
21 |
+
[[Derivative(f(x, y, z), x), Derivative(f(x, y, z), y),
|
22 |
+
Derivative(f(x, y, z), z)], [Derivative(g(x, y, z), x),
|
23 |
+
Derivative(g(x, y, z), y), Derivative(g(x, y, z), z)],
|
24 |
+
[Derivative(h(x, y, z), x), Derivative(h(x, y, z), y), Derivative(h(x, y, z), z)]]
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_noncommutative.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for noncommutative symbols and expressions."""
|
2 |
+
|
3 |
+
from sympy.core.function import expand
|
4 |
+
from sympy.core.numbers import I
|
5 |
+
from sympy.core.symbol import symbols
|
6 |
+
from sympy.functions.elementary.complexes import (adjoint, conjugate, transpose)
|
7 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
8 |
+
from sympy.polys.polytools import (cancel, factor)
|
9 |
+
from sympy.simplify.combsimp import combsimp
|
10 |
+
from sympy.simplify.gammasimp import gammasimp
|
11 |
+
from sympy.simplify.radsimp import (collect, radsimp, rcollect)
|
12 |
+
from sympy.simplify.ratsimp import ratsimp
|
13 |
+
from sympy.simplify.simplify import (posify, simplify)
|
14 |
+
from sympy.simplify.trigsimp import trigsimp
|
15 |
+
from sympy.abc import x, y, z
|
16 |
+
from sympy.testing.pytest import XFAIL
|
17 |
+
|
18 |
+
A, B, C = symbols("A B C", commutative=False)
|
19 |
+
X = symbols("X", commutative=False, hermitian=True)
|
20 |
+
Y = symbols("Y", commutative=False, antihermitian=True)
|
21 |
+
|
22 |
+
|
23 |
+
def test_adjoint():
|
24 |
+
assert adjoint(A).is_commutative is False
|
25 |
+
assert adjoint(A*A) == adjoint(A)**2
|
26 |
+
assert adjoint(A*B) == adjoint(B)*adjoint(A)
|
27 |
+
assert adjoint(A*B**2) == adjoint(B)**2*adjoint(A)
|
28 |
+
assert adjoint(A*B - B*A) == adjoint(B)*adjoint(A) - adjoint(A)*adjoint(B)
|
29 |
+
assert adjoint(A + I*B) == adjoint(A) - I*adjoint(B)
|
30 |
+
|
31 |
+
assert adjoint(X) == X
|
32 |
+
assert adjoint(-I*X) == I*X
|
33 |
+
assert adjoint(Y) == -Y
|
34 |
+
assert adjoint(-I*Y) == -I*Y
|
35 |
+
|
36 |
+
assert adjoint(X) == conjugate(transpose(X))
|
37 |
+
assert adjoint(Y) == conjugate(transpose(Y))
|
38 |
+
assert adjoint(X) == transpose(conjugate(X))
|
39 |
+
assert adjoint(Y) == transpose(conjugate(Y))
|
40 |
+
|
41 |
+
|
42 |
+
def test_cancel():
|
43 |
+
assert cancel(A*B - B*A) == A*B - B*A
|
44 |
+
assert cancel(A*B*(x - 1)) == A*B*(x - 1)
|
45 |
+
assert cancel(A*B*(x**2 - 1)/(x + 1)) == A*B*(x - 1)
|
46 |
+
assert cancel(A*B*(x**2 - 1)/(x + 1) - B*A*(x - 1)) == A*B*(x - 1) + (1 - x)*B*A
|
47 |
+
|
48 |
+
|
49 |
+
@XFAIL
|
50 |
+
def test_collect():
|
51 |
+
assert collect(A*B - B*A, A) == A*B - B*A
|
52 |
+
assert collect(A*B - B*A, B) == A*B - B*A
|
53 |
+
assert collect(A*B - B*A, x) == A*B - B*A
|
54 |
+
|
55 |
+
|
56 |
+
def test_combsimp():
|
57 |
+
assert combsimp(A*B - B*A) == A*B - B*A
|
58 |
+
|
59 |
+
|
60 |
+
def test_gammasimp():
|
61 |
+
assert gammasimp(A*B - B*A) == A*B - B*A
|
62 |
+
|
63 |
+
|
64 |
+
def test_conjugate():
|
65 |
+
assert conjugate(A).is_commutative is False
|
66 |
+
assert (A*A).conjugate() == conjugate(A)**2
|
67 |
+
assert (A*B).conjugate() == conjugate(A)*conjugate(B)
|
68 |
+
assert (A*B**2).conjugate() == conjugate(A)*conjugate(B)**2
|
69 |
+
assert (A*B - B*A).conjugate() == \
|
70 |
+
conjugate(A)*conjugate(B) - conjugate(B)*conjugate(A)
|
71 |
+
assert (A*B).conjugate() - (B*A).conjugate() == \
|
72 |
+
conjugate(A)*conjugate(B) - conjugate(B)*conjugate(A)
|
73 |
+
assert (A + I*B).conjugate() == conjugate(A) - I*conjugate(B)
|
74 |
+
|
75 |
+
|
76 |
+
def test_expand():
|
77 |
+
assert expand((A*B)**2) == A*B*A*B
|
78 |
+
assert expand(A*B - B*A) == A*B - B*A
|
79 |
+
assert expand((A*B/A)**2) == A*B*B/A
|
80 |
+
assert expand(B*A*(A + B)*B) == B*A**2*B + B*A*B**2
|
81 |
+
assert expand(B*A*(A + C)*B) == B*A**2*B + B*A*C*B
|
82 |
+
|
83 |
+
|
84 |
+
def test_factor():
|
85 |
+
assert factor(A*B - B*A) == A*B - B*A
|
86 |
+
|
87 |
+
|
88 |
+
def test_posify():
|
89 |
+
assert posify(A)[0].is_commutative is False
|
90 |
+
for q in (A*B/A, (A*B/A)**2, (A*B)**2, A*B - B*A):
|
91 |
+
p = posify(q)
|
92 |
+
assert p[0].subs(p[1]) == q
|
93 |
+
|
94 |
+
|
95 |
+
def test_radsimp():
|
96 |
+
assert radsimp(A*B - B*A) == A*B - B*A
|
97 |
+
|
98 |
+
|
99 |
+
@XFAIL
|
100 |
+
def test_ratsimp():
|
101 |
+
assert ratsimp(A*B - B*A) == A*B - B*A
|
102 |
+
|
103 |
+
|
104 |
+
@XFAIL
|
105 |
+
def test_rcollect():
|
106 |
+
assert rcollect(A*B - B*A, A) == A*B - B*A
|
107 |
+
assert rcollect(A*B - B*A, B) == A*B - B*A
|
108 |
+
assert rcollect(A*B - B*A, x) == A*B - B*A
|
109 |
+
|
110 |
+
|
111 |
+
def test_simplify():
|
112 |
+
assert simplify(A*B - B*A) == A*B - B*A
|
113 |
+
|
114 |
+
|
115 |
+
def test_subs():
|
116 |
+
assert (x*y*A).subs(x*y, z) == A*z
|
117 |
+
assert (x*A*B).subs(x*A, C) == C*B
|
118 |
+
assert (x*A*x*x).subs(x**2*A, C) == x*C
|
119 |
+
assert (x*A*x*B).subs(x**2*A, C) == C*B
|
120 |
+
assert (A**2*B**2).subs(A*B**2, C) == A*C
|
121 |
+
assert (A*A*A + A*B*A).subs(A*A*A, C) == C + A*B*A
|
122 |
+
|
123 |
+
|
124 |
+
def test_transpose():
|
125 |
+
assert transpose(A).is_commutative is False
|
126 |
+
assert transpose(A*A) == transpose(A)**2
|
127 |
+
assert transpose(A*B) == transpose(B)*transpose(A)
|
128 |
+
assert transpose(A*B**2) == transpose(B)**2*transpose(A)
|
129 |
+
assert transpose(A*B - B*A) == \
|
130 |
+
transpose(B)*transpose(A) - transpose(A)*transpose(B)
|
131 |
+
assert transpose(A + I*B) == transpose(A) + I*transpose(B)
|
132 |
+
|
133 |
+
assert transpose(X) == conjugate(X)
|
134 |
+
assert transpose(-I*X) == -I*conjugate(X)
|
135 |
+
assert transpose(Y) == -conjugate(Y)
|
136 |
+
assert transpose(-I*Y) == I*conjugate(Y)
|
137 |
+
|
138 |
+
|
139 |
+
def test_trigsimp():
|
140 |
+
assert trigsimp(A*sin(x)**2 + A*cos(x)**2) == A
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_numbers.py
ADDED
@@ -0,0 +1,2266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numbers as nums
|
2 |
+
import decimal
|
3 |
+
from sympy.concrete.summations import Sum
|
4 |
+
from sympy.core import (EulerGamma, Catalan, TribonacciConstant,
|
5 |
+
GoldenRatio)
|
6 |
+
from sympy.core.containers import Tuple
|
7 |
+
from sympy.core.expr import unchanged
|
8 |
+
from sympy.core.logic import fuzzy_not
|
9 |
+
from sympy.core.mul import Mul
|
10 |
+
from sympy.core.numbers import (mpf_norm, mod_inverse, igcd, seterr,
|
11 |
+
igcd_lehmer, Integer, I, pi, comp, ilcm, Rational, E, nan, igcd2,
|
12 |
+
oo, AlgebraicNumber, igcdex, Number, Float, zoo, equal_valued)
|
13 |
+
from sympy.core.power import Pow
|
14 |
+
from sympy.core.relational import Ge, Gt, Le, Lt
|
15 |
+
from sympy.core.singleton import S
|
16 |
+
from sympy.core.symbol import Dummy, Symbol
|
17 |
+
from sympy.core.sympify import sympify
|
18 |
+
from sympy.functions.combinatorial.factorials import factorial
|
19 |
+
from sympy.functions.elementary.integers import floor
|
20 |
+
from sympy.functions.combinatorial.numbers import fibonacci
|
21 |
+
from sympy.functions.elementary.exponential import exp, log
|
22 |
+
from sympy.functions.elementary.miscellaneous import sqrt, cbrt
|
23 |
+
from sympy.functions.elementary.trigonometric import cos, sin
|
24 |
+
from sympy.polys.domains.realfield import RealField
|
25 |
+
from sympy.printing.latex import latex
|
26 |
+
from sympy.printing.repr import srepr
|
27 |
+
from sympy.simplify import simplify
|
28 |
+
from sympy.core.power import integer_nthroot, isqrt, integer_log
|
29 |
+
from sympy.polys.domains.groundtypes import PythonRational
|
30 |
+
from sympy.utilities.decorator import conserve_mpmath_dps
|
31 |
+
from sympy.utilities.iterables import permutations
|
32 |
+
from sympy.testing.pytest import XFAIL, raises, _both_exp_pow
|
33 |
+
|
34 |
+
from mpmath import mpf
|
35 |
+
from mpmath.rational import mpq
|
36 |
+
import mpmath
|
37 |
+
from sympy.core import numbers
|
38 |
+
t = Symbol('t', real=False)
|
39 |
+
|
40 |
+
_ninf = float(-oo)
|
41 |
+
_inf = float(oo)
|
42 |
+
|
43 |
+
|
44 |
+
def same_and_same_prec(a, b):
|
45 |
+
# stricter matching for Floats
|
46 |
+
return a == b and a._prec == b._prec
|
47 |
+
|
48 |
+
|
49 |
+
def test_seterr():
|
50 |
+
seterr(divide=True)
|
51 |
+
raises(ValueError, lambda: S.Zero/S.Zero)
|
52 |
+
seterr(divide=False)
|
53 |
+
assert S.Zero / S.Zero is S.NaN
|
54 |
+
|
55 |
+
|
56 |
+
def test_mod():
|
57 |
+
x = S.Half
|
58 |
+
y = Rational(3, 4)
|
59 |
+
z = Rational(5, 18043)
|
60 |
+
|
61 |
+
assert x % x == 0
|
62 |
+
assert x % y == S.Half
|
63 |
+
assert x % z == Rational(3, 36086)
|
64 |
+
assert y % x == Rational(1, 4)
|
65 |
+
assert y % y == 0
|
66 |
+
assert y % z == Rational(9, 72172)
|
67 |
+
assert z % x == Rational(5, 18043)
|
68 |
+
assert z % y == Rational(5, 18043)
|
69 |
+
assert z % z == 0
|
70 |
+
|
71 |
+
a = Float(2.6)
|
72 |
+
|
73 |
+
assert (a % .2) == 0.0
|
74 |
+
assert (a % 2).round(15) == 0.6
|
75 |
+
assert (a % 0.5).round(15) == 0.1
|
76 |
+
|
77 |
+
p = Symbol('p', infinite=True)
|
78 |
+
|
79 |
+
assert oo % oo is nan
|
80 |
+
assert zoo % oo is nan
|
81 |
+
assert 5 % oo is nan
|
82 |
+
assert p % 5 is nan
|
83 |
+
|
84 |
+
# In these two tests, if the precision of m does
|
85 |
+
# not match the precision of the ans, then it is
|
86 |
+
# likely that the change made now gives an answer
|
87 |
+
# with degraded accuracy.
|
88 |
+
r = Rational(500, 41)
|
89 |
+
f = Float('.36', 3)
|
90 |
+
m = r % f
|
91 |
+
ans = Float(r % Rational(f), 3)
|
92 |
+
assert m == ans and m._prec == ans._prec
|
93 |
+
f = Float('8.36', 3)
|
94 |
+
m = f % r
|
95 |
+
ans = Float(Rational(f) % r, 3)
