applied-ai-018 commited on
Commit
f6813b3
·
verified ·
1 Parent(s): 7322c99

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/sympy/core/__init__.py +100 -0
  2. llmeval-env/lib/python3.10/site-packages/sympy/core/_print_helpers.py +65 -0
  3. llmeval-env/lib/python3.10/site-packages/sympy/core/add.py +1287 -0
  4. llmeval-env/lib/python3.10/site-packages/sympy/core/alphabets.py +4 -0
  5. llmeval-env/lib/python3.10/site-packages/sympy/core/backend.py +84 -0
  6. llmeval-env/lib/python3.10/site-packages/sympy/core/cache.py +210 -0
  7. llmeval-env/lib/python3.10/site-packages/sympy/core/compatibility.py +35 -0
  8. llmeval-env/lib/python3.10/site-packages/sympy/core/containers.py +410 -0
  9. llmeval-env/lib/python3.10/site-packages/sympy/core/core.py +63 -0
  10. llmeval-env/lib/python3.10/site-packages/sympy/core/coreerrors.py +9 -0
  11. llmeval-env/lib/python3.10/site-packages/sympy/core/decorators.py +238 -0
  12. llmeval-env/lib/python3.10/site-packages/sympy/core/expr.py +0 -0
  13. llmeval-env/lib/python3.10/site-packages/sympy/core/function.py +0 -0
  14. llmeval-env/lib/python3.10/site-packages/sympy/core/logic.py +427 -0
  15. llmeval-env/lib/python3.10/site-packages/sympy/core/mod.py +238 -0
  16. llmeval-env/lib/python3.10/site-packages/sympy/core/multidimensional.py +131 -0
  17. llmeval-env/lib/python3.10/site-packages/sympy/core/numbers.py +0 -0
  18. llmeval-env/lib/python3.10/site-packages/sympy/core/operations.py +722 -0
  19. llmeval-env/lib/python3.10/site-packages/sympy/core/power.py +2004 -0
  20. llmeval-env/lib/python3.10/site-packages/sympy/core/random.py +227 -0
  21. llmeval-env/lib/python3.10/site-packages/sympy/core/relational.py +1587 -0
  22. llmeval-env/lib/python3.10/site-packages/sympy/core/rules.py +66 -0
  23. llmeval-env/lib/python3.10/site-packages/sympy/core/singleton.py +174 -0
  24. llmeval-env/lib/python3.10/site-packages/sympy/core/sorting.py +309 -0
  25. llmeval-env/lib/python3.10/site-packages/sympy/core/symbol.py +945 -0
  26. llmeval-env/lib/python3.10/site-packages/sympy/core/sympify.py +634 -0
  27. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/__init__.py +0 -0
  28. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_args.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_basic.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_compatibility.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_operations.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_symbol.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_sympify.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_args.py +0 -0
  35. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_arit.py +2463 -0
  36. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_assumptions.py +1335 -0
  37. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_basic.py +319 -0
  38. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_cache.py +91 -0
  39. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_compatibility.py +6 -0
  40. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_complex.py +226 -0
  41. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_constructor_postprocessor.py +87 -0
  42. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_containers.py +217 -0
  43. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_count_ops.py +155 -0
  44. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_diff.py +160 -0
  45. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_equal.py +89 -0
  46. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_eval.py +95 -0
  47. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_evalf.py +732 -0
  48. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_expand.py +351 -0
  49. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_expr.py +2261 -0
  50. llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_exprtools.py +493 -0
llmeval-env/lib/python3.10/site-packages/sympy/core/__init__.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Core module. Provides the basic operations needed in sympy.
2
+ """
3
+
4
+ from .sympify import sympify, SympifyError
5
+ from .cache import cacheit
6
+ from .assumptions import assumptions, check_assumptions, failing_assumptions, common_assumptions
7
+ from .basic import Basic, Atom
8
+ from .singleton import S
9
+ from .expr import Expr, AtomicExpr, UnevaluatedExpr
10
+ from .symbol import Symbol, Wild, Dummy, symbols, var
11
+ from .numbers import Number, Float, Rational, Integer, NumberSymbol, \
12
+ RealNumber, igcd, ilcm, seterr, E, I, nan, oo, pi, zoo, \
13
+ AlgebraicNumber, comp, mod_inverse
14
+ from .power import Pow, integer_nthroot, integer_log
15
+ from .mul import Mul, prod
16
+ from .add import Add
17
+ from .mod import Mod
18
+ from .relational import ( Rel, Eq, Ne, Lt, Le, Gt, Ge,
19
+ Equality, GreaterThan, LessThan, Unequality, StrictGreaterThan,
20
+ StrictLessThan )
21
+ from .multidimensional import vectorize
22
+ from .function import Lambda, WildFunction, Derivative, diff, FunctionClass, \
23
+ Function, Subs, expand, PoleError, count_ops, \
24
+ expand_mul, expand_log, expand_func, \
25
+ expand_trig, expand_complex, expand_multinomial, nfloat, \
26
+ expand_power_base, expand_power_exp, arity
27
+ from .evalf import PrecisionExhausted, N
28
+ from .containers import Tuple, Dict
29
+ from .exprtools import gcd_terms, factor_terms, factor_nc
30
+ from .parameters import evaluate
31
+ from .kind import UndefinedKind, NumberKind, BooleanKind
32
+ from .traversal import preorder_traversal, bottom_up, use, postorder_traversal
33
+ from .sorting import default_sort_key, ordered
34
+
35
+ # expose singletons
36
+ Catalan = S.Catalan
37
+ EulerGamma = S.EulerGamma
38
+ GoldenRatio = S.GoldenRatio
39
+ TribonacciConstant = S.TribonacciConstant
40
+
41
+ __all__ = [
42
+ 'sympify', 'SympifyError',
43
+
44
+ 'cacheit',
45
+
46
+ 'assumptions', 'check_assumptions', 'failing_assumptions',
47
+ 'common_assumptions',
48
+
49
+ 'Basic', 'Atom',
50
+
51
+ 'S',
52
+
53
+ 'Expr', 'AtomicExpr', 'UnevaluatedExpr',
54
+
55
+ 'Symbol', 'Wild', 'Dummy', 'symbols', 'var',
56
+
57
+ 'Number', 'Float', 'Rational', 'Integer', 'NumberSymbol', 'RealNumber',
58
+ 'igcd', 'ilcm', 'seterr', 'E', 'I', 'nan', 'oo', 'pi', 'zoo',
59
+ 'AlgebraicNumber', 'comp', 'mod_inverse',
60
+
61
+ 'Pow', 'integer_nthroot', 'integer_log',
62
+
63
+ 'Mul', 'prod',
64
+
65
+ 'Add',
66
+
67
+ 'Mod',
68
+
69
+ 'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge', 'Equality', 'GreaterThan',
70
+ 'LessThan', 'Unequality', 'StrictGreaterThan', 'StrictLessThan',
71
+
72
+ 'vectorize',
73
+
74
+ 'Lambda', 'WildFunction', 'Derivative', 'diff', 'FunctionClass',
75
+ 'Function', 'Subs', 'expand', 'PoleError', 'count_ops', 'expand_mul',
76
+ 'expand_log', 'expand_func', 'expand_trig', 'expand_complex',
77
+ 'expand_multinomial', 'nfloat', 'expand_power_base', 'expand_power_exp',
78
+ 'arity',
79
+
80
+ 'PrecisionExhausted', 'N',
81
+
82
+ 'evalf', # The module?
83
+
84
+ 'Tuple', 'Dict',
85
+
86
+ 'gcd_terms', 'factor_terms', 'factor_nc',
87
+
88
+ 'evaluate',
89
+
90
+ 'Catalan',
91
+ 'EulerGamma',
92
+ 'GoldenRatio',
93
+ 'TribonacciConstant',
94
+
95
+ 'UndefinedKind', 'NumberKind', 'BooleanKind',
96
+
97
+ 'preorder_traversal', 'bottom_up', 'use', 'postorder_traversal',
98
+
99
+ 'default_sort_key', 'ordered',
100
+ ]
llmeval-env/lib/python3.10/site-packages/sympy/core/_print_helpers.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Base class to provide str and repr hooks that `init_printing` can overwrite.
3
+
4
+ This is exposed publicly in the `printing.defaults` module,
5
+ but cannot be defined there without causing circular imports.
6
+ """
7
+
8
+ class Printable:
9
+ """
10
+ The default implementation of printing for SymPy classes.
11
+
12
+ This implements a hack that allows us to print elements of built-in
13
+ Python containers in a readable way. Natively Python uses ``repr()``
14
+ even if ``str()`` was explicitly requested. Mix in this trait into
15
+ a class to get proper default printing.
16
+
17
+ This also adds support for LaTeX printing in jupyter notebooks.
18
+ """
19
+
20
+ # Since this class is used as a mixin we set empty slots. That means that
21
+ # instances of any subclasses that use slots will not need to have a
22
+ # __dict__.
23
+ __slots__ = ()
24
+
25
+ # Note, we always use the default ordering (lex) in __str__ and __repr__,
26
+ # regardless of the global setting. See issue 5487.
27
+ def __str__(self):
28
+ from sympy.printing.str import sstr
29
+ return sstr(self, order=None)
30
+
31
+ __repr__ = __str__
32
+
33
+ def _repr_disabled(self):
34
+ """
35
+ No-op repr function used to disable jupyter display hooks.
36
+
37
+ When :func:`sympy.init_printing` is used to disable certain display
38
+ formats, this function is copied into the appropriate ``_repr_*_``
39
+ attributes.
40
+
41
+ While we could just set the attributes to `None``, doing it this way
42
+ allows derived classes to call `super()`.
43
+ """
44
+ return None
45
+
46
+ # We don't implement _repr_png_ here because it would add a large amount of
47
+ # data to any notebook containing SymPy expressions, without adding
48
+ # anything useful to the notebook. It can still enabled manually, e.g.,
49
+ # for the qtconsole, with init_printing().
50
+ _repr_png_ = _repr_disabled
51
+
52
+ _repr_svg_ = _repr_disabled
53
+
54
+ def _repr_latex_(self):
55
+ """
56
+ IPython/Jupyter LaTeX printing
57
+
58
+ To change the behavior of this (e.g., pass in some settings to LaTeX),
59
+ use init_printing(). init_printing() will also enable LaTeX printing
60
+ for built in numeric types like ints and container types that contain
61
+ SymPy objects, like lists and dictionaries of expressions.
62
+ """
63
+ from sympy.printing.latex import latex
64
+ s = latex(self, mode='plain')
65
+ return "$\\displaystyle %s$" % s
llmeval-env/lib/python3.10/site-packages/sympy/core/add.py ADDED
@@ -0,0 +1,1287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple as tTuple
2
+ from collections import defaultdict
3
+ from functools import cmp_to_key, reduce
4
+ from operator import attrgetter
5
+ from .basic import Basic
6
+ from .parameters import global_parameters
7
+ from .logic import _fuzzy_group, fuzzy_or, fuzzy_not
8
+ from .singleton import S
9
+ from .operations import AssocOp, AssocOpDispatcher
10
+ from .cache import cacheit
11
+ from .numbers import ilcm, igcd, equal_valued
12
+ from .expr import Expr
13
+ from .kind import UndefinedKind
14
+ from sympy.utilities.iterables import is_sequence, sift
15
+
16
+ # Key for sorting commutative args in canonical order
17
+ _args_sortkey = cmp_to_key(Basic.compare)
18
+
19
+
20
+ def _could_extract_minus_sign(expr):
21
+ # assume expr is Add-like
22
+ # We choose the one with less arguments with minus signs
23
+ negative_args = sum(1 for i in expr.args
24
+ if i.could_extract_minus_sign())
25
+ positive_args = len(expr.args) - negative_args
26
+ if positive_args > negative_args:
27
+ return False
28
+ elif positive_args < negative_args:
29
+ return True
30
+ # choose based on .sort_key() to prefer
31
+ # x - 1 instead of 1 - x and
32
+ # 3 - sqrt(2) instead of -3 + sqrt(2)
33
+ return bool(expr.sort_key() < (-expr).sort_key())
34
+
35
+
36
+ def _addsort(args):
37
+ # in-place sorting of args
38
+ args.sort(key=_args_sortkey)
39
+
40
+
41
+ def _unevaluated_Add(*args):
42
+ """Return a well-formed unevaluated Add: Numbers are collected and
43
+ put in slot 0 and args are sorted. Use this when args have changed
44
+ but you still want to return an unevaluated Add.
45
+
46
+ Examples
47
+ ========
48
+
49
+ >>> from sympy.core.add import _unevaluated_Add as uAdd
50
+ >>> from sympy import S, Add
51
+ >>> from sympy.abc import x, y
52
+ >>> a = uAdd(*[S(1.0), x, S(2)])
53
+ >>> a.args[0]
54
+ 3.00000000000000
55
+ >>> a.args[1]
56
+ x
57
+
58
+ Beyond the Number being in slot 0, there is no other assurance of
59
+ order for the arguments since they are hash sorted. So, for testing
60
+ purposes, output produced by this in some other function can only
61
+ be tested against the output of this function or as one of several
62
+ options:
63
+
64
+ >>> opts = (Add(x, y, evaluate=False), Add(y, x, evaluate=False))
65
+ >>> a = uAdd(x, y)
66
+ >>> assert a in opts and a == uAdd(x, y)
67
+ >>> uAdd(x + 1, x + 2)
68
+ x + x + 3
69
+ """
70
+ args = list(args)
71
+ newargs = []
72
+ co = S.Zero
73
+ while args:
74
+ a = args.pop()
75
+ if a.is_Add:
76
+ # this will keep nesting from building up
77
+ # so that x + (x + 1) -> x + x + 1 (3 args)
78
+ args.extend(a.args)
79
+ elif a.is_Number:
80
+ co += a
81
+ else:
82
+ newargs.append(a)
83
+ _addsort(newargs)
84
+ if co:
85
+ newargs.insert(0, co)
86
+ return Add._from_args(newargs)
87
+
88
+
89
+ class Add(Expr, AssocOp):
90
+ """
91
+ Expression representing addition operation for algebraic group.
92
+
93
+ .. deprecated:: 1.7
94
+
95
+ Using arguments that aren't subclasses of :class:`~.Expr` in core
96
+ operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
97
+ deprecated. See :ref:`non-expr-args-deprecated` for details.
98
+
99
+ Every argument of ``Add()`` must be ``Expr``. Infix operator ``+``
100
+ on most scalar objects in SymPy calls this class.
101
+
102
+ Another use of ``Add()`` is to represent the structure of abstract
103
+ addition so that its arguments can be substituted to return different
104
+ class. Refer to examples section for this.
105
+
106
+ ``Add()`` evaluates the argument unless ``evaluate=False`` is passed.
107
+ The evaluation logic includes:
108
+
109
+ 1. Flattening
110
+ ``Add(x, Add(y, z))`` -> ``Add(x, y, z)``
111
+
112
+ 2. Identity removing
113
+ ``Add(x, 0, y)`` -> ``Add(x, y)``
114
+
115
+ 3. Coefficient collecting by ``.as_coeff_Mul()``
116
+ ``Add(x, 2*x)`` -> ``Mul(3, x)``
117
+
118
+ 4. Term sorting
119
+ ``Add(y, x, 2)`` -> ``Add(2, x, y)``
120
+
121
+ If no argument is passed, identity element 0 is returned. If single
122
+ element is passed, that element is returned.
123
+
124
+ Note that ``Add(*args)`` is more efficient than ``sum(args)`` because
125
+ it flattens the arguments. ``sum(a, b, c, ...)`` recursively adds the
126
+ arguments as ``a + (b + (c + ...))``, which has quadratic complexity.
127
+ On the other hand, ``Add(a, b, c, d)`` does not assume nested
128
+ structure, making the complexity linear.
129
+
130
+ Since addition is group operation, every argument should have the
131
+ same :obj:`sympy.core.kind.Kind()`.
132
+
133
+ Examples
134
+ ========
135
+
136
+ >>> from sympy import Add, I
137
+ >>> from sympy.abc import x, y
138
+ >>> Add(x, 1)
139
+ x + 1
140
+ >>> Add(x, x)
141
+ 2*x
142
+ >>> 2*x**2 + 3*x + I*y + 2*y + 2*x/5 + 1.0*y + 1
143
+ 2*x**2 + 17*x/5 + 3.0*y + I*y + 1
144
+
145
+ If ``evaluate=False`` is passed, result is not evaluated.
146
+
147
+ >>> Add(1, 2, evaluate=False)
148
+ 1 + 2
149
+ >>> Add(x, x, evaluate=False)
150
+ x + x
151
+
152
+ ``Add()`` also represents the general structure of addition operation.
153
+
154
+ >>> from sympy import MatrixSymbol
155
+ >>> A,B = MatrixSymbol('A', 2,2), MatrixSymbol('B', 2,2)
156
+ >>> expr = Add(x,y).subs({x:A, y:B})
157
+ >>> expr
158
+ A + B
159
+ >>> type(expr)
160
+ <class 'sympy.matrices.expressions.matadd.MatAdd'>
161
+
162
+ Note that the printers do not display in args order.
163
+
164
+ >>> Add(x, 1)
165
+ x + 1
166
+ >>> Add(x, 1).args
167
+ (1, x)
168
+
169
+ See Also
170
+ ========
171
+
172
+ MatAdd
173
+
174
+ """
175
+
176
+ __slots__ = ()
177
+
178
+ args: tTuple[Expr, ...]
179
+
180
+ is_Add = True
181
+
182
+ _args_type = Expr
183
+
184
+ @classmethod
185
+ def flatten(cls, seq):
186
+ """
187
+ Takes the sequence "seq" of nested Adds and returns a flatten list.
188
+
189
+ Returns: (commutative_part, noncommutative_part, order_symbols)
190
+
191
+ Applies associativity, all terms are commutable with respect to
192
+ addition.
193
+
194
+ NB: the removal of 0 is already handled by AssocOp.__new__
195
+
196
+ See Also
197
+ ========
198
+
199
+ sympy.core.mul.Mul.flatten
200
+
201
+ """
202
+ from sympy.calculus.accumulationbounds import AccumBounds
203
+ from sympy.matrices.expressions import MatrixExpr
204
+ from sympy.tensor.tensor import TensExpr
205
+ rv = None
206
+ if len(seq) == 2:
207
+ a, b = seq
208
+ if b.is_Rational:
209
+ a, b = b, a
210
+ if a.is_Rational:
211
+ if b.is_Mul:
212
+ rv = [a, b], [], None
213
+ if rv:
214
+ if all(s.is_commutative for s in rv[0]):
215
+ return rv
216
+ return [], rv[0], None
217
+
218
+ terms = {} # term -> coeff
219
+ # e.g. x**2 -> 5 for ... + 5*x**2 + ...
220
+
221
+ coeff = S.Zero # coefficient (Number or zoo) to always be in slot 0
222
+ # e.g. 3 + ...
223
+ order_factors = []
224
+
225
+ extra = []
226
+
227
+ for o in seq:
228
+
229
+ # O(x)
230
+ if o.is_Order:
231
+ if o.expr.is_zero:
232
+ continue
233
+ for o1 in order_factors:
234
+ if o1.contains(o):
235
+ o = None
236
+ break
237
+ if o is None:
238
+ continue
239
+ order_factors = [o] + [
240
+ o1 for o1 in order_factors if not o.contains(o1)]
241
+ continue
242
+
243
+ # 3 or NaN
244
+ elif o.is_Number:
245
+ if (o is S.NaN or coeff is S.ComplexInfinity and
246
+ o.is_finite is False) and not extra:
247
+ # we know for sure the result will be nan
248
+ return [S.NaN], [], None
249
+ if coeff.is_Number or isinstance(coeff, AccumBounds):
250
+ coeff += o
251
+ if coeff is S.NaN and not extra:
252
+ # we know for sure the result will be nan
253
+ return [S.NaN], [], None
254
+ continue
255
+
256
+ elif isinstance(o, AccumBounds):
257
+ coeff = o.__add__(coeff)
258
+ continue
259
+
260
+ elif isinstance(o, MatrixExpr):
261
+ # can't add 0 to Matrix so make sure coeff is not 0
262
+ extra.append(o)
263
+ continue
264
+
265
+ elif isinstance(o, TensExpr):
266
+ coeff = o.__add__(coeff) if coeff else o
267
+ continue
268
+
269
+ elif o is S.ComplexInfinity:
270
+ if coeff.is_finite is False and not extra:
271
+ # we know for sure the result will be nan
272
+ return [S.NaN], [], None
273
+ coeff = S.ComplexInfinity
274
+ continue
275
+
276
+ # Add([...])
277
+ elif o.is_Add:
278
+ # NB: here we assume Add is always commutative
279
+ seq.extend(o.args) # TODO zerocopy?
280
+ continue
281
+
282
+ # Mul([...])
283
+ elif o.is_Mul:
284
+ c, s = o.as_coeff_Mul()
285
+
286
+ # check for unevaluated Pow, e.g. 2**3 or 2**(-1/2)
287
+ elif o.is_Pow:
288
+ b, e = o.as_base_exp()
289
+ if b.is_Number and (e.is_Integer or
290
+ (e.is_Rational and e.is_negative)):
291
+ seq.append(b**e)
292
+ continue
293
+ c, s = S.One, o
294
+
295
+ else:
296
+ # everything else
297
+ c = S.One
298
+ s = o
299
+
300
+ # now we have:
301
+ # o = c*s, where
302
+ #
303
+ # c is a Number
304
+ # s is an expression with number factor extracted
305
+ # let's collect terms with the same s, so e.g.
306
+ # 2*x**2 + 3*x**2 -> 5*x**2
307
+ if s in terms:
308
+ terms[s] += c
309
+ if terms[s] is S.NaN and not extra:
310
+ # we know for sure the result will be nan
311
+ return [S.NaN], [], None
312
+ else:
313
+ terms[s] = c
314
+
315
+ # now let's construct new args:
316
+ # [2*x**2, x**3, 7*x**4, pi, ...]
317
+ newseq = []
318
+ noncommutative = False
319
+ for s, c in terms.items():
320
+ # 0*s
321
+ if c.is_zero:
322
+ continue
323
+ # 1*s
324
+ elif c is S.One:
325
+ newseq.append(s)
326
+ # c*s
327
+ else:
328
+ if s.is_Mul:
329
+ # Mul, already keeps its arguments in perfect order.
330
+ # so we can simply put c in slot0 and go the fast way.
331
+ cs = s._new_rawargs(*((c,) + s.args))
332
+ newseq.append(cs)
333
+ elif s.is_Add:
334
+ # we just re-create the unevaluated Mul
335
+ newseq.append(Mul(c, s, evaluate=False))
336
+ else:
337
+ # alternatively we have to call all Mul's machinery (slow)
338
+ newseq.append(Mul(c, s))
339
+
340
+ noncommutative = noncommutative or not s.is_commutative
341
+
342
+ # oo, -oo
343
+ if coeff is S.Infinity:
344
+ newseq = [f for f in newseq if not (f.is_extended_nonnegative or f.is_real)]
345
+
346
+ elif coeff is S.NegativeInfinity:
347
+ newseq = [f for f in newseq if not (f.is_extended_nonpositive or f.is_real)]
348
+
349
+ if coeff is S.ComplexInfinity:
350
+ # zoo might be
351
+ # infinite_real + finite_im
352
+ # finite_real + infinite_im
353
+ # infinite_real + infinite_im
354
+ # addition of a finite real or imaginary number won't be able to
355
+ # change the zoo nature; adding an infinite qualtity would result
356
+ # in a NaN condition if it had sign opposite of the infinite
357
+ # portion of zoo, e.g., infinite_real - infinite_real.
358
+ newseq = [c for c in newseq if not (c.is_finite and
359
+ c.is_extended_real is not None)]
360
+
361
+ # process O(x)
362
+ if order_factors:
363
+ newseq2 = []
364
+ for t in newseq:
365
+ for o in order_factors:
366
+ # x + O(x) -> O(x)
367
+ if o.contains(t):
368
+ t = None
369
+ break
370
+ # x + O(x**2) -> x + O(x**2)
371
+ if t is not None:
372
+ newseq2.append(t)
373
+ newseq = newseq2 + order_factors
374
+ # 1 + O(1) -> O(1)
375
+ for o in order_factors:
376
+ if o.contains(coeff):
377
+ coeff = S.Zero
378
+ break
379
+
380
+ # order args canonically
381
+ _addsort(newseq)
382
+
383
+ # current code expects coeff to be first
384
+ if coeff is not S.Zero:
385
+ newseq.insert(0, coeff)
386
+
387
+ if extra:
388
+ newseq += extra
389
+ noncommutative = True
390
+
391
+ # we are done
392
+ if noncommutative:
393
+ return [], newseq, None
394
+ else:
395
+ return newseq, [], None
396
+
397
+ @classmethod
398
+ def class_key(cls):
399
+ return 3, 1, cls.__name__
400
+
401
+ @property
402
+ def kind(self):
403
+ k = attrgetter('kind')
404
+ kinds = map(k, self.args)
405
+ kinds = frozenset(kinds)
406
+ if len(kinds) != 1:
407
+ # Since addition is group operator, kind must be same.
408
+ # We know that this is unexpected signature, so return this.
409
+ result = UndefinedKind
410
+ else:
411
+ result, = kinds
412
+ return result
413
+
414
+ def could_extract_minus_sign(self):
415
+ return _could_extract_minus_sign(self)
416
+
417
+ @cacheit
418
+ def as_coeff_add(self, *deps):
419
+ """
420
+ Returns a tuple (coeff, args) where self is treated as an Add and coeff
421
+ is the Number term and args is a tuple of all other terms.
422
+
423
+ Examples
424
+ ========
425
+
426
+ >>> from sympy.abc import x
427
+ >>> (7 + 3*x).as_coeff_add()
428
+ (7, (3*x,))
429
+ >>> (7*x).as_coeff_add()
430
+ (0, (7*x,))
431
+ """
432
+ if deps:
433
+ l1, l2 = sift(self.args, lambda x: x.has_free(*deps), binary=True)
434
+ return self._new_rawargs(*l2), tuple(l1)
435
+ coeff, notrat = self.args[0].as_coeff_add()
436
+ if coeff is not S.Zero:
437
+ return coeff, notrat + self.args[1:]
438
+ return S.Zero, self.args
439
+
440
+ def as_coeff_Add(self, rational=False, deps=None):
441
+ """
442
+ Efficiently extract the coefficient of a summation.
443
+ """
444
+ coeff, args = self.args[0], self.args[1:]
445
+
446
+ if coeff.is_Number and not rational or coeff.is_Rational:
447
+ return coeff, self._new_rawargs(*args)
448
+ return S.Zero, self
449
+
450
+ # Note, we intentionally do not implement Add.as_coeff_mul(). Rather, we
451
+ # let Expr.as_coeff_mul() just always return (S.One, self) for an Add. See
452
+ # issue 5524.
453
+
454
+ def _eval_power(self, e):
455
+ from .evalf import pure_complex
456
+ from .relational import is_eq
457
+ if len(self.args) == 2 and any(_.is_infinite for _ in self.args):
458
+ if e.is_zero is False and is_eq(e, S.One) is False:
459
+ # looking for literal a + I*b
460
+ a, b = self.args
461
+ if a.coeff(S.ImaginaryUnit):
462
+ a, b = b, a
463
+ ico = b.coeff(S.ImaginaryUnit)
464
+ if ico and ico.is_extended_real and a.is_extended_real:
465
+ if e.is_extended_negative:
466
+ return S.Zero
467
+ if e.is_extended_positive:
468
+ return S.ComplexInfinity
469
+ return
470
+ if e.is_Rational and self.is_number:
471
+ ri = pure_complex(self)
472
+ if ri:
473
+ r, i = ri
474
+ if e.q == 2:
475
+ from sympy.functions.elementary.miscellaneous import sqrt
476
+ D = sqrt(r**2 + i**2)
477
+ if D.is_Rational:
478
+ from .exprtools import factor_terms
479
+ from sympy.functions.elementary.complexes import sign
480
+ from .function import expand_multinomial
481
+ # (r, i, D) is a Pythagorean triple
482
+ root = sqrt(factor_terms((D - r)/2))**e.p
483
+ return root*expand_multinomial((
484
+ # principle value
485
+ (D + r)/abs(i) + sign(i)*S.ImaginaryUnit)**e.p)
486
+ elif e == -1:
487
+ return _unevaluated_Mul(
488
+ r - i*S.ImaginaryUnit,
489
+ 1/(r**2 + i**2))
490
+ elif e.is_Number and abs(e) != 1:
491
+ # handle the Float case: (2.0 + 4*x)**e -> 4**e*(0.5 + x)**e
492
+ c, m = zip(*[i.as_coeff_Mul() for i in self.args])
493
+ if any(i.is_Float for i in c): # XXX should this always be done?
494
+ big = -1
495
+ for i in c:
496
+ if abs(i) >= big:
497
+ big = abs(i)
498
+ if big > 0 and not equal_valued(big, 1):
499
+ from sympy.functions.elementary.complexes import sign
500
+ bigs = (big, -big)
501
+ c = [sign(i) if i in bigs else i/big for i in c]
502
+ addpow = Add(*[c*m for c, m in zip(c, m)])**e
503
+ return big**e*addpow
504
+
505
+ @cacheit
506
+ def _eval_derivative(self, s):
507
+ return self.func(*[a.diff(s) for a in self.args])
508
+
509
+ def _eval_nseries(self, x, n, logx, cdir=0):
510
+ terms = [t.nseries(x, n=n, logx=logx, cdir=cdir) for t in self.args]
511
+ return self.func(*terms)
512
+
513
+ def _matches_simple(self, expr, repl_dict):
514
+ # handle (w+3).matches('x+5') -> {w: x+2}
515
+ coeff, terms = self.as_coeff_add()
516
+ if len(terms) == 1:
517
+ return terms[0].matches(expr - coeff, repl_dict)
518
+ return
519
+
520
+ def matches(self, expr, repl_dict=None, old=False):
521
+ return self._matches_commutative(expr, repl_dict, old)
522
+
523
+ @staticmethod
524
+ def _combine_inverse(lhs, rhs):
525
+ """
526
+ Returns lhs - rhs, but treats oo like a symbol so oo - oo
527
+ returns 0, instead of a nan.
528
+ """
529
+ from sympy.simplify.simplify import signsimp
530
+ inf = (S.Infinity, S.NegativeInfinity)
531
+ if lhs.has(*inf) or rhs.has(*inf):
532
+ from .symbol import Dummy
533
+ oo = Dummy('oo')
534
+ reps = {
535
+ S.Infinity: oo,
536
+ S.NegativeInfinity: -oo}
537
+ ireps = {v: k for k, v in reps.items()}
538
+ eq = lhs.xreplace(reps) - rhs.xreplace(reps)
539
+ if eq.has(oo):
540
+ eq = eq.replace(
541
+ lambda x: x.is_Pow and x.base is oo,
542
+ lambda x: x.base)
543
+ rv = eq.xreplace(ireps)
544
+ else:
545
+ rv = lhs - rhs
546
+ srv = signsimp(rv)
547
+ return srv if srv.is_Number else rv
548
+
549
+ @cacheit
550
+ def as_two_terms(self):
551
+ """Return head and tail of self.
552
+
553
+ This is the most efficient way to get the head and tail of an
554
+ expression.
555
+
556
+ - if you want only the head, use self.args[0];
557
+ - if you want to process the arguments of the tail then use
558
+ self.as_coef_add() which gives the head and a tuple containing
559
+ the arguments of the tail when treated as an Add.
560
+ - if you want the coefficient when self is treated as a Mul
561
+ then use self.as_coeff_mul()[0]
562
+
563
+ >>> from sympy.abc import x, y
564
+ >>> (3*x - 2*y + 5).as_two_terms()
565
+ (5, 3*x - 2*y)
566
+ """
567
+ return self.args[0], self._new_rawargs(*self.args[1:])
568
+
569
+ def as_numer_denom(self):
570
+ """
571
+ Decomposes an expression to its numerator part and its
572
+ denominator part.
573
+
574
+ Examples
575
+ ========
576
+
577
+ >>> from sympy.abc import x, y, z
578
+ >>> (x*y/z).as_numer_denom()
579
+ (x*y, z)
580
+ >>> (x*(y + 1)/y**7).as_numer_denom()
581
+ (x*(y + 1), y**7)
582
+
583
+ See Also
584
+ ========
585
+
586
+ sympy.core.expr.Expr.as_numer_denom
587
+ """
588
+ # clear rational denominator
589
+ content, expr = self.primitive()
590
+ if not isinstance(expr, Add):
591
+ return Mul(content, expr, evaluate=False).as_numer_denom()
592
+ ncon, dcon = content.as_numer_denom()
593
+
594
+ # collect numerators and denominators of the terms
595
+ nd = defaultdict(list)
596
+ for f in expr.args:
597
+ ni, di = f.as_numer_denom()
598
+ nd[di].append(ni)
599
+
600
+ # check for quick exit
601
+ if len(nd) == 1:
602
+ d, n = nd.popitem()
603
+ return self.func(
604
+ *[_keep_coeff(ncon, ni) for ni in n]), _keep_coeff(dcon, d)
605
+
606
+ # sum up the terms having a common denominator
607
+ for d, n in nd.items():
608
+ if len(n) == 1:
609
+ nd[d] = n[0]
610
+ else:
611
+ nd[d] = self.func(*n)
612
+
613
+ # assemble single numerator and denominator
614
+ denoms, numers = [list(i) for i in zip(*iter(nd.items()))]
615
+ n, d = self.func(*[Mul(*(denoms[:i] + [numers[i]] + denoms[i + 1:]))
616
+ for i in range(len(numers))]), Mul(*denoms)
617
+
618
+ return _keep_coeff(ncon, n), _keep_coeff(dcon, d)
619
+
620
+ def _eval_is_polynomial(self, syms):
621
+ return all(term._eval_is_polynomial(syms) for term in self.args)
622
+
623
+ def _eval_is_rational_function(self, syms):
624
+ return all(term._eval_is_rational_function(syms) for term in self.args)
625
+
626
+ def _eval_is_meromorphic(self, x, a):
627
+ return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args),
628
+ quick_exit=True)
629
+
630
+ def _eval_is_algebraic_expr(self, syms):
631
+ return all(term._eval_is_algebraic_expr(syms) for term in self.args)
632
+
633
+ # assumption methods
634
+ _eval_is_real = lambda self: _fuzzy_group(
635
+ (a.is_real for a in self.args), quick_exit=True)
636
+ _eval_is_extended_real = lambda self: _fuzzy_group(
637
+ (a.is_extended_real for a in self.args), quick_exit=True)
638
+ _eval_is_complex = lambda self: _fuzzy_group(
639
+ (a.is_complex for a in self.args), quick_exit=True)
640
+ _eval_is_antihermitian = lambda self: _fuzzy_group(
641
+ (a.is_antihermitian for a in self.args), quick_exit=True)
642
+ _eval_is_finite = lambda self: _fuzzy_group(
643
+ (a.is_finite for a in self.args), quick_exit=True)
644
+ _eval_is_hermitian = lambda self: _fuzzy_group(
645
+ (a.is_hermitian for a in self.args), quick_exit=True)
646
+ _eval_is_integer = lambda self: _fuzzy_group(
647
+ (a.is_integer for a in self.args), quick_exit=True)
648
+ _eval_is_rational = lambda self: _fuzzy_group(
649
+ (a.is_rational for a in self.args), quick_exit=True)
650
+ _eval_is_algebraic = lambda self: _fuzzy_group(
651
+ (a.is_algebraic for a in self.args), quick_exit=True)
652
+ _eval_is_commutative = lambda self: _fuzzy_group(
653
+ a.is_commutative for a in self.args)
654
+
655
+ def _eval_is_infinite(self):
656
+ sawinf = False
657
+ for a in self.args:
658
+ ainf = a.is_infinite
659
+ if ainf is None:
660
+ return None
661
+ elif ainf is True:
662
+ # infinite+infinite might not be infinite
663
+ if sawinf is True:
664
+ return None
665
+ sawinf = True
666
+ return sawinf
667
+
668
+ def _eval_is_imaginary(self):
669
+ nz = []
670
+ im_I = []
671
+ for a in self.args:
672
+ if a.is_extended_real:
673
+ if a.is_zero:
674
+ pass
675
+ elif a.is_zero is False:
676
+ nz.append(a)
677
+ else:
678
+ return
679
+ elif a.is_imaginary:
680
+ im_I.append(a*S.ImaginaryUnit)
681
+ elif a.is_Mul and S.ImaginaryUnit in a.args:
682
+ coeff, ai = a.as_coeff_mul(S.ImaginaryUnit)
683
+ if ai == (S.ImaginaryUnit,) and coeff.is_extended_real:
684
+ im_I.append(-coeff)
685
+ else:
686
+ return
687
+ else:
688
+ return
689
+ b = self.func(*nz)
690
+ if b != self:
691
+ if b.is_zero:
692
+ return fuzzy_not(self.func(*im_I).is_zero)
693
+ elif b.is_zero is False:
694
+ return False
695
+
696
+ def _eval_is_zero(self):
697
+ if self.is_commutative is False:
698
+ # issue 10528: there is no way to know if a nc symbol
699
+ # is zero or not
700
+ return
701
+ nz = []
702
+ z = 0
703
+ im_or_z = False
704
+ im = 0
705
+ for a in self.args:
706
+ if a.is_extended_real:
707
+ if a.is_zero:
708
+ z += 1
709
+ elif a.is_zero is False:
710
+ nz.append(a)
711
+ else:
712
+ return
713
+ elif a.is_imaginary:
714
+ im += 1
715
+ elif a.is_Mul and S.ImaginaryUnit in a.args:
716
+ coeff, ai = a.as_coeff_mul(S.ImaginaryUnit)
717
+ if ai == (S.ImaginaryUnit,) and coeff.is_extended_real:
718
+ im_or_z = True
719
+ else:
720
+ return
721
+ else:
722
+ return
723
+ if z == len(self.args):
724
+ return True
725
+ if len(nz) in [0, len(self.args)]:
726
+ return None
727
+ b = self.func(*nz)
728
+ if b.is_zero:
729
+ if not im_or_z:
730
+ if im == 0:
731
+ return True
732
+ elif im == 1:
733
+ return False
734
+ if b.is_zero is False:
735
+ return False
736
+
737
+ def _eval_is_odd(self):
738
+ l = [f for f in self.args if not (f.is_even is True)]
739
+ if not l:
740
+ return False
741
+ if l[0].is_odd:
742
+ return self._new_rawargs(*l[1:]).is_even
743
+
744
+ def _eval_is_irrational(self):
745
+ for t in self.args:
746
+ a = t.is_irrational
747
+ if a:
748
+ others = list(self.args)
749
+ others.remove(t)
750
+ if all(x.is_rational is True for x in others):
751
+ return True
752
+ return None
753
+ if a is None:
754
+ return
755
+ return False
756
+
757
+ def _all_nonneg_or_nonppos(self):
758
+ nn = np = 0
759
+ for a in self.args:
760
+ if a.is_nonnegative:
761
+ if np:
762
+ return False
763
+ nn = 1
764
+ elif a.is_nonpositive:
765
+ if nn:
766
+ return False
767
+ np = 1
768
+ else:
769
+ break
770
+ else:
771
+ return True
772
+
773
+ def _eval_is_extended_positive(self):
774
+ if self.is_number:
775
+ return super()._eval_is_extended_positive()
776
+ c, a = self.as_coeff_Add()
777
+ if not c.is_zero:
778
+ from .exprtools import _monotonic_sign
779
+ v = _monotonic_sign(a)
780
+ if v is not None:
781
+ s = v + c
782
+ if s != self and s.is_extended_positive and a.is_extended_nonnegative:
783
+ return True
784
+ if len(self.free_symbols) == 1:
785
+ v = _monotonic_sign(self)
786
+ if v is not None and v != self and v.is_extended_positive:
787
+ return True
788
+ pos = nonneg = nonpos = unknown_sign = False
789
+ saw_INF = set()
790
+ args = [a for a in self.args if not a.is_zero]
791
+ if not args:
792
+ return False
793
+ for a in args:
794
+ ispos = a.is_extended_positive
795
+ infinite = a.is_infinite
796
+ if infinite:
797
+ saw_INF.add(fuzzy_or((ispos, a.is_extended_nonnegative)))
798
+ if True in saw_INF and False in saw_INF:
799
+ return
800
+ if ispos:
801
+ pos = True
802
+ continue
803
+ elif a.is_extended_nonnegative:
804
+ nonneg = True
805
+ continue
806
+ elif a.is_extended_nonpositive:
807
+ nonpos = True
808
+ continue
809
+
810
+ if infinite is None:
811
+ return
812
+ unknown_sign = True
813
+
814
+ if saw_INF:
815
+ if len(saw_INF) > 1:
816
+ return
817
+ return saw_INF.pop()
818
+ elif unknown_sign:
819
+ return
820
+ elif not nonpos and not nonneg and pos:
821
+ return True
822
+ elif not nonpos and pos:
823
+ return True
824
+ elif not pos and not nonneg:
825
+ return False
826
+
827
+ def _eval_is_extended_nonnegative(self):
828
+ if not self.is_number:
829
+ c, a = self.as_coeff_Add()
830
+ if not c.is_zero and a.is_extended_nonnegative:
831
+ from .exprtools import _monotonic_sign
832
+ v = _monotonic_sign(a)
833
+ if v is not None:
834
+ s = v + c
835
+ if s != self and s.is_extended_nonnegative:
836
+ return True
837
+ if len(self.free_symbols) == 1:
838
+ v = _monotonic_sign(self)
839
+ if v is not None and v != self and v.is_extended_nonnegative:
840
+ return True
841
+
842
+ def _eval_is_extended_nonpositive(self):
843
+ if not self.is_number:
844
+ c, a = self.as_coeff_Add()
845
+ if not c.is_zero and a.is_extended_nonpositive:
846
+ from .exprtools import _monotonic_sign
847
+ v = _monotonic_sign(a)
848
+ if v is not None:
849
+ s = v + c
850
+ if s != self and s.is_extended_nonpositive:
851
+ return True
852
+ if len(self.free_symbols) == 1:
853
+ v = _monotonic_sign(self)
854
+ if v is not None and v != self and v.is_extended_nonpositive:
855
+ return True
856
+
857
+ def _eval_is_extended_negative(self):
858
+ if self.is_number:
859
+ return super()._eval_is_extended_negative()
860
+ c, a = self.as_coeff_Add()
861
+ if not c.is_zero:
862
+ from .exprtools import _monotonic_sign
863
+ v = _monotonic_sign(a)
864
+ if v is not None:
865
+ s = v + c
866
+ if s != self and s.is_extended_negative and a.is_extended_nonpositive:
867
+ return True
868
+ if len(self.free_symbols) == 1:
869
+ v = _monotonic_sign(self)
870
+ if v is not None and v != self and v.is_extended_negative:
871
+ return True
872
+ neg = nonpos = nonneg = unknown_sign = False
873
+ saw_INF = set()
874
+ args = [a for a in self.args if not a.is_zero]
875
+ if not args:
876
+ return False
877
+ for a in args:
878
+ isneg = a.is_extended_negative
879
+ infinite = a.is_infinite
880
+ if infinite:
881
+ saw_INF.add(fuzzy_or((isneg, a.is_extended_nonpositive)))
882
+ if True in saw_INF and False in saw_INF:
883
+ return
884
+ if isneg:
885
+ neg = True
886
+ continue
887
+ elif a.is_extended_nonpositive:
888
+ nonpos = True
889
+ continue
890
+ elif a.is_extended_nonnegative:
891
+ nonneg = True
892
+ continue
893
+
894
+ if infinite is None:
895
+ return
896
+ unknown_sign = True
897
+
898
+ if saw_INF:
899
+ if len(saw_INF) > 1:
900
+ return
901
+ return saw_INF.pop()
902
+ elif unknown_sign:
903
+ return
904
+ elif not nonneg and not nonpos and neg:
905
+ return True
906
+ elif not nonneg and neg:
907
+ return True
908
+ elif not neg and not nonpos:
909
+ return False
910
+
911
+ def _eval_subs(self, old, new):
912
+ if not old.is_Add:
913
+ if old is S.Infinity and -old in self.args:
914
+ # foo - oo is foo + (-oo) internally
915
+ return self.xreplace({-old: -new})
916
+ return None
917
+
918
+ coeff_self, terms_self = self.as_coeff_Add()
919
+ coeff_old, terms_old = old.as_coeff_Add()
920
+
921
+ if coeff_self.is_Rational and coeff_old.is_Rational:
922
+ if terms_self == terms_old: # (2 + a).subs( 3 + a, y) -> -1 + y
923
+ return self.func(new, coeff_self, -coeff_old)
924
+ if terms_self == -terms_old: # (2 + a).subs(-3 - a, y) -> -1 - y
925
+ return self.func(-new, coeff_self, coeff_old)
926
+
927
+ if coeff_self.is_Rational and coeff_old.is_Rational \
928
+ or coeff_self == coeff_old:
929
+ args_old, args_self = self.func.make_args(
930
+ terms_old), self.func.make_args(terms_self)
931
+ if len(args_old) < len(args_self): # (a+b+c).subs(b+c,x) -> a+x
932
+ self_set = set(args_self)
933
+ old_set = set(args_old)
934
+
935
+ if old_set < self_set:
936
+ ret_set = self_set - old_set
937
+ return self.func(new, coeff_self, -coeff_old,
938
+ *[s._subs(old, new) for s in ret_set])
939
+
940
+ args_old = self.func.make_args(
941
+ -terms_old) # (a+b+c+d).subs(-b-c,x) -> a-x+d
942
+ old_set = set(args_old)
943
+ if old_set < self_set:
944
+ ret_set = self_set - old_set
945
+ return self.func(-new, coeff_self, coeff_old,
946
+ *[s._subs(old, new) for s in ret_set])
947
+
948
+ def removeO(self):
949
+ args = [a for a in self.args if not a.is_Order]
950
+ return self._new_rawargs(*args)
951
+
952
+ def getO(self):
953
+ args = [a for a in self.args if a.is_Order]
954
+ if args:
955
+ return self._new_rawargs(*args)
956
+
957
+ @cacheit
958
+ def extract_leading_order(self, symbols, point=None):
959
+ """
960
+ Returns the leading term and its order.
961
+
962
+ Examples
963
+ ========
964
+
965
+ >>> from sympy.abc import x
966
+ >>> (x + 1 + 1/x**5).extract_leading_order(x)
967
+ ((x**(-5), O(x**(-5))),)
968
+ >>> (1 + x).extract_leading_order(x)
969
+ ((1, O(1)),)
970
+ >>> (x + x**2).extract_leading_order(x)
971
+ ((x, O(x)),)
972
+
973
+ """
974
+ from sympy.series.order import Order
975
+ lst = []
976
+ symbols = list(symbols if is_sequence(symbols) else [symbols])
977
+ if not point:
978
+ point = [0]*len(symbols)
979
+ seq = [(f, Order(f, *zip(symbols, point))) for f in self.args]
980
+ for ef, of in seq:
981
+ for e, o in lst:
982
+ if o.contains(of) and o != of:
983
+ of = None
984
+ break
985
+ if of is None:
986
+ continue
987
+ new_lst = [(ef, of)]
988
+ for e, o in lst:
989
+ if of.contains(o) and o != of:
990
+ continue
991
+ new_lst.append((e, o))
992
+ lst = new_lst
993
+ return tuple(lst)
994
+
995
+ def as_real_imag(self, deep=True, **hints):
996
+ """
997
+ Return a tuple representing a complex number.
998
+
999
+ Examples
1000
+ ========
1001
+
1002
+ >>> from sympy import I
1003
+ >>> (7 + 9*I).as_real_imag()
1004
+ (7, 9)
1005
+ >>> ((1 + I)/(1 - I)).as_real_imag()
1006
+ (0, 1)
1007
+ >>> ((1 + 2*I)*(1 + 3*I)).as_real_imag()
1008
+ (-5, 5)
1009
+ """
1010
+ sargs = self.args
1011
+ re_part, im_part = [], []
1012
+ for term in sargs:
1013
+ re, im = term.as_real_imag(deep=deep)
1014
+ re_part.append(re)
1015
+ im_part.append(im)
1016
+ return (self.func(*re_part), self.func(*im_part))
1017
+
1018
+ def _eval_as_leading_term(self, x, logx=None, cdir=0):
1019
+ from sympy.core.symbol import Dummy, Symbol
1020
+ from sympy.series.order import Order
1021
+ from sympy.functions.elementary.exponential import log
1022
+ from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold
1023
+ from .function import expand_mul
1024
+
1025
+ o = self.getO()
1026
+ if o is None:
1027
+ o = Order(0)
1028
+ old = self.removeO()
1029
+
1030
+ if old.has(Piecewise):
1031
+ old = piecewise_fold(old)
1032
+
1033
+ # This expansion is the last part of expand_log. expand_log also calls
1034
+ # expand_mul with factor=True, which would be more expensive
1035
+ if any(isinstance(a, log) for a in self.args):
1036
+ logflags = {"deep": True, "log": True, "mul": False, "power_exp": False,
1037
+ "power_base": False, "multinomial": False, "basic": False, "force": False,
1038
+ "factor": False}
1039
+ old = old.expand(**logflags)
1040
+ expr = expand_mul(old)
1041
+
1042
+ if not expr.is_Add:
1043
+ return expr.as_leading_term(x, logx=logx, cdir=cdir)
1044
+
1045
+ infinite = [t for t in expr.args if t.is_infinite]
1046
+
1047
+ _logx = Dummy('logx') if logx is None else logx
1048
+ leading_terms = [t.as_leading_term(x, logx=_logx, cdir=cdir) for t in expr.args]
1049
+
1050
+ min, new_expr = Order(0), 0
1051
+
1052
+ try:
1053
+ for term in leading_terms:
1054
+ order = Order(term, x)
1055
+ if not min or order not in min:
1056
+ min = order
1057
+ new_expr = term
1058
+ elif min in order:
1059
+ new_expr += term
1060
+
1061
+ except TypeError:
1062
+ return expr
1063
+
1064
+ if logx is None:
1065
+ new_expr = new_expr.subs(_logx, log(x))
1066
+
1067
+ is_zero = new_expr.is_zero
1068
+ if is_zero is None:
1069
+ new_expr = new_expr.trigsimp().cancel()
1070
+ is_zero = new_expr.is_zero
1071
+ if is_zero is True:
1072
+ # simple leading term analysis gave us cancelled terms but we have to send
1073
+ # back a term, so compute the leading term (via series)
1074
+ try:
1075
+ n0 = min.getn()
1076
+ except NotImplementedError:
1077
+ n0 = S.One
1078
+ if n0.has(Symbol):
1079
+ n0 = S.One
1080
+ res = Order(1)
1081
+ incr = S.One
1082
+ while res.is_Order:
1083
+ res = old._eval_nseries(x, n=n0+incr, logx=logx, cdir=cdir).cancel().powsimp().trigsimp()
1084
+ incr *= 2
1085
+ return res.as_leading_term(x, logx=logx, cdir=cdir)
1086
+
1087
+ elif new_expr is S.NaN:
1088
+ return old.func._from_args(infinite) + o
1089
+
1090
+ else:
1091
+ return new_expr
1092
+
1093
+ def _eval_adjoint(self):
1094
+ return self.func(*[t.adjoint() for t in self.args])
1095
+
1096
+ def _eval_conjugate(self):
1097
+ return self.func(*[t.conjugate() for t in self.args])
1098
+
1099
+ def _eval_transpose(self):
1100
+ return self.func(*[t.transpose() for t in self.args])
1101
+
1102
+ def primitive(self):
1103
+ """
1104
+ Return ``(R, self/R)`` where ``R``` is the Rational GCD of ``self```.
1105
+
1106
+ ``R`` is collected only from the leading coefficient of each term.
1107
+
1108
+ Examples
1109
+ ========
1110
+
1111
+ >>> from sympy.abc import x, y
1112
+
1113
+ >>> (2*x + 4*y).primitive()
1114
+ (2, x + 2*y)
1115
+
1116
+ >>> (2*x/3 + 4*y/9).primitive()
1117
+ (2/9, 3*x + 2*y)
1118
+
1119
+ >>> (2*x/3 + 4.2*y).primitive()
1120
+ (1/3, 2*x + 12.6*y)
1121
+
1122
+ No subprocessing of term factors is performed:
1123
+
1124
+ >>> ((2 + 2*x)*x + 2).primitive()
1125
+ (1, x*(2*x + 2) + 2)
1126
+
1127
+ Recursive processing can be done with the ``as_content_primitive()``
1128
+ method:
1129
+
1130
+ >>> ((2 + 2*x)*x + 2).as_content_primitive()
1131
+ (2, x*(x + 1) + 1)
1132
+
1133
+ See also: primitive() function in polytools.py
1134
+
1135
+ """
1136
+
1137
+ terms = []
1138
+ inf = False
1139
+ for a in self.args:
1140
+ c, m = a.as_coeff_Mul()
1141
+ if not c.is_Rational:
1142
+ c = S.One
1143
+ m = a
1144
+ inf = inf or m is S.ComplexInfinity
1145
+ terms.append((c.p, c.q, m))
1146
+
1147
+ if not inf:
1148
+ ngcd = reduce(igcd, [t[0] for t in terms], 0)
1149
+ dlcm = reduce(ilcm, [t[1] for t in terms], 1)
1150
+ else:
1151
+ ngcd = reduce(igcd, [t[0] for t in terms if t[1]], 0)
1152
+ dlcm = reduce(ilcm, [t[1] for t in terms if t[1]], 1)
1153
+
1154
+ if ngcd == dlcm == 1:
1155
+ return S.One, self
1156
+ if not inf:
1157
+ for i, (p, q, term) in enumerate(terms):
1158
+ terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term)
1159
+ else:
1160
+ for i, (p, q, term) in enumerate(terms):
1161
+ if q:
1162
+ terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term)
1163
+ else:
1164
+ terms[i] = _keep_coeff(Rational(p, q), term)
1165
+
1166
+ # we don't need a complete re-flattening since no new terms will join
1167
+ # so we just use the same sort as is used in Add.flatten. When the
1168
+ # coefficient changes, the ordering of terms may change, e.g.
1169
+ # (3*x, 6*y) -> (2*y, x)
1170
+ #
1171
+ # We do need to make sure that term[0] stays in position 0, however.
1172
+ #
1173
+ if terms[0].is_Number or terms[0] is S.ComplexInfinity:
1174
+ c = terms.pop(0)
1175
+ else:
1176
+ c = None
1177
+ _addsort(terms)
1178
+ if c:
1179
+ terms.insert(0, c)
1180
+ return Rational(ngcd, dlcm), self._new_rawargs(*terms)
1181
+
1182
+ def as_content_primitive(self, radical=False, clear=True):
1183
+ """Return the tuple (R, self/R) where R is the positive Rational
1184
+ extracted from self. If radical is True (default is False) then
1185
+ common radicals will be removed and included as a factor of the
1186
+ primitive expression.
1187
+
1188
+ Examples
1189
+ ========
1190
+
1191
+ >>> from sympy import sqrt
1192
+ >>> (3 + 3*sqrt(2)).as_content_primitive()
1193
+ (3, 1 + sqrt(2))
1194
+
1195
+ Radical content can also be factored out of the primitive:
1196
+
1197
+ >>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True)
1198
+ (2, sqrt(2)*(1 + 2*sqrt(5)))
1199
+
1200
+ See docstring of Expr.as_content_primitive for more examples.
1201
+ """
1202
+ con, prim = self.func(*[_keep_coeff(*a.as_content_primitive(
1203
+ radical=radical, clear=clear)) for a in self.args]).primitive()
1204
+ if not clear and not con.is_Integer and prim.is_Add:
1205
+ con, d = con.as_numer_denom()
1206
+ _p = prim/d
1207
+ if any(a.as_coeff_Mul()[0].is_Integer for a in _p.args):
1208
+ prim = _p
1209
+ else:
1210
+ con /= d
1211
+ if radical and prim.is_Add:
1212
+ # look for common radicals that can be removed
1213
+ args = prim.args
1214
+ rads = []
1215
+ common_q = None
1216
+ for m in args:
1217
+ term_rads = defaultdict(list)
1218
+ for ai in Mul.make_args(m):
1219
+ if ai.is_Pow:
1220
+ b, e = ai.as_base_exp()
1221
+ if e.is_Rational and b.is_Integer:
1222
+ term_rads[e.q].append(abs(int(b))**e.p)
1223
+ if not term_rads:
1224
+ break
1225
+ if common_q is None:
1226
+ common_q = set(term_rads.keys())
1227
+ else:
1228
+ common_q = common_q & set(term_rads.keys())
1229
+ if not common_q:
1230
+ break
1231
+ rads.append(term_rads)
1232
+ else:
1233
+ # process rads
1234
+ # keep only those in common_q
1235
+ for r in rads:
1236
+ for q in list(r.keys()):
1237
+ if q not in common_q:
1238
+ r.pop(q)
1239
+ for q in r:
1240
+ r[q] = Mul(*r[q])
1241
+ # find the gcd of bases for each q
1242
+ G = []
1243
+ for q in common_q:
1244
+ g = reduce(igcd, [r[q] for r in rads], 0)
1245
+ if g != 1:
1246
+ G.append(g**Rational(1, q))
1247
+ if G:
1248
+ G = Mul(*G)
1249
+ args = [ai/G for ai in args]
1250
+ prim = G*prim.func(*args)
1251
+
1252
+ return con, prim
1253
+
1254
+ @property
1255
+ def _sorted_args(self):
1256
+ from .sorting import default_sort_key
1257
+ return tuple(sorted(self.args, key=default_sort_key))
1258
+
1259
+ def _eval_difference_delta(self, n, step):
1260
+ from sympy.series.limitseq import difference_delta as dd
1261
+ return self.func(*[dd(a, n, step) for a in self.args])
1262
+
1263
+ @property
1264
+ def _mpc_(self):
1265
+ """
1266
+ Convert self to an mpmath mpc if possible
1267
+ """
1268
+ from .numbers import Float
1269
+ re_part, rest = self.as_coeff_Add()
1270
+ im_part, imag_unit = rest.as_coeff_Mul()
1271
+ if not imag_unit == S.ImaginaryUnit:
1272
+ # ValueError may seem more reasonable but since it's a @property,
1273
+ # we need to use AttributeError to keep from confusing things like
1274
+ # hasattr.
1275
+ raise AttributeError("Cannot convert Add to mpc. Must be of the form Number + Number*I")
1276
+
1277
+ return (Float(re_part)._mpf_, Float(im_part)._mpf_)
1278
+
1279
+ def __neg__(self):
1280
+ if not global_parameters.distribute:
1281
+ return super().__neg__()
1282
+ return Mul(S.NegativeOne, self)
1283
+
1284
+ add = AssocOpDispatcher('add')
1285
+
1286
+ from .mul import Mul, _keep_coeff, _unevaluated_Mul
1287
+ from .numbers import Rational
llmeval-env/lib/python3.10/site-packages/sympy/core/alphabets.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ greeks = ('alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta',
2
+ 'eta', 'theta', 'iota', 'kappa', 'lambda', 'mu', 'nu',
3
+ 'xi', 'omicron', 'pi', 'rho', 'sigma', 'tau', 'upsilon',
4
+ 'phi', 'chi', 'psi', 'omega')
llmeval-env/lib/python3.10/site-packages/sympy/core/backend.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ USE_SYMENGINE = os.getenv('USE_SYMENGINE', '0')
3
+ USE_SYMENGINE = USE_SYMENGINE.lower() in ('1', 't', 'true') # type: ignore
4
+
5
+ if USE_SYMENGINE:
6
+ from symengine import (Symbol, Integer, sympify, S,
7
+ SympifyError, exp, log, gamma, sqrt, I, E, pi, Matrix,
8
+ sin, cos, tan, cot, csc, sec, asin, acos, atan, acot, acsc, asec,
9
+ sinh, cosh, tanh, coth, asinh, acosh, atanh, acoth,
10
+ lambdify, symarray, diff, zeros, eye, diag, ones,
11
+ expand, Function, symbols, var, Add, Mul, Derivative,
12
+ ImmutableMatrix, MatrixBase, Rational, Basic)
13
+ from symengine.lib.symengine_wrapper import gcd as igcd
14
+ from symengine import AppliedUndef
15
+ else:
16
+ from sympy.core.add import Add
17
+ from sympy.core.basic import Basic
18
+ from sympy.core.function import (diff, Function, AppliedUndef,
19
+ expand, Derivative)
20
+ from sympy.core.mul import Mul
21
+ from sympy.core.numbers import igcd, pi, I, Integer, Rational, E
22
+ from sympy.core.singleton import S
23
+ from sympy.core.symbol import Symbol, var, symbols
24
+ from sympy.core.sympify import SympifyError, sympify
25
+ from sympy.functions.elementary.exponential import log, exp
26
+ from sympy.functions.elementary.hyperbolic import (coth, sinh,
27
+ acosh, acoth, tanh, asinh, atanh, cosh)
28
+ from sympy.functions.elementary.miscellaneous import sqrt
29
+ from sympy.functions.elementary.trigonometric import (csc,
30
+ asec, cos, atan, sec, acot, asin, tan, sin, cot, acsc, acos)
31
+ from sympy.functions.special.gamma_functions import gamma
32
+ from sympy.matrices.dense import (eye, zeros, diag, Matrix,
33
+ ones, symarray)
34
+ from sympy.matrices.immutable import ImmutableMatrix
35
+ from sympy.matrices.matrices import MatrixBase
36
+ from sympy.utilities.lambdify import lambdify
37
+
38
+
39
+ #
40
+ # XXX: Handling of immutable and mutable matrices in SymEngine is inconsistent
41
+ # with SymPy's matrix classes in at least SymEngine version 0.7.0. Until that
42
+ # is fixed the function below is needed for consistent behaviour when
43
+ # attempting to simplify a matrix.
44
+ #
45
+ # Expected behaviour of a SymPy mutable/immutable matrix .simplify() method:
46
+ #
47
+ # Matrix.simplify() : works in place, returns None
48
+ # ImmutableMatrix.simplify() : returns a simplified copy
49
+ #
50
+ # In SymEngine both mutable and immutable matrices simplify in place and return
51
+ # None. This is inconsistent with the matrix being "immutable" and also the
52
+ # returned None leads to problems in the mechanics module.
53
+ #
54
+ # The simplify function should not be used because simplify(M) sympifies the
55
+ # matrix M and the SymEngine matrices all sympify to SymPy matrices. If we want
56
+ # to work with SymEngine matrices then we need to use their .simplify() method
57
+ # but that method does not work correctly with immutable matrices.
58
+ #
59
+ # The _simplify_matrix function can be removed when the SymEngine bug is fixed.
60
+ # Since this should be a temporary problem we do not make this function part of
61
+ # the public API.
62
+ #
63
+ # SymEngine issue: https://github.com/symengine/symengine.py/issues/363
64
+ #
65
+
66
+ def _simplify_matrix(M):
67
+ """Return a simplified copy of the matrix M"""
68
+ assert isinstance(M, (Matrix, ImmutableMatrix))
69
+ Mnew = M.as_mutable() # makes a copy if mutable
70
+ Mnew.simplify()
71
+ if isinstance(M, ImmutableMatrix):
72
+ Mnew = Mnew.as_immutable()
73
+ return Mnew
74
+
75
+
76
+ __all__ = [
77
+ 'Symbol', 'Integer', 'sympify', 'S', 'SympifyError', 'exp', 'log',
78
+ 'gamma', 'sqrt', 'I', 'E', 'pi', 'Matrix', 'sin', 'cos', 'tan', 'cot',
79
+ 'csc', 'sec', 'asin', 'acos', 'atan', 'acot', 'acsc', 'asec', 'sinh',
80
+ 'cosh', 'tanh', 'coth', 'asinh', 'acosh', 'atanh', 'acoth', 'lambdify',
81
+ 'symarray', 'diff', 'zeros', 'eye', 'diag', 'ones', 'expand', 'Function',
82
+ 'symbols', 'var', 'Add', 'Mul', 'Derivative', 'ImmutableMatrix',
83
+ 'MatrixBase', 'Rational', 'Basic', 'igcd', 'AppliedUndef',
84
+ ]
llmeval-env/lib/python3.10/site-packages/sympy/core/cache.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Caching facility for SymPy """
2
+ from importlib import import_module
3
+ from typing import Callable
4
+
5
+ class _cache(list):
6
+ """ List of cached functions """
7
+
8
+ def print_cache(self):
9
+ """print cache info"""
10
+
11
+ for item in self:
12
+ name = item.__name__
13
+ myfunc = item
14
+ while hasattr(myfunc, '__wrapped__'):
15
+ if hasattr(myfunc, 'cache_info'):
16
+ info = myfunc.cache_info()
17
+ break
18
+ else:
19
+ myfunc = myfunc.__wrapped__
20
+ else:
21
+ info = None
22
+
23
+ print(name, info)
24
+
25
+ def clear_cache(self):
26
+ """clear cache content"""
27
+ for item in self:
28
+ myfunc = item
29
+ while hasattr(myfunc, '__wrapped__'):
30
+ if hasattr(myfunc, 'cache_clear'):
31
+ myfunc.cache_clear()
32
+ break
33
+ else:
34
+ myfunc = myfunc.__wrapped__
35
+
36
+
37
+ # global cache registry:
38
+ CACHE = _cache()
39
+ # make clear and print methods available
40
+ print_cache = CACHE.print_cache
41
+ clear_cache = CACHE.clear_cache
42
+
43
+ from functools import lru_cache, wraps
44
+
45
+ def __cacheit(maxsize):
46
+ """caching decorator.
47
+
48
+ important: the result of cached function must be *immutable*
49
+
50
+
51
+ Examples
52
+ ========
53
+
54
+ >>> from sympy import cacheit
55
+ >>> @cacheit
56
+ ... def f(a, b):
57
+ ... return a+b
58
+
59
+ >>> @cacheit
60
+ ... def f(a, b): # noqa: F811
61
+ ... return [a, b] # <-- WRONG, returns mutable object
62
+
63
+ to force cacheit to check returned results mutability and consistency,
64
+ set environment variable SYMPY_USE_CACHE to 'debug'
65
+ """
66
+ def func_wrapper(func):
67
+ cfunc = lru_cache(maxsize, typed=True)(func)
68
+
69
+ @wraps(func)
70
+ def wrapper(*args, **kwargs):
71
+ try:
72
+ retval = cfunc(*args, **kwargs)
73
+ except TypeError as e:
74
+ if not e.args or not e.args[0].startswith('unhashable type:'):
75
+ raise
76
+ retval = func(*args, **kwargs)
77
+ return retval
78
+
79
+ wrapper.cache_info = cfunc.cache_info
80
+ wrapper.cache_clear = cfunc.cache_clear
81
+
82
+ CACHE.append(wrapper)
83
+ return wrapper
84
+
85
+ return func_wrapper
86
+ ########################################
87
+
88
+
89
+ def __cacheit_nocache(func):
90
+ return func
91
+
92
+
93
+ def __cacheit_debug(maxsize):
94
+ """cacheit + code to check cache consistency"""
95
+ def func_wrapper(func):
96
+ cfunc = __cacheit(maxsize)(func)
97
+
98
+ @wraps(func)
99
+ def wrapper(*args, **kw_args):
100
+ # always call function itself and compare it with cached version
101
+ r1 = func(*args, **kw_args)
102
+ r2 = cfunc(*args, **kw_args)
103
+
104
+ # try to see if the result is immutable
105
+ #
106
+ # this works because:
107
+ #
108
+ # hash([1,2,3]) -> raise TypeError
109
+ # hash({'a':1, 'b':2}) -> raise TypeError
110
+ # hash((1,[2,3])) -> raise TypeError
111
+ #
112
+ # hash((1,2,3)) -> just computes the hash
113
+ hash(r1), hash(r2)
114
+
115
+ # also see if returned values are the same
116
+ if r1 != r2:
117
+ raise RuntimeError("Returned values are not the same")
118
+ return r1
119
+ return wrapper
120
+ return func_wrapper
121
+
122
+
123
+ def _getenv(key, default=None):
124
+ from os import getenv
125
+ return getenv(key, default)
126
+
127
+ # SYMPY_USE_CACHE=yes/no/debug
128
+ USE_CACHE = _getenv('SYMPY_USE_CACHE', 'yes').lower()
129
+ # SYMPY_CACHE_SIZE=some_integer/None
130
+ # special cases :
131
+ # SYMPY_CACHE_SIZE=0 -> No caching
132
+ # SYMPY_CACHE_SIZE=None -> Unbounded caching
133
+ scs = _getenv('SYMPY_CACHE_SIZE', '1000')
134
+ if scs.lower() == 'none':
135
+ SYMPY_CACHE_SIZE = None
136
+ else:
137
+ try:
138
+ SYMPY_CACHE_SIZE = int(scs)
139
+ except ValueError:
140
+ raise RuntimeError(
141
+ 'SYMPY_CACHE_SIZE must be a valid integer or None. ' + \
142
+ 'Got: %s' % SYMPY_CACHE_SIZE)
143
+
144
+ if USE_CACHE == 'no':
145
+ cacheit = __cacheit_nocache
146
+ elif USE_CACHE == 'yes':
147
+ cacheit = __cacheit(SYMPY_CACHE_SIZE)
148
+ elif USE_CACHE == 'debug':
149
+ cacheit = __cacheit_debug(SYMPY_CACHE_SIZE) # a lot slower
150
+ else:
151
+ raise RuntimeError(
152
+ 'unrecognized value for SYMPY_USE_CACHE: %s' % USE_CACHE)
153
+
154
+
155
+ def cached_property(func):
156
+ '''Decorator to cache property method'''
157
+ attrname = '__' + func.__name__
158
+ _cached_property_sentinel = object()
159
+ def propfunc(self):
160
+ val = getattr(self, attrname, _cached_property_sentinel)
161
+ if val is _cached_property_sentinel:
162
+ val = func(self)
163
+ setattr(self, attrname, val)
164
+ return val
165
+ return property(propfunc)
166
+
167
+
168
+ def lazy_function(module : str, name : str) -> Callable:
169
+ """Create a lazy proxy for a function in a module.
170
+
171
+ The module containing the function is not imported until the function is used.
172
+
173
+ """
174
+ func = None
175
+
176
+ def _get_function():
177
+ nonlocal func
178
+ if func is None:
179
+ func = getattr(import_module(module), name)
180
+ return func
181
+
182
+ # The metaclass is needed so that help() shows the docstring
183
+ class LazyFunctionMeta(type):
184
+ @property
185
+ def __doc__(self):
186
+ docstring = _get_function().__doc__
187
+ docstring += f"\n\nNote: this is a {self.__class__.__name__} wrapper of '{module}.{name}'"
188
+ return docstring
189
+
190
+ class LazyFunction(metaclass=LazyFunctionMeta):
191
+ def __call__(self, *args, **kwargs):
192
+ # inline get of function for performance gh-23832
193
+ nonlocal func
194
+ if func is None:
195
+ func = getattr(import_module(module), name)
196
+ return func(*args, **kwargs)
197
+
198
+ @property
199
+ def __doc__(self):
200
+ docstring = _get_function().__doc__
201
+ docstring += f"\n\nNote: this is a {self.__class__.__name__} wrapper of '{module}.{name}'"
202
+ return docstring
203
+
204
+ def __str__(self):
205
+ return _get_function().__str__()
206
+
207
+ def __repr__(self):
208
+ return f"<{__class__.__name__} object at 0x{id(self):x}>: wrapping '{module}.{name}'"
209
+
210
+ return LazyFunction()
llmeval-env/lib/python3.10/site-packages/sympy/core/compatibility.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ .. deprecated:: 1.10
3
+
4
+ ``sympy.core.compatibility`` is deprecated. See
5
+ :ref:`sympy-core-compatibility`.
6
+
7
+ Reimplementations of constructs introduced in later versions of Python than
8
+ we support. Also some functions that are needed SymPy-wide and are located
9
+ here for easy import.
10
+
11
+ """
12
+
13
+
14
+ from sympy.utilities.exceptions import sympy_deprecation_warning
15
+
16
+ sympy_deprecation_warning("""
17
+ The sympy.core.compatibility submodule is deprecated.
18
+
19
+ This module was only ever intended for internal use. Some of the functions
20
+ that were in this module are available from the top-level SymPy namespace,
21
+ i.e.,
22
+
23
+ from sympy import ordered, default_sort_key
24
+
25
+ The remaining were only intended for internal SymPy use and should not be used
26
+ by user code.
27
+ """,
28
+ deprecated_since_version="1.10",
29
+ active_deprecations_target="deprecated-sympy-core-compatibility",
30
+ )
31
+
32
+
33
+ from .sorting import ordered, _nodes, default_sort_key # noqa:F401
34
+ from sympy.utilities.misc import as_int as _as_int # noqa:F401
35
+ from sympy.utilities.iterables import iterable, is_sequence, NotIterable # noqa:F401
llmeval-env/lib/python3.10/site-packages/sympy/core/containers.py ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Module for SymPy containers
2
+
3
+ (SymPy objects that store other SymPy objects)
4
+
5
+ The containers implemented in this module are subclassed to Basic.
6
+ They are supposed to work seamlessly within the SymPy framework.
7
+ """
8
+
9
+ from collections import OrderedDict
10
+ from collections.abc import MutableSet
11
+ from typing import Any, Callable
12
+
13
+ from .basic import Basic
14
+ from .sorting import default_sort_key, ordered
15
+ from .sympify import _sympify, sympify, _sympy_converter, SympifyError
16
+ from sympy.core.kind import Kind
17
+ from sympy.utilities.iterables import iterable
18
+ from sympy.utilities.misc import as_int
19
+
20
+
21
+ class Tuple(Basic):
22
+ """
23
+ Wrapper around the builtin tuple object.
24
+
25
+ Explanation
26
+ ===========
27
+
28
+ The Tuple is a subclass of Basic, so that it works well in the
29
+ SymPy framework. The wrapped tuple is available as self.args, but
30
+ you can also access elements or slices with [:] syntax.
31
+
32
+ Parameters
33
+ ==========
34
+
35
+ sympify : bool
36
+ If ``False``, ``sympify`` is not called on ``args``. This
37
+ can be used for speedups for very large tuples where the
38
+ elements are known to already be SymPy objects.
39
+
40
+ Examples
41
+ ========
42
+
43
+ >>> from sympy import Tuple, symbols
44
+ >>> a, b, c, d = symbols('a b c d')
45
+ >>> Tuple(a, b, c)[1:]
46
+ (b, c)
47
+ >>> Tuple(a, b, c).subs(a, d)
48
+ (d, b, c)
49
+
50
+ """
51
+
52
+ def __new__(cls, *args, **kwargs):
53
+ if kwargs.get('sympify', True):
54
+ args = (sympify(arg) for arg in args)
55
+ obj = Basic.__new__(cls, *args)
56
+ return obj
57
+
58
+ def __getitem__(self, i):
59
+ if isinstance(i, slice):
60
+ indices = i.indices(len(self))
61
+ return Tuple(*(self.args[j] for j in range(*indices)))
62
+ return self.args[i]
63
+
64
+ def __len__(self):
65
+ return len(self.args)
66
+
67
+ def __contains__(self, item):
68
+ return item in self.args
69
+
70
+ def __iter__(self):
71
+ return iter(self.args)
72
+
73
+ def __add__(self, other):
74
+ if isinstance(other, Tuple):
75
+ return Tuple(*(self.args + other.args))
76
+ elif isinstance(other, tuple):
77
+ return Tuple(*(self.args + other))
78
+ else:
79
+ return NotImplemented
80
+
81
+ def __radd__(self, other):
82
+ if isinstance(other, Tuple):
83
+ return Tuple(*(other.args + self.args))
84
+ elif isinstance(other, tuple):
85
+ return Tuple(*(other + self.args))
86
+ else:
87
+ return NotImplemented
88
+
89
+ def __mul__(self, other):
90
+ try:
91
+ n = as_int(other)
92
+ except ValueError:
93
+ raise TypeError("Can't multiply sequence by non-integer of type '%s'" % type(other))
94
+ return self.func(*(self.args*n))
95
+
96
+ __rmul__ = __mul__
97
+
98
+ def __eq__(self, other):
99
+ if isinstance(other, Basic):
100
+ return super().__eq__(other)
101
+ return self.args == other
102
+
103
+ def __ne__(self, other):
104
+ if isinstance(other, Basic):
105
+ return super().__ne__(other)
106
+ return self.args != other
107
+
108
+ def __hash__(self):
109
+ return hash(self.args)
110
+
111
+ def _to_mpmath(self, prec):
112
+ return tuple(a._to_mpmath(prec) for a in self.args)
113
+
114
+ def __lt__(self, other):
115
+ return _sympify(self.args < other.args)
116
+
117
+ def __le__(self, other):
118
+ return _sympify(self.args <= other.args)
119
+
120
+ # XXX: Basic defines count() as something different, so we can't
121
+ # redefine it here. Originally this lead to cse() test failure.
122
+ def tuple_count(self, value) -> int:
123
+ """Return number of occurrences of value."""
124
+ return self.args.count(value)
125
+
126
+ def index(self, value, start=None, stop=None):
127
+ """Searches and returns the first index of the value."""
128
+ # XXX: One would expect:
129
+ #
130
+ # return self.args.index(value, start, stop)
131
+ #
132
+ # here. Any trouble with that? Yes:
133
+ #
134
+ # >>> (1,).index(1, None, None)
135
+ # Traceback (most recent call last):
136
+ # File "<stdin>", line 1, in <module>
137
+ # TypeError: slice indices must be integers or None or have an __index__ method
138
+ #
139
+ # See: http://bugs.python.org/issue13340
140
+
141
+ if start is None and stop is None:
142
+ return self.args.index(value)
143
+ elif stop is None:
144
+ return self.args.index(value, start)
145
+ else:
146
+ return self.args.index(value, start, stop)
147
+
148
+ @property
149
+ def kind(self):
150
+ """
151
+ The kind of a Tuple instance.
152
+
153
+ The kind of a Tuple is always of :class:`TupleKind` but
154
+ parametrised by the number of elements and the kind of each element.
155
+
156
+ Examples
157
+ ========
158
+
159
+ >>> from sympy import Tuple, Matrix
160
+ >>> Tuple(1, 2).kind
161
+ TupleKind(NumberKind, NumberKind)
162
+ >>> Tuple(Matrix([1, 2]), 1).kind
163
+ TupleKind(MatrixKind(NumberKind), NumberKind)
164
+ >>> Tuple(1, 2).kind.element_kind
165
+ (NumberKind, NumberKind)
166
+
167
+ See Also
168
+ ========
169
+
170
+ sympy.matrices.common.MatrixKind
171
+ sympy.core.kind.NumberKind
172
+ """
173
+ return TupleKind(*(i.kind for i in self.args))
174
+
175
+ _sympy_converter[tuple] = lambda tup: Tuple(*tup)
176
+
177
+
178
+
179
+
180
+
181
+ def tuple_wrapper(method):
182
+ """
183
+ Decorator that converts any tuple in the function arguments into a Tuple.
184
+
185
+ Explanation
186
+ ===========
187
+
188
+ The motivation for this is to provide simple user interfaces. The user can
189
+ call a function with regular tuples in the argument, and the wrapper will
190
+ convert them to Tuples before handing them to the function.
191
+
192
+ Explanation
193
+ ===========
194
+
195
+ >>> from sympy.core.containers import tuple_wrapper
196
+ >>> def f(*args):
197
+ ... return args
198
+ >>> g = tuple_wrapper(f)
199
+
200
+ The decorated function g sees only the Tuple argument:
201
+
202
+ >>> g(0, (1, 2), 3)
203
+ (0, (1, 2), 3)
204
+
205
+ """
206
+ def wrap_tuples(*args, **kw_args):
207
+ newargs = []
208
+ for arg in args:
209
+ if isinstance(arg, tuple):
210
+ newargs.append(Tuple(*arg))
211
+ else:
212
+ newargs.append(arg)
213
+ return method(*newargs, **kw_args)
214
+ return wrap_tuples
215
+
216
+
217
+ class Dict(Basic):
218
+ """
219
+ Wrapper around the builtin dict object.
220
+
221
+ Explanation
222
+ ===========
223
+
224
+ The Dict is a subclass of Basic, so that it works well in the
225
+ SymPy framework. Because it is immutable, it may be included
226
+ in sets, but its values must all be given at instantiation and
227
+ cannot be changed afterwards. Otherwise it behaves identically
228
+ to the Python dict.
229
+
230
+ Examples
231
+ ========
232
+
233
+ >>> from sympy import Dict, Symbol
234
+
235
+ >>> D = Dict({1: 'one', 2: 'two'})
236
+ >>> for key in D:
237
+ ... if key == 1:
238
+ ... print('%s %s' % (key, D[key]))
239
+ 1 one
240
+
241
+ The args are sympified so the 1 and 2 are Integers and the values
242
+ are Symbols. Queries automatically sympify args so the following work:
243
+
244
+ >>> 1 in D
245
+ True
246
+ >>> D.has(Symbol('one')) # searches keys and values
247
+ True
248
+ >>> 'one' in D # not in the keys
249
+ False
250
+ >>> D[1]
251
+ one
252
+
253
+ """
254
+
255
+ def __new__(cls, *args):
256
+ if len(args) == 1 and isinstance(args[0], (dict, Dict)):
257
+ items = [Tuple(k, v) for k, v in args[0].items()]
258
+ elif iterable(args) and all(len(arg) == 2 for arg in args):
259
+ items = [Tuple(k, v) for k, v in args]
260
+ else:
261
+ raise TypeError('Pass Dict args as Dict((k1, v1), ...) or Dict({k1: v1, ...})')
262
+ elements = frozenset(items)
263
+ obj = Basic.__new__(cls, *ordered(items))
264
+ obj.elements = elements
265
+ obj._dict = dict(items) # In case Tuple decides it wants to sympify
266
+ return obj
267
+
268
+ def __getitem__(self, key):
269
+ """x.__getitem__(y) <==> x[y]"""
270
+ try:
271
+ key = _sympify(key)
272
+ except SympifyError:
273
+ raise KeyError(key)
274
+
275
+ return self._dict[key]
276
+
277
+ def __setitem__(self, key, value):
278
+ raise NotImplementedError("SymPy Dicts are Immutable")
279
+
280
+ def items(self):
281
+ '''Returns a set-like object providing a view on dict's items.
282
+ '''
283
+ return self._dict.items()
284
+
285
+ def keys(self):
286
+ '''Returns the list of the dict's keys.'''
287
+ return self._dict.keys()
288
+
289
+ def values(self):
290
+ '''Returns the list of the dict's values.'''
291
+ return self._dict.values()
292
+
293
+ def __iter__(self):
294
+ '''x.__iter__() <==> iter(x)'''
295
+ return iter(self._dict)
296
+
297
+ def __len__(self):
298
+ '''x.__len__() <==> len(x)'''
299
+ return self._dict.__len__()
300
+
301
+ def get(self, key, default=None):
302
+ '''Returns the value for key if the key is in the dictionary.'''
303
+ try:
304
+ key = _sympify(key)
305
+ except SympifyError:
306
+ return default
307
+ return self._dict.get(key, default)
308
+
309
+ def __contains__(self, key):
310
+ '''D.__contains__(k) -> True if D has a key k, else False'''
311
+ try:
312
+ key = _sympify(key)
313
+ except SympifyError:
314
+ return False
315
+ return key in self._dict
316
+
317
+ def __lt__(self, other):
318
+ return _sympify(self.args < other.args)
319
+
320
+ @property
321
+ def _sorted_args(self):
322
+ return tuple(sorted(self.args, key=default_sort_key))
323
+
324
+ def __eq__(self, other):
325
+ if isinstance(other, dict):
326
+ return self == Dict(other)
327
+ return super().__eq__(other)
328
+
329
+ __hash__ : Callable[[Basic], Any] = Basic.__hash__
330
+
331
+ # this handles dict, defaultdict, OrderedDict
332
+ _sympy_converter[dict] = lambda d: Dict(*d.items())
333
+
334
+ class OrderedSet(MutableSet):
335
+ def __init__(self, iterable=None):
336
+ if iterable:
337
+ self.map = OrderedDict((item, None) for item in iterable)
338
+ else:
339
+ self.map = OrderedDict()
340
+
341
+ def __len__(self):
342
+ return len(self.map)
343
+
344
+ def __contains__(self, key):
345
+ return key in self.map
346
+
347
+ def add(self, key):
348
+ self.map[key] = None
349
+
350
+ def discard(self, key):
351
+ self.map.pop(key)
352
+
353
+ def pop(self, last=True):
354
+ return self.map.popitem(last=last)[0]
355
+
356
+ def __iter__(self):
357
+ yield from self.map.keys()
358
+
359
+ def __repr__(self):
360
+ if not self.map:
361
+ return '%s()' % (self.__class__.__name__,)
362
+ return '%s(%r)' % (self.__class__.__name__, list(self.map.keys()))
363
+
364
+ def intersection(self, other):
365
+ return self.__class__([val for val in self if val in other])
366
+
367
+ def difference(self, other):
368
+ return self.__class__([val for val in self if val not in other])
369
+
370
+ def update(self, iterable):
371
+ for val in iterable:
372
+ self.add(val)
373
+
374
+ class TupleKind(Kind):
375
+ """
376
+ TupleKind is a subclass of Kind, which is used to define Kind of ``Tuple``.
377
+
378
+ Parameters of TupleKind will be kinds of all the arguments in Tuples, for
379
+ example
380
+
381
+ Parameters
382
+ ==========
383
+
384
+ args : tuple(element_kind)
385
+ element_kind is kind of element.
386
+ args is tuple of kinds of element
387
+
388
+ Examples
389
+ ========
390
+
391
+ >>> from sympy import Tuple
392
+ >>> Tuple(1, 2).kind
393
+ TupleKind(NumberKind, NumberKind)
394
+ >>> Tuple(1, 2).kind.element_kind
395
+ (NumberKind, NumberKind)
396
+
397
+ See Also
398
+ ========
399
+
400
+ sympy.core.kind.NumberKind
401
+ MatrixKind
402
+ sympy.sets.sets.SetKind
403
+ """
404
+ def __new__(cls, *args):
405
+ obj = super().__new__(cls, *args)
406
+ obj.element_kind = args
407
+ return obj
408
+
409
+ def __repr__(self):
410
+ return "TupleKind{}".format(self.element_kind)
llmeval-env/lib/python3.10/site-packages/sympy/core/core.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ The core's core. """
2
+ from __future__ import annotations
3
+
4
+
5
+ # used for canonical ordering of symbolic sequences
6
+ # via __cmp__ method:
7
+ # FIXME this is *so* irrelevant and outdated!
8
+ ordering_of_classes = [
9
+ # singleton numbers
10
+ 'Zero', 'One', 'Half', 'Infinity', 'NaN', 'NegativeOne', 'NegativeInfinity',
11
+ # numbers
12
+ 'Integer', 'Rational', 'Float',
13
+ # singleton symbols
14
+ 'Exp1', 'Pi', 'ImaginaryUnit',
15
+ # symbols
16
+ 'Symbol', 'Wild', 'Temporary',
17
+ # arithmetic operations
18
+ 'Pow', 'Mul', 'Add',
19
+ # function values
20
+ 'Derivative', 'Integral',
21
+ # defined singleton functions
22
+ 'Abs', 'Sign', 'Sqrt',
23
+ 'Floor', 'Ceiling',
24
+ 'Re', 'Im', 'Arg',
25
+ 'Conjugate',
26
+ 'Exp', 'Log',
27
+ 'Sin', 'Cos', 'Tan', 'Cot', 'ASin', 'ACos', 'ATan', 'ACot',
28
+ 'Sinh', 'Cosh', 'Tanh', 'Coth', 'ASinh', 'ACosh', 'ATanh', 'ACoth',
29
+ 'RisingFactorial', 'FallingFactorial',
30
+ 'factorial', 'binomial',
31
+ 'Gamma', 'LowerGamma', 'UpperGamma', 'PolyGamma',
32
+ 'Erf',
33
+ # special polynomials
34
+ 'Chebyshev', 'Chebyshev2',
35
+ # undefined functions
36
+ 'Function', 'WildFunction',
37
+ # anonymous functions
38
+ 'Lambda',
39
+ # Landau O symbol
40
+ 'Order',
41
+ # relational operations
42
+ 'Equality', 'Unequality', 'StrictGreaterThan', 'StrictLessThan',
43
+ 'GreaterThan', 'LessThan',
44
+ ]
45
+
46
+
47
+ class Registry:
48
+ """
49
+ Base class for registry objects.
50
+
51
+ Registries map a name to an object using attribute notation. Registry
52
+ classes behave singletonically: all their instances share the same state,
53
+ which is stored in the class object.
54
+
55
+ All subclasses should set `__slots__ = ()`.
56
+ """
57
+ __slots__ = ()
58
+
59
+ def __setattr__(self, name, obj):
60
+ setattr(self.__class__, name, obj)
61
+
62
+ def __delattr__(self, name):
63
+ delattr(self.__class__, name)
llmeval-env/lib/python3.10/site-packages/sympy/core/coreerrors.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ """Definitions of common exceptions for :mod:`sympy.core` module. """
2
+
3
+
4
+ class BaseCoreError(Exception):
5
+ """Base class for core related exceptions. """
6
+
7
+
8
+ class NonCommutativeExpression(BaseCoreError):
9
+ """Raised when expression didn't have commutative property. """
llmeval-env/lib/python3.10/site-packages/sympy/core/decorators.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ SymPy core decorators.
3
+
4
+ The purpose of this module is to expose decorators without any other
5
+ dependencies, so that they can be easily imported anywhere in sympy/core.
6
+ """
7
+
8
+ from functools import wraps
9
+ from .sympify import SympifyError, sympify
10
+
11
+
12
+ def _sympifyit(arg, retval=None):
13
+ """
14
+ decorator to smartly _sympify function arguments
15
+
16
+ Explanation
17
+ ===========
18
+
19
+ @_sympifyit('other', NotImplemented)
20
+ def add(self, other):
21
+ ...
22
+
23
+ In add, other can be thought of as already being a SymPy object.
24
+
25
+ If it is not, the code is likely to catch an exception, then other will
26
+ be explicitly _sympified, and the whole code restarted.
27
+
28
+ if _sympify(arg) fails, NotImplemented will be returned
29
+
30
+ See also
31
+ ========
32
+
33
+ __sympifyit
34
+ """
35
+ def deco(func):
36
+ return __sympifyit(func, arg, retval)
37
+
38
+ return deco
39
+
40
+
41
+ def __sympifyit(func, arg, retval=None):
42
+ """Decorator to _sympify `arg` argument for function `func`.
43
+
44
+ Do not use directly -- use _sympifyit instead.
45
+ """
46
+
47
+ # we support f(a,b) only
48
+ if not func.__code__.co_argcount:
49
+ raise LookupError("func not found")
50
+ # only b is _sympified
51
+ assert func.__code__.co_varnames[1] == arg
52
+ if retval is None:
53
+ @wraps(func)
54
+ def __sympifyit_wrapper(a, b):
55
+ return func(a, sympify(b, strict=True))
56
+
57
+ else:
58
+ @wraps(func)
59
+ def __sympifyit_wrapper(a, b):
60
+ try:
61
+ # If an external class has _op_priority, it knows how to deal
62
+ # with SymPy objects. Otherwise, it must be converted.
63
+ if not hasattr(b, '_op_priority'):
64
+ b = sympify(b, strict=True)
65
+ return func(a, b)
66
+ except SympifyError:
67
+ return retval
68
+
69
+ return __sympifyit_wrapper
70
+
71
+
72
+ def call_highest_priority(method_name):
73
+ """A decorator for binary special methods to handle _op_priority.
74
+
75
+ Explanation
76
+ ===========
77
+
78
+ Binary special methods in Expr and its subclasses use a special attribute
79
+ '_op_priority' to determine whose special method will be called to
80
+ handle the operation. In general, the object having the highest value of
81
+ '_op_priority' will handle the operation. Expr and subclasses that define
82
+ custom binary special methods (__mul__, etc.) should decorate those
83
+ methods with this decorator to add the priority logic.
84
+
85
+ The ``method_name`` argument is the name of the method of the other class
86
+ that will be called. Use this decorator in the following manner::
87
+
88
+ # Call other.__rmul__ if other._op_priority > self._op_priority
89
+ @call_highest_priority('__rmul__')
90
+ def __mul__(self, other):
91
+ ...
92
+
93
+ # Call other.__mul__ if other._op_priority > self._op_priority
94
+ @call_highest_priority('__mul__')
95
+ def __rmul__(self, other):
96
+ ...
97
+ """
98
+ def priority_decorator(func):
99
+ @wraps(func)
100
+ def binary_op_wrapper(self, other):
101
+ if hasattr(other, '_op_priority'):
102
+ if other._op_priority > self._op_priority:
103
+ f = getattr(other, method_name, None)
104
+ if f is not None:
105
+ return f(self)
106
+ return func(self, other)
107
+ return binary_op_wrapper
108
+ return priority_decorator
109
+
110
+
111
+ def sympify_method_args(cls):
112
+ '''Decorator for a class with methods that sympify arguments.
113
+
114
+ Explanation
115
+ ===========
116
+
117
+ The sympify_method_args decorator is to be used with the sympify_return
118
+ decorator for automatic sympification of method arguments. This is
119
+ intended for the common idiom of writing a class like :
120
+
121
+ Examples
122
+ ========
123
+
124
+ >>> from sympy import Basic, SympifyError, S
125
+ >>> from sympy.core.sympify import _sympify
126
+
127
+ >>> class MyTuple(Basic):
128
+ ... def __add__(self, other):
129
+ ... try:
130
+ ... other = _sympify(other)
131
+ ... except SympifyError:
132
+ ... return NotImplemented
133
+ ... if not isinstance(other, MyTuple):
134
+ ... return NotImplemented
135
+ ... return MyTuple(*(self.args + other.args))
136
+
137
+ >>> MyTuple(S(1), S(2)) + MyTuple(S(3), S(4))
138
+ MyTuple(1, 2, 3, 4)
139
+
140
+ In the above it is important that we return NotImplemented when other is
141
+ not sympifiable and also when the sympified result is not of the expected
142
+ type. This allows the MyTuple class to be used cooperatively with other
143
+ classes that overload __add__ and want to do something else in combination
144
+ with instance of Tuple.
145
+
146
+ Using this decorator the above can be written as
147
+
148
+ >>> from sympy.core.decorators import sympify_method_args, sympify_return
149
+
150
+ >>> @sympify_method_args
151
+ ... class MyTuple(Basic):
152
+ ... @sympify_return([('other', 'MyTuple')], NotImplemented)
153
+ ... def __add__(self, other):
154
+ ... return MyTuple(*(self.args + other.args))
155
+
156
+ >>> MyTuple(S(1), S(2)) + MyTuple(S(3), S(4))
157
+ MyTuple(1, 2, 3, 4)
158
+
159
+ The idea here is that the decorators take care of the boiler-plate code
160
+ for making this happen in each method that potentially needs to accept
161
+ unsympified arguments. Then the body of e.g. the __add__ method can be
162
+ written without needing to worry about calling _sympify or checking the
163
+ type of the resulting object.
164
+
165
+ The parameters for sympify_return are a list of tuples of the form
166
+ (parameter_name, expected_type) and the value to return (e.g.
167
+ NotImplemented). The expected_type parameter can be a type e.g. Tuple or a
168
+ string 'Tuple'. Using a string is useful for specifying a Type within its
169
+ class body (as in the above example).
170
+
171
+ Notes: Currently sympify_return only works for methods that take a single
172
+ argument (not including self). Specifying an expected_type as a string
173
+ only works for the class in which the method is defined.
174
+ '''
175
+ # Extract the wrapped methods from each of the wrapper objects created by
176
+ # the sympify_return decorator. Doing this here allows us to provide the
177
+ # cls argument which is used for forward string referencing.
178
+ for attrname, obj in cls.__dict__.items():
179
+ if isinstance(obj, _SympifyWrapper):
180
+ setattr(cls, attrname, obj.make_wrapped(cls))
181
+ return cls
182
+
183
+
184
+ def sympify_return(*args):
185
+ '''Function/method decorator to sympify arguments automatically
186
+
187
+ See the docstring of sympify_method_args for explanation.
188
+ '''
189
+ # Store a wrapper object for the decorated method
190
+ def wrapper(func):
191
+ return _SympifyWrapper(func, args)
192
+ return wrapper
193
+
194
+
195
+ class _SympifyWrapper:
196
+ '''Internal class used by sympify_return and sympify_method_args'''
197
+
198
+ def __init__(self, func, args):
199
+ self.func = func
200
+ self.args = args
201
+
202
+ def make_wrapped(self, cls):
203
+ func = self.func
204
+ parameters, retval = self.args
205
+
206
+ # XXX: Handle more than one parameter?
207
+ [(parameter, expectedcls)] = parameters
208
+
209
+ # Handle forward references to the current class using strings
210
+ if expectedcls == cls.__name__:
211
+ expectedcls = cls
212
+
213
+ # Raise RuntimeError since this is a failure at import time and should
214
+ # not be recoverable.
215
+ nargs = func.__code__.co_argcount
216
+ # we support f(a, b) only
217
+ if nargs != 2:
218
+ raise RuntimeError('sympify_return can only be used with 2 argument functions')
219
+ # only b is _sympified
220
+ if func.__code__.co_varnames[1] != parameter:
221
+ raise RuntimeError('parameter name mismatch "%s" in %s' %
222
+ (parameter, func.__name__))
223
+
224
+ @wraps(func)
225
+ def _func(self, other):
226
+ # XXX: The check for _op_priority here should be removed. It is
227
+ # needed to stop mutable matrices from being sympified to
228
+ # immutable matrices which breaks things in quantum...
