Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/appellseqs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/compatibility.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/euclidtools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/factortools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/fglmtools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/fields.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/heuristicgcd.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/modulargcd.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/orderings.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/orthopolys.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/polyclasses.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/polyconfig.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/polyfuncs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/polymatrix.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/polyutils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/rationaltools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/ring_series.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/rings.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/solvers.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/sqfreetools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/subresultants_qq_zz.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/__pycache__/bench_galoispolys.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/__pycache__/bench_groebnertools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/__pycache__/bench_solvers.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/bench_galoispolys.py +66 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/bench_groebnertools.py +25 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/bench_solvers.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_factortools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_heuristicgcd.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_multivariate_resultants.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_partfrac.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_polyclasses.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_polyoptions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_pythonrational.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_ring_series.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_rootisolation.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_sqfreetools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_appellseqs.py +91 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_constructor.py +208 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_densearith.py +996 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_densetools.py +668 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_dispersion.py +95 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_distributedmodules.py +208 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_euclidtools.py +712 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_factortools.py +771 -0
- env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_fields.py +362 -0
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (5.28 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/appellseqs.cpython-310.pyc
ADDED
Binary file (8.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/compatibility.cpython-310.pyc
ADDED
Binary file (62 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/euclidtools.cpython-310.pyc
ADDED
Binary file (37.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/factortools.cpython-310.pyc
ADDED
Binary file (33.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/fglmtools.cpython-310.pyc
ADDED
Binary file (6.93 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/fields.cpython-310.pyc
ADDED
Binary file (18.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/heuristicgcd.cpython-310.pyc
ADDED
Binary file (3.16 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/modulargcd.cpython-310.pyc
ADDED
Binary file (49.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/orderings.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/orthopolys.cpython-310.pyc
ADDED
Binary file (8.96 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/polyclasses.cpython-310.pyc
ADDED
Binary file (55.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/polyconfig.cpython-310.pyc
ADDED
Binary file (1.66 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/polyfuncs.cpython-310.pyc
ADDED
Binary file (8.74 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/polymatrix.cpython-310.pyc
ADDED
Binary file (11.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/polyutils.cpython-310.pyc
ADDED
Binary file (15.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/rationaltools.cpython-310.pyc
ADDED
Binary file (3.12 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/ring_series.cpython-310.pyc
ADDED
Binary file (47.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/rings.cpython-310.pyc
ADDED
Binary file (69.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/solvers.cpython-310.pyc
ADDED
Binary file (13.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/sqfreetools.cpython-310.pyc
ADDED
Binary file (11 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/subresultants_qq_zz.cpython-310.pyc
ADDED
Binary file (68.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/__pycache__/bench_galoispolys.cpython-310.pyc
ADDED
Binary file (2.28 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/__pycache__/bench_groebnertools.cpython-310.pyc
ADDED
Binary file (1.37 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/__pycache__/bench_solvers.cpython-310.pyc
ADDED
Binary file (335 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/bench_galoispolys.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Benchmarks for polynomials over Galois fields. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.polys.galoistools import gf_from_dict, gf_factor_sqf
|
5 |
+
from sympy.polys.domains import ZZ
|
6 |
+
from sympy.core.numbers import pi
|
7 |
+
from sympy.ntheory.generate import nextprime
|
8 |
+
|
9 |
+
|
10 |
+
def gathen_poly(n, p, K):
|
11 |
+
return gf_from_dict({n: K.one, 1: K.one, 0: K.one}, p, K)
|
12 |
+
|
13 |
+
|
14 |
+
def shoup_poly(n, p, K):
|
15 |
+
f = [K.one] * (n + 1)
|
16 |
+
for i in range(1, n + 1):
|
17 |
+
f[i] = (f[i - 1]**2 + K.one) % p
|
18 |
+
return f
|
19 |
+
|
20 |
+
|
21 |
+
def genprime(n, K):
|
22 |
+
return K(nextprime(int((2**n * pi).evalf())))
|
23 |
+
|
24 |
+
p_10 = genprime(10, ZZ)
|
25 |
+
f_10 = gathen_poly(10, p_10, ZZ)
|
26 |
+
|
27 |
+
p_20 = genprime(20, ZZ)
|
28 |
+
f_20 = gathen_poly(20, p_20, ZZ)
|
29 |
+
|
30 |
+
|
31 |
+
def timeit_gathen_poly_f10_zassenhaus():
|
32 |
+
gf_factor_sqf(f_10, p_10, ZZ, method='zassenhaus')
|
33 |
+
|
34 |
+
|
35 |
+
def timeit_gathen_poly_f10_shoup():
|
36 |
+
gf_factor_sqf(f_10, p_10, ZZ, method='shoup')
|
37 |
+
|
38 |
+
|
39 |
+
def timeit_gathen_poly_f20_zassenhaus():
|
40 |
+
gf_factor_sqf(f_20, p_20, ZZ, method='zassenhaus')
|
41 |
+
|
42 |
+
|
43 |
+
def timeit_gathen_poly_f20_shoup():
|
44 |
+
gf_factor_sqf(f_20, p_20, ZZ, method='shoup')
|
45 |
+
|
46 |
+
P_08 = genprime(8, ZZ)
|
47 |
+
F_10 = shoup_poly(10, P_08, ZZ)
|
48 |
+
|
49 |
+
P_18 = genprime(18, ZZ)
|
50 |
+
F_20 = shoup_poly(20, P_18, ZZ)
|
51 |
+
|
52 |
+
|
53 |
+
def timeit_shoup_poly_F10_zassenhaus():
|
54 |
+
gf_factor_sqf(F_10, P_08, ZZ, method='zassenhaus')
|
55 |
+
|
56 |
+
|
57 |
+
def timeit_shoup_poly_F10_shoup():
|
58 |
+
gf_factor_sqf(F_10, P_08, ZZ, method='shoup')
|
59 |
+
|
60 |
+
|
61 |
+
def timeit_shoup_poly_F20_zassenhaus():
|
62 |
+
gf_factor_sqf(F_20, P_18, ZZ, method='zassenhaus')
|
63 |
+
|
64 |
+
|
65 |
+
def timeit_shoup_poly_F20_shoup():
|
66 |
+
gf_factor_sqf(F_20, P_18, ZZ, method='shoup')
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/bench_groebnertools.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Benchmark of the Groebner bases algorithms. """
|
2 |
+
|
3 |
+
|
4 |
+
from sympy.polys.rings import ring
|
5 |
+
from sympy.polys.domains import QQ
|
6 |
+
from sympy.polys.groebnertools import groebner
|
7 |
+
|
8 |
+
R, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 = ring("x1:13", QQ)
|
9 |
+
|
10 |
+
V = R.gens
|
11 |
+
E = [(x1, x2), (x2, x3), (x1, x4), (x1, x6), (x1, x12), (x2, x5), (x2, x7), (x3, x8),
|
12 |
+
(x3, x10), (x4, x11), (x4, x9), (x5, x6), (x6, x7), (x7, x8), (x8, x9), (x9, x10),
|
13 |
+
(x10, x11), (x11, x12), (x5, x12), (x5, x9), (x6, x10), (x7, x11), (x8, x12)]
|
14 |
+
|
15 |
+
F3 = [ x**3 - 1 for x in V ]
|
16 |
+
Fg = [ x**2 + x*y + y**2 for x, y in E ]
|
17 |
+
|
18 |
+
F_1 = F3 + Fg
|
19 |
+
F_2 = F3 + Fg + [x3**2 + x3*x4 + x4**2]
|
20 |
+
|
21 |
+
def time_vertex_color_12_vertices_23_edges():
|
22 |
+
assert groebner(F_1, R) != [1]
|
23 |
+
|
24 |
+
def time_vertex_color_12_vertices_24_edges():
|
25 |
+
assert groebner(F_2, R) == [1]
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/benchmarks/bench_solvers.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_factortools.cpython-310.pyc
ADDED
Binary file (24.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_heuristicgcd.cpython-310.pyc
ADDED
Binary file (3.94 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_multivariate_resultants.cpython-310.pyc
ADDED
Binary file (8.76 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_partfrac.cpython-310.pyc
ADDED
Binary file (8.79 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_polyclasses.cpython-310.pyc
ADDED
Binary file (15.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_polyoptions.cpython-310.pyc
ADDED
Binary file (14.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_pythonrational.cpython-310.pyc
ADDED
Binary file (5.14 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_ring_series.cpython-310.pyc
ADDED
Binary file (30.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_rootisolation.cpython-310.pyc
ADDED
Binary file (26.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/__pycache__/test_sqfreetools.cpython-310.pyc
ADDED
Binary file (4.61 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_appellseqs.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for efficient functions for generating Appell sequences."""
|
2 |
+
from sympy.core.numbers import Rational as Q
|
3 |
+
from sympy.polys.polytools import Poly
|
4 |
+
from sympy.testing.pytest import raises
|
5 |
+
from sympy.polys.appellseqs import (bernoulli_poly, bernoulli_c_poly,
|
6 |
+
euler_poly, genocchi_poly, andre_poly)
|
7 |
+
from sympy.abc import x
|
8 |
+
|
9 |
+
def test_bernoulli_poly():
|
10 |
+
raises(ValueError, lambda: bernoulli_poly(-1, x))
|
11 |
+
assert bernoulli_poly(1, x, polys=True) == Poly(x - Q(1,2))
|
12 |
+
|
13 |
+
assert bernoulli_poly(0, x) == 1
|
14 |
+
assert bernoulli_poly(1, x) == x - Q(1,2)
|
15 |
+
assert bernoulli_poly(2, x) == x**2 - x + Q(1,6)
|
16 |
+
assert bernoulli_poly(3, x) == x**3 - Q(3,2)*x**2 + Q(1,2)*x
|
17 |
+
assert bernoulli_poly(4, x) == x**4 - 2*x**3 + x**2 - Q(1,30)
|
18 |
+
assert bernoulli_poly(5, x) == x**5 - Q(5,2)*x**4 + Q(5,3)*x**3 - Q(1,6)*x
|
19 |
+
assert bernoulli_poly(6, x) == x**6 - 3*x**5 + Q(5,2)*x**4 - Q(1,2)*x**2 + Q(1,42)
|
20 |
+
|
21 |
+
assert bernoulli_poly(1).dummy_eq(x - Q(1,2))
|
22 |
+
assert bernoulli_poly(1, polys=True) == Poly(x - Q(1,2))
|
23 |
+
|
24 |
+
def test_bernoulli_c_poly():
|
25 |
+
raises(ValueError, lambda: bernoulli_c_poly(-1, x))
|
26 |
+
assert bernoulli_c_poly(1, x, polys=True) == Poly(x, domain='QQ')
|
27 |
+
|
28 |
+
assert bernoulli_c_poly(0, x) == 1
|
29 |
+
assert bernoulli_c_poly(1, x) == x
|
30 |
+
assert bernoulli_c_poly(2, x) == x**2 - Q(1,3)
|
31 |
+
assert bernoulli_c_poly(3, x) == x**3 - x
|
32 |
+
assert bernoulli_c_poly(4, x) == x**4 - 2*x**2 + Q(7,15)
|
33 |
+
assert bernoulli_c_poly(5, x) == x**5 - Q(10,3)*x**3 + Q(7,3)*x
|
34 |
+
assert bernoulli_c_poly(6, x) == x**6 - 5*x**4 + 7*x**2 - Q(31,21)
|
35 |
+
|
36 |
+
assert bernoulli_c_poly(1).dummy_eq(x)
|
37 |
+
assert bernoulli_c_poly(1, polys=True) == Poly(x, domain='QQ')
|
38 |
+
|
39 |
+
assert 2**8 * bernoulli_poly(8, (x+1)/2).expand() == bernoulli_c_poly(8, x)
|
40 |
+
assert 2**9 * bernoulli_poly(9, (x+1)/2).expand() == bernoulli_c_poly(9, x)
|
41 |
+
|
42 |
+
def test_genocchi_poly():
|
43 |
+
raises(ValueError, lambda: genocchi_poly(-1, x))
|
44 |
+
assert genocchi_poly(2, x, polys=True) == Poly(-2*x + 1)
|
45 |
+
|
46 |
+
assert genocchi_poly(0, x) == 0
|
47 |
+
assert genocchi_poly(1, x) == -1
|
48 |
+
assert genocchi_poly(2, x) == 1 - 2*x
|
49 |
+
assert genocchi_poly(3, x) == 3*x - 3*x**2
|
50 |
+
assert genocchi_poly(4, x) == -1 + 6*x**2 - 4*x**3
|
51 |
+
assert genocchi_poly(5, x) == -5*x + 10*x**3 - 5*x**4
|
52 |
+
assert genocchi_poly(6, x) == 3 - 15*x**2 + 15*x**4 - 6*x**5
|
53 |
+
|
54 |
+
assert genocchi_poly(2).dummy_eq(-2*x + 1)
|
55 |
+
assert genocchi_poly(2, polys=True) == Poly(-2*x + 1)
|
56 |
+
|
57 |
+
assert 2 * (bernoulli_poly(8, x) - bernoulli_c_poly(8, x)) == genocchi_poly(8, x)
|
58 |
+
assert 2 * (bernoulli_poly(9, x) - bernoulli_c_poly(9, x)) == genocchi_poly(9, x)
|
59 |
+
|
60 |
+
def test_euler_poly():
|
61 |
+
raises(ValueError, lambda: euler_poly(-1, x))
|
62 |
+
assert euler_poly(1, x, polys=True) == Poly(x - Q(1,2))
|
63 |
+
|
64 |
+
assert euler_poly(0, x) == 1
|
65 |
+
assert euler_poly(1, x) == x - Q(1,2)
|
66 |
+
assert euler_poly(2, x) == x**2 - x
|
67 |
+
assert euler_poly(3, x) == x**3 - Q(3,2)*x**2 + Q(1,4)
|
68 |
+
assert euler_poly(4, x) == x**4 - 2*x**3 + x
|
69 |
+
assert euler_poly(5, x) == x**5 - Q(5,2)*x**4 + Q(5,2)*x**2 - Q(1,2)
|
70 |
+
assert euler_poly(6, x) == x**6 - 3*x**5 + 5*x**3 - 3*x
|
71 |
+
|
72 |
+
assert euler_poly(1).dummy_eq(x - Q(1,2))
|
73 |
+
assert euler_poly(1, polys=True) == Poly(x - Q(1,2))
|
74 |
+
|
75 |
+
assert genocchi_poly(9, x) == euler_poly(8, x) * -9
|
76 |
+
assert genocchi_poly(10, x) == euler_poly(9, x) * -10
|
77 |
+
|
78 |
+
def test_andre_poly():
|
79 |
+
raises(ValueError, lambda: andre_poly(-1, x))
|
80 |
+
assert andre_poly(1, x, polys=True) == Poly(x)
|
81 |
+
|
82 |
+
assert andre_poly(0, x) == 1
|
83 |
+
assert andre_poly(1, x) == x
|
84 |
+
assert andre_poly(2, x) == x**2 - 1
|
85 |
+
assert andre_poly(3, x) == x**3 - 3*x
|
86 |
+
assert andre_poly(4, x) == x**4 - 6*x**2 + 5
|
87 |
+
assert andre_poly(5, x) == x**5 - 10*x**3 + 25*x
|
88 |
+
assert andre_poly(6, x) == x**6 - 15*x**4 + 75*x**2 - 61
|
89 |
+
|
90 |
+
assert andre_poly(1).dummy_eq(x)
|
91 |
+
assert andre_poly(1, polys=True) == Poly(x)
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_constructor.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for tools for constructing domains for expressions. """
|
2 |
+
|
3 |
+
from sympy.polys.constructor import construct_domain
|
4 |
+
from sympy.polys.domains import ZZ, QQ, ZZ_I, QQ_I, RR, CC, EX
|
5 |
+
from sympy.polys.domains.realfield import RealField
|
6 |
+
from sympy.polys.domains.complexfield import ComplexField
|
7 |
+
|
8 |
+
from sympy.core import (Catalan, GoldenRatio)
|
9 |
+
from sympy.core.numbers import (E, Float, I, Rational, pi)
|
10 |
+
from sympy.core.singleton import S
|
11 |
+
from sympy.functions.elementary.exponential import exp
|
12 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
13 |
+
from sympy.functions.elementary.trigonometric import sin
|
14 |
+
from sympy.abc import x, y
|
15 |
+
|
16 |
+
|
17 |
+
def test_construct_domain():
|
18 |
+
|
19 |
+
assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
|
20 |
+
assert construct_domain([1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])
|
21 |
+
|
22 |
+
assert construct_domain([S.One, S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)])
|
23 |
+
assert construct_domain([S.One, S(2), S(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)])
|
24 |
+
|
25 |
+
assert construct_domain([S.Half, S(2)]) == (QQ, [QQ(1, 2), QQ(2)])
|
26 |
+
result = construct_domain([3.14, 1, S.Half])
|
27 |
+
assert isinstance(result[0], RealField)
|
28 |
+
assert result[1] == [RR(3.14), RR(1.0), RR(0.5)]
|
29 |
+
|
30 |
+
result = construct_domain([3.14, I, S.Half])
|
31 |
+
assert isinstance(result[0], ComplexField)
|
32 |
+
assert result[1] == [CC(3.14), CC(1.0j), CC(0.5)]
|
33 |
+
|
34 |
+
assert construct_domain([1.0+I]) == (CC, [CC(1.0, 1.0)])
|
35 |
+
assert construct_domain([2.0+3.0*I]) == (CC, [CC(2.0, 3.0)])
|
36 |
+
|
37 |
+
assert construct_domain([1, I]) == (ZZ_I, [ZZ_I(1, 0), ZZ_I(0, 1)])
|
38 |
+
assert construct_domain([1, I/2]) == (QQ_I, [QQ_I(1, 0), QQ_I(0, S.Half)])
|
39 |
+
|
40 |
+
assert construct_domain([3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))])
|
41 |
+
assert construct_domain([3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))])
|
42 |
+
|
43 |
+
assert construct_domain([1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))])
|
44 |
+
|
45 |
+
assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))])
|
46 |
+
assert construct_domain([x, sqrt(x), sqrt(y)]) == (EX, [EX(x), EX(sqrt(x)), EX(sqrt(y))])
|
47 |
+
|
48 |
+
alg = QQ.algebraic_field(sqrt(2))
|
49 |
+
|
50 |
+
assert construct_domain([7, S.Half, sqrt(2)], extension=True) == \
|
51 |
+
(alg, [alg.convert(7), alg.convert(S.Half), alg.convert(sqrt(2))])
|
52 |
+
|
53 |
+
alg = QQ.algebraic_field(sqrt(2) + sqrt(3))
|
54 |
+
|
55 |
+
assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \
|
56 |
+
(alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))])
|
57 |
+
|
58 |
+
dom = ZZ[x]
|
59 |
+
|
60 |
+
assert construct_domain([2*x, 3]) == \
|
61 |
+
(dom, [dom.convert(2*x), dom.convert(3)])
|
62 |
+
|
63 |
+
dom = ZZ[x, y]
|
64 |
+
|
65 |
+
assert construct_domain([2*x, 3*y]) == \
|
66 |
+
(dom, [dom.convert(2*x), dom.convert(3*y)])
|
67 |
+
|
68 |
+
dom = QQ[x]
|
69 |
+
|
70 |
+
assert construct_domain([x/2, 3]) == \
|
71 |
+
(dom, [dom.convert(x/2), dom.convert(3)])
|
72 |
+
|
73 |
+
dom = QQ[x, y]
|
74 |
+
|
75 |
+
assert construct_domain([x/2, 3*y]) == \
|
76 |
+
(dom, [dom.convert(x/2), dom.convert(3*y)])
|
77 |
+
|
78 |
+
dom = ZZ_I[x]
|
79 |
+
|
80 |
+
assert construct_domain([2*x, I]) == \
|
81 |
+
(dom, [dom.convert(2*x), dom.convert(I)])
|
82 |
+
|
83 |
+
dom = ZZ_I[x, y]
|
84 |
+
|
85 |
+
assert construct_domain([2*x, I*y]) == \
|
86 |
+
(dom, [dom.convert(2*x), dom.convert(I*y)])
|
87 |
+
|
88 |
+
dom = QQ_I[x]
|
89 |
+
|
90 |
+
assert construct_domain([x/2, I]) == \
|
91 |
+
(dom, [dom.convert(x/2), dom.convert(I)])
|
92 |
+
|
93 |
+
dom = QQ_I[x, y]
|
94 |
+
|
95 |
+
assert construct_domain([x/2, I*y]) == \
|
96 |
+
(dom, [dom.convert(x/2), dom.convert(I*y)])
|
97 |
+
|
98 |
+
dom = RR[x]
|
99 |
+
|
100 |
+
assert construct_domain([x/2, 3.5]) == \
|
101 |
+
(dom, [dom.convert(x/2), dom.convert(3.5)])
|
102 |
+
|
103 |
+
dom = RR[x, y]
|
104 |
+
|
105 |
+
assert construct_domain([x/2, 3.5*y]) == \
|
106 |
+
(dom, [dom.convert(x/2), dom.convert(3.5*y)])
|
107 |
+
|
108 |
+
dom = CC[x]
|
109 |
+
|
110 |
+
assert construct_domain([I*x/2, 3.5]) == \
|
111 |
+
(dom, [dom.convert(I*x/2), dom.convert(3.5)])
|
112 |
+
|
113 |
+
dom = CC[x, y]
|
114 |
+
|
115 |
+
assert construct_domain([I*x/2, 3.5*y]) == \
|
116 |
+
(dom, [dom.convert(I*x/2), dom.convert(3.5*y)])
|
117 |
+
|
118 |
+
dom = CC[x]
|
119 |
+
|
120 |
+
assert construct_domain([x/2, I*3.5]) == \
|
121 |
+
(dom, [dom.convert(x/2), dom.convert(I*3.5)])
|
122 |
+
|
123 |
+
dom = CC[x, y]
|
124 |
+
|
125 |
+
assert construct_domain([x/2, I*3.5*y]) == \
|
126 |
+
(dom, [dom.convert(x/2), dom.convert(I*3.5*y)])
|
127 |
+
|
128 |
+
dom = ZZ.frac_field(x)
|
129 |
+
|
130 |
+
assert construct_domain([2/x, 3]) == \
|
131 |
+
(dom, [dom.convert(2/x), dom.convert(3)])
|
132 |
+
|
133 |
+
dom = ZZ.frac_field(x, y)
|
134 |
+
|
135 |
+
assert construct_domain([2/x, 3*y]) == \
|
136 |
+
(dom, [dom.convert(2/x), dom.convert(3*y)])
|
137 |
+
|
138 |
+
dom = RR.frac_field(x)
|
139 |
+
|
140 |
+
assert construct_domain([2/x, 3.5]) == \
|
141 |
+
(dom, [dom.convert(2/x), dom.convert(3.5)])
|
142 |
+
|
143 |
+
dom = RR.frac_field(x, y)
|
144 |
+
|
145 |
+
assert construct_domain([2/x, 3.5*y]) == \
|
146 |
+
(dom, [dom.convert(2/x), dom.convert(3.5*y)])
|
147 |
+
|
148 |
+
dom = RealField(prec=336)[x]
|
149 |
+
|
150 |
+
assert construct_domain([pi.evalf(100)*x]) == \
|
151 |
+
(dom, [dom.convert(pi.evalf(100)*x)])
|
152 |
+
|
153 |
+
assert construct_domain(2) == (ZZ, ZZ(2))
|
154 |
+
assert construct_domain(S(2)/3) == (QQ, QQ(2, 3))
|
155 |
+
assert construct_domain(Rational(2, 3)) == (QQ, QQ(2, 3))
|
156 |
+
|
157 |
+
assert construct_domain({}) == (ZZ, {})
|
158 |
+
|
159 |
+
|
160 |
+
def test_complex_exponential():
|
161 |
+
w = exp(-I*2*pi/3, evaluate=False)
|
162 |
+
alg = QQ.algebraic_field(w)
|
163 |
+
assert construct_domain([w**2, w, 1], extension=True) == (
|
164 |
+
alg,
|
165 |
+
[alg.convert(w**2),
|
166 |
+
alg.convert(w),
|
167 |
+
alg.convert(1)]
|
168 |
+
)
|
169 |
+
|
170 |
+
|
171 |
+
def test_composite_option():
|
172 |
+
assert construct_domain({(1,): sin(y)}, composite=False) == \
|
173 |
+
(EX, {(1,): EX(sin(y))})
|
174 |
+
|
175 |
+
assert construct_domain({(1,): y}, composite=False) == \
|
176 |
+
(EX, {(1,): EX(y)})
|
177 |
+
|
178 |
+
assert construct_domain({(1, 1): 1}, composite=False) == \
|
179 |
+
(ZZ, {(1, 1): 1})
|
180 |
+
|
181 |
+
assert construct_domain({(1, 0): y}, composite=False) == \
|
182 |
+
(EX, {(1, 0): EX(y)})
|
183 |
+
|
184 |
+
|
185 |
+
def test_precision():
|
186 |
+
f1 = Float("1.01")
|
187 |
+
f2 = Float("1.0000000000000000000001")
|
188 |
+
for u in [1, 1e-2, 1e-6, 1e-13, 1e-14, 1e-16, 1e-20, 1e-100, 1e-300,
|
189 |
+
f1, f2]:
|
190 |
+
result = construct_domain([u])
|
191 |
+
v = float(result[1][0])
|
192 |
+
assert abs(u - v) / u < 1e-14 # Test relative accuracy
|
193 |
+
|
194 |
+
result = construct_domain([f1])
|
195 |
+
y = result[1][0]
|
196 |
+
assert y-1 > 1e-50
|
197 |
+
|
198 |
+
result = construct_domain([f2])
|
199 |
+
y = result[1][0]
|
200 |
+
assert y-1 > 1e-50
|
201 |
+
|
202 |
+
|
203 |
+