|
96 |
+
assert m == ans and m._prec == ans._prec
|
97 |
+
|
98 |
+
s = S.Zero
|
99 |
+
|
100 |
+
assert s % float(1) == 0.0
|
101 |
+
|
102 |
+
# No rounding required since these numbers can be represented
|
103 |
+
# exactly.
|
104 |
+
assert Rational(3, 4) % Float(1.1) == 0.75
|
105 |
+
assert Float(1.5) % Rational(5, 4) == 0.25
|
106 |
+
assert Rational(5, 4).__rmod__(Float('1.5')) == 0.25
|
107 |
+
assert Float('1.5').__rmod__(Float('2.75')) == Float('1.25')
|
108 |
+
assert 2.75 % Float('1.5') == Float('1.25')
|
109 |
+
|
110 |
+
a = Integer(7)
|
111 |
+
b = Integer(4)
|
112 |
+
|
113 |
+
assert type(a % b) == Integer
|
114 |
+
assert a % b == Integer(3)
|
115 |
+
assert Integer(1) % Rational(2, 3) == Rational(1, 3)
|
116 |
+
assert Rational(7, 5) % Integer(1) == Rational(2, 5)
|
117 |
+
assert Integer(2) % 1.5 == 0.5
|
118 |
+
|
119 |
+
assert Integer(3).__rmod__(Integer(10)) == Integer(1)
|
120 |
+
assert Integer(10) % 4 == Integer(2)
|
121 |
+
assert 15 % Integer(4) == Integer(3)
|
122 |
+
|
123 |
+
|
124 |
+
def test_divmod():
|
125 |
+
x = Symbol("x")
|
126 |
+
assert divmod(S(12), S(8)) == Tuple(1, 4)
|
127 |
+
assert divmod(-S(12), S(8)) == Tuple(-2, 4)
|
128 |
+
assert divmod(S.Zero, S.One) == Tuple(0, 0)
|
129 |
+
raises(ZeroDivisionError, lambda: divmod(S.Zero, S.Zero))
|
130 |
+
raises(ZeroDivisionError, lambda: divmod(S.One, S.Zero))
|
131 |
+
assert divmod(S(12), 8) == Tuple(1, 4)
|
132 |
+
assert divmod(12, S(8)) == Tuple(1, 4)
|
133 |
+
assert S(1024)//x == 1024//x == floor(1024/x)
|
134 |
+
|
135 |
+
assert divmod(S("2"), S("3/2")) == Tuple(S("1"), S("1/2"))
|
136 |
+
assert divmod(S("3/2"), S("2")) == Tuple(S("0"), S("3/2"))
|
137 |
+
assert divmod(S("2"), S("3.5")) == Tuple(S("0"), S("2"))
|
138 |
+
assert divmod(S("3.5"), S("2")) == Tuple(S("1"), S("1.5"))
|
139 |
+
assert divmod(S("2"), S("1/3")) == Tuple(S("6"), S("0"))
|
140 |
+
assert divmod(S("1/3"), S("2")) == Tuple(S("0"), S("1/3"))
|
141 |
+
assert divmod(S("2"), S("1/10")) == Tuple(S("20"), S("0"))
|
142 |
+
assert divmod(S("2"), S(".1"))[0] == 19
|
143 |
+
assert divmod(S("0.1"), S("2")) == Tuple(S("0"), S("0.1"))
|
144 |
+
assert divmod(S("2"), 2) == Tuple(S("1"), S("0"))
|
145 |
+
assert divmod(2, S("2")) == Tuple(S("1"), S("0"))
|
146 |
+
assert divmod(S("2"), 1.5) == Tuple(S("1"), S("0.5"))
|
147 |
+
assert divmod(1.5, S("2")) == Tuple(S("0"), S("1.5"))
|
148 |
+
assert divmod(0.3, S("2")) == Tuple(S("0"), S("0.3"))
|
149 |
+
assert divmod(S("3/2"), S("3.5")) == Tuple(S("0"), S("3/2"))
|
150 |
+
assert divmod(S("3.5"), S("3/2")) == Tuple(S("2"), S("0.5"))
|
151 |
+
assert divmod(S("3/2"), S("1/3")) == Tuple(S("4"), S("1/6"))
|
152 |
+
assert divmod(S("1/3"), S("3/2")) == Tuple(S("0"), S("1/3"))
|
153 |
+
assert divmod(S("3/2"), S("0.1"))[0] == 14
|
154 |
+
assert divmod(S("0.1"), S("3/2")) == Tuple(S("0"), S("0.1"))
|
155 |
+
assert divmod(S("3/2"), 2) == Tuple(S("0"), S("3/2"))
|
156 |
+
assert divmod(2, S("3/2")) == Tuple(S("1"), S("1/2"))
|
157 |
+
assert divmod(S("3/2"), 1.5) == Tuple(S("1"), S("0"))
|
158 |
+
assert divmod(1.5, S("3/2")) == Tuple(S("1"), S("0"))
|
159 |
+
assert divmod(S("3/2"), 0.3) == Tuple(S("5"), S("0"))
|
160 |
+
assert divmod(0.3, S("3/2")) == Tuple(S("0"), S("0.3"))
|
161 |
+
assert divmod(S("1/3"), S("3.5")) == Tuple(S("0"), S("1/3"))
|
162 |
+
assert divmod(S("3.5"), S("0.1")) == Tuple(S("35"), S("0"))
|
163 |
+
assert divmod(S("0.1"), S("3.5")) == Tuple(S("0"), S("0.1"))
|
164 |
+
assert divmod(S("3.5"), 2) == Tuple(S("1"), S("1.5"))
|
165 |
+
assert divmod(2, S("3.5")) == Tuple(S("0"), S("2"))
|
166 |
+
assert divmod(S("3.5"), 1.5) == Tuple(S("2"), S("0.5"))
|
167 |
+
assert divmod(1.5, S("3.5")) == Tuple(S("0"), S("1.5"))
|
168 |
+
assert divmod(0.3, S("3.5")) == Tuple(S("0"), S("0.3"))
|
169 |
+
assert divmod(S("0.1"), S("1/3")) == Tuple(S("0"), S("0.1"))
|
170 |
+
assert divmod(S("1/3"), 2) == Tuple(S("0"), S("1/3"))
|
171 |
+
assert divmod(2, S("1/3")) == Tuple(S("6"), S("0"))
|
172 |
+
assert divmod(S("1/3"), 1.5) == Tuple(S("0"), S("1/3"))
|
173 |
+
assert divmod(0.3, S("1/3")) == Tuple(S("0"), S("0.3"))
|
174 |
+
assert divmod(S("0.1"), 2) == Tuple(S("0"), S("0.1"))
|
175 |
+
assert divmod(2, S("0.1"))[0] == 19
|
176 |
+
assert divmod(S("0.1"), 1.5) == Tuple(S("0"), S("0.1"))
|
177 |
+
assert divmod(1.5, S("0.1")) == Tuple(S("15"), S("0"))
|
178 |
+
assert divmod(S("0.1"), 0.3) == Tuple(S("0"), S("0.1"))
|
179 |
+
|
180 |
+
assert str(divmod(S("2"), 0.3)) == '(6, 0.2)'
|
181 |
+
assert str(divmod(S("3.5"), S("1/3"))) == '(10, 0.166666666666667)'
|
182 |
+
assert str(divmod(S("3.5"), 0.3)) == '(11, 0.2)'
|
183 |
+
assert str(divmod(S("1/3"), S("0.1"))) == '(3, 0.0333333333333333)'
|
184 |
+
assert str(divmod(1.5, S("1/3"))) == '(4, 0.166666666666667)'
|
185 |
+
assert str(divmod(S("1/3"), 0.3)) == '(1, 0.0333333333333333)'
|
186 |
+
assert str(divmod(0.3, S("0.1"))) == '(2, 0.1)'
|
187 |
+
|
188 |
+
assert divmod(-3, S(2)) == (-2, 1)
|
189 |
+
assert divmod(S(-3), S(2)) == (-2, 1)
|
190 |
+
assert divmod(S(-3), 2) == (-2, 1)
|
191 |
+
|
192 |
+
assert divmod(S(4), S(-3.1)) == Tuple(-2, -2.2)
|
193 |
+
assert divmod(S(4), S(-2.1)) == divmod(4, -2.1)
|
194 |
+
assert divmod(S(-8), S(-2.5) ) == Tuple(3, -0.5)
|
195 |
+
|
196 |
+
assert divmod(oo, 1) == (S.NaN, S.NaN)
|
197 |
+
assert divmod(S.NaN, 1) == (S.NaN, S.NaN)
|
198 |
+
assert divmod(1, S.NaN) == (S.NaN, S.NaN)
|
199 |
+
ans = [(-1, oo), (-1, oo), (0, 0), (0, 1), (0, 2)]
|
200 |
+
OO = float('inf')
|
201 |
+
ANS = [tuple(map(float, i)) for i in ans]
|
202 |
+
assert [divmod(i, oo) for i in range(-2, 3)] == ans
|
203 |
+
ans = [(0, -2), (0, -1), (0, 0), (-1, -oo), (-1, -oo)]
|
204 |
+
ANS = [tuple(map(float, i)) for i in ans]
|
205 |
+
assert [divmod(i, -oo) for i in range(-2, 3)] == ans
|
206 |
+
assert [divmod(i, -OO) for i in range(-2, 3)] == ANS
|
207 |
+
assert divmod(S(3.5), S(-2)) == divmod(3.5, -2)
|
208 |
+
assert divmod(-S(3.5), S(-2)) == divmod(-3.5, -2)
|
209 |
+
assert divmod(S(0.0), S(9)) == divmod(0.0, 9)
|
210 |
+
assert divmod(S(0), S(9.0)) == divmod(0, 9.0)
|
211 |
+
|
212 |
+
|
213 |
+
def test_igcd():
|
214 |
+
assert igcd(0, 0) == 0
|
215 |
+
assert igcd(0, 1) == 1
|
216 |
+
assert igcd(1, 0) == 1
|
217 |
+
assert igcd(0, 7) == 7
|
218 |
+
assert igcd(7, 0) == 7
|
219 |
+
assert igcd(7, 1) == 1
|
220 |
+
assert igcd(1, 7) == 1
|
221 |
+
assert igcd(-1, 0) == 1
|
222 |
+
assert igcd(0, -1) == 1
|
223 |
+
assert igcd(-1, -1) == 1
|
224 |
+
assert igcd(-1, 7) == 1
|
225 |
+
assert igcd(7, -1) == 1
|
226 |
+
assert igcd(8, 2) == 2
|
227 |
+
assert igcd(4, 8) == 4
|
228 |
+
assert igcd(8, 16) == 8
|
229 |
+
assert igcd(7, -3) == 1
|
230 |
+
assert igcd(-7, 3) == 1
|
231 |
+
assert igcd(-7, -3) == 1
|
232 |
+
assert igcd(*[10, 20, 30]) == 10
|
233 |
+
raises(TypeError, lambda: igcd())
|
234 |
+
raises(TypeError, lambda: igcd(2))
|
235 |
+
raises(ValueError, lambda: igcd(0, None))
|
236 |
+
raises(ValueError, lambda: igcd(1, 2.2))
|
237 |
+
for args in permutations((45.1, 1, 30)):
|
238 |
+
raises(ValueError, lambda: igcd(*args))
|
239 |
+
for args in permutations((1, 2, None)):
|
240 |
+
raises(ValueError, lambda: igcd(*args))
|
241 |
+
|
242 |
+
|
243 |
+
def test_igcd_lehmer():
|
244 |
+
a, b = fibonacci(10001), fibonacci(10000)
|
245 |
+
# len(str(a)) == 2090
|
246 |
+
# small divisors, long Euclidean sequence
|
247 |
+
assert igcd_lehmer(a, b) == 1
|
248 |
+
c = fibonacci(100)
|
249 |
+
assert igcd_lehmer(a*c, b*c) == c
|
250 |
+
# big divisor
|
251 |
+
assert igcd_lehmer(a, 10**1000) == 1
|
252 |
+
# swapping argument
|
253 |
+
assert igcd_lehmer(1, 2) == igcd_lehmer(2, 1)
|
254 |
+
|
255 |
+
|
256 |
+
def test_igcd2():
|
257 |
+
# short loop
|
258 |
+
assert igcd2(2**100 - 1, 2**99 - 1) == 1
|
259 |
+
# Lehmer's algorithm
|
260 |
+
a, b = int(fibonacci(10001)), int(fibonacci(10000))
|
261 |
+
assert igcd2(a, b) == 1
|
262 |
+
|
263 |
+
|
264 |
+
def test_ilcm():
|
265 |
+
assert ilcm(0, 0) == 0
|
266 |
+
assert ilcm(1, 0) == 0
|
267 |
+
assert ilcm(0, 1) == 0
|
268 |
+
assert ilcm(1, 1) == 1
|
269 |
+
assert ilcm(2, 1) == 2
|
270 |
+
assert ilcm(8, 2) == 8
|
271 |
+
assert ilcm(8, 6) == 24
|
272 |
+
assert ilcm(8, 7) == 56
|
273 |
+
assert ilcm(*[10, 20, 30]) == 60
|
274 |
+
raises(ValueError, lambda: ilcm(8.1, 7))
|
275 |
+
raises(ValueError, lambda: ilcm(8, 7.1))
|
276 |
+
raises(TypeError, lambda: ilcm(8))
|
277 |
+
|
278 |
+
|
279 |
+
def test_igcdex():
|
280 |
+
assert igcdex(2, 3) == (-1, 1, 1)
|
281 |
+
assert igcdex(10, 12) == (-1, 1, 2)
|
282 |
+
assert igcdex(100, 2004) == (-20, 1, 4)
|
283 |
+
assert igcdex(0, 0) == (0, 1, 0)
|
284 |
+
assert igcdex(1, 0) == (1, 0, 1)
|
285 |
+
|
286 |
+
|
287 |
+
def _strictly_equal(a, b):
|
288 |
+
return (a.p, a.q, type(a.p), type(a.q)) == \
|
289 |
+
(b.p, b.q, type(b.p), type(b.q))
|
290 |
+
|
291 |
+
|
292 |
+
def _test_rational_new(cls):
|
293 |
+
"""
|
294 |
+
Tests that are common between Integer and Rational.
|
295 |
+
"""
|
296 |
+
assert cls(0) is S.Zero
|
297 |
+
assert cls(1) is S.One
|
298 |
+
assert cls(-1) is S.NegativeOne
|
299 |
+
# These look odd, but are similar to int():
|
300 |
+
assert cls('1') is S.One
|
301 |
+
assert cls('-1') is S.NegativeOne
|
302 |
+
|
303 |
+
i = Integer(10)
|
304 |
+
assert _strictly_equal(i, cls('10'))
|
305 |
+
assert _strictly_equal(i, cls('10'))
|
306 |
+
assert _strictly_equal(i, cls(int(10)))
|
307 |
+
assert _strictly_equal(i, cls(i))
|
308 |
+
|
309 |
+
raises(TypeError, lambda: cls(Symbol('x')))
|
310 |
+
|
311 |
+
|
312 |
+
def test_Integer_new():
|
313 |
+
"""
|
314 |
+
Test for Integer constructor
|
315 |
+
"""
|
316 |
+
_test_rational_new(Integer)
|
317 |
+
|
318 |
+
assert _strictly_equal(Integer(0.9), S.Zero)
|
319 |
+
assert _strictly_equal(Integer(10.5), Integer(10))
|
320 |
+
raises(ValueError, lambda: Integer("10.5"))
|
321 |
+
assert Integer(Rational('1.' + '9'*20)) == 1
|
322 |
+
|
323 |
+
|
324 |
+
def test_Rational_new():
|
325 |
+
""""
|
326 |
+
Test for Rational constructor
|
327 |
+
"""
|
328 |
+
_test_rational_new(Rational)
|
329 |
+
|
330 |
+
n1 = S.Half
|
331 |
+
assert n1 == Rational(Integer(1), 2)
|
332 |
+
assert n1 == Rational(Integer(1), Integer(2))
|
333 |
+
assert n1 == Rational(1, Integer(2))
|
334 |
+
assert n1 == Rational(S.Half)
|
335 |
+
assert 1 == Rational(n1, n1)
|
336 |
+
assert Rational(3, 2) == Rational(S.Half, Rational(1, 3))
|
337 |
+
assert Rational(3, 1) == Rational(1, Rational(1, 3))
|
338 |
+
n3_4 = Rational(3, 4)
|
339 |
+
assert Rational('3/4') == n3_4
|
340 |
+
assert -Rational('-3/4') == n3_4
|
341 |
+
assert Rational('.76').limit_denominator(4) == n3_4
|
342 |
+
assert Rational(19, 25).limit_denominator(4) == n3_4
|
343 |
+
assert Rational('19/25').limit_denominator(4) == n3_4
|
344 |
+
assert Rational(1.0, 3) == Rational(1, 3)
|
345 |
+
assert Rational(1, 3.0) == Rational(1, 3)
|
346 |
+
assert Rational(Float(0.5)) == S.Half
|
347 |
+
assert Rational('1e2/1e-2') == Rational(10000)
|
348 |
+
assert Rational('1 234') == Rational(1234)
|
349 |
+
assert Rational('1/1 234') == Rational(1, 1234)
|
350 |
+
assert Rational(-1, 0) is S.ComplexInfinity
|
351 |
+
assert Rational(1, 0) is S.ComplexInfinity
|
352 |
+
# Make sure Rational doesn't lose precision on Floats
|
353 |
+
assert Rational(pi.evalf(100)).evalf(100) == pi.evalf(100)
|
354 |
+
raises(TypeError, lambda: Rational('3**3'))
|
355 |
+
raises(TypeError, lambda: Rational('1/2 + 2/3'))
|
356 |
+
|
357 |
+
# handle fractions.Fraction instances
|
358 |
+
try:
|
359 |
+
import fractions
|
360 |
+
assert Rational(fractions.Fraction(1, 2)) == S.Half
|
361 |
+
except ImportError:
|
362 |
+
pass
|
363 |
+
|
364 |
+
assert Rational(mpq(2, 6)) == Rational(1, 3)
|
365 |
+
assert Rational(PythonRational(2, 6)) == Rational(1, 3)
|
366 |
+
|
367 |
+
assert Rational(2, 4, gcd=1).q == 4
|
368 |
+
n = Rational(2, -4, gcd=1)
|
369 |
+
assert n.q == 4
|
370 |
+
assert n.p == -2
|
371 |
+
|
372 |
+
def test_issue_24543():
|
373 |
+
for p in ('1.5', 1.5, 2):
|
374 |
+
for q in ('1.5', 1.5, 2):
|
375 |
+
assert Rational(p, q).as_numer_denom() == Rational('%s/%s'%(p,q)).as_numer_denom()
|
376 |
+
|
377 |
+
assert Rational('0.5', '100') == Rational(1, 200)
|
378 |
+
|
379 |
+
|
380 |
+
def test_Number_new():
|
381 |
+
""""
|
382 |
+
Test for Number constructor
|
383 |
+
"""
|
384 |
+
# Expected behavior on numbers and strings
|
385 |
+
assert Number(1) is S.One
|
386 |
+
assert Number(2).__class__ is Integer
|
387 |
+
assert Number(-622).__class__ is Integer
|
388 |
+
assert Number(5, 3).__class__ is Rational
|
389 |
+
assert Number(5.3).__class__ is Float
|
390 |
+
assert Number('1') is S.One
|
391 |
+
assert Number('2').__class__ is Integer
|
392 |
+
assert Number('-622').__class__ is Integer
|
393 |
+
assert Number('5/3').__class__ is Rational
|
394 |
+
assert Number('5.3').__class__ is Float
|
395 |
+
raises(ValueError, lambda: Number('cos'))
|
396 |
+
raises(TypeError, lambda: Number(cos))
|
397 |
+
a = Rational(3, 5)
|
398 |
+
assert Number(a) is a # Check idempotence on Numbers
|
399 |
+
u = ['inf', '-inf', 'nan', 'iNF', '+inf']
|
400 |
+
v = [oo, -oo, nan, oo, oo]
|
401 |
+
for i, a in zip(u, v):
|
402 |
+
assert Number(i) is a, (i, Number(i), a)
|
403 |
+
|
404 |
+
|
405 |
+
def test_Number_cmp():
|
406 |
+
n1 = Number(1)
|
407 |
+
n2 = Number(2)
|
408 |
+
n3 = Number(-3)
|
409 |
+
|
410 |
+
assert n1 < n2
|
411 |
+
assert n1 <= n2
|
412 |
+
assert n3 < n1
|
413 |
+
assert n2 > n3
|
414 |
+
assert n2 >= n3
|
415 |
+
|
416 |
+
raises(TypeError, lambda: n1 < S.NaN)
|
417 |
+
raises(TypeError, lambda: n1 <= S.NaN)
|
418 |
+
raises(TypeError, lambda: n1 > S.NaN)
|
419 |
+
raises(TypeError, lambda: n1 >= S.NaN)
|
420 |
+
|
421 |
+
|
422 |
+
def test_Rational_cmp():
|
423 |
+
n1 = Rational(1, 4)
|
424 |
+
n2 = Rational(1, 3)
|
425 |
+
n3 = Rational(2, 4)
|
426 |
+
n4 = Rational(2, -4)
|
427 |
+
n5 = Rational(0)
|
428 |
+
n6 = Rational(1)
|
429 |
+
n7 = Rational(3)
|
430 |
+
n8 = Rational(-3)
|
431 |
+
|
432 |
+
assert n8 < n5
|
433 |
+
assert n5 < n6
|
434 |
+
assert n6 < n7
|
435 |
+
assert n8 < n7
|
436 |
+
assert n7 > n8
|
437 |
+
assert (n1 + 1)**n2 < 2
|
438 |
+
assert ((n1 + n6)/n7) < 1
|
439 |
+
|
440 |
+
assert n4 < n3
|
441 |
+
assert n2 < n3
|
442 |
+
assert n1 < n2
|
443 |
+
assert n3 > n1
|
444 |
+
assert not n3 < n1
|
445 |
+
assert not (Rational(-1) > 0)
|
446 |
+
assert Rational(-1) < 0
|
447 |
+
|
448 |
+
raises(TypeError, lambda: n1 < S.NaN)
|
449 |
+
raises(TypeError, lambda: n1 <= S.NaN)
|
450 |
+
raises(TypeError, lambda: n1 > S.NaN)
|
451 |
+
raises(TypeError, lambda: n1 >= S.NaN)
|
452 |
+
|
453 |
+
|
454 |
+
def test_Float():
|
455 |
+
def eq(a, b):
|
456 |
+
t = Float("1.0E-15")
|
457 |
+
return (-t < a - b < t)
|
458 |
+
|
459 |
+
zeros = (0, S.Zero, 0., Float(0))
|
460 |
+
for i, j in permutations(zeros, 2):
|
461 |
+
assert i == j
|
462 |
+
for z in zeros:
|
463 |
+
assert z in zeros
|
464 |
+
assert S.Zero.is_zero
|
465 |
+
|
466 |
+
a = Float(2) ** Float(3)
|
467 |
+
assert eq(a.evalf(), Float(8))
|
468 |
+
assert eq((pi ** -1).evalf(), Float("0.31830988618379067"))
|
469 |
+
a = Float(2) ** Float(4)
|
470 |
+
assert eq(a.evalf(), Float(16))
|
471 |
+
assert (S(.3) == S(.5)) is False
|
472 |
+
|
473 |
+
mpf = (0, 5404319552844595, -52, 53)
|
474 |
+
x_str = Float((0, '13333333333333', -52, 53))
|
475 |
+
x_0xstr = Float((0, '0x13333333333333', -52, 53))
|
476 |
+
x2_str = Float((0, '26666666666666', -53, 54))
|
477 |
+
x_hex = Float((0, int(0x13333333333333), -52, 53))
|
478 |
+
x_dec = Float(mpf)
|
479 |
+
assert x_str == x_0xstr == x_hex == x_dec == Float(1.2)
|
480 |
+
# x2_str was entered slightly malformed in that the mantissa
|
481 |
+
# was even -- it should be odd and the even part should be
|
482 |
+
# included with the exponent, but this is resolved by normalization
|
483 |
+
# ONLY IF REQUIREMENTS of mpf_norm are met: the bitcount must
|
484 |
+
# be exact: double the mantissa ==> increase bc by 1
|
485 |
+
assert Float(1.2)._mpf_ == mpf
|
486 |
+
assert x2_str._mpf_ == mpf
|
487 |
+
|
488 |
+
assert Float((0, int(0), -123, -1)) is S.NaN
|
489 |
+
assert Float((0, int(0), -456, -2)) is S.Infinity
|
490 |
+
assert Float((1, int(0), -789, -3)) is S.NegativeInfinity
|
491 |
+
# if you don't give the full signature, it's not special
|
492 |
+
assert Float((0, int(0), -123)) == Float(0)
|
493 |
+
assert Float((0, int(0), -456)) == Float(0)
|
494 |
+
assert Float((1, int(0), -789)) == Float(0)
|
495 |
+
|
496 |
+
raises(ValueError, lambda: Float((0, 7, 1, 3), ''))
|
497 |
+
|
498 |
+
assert Float('0.0').is_finite is True
|
499 |
+
assert Float('0.0').is_negative is False
|
500 |
+
assert Float('0.0').is_positive is False
|
501 |
+
assert Float('0.0').is_infinite is False
|
502 |
+
assert Float('0.0').is_zero is True
|
503 |
+
|
504 |
+
# rationality properties
|
505 |
+
# if the integer test fails then the use of intlike
|
506 |
+
# should be removed from gamma_functions.py
|
507 |
+
assert Float(1).is_integer is False
|
508 |
+
assert Float(1).is_rational is None
|
509 |
+
assert Float(1).is_irrational is None
|
510 |
+
assert sqrt(2).n(15).is_rational is None
|
511 |
+
assert sqrt(2).n(15).is_irrational is None
|
512 |
+
|
513 |
+
# do not automatically evalf
|
514 |
+
def teq(a):
|
515 |
+
assert (a.evalf() == a) is False
|
516 |
+
assert (a.evalf() != a) is True
|
517 |
+
assert (a == a.evalf()) is False
|
518 |
+
assert (a != a.evalf()) is True
|
519 |
+
|
520 |
+
teq(pi)
|
521 |
+
teq(2*pi)
|
522 |
+
teq(cos(0.1, evaluate=False))
|
523 |
+
|
524 |
+
# long integer
|
525 |
+
i = 12345678901234567890
|
526 |
+
assert same_and_same_prec(Float(12, ''), Float('12', ''))
|
527 |
+
assert same_and_same_prec(Float(Integer(i), ''), Float(i, ''))
|
528 |
+
assert same_and_same_prec(Float(i, ''), Float(str(i), 20))
|
529 |
+
assert same_and_same_prec(Float(str(i)), Float(i, ''))
|
530 |
+
assert same_and_same_prec(Float(i), Float(i, ''))
|
531 |
+
|
532 |
+
# inexact floats (repeating binary = denom not multiple of 2)
|
533 |
+
# cannot have precision greater than 15
|
534 |
+
assert Float(.125, 22) == .125
|
535 |
+
assert Float(2.0, 22) == 2
|
536 |
+
assert float(Float('.12500000000000001', '')) == .125
|
537 |
+
raises(ValueError, lambda: Float(.12500000000000001, ''))
|
538 |
+
|
539 |
+
# allow spaces
|
540 |
+
assert Float('123 456.123 456') == Float('123456.123456')
|
541 |
+
assert Integer('123 456') == Integer('123456')
|
542 |
+
assert Rational('123 456.123 456') == Rational('123456.123456')
|
543 |
+
assert Float(' .3e2') == Float('0.3e2')
|
544 |
+
|
545 |
+
# allow underscore
|
546 |
+
assert Float('1_23.4_56') == Float('123.456')
|
547 |
+
assert Float('1_') == Float('1.0')
|
548 |
+
assert Float('1_.') == Float('1.0')
|
549 |
+
assert Float('1._') == Float('1.0')
|
550 |
+
assert Float('1__2') == Float('12.0')
|
551 |
+
# assert Float('1_23.4_5_6', 12) == Float('123.456', 12)
|
552 |
+
# ...but not in all cases (per Py 3.6)
|
553 |
+
raises(ValueError, lambda: Float('_1'))
|
554 |
+
raises(ValueError, lambda: Float('_inf'))
|
555 |
+
|
556 |
+
# allow auto precision detection
|
557 |
+
assert Float('.1', '') == Float(.1, 1)
|
558 |
+
assert Float('.125', '') == Float(.125, 3)
|
559 |
+
assert Float('.100', '') == Float(.1, 3)
|
560 |
+
assert Float('2.0', '') == Float('2', 2)
|
561 |
+
|
562 |
+
raises(ValueError, lambda: Float("12.3d-4", ""))
|
563 |
+
raises(ValueError, lambda: Float(12.3, ""))
|
564 |
+
raises(ValueError, lambda: Float('.'))