229
+ if not hasattr(other, '_op_priority'):
230
+ try:
231
+ other = sympify(other, strict=True)
232
+ except SympifyError:
233
+ return retval
234
+ if not isinstance(other, expectedcls):
235
+ return retval
236
+ return func(self, other)
237
+
238
+ return _func
llmeval-env/lib/python3.10/site-packages/sympy/core/expr.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/sympy/core/function.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/sympy/core/logic.py ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Logic expressions handling
2
+
3
+ NOTE
4
+ ----
5
+
6
+ at present this is mainly needed for facts.py, feel free however to improve
7
+ this stuff for general purpose.
8
+ """
9
+
10
+ from __future__ import annotations
11
+ from typing import Optional
12
+
13
+ # Type of a fuzzy bool
14
+ FuzzyBool = Optional[bool]
15
+
16
+
17
+ def _torf(args):
18
+ """Return True if all args are True, False if they
19
+ are all False, else None.
20
+
21
+ >>> from sympy.core.logic import _torf
22
+ >>> _torf((True, True))
23
+ True
24
+ >>> _torf((False, False))
25
+ False
26
+ >>> _torf((True, False))
27
+ """
28
+ sawT = sawF = False
29
+ for a in args:
30
+ if a is True:
31
+ if sawF:
32
+ return
33
+ sawT = True
34
+ elif a is False:
35
+ if sawT:
36
+ return
37
+ sawF = True
38
+ else:
39
+ return
40
+ return sawT
41
+
42
+
43
+ def _fuzzy_group(args, quick_exit=False):
44
+ """Return True if all args are True, None if there is any None else False
45
+ unless ``quick_exit`` is True (then return None as soon as a second False
46
+ is seen.
47
+
48
+ ``_fuzzy_group`` is like ``fuzzy_and`` except that it is more
49
+ conservative in returning a False, waiting to make sure that all
50
+ arguments are True or False and returning None if any arguments are
51
+ None. It also has the capability of permiting only a single False and
52
+ returning None if more than one is seen. For example, the presence of a
53
+ single transcendental amongst rationals would indicate that the group is
54
+ no longer rational; but a second transcendental in the group would make the
55
+ determination impossible.
56
+
57
+
58
+ Examples
59
+ ========
60
+
61
+ >>> from sympy.core.logic import _fuzzy_group
62
+
63
+ By default, multiple Falses mean the group is broken:
64
+
65
+ >>> _fuzzy_group([False, False, True])
66
+ False
67
+
68
+ If multiple Falses mean the group status is unknown then set
69
+ `quick_exit` to True so None can be returned when the 2nd False is seen:
70
+
71
+ >>> _fuzzy_group([False, False, True], quick_exit=True)
72
+
73
+ But if only a single False is seen then the group is known to
74
+ be broken:
75
+
76
+ >>> _fuzzy_group([False, True, True], quick_exit=True)
77
+ False
78
+
79
+ """
80
+ saw_other = False
81
+ for a in args:
82
+ if a is True:
83
+ continue
84
+ if a is None:
85
+ return
86
+ if quick_exit and saw_other:
87
+ return
88
+ saw_other = True
89
+ return not saw_other
90
+
91
+
92
+ def fuzzy_bool(x):
93
+ """Return True, False or None according to x.
94
+
95
+ Whereas bool(x) returns True or False, fuzzy_bool allows
96
+ for the None value and non-false values (which become None), too.
97
+
98
+ Examples
99
+ ========
100
+
101
+ >>> from sympy.core.logic import fuzzy_bool
102
+ >>> from sympy.abc import x
103
+ >>> fuzzy_bool(x), fuzzy_bool(None)
104
+ (None, None)
105
+ >>> bool(x), bool(None)
106
+ (True, False)
107
+
108
+ """
109
+ if x is None:
110
+ return None
111
+ if x in (True, False):
112
+ return bool(x)
113
+
114
+
115
+ def fuzzy_and(args):
116
+ """Return True (all True), False (any False) or None.
117
+
118
+ Examples
119
+ ========
120
+
121
+ >>> from sympy.core.logic import fuzzy_and
122
+ >>> from sympy import Dummy
123
+
124
+ If you had a list of objects to test the commutivity of
125
+ and you want the fuzzy_and logic applied, passing an
126
+ iterator will allow the commutativity to only be computed
127
+ as many times as necessary. With this list, False can be
128
+ returned after analyzing the first symbol:
129
+
130
+ >>> syms = [Dummy(commutative=False), Dummy()]
131
+ >>> fuzzy_and(s.is_commutative for s in syms)
132
+ False
133
+
134
+ That False would require less work than if a list of pre-computed
135
+ items was sent:
136
+
137
+ >>> fuzzy_and([s.is_commutative for s in syms])
138
+ False
139
+ """
140
+
141
+ rv = True
142
+ for ai in args:
143
+ ai = fuzzy_bool(ai)
144
+ if ai is False:
145
+ return False
146
+ if rv: # this will stop updating if a None is ever trapped
147
+ rv = ai
148
+ return rv
149
+
150
+
151
+ def fuzzy_not(v):
152
+ """
153
+ Not in fuzzy logic
154
+
155
+ Return None if `v` is None else `not v`.
156
+
157
+ Examples
158
+ ========
159
+
160
+ >>> from sympy.core.logic import fuzzy_not
161
+ >>> fuzzy_not(True)
162
+ False
163
+ >>> fuzzy_not(None)
164
+ >>> fuzzy_not(False)
165
+ True
166
+
167
+ """
168
+ if v is None:
169
+ return v
170
+ else:
171
+ return not v
172
+
173
+
174
+ def fuzzy_or(args):
175
+ """
176
+ Or in fuzzy logic. Returns True (any True), False (all False), or None
177
+
178
+ See the docstrings of fuzzy_and and fuzzy_not for more info. fuzzy_or is
179
+ related to the two by the standard De Morgan's law.
180
+
181
+ >>> from sympy.core.logic import fuzzy_or
182
+ >>> fuzzy_or([True, False])
183
+ True
184
+ >>> fuzzy_or([True, None])
185
+ True
186
+ >>> fuzzy_or([False, False])
187
+ False
188
+ >>> print(fuzzy_or([False, None]))
189
+ None
190
+
191
+ """
192
+ rv = False
193
+ for ai in args:
194
+ ai = fuzzy_bool(ai)
195
+ if ai is True:
196
+ return True
197
+ if rv is False: # this will stop updating if a None is ever trapped
198
+ rv = ai
199
+ return rv
200
+
201
+
202
+ def fuzzy_xor(args):
203
+ """Return None if any element of args is not True or False, else
204
+ True (if there are an odd number of True elements), else False."""
205
+ t = f = 0
206
+ for a in args:
207
+ ai = fuzzy_bool(a)
208
+ if ai:
209
+ t += 1
210
+ elif ai is False:
211
+ f += 1
212
+ else:
213
+ return
214
+ return t % 2 == 1
215
+
216
+
217
+ def fuzzy_nand(args):
218
+ """Return False if all args are True, True if they are all False,
219
+ else None."""
220
+ return fuzzy_not(fuzzy_and(args))
221
+
222
+
223
+ class Logic:
224
+ """Logical expression"""
225
+ # {} 'op' -> LogicClass
226
+ op_2class: dict[str, type[Logic]] = {}
227
+
228
+ def __new__(cls, *args):
229
+ obj = object.__new__(cls)
230
+ obj.args = args
231
+ return obj
232
+
233
+ def __getnewargs__(self):
234
+ return self.args
235
+
236
+ def __hash__(self):
237
+ return hash((type(self).__name__,) + tuple(self.args))
238
+
239
+ def __eq__(a, b):
240
+ if not isinstance(b, type(a)):
241
+ return False
242
+ else:
243
+ return a.args == b.args
244
+
245
+ def __ne__(a, b):
246
+ if not isinstance(b, type(a)):
247
+ return True
248
+ else:
249
+ return a.args != b.args
250
+
251
+ def __lt__(self, other):
252
+ if self.__cmp__(other) == -1:
253
+ return True
254
+ return False
255
+
256
+ def __cmp__(self, other):
257
+ if type(self) is not type(other):
258
+ a = str(type(self))
259
+ b = str(type(other))
260
+ else:
261
+ a = self.args
262
+ b = other.args
263
+ return (a > b) - (a < b)
264
+
265
+ def __str__(self):
266
+ return '%s(%s)' % (self.__class__.__name__,
267
+ ', '.join(str(a) for a in self.args))
268
+
269
+ __repr__ = __str__
270
+
271
+ @staticmethod
272
+ def fromstring(text):
273
+ """Logic from string with space around & and | but none after !.
274
+
275
+ e.g.
276
+
277
+ !a & b | c
278
+ """
279
+ lexpr = None # current logical expression
280
+ schedop = None # scheduled operation
281
+ for term in text.split():
282
+ # operation symbol
283
+ if term in '&|':
284
+ if schedop is not None:
285
+ raise ValueError(
286
+ 'double op forbidden: "%s %s"' % (term, schedop))
287
+ if lexpr is None:
288
+ raise ValueError(
289
+ '%s cannot be in the beginning of expression' % term)
290
+ schedop = term
291
+ continue
292
+ if '&' in term or '|' in term:
293
+ raise ValueError('& and | must have space around them')
294
+ if term[0] == '!':
295
+ if len(term) == 1:
296
+ raise ValueError('do not include space after "!"')
297
+ term = Not(term[1:])
298
+
299
+ # already scheduled operation, e.g. '&'
300
+ if schedop:
301
+ lexpr = Logic.op_2class[schedop](lexpr, term)
302
+ schedop = None
303
+ continue
304
+
305
+ # this should be atom
306
+ if lexpr is not None:
307
+ raise ValueError(
308
+ 'missing op between "%s" and "%s"' % (lexpr, term))
309
+
310
+ lexpr = term
311
+
312
+ # let's check that we ended up in correct state
313
+ if schedop is not None:
314
+ raise ValueError('premature end-of-expression in "%s"' % text)
315
+ if lexpr is None:
316
+ raise ValueError('"%s" is empty' % text)
317
+
318
+ # everything looks good now
319
+ return lexpr
320
+
321
+
322
+ class AndOr_Base(Logic):
323
+
324
+ def __new__(cls, *args):
325
+ bargs = []
326
+ for a in args:
327
+ if a == cls.op_x_notx:
328
+ return a
329
+ elif a == (not cls.op_x_notx):
330
+ continue # skip this argument
331
+ bargs.append(a)
332
+
333
+ args = sorted(set(cls.flatten(bargs)), key=hash)
334
+
335
+ for a in args:
336
+ if Not(a) in args:
337
+ return cls.op_x_notx
338
+
339
+ if len(args) == 1:
340
+ return args.pop()
341
+ elif len(args) == 0:
342
+ return not cls.op_x_notx
343
+
344
+ return Logic.__new__(cls, *args)
345
+
346
+ @classmethod
347
+ def flatten(cls, args):
348
+ # quick-n-dirty flattening for And and Or
349
+ args_queue = list(args)
350
+ res = []
351
+
352
+ while True:
353
+ try:
354
+ arg = args_queue.pop(0)
355
+ except IndexError:
356
+ break
357
+ if isinstance(arg, Logic):
358
+ if isinstance(arg, cls):
359
+ args_queue.extend(arg.args)
360
+ continue
361
+ res.append(arg)
362
+
363
+ args = tuple(res)
364
+ return args
365
+
366
+
367
+ class And(AndOr_Base):
368
+ op_x_notx = False
369
+
370
+ def _eval_propagate_not(self):
371
+ # !(a&b&c ...) == !a | !b | !c ...
372
+ return Or(*[Not(a) for a in self.args])
373
+
374
+ # (a|b|...) & c == (a&c) | (b&c) | ...
375
+ def expand(self):
376
+
377
+ # first locate Or
378
+ for i, arg in enumerate(self.args):
379
+ if isinstance(arg, Or):
380
+ arest = self.args[:i] + self.args[i + 1:]
381
+
382
+ orterms = [And(*(arest + (a,))) for a in arg.args]
383
+ for j in range(len(orterms)):
384
+ if isinstance(orterms[j], Logic):
385
+ orterms[j] = orterms[j].expand()
386
+
387
+ res = Or(*orterms)
388
+ return res
389
+
390
+ return self
391
+
392
+
393
+ class Or(AndOr_Base):
394
+ op_x_notx = True
395
+
396
+ def _eval_propagate_not(self):
397
+ # !(a|b|c ...) == !a & !b & !c ...
398
+ return And(*[Not(a) for a in self.args])
399
+
400
+
401
+ class Not(Logic):
402
+
403
+ def __new__(cls, arg):
404
+ if isinstance(arg, str):
405
+ return Logic.__new__(cls, arg)
406
+
407
+ elif isinstance(arg, bool):
408
+ return not arg
409
+ elif isinstance(arg, Not):
410
+ return arg.args[0]
411
+
412
+ elif isinstance(arg, Logic):
413
+ # XXX this is a hack to expand right from the beginning
414
+ arg = arg._eval_propagate_not()
415
+ return arg
416
+
417
+ else:
418
+ raise ValueError('Not: unknown argument %r' % (arg,))
419
+
420
+ @property
421
+ def arg(self):
422
+ return self.args[0]
423
+
424
+
425
+ Logic.op_2class['&'] = And
426
+ Logic.op_2class['|'] = Or
427
+ Logic.op_2class['!'] = Not
llmeval-env/lib/python3.10/site-packages/sympy/core/mod.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .add import Add
2
+ from .exprtools import gcd_terms
3
+ from .function import Function
4
+ from .kind import NumberKind
5
+ from .logic import fuzzy_and, fuzzy_not
6
+ from .mul import Mul
7
+ from .numbers import equal_valued
8
+ from .singleton import S
9
+
10
+
11
+ class Mod(Function):
12
+ """Represents a modulo operation on symbolic expressions.
13
+
14
+ Parameters
15
+ ==========
16
+
17
+ p : Expr
18
+ Dividend.
19
+
20
+ q : Expr
21
+ Divisor.
22
+
23
+ Notes
24
+ =====
25
+
26
+ The convention used is the same as Python's: the remainder always has the
27
+ same sign as the divisor.
28
+
29
+ Examples
30
+ ========
31
+
32
+ >>> from sympy.abc import x, y
33
+ >>> x**2 % y
34
+ Mod(x**2, y)
35
+ >>> _.subs({x: 5, y: 6})
36
+ 1
37
+
38
+ """
39
+
40
+ kind = NumberKind
41
+
42
+ @classmethod
43
+ def eval(cls, p, q):
44
+ def number_eval(p, q):
45
+ """Try to return p % q if both are numbers or +/-p is known
46
+ to be less than or equal q.
47
+ """
48
+
49
+ if q.is_zero:
50
+ raise ZeroDivisionError("Modulo by zero")
51
+ if p is S.NaN or q is S.NaN or p.is_finite is False or q.is_finite is False:
52
+ return S.NaN
53
+ if p is S.Zero or p in (q, -q) or (p.is_integer and q == 1):
54
+ return S.Zero
55
+
56
+ if q.is_Number:
57
+ if p.is_Number:
58
+ return p%q
59
+ if q == 2:
60
+ if p.is_even:
61
+ return S.Zero
62
+ elif p.is_odd:
63
+ return S.One
64
+
65
+ if hasattr(p, '_eval_Mod'):
66
+ rv = getattr(p, '_eval_Mod')(q)
67
+ if rv is not None:
68
+ return rv
69
+
70
+ # by ratio
71
+ r = p/q
72
+ if r.is_integer:
73
+ return S.Zero
74
+ try:
75
+ d = int(r)
76
+ except TypeError:
77
+ pass
78
+ else:
79
+ if isinstance(d, int):
80
+ rv = p - d*q
81
+ if (rv*q < 0) == True:
82
+ rv += q
83
+ return rv
84
+
85
+ # by difference
86
+ # -2|q| < p < 2|q|
87
+ d = abs(p)
88
+ for _ in range(2):
89
+ d -= abs(q)
90
+ if d.is_negative:
91
+ if q.is_positive:
92
+ if p.is_positive:
93
+ return d + q
94
+ elif p.is_negative:
95
+ return -d
96
+ elif q.is_negative:
97
+ if p.is_positive:
98
+ return d
99
+ elif p.is_negative:
100
+ return -d + q
101
+ break
102
+
103
+ rv = number_eval(p, q)
104
+ if rv is not None:
105
+ return rv
106
+
107
+ # denest
108
+ if isinstance(p, cls):
109
+ qinner = p.args[1]
110
+ if qinner % q == 0:
111
+ return cls(p.args[0], q)
112
+ elif (qinner*(q - qinner)).is_nonnegative:
113
+ # |qinner| < |q| and have same sign
114
+ return p
115
+ elif isinstance(-p, cls):
116
+ qinner = (-p).args[1]
117
+ if qinner % q == 0:
118
+ return cls(-(-p).args[0], q)
119
+ elif (qinner*(q + qinner)).is_nonpositive:
120
+ # |qinner| < |q| and have different sign
121
+ return p
122
+ elif isinstance(p, Add):
123
+ # separating into modulus and non modulus
124
+ both_l = non_mod_l, mod_l = [], []
125
+ for arg in p.args:
126
+ both_l[isinstance(arg, cls)].append(arg)
127
+ # if q same for all
128
+ if mod_l and all(inner.args[1] == q for inner in mod_l):
129
+ net = Add(*non_mod_l) + Add(*[i.args[0] for i in mod_l])
130
+ return cls(net, q)
131
+
132
+ elif isinstance(p, Mul):
133
+ # separating into modulus and non modulus
134
+ both_l = non_mod_l, mod_l = [], []
135
+ for arg in p.args:
136
+ both_l[isinstance(arg, cls)].append(arg)
137
+
138
+ if mod_l and all(inner.args[1] == q for inner in mod_l) and all(t.is_integer for t in p.args) and q.is_integer:
139
+ # finding distributive term
140
+ non_mod_l = [cls(x, q) for x in non_mod_l]
141
+ mod = []
142
+ non_mod = []
143
+ for j in non_mod_l:
144
+ if isinstance(j, cls):
145
+ mod.append(j.args[0])
146
+ else:
147
+ non_mod.append(j)
148
+ prod_mod = Mul(*mod)
149
+ prod_non_mod = Mul(*non_mod)
150
+ prod_mod1 = Mul(*[i.args[0] for i in mod_l])
151
+ net = prod_mod1*prod_mod
152
+ return prod_non_mod*cls(net, q)
153
+
154
+ if q.is_Integer and q is not S.One:
155
+ non_mod_l = [i % q if i.is_Integer and (i % q is not S.Zero) else i for
156
+ i in non_mod_l]
157
+
158
+ p = Mul(*(non_mod_l + mod_l))
159
+
160
+ # XXX other possibilities?
161
+
162
+ from sympy.polys.polyerrors import PolynomialError
163
+ from sympy.polys.polytools import gcd
164
+
165
+ # extract gcd; any further simplification should be done by the user
166
+ try:
167
+ G = gcd(p, q)
168
+ if not equal_valued(G, 1):
169
+ p, q = [gcd_terms(i/G, clear=False, fraction=False)
170
+ for i in (p, q)]
171
+ except PolynomialError: # issue 21373
172
+ G = S.One
173
+ pwas, qwas = p, q
174
+
175
+ # simplify terms
176
+ # (x + y + 2) % x -> Mod(y + 2, x)
177
+ if p.is_Add:
178
+ args = []
179
+ for i in p.args:
180
+ a = cls(i, q)
181
+ if a.count(cls) > i.count(cls):
182
+ args.append(i)
183
+ else:
184
+ args.append(a)
185
+ if args != list(p.args):
186
+ p = Add(*args)
187
+
188
+ else:
189
+ # handle coefficients if they are not Rational
190
+ # since those are not handled by factor_terms
191
+ # e.g. Mod(.6*x, .3*y) -> 0.3*Mod(2*x, y)
192
+ cp, p = p.as_coeff_Mul()
193
+ cq, q = q.as_coeff_Mul()
194
+ ok = False
195
+ if not cp.is_Rational or not cq.is_Rational:
196
+ r = cp % cq
197
+ if equal_valued(r, 0):
198
+ G *= cq
199
+ p *= int(cp/cq)
200
+ ok = True
201
+ if not ok:
202
+ p = cp*p
203
+ q = cq*q
204
+
205
+ # simple -1 extraction
206
+ if p.could_extract_minus_sign() and q.could_extract_minus_sign():
207
+ G, p, q = [-i for i in (G, p, q)]
208
+
209
+ # check again to see if p and q can now be handled as numbers
210
+ rv = number_eval(p, q)
211
+ if rv is not None:
212
+ return rv*G
213
+
214
+ # put 1.0 from G on inside
215
+ if G.is_Float and equal_valued(G, 1):
216
+ p *= G
217
+ return cls(p, q, evaluate=False)
218
+ elif G.is_Mul and G.args[0].is_Float and equal_valued(G.args[0], 1):
219
+ p = G.args[0]*p
220
+ G = Mul._from_args(G.args[1:])
221
+ return G*cls(p, q, evaluate=(p, q) != (pwas, qwas))
222
+
223
+ def _eval_is_integer(self):
224
+ p, q = self.args
225
+ if fuzzy_and([p.is_integer, q.is_integer, fuzzy_not(q.is_zero)]):
226
+ return True
227
+
228
+ def _eval_is_nonnegative(self):
229
+ if self.args[1].is_positive:
230
+ return True
231
+
232
+ def _eval_is_nonpositive(self):
233
+ if self.args[1].is_negative:
234
+ return True
235
+
236
+ def _eval_rewrite_as_floor(self, a, b, **kwargs):
237
+ from sympy.functions.elementary.integers import floor
238
+ return a - b*floor(a/b)
llmeval-env/lib/python3.10/site-packages/sympy/core/multidimensional.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Provides functionality for multidimensional usage of scalar-functions.
3
+
4
+ Read the vectorize docstring for more details.
5
+ """
6
+
7
+ from functools import wraps
8
+
9
+
10
+ def apply_on_element(f, args, kwargs, n):
11
+ """
12
+ Returns a structure with the same dimension as the specified argument,
13
+ where each basic element is replaced by the function f applied on it. All
14
+ other arguments stay the same.
15
+ """
16
+ # Get the specified argument.
17
+ if isinstance(n, int):
18
+ structure = args[n]
19
+ is_arg = True
20
+ elif isinstance(n, str):
21
+ structure = kwargs[n]
22
+ is_arg = False
23
+
24
+ # Define reduced function that is only dependent on the specified argument.
25
+ def f_reduced(x):
26
+ if hasattr(x, "__iter__"):
27
+ return list(map(f_reduced, x))
28
+ else:
29
+ if is_arg:
30
+ args[n] = x
31
+ else:
32
+ kwargs[n] = x
33
+ return f(*args, **kwargs)
34
+
35
+ # f_reduced will call itself recursively so that in the end f is applied to
36
+ # all basic elements.
37
+ return list(map(f_reduced, structure))
38
+
39
+
40
+ def iter_copy(structure):
41
+ """
42
+ Returns a copy of an iterable object (also copying all embedded iterables).
43
+ """
44
+ return [iter_copy(i) if hasattr(i, "__iter__") else i for i in structure]
45
+
46
+
47
+ def structure_copy(structure):
48
+ """
49
+ Returns a copy of the given structure (numpy-array, list, iterable, ..).
50
+ """
51
+ if hasattr(structure, "copy"):
52
+ return structure.copy()
53
+ return iter_copy(structure)
54
+
55
+
56
+ class vectorize:
57
+ """
58
+ Generalizes a function taking scalars to accept multidimensional arguments.
59
+
60
+ Examples
61
+ ========
62
+
63
+ >>> from sympy import vectorize, diff, sin, symbols, Function
64
+ >>> x, y, z = symbols('x y z')
65
+ >>> f, g, h = list(map(Function, 'fgh'))
66
+
67
+ >>> @vectorize(0)
68
+ ... def vsin(x):
69
+ ... return sin(x)
70
+
71
+ >>> vsin([1, x, y])
72
+ [sin(1), sin(x), sin(y)]
73
+
74
+ >>> @vectorize(0, 1)
75
+ ... def vdiff(f, y):
76
+ ... return diff(f, y)
77
+
78
+ >>> vdiff([f(x, y, z), g(x, y, z), h(x, y, z)], [x, y, z])
79
+ [[Derivative(f(x, y, z), x), Derivative(f(x, y, z), y), Derivative(f(x, y, z), z)], [Derivative(g(x, y, z), x), Derivative(g(x, y, z), y), Derivative(g(x, y, z), z)], [Derivative(h(x, y, z), x), Derivative(h(x, y, z), y), Derivative(h(x, y, z), z)]]
80
+ """
81
+ def __init__(self, *mdargs):
82
+ """
83
+ The given numbers and strings characterize the arguments that will be
84
+ treated as data structures, where the decorated function will be applied
85
+ to every single element.
86
+ If no argument is given, everything is treated multidimensional.
87
+ """
88
+ for a in mdargs:
89
+ if not isinstance(a, (int, str)):
90
+ raise TypeError("a is of invalid type")
91
+ self.mdargs = mdargs
92
+
93
+ def __call__(self, f):
94
+ """
95
+ Returns a wrapper for the one-dimensional function that can handle
96
+ multidimensional arguments.
97
+ """
98
+ @wraps(f)
99
+ def wrapper(*args, **kwargs):
100
+ # Get arguments that should be treated multidimensional
101
+ if self.mdargs:
102
+ mdargs = self.mdargs
103
+ else:
104
+ mdargs = range(len(args)) + kwargs.keys()
105
+
106
+ arglength = len(args)
107
+
108
+ for n in mdargs:
109
+ if isinstance(n, int):
110
+ if n >= arglength:
111
+ continue
112
+ entry = args[n]
113
+ is_arg = True
114
+ elif isinstance(n, str):
115
+ try:
116
+ entry = kwargs[n]
117
+ except KeyError:
118
+ continue
119
+ is_arg = False
120
+ if hasattr(entry, "__iter__"):
121
+ # Create now a copy of the given array and manipulate then
122
+ # the entries directly.
123
+ if is_arg:
124
+ args = list(args)
125
+ args[n] = structure_copy(entry)
126
+ else:
127
+ kwargs[n] = structure_copy(entry)
128
+ result = apply_on_element(wrapper, args, kwargs, n)
129
+ return result
130
+ return f(*args, **kwargs)
131
+ return wrapper
llmeval-env/lib/python3.10/site-packages/sympy/core/numbers.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/sympy/core/operations.py ADDED
@@ -0,0 +1,722 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from operator import attrgetter
3
+ from collections import defaultdict
4
+
5
+ from sympy.utilities.exceptions import sympy_deprecation_warning
6
+
7
+ from .sympify import _sympify as _sympify_, sympify
8
+ from .basic import Basic
9
+ from .cache import cacheit
10
+ from .sorting import ordered
11
+ from .logic import fuzzy_and
12
+ from .parameters import global_parameters
13
+ from sympy.utilities.iterables import sift
14
+ from sympy.multipledispatch.dispatcher import (Dispatcher,
15
+ ambiguity_register_error_ignore_dup,
16
+ str_signature, RaiseNotImplementedError)
17
+
18
+
19
+ class AssocOp(Basic):
20
+ """ Associative operations, can separate noncommutative and
21
+ commutative parts.
22
+
23
+ (a op b) op c == a op (b op c) == a op b op c.
24
+
25
+ Base class for Add and Mul.
26
+
27
+ This is an abstract base class, concrete derived classes must define
28
+ the attribute `identity`.
29
+
30
+ .. deprecated:: 1.7
31
+
32
+ Using arguments that aren't subclasses of :class:`~.Expr` in core
33
+ operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
34
+ deprecated. See :ref:`non-expr-args-deprecated` for details.
35
+
36
+ Parameters
37
+ ==========
38
+
39
+ *args :
40
+ Arguments which are operated
41
+
42
+ evaluate : bool, optional
43
+ Evaluate the operation. If not passed, refer to ``global_parameters.evaluate``.
44
+ """
45
+
46
+ # for performance reason, we don't let is_commutative go to assumptions,
47
+ # and keep it right here
48
+ __slots__: tuple[str, ...] = ('is_commutative',)
49
+
50
+ _args_type: type[Basic] | None = None
51
+
52
+ @cacheit
53
+ def __new__(cls, *args, evaluate=None, _sympify=True):
54
+ # Allow faster processing by passing ``_sympify=False``, if all arguments
55
+ # are already sympified.
56
+ if _sympify:
57
+ args = list(map(_sympify_, args))
58
+
59
+ # Disallow non-Expr args in Add/Mul
60
+ typ = cls._args_type
61
+ if typ is not None:
62
+ from .relational import Relational
63
+ if any(isinstance(arg, Relational) for arg in args):
64
+ raise TypeError("Relational cannot be used in %s" % cls.__name__)
65
+
66
+ # This should raise TypeError once deprecation period is over:
67
+ for arg in args:
68
+ if not isinstance(arg, typ):
69
+ sympy_deprecation_warning(
70
+ f"""
71
+
72
+ Using non-Expr arguments in {cls.__name__} is deprecated (in this case, one of
73
+ the arguments has type {type(arg).__name__!r}).
74
+
75
+ If you really did intend to use a multiplication or addition operation with
76
+ this object, use the * or + operator instead.
77
+
78
+ """,
79
+ deprecated_since_version="1.7",
80
+ active_deprecations_target="non-expr-args-deprecated",
81
+ stacklevel=4,
82
+ )
83
+
84
+ if evaluate is None:
85
+ evaluate = global_parameters.evaluate
86
+ if not evaluate:
87
+ obj = cls._from_args(args)
88
+ obj = cls._exec_constructor_postprocessors(obj)
89
+ return obj
90
+
91
+ args = [a for a in args if a is not cls.identity]
92
+
93
+ if len(args) == 0:
94
+ return cls.identity
95
+ if len(args) == 1:
96
+ return args[0]
97
+
98
+ c_part, nc_part, order_symbols = cls.flatten(args)
99
+ is_commutative = not nc_part
100
+ obj = cls._from_args(c_part + nc_part, is_commutative)
101
+ obj = cls._exec_constructor_postprocessors(obj)
102
+
103
+ if order_symbols is not None:
104
+ from sympy.series.order import Order
105
+ return Order(obj, *order_symbols)
106
+ return obj
107
+
108
+ @classmethod
109
+ def _from_args(cls, args, is_commutative=None):
110
+ """Create new instance with already-processed args.
111
+ If the args are not in canonical order, then a non-canonical
112
+ result will be returned, so use with caution. The order of
113
+ args may change if the sign of the args is changed."""
114
+ if len(args) == 0:
115
+ return cls.identity
116
+ elif len(args) == 1:
117
+ return args[0]
118
+
119
+ obj = super().__new__(cls, *args)
120
+ if is_commutative is None:
121
+ is_commutative = fuzzy_and(a.is_commutative for a in args)
122
+ obj.is_commutative = is_commutative
123
+ return obj
124
+
125
+ def _new_rawargs(self, *args, reeval=True, **kwargs):
126
+ """Create new instance of own class with args exactly as provided by
127
+ caller but returning the self class identity if args is empty.
128
+
129
+ Examples
130
+ ========
131
+
132
+ This is handy when we want to optimize things, e.g.
133
+
134
+ >>> from sympy import Mul, S
135
+ >>> from sympy.abc import x, y
136
+ >>> e = Mul(3, x, y)
137
+ >>> e.args
138
+ (3, x, y)
139
+ >>> Mul(*e.args[1:])
140
+ x*y
141
+ >>> e._new_rawargs(*e.args[1:]) # the same as above, but faster
142
+ x*y
143
+
144
+ Note: use this with caution. There is no checking of arguments at
145
+ all. This is best used when you are rebuilding an Add or Mul after
146
+ simply removing one or more args. If, for example, modifications,
147
+ result in extra 1s being inserted they will show up in the result:
148
+
149
+ >>> m = (x*y)._new_rawargs(S.One, x); m
150
+ 1*x
151
+ >>> m == x
152
+ False
153
+ >>> m.is_Mul
154
+ True
155
+
156
+ Another issue to be aware of is that the commutativity of the result
157
+ is based on the commutativity of self. If you are rebuilding the
158
+ terms that came from a commutative object then there will be no
159
+ problem, but if self was non-commutative then what you are
160
+ rebuilding may now be commutative.
161
+
162
+ Although this routine tries to do as little as possible with the
163
+ input, getting the commutativity right is important, so this level
164
+ of safety is enforced: commutativity will always be recomputed if
165
+ self is non-commutative and kwarg `reeval=False` has not been
166
+ passed.
167
+ """
168
+ if reeval and self.is_commutative is False:
169
+ is_commutative = None
170
+ else:
171
+ is_commutative = self.is_commutative
172
+ return self._from_args(args, is_commutative)
173
+
174
+ @classmethod
175
+ def flatten(cls, seq):
176
+ """Return seq so that none of the elements are of type `cls`. This is
177
+ the vanilla routine that will be used if a class derived from AssocOp
178
+ does not define its own flatten routine."""
179
+ # apply associativity, no commutativity property is used
180
+ new_seq = []
181
+ while seq:
182
+ o = seq.pop()
183
+ if o.__class__ is cls: # classes must match exactly
184
+ seq.extend(o.args)
185
+ else:
186
+ new_seq.append(o)
187
+ new_seq.reverse()
188
+
189
+ # c_part, nc_part, order_symbols
190
+ return [], new_seq, None
191
+
192
+ def _matches_commutative(self, expr, repl_dict=None, old=False):
193
+ """
194
+ Matches Add/Mul "pattern" to an expression "expr".
195
+
196
+ repl_dict ... a dictionary of (wild: expression) pairs, that get
197
+ returned with the results
198
+
199
+ This function is the main workhorse for Add/Mul.
200
+
201
+ Examples
202
+ ========
203
+
204
+ >>> from sympy import symbols, Wild, sin
205
+ >>> a = Wild("a")
206
+ >>> b = Wild("b")
207
+ >>> c = Wild("c")
208
+ >>> x, y, z = symbols("x y z")
209
+ >>> (a+sin(b)*c)._matches_commutative(x+sin(y)*z)
210
+ {a_: x, b_: y, c_: z}
211
+
212
+ In the example above, "a+sin(b)*c" is the pattern, and "x+sin(y)*z" is
213
+ the expression.
214
+
215
+ The repl_dict contains parts that were already matched. For example
216
+ here:
217
+
218
+ >>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z, repl_dict={a: x})
219
+ {a_: x, b_: y, c_: z}
220
+
221
+ the only function of the repl_dict is to return it in the
222
+ result, e.g. if you omit it:
223
+
224
+ >>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z)
225
+ {b_: y, c_: z}
226
+
227
+ the "a: x" is not returned in the result, but otherwise it is
228
+ equivalent.
229
+
230
+ """
231
+ from .function import _coeff_isneg
232
+ # make sure expr is Expr if pattern is Expr
233
+ from .expr import Expr
234
+ if isinstance(self, Expr) and not isinstance(expr, Expr):
235
+ return None
236
+
237
+ if repl_dict is None:
238
+ repl_dict = {}
239
+
240
+ # handle simple patterns
241
+ if self == expr:
242
+ return repl_dict
243
+
244
+ d = self._matches_simple(expr, repl_dict)
245
+ if d is not None:
246
+ return d
247
+
248
+ # eliminate exact part from pattern: (2+a+w1+w2).matches(expr) -> (w1+w2).matches(expr-a-2)
249
+ from .function import WildFunction
250
+ from .symbol import Wild
251
+ wild_part, exact_part = sift(self.args, lambda p:
252
+ p.has(Wild, WildFunction) and not expr.has(p),
253
+ binary=True)
254
+ if not exact_part:
255
+ wild_part = list(ordered(wild_part))
256
+ if self.is_Add:
257
+ # in addition to normal ordered keys, impose
258
+ # sorting on Muls with leading Number to put
259
+ # them in order
260
+ wild_part = sorted(wild_part, key=lambda x:
261
+ x.args[0] if x.is_Mul and x.args[0].is_Number else
262
+ 0)
263
+ else:
264
+ exact = self._new_rawargs(*exact_part)
265
+ free = expr.free_symbols
266
+ if free and (exact.free_symbols - free):
267
+ # there are symbols in the exact part that are not
268
+ # in the expr; but if there are no free symbols, let
269
+ # the matching continue
270
+ return None
271
+ newexpr = self._combine_inverse(expr, exact)
272
+ if not old and (expr.is_Add or expr.is_Mul):
273
+ check = newexpr
274
+ if _coeff_isneg(check):
275
+ check = -check
276
+ if check.count_ops() > expr.count_ops():
277
+ return None
278
+ newpattern = self._new_rawargs(*wild_part)
279
+ return newpattern.matches(newexpr, repl_dict)
280
+
281
+ # now to real work ;)
282
+ i = 0
283
+ saw = set()
284
+ while expr not in saw:
285
+ saw.add(expr)
286
+ args = tuple(ordered(self.make_args(expr)))
287
+ if self.is_Add and expr.is_Add:
288
+ # in addition to normal ordered keys, impose
289
+ # sorting on Muls with leading Number to put
290
+ # them in order
291
+ args = tuple(sorted(args, key=lambda x:
292
+ x.args[0] if x.is_Mul and x.args[0].is_Number else
293
+ 0))
294
+ expr_list = (self.identity,) + args
295
+ for last_op in reversed(expr_list):
296
+ for w in reversed(wild_part):
297
+ d1 = w.matches(last_op, repl_dict)
298
+ if d1 is not None:
299
+ d2 = self.xreplace(d1).matches(expr, d1)
300
+ if d2 is not None:
301
+ return d2
302
+
303
+ if i == 0:
304
+ if self.is_Mul:
305
+ # make e**i look like Mul
306
+ if expr.is_Pow and expr.exp.is_Integer:
307
+ from .mul import Mul
308
+ if expr.exp > 0:
309
+ expr = Mul(*[expr.base, expr.base**(expr.exp - 1)], evaluate=False)
310
+ else:
311
+ expr = Mul(*[1/expr.base, expr.base**(expr.exp + 1)], evaluate=False)
312
+ i += 1
313
+ continue
314
+
315
+ elif self.is_Add:
316
+ # make i*e look like Add
317
+ c, e = expr.as_coeff_Mul()
318
+ if abs(c) > 1:
319
+ from .add import Add
320
+ if c > 0:
321
+ expr = Add(*[e, (c - 1)*e], evaluate=False)
322
+ else:
323
+ expr = Add(*[-e, (c + 1)*e], evaluate=False)
324
+ i += 1
325
+ continue
326
+
327
+ # try collection on non-Wild symbols
328
+ from sympy.simplify.radsimp import collect
329
+ was = expr
330
+ did = set()
331
+ for w in reversed(wild_part):
332
+ c, w = w.as_coeff_mul(Wild)
333
+ free = c.free_symbols - did
334
+ if free:
335
+ did.update(free)
336
+ expr = collect(expr, free)
337
+ if expr != was:
338
+ i += 0
339
+ continue
340
+
341
+ break # if we didn't continue, there is nothing more to do
342
+
343
+ return
344
+
345
+ def _has_matcher(self):
346
+ """Helper for .has() that checks for containment of
347
+ subexpressions within an expr by using sets of args
348
+ of similar nodes, e.g. x + 1 in x + y + 1 checks
349
+ to see that {x, 1} & {x, y, 1} == {x, 1}
350
+ """
351
+ def _ncsplit(expr):
352
+ # this is not the same as args_cnc because here
353
+ # we don't assume expr is a Mul -- hence deal with args --
354
+ # and always return a set.
355
+ cpart, ncpart = sift(expr.args,
356
+ lambda arg: arg.is_commutative is True, binary=True)
357
+ return set(cpart), ncpart
358
+
359
+ c, nc = _ncsplit(self)
360
+ cls = self.__class__
361
+
362
+ def is_in(expr):
363
+ if isinstance(expr, cls):
364
+ if expr == self:
365
+ return True
366
+ _c, _nc = _ncsplit(expr)
367
+ if (c & _c) == c:
368
+ if not nc:
369
+ return True
370
+ elif len(nc) <= len(_nc):
371
+ for i in range(len(_nc) - len(nc) + 1):
372
+ if _nc[i:i + len(nc)] == nc:
373
+ return True
374
+ return False
375
+ return is_in
376
+
377
+ def _eval_evalf(self, prec):
378
+ """
379
+ Evaluate the parts of self that are numbers; if the whole thing
380
+ was a number with no functions it would have been evaluated, but
381
+ it wasn't so we must judiciously extract the numbers and reconstruct
382
+ the object. This is *not* simply replacing numbers with evaluated
383
+ numbers. Numbers should be handled in the largest pure-number
384
+ expression as possible. So the code below separates ``self`` into
385
+ number and non-number parts and evaluates the number parts and
386
+ walks the args of the non-number part recursively (doing the same
387
+ thing).
388
+ """
389
+ from .add import Add
390
+ from .mul import Mul
391
+ from .symbol import Symbol
392
+ from .function import AppliedUndef
393
+ if isinstance(self, (Mul, Add)):
394
+ x, tail = self.as_independent(Symbol, AppliedUndef)
395
+ # if x is an AssocOp Function then the _evalf below will
396
+ # call _eval_evalf (here) so we must break the recursion
397
+ if not (tail is self.identity or
398
+ isinstance(x, AssocOp) and x.is_Function or
399
+ x is self.identity and isinstance(tail, AssocOp)):
400
+ # here, we have a number so we just call to _evalf with prec;
401
+ # prec is not the same as n, it is the binary precision so
402
+ # that's why we don't call to evalf.
403
+ x = x._evalf(prec) if x is not self.identity else self.identity
404
+ args = []
405
+ tail_args = tuple(self.func.make_args(tail))
406
+ for a in tail_args:
407
+ # here we call to _eval_evalf since we don't know what we
408
+ # are dealing with and all other _eval_evalf routines should
409
+ # be doing the same thing (i.e. taking binary prec and
410
+ # finding the evalf-able args)
411
+ newa = a._eval_evalf(prec)
412
+ if newa is None:
413
+ args.append(a)
414
+ else:
415
+ args.append(newa)
416
+ return self.func(x, *args)
417
+
418
+ # this is the same as above, but there were no pure-number args to
419
+ # deal with
420
+ args = []
421
+ for a in self.args:
422
+ newa = a._eval_evalf(prec)
423
+ if newa is None:
424
+ args.append(a)
425
+ else:
426
+ args.append(newa)
427
+ return self.func(*args)
428
+
429
+ @classmethod
430
+ def make_args(cls, expr):
431
+ """
432
+ Return a sequence of elements `args` such that cls(*args) == expr
433
+
434
+ Examples
435
+ ========
436
+
437
+ >>> from sympy import Symbol, Mul, Add
438
+ >>> x, y = map(Symbol, 'xy')
439
+
440
+ >>> Mul.make_args(x*y)
441
+ (x, y)
442
+ >>> Add.make_args(x*y)
443
+ (x*y,)
444
+ >>> set(Add.make_args(x*y + y)) == set([y, x*y])
445
+ True
446
+
447
+ """
448
+ if isinstance(expr, cls):
449
+ return expr.args
450
+ else:
451
+ return (sympify(expr),)
452
+
453
+ def doit(self, **hints):
454
+ if hints.get('deep', True):
455
+ terms = [term.doit(**hints) for term in self.args]
456
+ else:
457
+ terms = self.args
458
+ return self.func(*terms, evaluate=True)
459
+
460
+ class ShortCircuit(Exception):
461
+ pass
462
+
463
+
464
+ class LatticeOp(AssocOp):
465
+ """
466
+ Join/meet operations of an algebraic lattice[1].
467
+
468
+ Explanation
469
+ ===========
470
+
471
+ These binary operations are associative (op(op(a, b), c) = op(a, op(b, c))),
472
+ commutative (op(a, b) = op(b, a)) and idempotent (op(a, a) = op(a) = a).
473
+ Common examples are AND, OR, Union, Intersection, max or min. They have an
474
+ identity element (op(identity, a) = a) and an absorbing element
475
+ conventionally called zero (op(zero, a) = zero).
476
+
477
+ This is an abstract base class, concrete derived classes must declare
478
+ attributes zero and identity. All defining properties are then respected.
479
+
480
+ Examples
481
+ ========
482
+
483
+ >>> from sympy import Integer
484
+ >>> from sympy.core.operations import LatticeOp
485
+ >>> class my_join(LatticeOp):
486
+ ... zero = Integer(0)
487
+ ... identity = Integer(1)
488
+ >>> my_join(2, 3) == my_join(3, 2)
489
+ True
490
+ >>> my_join(2, my_join(3, 4)) == my_join(2, 3, 4)
491
+ True
492
+ >>> my_join(0, 1, 4, 2, 3, 4)
493
+ 0
494
+ >>> my_join(1, 2)
495
+ 2
496
+
497
+ References
498
+ ==========
499
+
500
+ .. [1] https://en.wikipedia.org/wiki/Lattice_%28order%29
501
+ """
502
+
503
+ is_commutative = True
504
+
505
+ def __new__(cls, *args, **options):
506
+ args = (_sympify_(arg) for arg in args)
507
+
508
+ try:
509
+ # /!\ args is a generator and _new_args_filter
510
+ # must be careful to handle as such; this
511
+ # is done so short-circuiting can be done
512
+ # without having to sympify all values
513
+ _args = frozenset(cls._new_args_filter(args))
514
+ except ShortCircuit:
515
+ return sympify(cls.zero)
516
+ if not _args:
517
+ return sympify(cls.identity)
518
+ elif len(_args) == 1:
519
+ return set(_args).pop()
520
+ else:
521
+ # XXX in almost every other case for __new__, *_args is
522
+ # passed along, but the expectation here is for _args
523
+ obj = super(AssocOp, cls).__new__(cls, *ordered(_args))
524
+ obj._argset = _args
525
+ return obj
526
+
527
+ @classmethod
528
+ def _new_args_filter(cls, arg_sequence, call_cls=None):
529
+ """Generator filtering args"""
530
+ ncls = call_cls or cls
531
+ for arg in arg_sequence:
532
+ if arg == ncls.zero:
533
+ raise ShortCircuit(arg)
534
+ elif arg == ncls.identity:
535
+ continue
536
+ elif arg.func == ncls:
537
+ yield from arg.args
538
+ else:
539
+ yield arg
540
+
541
+ @classmethod
542
+ def make_args(cls, expr):
543
+ """
544
+ Return a set of args such that cls(*arg_set) == expr.
545
+ """
546
+ if isinstance(expr, cls):
547
+ return expr._argset
548
+ else:
549
+ return frozenset([sympify(expr)])
550
+
551
+ @staticmethod
552
+ def _compare_pretty(a, b):
553
+ return (str(a) > str(b)) - (str(a) < str(b))
554
+
555
+
556
+ class AssocOpDispatcher:
557
+ """
558
+ Handler dispatcher for associative operators
559
+
560
+ .. notes::
561
+ This approach is experimental, and can be replaced or deleted in the future.
562
+ See https://github.com/sympy/sympy/pull/19463.
563
+
564
+ Explanation
565
+ ===========
566
+
567
+ If arguments of different types are passed, the classes which handle the operation for each type
568
+ are collected. Then, a class which performs the operation is selected by recursive binary dispatching.
569
+ Dispatching relation can be registered by ``register_handlerclass`` method.
570
+
571
+ Priority registration is unordered. You cannot make ``A*B`` and ``B*A`` refer to
572
+ different handler classes. All logic dealing with the order of arguments must be implemented
573
+ in the handler class.
574
+
575
+ Examples
576
+ ========
577
+
578
+ >>> from sympy import Add, Expr, Symbol
579
+ >>> from sympy.core.add import add
580
+
581
+ >>> class NewExpr(Expr):
582
+ ... @property
583
+ ... def _add_handler(self):
584
+ ... return NewAdd
585
+ >>> class NewAdd(NewExpr, Add):
586
+ ... pass
587
+ >>> add.register_handlerclass((Add, NewAdd), NewAdd)
588
+
589
+ >>> a, b = Symbol('a'), NewExpr()
590
+ >>> add(a, b) == NewAdd(a, b)
591
+ True
592
+
593
+ """
594
+ def __init__(self, name, doc=None):
595
+ self.name = name
596
+ self.doc = doc
597
+ self.handlerattr = "_%s_handler" % name
598
+ self._handlergetter = attrgetter(self.handlerattr)
599
+ self._dispatcher = Dispatcher(name)
600
+
601
+ def __repr__(self):
602
+ return "<dispatched %s>" % self.name
603
+
604
+ def register_handlerclass(self, classes, typ, on_ambiguity=ambiguity_register_error_ignore_dup):
605
+ """
606
+ Register the handler class for two classes, in both straight and reversed order.
607
+
608
+ Paramteters
609
+ ===========
610
+
611
+ classes : tuple of two types
612
+ Classes who are compared with each other.
613
+
614
+ typ:
615
+ Class which is registered to represent *cls1* and *cls2*.
616
+ Handler method of *self* must be implemented in this class.
617
+ """
618
+ if not len(classes) == 2:
619
+ raise RuntimeError(
620
+ "Only binary dispatch is supported, but got %s types: <%s>." % (
621
+ len(classes), str_signature(classes)
622
+ ))
623
+ if len(set(classes)) == 1:
624
+ raise RuntimeError(
625
+ "Duplicate types <%s> cannot be dispatched." % str_signature(classes)
626
+ )
627
+ self._dispatcher.add(tuple(classes), typ, on_ambiguity=on_ambiguity)
628
+ self._dispatcher.add(tuple(reversed(classes)), typ, on_ambiguity=on_ambiguity)
629
+
630
+ @cacheit
631
+ def __call__(self, *args, _sympify=True, **kwargs):
632
+ """
633
+ Parameters
634
+ ==========
635
+
636
+ *args :
637
+ Arguments which are operated
638
+ """
639
+ if _sympify:
640
+ args = tuple(map(_sympify_, args))
641
+ handlers = frozenset(map(self._handlergetter, args))
642
+
643
+ # no need to sympify again
644
+ return self.dispatch(handlers)(*args, _sympify=False, **kwargs)
645
+
646
+ @cacheit
647
+ def dispatch(self, handlers):
648
+ """
649
+ Select the handler class, and return its handler method.
650
+ """
651
+
652
+ # Quick exit for the case where all handlers are same
653
+ if len(handlers) == 1:
654
+ h, = handlers
655
+ if not isinstance(h, type):
656
+ raise RuntimeError("Handler {!r} is not a type.".format(h))
657
+ return h
658
+
659
+ # Recursively select with registered binary priority
660
+ for i, typ in enumerate(handlers):
661
+
662
+ if not isinstance(typ, type):
663
+ raise RuntimeError("Handler {!r} is not a type.".format(typ))
664
+
665
+ if i == 0:
666
+ handler = typ
667
+ else:
668
+ prev_handler = handler
669
+ handler = self._dispatcher.dispatch(prev_handler, typ)
670
+
671
+ if not isinstance(handler, type):
672
+ raise RuntimeError(
673
+ "Dispatcher for {!r} and {!r} must return a type, but got {!r}".format(
674
+ prev_handler, typ, handler
675
+ ))
676
+
677
+ # return handler class
678
+ return handler
679
+
680
+ @property
681
+ def __doc__(self):
682
+ docs = [
683
+ "Multiply dispatched associative operator: %s" % self.name,
684
+ "Note that support for this is experimental, see the docs for :class:`AssocOpDispatcher` for details"
685
+ ]
686
+
687
+ if self.doc:
688
+ docs.append(self.doc)
689
+
690
+ s = "Registered handler classes\n"
691
+ s += '=' * len(s)
692
+ docs.append(s)
693
+
694
+ amb_sigs = []
695
+
696
+ typ_sigs = defaultdict(list)
697
+ for sigs in self._dispatcher.ordering[::-1]:
698
+ key = self._dispatcher.funcs[sigs]
699
+ typ_sigs[key].append(sigs)
700
+
701
+ for typ, sigs in typ_sigs.items():
702
+
703
+ sigs_str = ', '.join('<%s>' % str_signature(sig) for sig in sigs)
704
+
705
+ if isinstance(typ, RaiseNotImplementedError):
706
+ amb_sigs.append(sigs_str)
707
+ continue
708
+
709
+ s = 'Inputs: %s\n' % sigs_str
710
+ s += '-' * len(s) + '\n'
711
+ s += typ.__name__
712
+ docs.append(s)
713
+
714
+ if amb_sigs:
715
+ s = "Ambiguous handler classes\n"
716
+ s += '=' * len(s)
717
+ docs.append(s)
718
+
719
+ s = '\n'.join(amb_sigs)
720
+ docs.append(s)
721
+
722
+ return '\n\n'.join(docs)
llmeval-env/lib/python3.10/site-packages/sympy/core/power.py ADDED
@@ -0,0 +1,2004 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from typing import Callable
3
+ from math import log as _log, sqrt as _sqrt
4
+ from itertools import product
5
+
6
+ from .sympify import _sympify
7
+ from .cache import cacheit
8
+ from .singleton import S
9
+ from .expr import Expr
10
+ from .evalf import PrecisionExhausted
11
+ from .function import (expand_complex, expand_multinomial,
12
+ expand_mul, _mexpand, PoleError)
13
+ from .logic import fuzzy_bool, fuzzy_not, fuzzy_and, fuzzy_or
14
+ from .parameters import global_parameters
15
+ from .relational import is_gt, is_lt
16
+ from .kind import NumberKind, UndefinedKind
17
+ from sympy.external.gmpy import HAS_GMPY, gmpy
18
+ from sympy.utilities.iterables import sift
19
+ from sympy.utilities.exceptions import sympy_deprecation_warning
20
+ from sympy.utilities.misc import as_int
21
+ from sympy.multipledispatch import Dispatcher
22
+
23
+ from mpmath.libmp import sqrtrem as mpmath_sqrtrem
24
+
25
+
26
+
27
+ def isqrt(n):
28
+ """Return the largest integer less than or equal to sqrt(n)."""
29
+ if n < 0:
30
+ raise ValueError("n must be nonnegative")
31
+ n = int(n)
32
+
33
+ # Fast path: with IEEE 754 binary64 floats and a correctly-rounded
34
+ # math.sqrt, int(math.sqrt(n)) works for any integer n satisfying 0 <= n <
35
+ # 4503599761588224 = 2**52 + 2**27. But Python doesn't guarantee either
36
+ # IEEE 754 format floats *or* correct rounding of math.sqrt, so check the
37
+ # answer and fall back to the slow method if necessary.
38
+ if n < 4503599761588224:
39
+ s = int(_sqrt(n))
40
+ if 0 <= n - s*s <= 2*s:
41
+ return s
42
+
43
+ return integer_nthroot(n, 2)[0]
44
+
45
+
46
+ def integer_nthroot(y, n):
47
+ """
48
+ Return a tuple containing x = floor(y**(1/n))
49
+ and a boolean indicating whether the result is exact (that is,
50
+ whether x**n == y).
51
+
52
+ Examples
53
+ ========
54
+
55
+ >>> from sympy import integer_nthroot
56
+ >>> integer_nthroot(16, 2)
57
+ (4, True)
58
+ >>> integer_nthroot(26, 2)
59
+ (5, False)
60
+
61
+ To simply determine if a number is a perfect square, the is_square
62
+ function should be used:
63
+
64
+ >>> from sympy.ntheory.primetest import is_square
65
+ >>> is_square(26)
66
+ False
67
+
68
+ See Also
69
+ ========
70
+ sympy.ntheory.primetest.is_square
71
+ integer_log
72
+ """
73
+ y, n = as_int(y), as_int(n)
74
+ if y < 0:
75
+ raise ValueError("y must be nonnegative")
76
+ if n < 1:
77
+ raise ValueError("n must be positive")
78
+ if HAS_GMPY and n < 2**63:
79
+ # Currently it works only for n < 2**63, else it produces TypeError
80
+ # sympy issue: https://github.com/sympy/sympy/issues/18374
81
+ # gmpy2 issue: https://github.com/aleaxit/gmpy/issues/257
82
+ if HAS_GMPY >= 2:
83
+ x, t = gmpy.iroot(y, n)
84
+ else:
85
+ x, t = gmpy.root(y, n)
86
+ return as_int(x), bool(t)
87
+ return _integer_nthroot_python(y, n)
88
+
89
+ def _integer_nthroot_python(y, n):
90
+ if y in (0, 1):
91
+ return y, True
92
+ if n == 1:
93
+ return y, True
94
+ if n == 2:
95
+ x, rem = mpmath_sqrtrem(y)
96
+ return int(x), not rem
97
+ if n >= y.bit_length():
98
+ return 1, False
99
+ # Get initial estimate for Newton's method. Care must be taken to
100
+ # avoid overflow
101
+ try:
102
+ guess = int(y**(1./n) + 0.5)
103
+ except OverflowError:
104
+ exp = _log(y, 2)/n
105
+ if exp > 53:
106
+ shift = int(exp - 53)
107
+ guess = int(2.0**(exp - shift) + 1) << shift
108
+ else:
109
+ guess = int(2.0**exp)
110
+ if guess > 2**50:
111
+ # Newton iteration
112
+ xprev, x = -1, guess
113
+ while 1:
114
+ t = x**(n - 1)
115
+ xprev, x = x, ((n - 1)*x + y//t)//n
116
+ if abs(x - xprev) < 2:
117
+ break
118
+ else:
119
+ x = guess
120
+ # Compensate
121
+ t = x**n
122
+ while t < y:
123
+ x += 1
124
+ t = x**n
125
+ while t > y:
126
+ x -= 1
127
+ t = x**n
128
+ return int(x), t == y # int converts long to int if possible
129
+
130
+
131
+ def integer_log(y, x):
132
+ r"""
133
+ Returns ``(e, bool)`` where e is the largest nonnegative integer
134
+ such that :math:`|y| \geq |x^e|` and ``bool`` is True if $y = x^e$.
135
+
136
+ Examples
137
+ ========
138
+
139
+ >>> from sympy import integer_log
140
+ >>> integer_log(125, 5)
141
+ (3, True)
142
+ >>> integer_log(17, 9)
143
+ (1, False)
144
+ >>> integer_log(4, -2)
145
+ (2, True)
146
+ >>> integer_log(-125,-5)
147
+ (3, True)
148
+
149
+ See Also
150
+ ========
151
+ integer_nthroot
152
+ sympy.ntheory.primetest.is_square
153
+ sympy.ntheory.factor_.multiplicity
154
+ sympy.ntheory.factor_.perfect_power
155
+ """
156
+ if x == 1:
157
+ raise ValueError('x cannot take value as 1')
158
+ if y == 0:
159
+ raise ValueError('y cannot take value as 0')
160
+
161
+ if x in (-2, 2):
162
+ x = int(x)
163
+ y = as_int(y)
164
+ e = y.bit_length() - 1
165
+ return e, x**e == y
166
+ if x < 0:
167
+ n, b = integer_log(y if y > 0 else -y, -x)
168
+ return n, b and bool(n % 2 if y < 0 else not n % 2)
169
+
170
+ x = as_int(x)
171
+ y = as_int(y)
172
+ r = e = 0
173
+ while y >= x:
174
+ d = x
175
+ m = 1
176
+ while y >= d:
177
+ y, rem = divmod(y, d)
178
+ r = r or rem
179
+ e += m
180
+ if y > d:
181
+ d *= d
182
+ m *= 2
183
+ return e, r == 0 and y == 1
184
+
185
+
186
+ class Pow(Expr):
187
+ """
188
+ Defines the expression x**y as "x raised to a power y"
189
+
190
+ .. deprecated:: 1.7
191
+
192
+ Using arguments that aren't subclasses of :class:`~.Expr` in core
193
+ operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
194
+ deprecated. See :ref:`non-expr-args-deprecated` for details.
195
+
196
+ Singleton definitions involving (0, 1, -1, oo, -oo, I, -I):
197
+
198
+ +--------------+---------+-----------------------------------------------+
199
+ | expr | value | reason |
200
+ +==============+=========+===============================================+
201
+ | z**0 | 1 | Although arguments over 0**0 exist, see [2]. |
202
+ +--------------+---------+-----------------------------------------------+
203
+ | z**1 | z | |
204
+ +--------------+---------+-----------------------------------------------+
205
+ | (-oo)**(-1) | 0 | |
206
+ +--------------+---------+-----------------------------------------------+
207
+ | (-1)**-1 | -1 | |
208
+ +--------------+---------+-----------------------------------------------+
209
+ | S.Zero**-1 | zoo | This is not strictly true, as 0**-1 may be |
210
+ | | | undefined, but is convenient in some contexts |
211
+ | | | where the base is assumed to be positive. |
212
+ +--------------+---------+-----------------------------------------------+
213
+ | 1**-1 | 1 | |
214
+ +--------------+---------+-----------------------------------------------+
215
+ | oo**-1 | 0 | |
216
+ +--------------+---------+-----------------------------------------------+
217
+ | 0**oo | 0 | Because for all complex numbers z near |
218
+ | | | 0, z**oo -> 0. |
219
+ +--------------+---------+-----------------------------------------------+
220
+ | 0**-oo | zoo | This is not strictly true, as 0**oo may be |
221
+ | | | oscillating between positive and negative |
222
+ | | | values or rotating in the complex plane. |
223
+ | | | It is convenient, however, when the base |
224
+ | | | is positive. |
225
+ +--------------+---------+-----------------------------------------------+
226
+ | 1**oo | nan | Because there are various cases where |
227
+ | 1**-oo | | lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), |
228
+ | | | but lim( x(t)**y(t), t) != 1. See [3]. |
229
+ +--------------+---------+-----------------------------------------------+
230
+ | b**zoo | nan | Because b**z has no limit as z -> zoo |
231
+ +--------------+---------+-----------------------------------------------+
232
+ | (-1)**oo | nan | Because of oscillations in the limit. |
233
+ | (-1)**(-oo) | | |
234
+ +--------------+---------+-----------------------------------------------+
235
+ | oo**oo | oo | |
236
+ +--------------+---------+-----------------------------------------------+
237
+ | oo**-oo | 0 | |
238
+ +--------------+---------+-----------------------------------------------+
239
+ | (-oo)**oo | nan | |
240
+ | (-oo)**-oo | | |
241
+ +--------------+---------+-----------------------------------------------+
242
+ | oo**I | nan | oo**e could probably be best thought of as |
243
+ | (-oo)**I | | the limit of x**e for real x as x tends to |
244
+ | | | oo. If e is I, then the limit does not exist |
245
+ | | | and nan is used to indicate that. |
246
+ +--------------+---------+-----------------------------------------------+
247
+ | oo**(1+I) | zoo | If the real part of e is positive, then the |
248
+ | (-oo)**(1+I) | | limit of abs(x**e) is oo. So the limit value |
249
+ | | | is zoo. |
250
+ +--------------+---------+-----------------------------------------------+
251
+ | oo**(-1+I) | 0 | If the real part of e is negative, then the |
252
+ | -oo**(-1+I) | | limit is 0. |
253
+ +--------------+---------+-----------------------------------------------+
254
+
255
+ Because symbolic computations are more flexible than floating point
256
+ calculations and we prefer to never return an incorrect answer,
257
+ we choose not to conform to all IEEE 754 conventions. This helps
258
+ us avoid extra test-case code in the calculation of limits.
259
+
260
+ See Also
261
+ ========
262
+
263
+ sympy.core.numbers.Infinity
264
+ sympy.core.numbers.NegativeInfinity
265
+ sympy.core.numbers.NaN
266
+
267
+ References
268
+ ==========
269
+
270
+ .. [1] https://en.wikipedia.org/wiki/Exponentiation
271
+ .. [2] https://en.wikipedia.org/wiki/Zero_to_the_power_of_zero
272
+ .. [3] https://en.wikipedia.org/wiki/Indeterminate_forms
273
+
274
+ """
275
+ is_Pow = True
276
+
277
+ __slots__ = ('is_commutative',)
278
+
279
+ args: tuple[Expr, Expr]
280
+ _args: tuple[Expr, Expr]
281
+
282
+ @cacheit
283
+ def __new__(cls, b, e, evaluate=None):
284
+ if evaluate is None:
285
+ evaluate = global_parameters.evaluate
286
+
287
+ b = _sympify(b)
288
+ e = _sympify(e)
289
+
290
+ # XXX: This can be removed when non-Expr args are disallowed rather
291
+ # than deprecated.
292
+ from .relational import Relational
293
+ if isinstance(b, Relational) or isinstance(e, Relational):
294
+ raise TypeError('Relational cannot be used in Pow')
295
+
296
+ # XXX: This should raise TypeError once deprecation period is over:
297
+ for arg in [b, e]:
298
+ if not isinstance(arg, Expr):
299
+ sympy_deprecation_warning(
300
+ f"""
301
+ Using non-Expr arguments in Pow is deprecated (in this case, one of the
302
+ arguments is of type {type(arg).__name__!r}).
303
+
304
+ If you really did intend to construct a power with this base, use the **
305
+ operator instead.""",
306
+ deprecated_since_version="1.7",
307
+ active_deprecations_target="non-expr-args-deprecated",
308
+ stacklevel=4,
309
+ )
310
+
311
+ if evaluate:
312
+ if e is S.ComplexInfinity:
313
+ return S.NaN
314
+ if e is S.Infinity:
315
+ if is_gt(b, S.One):
316
+ return S.Infinity
317
+ if is_gt(b, S.NegativeOne) and is_lt(b, S.One):
318
+ return S.Zero
319
+ if is_lt(b, S.NegativeOne):
320
+ if b.is_finite:
321
+ return S.ComplexInfinity
322
+ if b.is_finite is False:
323
+ return S.NaN
324
+ if e is S.Zero:
325
+ return S.One
326
+ elif e is S.One:
327
+ return b
328
+ elif e == -1 and not b:
329
+ return S.ComplexInfinity
330
+ elif e.__class__.__name__ == "AccumulationBounds":
331
+ if b == S.Exp1:
332
+ from sympy.calculus.accumulationbounds import AccumBounds
333
+ return AccumBounds(Pow(b, e.min), Pow(b, e.max))
334
+ # autosimplification if base is a number and exp odd/even
335
+ # if base is Number then the base will end up positive; we
336
+ # do not do this with arbitrary expressions since symbolic
337
+ # cancellation might occur as in (x - 1)/(1 - x) -> -1. If
338
+ # we returned Piecewise((-1, Ne(x, 1))) for such cases then
339
+ # we could do this...but we don't
340
+ elif (e.is_Symbol and e.is_integer or e.is_Integer
341
+ ) and (b.is_number and b.is_Mul or b.is_Number
342
+ ) and b.could_extract_minus_sign():
343
+ if e.is_even:
344
+ b = -b
345
+ elif e.is_odd:
346
+ return -Pow(-b, e)
347
+ if S.NaN in (b, e): # XXX S.NaN**x -> S.NaN under assumption that x != 0
348
+ return S.NaN
349
+ elif b is S.One:
350
+ if abs(e).is_infinite:
351
+ return S.NaN
352
+ return S.One
353
+ else:
354
+ # recognize base as E
355
+ from sympy.functions.elementary.exponential import exp_polar
356
+ if not e.is_Atom and b is not S.Exp1 and not isinstance(b, exp_polar):
357
+ from .exprtools import factor_terms
358
+ from sympy.functions.elementary.exponential import log
359
+ from sympy.simplify.radsimp import fraction
360
+ c, ex = factor_terms(e, sign=False).as_coeff_Mul()
361
+ num, den = fraction(ex)
362
+ if isinstance(den, log) and den.args[0] == b:
363
+ return S.Exp1**(c*num)
364
+ elif den.is_Add:
365
+ from sympy.functions.elementary.complexes import sign, im
366
+ s = sign(im(b))
367
+ if s.is_Number and s and den == \
368
+ log(-factor_terms(b, sign=False)) + s*S.ImaginaryUnit*S.Pi:
369
+ return S.Exp1**(c*num)
370
+
371
+ obj = b._eval_power(e)
372
+ if obj is not None:
373
+ return obj
374
+ obj = Expr.__new__(cls, b, e)
375
+ obj = cls._exec_constructor_postprocessors(obj)
376
+ if not isinstance(obj, Pow):
377
+ return obj
378
+ obj.is_commutative = (b.is_commutative and e.is_commutative)
379
+ return obj
380
+
381
+ def inverse(self, argindex=1):
382
+ if self.base == S.Exp1:
383
+ from sympy.functions.elementary.exponential import log
384
+ return log
385
+ return None
386
+
387
+ @property
388
+ def base(self) -> Expr:
389
+ return self._args[0]
390
+
391
+ @property
392
+ def exp(self) -> Expr:
393
+ return self._args[1]
394
+
395
+ @property
396
+ def kind(self):
397
+ if self.exp.kind is NumberKind:
398
+ return self.base.kind
399
+ else:
400
+ return UndefinedKind
401
+
402
+ @classmethod
403
+ def class_key(cls):
404
+ return 3, 2, cls.__name__
405
+
406
+ def _eval_refine(self, assumptions):
407
+ from sympy.assumptions.ask import ask, Q
408
+ b, e = self.as_base_exp()
409
+ if ask(Q.integer(e), assumptions) and b.could_extract_minus_sign():
410
+ if ask(Q.even(e), assumptions):
411
+ return Pow(-b, e)
412
+ elif ask(Q.odd(e), assumptions):
413
+ return -Pow(-b, e)
414
+
415
+ def _eval_power(self, other):
416
+ b, e = self.as_base_exp()
417
+ if b is S.NaN:
418
+ return (b**e)**other # let __new__ handle it
419
+
420
+ s = None
421
+ if other.is_integer:
422
+ s = 1
423
+ elif b.is_polar: # e.g. exp_polar, besselj, var('p', polar=True)...
424
+ s = 1
425
+ elif e.is_extended_real is not None:
426
+ from sympy.functions.elementary.complexes import arg, im, re, sign
427
+ from sympy.functions.elementary.exponential import exp, log
428
+ from sympy.functions.elementary.integers import floor
429
+ # helper functions ===========================
430
+ def _half(e):
431
+ """Return True if the exponent has a literal 2 as the
432
+ denominator, else None."""
433
+ if getattr(e, 'q', None) == 2:
434
+ return True
435
+ n, d = e.as_numer_denom()
436
+ if n.is_integer and d == 2:
437
+ return True
438
+ def _n2(e):
439
+ """Return ``e`` evaluated to a Number with 2 significant
440
+ digits, else None."""
441
+ try:
442
+ rv = e.evalf(2, strict=True)
443
+ if rv.is_Number:
444
+ return rv
445
+ except PrecisionExhausted:
446
+ pass
447
+ # ===================================================
448
+ if e.is_extended_real:
449
+ # we need _half(other) with constant floor or
450
+ # floor(S.Half - e*arg(b)/2/pi) == 0
451
+
452
+
453
+ # handle -1 as special case
454
+ if e == -1:
455
+ # floor arg. is 1/2 + arg(b)/2/pi
456
+ if _half(other):
457
+ if b.is_negative is True:
458
+ return S.NegativeOne**other*Pow(-b, e*other)
459
+ elif b.is_negative is False: # XXX ok if im(b) != 0?
460
+ return Pow(b, -other)
461
+ elif e.is_even:
462
+ if b.is_extended_real:
463
+ b = abs(b)
464
+ if b.is_imaginary:
465
+ b = abs(im(b))*S.ImaginaryUnit
466
+
467
+ if (abs(e) < 1) == True or e == 1:
468
+ s = 1 # floor = 0
469
+ elif b.is_extended_nonnegative:
470
+ s = 1 # floor = 0
471
+ elif re(b).is_extended_nonnegative and (abs(e) < 2) == True:
472
+ s = 1 # floor = 0
473
+ elif _half(other):
474
+ s = exp(2*S.Pi*S.ImaginaryUnit*other*floor(
475
+ S.Half - e*arg(b)/(2*S.Pi)))
476
+ if s.is_extended_real and _n2(sign(s) - s) == 0:
477
+ s = sign(s)
478
+ else:
479
+ s = None
480
+ else:
481
+ # e.is_extended_real is False requires:
482
+ # _half(other) with constant floor or
483
+ # floor(S.Half - im(e*log(b))/2/pi) == 0
484
+ try:
485
+ s = exp(2*S.ImaginaryUnit*S.Pi*other*
486
+ floor(S.Half - im(e*log(b))/2/S.Pi))
487
+ # be careful to test that s is -1 or 1 b/c sign(I) == I:
488
+ # so check that s is real
489
+ if s.is_extended_real and _n2(sign(s) - s) == 0:
490
+ s = sign(s)
491
+ else:
492
+ s = None
493
+ except PrecisionExhausted:
494
+ s = None
495
+
496
+ if s is not None:
497
+ return s*Pow(b, e*other)
498
+
499
+ def _eval_Mod(self, q):
500
+ r"""A dispatched function to compute `b^e \bmod q`, dispatched
501
+ by ``Mod``.
502
+
503
+ Notes
504
+ =====
505
+
506
+ Algorithms:
507
+
508
+ 1. For unevaluated integer power, use built-in ``pow`` function
509
+ with 3 arguments, if powers are not too large wrt base.
510
+
511
+ 2. For very large powers, use totient reduction if $e \ge \log(m)$.
512
+ Bound on m, is for safe factorization memory wise i.e. $m^{1/4}$.
513
+ For pollard-rho to be faster than built-in pow $\log(e) > m^{1/4}$
514
+ check is added.
515
+
516
+ 3. For any unevaluated power found in `b` or `e`, the step 2
517
+ will be recursed down to the base and the exponent
518
+ such that the $b \bmod q$ becomes the new base and
519
+ $\phi(q) + e \bmod \phi(q)$ becomes the new exponent, and then
520
+ the computation for the reduced expression can be done.
521
+ """
522
+
523
+ base, exp = self.base, self.exp
524
+
525
+ if exp.is_integer and exp.is_positive:
526
+ if q.is_integer and base % q == 0:
527
+ return S.Zero
528
+
529
+ from sympy.ntheory.factor_ import totient
530
+
531
+ if base.is_Integer and exp.is_Integer and q.is_Integer:
532
+ b, e, m = int(base), int(exp), int(q)
533
+ mb = m.bit_length()
534
+ if mb <= 80 and e >= mb and e.bit_length()**4 >= m:
535
+ phi = int(totient(m))
536
+ return Integer(pow(b, phi + e%phi, m))
537
+ return Integer(pow(b, e, m))
538
+
539
+ from .mod import Mod
540
+
541
+ if isinstance(base, Pow) and base.is_integer and base.is_number:
542
+ base = Mod(base, q)
543
+ return Mod(Pow(base, exp, evaluate=False), q)
544
+
545
+ if isinstance(exp, Pow) and exp.is_integer and exp.is_number:
546
+ bit_length = int(q).bit_length()
547
+ # XXX Mod-Pow actually attempts to do a hanging evaluation
548
+ # if this dispatched function returns None.
549
+ # May need some fixes in the dispatcher itself.
550
+ if bit_length <= 80:
551
+ phi = totient(q)
552
+ exp = phi + Mod(exp, phi)
553
+ return Mod(Pow(base, exp, evaluate=False), q)
554
+
555
+ def _eval_is_even(self):
556
+ if self.exp.is_integer and self.exp.is_positive:
557
+ return self.base.is_even
558
+
559
+ def _eval_is_negative(self):
560
+ ext_neg = Pow._eval_is_extended_negative(self)
561
+ if ext_neg is True:
562
+ return self.is_finite
563
+ return ext_neg
564
+
565
+ def _eval_is_extended_positive(self):
566
+ if self.base == self.exp:
567
+ if self.base.is_extended_nonnegative:
568
+ return True
569
+ elif self.base.is_positive:
570
+ if self.exp.is_real:
571
+ return True
572
+ elif self.base.is_extended_negative:
573
+ if self.exp.is_even:
574
+ return True
575
+ if self.exp.is_odd:
576
+ return False
577
+ elif self.base.is_zero:
578
+ if self.exp.is_extended_real:
579
+ return self.exp.is_zero
580
+ elif self.base.is_extended_nonpositive:
581
+ if self.exp.is_odd:
582
+ return False
583
+ elif self.base.is_imaginary:
584
+ if self.exp.is_integer:
585
+ m = self.exp % 4
586
+ if m.is_zero:
587
+ return True
588
+ if m.is_integer and m.is_zero is False:
589
+ return False
590
+ if self.exp.is_imaginary:
591
+ from sympy.functions.elementary.exponential import log
592
+ return log(self.base).is_imaginary
593
+
594
+ def _eval_is_extended_negative(self):
595
+ if self.exp is S.Half:
596
+ if self.base.is_complex or self.base.is_extended_real:
597
+ return False
598
+ if self.base.is_extended_negative:
599
+ if self.exp.is_odd and self.base.is_finite:
600
+ return True
601
+ if self.exp.is_even:
602
+ return False
603
+ elif self.base.is_extended_positive:
604
+ if self.exp.is_extended_real:
605
+ return False
606
+ elif self.base.is_zero:
607
+ if self.exp.is_extended_real:
608
+ return False
609
+ elif self.base.is_extended_nonnegative:
610
+ if self.exp.is_extended_nonnegative:
611
+ return False
612
+ elif self.base.is_extended_nonpositive:
613
+ if self.exp.is_even:
614
+ return False
615
+ elif self.base.is_extended_real:
616
+ if self.exp.is_even:
617
+ return False
618
+
619
+ def _eval_is_zero(self):
620
+ if self.base.is_zero:
621
+ if self.exp.is_extended_positive:
622
+ return True
623
+ elif self.exp.is_extended_nonpositive:
624
+ return False
625
+ elif self.base == S.Exp1:
626
+ return self.exp is S.NegativeInfinity
627
+ elif self.base.is_zero is False:
628
+ if self.base.is_finite and self.exp.is_finite:
629
+ return False
630
+ elif self.exp.is_negative:
631
+ return self.base.is_infinite
632
+ elif self.exp.is_nonnegative:
633
+ return False
634
+ elif self.exp.is_infinite and self.exp.is_extended_real:
635
+ if (1 - abs(self.base)).is_extended_positive:
636
+ return self.exp.is_extended_positive
637
+ elif (1 - abs(self.base)).is_extended_negative:
638
+ return self.exp.is_extended_negative
639
+ elif self.base.is_finite and self.exp.is_negative:
640
+ # when self.base.is_zero is None
641
+ return False
642
+
643
+ def _eval_is_integer(self):
644
+ b, e = self.args
645
+ if b.is_rational:
646
+ if b.is_integer is False and e.is_positive:
647
+ return False # rat**nonneg
648
+ if b.is_integer and e.is_integer:
649
+ if b is S.NegativeOne:
650
+ return True
651
+ if e.is_nonnegative or e.is_positive:
652
+ return True
653
+ if b.is_integer and e.is_negative and (e.is_finite or e.is_integer):
654
+ if fuzzy_not((b - 1).is_zero) and fuzzy_not((b + 1).is_zero):
655
+ return False
656
+ if b.is_Number and e.is_Number:
657
+ check = self.func(*self.args)
658
+ return check.is_Integer
659
+ if e.is_negative and b.is_positive and (b - 1).is_positive:
660
+ return False
661
+ if e.is_negative and b.is_negative and (b + 1).is_negative:
662
+ return False
663
+
664
+ def _eval_is_extended_real(self):
665
+ if self.base is S.Exp1:
666
+ if self.exp.is_extended_real:
667
+ return True
668
+ elif self.exp.is_imaginary:
669
+ return (2*S.ImaginaryUnit*self.exp/S.Pi).is_even
670
+
671
+ from sympy.functions.elementary.exponential import log, exp
672
+ real_b = self.base.is_extended_real
673
+ if real_b is None:
674
+ if self.base.func == exp and self.base.exp.is_imaginary:
675
+ return self.exp.is_imaginary
676
+ if self.base.func == Pow and self.base.base is S.Exp1 and self.base.exp.is_imaginary:
677
+ return self.exp.is_imaginary
678
+ return
679
+ real_e = self.exp.is_extended_real
680
+ if real_e is None:
681
+ return
682
+ if real_b and real_e:
683
+ if self.base.is_extended_positive:
684
+ return True
685
+ elif self.base.is_extended_nonnegative and self.exp.is_extended_nonnegative:
686
+ return True
687
+ elif self.exp.is_integer and self.base.is_extended_nonzero:
688
+ return True
689
+ elif self.exp.is_integer and self.exp.is_nonnegative:
690
+ return True
691
+ elif self.base.is_extended_negative:
692
+ if self.exp.is_Rational:
693
+ return False
694
+ if real_e and self.exp.is_extended_negative and self.base.is_zero is False:
695
+ return Pow(self.base, -self.exp).is_extended_real
696
+ im_b = self.base.is_imaginary
697
+ im_e = self.exp.is_imaginary
698
+ if im_b:
699
+ if self.exp.is_integer:
700
+ if self.exp.is_even:
701
+ return True
702
+ elif self.exp.is_odd:
703
+ return False
704
+ elif im_e and log(self.base).is_imaginary:
705
+ return True
706
+ elif self.exp.is_Add:
707
+ c, a = self.exp.as_coeff_Add()
708
+ if c and c.is_Integer:
709
+ return Mul(
710
+ self.base**c, self.base**a, evaluate=False).is_extended_real
711
+ elif self.base in (-S.ImaginaryUnit, S.ImaginaryUnit):
712
+ if (self.exp/2).is_integer is False:
713
+ return False
714
+ if real_b and im_e:
715
+ if self.base is S.NegativeOne:
716
+ return True
717
+ c = self.exp.coeff(S.ImaginaryUnit)
718
+ if c:
719
+ if self.base.is_rational and c.is_rational:
720
+ if self.base.is_nonzero and (self.base - 1).is_nonzero and c.is_nonzero:
721
+ return False
722
+ ok = (c*log(self.base)/S.Pi).is_integer
723
+ if ok is not None:
724
+ return ok
725
+
726
+ if real_b is False and real_e: # we already know it's not imag
727
+ from sympy.functions.elementary.complexes import arg
728
+ i = arg(self.base)*self.exp/S.Pi
729
+ if i.is_complex: # finite
730
+ return i.is_integer
731
+
732
+ def _eval_is_complex(self):
733
+
734
+ if self.base == S.Exp1:
735
+ return fuzzy_or([self.exp.is_complex, self.exp.is_extended_negative])
736
+
737
+ if all(a.is_complex for a in self.args) and self._eval_is_finite():
738
+ return True
739
+
740
+ def _eval_is_imaginary(self):
741
+ if self.base.is_commutative is False:
742
+ return False
743
+
744
+ if self.base.is_imaginary:
745
+ if self.exp.is_integer:
746
+ odd = self.exp.is_odd
747
+ if odd is not None:
748
+ return odd
749
+ return
750
+
751
+ if self.base == S.Exp1:
752
+ f = 2 * self.exp / (S.Pi*S.ImaginaryUnit)
753
+ # exp(pi*integer) = 1 or -1, so not imaginary
754
+ if f.is_even:
755
+ return False
756
+ # exp(pi*integer + pi/2) = I or -I, so it is imaginary
757
+ if f.is_odd:
758
+ return True
759
+ return None
760
+
761
+ if self.exp.is_imaginary:
762
+ from sympy.functions.elementary.exponential import log
763
+ imlog = log(self.base).is_imaginary
764
+ if imlog is not None:
765
+ return False # I**i -> real; (2*I)**i -> complex ==> not imaginary
766
+
767
+ if self.base.is_extended_real and self.exp.is_extended_real:
768
+ if self.base.is_positive:
769
+ return False
770
+ else:
771
+ rat = self.exp.is_rational
772
+ if not rat:
773
+ return rat
774
+ if self.exp.is_integer:
775
+ return False
776
+ else:
777
+ half = (2*self.exp).is_integer
778
+ if half:
779
+ return self.base.is_negative
780
+ return half
781
+
782
+ if self.base.is_extended_real is False: # we already know it's not imag
783
+ from sympy.functions.elementary.complexes import arg
784
+ i = arg(self.base)*self.exp/S.Pi
785
+ isodd = (2*i).is_odd
786
+ if isodd is not None:
787
+ return isodd
788
+
789
+ def _eval_is_odd(self):
790
+ if self.exp.is_integer:
791
+ if self.exp.is_positive:
792
+ return self.base.is_odd
793
+ elif self.exp.is_nonnegative and self.base.is_odd:
794
+ return True
795
+ elif self.base is S.NegativeOne:
796
+ return True
797
+
798
+ def _eval_is_finite(self):
799
+ if self.exp.is_negative:
800
+ if self.base.is_zero:
801
+ return False
802
+ if self.base.is_infinite or self.base.is_nonzero:
803
+ return True
804
+ c1 = self.base.is_finite
805
+ if c1 is None:
806
+ return
807
+ c2 = self.exp.is_finite
808
+ if c2 is None:
809
+ return
810
+ if c1 and c2:
811
+ if self.exp.is_nonnegative or fuzzy_not(self.base.is_zero):
812
+ return True
813
+
814
+ def _eval_is_prime(self):
815
+ '''
816
+ An integer raised to the n(>=2)-th power cannot be a prime.
817
+ '''
818
+ if self.base.is_integer and self.exp.is_integer and (self.exp - 1).is_positive:
819
+ return False
820
+
821
+ def _eval_is_composite(self):
822
+ """
823
+ A power is composite if both base and exponent are greater than 1
824
+ """
825
+ if (self.base.is_integer and self.exp.is_integer and
826
+ ((self.base - 1).is_positive and (self.exp - 1).is_positive or
827
+ (self.base + 1).is_negative and self.exp.is_positive and self.exp.is_even)):
828
+ return True
829
+
830
+ def _eval_is_polar(self):
831
+ return self.base.is_polar
832
+
833
+ def _eval_subs(self, old, new):
834
+ from sympy.calculus.accumulationbounds import AccumBounds
835
+
836
+ if isinstance(self.exp, AccumBounds):
837
+ b = self.base.subs(old, new)
838
+ e = self.exp.subs(old, new)
839
+ if isinstance(e, AccumBounds):
840
+ return e.__rpow__(b)
841
+ return self.func(b, e)
842
+
843
+ from sympy.functions.elementary.exponential import exp, log
844
+
845
+ def _check(ct1, ct2, old):
846
+ """Return (bool, pow, remainder_pow) where, if bool is True, then the
847
+ exponent of Pow `old` will combine with `pow` so the substitution
848
+ is valid, otherwise bool will be False.
849
+
850
+ For noncommutative objects, `pow` will be an integer, and a factor
851
+ `Pow(old.base, remainder_pow)` needs to be included. If there is
852
+ no such factor, None is returned. For commutative objects,
853
+ remainder_pow is always None.
854
+
855
+ cti are the coefficient and terms of an exponent of self or old
856
+ In this _eval_subs routine a change like (b**(2*x)).subs(b**x, y)
857
+ will give y**2 since (b**x)**2 == b**(2*x); if that equality does
858
+ not hold then the substitution should not occur so `bool` will be
859
+ False.
860
+
861
+ """
862
+ coeff1, terms1 = ct1
863
+ coeff2, terms2 = ct2
864
+ if terms1 == terms2:
865
+ if old.is_commutative:
866
+ # Allow fractional powers for commutative objects
867
+ pow = coeff1/coeff2
868
+ try:
869
+ as_int(pow, strict=False)
870
+ combines = True
871
+ except ValueError:
872
+ b, e = old.as_base_exp()
873
+ # These conditions ensure that (b**e)**f == b**(e*f) for any f
874
+ combines = b.is_positive and e.is_real or b.is_nonnegative and e.is_nonnegative
875
+
876
+ return combines, pow, None
877
+ else:
878
+ # With noncommutative symbols, substitute only integer powers
879
+ if not isinstance(terms1, tuple):
880
+ terms1 = (terms1,)
881
+ if not all(term.is_integer for term in terms1):
882
+ return False, None, None
883
+
884
+ try:
885
+ # Round pow toward zero
886
+ pow, remainder = divmod(as_int(coeff1), as_int(coeff2))
887
+ if pow < 0 and remainder != 0:
888
+ pow += 1
889
+ remainder -= as_int(coeff2)
890
+
891
+ if remainder == 0:
892
+ remainder_pow = None
893
+ else:
894
+ remainder_pow = Mul(remainder, *terms1)
895
+
896
+ return True, pow, remainder_pow
897
+ except ValueError:
898
+ # Can't substitute
899
+ pass
900
+
901
+ return False, None, None
902
+
903
+ if old == self.base or (old == exp and self.base == S.Exp1):
904
+ if new.is_Function and isinstance(new, Callable):
905
+ return new(self.exp._subs(old, new))
906
+ else:
907
+ return new**self.exp._subs(old, new)
908
+
909
+ # issue 10829: (4**x - 3*y + 2).subs(2**x, y) -> y**2 - 3*y + 2
910
+ if isinstance(old, self.func) and self.exp == old.exp:
911
+ l = log(self.base, old.base)
912
+ if l.is_Number:
913
+ return Pow(new, l)
914
+
915
+ if isinstance(old, self.func) and self.base == old.base:
916
+ if self.exp.is_Add is False:
917
+ ct1 = self.exp.as_independent(Symbol, as_Add=False)
918
+ ct2 = old.exp.as_independent(Symbol, as_Add=False)
919
+ ok, pow, remainder_pow = _check(ct1, ct2, old)
920
+ if ok:
921
+ # issue 5180: (x**(6*y)).subs(x**(3*y),z)->z**2
922
+ result = self.func(new, pow)
923
+ if remainder_pow is not None:
924
+ result = Mul(result, Pow(old.base, remainder_pow))
925
+ return result
926
+ else: # b**(6*x + a).subs(b**(3*x), y) -> y**2 * b**a
927
+ # exp(exp(x) + exp(x**2)).subs(exp(exp(x)), w) -> w * exp(exp(x**2))
928
+ oarg = old.exp
929
+ new_l = []
930
+ o_al = []
931
+ ct2 = oarg.as_coeff_mul()
932
+ for a in self.exp.args:
933
+ newa = a._subs(old, new)
934
+ ct1 = newa.as_coeff_mul()
935
+ ok, pow, remainder_pow = _check(ct1, ct2, old)
936
+ if ok:
937
+ new_l.append(new**pow)
938
+ if remainder_pow is not None:
939
+ o_al.append(remainder_pow)
940
+ continue
941
+ elif not old.is_commutative and not newa.is_integer:
942
+ # If any term in the exponent is non-integer,
943
+ # we do not do any substitutions in the noncommutative case
944
+ return
945
+ o_al.append(newa)
946
+ if new_l:
947
+ expo = Add(*o_al)
948
+ new_l.append(Pow(self.base, expo, evaluate=False) if expo != 1 else self.base)
949
+ return Mul(*new_l)
950
+
951
+ if (isinstance(old, exp) or (old.is_Pow and old.base is S.Exp1)) and self.exp.is_extended_real and self.base.is_positive:
952
+ ct1 = old.exp.as_independent(Symbol, as_Add=False)
953
+ ct2 = (self.exp*log(self.base)).as_independent(
954
+ Symbol, as_Add=False)
955
+ ok, pow, remainder_pow = _check(ct1, ct2, old)
956
+ if ok:
957
+ result = self.func(new, pow) # (2**x).subs(exp(x*log(2)), z) -> z
958
+ if remainder_pow is not None:
959
+ result = Mul(result, Pow(old.base, remainder_pow))
960
+ return result
961
+
962
+ def as_base_exp(self):
963
+ """Return base and exp of self.
964
+
965
+ Explanation
966
+ ===========
967
+
968
+ If base a Rational less than 1, then return 1/Rational, -exp.
969
+ If this extra processing is not needed, the base and exp
970
+ properties will give the raw arguments.
971
+
972
+ Examples
973
+ ========
974
+
975
+ >>> from sympy import Pow, S
976
+ >>> p = Pow(S.Half, 2, evaluate=False)
977
+ >>> p.as_base_exp()
978
+ (2, -2)
979
+ >>> p.args
980
+ (1/2, 2)
981
+ >>> p.base, p.exp
982
+ (1/2, 2)
983
+
984
+ """
985
+
986
+ b, e = self.args
987
+ if b.is_Rational and b.p < b.q and b.p > 0:
988
+ return 1/b, -e
989
+ return b, e
990
+
991
+ def _eval_adjoint(self):
992
+ from sympy.functions.elementary.complexes import adjoint
993
+ i, p = self.exp.is_integer, self.base.is_positive
994
+ if i:
995
+ return adjoint(self.base)**self.exp
996
+ if p:
997
+ return self.base**adjoint(self.exp)
998
+ if i is False and p is False:
999
+ expanded = expand_complex(self)
1000
+ if expanded != self:
1001
+ return adjoint(expanded)
1002
+
1003
+ def _eval_conjugate(self):
1004
+ from sympy.functions.elementary.complexes import conjugate as c
1005
+ i, p = self.exp.is_integer, self.base.is_positive
1006
+ if i:
1007
+ return c(self.base)**self.exp
1008
+ if p:
1009
+ return self.base**c(self.exp)
1010
+ if i is False and p is False:
1011
+ expanded = expand_complex(self)
1012
+ if expanded != self:
1013
+ return c(expanded)
1014
+ if self.is_extended_real:
1015
+ return self
1016
+
1017
+ def _eval_transpose(self):
1018
+ from sympy.functions.elementary.complexes import transpose
1019
+ if self.base == S.Exp1:
1020
+ return self.func(S.Exp1, self.exp.transpose())
1021
+ i, p = self.exp.is_integer, (self.base.is_complex or self.base.is_infinite)
1022
+ if p:
1023
+ return self.base**self.exp
1024
+ if i:
1025
+ return transpose(self.base)**self.exp
1026
+ if i is False and p is False:
1027
+ expanded = expand_complex(self)
1028
+ if expanded != self:
1029
+ return transpose(expanded)
1030
+
1031
+ def _eval_expand_power_exp(self, **hints):
1032
+ """a**(n + m) -> a**n*a**m"""
1033
+ b = self.base
1034
+ e = self.exp
1035
+ if b == S.Exp1:
1036
+ from sympy.concrete.summations import Sum
1037
+ if isinstance(e, Sum) and e.is_commutative:
1038
+ from sympy.concrete.products import Product
1039
+ return Product(self.func(b, e.function), *e.limits)
1040
+ if e.is_Add and (hints.get('force', False) or
1041
+ b.is_zero is False or e._all_nonneg_or_nonppos()):
1042
+ if e.is_commutative:
1043
+ return Mul(*[self.func(b, x) for x in e.args])
1044
+ if b.is_commutative:
1045
+ c, nc = sift(e.args, lambda x: x.is_commutative, binary=True)
1046
+ if c:
1047
+ return Mul(*[self.func(b, x) for x in c]
1048
+ )*b**Add._from_args(nc)
1049
+ return self
1050
+
1051
+ def _eval_expand_power_base(self, **hints):
1052
+ """(a*b)**n -> a**n * b**n"""
1053
+ force = hints.get('force', False)
1054
+
1055
+ b = self.base
1056
+ e = self.exp
1057
+ if not b.is_Mul:
1058
+ return self
1059
+
1060
+ cargs, nc = b.args_cnc(split_1=False)
1061
+
1062
+ # expand each term - this is top-level-only
1063
+ # expansion but we have to watch out for things
1064
+ # that don't have an _eval_expand method
1065
+ if nc:
1066
+ nc = [i._eval_expand_power_base(**hints)
1067
+ if hasattr(i, '_eval_expand_power_base') else i
1068
+ for i in nc]
1069
+
1070
+ if e.is_Integer:
1071
+ if e.is_positive:
1072
+ rv = Mul(*nc*e)
1073
+ else:
1074
+ rv = Mul(*[i**-1 for i in nc[::-1]]*-e)
1075
+ if cargs:
1076
+ rv *= Mul(*cargs)**e
1077
+ return rv
1078
+
1079
+ if not cargs:
1080
+ return self.func(Mul(*nc), e, evaluate=False)
1081
+
1082
+ nc = [Mul(*nc)]
1083
+
1084
+ # sift the commutative bases
1085
+ other, maybe_real = sift(cargs, lambda x: x.is_extended_real is False,
1086
+ binary=True)
1087
+ def pred(x):
1088
+ if x is S.ImaginaryUnit:
1089
+ return S.ImaginaryUnit
1090
+ polar = x.is_polar
1091
+ if polar:
1092
+ return True
1093
+ if polar is None:
1094
+ return fuzzy_bool(x.is_extended_nonnegative)
1095
+ sifted = sift(maybe_real, pred)
1096
+ nonneg = sifted[True]
1097
+ other += sifted[None]
1098
+ neg = sifted[False]
1099
+ imag = sifted[S.ImaginaryUnit]
1100
+ if imag:
1101
+ I = S.ImaginaryUnit
1102
+ i = len(imag) % 4
1103
+ if i == 0:
1104
+ pass
1105
+ elif i == 1:
1106
+ other.append(I)
1107
+ elif i == 2:
1108
+ if neg:
1109
+ nonn = -neg.pop()
1110
+ if nonn is not S.One:
1111
+ nonneg.append(nonn)
1112
+ else:
1113
+ neg.append(S.NegativeOne)
1114
+ else:
1115
+ if neg:
1116
+ nonn = -neg.pop()
1117
+ if nonn is not S.One:
1118
+ nonneg.append(nonn)
1119
+ else:
1120
+ neg.append(S.NegativeOne)
1121
+ other.append(I)
1122
+ del imag
1123
+
1124
+ # bring out the bases that can be separated from the base
1125
+
1126
+ if force or e.is_integer:
1127
+ # treat all commutatives the same and put nc in other
1128
+ cargs = nonneg + neg + other
1129
+ other = nc
1130
+ else:
1131
+ # this is just like what is happening automatically, except
1132
+ # that now we are doing it for an arbitrary exponent for which
1133
+ # no automatic expansion is done
1134
+
1135
+ assert not e.is_Integer
1136
+
1137
+ # handle negatives by making them all positive and putting
1138
+ # the residual -1 in other
1139
+ if len(neg) > 1:
1140
+ o = S.One
1141
+ if not other and neg[0].is_Number:
1142
+ o *= neg.pop(0)
1143
+ if len(neg) % 2:
1144
+ o = -o
1145
+ for n in neg:
1146
+ nonneg.append(-n)
1147
+ if o is not S.One:
1148
+ other.append(o)
1149
+ elif neg and other:
1150
+ if neg[0].is_Number and neg[0] is not S.NegativeOne:
1151
+ other.append(S.NegativeOne)
1152
+ nonneg.append(-neg[0])
1153
+ else:
1154
+ other.extend(neg)
1155
+ else:
1156
+ other.extend(neg)
1157
+ del neg
1158
+
1159
+ cargs = nonneg
1160
+ other += nc
1161
+
1162
+ rv = S.One
1163
+ if cargs:
1164
+ if e.is_Rational:
1165
+ npow, cargs = sift(cargs, lambda x: x.is_Pow and
1166
+ x.exp.is_Rational and x.base.is_number,
1167
+ binary=True)
1168
+ rv = Mul(*[self.func(b.func(*b.args), e) for b in npow])
1169
+ rv *= Mul(*[self.func(b, e, evaluate=False) for b in cargs])
1170
+ if other:
1171
+ rv *= self.func(Mul(*other), e, evaluate=False)
1172
+ return rv
1173
+
1174
+ def _eval_expand_multinomial(self, **hints):
1175
+ """(a + b + ..)**n -> a**n + n*a**(n-1)*b + .., n is nonzero integer"""
1176
+
1177
+ base, exp = self.args
1178
+ result = self
1179
+
1180
+ if exp.is_Rational and exp.p > 0 and base.is_Add:
1181
+ if not exp.is_Integer:
1182
+ n = Integer(exp.p // exp.q)
1183
+
1184
+ if not n:
1185
+ return result
1186
+ else:
1187
+ radical, result = self.func(base, exp - n), []
1188
+
1189
+ expanded_base_n = self.func(base, n)
1190
+ if expanded_base_n.is_Pow:
1191
+ expanded_base_n = \
1192
+ expanded_base_n._eval_expand_multinomial()
1193
+ for term in Add.make_args(expanded_base_n):
1194
+ result.append(term*radical)
1195
+
1196
+ return Add(*result)
1197
+
1198
+ n = int(exp)
1199
+
1200
+ if base.is_commutative:
1201
+ order_terms, other_terms = [], []
1202
+
1203
+ for b in base.args:
1204
+ if b.is_Order:
1205
+ order_terms.append(b)
1206
+ else:
1207
+ other_terms.append(b)
1208
+
1209
+ if order_terms:
1210
+ # (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n)
1211
+ f = Add(*other_terms)
1212
+ o = Add(*order_terms)
1213
+
1214
+ if n == 2:
1215
+ return expand_multinomial(f**n, deep=False) + n*f*o
1216
+ else:
1217
+ g = expand_multinomial(f**(n - 1), deep=False)
1218
+ return expand_mul(f*g, deep=False) + n*g*o
1219
+
1220
+ if base.is_number:
1221
+ # Efficiently expand expressions of the form (a + b*I)**n
1222
+ # where 'a' and 'b' are real numbers and 'n' is integer.