def test_issue_11538():
|
204 |
+
for n in [E, pi, Catalan]:
|
205 |
+
assert construct_domain(n)[0] == ZZ[n]
|
206 |
+
assert construct_domain(x + n)[0] == ZZ[x, n]
|
207 |
+
assert construct_domain(GoldenRatio)[0] == EX
|
208 |
+
assert construct_domain(x + GoldenRatio)[0] == EX
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_densearith.py
ADDED
@@ -0,0 +1,996 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for dense recursive polynomials' arithmetics. """
|
2 |
+
|
3 |
+
from sympy.polys.densebasic import (
|
4 |
+
dup_normal, dmp_normal,
|
5 |
+
)
|
6 |
+
|
7 |
+
from sympy.polys.densearith import (
|
8 |
+
dup_add_term, dmp_add_term,
|
9 |
+
dup_sub_term, dmp_sub_term,
|
10 |
+
dup_mul_term, dmp_mul_term,
|
11 |
+
dup_add_ground, dmp_add_ground,
|
12 |
+
dup_sub_ground, dmp_sub_ground,
|
13 |
+
dup_mul_ground, dmp_mul_ground,
|
14 |
+
dup_quo_ground, dmp_quo_ground,
|
15 |
+
dup_exquo_ground, dmp_exquo_ground,
|
16 |
+
dup_lshift, dup_rshift,
|
17 |
+
dup_abs, dmp_abs,
|
18 |
+
dup_neg, dmp_neg,
|
19 |
+
dup_add, dmp_add,
|
20 |
+
dup_sub, dmp_sub,
|
21 |
+
dup_mul, dmp_mul,
|
22 |
+
dup_sqr, dmp_sqr,
|
23 |
+
dup_pow, dmp_pow,
|
24 |
+
dup_add_mul, dmp_add_mul,
|
25 |
+
dup_sub_mul, dmp_sub_mul,
|
26 |
+
dup_pdiv, dup_prem, dup_pquo, dup_pexquo,
|
27 |
+
dmp_pdiv, dmp_prem, dmp_pquo, dmp_pexquo,
|
28 |
+
dup_rr_div, dmp_rr_div,
|
29 |
+
dup_ff_div, dmp_ff_div,
|
30 |
+
dup_div, dup_rem, dup_quo, dup_exquo,
|
31 |
+
dmp_div, dmp_rem, dmp_quo, dmp_exquo,
|
32 |
+
dup_max_norm, dmp_max_norm,
|
33 |
+
dup_l1_norm, dmp_l1_norm,
|
34 |
+
dup_l2_norm_squared, dmp_l2_norm_squared,
|
35 |
+
dup_expand, dmp_expand,
|
36 |
+
)
|
37 |
+
|
38 |
+
from sympy.polys.polyerrors import (
|
39 |
+
ExactQuotientFailed,
|
40 |
+
)
|
41 |
+
|
42 |
+
from sympy.polys.specialpolys import f_polys
|
43 |
+
from sympy.polys.domains import FF, ZZ, QQ
|
44 |
+
|
45 |
+
from sympy.testing.pytest import raises
|
46 |
+
|
47 |
+
f_0, f_1, f_2, f_3, f_4, f_5, f_6 = [ f.to_dense() for f in f_polys() ]
|
48 |
+
F_0 = dmp_mul_ground(dmp_normal(f_0, 2, QQ), QQ(1, 7), 2, QQ)
|
49 |
+
|
50 |
+
def test_dup_add_term():
|
51 |
+
f = dup_normal([], ZZ)
|
52 |
+
|
53 |
+
assert dup_add_term(f, ZZ(0), 0, ZZ) == dup_normal([], ZZ)
|
54 |
+
|
55 |
+
assert dup_add_term(f, ZZ(1), 0, ZZ) == dup_normal([1], ZZ)
|
56 |
+
assert dup_add_term(f, ZZ(1), 1, ZZ) == dup_normal([1, 0], ZZ)
|
57 |
+
assert dup_add_term(f, ZZ(1), 2, ZZ) == dup_normal([1, 0, 0], ZZ)
|
58 |
+
|
59 |
+
f = dup_normal([1, 1, 1], ZZ)
|
60 |
+
|
61 |
+
assert dup_add_term(f, ZZ(1), 0, ZZ) == dup_normal([1, 1, 2], ZZ)
|
62 |
+
assert dup_add_term(f, ZZ(1), 1, ZZ) == dup_normal([1, 2, 1], ZZ)
|
63 |
+
assert dup_add_term(f, ZZ(1), 2, ZZ) == dup_normal([2, 1, 1], ZZ)
|
64 |
+
|
65 |
+
assert dup_add_term(f, ZZ(1), 3, ZZ) == dup_normal([1, 1, 1, 1], ZZ)
|
66 |
+
assert dup_add_term(f, ZZ(1), 4, ZZ) == dup_normal([1, 0, 1, 1, 1], ZZ)
|
67 |
+
assert dup_add_term(f, ZZ(1), 5, ZZ) == dup_normal([1, 0, 0, 1, 1, 1], ZZ)
|
68 |
+
assert dup_add_term(
|
69 |
+
f, ZZ(1), 6, ZZ) == dup_normal([1, 0, 0, 0, 1, 1, 1], ZZ)
|
70 |
+
|
71 |
+
assert dup_add_term(f, ZZ(-1), 2, ZZ) == dup_normal([1, 1], ZZ)
|
72 |
+
|
73 |
+
|
74 |
+
def test_dmp_add_term():
|
75 |
+
assert dmp_add_term([ZZ(1), ZZ(1), ZZ(1)], ZZ(1), 2, 0, ZZ) == \
|
76 |
+
dup_add_term([ZZ(1), ZZ(1), ZZ(1)], ZZ(1), 2, ZZ)
|
77 |
+
assert dmp_add_term(f_0, [[]], 3, 2, ZZ) == f_0
|
78 |
+
assert dmp_add_term(F_0, [[]], 3, 2, QQ) == F_0
|
79 |
+
|
80 |
+
|
81 |
+
def test_dup_sub_term():
|
82 |
+
f = dup_normal([], ZZ)
|
83 |
+
|
84 |
+
assert dup_sub_term(f, ZZ(0), 0, ZZ) == dup_normal([], ZZ)
|
85 |
+
|
86 |
+
assert dup_sub_term(f, ZZ(1), 0, ZZ) == dup_normal([-1], ZZ)
|
87 |
+
assert dup_sub_term(f, ZZ(1), 1, ZZ) == dup_normal([-1, 0], ZZ)
|
88 |
+
assert dup_sub_term(f, ZZ(1), 2, ZZ) == dup_normal([-1, 0, 0], ZZ)
|
89 |
+
|
90 |
+
f = dup_normal([1, 1, 1], ZZ)
|
91 |
+
|
92 |
+
assert dup_sub_term(f, ZZ(2), 0, ZZ) == dup_normal([ 1, 1, -1], ZZ)
|
93 |
+
assert dup_sub_term(f, ZZ(2), 1, ZZ) == dup_normal([ 1, -1, 1], ZZ)
|
94 |
+
assert dup_sub_term(f, ZZ(2), 2, ZZ) == dup_normal([-1, 1, 1], ZZ)
|
95 |
+
|
96 |
+
assert dup_sub_term(f, ZZ(1), 3, ZZ) == dup_normal([-1, 1, 1, 1], ZZ)
|
97 |
+
assert dup_sub_term(f, ZZ(1), 4, ZZ) == dup_normal([-1, 0, 1, 1, 1], ZZ)
|
98 |
+
assert dup_sub_term(f, ZZ(1), 5, ZZ) == dup_normal([-1, 0, 0, 1, 1, 1], ZZ)
|
99 |
+
assert dup_sub_term(
|
100 |
+
f, ZZ(1), 6, ZZ) == dup_normal([-1, 0, 0, 0, 1, 1, 1], ZZ)
|
101 |
+
|
102 |
+
assert dup_sub_term(f, ZZ(1), 2, ZZ) == dup_normal([1, 1], ZZ)
|
103 |
+
|
104 |
+
|
105 |
+
def test_dmp_sub_term():
|
106 |
+
assert dmp_sub_term([ZZ(1), ZZ(1), ZZ(1)], ZZ(1), 2, 0, ZZ) == \
|
107 |
+
dup_sub_term([ZZ(1), ZZ(1), ZZ(1)], ZZ(1), 2, ZZ)
|
108 |
+
assert dmp_sub_term(f_0, [[]], 3, 2, ZZ) == f_0
|
109 |
+
assert dmp_sub_term(F_0, [[]], 3, 2, QQ) == F_0
|
110 |
+
|
111 |
+
|
112 |
+
def test_dup_mul_term():
|
113 |
+
f = dup_normal([], ZZ)
|
114 |
+
|
115 |
+
assert dup_mul_term(f, ZZ(2), 3, ZZ) == dup_normal([], ZZ)
|
116 |
+
|
117 |
+
f = dup_normal([1, 1], ZZ)
|
118 |
+
|
119 |
+
assert dup_mul_term(f, ZZ(0), 3, ZZ) == dup_normal([], ZZ)
|
120 |
+
|
121 |
+
f = dup_normal([1, 2, 3], ZZ)
|
122 |
+
|
123 |
+
assert dup_mul_term(f, ZZ(2), 0, ZZ) == dup_normal([2, 4, 6], ZZ)
|
124 |
+
assert dup_mul_term(f, ZZ(2), 1, ZZ) == dup_normal([2, 4, 6, 0], ZZ)
|
125 |
+
assert dup_mul_term(f, ZZ(2), 2, ZZ) == dup_normal([2, 4, 6, 0, 0], ZZ)
|
126 |
+
assert dup_mul_term(f, ZZ(2), 3, ZZ) == dup_normal([2, 4, 6, 0, 0, 0], ZZ)
|
127 |
+
|
128 |
+
|
129 |
+
def test_dmp_mul_term():
|
130 |
+
assert dmp_mul_term([ZZ(1), ZZ(2), ZZ(3)], ZZ(2), 1, 0, ZZ) == \
|
131 |
+
dup_mul_term([ZZ(1), ZZ(2), ZZ(3)], ZZ(2), 1, ZZ)
|
132 |
+
|
133 |
+
assert dmp_mul_term([[]], [ZZ(2)], 3, 1, ZZ) == [[]]
|
134 |
+
assert dmp_mul_term([[ZZ(1)]], [], 3, 1, ZZ) == [[]]
|
135 |
+
|
136 |
+
assert dmp_mul_term([[ZZ(1), ZZ(2)], [ZZ(3)]], [ZZ(2)], 2, 1, ZZ) == \
|
137 |
+
[[ZZ(2), ZZ(4)], [ZZ(6)], [], []]
|
138 |
+
|
139 |
+
assert dmp_mul_term([[]], [QQ(2, 3)], 3, 1, QQ) == [[]]
|
140 |
+
assert dmp_mul_term([[QQ(1, 2)]], [], 3, 1, QQ) == [[]]
|
141 |
+
|
142 |
+
assert dmp_mul_term([[QQ(1, 5), QQ(2, 5)], [QQ(3, 5)]], [QQ(2, 3)], 2, 1, QQ) == \
|
143 |
+
[[QQ(2, 15), QQ(4, 15)], [QQ(6, 15)], [], []]
|
144 |
+
|
145 |
+
|
146 |
+
def test_dup_add_ground():
|
147 |
+
f = ZZ.map([1, 2, 3, 4])
|
148 |
+
g = ZZ.map([1, 2, 3, 8])
|
149 |
+
|
150 |
+
assert dup_add_ground(f, ZZ(4), ZZ) == g
|
151 |
+
|
152 |
+
|
153 |
+
def test_dmp_add_ground():
|
154 |
+
f = ZZ.map([[1], [2], [3], [4]])
|
155 |
+
g = ZZ.map([[1], [2], [3], [8]])
|
156 |
+
|
157 |
+
assert dmp_add_ground(f, ZZ(4), 1, ZZ) == g
|
158 |
+
|
159 |
+
|
160 |
+
def test_dup_sub_ground():
|
161 |
+
f = ZZ.map([1, 2, 3, 4])
|
162 |
+
g = ZZ.map([1, 2, 3, 0])
|
163 |
+
|
164 |
+
assert dup_sub_ground(f, ZZ(4), ZZ) == g
|
165 |
+
|
166 |
+
|
167 |
+
def test_dmp_sub_ground():
|
168 |
+
f = ZZ.map([[1], [2], [3], [4]])
|
169 |
+
g = ZZ.map([[1], [2], [3], []])
|
170 |
+
|
171 |
+
assert dmp_sub_ground(f, ZZ(4), 1, ZZ) == g
|
172 |
+
|
173 |
+
|
174 |
+
def test_dup_mul_ground():
|
175 |
+
f = dup_normal([], ZZ)
|
176 |
+
|
177 |
+
assert dup_mul_ground(f, ZZ(2), ZZ) == dup_normal([], ZZ)
|
178 |
+
|
179 |
+
f = dup_normal([1, 2, 3], ZZ)
|
180 |
+
|
181 |
+
assert dup_mul_ground(f, ZZ(0), ZZ) == dup_normal([], ZZ)
|
182 |
+
assert dup_mul_ground(f, ZZ(2), ZZ) == dup_normal([2, 4, 6], ZZ)
|
183 |
+
|
184 |
+
|
185 |
+
def test_dmp_mul_ground():
|
186 |
+
assert dmp_mul_ground(f_0, ZZ(2), 2, ZZ) == [
|
187 |
+
[[ZZ(2), ZZ(4), ZZ(6)], [ZZ(4)]],
|
188 |
+
[[ZZ(6)]],
|
189 |
+
[[ZZ(8), ZZ(10), ZZ(12)], [ZZ(2), ZZ(4), ZZ(2)], [ZZ(2)]]
|
190 |
+
]
|
191 |
+
|
192 |
+
assert dmp_mul_ground(F_0, QQ(1, 2), 2, QQ) == [
|
193 |
+
[[QQ(1, 14), QQ(2, 14), QQ(3, 14)], [QQ(2, 14)]],
|
194 |
+
[[QQ(3, 14)]],
|
195 |
+
[[QQ(4, 14), QQ(5, 14), QQ(6, 14)], [QQ(1, 14), QQ(2, 14),
|
196 |
+
QQ(1, 14)], [QQ(1, 14)]]
|
197 |
+
]
|
198 |
+
|
199 |
+
|
200 |
+
def test_dup_quo_ground():
|
201 |
+
raises(ZeroDivisionError, lambda: dup_quo_ground(dup_normal([1, 2,
|
202 |
+
3], ZZ), ZZ(0), ZZ))
|
203 |
+
|
204 |
+
f = dup_normal([], ZZ)
|
205 |
+
|
206 |
+
assert dup_quo_ground(f, ZZ(3), ZZ) == dup_normal([], ZZ)
|
207 |
+
|
208 |
+
f = dup_normal([6, 2, 8], ZZ)
|
209 |
+
|
210 |
+
assert dup_quo_ground(f, ZZ(1), ZZ) == f
|
211 |
+
assert dup_quo_ground(f, ZZ(2), ZZ) == dup_normal([3, 1, 4], ZZ)
|
212 |
+
|
213 |
+
assert dup_quo_ground(f, ZZ(3), ZZ) == dup_normal([2, 0, 2], ZZ)
|
214 |
+
|
215 |
+
f = dup_normal([6, 2, 8], QQ)
|
216 |
+
|
217 |
+
assert dup_quo_ground(f, QQ(1), QQ) == f
|
218 |
+
assert dup_quo_ground(f, QQ(2), QQ) == [QQ(3), QQ(1), QQ(4)]
|
219 |
+
assert dup_quo_ground(f, QQ(7), QQ) == [QQ(6, 7), QQ(2, 7), QQ(8, 7)]
|
220 |
+
|
221 |
+
|
222 |
+
def test_dup_exquo_ground():
|
223 |
+
raises(ZeroDivisionError, lambda: dup_exquo_ground(dup_normal([1,
|
224 |
+
2, 3], ZZ), ZZ(0), ZZ))
|
225 |
+
raises(ExactQuotientFailed, lambda: dup_exquo_ground(dup_normal([1,
|
226 |
+
2, 3], ZZ), ZZ(3), ZZ))
|
227 |
+
|
228 |
+
f = dup_normal([], ZZ)
|
229 |
+
|
230 |
+
assert dup_exquo_ground(f, ZZ(3), ZZ) == dup_normal([], ZZ)
|
231 |
+
|
232 |
+
f = dup_normal([6, 2, 8], ZZ)
|
233 |
+
|
234 |
+
assert dup_exquo_ground(f, ZZ(1), ZZ) == f
|
235 |
+
assert dup_exquo_ground(f, ZZ(2), ZZ) == dup_normal([3, 1, 4], ZZ)
|
236 |
+
|
237 |
+
f = dup_normal([6, 2, 8], QQ)
|
238 |
+
|
239 |
+
assert dup_exquo_ground(f, QQ(1), QQ) == f
|
240 |
+
assert dup_exquo_ground(f, QQ(2), QQ) == [QQ(3), QQ(1), QQ(4)]
|
241 |
+
assert dup_exquo_ground(f, QQ(7), QQ) == [QQ(6, 7), QQ(2, 7), QQ(8, 7)]
|
242 |
+
|
243 |
+
|
244 |
+
def test_dmp_quo_ground():
|
245 |
+
f = dmp_normal([[6], [2], [8]], 1, ZZ)
|
246 |
+
|
247 |
+
assert dmp_quo_ground(f, ZZ(1), 1, ZZ) == f
|
248 |
+
assert dmp_quo_ground(
|
249 |
+
f, ZZ(2), 1, ZZ) == dmp_normal([[3], [1], [4]], 1, ZZ)
|
250 |
+
|
251 |
+
assert dmp_normal(dmp_quo_ground(
|
252 |
+
f, ZZ(3), 1, ZZ), 1, ZZ) == dmp_normal([[2], [], [2]], 1, ZZ)
|
253 |
+
|
254 |
+
|
255 |
+
def test_dmp_exquo_ground():
|
256 |
+
f = dmp_normal([[6], [2], [8]], 1, ZZ)
|
257 |
+
|
258 |
+
assert dmp_exquo_ground(f, ZZ(1), 1, ZZ) == f
|
259 |
+
assert dmp_exquo_ground(
|
260 |
+
f, ZZ(2), 1, ZZ) == dmp_normal([[3], [1], [4]], 1, ZZ)
|
261 |
+
|
262 |
+
|
263 |
+
def test_dup_lshift():
|
264 |
+
assert dup_lshift([], 3, ZZ) == []
|
265 |
+
assert dup_lshift([1], 3, ZZ) == [1, 0, 0, 0]
|
266 |
+
|
267 |
+
|
268 |
+
def test_dup_rshift():
|
269 |
+
assert dup_rshift([], 3, ZZ) == []
|
270 |
+
assert dup_rshift([1, 0, 0, 0], 3, ZZ) == [1]
|
271 |
+
|
272 |
+
|
273 |
+
def test_dup_abs():
|
274 |
+
assert dup_abs([], ZZ) == []
|
275 |
+
assert dup_abs([ZZ( 1)], ZZ) == [ZZ(1)]
|
276 |
+
assert dup_abs([ZZ(-7)], ZZ) == [ZZ(7)]
|
277 |
+
assert dup_abs([ZZ(-1), ZZ(2), ZZ(3)], ZZ) == [ZZ(1), ZZ(2), ZZ(3)]
|
278 |
+
|
279 |
+
assert dup_abs([], QQ) == []
|
280 |
+
assert dup_abs([QQ( 1, 2)], QQ) == [QQ(1, 2)]
|
281 |
+
assert dup_abs([QQ(-7, 3)], QQ) == [QQ(7, 3)]
|
282 |
+
assert dup_abs(
|
283 |
+
[QQ(-1, 7), QQ(2, 7), QQ(3, 7)], QQ) == [QQ(1, 7), QQ(2, 7), QQ(3, 7)]
|
284 |
+
|
285 |
+
|
286 |
+
def test_dmp_abs():
|
287 |
+
assert dmp_abs([ZZ(-1)], 0, ZZ) == [ZZ(1)]
|
288 |
+
assert dmp_abs([QQ(-1, 2)], 0, QQ) == [QQ(1, 2)]
|
289 |
+
|
290 |
+
assert dmp_abs([[[]]], 2, ZZ) == [[[]]]
|
291 |
+
assert dmp_abs([[[ZZ(1)]]], 2, ZZ) == [[[ZZ(1)]]]
|
292 |
+
assert dmp_abs([[[ZZ(-7)]]], 2, ZZ) == [[[ZZ(7)]]]
|
293 |
+
|
294 |
+
assert dmp_abs([[[]]], 2, QQ) == [[[]]]
|
295 |
+
assert dmp_abs([[[QQ(1, 2)]]], 2, QQ) == [[[QQ(1, 2)]]]
|
296 |
+
assert dmp_abs([[[QQ(-7, 9)]]], 2, QQ) == [[[QQ(7, 9)]]]
|
297 |
+
|
298 |
+
|
299 |
+
def test_dup_neg():
|
300 |
+
assert dup_neg([], ZZ) == []
|
301 |
+
assert dup_neg([ZZ(1)], ZZ) == [ZZ(-1)]
|
302 |
+
assert dup_neg([ZZ(-7)], ZZ) == [ZZ(7)]
|
303 |
+
assert dup_neg([ZZ(-1), ZZ(2), ZZ(3)], ZZ) == [ZZ(1), ZZ(-2), ZZ(-3)]
|
304 |
+
|
305 |
+
assert dup_neg([], QQ) == []
|
306 |
+
assert dup_neg([QQ(1, 2)], QQ) == [QQ(-1, 2)]
|
307 |
+
assert dup_neg([QQ(-7, 9)], QQ) == [QQ(7, 9)]
|
308 |
+
assert dup_neg([QQ(
|
309 |
+
-1, 7), QQ(2, 7), QQ(3, 7)], QQ) == [QQ(1, 7), QQ(-2, 7), QQ(-3, 7)]
|
310 |
+
|
311 |
+
|
312 |
+
def test_dmp_neg():
|
313 |
+
assert dmp_neg([ZZ(-1)], 0, ZZ) == [ZZ(1)]
|
314 |
+
assert dmp_neg([QQ(-1, 2)], 0, QQ) == [QQ(1, 2)]
|
315 |
+
|
316 |
+
assert dmp_neg([[[]]], 2, ZZ) == [[[]]]
|
317 |
+
assert dmp_neg([[[ZZ(1)]]], 2, ZZ) == [[[ZZ(-1)]]]
|
318 |
+
assert dmp_neg([[[ZZ(-7)]]], 2, ZZ) == [[[ZZ(7)]]]
|
319 |
+
|
320 |
+
assert dmp_neg([[[]]], 2, QQ) == [[[]]]
|
321 |
+
assert dmp_neg([[[QQ(1, 9)]]], 2, QQ) == [[[QQ(-1, 9)]]]
|
322 |
+
assert dmp_neg([[[QQ(-7, 9)]]], 2, QQ) == [[[QQ(7, 9)]]]
|
323 |
+
|
324 |
+
|
325 |
+
def test_dup_add():
|
326 |
+
assert dup_add([], [], ZZ) == []
|
327 |
+
assert dup_add([ZZ(1)], [], ZZ) == [ZZ(1)]
|
328 |
+
assert dup_add([], [ZZ(1)], ZZ) == [ZZ(1)]
|
329 |
+
assert dup_add([ZZ(1)], [ZZ(1)], ZZ) == [ZZ(2)]
|
330 |
+
assert dup_add([ZZ(1)], [ZZ(2)], ZZ) == [ZZ(3)]
|
331 |
+
|
332 |
+
assert dup_add([ZZ(1), ZZ(2)], [ZZ(1)], ZZ) == [ZZ(1), ZZ(3)]
|
333 |
+
assert dup_add([ZZ(1)], [ZZ(1), ZZ(2)], ZZ) == [ZZ(1), ZZ(3)]
|
334 |
+
|
335 |
+
assert dup_add([ZZ(1), ZZ(
|
336 |
+
2), ZZ(3)], [ZZ(8), ZZ(9), ZZ(10)], ZZ) == [ZZ(9), ZZ(11), ZZ(13)]
|
337 |
+
|
338 |
+
assert dup_add([], [], QQ) == []
|
339 |
+
assert dup_add([QQ(1, 2)], [], QQ) == [QQ(1, 2)]
|
340 |
+
assert dup_add([], [QQ(1, 2)], QQ) == [QQ(1, 2)]
|
341 |
+
assert dup_add([QQ(1, 4)], [QQ(1, 4)], QQ) == [QQ(1, 2)]
|
342 |
+
assert dup_add([QQ(1, 4)], [QQ(1, 2)], QQ) == [QQ(3, 4)]
|
343 |
+
|
344 |
+
assert dup_add([QQ(1, 2), QQ(2, 3)], [QQ(1)], QQ) == [QQ(1, 2), QQ(5, 3)]
|
345 |
+
assert dup_add([QQ(1)], [QQ(1, 2), QQ(2, 3)], QQ) == [QQ(1, 2), QQ(5, 3)]
|
346 |
+
|
347 |
+
assert dup_add([QQ(1, 7), QQ(2, 7), QQ(3, 7)], [QQ(
|
348 |
+
8, 7), QQ(9, 7), QQ(10, 7)], QQ) == [QQ(9, 7), QQ(11, 7), QQ(13, 7)]
|
349 |
+
|
350 |
+
|
351 |
+
def test_dmp_add():
|
352 |
+
assert dmp_add([ZZ(1), ZZ(2)], [ZZ(1)], 0, ZZ) == \
|
353 |
+
dup_add([ZZ(1), ZZ(2)], [ZZ(1)], ZZ)
|
354 |
+
assert dmp_add([QQ(1, 2), QQ(2, 3)], [QQ(1)], 0, QQ) == \
|
355 |
+
dup_add([QQ(1, 2), QQ(2, 3)], [QQ(1)], QQ)
|
356 |
+
|
357 |
+
assert dmp_add([[[]]], [[[]]], 2, ZZ) == [[[]]]
|
358 |
+
assert dmp_add([[[ZZ(1)]]], [[[]]], 2, ZZ) == [[[ZZ(1)]]]
|
359 |
+
assert dmp_add([[[]]], [[[ZZ(1)]]], 2, ZZ) == [[[ZZ(1)]]]
|
360 |
+
assert dmp_add([[[ZZ(2)]]], [[[ZZ(1)]]], 2, ZZ) == [[[ZZ(3)]]]
|
361 |
+
assert dmp_add([[[ZZ(1)]]], [[[ZZ(2)]]], 2, ZZ) == [[[ZZ(3)]]]
|
362 |
+
|
363 |
+
assert dmp_add([[[]]], [[[]]], 2, QQ) == [[[]]]
|
364 |
+
assert dmp_add([[[QQ(1, 2)]]], [[[]]], 2, QQ) == [[[QQ(1, 2)]]]
|
365 |
+
assert dmp_add([[[]]], [[[QQ(1, 2)]]], 2, QQ) == [[[QQ(1, 2)]]]
|
366 |
+
assert dmp_add([[[QQ(2, 7)]]], [[[QQ(1, 7)]]], 2, QQ) == [[[QQ(3, 7)]]]
|
367 |
+
assert dmp_add([[[QQ(1, 7)]]], [[[QQ(2, 7)]]], 2, QQ) == [[[QQ(3, 7)]]]
|
368 |
+
|
369 |
+
|
370 |
+
def test_dup_sub():
|
371 |
+
assert dup_sub([], [], ZZ) == []
|
372 |
+
assert dup_sub([ZZ(1)], [], ZZ) == [ZZ(1)]
|
373 |
+
assert dup_sub([], [ZZ(1)], ZZ) == [ZZ(-1)]
|
374 |
+
assert dup_sub([ZZ(1)], [ZZ(1)], ZZ) == []
|
375 |
+
assert dup_sub([ZZ(1)], [ZZ(2)], ZZ) == [ZZ(-1)]
|
376 |
+
|
377 |
+
assert dup_sub([ZZ(1), ZZ(2)], [ZZ(1)], ZZ) == [ZZ(1), ZZ(1)]
|
378 |
+
assert dup_sub([ZZ(1)], [ZZ(1), ZZ(2)], ZZ) == [ZZ(-1), ZZ(-1)]
|
379 |
+
|
380 |
+
assert dup_sub([ZZ(3), ZZ(
|
381 |
+
2), ZZ(1)], [ZZ(8), ZZ(9), ZZ(10)], ZZ) == [ZZ(-5), ZZ(-7), ZZ(-9)]
|
382 |
+
|
383 |
+
assert dup_sub([], [], QQ) == []
|
384 |
+
assert dup_sub([QQ(1, 2)], [], QQ) == [QQ(1, 2)]
|
385 |
+
assert dup_sub([], [QQ(1, 2)], QQ) == [QQ(-1, 2)]
|
386 |
+
assert dup_sub([QQ(1, 3)], [QQ(1, 3)], QQ) == []
|
387 |
+
assert dup_sub([QQ(1, 3)], [QQ(2, 3)], QQ) == [QQ(-1, 3)]
|
388 |
+
|
389 |
+
assert dup_sub([QQ(1, 7), QQ(2, 7)], [QQ(1)], QQ) == [QQ(1, 7), QQ(-5, 7)]
|
390 |
+
assert dup_sub([QQ(1)], [QQ(1, 7), QQ(2, 7)], QQ) == [QQ(-1, 7), QQ(5, 7)]
|
391 |
+
|
392 |
+
assert dup_sub([QQ(3, 7), QQ(2, 7), QQ(1, 7)], [QQ(
|
393 |
+
8, 7), QQ(9, 7), QQ(10, 7)], QQ) == [QQ(-5, 7), QQ(-7, 7), QQ(-9, 7)]
|
394 |
+
|
395 |
+
|
396 |
+
def test_dmp_sub():
|
397 |
+
assert dmp_sub([ZZ(1), ZZ(2)], [ZZ(1)], 0, ZZ) == \
|
398 |
+
dup_sub([ZZ(1), ZZ(2)], [ZZ(1)], ZZ)
|
399 |
+
assert dmp_sub([QQ(1, 2), QQ(2, 3)], [QQ(1)], 0, QQ) == \
|
400 |
+
dup_sub([QQ(1, 2), QQ(2, 3)], [QQ(1)], QQ)
|
401 |
+
|
402 |
+
assert dmp_sub([[[]]], [[[]]], 2, ZZ) == [[[]]]
|
403 |
+
assert dmp_sub([[[ZZ(1)]]], [[[]]], 2, ZZ) == [[[ZZ(1)]]]
|
404 |
+
assert dmp_sub([[[]]], [[[ZZ(1)]]], 2, ZZ) == [[[ZZ(-1)]]]
|
405 |
+
assert dmp_sub([[[ZZ(2)]]], [[[ZZ(1)]]], 2, ZZ) == [[[ZZ(1)]]]
|
406 |
+
assert dmp_sub([[[ZZ(1)]]], [[[ZZ(2)]]], 2, ZZ) == [[[ZZ(-1)]]]
|
407 |
+
|
408 |
+
assert dmp_sub([[[]]], [[[]]], 2, QQ) == [[[]]]
|
409 |
+
assert dmp_sub([[[QQ(1, 2)]]], [[[]]], 2, QQ) == [[[QQ(1, 2)]]]
|
410 |
+
assert dmp_sub([[[]]], [[[QQ(1, 2)]]], 2, QQ) == [[[QQ(-1, 2)]]]
|
411 |
+
assert dmp_sub([[[QQ(2, 7)]]], [[[QQ(1, 7)]]], 2, QQ) == [[[QQ(1, 7)]]]
|
412 |
+
assert dmp_sub([[[QQ(1, 7)]]], [[[QQ(2, 7)]]], 2, QQ) == [[[QQ(-1, 7)]]]
|
413 |
+
|
414 |
+
|
415 |
+
def test_dup_add_mul():
|
416 |
+
assert dup_add_mul([ZZ(1), ZZ(2), ZZ(3)], [ZZ(3), ZZ(2), ZZ(1)],
|
417 |
+
[ZZ(1), ZZ(2)], ZZ) == [ZZ(3), ZZ(9), ZZ(7), ZZ(5)]
|
418 |
+
assert dmp_add_mul([[ZZ(1), ZZ(2)], [ZZ(3)]], [[ZZ(3)], [ZZ(2), ZZ(1)]],
|
419 |
+
[[ZZ(1)], [ZZ(2)]], 1, ZZ) == [[ZZ(3)], [ZZ(3), ZZ(9)], [ZZ(4), ZZ(5)]]
|
420 |
+
|
421 |
+
|
422 |
+
def test_dup_sub_mul():
|
423 |
+
assert dup_sub_mul([ZZ(1), ZZ(2), ZZ(3)], [ZZ(3), ZZ(2), ZZ(1)],
|
424 |
+
[ZZ(1), ZZ(2)], ZZ) == [ZZ(-3), ZZ(-7), ZZ(-3), ZZ(1)]
|
425 |
+
assert dmp_sub_mul([[ZZ(1), ZZ(2)], [ZZ(3)]], [[ZZ(3)], [ZZ(2), ZZ(1)]],
|
426 |
+
[[ZZ(1)], [ZZ(2)]], 1, ZZ) == [[ZZ(-3)], [ZZ(-1), ZZ(-5)], [ZZ(-4), ZZ(1)]]
|
427 |
+
|
428 |
+
|
429 |
+
def test_dup_mul():
|
430 |
+
assert dup_mul([], [], ZZ) == []
|
431 |
+
assert dup_mul([], [ZZ(1)], ZZ) == []
|
432 |
+
assert dup_mul([ZZ(1)], [], ZZ) == []
|
433 |
+
assert dup_mul([ZZ(1)], [ZZ(1)], ZZ) == [ZZ(1)]
|
434 |
+
assert dup_mul([ZZ(5)], [ZZ(7)], ZZ) == [ZZ(35)]
|
435 |
+
|
436 |
+
assert dup_mul([], [], QQ) == []
|
437 |
+
assert dup_mul([], [QQ(1, 2)], QQ) == []
|
438 |
+
assert dup_mul([QQ(1, 2)], [], QQ) == []
|
439 |
+
assert dup_mul([QQ(1, 2)], [QQ(4, 7)], QQ) == [QQ(2, 7)]
|
440 |
+
assert dup_mul([QQ(5, 7)], [QQ(3, 7)], QQ) == [QQ(15, 49)]
|
441 |
+
|
442 |
+
f = dup_normal([3, 0, 0, 6, 1, 2], ZZ)
|
443 |
+
g = dup_normal([4, 0, 1, 0], ZZ)
|
444 |
+
h = dup_normal([12, 0, 3, 24, 4, 14, 1, 2, 0], ZZ)
|
445 |
+
|
446 |
+
assert dup_mul(f, g, ZZ) == h
|
447 |
+
assert dup_mul(g, f, ZZ) == h
|
448 |
+
|
449 |
+
f = dup_normal([2, 0, 0, 1, 7], ZZ)
|
450 |
+
h = dup_normal([4, 0, 0, 4, 28, 0, 1, 14, 49], ZZ)
|
451 |
+
|
452 |
+
assert dup_mul(f, f, ZZ) == h
|
453 |
+
|
454 |
+
K = FF(6)
|
455 |
+
|
456 |
+
assert dup_mul([K(2), K(1)], [K(3), K(4)], K) == [K(5), K(4)]
|
457 |
+
|
458 |
+
p1 = dup_normal([79, -1, 78, -94, -10, 11, 32, -19, 78, 2, -89, 30, 73, 42,
|
459 |
+
85, 77, 83, -30, -34, -2, 95, -81, 37, -49, -46, -58, -16, 37, 35, -11,
|
460 |
+
-57, -15, -31, 67, -20, 27, 76, 2, 70, 67, -65, 65, -26, -93, -44, -12,
|
461 |
+
-92, 57, -90, -57, -11, -67, -98, -69, 97, -41, 89, 33, 89, -50, 81,
|
462 |
+
-31, 60, -27, 43, 29, -77, 44, 21, -91, 32, -57, 33, 3, 53, -51, -38,
|
463 |
+
-99, -84, 23, -50, 66, -100, 1, -75, -25, 27, -60, 98, -51, -87, 6, 8,
|
464 |
+
78, -28, -95, -88, 12, -35, 26, -9, 16, -92, 55, -7, -86, 68, -39, -46,
|
465 |
+
84, 94, 45, 60, 92, 68, -75, -74, -19, 8, 75, 78, 91, 57, 34, 14, -3,
|
466 |
+
-49, 65, 78, -18, 6, -29, -80, -98, 17, 13, 58, 21, 20, 9, 37, 7, -30,
|
467 |
+
-53, -20, 34, 67, -42, 89, -22, 73, 43, -6, 5, 51, -8, -15, -52, -22,
|
468 |
+
-58, -72, -3, 43, -92, 82, 83, -2, -13, -23, -60, 16, -94, -8, -28,
|
469 |
+
-95, -72, 63, -90, 76, 6, -43, -100, -59, 76, 3, 3, 46, -85, 75, 62,
|
470 |
+
-71, -76, 88, 97, -72, -1, 30, -64, 72, -48, 14, -78, 58, 63, -91, 24,
|
471 |
+
-87, -27, -80, -100, -44, 98, 70, 100, -29, -38, 11, 77, 100, 52, 86,
|
472 |
+
65, -5, -42, -81, -38, -42, 43, -2, -70, -63, -52], ZZ)
|
473 |
+
p2 = dup_normal([65, -19, -47, 1, 90, 81, -15, -34, 25, -75, 9, -83, 50, -5,
|
474 |
+
-44, 31, 1, 70, -7, 78, 74, 80, 85, 65, 21, 41, 66, 19, -40, 63, -21,
|
475 |
+
-27, 32, 69, 83, 34, -35, 14, 81, 57, -75, 32, -67, -89, -100, -61, 46,
|
476 |
+
84, -78, -29, -50, -94, -24, -32, -68, -16, 100, -7, -72, -89, 35, 82,
|
477 |
+
58, 81, -92, 62, 5, -47, -39, -58, -72, -13, 84, 44, 55, -25, 48, -54,
|
478 |
+
-31, -56, -11, -50, -84, 10, 67, 17, 13, -14, 61, 76, -64, -44, -40,
|
479 |
+
-96, 11, -11, -94, 2, 6, 27, -6, 68, -54, 66, -74, -14, -1, -24, -73,
|
480 |
+
96, 89, -11, -89, 56, -53, 72, -43, 96, 25, 63, -31, 29, 68, 83, 91,
|
481 |
+
-93, -19, -38, -40, 40, -12, -19, -79, 44, 100, -66, -29, -77, 62, 39,
|
482 |
+
-8, 11, -97, 14, 87, 64, 21, -18, 13, 15, -59, -75, -99, -88, 57, 54,
|
483 |
+
56, -67, 6, -63, -59, -14, 28, 87, -20, -39, 84, -91, -2, 49, -75, 11,
|
484 |
+
-24, -95, 36, 66, 5, 25, -72, -40, 86, 90, 37, -33, 57, -35, 29, -18,
|
485 |
+
4, -79, 64, -17, -27, 21, 29, -5, -44, -87, -24, 52, 78, 11, -23, -53,
|
486 |
+
36, 42, 21, -68, 94, -91, -51, -21, 51, -76, 72, 31, 24, -48, -80, -9,
|
487 |
+
37, -47, -6, -8, -63, -91, 79, -79, -100, 38, -20, 38, 100, 83, -90,
|
488 |
+
87, 63, -36, 82, -19, 18, -98, -38, 26, 98, -70, 79, 92, 12, 12, 70,
|
489 |
+
74, 36, 48, -13, 31, 31, -47, -71, -12, -64, 36, -42, 32, -86, 60, 83,
|
490 |
+
70, 55, 0, 1, 29, -35, 8, -82, 8, -73, -46, -50, 43, 48, -5, -86, -72,
|
491 |
+
44, -90, 19, 19, 5, -20, 97, -13, -66, -5, 5, -69, 64, -30, 41, 51, 36,
|
492 |
+
13, -99, -61, 94, -12, 74, 98, 68, 24, 46, -97, -87, -6, -27, 82, 62,
|
493 |
+
-11, -77, 86, 66, -47, -49, -50, 13, 18, 89, -89, 46, -80, 13, 98, -35,
|