|
565 |
+
raises(ValueError, lambda: Float('-.'))
|
566 |
+
|
567 |
+
zero = Float('0.0')
|
568 |
+
assert Float('-0') == zero
|
569 |
+
assert Float('.0') == zero
|
570 |
+
assert Float('-.0') == zero
|
571 |
+
assert Float('-0.0') == zero
|
572 |
+
assert Float(0.0) == zero
|
573 |
+
assert Float(0) == zero
|
574 |
+
assert Float(0, '') == Float('0', '')
|
575 |
+
assert Float(1) == Float(1.0)
|
576 |
+
assert Float(S.Zero) == zero
|
577 |
+
assert Float(S.One) == Float(1.0)
|
578 |
+
|
579 |
+
assert Float(decimal.Decimal('0.1'), 3) == Float('.1', 3)
|
580 |
+
assert Float(decimal.Decimal('nan')) is S.NaN
|
581 |
+
assert Float(decimal.Decimal('Infinity')) is S.Infinity
|
582 |
+
assert Float(decimal.Decimal('-Infinity')) is S.NegativeInfinity
|
583 |
+
|
584 |
+
assert '{:.3f}'.format(Float(4.236622)) == '4.237'
|
585 |
+
assert '{:.35f}'.format(Float(pi.n(40), 40)) == \
|
586 |
+
'3.14159265358979323846264338327950288'
|
587 |
+
|
588 |
+
# unicode
|
589 |
+
assert Float('0.73908513321516064100000000') == \
|
590 |
+
Float('0.73908513321516064100000000')
|
591 |
+
assert Float('0.73908513321516064100000000', 28) == \
|
592 |
+
Float('0.73908513321516064100000000', 28)
|
593 |
+
|
594 |
+
# binary precision
|
595 |
+
# Decimal value 0.1 cannot be expressed precisely as a base 2 fraction
|
596 |
+
a = Float(S.One/10, dps=15)
|
597 |
+
b = Float(S.One/10, dps=16)
|
598 |
+
p = Float(S.One/10, precision=53)
|
599 |
+
q = Float(S.One/10, precision=54)
|
600 |
+
assert a._mpf_ == p._mpf_
|
601 |
+
assert not a._mpf_ == q._mpf_
|
602 |
+
assert not b._mpf_ == q._mpf_
|
603 |
+
|
604 |
+
# Precision specifying errors
|
605 |
+
raises(ValueError, lambda: Float("1.23", dps=3, precision=10))
|
606 |
+
raises(ValueError, lambda: Float("1.23", dps="", precision=10))
|
607 |
+
raises(ValueError, lambda: Float("1.23", dps=3, precision=""))
|
608 |
+
raises(ValueError, lambda: Float("1.23", dps="", precision=""))
|
609 |
+
|
610 |
+
# from NumberSymbol
|
611 |
+
assert same_and_same_prec(Float(pi, 32), pi.evalf(32))
|
612 |
+
assert same_and_same_prec(Float(Catalan), Catalan.evalf())
|
613 |
+
|
614 |
+
# oo and nan
|
615 |
+
u = ['inf', '-inf', 'nan', 'iNF', '+inf']
|
616 |
+
v = [oo, -oo, nan, oo, oo]
|
617 |
+
for i, a in zip(u, v):
|
618 |
+
assert Float(i) is a
|
619 |
+
|
620 |
+
|
621 |
+
def test_zero_not_false():
|
622 |
+
# https://github.com/sympy/sympy/issues/20796
|
623 |
+
assert (S(0.0) == S.false) is False
|
624 |
+
assert (S.false == S(0.0)) is False
|
625 |
+
assert (S(0) == S.false) is False
|
626 |
+
assert (S.false == S(0)) is False
|
627 |
+
|
628 |
+
|
629 |
+
@conserve_mpmath_dps
|
630 |
+
def test_float_mpf():
|
631 |
+
import mpmath
|
632 |
+
mpmath.mp.dps = 100
|
633 |
+
mp_pi = mpmath.pi()
|
634 |
+
|
635 |
+
assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100)
|
636 |
+
|
637 |
+
mpmath.mp.dps = 15
|
638 |
+
|
639 |
+
assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100)
|
640 |
+
|
641 |
+
|
642 |
+
def test_Float_RealElement():
|
643 |
+
repi = RealField(dps=100)(pi.evalf(100))
|
644 |
+
# We still have to pass the precision because Float doesn't know what
|
645 |
+
# RealElement is, but make sure it keeps full precision from the result.
|
646 |
+
assert Float(repi, 100) == pi.evalf(100)
|
647 |
+
|
648 |
+
|
649 |
+
def test_Float_default_to_highprec_from_str():
|
650 |
+
s = str(pi.evalf(128))
|
651 |
+
assert same_and_same_prec(Float(s), Float(s, ''))
|
652 |
+
|
653 |
+
|
654 |
+
def test_Float_eval():
|
655 |
+
a = Float(3.2)
|
656 |
+
assert (a**2).is_Float
|
657 |
+
|
658 |
+
|
659 |
+
def test_Float_issue_2107():
|
660 |
+
a = Float(0.1, 10)
|
661 |
+
b = Float("0.1", 10)
|
662 |
+
|
663 |
+
assert a - a == 0
|
664 |
+
assert a + (-a) == 0
|
665 |
+
assert S.Zero + a - a == 0
|
666 |
+
assert S.Zero + a + (-a) == 0
|
667 |
+
|
668 |
+
assert b - b == 0
|
669 |
+
assert b + (-b) == 0
|
670 |
+
assert S.Zero + b - b == 0
|
671 |
+
assert S.Zero + b + (-b) == 0
|
672 |
+
|
673 |
+
|
674 |
+
def test_issue_14289():
|
675 |
+
from sympy.polys.numberfields import to_number_field
|
676 |
+
|
677 |
+
a = 1 - sqrt(2)
|
678 |
+
b = to_number_field(a)
|
679 |
+
assert b.as_expr() == a
|
680 |
+
assert b.minpoly(a).expand() == 0
|
681 |
+
|
682 |
+
|
683 |
+
def test_Float_from_tuple():
|
684 |
+
a = Float((0, '1L', 0, 1))
|
685 |
+
b = Float((0, '1', 0, 1))
|
686 |
+
assert a == b
|
687 |
+
|
688 |
+
|
689 |
+
def test_Infinity():
|
690 |
+
assert oo != 1
|
691 |
+
assert 1*oo is oo
|
692 |
+
assert 1 != oo
|
693 |
+
assert oo != -oo
|
694 |
+
assert oo != Symbol("x")**3
|
695 |
+
assert oo + 1 is oo
|
696 |
+
assert 2 + oo is oo
|
697 |
+
assert 3*oo + 2 is oo
|
698 |
+
assert S.Half**oo == 0
|
699 |
+
assert S.Half**(-oo) is oo
|
700 |
+
assert -oo*3 is -oo
|
701 |
+
assert oo + oo is oo
|
702 |
+
assert -oo + oo*(-5) is -oo
|
703 |
+
assert 1/oo == 0
|
704 |
+
assert 1/(-oo) == 0
|
705 |
+
assert 8/oo == 0
|
706 |
+
assert oo % 2 is nan
|
707 |
+
assert 2 % oo is nan
|
708 |
+
assert oo/oo is nan
|
709 |
+
assert oo/-oo is nan
|
710 |
+
assert -oo/oo is nan
|
711 |
+
assert -oo/-oo is nan
|
712 |
+
assert oo - oo is nan
|
713 |
+
assert oo - -oo is oo
|
714 |
+
assert -oo - oo is -oo
|
715 |
+
assert -oo - -oo is nan
|
716 |
+
assert oo + -oo is nan
|
717 |
+
assert -oo + oo is nan
|
718 |
+
assert oo + oo is oo
|
719 |
+
assert -oo + oo is nan
|
720 |
+
assert oo + -oo is nan
|
721 |
+
assert -oo + -oo is -oo
|
722 |
+
assert oo*oo is oo
|
723 |
+
assert -oo*oo is -oo
|
724 |
+
assert oo*-oo is -oo
|
725 |
+
assert -oo*-oo is oo
|
726 |
+
assert oo/0 is oo
|
727 |
+
assert -oo/0 is -oo
|
728 |
+
assert 0/oo == 0
|
729 |
+
assert 0/-oo == 0
|
730 |
+
assert oo*0 is nan
|
731 |
+
assert -oo*0 is nan
|
732 |
+
assert 0*oo is nan
|
733 |
+
assert 0*-oo is nan
|
734 |
+
assert oo + 0 is oo
|
735 |
+
assert -oo + 0 is -oo
|
736 |
+
assert 0 + oo is oo
|
737 |
+
assert 0 + -oo is -oo
|
738 |
+
assert oo - 0 is oo
|
739 |
+
assert -oo - 0 is -oo
|
740 |
+
assert 0 - oo is -oo
|
741 |
+
assert 0 - -oo is oo
|
742 |
+
assert oo/2 is oo
|
743 |
+
assert -oo/2 is -oo
|
744 |
+
assert oo/-2 is -oo
|
745 |
+
assert -oo/-2 is oo
|
746 |
+
assert oo*2 is oo
|
747 |
+
assert -oo*2 is -oo
|
748 |
+
assert oo*-2 is -oo
|
749 |
+
assert 2/oo == 0
|
750 |
+
assert 2/-oo == 0
|
751 |
+
assert -2/oo == 0
|
752 |
+
assert -2/-oo == 0
|
753 |
+
assert 2*oo is oo
|
754 |
+
assert 2*-oo is -oo
|
755 |
+
assert -2*oo is -oo
|
756 |
+
assert -2*-oo is oo
|
757 |
+
assert 2 + oo is oo
|
758 |
+
assert 2 - oo is -oo
|
759 |
+
assert -2 + oo is oo
|
760 |
+
assert -2 - oo is -oo
|
761 |
+
assert 2 + -oo is -oo
|
762 |
+
assert 2 - -oo is oo
|
763 |
+
assert -2 + -oo is -oo
|
764 |
+
assert -2 - -oo is oo
|
765 |
+
assert S(2) + oo is oo
|
766 |
+
assert S(2) - oo is -oo
|
767 |
+
assert oo/I == -oo*I
|
768 |
+
assert -oo/I == oo*I
|
769 |
+
assert oo*float(1) == _inf and (oo*float(1)) is oo
|
770 |
+
assert -oo*float(1) == _ninf and (-oo*float(1)) is -oo
|
771 |
+
assert oo/float(1) == _inf and (oo/float(1)) is oo
|
772 |
+
assert -oo/float(1) == _ninf and (-oo/float(1)) is -oo
|
773 |
+
assert oo*float(-1) == _ninf and (oo*float(-1)) is -oo
|
774 |
+
assert -oo*float(-1) == _inf and (-oo*float(-1)) is oo
|
775 |
+
assert oo/float(-1) == _ninf and (oo/float(-1)) is -oo
|
776 |
+
assert -oo/float(-1) == _inf and (-oo/float(-1)) is oo
|
777 |
+
assert oo + float(1) == _inf and (oo + float(1)) is oo
|
778 |
+
assert -oo + float(1) == _ninf and (-oo + float(1)) is -oo
|
779 |
+
assert oo - float(1) == _inf and (oo - float(1)) is oo
|
780 |
+
assert -oo - float(1) == _ninf and (-oo - float(1)) is -oo
|
781 |
+
assert float(1)*oo == _inf and (float(1)*oo) is oo
|
782 |
+
assert float(1)*-oo == _ninf and (float(1)*-oo) is -oo
|
783 |
+
assert float(1)/oo == 0
|
784 |
+
assert float(1)/-oo == 0
|
785 |
+
assert float(-1)*oo == _ninf and (float(-1)*oo) is -oo
|
786 |
+
assert float(-1)*-oo == _inf and (float(-1)*-oo) is oo
|
787 |
+
assert float(-1)/oo == 0
|
788 |
+
assert float(-1)/-oo == 0
|
789 |
+
assert float(1) + oo is oo
|
790 |
+
assert float(1) + -oo is -oo
|
791 |
+
assert float(1) - oo is -oo
|
792 |
+
assert float(1) - -oo is oo
|
793 |
+
assert oo == float(oo)
|
794 |
+
assert (oo != float(oo)) is False
|
795 |
+
assert type(float(oo)) is float
|
796 |
+
assert -oo == float(-oo)
|
797 |
+
assert (-oo != float(-oo)) is False
|
798 |
+
assert type(float(-oo)) is float
|
799 |
+
|
800 |
+
assert Float('nan') is nan
|
801 |
+
assert nan*1.0 is nan
|
802 |
+
assert -1.0*nan is nan
|
803 |
+
assert nan*oo is nan
|
804 |
+
assert nan*-oo is nan
|
805 |
+
assert nan/oo is nan
|
806 |
+
assert nan/-oo is nan
|
807 |
+
assert nan + oo is nan
|
808 |
+
assert nan + -oo is nan
|
809 |
+
assert nan - oo is nan
|
810 |
+
assert nan - -oo is nan
|
811 |
+
assert -oo * S.Zero is nan
|
812 |
+
|
813 |
+
assert oo*nan is nan
|
814 |
+
assert -oo*nan is nan
|
815 |
+
assert oo/nan is nan
|
816 |
+
assert -oo/nan is nan
|
817 |
+
assert oo + nan is nan
|
818 |
+
assert -oo + nan is nan
|
819 |
+
assert oo - nan is nan
|
820 |
+
assert -oo - nan is nan
|
821 |
+
assert S.Zero * oo is nan
|
822 |
+
assert oo.is_Rational is False
|
823 |
+
assert isinstance(oo, Rational) is False
|
824 |
+
|
825 |
+
assert S.One/oo == 0
|
826 |
+
assert -S.One/oo == 0
|
827 |
+
assert S.One/-oo == 0
|
828 |
+
assert -S.One/-oo == 0
|
829 |
+
assert S.One*oo is oo
|
830 |
+
assert -S.One*oo is -oo
|
831 |
+
assert S.One*-oo is -oo
|
832 |
+
assert -S.One*-oo is oo
|
833 |
+
assert S.One/nan is nan
|
834 |
+
assert S.One - -oo is oo
|
835 |
+
assert S.One + nan is nan
|
836 |
+
assert S.One - nan is nan
|
837 |
+
assert nan - S.One is nan
|
838 |
+
assert nan/S.One is nan
|
839 |
+
assert -oo - S.One is -oo
|
840 |
+
|
841 |
+
|
842 |
+
def test_Infinity_2():
|
843 |
+
x = Symbol('x')
|
844 |
+
assert oo*x != oo
|
845 |
+
assert oo*(pi - 1) is oo
|
846 |
+
assert oo*(1 - pi) is -oo
|
847 |
+
|
848 |
+
assert (-oo)*x != -oo
|
849 |
+
assert (-oo)*(pi - 1) is -oo
|
850 |
+
assert (-oo)*(1 - pi) is oo
|