1223
+ a, b = base.as_real_imag()
1224
+
1225
+ if a.is_Rational and b.is_Rational:
1226
+ if not a.is_Integer:
1227
+ if not b.is_Integer:
1228
+ k = self.func(a.q * b.q, n)
1229
+ a, b = a.p*b.q, a.q*b.p
1230
+ else:
1231
+ k = self.func(a.q, n)
1232
+ a, b = a.p, a.q*b
1233
+ elif not b.is_Integer:
1234
+ k = self.func(b.q, n)
1235
+ a, b = a*b.q, b.p
1236
+ else:
1237
+ k = 1
1238
+
1239
+ a, b, c, d = int(a), int(b), 1, 0
1240
+
1241
+ while n:
1242
+ if n & 1:
1243
+ c, d = a*c - b*d, b*c + a*d
1244
+ n -= 1
1245
+ a, b = a*a - b*b, 2*a*b
1246
+ n //= 2
1247
+
1248
+ I = S.ImaginaryUnit
1249
+
1250
+ if k == 1:
1251
+ return c + I*d
1252
+ else:
1253
+ return Integer(c)/k + I*d/k
1254
+
1255
+ p = other_terms
1256
+ # (x + y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3
1257
+ # in this particular example:
1258
+ # p = [x,y]; n = 3
1259
+ # so now it's easy to get the correct result -- we get the
1260
+ # coefficients first:
1261
+ from sympy.ntheory.multinomial import multinomial_coefficients
1262
+ from sympy.polys.polyutils import basic_from_dict
1263
+ expansion_dict = multinomial_coefficients(len(p), n)
1264
+ # in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3}
1265
+ # and now construct the expression.
1266
+ return basic_from_dict(expansion_dict, *p)
1267
+ else:
1268
+ if n == 2:
1269
+ return Add(*[f*g for f in base.args for g in base.args])
1270
+ else:
1271
+ multi = (base**(n - 1))._eval_expand_multinomial()
1272
+ if multi.is_Add:
1273
+ return Add(*[f*g for f in base.args
1274
+ for g in multi.args])
1275
+ else:
1276
+ # XXX can this ever happen if base was an Add?
1277
+ return Add(*[f*multi for f in base.args])
1278
+ elif (exp.is_Rational and exp.p < 0 and base.is_Add and
1279
+ abs(exp.p) > exp.q):
1280
+ return 1 / self.func(base, -exp)._eval_expand_multinomial()
1281
+ elif exp.is_Add and base.is_Number and (hints.get('force', False) or
1282
+ base.is_zero is False or exp._all_nonneg_or_nonppos()):
1283
+ # a + b a b
1284
+ # n --> n n, where n, a, b are Numbers
1285
+ # XXX should be in expand_power_exp?
1286
+ coeff, tail = [], []
1287
+ for term in exp.args:
1288
+ if term.is_Number:
1289
+ coeff.append(self.func(base, term))
1290
+ else:
1291
+ tail.append(term)
1292
+ return Mul(*(coeff + [self.func(base, Add._from_args(tail))]))
1293
+ else:
1294
+ return result
1295
+
1296
+ def as_real_imag(self, deep=True, **hints):
1297
+ if self.exp.is_Integer:
1298
+ from sympy.polys.polytools import poly
1299
+
1300
+ exp = self.exp
1301
+ re_e, im_e = self.base.as_real_imag(deep=deep)
1302
+ if not im_e:
1303
+ return self, S.Zero
1304
+ a, b = symbols('a b', cls=Dummy)
1305
+ if exp >= 0:
1306
+ if re_e.is_Number and im_e.is_Number:
1307
+ # We can be more efficient in this case
1308
+ expr = expand_multinomial(self.base**exp)
1309
+ if expr != self:
1310
+ return expr.as_real_imag()
1311
+
1312
+ expr = poly(
1313
+ (a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp
1314
+ else:
1315
+ mag = re_e**2 + im_e**2
1316
+ re_e, im_e = re_e/mag, -im_e/mag
1317
+ if re_e.is_Number and im_e.is_Number:
1318
+ # We can be more efficient in this case
1319
+ expr = expand_multinomial((re_e + im_e*S.ImaginaryUnit)**-exp)
1320
+ if expr != self:
1321
+ return expr.as_real_imag()
1322
+
1323
+ expr = poly((a + b)**-exp)
1324
+
1325
+ # Terms with even b powers will be real
1326
+ r = [i for i in expr.terms() if not i[0][1] % 2]
1327
+ re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
1328
+ # Terms with odd b powers will be imaginary
1329
+ r = [i for i in expr.terms() if i[0][1] % 4 == 1]
1330
+ im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
1331
+ r = [i for i in expr.terms() if i[0][1] % 4 == 3]
1332
+ im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r])
1333
+
1334
+ return (re_part.subs({a: re_e, b: S.ImaginaryUnit*im_e}),
1335
+ im_part1.subs({a: re_e, b: im_e}) + im_part3.subs({a: re_e, b: -im_e}))
1336
+
1337
+ from sympy.functions.elementary.trigonometric import atan2, cos, sin
1338
+
1339
+ if self.exp.is_Rational:
1340
+ re_e, im_e = self.base.as_real_imag(deep=deep)
1341
+
1342
+ if im_e.is_zero and self.exp is S.Half:
1343
+ if re_e.is_extended_nonnegative:
1344
+ return self, S.Zero
1345
+ if re_e.is_extended_nonpositive:
1346
+ return S.Zero, (-self.base)**self.exp
1347
+
1348
+ # XXX: This is not totally correct since for x**(p/q) with
1349
+ # x being imaginary there are actually q roots, but
1350
+ # only a single one is returned from here.
1351
+ r = self.func(self.func(re_e, 2) + self.func(im_e, 2), S.Half)
1352
+
1353
+ t = atan2(im_e, re_e)
1354
+
1355
+ rp, tp = self.func(r, self.exp), t*self.exp
1356
+
1357
+ return rp*cos(tp), rp*sin(tp)
1358
+ elif self.base is S.Exp1:
1359
+ from sympy.functions.elementary.exponential import exp
1360
+ re_e, im_e = self.exp.as_real_imag()
1361
+ if deep:
1362
+ re_e = re_e.expand(deep, **hints)
1363
+ im_e = im_e.expand(deep, **hints)
1364
+ c, s = cos(im_e), sin(im_e)
1365
+ return exp(re_e)*c, exp(re_e)*s
1366
+ else:
1367
+ from sympy.functions.elementary.complexes import im, re
1368
+ if deep:
1369
+ hints['complex'] = False
1370
+
1371
+ expanded = self.expand(deep, **hints)
1372
+ if hints.get('ignore') == expanded:
1373
+ return None
1374
+ else:
1375
+ return (re(expanded), im(expanded))
1376
+ else:
1377
+ return re(self), im(self)
1378
+
1379
+ def _eval_derivative(self, s):
1380
+ from sympy.functions.elementary.exponential import log
1381
+ dbase = self.base.diff(s)
1382
+ dexp = self.exp.diff(s)
1383
+ return self * (dexp * log(self.base) + dbase * self.exp/self.base)
1384
+
1385
+ def _eval_evalf(self, prec):
1386
+ base, exp = self.as_base_exp()
1387
+ if base == S.Exp1:
1388
+ # Use mpmath function associated to class "exp":
1389
+ from sympy.functions.elementary.exponential import exp as exp_function
1390
+ return exp_function(self.exp, evaluate=False)._eval_evalf(prec)
1391
+ base = base._evalf(prec)
1392
+ if not exp.is_Integer:
1393
+ exp = exp._evalf(prec)
1394
+ if exp.is_negative and base.is_number and base.is_extended_real is False:
1395
+ base = base.conjugate() / (base * base.conjugate())._evalf(prec)
1396
+ exp = -exp
1397
+ return self.func(base, exp).expand()
1398
+ return self.func(base, exp)
1399
+
1400
+ def _eval_is_polynomial(self, syms):
1401
+ if self.exp.has(*syms):
1402
+ return False
1403
+
1404
+ if self.base.has(*syms):
1405
+ return bool(self.base._eval_is_polynomial(syms) and
1406
+ self.exp.is_Integer and (self.exp >= 0))
1407
+ else:
1408
+ return True
1409
+
1410
+ def _eval_is_rational(self):
1411
+ # The evaluation of self.func below can be very expensive in the case
1412
+ # of integer**integer if the exponent is large. We should try to exit
1413
+ # before that if possible:
1414
+ if (self.exp.is_integer and self.base.is_rational
1415
+ and fuzzy_not(fuzzy_and([self.exp.is_negative, self.base.is_zero]))):
1416
+ return True
1417
+ p = self.func(*self.as_base_exp()) # in case it's unevaluated
1418
+ if not p.is_Pow:
1419
+ return p.is_rational
1420
+ b, e = p.as_base_exp()
1421
+ if e.is_Rational and b.is_Rational:
1422
+ # we didn't check that e is not an Integer
1423
+ # because Rational**Integer autosimplifies
1424
+ return False
1425
+ if e.is_integer:
1426
+ if b.is_rational:
1427
+ if fuzzy_not(b.is_zero) or e.is_nonnegative:
1428
+ return True
1429
+ if b == e: # always rational, even for 0**0
1430
+ return True
1431
+ elif b.is_irrational:
1432
+ return e.is_zero
1433
+ if b is S.Exp1:
1434
+ if e.is_rational and e.is_nonzero:
1435
+ return False
1436
+
1437
+ def _eval_is_algebraic(self):
1438
+ def _is_one(expr):
1439
+ try:
1440
+ return (expr - 1).is_zero
1441
+ except ValueError:
1442
+ # when the operation is not allowed
1443
+ return False
1444
+
1445
+ if self.base.is_zero or _is_one(self.base):
1446
+ return True
1447
+ elif self.base is S.Exp1:
1448
+ s = self.func(*self.args)
1449
+ if s.func == self.func:
1450
+ if self.exp.is_nonzero:
1451
+ if self.exp.is_algebraic:
1452
+ return False
1453
+ elif (self.exp/S.Pi).is_rational:
1454
+ return False
1455
+ elif (self.exp/(S.ImaginaryUnit*S.Pi)).is_rational:
1456
+ return True
1457
+ else:
1458
+ return s.is_algebraic
1459
+ elif self.exp.is_rational:
1460
+ if self.base.is_algebraic is False:
1461
+ return self.exp.is_zero
1462
+ if self.base.is_zero is False:
1463
+ if self.exp.is_nonzero:
1464
+ return self.base.is_algebraic
1465
+ elif self.base.is_algebraic:
1466
+ return True
1467
+ if self.exp.is_positive:
1468
+ return self.base.is_algebraic
1469
+ elif self.base.is_algebraic and self.exp.is_algebraic:
1470
+ if ((fuzzy_not(self.base.is_zero)
1471
+ and fuzzy_not(_is_one(self.base)))
1472
+ or self.base.is_integer is False
1473
+ or self.base.is_irrational):
1474
+ return self.exp.is_rational
1475
+
1476
+ def _eval_is_rational_function(self, syms):
1477
+ if self.exp.has(*syms):
1478
+ return False
1479
+
1480
+ if self.base.has(*syms):
1481
+ return self.base._eval_is_rational_function(syms) and \
1482
+ self.exp.is_Integer
1483
+ else:
1484
+ return True
1485
+
1486
+ def _eval_is_meromorphic(self, x, a):
1487
+ # f**g is meromorphic if g is an integer and f is meromorphic.
1488
+ # E**(log(f)*g) is meromorphic if log(f)*g is meromorphic
1489
+ # and finite.
1490
+ base_merom = self.base._eval_is_meromorphic(x, a)
1491
+ exp_integer = self.exp.is_Integer
1492
+ if exp_integer:
1493
+ return base_merom
1494
+
1495
+ exp_merom = self.exp._eval_is_meromorphic(x, a)
1496
+ if base_merom is False:
1497
+ # f**g = E**(log(f)*g) may be meromorphic if the
1498
+ # singularities of log(f) and g cancel each other,
1499
+ # for example, if g = 1/log(f). Hence,
1500
+ return False if exp_merom else None
1501
+ elif base_merom is None:
1502
+ return None
1503
+
1504
+ b = self.base.subs(x, a)
1505
+ # b is extended complex as base is meromorphic.
1506
+ # log(base) is finite and meromorphic when b != 0, zoo.
1507
+ b_zero = b.is_zero
1508
+ if b_zero:
1509
+ log_defined = False
1510
+ else:
1511
+ log_defined = fuzzy_and((b.is_finite, fuzzy_not(b_zero)))
1512
+
1513
+ if log_defined is False: # zero or pole of base
1514
+ return exp_integer # False or None
1515
+ elif log_defined is None:
1516
+ return None
1517
+
1518
+ if not exp_merom:
1519
+ return exp_merom # False or None
1520
+
1521
+ return self.exp.subs(x, a).is_finite
1522
+
1523
+ def _eval_is_algebraic_expr(self, syms):
1524
+ if self.exp.has(*syms):
1525
+ return False
1526
+
1527
+ if self.base.has(*syms):
1528
+ return self.base._eval_is_algebraic_expr(syms) and \
1529
+ self.exp.is_Rational
1530
+ else:
1531
+ return True
1532
+
1533
+ def _eval_rewrite_as_exp(self, base, expo, **kwargs):
1534
+ from sympy.functions.elementary.exponential import exp, log
1535
+
1536
+ if base.is_zero or base.has(exp) or expo.has(exp):
1537
+ return base**expo
1538
+
1539
+ if base.has(Symbol):
1540
+ # delay evaluation if expo is non symbolic
1541
+ # (as exp(x*log(5)) automatically reduces to x**5)
1542
+ if global_parameters.exp_is_pow:
1543
+ return Pow(S.Exp1, log(base)*expo, evaluate=expo.has(Symbol))
1544
+ else:
1545
+ return exp(log(base)*expo, evaluate=expo.has(Symbol))
1546
+
1547
+ else:
1548
+ from sympy.functions.elementary.complexes import arg, Abs
1549
+ return exp((log(Abs(base)) + S.ImaginaryUnit*arg(base))*expo)
1550
+
1551
+ def as_numer_denom(self):
1552
+ if not self.is_commutative:
1553
+ return self, S.One
1554
+ base, exp = self.as_base_exp()
1555
+ n, d = base.as_numer_denom()
1556
+ # this should be the same as ExpBase.as_numer_denom wrt
1557
+ # exponent handling
1558
+ neg_exp = exp.is_negative
1559
+ if exp.is_Mul and not neg_exp and not exp.is_positive:
1560
+ neg_exp = exp.could_extract_minus_sign()
1561
+ int_exp = exp.is_integer
1562
+ # the denominator cannot be separated from the numerator if
1563
+ # its sign is unknown unless the exponent is an integer, e.g.
1564
+ # sqrt(a/b) != sqrt(a)/sqrt(b) when a=1 and b=-1. But if the
1565
+ # denominator is negative the numerator and denominator can
1566
+ # be negated and the denominator (now positive) separated.
1567
+ if not (d.is_extended_real or int_exp):
1568
+ n = base
1569
+ d = S.One
1570
+ dnonpos = d.is_nonpositive
1571
+ if dnonpos:
1572
+ n, d = -n, -d
1573
+ elif dnonpos is None and not int_exp:
1574
+ n = base
1575
+ d = S.One
1576
+ if neg_exp:
1577
+ n, d = d, n
1578
+ exp = -exp
1579
+ if exp.is_infinite:
1580
+ if n is S.One and d is not S.One:
1581
+ return n, self.func(d, exp)
1582
+ if n is not S.One and d is S.One:
1583
+ return self.func(n, exp), d
1584
+ return self.func(n, exp), self.func(d, exp)
1585
+
1586
+ def matches(self, expr, repl_dict=None, old=False):
1587
+ expr = _sympify(expr)
1588
+ if repl_dict is None:
1589
+ repl_dict = {}
1590
+
1591
+ # special case, pattern = 1 and expr.exp can match to 0
1592
+ if expr is S.One:
1593
+ d = self.exp.matches(S.Zero, repl_dict)
1594
+ if d is not None:
1595
+ return d
1596
+
1597
+ # make sure the expression to be matched is an Expr
1598
+ if not isinstance(expr, Expr):
1599
+ return None
1600
+
1601
+ b, e = expr.as_base_exp()
1602
+
1603
+ # special case number
1604
+ sb, se = self.as_base_exp()
1605
+ if sb.is_Symbol and se.is_Integer and expr:
1606
+ if e.is_rational:
1607
+ return sb.matches(b**(e/se), repl_dict)
1608
+ return sb.matches(expr**(1/se), repl_dict)
1609
+
1610
+ d = repl_dict.copy()
1611
+ d = self.base.matches(b, d)
1612
+ if d is None:
1613
+ return None
1614
+
1615
+ d = self.exp.xreplace(d).matches(e, d)
1616
+ if d is None:
1617
+ return Expr.matches(self, expr, repl_dict)
1618
+ return d
1619
+
1620
+ def _eval_nseries(self, x, n, logx, cdir=0):
1621
+ # NOTE! This function is an important part of the gruntz algorithm
1622
+ # for computing limits. It has to return a generalized power
1623
+ # series with coefficients in C(log, log(x)). In more detail:
1624
+ # It has to return an expression
1625
+ # c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms)
1626
+ # where e_i are numbers (not necessarily integers) and c_i are
1627
+ # expressions involving only numbers, the log function, and log(x).
1628
+ # The series expansion of b**e is computed as follows:
1629
+ # 1) We express b as f*(1 + g) where f is the leading term of b.
1630
+ # g has order O(x**d) where d is strictly positive.
1631
+ # 2) Then b**e = (f**e)*((1 + g)**e).
1632
+ # (1 + g)**e is computed using binomial series.
1633
+ from sympy.functions.elementary.exponential import exp, log
1634
+ from sympy.series.limits import limit
1635
+ from sympy.series.order import Order
1636
+ from sympy.core.sympify import sympify
1637
+ if self.base is S.Exp1:
1638
+ e_series = self.exp.nseries(x, n=n, logx=logx)
1639
+ if e_series.is_Order:
1640
+ return 1 + e_series
1641
+ e0 = limit(e_series.removeO(), x, 0)
1642
+ if e0 is S.NegativeInfinity:
1643
+ return Order(x**n, x)
1644
+ if e0 is S.Infinity:
1645
+ return self
1646
+ t = e_series - e0
1647
+ exp_series = term = exp(e0)
1648
+ # series of exp(e0 + t) in t
1649
+ for i in range(1, n):
1650
+ term *= t/i
1651
+ term = term.nseries(x, n=n, logx=logx)
1652
+ exp_series += term
1653
+ exp_series += Order(t**n, x)
1654
+ from sympy.simplify.powsimp import powsimp
1655
+ return powsimp(exp_series, deep=True, combine='exp')
1656
+ from sympy.simplify.powsimp import powdenest
1657
+ from .numbers import _illegal
1658
+ self = powdenest(self, force=True).trigsimp()
1659
+ b, e = self.as_base_exp()
1660
+
1661
+ if e.has(*_illegal):
1662
+ raise PoleError()
1663
+
1664
+ if e.has(x):
1665
+ return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir)
1666
+
1667
+ if logx is not None and b.has(log):
1668
+ from .symbol import Wild
1669
+ c, ex = symbols('c, ex', cls=Wild, exclude=[x])
1670
+ b = b.replace(log(c*x**ex), log(c) + ex*logx)
1671
+ self = b**e
1672
+
1673
+ b = b.removeO()
1674
+ try:
1675
+ from sympy.functions.special.gamma_functions import polygamma
1676
+ if b.has(polygamma, S.EulerGamma) and logx is not None:
1677
+ raise ValueError()
1678
+ _, m = b.leadterm(x)
1679
+ except (ValueError, NotImplementedError, PoleError):
1680
+ b = b._eval_nseries(x, n=max(2, n), logx=logx, cdir=cdir).removeO()
1681
+ if b.has(S.NaN, S.ComplexInfinity):
1682
+ raise NotImplementedError()
1683
+ _, m = b.leadterm(x)
1684
+
1685
+ if e.has(log):
1686
+ from sympy.simplify.simplify import logcombine
1687
+ e = logcombine(e).cancel()
1688
+
1689
+ if not (m.is_zero or e.is_number and e.is_real):
1690
+ if self == self._eval_as_leading_term(x, logx=logx, cdir=cdir):
1691
+ res = exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir)
1692
+ if res == exp(e*log(b)):
1693
+ return self
1694
+ return res
1695
+
1696
+ f = b.as_leading_term(x, logx=logx)
1697
+ g = (b/f - S.One).cancel(expand=False)
1698
+ if not m.is_number:
1699
+ raise NotImplementedError()
1700
+ maxpow = n - m*e
1701
+ if maxpow.has(Symbol):
1702
+ maxpow = sympify(n)
1703
+
1704
+ if maxpow.is_negative:
1705
+ return Order(x**(m*e), x)
1706
+
1707
+ if g.is_zero:
1708
+ r = f**e
1709
+ if r != self:
1710
+ r += Order(x**n, x)
1711
+ return r
1712
+
1713
+ def coeff_exp(term, x):
1714
+ coeff, exp = S.One, S.Zero
1715
+ for factor in Mul.make_args(term):
1716
+ if factor.has(x):
1717
+ base, exp = factor.as_base_exp()
1718
+ if base != x:
1719
+ try:
1720
+ return term.leadterm(x)
1721
+ except ValueError:
1722
+ return term, S.Zero
1723
+ else:
1724
+ coeff *= factor
1725
+ return coeff, exp
1726
+
1727
+ def mul(d1, d2):
1728
+ res = {}
1729
+ for e1, e2 in product(d1, d2):
1730
+ ex = e1 + e2
1731
+ if ex < maxpow:
1732
+ res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2]
1733
+ return res
1734
+
1735
+ try:
1736
+ c, d = g.leadterm(x, logx=logx)
1737
+ except (ValueError, NotImplementedError):
1738
+ if limit(g/x**maxpow, x, 0) == 0:
1739
+ # g has higher order zero
1740
+ return f**e + e*f**e*g # first term of binomial series
1741
+ else:
1742
+ raise NotImplementedError()
1743
+ if c.is_Float and d == S.Zero:
1744
+ # Convert floats like 0.5 to exact SymPy numbers like S.Half, to
1745
+ # prevent rounding errors which can induce wrong values of d leading
1746
+ # to a NotImplementedError being returned from the block below.
1747
+ from sympy.simplify.simplify import nsimplify
1748
+ _, d = nsimplify(g).leadterm(x, logx=logx)
1749
+ if not d.is_positive:
1750
+ g = g.simplify()
1751
+ if g.is_zero:
1752
+ return f**e
1753
+ _, d = g.leadterm(x, logx=logx)
1754
+ if not d.is_positive:
1755
+ g = ((b - f)/f).expand()
1756
+ _, d = g.leadterm(x, logx=logx)
1757
+ if not d.is_positive:
1758
+ raise NotImplementedError()
1759
+
1760
+ from sympy.functions.elementary.integers import ceiling
1761
+ gpoly = g._eval_nseries(x, n=ceiling(maxpow), logx=logx, cdir=cdir).removeO()
1762
+ gterms = {}
1763
+
1764
+ for term in Add.make_args(gpoly):
1765
+ co1, e1 = coeff_exp(term, x)
1766
+ gterms[e1] = gterms.get(e1, S.Zero) + co1
1767
+
1768
+ k = S.One
1769
+ terms = {S.Zero: S.One}
1770
+ tk = gterms
1771
+
1772
+ from sympy.functions.combinatorial.factorials import factorial, ff
1773
+
1774
+ while (k*d - maxpow).is_negative:
1775
+ coeff = ff(e, k)/factorial(k)
1776
+ for ex in tk:
1777
+ terms[ex] = terms.get(ex, S.Zero) + coeff*tk[ex]
1778
+ tk = mul(tk, gterms)
1779
+ k += S.One
1780
+
1781
+ from sympy.functions.elementary.complexes import im
1782
+
1783
+ if not e.is_integer and m.is_zero and f.is_negative:
1784
+ ndir = (b - f).dir(x, cdir)
1785
+ if im(ndir).is_negative:
1786
+ inco, inex = coeff_exp(f**e*(-1)**(-2*e), x)
1787
+ elif im(ndir).is_zero:
1788
+ inco, inex = coeff_exp(exp(e*log(b)).as_leading_term(x, logx=logx, cdir=cdir), x)
1789
+ else:
1790
+ inco, inex = coeff_exp(f**e, x)
1791
+ else:
1792
+ inco, inex = coeff_exp(f**e, x)
1793
+ res = S.Zero
1794
+
1795
+ for e1 in terms:
1796
+ ex = e1 + inex
1797
+ res += terms[e1]*inco*x**(ex)
1798
+
1799
+ if not (e.is_integer and e.is_positive and (e*d - n).is_nonpositive and
1800
+ res == _mexpand(self)):
1801
+ try:
1802
+ res += Order(x**n, x)
1803
+ except NotImplementedError:
1804
+ return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir)
1805
+ return res
1806
+
1807
+ def _eval_as_leading_term(self, x, logx=None, cdir=0):
1808
+ from sympy.functions.elementary.exponential import exp, log
1809
+ e = self.exp
1810
+ b = self.base
1811
+ if self.base is S.Exp1:
1812
+ arg = e.as_leading_term(x, logx=logx)
1813
+ arg0 = arg.subs(x, 0)
1814
+ if arg0 is S.NaN:
1815
+ arg0 = arg.limit(x, 0)
1816
+ if arg0.is_infinite is False:
1817
+ return S.Exp1**arg0
1818
+ raise PoleError("Cannot expand %s around 0" % (self))
1819
+ elif e.has(x):
1820
+ lt = exp(e * log(b))
1821
+ return lt.as_leading_term(x, logx=logx, cdir=cdir)
1822
+ else:
1823
+ from sympy.functions.elementary.complexes import im
1824
+ try:
1825
+ f = b.as_leading_term(x, logx=logx, cdir=cdir)
1826
+ except PoleError:
1827
+ return self
1828
+ if not e.is_integer and f.is_negative and not f.has(x):
1829
+ ndir = (b - f).dir(x, cdir)
1830
+ if im(ndir).is_negative:
1831
+ # Normally, f**e would evaluate to exp(e*log(f)) but on branch cuts
1832
+ # an other value is expected through the following computation
1833
+ # exp(e*(log(f) - 2*pi*I)) == f**e*exp(-2*e*pi*I) == f**e*(-1)**(-2*e).
1834
+ return self.func(f, e) * (-1)**(-2*e)
1835
+ elif im(ndir).is_zero:
1836
+ log_leadterm = log(b)._eval_as_leading_term(x, logx=logx, cdir=cdir)
1837
+ if log_leadterm.is_infinite is False:
1838
+ return exp(e*log_leadterm)
1839
+ return self.func(f, e)
1840
+
1841
+ @cacheit
1842
+ def _taylor_term(self, n, x, *previous_terms): # of (1 + x)**e
1843
+ from sympy.functions.combinatorial.factorials import binomial
1844
+ return binomial(self.exp, n) * self.func(x, n)
1845
+
1846
+ def taylor_term(self, n, x, *previous_terms):
1847
+ if self.base is not S.Exp1:
1848
+ return super().taylor_term(n, x, *previous_terms)
1849
+ if n < 0:
1850
+ return S.Zero
1851
+ if n == 0:
1852
+ return S.One
1853
+ from .sympify import sympify
1854
+ x = sympify(x)
1855
+ if previous_terms:
1856
+ p = previous_terms[-1]
1857
+ if p is not None:
1858
+ return p * x / n
1859
+ from sympy.functions.combinatorial.factorials import factorial
1860
+ return x**n/factorial(n)
1861
+
1862
+ def _eval_rewrite_as_sin(self, base, exp):
1863
+ if self.base is S.Exp1:
1864
+ from sympy.functions.elementary.trigonometric import sin
1865
+ return sin(S.ImaginaryUnit*self.exp + S.Pi/2) - S.ImaginaryUnit*sin(S.ImaginaryUnit*self.exp)
1866
+
1867
+ def _eval_rewrite_as_cos(self, base, exp):
1868
+ if self.base is S.Exp1:
1869
+ from sympy.functions.elementary.trigonometric import cos
1870
+ return cos(S.ImaginaryUnit*self.exp) + S.ImaginaryUnit*cos(S.ImaginaryUnit*self.exp + S.Pi/2)
1871
+
1872
+ def _eval_rewrite_as_tanh(self, base, exp):
1873
+ if self.base is S.Exp1:
1874
+ from sympy.functions.elementary.hyperbolic import tanh
1875
+ return (1 + tanh(self.exp/2))/(1 - tanh(self.exp/2))
1876
+
1877
+ def _eval_rewrite_as_sqrt(self, base, exp, **kwargs):
1878
+ from sympy.functions.elementary.trigonometric import sin, cos
1879
+ if base is not S.Exp1:
1880
+ return None
1881
+ if exp.is_Mul:
1882
+ coeff = exp.coeff(S.Pi * S.ImaginaryUnit)
1883
+ if coeff and coeff.is_number:
1884
+ cosine, sine = cos(S.Pi*coeff), sin(S.Pi*coeff)
1885
+ if not isinstance(cosine, cos) and not isinstance (sine, sin):
1886
+ return cosine + S.ImaginaryUnit*sine
1887
+
1888
+ def as_content_primitive(self, radical=False, clear=True):
1889
+ """Return the tuple (R, self/R) where R is the positive Rational
1890
+ extracted from self.
1891
+
1892
+ Examples
1893
+ ========
1894
+
1895
+ >>> from sympy import sqrt
1896
+ >>> sqrt(4 + 4*sqrt(2)).as_content_primitive()
1897
+ (2, sqrt(1 + sqrt(2)))
1898
+ >>> sqrt(3 + 3*sqrt(2)).as_content_primitive()
1899
+ (1, sqrt(3)*sqrt(1 + sqrt(2)))
1900
+
1901
+ >>> from sympy import expand_power_base, powsimp, Mul
1902
+ >>> from sympy.abc import x, y
1903
+
1904
+ >>> ((2*x + 2)**2).as_content_primitive()
1905
+ (4, (x + 1)**2)
1906
+ >>> (4**((1 + y)/2)).as_content_primitive()
1907
+ (2, 4**(y/2))
1908
+ >>> (3**((1 + y)/2)).as_content_primitive()
1909
+ (1, 3**((y + 1)/2))
1910
+ >>> (3**((5 + y)/2)).as_content_primitive()
1911
+ (9, 3**((y + 1)/2))
1912
+ >>> eq = 3**(2 + 2*x)
1913
+ >>> powsimp(eq) == eq
1914
+ True
1915
+ >>> eq.as_content_primitive()
1916
+ (9, 3**(2*x))
1917
+ >>> powsimp(Mul(*_))
1918
+ 3**(2*x + 2)
1919
+
1920
+ >>> eq = (2 + 2*x)**y
1921
+ >>> s = expand_power_base(eq); s.is_Mul, s
1922
+ (False, (2*x + 2)**y)
1923
+ >>> eq.as_content_primitive()
1924
+ (1, (2*(x + 1))**y)
1925
+ >>> s = expand_power_base(_[1]); s.is_Mul, s
1926
+ (True, 2**y*(x + 1)**y)
1927
+
1928
+ See docstring of Expr.as_content_primitive for more examples.
1929
+ """
1930
+
1931
+ b, e = self.as_base_exp()
1932
+ b = _keep_coeff(*b.as_content_primitive(radical=radical, clear=clear))
1933
+ ce, pe = e.as_content_primitive(radical=radical, clear=clear)
1934
+ if b.is_Rational:
1935
+ #e
1936
+ #= ce*pe
1937
+ #= ce*(h + t)
1938
+ #= ce*h + ce*t
1939
+ #=> self
1940
+ #= b**(ce*h)*b**(ce*t)
1941
+ #= b**(cehp/cehq)*b**(ce*t)
1942
+ #= b**(iceh + r/cehq)*b**(ce*t)
1943
+ #= b**(iceh)*b**(r/cehq)*b**(ce*t)
1944
+ #= b**(iceh)*b**(ce*t + r/cehq)
1945
+ h, t = pe.as_coeff_Add()
1946
+ if h.is_Rational and b != S.Zero:
1947
+ ceh = ce*h
1948
+ c = self.func(b, ceh)
1949
+ r = S.Zero
1950
+ if not c.is_Rational:
1951
+ iceh, r = divmod(ceh.p, ceh.q)
1952
+ c = self.func(b, iceh)
1953
+ return c, self.func(b, _keep_coeff(ce, t + r/ce/ceh.q))
1954
+ e = _keep_coeff(ce, pe)
1955
+ # b**e = (h*t)**e = h**e*t**e = c*m*t**e
1956
+ if e.is_Rational and b.is_Mul:
1957
+ h, t = b.as_content_primitive(radical=radical, clear=clear) # h is positive
1958
+ c, m = self.func(h, e).as_coeff_Mul() # so c is positive
1959
+ m, me = m.as_base_exp()
1960
+ if m is S.One or me == e: # probably always true
1961
+ # return the following, not return c, m*Pow(t, e)
1962
+ # which would change Pow into Mul; we let SymPy
1963
+ # decide what to do by using the unevaluated Mul, e.g
1964
+ # should it stay as sqrt(2 + 2*sqrt(5)) or become
1965
+ # sqrt(2)*sqrt(1 + sqrt(5))
1966
+ return c, self.func(_keep_coeff(m, t), e)
1967
+ return S.One, self.func(b, e)
1968
+
1969
+ def is_constant(self, *wrt, **flags):
1970
+ expr = self
1971
+ if flags.get('simplify', True):
1972
+ expr = expr.simplify()
1973
+ b, e = expr.as_base_exp()
1974
+ bz = b.equals(0)
1975
+ if bz: # recalculate with assumptions in case it's unevaluated
1976
+ new = b**e
1977
+ if new != expr:
1978
+ return new.is_constant()
1979
+ econ = e.is_constant(*wrt)
1980
+ bcon = b.is_constant(*wrt)
1981
+ if bcon:
1982
+ if econ:
1983
+ return True
1984
+ bz = b.equals(0)
1985
+ if bz is False:
1986
+ return False
1987
+ elif bcon is None:
1988
+ return None
1989
+
1990
+ return e.equals(0)
1991
+
1992
+ def _eval_difference_delta(self, n, step):
1993
+ b, e = self.args
1994
+ if e.has(n) and not b.has(n):
1995
+ new_e = e.subs(n, n + step)
1996
+ return (b**(new_e - e) - 1) * self
1997
+
1998
+ power = Dispatcher('power')
1999
+ power.add((object, object), Pow)
2000
+
2001
+ from .add import Add
2002
+ from .numbers import Integer
2003
+ from .mul import Mul, _keep_coeff
2004
+ from .symbol import Symbol, Dummy, symbols
llmeval-env/lib/python3.10/site-packages/sympy/core/random.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ When you need to use random numbers in SymPy library code, import from here
3
+ so there is only one generator working for SymPy. Imports from here should
4
+ behave the same as if they were being imported from Python's random module.
5
+ But only the routines currently used in SymPy are included here. To use others
6
+ import ``rng`` and access the method directly. For example, to capture the
7
+ current state of the generator use ``rng.getstate()``.
8
+
9
+ There is intentionally no Random to import from here. If you want
10
+ to control the state of the generator, import ``seed`` and call it
11
+ with or without an argument to set the state.
12
+
13
+ Examples
14
+ ========
15
+
16
+ >>> from sympy.core.random import random, seed
17
+ >>> assert random() < 1
18
+ >>> seed(1); a = random()
19
+ >>> b = random()
20
+ >>> seed(1); c = random()
21
+ >>> assert a == c
22
+ >>> assert a != b # remote possibility this will fail
23
+
24
+ """
25
+ from sympy.utilities.iterables import is_sequence
26
+ from sympy.utilities.misc import as_int
27
+
28
+ import random as _random
29
+ rng = _random.Random()
30
+
31
+ choice = rng.choice
32
+ random = rng.random
33
+ randint = rng.randint
34
+ randrange = rng.randrange
35
+ sample = rng.sample
36
+ # seed = rng.seed
37
+ shuffle = rng.shuffle
38
+ uniform = rng.uniform
39
+
40
+ _assumptions_rng = _random.Random()
41
+ _assumptions_shuffle = _assumptions_rng.shuffle
42
+
43
+
44
+ def seed(a=None, version=2):
45
+ rng.seed(a=a, version=version)
46
+ _assumptions_rng.seed(a=a, version=version)
47
+
48
+
49
+ def random_complex_number(a=2, b=-1, c=3, d=1, rational=False, tolerance=None):
50
+ """
51
+ Return a random complex number.
52
+
53
+ To reduce chance of hitting branch cuts or anything, we guarantee
54
+ b <= Im z <= d, a <= Re z <= c
55
+
56
+ When rational is True, a rational approximation to a random number
57
+ is obtained within specified tolerance, if any.
58
+ """
59
+ from sympy.core.numbers import I
60
+ from sympy.simplify.simplify import nsimplify
61
+ A, B = uniform(a, c), uniform(b, d)
62
+ if not rational:
63
+ return A + I*B
64
+ return (nsimplify(A, rational=True, tolerance=tolerance) +
65
+ I*nsimplify(B, rational=True, tolerance=tolerance))
66
+
67
+
68
+ def verify_numerically(f, g, z=None, tol=1.0e-6, a=2, b=-1, c=3, d=1):
69
+ """
70
+ Test numerically that f and g agree when evaluated in the argument z.
71
+
72
+ If z is None, all symbols will be tested. This routine does not test
73
+ whether there are Floats present with precision higher than 15 digits
74
+ so if there are, your results may not be what you expect due to round-
75
+ off errors.
76
+
77
+ Examples
78
+ ========
79
+
80
+ >>> from sympy import sin, cos
81
+ >>> from sympy.abc import x
82
+ >>> from sympy.core.random import verify_numerically as tn
83
+ >>> tn(sin(x)**2 + cos(x)**2, 1, x)
84
+ True
85
+ """
86
+ from sympy.core.symbol import Symbol
87
+ from sympy.core.sympify import sympify
88
+ from sympy.core.numbers import comp
89
+ f, g = (sympify(i) for i in (f, g))
90
+ if z is None:
91
+ z = f.free_symbols | g.free_symbols
92
+ elif isinstance(z, Symbol):
93
+ z = [z]
94
+ reps = list(zip(z, [random_complex_number(a, b, c, d) for _ in z]))
95
+ z1 = f.subs(reps).n()
96
+ z2 = g.subs(reps).n()
97
+ return comp(z1, z2, tol)
98
+
99
+
100
+ def test_derivative_numerically(f, z, tol=1.0e-6, a=2, b=-1, c=3, d=1):
101
+ """
102
+ Test numerically that the symbolically computed derivative of f
103
+ with respect to z is correct.
104
+
105
+ This routine does not test whether there are Floats present with
106
+ precision higher than 15 digits so if there are, your results may
107
+ not be what you expect due to round-off errors.
108
+
109
+ Examples
110
+ ========
111
+
112
+ >>> from sympy import sin
113
+ >>> from sympy.abc import x
114
+ >>> from sympy.core.random import test_derivative_numerically as td
115
+ >>> td(sin(x), x)
116
+ True
117
+ """
118
+ from sympy.core.numbers import comp
119
+ from sympy.core.function import Derivative
120
+ z0 = random_complex_number(a, b, c, d)
121
+ f1 = f.diff(z).subs(z, z0)
122
+ f2 = Derivative(f, z).doit_numerically(z0)
123
+ return comp(f1.n(), f2.n(), tol)
124
+
125
+
126
+ def _randrange(seed=None):
127
+ """Return a randrange generator.
128
+
129
+ ``seed`` can be
130
+
131
+ * None - return randomly seeded generator
132
+ * int - return a generator seeded with the int
133
+ * list - the values to be returned will be taken from the list
134
+ in the order given; the provided list is not modified.
135
+
136
+ Examples
137
+ ========
138
+
139
+ >>> from sympy.core.random import _randrange
140
+ >>> rr = _randrange()
141
+ >>> rr(1000) # doctest: +SKIP
142
+ 999
143
+ >>> rr = _randrange(3)
144
+ >>> rr(1000) # doctest: +SKIP
145
+ 238
146
+ >>> rr = _randrange([0, 5, 1, 3, 4])
147
+ >>> rr(3), rr(3)
148
+ (0, 1)
149
+ """
150
+ if seed is None:
151
+ return randrange
152
+ elif isinstance(seed, int):
153
+ rng.seed(seed)
154
+ return randrange
155
+ elif is_sequence(seed):
156
+ seed = list(seed) # make a copy
157
+ seed.reverse()
158
+
159
+ def give(a, b=None, seq=seed):
160
+ if b is None:
161
+ a, b = 0, a
162
+ a, b = as_int(a), as_int(b)
163
+ w = b - a
164
+ if w < 1:
165
+ raise ValueError('_randrange got empty range')
166
+ try:
167
+ x = seq.pop()
168
+ except IndexError:
169
+ raise ValueError('_randrange sequence was too short')
170
+ if a <= x < b:
171
+ return x
172
+ else:
173
+ return give(a, b, seq)
174
+ return give
175
+ else:
176
+ raise ValueError('_randrange got an unexpected seed')
177
+
178
+
179
+ def _randint(seed=None):
180
+ """Return a randint generator.
181
+
182
+ ``seed`` can be
183
+
184
+ * None - return randomly seeded generator
185
+ * int - return a generator seeded with the int
186
+ * list - the values to be returned will be taken from the list
187
+ in the order given; the provided list is not modified.
188
+
189
+ Examples
190
+ ========
191
+
192
+ >>> from sympy.core.random import _randint
193
+ >>> ri = _randint()
194
+ >>> ri(1, 1000) # doctest: +SKIP
195
+ 999
196
+ >>> ri = _randint(3)
197
+ >>> ri(1, 1000) # doctest: +SKIP
198
+ 238
199
+ >>> ri = _randint([0, 5, 1, 2, 4])
200
+ >>> ri(1, 3), ri(1, 3)
201
+ (1, 2)
202
+ """
203
+ if seed is None:
204
+ return randint
205
+ elif isinstance(seed, int):
206
+ rng.seed(seed)
207
+ return randint
208
+ elif is_sequence(seed):
209
+ seed = list(seed) # make a copy
210
+ seed.reverse()
211
+
212
+ def give(a, b, seq=seed):
213
+ a, b = as_int(a), as_int(b)
214
+ w = b - a
215
+ if w < 0:
216
+ raise ValueError('_randint got empty range')
217
+ try:
218
+ x = seq.pop()
219
+ except IndexError:
220
+ raise ValueError('_randint sequence was too short')
221
+ if a <= x <= b:
222
+ return x
223
+ else:
224
+ return give(a, b, seq)
225
+ return give
226
+ else:
227
+ raise ValueError('_randint got an unexpected seed')
llmeval-env/lib/python3.10/site-packages/sympy/core/relational.py ADDED
@@ -0,0 +1,1587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from .basic import Atom, Basic
4
+ from .sorting import ordered
5
+ from .evalf import EvalfMixin
6
+ from .function import AppliedUndef
7
+ from .singleton import S
8
+ from .sympify import _sympify, SympifyError
9
+ from .parameters import global_parameters
10
+ from .logic import fuzzy_bool, fuzzy_xor, fuzzy_and, fuzzy_not
11
+ from sympy.logic.boolalg import Boolean, BooleanAtom
12
+ from sympy.utilities.iterables import sift
13
+ from sympy.utilities.misc import filldedent
14
+
15
+ __all__ = (
16
+ 'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge',
17
+ 'Relational', 'Equality', 'Unequality', 'StrictLessThan', 'LessThan',
18
+ 'StrictGreaterThan', 'GreaterThan',
19
+ )
20
+
21
+ from .expr import Expr
22
+ from sympy.multipledispatch import dispatch
23
+ from .containers import Tuple
24
+ from .symbol import Symbol
25
+
26
+
27
+ def _nontrivBool(side):
28
+ return isinstance(side, Boolean) and \
29
+ not isinstance(side, Atom)
30
+
31
+
32
+ # Note, see issue 4986. Ideally, we wouldn't want to subclass both Boolean
33
+ # and Expr.
34
+ # from .. import Expr
35
+
36
+
37
+ def _canonical(cond):
38
+ # return a condition in which all relationals are canonical
39
+ reps = {r: r.canonical for r in cond.atoms(Relational)}
40
+ return cond.xreplace(reps)
41
+ # XXX: AttributeError was being caught here but it wasn't triggered by any of
42
+ # the tests so I've removed it...
43
+
44
+
45
+ def _canonical_coeff(rel):
46
+ # return -2*x + 1 < 0 as x > 1/2
47
+ # XXX make this part of Relational.canonical?
48
+ rel = rel.canonical
49
+ if not rel.is_Relational or rel.rhs.is_Boolean:
50
+ return rel # Eq(x, True)
51
+ b, l = rel.lhs.as_coeff_Add(rational=True)
52
+ m, lhs = l.as_coeff_Mul(rational=True)
53
+ rhs = (rel.rhs - b)/m
54
+ if m < 0:
55
+ return rel.reversed.func(lhs, rhs)
56
+ return rel.func(lhs, rhs)
57
+
58
+
59
+ class Relational(Boolean, EvalfMixin):
60
+ """Base class for all relation types.
61
+
62
+ Explanation
63
+ ===========
64
+
65
+ Subclasses of Relational should generally be instantiated directly, but
66
+ Relational can be instantiated with a valid ``rop`` value to dispatch to
67
+ the appropriate subclass.
68
+
69
+ Parameters
70
+ ==========
71
+
72
+ rop : str or None
73
+ Indicates what subclass to instantiate. Valid values can be found
74
+ in the keys of Relational.ValidRelationOperator.
75
+
76
+ Examples
77
+ ========
78
+
79
+ >>> from sympy import Rel
80
+ >>> from sympy.abc import x, y
81
+ >>> Rel(y, x + x**2, '==')
82
+ Eq(y, x**2 + x)
83
+
84
+ A relation's type can be defined upon creation using ``rop``.
85
+ The relation type of an existing expression can be obtained
86
+ using its ``rel_op`` property.
87
+ Here is a table of all the relation types, along with their
88
+ ``rop`` and ``rel_op`` values:
89
+
90
+ +---------------------+----------------------------+------------+
91
+ |Relation |``rop`` |``rel_op`` |
92
+ +=====================+============================+============+
93
+ |``Equality`` |``==`` or ``eq`` or ``None``|``==`` |
94
+ +---------------------+----------------------------+------------+
95
+ |``Unequality`` |``!=`` or ``ne`` |``!=`` |
96
+ +---------------------+----------------------------+------------+
97
+ |``GreaterThan`` |``>=`` or ``ge`` |``>=`` |
98
+ +---------------------+----------------------------+------------+
99
+ |``LessThan`` |``<=`` or ``le`` |``<=`` |
100
+ +---------------------+----------------------------+------------+
101
+ |``StrictGreaterThan``|``>`` or ``gt`` |``>`` |
102
+ +---------------------+----------------------------+------------+
103
+ |``StrictLessThan`` |``<`` or ``lt`` |``<`` |
104
+ +---------------------+----------------------------+------------+
105
+
106
+ For example, setting ``rop`` to ``==`` produces an
107
+ ``Equality`` relation, ``Eq()``.
108
+ So does setting ``rop`` to ``eq``, or leaving ``rop`` unspecified.
109
+ That is, the first three ``Rel()`` below all produce the same result.
110
+ Using a ``rop`` from a different row in the table produces a
111
+ different relation type.
112
+ For example, the fourth ``Rel()`` below using ``lt`` for ``rop``
113
+ produces a ``StrictLessThan`` inequality:
114
+
115
+ >>> from sympy import Rel
116
+ >>> from sympy.abc import x, y
117
+ >>> Rel(y, x + x**2, '==')
118
+ Eq(y, x**2 + x)
119
+ >>> Rel(y, x + x**2, 'eq')
120
+ Eq(y, x**2 + x)
121
+ >>> Rel(y, x + x**2)
122
+ Eq(y, x**2 + x)
123
+ >>> Rel(y, x + x**2, 'lt')
124
+ y < x**2 + x
125
+
126
+ To obtain the relation type of an existing expression,
127
+ get its ``rel_op`` property.
128
+ For example, ``rel_op`` is ``==`` for the ``Equality`` relation above,
129
+ and ``<`` for the strict less than inequality above:
130
+
131
+ >>> from sympy import Rel
132
+ >>> from sympy.abc import x, y
133
+ >>> my_equality = Rel(y, x + x**2, '==')
134
+ >>> my_equality.rel_op
135
+ '=='
136
+ >>> my_inequality = Rel(y, x + x**2, 'lt')
137
+ >>> my_inequality.rel_op
138
+ '<'
139
+
140
+ """
141
+ __slots__ = ()
142
+
143
+ ValidRelationOperator: dict[str | None, type[Relational]] = {}
144
+
145
+ is_Relational = True
146
+
147
+ # ValidRelationOperator - Defined below, because the necessary classes
148
+ # have not yet been defined
149
+
150
+ def __new__(cls, lhs, rhs, rop=None, **assumptions):
151
+ # If called by a subclass, do nothing special and pass on to Basic.
152
+ if cls is not Relational:
153
+ return Basic.__new__(cls, lhs, rhs, **assumptions)
154
+
155
+ # XXX: Why do this? There should be a separate function to make a
156
+ # particular subclass of Relational from a string.
157
+ #
158
+ # If called directly with an operator, look up the subclass
159
+ # corresponding to that operator and delegate to it
160
+ cls = cls.ValidRelationOperator.get(rop, None)
161
+ if cls is None:
162
+ raise ValueError("Invalid relational operator symbol: %r" % rop)
163
+
164
+ if not issubclass(cls, (Eq, Ne)):
165
+ # validate that Booleans are not being used in a relational
166
+ # other than Eq/Ne;
167
+ # Note: Symbol is a subclass of Boolean but is considered
168
+ # acceptable here.
169
+ if any(map(_nontrivBool, (lhs, rhs))):
170
+ raise TypeError(filldedent('''
171
+ A Boolean argument can only be used in
172
+ Eq and Ne; all other relationals expect
173
+ real expressions.
174
+ '''))
175
+
176
+ return cls(lhs, rhs, **assumptions)
177
+
178
+ @property
179
+ def lhs(self):
180
+ """The left-hand side of the relation."""
181
+ return self._args[0]
182
+
183
+ @property
184
+ def rhs(self):
185
+ """The right-hand side of the relation."""
186
+ return self._args[1]
187
+
188
+ @property
189
+ def reversed(self):
190
+ """Return the relationship with sides reversed.
191
+
192
+ Examples
193
+ ========
194
+
195
+ >>> from sympy import Eq
196
+ >>> from sympy.abc import x
197
+ >>> Eq(x, 1)
198
+ Eq(x, 1)
199
+ >>> _.reversed
200
+ Eq(1, x)
201
+ >>> x < 1
202
+ x < 1
203
+ >>> _.reversed
204
+ 1 > x
205
+ """
206
+ ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
207
+ a, b = self.args
208
+ return Relational.__new__(ops.get(self.func, self.func), b, a)
209
+
210
+ @property
211
+ def reversedsign(self):
212
+ """Return the relationship with signs reversed.
213
+
214
+ Examples
215
+ ========
216
+
217
+ >>> from sympy import Eq
218
+ >>> from sympy.abc import x
219
+ >>> Eq(x, 1)
220
+ Eq(x, 1)
221
+ >>> _.reversedsign
222
+ Eq(-x, -1)
223
+ >>> x < 1
224
+ x < 1
225
+ >>> _.reversedsign
226
+ -x > -1
227
+ """
228
+ a, b = self.args
229
+ if not (isinstance(a, BooleanAtom) or isinstance(b, BooleanAtom)):
230
+ ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
231
+ return Relational.__new__(ops.get(self.func, self.func), -a, -b)
232
+ else:
233
+ return self
234
+
235
+ @property
236
+ def negated(self):
237
+ """Return the negated relationship.
238
+
239
+ Examples
240
+ ========
241
+
242
+ >>> from sympy import Eq
243
+ >>> from sympy.abc import x
244
+ >>> Eq(x, 1)
245
+ Eq(x, 1)
246
+ >>> _.negated
247
+ Ne(x, 1)
248
+ >>> x < 1
249
+ x < 1
250
+ >>> _.negated
251
+ x >= 1
252
+
253
+ Notes
254
+ =====
255
+
256
+ This works more or less identical to ``~``/``Not``. The difference is
257
+ that ``negated`` returns the relationship even if ``evaluate=False``.
258
+ Hence, this is useful in code when checking for e.g. negated relations
259
+ to existing ones as it will not be affected by the `evaluate` flag.
260
+
261
+ """
262
+ ops = {Eq: Ne, Ge: Lt, Gt: Le, Le: Gt, Lt: Ge, Ne: Eq}
263
+ # If there ever will be new Relational subclasses, the following line
264
+ # will work until it is properly sorted out
265
+ # return ops.get(self.func, lambda a, b, evaluate=False: ~(self.func(a,
266
+ # b, evaluate=evaluate)))(*self.args, evaluate=False)
267
+ return Relational.__new__(ops.get(self.func), *self.args)
268
+
269
+ @property
270
+ def weak(self):
271
+ """return the non-strict version of the inequality or self
272
+
273
+ EXAMPLES
274
+ ========
275
+
276
+ >>> from sympy.abc import x
277
+ >>> (x < 1).weak
278
+ x <= 1
279
+ >>> _.weak
280
+ x <= 1
281
+ """
282
+ return self
283
+
284
+ @property
285
+ def strict(self):
286
+ """return the strict version of the inequality or self
287
+
288
+ EXAMPLES
289
+ ========
290
+
291
+ >>> from sympy.abc import x
292
+ >>> (x <= 1).strict
293
+ x < 1
294
+ >>> _.strict
295
+ x < 1
296
+ """
297
+ return self
298
+
299
+ def _eval_evalf(self, prec):
300
+ return self.func(*[s._evalf(prec) for s in self.args])
301
+
302
+ @property
303
+ def canonical(self):
304
+ """Return a canonical form of the relational by putting a
305
+ number on the rhs, canonically removing a sign or else
306
+ ordering the args canonically. No other simplification is
307
+ attempted.
308
+
309
+ Examples
310
+ ========
311
+
312
+ >>> from sympy.abc import x, y
313
+ >>> x < 2
314
+ x < 2
315
+ >>> _.reversed.canonical
316
+ x < 2
317
+ >>> (-y < x).canonical
318
+ x > -y
319
+ >>> (-y > x).canonical
320
+ x < -y
321
+ >>> (-y < -x).canonical
322
+ x < y
323
+
324
+ The canonicalization is recursively applied:
325
+
326
+ >>> from sympy import Eq
327
+ >>> Eq(x < y, y > x).canonical
328
+ True
329
+ """
330
+ args = tuple([i.canonical if isinstance(i, Relational) else i for i in self.args])
331
+ if args != self.args:
332
+ r = self.func(*args)
333
+ if not isinstance(r, Relational):
334
+ return r
335
+ else:
336
+ r = self
337
+ if r.rhs.is_number:
338
+ if r.rhs.is_Number and r.lhs.is_Number and r.lhs > r.rhs:
339
+ r = r.reversed
340
+ elif r.lhs.is_number:
341
+ r = r.reversed
342
+ elif tuple(ordered(args)) != args:
343
+ r = r.reversed
344
+
345
+ LHS_CEMS = getattr(r.lhs, 'could_extract_minus_sign', None)
346
+ RHS_CEMS = getattr(r.rhs, 'could_extract_minus_sign', None)
347
+
348
+ if isinstance(r.lhs, BooleanAtom) or isinstance(r.rhs, BooleanAtom):
349
+ return r
350
+
351
+ # Check if first value has negative sign
352
+ if LHS_CEMS and LHS_CEMS():
353
+ return r.reversedsign
354
+ elif not r.rhs.is_number and RHS_CEMS and RHS_CEMS():
355
+ # Right hand side has a minus, but not lhs.
356
+ # How does the expression with reversed signs behave?
357
+ # This is so that expressions of the type
358
+ # Eq(x, -y) and Eq(-x, y)
359
+ # have the same canonical representation
360
+ expr1, _ = ordered([r.lhs, -r.rhs])
361
+ if expr1 != r.lhs:
362
+ return r.reversed.reversedsign
363
+
364
+ return r
365
+
366
+ def equals(self, other, failing_expression=False):
367
+ """Return True if the sides of the relationship are mathematically
368
+ identical and the type of relationship is the same.
369
+ If failing_expression is True, return the expression whose truth value
370
+ was unknown."""
371
+ if isinstance(other, Relational):
372
+ if other in (self, self.reversed):
373
+ return True
374
+ a, b = self, other
375
+ if a.func in (Eq, Ne) or b.func in (Eq, Ne):
376
+ if a.func != b.func:
377
+ return False
378
+ left, right = [i.equals(j,
379
+ failing_expression=failing_expression)
380
+ for i, j in zip(a.args, b.args)]
381
+ if left is True:
382
+ return right
383
+ if right is True:
384
+ return left
385
+ lr, rl = [i.equals(j, failing_expression=failing_expression)
386
+ for i, j in zip(a.args, b.reversed.args)]
387
+ if lr is True:
388
+ return rl
389
+ if rl is True:
390
+ return lr
391
+ e = (left, right, lr, rl)
392
+ if all(i is False for i in e):
393
+ return False
394
+ for i in e:
395
+ if i not in (True, False):
396
+ return i
397
+ else:
398
+ if b.func != a.func:
399
+ b = b.reversed
400
+ if a.func != b.func:
401
+ return False
402
+ left = a.lhs.equals(b.lhs,
403
+ failing_expression=failing_expression)
404
+ if left is False:
405
+ return False
406
+ right = a.rhs.equals(b.rhs,
407
+ failing_expression=failing_expression)
408
+ if right is False:
409
+ return False
410
+ if left is True:
411
+ return right
412
+ return left
413
+
414
+ def _eval_simplify(self, **kwargs):
415
+ from .add import Add
416
+ from .expr import Expr
417
+ r = self
418
+ r = r.func(*[i.simplify(**kwargs) for i in r.args])
419
+ if r.is_Relational:
420
+ if not isinstance(r.lhs, Expr) or not isinstance(r.rhs, Expr):
421
+ return r
422
+ dif = r.lhs - r.rhs
423
+ # replace dif with a valid Number that will
424
+ # allow a definitive comparison with 0
425
+ v = None
426
+ if dif.is_comparable:
427
+ v = dif.n(2)
428
+ elif dif.equals(0): # XXX this is expensive
429
+ v = S.Zero
430
+ if v is not None:
431
+ r = r.func._eval_relation(v, S.Zero)
432
+ r = r.canonical
433
+ # If there is only one symbol in the expression,
434
+ # try to write it on a simplified form
435
+ free = list(filter(lambda x: x.is_real is not False, r.free_symbols))
436
+ if len(free) == 1:
437
+ try:
438
+ from sympy.solvers.solveset import linear_coeffs
439
+ x = free.pop()
440
+ dif = r.lhs - r.rhs
441
+ m, b = linear_coeffs(dif, x)
442
+ if m.is_zero is False:
443
+ if m.is_negative:
444
+ # Dividing with a negative number, so change order of arguments
445
+ # canonical will put the symbol back on the lhs later
446
+ r = r.func(-b / m, x)
447
+ else:
448
+ r = r.func(x, -b / m)
449
+ else:
450
+ r = r.func(b, S.Zero)
451
+ except ValueError:
452
+ # maybe not a linear function, try polynomial
453
+ from sympy.polys.polyerrors import PolynomialError
454
+ from sympy.polys.polytools import gcd, Poly, poly
455
+ try:
456
+ p = poly(dif, x)
457
+ c = p.all_coeffs()
458
+ constant = c[-1]
459
+ c[-1] = 0
460
+ scale = gcd(c)
461
+ c = [ctmp / scale for ctmp in c]
462
+ r = r.func(Poly.from_list(c, x).as_expr(), -constant / scale)
463
+ except PolynomialError:
464
+ pass
465
+ elif len(free) >= 2:
466
+ try:
467
+ from sympy.solvers.solveset import linear_coeffs
468
+ from sympy.polys.polytools import gcd
469
+ free = list(ordered(free))
470
+ dif = r.lhs - r.rhs
471
+ m = linear_coeffs(dif, *free)
472
+ constant = m[-1]
473
+ del m[-1]
474
+ scale = gcd(m)
475
+ m = [mtmp / scale for mtmp in m]
476
+ nzm = list(filter(lambda f: f[0] != 0, list(zip(m, free))))
477
+ if scale.is_zero is False:
478
+ if constant != 0:
479
+ # lhs: expression, rhs: constant
480
+ newexpr = Add(*[i * j for i, j in nzm])
481
+ r = r.func(newexpr, -constant / scale)
482
+ else:
483
+ # keep first term on lhs
484
+ lhsterm = nzm[0][0] * nzm[0][1]
485
+ del nzm[0]
486
+ newexpr = Add(*[i * j for i, j in nzm])
487
+ r = r.func(lhsterm, -newexpr)
488
+
489
+ else:
490
+ r = r.func(constant, S.Zero)
491
+ except ValueError:
492
+ pass
493
+ # Did we get a simplified result?
494
+ r = r.canonical
495
+ measure = kwargs['measure']
496
+ if measure(r) < kwargs['ratio'] * measure(self):
497
+ return r
498
+ else:
499
+ return self
500
+
501
+ def _eval_trigsimp(self, **opts):
502
+ from sympy.simplify.trigsimp import trigsimp
503
+ return self.func(trigsimp(self.lhs, **opts), trigsimp(self.rhs, **opts))
504
+
505
+ def expand(self, **kwargs):
506
+ args = (arg.expand(**kwargs) for arg in self.args)
507
+ return self.func(*args)
508
+
509
+ def __bool__(self):
510
+ raise TypeError("cannot determine truth value of Relational")
511
+
512
+ def _eval_as_set(self):
513
+ # self is univariate and periodicity(self, x) in (0, None)
514
+ from sympy.solvers.inequalities import solve_univariate_inequality
515
+ from sympy.sets.conditionset import ConditionSet
516
+ syms = self.free_symbols
517
+ assert len(syms) == 1
518
+ x = syms.pop()
519
+ try:
520
+ xset = solve_univariate_inequality(self, x, relational=False)
521
+ except NotImplementedError:
522
+ # solve_univariate_inequality raises NotImplementedError for
523
+ # unsolvable equations/inequalities.
524
+ xset = ConditionSet(x, self, S.Reals)
525
+ return xset
526
+
527
+ @property
528
+ def binary_symbols(self):
529
+ # override where necessary
530
+ return set()
531
+
532
+
533
+ Rel = Relational
534
+
535
+
536
+ class Equality(Relational):
537
+ """
538
+ An equal relation between two objects.
539
+
540
+ Explanation
541
+ ===========
542
+
543
+ Represents that two objects are equal. If they can be easily shown
544
+ to be definitively equal (or unequal), this will reduce to True (or
545
+ False). Otherwise, the relation is maintained as an unevaluated
546
+ Equality object. Use the ``simplify`` function on this object for
547
+ more nontrivial evaluation of the equality relation.
548
+
549
+ As usual, the keyword argument ``evaluate=False`` can be used to
550
+ prevent any evaluation.
551
+
552
+ Examples
553
+ ========
554
+
555
+ >>> from sympy import Eq, simplify, exp, cos
556
+ >>> from sympy.abc import x, y
557
+ >>> Eq(y, x + x**2)
558
+ Eq(y, x**2 + x)
559
+ >>> Eq(2, 5)
560
+ False
561
+ >>> Eq(2, 5, evaluate=False)
562
+ Eq(2, 5)
563
+ >>> _.doit()
564
+ False
565
+ >>> Eq(exp(x), exp(x).rewrite(cos))
566
+ Eq(exp(x), sinh(x) + cosh(x))
567
+ >>> simplify(_)
568
+ True
569
+
570
+ See Also
571
+ ========
572
+
573
+ sympy.logic.boolalg.Equivalent : for representing equality between two
574
+ boolean expressions
575
+
576
+ Notes
577
+ =====
578
+
579
+ Python treats 1 and True (and 0 and False) as being equal; SymPy
580
+ does not. And integer will always compare as unequal to a Boolean:
581
+
582
+ >>> Eq(True, 1), True == 1
583
+ (False, True)
584
+
585
+ This class is not the same as the == operator. The == operator tests
586
+ for exact structural equality between two expressions; this class
587
+ compares expressions mathematically.
588
+
589
+ If either object defines an ``_eval_Eq`` method, it can be used in place of
590
+ the default algorithm. If ``lhs._eval_Eq(rhs)`` or ``rhs._eval_Eq(lhs)``
591
+ returns anything other than None, that return value will be substituted for
592
+ the Equality. If None is returned by ``_eval_Eq``, an Equality object will
593
+ be created as usual.
594
+
595
+ Since this object is already an expression, it does not respond to
596
+ the method ``as_expr`` if one tries to create `x - y` from ``Eq(x, y)``.
597
+ This can be done with the ``rewrite(Add)`` method.
598
+
599
+ .. deprecated:: 1.5
600
+
601
+ ``Eq(expr)`` with a single argument is a shorthand for ``Eq(expr, 0)``,
602
+ but this behavior is deprecated and will be removed in a future version
603
+ of SymPy.
604
+
605
+ """
606
+ rel_op = '=='
607
+
608
+ __slots__ = ()
609
+
610
+ is_Equality = True
611
+
612
+ def __new__(cls, lhs, rhs, **options):
613
+ evaluate = options.pop('evaluate', global_parameters.evaluate)
614
+ lhs = _sympify(lhs)
615
+ rhs = _sympify(rhs)
616
+ if evaluate:
617
+ val = is_eq(lhs, rhs)
618
+ if val is None:
619
+ return cls(lhs, rhs, evaluate=False)
620
+ else:
621
+ return _sympify(val)
622
+
623
+ return Relational.__new__(cls, lhs, rhs)
624
+
625
+ @classmethod
626
+ def _eval_relation(cls, lhs, rhs):
627
+ return _sympify(lhs == rhs)
628
+
629
+ def _eval_rewrite_as_Add(self, *args, **kwargs):
630
+ """
631
+ return Eq(L, R) as L - R. To control the evaluation of
632
+ the result set pass `evaluate=True` to give L - R;
633
+ if `evaluate=None` then terms in L and R will not cancel
634
+ but they will be listed in canonical order; otherwise
635
+ non-canonical args will be returned. If one side is 0, the
636
+ non-zero side will be returned.
637
+
638
+ Examples
639
+ ========
640
+
641
+ >>> from sympy import Eq, Add
642
+ >>> from sympy.abc import b, x
643
+ >>> eq = Eq(x + b, x - b)
644
+ >>> eq.rewrite(Add)
645
+ 2*b
646
+ >>> eq.rewrite(Add, evaluate=None).args
647
+ (b, b, x, -x)
648
+ >>> eq.rewrite(Add, evaluate=False).args
649
+ (b, x, b, -x)
650
+ """
651
+ from .add import _unevaluated_Add, Add
652
+ L, R = args
653
+ if L == 0:
654
+ return R
655
+ if R == 0:
656
+ return L
657
+ evaluate = kwargs.get('evaluate', True)
658
+ if evaluate:
659
+ # allow cancellation of args
660
+ return L - R
661
+ args = Add.make_args(L) + Add.make_args(-R)
662
+ if evaluate is None:
663
+ # no cancellation, but canonical
664
+ return _unevaluated_Add(*args)
665
+ # no cancellation, not canonical
666
+ return Add._from_args(args)
667
+
668
+ @property
669
+ def binary_symbols(self):
670
+ if S.true in self.args or S.false in self.args:
671
+ if self.lhs.is_Symbol:
672
+ return {self.lhs}
673
+ elif self.rhs.is_Symbol:
674
+ return {self.rhs}
675
+ return set()
676
+
677
+ def _eval_simplify(self, **kwargs):
678
+ # standard simplify
679
+ e = super()._eval_simplify(**kwargs)
680
+ if not isinstance(e, Equality):
681
+ return e
682
+ from .expr import Expr
683
+ if not isinstance(e.lhs, Expr) or not isinstance(e.rhs, Expr):
684
+ return e
685
+ free = self.free_symbols
686
+ if len(free) == 1:
687
+ try:
688
+ from .add import Add
689
+ from sympy.solvers.solveset import linear_coeffs
690
+ x = free.pop()
691
+ m, b = linear_coeffs(
692
+ e.rewrite(Add, evaluate=False), x)
693
+ if m.is_zero is False:
694
+ enew = e.func(x, -b / m)
695
+ else:
696
+ enew = e.func(m * x, -b)
697
+ measure = kwargs['measure']
698
+ if measure(enew) <= kwargs['ratio'] * measure(e):
699
+ e = enew
700
+ except ValueError:
701
+ pass
702
+ return e.canonical
703
+
704
+ def integrate(self, *args, **kwargs):
705
+ """See the integrate function in sympy.integrals"""
706
+ from sympy.integrals.integrals import integrate
707
+ return integrate(self, *args, **kwargs)
708
+
709
+ def as_poly(self, *gens, **kwargs):
710
+ '''Returns lhs-rhs as a Poly
711
+
712
+ Examples
713
+ ========
714
+
715
+ >>> from sympy import Eq
716
+ >>> from sympy.abc import x
717
+ >>> Eq(x**2, 1).as_poly(x)
718
+ Poly(x**2 - 1, x, domain='ZZ')
719
+ '''
720
+ return (self.lhs - self.rhs).as_poly(*gens, **kwargs)
721
+
722
+
723
+ Eq = Equality
724
+
725
+
726
+ class Unequality(Relational):
727
+ """An unequal relation between two objects.
728
+
729
+ Explanation
730
+ ===========
731
+
732
+ Represents that two objects are not equal. If they can be shown to be
733
+ definitively equal, this will reduce to False; if definitively unequal,
734
+ this will reduce to True. Otherwise, the relation is maintained as an
735
+ Unequality object.
736
+
737
+ Examples
738
+ ========
739
+
740
+ >>> from sympy import Ne
741
+ >>> from sympy.abc import x, y
742
+ >>> Ne(y, x+x**2)
743
+ Ne(y, x**2 + x)
744
+
745
+ See Also
746
+ ========
747
+ Equality
748
+
749
+ Notes
750
+ =====
751
+ This class is not the same as the != operator. The != operator tests
752
+ for exact structural equality between two expressions; this class
753
+ compares expressions mathematically.
754
+
755
+ This class is effectively the inverse of Equality. As such, it uses the
756
+ same algorithms, including any available `_eval_Eq` methods.
757
+
758
+ """
759
+ rel_op = '!='
760
+
761
+ __slots__ = ()
762
+
763
+ def __new__(cls, lhs, rhs, **options):
764
+ lhs = _sympify(lhs)
765
+ rhs = _sympify(rhs)
766
+ evaluate = options.pop('evaluate', global_parameters.evaluate)
767
+ if evaluate:
768
+ val = is_neq(lhs, rhs)
769
+ if val is None:
770
+ return cls(lhs, rhs, evaluate=False)
771
+ else:
772
+ return _sympify(val)
773
+
774
+ return Relational.__new__(cls, lhs, rhs, **options)
775
+
776
+ @classmethod
777
+ def _eval_relation(cls, lhs, rhs):
778
+ return _sympify(lhs != rhs)
779
+
780
+ @property
781
+ def binary_symbols(self):
782
+ if S.true in self.args or S.false in self.args:
783
+ if self.lhs.is_Symbol:
784
+ return {self.lhs}
785
+ elif self.rhs.is_Symbol:
786
+ return {self.rhs}
787
+ return set()
788
+
789
+ def _eval_simplify(self, **kwargs):
790
+ # simplify as an equality
791
+ eq = Equality(*self.args)._eval_simplify(**kwargs)
792
+ if isinstance(eq, Equality):
793
+ # send back Ne with the new args
794
+ return self.func(*eq.args)
795
+ return eq.negated # result of Ne is the negated Eq
796
+
797
+
798
+ Ne = Unequality
799
+
800
+
801
+ class _Inequality(Relational):
802
+ """Internal base class for all *Than types.
803
+
804
+ Each subclass must implement _eval_relation to provide the method for
805
+ comparing two real numbers.
806
+
807
+ """
808
+ __slots__ = ()
809
+
810
+ def __new__(cls, lhs, rhs, **options):
811
+
812
+ try:
813
+ lhs = _sympify(lhs)
814
+ rhs = _sympify(rhs)
815
+ except SympifyError:
816
+ return NotImplemented
817
+
818
+ evaluate = options.pop('evaluate', global_parameters.evaluate)
819
+ if evaluate:
820
+ for me in (lhs, rhs):
821
+ if me.is_extended_real is False:
822
+ raise TypeError("Invalid comparison of non-real %s" % me)
823
+ if me is S.NaN:
824
+ raise TypeError("Invalid NaN comparison")
825
+ # First we invoke the appropriate inequality method of `lhs`
826
+ # (e.g., `lhs.__lt__`). That method will try to reduce to
827
+ # boolean or raise an exception. It may keep calling
828
+ # superclasses until it reaches `Expr` (e.g., `Expr.__lt__`).
829
+ # In some cases, `Expr` will just invoke us again (if neither it
830
+ # nor a subclass was able to reduce to boolean or raise an
831
+ # exception). In that case, it must call us with
832
+ # `evaluate=False` to prevent infinite recursion.
833
+ return cls._eval_relation(lhs, rhs, **options)
834
+
835
+ # make a "non-evaluated" Expr for the inequality
836
+ return Relational.__new__(cls, lhs, rhs, **options)
837
+
838
+ @classmethod
839
+ def _eval_relation(cls, lhs, rhs, **options):
840
+ val = cls._eval_fuzzy_relation(lhs, rhs)
841
+ if val is None:
842
+ return cls(lhs, rhs, evaluate=False)
843
+ else:
844
+ return _sympify(val)
845
+
846
+
847
+ class _Greater(_Inequality):
848
+ """Not intended for general use
849
+
850
+ _Greater is only used so that GreaterThan and StrictGreaterThan may
851
+ subclass it for the .gts and .lts properties.
852
+
853
+ """
854
+ __slots__ = ()
855
+
856
+ @property
857
+ def gts(self):
858
+ return self._args[0]
859
+
860
+ @property
861
+ def lts(self):
862
+ return self._args[1]
863
+
864
+
865
+ class _Less(_Inequality):
866
+ """Not intended for general use.
867
+
868
+ _Less is only used so that LessThan and StrictLessThan may subclass it for
869
+ the .gts and .lts properties.
870
+
871
+ """
872
+ __slots__ = ()
873
+
874
+ @property
875
+ def gts(self):
876
+ return self._args[1]
877
+
878
+ @property
879
+ def lts(self):
880
+ return self._args[0]
881
+
882
+
883
+ class GreaterThan(_Greater):
884
+ r"""Class representations of inequalities.
885
+
886
+ Explanation
887
+ ===========
888
+
889
+ The ``*Than`` classes represent inequal relationships, where the left-hand
890
+ side is generally bigger or smaller than the right-hand side. For example,
891
+ the GreaterThan class represents an inequal relationship where the
892
+ left-hand side is at least as big as the right side, if not bigger. In
893
+ mathematical notation:
894
+
895
+ lhs $\ge$ rhs
896
+
897
+ In total, there are four ``*Than`` classes, to represent the four
898
+ inequalities:
899
+
900
+ +-----------------+--------+
901
+ |Class Name | Symbol |
902
+ +=================+========+
903
+ |GreaterThan | ``>=`` |
904
+ +-----------------+--------+
905
+ |LessThan | ``<=`` |
906
+ +-----------------+--------+
907
+ |StrictGreaterThan| ``>`` |
908
+ +-----------------+--------+
909
+ |StrictLessThan | ``<`` |
910
+ +-----------------+--------+
911
+
912
+ All classes take two arguments, lhs and rhs.
913
+
914
+ +----------------------------+-----------------+
915
+ |Signature Example | Math Equivalent |
916
+ +============================+=================+
917
+ |GreaterThan(lhs, rhs) | lhs $\ge$ rhs |
918
+ +----------------------------+-----------------+
919
+ |LessThan(lhs, rhs) | lhs $\le$ rhs |
920
+ +----------------------------+-----------------+
921
+ |StrictGreaterThan(lhs, rhs) | lhs $>$ rhs |
922
+ +----------------------------+-----------------+
923
+ |StrictLessThan(lhs, rhs) | lhs $<$ rhs |
924
+ +----------------------------+-----------------+
925
+
926
+ In addition to the normal .lhs and .rhs of Relations, ``*Than`` inequality
927
+ objects also have the .lts and .gts properties, which represent the "less
928
+ than side" and "greater than side" of the operator. Use of .lts and .gts
929
+ in an algorithm rather than .lhs and .rhs as an assumption of inequality
930
+ direction will make more explicit the intent of a certain section of code,
931
+ and will make it similarly more robust to client code changes:
932
+
933
+ >>> from sympy import GreaterThan, StrictGreaterThan
934
+ >>> from sympy import LessThan, StrictLessThan
935
+ >>> from sympy import And, Ge, Gt, Le, Lt, Rel, S
936
+ >>> from sympy.abc import x, y, z
937
+ >>> from sympy.core.relational import Relational
938
+
939
+ >>> e = GreaterThan(x, 1)
940
+ >>> e
941
+ x >= 1
942
+ >>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts)
943
+ 'x >= 1 is the same as 1 <= x'
944
+
945
+ Examples
946
+ ========
947
+
948
+ One generally does not instantiate these classes directly, but uses various
949
+ convenience methods:
950
+
951
+ >>> for f in [Ge, Gt, Le, Lt]: # convenience wrappers
952
+ ... print(f(x, 2))
953
+ x >= 2
954
+ x > 2
955
+ x <= 2
956
+ x < 2
957
+
958
+ Another option is to use the Python inequality operators (``>=``, ``>``,
959
+ ``<=``, ``<``) directly. Their main advantage over the ``Ge``, ``Gt``,
960
+ ``Le``, and ``Lt`` counterparts, is that one can write a more
961
+ "mathematical looking" statement rather than littering the math with
962
+ oddball function calls. However there are certain (minor) caveats of
963
+ which to be aware (search for 'gotcha', below).
964
+
965
+ >>> x >= 2
966
+ x >= 2
967
+ >>> _ == Ge(x, 2)
968
+ True
969
+
970
+ However, it is also perfectly valid to instantiate a ``*Than`` class less
971
+ succinctly and less conveniently:
972
+
973
+ >>> Rel(x, 1, ">")
974
+ x > 1
975
+ >>> Relational(x, 1, ">")
976
+ x > 1
977
+
978
+ >>> StrictGreaterThan(x, 1)
979
+ x > 1
980
+ >>> GreaterThan(x, 1)
981
+ x >= 1
982
+ >>> LessThan(x, 1)
983
+ x <= 1
984
+ >>> StrictLessThan(x, 1)
985
+ x < 1
986
+
987
+ Notes
988
+ =====
989
+
990
+ There are a couple of "gotchas" to be aware of when using Python's
991
+ operators.
992
+
993
+ The first is that what your write is not always what you get:
994
+
995
+ >>> 1 < x
996
+ x > 1
997
+
998
+ Due to the order that Python parses a statement, it may
999
+ not immediately find two objects comparable. When ``1 < x``
1000
+ is evaluated, Python recognizes that the number 1 is a native
1001
+ number and that x is *not*. Because a native Python number does
1002
+ not know how to compare itself with a SymPy object
1003
+ Python will try the reflective operation, ``x > 1`` and that is the
1004
+ form that gets evaluated, hence returned.
1005
+
1006
+ If the order of the statement is important (for visual output to
1007
+ the console, perhaps), one can work around this annoyance in a
1008
+ couple ways:
1009
+
1010
+ (1) "sympify" the literal before comparison
1011
+
1012
+ >>> S(1) < x
1013
+ 1 < x
1014
+
1015
+ (2) use one of the wrappers or less succinct methods described
1016
+ above
1017
+
1018
+ >>> Lt(1, x)
1019
+ 1 < x
1020
+ >>> Relational(1, x, "<")
1021
+ 1 < x
1022
+
1023
+ The second gotcha involves writing equality tests between relationals
1024
+ when one or both sides of the test involve a literal relational:
1025
+
1026
+ >>> e = x < 1; e
1027
+ x < 1
1028
+ >>> e == e # neither side is a literal
1029
+ True
1030
+ >>> e == x < 1 # expecting True, too
1031
+ False
1032
+ >>> e != x < 1 # expecting False
1033
+ x < 1
1034
+ >>> x < 1 != x < 1 # expecting False or the same thing as before
1035
+ Traceback (most recent call last):
1036
+ ...
1037
+ TypeError: cannot determine truth value of Relational
1038
+
1039
+ The solution for this case is to wrap literal relationals in
1040
+ parentheses:
1041
+
1042
+ >>> e == (x < 1)
1043
+ True
1044
+ >>> e != (x < 1)
1045
+ False
1046
+ >>> (x < 1) != (x < 1)
1047
+ False
1048
+
1049
+ The third gotcha involves chained inequalities not involving
1050
+ ``==`` or ``!=``. Occasionally, one may be tempted to write:
1051
+
1052
+ >>> e = x < y < z
1053
+ Traceback (most recent call last):
1054
+ ...
1055
+ TypeError: symbolic boolean expression has no truth value.
1056
+
1057
+ Due to an implementation detail or decision of Python [1]_,
1058
+ there is no way for SymPy to create a chained inequality with
1059
+ that syntax so one must use And:
1060
+
1061
+ >>> e = And(x < y, y < z)
1062
+ >>> type( e )
1063
+ And
1064
+ >>> e
1065
+ (x < y) & (y < z)
1066
+
1067
+ Although this can also be done with the '&' operator, it cannot
1068
+ be done with the 'and' operarator:
1069
+
1070
+ >>> (x < y) & (y < z)
1071
+ (x < y) & (y < z)
1072
+ >>> (x < y) and (y < z)
1073
+ Traceback (most recent call last):
1074
+ ...
1075
+ TypeError: cannot determine truth value of Relational
1076
+
1077
+ .. [1] This implementation detail is that Python provides no reliable
1078
+ method to determine that a chained inequality is being built.
1079
+ Chained comparison operators are evaluated pairwise, using "and"
1080
+ logic (see
1081
+ https://docs.python.org/3/reference/expressions.html#not-in). This
1082
+ is done in an efficient way, so that each object being compared
1083
+ is only evaluated once and the comparison can short-circuit. For
1084
+ example, ``1 > 2 > 3`` is evaluated by Python as ``(1 > 2) and (2
1085
+ > 3)``. The ``and`` operator coerces each side into a bool,
1086
+ returning the object itself when it short-circuits. The bool of
1087
+ the --Than operators will raise TypeError on purpose, because
1088
+ SymPy cannot determine the mathematical ordering of symbolic
1089
+ expressions. Thus, if we were to compute ``x > y > z``, with
1090
+ ``x``, ``y``, and ``z`` being Symbols, Python converts the
1091
+ statement (roughly) into these steps:
1092
+
1093
+ (1) x > y > z
1094
+ (2) (x > y) and (y > z)
1095
+ (3) (GreaterThanObject) and (y > z)
1096
+ (4) (GreaterThanObject.__bool__()) and (y > z)
1097
+ (5) TypeError
1098
+
1099
+ Because of the ``and`` added at step 2, the statement gets turned into a
1100
+ weak ternary statement, and the first object's ``__bool__`` method will
1101
+ raise TypeError. Thus, creating a chained inequality is not possible.
1102
+
1103
+ In Python, there is no way to override the ``and`` operator, or to
1104
+ control how it short circuits, so it is impossible to make something
1105
+ like ``x > y > z`` work. There was a PEP to change this,
1106
+ :pep:`335`, but it was officially closed in March, 2012.
1107
+
1108
+ """
1109
+ __slots__ = ()
1110
+
1111
+ rel_op = '>='
1112
+
1113
+ @classmethod
1114
+ def _eval_fuzzy_relation(cls, lhs, rhs):
1115
+ return is_ge(lhs, rhs)
1116
+
1117
+ @property
1118
+ def strict(self):
1119
+ return Gt(*self.args)
1120
+
1121
+ Ge = GreaterThan
1122
+
1123
+
1124
+ class LessThan(_Less):
1125
+ __doc__ = GreaterThan.__doc__
1126
+ __slots__ = ()
1127
+
1128
+ rel_op = '<='
1129
+
1130
+ @classmethod
1131
+ def _eval_fuzzy_relation(cls, lhs, rhs):
1132
+ return is_le(lhs, rhs)
1133
+
1134
+ @property
1135
+ def strict(self):
1136
+ return Lt(*self.args)
1137
+
1138
+ Le = LessThan
1139
+
1140
+
1141
+ class StrictGreaterThan(_Greater):
1142
+ __doc__ = GreaterThan.__doc__
1143
+ __slots__ = ()
1144
+
1145
+ rel_op = '>'
1146
+
1147
+ @classmethod
1148
+ def _eval_fuzzy_relation(cls, lhs, rhs):
1149
+ return is_gt(lhs, rhs)
1150
+
1151
+ @property
1152
+ def weak(self):
1153
+ return Ge(*self.args)
1154
+
1155
+
1156
+ Gt = StrictGreaterThan
1157
+
1158
+
1159
+ class StrictLessThan(_Less):
1160
+ __doc__ = GreaterThan.__doc__
1161
+ __slots__ = ()
1162
+
1163
+ rel_op = '<'
1164
+
1165
+ @classmethod
1166
+ def _eval_fuzzy_relation(cls, lhs, rhs):
1167
+ return is_lt(lhs, rhs)
1168
+
1169
+ @property
1170
+ def weak(self):
1171
+ return Le(*self.args)
1172
+
1173
+ Lt = StrictLessThan
1174
+
1175
+ # A class-specific (not object-specific) data item used for a minor speedup.
1176
+ # It is defined here, rather than directly in the class, because the classes
1177
+ # that it references have not been defined until now (e.g. StrictLessThan).
1178
+ Relational.ValidRelationOperator = {
1179
+ None: Equality,
1180
+ '==': Equality,
1181
+ 'eq': Equality,
1182
+ '!=': Unequality,
1183
+ '<>': Unequality,
1184
+ 'ne': Unequality,
1185
+ '>=': GreaterThan,
1186
+ 'ge': GreaterThan,
1187
+ '<=': LessThan,
1188
+ 'le': LessThan,
1189
+ '>': StrictGreaterThan,
1190
+ 'gt': StrictGreaterThan,
1191
+ '<': StrictLessThan,
1192
+ 'lt': StrictLessThan,
1193
+ }
1194
+
1195
+
1196
+ def _n2(a, b):
1197
+ """Return (a - b).evalf(2) if a and b are comparable, else None.
1198
+ This should only be used when a and b are already sympified.
1199
+ """
1200
+ # /!\ it is very important (see issue 8245) not to
1201
+ # use a re-evaluated number in the calculation of dif
1202
+ if a.is_comparable and b.is_comparable:
1203
+ dif = (a - b).evalf(2)
1204
+ if dif.is_comparable:
1205
+ return dif
1206
+
1207
+
1208
+ @dispatch(Expr, Expr)
1209
+ def _eval_is_ge(lhs, rhs):
1210
+ return None
1211
+
1212
+
1213
+ @dispatch(Basic, Basic)
1214
+ def _eval_is_eq(lhs, rhs):
1215
+ return None
1216
+
1217
+
1218
+ @dispatch(Tuple, Expr) # type: ignore
1219
+ def _eval_is_eq(lhs, rhs): # noqa:F811
1220
+ return False
1221
+
1222
+
1223
+ @dispatch(Tuple, AppliedUndef) # type: ignore
1224
+ def _eval_is_eq(lhs, rhs): # noqa:F811
1225
+ return None
1226
+
1227
+
1228
+ @dispatch(Tuple, Symbol) # type: ignore
1229
+ def _eval_is_eq(lhs, rhs): # noqa:F811
1230
+ return None
1231
+
1232
+
1233
+ @dispatch(Tuple, Tuple) # type: ignore
1234
+ def _eval_is_eq(lhs, rhs): # noqa:F811
1235
+ if len(lhs) != len(rhs):
1236
+ return False
1237
+
1238
+ return fuzzy_and(fuzzy_bool(is_eq(s, o)) for s, o in zip(lhs, rhs))
1239
+
1240
+
1241
+ def is_lt(lhs, rhs, assumptions=None):
1242
+ """Fuzzy bool for lhs is strictly less than rhs.
1243
+
1244
+ See the docstring for :func:`~.is_ge` for more.
1245
+ """
1246
+ return fuzzy_not(is_ge(lhs, rhs, assumptions))
1247
+
1248
+
1249
+ def is_gt(lhs, rhs, assumptions=None):
1250
+ """Fuzzy bool for lhs is strictly greater than rhs.
1251
+
1252
+ See the docstring for :func:`~.is_ge` for more.
1253
+ """
1254
+ return fuzzy_not(is_le(lhs, rhs, assumptions))
1255
+
1256
+
1257
+ def is_le(lhs, rhs, assumptions=None):
1258
+ """Fuzzy bool for lhs is less than or equal to rhs.
1259
+
1260
+ See the docstring for :func:`~.is_ge` for more.
1261
+ """
1262
+ return is_ge(rhs, lhs, assumptions)
1263
+
1264
+
1265
+ def is_ge(lhs, rhs, assumptions=None):
1266
+ """
1267
+ Fuzzy bool for *lhs* is greater than or equal to *rhs*.
1268
+
1269
+ Parameters
1270
+ ==========
1271
+
1272
+ lhs : Expr
1273
+ The left-hand side of the expression, must be sympified,
1274
+ and an instance of expression. Throws an exception if
1275
+ lhs is not an instance of expression.
1276
+
1277
+ rhs : Expr
1278
+ The right-hand side of the expression, must be sympified
1279
+ and an instance of expression. Throws an exception if
1280
+ lhs is not an instance of expression.
1281
+
1282
+ assumptions: Boolean, optional
1283
+ Assumptions taken to evaluate the inequality.
1284
+
1285
+ Returns
1286
+ =======
1287
+
1288
+ ``True`` if *lhs* is greater than or equal to *rhs*, ``False`` if *lhs*
1289
+ is less than *rhs*, and ``None`` if the comparison between *lhs* and
1290
+ *rhs* is indeterminate.
1291
+
1292
+ Explanation
1293
+ ===========
1294
+
1295
+ This function is intended to give a relatively fast determination and
1296
+ deliberately does not attempt slow calculations that might help in
1297
+ obtaining a determination of True or False in more difficult cases.
1298
+
1299
+ The four comparison functions ``is_le``, ``is_lt``, ``is_ge``, and ``is_gt`` are
1300
+ each implemented in terms of ``is_ge`` in the following way:
1301
+
1302
+ is_ge(x, y) := is_ge(x, y)
1303
+ is_le(x, y) := is_ge(y, x)
1304
+ is_lt(x, y) := fuzzy_not(is_ge(x, y))
1305
+ is_gt(x, y) := fuzzy_not(is_ge(y, x))
1306
+
1307
+ Therefore, supporting new type with this function will ensure behavior for
1308
+ other three functions as well.
1309
+
1310
+ To maintain these equivalences in fuzzy logic it is important that in cases where
1311
+ either x or y is non-real all comparisons will give None.
1312
+
1313
+ Examples
1314
+ ========
1315
+
1316
+ >>> from sympy import S, Q
1317
+ >>> from sympy.core.relational import is_ge, is_le, is_gt, is_lt
1318
+ >>> from sympy.abc import x
1319
+ >>> is_ge(S(2), S(0))
1320
+ True
1321
+ >>> is_ge(S(0), S(2))
1322
+ False
1323
+ >>> is_le(S(0), S(2))
1324
+ True
1325
+ >>> is_gt(S(0), S(2))
1326
+ False
1327
+ >>> is_lt(S(2), S(0))
1328
+ False
1329
+
1330
+ Assumptions can be passed to evaluate the quality which is otherwise
1331
+ indeterminate.
1332
+
1333
+ >>> print(is_ge(x, S(0)))
1334
+ None
1335
+ >>> is_ge(x, S(0), assumptions=Q.positive(x))
1336
+ True
1337
+
1338
+ New types can be supported by dispatching to ``_eval_is_ge``.
1339
+
1340
+ >>> from sympy import Expr, sympify
1341
+ >>> from sympy.multipledispatch import dispatch
1342
+ >>> class MyExpr(Expr):
1343
+ ... def __new__(cls, arg):
1344
+ ... return super().__new__(cls, sympify(arg))
1345
+ ... @property
1346
+ ... def value(self):
1347
+ ... return self.args[0]
1348
+ >>> @dispatch(MyExpr, MyExpr)
1349
+ ... def _eval_is_ge(a, b):
1350
+ ... return is_ge(a.value, b.value)
1351
+ >>> a = MyExpr(1)
1352
+ >>> b = MyExpr(2)
1353
+ >>> is_ge(b, a)
1354
+ True
1355
+ >>> is_le(a, b)
1356
+ True
1357
+ """
1358
+ from sympy.assumptions.wrapper import AssumptionsWrapper, is_extended_nonnegative
1359
+
1360
+ if not (isinstance(lhs, Expr) and isinstance(rhs, Expr)):
1361
+ raise TypeError("Can only compare inequalities with Expr")
1362
+
1363
+ retval = _eval_is_ge(lhs, rhs)
1364
+
1365
+ if retval is not None:
1366
+ return retval
1367
+ else:
1368
+ n2 = _n2(lhs, rhs)
1369
+ if n2 is not None:
1370
+ # use float comparison for infinity.
1371
+ # otherwise get stuck in infinite recursion
1372
+ if n2 in (S.Infinity, S.NegativeInfinity):
1373
+ n2 = float(n2)
1374
+ return n2 >= 0
1375
+
1376
+ _lhs = AssumptionsWrapper(lhs, assumptions)
1377
+ _rhs = AssumptionsWrapper(rhs, assumptions)
1378
+ if _lhs.is_extended_real and _rhs.is_extended_real:
1379
+ if (_lhs.is_infinite and _lhs.is_extended_positive) or (_rhs.is_infinite and _rhs.is_extended_negative):
1380
+ return True
1381
+ diff = lhs - rhs
1382
+ if diff is not S.NaN:
1383
+ rv = is_extended_nonnegative(diff, assumptions)
1384
+ if rv is not None:
1385
+ return rv
1386
+
1387
+
1388
+ def is_neq(lhs, rhs, assumptions=None):
1389
+ """Fuzzy bool for lhs does not equal rhs.
1390
+
1391
+ See the docstring for :func:`~.is_eq` for more.
1392
+ """
1393
+ return fuzzy_not(is_eq(lhs, rhs, assumptions))
1394
+
1395
+
1396
+ def is_eq(lhs, rhs, assumptions=None):
1397
+ """
1398
+ Fuzzy bool representing mathematical equality between *lhs* and *rhs*.
1399
+
1400
+ Parameters
1401
+ ==========
1402
+
1403
+ lhs : Expr
1404
+ The left-hand side of the expression, must be sympified.