494 |
+
-36, -25, 12, 20, 26, -52, 79, 27, 79, 100, 8, 62, -58, -28, 37], ZZ)
|
495 |
+
res = dup_normal([5135, -1566, 1376, -7466, 4579, 11710, 8001, -7183,
|
496 |
+
-3737, -7439, 345, -10084, 24522, -1201, 1070, -10245, 9582, 9264,
|
497 |
+
1903, 23312, 18953, 10037, -15268, -5450, 6442, -6243, -3777, 5110,
|
498 |
+
10936, -16649, -6022, 16255, 31300, 24818, 31922, 32760, 7854, 27080,
|
499 |
+
15766, 29596, 7139, 31945, -19810, 465, -38026, -3971, 9641, 465,
|
500 |
+
-19375, 5524, -30112, -11960, -12813, 13535, 30670, 5925, -43725,
|
501 |
+
-14089, 11503, -22782, 6371, 43881, 37465, -33529, -33590, -39798,
|
502 |
+
-37854, -18466, -7908, -35825, -26020, -36923, -11332, -5699, 25166,
|
503 |
+
-3147, 19885, 12962, -20659, -1642, 27723, -56331, -24580, -11010,
|
504 |
+
-20206, 20087, -23772, -16038, 38580, 20901, -50731, 32037, -4299,
|
505 |
+
26508, 18038, -28357, 31846, -7405, -20172, -15894, 2096, 25110,
|
506 |
+
-45786, 45918, -55333, -31928, -49428, -29824, -58796, -24609, -15408,
|
507 |
+
69, -35415, -18439, 10123, -20360, -65949, 33356, -20333, 26476,
|
508 |
+
-32073, 33621, 930, 28803, -42791, 44716, 38164, 12302, -1739, 11421,
|
509 |
+
73385, -7613, 14297, 38155, -414, 77587, 24338, -21415, 29367, 42639,
|
510 |
+
13901, -288, 51027, -11827, 91260, 43407, 88521, -15186, 70572, -12049,
|
511 |
+
5090, -12208, -56374, 15520, -623, -7742, 50825, 11199, -14894, 40892,
|
512 |
+
59591, -31356, -28696, -57842, -87751, -33744, -28436, -28945, -40287,
|
513 |
+
37957, -35638, 33401, -61534, 14870, 40292, 70366, -10803, 102290,
|
514 |
+
-71719, -85251, 7902, -22409, 75009, 99927, 35298, -1175, -762, -34744,
|
515 |
+
-10587, -47574, -62629, -19581, -43659, -54369, -32250, -39545, 15225,
|
516 |
+
-24454, 11241, -67308, -30148, 39929, 37639, 14383, -73475, -77636,
|
517 |
+
-81048, -35992, 41601, -90143, 76937, -8112, 56588, 9124, -40094,
|
518 |
+
-32340, 13253, 10898, -51639, 36390, 12086, -1885, 100714, -28561,
|
519 |
+
-23784, -18735, 18916, 16286, 10742, -87360, -13697, 10689, -19477,
|
520 |
+
-29770, 5060, 20189, -8297, 112407, 47071, 47743, 45519, -4109, 17468,
|
521 |
+
-68831, 78325, -6481, -21641, -19459, 30919, 96115, 8607, 53341, 32105,
|
522 |
+
-16211, 23538, 57259, -76272, -40583, 62093, 38511, -34255, -40665,
|
523 |
+
-40604, -37606, -15274, 33156, -13885, 103636, 118678, -14101, -92682,
|
524 |
+
-100791, 2634, 63791, 98266, 19286, -34590, -21067, -71130, 25380,
|
525 |
+
-40839, -27614, -26060, 52358, -15537, 27138, -6749, 36269, -33306,
|
526 |
+
13207, -91084, -5540, -57116, 69548, 44169, -57742, -41234, -103327,
|
527 |
+
-62904, -8566, 41149, -12866, 71188, 23980, 1838, 58230, 73950, 5594,
|
528 |
+
43113, -8159, -15925, 6911, 85598, -75016, -16214, -62726, -39016,
|
529 |
+
8618, -63882, -4299, 23182, 49959, 49342, -3238, -24913, -37138, 78361,
|
530 |
+
32451, 6337, -11438, -36241, -37737, 8169, -3077, -24829, 57953, 53016,
|
531 |
+
-31511, -91168, 12599, -41849, 41576, 55275, -62539, 47814, -62319,
|
532 |
+
12300, -32076, -55137, -84881, -27546, 4312, -3433, -54382, 113288,
|
533 |
+
-30157, 74469, 18219, 79880, -2124, 98911, 17655, -33499, -32861,
|
534 |
+
47242, -37393, 99765, 14831, -44483, 10800, -31617, -52710, 37406,
|
535 |
+
22105, 29704, -20050, 13778, 43683, 36628, 8494, 60964, -22644, 31550,
|
536 |
+
-17693, 33805, -124879, -12302, 19343, 20400, -30937, -21574, -34037,
|
537 |
+
-33380, 56539, -24993, -75513, -1527, 53563, 65407, -101, 53577, 37991,
|
538 |
+
18717, -23795, -8090, -47987, -94717, 41967, 5170, -14815, -94311,
|
539 |
+
17896, -17734, -57718, -774, -38410, 24830, 29682, 76480, 58802,
|
540 |
+
-46416, -20348, -61353, -68225, -68306, 23822, -31598, 42972, 36327,
|
541 |
+
28968, -65638, -21638, 24354, -8356, 26777, 52982, -11783, -44051,
|
542 |
+
-26467, -44721, -28435, -53265, -25574, -2669, 44155, 22946, -18454,
|
543 |
+
-30718, -11252, 58420, 8711, 67447, 4425, 41749, 67543, 43162, 11793,
|
544 |
+
-41907, 20477, -13080, 6559, -6104, -13244, 42853, 42935, 29793, 36730,
|
545 |
+
-28087, 28657, 17946, 7503, 7204, 21491, -27450, -24241, -98156,
|
546 |
+
-18082, -42613, -24928, 10775, -14842, -44127, 55910, 14777, 31151, -2194,
|
547 |
+
39206, -2100, -4211, 11827, -8918, -19471, 72567, 36447, -65590, -34861,
|
548 |
+
-17147, -45303, 9025, -7333, -35473, 11101, 11638, 3441, 6626, -41800,
|
549 |
+
9416, 13679, 33508, 40502, -60542, 16358, 8392, -43242, -35864, -34127,
|
550 |
+
-48721, 35878, 30598, 28630, 20279, -19983, -14638, -24455, -1851, -11344,
|
551 |
+
45150, 42051, 26034, -28889, -32382, -3527, -14532, 22564, -22346, 477,
|
552 |
+
11706, 28338, -25972, -9185, -22867, -12522, 32120, -4424, 11339, -33913,
|
553 |
+
-7184, 5101, -23552, -17115, -31401, -6104, 21906, 25708, 8406, 6317,
|
554 |
+
-7525, 5014, 20750, 20179, 22724, 11692, 13297, 2493, -253, -16841, -17339,
|
555 |
+
-6753, -4808, 2976, -10881, -10228, -13816, -12686, 1385, 2316, 2190, -875,
|
556 |
+
-1924], ZZ)
|
557 |
+
|
558 |
+
assert dup_mul(p1, p2, ZZ) == res
|
559 |
+
|
560 |
+
p1 = dup_normal([83, -61, -86, -24, 12, 43, -88, -9, 42, 55, -66, 74, 95,
|
561 |
+
-25, -12, 68, -99, 4, 45, 6, -15, -19, 78, 65, -55, 47, -13, 17, 86,
|
562 |
+
81, -58, -27, 50, -40, -24, 39, -41, -92, 75, 90, -1, 40, -15, -27,
|
563 |
+
-35, 68, 70, -64, -40, 78, -88, -58, -39, 69, 46, 12, 28, -94, -37,
|
564 |
+
-50, -80, -96, -61, 25, 1, 71, 4, 12, 48, 4, 34, -47, -75, 5, 48, 82,
|
565 |
+
88, 23, 98, 35, 17, -10, 48, -61, -95, 47, 65, -19, -66, -57, -6, -51,
|
566 |
+
-42, -89, 66, -13, 18, 37, 90, -23, 72, 96, -53, 0, 40, -73, -52, -68,
|
567 |
+
32, -25, -53, 79, -52, 18, 44, 73, -81, 31, -90, 70, 3, 36, 48, 76,
|
568 |
+
-24, -44, 23, 98, -4, 73, 69, 88, -70, 14, -68, 94, -78, -15, -64, -97,
|
569 |
+
-70, -35, 65, 88, 49, -53, -7, 12, -45, -7, 59, -94, 99, -2, 67, -60,
|
570 |
+
-71, 29, -62, -77, 1, 51, 17, 80, -20, -47, -19, 24, -9, 39, -23, 21,
|
571 |
+
-84, 10, 84, 56, -17, -21, -66, 85, 70, 46, -51, -22, -95, 78, -60,
|
572 |
+
-96, -97, -45, 72, 35, 30, -61, -92, -93, -60, -61, 4, -4, -81, -73,
|
573 |
+
46, 53, -11, 26, 94, 45, 14, -78, 55, 84, -68, 98, 60, 23, 100, -63,
|
574 |
+
68, 96, -16, 3, 56, 21, -58, 62, -67, 66, 85, 41, -79, -22, 97, -67,
|
575 |
+
82, 82, -96, -20, -7, 48, -67, 48, -9, -39, 78], ZZ)
|
576 |
+
p2 = dup_normal([52, 88, 76, 66, 9, -64, 46, -20, -28, 69, 60, 96, -36,
|
577 |
+
-92, -30, -11, -35, 35, 55, 63, -92, -7, 25, -58, 74, 55, -6, 4, 47,
|
578 |
+
-92, -65, 67, -45, 74, -76, 59, -6, 69, 39, 24, -71, -7, 39, -45, 60,
|
579 |
+
-68, 98, 97, -79, 17, 4, 94, -64, 68, -100, -96, -2, 3, 22, 96, 54,
|
580 |
+
-77, -86, 67, 6, 57, 37, 40, 89, -78, 64, -94, -45, -92, 57, 87, -26,
|
581 |
+
36, 19, 97, 25, 77, -87, 24, 43, -5, 35, 57, 83, 71, 35, 63, 61, 96,
|
582 |
+
-22, 8, -1, 96, 43, 45, 94, -93, 36, 71, -41, -99, 85, -48, 59, 52,
|
583 |
+
-17, 5, 87, -16, -68, -54, 76, -18, 100, 91, -42, -70, -66, -88, -12,
|
584 |
+
1, 95, -82, 52, 43, -29, 3, 12, 72, -99, -43, -32, -93, -51, 16, -20,
|
585 |
+
-12, -11, 5, 33, -38, 93, -5, -74, 25, 74, -58, 93, 59, -63, -86, 63,
|
586 |
+
-20, -4, -74, -73, -95, 29, -28, 93, -91, -2, -38, -62, 77, -58, -85,
|
587 |
+
-28, 95, 38, 19, -69, 86, 94, 25, -2, -4, 47, 34, -59, 35, -48, 29,
|
588 |
+
-63, -53, 34, 29, 66, 73, 6, 92, -84, 89, 15, 81, 93, 97, 51, -72, -78,
|
589 |
+
25, 60, 90, -45, 39, 67, -84, -62, 57, 26, -32, -56, -14, -83, 76, 5,
|
590 |
+
-2, 99, -100, 28, 46, 94, -7, 53, -25, 16, -23, -36, 89, -78, -63, 31,
|
591 |
+
1, 84, -99, -52, 76, 48, 90, -76, 44, -19, 54, -36, -9, -73, -100, -69,
|
592 |
+
31, 42, 25, -39, 76, -26, -8, -14, 51, 3, 37, 45, 2, -54, 13, -34, -92,
|
593 |
+
17, -25, -65, 53, -63, 30, 4, -70, -67, 90, 52, 51, 18, -3, 31, -45,
|
594 |
+
-9, 59, 63, -87, 22, -32, 29, -38, 21, 36, -82, 27, -11], ZZ)
|
595 |
+
res = dup_normal([4316, 4132, -3532, -7974, -11303, -10069, 5484, -3330,
|
596 |
+
-5874, 7734, 4673, 11327, -9884, -8031, 17343, 21035, -10570, -9285,
|
597 |
+
15893, 3780, -14083, 8819, 17592, 10159, 7174, -11587, 8598, -16479,
|
598 |
+
3602, 25596, 9781, 12163, 150, 18749, -21782, -12307, 27578, -2757,
|
599 |
+
-12573, 12565, 6345, -18956, 19503, -15617, 1443, -16778, 36851, 23588,
|
600 |
+
-28474, 5749, 40695, -7521, -53669, -2497, -18530, 6770, 57038, 3926,
|
601 |
+
-6927, -15399, 1848, -64649, -27728, 3644, 49608, 15187, -8902, -9480,
|
602 |
+
-7398, -40425, 4824, 23767, -7594, -6905, 33089, 18786, 12192, 24670,
|
603 |
+
31114, 35334, -4501, -14676, 7107, -59018, -21352, 20777, 19661, 20653,
|
604 |
+
33754, -885, -43758, 6269, 51897, -28719, -97488, -9527, 13746, 11644,
|
605 |
+
17644, -21720, 23782, -10481, 47867, 20752, 33810, -1875, 39918, -7710,
|
606 |
+
-40840, 19808, -47075, 23066, 46616, 25201, 9287, 35436, -1602, 9645,
|
607 |
+
-11978, 13273, 15544, 33465, 20063, 44539, 11687, 27314, -6538, -37467,
|
608 |
+
14031, 32970, -27086, 41323, 29551, 65910, -39027, -37800, -22232,
|
609 |
+
8212, 46316, -28981, -55282, 50417, -44929, -44062, 73879, 37573,
|
610 |
+
-2596, -10877, -21893, -133218, -33707, -25753, -9531, 17530, 61126,
|
611 |
+
2748, -56235, 43874, -10872, -90459, -30387, 115267, -7264, -44452,
|
612 |
+
122626, 14839, -599, 10337, 57166, -67467, -54957, 63669, 1202, 18488,
|
613 |
+
52594, 7205, -97822, 612, 78069, -5403, -63562, 47236, 36873, -154827,
|
614 |
+
-26188, 82427, -39521, 5628, 7416, 5276, -53095, 47050, 26121, -42207,
|
615 |
+
79021, -13035, 2499, -66943, 29040, -72355, -23480, 23416, -12885,
|
616 |
+
-44225, -42688, -4224, 19858, 55299, 15735, 11465, 101876, -39169,
|
617 |
+
51786, 14723, 43280, -68697, 16410, 92295, 56767, 7183, 111850, 4550,
|
618 |
+
115451, -38443, -19642, -35058, 10230, 93829, 8925, 63047, 3146, 29250,
|
619 |
+
8530, 5255, -98117, -115517, -76817, -8724, 41044, 1312, -35974, 79333,
|
620 |
+
-28567, 7547, -10580, -24559, -16238, 10794, -3867, 24848, 57770,
|
621 |
+
-51536, -35040, 71033, 29853, 62029, -7125, -125585, -32169, -47907,
|
622 |
+
156811, -65176, -58006, -15757, -57861, 11963, 30225, -41901, -41681,
|
623 |
+
31310, 27982, 18613, 61760, 60746, -59096, 33499, 30097, -17997, 24032,
|
624 |
+
56442, -83042, 23747, -20931, -21978, -158752, -9883, -73598, -7987,
|
625 |
+
-7333, -125403, -116329, 30585, 53281, 51018, -29193, 88575, 8264,
|
626 |
+
-40147, -16289, 113088, 12810, -6508, 101552, -13037, 34440, -41840,
|
627 |
+
101643, 24263, 80532, 61748, 65574, 6423, -20672, 6591, -10834, -71716,
|
628 |
+
86919, -92626, 39161, 28490, 81319, 46676, 106720, 43530, 26998, 57456,
|
629 |
+
-8862, 60989, 13982, 3119, -2224, 14743, 55415, -49093, -29303, 28999,
|
630 |
+
1789, 55953, -84043, -7780, -65013, 57129, -47251, 61484, 61994,
|
631 |
+
-78361, -82778, 22487, -26894, 9756, -74637, -15519, -4360, 30115,
|
632 |
+
42433, 35475, 15286, 69768, 21509, -20214, 78675, -21163, 13596, 11443,
|
633 |
+
-10698, -53621, -53867, -24155, 64500, -42784, -33077, -16500, 873,
|
634 |
+
-52788, 14546, -38011, 36974, -39849, -34029, -94311, 83068, -50437,
|
635 |
+
-26169, -46746, 59185, 42259, -101379, -12943, 30089, -59086, 36271,
|
636 |
+
22723, -30253, -52472, -70826, -23289, 3331, -31687, 14183, -857,
|
637 |
+
-28627, 35246, -51284, 5636, -6933, 66539, 36654, 50927, 24783, 3457,
|
638 |
+
33276, 45281, 45650, -4938, -9968, -22590, 47995, 69229, 5214, -58365,
|
639 |
+
-17907, -14651, 18668, 18009, 12649, -11851, -13387, 20339, 52472,
|
640 |
+
-1087, -21458, -68647, 52295, 15849, 40608, 15323, 25164, -29368,
|
641 |
+
10352, -7055, 7159, 21695, -5373, -54849, 101103, -24963, -10511,
|
642 |
+
33227, 7659, 41042, -69588, 26718, -20515, 6441, 38135, -63, 24088,
|
643 |
+
-35364, -12785, -18709, 47843, 48533, -48575, 17251, -19394, 32878,
|
644 |
+
-9010, -9050, 504, -12407, 28076, -3429, 25324, -4210, -26119, 752,
|
645 |
+
-29203, 28251, -11324, -32140, -3366, -25135, 18702, -31588, -7047,
|
646 |
+
-24267, 49987, -14975, -33169, 37744, -7720, -9035, 16964, -2807, -421,
|
647 |
+
14114, -17097, -13662, 40628, -12139, -9427, 5369, 17551, -13232, -16211,
|
648 |
+
9804, -7422, 2677, 28635, -8280, -4906, 2908, -22558, 5604, 12459, 8756,
|
649 |
+
-3980, -4745, -18525, 7913, 5970, -16457, 20230, -6247, -13812, 2505,
|
650 |
+
11899, 1409, -15094, 22540, -18863, 137, 11123, -4516, 2290, -8594, 12150,
|
651 |
+
-10380, 3005, 5235, -7350, 2535, -858], ZZ)
|
652 |
+
|
653 |
+
assert dup_mul(p1, p2, ZZ) == res
|
654 |
+
|
655 |
+
|
656 |
+
def test_dmp_mul():
|
657 |
+
assert dmp_mul([ZZ(5)], [ZZ(7)], 0, ZZ) == \
|
658 |
+
dup_mul([ZZ(5)], [ZZ(7)], ZZ)
|
659 |
+
assert dmp_mul([QQ(5, 7)], [QQ(3, 7)], 0, QQ) == \
|
660 |
+
dup_mul([QQ(5, 7)], [QQ(3, 7)], QQ)
|
661 |
+
|
662 |
+
assert dmp_mul([[[]]], [[[]]], 2, ZZ) == [[[]]]
|
663 |
+
assert dmp_mul([[[ZZ(1)]]], [[[]]], 2, ZZ) == [[[]]]
|
664 |
+
assert dmp_mul([[[]]], [[[ZZ(1)]]], 2, ZZ) == [[[]]]
|
665 |
+
assert dmp_mul([[[ZZ(2)]]], [[[ZZ(1)]]], 2, ZZ) == [[[ZZ(2)]]]
|
666 |
+
assert dmp_mul([[[ZZ(1)]]], [[[ZZ(2)]]], 2, ZZ) == [[[ZZ(2)]]]
|
667 |
+
|
668 |
+
assert dmp_mul([[[]]], [[[]]], 2, QQ) == [[[]]]
|
669 |
+
assert dmp_mul([[[QQ(1, 2)]]], [[[]]], 2, QQ) == [[[]]]
|
670 |
+
assert dmp_mul([[[]]], [[[QQ(1, 2)]]], 2, QQ) == [[[]]]
|
671 |
+
assert dmp_mul([[[QQ(2, 7)]]], [[[QQ(1, 3)]]], 2, QQ) == [[[QQ(2, 21)]]]
|
672 |
+
assert dmp_mul([[[QQ(1, 7)]]], [[[QQ(2, 3)]]], 2, QQ) == [[[QQ(2, 21)]]]
|
673 |
+
|
674 |
+
K = FF(6)
|
675 |
+
|
676 |
+
assert dmp_mul(
|
677 |
+
[[K(2)], [K(1)]], [[K(3)], [K(4)]], 1, K) == [[K(5)], [K(4)]]
|
678 |
+
|
679 |
+
|
680 |
+
def test_dup_sqr():
|
681 |
+
assert dup_sqr([], ZZ) == []
|
682 |
+
assert dup_sqr([ZZ(2)], ZZ) == [ZZ(4)]
|
683 |
+
assert dup_sqr([ZZ(1), ZZ(2)], ZZ) == [ZZ(1), ZZ(4), ZZ(4)]
|
684 |
+
|
685 |
+
assert dup_sqr([], QQ) == []
|
686 |
+
assert dup_sqr([QQ(2, 3)], QQ) == [QQ(4, 9)]
|
687 |
+
assert dup_sqr([QQ(1, 3), QQ(2, 3)], QQ) == [QQ(1, 9), QQ(4, 9), QQ(4, 9)]
|
688 |
+
|
689 |
+
f = dup_normal([2, 0, 0, 1, 7], ZZ)
|
690 |
+
|
691 |
+
assert dup_sqr(f, ZZ) == dup_normal([4, 0, 0, 4, 28, 0, 1, 14, 49], ZZ)
|
692 |
+
|
693 |
+
K = FF(9)
|
694 |
+
|
695 |
+
assert dup_sqr([K(3), K(4)], K) == [K(6), K(7)]
|
696 |
+
|
697 |
+
|
698 |
+
def test_dmp_sqr():
|
699 |
+
assert dmp_sqr([ZZ(1), ZZ(2)], 0, ZZ) == \
|
700 |
+
dup_sqr([ZZ(1), ZZ(2)], ZZ)
|
701 |
+
|
702 |
+
assert dmp_sqr([[[]]], 2, ZZ) == [[[]]]
|
703 |
+
assert dmp_sqr([[[ZZ(2)]]], 2, ZZ) == [[[ZZ(4)]]]
|
704 |
+
|
705 |
+
assert dmp_sqr([[[]]], 2, QQ) == [[[]]]
|
706 |
+
assert dmp_sqr([[[QQ(2, 3)]]], 2, QQ) == [[[QQ(4, 9)]]]
|
707 |
+
|
708 |
+
K = FF(9)
|
709 |
+
|
710 |
+
assert dmp_sqr([[K(3)], [K(4)]], 1, K) == [[K(6)], [K(7)]]
|
711 |
+
|
712 |
+
|
713 |
+
def test_dup_pow():
|
714 |
+
assert dup_pow([], 0, ZZ) == [ZZ(1)]
|
715 |
+
assert dup_pow([], 0, QQ) == [QQ(1)]
|
716 |
+
|
717 |
+
assert dup_pow([], 1, ZZ) == []
|
718 |
+
assert dup_pow([], 7, ZZ) == []
|
719 |
+
|
720 |
+
assert dup_pow([ZZ(1)], 0, ZZ) == [ZZ(1)]
|
721 |
+
assert dup_pow([ZZ(1)], 1, ZZ) == [ZZ(1)]
|
722 |
+
assert dup_pow([ZZ(1)], 7, ZZ) == [ZZ(1)]
|
723 |
+
|
724 |
+
assert dup_pow([ZZ(3)], 0, ZZ) == [ZZ(1)]
|
725 |
+
assert dup_pow([ZZ(3)], 1, ZZ) == [ZZ(3)]
|
726 |
+
assert dup_pow([ZZ(3)], 7, ZZ) == [ZZ(2187)]
|
727 |
+
|
728 |
+
assert dup_pow([QQ(1, 1)], 0, QQ) == [QQ(1, 1)]
|
729 |
+
assert dup_pow([QQ(1, 1)], 1, QQ) == [QQ(1, 1)]
|
730 |
+
assert dup_pow([QQ(1, 1)], 7, QQ) == [QQ(1, 1)]
|
731 |
+
|
732 |
+
assert dup_pow([QQ(3, 7)], 0, QQ) == [QQ(1, 1)]
|
733 |
+
assert dup_pow([QQ(3, 7)], 1, QQ) == [QQ(3, 7)]
|
734 |
+
assert dup_pow([QQ(3, 7)], 7, QQ) == [QQ(2187, 823543)]
|
735 |
+
|
736 |
+
f = dup_normal([2, 0, 0, 1, 7], ZZ)
|
737 |
+
|
738 |
+
assert dup_pow(f, 0, ZZ) == dup_normal([1], ZZ)
|
739 |
+
assert dup_pow(f, 1, ZZ) == dup_normal([2, 0, 0, 1, 7], ZZ)
|
740 |
+
assert dup_pow(f, 2, ZZ) == dup_normal([4, 0, 0, 4, 28, 0, 1, 14, 49], ZZ)
|
741 |
+
assert dup_pow(f, 3, ZZ) == dup_normal(
|
742 |
+
[8, 0, 0, 12, 84, 0, 6, 84, 294, 1, 21, 147, 343], ZZ)
|
743 |
+
|
744 |
+
|
745 |
+
def test_dmp_pow():
|
746 |
+
assert dmp_pow([[]], 0, 1, ZZ) == [[ZZ(1)]]
|
747 |
+
assert dmp_pow([[]], 0, 1, QQ) == [[QQ(1)]]
|
748 |
+
|
749 |
+
assert dmp_pow([[]], 1, 1, ZZ) == [[]]
|
750 |
+
assert dmp_pow([[]], 7, 1, ZZ) == [[]]
|
751 |
+
|
752 |
+
assert dmp_pow([[ZZ(1)]], 0, 1, ZZ) == [[ZZ(1)]]
|
753 |
+
assert dmp_pow([[ZZ(1)]], 1, 1, ZZ) == [[ZZ(1)]]
|
754 |
+
assert dmp_pow([[ZZ(1)]], 7, 1, ZZ) == [[ZZ(1)]]
|
755 |
+
|
756 |
+
assert dmp_pow([[QQ(3, 7)]], 0, 1, QQ) == [[QQ(1, 1)]]
|
757 |
+
assert dmp_pow([[QQ(3, 7)]], 1, 1, QQ) == [[QQ(3, 7)]]
|
758 |
+
assert dmp_pow([[QQ(3, 7)]], 7, 1, QQ) == [[QQ(2187, 823543)]]
|
759 |
+
|
760 |
+
f = dup_normal([2, 0, 0, 1, 7], ZZ)
|
761 |
+
|
762 |
+
assert dmp_pow(f, 2, 0, ZZ) == dup_pow(f, 2, ZZ)
|
763 |
+
|
764 |
+
|
765 |
+
def test_dup_pdiv():
|
766 |
+
f = dup_normal([3, 1, 1, 5], ZZ)
|
767 |
+
g = dup_normal([5, -3, 1], ZZ)
|
768 |
+
|
769 |
+
q = dup_normal([15, 14], ZZ)
|
770 |
+
r = dup_normal([52, 111], ZZ)
|
771 |
+
|
772 |
+
assert dup_pdiv(f, g, ZZ) == (q, r)
|
773 |
+
assert dup_pquo(f, g, ZZ) == q
|
774 |
+
assert dup_prem(f, g, ZZ) == r
|
775 |
+
|
776 |
+
raises(ExactQuotientFailed, lambda: dup_pexquo(f, g, ZZ))
|
777 |
+
|
778 |
+
f = dup_normal([3, 1, 1, 5], QQ)
|
779 |
+
g = dup_normal([5, -3, 1], QQ)
|
780 |
+
|
781 |
+
q = dup_normal([15, 14], QQ)
|
782 |
+
r = dup_normal([52, 111], QQ)
|
783 |
+
|
784 |
+
assert dup_pdiv(f, g, QQ) == (q, r)
|
785 |
+
assert dup_pquo(f, g, QQ) == q
|
786 |
+
assert dup_prem(f, g, QQ) == r
|
787 |
+
|
788 |
+
raises(ExactQuotientFailed, lambda: dup_pexquo(f, g, QQ))
|
789 |
+
|
790 |
+
|
791 |
+
def test_dmp_pdiv():
|
792 |
+
f = dmp_normal([[1], [], [1, 0, 0]], 1, ZZ)
|
793 |
+
g = dmp_normal([[1], [-1, 0]], 1, ZZ)
|
794 |
+
|
795 |
+
q = dmp_normal([[1], [1, 0]], 1, ZZ)
|
796 |
+
r = dmp_normal([[2, 0, 0]], 1, ZZ)
|
797 |
+
|
798 |
+
assert dmp_pdiv(f, g, 1, ZZ) == (q, r)
|
799 |
+
assert dmp_pquo(f, g, 1, ZZ) == q
|
800 |
+
assert dmp_prem(f, g, 1, ZZ) == r
|
801 |
+
|
802 |
+
raises(ExactQuotientFailed, lambda: dmp_pexquo(f, g, 1, ZZ))
|
803 |
+
|
804 |
+
f = dmp_normal([[1], [], [1, 0, 0]], 1, ZZ)
|
805 |
+
g = dmp_normal([[2], [-2, 0]], 1, ZZ)
|
806 |
+
|
807 |
+
q = dmp_normal([[2], [2, 0]], 1, ZZ)
|
808 |
+
r = dmp_normal([[8, 0, 0]], 1, ZZ)
|
809 |
+
|
810 |
+
assert dmp_pdiv(f, g, 1, ZZ) == (q, r)
|
811 |
+
assert dmp_pquo(f, g, 1, ZZ) == q
|
812 |
+
assert dmp_prem(f, g, 1, ZZ) == r
|
813 |
+
|
814 |
+
raises(ExactQuotientFailed, lambda: dmp_pexquo(f, g, 1, ZZ))
|
815 |
+
|
816 |
+
|
817 |
+
def test_dup_rr_div():
|
818 |
+
raises(ZeroDivisionError, lambda: dup_rr_div([1, 2, 3], [], ZZ))
|
819 |
+
|
820 |
+
f = dup_normal([3, 1, 1, 5], ZZ)
|
821 |
+
g = dup_normal([5, -3, 1], ZZ)
|
822 |
+
|
823 |
+
q, r = [], f
|
824 |
+
|
825 |
+
assert dup_rr_div(f, g, ZZ) == (q, r)
|
826 |
+
|
827 |
+
|
828 |
+
def test_dmp_rr_div():
|
829 |
+
raises(ZeroDivisionError, lambda: dmp_rr_div([[1, 2], [3]], [[]], 1, ZZ))
|
830 |
+
|
831 |
+
f = dmp_normal([[1], [], [1, 0, 0]], 1, ZZ)
|
832 |
+
g = dmp_normal([[1], [-1, 0]], 1, ZZ)
|
833 |
+
|
834 |
+
q = dmp_normal([[1], [1, 0]], 1, ZZ)
|
835 |
+
r = dmp_normal([[2, 0, 0]], 1, ZZ)
|
836 |
+
|
837 |
+
assert dmp_rr_div(f, g, 1, ZZ) == (q, r)
|
838 |
+
|
839 |
+
f = dmp_normal([[1], [], [1, 0, 0]], 1, ZZ)
|
840 |
+
g = dmp_normal([[-1], [1, 0]], 1, ZZ)
|
841 |
+
|
842 |
+
q = dmp_normal([[-1], [-1, 0]], 1, ZZ)
|
843 |
+
r = dmp_normal([[2, 0, 0]], 1, ZZ)
|
844 |
+
|
845 |
+
assert dmp_rr_div(f, g, 1, ZZ) == (q, r)
|
846 |
+
|
847 |
+
f = dmp_normal([[1], [], [1, 0, 0]], 1, ZZ)
|
848 |
+
g = dmp_normal([[2], [-2, 0]], 1, ZZ)
|
849 |
+
|
850 |
+
q, r = [[]], f
|
851 |
+
|
852 |
+
assert dmp_rr_div(f, g, 1, ZZ) == (q, r)
|
853 |
+
|
854 |
+
|
855 |
+
def test_dup_ff_div():
|
856 |
+
raises(ZeroDivisionError, lambda: dup_ff_div([1, 2, 3], [], QQ))
|
857 |
+
|
858 |
+
f = dup_normal([3, 1, 1, 5], QQ)
|
859 |
+
g = dup_normal([5, -3, 1], QQ)
|
860 |
+
|
861 |
+
q = [QQ(3, 5), QQ(14, 25)]
|
862 |
+
r = [QQ(52, 25), QQ(111, 25)]
|
863 |
+
|
864 |
+
assert dup_ff_div(f, g, QQ) == (q, r)
|
865 |
+
|
866 |
+
def test_dup_ff_div_gmpy2():
|
867 |
+
try:
|
868 |
+
from gmpy2 import mpq
|
869 |
+
except ImportError:
|
870 |
+
return
|
871 |
+
|
872 |
+
from sympy.polys.domains import GMPYRationalField
|
873 |
+
K = GMPYRationalField()
|
874 |
+
|
875 |
+
f = [mpq(1,3), mpq(3,2)]
|
876 |
+
g = [mpq(2,1)]
|
877 |
+
assert dmp_ff_div(f, g, 0, K) == ([mpq(1,6), mpq(3,4)], [])
|
878 |
+
|
879 |
+
f = [mpq(1,2), mpq(1,3), mpq(1,4), mpq(1,5)]
|
880 |
+
g = [mpq(-1,1), mpq(1,1), mpq(-1,1)]
|
881 |
+
assert dmp_ff_div(f, g, 0, K) == ([mpq(-1,2), mpq(-5,6)], [mpq(7,12), mpq(-19,30)])
|
882 |
+
|
883 |
+
def test_dmp_ff_div():
|
884 |
+
raises(ZeroDivisionError, lambda: dmp_ff_div([[1, 2], [3]], [[]], 1, QQ))
|
885 |
+
|
886 |
+
f = dmp_normal([[1], [], [1, 0, 0]], 1, QQ)
|
887 |
+
g = dmp_normal([[1], [-1, 0]], 1, QQ)
|
888 |
+
|
889 |
+
q = [[QQ(1, 1)], [QQ(1, 1), QQ(0, 1)]]
|
890 |
+
r = [[QQ(2, 1), QQ(0, 1), QQ(0, 1)]]
|
891 |
+
|
892 |
+
assert dmp_ff_div(f, g, 1, QQ) == (q, r)
|
893 |
+
|
894 |
+
f = dmp_normal([[1], [], [1, 0, 0]], 1, QQ)
|
895 |
+
g = dmp_normal([[-1], [1, 0]], 1, QQ)
|
896 |
+
|
897 |
+
q = [[QQ(-1, 1)], [QQ(-1, 1), QQ(0, 1)]]
|
898 |
+
r = [[QQ(2, 1), QQ(0, 1), QQ(0, 1)]]
|
899 |
+
|
900 |
+
assert dmp_ff_div(f, g, 1, QQ) == (q, r)
|
901 |
+
|
902 |
+
f = dmp_normal([[1], [], [1, 0, 0]], 1, QQ)
|
903 |
+
g = dmp_normal([[2], [-2, 0]], 1, QQ)
|
904 |
+
|
905 |
+
q = [[QQ(1, 2)], [QQ(1, 2), QQ(0, 1)]]
|
906 |
+
r = [[QQ(2, 1), QQ(0, 1), QQ(0, 1)]]
|
907 |
+
|
908 |
+
assert dmp_ff_div(f, g, 1, QQ) == (q, r)
|
909 |
+
|
910 |
+
|
911 |
+
def test_dup_div():
|
912 |
+
f, g, q, r = [5, 4, 3, 2, 1], [1, 2, 3], [5, -6, 0], [20, 1]
|
913 |
+
|
914 |
+
assert dup_div(f, g, ZZ) == (q, r)
|
915 |
+
assert dup_quo(f, g, ZZ) == q
|
916 |
+
assert dup_rem(f, g, ZZ) == r
|
917 |
+
|
918 |
+
raises(ExactQuotientFailed, lambda: dup_exquo(f, g, ZZ))
|
919 |
+
|
920 |
+
f, g, q, r = [5, 4, 3, 2, 1, 0], [1, 2, 0, 0, 9], [5, -6], [15, 2, -44, 54]
|
921 |
+
|