851 |
+
|
852 |
+
assert (-1)**S.NaN is S.NaN
|
853 |
+
assert oo - _inf is S.NaN
|
854 |
+
assert oo + _ninf is S.NaN
|
855 |
+
assert oo*0 is S.NaN
|
856 |
+
assert oo/_inf is S.NaN
|
857 |
+
assert oo/_ninf is S.NaN
|
858 |
+
assert oo**S.NaN is S.NaN
|
859 |
+
assert -oo + _inf is S.NaN
|
860 |
+
assert -oo - _ninf is S.NaN
|
861 |
+
assert -oo*S.NaN is S.NaN
|
862 |
+
assert -oo*0 is S.NaN
|
863 |
+
assert -oo/_inf is S.NaN
|
864 |
+
assert -oo/_ninf is S.NaN
|
865 |
+
assert -oo/S.NaN is S.NaN
|
866 |
+
assert abs(-oo) is oo
|
867 |
+
assert all((-oo)**i is S.NaN for i in (oo, -oo, S.NaN))
|
868 |
+
assert (-oo)**3 is -oo
|
869 |
+
assert (-oo)**2 is oo
|
870 |
+
assert abs(S.ComplexInfinity) is oo
|
871 |
+
|
872 |
+
|
873 |
+
def test_Mul_Infinity_Zero():
|
874 |
+
assert Float(0)*_inf is nan
|
875 |
+
assert Float(0)*_ninf is nan
|
876 |
+
assert Float(0)*_inf is nan
|
877 |
+
assert Float(0)*_ninf is nan
|
878 |
+
assert _inf*Float(0) is nan
|
879 |
+
assert _ninf*Float(0) is nan
|
880 |
+
assert _inf*Float(0) is nan
|
881 |
+
assert _ninf*Float(0) is nan
|
882 |
+
|
883 |
+
|
884 |
+
def test_Div_By_Zero():
|
885 |
+
assert 1/S.Zero is zoo
|
886 |
+
assert 1/Float(0) is zoo
|
887 |
+
assert 0/S.Zero is nan
|
888 |
+
assert 0/Float(0) is nan
|
889 |
+
assert S.Zero/0 is nan
|
890 |
+
assert Float(0)/0 is nan
|
891 |
+
assert -1/S.Zero is zoo
|
892 |
+
assert -1/Float(0) is zoo
|
893 |
+
|
894 |
+
|
895 |
+
@_both_exp_pow
|
896 |
+
def test_Infinity_inequations():
|
897 |
+
assert oo > pi
|
898 |
+
assert not (oo < pi)
|
899 |
+
assert exp(-3) < oo
|
900 |
+
|
901 |
+
assert _inf > pi
|
902 |
+
assert not (_inf < pi)
|
903 |
+
assert exp(-3) < _inf
|
904 |
+
|
905 |
+
raises(TypeError, lambda: oo < I)
|
906 |
+
raises(TypeError, lambda: oo <= I)
|
907 |
+
raises(TypeError, lambda: oo > I)
|
908 |
+
raises(TypeError, lambda: oo >= I)
|
909 |
+
raises(TypeError, lambda: -oo < I)
|
910 |
+
raises(TypeError, lambda: -oo <= I)
|
911 |
+
raises(TypeError, lambda: -oo > I)
|
912 |
+
raises(TypeError, lambda: -oo >= I)
|
913 |
+
|
914 |
+
raises(TypeError, lambda: I < oo)
|
915 |
+
raises(TypeError, lambda: I <= oo)
|
916 |
+
raises(TypeError, lambda: I > oo)
|
917 |
+
raises(TypeError, lambda: I >= oo)
|
918 |
+
raises(TypeError, lambda: I < -oo)
|
919 |
+
raises(TypeError, lambda: I <= -oo)
|
920 |
+
raises(TypeError, lambda: I > -oo)
|
921 |
+
raises(TypeError, lambda: I >= -oo)
|
922 |
+
|
923 |
+
assert oo > -oo and oo >= -oo
|
924 |
+
assert (oo < -oo) == False and (oo <= -oo) == False
|
925 |
+
assert -oo < oo and -oo <= oo
|
926 |
+
assert (-oo > oo) == False and (-oo >= oo) == False
|
927 |
+
|
928 |
+
assert (oo < oo) == False # issue 7775
|
929 |
+
assert (oo > oo) == False
|
930 |
+
assert (-oo > -oo) == False and (-oo < -oo) == False
|
931 |
+
assert oo >= oo and oo <= oo and -oo >= -oo and -oo <= -oo
|
932 |
+
assert (-oo < -_inf) == False
|
933 |
+
assert (oo > _inf) == False
|
934 |
+
assert -oo >= -_inf
|
935 |
+
assert oo <= _inf
|
936 |
+
|
937 |
+
x = Symbol('x')
|
938 |
+
b = Symbol('b', finite=True, real=True)
|
939 |
+
assert (x < oo) == Lt(x, oo) # issue 7775
|
940 |
+
assert b < oo and b > -oo and b <= oo and b >= -oo
|
941 |
+
assert oo > b and oo >= b and (oo < b) == False and (oo <= b) == False
|
942 |
+
assert (-oo > b) == False and (-oo >= b) == False and -oo < b and -oo <= b
|
943 |
+
assert (oo < x) == Lt(oo, x) and (oo > x) == Gt(oo, x)
|
944 |
+
assert (oo <= x) == Le(oo, x) and (oo >= x) == Ge(oo, x)
|
945 |
+
assert (-oo < x) == Lt(-oo, x) and (-oo > x) == Gt(-oo, x)
|
946 |
+
assert (-oo <= x) == Le(-oo, x) and (-oo >= x) == Ge(-oo, x)
|
947 |
+
|
948 |
+
|
949 |
+
def test_NaN():
|
950 |
+
assert nan is nan
|
951 |
+
assert nan != 1
|
952 |
+
assert 1*nan is nan
|
953 |
+
assert 1 != nan
|
954 |
+
assert -nan is nan
|
955 |
+
assert oo != Symbol("x")**3
|
956 |
+
assert 2 + nan is nan
|
957 |
+
assert 3*nan + 2 is nan
|
958 |
+
assert -nan*3 is nan
|
959 |
+
assert nan + nan is nan
|
960 |
+
assert -nan + nan*(-5) is nan
|
961 |
+
assert 8/nan is nan
|
962 |
+
raises(TypeError, lambda: nan > 0)
|
963 |
+
raises(TypeError, lambda: nan < 0)
|
964 |
+
raises(TypeError, lambda: nan >= 0)
|
965 |
+
raises(TypeError, lambda: nan <= 0)
|
966 |
+
raises(TypeError, lambda: 0 < nan)
|
967 |
+
raises(TypeError, lambda: 0 > nan)
|
968 |
+
raises(TypeError, lambda: 0 <= nan)
|
969 |
+
raises(TypeError, lambda: 0 >= nan)
|
970 |
+
assert nan**0 == 1 # as per IEEE 754
|
971 |
+
assert 1**nan is nan # IEEE 754 is not the best choice for symbolic work
|
972 |
+
# test Pow._eval_power's handling of NaN
|
973 |
+
assert Pow(nan, 0, evaluate=False)**2 == 1
|
974 |
+
for n in (1, 1., S.One, S.NegativeOne, Float(1)):
|
975 |
+
assert n + nan is nan
|
976 |
+
assert n - nan is nan
|
977 |
+
assert nan + n is nan
|
978 |
+
assert nan - n is nan
|
979 |
+
assert n/nan is nan
|
980 |
+
assert nan/n is nan
|
981 |
+
|
982 |
+
|
983 |
+
def test_special_numbers():
|
984 |
+
assert isinstance(S.NaN, Number) is True
|
985 |
+
assert isinstance(S.Infinity, Number) is True
|
986 |
+
assert isinstance(S.NegativeInfinity, Number) is True
|
987 |
+
|
988 |
+
assert S.NaN.is_number is True
|
989 |
+
assert S.Infinity.is_number is True
|
990 |
+
assert S.NegativeInfinity.is_number is True
|
991 |
+
assert S.ComplexInfinity.is_number is True
|
992 |
+
|
993 |
+
assert isinstance(S.NaN, Rational) is False
|
994 |
+
assert isinstance(S.Infinity, Rational) is False
|
995 |
+
assert isinstance(S.NegativeInfinity, Rational) is False
|
996 |
+
|
997 |
+
assert S.NaN.is_rational is not True
|
998 |
+
assert S.Infinity.is_rational is not True
|
999 |
+
assert S.NegativeInfinity.is_rational is not True
|
1000 |
+
|
1001 |
+
|
1002 |
+
def test_powers():
|
1003 |
+
assert integer_nthroot(1, 2) == (1, True)
|
1004 |
+
assert integer_nthroot(1, 5) == (1, True)
|
1005 |
+
assert integer_nthroot(2, 1) == (2, True)
|
1006 |
+
assert integer_nthroot(2, 2) == (1, False)
|
1007 |
+
assert integer_nthroot(2, 5) == (1, False)
|
1008 |
+
assert integer_nthroot(4, 2) == (2, True)
|
1009 |
+
assert integer_nthroot(123**25, 25) == (123, True)
|
1010 |
+
assert integer_nthroot(123**25 + 1, 25) == (123, False)
|
1011 |
+
assert integer_nthroot(123**25 - 1, 25) == (122, False)
|
1012 |
+
assert integer_nthroot(1, 1) == (1, True)
|
1013 |
+
assert integer_nthroot(0, 1) == (0, True)
|
1014 |
+
assert integer_nthroot(0, 3) == (0, True)
|
1015 |
+
assert integer_nthroot(10000, 1) == (10000, True)
|
1016 |
+
assert integer_nthroot(4, 2) == (2, True)
|
1017 |
+
assert integer_nthroot(16, 2) == (4, True)
|
1018 |
+
assert integer_nthroot(26, 2) == (5, False)
|
1019 |
+
assert integer_nthroot(1234567**7, 7) == (1234567, True)
|
1020 |
+
assert integer_nthroot(1234567**7 + 1, 7) == (1234567, False)
|
1021 |
+
assert integer_nthroot(1234567**7 - 1, 7) == (1234566, False)
|
1022 |
+
b = 25**1000
|
1023 |
+
assert integer_nthroot(b, 1000) == (25, True)
|
1024 |
+
assert integer_nthroot(b + 1, 1000) == (25, False)
|
1025 |
+
assert integer_nthroot(b - 1, 1000) == (24, False)
|
1026 |
+
c = 10**400
|
1027 |
+
c2 = c**2
|
1028 |
+
assert integer_nthroot(c2, 2) == (c, True)
|
1029 |
+
assert integer_nthroot(c2 + 1, 2) == (c, False)
|
1030 |
+
assert integer_nthroot(c2 - 1, 2) == (c - 1, False)
|
1031 |
+
assert integer_nthroot(2, 10**10) == (1, False)
|
1032 |
+
|
1033 |
+
p, r = integer_nthroot(int(factorial(10000)), 100)
|
1034 |
+
assert p % (10**10) == 5322420655
|
1035 |
+
assert not r
|
1036 |
+
|
1037 |
+
# Test that this is fast
|
1038 |
+
assert integer_nthroot(2, 10**10) == (1, False)
|
1039 |
+
|
1040 |
+
# output should be int if possible
|
1041 |
+
assert type(integer_nthroot(2**61, 2)[0]) is int
|
1042 |
+
|
1043 |
+
|
1044 |
+
def test_integer_nthroot_overflow():
|
1045 |
+
assert integer_nthroot(10**(50*50), 50) == (10**50, True)
|
1046 |
+
assert integer_nthroot(10**100000, 10000) == (10**10, True)
|
1047 |
+
|
1048 |
+
|
1049 |
+
def test_integer_log():
|
1050 |
+
raises(ValueError, lambda: integer_log(2, 1))
|
1051 |
+
raises(ValueError, lambda: integer_log(0, 2))
|
1052 |
+
raises(ValueError, lambda: integer_log(1.1, 2))
|
1053 |
+
raises(ValueError, lambda: integer_log(1, 2.2))
|
1054 |
+
|
1055 |
+
assert integer_log(1, 2) == (0, True)
|
1056 |
+
assert integer_log(1, 3) == (0, True)
|
1057 |
+
assert integer_log(2, 3) == (0, False)
|
1058 |
+
assert integer_log(3, 3) == (1, True)
|
1059 |
+
assert integer_log(3*2, 3) == (1, False)
|
1060 |
+
assert integer_log(3**2, 3) == (2, True)
|
1061 |
+
assert integer_log(3*4, 3) == (2, False)
|
1062 |
+
assert integer_log(3**3, 3) == (3, True)
|
1063 |
+
assert integer_log(27, 5) == (2, False)
|
1064 |
+
assert integer_log(2, 3) == (0, False)
|
1065 |
+
assert integer_log(-4, -2) == (2, False)
|
1066 |
+
assert integer_log(27, -3) == (3, False)
|
1067 |
+
assert integer_log(-49, 7) == (0, False)
|
1068 |
+
assert integer_log(-49, -7) == (2, False)
|
1069 |
+
|
1070 |
+
|
1071 |
+
def test_isqrt():
|
1072 |
+
from math import sqrt as _sqrt
|
1073 |
+
limit = 4503599761588223
|
1074 |
+
assert int(_sqrt(limit)) == integer_nthroot(limit, 2)[0]
|
1075 |
+
assert int(_sqrt(limit + 1)) != integer_nthroot(limit + 1, 2)[0]
|
1076 |
+
assert isqrt(limit + 1) == integer_nthroot(limit + 1, 2)[0]
|
1077 |
+
assert isqrt(limit + S.Half) == integer_nthroot(limit, 2)[0]
|
1078 |
+
assert isqrt(limit + 1 + S.Half) == integer_nthroot(limit + 1, 2)[0]
|
1079 |
+
assert isqrt(limit + 2 + S.Half) == integer_nthroot(limit + 2, 2)[0]
|
1080 |
+
|
1081 |
+
# Regression tests for https://github.com/sympy/sympy/issues/17034
|
1082 |
+
assert isqrt(4503599761588224) == 67108864
|
1083 |
+
assert isqrt(9999999999999999) == 99999999
|
1084 |
+
|
1085 |
+
# Other corner cases, especially involving non-integers.
|
1086 |
+
raises(ValueError, lambda: isqrt(-1))
|
1087 |
+
raises(ValueError, lambda: isqrt(-10**1000))
|
1088 |
+
raises(ValueError, lambda: isqrt(Rational(-1, 2)))
|
1089 |
+
|
1090 |
+
tiny = Rational(1, 10**1000)
|
1091 |
+
raises(ValueError, lambda: isqrt(-tiny))