1405
+
1406
+ rhs : Expr
1407
+ The right-hand side of the expression, must be sympified.
1408
+
1409
+ assumptions: Boolean, optional
1410
+ Assumptions taken to evaluate the equality.
1411
+
1412
+ Returns
1413
+ =======
1414
+
1415
+ ``True`` if *lhs* is equal to *rhs*, ``False`` is *lhs* is not equal to *rhs*,
1416
+ and ``None`` if the comparison between *lhs* and *rhs* is indeterminate.
1417
+
1418
+ Explanation
1419
+ ===========
1420
+
1421
+ This function is intended to give a relatively fast determination and
1422
+ deliberately does not attempt slow calculations that might help in
1423
+ obtaining a determination of True or False in more difficult cases.
1424
+
1425
+ :func:`~.is_neq` calls this function to return its value, so supporting
1426
+ new type with this function will ensure correct behavior for ``is_neq``
1427
+ as well.
1428
+
1429
+ Examples
1430
+ ========
1431
+
1432
+ >>> from sympy import Q, S
1433
+ >>> from sympy.core.relational import is_eq, is_neq
1434
+ >>> from sympy.abc import x
1435
+ >>> is_eq(S(0), S(0))
1436
+ True
1437
+ >>> is_neq(S(0), S(0))
1438
+ False
1439
+ >>> is_eq(S(0), S(2))
1440
+ False
1441
+ >>> is_neq(S(0), S(2))
1442
+ True
1443
+
1444
+ Assumptions can be passed to evaluate the equality which is otherwise
1445
+ indeterminate.
1446
+
1447
+ >>> print(is_eq(x, S(0)))
1448
+ None
1449
+ >>> is_eq(x, S(0), assumptions=Q.zero(x))
1450
+ True
1451
+
1452
+ New types can be supported by dispatching to ``_eval_is_eq``.
1453
+
1454
+ >>> from sympy import Basic, sympify
1455
+ >>> from sympy.multipledispatch import dispatch
1456
+ >>> class MyBasic(Basic):
1457
+ ... def __new__(cls, arg):
1458
+ ... return Basic.__new__(cls, sympify(arg))
1459
+ ... @property
1460
+ ... def value(self):
1461
+ ... return self.args[0]
1462
+ ...
1463
+ >>> @dispatch(MyBasic, MyBasic)
1464
+ ... def _eval_is_eq(a, b):
1465
+ ... return is_eq(a.value, b.value)
1466
+ ...
1467
+ >>> a = MyBasic(1)
1468
+ >>> b = MyBasic(1)
1469
+ >>> is_eq(a, b)
1470
+ True
1471
+ >>> is_neq(a, b)
1472
+ False
1473
+
1474
+ """
1475
+ # here, _eval_Eq is only called for backwards compatibility
1476
+ # new code should use is_eq with multiple dispatch as
1477
+ # outlined in the docstring
1478
+ for side1, side2 in (lhs, rhs), (rhs, lhs):
1479
+ eval_func = getattr(side1, '_eval_Eq', None)
1480
+ if eval_func is not None:
1481
+ retval = eval_func(side2)
1482
+ if retval is not None:
1483
+ return retval
1484
+
1485
+ retval = _eval_is_eq(lhs, rhs)
1486
+ if retval is not None:
1487
+ return retval
1488
+
1489
+ if dispatch(type(lhs), type(rhs)) != dispatch(type(rhs), type(lhs)):
1490
+ retval = _eval_is_eq(rhs, lhs)
1491
+ if retval is not None:
1492
+ return retval
1493
+
1494
+ # retval is still None, so go through the equality logic
1495
+ # If expressions have the same structure, they must be equal.
1496
+ if lhs == rhs:
1497
+ return True # e.g. True == True
1498
+ elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
1499
+ return False # True != False
1500
+ elif not (lhs.is_Symbol or rhs.is_Symbol) and (
1501
+ isinstance(lhs, Boolean) !=
1502
+ isinstance(rhs, Boolean)):
1503
+ return False # only Booleans can equal Booleans
1504
+
1505
+ from sympy.assumptions.wrapper import (AssumptionsWrapper,
1506
+ is_infinite, is_extended_real)
1507
+ from .add import Add
1508
+
1509
+ _lhs = AssumptionsWrapper(lhs, assumptions)
1510
+ _rhs = AssumptionsWrapper(rhs, assumptions)
1511
+
1512
+ if _lhs.is_infinite or _rhs.is_infinite:
1513
+ if fuzzy_xor([_lhs.is_infinite, _rhs.is_infinite]):
1514
+ return False
1515
+ if fuzzy_xor([_lhs.is_extended_real, _rhs.is_extended_real]):
1516
+ return False
1517
+ if fuzzy_and([_lhs.is_extended_real, _rhs.is_extended_real]):
1518
+ return fuzzy_xor([_lhs.is_extended_positive, fuzzy_not(_rhs.is_extended_positive)])
1519
+
1520
+ # Try to split real/imaginary parts and equate them
1521
+ I = S.ImaginaryUnit
1522
+
1523
+ def split_real_imag(expr):
1524
+ real_imag = lambda t: (
1525
+ 'real' if is_extended_real(t, assumptions) else
1526
+ 'imag' if is_extended_real(I*t, assumptions) else None)
1527
+ return sift(Add.make_args(expr), real_imag)
1528
+
1529
+ lhs_ri = split_real_imag(lhs)
1530
+ if not lhs_ri[None]:
1531
+ rhs_ri = split_real_imag(rhs)
1532
+ if not rhs_ri[None]:
1533
+ eq_real = is_eq(Add(*lhs_ri['real']), Add(*rhs_ri['real']), assumptions)
1534
+ eq_imag = is_eq(I * Add(*lhs_ri['imag']), I * Add(*rhs_ri['imag']), assumptions)
1535
+ return fuzzy_and(map(fuzzy_bool, [eq_real, eq_imag]))
1536
+
1537
+ from sympy.functions.elementary.complexes import arg
1538
+ # Compare e.g. zoo with 1+I*oo by comparing args
1539
+ arglhs = arg(lhs)
1540
+ argrhs = arg(rhs)
1541
+ # Guard against Eq(nan, nan) -> False
1542
+ if not (arglhs == S.NaN and argrhs == S.NaN):
1543
+ return fuzzy_bool(is_eq(arglhs, argrhs, assumptions))
1544
+
1545
+ if all(isinstance(i, Expr) for i in (lhs, rhs)):
1546
+ # see if the difference evaluates
1547
+ dif = lhs - rhs
1548
+ _dif = AssumptionsWrapper(dif, assumptions)
1549
+ z = _dif.is_zero
1550
+ if z is not None:
1551
+ if z is False and _dif.is_commutative: # issue 10728
1552
+ return False
1553
+ if z:
1554
+ return True
1555
+
1556
+ n2 = _n2(lhs, rhs)
1557
+ if n2 is not None:
1558
+ return _sympify(n2 == 0)
1559
+
1560
+ # see if the ratio evaluates
1561
+ n, d = dif.as_numer_denom()
1562
+ rv = None
1563
+ _n = AssumptionsWrapper(n, assumptions)
1564
+ _d = AssumptionsWrapper(d, assumptions)
1565
+ if _n.is_zero:
1566
+ rv = _d.is_nonzero
1567
+ elif _n.is_finite:
1568
+ if _d.is_infinite:
1569
+ rv = True
1570
+ elif _n.is_zero is False:
1571
+ rv = _d.is_infinite
1572
+ if rv is None:
1573
+ # if the condition that makes the denominator
1574
+ # infinite does not make the original expression
1575
+ # True then False can be returned
1576
+ from sympy.simplify.simplify import clear_coefficients
1577
+ l, r = clear_coefficients(d, S.Infinity)
1578
+ args = [_.subs(l, r) for _ in (lhs, rhs)]
1579
+ if args != [lhs, rhs]:
1580
+ rv = fuzzy_bool(is_eq(*args, assumptions))
1581
+ if rv is True:
1582
+ rv = None
1583
+ elif any(is_infinite(a, assumptions) for a in Add.make_args(n)):
1584
+ # (inf or nan)/x != 0
1585
+ rv = False
1586
+ if rv is not None:
1587
+ return rv
llmeval-env/lib/python3.10/site-packages/sympy/core/rules.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Replacement rules.
3
+ """
4
+
5
+ class Transform:
6
+ """
7
+ Immutable mapping that can be used as a generic transformation rule.
8
+
9
+ Parameters
10
+ ==========
11
+
12
+ transform : callable
13
+ Computes the value corresponding to any key.
14
+
15
+ filter : callable, optional
16
+ If supplied, specifies which objects are in the mapping.
17
+
18
+ Examples
19
+ ========
20
+
21
+ >>> from sympy.core.rules import Transform
22
+ >>> from sympy.abc import x
23
+
24
+ This Transform will return, as a value, one more than the key:
25
+
26
+ >>> add1 = Transform(lambda x: x + 1)
27
+ >>> add1[1]
28
+ 2
29
+ >>> add1[x]
30
+ x + 1
31
+
32
+ By default, all values are considered to be in the dictionary. If a filter
33
+ is supplied, only the objects for which it returns True are considered as
34
+ being in the dictionary:
35
+
36
+ >>> add1_odd = Transform(lambda x: x + 1, lambda x: x%2 == 1)
37
+ >>> 2 in add1_odd
38
+ False
39
+ >>> add1_odd.get(2, 0)
40
+ 0
41
+ >>> 3 in add1_odd
42
+ True
43
+ >>> add1_odd[3]
44
+ 4
45
+ >>> add1_odd.get(3, 0)
46
+ 4
47
+ """
48
+
49
+ def __init__(self, transform, filter=lambda x: True):
50
+ self._transform = transform
51
+ self._filter = filter
52
+
53
+ def __contains__(self, item):
54
+ return self._filter(item)
55
+
56
+ def __getitem__(self, key):
57
+ if self._filter(key):
58
+ return self._transform(key)
59
+ else:
60
+ raise KeyError(key)
61
+
62
+ def get(self, item, default=None):
63
+ if item in self:
64
+ return self[item]
65
+ else:
66
+ return default
llmeval-env/lib/python3.10/site-packages/sympy/core/singleton.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Singleton mechanism"""
2
+
3
+
4
+ from .core import Registry
5
+ from .sympify import sympify
6
+
7
+
8
+ class SingletonRegistry(Registry):
9
+ """
10
+ The registry for the singleton classes (accessible as ``S``).
11
+
12
+ Explanation
13
+ ===========
14
+
15
+ This class serves as two separate things.
16
+
17
+ The first thing it is is the ``SingletonRegistry``. Several classes in
18
+ SymPy appear so often that they are singletonized, that is, using some
19
+ metaprogramming they are made so that they can only be instantiated once
20
+ (see the :class:`sympy.core.singleton.Singleton` class for details). For
21
+ instance, every time you create ``Integer(0)``, this will return the same
22
+ instance, :class:`sympy.core.numbers.Zero`. All singleton instances are
23
+ attributes of the ``S`` object, so ``Integer(0)`` can also be accessed as
24
+ ``S.Zero``.
25
+
26
+ Singletonization offers two advantages: it saves memory, and it allows
27
+ fast comparison. It saves memory because no matter how many times the
28
+ singletonized objects appear in expressions in memory, they all point to
29
+ the same single instance in memory. The fast comparison comes from the
30
+ fact that you can use ``is`` to compare exact instances in Python
31
+ (usually, you need to use ``==`` to compare things). ``is`` compares
32
+ objects by memory address, and is very fast.
33
+
34
+ Examples
35
+ ========
36
+
37
+ >>> from sympy import S, Integer
38
+ >>> a = Integer(0)
39
+ >>> a is S.Zero
40
+ True
41
+
42
+ For the most part, the fact that certain objects are singletonized is an
43
+ implementation detail that users should not need to worry about. In SymPy
44
+ library code, ``is`` comparison is often used for performance purposes
45
+ The primary advantage of ``S`` for end users is the convenient access to
46
+ certain instances that are otherwise difficult to type, like ``S.Half``
47
+ (instead of ``Rational(1, 2)``).
48
+
49
+ When using ``is`` comparison, make sure the argument is sympified. For
50
+ instance,
51
+
52
+ >>> x = 0
53
+ >>> x is S.Zero
54
+ False
55
+
56
+ This problem is not an issue when using ``==``, which is recommended for
57
+ most use-cases:
58
+
59
+ >>> 0 == S.Zero
60
+ True
61
+
62
+ The second thing ``S`` is is a shortcut for
63
+ :func:`sympy.core.sympify.sympify`. :func:`sympy.core.sympify.sympify` is
64
+ the function that converts Python objects such as ``int(1)`` into SymPy
65
+ objects such as ``Integer(1)``. It also converts the string form of an
66
+ expression into a SymPy expression, like ``sympify("x**2")`` ->
67
+ ``Symbol("x")**2``. ``S(1)`` is the same thing as ``sympify(1)``
68
+ (basically, ``S.__call__`` has been defined to call ``sympify``).
69
+
70
+ This is for convenience, since ``S`` is a single letter. It's mostly
71
+ useful for defining rational numbers. Consider an expression like ``x +
72
+ 1/2``. If you enter this directly in Python, it will evaluate the ``1/2``
73
+ and give ``0.5``, because both arguments are ints (see also
74
+ :ref:`tutorial-gotchas-final-notes`). However, in SymPy, you usually want
75
+ the quotient of two integers to give an exact rational number. The way
76
+ Python's evaluation works, at least one side of an operator needs to be a
77
+ SymPy object for the SymPy evaluation to take over. You could write this
78
+ as ``x + Rational(1, 2)``, but this is a lot more typing. A shorter
79
+ version is ``x + S(1)/2``. Since ``S(1)`` returns ``Integer(1)``, the
80
+ division will return a ``Rational`` type, since it will call
81
+ ``Integer.__truediv__``, which knows how to return a ``Rational``.
82
+
83
+ """
84
+ __slots__ = ()
85
+
86
+ # Also allow things like S(5)
87
+ __call__ = staticmethod(sympify)
88
+
89
+ def __init__(self):
90
+ self._classes_to_install = {}
91
+ # Dict of classes that have been registered, but that have not have been
92
+ # installed as an attribute of this SingletonRegistry.
93
+ # Installation automatically happens at the first attempt to access the
94
+ # attribute.
95
+ # The purpose of this is to allow registration during class
96
+ # initialization during import, but not trigger object creation until
97
+ # actual use (which should not happen until after all imports are
98
+ # finished).
99
+
100
+ def register(self, cls):
101
+ # Make sure a duplicate class overwrites the old one
102
+ if hasattr(self, cls.__name__):
103
+ delattr(self, cls.__name__)
104
+ self._classes_to_install[cls.__name__] = cls
105
+
106
+ def __getattr__(self, name):
107
+ """Python calls __getattr__ if no attribute of that name was installed
108
+ yet.
109
+
110
+ Explanation
111
+ ===========
112
+
113
+ This __getattr__ checks whether a class with the requested name was
114
+ already registered but not installed; if no, raises an AttributeError.
115
+ Otherwise, retrieves the class, calculates its singleton value, installs
116
+ it as an attribute of the given name, and unregisters the class."""
117
+ if name not in self._classes_to_install:
118
+ raise AttributeError(
119
+ "Attribute '%s' was not installed on SymPy registry %s" % (
120
+ name, self))
121
+ class_to_install = self._classes_to_install[name]
122
+ value_to_install = class_to_install()
123
+ self.__setattr__(name, value_to_install)
124
+ del self._classes_to_install[name]
125
+ return value_to_install
126
+
127
+ def __repr__(self):
128
+ return "S"
129
+
130
+ S = SingletonRegistry()
131
+
132
+
133
+ class Singleton(type):
134
+ """
135
+ Metaclass for singleton classes.
136
+
137
+ Explanation
138
+ ===========
139
+
140
+ A singleton class has only one instance which is returned every time the
141
+ class is instantiated. Additionally, this instance can be accessed through
142
+ the global registry object ``S`` as ``S.<class_name>``.
143
+
144
+ Examples
145
+ ========
146
+
147
+ >>> from sympy import S, Basic
148
+ >>> from sympy.core.singleton import Singleton
149
+ >>> class MySingleton(Basic, metaclass=Singleton):
150
+ ... pass
151
+ >>> Basic() is Basic()
152
+ False
153
+ >>> MySingleton() is MySingleton()
154
+ True
155
+ >>> S.MySingleton is MySingleton()
156
+ True
157
+
158
+ Notes
159
+ =====
160
+
161
+ Instance creation is delayed until the first time the value is accessed.
162
+ (SymPy versions before 1.0 would create the instance during class
163
+ creation time, which would be prone to import cycles.)
164
+ """
165
+ def __init__(cls, *args, **kwargs):
166
+ cls._instance = obj = Basic.__new__(cls)
167
+ cls.__new__ = lambda cls: obj
168
+ cls.__getnewargs__ = lambda obj: ()
169
+ cls.__getstate__ = lambda obj: None
170
+ S.register(cls)
171
+
172
+
173
+ # Delayed to avoid cyclic import
174
+ from .basic import Basic
llmeval-env/lib/python3.10/site-packages/sympy/core/sorting.py ADDED
@@ -0,0 +1,309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+
3
+ from .sympify import sympify, SympifyError
4
+ from sympy.utilities.iterables import iterable, uniq
5
+
6
+
7
+ __all__ = ['default_sort_key', 'ordered']
8
+
9
+
10
+ def default_sort_key(item, order=None):
11
+ """Return a key that can be used for sorting.
12
+
13
+ The key has the structure:
14
+
15
+ (class_key, (len(args), args), exponent.sort_key(), coefficient)
16
+
17
+ This key is supplied by the sort_key routine of Basic objects when
18
+ ``item`` is a Basic object or an object (other than a string) that
19
+ sympifies to a Basic object. Otherwise, this function produces the
20
+ key.
21
+
22
+ The ``order`` argument is passed along to the sort_key routine and is
23
+ used to determine how the terms *within* an expression are ordered.
24
+ (See examples below) ``order`` options are: 'lex', 'grlex', 'grevlex',
25
+ and reversed values of the same (e.g. 'rev-lex'). The default order
26
+ value is None (which translates to 'lex').
27
+
28
+ Examples
29
+ ========
30
+
31
+ >>> from sympy import S, I, default_sort_key, sin, cos, sqrt
32
+ >>> from sympy.core.function import UndefinedFunction
33
+ >>> from sympy.abc import x
34
+
35
+ The following are equivalent ways of getting the key for an object:
36
+
37
+ >>> x.sort_key() == default_sort_key(x)
38
+ True
39
+
40
+ Here are some examples of the key that is produced:
41
+
42
+ >>> default_sort_key(UndefinedFunction('f'))
43
+ ((0, 0, 'UndefinedFunction'), (1, ('f',)), ((1, 0, 'Number'),
44
+ (0, ()), (), 1), 1)
45
+ >>> default_sort_key('1')
46
+ ((0, 0, 'str'), (1, ('1',)), ((1, 0, 'Number'), (0, ()), (), 1), 1)
47
+ >>> default_sort_key(S.One)
48
+ ((1, 0, 'Number'), (0, ()), (), 1)
49
+ >>> default_sort_key(2)
50
+ ((1, 0, 'Number'), (0, ()), (), 2)
51
+
52
+ While sort_key is a method only defined for SymPy objects,
53
+ default_sort_key will accept anything as an argument so it is
54
+ more robust as a sorting key. For the following, using key=
55
+ lambda i: i.sort_key() would fail because 2 does not have a sort_key
56
+ method; that's why default_sort_key is used. Note, that it also
57
+ handles sympification of non-string items likes ints:
58
+
59
+ >>> a = [2, I, -I]
60
+ >>> sorted(a, key=default_sort_key)
61
+ [2, -I, I]
62
+
63
+ The returned key can be used anywhere that a key can be specified for
64
+ a function, e.g. sort, min, max, etc...:
65
+
66
+ >>> a.sort(key=default_sort_key); a[0]
67
+ 2
68
+ >>> min(a, key=default_sort_key)
69
+ 2
70
+
71
+ Notes
72
+ =====
73
+
74
+ The key returned is useful for getting items into a canonical order
75
+ that will be the same across platforms. It is not directly useful for
76
+ sorting lists of expressions:
77
+
78
+ >>> a, b = x, 1/x
79
+
80
+ Since ``a`` has only 1 term, its value of sort_key is unaffected by
81
+ ``order``:
82
+
83
+ >>> a.sort_key() == a.sort_key('rev-lex')
84
+ True
85
+
86
+ If ``a`` and ``b`` are combined then the key will differ because there
87
+ are terms that can be ordered:
88
+
89
+ >>> eq = a + b
90
+ >>> eq.sort_key() == eq.sort_key('rev-lex')
91
+ False
92
+ >>> eq.as_ordered_terms()
93
+ [x, 1/x]
94
+ >>> eq.as_ordered_terms('rev-lex')
95
+ [1/x, x]
96
+
97
+ But since the keys for each of these terms are independent of ``order``'s
98
+ value, they do not sort differently when they appear separately in a list:
99
+
100
+ >>> sorted(eq.args, key=default_sort_key)
101
+ [1/x, x]
102
+ >>> sorted(eq.args, key=lambda i: default_sort_key(i, order='rev-lex'))
103
+ [1/x, x]
104
+
105
+ The order of terms obtained when using these keys is the order that would
106
+ be obtained if those terms were *factors* in a product.
107
+
108
+ Although it is useful for quickly putting expressions in canonical order,
109
+ it does not sort expressions based on their complexity defined by the
110
+ number of operations, power of variables and others:
111
+
112
+ >>> sorted([sin(x)*cos(x), sin(x)], key=default_sort_key)
113
+ [sin(x)*cos(x), sin(x)]
114
+ >>> sorted([x, x**2, sqrt(x), x**3], key=default_sort_key)
115
+ [sqrt(x), x, x**2, x**3]
116
+
117
+ See Also
118
+ ========
119
+
120
+ ordered, sympy.core.expr.Expr.as_ordered_factors, sympy.core.expr.Expr.as_ordered_terms
121
+
122
+ """
123
+ from .basic import Basic
124
+ from .singleton import S
125
+
126
+ if isinstance(item, Basic):
127
+ return item.sort_key(order=order)
128
+
129
+ if iterable(item, exclude=str):
130
+ if isinstance(item, dict):
131
+ args = item.items()
132
+ unordered = True
133
+ elif isinstance(item, set):
134
+ args = item
135
+ unordered = True
136
+ else:
137
+ # e.g. tuple, list
138
+ args = list(item)
139
+ unordered = False
140
+
141
+ args = [default_sort_key(arg, order=order) for arg in args]
142
+
143
+ if unordered:
144
+ # e.g. dict, set
145
+ args = sorted(args)
146
+
147
+ cls_index, args = 10, (len(args), tuple(args))
148
+ else:
149
+ if not isinstance(item, str):
150
+ try:
151
+ item = sympify(item, strict=True)
152
+ except SympifyError:
153
+ # e.g. lambda x: x
154
+ pass
155
+ else:
156
+ if isinstance(item, Basic):
157
+ # e.g int -> Integer
158
+ return default_sort_key(item)
159
+ # e.g. UndefinedFunction
160
+
161
+ # e.g. str
162
+ cls_index, args = 0, (1, (str(item),))
163
+
164
+ return (cls_index, 0, item.__class__.__name__
165
+ ), args, S.One.sort_key(), S.One
166
+
167
+
168
+ def _node_count(e):
169
+ # this not only counts nodes, it affirms that the
170
+ # args are Basic (i.e. have an args property). If
171
+ # some object has a non-Basic arg, it needs to be
172
+ # fixed since it is intended that all Basic args
173
+ # are of Basic type (though this is not easy to enforce).
174
+ if e.is_Float:
175
+ return 0.5
176
+ return 1 + sum(map(_node_count, e.args))
177
+
178
+
179
+ def _nodes(e):
180
+ """
181
+ A helper for ordered() which returns the node count of ``e`` which
182
+ for Basic objects is the number of Basic nodes in the expression tree
183
+ but for other objects is 1 (unless the object is an iterable or dict
184
+ for which the sum of nodes is returned).
185
+ """
186
+ from .basic import Basic
187
+ from .function import Derivative
188
+
189
+ if isinstance(e, Basic):
190
+ if isinstance(e, Derivative):
191
+ return _nodes(e.expr) + sum(i[1] if i[1].is_Number else
192
+ _nodes(i[1]) for i in e.variable_count)
193
+ return _node_count(e)
194
+ elif iterable(e):
195
+ return 1 + sum(_nodes(ei) for ei in e)
196
+ elif isinstance(e, dict):
197
+ return 1 + sum(_nodes(k) + _nodes(v) for k, v in e.items())
198
+ else:
199
+ return 1
200
+
201
+
202
+ def ordered(seq, keys=None, default=True, warn=False):
203
+ """Return an iterator of the seq where keys are used to break ties in
204
+ a conservative fashion: if, after applying a key, there are no ties
205
+ then no other keys will be computed.
206
+
207
+ Two default keys will be applied if 1) keys are not provided or 2) the
208
+ given keys do not resolve all ties (but only if ``default`` is True). The
209
+ two keys are ``_nodes`` (which places smaller expressions before large) and
210
+ ``default_sort_key`` which (if the ``sort_key`` for an object is defined
211
+ properly) should resolve any ties.
212
+
213
+ If ``warn`` is True then an error will be raised if there were no
214
+ keys remaining to break ties. This can be used if it was expected that
215
+ there should be no ties between items that are not identical.
216
+
217
+ Examples
218
+ ========
219
+
220
+ >>> from sympy import ordered, count_ops
221
+ >>> from sympy.abc import x, y
222
+
223
+ The count_ops is not sufficient to break ties in this list and the first
224
+ two items appear in their original order (i.e. the sorting is stable):
225
+
226
+ >>> list(ordered([y + 2, x + 2, x**2 + y + 3],
227
+ ... count_ops, default=False, warn=False))
228
+ ...
229
+ [y + 2, x + 2, x**2 + y + 3]
230
+
231
+ The default_sort_key allows the tie to be broken:
232
+
233
+ >>> list(ordered([y + 2, x + 2, x**2 + y + 3]))
234
+ ...
235
+ [x + 2, y + 2, x**2 + y + 3]
236
+
237
+ Here, sequences are sorted by length, then sum:
238
+
239
+ >>> seq, keys = [[[1, 2, 1], [0, 3, 1], [1, 1, 3], [2], [1]], [
240
+ ... lambda x: len(x),
241
+ ... lambda x: sum(x)]]
242
+ ...
243
+ >>> list(ordered(seq, keys, default=False, warn=False))
244
+ [[1], [2], [1, 2, 1], [0, 3, 1], [1, 1, 3]]
245
+
246
+ If ``warn`` is True, an error will be raised if there were not
247
+ enough keys to break ties:
248
+
249
+ >>> list(ordered(seq, keys, default=False, warn=True))
250
+ Traceback (most recent call last):
251
+ ...
252
+ ValueError: not enough keys to break ties
253
+
254
+
255
+ Notes
256
+ =====
257
+
258
+ The decorated sort is one of the fastest ways to sort a sequence for
259
+ which special item comparison is desired: the sequence is decorated,
260
+ sorted on the basis of the decoration (e.g. making all letters lower
261
+ case) and then undecorated. If one wants to break ties for items that
262
+ have the same decorated value, a second key can be used. But if the
263
+ second key is expensive to compute then it is inefficient to decorate
264
+ all items with both keys: only those items having identical first key
265
+ values need to be decorated. This function applies keys successively
266
+ only when needed to break ties. By yielding an iterator, use of the
267
+ tie-breaker is delayed as long as possible.
268
+
269
+ This function is best used in cases when use of the first key is
270
+ expected to be a good hashing function; if there are no unique hashes
271
+ from application of a key, then that key should not have been used. The
272
+ exception, however, is that even if there are many collisions, if the
273
+ first group is small and one does not need to process all items in the
274
+ list then time will not be wasted sorting what one was not interested
275
+ in. For example, if one were looking for the minimum in a list and
276
+ there were several criteria used to define the sort order, then this
277
+ function would be good at returning that quickly if the first group
278
+ of candidates is small relative to the number of items being processed.
279
+
280
+ """
281
+
282
+ d = defaultdict(list)
283
+ if keys:
284
+ if isinstance(keys, (list, tuple)):
285
+ keys = list(keys)
286
+ f = keys.pop(0)
287
+ else:
288
+ f = keys
289
+ keys = []
290
+ for a in seq:
291
+ d[f(a)].append(a)
292
+ else:
293
+ if not default:
294
+ raise ValueError('if default=False then keys must be provided')
295
+ d[None].extend(seq)
296
+
297
+ for k, value in sorted(d.items()):
298
+ if len(value) > 1:
299
+ if keys:
300
+ value = ordered(value, keys, default, warn)
301
+ elif default:
302
+ value = ordered(value, (_nodes, default_sort_key,),
303
+ default=False, warn=warn)
304
+ elif warn:
305
+ u = list(uniq(value))
306
+ if len(u) > 1:
307
+ raise ValueError(
308
+ 'not enough keys to break ties: %s' % u)
309
+ yield from value
llmeval-env/lib/python3.10/site-packages/sympy/core/symbol.py ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from .assumptions import StdFactKB, _assume_defined
4
+ from .basic import Basic, Atom
5
+ from .cache import cacheit
6
+ from .containers import Tuple
7
+ from .expr import Expr, AtomicExpr
8
+ from .function import AppliedUndef, FunctionClass
9
+ from .kind import NumberKind, UndefinedKind
10
+ from .logic import fuzzy_bool
11
+ from .singleton import S
12
+ from .sorting import ordered
13
+ from .sympify import sympify
14
+ from sympy.logic.boolalg import Boolean
15
+ from sympy.utilities.iterables import sift, is_sequence
16
+ from sympy.utilities.misc import filldedent
17
+
18
+ import string
19
+ import re as _re
20
+ import random
21
+ from itertools import product
22
+ from typing import Any
23
+
24
+
25
+ class Str(Atom):
26
+ """
27
+ Represents string in SymPy.
28
+
29
+ Explanation
30
+ ===========
31
+
32
+ Previously, ``Symbol`` was used where string is needed in ``args`` of SymPy
33
+ objects, e.g. denoting the name of the instance. However, since ``Symbol``
34
+ represents mathematical scalar, this class should be used instead.
35
+
36
+ """
37
+ __slots__ = ('name',)
38
+
39
+ def __new__(cls, name, **kwargs):
40
+ if not isinstance(name, str):
41
+ raise TypeError("name should be a string, not %s" % repr(type(name)))
42
+ obj = Expr.__new__(cls, **kwargs)
43
+ obj.name = name
44
+ return obj
45
+
46
+ def __getnewargs__(self):
47
+ return (self.name,)
48
+
49
+ def _hashable_content(self):
50
+ return (self.name,)
51
+
52
+
53
+ def _filter_assumptions(kwargs):
54
+ """Split the given dict into assumptions and non-assumptions.
55
+ Keys are taken as assumptions if they correspond to an
56
+ entry in ``_assume_defined``.
57
+ """
58
+ assumptions, nonassumptions = map(dict, sift(kwargs.items(),
59
+ lambda i: i[0] in _assume_defined,
60
+ binary=True))
61
+ Symbol._sanitize(assumptions)
62
+ return assumptions, nonassumptions
63
+
64
+ def _symbol(s, matching_symbol=None, **assumptions):
65
+ """Return s if s is a Symbol, else if s is a string, return either
66
+ the matching_symbol if the names are the same or else a new symbol
67
+ with the same assumptions as the matching symbol (or the
68
+ assumptions as provided).
69
+
70
+ Examples
71
+ ========
72
+
73
+ >>> from sympy import Symbol
74
+ >>> from sympy.core.symbol import _symbol
75
+ >>> _symbol('y')
76
+ y
77
+ >>> _.is_real is None
78
+ True
79
+ >>> _symbol('y', real=True).is_real
80
+ True
81
+
82
+ >>> x = Symbol('x')
83
+ >>> _symbol(x, real=True)
84
+ x
85
+ >>> _.is_real is None # ignore attribute if s is a Symbol
86
+ True
87
+
88
+ Below, the variable sym has the name 'foo':
89
+
90
+ >>> sym = Symbol('foo', real=True)
91
+
92
+ Since 'x' is not the same as sym's name, a new symbol is created:
93
+
94
+ >>> _symbol('x', sym).name
95
+ 'x'
96
+
97
+ It will acquire any assumptions give:
98
+
99
+ >>> _symbol('x', sym, real=False).is_real
100
+ False
101
+
102
+ Since 'foo' is the same as sym's name, sym is returned
103
+
104
+ >>> _symbol('foo', sym)
105
+ foo
106
+
107
+ Any assumptions given are ignored:
108
+
109
+ >>> _symbol('foo', sym, real=False).is_real
110
+ True
111
+
112
+ NB: the symbol here may not be the same as a symbol with the same
113
+ name defined elsewhere as a result of different assumptions.
114
+
115
+ See Also
116
+ ========
117
+
118
+ sympy.core.symbol.Symbol
119
+
120
+ """
121
+ if isinstance(s, str):
122
+ if matching_symbol and matching_symbol.name == s:
123
+ return matching_symbol
124
+ return Symbol(s, **assumptions)
125
+ elif isinstance(s, Symbol):
126
+ return s
127
+ else:
128
+ raise ValueError('symbol must be string for symbol name or Symbol')
129
+
130
+ def uniquely_named_symbol(xname, exprs=(), compare=str, modify=None, **assumptions):
131
+ """
132
+ Return a symbol whose name is derivated from *xname* but is unique
133
+ from any other symbols in *exprs*.
134
+
135
+ *xname* and symbol names in *exprs* are passed to *compare* to be
136
+ converted to comparable forms. If ``compare(xname)`` is not unique,
137
+ it is recursively passed to *modify* until unique name is acquired.
138
+
139
+ Parameters
140
+ ==========
141
+
142
+ xname : str or Symbol
143
+ Base name for the new symbol.
144
+
145
+ exprs : Expr or iterable of Expr
146
+ Expressions whose symbols are compared to *xname*.
147
+
148
+ compare : function
149
+ Unary function which transforms *xname* and symbol names from
150
+ *exprs* to comparable form.
151
+
152
+ modify : function
153
+ Unary function which modifies the string. Default is appending
154
+ the number, or increasing the number if exists.
155
+
156
+ Examples
157
+ ========
158
+
159
+ By default, a number is appended to *xname* to generate unique name.
160
+ If the number already exists, it is recursively increased.
161
+
162
+ >>> from sympy.core.symbol import uniquely_named_symbol, Symbol
163
+ >>> uniquely_named_symbol('x', Symbol('x'))
164
+ x0
165
+ >>> uniquely_named_symbol('x', (Symbol('x'), Symbol('x0')))
166
+ x1
167
+ >>> uniquely_named_symbol('x0', (Symbol('x1'), Symbol('x0')))
168
+ x2
169
+
170
+ Name generation can be controlled by passing *modify* parameter.
171
+
172
+ >>> from sympy.abc import x
173
+ >>> uniquely_named_symbol('x', x, modify=lambda s: 2*s)
174
+ xx
175
+
176
+ """
177
+ def numbered_string_incr(s, start=0):
178
+ if not s:
179
+ return str(start)
180
+ i = len(s) - 1
181
+ while i != -1:
182
+ if not s[i].isdigit():
183
+ break
184
+ i -= 1
185
+ n = str(int(s[i + 1:] or start - 1) + 1)
186
+ return s[:i + 1] + n
187
+
188
+ default = None
189
+ if is_sequence(xname):
190
+ xname, default = xname
191
+ x = compare(xname)
192
+ if not exprs:
193
+ return _symbol(x, default, **assumptions)
194
+ if not is_sequence(exprs):
195
+ exprs = [exprs]
196
+ names = set().union(
197
+ [i.name for e in exprs for i in e.atoms(Symbol)] +
198
+ [i.func.name for e in exprs for i in e.atoms(AppliedUndef)])
199
+ if modify is None:
200
+ modify = numbered_string_incr
201
+ while any(x == compare(s) for s in names):
202
+ x = modify(x)
203
+ return _symbol(x, default, **assumptions)
204
+ _uniquely_named_symbol = uniquely_named_symbol
205
+
206
+ class Symbol(AtomicExpr, Boolean):
207
+ """
208
+ Assumptions:
209
+ commutative = True
210
+
211
+ You can override the default assumptions in the constructor.
212
+
213
+ Examples
214
+ ========
215
+
216
+ >>> from sympy import symbols
217
+ >>> A,B = symbols('A,B', commutative = False)
218
+ >>> bool(A*B != B*A)
219
+ True
220
+ >>> bool(A*B*2 == 2*A*B) == True # multiplication by scalars is commutative
221
+ True
222
+
223
+ """
224
+
225
+ is_comparable = False
226
+
227
+ __slots__ = ('name', '_assumptions_orig', '_assumptions0')
228
+
229
+ name: str
230
+
231
+ is_Symbol = True
232
+ is_symbol = True
233
+
234
+ @property
235
+ def kind(self):
236
+ if self.is_commutative:
237
+ return NumberKind
238
+ return UndefinedKind
239
+
240
+ @property
241
+ def _diff_wrt(self):
242
+ """Allow derivatives wrt Symbols.
243
+
244
+ Examples
245
+ ========
246
+
247
+ >>> from sympy import Symbol
248
+ >>> x = Symbol('x')
249
+ >>> x._diff_wrt
250
+ True
251
+ """
252
+ return True
253
+
254
+ @staticmethod
255
+ def _sanitize(assumptions, obj=None):
256
+ """Remove None, convert values to bool, check commutativity *in place*.
257
+ """
258
+
259
+ # be strict about commutativity: cannot be None
260
+ is_commutative = fuzzy_bool(assumptions.get('commutative', True))
261
+ if is_commutative is None:
262
+ whose = '%s ' % obj.__name__ if obj else ''
263
+ raise ValueError(
264
+ '%scommutativity must be True or False.' % whose)
265
+
266
+ # sanitize other assumptions so 1 -> True and 0 -> False
267
+ for key in list(assumptions.keys()):
268
+ v = assumptions[key]
269
+ if v is None:
270
+ assumptions.pop(key)
271
+ continue
272
+ assumptions[key] = bool(v)
273
+
274
+ def _merge(self, assumptions):
275
+ base = self.assumptions0
276
+ for k in set(assumptions) & set(base):
277
+ if assumptions[k] != base[k]:
278
+ raise ValueError(filldedent('''
279
+ non-matching assumptions for %s: existing value
280
+ is %s and new value is %s''' % (
281
+ k, base[k], assumptions[k])))
282
+ base.update(assumptions)
283
+ return base
284
+
285
+ def __new__(cls, name, **assumptions):
286
+ """Symbols are identified by name and assumptions::
287
+
288
+ >>> from sympy import Symbol
289
+ >>> Symbol("x") == Symbol("x")
290
+ True
291
+ >>> Symbol("x", real=True) == Symbol("x", real=False)
292
+ False
293
+
294
+ """
295
+ cls._sanitize(assumptions, cls)
296
+ return Symbol.__xnew_cached_(cls, name, **assumptions)
297
+
298
+ @staticmethod
299
+ def __xnew__(cls, name, **assumptions): # never cached (e.g. dummy)
300
+ if not isinstance(name, str):
301
+ raise TypeError("name should be a string, not %s" % repr(type(name)))
302
+
303
+ # This is retained purely so that srepr can include commutative=True if
304
+ # that was explicitly specified but not if it was not. Ideally srepr
305
+ # should not distinguish these cases because the symbols otherwise
306
+ # compare equal and are considered equivalent.
307
+ #
308
+ # See https://github.com/sympy/sympy/issues/8873
309
+ #
310
+ assumptions_orig = assumptions.copy()
311
+
312
+ # The only assumption that is assumed by default is comutative=True:
313
+ assumptions.setdefault('commutative', True)
314
+
315
+ assumptions_kb = StdFactKB(assumptions)
316
+ assumptions0 = dict(assumptions_kb)
317
+
318
+ obj = Expr.__new__(cls)
319
+ obj.name = name
320
+
321
+ obj._assumptions = assumptions_kb
322
+ obj._assumptions_orig = assumptions_orig
323
+ obj._assumptions0 = assumptions0
324
+
325
+ # The three assumptions dicts are all a little different:
326
+ #
327
+ # >>> from sympy import Symbol
328
+ # >>> x = Symbol('x', finite=True)
329
+ # >>> x.is_positive # query an assumption
330
+ # >>> x._assumptions
331
+ # {'finite': True, 'infinite': False, 'commutative': True, 'positive': None}
332
+ # >>> x._assumptions0
333
+ # {'finite': True, 'infinite': False, 'commutative': True}
334
+ # >>> x._assumptions_orig
335
+ # {'finite': True}
336
+ #
337
+ # Two symbols with the same name are equal if their _assumptions0 are
338
+ # the same. Arguably it should be _assumptions_orig that is being
339
+ # compared because that is more transparent to the user (it is
340
+ # what was passed to the constructor modulo changes made by _sanitize).
341
+
342
+ return obj
343
+
344
+ @staticmethod
345
+ @cacheit
346
+ def __xnew_cached_(cls, name, **assumptions): # symbols are always cached
347
+ return Symbol.__xnew__(cls, name, **assumptions)
348
+
349
+ def __getnewargs_ex__(self):
350
+ return ((self.name,), self._assumptions_orig)
351
+
352
+ # NOTE: __setstate__ is not needed for pickles created by __getnewargs_ex__
353
+ # but was used before Symbol was changed to use __getnewargs_ex__ in v1.9.
354
+ # Pickles created in previous SymPy versions will still need __setstate__
355
+ # so that they can be unpickled in SymPy > v1.9.
356
+
357
+ def __setstate__(self, state):
358
+ for name, value in state.items():
359
+ setattr(self, name, value)
360
+
361
+ def _hashable_content(self):
362
+ # Note: user-specified assumptions not hashed, just derived ones
363
+ return (self.name,) + tuple(sorted(self.assumptions0.items()))
364
+
365
+ def _eval_subs(self, old, new):
366
+ if old.is_Pow:
367
+ from sympy.core.power import Pow
368
+ return Pow(self, S.One, evaluate=False)._eval_subs(old, new)
369
+
370
+ def _eval_refine(self, assumptions):
371
+ return self
372
+
373
+ @property
374
+ def assumptions0(self):
375
+ return self._assumptions0.copy()
376
+
377
+ @cacheit
378
+ def sort_key(self, order=None):
379
+ return self.class_key(), (1, (self.name,)), S.One.sort_key(), S.One
380
+
381
+ def as_dummy(self):
382
+ # only put commutativity in explicitly if it is False
383
+ return Dummy(self.name) if self.is_commutative is not False \
384
+ else Dummy(self.name, commutative=self.is_commutative)
385
+
386
+ def as_real_imag(self, deep=True, **hints):
387
+ if hints.get('ignore') == self:
388
+ return None
389
+ else:
390
+ from sympy.functions.elementary.complexes import im, re
391
+ return (re(self), im(self))
392
+
393
+ def is_constant(self, *wrt, **flags):
394
+ if not wrt:
395
+ return False
396
+ return self not in wrt
397
+
398
+ @property
399
+ def free_symbols(self):
400
+ return {self}
401
+
402
+ binary_symbols = free_symbols # in this case, not always
403
+
404
+ def as_set(self):
405
+ return S.UniversalSet
406
+
407
+
408
+ class Dummy(Symbol):
409
+ """Dummy symbols are each unique, even if they have the same name:
410
+
411
+ Examples
412
+ ========
413
+
414
+ >>> from sympy import Dummy
415
+ >>> Dummy("x") == Dummy("x")
416
+ False
417
+
418
+ If a name is not supplied then a string value of an internal count will be
419
+ used. This is useful when a temporary variable is needed and the name
420
+ of the variable used in the expression is not important.
421
+
422
+ >>> Dummy() #doctest: +SKIP
423
+ _Dummy_10
424
+
425
+ """
426
+
427
+ # In the rare event that a Dummy object needs to be recreated, both the
428
+ # `name` and `dummy_index` should be passed. This is used by `srepr` for
429
+ # example:
430
+ # >>> d1 = Dummy()
431
+ # >>> d2 = eval(srepr(d1))
432
+ # >>> d2 == d1
433
+ # True
434
+ #
435
+ # If a new session is started between `srepr` and `eval`, there is a very
436
+ # small chance that `d2` will be equal to a previously-created Dummy.
437
+
438
+ _count = 0
439
+ _prng = random.Random()
440
+ _base_dummy_index = _prng.randint(10**6, 9*10**6)
441
+
442
+ __slots__ = ('dummy_index',)
443
+
444
+ is_Dummy = True
445
+
446
+ def __new__(cls, name=None, dummy_index=None, **assumptions):
447
+ if dummy_index is not None:
448
+ assert name is not None, "If you specify a dummy_index, you must also provide a name"
449
+
450
+ if name is None:
451
+ name = "Dummy_" + str(Dummy._count)
452
+
453
+ if dummy_index is None:
454
+ dummy_index = Dummy._base_dummy_index + Dummy._count
455
+ Dummy._count += 1
456
+
457
+ cls._sanitize(assumptions, cls)
458
+ obj = Symbol.__xnew__(cls, name, **assumptions)
459
+
460
+ obj.dummy_index = dummy_index
461
+
462
+ return obj
463
+
464
+ def __getnewargs_ex__(self):
465
+ return ((self.name, self.dummy_index), self._assumptions_orig)
466
+
467
+ @cacheit
468
+ def sort_key(self, order=None):
469
+ return self.class_key(), (
470
+ 2, (self.name, self.dummy_index)), S.One.sort_key(), S.One
471
+
472
+ def _hashable_content(self):
473
+ return Symbol._hashable_content(self) + (self.dummy_index,)
474
+
475
+
476
+ class Wild(Symbol):
477
+ """
478
+ A Wild symbol matches anything, or anything
479
+ without whatever is explicitly excluded.
480
+
481
+ Parameters
482
+ ==========
483
+
484
+ name : str
485
+ Name of the Wild instance.
486
+
487
+ exclude : iterable, optional
488
+ Instances in ``exclude`` will not be matched.
489
+
490
+ properties : iterable of functions, optional
491
+ Functions, each taking an expressions as input
492
+ and returns a ``bool``. All functions in ``properties``
493
+ need to return ``True`` in order for the Wild instance
494
+ to match the expression.
495
+
496
+ Examples
497
+ ========
498
+
499
+ >>> from sympy import Wild, WildFunction, cos, pi
500
+ >>> from sympy.abc import x, y, z
501
+ >>> a = Wild('a')
502
+ >>> x.match(a)
503
+ {a_: x}
504
+ >>> pi.match(a)
505
+ {a_: pi}
506
+ >>> (3*x**2).match(a*x)
507
+ {a_: 3*x}
508
+ >>> cos(x).match(a)
509
+ {a_: cos(x)}
510
+ >>> b = Wild('b', exclude=[x])
511
+ >>> (3*x**2).match(b*x)
512
+ >>> b.match(a)
513
+ {a_: b_}
514
+ >>> A = WildFunction('A')
515
+ >>> A.match(a)
516
+ {a_: A_}
517
+
518
+ Tips
519
+ ====
520
+
521
+ When using Wild, be sure to use the exclude
522
+ keyword to make the pattern more precise.
523
+ Without the exclude pattern, you may get matches
524
+ that are technically correct, but not what you
525
+ wanted. For example, using the above without
526
+ exclude:
527
+
528
+ >>> from sympy import symbols
529
+ >>> a, b = symbols('a b', cls=Wild)
530
+ >>> (2 + 3*y).match(a*x + b*y)
531
+ {a_: 2/x, b_: 3}
532
+
533
+ This is technically correct, because
534
+ (2/x)*x + 3*y == 2 + 3*y, but you probably
535
+ wanted it to not match at all. The issue is that
536
+ you really did not want a and b to include x and y,
537
+ and the exclude parameter lets you specify exactly
538
+ this. With the exclude parameter, the pattern will
539
+ not match.
540
+
541
+ >>> a = Wild('a', exclude=[x, y])
542
+ >>> b = Wild('b', exclude=[x, y])
543
+ >>> (2 + 3*y).match(a*x + b*y)
544
+
545
+ Exclude also helps remove ambiguity from matches.
546
+
547
+ >>> E = 2*x**3*y*z
548
+ >>> a, b = symbols('a b', cls=Wild)
549
+ >>> E.match(a*b)
550
+ {a_: 2*y*z, b_: x**3}
551
+ >>> a = Wild('a', exclude=[x, y])
552
+ >>> E.match(a*b)
553
+ {a_: z, b_: 2*x**3*y}
554
+ >>> a = Wild('a', exclude=[x, y, z])
555
+ >>> E.match(a*b)
556
+ {a_: 2, b_: x**3*y*z}
557
+
558
+ Wild also accepts a ``properties`` parameter:
559
+
560
+ >>> a = Wild('a', properties=[lambda k: k.is_Integer])
561
+ >>> E.match(a*b)
562
+ {a_: 2, b_: x**3*y*z}
563
+
564
+ """
565
+ is_Wild = True
566
+
567
+ __slots__ = ('exclude', 'properties')
568
+
569
+ def __new__(cls, name, exclude=(), properties=(), **assumptions):
570
+ exclude = tuple([sympify(x) for x in exclude])
571
+ properties = tuple(properties)
572
+ cls._sanitize(assumptions, cls)
573
+ return Wild.__xnew__(cls, name, exclude, properties, **assumptions)
574
+
575
+ def __getnewargs__(self):
576
+ return (self.name, self.exclude, self.properties)
577
+
578
+ @staticmethod
579
+ @cacheit
580
+ def __xnew__(cls, name, exclude, properties, **assumptions):
581
+ obj = Symbol.__xnew__(cls, name, **assumptions)
582
+ obj.exclude = exclude
583
+ obj.properties = properties
584
+ return obj
585
+
586
+ def _hashable_content(self):
587
+ return super()._hashable_content() + (self.exclude, self.properties)
588
+
589
+ # TODO add check against another Wild
590
+ def matches(self, expr, repl_dict=None, old=False):
591
+ if any(expr.has(x) for x in self.exclude):
592
+ return None
593
+ if not all(f(expr) for f in self.properties):
594
+ return None
595
+ if repl_dict is None:
596
+ repl_dict = {}
597
+ else:
598
+ repl_dict = repl_dict.copy()
599
+ repl_dict[self] = expr
600
+ return repl_dict
601
+
602
+
603
+ _range = _re.compile('([0-9]*:[0-9]+|[a-zA-Z]?:[a-zA-Z])')
604
+
605
+
606
+ def symbols(names, *, cls=Symbol, **args) -> Any:
607
+ r"""
608
+ Transform strings into instances of :class:`Symbol` class.
609
+
610
+ :func:`symbols` function returns a sequence of symbols with names taken
611
+ from ``names`` argument, which can be a comma or whitespace delimited
612
+ string, or a sequence of strings::
613
+
614
+ >>> from sympy import symbols, Function
615
+
616
+ >>> x, y, z = symbols('x,y,z')
617
+ >>> a, b, c = symbols('a b c')
618
+
619
+ The type of output is dependent on the properties of input arguments::
620
+
621
+ >>> symbols('x')
622
+ x
623
+ >>> symbols('x,')
624
+ (x,)
625
+ >>> symbols('x,y')
626
+ (x, y)
627
+ >>> symbols(('a', 'b', 'c'))
628
+ (a, b, c)
629
+ >>> symbols(['a', 'b', 'c'])
630
+ [a, b, c]
631
+ >>> symbols({'a', 'b', 'c'})
632
+ {a, b, c}
633
+
634
+ If an iterable container is needed for a single symbol, set the ``seq``
635
+ argument to ``True`` or terminate the symbol name with a comma::
636
+
637
+ >>> symbols('x', seq=True)
638
+ (x,)
639
+
640
+ To reduce typing, range syntax is supported to create indexed symbols.
641
+ Ranges are indicated by a colon and the type of range is determined by
642
+ the character to the right of the colon. If the character is a digit
643
+ then all contiguous digits to the left are taken as the nonnegative
644
+ starting value (or 0 if there is no digit left of the colon) and all
645
+ contiguous digits to the right are taken as 1 greater than the ending
646
+ value::
647
+
648
+ >>> symbols('x:10')
649
+ (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)
650
+
651
+ >>> symbols('x5:10')
652
+ (x5, x6, x7, x8, x9)
653
+ >>> symbols('x5(:2)')
654
+ (x50, x51)
655
+
656
+ >>> symbols('x5:10,y:5')
657
+ (x5, x6, x7, x8, x9, y0, y1, y2, y3, y4)
658
+
659
+ >>> symbols(('x5:10', 'y:5'))
660
+ ((x5, x6, x7, x8, x9), (y0, y1, y2, y3, y4))
661
+
662
+ If the character to the right of the colon is a letter, then the single
663
+ letter to the left (or 'a' if there is none) is taken as the start
664
+ and all characters in the lexicographic range *through* the letter to
665
+ the right are used as the range::
666
+
667
+ >>> symbols('x:z')
668
+ (x, y, z)
669
+ >>> symbols('x:c') # null range
670
+ ()
671
+ >>> symbols('x(:c)')
672
+ (xa, xb, xc)
673
+
674
+ >>> symbols(':c')
675
+ (a, b, c)
676
+
677
+ >>> symbols('a:d, x:z')
678
+ (a, b, c, d, x, y, z)
679
+
680
+ >>> symbols(('a:d', 'x:z'))
681
+ ((a, b, c, d), (x, y, z))
682
+
683
+ Multiple ranges are supported; contiguous numerical ranges should be
684
+ separated by parentheses to disambiguate the ending number of one
685
+ range from the starting number of the next::
686
+
687
+ >>> symbols('x:2(1:3)')
688
+ (x01, x02, x11, x12)
689
+ >>> symbols(':3:2') # parsing is from left to right
690
+ (00, 01, 10, 11, 20, 21)
691
+
692
+ Only one pair of parentheses surrounding ranges are removed, so to
693
+ include parentheses around ranges, double them. And to include spaces,
694
+ commas, or colons, escape them with a backslash::
695
+
696
+ >>> symbols('x((a:b))')
697
+ (x(a), x(b))
698
+ >>> symbols(r'x(:1\,:2)') # or r'x((:1)\,(:2))'
699
+ (x(0,0), x(0,1))
700
+
701
+ All newly created symbols have assumptions set according to ``args``::
702
+
703
+ >>> a = symbols('a', integer=True)
704
+ >>> a.is_integer
705
+ True
706
+
707
+ >>> x, y, z = symbols('x,y,z', real=True)
708
+ >>> x.is_real and y.is_real and z.is_real
709
+ True
710
+
711
+ Despite its name, :func:`symbols` can create symbol-like objects like
712
+ instances of Function or Wild classes. To achieve this, set ``cls``
713
+ keyword argument to the desired type::
714
+
715
+ >>> symbols('f,g,h', cls=Function)
716
+ (f, g, h)
717
+
718
+ >>> type(_[0])
719
+ <class 'sympy.core.function.UndefinedFunction'>
720
+
721
+ """
722
+ result = []
723
+
724
+ if isinstance(names, str):
725
+ marker = 0
726
+ splitters = r'\,', r'\:', r'\ '
727
+ literals: list[tuple[str, str]] = []
728
+ for splitter in splitters:
729
+ if splitter in names:
730
+ while chr(marker) in names:
731
+ marker += 1
732
+ lit_char = chr(marker)
733
+ marker += 1
734
+ names = names.replace(splitter, lit_char)
735
+ literals.append((lit_char, splitter[1:]))
736
+ def literal(s):
737
+ if literals:
738
+ for c, l in literals:
739
+ s = s.replace(c, l)
740
+ return s
741
+
742
+ names = names.strip()
743
+ as_seq = names.endswith(',')
744
+ if as_seq:
745
+ names = names[:-1].rstrip()
746
+ if not names:
747
+ raise ValueError('no symbols given')
748
+
749
+ # split on commas
750
+ names = [n.strip() for n in names.split(',')]
751
+ if not all(n for n in names):
752
+ raise ValueError('missing symbol between commas')
753
+ # split on spaces
754
+ for i in range(len(names) - 1, -1, -1):
755
+ names[i: i + 1] = names[i].split()
756
+
757
+ seq = args.pop('seq', as_seq)
758
+
759
+ for name in names:
760
+ if not name:
761
+ raise ValueError('missing symbol')
762
+
763
+ if ':' not in name:
764
+ symbol = cls(literal(name), **args)
765
+ result.append(symbol)
766
+ continue
767
+
768
+ split: list[str] = _range.split(name)
769
+ split_list: list[list[str]] = []
770
+ # remove 1 layer of bounding parentheses around ranges
771
+ for i in range(len(split) - 1):
772
+ if i and ':' in split[i] and split[i] != ':' and \
773
+ split[i - 1].endswith('(') and \
774
+ split[i + 1].startswith(')'):
775
+ split[i - 1] = split[i - 1][:-1]
776
+ split[i + 1] = split[i + 1][1:]
777
+ for s in split:
778
+ if ':' in s:
779
+ if s.endswith(':'):
780
+ raise ValueError('missing end range')
781
+ a, b = s.split(':')
782
+ if b[-1] in string.digits:
783
+ a_i = 0 if not a else int(a)
784
+ b_i = int(b)
785
+ split_list.append([str(c) for c in range(a_i, b_i)])
786
+ else:
787
+ a = a or 'a'
788
+ split_list.append([string.ascii_letters[c] for c in range(
789
+ string.ascii_letters.index(a),
790
+ string.ascii_letters.index(b) + 1)]) # inclusive
791
+ if not split_list[-1]:
792
+ break
793
+ else:
794
+ split_list.append([s])
795
+ else:
796
+ seq = True
797
+ if len(split_list) == 1:
798
+ names = split_list[0]
799
+ else:
800
+ names = [''.join(s) for s in product(*split_list)]
801
+ if literals:
802
+ result.extend([cls(literal(s), **args) for s in names])
803
+ else:
804
+ result.extend([cls(s, **args) for s in names])
805
+
806
+ if not seq and len(result) <= 1:
807
+ if not result:
808
+ return ()
809
+ return result[0]
810
+
811
+ return tuple(result)
812
+ else:
813
+ for name in names:
814
+ result.append(symbols(name, cls=cls, **args))
815
+
816
+ return type(names)(result)
817
+
818
+
819
+ def var(names, **args):
820
+ """
821
+ Create symbols and inject them into the global namespace.
822
+
823
+ Explanation
824
+ ===========
825
+
826
+ This calls :func:`symbols` with the same arguments and puts the results
827
+ into the *global* namespace. It's recommended not to use :func:`var` in
828
+ library code, where :func:`symbols` has to be used::
829
+
830
+ Examples
831
+ ========
832
+
833
+ >>> from sympy import var
834
+
835
+ >>> var('x')
836
+ x
837
+ >>> x # noqa: F821
838
+ x
839
+
840
+ >>> var('a,ab,abc')
841
+ (a, ab, abc)
842
+ >>> abc # noqa: F821
843
+ abc
844
+
845
+ >>> var('x,y', real=True)
846
+ (x, y)
847
+ >>> x.is_real and y.is_real # noqa: F821
848
+ True
849
+
850
+ See :func:`symbols` documentation for more details on what kinds of
851
+ arguments can be passed to :func:`var`.
852
+
853
+ """
854
+ def traverse(symbols, frame):
855
+ """Recursively inject symbols to the global namespace. """
856
+ for symbol in symbols:
857
+ if isinstance(symbol, Basic):
858
+ frame.f_globals[symbol.name] = symbol
859
+ elif isinstance(symbol, FunctionClass):
860
+ frame.f_globals[symbol.__name__] = symbol
861
+ else:
862
+ traverse(symbol, frame)
863
+
864
+ from inspect import currentframe
865
+ frame = currentframe().f_back
866
+
867
+ try:
868
+ syms = symbols(names, **args)
869
+
870
+ if syms is not None:
871
+ if isinstance(syms, Basic):
872
+ frame.f_globals[syms.name] = syms
873
+ elif isinstance(syms, FunctionClass):
874
+ frame.f_globals[syms.__name__] = syms
875
+ else:
876
+ traverse(syms, frame)
877
+ finally:
878
+ del frame # break cyclic dependencies as stated in inspect docs
879
+
880
+ return syms
881
+
882
+ def disambiguate(*iter):
883
+ """
884
+ Return a Tuple containing the passed expressions with symbols
885
+ that appear the same when printed replaced with numerically
886
+ subscripted symbols, and all Dummy symbols replaced with Symbols.
887
+
888
+ Parameters
889
+ ==========
890
+
891
+ iter: list of symbols or expressions.
892
+
893
+ Examples
894
+ ========
895
+
896
+ >>> from sympy.core.symbol import disambiguate
897
+ >>> from sympy import Dummy, Symbol, Tuple
898
+ >>> from sympy.abc import y
899
+
900
+ >>> tup = Symbol('_x'), Dummy('x'), Dummy('x')
901
+ >>> disambiguate(*tup)
902
+ (x_2, x, x_1)
903
+
904
+ >>> eqs = Tuple(Symbol('x')/y, Dummy('x')/y)
905
+ >>> disambiguate(*eqs)
906
+ (x_1/y, x/y)
907
+
908
+ >>> ix = Symbol('x', integer=True)
909
+ >>> vx = Symbol('x')
910
+ >>> disambiguate(vx + ix)
911
+ (x + x_1,)
912
+
913
+ To make your own mapping of symbols to use, pass only the free symbols
914
+ of the expressions and create a dictionary:
915
+
916
+ >>> free = eqs.free_symbols
917
+ >>> mapping = dict(zip(free, disambiguate(*free)))
918
+ >>> eqs.xreplace(mapping)
919
+ (x_1/y, x/y)
920
+
921
+ """
922
+ new_iter = Tuple(*iter)
923
+ key = lambda x:tuple(sorted(x.assumptions0.items()))
924
+ syms = ordered(new_iter.free_symbols, keys=key)
925
+ mapping = {}
926
+ for s in syms:
927
+ mapping.setdefault(str(s).lstrip('_'), []).append(s)
928
+ reps = {}
929
+ for k in mapping:
930
+ # the first or only symbol doesn't get subscripted but make
931
+ # sure that it's a Symbol, not a Dummy
932
+ mapk0 = Symbol("%s" % (k), **mapping[k][0].assumptions0)
933
+ if mapping[k][0] != mapk0:
934
+ reps[mapping[k][0]] = mapk0
935
+ # the others get subscripts (and are made into Symbols)
936
+ skip = 0
937
+ for i in range(1, len(mapping[k])):
938
+ while True:
939
+ name = "%s_%i" % (k, i + skip)
940
+ if name not in mapping:
941
+ break
942
+ skip += 1
943
+ ki = mapping[k][i]
944
+ reps[ki] = Symbol(name, **ki.assumptions0)
945
+ return new_iter.xreplace(reps)
llmeval-env/lib/python3.10/site-packages/sympy/core/sympify.py ADDED
@@ -0,0 +1,634 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """sympify -- convert objects SymPy internal format"""
2
+
3
+ from __future__ import annotations
4
+ from typing import Any, Callable
5
+
6
+ from inspect import getmro
7
+ import string
8
+ from sympy.core.random import choice
9
+
10
+ from .parameters import global_parameters
11
+
12
+ from sympy.utilities.exceptions import sympy_deprecation_warning
13
+ from sympy.utilities.iterables import iterable
14
+
15
+
16
+ class SympifyError(ValueError):
17
+ def __init__(self, expr, base_exc=None):
18
+ self.expr = expr
19
+ self.base_exc = base_exc
20
+
21
+ def __str__(self):
22
+ if self.base_exc is None:
23
+ return "SympifyError: %r" % (self.expr,)
24
+
25
+ return ("Sympify of expression '%s' failed, because of exception being "
26
+ "raised:\n%s: %s" % (self.expr, self.base_exc.__class__.__name__,
27
+ str(self.base_exc)))
28
+
29
+
30
+ converter: dict[type[Any], Callable[[Any], Basic]] = {}
31
+
32
+ #holds the conversions defined in SymPy itself, i.e. non-user defined conversions
33
+ _sympy_converter: dict[type[Any], Callable[[Any], Basic]] = {}
34
+
35
+ #alias for clearer use in the library
36
+ _external_converter = converter
37
+
38
+ class CantSympify:
39
+ """
40
+ Mix in this trait to a class to disallow sympification of its instances.
41
+
42
+ Examples
43
+ ========
44
+
45
+ >>> from sympy import sympify
46
+ >>> from sympy.core.sympify import CantSympify
47
+
48
+ >>> class Something(dict):
49
+ ... pass
50
+ ...
51
+ >>> sympify(Something())
52
+ {}
53
+
54
+ >>> class Something(dict, CantSympify):
55
+ ... pass
56
+ ...
57
+ >>> sympify(Something())
58
+ Traceback (most recent call last):
59
+ ...
60
+ SympifyError: SympifyError: {}
61
+
62
+ """
63
+
64
+ __slots__ = ()
65
+
66
+
67
+ def _is_numpy_instance(a):
68
+ """
69
+ Checks if an object is an instance of a type from the numpy module.
70
+ """
71
+ # This check avoids unnecessarily importing NumPy. We check the whole
72
+ # __mro__ in case any base type is a numpy type.
73
+ return any(type_.__module__ == 'numpy'
74
+ for type_ in type(a).__mro__)
75
+
76
+
77
+ def _convert_numpy_types(a, **sympify_args):
78
+ """
79
+ Converts a numpy datatype input to an appropriate SymPy type.
80
+ """
81
+ import numpy as np
82
+ if not isinstance(a, np.floating):
83
+ if np.iscomplex(a):
84
+ return _sympy_converter[complex](a.item())
85
+ else:
86
+ return sympify(a.item(), **sympify_args)
87
+ else:
88
+ try:
89
+ from .numbers import Float
90
+ prec = np.finfo(a).nmant + 1
91
+ # E.g. double precision means prec=53 but nmant=52
92
+ # Leading bit of mantissa is always 1, so is not stored
93
+ a = str(list(np.reshape(np.asarray(a),
94
+ (1, np.size(a)))[0]))[1:-1]
95
+ return Float(a, precision=prec)
96
+ except NotImplementedError:
97
+ raise SympifyError('Translation for numpy float : %s '
98
+ 'is not implemented' % a)
99
+
100
+
101
+ def sympify(a, locals=None, convert_xor=True, strict=False, rational=False,
102
+ evaluate=None):
103
+ """
104
+ Converts an arbitrary expression to a type that can be used inside SymPy.
105
+
106
+ Explanation
107
+ ===========
108
+
109
+ It will convert Python ints into instances of :class:`~.Integer`, floats
110
+ into instances of :class:`~.Float`, etc. It is also able to coerce
111
+ symbolic expressions which inherit from :class:`~.Basic`. This can be
112
+ useful in cooperation with SAGE.
113
+
114
+ .. warning::
115
+ Note that this function uses ``eval``, and thus shouldn't be used on
116
+ unsanitized input.
117
+
118
+ If the argument is already a type that SymPy understands, it will do
119
+ nothing but return that value. This can be used at the beginning of a
120
+ function to ensure you are working with the correct type.
121
+
122
+ Examples
123
+ ========
124
+
125
+ >>> from sympy import sympify
126
+
127
+ >>> sympify(2).is_integer
128
+ True
129
+ >>> sympify(2).is_real
130
+ True
131
+
132
+ >>> sympify(2.0).is_real
133
+ True
134
+ >>> sympify("2.0").is_real
135
+ True
136
+ >>> sympify("2e-45").is_real
137
+ True
138
+
139
+ If the expression could not be converted, a SympifyError is raised.
140
+
141
+ >>> sympify("x***2")
142
+ Traceback (most recent call last):
143
+ ...
144
+ SympifyError: SympifyError: "could not parse 'x***2'"
145
+
146
+ Locals
147
+ ------
148
+
149
+ The sympification happens with access to everything that is loaded
150
+ by ``from sympy import *``; anything used in a string that is not
151
+ defined by that import will be converted to a symbol. In the following,
152
+ the ``bitcount`` function is treated as a symbol and the ``O`` is
153
+ interpreted as the :class:`~.Order` object (used with series) and it raises
154
+ an error when used improperly:
155
+
156
+ >>> s = 'bitcount(42)'
157
+ >>> sympify(s)
158
+ bitcount(42)
159
+ >>> sympify("O(x)")
160
+ O(x)
161
+ >>> sympify("O + 1")
162
+ Traceback (most recent call last):
163
+ ...
164
+ TypeError: unbound method...
165
+
166
+ In order to have ``bitcount`` be recognized it can be imported into a
167
+ namespace dictionary and passed as locals:
168
+
169
+ >>> ns = {}
170
+ >>> exec('from sympy.core.evalf import bitcount', ns)
171
+ >>> sympify(s, locals=ns)
172
+ 6
173
+
174
+ In order to have the ``O`` interpreted as a Symbol, identify it as such
175
+ in the namespace dictionary. This can be done in a variety of ways; all
176
+ three of the following are possibilities:
177
+
178
+ >>> from sympy import Symbol
179
+ >>> ns["O"] = Symbol("O") # method 1
180
+ >>> exec('from sympy.abc import O', ns) # method 2
181
+ >>> ns.update(dict(O=Symbol("O"))) # method 3
182
+ >>> sympify("O + 1", locals=ns)
183
+ O + 1
184
+
185
+ If you want *all* single-letter and Greek-letter variables to be symbols
186
+ then you can use the clashing-symbols dictionaries that have been defined
187
+ there as private variables: ``_clash1`` (single-letter variables),
188
+ ``_clash2`` (the multi-letter Greek names) or ``_clash`` (both single and
189
+ multi-letter names that are defined in ``abc``).
190
+
191
+ >>> from sympy.abc import _clash1
192
+ >>> set(_clash1) # if this fails, see issue #23903
193
+ {'E', 'I', 'N', 'O', 'Q', 'S'}
194
+ >>> sympify('I & Q', _clash1)
195
+ I & Q
196
+
197
+ Strict
198
+ ------
199
+
200
+ If the option ``strict`` is set to ``True``, only the types for which an
201
+ explicit conversion has been defined are converted. In the other
202
+ cases, a SympifyError is raised.
203
+
204
+ >>> print(sympify(None))
205
+ None
206
+ >>> sympify(None, strict=True)
207
+ Traceback (most recent call last):
208
+ ...
209
+ SympifyError: SympifyError: None
210
+
211
+ .. deprecated:: 1.6
212
+
213
+ ``sympify(obj)`` automatically falls back to ``str(obj)`` when all
214
+ other conversion methods fail, but this is deprecated. ``strict=True``
215
+ will disable this deprecated behavior. See
216
+ :ref:`deprecated-sympify-string-fallback`.
217
+
218
+ Evaluation
219
+ ----------
220
+
221
+ If the option ``evaluate`` is set to ``False``, then arithmetic and
222
+ operators will be converted into their SymPy equivalents and the
223
+ ``evaluate=False`` option will be added. Nested ``Add`` or ``Mul`` will
224
+ be denested first. This is done via an AST transformation that replaces
225
+ operators with their SymPy equivalents, so if an operand redefines any
226
+ of those operations, the redefined operators will not be used. If
227
+ argument a is not a string, the mathematical expression is evaluated
228
+ before being passed to sympify, so adding ``evaluate=False`` will still
229
+ return the evaluated result of expression.
230
+
231
+ >>> sympify('2**2 / 3 + 5')
232
+ 19/3
233
+ >>> sympify('2**2 / 3 + 5', evaluate=False)
234
+ 2**2/3 + 5
235
+ >>> sympify('4/2+7', evaluate=True)
236
+ 9
237
+ >>> sympify('4/2+7', evaluate=False)
238
+ 4/2 + 7
239
+ >>> sympify(4/2+7, evaluate=False)
240
+ 9.00000000000000
241
+
242
+ Extending
243
+ ---------
244
+
245
+ To extend ``sympify`` to convert custom objects (not derived from ``Basic``),
246
+ just define a ``_sympy_`` method to your class. You can do that even to
247
+ classes that you do not own by subclassing or adding the method at runtime.
248
+
249
+ >>> from sympy import Matrix
250
+ >>> class MyList1(object):
251
+ ... def __iter__(self):
252
+ ... yield 1
253
+ ... yield 2
254
+ ... return
255
+ ... def __getitem__(self, i): return list(self)[i]
256
+ ... def _sympy_(self): return Matrix(self)
257
+ >>> sympify(MyList1())
258
+ Matrix([
259
+ [1],
260
+ [2]])
261
+
262
+ If you do not have control over the class definition you could also use the
263
+ ``converter`` global dictionary. The key is the class and the value is a
264
+ function that takes a single argument and returns the desired SymPy
265
+ object, e.g. ``converter[MyList] = lambda x: Matrix(x)``.
266
+
267
+ >>> class MyList2(object): # XXX Do not do this if you control the class!
268
+ ... def __iter__(self): # Use _sympy_!
269
+ ... yield 1
270
+ ... yield 2
271
+ ... return
272
+ ... def __getitem__(self, i): return list(self)[i]
273
+ >>> from sympy.core.sympify import converter
274
+ >>> converter[MyList2] = lambda x: Matrix(x)
275
+ >>> sympify(MyList2())
276
+ Matrix([
277
+ [1],
278
+ [2]])
279
+
280
+ Notes
281
+ =====
282
+
283
+ The keywords ``rational`` and ``convert_xor`` are only used
284
+ when the input is a string.
285
+
286
+ convert_xor
287
+ -----------
288
+
289
+ >>> sympify('x^y',convert_xor=True)
290
+ x**y
291
+ >>> sympify('x^y',convert_xor=False)
292
+ x ^ y
293
+
294
+ rational
295
+ --------
296
+
297
+ >>> sympify('0.1',rational=False)
298
+ 0.1
299
+ >>> sympify('0.1',rational=True)
300
+ 1/10
301
+
302
+ Sometimes autosimplification during sympification results in expressions
303
+ that are very different in structure than what was entered. Until such
304
+ autosimplification is no longer done, the ``kernS`` function might be of
305
+ some use. In the example below you can see how an expression reduces to
306
+ $-1$ by autosimplification, but does not do so when ``kernS`` is used.
307
+
308
+ >>> from sympy.core.sympify import kernS
309
+ >>> from sympy.abc import x
310
+ >>> -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
311
+ -1
312
+ >>> s = '-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1'
313
+ >>> sympify(s)
314
+ -1
315
+ >>> kernS(s)
316
+ -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
317
+
318
+ Parameters
319
+ ==========
320
+
321
+ a :
322
+ - any object defined in SymPy
323
+ - standard numeric Python types: ``int``, ``long``, ``float``, ``Decimal``
324
+ - strings (like ``"0.09"``, ``"2e-19"`` or ``'sin(x)'``)
325
+ - booleans, including ``None`` (will leave ``None`` unchanged)
326
+ - dicts, lists, sets or tuples containing any of the above
327
+
328
+ convert_xor : bool, optional
329
+ If true, treats ``^`` as exponentiation.
330
+ If False, treats ``^`` as XOR itself.
331
+ Used only when input is a string.
332
+
333
+ locals : any object defined in SymPy, optional
334
+ In order to have strings be recognized it can be imported
335
+ into a namespace dictionary and passed as locals.
336
+
337
+ strict : bool, optional
338
+ If the option strict is set to ``True``, only the types for which
339
+ an explicit conversion has been defined are converted. In the
340
+ other cases, a SympifyError is raised.
341
+
342
+ rational : bool, optional
343
+ If ``True``, converts floats into :class:`~.Rational`.
344
+ If ``False``, it lets floats remain as it is.
345
+ Used only when input is a string.
346
+
347
+ evaluate : bool, optional
348
+ If False, then arithmetic and operators will be converted into
349
+ their SymPy equivalents. If True the expression will be evaluated
350
+ and the result will be returned.
351
+
352
+ """
353
+ # XXX: If a is a Basic subclass rather than instance (e.g. sin rather than
354
+ # sin(x)) then a.__sympy__ will be the property. Only on the instance will
355
+ # a.__sympy__ give the *value* of the property (True). Since sympify(sin)
356
+ # was used for a long time we allow it to pass. However if strict=True as
357
+ # is the case in internal calls to _sympify then we only allow
358
+ # is_sympy=True.
359
+ #
360
+ # https://github.com/sympy/sympy/issues/20124
361
+ is_sympy = getattr(a, '__sympy__', None)
362
+ if is_sympy is True:
363
+ return a
364
+ elif is_sympy is not None:
365
+ if not strict:
366
+ return a
367
+ else:
368
+ raise SympifyError(a)
369
+
370
+ if isinstance(a, CantSympify):
371
+ raise SympifyError(a)
372
+
373
+ cls = getattr(a, "__class__", None)
374
+
375
+ #Check if there exists a converter for any of the types in the mro
376
+ for superclass in getmro(cls):
377
+ #First check for user defined converters
378
+ conv = _external_converter.get(superclass)
379
+ if conv is None:
380
+ #if none exists, check for SymPy defined converters
381
+ conv = _sympy_converter.get(superclass)
382
+ if conv is not None:
383
+ return conv(a)
384
+
385
+ if cls is type(None):
386
+ if strict:
387
+ raise SympifyError(a)
388
+ else:
389
+ return a
390
+
391
+ if evaluate is None:
392
+ evaluate = global_parameters.evaluate
393
+
394
+ # Support for basic numpy datatypes
395
+ if _is_numpy_instance(a):
396
+ import numpy as np
397
+ if np.isscalar(a):
398
+ return _convert_numpy_types(a, locals=locals,
399
+ convert_xor=convert_xor, strict=strict, rational=rational,
400
+ evaluate=evaluate)
401
+
402
+ _sympy_ = getattr(a, "_sympy_", None)
403
+ if _sympy_ is not None:
404
+ try:
405
+ return a._sympy_()
406
+ # XXX: Catches AttributeError: 'SymPyConverter' object has no
407
+ # attribute 'tuple'
408
+ # This is probably a bug somewhere but for now we catch it here.
409
+ except AttributeError:
410
+ pass
411
+
412
+ if not strict:
413
+ # Put numpy array conversion _before_ float/int, see
414
+ # <https://github.com/sympy/sympy/issues/13924>.
415
+ flat = getattr(a, "flat", None)
416
+ if flat is not None:
417
+ shape = getattr(a, "shape", None)
418
+ if shape is not None:
419
+ from sympy.tensor.array import Array
420
+ return Array(a.flat, a.shape) # works with e.g. NumPy arrays
421
+
422
+ if not isinstance(a, str):
423
+ if _is_numpy_instance(a):
424
+ import numpy as np
425
+ assert not isinstance(a, np.number)
426
+ if isinstance(a, np.ndarray):
427
+ # Scalar arrays (those with zero dimensions) have sympify
428
+ # called on the scalar element.
429
+ if a.ndim == 0:
430
+ try:
431
+ return sympify(a.item(),
432
+ locals=locals,
433
+ convert_xor=convert_xor,
434
+ strict=strict,
435
+ rational=rational,
436
+ evaluate=evaluate)
437
+ except SympifyError:
438
+ pass
439
+ else:
440
+ # float and int can coerce size-one numpy arrays to their lone
441
+ # element. See issue https://github.com/numpy/numpy/issues/10404.
442
+ for coerce in (float, int):
443
+ try:
444
+ return sympify(coerce(a))
445
+ except (TypeError, ValueError, AttributeError, SympifyError):
446
+ continue
447
+
448
+ if strict:
449
+ raise SympifyError(a)
450
+
451
+ if iterable(a):
452
+ try:
453
+ return type(a)([sympify(x, locals=locals, convert_xor=convert_xor,
454
+ rational=rational, evaluate=evaluate) for x in a])
455
+ except TypeError:
456
+ # Not all iterables are rebuildable with their type.
457
+ pass
458
+
459
+ if not isinstance(a, str):
460
+ try:
461
+ a = str(a)
462
+ except Exception as exc:
463
+ raise SympifyError(a, exc)
464
+ sympy_deprecation_warning(
465
+ f"""
466
+ The string fallback in sympify() is deprecated.
467
+
468
+ To explicitly convert the string form of an object, use
469
+ sympify(str(obj)). To add define sympify behavior on custom
470
+ objects, use sympy.core.sympify.converter or define obj._sympy_
471
+ (see the sympify() docstring).
472
+
473
+ sympify() performed the string fallback resulting in the following string:
474
+
475
+ {a!r}
476
+ """,
477
+ deprecated_since_version='1.6',
478
+ active_deprecations_target="deprecated-sympify-string-fallback",
479
+ )
480
+
481
+ from sympy.parsing.sympy_parser import (parse_expr, TokenError,
482
+ standard_transformations)
483
+ from sympy.parsing.sympy_parser import convert_xor as t_convert_xor
484
+ from sympy.parsing.sympy_parser import rationalize as t_rationalize
485
+
486
+ transformations = standard_transformations
487
+
488
+ if rational:
489
+ transformations += (t_rationalize,)
490
+ if convert_xor:
491
+ transformations += (t_convert_xor,)
492
+
493
+ try:
494
+ a = a.replace('\n', '')
495
+ expr = parse_expr(a, local_dict=locals, transformations=transformations, evaluate=evaluate)
496
+ except (TokenError, SyntaxError) as exc:
497
+ raise SympifyError('could not parse %r' % a, exc)
498
+
499
+ return expr
500
+
501
+
502
+ def _sympify(a):
503
+ """
504
+ Short version of :func:`~.sympify` for internal usage for ``__add__`` and
505
+ ``__eq__`` methods where it is ok to allow some things (like Python
506
+ integers and floats) in the expression. This excludes things (like strings)
507
+ that are unwise to allow into such an expression.
508
+
509
+ >>> from sympy import Integer
510
+ >>> Integer(1) == 1
511
+ True
512
+
513
+ >>> Integer(1) == '1'
514
+ False
515
+
516
+ >>> from sympy.abc import x
517
+ >>> x + 1
518
+ x + 1
519
+
520
+ >>> x + '1'
521
+ Traceback (most recent call last):
522
+ ...
523
+ TypeError: unsupported operand type(s) for +: 'Symbol' and 'str'
524
+
525
+ see: sympify
526
+
527
+ """
528
+ return sympify(a, strict=True)
529
+
530
+
531
+ def kernS(s):
532
+ """Use a hack to try keep autosimplification from distributing a
533
+ a number into an Add; this modification does not
534
+ prevent the 2-arg Mul from becoming an Add, however.
535
+
536
+ Examples
537
+ ========
538
+
539
+ >>> from sympy.core.sympify import kernS
540
+ >>> from sympy.abc import x, y
541
+
542
+ The 2-arg Mul distributes a number (or minus sign) across the terms
543
+ of an expression, but kernS will prevent that:
544
+
545
+ >>> 2*(x + y), -(x + 1)
546
+ (2*x + 2*y, -x - 1)
547
+ >>> kernS('2*(x + y)')
548
+ 2*(x + y)
549
+ >>> kernS('-(x + 1)')
550
+ -(x + 1)
551
+
552
+ If use of the hack fails, the un-hacked string will be passed to sympify...
553
+ and you get what you get.
554
+
555
+ XXX This hack should not be necessary once issue 4596 has been resolved.
556
+ """
557
+ hit = False
558
+ quoted = '"' in s or "'" in s
559
+ if '(' in s and not quoted:
560
+ if s.count('(') != s.count(")"):
561
+ raise SympifyError('unmatched left parenthesis')
562
+
563
+ # strip all space from s
564
+ s = ''.join(s.split())
565
+ olds = s
566
+ # now use space to represent a symbol that
567
+ # will
568
+ # step 1. turn potential 2-arg Muls into 3-arg versions
569
+ # 1a. *( -> * *(
570
+ s = s.replace('*(', '* *(')
571
+ # 1b. close up exponentials
572
+ s = s.replace('** *', '**')
573
+ # 2. handle the implied multiplication of a negated
574
+ # parenthesized expression in two steps
575
+ # 2a: -(...) --> -( *(...)
576
+ target = '-( *('
577
+ s = s.replace('-(', target)
578
+ # 2b: double the matching closing parenthesis
579
+ # -( *(...) --> -( *(...))
580
+ i = nest = 0
581
+ assert target.endswith('(') # assumption below
582
+ while True:
583
+ j = s.find(target, i)
584
+ if j == -1:
585
+ break
586
+ j += len(target) - 1
587
+ for j in range(j, len(s)):
588
+ if s[j] == "(":
589
+ nest += 1
590
+ elif s[j] == ")":
591
+ nest -= 1
592
+ if nest == 0:
593
+ break
594
+ s = s[:j] + ")" + s[j:]
595
+ i = j + 2 # the first char after 2nd )
596
+ if ' ' in s:
597
+ # get a unique kern
598
+ kern = '_'
599
+ while kern in s:
600
+ kern += choice(string.ascii_letters + string.digits)
601
+ s = s.replace(' ', kern)
602
+ hit = kern in s
603
+ else:
604
+ hit = False
605
+
606
+ for i in range(2):
607
+ try:
608
+ expr = sympify(s)
609
+ break
610
+ except TypeError: # the kern might cause unknown errors...
611
+ if hit:
612
+ s = olds # maybe it didn't like the kern; use un-kerned s
613
+ hit = False
614
+ continue
615
+ expr = sympify(s) # let original error raise
616
+
617
+ if not hit:
618
+ return expr
619
+
620
+ from .symbol import Symbol
621
+ rep = {Symbol(kern): 1}
622
+ def _clear(expr):
623
+ if isinstance(expr, (list, tuple, set)):
624
+ return type(expr)([_clear(e) for e in expr])
625
+ if hasattr(expr, 'subs'):
626
+ return expr.subs(rep, hack2=True)
627
+ return expr
628
+ expr = _clear(expr)
629
+ # hope that kern is not there anymore
630
+ return expr
631
+
632
+
633
+ # Avoid circular import
634
+ from .basic import Basic
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_args.cpython-310.pyc ADDED
Binary file (217 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_basic.cpython-310.pyc ADDED
Binary file (11.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_compatibility.cpython-310.pyc ADDED
Binary file (478 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_operations.cpython-310.pyc ADDED
Binary file (4.42 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_symbol.cpython-310.pyc ADDED
Binary file (14.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/__pycache__/test_sympify.cpython-310.pyc ADDED
Binary file (32 kB). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_args.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_arit.py ADDED
@@ -0,0 +1,2463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.add import Add
2
+ from sympy.core.basic import Basic
3
+ from sympy.core.mod import Mod
4
+ from sympy.core.mul import Mul
5
+ from sympy.core.numbers import (Float, I, Integer, Rational, comp, nan,
6
+ oo, pi, zoo)
7
+ from sympy.core.power import Pow
8
+ from sympy.core.singleton import S
9
+ from sympy.core.symbol import (Dummy, Symbol, symbols)
10
+ from sympy.core.sympify import sympify
11
+ from sympy.functions.combinatorial.factorials import factorial
12
+ from sympy.functions.elementary.complexes import (im, re, sign)
13
+ from sympy.functions.elementary.exponential import (exp, log)
14
+ from sympy.functions.elementary.integers import floor
15
+ from sympy.functions.elementary.miscellaneous import (Max, sqrt)
16
+ from sympy.functions.elementary.trigonometric import (atan, cos, sin)
17
+ from sympy.polys.polytools import Poly
18
+ from sympy.sets.sets import FiniteSet
19
+
20
+ from sympy.core.parameters import distribute, evaluate
21
+ from sympy.core.expr import unchanged
22
+ from sympy.utilities.iterables import permutations
23
+ from sympy.testing.pytest import XFAIL, raises, warns
24
+ from sympy.utilities.exceptions import SymPyDeprecationWarning
25
+ from sympy.core.random import verify_numerically
26
+ from sympy.functions.elementary.trigonometric import asin
27
+
28
+ from itertools import product
29
+
30
+ a, c, x, y, z = symbols('a,c,x,y,z')
31
+ b = Symbol("b", positive=True)
32
+
33
+
34
+ def same_and_same_prec(a, b):
35
+ # stricter matching for Floats
36
+ return a == b and a._prec == b._prec
37
+
38
+
39
+ def test_bug1():
40
+ assert re(x) != x
41
+ x.series(x, 0, 1)
42
+ assert re(x) != x
43
+
44
+
45
+ def test_Symbol():
46
+ e = a*b
47
+ assert e == a*b
48
+ assert a*b*b == a*b**2
49
+ assert a*b*b + c == c + a*b**2
50
+ assert a*b*b - c == -c + a*b**2
51
+
52
+ x = Symbol('x', complex=True, real=False)
53
+ assert x.is_imaginary is None # could be I or 1 + I
54
+ x = Symbol('x', complex=True, imaginary=False)
55
+ assert x.is_real is None # could be 1 or 1 + I
56
+ x = Symbol('x', real=True)
57
+ assert x.is_complex
58
+ x = Symbol('x', imaginary=True)
59
+ assert x.is_complex
60
+ x = Symbol('x', real=False, imaginary=False)
61
+ assert x.is_complex is None # might be a non-number
62
+
63
+
64
+ def test_arit0():
65
+ p = Rational(5)
66
+ e = a*b
67
+ assert e == a*b
68
+ e = a*b + b*a
69
+ assert e == 2*a*b
70
+ e = a*b + b*a + a*b + p*b*a
71
+ assert e == 8*a*b
72
+ e = a*b + b*a + a*b + p*b*a + a
73
+ assert e == a + 8*a*b
74
+ e = a + a
75
+ assert e == 2*a
76
+ e = a + b + a
77
+ assert e == b + 2*a
78
+ e = a + b*b + a + b*b
79
+ assert e == 2*a + 2*b**2
80
+ e = a + Rational(2) + b*b + a + b*b + p
81
+ assert e == 7 + 2*a + 2*b**2
82
+ e = (a + b*b + a + b*b)*p
83
+ assert e == 5*(2*a + 2*b**2)
84
+ e = (a*b*c + c*b*a + b*a*c)*p
85
+ assert e == 15*a*b*c
86
+ e = (a*b*c + c*b*a + b*a*c)*p - Rational(15)*a*b*c
87
+ assert e == Rational(0)
88
+ e = Rational(50)*(a - a)
89
+ assert e == Rational(0)
90
+ e = b*a - b - a*b + b
91
+ assert e == Rational(0)
92
+ e = a*b + c**p
93
+ assert e == a*b + c**5
94
+ e = a/b
95
+ assert e == a*b**(-1)
96
+ e = a*2*2
97
+ assert e == 4*a
98
+ e = 2 + a*2/2
99
+ assert e == 2 + a
100
+ e = 2 - a - 2
101
+ assert e == -a
102
+ e = 2*a*2
103
+ assert e == 4*a
104
+ e = 2/a/2
105
+ assert e == a**(-1)
106
+ e = 2**a**2
107
+ assert e == 2**(a**2)
108
+ e = -(1 + a)
109
+ assert e == -1 - a
110
+ e = S.Half*(1 + a)
111
+ assert e == S.Half + a/2
112
+
113
+
114
+ def test_div():
115
+ e = a/b
116
+ assert e == a*b**(-1)
117
+ e = a/b + c/2
118
+ assert e == a*b**(-1) + Rational(1)/2*c
119
+ e = (1 - b)/(b - 1)
120
+ assert e == (1 + -b)*((-1) + b)**(-1)
121
+
122
+
123
+ def test_pow_arit():
124
+ n1 = Rational(1)
125
+ n2 = Rational(2)
126
+ n5 = Rational(5)
127
+ e = a*a
128
+ assert e == a**2
129
+ e = a*a*a
130
+ assert e == a**3
131
+ e = a*a*a*a**Rational(6)
132
+ assert e == a**9
133
+ e = a*a*a*a**Rational(6) - a**Rational(9)
134
+ assert e == Rational(0)
135
+ e = a**(b - b)
136
+ assert e == Rational(1)
137
+ e = (a + Rational(1) - a)**b
138
+ assert e == Rational(1)
139
+
140
+ e = (a + b + c)**n2
141
+ assert e == (a + b + c)**2
142
+ assert e.expand() == 2*b*c + 2*a*c + 2*a*b + a**2 + c**2 + b**2
143
+
144
+ e = (a + b)**n2
145
+ assert e == (a + b)**2
146
+ assert e.expand() == 2*a*b + a**2 + b**2
147
+
148
+ e = (a + b)**(n1/n2)
149
+ assert e == sqrt(a + b)
150
+ assert e.expand() == sqrt(a + b)
151
+
152
+ n = n5**(n1/n2)
153
+ assert n == sqrt(5)
154
+ e = n*a*b - n*b*a
155
+ assert e == Rational(0)
156
+ e = n*a*b + n*b*a
157
+ assert e == 2*a*b*sqrt(5)
158
+ assert e.diff(a) == 2*b*sqrt(5)
159
+ assert e.diff(a) == 2*b*sqrt(5)
160
+ e = a/b**2
161
+ assert e == a*b**(-2)
162
+
163
+ assert sqrt(2*(1 + sqrt(2))) == (2*(1 + 2**S.Half))**S.Half
164
+
165
+ x = Symbol('x')
166
+ y = Symbol('y')
167
+
168
+ assert ((x*y)**3).expand() == y**3 * x**3
169
+ assert ((x*y)**-3).expand() == y**-3 * x**-3
170
+
171
+ assert (x**5*(3*x)**(3)).expand() == 27 * x**8
172
+ assert (x**5*(-3*x)**(3)).expand() == -27 * x**8
173
+ assert (x**5*(3*x)**(-3)).expand() == x**2 * Rational(1, 27)
174
+ assert (x**5*(-3*x)**(-3)).expand() == x**2 * Rational(-1, 27)
175
+
176
+ # expand_power_exp
177
+ _x = Symbol('x', zero=False)
178
+ _y = Symbol('y', zero=False)
179
+ assert (_x**(y**(x + exp(x + y)) + z)).expand(deep=False) == \
180
+ _x**z*_x**(y**(x + exp(x + y)))
181
+ assert (_x**(_y**(x + exp(x + y)) + z)).expand() == \
182
+ _x**z*_x**(_y**x*_y**(exp(x)*exp(y)))
183
+
184
+ n = Symbol('n', even=False)
185
+ k = Symbol('k', even=True)
186
+ o = Symbol('o', odd=True)
187
+
188
+ assert unchanged(Pow, -1, x)
189
+ assert unchanged(Pow, -1, n)
190
+ assert (-2)**k == 2**k
191
+ assert (-1)**k == 1
192
+ assert (-1)**o == -1
193
+
194
+
195
+ def test_pow2():
196
+ # x**(2*y) is always (x**y)**2 but is only (x**2)**y if
197
+ # x.is_positive or y.is_integer
198
+ # let x = 1 to see why the following are not true.
