Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/transformers/commands/__init__.py +27 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/add_new_model.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/convert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/download.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/env.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/lfs.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/pt_to_tf.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/run.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/serving.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/transformers_cli.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/add_new_model.py +259 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/add_new_model_like.py +1713 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/convert.py +165 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/download.py +56 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/env.py +143 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/lfs.py +226 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/pt_to_tf.py +425 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/run.py +110 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/serving.py +228 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/train.py +158 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/transformers_cli.py +59 -0
- llmeval-env/lib/python3.10/site-packages/transformers/commands/user.py +197 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_flax_albert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/dbrx/__init__.py +51 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/dbrx/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/dbrx/__pycache__/configuration_dbrx.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/dbrx/__pycache__/modeling_dbrx.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/dbrx/configuration_dbrx.py +257 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/dbrx/modeling_dbrx.py +1523 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__init__.py +75 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__pycache__/configuration_detr.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__pycache__/convert_detr_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__pycache__/convert_detr_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__pycache__/feature_extraction_detr.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__pycache__/image_processing_detr.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__pycache__/modeling_detr.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/detr/configuration_detr.py +284 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/detr/convert_detr_original_pytorch_checkpoint_to_pytorch.py +278 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/detr/convert_detr_to_pytorch.py +386 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/detr/feature_extraction_detr.py +43 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/detr/image_processing_detr.py +1965 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/detr/modeling_detr.py +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__init__.py +70 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/convert_jukebox.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/tokenization_jukebox.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/configuration_jukebox.py +613 -0
llmeval-env/lib/python3.10/site-packages/transformers/commands/__init__.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from abc import ABC, abstractmethod
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
|
19 |
+
class BaseTransformersCLICommand(ABC):
|
20 |
+
@staticmethod
|
21 |
+
@abstractmethod
|
22 |
+
def register_subcommand(parser: ArgumentParser):
|
23 |
+
raise NotImplementedError()
|
24 |
+
|
25 |
+
@abstractmethod
|
26 |
+
def run(self):
|
27 |
+
raise NotImplementedError()
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (833 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/add_new_model.cpython-310.pyc
ADDED
Binary file (7.12 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/convert.cpython-310.pyc
ADDED
Binary file (4.65 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/download.cpython-310.pyc
ADDED
Binary file (2.03 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/env.cpython-310.pyc
ADDED
Binary file (4.13 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/lfs.cpython-310.pyc
ADDED
Binary file (7.29 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/pt_to_tf.cpython-310.pyc
ADDED
Binary file (12.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/run.cpython-310.pyc
ADDED
Binary file (3.45 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/serving.cpython-310.pyc
ADDED
Binary file (6.84 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/__pycache__/transformers_cli.cpython-310.pyc
ADDED
Binary file (1.37 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/add_new_model.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
import shutil
|
18 |
+
import warnings
|
19 |
+
from argparse import ArgumentParser, Namespace
|
20 |
+
from pathlib import Path
|
21 |
+
from typing import List
|
22 |
+
|
23 |
+
from ..utils import logging
|
24 |
+
from . import BaseTransformersCLICommand
|
25 |
+
|
26 |
+
|
27 |
+
try:
|
28 |
+
from cookiecutter.main import cookiecutter
|
29 |
+
|
30 |
+
_has_cookiecutter = True
|
31 |
+
except ImportError:
|
32 |
+
_has_cookiecutter = False
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
35 |
+
|
36 |
+
|
37 |
+
def add_new_model_command_factory(args: Namespace):
|
38 |
+
return AddNewModelCommand(args.testing, args.testing_file, path=args.path)
|
39 |
+
|
40 |
+
|
41 |
+
class AddNewModelCommand(BaseTransformersCLICommand):
|
42 |
+
@staticmethod
|
43 |
+
def register_subcommand(parser: ArgumentParser):
|
44 |
+
add_new_model_parser = parser.add_parser("add-new-model")
|
45 |
+
add_new_model_parser.add_argument("--testing", action="store_true", help="If in testing mode.")
|
46 |
+
add_new_model_parser.add_argument("--testing_file", type=str, help="Configuration file on which to run.")
|
47 |
+
add_new_model_parser.add_argument(
|
48 |
+
"--path", type=str, help="Path to cookiecutter. Should only be used for testing purposes."
|
49 |
+
)
|
50 |
+
add_new_model_parser.set_defaults(func=add_new_model_command_factory)
|
51 |
+
|
52 |
+
def __init__(self, testing: bool, testing_file: str, path=None, *args):
|
53 |
+
self._testing = testing
|
54 |
+
self._testing_file = testing_file
|
55 |
+
self._path = path
|
56 |
+
|
57 |
+
def run(self):
|
58 |
+
warnings.warn(
|
59 |
+
"The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. "
|
60 |
+
"It is not actively maintained anymore, so might give a result that won't pass all tests and quality "
|
61 |
+
"checks, you should use `transformers-cli add-new-model-like` instead."
|
62 |
+
)
|
63 |
+
if not _has_cookiecutter:
|
64 |
+
raise ImportError(
|
65 |
+
"Model creation dependencies are required to use the `add_new_model` command. Install them by running "
|
66 |
+
"the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n"
|
67 |
+
)
|
68 |
+
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
|
69 |
+
directories = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]]
|
70 |
+
if len(directories) > 0:
|
71 |
+
raise ValueError(
|
72 |
+
"Several directories starting with `cookiecutter-template-` in current working directory. "
|
73 |
+
"Please clean your directory by removing all folders starting with `cookiecutter-template-` or "
|
74 |
+
"change your working directory."
|
75 |
+
)
|
76 |
+
|
77 |
+
path_to_transformer_root = (
|
78 |
+
Path(__file__).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent
|
79 |
+
)
|
80 |
+
path_to_cookiecutter = path_to_transformer_root / "templates" / "adding_a_new_model"
|
81 |
+
|
82 |
+
# Execute cookiecutter
|
83 |
+
if not self._testing:
|
84 |
+
cookiecutter(str(path_to_cookiecutter))
|
85 |
+
else:
|
86 |
+
with open(self._testing_file, "r") as configuration_file:
|
87 |
+
testing_configuration = json.load(configuration_file)
|
88 |
+
|
89 |
+
cookiecutter(
|
90 |
+
str(path_to_cookiecutter if self._path is None else self._path),
|
91 |
+
no_input=True,
|
92 |
+
extra_context=testing_configuration,
|
93 |
+
)
|
94 |
+
|
95 |
+
directory = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0]
|
96 |
+
|
97 |
+
# Retrieve configuration
|
98 |
+
with open(directory + "/configuration.json", "r") as configuration_file:
|
99 |
+
configuration = json.load(configuration_file)
|
100 |
+
|
101 |
+
lowercase_model_name = configuration["lowercase_modelname"]
|
102 |
+
generate_tensorflow_pytorch_and_flax = configuration["generate_tensorflow_pytorch_and_flax"]
|
103 |
+
os.remove(f"{directory}/configuration.json")
|
104 |
+
|
105 |
+
output_pytorch = "PyTorch" in generate_tensorflow_pytorch_and_flax
|
106 |
+
output_tensorflow = "TensorFlow" in generate_tensorflow_pytorch_and_flax
|
107 |
+
output_flax = "Flax" in generate_tensorflow_pytorch_and_flax
|
108 |
+
|
109 |
+
model_dir = f"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}"
|
110 |
+
os.makedirs(model_dir, exist_ok=True)
|
111 |
+
os.makedirs(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}", exist_ok=True)
|
112 |
+
|
113 |
+
# Tests require submodules as they have parent imports
|
114 |
+
with open(f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py", "w"):
|
115 |
+
pass
|
116 |
+
|
117 |
+
shutil.move(
|
118 |
+
f"{directory}/__init__.py",
|
119 |
+
f"{model_dir}/__init__.py",
|
120 |
+
)
|
121 |
+
shutil.move(
|
122 |
+
f"{directory}/configuration_{lowercase_model_name}.py",
|
123 |
+
f"{model_dir}/configuration_{lowercase_model_name}.py",
|
124 |
+
)
|
125 |
+
|
126 |
+
def remove_copy_lines(path):
|
127 |
+
with open(path, "r") as f:
|
128 |
+
lines = f.readlines()
|
129 |
+
with open(path, "w") as f:
|
130 |
+
for line in lines:
|
131 |
+
if "# Copied from transformers." not in line:
|
132 |
+
f.write(line)
|
133 |
+
|
134 |
+
if output_pytorch:
|
135 |
+
if not self._testing:
|
136 |
+
remove_copy_lines(f"{directory}/modeling_{lowercase_model_name}.py")
|
137 |
+
|
138 |
+
shutil.move(
|
139 |
+
f"{directory}/modeling_{lowercase_model_name}.py",
|
140 |
+
f"{model_dir}/modeling_{lowercase_model_name}.py",
|
141 |
+
)
|
142 |
+
|
143 |
+
shutil.move(
|
144 |
+
f"{directory}/test_modeling_{lowercase_model_name}.py",
|
145 |
+
f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py",
|
146 |
+
)
|
147 |
+
else:
|
148 |
+
os.remove(f"{directory}/modeling_{lowercase_model_name}.py")
|
149 |
+
os.remove(f"{directory}/test_modeling_{lowercase_model_name}.py")
|
150 |
+
|
151 |
+
if output_tensorflow:
|
152 |
+
if not self._testing:
|
153 |
+
remove_copy_lines(f"{directory}/modeling_tf_{lowercase_model_name}.py")
|
154 |
+
|
155 |
+
shutil.move(
|
156 |
+
f"{directory}/modeling_tf_{lowercase_model_name}.py",
|
157 |
+
f"{model_dir}/modeling_tf_{lowercase_model_name}.py",
|
158 |
+
)
|
159 |
+
|
160 |
+
shutil.move(
|
161 |
+
f"{directory}/test_modeling_tf_{lowercase_model_name}.py",
|
162 |
+
f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py",
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
os.remove(f"{directory}/modeling_tf_{lowercase_model_name}.py")
|
166 |
+
os.remove(f"{directory}/test_modeling_tf_{lowercase_model_name}.py")
|
167 |
+
|
168 |
+
if output_flax:
|
169 |
+
if not self._testing:
|
170 |
+
remove_copy_lines(f"{directory}/modeling_flax_{lowercase_model_name}.py")
|
171 |
+
|
172 |
+
shutil.move(
|
173 |
+
f"{directory}/modeling_flax_{lowercase_model_name}.py",
|
174 |
+
f"{model_dir}/modeling_flax_{lowercase_model_name}.py",
|
175 |
+
)
|
176 |
+
|
177 |
+
shutil.move(
|
178 |
+
f"{directory}/test_modeling_flax_{lowercase_model_name}.py",
|
179 |
+
f"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py",
|
180 |
+
)
|
181 |
+
else:
|
182 |
+
os.remove(f"{directory}/modeling_flax_{lowercase_model_name}.py")
|
183 |
+
os.remove(f"{directory}/test_modeling_flax_{lowercase_model_name}.py")
|
184 |
+
|
185 |
+
shutil.move(
|
186 |
+
f"{directory}/{lowercase_model_name}.md",
|
187 |
+
f"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md",
|
188 |
+
)
|
189 |
+
|
190 |
+
shutil.move(
|
191 |
+
f"{directory}/tokenization_{lowercase_model_name}.py",
|
192 |
+
f"{model_dir}/tokenization_{lowercase_model_name}.py",
|
193 |
+
)
|
194 |
+
|
195 |
+
shutil.move(
|
196 |
+
f"{directory}/tokenization_fast_{lowercase_model_name}.py",
|
197 |
+
f"{model_dir}/tokenization_{lowercase_model_name}_fast.py",
|
198 |
+
)
|
199 |
+
|
200 |
+
from os import fdopen, remove
|
201 |
+
from shutil import copymode, move
|
202 |
+
from tempfile import mkstemp
|
203 |
+
|
204 |
+
def replace(original_file: str, line_to_copy_below: str, lines_to_copy: List[str]):
|
205 |
+
# Create temp file
|
206 |
+
fh, abs_path = mkstemp()
|
207 |
+
line_found = False
|
208 |
+
with fdopen(fh, "w") as new_file:
|
209 |
+
with open(original_file) as old_file:
|
210 |
+
for line in old_file:
|
211 |
+
new_file.write(line)
|
212 |
+
if line_to_copy_below in line:
|
213 |
+
line_found = True
|
214 |
+
for line_to_copy in lines_to_copy:
|
215 |
+
new_file.write(line_to_copy)
|
216 |
+
|
217 |
+
if not line_found:
|
218 |
+
raise ValueError(f"Line {line_to_copy_below} was not found in file.")
|
219 |
+
|
220 |
+
# Copy the file permissions from the old file to the new file
|
221 |
+
copymode(original_file, abs_path)
|
222 |
+
# Remove original file
|
223 |
+
remove(original_file)
|
224 |
+
# Move new file
|
225 |
+
move(abs_path, original_file)
|
226 |
+
|
227 |
+
def skip_units(line):
|
228 |
+
return (
|
229 |
+
("generating PyTorch" in line and not output_pytorch)
|
230 |
+
or ("generating TensorFlow" in line and not output_tensorflow)
|
231 |
+
or ("generating Flax" in line and not output_flax)
|
232 |
+
)
|
233 |
+
|
234 |
+
def replace_in_files(path_to_datafile):
|
235 |
+
with open(path_to_datafile) as datafile:
|
236 |
+
lines_to_copy = []
|
237 |
+
skip_file = False
|
238 |
+
skip_snippet = False
|
239 |
+
for line in datafile:
|
240 |
+
if "# To replace in: " in line and "##" not in line:
|
241 |
+
file_to_replace_in = line.split('"')[1]
|
242 |
+
skip_file = skip_units(line)
|
243 |
+
elif "# Below: " in line and "##" not in line:
|
244 |
+
line_to_copy_below = line.split('"')[1]
|
245 |
+
skip_snippet = skip_units(line)
|
246 |
+
elif "# End." in line and "##" not in line:
|
247 |
+
if not skip_file and not skip_snippet:
|
248 |
+
replace(file_to_replace_in, line_to_copy_below, lines_to_copy)
|
249 |
+
|
250 |
+
lines_to_copy = []
|
251 |
+
elif "# Replace with" in line and "##" not in line:
|
252 |
+
lines_to_copy = []
|
253 |
+
elif "##" not in line:
|
254 |
+
lines_to_copy.append(line)
|
255 |
+
|
256 |
+
remove(path_to_datafile)
|
257 |
+
|
258 |
+
replace_in_files(f"{directory}/to_replace_{lowercase_model_name}.py")
|
259 |
+
os.rmdir(directory)
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/add_new_model_like.py
ADDED
@@ -0,0 +1,1713 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import difflib
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
import re
|
19 |
+
from argparse import ArgumentParser, Namespace
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from datetime import date
|
22 |
+
from itertools import chain
|
23 |
+
from pathlib import Path
|
24 |
+
from typing import Any, Callable, Dict, List, Optional, Pattern, Tuple, Union
|
25 |
+
|
26 |
+
import yaml
|
27 |
+
|
28 |
+
from ..models import auto as auto_module
|
29 |
+
from ..models.auto.configuration_auto import model_type_to_module_name
|
30 |
+
from ..utils import is_flax_available, is_tf_available, is_torch_available, logging
|
31 |
+
from . import BaseTransformersCLICommand
|
32 |
+
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
35 |
+
|
36 |
+
|
37 |
+
CURRENT_YEAR = date.today().year
|
38 |
+
TRANSFORMERS_PATH = Path(__file__).parent.parent
|
39 |
+
REPO_PATH = TRANSFORMERS_PATH.parent.parent
|
40 |
+
|
41 |
+
|
42 |
+
@dataclass
|
43 |
+
class ModelPatterns:
|
44 |
+
"""
|
45 |
+
Holds the basic information about a new model for the add-new-model-like command.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
model_name (`str`): The model name.
|
49 |
+
checkpoint (`str`): The checkpoint to use for doc examples.
|
50 |
+
model_type (`str`, *optional*):
|
51 |
+
The model type, the identifier used internally in the library like `bert` or `xlm-roberta`. Will default to
|
52 |
+
`model_name` lowercased with spaces replaced with minuses (-).
|
53 |
+
model_lower_cased (`str`, *optional*):
|
54 |
+
The lowercased version of the model name, to use for the module name or function names. Will default to
|
55 |
+
`model_name` lowercased with spaces and minuses replaced with underscores.
|
56 |
+
model_camel_cased (`str`, *optional*):
|
57 |
+
The camel-cased version of the model name, to use for the class names. Will default to `model_name`
|
58 |
+
camel-cased (with spaces and minuses both considered as word separators.
|
59 |
+
model_upper_cased (`str`, *optional*):
|
60 |
+
The uppercased version of the model name, to use for the constant names. Will default to `model_name`
|
61 |
+
uppercased with spaces and minuses replaced with underscores.
|
62 |
+
config_class (`str`, *optional*):
|
63 |
+
The tokenizer class associated with this model. Will default to `"{model_camel_cased}Config"`.
|
64 |
+
tokenizer_class (`str`, *optional*):
|
65 |
+
The tokenizer class associated with this model (leave to `None` for models that don't use a tokenizer).
|
66 |
+
image_processor_class (`str`, *optional*):
|
67 |
+
The image processor class associated with this model (leave to `None` for models that don't use an image
|
68 |
+
processor).
|
69 |
+
feature_extractor_class (`str`, *optional*):
|
70 |
+
The feature extractor class associated with this model (leave to `None` for models that don't use a feature
|
71 |
+
extractor).
|
72 |
+
processor_class (`str`, *optional*):
|
73 |
+
The processor class associated with this model (leave to `None` for models that don't use a processor).
|
74 |
+
"""
|
75 |
+
|
76 |
+
model_name: str
|
77 |
+
checkpoint: str
|
78 |
+
model_type: Optional[str] = None
|
79 |
+
model_lower_cased: Optional[str] = None
|
80 |
+
model_camel_cased: Optional[str] = None
|
81 |
+
model_upper_cased: Optional[str] = None
|
82 |
+
config_class: Optional[str] = None
|
83 |
+
tokenizer_class: Optional[str] = None
|
84 |
+
image_processor_class: Optional[str] = None
|
85 |
+
feature_extractor_class: Optional[str] = None
|
86 |
+
processor_class: Optional[str] = None
|
87 |
+
|
88 |
+
def __post_init__(self):
|
89 |
+
if self.model_type is None:
|
90 |
+
self.model_type = self.model_name.lower().replace(" ", "-")
|
91 |
+
if self.model_lower_cased is None:
|
92 |
+
self.model_lower_cased = self.model_name.lower().replace(" ", "_").replace("-", "_")
|
93 |
+
if self.model_camel_cased is None:
|
94 |
+
# Split the model name on - and space
|
95 |
+
words = self.model_name.split(" ")
|
96 |
+
words = list(chain(*[w.split("-") for w in words]))
|
97 |
+
# Make sure each word is capitalized
|
98 |
+
words = [w[0].upper() + w[1:] for w in words]
|
99 |
+
self.model_camel_cased = "".join(words)
|
100 |
+
if self.model_upper_cased is None:
|
101 |
+
self.model_upper_cased = self.model_name.upper().replace(" ", "_").replace("-", "_")
|
102 |
+
if self.config_class is None:
|
103 |
+
self.config_class = f"{self.model_camel_cased}Config"
|
104 |
+
|
105 |
+
|
106 |
+
ATTRIBUTE_TO_PLACEHOLDER = {
|
107 |
+
"config_class": "[CONFIG_CLASS]",
|
108 |
+
"tokenizer_class": "[TOKENIZER_CLASS]",
|
109 |
+
"image_processor_class": "[IMAGE_PROCESSOR_CLASS]",
|
110 |
+
"feature_extractor_class": "[FEATURE_EXTRACTOR_CLASS]",
|
111 |
+
"processor_class": "[PROCESSOR_CLASS]",
|
112 |
+
"checkpoint": "[CHECKPOINT]",
|
113 |
+
"model_type": "[MODEL_TYPE]",
|
114 |
+
"model_upper_cased": "[MODEL_UPPER_CASED]",
|
115 |
+
"model_camel_cased": "[MODEL_CAMELCASED]",
|
116 |
+
"model_lower_cased": "[MODEL_LOWER_CASED]",
|
117 |
+
"model_name": "[MODEL_NAME]",
|
118 |
+
}
|
119 |
+
|
120 |
+
|
121 |
+
def is_empty_line(line: str) -> bool:
|
122 |
+
"""
|
123 |
+
Determines whether a line is empty or not.
|
124 |
+
"""
|
125 |
+
return len(line) == 0 or line.isspace()
|
126 |
+
|
127 |
+
|
128 |
+
def find_indent(line: str) -> int:
|
129 |
+
"""
|
130 |
+
Returns the number of spaces that start a line indent.
|
131 |
+
"""
|
132 |
+
search = re.search(r"^(\s*)(?:\S|$)", line)
|
133 |
+
if search is None:
|
134 |
+
return 0
|
135 |
+
return len(search.groups()[0])
|
136 |
+
|
137 |
+
|
138 |
+
def parse_module_content(content: str) -> List[str]:
|
139 |
+
"""
|
140 |
+
Parse the content of a module in the list of objects it defines.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
content (`str`): The content to parse
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
`List[str]`: The list of objects defined in the module.
|
147 |
+
"""
|
148 |
+
objects = []
|
149 |
+
current_object = []
|
150 |
+
lines = content.split("\n")
|
151 |
+
# Doc-styler takes everything between two triple quotes in docstrings, so we need a fake """ here to go with this.
|
152 |
+
end_markers = [")", "]", "}", '"""']
|
153 |
+
|
154 |
+
for line in lines:
|
155 |
+
# End of an object
|
156 |
+
is_valid_object = len(current_object) > 0
|
157 |
+
if is_valid_object and len(current_object) == 1:
|
158 |
+
is_valid_object = not current_object[0].startswith("# Copied from")
|
159 |
+
if not is_empty_line(line) and find_indent(line) == 0 and is_valid_object:
|
160 |
+
# Closing parts should be included in current object
|
161 |
+
if line in end_markers:
|
162 |
+
current_object.append(line)
|
163 |
+
objects.append("\n".join(current_object))
|
164 |
+
current_object = []
|
165 |
+
else:
|
166 |
+
objects.append("\n".join(current_object))
|
167 |
+
current_object = [line]
|
168 |
+
else:
|
169 |
+
current_object.append(line)
|
170 |
+
|
171 |
+
# Add last object
|
172 |
+
if len(current_object) > 0:
|
173 |
+
objects.append("\n".join(current_object))
|
174 |
+
|
175 |
+
return objects
|
176 |
+
|
177 |
+
|
178 |
+
def extract_block(content: str, indent_level: int = 0) -> str:
|
179 |
+
"""Return the first block in `content` with the indent level `indent_level`.
|
180 |
+
|
181 |
+
The first line in `content` should be indented at `indent_level` level, otherwise an error will be thrown.
|
182 |
+
|
183 |
+
This method will immediately stop the search when a (non-empty) line with indent level less than `indent_level` is
|
184 |
+
encountered.
|
185 |
+
|
186 |
+
Args:
|
187 |
+
content (`str`): The content to parse
|
188 |
+
indent_level (`int`, *optional*, default to 0): The indent level of the blocks to search for
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
`str`: The first block in `content` with the indent level `indent_level`.
|
192 |
+
"""
|
193 |
+
current_object = []
|
194 |
+
lines = content.split("\n")
|
195 |
+
# Doc-styler takes everything between two triple quotes in docstrings, so we need a fake """ here to go with this.
|
196 |
+
end_markers = [")", "]", "}", '"""']
|
197 |
+
|
198 |
+
for idx, line in enumerate(lines):
|
199 |
+
if idx == 0 and indent_level > 0 and not is_empty_line(line) and find_indent(line) != indent_level:
|
200 |
+
raise ValueError(
|
201 |
+
f"When `indent_level > 0`, the first line in `content` should have indent level {indent_level}. Got "
|
202 |
+
f"{find_indent(line)} instead."
|
203 |
+
)
|
204 |
+
|
205 |
+
if find_indent(line) < indent_level and not is_empty_line(line):
|
206 |
+
break
|
207 |
+
|
208 |
+
# End of an object
|
209 |
+
is_valid_object = len(current_object) > 0
|
210 |
+
if (
|
211 |
+
not is_empty_line(line)
|
212 |
+
and not line.endswith(":")
|
213 |
+
and find_indent(line) == indent_level
|
214 |
+
and is_valid_object
|
215 |
+
):
|
216 |
+
# Closing parts should be included in current object
|
217 |
+
if line.lstrip() in end_markers:
|
218 |
+
current_object.append(line)
|
219 |
+
return "\n".join(current_object)
|
220 |
+
else:
|
221 |
+
current_object.append(line)
|
222 |
+
|
223 |
+
# Add last object
|
224 |
+
if len(current_object) > 0:
|
225 |
+
return "\n".join(current_object)
|
226 |
+
|
227 |
+
|
228 |
+
def add_content_to_text(
|
229 |
+
text: str,
|
230 |
+
content: str,
|
231 |
+
add_after: Optional[Union[str, Pattern]] = None,
|
232 |
+
add_before: Optional[Union[str, Pattern]] = None,
|
233 |
+
exact_match: bool = False,
|
234 |
+
) -> str:
|
235 |
+
"""
|
236 |
+
A utility to add some content inside a given text.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
text (`str`): The text in which we want to insert some content.
|
240 |
+
content (`str`): The content to add.
|
241 |
+
add_after (`str` or `Pattern`):
|
242 |
+
The pattern to test on a line of `text`, the new content is added after the first instance matching it.
|
243 |
+
add_before (`str` or `Pattern`):
|
244 |
+
The pattern to test on a line of `text`, the new content is added before the first instance matching it.
|
245 |
+
exact_match (`bool`, *optional*, defaults to `False`):
|
246 |
+
A line is considered a match with `add_after` or `add_before` if it matches exactly when `exact_match=True`,
|
247 |
+
otherwise, if `add_after`/`add_before` is present in the line.
|
248 |
+
|
249 |
+
<Tip warning={true}>
|
250 |
+
|
251 |
+
The arguments `add_after` and `add_before` are mutually exclusive, and one exactly needs to be provided.
|
252 |
+
|
253 |
+
</Tip>
|
254 |
+
|
255 |
+
Returns:
|
256 |
+
`str`: The text with the new content added if a match was found.
|
257 |
+
"""
|
258 |
+
if add_after is None and add_before is None:
|
259 |
+
raise ValueError("You need to pass either `add_after` or `add_before`")
|
260 |
+
if add_after is not None and add_before is not None:
|
261 |
+
raise ValueError("You can't pass both `add_after` or `add_before`")
|
262 |
+
pattern = add_after if add_before is None else add_before
|
263 |
+
|
264 |
+
def this_is_the_line(line):
|
265 |
+
if isinstance(pattern, Pattern):
|
266 |
+
return pattern.search(line) is not None
|
267 |
+
elif exact_match:
|
268 |
+
return pattern == line
|
269 |
+
else:
|
270 |
+
return pattern in line
|
271 |
+
|
272 |
+
new_lines = []
|
273 |
+
for line in text.split("\n"):
|
274 |
+
if this_is_the_line(line):
|
275 |
+
if add_before is not None:
|
276 |
+
new_lines.append(content)
|
277 |
+
new_lines.append(line)
|
278 |
+
if add_after is not None:
|
279 |
+
new_lines.append(content)
|
280 |
+
else:
|
281 |
+
new_lines.append(line)
|
282 |
+
|
283 |
+
return "\n".join(new_lines)
|
284 |
+
|
285 |
+
|
286 |
+
def add_content_to_file(
|
287 |
+
file_name: Union[str, os.PathLike],
|
288 |
+
content: str,
|
289 |
+
add_after: Optional[Union[str, Pattern]] = None,
|
290 |
+
add_before: Optional[Union[str, Pattern]] = None,
|
291 |
+
exact_match: bool = False,
|
292 |
+
):
|
293 |
+
"""
|
294 |
+
A utility to add some content inside a given file.
|
295 |
+
|
296 |
+
Args:
|
297 |
+
file_name (`str` or `os.PathLike`): The name of the file in which we want to insert some content.
|
298 |
+
content (`str`): The content to add.
|
299 |
+
add_after (`str` or `Pattern`):
|
300 |
+
The pattern to test on a line of `text`, the new content is added after the first instance matching it.
|
301 |
+
add_before (`str` or `Pattern`):
|
302 |
+
The pattern to test on a line of `text`, the new content is added before the first instance matching it.
|
303 |
+
exact_match (`bool`, *optional*, defaults to `False`):
|
304 |
+
A line is considered a match with `add_after` or `add_before` if it matches exactly when `exact_match=True`,
|
305 |
+
otherwise, if `add_after`/`add_before` is present in the line.
|
306 |
+
|
307 |
+
<Tip warning={true}>
|
308 |
+
|
309 |
+
The arguments `add_after` and `add_before` are mutually exclusive, and one exactly needs to be provided.
|
310 |
+
|
311 |
+
</Tip>
|
312 |
+
"""
|
313 |
+
with open(file_name, "r", encoding="utf-8") as f:
|
314 |
+
old_content = f.read()
|
315 |
+
|
316 |
+
new_content = add_content_to_text(
|
317 |
+
old_content, content, add_after=add_after, add_before=add_before, exact_match=exact_match
|
318 |
+
)
|
319 |
+
|
320 |
+
with open(file_name, "w", encoding="utf-8") as f:
|
321 |
+
f.write(new_content)
|
322 |
+
|
323 |
+
|
324 |
+
def replace_model_patterns(
|
325 |
+
text: str, old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns
|
326 |
+
) -> Tuple[str, str]:
|
327 |
+
"""
|
328 |
+
Replace all patterns present in a given text.
|
329 |
+
|
330 |
+
Args:
|
331 |
+
text (`str`): The text to treat.
|
332 |
+
old_model_patterns (`ModelPatterns`): The patterns for the old model.
|
333 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
334 |
+
|
335 |
+
Returns:
|
336 |
+
`Tuple(str, str)`: A tuple of with the treated text and the replacement actually done in it.
|
337 |
+
"""
|
338 |
+
# The order is crucially important as we will check and replace in that order. For instance the config probably
|
339 |
+
# contains the camel-cased named, but will be treated before.
|
340 |
+
attributes_to_check = ["config_class"]
|
341 |
+
# Add relevant preprocessing classes
|
342 |
+
for attr in ["tokenizer_class", "image_processor_class", "feature_extractor_class", "processor_class"]:
|
343 |
+
if getattr(old_model_patterns, attr) is not None and getattr(new_model_patterns, attr) is not None:
|
344 |
+
attributes_to_check.append(attr)
|
345 |
+
|
346 |
+
# Special cases for checkpoint and model_type
|
347 |
+
if old_model_patterns.checkpoint not in [old_model_patterns.model_type, old_model_patterns.model_lower_cased]:
|
348 |
+
attributes_to_check.append("checkpoint")
|
349 |
+
if old_model_patterns.model_type != old_model_patterns.model_lower_cased:
|
350 |
+
attributes_to_check.append("model_type")
|
351 |
+
else:
|
352 |
+
text = re.sub(
|
353 |
+
rf'(\s*)model_type = "{old_model_patterns.model_type}"',
|
354 |
+
r'\1model_type = "[MODEL_TYPE]"',
|
355 |
+
text,
|
356 |
+
)
|
357 |
+
|
358 |
+
# Special case when the model camel cased and upper cased names are the same for the old model (like for GPT2) but
|
359 |
+
# not the new one. We can't just do a replace in all the text and will need a special regex
|
360 |
+
if old_model_patterns.model_upper_cased == old_model_patterns.model_camel_cased:
|
361 |
+
old_model_value = old_model_patterns.model_upper_cased
|
362 |
+
if re.search(rf"{old_model_value}_[A-Z_]*[^A-Z_]", text) is not None:
|
363 |
+
text = re.sub(rf"{old_model_value}([A-Z_]*)([^a-zA-Z_])", r"[MODEL_UPPER_CASED]\1\2", text)
|
364 |
+
else:
|
365 |
+
attributes_to_check.append("model_upper_cased")
|
366 |
+
|
367 |
+
attributes_to_check.extend(["model_camel_cased", "model_lower_cased", "model_name"])
|
368 |
+
|
369 |
+
# Now let's replace every other attribute by their placeholder
|
370 |
+
for attr in attributes_to_check:
|
371 |
+
text = text.replace(getattr(old_model_patterns, attr), ATTRIBUTE_TO_PLACEHOLDER[attr])
|
372 |
+
|
373 |
+
# Finally we can replace the placeholder byt the new values.
|
374 |
+
replacements = []
|
375 |
+
for attr, placeholder in ATTRIBUTE_TO_PLACEHOLDER.items():
|
376 |
+
if placeholder in text:
|
377 |
+
replacements.append((getattr(old_model_patterns, attr), getattr(new_model_patterns, attr)))
|
378 |
+
text = text.replace(placeholder, getattr(new_model_patterns, attr))
|
379 |
+
|
380 |
+
# If we have two inconsistent replacements, we don't return anything (ex: GPT2->GPT_NEW and GPT2->GPTNew)
|
381 |
+
old_replacement_values = [old for old, new in replacements]
|
382 |
+
if len(set(old_replacement_values)) != len(old_replacement_values):
|
383 |
+
return text, ""
|
384 |
+
|
385 |
+
replacements = simplify_replacements(replacements)
|
386 |
+
replacements = [f"{old}->{new}" for old, new in replacements]
|
387 |
+
return text, ",".join(replacements)
|
388 |
+
|
389 |
+
|
390 |
+
def simplify_replacements(replacements):
|
391 |
+
"""
|
392 |
+
Simplify a list of replacement patterns to make sure there are no needless ones.
|
393 |
+
|
394 |
+
For instance in the sequence "Bert->BertNew, BertConfig->BertNewConfig, bert->bert_new", the replacement
|
395 |
+
"BertConfig->BertNewConfig" is implied by "Bert->BertNew" so not needed.
|
396 |
+
|
397 |
+
Args:
|
398 |
+
replacements (`List[Tuple[str, str]]`): List of patterns (old, new)
|
399 |
+
|
400 |
+
Returns:
|
401 |
+
`List[Tuple[str, str]]`: The list of patterns simplified.
|
402 |
+
"""
|
403 |
+
if len(replacements) <= 1:
|
404 |
+
# Nothing to simplify
|
405 |
+
return replacements
|
406 |
+
|
407 |
+
# Next let's sort replacements by length as a replacement can only "imply" another replacement if it's shorter.
|
408 |
+
replacements.sort(key=lambda x: len(x[0]))
|
409 |
+
|
410 |
+
idx = 0
|
411 |
+
while idx < len(replacements):
|
412 |
+
old, new = replacements[idx]
|
413 |
+
# Loop through all replacements after
|
414 |
+
j = idx + 1
|
415 |
+
while j < len(replacements):
|
416 |
+
old_2, new_2 = replacements[j]
|
417 |
+
# If the replacement is implied by the current one, we can drop it.
|
418 |
+
if old_2.replace(old, new) == new_2:
|
419 |
+
replacements.pop(j)
|
420 |
+
else:
|
421 |
+
j += 1
|
422 |
+
idx += 1
|
423 |
+
|
424 |
+
return replacements
|
425 |
+
|
426 |
+
|
427 |
+
def get_module_from_file(module_file: Union[str, os.PathLike]) -> str:
|
428 |
+
"""
|
429 |
+
Returns the module name corresponding to a module file.
|
430 |
+
"""
|
431 |
+
full_module_path = Path(module_file).absolute()
|
432 |
+
module_parts = full_module_path.with_suffix("").parts
|
433 |
+
|
434 |
+
# Find the first part named transformers, starting from the end.
|
435 |
+
idx = len(module_parts) - 1
|
436 |
+
while idx >= 0 and module_parts[idx] != "transformers":
|
437 |
+
idx -= 1
|
438 |
+
if idx < 0:
|
439 |
+
raise ValueError(f"{module_file} is not a transformers module.")
|
440 |
+
|
441 |
+
return ".".join(module_parts[idx:])
|
442 |
+
|
443 |
+
|
444 |
+
SPECIAL_PATTERNS = {
|
445 |
+
"_CHECKPOINT_FOR_DOC =": "checkpoint",
|
446 |
+
"_CONFIG_FOR_DOC =": "config_class",
|
447 |
+
"_TOKENIZER_FOR_DOC =": "tokenizer_class",
|
448 |
+
"_IMAGE_PROCESSOR_FOR_DOC =": "image_processor_class",
|
449 |
+
"_FEAT_EXTRACTOR_FOR_DOC =": "feature_extractor_class",
|
450 |
+
"_PROCESSOR_FOR_DOC =": "processor_class",
|
451 |
+
}
|
452 |
+
|
453 |
+
|
454 |
+
_re_class_func = re.compile(r"^(?:class|def)\s+([^\s:\(]+)\s*(?:\(|\:)", flags=re.MULTILINE)
|
455 |
+
|
456 |
+
|
457 |
+
def remove_attributes(obj, target_attr):
|
458 |
+
"""Remove `target_attr` in `obj`."""
|
459 |
+
lines = obj.split(os.linesep)
|
460 |
+
|
461 |
+
target_idx = None
|
462 |
+
for idx, line in enumerate(lines):
|
463 |
+
# search for assignment
|
464 |
+
if line.lstrip().startswith(f"{target_attr} = "):
|
465 |
+
target_idx = idx
|
466 |
+
break
|
467 |
+
# search for function/method definition
|
468 |
+
elif line.lstrip().startswith(f"def {target_attr}("):
|
469 |
+
target_idx = idx
|
470 |
+
break
|
471 |
+
|
472 |
+
# target not found
|
473 |
+
if target_idx is None:
|
474 |
+
return obj
|
475 |
+
|
476 |
+
line = lines[target_idx]
|
477 |
+
indent_level = find_indent(line)
|
478 |
+
# forward pass to find the ending of the block (including empty lines)
|
479 |
+
parsed = extract_block("\n".join(lines[target_idx:]), indent_level)
|
480 |
+
num_lines = len(parsed.split("\n"))
|
481 |
+
for idx in range(num_lines):
|
482 |
+
lines[target_idx + idx] = None
|
483 |
+
|
484 |
+
# backward pass to find comments or decorator
|
485 |
+
for idx in range(target_idx - 1, -1, -1):
|
486 |
+
line = lines[idx]
|
487 |
+
if (line.lstrip().startswith("#") or line.lstrip().startswith("@")) and find_indent(line) == indent_level:
|
488 |
+
lines[idx] = None
|
489 |
+
else:
|
490 |
+
break
|
491 |
+
|
492 |
+
new_obj = os.linesep.join([x for x in lines if x is not None])
|
493 |
+
|
494 |
+
return new_obj
|
495 |
+
|
496 |
+
|
497 |
+
def duplicate_module(
|
498 |
+
module_file: Union[str, os.PathLike],
|
499 |
+
old_model_patterns: ModelPatterns,
|
500 |
+
new_model_patterns: ModelPatterns,
|
501 |
+
dest_file: Optional[str] = None,
|
502 |
+
add_copied_from: bool = True,
|
503 |
+
attrs_to_remove: List[str] = None,
|
504 |
+
):
|
505 |
+
"""
|
506 |
+
Create a new module from an existing one and adapting all function and classes names from old patterns to new ones.
|
507 |
+
|
508 |
+
Args:
|
509 |
+
module_file (`str` or `os.PathLike`): Path to the module to duplicate.
|
510 |
+
old_model_patterns (`ModelPatterns`): The patterns for the old model.
|
511 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
512 |
+
dest_file (`str` or `os.PathLike`, *optional*): Path to the new module.
|
513 |
+
add_copied_from (`bool`, *optional*, defaults to `True`):
|
514 |
+
Whether or not to add `# Copied from` statements in the duplicated module.
|
515 |
+
"""
|
516 |
+
if dest_file is None:
|
517 |
+
dest_file = str(module_file).replace(
|
518 |
+
old_model_patterns.model_lower_cased, new_model_patterns.model_lower_cased
|
519 |
+
)
|
520 |
+
|
521 |
+
with open(module_file, "r", encoding="utf-8") as f:
|
522 |
+
content = f.read()
|
523 |
+
|
524 |
+
content = re.sub(r"# Copyright (\d+)\s", f"# Copyright {CURRENT_YEAR} ", content)
|
525 |
+
objects = parse_module_content(content)
|
526 |
+
|
527 |
+
# Loop and treat all objects
|
528 |
+
new_objects = []
|
529 |
+
for obj in objects:
|
530 |
+
special_pattern = False
|
531 |
+
for pattern, attr in SPECIAL_PATTERNS.items():
|
532 |
+
if pattern in obj:
|
533 |
+
obj = obj.replace(getattr(old_model_patterns, attr), getattr(new_model_patterns, attr))
|
534 |
+
new_objects.append(obj)
|
535 |
+
special_pattern = True
|
536 |
+
break
|
537 |
+
|
538 |
+
if special_pattern:
|
539 |
+
continue
|
540 |
+
|
541 |
+
# Regular classes functions
|
542 |
+
old_obj = obj
|
543 |
+
obj, replacement = replace_model_patterns(obj, old_model_patterns, new_model_patterns)
|
544 |
+
has_copied_from = re.search(r"^#\s+Copied from", obj, flags=re.MULTILINE) is not None
|
545 |
+
if add_copied_from and not has_copied_from and _re_class_func.search(obj) is not None and len(replacement) > 0:
|
546 |
+
# Copied from statement must be added just before the class/function definition, which may not be the
|
547 |
+
# first line because of decorators.
|
548 |
+
module_name = get_module_from_file(module_file)
|
549 |
+
old_object_name = _re_class_func.search(old_obj).groups()[0]
|
550 |
+
obj = add_content_to_text(
|
551 |
+
obj, f"# Copied from {module_name}.{old_object_name} with {replacement}", add_before=_re_class_func
|
552 |
+
)
|
553 |
+
# In all cases, we remove Copied from statement with indent on methods.
|
554 |
+
obj = re.sub("\n[ ]+# Copied from [^\n]*\n", "\n", obj)
|
555 |
+
|
556 |
+
new_objects.append(obj)
|
557 |
+
|
558 |
+
content = "\n".join(new_objects)
|
559 |
+
# Remove some attributes that we don't want to copy to the new file(s)
|
560 |
+
if attrs_to_remove is not None:
|
561 |
+
for attr in attrs_to_remove:
|
562 |
+
content = remove_attributes(content, target_attr=attr)
|
563 |
+
|
564 |
+
with open(dest_file, "w", encoding="utf-8") as f:
|
565 |
+
f.write(content)
|
566 |
+
|
567 |
+
|
568 |
+
def filter_framework_files(
|
569 |
+
files: List[Union[str, os.PathLike]], frameworks: Optional[List[str]] = None
|
570 |
+
) -> List[Union[str, os.PathLike]]:
|
571 |
+
"""
|
572 |
+
Filter a list of files to only keep the ones corresponding to a list of frameworks.
|
573 |
+
|
574 |
+
Args:
|
575 |
+
files (`List[Union[str, os.PathLike]]`): The list of files to filter.
|
576 |
+
frameworks (`List[str]`, *optional*): The list of allowed frameworks.
|
577 |
+
|
578 |
+
Returns:
|
579 |
+
`List[Union[str, os.PathLike]]`: The list of filtered files.
|
580 |
+
"""
|
581 |
+
if frameworks is None:
|
582 |
+
frameworks = get_default_frameworks()
|
583 |
+
|
584 |
+
framework_to_file = {}
|
585 |
+
others = []
|
586 |
+
for f in files:
|
587 |
+
parts = Path(f).name.split("_")
|
588 |
+
if "modeling" not in parts:
|
589 |
+
others.append(f)
|
590 |
+
continue
|
591 |
+
if "tf" in parts:
|
592 |
+
framework_to_file["tf"] = f
|
593 |
+
elif "flax" in parts:
|
594 |
+
framework_to_file["flax"] = f
|
595 |
+
else:
|
596 |
+
framework_to_file["pt"] = f
|
597 |
+
|
598 |
+
return [framework_to_file[f] for f in frameworks if f in framework_to_file] + others
|
599 |
+
|
600 |
+
|
601 |
+
def get_model_files(model_type: str, frameworks: Optional[List[str]] = None) -> Dict[str, Union[Path, List[Path]]]:
|
602 |
+
"""
|
603 |
+
Retrieves all the files associated to a model.
|
604 |
+
|
605 |
+
Args:
|
606 |
+
model_type (`str`): A valid model type (like "bert" or "gpt2")
|
607 |
+
frameworks (`List[str]`, *optional*):
|
608 |
+
If passed, will only keep the model files corresponding to the passed frameworks.
|
609 |
+
|
610 |
+
Returns:
|
611 |
+
`Dict[str, Union[Path, List[Path]]]`: A dictionary with the following keys:
|
612 |
+
- **doc_file** -- The documentation file for the model.
|
613 |
+
- **model_files** -- All the files in the model module.
|
614 |
+
- **test_files** -- The test files for the model.
|
615 |
+
"""
|
616 |
+
module_name = model_type_to_module_name(model_type)
|
617 |
+
|
618 |
+
model_module = TRANSFORMERS_PATH / "models" / module_name
|
619 |
+
model_files = list(model_module.glob("*.py"))
|
620 |
+
model_files = filter_framework_files(model_files, frameworks=frameworks)
|
621 |
+
|
622 |
+
doc_file = REPO_PATH / "docs" / "source" / "en" / "model_doc" / f"{model_type}.md"
|
623 |
+
|
624 |
+
# Basic pattern for test files
|
625 |
+
test_files = [
|
626 |
+
f"test_modeling_{module_name}.py",
|
627 |
+
f"test_modeling_tf_{module_name}.py",
|
628 |
+
f"test_modeling_flax_{module_name}.py",
|
629 |
+
f"test_tokenization_{module_name}.py",
|
630 |
+
f"test_image_processing_{module_name}.py",
|
631 |
+
f"test_feature_extraction_{module_name}.py",
|
632 |
+
f"test_processor_{module_name}.py",
|
633 |
+
]
|
634 |
+
test_files = filter_framework_files(test_files, frameworks=frameworks)
|
635 |
+
# Add the test directory
|
636 |
+
test_files = [REPO_PATH / "tests" / "models" / module_name / f for f in test_files]
|
637 |
+
# Filter by existing files
|
638 |
+
test_files = [f for f in test_files if f.exists()]
|
639 |
+
|
640 |
+
return {"doc_file": doc_file, "model_files": model_files, "module_name": module_name, "test_files": test_files}
|
641 |
+
|
642 |
+
|
643 |
+
_re_checkpoint_for_doc = re.compile(r"^_CHECKPOINT_FOR_DOC\s+=\s+(\S*)\s*$", flags=re.MULTILINE)
|
644 |
+
|
645 |
+
|
646 |
+
def find_base_model_checkpoint(
|
647 |
+
model_type: str, model_files: Optional[Dict[str, Union[Path, List[Path]]]] = None
|
648 |
+
) -> str:
|
649 |
+
"""
|
650 |
+
Finds the model checkpoint used in the docstrings for a given model.
|
651 |
+
|
652 |
+
Args:
|
653 |
+
model_type (`str`): A valid model type (like "bert" or "gpt2")
|
654 |
+
model_files (`Dict[str, Union[Path, List[Path]]`, *optional*):
|
655 |
+
The files associated to `model_type`. Can be passed to speed up the function, otherwise will be computed.
|
656 |
+
|
657 |
+
Returns:
|
658 |
+
`str`: The checkpoint used.
|
659 |
+
"""
|
660 |
+
if model_files is None:
|
661 |
+
model_files = get_model_files(model_type)
|
662 |
+
module_files = model_files["model_files"]
|
663 |
+
for fname in module_files:
|
664 |
+
if "modeling" not in str(fname):
|
665 |
+
continue
|
666 |
+
|
667 |
+
with open(fname, "r", encoding="utf-8") as f:
|
668 |
+
content = f.read()
|
669 |
+
if _re_checkpoint_for_doc.search(content) is not None:
|
670 |
+
checkpoint = _re_checkpoint_for_doc.search(content).groups()[0]
|
671 |
+
# Remove quotes
|
672 |
+
checkpoint = checkpoint.replace('"', "")
|
673 |
+
checkpoint = checkpoint.replace("'", "")
|
674 |
+
return checkpoint
|
675 |
+
|
676 |
+
# TODO: Find some kind of fallback if there is no _CHECKPOINT_FOR_DOC in any of the modeling file.
|
677 |
+
return ""
|
678 |
+
|
679 |
+
|
680 |
+
def get_default_frameworks():
|
681 |
+
"""
|
682 |
+
Returns the list of frameworks (PyTorch, TensorFlow, Flax) that are installed in the environment.
|
683 |
+
"""
|
684 |
+
frameworks = []
|
685 |
+
if is_torch_available():
|
686 |
+
frameworks.append("pt")
|
687 |
+
if is_tf_available():
|
688 |
+
frameworks.append("tf")
|
689 |
+
if is_flax_available():
|
690 |
+
frameworks.append("flax")
|
691 |
+
return frameworks
|
692 |
+
|
693 |
+
|
694 |
+
_re_model_mapping = re.compile("MODEL_([A-Z_]*)MAPPING_NAMES")
|
695 |
+
|
696 |
+
|
697 |
+
def retrieve_model_classes(model_type: str, frameworks: Optional[List[str]] = None) -> Dict[str, List[str]]:
|
698 |
+
"""
|
699 |
+
Retrieve the model classes associated to a given model.
|
700 |
+
|
701 |
+
Args:
|
702 |
+
model_type (`str`): A valid model type (like "bert" or "gpt2")
|
703 |
+
frameworks (`List[str]`, *optional*):
|
704 |
+
The frameworks to look for. Will default to `["pt", "tf", "flax"]`, passing a smaller list will restrict
|
705 |
+
the classes returned.
|
706 |
+
|
707 |
+
Returns:
|
708 |
+
`Dict[str, List[str]]`: A dictionary with one key per framework and the list of model classes associated to
|
709 |
+
that framework as values.
|
710 |
+
"""
|
711 |
+
if frameworks is None:
|
712 |
+
frameworks = get_default_frameworks()
|
713 |
+
|
714 |
+
modules = {
|
715 |
+
"pt": auto_module.modeling_auto if is_torch_available() else None,
|
716 |
+
"tf": auto_module.modeling_tf_auto if is_tf_available() else None,
|
717 |
+
"flax": auto_module.modeling_flax_auto if is_flax_available() else None,
|
718 |
+
}
|
719 |
+
|
720 |
+
model_classes = {}
|
721 |
+
for framework in frameworks:
|
722 |
+
new_model_classes = []
|
723 |
+
if modules[framework] is None:
|
724 |
+
raise ValueError(f"You selected {framework} in the frameworks, but it is not installed.")
|
725 |
+
model_mappings = [attr for attr in dir(modules[framework]) if _re_model_mapping.search(attr) is not None]
|
726 |
+
for model_mapping_name in model_mappings:
|
727 |
+
model_mapping = getattr(modules[framework], model_mapping_name)
|
728 |
+
if model_type in model_mapping:
|
729 |
+
new_model_classes.append(model_mapping[model_type])
|
730 |
+
|
731 |
+
if len(new_model_classes) > 0:
|
732 |
+
# Remove duplicates
|
733 |
+
model_classes[framework] = list(set(new_model_classes))
|
734 |
+
|
735 |
+
return model_classes
|
736 |
+
|
737 |
+
|
738 |
+
def retrieve_info_for_model(model_type, frameworks: Optional[List[str]] = None):
|
739 |
+
"""
|
740 |
+
Retrieves all the information from a given model_type.
|
741 |
+
|
742 |
+
Args:
|
743 |
+
model_type (`str`): A valid model type (like "bert" or "gpt2")
|
744 |
+
frameworks (`List[str]`, *optional*):
|
745 |
+
If passed, will only keep the info corresponding to the passed frameworks.
|
746 |
+
|
747 |
+
Returns:
|
748 |
+
`Dict`: A dictionary with the following keys:
|
749 |
+
- **frameworks** (`List[str]`): The list of frameworks that back this model type.
|
750 |
+
- **model_classes** (`Dict[str, List[str]]`): The model classes implemented for that model type.
|
751 |
+
- **model_files** (`Dict[str, Union[Path, List[Path]]]`): The files associated with that model type.
|
752 |
+
- **model_patterns** (`ModelPatterns`): The various patterns for the model.
|
753 |
+
"""
|
754 |
+
if model_type not in auto_module.MODEL_NAMES_MAPPING:
|
755 |
+
raise ValueError(f"{model_type} is not a valid model type.")