922 |
+
assert dup_div(f, g, ZZ) == (q, r)
|
923 |
+
assert dup_quo(f, g, ZZ) == q
|
924 |
+
assert dup_rem(f, g, ZZ) == r
|
925 |
+
|
926 |
+
raises(ExactQuotientFailed, lambda: dup_exquo(f, g, ZZ))
|
927 |
+
|
928 |
+
|
929 |
+
def test_dmp_div():
|
930 |
+
f, g, q, r = [5, 4, 3, 2, 1], [1, 2, 3], [5, -6, 0], [20, 1]
|
931 |
+
|
932 |
+
assert dmp_div(f, g, 0, ZZ) == (q, r)
|
933 |
+
assert dmp_quo(f, g, 0, ZZ) == q
|
934 |
+
assert dmp_rem(f, g, 0, ZZ) == r
|
935 |
+
|
936 |
+
raises(ExactQuotientFailed, lambda: dmp_exquo(f, g, 0, ZZ))
|
937 |
+
|
938 |
+
f, g, q, r = [[[1]]], [[[2]], [1]], [[[]]], [[[1]]]
|
939 |
+
|
940 |
+
assert dmp_div(f, g, 2, ZZ) == (q, r)
|
941 |
+
assert dmp_quo(f, g, 2, ZZ) == q
|
942 |
+
assert dmp_rem(f, g, 2, ZZ) == r
|
943 |
+
|
944 |
+
raises(ExactQuotientFailed, lambda: dmp_exquo(f, g, 2, ZZ))
|
945 |
+
|
946 |
+
|
947 |
+
def test_dup_max_norm():
|
948 |
+
assert dup_max_norm([], ZZ) == 0
|
949 |
+
assert dup_max_norm([1], ZZ) == 1
|
950 |
+
|
951 |
+
assert dup_max_norm([1, 4, 2, 3], ZZ) == 4
|
952 |
+
|
953 |
+
|
954 |
+
def test_dmp_max_norm():
|
955 |
+
assert dmp_max_norm([[[]]], 2, ZZ) == 0
|
956 |
+
assert dmp_max_norm([[[1]]], 2, ZZ) == 1
|
957 |
+
|
958 |
+
assert dmp_max_norm(f_0, 2, ZZ) == 6
|
959 |
+
|
960 |
+
|
961 |
+
def test_dup_l1_norm():
|
962 |
+
assert dup_l1_norm([], ZZ) == 0
|
963 |
+
assert dup_l1_norm([1], ZZ) == 1
|
964 |
+
assert dup_l1_norm([1, 4, 2, 3], ZZ) == 10
|
965 |
+
|
966 |
+
|
967 |
+
def test_dmp_l1_norm():
|
968 |
+
assert dmp_l1_norm([[[]]], 2, ZZ) == 0
|
969 |
+
assert dmp_l1_norm([[[1]]], 2, ZZ) == 1
|
970 |
+
|
971 |
+
assert dmp_l1_norm(f_0, 2, ZZ) == 31
|
972 |
+
|
973 |
+
|
974 |
+
def test_dup_l2_norm_squared():
|
975 |
+
assert dup_l2_norm_squared([], ZZ) == 0
|
976 |
+
assert dup_l2_norm_squared([1], ZZ) == 1
|
977 |
+
assert dup_l2_norm_squared([1, 4, 2, 3], ZZ) == 30
|
978 |
+
|
979 |
+
|
980 |
+
def test_dmp_l2_norm_squared():
|
981 |
+
assert dmp_l2_norm_squared([[[]]], 2, ZZ) == 0
|
982 |
+
assert dmp_l2_norm_squared([[[1]]], 2, ZZ) == 1
|
983 |
+
assert dmp_l2_norm_squared(f_0, 2, ZZ) == 111
|
984 |
+
|
985 |
+
|
986 |
+
def test_dup_expand():
|
987 |
+
assert dup_expand((), ZZ) == [1]
|
988 |
+
assert dup_expand(([1, 2, 3], [1, 2], [7, 5, 4, 3]), ZZ) == \
|
989 |
+
dup_mul([1, 2, 3], dup_mul([1, 2], [7, 5, 4, 3], ZZ), ZZ)
|
990 |
+
|
991 |
+
|
992 |
+
def test_dmp_expand():
|
993 |
+
assert dmp_expand((), 1, ZZ) == [[1]]
|
994 |
+
assert dmp_expand(([[1], [2], [3]], [[1], [2]], [[7], [5], [4], [3]]), 1, ZZ) == \
|
995 |
+
dmp_mul([[1], [2], [3]], dmp_mul([[1], [2]], [[7], [5], [
|
996 |
+
4], [3]], 1, ZZ), 1, ZZ)
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_densetools.py
ADDED
@@ -0,0 +1,668 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for dense recursive polynomials' tools. """
|
2 |
+
|
3 |
+
from sympy.polys.densebasic import (
|
4 |
+
dup_normal, dmp_normal,
|
5 |
+
dup_from_raw_dict,
|
6 |
+
dmp_convert, dmp_swap,
|
7 |
+
)
|
8 |
+
|
9 |
+
from sympy.polys.densearith import dmp_mul_ground
|
10 |
+
|
11 |
+
from sympy.polys.densetools import (
|
12 |
+
dup_clear_denoms, dmp_clear_denoms,
|
13 |
+
dup_integrate, dmp_integrate, dmp_integrate_in,
|
14 |
+
dup_diff, dmp_diff, dmp_diff_in,
|
15 |
+
dup_eval, dmp_eval, dmp_eval_in,
|
16 |
+
dmp_eval_tail, dmp_diff_eval_in,
|
17 |
+
dup_trunc, dmp_trunc, dmp_ground_trunc,
|
18 |
+
dup_monic, dmp_ground_monic,
|
19 |
+
dup_content, dmp_ground_content,
|
20 |
+
dup_primitive, dmp_ground_primitive,
|
21 |
+
dup_extract, dmp_ground_extract,
|
22 |
+
dup_real_imag,
|
23 |
+
dup_mirror, dup_scale, dup_shift,
|
24 |
+
dup_transform,
|
25 |
+
dup_compose, dmp_compose,
|
26 |
+
dup_decompose,
|
27 |
+
dmp_lift,
|
28 |
+
dup_sign_variations,
|
29 |
+
dup_revert, dmp_revert,
|
30 |
+
)
|
31 |
+
|
32 |
+
from sympy.polys.polyclasses import ANP
|
33 |
+
|
34 |
+
from sympy.polys.polyerrors import (
|
35 |
+
MultivariatePolynomialError,
|
36 |
+
ExactQuotientFailed,
|
37 |
+
NotReversible,
|
38 |
+
DomainError,
|
39 |
+
)
|
40 |
+
|
41 |
+
from sympy.polys.specialpolys import f_polys
|
42 |
+
|
43 |
+
from sympy.polys.domains import FF, ZZ, QQ, EX
|
44 |
+
from sympy.polys.rings import ring
|
45 |
+
|
46 |
+
from sympy.core.numbers import I
|
47 |
+
from sympy.core.singleton import S
|
48 |
+
from sympy.functions.elementary.trigonometric import sin
|
49 |
+
|
50 |
+
from sympy.abc import x
|
51 |
+
|
52 |
+
from sympy.testing.pytest import raises
|
53 |
+
|
54 |
+
f_0, f_1, f_2, f_3, f_4, f_5, f_6 = [ f.to_dense() for f in f_polys() ]
|
55 |
+
|
56 |
+
def test_dup_integrate():
|
57 |
+
assert dup_integrate([], 1, QQ) == []
|
58 |
+
assert dup_integrate([], 2, QQ) == []
|
59 |
+
|
60 |
+
assert dup_integrate([QQ(1)], 1, QQ) == [QQ(1), QQ(0)]
|
61 |
+
assert dup_integrate([QQ(1)], 2, QQ) == [QQ(1, 2), QQ(0), QQ(0)]
|
62 |
+
|
63 |
+
assert dup_integrate([QQ(1), QQ(2), QQ(3)], 0, QQ) == \
|
64 |
+
[QQ(1), QQ(2), QQ(3)]
|
65 |
+
assert dup_integrate([QQ(1), QQ(2), QQ(3)], 1, QQ) == \
|
66 |
+
[QQ(1, 3), QQ(1), QQ(3), QQ(0)]
|
67 |
+
assert dup_integrate([QQ(1), QQ(2), QQ(3)], 2, QQ) == \
|
68 |
+
[QQ(1, 12), QQ(1, 3), QQ(3, 2), QQ(0), QQ(0)]
|
69 |
+
assert dup_integrate([QQ(1), QQ(2), QQ(3)], 3, QQ) == \
|
70 |
+
[QQ(1, 60), QQ(1, 12), QQ(1, 2), QQ(0), QQ(0), QQ(0)]
|
71 |
+
|
72 |
+
assert dup_integrate(dup_from_raw_dict({29: QQ(17)}, QQ), 3, QQ) == \
|
73 |
+
dup_from_raw_dict({32: QQ(17, 29760)}, QQ)
|
74 |
+
|
75 |
+
assert dup_integrate(dup_from_raw_dict({29: QQ(17), 5: QQ(1, 2)}, QQ), 3, QQ) == \
|
76 |
+
dup_from_raw_dict({32: QQ(17, 29760), 8: QQ(1, 672)}, QQ)
|
77 |
+
|
78 |
+
|
79 |
+
def test_dmp_integrate():
|
80 |
+
assert dmp_integrate([[[]]], 1, 2, QQ) == [[[]]]
|
81 |
+
assert dmp_integrate([[[]]], 2, 2, QQ) == [[[]]]
|
82 |
+
|
83 |
+
assert dmp_integrate([[[QQ(1)]]], 1, 2, QQ) == [[[QQ(1)]], [[]]]
|
84 |
+
assert dmp_integrate([[[QQ(1)]]], 2, 2, QQ) == [[[QQ(1, 2)]], [[]], [[]]]
|
85 |
+
|
86 |
+
assert dmp_integrate([[QQ(1)], [QQ(2)], [QQ(3)]], 0, 1, QQ) == \
|
87 |
+
[[QQ(1)], [QQ(2)], [QQ(3)]]
|
88 |
+
assert dmp_integrate([[QQ(1)], [QQ(2)], [QQ(3)]], 1, 1, QQ) == \
|
89 |
+
[[QQ(1, 3)], [QQ(1)], [QQ(3)], []]
|
90 |
+
assert dmp_integrate([[QQ(1)], [QQ(2)], [QQ(3)]], 2, 1, QQ) == \
|
91 |
+
[[QQ(1, 12)], [QQ(1, 3)], [QQ(3, 2)], [], []]
|
92 |
+
assert dmp_integrate([[QQ(1)], [QQ(2)], [QQ(3)]], 3, 1, QQ) == \
|
93 |
+
[[QQ(1, 60)], [QQ(1, 12)], [QQ(1, 2)], [], [], []]
|
94 |
+
|
95 |
+
|
96 |
+
def test_dmp_integrate_in():
|
97 |
+
f = dmp_convert(f_6, 3, ZZ, QQ)
|
98 |
+
|
99 |
+
assert dmp_integrate_in(f, 2, 1, 3, QQ) == \
|
100 |
+
dmp_swap(
|
101 |
+
dmp_integrate(dmp_swap(f, 0, 1, 3, QQ), 2, 3, QQ), 0, 1, 3, QQ)
|
102 |
+
assert dmp_integrate_in(f, 3, 1, 3, QQ) == \
|
103 |
+
dmp_swap(
|
104 |
+
dmp_integrate(dmp_swap(f, 0, 1, 3, QQ), 3, 3, QQ), 0, 1, 3, QQ)
|
105 |
+
assert dmp_integrate_in(f, 2, 2, 3, QQ) == \
|
106 |
+
dmp_swap(
|
107 |
+
dmp_integrate(dmp_swap(f, 0, 2, 3, QQ), 2, 3, QQ), 0, 2, 3, QQ)
|
108 |
+
assert dmp_integrate_in(f, 3, 2, 3, QQ) == \
|
109 |
+
dmp_swap(
|
110 |
+
dmp_integrate(dmp_swap(f, 0, 2, 3, QQ), 3, 3, QQ), 0, 2, 3, QQ)
|
111 |
+
|
112 |
+
|
113 |
+
def test_dup_diff():
|
114 |
+
assert dup_diff([], 1, ZZ) == []
|
115 |
+
assert dup_diff([7], 1, ZZ) == []
|
116 |
+
assert dup_diff([2, 7], 1, ZZ) == [2]
|
117 |
+
assert dup_diff([1, 2, 1], 1, ZZ) == [2, 2]
|
118 |
+
assert dup_diff([1, 2, 3, 4], 1, ZZ) == [3, 4, 3]
|
119 |
+
assert dup_diff([1, -1, 0, 0, 2], 1, ZZ) == [4, -3, 0, 0]
|
120 |
+
|
121 |
+
f = dup_normal([17, 34, 56, -345, 23, 76, 0, 0, 12, 3, 7], ZZ)
|
122 |
+
|
123 |
+
assert dup_diff(f, 0, ZZ) == f
|
124 |
+
assert dup_diff(f, 1, ZZ) == [170, 306, 448, -2415, 138, 380, 0, 0, 24, 3]
|
125 |
+
assert dup_diff(f, 2, ZZ) == dup_diff(dup_diff(f, 1, ZZ), 1, ZZ)
|
126 |
+
assert dup_diff(
|
127 |
+
f, 3, ZZ) == dup_diff(dup_diff(dup_diff(f, 1, ZZ), 1, ZZ), 1, ZZ)
|
128 |
+
|
129 |
+
K = FF(3)
|
130 |
+
f = dup_normal([17, 34, 56, -345, 23, 76, 0, 0, 12, 3, 7], K)
|
131 |
+
|
132 |
+
assert dup_diff(f, 1, K) == dup_normal([2, 0, 1, 0, 0, 2, 0, 0, 0, 0], K)
|
133 |
+
assert dup_diff(f, 2, K) == dup_normal([1, 0, 0, 2, 0, 0, 0], K)
|
134 |
+
assert dup_diff(f, 3, K) == dup_normal([], K)
|
135 |
+
|
136 |
+
assert dup_diff(f, 0, K) == f
|
137 |
+
assert dup_diff(f, 2, K) == dup_diff(dup_diff(f, 1, K), 1, K)
|
138 |
+
assert dup_diff(
|
139 |
+
f, 3, K) == dup_diff(dup_diff(dup_diff(f, 1, K), 1, K), 1, K)
|
140 |
+
|
141 |
+
|
142 |
+
def test_dmp_diff():
|
143 |
+
assert dmp_diff([], 1, 0, ZZ) == []
|
144 |
+
assert dmp_diff([[]], 1, 1, ZZ) == [[]]
|
145 |
+
assert dmp_diff([[[]]], 1, 2, ZZ) == [[[]]]
|
146 |
+
|
147 |
+
assert dmp_diff([[[1], [2]]], 1, 2, ZZ) == [[[]]]
|
148 |
+
|
149 |
+
assert dmp_diff([[[1]], [[]]], 1, 2, ZZ) == [[[1]]]
|
150 |
+
assert dmp_diff([[[3]], [[1]], [[]]], 1, 2, ZZ) == [[[6]], [[1]]]
|
151 |
+
|
152 |
+
assert dmp_diff([1, -1, 0, 0, 2], 1, 0, ZZ) == \
|
153 |
+
dup_diff([1, -1, 0, 0, 2], 1, ZZ)
|
154 |
+
|
155 |
+
assert dmp_diff(f_6, 0, 3, ZZ) == f_6
|
156 |
+
assert dmp_diff(f_6, 1, 3, ZZ) == [[[[8460]], [[]]],
|
157 |
+
[[[135, 0, 0], [], [], [-135, 0, 0]]],
|
158 |
+
[[[]]],
|
159 |
+
[[[-423]], [[-47]], [[]], [[141], [], [94, 0], []], [[]]]]
|
160 |
+
assert dmp_diff(
|
161 |
+
f_6, 2, 3, ZZ) == dmp_diff(dmp_diff(f_6, 1, 3, ZZ), 1, 3, ZZ)
|
162 |
+
assert dmp_diff(f_6, 3, 3, ZZ) == dmp_diff(
|
163 |
+
dmp_diff(dmp_diff(f_6, 1, 3, ZZ), 1, 3, ZZ), 1, 3, ZZ)
|
164 |
+
|
165 |
+
K = FF(23)
|
166 |
+
F_6 = dmp_normal(f_6, 3, K)
|
167 |
+
|
168 |
+
assert dmp_diff(F_6, 0, 3, K) == F_6
|
169 |
+
assert dmp_diff(F_6, 1, 3, K) == dmp_diff(F_6, 1, 3, K)
|
170 |
+
assert dmp_diff(F_6, 2, 3, K) == dmp_diff(dmp_diff(F_6, 1, 3, K), 1, 3, K)
|
171 |
+
assert dmp_diff(F_6, 3, 3, K) == dmp_diff(
|
172 |
+
dmp_diff(dmp_diff(F_6, 1, 3, K), 1, 3, K), 1, 3, K)
|
173 |
+
|
174 |
+
|
175 |
+
def test_dmp_diff_in():
|
176 |
+
assert dmp_diff_in(f_6, 2, 1, 3, ZZ) == \
|
177 |
+
dmp_swap(dmp_diff(dmp_swap(f_6, 0, 1, 3, ZZ), 2, 3, ZZ), 0, 1, 3, ZZ)
|
178 |
+
assert dmp_diff_in(f_6, 3, 1, 3, ZZ) == \
|
179 |
+
dmp_swap(dmp_diff(dmp_swap(f_6, 0, 1, 3, ZZ), 3, 3, ZZ), 0, 1, 3, ZZ)
|
180 |
+
assert dmp_diff_in(f_6, 2, 2, 3, ZZ) == \
|
181 |
+
dmp_swap(dmp_diff(dmp_swap(f_6, 0, 2, 3, ZZ), 2, 3, ZZ), 0, 2, 3, ZZ)
|
182 |
+
assert dmp_diff_in(f_6, 3, 2, 3, ZZ) == \
|
183 |
+
dmp_swap(dmp_diff(dmp_swap(f_6, 0, 2, 3, ZZ), 3, 3, ZZ), 0, 2, 3, ZZ)
|
184 |
+
|
185 |
+
|
186 |
+
def test_dup_eval():
|
187 |
+
assert dup_eval([], 7, ZZ) == 0
|
188 |
+
assert dup_eval([1, 2], 0, ZZ) == 2
|
189 |
+
assert dup_eval([1, 2, 3], 7, ZZ) == 66
|
190 |
+
|
191 |
+
|
192 |
+
def test_dmp_eval():
|
193 |
+
assert dmp_eval([], 3, 0, ZZ) == 0
|
194 |
+
|
195 |
+
assert dmp_eval([[]], 3, 1, ZZ) == []
|
196 |
+
assert dmp_eval([[[]]], 3, 2, ZZ) == [[]]
|
197 |
+
|
198 |
+
assert dmp_eval([[1, 2]], 0, 1, ZZ) == [1, 2]
|
199 |
+
|
200 |
+
assert dmp_eval([[[1]]], 3, 2, ZZ) == [[1]]
|
201 |
+
assert dmp_eval([[[1, 2]]], 3, 2, ZZ) == [[1, 2]]
|
202 |
+
|
203 |
+
assert dmp_eval([[3, 2], [1, 2]], 3, 1, ZZ) == [10, 8]
|
204 |
+
assert dmp_eval([[[3, 2]], [[1, 2]]], 3, 2, ZZ) == [[10, 8]]
|
205 |
+
|
206 |
+
|
207 |
+
def test_dmp_eval_in():
|
208 |
+
assert dmp_eval_in(
|
209 |
+
f_6, -2, 1, 3, ZZ) == dmp_eval(dmp_swap(f_6, 0, 1, 3, ZZ), -2, 3, ZZ)
|
210 |
+
assert dmp_eval_in(
|
211 |
+
f_6, 7, 1, 3, ZZ) == dmp_eval(dmp_swap(f_6, 0, 1, 3, ZZ), 7, 3, ZZ)
|
212 |
+
assert dmp_eval_in(f_6, -2, 2, 3, ZZ) == dmp_swap(
|
213 |
+
dmp_eval(dmp_swap(f_6, 0, 2, 3, ZZ), -2, 3, ZZ), 0, 1, 2, ZZ)
|
214 |
+
assert dmp_eval_in(f_6, 7, 2, 3, ZZ) == dmp_swap(
|
215 |
+
dmp_eval(dmp_swap(f_6, 0, 2, 3, ZZ), 7, 3, ZZ), 0, 1, 2, ZZ)
|
216 |
+
|
217 |
+
f = [[[int(45)]], [[]], [[]], [[int(-9)], [-1], [], [int(3), int(0), int(10), int(0)]]]
|
218 |
+
|
219 |
+
assert dmp_eval_in(f, -2, 2, 2, ZZ) == \
|
220 |
+
[[45], [], [], [-9, -1, 0, -44]]
|
221 |
+
|
222 |
+
|
223 |
+
def test_dmp_eval_tail():
|
224 |
+
assert dmp_eval_tail([[]], [1], 1, ZZ) == []
|
225 |
+
assert dmp_eval_tail([[[]]], [1], 2, ZZ) == [[]]
|
226 |
+
assert dmp_eval_tail([[[]]], [1, 2], 2, ZZ) == []
|
227 |
+
|
228 |
+
assert dmp_eval_tail(f_0, [], 2, ZZ) == f_0
|
229 |
+
|
230 |
+
assert dmp_eval_tail(f_0, [1, -17, 8], 2, ZZ) == 84496
|
231 |
+
assert dmp_eval_tail(f_0, [-17, 8], 2, ZZ) == [-1409, 3, 85902]
|
232 |
+
assert dmp_eval_tail(f_0, [8], 2, ZZ) == [[83, 2], [3], [302, 81, 1]]
|
233 |
+
|
234 |
+
assert dmp_eval_tail(f_1, [-17, 8], 2, ZZ) == [-136, 15699, 9166, -27144]
|
235 |
+
|
236 |
+
assert dmp_eval_tail(
|
237 |
+
f_2, [-12, 3], 2, ZZ) == [-1377, 0, -702, -1224, 0, -624]
|
238 |
+
assert dmp_eval_tail(
|
239 |
+
f_3, [-12, 3], 2, ZZ) == [144, 82, -5181, -28872, -14868, -540]
|
240 |
+
|
241 |
+
assert dmp_eval_tail(
|
242 |
+
f_4, [25, -1], 2, ZZ) == [152587890625, 9765625, -59605407714843750,
|
243 |
+
-3839159765625, -1562475, 9536712644531250, 610349546750, -4, 24414375000, 1562520]
|
244 |
+
assert dmp_eval_tail(f_5, [25, -1], 2, ZZ) == [-1, -78, -2028, -17576]
|
245 |
+
|
246 |
+
assert dmp_eval_tail(f_6, [0, 2, 4], 3, ZZ) == [5040, 0, 0, 4480]
|
247 |
+
|
248 |
+
|
249 |
+
def test_dmp_diff_eval_in():
|
250 |
+
assert dmp_diff_eval_in(f_6, 2, 7, 1, 3, ZZ) == \
|
251 |
+
dmp_eval(dmp_diff(dmp_swap(f_6, 0, 1, 3, ZZ), 2, 3, ZZ), 7, 3, ZZ)
|
252 |
+
|
253 |
+
|
254 |
+
def test_dup_revert():
|
255 |
+
f = [-QQ(1, 720), QQ(0), QQ(1, 24), QQ(0), -QQ(1, 2), QQ(0), QQ(1)]
|
256 |
+
g = [QQ(61, 720), QQ(0), QQ(5, 24), QQ(0), QQ(1, 2), QQ(0), QQ(1)]
|
257 |
+
|
258 |
+
assert dup_revert(f, 8, QQ) == g
|
259 |
+
|
260 |
+
raises(NotReversible, lambda: dup_revert([QQ(1), QQ(0)], 3, QQ))
|
261 |
+
|
262 |
+
|
263 |
+
def test_dmp_revert():
|
264 |
+
f = [-QQ(1, 720), QQ(0), QQ(1, 24), QQ(0), -QQ(1, 2), QQ(0), QQ(1)]
|
265 |
+
g = [QQ(61, 720), QQ(0), QQ(5, 24), QQ(0), QQ(1, 2), QQ(0), QQ(1)]
|
266 |
+
|
267 |
+
assert dmp_revert(f, 8, 0, QQ) == g
|
268 |
+
|
269 |
+
raises(MultivariatePolynomialError, lambda: dmp_revert([[1]], 2, 1, QQ))
|
270 |
+
|
271 |
+
|
272 |
+
def test_dup_trunc():
|
273 |
+
assert dup_trunc([1, 2, 3, 4, 5, 6], ZZ(3), ZZ) == [1, -1, 0, 1, -1, 0]
|
274 |
+
assert dup_trunc([6, 5, 4, 3, 2, 1], ZZ(3), ZZ) == [-1, 1, 0, -1, 1]
|
275 |
+
|
276 |
+
|
277 |
+
def test_dmp_trunc():
|
278 |
+
assert dmp_trunc([[]], [1, 2], 2, ZZ) == [[]]
|
279 |
+
assert dmp_trunc([[1, 2], [1, 4, 1], [1]], [1, 2], 1, ZZ) == [[-3], [1]]
|
280 |
+
|
281 |
+
|
282 |
+
def test_dmp_ground_trunc():
|
283 |
+
assert dmp_ground_trunc(f_0, ZZ(3), 2, ZZ) == \
|
284 |
+
dmp_normal(
|
285 |
+
[[[1, -1, 0], [-1]], [[]], [[1, -1, 0], [1, -1, 1], [1]]], 2, ZZ)
|
286 |
+
|
287 |
+
|
288 |
+
def test_dup_monic():
|
289 |
+
assert dup_monic([3, 6, 9], ZZ) == [1, 2, 3]
|
290 |
+
|
291 |
+
raises(ExactQuotientFailed, lambda: dup_monic([3, 4, 5], ZZ))
|
292 |
+
|
293 |
+
assert dup_monic([], QQ) == []
|
294 |
+
assert dup_monic([QQ(1)], QQ) == [QQ(1)]
|
295 |
+
assert dup_monic([QQ(7), QQ(1), QQ(21)], QQ) == [QQ(1), QQ(1, 7), QQ(3)]
|
296 |
+
|
297 |
+
|
298 |
+
def test_dmp_ground_monic():
|
299 |
+
assert dmp_ground_monic([[3], [6], [9]], 1, ZZ) == [[1], [2], [3]]
|
300 |
+
|
301 |
+
raises(
|
302 |
+
ExactQuotientFailed, lambda: dmp_ground_monic([[3], [4], [5]], 1, ZZ))
|
303 |
+
|
304 |
+
assert dmp_ground_monic([[]], 1, QQ) == [[]]
|
305 |
+
assert dmp_ground_monic([[QQ(1)]], 1, QQ) == [[QQ(1)]]
|
306 |
+
assert dmp_ground_monic(
|
307 |
+
[[QQ(7)], [QQ(1)], [QQ(21)]], 1, QQ) == [[QQ(1)], [QQ(1, 7)], [QQ(3)]]
|
308 |
+
|
309 |
+
|
310 |
+
def test_dup_content():
|
311 |
+
assert dup_content([], ZZ) == ZZ(0)
|
312 |
+
assert dup_content([1], ZZ) == ZZ(1)
|
313 |
+
assert dup_content([-1], ZZ) == ZZ(1)
|
314 |
+
assert dup_content([1, 1], ZZ) == ZZ(1)
|
315 |
+
assert dup_content([2, 2], ZZ) == ZZ(2)
|
316 |
+
assert dup_content([1, 2, 1], ZZ) == ZZ(1)
|
317 |
+
assert dup_content([2, 4, 2], ZZ) == ZZ(2)
|
318 |
+
|
319 |
+
assert dup_content([QQ(2, 3), QQ(4, 9)], QQ) == QQ(2, 9)
|
320 |
+
assert dup_content([QQ(2, 3), QQ(4, 5)], QQ) == QQ(2, 15)
|
321 |
+
|
322 |
+
|
323 |
+
def test_dmp_ground_content():
|
324 |
+
assert dmp_ground_content([[]], 1, ZZ) == ZZ(0)
|
325 |
+
assert dmp_ground_content([[]], 1, QQ) == QQ(0)
|
326 |
+
assert dmp_ground_content([[1]], 1, ZZ) == ZZ(1)
|
327 |
+
assert dmp_ground_content([[-1]], 1, ZZ) == ZZ(1)
|
328 |
+
assert dmp_ground_content([[1], [1]], 1, ZZ) == ZZ(1)
|
329 |
+
assert dmp_ground_content([[2], [2]], 1, ZZ) == ZZ(2)
|
330 |
+
assert dmp_ground_content([[1], [2], [1]], 1, ZZ) == ZZ(1)
|
331 |
+
assert dmp_ground_content([[2], [4], [2]], 1, ZZ) == ZZ(2)
|
332 |
+
|
333 |
+
assert dmp_ground_content([[QQ(2, 3)], [QQ(4, 9)]], 1, QQ) == QQ(2, 9)
|
334 |
+
assert dmp_ground_content([[QQ(2, 3)], [QQ(4, 5)]], 1, QQ) == QQ(2, 15)
|
335 |
+
|
336 |
+
assert dmp_ground_content(f_0, 2, ZZ) == ZZ(1)
|
337 |
+
assert dmp_ground_content(
|
338 |
+
dmp_mul_ground(f_0, ZZ(2), 2, ZZ), 2, ZZ) == ZZ(2)
|
339 |
+
|
340 |
+
assert dmp_ground_content(f_1, 2, ZZ) == ZZ(1)
|
341 |
+
assert dmp_ground_content(
|
342 |
+
dmp_mul_ground(f_1, ZZ(3), 2, ZZ), 2, ZZ) == ZZ(3)
|
343 |
+
|
344 |
+
assert dmp_ground_content(f_2, 2, ZZ) == ZZ(1)
|
345 |
+
assert dmp_ground_content(
|
346 |
+
dmp_mul_ground(f_2, ZZ(4), 2, ZZ), 2, ZZ) == ZZ(4)
|
347 |
+
|
348 |
+
assert dmp_ground_content(f_3, 2, ZZ) == ZZ(1)
|
349 |
+
assert dmp_ground_content(
|
350 |
+
dmp_mul_ground(f_3, ZZ(5), 2, ZZ), 2, ZZ) == ZZ(5)
|
351 |
+
|
352 |
+
assert dmp_ground_content(f_4, 2, ZZ) == ZZ(1)
|
353 |
+
assert dmp_ground_content(
|
354 |
+
dmp_mul_ground(f_4, ZZ(6), 2, ZZ), 2, ZZ) == ZZ(6)
|
355 |
+
|
356 |
+
assert dmp_ground_content(f_5, 2, ZZ) == ZZ(1)
|
357 |
+
assert dmp_ground_content(
|
358 |
+
dmp_mul_ground(f_5, ZZ(7), 2, ZZ), 2, ZZ) == ZZ(7)
|
359 |
+
|
360 |
+
assert dmp_ground_content(f_6, 3, ZZ) == ZZ(1)
|
361 |
+
assert dmp_ground_content(
|
362 |
+
dmp_mul_ground(f_6, ZZ(8), 3, ZZ), 3, ZZ) == ZZ(8)
|
363 |
+
|
364 |
+
|
365 |
+
def test_dup_primitive():
|
366 |
+
assert dup_primitive([], ZZ) == (ZZ(0), [])
|
367 |
+
assert dup_primitive([ZZ(1)], ZZ) == (ZZ(1), [ZZ(1)])
|
368 |
+
assert dup_primitive([ZZ(1), ZZ(1)], ZZ) == (ZZ(1), [ZZ(1), ZZ(1)])
|
369 |
+
assert dup_primitive([ZZ(2), ZZ(2)], ZZ) == (ZZ(2), [ZZ(1), ZZ(1)])
|
370 |
+
assert dup_primitive(
|
371 |
+
[ZZ(1), ZZ(2), ZZ(1)], ZZ) == (ZZ(1), [ZZ(1), ZZ(2), ZZ(1)])
|
372 |
+
assert dup_primitive(
|
373 |
+
[ZZ(2), ZZ(4), ZZ(2)], ZZ) == (ZZ(2), [ZZ(1), ZZ(2), ZZ(1)])
|
374 |
+
|
375 |
+
assert dup_primitive([], QQ) == (QQ(0), [])
|
376 |
+
assert dup_primitive([QQ(1)], QQ) == (QQ(1), [QQ(1)])
|
377 |
+
assert dup_primitive([QQ(1), QQ(1)], QQ) == (QQ(1), [QQ(1), QQ(1)])
|
378 |
+
assert dup_primitive([QQ(2), QQ(2)], QQ) == (QQ(2), [QQ(1), QQ(1)])
|
379 |
+
assert dup_primitive(
|
380 |
+
[QQ(1), QQ(2), QQ(1)], QQ) == (QQ(1), [QQ(1), QQ(2), QQ(1)])
|
381 |
+
assert dup_primitive(
|
382 |
+
[QQ(2), QQ(4), QQ(2)], QQ) == (QQ(2), [QQ(1), QQ(2), QQ(1)])
|
383 |
+
|
384 |
+
assert dup_primitive(
|
385 |
+
[QQ(2, 3), QQ(4, 9)], QQ) == (QQ(2, 9), [QQ(3), QQ(2)])
|
386 |
+
assert dup_primitive(
|
387 |
+
[QQ(2, 3), QQ(4, 5)], QQ) == (QQ(2, 15), [QQ(5), QQ(6)])
|
388 |
+
|
389 |
+
|
390 |
+
def test_dmp_ground_primitive():
|
391 |
+
assert dmp_ground_primitive([[]], 1, ZZ) == (ZZ(0), [[]])
|
392 |
+
|
393 |
+
assert dmp_ground_primitive(f_0, 2, ZZ) == (ZZ(1), f_0)
|
394 |
+
assert dmp_ground_primitive(
|
395 |
+
dmp_mul_ground(f_0, ZZ(2), 2, ZZ), 2, ZZ) == (ZZ(2), f_0)
|
396 |
+
|
397 |
+
assert dmp_ground_primitive(f_1, 2, ZZ) == (ZZ(1), f_1)
|
398 |
+
assert dmp_ground_primitive(
|
399 |
+
dmp_mul_ground(f_1, ZZ(3), 2, ZZ), 2, ZZ) == (ZZ(3), f_1)
|
400 |
+
|
401 |
+
assert dmp_ground_primitive(f_2, 2, ZZ) == (ZZ(1), f_2)
|
402 |
+
assert dmp_ground_primitive(
|
403 |
+
dmp_mul_ground(f_2, ZZ(4), 2, ZZ), 2, ZZ) == (ZZ(4), f_2)
|
404 |
+
|
405 |
+
assert dmp_ground_primitive(f_3, 2, ZZ) == (ZZ(1), f_3)
|
406 |
+
assert dmp_ground_primitive(
|
407 |
+
dmp_mul_ground(f_3, ZZ(5), 2, ZZ), 2, ZZ) == (ZZ(5), f_3)
|
408 |
+
|
409 |
+
assert dmp_ground_primitive(f_4, 2, ZZ) == (ZZ(1), f_4)
|
410 |
+
assert dmp_ground_primitive(
|
411 |
+
dmp_mul_ground(f_4, ZZ(6), 2, ZZ), 2, ZZ) == (ZZ(6), f_4)
|
412 |
+
|
413 |
+
assert dmp_ground_primitive(f_5, 2, ZZ) == (ZZ(1), f_5)
|
414 |
+
assert dmp_ground_primitive(
|
415 |
+
dmp_mul_ground(f_5, ZZ(7), 2, ZZ), 2, ZZ) == (ZZ(7), f_5)
|
416 |
+
|
417 |
+
assert dmp_ground_primitive(f_6, 3, ZZ) == (ZZ(1), f_6)
|
418 |
+
assert dmp_ground_primitive(
|
419 |
+
dmp_mul_ground(f_6, ZZ(8), 3, ZZ), 3, ZZ) == (ZZ(8), f_6)
|
420 |
+
|
421 |
+
assert dmp_ground_primitive([[ZZ(2)]], 1, ZZ) == (ZZ(2), [[ZZ(1)]])
|
422 |
+
assert dmp_ground_primitive([[QQ(2)]], 1, QQ) == (QQ(2), [[QQ(1)]])
|
423 |
+
|
424 |
+
assert dmp_ground_primitive(
|
425 |
+
[[QQ(2, 3)], [QQ(4, 9)]], 1, QQ) == (QQ(2, 9), [[QQ(3)], [QQ(2)]])
|
426 |
+
assert dmp_ground_primitive(
|
427 |
+
[[QQ(2, 3)], [QQ(4, 5)]], 1, QQ) == (QQ(2, 15), [[QQ(5)], [QQ(6)]])
|
428 |
+
|
429 |
+
|
430 |
+
def test_dup_extract():
|
431 |
+
f = dup_normal([2930944, 0, 2198208, 0, 549552, 0, 45796], ZZ)
|
432 |
+
g = dup_normal([17585664, 0, 8792832, 0, 1099104, 0], ZZ)
|
433 |
+
|
434 |
+
F = dup_normal([64, 0, 48, 0, 12, 0, 1], ZZ)
|
435 |
+
G = dup_normal([384, 0, 192, 0, 24, 0], ZZ)
|
436 |
+
|
437 |
+
assert dup_extract(f, g, ZZ) == (45796, F, G)
|
438 |
+
|
439 |
+
|
440 |
+
def test_dmp_ground_extract():
|
441 |
+
f = dmp_normal(
|
442 |
+
[[2930944], [], [2198208], [], [549552], [], [45796]], 1, ZZ)
|
443 |
+
g = dmp_normal([[17585664], [], [8792832], [], [1099104], []], 1, ZZ)
|
444 |
+
|
445 |
+
F = dmp_normal([[64], [], [48], [], [12], [], [1]], 1, ZZ)
|
446 |
+
G = dmp_normal([[384], [], [192], [], [24], []], 1, ZZ)
|
447 |
+
|
448 |
+
assert dmp_ground_extract(f, g, 1, ZZ) == (45796, F, G)
|
449 |
+
|
450 |
+
|
451 |
+
def test_dup_real_imag():
|
452 |
+
assert dup_real_imag([], ZZ) == ([[]], [[]])
|
453 |
+
assert dup_real_imag([1], ZZ) == ([[1]], [[]])
|
454 |
+
|
455 |
+