199
+ assert (-x)**Rational(2, 3) != x**Rational(2, 3)
200
+ assert (-x)**Rational(5, 7) != -x**Rational(5, 7)
201
+ assert ((-x)**2)**Rational(1, 3) != ((-x)**Rational(1, 3))**2
202
+ assert sqrt(x**2) != x
203
+
204
+
205
+ def test_pow3():
206
+ assert sqrt(2)**3 == 2 * sqrt(2)
207
+ assert sqrt(2)**3 == sqrt(8)
208
+
209
+
210
+ def test_mod_pow():
211
+ for s, t, u, v in [(4, 13, 497, 445), (4, -3, 497, 365),
212
+ (3.2, 2.1, 1.9, 0.1031015682350942), (S(3)/2, 5, S(5)/6, S(3)/32)]:
213
+ assert pow(S(s), t, u) == v
214
+ assert pow(S(s), S(t), u) == v
215
+ assert pow(S(s), t, S(u)) == v
216
+ assert pow(S(s), S(t), S(u)) == v
217
+ assert pow(S(2), S(10000000000), S(3)) == 1
218
+ assert pow(x, y, z) == x**y%z
219
+ raises(TypeError, lambda: pow(S(4), "13", 497))
220
+ raises(TypeError, lambda: pow(S(4), 13, "497"))
221
+
222
+
223
+ def test_pow_E():
224
+ assert 2**(y/log(2)) == S.Exp1**y
225
+ assert 2**(y/log(2)/3) == S.Exp1**(y/3)
226
+ assert 3**(1/log(-3)) != S.Exp1
227
+ assert (3 + 2*I)**(1/(log(-3 - 2*I) + I*pi)) == S.Exp1
228
+ assert (4 + 2*I)**(1/(log(-4 - 2*I) + I*pi)) == S.Exp1
229
+ assert (3 + 2*I)**(1/(log(-3 - 2*I, 3)/2 + I*pi/log(3)/2)) == 9
230
+ assert (3 + 2*I)**(1/(log(3 + 2*I, 3)/2)) == 9
231
+ # every time tests are run they will affirm with a different random
232
+ # value that this identity holds
233
+ while 1:
234
+ b = x._random()
235
+ r, i = b.as_real_imag()
236
+ if i:
237
+ break
238
+ assert verify_numerically(b**(1/(log(-b) + sign(i)*I*pi).n()), S.Exp1)
239
+
240
+
241
+ def test_pow_issue_3516():
242
+ assert 4**Rational(1, 4) == sqrt(2)
243
+
244
+
245
+ def test_pow_im():
246
+ for m in (-2, -1, 2):
247
+ for d in (3, 4, 5):
248
+ b = m*I
249
+ for i in range(1, 4*d + 1):
250
+ e = Rational(i, d)
251
+ assert (b**e - b.n()**e.n()).n(2, chop=1e-10) == 0
252
+
253
+ e = Rational(7, 3)
254
+ assert (2*x*I)**e == 4*2**Rational(1, 3)*(I*x)**e # same as Wolfram Alpha
255
+ im = symbols('im', imaginary=True)
256
+ assert (2*im*I)**e == 4*2**Rational(1, 3)*(I*im)**e
257
+
258
+ args = [I, I, I, I, 2]
259
+ e = Rational(1, 3)
260
+ ans = 2**e
261
+ assert Mul(*args, evaluate=False)**e == ans
262
+ assert Mul(*args)**e == ans
263
+ args = [I, I, I, 2]
264
+ e = Rational(1, 3)
265
+ ans = 2**e*(-I)**e
266
+ assert Mul(*args, evaluate=False)**e == ans
267
+ assert Mul(*args)**e == ans
268
+ args.append(-3)
269
+ ans = (6*I)**e
270
+ assert Mul(*args, evaluate=False)**e == ans
271
+ assert Mul(*args)**e == ans
272
+ args.append(-1)
273
+ ans = (-6*I)**e
274
+ assert Mul(*args, evaluate=False)**e == ans
275
+ assert Mul(*args)**e == ans
276
+
277
+ args = [I, I, 2]
278
+ e = Rational(1, 3)
279
+ ans = (-2)**e
280
+ assert Mul(*args, evaluate=False)**e == ans
281
+ assert Mul(*args)**e == ans
282
+ args.append(-3)
283
+ ans = (6)**e
284
+ assert Mul(*args, evaluate=False)**e == ans
285
+ assert Mul(*args)**e == ans
286
+ args.append(-1)
287
+ ans = (-6)**e
288
+ assert Mul(*args, evaluate=False)**e == ans
289
+ assert Mul(*args)**e == ans
290
+ assert Mul(Pow(-1, Rational(3, 2), evaluate=False), I, I) == I
291
+ assert Mul(I*Pow(I, S.Half, evaluate=False)) == sqrt(I)*I
292
+
293
+
294
+ def test_real_mul():
295
+ assert Float(0) * pi * x == 0
296
+ assert set((Float(1) * pi * x).args) == {Float(1), pi, x}
297
+
298
+
299
+ def test_ncmul():
300
+ A = Symbol("A", commutative=False)
301
+ B = Symbol("B", commutative=False)
302
+ C = Symbol("C", commutative=False)
303
+ assert A*B != B*A
304
+ assert A*B*C != C*B*A
305
+ assert A*b*B*3*C == 3*b*A*B*C
306
+ assert A*b*B*3*C != 3*b*B*A*C
307
+ assert A*b*B*3*C == 3*A*B*C*b
308
+
309
+ assert A + B == B + A
310
+ assert (A + B)*C != C*(A + B)
311
+
312
+ assert C*(A + B)*C != C*C*(A + B)
313
+
314
+ assert A*A == A**2
315
+ assert (A + B)*(A + B) == (A + B)**2
316
+
317
+ assert A**-1 * A == 1
318
+ assert A/A == 1
319
+ assert A/(A**2) == 1/A
320
+
321
+ assert A/(1 + A) == A/(1 + A)
322
+
323
+ assert set((A + B + 2*(A + B)).args) == \
324
+ {A, B, 2*(A + B)}
325
+
326
+
327
+ def test_mul_add_identity():
328
+ m = Mul(1, 2)
329
+ assert isinstance(m, Rational) and m.p == 2 and m.q == 1
330
+ m = Mul(1, 2, evaluate=False)
331
+ assert isinstance(m, Mul) and m.args == (1, 2)
332
+ m = Mul(0, 1)
333
+ assert m is S.Zero
334
+ m = Mul(0, 1, evaluate=False)
335
+ assert isinstance(m, Mul) and m.args == (0, 1)
336
+ m = Add(0, 1)
337
+ assert m is S.One
338
+ m = Add(0, 1, evaluate=False)
339
+ assert isinstance(m, Add) and m.args == (0, 1)
340
+
341
+
342
+ def test_ncpow():
343
+ x = Symbol('x', commutative=False)
344
+ y = Symbol('y', commutative=False)
345
+ z = Symbol('z', commutative=False)
346
+ a = Symbol('a')
347
+ b = Symbol('b')
348
+ c = Symbol('c')
349
+
350
+ assert (x**2)*(y**2) != (y**2)*(x**2)
351
+ assert (x**-2)*y != y*(x**2)
352
+ assert 2**x*2**y != 2**(x + y)
353
+ assert 2**x*2**y*2**z != 2**(x + y + z)
354
+ assert 2**x*2**(2*x) == 2**(3*x)
355
+ assert 2**x*2**(2*x)*2**x == 2**(4*x)
356
+ assert exp(x)*exp(y) != exp(y)*exp(x)
357
+ assert exp(x)*exp(y)*exp(z) != exp(y)*exp(x)*exp(z)
358
+ assert exp(x)*exp(y)*exp(z) != exp(x + y + z)
359
+ assert x**a*x**b != x**(a + b)
360
+ assert x**a*x**b*x**c != x**(a + b + c)
361
+ assert x**3*x**4 == x**7
362
+ assert x**3*x**4*x**2 == x**9
363
+ assert x**a*x**(4*a) == x**(5*a)
364
+ assert x**a*x**(4*a)*x**a == x**(6*a)
365
+
366
+
367
+ def test_powerbug():
368
+ x = Symbol("x")
369
+ assert x**1 != (-x)**1
370
+ assert x**2 == (-x)**2
371
+ assert x**3 != (-x)**3
372
+ assert x**4 == (-x)**4
373
+ assert x**5 != (-x)**5
374
+ assert x**6 == (-x)**6
375
+
376
+ assert x**128 == (-x)**128
377
+ assert x**129 != (-x)**129
378
+
379
+ assert (2*x)**2 == (-2*x)**2
380
+
381
+
382
+ def test_Mul_doesnt_expand_exp():
383
+ x = Symbol('x')
384
+ y = Symbol('y')
385
+ assert unchanged(Mul, exp(x), exp(y))
386
+ assert unchanged(Mul, 2**x, 2**y)
387
+ assert x**2*x**3 == x**5
388
+ assert 2**x*3**x == 6**x
389
+ assert x**(y)*x**(2*y) == x**(3*y)
390
+ assert sqrt(2)*sqrt(2) == 2
391
+ assert 2**x*2**(2*x) == 2**(3*x)
392
+ assert sqrt(2)*2**Rational(1, 4)*5**Rational(3, 4) == 10**Rational(3, 4)
393
+ assert (x**(-log(5)/log(3))*x)/(x*x**( - log(5)/log(3))) == sympify(1)
394
+
395
+
396
+ def test_Mul_is_integer():
397
+ k = Symbol('k', integer=True)
398
+ n = Symbol('n', integer=True)
399
+ nr = Symbol('nr', rational=False)
400
+ ir = Symbol('ir', irrational=True)
401
+ nz = Symbol('nz', integer=True, zero=False)
402
+ e = Symbol('e', even=True)
403
+ o = Symbol('o', odd=True)
404
+ i2 = Symbol('2', prime=True, even=True)
405
+
406
+ assert (k/3).is_integer is None
407
+ assert (nz/3).is_integer is None
408
+ assert (nr/3).is_integer is False
409
+ assert (ir/3).is_integer is False
410
+ assert (x*k*n).is_integer is None
411
+ assert (e/2).is_integer is True
412
+ assert (e**2/2).is_integer is True
413
+ assert (2/k).is_integer is None
414
+ assert (2/k**2).is_integer is None
415
+ assert ((-1)**k*n).is_integer is True
416
+ assert (3*k*e/2).is_integer is True
417
+ assert (2*k*e/3).is_integer is None
418
+ assert (e/o).is_integer is None
419
+ assert (o/e).is_integer is False
420
+ assert (o/i2).is_integer is False
421
+ assert Mul(k, 1/k, evaluate=False).is_integer is None
422
+ assert Mul(2., S.Half, evaluate=False).is_integer is None
423
+ assert (2*sqrt(k)).is_integer is None
424
+ assert (2*k**n).is_integer is None
425
+
426
+ s = 2**2**2**Pow(2, 1000, evaluate=False)
427
+ m = Mul(s, s, evaluate=False)
428
+ assert m.is_integer
429
+
430
+ # broken in 1.6 and before, see #20161
431
+ xq = Symbol('xq', rational=True)
432
+ yq = Symbol('yq', rational=True)
433
+ assert (xq*yq).is_integer is None
434
+ e_20161 = Mul(-1,Mul(1,Pow(2,-1,evaluate=False),evaluate=False),evaluate=False)
435
+ assert e_20161.is_integer is not True # expand(e_20161) -> -1/2, but no need to see that in the assumption without evaluation
436
+
437
+
438
+ def test_Add_Mul_is_integer():
439
+ x = Symbol('x')
440
+
441
+ k = Symbol('k', integer=True)
442
+ n = Symbol('n', integer=True)
443
+ nk = Symbol('nk', integer=False)
444
+ nr = Symbol('nr', rational=False)
445
+ nz = Symbol('nz', integer=True, zero=False)
446
+
447
+ assert (-nk).is_integer is None
448
+ assert (-nr).is_integer is False
449
+ assert (2*k).is_integer is True
450
+ assert (-k).is_integer is True
451
+
452
+ assert (k + nk).is_integer is False
453
+ assert (k + n).is_integer is True
454
+ assert (k + x).is_integer is None
455
+ assert (k + n*x).is_integer is None
456
+ assert (k + n/3).is_integer is None
457
+ assert (k + nz/3).is_integer is None
458
+ assert (k + nr/3).is_integer is False
459
+
460
+ assert ((1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False
461
+ assert (1 + (1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False
462
+
463
+
464
+ def test_Add_Mul_is_finite():
465
+ x = Symbol('x', extended_real=True, finite=False)
466
+
467
+ assert sin(x).is_finite is True
468
+ assert (x*sin(x)).is_finite is None
469
+ assert (x*atan(x)).is_finite is False
470
+ assert (1024*sin(x)).is_finite is True
471
+ assert (sin(x)*exp(x)).is_finite is None
472
+ assert (sin(x)*cos(x)).is_finite is True
473
+ assert (x*sin(x)*exp(x)).is_finite is None
474
+
475
+ assert (sin(x) - 67).is_finite is True
476
+ assert (sin(x) + exp(x)).is_finite is not True
477
+ assert (1 + x).is_finite is False
478
+ assert (1 + x**2 + (1 + x)*(1 - x)).is_finite is None
479
+ assert (sqrt(2)*(1 + x)).is_finite is False
480
+ assert (sqrt(2)*(1 + x)*(1 - x)).is_finite is False
481
+
482
+
483
+ def test_Mul_is_even_odd():
484
+ x = Symbol('x', integer=True)
485
+ y = Symbol('y', integer=True)
486
+
487
+ k = Symbol('k', odd=True)
488
+ n = Symbol('n', odd=True)
489
+ m = Symbol('m', even=True)
490
+
491
+ assert (2*x).is_even is True
492
+ assert (2*x).is_odd is False
493
+
494
+ assert (3*x).is_even is None
495
+ assert (3*x).is_odd is None
496
+
497
+ assert (k/3).is_integer is None
498
+ assert (k/3).is_even is None
499
+ assert (k/3).is_odd is None
500
+
501
+ assert (2*n).is_even is True
502
+ assert (2*n).is_odd is False
503
+
504
+ assert (2*m).is_even is True
505
+ assert (2*m).is_odd is False
506
+
507
+ assert (-n).is_even is False
508
+ assert (-n).is_odd is True
509
+
510
+ assert (k*n).is_even is False
511
+ assert (k*n).is_odd is True
512
+
513
+ assert (k*m).is_even is True
514
+ assert (k*m).is_odd is False
515
+
516
+ assert (k*n*m).is_even is True
517
+ assert (k*n*m).is_odd is False
518
+
519
+ assert (k*m*x).is_even is True
520
+ assert (k*m*x).is_odd is False
521
+
522
+ # issue 6791:
523
+ assert (x/2).is_integer is None
524
+ assert (k/2).is_integer is False
525
+ assert (m/2).is_integer is True
526
+
527
+ assert (x*y).is_even is None
528
+ assert (x*x).is_even is None
529
+ assert (x*(x + k)).is_even is True
530
+ assert (x*(x + m)).is_even is None
531
+
532
+ assert (x*y).is_odd is None
533
+ assert (x*x).is_odd is None
534
+ assert (x*(x + k)).is_odd is False
535
+ assert (x*(x + m)).is_odd is None
536
+
537
+ # issue 8648
538
+ assert (m**2/2).is_even
539
+ assert (m**2/3).is_even is False
540
+ assert (2/m**2).is_odd is False
541
+ assert (2/m).is_odd is None
542
+
543
+
544
+ @XFAIL
545
+ def test_evenness_in_ternary_integer_product_with_odd():
546
+ # Tests that oddness inference is independent of term ordering.
547
+ # Term ordering at the point of testing depends on SymPy's symbol order, so
548
+ # we try to force a different order by modifying symbol names.
549
+ x = Symbol('x', integer=True)
550
+ y = Symbol('y', integer=True)
551
+ k = Symbol('k', odd=True)
552
+ assert (x*y*(y + k)).is_even is True
553
+ assert (y*x*(x + k)).is_even is True
554
+
555
+
556
+ def test_evenness_in_ternary_integer_product_with_even():
557
+ x = Symbol('x', integer=True)
558
+ y = Symbol('y', integer=True)
559
+ m = Symbol('m', even=True)
560
+ assert (x*y*(y + m)).is_even is None
561
+
562
+
563
+ @XFAIL
564
+ def test_oddness_in_ternary_integer_product_with_odd():
565
+ # Tests that oddness inference is independent of term ordering.
566
+ # Term ordering at the point of testing depends on SymPy's symbol order, so
567
+ # we try to force a different order by modifying symbol names.
568
+ x = Symbol('x', integer=True)
569
+ y = Symbol('y', integer=True)
570
+ k = Symbol('k', odd=True)
571
+ assert (x*y*(y + k)).is_odd is False
572
+ assert (y*x*(x + k)).is_odd is False
573
+
574
+
575
+ def test_oddness_in_ternary_integer_product_with_even():
576
+ x = Symbol('x', integer=True)
577
+ y = Symbol('y', integer=True)
578
+ m = Symbol('m', even=True)
579
+ assert (x*y*(y + m)).is_odd is None
580
+
581
+
582
+ def test_Mul_is_rational():
583
+ x = Symbol('x')
584
+ n = Symbol('n', integer=True)
585
+ m = Symbol('m', integer=True, nonzero=True)
586
+
587
+ assert (n/m).is_rational is True
588
+ assert (x/pi).is_rational is None
589
+ assert (x/n).is_rational is None
590
+ assert (m/pi).is_rational is False
591
+
592
+ r = Symbol('r', rational=True)
593
+ assert (pi*r).is_rational is None
594
+
595
+ # issue 8008
596
+ z = Symbol('z', zero=True)
597
+ i = Symbol('i', imaginary=True)
598
+ assert (z*i).is_rational is True
599
+ bi = Symbol('i', imaginary=True, finite=True)
600
+ assert (z*bi).is_zero is True
601
+
602
+
603
+ def test_Add_is_rational():
604
+ x = Symbol('x')
605
+ n = Symbol('n', rational=True)
606
+ m = Symbol('m', rational=True)
607
+
608
+ assert (n + m).is_rational is True
609
+ assert (x + pi).is_rational is None
610
+ assert (x + n).is_rational is None
611
+ assert (n + pi).is_rational is False
612
+
613
+
614
+ def test_Add_is_even_odd():
615
+ x = Symbol('x', integer=True)
616
+
617
+ k = Symbol('k', odd=True)
618
+ n = Symbol('n', odd=True)
619
+ m = Symbol('m', even=True)
620
+
621
+ assert (k + 7).is_even is True
622
+ assert (k + 7).is_odd is False
623
+
624
+ assert (-k + 7).is_even is True
625
+ assert (-k + 7).is_odd is False
626
+
627
+ assert (k - 12).is_even is False
628
+ assert (k - 12).is_odd is True
629
+
630
+ assert (-k - 12).is_even is False
631
+ assert (-k - 12).is_odd is True
632
+
633
+ assert (k + n).is_even is True
634
+ assert (k + n).is_odd is False
635
+
636
+ assert (k + m).is_even is False
637
+ assert (k + m).is_odd is True
638
+
639
+ assert (k + n + m).is_even is True
640
+ assert (k + n + m).is_odd is False
641
+
642
+ assert (k + n + x + m).is_even is None
643
+ assert (k + n + x + m).is_odd is None
644
+
645
+
646
+ def test_Mul_is_negative_positive():
647
+ x = Symbol('x', real=True)
648
+ y = Symbol('y', extended_real=False, complex=True)
649
+ z = Symbol('z', zero=True)
650
+
651
+ e = 2*z
652
+ assert e.is_Mul and e.is_positive is False and e.is_negative is False
653
+
654
+ neg = Symbol('neg', negative=True)
655
+ pos = Symbol('pos', positive=True)
656
+ nneg = Symbol('nneg', nonnegative=True)
657
+ npos = Symbol('npos', nonpositive=True)
658
+
659
+ assert neg.is_negative is True
660
+ assert (-neg).is_negative is False
661
+ assert (2*neg).is_negative is True
662
+
663
+ assert (2*pos)._eval_is_extended_negative() is False
664
+ assert (2*pos).is_negative is False
665
+
666
+ assert pos.is_negative is False
667
+ assert (-pos).is_negative is True
668
+ assert (2*pos).is_negative is False
669
+
670
+ assert (pos*neg).is_negative is True
671
+ assert (2*pos*neg).is_negative is True
672
+ assert (-pos*neg).is_negative is False
673
+ assert (pos*neg*y).is_negative is False # y.is_real=F; !real -> !neg
674
+
675
+ assert nneg.is_negative is False
676
+ assert (-nneg).is_negative is None
677
+ assert (2*nneg).is_negative is False
678
+
679
+ assert npos.is_negative is None
680
+ assert (-npos).is_negative is False
681
+ assert (2*npos).is_negative is None
682
+
683
+ assert (nneg*npos).is_negative is None
684
+
685
+ assert (neg*nneg).is_negative is None
686
+ assert (neg*npos).is_negative is False
687
+
688
+ assert (pos*nneg).is_negative is False
689
+ assert (pos*npos).is_negative is None
690
+
691
+ assert (npos*neg*nneg).is_negative is False
692
+ assert (npos*pos*nneg).is_negative is None
693
+
694
+ assert (-npos*neg*nneg).is_negative is None
695
+ assert (-npos*pos*nneg).is_negative is False
696
+
697
+ assert (17*npos*neg*nneg).is_negative is False
698
+ assert (17*npos*pos*nneg).is_negative is None
699
+
700
+ assert (neg*npos*pos*nneg).is_negative is False
701
+
702
+ assert (x*neg).is_negative is None
703
+ assert (nneg*npos*pos*x*neg).is_negative is None
704
+
705
+ assert neg.is_positive is False
706
+ assert (-neg).is_positive is True
707
+ assert (2*neg).is_positive is False
708
+
709
+ assert pos.is_positive is True
710
+ assert (-pos).is_positive is False
711
+ assert (2*pos).is_positive is True
712
+
713
+ assert (pos*neg).is_positive is False
714
+ assert (2*pos*neg).is_positive is False
715
+ assert (-pos*neg).is_positive is True
716
+ assert (-pos*neg*y).is_positive is False # y.is_real=F; !real -> !neg
717
+
718
+ assert nneg.is_positive is None
719
+ assert (-nneg).is_positive is False
720
+ assert (2*nneg).is_positive is None
721
+
722
+ assert npos.is_positive is False
723
+ assert (-npos).is_positive is None
724
+ assert (2*npos).is_positive is False
725
+
726
+ assert (nneg*npos).is_positive is False
727
+
728
+ assert (neg*nneg).is_positive is False
729
+ assert (neg*npos).is_positive is None
730
+
731
+ assert (pos*nneg).is_positive is None
732
+ assert (pos*npos).is_positive is False
733
+
734
+ assert (npos*neg*nneg).is_positive is None
735
+ assert (npos*pos*nneg).is_positive is False
736
+
737
+ assert (-npos*neg*nneg).is_positive is False
738
+ assert (-npos*pos*nneg).is_positive is None
739
+
740
+ assert (17*npos*neg*nneg).is_positive is None
741
+ assert (17*npos*pos*nneg).is_positive is False
742
+
743
+ assert (neg*npos*pos*nneg).is_positive is None
744
+
745
+ assert (x*neg).is_positive is None
746
+ assert (nneg*npos*pos*x*neg).is_positive is None
747
+
748
+
749
+ def test_Mul_is_negative_positive_2():
750
+ a = Symbol('a', nonnegative=True)
751
+ b = Symbol('b', nonnegative=True)
752
+ c = Symbol('c', nonpositive=True)
753
+ d = Symbol('d', nonpositive=True)
754
+
755
+ assert (a*b).is_nonnegative is True
756
+ assert (a*b).is_negative is False
757
+ assert (a*b).is_zero is None
758
+ assert (a*b).is_positive is None
759
+
760
+ assert (c*d).is_nonnegative is True
761
+ assert (c*d).is_negative is False
762
+ assert (c*d).is_zero is None
763
+ assert (c*d).is_positive is None
764
+
765
+ assert (a*c).is_nonpositive is True
766
+ assert (a*c).is_positive is False
767
+ assert (a*c).is_zero is None
768
+ assert (a*c).is_negative is None
769
+
770
+
771
+ def test_Mul_is_nonpositive_nonnegative():
772
+ x = Symbol('x', real=True)
773
+
774
+ k = Symbol('k', negative=True)
775
+ n = Symbol('n', positive=True)
776
+ u = Symbol('u', nonnegative=True)
777
+ v = Symbol('v', nonpositive=True)
778
+
779
+ assert k.is_nonpositive is True
780
+ assert (-k).is_nonpositive is False
781
+ assert (2*k).is_nonpositive is True
782
+
783
+ assert n.is_nonpositive is False
784
+ assert (-n).is_nonpositive is True
785
+ assert (2*n).is_nonpositive is False
786
+
787
+ assert (n*k).is_nonpositive is True
788
+ assert (2*n*k).is_nonpositive is True
789
+ assert (-n*k).is_nonpositive is False
790
+
791
+ assert u.is_nonpositive is None
792
+ assert (-u).is_nonpositive is True
793
+ assert (2*u).is_nonpositive is None
794
+
795
+ assert v.is_nonpositive is True
796
+ assert (-v).is_nonpositive is None
797
+ assert (2*v).is_nonpositive is True
798
+
799
+ assert (u*v).is_nonpositive is True
800
+
801
+ assert (k*u).is_nonpositive is True
802
+ assert (k*v).is_nonpositive is None
803
+
804
+ assert (n*u).is_nonpositive is None
805
+ assert (n*v).is_nonpositive is True
806
+
807
+ assert (v*k*u).is_nonpositive is None
808
+ assert (v*n*u).is_nonpositive is True
809
+
810
+ assert (-v*k*u).is_nonpositive is True
811
+ assert (-v*n*u).is_nonpositive is None
812
+
813
+ assert (17*v*k*u).is_nonpositive is None
814
+ assert (17*v*n*u).is_nonpositive is True
815
+
816
+ assert (k*v*n*u).is_nonpositive is None
817
+
818
+ assert (x*k).is_nonpositive is None
819
+ assert (u*v*n*x*k).is_nonpositive is None
820
+
821
+ assert k.is_nonnegative is False
822
+ assert (-k).is_nonnegative is True
823
+ assert (2*k).is_nonnegative is False
824
+
825
+ assert n.is_nonnegative is True
826
+ assert (-n).is_nonnegative is False
827
+ assert (2*n).is_nonnegative is True
828
+
829
+ assert (n*k).is_nonnegative is False
830
+ assert (2*n*k).is_nonnegative is False
831
+ assert (-n*k).is_nonnegative is True
832
+
833
+ assert u.is_nonnegative is True
834
+ assert (-u).is_nonnegative is None
835
+ assert (2*u).is_nonnegative is True
836
+
837
+ assert v.is_nonnegative is None
838
+ assert (-v).is_nonnegative is True
839
+ assert (2*v).is_nonnegative is None
840
+
841
+ assert (u*v).is_nonnegative is None
842
+
843
+ assert (k*u).is_nonnegative is None
844
+ assert (k*v).is_nonnegative is True
845
+
846
+ assert (n*u).is_nonnegative is True
847
+ assert (n*v).is_nonnegative is None
848
+
849
+ assert (v*k*u).is_nonnegative is True
850
+ assert (v*n*u).is_nonnegative is None
851
+
852
+ assert (-v*k*u).is_nonnegative is None
853
+ assert (-v*n*u).is_nonnegative is True
854
+
855
+ assert (17*v*k*u).is_nonnegative is True
856
+ assert (17*v*n*u).is_nonnegative is None
857
+
858
+ assert (k*v*n*u).is_nonnegative is True
859
+
860
+ assert (x*k).is_nonnegative is None
861
+ assert (u*v*n*x*k).is_nonnegative is None
862
+
863
+
864
+ def test_Add_is_negative_positive():
865
+ x = Symbol('x', real=True)
866
+
867
+ k = Symbol('k', negative=True)
868
+ n = Symbol('n', positive=True)
869
+ u = Symbol('u', nonnegative=True)
870
+ v = Symbol('v', nonpositive=True)
871
+
872
+ assert (k - 2).is_negative is True
873
+ assert (k + 17).is_negative is None
874
+ assert (-k - 5).is_negative is None
875
+ assert (-k + 123).is_negative is False
876
+
877
+ assert (k - n).is_negative is True
878
+ assert (k + n).is_negative is None
879
+ assert (-k - n).is_negative is None
880
+ assert (-k + n).is_negative is False
881
+
882
+ assert (k - n - 2).is_negative is True
883
+ assert (k + n + 17).is_negative is None
884
+ assert (-k - n - 5).is_negative is None
885
+ assert (-k + n + 123).is_negative is False
886
+
887
+ assert (-2*k + 123*n + 17).is_negative is False
888
+
889
+ assert (k + u).is_negative is None
890
+ assert (k + v).is_negative is True
891
+ assert (n + u).is_negative is False
892
+ assert (n + v).is_negative is None
893
+
894
+ assert (u - v).is_negative is False
895
+ assert (u + v).is_negative is None
896
+ assert (-u - v).is_negative is None
897
+ assert (-u + v).is_negative is None
898
+
899
+ assert (u - v + n + 2).is_negative is False
900
+ assert (u + v + n + 2).is_negative is None
901
+ assert (-u - v + n + 2).is_negative is None
902
+ assert (-u + v + n + 2).is_negative is None
903
+
904
+ assert (k + x).is_negative is None
905
+ assert (k + x - n).is_negative is None
906
+
907
+ assert (k - 2).is_positive is False
908
+ assert (k + 17).is_positive is None
909
+ assert (-k - 5).is_positive is None
910
+ assert (-k + 123).is_positive is True
911
+
912
+ assert (k - n).is_positive is False
913
+ assert (k + n).is_positive is None
914
+ assert (-k - n).is_positive is None
915
+ assert (-k + n).is_positive is True
916
+
917
+ assert (k - n - 2).is_positive is False
918
+ assert (k + n + 17).is_positive is None
919
+ assert (-k - n - 5).is_positive is None
920
+ assert (-k + n + 123).is_positive is True
921
+
922
+ assert (-2*k + 123*n + 17).is_positive is True
923
+
924
+ assert (k + u).is_positive is None
925
+ assert (k + v).is_positive is False
926
+ assert (n + u).is_positive is True
927
+ assert (n + v).is_positive is None
928
+
929
+ assert (u - v).is_positive is None
930
+ assert (u + v).is_positive is None
931
+ assert (-u - v).is_positive is None
932
+ assert (-u + v).is_positive is False
933
+
934
+ assert (u - v - n - 2).is_positive is None
935
+ assert (u + v - n - 2).is_positive is None
936
+ assert (-u - v - n - 2).is_positive is None
937
+ assert (-u + v - n - 2).is_positive is False
938
+
939
+ assert (n + x).is_positive is None
940
+ assert (n + x - k).is_positive is None
941
+
942
+ z = (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2)
943
+ assert z.is_zero
944
+ z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
945
+ assert z.is_zero
946
+
947
+
948
+ def test_Add_is_nonpositive_nonnegative():
949
+ x = Symbol('x', real=True)
950
+
951
+ k = Symbol('k', negative=True)
952
+ n = Symbol('n', positive=True)
953
+ u = Symbol('u', nonnegative=True)
954
+ v = Symbol('v', nonpositive=True)
955
+
956
+ assert (u - 2).is_nonpositive is None
957
+ assert (u + 17).is_nonpositive is False
958
+ assert (-u - 5).is_nonpositive is True
959
+ assert (-u + 123).is_nonpositive is None
960
+
961
+ assert (u - v).is_nonpositive is None
962
+ assert (u + v).is_nonpositive is None
963
+ assert (-u - v).is_nonpositive is None
964
+ assert (-u + v).is_nonpositive is True
965
+
966
+ assert (u - v - 2).is_nonpositive is None
967
+ assert (u + v + 17).is_nonpositive is None
968
+ assert (-u - v - 5).is_nonpositive is None
969
+ assert (-u + v - 123).is_nonpositive is True
970
+
971
+ assert (-2*u + 123*v - 17).is_nonpositive is True
972
+
973
+ assert (k + u).is_nonpositive is None
974
+ assert (k + v).is_nonpositive is True
975
+ assert (n + u).is_nonpositive is False
976
+ assert (n + v).is_nonpositive is None
977
+
978
+ assert (k - n).is_nonpositive is True
979
+ assert (k + n).is_nonpositive is None
980
+ assert (-k - n).is_nonpositive is None
981
+ assert (-k + n).is_nonpositive is False
982
+
983
+ assert (k - n + u + 2).is_nonpositive is None
984
+ assert (k + n + u + 2).is_nonpositive is None
985
+ assert (-k - n + u + 2).is_nonpositive is None
986
+ assert (-k + n + u + 2).is_nonpositive is False
987
+
988
+ assert (u + x).is_nonpositive is None
989
+ assert (v - x - n).is_nonpositive is None
990
+
991
+ assert (u - 2).is_nonnegative is None
992
+ assert (u + 17).is_nonnegative is True
993
+ assert (-u - 5).is_nonnegative is False
994
+ assert (-u + 123).is_nonnegative is None
995
+
996
+ assert (u - v).is_nonnegative is True
997
+ assert (u + v).is_nonnegative is None
998
+ assert (-u - v).is_nonnegative is None
999
+ assert (-u + v).is_nonnegative is None
1000
+
1001
+ assert (u - v + 2).is_nonnegative is True
1002
+ assert (u + v + 17).is_nonnegative is None
1003
+ assert (-u - v - 5).is_nonnegative is None
1004
+ assert (-u + v - 123).is_nonnegative is False
1005
+
1006
+ assert (2*u - 123*v + 17).is_nonnegative is True
1007
+
1008
+ assert (k + u).is_nonnegative is None
1009
+ assert (k + v).is_nonnegative is False
1010
+ assert (n + u).is_nonnegative is True
1011
+ assert (n + v).is_nonnegative is None
1012
+
1013
+ assert (k - n).is_nonnegative is False
1014
+ assert (k + n).is_nonnegative is None
1015
+ assert (-k - n).is_nonnegative is None
1016
+ assert (-k + n).is_nonnegative is True
1017
+
1018
+ assert (k - n - u - 2).is_nonnegative is False
1019
+ assert (k + n - u - 2).is_nonnegative is None
1020
+ assert (-k - n - u - 2).is_nonnegative is None
1021
+ assert (-k + n - u - 2).is_nonnegative is None
1022
+
1023
+ assert (u - x).is_nonnegative is None
1024
+ assert (v + x + n).is_nonnegative is None
1025
+
1026
+
1027
+ def test_Pow_is_integer():
1028
+ x = Symbol('x')
1029
+
1030
+ k = Symbol('k', integer=True)
1031
+ n = Symbol('n', integer=True, nonnegative=True)
1032
+ m = Symbol('m', integer=True, positive=True)
1033
+
1034
+ assert (k**2).is_integer is True
1035
+ assert (k**(-2)).is_integer is None
1036
+ assert ((m + 1)**(-2)).is_integer is False
1037
+ assert (m**(-1)).is_integer is None # issue 8580
1038
+
1039
+ assert (2**k).is_integer is None
1040
+ assert (2**(-k)).is_integer is None
1041
+
1042
+ assert (2**n).is_integer is True
1043
+ assert (2**(-n)).is_integer is None
1044
+
1045
+ assert (2**m).is_integer is True
1046
+ assert (2**(-m)).is_integer is False
1047
+
1048
+ assert (x**2).is_integer is None
1049
+ assert (2**x).is_integer is None
1050
+
1051
+ assert (k**n).is_integer is True
1052
+ assert (k**(-n)).is_integer is None
1053
+
1054
+ assert (k**x).is_integer is None
1055
+ assert (x**k).is_integer is None
1056
+
1057
+ assert (k**(n*m)).is_integer is True
1058
+ assert (k**(-n*m)).is_integer is None
1059
+
1060
+ assert sqrt(3).is_integer is False
1061
+ assert sqrt(.3).is_integer is False
1062
+ assert Pow(3, 2, evaluate=False).is_integer is True
1063
+ assert Pow(3, 0, evaluate=False).is_integer is True
1064
+ assert Pow(3, -2, evaluate=False).is_integer is False
1065
+ assert Pow(S.Half, 3, evaluate=False).is_integer is False
1066
+ # decided by re-evaluating
1067
+ assert Pow(3, S.Half, evaluate=False).is_integer is False
1068
+ assert Pow(3, S.Half, evaluate=False).is_integer is False
1069
+ assert Pow(4, S.Half, evaluate=False).is_integer is True
1070
+ assert Pow(S.Half, -2, evaluate=False).is_integer is True
1071
+
1072
+ assert ((-1)**k).is_integer
1073
+
1074
+ # issue 8641
1075
+ x = Symbol('x', real=True, integer=False)
1076
+ assert (x**2).is_integer is None
1077
+
1078
+ # issue 10458
1079
+ x = Symbol('x', positive=True)
1080
+ assert (1/(x + 1)).is_integer is False
1081
+ assert (1/(-x - 1)).is_integer is False
1082
+ assert (-1/(x + 1)).is_integer is False
1083
+ # issue 23287
1084
+ assert (x**2/2).is_integer is None
1085
+
1086
+ # issue 8648-like
1087
+ k = Symbol('k', even=True)
1088
+ assert (k**3/2).is_integer
1089
+ assert (k**3/8).is_integer
1090
+ assert (k**3/16).is_integer is None
1091
+ assert (2/k).is_integer is None
1092
+ assert (2/k**2).is_integer is False
1093
+ o = Symbol('o', odd=True)
1094
+ assert (k/o).is_integer is None
1095
+ o = Symbol('o', odd=True, prime=True)
1096
+ assert (k/o).is_integer is False
1097
+
1098
+
1099
+ def test_Pow_is_real():
1100
+ x = Symbol('x', real=True)
1101
+ y = Symbol('y', positive=True)
1102
+
1103
+ assert (x**2).is_real is True
1104
+ assert (x**3).is_real is True
1105
+ assert (x**x).is_real is None
1106
+ assert (y**x).is_real is True
1107
+
1108
+ assert (x**Rational(1, 3)).is_real is None
1109
+ assert (y**Rational(1, 3)).is_real is True
1110
+
1111
+ assert sqrt(-1 - sqrt(2)).is_real is False
1112
+
1113
+ i = Symbol('i', imaginary=True)
1114
+ assert (i**i).is_real is None
1115
+ assert (I**i).is_extended_real is True
1116
+ assert ((-I)**i).is_extended_real is True
1117
+ assert (2**i).is_real is None # (2**(pi/log(2) * I)) is real, 2**I is not
1118
+ assert (2**I).is_real is False
1119
+ assert (2**-I).is_real is False
1120
+ assert (i**2).is_extended_real is True
1121
+ assert (i**3).is_extended_real is False
1122
+ assert (i**x).is_real is None # could be (-I)**(2/3)
1123
+ e = Symbol('e', even=True)
1124
+ o = Symbol('o', odd=True)
1125
+ k = Symbol('k', integer=True)
1126
+ assert (i**e).is_extended_real is True
1127
+ assert (i**o).is_extended_real is False
1128
+ assert (i**k).is_real is None
1129
+ assert (i**(4*k)).is_extended_real is True
1130
+
1131
+ x = Symbol("x", nonnegative=True)
1132
+ y = Symbol("y", nonnegative=True)
1133
+ assert im(x**y).expand(complex=True) is S.Zero
1134
+ assert (x**y).is_real is True
1135
+ i = Symbol('i', imaginary=True)
1136
+ assert (exp(i)**I).is_extended_real is True
1137
+ assert log(exp(i)).is_imaginary is None # i could be 2*pi*I
1138
+ c = Symbol('c', complex=True)
1139
+ assert log(c).is_real is None # c could be 0 or 2, too
1140
+ assert log(exp(c)).is_real is None # log(0), log(E), ...
1141
+ n = Symbol('n', negative=False)
1142
+ assert log(n).is_real is None
1143
+ n = Symbol('n', nonnegative=True)
1144
+ assert log(n).is_real is None
1145
+
1146
+ assert sqrt(-I).is_real is False # issue 7843
1147
+
1148
+ i = Symbol('i', integer=True)
1149
+ assert (1/(i-1)).is_real is None
1150
+ assert (1/(i-1)).is_extended_real is None
1151
+
1152
+ # test issue 20715
1153
+ from sympy.core.parameters import evaluate
1154
+ x = S(-1)
1155
+ with evaluate(False):
1156
+ assert x.is_negative is True
1157
+
1158
+ f = Pow(x, -1)
1159
+ with evaluate(False):
1160
+ assert f.is_imaginary is False
1161
+
1162
+
1163
+ def test_real_Pow():
1164
+ k = Symbol('k', integer=True, nonzero=True)
1165
+ assert (k**(I*pi/log(k))).is_real
1166
+
1167
+
1168
+ def test_Pow_is_finite():
1169
+ xe = Symbol('xe', extended_real=True)
1170
+ xr = Symbol('xr', real=True)
1171
+ p = Symbol('p', positive=True)
1172
+ n = Symbol('n', negative=True)
1173
+ i = Symbol('i', integer=True)
1174
+
1175
+ assert (xe**2).is_finite is None # xe could be oo
1176
+ assert (xr**2).is_finite is True
1177
+
1178
+ assert (xe**xe).is_finite is None
1179
+ assert (xr**xe).is_finite is None
1180
+ assert (xe**xr).is_finite is None
1181
+ # FIXME: The line below should be True rather than None
1182
+ # assert (xr**xr).is_finite is True
1183
+ assert (xr**xr).is_finite is None
1184
+
1185
+ assert (p**xe).is_finite is None
1186
+ assert (p**xr).is_finite is True
1187
+
1188
+ assert (n**xe).is_finite is None
1189
+ assert (n**xr).is_finite is True
1190
+
1191
+ assert (sin(xe)**2).is_finite is True
1192
+ assert (sin(xr)**2).is_finite is True
1193
+
1194
+ assert (sin(xe)**xe).is_finite is None # xe, xr could be -pi
1195
+ assert (sin(xr)**xr).is_finite is None
1196
+
1197
+ # FIXME: Should the line below be True rather than None?
1198
+ assert (sin(xe)**exp(xe)).is_finite is None
1199
+ assert (sin(xr)**exp(xr)).is_finite is True
1200
+
1201
+ assert (1/sin(xe)).is_finite is None # if zero, no, otherwise yes
1202
+ assert (1/sin(xr)).is_finite is None
1203
+
1204
+ assert (1/exp(xe)).is_finite is None # xe could be -oo
1205
+ assert (1/exp(xr)).is_finite is True
1206
+
1207
+ assert (1/S.Pi).is_finite is True
1208
+
1209
+ assert (1/(i-1)).is_finite is None
1210
+
1211
+
1212
+ def test_Pow_is_even_odd():
1213
+ x = Symbol('x')
1214
+
1215
+ k = Symbol('k', even=True)
1216
+ n = Symbol('n', odd=True)
1217
+ m = Symbol('m', integer=True, nonnegative=True)
1218
+ p = Symbol('p', integer=True, positive=True)
1219
+
1220
+ assert ((-1)**n).is_odd
1221
+ assert ((-1)**k).is_odd
1222
+ assert ((-1)**(m - p)).is_odd
1223
+
1224
+ assert (k**2).is_even is True
1225
+ assert (n**2).is_even is False
1226
+ assert (2**k).is_even is None
1227
+ assert (x**2).is_even is None
1228
+
1229
+ assert (k**m).is_even is None
1230
+ assert (n**m).is_even is False
1231
+
1232
+ assert (k**p).is_even is True
1233
+ assert (n**p).is_even is False
1234
+
1235
+ assert (m**k).is_even is None
1236
+ assert (p**k).is_even is None
1237
+
1238
+ assert (m**n).is_even is None
1239
+ assert (p**n).is_even is None
1240
+
1241
+ assert (k**x).is_even is None
1242
+ assert (n**x).is_even is None
1243
+
1244
+ assert (k**2).is_odd is False
1245
+ assert (n**2).is_odd is True
1246
+ assert (3**k).is_odd is None
1247
+
1248
+ assert (k**m).is_odd is None
1249
+ assert (n**m).is_odd is True
1250
+
1251
+ assert (k**p).is_odd is False
1252
+ assert (n**p).is_odd is True
1253
+
1254
+ assert (m**k).is_odd is None
1255
+ assert (p**k).is_odd is None
1256
+
1257
+ assert (m**n).is_odd is None
1258
+ assert (p**n).is_odd is None
1259
+
1260
+ assert (k**x).is_odd is None
1261
+ assert (n**x).is_odd is None
1262
+
1263
+
1264
+ def test_Pow_is_negative_positive():
1265
+ r = Symbol('r', real=True)
1266
+
1267
+ k = Symbol('k', integer=True, positive=True)
1268
+ n = Symbol('n', even=True)
1269
+ m = Symbol('m', odd=True)
1270
+
1271
+ x = Symbol('x')
1272
+
1273
+ assert (2**r).is_positive is True
1274
+ assert ((-2)**r).is_positive is None
1275
+ assert ((-2)**n).is_positive is True
1276
+ assert ((-2)**m).is_positive is False
1277
+
1278
+ assert (k**2).is_positive is True
1279
+ assert (k**(-2)).is_positive is True
1280
+
1281
+ assert (k**r).is_positive is True
1282
+ assert ((-k)**r).is_positive is None
1283
+ assert ((-k)**n).is_positive is True
1284
+ assert ((-k)**m).is_positive is False
1285
+
1286
+ assert (2**r).is_negative is False
1287
+ assert ((-2)**r).is_negative is None
1288
+ assert ((-2)**n).is_negative is False
1289
+ assert ((-2)**m).is_negative is True
1290
+
1291
+ assert (k**2).is_negative is False
1292
+ assert (k**(-2)).is_negative is False
1293
+
1294
+ assert (k**r).is_negative is False
1295
+ assert ((-k)**r).is_negative is None
1296
+ assert ((-k)**n).is_negative is False
1297
+ assert ((-k)**m).is_negative is True
1298
+
1299
+ assert (2**x).is_positive is None
1300
+ assert (2**x).is_negative is None
1301
+
1302
+
1303
+ def test_Pow_is_zero():
1304
+ z = Symbol('z', zero=True)
1305
+ e = z**2
1306
+ assert e.is_zero
1307
+ assert e.is_positive is False
1308
+ assert e.is_negative is False
1309
+
1310
+ assert Pow(0, 0, evaluate=False).is_zero is False
1311
+ assert Pow(0, 3, evaluate=False).is_zero
1312
+ assert Pow(0, oo, evaluate=False).is_zero
1313
+ assert Pow(0, -3, evaluate=False).is_zero is False
1314
+ assert Pow(0, -oo, evaluate=False).is_zero is False
1315
+ assert Pow(2, 2, evaluate=False).is_zero is False
1316
+
1317
+ a = Symbol('a', zero=False)
1318
+ assert Pow(a, 3).is_zero is False # issue 7965
1319
+
1320
+ assert Pow(2, oo, evaluate=False).is_zero is False
1321
+ assert Pow(2, -oo, evaluate=False).is_zero
1322
+ assert Pow(S.Half, oo, evaluate=False).is_zero
1323
+ assert Pow(S.Half, -oo, evaluate=False).is_zero is False
1324
+
1325
+ # All combinations of real/complex base/exponent
1326
+ h = S.Half
1327
+ T = True
1328
+ F = False
1329
+ N = None
1330
+
1331
+ pow_iszero = [
1332
+ ['**', 0, h, 1, 2, -h, -1,-2,-2*I,-I/2,I/2,1+I,oo,-oo,zoo],
1333
+ [ 0, F, T, T, T, F, F, F, F, F, F, N, T, F, N],
1334
+ [ h, F, F, F, F, F, F, F, F, F, F, F, T, F, N],
1335
+ [ 1, F, F, F, F, F, F, F, F, F, F, F, F, F, N],
1336
+ [ 2, F, F, F, F, F, F, F, F, F, F, F, F, T, N],
1337
+ [ -h, F, F, F, F, F, F, F, F, F, F, F, T, F, N],
1338
+ [ -1, F, F, F, F, F, F, F, F, F, F, F, F, F, N],
1339
+ [ -2, F, F, F, F, F, F, F, F, F, F, F, F, T, N],
1340
+ [-2*I, F, F, F, F, F, F, F, F, F, F, F, F, T, N],
1341
+ [-I/2, F, F, F, F, F, F, F, F, F, F, F, T, F, N],
1342
+ [ I/2, F, F, F, F, F, F, F, F, F, F, F, T, F, N],
1343
+ [ 1+I, F, F, F, F, F, F, F, F, F, F, F, F, T, N],
1344
+ [ oo, F, F, F, F, T, T, T, F, F, F, F, F, T, N],
1345
+ [ -oo, F, F, F, F, T, T, T, F, F, F, F, F, T, N],
1346
+ [ zoo, F, F, F, F, T, T, T, N, N, N, N, F, T, N]
1347
+ ]
1348
+
1349
+ def test_table(table):
1350
+ n = len(table[0])
1351
+ for row in range(1, n):
1352
+ base = table[row][0]
1353
+ for col in range(1, n):
1354
+ exp = table[0][col]
1355
+ is_zero = table[row][col]
1356
+ # The actual test here:
1357
+ assert Pow(base, exp, evaluate=False).is_zero is is_zero
1358
+
1359
+ test_table(pow_iszero)
1360
+
1361
+ # A zero symbol...
1362
+ zo, zo2 = symbols('zo, zo2', zero=True)
1363
+
1364
+ # All combinations of finite symbols
1365
+ zf, zf2 = symbols('zf, zf2', finite=True)
1366
+ wf, wf2 = symbols('wf, wf2', nonzero=True)
1367
+ xf, xf2 = symbols('xf, xf2', real=True)
1368
+ yf, yf2 = symbols('yf, yf2', nonzero=True)
1369
+ af, af2 = symbols('af, af2', positive=True)
1370
+ bf, bf2 = symbols('bf, bf2', nonnegative=True)
1371
+ cf, cf2 = symbols('cf, cf2', negative=True)
1372
+ df, df2 = symbols('df, df2', nonpositive=True)
1373
+
1374
+ # Without finiteness:
1375
+ zi, zi2 = symbols('zi, zi2')
1376
+ wi, wi2 = symbols('wi, wi2', zero=False)
1377
+ xi, xi2 = symbols('xi, xi2', extended_real=True)
1378
+ yi, yi2 = symbols('yi, yi2', zero=False, extended_real=True)
1379
+ ai, ai2 = symbols('ai, ai2', extended_positive=True)
1380
+ bi, bi2 = symbols('bi, bi2', extended_nonnegative=True)
1381
+ ci, ci2 = symbols('ci, ci2', extended_negative=True)
1382
+ di, di2 = symbols('di, di2', extended_nonpositive=True)
1383
+
1384
+ pow_iszero_sym = [
1385
+ ['**',zo,wf,yf,af,cf,zf,xf,bf,df,zi,wi,xi,yi,ai,bi,ci,di],
1386
+ [ zo2, F, N, N, T, F, N, N, N, F, N, N, N, N, T, N, F, F],
1387
+ [ wf2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N],
1388
+ [ yf2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N],
1389
+ [ af2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N],
1390
+ [ cf2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N],
1391
+ [ zf2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N],
1392
+ [ xf2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N],
1393
+ [ bf2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N],
1394
+ [ df2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N],
1395
+ [ zi2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N],
1396
+ [ wi2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N],
1397
+ [ xi2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N],
1398
+ [ yi2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N],
1399
+ [ ai2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N],
1400
+ [ bi2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N],
1401
+ [ ci2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N],
1402
+ [ di2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N]
1403
+ ]
1404
+
1405
+ test_table(pow_iszero_sym)
1406
+
1407
+ # In some cases (x**x).is_zero is different from (x**y).is_zero even if y
1408
+ # has the same assumptions as x.
1409
+ assert (zo ** zo).is_zero is False
1410
+ assert (wf ** wf).is_zero is False
1411
+ assert (yf ** yf).is_zero is False
1412
+ assert (af ** af).is_zero is False
1413
+ assert (cf ** cf).is_zero is False
1414
+ assert (zf ** zf).is_zero is None
1415
+ assert (xf ** xf).is_zero is None
1416
+ assert (bf ** bf).is_zero is False # None in table
1417
+ assert (df ** df).is_zero is None
1418
+ assert (zi ** zi).is_zero is None
1419
+ assert (wi ** wi).is_zero is None
1420
+ assert (xi ** xi).is_zero is None
1421
+ assert (yi ** yi).is_zero is None
1422
+ assert (ai ** ai).is_zero is False # None in table
1423
+ assert (bi ** bi).is_zero is False # None in table
1424
+ assert (ci ** ci).is_zero is None
1425
+ assert (di ** di).is_zero is None
1426
+
1427
+
1428
+ def test_Pow_is_nonpositive_nonnegative():
1429
+ x = Symbol('x', real=True)
1430
+
1431
+ k = Symbol('k', integer=True, nonnegative=True)
1432
+ l = Symbol('l', integer=True, positive=True)
1433
+ n = Symbol('n', even=True)
1434
+ m = Symbol('m', odd=True)
1435
+
1436
+ assert (x**(4*k)).is_nonnegative is True
1437
+ assert (2**x).is_nonnegative is True
1438
+ assert ((-2)**x).is_nonnegative is None
1439
+ assert ((-2)**n).is_nonnegative is True
1440
+ assert ((-2)**m).is_nonnegative is False
1441
+
1442
+ assert (k**2).is_nonnegative is True
1443
+ assert (k**(-2)).is_nonnegative is None
1444
+ assert (k**k).is_nonnegative is True
1445
+
1446
+ assert (k**x).is_nonnegative is None # NOTE (0**x).is_real = U
1447
+ assert (l**x).is_nonnegative is True
1448
+ assert (l**x).is_positive is True
1449
+ assert ((-k)**x).is_nonnegative is None
1450
+
1451
+ assert ((-k)**m).is_nonnegative is None
1452
+
1453
+ assert (2**x).is_nonpositive is False
1454
+ assert ((-2)**x).is_nonpositive is None
1455
+ assert ((-2)**n).is_nonpositive is False
1456
+ assert ((-2)**m).is_nonpositive is True
1457
+
1458
+ assert (k**2).is_nonpositive is None
1459
+ assert (k**(-2)).is_nonpositive is None
1460
+
1461
+ assert (k**x).is_nonpositive is None
1462
+ assert ((-k)**x).is_nonpositive is None
1463
+ assert ((-k)**n).is_nonpositive is None
1464
+
1465
+
1466
+ assert (x**2).is_nonnegative is True
1467
+ i = symbols('i', imaginary=True)
1468
+ assert (i**2).is_nonpositive is True
1469
+ assert (i**4).is_nonpositive is False
1470
+ assert (i**3).is_nonpositive is False
1471
+ assert (I**i).is_nonnegative is True
1472
+ assert (exp(I)**i).is_nonnegative is True
1473
+
1474
+ assert ((-l)**n).is_nonnegative is True
1475
+ assert ((-l)**m).is_nonpositive is True
1476
+ assert ((-k)**n).is_nonnegative is None
1477
+ assert ((-k)**m).is_nonpositive is None
1478
+
1479
+
1480
+ def test_Mul_is_imaginary_real():
1481
+ r = Symbol('r', real=True)
1482
+ p = Symbol('p', positive=True)
1483
+ i1 = Symbol('i1', imaginary=True)
1484
+ i2 = Symbol('i2', imaginary=True)
1485
+ x = Symbol('x')
1486
+
1487
+ assert I.is_imaginary is True
1488
+ assert I.is_real is False
1489
+ assert (-I).is_imaginary is True
1490
+ assert (-I).is_real is False
1491
+ assert (3*I).is_imaginary is True
1492
+ assert (3*I).is_real is False
1493
+ assert (I*I).is_imaginary is False
1494
+ assert (I*I).is_real is True
1495
+
1496
+ e = (p + p*I)
1497
+ j = Symbol('j', integer=True, zero=False)
1498
+ assert (e**j).is_real is None
1499
+ assert (e**(2*j)).is_real is None
1500
+ assert (e**j).is_imaginary is None
1501
+ assert (e**(2*j)).is_imaginary is None
1502
+
1503
+ assert (e**-1).is_imaginary is False
1504
+ assert (e**2).is_imaginary
1505
+ assert (e**3).is_imaginary is False
1506
+ assert (e**4).is_imaginary is False
1507
+ assert (e**5).is_imaginary is False
1508
+ assert (e**-1).is_real is False
1509
+ assert (e**2).is_real is False
1510
+ assert (e**3).is_real is False
1511
+ assert (e**4).is_real is True
1512
+ assert (e**5).is_real is False
1513
+ assert (e**3).is_complex
1514
+
1515
+ assert (r*i1).is_imaginary is None
1516
+ assert (r*i1).is_real is None
1517
+
1518
+ assert (x*i1).is_imaginary is None
1519
+ assert (x*i1).is_real is None
1520
+
1521
+ assert (i1*i2).is_imaginary is False
1522
+ assert (i1*i2).is_real is True
1523
+
1524
+ assert (r*i1*i2).is_imaginary is False
1525
+ assert (r*i1*i2).is_real is True
1526
+
1527
+ # Github's issue 5874:
1528
+ nr = Symbol('nr', real=False, complex=True) # e.g. I or 1 + I
1529
+ a = Symbol('a', real=True, nonzero=True)
1530
+ b = Symbol('b', real=True)
1531
+ assert (i1*nr).is_real is None
1532
+ assert (a*nr).is_real is False
1533
+ assert (b*nr).is_real is None
1534
+
1535
+ ni = Symbol('ni', imaginary=False, complex=True) # e.g. 2 or 1 + I
1536
+ a = Symbol('a', real=True, nonzero=True)
1537
+ b = Symbol('b', real=True)
1538
+ assert (i1*ni).is_real is False
1539
+ assert (a*ni).is_real is None
1540
+ assert (b*ni).is_real is None
1541
+
1542
+
1543
+ def test_Mul_hermitian_antihermitian():
1544
+ xz, yz = symbols('xz, yz', zero=True, antihermitian=True)
1545
+ xf, yf = symbols('xf, yf', hermitian=False, antihermitian=False, finite=True)
1546
+ xh, yh = symbols('xh, yh', hermitian=True, antihermitian=False, nonzero=True)
1547
+ xa, ya = symbols('xa, ya', hermitian=False, antihermitian=True, zero=False, finite=True)
1548
+ assert (xz*xh).is_hermitian is True
1549
+ assert (xz*xh).is_antihermitian is True
1550
+ assert (xz*xa).is_hermitian is True
1551
+ assert (xz*xa).is_antihermitian is True
1552
+ assert (xf*yf).is_hermitian is None
1553
+ assert (xf*yf).is_antihermitian is None
1554
+ assert (xh*yh).is_hermitian is True
1555
+ assert (xh*yh).is_antihermitian is False
1556
+ assert (xh*ya).is_hermitian is False
1557
+ assert (xh*ya).is_antihermitian is True
1558
+ assert (xa*ya).is_hermitian is True
1559
+ assert (xa*ya).is_antihermitian is False
1560
+
1561
+ a = Symbol('a', hermitian=True, zero=False)
1562
+ b = Symbol('b', hermitian=True)
1563
+ c = Symbol('c', hermitian=False)
1564
+ d = Symbol('d', antihermitian=True)
1565
+ e1 = Mul(a, b, c, evaluate=False)
1566
+ e2 = Mul(b, a, c, evaluate=False)
1567
+ e3 = Mul(a, b, c, d, evaluate=False)
1568
+ e4 = Mul(b, a, c, d, evaluate=False)
1569
+ e5 = Mul(a, c, evaluate=False)
1570
+ e6 = Mul(a, c, d, evaluate=False)
1571
+ assert e1.is_hermitian is None
1572
+ assert e2.is_hermitian is None
1573
+ assert e1.is_antihermitian is None
1574
+ assert e2.is_antihermitian is None
1575
+ assert e3.is_antihermitian is None
1576
+ assert e4.is_antihermitian is None
1577
+ assert e5.is_antihermitian is None
1578
+ assert e6.is_antihermitian is None
1579
+
1580
+
1581
+ def test_Add_is_comparable():
1582
+ assert (x + y).is_comparable is False
1583
+ assert (x + 1).is_comparable is False
1584
+ assert (Rational(1, 3) - sqrt(8)).is_comparable is True
1585
+
1586
+
1587
+ def test_Mul_is_comparable():
1588
+ assert (x*y).is_comparable is False
1589
+ assert (x*2).is_comparable is False
1590
+ assert (sqrt(2)*Rational(1, 3)).is_comparable is True
1591
+
1592
+
1593
+ def test_Pow_is_comparable():
1594
+ assert (x**y).is_comparable is False
1595
+ assert (x**2).is_comparable is False
1596
+ assert (sqrt(Rational(1, 3))).is_comparable is True
1597
+
1598
+
1599
+ def test_Add_is_positive_2():
1600
+ e = Rational(1, 3) - sqrt(8)
1601
+ assert e.is_positive is False
1602
+ assert e.is_negative is True
1603
+
1604
+ e = pi - 1
1605
+ assert e.is_positive is True
1606
+ assert e.is_negative is False
1607
+
1608
+
1609
+ def test_Add_is_irrational():
1610
+ i = Symbol('i', irrational=True)
1611
+
1612
+ assert i.is_irrational is True
1613
+ assert i.is_rational is False
1614
+
1615
+ assert (i + 1).is_irrational is True
1616
+ assert (i + 1).is_rational is False
1617
+
1618
+
1619
+ def test_Mul_is_irrational():
1620
+ expr = Mul(1, 2, 3, evaluate=False)
1621
+ assert expr.is_irrational is False
1622
+ expr = Mul(1, I, I, evaluate=False)
1623
+ assert expr.is_rational is None # I * I = -1 but *no evaluation allowed*
1624
+ # sqrt(2) * I * I = -sqrt(2) is irrational but
1625
+ # this can't be determined without evaluating the
1626
+ # expression and the eval_is routines shouldn't do that
1627
+ expr = Mul(sqrt(2), I, I, evaluate=False)
1628
+ assert expr.is_irrational is None
1629
+
1630
+
1631
+ def test_issue_3531():
1632
+ # https://github.com/sympy/sympy/issues/3531
1633
+ # https://github.com/sympy/sympy/pull/18116
1634
+ class MightyNumeric(tuple):
1635
+ def __rtruediv__(self, other):
1636
+ return "something"
1637
+
1638
+ assert sympify(1)/MightyNumeric((1, 2)) == "something"
1639
+
1640
+
1641
+ def test_issue_3531b():
1642
+ class Foo:
1643
+ def __init__(self):
1644
+ self.field = 1.0
1645
+
1646
+ def __mul__(self, other):
1647
+ self.field = self.field * other
1648
+
1649
+ def __rmul__(self, other):
1650
+ self.field = other * self.field
1651
+ f = Foo()
1652
+ x = Symbol("x")
1653
+ assert f*x == x*f
1654
+
1655
+
1656
+ def test_bug3():
1657
+ a = Symbol("a")
1658
+ b = Symbol("b", positive=True)
1659
+ e = 2*a + b
1660
+ f = b + 2*a
1661
+ assert e == f
1662
+
1663
+
1664
+ def test_suppressed_evaluation():
1665
+ a = Add(0, 3, 2, evaluate=False)
1666
+ b = Mul(1, 3, 2, evaluate=False)
1667
+ c = Pow(3, 2, evaluate=False)
1668
+ assert a != 6
1669
+ assert a.func is Add
1670
+ assert a.args == (0, 3, 2)
1671
+ assert b != 6
1672
+ assert b.func is Mul
1673
+ assert b.args == (1, 3, 2)
1674
+ assert c != 9
1675
+ assert c.func is Pow
1676
+ assert c.args == (3, 2)
1677
+
1678
+
1679
+ def test_AssocOp_doit():
1680
+ a = Add(x,x, evaluate=False)
1681
+ b = Mul(y,y, evaluate=False)
1682
+ c = Add(b,b, evaluate=False)
1683
+ d = Mul(a,a, evaluate=False)
1684
+ assert c.doit(deep=False).func == Mul
1685
+ assert c.doit(deep=False).args == (2,y,y)
1686
+ assert c.doit().func == Mul
1687
+ assert c.doit().args == (2, Pow(y,2))
1688
+ assert d.doit(deep=False).func == Pow
1689
+ assert d.doit(deep=False).args == (a, 2*S.One)
1690
+ assert d.doit().func == Mul
1691
+ assert d.doit().args == (4*S.One, Pow(x,2))
1692
+
1693
+
1694
+ def test_Add_Mul_Expr_args():
1695
+ nonexpr = [Basic(), Poly(x, x), FiniteSet(x)]
1696
+ for typ in [Add, Mul]:
1697
+ for obj in nonexpr:
1698
+ # The cache can mess with the stacklevel check
1699
+ with warns(SymPyDeprecationWarning, test_stacklevel=False):
1700
+ typ(obj, 1)
1701
+
1702
+
1703
+ def test_Add_as_coeff_mul():
1704
+ # issue 5524. These should all be (1, self)
1705
+ assert (x + 1).as_coeff_mul() == (1, (x + 1,))
1706
+ assert (x + 2).as_coeff_mul() == (1, (x + 2,))
1707
+ assert (x + 3).as_coeff_mul() == (1, (x + 3,))
1708
+
1709
+ assert (x - 1).as_coeff_mul() == (1, (x - 1,))
1710
+ assert (x - 2).as_coeff_mul() == (1, (x - 2,))
1711
+ assert (x - 3).as_coeff_mul() == (1, (x - 3,))
1712
+
1713
+ n = Symbol('n', integer=True)
1714
+ assert (n + 1).as_coeff_mul() == (1, (n + 1,))
1715
+ assert (n + 2).as_coeff_mul() == (1, (n + 2,))
1716
+ assert (n + 3).as_coeff_mul() == (1, (n + 3,))
1717
+
1718
+ assert (n - 1).as_coeff_mul() == (1, (n - 1,))
1719
+ assert (n - 2).as_coeff_mul() == (1, (n - 2,))
1720
+ assert (n - 3).as_coeff_mul() == (1, (n - 3,))
1721
+
1722
+
1723
+ def test_Pow_as_coeff_mul_doesnt_expand():
1724
+ assert exp(x + y).as_coeff_mul() == (1, (exp(x + y),))
1725
+ assert exp(x + exp(x + y)) != exp(x + exp(x)*exp(y))
1726
+
1727
+ def test_issue_24751():
1728
+ expr = Add(-2, -3, evaluate=False)
1729
+ expr1 = Add(-1, expr, evaluate=False)
1730
+ assert int(expr1) == int((-3 - 2) - 1)
1731
+
1732
+
1733
+ def test_issue_3514_18626():
1734
+ assert sqrt(S.Half) * sqrt(6) == 2 * sqrt(3)/2
1735
+ assert S.Half*sqrt(6)*sqrt(2) == sqrt(3)
1736
+ assert sqrt(6)/2*sqrt(2) == sqrt(3)
1737
+ assert sqrt(6)*sqrt(2)/2 == sqrt(3)
1738
+ assert sqrt(8)**Rational(2, 3) == 2
1739
+
1740
+
1741
+ def test_make_args():
1742
+ assert Add.make_args(x) == (x,)
1743
+ assert Mul.make_args(x) == (x,)
1744
+
1745
+ assert Add.make_args(x*y*z) == (x*y*z,)
1746
+ assert Mul.make_args(x*y*z) == (x*y*z).args
1747
+
1748
+ assert Add.make_args(x + y + z) == (x + y + z).args
1749
+ assert Mul.make_args(x + y + z) == (x + y + z,)
1750
+
1751
+ assert Add.make_args((x + y)**z) == ((x + y)**z,)
1752
+ assert Mul.make_args((x + y)**z) == ((x + y)**z,)
1753
+
1754
+
1755
+ def test_issue_5126():
1756
+ assert (-2)**x*(-3)**x != 6**x
1757
+ i = Symbol('i', integer=1)
1758
+ assert (-2)**i*(-3)**i == 6**i
1759
+
1760
+
1761
+ def test_Rational_as_content_primitive():
1762
+ c, p = S.One, S.Zero
1763
+ assert (c*p).as_content_primitive() == (c, p)
1764
+ c, p = S.Half, S.One
1765
+ assert (c*p).as_content_primitive() == (c, p)
1766
+
1767
+
1768
+ def test_Add_as_content_primitive():
1769
+ assert (x + 2).as_content_primitive() == (1, x + 2)
1770
+
1771
+ assert (3*x + 2).as_content_primitive() == (1, 3*x + 2)
1772
+ assert (3*x + 3).as_content_primitive() == (3, x + 1)
1773
+ assert (3*x + 6).as_content_primitive() == (3, x + 2)
1774
+
1775
+ assert (3*x + 2*y).as_content_primitive() == (1, 3*x + 2*y)
1776
+ assert (3*x + 3*y).as_content_primitive() == (3, x + y)
1777
+ assert (3*x + 6*y).as_content_primitive() == (3, x + 2*y)
1778
+
1779
+ assert (3/x + 2*x*y*z**2).as_content_primitive() == (1, 3/x + 2*x*y*z**2)
1780
+ assert (3/x + 3*x*y*z**2).as_content_primitive() == (3, 1/x + x*y*z**2)
1781
+ assert (3/x + 6*x*y*z**2).as_content_primitive() == (3, 1/x + 2*x*y*z**2)
1782
+
1783
+ assert (2*x/3 + 4*y/9).as_content_primitive() == \
1784
+ (Rational(2, 9), 3*x + 2*y)
1785
+ assert (2*x/3 + 2.5*y).as_content_primitive() == \
1786
+ (Rational(1, 3), 2*x + 7.5*y)
1787
+
1788
+ # the coefficient may sort to a position other than 0
1789
+ p = 3 + x + y
1790
+ assert (2*p).expand().as_content_primitive() == (2, p)
1791
+ assert (2.0*p).expand().as_content_primitive() == (1, 2.*p)
1792
+ p *= -1
1793
+ assert (2*p).expand().as_content_primitive() == (2, p)
1794
+
1795
+
1796
+ def test_Mul_as_content_primitive():
1797
+ assert (2*x).as_content_primitive() == (2, x)
1798
+ assert (x*(2 + 2*x)).as_content_primitive() == (2, x*(1 + x))
1799
+ assert (x*(2 + 2*y)*(3*x + 3)**2).as_content_primitive() == \
1800
+ (18, x*(1 + y)*(x + 1)**2)
1801
+ assert ((2 + 2*x)**2*(3 + 6*x) + S.Half).as_content_primitive() == \
1802
+ (S.Half, 24*(x + 1)**2*(2*x + 1) + 1)
1803
+
1804
+
1805
+ def test_Pow_as_content_primitive():
1806
+ assert (x**y).as_content_primitive() == (1, x**y)
1807
+ assert ((2*x + 2)**y).as_content_primitive() == \
1808
+ (1, (Mul(2, (x + 1), evaluate=False))**y)
1809
+ assert ((2*x + 2)**3).as_content_primitive() == (8, (x + 1)**3)
1810
+
1811
+
1812
+ def test_issue_5460():
1813
+ u = Mul(2, (1 + x), evaluate=False)
1814
+ assert (2 + u).args == (2, u)
1815
+
1816
+
1817
+ def test_product_irrational():
1818
+ assert (I*pi).is_irrational is False
1819
+ # The following used to be deduced from the above bug:
1820
+ assert (I*pi).is_positive is False
1821
+
1822
+
1823
+ def test_issue_5919():
1824
+ assert (x/(y*(1 + y))).expand() == x/(y**2 + y)
1825
+
1826
+
1827
+ def test_Mod():
1828
+ assert Mod(x, 1).func is Mod
1829
+ assert pi % pi is S.Zero
1830
+ assert Mod(5, 3) == 2
1831
+ assert Mod(-5, 3) == 1
1832
+ assert Mod(5, -3) == -1
1833
+ assert Mod(-5, -3) == -2
1834
+ assert type(Mod(3.2, 2, evaluate=False)) == Mod
1835
+ assert 5 % x == Mod(5, x)
1836
+ assert x % 5 == Mod(x, 5)
1837
+ assert x % y == Mod(x, y)
1838
+ assert (x % y).subs({x: 5, y: 3}) == 2
1839
+ assert Mod(nan, 1) is nan
1840
+ assert Mod(1, nan) is nan
1841
+ assert Mod(nan, nan) is nan
1842
+
1843
+ assert Mod(0, x) == 0
1844
+ with raises(ZeroDivisionError):
1845
+ Mod(x, 0)
1846
+
1847
+ k = Symbol('k', integer=True)
1848
+ m = Symbol('m', integer=True, positive=True)
1849
+ assert (x**m % x).func is Mod
1850
+ assert (k**(-m) % k).func is Mod
1851
+ assert k**m % k == 0
1852
+ assert (-2*k)**m % k == 0
1853
+
1854
+ # Float handling
1855
+ point3 = Float(3.3) % 1
1856
+ assert (x - 3.3) % 1 == Mod(1.*x + 1 - point3, 1)
1857
+ assert Mod(-3.3, 1) == 1 - point3
1858
+ assert Mod(0.7, 1) == Float(0.7)
1859
+ e = Mod(1.3, 1)
1860
+ assert comp(e, .3) and e.is_Float
1861
+ e = Mod(1.3, .7)
1862
+ assert comp(e, .6) and e.is_Float
1863
+ e = Mod(1.3, Rational(7, 10))
1864
+ assert comp(e, .6) and e.is_Float
1865
+ e = Mod(Rational(13, 10), 0.7)
1866
+ assert comp(e, .6) and e.is_Float
1867
+ e = Mod(Rational(13, 10), Rational(7, 10))
1868
+ assert comp(e, .6) and e.is_Rational
1869
+
1870
+ # check that sign is right
1871
+ r2 = sqrt(2)
1872
+ r3 = sqrt(3)
1873
+ for i in [-r3, -r2, r2, r3]:
1874
+ for j in [-r3, -r2, r2, r3]:
1875
+ assert verify_numerically(i % j, i.n() % j.n())
1876
+ for _x in range(4):
1877
+ for _y in range(9):
1878
+ reps = [(x, _x), (y, _y)]
1879
+ assert Mod(3*x + y, 9).subs(reps) == (3*_x + _y) % 9
1880
+
1881
+ # denesting
1882
+ t = Symbol('t', real=True)
1883
+ assert Mod(Mod(x, t), t) == Mod(x, t)
1884
+ assert Mod(-Mod(x, t), t) == Mod(-x, t)
1885
+ assert Mod(Mod(x, 2*t), t) == Mod(x, t)
1886
+ assert Mod(-Mod(x, 2*t), t) == Mod(-x, t)
1887
+ assert Mod(Mod(x, t), 2*t) == Mod(x, t)
1888
+ assert Mod(-Mod(x, t), -2*t) == -Mod(x, t)
1889
+ for i in [-4, -2, 2, 4]:
1890
+ for j in [-4, -2, 2, 4]:
1891
+ for k in range(4):
1892
+ assert Mod(Mod(x, i), j).subs({x: k}) == (k % i) % j
1893
+ assert Mod(-Mod(x, i), j).subs({x: k}) == -(k % i) % j
1894
+
1895
+ # known difference
1896
+ assert Mod(5*sqrt(2), sqrt(5)) == 5*sqrt(2) - 3*sqrt(5)
1897
+ p = symbols('p', positive=True)
1898
+ assert Mod(2, p + 3) == 2
1899
+ assert Mod(-2, p + 3) == p + 1
1900
+ assert Mod(2, -p - 3) == -p - 1
1901
+ assert Mod(-2, -p - 3) == -2
1902
+ assert Mod(p + 5, p + 3) == 2
1903
+ assert Mod(-p - 5, p + 3) == p + 1
1904
+ assert Mod(p + 5, -p - 3) == -p - 1
1905
+ assert Mod(-p - 5, -p - 3) == -2
1906
+ assert Mod(p + 1, p - 1).func is Mod
1907
+
1908
+ # handling sums
1909
+ assert (x + 3) % 1 == Mod(x, 1)
1910
+ assert (x + 3.0) % 1 == Mod(1.*x, 1)
1911
+ assert (x - S(33)/10) % 1 == Mod(x + S(7)/10, 1)
1912
+
1913
+ a = Mod(.6*x + y, .3*y)
1914
+ b = Mod(0.1*y + 0.6*x, 0.3*y)
1915
+ # Test that a, b are equal, with 1e-14 accuracy in coefficients
1916
+ eps = 1e-14
1917
+ assert abs((a.args[0] - b.args[0]).subs({x: 1, y: 1})) < eps
1918
+ assert abs((a.args[1] - b.args[1]).subs({x: 1, y: 1})) < eps
1919
+
1920
+ assert (x + 1) % x == 1 % x
1921
+ assert (x + y) % x == y % x
1922
+ assert (x + y + 2) % x == (y + 2) % x
1923
+ assert (a + 3*x + 1) % (2*x) == Mod(a + x + 1, 2*x)
1924
+ assert (12*x + 18*y) % (3*x) == 3*Mod(6*y, x)
1925
+
1926
+ # gcd extraction
1927
+ assert (-3*x) % (-2*y) == -Mod(3*x, 2*y)
1928
+ assert (.6*pi) % (.3*x*pi) == 0.3*pi*Mod(2, x)
1929
+ assert (.6*pi) % (.31*x*pi) == pi*Mod(0.6, 0.31*x)
1930
+ assert (6*pi) % (.3*x*pi) == 0.3*pi*Mod(20, x)
1931
+ assert (6*pi) % (.31*x*pi) == pi*Mod(6, 0.31*x)
1932
+ assert (6*pi) % (.42*x*pi) == pi*Mod(6, 0.42*x)
1933
+ assert (12*x) % (2*y) == 2*Mod(6*x, y)
1934
+ assert (12*x) % (3*5*y) == 3*Mod(4*x, 5*y)
1935
+ assert (12*x) % (15*x*y) == 3*x*Mod(4, 5*y)
1936
+ assert (-2*pi) % (3*pi) == pi
1937
+ assert (2*x + 2) % (x + 1) == 0
1938
+ assert (x*(x + 1)) % (x + 1) == (x + 1)*Mod(x, 1)
1939
+ assert Mod(5.0*x, 0.1*y) == 0.1*Mod(50*x, y)
1940
+ i = Symbol('i', integer=True)
1941
+ assert (3*i*x) % (2*i*y) == i*Mod(3*x, 2*y)
1942
+ assert Mod(4*i, 4) == 0
1943
+
1944
+ # issue 8677
1945
+ n = Symbol('n', integer=True, positive=True)
1946
+ assert factorial(n) % n == 0
1947
+ assert factorial(n + 2) % n == 0
1948
+ assert (factorial(n + 4) % (n + 5)).func is Mod
1949
+
1950
+ # Wilson's theorem
1951
+ assert factorial(18042, evaluate=False) % 18043 == 18042
1952
+ p = Symbol('n', prime=True)
1953
+ assert factorial(p - 1) % p == p - 1
1954
+ assert factorial(p - 1) % -p == -1
1955
+ assert (factorial(3, evaluate=False) % 4).doit() == 2
1956
+ n = Symbol('n', composite=True, odd=True)
1957
+ assert factorial(n - 1) % n == 0
1958
+
1959
+ # symbolic with known parity
1960
+ n = Symbol('n', even=True)
1961
+ assert Mod(n, 2) == 0
1962
+ n = Symbol('n', odd=True)
1963
+ assert Mod(n, 2) == 1
1964
+
1965
+ # issue 10963
1966
+ assert (x**6000%400).args[1] == 400
1967
+
1968
+ #issue 13543
1969
+ assert Mod(Mod(x + 1, 2) + 1, 2) == Mod(x, 2)
1970
+
1971
+ x1 = Symbol('x1', integer=True)
1972
+ assert Mod(Mod(x1 + 2, 4)*(x1 + 4), 4) == Mod(x1*(x1 + 2), 4)
1973
+ assert Mod(Mod(x1 + 2, 4)*4, 4) == 0
1974
+
1975
+ # issue 15493
1976
+ i, j = symbols('i j', integer=True, positive=True)
1977
+ assert Mod(3*i, 2) == Mod(i, 2)
1978
+ assert Mod(8*i/j, 4) == 4*Mod(2*i/j, 1)
1979
+ assert Mod(8*i, 4) == 0
1980
+
1981
+ # rewrite
1982
+ assert Mod(x, y).rewrite(floor) == x - y*floor(x/y)
1983
+ assert ((x - Mod(x, y))/y).rewrite(floor) == floor(x/y)
1984
+
1985
+ # issue 21373
1986
+ from sympy.functions.elementary.hyperbolic import sinh
1987
+ from sympy.functions.elementary.piecewise import Piecewise
1988
+
1989
+ x_r, y_r = symbols('x_r y_r', real=True)
1990
+ assert (Piecewise((x_r, y_r > x_r), (y_r, True)) / z) % 1
1991
+ expr = exp(sinh(Piecewise((x_r, y_r > x_r), (y_r, True)) / z))
1992
+ expr.subs({1: 1.0})
1993
+ sinh(Piecewise((x_r, y_r > x_r), (y_r, True)) * z ** -1.0).is_zero
1994
+
1995
+ # issue 24215
1996
+ from sympy.abc import phi
1997
+ assert Mod(4.0*Mod(phi, 1) , 2) == 2.0*(Mod(2*(Mod(phi, 1)), 1))
1998
+
1999
+
2000
+ def test_Mod_Pow():
2001
+ # modular exponentiation
2002
+ assert isinstance(Mod(Pow(2, 2, evaluate=False), 3), Integer)
2003
+
2004
+ assert Mod(Pow(4, 13, evaluate=False), 497) == Mod(Pow(4, 13), 497)
2005
+ assert Mod(Pow(2, 10000000000, evaluate=False), 3) == 1
2006
+ assert Mod(Pow(32131231232, 9**10**6, evaluate=False),10**12) == \
2007
+ pow(32131231232,9**10**6,10**12)
2008
+ assert Mod(Pow(33284959323, 123**999, evaluate=False),11**13) == \
2009
+ pow(33284959323,123**999,11**13)
2010
+ assert Mod(Pow(78789849597, 333**555, evaluate=False),12**9) == \
2011
+ pow(78789849597,333**555,12**9)
2012
+
2013
+ # modular nested exponentiation
2014
+ expr = Pow(2, 2, evaluate=False)
2015
+ expr = Pow(2, expr, evaluate=False)
2016
+ assert Mod(expr, 3**10) == 16
2017
+ expr = Pow(2, expr, evaluate=False)
2018
+ assert Mod(expr, 3**10) == 6487
2019
+ expr = Pow(2, expr, evaluate=False)
2020
+ assert Mod(expr, 3**10) == 32191
2021
+ expr = Pow(2, expr, evaluate=False)
2022
+ assert Mod(expr, 3**10) == 18016
2023
+ expr = Pow(2, expr, evaluate=False)
2024
+ assert Mod(expr, 3**10) == 5137
2025
+
2026
+ expr = Pow(2, 2, evaluate=False)
2027
+ expr = Pow(expr, 2, evaluate=False)
2028
+ assert Mod(expr, 3**10) == 16
2029
+ expr = Pow(expr, 2, evaluate=False)
2030
+ assert Mod(expr, 3**10) == 256
2031
+ expr = Pow(expr, 2, evaluate=False)
2032
+ assert Mod(expr, 3**10) == 6487
2033
+ expr = Pow(expr, 2, evaluate=False)
2034
+ assert Mod(expr, 3**10) == 38281
2035
+ expr = Pow(expr, 2, evaluate=False)
2036
+ assert Mod(expr, 3**10) == 15928
2037
+
2038
+ expr = Pow(2, 2, evaluate=False)
2039
+ expr = Pow(expr, expr, evaluate=False)
2040
+ assert Mod(expr, 3**10) == 256
2041
+ expr = Pow(expr, expr, evaluate=False)
2042
+ assert Mod(expr, 3**10) == 9229
2043
+ expr = Pow(expr, expr, evaluate=False)
2044
+ assert Mod(expr, 3**10) == 25708
2045
+ expr = Pow(expr, expr, evaluate=False)
2046
+ assert Mod(expr, 3**10) == 26608
2047
+ expr = Pow(expr, expr, evaluate=False)
2048
+ # XXX This used to fail in a nondeterministic way because of overflow
2049
+ # error.
2050
+ assert Mod(expr, 3**10) == 1966
2051
+
2052
+
2053
+ def test_Mod_is_integer():
2054
+ p = Symbol('p', integer=True)
2055
+ q1 = Symbol('q1', integer=True)
2056
+ q2 = Symbol('q2', integer=True, nonzero=True)
2057
+ assert Mod(x, y).is_integer is None
2058
+ assert Mod(p, q1).is_integer is None
2059
+ assert Mod(x, q2).is_integer is None
2060
+ assert Mod(p, q2).is_integer
2061
+
2062
+
2063
+ def test_Mod_is_nonposneg():
2064
+ n = Symbol('n', integer=True)
2065
+ k = Symbol('k', integer=True, positive=True)
2066
+ assert (n%3).is_nonnegative
2067
+ assert Mod(n, -3).is_nonpositive
2068
+ assert Mod(n, k).is_nonnegative
2069
+ assert Mod(n, -k).is_nonpositive
2070
+ assert Mod(k, n).is_nonnegative is None
2071
+
2072
+
2073
+ def test_issue_6001():
2074
+ A = Symbol("A", commutative=False)
2075
+ eq = A + A**2
2076
+ # it doesn't matter whether it's True or False; they should
2077
+ # just all be the same
2078
+ assert (
2079
+ eq.is_commutative ==
2080
+ (eq + 1).is_commutative ==
2081
+ (A + 1).is_commutative)
2082
+
2083
+ B = Symbol("B", commutative=False)
2084
+ # Although commutative terms could cancel we return True
2085
+ # meaning "there are non-commutative symbols; aftersubstitution
2086
+ # that definition can change, e.g. (A*B).subs(B,A**-1) -> 1
2087
+ assert (sqrt(2)*A).is_commutative is False
2088
+ assert (sqrt(2)*A*B).is_commutative is False
2089
+
2090
+
2091
+ def test_polar():
2092
+ from sympy.functions.elementary.complexes import polar_lift
2093
+ p = Symbol('p', polar=True)
2094
+ x = Symbol('x')
2095
+ assert p.is_polar
2096
+ assert x.is_polar is None
2097
+ assert S.One.is_polar is None
2098
+ assert (p**x).is_polar is True
2099
+ assert (x**p).is_polar is None
2100
+ assert ((2*p)**x).is_polar is True
2101
+ assert (2*p).is_polar is True
2102
+ assert (-2*p).is_polar is not True
2103
+ assert (polar_lift(-2)*p).is_polar is True
2104
+
2105
+ q = Symbol('q', polar=True)
2106
+ assert (p*q)**2 == p**2 * q**2
2107
+ assert (2*q)**2 == 4 * q**2
2108
+ assert ((p*q)**x).expand() == p**x * q**x
2109
+
2110
+
2111
+ def test_issue_6040():
2112
+ a, b = Pow(1, 2, evaluate=False), S.One
2113
+ assert a != b
2114
+ assert b != a
2115
+ assert not (a == b)
2116
+ assert not (b == a)
2117
+
2118
+
2119
+ def test_issue_6082():
2120
+ # Comparison is symmetric
2121
+ assert Basic.compare(Max(x, 1), Max(x, 2)) == \
2122
+ - Basic.compare(Max(x, 2), Max(x, 1))
2123
+ # Equal expressions compare equal
2124
+ assert Basic.compare(Max(x, 1), Max(x, 1)) == 0
2125
+ # Basic subtypes (such as Max) compare different than standard types
2126
+ assert Basic.compare(Max(1, x), frozenset((1, x))) != 0
2127
+
2128
+
2129
+ def test_issue_6077():
2130
+ assert x**2.0/x == x**1.0
2131
+ assert x/x**2.0 == x**-1.0
2132
+ assert x*x**2.0 == x**3.0
2133
+ assert x**1.5*x**2.5 == x**4.0
2134
+
2135
+ assert 2**(2.0*x)/2**x == 2**(1.0*x)
2136
+ assert 2**x/2**(2.0*x) == 2**(-1.0*x)
2137
+ assert 2**x*2**(2.0*x) == 2**(3.0*x)
2138
+ assert 2**(1.5*x)*2**(2.5*x) == 2**(4.0*x)
2139
+
2140
+
2141
+ def test_mul_flatten_oo():
2142
+ p = symbols('p', positive=True)
2143
+ n, m = symbols('n,m', negative=True)
2144
+ x_im = symbols('x_im', imaginary=True)
2145
+ assert n*oo is -oo
2146
+ assert n*m*oo is oo
2147
+ assert p*oo is oo
2148
+ assert x_im*oo != I*oo # i could be +/- 3*I -> +/-oo
2149
+
2150
+
2151
+ def test_add_flatten():
2152
+ # see https://github.com/sympy/sympy/issues/2633#issuecomment-29545524
2153
+ a = oo + I*oo
2154
+ b = oo - I*oo
2155
+ assert a + b is nan
2156
+ assert a - b is nan
2157
+ # FIXME: This evaluates as:
2158
+ # >>> 1/a
2159
+ # 0*(oo + oo*I)
2160
+ # which should not simplify to 0. Should be fixed in Pow.eval
2161
+ #assert (1/a).simplify() == (1/b).simplify() == 0
2162
+
2163
+ a = Pow(2, 3, evaluate=False)
2164
+ assert a + a == 16
2165
+
2166
+
2167
+ def test_issue_5160_6087_6089_6090():
2168
+ # issue 6087
2169
+ assert ((-2*x*y**y)**3.2).n(2) == (2**3.2*(-x*y**y)**3.2).n(2)
2170
+ # issue 6089
2171
+ A, B, C = symbols('A,B,C', commutative=False)
2172
+ assert (2.*B*C)**3 == 8.0*(B*C)**3
2173
+ assert (-2.*B*C)**3 == -8.0*(B*C)**3
2174
+ assert (-2*B*C)**2 == 4*(B*C)**2
2175
+ # issue 5160
2176
+ assert sqrt(-1.0*x) == 1.0*sqrt(-x)
2177
+ assert sqrt(1.0*x) == 1.0*sqrt(x)
2178
+ # issue 6090
2179
+ assert (-2*x*y*A*B)**2 == 4*x**2*y**2*(A*B)**2
2180
+
2181
+
2182
+ def test_float_int_round():
2183
+ assert int(float(sqrt(10))) == int(sqrt(10))
2184
+ assert int(pi**1000) % 10 == 2
2185
+ assert int(Float('1.123456789012345678901234567890e20', '')) == \
2186
+ int(112345678901234567890)
2187
+ assert int(Float('1.123456789012345678901234567890e25', '')) == \
2188
+ int(11234567890123456789012345)
2189
+ # decimal forces float so it's not an exact integer ending in 000000
2190
+ assert int(Float('1.123456789012345678901234567890e35', '')) == \
2191
+ 112345678901234567890123456789000192
2192
+ assert int(Float('123456789012345678901234567890e5', '')) == \
2193
+ 12345678901234567890123456789000000
2194
+ assert Integer(Float('1.123456789012345678901234567890e20', '')) == \
2195
+ 112345678901234567890
2196
+ assert Integer(Float('1.123456789012345678901234567890e25', '')) == \
2197
+ 11234567890123456789012345
2198
+ # decimal forces float so it's not an exact integer ending in 000000
2199
+ assert Integer(Float('1.123456789012345678901234567890e35', '')) == \
2200
+ 112345678901234567890123456789000192
2201
+ assert Integer(Float('123456789012345678901234567890e5', '')) == \
2202
+ 12345678901234567890123456789000000
2203
+ assert same_and_same_prec(Float('123000e-2',''), Float('1230.00', ''))
2204
+ assert same_and_same_prec(Float('123000e2',''), Float('12300000', ''))
2205
+
2206
+ assert int(1 + Rational('.9999999999999999999999999')) == 1
2207
+ assert int(pi/1e20) == 0
2208
+ assert int(1 + pi/1e20) == 1
2209
+ assert int(Add(1.2, -2, evaluate=False)) == int(1.2 - 2)
2210
+ assert int(Add(1.2, +2, evaluate=False)) == int(1.2 + 2)
2211
+ assert int(Add(1 + Float('.99999999999999999', ''), evaluate=False)) == 1
2212
+ raises(TypeError, lambda: float(x))
2213
+ raises(TypeError, lambda: float(sqrt(-1)))
2214
+
2215
+ assert int(12345678901234567890 + cos(1)**2 + sin(1)**2) == \
2216
+ 12345678901234567891
2217
+
2218
+
2219
+ def test_issue_6611a():
2220
+ assert Mul.flatten([3**Rational(1, 3),
2221
+ Pow(-Rational(1, 9), Rational(2, 3), evaluate=False)]) == \
2222
+ ([Rational(1, 3), (-1)**Rational(2, 3)], [], None)
2223
+
2224
+
2225
+ def test_denest_add_mul():
2226
+ # when working with evaluated expressions make sure they denest
2227
+ eq = x + 1
2228
+ eq = Add(eq, 2, evaluate=False)
2229
+ eq = Add(eq, 2, evaluate=False)
2230
+ assert Add(*eq.args) == x + 5
2231
+ eq = x*2
2232
+ eq = Mul(eq, 2, evaluate=False)
2233
+ eq = Mul(eq, 2, evaluate=False)
2234
+ assert Mul(*eq.args) == 8*x
2235
+ # but don't let them denest unnecessarily
2236
+ eq = Mul(-2, x - 2, evaluate=False)
2237
+ assert 2*eq == Mul(-4, x - 2, evaluate=False)
2238
+ assert -eq == Mul(2, x - 2, evaluate=False)
2239
+
2240
+
2241
+ def test_mul_coeff():
2242
+ # It is important that all Numbers be removed from the seq;
2243
+ # This can be tricky when powers combine to produce those numbers
2244
+ p = exp(I*pi/3)
2245
+ assert p**2*x*p*y*p*x*p**2 == x**2*y
2246
+
2247
+
2248
+ def test_mul_zero_detection():
2249
+ nz = Dummy(real=True, zero=False)
2250
+ r = Dummy(extended_real=True)
2251
+ c = Dummy(real=False, complex=True)
2252
+ c2 = Dummy(real=False, complex=True)
2253
+ i = Dummy(imaginary=True)
2254
+ e = nz*r*c
2255
+ assert e.is_imaginary is None
2256
+ assert e.is_extended_real is None
2257
+ e = nz*c
2258
+ assert e.is_imaginary is None
2259
+ assert e.is_extended_real is False
2260
+ e = nz*i*c
2261
+ assert e.is_imaginary is False
2262
+ assert e.is_extended_real is None
2263
+ # check for more than one complex; it is important to use
2264
+ # uniquely named Symbols to ensure that two factors appear
2265
+ # e.g. if the symbols have the same name they just become
2266
+ # a single factor, a power.