|
756 |
+
|
757 |
+
model_name = auto_module.MODEL_NAMES_MAPPING[model_type]
|
758 |
+
config_class = auto_module.configuration_auto.CONFIG_MAPPING_NAMES[model_type]
|
759 |
+
if model_type in auto_module.tokenization_auto.TOKENIZER_MAPPING_NAMES:
|
760 |
+
tokenizer_classes = auto_module.tokenization_auto.TOKENIZER_MAPPING_NAMES[model_type]
|
761 |
+
tokenizer_class = tokenizer_classes[0] if tokenizer_classes[0] is not None else tokenizer_classes[1]
|
762 |
+
else:
|
763 |
+
tokenizer_class = None
|
764 |
+
image_processor_class = auto_module.image_processing_auto.IMAGE_PROCESSOR_MAPPING_NAMES.get(model_type, None)
|
765 |
+
feature_extractor_class = auto_module.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES.get(model_type, None)
|
766 |
+
processor_class = auto_module.processing_auto.PROCESSOR_MAPPING_NAMES.get(model_type, None)
|
767 |
+
|
768 |
+
model_files = get_model_files(model_type, frameworks=frameworks)
|
769 |
+
model_camel_cased = config_class.replace("Config", "")
|
770 |
+
|
771 |
+
available_frameworks = []
|
772 |
+
for fname in model_files["model_files"]:
|
773 |
+
if "modeling_tf" in str(fname):
|
774 |
+
available_frameworks.append("tf")
|
775 |
+
elif "modeling_flax" in str(fname):
|
776 |
+
available_frameworks.append("flax")
|
777 |
+
elif "modeling" in str(fname):
|
778 |
+
available_frameworks.append("pt")
|
779 |
+
|
780 |
+
if frameworks is None:
|
781 |
+
frameworks = get_default_frameworks()
|
782 |
+
|
783 |
+
frameworks = [f for f in frameworks if f in available_frameworks]
|
784 |
+
|
785 |
+
model_classes = retrieve_model_classes(model_type, frameworks=frameworks)
|
786 |
+
|
787 |
+
model_upper_cased = model_camel_cased.upper()
|
788 |
+
model_patterns = ModelPatterns(
|
789 |
+
model_name,
|
790 |
+
checkpoint=find_base_model_checkpoint(model_type, model_files=model_files),
|
791 |
+
model_type=model_type,
|
792 |
+
model_camel_cased=model_camel_cased,
|
793 |
+
model_lower_cased=model_files["module_name"],
|
794 |
+
model_upper_cased=model_upper_cased,
|
795 |
+
config_class=config_class,
|
796 |
+
tokenizer_class=tokenizer_class,
|
797 |
+
image_processor_class=image_processor_class,
|
798 |
+
feature_extractor_class=feature_extractor_class,
|
799 |
+
processor_class=processor_class,
|
800 |
+
)
|
801 |
+
|
802 |
+
return {
|
803 |
+
"frameworks": frameworks,
|
804 |
+
"model_classes": model_classes,
|
805 |
+
"model_files": model_files,
|
806 |
+
"model_patterns": model_patterns,
|
807 |
+
}
|
808 |
+
|
809 |
+
|
810 |
+
def clean_frameworks_in_init(
|
811 |
+
init_file: Union[str, os.PathLike], frameworks: Optional[List[str]] = None, keep_processing: bool = True
|
812 |
+
):
|
813 |
+
"""
|
814 |
+
Removes all the import lines that don't belong to a given list of frameworks or concern tokenizers/feature
|
815 |
+
extractors/image processors/processors in an init.
|
816 |
+
|
817 |
+
Args:
|
818 |
+
init_file (`str` or `os.PathLike`): The path to the init to treat.
|
819 |
+
frameworks (`List[str]`, *optional*):
|
820 |
+
If passed, this will remove all imports that are subject to a framework not in frameworks
|
821 |
+
keep_processing (`bool`, *optional*, defaults to `True`):
|
822 |
+
Whether or not to keep the preprocessing (tokenizer, feature extractor, image processor, processor) imports
|
823 |
+
in the init.
|
824 |
+
"""
|
825 |
+
if frameworks is None:
|
826 |
+
frameworks = get_default_frameworks()
|
827 |
+
|
828 |
+
names = {"pt": "torch"}
|
829 |
+
to_remove = [names.get(f, f) for f in ["pt", "tf", "flax"] if f not in frameworks]
|
830 |
+
if not keep_processing:
|
831 |
+
to_remove.extend(["sentencepiece", "tokenizers", "vision"])
|
832 |
+
|
833 |
+
if len(to_remove) == 0:
|
834 |
+
# Nothing to do
|
835 |
+
return
|
836 |
+
|
837 |
+
remove_pattern = "|".join(to_remove)
|
838 |
+
re_conditional_imports = re.compile(rf"^\s*if not is_({remove_pattern})_available\(\):\s*$")
|
839 |
+
re_try = re.compile(r"\s*try:")
|
840 |
+
re_else = re.compile(r"\s*else:")
|
841 |
+
re_is_xxx_available = re.compile(rf"is_({remove_pattern})_available")
|
842 |
+
|
843 |
+
with open(init_file, "r", encoding="utf-8") as f:
|
844 |
+
content = f.read()
|
845 |
+
|
846 |
+
lines = content.split("\n")
|
847 |
+
new_lines = []
|
848 |
+
idx = 0
|
849 |
+
while idx < len(lines):
|
850 |
+
# Conditional imports in try-except-else blocks
|
851 |
+
if (re_conditional_imports.search(lines[idx]) is not None) and (re_try.search(lines[idx - 1]) is not None):
|
852 |
+
# Remove the preceding `try:`
|
853 |
+
new_lines.pop()
|
854 |
+
idx += 1
|
855 |
+
# Iterate until `else:`
|
856 |
+
while is_empty_line(lines[idx]) or re_else.search(lines[idx]) is None:
|
857 |
+
idx += 1
|
858 |
+
idx += 1
|
859 |
+
indent = find_indent(lines[idx])
|
860 |
+
while find_indent(lines[idx]) >= indent or is_empty_line(lines[idx]):
|
861 |
+
idx += 1
|
862 |
+
# Remove the import from utils
|
863 |
+
elif re_is_xxx_available.search(lines[idx]) is not None:
|
864 |
+
line = lines[idx]
|
865 |
+
for framework in to_remove:
|
866 |
+
line = line.replace(f", is_{framework}_available", "")
|
867 |
+
line = line.replace(f"is_{framework}_available, ", "")
|
868 |
+
line = line.replace(f"is_{framework}_available,", "")
|
869 |
+
line = line.replace(f"is_{framework}_available", "")
|
870 |
+
|
871 |
+
if len(line.strip()) > 0:
|
872 |
+
new_lines.append(line)
|
873 |
+
idx += 1
|
874 |
+
# Otherwise we keep the line, except if it's a tokenizer import and we don't want to keep it.
|
875 |
+
elif keep_processing or (
|
876 |
+
re.search(r'^\s*"(tokenization|processing|feature_extraction|image_processing)', lines[idx]) is None
|
877 |
+
and re.search(r"^\s*from .(tokenization|processing|feature_extraction|image_processing)", lines[idx])
|
878 |
+
is None
|
879 |
+
):
|
880 |
+
new_lines.append(lines[idx])
|
881 |
+
idx += 1
|
882 |
+
else:
|
883 |
+
idx += 1
|
884 |
+
|
885 |
+
with open(init_file, "w", encoding="utf-8") as f:
|
886 |
+
f.write("\n".join(new_lines))
|
887 |
+
|
888 |
+
|
889 |
+
def add_model_to_main_init(
|
890 |
+
old_model_patterns: ModelPatterns,
|
891 |
+
new_model_patterns: ModelPatterns,
|
892 |
+
frameworks: Optional[List[str]] = None,
|
893 |
+
with_processing: bool = True,
|
894 |
+
):
|
895 |
+
"""
|
896 |
+
Add a model to the main init of Transformers.
|
897 |
+
|
898 |
+
Args:
|
899 |
+
old_model_patterns (`ModelPatterns`): The patterns for the old model.
|
900 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
901 |
+
frameworks (`List[str]`, *optional*):
|
902 |
+
If specified, only the models implemented in those frameworks will be added.
|
903 |
+
with_processsing (`bool`, *optional*, defaults to `True`):
|
904 |
+
Whether the tokenizer/feature extractor/processor of the model should also be added to the init or not.
|
905 |
+
"""
|
906 |
+
with open(TRANSFORMERS_PATH / "__init__.py", "r", encoding="utf-8") as f:
|
907 |
+
content = f.read()
|
908 |
+
|
909 |
+
lines = content.split("\n")
|
910 |
+
idx = 0
|
911 |
+
new_lines = []
|
912 |
+
framework = None
|
913 |
+
while idx < len(lines):
|
914 |
+
new_framework = False
|
915 |
+
if not is_empty_line(lines[idx]) and find_indent(lines[idx]) == 0:
|
916 |
+
framework = None
|
917 |
+
elif lines[idx].lstrip().startswith("if not is_torch_available"):
|
918 |
+
framework = "pt"
|
919 |
+
new_framework = True
|
920 |
+
elif lines[idx].lstrip().startswith("if not is_tf_available"):
|
921 |
+
framework = "tf"
|
922 |
+
new_framework = True
|
923 |
+
elif lines[idx].lstrip().startswith("if not is_flax_available"):
|
924 |
+
framework = "flax"
|
925 |
+
new_framework = True
|
926 |
+
|
927 |
+
if new_framework:
|
928 |
+
# For a new framework, we need to skip until the else: block to get where the imports are.
|
929 |
+
while lines[idx].strip() != "else:":
|
930 |
+
new_lines.append(lines[idx])
|
931 |
+
idx += 1
|
932 |
+
|
933 |
+
# Skip if we are in a framework not wanted.
|
934 |
+
if framework is not None and frameworks is not None and framework not in frameworks:
|
935 |
+
new_lines.append(lines[idx])
|
936 |
+
idx += 1
|
937 |
+
elif re.search(rf'models.{old_model_patterns.model_lower_cased}( |")', lines[idx]) is not None:
|
938 |
+
block = [lines[idx]]
|
939 |
+
indent = find_indent(lines[idx])
|
940 |
+
idx += 1
|
941 |
+
while find_indent(lines[idx]) > indent:
|
942 |
+
block.append(lines[idx])
|
943 |
+
idx += 1
|
944 |
+
if lines[idx].strip() in [")", "]", "],"]:
|
945 |
+
block.append(lines[idx])
|
946 |
+
idx += 1
|
947 |
+
block = "\n".join(block)
|
948 |
+
new_lines.append(block)
|
949 |
+
|
950 |
+
add_block = True
|
951 |
+
if not with_processing:
|
952 |
+
processing_classes = [
|
953 |
+
old_model_patterns.tokenizer_class,
|
954 |
+
old_model_patterns.image_processor_class,
|
955 |
+
old_model_patterns.feature_extractor_class,
|
956 |
+
old_model_patterns.processor_class,
|
957 |
+
]
|
958 |
+
# Only keep the ones that are not None
|
959 |
+
processing_classes = [c for c in processing_classes if c is not None]
|
960 |
+
for processing_class in processing_classes:
|
961 |
+
block = block.replace(f' "{processing_class}",', "")
|
962 |
+
block = block.replace(f', "{processing_class}"', "")
|
963 |
+
block = block.replace(f" {processing_class},", "")
|
964 |
+
block = block.replace(f", {processing_class}", "")
|
965 |
+
|
966 |
+
if processing_class in block:
|
967 |
+
add_block = False
|
968 |
+
if add_block:
|
969 |
+
new_lines.append(replace_model_patterns(block, old_model_patterns, new_model_patterns)[0])
|
970 |
+
else:
|
971 |
+
new_lines.append(lines[idx])
|
972 |
+
idx += 1
|
973 |
+
|
974 |
+
with open(TRANSFORMERS_PATH / "__init__.py", "w", encoding="utf-8") as f:
|
975 |
+
f.write("\n".join(new_lines))
|
976 |
+
|
977 |
+
|
978 |
+
def insert_tokenizer_in_auto_module(old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns):
|
979 |
+
"""
|
980 |
+
Add a tokenizer to the relevant mappings in the auto module.
|
981 |
+
|
982 |
+
Args:
|
983 |
+
old_model_patterns (`ModelPatterns`): The patterns for the old model.
|
984 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
985 |
+
"""
|
986 |
+
if old_model_patterns.tokenizer_class is None or new_model_patterns.tokenizer_class is None:
|
987 |
+
return
|
988 |
+
|
989 |
+
with open(TRANSFORMERS_PATH / "models" / "auto" / "tokenization_auto.py", "r", encoding="utf-8") as f:
|
990 |
+
content = f.read()
|
991 |
+
|
992 |
+
lines = content.split("\n")
|
993 |
+
idx = 0
|
994 |
+
# First we get to the TOKENIZER_MAPPING_NAMES block.
|
995 |
+
while not lines[idx].startswith(" TOKENIZER_MAPPING_NAMES = OrderedDict("):
|
996 |
+
idx += 1
|
997 |
+
idx += 1
|
998 |
+
|
999 |
+
# That block will end at this prompt:
|
1000 |
+
while not lines[idx].startswith("TOKENIZER_MAPPING = _LazyAutoMapping"):
|
1001 |
+
# Either all the tokenizer block is defined on one line, in which case, it ends with "),"
|
1002 |
+
if lines[idx].endswith(","):
|
1003 |
+
block = lines[idx]
|
1004 |
+
# Otherwise it takes several lines until we get to a "),"
|
1005 |
+
else:
|
1006 |
+
block = []
|
1007 |
+
while not lines[idx].startswith(" ),"):
|
1008 |
+
block.append(lines[idx])
|
1009 |
+
idx += 1
|
1010 |
+
block = "\n".join(block)
|
1011 |
+
idx += 1
|
1012 |
+
|
1013 |
+
# If we find the model type and tokenizer class in that block, we have the old model tokenizer block
|
1014 |
+
if f'"{old_model_patterns.model_type}"' in block and old_model_patterns.tokenizer_class in block:
|
1015 |
+
break
|
1016 |
+
|
1017 |
+
new_block = block.replace(old_model_patterns.model_type, new_model_patterns.model_type)
|
1018 |
+
new_block = new_block.replace(old_model_patterns.tokenizer_class, new_model_patterns.tokenizer_class)
|
1019 |
+
|
1020 |
+
new_lines = lines[:idx] + [new_block] + lines[idx:]
|
1021 |
+
with open(TRANSFORMERS_PATH / "models" / "auto" / "tokenization_auto.py", "w", encoding="utf-8") as f:
|
1022 |
+
f.write("\n".join(new_lines))
|
1023 |
+
|
1024 |
+
|
1025 |
+
AUTO_CLASSES_PATTERNS = {
|
1026 |
+
"configuration_auto.py": [
|
1027 |
+
' ("{model_type}", "{model_name}"),',
|
1028 |
+
' ("{model_type}", "{config_class}"),',
|
1029 |
+
' ("{model_type}", "{pretrained_archive_map}"),',
|
1030 |
+
],
|
1031 |
+
"feature_extraction_auto.py": [' ("{model_type}", "{feature_extractor_class}"),'],
|
1032 |
+
"image_processing_auto.py": [' ("{model_type}", "{image_processor_class}"),'],
|
1033 |
+
"modeling_auto.py": [' ("{model_type}", "{any_pt_class}"),'],
|
1034 |
+
"modeling_tf_auto.py": [' ("{model_type}", "{any_tf_class}"),'],
|
1035 |
+
"modeling_flax_auto.py": [' ("{model_type}", "{any_flax_class}"),'],
|
1036 |
+
"processing_auto.py": [' ("{model_type}", "{processor_class}"),'],
|
1037 |
+
}
|
1038 |
+
|
1039 |
+
|
1040 |
+
def add_model_to_auto_classes(
|
1041 |
+
old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns, model_classes: Dict[str, List[str]]
|
1042 |
+
):
|
1043 |
+
"""
|
1044 |
+
Add a model to the relevant mappings in the auto module.
|
1045 |
+
|
1046 |
+
Args:
|
1047 |
+
old_model_patterns (`ModelPatterns`): The patterns for the old model.
|
1048 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
1049 |
+
model_classes (`Dict[str, List[str]]`): A dictionary framework to list of model classes implemented.
|
1050 |
+
"""
|
1051 |
+
for filename in AUTO_CLASSES_PATTERNS:
|
1052 |
+
# Extend patterns with all model classes if necessary
|
1053 |
+
new_patterns = []
|
1054 |
+
for pattern in AUTO_CLASSES_PATTERNS[filename]:
|
1055 |
+
if re.search("any_([a-z]*)_class", pattern) is not None:
|
1056 |
+
framework = re.search("any_([a-z]*)_class", pattern).groups()[0]
|
1057 |
+
if framework in model_classes:
|
1058 |
+
new_patterns.extend(
|
1059 |
+
[
|
1060 |
+
pattern.replace("{" + f"any_{framework}_class" + "}", cls)
|
1061 |
+
for cls in model_classes[framework]
|
1062 |
+
]
|
1063 |
+
)
|
1064 |
+
elif "{config_class}" in pattern:
|
1065 |
+
new_patterns.append(pattern.replace("{config_class}", old_model_patterns.config_class))
|
1066 |
+
elif "{image_processor_class}" in pattern:
|
1067 |
+
if (
|
1068 |
+
old_model_patterns.image_processor_class is not None
|
1069 |
+
and new_model_patterns.image_processor_class is not None
|
1070 |
+
):
|
1071 |
+
new_patterns.append(
|
1072 |
+
pattern.replace("{image_processor_class}", old_model_patterns.image_processor_class)
|
1073 |
+
)
|
1074 |
+
elif "{feature_extractor_class}" in pattern:
|
1075 |
+
if (
|
1076 |
+
old_model_patterns.feature_extractor_class is not None
|
1077 |
+
and new_model_patterns.feature_extractor_class is not None
|
1078 |
+
):
|
1079 |
+
new_patterns.append(
|
1080 |
+
pattern.replace("{feature_extractor_class}", old_model_patterns.feature_extractor_class)
|
1081 |
+
)
|
1082 |
+
elif "{processor_class}" in pattern:
|
1083 |
+
if old_model_patterns.processor_class is not None and new_model_patterns.processor_class is not None:
|
1084 |
+
new_patterns.append(pattern.replace("{processor_class}", old_model_patterns.processor_class))
|
1085 |
+
else:
|
1086 |
+
new_patterns.append(pattern)
|
1087 |
+
|
1088 |
+
# Loop through all patterns.
|
1089 |
+
for pattern in new_patterns:
|
1090 |
+
full_name = TRANSFORMERS_PATH / "models" / "auto" / filename
|
1091 |
+
old_model_line = pattern
|
1092 |
+
new_model_line = pattern
|
1093 |
+
for attr in ["model_type", "model_name"]:
|
1094 |
+
old_model_line = old_model_line.replace("{" + attr + "}", getattr(old_model_patterns, attr))
|
1095 |
+
new_model_line = new_model_line.replace("{" + attr + "}", getattr(new_model_patterns, attr))
|
1096 |
+
new_model_line = new_model_line.replace(
|
1097 |
+
old_model_patterns.model_camel_cased, new_model_patterns.model_camel_cased
|
1098 |
+
)
|
1099 |
+
|
1100 |
+
add_content_to_file(full_name, new_model_line, add_after=old_model_line)
|
1101 |
+
|
1102 |
+
# Tokenizers require special handling
|
1103 |
+
insert_tokenizer_in_auto_module(old_model_patterns, new_model_patterns)
|
1104 |
+
|
1105 |
+
|
1106 |
+
DOC_OVERVIEW_TEMPLATE = """## Overview
|
1107 |
+
|
1108 |
+
The {model_name} model was proposed in [<INSERT PAPER NAME HERE>](<INSERT PAPER LINK HERE>) by <INSERT AUTHORS HERE>.
|
1109 |
+
<INSERT SHORT SUMMARY HERE>
|
1110 |
+
|
1111 |
+
The abstract from the paper is the following:
|
1112 |
+
|
1113 |
+
*<INSERT PAPER ABSTRACT HERE>*
|
1114 |
+
|
1115 |
+
Tips:
|
1116 |
+
|
1117 |
+
<INSERT TIPS ABOUT MODEL HERE>
|
1118 |
+
|
1119 |
+
This model was contributed by [INSERT YOUR HF USERNAME HERE](https://huggingface.co/<INSERT YOUR HF USERNAME HERE>).
|
1120 |
+
The original code can be found [here](<INSERT LINK TO GITHUB REPO HERE>).
|
1121 |
+
|
1122 |
+
"""
|
1123 |
+
|
1124 |
+
|
1125 |
+
def duplicate_doc_file(
|
1126 |
+
doc_file: Union[str, os.PathLike],
|
1127 |
+
old_model_patterns: ModelPatterns,
|
1128 |
+
new_model_patterns: ModelPatterns,
|
1129 |
+
dest_file: Optional[Union[str, os.PathLike]] = None,
|
1130 |
+
frameworks: Optional[List[str]] = None,
|
1131 |
+
):
|
1132 |
+
"""
|
1133 |
+
Duplicate a documentation file and adapts it for a new model.
|
1134 |
+
|
1135 |
+
Args:
|
1136 |
+
module_file (`str` or `os.PathLike`): Path to the doc file to duplicate.
|
1137 |
+
old_model_patterns (`ModelPatterns`): The patterns for the old model.
|
1138 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
1139 |
+
dest_file (`str` or `os.PathLike`, *optional*): Path to the new doc file.
|
1140 |
+
Will default to the a file named `{new_model_patterns.model_type}.md` in the same folder as `module_file`.
|
1141 |
+
frameworks (`List[str]`, *optional*):
|
1142 |
+
If passed, will only keep the model classes corresponding to this list of frameworks in the new doc file.
|
1143 |
+
"""
|
1144 |
+
with open(doc_file, "r", encoding="utf-8") as f:
|
1145 |
+
content = f.read()
|
1146 |
+
|
1147 |
+
content = re.sub(r"<!--\s*Copyright (\d+)\s", f"<!--Copyright {CURRENT_YEAR} ", content)
|
1148 |
+
if frameworks is None:
|
1149 |
+
frameworks = get_default_frameworks()
|
1150 |
+
if dest_file is None:
|
1151 |
+
dest_file = Path(doc_file).parent / f"{new_model_patterns.model_type}.md"
|
1152 |
+
|
1153 |
+
# Parse the doc file in blocks. One block per section/header
|
1154 |
+
lines = content.split("\n")
|
1155 |
+
blocks = []
|
1156 |
+
current_block = []
|
1157 |
+
|
1158 |
+
for line in lines:
|
1159 |
+
if line.startswith("#"):
|
1160 |
+
blocks.append("\n".join(current_block))
|
1161 |
+
current_block = [line]
|
1162 |
+
else:
|
1163 |
+
current_block.append(line)
|
1164 |
+
blocks.append("\n".join(current_block))
|
1165 |
+
|
1166 |
+
new_blocks = []
|
1167 |
+
in_classes = False
|
1168 |
+
for block in blocks:
|
1169 |
+
# Copyright
|
1170 |
+
if not block.startswith("#"):
|
1171 |
+
new_blocks.append(block)
|
1172 |
+
# Main title
|
1173 |
+
elif re.search(r"^#\s+\S+", block) is not None:
|
1174 |
+
new_blocks.append(f"# {new_model_patterns.model_name}\n")
|
1175 |
+
# The config starts the part of the doc with the classes.
|
1176 |
+
elif not in_classes and old_model_patterns.config_class in block.split("\n")[0]:
|
1177 |
+
in_classes = True
|
1178 |
+
new_blocks.append(DOC_OVERVIEW_TEMPLATE.format(model_name=new_model_patterns.model_name))
|
1179 |
+
new_block, _ = replace_model_patterns(block, old_model_patterns, new_model_patterns)
|
1180 |
+
new_blocks.append(new_block)
|
1181 |
+
# In classes
|
1182 |
+
elif in_classes:
|
1183 |
+
in_classes = True
|
1184 |
+
block_title = block.split("\n")[0]
|
1185 |
+
block_class = re.search(r"^#+\s+(\S.*)$", block_title).groups()[0]
|
1186 |
+
new_block, _ = replace_model_patterns(block, old_model_patterns, new_model_patterns)
|
1187 |
+
|
1188 |
+
if "Tokenizer" in block_class:
|
1189 |
+
# We only add the tokenizer if necessary
|
1190 |
+
if old_model_patterns.tokenizer_class != new_model_patterns.tokenizer_class:
|
1191 |
+
new_blocks.append(new_block)
|
1192 |
+
elif "ImageProcessor" in block_class:
|
1193 |
+
# We only add the image processor if necessary
|
1194 |
+
if old_model_patterns.image_processor_class != new_model_patterns.image_processor_class:
|
1195 |
+
new_blocks.append(new_block)
|
1196 |
+
elif "FeatureExtractor" in block_class:
|
1197 |
+
# We only add the feature extractor if necessary
|
1198 |
+
if old_model_patterns.feature_extractor_class != new_model_patterns.feature_extractor_class:
|
1199 |
+
new_blocks.append(new_block)
|
1200 |
+
elif "Processor" in block_class:
|
1201 |
+
# We only add the processor if necessary
|
1202 |
+
if old_model_patterns.processor_class != new_model_patterns.processor_class:
|
1203 |
+
new_blocks.append(new_block)
|
1204 |
+
elif block_class.startswith("Flax"):
|
1205 |
+
# We only add Flax models if in the selected frameworks
|
1206 |
+
if "flax" in frameworks:
|
1207 |
+
new_blocks.append(new_block)
|
1208 |
+
elif block_class.startswith("TF"):
|
1209 |
+
# We only add TF models if in the selected frameworks
|
1210 |
+
if "tf" in frameworks:
|
1211 |
+
new_blocks.append(new_block)
|
1212 |
+
elif len(block_class.split(" ")) == 1:
|
1213 |
+
# We only add PyTorch models if in the selected frameworks
|
1214 |
+
if "pt" in frameworks:
|
1215 |
+
new_blocks.append(new_block)
|
1216 |
+
else:
|
1217 |
+
new_blocks.append(new_block)
|
1218 |
+
|
1219 |
+
with open(dest_file, "w", encoding="utf-8") as f:
|
1220 |
+
f.write("\n".join(new_blocks))
|
1221 |
+
|
1222 |
+
|
1223 |
+
def insert_model_in_doc_toc(old_model_patterns, new_model_patterns):
|
1224 |
+
"""
|
1225 |
+
Insert the new model in the doc TOC, in the same section as the old model.
|
1226 |
+
|
1227 |
+
Args:
|
1228 |
+
old_model_patterns (`ModelPatterns`): The patterns for the old model.
|
1229 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
1230 |
+
"""
|
1231 |
+
toc_file = REPO_PATH / "docs" / "source" / "en" / "_toctree.yml"
|
1232 |
+
with open(toc_file, "r", encoding="utf8") as f:
|
1233 |
+
content = yaml.safe_load(f)
|
1234 |
+
|
1235 |
+
# Get to the model API doc
|
1236 |
+
api_idx = 0
|
1237 |
+
while content[api_idx]["title"] != "API":
|
1238 |
+
api_idx += 1
|
1239 |
+
api_doc = content[api_idx]["sections"]
|
1240 |
+
|
1241 |
+
model_idx = 0
|
1242 |
+
while api_doc[model_idx]["title"] != "Models":
|
1243 |
+
model_idx += 1
|
1244 |
+
model_doc = api_doc[model_idx]["sections"]
|
1245 |
+
|
1246 |
+
# Find the base model in the Toc
|
1247 |
+
old_model_type = old_model_patterns.model_type
|
1248 |
+
section_idx = 0
|
1249 |
+
while section_idx < len(model_doc):
|
1250 |
+
sections = [entry["local"] for entry in model_doc[section_idx]["sections"]]
|
1251 |
+
if f"model_doc/{old_model_type}" in sections:
|
1252 |
+
break
|
1253 |
+
|
1254 |
+
section_idx += 1
|
1255 |
+
|
1256 |
+
if section_idx == len(model_doc):
|
1257 |
+
old_model = old_model_patterns.model_name
|
1258 |
+
new_model = new_model_patterns.model_name
|
1259 |
+
print(f"Did not find {old_model} in the table of content, so you will need to add {new_model} manually.")
|
1260 |
+
return
|
1261 |
+
|
1262 |
+
# Add the new model in the same toc
|
1263 |
+
toc_entry = {"local": f"model_doc/{new_model_patterns.model_type}", "title": new_model_patterns.model_name}
|
1264 |
+
model_doc[section_idx]["sections"].append(toc_entry)
|
1265 |
+
model_doc[section_idx]["sections"] = sorted(model_doc[section_idx]["sections"], key=lambda s: s["title"].lower())
|
1266 |
+
api_doc[model_idx]["sections"] = model_doc
|
1267 |
+
content[api_idx]["sections"] = api_doc
|
1268 |
+
|
1269 |
+
with open(toc_file, "w", encoding="utf-8") as f:
|
1270 |
+
f.write(yaml.dump(content, allow_unicode=True))
|
1271 |
+
|
1272 |
+
|
1273 |
+
def create_new_model_like(
|
1274 |
+
model_type: str,
|
1275 |
+
new_model_patterns: ModelPatterns,
|
1276 |
+
add_copied_from: bool = True,
|
1277 |
+
frameworks: Optional[List[str]] = None,
|
1278 |
+
old_checkpoint: Optional[str] = None,
|
1279 |
+
):
|
1280 |
+
"""
|
1281 |
+
Creates a new model module like a given model of the Transformers library.
|
1282 |
+
|
1283 |
+
Args:
|
1284 |
+
model_type (`str`): The model type to duplicate (like "bert" or "gpt2")
|
1285 |
+
new_model_patterns (`ModelPatterns`): The patterns for the new model.
|
1286 |
+
add_copied_from (`bool`, *optional*, defaults to `True`):
|
1287 |
+
Whether or not to add "Copied from" statements to all classes in the new model modeling files.
|
1288 |
+
frameworks (`List[str]`, *optional*):
|
1289 |
+
If passed, will limit the duplicate to the frameworks specified.
|
1290 |
+
old_checkpoint (`str`, *optional*):
|
1291 |
+
The name of the base checkpoint for the old model. Should be passed along when it can't be automatically
|
1292 |
+
recovered from the `model_type`.
|
1293 |
+
"""
|
1294 |
+
# Retrieve all the old model info.
|
1295 |
+
model_info = retrieve_info_for_model(model_type, frameworks=frameworks)
|
1296 |
+
model_files = model_info["model_files"]
|
1297 |
+
old_model_patterns = model_info["model_patterns"]
|
1298 |
+
if old_checkpoint is not None:
|
1299 |
+
old_model_patterns.checkpoint = old_checkpoint
|
1300 |
+
if len(old_model_patterns.checkpoint) == 0:
|
1301 |
+
raise ValueError(
|
1302 |
+
"The old model checkpoint could not be recovered from the model type. Please pass it to the "
|
1303 |
+
"`old_checkpoint` argument."
|
1304 |
+
)
|
1305 |
+
|
1306 |
+
keep_old_processing = True
|
1307 |
+
for processing_attr in ["image_processor_class", "feature_extractor_class", "processor_class", "tokenizer_class"]:
|
1308 |
+
if getattr(old_model_patterns, processing_attr) != getattr(new_model_patterns, processing_attr):
|
1309 |
+
keep_old_processing = False
|
1310 |
+
|
1311 |
+
model_classes = model_info["model_classes"]
|
1312 |
+
|
1313 |
+
# 1. We create the module for our new model.
|
1314 |
+
old_module_name = model_files["module_name"]
|
1315 |
+
module_folder = TRANSFORMERS_PATH / "models" / new_model_patterns.model_lower_cased
|
1316 |
+
os.makedirs(module_folder, exist_ok=True)
|
1317 |
+
|
1318 |
+
files_to_adapt = model_files["model_files"]
|
1319 |
+
if keep_old_processing:
|
1320 |
+
files_to_adapt = [
|
1321 |
+
f
|
1322 |
+
for f in files_to_adapt
|
1323 |
+
if "tokenization" not in str(f)
|
1324 |
+
and "processing" not in str(f)
|
1325 |
+
and "feature_extraction" not in str(f)
|
1326 |
+
and "image_processing" not in str(f)
|
1327 |
+
]
|
1328 |
+
|
1329 |
+
os.makedirs(module_folder, exist_ok=True)
|
1330 |
+
for module_file in files_to_adapt:
|
1331 |
+
new_module_name = module_file.name.replace(
|
1332 |
+
old_model_patterns.model_lower_cased, new_model_patterns.model_lower_cased
|
1333 |
+
)
|
1334 |
+
dest_file = module_folder / new_module_name
|
1335 |
+
duplicate_module(
|
1336 |
+
module_file,
|
1337 |
+
old_model_patterns,
|
1338 |
+
new_model_patterns,
|
1339 |
+
dest_file=dest_file,
|
1340 |
+
add_copied_from=add_copied_from and "modeling" in new_module_name,
|
1341 |
+
)
|
1342 |
+
|
1343 |
+
clean_frameworks_in_init(
|
1344 |
+
module_folder / "__init__.py", frameworks=frameworks, keep_processing=not keep_old_processing
|
1345 |
+
)
|
1346 |
+
|
1347 |
+
# 2. We add our new model to the models init and the main init
|
1348 |
+
add_content_to_file(
|
1349 |
+
TRANSFORMERS_PATH / "models" / "__init__.py",
|
1350 |
+
f" {new_model_patterns.model_lower_cased},",
|
1351 |
+
add_after=f" {old_module_name},",
|
1352 |
+
exact_match=True,
|
1353 |
+
)
|
1354 |
+
add_model_to_main_init(
|
1355 |
+
old_model_patterns, new_model_patterns, frameworks=frameworks, with_processing=not keep_old_processing
|
1356 |
+
)
|
1357 |
+
|
1358 |
+
# 3. Add test files
|
1359 |
+
files_to_adapt = model_files["test_files"]
|
1360 |
+
if keep_old_processing:
|
1361 |
+
files_to_adapt = [
|
1362 |
+
f
|
1363 |
+
for f in files_to_adapt
|
1364 |
+
if "tokenization" not in str(f)
|
1365 |
+
and "processor" not in str(f)
|
1366 |
+
and "feature_extraction" not in str(f)
|
1367 |
+
and "image_processing" not in str(f)
|
1368 |
+
]
|
1369 |
+
|
1370 |
+
def disable_fx_test(filename: Path) -> bool:
|
1371 |
+
with open(filename) as fp:
|
1372 |
+
content = fp.read()
|
1373 |
+
new_content = re.sub(r"fx_compatible\s*=\s*True", "fx_compatible = False", content)
|
1374 |
+
with open(filename, "w") as fp:
|
1375 |
+
fp.write(new_content)
|
1376 |
+
return content != new_content
|
1377 |
+
|
1378 |
+
disabled_fx_test = False
|
1379 |
+
|
1380 |
+
tests_folder = REPO_PATH / "tests" / "models" / new_model_patterns.model_lower_cased
|
1381 |
+
os.makedirs(tests_folder, exist_ok=True)
|
1382 |
+
with open(tests_folder / "__init__.py", "w"):
|
1383 |
+
pass
|
1384 |
+
|
1385 |
+
for test_file in files_to_adapt:
|
1386 |
+
new_test_file_name = test_file.name.replace(
|
1387 |
+
old_model_patterns.model_lower_cased, new_model_patterns.model_lower_cased
|
1388 |
+
)
|
1389 |
+
dest_file = test_file.parent.parent / new_model_patterns.model_lower_cased / new_test_file_name
|
1390 |
+
duplicate_module(
|
1391 |
+
test_file,
|
1392 |
+
old_model_patterns,
|
1393 |
+
new_model_patterns,
|
1394 |
+
dest_file=dest_file,
|
1395 |
+
add_copied_from=False,
|
1396 |
+
attrs_to_remove=["pipeline_model_mapping", "is_pipeline_test_to_skip"],
|
1397 |
+
)
|
1398 |
+
disabled_fx_test = disabled_fx_test | disable_fx_test(dest_file)
|
1399 |
+
|
1400 |
+
if disabled_fx_test:
|
1401 |
+
print(
|
1402 |
+
"The tests for symbolic tracing with torch.fx were disabled, you can add those once symbolic tracing works"
|
1403 |
+
" for your new model."
|
1404 |
+
)
|
1405 |
+
|
1406 |
+
# 4. Add model to auto classes
|
1407 |
+
add_model_to_auto_classes(old_model_patterns, new_model_patterns, model_classes)
|
1408 |
+
|
1409 |
+
# 5. Add doc file
|
1410 |
+
doc_file = REPO_PATH / "docs" / "source" / "en" / "model_doc" / f"{old_model_patterns.model_type}.md"
|
1411 |
+
duplicate_doc_file(doc_file, old_model_patterns, new_model_patterns, frameworks=frameworks)
|
1412 |
+
insert_model_in_doc_toc(old_model_patterns, new_model_patterns)
|
1413 |
+
|
1414 |
+
# 6. Warn the user for duplicate patterns
|
1415 |
+
if old_model_patterns.model_type == old_model_patterns.checkpoint:
|
1416 |
+
print(
|
1417 |
+
"The model you picked has the same name for the model type and the checkpoint name "
|
1418 |
+
f"({old_model_patterns.model_type}). As a result, it's possible some places where the new checkpoint "
|
1419 |
+
f"should be, you have {new_model_patterns.model_type} instead. You should search for all instances of "
|
1420 |
+
f"{new_model_patterns.model_type} in the new files and check they're not badly used as checkpoints."
|
1421 |
+
)
|
1422 |
+
elif old_model_patterns.model_lower_cased == old_model_patterns.checkpoint:
|
1423 |
+
print(
|
1424 |
+
"The model you picked has the same name for the model type and the checkpoint name "
|
1425 |
+
f"({old_model_patterns.model_lower_cased}). As a result, it's possible some places where the new "
|
1426 |
+
f"checkpoint should be, you have {new_model_patterns.model_lower_cased} instead. You should search for "
|
1427 |
+
f"all instances of {new_model_patterns.model_lower_cased} in the new files and check they're not badly "
|
1428 |
+
"used as checkpoints."
|
1429 |
+
)
|
1430 |
+
if (
|
1431 |
+
old_model_patterns.model_type == old_model_patterns.model_lower_cased
|
1432 |
+
and new_model_patterns.model_type != new_model_patterns.model_lower_cased
|
1433 |
+
):
|
1434 |
+
print(
|
1435 |
+
"The model you picked has the same name for the model type and the lowercased model name "
|
1436 |
+
f"({old_model_patterns.model_lower_cased}). As a result, it's possible some places where the new "
|
1437 |
+
f"model type should be, you have {new_model_patterns.model_lower_cased} instead. You should search for "
|
1438 |
+
f"all instances of {new_model_patterns.model_lower_cased} in the new files and check they're not badly "
|
1439 |
+
"used as the model type."
|
1440 |
+
)
|
1441 |
+
|
1442 |
+
if not keep_old_processing and old_model_patterns.tokenizer_class is not None:
|
1443 |
+
print(
|
1444 |
+
"The constants at the start of the new tokenizer file created needs to be manually fixed. If your new "
|
1445 |
+
"model has a tokenizer fast, you will also need to manually add the converter in the "
|
1446 |
+
"`SLOW_TO_FAST_CONVERTERS` constant of `convert_slow_tokenizer.py`."
|
1447 |
+
)
|
1448 |
+
|
1449 |
+
|
1450 |
+
def add_new_model_like_command_factory(args: Namespace):
|
1451 |
+
return AddNewModelLikeCommand(config_file=args.config_file, path_to_repo=args.path_to_repo)
|
1452 |
+
|
1453 |
+
|
1454 |
+
class AddNewModelLikeCommand(BaseTransformersCLICommand):
|
1455 |
+
@staticmethod
|
1456 |
+
def register_subcommand(parser: ArgumentParser):
|
1457 |
+
add_new_model_like_parser = parser.add_parser("add-new-model-like")
|
1458 |
+
add_new_model_like_parser.add_argument(
|
1459 |
+
"--config_file", type=str, help="A file with all the information for this model creation."
|
1460 |
+
)
|
1461 |
+
add_new_model_like_parser.add_argument(
|
1462 |
+
"--path_to_repo", type=str, help="When not using an editable install, the path to the Transformers repo."
|
1463 |
+
)
|
1464 |
+
add_new_model_like_parser.set_defaults(func=add_new_model_like_command_factory)
|
1465 |
+
|
1466 |
+
def __init__(self, config_file=None, path_to_repo=None, *args):
|
1467 |
+
if config_file is not None:
|
1468 |
+
with open(config_file, "r", encoding="utf-8") as f:
|
1469 |
+
config = json.load(f)
|
1470 |
+
self.old_model_type = config["old_model_type"]
|
1471 |
+
self.model_patterns = ModelPatterns(**config["new_model_patterns"])
|
1472 |
+
self.add_copied_from = config.get("add_copied_from", True)
|
1473 |
+
self.frameworks = config.get("frameworks", get_default_frameworks())
|
1474 |
+
self.old_checkpoint = config.get("old_checkpoint", None)
|
1475 |
+
else:
|
1476 |
+
(
|
1477 |
+
self.old_model_type,
|
1478 |
+
self.model_patterns,
|
1479 |
+
self.add_copied_from,
|
1480 |
+
self.frameworks,
|
1481 |
+
self.old_checkpoint,
|
1482 |
+
) = get_user_input()
|
1483 |
+
|
1484 |
+
self.path_to_repo = path_to_repo
|
1485 |
+
|
1486 |
+
def run(self):
|
1487 |
+
if self.path_to_repo is not None:
|
1488 |
+
# Adapt constants
|
1489 |
+
global TRANSFORMERS_PATH
|
1490 |
+
global REPO_PATH
|
1491 |
+
|
1492 |
+
REPO_PATH = Path(self.path_to_repo)
|
1493 |
+
TRANSFORMERS_PATH = REPO_PATH / "src" / "transformers"
|
1494 |
+
|
1495 |
+
create_new_model_like(
|
1496 |
+
model_type=self.old_model_type,
|
1497 |
+
new_model_patterns=self.model_patterns,
|
1498 |
+
add_copied_from=self.add_copied_from,
|
1499 |
+
frameworks=self.frameworks,
|
1500 |
+
old_checkpoint=self.old_checkpoint,
|
1501 |
+
)
|
1502 |
+
|
1503 |
+
|
1504 |
+
def get_user_field(
|
1505 |
+
question: str,
|
1506 |
+
default_value: Optional[str] = None,
|
1507 |
+
is_valid_answer: Optional[Callable] = None,
|
1508 |
+
convert_to: Optional[Callable] = None,
|
1509 |
+
fallback_message: Optional[str] = None,
|
1510 |
+
) -> Any:
|
1511 |
+
"""
|
1512 |
+
A utility function that asks a question to the user to get an answer, potentially looping until it gets a valid
|
1513 |
+
answer.
|
1514 |
+
|
1515 |
+
Args:
|
1516 |
+
question (`str`): The question to ask the user.
|
1517 |
+
default_value (`str`, *optional*): A potential default value that will be used when the answer is empty.
|
1518 |
+
is_valid_answer (`Callable`, *optional*):
|
1519 |
+
If set, the question will be asked until this function returns `True` on the provided answer.
|
1520 |
+
convert_to (`Callable`, *optional*):
|
1521 |
+
If set, the answer will be passed to this function. If this function raises an error on the procided
|
1522 |
+
answer, the question will be asked again.
|
1523 |
+
fallback_message (`str`, *optional*):
|
1524 |
+
A message that will be displayed each time the question is asked again to the user.
|
1525 |
+
|
1526 |
+
Returns:
|
1527 |
+
`Any`: The answer provided by the user (or the default), passed through the potential conversion function.
|
1528 |
+
"""
|
1529 |
+
if not question.endswith(" "):
|
1530 |
+
question = question + " "
|
1531 |
+
if default_value is not None:
|
1532 |
+
question = f"{question} [{default_value}] "
|
1533 |
+
|
1534 |
+
valid_answer = False
|
1535 |
+
while not valid_answer:
|
1536 |
+
answer = input(question)
|
1537 |
+
if default_value is not None and len(answer) == 0:
|
1538 |
+
answer = default_value
|
1539 |
+
if is_valid_answer is not None:
|
1540 |
+
valid_answer = is_valid_answer(answer)
|
1541 |
+
elif convert_to is not None:
|
1542 |
+
try:
|
1543 |
+
answer = convert_to(answer)
|
1544 |
+
valid_answer = True
|
1545 |
+
except Exception:
|
1546 |
+
valid_answer = False
|
1547 |
+
else:
|
1548 |
+
valid_answer = True
|
1549 |
+
|
1550 |
+
if not valid_answer:
|
1551 |
+
print(fallback_message)
|
1552 |
+
|
1553 |
+
return answer
|
1554 |
+
|
1555 |
+
|
1556 |
+
def convert_to_bool(x: str) -> bool:
|
1557 |
+
"""
|
1558 |
+
Converts a string to a bool.
|
1559 |
+
"""
|
1560 |
+
if x.lower() in ["1", "y", "yes", "true"]:
|
1561 |
+
return True
|
1562 |
+
if x.lower() in ["0", "n", "no", "false"]:
|
1563 |
+
return False
|
1564 |
+
raise ValueError(f"{x} is not a value that can be converted to a bool.")
|
1565 |
+
|
1566 |
+
|
1567 |
+
def get_user_input():
|
1568 |
+
"""
|
1569 |
+
Ask the user for the necessary inputs to add the new model.
|
1570 |
+
"""
|
1571 |
+
model_types = list(auto_module.configuration_auto.MODEL_NAMES_MAPPING.keys())
|
1572 |
+
|
1573 |
+
# Get old model type
|
1574 |
+
valid_model_type = False
|
1575 |
+
while not valid_model_type:
|
1576 |
+
old_model_type = input(
|
1577 |
+
"What is the model you would like to duplicate? Please provide the lowercase `model_type` (e.g. roberta): "
|
1578 |
+
)
|
1579 |
+
if old_model_type in model_types:
|
1580 |
+
valid_model_type = True
|
1581 |
+
else:
|
1582 |
+
print(f"{old_model_type} is not a valid model type.")
|
1583 |
+
near_choices = difflib.get_close_matches(old_model_type, model_types)
|
1584 |
+
if len(near_choices) >= 1:
|
1585 |
+
if len(near_choices) > 1:
|
1586 |
+
near_choices = " or ".join(near_choices)
|
1587 |
+
print(f"Did you mean {near_choices}?")
|
1588 |
+
|
1589 |
+
old_model_info = retrieve_info_for_model(old_model_type)
|
1590 |
+
old_tokenizer_class = old_model_info["model_patterns"].tokenizer_class
|
1591 |
+
old_image_processor_class = old_model_info["model_patterns"].image_processor_class
|
1592 |
+
old_feature_extractor_class = old_model_info["model_patterns"].feature_extractor_class
|
1593 |
+
old_processor_class = old_model_info["model_patterns"].processor_class
|
1594 |
+
old_frameworks = old_model_info["frameworks"]
|
1595 |
+
|
1596 |
+
old_checkpoint = None
|
1597 |
+
if len(old_model_info["model_patterns"].checkpoint) == 0:
|
1598 |
+
old_checkpoint = get_user_field(
|
1599 |
+
"We couldn't find the name of the base checkpoint for that model, please enter it here."
|
1600 |
+
)
|
1601 |
+
|
1602 |
+
model_name = get_user_field(
|
1603 |
+
"What is the name (with no special casing) for your new model in the paper (e.g. RoBERTa)? "
|
1604 |
+
)
|
1605 |
+
default_patterns = ModelPatterns(model_name, model_name)
|
1606 |
+
|
1607 |
+
model_type = get_user_field(
|
1608 |
+
"What identifier would you like to use for the `model_type` of this model? ",
|
1609 |
+
default_value=default_patterns.model_type,
|
1610 |
+
)
|
1611 |
+
model_lower_cased = get_user_field(
|
1612 |
+
"What lowercase name would you like to use for the module (folder) of this model? ",
|
1613 |
+
default_value=default_patterns.model_lower_cased,
|
1614 |
+
)
|
1615 |
+
model_camel_cased = get_user_field(
|
1616 |
+
"What prefix (camel-cased) would you like to use for the model classes of this model (e.g. Roberta)? ",
|
1617 |
+
default_value=default_patterns.model_camel_cased,
|
1618 |
+
)
|
1619 |
+
model_upper_cased = get_user_field(
|
1620 |
+
"What prefix (upper-cased) would you like to use for the constants relative to this model? ",
|
1621 |
+
default_value=default_patterns.model_upper_cased,
|
1622 |
+
)
|
1623 |
+
config_class = get_user_field(
|
1624 |
+
"What will be the name of the config class for this model? ", default_value=f"{model_camel_cased}Config"
|
1625 |
+
)
|
1626 |
+
checkpoint = get_user_field(
|
1627 |
+
"Please give a checkpoint identifier (on the model Hub) for this new model (e.g. facebook/FacebookAI/roberta-base): "
|
1628 |
+
)
|
1629 |
+
|
1630 |
+
old_processing_classes = [
|
1631 |
+
c
|
1632 |
+
for c in [old_image_processor_class, old_feature_extractor_class, old_tokenizer_class, old_processor_class]
|
1633 |
+
if c is not None
|
1634 |
+
]
|
1635 |
+
old_processing_classes = ", ".join(old_processing_classes)
|
1636 |
+
keep_processing = get_user_field(
|
1637 |
+
f"Will your new model use the same processing class as {old_model_type} ({old_processing_classes}) (yes/no)? ",
|
1638 |
+
convert_to=convert_to_bool,
|
1639 |
+
fallback_message="Please answer yes/no, y/n, true/false or 1/0. ",
|
1640 |
+
)
|
1641 |
+
if keep_processing:
|
1642 |
+
image_processor_class = old_image_processor_class
|
1643 |
+
feature_extractor_class = old_feature_extractor_class
|
1644 |
+
processor_class = old_processor_class
|
1645 |
+
tokenizer_class = old_tokenizer_class
|
1646 |
+
else:
|
1647 |
+
if old_tokenizer_class is not None:
|
1648 |
+
tokenizer_class = get_user_field(
|
1649 |
+
"What will be the name of the tokenizer class for this model? ",
|
1650 |
+
default_value=f"{model_camel_cased}Tokenizer",
|
1651 |
+
)
|
1652 |
+
else:
|
1653 |
+
tokenizer_class = None
|
1654 |
+
if old_image_processor_class is not None:
|
1655 |
+
image_processor_class = get_user_field(
|
1656 |
+
"What will be the name of the image processor class for this model? ",
|
1657 |
+
default_value=f"{model_camel_cased}ImageProcessor",
|
1658 |
+
)
|
1659 |
+
else:
|
1660 |
+
image_processor_class = None
|
1661 |
+
if old_feature_extractor_class is not None:
|
1662 |
+
feature_extractor_class = get_user_field(
|
1663 |
+
"What will be the name of the feature extractor class for this model? ",
|
1664 |
+
default_value=f"{model_camel_cased}FeatureExtractor",
|
1665 |
+
)
|
1666 |
+
else:
|
1667 |
+
feature_extractor_class = None
|
1668 |
+
if old_processor_class is not None:
|
1669 |
+
processor_class = get_user_field(
|
1670 |
+
"What will be the name of the processor class for this model? ",
|
1671 |
+
default_value=f"{model_camel_cased}Processor",
|
1672 |
+
)
|
1673 |
+
else:
|
1674 |
+
processor_class = None
|
1675 |
+
|
1676 |
+
model_patterns = ModelPatterns(
|
1677 |
+
model_name,
|
1678 |
+
checkpoint,
|
1679 |
+
model_type=model_type,
|
1680 |
+
model_lower_cased=model_lower_cased,
|
1681 |
+
model_camel_cased=model_camel_cased,
|
1682 |
+
model_upper_cased=model_upper_cased,
|
1683 |
+
config_class=config_class,
|
1684 |
+
tokenizer_class=tokenizer_class,
|
1685 |
+
image_processor_class=image_processor_class,
|
1686 |
+
feature_extractor_class=feature_extractor_class,
|
1687 |
+
processor_class=processor_class,
|
1688 |
+
)
|
1689 |
+
|
1690 |
+
add_copied_from = get_user_field(
|
1691 |
+
"Should we add # Copied from statements when creating the new modeling file (yes/no)? ",
|
1692 |
+
convert_to=convert_to_bool,
|
1693 |
+
default_value="yes",
|
1694 |
+
fallback_message="Please answer yes/no, y/n, true/false or 1/0.",
|
1695 |
+
)
|
1696 |
+
|
1697 |
+
all_frameworks = get_user_field(
|
1698 |
+
"Should we add a version of your new model in all the frameworks implemented by"
|
1699 |
+
f" {old_model_type} ({old_frameworks}) (yes/no)? ",
|
1700 |
+
convert_to=convert_to_bool,
|
1701 |
+
default_value="yes",
|
1702 |
+
fallback_message="Please answer yes/no, y/n, true/false or 1/0.",
|
1703 |
+
)
|
1704 |
+
if all_frameworks:
|
1705 |
+
frameworks = None
|
1706 |
+
else:
|
1707 |
+
frameworks = get_user_field(
|
1708 |
+
"Please enter the list of framworks you want (pt, tf, flax) separated by spaces",
|
1709 |
+
is_valid_answer=lambda x: all(p in ["pt", "tf", "flax"] for p in x.split(" ")),
|
1710 |
+
)
|
1711 |
+
frameworks = list(set(frameworks.split(" ")))
|
1712 |
+
|
1713 |
+
return (old_model_type, model_patterns, add_copied_from, frameworks, old_checkpoint)
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/convert.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from argparse import ArgumentParser, Namespace
|
16 |
+
|
17 |
+
from ..utils import logging
|
18 |
+
from . import BaseTransformersCLICommand
|
19 |
+
|
20 |
+
|
21 |
+
def convert_command_factory(args: Namespace):
|
22 |
+
"""
|
23 |
+
Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint.
|
24 |
+
|
25 |
+
Returns: ServeCommand
|
26 |
+
"""
|
27 |
+
return ConvertCommand(
|
28 |
+
args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
IMPORT_ERROR_MESSAGE = """
|
33 |
+
transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires
|
34 |
+
TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.