assert dup_real_imag([1, 1], ZZ) == ([[1], [1]], [[1, 0]])
|
456 |
+
assert dup_real_imag([1, 2], ZZ) == ([[1], [2]], [[1, 0]])
|
457 |
+
|
458 |
+
assert dup_real_imag(
|
459 |
+
[1, 2, 3], ZZ) == ([[1], [2], [-1, 0, 3]], [[2, 0], [2, 0]])
|
460 |
+
|
461 |
+
raises(DomainError, lambda: dup_real_imag([EX(1), EX(2)], EX))
|
462 |
+
|
463 |
+
|
464 |
+
def test_dup_mirror():
|
465 |
+
assert dup_mirror([], ZZ) == []
|
466 |
+
assert dup_mirror([1], ZZ) == [1]
|
467 |
+
|
468 |
+
assert dup_mirror([1, 2, 3, 4, 5], ZZ) == [1, -2, 3, -4, 5]
|
469 |
+
assert dup_mirror([1, 2, 3, 4, 5, 6], ZZ) == [-1, 2, -3, 4, -5, 6]
|
470 |
+
|
471 |
+
|
472 |
+
def test_dup_scale():
|
473 |
+
assert dup_scale([], -1, ZZ) == []
|
474 |
+
assert dup_scale([1], -1, ZZ) == [1]
|
475 |
+
|
476 |
+
assert dup_scale([1, 2, 3, 4, 5], -1, ZZ) == [1, -2, 3, -4, 5]
|
477 |
+
assert dup_scale([1, 2, 3, 4, 5], -7, ZZ) == [2401, -686, 147, -28, 5]
|
478 |
+
|
479 |
+
|
480 |
+
def test_dup_shift():
|
481 |
+
assert dup_shift([], 1, ZZ) == []
|
482 |
+
assert dup_shift([1], 1, ZZ) == [1]
|
483 |
+
|
484 |
+
assert dup_shift([1, 2, 3, 4, 5], 1, ZZ) == [1, 6, 15, 20, 15]
|
485 |
+
assert dup_shift([1, 2, 3, 4, 5], 7, ZZ) == [1, 30, 339, 1712, 3267]
|
486 |
+
|
487 |
+
|
488 |
+
def test_dup_transform():
|
489 |
+
assert dup_transform([], [], [1, 1], ZZ) == []
|
490 |
+
assert dup_transform([], [1], [1, 1], ZZ) == []
|
491 |
+
assert dup_transform([], [1, 2], [1, 1], ZZ) == []
|
492 |
+
|
493 |
+
assert dup_transform([6, -5, 4, -3, 17], [1, -3, 4], [2, -3], ZZ) == \
|
494 |
+
[6, -82, 541, -2205, 6277, -12723, 17191, -13603, 4773]
|
495 |
+
|
496 |
+
|
497 |
+
def test_dup_compose():
|
498 |
+
assert dup_compose([], [], ZZ) == []
|
499 |
+
assert dup_compose([], [1], ZZ) == []
|
500 |
+
assert dup_compose([], [1, 2], ZZ) == []
|
501 |
+
|
502 |
+
assert dup_compose([1], [], ZZ) == [1]
|
503 |
+
|
504 |
+
assert dup_compose([1, 2, 0], [], ZZ) == []
|
505 |
+
assert dup_compose([1, 2, 1], [], ZZ) == [1]
|
506 |
+
|
507 |
+
assert dup_compose([1, 2, 1], [1], ZZ) == [4]
|
508 |
+
assert dup_compose([1, 2, 1], [7], ZZ) == [64]
|
509 |
+
|
510 |
+
assert dup_compose([1, 2, 1], [1, -1], ZZ) == [1, 0, 0]
|
511 |
+
assert dup_compose([1, 2, 1], [1, 1], ZZ) == [1, 4, 4]
|
512 |
+
assert dup_compose([1, 2, 1], [1, 2, 1], ZZ) == [1, 4, 8, 8, 4]
|
513 |
+
|
514 |
+
|
515 |
+
def test_dmp_compose():
|
516 |
+
assert dmp_compose([1, 2, 1], [1, 2, 1], 0, ZZ) == [1, 4, 8, 8, 4]
|
517 |
+
|
518 |
+
assert dmp_compose([[[]]], [[[]]], 2, ZZ) == [[[]]]
|
519 |
+
assert dmp_compose([[[]]], [[[1]]], 2, ZZ) == [[[]]]
|
520 |
+
assert dmp_compose([[[]]], [[[1]], [[2]]], 2, ZZ) == [[[]]]
|
521 |
+
|
522 |
+
assert dmp_compose([[[1]]], [], 2, ZZ) == [[[1]]]
|
523 |
+
|
524 |
+
assert dmp_compose([[1], [2], [ ]], [[]], 1, ZZ) == [[]]
|
525 |
+
assert dmp_compose([[1], [2], [1]], [[]], 1, ZZ) == [[1]]
|
526 |
+
|
527 |
+
assert dmp_compose([[1], [2], [1]], [[1]], 1, ZZ) == [[4]]
|
528 |
+
assert dmp_compose([[1], [2], [1]], [[7]], 1, ZZ) == [[64]]
|
529 |
+
|
530 |
+
assert dmp_compose([[1], [2], [1]], [[1], [-1]], 1, ZZ) == [[1], [ ], [ ]]
|
531 |
+
assert dmp_compose([[1], [2], [1]], [[1], [ 1]], 1, ZZ) == [[1], [4], [4]]
|
532 |
+
|
533 |
+
assert dmp_compose(
|
534 |
+
[[1], [2], [1]], [[1], [2], [1]], 1, ZZ) == [[1], [4], [8], [8], [4]]
|
535 |
+
|
536 |
+
|
537 |
+
def test_dup_decompose():
|
538 |
+
assert dup_decompose([1], ZZ) == [[1]]
|
539 |
+
|
540 |
+
assert dup_decompose([1, 0], ZZ) == [[1, 0]]
|
541 |
+
assert dup_decompose([1, 0, 0, 0], ZZ) == [[1, 0, 0, 0]]
|
542 |
+
|
543 |
+
assert dup_decompose([1, 0, 0, 0, 0], ZZ) == [[1, 0, 0], [1, 0, 0]]
|
544 |
+
assert dup_decompose(
|
545 |
+
[1, 0, 0, 0, 0, 0, 0], ZZ) == [[1, 0, 0, 0], [1, 0, 0]]
|
546 |
+
|
547 |
+
assert dup_decompose([7, 0, 0, 0, 1], ZZ) == [[7, 0, 1], [1, 0, 0]]
|
548 |
+
assert dup_decompose([4, 0, 3, 0, 2], ZZ) == [[4, 3, 2], [1, 0, 0]]
|
549 |
+
|
550 |
+
f = [1, 0, 20, 0, 150, 0, 500, 0, 625, -2, 0, -10, 9]
|
551 |
+
|
552 |
+
assert dup_decompose(f, ZZ) == [[1, 0, 0, -2, 9], [1, 0, 5, 0]]
|
553 |
+
|
554 |
+
f = [2, 0, 40, 0, 300, 0, 1000, 0, 1250, -4, 0, -20, 18]
|
555 |
+
|
556 |
+
assert dup_decompose(f, ZZ) == [[2, 0, 0, -4, 18], [1, 0, 5, 0]]
|
557 |
+
|
558 |
+
f = [1, 0, 20, -8, 150, -120, 524, -600, 865, -1034, 600, -170, 29]
|
559 |
+
|
560 |
+
assert dup_decompose(f, ZZ) == [[1, -8, 24, -34, 29], [1, 0, 5, 0]]
|
561 |
+
|
562 |
+
R, t = ring("t", ZZ)
|
563 |
+
f = [6*t**2 - 42,
|
564 |
+
48*t**2 + 96,
|
565 |
+
144*t**2 + 648*t + 288,
|
566 |
+
624*t**2 + 864*t + 384,
|
567 |
+
108*t**3 + 312*t**2 + 432*t + 192]
|
568 |
+
|
569 |
+
assert dup_decompose(f, R.to_domain()) == [f]
|
570 |
+
|
571 |
+
|
572 |
+
def test_dmp_lift():
|
573 |
+
q = [QQ(1, 1), QQ(0, 1), QQ(1, 1)]
|
574 |
+
|
575 |
+
f = [ANP([QQ(1, 1)], q, QQ), ANP([], q, QQ), ANP([], q, QQ),
|
576 |
+
ANP([QQ(1, 1), QQ(0, 1)], q, QQ), ANP([QQ(17, 1), QQ(0, 1)], q, QQ)]
|
577 |
+
|
578 |
+
assert dmp_lift(f, 0, QQ.algebraic_field(I)) == \
|
579 |
+
[QQ(1), QQ(0), QQ(0), QQ(0), QQ(0), QQ(0), QQ(2), QQ(0), QQ(578),
|
580 |
+
QQ(0), QQ(0), QQ(0), QQ(1), QQ(0), QQ(-578), QQ(0), QQ(83521)]
|
581 |
+
|
582 |
+
raises(DomainError, lambda: dmp_lift([EX(1), EX(2)], 0, EX))
|
583 |
+
|
584 |
+
|
585 |
+
def test_dup_sign_variations():
|
586 |
+
assert dup_sign_variations([], ZZ) == 0
|
587 |
+
assert dup_sign_variations([1, 0], ZZ) == 0
|
588 |
+
assert dup_sign_variations([1, 0, 2], ZZ) == 0
|
589 |
+
assert dup_sign_variations([1, 0, 3, 0], ZZ) == 0
|
590 |
+
assert dup_sign_variations([1, 0, 4, 0, 5], ZZ) == 0
|
591 |
+
|
592 |
+
assert dup_sign_variations([-1, 0, 2], ZZ) == 1
|
593 |
+
assert dup_sign_variations([-1, 0, 3, 0], ZZ) == 1
|
594 |
+
assert dup_sign_variations([-1, 0, 4, 0, 5], ZZ) == 1
|
595 |
+
|
596 |
+
assert dup_sign_variations([-1, -4, -5], ZZ) == 0
|
597 |
+
assert dup_sign_variations([ 1, -4, -5], ZZ) == 1
|
598 |
+
assert dup_sign_variations([ 1, 4, -5], ZZ) == 1
|
599 |
+
assert dup_sign_variations([ 1, -4, 5], ZZ) == 2
|
600 |
+
assert dup_sign_variations([-1, 4, -5], ZZ) == 2
|
601 |
+
assert dup_sign_variations([-1, 4, 5], ZZ) == 1
|
602 |
+
assert dup_sign_variations([-1, -4, 5], ZZ) == 1
|
603 |
+
assert dup_sign_variations([ 1, 4, 5], ZZ) == 0
|
604 |
+
|
605 |
+
assert dup_sign_variations([-1, 0, -4, 0, -5], ZZ) == 0
|
606 |
+
assert dup_sign_variations([ 1, 0, -4, 0, -5], ZZ) == 1
|
607 |
+
assert dup_sign_variations([ 1, 0, 4, 0, -5], ZZ) == 1
|
608 |
+
assert dup_sign_variations([ 1, 0, -4, 0, 5], ZZ) == 2
|
609 |
+
assert dup_sign_variations([-1, 0, 4, 0, -5], ZZ) == 2
|
610 |
+
assert dup_sign_variations([-1, 0, 4, 0, 5], ZZ) == 1
|
611 |
+
assert dup_sign_variations([-1, 0, -4, 0, 5], ZZ) == 1
|
612 |
+
assert dup_sign_variations([ 1, 0, 4, 0, 5], ZZ) == 0
|
613 |
+
|
614 |
+
|
615 |
+
def test_dup_clear_denoms():
|
616 |
+
assert dup_clear_denoms([], QQ, ZZ) == (ZZ(1), [])
|
617 |
+
|
618 |
+
assert dup_clear_denoms([QQ(1)], QQ, ZZ) == (ZZ(1), [QQ(1)])
|
619 |
+
assert dup_clear_denoms([QQ(7)], QQ, ZZ) == (ZZ(1), [QQ(7)])
|
620 |
+
|
621 |
+
assert dup_clear_denoms([QQ(7, 3)], QQ) == (ZZ(3), [QQ(7)])
|
622 |
+
assert dup_clear_denoms([QQ(7, 3)], QQ, ZZ) == (ZZ(3), [QQ(7)])
|
623 |
+
|
624 |
+
assert dup_clear_denoms(
|
625 |
+
[QQ(3), QQ(1), QQ(0)], QQ, ZZ) == (ZZ(1), [QQ(3), QQ(1), QQ(0)])
|
626 |
+
assert dup_clear_denoms(
|
627 |
+
[QQ(1), QQ(1, 2), QQ(0)], QQ, ZZ) == (ZZ(2), [QQ(2), QQ(1), QQ(0)])
|
628 |
+
|
629 |
+
assert dup_clear_denoms([QQ(3), QQ(
|
630 |
+
1), QQ(0)], QQ, ZZ, convert=True) == (ZZ(1), [ZZ(3), ZZ(1), ZZ(0)])
|
631 |
+
assert dup_clear_denoms([QQ(1), QQ(
|
632 |
+
1, 2), QQ(0)], QQ, ZZ, convert=True) == (ZZ(2), [ZZ(2), ZZ(1), ZZ(0)])
|
633 |
+
|
634 |
+
assert dup_clear_denoms(
|
635 |
+
[EX(S(3)/2), EX(S(9)/4)], EX) == (EX(4), [EX(6), EX(9)])
|
636 |
+
|
637 |
+
assert dup_clear_denoms([EX(7)], EX) == (EX(1), [EX(7)])
|
638 |
+
assert dup_clear_denoms([EX(sin(x)/x), EX(0)], EX) == (EX(x), [EX(sin(x)), EX(0)])
|
639 |
+
|
640 |
+
|
641 |
+
def test_dmp_clear_denoms():
|
642 |
+
assert dmp_clear_denoms([[]], 1, QQ, ZZ) == (ZZ(1), [[]])
|
643 |
+
|
644 |
+
assert dmp_clear_denoms([[QQ(1)]], 1, QQ, ZZ) == (ZZ(1), [[QQ(1)]])
|
645 |
+
assert dmp_clear_denoms([[QQ(7)]], 1, QQ, ZZ) == (ZZ(1), [[QQ(7)]])
|
646 |
+
|
647 |
+
assert dmp_clear_denoms([[QQ(7, 3)]], 1, QQ) == (ZZ(3), [[QQ(7)]])
|
648 |
+
assert dmp_clear_denoms([[QQ(7, 3)]], 1, QQ, ZZ) == (ZZ(3), [[QQ(7)]])
|
649 |
+
|
650 |
+
assert dmp_clear_denoms(
|
651 |
+
[[QQ(3)], [QQ(1)], []], 1, QQ, ZZ) == (ZZ(1), [[QQ(3)], [QQ(1)], []])
|
652 |
+
assert dmp_clear_denoms([[QQ(
|
653 |
+
1)], [QQ(1, 2)], []], 1, QQ, ZZ) == (ZZ(2), [[QQ(2)], [QQ(1)], []])
|
654 |
+
|
655 |
+
assert dmp_clear_denoms([QQ(3), QQ(
|
656 |
+
1), QQ(0)], 0, QQ, ZZ, convert=True) == (ZZ(1), [ZZ(3), ZZ(1), ZZ(0)])
|
657 |
+
assert dmp_clear_denoms([QQ(1), QQ(1, 2), QQ(
|
658 |
+
0)], 0, QQ, ZZ, convert=True) == (ZZ(2), [ZZ(2), ZZ(1), ZZ(0)])
|
659 |
+
|
660 |
+
assert dmp_clear_denoms([[QQ(3)], [QQ(
|
661 |
+
1)], []], 1, QQ, ZZ, convert=True) == (ZZ(1), [[QQ(3)], [QQ(1)], []])
|
662 |
+
assert dmp_clear_denoms([[QQ(1)], [QQ(1, 2)], []], 1, QQ, ZZ,
|
663 |
+
convert=True) == (ZZ(2), [[QQ(2)], [QQ(1)], []])
|
664 |
+
|
665 |
+
assert dmp_clear_denoms(
|
666 |
+
[[EX(S(3)/2)], [EX(S(9)/4)]], 1, EX) == (EX(4), [[EX(6)], [EX(9)]])
|
667 |
+
assert dmp_clear_denoms([[EX(7)]], 1, EX) == (EX(1), [[EX(7)]])
|
668 |
+
assert dmp_clear_denoms([[EX(sin(x)/x), EX(0)]], 1, EX) == (EX(x), [[EX(sin(x)), EX(0)]])
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_dispersion.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Symbol, S, oo
|
2 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
3 |
+
from sympy.polys import poly
|
4 |
+
from sympy.polys.dispersion import dispersion, dispersionset
|
5 |
+
|
6 |
+
|
7 |
+
def test_dispersion():
|
8 |
+
x = Symbol("x")
|
9 |
+
a = Symbol("a")
|
10 |
+
|
11 |
+
fp = poly(S.Zero, x)
|
12 |
+
assert sorted(dispersionset(fp)) == [0]
|
13 |
+
|
14 |
+
fp = poly(S(2), x)
|
15 |
+
assert sorted(dispersionset(fp)) == [0]
|
16 |
+
|
17 |
+
fp = poly(x + 1, x)
|
18 |
+
assert sorted(dispersionset(fp)) == [0]
|
19 |
+
assert dispersion(fp) == 0
|
20 |
+
|
21 |
+
fp = poly((x + 1)*(x + 2), x)
|
22 |
+
assert sorted(dispersionset(fp)) == [0, 1]
|
23 |
+
assert dispersion(fp) == 1
|
24 |
+
|
25 |
+
fp = poly(x*(x + 3), x)
|
26 |
+
assert sorted(dispersionset(fp)) == [0, 3]
|
27 |
+
assert dispersion(fp) == 3
|
28 |
+
|
29 |
+
fp = poly((x - 3)*(x + 3), x)
|
30 |
+
assert sorted(dispersionset(fp)) == [0, 6]
|
31 |
+
assert dispersion(fp) == 6
|
32 |
+
|
33 |
+
fp = poly(x**4 - 3*x**2 + 1, x)
|
34 |
+
gp = fp.shift(-3)
|
35 |
+
assert sorted(dispersionset(fp, gp)) == [2, 3, 4]
|
36 |
+
assert dispersion(fp, gp) == 4
|
37 |
+
assert sorted(dispersionset(gp, fp)) == []
|
38 |
+
assert dispersion(gp, fp) is -oo
|
39 |
+
|
40 |
+
fp = poly(x*(3*x**2+a)*(x-2536)*(x**3+a), x)
|
41 |
+
gp = fp.as_expr().subs(x, x-345).as_poly(x)
|
42 |
+
assert sorted(dispersionset(fp, gp)) == [345, 2881]
|
43 |
+
assert sorted(dispersionset(gp, fp)) == [2191]
|
44 |
+
|
45 |
+
gp = poly((x-2)**2*(x-3)**3*(x-5)**3, x)
|
46 |
+
assert sorted(dispersionset(gp)) == [0, 1, 2, 3]
|
47 |
+
assert sorted(dispersionset(gp, (gp+4)**2)) == [1, 2]
|
48 |
+
|
49 |
+
fp = poly(x*(x+2)*(x-1), x)
|
50 |
+
assert sorted(dispersionset(fp)) == [0, 1, 2, 3]
|
51 |
+
|
52 |
+
fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
|
53 |
+
gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
|
54 |
+
assert sorted(dispersionset(fp, gp)) == [2]
|
55 |
+
assert sorted(dispersionset(gp, fp)) == [1, 4]
|
56 |
+
|
57 |
+
# There are some difficulties if we compute over Z[a]
|
58 |
+
# and alpha happenes to lie in Z[a] instead of simply Z.
|
59 |
+
# Hence we can not decide if alpha is indeed integral
|
60 |
+
# in general.
|
61 |
+
|
62 |
+
fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
|
63 |
+
assert sorted(dispersionset(fp)) == [0, 1]
|
64 |
+
|
65 |
+
# For any specific value of a, the dispersion is 3*a
|
66 |
+
# but the algorithm can not find this in general.
|
67 |
+
# This is the point where the resultant based Ansatz
|
68 |
+
# is superior to the current one.
|
69 |
+
fp = poly(a**2*x**3 + (a**3 + a**2 + a + 1)*x, x)
|
70 |
+
gp = fp.as_expr().subs(x, x - 3*a).as_poly(x)
|
71 |
+
assert sorted(dispersionset(fp, gp)) == []
|
72 |
+
|
73 |
+
fpa = fp.as_expr().subs(a, 2).as_poly(x)
|
74 |
+
gpa = gp.as_expr().subs(a, 2).as_poly(x)
|
75 |
+
assert sorted(dispersionset(fpa, gpa)) == [6]
|
76 |
+
|
77 |
+
# Work with Expr instead of Poly
|
78 |
+
f = (x + 1)*(x + 2)
|
79 |
+
assert sorted(dispersionset(f)) == [0, 1]
|
80 |
+
assert dispersion(f) == 1
|
81 |
+
|
82 |
+
f = x**4 - 3*x**2 + 1
|
83 |
+
g = x**4 - 12*x**3 + 51*x**2 - 90*x + 55
|
84 |
+
assert sorted(dispersionset(f, g)) == [2, 3, 4]
|
85 |
+
assert dispersion(f, g) == 4
|
86 |
+
|
87 |
+
# Work with Expr and specify a generator
|
88 |
+
f = (x + 1)*(x + 2)
|
89 |
+
assert sorted(dispersionset(f, None, x)) == [0, 1]
|
90 |
+
assert dispersion(f, None, x) == 1
|
91 |
+
|
92 |
+
f = x**4 - 3*x**2 + 1
|
93 |
+
g = x**4 - 12*x**3 + 51*x**2 - 90*x + 55
|
94 |
+
assert sorted(dispersionset(f, g, x)) == [2, 3, 4]
|
95 |
+
assert dispersion(f, g, x) == 4
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_distributedmodules.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for sparse distributed modules. """
|
2 |
+
|
3 |
+
from sympy.polys.distributedmodules import (
|
4 |
+
sdm_monomial_mul, sdm_monomial_deg, sdm_monomial_divides,
|
5 |
+
sdm_add, sdm_LM, sdm_LT, sdm_mul_term, sdm_zero, sdm_deg,
|
6 |
+
sdm_LC, sdm_from_dict,
|
7 |
+
sdm_spoly, sdm_ecart, sdm_nf_mora, sdm_groebner,
|
8 |
+
sdm_from_vector, sdm_to_vector, sdm_monomial_lcm
|
9 |
+
)
|
10 |
+
|
11 |
+
from sympy.polys.orderings import lex, grlex, InverseOrder
|
12 |
+
from sympy.polys.domains import QQ
|
13 |
+
|
14 |
+
from sympy.abc import x, y, z
|
15 |
+
|
16 |
+
|
17 |
+
def test_sdm_monomial_mul():
|
18 |
+
assert sdm_monomial_mul((1, 1, 0), (1, 3)) == (1, 2, 3)
|
19 |
+
|
20 |
+
|
21 |
+
def test_sdm_monomial_deg():
|
22 |
+
assert sdm_monomial_deg((5, 2, 1)) == 3
|
23 |
+
|
24 |
+
|
25 |
+
def test_sdm_monomial_lcm():
|
26 |
+
assert sdm_monomial_lcm((1, 2, 3), (1, 5, 0)) == (1, 5, 3)
|
27 |
+
|
28 |
+
|
29 |
+
def test_sdm_monomial_divides():
|
30 |
+
assert sdm_monomial_divides((1, 0, 0), (1, 0, 0)) is True
|
31 |
+
assert sdm_monomial_divides((1, 0, 0), (1, 2, 1)) is True
|
32 |
+
assert sdm_monomial_divides((5, 1, 1), (5, 2, 1)) is True
|
33 |
+
|
34 |
+
assert sdm_monomial_divides((1, 0, 0), (2, 0, 0)) is False
|
35 |
+
assert sdm_monomial_divides((1, 1, 0), (1, 0, 0)) is False
|
36 |
+
assert sdm_monomial_divides((5, 1, 2), (5, 0, 1)) is False
|
37 |
+
|
38 |
+
|
39 |
+
def test_sdm_LC():
|
40 |
+
assert sdm_LC([((1, 2, 3), QQ(5))], QQ) == QQ(5)
|
41 |
+
|
42 |
+
|
43 |
+
def test_sdm_from_dict():
|
44 |
+
dic = {(1, 2, 1, 1): QQ(1), (1, 1, 2, 1): QQ(1), (1, 0, 2, 1): QQ(1),
|
45 |
+
(1, 0, 0, 3): QQ(1), (1, 1, 1, 0): QQ(1)}
|
46 |
+
assert sdm_from_dict(dic, grlex) == \
|
47 |
+
[((1, 2, 1, 1), QQ(1)), ((1, 1, 2, 1), QQ(1)),
|
48 |
+
((1, 0, 2, 1), QQ(1)), ((1, 0, 0, 3), QQ(1)), ((1, 1, 1, 0), QQ(1))]
|
49 |
+
|
50 |
+
# TODO test to_dict?
|
51 |
+
|
52 |
+
|
53 |
+
def test_sdm_add():
|
54 |
+
assert sdm_add([((1, 1, 1), QQ(1))], [((2, 0, 0), QQ(1))], lex, QQ) == \
|
55 |
+
[((2, 0, 0), QQ(1)), ((1, 1, 1), QQ(1))]
|
56 |
+
assert sdm_add([((1, 1, 1), QQ(1))], [((1, 1, 1), QQ(-1))], lex, QQ) == []
|
57 |
+
assert sdm_add([((1, 0, 0), QQ(1))], [((1, 0, 0), QQ(2))], lex, QQ) == \
|
58 |
+
[((1, 0, 0), QQ(3))]
|
59 |
+
assert sdm_add([((1, 0, 1), QQ(1))], [((1, 1, 0), QQ(1))], lex, QQ) == \
|
60 |
+
[((1, 1, 0), QQ(1)), ((1, 0, 1), QQ(1))]
|
61 |
+
|
62 |
+
|
63 |
+
def test_sdm_LM():
|
64 |
+
dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(1), (4, 0, 1): QQ(1)}
|
65 |
+
assert sdm_LM(sdm_from_dict(dic, lex)) == (4, 0, 1)
|
66 |
+
|
67 |
+
|
68 |
+
def test_sdm_LT():
|
69 |
+
dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(2), (4, 0, 1): QQ(3)}
|
70 |
+
assert sdm_LT(sdm_from_dict(dic, lex)) == ((4, 0, 1), QQ(3))
|
71 |
+
|
72 |
+
|
73 |
+
def test_sdm_mul_term():
|
74 |
+
assert sdm_mul_term([((1, 0, 0), QQ(1))], ((0, 0), QQ(0)), lex, QQ) == []
|
75 |
+
assert sdm_mul_term([], ((1, 0), QQ(1)), lex, QQ) == []
|
76 |
+
assert sdm_mul_term([((1, 0, 0), QQ(1))], ((1, 0), QQ(1)), lex, QQ) == \
|
77 |
+
[((1, 1, 0), QQ(1))]
|
78 |
+
f = [((2, 0, 1), QQ(4)), ((1, 1, 0), QQ(3))]
|
79 |
+
assert sdm_mul_term(f, ((1, 1), QQ(2)), lex, QQ) == \
|
80 |
+
[((2, 1, 2), QQ(8)), ((1, 2, 1), QQ(6))]
|
81 |
+
|
82 |
+
|
83 |
+
def test_sdm_zero():
|
84 |
+
assert sdm_zero() == []
|
85 |
+
|
86 |
+
|
87 |
+
def test_sdm_deg():
|
88 |
+
assert sdm_deg([((1, 2, 3), 1), ((10, 0, 1), 1), ((2, 3, 4), 4)]) == 7
|
89 |
+
|
90 |
+
|
91 |
+
def test_sdm_spoly():
|
92 |
+
f = [((2, 1, 1), QQ(1)), ((1, 0, 1), QQ(1))]
|
93 |
+
g = [((2, 3, 0), QQ(1))]
|
94 |
+
h = [((1, 2, 3), QQ(1))]
|
95 |
+
assert sdm_spoly(f, h, lex, QQ) == []
|
96 |
+
assert sdm_spoly(f, g, lex, QQ) == [((1, 2, 1), QQ(1))]
|
97 |
+
|
98 |
+
|
99 |
+
def test_sdm_ecart():
|
100 |
+
assert sdm_ecart([((1, 2, 3), 1), ((1, 0, 1), 1)]) == 0
|
101 |
+
assert sdm_ecart([((2, 2, 1), 1), ((1, 5, 1), 1)]) == 3
|
102 |
+
|
103 |
+
|
104 |
+
def test_sdm_nf_mora():
|
105 |
+
f = sdm_from_dict({(1, 2, 1, 1): QQ(1), (1, 1, 2, 1): QQ(1),
|
106 |
+
(1, 0, 2, 1): QQ(1), (1, 0, 0, 3): QQ(1), (1, 1, 1, 0): QQ(1)},
|
107 |
+
grlex)
|
108 |
+
f1 = sdm_from_dict({(1, 1, 1, 0): QQ(1), (1, 0, 2, 0): QQ(1),
|
109 |
+
(1, 0, 0, 0): QQ(-1)}, grlex)
|
110 |
+
f2 = sdm_from_dict({(1, 1, 1, 0): QQ(1)}, grlex)
|
111 |
+
(id0, id1, id2) = [sdm_from_dict({(i, 0, 0, 0): QQ(1)}, grlex)
|
112 |
+
for i in range(3)]
|
113 |
+
|
114 |
+
assert sdm_nf_mora(f, [f1, f2], grlex, QQ, phantom=(id0, [id1, id2])) == \
|
115 |
+
([((1, 0, 2, 1), QQ(1)), ((1, 0, 0, 3), QQ(1)), ((1, 1, 1, 0), QQ(1)),
|
116 |
+
((1, 1, 0, 1), QQ(1))],
|
117 |
+
[((1, 1, 0, 1), QQ(-1)), ((0, 0, 0, 0), QQ(1))])
|
118 |
+
assert sdm_nf_mora(f, [f2, f1], grlex, QQ, phantom=(id0, [id2, id1])) == \
|
119 |
+
([((1, 0, 2, 1), QQ(1)), ((1, 0, 0, 3), QQ(1)), ((1, 1, 1, 0), QQ(1))],
|
120 |
+
[((2, 1, 0, 1), QQ(-1)), ((2, 0, 1, 1), QQ(-1)), ((0, 0, 0, 0), QQ(1))])
|
121 |
+
|
122 |
+
f = sdm_from_vector([x*z, y**2 + y*z - z, y], lex, QQ, gens=[x, y, z])
|
123 |
+
f1 = sdm_from_vector([x, y, 1], lex, QQ, gens=[x, y, z])
|
124 |
+
f2 = sdm_from_vector([x*y, z, z**2], lex, QQ, gens=[x, y, z])
|
125 |
+
assert sdm_nf_mora(f, [f1, f2], lex, QQ) == \
|
126 |
+
sdm_nf_mora(f, [f2, f1], lex, QQ) == \
|
127 |
+
[((1, 0, 1, 1), QQ(1)), ((1, 0, 0, 1), QQ(-1)), ((0, 1, 1, 0), QQ(-1)),
|
128 |
+
((0, 1, 0, 1), QQ(1))]
|
129 |
+
|
130 |
+
|
131 |
+
def test_conversion():
|
132 |
+
f = [x**2 + y**2, 2*z]
|
133 |
+
g = [((1, 0, 0, 1), QQ(2)), ((0, 2, 0, 0), QQ(1)), ((0, 0, 2, 0), QQ(1))]
|
134 |
+
assert sdm_to_vector(g, [x, y, z], QQ) == f
|
135 |
+
assert sdm_from_vector(f, lex, QQ) == g
|
136 |
+
assert sdm_from_vector(
|
137 |
+
[x, 1], lex, QQ) == [((1, 0), QQ(1)), ((0, 1), QQ(1))]
|
138 |
+
assert sdm_to_vector([((1, 1, 0, 0), 1)], [x, y, z], QQ, n=3) == [0, x, 0]
|
139 |
+
assert sdm_from_vector([0, 0], lex, QQ, gens=[x, y]) == sdm_zero()
|
140 |
+
|
141 |
+
|
142 |
+
def test_nontrivial():
|
143 |
+
gens = [x, y, z]
|
144 |
+
|
145 |
+
def contains(I, f):
|
146 |
+
S = [sdm_from_vector([g], lex, QQ, gens=gens) for g in I]
|
147 |
+
G = sdm_groebner(S, sdm_nf_mora, lex, QQ)
|
148 |
+
return sdm_nf_mora(sdm_from_vector([f], lex, QQ, gens=gens),
|
149 |
+
G, lex, QQ) == sdm_zero()
|
150 |
+
|
151 |
+
assert contains([x, y], x)
|
152 |
+
assert contains([x, y], x + y)
|
153 |
+
assert not contains([x, y], 1)
|
154 |
+
assert not contains([x, y], z)
|
155 |
+
assert contains([x**2 + y, x**2 + x], x - y)
|
156 |
+
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2)
|
157 |
+
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**3)
|
158 |
+
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4)
|
159 |
+
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y**2)
|
160 |
+
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4 + y**3 + 2*z*y*x)
|
161 |
+
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y*z)
|
162 |
+
assert contains([x, 1 + x + y, 5 - 7*y], 1)
|
163 |
+
assert contains(
|
164 |
+
[x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z],
|
165 |
+
x**3)
|
166 |
+
assert not contains(
|
167 |
+
[x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z],
|
168 |
+
x**2 + y**2)
|
169 |
+
|
170 |
+
# compare local order
|
171 |
+
assert not contains([x*(1 + x + y), y*(1 + z)], x)
|
172 |
+
assert not contains([x*(1 + x + y), y*(1 + z)], x + y)
|
173 |
+
|
174 |
+
|
175 |
+
def test_local():
|
176 |
+
igrlex = InverseOrder(grlex)
|
177 |
+
gens = [x, y, z]
|
178 |
+
|
179 |
+
def contains(I, f):
|
180 |
+
S = [sdm_from_vector([g], igrlex, QQ, gens=gens) for g in I]
|
181 |
+
G = sdm_groebner(S, sdm_nf_mora, igrlex, QQ)
|
182 |
+
return sdm_nf_mora(sdm_from_vector([f], lex, QQ, gens=gens),
|
183 |
+
G, lex, QQ) == sdm_zero()
|
184 |
+
assert contains([x, y], x)
|
185 |
+
assert contains([x, y], x + y)
|
186 |
+
assert not contains([x, y], 1)
|
187 |
+
assert not contains([x, y], z)
|
188 |
+
assert contains([x**2 + y, x**2 + x], x - y)
|
189 |
+
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2)
|
190 |
+
assert contains([x*(1 + x + y), y*(1 + z)], x)
|
191 |
+
assert contains([x*(1 + x + y), y*(1 + z)], x + y)
|
192 |
+
|
193 |
+
|
194 |
+
def test_uncovered_line():
|
195 |
+
gens = [x, y]
|
196 |
+
f1 = sdm_zero()
|
197 |
+
f2 = sdm_from_vector([x, 0], lex, QQ, gens=gens)
|
198 |
+
f3 = sdm_from_vector([0, y], lex, QQ, gens=gens)
|
199 |
+
|
200 |
+
assert sdm_spoly(f1, f2, lex, QQ) == sdm_zero()
|
201 |
+
assert sdm_spoly(f3, f2, lex, QQ) == sdm_zero()
|
202 |
+
|
203 |
+
|
204 |
+
def test_chain_criterion():
|
205 |
+
gens = [x]
|
206 |
+
f1 = sdm_from_vector([1, x], grlex, QQ, gens=gens)