2267
+ e = nz*i*c*c2
2268
+ assert e.is_imaginary is None
2269
+ assert e.is_extended_real is None
2270
+
2271
+ # _eval_is_extended_real and _eval_is_zero both employ trapping of the
2272
+ # zero value so args should be tested in both directions and
2273
+ # TO AVOID GETTING THE CACHED RESULT, Dummy MUST BE USED
2274
+
2275
+ # real is unknown
2276
+ def test(z, b, e):
2277
+ if z.is_zero and b.is_finite:
2278
+ assert e.is_extended_real and e.is_zero
2279
+ else:
2280
+ assert e.is_extended_real is None
2281
+ if b.is_finite:
2282
+ if z.is_zero:
2283
+ assert e.is_zero
2284
+ else:
2285
+ assert e.is_zero is None
2286
+ elif b.is_finite is False:
2287
+ if z.is_zero is None:
2288
+ assert e.is_zero is None
2289
+ else:
2290
+ assert e.is_zero is False
2291
+
2292
+
2293
+ for iz, ib in product(*[[True, False, None]]*2):
2294
+ z = Dummy('z', nonzero=iz)
2295
+ b = Dummy('f', finite=ib)
2296
+ e = Mul(z, b, evaluate=False)
2297
+ test(z, b, e)
2298
+ z = Dummy('nz', nonzero=iz)
2299
+ b = Dummy('f', finite=ib)
2300
+ e = Mul(b, z, evaluate=False)
2301
+ test(z, b, e)
2302
+
2303
+ # real is True
2304
+ def test(z, b, e):
2305
+ if z.is_zero and not b.is_finite:
2306
+ assert e.is_extended_real is None
2307
+ else:
2308
+ assert e.is_extended_real is True
2309
+
2310
+ for iz, ib in product(*[[True, False, None]]*2):
2311
+ z = Dummy('z', nonzero=iz, extended_real=True)
2312
+ b = Dummy('b', finite=ib, extended_real=True)
2313
+ e = Mul(z, b, evaluate=False)
2314
+ test(z, b, e)
2315
+ z = Dummy('z', nonzero=iz, extended_real=True)
2316
+ b = Dummy('b', finite=ib, extended_real=True)
2317
+ e = Mul(b, z, evaluate=False)
2318
+ test(z, b, e)
2319
+
2320
+
2321
+ def test_Mul_with_zero_infinite():
2322
+ zer = Dummy(zero=True)
2323
+ inf = Dummy(finite=False)
2324
+
2325
+ e = Mul(zer, inf, evaluate=False)
2326
+ assert e.is_extended_positive is None
2327
+ assert e.is_hermitian is None
2328
+
2329
+ e = Mul(inf, zer, evaluate=False)
2330
+ assert e.is_extended_positive is None
2331
+ assert e.is_hermitian is None
2332
+
2333
+
2334
+ def test_Mul_does_not_cancel_infinities():
2335
+ a, b = symbols('a b')
2336
+ assert ((zoo + 3*a)/(3*a + zoo)) is nan
2337
+ assert ((b - oo)/(b - oo)) is nan
2338
+ # issue 13904
2339
+ expr = (1/(a+b) + 1/(a-b))/(1/(a+b) - 1/(a-b))
2340
+ assert expr.subs(b, a) is nan
2341
+
2342
+
2343
+ def test_Mul_does_not_distribute_infinity():
2344
+ a, b = symbols('a b')
2345
+ assert ((1 + I)*oo).is_Mul
2346
+ assert ((a + b)*(-oo)).is_Mul
2347
+ assert ((a + 1)*zoo).is_Mul
2348
+ assert ((1 + I)*oo).is_finite is False
2349
+ z = (1 + I)*oo
2350
+ assert ((1 - I)*z).expand() is oo
2351
+
2352
+
2353
+ def test_issue_8247_8354():
2354
+ from sympy.functions.elementary.trigonometric import tan
2355
+ z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
2356
+ assert z.is_positive is False # it's 0
2357
+ z = S('''-2**(1/3)*(3*sqrt(93) + 29)**2 - 4*(3*sqrt(93) + 29)**(4/3) +
2358
+ 12*sqrt(93)*(3*sqrt(93) + 29)**(1/3) + 116*(3*sqrt(93) + 29)**(1/3) +
2359
+ 174*2**(1/3)*sqrt(93) + 1678*2**(1/3)''')
2360
+ assert z.is_positive is False # it's 0
2361
+ z = 2*(-3*tan(19*pi/90) + sqrt(3))*cos(11*pi/90)*cos(19*pi/90) - \
2362
+ sqrt(3)*(-3 + 4*cos(19*pi/90)**2)
2363
+ assert z.is_positive is not True # it's zero and it shouldn't hang
2364
+ z = S('''9*(3*sqrt(93) + 29)**(2/3)*((3*sqrt(93) +
2365
+ 29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) - 2) - 2*2**(1/3))**3 +
2366
+ 72*(3*sqrt(93) + 29)**(2/3)*(81*sqrt(93) + 783) + (162*sqrt(93) +
2367
+ 1566)*((3*sqrt(93) + 29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) -
2368
+ 2) - 2*2**(1/3))**2''')
2369
+ assert z.is_positive is False # it's 0 (and a single _mexpand isn't enough)
2370
+
2371
+
2372
+ def test_Add_is_zero():
2373
+ x, y = symbols('x y', zero=True)
2374
+ assert (x + y).is_zero
2375
+
2376
+ # Issue 15873
2377
+ e = -2*I + (1 + I)**2
2378
+ assert e.is_zero is None
2379
+
2380
+
2381
+ def test_issue_14392():
2382
+ assert (sin(zoo)**2).as_real_imag() == (nan, nan)
2383
+
2384
+
2385
+ def test_divmod():
2386
+ assert divmod(x, y) == (x//y, x % y)
2387
+ assert divmod(x, 3) == (x//3, x % 3)
2388
+ assert divmod(3, x) == (3//x, 3 % x)
2389
+
2390
+
2391
+ def test__neg__():
2392
+ assert -(x*y) == -x*y
2393
+ assert -(-x*y) == x*y
2394
+ assert -(1.*x) == -1.*x
2395
+ assert -(-1.*x) == 1.*x
2396
+ assert -(2.*x) == -2.*x
2397
+ assert -(-2.*x) == 2.*x
2398
+ with distribute(False):
2399
+ eq = -(x + y)
2400
+ assert eq.is_Mul and eq.args == (-1, x + y)
2401
+ with evaluate(False):
2402
+ eq = -(x + y)
2403
+ assert eq.is_Mul and eq.args == (-1, x + y)
2404
+
2405
+
2406
+ def test_issue_18507():
2407
+ assert Mul(zoo, zoo, 0) is nan
2408
+
2409
+
2410
+ def test_issue_17130():
2411
+ e = Add(b, -b, I, -I, evaluate=False)
2412
+ assert e.is_zero is None # ideally this would be True
2413
+
2414
+
2415
+ def test_issue_21034():
2416
+ e = -I*log((re(asin(5)) + I*im(asin(5)))/sqrt(re(asin(5))**2 + im(asin(5))**2))/pi
2417
+ assert e.round(2)
2418
+
2419
+
2420
+ def test_issue_22021():
2421
+ from sympy.calculus.accumulationbounds import AccumBounds
2422
+ # these objects are special cases in Mul
2423
+ from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
2424
+ L = TensorIndexType("L")
2425
+ i = tensor_indices("i", L)
2426
+ A, B = tensor_heads("A B", [L])
2427
+ e = A(i) + B(i)
2428
+ assert -e == -1*e
2429
+ e = zoo + x
2430
+ assert -e == -1*e
2431
+ a = AccumBounds(1, 2)
2432
+ e = a + x
2433
+ assert -e == -1*e
2434
+ for args in permutations((zoo, a, x)):
2435
+ e = Add(*args, evaluate=False)
2436
+ assert -e == -1*e
2437
+ assert 2*Add(1, x, x, evaluate=False) == 4*x + 2
2438
+
2439
+
2440
+ def test_issue_22244():
2441
+ assert -(zoo*x) == zoo*x
2442
+
2443
+
2444
+ def test_issue_22453():
2445
+ from sympy.utilities.iterables import cartes
2446
+ e = Symbol('e', extended_positive=True)
2447
+ for a, b in cartes(*[[oo, -oo, 3]]*2):
2448
+ if a == b == 3:
2449
+ continue
2450
+ i = a + I*b
2451
+ assert i**(1 + e) is S.ComplexInfinity
2452
+ assert i**-e is S.Zero
2453
+ assert unchanged(Pow, i, e)
2454
+ assert 1/(oo + I*oo) is S.Zero
2455
+ r, i = [Dummy(infinite=True, extended_real=True) for _ in range(2)]
2456
+ assert 1/(r + I*i) is S.Zero
2457
+ assert 1/(3 + I*i) is S.Zero
2458
+ assert 1/(r + I*3) is S.Zero
2459
+
2460
+
2461
+ def test_issue_22613():
2462
+ assert (0**(x - 2)).as_content_primitive() == (1, 0**(x - 2))
2463
+ assert (0**(x + 2)).as_content_primitive() == (1, 0**(x + 2))
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_assumptions.py ADDED
@@ -0,0 +1,1335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.mod import Mod
2
+ from sympy.core.numbers import (I, oo, pi)
3
+ from sympy.functions.combinatorial.factorials import factorial
4
+ from sympy.functions.elementary.exponential import (exp, log)
5
+ from sympy.functions.elementary.miscellaneous import sqrt
6
+ from sympy.functions.elementary.trigonometric import (asin, sin)
7
+ from sympy.simplify.simplify import simplify
8
+ from sympy.core import Symbol, S, Rational, Integer, Dummy, Wild, Pow
9
+ from sympy.core.assumptions import (assumptions, check_assumptions,
10
+ failing_assumptions, common_assumptions, _generate_assumption_rules,
11
+ _load_pre_generated_assumption_rules)
12
+ from sympy.core.facts import InconsistentAssumptions
13
+ from sympy.core.random import seed
14
+ from sympy.combinatorics import Permutation
15
+ from sympy.combinatorics.perm_groups import PermutationGroup
16
+
17
+ from sympy.testing.pytest import raises, XFAIL
18
+
19
+
20
+ def test_symbol_unset():
21
+ x = Symbol('x', real=True, integer=True)
22
+ assert x.is_real is True
23
+ assert x.is_integer is True
24
+ assert x.is_imaginary is False
25
+ assert x.is_noninteger is False
26
+ assert x.is_number is False
27
+
28
+
29
+ def test_zero():
30
+ z = Integer(0)
31
+ assert z.is_commutative is True
32
+ assert z.is_integer is True
33
+ assert z.is_rational is True
34
+ assert z.is_algebraic is True
35
+ assert z.is_transcendental is False
36
+ assert z.is_real is True
37
+ assert z.is_complex is True
38
+ assert z.is_noninteger is False
39
+ assert z.is_irrational is False
40
+ assert z.is_imaginary is False
41
+ assert z.is_positive is False
42
+ assert z.is_negative is False
43
+ assert z.is_nonpositive is True
44
+ assert z.is_nonnegative is True
45
+ assert z.is_even is True
46
+ assert z.is_odd is False
47
+ assert z.is_finite is True
48
+ assert z.is_infinite is False
49
+ assert z.is_comparable is True
50
+ assert z.is_prime is False
51
+ assert z.is_composite is False
52
+ assert z.is_number is True
53
+
54
+
55
+ def test_one():
56
+ z = Integer(1)
57
+ assert z.is_commutative is True
58
+ assert z.is_integer is True
59
+ assert z.is_rational is True
60
+ assert z.is_algebraic is True
61
+ assert z.is_transcendental is False
62
+ assert z.is_real is True
63
+ assert z.is_complex is True
64
+ assert z.is_noninteger is False
65
+ assert z.is_irrational is False
66
+ assert z.is_imaginary is False
67
+ assert z.is_positive is True
68
+ assert z.is_negative is False
69
+ assert z.is_nonpositive is False
70
+ assert z.is_nonnegative is True
71
+ assert z.is_even is False
72
+ assert z.is_odd is True
73
+ assert z.is_finite is True
74
+ assert z.is_infinite is False
75
+ assert z.is_comparable is True
76
+ assert z.is_prime is False
77
+ assert z.is_number is True
78
+ assert z.is_composite is False # issue 8807
79
+
80
+
81
+ def test_negativeone():
82
+ z = Integer(-1)
83
+ assert z.is_commutative is True
84
+ assert z.is_integer is True
85
+ assert z.is_rational is True
86
+ assert z.is_algebraic is True
87
+ assert z.is_transcendental is False
88
+ assert z.is_real is True
89
+ assert z.is_complex is True
90
+ assert z.is_noninteger is False
91
+ assert z.is_irrational is False
92
+ assert z.is_imaginary is False
93
+ assert z.is_positive is False
94
+ assert z.is_negative is True
95
+ assert z.is_nonpositive is True
96
+ assert z.is_nonnegative is False
97
+ assert z.is_even is False
98
+ assert z.is_odd is True
99
+ assert z.is_finite is True
100
+ assert z.is_infinite is False
101
+ assert z.is_comparable is True
102
+ assert z.is_prime is False
103
+ assert z.is_composite is False
104
+ assert z.is_number is True
105
+
106
+
107
+ def test_infinity():
108
+ oo = S.Infinity
109
+
110
+ assert oo.is_commutative is True
111
+ assert oo.is_integer is False
112
+ assert oo.is_rational is False
113
+ assert oo.is_algebraic is False
114
+ assert oo.is_transcendental is False
115
+ assert oo.is_extended_real is True
116
+ assert oo.is_real is False
117
+ assert oo.is_complex is False
118
+ assert oo.is_noninteger is True
119
+ assert oo.is_irrational is False
120
+ assert oo.is_imaginary is False
121
+ assert oo.is_nonzero is False
122
+ assert oo.is_positive is False
123
+ assert oo.is_negative is False
124
+ assert oo.is_nonpositive is False
125
+ assert oo.is_nonnegative is False
126
+ assert oo.is_extended_nonzero is True
127
+ assert oo.is_extended_positive is True
128
+ assert oo.is_extended_negative is False
129
+ assert oo.is_extended_nonpositive is False
130
+ assert oo.is_extended_nonnegative is True
131
+ assert oo.is_even is False
132
+ assert oo.is_odd is False
133
+ assert oo.is_finite is False
134
+ assert oo.is_infinite is True
135
+ assert oo.is_comparable is True
136
+ assert oo.is_prime is False
137
+ assert oo.is_composite is False
138
+ assert oo.is_number is True
139
+
140
+
141
+ def test_neg_infinity():
142
+ mm = S.NegativeInfinity
143
+
144
+ assert mm.is_commutative is True
145
+ assert mm.is_integer is False
146
+ assert mm.is_rational is False
147
+ assert mm.is_algebraic is False
148
+ assert mm.is_transcendental is False
149
+ assert mm.is_extended_real is True
150
+ assert mm.is_real is False
151
+ assert mm.is_complex is False
152
+ assert mm.is_noninteger is True
153
+ assert mm.is_irrational is False
154
+ assert mm.is_imaginary is False
155
+ assert mm.is_nonzero is False
156
+ assert mm.is_positive is False
157
+ assert mm.is_negative is False
158
+ assert mm.is_nonpositive is False
159
+ assert mm.is_nonnegative is False
160
+ assert mm.is_extended_nonzero is True
161
+ assert mm.is_extended_positive is False
162
+ assert mm.is_extended_negative is True
163
+ assert mm.is_extended_nonpositive is True
164
+ assert mm.is_extended_nonnegative is False
165
+ assert mm.is_even is False
166
+ assert mm.is_odd is False
167
+ assert mm.is_finite is False
168
+ assert mm.is_infinite is True
169
+ assert mm.is_comparable is True
170
+ assert mm.is_prime is False
171
+ assert mm.is_composite is False
172
+ assert mm.is_number is True
173
+
174
+
175
+ def test_zoo():
176
+ zoo = S.ComplexInfinity
177
+ assert zoo.is_complex is False
178
+ assert zoo.is_real is False
179
+ assert zoo.is_prime is False
180
+
181
+
182
+ def test_nan():
183
+ nan = S.NaN
184
+
185
+ assert nan.is_commutative is True
186
+ assert nan.is_integer is None
187
+ assert nan.is_rational is None
188
+ assert nan.is_algebraic is None
189
+ assert nan.is_transcendental is None
190
+ assert nan.is_real is None
191
+ assert nan.is_complex is None
192
+ assert nan.is_noninteger is None
193
+ assert nan.is_irrational is None
194
+ assert nan.is_imaginary is None
195
+ assert nan.is_positive is None
196
+ assert nan.is_negative is None
197
+ assert nan.is_nonpositive is None
198
+ assert nan.is_nonnegative is None
199
+ assert nan.is_even is None
200
+ assert nan.is_odd is None
201
+ assert nan.is_finite is None
202
+ assert nan.is_infinite is None
203
+ assert nan.is_comparable is False
204
+ assert nan.is_prime is None
205
+ assert nan.is_composite is None
206
+ assert nan.is_number is True
207
+
208
+
209
+ def test_pos_rational():
210
+ r = Rational(3, 4)
211
+ assert r.is_commutative is True
212
+ assert r.is_integer is False
213
+ assert r.is_rational is True
214
+ assert r.is_algebraic is True
215
+ assert r.is_transcendental is False
216
+ assert r.is_real is True
217
+ assert r.is_complex is True
218
+ assert r.is_noninteger is True
219
+ assert r.is_irrational is False
220
+ assert r.is_imaginary is False
221
+ assert r.is_positive is True
222
+ assert r.is_negative is False
223
+ assert r.is_nonpositive is False
224
+ assert r.is_nonnegative is True
225
+ assert r.is_even is False
226
+ assert r.is_odd is False
227
+ assert r.is_finite is True
228
+ assert r.is_infinite is False
229
+ assert r.is_comparable is True
230
+ assert r.is_prime is False
231
+ assert r.is_composite is False
232
+
233
+ r = Rational(1, 4)
234
+ assert r.is_nonpositive is False
235
+ assert r.is_positive is True
236
+ assert r.is_negative is False
237
+ assert r.is_nonnegative is True
238
+ r = Rational(5, 4)
239
+ assert r.is_negative is False
240
+ assert r.is_positive is True
241
+ assert r.is_nonpositive is False
242
+ assert r.is_nonnegative is True
243
+ r = Rational(5, 3)
244
+ assert r.is_nonnegative is True
245
+ assert r.is_positive is True
246
+ assert r.is_negative is False
247
+ assert r.is_nonpositive is False
248
+
249
+
250
+ def test_neg_rational():
251
+ r = Rational(-3, 4)
252
+ assert r.is_positive is False
253
+ assert r.is_nonpositive is True
254
+ assert r.is_negative is True
255
+ assert r.is_nonnegative is False
256
+ r = Rational(-1, 4)
257
+ assert r.is_nonpositive is True
258
+ assert r.is_positive is False
259
+ assert r.is_negative is True
260
+ assert r.is_nonnegative is False
261
+ r = Rational(-5, 4)
262
+ assert r.is_negative is True
263
+ assert r.is_positive is False
264
+ assert r.is_nonpositive is True
265
+ assert r.is_nonnegative is False
266
+ r = Rational(-5, 3)
267
+ assert r.is_nonnegative is False
268
+ assert r.is_positive is False
269
+ assert r.is_negative is True
270
+ assert r.is_nonpositive is True
271
+
272
+
273
+ def test_pi():
274
+ z = S.Pi
275
+ assert z.is_commutative is True
276
+ assert z.is_integer is False
277
+ assert z.is_rational is False
278
+ assert z.is_algebraic is False
279
+ assert z.is_transcendental is True
280
+ assert z.is_real is True
281
+ assert z.is_complex is True
282
+ assert z.is_noninteger is True
283
+ assert z.is_irrational is True
284
+ assert z.is_imaginary is False
285
+ assert z.is_positive is True
286
+ assert z.is_negative is False
287
+ assert z.is_nonpositive is False
288
+ assert z.is_nonnegative is True
289
+ assert z.is_even is False
290
+ assert z.is_odd is False
291
+ assert z.is_finite is True
292
+ assert z.is_infinite is False
293
+ assert z.is_comparable is True
294
+ assert z.is_prime is False
295
+ assert z.is_composite is False
296
+
297
+
298
+ def test_E():
299
+ z = S.Exp1
300
+ assert z.is_commutative is True
301
+ assert z.is_integer is False
302
+ assert z.is_rational is False
303
+ assert z.is_algebraic is False
304
+ assert z.is_transcendental is True
305
+ assert z.is_real is True
306
+ assert z.is_complex is True
307
+ assert z.is_noninteger is True
308
+ assert z.is_irrational is True
309
+ assert z.is_imaginary is False
310
+ assert z.is_positive is True
311
+ assert z.is_negative is False
312
+ assert z.is_nonpositive is False
313
+ assert z.is_nonnegative is True
314
+ assert z.is_even is False
315
+ assert z.is_odd is False
316
+ assert z.is_finite is True
317
+ assert z.is_infinite is False
318
+ assert z.is_comparable is True
319
+ assert z.is_prime is False
320
+ assert z.is_composite is False
321
+
322
+
323
+ def test_I():
324
+ z = S.ImaginaryUnit
325
+ assert z.is_commutative is True
326
+ assert z.is_integer is False
327
+ assert z.is_rational is False
328
+ assert z.is_algebraic is True
329
+ assert z.is_transcendental is False
330
+ assert z.is_real is False
331
+ assert z.is_complex is True
332
+ assert z.is_noninteger is False
333
+ assert z.is_irrational is False
334
+ assert z.is_imaginary is True
335
+ assert z.is_positive is False
336
+ assert z.is_negative is False
337
+ assert z.is_nonpositive is False
338
+ assert z.is_nonnegative is False
339
+ assert z.is_even is False
340
+ assert z.is_odd is False
341
+ assert z.is_finite is True
342
+ assert z.is_infinite is False
343
+ assert z.is_comparable is False
344
+ assert z.is_prime is False
345
+ assert z.is_composite is False
346
+
347
+
348
+ def test_symbol_real_false():
349
+ # issue 3848
350
+ a = Symbol('a', real=False)
351
+
352
+ assert a.is_real is False
353
+ assert a.is_integer is False
354
+ assert a.is_zero is False
355
+
356
+ assert a.is_negative is False
357
+ assert a.is_positive is False
358
+ assert a.is_nonnegative is False
359
+ assert a.is_nonpositive is False
360
+ assert a.is_nonzero is False
361
+
362
+ assert a.is_extended_negative is None
363
+ assert a.is_extended_positive is None
364
+ assert a.is_extended_nonnegative is None
365
+ assert a.is_extended_nonpositive is None
366
+ assert a.is_extended_nonzero is None
367
+
368
+
369
+ def test_symbol_extended_real_false():
370
+ # issue 3848
371
+ a = Symbol('a', extended_real=False)
372
+
373
+ assert a.is_real is False
374
+ assert a.is_integer is False
375
+ assert a.is_zero is False
376
+
377
+ assert a.is_negative is False
378
+ assert a.is_positive is False
379
+ assert a.is_nonnegative is False
380
+ assert a.is_nonpositive is False
381
+ assert a.is_nonzero is False
382
+
383
+ assert a.is_extended_negative is False
384
+ assert a.is_extended_positive is False
385
+ assert a.is_extended_nonnegative is False
386
+ assert a.is_extended_nonpositive is False
387
+ assert a.is_extended_nonzero is False
388
+
389
+
390
+ def test_symbol_imaginary():
391
+ a = Symbol('a', imaginary=True)
392
+
393
+ assert a.is_real is False
394
+ assert a.is_integer is False
395
+ assert a.is_negative is False
396
+ assert a.is_positive is False
397
+ assert a.is_nonnegative is False
398
+ assert a.is_nonpositive is False
399
+ assert a.is_zero is False
400
+ assert a.is_nonzero is False # since nonzero -> real
401
+
402
+
403
+ def test_symbol_zero():
404
+ x = Symbol('x', zero=True)
405
+ assert x.is_positive is False
406
+ assert x.is_nonpositive
407
+ assert x.is_negative is False
408
+ assert x.is_nonnegative
409
+ assert x.is_zero is True
410
+ # TODO Change to x.is_nonzero is None
411
+ # See https://github.com/sympy/sympy/pull/9583
412
+ assert x.is_nonzero is False
413
+ assert x.is_finite is True
414
+
415
+
416
+ def test_symbol_positive():
417
+ x = Symbol('x', positive=True)
418
+ assert x.is_positive is True
419
+ assert x.is_nonpositive is False
420
+ assert x.is_negative is False
421
+ assert x.is_nonnegative is True
422
+ assert x.is_zero is False
423
+ assert x.is_nonzero is True
424
+
425
+
426
+ def test_neg_symbol_positive():
427
+ x = -Symbol('x', positive=True)
428
+ assert x.is_positive is False
429
+ assert x.is_nonpositive is True
430
+ assert x.is_negative is True
431
+ assert x.is_nonnegative is False
432
+ assert x.is_zero is False
433
+ assert x.is_nonzero is True
434
+
435
+
436
+ def test_symbol_nonpositive():
437
+ x = Symbol('x', nonpositive=True)
438
+ assert x.is_positive is False
439
+ assert x.is_nonpositive is True
440
+ assert x.is_negative is None
441
+ assert x.is_nonnegative is None
442
+ assert x.is_zero is None
443
+ assert x.is_nonzero is None
444
+
445
+
446
+ def test_neg_symbol_nonpositive():
447
+ x = -Symbol('x', nonpositive=True)
448
+ assert x.is_positive is None
449
+ assert x.is_nonpositive is None
450
+ assert x.is_negative is False
451
+ assert x.is_nonnegative is True
452
+ assert x.is_zero is None
453
+ assert x.is_nonzero is None
454
+
455
+
456
+ def test_symbol_falsepositive():
457
+ x = Symbol('x', positive=False)
458
+ assert x.is_positive is False
459
+ assert x.is_nonpositive is None
460
+ assert x.is_negative is None
461
+ assert x.is_nonnegative is None
462
+ assert x.is_zero is None
463
+ assert x.is_nonzero is None
464
+
465
+
466
+ def test_symbol_falsepositive_mul():
467
+ # To test pull request 9379
468
+ # Explicit handling of arg.is_positive=False was added to Mul._eval_is_positive
469
+ x = 2*Symbol('x', positive=False)
470
+ assert x.is_positive is False # This was None before
471
+ assert x.is_nonpositive is None
472
+ assert x.is_negative is None
473
+ assert x.is_nonnegative is None
474
+ assert x.is_zero is None
475
+ assert x.is_nonzero is None
476
+
477
+
478
+ @XFAIL
479
+ def test_symbol_infinitereal_mul():
480
+ ix = Symbol('ix', infinite=True, extended_real=True)
481
+ assert (-ix).is_extended_positive is None
482
+
483
+
484
+ def test_neg_symbol_falsepositive():
485
+ x = -Symbol('x', positive=False)
486
+ assert x.is_positive is None
487
+ assert x.is_nonpositive is None
488
+ assert x.is_negative is False
489
+ assert x.is_nonnegative is None
490
+ assert x.is_zero is None
491
+ assert x.is_nonzero is None
492
+
493
+
494
+ def test_neg_symbol_falsenegative():
495
+ # To test pull request 9379
496
+ # Explicit handling of arg.is_negative=False was added to Mul._eval_is_positive
497
+ x = -Symbol('x', negative=False)
498
+ assert x.is_positive is False # This was None before
499
+ assert x.is_nonpositive is None
500
+ assert x.is_negative is None
501
+ assert x.is_nonnegative is None
502
+ assert x.is_zero is None
503
+ assert x.is_nonzero is None
504
+
505
+
506
+ def test_symbol_falsepositive_real():
507
+ x = Symbol('x', positive=False, real=True)
508
+ assert x.is_positive is False
509
+ assert x.is_nonpositive is True
510
+ assert x.is_negative is None
511
+ assert x.is_nonnegative is None
512
+ assert x.is_zero is None
513
+ assert x.is_nonzero is None
514
+
515
+
516
+ def test_neg_symbol_falsepositive_real():
517
+ x = -Symbol('x', positive=False, real=True)
518
+ assert x.is_positive is None
519
+ assert x.is_nonpositive is None
520
+ assert x.is_negative is False
521
+ assert x.is_nonnegative is True
522
+ assert x.is_zero is None
523
+ assert x.is_nonzero is None
524
+
525
+
526
+ def test_symbol_falsenonnegative():
527
+ x = Symbol('x', nonnegative=False)
528
+ assert x.is_positive is False
529
+ assert x.is_nonpositive is None
530
+ assert x.is_negative is None
531
+ assert x.is_nonnegative is False
532
+ assert x.is_zero is False
533
+ assert x.is_nonzero is None
534
+
535
+
536
+ @XFAIL
537
+ def test_neg_symbol_falsenonnegative():
538
+ x = -Symbol('x', nonnegative=False)
539
+ assert x.is_positive is None
540
+ assert x.is_nonpositive is False # this currently returns None
541
+ assert x.is_negative is False # this currently returns None
542
+ assert x.is_nonnegative is None
543
+ assert x.is_zero is False # this currently returns None
544
+ assert x.is_nonzero is True # this currently returns None
545
+
546
+
547
+ def test_symbol_falsenonnegative_real():
548
+ x = Symbol('x', nonnegative=False, real=True)
549
+ assert x.is_positive is False
550
+ assert x.is_nonpositive is True
551
+ assert x.is_negative is True
552
+ assert x.is_nonnegative is False
553
+ assert x.is_zero is False
554
+ assert x.is_nonzero is True
555
+
556
+
557
+ def test_neg_symbol_falsenonnegative_real():
558
+ x = -Symbol('x', nonnegative=False, real=True)
559
+ assert x.is_positive is True
560
+ assert x.is_nonpositive is False
561
+ assert x.is_negative is False
562
+ assert x.is_nonnegative is True
563
+ assert x.is_zero is False
564
+ assert x.is_nonzero is True
565
+
566
+
567
+ def test_prime():
568
+ assert S.NegativeOne.is_prime is False
569
+ assert S(-2).is_prime is False
570
+ assert S(-4).is_prime is False
571
+ assert S.Zero.is_prime is False
572
+ assert S.One.is_prime is False
573
+ assert S(2).is_prime is True
574
+ assert S(17).is_prime is True
575
+ assert S(4).is_prime is False
576
+
577
+
578
+ def test_composite():
579
+ assert S.NegativeOne.is_composite is False
580
+ assert S(-2).is_composite is False
581
+ assert S(-4).is_composite is False
582
+ assert S.Zero.is_composite is False
583
+ assert S(2).is_composite is False
584
+ assert S(17).is_composite is False
585
+ assert S(4).is_composite is True
586
+ x = Dummy(integer=True, positive=True, prime=False)
587
+ assert x.is_composite is None # x could be 1
588
+ assert (x + 1).is_composite is None
589
+ x = Dummy(positive=True, even=True, prime=False)
590
+ assert x.is_integer is True
591
+ assert x.is_composite is True
592
+
593
+
594
+ def test_prime_symbol():
595
+ x = Symbol('x', prime=True)
596
+ assert x.is_prime is True
597
+ assert x.is_integer is True
598
+ assert x.is_positive is True
599
+ assert x.is_negative is False
600
+ assert x.is_nonpositive is False
601
+ assert x.is_nonnegative is True
602
+
603
+ x = Symbol('x', prime=False)
604
+ assert x.is_prime is False
605
+ assert x.is_integer is None
606
+ assert x.is_positive is None
607
+ assert x.is_negative is None
608
+ assert x.is_nonpositive is None
609
+ assert x.is_nonnegative is None
610
+
611
+
612
+ def test_symbol_noncommutative():
613
+ x = Symbol('x', commutative=True)
614
+ assert x.is_complex is None
615
+
616
+ x = Symbol('x', commutative=False)
617
+ assert x.is_integer is False
618
+ assert x.is_rational is False
619
+ assert x.is_algebraic is False
620
+ assert x.is_irrational is False
621
+ assert x.is_real is False
622
+ assert x.is_complex is False
623
+
624
+
625
+ def test_other_symbol():
626
+ x = Symbol('x', integer=True)
627
+ assert x.is_integer is True
628
+ assert x.is_real is True
629
+ assert x.is_finite is True
630
+
631
+ x = Symbol('x', integer=True, nonnegative=True)
632
+ assert x.is_integer is True
633
+ assert x.is_nonnegative is True
634
+ assert x.is_negative is False
635
+ assert x.is_positive is None
636
+ assert x.is_finite is True
637
+
638
+ x = Symbol('x', integer=True, nonpositive=True)
639
+ assert x.is_integer is True
640
+ assert x.is_nonpositive is True
641
+ assert x.is_positive is False
642
+ assert x.is_negative is None
643
+ assert x.is_finite is True
644
+
645
+ x = Symbol('x', odd=True)
646
+ assert x.is_odd is True
647
+ assert x.is_even is False
648
+ assert x.is_integer is True
649
+ assert x.is_finite is True
650
+
651
+ x = Symbol('x', odd=False)
652
+ assert x.is_odd is False
653
+ assert x.is_even is None
654
+ assert x.is_integer is None
655
+ assert x.is_finite is None
656
+
657
+ x = Symbol('x', even=True)
658
+ assert x.is_even is True
659
+ assert x.is_odd is False
660
+ assert x.is_integer is True
661
+ assert x.is_finite is True
662
+
663
+ x = Symbol('x', even=False)
664
+ assert x.is_even is False
665
+ assert x.is_odd is None
666
+ assert x.is_integer is None
667
+ assert x.is_finite is None
668
+
669
+ x = Symbol('x', integer=True, nonnegative=True)
670
+ assert x.is_integer is True
671
+ assert x.is_nonnegative is True
672
+ assert x.is_finite is True
673
+
674
+ x = Symbol('x', integer=True, nonpositive=True)
675
+ assert x.is_integer is True
676
+ assert x.is_nonpositive is True
677
+ assert x.is_finite is True
678
+
679
+ x = Symbol('x', rational=True)
680
+ assert x.is_real is True
681
+ assert x.is_finite is True
682
+
683
+ x = Symbol('x', rational=False)
684
+ assert x.is_real is None
685
+ assert x.is_finite is None
686
+
687
+ x = Symbol('x', irrational=True)
688
+ assert x.is_real is True
689
+ assert x.is_finite is True
690
+
691
+ x = Symbol('x', irrational=False)
692
+ assert x.is_real is None
693
+ assert x.is_finite is None
694
+
695
+ with raises(AttributeError):
696
+ x.is_real = False
697
+
698
+ x = Symbol('x', algebraic=True)
699
+ assert x.is_transcendental is False
700
+ x = Symbol('x', transcendental=True)
701
+ assert x.is_algebraic is False
702
+ assert x.is_rational is False
703
+ assert x.is_integer is False
704
+
705
+
706
+ def test_evaluate_false():
707
+ # Previously this failed because the assumptions query would make new
708
+ # expressions and some of the evaluation logic would fail under
709
+ # evaluate(False).
710
+ from sympy.core.parameters import evaluate
711
+ from sympy.abc import x, h
712
+ f = 2**x**7
713
+ with evaluate(False):
714
+ fh = f.xreplace({x: x+h})
715
+ assert fh.exp.is_rational is None
716
+
717
+
718
+ def test_issue_3825():
719
+ """catch: hash instability"""
720
+ x = Symbol("x")
721
+ y = Symbol("y")
722
+ a1 = x + y
723
+ a2 = y + x
724
+ a2.is_comparable
725
+
726
+ h1 = hash(a1)
727
+ h2 = hash(a2)
728
+ assert h1 == h2
729
+
730
+
731
+ def test_issue_4822():
732
+ z = (-1)**Rational(1, 3)*(1 - I*sqrt(3))
733
+ assert z.is_real in [True, None]
734
+
735
+
736
+ def test_hash_vs_typeinfo():
737
+ """seemingly different typeinfo, but in fact equal"""
738
+
739
+ # the following two are semantically equal
740
+ x1 = Symbol('x', even=True)
741
+ x2 = Symbol('x', integer=True, odd=False)
742
+
743
+ assert hash(x1) == hash(x2)
744
+ assert x1 == x2
745
+
746
+
747
+ def test_hash_vs_typeinfo_2():
748
+ """different typeinfo should mean !eq"""
749
+ # the following two are semantically different
750
+ x = Symbol('x')
751
+ x1 = Symbol('x', even=True)
752
+
753
+ assert x != x1
754
+ assert hash(x) != hash(x1) # This might fail with very low probability
755
+
756
+
757
+ def test_hash_vs_eq():
758
+ """catch: different hash for equal objects"""
759
+ a = 1 + S.Pi # important: do not fold it into a Number instance
760
+ ha = hash(a) # it should be Add/Mul/... to trigger the bug
761
+
762
+ a.is_positive # this uses .evalf() and deduces it is positive
763
+ assert a.is_positive is True
764
+
765
+ # be sure that hash stayed the same
766
+ assert ha == hash(a)
767
+
768
+ # now b should be the same expression
769
+ b = a.expand(trig=True)
770
+ hb = hash(b)
771
+
772
+ assert a == b
773
+ assert ha == hb
774
+
775
+
776
+ def test_Add_is_pos_neg():
777
+ # these cover lines not covered by the rest of tests in core
778
+ n = Symbol('n', extended_negative=True, infinite=True)
779
+ nn = Symbol('n', extended_nonnegative=True, infinite=True)
780
+ np = Symbol('n', extended_nonpositive=True, infinite=True)
781
+ p = Symbol('p', extended_positive=True, infinite=True)
782
+ r = Dummy(extended_real=True, finite=False)
783
+ x = Symbol('x')
784
+ xf = Symbol('xf', finite=True)
785
+ assert (n + p).is_extended_positive is None
786
+ assert (n + x).is_extended_positive is None
787
+ assert (p + x).is_extended_positive is None
788
+ assert (n + p).is_extended_negative is None
789
+ assert (n + x).is_extended_negative is None
790
+ assert (p + x).is_extended_negative is None
791
+
792
+ assert (n + xf).is_extended_positive is False
793
+ assert (p + xf).is_extended_positive is True
794
+ assert (n + xf).is_extended_negative is True
795
+ assert (p + xf).is_extended_negative is False
796
+
797
+ assert (x - S.Infinity).is_extended_negative is None # issue 7798
798
+ # issue 8046, 16.2
799
+ assert (p + nn).is_extended_positive
800
+ assert (n + np).is_extended_negative
801
+ assert (p + r).is_extended_positive is None
802
+
803
+
804
+ def test_Add_is_imaginary():
805
+ nn = Dummy(nonnegative=True)
806
+ assert (I*nn + I).is_imaginary # issue 8046, 17
807
+
808
+
809
+ def test_Add_is_algebraic():
810
+ a = Symbol('a', algebraic=True)
811
+ b = Symbol('a', algebraic=True)
812
+ na = Symbol('na', algebraic=False)
813
+ nb = Symbol('nb', algebraic=False)
814
+ x = Symbol('x')
815
+ assert (a + b).is_algebraic
816
+ assert (na + nb).is_algebraic is None
817
+ assert (a + na).is_algebraic is False
818
+ assert (a + x).is_algebraic is None
819
+ assert (na + x).is_algebraic is None
820
+
821
+
822
+ def test_Mul_is_algebraic():
823
+ a = Symbol('a', algebraic=True)
824
+ b = Symbol('b', algebraic=True)
825
+ na = Symbol('na', algebraic=False)
826
+ an = Symbol('an', algebraic=True, nonzero=True)
827
+ nb = Symbol('nb', algebraic=False)
828
+ x = Symbol('x')
829
+ assert (a*b).is_algebraic is True
830
+ assert (na*nb).is_algebraic is None
831
+ assert (a*na).is_algebraic is None
832
+ assert (an*na).is_algebraic is False
833
+ assert (a*x).is_algebraic is None
834
+ assert (na*x).is_algebraic is None
835
+
836
+
837
+ def test_Pow_is_algebraic():
838
+ e = Symbol('e', algebraic=True)
839
+
840
+ assert Pow(1, e, evaluate=False).is_algebraic
841
+ assert Pow(0, e, evaluate=False).is_algebraic
842
+
843
+ a = Symbol('a', algebraic=True)
844
+ azf = Symbol('azf', algebraic=True, zero=False)
845
+ na = Symbol('na', algebraic=False)
846
+ ia = Symbol('ia', algebraic=True, irrational=True)
847
+ ib = Symbol('ib', algebraic=True, irrational=True)
848
+ r = Symbol('r', rational=True)
849
+ x = Symbol('x')
850
+ assert (a**2).is_algebraic is True
851
+ assert (a**r).is_algebraic is None
852
+ assert (azf**r).is_algebraic is True
853
+ assert (a**x).is_algebraic is None
854
+ assert (na**r).is_algebraic is None
855
+ assert (ia**r).is_algebraic is True
856
+ assert (ia**ib).is_algebraic is False
857
+
858
+ assert (a**e).is_algebraic is None
859
+
860
+ # Gelfond-Schneider constant:
861
+ assert Pow(2, sqrt(2), evaluate=False).is_algebraic is False
862
+
863
+ assert Pow(S.GoldenRatio, sqrt(3), evaluate=False).is_algebraic is False
864
+
865
+ # issue 8649
866
+ t = Symbol('t', real=True, transcendental=True)
867
+ n = Symbol('n', integer=True)
868
+ assert (t**n).is_algebraic is None
869
+ assert (t**n).is_integer is None
870
+
871
+ assert (pi**3).is_algebraic is False
872
+ r = Symbol('r', zero=True)
873
+ assert (pi**r).is_algebraic is True
874
+
875
+
876
+ def test_Mul_is_prime_composite():
877
+ x = Symbol('x', positive=True, integer=True)
878
+ y = Symbol('y', positive=True, integer=True)
879
+ assert (x*y).is_prime is None
880
+ assert ( (x+1)*(y+1) ).is_prime is False
881
+ assert ( (x+1)*(y+1) ).is_composite is True
882
+
883
+ x = Symbol('x', positive=True)
884
+ assert ( (x+1)*(y+1) ).is_prime is None
885
+ assert ( (x+1)*(y+1) ).is_composite is None
886
+
887
+
888
+ def test_Pow_is_pos_neg():
889
+ z = Symbol('z', real=True)
890
+ w = Symbol('w', nonpositive=True)
891
+
892
+ assert (S.NegativeOne**S(2)).is_positive is True
893
+ assert (S.One**z).is_positive is True
894
+ assert (S.NegativeOne**S(3)).is_positive is False
895
+ assert (S.Zero**S.Zero).is_positive is True # 0**0 is 1
896
+ assert (w**S(3)).is_positive is False
897
+ assert (w**S(2)).is_positive is None
898
+ assert (I**2).is_positive is False
899
+ assert (I**4).is_positive is True
900
+
901
+ # tests emerging from #16332 issue
902
+ p = Symbol('p', zero=True)
903
+ q = Symbol('q', zero=False, real=True)
904
+ j = Symbol('j', zero=False, even=True)
905
+ x = Symbol('x', zero=True)
906
+ y = Symbol('y', zero=True)
907
+ assert (p**q).is_positive is False
908
+ assert (p**q).is_negative is False
909
+ assert (p**j).is_positive is False
910
+ assert (x**y).is_positive is True # 0**0
911
+ assert (x**y).is_negative is False
912
+
913
+
914
+ def test_Pow_is_prime_composite():
915
+ x = Symbol('x', positive=True, integer=True)
916
+ y = Symbol('y', positive=True, integer=True)
917
+ assert (x**y).is_prime is None
918
+ assert ( x**(y+1) ).is_prime is False
919
+ assert ( x**(y+1) ).is_composite is None
920
+ assert ( (x+1)**(y+1) ).is_composite is True
921
+ assert ( (-x-1)**(2*y) ).is_composite is True
922
+
923
+ x = Symbol('x', positive=True)
924
+ assert (x**y).is_prime is None
925
+
926
+
927
+ def test_Mul_is_infinite():
928
+ x = Symbol('x')
929
+ f = Symbol('f', finite=True)
930
+ i = Symbol('i', infinite=True)
931
+ z = Dummy(zero=True)
932
+ nzf = Dummy(finite=True, zero=False)
933
+ from sympy.core.mul import Mul
934
+ assert (x*f).is_finite is None
935
+ assert (x*i).is_finite is None
936
+ assert (f*i).is_finite is None
937
+ assert (x*f*i).is_finite is None
938
+ assert (z*i).is_finite is None
939
+ assert (nzf*i).is_finite is False
940
+ assert (z*f).is_finite is True
941
+ assert Mul(0, f, evaluate=False).is_finite is True
942
+ assert Mul(0, i, evaluate=False).is_finite is None
943
+
944
+ assert (x*f).is_infinite is None
945
+ assert (x*i).is_infinite is None
946
+ assert (f*i).is_infinite is None
947
+ assert (x*f*i).is_infinite is None
948
+ assert (z*i).is_infinite is S.NaN.is_infinite
949
+ assert (nzf*i).is_infinite is True
950
+ assert (z*f).is_infinite is False
951
+ assert Mul(0, f, evaluate=False).is_infinite is False
952
+ assert Mul(0, i, evaluate=False).is_infinite is S.NaN.is_infinite
953
+
954
+
955
+ def test_Add_is_infinite():
956
+ x = Symbol('x')
957
+ f = Symbol('f', finite=True)
958
+ i = Symbol('i', infinite=True)
959
+ i2 = Symbol('i2', infinite=True)
960
+ z = Dummy(zero=True)
961
+ nzf = Dummy(finite=True, zero=False)
962
+ from sympy.core.add import Add
963
+ assert (x+f).is_finite is None
964
+ assert (x+i).is_finite is None
965
+ assert (f+i).is_finite is False
966
+ assert (x+f+i).is_finite is None
967
+ assert (z+i).is_finite is False
968
+ assert (nzf+i).is_finite is False
969
+ assert (z+f).is_finite is True
970
+ assert (i+i2).is_finite is None
971
+ assert Add(0, f, evaluate=False).is_finite is True
972
+ assert Add(0, i, evaluate=False).is_finite is False
973
+
974
+ assert (x+f).is_infinite is None
975
+ assert (x+i).is_infinite is None
976
+ assert (f+i).is_infinite is True
977
+ assert (x+f+i).is_infinite is None
978
+ assert (z+i).is_infinite is True
979
+ assert (nzf+i).is_infinite is True
980
+ assert (z+f).is_infinite is False
981
+ assert (i+i2).is_infinite is None
982
+ assert Add(0, f, evaluate=False).is_infinite is False
983
+ assert Add(0, i, evaluate=False).is_infinite is True
984
+
985
+
986
+ def test_special_is_rational():
987
+ i = Symbol('i', integer=True)
988
+ i2 = Symbol('i2', integer=True)
989
+ ni = Symbol('ni', integer=True, nonzero=True)
990
+ r = Symbol('r', rational=True)
991
+ rn = Symbol('r', rational=True, nonzero=True)
992
+ nr = Symbol('nr', irrational=True)
993
+ x = Symbol('x')
994
+ assert sqrt(3).is_rational is False
995
+ assert (3 + sqrt(3)).is_rational is False
996
+ assert (3*sqrt(3)).is_rational is False
997
+ assert exp(3).is_rational is False
998
+ assert exp(ni).is_rational is False
999
+ assert exp(rn).is_rational is False
1000
+ assert exp(x).is_rational is None
1001
+ assert exp(log(3), evaluate=False).is_rational is True
1002
+ assert log(exp(3), evaluate=False).is_rational is True
1003
+ assert log(3).is_rational is False
1004
+ assert log(ni + 1).is_rational is False
1005
+ assert log(rn + 1).is_rational is False
1006
+ assert log(x).is_rational is None
1007
+ assert (sqrt(3) + sqrt(5)).is_rational is None
1008
+ assert (sqrt(3) + S.Pi).is_rational is False
1009
+ assert (x**i).is_rational is None
1010
+ assert (i**i).is_rational is True
1011
+ assert (i**i2).is_rational is None
1012
+ assert (r**i).is_rational is None
1013
+ assert (r**r).is_rational is None
1014
+ assert (r**x).is_rational is None
1015
+ assert (nr**i).is_rational is None # issue 8598
1016
+ assert (nr**Symbol('z', zero=True)).is_rational
1017
+ assert sin(1).is_rational is False
1018
+ assert sin(ni).is_rational is False
1019
+ assert sin(rn).is_rational is False
1020
+ assert sin(x).is_rational is None
1021
+ assert asin(r).is_rational is False
1022
+ assert sin(asin(3), evaluate=False).is_rational is True
1023
+
1024
+
1025
+ @XFAIL
1026
+ def test_issue_6275():
1027
+ x = Symbol('x')
1028
+ # both zero or both Muls...but neither "change would be very appreciated.
1029
+ # This is similar to x/x => 1 even though if x = 0, it is really nan.
1030
+ assert isinstance(x*0, type(0*S.Infinity))
1031
+ if 0*S.Infinity is S.NaN:
1032
+ b = Symbol('b', finite=None)
1033
+ assert (b*0).is_zero is None
1034
+
1035
+
1036
+ def test_sanitize_assumptions():
1037
+ # issue 6666
1038
+ for cls in (Symbol, Dummy, Wild):
1039
+ x = cls('x', real=1, positive=0)
1040
+ assert x.is_real is True
1041
+ assert x.is_positive is False
1042
+ assert cls('', real=True, positive=None).is_positive is None
1043
+ raises(ValueError, lambda: cls('', commutative=None))
1044
+ raises(ValueError, lambda: Symbol._sanitize({"commutative": None}))
1045
+
1046
+
1047
+ def test_special_assumptions():
1048
+ e = -3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2
1049
+ assert simplify(e < 0) is S.false
1050
+ assert simplify(e > 0) is S.false
1051
+ assert (e == 0) is False # it's not a literal 0
1052
+ assert e.equals(0) is True
1053
+
1054
+
1055
+ def test_inconsistent():
1056
+ # cf. issues 5795 and 5545
1057
+ raises(InconsistentAssumptions, lambda: Symbol('x', real=True,
1058
+ commutative=False))
1059
+
1060
+
1061
+ def test_issue_6631():
1062
+ assert ((-1)**(I)).is_real is True
1063
+ assert ((-1)**(I*2)).is_real is True
1064
+ assert ((-1)**(I/2)).is_real is True
1065
+ assert ((-1)**(I*S.Pi)).is_real is True
1066
+ assert (I**(I + 2)).is_real is True
1067
+
1068
+
1069
+ def test_issue_2730():
1070
+ assert (1/(1 + I)).is_real is False
1071
+
1072
+
1073
+ def test_issue_4149():
1074
+ assert (3 + I).is_complex
1075
+ assert (3 + I).is_imaginary is False
1076
+ assert (3*I + S.Pi*I).is_imaginary
1077
+ # as Zero.is_imaginary is False, see issue 7649
1078
+ y = Symbol('y', real=True)
1079
+ assert (3*I + S.Pi*I + y*I).is_imaginary is None
1080
+ p = Symbol('p', positive=True)
1081
+ assert (3*I + S.Pi*I + p*I).is_imaginary
1082
+ n = Symbol('n', negative=True)
1083
+ assert (-3*I - S.Pi*I + n*I).is_imaginary
1084
+
1085
+ i = Symbol('i', imaginary=True)
1086
+ assert ([(i**a).is_imaginary for a in range(4)] ==
1087
+ [False, True, False, True])
1088
+
1089
+ # tests from the PR #7887:
1090
+ e = S("-sqrt(3)*I/2 + 0.866025403784439*I")
1091
+ assert e.is_real is False
1092
+ assert e.is_imaginary
1093
+
1094
+
1095
+ def test_issue_2920():
1096
+ n = Symbol('n', negative=True)
1097
+ assert sqrt(n).is_imaginary
1098
+
1099
+
1100
+ def test_issue_7899():
1101
+ x = Symbol('x', real=True)
1102
+ assert (I*x).is_real is None
1103
+ assert ((x - I)*(x - 1)).is_zero is None
1104
+ assert ((x - I)*(x - 1)).is_real is None
1105
+
1106
+
1107
+ @XFAIL
1108
+ def test_issue_7993():
1109
+ x = Dummy(integer=True)
1110
+ y = Dummy(noninteger=True)
1111
+ assert (x - y).is_zero is False
1112
+
1113
+
1114
+ def test_issue_8075():
1115
+ raises(InconsistentAssumptions, lambda: Dummy(zero=True, finite=False))
1116
+ raises(InconsistentAssumptions, lambda: Dummy(zero=True, infinite=True))
1117
+
1118
+
1119
+ def test_issue_8642():
1120
+ x = Symbol('x', real=True, integer=False)
1121
+ assert (x*2).is_integer is None, (x*2).is_integer
1122
+
1123
+
1124
+ def test_issues_8632_8633_8638_8675_8992():
1125
+ p = Dummy(integer=True, positive=True)
1126
+ nn = Dummy(integer=True, nonnegative=True)
1127
+ assert (p - S.Half).is_positive
1128
+ assert (p - 1).is_nonnegative
1129
+ assert (nn + 1).is_positive
1130
+ assert (-p + 1).is_nonpositive
1131
+ assert (-nn - 1).is_negative
1132
+ prime = Dummy(prime=True)
1133
+ assert (prime - 2).is_nonnegative
1134
+ assert (prime - 3).is_nonnegative is None
1135
+ even = Dummy(positive=True, even=True)
1136
+ assert (even - 2).is_nonnegative
1137
+
1138
+ p = Dummy(positive=True)
1139
+ assert (p/(p + 1) - 1).is_negative
1140
+ assert ((p + 2)**3 - S.Half).is_positive
1141
+ n = Dummy(negative=True)
1142
+ assert (n - 3).is_nonpositive
1143
+
1144
+
1145
+ def test_issue_9115_9150():
1146
+ n = Dummy('n', integer=True, nonnegative=True)
1147
+ assert (factorial(n) >= 1) == True
1148
+ assert (factorial(n) < 1) == False
1149
+
1150
+ assert factorial(n + 1).is_even is None
1151
+ assert factorial(n + 2).is_even is True
1152
+ assert factorial(n + 2) >= 2
1153
+
1154
+
1155
+ def test_issue_9165():
1156
+ z = Symbol('z', zero=True)
1157
+ f = Symbol('f', finite=False)
1158
+ assert 0/z is S.NaN
1159
+ assert 0*(1/z) is S.NaN
1160
+ assert 0*f is S.NaN
1161
+
1162
+
1163
+ def test_issue_10024():
1164
+ x = Dummy('x')
1165
+ assert Mod(x, 2*pi).is_zero is None
1166
+
1167
+
1168
+ def test_issue_10302():
1169
+ x = Symbol('x')
1170
+ r = Symbol('r', real=True)
1171
+ u = -(3*2**pi)**(1/pi) + 2*3**(1/pi)
1172
+ i = u + u*I
1173
+
1174
+ assert i.is_real is None # w/o simplification this should fail
1175
+ assert (u + i).is_zero is None
1176
+ assert (1 + i).is_zero is False
1177
+
1178
+ a = Dummy('a', zero=True)
1179
+ assert (a + I).is_zero is False
1180
+ assert (a + r*I).is_zero is None
1181
+ assert (a + I).is_imaginary
1182
+ assert (a + x + I).is_imaginary is None
1183
+ assert (a + r*I + I).is_imaginary is None
1184
+
1185
+
1186
+ def test_complex_reciprocal_imaginary():
1187
+ assert (1 / (4 + 3*I)).is_imaginary is False
1188
+
1189
+
1190
+ def test_issue_16313():
1191
+ x = Symbol('x', extended_real=False)
1192
+ k = Symbol('k', real=True)
1193
+ l = Symbol('l', real=True, zero=False)
1194
+ assert (-x).is_real is False
1195
+ assert (k*x).is_real is None # k can be zero also
1196
+ assert (l*x).is_real is False
1197
+ assert (l*x*x).is_real is None # since x*x can be a real number
1198
+ assert (-x).is_positive is False
1199
+
1200
+
1201
+ def test_issue_16579():
1202
+ # extended_real -> finite | infinite
1203
+ x = Symbol('x', extended_real=True, infinite=False)
1204
+ y = Symbol('y', extended_real=True, finite=False)
1205
+ assert x.is_finite is True
1206
+ assert y.is_infinite is True
1207
+
1208
+ # With PR 16978, complex now implies finite
1209
+ c = Symbol('c', complex=True)
1210
+ assert c.is_finite is True
1211
+ raises(InconsistentAssumptions, lambda: Dummy(complex=True, finite=False))
1212
+
1213
+ # Now infinite == !finite
1214
+ nf = Symbol('nf', finite=False)
1215
+ assert nf.is_infinite is True
1216
+
1217
+
1218
+ def test_issue_17556():
1219
+ z = I*oo
1220
+ assert z.is_imaginary is False
1221
+ assert z.is_finite is False
1222
+
1223
+
1224
+ def test_issue_21651():
1225
+ k = Symbol('k', positive=True, integer=True)
1226
+ exp = 2*2**(-k)
1227
+ assert exp.is_integer is None
1228
+
1229
+
1230
+ def test_assumptions_copy():
1231
+ assert assumptions(Symbol('x'), {"commutative": True}
1232
+ ) == {'commutative': True}
1233
+ assert assumptions(Symbol('x'), ['integer']) == {}
1234
+ assert assumptions(Symbol('x'), ['commutative']
1235
+ ) == {'commutative': True}
1236
+ assert assumptions(Symbol('x')) == {'commutative': True}
1237
+ assert assumptions(1)['positive']
1238
+ assert assumptions(3 + I) == {
1239
+ 'algebraic': True,
1240
+ 'commutative': True,
1241
+ 'complex': True,
1242
+ 'composite': False,
1243
+ 'even': False,
1244
+ 'extended_negative': False,
1245
+ 'extended_nonnegative': False,
1246
+ 'extended_nonpositive': False,
1247
+ 'extended_nonzero': False,
1248
+ 'extended_positive': False,
1249
+ 'extended_real': False,
1250
+ 'finite': True,
1251
+ 'imaginary': False,
1252
+ 'infinite': False,
1253
+ 'integer': False,
1254
+ 'irrational': False,
1255
+ 'negative': False,
1256
+ 'noninteger': False,
1257
+ 'nonnegative': False,
1258
+ 'nonpositive': False,
1259
+ 'nonzero': False,
1260
+ 'odd': False,
1261
+ 'positive': False,
1262
+ 'prime': False,
1263
+ 'rational': False,
1264
+ 'real': False,
1265
+ 'transcendental': False,
1266
+ 'zero': False}
1267
+
1268
+
1269
+ def test_check_assumptions():
1270
+ assert check_assumptions(1, 0) is False
1271
+ x = Symbol('x', positive=True)
1272
+ assert check_assumptions(1, x) is True
1273
+ assert check_assumptions(1, 1) is True
1274
+ assert check_assumptions(-1, 1) is False
1275
+ i = Symbol('i', integer=True)
1276
+ # don't know if i is positive (or prime, etc...)
1277
+ assert check_assumptions(i, 1) is None
1278
+ assert check_assumptions(Dummy(integer=None), integer=True) is None
1279
+ assert check_assumptions(Dummy(integer=None), integer=False) is None
1280
+ assert check_assumptions(Dummy(integer=False), integer=True) is False
1281
+ assert check_assumptions(Dummy(integer=True), integer=False) is False
1282
+ # no T/F assumptions to check
1283
+ assert check_assumptions(Dummy(integer=False), integer=None) is True
1284
+ raises(ValueError, lambda: check_assumptions(2*x, x, positive=True))
1285
+
1286
+
1287
+ def test_failing_assumptions():
1288
+ x = Symbol('x', positive=True)
1289
+ y = Symbol('y')
1290
+ assert failing_assumptions(6*x + y, **x.assumptions0) == \
1291
+ {'real': None, 'imaginary': None, 'complex': None, 'hermitian': None,
1292
+ 'positive': None, 'nonpositive': None, 'nonnegative': None, 'nonzero': None,
1293
+ 'negative': None, 'zero': None, 'extended_real': None, 'finite': None,
1294
+ 'infinite': None, 'extended_negative': None, 'extended_nonnegative': None,
1295
+ 'extended_nonpositive': None, 'extended_nonzero': None,
1296
+ 'extended_positive': None }
1297
+
1298
+
1299
+ def test_common_assumptions():
1300
+ assert common_assumptions([0, 1, 2]
1301
+ ) == {'algebraic': True, 'irrational': False, 'hermitian':
1302
+ True, 'extended_real': True, 'real': True, 'extended_negative':
1303
+ False, 'extended_nonnegative': True, 'integer': True,
1304
+ 'rational': True, 'imaginary': False, 'complex': True,
1305
+ 'commutative': True,'noninteger': False, 'composite': False,
1306
+ 'infinite': False, 'nonnegative': True, 'finite': True,
1307
+ 'transcendental': False,'negative': False}
1308
+ assert common_assumptions([0, 1, 2], 'positive integer'.split()
1309
+ ) == {'integer': True}
1310
+ assert common_assumptions([0, 1, 2], []) == {}
1311
+ assert common_assumptions([], ['integer']) == {}
1312
+ assert common_assumptions([0], ['integer']) == {'integer': True}
1313
+
1314
+ def test_pre_generated_assumption_rules_are_valid():
1315
+ # check the pre-generated assumptions match freshly generated assumptions
1316
+ # if this check fails, consider updating the assumptions
1317
+ # see sympy.core.assumptions._generate_assumption_rules
1318
+ pre_generated_assumptions =_load_pre_generated_assumption_rules()
1319
+ generated_assumptions =_generate_assumption_rules()
1320
+ assert pre_generated_assumptions._to_python() == generated_assumptions._to_python(), "pre-generated assumptions are invalid, see sympy.core.assumptions._generate_assumption_rules"
1321
+
1322
+
1323
+ def test_ask_shuffle():
1324
+ grp = PermutationGroup(Permutation(1, 0, 2), Permutation(2, 1, 3))
1325
+
1326
+ seed(123)
1327
+ first = grp.random()
1328
+ seed(123)
1329
+ simplify(I)
1330
+ second = grp.random()
1331
+ seed(123)
1332
+ simplify(-I)
1333
+ third = grp.random()
1334
+
1335
+ assert first == second == third
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_basic.py ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This tests sympy/core/basic.py with (ideally) no reference to subclasses
2
+ of Basic or Atom."""
3
+
4
+ import collections
5
+
6
+ from sympy.assumptions.ask import Q
7
+ from sympy.core.basic import (Basic, Atom, as_Basic,
8
+ _atomic, _aresame)
9
+ from sympy.core.containers import Tuple
10
+ from sympy.core.function import Function, Lambda
11
+ from sympy.core.numbers import I, pi
12
+ from sympy.core.singleton import S
13
+ from sympy.core.symbol import symbols, Symbol, Dummy
14
+ from sympy.concrete.summations import Sum
15
+ from sympy.functions.elementary.trigonometric import (cos, sin)
16
+ from sympy.functions.special.gamma_functions import gamma
17
+ from sympy.integrals.integrals import Integral
18
+ from sympy.functions.elementary.exponential import exp
19
+ from sympy.testing.pytest import raises, warns_deprecated_sympy
20
+
21
+ b1 = Basic()
22
+ b2 = Basic(b1)
23
+ b3 = Basic(b2)
24
+ b21 = Basic(b2, b1)
25
+
26
+
27
+ def test__aresame():
28
+ assert not _aresame(Basic(Tuple()), Basic())
29
+ assert not _aresame(Basic(S(2)), Basic(S(2.)))
30
+
31
+
32
+ def test_structure():
33
+ assert b21.args == (b2, b1)
34
+ assert b21.func(*b21.args) == b21
35
+ assert bool(b1)
36
+
37
+
38
+ def test_immutable():
39
+ assert not hasattr(b1, '__dict__')
40
+ with raises(AttributeError):
41
+ b1.x = 1
42
+
43
+
44
+ def test_equality():
45
+ instances = [b1, b2, b3, b21, Basic(b1, b1, b1), Basic]
46
+ for i, b_i in enumerate(instances):
47
+ for j, b_j in enumerate(instances):
48
+ assert (b_i == b_j) == (i == j)
49
+ assert (b_i != b_j) == (i != j)
50
+
51
+ assert Basic() != []
52
+ assert not(Basic() == [])
53
+ assert Basic() != 0
54
+ assert not(Basic() == 0)
55
+
56
+ class Foo:
57
+ """
58
+ Class that is unaware of Basic, and relies on both classes returning
59
+ the NotImplemented singleton for equivalence to evaluate to False.
60
+
61
+ """
62
+
63
+ b = Basic()
64
+ foo = Foo()
65
+
66
+ assert b != foo
67
+ assert foo != b
68
+ assert not b == foo
69
+ assert not foo == b
70
+
71
+ class Bar:
72
+ """
73
+ Class that considers itself equal to any instance of Basic, and relies
74
+ on Basic returning the NotImplemented singleton in order to achieve
75
+ a symmetric equivalence relation.
76
+
77
+ """
78
+ def __eq__(self, other):
79
+ if isinstance(other, Basic):
80
+ return True
81
+ return NotImplemented
82
+
83
+ def __ne__(self, other):
84
+ return not self == other
85
+
86
+ bar = Bar()
87
+
88
+ assert b == bar
89
+ assert bar == b
90
+ assert not b != bar
91
+ assert not bar != b
92
+
93
+
94
+ def test_matches_basic():
95
+ instances = [Basic(b1, b1, b2), Basic(b1, b2, b1), Basic(b2, b1, b1),
96
+ Basic(b1, b2), Basic(b2, b1), b2, b1]
97
+ for i, b_i in enumerate(instances):
98
+ for j, b_j in enumerate(instances):
99
+ if i == j:
100
+ assert b_i.matches(b_j) == {}
101
+ else:
102
+ assert b_i.matches(b_j) is None
103
+ assert b1.match(b1) == {}
104
+
105
+
106
+ def test_has():
107
+ assert b21.has(b1)
108
+ assert b21.has(b3, b1)
109
+ assert b21.has(Basic)
110
+ assert not b1.has(b21, b3)
111
+ assert not b21.has()
112
+ assert not b21.has(str)
113
+ assert not Symbol("x").has("x")
114
+
115
+
116
+ def test_subs():
117
+ assert b21.subs(b2, b1) == Basic(b1, b1)
118
+ assert b21.subs(b2, b21) == Basic(b21, b1)
119
+ assert b3.subs(b2, b1) == b2
120
+
121
+ assert b21.subs([(b2, b1), (b1, b2)]) == Basic(b2, b2)
122
+
123
+ assert b21.subs({b1: b2, b2: b1}) == Basic(b2, b2)
124
+ assert b21.subs(collections.ChainMap({b1: b2}, {b2: b1})) == Basic(b2, b2)
125
+ assert b21.subs(collections.OrderedDict([(b2, b1), (b1, b2)])) == Basic(b2, b2)
126
+
127
+ raises(ValueError, lambda: b21.subs('bad arg'))
128
+ raises(ValueError, lambda: b21.subs(b1, b2, b3))
129
+ # dict(b1=foo) creates a string 'b1' but leaves foo unchanged; subs
130
+ # will convert the first to a symbol but will raise an error if foo
131
+ # cannot be sympified; sympification is strict if foo is not string
132
+ raises(ValueError, lambda: b21.subs(b1='bad arg'))
133
+
134
+ assert Symbol("text").subs({"text": b1}) == b1
135
+ assert Symbol("s").subs({"s": 1}) == 1
136
+
137
+
138
+ def test_subs_with_unicode_symbols():
139
+ expr = Symbol('var1')
140
+ replaced = expr.subs('var1', 'x')
141
+ assert replaced.name == 'x'
142
+
143
+ replaced = expr.subs('var1', 'x')
144
+ assert replaced.name == 'x'
145
+
146
+
147
+ def test_atoms():
148
+ assert b21.atoms() == {Basic()}
149
+
150
+
151
+ def test_free_symbols_empty():
152
+ assert b21.free_symbols == set()
153
+
154
+
155
+ def test_doit():
156
+ assert b21.doit() == b21
157
+ assert b21.doit(deep=False) == b21
158
+
159
+
160
+ def test_S():
161
+ assert repr(S) == 'S'
162
+
163
+
164
+ def test_xreplace():
165
+ assert b21.xreplace({b2: b1}) == Basic(b1, b1)
166
+ assert b21.xreplace({b2: b21}) == Basic(b21, b1)
167
+ assert b3.xreplace({b2: b1}) == b2
168
+ assert Basic(b1, b2).xreplace({b1: b2, b2: b1}) == Basic(b2, b1)
169
+ assert Atom(b1).xreplace({b1: b2}) == Atom(b1)
170
+ assert Atom(b1).xreplace({Atom(b1): b2}) == b2
171
+ raises(TypeError, lambda: b1.xreplace())
172
+ raises(TypeError, lambda: b1.xreplace([b1, b2]))
173
+ for f in (exp, Function('f')):
174
+ assert f.xreplace({}) == f
175
+ assert f.xreplace({}, hack2=True) == f
176
+ assert f.xreplace({f: b1}) == b1
177
+ assert f.xreplace({f: b1}, hack2=True) == b1
178
+
179
+
180
+ def test_sorted_args():
181
+ x = symbols('x')
182
+ assert b21._sorted_args == b21.args
183
+ raises(AttributeError, lambda: x._sorted_args)
184
+
185
+ def test_call():
186
+ x, y = symbols('x y')
187
+ # See the long history of this in issues 5026 and 5105.
188
+
189
+ raises(TypeError, lambda: sin(x)({ x : 1, sin(x) : 2}))
190
+ raises(TypeError, lambda: sin(x)(1))
191
+
192
+ # No effect as there are no callables
193
+ assert sin(x).rcall(1) == sin(x)
194
+ assert (1 + sin(x)).rcall(1) == 1 + sin(x)
195
+
196
+ # Effect in the pressence of callables
197
+ l = Lambda(x, 2*x)
198
+ assert (l + x).rcall(y) == 2*y + x
199
+ assert (x**l).rcall(2) == x**4
200
+ # TODO UndefinedFunction does not subclass Expr
201
+ #f = Function('f')
202
+ #assert (2*f)(x) == 2*f(x)
203
+
204
+ assert (Q.real & Q.positive).rcall(x) == Q.real(x) & Q.positive(x)
205
+
206
+
207
+ def test_rewrite():
208
+ x, y, z = symbols('x y z')
209
+ a, b = symbols('a b')
210
+ f1 = sin(x) + cos(x)
211
+ assert f1.rewrite(cos,exp) == exp(I*x)/2 + sin(x) + exp(-I*x)/2
212
+ assert f1.rewrite([cos],sin) == sin(x) + sin(x + pi/2, evaluate=False)
213
+ f2 = sin(x) + cos(y)/gamma(z)
214
+ assert f2.rewrite(sin,exp) == -I*(exp(I*x) - exp(-I*x))/2 + cos(y)/gamma(z)
215
+
216
+ assert f1.rewrite() == f1
217
+
218
+ def test_literal_evalf_is_number_is_zero_is_comparable():
219
+ x = symbols('x')
220
+ f = Function('f')
221
+
222
+ # issue 5033
223
+ assert f.is_number is False
224
+ # issue 6646
225
+ assert f(1).is_number is False
226
+ i = Integral(0, (x, x, x))
227
+ # expressions that are symbolically 0 can be difficult to prove
228
+ # so in case there is some easy way to know if something is 0
229
+ # it should appear in the is_zero property for that object;
230
+ # if is_zero is true evalf should always be able to compute that
231
+ # zero
232
+ assert i.n() == 0
233
+ assert i.is_zero
234
+ assert i.is_number is False
235
+ assert i.evalf(2, strict=False) == 0
236
+
237
+ # issue 10268
238
+ n = sin(1)**2 + cos(1)**2 - 1
239
+ assert n.is_comparable is False
240
+ assert n.n(2).is_comparable is False
241
+ assert n.n(2).n(2).is_comparable
242
+
243
+
244
+ def test_as_Basic():
245
+ assert as_Basic(1) is S.One
246
+ assert as_Basic(()) == Tuple()
247
+ raises(TypeError, lambda: as_Basic([]))
248
+
249
+
250
+ def test_atomic():
251
+ g, h = map(Function, 'gh')
252
+ x = symbols('x')
253
+ assert _atomic(g(x + h(x))) == {g(x + h(x))}
254
+ assert _atomic(g(x + h(x)), recursive=True) == {h(x), x, g(x + h(x))}
255
+ assert _atomic(1) == set()
256
+ assert _atomic(Basic(S(1), S(2))) == set()
257
+
258
+
259
+ def test_as_dummy():
260
+ u, v, x, y, z, _0, _1 = symbols('u v x y z _0 _1')
261
+ assert Lambda(x, x + 1).as_dummy() == Lambda(_0, _0 + 1)
262
+ assert Lambda(x, x + _0).as_dummy() == Lambda(_1, _0 + _1)
263
+ eq = (1 + Sum(x, (x, 1, x)))
264
+ ans = 1 + Sum(_0, (_0, 1, x))
265
+ once = eq.as_dummy()
266
+ assert once == ans
267
+ twice = once.as_dummy()
268
+ assert twice == ans
269
+ assert Integral(x + _0, (x, x + 1), (_0, 1, 2)
270
+ ).as_dummy() == Integral(_0 + _1, (_0, x + 1), (_1, 1, 2))
271
+ for T in (Symbol, Dummy):
272
+ d = T('x', real=True)
273
+ D = d.as_dummy()
274
+ assert D != d and D.func == Dummy and D.is_real is None
275
+ assert Dummy().as_dummy().is_commutative
276
+ assert Dummy(commutative=False).as_dummy().is_commutative is False
277
+
278
+
279
+ def test_canonical_variables():
280
+ x, i0, i1 = symbols('x _:2')
281
+ assert Integral(x, (x, x + 1)).canonical_variables == {x: i0}
282
+ assert Integral(x, (x, x + 1), (i0, 1, 2)).canonical_variables == {
283
+ x: i0, i0: i1}
284
+ assert Integral(x, (x, x + i0)).canonical_variables == {x: i1}
285
+
286
+
287
+ def test_replace_exceptions():
288
+ from sympy.core.symbol import Wild
289
+ x, y = symbols('x y')
290
+ e = (x**2 + x*y)
291
+ raises(TypeError, lambda: e.replace(sin, 2))
292
+ b = Wild('b')
293
+ c = Wild('c')
294
+ raises(TypeError, lambda: e.replace(b*c, c.is_real))
295
+ raises(TypeError, lambda: e.replace(b.is_real, 1))
296
+ raises(TypeError, lambda: e.replace(lambda d: d.is_Number, 1))
297
+
298
+
299
+ def test_ManagedProperties():
300
+ # ManagedProperties is now deprecated. Here we do our best to check that if
301
+ # someone is using it then it does work in the way that it previously did
302
+ # but gives a deprecation warning.
303
+ from sympy.core.assumptions import ManagedProperties
304
+
305
+ myclasses = []
306
+
307
+ class MyMeta(ManagedProperties):
308
+ def __init__(cls, *args, **kwargs):
309
+ myclasses.append('executed')
310
+ super().__init__(*args, **kwargs)
311
+
312
+ code = """
313
+ class MySubclass(Basic, metaclass=MyMeta):
314
+ pass
315
+ """
316
+ with warns_deprecated_sympy():
317
+ exec(code)
318
+
319
+ assert myclasses == ['executed']
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_cache.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ from sympy.core.cache import cacheit, cached_property, lazy_function
3
+ from sympy.testing.pytest import raises
4
+
5
+ def test_cacheit_doc():
6
+ @cacheit
7
+ def testfn():
8
+ "test docstring"
9
+ pass
10
+
11
+ assert testfn.__doc__ == "test docstring"
12
+ assert testfn.__name__ == "testfn"
13
+
14
+ def test_cacheit_unhashable():
15
+ @cacheit
16
+ def testit(x):
17
+ return x
18
+
19
+ assert testit(1) == 1
20
+ assert testit(1) == 1
21
+ a = {}
22
+ assert testit(a) == {}
23
+ a[1] = 2
24
+ assert testit(a) == {1: 2}
25
+
26
+ def test_cachit_exception():
27
+ # Make sure the cache doesn't call functions multiple times when they
28
+ # raise TypeError
29
+
30
+ a = []
31
+
32
+ @cacheit
33
+ def testf(x):
34
+ a.append(0)
35
+ raise TypeError
36
+
37
+ raises(TypeError, lambda: testf(1))
38
+ assert len(a) == 1
39
+
40
+ a.clear()
41
+ # Unhashable type
42
+ raises(TypeError, lambda: testf([]))
43
+ assert len(a) == 1
44
+
45
+ @cacheit
46
+ def testf2(x):
47
+ a.append(0)
48
+ raise TypeError("Error")
49
+
50
+ a.clear()
51
+ raises(TypeError, lambda: testf2(1))
52
+ assert len(a) == 1
53
+
54
+ a.clear()
55
+ # Unhashable type
56
+ raises(TypeError, lambda: testf2([]))
57
+ assert len(a) == 1
58
+
59
+ def test_cached_property():
60
+ class A:
61
+ def __init__(self, value):
62
+ self.value = value
63
+ self.calls = 0
64
+
65
+ @cached_property
66
+ def prop(self):
67
+ self.calls = self.calls + 1
68
+ return self.value
69
+
70
+ a = A(2)
71
+ assert a.calls == 0
72
+ assert a.prop == 2
73
+ assert a.calls == 1
74
+ assert a.prop == 2
75
+ assert a.calls == 1
76
+ b = A(None)
77
+ assert b.prop == None
78
+
79
+
80
+ def test_lazy_function():
81
+ module_name='xmlrpc.client'
82
+ function_name = 'gzip_decode'
83
+ lazy = lazy_function(module_name, function_name)
84
+ assert lazy(b'') == b''
85
+ assert module_name in sys.modules
86
+ assert function_name in str(lazy)
87
+ repr_lazy = repr(lazy)
88
+ assert 'LazyFunction' in repr_lazy
89
+ assert function_name in repr_lazy
90
+
91
+ lazy = lazy_function('sympy.core.cache', 'cheap')
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_compatibility.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from sympy.testing.pytest import warns_deprecated_sympy
2
+
3
+ def test_compatibility_submodule():
4
+ # Test the sympy.core.compatibility deprecation warning
5
+ with warns_deprecated_sympy():
6
+ import sympy.core.compatibility # noqa:F401
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_complex.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.function import expand_complex
2
+ from sympy.core.numbers import (I, Integer, Rational, pi)
3
+ from sympy.core.power import Pow
4
+ from sympy.core.singleton import S
5
+ from sympy.core.symbol import (Symbol, symbols)
6
+ from sympy.functions.elementary.complexes import (Abs, conjugate, im, re, sign)
7
+ from sympy.functions.elementary.exponential import exp
8
+ from sympy.functions.elementary.hyperbolic import (cosh, coth, sinh, tanh)
9
+ from sympy.functions.elementary.miscellaneous import sqrt
10
+ from sympy.functions.elementary.trigonometric import (cos, cot, sin, tan)
11
+
12
+ def test_complex():
13
+ a = Symbol("a", real=True)
14
+ b = Symbol("b", real=True)
15
+ e = (a + I*b)*(a - I*b)
16
+ assert e.expand() == a**2 + b**2
17
+ assert sqrt(I) == Pow(I, S.Half)
18
+
19
+
20
+ def test_conjugate():
21
+ a = Symbol("a", real=True)
22
+ b = Symbol("b", real=True)
23
+ c = Symbol("c", imaginary=True)
24
+ d = Symbol("d", imaginary=True)
25
+ x = Symbol('x')
26
+ z = a + I*b + c + I*d
27
+ zc = a - I*b - c + I*d
28
+ assert conjugate(z) == zc
29
+ assert conjugate(exp(z)) == exp(zc)
30
+ assert conjugate(exp(I*x)) == exp(-I*conjugate(x))
31
+ assert conjugate(z**5) == zc**5
32
+ assert conjugate(abs(x)) == abs(x)
33
+ assert conjugate(sign(z)) == sign(zc)
34
+ assert conjugate(sin(z)) == sin(zc)
35
+ assert conjugate(cos(z)) == cos(zc)
36
+ assert conjugate(tan(z)) == tan(zc)
37
+ assert conjugate(cot(z)) == cot(zc)
38
+ assert conjugate(sinh(z)) == sinh(zc)
39
+ assert conjugate(cosh(z)) == cosh(zc)
40
+ assert conjugate(tanh(z)) == tanh(zc)
41
+ assert conjugate(coth(z)) == coth(zc)
42
+
43
+
44
+ def test_abs1():
45
+ a = Symbol("a", real=True)
46
+ b = Symbol("b", real=True)
47
+ assert abs(a) == Abs(a)
48
+ assert abs(-a) == abs(a)
49
+ assert abs(a + I*b) == sqrt(a**2 + b**2)
50
+
51
+
52
+ def test_abs2():
53
+ a = Symbol("a", real=False)
54
+ b = Symbol("b", real=False)
55
+ assert abs(a) != a
56
+ assert abs(-a) != a
57
+ assert abs(a + I*b) != sqrt(a**2 + b**2)
58
+
59
+
60
+ def test_evalc():
61
+ x = Symbol("x", real=True)
62
+ y = Symbol("y", real=True)
63
+ z = Symbol("z")
64
+ assert ((x + I*y)**2).expand(complex=True) == x**2 + 2*I*x*y - y**2
65
+ assert expand_complex(z**(2*I)) == (re((re(z) + I*im(z))**(2*I)) +
66
+ I*im((re(z) + I*im(z))**(2*I)))
67
+ assert expand_complex(
68
+ z**(2*I), deep=False) == I*im(z**(2*I)) + re(z**(2*I))
69
+
70
+ assert exp(I*x) != cos(x) + I*sin(x)
71
+ assert exp(I*x).expand(complex=True) == cos(x) + I*sin(x)
72
+ assert exp(I*x + y).expand(complex=True) == exp(y)*cos(x) + I*sin(x)*exp(y)
73
+
74
+ assert sin(I*x).expand(complex=True) == I * sinh(x)
75
+ assert sin(x + I*y).expand(complex=True) == sin(x)*cosh(y) + \
76
+ I * sinh(y) * cos(x)
77
+
78
+ assert cos(I*x).expand(complex=True) == cosh(x)
79
+ assert cos(x + I*y).expand(complex=True) == cos(x)*cosh(y) - \
80
+ I * sinh(y) * sin(x)
81
+
82
+ assert tan(I*x).expand(complex=True) == tanh(x) * I
83
+ assert tan(x + I*y).expand(complex=True) == (
84
+ sin(2*x)/(cos(2*x) + cosh(2*y)) +
85
+ I*sinh(2*y)/(cos(2*x) + cosh(2*y)))
86
+
87
+ assert sinh(I*x).expand(complex=True) == I * sin(x)
88
+ assert sinh(x + I*y).expand(complex=True) == sinh(x)*cos(y) + \
89
+ I * sin(y) * cosh(x)
90
+
91
+ assert cosh(I*x).expand(complex=True) == cos(x)
92
+ assert cosh(x + I*y).expand(complex=True) == cosh(x)*cos(y) + \
93
+ I * sin(y) * sinh(x)
94
+
95
+ assert tanh(I*x).expand(complex=True) == tan(x) * I
96
+ assert tanh(x + I*y).expand(complex=True) == (
97
+ (sinh(x)*cosh(x) + I*cos(y)*sin(y)) /
98
+ (sinh(x)**2 + cos(y)**2)).expand()
99
+
100
+
101
+ def test_pythoncomplex():
102
+ x = Symbol("x")
103
+ assert 4j*x != 4*x*I
104
+ assert 4j*x == 4.0*x*I
105
+ assert 4.1j*x != 4*x*I
106
+
107
+
108
+ def test_rootcomplex():
109
+ R = Rational
110
+ assert ((+1 + I)**R(1, 2)).expand(
111
+ complex=True) == 2**R(1, 4)*cos( pi/8) + 2**R(1, 4)*sin( pi/8)*I
112
+ assert ((-1 - I)**R(1, 2)).expand(
113
+ complex=True) == 2**R(1, 4)*cos(3*pi/8) - 2**R(1, 4)*sin(3*pi/8)*I
114
+ assert (sqrt(-10)*I).as_real_imag() == (-sqrt(10), 0)
115
+
116
+
117
+ def test_expand_inverse():
118
+ assert (1/(1 + I)).expand(complex=True) == (1 - I)/2
119
+ assert ((1 + 2*I)**(-2)).expand(complex=True) == (-3 - 4*I)/25
120
+ assert ((1 + I)**(-8)).expand(complex=True) == Rational(1, 16)
121
+
122
+
123
+ def test_expand_complex():
124
+ assert ((2 + 3*I)**10).expand(complex=True) == -341525 - 145668*I
125
+ # the following two tests are to ensure the SymPy uses an efficient
126
+ # algorithm for calculating powers of complex numbers. They should execute
127
+ # in something like 0.01s.
128
+ assert ((2 + 3*I)**1000).expand(complex=True) == \
129
+ -81079464736246615951519029367296227340216902563389546989376269312984127074385455204551402940331021387412262494620336565547972162814110386834027871072723273110439771695255662375718498785908345629702081336606863762777939617745464755635193139022811989314881997210583159045854968310911252660312523907616129080027594310008539817935736331124833163907518549408018652090650537035647520296539436440394920287688149200763245475036722326561143851304795139005599209239350981457301460233967137708519975586996623552182807311159141501424576682074392689622074945519232029999 + \
130
+ 46938745946789557590804551905243206242164799136976022474337918748798900569942573265747576032611189047943842446167719177749107138603040963603119861476016947257034472364028585381714774667326478071264878108114128915685688115488744955550920239128462489496563930809677159214598114273887061533057125164518549173898349061972857446844052995037423459472376202251620778517659247970283904820245958198842631651569984310559418135975795868314764489884749573052997832686979294085577689571149679540256349988338406458116270429842222666345146926395233040564229555893248370000*I
131
+ assert ((2 + 3*I/4)**1000).expand(complex=True) == \
132
+ Integer(1)*37079892761199059751745775382463070250205990218394308874593455293485167797989691280095867197640410033222367257278387021789651672598831503296531725827158233077451476545928116965316544607115843772405184272449644892857783761260737279675075819921259597776770965829089907990486964515784097181964312256560561065607846661496055417619388874421218472707497847700629822858068783288579581649321248495739224020822198695759609598745114438265083593711851665996586461937988748911532242908776883696631067311443171682974330675406616373422505939887984366289623091300746049101284856530270685577940283077888955692921951247230006346681086274961362500646889925803654263491848309446197554307105991537357310209426736453173441104334496173618419659521888945605315751089087820455852582920963561495787655250624781448951403353654348109893478206364632640344111022531861683064175862889459084900614967785405977231549003280842218501570429860550379522498497412180001/114813069527425452423283320117768198402231770208869520047764273682576626139237031385665948631650626991844596463898746277344711896086305533142593135616665318539129989145312280000688779148240044871428926990063486244781615463646388363947317026040466353970904996558162398808944629605623311649536164221970332681344168908984458505602379484807914058900934776500429002716706625830522008132236281291761267883317206598995396418127021779858404042159853183251540889433902091920554957783589672039160081957216630582755380425583726015528348786419432054508915275783882625175435528800822842770817965453762184851149029376 + \
133
+ I*421638390580169706973991429333213477486930178424989246669892530737775352519112934278994501272111385966211392610029433824534634841747911783746811994443436271013377059560245191441549885048056920190833693041257216263519792201852046825443439142932464031501882145407459174948712992271510309541474392303461939389368955986650538525895866713074543004916049550090364398070215427272240155060576252568700906004691224321432509053286859100920489253598392100207663785243368195857086816912514025693453058403158416856847185079684216151337200057494966741268925263085619240941610301610538225414050394612058339070756009433535451561664522479191267503989904464718368605684297071150902631208673621618217106272361061676184840810762902463998065947687814692402219182668782278472952758690939877465065070481351343206840649517150634973307937551168752642148704904383991876969408056379195860410677814566225456558230131911142229028179902418223009651437985670625/1793954211366022694113801876840128100034871409513586250746316776290259783425578615401030447369541046747571819748417910583511123376348523955353017744010395602173906080395504375010762174191250701116076984219741972574712741619474818186676828531882286780795390571221287481389759837587864244524002565968286448146002639202882164150037179450123657170327105882819203167448541028601906377066191895183769810676831353109303069033234715310287563158747705988305326397404720186258671215368588625611876280581509852855552819149745718992630449787803625851701801184123166018366180137512856918294030710215034138299203584
134
+ assert ((2 + 3*I)**-1000).expand(complex=True) == \
135
+ Integer(1)*-81079464736246615951519029367296227340216902563389546989376269312984127074385455204551402940331021387412262494620336565547972162814110386834027871072723273110439771695255662375718498785908345629702081336606863762777939617745464755635193139022811989314881997210583159045854968310911252660312523907616129080027594310008539817935736331124833163907518549408018652090650537035647520296539436440394920287688149200763245475036722326561143851304795139005599209239350981457301460233967137708519975586996623552182807311159141501424576682074392689622074945519232029999/8777125472973511649630750050295188683351430110097915876250894978429797369155961290321829625004920141758416719066805645579710744290541337680113772670040386863849283653078324415471816788604945889094925784900885812724984087843737442111926413818245854362613018058774368703971604921858023116665586358870612944209398056562604561248859926344335598822815885851096698226775053153403320782439987679978321289537645645163767251396759519805603090332694449553371530571613352311006350058217982509738362083094920649452123351717366337410243853659113315547584871655479914439219520157174729130746351059075207407866012574386726064196992865627149566238044625779078186624347183905913357718850537058578084932880569701242598663149911276357125355850792073635533676541250531086757377369962506979378337216411188347761901006460813413505861461267545723590468627854202034450569581626648934062198718362303420281555886394558137408159453103395918783625713213314350531051312551733021627153081075080140680608080529736975658786227362251632725009435866547613598753584705455955419696609282059191031962604169242974038517575645939316377801594539335940001 - Integer(1)*46938745946789557590804551905243206242164799136976022474337918748798900569942573265747576032611189047943842446167719177749107138603040963603119861476016947257034472364028585381714774667326478071264878108114128915685688115488744955550920239128462489496563930809677159214598114273887061533057125164518549173898349061972857446844052995037423459472376202251620778517659247970283904820245958198842631651569984310559418135975795868314764489884749573052997832686979294085577689571149679540256349988338406458116270429842222666345146926395233040564229555893248370000*I/8777125472973511649630750050295188683351430110097915876250894978429797369155961290321829625004920141758416719066805645579710744290541337680113772670040386863849283653078324415471816788604945889094925784900885812724984087843737442111926413818245854362613018058774368703971604921858023116665586358870612944209398056562604561248859926344335598822815885851096698226775053153403320782439987679978321289537645645163767251396759519805603090332694449553371530571613352311006350058217982509738362083094920649452123351717366337410243853659113315547584871655479914439219520157174729130746351059075207407866012574386726064196992865627149566238044625779078186624347183905913357718850537058578084932880569701242598663149911276357125355850792073635533676541250531086757377369962506979378337216411188347761901006460813413505861461267545723590468627854202034450569581626648934062198718362303420281555886394558137408159453103395918783625713213314350531051312551733021627153081075080140680608080529736975658786227362251632725009435866547613598753584705455955419696609282059191031962604169242974038517575645939316377801594539335940001
136
+ assert ((2 + 3*I/4)**-1000).expand(complex=True) == \
137
+ Integer(1)*4257256305661027385394552848555894604806501409793288342610746813288539790051927148781268212212078237301273165351052934681382567968787279534591114913777456610214738290619922068269909423637926549603264174216950025398244509039145410016404821694746262142525173737175066432954496592560621330313807235750500564940782099283410261748370262433487444897446779072067625787246390824312580440138770014838135245148574339248259670887549732495841810961088930810608893772914812838358159009303794863047635845688453859317690488124382253918725010358589723156019888846606295866740117645571396817375322724096486161308083462637370825829567578309445855481578518239186117686659177284332344643124760453112513611749309168470605289172320376911472635805822082051716625171429727162039621902266619821870482519063133136820085579315127038372190224739238686708451840610064871885616258831386810233957438253532027049148030157164346719204500373766157143311767338973363806106967439378604898250533766359989107510507493549529158818602327525235240510049484816090584478644771183158342479140194633579061295740839490629457435283873180259847394582069479062820225159699506175855369539201399183443253793905149785994830358114153241481884290274629611529758663543080724574566578220908907477622643689220814376054314972190402285121776593824615083669045183404206291739005554569305329760211752815718335731118664756831942466773261465213581616104242113894521054475516019456867271362053692785300826523328020796670205463390909136593859765912483565093461468865534470710132881677639651348709376/2103100954337624833663208713697737151593634525061637972297915388685604042449504336765884978184588688426595940401280828953096857809292320006227881797146858511436638446932833617514351442216409828605662238790280753075176269765767010004889778647709740770757817960711900340755635772183674511158570690702969774966791073165467918123298694584729211212414462628433370481195120564586361368504153395406845170075275051749019600057116719726628746724489572189061061036426955163696859127711110719502594479795200686212257570291758725259007379710596548777812659422174199194837355646482046783616494013289495563083118517507178847555801163089723056310287760875135196081975602765511153122381201303871673391366630940702817360340900568748719988954847590748960761446218262344767250783946365392689256634180417145926390656439421745644011831124277463643383712803287985472471755648426749842410972650924240795946699346613614779460399530274263580007672855851663196114585312432954432654691485867618908420370875753749297487803461900447407917655296784879220450937110470920633595689721819488638484547259978337741496090602390463594556401615298457456112485536498177883358587125449801777718900375736758266215245325999241624148841915093787519330809347240990363802360596034171167818310322276373120180985148650099673289383722502488957717848531612020897298448601714154586319660314294591620415272119454982220034319689607295960162971300417552364254983071768070124456169427638371140064235083443242844616326538396503937972586505546495649094344512270582463639152160238137952390380581401171977159154009407415523525096743009110916334144716516647041176989758534635251844947906038080852185583742296318878233394998111078843229681030277039104786225656992262073797524057992347971177720807155842376332851559276430280477639539393920006008737472164850104411971830120295750221200029811143140323763349636629725073624360001 - Integer(1)*3098214262599218784594285246258841485430681674561917573155883806818465520660668045042109232930382494608383663464454841313154390741655282039877410154577448327874989496074260116195788919037407420625081798124301494353693248757853222257918294662198297114746822817460991242508743651430439120439020484502408313310689912381846149597061657483084652685283853595100434135149479564507015504022249330340259111426799121454516345905101620532787348293877485702600390665276070250119465888154331218827342488849948540687659846652377277250614246402784754153678374932540789808703029043827352976139228402417432199779415751301480406673762521987999573209628597459357964214510139892316208670927074795773830798600837815329291912002136924506221066071242281626618211060464126372574400100990746934953437169840312584285942093951405864225230033279614235191326102697164613004299868695519642598882914862568516635347204441042798206770888274175592401790040170576311989738272102077819127459014286741435419468254146418098278519775722104890854275995510700298782146199325790002255362719776098816136732897323406228294203133323296591166026338391813696715894870956511298793595675308998014158717167429941371979636895553724830981754579086664608880698350866487717403917070872269853194118364230971216854931998642990452908852258008095741042117326241406479532880476938937997238098399302185675832474590293188864060116934035867037219176916416481757918864533515526389079998129329045569609325290897577497835388451456680707076072624629697883854217331728051953671643278797380171857920000*I/2103100954337624833663208713697737151593634525061637972297915388685604042449504336765884978184588688426595940401280828953096857809292320006227881797146858511436638446932833617514351442216409828605662238790280753075176269765767010004889778647709740770757817960711900340755635772183674511158570690702969774966791073165467918123298694584729211212414462628433370481195120564586361368504153395406845170075275051749019600057116719726628746724489572189061061036426955163696859127711110719502594479795200686212257570291758725259007379710596548777812659422174199194837355646482046783616494013289495563083118517507178847555801163089723056310287760875135196081975602765511153122381201303871673391366630940702817360340900568748719988954847590748960761446218262344767250783946365392689256634180417145926390656439421745644011831124277463643383712803287985472471755648426749842410972650924240795946699346613614779460399530274263580007672855851663196114585312432954432654691485867618908420370875753749297487803461900447407917655296784879220450937110470920633595689721819488638484547259978337741496090602390463594556401615298457456112485536498177883358587125449801777718900375736758266215245325999241624148841915093787519330809347240990363802360596034171167818310322276373120180985148650099673289383722502488957717848531612020897298448601714154586319660314294591620415272119454982220034319689607295960162971300417552364254983071768070124456169427638371140064235083443242844616326538396503937972586505546495649094344512270582463639152160238137952390380581401171977159154009407415523525096743009110916334144716516647041176989758534635251844947906038080852185583742296318878233394998111078843229681030277039104786225656992262073797524057992347971177720807155842376332851559276430280477639539393920006008737472164850104411971830120295750221200029811143140323763349636629725073624360001
138
+
139
+ a = Symbol('a', real=True)
140
+ b = Symbol('b', real=True)
141
+ assert exp(a*(2 + I*b)).expand(complex=True) == \
142
+ I*exp(2*a)*sin(a*b) + exp(2*a)*cos(a*b)
143
+
144
+
145
+ def test_expand():
146
+ f = (16 - 2*sqrt(29))**2
147
+ assert f.expand() == 372 - 64*sqrt(29)
148
+ f = (Integer(1)/2 + I/2)**10
149
+ assert f.expand() == I/32
150
+ f = (Integer(1)/2 + I)**10
151
+ assert f.expand() == Integer(237)/1024 - 779*I/256
152
+
153
+
154
+ def test_re_im1652():
155
+ x = Symbol('x')
156
+ assert re(x) == re(conjugate(x))
157
+ assert im(x) == - im(conjugate(x))
158
+ assert im(x)*re(conjugate(x)) + im(conjugate(x)) * re(x) == 0
159
+
160
+
161
+ def test_issue_5084():
162
+ x = Symbol('x')
163
+ assert ((x + x*I)/(1 + I)).as_real_imag() == (re((x + I*x)/(1 + I)
164
+ ), im((x + I*x)/(1 + I)))
165
+
166
+
167
+ def test_issue_5236():
168
+ assert (cos(1 + I)**3).as_real_imag() == (-3*sin(1)**2*sinh(1)**2*cos(1)*cosh(1) +
169
+ cos(1)**3*cosh(1)**3, -3*cos(1)**2*cosh(1)**2*sin(1)*sinh(1) + sin(1)**3*sinh(1)**3)
170
+
171
+
172
+ def test_real_imag():
173
+ x, y, z = symbols('x, y, z')
174
+ X, Y, Z = symbols('X, Y, Z', commutative=False)
175
+ a = Symbol('a', real=True)
176
+ assert (2*a*x).as_real_imag() == (2*a*re(x), 2*a*im(x))
177
+
178
+ # issue 5395:
179
+ assert (x*x.conjugate()).as_real_imag() == (Abs(x)**2, 0)
180
+ assert im(x*x.conjugate()) == 0
181
+ assert im(x*y.conjugate()*z*y) == im(x*z)*Abs(y)**2
182
+ assert im(x*y.conjugate()*x*y) == im(x**2)*Abs(y)**2
183
+ assert im(Z*y.conjugate()*X*y) == im(Z*X)*Abs(y)**2
184
+ assert im(X*X.conjugate()) == im(X*X.conjugate(), evaluate=False)
185
+ assert (sin(x)*sin(x).conjugate()).as_real_imag() == \
186
+ (Abs(sin(x))**2, 0)
187
+
188
+ # issue 6573:
189
+ assert (x**2).as_real_imag() == (re(x)**2 - im(x)**2, 2*re(x)*im(x))
190
+
191
+ # issue 6428:
192
+ r = Symbol('r', real=True)
193
+ i = Symbol('i', imaginary=True)
194
+ assert (i*r*x).as_real_imag() == (I*i*r*im(x), -I*i*r*re(x))
195
+ assert (i*r*x*(y + 2)).as_real_imag() == (
196
+ I*i*r*(re(y) + 2)*im(x) + I*i*r*re(x)*im(y),
197
+ -I*i*r*(re(y) + 2)*re(x) + I*i*r*im(x)*im(y))
198
+
199
+ # issue 7106:
200
+ assert ((1 + I)/(1 - I)).as_real_imag() == (0, 1)
201
+ assert ((1 + 2*I)*(1 + 3*I)).as_real_imag() == (-5, 5)
202
+
203
+
204
+ def test_pow_issue_1724():
205
+ e = ((S.NegativeOne)**(S.One/3))
206
+ assert e.conjugate().n() == e.n().conjugate()
207
+ e = S('-2/3 - (-29/54 + sqrt(93)/18)**(1/3) - 1/(9*(-29/54 + sqrt(93)/18)**(1/3))')
208
+ assert e.conjugate().n() == e.n().conjugate()
209
+ e = 2**I
210
+ assert e.conjugate().n() == e.n().conjugate()
211
+
212
+
213
+ def test_issue_5429():
214
+ assert sqrt(I).conjugate() != sqrt(I)
215
+
216
+ def test_issue_4124():
217
+ from sympy.core.numbers import oo
218
+ assert expand_complex(I*oo) == oo*I
219
+
220
+ def test_issue_11518():
221
+ x = Symbol("x", real=True)
222
+ y = Symbol("y", real=True)
223
+ r = sqrt(x**2 + y**2)
224
+ assert conjugate(r) == r
225
+ s = abs(x + I * y)
226
+ assert conjugate(s) == r
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_constructor_postprocessor.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.basic import Basic
2
+ from sympy.core.mul import Mul
3
+ from sympy.core.symbol import (Symbol, symbols)
4
+
5
+ from sympy.testing.pytest import XFAIL
6
+
7
+ class SymbolInMulOnce(Symbol):
8
+ # Test class for a symbol that can only appear once in a `Mul` expression.
9
+ pass
10
+
11
+
12
+ Basic._constructor_postprocessor_mapping[SymbolInMulOnce] = {
13
+ "Mul": [lambda x: x],
14
+ "Pow": [lambda x: x.base if isinstance(x.base, SymbolInMulOnce) else x],
15
+ "Add": [lambda x: x],
16
+ }
17
+
18
+
19
+ def _postprocess_SymbolRemovesOtherSymbols(expr):
20
+ args = tuple(i for i in expr.args if not isinstance(i, Symbol) or isinstance(i, SymbolRemovesOtherSymbols))
21
+ if args == expr.args:
22
+ return expr
23
+ return Mul.fromiter(args)
24
+
25
+
26
+ class SymbolRemovesOtherSymbols(Symbol):
27
+ # Test class for a symbol that removes other symbols in `Mul`.
28
+ pass
29
+
30
+ Basic._constructor_postprocessor_mapping[SymbolRemovesOtherSymbols] = {
31
+ "Mul": [_postprocess_SymbolRemovesOtherSymbols],
32
+ }
33
+
34
+ class SubclassSymbolInMulOnce(SymbolInMulOnce):
35
+ pass
36
+
37
+ class SubclassSymbolRemovesOtherSymbols(SymbolRemovesOtherSymbols):
38
+ pass
39
+
40
+
41
+ def test_constructor_postprocessors1():
42
+ x = SymbolInMulOnce("x")
43
+ y = SymbolInMulOnce("y")
44
+ assert isinstance(3*x, Mul)
45
+ assert (3*x).args == (3, x)
46
+ assert x*x == x
47
+ assert 3*x*x == 3*x
48
+ assert 2*x*x + x == 3*x
49
+ assert x**3*y*y == x*y
50
+ assert x**5 + y*x**3 == x + x*y
51
+
52
+ w = SymbolRemovesOtherSymbols("w")
53
+ assert x*w == w
54
+ assert (3*w).args == (3, w)
55
+ assert set((w + x).args) == {x, w}
56
+
57
+ def test_constructor_postprocessors2():
58
+ x = SubclassSymbolInMulOnce("x")
59
+ y = SubclassSymbolInMulOnce("y")
60
+ assert isinstance(3*x, Mul)
61
+ assert (3*x).args == (3, x)
62
+ assert x*x == x
63
+ assert 3*x*x == 3*x
64
+ assert 2*x*x + x == 3*x
65
+ assert x**3*y*y == x*y
66
+ assert x**5 + y*x**3 == x + x*y
67
+
68
+ w = SubclassSymbolRemovesOtherSymbols("w")
69
+ assert x*w == w
70
+ assert (3*w).args == (3, w)
71
+ assert set((w + x).args) == {x, w}
72
+
73
+
74
+ @XFAIL
75
+ def test_subexpression_postprocessors():
76
+ # The postprocessors used to work with subexpressions, but the
77
+ # functionality was removed. See #15948.