|
35 |
+
"""
|
36 |
+
|
37 |
+
|
38 |
+
class ConvertCommand(BaseTransformersCLICommand):
|
39 |
+
@staticmethod
|
40 |
+
def register_subcommand(parser: ArgumentParser):
|
41 |
+
"""
|
42 |
+
Register this command to argparse so it's available for the transformer-cli
|
43 |
+
|
44 |
+
Args:
|
45 |
+
parser: Root parser to register command-specific arguments
|
46 |
+
"""
|
47 |
+
train_parser = parser.add_parser(
|
48 |
+
"convert",
|
49 |
+
help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.",
|
50 |
+
)
|
51 |
+
train_parser.add_argument("--model_type", type=str, required=True, help="Model's type.")
|
52 |
+
train_parser.add_argument(
|
53 |
+
"--tf_checkpoint", type=str, required=True, help="TensorFlow checkpoint path or folder."
|
54 |
+
)
|
55 |
+
train_parser.add_argument(
|
56 |
+
"--pytorch_dump_output", type=str, required=True, help="Path to the PyTorch saved model output."
|
57 |
+
)
|
58 |
+
train_parser.add_argument("--config", type=str, default="", help="Configuration file path or folder.")
|
59 |
+
train_parser.add_argument(
|
60 |
+
"--finetuning_task_name",
|
61 |
+
type=str,
|
62 |
+
default=None,
|
63 |
+
help="Optional fine-tuning task name if the TF model was a finetuned model.",
|
64 |
+
)
|
65 |
+
train_parser.set_defaults(func=convert_command_factory)
|
66 |
+
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
model_type: str,
|
70 |
+
tf_checkpoint: str,
|
71 |
+
pytorch_dump_output: str,
|
72 |
+
config: str,
|
73 |
+
finetuning_task_name: str,
|
74 |
+
*args,
|
75 |
+
):
|
76 |
+
self._logger = logging.get_logger("transformers-cli/converting")
|
77 |
+
|
78 |
+
self._logger.info(f"Loading model {model_type}")
|
79 |
+
self._model_type = model_type
|
80 |
+
self._tf_checkpoint = tf_checkpoint
|
81 |
+
self._pytorch_dump_output = pytorch_dump_output
|
82 |
+
self._config = config
|
83 |
+
self._finetuning_task_name = finetuning_task_name
|
84 |
+
|
85 |
+
def run(self):
|
86 |
+
if self._model_type == "albert":
|
87 |
+
try:
|
88 |
+
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
|
89 |
+
convert_tf_checkpoint_to_pytorch,
|
90 |
+
)
|
91 |
+
except ImportError:
|
92 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
93 |
+
|
94 |
+
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
95 |
+
elif self._model_type == "bert":
|
96 |
+
try:
|
97 |
+
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
|
98 |
+
convert_tf_checkpoint_to_pytorch,
|
99 |
+
)
|
100 |
+
except ImportError:
|
101 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
102 |
+
|
103 |
+
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
104 |
+
elif self._model_type == "funnel":
|
105 |
+
try:
|
106 |
+
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
|
107 |
+
convert_tf_checkpoint_to_pytorch,
|
108 |
+
)
|
109 |
+
except ImportError:
|
110 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
111 |
+
|
112 |
+
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
113 |
+
elif self._model_type == "t5":
|
114 |
+
try:
|
115 |
+
from ..models.t5.convert_t5_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
|
116 |
+
except ImportError:
|
117 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
118 |
+
|
119 |
+
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
120 |
+
elif self._model_type == "gpt":
|
121 |
+
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
|
122 |
+
convert_openai_checkpoint_to_pytorch,
|
123 |
+
)
|
124 |
+
|
125 |
+
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
126 |
+
elif self._model_type == "gpt2":
|
127 |
+
try:
|
128 |
+
from ..models.gpt2.convert_gpt2_original_tf_checkpoint_to_pytorch import (
|
129 |
+
convert_gpt2_checkpoint_to_pytorch,
|
130 |
+
)
|
131 |
+
except ImportError:
|
132 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
133 |
+
|
134 |
+
convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
135 |
+
elif self._model_type == "xlnet":
|
136 |
+
try:
|
137 |
+
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
|
138 |
+
convert_xlnet_checkpoint_to_pytorch,
|
139 |
+
)
|
140 |
+
except ImportError:
|
141 |
+
raise ImportError(IMPORT_ERROR_MESSAGE)
|
142 |
+
|
143 |
+
convert_xlnet_checkpoint_to_pytorch(
|
144 |
+
self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name
|
145 |
+
)
|
146 |
+
elif self._model_type == "xlm":
|
147 |
+
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
|
148 |
+
convert_xlm_checkpoint_to_pytorch,
|
149 |
+
)
|
150 |
+
|
151 |
+
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
|
152 |
+
elif self._model_type == "lxmert":
|
153 |
+
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
|
154 |
+
convert_lxmert_checkpoint_to_pytorch,
|
155 |
+
)
|
156 |
+
|
157 |
+
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
|
158 |
+
elif self._model_type == "rembert":
|
159 |
+
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
|
160 |
+
convert_rembert_tf_checkpoint_to_pytorch,
|
161 |
+
)
|
162 |
+
|
163 |
+
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
164 |
+
else:
|
165 |
+
raise ValueError("--model_type should be selected in the list [bert, gpt, gpt2, t5, xlnet, xlm, lxmert]")
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/download.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from argparse import ArgumentParser
|
16 |
+
|
17 |
+
from . import BaseTransformersCLICommand
|
18 |
+
|
19 |
+
|
20 |
+
def download_command_factory(args):
|
21 |
+
return DownloadCommand(args.model, args.cache_dir, args.force, args.trust_remote_code)
|
22 |
+
|
23 |
+
|
24 |
+
class DownloadCommand(BaseTransformersCLICommand):
|
25 |
+
@staticmethod
|
26 |
+
def register_subcommand(parser: ArgumentParser):
|
27 |
+
download_parser = parser.add_parser("download")
|
28 |
+
download_parser.add_argument(
|
29 |
+
"--cache-dir", type=str, default=None, help="Path to location to store the models"
|
30 |
+
)
|
31 |
+
download_parser.add_argument(
|
32 |
+
"--force", action="store_true", help="Force the model to be download even if already in cache-dir"
|
33 |
+
)
|
34 |
+
download_parser.add_argument(
|
35 |
+
"--trust-remote-code",
|
36 |
+
action="store_true",
|
37 |
+
help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine",
|
38 |
+
)
|
39 |
+
download_parser.add_argument("model", type=str, help="Name of the model to download")
|
40 |
+
download_parser.set_defaults(func=download_command_factory)
|
41 |
+
|
42 |
+
def __init__(self, model: str, cache: str, force: bool, trust_remote_code: bool):
|
43 |
+
self._model = model
|
44 |
+
self._cache = cache
|
45 |
+
self._force = force
|
46 |
+
self._trust_remote_code = trust_remote_code
|
47 |
+
|
48 |
+
def run(self):
|
49 |
+
from ..models.auto import AutoModel, AutoTokenizer
|
50 |
+
|
51 |
+
AutoModel.from_pretrained(
|
52 |
+
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code
|
53 |
+
)
|
54 |
+
AutoTokenizer.from_pretrained(
|
55 |
+
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code
|
56 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/env.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import importlib.util
|
16 |
+
import os
|
17 |
+
import platform
|
18 |
+
from argparse import ArgumentParser
|
19 |
+
|
20 |
+
import huggingface_hub
|
21 |
+
|
22 |
+
from .. import __version__ as version
|
23 |
+
from ..utils import (
|
24 |
+
is_accelerate_available,
|
25 |
+
is_flax_available,
|
26 |
+
is_safetensors_available,
|
27 |
+
is_tf_available,
|
28 |
+
is_torch_available,
|
29 |
+
)
|
30 |
+
from . import BaseTransformersCLICommand
|
31 |
+
|
32 |
+
|
33 |
+
def info_command_factory(_):
|
34 |
+
return EnvironmentCommand()
|
35 |
+
|
36 |
+
|
37 |
+
def download_command_factory(args):
|
38 |
+
return EnvironmentCommand(args.accelerate_config_file)
|
39 |
+
|
40 |
+
|
41 |
+
class EnvironmentCommand(BaseTransformersCLICommand):
|
42 |
+
@staticmethod
|
43 |
+
def register_subcommand(parser: ArgumentParser):
|
44 |
+
download_parser = parser.add_parser("env")
|
45 |
+
download_parser.set_defaults(func=info_command_factory)
|
46 |
+
download_parser.add_argument(
|
47 |
+
"--accelerate-config_file",
|
48 |
+
default=None,
|
49 |
+
help="The accelerate config file to use for the default values in the launching script.",
|
50 |
+
)
|
51 |
+
download_parser.set_defaults(func=download_command_factory)
|
52 |
+
|
53 |
+
def __init__(self, accelerate_config_file, *args) -> None:
|
54 |
+
self._accelerate_config_file = accelerate_config_file
|
55 |
+
|
56 |
+
def run(self):
|
57 |
+
safetensors_version = "not installed"
|
58 |
+
if is_safetensors_available():
|
59 |
+
import safetensors
|
60 |
+
|
61 |
+
safetensors_version = safetensors.__version__
|
62 |
+
elif importlib.util.find_spec("safetensors") is not None:
|
63 |
+
import safetensors
|
64 |
+
|
65 |
+
safetensors_version = f"{safetensors.__version__} but is ignored because of PyTorch version too old."
|
66 |
+
|
67 |
+
accelerate_version = "not installed"
|
68 |
+
accelerate_config = accelerate_config_str = "not found"
|
69 |
+
if is_accelerate_available():
|
70 |
+
import accelerate
|
71 |
+
from accelerate.commands.config import default_config_file, load_config_from_file
|
72 |
+
|
73 |
+
accelerate_version = accelerate.__version__
|
74 |
+
# Get the default from the config file.
|
75 |
+
if self._accelerate_config_file is not None or os.path.isfile(default_config_file):
|
76 |
+
accelerate_config = load_config_from_file(self._accelerate_config_file).to_dict()
|
77 |
+
|
78 |
+
accelerate_config_str = (
|
79 |
+
"\n".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()])
|
80 |
+
if isinstance(accelerate_config, dict)
|
81 |
+
else f"\t{accelerate_config}"
|
82 |
+
)
|
83 |
+
|
84 |
+
pt_version = "not installed"
|
85 |
+
pt_cuda_available = "NA"
|
86 |
+
if is_torch_available():
|
87 |
+
import torch
|
88 |
+
|
89 |
+
pt_version = torch.__version__
|
90 |
+
pt_cuda_available = torch.cuda.is_available()
|
91 |
+
|
92 |
+
tf_version = "not installed"
|
93 |
+
tf_cuda_available = "NA"
|
94 |
+
if is_tf_available():
|
95 |
+
import tensorflow as tf
|
96 |
+
|
97 |
+
tf_version = tf.__version__
|
98 |
+
try:
|
99 |
+
# deprecated in v2.1
|
100 |
+
tf_cuda_available = tf.test.is_gpu_available()
|
101 |
+
except AttributeError:
|
102 |
+
# returns list of devices, convert to bool
|
103 |
+
tf_cuda_available = bool(tf.config.list_physical_devices("GPU"))
|
104 |
+
|
105 |
+
flax_version = "not installed"
|
106 |
+
jax_version = "not installed"
|
107 |
+
jaxlib_version = "not installed"
|
108 |
+
jax_backend = "NA"
|
109 |
+
if is_flax_available():
|
110 |
+
import flax
|
111 |
+
import jax
|
112 |
+
import jaxlib
|
113 |
+
|
114 |
+
flax_version = flax.__version__
|
115 |
+
jax_version = jax.__version__
|
116 |
+
jaxlib_version = jaxlib.__version__
|
117 |
+
jax_backend = jax.lib.xla_bridge.get_backend().platform
|
118 |
+
|
119 |
+
info = {
|
120 |
+
"`transformers` version": version,
|
121 |
+
"Platform": platform.platform(),
|
122 |
+
"Python version": platform.python_version(),
|
123 |
+
"Huggingface_hub version": huggingface_hub.__version__,
|
124 |
+
"Safetensors version": f"{safetensors_version}",
|
125 |
+
"Accelerate version": f"{accelerate_version}",
|
126 |
+
"Accelerate config": f"{accelerate_config_str}",
|
127 |
+
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
|
128 |
+
"Tensorflow version (GPU?)": f"{tf_version} ({tf_cuda_available})",
|
129 |
+
"Flax version (CPU?/GPU?/TPU?)": f"{flax_version} ({jax_backend})",
|
130 |
+
"Jax version": f"{jax_version}",
|
131 |
+
"JaxLib version": f"{jaxlib_version}",
|
132 |
+
"Using GPU in script?": "<fill in>",
|
133 |
+
"Using distributed or parallel set-up in script?": "<fill in>",
|
134 |
+
}
|
135 |
+
|
136 |
+
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
|
137 |
+
print(self.format_dict(info))
|
138 |
+
|
139 |
+
return info
|
140 |
+
|
141 |
+
@staticmethod
|
142 |
+
def format_dict(d):
|
143 |
+
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/lfs.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implementation of a custom transfer agent for the transfer type "multipart" for git-lfs.
|
3 |
+
|
4 |
+
Inspired by: github.com/cbartz/git-lfs-swift-transfer-agent/blob/master/git_lfs_swift_transfer.py
|
5 |
+
|
6 |
+
Spec is: github.com/git-lfs/git-lfs/blob/master/docs/custom-transfers.md
|
7 |
+
|
8 |
+
|
9 |
+
To launch debugger while developing:
|
10 |
+
|
11 |
+
``` [lfs "customtransfer.multipart"]
|
12 |
+
path = /path/to/transformers/.env/bin/python args = -m debugpy --listen 5678 --wait-for-client
|
13 |
+
/path/to/transformers/src/transformers/commands/transformers_cli.py lfs-multipart-upload ```"""
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
import subprocess
|
18 |
+
import sys
|
19 |
+
import warnings
|
20 |
+
from argparse import ArgumentParser
|
21 |
+
from contextlib import AbstractContextManager
|
22 |
+
from typing import Dict, List, Optional
|
23 |
+
|
24 |
+
import requests
|
25 |
+
|
26 |
+
from ..utils import logging
|
27 |
+
from . import BaseTransformersCLICommand
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
31 |
+
|
32 |
+
|
33 |
+
LFS_MULTIPART_UPLOAD_COMMAND = "lfs-multipart-upload"
|
34 |
+
|
35 |
+
|
36 |
+
class LfsCommands(BaseTransformersCLICommand):
|
37 |
+
"""
|
38 |
+
Implementation of a custom transfer agent for the transfer type "multipart" for git-lfs. This lets users upload
|
39 |
+
large files >5GB 🔥. Spec for LFS custom transfer agent is:
|
40 |
+
https://github.com/git-lfs/git-lfs/blob/master/docs/custom-transfers.md
|
41 |
+
|
42 |
+
This introduces two commands to the CLI:
|
43 |
+
|
44 |
+
1. $ transformers-cli lfs-enable-largefiles
|
45 |
+
|
46 |
+
This should be executed once for each model repo that contains a model file >5GB. It's documented in the error
|
47 |
+
message you get if you just try to git push a 5GB file without having enabled it before.
|
48 |
+
|
49 |
+
2. $ transformers-cli lfs-multipart-upload
|
50 |
+
|
51 |
+
This command is called by lfs directly and is not meant to be called by the user.
|
52 |
+
"""
|
53 |
+
|
54 |
+
@staticmethod
|
55 |
+
def register_subcommand(parser: ArgumentParser):
|
56 |
+
enable_parser = parser.add_parser(
|
57 |
+
"lfs-enable-largefiles",
|
58 |
+
help=(
|
59 |
+
"Deprecated: use `huggingface-cli` instead. Configure your repository to enable upload of files > 5GB."
|
60 |
+
),
|
61 |
+
)
|
62 |
+
enable_parser.add_argument("path", type=str, help="Local path to repository you want to configure.")
|
63 |
+
enable_parser.set_defaults(func=lambda args: LfsEnableCommand(args))
|
64 |
+
|
65 |
+
upload_parser = parser.add_parser(
|
66 |
+
LFS_MULTIPART_UPLOAD_COMMAND,
|
67 |
+
help=(
|
68 |
+
"Deprecated: use `huggingface-cli` instead. "
|
69 |
+
"Command will get called by git-lfs, do not call it directly."
|
70 |
+
),
|
71 |
+
)
|
72 |
+
upload_parser.set_defaults(func=lambda args: LfsUploadCommand(args))
|
73 |
+
|
74 |
+
|
75 |
+
class LfsEnableCommand:
|
76 |
+
def __init__(self, args):
|
77 |
+
self.args = args
|
78 |
+
|
79 |
+
def run(self):
|
80 |
+
warnings.warn(
|
81 |
+
"Managing repositories through transformers-cli is deprecated. Please use `huggingface-cli` instead."
|
82 |
+
)
|
83 |
+
local_path = os.path.abspath(self.args.path)
|
84 |
+
if not os.path.isdir(local_path):
|
85 |
+
print("This does not look like a valid git repo.")
|
86 |
+
exit(1)
|
87 |
+
subprocess.run(
|
88 |
+
"git config lfs.customtransfer.multipart.path transformers-cli".split(), check=True, cwd=local_path
|
89 |
+
)
|
90 |
+
subprocess.run(
|
91 |
+
f"git config lfs.customtransfer.multipart.args {LFS_MULTIPART_UPLOAD_COMMAND}".split(),
|
92 |
+
check=True,
|
93 |
+
cwd=local_path,
|
94 |
+
)
|
95 |
+
print("Local repo set up for largefiles")
|
96 |
+
|
97 |
+
|
98 |
+
def write_msg(msg: Dict):
|
99 |
+
"""Write out the message in Line delimited JSON."""
|
100 |
+
msg = json.dumps(msg) + "\n"
|
101 |
+
sys.stdout.write(msg)
|
102 |
+
sys.stdout.flush()
|
103 |
+
|
104 |
+
|
105 |
+
def read_msg() -> Optional[Dict]:
|
106 |
+
"""Read Line delimited JSON from stdin."""
|
107 |
+
msg = json.loads(sys.stdin.readline().strip())
|
108 |
+
|
109 |
+
if "terminate" in (msg.get("type"), msg.get("event")):
|
110 |
+
# terminate message received
|
111 |
+
return None
|
112 |
+
|
113 |
+
if msg.get("event") not in ("download", "upload"):
|
114 |
+
logger.critical("Received unexpected message")
|
115 |
+
sys.exit(1)
|
116 |
+
|
117 |
+
return msg
|
118 |
+
|
119 |
+
|
120 |
+
class FileSlice(AbstractContextManager):
|
121 |
+
"""
|
122 |
+
File-like object that only reads a slice of a file
|
123 |
+
|
124 |
+
Inspired by stackoverflow.com/a/29838711/593036
|
125 |
+
"""
|
126 |
+
|
127 |
+
def __init__(self, filepath: str, seek_from: int, read_limit: int):
|
128 |
+
self.filepath = filepath
|
129 |
+
self.seek_from = seek_from
|
130 |
+
self.read_limit = read_limit
|
131 |
+
self.n_seen = 0
|
132 |
+
|
133 |
+
def __enter__(self):
|
134 |
+
self.f = open(self.filepath, "rb")
|
135 |
+
self.f.seek(self.seek_from)
|
136 |
+
return self
|
137 |
+
|
138 |
+
def __len__(self):
|
139 |
+
total_length = os.fstat(self.f.fileno()).st_size
|
140 |
+
return min(self.read_limit, total_length - self.seek_from)
|
141 |
+
|
142 |
+
def read(self, n=-1):
|
143 |
+
if self.n_seen >= self.read_limit:
|
144 |
+
return b""
|
145 |
+
remaining_amount = self.read_limit - self.n_seen
|
146 |
+
data = self.f.read(remaining_amount if n < 0 else min(n, remaining_amount))
|
147 |
+
self.n_seen += len(data)
|
148 |
+
return data
|
149 |
+
|
150 |
+
def __iter__(self):
|
151 |
+
yield self.read(n=4 * 1024 * 1024)
|
152 |
+
|
153 |
+
def __exit__(self, *args):
|
154 |
+
self.f.close()
|
155 |
+
|
156 |
+
|
157 |
+
class LfsUploadCommand:
|
158 |
+
def __init__(self, args):
|
159 |
+
self.args = args
|
160 |
+
|
161 |
+
def run(self):
|
162 |
+
# Immediately after invoking a custom transfer process, git-lfs
|
163 |
+
# sends initiation data to the process over stdin.
|
164 |
+
# This tells the process useful information about the configuration.
|
165 |
+
init_msg = json.loads(sys.stdin.readline().strip())
|
166 |
+
if not (init_msg.get("event") == "init" and init_msg.get("operation") == "upload"):
|
167 |
+
write_msg({"error": {"code": 32, "message": "Wrong lfs init operation"}})
|
168 |
+
sys.exit(1)
|
169 |
+
|
170 |
+
# The transfer process should use the information it needs from the
|
171 |
+
# initiation structure, and also perform any one-off setup tasks it
|
172 |
+
# needs to do. It should then respond on stdout with a simple empty
|
173 |
+
# confirmation structure, as follows:
|
174 |
+
write_msg({})
|
175 |
+
|
176 |
+
# After the initiation exchange, git-lfs will send any number of
|
177 |
+
# transfer requests to the stdin of the transfer process, in a serial sequence.
|
178 |
+
while True:
|
179 |
+
msg = read_msg()
|
180 |
+
if msg is None:
|
181 |
+
# When all transfers have been processed, git-lfs will send
|
182 |
+
# a terminate event to the stdin of the transfer process.
|
183 |
+
# On receiving this message the transfer process should
|
184 |
+
# clean up and terminate. No response is expected.
|
185 |
+
sys.exit(0)
|
186 |
+
|
187 |
+
oid = msg["oid"]
|
188 |
+
filepath = msg["path"]
|
189 |
+
completion_url = msg["action"]["href"]
|
190 |
+
header = msg["action"]["header"]
|
191 |
+
chunk_size = int(header.pop("chunk_size"))
|
192 |
+
presigned_urls: List[str] = list(header.values())
|
193 |
+
|
194 |
+
parts = []
|
195 |
+
for i, presigned_url in enumerate(presigned_urls):
|
196 |
+
with FileSlice(filepath, seek_from=i * chunk_size, read_limit=chunk_size) as data:
|
197 |
+
r = requests.put(presigned_url, data=data)
|
198 |
+
r.raise_for_status()
|
199 |
+
parts.append(
|
200 |
+
{
|
201 |
+
"etag": r.headers.get("etag"),
|
202 |
+
"partNumber": i + 1,
|
203 |
+
}
|
204 |
+
)
|
205 |
+
# In order to support progress reporting while data is uploading / downloading,
|
206 |
+
# the transfer process should post messages to stdout
|
207 |
+
write_msg(
|
208 |
+
{
|
209 |
+
"event": "progress",
|
210 |
+
"oid": oid,
|
211 |
+
"bytesSoFar": (i + 1) * chunk_size,
|
212 |
+
"bytesSinceLast": chunk_size,
|
213 |
+
}
|
214 |
+
)
|
215 |
+
# Not precise but that's ok.
|
216 |
+
|
217 |
+
r = requests.post(
|
218 |
+
completion_url,
|
219 |
+
json={
|
220 |
+
"oid": oid,
|
221 |
+
"parts": parts,
|
222 |
+
},
|
223 |
+
)
|
224 |
+
r.raise_for_status()
|
225 |
+
|
226 |
+
write_msg({"event": "complete", "oid": oid})
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/pt_to_tf.py
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
import os
|
17 |
+
from argparse import ArgumentParser, Namespace
|
18 |
+
from importlib import import_module
|
19 |
+
|
20 |
+
import huggingface_hub
|
21 |
+
import numpy as np
|
22 |
+
from packaging import version
|
23 |
+
|
24 |
+
from .. import (
|
25 |
+
FEATURE_EXTRACTOR_MAPPING,
|
26 |
+
IMAGE_PROCESSOR_MAPPING,
|
27 |
+
PROCESSOR_MAPPING,
|
28 |
+
TOKENIZER_MAPPING,
|
29 |
+
AutoConfig,
|
30 |
+
AutoFeatureExtractor,
|
31 |
+
AutoImageProcessor,
|
32 |
+
AutoProcessor,
|
33 |
+
AutoTokenizer,
|
34 |
+
is_datasets_available,
|
35 |
+
is_tf_available,
|
36 |
+
is_torch_available,
|
37 |
+
)
|
38 |
+
from ..utils import TF2_WEIGHTS_INDEX_NAME, TF2_WEIGHTS_NAME, logging
|
39 |
+
from . import BaseTransformersCLICommand
|
40 |
+
|
41 |
+
|
42 |
+
if is_tf_available():
|
43 |
+
import tensorflow as tf
|
44 |
+
|
45 |
+
tf.config.experimental.enable_tensor_float_32_execution(False)
|
46 |
+
|
47 |
+
if is_torch_available():
|
48 |
+
import torch
|
49 |
+
|
50 |
+
if is_datasets_available():
|
51 |
+
from datasets import load_dataset
|
52 |
+
|
53 |
+
|
54 |
+
MAX_ERROR = 5e-5 # larger error tolerance than in our internal tests, to avoid flaky user-facing errors
|
55 |
+
|
56 |
+
|
57 |
+
def convert_command_factory(args: Namespace):
|
58 |
+
"""
|
59 |
+
Factory function used to convert a model PyTorch checkpoint in a TensorFlow 2 checkpoint.
|
60 |
+
|
61 |
+
Returns: ServeCommand
|
62 |
+
"""
|
63 |
+
return PTtoTFCommand(
|
64 |
+
args.model_name,
|
65 |
+
args.local_dir,
|
66 |
+
args.max_error,
|
67 |
+
args.new_weights,
|
68 |
+
args.no_pr,
|
69 |
+
args.push,
|
70 |
+
args.extra_commit_description,
|
71 |
+
args.override_model_class,
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
class PTtoTFCommand(BaseTransformersCLICommand):
|
76 |
+
@staticmethod
|
77 |
+
def register_subcommand(parser: ArgumentParser):
|
78 |
+
"""
|
79 |
+
Register this command to argparse so it's available for the transformer-cli
|
80 |
+
|
81 |
+
Args:
|
82 |
+
parser: Root parser to register command-specific arguments
|
83 |
+
"""
|
84 |
+
train_parser = parser.add_parser(
|
85 |
+
"pt-to-tf",
|
86 |
+
help=(
|
87 |
+
"CLI tool to run convert a transformers model from a PyTorch checkpoint to a TensorFlow checkpoint."
|
88 |
+
" Can also be used to validate existing weights without opening PRs, with --no-pr."
|
89 |
+
),
|
90 |
+
)
|
91 |
+
train_parser.add_argument(
|
92 |
+
"--model-name",
|
93 |
+
type=str,
|
94 |
+
required=True,
|
95 |
+
help="The model name, including owner/organization, as seen on the hub.",
|
96 |
+
)
|
97 |
+
train_parser.add_argument(
|
98 |
+
"--local-dir",
|
99 |
+
type=str,
|
100 |
+
default="",
|
101 |
+
help="Optional local directory of the model repository. Defaults to /tmp/{model_name}",
|
102 |
+
)
|
103 |
+
train_parser.add_argument(
|
104 |
+
"--max-error",
|
105 |
+
type=float,
|
106 |
+
default=MAX_ERROR,
|
107 |
+
help=(
|
108 |
+
f"Maximum error tolerance. Defaults to {MAX_ERROR}. This flag should be avoided, use at your own risk."
|
109 |
+
),
|
110 |
+
)
|
111 |
+
train_parser.add_argument(
|
112 |
+
"--new-weights",
|
113 |
+
action="store_true",
|
114 |
+
help="Optional flag to create new TensorFlow weights, even if they already exist.",
|
115 |
+
)
|
116 |
+
train_parser.add_argument(
|
117 |
+
"--no-pr", action="store_true", help="Optional flag to NOT open a PR with converted weights."
|
118 |
+
)
|
119 |
+
train_parser.add_argument(
|
120 |
+
"--push",
|
121 |
+
action="store_true",
|
122 |
+
help="Optional flag to push the weights directly to `main` (requires permissions)",
|
123 |
+
)
|
124 |
+
train_parser.add_argument(
|
125 |
+
"--extra-commit-description",
|
126 |
+
type=str,
|
127 |
+
default="",
|
128 |
+
help="Optional additional commit description to use when opening a PR (e.g. to tag the owner).",
|
129 |
+
)
|
130 |
+
train_parser.add_argument(
|
131 |
+
"--override-model-class",
|
132 |
+
type=str,
|
133 |
+
default=None,
|
134 |
+
help="If you think you know better than the auto-detector, you can specify the model class here. "
|
135 |
+
"Can be either an AutoModel class or a specific model class like BertForSequenceClassification.",
|
136 |
+
)
|
137 |
+
train_parser.set_defaults(func=convert_command_factory)
|
138 |
+
|
139 |
+
@staticmethod
|
140 |
+
def find_pt_tf_differences(pt_outputs, tf_outputs):
|
141 |
+
"""
|
142 |
+
Compares the TensorFlow and PyTorch outputs, returning a dictionary with all tensor differences.
|
143 |
+
"""
|
144 |
+
# 1. All output attributes must be the same
|
145 |
+
pt_out_attrs = set(pt_outputs.keys())
|
146 |
+
tf_out_attrs = set(tf_outputs.keys())
|
147 |
+
if pt_out_attrs != tf_out_attrs:
|
148 |
+
raise ValueError(
|
149 |
+
f"The model outputs have different attributes, aborting. (Pytorch: {pt_out_attrs}, TensorFlow:"
|
150 |
+
f" {tf_out_attrs})"
|
151 |
+
)
|
152 |
+
|
153 |
+
# 2. For each output attribute, computes the difference
|
154 |
+
def _find_pt_tf_differences(pt_out, tf_out, differences, attr_name=""):
|
155 |
+
# If the current attribute is a tensor, it is a leaf and we make the comparison. Otherwise, we will dig in
|
156 |
+
# recursivelly, keeping the name of the attribute.
|
157 |
+
if isinstance(pt_out, torch.Tensor):
|
158 |
+
tensor_difference = np.max(np.abs(pt_out.numpy() - tf_out.numpy()))
|
159 |
+
differences[attr_name] = tensor_difference
|
160 |
+
else:
|
161 |
+
root_name = attr_name
|
162 |
+
for i, pt_item in enumerate(pt_out):
|
163 |
+
# If it is a named attribute, we keep the name. Otherwise, just its index.
|
164 |
+
if isinstance(pt_item, str):
|
165 |
+
branch_name = root_name + pt_item
|
166 |
+
tf_item = tf_out[pt_item]
|
167 |
+
pt_item = pt_out[pt_item]
|
168 |
+
else:
|
169 |
+
branch_name = root_name + f"[{i}]"
|
170 |
+
tf_item = tf_out[i]
|
171 |
+
differences = _find_pt_tf_differences(pt_item, tf_item, differences, branch_name)
|
172 |
+
|
173 |
+
return differences
|
174 |
+
|
175 |
+
return _find_pt_tf_differences(pt_outputs, tf_outputs, {})
|
176 |
+
|
177 |
+
def __init__(
|
178 |
+
self,
|
179 |
+
model_name: str,
|
180 |
+
local_dir: str,
|
181 |
+
max_error: float,
|
182 |
+
new_weights: bool,
|
183 |
+
no_pr: bool,
|
184 |
+
push: bool,
|
185 |
+
extra_commit_description: str,
|
186 |
+
override_model_class: str,
|
187 |
+
*args,
|
188 |
+
):
|
189 |
+
self._logger = logging.get_logger("transformers-cli/pt_to_tf")
|
190 |
+
self._model_name = model_name
|
191 |
+
self._local_dir = local_dir if local_dir else os.path.join("/tmp", model_name)
|
192 |
+
self._max_error = max_error
|
193 |
+
self._new_weights = new_weights
|
194 |
+
self._no_pr = no_pr
|
195 |
+
self._push = push
|
196 |
+
self._extra_commit_description = extra_commit_description
|
197 |
+
self._override_model_class = override_model_class
|
198 |
+
|
199 |
+
def get_inputs(self, pt_model, tf_dummy_inputs, config):
|
200 |
+
"""
|
201 |
+
Returns the right inputs for the model, based on its signature.
|
202 |
+
"""
|
203 |
+
|
204 |
+
def _get_audio_input():
|
205 |
+
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
206 |
+
speech_samples = ds.sort("id").select(range(2))[:2]["audio"]
|
207 |
+
raw_samples = [x["array"] for x in speech_samples]
|
208 |
+
return raw_samples
|
209 |
+
|
210 |
+
model_config_class = type(pt_model.config)
|
211 |
+
if model_config_class in PROCESSOR_MAPPING:
|
212 |
+
processor = AutoProcessor.from_pretrained(self._local_dir)
|
213 |
+
if model_config_class in TOKENIZER_MAPPING and processor.tokenizer.pad_token is None:
|
214 |
+
processor.tokenizer.pad_token = processor.tokenizer.eos_token
|
215 |
+
elif model_config_class in IMAGE_PROCESSOR_MAPPING:
|
216 |
+
processor = AutoImageProcessor.from_pretrained(self._local_dir)
|
217 |
+
elif model_config_class in FEATURE_EXTRACTOR_MAPPING:
|
218 |
+
processor = AutoFeatureExtractor.from_pretrained(self._local_dir)
|
219 |
+
elif model_config_class in TOKENIZER_MAPPING:
|
220 |
+
processor = AutoTokenizer.from_pretrained(self._local_dir)
|
221 |
+
if processor.pad_token is None:
|
222 |
+
processor.pad_token = processor.eos_token
|
223 |
+
else:
|
224 |
+
raise ValueError(f"Unknown data processing type (model config type: {model_config_class})")
|
225 |
+
|
226 |
+
model_forward_signature = set(inspect.signature(pt_model.forward).parameters.keys())
|
227 |
+
processor_inputs = {}
|
228 |
+
if "input_ids" in model_forward_signature:
|
229 |
+
processor_inputs.update(
|
230 |
+
{
|
231 |
+
"text": ["Hi there!", "I am a batch with more than one row and different input lengths."],
|
232 |
+
"padding": True,
|
233 |
+
"truncation": True,
|
234 |
+
}
|
235 |
+
)
|
236 |
+
if "pixel_values" in model_forward_signature:
|
237 |
+
sample_images = load_dataset("cifar10", "plain_text", split="test")[:2]["img"]
|
238 |
+
processor_inputs.update({"images": sample_images})
|
239 |
+
if "input_features" in model_forward_signature:
|
240 |
+
feature_extractor_signature = inspect.signature(processor.feature_extractor).parameters
|
241 |
+
# Pad to the largest input length by default but take feature extractor default
|
242 |
+
# padding value if it exists e.g. "max_length" and is not False or None
|
243 |
+
if "padding" in feature_extractor_signature:
|
244 |
+
default_strategy = feature_extractor_signature["padding"].default
|
245 |
+
if default_strategy is not False and default_strategy is not None:
|
246 |
+
padding_strategy = default_strategy
|
247 |
+
else:
|
248 |
+
padding_strategy = True
|
249 |
+
else:
|
250 |
+
padding_strategy = True
|
251 |
+
processor_inputs.update({"audio": _get_audio_input(), "padding": padding_strategy})
|
252 |
+
if "input_values" in model_forward_signature: # Wav2Vec2 audio input
|
253 |
+
processor_inputs.update({"audio": _get_audio_input(), "padding": True})
|
254 |
+
pt_input = processor(**processor_inputs, return_tensors="pt")
|
255 |
+
tf_input = processor(**processor_inputs, return_tensors="tf")
|
256 |
+
|
257 |
+
# Extra input requirements, in addition to the input modality
|
258 |
+
if (
|
259 |
+
config.is_encoder_decoder
|
260 |
+
or (hasattr(pt_model, "encoder") and hasattr(pt_model, "decoder"))
|
261 |
+
or "decoder_input_ids" in tf_dummy_inputs
|
262 |
+
):
|
263 |
+
decoder_input_ids = np.asarray([[1], [1]], dtype=int) * (pt_model.config.decoder_start_token_id or 0)
|
264 |
+
pt_input.update({"decoder_input_ids": torch.tensor(decoder_input_ids)})
|
265 |
+
tf_input.update({"decoder_input_ids": tf.convert_to_tensor(decoder_input_ids)})
|
266 |
+
|
267 |
+
return pt_input, tf_input
|
268 |
+
|
269 |
+
def run(self):
|
270 |
+
# hub version 0.9.0 introduced the possibility of programmatically opening PRs with normal write tokens.
|
271 |
+
if version.parse(huggingface_hub.__version__) < version.parse("0.9.0"):
|
272 |
+
raise ImportError(
|
273 |
+
"The huggingface_hub version must be >= 0.9.0 to use this command. Please update your huggingface_hub"
|
274 |
+
" installation."
|
275 |
+
)
|
276 |
+
else:
|
277 |
+
from huggingface_hub import Repository, create_commit
|
278 |
+
from huggingface_hub._commit_api import CommitOperationAdd
|
279 |
+
|
280 |
+
# Fetch remote data
|
281 |
+
repo = Repository(local_dir=self._local_dir, clone_from=self._model_name)
|
282 |
+
|
283 |
+
# Load config and get the appropriate architecture -- the latter is needed to convert the head's weights
|
284 |
+
config = AutoConfig.from_pretrained(self._local_dir)
|
285 |
+
architectures = config.architectures
|
286 |
+
if self._override_model_class is not None:
|
287 |
+
if self._override_model_class.startswith("TF"):
|
288 |
+
architectures = [self._override_model_class[2:]]
|
289 |
+
else:
|
290 |
+
architectures = [self._override_model_class]
|
291 |
+
try:
|
292 |
+
pt_class = getattr(import_module("transformers"), architectures[0])
|
293 |
+
except AttributeError:
|
294 |
+
raise ValueError(f"Model class {self._override_model_class} not found in transformers.")
|
295 |
+
try:
|
296 |
+
tf_class = getattr(import_module("transformers"), "TF" + architectures[0])
|
297 |
+
except AttributeError:
|
298 |
+
raise ValueError(f"TF model class TF{self._override_model_class} not found in transformers.")
|
299 |
+
elif architectures is None: # No architecture defined -- use auto classes
|
300 |
+
pt_class = getattr(import_module("transformers"), "AutoModel")
|
301 |
+
tf_class = getattr(import_module("transformers"), "TFAutoModel")
|
302 |
+
self._logger.warning("No detected architecture, using AutoModel/TFAutoModel")
|
303 |
+
else: # Architecture defined -- use it
|
304 |
+
if len(architectures) > 1:
|
305 |
+
raise ValueError(f"More than one architecture was found, aborting. (architectures = {architectures})")
|
306 |
+
self._logger.warning(f"Detected architecture: {architectures[0]}")
|
307 |
+
pt_class = getattr(import_module("transformers"), architectures[0])
|
308 |
+
try:
|
309 |
+
tf_class = getattr(import_module("transformers"), "TF" + architectures[0])
|
310 |
+
except AttributeError:
|
311 |
+
raise AttributeError(f"The TensorFlow equivalent of {architectures[0]} doesn't exist in transformers.")
|
312 |
+
|
313 |
+
# Check the TF dummy inputs to see what keys we need in the forward pass
|
314 |
+
tf_from_pt_model = tf_class.from_config(config)
|
315 |
+
tf_dummy_inputs = tf_from_pt_model.dummy_inputs
|
316 |
+
|
317 |
+
del tf_from_pt_model # Try to keep only one model in memory at a time
|
318 |
+
|
319 |
+
# Load the model and get some basic inputs
|
320 |
+
pt_model = pt_class.from_pretrained(self._local_dir)
|
321 |
+
pt_model.eval()
|
322 |
+
|
323 |
+
pt_input, tf_input = self.get_inputs(pt_model, tf_dummy_inputs, config)
|
324 |
+
|
325 |
+
with torch.no_grad():
|
326 |
+
pt_outputs = pt_model(**pt_input, output_hidden_states=True)
|
327 |
+
del pt_model # will no longer be used, and may have a large memory footprint
|
328 |
+
|
329 |
+
tf_from_pt_model = tf_class.from_pretrained(self._local_dir, from_pt=True)
|
330 |
+
tf_from_pt_outputs = tf_from_pt_model(**tf_input, output_hidden_states=True, training=False)
|
331 |
+
|
332 |
+
# Confirms that cross loading PT weights into TF worked.
|
333 |
+
crossload_differences = self.find_pt_tf_differences(pt_outputs, tf_from_pt_outputs)
|
334 |
+
output_differences = {k: v for k, v in crossload_differences.items() if "hidden" not in k}
|
335 |
+
hidden_differences = {k: v for k, v in crossload_differences.items() if "hidden" in k}
|
336 |
+
if len(output_differences) == 0 and architectures is not None:
|
337 |
+
raise ValueError(
|
338 |
+
f"Something went wrong -- the config file has architectures ({architectures}), but no model head"
|
339 |
+
" output was found. All outputs start with 'hidden'"
|
340 |
+
)
|
341 |
+
max_crossload_output_diff = max(output_differences.values()) if output_differences else 0.0
|
342 |
+
max_crossload_hidden_diff = max(hidden_differences.values())
|
343 |
+
if max_crossload_output_diff > self._max_error or max_crossload_hidden_diff > self._max_error:
|
344 |
+
raise ValueError(
|
345 |
+
"The cross-loaded TensorFlow model has different outputs, something went wrong!\n"
|
346 |
+
+ f"\nList of maximum output differences above the threshold ({self._max_error}):\n"
|
347 |
+
+ "\n".join([f"{k}: {v:.3e}" for k, v in output_differences.items() if v > self._max_error])
|
348 |
+
+ f"\n\nList of maximum hidden layer differences above the threshold ({self._max_error}):\n"
|
349 |
+
+ "\n".join([f"{k}: {v:.3e}" for k, v in hidden_differences.items() if v > self._max_error])
|
350 |
+
)
|
351 |
+
|
352 |
+
# Save the weights in a TF format (if needed) and confirms that the results are still good
|
353 |
+
tf_weights_path = os.path.join(self._local_dir, TF2_WEIGHTS_NAME)
|
354 |
+
tf_weights_index_path = os.path.join(self._local_dir, TF2_WEIGHTS_INDEX_NAME)
|
355 |
+
if (not os.path.exists(tf_weights_path) and not os.path.exists(tf_weights_index_path)) or self._new_weights:
|
356 |
+
tf_from_pt_model.save_pretrained(self._local_dir)
|
357 |
+
del tf_from_pt_model # will no longer be used, and may have a large memory footprint
|
358 |
+
|
359 |
+
tf_model = tf_class.from_pretrained(self._local_dir)
|
360 |
+
tf_outputs = tf_model(**tf_input, output_hidden_states=True)
|
361 |
+
|
362 |
+
conversion_differences = self.find_pt_tf_differences(pt_outputs, tf_outputs)
|
363 |
+
output_differences = {k: v for k, v in conversion_differences.items() if "hidden" not in k}
|
364 |
+
hidden_differences = {k: v for k, v in conversion_differences.items() if "hidden" in k}
|
365 |
+
if len(output_differences) == 0 and architectures is not None:
|
366 |
+
raise ValueError(
|
367 |
+
f"Something went wrong -- the config file has architectures ({architectures}), but no model head"
|
368 |
+
" output was found. All outputs start with 'hidden'"
|
369 |
+
)
|
370 |
+
max_conversion_output_diff = max(output_differences.values()) if output_differences else 0.0
|
371 |
+
max_conversion_hidden_diff = max(hidden_differences.values())
|
372 |
+
if max_conversion_output_diff > self._max_error or max_conversion_hidden_diff > self._max_error:
|
373 |
+
raise ValueError(
|
374 |
+
"The converted TensorFlow model has different outputs, something went wrong!\n"
|
375 |
+
+ f"\nList of maximum output differences above the threshold ({self._max_error}):\n"
|
376 |
+
+ "\n".join([f"{k}: {v:.3e}" for k, v in output_differences.items() if v > self._max_error])
|
377 |
+
+ f"\n\nList of maximum hidden layer differences above the threshold ({self._max_error}):\n"
|
378 |
+
+ "\n".join([f"{k}: {v:.3e}" for k, v in hidden_differences.items() if v > self._max_error])
|
379 |
+
)
|
380 |
+
|
381 |
+
commit_message = "Update TF weights" if self._new_weights else "Add TF weights"
|
382 |
+
if self._push:
|
383 |
+
repo.git_add(auto_lfs_track=True)
|
384 |
+
repo.git_commit(commit_message)
|
385 |
+
repo.git_push(blocking=True) # this prints a progress bar with the upload
|
386 |
+
self._logger.warning(f"TF weights pushed into {self._model_name}")
|
387 |
+
elif not self._no_pr:
|
388 |
+
self._logger.warning("Uploading the weights into a new PR...")
|
389 |
+
commit_descrition = (
|
390 |
+
"Model converted by the [`transformers`' `pt_to_tf`"
|
391 |
+
" CLI](https://github.com/huggingface/transformers/blob/main/src/transformers/commands/pt_to_tf.py). "
|
392 |
+
"All converted model outputs and hidden layers were validated against its PyTorch counterpart.\n\n"
|
393 |
+
f"Maximum crossload output difference={max_crossload_output_diff:.3e}; "
|
394 |
+
f"Maximum crossload hidden layer difference={max_crossload_hidden_diff:.3e};\n"
|
395 |
+
f"Maximum conversion output difference={max_conversion_output_diff:.3e}; "
|
396 |
+
f"Maximum conversion hidden layer difference={max_conversion_hidden_diff:.3e};\n"
|
397 |
+
)
|
398 |
+
if self._max_error > MAX_ERROR:
|
399 |
+
commit_descrition += (
|
400 |
+
f"\n\nCAUTION: The maximum admissible error was manually increased to {self._max_error}!"
|
401 |
+
)
|
402 |
+
if self._extra_commit_description:
|
403 |
+
commit_descrition += "\n\n" + self._extra_commit_description
|
404 |
+
|
405 |
+
# sharded model -> adds all related files (index and .h5 shards)
|
406 |
+
if os.path.exists(tf_weights_index_path):
|
407 |
+
operations = [
|
408 |
+
CommitOperationAdd(path_in_repo=TF2_WEIGHTS_INDEX_NAME, path_or_fileobj=tf_weights_index_path)
|
409 |
+
]
|
410 |
+
for shard_path in tf.io.gfile.glob(self._local_dir + "/tf_model-*.h5"):
|
411 |
+
operations += [
|
412 |
+
CommitOperationAdd(path_in_repo=os.path.basename(shard_path), path_or_fileobj=shard_path)
|
413 |
+
]
|
414 |
+
else:
|
415 |
+
operations = [CommitOperationAdd(path_in_repo=TF2_WEIGHTS_NAME, path_or_fileobj=tf_weights_path)]
|
416 |
+
|
417 |
+
hub_pr_url = create_commit(
|
418 |
+
repo_id=self._model_name,
|
419 |
+
operations=operations,
|
420 |
+
commit_message=commit_message,
|
421 |
+
commit_description=commit_descrition,
|
422 |
+
repo_type="model",
|
423 |
+
create_pr=True,
|
424 |
+
).pr_url
|
425 |
+
self._logger.warning(f"PR open in {hub_pr_url}")
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/run.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from argparse import ArgumentParser
|
16 |
+
|
17 |
+
from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline
|
18 |
+
from ..utils import logging
|
19 |
+
from . import BaseTransformersCLICommand
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
23 |
+
|
24 |
+
|
25 |
+
def try_infer_format_from_ext(path: str):
|
26 |
+
if not path:
|
27 |
+
return "pipe"
|
28 |
+
|
29 |
+
for ext in PipelineDataFormat.SUPPORTED_FORMATS:
|
30 |
+
if path.endswith(ext):
|
31 |
+
return ext
|
32 |
+
|
33 |
+
raise Exception(
|
34 |
+
f"Unable to determine file format from file extension {path}. "
|
35 |
+
f"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}"
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def run_command_factory(args):
|
40 |
+
nlp = pipeline(
|
41 |
+
task=args.task,
|
42 |
+
model=args.model if args.model else None,
|
43 |
+
config=args.config,
|
44 |
+
tokenizer=args.tokenizer,
|
45 |
+
device=args.device,
|
46 |
+
)
|
47 |
+
format = try_infer_format_from_ext(args.input) if args.format == "infer" else args.format
|
48 |
+
reader = PipelineDataFormat.from_str(
|
49 |
+
format=format,
|
50 |
+
output_path=args.output,
|
51 |
+
input_path=args.input,
|
52 |
+
column=args.column if args.column else nlp.default_input_names,
|
53 |
+
overwrite=args.overwrite,
|
54 |
+
)
|
55 |
+
return RunCommand(nlp, reader)
|
56 |
+
|
57 |
+
|
58 |
+
class RunCommand(BaseTransformersCLICommand):
|
59 |
+
def __init__(self, nlp: Pipeline, reader: PipelineDataFormat):
|
60 |
+
self._nlp = nlp
|
61 |
+
self._reader = reader
|
62 |
+
|
63 |
+
@staticmethod
|
64 |
+
def register_subcommand(parser: ArgumentParser):
|
65 |
+
run_parser = parser.add_parser("run", help="Run a pipeline through the CLI")
|
66 |
+
run_parser.add_argument("--task", choices=get_supported_tasks(), help="Task to run")
|
67 |
+
run_parser.add_argument("--input", type=str, help="Path to the file to use for inference")
|
68 |
+
run_parser.add_argument("--output", type=str, help="Path to the file that will be used post to write results.")
|
69 |
+
run_parser.add_argument("--model", type=str, help="Name or path to the model to instantiate.")
|
70 |
+
run_parser.add_argument("--config", type=str, help="Name or path to the model's config to instantiate.")
|
71 |
+
run_parser.add_argument(
|
72 |
+
"--tokenizer", type=str, help="Name of the tokenizer to use. (default: same as the model name)"
|
73 |
+
)
|
74 |
+
run_parser.add_argument(
|
75 |
+
"--column",
|
76 |
+
type=str,
|
77 |
+
help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)",
|
78 |
+
)
|
79 |
+
run_parser.add_argument(
|
80 |
+
"--format",
|
81 |
+
type=str,
|
82 |
+
default="infer",
|
83 |
+
choices=PipelineDataFormat.SUPPORTED_FORMATS,
|
84 |
+
help="Input format to read from",
|
85 |
+
)
|
86 |
+
run_parser.add_argument(
|
87 |
+
"--device",
|
88 |
+
type=int,
|
89 |
+
default=-1,
|
90 |
+
help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)",
|
91 |
+
)
|
92 |
+
run_parser.add_argument("--overwrite", action="store_true", help="Allow overwriting the output file.")
|
93 |
+
run_parser.set_defaults(func=run_command_factory)
|
94 |
+
|
95 |
+
def run(self):
|
96 |
+
nlp, outputs = self._nlp, []
|
97 |
+
|
98 |
+
for entry in self._reader:
|
99 |
+
output = nlp(**entry) if self._reader.is_multi_columns else nlp(entry)
|
100 |
+
if isinstance(output, dict):
|
101 |
+
outputs.append(output)
|
102 |
+
else:
|
103 |
+
outputs += output
|
104 |
+
|
105 |
+
# Saving data
|
106 |
+
if self._nlp.binary_output:
|
107 |
+
binary_path = self._reader.save_binary(outputs)
|
108 |
+
logger.warning(f"Current pipeline requires output to be in binary format, saving at {binary_path}")
|
109 |
+
else:
|
110 |
+
self._reader.save(outputs)
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/serving.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from argparse import ArgumentParser, Namespace
|
16 |
+
from typing import Any, List, Optional
|
17 |
+
|
18 |
+
from ..pipelines import Pipeline, get_supported_tasks, pipeline
|
19 |
+
from ..utils import logging
|
20 |
+
from . import BaseTransformersCLICommand
|
21 |
+
|
22 |
+
|
23 |
+
try:
|
24 |
+
from fastapi import Body, FastAPI, HTTPException
|
25 |
+
from fastapi.routing import APIRoute
|
26 |
+
from pydantic import BaseModel
|
27 |
+
from starlette.responses import JSONResponse
|
28 |
+
from uvicorn import run
|
29 |
+
|
30 |
+
_serve_dependencies_installed = True
|
31 |
+
except (ImportError, AttributeError):
|
32 |
+
BaseModel = object
|
33 |
+
|
34 |
+
def Body(*x, **y):
|
35 |
+
pass
|
36 |
+
|
37 |
+
_serve_dependencies_installed = False
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger("transformers-cli/serving")
|
41 |
+
|
42 |
+
|
43 |
+
def serve_command_factory(args: Namespace):
|
44 |
+
"""
|
45 |
+
Factory function used to instantiate serving server from provided command line arguments.