|
1092 |
+
assert isqrt(1-tiny) == 0
|
1093 |
+
assert isqrt(4503599761588224-tiny) == 67108864
|
1094 |
+
assert isqrt(10**100 - tiny) == 10**50 - 1
|
1095 |
+
|
1096 |
+
# Check that using an inaccurate math.sqrt doesn't affect the results.
|
1097 |
+
from sympy.core import power
|
1098 |
+
old_sqrt = power._sqrt
|
1099 |
+
power._sqrt = lambda x: 2.999999999
|
1100 |
+
try:
|
1101 |
+
assert isqrt(9) == 3
|
1102 |
+
assert isqrt(10000) == 100
|
1103 |
+
finally:
|
1104 |
+
power._sqrt = old_sqrt
|
1105 |
+
|
1106 |
+
|
1107 |
+
def test_powers_Integer():
|
1108 |
+
"""Test Integer._eval_power"""
|
1109 |
+
# check infinity
|
1110 |
+
assert S.One ** S.Infinity is S.NaN
|
1111 |
+
assert S.NegativeOne** S.Infinity is S.NaN
|
1112 |
+
assert S(2) ** S.Infinity is S.Infinity
|
1113 |
+
assert S(-2)** S.Infinity == zoo
|
1114 |
+
assert S(0) ** S.Infinity is S.Zero
|
1115 |
+
|
1116 |
+
# check Nan
|
1117 |
+
assert S.One ** S.NaN is S.NaN
|
1118 |
+
assert S.NegativeOne ** S.NaN is S.NaN
|
1119 |
+
|
1120 |
+
# check for exact roots
|
1121 |
+
assert S.NegativeOne ** Rational(6, 5) == - (-1)**(S.One/5)
|
1122 |
+
assert sqrt(S(4)) == 2
|
1123 |
+
assert sqrt(S(-4)) == I * 2
|
1124 |
+
assert S(16) ** Rational(1, 4) == 2
|
1125 |
+
assert S(-16) ** Rational(1, 4) == 2 * (-1)**Rational(1, 4)
|
1126 |
+
assert S(9) ** Rational(3, 2) == 27
|
1127 |
+
assert S(-9) ** Rational(3, 2) == -27*I
|
1128 |
+
assert S(27) ** Rational(2, 3) == 9
|
1129 |
+
assert S(-27) ** Rational(2, 3) == 9 * (S.NegativeOne ** Rational(2, 3))
|
1130 |
+
assert (-2) ** Rational(-2, 1) == Rational(1, 4)
|
1131 |
+
|
1132 |
+
# not exact roots
|
1133 |
+
assert sqrt(-3) == I*sqrt(3)
|
1134 |
+
assert (3) ** (Rational(3, 2)) == 3 * sqrt(3)
|
1135 |
+
assert (-3) ** (Rational(3, 2)) == - 3 * sqrt(-3)
|
1136 |
+
assert (-3) ** (Rational(5, 2)) == 9 * I * sqrt(3)
|
1137 |
+
assert (-3) ** (Rational(7, 2)) == - I * 27 * sqrt(3)
|
1138 |
+
assert (2) ** (Rational(3, 2)) == 2 * sqrt(2)
|
1139 |
+
assert (2) ** (Rational(-3, 2)) == sqrt(2) / 4
|
1140 |
+
assert (81) ** (Rational(2, 3)) == 9 * (S(3) ** (Rational(2, 3)))
|
1141 |
+
assert (-81) ** (Rational(2, 3)) == 9 * (S(-3) ** (Rational(2, 3)))
|
1142 |
+
assert (-3) ** Rational(-7, 3) == \
|
1143 |
+
-(-1)**Rational(2, 3)*3**Rational(2, 3)/27
|
1144 |
+
assert (-3) ** Rational(-2, 3) == \
|
1145 |
+
-(-1)**Rational(1, 3)*3**Rational(1, 3)/3
|
1146 |
+
|
1147 |
+
# join roots
|
1148 |
+
assert sqrt(6) + sqrt(24) == 3*sqrt(6)
|
1149 |
+
assert sqrt(2) * sqrt(3) == sqrt(6)
|
1150 |
+
|
1151 |
+
# separate symbols & constansts
|
1152 |
+
x = Symbol("x")
|
1153 |
+
assert sqrt(49 * x) == 7 * sqrt(x)
|
1154 |
+
assert sqrt((3 - sqrt(pi)) ** 2) == 3 - sqrt(pi)
|
1155 |
+
|
1156 |
+
# check that it is fast for big numbers
|
1157 |
+
assert (2**64 + 1) ** Rational(4, 3)
|
1158 |
+
assert (2**64 + 1) ** Rational(17, 25)
|
1159 |
+
|
1160 |
+
# negative rational power and negative base
|
1161 |
+
assert (-3) ** Rational(-7, 3) == \
|
1162 |
+
-(-1)**Rational(2, 3)*3**Rational(2, 3)/27
|
1163 |
+
assert (-3) ** Rational(-2, 3) == \
|
1164 |
+
-(-1)**Rational(1, 3)*3**Rational(1, 3)/3
|
1165 |
+
assert (-2) ** Rational(-10, 3) == \
|
1166 |
+
(-1)**Rational(2, 3)*2**Rational(2, 3)/16
|
1167 |
+
assert abs(Pow(-2, Rational(-10, 3)).n() -
|
1168 |
+
Pow(-2, Rational(-10, 3), evaluate=False).n()) < 1e-16
|
1169 |
+
|
1170 |
+
# negative base and rational power with some simplification
|
1171 |
+
assert (-8) ** Rational(2, 5) == \
|
1172 |
+
2*(-1)**Rational(2, 5)*2**Rational(1, 5)
|
1173 |
+
assert (-4) ** Rational(9, 5) == \
|
1174 |
+
-8*(-1)**Rational(4, 5)*2**Rational(3, 5)
|
1175 |
+
|
1176 |
+
assert S(1234).factors() == {617: 1, 2: 1}
|
1177 |
+
assert Rational(2*3, 3*5*7).factors() == {2: 1, 5: -1, 7: -1}
|
1178 |
+
|
1179 |
+
# test that eval_power factors numbers bigger than
|
1180 |
+
# the current limit in factor_trial_division (2**15)
|
1181 |
+
from sympy.ntheory.generate import nextprime
|
1182 |
+
n = nextprime(2**15)
|
1183 |
+
assert sqrt(n**2) == n
|
1184 |
+
assert sqrt(n**3) == n*sqrt(n)
|
1185 |
+
assert sqrt(4*n) == 2*sqrt(n)
|
1186 |
+
|
1187 |
+
# check that factors of base with powers sharing gcd with power are removed
|
1188 |
+
assert (2**4*3)**Rational(1, 6) == 2**Rational(2, 3)*3**Rational(1, 6)
|
1189 |
+
assert (2**4*3)**Rational(5, 6) == 8*2**Rational(1, 3)*3**Rational(5, 6)
|
1190 |
+
|
1191 |
+
# check that bases sharing a gcd are exptracted
|
1192 |
+
assert 2**Rational(1, 3)*3**Rational(1, 4)*6**Rational(1, 5) == \
|
1193 |
+
2**Rational(8, 15)*3**Rational(9, 20)
|
1194 |
+
assert sqrt(8)*24**Rational(1, 3)*6**Rational(1, 5) == \
|
1195 |
+
4*2**Rational(7, 10)*3**Rational(8, 15)
|
1196 |
+
assert sqrt(8)*(-24)**Rational(1, 3)*(-6)**Rational(1, 5) == \
|
1197 |
+
4*(-3)**Rational(8, 15)*2**Rational(7, 10)
|
1198 |
+
assert 2**Rational(1, 3)*2**Rational(8, 9) == 2*2**Rational(2, 9)
|
1199 |
+
assert 2**Rational(2, 3)*6**Rational(1, 3) == 2*3**Rational(1, 3)
|
1200 |
+
assert 2**Rational(2, 3)*6**Rational(8, 9) == \
|
1201 |
+
2*2**Rational(5, 9)*3**Rational(8, 9)
|
1202 |
+
assert (-2)**Rational(2, S(3))*(-4)**Rational(1, S(3)) == -2*2**Rational(1, 3)
|
1203 |
+
assert 3*Pow(3, 2, evaluate=False) == 3**3
|
1204 |
+
assert 3*Pow(3, Rational(-1, 3), evaluate=False) == 3**Rational(2, 3)
|
1205 |
+
assert (-2)**Rational(1, 3)*(-3)**Rational(1, 4)*(-5)**Rational(5, 6) == \
|
1206 |
+
-(-1)**Rational(5, 12)*2**Rational(1, 3)*3**Rational(1, 4) * \
|
1207 |
+
5**Rational(5, 6)
|
1208 |
+
|
1209 |
+
assert Integer(-2)**Symbol('', even=True) == \
|
1210 |
+
Integer(2)**Symbol('', even=True)
|
1211 |
+
assert (-1)**Float(.5) == 1.0*I
|
1212 |
+
|
1213 |
+
|
1214 |
+
def test_powers_Rational():
|
1215 |
+
"""Test Rational._eval_power"""
|
1216 |
+
# check infinity
|
1217 |
+
assert S.Half ** S.Infinity == 0
|
1218 |
+
assert Rational(3, 2) ** S.Infinity is S.Infinity
|
1219 |
+
assert Rational(-1, 2) ** S.Infinity == 0
|
1220 |
+
assert Rational(-3, 2) ** S.Infinity == zoo
|
1221 |
+
|
1222 |
+
# check Nan
|
1223 |
+
assert Rational(3, 4) ** S.NaN is S.NaN
|
1224 |
+
assert Rational(-2, 3) ** S.NaN is S.NaN
|
1225 |
+
|
1226 |
+
# exact roots on numerator
|
1227 |
+
assert sqrt(Rational(4, 3)) == 2 * sqrt(3) / 3
|
1228 |
+
assert Rational(4, 3) ** Rational(3, 2) == 8 * sqrt(3) / 9
|
1229 |
+
assert sqrt(Rational(-4, 3)) == I * 2 * sqrt(3) / 3
|
1230 |
+
assert Rational(-4, 3) ** Rational(3, 2) == - I * 8 * sqrt(3) / 9
|
1231 |
+
assert Rational(27, 2) ** Rational(1, 3) == 3 * (2 ** Rational(2, 3)) / 2
|
1232 |
+
assert Rational(5**3, 8**3) ** Rational(4, 3) == Rational(5**4, 8**4)
|
1233 |
+
|
1234 |
+
# exact root on denominator
|
1235 |
+
assert sqrt(Rational(1, 4)) == S.Half
|
1236 |
+
assert sqrt(Rational(1, -4)) == I * S.Half
|
1237 |
+
assert sqrt(Rational(3, 4)) == sqrt(3) / 2
|
1238 |
+
assert sqrt(Rational(3, -4)) == I * sqrt(3) / 2
|
1239 |
+
assert Rational(5, 27) ** Rational(1, 3) == (5 ** Rational(1, 3)) / 3
|
1240 |
+
|
1241 |
+
# not exact roots
|
1242 |
+
assert sqrt(S.Half) == sqrt(2) / 2
|
1243 |
+
assert sqrt(Rational(-4, 7)) == I * sqrt(Rational(4, 7))
|
1244 |
+
assert Rational(-3, 2)**Rational(-7, 3) == \
|
1245 |
+
-4*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/27
|
1246 |
+
assert Rational(-3, 2)**Rational(-2, 3) == \
|
1247 |
+
-(-1)**Rational(1, 3)*2**Rational(2, 3)*3**Rational(1, 3)/3
|
1248 |
+
assert Rational(-3, 2)**Rational(-10, 3) == \
|
1249 |
+
8*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/81
|
1250 |
+
assert abs(Pow(Rational(-2, 3), Rational(-7, 4)).n() -
|
1251 |
+
Pow(Rational(-2, 3), Rational(-7, 4), evaluate=False).n()) < 1e-16
|
1252 |
+
|
1253 |
+
# negative integer power and negative rational base
|
1254 |
+
assert Rational(-2, 3) ** Rational(-2, 1) == Rational(9, 4)
|
1255 |
+
|
1256 |
+
a = Rational(1, 10)
|
1257 |
+
assert a**Float(a, 2) == Float(a, 2)**Float(a, 2)
|
1258 |
+
assert Rational(-2, 3)**Symbol('', even=True) == \
|
1259 |
+
Rational(2, 3)**Symbol('', even=True)
|
1260 |
+
|
1261 |
+
|
1262 |
+
def test_powers_Float():
|
1263 |
+
assert str((S('-1/10')**S('3/10')).n()) == str(Float(-.1)**(.3))
|
1264 |
+
|
1265 |
+
|
1266 |
+
def test_lshift_Integer():
|
1267 |
+
assert Integer(0) << Integer(2) == Integer(0)
|
1268 |
+
assert Integer(0) << 2 == Integer(0)
|
1269 |
+
assert 0 << Integer(2) == Integer(0)
|
1270 |
+
|
1271 |
+
assert Integer(0b11) << Integer(0) == Integer(0b11)
|
1272 |
+
assert Integer(0b11) << 0 == Integer(0b11)
|
1273 |
+
assert 0b11 << Integer(0) == Integer(0b11)
|
1274 |
+
|
1275 |
+
assert Integer(0b11) << Integer(2) == Integer(0b11 << 2)
|
1276 |
+
assert Integer(0b11) << 2 == Integer(0b11 << 2)
|
1277 |
+
assert 0b11 << Integer(2) == Integer(0b11 << 2)
|
1278 |
+
|
1279 |
+
assert Integer(-0b11) << Integer(2) == Integer(-0b11 << 2)
|
1280 |
+
assert Integer(-0b11) << 2 == Integer(-0b11 << 2)
|
1281 |
+
assert -0b11 << Integer(2) == Integer(-0b11 << 2)
|
1282 |
+
|
1283 |
+
raises(TypeError, lambda: Integer(2) << 0.0)
|
1284 |
+
raises(TypeError, lambda: 0.0 << Integer(2))
|
1285 |
+
raises(ValueError, lambda: Integer(1) << Integer(-1))
|
1286 |
+
|
1287 |
+
|
1288 |
+
def test_rshift_Integer():
|
1289 |
+
assert Integer(0) >> Integer(2) == Integer(0)
|
1290 |
+
assert Integer(0) >> 2 == Integer(0)
|
1291 |
+
assert 0 >> Integer(2) == Integer(0)
|
1292 |
+
|
1293 |
+
assert Integer(0b11) >> Integer(0) == Integer(0b11)
|
1294 |
+
assert Integer(0b11) >> 0 == Integer(0b11)
|
1295 |
+
assert 0b11 >> Integer(0) == Integer(0b11)
|
1296 |
+
|
1297 |
+
assert Integer(0b11) >> Integer(2) == Integer(0)
|
1298 |
+
assert Integer(0b11) >> 2 == Integer(0)
|
1299 |
+
assert 0b11 >> Integer(2) == Integer(0)
|
1300 |
+
|
1301 |
+
assert Integer(-0b11) >> Integer(2) == Integer(-1)
|
1302 |
+
assert Integer(-0b11) >> 2 == Integer(-1)
|
1303 |
+
assert -0b11 >> Integer(2) == Integer(-1)
|
1304 |
+
|
1305 |
+
assert Integer(0b1100) >> Integer(2) == Integer(0b1100 >> 2)
|
1306 |
+
assert Integer(0b1100) >> 2 == Integer(0b1100 >> 2)
|
1307 |
+
assert 0b1100 >> Integer(2) == Integer(0b1100 >> 2)
|
1308 |
+
|
1309 |
+
assert Integer(-0b1100) >> Integer(2) == Integer(-0b1100 >> 2)
|
1310 |
+
assert Integer(-0b1100) >> 2 == Integer(-0b1100 >> 2)
|
1311 |
+
assert -0b1100 >> Integer(2) == Integer(-0b1100 >> 2)
|
1312 |
+
|
1313 |
+
raises(TypeError, lambda: Integer(0b10) >> 0.0)
|
1314 |
+
raises(TypeError, lambda: 0.0 >> Integer(2))
|
1315 |
+
raises(ValueError, lambda: Integer(1) >> Integer(-1))
|
1316 |
+
|
1317 |
+
|
1318 |
+
def test_and_Integer():
|
1319 |
+
assert Integer(0b01010101) & Integer(0b10101010) == Integer(0)
|
1320 |
+
assert Integer(0b01010101) & 0b10101010 == Integer(0)
|
1321 |
+
assert 0b01010101 & Integer(0b10101010) == Integer(0)
|
1322 |
+
|
1323 |
+
assert Integer(0b01010101) & Integer(0b11011011) == Integer(0b01010001)
|
1324 |
+
assert Integer(0b01010101) & 0b11011011 == Integer(0b01010001)
|
1325 |
+
assert 0b01010101 & Integer(0b11011011) == Integer(0b01010001)
|
1326 |
+
|
1327 |
+
assert -Integer(0b01010101) & Integer(0b11011011) == Integer(-0b01010101 & 0b11011011)
|
1328 |
+
assert Integer(-0b01010101) & 0b11011011 == Integer(-0b01010101 & 0b11011011)
|
1329 |
+
assert -0b01010101 & Integer(0b11011011) == Integer(-0b01010101 & 0b11011011)
|
1330 |
+
|
1331 |
+
assert Integer(0b01010101) & -Integer(0b11011011) == Integer(0b01010101 & -0b11011011)
|
1332 |
+
assert Integer(0b01010101) & -0b11011011 == Integer(0b01010101 & -0b11011011)
|
1333 |
+
assert 0b01010101 & Integer(-0b11011011) == Integer(0b01010101 & -0b11011011)
|
1334 |
+
|
1335 |
+
raises(TypeError, lambda: Integer(2) & 0.0)
|
1336 |
+
raises(TypeError, lambda: 0.0 & Integer(2))
|
1337 |
+
|
1338 |
+
|
1339 |
+
def test_xor_Integer():
|
1340 |
+
assert Integer(0b01010101) ^ Integer(0b11111111) == Integer(0b10101010)
|
1341 |
+
assert Integer(0b01010101) ^ 0b11111111 == Integer(0b10101010)
|
1342 |
+
assert 0b01010101 ^ Integer(0b11111111) == Integer(0b10101010)
|
1343 |
+
|
1344 |
+
assert Integer(0b01010101) ^ Integer(0b11011011) == Integer(0b10001110)
|
1345 |
+
assert Integer(0b01010101) ^ 0b11011011 == Integer(0b10001110)
|
1346 |
+
assert 0b01010101 ^ Integer(0b11011011) == Integer(0b10001110)
|
1347 |
+
|
1348 |
+
assert -Integer(0b01010101) ^ Integer(0b11011011) == Integer(-0b01010101 ^ 0b11011011)
|
1349 |
+
assert Integer(-0b01010101) ^ 0b11011011 == Integer(-0b01010101 ^ 0b11011011)
|
1350 |
+
assert -0b01010101 ^ Integer(0b11011011) == Integer(-0b01010101 ^ 0b11011011)
|
1351 |
+
|
1352 |
+
assert Integer(0b01010101) ^ -Integer(0b11011011) == Integer(0b01010101 ^ -0b11011011)
|
1353 |
+
assert Integer(0b01010101) ^ -0b11011011 == Integer(0b01010101 ^ -0b11011011)
|
1354 |
+
assert 0b01010101 ^ Integer(-0b11011011) == Integer(0b01010101 ^ -0b11011011)
|
1355 |
+
|
1356 |
+
raises(TypeError, lambda: Integer(2) ^ 0.0)
|
1357 |
+
raises(TypeError, lambda: 0.0 ^ Integer(2))
|
1358 |
+
|
1359 |
+
|
1360 |
+
def test_or_Integer():
|
1361 |
+
assert Integer(0b01010101) | Integer(0b10101010) == Integer(0b11111111)
|
1362 |
+
assert Integer(0b01010101) | 0b10101010 == Integer(0b11111111)
|
1363 |
+
assert 0b01010101 | Integer(0b10101010) == Integer(0b11111111)
|
1364 |
+
|
1365 |
+
assert Integer(0b01010101) | Integer(0b11011011) == Integer(0b11011111)
|
1366 |
+
assert Integer(0b01010101) | 0b11011011 == Integer(0b11011111)
|
1367 |
+
assert 0b01010101 | Integer(0b11011011) == Integer(0b11011111)
|
1368 |
+
|
1369 |
+
assert -Integer(0b01010101) | Integer(0b11011011) == Integer(-0b01010101 | 0b11011011)
|
1370 |
+
assert Integer(-0b01010101) | 0b11011011 == Integer(-0b01010101 | 0b11011011)
|
1371 |
+
assert -0b01010101 | Integer(0b11011011) == Integer(-0b01010101 | 0b11011011)
|
1372 |
+
|
1373 |
+