78
+ a = symbols("a")
79
+ x = SymbolInMulOnce("x")
80
+ w = SymbolRemovesOtherSymbols("w")
81
+ assert 3*a*w**2 == 3*w**2
82
+ assert 3*a*x**3*w**2 == 3*w**2
83
+
84
+ x = SubclassSymbolInMulOnce("x")
85
+ w = SubclassSymbolRemovesOtherSymbols("w")
86
+ assert 3*a*w**2 == 3*w**2
87
+ assert 3*a*x**3*w**2 == 3*w**2
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_containers.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+
3
+ from sympy.core.basic import Basic
4
+ from sympy.core.containers import (Dict, Tuple)
5
+ from sympy.core.numbers import Integer
6
+ from sympy.core.kind import NumberKind
7
+ from sympy.matrices.common import MatrixKind
8
+ from sympy.core.singleton import S
9
+ from sympy.core.symbol import symbols
10
+ from sympy.core.sympify import sympify
11
+ from sympy.matrices.dense import Matrix
12
+ from sympy.sets.sets import FiniteSet
13
+ from sympy.core.containers import tuple_wrapper, TupleKind
14
+ from sympy.core.expr import unchanged
15
+ from sympy.core.function import Function, Lambda
16
+ from sympy.core.relational import Eq
17
+ from sympy.testing.pytest import raises
18
+ from sympy.utilities.iterables import is_sequence, iterable
19
+
20
+ from sympy.abc import x, y
21
+
22
+
23
+ def test_Tuple():
24
+ t = (1, 2, 3, 4)
25
+ st = Tuple(*t)
26
+ assert set(sympify(t)) == set(st)
27
+ assert len(t) == len(st)
28
+ assert set(sympify(t[:2])) == set(st[:2])
29
+ assert isinstance(st[:], Tuple)
30
+ assert st == Tuple(1, 2, 3, 4)
31
+ assert st.func(*st.args) == st
32
+ p, q, r, s = symbols('p q r s')
33
+ t2 = (p, q, r, s)
34
+ st2 = Tuple(*t2)
35
+ assert st2.atoms() == set(t2)
36
+ assert st == st2.subs({p: 1, q: 2, r: 3, s: 4})
37
+ # issue 5505
38
+ assert all(isinstance(arg, Basic) for arg in st.args)
39
+ assert Tuple(p, 1).subs(p, 0) == Tuple(0, 1)
40
+ assert Tuple(p, Tuple(p, 1)).subs(p, 0) == Tuple(0, Tuple(0, 1))
41
+
42
+ assert Tuple(t2) == Tuple(Tuple(*t2))
43
+ assert Tuple.fromiter(t2) == Tuple(*t2)
44
+ assert Tuple.fromiter(x for x in range(4)) == Tuple(0, 1, 2, 3)
45
+ assert st2.fromiter(st2.args) == st2
46
+
47
+
48
+ def test_Tuple_contains():
49
+ t1, t2 = Tuple(1), Tuple(2)
50
+ assert t1 in Tuple(1, 2, 3, t1, Tuple(t2))
51
+ assert t2 not in Tuple(1, 2, 3, t1, Tuple(t2))
52
+
53
+
54
+ def test_Tuple_concatenation():
55
+ assert Tuple(1, 2) + Tuple(3, 4) == Tuple(1, 2, 3, 4)
56
+ assert (1, 2) + Tuple(3, 4) == Tuple(1, 2, 3, 4)
57
+ assert Tuple(1, 2) + (3, 4) == Tuple(1, 2, 3, 4)
58
+ raises(TypeError, lambda: Tuple(1, 2) + 3)
59
+ raises(TypeError, lambda: 1 + Tuple(2, 3))
60
+
61
+ #the Tuple case in __radd__ is only reached when a subclass is involved
62
+ class Tuple2(Tuple):
63
+ def __radd__(self, other):
64
+ return Tuple.__radd__(self, other + other)
65
+ assert Tuple(1, 2) + Tuple2(3, 4) == Tuple(1, 2, 1, 2, 3, 4)
66
+ assert Tuple2(1, 2) + Tuple(3, 4) == Tuple(1, 2, 3, 4)
67
+
68
+
69
+ def test_Tuple_equality():
70
+ assert not isinstance(Tuple(1, 2), tuple)
71
+ assert (Tuple(1, 2) == (1, 2)) is True
72
+ assert (Tuple(1, 2) != (1, 2)) is False
73
+ assert (Tuple(1, 2) == (1, 3)) is False
74
+ assert (Tuple(1, 2) != (1, 3)) is True
75
+ assert (Tuple(1, 2) == Tuple(1, 2)) is True
76
+ assert (Tuple(1, 2) != Tuple(1, 2)) is False
77
+ assert (Tuple(1, 2) == Tuple(1, 3)) is False
78
+ assert (Tuple(1, 2) != Tuple(1, 3)) is True
79
+
80
+
81
+ def test_Tuple_Eq():
82
+ assert Eq(Tuple(), Tuple()) is S.true
83
+ assert Eq(Tuple(1), 1) is S.false
84
+ assert Eq(Tuple(1, 2), Tuple(1)) is S.false
85
+ assert Eq(Tuple(1), Tuple(1)) is S.true
86
+ assert Eq(Tuple(1, 2), Tuple(1, 3)) is S.false
87
+ assert Eq(Tuple(1, 2), Tuple(1, 2)) is S.true
88
+ assert unchanged(Eq, Tuple(1, x), Tuple(1, 2))
89
+ assert Eq(Tuple(1, x), Tuple(1, 2)).subs(x, 2) is S.true
90
+ assert unchanged(Eq, Tuple(1, 2), x)
91
+ f = Function('f')
92
+ assert unchanged(Eq, Tuple(1), f(x))
93
+ assert Eq(Tuple(1), f(x)).subs(x, 1).subs(f, Lambda(y, (y,))) is S.true
94
+
95
+
96
+ def test_Tuple_comparision():
97
+ assert (Tuple(1, 3) >= Tuple(-10, 30)) is S.true
98
+ assert (Tuple(1, 3) <= Tuple(-10, 30)) is S.false
99
+ assert (Tuple(1, 3) >= Tuple(1, 3)) is S.true
100
+ assert (Tuple(1, 3) <= Tuple(1, 3)) is S.true
101
+
102
+
103
+ def test_Tuple_tuple_count():
104
+ assert Tuple(0, 1, 2, 3).tuple_count(4) == 0
105
+ assert Tuple(0, 4, 1, 2, 3).tuple_count(4) == 1
106
+ assert Tuple(0, 4, 1, 4, 2, 3).tuple_count(4) == 2
107
+ assert Tuple(0, 4, 1, 4, 2, 4, 3).tuple_count(4) == 3
108
+
109
+
110
+ def test_Tuple_index():
111
+ assert Tuple(4, 0, 1, 2, 3).index(4) == 0
112
+ assert Tuple(0, 4, 1, 2, 3).index(4) == 1
113
+ assert Tuple(0, 1, 4, 2, 3).index(4) == 2
114
+ assert Tuple(0, 1, 2, 4, 3).index(4) == 3
115
+ assert Tuple(0, 1, 2, 3, 4).index(4) == 4
116
+
117
+ raises(ValueError, lambda: Tuple(0, 1, 2, 3).index(4))
118
+ raises(ValueError, lambda: Tuple(4, 0, 1, 2, 3).index(4, 1))
119
+ raises(ValueError, lambda: Tuple(0, 1, 2, 3, 4).index(4, 1, 4))
120
+
121
+
122
+ def test_Tuple_mul():
123
+ assert Tuple(1, 2, 3)*2 == Tuple(1, 2, 3, 1, 2, 3)
124
+ assert 2*Tuple(1, 2, 3) == Tuple(1, 2, 3, 1, 2, 3)
125
+ assert Tuple(1, 2, 3)*Integer(2) == Tuple(1, 2, 3, 1, 2, 3)
126
+ assert Integer(2)*Tuple(1, 2, 3) == Tuple(1, 2, 3, 1, 2, 3)
127
+
128
+ raises(TypeError, lambda: Tuple(1, 2, 3)*S.Half)
129
+ raises(TypeError, lambda: S.Half*Tuple(1, 2, 3))
130
+
131
+
132
+ def test_tuple_wrapper():
133
+
134
+ @tuple_wrapper
135
+ def wrap_tuples_and_return(*t):
136
+ return t
137
+
138
+ p = symbols('p')
139
+ assert wrap_tuples_and_return(p, 1) == (p, 1)
140
+ assert wrap_tuples_and_return((p, 1)) == (Tuple(p, 1),)
141
+ assert wrap_tuples_and_return(1, (p, 2), 3) == (1, Tuple(p, 2), 3)
142
+
143
+
144
+ def test_iterable_is_sequence():
145
+ ordered = [[], (), Tuple(), Matrix([[]])]
146
+ unordered = [set()]
147
+ not_sympy_iterable = [{}, '', '']
148
+ assert all(is_sequence(i) for i in ordered)
149
+ assert all(not is_sequence(i) for i in unordered)
150
+ assert all(iterable(i) for i in ordered + unordered)
151
+ assert all(not iterable(i) for i in not_sympy_iterable)
152
+ assert all(iterable(i, exclude=None) for i in not_sympy_iterable)
153
+
154
+
155
+ def test_TupleKind():
156
+ kind = TupleKind(NumberKind, MatrixKind(NumberKind))
157
+ assert Tuple(1, Matrix([1, 2])).kind is kind
158
+ assert Tuple(1, 2).kind is TupleKind(NumberKind, NumberKind)
159
+ assert Tuple(1, 2).kind.element_kind == (NumberKind, NumberKind)
160
+
161
+
162
+ def test_Dict():
163
+ x, y, z = symbols('x y z')
164
+ d = Dict({x: 1, y: 2, z: 3})
165
+ assert d[x] == 1
166
+ assert d[y] == 2
167
+ raises(KeyError, lambda: d[2])
168
+ raises(KeyError, lambda: d['2'])
169
+ assert len(d) == 3
170
+ assert set(d.keys()) == {x, y, z}
171
+ assert set(d.values()) == {S.One, S(2), S(3)}
172
+ assert d.get(5, 'default') == 'default'
173
+ assert d.get('5', 'default') == 'default'
174
+ assert x in d and z in d and 5 not in d and '5' not in d
175
+ assert d.has(x) and d.has(1) # SymPy Basic .has method
176
+
177
+ # Test input types
178
+ # input - a Python dict
179
+ # input - items as args - SymPy style
180
+ assert (Dict({x: 1, y: 2, z: 3}) ==
181
+ Dict((x, 1), (y, 2), (z, 3)))
182
+
183
+ raises(TypeError, lambda: Dict(((x, 1), (y, 2), (z, 3))))
184
+ with raises(NotImplementedError):
185
+ d[5] = 6 # assert immutability
186
+
187
+ assert set(
188
+ d.items()) == {Tuple(x, S.One), Tuple(y, S(2)), Tuple(z, S(3))}
189
+ assert set(d) == {x, y, z}
190
+ assert str(d) == '{x: 1, y: 2, z: 3}'
191
+ assert d.__repr__() == '{x: 1, y: 2, z: 3}'
192
+
193
+ # Test creating a Dict from a Dict.
194
+ d = Dict({x: 1, y: 2, z: 3})
195
+ assert d == Dict(d)
196
+
197
+ # Test for supporting defaultdict
198
+ d = defaultdict(int)
199
+ assert d[x] == 0
200
+ assert d[y] == 0
201
+ assert d[z] == 0
202
+ assert Dict(d)
203
+ d = Dict(d)
204
+ assert len(d) == 3
205
+ assert set(d.keys()) == {x, y, z}
206
+ assert set(d.values()) == {S.Zero, S.Zero, S.Zero}
207
+
208
+
209
+ def test_issue_5788():
210
+ args = [(1, 2), (2, 1)]
211
+ for o in [Dict, Tuple, FiniteSet]:
212
+ # __eq__ and arg handling
213
+ if o != Tuple:
214
+ assert o(*args) == o(*reversed(args))
215
+ pair = [o(*args), o(*reversed(args))]
216
+ assert sorted(pair) == sorted(pair)
217
+ assert set(o(*args)) # doesn't fail
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_count_ops.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.concrete.summations import Sum
2
+ from sympy.core.basic import Basic
3
+ from sympy.core.function import (Derivative, Function, count_ops)
4
+ from sympy.core.numbers import (I, Rational, pi)
5
+ from sympy.core.relational import (Eq, Rel)
6
+ from sympy.core.singleton import S
7
+ from sympy.core.symbol import (Symbol, symbols)
8
+ from sympy.functions.elementary.exponential import exp
9
+ from sympy.functions.elementary.trigonometric import (cos, sin)
10
+ from sympy.integrals.integrals import Integral
11
+ from sympy.logic.boolalg import (And, Equivalent, ITE, Implies, Nand,
12
+ Nor, Not, Or, Xor)
13
+ from sympy.matrices.expressions.matexpr import MatrixSymbol
14
+ from sympy.core.containers import Tuple
15
+
16
+ x, y, z = symbols('x,y,z')
17
+ a, b, c = symbols('a,b,c')
18
+
19
+ def test_count_ops_non_visual():
20
+ def count(val):
21
+ return count_ops(val, visual=False)
22
+ assert count(x) == 0
23
+ assert count(x) is not S.Zero
24
+ assert count(x + y) == 1
25
+ assert count(x + y) is not S.One
26
+ assert count(x + y*x + 2*y) == 4
27
+ assert count({x + y: x}) == 1
28
+ assert count({x + y: S(2) + x}) is not S.One
29
+ assert count(x < y) == 1
30
+ assert count(Or(x,y)) == 1
31
+ assert count(And(x,y)) == 1
32
+ assert count(Not(x)) == 1
33
+ assert count(Nor(x,y)) == 2
34
+ assert count(Nand(x,y)) == 2
35
+ assert count(Xor(x,y)) == 1
36
+ assert count(Implies(x,y)) == 1
37
+ assert count(Equivalent(x,y)) == 1
38
+ assert count(ITE(x,y,z)) == 1
39
+ assert count(ITE(True,x,y)) == 0
40
+
41
+
42
+ def test_count_ops_visual():
43
+ ADD, MUL, POW, SIN, COS, EXP, AND, D, G, M = symbols(
44
+ 'Add Mul Pow sin cos exp And Derivative Integral Sum'.upper())
45
+ DIV, SUB, NEG = symbols('DIV SUB NEG')
46
+ LT, LE, GT, GE, EQ, NE = symbols('LT LE GT GE EQ NE')
47
+ NOT, OR, AND, XOR, IMPLIES, EQUIVALENT, _ITE, BASIC, TUPLE = symbols(
48
+ 'Not Or And Xor Implies Equivalent ITE Basic Tuple'.upper())
49
+
50
+ def count(val):
51
+ return count_ops(val, visual=True)
52
+
53
+ assert count(7) is S.Zero
54
+ assert count(S(7)) is S.Zero
55
+ assert count(-1) == NEG
56
+ assert count(-2) == NEG
57
+ assert count(S(2)/3) == DIV
58
+ assert count(Rational(2, 3)) == DIV
59
+ assert count(pi/3) == DIV
60
+ assert count(-pi/3) == DIV + NEG
61
+ assert count(I - 1) == SUB
62
+ assert count(1 - I) == SUB
63
+ assert count(1 - 2*I) == SUB + MUL
64
+
65
+ assert count(x) is S.Zero
66
+ assert count(-x) == NEG
67
+ assert count(-2*x/3) == NEG + DIV + MUL
68
+ assert count(Rational(-2, 3)*x) == NEG + DIV + MUL
69
+ assert count(1/x) == DIV
70
+ assert count(1/(x*y)) == DIV + MUL
71
+ assert count(-1/x) == NEG + DIV
72
+ assert count(-2/x) == NEG + DIV
73
+ assert count(x/y) == DIV
74
+ assert count(-x/y) == NEG + DIV
75
+
76
+ assert count(x**2) == POW
77
+ assert count(-x**2) == POW + NEG
78
+ assert count(-2*x**2) == POW + MUL + NEG
79
+
80
+ assert count(x + pi/3) == ADD + DIV
81
+ assert count(x + S.One/3) == ADD + DIV
82
+ assert count(x + Rational(1, 3)) == ADD + DIV
83
+ assert count(x + y) == ADD
84
+ assert count(x - y) == SUB
85
+ assert count(y - x) == SUB
86
+ assert count(-1/(x - y)) == DIV + NEG + SUB
87
+ assert count(-1/(y - x)) == DIV + NEG + SUB
88
+ assert count(1 + x**y) == ADD + POW
89
+ assert count(1 + x + y) == 2*ADD
90
+ assert count(1 + x + y + z) == 3*ADD
91
+ assert count(1 + x**y + 2*x*y + y**2) == 3*ADD + 2*POW + 2*MUL
92
+ assert count(2*z + y + x + 1) == 3*ADD + MUL
93
+ assert count(2*z + y**17 + x + 1) == 3*ADD + MUL + POW
94
+ assert count(2*z + y**17 + x + sin(x)) == 3*ADD + POW + MUL + SIN
95
+ assert count(2*z + y**17 + x + sin(x**2)) == 3*ADD + MUL + 2*POW + SIN
96
+ assert count(2*z + y**17 + x + sin(
97
+ x**2) + exp(cos(x))) == 4*ADD + MUL + 2*POW + EXP + COS + SIN
98
+
99
+ assert count(Derivative(x, x)) == D
100
+ assert count(Integral(x, x) + 2*x/(1 + x)) == G + DIV + MUL + 2*ADD
101
+ assert count(Sum(x, (x, 1, x + 1)) + 2*x/(1 + x)) == M + DIV + MUL + 3*ADD
102
+ assert count(Basic()) is S.Zero
103
+
104
+ assert count({x + 1: sin(x)}) == ADD + SIN
105
+ assert count([x + 1, sin(x) + y, None]) == ADD + SIN + ADD
106
+ assert count({x + 1: sin(x), y: cos(x) + 1}) == SIN + COS + 2*ADD
107
+ assert count({}) is S.Zero
108
+ assert count([x + 1, sin(x)*y, None]) == SIN + ADD + MUL
109
+ assert count([]) is S.Zero
110
+
111
+ assert count(Basic()) == 0
112
+ assert count(Basic(Basic(),Basic(x,x+y))) == ADD + 2*BASIC
113
+ assert count(Basic(x, x + y)) == ADD + BASIC
114
+ assert [count(Rel(x, y, op)) for op in '< <= > >= == <> !='.split()
115
+ ] == [LT, LE, GT, GE, EQ, NE, NE]
116
+ assert count(Or(x, y)) == OR
117
+ assert count(And(x, y)) == AND
118
+ assert count(Or(x, Or(y, And(z, a)))) == AND + OR
119
+ assert count(Nor(x, y)) == NOT + OR
120
+ assert count(Nand(x, y)) == NOT + AND
121
+ assert count(Xor(x, y)) == XOR
122
+ assert count(Implies(x, y)) == IMPLIES
123
+ assert count(Equivalent(x, y)) == EQUIVALENT
124
+ assert count(ITE(x, y, z)) == _ITE
125
+ assert count([Or(x, y), And(x, y), Basic(x + y)]
126
+ ) == ADD + AND + BASIC + OR
127
+
128
+ assert count(Basic(Tuple(x))) == BASIC + TUPLE
129
+ #It checks that TUPLE is counted as an operation.
130
+
131
+ assert count(Eq(x + y, S(2))) == ADD + EQ
132
+
133
+
134
+ def test_issue_9324():
135
+ def count(val):
136
+ return count_ops(val, visual=False)
137
+
138
+ M = MatrixSymbol('M', 10, 10)
139
+ assert count(M[0, 0]) == 0
140
+ assert count(2 * M[0, 0] + M[5, 7]) == 2
141
+ P = MatrixSymbol('P', 3, 3)
142
+ Q = MatrixSymbol('Q', 3, 3)
143
+ assert count(P + Q) == 1
144
+ m = Symbol('m', integer=True)
145
+ n = Symbol('n', integer=True)
146
+ M = MatrixSymbol('M', m + n, m * m)
147
+ assert count(M[0, 1]) == 2
148
+
149
+
150
+ def test_issue_21532():
151
+ f = Function('f')
152
+ g = Function('g')
153
+ FUNC_F, FUNC_G = symbols('FUNC_F, FUNC_G')
154
+ assert f(x).count_ops(visual=True) == FUNC_F
155
+ assert g(x).count_ops(visual=True) == FUNC_G
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_diff.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.concrete.summations import Sum
2
+ from sympy.core.expr import Expr
3
+ from sympy.core.function import (Derivative, Function, diff, Subs)
4
+ from sympy.core.numbers import (I, Rational, pi)
5
+ from sympy.core.relational import Eq
6
+ from sympy.core.singleton import S
7
+ from sympy.core.symbol import Symbol
8
+ from sympy.functions.combinatorial.factorials import factorial
9
+ from sympy.functions.elementary.complexes import (im, re)
10
+ from sympy.functions.elementary.exponential import (exp, log)
11
+ from sympy.functions.elementary.miscellaneous import Max
12
+ from sympy.functions.elementary.piecewise import Piecewise
13
+ from sympy.functions.elementary.trigonometric import (cos, cot, sin, tan)
14
+ from sympy.tensor.array.ndim_array import NDimArray
15
+ from sympy.testing.pytest import raises
16
+ from sympy.abc import a, b, c, x, y, z
17
+
18
+ def test_diff():
19
+ assert Rational(1, 3).diff(x) is S.Zero
20
+ assert I.diff(x) is S.Zero
21
+ assert pi.diff(x) is S.Zero
22
+ assert x.diff(x, 0) == x
23
+ assert (x**2).diff(x, 2, x) == 0
24
+ assert (x**2).diff((x, 2), x) == 0
25
+ assert (x**2).diff((x, 1), x) == 2
26
+ assert (x**2).diff((x, 1), (x, 1)) == 2
27
+ assert (x**2).diff((x, 2)) == 2
28
+ assert (x**2).diff(x, y, 0) == 2*x
29
+ assert (x**2).diff(x, (y, 0)) == 2*x
30
+ assert (x**2).diff(x, y) == 0
31
+ raises(ValueError, lambda: x.diff(1, x))
32
+
33
+ p = Rational(5)
34
+ e = a*b + b**p
35
+ assert e.diff(a) == b
36
+ assert e.diff(b) == a + 5*b**4
37
+ assert e.diff(b).diff(a) == Rational(1)
38
+ e = a*(b + c)
39
+ assert e.diff(a) == b + c
40
+ assert e.diff(b) == a
41
+ assert e.diff(b).diff(a) == Rational(1)
42
+ e = c**p
43
+ assert e.diff(c, 6) == Rational(0)
44
+ assert e.diff(c, 5) == Rational(120)
45
+ e = c**Rational(2)
46
+ assert e.diff(c) == 2*c
47
+ e = a*b*c
48
+ assert e.diff(c) == a*b
49
+
50
+
51
+ def test_diff2():
52
+ n3 = Rational(3)
53
+ n2 = Rational(2)
54
+ n6 = Rational(6)
55
+
56
+ e = n3*(-n2 + x**n2)*cos(x) + x*(-n6 + x**n2)*sin(x)
57
+ assert e == 3*(-2 + x**2)*cos(x) + x*(-6 + x**2)*sin(x)
58
+ assert e.diff(x).expand() == x**3*cos(x)
59
+
60
+ e = (x + 1)**3
61
+ assert e.diff(x) == 3*(x + 1)**2
62
+ e = x*(x + 1)**3
63
+ assert e.diff(x) == (x + 1)**3 + 3*x*(x + 1)**2
64
+ e = 2*exp(x*x)*x
65
+ assert e.diff(x) == 2*exp(x**2) + 4*x**2*exp(x**2)
66
+
67
+
68
+ def test_diff3():
69
+ p = Rational(5)
70
+ e = a*b + sin(b**p)
71
+ assert e == a*b + sin(b**5)
72
+ assert e.diff(a) == b
73
+ assert e.diff(b) == a + 5*b**4*cos(b**5)
74
+ e = tan(c)
75
+ assert e == tan(c)
76
+ assert e.diff(c) in [cos(c)**(-2), 1 + sin(c)**2/cos(c)**2, 1 + tan(c)**2]
77
+ e = c*log(c) - c
78
+ assert e == -c + c*log(c)
79
+ assert e.diff(c) == log(c)
80
+ e = log(sin(c))
81
+ assert e == log(sin(c))
82
+ assert e.diff(c) in [sin(c)**(-1)*cos(c), cot(c)]
83
+ e = (Rational(2)**a/log(Rational(2)))
84
+ assert e == 2**a*log(Rational(2))**(-1)
85
+ assert e.diff(a) == 2**a
86
+
87
+
88
+ def test_diff_no_eval_derivative():
89
+ class My(Expr):
90
+ def __new__(cls, x):
91
+ return Expr.__new__(cls, x)
92
+
93
+ # My doesn't have its own _eval_derivative method
94
+ assert My(x).diff(x).func is Derivative
95
+ assert My(x).diff(x, 3).func is Derivative
96
+ assert re(x).diff(x, 2) == Derivative(re(x), (x, 2)) # issue 15518
97
+ assert diff(NDimArray([re(x), im(x)]), (x, 2)) == NDimArray(
98
+ [Derivative(re(x), (x, 2)), Derivative(im(x), (x, 2))])
99
+ # it doesn't have y so it shouldn't need a method for this case
100
+ assert My(x).diff(y) == 0
101
+
102
+
103
+ def test_speed():
104
+ # this should return in 0.0s. If it takes forever, it's wrong.
105
+ assert x.diff(x, 10**8) == 0
106
+
107
+
108
+ def test_deriv_noncommutative():
109
+ A = Symbol("A", commutative=False)
110
+ f = Function("f")
111
+ assert A*f(x)*A == f(x)*A**2
112
+ assert A*f(x).diff(x)*A == f(x).diff(x) * A**2
113
+
114
+
115
+ def test_diff_nth_derivative():
116
+ f = Function("f")
117
+ n = Symbol("n", integer=True)
118
+
119
+ expr = diff(sin(x), (x, n))
120
+ expr2 = diff(f(x), (x, 2))
121
+ expr3 = diff(f(x), (x, n))
122
+
123
+ assert expr.subs(sin(x), cos(-x)) == Derivative(cos(-x), (x, n))
124
+ assert expr.subs(n, 1).doit() == cos(x)
125
+ assert expr.subs(n, 2).doit() == -sin(x)
126
+
127
+ assert expr2.subs(Derivative(f(x), x), y) == Derivative(y, x)
128
+ # Currently not supported (cannot determine if `n > 1`):
129
+ #assert expr3.subs(Derivative(f(x), x), y) == Derivative(y, (x, n-1))
130
+ assert expr3 == Derivative(f(x), (x, n))
131
+
132
+ assert diff(x, (x, n)) == Piecewise((x, Eq(n, 0)), (1, Eq(n, 1)), (0, True))
133
+ assert diff(2*x, (x, n)).dummy_eq(
134
+ Sum(Piecewise((2*x*factorial(n)/(factorial(y)*factorial(-y + n)),
135
+ Eq(y, 0) & Eq(Max(0, -y + n), 0)),
136
+ (2*factorial(n)/(factorial(y)*factorial(-y + n)), Eq(y, 0) & Eq(Max(0,
137
+ -y + n), 1)), (0, True)), (y, 0, n)))
138
+ # TODO: assert diff(x**2, (x, n)) == x**(2-n)*ff(2, n)
139
+ exprm = x*sin(x)
140
+ mul_diff = diff(exprm, (x, n))
141
+ assert isinstance(mul_diff, Sum)
142
+ for i in range(5):
143
+ assert mul_diff.subs(n, i).doit() == exprm.diff((x, i)).expand()
144
+
145
+ exprm2 = 2*y*x*sin(x)*cos(x)*log(x)*exp(x)
146
+ dex = exprm2.diff((x, n))
147
+ assert isinstance(dex, Sum)
148
+ for i in range(7):
149
+ assert dex.subs(n, i).doit().expand() == \
150
+ exprm2.diff((x, i)).expand()
151
+
152
+ assert (cos(x)*sin(y)).diff([[x, y, z]]) == NDimArray([
153
+ -sin(x)*sin(y), cos(x)*cos(y), 0])
154
+
155
+
156
+ def test_issue_16160():
157
+ assert Derivative(x**3, (x, x)).subs(x, 2) == Subs(
158
+ Derivative(x**3, (x, 2)), x, 2)
159
+ assert Derivative(1 + x**3, (x, x)).subs(x, 0
160
+ ) == Derivative(1 + y**3, (y, 0)).subs(y, 0)
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_equal.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import Rational
2
+ from sympy.core.symbol import (Dummy, Symbol)
3
+ from sympy.functions.elementary.exponential import exp
4
+
5
+
6
+ def test_equal():
7
+ b = Symbol("b")
8
+ a = Symbol("a")
9
+ e1 = a + b
10
+ e2 = 2*a*b
11
+ e3 = a**3*b**2
12
+ e4 = a*b + b*a
13
+ assert not e1 == e2
14
+ assert not e1 == e2
15
+ assert e1 != e2
16
+ assert e2 == e4
17
+ assert e2 != e3
18
+ assert not e2 == e3
19
+
20
+ x = Symbol("x")
21
+ e1 = exp(x + 1/x)
22
+ y = Symbol("x")
23
+ e2 = exp(y + 1/y)
24
+ assert e1 == e2
25
+ assert not e1 != e2
26
+ y = Symbol("y")
27
+ e2 = exp(y + 1/y)
28
+ assert not e1 == e2
29
+ assert e1 != e2
30
+
31
+ e5 = Rational(3) + 2*x - x - x
32
+ assert e5 == 3
33
+ assert 3 == e5
34
+ assert e5 != 4
35
+ assert 4 != e5
36
+ assert e5 != 3 + x
37
+ assert 3 + x != e5
38
+
39
+
40
+ def test_expevalbug():
41
+ x = Symbol("x")
42
+ e1 = exp(1*x)
43
+ e3 = exp(x)
44
+ assert e1 == e3
45
+
46
+
47
+ def test_cmp_bug1():
48
+ class T:
49
+ pass
50
+
51
+ t = T()
52
+ x = Symbol("x")
53
+
54
+ assert not (x == t)
55
+ assert (x != t)
56
+
57
+
58
+ def test_cmp_bug2():
59
+ class T:
60
+ pass
61
+
62
+ t = T()
63
+
64
+ assert not (Symbol == t)
65
+ assert (Symbol != t)
66
+
67
+
68
+ def test_cmp_issue_4357():
69
+ """ Check that Basic subclasses can be compared with sympifiable objects.
70
+
71
+ https://github.com/sympy/sympy/issues/4357
72
+ """
73
+ assert not (Symbol == 1)
74
+ assert (Symbol != 1)
75
+ assert not (Symbol == 'x')
76
+ assert (Symbol != 'x')
77
+
78
+
79
+ def test_dummy_eq():
80
+ x = Symbol('x')
81
+ y = Symbol('y')
82
+
83
+ u = Dummy('u')
84
+
85
+ assert (u**2 + 1).dummy_eq(x**2 + 1) is True
86
+ assert ((u**2 + 1) == (x**2 + 1)) is False
87
+
88
+ assert (u**2 + y).dummy_eq(x**2 + y, x) is True
89
+ assert (u**2 + y).dummy_eq(x**2 + y, y) is False
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_eval.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.function import Function
2
+ from sympy.core.numbers import (I, Rational)
3
+ from sympy.core.singleton import S
4
+ from sympy.core.symbol import Symbol
5
+ from sympy.functions.elementary.exponential import exp
6
+ from sympy.functions.elementary.miscellaneous import sqrt
7
+ from sympy.functions.elementary.trigonometric import (cos, tan)
8
+ from sympy.testing.pytest import XFAIL
9
+
10
+
11
+ def test_add_eval():
12
+ a = Symbol("a")
13
+ b = Symbol("b")
14
+ c = Rational(1)
15
+ p = Rational(5)
16
+ assert a*b + c + p == a*b + 6
17
+ assert c + a + p == a + 6
18
+ assert c + a - p == a + (-4)
19
+ assert a + a == 2*a
20
+ assert a + p + a == 2*a + 5
21
+ assert c + p == Rational(6)
22
+ assert b + a - b == a
23
+
24
+
25
+ def test_addmul_eval():
26
+ a = Symbol("a")
27
+ b = Symbol("b")
28
+ c = Rational(1)
29
+ p = Rational(5)
30
+ assert c + a + b*c + a - p == 2*a + b + (-4)
31
+ assert a*2 + p + a == a*2 + 5 + a
32
+ assert a*2 + p + a == 3*a + 5
33
+ assert a*2 + a == 3*a
34
+
35
+
36
+ def test_pow_eval():
37
+ # XXX Pow does not fully support conversion of negative numbers
38
+ # to their complex equivalent
39
+
40
+ assert sqrt(-1) == I
41
+
42
+ assert sqrt(-4) == 2*I
43
+ assert sqrt( 4) == 2
44
+ assert (8)**Rational(1, 3) == 2
45
+ assert (-8)**Rational(1, 3) == 2*((-1)**Rational(1, 3))
46
+
47
+ assert sqrt(-2) == I*sqrt(2)
48
+ assert (-1)**Rational(1, 3) != I
49
+ assert (-10)**Rational(1, 3) != I*((10)**Rational(1, 3))
50
+ assert (-2)**Rational(1, 4) != (2)**Rational(1, 4)
51
+
52
+ assert 64**Rational(1, 3) == 4
53
+ assert 64**Rational(2, 3) == 16
54
+ assert 24/sqrt(64) == 3
55
+ assert (-27)**Rational(1, 3) == 3*(-1)**Rational(1, 3)
56
+
57
+ assert (cos(2) / tan(2))**2 == (cos(2) / tan(2))**2
58
+
59
+
60
+ @XFAIL
61
+ def test_pow_eval_X1():
62
+ assert (-1)**Rational(1, 3) == S.Half + S.Half*I*sqrt(3)
63
+
64
+
65
+ def test_mulpow_eval():
66
+ x = Symbol('x')
67
+ assert sqrt(50)/(sqrt(2)*x) == 5/x
68
+ assert sqrt(27)/sqrt(3) == 3
69
+
70
+
71
+ def test_evalpow_bug():
72
+ x = Symbol("x")
73
+ assert 1/(1/x) == x
74
+ assert 1/(-1/x) == -x
75
+
76
+
77
+ def test_symbol_expand():
78
+ x = Symbol('x')
79
+ y = Symbol('y')
80
+
81
+ f = x**4*y**4
82
+ assert f == x**4*y**4
83
+ assert f == f.expand()
84
+
85
+ g = (x*y)**4
86
+ assert g == f
87
+ assert g.expand() == f
88
+ assert g.expand() == g.expand().expand()
89
+
90
+
91
+ def test_function():
92
+ f, l = map(Function, 'fl')
93
+ x = Symbol('x')
94
+ assert exp(l(x))*l(x)/exp(l(x)) == l(x)
95
+ assert exp(f(x))*f(x)/exp(f(x)) == f(x)
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_evalf.py ADDED
@@ -0,0 +1,732 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ from sympy.concrete.products import (Product, product)
4
+ from sympy.concrete.summations import Sum
5
+ from sympy.core.add import Add
6
+ from sympy.core.evalf import N
7
+ from sympy.core.function import (Function, nfloat)
8
+ from sympy.core.mul import Mul
9
+ from sympy.core import (GoldenRatio)
10
+ from sympy.core.numbers import (AlgebraicNumber, E, Float, I, Rational,
11
+ oo, zoo, nan, pi)
12
+ from sympy.core.power import Pow
13
+ from sympy.core.relational import Eq
14
+ from sympy.core.singleton import S
15
+ from sympy.core.symbol import Symbol
16
+ from sympy.core.sympify import sympify
17
+ from sympy.functions.combinatorial.factorials import factorial
18
+ from sympy.functions.combinatorial.numbers import fibonacci
19
+ from sympy.functions.elementary.complexes import (Abs, re, im)
20
+ from sympy.functions.elementary.exponential import (exp, log)
21
+ from sympy.functions.elementary.hyperbolic import (acosh, cosh)
22
+ from sympy.functions.elementary.integers import (ceiling, floor)
23
+ from sympy.functions.elementary.miscellaneous import (Max, sqrt)
24
+ from sympy.functions.elementary.trigonometric import (acos, atan, cos, sin, tan)
25
+ from sympy.integrals.integrals import (Integral, integrate)
26
+ from sympy.polys.polytools import factor
27
+ from sympy.polys.rootoftools import CRootOf
28
+ from sympy.polys.specialpolys import cyclotomic_poly
29
+ from sympy.printing import srepr
30
+ from sympy.printing.str import sstr
31
+ from sympy.simplify.simplify import simplify
32
+ from sympy.core.numbers import comp
33
+ from sympy.core.evalf import (complex_accuracy, PrecisionExhausted,
34
+ scaled_zero, get_integer_part, as_mpmath, evalf, _evalf_with_bounded_error)
35
+ from mpmath import inf, ninf, make_mpc
36
+ from mpmath.libmp.libmpf import from_float, fzero
37
+ from sympy.core.expr import unchanged
38
+ from sympy.testing.pytest import raises, XFAIL
39
+ from sympy.abc import n, x, y
40
+
41
+
42
+ def NS(e, n=15, **options):
43
+ return sstr(sympify(e).evalf(n, **options), full_prec=True)
44
+
45
+
46
+ def test_evalf_helpers():
47
+ from mpmath.libmp import finf
48
+ assert complex_accuracy((from_float(2.0), None, 35, None)) == 35
49
+ assert complex_accuracy((from_float(2.0), from_float(10.0), 35, 100)) == 37
50
+ assert complex_accuracy(
51
+ (from_float(2.0), from_float(1000.0), 35, 100)) == 43
52
+ assert complex_accuracy((from_float(2.0), from_float(10.0), 100, 35)) == 35
53
+ assert complex_accuracy(
54
+ (from_float(2.0), from_float(1000.0), 100, 35)) == 35
55
+ assert complex_accuracy(finf) == math.inf
56
+ assert complex_accuracy(zoo) == math.inf
57
+ raises(ValueError, lambda: get_integer_part(zoo, 1, {}))
58
+
59
+
60
+ def test_evalf_basic():
61
+ assert NS('pi', 15) == '3.14159265358979'
62
+ assert NS('2/3', 10) == '0.6666666667'
63
+ assert NS('355/113-pi', 6) == '2.66764e-7'
64
+ assert NS('16*atan(1/5)-4*atan(1/239)', 15) == '3.14159265358979'
65
+
66
+
67
+ def test_cancellation():
68
+ assert NS(Add(pi, Rational(1, 10**1000), -pi, evaluate=False), 15,
69
+ maxn=1200) == '1.00000000000000e-1000'
70
+
71
+
72
+ def test_evalf_powers():
73
+ assert NS('pi**(10**20)', 10) == '1.339148777e+49714987269413385435'
74
+ assert NS(pi**(10**100), 10) == ('4.946362032e+4971498726941338543512682882'
75
+ '9089887365167832438044244613405349992494711208'
76
+ '95526746555473864642912223')
77
+ assert NS('2**(1/10**50)', 15) == '1.00000000000000'
78
+ assert NS('2**(1/10**50)-1', 15) == '6.93147180559945e-51'
79
+
80
+ # Evaluation of Rump's ill-conditioned polynomial
81
+
82
+
83
+ def test_evalf_rump():
84
+ a = 1335*y**6/4 + x**2*(11*x**2*y**2 - y**6 - 121*y**4 - 2) + 11*y**8/2 + x/(2*y)
85
+ assert NS(a, 15, subs={x: 77617, y: 33096}) == '-0.827396059946821'
86
+
87
+
88
+ def test_evalf_complex():
89
+ assert NS('2*sqrt(pi)*I', 10) == '3.544907702*I'
90
+ assert NS('3+3*I', 15) == '3.00000000000000 + 3.00000000000000*I'
91
+ assert NS('E+pi*I', 15) == '2.71828182845905 + 3.14159265358979*I'
92
+ assert NS('pi * (3+4*I)', 15) == '9.42477796076938 + 12.5663706143592*I'
93
+ assert NS('I*(2+I)', 15) == '-1.00000000000000 + 2.00000000000000*I'
94
+
95
+
96
+ @XFAIL
97
+ def test_evalf_complex_bug():
98
+ assert NS('(pi+E*I)*(E+pi*I)', 15) in ('0.e-15 + 17.25866050002*I',
99
+ '0.e-17 + 17.25866050002*I', '-0.e-17 + 17.25866050002*I')
100
+
101
+
102
+ def test_evalf_complex_powers():
103
+ assert NS('(E+pi*I)**100000000000000000') == \
104
+ '-3.58896782867793e+61850354284995199 + 4.58581754997159e+61850354284995199*I'
105
+ # XXX: rewrite if a+a*I simplification introduced in SymPy
106
+ #assert NS('(pi + pi*I)**2') in ('0.e-15 + 19.7392088021787*I', '0.e-16 + 19.7392088021787*I')
107
+ assert NS('(pi + pi*I)**2', chop=True) == '19.7392088021787*I'
108
+ assert NS(
109
+ '(pi + 1/10**8 + pi*I)**2') == '6.2831853e-8 + 19.7392088650106*I'
110
+ assert NS('(pi + 1/10**12 + pi*I)**2') == '6.283e-12 + 19.7392088021850*I'
111
+ assert NS('(pi + pi*I)**4', chop=True) == '-389.636364136010'
112
+ assert NS(
113
+ '(pi + 1/10**8 + pi*I)**4') == '-389.636366616512 + 2.4805021e-6*I'
114
+ assert NS('(pi + 1/10**12 + pi*I)**4') == '-389.636364136258 + 2.481e-10*I'
115
+ assert NS(
116
+ '(10000*pi + 10000*pi*I)**4', chop=True) == '-3.89636364136010e+18'
117
+
118
+
119
+ @XFAIL
120
+ def test_evalf_complex_powers_bug():
121
+ assert NS('(pi + pi*I)**4') == '-389.63636413601 + 0.e-14*I'
122
+
123
+
124
+ def test_evalf_exponentiation():
125
+ assert NS(sqrt(-pi)) == '1.77245385090552*I'
126
+ assert NS(Pow(pi*I, Rational(
127
+ 1, 2), evaluate=False)) == '1.25331413731550 + 1.25331413731550*I'
128
+ assert NS(pi**I) == '0.413292116101594 + 0.910598499212615*I'
129
+ assert NS(pi**(E + I/3)) == '20.8438653991931 + 8.36343473930031*I'
130
+ assert NS((pi + I/3)**(E + I/3)) == '17.2442906093590 + 13.6839376767037*I'
131
+ assert NS(exp(pi)) == '23.1406926327793'
132
+ assert NS(exp(pi + E*I)) == '-21.0981542849657 + 9.50576358282422*I'
133
+ assert NS(pi**pi) == '36.4621596072079'
134
+ assert NS((-pi)**pi) == '-32.9138577418939 - 15.6897116534332*I'
135
+ assert NS((-pi)**(-pi)) == '-0.0247567717232697 + 0.0118013091280262*I'
136
+
137
+ # An example from Smith, "Multiple Precision Complex Arithmetic and Functions"
138
+
139
+
140
+ def test_evalf_complex_cancellation():
141
+ A = Rational('63287/100000')
142
+ B = Rational('52498/100000')
143
+ C = Rational('69301/100000')
144
+ D = Rational('83542/100000')
145
+ F = Rational('2231321613/2500000000')
146
+ # XXX: the number of returned mantissa digits in the real part could
147
+ # change with the implementation. What matters is that the returned digits are
148
+ # correct; those that are showing now are correct.
149
+ # >>> ((A+B*I)*(C+D*I)).expand()
150
+ # 64471/10000000000 + 2231321613*I/2500000000
151
+ # >>> 2231321613*4
152
+ # 8925286452L
153
+ assert NS((A + B*I)*(C + D*I), 6) == '6.44710e-6 + 0.892529*I'
154
+ assert NS((A + B*I)*(C + D*I), 10) == '6.447100000e-6 + 0.8925286452*I'
155
+ assert NS((A + B*I)*(
156
+ C + D*I) - F*I, 5) in ('6.4471e-6 + 0.e-14*I', '6.4471e-6 - 0.e-14*I')
157
+
158
+
159
+ def test_evalf_logs():
160
+ assert NS("log(3+pi*I)", 15) == '1.46877619736226 + 0.808448792630022*I'
161
+ assert NS("log(pi*I)", 15) == '1.14472988584940 + 1.57079632679490*I'
162
+ assert NS('log(-1 + 0.00001)', 2) == '-1.0e-5 + 3.1*I'
163
+ assert NS('log(100, 10, evaluate=False)', 15) == '2.00000000000000'
164
+ assert NS('-2*I*log(-(-1)**(S(1)/9))', 15) == '-5.58505360638185'
165
+
166
+
167
+ def test_evalf_trig():
168
+ assert NS('sin(1)', 15) == '0.841470984807897'
169
+ assert NS('cos(1)', 15) == '0.540302305868140'
170
+ assert NS('sin(10**-6)', 15) == '9.99999999999833e-7'
171
+ assert NS('cos(10**-6)', 15) == '0.999999999999500'
172
+ assert NS('sin(E*10**100)', 15) == '0.409160531722613'
173
+ # Some input near roots
174
+ assert NS(sin(exp(pi*sqrt(163))*pi), 15) == '-2.35596641936785e-12'
175
+ assert NS(sin(pi*10**100 + Rational(7, 10**5), evaluate=False), 15, maxn=120) == \
176
+ '6.99999999428333e-5'
177
+ assert NS(sin(Rational(7, 10**5), evaluate=False), 15) == \
178
+ '6.99999999428333e-5'
179
+
180
+ # Check detection of various false identities
181
+
182
+
183
+ def test_evalf_near_integers():
184
+ # Binet's formula
185
+ f = lambda n: ((1 + sqrt(5))**n)/(2**n * sqrt(5))
186
+ assert NS(f(5000) - fibonacci(5000), 10, maxn=1500) == '5.156009964e-1046'
187
+ # Some near-integer identities from
188
+ # http://mathworld.wolfram.com/AlmostInteger.html
189
+ assert NS('sin(2017*2**(1/5))', 15) == '-1.00000000000000'
190
+ assert NS('sin(2017*2**(1/5))', 20) == '-0.99999999999999997857'
191
+ assert NS('1+sin(2017*2**(1/5))', 15) == '2.14322287389390e-17'
192
+ assert NS('45 - 613*E/37 + 35/991', 15) == '6.03764498766326e-11'
193
+
194
+
195
+ def test_evalf_ramanujan():
196
+ assert NS(exp(pi*sqrt(163)) - 640320**3 - 744, 10) == '-7.499274028e-13'
197
+ # A related identity
198
+ A = 262537412640768744*exp(-pi*sqrt(163))
199
+ B = 196884*exp(-2*pi*sqrt(163))
200
+ C = 103378831900730205293632*exp(-3*pi*sqrt(163))
201
+ assert NS(1 - A - B + C, 10) == '1.613679005e-59'
202
+
203
+ # Input that for various reasons have failed at some point
204
+
205
+
206
+ def test_evalf_bugs():
207
+ assert NS(sin(1) + exp(-10**10), 10) == NS(sin(1), 10)
208
+ assert NS(exp(10**10) + sin(1), 10) == NS(exp(10**10), 10)
209
+ assert NS('expand_log(log(1+1/10**50))', 20) == '1.0000000000000000000e-50'
210
+ assert NS('log(10**100,10)', 10) == '100.0000000'
211
+ assert NS('log(2)', 10) == '0.6931471806'
212
+ assert NS(
213
+ '(sin(x)-x)/x**3', 15, subs={x: '1/10**50'}) == '-0.166666666666667'
214
+ assert NS(sin(1) + Rational(
215
+ 1, 10**100)*I, 15) == '0.841470984807897 + 1.00000000000000e-100*I'
216
+ assert x.evalf() == x
217
+ assert NS((1 + I)**2*I, 6) == '-2.00000'
218
+ d = {n: (
219
+ -1)**Rational(6, 7), y: (-1)**Rational(4, 7), x: (-1)**Rational(2, 7)}
220
+ assert NS((x*(1 + y*(1 + n))).subs(d).evalf(), 6) == '0.346011 + 0.433884*I'
221
+ assert NS(((-I - sqrt(2)*I)**2).evalf()) == '-5.82842712474619'
222
+ assert NS((1 + I)**2*I, 15) == '-2.00000000000000'
223
+ # issue 4758 (1/2):
224
+ assert NS(pi.evalf(69) - pi) == '-4.43863937855894e-71'
225
+ # issue 4758 (2/2): With the bug present, this still only fails if the
226
+ # terms are in the order given here. This is not generally the case,
227
+ # because the order depends on the hashes of the terms.
228
+ assert NS(20 - 5008329267844*n**25 - 477638700*n**37 - 19*n,
229
+ subs={n: .01}) == '19.8100000000000'
230
+ assert NS(((x - 1)*(1 - x)**1000).n()
231
+ ) == '(1.00000000000000 - x)**1000*(x - 1.00000000000000)'
232
+ assert NS((-x).n()) == '-x'
233
+ assert NS((-2*x).n()) == '-2.00000000000000*x'
234
+ assert NS((-2*x*y).n()) == '-2.00000000000000*x*y'
235
+ assert cos(x).n(subs={x: 1+I}) == cos(x).subs(x, 1+I).n()
236
+ # issue 6660. Also NaN != mpmath.nan
237
+ # In this order:
238
+ # 0*nan, 0/nan, 0*inf, 0/inf
239
+ # 0+nan, 0-nan, 0+inf, 0-inf
240
+ # >>> n = Some Number
241
+ # n*nan, n/nan, n*inf, n/inf
242
+ # n+nan, n-nan, n+inf, n-inf
243
+ assert (0*E**(oo)).n() is S.NaN
244
+ assert (0/E**(oo)).n() is S.Zero
245
+
246
+ assert (0+E**(oo)).n() is S.Infinity
247
+ assert (0-E**(oo)).n() is S.NegativeInfinity
248
+
249
+ assert (5*E**(oo)).n() is S.Infinity
250
+ assert (5/E**(oo)).n() is S.Zero
251
+
252
+ assert (5+E**(oo)).n() is S.Infinity
253
+ assert (5-E**(oo)).n() is S.NegativeInfinity
254
+
255
+ #issue 7416
256
+ assert as_mpmath(0.0, 10, {'chop': True}) == 0
257
+
258
+ #issue 5412
259
+ assert ((oo*I).n() == S.Infinity*I)
260
+ assert ((oo+oo*I).n() == S.Infinity + S.Infinity*I)
261
+
262
+ #issue 11518
263
+ assert NS(2*x**2.5, 5) == '2.0000*x**2.5000'
264
+
265
+ #issue 13076
266
+ assert NS(Mul(Max(0, y), x, evaluate=False).evalf()) == 'x*Max(0, y)'
267
+
268
+ #issue 18516
269
+ assert NS(log(S(3273390607896141870013189696827599152216642046043064789483291368096133796404674554883270092325904157150886684127560071009217256545885393053328527589376)/36360291795869936842385267079543319118023385026001623040346035832580600191583895484198508262979388783308179702534403855752855931517013066142992430916562025780021771247847643450125342836565813209972590371590152578728008385990139795377610001).evalf(15, chop=True)) == '-oo'
270
+
271
+
272
+ def test_evalf_integer_parts():
273
+ a = floor(log(8)/log(2) - exp(-1000), evaluate=False)
274
+ b = floor(log(8)/log(2), evaluate=False)
275
+ assert a.evalf() == 3.0
276
+ assert b.evalf() == 3.0
277
+ # equals, as a fallback, can still fail but it might succeed as here
278
+ assert ceiling(10*(sin(1)**2 + cos(1)**2)) == 10
279
+
280
+ assert int(floor(factorial(50)/E, evaluate=False).evalf(70)) == \
281
+ int(11188719610782480504630258070757734324011354208865721592720336800)
282
+ assert int(ceiling(factorial(50)/E, evaluate=False).evalf(70)) == \
283
+ int(11188719610782480504630258070757734324011354208865721592720336801)
284
+ assert int(floor(GoldenRatio**999 / sqrt(5) + S.Half)
285
+ .evalf(1000)) == fibonacci(999)
286
+ assert int(floor(GoldenRatio**1000 / sqrt(5) + S.Half)
287
+ .evalf(1000)) == fibonacci(1000)
288
+
289
+ assert ceiling(x).evalf(subs={x: 3}) == 3.0
290
+ assert ceiling(x).evalf(subs={x: 3*I}) == 3.0*I
291
+ assert ceiling(x).evalf(subs={x: 2 + 3*I}) == 2.0 + 3.0*I
292
+ assert ceiling(x).evalf(subs={x: 3.}) == 3.0
293
+ assert ceiling(x).evalf(subs={x: 3.*I}) == 3.0*I
294
+ assert ceiling(x).evalf(subs={x: 2. + 3*I}) == 2.0 + 3.0*I
295
+
296
+ assert float((floor(1.5, evaluate=False)+1/9).evalf()) == 1 + 1/9
297
+ assert float((floor(0.5, evaluate=False)+20).evalf()) == 20
298
+
299
+ # issue 19991
300
+ n = 1169809367327212570704813632106852886389036911
301
+ r = 744723773141314414542111064094745678855643068
302
+
303
+ assert floor(n / (pi / 2)) == r
304
+ assert floor(80782 * sqrt(2)) == 114242
305
+
306
+ # issue 20076
307
+ assert 260515 - floor(260515/pi + 1/2) * pi == atan(tan(260515))
308
+
309
+
310
+ def test_evalf_trig_zero_detection():
311
+ a = sin(160*pi, evaluate=False)
312
+ t = a.evalf(maxn=100)
313
+ assert abs(t) < 1e-100
314
+ assert t._prec < 2
315
+ assert a.evalf(chop=True) == 0
316
+ raises(PrecisionExhausted, lambda: a.evalf(strict=True))
317
+
318
+
319
+ def test_evalf_sum():
320
+ assert Sum(n,(n,1,2)).evalf() == 3.
321
+ assert Sum(n,(n,1,2)).doit().evalf() == 3.
322
+ # the next test should return instantly
323
+ assert Sum(1/n,(n,1,2)).evalf() == 1.5
324
+
325
+ # issue 8219
326
+ assert Sum(E/factorial(n), (n, 0, oo)).evalf() == (E*E).evalf()
327
+ # issue 8254
328
+ assert Sum(2**n*n/factorial(n), (n, 0, oo)).evalf() == (2*E*E).evalf()
329
+ # issue 8411
330
+ s = Sum(1/x**2, (x, 100, oo))
331
+ assert s.n() == s.doit().n()
332
+
333
+
334
+ def test_evalf_divergent_series():
335
+ raises(ValueError, lambda: Sum(1/n, (n, 1, oo)).evalf())
336
+ raises(ValueError, lambda: Sum(n/(n**2 + 1), (n, 1, oo)).evalf())
337
+ raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf())
338
+ raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf())
339
+ raises(ValueError, lambda: Sum(n**2, (n, 1, oo)).evalf())
340
+ raises(ValueError, lambda: Sum(2**n, (n, 1, oo)).evalf())
341
+ raises(ValueError, lambda: Sum((-2)**n, (n, 1, oo)).evalf())
342
+ raises(ValueError, lambda: Sum((2*n + 3)/(3*n**2 + 4), (n, 0, oo)).evalf())
343
+ raises(ValueError, lambda: Sum((0.5*n**3)/(n**4 + 1), (n, 0, oo)).evalf())
344
+
345
+
346
+ def test_evalf_product():
347
+ assert Product(n, (n, 1, 10)).evalf() == 3628800.
348
+ assert comp(Product(1 - S.Half**2/n**2, (n, 1, oo)).n(5), 0.63662)
349
+ assert Product(n, (n, -1, 3)).evalf() == 0
350
+
351
+
352
+ def test_evalf_py_methods():
353
+ assert abs(float(pi + 1) - 4.1415926535897932) < 1e-10
354
+ assert abs(complex(pi + 1) - 4.1415926535897932) < 1e-10
355
+ assert abs(
356
+ complex(pi + E*I) - (3.1415926535897931 + 2.7182818284590451j)) < 1e-10
357
+ raises(TypeError, lambda: float(pi + x))
358
+
359
+
360
+ def test_evalf_power_subs_bugs():
361
+ assert (x**2).evalf(subs={x: 0}) == 0
362
+ assert sqrt(x).evalf(subs={x: 0}) == 0
363
+ assert (x**Rational(2, 3)).evalf(subs={x: 0}) == 0
364
+ assert (x**x).evalf(subs={x: 0}) == 1.0
365
+ assert (3**x).evalf(subs={x: 0}) == 1.0
366
+ assert exp(x).evalf(subs={x: 0}) == 1.0
367
+ assert ((2 + I)**x).evalf(subs={x: 0}) == 1.0
368
+ assert (0**x).evalf(subs={x: 0}) == 1.0
369
+
370
+
371
+ def test_evalf_arguments():
372
+ raises(TypeError, lambda: pi.evalf(method="garbage"))
373
+
374
+
375
+ def test_implemented_function_evalf():
376
+ from sympy.utilities.lambdify import implemented_function
377
+ f = Function('f')
378
+ f = implemented_function(f, lambda x: x + 1)
379
+ assert str(f(x)) == "f(x)"
380
+ assert str(f(2)) == "f(2)"
381
+ assert f(2).evalf() == 3.0
382
+ assert f(x).evalf() == f(x)
383
+ f = implemented_function(Function('sin'), lambda x: x + 1)
384
+ assert f(2).evalf() != sin(2)
385
+ del f._imp_ # XXX: due to caching _imp_ would influence all other tests
386
+
387
+
388
+ def test_evaluate_false():
389
+ for no in [0, False]:
390
+ assert Add(3, 2, evaluate=no).is_Add
391
+ assert Mul(3, 2, evaluate=no).is_Mul
392
+ assert Pow(3, 2, evaluate=no).is_Pow
393
+ assert Pow(y, 2, evaluate=True) - Pow(y, 2, evaluate=True) == 0
394
+
395
+
396
+ def test_evalf_relational():
397
+ assert Eq(x/5, y/10).evalf() == Eq(0.2*x, 0.1*y)
398
+ # if this first assertion fails it should be replaced with
399
+ # one that doesn't
400
+ assert unchanged(Eq, (3 - I)**2/2 + I, 0)
401
+ assert Eq((3 - I)**2/2 + I, 0).n() is S.false
402
+ assert nfloat(Eq((3 - I)**2 + I, 0)) == S.false
403
+
404
+
405
+ def test_issue_5486():
406
+ assert not cos(sqrt(0.5 + I)).n().is_Function
407
+
408
+
409
+ def test_issue_5486_bug():
410
+ from sympy.core.expr import Expr
411
+ from sympy.core.numbers import I
412
+ assert abs(Expr._from_mpmath(I._to_mpmath(15), 15) - I) < 1.0e-15
413
+
414
+
415
+ def test_bugs():
416
+ from sympy.functions.elementary.complexes import (polar_lift, re)
417
+
418
+ assert abs(re((1 + I)**2)) < 1e-15
419
+
420
+ # anything that evalf's to 0 will do in place of polar_lift
421
+ assert abs(polar_lift(0)).n() == 0
422
+
423
+
424
+ def test_subs():
425
+ assert NS('besseli(-x, y) - besseli(x, y)', subs={x: 3.5, y: 20.0}) == \
426
+ '-4.92535585957223e-10'
427
+ assert NS('Piecewise((x, x>0)) + Piecewise((1-x, x>0))', subs={x: 0.1}) == \
428
+ '1.00000000000000'
429
+ raises(TypeError, lambda: x.evalf(subs=(x, 1)))
430
+
431
+
432
+ def test_issue_4956_5204():
433
+ # issue 4956
434
+ v = S('''(-27*12**(1/3)*sqrt(31)*I +
435
+ 27*2**(2/3)*3**(1/3)*sqrt(31)*I)/(-2511*2**(2/3)*3**(1/3) +
436
+ (29*18**(1/3) + 9*2**(1/3)*3**(2/3)*sqrt(31)*I +
437
+ 87*2**(1/3)*3**(1/6)*I)**2)''')
438
+ assert NS(v, 1) == '0.e-118 - 0.e-118*I'
439
+
440
+ # issue 5204
441
+ v = S('''-(357587765856 + 18873261792*249**(1/2) + 56619785376*I*83**(1/2) +
442
+ 108755765856*I*3**(1/2) + 41281887168*6**(1/3)*(1422 +
443
+ 54*249**(1/2))**(1/3) - 1239810624*6**(1/3)*249**(1/2)*(1422 +
444
+ 54*249**(1/2))**(1/3) - 3110400000*I*6**(1/3)*83**(1/2)*(1422 +
445
+ 54*249**(1/2))**(1/3) + 13478400000*I*3**(1/2)*6**(1/3)*(1422 +
446
+ 54*249**(1/2))**(1/3) + 1274950152*6**(2/3)*(1422 +
447
+ 54*249**(1/2))**(2/3) + 32347944*6**(2/3)*249**(1/2)*(1422 +
448
+ 54*249**(1/2))**(2/3) - 1758790152*I*3**(1/2)*6**(2/3)*(1422 +
449
+ 54*249**(1/2))**(2/3) - 304403832*I*6**(2/3)*83**(1/2)*(1422 +
450
+ 4*249**(1/2))**(2/3))/(175732658352 + (1106028 + 25596*249**(1/2) +
451
+ 76788*I*83**(1/2))**2)''')
452
+ assert NS(v, 5) == '0.077284 + 1.1104*I'
453
+ assert NS(v, 1) == '0.08 + 1.*I'
454
+
455
+
456
+ def test_old_docstring():
457
+ a = (E + pi*I)*(E - pi*I)
458
+ assert NS(a) == '17.2586605000200'
459
+ assert a.n() == 17.25866050002001
460
+
461
+
462
+ def test_issue_4806():
463
+ assert integrate(atan(x)**2, (x, -1, 1)).evalf().round(1) == Float(0.5, 1)
464
+ assert atan(0, evaluate=False).n() == 0
465
+
466
+
467
+ def test_evalf_mul():
468
+ # SymPy should not try to expand this; it should be handled term-wise
469
+ # in evalf through mpmath
470
+ assert NS(product(1 + sqrt(n)*I, (n, 1, 500)), 1) == '5.e+567 + 2.e+568*I'
471
+
472
+
473
+ def test_scaled_zero():
474
+ a, b = (([0], 1, 100, 1), -1)
475
+ assert scaled_zero(100) == (a, b)
476
+ assert scaled_zero(a) == (0, 1, 100, 1)
477
+ a, b = (([1], 1, 100, 1), -1)
478
+ assert scaled_zero(100, -1) == (a, b)
479
+ assert scaled_zero(a) == (1, 1, 100, 1)
480
+ raises(ValueError, lambda: scaled_zero(scaled_zero(100)))
481
+ raises(ValueError, lambda: scaled_zero(100, 2))
482
+ raises(ValueError, lambda: scaled_zero(100, 0))
483
+ raises(ValueError, lambda: scaled_zero((1, 5, 1, 3)))
484
+
485
+
486
+ def test_chop_value():
487
+ for i in range(-27, 28):
488
+ assert (Pow(10, i)*2).n(chop=10**i) and not (Pow(10, i)).n(chop=10**i)
489
+
490
+
491
+ def test_infinities():
492
+ assert oo.evalf(chop=True) == inf
493
+ assert (-oo).evalf(chop=True) == ninf
494
+
495
+
496
+ def test_to_mpmath():
497
+ assert sqrt(3)._to_mpmath(20)._mpf_ == (0, int(908093), -19, 20)
498
+ assert S(3.2)._to_mpmath(20)._mpf_ == (0, int(838861), -18, 20)
499
+
500
+
501
+ def test_issue_6632_evalf():
502
+ add = (-100000*sqrt(2500000001) + 5000000001)
503
+ assert add.n() == 9.999999998e-11
504
+ assert (add*add).n() == 9.999999996e-21
505
+
506
+
507
+ def test_issue_4945():
508
+ from sympy.abc import H
509
+ assert (H/0).evalf(subs={H:1}) == zoo
510
+
511
+
512
+ def test_evalf_integral():
513
+ # test that workprec has to increase in order to get a result other than 0
514
+ eps = Rational(1, 1000000)
515
+ assert Integral(sin(x), (x, -pi, pi + eps)).n(2)._prec == 10
516
+
517
+
518
+ def test_issue_8821_highprec_from_str():
519
+ s = str(pi.evalf(128))
520
+ p = N(s)
521
+ assert Abs(sin(p)) < 1e-15
522
+ p = N(s, 64)
523
+ assert Abs(sin(p)) < 1e-64
524
+
525
+
526
+ def test_issue_8853():
527
+ p = Symbol('x', even=True, positive=True)
528
+ assert floor(-p - S.Half).is_even == False
529
+ assert floor(-p + S.Half).is_even == True
530
+ assert ceiling(p - S.Half).is_even == True
531
+ assert ceiling(p + S.Half).is_even == False
532
+
533
+ assert get_integer_part(S.Half, -1, {}, True) == (0, 0)
534
+ assert get_integer_part(S.Half, 1, {}, True) == (1, 0)
535
+ assert get_integer_part(Rational(-1, 2), -1, {}, True) == (-1, 0)
536
+ assert get_integer_part(Rational(-1, 2), 1, {}, True) == (0, 0)
537
+
538
+
539
+ def test_issue_17681():
540
+ class identity_func(Function):
541
+
542
+ def _eval_evalf(self, *args, **kwargs):
543
+ return self.args[0].evalf(*args, **kwargs)
544
+
545
+ assert floor(identity_func(S(0))) == 0
546
+ assert get_integer_part(S(0), 1, {}, True) == (0, 0)
547
+
548
+
549
+ def test_issue_9326():
550
+ from sympy.core.symbol import Dummy
551
+ d1 = Dummy('d')
552
+ d2 = Dummy('d')
553
+ e = d1 + d2
554
+ assert e.evalf(subs = {d1: 1, d2: 2}) == 3.0
555
+
556
+
557
+ def test_issue_10323():
558
+ assert ceiling(sqrt(2**30 + 1)) == 2**15 + 1
559
+
560
+
561
+ def test_AssocOp_Function():
562
+ # the first arg of Min is not comparable in the imaginary part
563
+ raises(ValueError, lambda: S('''
564
+ Min(-sqrt(3)*cos(pi/18)/6 + re(1/((-1/2 - sqrt(3)*I/2)*(1/6 +
565
+ sqrt(3)*I/18)**(1/3)))/3 + sin(pi/18)/2 + 2 + I*(-cos(pi/18)/2 -
566
+ sqrt(3)*sin(pi/18)/6 + im(1/((-1/2 - sqrt(3)*I/2)*(1/6 +
567
+ sqrt(3)*I/18)**(1/3)))/3), re(1/((-1/2 + sqrt(3)*I/2)*(1/6 +
568
+ sqrt(3)*I/18)**(1/3)))/3 - sqrt(3)*cos(pi/18)/6 - sin(pi/18)/2 + 2 +
569
+ I*(im(1/((-1/2 + sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 -
570
+ sqrt(3)*sin(pi/18)/6 + cos(pi/18)/2))'''))
571
+ # if that is changed so a non-comparable number remains as
572
+ # an arg, then the Min/Max instantiation needs to be changed
573
+ # to watch out for non-comparable args when making simplifications
574
+ # and the following test should be added instead (with e being
575
+ # the sympified expression above):
576
+ # raises(ValueError, lambda: e._eval_evalf(2))
577
+
578
+
579
+ def test_issue_10395():
580
+ eq = x*Max(0, y)
581
+ assert nfloat(eq) == eq
582
+ eq = x*Max(y, -1.1)
583
+ assert nfloat(eq) == eq
584
+ assert Max(y, 4).n() == Max(4.0, y)
585
+
586
+
587
+ def test_issue_13098():
588
+ assert floor(log(S('9.'+'9'*20), 10)) == 0
589
+ assert ceiling(log(S('9.'+'9'*20), 10)) == 1
590
+ assert floor(log(20 - S('9.'+'9'*20), 10)) == 1
591
+ assert ceiling(log(20 - S('9.'+'9'*20), 10)) == 2
592
+
593
+
594
+ def test_issue_14601():
595
+ e = 5*x*y/2 - y*(35*(x**3)/2 - 15*x/2)
596
+ subst = {x:0.0, y:0.0}
597
+ e2 = e.evalf(subs=subst)
598
+ assert float(e2) == 0.0
599
+ assert float((x + x*(x**2 + x)).evalf(subs={x: 0.0})) == 0.0
600
+
601
+
602
+ def test_issue_11151():
603
+ z = S.Zero
604
+ e = Sum(z, (x, 1, 2))
605
+ assert e != z # it shouldn't evaluate
606
+ # when it does evaluate, this is what it should give
607
+ assert evalf(e, 15, {}) == \
608
+ evalf(z, 15, {}) == (None, None, 15, None)
609
+ # so this shouldn't fail
610
+ assert (e/2).n() == 0
611
+ # this was where the issue appeared
612
+ expr0 = Sum(x**2 + x, (x, 1, 2))
613
+ expr1 = Sum(0, (x, 1, 2))
614
+ expr2 = expr1/expr0
615
+ assert simplify(factor(expr2) - expr2) == 0
616
+
617
+
618
+ def test_issue_13425():
619
+ assert N('2**.5', 30) == N('sqrt(2)', 30)
620
+ assert N('x - x', 30) == 0
621
+ assert abs((N('pi*.1', 22)*10 - pi).n()) < 1e-22
622
+
623
+
624
+ def test_issue_17421():
625
+ assert N(acos(-I + acosh(cosh(cosh(1) + I)))) == 1.0*I
626
+
627
+
628
+ def test_issue_20291():
629
+ from sympy.sets import EmptySet, Reals
630
+ from sympy.sets.sets import (Complement, FiniteSet, Intersection)
631
+ a = Symbol('a')
632
+ b = Symbol('b')
633
+ A = FiniteSet(a, b)
634
+ assert A.evalf(subs={a: 1, b: 2}) == FiniteSet(1.0, 2.0)
635
+ B = FiniteSet(a-b, 1)
636
+ assert B.evalf(subs={a: 1, b: 2}) == FiniteSet(-1.0, 1.0)
637
+
638
+ sol = Complement(Intersection(FiniteSet(-b/2 - sqrt(b**2-4*pi)/2), Reals), FiniteSet(0))
639
+ assert sol.evalf(subs={b: 1}) == EmptySet
640
+
641
+
642
+ def test_evalf_with_zoo():
643
+ assert (1/x).evalf(subs={x: 0}) == zoo # issue 8242
644
+ assert (-1/x).evalf(subs={x: 0}) == zoo # PR 16150
645
+ assert (0 ** x).evalf(subs={x: -1}) == zoo # PR 16150
646
+ assert (0 ** x).evalf(subs={x: -1 + I}) == nan
647
+ assert Mul(2, Pow(0, -1, evaluate=False), evaluate=False).evalf() == zoo # issue 21147
648
+ assert Mul(x, 1/x, evaluate=False).evalf(subs={x: 0}) == Mul(x, 1/x, evaluate=False).subs(x, 0) == nan
649
+ assert Mul(1/x, 1/x, evaluate=False).evalf(subs={x: 0}) == zoo
650
+ assert Mul(1/x, Abs(1/x), evaluate=False).evalf(subs={x: 0}) == zoo
651
+ assert Abs(zoo, evaluate=False).evalf() == oo
652
+ assert re(zoo, evaluate=False).evalf() == nan
653
+ assert im(zoo, evaluate=False).evalf() == nan
654
+ assert Add(zoo, zoo, evaluate=False).evalf() == nan
655
+ assert Add(oo, zoo, evaluate=False).evalf() == nan
656
+ assert Pow(zoo, -1, evaluate=False).evalf() == 0
657
+ assert Pow(zoo, Rational(-1, 3), evaluate=False).evalf() == 0
658
+ assert Pow(zoo, Rational(1, 3), evaluate=False).evalf() == zoo
659
+ assert Pow(zoo, S.Half, evaluate=False).evalf() == zoo
660
+ assert Pow(zoo, 2, evaluate=False).evalf() == zoo
661
+ assert Pow(0, zoo, evaluate=False).evalf() == nan
662
+ assert log(zoo, evaluate=False).evalf() == zoo
663
+ assert zoo.evalf(chop=True) == zoo
664
+ assert x.evalf(subs={x: zoo}) == zoo
665
+
666
+
667
+ def test_evalf_with_bounded_error():
668
+ cases = [
669
+ # zero
670
+ (Rational(0), None, 1),
671
+ # zero im part
672
+ (pi, None, 10),
673
+ # zero real part
674
+ (pi*I, None, 10),
675
+ # re and im nonzero
676
+ (2-3*I, None, 5),
677
+ # similar tests again, but using eps instead of m
678
+ (Rational(0), Rational(1, 2), None),
679
+ (pi, Rational(1, 1000), None),
680
+ (pi * I, Rational(1, 1000), None),
681
+ (2 - 3 * I, Rational(1, 1000), None),
682
+ # very large eps
683
+ (2 - 3 * I, Rational(1000), None),
684
+ # case where x already small, hence some cancellation in p = m + n - 1
685
+ (Rational(1234, 10**8), Rational(1, 10**12), None),
686
+ ]
687
+ for x0, eps, m in cases:
688
+ a, b, _, _ = evalf(x0, 53, {})
689
+ c, d, _, _ = _evalf_with_bounded_error(x0, eps, m)
690
+ if eps is None:
691
+ eps = 2**(-m)
692
+ z = make_mpc((a or fzero, b or fzero))
693
+ w = make_mpc((c or fzero, d or fzero))
694
+ assert abs(w - z) < eps
695
+
696
+ # eps must be positive
697
+ raises(ValueError, lambda: _evalf_with_bounded_error(pi, Rational(0)))
698
+ raises(ValueError, lambda: _evalf_with_bounded_error(pi, -pi))
699
+ raises(ValueError, lambda: _evalf_with_bounded_error(pi, I))
700
+
701
+
702
+ def test_issue_22849():
703
+ a = -8 + 3 * sqrt(3)
704
+ x = AlgebraicNumber(a)
705
+ assert evalf(a, 1, {}) == evalf(x, 1, {})
706
+
707
+
708
+ def test_evalf_real_alg_num():
709
+ # This test demonstrates why the entry for `AlgebraicNumber` in
710
+ # `sympy.core.evalf._create_evalf_table()` has to use `x.to_root()`,
711
+ # instead of `x.as_expr()`. If the latter is used, then `z` will be
712
+ # a complex number with `0.e-20` for imaginary part, even though `a5`
713
+ # is a real number.
714
+ zeta = Symbol('zeta')
715
+ a5 = AlgebraicNumber(CRootOf(cyclotomic_poly(5), -1), [-1, -1, 0, 0], alias=zeta)
716
+ z = a5.evalf()
717
+ assert isinstance(z, Float)
718
+ assert not hasattr(z, '_mpc_')
719
+ assert hasattr(z, '_mpf_')
720
+
721
+
722
+ def test_issue_20733():
723
+ expr = 1/((x - 9)*(x - 8)*(x - 7)*(x - 4)**2*(x - 3)**3*(x - 2))
724
+ assert str(expr.evalf(1, subs={x:1})) == '-4.e-5'
725
+ assert str(expr.evalf(2, subs={x:1})) == '-4.1e-5'
726
+ assert str(expr.evalf(11, subs={x:1})) == '-4.1335978836e-5'
727
+ assert str(expr.evalf(20, subs={x:1})) == '-0.000041335978835978835979'
728
+
729
+ expr = Mul(*((x - i) for i in range(2, 1000)))
730
+ assert srepr(expr.evalf(2, subs={x: 1})) == "Float('4.0271e+2561', precision=10)"
731
+ assert srepr(expr.evalf(10, subs={x: 1})) == "Float('4.02790050126e+2561', precision=37)"
732
+ assert srepr(expr.evalf(53, subs={x: 1})) == "Float('4.0279005012722099453824067459760158730668154575647110393e+2561', precision=179)"
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_expand.py ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.expr import unchanged
2
+ from sympy.core.mul import Mul
3
+ from sympy.core.numbers import (I, Rational as R, pi)
4
+ from sympy.core.power import Pow
5
+ from sympy.core.singleton import S
6
+ from sympy.core.symbol import Symbol
7
+ from sympy.functions.elementary.exponential import (exp, log)
8
+ from sympy.functions.elementary.miscellaneous import sqrt
9
+ from sympy.functions.elementary.trigonometric import (cos, sin)
10
+ from sympy.series.order import O
11
+ from sympy.simplify.radsimp import expand_numer
12
+ from sympy.core.function import expand, expand_multinomial, expand_power_base
13
+
14
+ from sympy.testing.pytest import raises
15
+ from sympy.core.random import verify_numerically
16
+
17
+ from sympy.abc import x, y, z
18
+
19
+
20
+ def test_expand_no_log():
21
+ assert (
22
+ (1 + log(x**4))**2).expand(log=False) == 1 + 2*log(x**4) + log(x**4)**2
23
+ assert ((1 + log(x**4))*(1 + log(x**3))).expand(
24
+ log=False) == 1 + log(x**4) + log(x**3) + log(x**4)*log(x**3)
25
+
26
+
27
+ def test_expand_no_multinomial():
28
+ assert ((1 + x)*(1 + (1 + x)**4)).expand(multinomial=False) == \
29
+ 1 + x + (1 + x)**4 + x*(1 + x)**4
30
+
31
+
32
+ def test_expand_negative_integer_powers():
33
+ expr = (x + y)**(-2)
34
+ assert expr.expand() == 1 / (2*x*y + x**2 + y**2)
35
+ assert expr.expand(multinomial=False) == (x + y)**(-2)
36
+ expr = (x + y)**(-3)
37
+ assert expr.expand() == 1 / (3*x*x*y + 3*x*y*y + x**3 + y**3)
38
+ assert expr.expand(multinomial=False) == (x + y)**(-3)
39
+ expr = (x + y)**(2) * (x + y)**(-4)
40
+ assert expr.expand() == 1 / (2*x*y + x**2 + y**2)
41
+ assert expr.expand(multinomial=False) == (x + y)**(-2)
42
+
43
+
44
+ def test_expand_non_commutative():
45
+ A = Symbol('A', commutative=False)
46
+ B = Symbol('B', commutative=False)
47
+ C = Symbol('C', commutative=False)
48
+ a = Symbol('a')
49
+ b = Symbol('b')
50
+ i = Symbol('i', integer=True)
51
+ n = Symbol('n', negative=True)
52
+ m = Symbol('m', negative=True)
53
+ p = Symbol('p', polar=True)
54
+ np = Symbol('p', polar=False)
55
+
56
+ assert (C*(A + B)).expand() == C*A + C*B
57
+ assert (C*(A + B)).expand() != A*C + B*C
58
+ assert ((A + B)**2).expand() == A**2 + A*B + B*A + B**2
59
+ assert ((A + B)**3).expand() == (A**2*B + B**2*A + A*B**2 + B*A**2 +
60
+ A**3 + B**3 + A*B*A + B*A*B)
61
+ # issue 6219
62
+ assert ((a*A*B*A**-1)**2).expand() == a**2*A*B**2/A
63
+ # Note that (a*A*B*A**-1)**2 is automatically converted to a**2*(A*B*A**-1)**2
64
+ assert ((a*A*B*A**-1)**2).expand(deep=False) == a**2*(A*B*A**-1)**2
65
+ assert ((a*A*B*A**-1)**2).expand() == a**2*(A*B**2*A**-1)
66
+ assert ((a*A*B*A**-1)**2).expand(force=True) == a**2*A*B**2*A**(-1)
67
+ assert ((a*A*B)**2).expand() == a**2*A*B*A*B
68
+ assert ((a*A)**2).expand() == a**2*A**2
69
+ assert ((a*A*B)**i).expand() == a**i*(A*B)**i
70
+ assert ((a*A*(B*(A*B/A)**2))**i).expand() == a**i*(A*B*A*B**2/A)**i
71
+ # issue 6558
72
+ assert (A*B*(A*B)**-1).expand() == 1
73
+ assert ((a*A)**i).expand() == a**i*A**i
74
+ assert ((a*A*B*A**-1)**3).expand() == a**3*A*B**3/A
75
+ assert ((a*A*B*A*B/A)**3).expand() == \
76
+ a**3*A*B*(A*B**2)*(A*B**2)*A*B*A**(-1)
77
+ assert ((a*A*B*A*B/A)**-2).expand() == \
78
+ A*B**-1*A**-1*B**-2*A**-1*B**-1*A**-1/a**2
79
+ assert ((a*b*A*B*A**-1)**i).expand() == a**i*b**i*(A*B/A)**i
80
+ assert ((a*(a*b)**i)**i).expand() == a**i*a**(i**2)*b**(i**2)
81
+ e = Pow(Mul(a, 1/a, A, B, evaluate=False), S(2), evaluate=False)
82
+ assert e.expand() == A*B*A*B
83
+ assert sqrt(a*(A*b)**i).expand() == sqrt(a*b**i*A**i)
84
+ assert (sqrt(-a)**a).expand() == sqrt(-a)**a
85
+ assert expand((-2*n)**(i/3)) == 2**(i/3)*(-n)**(i/3)
86
+ assert expand((-2*n*m)**(i/a)) == (-2)**(i/a)*(-n)**(i/a)*(-m)**(i/a)
87
+ assert expand((-2*a*p)**b) == 2**b*p**b*(-a)**b
88
+ assert expand((-2*a*np)**b) == 2**b*(-a*np)**b
89
+ assert expand(sqrt(A*B)) == sqrt(A*B)
90
+ assert expand(sqrt(-2*a*b)) == sqrt(2)*sqrt(-a*b)
91
+
92
+
93
+ def test_expand_radicals():
94
+ a = (x + y)**R(1, 2)
95
+
96
+ assert (a**1).expand() == a
97
+ assert (a**3).expand() == x*a + y*a
98
+ assert (a**5).expand() == x**2*a + 2*x*y*a + y**2*a
99
+
100
+ assert (1/a**1).expand() == 1/a
101
+ assert (1/a**3).expand() == 1/(x*a + y*a)
102
+ assert (1/a**5).expand() == 1/(x**2*a + 2*x*y*a + y**2*a)
103
+
104
+ a = (x + y)**R(1, 3)
105
+
106
+ assert (a**1).expand() == a
107
+ assert (a**2).expand() == a**2
108
+ assert (a**4).expand() == x*a + y*a
109
+ assert (a**5).expand() == x*a**2 + y*a**2
110
+ assert (a**7).expand() == x**2*a + 2*x*y*a + y**2*a
111
+
112
+
113
+ def test_expand_modulus():
114
+ assert ((x + y)**11).expand(modulus=11) == x**11 + y**11
115
+ assert ((x + sqrt(2)*y)**11).expand(modulus=11) == x**11 + 10*sqrt(2)*y**11
116
+ assert (x + y/2).expand(modulus=1) == y/2
117
+
118
+ raises(ValueError, lambda: ((x + y)**11).expand(modulus=0))
119
+ raises(ValueError, lambda: ((x + y)**11).expand(modulus=x))
120
+
121
+
122
+ def test_issue_5743():
123
+ assert (x*sqrt(
124
+ x + y)*(1 + sqrt(x + y))).expand() == x**2 + x*y + x*sqrt(x + y)
125
+ assert (x*sqrt(
126
+ x + y)*(1 + x*sqrt(x + y))).expand() == x**3 + x**2*y + x*sqrt(x + y)
127
+
128
+
129
+ def test_expand_frac():
130
+ assert expand((x + y)*y/x/(x + 1), frac=True) == \
131
+ (x*y + y**2)/(x**2 + x)
132
+ assert expand((x + y)*y/x/(x + 1), numer=True) == \
133
+ (x*y + y**2)/(x*(x + 1))
134
+ assert expand((x + y)*y/x/(x + 1), denom=True) == \
135
+ y*(x + y)/(x**2 + x)
136
+ eq = (x + 1)**2/y
137
+ assert expand_numer(eq, multinomial=False) == eq
138
+
139
+
140
+ def test_issue_6121():
141
+ eq = -I*exp(-3*I*pi/4)/(4*pi**(S(3)/2)*sqrt(x))
142
+ assert eq.expand(complex=True) # does not give oo recursion
143
+ eq = -I*exp(-3*I*pi/4)/(4*pi**(R(3, 2))*sqrt(x))
144
+ assert eq.expand(complex=True) # does not give oo recursion
145
+
146
+
147
+ def test_expand_power_base():
148
+ assert expand_power_base((x*y*z)**4) == x**4*y**4*z**4
149
+ assert expand_power_base((x*y*z)**x).is_Pow
150
+ assert expand_power_base((x*y*z)**x, force=True) == x**x*y**x*z**x
151
+ assert expand_power_base((x*(y*z)**2)**3) == x**3*y**6*z**6
152
+
153
+ assert expand_power_base((sin((x*y)**2)*y)**z).is_Pow
154
+ assert expand_power_base(
155
+ (sin((x*y)**2)*y)**z, force=True) == sin((x*y)**2)**z*y**z
156
+ assert expand_power_base(
157
+ (sin((x*y)**2)*y)**z, deep=True) == (sin(x**2*y**2)*y)**z
158
+
159
+ assert expand_power_base(exp(x)**2) == exp(2*x)
160
+ assert expand_power_base((exp(x)*exp(y))**2) == exp(2*x)*exp(2*y)
161
+
162
+ assert expand_power_base(
163
+ (exp((x*y)**z)*exp(y))**2) == exp(2*(x*y)**z)*exp(2*y)
164
+ assert expand_power_base((exp((x*y)**z)*exp(
165
+ y))**2, deep=True, force=True) == exp(2*x**z*y**z)*exp(2*y)
166
+
167
+ assert expand_power_base((exp(x)*exp(y))**z).is_Pow
168
+ assert expand_power_base(
169
+ (exp(x)*exp(y))**z, force=True) == exp(x)**z*exp(y)**z
170
+
171
+
172
+ def test_expand_arit():
173
+ a = Symbol("a")
174
+ b = Symbol("b", positive=True)
175
+ c = Symbol("c")
176
+
177
+ p = R(5)
178
+ e = (a + b)*c
179
+ assert e == c*(a + b)
180
+ assert (e.expand() - a*c - b*c) == R(0)
181
+ e = (a + b)*(a + b)
182
+ assert e == (a + b)**2
183
+ assert e.expand() == 2*a*b + a**2 + b**2
184
+ e = (a + b)*(a + b)**R(2)
185
+ assert e == (a + b)**3
186
+ assert e.expand() == 3*b*a**2 + 3*a*b**2 + a**3 + b**3
187
+ assert e.expand() == 3*b*a**2 + 3*a*b**2 + a**3 + b**3
188
+ e = (a + b)*(a + c)*(b + c)
189
+ assert e == (a + c)*(a + b)*(b + c)
190
+ assert e.expand() == 2*a*b*c + b*a**2 + c*a**2 + b*c**2 + a*c**2 + c*b**2 + a*b**2
191
+ e = (a + R(1))**p
192
+ assert e == (1 + a)**5
193
+ assert e.expand() == 1 + 5*a + 10*a**2 + 10*a**3 + 5*a**4 + a**5
194
+ e = (a + b + c)*(a + c + p)
195
+ assert e == (5 + a + c)*(a + b + c)
196
+ assert e.expand() == 5*a + 5*b + 5*c + 2*a*c + b*c + a*b + a**2 + c**2
197
+ x = Symbol("x")
198
+ s = exp(x*x) - 1
199
+ e = s.nseries(x, 0, 6)/x**2
200
+ assert e.expand() == 1 + x**2/2 + O(x**4)
201
+
202
+ e = (x*(y + z))**(x*(y + z))*(x + y)
203
+ assert e.expand(power_exp=False, power_base=False) == x*(x*y + x*
204
+ z)**(x*y + x*z) + y*(x*y + x*z)**(x*y + x*z)
205
+ assert e.expand(power_exp=False, power_base=False, deep=False) == x* \
206
+ (x*(y + z))**(x*(y + z)) + y*(x*(y + z))**(x*(y + z))
207
+ e = x * (x + (y + 1)**2)
208
+ assert e.expand(deep=False) == x**2 + x*(y + 1)**2
209
+ e = (x*(y + z))**z
210
+ assert e.expand(power_base=True, mul=True, deep=True) in [x**z*(y +
211
+ z)**z, (x*y + x*z)**z]
212
+ assert ((2*y)**z).expand() == 2**z*y**z
213
+ p = Symbol('p', positive=True)
214
+ assert sqrt(-x).expand().is_Pow
215
+ assert sqrt(-x).expand(force=True) == I*sqrt(x)
216
+ assert ((2*y*p)**z).expand() == 2**z*p**z*y**z
217
+ assert ((2*y*p*x)**z).expand() == 2**z*p**z*(x*y)**z
218
+ assert ((2*y*p*x)**z).expand(force=True) == 2**z*p**z*x**z*y**z
219
+ assert ((2*y*p*-pi)**z).expand() == 2**z*pi**z*p**z*(-y)**z
220
+ assert ((2*y*p*-pi*x)**z).expand() == 2**z*pi**z*p**z*(-x*y)**z
221
+ n = Symbol('n', negative=True)
222
+ m = Symbol('m', negative=True)
223
+ assert ((-2*x*y*n)**z).expand() == 2**z*(-n)**z*(x*y)**z
224
+ assert ((-2*x*y*n*m)**z).expand() == 2**z*(-m)**z*(-n)**z*(-x*y)**z
225
+ # issue 5482
226
+ assert sqrt(-2*x*n) == sqrt(2)*sqrt(-n)*sqrt(x)
227
+ # issue 5605 (2)
228
+ assert (cos(x + y)**2).expand(trig=True) in [
229
+ (-sin(x)*sin(y) + cos(x)*cos(y))**2,
230
+ sin(x)**2*sin(y)**2 - 2*sin(x)*sin(y)*cos(x)*cos(y) + cos(x)**2*cos(y)**2
231
+ ]
232
+
233
+ # Check that this isn't too slow
234
+ x = Symbol('x')
235
+ W = 1
236
+ for i in range(1, 21):
237
+ W = W * (x - i)
238
+ W = W.expand()
239
+ assert W.has(-1672280820*x**15)
240
+
241
+ def test_expand_mul():
242
+ # part of issue 20597
243
+ e = Mul(2, 3, evaluate=False)
244
+ assert e.expand() == 6
245
+
246
+ e = Mul(2, 3, 1/x, evaluate = False)
247
+ assert e.expand() == 6/x
248
+ e = Mul(2, R(1, 3), evaluate=False)
249
+ assert e.expand() == R(2, 3)
250
+
251
+ def test_power_expand():
252
+ """Test for Pow.expand()"""
253
+ a = Symbol('a')
254
+ b = Symbol('b')
255
+ p = (a + b)**2
256
+ assert p.expand() == a**2 + b**2 + 2*a*b
257
+
258
+ p = (1 + 2*(1 + a))**2
259
+ assert p.expand() == 9 + 4*(a**2) + 12*a
260
+
261
+ p = 2**(a + b)
262
+ assert p.expand() == 2**a*2**b
263
+
264
+ A = Symbol('A', commutative=False)
265
+ B = Symbol('B', commutative=False)
266
+ assert (2**(A + B)).expand() == 2**(A + B)
267
+ assert (A**(a + b)).expand() != A**(a + b)
268
+
269
+
270
+ def test_issues_5919_6830():
271
+ # issue 5919
272
+ n = -1 + 1/x
273
+ z = n/x/(-n)**2 - 1/n/x
274
+ assert expand(z) == 1/(x**2 - 2*x + 1) - 1/(x - 2 + 1/x) - 1/(-x + 1)
275
+
276
+ # issue 6830
277
+ p = (1 + x)**2
278
+ assert expand_multinomial((1 + x*p)**2) == (
279
+ x**2*(x**4 + 4*x**3 + 6*x**2 + 4*x + 1) + 2*x*(x**2 + 2*x + 1) + 1)
280
+ assert expand_multinomial((1 + (y + x)*p)**2) == (
281
+ 2*((x + y)*(x**2 + 2*x + 1)) + (x**2 + 2*x*y + y**2)*
282
+ (x**4 + 4*x**3 + 6*x**2 + 4*x + 1) + 1)
283
+ A = Symbol('A', commutative=False)
284
+ p = (1 + A)**2
285
+ assert expand_multinomial((1 + x*p)**2) == (
286
+ x**2*(1 + 4*A + 6*A**2 + 4*A**3 + A**4) + 2*x*(1 + 2*A + A**2) + 1)
287
+ assert expand_multinomial((1 + (y + x)*p)**2) == (
288
+ (x + y)*(1 + 2*A + A**2)*2 + (x**2 + 2*x*y + y**2)*
289
+ (1 + 4*A + 6*A**2 + 4*A**3 + A**4) + 1)
290
+ assert expand_multinomial((1 + (y + x)*p)**3) == (
291
+ (x + y)*(1 + 2*A + A**2)*3 + (x**2 + 2*x*y + y**2)*(1 + 4*A +
292
+ 6*A**2 + 4*A**3 + A**4)*3 + (x**3 + 3*x**2*y + 3*x*y**2 + y**3)*(1 + 6*A
293
+ + 15*A**2 + 20*A**3 + 15*A**4 + 6*A**5 + A**6) + 1)
294
+ # unevaluate powers
295
+ eq = (Pow((x + 1)*((A + 1)**2), 2, evaluate=False))
296
+ # - in this case the base is not an Add so no further
297
+ # expansion is done
298
+ assert expand_multinomial(eq) == \
299
+ (x**2 + 2*x + 1)*(1 + 4*A + 6*A**2 + 4*A**3 + A**4)
300
+ # - but here, the expanded base *is* an Add so it gets expanded
301
+ eq = (Pow(((A + 1)**2), 2, evaluate=False))
302
+ assert expand_multinomial(eq) == 1 + 4*A + 6*A**2 + 4*A**3 + A**4
303
+
304
+ # coverage
305
+ def ok(a, b, n):
306
+ e = (a + I*b)**n
307
+ return verify_numerically(e, expand_multinomial(e))
308
+
309
+ for a in [2, S.Half]:
310
+ for b in [3, R(1, 3)]:
311
+ for n in range(2, 6):
312
+ assert ok(a, b, n)
313
+
314
+ assert expand_multinomial((x + 1 + O(z))**2) == \
315
+ 1 + 2*x + x**2 + O(z)
316
+ assert expand_multinomial((x + 1 + O(z))**3) == \
317
+ 1 + 3*x + 3*x**2 + x**3 + O(z)
318
+
319
+ assert expand_multinomial(3**(x + y + 3)) == 27*3**(x + y)
320
+
321
+ def test_expand_log():
322
+ t = Symbol('t', positive=True)
323
+ # after first expansion, -2*log(2) + log(4); then 0 after second
324
+ assert expand(log(t**2) - log(t**2/4) - 2*log(2)) == 0
325
+
326
+
327
+ def test_issue_23952():
328
+ assert (x**(y + z)).expand(force=True) == x**y*x**z
329
+ one = Symbol('1', integer=True, prime=True, odd=True, positive=True)
330
+ two = Symbol('2', integer=True, prime=True, even=True)
331
+ e = two - one
332
+ for b in (0, x):
333
+ # 0**e = 0, 0**-e = zoo; but if expanded then nan
334
+ assert unchanged(Pow, b, e) # power_exp
335
+ assert unchanged(Pow, b, -e) # power_exp
336
+ assert unchanged(Pow, b, y - x) # power_exp
337
+ assert unchanged(Pow, b, 3 - x) # multinomial
338
+ assert (b**e).expand().is_Pow # power_exp
339
+ assert (b**-e).expand().is_Pow # power_exp
340
+ assert (b**(y - x)).expand().is_Pow # power_exp
341
+ assert (b**(3 - x)).expand().is_Pow # multinomial
342
+ nn1 = Symbol('nn1', nonnegative=True)
343
+ nn2 = Symbol('nn2', nonnegative=True)
344
+ nn3 = Symbol('nn3', nonnegative=True)
345
+ assert (x**(nn1 + nn2)).expand() == x**nn1*x**nn2
346
+ assert (x**(-nn1 - nn2)).expand() == x**-nn1*x**-nn2
347
+ assert unchanged(Pow, x, nn1 + nn2 - nn3)
348
+ assert unchanged(Pow, x, 1 + nn2 - nn3)
349
+ assert unchanged(Pow, x, nn1 - nn2)
350
+ assert unchanged(Pow, x, 1 - nn2)
351
+ assert unchanged(Pow, x, -1 + nn2)
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_expr.py ADDED
@@ -0,0 +1,2261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.assumptions.refine import refine
2
+ from sympy.concrete.summations import Sum
3
+ from sympy.core.add import Add
4
+ from sympy.core.basic import Basic
5
+ from sympy.core.containers import Tuple
6
+ from sympy.core.expr import (ExprBuilder, unchanged, Expr,
7
+ UnevaluatedExpr)
8
+ from sympy.core.function import (Function, expand, WildFunction,
9
+ AppliedUndef, Derivative, diff, Subs)
10
+ from sympy.core.mul import Mul
11
+ from sympy.core.numbers import (NumberSymbol, E, zoo, oo, Float, I,
12
+ Rational, nan, Integer, Number, pi, _illegal)
13
+ from sympy.core.power import Pow
14
+ from sympy.core.relational import Ge, Lt, Gt, Le
15
+ from sympy.core.singleton import S
16
+ from sympy.core.sorting import default_sort_key
17
+ from sympy.core.symbol import Symbol, symbols, Dummy, Wild
18
+ from sympy.core.sympify import sympify
19
+ from sympy.functions.combinatorial.factorials import factorial
20
+ from sympy.functions.elementary.exponential import exp_polar, exp, log
21
+ from sympy.functions.elementary.miscellaneous import sqrt, Max
22
+ from sympy.functions.elementary.piecewise import Piecewise
23
+ from sympy.functions.elementary.trigonometric import tan, sin, cos
24
+ from sympy.functions.special.delta_functions import (Heaviside,
25
+ DiracDelta)
26
+ from sympy.functions.special.error_functions import Si
27
+ from sympy.functions.special.gamma_functions import gamma
28
+ from sympy.integrals.integrals import integrate, Integral
29
+ from sympy.physics.secondquant import FockState
30
+ from sympy.polys.partfrac import apart
31
+ from sympy.polys.polytools import factor, cancel, Poly
32
+ from sympy.polys.rationaltools import together
33
+ from sympy.series.order import O
34
+ from sympy.sets.sets import FiniteSet
35
+ from sympy.simplify.combsimp import combsimp
36
+ from sympy.simplify.gammasimp import gammasimp
37
+ from sympy.simplify.powsimp import powsimp
38
+ from sympy.simplify.radsimp import collect, radsimp
39
+ from sympy.simplify.ratsimp import ratsimp
40
+ from sympy.simplify.simplify import simplify, nsimplify
41
+ from sympy.simplify.trigsimp import trigsimp
42
+ from sympy.tensor.indexed import Indexed
43
+ from sympy.physics.units import meter
44
+
45
+ from sympy.testing.pytest import raises, XFAIL
46
+
47
+ from sympy.abc import a, b, c, n, t, u, x, y, z
48
+
49
+
50
+ f, g, h = symbols('f,g,h', cls=Function)
51
+
52
+
53
+ class DummyNumber:
54
+ """
55
+ Minimal implementation of a number that works with SymPy.