|
46 |
+
|
47 |
+
Returns: ServeCommand
|
48 |
+
"""
|
49 |
+
nlp = pipeline(
|
50 |
+
task=args.task,
|
51 |
+
model=args.model if args.model else None,
|
52 |
+
config=args.config,
|
53 |
+
tokenizer=args.tokenizer,
|
54 |
+
device=args.device,
|
55 |
+
)
|
56 |
+
return ServeCommand(nlp, args.host, args.port, args.workers)
|
57 |
+
|
58 |
+
|
59 |
+
class ServeModelInfoResult(BaseModel):
|
60 |
+
"""
|
61 |
+
Expose model information
|
62 |
+
"""
|
63 |
+
|
64 |
+
infos: dict
|
65 |
+
|
66 |
+
|
67 |
+
class ServeTokenizeResult(BaseModel):
|
68 |
+
"""
|
69 |
+
Tokenize result model
|
70 |
+
"""
|
71 |
+
|
72 |
+
tokens: List[str]
|
73 |
+
tokens_ids: Optional[List[int]]
|
74 |
+
|
75 |
+
|
76 |
+
class ServeDeTokenizeResult(BaseModel):
|
77 |
+
"""
|
78 |
+
DeTokenize result model
|
79 |
+
"""
|
80 |
+
|
81 |
+
text: str
|
82 |
+
|
83 |
+
|
84 |
+
class ServeForwardResult(BaseModel):
|
85 |
+
"""
|
86 |
+
Forward result model
|
87 |
+
"""
|
88 |
+
|
89 |
+
output: Any
|
90 |
+
|
91 |
+
|
92 |
+
class ServeCommand(BaseTransformersCLICommand):
|
93 |
+
@staticmethod
|
94 |
+
def register_subcommand(parser: ArgumentParser):
|
95 |
+
"""
|
96 |
+
Register this command to argparse so it's available for the transformer-cli
|
97 |
+
|
98 |
+
Args:
|
99 |
+
parser: Root parser to register command-specific arguments
|
100 |
+
"""
|
101 |
+
serve_parser = parser.add_parser(
|
102 |
+
"serve", help="CLI tool to run inference requests through REST and GraphQL endpoints."
|
103 |
+
)
|
104 |
+
serve_parser.add_argument(
|
105 |
+
"--task",
|
106 |
+
type=str,
|
107 |
+
choices=get_supported_tasks(),
|
108 |
+
help="The task to run the pipeline on",
|
109 |
+
)
|
110 |
+
serve_parser.add_argument("--host", type=str, default="localhost", help="Interface the server will listen on.")
|
111 |
+
serve_parser.add_argument("--port", type=int, default=8888, help="Port the serving will listen to.")
|
112 |
+
serve_parser.add_argument("--workers", type=int, default=1, help="Number of http workers")
|
113 |
+
serve_parser.add_argument("--model", type=str, help="Model's name or path to stored model.")
|
114 |
+
serve_parser.add_argument("--config", type=str, help="Model's config name or path to stored model.")
|
115 |
+
serve_parser.add_argument("--tokenizer", type=str, help="Tokenizer name to use.")
|
116 |
+
serve_parser.add_argument(
|
117 |
+
"--device",
|
118 |
+
type=int,
|
119 |
+
default=-1,
|
120 |
+
help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)",
|
121 |
+
)
|
122 |
+
serve_parser.set_defaults(func=serve_command_factory)
|
123 |
+
|
124 |
+
def __init__(self, pipeline: Pipeline, host: str, port: int, workers: int):
|
125 |
+
self._pipeline = pipeline
|
126 |
+
|
127 |
+
self.host = host
|
128 |
+
self.port = port
|
129 |
+
self.workers = workers
|
130 |
+
|
131 |
+
if not _serve_dependencies_installed:
|
132 |
+
raise RuntimeError(
|
133 |
+
"Using serve command requires FastAPI and uvicorn. "
|
134 |
+
'Please install transformers with [serving]: pip install "transformers[serving]". '
|
135 |
+
"Or install FastAPI and uvicorn separately."
|
136 |
+
)
|
137 |
+
else:
|
138 |
+
logger.info(f"Serving model over {host}:{port}")
|
139 |
+
self._app = FastAPI(
|
140 |
+
routes=[
|
141 |
+
APIRoute(
|
142 |
+
"/",
|
143 |
+
self.model_info,
|
144 |
+
response_model=ServeModelInfoResult,
|
145 |
+
response_class=JSONResponse,
|
146 |
+
methods=["GET"],
|
147 |
+
),
|
148 |
+
APIRoute(
|
149 |
+
"/tokenize",
|
150 |
+
self.tokenize,
|
151 |
+
response_model=ServeTokenizeResult,
|
152 |
+
response_class=JSONResponse,
|
153 |
+
methods=["POST"],
|
154 |
+
),
|
155 |
+
APIRoute(
|
156 |
+
"/detokenize",
|
157 |
+
self.detokenize,
|
158 |
+
response_model=ServeDeTokenizeResult,
|
159 |
+
response_class=JSONResponse,
|
160 |
+
methods=["POST"],
|
161 |
+
),
|
162 |
+
APIRoute(
|
163 |
+
"/forward",
|
164 |
+
self.forward,
|
165 |
+
response_model=ServeForwardResult,
|
166 |
+
response_class=JSONResponse,
|
167 |
+
methods=["POST"],
|
168 |
+
),
|
169 |
+
],
|
170 |
+
timeout=600,
|
171 |
+
)
|
172 |
+
|
173 |
+
def run(self):
|
174 |
+
run(self._app, host=self.host, port=self.port, workers=self.workers)
|
175 |
+
|
176 |
+
def model_info(self):
|
177 |
+
return ServeModelInfoResult(infos=vars(self._pipeline.model.config))
|
178 |
+
|
179 |
+
def tokenize(self, text_input: str = Body(None, embed=True), return_ids: bool = Body(False, embed=True)):
|
180 |
+
"""
|
181 |
+
Tokenize the provided input and eventually returns corresponding tokens id: - **text_input**: String to
|
182 |
+
tokenize - **return_ids**: Boolean flags indicating if the tokens have to be converted to their integer
|
183 |
+
mapping.
|
184 |
+
"""
|
185 |
+
try:
|
186 |
+
tokens_txt = self._pipeline.tokenizer.tokenize(text_input)
|
187 |
+
|
188 |
+
if return_ids:
|
189 |
+
tokens_ids = self._pipeline.tokenizer.convert_tokens_to_ids(tokens_txt)
|
190 |
+
return ServeTokenizeResult(tokens=tokens_txt, tokens_ids=tokens_ids)
|
191 |
+
else:
|
192 |
+
return ServeTokenizeResult(tokens=tokens_txt)
|
193 |
+
|
194 |
+
except Exception as e:
|
195 |
+
raise HTTPException(status_code=500, detail={"model": "", "error": str(e)})
|
196 |
+
|
197 |
+
def detokenize(
|
198 |
+
self,
|
199 |
+
tokens_ids: List[int] = Body(None, embed=True),
|
200 |
+
skip_special_tokens: bool = Body(False, embed=True),
|
201 |
+
cleanup_tokenization_spaces: bool = Body(True, embed=True),
|
202 |
+
):
|
203 |
+
"""
|
204 |
+
Detokenize the provided tokens ids to readable text: - **tokens_ids**: List of tokens ids -
|
205 |
+
**skip_special_tokens**: Flag indicating to not try to decode special tokens - **cleanup_tokenization_spaces**:
|
206 |
+
Flag indicating to remove all leading/trailing spaces and intermediate ones.
|
207 |
+
"""
|
208 |
+
try:
|
209 |
+
decoded_str = self._pipeline.tokenizer.decode(tokens_ids, skip_special_tokens, cleanup_tokenization_spaces)
|
210 |
+
return ServeDeTokenizeResult(model="", text=decoded_str)
|
211 |
+
except Exception as e:
|
212 |
+
raise HTTPException(status_code=500, detail={"model": "", "error": str(e)})
|
213 |
+
|
214 |
+
async def forward(self, inputs=Body(None, embed=True)):
|
215 |
+
"""
|
216 |
+
**inputs**: **attention_mask**: **tokens_type_ids**:
|
217 |
+
"""
|
218 |
+
|
219 |
+
# Check we don't have empty string
|
220 |
+
if len(inputs) == 0:
|
221 |
+
return ServeForwardResult(output=[], attention=[])
|
222 |
+
|
223 |
+
try:
|
224 |
+
# Forward through the model
|
225 |
+
output = self._pipeline(inputs)
|
226 |
+
return ServeForwardResult(output=output)
|
227 |
+
except Exception as e:
|
228 |
+
raise HTTPException(500, {"error": str(e)})
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/train.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
from argparse import ArgumentParser, Namespace
|
17 |
+
|
18 |
+
from ..data import SingleSentenceClassificationProcessor as Processor
|
19 |
+
from ..pipelines import TextClassificationPipeline
|
20 |
+
from ..utils import is_tf_available, is_torch_available, logging
|
21 |
+
from . import BaseTransformersCLICommand
|
22 |
+
|
23 |
+
|
24 |
+
if not is_tf_available() and not is_torch_available():
|
25 |
+
raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training")
|
26 |
+
|
27 |
+
# TF training parameters
|
28 |
+
USE_XLA = False
|
29 |
+
USE_AMP = False
|
30 |
+
|
31 |
+
|
32 |
+
def train_command_factory(args: Namespace):
|
33 |
+
"""
|
34 |
+
Factory function used to instantiate training command from provided command line arguments.
|
35 |
+
|
36 |
+
Returns: TrainCommand
|
37 |
+
"""
|
38 |
+
return TrainCommand(args)
|
39 |
+
|
40 |
+
|
41 |
+
class TrainCommand(BaseTransformersCLICommand):
|
42 |
+
@staticmethod
|
43 |
+
def register_subcommand(parser: ArgumentParser):
|
44 |
+
"""
|
45 |
+
Register this command to argparse so it's available for the transformer-cli
|
46 |
+
|
47 |
+
Args:
|
48 |
+
parser: Root parser to register command-specific arguments
|
49 |
+
"""
|
50 |
+
train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.")
|
51 |
+
|
52 |
+
train_parser.add_argument(
|
53 |
+
"--train_data",
|
54 |
+
type=str,
|
55 |
+
required=True,
|
56 |
+
help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.",
|
57 |
+
)
|
58 |
+
train_parser.add_argument(
|
59 |
+
"--column_label", type=int, default=0, help="Column of the dataset csv file with example labels."
|
60 |
+
)
|
61 |
+
train_parser.add_argument(
|
62 |
+
"--column_text", type=int, default=1, help="Column of the dataset csv file with example texts."
|
63 |
+
)
|
64 |
+
train_parser.add_argument(
|
65 |
+
"--column_id", type=int, default=2, help="Column of the dataset csv file with example ids."
|
66 |
+
)
|
67 |
+
train_parser.add_argument(
|
68 |
+
"--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)."
|
69 |
+
)
|
70 |
+
|
71 |
+
train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.")
|
72 |
+
train_parser.add_argument(
|
73 |
+
"--validation_split",
|
74 |
+
type=float,
|
75 |
+
default=0.1,
|
76 |
+
help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.",
|
77 |
+
)
|
78 |
+
|
79 |
+
train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.")
|
80 |
+
|
81 |
+
train_parser.add_argument(
|
82 |
+
"--task", type=str, default="text_classification", help="Task to train the model on."
|
83 |
+
)
|
84 |
+
train_parser.add_argument(
|
85 |
+
"--model", type=str, default="google-bert/bert-base-uncased", help="Model's name or path to stored model."
|
86 |
+
)
|
87 |
+
train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.")
|
88 |
+
train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.")
|
89 |
+
train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.")
|
90 |
+
train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.")
|
91 |
+
train_parser.set_defaults(func=train_command_factory)
|
92 |
+
|
93 |
+
def __init__(self, args: Namespace):
|
94 |
+
self.logger = logging.get_logger("transformers-cli/training")
|
95 |
+
|
96 |
+
self.framework = "tf" if is_tf_available() else "torch"
|
97 |
+
|
98 |
+
os.makedirs(args.output, exist_ok=True)
|
99 |
+
self.output = args.output
|
100 |
+
|
101 |
+
self.column_label = args.column_label
|
102 |
+
self.column_text = args.column_text
|
103 |
+
self.column_id = args.column_id
|
104 |
+
|
105 |
+
self.logger.info(f"Loading {args.task} pipeline for {args.model}")
|
106 |
+
if args.task == "text_classification":
|
107 |
+
self.pipeline = TextClassificationPipeline.from_pretrained(args.model)
|
108 |
+
elif args.task == "token_classification":
|
109 |
+
raise NotImplementedError
|
110 |
+
elif args.task == "question_answering":
|
111 |
+
raise NotImplementedError
|
112 |
+
|
113 |
+
self.logger.info(f"Loading dataset from {args.train_data}")
|
114 |
+
self.train_dataset = Processor.create_from_csv(
|
115 |
+
args.train_data,
|
116 |
+
column_label=args.column_label,
|
117 |
+
column_text=args.column_text,
|
118 |
+
column_id=args.column_id,
|
119 |
+
skip_first_row=args.skip_first_row,
|
120 |
+
)
|
121 |
+
self.valid_dataset = None
|
122 |
+
if args.validation_data:
|
123 |
+
self.logger.info(f"Loading validation dataset from {args.validation_data}")
|
124 |
+
self.valid_dataset = Processor.create_from_csv(
|
125 |
+
args.validation_data,
|
126 |
+
column_label=args.column_label,
|
127 |
+
column_text=args.column_text,
|
128 |
+
column_id=args.column_id,
|
129 |
+
skip_first_row=args.skip_first_row,
|
130 |
+
)
|
131 |
+
|
132 |
+
self.validation_split = args.validation_split
|
133 |
+
self.train_batch_size = args.train_batch_size
|
134 |
+
self.valid_batch_size = args.valid_batch_size
|
135 |
+
self.learning_rate = args.learning_rate
|
136 |
+
self.adam_epsilon = args.adam_epsilon
|
137 |
+
|
138 |
+
def run(self):
|
139 |
+
if self.framework == "tf":
|
140 |
+
return self.run_tf()
|
141 |
+
return self.run_torch()
|
142 |
+
|
143 |
+
def run_torch(self):
|
144 |
+
raise NotImplementedError
|
145 |
+
|
146 |
+
def run_tf(self):
|
147 |
+
self.pipeline.fit(
|
148 |
+
self.train_dataset,
|
149 |
+
validation_data=self.valid_dataset,
|
150 |
+
validation_split=self.validation_split,
|
151 |
+
learning_rate=self.learning_rate,
|
152 |
+
adam_epsilon=self.adam_epsilon,
|
153 |
+
train_batch_size=self.train_batch_size,
|
154 |
+
valid_batch_size=self.valid_batch_size,
|
155 |
+
)
|
156 |
+
|
157 |
+
# Save trained pipeline
|
158 |
+
self.pipeline.save_pretrained(self.output)
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/transformers_cli.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
from .add_new_model import AddNewModelCommand
|
19 |
+
from .add_new_model_like import AddNewModelLikeCommand
|
20 |
+
from .convert import ConvertCommand
|
21 |
+
from .download import DownloadCommand
|
22 |
+
from .env import EnvironmentCommand
|
23 |
+
from .lfs import LfsCommands
|
24 |
+
from .pt_to_tf import PTtoTFCommand
|
25 |
+
from .run import RunCommand
|
26 |
+
from .serving import ServeCommand
|
27 |
+
from .user import UserCommands
|
28 |
+
|
29 |
+
|
30 |
+
def main():
|
31 |
+
parser = ArgumentParser("Transformers CLI tool", usage="transformers-cli <command> [<args>]")
|
32 |
+
commands_parser = parser.add_subparsers(help="transformers-cli command helpers")
|
33 |
+
|
34 |
+
# Register commands
|
35 |
+
ConvertCommand.register_subcommand(commands_parser)
|
36 |
+
DownloadCommand.register_subcommand(commands_parser)
|
37 |
+
EnvironmentCommand.register_subcommand(commands_parser)
|
38 |
+
RunCommand.register_subcommand(commands_parser)
|
39 |
+
ServeCommand.register_subcommand(commands_parser)
|
40 |
+
UserCommands.register_subcommand(commands_parser)
|
41 |
+
AddNewModelCommand.register_subcommand(commands_parser)
|
42 |
+
AddNewModelLikeCommand.register_subcommand(commands_parser)
|
43 |
+
LfsCommands.register_subcommand(commands_parser)
|
44 |
+
PTtoTFCommand.register_subcommand(commands_parser)
|
45 |
+
|
46 |
+
# Let's go
|
47 |
+
args = parser.parse_args()
|
48 |
+
|
49 |
+
if not hasattr(args, "func"):
|
50 |
+
parser.print_help()
|
51 |
+
exit(1)
|
52 |
+
|
53 |
+
# Run
|
54 |
+
service = args.func(args)
|
55 |
+
service.run()
|
56 |
+
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/transformers/commands/user.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import subprocess
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
from typing import List, Union
|
18 |
+
|
19 |
+
from huggingface_hub.hf_api import HfFolder, create_repo, whoami
|
20 |
+
from requests.exceptions import HTTPError
|
21 |
+
|
22 |
+
from . import BaseTransformersCLICommand
|
23 |
+
|
24 |
+
|
25 |
+
class UserCommands(BaseTransformersCLICommand):
|
26 |
+
@staticmethod
|
27 |
+
def register_subcommand(parser: ArgumentParser):
|
28 |
+
login_parser = parser.add_parser("login", help="Log in using the same credentials as on huggingface.co")
|
29 |
+
login_parser.set_defaults(func=lambda args: LoginCommand(args))
|
30 |
+
whoami_parser = parser.add_parser("whoami", help="Find out which huggingface.co account you are logged in as.")
|
31 |
+
whoami_parser.set_defaults(func=lambda args: WhoamiCommand(args))
|
32 |
+
logout_parser = parser.add_parser("logout", help="Log out")
|
33 |
+
logout_parser.set_defaults(func=lambda args: LogoutCommand(args))
|
34 |
+
|
35 |
+
# new system: git-based repo system
|
36 |
+
repo_parser = parser.add_parser(
|
37 |
+
"repo",
|
38 |
+
help="Deprecated: use `huggingface-cli` instead. Commands to interact with your huggingface.co repos.",
|
39 |
+
)
|
40 |
+
repo_subparsers = repo_parser.add_subparsers(
|
41 |
+
help="Deprecated: use `huggingface-cli` instead. huggingface.co repos related commands"
|
42 |
+
)
|
43 |
+
repo_create_parser = repo_subparsers.add_parser(
|
44 |
+
"create", help="Deprecated: use `huggingface-cli` instead. Create a new repo on huggingface.co"
|
45 |
+
)
|
46 |
+
repo_create_parser.add_argument(
|
47 |
+
"name",
|
48 |
+
type=str,
|
49 |
+
help="Name for your model's repo. Will be namespaced under your username to build the model id.",
|
50 |
+
)
|
51 |
+
repo_create_parser.add_argument("--organization", type=str, help="Optional: organization namespace.")
|
52 |
+
repo_create_parser.add_argument("-y", "--yes", action="store_true", help="Optional: answer Yes to the prompt")
|
53 |
+
repo_create_parser.set_defaults(func=lambda args: RepoCreateCommand(args))
|
54 |
+
|
55 |
+
|
56 |
+
class ANSI:
|
57 |
+
"""
|
58 |
+
Helper for en.wikipedia.org/wiki/ANSI_escape_code
|
59 |
+
"""
|
60 |
+
|
61 |
+
_bold = "\u001b[1m"
|
62 |
+
_red = "\u001b[31m"
|
63 |
+
_gray = "\u001b[90m"
|
64 |
+
_reset = "\u001b[0m"
|
65 |
+
|
66 |
+
@classmethod
|
67 |
+
def bold(cls, s):
|
68 |
+
return f"{cls._bold}{s}{cls._reset}"
|
69 |
+
|
70 |
+
@classmethod
|
71 |
+
def red(cls, s):
|
72 |
+
return f"{cls._bold}{cls._red}{s}{cls._reset}"
|
73 |
+
|
74 |
+
@classmethod
|
75 |
+
def gray(cls, s):
|
76 |
+
return f"{cls._gray}{s}{cls._reset}"
|
77 |
+
|
78 |
+
|
79 |
+
def tabulate(rows: List[List[Union[str, int]]], headers: List[str]) -> str:
|
80 |
+
"""
|
81 |
+
Inspired by:
|
82 |
+
|
83 |
+
- stackoverflow.com/a/8356620/593036
|
84 |
+
- stackoverflow.com/questions/9535954/printing-lists-as-tabular-data
|
85 |
+
"""
|
86 |
+
col_widths = [max(len(str(x)) for x in col) for col in zip(*rows, headers)]
|
87 |
+
row_format = ("{{:{}}} " * len(headers)).format(*col_widths)
|
88 |
+
lines = []
|
89 |
+
lines.append(row_format.format(*headers))
|
90 |
+
lines.append(row_format.format(*["-" * w for w in col_widths]))
|
91 |
+
for row in rows:
|
92 |
+
lines.append(row_format.format(*row))
|
93 |
+
return "\n".join(lines)
|
94 |
+
|
95 |
+
|
96 |
+
class BaseUserCommand:
|
97 |
+
def __init__(self, args):
|
98 |
+
self.args = args
|
99 |
+
|
100 |
+
|
101 |
+
class LoginCommand(BaseUserCommand):
|
102 |
+
def run(self):
|
103 |
+
print(
|
104 |
+
ANSI.red(
|
105 |
+
"ERROR! `huggingface-cli login` uses an outdated login mechanism "
|
106 |
+
"that is not compatible with the Hugging Face Hub backend anymore. "
|
107 |
+
"Please use `huggingface-cli login instead."
|
108 |
+
)
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
class WhoamiCommand(BaseUserCommand):
|
113 |
+
def run(self):
|
114 |
+
print(
|
115 |
+
ANSI.red(
|
116 |
+
"WARNING! `transformers-cli whoami` is deprecated and will be removed in v5. Please use "
|
117 |
+
"`huggingface-cli whoami` instead."
|
118 |
+
)
|
119 |
+
)
|
120 |
+
token = HfFolder.get_token()
|
121 |
+
if token is None:
|
122 |
+
print("Not logged in")
|
123 |
+
exit()
|
124 |
+
try:
|
125 |
+
user, orgs = whoami(token)
|
126 |
+
print(user)
|
127 |
+
if orgs:
|
128 |
+
print(ANSI.bold("orgs: "), ",".join(orgs))
|
129 |
+
except HTTPError as e:
|
130 |
+
print(e)
|
131 |
+
print(ANSI.red(e.response.text))
|
132 |
+
exit(1)
|
133 |
+
|
134 |
+
|
135 |
+
class LogoutCommand(BaseUserCommand):
|
136 |
+
def run(self):
|
137 |
+
print(
|
138 |
+
ANSI.red(
|
139 |
+
"ERROR! `transformers-cli logout` uses an outdated logout mechanism "
|
140 |
+
"that is not compatible with the Hugging Face Hub backend anymore. "
|
141 |
+
"Please use `huggingface-cli logout instead."
|
142 |
+
)
|
143 |
+
)
|
144 |
+
|
145 |
+
|
146 |
+
class RepoCreateCommand(BaseUserCommand):
|
147 |
+
def run(self):
|
148 |
+
print(
|
149 |
+
ANSI.red(
|
150 |
+
"WARNING! Managing repositories through transformers-cli is deprecated. "
|
151 |
+
"Please use `huggingface-cli` instead."
|
152 |
+
)
|
153 |
+
)
|
154 |
+
token = HfFolder.get_token()
|
155 |
+
if token is None:
|
156 |
+
print("Not logged in")
|
157 |
+
exit(1)
|
158 |
+
try:
|
159 |
+
stdout = subprocess.check_output(["git", "--version"]).decode("utf-8")
|
160 |
+
print(ANSI.gray(stdout.strip()))
|
161 |
+
except FileNotFoundError:
|
162 |
+
print("Looks like you do not have git installed, please install.")
|
163 |
+
|
164 |
+
try:
|
165 |
+
stdout = subprocess.check_output(["git-lfs", "--version"]).decode("utf-8")
|
166 |
+
print(ANSI.gray(stdout.strip()))
|
167 |
+
except FileNotFoundError:
|
168 |
+
print(
|
169 |
+
ANSI.red(
|
170 |
+
"Looks like you do not have git-lfs installed, please install."
|
171 |
+
" You can install from https://git-lfs.github.com/."
|
172 |
+
" Then run `git lfs install` (you only have to do this once)."
|
173 |
+
)
|
174 |
+
)
|
175 |
+
print("")
|
176 |
+
|
177 |
+
user, _ = whoami(token)
|
178 |
+
namespace = self.args.organization if self.args.organization is not None else user
|
179 |
+
full_name = f"{namespace}/{self.args.name}"
|
180 |
+
print(f"You are about to create {ANSI.bold(full_name)}")
|
181 |
+
|
182 |
+
if not self.args.yes:
|
183 |
+
choice = input("Proceed? [Y/n] ").lower()
|
184 |
+
if not (choice == "" or choice == "y" or choice == "yes"):
|
185 |
+
print("Abort")
|
186 |
+
exit()
|
187 |
+
try:
|
188 |
+
url = create_repo(token, name=self.args.name, organization=self.args.organization)
|
189 |
+
except HTTPError as e:
|
190 |
+
print(e)
|
191 |
+
print(ANSI.red(e.response.text))
|
192 |
+
exit(1)
|
193 |
+
print("\nYour repo now lives at:")
|
194 |
+
print(f" {ANSI.bold(url)}")
|
195 |
+
print("\nYou can clone it locally with the command below, and commit/push as usual.")
|
196 |
+
print(f"\n git clone {url}")
|
197 |
+
print("")
|
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.62 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/albert/__pycache__/modeling_flax_albert.cpython-310.pyc
ADDED
Binary file (28.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/dbrx/__init__.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_dbrx": ["DbrxConfig"],
|
21 |
+
}
|
22 |
+
|
23 |
+
try:
|
24 |
+
if not is_torch_available():
|
25 |
+
raise OptionalDependencyNotAvailable()
|
26 |
+
except OptionalDependencyNotAvailable:
|
27 |
+
pass
|
28 |
+
else:
|
29 |
+
_import_structure["modeling_dbrx"] = [
|
30 |
+
"DbrxForCausalLM",
|
31 |
+
"DbrxModel",
|
32 |
+
"DbrxPreTrainedModel",
|
33 |
+
]
|
34 |
+
|
35 |
+
|
36 |
+
if TYPE_CHECKING:
|
37 |
+
from .configuration_dbrx import DbrxConfig
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_torch_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
from .modeling_dbrx import DbrxForCausalLM, DbrxModel, DbrxPreTrainedModel
|
46 |
+
|
47 |
+
|
48 |
+
else:
|
49 |
+
import sys
|
50 |
+
|
51 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/dbrx/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (800 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/dbrx/__pycache__/configuration_dbrx.cpython-310.pyc
ADDED
Binary file (9.38 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/dbrx/__pycache__/modeling_dbrx.cpython-310.pyc
ADDED
Binary file (44.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/dbrx/configuration_dbrx.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Databricks Mosaic Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" DBRX model configuration """
|
16 |
+
|
17 |
+
from typing import Any, Optional
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class DbrxAttentionConfig(PretrainedConfig):
|
27 |
+
"""Configuration class for Dbrx Attention.
|
28 |
+
|
29 |
+
[`DbrxAttention`] class. It is used to instantiate attention layers
|
30 |
+
according to the specified arguments, defining the layers architecture.
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
attn_pdrop (`float`, *optional*, defaults to 0.0):
|
37 |
+
The dropout probability for the attention layers.
|
38 |
+
clip_qkv (`float`, *optional*):
|
39 |
+
If set, clip the queries, keys, and values in the attention layer to this value.
|
40 |
+
kv_n_heads (`Optional[int]`, defaults to 1): For grouped_query_attention only, allow user to specify number of kv heads.
|
41 |
+
rope_theta (`float`, defaults to 10000.0): The base frequency for rope.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
attn_pdrop: float = 0.0,
|
47 |
+
clip_qkv: Optional[float] = None,
|
48 |
+
kv_n_heads: int = 1,
|
49 |
+
rope_theta: float = 10000.0,
|
50 |
+
**kwargs: Any,
|
51 |
+
):
|
52 |
+
super().__init__(**kwargs)
|
53 |
+
self.attn_pdrop = attn_pdrop
|
54 |
+
self.clip_qkv = clip_qkv
|
55 |
+
self.kv_n_heads = kv_n_heads
|
56 |
+
self.rope_theta = rope_theta
|
57 |
+
|
58 |
+
for k in ["model_type"]:
|
59 |
+
if k in kwargs:
|
60 |
+
kwargs.pop(k)
|
61 |
+
if len(kwargs) != 0:
|
62 |
+
raise ValueError(f"Found unknown {kwargs=}")
|
63 |
+
|
64 |
+
@classmethod
|
65 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs: Any) -> "PretrainedConfig":
|
66 |
+
cls._set_token_in_kwargs(kwargs)
|
67 |
+
|
68 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
69 |
+
|
70 |
+
if config_dict.get("model_type") == "dbrx":
|
71 |
+
config_dict = config_dict["attn_config"]
|
72 |
+
|
73 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
74 |
+
logger.warning(
|
75 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
76 |
+
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
77 |
+
)
|
78 |
+
|
79 |
+
return cls.from_dict(config_dict, **kwargs)
|
80 |
+
|
81 |
+
|
82 |
+
class DbrxFFNConfig(PretrainedConfig):
|
83 |
+
"""Configuration class for Dbrx FFN.
|
84 |
+
|
85 |
+
[`DbrxFFN`] class. It is used to instantiate feedforward layers according to
|
86 |
+
the specified arguments, defining the layers architecture.
|
87 |
+
|
88 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
89 |
+
documentation from [`PretrainedConfig`] for more information.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
ffn_act_fn (`dict`, *optional*, defaults to `None`): A dict specifying activation function for the FFN.
|
93 |
+
The dict should have a key 'name' with the value being the name of the activation function along with
|
94 |
+
any additional keyword arguments. If `None`, then set to `{"name": "silu"}`.
|
95 |
+
ffn_hidden_size (`int`, defaults to 3584): The hidden size of the feedforward network.
|
96 |
+
moe_num_experts (`int`, defaults to 4): The number of experts in the mixture of experts layer.
|
97 |
+
moe_top_k (`int`, defaults to 1): The number of experts to use in the mixture of experts layer.
|
98 |
+
moe_jitter_eps (`float`, *optional*, defaults to `None`): If not `None`, the jitter epsilon for the mixture of experts layer.
|
99 |
+
moe_loss_weight (`float`, defaults to 0.01): The loss weight for the mixture of experts layer.
|
100 |
+
moe_normalize_expert_weights (`float`, *optional*, defaults to 1.0): The normalization factor for the expert weights.
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
ffn_act_fn: dict = None,
|
106 |
+
ffn_hidden_size: int = 3584,
|
107 |
+
moe_num_experts: int = 4,
|
108 |
+
moe_top_k: int = 1,
|
109 |
+
moe_jitter_eps: Optional[float] = None,
|
110 |
+
moe_loss_weight: float = 0.01,
|
111 |
+
moe_normalize_expert_weights: Optional[float] = 1.0,
|
112 |
+
**kwargs: Any,
|
113 |
+
):
|
114 |
+
super().__init__()
|
115 |
+
if ffn_act_fn is None:
|
116 |
+
ffn_act_fn = {"name": "silu"}
|
117 |
+
self.ffn_act_fn = ffn_act_fn
|
118 |
+
self.ffn_hidden_size = ffn_hidden_size
|
119 |
+
self.moe_num_experts = moe_num_experts
|
120 |
+
self.moe_top_k = moe_top_k
|
121 |
+
self.moe_jitter_eps = moe_jitter_eps
|
122 |
+
self.moe_loss_weight = moe_loss_weight
|
123 |
+
self.moe_normalize_expert_weights = moe_normalize_expert_weights
|
124 |
+
|
125 |
+
for k in ["model_type"]:
|
126 |
+
if k in kwargs:
|
127 |
+
kwargs.pop(k)
|
128 |
+
if len(kwargs) != 0:
|
129 |
+
raise ValueError(f"Found unknown {kwargs=}")
|
130 |
+
|
131 |
+
@classmethod
|
132 |
+
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs: Any) -> "PretrainedConfig":
|
133 |
+
cls._set_token_in_kwargs(kwargs)
|
134 |
+
|
135 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
136 |
+
|
137 |
+
if config_dict.get("model_type") == "dbrx":
|
138 |
+
config_dict = config_dict["ffn_config"]
|
139 |
+
|
140 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
141 |
+
logger.warning(
|
142 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
143 |
+
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
144 |
+
)
|
145 |
+
|
146 |
+
return cls.from_dict(config_dict, **kwargs)
|
147 |
+
|
148 |
+
|
149 |
+
class DbrxConfig(PretrainedConfig):
|
150 |
+
r"""
|
151 |
+
|
152 |
+
This is the configuration class to store the configuration of a [`DbrxModel`]. It is used to instantiate a Dbrx model according to the
|
153 |
+
specified arguments, defining the model architecture. Instantiating a configuration with the
|
154 |
+
defaults will yield a different configuration to that of the [databricks/dbrx-instruct](https://huggingface.co/databricks/dbrx-instruct) architecture.
|
155 |
+
|
156 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
157 |
+
documentation from [`PretrainedConfig`] for more information.
|
158 |
+
|
159 |
+
|
160 |
+
Args:
|
161 |
+
d_model (`int`, *optional*, defaults to 2048):
|
162 |
+
Dimensionality of the embeddings and hidden states.
|
163 |
+
n_heads (`int`, *optional*, defaults to 16):
|
164 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
165 |
+
n_layers (`int`, *optional*, defaults to 24):
|
166 |
+
Number of hidden layers in the Transformer encoder.
|
167 |
+
max_seq_len (`int`, *optional*, defaults to 2048):
|
168 |
+
The maximum sequence length of the model.
|
169 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
170 |
+
Vocabulary size of the Dbrx model. Defines the maximum number of different tokens that can be represented by
|
171 |
+
the `inputs_ids` passed when calling [`DbrxModel`].
|
172 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
173 |
+
The dropout probability applied to the attention output before combining with residual.
|
174 |
+
emb_pdrop (`float`, *optional*, defaults to 0.0):
|
175 |
+
The dropout probability for the embedding layer.
|
176 |
+
attn_config (`dict`, *optional*):
|
177 |
+
A dictionary used to configure the model's attention module.
|
178 |
+
ffn_config (`dict`, *optional*):
|
179 |
+
A dictionary used to configure the model's FFN module.
|
180 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
181 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
182 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
183 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
184 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
185 |
+
Whether or not the router logits should be returned by the model. Enabling this will also
|
186 |
+
allow the model to output the auxiliary loss. See [here]() for more details.
|
187 |
+
|
188 |
+
|
189 |
+
Example:
|
190 |
+
```python
|
191 |
+
>>> from transformers import DbrxConfig, DbrxModel
|
192 |
+
|
193 |
+
>>> # Initializing a Dbrx configuration
|
194 |
+
>>> configuration = DbrxConfig(n_layers=2, d_model=256, n_heads=8, vocab_size=128)
|
195 |
+
|
196 |
+
>>> # Initializing a model (with random weights) from the configuration
|
197 |
+
>>> model = DbrxModel(configuration)
|
198 |
+
|
199 |
+
>>> # Accessing the model configuration
|
200 |
+
>>> configuration = model.config
|
201 |
+
```
|
202 |
+
"""
|
203 |
+
|
204 |
+
model_type = "dbrx"
|
205 |
+
attribute_map = {
|
206 |
+
"num_attention_heads": "n_heads",
|
207 |
+
"hidden_size": "d_model",
|
208 |
+
"num_hidden_layers": "n_layers",
|
209 |
+
"max_position_embeddings": "max_seq_len",
|
210 |
+
}
|
211 |
+
|
212 |
+
def __init__(
|
213 |
+
self,
|
214 |
+
d_model: int = 2048,
|
215 |
+
n_heads: int = 16,
|
216 |
+
n_layers: int = 24,
|
217 |
+
max_seq_len: int = 2048,
|
218 |
+
vocab_size: int = 32000,
|
219 |
+
resid_pdrop: float = 0.0,
|
220 |
+
emb_pdrop: float = 0.0,
|
221 |
+
attn_config: Optional[DbrxAttentionConfig] = None,
|
222 |
+
ffn_config: Optional[DbrxFFNConfig] = None,
|
223 |
+
use_cache: bool = True,
|
224 |
+
initializer_range: float = 0.02,
|
225 |
+
output_router_logits: bool = False,
|
226 |
+
**kwargs: Any,
|
227 |
+
):
|
228 |
+
if attn_config is None:
|
229 |
+
self.attn_config = DbrxAttentionConfig()
|
230 |
+
elif isinstance(attn_config, dict):
|
231 |
+
self.attn_config = DbrxAttentionConfig(**attn_config)
|
232 |
+
else:
|
233 |
+
self.attn_config = attn_config
|
234 |
+
|
235 |
+
if ffn_config is None:
|
236 |
+
self.ffn_config = DbrxFFNConfig()
|
237 |
+
elif isinstance(ffn_config, dict):
|
238 |
+
self.ffn_config = DbrxFFNConfig(**ffn_config)
|
239 |
+
else:
|
240 |
+
self.ffn_config = ffn_config
|
241 |
+
|
242 |
+
self.d_model = d_model
|
243 |
+
self.n_heads = n_heads
|
244 |
+
self.n_layers = n_layers
|
245 |
+
self.max_seq_len = max_seq_len
|
246 |
+
self.vocab_size = vocab_size
|
247 |
+
self.resid_pdrop = resid_pdrop
|
248 |
+
self.emb_pdrop = emb_pdrop
|
249 |
+
self.use_cache = use_cache
|
250 |
+
self.initializer_range = initializer_range
|
251 |
+
self.output_router_logits = output_router_logits
|
252 |
+
|
253 |
+
tie_word_embeddings = kwargs.pop("tie_word_embeddings", False)
|
254 |
+
if tie_word_embeddings:
|
255 |
+
raise ValueError("tie_word_embeddings is not supported for DBRX models.")
|
256 |
+
|
257 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/dbrx/modeling_dbrx.py
ADDED
@@ -0,0 +1,1523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Databricks Mosaic Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch DBRX model. """
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn.functional as F
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...cache_utils import Cache, DynamicCache, StaticCache
|
27 |
+
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
28 |
+
from ...modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
|
29 |
+
from ...modeling_utils import PreTrainedModel
|
30 |
+
from ...utils import (
|
31 |
+
add_start_docstrings,
|
32 |
+
add_start_docstrings_to_model_forward,
|
33 |
+
is_flash_attn_2_available,
|
34 |
+
is_flash_attn_greater_or_equal_2_10,
|
35 |
+
logging,
|
36 |
+
replace_return_docstrings,
|
37 |
+
)
|
38 |
+
from .configuration_dbrx import DbrxConfig
|
39 |
+
|
40 |
+
|
41 |
+
if is_flash_attn_2_available():
|
42 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
43 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
_CONFIG_FOR_DOC = "DbrxConfig"
|
48 |
+
|
49 |
+
|
50 |
+
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with Gemma->Dbrx
|
51 |
+
class DbrxRotaryEmbedding(nn.Module):
|
52 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
53 |
+
super().__init__()
|
54 |
+
|
55 |
+
self.dim = dim
|
56 |
+
self.max_position_embeddings = max_position_embeddings
|
57 |
+
self.base = base
|
58 |
+
self.register_buffer("inv_freq", None, persistent=False)
|
59 |
+
|
60 |
+
@torch.no_grad()
|
61 |
+
def forward(self, x, position_ids, seq_len=None):
|
62 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
63 |
+
if self.inv_freq is None:
|
64 |
+
self.inv_freq = 1.0 / (
|
65 |
+
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
|
66 |
+
)
|
67 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
68 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
69 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
70 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
71 |
+
device_type = x.device.type
|
72 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
73 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
74 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
75 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
76 |
+
cos = emb.cos()
|
77 |
+
sin = emb.sin()
|
78 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
79 |
+
|
80 |
+
|
81 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
82 |
+
def rotate_half(x):
|
83 |
+
"""Rotates half the hidden dims of the input."""
|
84 |
+
x1 = x[..., : x.shape[-1] // 2]
|
85 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
86 |
+
return torch.cat((-x2, x1), dim=-1)
|
87 |
+
|
88 |
+
|
89 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
90 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
91 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
q (`torch.Tensor`): The query tensor.
|
95 |
+
k (`torch.Tensor`): The key tensor.
|
96 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
97 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
98 |
+
position_ids (`torch.Tensor`, *optional*):
|
99 |
+
Deprecated and unused.
|
100 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
101 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
102 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
103 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
104 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
105 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
106 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
107 |
+
Returns:
|
108 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
109 |
+
"""
|
110 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
111 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
112 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
113 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
114 |
+
return q_embed, k_embed
|
115 |
+
|
116 |
+
|
117 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
118 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
119 |
+
"""
|
120 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
121 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
122 |
+
"""
|
123 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
124 |
+
if n_rep == 1:
|
125 |
+
return hidden_states
|
126 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
127 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
128 |
+
|
129 |
+
|
130 |
+
def load_balancing_loss_func(
|
131 |
+
gate_logits: torch.Tensor,
|
132 |
+
num_experts: int,
|
133 |
+
top_k: int,
|
134 |
+
attention_mask: Optional[torch.Tensor],
|
135 |
+
) -> torch.Tensor:
|
136 |
+
r"""Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
137 |
+
|
138 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
139 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
140 |
+
experts is too unbalanced.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
144 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
145 |
+
shape [batch_size X sequence_length, num_experts].
|
146 |
+
num_experts (`int`):
|
147 |
+
Number of experts.
|
148 |
+
top_k (`int`):
|
149 |
+
The number of experts each token is routed to.
|
150 |
+
attention_mask (`torch.Tensor`, None):
|
151 |
+
The attention_mask used in forward function
|
152 |
+
shape [batch_size X sequence_length] if not None.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
The auxiliary loss.
|
156 |
+
"""
|
157 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
158 |
+
return torch.tensor(0.0)
|
159 |
+
|
160 |
+
if isinstance(gate_logits, tuple):
|
161 |
+
compute_device = gate_logits[0].device
|
162 |
+
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
163 |
+
|
164 |
+
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
165 |
+
|
166 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
167 |
+
|
168 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
169 |
+
|
170 |
+
if attention_mask is None:
|
171 |
+
# Compute the percentage of tokens routed to each experts
|
172 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
173 |
+
|
174 |
+
# Compute the average probability of routing to these experts
|
175 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
176 |
+
else:
|
177 |
+
batch_size, sequence_length = attention_mask.shape
|
178 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
179 |
+
|
180 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
181 |
+
expert_attention_mask = (
|
182 |
+
attention_mask[None, :, :, None, None]
|
183 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
184 |
+
.reshape(-1, top_k, num_experts)
|
185 |
+
.to(compute_device)
|
186 |
+
)
|
187 |
+
|
188 |
+
# Compute the percentage of tokens routed to each experts
|
189 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
190 |
+
expert_attention_mask, dim=0
|
191 |
+
)
|
192 |
+
|
193 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
194 |
+
router_per_expert_attention_mask = (
|
195 |
+
attention_mask[None, :, :, None]
|
196 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
197 |
+
.reshape(-1, num_experts)
|
198 |
+
.to(compute_device)
|
199 |
+
)
|
200 |
+
|
201 |
+
# Compute the average probability of routing to these experts
|
202 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
203 |
+
router_per_expert_attention_mask, dim=0
|
204 |
+
)
|
205 |
+
|
206 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
207 |
+
return overall_loss * num_experts
|
208 |
+
|
209 |
+
|
210 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
211 |
+
def _get_unpad_data(attention_mask):
|
212 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
213 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
214 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
215 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
216 |
+
return (
|
217 |
+
indices,
|
218 |
+
cu_seqlens,
|
219 |
+
max_seqlen_in_batch,
|
220 |
+
)
|
221 |
+
|
222 |
+
|
223 |
+
class DbrxAttention(nn.Module):
|
224 |
+
"""Multi-head self attention."""
|
225 |
+
|
226 |
+
def __init__(self, config: DbrxConfig, block_idx: Optional[int] = None):
|
227 |
+
super().__init__()
|
228 |
+
self.config = config
|
229 |
+
self.hidden_size = config.d_model
|
230 |
+
self.num_heads = config.n_heads
|
231 |
+
self.head_dim = self.hidden_size // self.num_heads
|
232 |
+
self.max_position_embeddings = config.max_seq_len
|
233 |
+
self.block_idx = block_idx
|
234 |
+
if block_idx is None:
|
235 |
+
logger.warning_once(
|
236 |
+
f"Instantiating {self.__class__.__name__} without passing a `block_idx` is not recommended and will "
|
237 |
+
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `block_idx` "
|
238 |
+
+ "when creating this class."
|
239 |
+
)
|
240 |
+
|
241 |
+
attn_config = config.attn_config
|
242 |
+
self.attn_pdrop = attn_config.attn_pdrop
|
243 |
+
self.clip_qkv = attn_config.clip_qkv
|
244 |
+
self.num_key_value_heads = attn_config.kv_n_heads
|
245 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
246 |
+
self.rope_theta = attn_config.rope_theta
|
247 |
+
self.is_causal = True
|
248 |
+
|
249 |
+
self.Wqkv = nn.Linear(
|
250 |
+
self.hidden_size, self.hidden_size + 2 * self.num_key_value_heads * self.head_dim, bias=False
|
251 |
+
)
|
252 |
+
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
253 |
+
self.rotary_emb = DbrxRotaryEmbedding(
|
254 |
+
self.head_dim,
|
255 |
+
max_position_embeddings=self.max_position_embeddings,
|
256 |
+
base=self.rope_theta,
|
257 |
+
)
|
258 |
+
|
259 |
+
def forward(
|
260 |
+
self,
|
261 |
+
hidden_states: torch.Tensor,
|
262 |
+
position_ids: torch.LongTensor,
|
263 |
+
attention_mask: Optional[torch.Tensor] = None,
|
264 |
+
past_key_value: Optional[Cache] = None,
|
265 |
+
output_attentions: bool = False,
|
266 |
+
use_cache: bool = False,
|
267 |
+
cache_position: Optional[torch.LongTensor] = None,
|
268 |
+
**kwargs: Any,
|
269 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
270 |
+
bsz, q_len, _ = hidden_states.size()
|
271 |
+
|
272 |
+
qkv_states = self.Wqkv(hidden_states)
|
273 |
+
min_val = -self.clip_qkv if self.clip_qkv is not None else None
|
274 |
+
max_val = self.clip_qkv
|
275 |
+
qkv_states = qkv_states.clamp(min=min_val, max=max_val)
|
276 |
+
|
277 |
+
query_states, key_states, value_states = qkv_states.split(
|
278 |
+
[
|
279 |
+
self.hidden_size,
|
280 |
+
self.num_key_value_heads * self.head_dim,
|
281 |
+
self.num_key_value_heads * self.head_dim,
|
282 |
+
],
|
283 |
+
dim=2,
|
284 |
+
)
|
285 |
+
|
286 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
287 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
288 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
289 |
+
|
290 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
291 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
292 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
293 |
+
|
294 |
+
if past_key_value is not None:
|
295 |
+
# sin and cos are specific to RoPE models; position_ids needed for the static cache
|
296 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
297 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs)
|
298 |
+
|
299 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
300 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
301 |
+
|
302 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
303 |
+
|
304 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
305 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
306 |
+
attn_weights = attn_weights + causal_mask
|
307 |
+
|
308 |
+
# upcast attention to fp32
|
309 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
310 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attn_pdrop, training=self.training)
|
311 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
312 |
+
|
313 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
314 |
+
raise ValueError(
|
315 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
316 |
+
+ f" {attn_output.size()}"
|
317 |
+
)
|
318 |
+
|
319 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
320 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
321 |
+
attn_output = self.out_proj(attn_output)
|
322 |
+
|
323 |
+
if not output_attentions:
|
324 |
+
attn_weights = None
|
325 |
+
|
326 |
+
return attn_output, attn_weights, past_key_value
|
327 |
+
|
328 |
+
|
329 |
+
class DbrxFlashAttention2(DbrxAttention):
|
330 |
+
"""Dbrx flash attention module.
|
331 |
+
|
332 |
+
This module inherits from `DbrxAttention` as the weights of the module stays
|
333 |
+
untouched. The only required change would be on the forward pass where it
|
334 |
+
calls the public API of flash attention.
|
335 |
+
"""
|
336 |
+
|
337 |
+
def __init__(self, *args: Any, **kwargs: Any):
|
338 |
+
super().__init__(*args, **kwargs)
|
339 |
+
|
340 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
341 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
342 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
343 |
+
# From: https://github.com/huggingface/transformers/blob/3b8e2932ce743008f63585aae1e1b8b30dc8b3ac/src/transformers/models/gemma/modeling_gemma.py#L318
|
344 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
345 |
+
|
346 |
+
def forward(
|
347 |
+
self,
|
348 |
+
hidden_states: torch.Tensor,
|
349 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
350 |
+
position_ids: Optional[torch.LongTensor] = None,
|
351 |
+
past_key_value: Optional[Cache] = None,
|
352 |
+
output_attentions: bool = False,
|
353 |
+
use_cache: bool = False,
|
354 |
+
cache_position: Optional[torch.LongTensor] = None,
|
355 |
+
**kwargs: Any,
|
356 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
357 |
+
logger.info("Implicitly setting `output_attentions` to False as it is not supported in Flash Attention.")
|
358 |
+
output_attentions = False
|
359 |
+
|
360 |
+
bsz, q_len, _ = hidden_states.size()
|
361 |
+
|
362 |
+
qkv_states = self.Wqkv(hidden_states)
|
363 |
+
if self.clip_qkv is not None:
|
364 |
+
qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
365 |
+
|
366 |
+
query_states, key_states, value_states = qkv_states.split(
|
367 |
+
[
|
368 |
+
self.hidden_size,
|
369 |
+
self.num_key_value_heads * self.head_dim,
|
370 |
+
self.num_key_value_heads * self.head_dim,
|
371 |
+
],
|
372 |
+
dim=2,
|
373 |
+
)
|
374 |
+
|
375 |
+
# Flash attention requires the input to have the shape
|
376 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
377 |
+
# therefore we just need to keep the original shape
|
378 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
379 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
380 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
381 |
+
|
382 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
383 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
384 |
+
|
385 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
386 |
+
|
387 |
+
if past_key_value is not None:
|
388 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
389 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
390 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs)
|
391 |
+
|
392 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout
|
393 |
+
# [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
394 |
+
# to be able to avoid many of these transpose/reshape/view.
|
395 |
+
query_states = query_states.transpose(1, 2)
|
396 |
+
key_states = key_states.transpose(1, 2)
|
397 |
+
value_states = value_states.transpose(1, 2)
|
398 |
+
|
399 |
+
dropout_rate = self.attn_pdrop if self.training else 0.0
|
400 |
+
|
401 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
402 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
403 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
404 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
405 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
406 |
+
input_dtype = query_states.dtype
|
407 |
+
if input_dtype == torch.float32:
|
408 |
+
if torch.is_autocast_enabled():
|
409 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
410 |
+
# Handle the case where the model is quantized
|
411 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
412 |
+
target_dtype = self.config._pre_quantization_dtype
|
413 |
+
else:
|
414 |
+
target_dtype = query_states.dtype
|
415 |
+
|
416 |
+
logger.warning_once(
|
417 |
+
"The input hidden states seems to be silently casted in float32, this might be "
|
418 |
+
+ "related to the fact you have upcasted embedding or layer norm layers in "
|
419 |
+
+ f"float32. We will cast back the input in {target_dtype}."
|
420 |
+
)
|
421 |
+
|
422 |
+
query_states = query_states.to(target_dtype)
|
423 |
+
key_states = key_states.to(target_dtype)
|
424 |
+
value_states = value_states.to(target_dtype)
|
425 |
+
|
426 |
+
attn_output = self._flash_attention_forward(
|
427 |
+
query_states,
|
428 |
+
key_states,
|
429 |
+
value_states,
|
430 |
+
attention_mask,
|
431 |
+
q_len,
|
432 |
+
dropout=dropout_rate,
|
433 |
+
)
|
434 |
+
|
435 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
436 |
+
attn_output = self.out_proj(attn_output)
|
437 |
+
|
438 |
+
if not output_attentions:
|
439 |
+
attn_weights = None
|
440 |
+
|
441 |
+
return attn_output, attn_weights, past_key_value
|
442 |
+
|
443 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
444 |
+
def _flash_attention_forward(
|
445 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
446 |
+
):
|
447 |
+
"""
|
448 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
449 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
450 |
+
|
451 |
+
Args:
|
452 |
+
query_states (`torch.Tensor`):
|
453 |
+
Input query states to be passed to Flash Attention API
|
454 |
+
key_states (`torch.Tensor`):
|
455 |
+
Input key states to be passed to Flash Attention API
|
456 |
+
value_states (`torch.Tensor`):
|
457 |
+
Input value states to be passed to Flash Attention API
|
458 |
+
attention_mask (`torch.Tensor`):
|
459 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
460 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
461 |
+
dropout (`float`):
|
462 |
+
Attention dropout
|
463 |
+
softmax_scale (`float`, *optional*):
|
464 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
465 |
+
"""
|
466 |
+
if not self._flash_attn_uses_top_left_mask:
|
467 |
+
causal = self.is_causal
|
468 |
+
else:
|
469 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
470 |
+
causal = self.is_causal and query_length != 1
|
471 |
+
|
472 |
+
# Contains at least one padding token in the sequence
|
473 |
+
if attention_mask is not None:
|
474 |
+
batch_size = query_states.shape[0]
|
475 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
476 |
+
query_states, key_states, value_states, attention_mask, query_length
|
477 |
+
)
|
478 |
+
|
479 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
480 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
481 |
+
|
482 |
+
attn_output_unpad = flash_attn_varlen_func(
|
483 |
+
query_states,
|
484 |
+
key_states,
|
485 |
+
value_states,
|
486 |
+
cu_seqlens_q=cu_seqlens_q,
|
487 |
+
cu_seqlens_k=cu_seqlens_k,
|
488 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
489 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
490 |
+
dropout_p=dropout,
|
491 |
+
softmax_scale=softmax_scale,
|
492 |
+
causal=causal,
|
493 |
+
)
|
494 |
+
|
495 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
496 |
+
else:
|
497 |
+
attn_output = flash_attn_func(
|
498 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
499 |
+
)
|
500 |
+
|
501 |
+
return attn_output
|
502 |
+
|
503 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
504 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
505 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
506 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
507 |
+
|
508 |
+
key_layer = index_first_axis(
|
509 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
510 |
+
)
|
511 |
+
value_layer = index_first_axis(
|
512 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
513 |
+
)
|
514 |
+
if query_length == kv_seq_len:
|
515 |
+
query_layer = index_first_axis(
|
516 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
517 |
+
)
|
518 |
+
cu_seqlens_q = cu_seqlens_k
|
519 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
520 |
+
indices_q = indices_k
|
521 |
+
elif query_length == 1:
|
522 |
+
max_seqlen_in_batch_q = 1
|
523 |
+
cu_seqlens_q = torch.arange(
|
524 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
525 |
+
) # There is a memcpy here, that is very bad.