assert Integer(0b01010101) | -Integer(0b11011011) == Integer(0b01010101 | -0b11011011)
|
1374 |
+
assert Integer(0b01010101) | -0b11011011 == Integer(0b01010101 | -0b11011011)
|
1375 |
+
assert 0b01010101 | Integer(-0b11011011) == Integer(0b01010101 | -0b11011011)
|
1376 |
+
|
1377 |
+
raises(TypeError, lambda: Integer(2) | 0.0)
|
1378 |
+
raises(TypeError, lambda: 0.0 | Integer(2))
|
1379 |
+
|
1380 |
+
|
1381 |
+
def test_invert_Integer():
|
1382 |
+
assert ~Integer(0b01010101) == Integer(-0b01010110)
|
1383 |
+
assert ~Integer(0b01010101) == Integer(~0b01010101)
|
1384 |
+
assert ~(~Integer(0b01010101)) == Integer(0b01010101)
|
1385 |
+
|
1386 |
+
|
1387 |
+
def test_abs1():
|
1388 |
+
assert Rational(1, 6) != Rational(-1, 6)
|
1389 |
+
assert abs(Rational(1, 6)) == abs(Rational(-1, 6))
|
1390 |
+
|
1391 |
+
|
1392 |
+
def test_accept_int():
|
1393 |
+
assert Float(4) == 4
|
1394 |
+
|
1395 |
+
|
1396 |
+
def test_dont_accept_str():
|
1397 |
+
assert Float("0.2") != "0.2"
|
1398 |
+
assert not (Float("0.2") == "0.2")
|
1399 |
+
|
1400 |
+
|
1401 |
+
def test_int():
|
1402 |
+
a = Rational(5)
|
1403 |
+
assert int(a) == 5
|
1404 |
+
a = Rational(9, 10)
|
1405 |
+
assert int(a) == int(-a) == 0
|
1406 |
+
assert 1/(-1)**Rational(2, 3) == -(-1)**Rational(1, 3)
|
1407 |
+
# issue 10368
|
1408 |
+
a = Rational(32442016954, 78058255275)
|
1409 |
+
assert type(int(a)) is type(int(-a)) is int
|
1410 |
+
|
1411 |
+
|
1412 |
+
def test_int_NumberSymbols():
|
1413 |
+
assert int(Catalan) == 0
|
1414 |
+
assert int(EulerGamma) == 0
|
1415 |
+
assert int(pi) == 3
|
1416 |
+
assert int(E) == 2
|
1417 |
+
assert int(GoldenRatio) == 1
|
1418 |
+
assert int(TribonacciConstant) == 1
|
1419 |
+
for i in [Catalan, E, EulerGamma, GoldenRatio, TribonacciConstant, pi]:
|
1420 |
+
a, b = i.approximation_interval(Integer)
|
1421 |
+
ia = int(i)
|
1422 |
+
assert ia == a
|
1423 |
+
assert isinstance(ia, int)
|
1424 |
+
assert b == a + 1
|
1425 |
+
assert a.is_Integer and b.is_Integer
|
1426 |
+
|
1427 |
+
|
1428 |
+
def test_real_bug():
|
1429 |
+
x = Symbol("x")
|
1430 |
+
assert str(2.0*x*x) in ["(2.0*x)*x", "2.0*x**2", "2.00000000000000*x**2"]
|
1431 |
+
assert str(2.1*x*x) != "(2.0*x)*x"
|
1432 |
+
|
1433 |
+
|
1434 |
+
def test_bug_sqrt():
|
1435 |
+
assert ((sqrt(Rational(2)) + 1)*(sqrt(Rational(2)) - 1)).expand() == 1
|
1436 |
+
|
1437 |
+
|
1438 |
+
def test_pi_Pi():
|
1439 |
+
"Test that pi (instance) is imported, but Pi (class) is not"
|
1440 |
+
from sympy import pi # noqa
|
1441 |
+
with raises(ImportError):
|
1442 |
+
from sympy import Pi # noqa
|
1443 |
+
|
1444 |
+
|
1445 |
+
def test_no_len():
|
1446 |
+
# there should be no len for numbers
|
1447 |
+
raises(TypeError, lambda: len(Rational(2)))
|
1448 |
+
raises(TypeError, lambda: len(Rational(2, 3)))
|
1449 |
+
raises(TypeError, lambda: len(Integer(2)))
|
1450 |
+
|
1451 |
+
|
1452 |
+
def test_issue_3321():
|
1453 |
+
assert sqrt(Rational(1, 5)) == Rational(1, 5)**S.Half
|
1454 |
+
assert 5 * sqrt(Rational(1, 5)) == sqrt(5)
|
1455 |
+
|
1456 |
+
|
1457 |
+
def test_issue_3692():
|
1458 |
+
assert ((-1)**Rational(1, 6)).expand(complex=True) == I/2 + sqrt(3)/2
|
1459 |
+
assert ((-5)**Rational(1, 6)).expand(complex=True) == \
|
1460 |
+
5**Rational(1, 6)*I/2 + 5**Rational(1, 6)*sqrt(3)/2
|
1461 |
+
assert ((-64)**Rational(1, 6)).expand(complex=True) == I + sqrt(3)
|
1462 |
+
|
1463 |
+
|
1464 |
+
def test_issue_3423():
|
1465 |
+
x = Symbol("x")
|
1466 |
+
assert sqrt(x - 1).as_base_exp() == (x - 1, S.Half)
|
1467 |
+
assert sqrt(x - 1) != I*sqrt(1 - x)
|
1468 |
+
|
1469 |
+
|
1470 |
+
def test_issue_3449():
|
1471 |
+
x = Symbol("x")
|
1472 |
+
assert sqrt(x - 1).subs(x, 5) == 2
|
1473 |
+
|
1474 |
+
|
1475 |
+
def test_issue_13890():
|
1476 |
+
x = Symbol("x")
|
1477 |
+
e = (-x/4 - S.One/12)**x - 1
|
1478 |
+
f = simplify(e)
|
1479 |
+
a = Rational(9, 5)
|
1480 |
+
assert abs(e.subs(x,a).evalf() - f.subs(x,a).evalf()) < 1e-15
|
1481 |
+
|
1482 |
+
|
1483 |
+
def test_Integer_factors():
|
1484 |
+
def F(i):
|
1485 |
+
return Integer(i).factors()
|
1486 |
+
|
1487 |
+
assert F(1) == {}
|
1488 |
+
assert F(2) == {2: 1}
|
1489 |
+
assert F(3) == {3: 1}
|
1490 |
+
assert F(4) == {2: 2}
|
1491 |
+
assert F(5) == {5: 1}
|
1492 |
+
assert F(6) == {2: 1, 3: 1}
|
1493 |
+
assert F(7) == {7: 1}
|
1494 |
+
assert F(8) == {2: 3}
|
1495 |
+
assert F(9) == {3: 2}
|
1496 |
+
assert F(10) == {2: 1, 5: 1}
|
1497 |
+
assert F(11) == {11: 1}
|
1498 |
+
assert F(12) == {2: 2, 3: 1}
|
1499 |
+
assert F(13) == {13: 1}
|
1500 |
+
assert F(14) == {2: 1, 7: 1}
|
1501 |
+
assert F(15) == {3: 1, 5: 1}
|
1502 |
+
assert F(16) == {2: 4}
|
1503 |
+
assert F(17) == {17: 1}
|
1504 |
+
assert F(18) == {2: 1, 3: 2}
|
1505 |
+
assert F(19) == {19: 1}
|
1506 |
+
assert F(20) == {2: 2, 5: 1}
|
1507 |
+
assert F(21) == {3: 1, 7: 1}
|
1508 |
+
assert F(22) == {2: 1, 11: 1}
|
1509 |
+
assert F(23) == {23: 1}
|
1510 |
+
assert F(24) == {2: 3, 3: 1}
|
1511 |
+
assert F(25) == {5: 2}
|
1512 |
+
assert F(26) == {2: 1, 13: 1}
|
1513 |
+
assert F(27) == {3: 3}
|
1514 |
+
assert F(28) == {2: 2, 7: 1}
|
1515 |
+
assert F(29) == {29: 1}
|
1516 |
+
assert F(30) == {2: 1, 3: 1, 5: 1}
|
1517 |
+
assert F(31) == {31: 1}
|
1518 |
+
assert F(32) == {2: 5}
|
1519 |
+
assert F(33) == {3: 1, 11: 1}
|
1520 |
+
assert F(34) == {2: 1, 17: 1}
|
1521 |
+
assert F(35) == {5: 1, 7: 1}
|
1522 |
+
assert F(36) == {2: 2, 3: 2}
|
1523 |
+
assert F(37) == {37: 1}
|
1524 |
+
assert F(38) == {2: 1, 19: 1}
|
1525 |
+
assert F(39) == {3: 1, 13: 1}
|
1526 |
+
assert F(40) == {2: 3, 5: 1}
|
1527 |
+
assert F(41) == {41: 1}
|
1528 |
+
assert F(42) == {2: 1, 3: 1, 7: 1}
|
1529 |
+
assert F(43) == {43: 1}
|
1530 |
+
assert F(44) == {2: 2, 11: 1}
|
1531 |
+
assert F(45) == {3: 2, 5: 1}
|
1532 |
+
assert F(46) == {2: 1, 23: 1}
|
1533 |
+
assert F(47) == {47: 1}
|
1534 |
+
assert F(48) == {2: 4, 3: 1}
|
1535 |
+
assert F(49) == {7: 2}
|
1536 |
+
assert F(50) == {2: 1, 5: 2}
|
1537 |
+
assert F(51) == {3: 1, 17: 1}
|
1538 |
+
|
1539 |
+
|
1540 |
+
def test_Rational_factors():
|
1541 |
+
def F(p, q, visual=None):
|
1542 |
+
return Rational(p, q).factors(visual=visual)
|
1543 |
+
|
1544 |
+
assert F(2, 3) == {2: 1, 3: -1}
|
1545 |
+
assert F(2, 9) == {2: 1, 3: -2}
|
1546 |
+
assert F(2, 15) == {2: 1, 3: -1, 5: -1}
|
1547 |
+
assert F(6, 10) == {3: 1, 5: -1}
|
1548 |
+
|
1549 |
+
|
1550 |
+
def test_issue_4107():
|
1551 |
+
assert pi*(E + 10) + pi*(-E - 10) != 0
|
1552 |
+
assert pi*(E + 10**10) + pi*(-E - 10**10) != 0
|
1553 |
+
assert pi*(E + 10**20) + pi*(-E - 10**20) != 0
|
1554 |
+
assert pi*(E + 10**80) + pi*(-E - 10**80) != 0
|
1555 |
+
|
1556 |
+
assert (pi*(E + 10) + pi*(-E - 10)).expand() == 0
|
1557 |
+
assert (pi*(E + 10**10) + pi*(-E - 10**10)).expand() == 0
|
1558 |
+
assert (pi*(E + 10**20) + pi*(-E - 10**20)).expand() == 0
|
1559 |
+
assert (pi*(E + 10**80) + pi*(-E - 10**80)).expand() == 0
|
1560 |
+
|
1561 |
+
|
1562 |
+
def test_IntegerInteger():
|
1563 |
+
a = Integer(4)
|
1564 |
+
b = Integer(a)
|
1565 |
+
|
1566 |
+
assert a == b
|
1567 |
+
|
1568 |
+
|
1569 |
+
def test_Rational_gcd_lcm_cofactors():
|
1570 |
+
assert Integer(4).gcd(2) == Integer(2)
|
1571 |
+
assert Integer(4).lcm(2) == Integer(4)
|
1572 |
+
assert Integer(4).gcd(Integer(2)) == Integer(2)
|
1573 |
+
assert Integer(4).lcm(Integer(2)) == Integer(4)
|
1574 |
+
a, b = 720**99911, 480**12342
|
1575 |
+
assert Integer(a).lcm(b) == a*b/Integer(a).gcd(b)
|
1576 |
+
|
1577 |
+
assert Integer(4).gcd(3) == Integer(1)
|
1578 |
+
assert Integer(4).lcm(3) == Integer(12)
|
1579 |
+
assert Integer(4).gcd(Integer(3)) == Integer(1)
|
1580 |
+
assert Integer(4).lcm(Integer(3)) == Integer(12)
|
1581 |
+
|
1582 |
+
assert Rational(4, 3).gcd(2) == Rational(2, 3)
|
1583 |
+
assert Rational(4, 3).lcm(2) == Integer(4)
|
1584 |
+
assert Rational(4, 3).gcd(Integer(2)) == Rational(2, 3)
|
1585 |
+
assert Rational(4, 3).lcm(Integer(2)) == Integer(4)
|
1586 |
+
|
1587 |
+
assert Integer(4).gcd(Rational(2, 9)) == Rational(2, 9)
|
1588 |
+
assert Integer(4).lcm(Rational(2, 9)) == Integer(4)
|
1589 |
+
|
1590 |
+
assert Rational(4, 3).gcd(Rational(2, 9)) == Rational(2, 9)
|
1591 |
+
assert Rational(4, 3).lcm(Rational(2, 9)) == Rational(4, 3)
|
1592 |
+
assert Rational(4, 5).gcd(Rational(2, 9)) == Rational(2, 45)
|
1593 |
+
assert Rational(4, 5).lcm(Rational(2, 9)) == Integer(4)
|
1594 |
+
assert Rational(5, 9).lcm(Rational(3, 7)) == Rational(Integer(5).lcm(3),Integer(9).gcd(7))
|
1595 |
+
|
1596 |
+
assert Integer(4).cofactors(2) == (Integer(2), Integer(2), Integer(1))
|
1597 |
+
assert Integer(4).cofactors(Integer(2)) == \
|
1598 |
+
(Integer(2), Integer(2), Integer(1))
|
1599 |
+
|
1600 |
+
assert Integer(4).gcd(Float(2.0)) == Float(1.0)
|
1601 |
+
assert Integer(4).lcm(Float(2.0)) == Float(8.0)
|
1602 |
+
assert Integer(4).cofactors(Float(2.0)) == (Float(1.0), Float(4.0), Float(2.0))
|
1603 |
+
|
1604 |
+
assert S.Half.gcd(Float(2.0)) == Float(1.0)
|
1605 |
+
assert S.Half.lcm(Float(2.0)) == Float(1.0)
|
1606 |
+
assert S.Half.cofactors(Float(2.0)) == \
|
1607 |
+
(Float(1.0), Float(0.5), Float(2.0))
|
1608 |
+
|
1609 |
+
|
1610 |
+
def test_Float_gcd_lcm_cofactors():
|
1611 |
+
assert Float(2.0).gcd(Integer(4)) == Float(1.0)
|
1612 |
+
assert Float(2.0).lcm(Integer(4)) == Float(8.0)
|
1613 |
+
assert Float(2.0).cofactors(Integer(4)) == (Float(1.0), Float(2.0), Float(4.0))
|
1614 |
+
|
1615 |
+
assert Float(2.0).gcd(S.Half) == Float(1.0)
|
1616 |
+
assert Float(2.0).lcm(S.Half) == Float(1.0)
|
1617 |
+
assert Float(2.0).cofactors(S.Half) == \
|
1618 |
+
(Float(1.0), Float(2.0), Float(0.5))
|
1619 |
+
|
1620 |
+
|
1621 |
+
def test_issue_4611():
|
1622 |
+
assert abs(pi._evalf(50) - 3.14159265358979) < 1e-10
|
1623 |
+
assert abs(E._evalf(50) - 2.71828182845905) < 1e-10
|
1624 |
+
assert abs(Catalan._evalf(50) - 0.915965594177219) < 1e-10
|
1625 |
+
assert abs(EulerGamma._evalf(50) - 0.577215664901533) < 1e-10
|
1626 |
+
assert abs(GoldenRatio._evalf(50) - 1.61803398874989) < 1e-10
|
1627 |
+
assert abs(TribonacciConstant._evalf(50) - 1.83928675521416) < 1e-10
|
1628 |
+
|
1629 |
+
x = Symbol("x")
|
1630 |
+
assert (pi + x).evalf() == pi.evalf() + x
|
1631 |
+
assert (E + x).evalf() == E.evalf() + x
|
1632 |
+
assert (Catalan + x).evalf() == Catalan.evalf() + x
|
1633 |
+
assert (EulerGamma + x).evalf() == EulerGamma.evalf() + x
|
1634 |
+
assert (GoldenRatio + x).evalf() == GoldenRatio.evalf() + x
|
1635 |
+
assert (TribonacciConstant + x).evalf() == TribonacciConstant.evalf() + x
|
1636 |
+
|
1637 |
+
|
1638 |
+
@conserve_mpmath_dps
|
1639 |
+
def test_conversion_to_mpmath():
|
1640 |
+
assert mpmath.mpmathify(Integer(1)) == mpmath.mpf(1)
|
1641 |
+
assert mpmath.mpmathify(S.Half) == mpmath.mpf(0.5)
|
1642 |
+
assert mpmath.mpmathify(Float('1.23', 15)) == mpmath.mpf('1.23')
|
1643 |
+
|
1644 |
+
assert mpmath.mpmathify(I) == mpmath.mpc(1j)
|
1645 |
+
|
1646 |
+
assert mpmath.mpmathify(1 + 2*I) == mpmath.mpc(1 + 2j)
|
1647 |
+
assert mpmath.mpmathify(1.0 + 2*I) == mpmath.mpc(1 + 2j)
|
1648 |
+
assert mpmath.mpmathify(1 + 2.0*I) == mpmath.mpc(1 + 2j)
|
1649 |
+
assert mpmath.mpmathify(1.0 + 2.0*I) == mpmath.mpc(1 + 2j)
|
1650 |
+
assert mpmath.mpmathify(S.Half + S.Half*I) == mpmath.mpc(0.5 + 0.5j)
|
1651 |
+
|
1652 |
+
assert mpmath.mpmathify(2*I) == mpmath.mpc(2j)
|
1653 |
+
assert mpmath.mpmathify(2.0*I) == mpmath.mpc(2j)
|
1654 |
+
assert mpmath.mpmathify(S.Half*I) == mpmath.mpc(0.5j)
|
1655 |
+
|
1656 |
+
mpmath.mp.dps = 100
|
1657 |
+
assert mpmath.mpmathify(pi.evalf(100) + pi.evalf(100)*I) == mpmath.pi + mpmath.pi*mpmath.j
|
1658 |
+
assert mpmath.mpmathify(pi.evalf(100)*I) == mpmath.pi*mpmath.j
|
1659 |
+
|
1660 |
+
|
1661 |
+
def test_relational():
|
1662 |
+
# real
|
1663 |
+
x = S(.1)
|
1664 |
+
assert (x != cos) is True
|
1665 |
+
assert (x == cos) is False
|
1666 |
+
|
1667 |
+
# rational
|
1668 |
+
x = Rational(1, 3)
|
1669 |
+
assert (x != cos) is True
|
1670 |
+
assert (x == cos) is False
|
1671 |
+
|
1672 |
+
# integer defers to rational so these tests are omitted
|
1673 |
+
|
1674 |
+
# number symbol
|
1675 |
+
x = pi
|
1676 |
+
assert (x != cos) is True
|
1677 |
+
assert (x == cos) is False
|
1678 |
+
|
1679 |
+
|
1680 |
+
def test_Integer_as_index():
|
1681 |
+
assert 'hello'[Integer(2):] == 'llo'
|
1682 |
+
|
1683 |
+
|
1684 |
+
def test_Rational_int():
|
1685 |
+
assert int( Rational(7, 5)) == 1
|
1686 |
+
assert int( S.Half) == 0
|
1687 |
+
assert int(Rational(-1, 2)) == 0
|
1688 |
+
assert int(-Rational(7, 5)) == -1
|
1689 |
+
|
1690 |
+
|
1691 |
+
def test_zoo():
|
1692 |
+
b = Symbol('b', finite=True)
|
1693 |
+
nz = Symbol('nz', nonzero=True)
|
1694 |
+
p = Symbol('p', positive=True)
|
1695 |
+
n = Symbol('n', negative=True)
|
1696 |
+
im = Symbol('i', imaginary=True)
|
1697 |
+
c = Symbol('c', complex=True)
|
1698 |
+
pb = Symbol('pb', positive=True)
|
1699 |
+
nb = Symbol('nb', negative=True)
|
1700 |
+
imb = Symbol('ib', imaginary=True, finite=True)
|
1701 |
+
for i in [I, S.Infinity, S.NegativeInfinity, S.Zero, S.One, S.Pi, S.Half, S(3), log(3),
|
1702 |
+
b, nz, p, n, im, pb, nb, imb, c]:
|
1703 |
+
if i.is_finite and (i.is_real or i.is_imaginary):
|
1704 |
+
assert i + zoo is zoo
|
1705 |
+
assert i - zoo is zoo
|
1706 |
+
assert zoo + i is zoo
|
1707 |
+
assert zoo - i is zoo
|
1708 |
+
elif i.is_finite is not False:
|
1709 |
+
assert (i + zoo).is_Add
|
1710 |
+
assert (i - zoo).is_Add
|
1711 |
+
assert (zoo + i).is_Add
|
1712 |
+
assert (zoo - i).is_Add
|
1713 |
+
else:
|
1714 |
+
assert (i + zoo) is S.NaN
|
1715 |
+
assert (i - zoo) is S.NaN
|
1716 |
+
assert (zoo + i) is S.NaN
|
1717 |
+
assert (zoo - i) is S.NaN
|
1718 |
+
|
1719 |
+
if fuzzy_not(i.is_zero) and (i.is_extended_real or i.is_imaginary):
|
1720 |
+
assert i*zoo is zoo
|
1721 |
+
assert zoo*i is zoo
|
1722 |
+
elif i.is_zero:
|
1723 |
+
assert i*zoo is S.NaN
|
1724 |
+
assert zoo*i is S.NaN
|
1725 |
+
else:
|
1726 |
+
assert (i*zoo).is_Mul
|
1727 |
+
assert (zoo*i).is_Mul
|
1728 |
+
|
1729 |
+
if fuzzy_not((1/i).is_zero) and (i.is_real or i.is_imaginary):
|
1730 |
+
assert zoo/i is zoo
|
1731 |
+
elif (1/i).is_zero:
|
1732 |
+
assert zoo/i is S.NaN
|
1733 |
+
elif i.is_zero:
|
1734 |
+
assert zoo/i is zoo
|
1735 |
+
else:
|
1736 |
+
assert (zoo/i).is_Mul
|
1737 |
+
|
1738 |
+
assert (I*oo).is_Mul # allow directed infinity
|
1739 |
+
assert zoo + zoo is S.NaN
|
1740 |
+
assert zoo * zoo is zoo
|
1741 |
+
assert zoo - zoo is S.NaN
|
1742 |
+
assert zoo/zoo is S.NaN
|
1743 |
+
assert zoo**zoo is S.NaN
|
1744 |
+
assert zoo**0 is S.One
|
1745 |
+
assert zoo**2 is zoo
|
1746 |
+
assert 1/zoo is S.Zero
|
1747 |
+
|
1748 |
+
assert Mul.flatten([S.NegativeOne, oo, S(0)]) == ([S.NaN], [], None)
|
1749 |
+
|
1750 |
+
|
1751 |
+
def test_issue_4122():
|
1752 |
+
x = Symbol('x', nonpositive=True)
|
1753 |
+
assert oo + x is oo
|
1754 |
+
x = Symbol('x', extended_nonpositive=True)
|
1755 |
+
assert (oo + x).is_Add
|
1756 |
+
x = Symbol('x', finite=True)
|
1757 |
+
assert (oo + x).is_Add # x could be imaginary
|
1758 |
+
x = Symbol('x', nonnegative=True)
|
1759 |
+
assert oo + x is oo
|
1760 |
+
x = Symbol('x', extended_nonnegative=True)
|
1761 |
+
assert oo + x is oo
|
1762 |
+
x = Symbol('x', finite=True, real=True)
|
1763 |
+
assert oo + x is oo
|
1764 |
+
|
1765 |
+
# similarly for negative infinity
|
1766 |
+
x = Symbol('x', nonnegative=True)
|
1767 |
+
assert -oo + x is -oo
|
1768 |
+
x = Symbol('x', extended_nonnegative=True)
|
1769 |
+
assert (-oo + x).is_Add
|
1770 |
+
x = Symbol('x', finite=True)
|
1771 |
+
assert (-oo + x).is_Add
|
1772 |
+
x = Symbol('x', nonpositive=True)
|
1773 |
+
assert -oo + x is -oo
|
1774 |
+
x = Symbol('x', extended_nonpositive=True)
|
1775 |
+
assert -oo + x is -oo
|
1776 |
+
x = Symbol('x', finite=True, real=True)
|
1777 |
+
assert -oo + x is -oo
|
1778 |
+
|
1779 |
+
|
1780 |
+
def test_GoldenRatio_expand():
|
1781 |
+
assert GoldenRatio.expand(func=True) == S.Half + sqrt(5)/2
|
1782 |
+
|
1783 |
+
|
1784 |
+
def test_TribonacciConstant_expand():
|
1785 |
+
assert TribonacciConstant.expand(func=True) == \
|
1786 |
+
(1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
|
1787 |
+
|
1788 |
+
|
1789 |
+
def test_as_content_primitive():
|
1790 |
+
assert S.Zero.as_content_primitive() == (1, 0)
|
1791 |
+
assert S.Half.as_content_primitive() == (S.Half, 1)
|
1792 |
+
assert (Rational(-1, 2)).as_content_primitive() == (S.Half, -1)
|
1793 |
+
assert S(3).as_content_primitive() == (3, 1)
|
1794 |
+
assert S(3.1).as_content_primitive() == (1, 3.1)
|
1795 |
+
|
1796 |
+
|
1797 |
+
def test_hashing_sympy_integers():
|
1798 |
+
# Test for issue 5072
|
1799 |
+
assert {Integer(3)} == {int(3)}
|
1800 |
+
assert hash(Integer(4)) == hash(int(4))
|
1801 |
+
|
1802 |
+
|
1803 |
+
def test_rounding_issue_4172():
|
1804 |
+
assert int((E**100).round()) == \
|
1805 |
+
26881171418161354484126255515800135873611119
|
1806 |
+
assert int((pi**100).round()) == \
|
1807 |
+
51878483143196131920862615246303013562686760680406
|
1808 |
+
assert int((Rational(1)/EulerGamma**100).round()) == \
|
1809 |
+
734833795660954410469466
|
1810 |
+
|
1811 |
+
|
1812 |
+
@XFAIL
|
1813 |
+
def test_mpmath_issues():
|
1814 |
+
from mpmath.libmp.libmpf import _normalize
|
1815 |
+
import mpmath.libmp as mlib
|
1816 |
+
rnd = mlib.round_nearest
|
1817 |
+
mpf = (0, int(0), -123, -1, 53, rnd) # nan
|
1818 |
+
assert _normalize(mpf, 53) != (0, int(0), 0, 0)
|
1819 |
+
mpf = (0, int(0), -456, -2, 53, rnd) # +inf
|
1820 |
+
assert _normalize(mpf, 53) != (0, int(0), 0, 0)
|
1821 |
+
mpf = (1, int(0), -789, -3, 53, rnd) # -inf
|
1822 |
+
assert _normalize(mpf, 53) != (0, int(0), 0, 0)
|
1823 |
+
|
1824 |
+
from mpmath.libmp.libmpf import fnan
|
1825 |
+
assert mlib.mpf_eq(fnan, fnan)
|
1826 |
+
|
1827 |
+
|
1828 |
+
def test_Catalan_EulerGamma_prec():
|
1829 |
+
n = GoldenRatio
|
1830 |
+
f = Float(n.n(), 5)
|
1831 |
+
assert f._mpf_ == (0, int(212079), -17, 18)
|
1832 |
+
assert f._prec == 20
|
1833 |
+
assert n._as_mpf_val(20) == f._mpf_
|
1834 |
+
|
1835 |
+
n = EulerGamma
|
1836 |
+
f = Float(n.n(), 5)
|
1837 |
+
assert f._mpf_ == (0, int(302627), -19, 19)
|
1838 |
+
assert f._prec == 20
|
1839 |
+
assert n._as_mpf_val(20) == f._mpf_
|
1840 |
+
|
1841 |
+
|
1842 |
+
def test_Catalan_rewrite():
|
1843 |
+
k = Dummy('k', integer=True, nonnegative=True)
|
1844 |
+
assert Catalan.rewrite(Sum).dummy_eq(
|
1845 |
+
Sum((-1)**k/(2*k + 1)**2, (k, 0, oo)))
|
1846 |
+
assert Catalan.rewrite() == Catalan
|
1847 |
+
|
1848 |
+
|
1849 |
+
def test_bool_eq():
|
1850 |
+
assert 0 == False
|
1851 |
+
assert S(0) == False
|
1852 |
+
assert S(0) != S.false
|
1853 |
+
assert 1 == True
|
1854 |
+
assert S.One == True
|
1855 |
+
assert S.One != S.true
|
1856 |
+
|
1857 |
+
|
1858 |
+
def test_Float_eq():
|
1859 |
+
# all .5 values are the same
|
1860 |
+
assert Float(.5, 10) == Float(.5, 11) == Float(.5, 1)
|
1861 |
+
# but floats that aren't exact in base-2 still
|
1862 |
+
# don't compare the same because they have different
|
1863 |
+
# underlying mpf values
|
1864 |
+
assert Float(.12, 3) != Float(.12, 4)
|
1865 |
+
assert Float(.12, 3) != .12
|
1866 |
+
assert 0.12 != Float(.12, 3)
|
1867 |
+
assert Float('.12', 22) != .12
|
1868 |
+
# issue 11707
|
1869 |
+
# but Float/Rational -- except for 0 --
|
1870 |
+
# are exact so Rational(x) = Float(y) only if
|
1871 |
+
# Rational(x) == Rational(Float(y))
|
1872 |
+
assert Float('1.1') != Rational(11, 10)
|
1873 |
+
assert Rational(11, 10) != Float('1.1')
|
1874 |
+
# coverage
|
1875 |
+
assert not Float(3) == 2
|
1876 |
+
assert not Float(2**2) == S.Half
|
1877 |
+
assert Float(2**2) == 4
|
1878 |
+
assert not Float(2**-2) == 1
|
1879 |
+
assert Float(2**-1) == S.Half
|
1880 |
+
assert not Float(2*3) == 3
|
1881 |
+
assert not Float(2*3) == S.Half
|
1882 |
+
assert Float(2*3) == 6
|
1883 |
+
assert not Float(2*3) == 8
|
1884 |
+
assert Float(.75) == Rational(3, 4)
|
1885 |
+
assert Float(5/18) == 5/18
|
1886 |
+
# 4473
|
1887 |
+
assert Float(2.) != 3
|
1888 |
+
assert Float((0,1,-3)) == S.One/8
|
1889 |
+
assert Float((0,1,-3)) != S.One/9
|
1890 |
+
# 16196
|
1891 |
+
assert 2 == Float(2) # as per Python
|
1892 |
+
# but in a computation...
|
1893 |
+
assert t**2 != t**2.0
|
1894 |
+
|
1895 |
+
|
1896 |
+
def test_issue_6640():
|
1897 |
+
from mpmath.libmp.libmpf import finf, fninf
|
1898 |
+
# fnan is not included because Float no longer returns fnan,
|
1899 |
+
# but otherwise, the same sort of test could apply
|
1900 |
+
assert Float(finf).is_zero is False
|
1901 |
+
assert Float(fninf).is_zero is False
|
1902 |
+
assert bool(Float(0)) is False
|
1903 |
+
|
1904 |
+
|
1905 |
+
def test_issue_6349():
|
1906 |
+
assert Float('23.e3', '')._prec == 10
|
1907 |
+
assert Float('23e3', '')._prec == 20
|
1908 |
+
assert Float('23000', '')._prec == 20
|
1909 |
+
assert Float('-23000', '')._prec == 20
|
1910 |
+
|
1911 |
+
|
1912 |
+
def test_mpf_norm():
|
1913 |
+
assert mpf_norm((1, 0, 1, 0), 10) == mpf('0')._mpf_
|
1914 |
+
assert Float._new((1, 0, 1, 0), 10)._mpf_ == mpf('0')._mpf_
|
1915 |
+
|
1916 |
+
|
1917 |
+
def test_latex():
|
1918 |
+
assert latex(pi) == r"\pi"
|
1919 |
+
assert latex(E) == r"e"
|
1920 |
+
assert latex(GoldenRatio) == r"\phi"
|
1921 |
+
assert latex(TribonacciConstant) == r"\text{TribonacciConstant}"
|
1922 |
+
assert latex(EulerGamma) == r"\gamma"
|
1923 |
+
assert latex(oo) == r"\infty"
|
1924 |
+
assert latex(-oo) == r"-\infty"
|
1925 |
+
assert latex(zoo) == r"\tilde{\infty}"
|
1926 |
+
assert latex(nan) == r"\text{NaN}"
|
1927 |
+
assert latex(I) == r"i"
|
1928 |
+
|
1929 |
+
|
1930 |
+
def test_issue_7742():
|
1931 |
+
assert -oo % 1 is nan
|
1932 |
+
|
1933 |
+
|
1934 |
+
def test_simplify_AlgebraicNumber():
|
1935 |
+
A = AlgebraicNumber
|
1936 |
+
e = 3**(S.One/6)*(3 + (135 + 78*sqrt(3))**Rational(2, 3))/(45 + 26*sqrt(3))**(S.One/3)
|
1937 |
+
assert simplify(A(e)) == A(12) # wester test_C20
|
1938 |
+
|
1939 |
+
e = (41 + 29*sqrt(2))**(S.One/5)
|
1940 |
+
assert simplify(A(e)) == A(1 + sqrt(2)) # wester test_C21
|
1941 |
+
|
1942 |
+
e = (3 + 4*I)**Rational(3, 2)
|
1943 |
+
assert simplify(A(e)) == A(2 + 11*I) # issue 4401
|
1944 |
+
|
1945 |
+
|
1946 |
+
def test_Float_idempotence():
|
1947 |
+
x = Float('1.23', '')
|
1948 |
+
y = Float(x)
|
1949 |
+
z = Float(x, 15)
|
1950 |
+
assert same_and_same_prec(y, x)
|
1951 |
+
assert not same_and_same_prec(z, x)
|
1952 |
+
x = Float(10**20)
|
1953 |
+
y = Float(x)
|
1954 |
+
z = Float(x, 15)
|
1955 |
+
assert same_and_same_prec(y, x)
|
1956 |
+
assert not same_and_same_prec(z, x)
|
1957 |
+
|
1958 |
+
|
1959 |
+
def test_comp1():
|
1960 |
+
# sqrt(2) = 1.414213 5623730950...
|
1961 |
+
a = sqrt(2).n(7)
|
1962 |
+
assert comp(a, 1.4142129) is False
|
1963 |
+
assert comp(a, 1.4142130)
|
1964 |
+
# ...
|
1965 |
+
assert comp(a, 1.4142141)
|
1966 |
+
assert comp(a, 1.4142142) is False
|
1967 |
+
assert comp(sqrt(2).n(2), '1.4')
|
1968 |
+
assert comp(sqrt(2).n(2), Float(1.4, 2), '')
|
1969 |
+
assert comp(sqrt(2).n(2), 1.4, '')
|
1970 |
+
assert comp(sqrt(2).n(2), Float(1.4, 3), '') is False
|
1971 |
+
assert comp(sqrt(2) + sqrt(3)*I, 1.4 + 1.7*I, .1)
|
1972 |
+
assert not comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*0.89, .1)
|
1973 |
+
assert comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*0.90, .1)
|
1974 |
+
assert comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*1.07, .1)
|
1975 |
+
assert not comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*1.08, .1)
|
1976 |
+
assert [(i, j)
|
1977 |
+
for i in range(130, 150)
|
1978 |
+
for j in range(170, 180)
|
1979 |
+
if comp((sqrt(2)+ I*sqrt(3)).n(3), i/100. + I*j/100.)] == [
|
1980 |
+
(141, 173), (142, 173)]
|
1981 |
+
raises(ValueError, lambda: comp(t, '1'))
|
1982 |
+
raises(ValueError, lambda: comp(t, 1))
|
1983 |
+
assert comp(0, 0.0)
|
1984 |
+
assert comp(.5, S.Half)
|
1985 |
+
assert comp(2 + sqrt(2), 2.0 + sqrt(2))
|
1986 |
+
assert not comp(0, 1)
|
1987 |
+
assert not comp(2, sqrt(2))
|
1988 |
+
assert not comp(2 + I, 2.0 + sqrt(2))
|
1989 |
+
assert not comp(2.0 + sqrt(2), 2 + I)
|
1990 |
+
assert not comp(2.0 + sqrt(2), sqrt(3))
|
1991 |
+
assert comp(1/pi.n(4), 0.3183, 1e-5)
|
1992 |
+
assert not comp(1/pi.n(4), 0.3183, 8e-6)
|
1993 |
+
|
1994 |
+
|
1995 |
+
def test_issue_9491():
|
1996 |
+
assert oo**zoo is nan
|
1997 |
+
|
1998 |
+
|
1999 |
+
def test_issue_10063():
|
2000 |
+
assert 2**Float(3) == Float(8)
|
2001 |
+
|
2002 |
+
|
2003 |
+
def test_issue_10020():
|
2004 |
+
assert oo**I is S.NaN
|
2005 |
+
assert oo**(1 + I) is S.ComplexInfinity
|
2006 |
+
assert oo**(-1 + I) is S.Zero
|
2007 |
+
assert (-oo)**I is S.NaN
|
2008 |
+
assert (-oo)**(-1 + I) is S.Zero
|
2009 |
+
assert oo**t == Pow(oo, t, evaluate=False)
|
2010 |
+
assert (-oo)**t == Pow(-oo, t, evaluate=False)
|
2011 |
+
|
2012 |
+
|
2013 |
+
def test_invert_numbers():
|
2014 |
+
assert S(2).invert(5) == 3
|
2015 |
+
assert S(2).invert(Rational(5, 2)) == S.Half
|
2016 |
+
assert S(2).invert(5.) == S.Half
|
2017 |
+
assert S(2).invert(S(5)) == 3
|
2018 |
+
assert S(2.).invert(5) == 0.5
|
2019 |
+
assert S(sqrt(2)).invert(5) == 1/sqrt(2)
|
2020 |
+
assert S(sqrt(2)).invert(sqrt(3)) == 1/sqrt(2)
|
2021 |
+
|
2022 |
+
|
2023 |
+
def test_mod_inverse():
|
2024 |
+
assert mod_inverse(3, 11) == 4
|
2025 |
+
assert mod_inverse(5, 11) == 9
|
2026 |
+
assert mod_inverse(21124921, 521512) == 7713
|
2027 |
+
assert mod_inverse(124215421, 5125) == 2981
|
2028 |
+
assert mod_inverse(214, 12515) == 1579
|
2029 |
+
assert mod_inverse(5823991, 3299) == 1442
|
2030 |
+
assert mod_inverse(123, 44) == 39
|
2031 |
+
assert mod_inverse(2, 5) == 3
|
2032 |
+
assert mod_inverse(-2, 5) == 2
|
2033 |
+
assert mod_inverse(2, -5) == -2
|
2034 |
+
assert mod_inverse(-2, -5) == -3
|
2035 |
+
assert mod_inverse(-3, -7) == -5
|
2036 |
+
x = Symbol('x')
|
2037 |
+
assert S(2).invert(x) == S.Half
|
2038 |
+
raises(TypeError, lambda: mod_inverse(2, x))
|
2039 |
+
raises(ValueError, lambda: mod_inverse(2, S.Half))
|
2040 |
+
raises(ValueError, lambda: mod_inverse(2, cos(1)**2 + sin(1)**2))
|
2041 |
+
|
2042 |
+
|
2043 |
+
def test_golden_ratio_rewrite_as_sqrt():
|
2044 |
+
assert GoldenRatio.rewrite(sqrt) == S.Half + sqrt(5)*S.Half
|
2045 |
+
|
2046 |
+
|
2047 |
+
def test_tribonacci_constant_rewrite_as_sqrt():
|
2048 |
+
assert TribonacciConstant.rewrite(sqrt) == \
|
2049 |
+
(1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
|
2050 |
+
|
2051 |
+
|
2052 |
+
def test_comparisons_with_unknown_type():
|
2053 |
+
class Foo:
|
2054 |
+
"""
|
2055 |
+
Class that is unaware of Basic, and relies on both classes returning
|
2056 |
+
the NotImplemented singleton for equivalence to evaluate to False.
|
2057 |
+
|
2058 |
+
"""
|
2059 |
+
|
2060 |
+
ni, nf, nr = Integer(3), Float(1.0), Rational(1, 3)
|
2061 |
+
foo = Foo()
|
2062 |
+
|
2063 |
+
for n in ni, nf, nr, oo, -oo, zoo, nan:
|
2064 |
+
assert n != foo
|
2065 |
+
assert foo != n
|
2066 |
+
assert not n == foo
|
2067 |
+
assert not foo == n
|
2068 |
+
raises(TypeError, lambda: n < foo)
|
2069 |
+
raises(TypeError, lambda: foo > n)
|
2070 |
+
raises(TypeError, lambda: n > foo)
|
2071 |
+
raises(TypeError, lambda: foo < n)
|
2072 |
+
raises(TypeError, lambda: n <= foo)
|
2073 |
+
raises(TypeError, lambda: foo >= n)
|
2074 |
+
raises(TypeError, lambda: n >= foo)
|
2075 |
+
raises(TypeError, lambda: foo <= n)
|
2076 |
+
|
2077 |
+
class Bar:
|
2078 |
+
"""
|
2079 |
+
Class that considers itself equal to any instance of Number except
|
2080 |
+
infinities and nans, and relies on SymPy types returning the
|
2081 |
+
NotImplemented singleton for symmetric equality relations.