|
207 |
+
f2 = sdm_from_vector([0, x - 2], grlex, QQ, gens=gens)
|
208 |
+
assert len(sdm_groebner([f1, f2], sdm_nf_mora, grlex, QQ)) == 2
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_euclidtools.py
ADDED
@@ -0,0 +1,712 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for Euclidean algorithms, GCDs, LCMs and polynomial remainder sequences. """
|
2 |
+
|
3 |
+
from sympy.polys.rings import ring
|
4 |
+
from sympy.polys.domains import ZZ, QQ, RR
|
5 |
+
|
6 |
+
from sympy.polys.specialpolys import (
|
7 |
+
f_polys,
|
8 |
+
dmp_fateman_poly_F_1,
|
9 |
+
dmp_fateman_poly_F_2,
|
10 |
+
dmp_fateman_poly_F_3)
|
11 |
+
|
12 |
+
f_0, f_1, f_2, f_3, f_4, f_5, f_6 = f_polys()
|
13 |
+
|
14 |
+
def test_dup_gcdex():
|
15 |
+
R, x = ring("x", QQ)
|
16 |
+
|
17 |
+
f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
|
18 |
+
g = x**3 + x**2 - 4*x - 4
|
19 |
+
|
20 |
+
s = -QQ(1,5)*x + QQ(3,5)
|
21 |
+
t = QQ(1,5)*x**2 - QQ(6,5)*x + 2
|
22 |
+
h = x + 1
|
23 |
+
|
24 |
+
assert R.dup_half_gcdex(f, g) == (s, h)
|
25 |
+
assert R.dup_gcdex(f, g) == (s, t, h)
|
26 |
+
|
27 |
+
f = x**4 + 4*x**3 - x + 1
|
28 |
+
g = x**3 - x + 1
|
29 |
+
|
30 |
+
s, t, h = R.dup_gcdex(f, g)
|
31 |
+
S, T, H = R.dup_gcdex(g, f)
|
32 |
+
|
33 |
+
assert R.dup_add(R.dup_mul(s, f),
|
34 |
+
R.dup_mul(t, g)) == h
|
35 |
+
assert R.dup_add(R.dup_mul(S, g),
|
36 |
+
R.dup_mul(T, f)) == H
|
37 |
+
|
38 |
+
f = 2*x
|
39 |
+
g = x**2 - 16
|
40 |
+
|
41 |
+
s = QQ(1,32)*x
|
42 |
+
t = -QQ(1,16)
|
43 |
+
h = 1
|
44 |
+
|
45 |
+
assert R.dup_half_gcdex(f, g) == (s, h)
|
46 |
+
assert R.dup_gcdex(f, g) == (s, t, h)
|
47 |
+
|
48 |
+
|
49 |
+
def test_dup_invert():
|
50 |
+
R, x = ring("x", QQ)
|
51 |
+
assert R.dup_invert(2*x, x**2 - 16) == QQ(1,32)*x
|
52 |
+
|
53 |
+
|
54 |
+
def test_dup_euclidean_prs():
|
55 |
+
R, x = ring("x", QQ)
|
56 |
+
|
57 |
+
f = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5
|
58 |
+
g = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21
|
59 |
+
|
60 |
+
assert R.dup_euclidean_prs(f, g) == [
|
61 |
+
f,
|
62 |
+
g,
|
63 |
+
-QQ(5,9)*x**4 + QQ(1,9)*x**2 - QQ(1,3),
|
64 |
+
-QQ(117,25)*x**2 - 9*x + QQ(441,25),
|
65 |
+
QQ(233150,19773)*x - QQ(102500,6591),
|
66 |
+
-QQ(1288744821,543589225)]
|
67 |
+
|
68 |
+
|
69 |
+
def test_dup_primitive_prs():
|
70 |
+
R, x = ring("x", ZZ)
|
71 |
+
|
72 |
+
f = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5
|
73 |
+
g = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21
|
74 |
+
|
75 |
+
assert R.dup_primitive_prs(f, g) == [
|
76 |
+
f,
|
77 |
+
g,
|
78 |
+
-5*x**4 + x**2 - 3,
|
79 |
+
13*x**2 + 25*x - 49,
|
80 |
+
4663*x - 6150,
|
81 |
+
1]
|
82 |
+
|
83 |
+
|
84 |
+
def test_dup_subresultants():
|
85 |
+
R, x = ring("x", ZZ)
|
86 |
+
|
87 |
+
assert R.dup_resultant(0, 0) == 0
|
88 |
+
|
89 |
+
assert R.dup_resultant(1, 0) == 0
|
90 |
+
assert R.dup_resultant(0, 1) == 0
|
91 |
+
|
92 |
+
f = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5
|
93 |
+
g = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21
|
94 |
+
|
95 |
+
a = 15*x**4 - 3*x**2 + 9
|
96 |
+
b = 65*x**2 + 125*x - 245
|
97 |
+
c = 9326*x - 12300
|
98 |
+
d = 260708
|
99 |
+
|
100 |
+
assert R.dup_subresultants(f, g) == [f, g, a, b, c, d]
|
101 |
+
assert R.dup_resultant(f, g) == R.dup_LC(d)
|
102 |
+
|
103 |
+
f = x**2 - 2*x + 1
|
104 |
+
g = x**2 - 1
|
105 |
+
|
106 |
+
a = 2*x - 2
|
107 |
+
|
108 |
+
assert R.dup_subresultants(f, g) == [f, g, a]
|
109 |
+
assert R.dup_resultant(f, g) == 0
|
110 |
+
|
111 |
+
f = x**2 + 1
|
112 |
+
g = x**2 - 1
|
113 |
+
|
114 |
+
a = -2
|
115 |
+
|
116 |
+
assert R.dup_subresultants(f, g) == [f, g, a]
|
117 |
+
assert R.dup_resultant(f, g) == 4
|
118 |
+
|
119 |
+
f = x**2 - 1
|
120 |
+
g = x**3 - x**2 + 2
|
121 |
+
|
122 |
+
assert R.dup_resultant(f, g) == 0
|
123 |
+
|
124 |
+
f = 3*x**3 - x
|
125 |
+
g = 5*x**2 + 1
|
126 |
+
|
127 |
+
assert R.dup_resultant(f, g) == 64
|
128 |
+
|
129 |
+
f = x**2 - 2*x + 7
|
130 |
+
g = x**3 - x + 5
|
131 |
+
|
132 |
+
assert R.dup_resultant(f, g) == 265
|
133 |
+
|
134 |
+
f = x**3 - 6*x**2 + 11*x - 6
|
135 |
+
g = x**3 - 15*x**2 + 74*x - 120
|
136 |
+
|
137 |
+
assert R.dup_resultant(f, g) == -8640
|
138 |
+
|
139 |
+
f = x**3 - 6*x**2 + 11*x - 6
|
140 |
+
g = x**3 - 10*x**2 + 29*x - 20
|
141 |
+
|
142 |
+
assert R.dup_resultant(f, g) == 0
|
143 |
+
|
144 |
+
f = x**3 - 1
|
145 |
+
g = x**3 + 2*x**2 + 2*x - 1
|
146 |
+
|
147 |
+
assert R.dup_resultant(f, g) == 16
|
148 |
+
|
149 |
+
f = x**8 - 2
|
150 |
+
g = x - 1
|
151 |
+
|
152 |
+
assert R.dup_resultant(f, g) == -1
|
153 |
+
|
154 |
+
|
155 |
+
def test_dmp_subresultants():
|
156 |
+
R, x, y = ring("x,y", ZZ)
|
157 |
+
|
158 |
+
assert R.dmp_resultant(0, 0) == 0
|
159 |
+
assert R.dmp_prs_resultant(0, 0)[0] == 0
|
160 |
+
assert R.dmp_zz_collins_resultant(0, 0) == 0
|
161 |
+
assert R.dmp_qq_collins_resultant(0, 0) == 0
|
162 |
+
|
163 |
+
assert R.dmp_resultant(1, 0) == 0
|
164 |
+
assert R.dmp_resultant(1, 0) == 0
|
165 |
+
assert R.dmp_resultant(1, 0) == 0
|
166 |
+
|
167 |
+
assert R.dmp_resultant(0, 1) == 0
|
168 |
+
assert R.dmp_prs_resultant(0, 1)[0] == 0
|
169 |
+
assert R.dmp_zz_collins_resultant(0, 1) == 0
|
170 |
+
assert R.dmp_qq_collins_resultant(0, 1) == 0
|
171 |
+
|
172 |
+
f = 3*x**2*y - y**3 - 4
|
173 |
+
g = x**2 + x*y**3 - 9
|
174 |
+
|
175 |
+
a = 3*x*y**4 + y**3 - 27*y + 4
|
176 |
+
b = -3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16
|
177 |
+
|
178 |
+
r = R.dmp_LC(b)
|
179 |
+
|
180 |
+
assert R.dmp_subresultants(f, g) == [f, g, a, b]
|
181 |
+
|
182 |
+
assert R.dmp_resultant(f, g) == r
|
183 |
+
assert R.dmp_prs_resultant(f, g)[0] == r
|
184 |
+
assert R.dmp_zz_collins_resultant(f, g) == r
|
185 |
+
assert R.dmp_qq_collins_resultant(f, g) == r
|
186 |
+
|
187 |
+
f = -x**3 + 5
|
188 |
+
g = 3*x**2*y + x**2
|
189 |
+
|
190 |
+
a = 45*y**2 + 30*y + 5
|
191 |
+
b = 675*y**3 + 675*y**2 + 225*y + 25
|
192 |
+
|
193 |
+
r = R.dmp_LC(b)
|
194 |
+
|
195 |
+
assert R.dmp_subresultants(f, g) == [f, g, a]
|
196 |
+
assert R.dmp_resultant(f, g) == r
|
197 |
+
assert R.dmp_prs_resultant(f, g)[0] == r
|
198 |
+
assert R.dmp_zz_collins_resultant(f, g) == r
|
199 |
+
assert R.dmp_qq_collins_resultant(f, g) == r
|
200 |
+
|
201 |
+
R, x, y, z, u, v = ring("x,y,z,u,v", ZZ)
|
202 |
+
|
203 |
+
f = 6*x**2 - 3*x*y - 2*x*z + y*z
|
204 |
+
g = x**2 - x*u - x*v + u*v
|
205 |
+
|
206 |
+
r = y**2*z**2 - 3*y**2*z*u - 3*y**2*z*v + 9*y**2*u*v - 2*y*z**2*u \
|
207 |
+
- 2*y*z**2*v + 6*y*z*u**2 + 12*y*z*u*v + 6*y*z*v**2 - 18*y*u**2*v \
|
208 |
+
- 18*y*u*v**2 + 4*z**2*u*v - 12*z*u**2*v - 12*z*u*v**2 + 36*u**2*v**2
|
209 |
+
|
210 |
+
assert R.dmp_zz_collins_resultant(f, g) == r.drop(x)
|
211 |
+
|
212 |
+
R, x, y, z, u, v = ring("x,y,z,u,v", QQ)
|
213 |
+
|
214 |
+
f = x**2 - QQ(1,2)*x*y - QQ(1,3)*x*z + QQ(1,6)*y*z
|
215 |
+
g = x**2 - x*u - x*v + u*v
|
216 |
+
|
217 |
+
r = QQ(1,36)*y**2*z**2 - QQ(1,12)*y**2*z*u - QQ(1,12)*y**2*z*v + QQ(1,4)*y**2*u*v \
|
218 |
+
- QQ(1,18)*y*z**2*u - QQ(1,18)*y*z**2*v + QQ(1,6)*y*z*u**2 + QQ(1,3)*y*z*u*v \
|
219 |
+
+ QQ(1,6)*y*z*v**2 - QQ(1,2)*y*u**2*v - QQ(1,2)*y*u*v**2 + QQ(1,9)*z**2*u*v \
|
220 |
+
- QQ(1,3)*z*u**2*v - QQ(1,3)*z*u*v**2 + u**2*v**2
|
221 |
+
|
222 |
+
assert R.dmp_qq_collins_resultant(f, g) == r.drop(x)
|
223 |
+
|
224 |
+
Rt, t = ring("t", ZZ)
|
225 |
+
Rx, x = ring("x", Rt)
|
226 |
+
|
227 |
+
f = x**6 - 5*x**4 + 5*x**2 + 4
|
228 |
+
g = -6*t*x**5 + x**4 + 20*t*x**3 - 3*x**2 - 10*t*x + 6
|
229 |
+
|
230 |
+
assert Rx.dup_resultant(f, g) == 2930944*t**6 + 2198208*t**4 + 549552*t**2 + 45796
|
231 |
+
|
232 |
+
|
233 |
+
def test_dup_discriminant():
|
234 |
+
R, x = ring("x", ZZ)
|
235 |
+
|
236 |
+
assert R.dup_discriminant(0) == 0
|
237 |
+
assert R.dup_discriminant(x) == 1
|
238 |
+
|
239 |
+
assert R.dup_discriminant(x**3 + 3*x**2 + 9*x - 13) == -11664
|
240 |
+
assert R.dup_discriminant(5*x**5 + x**3 + 2) == 31252160
|
241 |
+
assert R.dup_discriminant(x**4 + 2*x**3 + 6*x**2 - 22*x + 13) == 0
|
242 |
+
assert R.dup_discriminant(12*x**7 + 15*x**4 + 30*x**3 + x**2 + 1) == -220289699947514112
|
243 |
+
|
244 |
+
|
245 |
+
def test_dmp_discriminant():
|
246 |
+
R, x = ring("x", ZZ)
|
247 |
+
|
248 |
+
assert R.dmp_discriminant(0) == 0
|
249 |
+
|
250 |
+
R, x, y = ring("x,y", ZZ)
|
251 |
+
|
252 |
+
assert R.dmp_discriminant(0) == 0
|
253 |
+
assert R.dmp_discriminant(y) == 0
|
254 |
+
|
255 |
+
assert R.dmp_discriminant(x**3 + 3*x**2 + 9*x - 13) == -11664
|
256 |
+
assert R.dmp_discriminant(5*x**5 + x**3 + 2) == 31252160
|
257 |
+
assert R.dmp_discriminant(x**4 + 2*x**3 + 6*x**2 - 22*x + 13) == 0
|
258 |
+
assert R.dmp_discriminant(12*x**7 + 15*x**4 + 30*x**3 + x**2 + 1) == -220289699947514112
|
259 |
+
|
260 |
+
assert R.dmp_discriminant(x**2*y + 2*y) == (-8*y**2).drop(x)
|
261 |
+
assert R.dmp_discriminant(x*y**2 + 2*x) == 1
|
262 |
+
|
263 |
+
R, x, y, z = ring("x,y,z", ZZ)
|
264 |
+
assert R.dmp_discriminant(x*y + z) == 1
|
265 |
+
|
266 |
+
R, x, y, z, u = ring("x,y,z,u", ZZ)
|
267 |
+
assert R.dmp_discriminant(x**2*y + x*z + u) == (-4*y*u + z**2).drop(x)
|
268 |
+
|
269 |
+
R, x, y, z, u, v = ring("x,y,z,u,v", ZZ)
|
270 |
+
assert R.dmp_discriminant(x**3*y + x**2*z + x*u + v) == \
|
271 |
+
(-27*y**2*v**2 + 18*y*z*u*v - 4*y*u**3 - 4*z**3*v + z**2*u**2).drop(x)
|
272 |
+
|
273 |
+
|
274 |
+
def test_dup_gcd():
|
275 |
+
R, x = ring("x", ZZ)
|
276 |
+
|
277 |
+
f, g = 0, 0
|
278 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (0, 0, 0)
|
279 |
+
|
280 |
+
f, g = 2, 0
|
281 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, 1, 0)
|
282 |
+
|
283 |
+
f, g = -2, 0
|
284 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, -1, 0)
|
285 |
+
|
286 |
+
f, g = 0, -2
|
287 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, 0, -1)
|
288 |
+
|
289 |
+
f, g = 0, 2*x + 4
|
290 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2*x + 4, 0, 1)
|
291 |
+
|
292 |
+
f, g = 2*x + 4, 0
|
293 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2*x + 4, 1, 0)
|
294 |
+
|
295 |
+
f, g = 2, 2
|
296 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, 1, 1)
|
297 |
+
|
298 |
+
f, g = -2, 2
|
299 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, -1, 1)
|
300 |
+
|
301 |
+
f, g = 2, -2
|
302 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, 1, -1)
|
303 |
+
|
304 |
+
f, g = -2, -2
|
305 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, -1, -1)
|
306 |
+
|
307 |
+
f, g = x**2 + 2*x + 1, 1
|
308 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (1, x**2 + 2*x + 1, 1)
|
309 |
+
|
310 |
+
f, g = x**2 + 2*x + 1, 2
|
311 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (1, x**2 + 2*x + 1, 2)
|
312 |
+
|
313 |
+
f, g = 2*x**2 + 4*x + 2, 2
|
314 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, x**2 + 2*x + 1, 1)
|
315 |
+
|
316 |
+
f, g = 2, 2*x**2 + 4*x + 2
|
317 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (2, 1, x**2 + 2*x + 1)
|
318 |
+
|
319 |
+
f, g = 2*x**2 + 4*x + 2, x + 1
|
320 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (x + 1, 2*x + 2, 1)
|
321 |
+
|
322 |
+
f, g = x + 1, 2*x**2 + 4*x + 2
|
323 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (x + 1, 1, 2*x + 2)
|
324 |
+
|
325 |
+
f, g = x - 31, x
|
326 |
+
assert R.dup_zz_heu_gcd(f, g) == R.dup_rr_prs_gcd(f, g) == (1, f, g)
|
327 |
+
|
328 |
+
f = x**4 + 8*x**3 + 21*x**2 + 22*x + 8
|
329 |
+
g = x**3 + 6*x**2 + 11*x + 6
|
330 |
+
|
331 |
+
h = x**2 + 3*x + 2
|
332 |
+
|
333 |
+
cff = x**2 + 5*x + 4
|
334 |
+
cfg = x + 3
|
335 |
+
|
336 |
+
assert R.dup_zz_heu_gcd(f, g) == (h, cff, cfg)
|
337 |
+
assert R.dup_rr_prs_gcd(f, g) == (h, cff, cfg)
|
338 |
+
|
339 |
+
f = x**4 - 4
|
340 |
+
g = x**4 + 4*x**2 + 4
|
341 |
+
|
342 |
+
h = x**2 + 2
|
343 |
+
|
344 |
+
cff = x**2 - 2
|
345 |
+
cfg = x**2 + 2
|
346 |
+
|
347 |
+
assert R.dup_zz_heu_gcd(f, g) == (h, cff, cfg)
|
348 |
+
assert R.dup_rr_prs_gcd(f, g) == (h, cff, cfg)
|
349 |
+
|
350 |
+
f = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5
|
351 |
+
g = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21
|
352 |
+
|
353 |
+
h = 1
|
354 |
+
|
355 |
+
cff = f
|
356 |
+
cfg = g
|
357 |
+
|
358 |
+
assert R.dup_zz_heu_gcd(f, g) == (h, cff, cfg)
|
359 |
+
assert R.dup_rr_prs_gcd(f, g) == (h, cff, cfg)
|
360 |
+
|
361 |
+
R, x = ring("x", QQ)
|
362 |
+
|
363 |
+
f = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5
|
364 |
+
g = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21
|
365 |
+
|
366 |
+
h = 1
|
367 |
+
|
368 |
+
cff = f
|
369 |
+
cfg = g
|
370 |
+
|
371 |
+
assert R.dup_qq_heu_gcd(f, g) == (h, cff, cfg)
|
372 |
+
assert R.dup_ff_prs_gcd(f, g) == (h, cff, cfg)
|
373 |
+
|
374 |
+
R, x = ring("x", ZZ)
|
375 |
+
|
376 |
+
f = - 352518131239247345597970242177235495263669787845475025293906825864749649589178600387510272*x**49 \
|
377 |
+
+ 46818041807522713962450042363465092040687472354933295397472942006618953623327997952*x**42 \
|
378 |
+
+ 378182690892293941192071663536490788434899030680411695933646320291525827756032*x**35 \
|
379 |
+
+ 112806468807371824947796775491032386836656074179286744191026149539708928*x**28 \
|
380 |
+
- 12278371209708240950316872681744825481125965781519138077173235712*x**21 \
|
381 |
+
+ 289127344604779611146960547954288113529690984687482920704*x**14 \
|
382 |
+
+ 19007977035740498977629742919480623972236450681*x**7 \
|
383 |
+
+ 311973482284542371301330321821976049
|
384 |
+
|
385 |
+
g = 365431878023781158602430064717380211405897160759702125019136*x**21 \
|
386 |
+
+ 197599133478719444145775798221171663643171734081650688*x**14 \
|
387 |
+
- 9504116979659010018253915765478924103928886144*x**7 \
|
388 |
+
- 311973482284542371301330321821976049
|
389 |
+
|
390 |
+
assert R.dup_zz_heu_gcd(f, R.dup_diff(f, 1))[0] == g
|
391 |
+
assert R.dup_rr_prs_gcd(f, R.dup_diff(f, 1))[0] == g
|
392 |
+
|
393 |
+
R, x = ring("x", QQ)
|
394 |
+
|
395 |
+
f = QQ(1,2)*x**2 + x + QQ(1,2)
|
396 |
+
g = QQ(1,2)*x + QQ(1,2)
|
397 |
+
|
398 |
+
h = x + 1
|
399 |
+
|
400 |
+
assert R.dup_qq_heu_gcd(f, g) == (h, g, QQ(1,2))
|
401 |
+
assert R.dup_ff_prs_gcd(f, g) == (h, g, QQ(1,2))
|
402 |
+
|
403 |
+
R, x = ring("x", ZZ)
|
404 |
+
|
405 |
+
f = 1317378933230047068160*x + 2945748836994210856960
|
406 |
+
g = 120352542776360960*x + 269116466014453760
|
407 |
+
|
408 |
+
h = 120352542776360960*x + 269116466014453760
|
409 |
+
cff = 10946
|
410 |
+
cfg = 1
|
411 |
+
|
412 |
+
assert R.dup_zz_heu_gcd(f, g) == (h, cff, cfg)
|
413 |
+
|
414 |
+
|
415 |
+
def test_dmp_gcd():
|
416 |
+
R, x, y = ring("x,y", ZZ)
|
417 |
+
|
418 |
+
f, g = 0, 0
|
419 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (0, 0, 0)
|
420 |
+
|
421 |
+
f, g = 2, 0
|
422 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, 1, 0)
|
423 |
+
|
424 |
+
f, g = -2, 0
|
425 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, -1, 0)
|
426 |
+
|
427 |
+
f, g = 0, -2
|
428 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, 0, -1)
|
429 |
+
|
430 |
+
f, g = 0, 2*x + 4
|
431 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2*x + 4, 0, 1)
|
432 |
+
|
433 |
+
f, g = 2*x + 4, 0
|
434 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2*x + 4, 1, 0)
|
435 |
+
|
436 |
+
f, g = 2, 2
|
437 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, 1, 1)
|
438 |
+
|
439 |
+
f, g = -2, 2
|
440 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, -1, 1)
|
441 |
+
|
442 |
+
f, g = 2, -2
|
443 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, 1, -1)
|
444 |
+
|
445 |
+
f, g = -2, -2
|
446 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, -1, -1)
|
447 |
+
|
448 |
+
f, g = x**2 + 2*x + 1, 1
|
449 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (1, x**2 + 2*x + 1, 1)
|
450 |
+
|
451 |
+
f, g = x**2 + 2*x + 1, 2
|
452 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (1, x**2 + 2*x + 1, 2)
|
453 |
+
|
454 |
+
f, g = 2*x**2 + 4*x + 2, 2
|
455 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, x**2 + 2*x + 1, 1)
|
456 |
+
|
457 |
+
f, g = 2, 2*x**2 + 4*x + 2
|
458 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (2, 1, x**2 + 2*x + 1)
|
459 |
+
|
460 |
+
f, g = 2*x**2 + 4*x + 2, x + 1
|
461 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (x + 1, 2*x + 2, 1)
|
462 |
+
|
463 |
+
f, g = x + 1, 2*x**2 + 4*x + 2
|
464 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (x + 1, 1, 2*x + 2)
|
465 |
+
|
466 |
+
R, x, y, z, u = ring("x,y,z,u", ZZ)
|
467 |
+
|
468 |
+
f, g = u**2 + 2*u + 1, 2*u + 2
|
469 |
+
assert R.dmp_zz_heu_gcd(f, g) == R.dmp_rr_prs_gcd(f, g) == (u + 1, u + 1, 2)
|
470 |
+
|
471 |
+
f, g = z**2*u**2 + 2*z**2*u + z**2 + z*u + z, u**2 + 2*u + 1
|
472 |
+
h, cff, cfg = u + 1, z**2*u + z**2 + z, u + 1
|
473 |
+
|
474 |
+
assert R.dmp_zz_heu_gcd(f, g) == (h, cff, cfg)
|
475 |
+
assert R.dmp_rr_prs_gcd(f, g) == (h, cff, cfg)
|
476 |
+
|
477 |
+
assert R.dmp_zz_heu_gcd(g, f) == (h, cfg, cff)
|
478 |
+
assert R.dmp_rr_prs_gcd(g, f) == (h, cfg, cff)
|
479 |
+
|
480 |
+
R, x, y, z = ring("x,y,z", ZZ)
|
481 |
+
|
482 |
+
f, g, h = map(R.from_dense, dmp_fateman_poly_F_1(2, ZZ))
|
483 |
+
H, cff, cfg = R.dmp_zz_heu_gcd(f, g)
|
484 |
+
|
485 |
+
assert H == h and R.dmp_mul(H, cff) == f \
|
486 |
+
and R.dmp_mul(H, cfg) == g
|
487 |
+
|
488 |
+
H, cff, cfg = R.dmp_rr_prs_gcd(f, g)
|
489 |
+
|
490 |
+
assert H == h and R.dmp_mul(H, cff) == f \
|
491 |
+
and R.dmp_mul(H, cfg) == g
|
492 |
+
|
493 |
+
R, x, y, z, u, v = ring("x,y,z,u,v", ZZ)
|
494 |
+
|
495 |
+
f, g, h = map(R.from_dense, dmp_fateman_poly_F_1(4, ZZ))
|
496 |
+
H, cff, cfg = R.dmp_zz_heu_gcd(f, g)
|
497 |
+
|
498 |
+
assert H == h and R.dmp_mul(H, cff) == f \
|
499 |
+
and R.dmp_mul(H, cfg) == g
|
500 |
+
|
501 |
+
R, x, y, z, u, v, a, b = ring("x,y,z,u,v,a,b", ZZ)
|
502 |
+
|
503 |
+
f, g, h = map(R.from_dense, dmp_fateman_poly_F_1(6, ZZ))
|
504 |
+
H, cff, cfg = R.dmp_zz_heu_gcd(f, g)
|
505 |
+
|
506 |
+
assert H == h and R.dmp_mul(H, cff) == f \
|
507 |
+
and R.dmp_mul(H, cfg) == g
|
508 |
+
|
509 |
+
R, x, y, z, u, v, a, b, c, d = ring("x,y,z,u,v,a,b,c,d", ZZ)
|
510 |
+
|
511 |
+
f, g, h = map(R.from_dense, dmp_fateman_poly_F_1(8, ZZ))
|
512 |
+
H, cff, cfg = R.dmp_zz_heu_gcd(f, g)
|
513 |
+
|
514 |
+
assert H == h and R.dmp_mul(H, cff) == f \
|
515 |
+
and R.dmp_mul(H, cfg) == g
|
516 |
+
|
517 |
+
R, x, y, z = ring("x,y,z", ZZ)
|
518 |
+
|
519 |
+
f, g, h = map(R.from_dense, dmp_fateman_poly_F_2(2, ZZ))
|
520 |
+
H, cff, cfg = R.dmp_zz_heu_gcd(f, g)
|
521 |
+
|
522 |
+
assert H == h and R.dmp_mul(H, cff) == f \
|
523 |
+
and R.dmp_mul(H, cfg) == g
|
524 |
+
|
525 |
+
H, cff, cfg = R.dmp_rr_prs_gcd(f, g)
|
526 |
+
|
527 |
+
assert H == h and R.dmp_mul(H, cff) == f \
|
528 |
+
and R.dmp_mul(H, cfg) == g
|
529 |
+
|
530 |
+
f, g, h = map(R.from_dense, dmp_fateman_poly_F_3(2, ZZ))
|
531 |
+
H, cff, cfg = R.dmp_zz_heu_gcd(f, g)
|
532 |
+
|
533 |
+
assert H == h and R.dmp_mul(H, cff) == f \
|
534 |
+
and R.dmp_mul(H, cfg) == g
|
535 |
+
|
536 |
+
H, cff, cfg = R.dmp_rr_prs_gcd(f, g)
|
537 |
+
|
538 |
+
assert H == h and R.dmp_mul(H, cff) == f \
|
539 |
+
and R.dmp_mul(H, cfg) == g
|
540 |
+
|
541 |
+
R, x, y, z, u, v = ring("x,y,z,u,v", ZZ)
|
542 |
+
|
543 |
+
f, g, h = map(R.from_dense, dmp_fateman_poly_F_3(4, ZZ))
|
544 |
+
H, cff, cfg = R.dmp_inner_gcd(f, g)
|
545 |
+
|
546 |
+
assert H == h and R.dmp_mul(H, cff) == f \
|
547 |
+
and R.dmp_mul(H, cfg) == g
|
548 |
+
|
549 |
+
R, x, y = ring("x,y", QQ)
|
550 |
+
|
551 |
+
f = QQ(1,2)*x**2 + x + QQ(1,2)
|
552 |
+
g = QQ(1,2)*x + QQ(1,2)
|
553 |
+
|
554 |
+
h = x + 1
|
555 |
+
|
556 |
+
assert R.dmp_qq_heu_gcd(f, g) == (h, g, QQ(1,2))
|
557 |
+
assert R.dmp_ff_prs_gcd(f, g) == (h, g, QQ(1,2))
|
558 |
+
|
559 |
+
R, x, y = ring("x,y", RR)
|
560 |
+
|
561 |
+
f = 2.1*x*y**2 - 2.2*x*y + 2.1*x
|
562 |
+
g = 1.0*x**3
|
563 |
+
|
564 |
+
assert R.dmp_ff_prs_gcd(f, g) == \
|
565 |
+
(1.0*x, 2.1*y**2 - 2.2*y + 2.1, 1.0*x**2)
|
566 |
+
|
567 |
+
|
568 |
+
def test_dup_lcm():
|
569 |
+
R, x = ring("x", ZZ)
|
570 |
+
|
571 |
+
assert R.dup_lcm(2, 6) == 6
|
572 |
+
|
573 |
+
assert R.dup_lcm(2*x**3, 6*x) == 6*x**3
|
574 |
+
assert R.dup_lcm(2*x**3, 3*x) == 6*x**3
|
575 |
+
|
576 |
+
assert R.dup_lcm(x**2 + x, x) == x**2 + x
|
577 |
+
assert R.dup_lcm(x**2 + x, 2*x) == 2*x**2 + 2*x
|
578 |
+
assert R.dup_lcm(x**2 + 2*x, x) == x**2 + 2*x
|
579 |
+
assert R.dup_lcm(2*x**2 + x, x) == 2*x**2 + x
|
580 |
+
assert R.dup_lcm(2*x**2 + x, 2*x) == 4*x**2 + 2*x
|
581 |
+
|
582 |
+
|
583 |
+
def test_dmp_lcm():
|
584 |
+
R, x, y = ring("x,y", ZZ)
|
585 |
+
|
586 |
+
assert R.dmp_lcm(2, 6) == 6
|
587 |
+
assert R.dmp_lcm(x, y) == x*y
|
588 |
+
|
589 |
+
assert R.dmp_lcm(2*x**3, 6*x*y**2) == 6*x**3*y**2
|
590 |
+
assert R.dmp_lcm(2*x**3, 3*x*y**2) == 6*x**3*y**2
|
591 |
+
|
592 |
+
assert R.dmp_lcm(x**2*y, x*y**2) == x**2*y**2
|
593 |
+
|
594 |
+
f = 2*x*y**5 - 3*x*y**4 - 2*x*y**3 + 3*x*y**2
|
595 |
+
g = y**5 - 2*y**3 + y
|
596 |
+
h = 2*x*y**7 - 3*x*y**6 - 4*x*y**5 + 6*x*y**4 + 2*x*y**3 - 3*x*y**2
|
597 |
+
|
598 |
+
assert R.dmp_lcm(f, g) == h
|
599 |
+
|
600 |
+
f = x**3 - 3*x**2*y - 9*x*y**2 - 5*y**3
|
601 |
+
g = x**4 + 6*x**3*y + 12*x**2*y**2 + 10*x*y**3 + 3*y**4
|
602 |
+
h = x**5 + x**4*y - 18*x**3*y**2 - 50*x**2*y**3 - 47*x*y**4 - 15*y**5
|
603 |
+
|
604 |
+
assert R.dmp_lcm(f, g) == h
|
605 |
+
|
606 |
+
|
607 |
+
def test_dmp_content():
|
608 |
+
R, x,y = ring("x,y", ZZ)
|
609 |
+
|
610 |
+
assert R.dmp_content(-2) == 2
|
611 |
+
|
612 |
+
f, g, F = 3*y**2 + 2*y + 1, 1, 0
|
613 |
+
|
614 |
+
for i in range(0, 5):
|
615 |
+
g *= f
|
616 |
+
F += x**i*g
|
617 |
+
|
618 |
+
assert R.dmp_content(F) == f.drop(x)
|
619 |
+
|
620 |
+
R, x,y,z = ring("x,y,z", ZZ)
|
621 |
+
|
622 |
+
assert R.dmp_content(f_4) == 1
|
623 |
+
assert R.dmp_content(f_5) == 1
|
624 |
+
|
625 |
+
R, x,y,z,t = ring("x,y,z,t", ZZ)
|
626 |
+
assert R.dmp_content(f_6) == 1
|
627 |
+
|
628 |
+
|
629 |
+
def test_dmp_primitive():
|
630 |
+
R, x,y = ring("x,y", ZZ)
|
631 |
+
|
632 |
+
assert R.dmp_primitive(0) == (0, 0)
|
633 |
+
assert R.dmp_primitive(1) == (1, 1)
|
634 |
+
|
635 |
+
f, g, F = 3*y**2 + 2*y + 1, 1, 0
|
636 |
+
|
637 |
+
for i in range(0, 5):
|
638 |
+
g *= f
|
639 |
+
F += x**i*g
|
640 |
+