|
526 |
+
indices_q = cu_seqlens_q[:-1]
|
527 |
+
query_layer = query_layer.squeeze(1)
|
528 |
+
else:
|
529 |
+
# The -q_len: slice assumes left padding.
|
530 |
+
attention_mask = attention_mask[:, -query_length:]
|
531 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
532 |
+
|
533 |
+
return (
|
534 |
+
query_layer,
|
535 |
+
key_layer,
|
536 |
+
value_layer,
|
537 |
+
indices_q,
|
538 |
+
(cu_seqlens_q, cu_seqlens_k),
|
539 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
540 |
+
)
|
541 |
+
|
542 |
+
|
543 |
+
class DbrxSdpaAttention(DbrxAttention):
|
544 |
+
"""
|
545 |
+
Dbrx attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
546 |
+
`DbrxAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
547 |
+
SDPA API.
|
548 |
+
"""
|
549 |
+
|
550 |
+
def forward(
|
551 |
+
self,
|
552 |
+
hidden_states: torch.Tensor,
|
553 |
+
attention_mask: Optional[torch.Tensor] = None,
|
554 |
+
position_ids: Optional[torch.LongTensor] = None,
|
555 |
+
past_key_value: Optional[Cache] = None,
|
556 |
+
output_attentions: bool = False,
|
557 |
+
use_cache: bool = False,
|
558 |
+
cache_position: Optional[torch.LongTensor] = None,
|
559 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
560 |
+
if output_attentions:
|
561 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
562 |
+
logger.warning_once(
|
563 |
+
"DbrxModel is using DbrxSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
564 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
565 |
+
)
|
566 |
+
return super().forward(
|
567 |
+
hidden_states=hidden_states,
|
568 |
+
attention_mask=attention_mask,
|
569 |
+
position_ids=position_ids,
|
570 |
+
past_key_value=past_key_value,
|
571 |
+
output_attentions=output_attentions,
|
572 |
+
use_cache=use_cache,
|
573 |
+
cache_position=cache_position,
|
574 |
+
)
|
575 |
+
|
576 |
+
bsz, q_len, _ = hidden_states.size()
|
577 |
+
|
578 |
+
qkv_states = self.Wqkv(hidden_states)
|
579 |
+
if self.clip_qkv is not None:
|
580 |
+
qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
581 |
+
|
582 |
+
query_states, key_states, value_states = qkv_states.split(
|
583 |
+
[
|
584 |
+
self.hidden_size,
|
585 |
+
self.num_key_value_heads * self.head_dim,
|
586 |
+
self.num_key_value_heads * self.head_dim,
|
587 |
+
],
|
588 |
+
dim=2,
|
589 |
+
)
|
590 |
+
|
591 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
592 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
593 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
594 |
+
|
595 |
+
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
|
596 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)
|
597 |
+
|
598 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
599 |
+
|
600 |
+
if past_key_value is not None:
|
601 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
602 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
603 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs)
|
604 |
+
|
605 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
606 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
607 |
+
|
608 |
+
causal_mask = attention_mask
|
609 |
+
if attention_mask is not None:
|
610 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
611 |
+
|
612 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
613 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
614 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
615 |
+
query_states = query_states.contiguous()
|
616 |
+
key_states = key_states.contiguous()
|
617 |
+
value_states = value_states.contiguous()
|
618 |
+
|
619 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
620 |
+
query_states,
|
621 |
+
key_states,
|
622 |
+
value_states,
|
623 |
+
attn_mask=causal_mask,
|
624 |
+
dropout_p=self.attn_pdrop if self.training else 0.0,
|
625 |
+
)
|
626 |
+
|
627 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
628 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
629 |
+
|
630 |
+
attn_output = self.out_proj(attn_output)
|
631 |
+
|
632 |
+
return attn_output, None, past_key_value
|
633 |
+
|
634 |
+
|
635 |
+
DBRX_ATTENTION_CLASSES = {
|
636 |
+
"eager": DbrxAttention,
|
637 |
+
"flash_attention_2": DbrxFlashAttention2,
|
638 |
+
"sdpa": DbrxSdpaAttention,
|
639 |
+
}
|
640 |
+
|
641 |
+
|
642 |
+
class DbrxNormAttentionNorm(nn.Module):
|
643 |
+
def __init__(self, config: DbrxConfig, block_idx: Optional[int] = None):
|
644 |
+
super().__init__()
|
645 |
+
self.block_idx = block_idx
|
646 |
+
self.resid_pdrop = config.resid_pdrop
|
647 |
+
self.norm_1 = nn.LayerNorm(config.d_model, bias=False)
|
648 |
+
self.attn = DBRX_ATTENTION_CLASSES[config._attn_implementation](
|
649 |
+
config=config,
|
650 |
+
block_idx=block_idx,
|
651 |
+
)
|
652 |
+
self.norm_2 = nn.LayerNorm(config.d_model, bias=False)
|
653 |
+
|
654 |
+
def forward(
|
655 |
+
self,
|
656 |
+
hidden_states: torch.Tensor,
|
657 |
+
position_ids: torch.LongTensor,
|
658 |
+
attention_mask: Optional[torch.Tensor] = None,
|
659 |
+
past_key_value: Optional[Cache] = None,
|
660 |
+
output_attentions: bool = False,
|
661 |
+
use_cache: bool = False,
|
662 |
+
cache_position: Optional[torch.LongTensor] = None,
|
663 |
+
**kwargs: Any,
|
664 |
+
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
665 |
+
residual_states = hidden_states
|
666 |
+
hidden_states = self.norm_1(hidden_states).to(hidden_states.dtype)
|
667 |
+
|
668 |
+
hidden_states, attn_weights, past_key_value = self.attn(
|
669 |
+
hidden_states=hidden_states,
|
670 |
+
attention_mask=attention_mask,
|
671 |
+
position_ids=position_ids,
|
672 |
+
past_key_value=past_key_value,
|
673 |
+
output_attentions=output_attentions,
|
674 |
+
use_cache=use_cache,
|
675 |
+
cache_position=cache_position,
|
676 |
+
**kwargs,
|
677 |
+
)
|
678 |
+
|
679 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.resid_pdrop, training=self.training)
|
680 |
+
hidden_states = hidden_states + residual_states
|
681 |
+
|
682 |
+
residual_states = hidden_states
|
683 |
+
hidden_states = self.norm_2(hidden_states).to(hidden_states.dtype)
|
684 |
+
|
685 |
+
return residual_states, hidden_states, attn_weights, past_key_value
|
686 |
+
|
687 |
+
|
688 |
+
class DbrxRouter(nn.Module):
|
689 |
+
def __init__(
|
690 |
+
self,
|
691 |
+
hidden_size: int,
|
692 |
+
moe_num_experts: int,
|
693 |
+
moe_top_k: int,
|
694 |
+
moe_jitter_eps: Optional[float],
|
695 |
+
moe_normalize_expert_weights: Optional[float],
|
696 |
+
):
|
697 |
+
super().__init__()
|
698 |
+
self.hidden_size = hidden_size
|
699 |
+
self.moe_num_experts = moe_num_experts
|
700 |
+
self.moe_top_k = moe_top_k
|
701 |
+
self.moe_jitter_eps = moe_jitter_eps
|
702 |
+
self.moe_normalize_expert_weights = moe_normalize_expert_weights
|
703 |
+
|
704 |
+
self.layer = nn.Linear(self.hidden_size, self.moe_num_experts, bias=False)
|
705 |
+
|
706 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.LongTensor]:
|
707 |
+
if self.training and self.moe_jitter_eps is not None:
|
708 |
+
hidden_states *= torch.empty_like(hidden_states).uniform_(
|
709 |
+
1.0 - self.moe_jitter_eps, 1.0 + self.moe_jitter_eps
|
710 |
+
)
|
711 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
712 |
+
weights = self.layer(hidden_states).softmax(dim=-1, dtype=torch.float32)
|
713 |
+
top_weights, top_experts = torch.topk(weights, self.moe_top_k, dim=-1)
|
714 |
+
|
715 |
+
top_weights_scale = (
|
716 |
+
torch.norm(top_weights, p=self.moe_normalize_expert_weights, dim=-1, keepdim=True)
|
717 |
+
if self.moe_normalize_expert_weights is not None
|
718 |
+
else 1.0
|
719 |
+
)
|
720 |
+
top_weights = top_weights / top_weights_scale
|
721 |
+
|
722 |
+
weights = weights.to(hidden_states.dtype)
|
723 |
+
top_weights = top_weights.to(hidden_states.dtype)
|
724 |
+
return weights, top_weights, top_experts
|
725 |
+
|
726 |
+
|
727 |
+
class DbrxExpertGLU(nn.Module):
|
728 |
+
def __init__(self, hidden_size: int, ffn_hidden_size: int, moe_num_experts: int, ffn_act_fn: dict):
|
729 |
+
super().__init__()
|
730 |
+
self.hidden_size = hidden_size
|
731 |
+
self.ffn_hidden_size = ffn_hidden_size
|
732 |
+
self.moe_num_experts = moe_num_experts
|
733 |
+
|
734 |
+
self.w1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
|
735 |
+
self.v1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
|
736 |
+
self.w2 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
|
737 |
+
|
738 |
+
act_fn_name = ffn_act_fn.get("name", "silu")
|
739 |
+
self.activation_fn = ACT2FN[act_fn_name]
|
740 |
+
|
741 |
+
def forward(
|
742 |
+
self, x: torch.Tensor, expert_w1: torch.Tensor, expert_v1: torch.Tensor, expert_w2: torch.Tensor
|
743 |
+
) -> torch.Tensor:
|
744 |
+
gate_proj = x.matmul(expert_w1.t())
|
745 |
+
up_proj = x.matmul(expert_v1.t())
|
746 |
+
gate_proj = self.activation_fn(gate_proj)
|
747 |
+
intermediate_states = gate_proj * up_proj
|
748 |
+
down_proj = intermediate_states.matmul(expert_w2)
|
749 |
+
return down_proj
|
750 |
+
|
751 |
+
|
752 |
+
class DbrxExperts(nn.Module):
|
753 |
+
def __init__(self, hidden_size: int, ffn_hidden_size: int, moe_num_experts: int, ffn_act_fn: dict):
|
754 |
+
super().__init__()
|
755 |
+
self.moe_num_experts = moe_num_experts
|
756 |
+
self.mlp = DbrxExpertGLU(
|
757 |
+
hidden_size=hidden_size,
|
758 |
+
ffn_hidden_size=ffn_hidden_size,
|
759 |
+
moe_num_experts=moe_num_experts,
|
760 |
+
ffn_act_fn=ffn_act_fn,
|
761 |
+
)
|
762 |
+
|
763 |
+
def forward(
|
764 |
+
self, x: torch.Tensor, weights: torch.Tensor, top_weights: torch.Tensor, top_experts: torch.LongTensor
|
765 |
+
) -> torch.Tensor:
|
766 |
+
bsz, q_len, hidden_size = x.shape
|
767 |
+
x = x.view(-1, hidden_size)
|
768 |
+
out = torch.zeros_like(x)
|
769 |
+
|
770 |
+
expert_mask = nn.functional.one_hot(top_experts, num_classes=self.moe_num_experts).permute(2, 1, 0)
|
771 |
+
# Chunk experts at once to avoid storing full parameter multiple times in autograd
|
772 |
+
w1_chunked = self.mlp.w1.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk(
|
773 |
+
self.moe_num_experts, dim=0
|
774 |
+
)
|
775 |
+
v1_chunked = self.mlp.v1.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk(
|
776 |
+
self.moe_num_experts, dim=0
|
777 |
+
)
|
778 |
+
w2_chunked = self.mlp.w2.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk(
|
779 |
+
self.moe_num_experts, dim=0
|
780 |
+
)
|
781 |
+
w1_chunked = [w1.squeeze(dim=0) for w1 in w1_chunked]
|
782 |
+
v1_chunked = [v1.squeeze(dim=0) for v1 in v1_chunked]
|
783 |
+
w2_chunked = [w2.squeeze(dim=0) for w2 in w2_chunked]
|
784 |
+
for expert_idx in range(0, self.moe_num_experts):
|
785 |
+
topk_idx, token_idx = torch.where(expert_mask[expert_idx])
|
786 |
+
if token_idx.shape[0] == 0:
|
787 |
+
continue
|
788 |
+
|
789 |
+
token_list = token_idx
|
790 |
+
topk_list = topk_idx
|
791 |
+
|
792 |
+
expert_tokens = x[None, token_list].reshape(-1, hidden_size)
|
793 |
+
expert_out = (
|
794 |
+
self.mlp(expert_tokens, w1_chunked[expert_idx], v1_chunked[expert_idx], w2_chunked[expert_idx])
|
795 |
+
* top_weights[token_list, topk_list, None]
|
796 |
+
)
|
797 |
+
|
798 |
+
out.index_add_(0, token_idx, expert_out)
|
799 |
+
|
800 |
+
out = out.reshape(bsz, q_len, hidden_size)
|
801 |
+
return out
|
802 |
+
|
803 |
+
|
804 |
+
class DbrxFFN(nn.Module):
|
805 |
+
def __init__(self, config: DbrxConfig):
|
806 |
+
super().__init__()
|
807 |
+
|
808 |
+
ffn_config = config.ffn_config
|
809 |
+
self.router = DbrxRouter(
|
810 |
+
hidden_size=config.d_model,
|
811 |
+
moe_num_experts=ffn_config.moe_num_experts,
|
812 |
+
moe_top_k=ffn_config.moe_top_k,
|
813 |
+
moe_jitter_eps=ffn_config.moe_jitter_eps,
|
814 |
+
moe_normalize_expert_weights=ffn_config.moe_normalize_expert_weights,
|
815 |
+
)
|
816 |
+
|
817 |
+
self.experts = DbrxExperts(
|
818 |
+
hidden_size=config.d_model,
|
819 |
+
ffn_hidden_size=ffn_config.ffn_hidden_size,
|
820 |
+
moe_num_experts=ffn_config.moe_num_experts,
|
821 |
+
ffn_act_fn=ffn_config.ffn_act_fn,
|
822 |
+
)
|
823 |
+
|
824 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
825 |
+
weights, top_weights, top_experts = self.router(x)
|
826 |
+
out = self.experts(x, weights, top_weights, top_experts)
|
827 |
+
return out, weights
|
828 |
+
|
829 |
+
|
830 |
+
class DbrxBlock(nn.Module):
|
831 |
+
def __init__(self, config: DbrxConfig, block_idx: int):
|
832 |
+
super().__init__()
|
833 |
+
self.hidden_size = config.d_model
|
834 |
+
self.resid_pdrop = config.resid_pdrop
|
835 |
+
self.block_idx = block_idx
|
836 |
+
self.norm_attn_norm = DbrxNormAttentionNorm(
|
837 |
+
config=config,
|
838 |
+
block_idx=block_idx,
|
839 |
+
)
|
840 |
+
self.ffn = DbrxFFN(config=config)
|
841 |
+
|
842 |
+
def forward(
|
843 |
+
self,
|
844 |
+
hidden_states: torch.Tensor,
|
845 |
+
attention_mask: Optional[torch.Tensor] = None,
|
846 |
+
position_ids: torch.LongTensor = None,
|
847 |
+
past_key_value: Optional[Cache] = None,
|
848 |
+
output_attentions: Optional[bool] = False,
|
849 |
+
output_router_logits: Optional[bool] = False,
|
850 |
+
use_cache: Optional[bool] = False,
|
851 |
+
cache_position: Optional[torch.LongTensor] = None,
|
852 |
+
**kwargs: Any,
|
853 |
+
) -> Union[
|
854 |
+
Tuple[torch.Tensor],
|
855 |
+
Tuple[torch.Tensor, Optional[torch.Tensor]],
|
856 |
+
Tuple[torch.Tensor, Optional[Cache]],
|
857 |
+
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]],
|
858 |
+
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]],
|
859 |
+
Tuple[torch.Tensor, Optional[Cache], Optional[torch.Tensor]],
|
860 |
+
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache], Optional[torch.Tensor]],
|
861 |
+
]:
|
862 |
+
"""Forward function for DbrxBlock.
|
863 |
+
|
864 |
+
Args:
|
865 |
+
hidden_states (`torch.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
866 |
+
position_ids (`torch.LongTensor`): position ids of shape `(batch, seq_len)`
|
867 |
+
attention_mask (`torch.Tensor`, optional): attention mask of size (batch_size, sequence_length)
|
868 |
+
if flash attention is used or (batch_size, 1, query_sequence_length, key_sequence_length)
|
869 |
+
if default attention is used.
|
870 |
+
past_key_value (`Tuple(torch.Tensor)`, optional): cached past key and value projection states
|
871 |
+
output_attentions (`bool`, optional): Whether or not to return the attentions tensors of all
|
872 |
+
attention layers. See `attentions` under returned tensors for more detail.
|
873 |
+
output_router_logits (`bool`, optional): Whether or not to return the router logits.
|
874 |
+
use_cache (`bool`, optional): If set to `True`, `past_key_values` key value states are
|
875 |
+
returned and can be used to speed up decoding (see `past_key_values`).
|
876 |
+
cache_position (`torch.LongTensor`, optional): position ids of the cache
|
877 |
+
"""
|
878 |
+
|
879 |
+
# Norm + Attention + Norm
|
880 |
+
resid_states, hidden_states, self_attn_weights, present_key_value = self.norm_attn_norm(
|
881 |
+
hidden_states=hidden_states,
|
882 |
+
attention_mask=attention_mask,
|
883 |
+
position_ids=position_ids,
|
884 |
+
past_key_value=past_key_value,
|
885 |
+
output_attentions=output_attentions,
|
886 |
+
use_cache=use_cache,
|
887 |
+
cache_position=cache_position,
|
888 |
+
**kwargs,
|
889 |
+
)
|
890 |
+
|
891 |
+
# Fully Connected
|
892 |
+
hidden_states, router_logits = self.ffn(hidden_states)
|
893 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.resid_pdrop, training=self.training)
|
894 |
+
hidden_states = resid_states + hidden_states
|
895 |
+
|
896 |
+
outputs = (hidden_states,)
|
897 |
+
|
898 |
+
if output_attentions:
|
899 |
+
outputs += (self_attn_weights,)
|
900 |
+
|
901 |
+
if use_cache:
|
902 |
+
outputs += (present_key_value,)
|
903 |
+
|
904 |
+
if output_router_logits:
|
905 |
+
outputs += (router_logits,)
|
906 |
+
|
907 |
+
return outputs
|
908 |
+
|
909 |
+
|
910 |
+
DBRX_START_DOCSTRING = r"""
|
911 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
912 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
913 |
+
etc.)
|
914 |
+
|
915 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
916 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
917 |
+
and behavior.
|
918 |
+
|
919 |
+
Parameters:
|
920 |
+
config ([`DbrxConfig`]):
|
921 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
922 |
+
load the weights associated with the model, only the configuration. Check out the
|
923 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
924 |
+
"""
|
925 |
+
|
926 |
+
|
927 |
+
@add_start_docstrings(
|
928 |
+
"The bare DBRX Model outputting raw hidden-states without any specific head on top.",
|
929 |
+
DBRX_START_DOCSTRING,
|
930 |
+
)
|
931 |
+
class DbrxPreTrainedModel(PreTrainedModel):
|
932 |
+
config_class = DbrxConfig
|
933 |
+
base_model_prefix = "transformer"
|
934 |
+
supports_gradient_checkpointing = True
|
935 |
+
_no_split_modules = ["DbrxBlock"]
|
936 |
+
_skip_keys_device_placement = ["past_key_values"]
|
937 |
+
_supports_flash_attn_2 = True
|
938 |
+
_supports_sdpa = True
|
939 |
+
_supports_cache_class = True
|
940 |
+
|
941 |
+
def _init_weights(self, module: nn.Module):
|
942 |
+
std = self.config.initializer_range
|
943 |
+
if isinstance(module, nn.Linear):
|
944 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
945 |
+
if module.bias is not None:
|
946 |
+
module.bias.data.zero_()
|
947 |
+
elif isinstance(module, nn.Embedding):
|
948 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
949 |
+
if module.padding_idx is not None:
|
950 |
+
module.weight.data[module.padding_idx].zero_()
|
951 |
+
elif isinstance(module, nn.LayerNorm):
|
952 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
953 |
+
if module.bias is not None:
|
954 |
+
module.bias.data.zero_()
|
955 |
+
elif isinstance(module, DbrxExpertGLU):
|
956 |
+
module.w1.data.normal_(mean=0.0, std=std)
|
957 |
+
module.v1.data.normal_(mean=0.0, std=std)
|
958 |
+
module.w2.data.normal_(mean=0.0, std=std)
|
959 |
+
|
960 |
+
def _setup_cache(self, cache_cls: Any, max_batch_size: int, max_cache_len: int):
|
961 |
+
if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
|
962 |
+
raise ValueError(
|
963 |
+
"`static` cache implementation is not compatible with "
|
964 |
+
+ "`attn_implementation==flash_attention_2`. Make sure to use "
|
965 |
+
+ "`spda` in the mean time and open an issue at https://github.com/huggingface/transformers."
|
966 |
+
)
|
967 |
+
|
968 |
+
for block in self.transformer.blocks:
|
969 |
+
device = block.norm_attn_norm.norm_1.weight.device
|
970 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
971 |
+
dtype = self.config._pre_quantization_dtype
|
972 |
+
else:
|
973 |
+
dtype = block.norm_attn_norm.attn.out_proj.weight.dtype
|
974 |
+
block.norm_attn_norm.attn.past_key_value = cache_cls(
|
975 |
+
self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
|
976 |
+
)
|
977 |
+
|
978 |
+
def _reset_cache(self):
|
979 |
+
for block in self.transformer.blocks:
|
980 |
+
block.norm_attn_norm.attn.past_key_value = None
|
981 |
+
|
982 |
+
|
983 |
+
DBRX_INPUTS_DOCSTRING = r"""
|
984 |
+
Args:
|
985 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
986 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
987 |
+
it.
|
988 |
+
|
989 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
990 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
991 |
+
|
992 |
+
[What are input IDs?](../glossary#input-ids)
|
993 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
994 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
995 |
+
|
996 |
+
- 1 for tokens that are **not masked**,
|
997 |
+
- 0 for tokens that are **masked**.
|
998 |
+
|
999 |
+
[What are attention masks?](../glossary#attention-mask)
|
1000 |
+
|
1001 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1002 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1003 |
+
|
1004 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
1005 |
+
`past_key_values`).
|
1006 |
+
|
1007 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1008 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1009 |
+
information on the default strategy.
|
1010 |
+
|
1011 |
+
- 1 indicates the head is **not masked**,
|
1012 |
+
- 0 indicates the head is **masked**.
|
1013 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1014 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1015 |
+
config.n_positions - 1]`.
|
1016 |
+
|
1017 |
+
[What are position IDs?](../glossary#position-ids)
|
1018 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
1019 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1020 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
1021 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
1022 |
+
|
1023 |
+
Two formats are allowed:
|
1024 |
+
- a [`~cache_utils.Cache`] instance;
|
1025 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1026 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1027 |
+
cache format.
|
1028 |
+
|
1029 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1030 |
+
legacy cache format will be returned.
|
1031 |
+
|
1032 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1033 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1034 |
+
of shape `(batch_size, sequence_length)`.
|
1035 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1036 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1037 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1038 |
+
model's internal embedding lookup matrix.
|
1039 |
+
use_cache (`bool`, *optional*):
|
1040 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1041 |
+
`past_key_values`).
|
1042 |
+
output_attentions (`bool`, *optional*):
|
1043 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1044 |
+
tensors for more detail.
|
1045 |
+
output_hidden_states (`bool`, *optional*):
|
1046 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1047 |
+
more detail.
|
1048 |
+
output_router_logits (`bool`, *optional*):
|
1049 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
1050 |
+
should not be returned during inference.
|
1051 |
+
return_dict (`bool`, *optional*):
|
1052 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1053 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
1054 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
1055 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
1056 |
+
the complete sequence length.
|
1057 |
+
"""
|
1058 |
+
|
1059 |
+
|
1060 |
+
@add_start_docstrings(
|
1061 |
+
"The bare DBRX Model outputting raw hidden-states without any specific head on top.",
|
1062 |
+
DBRX_START_DOCSTRING,
|
1063 |
+
)
|
1064 |
+
class DbrxModel(DbrxPreTrainedModel):
|
1065 |
+
"""Transformer decoder consisting of *config.num_hidden_layers*. Each layer is a [`DbrxBlock`] layer.
|
1066 |
+
|
1067 |
+
Args:
|
1068 |
+
config ([`DbrxConfig`]): Model configuration class with all parameters of the model.
|
1069 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1070 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1071 |
+
"""
|
1072 |
+
|
1073 |
+
def __init__(self, config: DbrxConfig):
|
1074 |
+
super().__init__(config)
|
1075 |
+
self.padding_idx = config.pad_token_id
|
1076 |
+
self.vocab_size = config.vocab_size
|
1077 |
+
self.emb_pdrop = config.emb_pdrop
|
1078 |
+
|
1079 |
+
self.wte = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
|
1080 |
+
self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)])
|
1081 |
+
self.norm_f = nn.LayerNorm(config.d_model, bias=False)
|
1082 |
+
self.gradient_checkpointing = False
|
1083 |
+
|
1084 |
+
# Initialize weights and apply final processing
|
1085 |
+
self.post_init()
|
1086 |
+
|
1087 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
1088 |
+
return self.wte
|
1089 |
+
|
1090 |
+
def set_input_embeddings(self, value: nn.Embedding):
|
1091 |
+
self.wte = value
|
1092 |
+
|
1093 |
+
@add_start_docstrings_to_model_forward(DBRX_INPUTS_DOCSTRING)
|
1094 |
+
def forward(
|
1095 |
+
self,
|
1096 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1097 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1098 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1099 |
+
past_key_values: Optional[Cache] = None,
|
1100 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1101 |
+
use_cache: Optional[bool] = None,
|
1102 |
+
output_attentions: Optional[bool] = None,
|
1103 |
+
output_hidden_states: Optional[bool] = None,
|
1104 |
+
output_router_logits: Optional[bool] = None,
|
1105 |
+
return_dict: Optional[bool] = None,
|
1106 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1107 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
1108 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1109 |
+
output_hidden_states = (
|
1110 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1111 |
+
)
|
1112 |
+
output_router_logits = (
|
1113 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1114 |
+
)
|
1115 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1116 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1117 |
+
|
1118 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1119 |
+
raise ValueError(
|
1120 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
1121 |
+
)
|
1122 |
+
|
1123 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
1124 |
+
logger.warning_once(
|
1125 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
1126 |
+
)
|
1127 |
+
use_cache = False
|
1128 |
+
|
1129 |
+
if inputs_embeds is None:
|
1130 |
+
inputs_embeds = self.wte(input_ids)
|
1131 |
+
|
1132 |
+
inputs_embeds = nn.functional.dropout(inputs_embeds, p=self.emb_pdrop, training=self.training)
|
1133 |
+
|
1134 |
+
past_seen_tokens = 0
|
1135 |
+
if use_cache: # kept for BC (cache positions)
|
1136 |
+
if not isinstance(past_key_values, StaticCache):
|
1137 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1138 |
+
past_seen_tokens = past_key_values.get_seq_length()
|
1139 |
+
|
1140 |
+
if cache_position is None:
|
1141 |
+
if isinstance(past_key_values, StaticCache):
|
1142 |
+
raise ValueError("cache_position is a required argument when using StaticCache.")
|
1143 |
+
cache_position = torch.arange(
|
1144 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
if position_ids is None:
|
1148 |
+
position_ids = cache_position.unsqueeze(0)
|
1149 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
|
1150 |
+
|
1151 |
+
# embed positions
|
1152 |
+
hidden_states = inputs_embeds
|
1153 |
+
|
1154 |
+
# decoder layers
|
1155 |
+
all_hidden_states = () if output_hidden_states else None
|
1156 |
+
all_self_attns = () if output_attentions else None
|
1157 |
+
all_router_logits = () if output_router_logits else None
|
1158 |
+
next_decoder_cache = None
|
1159 |
+
|
1160 |
+
for block in self.blocks:
|
1161 |
+
if output_hidden_states:
|
1162 |
+
all_hidden_states += (hidden_states,)
|
1163 |
+
|
1164 |
+
if self.gradient_checkpointing and self.training:
|
1165 |
+
block_outputs = self._gradient_checkpointing_func(
|
1166 |
+
block.__call__,
|
1167 |
+
hidden_states,
|
1168 |
+
causal_mask,
|
1169 |
+
position_ids,
|
1170 |
+
past_key_values,
|
1171 |
+
output_attentions,
|
1172 |
+
output_router_logits,
|
1173 |
+
use_cache,
|
1174 |
+
cache_position,
|
1175 |
+
)
|
1176 |
+
else:
|
1177 |
+
block_outputs = block(
|
1178 |
+
hidden_states,
|
1179 |
+
attention_mask=causal_mask,
|
1180 |
+
position_ids=position_ids,
|
1181 |
+
past_key_value=past_key_values,
|
1182 |
+
output_attentions=output_attentions,
|
1183 |
+
output_router_logits=output_router_logits,
|
1184 |
+
use_cache=use_cache,
|
1185 |
+
cache_position=cache_position,
|
1186 |
+
)
|
1187 |
+
|
1188 |
+
hidden_states = block_outputs[0]
|
1189 |
+
|
1190 |
+
if use_cache:
|
1191 |
+
next_decoder_cache = block_outputs[2 if output_attentions else 1]
|
1192 |
+
|
1193 |
+
if output_attentions:
|
1194 |
+
all_self_attns += (block_outputs[1],)
|
1195 |
+
|
1196 |
+
if output_router_logits:
|
1197 |
+
all_router_logits += (block_outputs[-1],)
|
1198 |
+
|
1199 |
+
hidden_states = self.norm_f(hidden_states)
|
1200 |
+
|
1201 |
+
# add hidden states from the last decoder layer
|
1202 |
+
if output_hidden_states:
|
1203 |
+
all_hidden_states += (hidden_states,)
|
1204 |
+
|
1205 |
+
next_cache = None
|
1206 |
+
if use_cache:
|
1207 |
+
next_cache = (
|
1208 |
+
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
|
1209 |
+
)
|
1210 |
+
if not return_dict:
|
1211 |
+
return tuple(
|
1212 |
+
v
|
1213 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
1214 |
+
if v is not None
|
1215 |
+
)
|
1216 |
+
return MoeModelOutputWithPast(
|
1217 |
+
last_hidden_state=hidden_states,
|
1218 |
+
past_key_values=next_cache,
|
1219 |
+
hidden_states=all_hidden_states,
|
1220 |
+
attentions=all_self_attns,
|
1221 |
+
router_logits=all_router_logits,
|
1222 |
+
)
|
1223 |
+
|
1224 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
1225 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1226 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1227 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
1228 |
+
def _update_causal_mask(
|
1229 |
+
self, attention_mask: Optional[torch.Tensor], input_tensor: torch.Tensor, cache_position: torch.Tensor
|
1230 |
+
) -> Optional[torch.Tensor]:
|
1231 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1232 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1233 |
+
return attention_mask
|
1234 |
+
return None
|
1235 |
+
|
1236 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1237 |
+
min_dtype = torch.finfo(dtype).min
|
1238 |
+
sequence_length = input_tensor.shape[1]
|
1239 |
+
if hasattr(self.blocks[0].norm_attn_norm.attn, "past_key_value"): # static cache
|
1240 |
+
target_length = self.config.max_position_embeddings
|
1241 |
+
else: # dynamic cache
|
1242 |
+
target_length = (
|
1243 |
+
attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1
|
1244 |
+
)
|
1245 |
+
target_length = int(target_length)
|
1246 |
+
|
1247 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
1248 |
+
if sequence_length != 1:
|
1249 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1250 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1251 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
1252 |
+
if attention_mask is not None:
|
1253 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1254 |
+
if attention_mask.dim() == 2:
|
1255 |
+
mask_length = attention_mask.shape[-1]
|
1256 |
+
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
|
1257 |
+
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
1258 |
+
elif attention_mask.dim() == 4:
|
1259 |
+
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
1260 |
+
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
1261 |
+
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
|
1262 |
+
offset = cache_position[0]
|
1263 |
+
else:
|
1264 |
+
offset = 0
|
1265 |
+
mask_shape = attention_mask.shape
|
1266 |
+
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
1267 |
+
causal_mask[
|
1268 |
+
: mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
|
1269 |
+
] = mask_slice
|
1270 |
+
|
1271 |
+
if (
|
1272 |
+
self.config._attn_implementation == "sdpa"
|
1273 |
+
and attention_mask is not None
|
1274 |
+
and attention_mask.device.type == "cuda"
|
1275 |
+
):
|
1276 |
+
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
|
1277 |
+
is_tracing = (
|
1278 |
+
torch.jit.is_tracing()
|
1279 |
+
or isinstance(input_tensor, torch.fx.Proxy)
|
1280 |
+
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
1281 |
+
)
|
1282 |
+
if not is_tracing and torch.any(attention_mask != 1):
|
1283 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1284 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1285 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1286 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1287 |
+
|
1288 |
+
return causal_mask
|
1289 |
+
|
1290 |
+
|
1291 |
+
@add_start_docstrings("The DBRX Model transformer for causal language modeling.", DBRX_START_DOCSTRING)
|
1292 |
+
class DbrxForCausalLM(DbrxPreTrainedModel):
|
1293 |
+
def __init__(self, config: DbrxConfig):
|
1294 |
+
super().__init__(config)
|
1295 |
+
self.transformer = DbrxModel(config)
|
1296 |
+
self.vocab_size = config.vocab_size
|
1297 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1298 |
+
self.moe_loss_weight = config.ffn_config.moe_loss_weight
|
1299 |
+
self.num_experts = config.ffn_config.moe_num_experts
|
1300 |
+
self.num_experts_per_tok = config.ffn_config.moe_top_k
|
1301 |
+
|
1302 |
+
# Initialize weights and apply final processing
|
1303 |
+
self.post_init()
|
1304 |
+
|
1305 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
1306 |
+
return self.transformer.get_input_embeddings()
|
1307 |
+
|
1308 |
+
def set_input_embeddings(self, value: nn.Embedding):
|
1309 |
+
self.transformer.set_input_embeddings(value)
|
1310 |
+
|
1311 |
+
def get_output_embeddings(self) -> nn.Linear:
|
1312 |
+
return self.lm_head
|
1313 |
+
|
1314 |
+
def set_output_embeddings(self, new_embeddings: nn.Linear):
|
1315 |
+
self.lm_head = new_embeddings
|
1316 |
+
|
1317 |
+
def set_decoder(self, decoder: DbrxModel):
|
1318 |
+
self.transformer = decoder
|
1319 |
+
|
1320 |
+
def get_decoder(self) -> DbrxModel:
|
1321 |
+
return self.transformer
|
1322 |
+
|
1323 |
+
@add_start_docstrings_to_model_forward(DBRX_INPUTS_DOCSTRING)
|
1324 |
+
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1325 |
+
def forward(
|
1326 |
+
self,
|
1327 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1328 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1329 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1330 |
+
past_key_values: Optional[Cache] = None,
|
1331 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1332 |
+
labels: Optional[torch.LongTensor] = None,
|
1333 |
+
use_cache: Optional[bool] = None,
|
1334 |
+
output_attentions: Optional[bool] = None,
|
1335 |
+
output_hidden_states: Optional[bool] = None,
|
1336 |
+
output_router_logits: Optional[bool] = None,
|
1337 |
+
return_dict: Optional[bool] = None,
|
1338 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1339 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
1340 |
+
r"""Forward function for causal language modeling.
|
1341 |
+
|
1342 |
+
Args:
|
1343 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1344 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1345 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1346 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1347 |
+
|
1348 |
+
Returns:
|
1349 |
+
|
1350 |
+
Example:
|
1351 |
+
|
1352 |
+
```python
|
1353 |
+
>> from transformers import AutoTokenizer, DbrxForCausalLM
|
1354 |
+
|
1355 |
+
>> model = DbrxForCausalLM.from_pretrained("databricks/dbrx-instruct")
|
1356 |
+
>> tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct")
|
1357 |
+
|
1358 |
+
>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1359 |
+
>> inputs = tokenizer(prompt, return_tensors="pt")
|
1360 |
+
|
1361 |
+
>> # Generate
|
1362 |
+
>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1363 |
+
>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1364 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1365 |
+
```
|
1366 |
+
"""
|
1367 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1368 |
+
output_hidden_states = (
|
1369 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1370 |
+
)
|
1371 |
+
output_router_logits = (
|
1372 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1373 |
+
)
|
1374 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1375 |
+
|
1376 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1377 |
+
outputs = self.transformer(
|
1378 |
+
input_ids=input_ids,
|
1379 |
+
attention_mask=attention_mask,
|
1380 |
+
position_ids=position_ids,
|
1381 |
+
past_key_values=past_key_values,
|
1382 |
+
inputs_embeds=inputs_embeds,
|
1383 |
+
use_cache=use_cache,
|
1384 |
+
output_attentions=output_attentions,
|
1385 |
+
output_hidden_states=output_hidden_states,
|
1386 |
+
output_router_logits=output_router_logits,
|
1387 |
+
return_dict=return_dict,
|
1388 |
+
cache_position=cache_position,
|
1389 |
+
)
|
1390 |
+
|
1391 |
+
hidden_states = outputs[0]
|
1392 |
+
logits = self.lm_head(hidden_states)
|
1393 |
+
|
1394 |
+
loss = None
|
1395 |
+
if labels is not None:
|
1396 |
+
# Shift so that tokens < n predict n
|
1397 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1398 |
+
shift_labels = labels[..., 1:].contiguous()
|
1399 |
+
# Flatten the tokens
|
1400 |
+
loss_fct = nn.CrossEntropyLoss()
|
1401 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1402 |
+
shift_labels = shift_labels.view(-1)
|
1403 |
+
# Enable model parallelism
|
1404 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1405 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1406 |
+
|
1407 |
+
aux_loss = None
|
1408 |
+
if output_router_logits:
|
1409 |
+
aux_loss = load_balancing_loss_func(
|
1410 |
+
outputs.router_logits if return_dict else outputs[-1],
|
1411 |
+
self.num_experts,
|
1412 |
+
self.num_experts_per_tok,
|
1413 |
+
attention_mask,
|
1414 |
+
)
|
1415 |
+
if labels is not None and loss is not None:
|
1416 |
+
loss += self.moe_loss_weight * aux_loss.to(loss.device) # make sure to reside in the same device
|
1417 |
+
|
1418 |
+
if not return_dict:
|
1419 |
+
output = (logits,) + outputs[1:]
|
1420 |
+
if output_router_logits:
|
1421 |
+
output = (aux_loss,) + output
|
1422 |
+
return (loss,) + output if loss is not None else output
|
1423 |
+
|
1424 |
+
return MoeCausalLMOutputWithPast(
|
1425 |
+
loss=loss,
|
1426 |
+
aux_loss=aux_loss,
|
1427 |
+
logits=logits,
|
1428 |
+
past_key_values=outputs.past_key_values,
|
1429 |
+
hidden_states=outputs.hidden_states,
|
1430 |
+
attentions=outputs.attentions,
|
1431 |
+
router_logits=outputs.router_logits,
|
1432 |
+
)
|
1433 |
+
|
1434 |
+
def prepare_inputs_for_generation(
|
1435 |
+
self,
|
1436 |
+
input_ids: torch.Tensor,
|
1437 |
+
past_key_values: Optional[Cache] = None,
|
1438 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1439 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1440 |
+
**kwargs: Any,
|
1441 |
+
) -> Dict[str, Any]:
|
1442 |
+
past_length = 0
|
1443 |
+
if past_key_values is not None:
|
1444 |
+
if isinstance(past_key_values, Cache):
|
1445 |
+
cache_length = past_key_values.get_seq_length()
|
1446 |
+
past_length = past_key_values.seen_tokens
|
1447 |
+
max_cache_length = past_key_values.get_max_length()
|
1448 |
+
else:
|
1449 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1450 |
+
max_cache_length = None
|
1451 |
+
|
1452 |
+
# Keep only the unprocessed tokens:
|
1453 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1454 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1455 |
+
# input)
|
1456 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1457 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1458 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1459 |
+
# input_ids based on the past_length.
|
1460 |
+
elif past_length < input_ids.shape[1]:
|
1461 |
+
input_ids = input_ids[:, past_length:]
|
1462 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1463 |
+
|
1464 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1465 |
+
if (
|
1466 |
+
max_cache_length is not None
|
1467 |
+
and attention_mask is not None
|
1468 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1469 |
+
):
|
1470 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1471 |
+
|
1472 |
+
position_ids = kwargs.get("position_ids", None)
|
1473 |
+
if attention_mask is not None and position_ids is None:
|
1474 |
+
# create position_ids on the fly for batch generation
|
1475 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1476 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1477 |
+
if past_key_values:
|
1478 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1479 |
+
|
1480 |
+
if self.generation_config.cache_implementation == "static":
|
1481 |
+
# generation with static cache
|
1482 |
+
cache_position = kwargs.get("cache_position", None)
|
1483 |
+
if cache_position is None:
|
1484 |
+
past_length = 0
|
1485 |
+
else:
|
1486 |
+
past_length = cache_position[-1] + 1
|
1487 |
+
input_ids = input_ids[:, past_length:]
|
1488 |
+
position_ids = position_ids[:, past_length:] if position_ids is not None else None
|
1489 |
+
|
1490 |
+
# TODO @gante we should only keep a `cache_position` in generate, and do +=1.
|
1491 |
+
# same goes for position ids. Could also help with continued generation.
|
1492 |
+
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
1493 |
+
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
1494 |
+
position_ids = position_ids.contiguous() if position_ids is not None else None
|
1495 |
+
|
1496 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1497 |
+
if inputs_embeds is not None and past_key_values is None:
|
1498 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1499 |
+
else:
|
1500 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
1501 |
+
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
1502 |
+
# TODO: use `next_tokens` directly instead.
|
1503 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
1504 |
+
|
1505 |
+
model_inputs.update(
|
1506 |
+
{
|
1507 |
+
"position_ids": position_ids,
|
1508 |
+
"cache_position": cache_position,
|
1509 |
+
"past_key_values": past_key_values,
|
1510 |
+
"use_cache": kwargs.get("use_cache"),
|
1511 |
+
"attention_mask": attention_mask,
|
1512 |
+
}
|
1513 |
+
)
|
1514 |
+
return model_inputs
|
1515 |
+
|
1516 |
+
@staticmethod
|
1517 |
+
def _reorder_cache(past_key_values: Cache, beam_idx: torch.LongTensor):
|
1518 |
+
reordered_past = ()
|
1519 |
+
for layer_past in past_key_values:
|
1520 |
+
reordered_past += (
|
1521 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1522 |
+
)
|
1523 |
+
return reordered_past
|
llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__init__.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {"configuration_detr": ["DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetrConfig", "DetrOnnxConfig"]}
|
21 |
+
|
22 |
+
try:
|
23 |
+
if not is_vision_available():
|
24 |
+
raise OptionalDependencyNotAvailable()
|
25 |
+
except OptionalDependencyNotAvailable:
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
_import_structure["feature_extraction_detr"] = ["DetrFeatureExtractor"]
|
29 |
+
_import_structure["image_processing_detr"] = ["DetrImageProcessor"]
|
30 |
+
|
31 |
+
try:
|
32 |
+
if not is_torch_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
_import_structure["modeling_detr"] = [
|
38 |
+
"DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
|
39 |
+
"DetrForObjectDetection",
|
40 |
+
"DetrForSegmentation",
|
41 |
+
"DetrModel",
|
42 |
+
"DetrPreTrainedModel",
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
if TYPE_CHECKING:
|
47 |
+
from .configuration_detr import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DetrConfig, DetrOnnxConfig
|
48 |
+
|
49 |
+
try:
|
50 |
+
if not is_vision_available():
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
except OptionalDependencyNotAvailable:
|
53 |
+
pass
|
54 |
+
else:
|
55 |
+
from .feature_extraction_detr import DetrFeatureExtractor
|
56 |
+
from .image_processing_detr import DetrImageProcessor
|
57 |
+
|
58 |
+
try:
|
59 |
+
if not is_torch_available():
|
60 |
+
raise OptionalDependencyNotAvailable()
|
61 |
+
except OptionalDependencyNotAvailable:
|
62 |
+
pass
|
63 |
+
else:
|
64 |
+
from .modeling_detr import (
|
65 |
+
DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
|
66 |
+
DetrForObjectDetection,
|
67 |
+
DetrForSegmentation,
|
68 |
+
DetrModel,
|
69 |
+
DetrPreTrainedModel,
|
70 |
+
)
|
71 |
+
|
72 |
+
else:
|
73 |
+
import sys
|
74 |
+
|
75 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.25 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__pycache__/configuration_detr.cpython-310.pyc
ADDED
Binary file (11.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__pycache__/convert_detr_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (7.81 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__pycache__/convert_detr_to_pytorch.cpython-310.pyc
ADDED
Binary file (10.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__pycache__/feature_extraction_detr.cpython-310.pyc
ADDED
Binary file (1.33 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__pycache__/image_processing_detr.cpython-310.pyc
ADDED
Binary file (67.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/detr/__pycache__/modeling_detr.cpython-310.pyc
ADDED
Binary file (86.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/detr/configuration_detr.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 Facebook AI Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" DETR model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from packaging import version
|
21 |
+
|
22 |
+
from ...configuration_utils import PretrainedConfig
|
23 |
+
from ...onnx import OnnxConfig
|
24 |
+
from ...utils import logging
|
25 |
+
from ..auto import CONFIG_MAPPING
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
from ..deprecated._archive_maps import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
32 |
+
|
33 |
+
|
34 |
+
class DetrConfig(PretrainedConfig):
|
35 |
+
r"""
|
36 |
+
This is the configuration class to store the configuration of a [`DetrModel`]. It is used to instantiate a DETR
|
37 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
38 |
+
defaults will yield a similar configuration to that of the DETR
|
39 |
+
[facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) architecture.
|
40 |
+
|
41 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
42 |
+
documentation from [`PretrainedConfig`] for more information.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
use_timm_backbone (`bool`, *optional*, defaults to `True`):
|
46 |
+
Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`]
|
47 |
+
API.
|
48 |
+
backbone_config (`PretrainedConfig` or `dict`, *optional*):
|
49 |
+
The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which
|
50 |
+
case it will default to `ResNetConfig()`.
|
51 |
+
num_channels (`int`, *optional*, defaults to 3):
|
52 |
+
The number of input channels.
|
53 |
+
num_queries (`int`, *optional*, defaults to 100):
|
54 |
+
Number of object queries, i.e. detection slots. This is the maximal number of objects [`DetrModel`] can
|
55 |
+
detect in a single image. For COCO, we recommend 100 queries.
|
56 |
+
d_model (`int`, *optional*, defaults to 256):
|
57 |
+
Dimension of the layers.
|
58 |
+
encoder_layers (`int`, *optional*, defaults to 6):
|
59 |
+
Number of encoder layers.
|
60 |
+
decoder_layers (`int`, *optional*, defaults to 6):
|
61 |
+
Number of decoder layers.
|
62 |
+
encoder_attention_heads (`int`, *optional*, defaults to 8):
|
63 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
64 |
+
decoder_attention_heads (`int`, *optional*, defaults to 8):
|
65 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
66 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 2048):
|
67 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
68 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 2048):
|
69 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
70 |
+
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
|
71 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
72 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
73 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
74 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
75 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
76 |
+
The dropout ratio for the attention probabilities.
|
77 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
78 |
+
The dropout ratio for activations inside the fully connected layer.
|
79 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
80 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
81 |
+
init_xavier_std (`float`, *optional*, defaults to 1):
|
82 |
+
The scaling factor used for the Xavier initialization gain in the HM Attention map module.
|
83 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
84 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
85 |
+
for more details.
|
86 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
87 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
88 |
+
for more details.
|
89 |
+
auxiliary_loss (`bool`, *optional*, defaults to `False`):
|
90 |
+
Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
|
91 |
+
position_embedding_type (`str`, *optional*, defaults to `"sine"`):
|
92 |
+
Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
|
93 |
+
backbone (`str`, *optional*, defaults to `"resnet50"`):
|
94 |
+
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
|
95 |
+
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
|
96 |
+
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
|
97 |
+
use_pretrained_backbone (`bool`, *optional*, `True`):
|
98 |
+
Whether to use pretrained weights for the backbone.
|
99 |
+
backbone_kwargs (`dict`, *optional*):
|
100 |
+
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
|
101 |
+
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
|
102 |
+
dilation (`bool`, *optional*, defaults to `False`):
|
103 |
+
Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when
|
104 |
+
`use_timm_backbone` = `True`.
|
105 |
+
class_cost (`float`, *optional*, defaults to 1):
|
106 |
+
Relative weight of the classification error in the Hungarian matching cost.
|
107 |
+
bbox_cost (`float`, *optional*, defaults to 5):
|
108 |
+
Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
|
109 |
+
giou_cost (`float`, *optional*, defaults to 2):
|
110 |
+
Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
|
111 |
+
mask_loss_coefficient (`float`, *optional*, defaults to 1):
|
112 |
+
Relative weight of the Focal loss in the panoptic segmentation loss.
|
113 |
+
dice_loss_coefficient (`float`, *optional*, defaults to 1):
|
114 |
+
Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
|
115 |
+
bbox_loss_coefficient (`float`, *optional*, defaults to 5):
|
116 |
+
Relative weight of the L1 bounding box loss in the object detection loss.
|
117 |
+
giou_loss_coefficient (`float`, *optional*, defaults to 2):
|
118 |
+
Relative weight of the generalized IoU loss in the object detection loss.
|
119 |
+
eos_coefficient (`float`, *optional*, defaults to 0.1):
|
120 |
+
Relative classification weight of the 'no-object' class in the object detection loss.
|
121 |
+
|
122 |
+
Examples:
|
123 |
+
|
124 |
+
```python
|
125 |
+
>>> from transformers import DetrConfig, DetrModel
|
126 |
+
|
127 |
+
>>> # Initializing a DETR facebook/detr-resnet-50 style configuration
|
128 |
+
>>> configuration = DetrConfig()
|
129 |
+
|
130 |
+
>>> # Initializing a model (with random weights) from the facebook/detr-resnet-50 style configuration
|
131 |
+
>>> model = DetrModel(configuration)
|
132 |
+
|
133 |
+
>>> # Accessing the model configuration
|
134 |
+
>>> configuration = model.config
|
135 |
+
```"""
|
136 |
+
|
137 |
+
model_type = "detr"
|
138 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
139 |
+
attribute_map = {
|
140 |
+
"hidden_size": "d_model",
|
141 |
+
"num_attention_heads": "encoder_attention_heads",
|
142 |
+
}
|
143 |
+
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
use_timm_backbone=True,
|
147 |
+
backbone_config=None,
|
148 |
+
num_channels=3,
|
149 |
+
num_queries=100,
|
150 |
+
encoder_layers=6,
|
151 |
+
encoder_ffn_dim=2048,
|
152 |
+
encoder_attention_heads=8,
|
153 |
+
decoder_layers=6,
|
154 |
+
decoder_ffn_dim=2048,
|
155 |
+
decoder_attention_heads=8,
|
156 |
+
encoder_layerdrop=0.0,
|
157 |
+
decoder_layerdrop=0.0,
|
158 |
+
is_encoder_decoder=True,
|
159 |
+
activation_function="relu",
|
160 |
+
d_model=256,
|
161 |
+
dropout=0.1,
|
162 |
+
attention_dropout=0.0,
|
163 |
+
activation_dropout=0.0,
|
164 |
+
init_std=0.02,
|
165 |
+
init_xavier_std=1.0,
|
166 |
+
auxiliary_loss=False,
|
167 |
+
position_embedding_type="sine",
|
168 |
+
backbone="resnet50",
|
169 |
+
use_pretrained_backbone=True,
|
170 |
+
backbone_kwargs=None,
|
171 |
+
dilation=False,
|
172 |
+
class_cost=1,
|
173 |
+
bbox_cost=5,
|
174 |
+
giou_cost=2,
|
175 |
+
mask_loss_coefficient=1,
|
176 |
+
dice_loss_coefficient=1,
|
177 |
+
bbox_loss_coefficient=5,
|
178 |
+
giou_loss_coefficient=2,
|
179 |
+
eos_coefficient=0.1,
|
180 |
+
**kwargs,
|
181 |
+
):
|
182 |
+
if not use_timm_backbone and use_pretrained_backbone:
|
183 |
+
raise ValueError(
|
184 |
+
"Loading pretrained backbone weights from the transformers library is not supported yet. `use_timm_backbone` must be set to `True` when `use_pretrained_backbone=True`"
|
185 |
+
)
|
186 |
+
|
187 |
+
if backbone_config is not None and backbone is not None:
|
188 |
+
raise ValueError("You can't specify both `backbone` and `backbone_config`.")