|
2082 |
+
|
2083 |
+
"""
|
2084 |
+
def __eq__(self, other):
|
2085 |
+
if other in (oo, -oo, zoo, nan):
|
2086 |
+
return False
|
2087 |
+
if isinstance(other, Number):
|
2088 |
+
return True
|
2089 |
+
return NotImplemented
|
2090 |
+
|
2091 |
+
def __ne__(self, other):
|
2092 |
+
return not self == other
|
2093 |
+
|
2094 |
+
bar = Bar()
|
2095 |
+
|
2096 |
+
for n in ni, nf, nr:
|
2097 |
+
assert n == bar
|
2098 |
+
assert bar == n
|
2099 |
+
assert not n != bar
|
2100 |
+
assert not bar != n
|
2101 |
+
|
2102 |
+
for n in oo, -oo, zoo, nan:
|
2103 |
+
assert n != bar
|
2104 |
+
assert bar != n
|
2105 |
+
assert not n == bar
|
2106 |
+
assert not bar == n
|
2107 |
+
|
2108 |
+
for n in ni, nf, nr, oo, -oo, zoo, nan:
|
2109 |
+
raises(TypeError, lambda: n < bar)
|
2110 |
+
raises(TypeError, lambda: bar > n)
|
2111 |
+
raises(TypeError, lambda: n > bar)
|
2112 |
+
raises(TypeError, lambda: bar < n)
|
2113 |
+
raises(TypeError, lambda: n <= bar)
|
2114 |
+
raises(TypeError, lambda: bar >= n)
|
2115 |
+
raises(TypeError, lambda: n >= bar)
|
2116 |
+
raises(TypeError, lambda: bar <= n)
|
2117 |
+
|
2118 |
+
|
2119 |
+
def test_NumberSymbol_comparison():
|
2120 |
+
from sympy.core.tests.test_relational import rel_check
|
2121 |
+
rpi = Rational('905502432259640373/288230376151711744')
|
2122 |
+
fpi = Float(float(pi))
|
2123 |
+
assert rel_check(rpi, fpi)
|
2124 |
+
|
2125 |
+
|
2126 |
+
def test_Integer_precision():
|
2127 |
+
# Make sure Integer inputs for keyword args work
|
2128 |
+
assert Float('1.0', dps=Integer(15))._prec == 53
|
2129 |
+
assert Float('1.0', precision=Integer(15))._prec == 15
|
2130 |
+
assert type(Float('1.0', precision=Integer(15))._prec) == int
|
2131 |
+
assert sympify(srepr(Float('1.0', precision=15))) == Float('1.0', precision=15)
|
2132 |
+
|
2133 |
+
|
2134 |
+
def test_numpy_to_float():
|
2135 |
+
from sympy.testing.pytest import skip
|
2136 |
+
from sympy.external import import_module
|
2137 |
+
np = import_module('numpy')
|
2138 |
+
if not np:
|
2139 |
+
skip('numpy not installed. Abort numpy tests.')
|
2140 |
+
|
2141 |
+
def check_prec_and_relerr(npval, ratval):
|
2142 |
+
prec = np.finfo(npval).nmant + 1
|
2143 |
+
x = Float(npval)
|
2144 |
+
assert x._prec == prec
|
2145 |
+
y = Float(ratval, precision=prec)
|
2146 |
+
assert abs((x - y)/y) < 2**(-(prec + 1))
|
2147 |
+
|
2148 |
+
check_prec_and_relerr(np.float16(2.0/3), Rational(2, 3))
|
2149 |
+
check_prec_and_relerr(np.float32(2.0/3), Rational(2, 3))
|
2150 |
+
check_prec_and_relerr(np.float64(2.0/3), Rational(2, 3))
|
2151 |
+
# extended precision, on some arch/compilers:
|
2152 |
+
x = np.longdouble(2)/3
|
2153 |
+
check_prec_and_relerr(x, Rational(2, 3))
|
2154 |
+
y = Float(x, precision=10)
|
2155 |
+
assert same_and_same_prec(y, Float(Rational(2, 3), precision=10))
|
2156 |
+
|
2157 |
+
raises(TypeError, lambda: Float(np.complex64(1+2j)))
|
2158 |
+
raises(TypeError, lambda: Float(np.complex128(1+2j)))
|
2159 |
+
|
2160 |
+
|
2161 |
+
def test_Integer_ceiling_floor():
|
2162 |
+
a = Integer(4)
|
2163 |
+
|
2164 |
+
assert a.floor() == a
|
2165 |
+
assert a.ceiling() == a
|
2166 |
+
|
2167 |
+
|
2168 |
+
def test_ComplexInfinity():
|
2169 |
+
assert zoo.floor() is zoo
|
2170 |
+
assert zoo.ceiling() is zoo
|
2171 |
+
assert zoo**zoo is S.NaN
|
2172 |
+
|
2173 |
+
|
2174 |
+
def test_Infinity_floor_ceiling_power():
|
2175 |
+
assert oo.floor() is oo
|
2176 |
+
assert oo.ceiling() is oo
|
2177 |
+
assert oo**S.NaN is S.NaN
|
2178 |
+
assert oo**zoo is S.NaN
|
2179 |
+
|
2180 |
+
|
2181 |
+
def test_One_power():
|
2182 |
+
assert S.One**12 is S.One
|
2183 |
+
assert S.NegativeOne**S.NaN is S.NaN
|
2184 |
+
|
2185 |
+
|
2186 |
+
def test_NegativeInfinity():
|
2187 |
+
assert (-oo).floor() is -oo
|
2188 |
+
assert (-oo).ceiling() is -oo
|
2189 |
+
assert (-oo)**11 is -oo
|
2190 |
+
assert (-oo)**12 is oo
|
2191 |
+
|
2192 |
+
|
2193 |
+
def test_issue_6133():
|
2194 |
+
raises(TypeError, lambda: (-oo < None))
|
2195 |
+
raises(TypeError, lambda: (S(-2) < None))
|
2196 |
+
raises(TypeError, lambda: (oo < None))
|
2197 |
+
raises(TypeError, lambda: (oo > None))
|
2198 |
+
raises(TypeError, lambda: (S(2) < None))
|
2199 |
+
|
2200 |
+
|
2201 |
+
def test_abc():
|
2202 |
+
x = numbers.Float(5)
|
2203 |
+
assert(isinstance(x, nums.Number))
|
2204 |
+
assert(isinstance(x, numbers.Number))
|
2205 |
+
assert(isinstance(x, nums.Real))
|
2206 |
+
y = numbers.Rational(1, 3)
|
2207 |
+
assert(isinstance(y, nums.Number))
|
2208 |
+
assert(y.numerator == 1)
|
2209 |
+
assert(y.denominator == 3)
|
2210 |
+
assert(isinstance(y, nums.Rational))
|
2211 |
+
z = numbers.Integer(3)
|
2212 |
+
assert(isinstance(z, nums.Number))
|
2213 |
+
assert(isinstance(z, numbers.Number))
|
2214 |
+
assert(isinstance(z, nums.Rational))
|
2215 |
+
assert(isinstance(z, numbers.Rational))
|
2216 |
+
assert(isinstance(z, nums.Integral))
|
2217 |
+
|
2218 |
+
|
2219 |
+
def test_floordiv():
|
2220 |
+
assert S(2)//S.Half == 4
|
2221 |
+
|
2222 |
+
|
2223 |
+
def test_negation():
|
2224 |
+
assert -S.Zero is S.Zero
|
2225 |
+
assert -Float(0) is not S.Zero and -Float(0) == 0.0
|
2226 |
+
|
2227 |
+
|
2228 |
+
def test_exponentiation_of_0():
|
2229 |
+
x = Symbol('x')
|
2230 |
+
assert 0**-x == zoo**x
|
2231 |
+
assert unchanged(Pow, 0, x)
|
2232 |
+
x = Symbol('x', zero=True)
|
2233 |
+
assert 0**-x == S.One
|
2234 |
+
assert 0**x == S.One
|
2235 |
+
|
2236 |
+
|
2237 |
+
def test_equal_valued():
|
2238 |
+
x = Symbol('x')
|
2239 |
+
|
2240 |
+
equal_values = [
|
2241 |
+
[1, 1.0, S(1), S(1.0), S(1).n(5)],
|
2242 |
+
[2, 2.0, S(2), S(2.0), S(2).n(5)],
|
2243 |
+
[-1, -1.0, -S(1), -S(1.0), -S(1).n(5)],
|
2244 |
+
[0.5, S(0.5), S(1)/2],
|
2245 |
+
[-0.5, -S(0.5), -S(1)/2],
|
2246 |
+
[0, 0.0, S(0), S(0.0), S(0).n()],
|
2247 |
+
[pi], [pi.n()], # <-- not equal
|
2248 |
+
[S(1)/10], [0.1, S(0.1)], # <-- not equal
|
2249 |
+
[S(0.1).n(5)],
|
2250 |
+
[oo],
|
2251 |
+
[cos(x/2)], [cos(0.5*x)], # <-- no recursion
|
2252 |
+
]
|
2253 |
+
|
2254 |
+
for m, values_m in enumerate(equal_values):
|
2255 |
+
for value_i in values_m:
|
2256 |
+
|
2257 |
+
# All values in same list equal
|
2258 |
+
for value_j in values_m:
|
2259 |
+
assert equal_valued(value_i, value_j) is True
|
2260 |
+
|
2261 |
+
# Not equal to anything in any other list:
|
2262 |
+
for n, values_n in enumerate(equal_values):
|
2263 |
+
if n == m:
|
2264 |
+
continue
|
2265 |
+
for value_j in values_n:
|
2266 |
+
assert equal_valued(value_i, value_j) is False
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_operations.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.expr import Expr
|
2 |
+
from sympy.core.numbers import Integer
|
3 |
+
from sympy.core.singleton import S
|
4 |
+
from sympy.core.symbol import (Symbol, symbols)
|
5 |
+
from sympy.core.operations import AssocOp, LatticeOp
|
6 |
+
from sympy.testing.pytest import raises
|
7 |
+
from sympy.core.sympify import SympifyError
|
8 |
+
from sympy.core.add import Add, add
|
9 |
+
from sympy.core.mul import Mul, mul
|
10 |
+
|
11 |
+
# create the simplest possible Lattice class
|
12 |
+
|
13 |
+
|
14 |
+
class join(LatticeOp):
|
15 |
+
zero = Integer(0)
|
16 |
+
identity = Integer(1)
|
17 |
+
|
18 |
+
|
19 |
+
def test_lattice_simple():
|
20 |
+
assert join(join(2, 3), 4) == join(2, join(3, 4))
|
21 |
+
assert join(2, 3) == join(3, 2)
|
22 |
+
assert join(0, 2) == 0
|
23 |
+
assert join(1, 2) == 2
|
24 |
+
assert join(2, 2) == 2
|
25 |
+
|
26 |
+
assert join(join(2, 3), 4) == join(2, 3, 4)
|
27 |
+
assert join() == 1
|
28 |
+
assert join(4) == 4
|
29 |
+
assert join(1, 4, 2, 3, 1, 3, 2) == join(2, 3, 4)
|
30 |
+
|
31 |
+
|
32 |
+
def test_lattice_shortcircuit():
|
33 |
+
raises(SympifyError, lambda: join(object))
|
34 |
+
assert join(0, object) == 0
|
35 |
+
|
36 |
+
|
37 |
+
def test_lattice_print():
|
38 |
+
assert str(join(5, 4, 3, 2)) == 'join(2, 3, 4, 5)'
|
39 |
+
|
40 |
+
|
41 |
+
def test_lattice_make_args():
|
42 |
+
assert join.make_args(join(2, 3, 4)) == {S(2), S(3), S(4)}
|
43 |
+
assert join.make_args(0) == {0}
|
44 |
+
assert list(join.make_args(0))[0] is S.Zero
|
45 |
+
assert Add.make_args(0)[0] is S.Zero
|
46 |
+
|
47 |
+
|
48 |
+
def test_issue_14025():
|
49 |
+
a, b, c, d = symbols('a,b,c,d', commutative=False)
|
50 |
+
assert Mul(a, b, c).has(c*b) == False
|
51 |
+
assert Mul(a, b, c).has(b*c) == True
|
52 |
+
assert Mul(a, b, c, d).has(b*c*d) == True
|
53 |
+
|
54 |
+
|
55 |
+
def test_AssocOp_flatten():
|
56 |
+
a, b, c, d = symbols('a,b,c,d')
|
57 |
+
|
58 |
+
class MyAssoc(AssocOp):
|
59 |
+
identity = S.One
|
60 |
+
|
61 |
+
assert MyAssoc(a, MyAssoc(b, c)).args == \
|
62 |
+
MyAssoc(MyAssoc(a, b), c).args == \
|
63 |
+
MyAssoc(MyAssoc(a, b, c)).args == \
|
64 |
+
MyAssoc(a, b, c).args == \
|
65 |
+
(a, b, c)
|
66 |
+
u = MyAssoc(b, c)
|
67 |
+
v = MyAssoc(u, d, evaluate=False)
|
68 |
+
assert v.args == (u, d)
|
69 |
+
# like Add, any unevaluated outer call will flatten inner args
|
70 |
+
assert MyAssoc(a, v).args == (a, b, c, d)
|
71 |
+
|
72 |
+
|
73 |
+
def test_add_dispatcher():
|
74 |
+
|
75 |
+
class NewBase(Expr):
|
76 |
+
@property
|
77 |
+
def _add_handler(self):
|
78 |
+
return NewAdd
|
79 |
+
class NewAdd(NewBase, Add):
|
80 |
+
pass
|
81 |
+
add.register_handlerclass((Add, NewAdd), NewAdd)
|
82 |
+
|
83 |
+
a, b = Symbol('a'), NewBase()
|
84 |
+
|
85 |
+
# Add called as fallback
|
86 |
+
assert add(1, 2) == Add(1, 2)
|
87 |
+
assert add(a, a) == Add(a, a)
|
88 |
+
|
89 |
+
# selection by registered priority
|
90 |
+
assert add(a,b,a) == NewAdd(2*a, b)
|
91 |
+
|
92 |
+
|
93 |
+
def test_mul_dispatcher():
|
94 |
+
|
95 |
+
class NewBase(Expr):
|
96 |
+
@property
|
97 |
+
def _mul_handler(self):
|
98 |
+
return NewMul
|
99 |
+
class NewMul(NewBase, Mul):
|
100 |
+
pass
|
101 |
+
mul.register_handlerclass((Mul, NewMul), NewMul)
|
102 |
+
|
103 |
+
a, b = Symbol('a'), NewBase()
|
104 |
+
|
105 |
+
# Mul called as fallback
|
106 |
+
assert mul(1, 2) == Mul(1, 2)
|
107 |
+
assert mul(a, a) == Mul(a, a)
|
108 |
+
|
109 |
+
# selection by registered priority
|
110 |
+
assert mul(a,b,a) == NewMul(a**2, b)
|
env-llmeval/lib/python3.10/site-packages/sympy/core/tests/test_parameters.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.abc import x, y
|
2 |
+
from sympy.core.parameters import evaluate
|
3 |
+
from sympy.core import Mul, Add, Pow, S
|
4 |
+
from sympy.core.numbers import oo
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
|
7 |
+
def test_add():
|
8 |
+
with evaluate(False):
|
9 |
+
p = oo - oo
|
10 |
+
assert isinstance(p, Add) and p.args == (oo, -oo)
|
11 |
+
p = 5 - oo
|
12 |
+
assert isinstance(p, Add) and p.args == (-oo, 5)
|
13 |
+
p = oo - 5
|
14 |
+
assert isinstance(p, Add) and p.args == (oo, -5)
|
15 |
+
p = oo + 5
|
16 |
+
assert isinstance(p, Add) and p.args == (oo, 5)
|
17 |
+
p = 5 + oo
|
18 |
+
assert isinstance(p, Add) and p.args == (oo, 5)
|
19 |
+
p = -oo + 5
|
20 |
+
assert isinstance(p, Add) and p.args == (-oo, 5)
|
21 |
+
p = -5 - oo
|
22 |
+
assert isinstance(p, Add) and p.args == (-oo, -5)
|
23 |
+
|
24 |
+
with evaluate(False):
|
25 |
+
expr = x + x
|
26 |
+
assert isinstance(expr, Add)
|
27 |
+
assert expr.args == (x, x)
|
28 |
+
|
29 |
+
with evaluate(True):
|
30 |
+
assert (x + x).args == (2, x)
|
31 |
+
|
32 |
+
assert (x + x).args == (x, x)
|
33 |
+
|
34 |
+
assert isinstance(x + x, Mul)
|
35 |
+
|
36 |
+
with evaluate(False):
|
37 |
+
assert S.One + 1 == Add(1, 1)
|
38 |
+
assert 1 + S.One == Add(1, 1)
|
39 |
+
|
40 |
+
assert S(4) - 3 == Add(4, -3)
|
41 |
+
assert -3 + S(4) == Add(4, -3)
|
42 |
+
|
43 |
+
assert S(2) * 4 == Mul(2, 4)
|
44 |
+
assert 4 * S(2) == Mul(2, 4)
|
45 |
+
|
46 |
+
assert S(6) / 3 == Mul(6, Pow(3, -1))
|
47 |
+
assert S.One / 3 * 6 == Mul(S.One / 3, 6)
|
48 |
+
|
49 |
+
assert 9 ** S(2) == Pow(9, 2)
|
50 |
+
assert S(2) ** 9 == Pow(2, 9)
|
51 |
+
|
52 |
+
assert S(2) / 2 == Mul(2, Pow(2, -1))
|
53 |
+
assert S.One / 2 * 2 == Mul(S.One / 2, 2)
|
54 |
+
|
55 |
+
assert S(2) / 3 + 1 == Add(S(2) / 3, 1)
|
56 |
+
assert 1 + S(2) / 3 == Add(1, S(2) / 3)
|
57 |
+
|
58 |
+
assert S(4) / 7 - 3 == Add(S(4) / 7, -3)
|
59 |
+
assert -3 + S(4) / 7 == Add(-3, S(4) / 7)
|
60 |
+
|
61 |
+
assert S(2) / 4 * 4 == Mul(S(2) / 4, 4)
|
62 |
+
assert 4 * (S(2) / 4) == Mul(4, S(2) / 4)
|
63 |
+
|
64 |
+
assert S(6) / 3 == Mul(6, Pow(3, -1))
|
65 |
+
assert S.One / 3 * 6 == Mul(S.One / 3, 6)
|
66 |
+
|
67 |
+
assert S.One / 3 + sqrt(3) == Add(S.One / 3, sqrt(3))
|
68 |
+
assert sqrt(3) + S.One / 3 == Add(sqrt(3), S.One / 3)
|
69 |
+
|
70 |
+
assert S.One / 2 * 10.333 == Mul(S.One / 2, 10.333)
|
71 |
+
assert 10.333 * (S.One / 2) == Mul(10.333, S.One / 2)
|
72 |
+
|
73 |
+
assert sqrt(2) * sqrt(2) == Mul(sqrt(2), sqrt(2))
|
74 |
+
|
75 |
+
assert S.One / 2 + x == Add(S.One / 2, x)
|
76 |
+
assert x + S.One / 2 == Add(x, S.One / 2)
|
77 |
+
|
78 |
+
assert S.One / x * x == Mul(S.One / x, x)
|
79 |
+
assert x * (S.One / x) == Mul(x, Pow(x, -1))
|
80 |
+
|
81 |
+
assert S.One / 3 == Pow(3, -1)
|
82 |
+
assert S.One / x == Pow(x, -1)
|
83 |
+
assert 1 / S(3) == Pow(3, -1)
|
84 |
+
assert 1 / x == Pow(x, -1)
|
85 |
+
|
86 |
+
def test_nested():
|
87 |
+
with evaluate(False):
|
88 |
+
expr = (x + x) + (y + y)
|
89 |
+
assert expr.args == ((x + x), (y + y))
|
90 |
+
assert expr.args[0].args == (x, x)
|