|
641 |
+
assert R.dmp_primitive(F) == (f.drop(x), F / f)
|
642 |
+
|
643 |
+
R, x,y,z = ring("x,y,z", ZZ)
|
644 |
+
|
645 |
+
cont, f = R.dmp_primitive(f_4)
|
646 |
+
assert cont == 1 and f == f_4
|
647 |
+
cont, f = R.dmp_primitive(f_5)
|
648 |
+
assert cont == 1 and f == f_5
|
649 |
+
|
650 |
+
R, x,y,z,t = ring("x,y,z,t", ZZ)
|
651 |
+
|
652 |
+
cont, f = R.dmp_primitive(f_6)
|
653 |
+
assert cont == 1 and f == f_6
|
654 |
+
|
655 |
+
|
656 |
+
def test_dup_cancel():
|
657 |
+
R, x = ring("x", ZZ)
|
658 |
+
|
659 |
+
f = 2*x**2 - 2
|
660 |
+
g = x**2 - 2*x + 1
|
661 |
+
|
662 |
+
p = 2*x + 2
|
663 |
+
q = x - 1
|
664 |
+
|
665 |
+
assert R.dup_cancel(f, g) == (p, q)
|
666 |
+
assert R.dup_cancel(f, g, include=False) == (1, 1, p, q)
|
667 |
+
|
668 |
+
f = -x - 2
|
669 |
+
g = 3*x - 4
|
670 |
+
|
671 |
+
F = x + 2
|
672 |
+
G = -3*x + 4
|
673 |
+
|
674 |
+
assert R.dup_cancel(f, g) == (f, g)
|
675 |
+
assert R.dup_cancel(F, G) == (f, g)
|
676 |
+
|
677 |
+
assert R.dup_cancel(0, 0) == (0, 0)
|
678 |
+
assert R.dup_cancel(0, 0, include=False) == (1, 1, 0, 0)
|
679 |
+
|
680 |
+
assert R.dup_cancel(x, 0) == (1, 0)
|
681 |
+
assert R.dup_cancel(x, 0, include=False) == (1, 1, 1, 0)
|
682 |
+
|
683 |
+
assert R.dup_cancel(0, x) == (0, 1)
|
684 |
+
assert R.dup_cancel(0, x, include=False) == (1, 1, 0, 1)
|
685 |
+
|
686 |
+
f = 0
|
687 |
+
g = x
|
688 |
+
one = 1
|
689 |
+
|
690 |
+
assert R.dup_cancel(f, g, include=True) == (f, one)
|
691 |
+
|
692 |
+
|
693 |
+
def test_dmp_cancel():
|
694 |
+
R, x, y = ring("x,y", ZZ)
|
695 |
+
|
696 |
+
f = 2*x**2 - 2
|
697 |
+
g = x**2 - 2*x + 1
|
698 |
+
|
699 |
+
p = 2*x + 2
|
700 |
+
q = x - 1
|
701 |
+
|
702 |
+
assert R.dmp_cancel(f, g) == (p, q)
|
703 |
+
assert R.dmp_cancel(f, g, include=False) == (1, 1, p, q)
|
704 |
+
|
705 |
+
assert R.dmp_cancel(0, 0) == (0, 0)
|
706 |
+
assert R.dmp_cancel(0, 0, include=False) == (1, 1, 0, 0)
|
707 |
+
|
708 |
+
assert R.dmp_cancel(y, 0) == (1, 0)
|
709 |
+
assert R.dmp_cancel(y, 0, include=False) == (1, 1, 1, 0)
|
710 |
+
|
711 |
+
assert R.dmp_cancel(0, y) == (0, 1)
|
712 |
+
assert R.dmp_cancel(0, y, include=False) == (1, 1, 0, 1)
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_factortools.py
ADDED
@@ -0,0 +1,771 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tools for polynomial factorization routines in characteristic zero. """
|
2 |
+
|
3 |
+
from sympy.polys.rings import ring, xring
|
4 |
+
from sympy.polys.domains import FF, ZZ, QQ, ZZ_I, QQ_I, RR, EX
|
5 |
+
|
6 |
+
from sympy.polys import polyconfig as config
|
7 |
+
from sympy.polys.polyerrors import DomainError
|
8 |
+
from sympy.polys.polyclasses import ANP
|
9 |
+
from sympy.polys.specialpolys import f_polys, w_polys
|
10 |
+
|
11 |
+
from sympy.core.numbers import I
|
12 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
13 |
+
from sympy.functions.elementary.trigonometric import sin
|
14 |
+
from sympy.ntheory.generate import nextprime
|
15 |
+
from sympy.testing.pytest import raises, XFAIL
|
16 |
+
|
17 |
+
|
18 |
+
f_0, f_1, f_2, f_3, f_4, f_5, f_6 = f_polys()
|
19 |
+
w_1, w_2 = w_polys()
|
20 |
+
|
21 |
+
def test_dup_trial_division():
|
22 |
+
R, x = ring("x", ZZ)
|
23 |
+
assert R.dup_trial_division(x**5 + 8*x**4 + 25*x**3 + 38*x**2 + 28*x + 8, (x + 1, x + 2)) == [(x + 1, 2), (x + 2, 3)]
|
24 |
+
|
25 |
+
|
26 |
+
def test_dmp_trial_division():
|
27 |
+
R, x, y = ring("x,y", ZZ)
|
28 |
+
assert R.dmp_trial_division(x**5 + 8*x**4 + 25*x**3 + 38*x**2 + 28*x + 8, (x + 1, x + 2)) == [(x + 1, 2), (x + 2, 3)]
|
29 |
+
|
30 |
+
|
31 |
+
def test_dup_zz_mignotte_bound():
|
32 |
+
R, x = ring("x", ZZ)
|
33 |
+
assert R.dup_zz_mignotte_bound(2*x**2 + 3*x + 4) == 6
|
34 |
+
assert R.dup_zz_mignotte_bound(x**3 + 14*x**2 + 56*x + 64) == 152
|
35 |
+
|
36 |
+
|
37 |
+
def test_dmp_zz_mignotte_bound():
|
38 |
+
R, x, y = ring("x,y", ZZ)
|
39 |
+
assert R.dmp_zz_mignotte_bound(2*x**2 + 3*x + 4) == 32
|
40 |
+
|
41 |
+
|
42 |
+
def test_dup_zz_hensel_step():
|
43 |
+
R, x = ring("x", ZZ)
|
44 |
+
|
45 |
+
f = x**4 - 1
|
46 |
+
g = x**3 + 2*x**2 - x - 2
|
47 |
+
h = x - 2
|
48 |
+
s = -2
|
49 |
+
t = 2*x**2 - 2*x - 1
|
50 |
+
|
51 |
+
G, H, S, T = R.dup_zz_hensel_step(5, f, g, h, s, t)
|
52 |
+
|
53 |
+
assert G == x**3 + 7*x**2 - x - 7
|
54 |
+
assert H == x - 7
|
55 |
+
assert S == 8
|
56 |
+
assert T == -8*x**2 - 12*x - 1
|
57 |
+
|
58 |
+
|
59 |
+
def test_dup_zz_hensel_lift():
|
60 |
+
R, x = ring("x", ZZ)
|
61 |
+
|
62 |
+
f = x**4 - 1
|
63 |
+
F = [x - 1, x - 2, x + 2, x + 1]
|
64 |
+
|
65 |
+
assert R.dup_zz_hensel_lift(ZZ(5), f, F, 4) == \
|
66 |
+
[x - 1, x - 182, x + 182, x + 1]
|
67 |
+
|
68 |
+
|
69 |
+
def test_dup_zz_irreducible_p():
|
70 |
+
R, x = ring("x", ZZ)
|
71 |
+
|
72 |
+
assert R.dup_zz_irreducible_p(3*x**4 + 2*x**3 + 6*x**2 + 8*x + 7) is None
|
73 |
+
assert R.dup_zz_irreducible_p(3*x**4 + 2*x**3 + 6*x**2 + 8*x + 4) is None
|
74 |
+
|
75 |
+
assert R.dup_zz_irreducible_p(3*x**4 + 2*x**3 + 6*x**2 + 8*x + 10) is True
|
76 |
+
assert R.dup_zz_irreducible_p(3*x**4 + 2*x**3 + 6*x**2 + 8*x + 14) is True
|
77 |
+
|
78 |
+
|
79 |
+
def test_dup_cyclotomic_p():
|
80 |
+
R, x = ring("x", ZZ)
|
81 |
+
|
82 |
+
assert R.dup_cyclotomic_p(x - 1) is True
|
83 |
+
assert R.dup_cyclotomic_p(x + 1) is True
|
84 |
+
assert R.dup_cyclotomic_p(x**2 + x + 1) is True
|
85 |
+
assert R.dup_cyclotomic_p(x**2 + 1) is True
|
86 |
+
assert R.dup_cyclotomic_p(x**4 + x**3 + x**2 + x + 1) is True
|
87 |
+
assert R.dup_cyclotomic_p(x**2 - x + 1) is True
|
88 |
+
assert R.dup_cyclotomic_p(x**6 + x**5 + x**4 + x**3 + x**2 + x + 1) is True
|
89 |
+
assert R.dup_cyclotomic_p(x**4 + 1) is True
|
90 |
+
assert R.dup_cyclotomic_p(x**6 + x**3 + 1) is True
|
91 |
+
|
92 |
+
assert R.dup_cyclotomic_p(0) is False
|
93 |
+
assert R.dup_cyclotomic_p(1) is False
|
94 |
+
assert R.dup_cyclotomic_p(x) is False
|
95 |
+
assert R.dup_cyclotomic_p(x + 2) is False
|
96 |
+
assert R.dup_cyclotomic_p(3*x + 1) is False
|
97 |
+
assert R.dup_cyclotomic_p(x**2 - 1) is False
|
98 |
+
|
99 |
+
f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1
|
100 |
+
assert R.dup_cyclotomic_p(f) is False
|
101 |
+
|
102 |
+
g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1
|
103 |
+
assert R.dup_cyclotomic_p(g) is True
|
104 |
+
|
105 |
+
R, x = ring("x", QQ)
|
106 |
+
assert R.dup_cyclotomic_p(x**2 + x + 1) is True
|
107 |
+
assert R.dup_cyclotomic_p(QQ(1,2)*x**2 + x + 1) is False
|
108 |
+
|
109 |
+
R, x = ring("x", ZZ["y"])
|
110 |
+
assert R.dup_cyclotomic_p(x**2 + x + 1) is False
|
111 |
+
|
112 |
+
|
113 |
+
def test_dup_zz_cyclotomic_poly():
|
114 |
+
R, x = ring("x", ZZ)
|
115 |
+
|
116 |
+
assert R.dup_zz_cyclotomic_poly(1) == x - 1
|
117 |
+
assert R.dup_zz_cyclotomic_poly(2) == x + 1
|
118 |
+
assert R.dup_zz_cyclotomic_poly(3) == x**2 + x + 1
|
119 |
+
assert R.dup_zz_cyclotomic_poly(4) == x**2 + 1
|
120 |
+
assert R.dup_zz_cyclotomic_poly(5) == x**4 + x**3 + x**2 + x + 1
|
121 |
+
assert R.dup_zz_cyclotomic_poly(6) == x**2 - x + 1
|
122 |
+
assert R.dup_zz_cyclotomic_poly(7) == x**6 + x**5 + x**4 + x**3 + x**2 + x + 1
|
123 |
+
assert R.dup_zz_cyclotomic_poly(8) == x**4 + 1
|
124 |
+
assert R.dup_zz_cyclotomic_poly(9) == x**6 + x**3 + 1
|
125 |
+
|
126 |
+
|
127 |
+
def test_dup_zz_cyclotomic_factor():
|
128 |
+
R, x = ring("x", ZZ)
|
129 |
+
|
130 |
+
assert R.dup_zz_cyclotomic_factor(0) is None
|
131 |
+
assert R.dup_zz_cyclotomic_factor(1) is None
|
132 |
+
|
133 |
+
assert R.dup_zz_cyclotomic_factor(2*x**10 - 1) is None
|
134 |
+
assert R.dup_zz_cyclotomic_factor(x**10 - 3) is None
|
135 |
+
assert R.dup_zz_cyclotomic_factor(x**10 + x**5 - 1) is None
|
136 |
+
|
137 |
+
assert R.dup_zz_cyclotomic_factor(x + 1) == [x + 1]
|
138 |
+
assert R.dup_zz_cyclotomic_factor(x - 1) == [x - 1]
|
139 |
+
|
140 |
+
assert R.dup_zz_cyclotomic_factor(x**2 + 1) == [x**2 + 1]
|
141 |
+
assert R.dup_zz_cyclotomic_factor(x**2 - 1) == [x - 1, x + 1]
|
142 |
+
|
143 |
+
assert R.dup_zz_cyclotomic_factor(x**27 + 1) == \
|
144 |
+
[x + 1, x**2 - x + 1, x**6 - x**3 + 1, x**18 - x**9 + 1]
|
145 |
+
assert R.dup_zz_cyclotomic_factor(x**27 - 1) == \
|
146 |
+
[x - 1, x**2 + x + 1, x**6 + x**3 + 1, x**18 + x**9 + 1]
|
147 |
+
|
148 |
+
|
149 |
+
def test_dup_zz_factor():
|
150 |
+
R, x = ring("x", ZZ)
|
151 |
+
|
152 |
+
assert R.dup_zz_factor(0) == (0, [])
|
153 |
+
assert R.dup_zz_factor(7) == (7, [])
|
154 |
+
assert R.dup_zz_factor(-7) == (-7, [])
|
155 |
+
|
156 |
+
assert R.dup_zz_factor_sqf(0) == (0, [])
|
157 |
+
assert R.dup_zz_factor_sqf(7) == (7, [])
|
158 |
+
assert R.dup_zz_factor_sqf(-7) == (-7, [])
|
159 |
+
|
160 |
+
assert R.dup_zz_factor(2*x + 4) == (2, [(x + 2, 1)])
|
161 |
+
assert R.dup_zz_factor_sqf(2*x + 4) == (2, [x + 2])
|
162 |
+
|
163 |
+
f = x**4 + x + 1
|
164 |
+
|
165 |
+
for i in range(0, 20):
|
166 |
+
assert R.dup_zz_factor(f) == (1, [(f, 1)])
|
167 |
+
|
168 |
+
assert R.dup_zz_factor(x**2 + 2*x + 2) == \
|
169 |
+
(1, [(x**2 + 2*x + 2, 1)])
|
170 |
+
|
171 |
+
assert R.dup_zz_factor(18*x**2 + 12*x + 2) == \
|
172 |
+
(2, [(3*x + 1, 2)])
|
173 |
+
|
174 |
+
assert R.dup_zz_factor(-9*x**2 + 1) == \
|
175 |
+
(-1, [(3*x - 1, 1),
|
176 |
+
(3*x + 1, 1)])
|
177 |
+
|
178 |
+
assert R.dup_zz_factor_sqf(-9*x**2 + 1) == \
|
179 |
+
(-1, [3*x - 1,
|
180 |
+
3*x + 1])
|
181 |
+
|
182 |
+
assert R.dup_zz_factor(x**3 - 6*x**2 + 11*x - 6) == \
|
183 |
+
(1, [(x - 3, 1),
|
184 |
+
(x - 2, 1),
|
185 |
+
(x - 1, 1)])
|
186 |
+
|
187 |
+
assert R.dup_zz_factor_sqf(x**3 - 6*x**2 + 11*x - 6) == \
|
188 |
+
(1, [x - 3,
|
189 |
+
x - 2,
|
190 |
+
x - 1])
|
191 |
+
|
192 |
+
assert R.dup_zz_factor(3*x**3 + 10*x**2 + 13*x + 10) == \
|
193 |
+
(1, [(x + 2, 1),
|
194 |
+
(3*x**2 + 4*x + 5, 1)])
|
195 |
+
|
196 |
+
assert R.dup_zz_factor_sqf(3*x**3 + 10*x**2 + 13*x + 10) == \
|
197 |
+
(1, [x + 2,
|
198 |
+
3*x**2 + 4*x + 5])
|
199 |
+
|
200 |
+
assert R.dup_zz_factor(-x**6 + x**2) == \
|
201 |
+
(-1, [(x - 1, 1),
|
202 |
+
(x + 1, 1),
|
203 |
+
(x, 2),
|
204 |
+
(x**2 + 1, 1)])
|
205 |
+
|
206 |
+
f = 1080*x**8 + 5184*x**7 + 2099*x**6 + 744*x**5 + 2736*x**4 - 648*x**3 + 129*x**2 - 324
|
207 |
+
|
208 |
+
assert R.dup_zz_factor(f) == \
|
209 |
+
(1, [(5*x**4 + 24*x**3 + 9*x**2 + 12, 1),
|
210 |
+
(216*x**4 + 31*x**2 - 27, 1)])
|
211 |
+
|
212 |
+
f = -29802322387695312500000000000000000000*x**25 \
|
213 |
+
+ 2980232238769531250000000000000000*x**20 \
|
214 |
+
+ 1743435859680175781250000000000*x**15 \
|
215 |
+
+ 114142894744873046875000000*x**10 \
|
216 |
+
- 210106372833251953125*x**5 \
|
217 |
+
+ 95367431640625
|
218 |
+
|
219 |
+
assert R.dup_zz_factor(f) == \
|
220 |
+
(-95367431640625, [(5*x - 1, 1),
|
221 |
+
(100*x**2 + 10*x - 1, 2),
|
222 |
+
(625*x**4 + 125*x**3 + 25*x**2 + 5*x + 1, 1),
|
223 |
+
(10000*x**4 - 3000*x**3 + 400*x**2 - 20*x + 1, 2),
|
224 |
+
(10000*x**4 + 2000*x**3 + 400*x**2 + 30*x + 1, 2)])
|
225 |
+
|
226 |
+
f = x**10 - 1
|
227 |
+
|
228 |
+
config.setup('USE_CYCLOTOMIC_FACTOR', True)
|
229 |
+
F_0 = R.dup_zz_factor(f)
|
230 |
+
|
231 |
+
config.setup('USE_CYCLOTOMIC_FACTOR', False)
|
232 |
+
F_1 = R.dup_zz_factor(f)
|
233 |
+
|
234 |
+
assert F_0 == F_1 == \
|
235 |
+
(1, [(x - 1, 1),
|
236 |
+
(x + 1, 1),
|
237 |
+
(x**4 - x**3 + x**2 - x + 1, 1),
|
238 |
+
(x**4 + x**3 + x**2 + x + 1, 1)])
|
239 |
+
|
240 |
+
config.setup('USE_CYCLOTOMIC_FACTOR')
|
241 |
+
|
242 |
+
f = x**10 + 1
|
243 |
+
|
244 |
+
config.setup('USE_CYCLOTOMIC_FACTOR', True)
|
245 |
+
F_0 = R.dup_zz_factor(f)
|
246 |
+
|
247 |
+
config.setup('USE_CYCLOTOMIC_FACTOR', False)
|
248 |
+
F_1 = R.dup_zz_factor(f)
|
249 |
+
|
250 |
+
assert F_0 == F_1 == \
|
251 |
+
(1, [(x**2 + 1, 1),
|
252 |
+
(x**8 - x**6 + x**4 - x**2 + 1, 1)])
|
253 |
+
|
254 |
+
config.setup('USE_CYCLOTOMIC_FACTOR')
|
255 |
+
|
256 |
+
def test_dmp_zz_wang():
|
257 |
+
R, x,y,z = ring("x,y,z", ZZ)
|
258 |
+
UV, _x = ring("x", ZZ)
|
259 |
+
|
260 |
+
p = ZZ(nextprime(R.dmp_zz_mignotte_bound(w_1)))
|
261 |
+
assert p == 6291469
|
262 |
+
|
263 |
+
t_1, k_1, e_1 = y, 1, ZZ(-14)
|
264 |
+
t_2, k_2, e_2 = z, 2, ZZ(3)
|
265 |
+
t_3, k_3, e_3 = y + z, 2, ZZ(-11)
|
266 |
+
t_4, k_4, e_4 = y - z, 1, ZZ(-17)
|
267 |
+
|
268 |
+
T = [t_1, t_2, t_3, t_4]
|
269 |
+
K = [k_1, k_2, k_3, k_4]
|
270 |
+
E = [e_1, e_2, e_3, e_4]
|
271 |
+
|
272 |
+
T = zip([ t.drop(x) for t in T ], K)
|
273 |
+
|
274 |
+
A = [ZZ(-14), ZZ(3)]
|
275 |
+
|
276 |
+
S = R.dmp_eval_tail(w_1, A)
|
277 |
+
cs, s = UV.dup_primitive(S)
|
278 |
+
|
279 |
+
assert cs == 1 and s == S == \
|
280 |
+
1036728*_x**6 + 915552*_x**5 + 55748*_x**4 + 105621*_x**3 - 17304*_x**2 - 26841*_x - 644
|
281 |
+
|
282 |
+
assert R.dmp_zz_wang_non_divisors(E, cs, ZZ(4)) == [7, 3, 11, 17]
|
283 |
+
assert UV.dup_sqf_p(s) and UV.dup_degree(s) == R.dmp_degree(w_1)
|
284 |
+
|
285 |
+
_, H = UV.dup_zz_factor_sqf(s)
|
286 |
+
|
287 |
+
h_1 = 44*_x**2 + 42*_x + 1
|
288 |
+
h_2 = 126*_x**2 - 9*_x + 28
|
289 |
+
h_3 = 187*_x**2 - 23
|
290 |
+
|
291 |
+
assert H == [h_1, h_2, h_3]
|
292 |
+
|
293 |
+
LC = [ lc.drop(x) for lc in [-4*y - 4*z, -y*z**2, y**2 - z**2] ]
|
294 |
+
|
295 |
+
assert R.dmp_zz_wang_lead_coeffs(w_1, T, cs, E, H, A) == (w_1, H, LC)
|
296 |
+
|
297 |
+
factors = R.dmp_zz_wang_hensel_lifting(w_1, H, LC, A, p)
|
298 |
+
assert R.dmp_expand(factors) == w_1
|
299 |
+
|
300 |
+
|
301 |
+
@XFAIL
|
302 |
+
def test_dmp_zz_wang_fail():
|
303 |
+
R, x,y,z = ring("x,y,z", ZZ)
|
304 |
+
UV, _x = ring("x", ZZ)
|
305 |
+
|
306 |
+
p = ZZ(nextprime(R.dmp_zz_mignotte_bound(w_1)))
|
307 |
+
assert p == 6291469
|
308 |
+
|
309 |
+
H_1 = [44*x**2 + 42*x + 1, 126*x**2 - 9*x + 28, 187*x**2 - 23]
|
310 |
+
H_2 = [-4*x**2*y - 12*x**2 - 3*x*y + 1, -9*x**2*y - 9*x - 2*y, x**2*y**2 - 9*x**2 + y - 9]
|
311 |
+
H_3 = [-4*x**2*y - 12*x**2 - 3*x*y + 1, -9*x**2*y - 9*x - 2*y, x**2*y**2 - 9*x**2 + y - 9]
|
312 |
+
|
313 |
+
c_1 = -70686*x**5 - 5863*x**4 - 17826*x**3 + 2009*x**2 + 5031*x + 74
|
314 |
+
c_2 = 9*x**5*y**4 + 12*x**5*y**3 - 45*x**5*y**2 - 108*x**5*y - 324*x**5 + 18*x**4*y**3 - 216*x**4*y**2 - 810*x**4*y + 2*x**3*y**4 + 9*x**3*y**3 - 252*x**3*y**2 - 288*x**3*y - 945*x**3 - 30*x**2*y**2 - 414*x**2*y + 2*x*y**3 - 54*x*y**2 - 3*x*y + 81*x + 12*y
|
315 |
+
c_3 = -36*x**4*y**2 - 108*x**4*y - 27*x**3*y**2 - 36*x**3*y - 108*x**3 - 8*x**2*y**2 - 42*x**2*y - 6*x*y**2 + 9*x + 2*y
|
316 |
+
|
317 |
+
assert R.dmp_zz_diophantine(H_1, c_1, [], 5, p) == [-3*x, -2, 1]
|
318 |
+
assert R.dmp_zz_diophantine(H_2, c_2, [ZZ(-14)], 5, p) == [-x*y, -3*x, -6]
|
319 |
+
assert R.dmp_zz_diophantine(H_3, c_3, [ZZ(-14)], 5, p) == [0, 0, -1]
|
320 |
+
|
321 |
+
|
322 |
+
def test_issue_6355():
|
323 |
+
# This tests a bug in the Wang algorithm that occurred only with a very
|
324 |
+
# specific set of random numbers.
|
325 |
+
random_sequence = [-1, -1, 0, 0, 0, 0, -1, -1, 0, -1, 3, -1, 3, 3, 3, 3, -1, 3]
|
326 |
+
|
327 |
+
R, x, y, z = ring("x,y,z", ZZ)
|
328 |
+
f = 2*x**2 + y*z - y - z**2 + z
|
329 |
+
|
330 |
+
assert R.dmp_zz_wang(f, seed=random_sequence) == [f]
|
331 |
+
|
332 |
+
|
333 |
+
def test_dmp_zz_factor():
|
334 |
+
R, x = ring("x", ZZ)
|
335 |
+
assert R.dmp_zz_factor(0) == (0, [])
|
336 |
+
assert R.dmp_zz_factor(7) == (7, [])
|
337 |
+
assert R.dmp_zz_factor(-7) == (-7, [])
|
338 |
+
|
339 |
+
assert R.dmp_zz_factor(x**2 - 9) == (1, [(x - 3, 1), (x + 3, 1)])
|
340 |
+
|
341 |
+
R, x, y = ring("x,y", ZZ)
|
342 |
+
assert R.dmp_zz_factor(0) == (0, [])
|
343 |
+
assert R.dmp_zz_factor(7) == (7, [])
|
344 |
+
assert R.dmp_zz_factor(-7) == (-7, [])
|
345 |
+
|
346 |
+
assert R.dmp_zz_factor(x) == (1, [(x, 1)])
|
347 |
+
assert R.dmp_zz_factor(4*x) == (4, [(x, 1)])
|
348 |
+
assert R.dmp_zz_factor(4*x + 2) == (2, [(2*x + 1, 1)])
|
349 |
+
assert R.dmp_zz_factor(x*y + 1) == (1, [(x*y + 1, 1)])
|
350 |
+
assert R.dmp_zz_factor(y**2 + 1) == (1, [(y**2 + 1, 1)])
|
351 |
+
assert R.dmp_zz_factor(y**2 - 1) == (1, [(y - 1, 1), (y + 1, 1)])
|
352 |
+
|
353 |
+
assert R.dmp_zz_factor(x**2*y**2 + 6*x**2*y + 9*x**2 - 1) == (1, [(x*y + 3*x - 1, 1), (x*y + 3*x + 1, 1)])
|
354 |
+
assert R.dmp_zz_factor(x**2*y**2 - 9) == (1, [(x*y - 3, 1), (x*y + 3, 1)])
|
355 |
+
|
356 |
+
R, x, y, z = ring("x,y,z", ZZ)
|
357 |
+
assert R.dmp_zz_factor(x**2*y**2*z**2 - 9) == \
|
358 |
+
(1, [(x*y*z - 3, 1),
|
359 |
+
(x*y*z + 3, 1)])
|
360 |
+
|
361 |
+
R, x, y, z, u = ring("x,y,z,u", ZZ)
|
362 |
+
assert R.dmp_zz_factor(x**2*y**2*z**2*u**2 - 9) == \
|
363 |
+
(1, [(x*y*z*u - 3, 1),
|
364 |
+
(x*y*z*u + 3, 1)])
|
365 |
+
|
366 |
+
R, x, y, z = ring("x,y,z", ZZ)
|
367 |
+
assert R.dmp_zz_factor(f_1) == \
|
368 |
+
(1, [(x + y*z + 20, 1),
|
369 |
+
(x*y + z + 10, 1),
|
370 |
+
(x*z + y + 30, 1)])
|
371 |
+
|
372 |
+
assert R.dmp_zz_factor(f_2) == \
|
373 |
+
(1, [(x**2*y**2 + x**2*z**2 + y + 90, 1),
|
374 |
+
(x**3*y + x**3*z + z - 11, 1)])
|
375 |
+
|
376 |
+
assert R.dmp_zz_factor(f_3) == \
|
377 |
+
(1, [(x**2*y**2 + x*z**4 + x + z, 1),
|
378 |
+
(x**3 + x*y*z + y**2 + y*z**3, 1)])
|
379 |
+
|
380 |
+
assert R.dmp_zz_factor(f_4) == \
|
381 |
+
(-1, [(x*y**3 + z**2, 1),
|
382 |
+
(x**2*z + y**4*z**2 + 5, 1),
|
383 |
+
(x**3*y - z**2 - 3, 1),
|
384 |
+
(x**3*y**4 + z**2, 1)])
|
385 |
+
|
386 |
+
assert R.dmp_zz_factor(f_5) == \
|
387 |
+
(-1, [(x + y - z, 3)])
|
388 |
+
|
389 |
+
R, x, y, z, t = ring("x,y,z,t", ZZ)
|
390 |
+
assert R.dmp_zz_factor(f_6) == \
|
391 |
+
(1, [(47*x*y + z**3*t**2 - t**2, 1),
|
392 |
+
(45*x**3 - 9*y**3 - y**2 + 3*z**3 + 2*z*t, 1)])
|
393 |
+
|
394 |
+
R, x, y, z = ring("x,y,z", ZZ)
|
395 |
+
assert R.dmp_zz_factor(w_1) == \
|
396 |
+
(1, [(x**2*y**2 - x**2*z**2 + y - z**2, 1),
|
397 |
+
(x**2*y*z**2 + 3*x*z + 2*y, 1),
|
398 |
+
(4*x**2*y + 4*x**2*z + x*y*z - 1, 1)])
|
399 |
+
|
400 |
+
R, x, y = ring("x,y", ZZ)
|
401 |
+
f = -12*x**16*y + 240*x**12*y**3 - 768*x**10*y**4 + 1080*x**8*y**5 - 768*x**6*y**6 + 240*x**4*y**7 - 12*y**9
|
402 |
+
|
403 |
+
assert R.dmp_zz_factor(f) == \
|
404 |
+
(-12, [(y, 1),
|
405 |
+
(x**2 - y, 6),
|
406 |
+
(x**4 + 6*x**2*y + y**2, 1)])
|
407 |
+
|
408 |
+
|
409 |
+
def test_dup_qq_i_factor():
|
410 |
+
R, x = ring("x", QQ_I)
|
411 |
+
i = QQ_I(0, 1)
|
412 |
+
|
413 |
+
assert R.dup_qq_i_factor(x**2 - 2) == (QQ_I(1, 0), [(x**2 - 2, 1)])
|
414 |
+
|
415 |
+
assert R.dup_qq_i_factor(x**2 - 1) == (QQ_I(1, 0), [(x - 1, 1), (x + 1, 1)])
|
416 |
+
|
417 |
+
assert R.dup_qq_i_factor(x**2 + 1) == (QQ_I(1, 0), [(x - i, 1), (x + i, 1)])
|
418 |
+
|
419 |
+
assert R.dup_qq_i_factor(x**2/4 + 1) == \
|
420 |
+
(QQ_I(QQ(1, 4), 0), [(x - 2*i, 1), (x + 2*i, 1)])
|
421 |
+
|
422 |
+
assert R.dup_qq_i_factor(x**2 + 4) == \
|
423 |
+
(QQ_I(1, 0), [(x - 2*i, 1), (x + 2*i, 1)])
|
424 |
+
|
425 |
+
assert R.dup_qq_i_factor(x**2 + 2*x + 1) == \
|
426 |
+
(QQ_I(1, 0), [(x + 1, 2)])
|
427 |
+
|
428 |
+
assert R.dup_qq_i_factor(x**2 + 2*i*x - 1) == \
|
429 |
+
(QQ_I(1, 0), [(x + i, 2)])
|
430 |
+
|
431 |
+
f = 8192*x**2 + x*(22656 + 175232*i) - 921416 + 242313*i
|
432 |
+
|
433 |
+
assert R.dup_qq_i_factor(f) == \
|
434 |
+
(QQ_I(8192, 0), [(x + QQ_I(QQ(177, 128), QQ(1369, 128)), 2)])
|
435 |
+
|
436 |
+
|
437 |
+
def test_dmp_qq_i_factor():
|
438 |
+
R, x, y = ring("x, y", QQ_I)
|
439 |
+
i = QQ_I(0, 1)
|
440 |
+
|
441 |
+
assert R.dmp_qq_i_factor(x**2 + 2*y**2) == \
|
442 |
+
(QQ_I(1, 0), [(x**2 + 2*y**2, 1)])
|
443 |
+
|
444 |
+
assert R.dmp_qq_i_factor(x**2 + y**2) == \
|
445 |
+
(QQ_I(1, 0), [(x - i*y, 1), (x + i*y, 1)])
|
446 |
+
|
447 |
+
assert R.dmp_qq_i_factor(x**2 + y**2/4) == \
|
448 |
+
(QQ_I(1, 0), [(x - i*y/2, 1), (x + i*y/2, 1)])
|
449 |
+
|
450 |
+
assert R.dmp_qq_i_factor(4*x**2 + y**2) == \
|
451 |
+
(QQ_I(4, 0), [(x - i*y/2, 1), (x + i*y/2, 1)])
|
452 |
+
|
453 |
+
|
454 |
+
def test_dup_zz_i_factor():
|
455 |
+
R, x = ring("x", ZZ_I)
|
456 |
+
i = ZZ_I(0, 1)
|
457 |
+
|
458 |
+
assert R.dup_zz_i_factor(x**2 - 2) == (ZZ_I(1, 0), [(x**2 - 2, 1)])
|
459 |
+
|
460 |
+
assert R.dup_zz_i_factor(x**2 - 1) == (ZZ_I(1, 0), [(x - 1, 1), (x + 1, 1)])
|
461 |
+
|
462 |
+
assert R.dup_zz_i_factor(x**2 + 1) == (ZZ_I(1, 0), [(x - i, 1), (x + i, 1)])
|
463 |
+
|
464 |
+
assert R.dup_zz_i_factor(x**2 + 4) == \
|
465 |
+
(ZZ_I(1, 0), [(x - 2*i, 1), (x + 2*i, 1)])
|
466 |
+
|
467 |
+
assert R.dup_zz_i_factor(x**2 + 2*x + 1) == \
|
468 |
+
(ZZ_I(1, 0), [(x + 1, 2)])
|
469 |
+
|
470 |
+
assert R.dup_zz_i_factor(x**2 + 2*i*x - 1) == \
|
471 |
+
(ZZ_I(1, 0), [(x + i, 2)])
|
472 |
+
|
473 |
+
f = 8192*x**2 + x*(22656 + 175232*i) - 921416 + 242313*i
|
474 |
+
|
475 |
+
assert R.dup_zz_i_factor(f) == \
|
476 |
+
(ZZ_I(0, 1), [((64 - 64*i)*x + (773 + 596*i), 2)])
|
477 |
+
|
478 |
+
|
479 |
+
def test_dmp_zz_i_factor():
|
480 |
+
R, x, y = ring("x, y", ZZ_I)
|
481 |
+
i = ZZ_I(0, 1)
|
482 |
+
|
483 |
+
assert R.dmp_zz_i_factor(x**2 + 2*y**2) == \
|
484 |
+
(ZZ_I(1, 0), [(x**2 + 2*y**2, 1)])
|
485 |
+
|
486 |
+
assert R.dmp_zz_i_factor(x**2 + y**2) == \
|
487 |
+
(ZZ_I(1, 0), [(x - i*y, 1), (x + i*y, 1)])
|
488 |
+
|
489 |
+
assert R.dmp_zz_i_factor(4*x**2 + y**2) == \
|
490 |
+
(ZZ_I(1, 0), [(2*x - i*y, 1), (2*x + i*y, 1)])
|
491 |
+
|
492 |
+
|
493 |
+
def test_dup_ext_factor():
|
494 |
+
R, x = ring("x", QQ.algebraic_field(I))
|
495 |
+
def anp(element):
|
496 |
+
return ANP(element, [QQ(1), QQ(0), QQ(1)], QQ)
|
497 |
+
|
498 |
+
assert R.dup_ext_factor(0) == (anp([]), [])
|
499 |
+
|
500 |
+
f = anp([QQ(1)])*x + anp([QQ(1)])
|
501 |
+
|
502 |
+
assert R.dup_ext_factor(f) == (anp([QQ(1)]), [(f, 1)])
|
503 |
+
|
504 |
+
g = anp([QQ(2)])*x + anp([QQ(2)])
|
505 |
+
|
506 |
+
assert R.dup_ext_factor(g) == (anp([QQ(2)]), [(f, 1)])
|
507 |
+
|
508 |
+
f = anp([QQ(7)])*x**4 + anp([QQ(1, 1)])
|
509 |
+
g = anp([QQ(1)])*x**4 + anp([QQ(1, 7)])
|
510 |
+
|
511 |
+
assert R.dup_ext_factor(f) == (anp([QQ(7)]), [(g, 1)])
|
512 |
+
|
513 |
+
f = anp([QQ(1)])*x**4 + anp([QQ(1)])
|
514 |
+
|
515 |
+
assert R.dup_ext_factor(f) == \
|
516 |
+
(anp([QQ(1, 1)]), [(anp([QQ(1)])*x**2 + anp([QQ(-1), QQ(0)]), 1),
|
517 |
+
(anp([QQ(1)])*x**2 + anp([QQ( 1), QQ(0)]), 1)])
|
518 |
+
|
519 |
+
f = anp([QQ(4, 1)])*x**2 + anp([QQ(9, 1)])
|
520 |
+
|
521 |
+
assert R.dup_ext_factor(f) == \
|
522 |
+
(anp([QQ(4, 1)]), [(anp([QQ(1, 1)])*x + anp([-QQ(3, 2), QQ(0, 1)]), 1),
|
523 |