|
189 |
+
|
190 |
+
if backbone_config is not None and use_timm_backbone:
|
191 |
+
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.")
|
192 |
+
|
193 |
+
if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None:
|
194 |
+
raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.")
|
195 |
+
|
196 |
+
if not use_timm_backbone:
|
197 |
+
if backbone_config is None:
|
198 |
+
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.")
|
199 |
+
backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"])
|
200 |
+
elif isinstance(backbone_config, dict):
|
201 |
+
backbone_model_type = backbone_config.get("model_type")
|
202 |
+
config_class = CONFIG_MAPPING[backbone_model_type]
|
203 |
+
backbone_config = config_class.from_dict(backbone_config)
|
204 |
+
# set timm attributes to None
|
205 |
+
dilation, backbone, use_pretrained_backbone = None, None, None
|
206 |
+
|
207 |
+
self.use_timm_backbone = use_timm_backbone
|
208 |
+
self.backbone_config = backbone_config
|
209 |
+
self.num_channels = num_channels
|
210 |
+
self.num_queries = num_queries
|
211 |
+
self.d_model = d_model
|
212 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
213 |
+
self.encoder_layers = encoder_layers
|
214 |
+
self.encoder_attention_heads = encoder_attention_heads
|
215 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
216 |
+
self.decoder_layers = decoder_layers
|
217 |
+
self.decoder_attention_heads = decoder_attention_heads
|
218 |
+
self.dropout = dropout
|
219 |
+
self.attention_dropout = attention_dropout
|
220 |
+
self.activation_dropout = activation_dropout
|
221 |
+
self.activation_function = activation_function
|
222 |
+
self.init_std = init_std
|
223 |
+
self.init_xavier_std = init_xavier_std
|
224 |
+
self.encoder_layerdrop = encoder_layerdrop
|
225 |
+
self.decoder_layerdrop = decoder_layerdrop
|
226 |
+
self.num_hidden_layers = encoder_layers
|
227 |
+
self.auxiliary_loss = auxiliary_loss
|
228 |
+
self.position_embedding_type = position_embedding_type
|
229 |
+
self.backbone = backbone
|
230 |
+
self.use_pretrained_backbone = use_pretrained_backbone
|
231 |
+
self.backbone_kwargs = backbone_kwargs
|
232 |
+
self.dilation = dilation
|
233 |
+
# Hungarian matcher
|
234 |
+
self.class_cost = class_cost
|
235 |
+
self.bbox_cost = bbox_cost
|
236 |
+
self.giou_cost = giou_cost
|
237 |
+
# Loss coefficients
|
238 |
+
self.mask_loss_coefficient = mask_loss_coefficient
|
239 |
+
self.dice_loss_coefficient = dice_loss_coefficient
|
240 |
+
self.bbox_loss_coefficient = bbox_loss_coefficient
|
241 |
+
self.giou_loss_coefficient = giou_loss_coefficient
|
242 |
+
self.eos_coefficient = eos_coefficient
|
243 |
+
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
|
244 |
+
|
245 |
+
@property
|
246 |
+
def num_attention_heads(self) -> int:
|
247 |
+
return self.encoder_attention_heads
|
248 |
+
|
249 |
+
@property
|
250 |
+
def hidden_size(self) -> int:
|
251 |
+
return self.d_model
|
252 |
+
|
253 |
+
@classmethod
|
254 |
+
def from_backbone_config(cls, backbone_config: PretrainedConfig, **kwargs):
|
255 |
+
"""Instantiate a [`DetrConfig`] (or a derived class) from a pre-trained backbone model configuration.
|
256 |
+
|
257 |
+
Args:
|
258 |
+
backbone_config ([`PretrainedConfig`]):
|
259 |
+
The backbone configuration.
|
260 |
+
Returns:
|
261 |
+
[`DetrConfig`]: An instance of a configuration object
|
262 |
+
"""
|
263 |
+
return cls(backbone_config=backbone_config, **kwargs)
|
264 |
+
|
265 |
+
|
266 |
+
class DetrOnnxConfig(OnnxConfig):
|
267 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
268 |
+
|
269 |
+
@property
|
270 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
271 |
+
return OrderedDict(
|
272 |
+
[
|
273 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
274 |
+
("pixel_mask", {0: "batch"}),
|
275 |
+
]
|
276 |
+
)
|
277 |
+
|
278 |
+
@property
|
279 |
+
def atol_for_validation(self) -> float:
|
280 |
+
return 1e-5
|
281 |
+
|
282 |
+
@property
|
283 |
+
def default_onnx_opset(self) -> int:
|
284 |
+
return 12
|
llmeval-env/lib/python3.10/site-packages/transformers/models/detr/convert_detr_original_pytorch_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert DETR checkpoints with timm backbone."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
from collections import OrderedDict
|
21 |
+
from pathlib import Path
|
22 |
+
|
23 |
+
import requests
|
24 |
+
import torch
|
25 |
+
from huggingface_hub import hf_hub_download
|
26 |
+
from PIL import Image
|
27 |
+
|
28 |
+
from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
|
32 |
+
logging.set_verbosity_info()
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
# here we list all keys to be renamed (original name on the left, our name on the right)
|
36 |
+
rename_keys = []
|
37 |
+
for i in range(6):
|
38 |
+
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
|
39 |
+
rename_keys.append(
|
40 |
+
(f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight")
|
41 |
+
)
|
42 |
+
rename_keys.append(
|
43 |
+
(f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias")
|
44 |
+
)
|
45 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight"))
|
46 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias"))
|
47 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight"))
|
48 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias"))
|
49 |
+
rename_keys.append(
|
50 |
+
(f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight")
|
51 |
+
)
|
52 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias"))
|
53 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight"))
|
54 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias"))
|
55 |
+
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
|
56 |
+
rename_keys.append(
|
57 |
+
(f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight")
|
58 |
+
)
|
59 |
+
rename_keys.append(
|
60 |
+
(f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias")
|
61 |
+
)
|
62 |
+
rename_keys.append(
|
63 |
+
(
|
64 |
+
f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight",
|
65 |
+
f"decoder.layers.{i}.encoder_attn.out_proj.weight",
|
66 |
+
)
|
67 |
+
)
|
68 |
+
rename_keys.append(
|
69 |
+
(
|
70 |
+
f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias",
|
71 |
+
f"decoder.layers.{i}.encoder_attn.out_proj.bias",
|
72 |
+
)
|
73 |
+
)
|
74 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight"))
|
75 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias"))
|
76 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight"))
|
77 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias"))
|
78 |
+
rename_keys.append(
|
79 |
+
(f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight")
|
80 |
+
)
|
81 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias"))
|
82 |
+
rename_keys.append(
|
83 |
+
(f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight")
|
84 |
+
)
|
85 |
+
rename_keys.append(
|
86 |
+
(f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias")
|
87 |
+
)
|
88 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight"))
|
89 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias"))
|
90 |
+
|
91 |
+
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
|
92 |
+
rename_keys.extend(
|
93 |
+
[
|
94 |
+
("input_proj.weight", "input_projection.weight"),
|
95 |
+
("input_proj.bias", "input_projection.bias"),
|
96 |
+
("query_embed.weight", "query_position_embeddings.weight"),
|
97 |
+
("transformer.decoder.norm.weight", "decoder.layernorm.weight"),
|
98 |
+
("transformer.decoder.norm.bias", "decoder.layernorm.bias"),
|
99 |
+
("class_embed.weight", "class_labels_classifier.weight"),
|
100 |
+
("class_embed.bias", "class_labels_classifier.bias"),
|
101 |
+
("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"),
|
102 |
+
("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"),
|
103 |
+
("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"),
|
104 |
+
("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"),
|
105 |
+
("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"),
|
106 |
+
("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"),
|
107 |
+
]
|
108 |
+
)
|
109 |
+
|
110 |
+
|
111 |
+
def rename_key(state_dict, old, new):
|
112 |
+
val = state_dict.pop(old)
|
113 |
+
state_dict[new] = val
|
114 |
+
|
115 |
+
|
116 |
+
def rename_backbone_keys(state_dict):
|
117 |
+
new_state_dict = OrderedDict()
|
118 |
+
for key, value in state_dict.items():
|
119 |
+
if "backbone.0.body" in key:
|
120 |
+
new_key = key.replace("backbone.0.body", "backbone.conv_encoder.model")
|
121 |
+
new_state_dict[new_key] = value
|
122 |
+
else:
|
123 |
+
new_state_dict[key] = value
|
124 |
+
|
125 |
+
return new_state_dict
|
126 |
+
|
127 |
+
|
128 |
+
def read_in_q_k_v(state_dict, is_panoptic=False):
|
129 |
+
prefix = ""
|
130 |
+
if is_panoptic:
|
131 |
+
prefix = "detr."
|
132 |
+
|
133 |
+
# first: transformer encoder
|
134 |
+
for i in range(6):
|
135 |
+
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
|
136 |
+
in_proj_weight = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight")
|
137 |
+
in_proj_bias = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias")
|
138 |
+
# next, add query, keys and values (in that order) to the state dict
|
139 |
+
state_dict[f"encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
|
140 |
+
state_dict[f"encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
|
141 |
+
state_dict[f"encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
|
142 |
+
state_dict[f"encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
|
143 |
+
state_dict[f"encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
|
144 |
+
state_dict[f"encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
|
145 |
+
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
|
146 |
+
for i in range(6):
|
147 |
+
# read in weights + bias of input projection layer of self-attention
|
148 |
+
in_proj_weight = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight")
|
149 |
+
in_proj_bias = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias")
|
150 |
+
# next, add query, keys and values (in that order) to the state dict
|
151 |
+
state_dict[f"decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
|
152 |
+
state_dict[f"decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
|
153 |
+
state_dict[f"decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
|
154 |
+
state_dict[f"decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
|
155 |
+
state_dict[f"decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
|
156 |
+
state_dict[f"decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
|
157 |
+
# read in weights + bias of input projection layer of cross-attention
|
158 |
+
in_proj_weight_cross_attn = state_dict.pop(
|
159 |
+
f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight"
|
160 |
+
)
|
161 |
+
in_proj_bias_cross_attn = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias")
|
162 |
+
# next, add query, keys and values (in that order) of cross-attention to the state dict
|
163 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.weight"] = in_proj_weight_cross_attn[:256, :]
|
164 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.bias"] = in_proj_bias_cross_attn[:256]
|
165 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.weight"] = in_proj_weight_cross_attn[256:512, :]
|
166 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.bias"] = in_proj_bias_cross_attn[256:512]
|
167 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.weight"] = in_proj_weight_cross_attn[-256:, :]
|
168 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.bias"] = in_proj_bias_cross_attn[-256:]
|
169 |
+
|
170 |
+
|
171 |
+
# We will verify our results on an image of cute cats
|
172 |
+
def prepare_img():
|
173 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
174 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
175 |
+
|
176 |
+
return im
|
177 |
+
|
178 |
+
|
179 |
+
@torch.no_grad()
|
180 |
+
def convert_detr_checkpoint(model_name, pytorch_dump_folder_path):
|
181 |
+
"""
|
182 |
+
Copy/paste/tweak model's weights to our DETR structure.
|
183 |
+
"""
|
184 |
+
|
185 |
+
# load default config
|
186 |
+
config = DetrConfig()
|
187 |
+
# set backbone and dilation attributes
|
188 |
+
if "resnet101" in model_name:
|
189 |
+
config.backbone = "resnet101"
|
190 |
+
if "dc5" in model_name:
|
191 |
+
config.dilation = True
|
192 |
+
is_panoptic = "panoptic" in model_name
|
193 |
+
if is_panoptic:
|
194 |
+
config.num_labels = 250
|
195 |
+
else:
|
196 |
+
config.num_labels = 91
|
197 |
+
repo_id = "huggingface/label-files"
|
198 |
+
filename = "coco-detection-id2label.json"
|
199 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
200 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
201 |
+
config.id2label = id2label
|
202 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
203 |
+
|
204 |
+
# load image processor
|
205 |
+
format = "coco_panoptic" if is_panoptic else "coco_detection"
|
206 |
+
image_processor = DetrImageProcessor(format=format)
|
207 |
+
|
208 |
+
# prepare image
|
209 |
+
img = prepare_img()
|
210 |
+
encoding = image_processor(images=img, return_tensors="pt")
|
211 |
+
pixel_values = encoding["pixel_values"]
|
212 |
+
|
213 |
+
logger.info(f"Converting model {model_name}...")
|
214 |
+
|
215 |
+
# load original model from torch hub
|
216 |
+
detr = torch.hub.load("facebookresearch/detr", model_name, pretrained=True).eval()
|
217 |
+
state_dict = detr.state_dict()
|
218 |
+
# rename keys
|
219 |
+
for src, dest in rename_keys:
|
220 |
+
if is_panoptic:
|
221 |
+
src = "detr." + src
|
222 |
+
rename_key(state_dict, src, dest)
|
223 |
+
state_dict = rename_backbone_keys(state_dict)
|
224 |
+
# query, key and value matrices need special treatment
|
225 |
+
read_in_q_k_v(state_dict, is_panoptic=is_panoptic)
|
226 |
+
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
|
227 |
+
prefix = "detr.model." if is_panoptic else "model."
|
228 |
+
for key in state_dict.copy().keys():
|
229 |
+
if is_panoptic:
|
230 |
+
if (
|
231 |
+
key.startswith("detr")
|
232 |
+
and not key.startswith("class_labels_classifier")
|
233 |
+
and not key.startswith("bbox_predictor")
|
234 |
+
):
|
235 |
+
val = state_dict.pop(key)
|
236 |
+
state_dict["detr.model" + key[4:]] = val
|
237 |
+
elif "class_labels_classifier" in key or "bbox_predictor" in key:
|
238 |
+
val = state_dict.pop(key)
|
239 |
+
state_dict["detr." + key] = val
|
240 |
+
elif key.startswith("bbox_attention") or key.startswith("mask_head"):
|
241 |
+
continue
|
242 |
+
else:
|
243 |
+
val = state_dict.pop(key)
|
244 |
+
state_dict[prefix + key] = val
|
245 |
+
else:
|
246 |
+
if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"):
|
247 |
+
val = state_dict.pop(key)
|
248 |
+
state_dict[prefix + key] = val
|
249 |
+
# finally, create HuggingFace model and load state dict
|
250 |
+
model = DetrForSegmentation(config) if is_panoptic else DetrForObjectDetection(config)
|
251 |
+
model.load_state_dict(state_dict)
|
252 |
+
model.eval()
|
253 |
+
# verify our conversion
|
254 |
+
original_outputs = detr(pixel_values)
|
255 |
+
outputs = model(pixel_values)
|
256 |
+
assert torch.allclose(outputs.logits, original_outputs["pred_logits"], atol=1e-4)
|
257 |
+
assert torch.allclose(outputs.pred_boxes, original_outputs["pred_boxes"], atol=1e-4)
|
258 |
+
if is_panoptic:
|
259 |
+
assert torch.allclose(outputs.pred_masks, original_outputs["pred_masks"], atol=1e-4)
|
260 |
+
|
261 |
+
# Save model and image processor
|
262 |
+
logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...")
|
263 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
264 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
265 |
+
image_processor.save_pretrained(pytorch_dump_folder_path)
|
266 |
+
|
267 |
+
|
268 |
+
if __name__ == "__main__":
|
269 |
+
parser = argparse.ArgumentParser()
|
270 |
+
|
271 |
+
parser.add_argument(
|
272 |
+
"--model_name", default="detr_resnet50", type=str, help="Name of the DETR model you'd like to convert."
|
273 |
+
)
|
274 |
+
parser.add_argument(
|
275 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
|
276 |
+
)
|
277 |
+
args = parser.parse_args()
|
278 |
+
convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/detr/convert_detr_to_pytorch.py
ADDED
@@ -0,0 +1,386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert DETR checkpoints with native (Transformers) backbone."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import requests
|
23 |
+
import torch
|
24 |
+
from huggingface_hub import hf_hub_download
|
25 |
+
from PIL import Image
|
26 |
+
|
27 |
+
from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig
|
28 |
+
from transformers.utils import logging
|
29 |
+
|
30 |
+
|
31 |
+
logging.set_verbosity_info()
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
def get_detr_config(model_name):
|
36 |
+
# initialize config
|
37 |
+
if "resnet-50" in model_name:
|
38 |
+
backbone_config = ResNetConfig.from_pretrained("microsoft/resnet-50")
|
39 |
+
elif "resnet-101" in model_name:
|
40 |
+
backbone_config = ResNetConfig.from_pretrained("microsoft/resnet-101")
|
41 |
+
else:
|
42 |
+
raise ValueError("Model name should include either resnet50 or resnet101")
|
43 |
+
|
44 |
+
config = DetrConfig(use_timm_backbone=False, backbone_config=backbone_config)
|
45 |
+
|
46 |
+
# set label attributes
|
47 |
+
is_panoptic = "panoptic" in model_name
|
48 |
+
if is_panoptic:
|
49 |
+
config.num_labels = 250
|
50 |
+
else:
|
51 |
+
config.num_labels = 91
|
52 |
+
repo_id = "huggingface/label-files"
|
53 |
+
filename = "coco-detection-id2label.json"
|
54 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
55 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
56 |
+
config.id2label = id2label
|
57 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
58 |
+
|
59 |
+
return config, is_panoptic
|
60 |
+
|
61 |
+
|
62 |
+
def create_rename_keys(config):
|
63 |
+
# here we list all keys to be renamed (original name on the left, our name on the right)
|
64 |
+
rename_keys = []
|
65 |
+
|
66 |
+
# stem
|
67 |
+
# fmt: off
|
68 |
+
rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight"))
|
69 |
+
rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight"))
|
70 |
+
rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias"))
|
71 |
+
rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean"))
|
72 |
+
rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var"))
|
73 |
+
# stages
|
74 |
+
for stage_idx in range(len(config.backbone_config.depths)):
|
75 |
+
for layer_idx in range(config.backbone_config.depths[stage_idx]):
|
76 |
+
# shortcut
|
77 |
+
if layer_idx == 0:
|
78 |
+
rename_keys.append(
|
79 |
+
(
|
80 |
+
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight",
|
81 |
+
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight",
|
82 |
+
)
|
83 |
+
)
|
84 |
+
rename_keys.append(
|
85 |
+
(
|
86 |
+
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight",
|
87 |
+
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight",
|
88 |
+
)
|
89 |
+
)
|
90 |
+
rename_keys.append(
|
91 |
+
(
|
92 |
+
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias",
|
93 |
+
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias",
|
94 |
+
)
|
95 |
+
)
|
96 |
+
rename_keys.append(
|
97 |
+
(
|
98 |
+
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean",
|
99 |
+
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean",
|
100 |
+
)
|
101 |
+
)
|
102 |
+
rename_keys.append(
|
103 |
+
(
|
104 |
+
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var",
|
105 |
+
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var",
|
106 |
+
)
|
107 |
+
)
|
108 |
+
# 3 convs
|
109 |
+
for i in range(3):
|
110 |
+
rename_keys.append(
|
111 |
+
(
|
112 |
+
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight",
|
113 |
+
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight",
|
114 |
+
)
|
115 |
+
)
|
116 |
+
rename_keys.append(
|
117 |
+
(
|
118 |
+
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight",
|
119 |
+
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight",
|
120 |
+
)
|
121 |
+
)
|
122 |
+
rename_keys.append(
|
123 |
+
(
|
124 |
+
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias",
|
125 |
+
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias",
|
126 |
+
)
|
127 |
+
)
|
128 |
+
rename_keys.append(
|
129 |
+
(
|
130 |
+
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean",
|
131 |
+
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean",
|
132 |
+
)
|
133 |
+
)
|
134 |
+
rename_keys.append(
|
135 |
+
(
|
136 |
+
f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var",
|
137 |
+
f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var",
|
138 |
+
)
|
139 |
+
)
|
140 |
+
# fmt: on
|
141 |
+
|
142 |
+
for i in range(config.encoder_layers):
|
143 |
+
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
|
144 |
+
rename_keys.append(
|
145 |
+
(
|
146 |
+
f"transformer.encoder.layers.{i}.self_attn.out_proj.weight",
|
147 |
+
f"encoder.layers.{i}.self_attn.out_proj.weight",
|
148 |
+
)
|
149 |
+
)
|
150 |
+
rename_keys.append(
|
151 |
+
(f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias")
|
152 |
+
)
|
153 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight"))
|
154 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias"))
|
155 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight"))
|
156 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias"))
|
157 |
+
rename_keys.append(
|
158 |
+
(f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight")
|
159 |
+
)
|
160 |
+
rename_keys.append(
|
161 |
+
(f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")
|
162 |
+
)
|
163 |
+
rename_keys.append(
|
164 |
+
(f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")
|
165 |
+
)
|
166 |
+
rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias"))
|
167 |
+
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
|
168 |
+
rename_keys.append(
|
169 |
+
(
|
170 |
+
f"transformer.decoder.layers.{i}.self_attn.out_proj.weight",
|
171 |
+
f"decoder.layers.{i}.self_attn.out_proj.weight",
|
172 |
+
)
|
173 |
+
)
|
174 |
+
rename_keys.append(
|
175 |
+
(f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias")
|
176 |
+
)
|
177 |
+
rename_keys.append(
|
178 |
+
(
|
179 |
+
f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight",
|
180 |
+
f"decoder.layers.{i}.encoder_attn.out_proj.weight",
|
181 |
+
)
|
182 |
+
)
|
183 |
+
rename_keys.append(
|
184 |
+
(
|
185 |
+
f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias",
|
186 |
+
f"decoder.layers.{i}.encoder_attn.out_proj.bias",
|
187 |
+
)
|
188 |
+
)
|
189 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight"))
|
190 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias"))
|
191 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight"))
|
192 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias"))
|
193 |
+
rename_keys.append(
|
194 |
+
(f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight")
|
195 |
+
)
|
196 |
+
rename_keys.append(
|
197 |
+
(f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")
|
198 |
+
)
|
199 |
+
rename_keys.append(
|
200 |
+
(f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight")
|
201 |
+
)
|
202 |
+
rename_keys.append(
|
203 |
+
(f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias")
|
204 |
+
)
|
205 |
+
rename_keys.append(
|
206 |
+
(f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")
|
207 |
+
)
|
208 |
+
rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias"))
|
209 |
+
|
210 |
+
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
|
211 |
+
rename_keys.extend(
|
212 |
+
[
|
213 |
+
("input_proj.weight", "input_projection.weight"),
|
214 |
+
("input_proj.bias", "input_projection.bias"),
|
215 |
+
("query_embed.weight", "query_position_embeddings.weight"),
|
216 |
+
("transformer.decoder.norm.weight", "decoder.layernorm.weight"),
|
217 |
+
("transformer.decoder.norm.bias", "decoder.layernorm.bias"),
|
218 |
+
("class_embed.weight", "class_labels_classifier.weight"),
|
219 |
+
("class_embed.bias", "class_labels_classifier.bias"),
|
220 |
+
("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"),
|
221 |
+
("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"),
|
222 |
+
("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"),
|
223 |
+
("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"),
|
224 |
+
("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"),
|
225 |
+
("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"),
|
226 |
+
]
|
227 |
+
)
|
228 |
+
|
229 |
+
return rename_keys
|
230 |
+
|
231 |
+
|
232 |
+
def rename_key(state_dict, old, new):
|
233 |
+
val = state_dict.pop(old)
|
234 |
+
state_dict[new] = val
|
235 |
+
|
236 |
+
|
237 |
+
def read_in_q_k_v(state_dict, is_panoptic=False):
|
238 |
+
prefix = ""
|
239 |
+
if is_panoptic:
|
240 |
+
prefix = "detr."
|
241 |
+
|
242 |
+
# first: transformer encoder
|
243 |
+
for i in range(6):
|
244 |
+
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
|
245 |
+
in_proj_weight = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight")
|
246 |
+
in_proj_bias = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias")
|
247 |
+
# next, add query, keys and values (in that order) to the state dict
|
248 |
+
state_dict[f"encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
|
249 |
+
state_dict[f"encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
|
250 |
+
state_dict[f"encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
|
251 |
+
state_dict[f"encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
|
252 |
+
state_dict[f"encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
|
253 |
+
state_dict[f"encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
|
254 |
+
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
|
255 |
+
for i in range(6):
|
256 |
+
# read in weights + bias of input projection layer of self-attention
|
257 |
+
in_proj_weight = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight")
|
258 |
+
in_proj_bias = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias")
|
259 |
+
# next, add query, keys and values (in that order) to the state dict
|
260 |
+
state_dict[f"decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
|
261 |
+
state_dict[f"decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
|
262 |
+
state_dict[f"decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
|
263 |
+
state_dict[f"decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
|
264 |
+
state_dict[f"decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
|
265 |
+
state_dict[f"decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
|
266 |
+
# read in weights + bias of input projection layer of cross-attention
|
267 |
+
in_proj_weight_cross_attn = state_dict.pop(
|
268 |
+
f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight"
|
269 |
+
)
|
270 |
+
in_proj_bias_cross_attn = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias")
|
271 |
+
# next, add query, keys and values (in that order) of cross-attention to the state dict
|
272 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.weight"] = in_proj_weight_cross_attn[:256, :]
|
273 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.bias"] = in_proj_bias_cross_attn[:256]
|
274 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.weight"] = in_proj_weight_cross_attn[256:512, :]
|
275 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.bias"] = in_proj_bias_cross_attn[256:512]
|
276 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.weight"] = in_proj_weight_cross_attn[-256:, :]
|
277 |
+
state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.bias"] = in_proj_bias_cross_attn[-256:]
|
278 |
+
|
279 |
+
|
280 |
+
# We will verify our results on an image of cute cats
|
281 |
+
def prepare_img():
|
282 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
283 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
284 |
+
|
285 |
+
return im
|
286 |
+
|
287 |
+
|
288 |
+
@torch.no_grad()
|
289 |
+
def convert_detr_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False):
|
290 |
+
"""
|
291 |
+
Copy/paste/tweak model's weights to our DETR structure.
|
292 |
+
"""
|
293 |
+
|
294 |
+
# load default config
|
295 |
+
config, is_panoptic = get_detr_config(model_name)
|
296 |
+
|
297 |
+
# load original model from torch hub
|
298 |
+
model_name_to_original_name = {
|
299 |
+
"detr-resnet-50": "detr_resnet50",
|
300 |
+
"detr-resnet-101": "detr_resnet101",
|
301 |
+
}
|
302 |
+
logger.info(f"Converting model {model_name}...")
|
303 |
+
detr = torch.hub.load("facebookresearch/detr", model_name_to_original_name[model_name], pretrained=True).eval()
|
304 |
+
state_dict = detr.state_dict()
|
305 |
+
# rename keys
|
306 |
+
for src, dest in create_rename_keys(config):
|
307 |
+
if is_panoptic:
|
308 |
+
src = "detr." + src
|
309 |
+
rename_key(state_dict, src, dest)
|
310 |
+
# query, key and value matrices need special treatment
|
311 |
+
read_in_q_k_v(state_dict, is_panoptic=is_panoptic)
|
312 |
+
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
|
313 |
+
prefix = "detr.model." if is_panoptic else "model."
|
314 |
+
for key in state_dict.copy().keys():
|
315 |
+
if is_panoptic:
|
316 |
+
if (
|
317 |
+
key.startswith("detr")
|
318 |
+
and not key.startswith("class_labels_classifier")
|
319 |
+
and not key.startswith("bbox_predictor")
|
320 |
+
):
|
321 |
+
val = state_dict.pop(key)
|
322 |
+
state_dict["detr.model" + key[4:]] = val
|
323 |
+
elif "class_labels_classifier" in key or "bbox_predictor" in key:
|
324 |
+
val = state_dict.pop(key)
|
325 |
+
state_dict["detr." + key] = val
|
326 |
+
elif key.startswith("bbox_attention") or key.startswith("mask_head"):
|
327 |
+
continue
|
328 |
+
else:
|
329 |
+
val = state_dict.pop(key)
|
330 |
+
state_dict[prefix + key] = val
|
331 |
+
else:
|
332 |
+
if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"):
|
333 |
+
val = state_dict.pop(key)
|
334 |
+
state_dict[prefix + key] = val
|
335 |
+
|
336 |
+
# finally, create HuggingFace model and load state dict
|
337 |
+
model = DetrForSegmentation(config) if is_panoptic else DetrForObjectDetection(config)
|
338 |
+
model.load_state_dict(state_dict)
|
339 |
+
model.eval()
|
340 |
+
|
341 |
+
# verify our conversion on an image
|
342 |
+
format = "coco_panoptic" if is_panoptic else "coco_detection"
|
343 |
+
processor = DetrImageProcessor(format=format)
|
344 |
+
|
345 |
+
encoding = processor(images=prepare_img(), return_tensors="pt")
|
346 |
+
pixel_values = encoding["pixel_values"]
|
347 |
+
|
348 |
+
original_outputs = detr(pixel_values)
|
349 |
+
outputs = model(pixel_values)
|
350 |
+
|
351 |
+
assert torch.allclose(outputs.logits, original_outputs["pred_logits"], atol=1e-3)
|
352 |
+
assert torch.allclose(outputs.pred_boxes, original_outputs["pred_boxes"], atol=1e-3)
|
353 |
+
if is_panoptic:
|
354 |
+
assert torch.allclose(outputs.pred_masks, original_outputs["pred_masks"], atol=1e-4)
|
355 |
+
print("Looks ok!")
|
356 |
+
|
357 |
+
if pytorch_dump_folder_path is not None:
|
358 |
+
# Save model and image processor
|
359 |
+
logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...")
|
360 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
361 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
362 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
363 |
+
|
364 |
+
if push_to_hub:
|
365 |
+
# Upload model and image processor to the hub
|
366 |
+
logger.info("Uploading PyTorch model and image processor to the hub...")
|
367 |
+
model.push_to_hub(f"nielsr/{model_name}")
|
368 |
+
processor.push_to_hub(f"nielsr/{model_name}")
|
369 |
+
|
370 |
+
|
371 |
+
if __name__ == "__main__":
|
372 |
+
parser = argparse.ArgumentParser()
|
373 |
+
|
374 |
+
parser.add_argument(
|
375 |
+
"--model_name",
|
376 |
+
default="detr-resnet-50",
|
377 |
+
type=str,
|
378 |
+
choices=["detr-resnet-50", "detr-resnet-101"],
|
379 |
+
help="Name of the DETR model you'd like to convert.",
|
380 |
+
)
|
381 |
+
parser.add_argument(
|
382 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
|
383 |
+
)
|
384 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.")
|
385 |
+
args = parser.parse_args()
|
386 |
+
convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/detr/feature_extraction_detr.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for DETR."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...image_transforms import rgb_to_id as _rgb_to_id
|
20 |
+
from ...utils import logging
|
21 |
+
from .image_processing_detr import DetrImageProcessor
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
def rgb_to_id(x):
|
28 |
+
warnings.warn(
|
29 |
+
"rgb_to_id has moved and will not be importable from this module from v5. "
|
30 |
+
"Please import from transformers.image_transforms instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
return _rgb_to_id(x)
|
34 |
+
|
35 |
+
|
36 |
+
class DetrFeatureExtractor(DetrImageProcessor):
|
37 |
+
def __init__(self, *args, **kwargs) -> None:
|
38 |
+
warnings.warn(
|
39 |
+
"The class DetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
|
40 |
+
" Please use DetrImageProcessor instead.",
|
41 |
+
FutureWarning,
|
42 |
+
)
|
43 |
+
super().__init__(*args, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/detr/image_processing_detr.py
ADDED
@@ -0,0 +1,1965 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for DETR."""
|
16 |
+
|
17 |
+
import io
|
18 |
+
import pathlib
|
19 |
+
from collections import defaultdict
|
20 |
+
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
25 |
+
from ...image_transforms import (
|
26 |
+
PaddingMode,
|
27 |
+
center_to_corners_format,
|
28 |
+
corners_to_center_format,
|
29 |
+
id_to_rgb,
|
30 |
+
pad,
|
31 |
+
rescale,
|
32 |
+
resize,
|
33 |
+
rgb_to_id,
|
34 |
+
to_channel_dimension_format,
|
35 |
+
)
|
36 |
+
from ...image_utils import (
|
37 |
+
IMAGENET_DEFAULT_MEAN,
|
38 |
+
IMAGENET_DEFAULT_STD,
|
39 |
+
AnnotationFormat,
|
40 |
+
AnnotationType,
|
41 |
+
ChannelDimension,
|
42 |
+
ImageInput,
|
43 |
+
PILImageResampling,
|
44 |
+
get_image_size,
|
45 |
+
infer_channel_dimension_format,
|
46 |
+
is_scaled_image,
|
47 |
+
make_list_of_images,
|
48 |
+
to_numpy_array,
|
49 |
+
valid_images,
|
50 |
+
validate_annotations,
|
51 |
+
validate_kwargs,
|
52 |
+
validate_preprocess_arguments,
|
53 |
+
)
|
54 |
+
from ...utils import (
|
55 |
+
TensorType,
|
56 |
+
is_flax_available,
|
57 |
+
is_jax_tensor,
|
58 |
+
is_scipy_available,
|
59 |
+
is_tf_available,
|
60 |
+
is_tf_tensor,
|
61 |
+
is_torch_available,
|
62 |
+
is_torch_tensor,
|
63 |
+
is_vision_available,
|
64 |
+
logging,
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
if is_torch_available():
|
69 |
+
import torch
|
70 |
+
from torch import nn
|
71 |
+
|
72 |
+
|
73 |
+
if is_vision_available():
|
74 |
+
import PIL
|
75 |
+
|
76 |
+
|
77 |
+
if is_scipy_available():
|
78 |
+
import scipy.special
|
79 |
+
import scipy.stats
|
80 |
+
|
81 |
+
|
82 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
83 |
+
|
84 |
+
SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC)
|
85 |
+
|
86 |
+
|
87 |
+
# From the original repo: https://github.com/facebookresearch/detr/blob/3af9fa878e73b6894ce3596450a8d9b89d918ca9/datasets/transforms.py#L76
|
88 |
+
def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]:
|
89 |
+
"""
|
90 |
+
Computes the output image size given the input image size and the desired output size.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
image_size (`Tuple[int, int]`):
|
94 |
+
The input image size.
|
95 |
+
size (`int`):
|
96 |
+
The desired output size.
|
97 |
+
max_size (`int`, *optional*):
|
98 |
+
The maximum allowed output size.
|
99 |
+
"""
|
100 |
+
height, width = image_size
|
101 |
+
if max_size is not None:
|
102 |
+
min_original_size = float(min((height, width)))
|
103 |
+
max_original_size = float(max((height, width)))
|
104 |
+
if max_original_size / min_original_size * size > max_size:
|
105 |
+
size = int(round(max_size * min_original_size / max_original_size))
|
106 |
+
|
107 |
+
if (height <= width and height == size) or (width <= height and width == size):
|
108 |
+
return height, width
|
109 |
+
|
110 |
+
if width < height:
|
111 |
+
ow = size
|
112 |
+
oh = int(size * height / width)
|
113 |
+
else:
|
114 |
+
oh = size
|
115 |
+
ow = int(size * width / height)
|
116 |
+
return (oh, ow)
|
117 |
+
|
118 |
+
|
119 |
+
def get_resize_output_image_size(
|
120 |
+
input_image: np.ndarray,
|
121 |
+
size: Union[int, Tuple[int, int], List[int]],
|
122 |
+
max_size: Optional[int] = None,
|
123 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
124 |
+
) -> Tuple[int, int]:
|
125 |
+
"""
|
126 |
+
Computes the output image size given the input image size and the desired output size. If the desired output size
|
127 |
+
is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output
|
128 |
+
image size is computed by keeping the aspect ratio of the input image size.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
input_image (`np.ndarray`):
|
132 |
+
The image to resize.
|
133 |
+
size (`int` or `Tuple[int, int]` or `List[int]`):
|
134 |
+
The desired output size.
|
135 |
+
max_size (`int`, *optional*):
|
136 |
+
The maximum allowed output size.
|
137 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
138 |
+
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
|
139 |
+
"""
|
140 |
+
image_size = get_image_size(input_image, input_data_format)
|
141 |
+
if isinstance(size, (list, tuple)):
|
142 |
+
return size
|
143 |
+
|
144 |
+
return get_size_with_aspect_ratio(image_size, size, max_size)
|
145 |
+
|
146 |
+
|
147 |
+
def get_numpy_to_framework_fn(arr) -> Callable:
|
148 |
+
"""
|
149 |
+
Returns a function that converts a numpy array to the framework of the input array.
|
150 |
+
|
151 |
+
Args:
|
152 |
+
arr (`np.ndarray`): The array to convert.
|
153 |
+
"""
|
154 |
+
if isinstance(arr, np.ndarray):
|
155 |
+
return np.array
|
156 |
+
if is_tf_available() and is_tf_tensor(arr):
|
157 |
+
import tensorflow as tf
|
158 |
+
|
159 |
+
return tf.convert_to_tensor
|
160 |
+
if is_torch_available() and is_torch_tensor(arr):
|
161 |
+
import torch
|
162 |
+
|
163 |
+
return torch.tensor
|
164 |
+
if is_flax_available() and is_jax_tensor(arr):
|
165 |
+
import jax.numpy as jnp
|
166 |
+
|
167 |
+
return jnp.array
|
168 |
+
raise ValueError(f"Cannot convert arrays of type {type(arr)}")
|
169 |
+
|
170 |
+
|
171 |
+
def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray:
|
172 |
+
"""
|
173 |
+
Squeezes an array, but only if the axis specified has dim 1.
|
174 |
+
"""
|
175 |
+
if axis is None:
|
176 |
+
return arr.squeeze()
|
177 |
+
|
178 |
+
try:
|
179 |
+
return arr.squeeze(axis=axis)
|
180 |
+
except ValueError:
|
181 |
+
return arr
|
182 |
+
|
183 |
+
|
184 |
+
def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict:
|
185 |
+
image_height, image_width = image_size
|
186 |
+
norm_annotation = {}
|
187 |
+
for key, value in annotation.items():
|
188 |
+
if key == "boxes":
|
189 |
+
boxes = value
|
190 |
+
boxes = corners_to_center_format(boxes)
|
191 |
+
boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32)
|
192 |
+
norm_annotation[key] = boxes
|
193 |
+
else:
|
194 |
+
norm_annotation[key] = value
|
195 |
+
return norm_annotation
|
196 |
+
|
197 |
+
|
198 |
+
# Copied from transformers.models.vilt.image_processing_vilt.max_across_indices
|
199 |
+
def max_across_indices(values: Iterable[Any]) -> List[Any]:
|
200 |
+
"""
|
201 |
+
Return the maximum value across all indices of an iterable of values.
|
202 |
+
"""
|
203 |
+
return [max(values_i) for values_i in zip(*values)]
|
204 |
+
|
205 |
+
|
206 |
+
# Copied from transformers.models.vilt.image_processing_vilt.get_max_height_width
|
207 |
+
def get_max_height_width(
|
208 |
+
images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
|
209 |
+
) -> List[int]:
|
210 |
+
"""
|
211 |
+
Get the maximum height and width across all images in a batch.
|
212 |
+
"""
|
213 |
+
if input_data_format is None:
|
214 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
215 |
+
|
216 |
+
if input_data_format == ChannelDimension.FIRST:
|
217 |
+
_, max_height, max_width = max_across_indices([img.shape for img in images])
|
218 |
+
elif input_data_format == ChannelDimension.LAST:
|
219 |
+
max_height, max_width, _ = max_across_indices([img.shape for img in images])
|
220 |
+
else:
|
221 |
+
raise ValueError(f"Invalid channel dimension format: {input_data_format}")
|
222 |
+
return (max_height, max_width)
|
223 |
+
|
224 |
+
|
225 |
+
# Copied from transformers.models.vilt.image_processing_vilt.make_pixel_mask
|
226 |
+
def make_pixel_mask(
|
227 |
+
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
|
228 |
+
) -> np.ndarray:
|
229 |
+
"""
|
230 |
+
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
|
231 |
+
|
232 |
+
Args:
|
233 |
+
image (`np.ndarray`):
|
234 |
+
Image to make the pixel mask for.
|
235 |
+
output_size (`Tuple[int, int]`):
|
236 |
+
Output size of the mask.
|
237 |
+
"""
|
238 |
+
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
|
239 |
+
mask = np.zeros(output_size, dtype=np.int64)
|
240 |
+
mask[:input_height, :input_width] = 1
|
241 |
+
return mask
|
242 |
+
|
243 |
+
|
244 |
+
# inspired by https://github.com/facebookresearch/detr/blob/master/datasets/coco.py#L33
|
245 |
+
def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray:
|
246 |
+
"""
|
247 |
+
Convert a COCO polygon annotation to a mask.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
segmentations (`List[List[float]]`):
|
251 |
+
List of polygons, each polygon represented by a list of x-y coordinates.
|
252 |
+
height (`int`):
|
253 |
+
Height of the mask.
|
254 |
+
width (`int`):
|
255 |
+
Width of the mask.
|
256 |
+
"""
|
257 |
+
try:
|
258 |
+
from pycocotools import mask as coco_mask
|
259 |
+
except ImportError:
|
260 |
+
raise ImportError("Pycocotools is not installed in your environment.")
|
261 |
+
|
262 |
+
masks = []
|
263 |
+
for polygons in segmentations:
|
264 |
+
rles = coco_mask.frPyObjects(polygons, height, width)
|
265 |
+
mask = coco_mask.decode(rles)
|
266 |
+
if len(mask.shape) < 3:
|
267 |
+
mask = mask[..., None]
|
268 |
+
mask = np.asarray(mask, dtype=np.uint8)
|
269 |
+
mask = np.any(mask, axis=2)
|
270 |
+
masks.append(mask)
|
271 |
+
if masks:
|
272 |
+
masks = np.stack(masks, axis=0)
|
273 |
+
else:
|
274 |
+
masks = np.zeros((0, height, width), dtype=np.uint8)
|
275 |
+
|
276 |
+
return masks
|
277 |
+
|
278 |
+
|
279 |
+
# inspired by https://github.com/facebookresearch/detr/blob/master/datasets/coco.py#L50
|
280 |
+
def prepare_coco_detection_annotation(
|
281 |
+
image,
|
282 |
+
target,
|
283 |
+
return_segmentation_masks: bool = False,
|
284 |
+
input_data_format: Optional[Union[ChannelDimension, str]] = None,
|
285 |
+
):
|
286 |
+
"""
|
287 |
+
Convert the target in COCO format into the format expected by DETR.
|
288 |
+
"""
|
289 |
+
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
|
290 |
+
|
291 |
+
image_id = target["image_id"]
|
292 |
+
image_id = np.asarray([image_id], dtype=np.int64)
|
293 |
+
|
294 |
+
# Get all COCO annotations for the given image.
|
295 |
+
annotations = target["annotations"]
|
296 |
+
annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0]
|
297 |
+
|
298 |
+
classes = [obj["category_id"] for obj in annotations]
|
299 |
+
classes = np.asarray(classes, dtype=np.int64)
|
300 |
+
|
301 |
+
# for conversion to coco api
|
302 |
+
area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32)
|
303 |
+
iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64)
|
304 |
+
|
305 |
+
boxes = [obj["bbox"] for obj in annotations]
|
306 |
+
# guard against no boxes via resizing
|
307 |
+
boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4)
|
308 |
+
boxes[:, 2:] += boxes[:, :2]
|
309 |
+
boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width)
|
310 |
+
boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height)
|
311 |
+
|
312 |
+
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
|
313 |
+
|
314 |
+
new_target = {}
|
315 |
+
new_target["image_id"] = image_id
|
316 |
+
new_target["class_labels"] = classes[keep]
|
317 |
+
new_target["boxes"] = boxes[keep]
|
318 |
+
new_target["area"] = area[keep]
|
319 |
+
new_target["iscrowd"] = iscrowd[keep]
|
320 |
+
new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64)
|
321 |
+
|
322 |
+
if annotations and "keypoints" in annotations[0]:
|
323 |
+
keypoints = [obj["keypoints"] for obj in annotations]
|
324 |
+
# Converting the filtered keypoints list to a numpy array
|
325 |
+
keypoints = np.asarray(keypoints, dtype=np.float32)
|
326 |
+
# Apply the keep mask here to filter the relevant annotations
|
327 |
+
keypoints = keypoints[keep]
|
328 |
+
num_keypoints = keypoints.shape[0]
|
329 |
+
keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints
|
330 |
+
new_target["keypoints"] = keypoints
|
331 |
+
|
332 |
+
if return_segmentation_masks:
|
333 |
+
segmentation_masks = [obj["segmentation"] for obj in annotations]
|
334 |
+
masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width)
|
335 |
+
new_target["masks"] = masks[keep]
|
336 |
+
|
337 |
+
return new_target
|
338 |
+
|
339 |
+
|
340 |
+
def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
|
341 |
+
"""
|
342 |
+
Compute the bounding boxes around the provided panoptic segmentation masks.
|
343 |
+
|
344 |
+
Args:
|
345 |
+
masks: masks in format `[number_masks, height, width]` where N is the number of masks
|
346 |
+
|
347 |
+
Returns:
|
348 |
+
boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
|
349 |
+
"""
|
350 |
+
if masks.size == 0:
|
351 |
+
return np.zeros((0, 4))
|
352 |
+
|
353 |
+
h, w = masks.shape[-2:]
|
354 |
+
y = np.arange(0, h, dtype=np.float32)
|
355 |
+
x = np.arange(0, w, dtype=np.float32)
|
356 |
+
# see https://github.com/pytorch/pytorch/issues/50276
|
357 |
+
y, x = np.meshgrid(y, x, indexing="ij")
|
358 |
+
|
359 |
+
x_mask = masks * np.expand_dims(x, axis=0)
|
360 |
+
x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1)
|
361 |
+
x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool)))
|
362 |
+
x_min = x.filled(fill_value=1e8)
|
363 |
+
x_min = x_min.reshape(x_min.shape[0], -1).min(-1)
|
364 |
+
|
365 |
+
y_mask = masks * np.expand_dims(y, axis=0)
|
366 |
+
y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1)
|
367 |
+
y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool)))
|
368 |
+
y_min = y.filled(fill_value=1e8)
|
369 |
+
y_min = y_min.reshape(y_min.shape[0], -1).min(-1)
|
370 |
+
|
371 |
+
return np.stack([x_min, y_min, x_max, y_max], 1)
|
372 |
+
|
373 |
+
|
374 |
+
def prepare_coco_panoptic_annotation(
|
375 |
+
image: np.ndarray,
|
376 |
+
target: Dict,
|
377 |
+
masks_path: Union[str, pathlib.Path],
|
378 |
+
return_masks: bool = True,
|
379 |
+
input_data_format: Union[ChannelDimension, str] = None,
|
380 |
+
) -> Dict:
|
381 |
+
"""
|
382 |
+
Prepare a coco panoptic annotation for DETR.
|
383 |
+
"""
|
384 |
+
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
|
385 |
+
annotation_path = pathlib.Path(masks_path) / target["file_name"]
|
386 |
+
|
387 |
+
new_target = {}
|
388 |
+
new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64)
|
389 |
+
new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64)
|
390 |
+
new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64)
|
391 |
+
|
392 |
+
if "segments_info" in target:
|
393 |
+
masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32)
|
394 |
+
masks = rgb_to_id(masks)
|
395 |
+
|
396 |
+
ids = np.array([segment_info["id"] for segment_info in target["segments_info"]])
|
397 |
+
masks = masks == ids[:, None, None]
|
398 |
+
masks = masks.astype(np.uint8)
|
399 |
+
if return_masks:
|
400 |
+
new_target["masks"] = masks
|
401 |
+
new_target["boxes"] = masks_to_boxes(masks)
|
402 |
+
new_target["class_labels"] = np.array(
|
403 |
+
[segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64
|
404 |
+
)
|
405 |
+
new_target["iscrowd"] = np.asarray(
|
406 |
+
[segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64
|
407 |
+
)
|
408 |
+
new_target["area"] = np.asarray(
|
409 |
+
[segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32
|
410 |
+
)
|
411 |
+
|
412 |
+
return new_target
|
413 |
+
|
414 |
+
|
415 |
+
def get_segmentation_image(
|
416 |
+
masks: np.ndarray, input_size: Tuple, target_size: Tuple, stuff_equiv_classes, deduplicate=False
|
417 |
+
):
|
418 |
+
h, w = input_size
|
419 |
+
final_h, final_w = target_size
|
420 |
+
|
421 |
+
m_id = scipy.special.softmax(masks.transpose(0, 1), -1)
|
422 |
+
|
423 |
+
if m_id.shape[-1] == 0:
|
424 |
+
# We didn't detect any mask :(
|
425 |
+
m_id = np.zeros((h, w), dtype=np.int64)
|
426 |
+
else:
|
427 |
+
m_id = m_id.argmax(-1).reshape(h, w)
|
428 |
+
|
429 |
+
if deduplicate:
|
430 |
+
# Merge the masks corresponding to the same stuff class
|
431 |
+
for equiv in stuff_equiv_classes.values():
|
432 |
+
for eq_id in equiv:
|
433 |
+
m_id[m_id == eq_id] = equiv[0]
|
434 |
+
|
435 |
+
seg_img = id_to_rgb(m_id)
|
436 |
+
seg_img = resize(seg_img, (final_w, final_h), resample=PILImageResampling.NEAREST)
|
437 |
+
return seg_img
|
438 |
+
|
439 |
+
|
440 |
+
def get_mask_area(seg_img: np.ndarray, target_size: Tuple[int, int], n_classes: int) -> np.ndarray:
|
441 |
+
final_h, final_w = target_size
|
442 |
+
np_seg_img = seg_img.astype(np.uint8)
|
443 |
+
np_seg_img = np_seg_img.reshape(final_h, final_w, 3)
|
444 |
+
m_id = rgb_to_id(np_seg_img)
|
445 |
+
area = [(m_id == i).sum() for i in range(n_classes)]
|
446 |
+
return area
|
447 |
+
|
448 |
+
|
449 |
+
def score_labels_from_class_probabilities(logits: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
450 |
+
probs = scipy.special.softmax(logits, axis=-1)
|
451 |
+
labels = probs.argmax(-1, keepdims=True)
|
452 |
+
scores = np.take_along_axis(probs, labels, axis=-1)
|
453 |
+
scores, labels = scores.squeeze(-1), labels.squeeze(-1)
|
454 |
+
return scores, labels
|
455 |
+
|
456 |
+
|
457 |
+
def post_process_panoptic_sample(
|
458 |
+
out_logits: np.ndarray,
|
459 |
+
masks: np.ndarray,
|
460 |
+
boxes: np.ndarray,
|
461 |
+
processed_size: Tuple[int, int],
|
462 |
+
target_size: Tuple[int, int],
|
463 |
+
is_thing_map: Dict,
|
464 |
+
threshold=0.85,
|
465 |
+
) -> Dict:
|
466 |
+
"""
|
467 |
+
Converts the output of [`DetrForSegmentation`] into panoptic segmentation predictions for a single sample.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
out_logits (`torch.Tensor`):
|
471 |
+
The logits for this sample.
|
472 |
+
masks (`torch.Tensor`):
|
473 |
+
The predicted segmentation masks for this sample.
|
474 |
+
boxes (`torch.Tensor`):
|
475 |
+
The prediced bounding boxes for this sample. The boxes are in the normalized format `(center_x, center_y,
|
476 |
+
width, height)` and values between `[0, 1]`, relative to the size the image (disregarding padding).
|
477 |
+
processed_size (`Tuple[int, int]`):
|
478 |
+
The processed size of the image `(height, width)`, as returned by the preprocessing step i.e. the size
|
479 |
+
after data augmentation but before batching.
|
480 |
+
target_size (`Tuple[int, int]`):
|
481 |
+
The target size of the image, `(height, width)` corresponding to the requested final size of the
|
482 |
+
prediction.
|
483 |
+
is_thing_map (`Dict`):
|
484 |
+
A dictionary mapping class indices to a boolean value indicating whether the class is a thing or not.
|
485 |
+
threshold (`float`, *optional*, defaults to 0.85):
|
486 |
+
The threshold used to binarize the segmentation masks.
|
487 |
+
"""
|
488 |
+
# we filter empty queries and detection below threshold
|
489 |
+
scores, labels = score_labels_from_class_probabilities(out_logits)
|
490 |
+
keep = (labels != out_logits.shape[-1] - 1) & (scores > threshold)
|
491 |
+
|
492 |
+
cur_scores = scores[keep]
|
493 |
+
cur_classes = labels[keep]
|
494 |
+
cur_boxes = center_to_corners_format(boxes[keep])
|
495 |
+
|
496 |
+
if len(cur_boxes) != len(cur_classes):
|
497 |
+
raise ValueError("Not as many boxes as there are classes")
|
498 |
+
|
499 |
+
cur_masks = masks[keep]
|
500 |
+
cur_masks = resize(cur_masks[:, None], processed_size, resample=PILImageResampling.BILINEAR)
|
501 |
+
cur_masks = safe_squeeze(cur_masks, 1)
|
502 |
+
b, h, w = cur_masks.shape
|
503 |
+
|
504 |
+
# It may be that we have several predicted masks for the same stuff class.
|
505 |
+
# In the following, we track the list of masks ids for each stuff class (they are merged later on)
|
506 |
+
cur_masks = cur_masks.reshape(b, -1)
|
507 |
+
stuff_equiv_classes = defaultdict(list)
|
508 |
+
for k, label in enumerate(cur_classes):
|
509 |
+
if not is_thing_map[label]:
|
510 |
+
stuff_equiv_classes[label].append(k)
|
511 |
+
|
512 |
+
seg_img = get_segmentation_image(cur_masks, processed_size, target_size, stuff_equiv_classes, deduplicate=True)
|
513 |
+
area = get_mask_area(cur_masks, processed_size, n_classes=len(cur_scores))
|
514 |
+
|
515 |
+
# We filter out any mask that is too small
|
516 |
+
if cur_classes.size() > 0:
|
517 |
+
# We know filter empty masks as long as we find some
|
518 |
+
filtered_small = np.array([a <= 4 for a in area], dtype=bool)
|
519 |
+
while filtered_small.any():
|
520 |
+
cur_masks = cur_masks[~filtered_small]
|
521 |
+
cur_scores = cur_scores[~filtered_small]
|
522 |
+
cur_classes = cur_classes[~filtered_small]
|
523 |
+
seg_img = get_segmentation_image(cur_masks, (h, w), target_size, stuff_equiv_classes, deduplicate=True)
|
524 |
+
area = get_mask_area(seg_img, target_size, n_classes=len(cur_scores))
|
525 |
+
filtered_small = np.array([a <= 4 for a in area], dtype=bool)
|
526 |
+
else:
|
527 |
+
cur_classes = np.ones((1, 1), dtype=np.int64)
|
528 |
+
|
529 |
+
segments_info = [
|
530 |
+
{"id": i, "isthing": is_thing_map[cat], "category_id": int(cat), "area": a}
|
531 |
+
for i, (cat, a) in enumerate(zip(cur_classes, area))
|
532 |
+
]
|
533 |
+
del cur_classes
|
534 |
+
|
535 |
+
with io.BytesIO() as out:
|
536 |
+
PIL.Image.fromarray(seg_img).save(out, format="PNG")
|
537 |
+
predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
|
538 |
+
|
539 |
+
return predictions
|
540 |
+
|
541 |
+
|
542 |
+
def resize_annotation(
|
543 |
+
annotation: Dict[str, Any],
|
544 |
+
orig_size: Tuple[int, int],
|
545 |
+
target_size: Tuple[int, int],
|
546 |
+
threshold: float = 0.5,
|
547 |
+
resample: PILImageResampling = PILImageResampling.NEAREST,
|
548 |
+
):
|
549 |
+
"""
|
550 |
+
Resizes an annotation to a target size.
|
551 |
+
|
552 |
+
Args:
|
553 |
+
annotation (`Dict[str, Any]`):
|
554 |
+
The annotation dictionary.
|
555 |
+
orig_size (`Tuple[int, int]`):
|
556 |
+
The original size of the input image.
|
557 |
+
target_size (`Tuple[int, int]`):
|
558 |
+
The target size of the image, as returned by the preprocessing `resize` step.
|
559 |
+
threshold (`float`, *optional*, defaults to 0.5):
|
560 |
+
The threshold used to binarize the segmentation masks.
|
561 |
+
resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`):
|
562 |
+
The resampling filter to use when resizing the masks.
|
563 |
+
"""
|
564 |
+
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size))
|
565 |
+
ratio_height, ratio_width = ratios
|
566 |
+
|
567 |
+
new_annotation = {}
|
568 |
+
new_annotation["size"] = target_size
|
569 |
+
|
570 |
+
for key, value in annotation.items():
|
571 |
+
if key == "boxes":
|
572 |
+
boxes = value
|
573 |
+
scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32)
|
574 |
+
new_annotation["boxes"] = scaled_boxes
|
575 |
+
elif key == "area":
|
576 |
+
area = value
|
577 |
+
scaled_area = area * (ratio_width * ratio_height)
|
578 |
+
new_annotation["area"] = scaled_area
|
579 |
+
elif key == "masks":
|
580 |
+
masks = value[:, None]
|
581 |
+
masks = np.array([resize(mask, target_size, resample=resample) for mask in masks])
|
582 |
+
masks = masks.astype(np.float32)
|
583 |
+
masks = masks[:, 0] > threshold
|
584 |
+
new_annotation["masks"] = masks
|
585 |
+
elif key == "size":
|
586 |
+
new_annotation["size"] = target_size
|
587 |
+
else:
|
588 |
+
new_annotation[key] = value
|
589 |
+
|
590 |
+
return new_annotation
|
591 |
+
|
592 |
+
|
593 |
+
# TODO - (Amy) make compatible with other frameworks
|
594 |
+
def binary_mask_to_rle(mask):
|
595 |
+
"""
|
596 |
+
Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format.
|
597 |
+
|
598 |
+
Args:
|
599 |
+
mask (`torch.Tensor` or `numpy.array`):
|
600 |
+
A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target
|
601 |
+
segment_id or class_id.
|
602 |
+
Returns:
|
603 |
+
`List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE
|
604 |
+
format.
|
605 |
+
"""
|
606 |
+
if is_torch_tensor(mask):
|
607 |
+
mask = mask.numpy()
|
608 |
+
|
609 |
+
pixels = mask.flatten()
|
610 |
+
pixels = np.concatenate([[0], pixels, [0]])
|
611 |
+
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
|
612 |
+
runs[1::2] -= runs[::2]
|
613 |
+
return list(runs)
|
614 |
+
|
615 |
+
|
616 |
+
# TODO - (Amy) make compatible with other frameworks
|
617 |
+
def convert_segmentation_to_rle(segmentation):
|
618 |
+
"""
|
619 |
+
Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format.
|
620 |
+
|
621 |
+
Args:
|
622 |
+
segmentation (`torch.Tensor` or `numpy.array`):
|
623 |
+
A segmentation map of shape `(height, width)` where each value denotes a segment or class id.
|
624 |
+
Returns:
|
625 |
+
`List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id.
|
626 |
+
"""
|
627 |
+
segment_ids = torch.unique(segmentation)
|
628 |
+
|
629 |
+
run_length_encodings = []
|
630 |
+
for idx in segment_ids:
|
631 |
+
mask = torch.where(segmentation == idx, 1, 0)
|
632 |
+
rle = binary_mask_to_rle(mask)
|
633 |
+
run_length_encodings.append(rle)
|
634 |
+
|
635 |
+
return run_length_encodings
|
636 |
+
|
637 |
+
|
638 |
+
def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels):
|
639 |
+
"""
|
640 |
+
Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and
|
641 |
+
`labels`.
|
642 |
+
|
643 |
+
Args:
|
644 |
+
masks (`torch.Tensor`):
|
645 |
+
A tensor of shape `(num_queries, height, width)`.
|
646 |
+
scores (`torch.Tensor`):
|
647 |
+
A tensor of shape `(num_queries)`.
|
648 |
+
labels (`torch.Tensor`):
|
649 |
+
A tensor of shape `(num_queries)`.
|
650 |
+
object_mask_threshold (`float`):
|
651 |
+
A number between 0 and 1 used to binarize the masks.
|
652 |
+
Raises:
|
653 |
+
`ValueError`: Raised when the first dimension doesn't match in all input tensors.
|
654 |
+
Returns:
|
655 |
+
`Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region
|
656 |
+
< `object_mask_threshold`.
|
657 |
+
"""
|
658 |
+
if not (masks.shape[0] == scores.shape[0] == labels.shape[0]):
|
659 |
+
raise ValueError("mask, scores and labels must have the same shape!")
|
660 |
+
|
661 |
+
to_keep = labels.ne(num_labels) & (scores > object_mask_threshold)
|
662 |
+
|
663 |
+
return masks[to_keep], scores[to_keep], labels[to_keep]
|
664 |
+
|
665 |
+
|
666 |
+
def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8):
|
667 |
+
# Get the mask associated with the k class
|
668 |
+
mask_k = mask_labels == k
|
669 |
+
mask_k_area = mask_k.sum()
|
670 |
+
|
671 |
+
# Compute the area of all the stuff in query k
|
672 |
+
original_area = (mask_probs[k] >= mask_threshold).sum()
|
673 |
+
mask_exists = mask_k_area > 0 and original_area > 0
|
674 |
+
|
675 |
+
# Eliminate disconnected tiny segments
|
676 |
+
if mask_exists:
|
677 |
+
area_ratio = mask_k_area / original_area
|
678 |
+
if not area_ratio.item() > overlap_mask_area_threshold:
|
679 |
+
mask_exists = False
|
680 |
+
|
681 |
+
return mask_exists, mask_k
|
682 |
+
|
683 |
+
|
684 |
+
def compute_segments(
|
685 |
+
mask_probs,
|
686 |
+
pred_scores,
|
687 |
+
pred_labels,
|
688 |
+
mask_threshold: float = 0.5,
|
689 |
+
overlap_mask_area_threshold: float = 0.8,
|
690 |
+
label_ids_to_fuse: Optional[Set[int]] = None,
|
691 |
+
target_size: Tuple[int, int] = None,
|
692 |
+
):
|
693 |
+
height = mask_probs.shape[1] if target_size is None else target_size[0]
|
694 |
+
width = mask_probs.shape[2] if target_size is None else target_size[1]
|
695 |
+
|
696 |
+
segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device)
|
697 |
+
segments: List[Dict] = []
|
698 |
+
|
699 |
+
if target_size is not None:
|
700 |
+
mask_probs = nn.functional.interpolate(
|
701 |
+
mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False
|
702 |
+
)[0]
|
703 |
+
|
704 |
+
current_segment_id = 0
|
705 |
+
|
706 |
+
# Weigh each mask by its prediction score
|
707 |
+
mask_probs *= pred_scores.view(-1, 1, 1)
|
708 |
+
mask_labels = mask_probs.argmax(0) # [height, width]
|
709 |
+
|
710 |
+
# Keep track of instances of each class
|
711 |
+
stuff_memory_list: Dict[str, int] = {}
|
712 |
+
for k in range(pred_labels.shape[0]):
|
713 |
+
pred_class = pred_labels[k].item()
|
714 |
+
should_fuse = pred_class in label_ids_to_fuse
|
715 |
+
|
716 |
+
# Check if mask exists and large enough to be a segment
|
717 |
+
mask_exists, mask_k = check_segment_validity(
|
718 |
+
mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold
|
719 |
+
)
|
720 |
+
|
721 |
+
if mask_exists:
|
722 |
+
if pred_class in stuff_memory_list:
|
723 |
+
current_segment_id = stuff_memory_list[pred_class]
|
724 |
+
else:
|
725 |
+
current_segment_id += 1
|
726 |
+
|
727 |
+
# Add current object segment to final segmentation map
|
728 |
+
segmentation[mask_k] = current_segment_id
|
729 |
+
segment_score = round(pred_scores[k].item(), 6)
|
730 |
+
segments.append(
|
731 |
+
{
|
732 |
+
"id": current_segment_id,
|
733 |
+
"label_id": pred_class,
|
734 |
+
"was_fused": should_fuse,
|
735 |
+
"score": segment_score,
|
736 |
+
}
|
737 |
+
)
|
738 |
+
if should_fuse:
|
739 |
+
stuff_memory_list[pred_class] = current_segment_id
|
740 |
+
|
741 |
+
return segmentation, segments
|
742 |
+
|
743 |
+
|
744 |
+
class DetrImageProcessor(BaseImageProcessor):
|
745 |
+
r"""
|
746 |
+
Constructs a Detr image processor.
|
747 |
+
|
748 |
+
Args:
|
749 |
+
format (`str`, *optional*, defaults to `"coco_detection"`):
|
750 |
+
Data format of the annotations. One of "coco_detection" or "coco_panoptic".
|
751 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
752 |
+
Controls whether to resize the image's `(height, width)` dimensions to the specified `size`. Can be
|
753 |
+
overridden by the `do_resize` parameter in the `preprocess` method.
|
754 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`):
|
755 |
+
Size of the image's `(height, width)` dimensions after resizing. Can be overridden by the `size` parameter
|
756 |
+
in the `preprocess` method.
|
757 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
758 |
+
Resampling filter to use if resizing the image.
|
759 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
760 |
+
Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
|
761 |
+
`do_rescale` parameter in the `preprocess` method.
|
762 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
763 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
|
764 |
+
`preprocess` method.
|
765 |
+
do_normalize (`bool`, *optional*, defaults to True):
|
766 |
+
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
|
767 |
+
`preprocess` method.
|
768 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
|
769 |
+
Mean values to use when normalizing the image. Can be a single value or a list of values, one for each
|
770 |
+
channel. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
771 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
|
772 |
+
Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one
|
773 |
+
for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
774 |
+
do_convert_annotations (`bool`, *optional*, defaults to `True`):
|
775 |
+
Controls whether to convert the annotations to the format expected by the DETR model. Converts the
|
776 |
+
bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`.
|
777 |
+
Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method.
|
778 |
+
do_pad (`bool`, *optional*, defaults to `True`):
|
779 |
+
Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess`
|
780 |
+
method. If `True` will pad the images in the batch to the largest height and width in the batch.
|
781 |
+
Padding will be applied to the bottom and right of the image with zeros.
|
782 |
+
"""
|
783 |
+
|
784 |
+
model_input_names = ["pixel_values", "pixel_mask"]
|
785 |
+
|
786 |
+
def __init__(
|
787 |
+
self,
|
788 |
+
format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION,
|
789 |
+
do_resize: bool = True,
|
790 |
+
size: Dict[str, int] = None,
|
791 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
792 |
+
do_rescale: bool = True,
|
793 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
794 |
+
do_normalize: bool = True,
|
795 |
+
image_mean: Union[float, List[float]] = None,
|
796 |
+
image_std: Union[float, List[float]] = None,
|
797 |
+
do_convert_annotations: Optional[bool] = None,
|
798 |
+
do_pad: bool = True,
|
799 |
+
**kwargs,
|
800 |
+
) -> None:
|
801 |
+
if "pad_and_return_pixel_mask" in kwargs:
|
802 |
+
do_pad = kwargs.pop("pad_and_return_pixel_mask")
|
803 |
+
|
804 |
+
if "max_size" in kwargs:
|
805 |
+
logger.warning_once(
|
806 |
+
"The `max_size` parameter is deprecated and will be removed in v4.26. "
|
807 |
+
"Please specify in `size['longest_edge'] instead`.",
|
808 |
+
)
|
809 |
+
max_size = kwargs.pop("max_size")
|
810 |
+
else:
|
811 |
+
max_size = None if size is None else 1333
|
812 |
+
|
813 |
+
size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333}
|
814 |
+
size = get_size_dict(size, max_size=max_size, default_to_square=False)
|
815 |
+
|
816 |
+
# Backwards compatibility
|
817 |
+
if do_convert_annotations is None:
|
818 |
+
do_convert_annotations = do_normalize
|
819 |
+
|
820 |
+
super().__init__(**kwargs)
|
821 |
+
self.format = format
|
822 |
+
self.do_resize = do_resize
|
823 |
+
self.size = size
|
824 |
+
self.resample = resample
|
825 |
+
self.do_rescale = do_rescale
|
826 |
+
self.rescale_factor = rescale_factor
|
827 |
+
self.do_normalize = do_normalize
|
828 |
+
self.do_convert_annotations = do_convert_annotations
|
829 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
830 |
+
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
831 |
+
self.do_pad = do_pad
|
832 |
+
self._valid_processor_keys = [
|
833 |
+
"images",
|
834 |
+
"annotations",
|
835 |
+
"return_segmentation_masks",
|
836 |
+
"masks_path",
|
837 |
+
"do_resize",
|
838 |
+
"size",
|
839 |
+
"resample",
|
840 |
+
"do_rescale",
|
841 |
+
"rescale_factor",
|
842 |
+
"do_normalize",
|
843 |
+
"do_convert_annotations",
|
844 |
+
"image_mean",
|
845 |
+
"image_std",
|
846 |
+
"do_pad",
|
847 |
+
"format",
|
848 |
+
"return_tensors",
|
849 |
+
"data_format",
|
850 |
+
"input_data_format",
|
851 |
+
]
|
852 |
+
|
853 |
+
@classmethod
|
854 |
+
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
855 |
+
"""
|
856 |
+
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
|
857 |
+
created using from_dict and kwargs e.g. `DetrImageProcessor.from_pretrained(checkpoint, size=600,
|
858 |
+
max_size=800)`
|
859 |
+
"""
|
860 |
+
image_processor_dict = image_processor_dict.copy()
|
861 |
+
if "max_size" in kwargs:
|
862 |
+
image_processor_dict["max_size"] = kwargs.pop("max_size")
|
863 |
+
if "pad_and_return_pixel_mask" in kwargs:
|
864 |
+
image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask")
|
865 |
+
return super().from_dict(image_processor_dict, **kwargs)
|
866 |
+
|
867 |
+
def prepare_annotation(
|
868 |
+
self,
|
869 |
+
image: np.ndarray,
|
870 |
+
target: Dict,
|
871 |
+
format: Optional[AnnotationFormat] = None,
|
872 |
+
return_segmentation_masks: bool = None,
|
873 |
+
masks_path: Optional[Union[str, pathlib.Path]] = None,
|
874 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
875 |
+
) -> Dict:
|
876 |
+
"""
|
877 |
+
Prepare an annotation for feeding into DETR model.
|
878 |
+
"""
|
879 |
+
format = format if format is not None else self.format
|
880 |
+
|
881 |
+
if format == AnnotationFormat.COCO_DETECTION:
|
882 |
+
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
|
883 |
+
target = prepare_coco_detection_annotation(
|
884 |
+
image, target, return_segmentation_masks, input_data_format=input_data_format
|
885 |
+
)
|
886 |
+
elif format == AnnotationFormat.COCO_PANOPTIC:
|
887 |
+
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
|
888 |
+
target = prepare_coco_panoptic_annotation(
|
889 |
+
image,
|
890 |
+
target,
|
891 |
+
masks_path=masks_path,
|
892 |
+
return_masks=return_segmentation_masks,
|
893 |
+
input_data_format=input_data_format,
|
894 |
+
)
|
895 |
+
else:
|
896 |
+
raise ValueError(f"Format {format} is not supported.")
|
897 |
+
return target
|
898 |
+
|
899 |
+
def prepare(self, image, target, return_segmentation_masks=None, masks_path=None):
|
900 |
+
logger.warning_once(
|
901 |
+
"The `prepare` method is deprecated and will be removed in a v4.33. "
|
902 |
+
"Please use `prepare_annotation` instead. Note: the `prepare_annotation` method "
|
903 |
+
"does not return the image anymore.",
|
904 |
+
)
|
905 |
+
target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format)
|
906 |
+
return image, target
|
907 |
+
|
908 |
+
def convert_coco_poly_to_mask(self, *args, **kwargs):
|
909 |
+
logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ")
|
910 |
+
return convert_coco_poly_to_mask(*args, **kwargs)
|
911 |
+
|
912 |
+
def prepare_coco_detection(self, *args, **kwargs):
|
913 |
+
logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ")
|
914 |
+
return prepare_coco_detection_annotation(*args, **kwargs)
|
915 |
+
|
916 |
+
def prepare_coco_panoptic(self, *args, **kwargs):
|
917 |
+
logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ")
|
918 |
+
return prepare_coco_panoptic_annotation(*args, **kwargs)
|
919 |
+
|
920 |
+
def resize(
|
921 |
+
self,
|
922 |
+
image: np.ndarray,
|
923 |
+
size: Dict[str, int],
|
924 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
925 |
+
data_format: Optional[ChannelDimension] = None,
|
926 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
927 |
+
**kwargs,
|
928 |
+
) -> np.ndarray:
|
929 |
+
"""
|
930 |
+
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
|
931 |
+
int, smaller edge of the image will be matched to this number.
|
932 |
+
|
933 |
+
Args:
|
934 |
+
image (`np.ndarray`):
|
935 |
+
Image to resize.
|
936 |
+
size (`Dict[str, int]`):
|
937 |
+
Dictionary containing the size to resize to. Can contain the keys `shortest_edge` and `longest_edge` or
|
938 |
+
`height` and `width`.
|
939 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
940 |
+
Resampling filter to use if resizing the image.
|
941 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
942 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
943 |
+
image is used.
|
944 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
945 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
946 |
+
"""
|
947 |
+
if "max_size" in kwargs:
|
948 |
+
logger.warning_once(
|
949 |
+
"The `max_size` parameter is deprecated and will be removed in v4.26. "
|
950 |
+
"Please specify in `size['longest_edge'] instead`.",
|
951 |
+
)
|
952 |
+
max_size = kwargs.pop("max_size")
|
953 |
+
else:
|
954 |
+
max_size = None
|
955 |
+
size = get_size_dict(size, max_size=max_size, default_to_square=False)
|
956 |
+
if "shortest_edge" in size and "longest_edge" in size:
|
957 |
+
size = get_resize_output_image_size(
|
958 |
+
image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
|
959 |
+
)
|
960 |
+
elif "height" in size and "width" in size:
|
961 |
+
size = (size["height"], size["width"])
|
962 |
+
else:
|
963 |
+
raise ValueError(
|
964 |
+
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
|
965 |
+
f" {size.keys()}."
|
966 |
+
)
|
967 |
+
image = resize(
|
968 |
+
image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
|
969 |
+
)
|
970 |
+
return image
|
971 |
+
|
972 |
+
def resize_annotation(
|
973 |
+
self,
|
974 |
+
annotation,
|
975 |
+
orig_size,
|
976 |
+
size,
|
977 |
+
resample: PILImageResampling = PILImageResampling.NEAREST,
|
978 |
+
) -> Dict:
|
979 |
+
"""
|
980 |
+
Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched
|
981 |
+
to this number.
|
982 |
+
"""
|
983 |
+
return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample)
|
984 |
+
|
985 |
+
# TODO (Amy) - update to use `rescale_factor` instead of `scale`
|
986 |
+
def rescale(
|
987 |
+
self,
|
988 |
+
image: np.ndarray,
|
989 |
+
rescale_factor: float,
|
990 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
991 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
992 |
+
) -> np.ndarray:
|
993 |
+
"""
|
994 |
+
Rescale the image by the given factor. image = image * rescale_factor.
|
995 |
+
|
996 |
+
Args:
|
997 |
+
image (`np.ndarray`):
|
998 |
+
Image to rescale.
|
999 |
+
rescale_factor (`float`):
|
1000 |
+
The value to use for rescaling.
|
1001 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
1002 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
1003 |
+
image is used. Can be one of:
|
1004 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1005 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1006 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
1007 |
+
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
|
1008 |
+
one of:
|
1009 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1010 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1011 |
+
"""
|
1012 |
+
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
|
1013 |
+
|
1014 |
+
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
|
1015 |
+
"""
|
1016 |
+
Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to
|
1017 |
+
`[center_x, center_y, width, height]` format and from absolute to relative pixel values.
|
1018 |
+
"""
|
1019 |
+
return normalize_annotation(annotation, image_size=image_size)
|
1020 |
+
|
1021 |
+
def _update_annotation_for_padded_image(
|
1022 |
+
self,
|
1023 |
+
annotation: Dict,
|
1024 |
+
input_image_size: Tuple[int, int],
|
1025 |
+
output_image_size: Tuple[int, int],
|
1026 |
+
padding,
|
1027 |
+
update_bboxes,
|
1028 |
+
) -> Dict:
|
1029 |
+
"""
|
1030 |
+
Update the annotation for a padded image.
|
1031 |
+
"""
|
1032 |
+
new_annotation = {}
|
1033 |
+
new_annotation["size"] = output_image_size
|
1034 |
+
|
1035 |
+
for key, value in annotation.items():
|
1036 |
+
if key == "masks":
|
1037 |
+
masks = value
|
1038 |
+
masks = pad(
|
1039 |
+
masks,
|
1040 |
+
padding,
|
1041 |
+
mode=PaddingMode.CONSTANT,
|
1042 |
+
constant_values=0,
|
1043 |
+
input_data_format=ChannelDimension.FIRST,
|
1044 |
+
)
|
1045 |
+
masks = safe_squeeze(masks, 1)
|
1046 |
+
new_annotation["masks"] = masks
|
1047 |
+
elif key == "boxes" and update_bboxes:
|
1048 |
+
boxes = value
|
1049 |
+
boxes *= np.asarray(
|
1050 |
+
[
|
1051 |
+
input_image_size[1] / output_image_size[1],
|
1052 |
+
input_image_size[0] / output_image_size[0],
|
1053 |
+
input_image_size[1] / output_image_size[1],
|
1054 |
+
input_image_size[0] / output_image_size[0],
|
1055 |
+
]
|
1056 |
+
)
|
1057 |
+
new_annotation["boxes"] = boxes
|
1058 |
+
elif key == "size":
|
1059 |
+
new_annotation["size"] = output_image_size
|
1060 |
+
else:
|
1061 |
+
new_annotation[key] = value
|
1062 |
+
return new_annotation
|
1063 |
+
|
1064 |
+
def _pad_image(
|
1065 |
+
self,
|
1066 |
+
image: np.ndarray,
|
1067 |
+
output_size: Tuple[int, int],
|
1068 |
+
annotation: Optional[Dict[str, Any]] = None,
|
1069 |
+
constant_values: Union[float, Iterable[float]] = 0,
|
1070 |
+
data_format: Optional[ChannelDimension] = None,
|
1071 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1072 |
+
update_bboxes: bool = True,
|
1073 |
+
) -> np.ndarray:
|
1074 |
+
"""
|
1075 |
+
Pad an image with zeros to the given size.
|
1076 |
+
"""
|
1077 |
+
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
|
1078 |
+
output_height, output_width = output_size
|
1079 |
+
|
1080 |
+
pad_bottom = output_height - input_height
|
1081 |
+
pad_right = output_width - input_width
|
1082 |
+
padding = ((0, pad_bottom), (0, pad_right))
|
1083 |
+
padded_image = pad(
|
1084 |
+
image,
|
1085 |
+
padding,
|
1086 |
+
mode=PaddingMode.CONSTANT,
|
1087 |
+
constant_values=constant_values,
|
1088 |
+
data_format=data_format,
|
1089 |
+
input_data_format=input_data_format,
|
1090 |
+
)
|
1091 |
+
if annotation is not None:
|
1092 |
+
annotation = self._update_annotation_for_padded_image(
|
1093 |
+
annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes
|
1094 |
+
)
|
1095 |
+
return padded_image, annotation
|
1096 |
+
|
1097 |
+
def pad(
|
1098 |
+
self,
|
1099 |
+
images: List[np.ndarray],
|
1100 |
+
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
|
1101 |
+
constant_values: Union[float, Iterable[float]] = 0,
|
1102 |
+
return_pixel_mask: bool = True,
|
1103 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
1104 |
+
data_format: Optional[ChannelDimension] = None,
|
1105 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1106 |
+
update_bboxes: bool = True,
|
1107 |
+
) -> BatchFeature:
|
1108 |
+
"""
|
1109 |
+
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
|
1110 |
+
in the batch and optionally returns their corresponding pixel mask.
|
1111 |
+
|
1112 |
+
Args:
|
1113 |
+
images (List[`np.ndarray`]):
|
1114 |
+
Images to pad.
|
1115 |
+
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
|
1116 |
+
Annotations to transform according to the padding that is applied to the images.
|
1117 |
+
constant_values (`float` or `Iterable[float]`, *optional*):
|
1118 |
+
The value to use for the padding if `mode` is `"constant"`.
|
1119 |
+
return_pixel_mask (`bool`, *optional*, defaults to `True`):
|
1120 |
+
Whether to return a pixel mask.
|
1121 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
1122 |
+
The type of tensors to return. Can be one of:
|
1123 |
+
- Unset: Return a list of `np.ndarray`.
|
1124 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
1125 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
1126 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
1127 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
1128 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
1129 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
1130 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
1131 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
1132 |
+
update_bboxes (`bool`, *optional*, defaults to `True`):
|
1133 |
+
Whether to update the bounding boxes in the annotations to match the padded images. If the
|
1134 |
+
bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)`
|
1135 |
+
format, the bounding boxes will not be updated.
|
1136 |
+
"""
|
1137 |
+
pad_size = get_max_height_width(images, input_data_format=input_data_format)
|
1138 |
+
|
1139 |
+
annotation_list = annotations if annotations is not None else [None] * len(images)
|
1140 |
+
padded_images = []
|
1141 |
+
padded_annotations = []
|
1142 |
+
for image, annotation in zip(images, annotation_list):
|
1143 |
+
padded_image, padded_annotation = self._pad_image(
|
1144 |
+
image,
|
1145 |
+
pad_size,
|
1146 |
+
annotation,
|
1147 |
+
constant_values=constant_values,
|
1148 |
+
data_format=data_format,
|
1149 |
+
input_data_format=input_data_format,
|
1150 |
+
update_bboxes=update_bboxes,
|
1151 |
+
)
|
1152 |
+
padded_images.append(padded_image)
|
1153 |
+
padded_annotations.append(padded_annotation)
|
1154 |
+
|
1155 |
+
data = {"pixel_values": padded_images}
|
1156 |
+
|
1157 |
+
if return_pixel_mask:
|
1158 |
+
masks = [
|
1159 |
+
make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
|
1160 |
+
for image in images
|
1161 |
+
]
|
1162 |
+
data["pixel_mask"] = masks
|
1163 |
+
|
1164 |
+
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
|
1165 |
+
|
1166 |
+
if annotations is not None:
|
1167 |
+
encoded_inputs["labels"] = [
|
1168 |
+
BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations
|
1169 |
+
]
|
1170 |
+
|
1171 |
+
return encoded_inputs
|
1172 |
+
|
1173 |
+
def preprocess(
|
1174 |
+
self,
|
1175 |
+
images: ImageInput,
|
1176 |
+
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
|
1177 |
+
return_segmentation_masks: bool = None,
|
1178 |
+
masks_path: Optional[Union[str, pathlib.Path]] = None,
|
1179 |
+
do_resize: Optional[bool] = None,
|
1180 |
+
size: Optional[Dict[str, int]] = None,
|
1181 |
+
resample=None, # PILImageResampling
|
1182 |
+
do_rescale: Optional[bool] = None,
|
1183 |
+
rescale_factor: Optional[Union[int, float]] = None,
|
1184 |
+
do_normalize: Optional[bool] = None,
|
1185 |
+
do_convert_annotations: Optional[bool] = None,
|
1186 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
1187 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
1188 |
+
do_pad: Optional[bool] = None,
|
1189 |
+
format: Optional[Union[str, AnnotationFormat]] = None,
|
1190 |
+
return_tensors: Optional[Union[TensorType, str]] = None,
|
1191 |
+
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
|
1192 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
1193 |
+
**kwargs,
|
1194 |
+
) -> BatchFeature:
|
1195 |
+
"""
|
1196 |
+
Preprocess an image or a batch of images so that it can be used by the model.
|
1197 |
+
|
1198 |
+
Args:
|
1199 |
+
images (`ImageInput`):
|
1200 |
+
Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
|
1201 |
+
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
1202 |
+
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
|
1203 |
+
List of annotations associated with the image or batch of images. If annotation is for object
|
1204 |
+
detection, the annotations should be a dictionary with the following keys:
|
1205 |
+
- "image_id" (`int`): The image id.
|
1206 |
+
- "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
|
1207 |
+
dictionary. An image can have no annotations, in which case the list should be empty.
|
1208 |
+
If annotation is for segmentation, the annotations should be a dictionary with the following keys:
|
1209 |
+
- "image_id" (`int`): The image id.
|
1210 |
+
- "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
|
1211 |
+
An image can have no segments, in which case the list should be empty.
|
1212 |
+
- "file_name" (`str`): The file name of the image.
|
1213 |
+
return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks):
|
1214 |
+
Whether to return segmentation masks.
|
1215 |
+
masks_path (`str` or `pathlib.Path`, *optional*):
|
1216 |
+
Path to the directory containing the segmentation masks.
|
1217 |
+
do_resize (`bool`, *optional*, defaults to self.do_resize):
|
1218 |
+
Whether to resize the image.
|
1219 |
+
size (`Dict[str, int]`, *optional*, defaults to self.size):
|
1220 |
+
Size of the image after resizing.
|
1221 |
+
resample (`PILImageResampling`, *optional*, defaults to self.resample):
|
1222 |
+
Resampling filter to use when resizing the image.
|
1223 |
+
do_rescale (`bool`, *optional*, defaults to self.do_rescale):
|
1224 |
+
Whether to rescale the image.
|
1225 |
+
rescale_factor (`float`, *optional*, defaults to self.rescale_factor):
|
1226 |
+
Rescale factor to use when rescaling the image.
|
1227 |
+
do_normalize (`bool`, *optional*, defaults to self.do_normalize):
|
1228 |
+
Whether to normalize the image.
|
1229 |
+
do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations):
|
1230 |
+
Whether to convert the annotations to the format expected by the model. Converts the bounding
|
1231 |
+
boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)`
|
1232 |
+
and in relative coordinates.
|
1233 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean):
|
1234 |
+
Mean to use when normalizing the image.
|
1235 |
+
image_std (`float` or `List[float]`, *optional*, defaults to self.image_std):
|
1236 |
+
Standard deviation to use when normalizing the image.
|
1237 |
+
do_pad (`bool`, *optional*, defaults to self.do_pad):
|
1238 |
+
Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch
|
1239 |
+
and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros.
|
1240 |
+
format (`str` or `AnnotationFormat`, *optional*, defaults to self.format):
|
1241 |
+
Format of the annotations.
|
1242 |
+
return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
|
1243 |
+
Type of tensors to return. If `None`, will return the list of images.
|
1244 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
1245 |
+
The channel dimension format for the output image. Can be one of:
|
1246 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1247 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1248 |
+
- Unset: Use the channel dimension format of the input image.
|
1249 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
1250 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
1251 |
+
from the input image. Can be one of:
|
1252 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
1253 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
1254 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
1255 |
+
"""
|
1256 |
+
if "pad_and_return_pixel_mask" in kwargs:
|
1257 |
+
logger.warning_once(
|
1258 |
+
"The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, "
|
1259 |
+
"use `do_pad` instead."
|
1260 |
+
)
|
1261 |
+
do_pad = kwargs.pop("pad_and_return_pixel_mask")
|
1262 |
+
|
1263 |
+
max_size = None
|
1264 |
+
if "max_size" in kwargs:
|
1265 |
+
logger.warning_once(
|
1266 |
+
"The `max_size` argument is deprecated and will be removed in a future version, use"
|
1267 |
+
" `size['longest_edge']` instead."
|
1268 |
+
)
|
1269 |
+
size = kwargs.pop("max_size")
|
1270 |
+
|
1271 |
+
do_resize = self.do_resize if do_resize is None else do_resize
|
1272 |
+
size = self.size if size is None else size
|
1273 |
+
size = get_size_dict(size=size, max_size=max_size, default_to_square=False)
|
1274 |
+
resample = self.resample if resample is None else resample
|
1275 |
+
do_rescale = self.do_rescale if do_rescale is None else do_rescale
|
1276 |
+
rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor
|
1277 |
+
do_normalize = self.do_normalize if do_normalize is None else do_normalize
|
1278 |
+
image_mean = self.image_mean if image_mean is None else image_mean
|
1279 |
+
image_std = self.image_std if image_std is None else image_std
|
1280 |
+
do_convert_annotations = (
|
1281 |
+
self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations
|
1282 |
+
)
|
1283 |
+
do_pad = self.do_pad if do_pad is None else do_pad
|
1284 |
+
format = self.format if format is None else format
|
1285 |
+
|
1286 |
+
images = make_list_of_images(images)
|
1287 |
+
|
1288 |
+
if not valid_images(images):
|
1289 |
+
raise ValueError(
|
1290 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
1291 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
1292 |
+
)
|
1293 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
1294 |
+
|
1295 |
+
# Here, the pad() method pads to the maximum of (width, height). It does not need to be validated.
|
1296 |
+
validate_preprocess_arguments(
|
1297 |
+
do_rescale=do_rescale,
|
1298 |
+
rescale_factor=rescale_factor,
|
1299 |
+
do_normalize=do_normalize,
|
1300 |
+
image_mean=image_mean,
|
1301 |
+
image_std=image_std,
|
1302 |
+
do_resize=do_resize,
|
1303 |
+
size=size,
|
1304 |
+
resample=resample,
|
1305 |
+
)
|
1306 |
+
|
1307 |
+
if annotations is not None and isinstance(annotations, dict):
|
1308 |
+
annotations = [annotations]
|
1309 |
+
|
1310 |
+
if annotations is not None and len(images) != len(annotations):
|
1311 |
+
raise ValueError(
|
1312 |
+
f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match."
|
1313 |
+
)
|
1314 |
+
|
1315 |
+
format = AnnotationFormat(format)
|
1316 |
+
if annotations is not None:
|
1317 |
+
validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations)
|
1318 |
+
|
1319 |
+
if (
|
1320 |
+
masks_path is not None
|
1321 |
+
and format == AnnotationFormat.COCO_PANOPTIC
|
1322 |
+
and not isinstance(masks_path, (pathlib.Path, str))
|
1323 |
+
):
|
1324 |
+
raise ValueError(
|
1325 |
+
"The path to the directory containing the mask PNG files should be provided as a"
|
1326 |
+
f" `pathlib.Path` or string object, but is {type(masks_path)} instead."
|
1327 |
+
)
|
1328 |
+
|
1329 |
+
# All transformations expect numpy arrays
|
1330 |
+
images = [to_numpy_array(image) for image in images]
|
1331 |
+
|
1332 |
+
if is_scaled_image(images[0]) and do_rescale:
|
1333 |
+
logger.warning_once(
|
1334 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
1335 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
1336 |
+
)
|
1337 |
+
|
1338 |
+
if input_data_format is None:
|
1339 |
+
# We assume that all images have the same channel dimension format.
|
1340 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
1341 |
+
|
1342 |
+
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
|
1343 |
+
if annotations is not None:
|
1344 |
+
prepared_images = []
|
1345 |
+
prepared_annotations = []
|
1346 |
+
for image, target in zip(images, annotations):
|
1347 |
+
target = self.prepare_annotation(
|
1348 |
+
image,
|
1349 |
+
target,
|
1350 |
+
format,
|
1351 |
+
return_segmentation_masks=return_segmentation_masks,
|
1352 |
+
masks_path=masks_path,
|
1353 |
+
input_data_format=input_data_format,
|
1354 |
+
)
|
1355 |
+
prepared_images.append(image)
|
1356 |
+
prepared_annotations.append(target)
|
1357 |
+
images = prepared_images
|
1358 |
+
annotations = prepared_annotations
|
1359 |
+
del prepared_images, prepared_annotations
|
1360 |
+
|
1361 |
+
# transformations
|
1362 |
+
if do_resize:
|
1363 |
+
if annotations is not None:
|
1364 |
+
resized_images, resized_annotations = [], []
|
1365 |
+
for image, target in zip(images, annotations):
|
1366 |
+
orig_size = get_image_size(image, input_data_format)
|
1367 |
+
resized_image = self.resize(
|
1368 |
+
image, size=size, max_size=max_size, resample=resample, input_data_format=input_data_format
|
1369 |
+
)
|
1370 |
+
resized_annotation = self.resize_annotation(
|
1371 |
+
target, orig_size, get_image_size(resized_image, input_data_format)
|
1372 |
+
)
|
1373 |
+
resized_images.append(resized_image)
|
1374 |
+
resized_annotations.append(resized_annotation)
|
1375 |
+
images = resized_images
|
1376 |
+
annotations = resized_annotations
|
1377 |
+
del resized_images, resized_annotations
|
1378 |
+
else:
|
1379 |
+
images = [
|
1380 |
+
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
|
1381 |
+
for image in images
|
1382 |
+
]
|
1383 |
+
|
1384 |
+
if do_rescale:
|
1385 |
+
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
|
1386 |
+
|
1387 |
+
if do_normalize:
|
1388 |
+
images = [
|
1389 |
+
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
|
1390 |
+
]
|
1391 |
+
|
1392 |
+
if do_convert_annotations and annotations is not None:
|
1393 |
+
annotations = [
|
1394 |
+
self.normalize_annotation(annotation, get_image_size(image, input_data_format))
|
1395 |
+
for annotation, image in zip(annotations, images)
|
1396 |
+
]
|
1397 |
+
|
1398 |
+
if do_pad:
|
1399 |
+
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
|
1400 |
+
encoded_inputs = self.pad(
|
1401 |
+
images,
|
1402 |
+
annotations=annotations,
|
1403 |
+
return_pixel_mask=True,
|
1404 |
+
data_format=data_format,
|
1405 |
+
input_data_format=input_data_format,
|
1406 |
+
update_bboxes=do_convert_annotations,
|
1407 |
+
return_tensors=return_tensors,
|
1408 |
+
)
|
1409 |
+
else:
|
1410 |
+
images = [
|
1411 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
1412 |
+
for image in images
|
1413 |
+
]
|
1414 |
+
encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
|
1415 |
+
if annotations is not None:
|
1416 |
+
encoded_inputs["labels"] = [
|
1417 |
+
BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations
|
1418 |
+
]
|
1419 |
+
|
1420 |
+
return encoded_inputs
|
1421 |
+
|
1422 |
+
# POSTPROCESSING METHODS - TODO: add support for other frameworks
|
1423 |
+
# inspired by https://github.com/facebookresearch/detr/blob/master/models/detr.py#L258
|
1424 |
+
def post_process(self, outputs, target_sizes):
|
1425 |
+
"""
|
1426 |
+
Converts the raw output of [`DetrForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
|
1427 |
+
bottom_right_x, bottom_right_y) format. Only supports PyTorch.
|
1428 |
+
|
1429 |
+
Args:
|
1430 |
+
outputs ([`DetrObjectDetectionOutput`]):
|
1431 |
+
Raw outputs of the model.
|
1432 |
+
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
|
1433 |
+
Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the
|
1434 |
+
original image size (before any data augmentation). For visualization, this should be the image size
|
1435 |
+
after data augment, but before padding.
|
1436 |
+
Returns:
|
1437 |
+
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
|
1438 |
+
in the batch as predicted by the model.
|
1439 |
+
"""
|
1440 |
+
logger.warning_once(
|
1441 |
+
"`post_process` is deprecated and will be removed in v5 of Transformers, please use"
|
1442 |
+
" `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
|
1443 |
+
)
|
1444 |
+
|
1445 |
+
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
|
1446 |
+
|
1447 |
+
if len(out_logits) != len(target_sizes):
|
1448 |
+
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
|
1449 |
+
if target_sizes.shape[1] != 2:
|
1450 |
+
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
|
1451 |
+
|
1452 |
+
prob = nn.functional.softmax(out_logits, -1)
|
1453 |
+
scores, labels = prob[..., :-1].max(-1)
|
1454 |
+
|
1455 |
+
# convert to [x0, y0, x1, y1] format
|
1456 |
+
boxes = center_to_corners_format(out_bbox)
|
1457 |
+
# and from relative [0, 1] to absolute [0, height] coordinates
|
1458 |
+
img_h, img_w = target_sizes.unbind(1)
|
1459 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
|
1460 |
+
boxes = boxes * scale_fct[:, None, :]
|
1461 |
+
|
1462 |
+
results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
|
1463 |
+
return results
|
1464 |
+
|
1465 |
+
def post_process_segmentation(self, outputs, target_sizes, threshold=0.9, mask_threshold=0.5):
|
1466 |
+
"""
|
1467 |
+
Converts the output of [`DetrForSegmentation`] into image segmentation predictions. Only supports PyTorch.
|
1468 |
+
|
1469 |
+
Args:
|
1470 |
+
outputs ([`DetrSegmentationOutput`]):
|
1471 |
+
Raw outputs of the model.
|
1472 |
+
target_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`):
|
1473 |
+
Torch Tensor (or list) corresponding to the requested final size (h, w) of each prediction.
|
1474 |
+
threshold (`float`, *optional*, defaults to 0.9):
|
1475 |
+
Threshold to use to filter out queries.
|
1476 |
+
mask_threshold (`float`, *optional*, defaults to 0.5):
|
1477 |
+
Threshold to use when turning the predicted masks into binary values.
|
1478 |
+
Returns:
|
1479 |
+
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels, and masks for an image
|
1480 |
+
in the batch as predicted by the model.
|
1481 |
+
"""
|
1482 |
+
logger.warning_once(
|
1483 |
+
"`post_process_segmentation` is deprecated and will be removed in v5 of Transformers, please use"
|
1484 |
+
" `post_process_semantic_segmentation`.",
|
1485 |
+
)
|
1486 |
+
out_logits, raw_masks = outputs.logits, outputs.pred_masks
|
1487 |
+
empty_label = out_logits.shape[-1] - 1
|
1488 |
+
preds = []
|
1489 |
+
|
1490 |
+
def to_tuple(tup):
|
1491 |
+
if isinstance(tup, tuple):
|
1492 |
+
return tup
|
1493 |
+
return tuple(tup.cpu().tolist())
|
1494 |
+
|
1495 |
+
for cur_logits, cur_masks, size in zip(out_logits, raw_masks, target_sizes):
|
1496 |
+
# we filter empty queries and detection below threshold
|
1497 |
+
cur_scores, cur_labels = cur_logits.softmax(-1).max(-1)
|
1498 |
+
keep = cur_labels.ne(empty_label) & (cur_scores > threshold)
|
1499 |
+
cur_scores = cur_scores[keep]
|
1500 |
+
cur_labels = cur_labels[keep]
|
1501 |
+
cur_masks = cur_masks[keep]
|
1502 |
+
cur_masks = nn.functional.interpolate(cur_masks[:, None], to_tuple(size), mode="bilinear").squeeze(1)
|
1503 |
+
cur_masks = (cur_masks.sigmoid() > mask_threshold) * 1
|
1504 |
+
|
1505 |
+
predictions = {"scores": cur_scores, "labels": cur_labels, "masks": cur_masks}
|
1506 |
+
preds.append(predictions)
|
1507 |
+
return preds
|
1508 |
+
|
1509 |
+
# inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L218
|
1510 |
+
def post_process_instance(self, results, outputs, orig_target_sizes, max_target_sizes, threshold=0.5):
|
1511 |
+
"""
|
1512 |
+
Converts the output of [`DetrForSegmentation`] into actual instance segmentation predictions. Only supports
|
1513 |
+
PyTorch.
|
1514 |
+
|
1515 |
+
Args:
|
1516 |
+
results (`List[Dict]`):
|
1517 |
+
Results list obtained by [`~DetrImageProcessor.post_process`], to which "masks" results will be added.
|
1518 |
+
outputs ([`DetrSegmentationOutput`]):
|
1519 |
+
Raw outputs of the model.
|
1520 |
+
orig_target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
|
1521 |
+
Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original
|
1522 |
+
image size (before any data augmentation).
|
1523 |
+
max_target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
|
1524 |
+
Tensor containing the maximum size (h, w) of each image of the batch. For evaluation, this must be the
|
1525 |
+
original image size (before any data augmentation).
|
1526 |
+
threshold (`float`, *optional*, defaults to 0.5):
|
1527 |
+
Threshold to use when turning the predicted masks into binary values.
|
1528 |
+
Returns:
|
1529 |
+
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels, boxes and masks for an
|
1530 |
+
image in the batch as predicted by the model.
|
1531 |
+
"""
|
1532 |
+
logger.warning_once(
|
1533 |
+
"`post_process_instance` is deprecated and will be removed in v5 of Transformers, please use"
|
1534 |
+
" `post_process_instance_segmentation`.",
|
1535 |
+
)
|
1536 |
+
|
1537 |
+
if len(orig_target_sizes) != len(max_target_sizes):
|
1538 |
+
raise ValueError("Make sure to pass in as many orig_target_sizes as max_target_sizes")
|
1539 |
+
max_h, max_w = max_target_sizes.max(0)[0].tolist()
|
1540 |
+
outputs_masks = outputs.pred_masks.squeeze(2)
|
1541 |
+
outputs_masks = nn.functional.interpolate(
|
1542 |
+
outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False
|
1543 |
+
)
|
1544 |
+
outputs_masks = (outputs_masks.sigmoid() > threshold).cpu()
|
1545 |
+
|
1546 |
+
for i, (cur_mask, t, tt) in enumerate(zip(outputs_masks, max_target_sizes, orig_target_sizes)):
|
1547 |
+
img_h, img_w = t[0], t[1]
|
1548 |
+
results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1)
|
1549 |
+
results[i]["masks"] = nn.functional.interpolate(
|
1550 |
+
results[i]["masks"].float(), size=tuple(tt.tolist()), mode="nearest"
|
1551 |
+
).byte()
|
1552 |
+
|
1553 |
+
return results
|
1554 |
+
|
1555 |
+
# inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L241
|
1556 |
+
def post_process_panoptic(self, outputs, processed_sizes, target_sizes=None, is_thing_map=None, threshold=0.85):
|
1557 |
+
"""
|
1558 |
+
Converts the output of [`DetrForSegmentation`] into actual panoptic predictions. Only supports PyTorch.
|
1559 |
+
|
1560 |
+
Args:
|
1561 |
+
outputs ([`DetrSegmentationOutput`]):
|
1562 |
+
Raw outputs of the model.
|
1563 |
+
processed_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`):
|
1564 |
+
Torch Tensor (or list) containing the size (h, w) of each image of the batch, i.e. the size after data
|
1565 |
+
augmentation but before batching.
|
1566 |
+
target_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`, *optional*):
|
1567 |
+
Torch Tensor (or list) corresponding to the requested final size `(height, width)` of each prediction.
|
1568 |
+
If left to None, it will default to the `processed_sizes`.
|
1569 |
+
is_thing_map (`torch.Tensor` of shape `(batch_size, 2)`, *optional*):
|
1570 |
+
Dictionary mapping class indices to either True or False, depending on whether or not they are a thing.
|
1571 |
+
If not set, defaults to the `is_thing_map` of COCO panoptic.
|
1572 |
+
threshold (`float`, *optional*, defaults to 0.85):
|
1573 |
+
Threshold to use to filter out queries.
|
1574 |
+
Returns:
|
1575 |
+
`List[Dict]`: A list of dictionaries, each dictionary containing a PNG string and segments_info values for
|
1576 |
+
an image in the batch as predicted by the model.