+
(anp([QQ(1, 1)])*x + anp([ QQ(3, 2), QQ(0, 1)]), 1)])
|
524 |
+
|
525 |
+
f = anp([QQ(4, 1)])*x**4 + anp([QQ(8, 1)])*x**3 + anp([QQ(77, 1)])*x**2 + anp([QQ(18, 1)])*x + anp([QQ(153, 1)])
|
526 |
+
|
527 |
+
assert R.dup_ext_factor(f) == \
|
528 |
+
(anp([QQ(4, 1)]), [(anp([QQ(1, 1)])*x + anp([-QQ(4, 1), QQ(1, 1)]), 1),
|
529 |
+
(anp([QQ(1, 1)])*x + anp([-QQ(3, 2), QQ(0, 1)]), 1),
|
530 |
+
(anp([QQ(1, 1)])*x + anp([ QQ(3, 2), QQ(0, 1)]), 1),
|
531 |
+
(anp([QQ(1, 1)])*x + anp([ QQ(4, 1), QQ(1, 1)]), 1)])
|
532 |
+
|
533 |
+
R, x = ring("x", QQ.algebraic_field(sqrt(2)))
|
534 |
+
def anp(element):
|
535 |
+
return ANP(element, [QQ(1), QQ(0), QQ(-2)], QQ)
|
536 |
+
|
537 |
+
f = anp([QQ(1)])*x**4 + anp([QQ(1, 1)])
|
538 |
+
|
539 |
+
assert R.dup_ext_factor(f) == \
|
540 |
+
(anp([QQ(1)]), [(anp([QQ(1)])*x**2 + anp([QQ(-1), QQ(0)])*x + anp([QQ(1)]), 1),
|
541 |
+
(anp([QQ(1)])*x**2 + anp([QQ( 1), QQ(0)])*x + anp([QQ(1)]), 1)])
|
542 |
+
|
543 |
+
f = anp([QQ(1, 1)])*x**2 + anp([QQ(2), QQ(0)])*x + anp([QQ(2, 1)])
|
544 |
+
|
545 |
+
assert R.dup_ext_factor(f) == \
|
546 |
+
(anp([QQ(1, 1)]), [(anp([1])*x + anp([1, 0]), 2)])
|
547 |
+
|
548 |
+
assert R.dup_ext_factor(f**3) == \
|
549 |
+
(anp([QQ(1, 1)]), [(anp([1])*x + anp([1, 0]), 6)])
|
550 |
+
|
551 |
+
f *= anp([QQ(2, 1)])
|
552 |
+
|
553 |
+
assert R.dup_ext_factor(f) == \
|
554 |
+
(anp([QQ(2, 1)]), [(anp([1])*x + anp([1, 0]), 2)])
|
555 |
+
|
556 |
+
assert R.dup_ext_factor(f**3) == \
|
557 |
+
(anp([QQ(8, 1)]), [(anp([1])*x + anp([1, 0]), 6)])
|
558 |
+
|
559 |
+
|
560 |
+
def test_dmp_ext_factor():
|
561 |
+
R, x,y = ring("x,y", QQ.algebraic_field(sqrt(2)))
|
562 |
+
def anp(x):
|
563 |
+
return ANP(x, [QQ(1), QQ(0), QQ(-2)], QQ)
|
564 |
+
|
565 |
+
assert R.dmp_ext_factor(0) == (anp([]), [])
|
566 |
+
|
567 |
+
f = anp([QQ(1)])*x + anp([QQ(1)])
|
568 |
+
|
569 |
+
assert R.dmp_ext_factor(f) == (anp([QQ(1)]), [(f, 1)])
|
570 |
+
|
571 |
+
g = anp([QQ(2)])*x + anp([QQ(2)])
|
572 |
+
|
573 |
+
assert R.dmp_ext_factor(g) == (anp([QQ(2)]), [(f, 1)])
|
574 |
+
|
575 |
+
f = anp([QQ(1)])*x**2 + anp([QQ(-2)])*y**2
|
576 |
+
|
577 |
+
assert R.dmp_ext_factor(f) == \
|
578 |
+
(anp([QQ(1)]), [(anp([QQ(1)])*x + anp([QQ(-1), QQ(0)])*y, 1),
|
579 |
+
(anp([QQ(1)])*x + anp([QQ( 1), QQ(0)])*y, 1)])
|
580 |
+
|
581 |
+
f = anp([QQ(2)])*x**2 + anp([QQ(-4)])*y**2
|
582 |
+
|
583 |
+
assert R.dmp_ext_factor(f) == \
|
584 |
+
(anp([QQ(2)]), [(anp([QQ(1)])*x + anp([QQ(-1), QQ(0)])*y, 1),
|
585 |
+
(anp([QQ(1)])*x + anp([QQ( 1), QQ(0)])*y, 1)])
|
586 |
+
|
587 |
+
|
588 |
+
def test_dup_factor_list():
|
589 |
+
R, x = ring("x", ZZ)
|
590 |
+
assert R.dup_factor_list(0) == (0, [])
|
591 |
+
assert R.dup_factor_list(7) == (7, [])
|
592 |
+
|
593 |
+
R, x = ring("x", QQ)
|
594 |
+
assert R.dup_factor_list(0) == (0, [])
|
595 |
+
assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), [])
|
596 |
+
|
597 |
+
R, x = ring("x", ZZ['t'])
|
598 |
+
assert R.dup_factor_list(0) == (0, [])
|
599 |
+
assert R.dup_factor_list(7) == (7, [])
|
600 |
+
|
601 |
+
R, x = ring("x", QQ['t'])
|
602 |
+
assert R.dup_factor_list(0) == (0, [])
|
603 |
+
assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), [])
|
604 |
+
|
605 |
+
R, x = ring("x", ZZ)
|
606 |
+
assert R.dup_factor_list_include(0) == [(0, 1)]
|
607 |
+
assert R.dup_factor_list_include(7) == [(7, 1)]
|
608 |
+
|
609 |
+
assert R.dup_factor_list(x**2 + 2*x + 1) == (1, [(x + 1, 2)])
|
610 |
+
assert R.dup_factor_list_include(x**2 + 2*x + 1) == [(x + 1, 2)]
|
611 |
+
# issue 8037
|
612 |
+
assert R.dup_factor_list(6*x**2 - 5*x - 6) == (1, [(2*x - 3, 1), (3*x + 2, 1)])
|
613 |
+
|
614 |
+
R, x = ring("x", QQ)
|
615 |
+
assert R.dup_factor_list(QQ(1,2)*x**2 + x + QQ(1,2)) == (QQ(1, 2), [(x + 1, 2)])
|
616 |
+
|
617 |
+
R, x = ring("x", FF(2))
|
618 |
+
assert R.dup_factor_list(x**2 + 1) == (1, [(x + 1, 2)])
|
619 |
+
|
620 |
+
R, x = ring("x", RR)
|
621 |
+
assert R.dup_factor_list(1.0*x**2 + 2.0*x + 1.0) == (1.0, [(1.0*x + 1.0, 2)])
|
622 |
+
assert R.dup_factor_list(2.0*x**2 + 4.0*x + 2.0) == (2.0, [(1.0*x + 1.0, 2)])
|
623 |
+
|
624 |
+
f = 6.7225336055071*x**2 - 10.6463972754741*x - 0.33469524022264
|
625 |
+
coeff, factors = R.dup_factor_list(f)
|
626 |
+
assert coeff == RR(10.6463972754741)
|
627 |
+
assert len(factors) == 1
|
628 |
+
assert factors[0][0].max_norm() == RR(1.0)
|
629 |
+
assert factors[0][1] == 1
|
630 |
+
|
631 |
+
Rt, t = ring("t", ZZ)
|
632 |
+
R, x = ring("x", Rt)
|
633 |
+
|
634 |
+
f = 4*t*x**2 + 4*t**2*x
|
635 |
+
|
636 |
+
assert R.dup_factor_list(f) == \
|
637 |
+
(4*t, [(x, 1),
|
638 |
+
(x + t, 1)])
|
639 |
+
|
640 |
+
Rt, t = ring("t", QQ)
|
641 |
+
R, x = ring("x", Rt)
|
642 |
+
|
643 |
+
f = QQ(1, 2)*t*x**2 + QQ(1, 2)*t**2*x
|
644 |
+
|
645 |
+
assert R.dup_factor_list(f) == \
|
646 |
+
(QQ(1, 2)*t, [(x, 1),
|
647 |
+
(x + t, 1)])
|
648 |
+
|
649 |
+
R, x = ring("x", QQ.algebraic_field(I))
|
650 |
+
def anp(element):
|
651 |
+
return ANP(element, [QQ(1), QQ(0), QQ(1)], QQ)
|
652 |
+
|
653 |
+
f = anp([QQ(1, 1)])*x**4 + anp([QQ(2, 1)])*x**2
|
654 |
+
|
655 |
+
assert R.dup_factor_list(f) == \
|
656 |
+
(anp([QQ(1, 1)]), [(anp([QQ(1, 1)])*x, 2),
|
657 |
+
(anp([QQ(1, 1)])*x**2 + anp([])*x + anp([QQ(2, 1)]), 1)])
|
658 |
+
|
659 |
+
R, x = ring("x", EX)
|
660 |
+
raises(DomainError, lambda: R.dup_factor_list(EX(sin(1))))
|
661 |
+
|
662 |
+
|
663 |
+
def test_dmp_factor_list():
|
664 |
+
R, x, y = ring("x,y", ZZ)
|
665 |
+
assert R.dmp_factor_list(0) == (ZZ(0), [])
|
666 |
+
assert R.dmp_factor_list(7) == (7, [])
|
667 |
+
|
668 |
+
R, x, y = ring("x,y", QQ)
|
669 |
+
assert R.dmp_factor_list(0) == (QQ(0), [])
|
670 |
+
assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), [])
|
671 |
+
|
672 |
+
Rt, t = ring("t", ZZ)
|
673 |
+
R, x, y = ring("x,y", Rt)
|
674 |
+
assert R.dmp_factor_list(0) == (0, [])
|
675 |
+
assert R.dmp_factor_list(7) == (ZZ(7), [])
|
676 |
+
|
677 |
+
Rt, t = ring("t", QQ)
|
678 |
+
R, x, y = ring("x,y", Rt)
|
679 |
+
assert R.dmp_factor_list(0) == (0, [])
|
680 |
+
assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), [])
|
681 |
+
|
682 |
+
R, x, y = ring("x,y", ZZ)
|
683 |
+
assert R.dmp_factor_list_include(0) == [(0, 1)]
|
684 |
+
assert R.dmp_factor_list_include(7) == [(7, 1)]
|
685 |
+
|
686 |
+
R, X = xring("x:200", ZZ)
|
687 |
+
|
688 |
+
f, g = X[0]**2 + 2*X[0] + 1, X[0] + 1
|
689 |
+
assert R.dmp_factor_list(f) == (1, [(g, 2)])
|
690 |
+
|
691 |
+
f, g = X[-1]**2 + 2*X[-1] + 1, X[-1] + 1
|
692 |
+
assert R.dmp_factor_list(f) == (1, [(g, 2)])
|
693 |
+
|
694 |
+
R, x = ring("x", ZZ)
|
695 |
+
assert R.dmp_factor_list(x**2 + 2*x + 1) == (1, [(x + 1, 2)])
|
696 |
+
R, x = ring("x", QQ)
|
697 |
+
assert R.dmp_factor_list(QQ(1,2)*x**2 + x + QQ(1,2)) == (QQ(1,2), [(x + 1, 2)])
|
698 |
+
|
699 |
+
R, x, y = ring("x,y", ZZ)
|
700 |
+
assert R.dmp_factor_list(x**2 + 2*x + 1) == (1, [(x + 1, 2)])
|
701 |
+
R, x, y = ring("x,y", QQ)
|
702 |
+
assert R.dmp_factor_list(QQ(1,2)*x**2 + x + QQ(1,2)) == (QQ(1,2), [(x + 1, 2)])
|
703 |
+
|
704 |
+
R, x, y = ring("x,y", ZZ)
|
705 |
+
f = 4*x**2*y + 4*x*y**2
|
706 |
+
|
707 |
+
assert R.dmp_factor_list(f) == \
|
708 |
+
(4, [(y, 1),
|
709 |
+
(x, 1),
|
710 |
+
(x + y, 1)])
|
711 |
+
|
712 |
+
assert R.dmp_factor_list_include(f) == \
|
713 |
+
[(4*y, 1),
|
714 |
+
(x, 1),
|
715 |
+
(x + y, 1)]
|
716 |
+
|
717 |
+
R, x, y = ring("x,y", QQ)
|
718 |
+
f = QQ(1,2)*x**2*y + QQ(1,2)*x*y**2
|
719 |
+
|
720 |
+
assert R.dmp_factor_list(f) == \
|
721 |
+
(QQ(1,2), [(y, 1),
|
722 |
+
(x, 1),
|
723 |
+
(x + y, 1)])
|
724 |
+
|
725 |
+
R, x, y = ring("x,y", RR)
|
726 |
+
f = 2.0*x**2 - 8.0*y**2
|
727 |
+
|
728 |
+
assert R.dmp_factor_list(f) == \
|
729 |
+
(RR(8.0), [(0.5*x - y, 1),
|
730 |
+
(0.5*x + y, 1)])
|
731 |
+
|
732 |
+
f = 6.7225336055071*x**2*y**2 - 10.6463972754741*x*y - 0.33469524022264
|
733 |
+
coeff, factors = R.dmp_factor_list(f)
|
734 |
+
assert coeff == RR(10.6463972754741)
|
735 |
+
assert len(factors) == 1
|
736 |
+
assert factors[0][0].max_norm() == RR(1.0)
|
737 |
+
assert factors[0][1] == 1
|
738 |
+
|
739 |
+
Rt, t = ring("t", ZZ)
|
740 |
+
R, x, y = ring("x,y", Rt)
|
741 |
+
f = 4*t*x**2 + 4*t**2*x
|
742 |
+
|
743 |
+
assert R.dmp_factor_list(f) == \
|
744 |
+
(4*t, [(x, 1),
|
745 |
+
(x + t, 1)])
|
746 |
+
|
747 |
+
Rt, t = ring("t", QQ)
|
748 |
+
R, x, y = ring("x,y", Rt)
|
749 |
+
f = QQ(1, 2)*t*x**2 + QQ(1, 2)*t**2*x
|
750 |
+
|
751 |
+
assert R.dmp_factor_list(f) == \
|
752 |
+
(QQ(1, 2)*t, [(x, 1),
|
753 |
+
(x + t, 1)])
|
754 |
+
|
755 |
+
R, x, y = ring("x,y", FF(2))
|
756 |
+
raises(NotImplementedError, lambda: R.dmp_factor_list(x**2 + y**2))
|
757 |
+
|
758 |
+
R, x, y = ring("x,y", EX)
|
759 |
+
raises(DomainError, lambda: R.dmp_factor_list(EX(sin(1))))
|
760 |
+
|
761 |
+
|
762 |
+
def test_dup_irreducible_p():
|
763 |
+
R, x = ring("x", ZZ)
|
764 |
+
assert R.dup_irreducible_p(x**2 + x + 1) is True
|
765 |
+
assert R.dup_irreducible_p(x**2 + 2*x + 1) is False
|
766 |
+
|
767 |
+
|
768 |
+
def test_dmp_irreducible_p():
|
769 |
+
R, x, y = ring("x,y", ZZ)
|
770 |
+
assert R.dmp_irreducible_p(x**2 + x + 1) is True
|
771 |
+
assert R.dmp_irreducible_p(x**2 + 2*x + 1) is False
|
env-llmeval/lib/python3.10/site-packages/sympy/polys/tests/test_fields.py
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Test sparse rational functions. """
|
2 |
+
|
3 |
+
from sympy.polys.fields import field, sfield, FracField, FracElement
|
4 |
+
from sympy.polys.rings import ring
|
5 |
+
from sympy.polys.domains import ZZ, QQ
|
6 |
+
from sympy.polys.orderings import lex
|
7 |
+
|
8 |
+
from sympy.testing.pytest import raises, XFAIL
|
9 |
+
from sympy.core import symbols, E
|
10 |
+
from sympy.core.numbers import Rational
|
11 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
12 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
13 |
+
|
14 |
+
def test_FracField___init__():
|
15 |
+
F1 = FracField("x,y", ZZ, lex)
|
16 |
+
F2 = FracField("x,y", ZZ, lex)
|
17 |
+
F3 = FracField("x,y,z", ZZ, lex)
|
18 |
+
|
19 |
+
assert F1.x == F1.gens[0]
|
20 |
+
assert F1.y == F1.gens[1]
|
21 |
+
assert F1.x == F2.x
|
22 |
+
assert F1.y == F2.y
|
23 |
+
assert F1.x != F3.x
|
24 |
+
assert F1.y != F3.y
|
25 |
+
|
26 |
+
def test_FracField___hash__():
|
27 |
+
F, x, y, z = field("x,y,z", QQ)
|
28 |
+
assert hash(F)
|
29 |
+
|
30 |
+
def test_FracField___eq__():
|
31 |
+
assert field("x,y,z", QQ)[0] == field("x,y,z", QQ)[0]
|
32 |
+
assert field("x,y,z", QQ)[0] is field("x,y,z", QQ)[0]
|
33 |
+
|
34 |
+
assert field("x,y,z", QQ)[0] != field("x,y,z", ZZ)[0]
|
35 |
+
assert field("x,y,z", QQ)[0] is not field("x,y,z", ZZ)[0]
|
36 |
+
|
37 |
+
assert field("x,y,z", ZZ)[0] != field("x,y,z", QQ)[0]
|
38 |
+
assert field("x,y,z", ZZ)[0] is not field("x,y,z", QQ)[0]
|
39 |
+
|
40 |
+
assert field("x,y,z", QQ)[0] != field("x,y", QQ)[0]
|
41 |
+
assert field("x,y,z", QQ)[0] is not field("x,y", QQ)[0]
|
42 |
+
|
43 |
+
assert field("x,y", QQ)[0] != field("x,y,z", QQ)[0]
|
44 |
+
assert field("x,y", QQ)[0] is not field("x,y,z", QQ)[0]
|
45 |
+
|
46 |
+
def test_sfield():
|
47 |
+
x = symbols("x")
|
48 |
+
|
49 |
+
F = FracField((E, exp(exp(x)), exp(x)), ZZ, lex)
|
50 |
+
e, exex, ex = F.gens
|
51 |
+
assert sfield(exp(x)*exp(exp(x) + 1 + log(exp(x) + 3)/2)**2/(exp(x) + 3)) \
|
52 |
+
== (F, e**2*exex**2*ex)
|
53 |
+
|
54 |
+
F = FracField((x, exp(1/x), log(x), x**QQ(1, 3)), ZZ, lex)
|
55 |
+
_, ex, lg, x3 = F.gens
|
56 |
+
assert sfield(((x-3)*log(x)+4*x**2)*exp(1/x+log(x)/3)/x**2) == \
|
57 |
+
(F, (4*F.x**2*ex + F.x*ex*lg - 3*ex*lg)/x3**5)
|
58 |
+
|
59 |
+
F = FracField((x, log(x), sqrt(x + log(x))), ZZ, lex)
|
60 |
+
_, lg, srt = F.gens
|
61 |
+
assert sfield((x + 1) / (x * (x + log(x))**QQ(3, 2)) - 1/(x * log(x)**2)) \
|
62 |
+
== (F, (F.x*lg**2 - F.x*srt + lg**2 - lg*srt)/
|
63 |
+
(F.x**2*lg**2*srt + F.x*lg**3*srt))
|
64 |
+
|
65 |
+
def test_FracElement___hash__():
|
66 |
+
F, x, y, z = field("x,y,z", QQ)
|
67 |
+
assert hash(x*y/z)
|
68 |
+
|
69 |
+
def test_FracElement_copy():
|
70 |
+
F, x, y, z = field("x,y,z", ZZ)
|
71 |
+
|
72 |
+
f = x*y/3*z
|
73 |
+
g = f.copy()
|
74 |
+
|
75 |
+
assert f == g
|
76 |
+
g.numer[(1, 1, 1)] = 7
|
77 |
+
assert f != g
|
78 |
+
|
79 |
+
def test_FracElement_as_expr():
|
80 |
+
F, x, y, z = field("x,y,z", ZZ)
|
81 |
+
f = (3*x**2*y - x*y*z)/(7*z**3 + 1)
|
82 |
+
|
83 |
+
X, Y, Z = F.symbols
|
84 |
+
g = (3*X**2*Y - X*Y*Z)/(7*Z**3 + 1)
|
85 |
+
|
86 |
+
assert f != g
|
87 |
+
assert f.as_expr() == g
|
88 |
+
|
89 |
+
X, Y, Z = symbols("x,y,z")
|
90 |
+
g = (3*X**2*Y - X*Y*Z)/(7*Z**3 + 1)
|
91 |
+
|
92 |
+
assert f != g
|
93 |
+
assert f.as_expr(X, Y, Z) == g
|
94 |
+
|
95 |
+
raises(ValueError, lambda: f.as_expr(X))
|
96 |
+
|
97 |
+
def test_FracElement_from_expr():
|
98 |
+
x, y, z = symbols("x,y,z")
|
99 |
+
F, X, Y, Z = field((x, y, z), ZZ)
|
100 |
+
|
101 |
+
f = F.from_expr(1)
|
102 |
+
assert f == 1 and isinstance(f, F.dtype)
|
103 |
+
|
104 |
+
f = F.from_expr(Rational(3, 7))
|
105 |
+
assert f == F(3)/7 and isinstance(f, F.dtype)
|
106 |
+
|
107 |
+
f = F.from_expr(x)
|
108 |
+
assert f == X and isinstance(f, F.dtype)
|
109 |
+
|
110 |
+
f = F.from_expr(Rational(3,7)*x)
|
111 |
+
assert f == X*Rational(3, 7) and isinstance(f, F.dtype)
|
112 |
+
|
113 |
+
f = F.from_expr(1/x)
|
114 |
+
assert f == 1/X and isinstance(f, F.dtype)
|
115 |
+
|
116 |
+
f = F.from_expr(x*y*z)
|
117 |
+
assert f == X*Y*Z and isinstance(f, F.dtype)
|
118 |
+
|
119 |
+
f = F.from_expr(x*y/z)
|
120 |
+
assert f == X*Y/Z and isinstance(f, F.dtype)
|
121 |
+
|
122 |
+
f = F.from_expr(x*y*z + x*y + x)
|
123 |
+
assert f == X*Y*Z + X*Y + X and isinstance(f, F.dtype)
|
124 |
+
|
125 |
+
f = F.from_expr((x*y*z + x*y + x)/(x*y + 7))
|
126 |
+
assert f == (X*Y*Z + X*Y + X)/(X*Y + 7) and isinstance(f, F.dtype)
|
127 |
+
|
128 |
+
f = F.from_expr(x**3*y*z + x**2*y**7 + 1)
|
129 |
+
assert f == X**3*Y*Z + X**2*Y**7 + 1 and isinstance(f, F.dtype)
|
130 |
+
|
131 |
+
raises(ValueError, lambda: F.from_expr(2**x))
|
132 |
+
raises(ValueError, lambda: F.from_expr(7*x + sqrt(2)))
|
133 |
+
|
134 |
+
assert isinstance(ZZ[2**x].get_field().convert(2**(-x)),
|
135 |
+
FracElement)
|
136 |
+
assert isinstance(ZZ[x**2].get_field().convert(x**(-6)),
|
137 |
+
FracElement)
|
138 |
+
assert isinstance(ZZ[exp(Rational(1, 3))].get_field().convert(E),
|
139 |
+
FracElement)
|
140 |
+
|
141 |
+
|
142 |
+
def test_FracField_nested():
|
143 |
+
a, b, x = symbols('a b x')
|
144 |
+
F1 = ZZ.frac_field(a, b)
|
145 |
+
F2 = F1.frac_field(x)
|
146 |
+
frac = F2(a + b)
|
147 |
+
assert frac.numer == F1.poly_ring(x)(a + b)
|
148 |
+
assert frac.numer.coeffs() == [F1(a + b)]
|
149 |
+
assert frac.denom == F1.poly_ring(x)(1)
|
150 |
+
|
151 |
+
F3 = ZZ.poly_ring(a, b)
|
152 |
+
F4 = F3.frac_field(x)
|
153 |
+
frac = F4(a + b)
|
154 |
+
assert frac.numer == F3.poly_ring(x)(a + b)
|
155 |
+
assert frac.numer.coeffs() == [F3(a + b)]
|
156 |
+
assert frac.denom == F3.poly_ring(x)(1)
|
157 |
+
|
158 |
+
frac = F2(F3(a + b))
|
159 |
+
assert frac.numer == F1.poly_ring(x)(a + b)
|
160 |
+
assert frac.numer.coeffs() == [F1(a + b)]
|
161 |
+
assert frac.denom == F1.poly_ring(x)(1)
|
162 |
+
|
163 |
+
frac = F4(F1(a + b))
|
164 |
+
assert frac.numer == F3.poly_ring(x)(a + b)
|
165 |
+
assert frac.numer.coeffs() == [F3(a + b)]
|
166 |
+
assert frac.denom == F3.poly_ring(x)(1)
|
167 |
+
|
168 |
+
|
169 |
+
def test_FracElement__lt_le_gt_ge__():
|
170 |
+
F, x, y = field("x,y", ZZ)
|
171 |
+
|
172 |
+
assert F(1) < 1/x < 1/x**2 < 1/x**3
|
173 |
+
assert F(1) <= 1/x <= 1/x**2 <= 1/x**3
|
174 |
+
|
175 |
+
assert -7/x < 1/x < 3/x < y/x < 1/x**2
|
176 |
+
assert -7/x <= 1/x <= 3/x <= y/x <= 1/x**2
|
177 |
+
|
178 |
+
assert 1/x**3 > 1/x**2 > 1/x > F(1)
|
179 |
+
assert 1/x**3 >= 1/x**2 >= 1/x >= F(1)
|
180 |
+
|
181 |
+
assert 1/x**2 > y/x > 3/x > 1/x > -7/x
|
182 |
+
assert 1/x**2 >= y/x >= 3/x >= 1/x >= -7/x
|
183 |
+
|
184 |
+
def test_FracElement___neg__():
|
185 |
+
F, x,y = field("x,y", QQ)
|
186 |
+
|
187 |
+
f = (7*x - 9)/y
|
188 |
+
g = (-7*x + 9)/y
|
189 |
+
|
190 |
+
assert -f == g
|
191 |
+
assert -g == f
|
192 |
+
|
193 |
+
def test_FracElement___add__():
|
194 |
+
F, x,y = field("x,y", QQ)
|
195 |
+
|
196 |
+
f, g = 1/x, 1/y
|
197 |
+
assert f + g == g + f == (x + y)/(x*y)
|
198 |
+
|
199 |
+
assert x + F.ring.gens[0] == F.ring.gens[0] + x == 2*x
|
200 |
+
|
201 |
+
F, x,y = field("x,y", ZZ)
|
202 |
+
assert x + 3 == 3 + x
|
203 |
+
assert x + QQ(3,7) == QQ(3,7) + x == (7*x + 3)/7
|
204 |
+
|
205 |
+
Fuv, u,v = field("u,v", ZZ)
|
206 |
+
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
|
207 |
+
|
208 |
+
f = (u*v + x)/(y + u*v)
|
209 |
+
assert dict(f.numer) == {(1, 0, 0, 0): 1, (0, 0, 0, 0): u*v}
|
210 |
+
assert dict(f.denom) == {(0, 1, 0, 0): 1, (0, 0, 0, 0): u*v}
|
211 |
+
|
212 |
+
Ruv, u,v = ring("u,v", ZZ)
|
213 |
+
Fxyzt, x,y,z,t = field("x,y,z,t", Ruv)
|
214 |
+
|
215 |
+
f = (u*v + x)/(y + u*v)
|
216 |
+
assert dict(f.numer) == {(1, 0, 0, 0): 1, (0, 0, 0, 0): u*v}
|
217 |
+
assert dict(f.denom) == {(0, 1, 0, 0): 1, (0, 0, 0, 0): u*v}
|
218 |
+
|
219 |
+
def test_FracElement___sub__():
|
220 |
+
F, x,y = field("x,y", QQ)
|
221 |
+
|
222 |
+
f, g = 1/x, 1/y
|
223 |
+
assert f - g == (-x + y)/(x*y)
|
224 |
+
|
225 |
+
assert x - F.ring.gens[0] == F.ring.gens[0] - x == 0
|
226 |
+
|
227 |
+
F, x,y = field("x,y", ZZ)
|
228 |
+
assert x - 3 == -(3 - x)
|
229 |
+
assert x - QQ(3,7) == -(QQ(3,7) - x) == (7*x - 3)/7
|
230 |
+
|
231 |
+
Fuv, u,v = field("u,v", ZZ)
|
232 |
+
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
|
233 |
+
|
234 |
+
f = (u*v - x)/(y - u*v)
|
235 |
+
assert dict(f.numer) == {(1, 0, 0, 0):-1, (0, 0, 0, 0): u*v}
|
236 |
+
assert dict(f.denom) == {(0, 1, 0, 0): 1, (0, 0, 0, 0):-u*v}
|
237 |
+
|
238 |
+
Ruv, u,v = ring("u,v", ZZ)
|
239 |
+
Fxyzt, x,y,z,t = field("x,y,z,t", Ruv)
|
240 |
+
|
241 |
+
f = (u*v - x)/(y - u*v)
|
242 |
+
assert dict(f.numer) == {(1, 0, 0, 0):-1, (0, 0, 0, 0): u*v}
|
243 |
+
assert dict(f.denom) == {(0, 1, 0, 0): 1, (0, 0, 0, 0):-u*v}
|
244 |
+
|
245 |
+
def test_FracElement___mul__():
|
246 |
+
F, x,y = field("x,y", QQ)
|
247 |
+
|
248 |
+
f, g = 1/x, 1/y
|
249 |
+
assert f*g == g*f == 1/(x*y)
|
250 |
+
|
251 |
+
assert x*F.ring.gens[0] == F.ring.gens[0]*x == x**2
|
252 |
+
|
253 |
+
F, x,y = field("x,y", ZZ)
|
254 |
+
assert x*3 == 3*x
|
255 |
+
assert x*QQ(3,7) == QQ(3,7)*x == x*Rational(3, 7)
|
256 |
+
|
257 |
+
Fuv, u,v = field("u,v", ZZ)
|
258 |
+
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
|
259 |
+
|
260 |
+
f = ((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)
|
261 |
+
assert dict(f.numer) == {(1, 1, 0, 0): u + 1, (0, 0, 0, 0): 1}
|
262 |
+
assert dict(f.denom) == {(0, 0, 1, 0): v - 1, (0, 0, 0, 1): -u*v, (0, 0, 0, 0): -1}
|
263 |
+
|
264 |
+
Ruv, u,v = ring("u,v", ZZ)
|
265 |
+
Fxyzt, x,y,z,t = field("x,y,z,t", Ruv)
|
266 |
+
|
267 |
+
f = ((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)
|
268 |
+
assert dict(f.numer) == {(1, 1, 0, 0): u + 1, (0, 0, 0, 0): 1}
|
269 |
+
assert dict(f.denom) == {(0, 0, 1, 0): v - 1, (0, 0, 0, 1): -u*v, (0, 0, 0, 0): -1}
|
270 |
+
|
271 |
+
def test_FracElement___truediv__():
|
272 |
+
F, x,y = field("x,y", QQ)
|
273 |
+
|
274 |
+
f, g = 1/x, 1/y
|
275 |
+
assert f/g == y/x
|
276 |
+
|
277 |
+
assert x/F.ring.gens[0] == F.ring.gens[0]/x == 1
|
278 |
+
|
279 |
+
F, x,y = field("x,y", ZZ)
|
280 |
+
assert x*3 == 3*x
|
281 |
+
assert x/QQ(3,7) == (QQ(3,7)/x)**-1 == x*Rational(7, 3)
|
282 |
+
|
283 |
+
raises(ZeroDivisionError, lambda: x/0)
|
284 |
+
raises(ZeroDivisionError, lambda: 1/(x - x))
|
285 |
+
raises(ZeroDivisionError, lambda: x/(x - x))
|
286 |
+
|
287 |
+
Fuv, u,v = field("u,v", ZZ)
|
288 |
+
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
|
289 |
+
|
290 |
+
f = (u*v)/(x*y)
|
291 |
+
assert dict(f.numer) == {(0, 0, 0, 0): u*v}
|
292 |
+
assert dict(f.denom) == {(1, 1, 0, 0): 1}
|
293 |
+
|
294 |
+
g = (x*y)/(u*v)
|
295 |
+
assert dict(g.numer) == {(1, 1, 0, 0): 1}
|
296 |
+
assert dict(g.denom) == {(0, 0, 0, 0): u*v}
|
297 |
+
|
298 |
+
Ruv, u,v = ring("u,v", ZZ)
|
299 |
+
Fxyzt, x,y,z,t = field("x,y,z,t", Ruv)
|
300 |
+
|
301 |
+
f = (u*v)/(x*y)
|
302 |
+
assert dict(f.numer) == {(0, 0, 0, 0): u*v}
|
303 |
+
assert dict(f.denom) == {(1, 1, 0, 0): 1}
|
304 |
+
|
305 |
+
g = (x*y)/(u*v)
|
306 |
+
assert dict(g.numer) == {(1, 1, 0, 0): 1}
|
307 |
+
assert dict(g.denom) == {(0, 0, 0, 0): u*v}
|
308 |
+
|
309 |
+
def test_FracElement___pow__():
|
310 |
+
F, x,y = field("x,y", QQ)
|
311 |
+
|
312 |
+
f, g = 1/x, 1/y
|
313 |
+
|
314 |
+
assert f**3 == 1/x**3
|
315 |
+
assert g**3 == 1/y**3
|
316 |
+
|
317 |
+
assert (f*g)**3 == 1/(x**3*y**3)
|
318 |
+
assert (f*g)**-3 == (x*y)**3
|
319 |
+
|
320 |
+
raises(ZeroDivisionError, lambda: (x - x)**-3)
|
321 |
+
|
322 |
+
def test_FracElement_diff():
|
323 |
+
F, x,y,z = field("x,y,z", ZZ)
|
324 |
+
|
325 |
+
assert ((x**2 + y)/(z + 1)).diff(x) == 2*x/(z + 1)
|
326 |
+
|
327 |
+
@XFAIL
|
328 |
+
def test_FracElement___call__():
|
329 |
+
F, x,y,z = field("x,y,z", ZZ)
|
330 |
+
f = (x**2 + 3*y)/z
|
331 |
+
|
332 |
+
r = f(1, 1, 1)
|
333 |
+
assert r == 4 and not isinstance(r, FracElement)
|
334 |
+
raises(ZeroDivisionError, lambda: f(1, 1, 0))
|
335 |
+
|
336 |
+
def test_FracElement_evaluate():
|
337 |
+
F, x,y,z = field("x,y,z", ZZ)
|
338 |
+
Fyz = field("y,z", ZZ)[0]
|
339 |
+
f = (x**2 + 3*y)/z
|
340 |
+
|
341 |
+
assert f.evaluate(x, 0) == 3*Fyz.y/Fyz.z
|
342 |
+
raises(ZeroDivisionError, lambda: f.evaluate(z, 0))
|
343 |
+
|
344 |
+
def test_FracElement_subs():
|
345 |
+
F, x,y,z = field("x,y,z", ZZ)
|
346 |
+
f = (x**2 + 3*y)/z
|
347 |
+
|
348 |
+
assert f.subs(x, 0) == 3*y/z
|
349 |
+
raises(ZeroDivisionError, lambda: f.subs(z, 0))
|
350 |
+
|
351 |
+
def test_FracElement_compose():
|
352 |
+
pass
|
353 |
+
|
354 |
+
def test_FracField_index():
|
355 |
+
a = symbols("a")
|
356 |
+
F, x, y, z = field('x y z', QQ)
|
357 |
+
assert F.index(x) == 0
|
358 |
+
assert F.index(y) == 1
|
359 |
+
|
360 |
+
raises(ValueError, lambda: F.index(1))
|
361 |
+
raises(ValueError, lambda: F.index(a))
|
362 |
+
pass
|