|
1577 |
+
"""
|
1578 |
+
logger.warning_once(
|
1579 |
+
"`post_process_panoptic is deprecated and will be removed in v5 of Transformers, please use"
|
1580 |
+
" `post_process_panoptic_segmentation`.",
|
1581 |
+
)
|
1582 |
+
if target_sizes is None:
|
1583 |
+
target_sizes = processed_sizes
|
1584 |
+
if len(processed_sizes) != len(target_sizes):
|
1585 |
+
raise ValueError("Make sure to pass in as many processed_sizes as target_sizes")
|
1586 |
+
|
1587 |
+
if is_thing_map is None:
|
1588 |
+
# default to is_thing_map of COCO panoptic
|
1589 |
+
is_thing_map = {i: i <= 90 for i in range(201)}
|
1590 |
+
|
1591 |
+
out_logits, raw_masks, raw_boxes = outputs.logits, outputs.pred_masks, outputs.pred_boxes
|
1592 |
+
if not len(out_logits) == len(raw_masks) == len(target_sizes):
|
1593 |
+
raise ValueError(
|
1594 |
+
"Make sure that you pass in as many target sizes as the batch dimension of the logits and masks"
|
1595 |
+
)
|
1596 |
+
empty_label = out_logits.shape[-1] - 1
|
1597 |
+
preds = []
|
1598 |
+
|
1599 |
+
def to_tuple(tup):
|
1600 |
+
if isinstance(tup, tuple):
|
1601 |
+
return tup
|
1602 |
+
return tuple(tup.cpu().tolist())
|
1603 |
+
|
1604 |
+
for cur_logits, cur_masks, cur_boxes, size, target_size in zip(
|
1605 |
+
out_logits, raw_masks, raw_boxes, processed_sizes, target_sizes
|
1606 |
+
):
|
1607 |
+
# we filter empty queries and detection below threshold
|
1608 |
+
cur_scores, cur_labels = cur_logits.softmax(-1).max(-1)
|
1609 |
+
keep = cur_labels.ne(empty_label) & (cur_scores > threshold)
|
1610 |
+
cur_scores = cur_scores[keep]
|
1611 |
+
cur_labels = cur_labels[keep]
|
1612 |
+
cur_masks = cur_masks[keep]
|
1613 |
+
cur_masks = nn.functional.interpolate(cur_masks[:, None], to_tuple(size), mode="bilinear").squeeze(1)
|
1614 |
+
cur_boxes = center_to_corners_format(cur_boxes[keep])
|
1615 |
+
|
1616 |
+
h, w = cur_masks.shape[-2:]
|
1617 |
+
if len(cur_boxes) != len(cur_labels):
|
1618 |
+
raise ValueError("Not as many boxes as there are classes")
|
1619 |
+
|
1620 |
+
# It may be that we have several predicted masks for the same stuff class.
|
1621 |
+
# In the following, we track the list of masks ids for each stuff class (they are merged later on)
|
1622 |
+
cur_masks = cur_masks.flatten(1)
|
1623 |
+
stuff_equiv_classes = defaultdict(lambda: [])
|
1624 |
+
for k, label in enumerate(cur_labels):
|
1625 |
+
if not is_thing_map[label.item()]:
|
1626 |
+
stuff_equiv_classes[label.item()].append(k)
|
1627 |
+
|
1628 |
+
def get_ids_area(masks, scores, dedup=False):
|
1629 |
+
# This helper function creates the final panoptic segmentation image
|
1630 |
+
# It also returns the area of the masks that appears on the image
|
1631 |
+
|
1632 |
+
m_id = masks.transpose(0, 1).softmax(-1)
|
1633 |
+
|
1634 |
+
if m_id.shape[-1] == 0:
|
1635 |
+
# We didn't detect any mask :(
|
1636 |
+
m_id = torch.zeros((h, w), dtype=torch.long, device=m_id.device)
|
1637 |
+
else:
|
1638 |
+
m_id = m_id.argmax(-1).view(h, w)
|
1639 |
+
|
1640 |
+
if dedup:
|
1641 |
+
# Merge the masks corresponding to the same stuff class
|
1642 |
+
for equiv in stuff_equiv_classes.values():
|
1643 |
+
if len(equiv) > 1:
|
1644 |
+
for eq_id in equiv:
|
1645 |
+
m_id.masked_fill_(m_id.eq(eq_id), equiv[0])
|
1646 |
+
|
1647 |
+
final_h, final_w = to_tuple(target_size)
|
1648 |
+
|
1649 |
+
seg_img = PIL.Image.fromarray(id_to_rgb(m_id.view(h, w).cpu().numpy()))
|
1650 |
+
seg_img = seg_img.resize(size=(final_w, final_h), resample=PILImageResampling.NEAREST)
|
1651 |
+
|
1652 |
+
np_seg_img = torch.ByteTensor(torch.ByteStorage.from_buffer(seg_img.tobytes()))
|
1653 |
+
np_seg_img = np_seg_img.view(final_h, final_w, 3)
|
1654 |
+
np_seg_img = np_seg_img.numpy()
|
1655 |
+
|
1656 |
+
m_id = torch.from_numpy(rgb_to_id(np_seg_img))
|
1657 |
+
|
1658 |
+
area = []
|
1659 |
+
for i in range(len(scores)):
|
1660 |
+
area.append(m_id.eq(i).sum().item())
|
1661 |
+
return area, seg_img
|
1662 |
+
|
1663 |
+
area, seg_img = get_ids_area(cur_masks, cur_scores, dedup=True)
|
1664 |
+
if cur_labels.numel() > 0:
|
1665 |
+
# We know filter empty masks as long as we find some
|
1666 |
+
while True:
|
1667 |
+
filtered_small = torch.as_tensor(
|
1668 |
+
[area[i] <= 4 for i, c in enumerate(cur_labels)], dtype=torch.bool, device=keep.device
|
1669 |
+
)
|
1670 |
+
if filtered_small.any().item():
|
1671 |
+
cur_scores = cur_scores[~filtered_small]
|
1672 |
+
cur_labels = cur_labels[~filtered_small]
|
1673 |
+
cur_masks = cur_masks[~filtered_small]
|
1674 |
+
area, seg_img = get_ids_area(cur_masks, cur_scores)
|
1675 |
+
else:
|
1676 |
+
break
|
1677 |
+
|
1678 |
+
else:
|
1679 |
+
cur_labels = torch.ones(1, dtype=torch.long, device=cur_labels.device)
|
1680 |
+
|
1681 |
+
segments_info = []
|
1682 |
+
for i, a in enumerate(area):
|
1683 |
+
cat = cur_labels[i].item()
|
1684 |
+
segments_info.append({"id": i, "isthing": is_thing_map[cat], "category_id": cat, "area": a})
|
1685 |
+
del cur_labels
|
1686 |
+
|
1687 |
+
with io.BytesIO() as out:
|
1688 |
+
seg_img.save(out, format="PNG")
|
1689 |
+
predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
|
1690 |
+
preds.append(predictions)
|
1691 |
+
return preds
|
1692 |
+
|
1693 |
+
# inspired by https://github.com/facebookresearch/detr/blob/master/models/detr.py#L258
|
1694 |
+
def post_process_object_detection(
|
1695 |
+
self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None
|
1696 |
+
):
|
1697 |
+
"""
|
1698 |
+
Converts the raw output of [`DetrForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
|
1699 |
+
bottom_right_x, bottom_right_y) format. Only supports PyTorch.
|
1700 |
+
|
1701 |
+
Args:
|
1702 |
+
outputs ([`DetrObjectDetectionOutput`]):
|
1703 |
+
Raw outputs of the model.
|
1704 |
+
threshold (`float`, *optional*):
|
1705 |
+
Score threshold to keep object detection predictions.
|
1706 |
+
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
|
1707 |
+
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
|
1708 |
+
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
|
1709 |
+
Returns:
|
1710 |
+
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
|
1711 |
+
in the batch as predicted by the model.
|
1712 |
+
"""
|
1713 |
+
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
|
1714 |
+
|
1715 |
+
if target_sizes is not None:
|
1716 |
+
if len(out_logits) != len(target_sizes):
|
1717 |
+
raise ValueError(
|
1718 |
+
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
|
1719 |
+
)
|
1720 |
+
|
1721 |
+
prob = nn.functional.softmax(out_logits, -1)
|
1722 |
+
scores, labels = prob[..., :-1].max(-1)
|
1723 |
+
|
1724 |
+
# Convert to [x0, y0, x1, y1] format
|
1725 |
+
boxes = center_to_corners_format(out_bbox)
|
1726 |
+
|
1727 |
+
# Convert from relative [0, 1] to absolute [0, height] coordinates
|
1728 |
+
if target_sizes is not None:
|
1729 |
+
if isinstance(target_sizes, List):
|
1730 |
+
img_h = torch.Tensor([i[0] for i in target_sizes])
|
1731 |
+
img_w = torch.Tensor([i[1] for i in target_sizes])
|
1732 |
+
else:
|
1733 |
+
img_h, img_w = target_sizes.unbind(1)
|
1734 |
+
|
1735 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
|
1736 |
+
boxes = boxes * scale_fct[:, None, :]
|
1737 |
+
|
1738 |
+
results = []
|
1739 |
+
for s, l, b in zip(scores, labels, boxes):
|
1740 |
+
score = s[s > threshold]
|
1741 |
+
label = l[s > threshold]
|
1742 |
+
box = b[s > threshold]
|
1743 |
+
results.append({"scores": score, "labels": label, "boxes": box})
|
1744 |
+
|
1745 |
+
return results
|
1746 |
+
|
1747 |
+
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple[int, int]] = None):
|
1748 |
+
"""
|
1749 |
+
Converts the output of [`DetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch.
|
1750 |
+
|
1751 |
+
Args:
|
1752 |
+
outputs ([`DetrForSegmentation`]):
|
1753 |
+
Raw outputs of the model.
|
1754 |
+
target_sizes (`List[Tuple[int, int]]`, *optional*):
|
1755 |
+
A list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the
|
1756 |
+
batch. If unset, predictions will not be resized.
|
1757 |
+
Returns:
|
1758 |
+
`List[torch.Tensor]`:
|
1759 |
+
A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width)
|
1760 |
+
corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each
|
1761 |
+
`torch.Tensor` correspond to a semantic class id.
|
1762 |
+
"""
|
1763 |
+
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1]
|
1764 |
+
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
|
1765 |
+
|
1766 |
+
# Remove the null class `[..., :-1]`
|
1767 |
+
masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1]
|
1768 |
+
masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
|
1769 |
+
|
1770 |
+
# Semantic segmentation logits of shape (batch_size, num_classes, height, width)
|
1771 |
+
segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs)
|
1772 |
+
batch_size = class_queries_logits.shape[0]
|
1773 |
+
|
1774 |
+
# Resize logits and compute semantic segmentation maps
|
1775 |
+
if target_sizes is not None:
|
1776 |
+
if batch_size != len(target_sizes):
|
1777 |
+
raise ValueError(
|
1778 |
+
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
|
1779 |
+
)
|
1780 |
+
|
1781 |
+
semantic_segmentation = []
|
1782 |
+
for idx in range(batch_size):
|
1783 |
+
resized_logits = nn.functional.interpolate(
|
1784 |
+
segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
|
1785 |
+
)
|
1786 |
+
semantic_map = resized_logits[0].argmax(dim=0)
|
1787 |
+
semantic_segmentation.append(semantic_map)
|
1788 |
+
else:
|
1789 |
+
semantic_segmentation = segmentation.argmax(dim=1)
|
1790 |
+
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
|
1791 |
+
|
1792 |
+
return semantic_segmentation
|
1793 |
+
|
1794 |
+
# inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L218
|
1795 |
+
def post_process_instance_segmentation(
|
1796 |
+
self,
|
1797 |
+
outputs,
|
1798 |
+
threshold: float = 0.5,
|
1799 |
+
mask_threshold: float = 0.5,
|
1800 |
+
overlap_mask_area_threshold: float = 0.8,
|
1801 |
+
target_sizes: Optional[List[Tuple[int, int]]] = None,
|
1802 |
+
return_coco_annotation: Optional[bool] = False,
|
1803 |
+
) -> List[Dict]:
|
1804 |
+
"""
|
1805 |
+
Converts the output of [`DetrForSegmentation`] into instance segmentation predictions. Only supports PyTorch.
|
1806 |
+
|
1807 |
+
Args:
|
1808 |
+
outputs ([`DetrForSegmentation`]):
|
1809 |
+
Raw outputs of the model.
|
1810 |
+
threshold (`float`, *optional*, defaults to 0.5):
|
1811 |
+
The probability score threshold to keep predicted instance masks.
|
1812 |
+
mask_threshold (`float`, *optional*, defaults to 0.5):
|
1813 |
+
Threshold to use when turning the predicted masks into binary values.
|
1814 |
+
overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
|
1815 |
+
The overlap mask area threshold to merge or discard small disconnected parts within each binary
|
1816 |
+
instance mask.
|
1817 |
+
target_sizes (`List[Tuple]`, *optional*):
|
1818 |
+
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
|
1819 |
+
final size (height, width) of each prediction. If unset, predictions will not be resized.
|
1820 |
+
return_coco_annotation (`bool`, *optional*):
|
1821 |
+
Defaults to `False`. If set to `True`, segmentation maps are returned in COCO run-length encoding (RLE)
|
1822 |
+
format.
|
1823 |
+
Returns:
|
1824 |
+
`List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
|
1825 |
+
- **segmentation** -- A tensor of shape `(height, width)` where each pixel represents a `segment_id` or
|
1826 |
+
`List[List]` run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to
|
1827 |
+
`True`. Set to `None` if no mask if found above `threshold`.
|
1828 |
+
- **segments_info** -- A dictionary that contains additional information on each segment.
|
1829 |
+
- **id** -- An integer representing the `segment_id`.
|
1830 |
+
- **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
|
1831 |
+
- **score** -- Prediction score of segment with `segment_id`.
|
1832 |
+
"""
|
1833 |
+
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1]
|
1834 |
+
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
|
1835 |
+
|
1836 |
+
batch_size = class_queries_logits.shape[0]
|
1837 |
+
num_labels = class_queries_logits.shape[-1] - 1
|
1838 |
+
|
1839 |
+
mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
|
1840 |
+
|
1841 |
+
# Predicted label and score of each query (batch_size, num_queries)
|
1842 |
+
pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1)
|
1843 |
+
|
1844 |
+
# Loop over items in batch size
|
1845 |
+
results: List[Dict[str, TensorType]] = []
|
1846 |
+
|
1847 |
+
for i in range(batch_size):
|
1848 |
+
mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(
|
1849 |
+
mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels
|
1850 |
+
)
|
1851 |
+
|
1852 |
+
# No mask found
|
1853 |
+
if mask_probs_item.shape[0] <= 0:
|
1854 |
+
height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:]
|
1855 |
+
segmentation = torch.zeros((height, width)) - 1
|
1856 |
+
results.append({"segmentation": segmentation, "segments_info": []})
|
1857 |
+
continue
|
1858 |
+
|
1859 |
+
# Get segmentation map and segment information of batch item
|
1860 |
+
target_size = target_sizes[i] if target_sizes is not None else None
|
1861 |
+
segmentation, segments = compute_segments(
|
1862 |
+
mask_probs=mask_probs_item,
|
1863 |
+
pred_scores=pred_scores_item,
|
1864 |
+
pred_labels=pred_labels_item,
|
1865 |
+
mask_threshold=mask_threshold,
|
1866 |
+
overlap_mask_area_threshold=overlap_mask_area_threshold,
|
1867 |
+
label_ids_to_fuse=[],
|
1868 |
+
target_size=target_size,
|
1869 |
+
)
|
1870 |
+
|
1871 |
+
# Return segmentation map in run-length encoding (RLE) format
|
1872 |
+
if return_coco_annotation:
|
1873 |
+
segmentation = convert_segmentation_to_rle(segmentation)
|
1874 |
+
|
1875 |
+
results.append({"segmentation": segmentation, "segments_info": segments})
|
1876 |
+
return results
|
1877 |
+
|
1878 |
+
# inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L241
|
1879 |
+
def post_process_panoptic_segmentation(
|
1880 |
+
self,
|
1881 |
+
outputs,
|
1882 |
+
threshold: float = 0.5,
|
1883 |
+
mask_threshold: float = 0.5,
|
1884 |
+
overlap_mask_area_threshold: float = 0.8,
|
1885 |
+
label_ids_to_fuse: Optional[Set[int]] = None,
|
1886 |
+
target_sizes: Optional[List[Tuple[int, int]]] = None,
|
1887 |
+
) -> List[Dict]:
|
1888 |
+
"""
|
1889 |
+
Converts the output of [`DetrForSegmentation`] into image panoptic segmentation predictions. Only supports
|
1890 |
+
PyTorch.
|
1891 |
+
|
1892 |
+
Args:
|
1893 |
+
outputs ([`DetrForSegmentation`]):
|
1894 |
+
The outputs from [`DetrForSegmentation`].
|
1895 |
+
threshold (`float`, *optional*, defaults to 0.5):
|
1896 |
+
The probability score threshold to keep predicted instance masks.
|
1897 |
+
mask_threshold (`float`, *optional*, defaults to 0.5):
|
1898 |
+
Threshold to use when turning the predicted masks into binary values.
|
1899 |
+
overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
|
1900 |
+
The overlap mask area threshold to merge or discard small disconnected parts within each binary
|
1901 |
+
instance mask.
|
1902 |
+
label_ids_to_fuse (`Set[int]`, *optional*):
|
1903 |
+
The labels in this state will have all their instances be fused together. For instance we could say
|
1904 |
+
there can only be one sky in an image, but several persons, so the label ID for sky would be in that
|
1905 |
+
set, but not the one for person.
|
1906 |
+
target_sizes (`List[Tuple]`, *optional*):
|
1907 |
+
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
|
1908 |
+
final size (height, width) of each prediction in batch. If unset, predictions will not be resized.
|
1909 |
+
Returns:
|
1910 |
+
`List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
|
1911 |
+
- **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id` or
|
1912 |
+
`None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to
|
1913 |
+
the corresponding `target_sizes` entry.
|
1914 |
+
- **segments_info** -- A dictionary that contains additional information on each segment.
|
1915 |
+
- **id** -- an integer representing the `segment_id`.
|
1916 |
+
- **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
|
1917 |
+
- **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise.
|
1918 |
+
Multiple instances of the same class / label were fused and assigned a single `segment_id`.
|
1919 |
+
- **score** -- Prediction score of segment with `segment_id`.
|
1920 |
+
"""
|
1921 |
+
|
1922 |
+
if label_ids_to_fuse is None:
|
1923 |
+
logger.warning_once("`label_ids_to_fuse` unset. No instance will be fused.")
|
1924 |
+
label_ids_to_fuse = set()
|
1925 |
+
|
1926 |
+
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1]
|
1927 |
+
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
|
1928 |
+
|
1929 |
+
batch_size = class_queries_logits.shape[0]
|
1930 |
+
num_labels = class_queries_logits.shape[-1] - 1
|
1931 |
+
|
1932 |
+
mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
|
1933 |
+
|
1934 |
+
# Predicted label and score of each query (batch_size, num_queries)
|
1935 |
+
pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1)
|
1936 |
+
|
1937 |
+
# Loop over items in batch size
|
1938 |
+
results: List[Dict[str, TensorType]] = []
|
1939 |
+
|
1940 |
+
for i in range(batch_size):
|
1941 |
+
mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(
|
1942 |
+
mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels
|
1943 |
+
)
|
1944 |
+
|
1945 |
+
# No mask found
|
1946 |
+
if mask_probs_item.shape[0] <= 0:
|
1947 |
+
height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:]
|
1948 |
+
segmentation = torch.zeros((height, width)) - 1
|
1949 |
+
results.append({"segmentation": segmentation, "segments_info": []})
|
1950 |
+
continue
|
1951 |
+
|
1952 |
+
# Get segmentation map and segment information of batch item
|
1953 |
+
target_size = target_sizes[i] if target_sizes is not None else None
|
1954 |
+
segmentation, segments = compute_segments(
|
1955 |
+
mask_probs=mask_probs_item,
|
1956 |
+
pred_scores=pred_scores_item,
|
1957 |
+
pred_labels=pred_labels_item,
|
1958 |
+
mask_threshold=mask_threshold,
|
1959 |
+
overlap_mask_area_threshold=overlap_mask_area_threshold,
|
1960 |
+
label_ids_to_fuse=label_ids_to_fuse,
|
1961 |
+
target_size=target_size,
|
1962 |
+
)
|
1963 |
+
|
1964 |
+
results.append({"segmentation": segmentation, "segments_info": segments})
|
1965 |
+
return results
|
llmeval-env/lib/python3.10/site-packages/transformers/models/detr/modeling_detr.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__init__.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_jukebox": [
|
22 |
+
"JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
23 |
+
"JukeboxConfig",
|
24 |
+
"JukeboxPriorConfig",
|
25 |
+
"JukeboxVQVAEConfig",
|
26 |
+
],
|
27 |
+
"tokenization_jukebox": ["JukeboxTokenizer"],
|
28 |
+
}
|
29 |
+
|
30 |
+
try:
|
31 |
+
if not is_torch_available():
|
32 |
+
raise OptionalDependencyNotAvailable()
|
33 |
+
except OptionalDependencyNotAvailable:
|
34 |
+
pass
|
35 |
+
else:
|
36 |
+
_import_structure["modeling_jukebox"] = [
|
37 |
+
"JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST",
|
38 |
+
"JukeboxModel",
|
39 |
+
"JukeboxPreTrainedModel",
|
40 |
+
"JukeboxVQVAE",
|
41 |
+
"JukeboxPrior",
|
42 |
+
]
|
43 |
+
|
44 |
+
if TYPE_CHECKING:
|
45 |
+
from .configuration_jukebox import (
|
46 |
+
JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
47 |
+
JukeboxConfig,
|
48 |
+
JukeboxPriorConfig,
|
49 |
+
JukeboxVQVAEConfig,
|
50 |
+
)
|
51 |
+
from .tokenization_jukebox import JukeboxTokenizer
|
52 |
+
|
53 |
+
try:
|
54 |
+
if not is_torch_available():
|
55 |
+
raise OptionalDependencyNotAvailable()
|
56 |
+
except OptionalDependencyNotAvailable:
|
57 |
+
pass
|
58 |
+
else:
|
59 |
+
from .modeling_jukebox import (
|
60 |
+
JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST,
|
61 |
+
JukeboxModel,
|
62 |
+
JukeboxPreTrainedModel,
|
63 |
+
JukeboxPrior,
|
64 |
+
JukeboxVQVAE,
|
65 |
+
)
|
66 |
+
|
67 |
+
else:
|
68 |
+
import sys
|
69 |
+
|
70 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/convert_jukebox.cpython-310.pyc
ADDED
Binary file (6.93 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/__pycache__/tokenization_jukebox.cpython-310.pyc
ADDED
Binary file (16.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/jukebox/configuration_jukebox.py
ADDED
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Jukebox configuration"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from typing import List, Union
|
19 |
+
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
from ..deprecated._archive_maps import JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
28 |
+
|
29 |
+
|
30 |
+
_LARGE_ATTENTION = [
|
31 |
+
"block_attn",
|
32 |
+
"transpose_block_attn",
|
33 |
+
"prev_block_attn",
|
34 |
+
"block_attn",
|
35 |
+
"transpose_block_attn",
|
36 |
+
"prev_block_attn",
|
37 |
+
"block_attn",
|
38 |
+
"transpose_block_attn",
|
39 |
+
"prev_block_attn",
|
40 |
+
"block_attn",
|
41 |
+
"transpose_block_attn",
|
42 |
+
"prev_block_attn",
|
43 |
+
"block_attn",
|
44 |
+
"transpose_block_attn",
|
45 |
+
"prev_block_attn",
|
46 |
+
"block_attn",
|
47 |
+
"transpose_block_attn",
|
48 |
+
"prev_block_attn",
|
49 |
+
"cross_attention",
|
50 |
+
"block_attn",
|
51 |
+
"transpose_block_attn",
|
52 |
+
"prev_block_attn",
|
53 |
+
"block_attn",
|
54 |
+
"transpose_block_attn",
|
55 |
+
"prev_block_attn",
|
56 |
+
"block_attn",
|
57 |
+
"transpose_block_attn",
|
58 |
+
"prev_block_attn",
|
59 |
+
"cross_attention",
|
60 |
+
"block_attn",
|
61 |
+
"transpose_block_attn",
|
62 |
+
"prev_block_attn",
|
63 |
+
"block_attn",
|
64 |
+
"transpose_block_attn",
|
65 |
+
"prev_block_attn",
|
66 |
+
"block_attn",
|
67 |
+
"transpose_block_attn",
|
68 |
+
"prev_block_attn",
|
69 |
+
"cross_attention",
|
70 |
+
"block_attn",
|
71 |
+
"transpose_block_attn",
|
72 |
+
"prev_block_attn",
|
73 |
+
"block_attn",
|
74 |
+
"transpose_block_attn",
|
75 |
+
"prev_block_attn",
|
76 |
+
"block_attn",
|
77 |
+
"transpose_block_attn",
|
78 |
+
"prev_block_attn",
|
79 |
+
"cross_attention",
|
80 |
+
"block_attn",
|
81 |
+
"transpose_block_attn",
|
82 |
+
"prev_block_attn",
|
83 |
+
"block_attn",
|
84 |
+
"transpose_block_attn",
|
85 |
+
"prev_block_attn",
|
86 |
+
"block_attn",
|
87 |
+
"transpose_block_attn",
|
88 |
+
"prev_block_attn",
|
89 |
+
"cross_attention",
|
90 |
+
"block_attn",
|
91 |
+
"transpose_block_attn",
|
92 |
+
"prev_block_attn",
|
93 |
+
"block_attn",
|
94 |
+
"transpose_block_attn",
|
95 |
+
"prev_block_attn",
|
96 |
+
"block_attn",
|
97 |
+
"transpose_block_attn",
|
98 |
+
"prev_block_attn",
|
99 |
+
"cross_attention",
|
100 |
+
"block_attn",
|
101 |
+
"transpose_block_attn",
|
102 |
+
"prev_block_attn",
|
103 |
+
"block_attn",
|
104 |
+
"transpose_block_attn",
|
105 |
+
"prev_block_attn",
|
106 |
+
"block_attn",
|
107 |
+
"transpose_block_attn",
|
108 |
+
"prev_block_attn",
|
109 |
+
"cross_attention",
|
110 |
+
]
|
111 |
+
_RawColumnPreviousRowAttention = ["block_attn", "transpose_block_attn", "prev_block_attn"]
|
112 |
+
_FullDenseAttention = ["dense_attention"]
|
113 |
+
_PrimePrimeDenseAttention = ["prime_attn", "prime_attn", "dense_attn"]
|
114 |
+
|
115 |
+
|
116 |
+
def full_dense_attention(layer):
|
117 |
+
return _FullDenseAttention[0]
|
118 |
+
|
119 |
+
|
120 |
+
def raw_column_previous_row_attention(layer):
|
121 |
+
return _RawColumnPreviousRowAttention[layer % 3]
|
122 |
+
|
123 |
+
|
124 |
+
def large_separated_enc_dec_w_lyrics(layer):
|
125 |
+
return _LARGE_ATTENTION[layer % 79]
|
126 |
+
|
127 |
+
|
128 |
+
def enc_dec_with_lyrics(layer):
|
129 |
+
if layer % 16 == 15:
|
130 |
+
return _PrimePrimeDenseAttention[layer % 3]
|
131 |
+
return _RawColumnPreviousRowAttention[layer % 3]
|
132 |
+
|
133 |
+
|
134 |
+
ATTENTION_PATTERNS = {
|
135 |
+
"full_dense_attention": full_dense_attention,
|
136 |
+
"raw_column_previous_row_attention": raw_column_previous_row_attention, # Alternate row, column and previous row attn
|
137 |
+
"large_separated_enc_dec_w_lyrics": large_separated_enc_dec_w_lyrics, # Used by large separated_enc_dec model with lyrics
|
138 |
+
"enc_dec_with_lyrics": enc_dec_with_lyrics, # Used by encoder_decoder model with lyrics
|
139 |
+
}
|
140 |
+
|
141 |
+
|
142 |
+
class JukeboxPriorConfig(PretrainedConfig):
|
143 |
+
"""
|
144 |
+
This is the configuration class to store the configuration of a [`JukeboxPrior`]. It is used to instantiate a
|
145 |
+
`JukeboxPrior` according to the specified arguments, defining the model architecture. Instantiating a
|
146 |
+
configuration with the defaults will yield a similar configuration to that of the top level prior from the
|
147 |
+
[openai/jukebox-1b-lyrics](https://huggingface.co/openai/jukebox
|
148 |
+
-1b-lyrics) architecture.
|
149 |
+
|
150 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
151 |
+
documentation from [`PretrainedConfig`] for more information.
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
Args:
|
156 |
+
act_fn (`str`, *optional*, defaults to `"quick_gelu"`):
|
157 |
+
Activation function.
|
158 |
+
alignment_head (`int`, *optional*, defaults to 2):
|
159 |
+
Head that is responsible of the alignment between lyrics and music. Only used to compute the lyric to audio
|
160 |
+
alignment
|
161 |
+
alignment_layer (`int`, *optional*, defaults to 68):
|
162 |
+
Index of the layer that is responsible of the alignment between lyrics and music. Only used to compute the
|
163 |
+
lyric to audio alignment
|
164 |
+
attention_multiplier (`float`, *optional*, defaults to 0.25):
|
165 |
+
Multiplier coefficient used to define the hidden dimension of the attention layers. 0.25 means that
|
166 |
+
0.25*width of the model will be used.
|
167 |
+
attention_pattern (`str`, *optional*, defaults to `"enc_dec_with_lyrics"`):
|
168 |
+
Which attention pattern to use for the decoder/
|
169 |
+
attn_dropout (`int`, *optional*, defaults to 0):
|
170 |
+
Dropout probability for the post-attention layer dropout in the decoder.
|
171 |
+
attn_res_scale (`bool`, *optional*, defaults to `False`):
|
172 |
+
Whether or not to scale the residuals in the attention conditioner block.
|
173 |
+
blocks (`int`, *optional*, defaults to 64):
|
174 |
+
Number of blocks used in the `block_attn`. A sequence of length seq_len is factored as `[blocks, seq_len //
|
175 |
+
blocks]` in the `JukeboxAttention` layer.
|
176 |
+
conv_res_scale (`int`, *optional*):
|
177 |
+
Whether or not to scale the residuals in the conditioner block. Since the top level prior does not have a
|
178 |
+
conditioner, the default value is to None and should not be modified.
|
179 |
+
num_layers (`int`, *optional*, defaults to 72):
|
180 |
+
Number of layers of the transformer architecture.
|
181 |
+
emb_dropout (`int`, *optional*, defaults to 0):
|
182 |
+
Embedding dropout used in the lyric decoder.
|
183 |
+
encoder_config (`JukeboxPriorConfig`, *optional*) :
|
184 |
+
Configuration of the encoder which models the prior on the lyrics.
|
185 |
+
encoder_loss_fraction (`float`, *optional*, defaults to 0.4):
|
186 |
+
Multiplication factor used in front of the lyric encoder loss.
|
187 |
+
hidden_size (`int`, *optional*, defaults to 2048):
|
188 |
+
Hidden dimension of the attention layers.
|
189 |
+
init_scale (`float`, *optional*, defaults to 0.2):
|
190 |
+
Initialization scales for the prior modules.
|
191 |
+
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
|
192 |
+
Whether or not the prior is an encoder-decoder model. In case it is not, and `nb_relevant_lyric_tokens` is
|
193 |
+
greater than 0, the `encoder` args should be specified for the lyric encoding.
|
194 |
+
mask (`bool`, *optional*, defaults to `False`):
|
195 |
+
Whether or not to mask the previous positions in the attention.
|
196 |
+
max_duration (`int`, *optional*, defaults to 600):
|
197 |
+
Maximum supported duration of the generated song in seconds.
|
198 |
+
max_nb_genres (`int`, *optional*, defaults to 1):
|
199 |
+
Maximum number of genres that can be used to condition the model.
|
200 |
+
merged_decoder (`bool`, *optional*, defaults to `True`):
|
201 |
+
Whether or not the decoder and the encoder inputs are merged. This is used for the separated
|
202 |
+
encoder-decoder architecture
|
203 |
+
metadata_conditioning (`bool`, *optional*, defaults to `True)`:
|
204 |
+
Whether or not to condition on the artist and genre metadata.
|
205 |
+
metadata_dims (`List[int]`, *optional*, defaults to `[604, 7898]`):
|
206 |
+
Number of genres and the number of artists that were used to train the embedding layers of the prior
|
207 |
+
models.
|
208 |
+
min_duration (`int`, *optional*, defaults to 0):
|
209 |
+
Minimum duration of the generated audio on which the model was trained.
|
210 |
+
mlp_multiplier (`float`, *optional*, defaults to 1.0):
|
211 |
+
Multiplier coefficient used to define the hidden dimension of the MLP layers. 0.25 means that 0.25*width of
|
212 |
+
the model will be used.
|
213 |
+
music_vocab_size (`int`, *optional*, defaults to 2048):
|
214 |
+
Number of different music tokens. Should be similar to the `JukeboxVQVAEConfig.nb_discrete_codes`.
|
215 |
+
n_ctx (`int`, *optional*, defaults to 6144):
|
216 |
+
Number of context tokens for each prior. The context tokens are the music tokens that are attended to when
|
217 |
+
generating music tokens.
|
218 |
+
n_heads (`int`, *optional*, defaults to 2):
|
219 |
+
Number of attention heads.
|
220 |
+
nb_relevant_lyric_tokens (`int`, *optional*, defaults to 384):
|
221 |
+
Number of lyric tokens that are used when sampling a single window of length `n_ctx`
|
222 |
+
res_conv_depth (`int`, *optional*, defaults to 3):
|
223 |
+
Depth of the `JukeboxDecoderConvBock` used to upsample the previously sampled audio in the
|
224 |
+
`JukeboxMusicTokenConditioner`.
|
225 |
+
res_conv_width (`int`, *optional*, defaults to 128):
|
226 |
+
Width of the `JukeboxDecoderConvBock` used to upsample the previously sampled audio in the
|
227 |
+
`JukeboxMusicTokenConditioner`.
|
228 |
+
res_convolution_multiplier (`int`, *optional*, defaults to 1):
|
229 |
+
Multiplier used to scale the `hidden_dim` of the `JukeboxResConv1DBlock`.
|
230 |
+
res_dilation_cycle (`int`, *optional*):
|
231 |
+
Dilation cycle used to define the `JukeboxMusicTokenConditioner`. Usually similar to the ones used in the
|
232 |
+
corresponding level of the VQVAE. The first prior does not use it as it is not conditioned on upper level
|
233 |
+
tokens.
|
234 |
+
res_dilation_growth_rate (`int`, *optional*, defaults to 1):
|
235 |
+
Dilation grow rate used between each convolutionnal block of the `JukeboxMusicTokenConditioner`
|
236 |
+
res_downs_t (`List[int]`, *optional*, defaults to `[3, 2, 2]`):
|
237 |
+
Downsampling rates used in the audio conditioning network
|
238 |
+
res_strides_t (`List[int]`, *optional*, defaults to `[2, 2, 2]`):
|
239 |
+
Striding used in the audio conditioning network
|
240 |
+
resid_dropout (`int`, *optional*, defaults to 0):
|
241 |
+
Residual dropout used in the attention pattern.
|
242 |
+
sampling_rate (`int`, *optional*, defaults to 44100):
|
243 |
+
Sampling rate used for training.
|
244 |
+
spread (`int`, *optional*):
|
245 |
+
Spread used in the `summary_spread_attention` pattern
|
246 |
+
timing_dims (`int`, *optional*, defaults to 64):
|
247 |
+
Dimension of the timing embedding.
|
248 |
+
zero_out (`bool`, *optional*, defaults to `False`):
|
249 |
+
Whether or not to zero out convolution weights when initializing.
|
250 |
+
"""
|
251 |
+
|
252 |
+
model_type = "jukebox_prior"
|
253 |
+
attribute_map = {
|
254 |
+
"max_position_embeddings": "n_positions",
|
255 |
+
"num_attention_heads": "n_head",
|
256 |
+
}
|
257 |
+
|
258 |
+
def __init__(
|
259 |
+
self,
|
260 |
+
act_fn="quick_gelu",
|
261 |
+
level=0,
|
262 |
+
alignment_head=2,
|
263 |
+
alignment_layer=68,
|
264 |
+
attention_multiplier=0.25,
|
265 |
+
attention_pattern="enc_dec_with_lyrics",
|
266 |
+
attn_dropout=0,
|
267 |
+
attn_res_scale=False,
|
268 |
+
blocks=64,
|
269 |
+
conv_res_scale=None,
|
270 |
+
num_layers=72,
|
271 |
+
emb_dropout=0,
|
272 |
+
encoder_config=None,
|
273 |
+
encoder_loss_fraction=0.4,
|
274 |
+
hidden_size=2048,
|
275 |
+
init_scale=0.2,
|
276 |
+
is_encoder_decoder=True,
|
277 |
+
lyric_vocab_size=80,
|
278 |
+
mask=False,
|
279 |
+
max_duration=600,
|
280 |
+
max_nb_genres=1,
|
281 |
+
merged_decoder=True,
|
282 |
+
metadata_conditioning=True,
|
283 |
+
metadata_dims=[604, 7898],
|
284 |
+
min_duration=0,
|
285 |
+
mlp_multiplier=1.0,
|
286 |
+
music_vocab_size=2048,
|
287 |
+
n_ctx=6144,
|
288 |
+
n_heads=2,
|
289 |
+
nb_relevant_lyric_tokens=384,
|
290 |
+
res_conv_depth=3,
|
291 |
+
res_conv_width=128,
|
292 |
+
res_convolution_multiplier=1,
|
293 |
+
res_dilation_cycle=None,
|
294 |
+
res_dilation_growth_rate=1,
|
295 |
+
res_downs_t=[3, 2, 2],
|
296 |
+
res_strides_t=[2, 2, 2],
|
297 |
+
resid_dropout=0,
|
298 |
+
sampling_rate=44100,
|
299 |
+
spread=None,
|
300 |
+
timing_dims=64,
|
301 |
+
zero_out=False,
|
302 |
+
**kwargs,
|
303 |
+
):
|
304 |
+
self.act_fn = act_fn
|
305 |
+
self.alignment_head = alignment_head
|
306 |
+
self.alignment_layer = alignment_layer
|
307 |
+
self.attention_multiplier = attention_multiplier
|
308 |
+
self.attention_pattern = attention_pattern
|
309 |
+
self.attn_dropout = attn_dropout
|
310 |
+
self.attn_res_scale = attn_res_scale
|
311 |
+
self.blocks = blocks
|
312 |
+
self.conv_res_scale = conv_res_scale
|
313 |
+
self.num_layers = num_layers
|
314 |
+
self.emb_dropout = emb_dropout
|
315 |
+
self.music_vocab_size = music_vocab_size
|
316 |
+
if encoder_config is not None:
|
317 |
+
self.encoder_config = JukeboxPriorConfig(**encoder_config)
|
318 |
+
else:
|
319 |
+
self.encoder_config = None
|
320 |
+
self.encoder_loss_fraction = encoder_loss_fraction
|
321 |
+
self.init_scale = init_scale
|
322 |
+
self.is_encoder_decoder = is_encoder_decoder
|
323 |
+
self.lyric_vocab_size = lyric_vocab_size
|
324 |
+
self.level = level
|
325 |
+
self.mask = mask
|
326 |
+
self.max_duration = max_duration
|
327 |
+
self.max_nb_genres = max_nb_genres
|
328 |
+
self.merged_decoder = merged_decoder
|
329 |
+
self.metadata_conditioning = metadata_conditioning
|
330 |
+
self.metadata_dims = metadata_dims
|
331 |
+
self.min_duration = min_duration
|
332 |
+
self.mlp_multiplier = mlp_multiplier
|
333 |
+
self.n_ctx = n_ctx
|
334 |
+
self.n_heads = n_heads
|
335 |
+
self.nb_relevant_lyric_tokens = nb_relevant_lyric_tokens
|
336 |
+
self.res_conv_depth = res_conv_depth
|
337 |
+
self.res_conv_width = res_conv_width
|
338 |
+
self.res_convolution_multiplier = res_convolution_multiplier
|
339 |
+
self.res_dilation_cycle = res_dilation_cycle
|
340 |
+
self.res_dilation_growth_rate = res_dilation_growth_rate
|
341 |
+
self.res_downs_t = res_downs_t
|
342 |
+
self.res_strides_t = res_strides_t
|
343 |
+
self.resid_dropout = resid_dropout
|
344 |
+
self.sampling_rate = sampling_rate
|
345 |
+
self.spread = spread
|
346 |
+
self.timing_dims = timing_dims
|
347 |
+
self.hidden_size = hidden_size
|
348 |
+
self.zero_out = zero_out
|
349 |
+
|
350 |
+
@classmethod
|
351 |
+
def from_pretrained(
|
352 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], level=0, **kwargs
|
353 |
+
) -> "PretrainedConfig":
|
354 |
+
cls._set_token_in_kwargs(kwargs)
|
355 |
+
|
356 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
357 |
+
|
358 |
+
# get the prior config dict if we are loading from JukeboxConfig
|
359 |
+
if config_dict.get("model_type") == "jukebox":
|
360 |
+
config_dict = config_dict[f"prior_{level}"]
|
361 |
+
|
362 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
363 |
+
logger.warning(
|
364 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
365 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
366 |
+
)
|
367 |
+
|
368 |
+
return cls.from_dict(config_dict, **kwargs)
|
369 |
+
|
370 |
+
|
371 |
+
class JukeboxVQVAEConfig(PretrainedConfig):
|
372 |
+
"""
|
373 |
+
This is the configuration class to store the configuration of a [`JukeboxVQVAE`]. It is used to instantiate a
|
374 |
+
`JukeboxVQVAE` according to the specified arguments, defining the model architecture. Instantiating a configuration
|
375 |
+
with the defaults will yield a similar configuration to that of the VQVAE from
|
376 |
+
[openai/jukebox-1b-lyrics](https://huggingface.co/openai/jukebox-1b-lyrics) architecture.
|
377 |
+
|
378 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
379 |
+
documentation from [`PretrainedConfig`] for more information.
|
380 |
+
|
381 |
+
Args:
|
382 |
+
act_fn (`str`, *optional*, defaults to `"relu"`):
|
383 |
+
Activation function of the model.
|
384 |
+
nb_discrete_codes (`int`, *optional*, defaults to 2048):
|
385 |
+
Number of codes of the VQVAE.
|
386 |
+
commit (`float`, *optional*, defaults to 0.02):
|
387 |
+
Commit loss multiplier.
|
388 |
+
conv_input_shape (`int`, *optional*, defaults to 1):
|
389 |
+
Number of audio channels.
|
390 |
+
conv_res_scale (`bool`, *optional*, defaults to `False`):
|
391 |
+
Whether or not to scale the residuals of the `JukeboxResConv1DBlock`.
|
392 |
+
embed_dim (`int`, *optional*, defaults to 64):
|
393 |
+
Embedding dimension of the codebook vectors.
|
394 |
+
hop_fraction (`List[int]`, *optional*, defaults to `[0.125, 0.5, 0.5]`):
|
395 |
+
Fraction of non-intersecting window used when continuing the sampling process.
|
396 |
+
levels (`int`, *optional*, defaults to 3):
|
397 |
+
Number of hierarchical levels that used in the VQVAE.
|
398 |
+
lmu (`float`, *optional*, defaults to 0.99):
|
399 |
+
Used in the codebook update, exponential moving average coefficient. For more detail refer to Appendix A.1
|
400 |
+
of the original [VQVAE paper](https://arxiv.org/pdf/1711.00937v2.pdf)
|
401 |
+
multipliers (`List[int]`, *optional*, defaults to `[2, 1, 1]`):
|
402 |
+
Depth and width multipliers used for each level. Used on the `res_conv_width` and `res_conv_depth`
|
403 |
+
res_conv_depth (`int`, *optional*, defaults to 4):
|
404 |
+
Depth of the encoder and decoder block. If no `multipliers` are used, this is the same for each level.
|
405 |
+
res_conv_width (`int`, *optional*, defaults to 32):
|
406 |
+
Width of the encoder and decoder block. If no `multipliers` are used, this is the same for each level.
|
407 |
+
res_convolution_multiplier (`int`, *optional*, defaults to 1):
|
408 |
+
Scaling factor of the hidden dimension used in the `JukeboxResConv1DBlock`.
|
409 |
+
res_dilation_cycle (`int`, *optional*):
|
410 |
+
Dilation cycle value used in the `JukeboxResnet`. If an int is used, each new Conv1 block will have a depth
|
411 |
+
reduced by a power of `res_dilation_cycle`.
|
412 |
+
res_dilation_growth_rate (`int`, *optional*, defaults to 3):
|
413 |
+
Resnet dilation growth rate used in the VQVAE (dilation_growth_rate ** depth)
|
414 |
+
res_downs_t (`List[int]`, *optional*, defaults to `[3, 2, 2]`):
|
415 |
+
Downsampling rate for each level of the hierarchical VQ-VAE.
|
416 |
+
res_strides_t (`List[int]`, *optional*, defaults to `[2, 2, 2]`):
|
417 |
+
Stride used for each level of the hierarchical VQ-VAE.
|
418 |
+
sample_length (`int`, *optional*, defaults to 1058304):
|
419 |
+
Provides the max input shape of the VQVAE. Is used to compute the input shape of each level.
|
420 |
+
init_scale (`float`, *optional*, defaults to 0.2):
|
421 |
+
Initialization scale.
|
422 |
+
zero_out (`bool`, *optional*, defaults to `False`):
|
423 |
+
Whether or not to zero out convolution weights when initializing.
|
424 |
+
"""
|
425 |
+
|
426 |
+
model_type = "jukebox_vqvae"
|
427 |
+
|
428 |
+
def __init__(
|
429 |
+
self,
|
430 |
+
act_fn="relu",
|
431 |
+
nb_discrete_codes=2048,
|
432 |
+
commit=0.02,
|
433 |
+
conv_input_shape=1,
|
434 |
+
conv_res_scale=False,
|
435 |
+
embed_dim=64,
|
436 |
+
hop_fraction=[0.125, 0.5, 0.5],
|
437 |
+
levels=3,
|
438 |
+
lmu=0.99,
|
439 |
+
multipliers=[2, 1, 1],
|
440 |
+
res_conv_depth=4,
|
441 |
+
res_conv_width=32,
|
442 |
+
res_convolution_multiplier=1,
|
443 |
+
res_dilation_cycle=None,
|
444 |
+
res_dilation_growth_rate=3,
|
445 |
+
res_downs_t=[3, 2, 2],
|
446 |
+
res_strides_t=[2, 2, 2],
|
447 |
+
sample_length=1058304,
|
448 |
+
init_scale=0.2,
|
449 |
+
zero_out=False,
|
450 |
+
**kwargs,
|
451 |
+
):
|
452 |
+
self.hop_fraction = hop_fraction
|
453 |
+
self.conv_input_shape = conv_input_shape
|
454 |
+
self.sample_length = sample_length
|
455 |
+
|
456 |
+
# VQVAE parameters (all used)
|
457 |
+
self.levels = levels
|
458 |
+
self.embed_dim = embed_dim
|
459 |
+
self.nb_discrete_codes = nb_discrete_codes
|
460 |
+
self.res_conv_width = res_conv_width
|
461 |
+
self.res_conv_depth = res_conv_depth
|
462 |
+
self.res_convolution_multiplier = res_convolution_multiplier
|
463 |
+
self.res_dilation_growth_rate = res_dilation_growth_rate
|
464 |
+
self.res_dilation_cycle = res_dilation_cycle
|
465 |
+
self.multipliers = multipliers
|
466 |
+
self.res_downs_t = res_downs_t
|
467 |
+
self.res_strides_t = res_strides_t
|
468 |
+
self.lmu = lmu
|
469 |
+
self.commit = commit
|
470 |
+
self.conv_res_scale = conv_res_scale
|
471 |
+
self.act_fn = act_fn
|
472 |
+
self.init_scale = init_scale
|
473 |
+
self.zero_out = zero_out
|
474 |
+
|
475 |
+
@classmethod
|
476 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
477 |
+
cls._set_token_in_kwargs(kwargs)
|
478 |
+
|
479 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
480 |
+
|
481 |
+
# get the text config dict if we are loading from CLIPConfig
|
482 |
+
if config_dict.get("model_type") == "jukebox":
|
483 |
+
config_dict = config_dict["vqvae_config"]
|
484 |
+
|
485 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
486 |
+
logger.warning(
|
487 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
488 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
489 |
+
)
|
490 |
+
|
491 |
+
return cls.from_dict(config_dict, **kwargs)
|
492 |
+
|
493 |
+
|
494 |
+
class JukeboxConfig(PretrainedConfig):
|
495 |
+
"""
|
496 |
+
This is the configuration class to store the configuration of a [`JukeboxModel`].
|
497 |
+
|
498 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
499 |
+
documentation from [`PretrainedConfig`] for more information. Instantiating a configuration with the defaults will
|
500 |
+
yield a similar configuration to that of
|
501 |
+
[openai/jukebox-1b-lyrics](https://huggingface.co/openai/jukebox-1b-lyrics) architecture.
|
502 |
+
|
503 |
+
|
504 |
+
The downsampling and stride are used to determine downsampling of the input sequence. For example, downsampling =
|
505 |
+
(5,3), and strides = (2, 2) will downsample the audio by 2^5 = 32 to get the first level of codes, and 2**8 = 256
|
506 |
+
to get the second level codes. This is mostly true for training the top level prior and the upsamplers.
|
507 |
+
|
508 |
+
Args:
|
509 |
+
vqvae_config (`JukeboxVQVAEConfig`, *optional*):
|
510 |
+
Configuration for the `JukeboxVQVAE` model.
|
511 |
+
prior_config_list (`List[JukeboxPriorConfig]`, *optional*):
|
512 |
+
List of the configs for each of the `JukeboxPrior` of the model. The original architecture uses 3 priors.
|
513 |
+
nb_priors (`int`, *optional*, defaults to 3):
|
514 |
+
Number of prior models that will sequentially sample tokens. Each prior is conditional auto regressive
|
515 |
+
(decoder) model, apart from the top prior, which can include a lyric encoder. The available models were
|
516 |
+
trained using a top prior and 2 upsampler priors.
|
517 |
+
sampling_rate (`int`, *optional*, defaults to 44100):
|
518 |
+
Sampling rate of the raw audio.
|
519 |
+
timing_dims (`int`, *optional*, defaults to 64):
|
520 |
+
Dimensions of the JukeboxRangeEmbedding layer which is equivalent to traditional positional embedding
|
521 |
+
layer. The timing embedding layer converts the absolute and relative position in the currently sampled
|
522 |
+
audio to a tensor of length `timing_dims` that will be added to the music tokens.
|
523 |
+
min_duration (`int`, *optional*, defaults to 0):
|
524 |
+
Minimum duration of the audios to generate
|
525 |
+
max_duration (`float`, *optional*, defaults to 600.0):
|
526 |
+
Maximum duration of the audios to generate
|
527 |
+
max_nb_genres (`int`, *optional*, defaults to 5):
|
528 |
+
Maximum number of genres that can be used to condition a single sample.
|
529 |
+
metadata_conditioning (`bool`, *optional*, defaults to `True`):
|
530 |
+
Whether or not to use metadata conditioning, corresponding to the artist, the genre and the min/maximum
|
531 |
+
duration.
|
532 |
+
|
533 |
+
Example:
|
534 |
+
|
535 |
+
```python
|
536 |
+
>>> from transformers import JukeboxModel, JukeboxConfig
|
537 |
+
|
538 |
+
>>> # Initializing a Jukebox configuration
|
539 |
+
>>> configuration = JukeboxConfig()
|
540 |
+
|
541 |
+
>>> # Initializing a model from the configuration
|
542 |
+
>>> model = JukeboxModel(configuration)
|
543 |
+
|
544 |
+
>>> # Accessing the model configuration
|
545 |
+
>>> configuration = model.config
|
546 |
+
```
|
547 |
+
"""
|
548 |
+
|
549 |
+
model_type = "jukebox"
|
550 |
+
|
551 |
+
def __init__(
|
552 |
+
self,
|
553 |
+
vqvae_config=None,
|
554 |
+
prior_config_list=None,
|
555 |
+
nb_priors=3,
|
556 |
+
sampling_rate=44100,
|
557 |
+
timing_dims=64,
|
558 |
+
min_duration=0,
|
559 |
+
max_duration=600.0,
|
560 |
+
max_nb_genres=5,
|
561 |
+
metadata_conditioning=True,
|
562 |
+
**kwargs,
|
563 |
+
):
|
564 |
+
if vqvae_config is None:
|
565 |
+
vqvae_config = {}
|
566 |
+
logger.info("vqvae_config is None. initializing the JukeboxVQVAE with default values.")
|
567 |
+
|
568 |
+
self.vqvae_config = JukeboxVQVAEConfig(**vqvae_config)
|
569 |
+
if prior_config_list is not None:
|
570 |
+
self.prior_configs = [JukeboxPriorConfig(**prior_config) for prior_config in prior_config_list]
|
571 |
+
else:
|
572 |
+
self.prior_configs = []
|
573 |
+
for prior_idx in range(nb_priors):
|
574 |
+
prior_config = kwargs.pop(f"prior_{prior_idx}", None)
|
575 |
+
if prior_config is None:
|
576 |
+
prior_config = {}
|
577 |
+
logger.info(
|
578 |
+
f"prior_{prior_idx}'s config is None. Initializing the JukeboxPriorConfig list with default"
|
579 |
+
" values."
|
580 |
+
)
|
581 |
+
self.prior_configs.append(JukeboxPriorConfig(**prior_config))
|
582 |
+
|
583 |
+
self.hop_fraction = self.vqvae_config.hop_fraction
|
584 |
+
|
585 |
+
self.nb_priors = nb_priors
|
586 |
+
|
587 |
+
# Metadata conditioning
|
588 |
+
self.max_nb_genres = max_nb_genres
|
589 |
+
self.sampling_rate = sampling_rate
|
590 |
+
self.timing_dims = timing_dims
|
591 |
+
self.min_duration = min_duration
|
592 |
+
self.max_duration = max_duration
|
593 |
+
self.metadata_conditioning = metadata_conditioning
|
594 |
+
|
595 |
+
super().__init__(**kwargs)
|
596 |
+
|
597 |
+
@classmethod
|
598 |
+
def from_configs(cls, prior_configs: List[JukeboxPriorConfig], vqvae_config: JukeboxVQVAEConfig, **kwargs):
|
599 |
+
r"""
|
600 |
+
Instantiate a [`JukeboxConfig`] (or a derived class) from clip text model configuration and clip vision model
|
601 |
+
configuration.
|
602 |
+
|
603 |
+
Returns:
|
604 |
+
[`JukeboxConfig`]: An instance of a configuration object
|
605 |
+
"""
|
606 |
+
prior_config_list = [config.to_dict() for config in prior_configs]
|
607 |
+
return cls(prior_config_list=prior_config_list, vqvae_config_dict=vqvae_config.to_dict(), **kwargs)
|
608 |
+
|
609 |
+
def to_dict(self):
|
610 |
+
# Override the default to_dict to apply to_dict to the list of prior configs.
|
611 |
+
result = super().to_dict()
|
612 |
+
result["prior_config_list"] = [config.to_dict() for config in result.pop("prior_configs")]
|
613 |
+
return result
|