56
+
57
+ If one has a Number class (e.g. Sage Integer, or some other custom class)
58
+ that one wants to work well with SymPy, one has to implement at least the
59
+ methods of this class DummyNumber, resp. its subclasses I5 and F1_1.
60
+
61
+ Basically, one just needs to implement either __int__() or __float__() and
62
+ then one needs to make sure that the class works with Python integers and
63
+ with itself.
64
+ """
65
+
66
+ def __radd__(self, a):
67
+ if isinstance(a, (int, float)):
68
+ return a + self.number
69
+ return NotImplemented
70
+
71
+ def __add__(self, a):
72
+ if isinstance(a, (int, float, DummyNumber)):
73
+ return self.number + a
74
+ return NotImplemented
75
+
76
+ def __rsub__(self, a):
77
+ if isinstance(a, (int, float)):
78
+ return a - self.number
79
+ return NotImplemented
80
+
81
+ def __sub__(self, a):
82
+ if isinstance(a, (int, float, DummyNumber)):
83
+ return self.number - a
84
+ return NotImplemented
85
+
86
+ def __rmul__(self, a):
87
+ if isinstance(a, (int, float)):
88
+ return a * self.number
89
+ return NotImplemented
90
+
91
+ def __mul__(self, a):
92
+ if isinstance(a, (int, float, DummyNumber)):
93
+ return self.number * a
94
+ return NotImplemented
95
+
96
+ def __rtruediv__(self, a):
97
+ if isinstance(a, (int, float)):
98
+ return a / self.number
99
+ return NotImplemented
100
+
101
+ def __truediv__(self, a):
102
+ if isinstance(a, (int, float, DummyNumber)):
103
+ return self.number / a
104
+ return NotImplemented
105
+
106
+ def __rpow__(self, a):
107
+ if isinstance(a, (int, float)):
108
+ return a ** self.number
109
+ return NotImplemented
110
+
111
+ def __pow__(self, a):
112
+ if isinstance(a, (int, float, DummyNumber)):
113
+ return self.number ** a
114
+ return NotImplemented
115
+
116
+ def __pos__(self):
117
+ return self.number
118
+
119
+ def __neg__(self):
120
+ return - self.number
121
+
122
+
123
+ class I5(DummyNumber):
124
+ number = 5
125
+
126
+ def __int__(self):
127
+ return self.number
128
+
129
+
130
+ class F1_1(DummyNumber):
131
+ number = 1.1
132
+
133
+ def __float__(self):
134
+ return self.number
135
+
136
+ i5 = I5()
137
+ f1_1 = F1_1()
138
+
139
+ # basic SymPy objects
140
+ basic_objs = [
141
+ Rational(2),
142
+ Float("1.3"),
143
+ x,
144
+ y,
145
+ pow(x, y)*y,
146
+ ]
147
+
148
+ # all supported objects
149
+ all_objs = basic_objs + [
150
+ 5,
151
+ 5.5,
152
+ i5,
153
+ f1_1
154
+ ]
155
+
156
+
157
+ def dotest(s):
158
+ for xo in all_objs:
159
+ for yo in all_objs:
160
+ s(xo, yo)
161
+ return True
162
+
163
+
164
+ def test_basic():
165
+ def j(a, b):
166
+ x = a
167
+ x = +a
168
+ x = -a
169
+ x = a + b
170
+ x = a - b
171
+ x = a*b
172
+ x = a/b
173
+ x = a**b
174
+ del x
175
+ assert dotest(j)
176
+
177
+
178
+ def test_ibasic():
179
+ def s(a, b):
180
+ x = a
181
+ x += b
182
+ x = a
183
+ x -= b
184
+ x = a
185
+ x *= b
186
+ x = a
187
+ x /= b
188
+ assert dotest(s)
189
+
190
+
191
+ class NonBasic:
192
+ '''This class represents an object that knows how to implement binary
193
+ operations like +, -, etc with Expr but is not a subclass of Basic itself.
194
+ The NonExpr subclass below does subclass Basic but not Expr.
195
+
196
+ For both NonBasic and NonExpr it should be possible for them to override
197
+ Expr.__add__ etc because Expr.__add__ should be returning NotImplemented
198
+ for non Expr classes. Otherwise Expr.__add__ would create meaningless
199
+ objects like Add(Integer(1), FiniteSet(2)) and it wouldn't be possible for
200
+ other classes to override these operations when interacting with Expr.
201
+ '''
202
+ def __add__(self, other):
203
+ return SpecialOp('+', self, other)
204
+
205
+ def __radd__(self, other):
206
+ return SpecialOp('+', other, self)
207
+
208
+ def __sub__(self, other):
209
+ return SpecialOp('-', self, other)
210
+
211
+ def __rsub__(self, other):
212
+ return SpecialOp('-', other, self)
213
+
214
+ def __mul__(self, other):
215
+ return SpecialOp('*', self, other)
216
+
217
+ def __rmul__(self, other):
218
+ return SpecialOp('*', other, self)
219
+
220
+ def __truediv__(self, other):
221
+ return SpecialOp('/', self, other)
222
+
223
+ def __rtruediv__(self, other):
224
+ return SpecialOp('/', other, self)
225
+
226
+ def __floordiv__(self, other):
227
+ return SpecialOp('//', self, other)
228
+
229
+ def __rfloordiv__(self, other):
230
+ return SpecialOp('//', other, self)
231
+
232
+ def __mod__(self, other):
233
+ return SpecialOp('%', self, other)
234
+
235
+ def __rmod__(self, other):
236
+ return SpecialOp('%', other, self)
237
+
238
+ def __divmod__(self, other):
239
+ return SpecialOp('divmod', self, other)
240
+
241
+ def __rdivmod__(self, other):
242
+ return SpecialOp('divmod', other, self)
243
+
244
+ def __pow__(self, other):
245
+ return SpecialOp('**', self, other)
246
+
247
+ def __rpow__(self, other):
248
+ return SpecialOp('**', other, self)
249
+
250
+ def __lt__(self, other):
251
+ return SpecialOp('<', self, other)
252
+
253
+ def __gt__(self, other):
254
+ return SpecialOp('>', self, other)
255
+
256
+ def __le__(self, other):
257
+ return SpecialOp('<=', self, other)
258
+
259
+ def __ge__(self, other):
260
+ return SpecialOp('>=', self, other)
261
+
262
+
263
+ class NonExpr(Basic, NonBasic):
264
+ '''Like NonBasic above except this is a subclass of Basic but not Expr'''
265
+ pass
266
+
267
+
268
+ class SpecialOp():
269
+ '''Represents the results of operations with NonBasic and NonExpr'''
270
+ def __new__(cls, op, arg1, arg2):
271
+ obj = object.__new__(cls)
272
+ obj.args = (op, arg1, arg2)
273
+ return obj
274
+
275
+
276
+ class NonArithmetic(Basic):
277
+ '''Represents a Basic subclass that does not support arithmetic operations'''
278
+ pass
279
+
280
+
281
+ def test_cooperative_operations():
282
+ '''Tests that Expr uses binary operations cooperatively.
283
+
284
+ In particular it should be possible for non-Expr classes to override
285
+ binary operators like +, - etc when used with Expr instances. This should
286
+ work for non-Expr classes whether they are Basic subclasses or not. Also
287
+ non-Expr classes that do not define binary operators with Expr should give
288
+ TypeError.
289
+ '''
290
+ # A bunch of instances of Expr subclasses
291
+ exprs = [
292
+ Expr(),
293
+ S.Zero,
294
+ S.One,
295
+ S.Infinity,
296
+ S.NegativeInfinity,
297
+ S.ComplexInfinity,
298
+ S.Half,
299
+ Float(0.5),
300
+ Integer(2),
301
+ Symbol('x'),
302
+ Mul(2, Symbol('x')),
303
+ Add(2, Symbol('x')),
304
+ Pow(2, Symbol('x')),
305
+ ]
306
+
307
+ for e in exprs:
308
+ # Test that these classes can override arithmetic operations in
309
+ # combination with various Expr types.
310
+ for ne in [NonBasic(), NonExpr()]:
311
+
312
+ results = [
313
+ (ne + e, ('+', ne, e)),
314
+ (e + ne, ('+', e, ne)),
315
+ (ne - e, ('-', ne, e)),
316
+ (e - ne, ('-', e, ne)),
317
+ (ne * e, ('*', ne, e)),
318
+ (e * ne, ('*', e, ne)),
319
+ (ne / e, ('/', ne, e)),
320
+ (e / ne, ('/', e, ne)),
321
+ (ne // e, ('//', ne, e)),
322
+ (e // ne, ('//', e, ne)),
323
+ (ne % e, ('%', ne, e)),
324
+ (e % ne, ('%', e, ne)),
325
+ (divmod(ne, e), ('divmod', ne, e)),
326
+ (divmod(e, ne), ('divmod', e, ne)),
327
+ (ne ** e, ('**', ne, e)),
328
+ (e ** ne, ('**', e, ne)),
329
+ (e < ne, ('>', ne, e)),
330
+ (ne < e, ('<', ne, e)),
331
+ (e > ne, ('<', ne, e)),
332
+ (ne > e, ('>', ne, e)),
333
+ (e <= ne, ('>=', ne, e)),
334
+ (ne <= e, ('<=', ne, e)),
335
+ (e >= ne, ('<=', ne, e)),
336
+ (ne >= e, ('>=', ne, e)),
337
+ ]
338
+
339
+ for res, args in results:
340
+ assert type(res) is SpecialOp and res.args == args
341
+
342
+ # These classes do not support binary operators with Expr. Every
343
+ # operation should raise in combination with any of the Expr types.
344
+ for na in [NonArithmetic(), object()]:
345
+
346
+ raises(TypeError, lambda : e + na)
347
+ raises(TypeError, lambda : na + e)
348
+ raises(TypeError, lambda : e - na)
349
+ raises(TypeError, lambda : na - e)
350
+ raises(TypeError, lambda : e * na)
351
+ raises(TypeError, lambda : na * e)
352
+ raises(TypeError, lambda : e / na)
353
+ raises(TypeError, lambda : na / e)
354
+ raises(TypeError, lambda : e // na)
355
+ raises(TypeError, lambda : na // e)
356
+ raises(TypeError, lambda : e % na)
357
+ raises(TypeError, lambda : na % e)
358
+ raises(TypeError, lambda : divmod(e, na))
359
+ raises(TypeError, lambda : divmod(na, e))
360
+ raises(TypeError, lambda : e ** na)
361
+ raises(TypeError, lambda : na ** e)
362
+ raises(TypeError, lambda : e > na)
363
+ raises(TypeError, lambda : na > e)
364
+ raises(TypeError, lambda : e < na)
365
+ raises(TypeError, lambda : na < e)
366
+ raises(TypeError, lambda : e >= na)
367
+ raises(TypeError, lambda : na >= e)
368
+ raises(TypeError, lambda : e <= na)
369
+ raises(TypeError, lambda : na <= e)
370
+
371
+
372
+ def test_relational():
373
+ from sympy.core.relational import Lt
374
+ assert (pi < 3) is S.false
375
+ assert (pi <= 3) is S.false
376
+ assert (pi > 3) is S.true
377
+ assert (pi >= 3) is S.true
378
+ assert (-pi < 3) is S.true
379
+ assert (-pi <= 3) is S.true
380
+ assert (-pi > 3) is S.false
381
+ assert (-pi >= 3) is S.false
382
+ r = Symbol('r', real=True)
383
+ assert (r - 2 < r - 3) is S.false
384
+ assert Lt(x + I, x + I + 2).func == Lt # issue 8288
385
+
386
+
387
+ def test_relational_assumptions():
388
+ m1 = Symbol("m1", nonnegative=False)
389
+ m2 = Symbol("m2", positive=False)
390
+ m3 = Symbol("m3", nonpositive=False)
391
+ m4 = Symbol("m4", negative=False)
392
+ assert (m1 < 0) == Lt(m1, 0)
393
+ assert (m2 <= 0) == Le(m2, 0)
394
+ assert (m3 > 0) == Gt(m3, 0)
395
+ assert (m4 >= 0) == Ge(m4, 0)
396
+ m1 = Symbol("m1", nonnegative=False, real=True)
397
+ m2 = Symbol("m2", positive=False, real=True)
398
+ m3 = Symbol("m3", nonpositive=False, real=True)
399
+ m4 = Symbol("m4", negative=False, real=True)
400
+ assert (m1 < 0) is S.true
401
+ assert (m2 <= 0) is S.true
402
+ assert (m3 > 0) is S.true
403
+ assert (m4 >= 0) is S.true
404
+ m1 = Symbol("m1", negative=True)
405
+ m2 = Symbol("m2", nonpositive=True)
406
+ m3 = Symbol("m3", positive=True)
407
+ m4 = Symbol("m4", nonnegative=True)
408
+ assert (m1 < 0) is S.true
409
+ assert (m2 <= 0) is S.true
410
+ assert (m3 > 0) is S.true
411
+ assert (m4 >= 0) is S.true
412
+ m1 = Symbol("m1", negative=False, real=True)
413
+ m2 = Symbol("m2", nonpositive=False, real=True)
414
+ m3 = Symbol("m3", positive=False, real=True)
415
+ m4 = Symbol("m4", nonnegative=False, real=True)
416
+ assert (m1 < 0) is S.false
417
+ assert (m2 <= 0) is S.false
418
+ assert (m3 > 0) is S.false
419
+ assert (m4 >= 0) is S.false
420
+
421
+
422
+ # See https://github.com/sympy/sympy/issues/17708
423
+ #def test_relational_noncommutative():
424
+ # from sympy import Lt, Gt, Le, Ge
425
+ # A, B = symbols('A,B', commutative=False)
426
+ # assert (A < B) == Lt(A, B)
427
+ # assert (A <= B) == Le(A, B)
428
+ # assert (A > B) == Gt(A, B)
429
+ # assert (A >= B) == Ge(A, B)
430
+
431
+
432
+ def test_basic_nostr():
433
+ for obj in basic_objs:
434
+ raises(TypeError, lambda: obj + '1')
435
+ raises(TypeError, lambda: obj - '1')
436
+ if obj == 2:
437
+ assert obj * '1' == '11'
438
+ else:
439
+ raises(TypeError, lambda: obj * '1')
440
+ raises(TypeError, lambda: obj / '1')
441
+ raises(TypeError, lambda: obj ** '1')
442
+
443
+
444
+ def test_series_expansion_for_uniform_order():
445
+ assert (1/x + y + x).series(x, 0, 0) == 1/x + O(1, x)
446
+ assert (1/x + y + x).series(x, 0, 1) == 1/x + y + O(x)
447
+ assert (1/x + 1 + x).series(x, 0, 0) == 1/x + O(1, x)
448
+ assert (1/x + 1 + x).series(x, 0, 1) == 1/x + 1 + O(x)
449
+ assert (1/x + x).series(x, 0, 0) == 1/x + O(1, x)
450
+ assert (1/x + y + y*x + x).series(x, 0, 0) == 1/x + O(1, x)
451
+ assert (1/x + y + y*x + x).series(x, 0, 1) == 1/x + y + O(x)
452
+
453
+
454
+ def test_leadterm():
455
+ assert (3 + 2*x**(log(3)/log(2) - 1)).leadterm(x) == (3, 0)
456
+
457
+ assert (1/x**2 + 1 + x + x**2).leadterm(x)[1] == -2
458
+ assert (1/x + 1 + x + x**2).leadterm(x)[1] == -1
459
+ assert (x**2 + 1/x).leadterm(x)[1] == -1
460
+ assert (1 + x**2).leadterm(x)[1] == 0
461
+ assert (x + 1).leadterm(x)[1] == 0
462
+ assert (x + x**2).leadterm(x)[1] == 1
463
+ assert (x**2).leadterm(x)[1] == 2
464
+
465
+
466
+ def test_as_leading_term():
467
+ assert (3 + 2*x**(log(3)/log(2) - 1)).as_leading_term(x) == 3
468
+ assert (1/x**2 + 1 + x + x**2).as_leading_term(x) == 1/x**2
469
+ assert (1/x + 1 + x + x**2).as_leading_term(x) == 1/x
470
+ assert (x**2 + 1/x).as_leading_term(x) == 1/x
471
+ assert (1 + x**2).as_leading_term(x) == 1
472
+ assert (x + 1).as_leading_term(x) == 1
473
+ assert (x + x**2).as_leading_term(x) == x
474
+ assert (x**2).as_leading_term(x) == x**2
475
+ assert (x + oo).as_leading_term(x) is oo
476
+
477
+ raises(ValueError, lambda: (x + 1).as_leading_term(1))
478
+
479
+ # https://github.com/sympy/sympy/issues/21177
480
+ e = -3*x + (x + Rational(3, 2) - sqrt(3)*S.ImaginaryUnit/2)**2\
481
+ - Rational(3, 2) + 3*sqrt(3)*S.ImaginaryUnit/2
482
+ assert e.as_leading_term(x) == \
483
+ (12*sqrt(3)*x - 12*S.ImaginaryUnit*x)/(4*sqrt(3) + 12*S.ImaginaryUnit)
484
+
485
+ # https://github.com/sympy/sympy/issues/21245
486
+ e = 1 - x - x**2
487
+ d = (1 + sqrt(5))/2
488
+ assert e.subs(x, y + 1/d).as_leading_term(y) == \
489
+ (-576*sqrt(5)*y - 1280*y)/(256*sqrt(5) + 576)
490
+
491
+
492
+ def test_leadterm2():
493
+ assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).leadterm(x) == \
494
+ (sin(1 + sin(1)), 0)
495
+
496
+
497
+ def test_leadterm3():
498
+ assert (y + z + x).leadterm(x) == (y + z, 0)
499
+
500
+
501
+ def test_as_leading_term2():
502
+ assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).as_leading_term(x) == \
503
+ sin(1 + sin(1))
504
+
505
+
506
+ def test_as_leading_term3():
507
+ assert (2 + pi + x).as_leading_term(x) == 2 + pi
508
+ assert (2*x + pi*x + x**2).as_leading_term(x) == 2*x + pi*x
509
+
510
+
511
+ def test_as_leading_term4():
512
+ # see issue 6843
513
+ n = Symbol('n', integer=True, positive=True)
514
+ r = -n**3/(2*n**2 + 4*n + 2) - n**2/(n**2 + 2*n + 1) + \
515
+ n**2/(n + 1) - n/(2*n**2 + 4*n + 2) + n/(n*x + x) + 2*n/(n + 1) - \
516
+ 1 + 1/(n*x + x) + 1/(n + 1) - 1/x
517
+ assert r.as_leading_term(x).cancel() == n/2
518
+
519
+
520
+ def test_as_leading_term_stub():
521
+ class foo(Function):
522
+ pass
523
+ assert foo(1/x).as_leading_term(x) == foo(1/x)
524
+ assert foo(1).as_leading_term(x) == foo(1)
525
+ raises(NotImplementedError, lambda: foo(x).as_leading_term(x))
526
+
527
+
528
+ def test_as_leading_term_deriv_integral():
529
+ # related to issue 11313
530
+ assert Derivative(x ** 3, x).as_leading_term(x) == 3*x**2
531
+ assert Derivative(x ** 3, y).as_leading_term(x) == 0
532
+
533
+ assert Integral(x ** 3, x).as_leading_term(x) == x**4/4
534
+ assert Integral(x ** 3, y).as_leading_term(x) == y*x**3
535
+
536
+ assert Derivative(exp(x), x).as_leading_term(x) == 1
537
+ assert Derivative(log(x), x).as_leading_term(x) == (1/x).as_leading_term(x)
538
+
539
+
540
+ def test_atoms():
541
+ assert x.atoms() == {x}
542
+ assert (1 + x).atoms() == {x, S.One}
543
+
544
+ assert (1 + 2*cos(x)).atoms(Symbol) == {x}
545
+ assert (1 + 2*cos(x)).atoms(Symbol, Number) == {S.One, S(2), x}
546
+
547
+ assert (2*(x**(y**x))).atoms() == {S(2), x, y}
548
+
549
+ assert S.Half.atoms() == {S.Half}
550
+ assert S.Half.atoms(Symbol) == set()
551
+
552
+ assert sin(oo).atoms(oo) == set()
553
+
554
+ assert Poly(0, x).atoms() == {S.Zero, x}
555
+ assert Poly(1, x).atoms() == {S.One, x}
556
+
557
+ assert Poly(x, x).atoms() == {x}
558
+ assert Poly(x, x, y).atoms() == {x, y}
559
+ assert Poly(x + y, x, y).atoms() == {x, y}
560
+ assert Poly(x + y, x, y, z).atoms() == {x, y, z}
561
+ assert Poly(x + y*t, x, y, z).atoms() == {t, x, y, z}
562
+
563
+ assert (I*pi).atoms(NumberSymbol) == {pi}
564
+ assert (I*pi).atoms(NumberSymbol, I) == \
565
+ (I*pi).atoms(I, NumberSymbol) == {pi, I}
566
+
567
+ assert exp(exp(x)).atoms(exp) == {exp(exp(x)), exp(x)}
568
+ assert (1 + x*(2 + y) + exp(3 + z)).atoms(Add) == \
569
+ {1 + x*(2 + y) + exp(3 + z), 2 + y, 3 + z}
570
+
571
+ # issue 6132
572
+ e = (f(x) + sin(x) + 2)
573
+ assert e.atoms(AppliedUndef) == \
574
+ {f(x)}
575
+ assert e.atoms(AppliedUndef, Function) == \
576
+ {f(x), sin(x)}
577
+ assert e.atoms(Function) == \
578
+ {f(x), sin(x)}
579
+ assert e.atoms(AppliedUndef, Number) == \
580
+ {f(x), S(2)}
581
+ assert e.atoms(Function, Number) == \
582
+ {S(2), sin(x), f(x)}
583
+
584
+
585
+ def test_is_polynomial():
586
+ k = Symbol('k', nonnegative=True, integer=True)
587
+
588
+ assert Rational(2).is_polynomial(x, y, z) is True
589
+ assert (S.Pi).is_polynomial(x, y, z) is True
590
+
591
+ assert x.is_polynomial(x) is True
592
+ assert x.is_polynomial(y) is True
593
+
594
+ assert (x**2).is_polynomial(x) is True
595
+ assert (x**2).is_polynomial(y) is True
596
+
597
+ assert (x**(-2)).is_polynomial(x) is False
598
+ assert (x**(-2)).is_polynomial(y) is True
599
+
600
+ assert (2**x).is_polynomial(x) is False
601
+ assert (2**x).is_polynomial(y) is True
602
+
603
+ assert (x**k).is_polynomial(x) is False
604
+ assert (x**k).is_polynomial(k) is False
605
+ assert (x**x).is_polynomial(x) is False
606
+ assert (k**k).is_polynomial(k) is False
607
+ assert (k**x).is_polynomial(k) is False
608
+
609
+ assert (x**(-k)).is_polynomial(x) is False
610
+ assert ((2*x)**k).is_polynomial(x) is False
611
+
612
+ assert (x**2 + 3*x - 8).is_polynomial(x) is True
613
+ assert (x**2 + 3*x - 8).is_polynomial(y) is True
614
+
615
+ assert (x**2 + 3*x - 8).is_polynomial() is True
616
+
617
+ assert sqrt(x).is_polynomial(x) is False
618
+ assert (sqrt(x)**3).is_polynomial(x) is False
619
+
620
+ assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(x) is True
621
+ assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(y) is False
622
+
623
+ assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial() is True
624
+ assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial() is False
625
+
626
+ assert (
627
+ (x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial(x, y) is True
628
+ assert (
629
+ (x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial(x, y) is False
630
+
631
+ assert (1/f(x) + 1).is_polynomial(f(x)) is False
632
+
633
+
634
+ def test_is_rational_function():
635
+ assert Integer(1).is_rational_function() is True
636
+ assert Integer(1).is_rational_function(x) is True
637
+
638
+ assert Rational(17, 54).is_rational_function() is True
639
+ assert Rational(17, 54).is_rational_function(x) is True
640
+
641
+ assert (12/x).is_rational_function() is True
642
+ assert (12/x).is_rational_function(x) is True
643
+
644
+ assert (x/y).is_rational_function() is True
645
+ assert (x/y).is_rational_function(x) is True
646
+ assert (x/y).is_rational_function(x, y) is True
647
+
648
+ assert (x**2 + 1/x/y).is_rational_function() is True
649
+ assert (x**2 + 1/x/y).is_rational_function(x) is True
650
+ assert (x**2 + 1/x/y).is_rational_function(x, y) is True
651
+
652
+ assert (sin(y)/x).is_rational_function() is False
653
+ assert (sin(y)/x).is_rational_function(y) is False
654
+ assert (sin(y)/x).is_rational_function(x) is True
655
+ assert (sin(y)/x).is_rational_function(x, y) is False
656
+
657
+ for i in _illegal:
658
+ assert not i.is_rational_function()
659
+ for d in (1, x):
660
+ assert not (i/d).is_rational_function()
661
+
662
+
663
+ def test_is_meromorphic():
664
+ f = a/x**2 + b + x + c*x**2
665
+ assert f.is_meromorphic(x, 0) is True
666
+ assert f.is_meromorphic(x, 1) is True
667
+ assert f.is_meromorphic(x, zoo) is True
668
+
669
+ g = 3 + 2*x**(log(3)/log(2) - 1)
670
+ assert g.is_meromorphic(x, 0) is False
671
+ assert g.is_meromorphic(x, 1) is True
672
+ assert g.is_meromorphic(x, zoo) is False
673
+
674
+ n = Symbol('n', integer=True)
675
+ e = sin(1/x)**n*x
676
+ assert e.is_meromorphic(x, 0) is False
677
+ assert e.is_meromorphic(x, 1) is True
678
+ assert e.is_meromorphic(x, zoo) is False
679
+
680
+ e = log(x)**pi
681
+ assert e.is_meromorphic(x, 0) is False
682
+ assert e.is_meromorphic(x, 1) is False
683
+ assert e.is_meromorphic(x, 2) is True
684
+ assert e.is_meromorphic(x, zoo) is False
685
+
686
+ assert (log(x)**a).is_meromorphic(x, 0) is False
687
+ assert (log(x)**a).is_meromorphic(x, 1) is False
688
+ assert (a**log(x)).is_meromorphic(x, 0) is None
689
+ assert (3**log(x)).is_meromorphic(x, 0) is False
690
+ assert (3**log(x)).is_meromorphic(x, 1) is True
691
+
692
+ def test_is_algebraic_expr():
693
+ assert sqrt(3).is_algebraic_expr(x) is True
694
+ assert sqrt(3).is_algebraic_expr() is True
695
+
696
+ eq = ((1 + x**2)/(1 - y**2))**(S.One/3)
697
+ assert eq.is_algebraic_expr(x) is True
698
+ assert eq.is_algebraic_expr(y) is True
699
+
700
+ assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(x) is True
701
+ assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(y) is True
702
+ assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr() is True
703
+
704
+ assert (cos(y)/sqrt(x)).is_algebraic_expr() is False
705
+ assert (cos(y)/sqrt(x)).is_algebraic_expr(x) is True
706
+ assert (cos(y)/sqrt(x)).is_algebraic_expr(y) is False
707
+ assert (cos(y)/sqrt(x)).is_algebraic_expr(x, y) is False
708
+
709
+
710
+ def test_SAGE1():
711
+ #see https://github.com/sympy/sympy/issues/3346
712
+ class MyInt:
713
+ def _sympy_(self):
714
+ return Integer(5)
715
+ m = MyInt()
716
+ e = Rational(2)*m
717
+ assert e == 10
718
+
719
+ raises(TypeError, lambda: Rational(2)*MyInt)
720
+
721
+
722
+ def test_SAGE2():
723
+ class MyInt:
724
+ def __int__(self):
725
+ return 5
726
+ assert sympify(MyInt()) == 5
727
+ e = Rational(2)*MyInt()
728
+ assert e == 10
729
+
730
+ raises(TypeError, lambda: Rational(2)*MyInt)
731
+
732
+
733
+ def test_SAGE3():
734
+ class MySymbol:
735
+ def __rmul__(self, other):
736
+ return ('mys', other, self)
737
+
738
+ o = MySymbol()
739
+ e = x*o
740
+
741
+ assert e == ('mys', x, o)
742
+
743
+
744
+ def test_len():
745
+ e = x*y
746
+ assert len(e.args) == 2
747
+ e = x + y + z
748
+ assert len(e.args) == 3
749
+
750
+
751
+ def test_doit():
752
+ a = Integral(x**2, x)
753
+
754
+ assert isinstance(a.doit(), Integral) is False
755
+
756
+ assert isinstance(a.doit(integrals=True), Integral) is False
757
+ assert isinstance(a.doit(integrals=False), Integral) is True
758
+
759
+ assert (2*Integral(x, x)).doit() == x**2
760
+
761
+
762
+ def test_attribute_error():
763
+ raises(AttributeError, lambda: x.cos())
764
+ raises(AttributeError, lambda: x.sin())
765
+ raises(AttributeError, lambda: x.exp())
766
+
767
+
768
+ def test_args():
769
+ assert (x*y).args in ((x, y), (y, x))
770
+ assert (x + y).args in ((x, y), (y, x))
771
+ assert (x*y + 1).args in ((x*y, 1), (1, x*y))
772
+ assert sin(x*y).args == (x*y,)
773
+ assert sin(x*y).args[0] == x*y
774
+ assert (x**y).args == (x, y)
775
+ assert (x**y).args[0] == x
776
+ assert (x**y).args[1] == y
777
+
778
+
779
+ def test_noncommutative_expand_issue_3757():
780
+ A, B, C = symbols('A,B,C', commutative=False)
781
+ assert A*B - B*A != 0
782
+ assert (A*(A + B)*B).expand() == A**2*B + A*B**2
783
+ assert (A*(A + B + C)*B).expand() == A**2*B + A*B**2 + A*C*B
784
+
785
+
786
+ def test_as_numer_denom():
787
+ a, b, c = symbols('a, b, c')
788
+
789
+ assert nan.as_numer_denom() == (nan, 1)
790
+ assert oo.as_numer_denom() == (oo, 1)
791
+ assert (-oo).as_numer_denom() == (-oo, 1)
792
+ assert zoo.as_numer_denom() == (zoo, 1)
793
+ assert (-zoo).as_numer_denom() == (zoo, 1)
794
+
795
+ assert x.as_numer_denom() == (x, 1)
796
+ assert (1/x).as_numer_denom() == (1, x)
797
+ assert (x/y).as_numer_denom() == (x, y)
798
+ assert (x/2).as_numer_denom() == (x, 2)
799
+ assert (x*y/z).as_numer_denom() == (x*y, z)
800
+ assert (x/(y*z)).as_numer_denom() == (x, y*z)
801
+ assert S.Half.as_numer_denom() == (1, 2)
802
+ assert (1/y**2).as_numer_denom() == (1, y**2)
803
+ assert (x/y**2).as_numer_denom() == (x, y**2)
804
+ assert ((x**2 + 1)/y).as_numer_denom() == (x**2 + 1, y)
805
+ assert (x*(y + 1)/y**7).as_numer_denom() == (x*(y + 1), y**7)
806
+ assert (x**-2).as_numer_denom() == (1, x**2)
807
+ assert (a/x + b/2/x + c/3/x).as_numer_denom() == \
808
+ (6*a + 3*b + 2*c, 6*x)
809
+ assert (a/x + b/2/x + c/3/y).as_numer_denom() == \
810
+ (2*c*x + y*(6*a + 3*b), 6*x*y)
811
+ assert (a/x + b/2/x + c/.5/x).as_numer_denom() == \
812
+ (2*a + b + 4.0*c, 2*x)
813
+ # this should take no more than a few seconds
814
+ assert int(log(Add(*[Dummy()/i/x for i in range(1, 705)]
815
+ ).as_numer_denom()[1]/x).n(4)) == 705
816
+ for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
817
+ assert (i + x/3).as_numer_denom() == \
818
+ (x + i, 3)
819
+ assert (S.Infinity + x/3 + y/4).as_numer_denom() == \
820
+ (4*x + 3*y + S.Infinity, 12)
821
+ assert (oo*x + zoo*y).as_numer_denom() == \
822
+ (zoo*y + oo*x, 1)
823
+
824
+ A, B, C = symbols('A,B,C', commutative=False)
825
+
826
+ assert (A*B*C**-1).as_numer_denom() == (A*B*C**-1, 1)
827
+ assert (A*B*C**-1/x).as_numer_denom() == (A*B*C**-1, x)
828
+ assert (C**-1*A*B).as_numer_denom() == (C**-1*A*B, 1)
829
+ assert (C**-1*A*B/x).as_numer_denom() == (C**-1*A*B, x)
830
+ assert ((A*B*C)**-1).as_numer_denom() == ((A*B*C)**-1, 1)
831
+ assert ((A*B*C)**-1/x).as_numer_denom() == ((A*B*C)**-1, x)
832
+
833
+ # the following morphs from Add to Mul during processing
834
+ assert Add(0, (x + y)/z/-2, evaluate=False).as_numer_denom(
835
+ ) == (-x - y, 2*z)
836
+
837
+
838
+ def test_trunc():
839
+ import math
840
+ x, y = symbols('x y')
841
+ assert math.trunc(2) == 2
842
+ assert math.trunc(4.57) == 4
843
+ assert math.trunc(-5.79) == -5
844
+ assert math.trunc(pi) == 3
845
+ assert math.trunc(log(7)) == 1
846
+ assert math.trunc(exp(5)) == 148
847
+ assert math.trunc(cos(pi)) == -1
848
+ assert math.trunc(sin(5)) == 0
849
+
850
+ raises(TypeError, lambda: math.trunc(x))
851
+ raises(TypeError, lambda: math.trunc(x + y**2))
852
+ raises(TypeError, lambda: math.trunc(oo))
853
+
854
+
855
+ def test_as_independent():
856
+ assert S.Zero.as_independent(x, as_Add=True) == (0, 0)
857
+ assert S.Zero.as_independent(x, as_Add=False) == (0, 0)
858
+ assert (2*x*sin(x) + y + x).as_independent(x) == (y, x + 2*x*sin(x))
859
+ assert (2*x*sin(x) + y + x).as_independent(y) == (x + 2*x*sin(x), y)
860
+
861
+ assert (2*x*sin(x) + y + x).as_independent(x, y) == (0, y + x + 2*x*sin(x))
862
+
863
+ assert (x*sin(x)*cos(y)).as_independent(x) == (cos(y), x*sin(x))
864
+ assert (x*sin(x)*cos(y)).as_independent(y) == (x*sin(x), cos(y))
865
+
866
+ assert (x*sin(x)*cos(y)).as_independent(x, y) == (1, x*sin(x)*cos(y))
867
+
868
+ assert (sin(x)).as_independent(x) == (1, sin(x))
869
+ assert (sin(x)).as_independent(y) == (sin(x), 1)
870
+
871
+ assert (2*sin(x)).as_independent(x) == (2, sin(x))
872
+ assert (2*sin(x)).as_independent(y) == (2*sin(x), 1)
873
+
874
+ # issue 4903 = 1766b
875
+ n1, n2, n3 = symbols('n1 n2 n3', commutative=False)
876
+ assert (n1 + n1*n2).as_independent(n2) == (n1, n1*n2)
877
+ assert (n2*n1 + n1*n2).as_independent(n2) == (0, n1*n2 + n2*n1)
878
+ assert (n1*n2*n1).as_independent(n2) == (n1, n2*n1)
879
+ assert (n1*n2*n1).as_independent(n1) == (1, n1*n2*n1)
880
+
881
+ assert (3*x).as_independent(x, as_Add=True) == (0, 3*x)
882
+ assert (3*x).as_independent(x, as_Add=False) == (3, x)
883
+ assert (3 + x).as_independent(x, as_Add=True) == (3, x)
884
+ assert (3 + x).as_independent(x, as_Add=False) == (1, 3 + x)
885
+
886
+ # issue 5479
887
+ assert (3*x).as_independent(Symbol) == (3, x)
888
+
889
+ # issue 5648
890
+ assert (n1*x*y).as_independent(x) == (n1*y, x)
891
+ assert ((x + n1)*(x - y)).as_independent(x) == (1, (x + n1)*(x - y))
892
+ assert ((x + n1)*(x - y)).as_independent(y) == (x + n1, x - y)
893
+ assert (DiracDelta(x - n1)*DiracDelta(x - y)).as_independent(x) \
894
+ == (1, DiracDelta(x - n1)*DiracDelta(x - y))
895
+ assert (x*y*n1*n2*n3).as_independent(n2) == (x*y*n1, n2*n3)
896
+ assert (x*y*n1*n2*n3).as_independent(n1) == (x*y, n1*n2*n3)
897
+ assert (x*y*n1*n2*n3).as_independent(n3) == (x*y*n1*n2, n3)
898
+ assert (DiracDelta(x - n1)*DiracDelta(y - n1)*DiracDelta(x - n2)).as_independent(y) == \
899
+ (DiracDelta(x - n1)*DiracDelta(x - n2), DiracDelta(y - n1))
900
+
901
+ # issue 5784
902
+ assert (x + Integral(x, (x, 1, 2))).as_independent(x, strict=True) == \
903
+ (Integral(x, (x, 1, 2)), x)
904
+
905
+ eq = Add(x, -x, 2, -3, evaluate=False)
906
+ assert eq.as_independent(x) == (-1, Add(x, -x, evaluate=False))
907
+ eq = Mul(x, 1/x, 2, -3, evaluate=False)
908
+ assert eq.as_independent(x) == (-6, Mul(x, 1/x, evaluate=False))
909
+
910
+ assert (x*y).as_independent(z, as_Add=True) == (x*y, 0)
911
+
912
+ @XFAIL
913
+ def test_call_2():
914
+ # TODO UndefinedFunction does not subclass Expr
915
+ assert (2*f)(x) == 2*f(x)
916
+
917
+
918
+ def test_replace():
919
+ e = log(sin(x)) + tan(sin(x**2))
920
+
921
+ assert e.replace(sin, cos) == log(cos(x)) + tan(cos(x**2))
922
+ assert e.replace(
923
+ sin, lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2))
924
+
925
+ a = Wild('a')
926
+ b = Wild('b')
927
+
928
+ assert e.replace(sin(a), cos(a)) == log(cos(x)) + tan(cos(x**2))
929
+ assert e.replace(
930
+ sin(a), lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2))
931
+ # test exact
932
+ assert (2*x).replace(a*x + b, b - a, exact=True) == 2*x
933
+ assert (2*x).replace(a*x + b, b - a) == 2*x
934
+ assert (2*x).replace(a*x + b, b - a, exact=False) == 2/x
935
+ assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=True) == 2*x
936
+ assert (2*x).replace(a*x + b, lambda a, b: b - a) == 2*x
937
+ assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=False) == 2/x
938
+
939
+ g = 2*sin(x**3)
940
+
941
+ assert g.replace(
942
+ lambda expr: expr.is_Number, lambda expr: expr**2) == 4*sin(x**9)
943
+
944
+ assert cos(x).replace(cos, sin, map=True) == (sin(x), {cos(x): sin(x)})
945
+ assert sin(x).replace(cos, sin) == sin(x)
946
+
947
+ cond, func = lambda x: x.is_Mul, lambda x: 2*x
948
+ assert (x*y).replace(cond, func, map=True) == (2*x*y, {x*y: 2*x*y})
949
+ assert (x*(1 + x*y)).replace(cond, func, map=True) == \
950
+ (2*x*(2*x*y + 1), {x*(2*x*y + 1): 2*x*(2*x*y + 1), x*y: 2*x*y})
951
+ assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y, map=True) == \
952
+ (sin(x), {sin(x): sin(x)/y})
953
+ # if not simultaneous then y*sin(x) -> y*sin(x)/y = sin(x) -> sin(x)/y
954
+ assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y,
955
+ simultaneous=False) == sin(x)/y
956
+ assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e
957
+ ) == x**2/2 + O(x**3)
958
+ assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e,
959
+ simultaneous=False) == x**2/2 + O(x**3)
960
+ assert (x*(x*y + 3)).replace(lambda x: x.is_Mul, lambda x: 2 + x) == \
961
+ x*(x*y + 5) + 2
962
+ e = (x*y + 1)*(2*x*y + 1) + 1
963
+ assert e.replace(cond, func, map=True) == (
964
+ 2*((2*x*y + 1)*(4*x*y + 1)) + 1,
965
+ {2*x*y: 4*x*y, x*y: 2*x*y, (2*x*y + 1)*(4*x*y + 1):
966
+ 2*((2*x*y + 1)*(4*x*y + 1))})
967
+ assert x.replace(x, y) == y
968
+ assert (x + 1).replace(1, 2) == x + 2
969
+
970
+ # https://groups.google.com/forum/#!topic/sympy/8wCgeC95tz0
971
+ n1, n2, n3 = symbols('n1:4', commutative=False)
972
+ assert (n1*f(n2)).replace(f, lambda x: x) == n1*n2
973
+ assert (n3*f(n2)).replace(f, lambda x: x) == n3*n2
974
+
975
+ # issue 16725
976
+ assert S.Zero.replace(Wild('x'), 1) == 1
977
+ # let the user override the default decision of False
978
+ assert S.Zero.replace(Wild('x'), 1, exact=True) == 0
979
+
980
+
981
+ def test_find():
982
+ expr = (x + y + 2 + sin(3*x))
983
+
984
+ assert expr.find(lambda u: u.is_Integer) == {S(2), S(3)}
985
+ assert expr.find(lambda u: u.is_Symbol) == {x, y}
986
+
987
+ assert expr.find(lambda u: u.is_Integer, group=True) == {S(2): 1, S(3): 1}
988
+ assert expr.find(lambda u: u.is_Symbol, group=True) == {x: 2, y: 1}
989
+
990
+ assert expr.find(Integer) == {S(2), S(3)}
991
+ assert expr.find(Symbol) == {x, y}
992
+
993
+ assert expr.find(Integer, group=True) == {S(2): 1, S(3): 1}
994
+ assert expr.find(Symbol, group=True) == {x: 2, y: 1}
995
+
996
+ a = Wild('a')
997
+
998
+ expr = sin(sin(x)) + sin(x) + cos(x) + x
999
+
1000
+ assert expr.find(lambda u: type(u) is sin) == {sin(x), sin(sin(x))}
1001
+ assert expr.find(
1002
+ lambda u: type(u) is sin, group=True) == {sin(x): 2, sin(sin(x)): 1}
1003
+
1004
+ assert expr.find(sin(a)) == {sin(x), sin(sin(x))}
1005
+ assert expr.find(sin(a), group=True) == {sin(x): 2, sin(sin(x)): 1}
1006
+
1007
+ assert expr.find(sin) == {sin(x), sin(sin(x))}
1008
+ assert expr.find(sin, group=True) == {sin(x): 2, sin(sin(x)): 1}
1009
+
1010
+
1011
+ def test_count():
1012
+ expr = (x + y + 2 + sin(3*x))
1013
+
1014
+ assert expr.count(lambda u: u.is_Integer) == 2
1015
+ assert expr.count(lambda u: u.is_Symbol) == 3
1016
+
1017
+ assert expr.count(Integer) == 2
1018
+ assert expr.count(Symbol) == 3
1019
+ assert expr.count(2) == 1
1020
+
1021
+ a = Wild('a')
1022
+
1023
+ assert expr.count(sin) == 1
1024
+ assert expr.count(sin(a)) == 1
1025
+ assert expr.count(lambda u: type(u) is sin) == 1
1026
+
1027
+ assert f(x).count(f(x)) == 1
1028
+ assert f(x).diff(x).count(f(x)) == 1
1029
+ assert f(x).diff(x).count(x) == 2
1030
+
1031
+
1032
+ def test_has_basics():
1033
+ p = Wild('p')
1034
+
1035
+ assert sin(x).has(x)
1036
+ assert sin(x).has(sin)
1037
+ assert not sin(x).has(y)
1038
+ assert not sin(x).has(cos)
1039
+ assert f(x).has(x)
1040
+ assert f(x).has(f)
1041
+ assert not f(x).has(y)
1042
+ assert not f(x).has(g)
1043
+
1044
+ assert f(x).diff(x).has(x)
1045
+ assert f(x).diff(x).has(f)
1046
+ assert f(x).diff(x).has(Derivative)
1047
+ assert not f(x).diff(x).has(y)
1048
+ assert not f(x).diff(x).has(g)
1049
+ assert not f(x).diff(x).has(sin)
1050
+
1051
+ assert (x**2).has(Symbol)
1052
+ assert not (x**2).has(Wild)
1053
+ assert (2*p).has(Wild)
1054
+
1055
+ assert not x.has()
1056
+
1057
+
1058
+ def test_has_multiple():
1059
+ f = x**2*y + sin(2**t + log(z))
1060
+
1061
+ assert f.has(x)
1062
+ assert f.has(y)
1063
+ assert f.has(z)
1064
+ assert f.has(t)
1065
+
1066
+ assert not f.has(u)
1067
+
1068
+ assert f.has(x, y, z, t)
1069
+ assert f.has(x, y, z, t, u)
1070
+
1071
+ i = Integer(4400)
1072
+
1073
+ assert not i.has(x)
1074
+
1075
+ assert (i*x**i).has(x)
1076
+ assert not (i*y**i).has(x)
1077
+ assert (i*y**i).has(x, y)
1078
+ assert not (i*y**i).has(x, z)
1079
+
1080
+
1081
+ def test_has_piecewise():
1082
+ f = (x*y + 3/y)**(3 + 2)
1083
+ p = Piecewise((g(x), x < -1), (1, x <= 1), (f, True))
1084
+
1085
+ assert p.has(x)
1086
+ assert p.has(y)
1087
+ assert not p.has(z)
1088
+ assert p.has(1)
1089
+ assert p.has(3)
1090
+ assert not p.has(4)
1091
+ assert p.has(f)
1092
+ assert p.has(g)
1093
+ assert not p.has(h)
1094
+
1095
+
1096
+ def test_has_iterative():
1097
+ A, B, C = symbols('A,B,C', commutative=False)
1098
+ f = x*gamma(x)*sin(x)*exp(x*y)*A*B*C*cos(x*A*B)
1099
+
1100
+ assert f.has(x)
1101
+ assert f.has(x*y)
1102
+ assert f.has(x*sin(x))
1103
+ assert not f.has(x*sin(y))
1104
+ assert f.has(x*A)
1105
+ assert f.has(x*A*B)
1106
+ assert not f.has(x*A*C)
1107
+ assert f.has(x*A*B*C)
1108
+ assert not f.has(x*A*C*B)
1109
+ assert f.has(x*sin(x)*A*B*C)
1110
+ assert not f.has(x*sin(x)*A*C*B)
1111
+ assert not f.has(x*sin(y)*A*B*C)
1112
+ assert f.has(x*gamma(x))
1113
+ assert not f.has(x + sin(x))
1114
+
1115
+ assert (x & y & z).has(x & z)
1116
+
1117
+
1118
+ def test_has_integrals():
1119
+ f = Integral(x**2 + sin(x*y*z), (x, 0, x + y + z))
1120
+
1121
+ assert f.has(x + y)
1122
+ assert f.has(x + z)
1123
+ assert f.has(y + z)
1124
+
1125
+ assert f.has(x*y)
1126
+ assert f.has(x*z)
1127
+ assert f.has(y*z)
1128
+
1129
+ assert not f.has(2*x + y)
1130
+ assert not f.has(2*x*y)
1131
+
1132
+
1133
+ def test_has_tuple():
1134
+ assert Tuple(x, y).has(x)
1135
+ assert not Tuple(x, y).has(z)
1136
+ assert Tuple(f(x), g(x)).has(x)
1137
+ assert not Tuple(f(x), g(x)).has(y)
1138
+ assert Tuple(f(x), g(x)).has(f)
1139
+ assert Tuple(f(x), g(x)).has(f(x))
1140
+ # XXX to be deprecated
1141
+ #assert not Tuple(f, g).has(x)
1142
+ #assert Tuple(f, g).has(f)
1143
+ #assert not Tuple(f, g).has(h)
1144
+ assert Tuple(True).has(True)
1145
+ assert Tuple(True).has(S.true)
1146
+ assert not Tuple(True).has(1)
1147
+
1148
+
1149
+ def test_has_units():
1150
+ from sympy.physics.units import m, s
1151
+
1152
+ assert (x*m/s).has(x)
1153
+ assert (x*m/s).has(y, z) is False
1154
+
1155
+
1156
+ def test_has_polys():
1157
+ poly = Poly(x**2 + x*y*sin(z), x, y, t)
1158
+
1159
+ assert poly.has(x)
1160
+ assert poly.has(x, y, z)
1161
+ assert poly.has(x, y, z, t)
1162
+
1163
+
1164
+ def test_has_physics():
1165
+ assert FockState((x, y)).has(x)
1166
+
1167
+
1168
+ def test_as_poly_as_expr():
1169
+ f = x**2 + 2*x*y
1170
+
1171
+ assert f.as_poly().as_expr() == f
1172
+ assert f.as_poly(x, y).as_expr() == f
1173
+
1174
+ assert (f + sin(x)).as_poly(x, y) is None
1175
+
1176
+ p = Poly(f, x, y)
1177
+
1178
+ assert p.as_poly() == p
1179
+
1180
+ # https://github.com/sympy/sympy/issues/20610
1181
+ assert S(2).as_poly() is None
1182
+ assert sqrt(2).as_poly(extension=True) is None
1183
+
1184
+ raises(AttributeError, lambda: Tuple(x, x).as_poly(x))
1185
+ raises(AttributeError, lambda: Tuple(x ** 2, x, y).as_poly(x))
1186
+
1187
+
1188
+ def test_nonzero():
1189
+ assert bool(S.Zero) is False
1190
+ assert bool(S.One) is True
1191
+ assert bool(x) is True
1192
+ assert bool(x + y) is True
1193
+ assert bool(x - x) is False
1194
+ assert bool(x*y) is True
1195
+ assert bool(x*1) is True
1196
+ assert bool(x*0) is False
1197
+
1198
+
1199
+ def test_is_number():
1200
+ assert Float(3.14).is_number is True
1201
+ assert Integer(737).is_number is True
1202
+ assert Rational(3, 2).is_number is True
1203
+ assert Rational(8).is_number is True
1204
+ assert x.is_number is False
1205
+ assert (2*x).is_number is False
1206
+ assert (x + y).is_number is False
1207
+ assert log(2).is_number is True
1208
+ assert log(x).is_number is False
1209
+ assert (2 + log(2)).is_number is True
1210
+ assert (8 + log(2)).is_number is True
1211
+ assert (2 + log(x)).is_number is False
1212
+ assert (8 + log(2) + x).is_number is False
1213
+ assert (1 + x**2/x - x).is_number is True
1214
+ assert Tuple(Integer(1)).is_number is False
1215
+ assert Add(2, x).is_number is False
1216
+ assert Mul(3, 4).is_number is True
1217
+ assert Pow(log(2), 2).is_number is True
1218
+ assert oo.is_number is True
1219
+ g = WildFunction('g')
1220
+ assert g.is_number is False
1221
+ assert (2*g).is_number is False
1222
+ assert (x**2).subs(x, 3).is_number is True
1223
+
1224
+ # test extensibility of .is_number
1225
+ # on subinstances of Basic
1226
+ class A(Basic):
1227
+ pass
1228
+ a = A()
1229
+ assert a.is_number is False
1230
+
1231
+
1232
+ def test_as_coeff_add():
1233
+ assert S(2).as_coeff_add() == (2, ())
1234
+ assert S(3.0).as_coeff_add() == (0, (S(3.0),))
1235
+ assert S(-3.0).as_coeff_add() == (0, (S(-3.0),))
1236
+ assert x.as_coeff_add() == (0, (x,))
1237
+ assert (x - 1).as_coeff_add() == (-1, (x,))
1238
+ assert (x + 1).as_coeff_add() == (1, (x,))
1239
+ assert (x + 2).as_coeff_add() == (2, (x,))
1240
+ assert (x + y).as_coeff_add(y) == (x, (y,))
1241
+ assert (3*x).as_coeff_add(y) == (3*x, ())
1242
+ # don't do expansion
1243
+ e = (x + y)**2
1244
+ assert e.as_coeff_add(y) == (0, (e,))
1245
+
1246
+
1247
+ def test_as_coeff_mul():
1248
+ assert S(2).as_coeff_mul() == (2, ())
1249
+ assert S(3.0).as_coeff_mul() == (1, (S(3.0),))
1250
+ assert S(-3.0).as_coeff_mul() == (-1, (S(3.0),))
1251
+ assert S(-3.0).as_coeff_mul(rational=False) == (-S(3.0), ())
1252
+ assert x.as_coeff_mul() == (1, (x,))
1253
+ assert (-x).as_coeff_mul() == (-1, (x,))
1254
+ assert (2*x).as_coeff_mul() == (2, (x,))
1255
+ assert (x*y).as_coeff_mul(y) == (x, (y,))
1256
+ assert (3 + x).as_coeff_mul() == (1, (3 + x,))
1257
+ assert (3 + x).as_coeff_mul(y) == (3 + x, ())
1258
+ # don't do expansion
1259
+ e = exp(x + y)
1260
+ assert e.as_coeff_mul(y) == (1, (e,))
1261
+ e = 2**(x + y)
1262
+ assert e.as_coeff_mul(y) == (1, (e,))
1263
+ assert (1.1*x).as_coeff_mul(rational=False) == (1.1, (x,))
1264
+ assert (1.1*x).as_coeff_mul() == (1, (1.1, x))
1265
+ assert (-oo*x).as_coeff_mul(rational=True) == (-1, (oo, x))
1266
+
1267
+
1268
+ def test_as_coeff_exponent():
1269
+ assert (3*x**4).as_coeff_exponent(x) == (3, 4)
1270
+ assert (2*x**3).as_coeff_exponent(x) == (2, 3)
1271
+ assert (4*x**2).as_coeff_exponent(x) == (4, 2)
1272
+ assert (6*x**1).as_coeff_exponent(x) == (6, 1)
1273
+ assert (3*x**0).as_coeff_exponent(x) == (3, 0)
1274
+ assert (2*x**0).as_coeff_exponent(x) == (2, 0)
1275
+ assert (1*x**0).as_coeff_exponent(x) == (1, 0)
1276
+ assert (0*x**0).as_coeff_exponent(x) == (0, 0)
1277
+ assert (-1*x**0).as_coeff_exponent(x) == (-1, 0)
1278
+ assert (-2*x**0).as_coeff_exponent(x) == (-2, 0)
1279
+ assert (2*x**3 + pi*x**3).as_coeff_exponent(x) == (2 + pi, 3)
1280
+ assert (x*log(2)/(2*x + pi*x)).as_coeff_exponent(x) == \
1281
+ (log(2)/(2 + pi), 0)
1282
+ # issue 4784
1283
+ D = Derivative
1284
+ fx = D(f(x), x)
1285
+ assert fx.as_coeff_exponent(f(x)) == (fx, 0)
1286
+
1287
+
1288
+ def test_extractions():
1289
+ for base in (2, S.Exp1):
1290
+ assert Pow(base**x, 3, evaluate=False
1291
+ ).extract_multiplicatively(base**x) == base**(2*x)
1292
+ assert (base**(5*x)).extract_multiplicatively(
1293
+ base**(3*x)) == base**(2*x)
1294
+ assert ((x*y)**3).extract_multiplicatively(x**2 * y) == x*y**2
1295
+ assert ((x*y)**3).extract_multiplicatively(x**4 * y) is None
1296
+ assert (2*x).extract_multiplicatively(2) == x
1297
+ assert (2*x).extract_multiplicatively(3) is None
1298
+ assert (2*x).extract_multiplicatively(-1) is None
1299
+ assert (S.Half*x).extract_multiplicatively(3) == x/6
1300
+ assert (sqrt(x)).extract_multiplicatively(x) is None
1301
+ assert (sqrt(x)).extract_multiplicatively(1/x) is None
1302
+ assert x.extract_multiplicatively(-x) is None
1303
+ assert (-2 - 4*I).extract_multiplicatively(-2) == 1 + 2*I
1304
+ assert (-2 - 4*I).extract_multiplicatively(3) is None
1305
+ assert (-2*x - 4*y - 8).extract_multiplicatively(-2) == x + 2*y + 4
1306
+ assert (-2*x*y - 4*x**2*y).extract_multiplicatively(-2*y) == 2*x**2 + x
1307
+ assert (2*x*y + 4*x**2*y).extract_multiplicatively(2*y) == 2*x**2 + x
1308
+ assert (-4*y**2*x).extract_multiplicatively(-3*y) is None
1309
+ assert (2*x).extract_multiplicatively(1) == 2*x
1310
+ assert (-oo).extract_multiplicatively(5) is -oo
1311
+ assert (oo).extract_multiplicatively(5) is oo
1312
+
1313
+ assert ((x*y)**3).extract_additively(1) is None
1314
+ assert (x + 1).extract_additively(x) == 1
1315
+ assert (x + 1).extract_additively(2*x) is None
1316
+ assert (x + 1).extract_additively(-x) is None
1317
+ assert (-x + 1).extract_additively(2*x) is None
1318
+ assert (2*x + 3).extract_additively(x) == x + 3
1319
+ assert (2*x + 3).extract_additively(2) == 2*x + 1
1320
+ assert (2*x + 3).extract_additively(3) == 2*x
1321
+ assert (2*x + 3).extract_additively(-2) is None
1322
+ assert (2*x + 3).extract_additively(3*x) is None
1323
+ assert (2*x + 3).extract_additively(2*x) == 3
1324
+ assert x.extract_additively(0) == x
1325
+ assert S(2).extract_additively(x) is None
1326
+ assert S(2.).extract_additively(2.) is S.Zero
1327
+ assert S(2.).extract_additively(2) is S.Zero
1328
+ assert S(2*x + 3).extract_additively(x + 1) == x + 2
1329
+ assert S(2*x + 3).extract_additively(y + 1) is None
1330
+ assert S(2*x - 3).extract_additively(x + 1) is None
1331
+ assert S(2*x - 3).extract_additively(y + z) is None
1332
+ assert ((a + 1)*x*4 + y).extract_additively(x).expand() == \
1333
+ 4*a*x + 3*x + y
1334
+ assert ((a + 1)*x*4 + 3*y).extract_additively(x + 2*y).expand() == \
1335
+ 4*a*x + 3*x + y
1336
+ assert (y*(x + 1)).extract_additively(x + 1) is None
1337
+ assert ((y + 1)*(x + 1) + 3).extract_additively(x + 1) == \
1338
+ y*(x + 1) + 3
1339
+ assert ((x + y)*(x + 1) + x + y + 3).extract_additively(x + y) == \
1340
+ x*(x + y) + 3
1341
+ assert (x + y + 2*((x + y)*(x + 1)) + 3).extract_additively((x + y)*(x + 1)) == \
1342
+ x + y + (x + 1)*(x + y) + 3
1343
+ assert ((y + 1)*(x + 2*y + 1) + 3).extract_additively(y + 1) == \
1344
+ (x + 2*y)*(y + 1) + 3
1345
+ assert (-x - x*I).extract_additively(-x) == -I*x
1346
+ # extraction does not leave artificats, now
1347
+ assert (4*x*(y + 1) + y).extract_additively(x) == x*(4*y + 3) + y
1348
+
1349
+ n = Symbol("n", integer=True)
1350
+ assert (Integer(-3)).could_extract_minus_sign() is True
1351
+ assert (-n*x + x).could_extract_minus_sign() != \
1352
+ (n*x - x).could_extract_minus_sign()
1353
+ assert (x - y).could_extract_minus_sign() != \
1354
+ (-x + y).could_extract_minus_sign()
1355
+ assert (1 - x - y).could_extract_minus_sign() is True
1356
+ assert (1 - x + y).could_extract_minus_sign() is False
1357
+ assert ((-x - x*y)/y).could_extract_minus_sign() is False
1358
+ assert ((x + x*y)/(-y)).could_extract_minus_sign() is True
1359
+ assert ((x + x*y)/y).could_extract_minus_sign() is False
1360
+ assert ((-x - y)/(x + y)).could_extract_minus_sign() is False
1361
+
1362
+ class sign_invariant(Function, Expr):
1363
+ nargs = 1
1364
+ def __neg__(self):
1365
+ return self
1366
+ foo = sign_invariant(x)
1367
+ assert foo == -foo
1368
+ assert foo.could_extract_minus_sign() is False
1369
+ assert (x - y).could_extract_minus_sign() is False
1370
+ assert (-x + y).could_extract_minus_sign() is True
1371
+ assert (x - 1).could_extract_minus_sign() is False
1372
+ assert (1 - x).could_extract_minus_sign() is True
1373
+ assert (sqrt(2) - 1).could_extract_minus_sign() is True
1374
+ assert (1 - sqrt(2)).could_extract_minus_sign() is False
1375
+ # check that result is canonical
1376
+ eq = (3*x + 15*y).extract_multiplicatively(3)
1377
+ assert eq.args == eq.func(*eq.args).args
1378
+
1379
+
1380
+ def test_nan_extractions():
1381
+ for r in (1, 0, I, nan):
1382
+ assert nan.extract_additively(r) is None
1383
+ assert nan.extract_multiplicatively(r) is None
1384
+
1385
+
1386
+ def test_coeff():
1387
+ assert (x + 1).coeff(x + 1) == 1
1388
+ assert (3*x).coeff(0) == 0
1389
+ assert (z*(1 + x)*x**2).coeff(1 + x) == z*x**2
1390
+ assert (1 + 2*x*x**(1 + x)).coeff(x*x**(1 + x)) == 2
1391
+ assert (1 + 2*x**(y + z)).coeff(x**(y + z)) == 2
1392
+ assert (3 + 2*x + 4*x**2).coeff(1) == 0
1393
+ assert (3 + 2*x + 4*x**2).coeff(-1) == 0
1394
+ assert (3 + 2*x + 4*x**2).coeff(x) == 2
1395
+ assert (3 + 2*x + 4*x**2).coeff(x**2) == 4
1396
+ assert (3 + 2*x + 4*x**2).coeff(x**3) == 0
1397
+
1398
+ assert (-x/8 + x*y).coeff(x) == Rational(-1, 8) + y
1399
+ assert (-x/8 + x*y).coeff(-x) == S.One/8
1400
+ assert (4*x).coeff(2*x) == 0
1401
+ assert (2*x).coeff(2*x) == 1
1402
+ assert (-oo*x).coeff(x*oo) == -1
1403
+ assert (10*x).coeff(x, 0) == 0
1404
+ assert (10*x).coeff(10*x, 0) == 0
1405
+
1406
+ n1, n2 = symbols('n1 n2', commutative=False)
1407
+ assert (n1*n2).coeff(n1) == 1
1408
+ assert (n1*n2).coeff(n2) == n1
1409
+ assert (n1*n2 + x*n1).coeff(n1) == 1 # 1*n1*(n2+x)
1410
+ assert (n2*n1 + x*n1).coeff(n1) == n2 + x
1411
+ assert (n2*n1 + x*n1**2).coeff(n1) == n2
1412
+ assert (n1**x).coeff(n1) == 0
1413
+ assert (n1*n2 + n2*n1).coeff(n1) == 0
1414
+ assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=1) == n2
1415
+ assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=0) == 2
1416
+
1417
+ assert (2*f(x) + 3*f(x).diff(x)).coeff(f(x)) == 2
1418
+
1419
+ expr = z*(x + y)**2
1420
+ expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2
1421
+ assert expr.coeff(z) == (x + y)**2
1422
+ assert expr.coeff(x + y) == 0
1423
+ assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2
1424
+
1425
+ assert (x + y + 3*z).coeff(1) == x + y
1426
+ assert (-x + 2*y).coeff(-1) == x
1427
+ assert (x - 2*y).coeff(-1) == 2*y
1428
+ assert (3 + 2*x + 4*x**2).coeff(1) == 0
1429
+ assert (-x - 2*y).coeff(2) == -y
1430
+ assert (x + sqrt(2)*x).coeff(sqrt(2)) == x
1431
+ assert (3 + 2*x + 4*x**2).coeff(x) == 2
1432
+ assert (3 + 2*x + 4*x**2).coeff(x**2) == 4
1433
+ assert (3 + 2*x + 4*x**2).coeff(x**3) == 0
1434
+ assert (z*(x + y)**2).coeff((x + y)**2) == z
1435
+ assert (z*(x + y)**2).coeff(x + y) == 0
1436
+ assert (2 + 2*x + (x + 1)*y).coeff(x + 1) == y
1437
+
1438
+ assert (x + 2*y + 3).coeff(1) == x
1439
+ assert (x + 2*y + 3).coeff(x, 0) == 2*y + 3
1440
+ assert (x**2 + 2*y + 3*x).coeff(x**2, 0) == 2*y + 3*x
1441
+ assert x.coeff(0, 0) == 0
1442
+ assert x.coeff(x, 0) == 0
1443
+
1444
+ n, m, o, l = symbols('n m o l', commutative=False)
1445
+ assert n.coeff(n) == 1
1446
+ assert y.coeff(n) == 0
1447
+ assert (3*n).coeff(n) == 3
1448
+ assert (2 + n).coeff(x*m) == 0
1449
+ assert (2*x*n*m).coeff(x) == 2*n*m
1450
+ assert (2 + n).coeff(x*m*n + y) == 0
1451
+ assert (2*x*n*m).coeff(3*n) == 0
1452
+ assert (n*m + m*n*m).coeff(n) == 1 + m
1453
+ assert (n*m + m*n*m).coeff(n, right=True) == m # = (1 + m)*n*m
1454
+ assert (n*m + m*n).coeff(n) == 0
1455
+ assert (n*m + o*m*n).coeff(m*n) == o
1456
+ assert (n*m + o*m*n).coeff(m*n, right=True) == 1
1457
+ assert (n*m + n*m*n).coeff(n*m, right=True) == 1 + n # = n*m*(n + 1)
1458
+
1459
+ assert (x*y).coeff(z, 0) == x*y
1460
+
1461
+ assert (x*n + y*n + z*m).coeff(n) == x + y
1462
+ assert (n*m + n*o + o*l).coeff(n, right=True) == m + o
1463
+ assert (x*n*m*n + y*n*m*o + z*l).coeff(m, right=True) == x*n + y*o
1464
+ assert (x*n*m*n + x*n*m*o + z*l).coeff(m, right=True) == n + o
1465
+ assert (x*n*m*n + x*n*m*o + z*l).coeff(m) == x*n
1466
+
1467
+
1468
+ def test_coeff2():
1469
+ r, kappa = symbols('r, kappa')
1470
+ psi = Function("psi")
1471
+ g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2))
1472
+ g = g.expand()
1473
+ assert g.coeff(psi(r).diff(r)) == 2/r
1474
+
1475
+
1476
+ def test_coeff2_0():
1477
+ r, kappa = symbols('r, kappa')
1478
+ psi = Function("psi")
1479
+ g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2))
1480
+ g = g.expand()
1481
+
1482
+ assert g.coeff(psi(r).diff(r, 2)) == 1
1483
+
1484
+
1485
+ def test_coeff_expand():
1486
+ expr = z*(x + y)**2
1487
+ expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2
1488
+ assert expr.coeff(z) == (x + y)**2
1489
+ assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2
1490
+
1491
+
1492
+ def test_integrate():
1493
+ assert x.integrate(x) == x**2/2
1494
+ assert x.integrate((x, 0, 1)) == S.Half
1495
+
1496
+
1497
+ def test_as_base_exp():
1498
+ assert x.as_base_exp() == (x, S.One)
1499
+ assert (x*y*z).as_base_exp() == (x*y*z, S.One)
1500
+ assert (x + y + z).as_base_exp() == (x + y + z, S.One)
1501
+ assert ((x + y)**z).as_base_exp() == (x + y, z)
1502
+
1503
+
1504
+ def test_issue_4963():
1505
+ assert hasattr(Mul(x, y), "is_commutative")
1506
+ assert hasattr(Mul(x, y, evaluate=False), "is_commutative")
1507
+ assert hasattr(Pow(x, y), "is_commutative")
1508
+ assert hasattr(Pow(x, y, evaluate=False), "is_commutative")
1509
+ expr = Mul(Pow(2, 2, evaluate=False), 3, evaluate=False) + 1
1510
+ assert hasattr(expr, "is_commutative")
1511
+
1512
+
1513
+ def test_action_verbs():
1514
+ assert nsimplify(1/(exp(3*pi*x/5) + 1)) == \
1515
+ (1/(exp(3*pi*x/5) + 1)).nsimplify()
1516
+ assert ratsimp(1/x + 1/y) == (1/x + 1/y).ratsimp()
1517
+ assert trigsimp(log(x), deep=True) == (log(x)).trigsimp(deep=True)
1518
+ assert radsimp(1/(2 + sqrt(2))) == (1/(2 + sqrt(2))).radsimp()
1519
+ assert radsimp(1/(a + b*sqrt(c)), symbolic=False) == \
1520
+ (1/(a + b*sqrt(c))).radsimp(symbolic=False)
1521
+ assert powsimp(x**y*x**z*y**z, combine='all') == \
1522
+ (x**y*x**z*y**z).powsimp(combine='all')
1523
+ assert (x**t*y**t).powsimp(force=True) == (x*y)**t
1524
+ assert simplify(x**y*x**z*y**z) == (x**y*x**z*y**z).simplify()
1525
+ assert together(1/x + 1/y) == (1/x + 1/y).together()
1526
+ assert collect(a*x**2 + b*x**2 + a*x - b*x + c, x) == \
1527
+ (a*x**2 + b*x**2 + a*x - b*x + c).collect(x)
1528
+ assert apart(y/(y + 2)/(y + 1), y) == (y/(y + 2)/(y + 1)).apart(y)
1529
+ assert combsimp(y/(x + 2)/(x + 1)) == (y/(x + 2)/(x + 1)).combsimp()
1530
+ assert gammasimp(gamma(x)/gamma(x-5)) == (gamma(x)/gamma(x-5)).gammasimp()
1531
+ assert factor(x**2 + 5*x + 6) == (x**2 + 5*x + 6).factor()
1532
+ assert refine(sqrt(x**2)) == sqrt(x**2).refine()
1533
+ assert cancel((x**2 + 5*x + 6)/(x + 2)) == ((x**2 + 5*x + 6)/(x + 2)).cancel()
1534
+
1535
+
1536
+ def test_as_powers_dict():
1537
+ assert x.as_powers_dict() == {x: 1}
1538
+ assert (x**y*z).as_powers_dict() == {x: y, z: 1}
1539
+ assert Mul(2, 2, evaluate=False).as_powers_dict() == {S(2): S(2)}
1540
+ assert (x*y).as_powers_dict()[z] == 0
1541
+ assert (x + y).as_powers_dict()[z] == 0
1542
+
1543
+
1544
+ def test_as_coefficients_dict():
1545
+ check = [S.One, x, y, x*y, 1]
1546
+ assert [Add(3*x, 2*x, y, 3).as_coefficients_dict()[i] for i in check] == \
1547
+ [3, 5, 1, 0, 3]
1548
+ assert [Add(3*x, 2*x, y, 3, evaluate=False).as_coefficients_dict()[i]
1549
+ for i in check] == [3, 5, 1, 0, 3]
1550
+ assert [(3*x*y).as_coefficients_dict()[i] for i in check] == \
1551
+ [0, 0, 0, 3, 0]
1552
+ assert [(3.0*x*y).as_coefficients_dict()[i] for i in check] == \
1553
+ [0, 0, 0, 3.0, 0]
1554
+ assert (3.0*x*y).as_coefficients_dict()[3.0*x*y] == 0
1555
+ eq = x*(x + 1)*a + x*b + c/x
1556
+ assert eq.as_coefficients_dict(x) == {x: b, 1/x: c,
1557
+ x*(x + 1): a}
1558
+ assert eq.expand().as_coefficients_dict(x) == {x**2: a, x: a + b, 1/x: c}
1559
+ assert x.as_coefficients_dict() == {x: S.One}
1560
+
1561
+
1562
+ def test_args_cnc():
1563
+ A = symbols('A', commutative=False)
1564
+ assert (x + A).args_cnc() == \
1565
+ [[], [x + A]]
1566
+ assert (x + a).args_cnc() == \
1567
+ [[a + x], []]
1568
+ assert (x*a).args_cnc() == \
1569
+ [[a, x], []]
1570
+ assert (x*y*A*(A + 1)).args_cnc(cset=True) == \
1571
+ [{x, y}, [A, 1 + A]]
1572
+ assert Mul(x, x, evaluate=False).args_cnc(cset=True, warn=False) == \
1573
+ [{x}, []]
1574
+ assert Mul(x, x**2, evaluate=False).args_cnc(cset=True, warn=False) == \
1575
+ [{x, x**2}, []]
1576
+ raises(ValueError, lambda: Mul(x, x, evaluate=False).args_cnc(cset=True))
1577
+ assert Mul(x, y, x, evaluate=False).args_cnc() == \
1578
+ [[x, y, x], []]
1579
+ # always split -1 from leading number
1580
+ assert (-1.*x).args_cnc() == [[-1, 1.0, x], []]
1581
+
1582
+
1583
+ def test_new_rawargs():
1584
+ n = Symbol('n', commutative=False)
1585
+ a = x + n
1586
+ assert a.is_commutative is False
1587
+ assert a._new_rawargs(x).is_commutative
1588
+ assert a._new_rawargs(x, y).is_commutative
1589
+ assert a._new_rawargs(x, n).is_commutative is False
1590
+ assert a._new_rawargs(x, y, n).is_commutative is False
1591
+ m = x*n
1592
+ assert m.is_commutative is False
1593
+ assert m._new_rawargs(x).is_commutative
1594
+ assert m._new_rawargs(n).is_commutative is False
1595
+ assert m._new_rawargs(x, y).is_commutative
1596
+ assert m._new_rawargs(x, n).is_commutative is False
1597
+ assert m._new_rawargs(x, y, n).is_commutative is False
1598
+
1599
+ assert m._new_rawargs(x, n, reeval=False).is_commutative is False
1600
+ assert m._new_rawargs(S.One) is S.One
1601
+
1602
+
1603
+ def test_issue_5226():
1604
+ assert Add(evaluate=False) == 0
1605
+ assert Mul(evaluate=False) == 1
1606
+ assert Mul(x + y, evaluate=False).is_Add
1607
+
1608
+
1609
+ def test_free_symbols():
1610
+ # free_symbols should return the free symbols of an object
1611
+ assert S.One.free_symbols == set()
1612
+ assert x.free_symbols == {x}
1613
+ assert Integral(x, (x, 1, y)).free_symbols == {y}
1614
+ assert (-Integral(x, (x, 1, y))).free_symbols == {y}
1615
+ assert meter.free_symbols == set()
1616
+ assert (meter**x).free_symbols == {x}
1617
+
1618
+
1619
+ def test_has_free():
1620
+ assert x.has_free(x)
1621
+ assert not x.has_free(y)
1622
+ assert (x + y).has_free(x)
1623
+ assert (x + y).has_free(*(x, z))
1624
+ assert f(x).has_free(x)
1625
+ assert f(x).has_free(f(x))
1626
+ assert Integral(f(x), (f(x), 1, y)).has_free(y)
1627
+ assert not Integral(f(x), (f(x), 1, y)).has_free(x)
1628
+ assert not Integral(f(x), (f(x), 1, y)).has_free(f(x))
1629
+ # simple extraction
1630
+ assert (x + 1 + y).has_free(x + 1)
1631
+ assert not (x + 2 + y).has_free(x + 1)
1632
+ assert (2 + 3*x*y).has_free(3*x)
1633
+ raises(TypeError, lambda: x.has_free({x, y}))
1634
+ s = FiniteSet(1, 2)
1635
+ assert Piecewise((s, x > 3), (4, True)).has_free(s)
1636
+ assert not Piecewise((1, x > 3), (4, True)).has_free(s)
1637
+ # can't make set of these, but fallback will handle
1638
+ raises(TypeError, lambda: x.has_free(y, []))
1639
+
1640
+
1641
+ def test_has_xfree():
1642
+ assert (x + 1).has_xfree({x})
1643
+ assert ((x + 1)**2).has_xfree({x + 1})
1644
+ assert not (x + y + 1).has_xfree({x + 1})
1645
+ raises(TypeError, lambda: x.has_xfree(x))
1646
+ raises(TypeError, lambda: x.has_xfree([x]))
1647
+
1648
+
1649
+ def test_issue_5300():
1650
+ x = Symbol('x', commutative=False)
1651
+ assert x*sqrt(2)/sqrt(6) == x*sqrt(3)/3
1652
+
1653
+
1654
+ def test_floordiv():
1655
+ from sympy.functions.elementary.integers import floor
1656
+ assert x // y == floor(x / y)
1657
+
1658
+
1659
+ def test_as_coeff_Mul():
1660
+ assert Integer(3).as_coeff_Mul() == (Integer(3), Integer(1))
1661
+ assert Rational(3, 4).as_coeff_Mul() == (Rational(3, 4), Integer(1))
1662
+ assert Float(5.0).as_coeff_Mul() == (Float(5.0), Integer(1))
1663
+
1664
+ assert (Integer(3)*x).as_coeff_Mul() == (Integer(3), x)
1665
+ assert (Rational(3, 4)*x).as_coeff_Mul() == (Rational(3, 4), x)
1666
+ assert (Float(5.0)*x).as_coeff_Mul() == (Float(5.0), x)
1667
+
1668
+ assert (Integer(3)*x*y).as_coeff_Mul() == (Integer(3), x*y)
1669
+ assert (Rational(3, 4)*x*y).as_coeff_Mul() == (Rational(3, 4), x*y)
1670
+ assert (Float(5.0)*x*y).as_coeff_Mul() == (Float(5.0), x*y)
1671
+
1672
+ assert (x).as_coeff_Mul() == (S.One, x)
1673
+ assert (x*y).as_coeff_Mul() == (S.One, x*y)
1674
+ assert (-oo*x).as_coeff_Mul(rational=True) == (-1, oo*x)
1675
+
1676
+
1677
+ def test_as_coeff_Add():
1678
+ assert Integer(3).as_coeff_Add() == (Integer(3), Integer(0))
1679
+ assert Rational(3, 4).as_coeff_Add() == (Rational(3, 4), Integer(0))
1680
+ assert Float(5.0).as_coeff_Add() == (Float(5.0), Integer(0))
1681
+
1682
+ assert (Integer(3) + x).as_coeff_Add() == (Integer(3), x)
1683
+ assert (Rational(3, 4) + x).as_coeff_Add() == (Rational(3, 4), x)
1684
+ assert (Float(5.0) + x).as_coeff_Add() == (Float(5.0), x)
1685
+ assert (Float(5.0) + x).as_coeff_Add(rational=True) == (0, Float(5.0) + x)
1686
+
1687
+ assert (Integer(3) + x + y).as_coeff_Add() == (Integer(3), x + y)
1688
+ assert (Rational(3, 4) + x + y).as_coeff_Add() == (Rational(3, 4), x + y)
1689
+ assert (Float(5.0) + x + y).as_coeff_Add() == (Float(5.0), x + y)
1690
+
1691
+ assert (x).as_coeff_Add() == (S.Zero, x)
1692
+ assert (x*y).as_coeff_Add() == (S.Zero, x*y)
1693
+
1694
+
1695
+ def test_expr_sorting():
1696
+
1697
+ exprs = [1/x**2, 1/x, sqrt(sqrt(x)), sqrt(x), x, sqrt(x)**3, x**2]
1698
+ assert sorted(exprs, key=default_sort_key) == exprs
1699
+
1700
+ exprs = [x, 2*x, 2*x**2, 2*x**3, x**n, 2*x**n, sin(x), sin(x)**n,
1701
+ sin(x**2), cos(x), cos(x**2), tan(x)]
1702
+ assert sorted(exprs, key=default_sort_key) == exprs
1703
+
1704
+ exprs = [x + 1, x**2 + x + 1, x**3 + x**2 + x + 1]
1705
+ assert sorted(exprs, key=default_sort_key) == exprs
1706
+
1707
+ exprs = [S(4), x - 3*I/2, x + 3*I/2, x - 4*I + 1, x + 4*I + 1]
1708
+ assert sorted(exprs, key=default_sort_key) == exprs
1709
+
1710
+ exprs = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
1711
+ assert sorted(exprs, key=default_sort_key) == exprs
1712
+
1713
+ exprs = [f(x), g(x), exp(x), sin(x), cos(x), factorial(x)]
1714
+ assert sorted(exprs, key=default_sort_key) == exprs
1715
+
1716
+ exprs = [Tuple(x, y), Tuple(x, z), Tuple(x, y, z)]
1717
+ assert sorted(exprs, key=default_sort_key) == exprs
1718
+
1719
+ exprs = [[3], [1, 2]]
1720
+ assert sorted(exprs, key=default_sort_key) == exprs
1721
+
1722
+ exprs = [[1, 2], [2, 3]]
1723
+ assert sorted(exprs, key=default_sort_key) == exprs
1724
+
1725
+ exprs = [[1, 2], [1, 2, 3]]
1726
+ assert sorted(exprs, key=default_sort_key) == exprs
1727
+
1728
+ exprs = [{x: -y}, {x: y}]
1729
+ assert sorted(exprs, key=default_sort_key) == exprs
1730
+
1731
+ exprs = [{1}, {1, 2}]
1732
+ assert sorted(exprs, key=default_sort_key) == exprs
1733
+
1734
+ a, b = exprs = [Dummy('x'), Dummy('x')]
1735
+ assert sorted([b, a], key=default_sort_key) == exprs
1736
+
1737
+
1738
+ def test_as_ordered_factors():
1739
+
1740
+ assert x.as_ordered_factors() == [x]
1741
+ assert (2*x*x**n*sin(x)*cos(x)).as_ordered_factors() \
1742
+ == [Integer(2), x, x**n, sin(x), cos(x)]
1743
+
1744
+ args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
1745
+ expr = Mul(*args)
1746
+
1747
+ assert expr.as_ordered_factors() == args
1748
+
1749
+ A, B = symbols('A,B', commutative=False)
1750
+
1751
+ assert (A*B).as_ordered_factors() == [A, B]
1752
+ assert (B*A).as_ordered_factors() == [B, A]
1753
+
1754
+
1755
+ def test_as_ordered_terms():
1756
+
1757
+ assert x.as_ordered_terms() == [x]
1758
+ assert (sin(x)**2*cos(x) + sin(x)*cos(x)**2 + 1).as_ordered_terms() \
1759
+ == [sin(x)**2*cos(x), sin(x)*cos(x)**2, 1]
1760
+
1761
+ args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)]
1762
+ expr = Add(*args)
1763
+
1764
+ assert expr.as_ordered_terms() == args
1765
+
1766
+ assert (1 + 4*sqrt(3)*pi*x).as_ordered_terms() == [4*pi*x*sqrt(3), 1]
1767
+
1768
+ assert ( 2 + 3*I).as_ordered_terms() == [2, 3*I]
1769
+ assert (-2 + 3*I).as_ordered_terms() == [-2, 3*I]
1770
+ assert ( 2 - 3*I).as_ordered_terms() == [2, -3*I]
1771
+ assert (-2 - 3*I).as_ordered_terms() == [-2, -3*I]
1772
+
1773
+ assert ( 4 + 3*I).as_ordered_terms() == [4, 3*I]
1774
+ assert (-4 + 3*I).as_ordered_terms() == [-4, 3*I]
1775
+ assert ( 4 - 3*I).as_ordered_terms() == [4, -3*I]
1776
+ assert (-4 - 3*I).as_ordered_terms() == [-4, -3*I]
1777
+
1778
+ e = x**2*y**2 + x*y**4 + y + 2
1779
+
1780
+ assert e.as_ordered_terms(order="lex") == [x**2*y**2, x*y**4, y, 2]
1781
+ assert e.as_ordered_terms(order="grlex") == [x*y**4, x**2*y**2, y, 2]
1782
+ assert e.as_ordered_terms(order="rev-lex") == [2, y, x*y**4, x**2*y**2]
1783
+ assert e.as_ordered_terms(order="rev-grlex") == [2, y, x**2*y**2, x*y**4]
1784
+
1785
+ k = symbols('k')
1786
+ assert k.as_ordered_terms(data=True) == ([(k, ((1.0, 0.0), (1,), ()))], [k])
1787
+
1788
+
1789
+ def test_sort_key_atomic_expr():
1790
+ from sympy.physics.units import m, s
1791
+ assert sorted([-m, s], key=lambda arg: arg.sort_key()) == [-m, s]
1792
+
1793
+
1794
+ def test_eval_interval():
1795
+ assert exp(x)._eval_interval(*Tuple(x, 0, 1)) == exp(1) - exp(0)
1796
+
1797
+ # issue 4199
1798
+ a = x/y
1799
+ raises(NotImplementedError, lambda: a._eval_interval(x, S.Zero, oo)._eval_interval(y, oo, S.Zero))
1800
+ raises(NotImplementedError, lambda: a._eval_interval(x, S.Zero, oo)._eval_interval(y, S.Zero, oo))
1801
+ a = x - y
1802
+ raises(NotImplementedError, lambda: a._eval_interval(x, S.One, oo)._eval_interval(y, oo, S.One))
1803
+ raises(ValueError, lambda: x._eval_interval(x, None, None))
1804
+ a = -y*Heaviside(x - y)
1805
+ assert a._eval_interval(x, -oo, oo) == -y
1806
+ assert a._eval_interval(x, oo, -oo) == y
1807
+
1808
+
1809
+ def test_eval_interval_zoo():
1810
+ # Test that limit is used when zoo is returned
1811
+ assert Si(1/x)._eval_interval(x, S.Zero, S.One) == -pi/2 + Si(1)
1812
+
1813
+
1814
+ def test_primitive():
1815
+ assert (3*(x + 1)**2).primitive() == (3, (x + 1)**2)
1816
+ assert (6*x + 2).primitive() == (2, 3*x + 1)
1817
+ assert (x/2 + 3).primitive() == (S.Half, x + 6)
1818
+ eq = (6*x + 2)*(x/2 + 3)
1819
+ assert eq.primitive()[0] == 1
1820
+ eq = (2 + 2*x)**2
1821
+ assert eq.primitive()[0] == 1
1822
+ assert (4.0*x).primitive() == (1, 4.0*x)
1823
+ assert (4.0*x + y/2).primitive() == (S.Half, 8.0*x + y)
1824
+ assert (-2*x).primitive() == (2, -x)
1825
+ assert Add(5*z/7, 0.5*x, 3*y/2, evaluate=False).primitive() == \
1826
+ (S.One/14, 7.0*x + 21*y + 10*z)
1827
+ for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
1828
+ assert (i + x/3).primitive() == \
1829
+ (S.One/3, i + x)
1830
+ assert (S.Infinity + 2*x/3 + 4*y/7).primitive() == \
1831
+ (S.One/21, 14*x + 12*y + oo)
1832
+ assert S.Zero.primitive() == (S.One, S.Zero)
1833
+
1834
+
1835
+ def test_issue_5843():
1836
+ a = 1 + x
1837
+ assert (2*a).extract_multiplicatively(a) == 2
1838
+ assert (4*a).extract_multiplicatively(2*a) == 2
1839
+ assert ((3*a)*(2*a)).extract_multiplicatively(a) == 6*a
1840
+
1841
+
1842
+ def test_is_constant():
1843
+ from sympy.solvers.solvers import checksol
1844
+ assert Sum(x, (x, 1, 10)).is_constant() is True
1845
+ assert Sum(x, (x, 1, n)).is_constant() is False
1846
+ assert Sum(x, (x, 1, n)).is_constant(y) is True
1847
+ assert Sum(x, (x, 1, n)).is_constant(n) is False
1848
+ assert Sum(x, (x, 1, n)).is_constant(x) is True
1849
+ eq = a*cos(x)**2 + a*sin(x)**2 - a
1850
+ assert eq.is_constant() is True
1851
+ assert eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0
1852
+ assert x.is_constant() is False
1853
+ assert x.is_constant(y) is True
1854
+ assert log(x/y).is_constant() is False
1855
+
1856
+ assert checksol(x, x, Sum(x, (x, 1, n))) is False
1857
+ assert checksol(x, x, Sum(x, (x, 1, n))) is False
1858
+ assert f(1).is_constant
1859
+ assert checksol(x, x, f(x)) is False
1860
+
1861
+ assert Pow(x, S.Zero, evaluate=False).is_constant() is True # == 1
1862
+ assert Pow(S.Zero, x, evaluate=False).is_constant() is False # == 0 or 1
1863
+ assert (2**x).is_constant() is False
1864
+ assert Pow(S(2), S(3), evaluate=False).is_constant() is True
1865
+
1866
+ z1, z2 = symbols('z1 z2', zero=True)
1867
+ assert (z1 + 2*z2).is_constant() is True
1868
+
1869
+ assert meter.is_constant() is True
1870
+ assert (3*meter).is_constant() is True
1871
+ assert (x*meter).is_constant() is False
1872
+
1873
+
1874
+ def test_equals():
1875
+ assert (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2).equals(0)
1876
+ assert (x**2 - 1).equals((x + 1)*(x - 1))
1877
+ assert (cos(x)**2 + sin(x)**2).equals(1)
1878
+ assert (a*cos(x)**2 + a*sin(x)**2).equals(a)
1879
+ r = sqrt(2)
1880
+ assert (-1/(r + r*x) + 1/r/(1 + x)).equals(0)
1881
+ assert factorial(x + 1).equals((x + 1)*factorial(x))
1882
+ assert sqrt(3).equals(2*sqrt(3)) is False
1883
+ assert (sqrt(5)*sqrt(3)).equals(sqrt(3)) is False
1884
+ assert (sqrt(5) + sqrt(3)).equals(0) is False
1885
+ assert (sqrt(5) + pi).equals(0) is False
1886
+ assert meter.equals(0) is False
1887
+ assert (3*meter**2).equals(0) is False
1888
+ eq = -(-1)**(S(3)/4)*6**(S.One/4) + (-6)**(S.One/4)*I
1889
+ if eq != 0: # if canonicalization makes this zero, skip the test
1890
+ assert eq.equals(0)
1891
+ assert sqrt(x).equals(0) is False
1892
+
1893
+ # from integrate(x*sqrt(1 + 2*x), x);
1894
+ # diff is zero only when assumptions allow
1895
+ i = 2*sqrt(2)*x**(S(5)/2)*(1 + 1/(2*x))**(S(5)/2)/5 + \
1896
+ 2*sqrt(2)*x**(S(3)/2)*(1 + 1/(2*x))**(S(5)/2)/(-6 - 3/x)
1897
+ ans = sqrt(2*x + 1)*(6*x**2 + x - 1)/15
1898
+ diff = i - ans
1899
+ assert diff.equals(0) is None # should be False, but previously this was False due to wrong intermediate result
1900
+ assert diff.subs(x, Rational(-1, 2)/2) == 7*sqrt(2)/120
1901
+ # there are regions for x for which the expression is True, for
1902
+ # example, when x < -1/2 or x > 0 the expression is zero
1903
+ p = Symbol('p', positive=True)
1904
+ assert diff.subs(x, p).equals(0) is True
1905
+ assert diff.subs(x, -1).equals(0) is True
1906
+
1907
+ # prove via minimal_polynomial or self-consistency
1908
+ eq = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
1909
+ assert eq.equals(0)
1910
+ q = 3**Rational(1, 3) + 3
1911
+ p = expand(q**3)**Rational(1, 3)
1912
+ assert (p - q).equals(0)
1913
+
1914
+ # issue 6829
1915
+ # eq = q*x + q/4 + x**4 + x**3 + 2*x**2 - S.One/3
1916
+ # z = eq.subs(x, solve(eq, x)[0])
1917
+ q = symbols('q')
1918
+ z = (q*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) -
1919
+ S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 -
1920
+ S(2197)/13824)**(S.One/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 -
1921
+ S(2197)/13824)**(S.One/3) - S(13)/6)/2 - S.One/4) + q/4 + (-sqrt(-2*(-(q
1922
+ - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q
1923
+ - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) -
1924
+ S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) -
1925
+ S(13)/6)/2 - S.One/4)**4 + (-sqrt(-2*(-(q - S(7)/8)**S(2)/8 -
1926
+ S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q -
1927
+ S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) -
1928
+ S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) -
1929
+ S(13)/6)/2 - S.One/4)**3 + 2*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 -
1930
+ S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q -
1931
+ S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) -
1932
+ S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) -
1933
+ S(13)/6)/2 - S.One/4)**2 - Rational(1, 3))
1934
+ assert z.equals(0)
1935
+
1936
+
1937
+ def test_random():
1938
+ from sympy.functions.combinatorial.numbers import lucas
1939
+ from sympy.simplify.simplify import posify
1940
+ assert posify(x)[0]._random() is not None
1941
+ assert lucas(n)._random(2, -2, 0, -1, 1) is None
1942
+
1943
+ # issue 8662
1944
+ assert Piecewise((Max(x, y), z))._random() is None
1945
+
1946
+
1947
+ def test_round():
1948
+ assert str(Float('0.1249999').round(2)) == '0.12'
1949
+ d20 = 12345678901234567890
1950
+ ans = S(d20).round(2)
1951
+ assert ans.is_Integer and ans == d20
1952
+ ans = S(d20).round(-2)
1953
+ assert ans.is_Integer and ans == 12345678901234567900
1954
+ assert str(S('1/7').round(4)) == '0.1429'
1955
+ assert str(S('.[12345]').round(4)) == '0.1235'
1956
+ assert str(S('.1349').round(2)) == '0.13'
1957
+ n = S(12345)
1958
+ ans = n.round()
1959
+ assert ans.is_Integer
1960
+ assert ans == n
1961
+ ans = n.round(1)
1962
+ assert ans.is_Integer
1963
+ assert ans == n
1964
+ ans = n.round(4)
1965
+ assert ans.is_Integer
1966
+ assert ans == n
1967
+ assert n.round(-1) == 12340
1968
+
1969
+ r = Float(str(n)).round(-4)
1970
+ assert r == 10000.0
1971
+
1972
+ assert n.round(-5) == 0
1973
+
1974
+ assert str((pi + sqrt(2)).round(2)) == '4.56'
1975
+ assert (10*(pi + sqrt(2))).round(-1) == 50.0
1976
+ raises(TypeError, lambda: round(x + 2, 2))
1977
+ assert str(S(2.3).round(1)) == '2.3'
1978
+ # rounding in SymPy (as in Decimal) should be
1979
+ # exact for the given precision; we check here
1980
+ # that when a 5 follows the last digit that
1981
+ # the rounded digit will be even.
1982
+ for i in range(-99, 100):
1983
+ # construct a decimal that ends in 5, e.g. 123 -> 0.1235
1984
+ s = str(abs(i))
1985
+ p = len(s) # we are going to round to the last digit of i
1986
+ n = '0.%s5' % s # put a 5 after i's digits
1987
+ j = p + 2 # 2 for '0.'
1988
+ if i < 0: # 1 for '-'
1989
+ j += 1
1990
+ n = '-' + n
1991
+ v = str(Float(n).round(p))[:j] # pertinent digits
1992
+ if v.endswith('.'):
1993
+ continue # it ends with 0 which is even
1994
+ L = int(v[-1]) # last digit
1995
+ assert L % 2 == 0, (n, '->', v)
1996
+
1997
+ assert (Float(.3, 3) + 2*pi).round() == 7
1998
+ assert (Float(.3, 3) + 2*pi*100).round() == 629
1999
+ assert (pi + 2*E*I).round() == 3 + 5*I
2000
+ # don't let request for extra precision give more than
2001
+ # what is known (in this case, only 3 digits)
2002
+ assert str((Float(.03, 3) + 2*pi/100).round(5)) == '0.0928'
2003
+ assert str((Float(.03, 3) + 2*pi/100).round(4)) == '0.0928'
2004
+
2005
+ assert S.Zero.round() == 0
2006
+
2007
+ a = (Add(1, Float('1.' + '9'*27, ''), evaluate=0))
2008
+ assert a.round(10) == Float('3.000000000000000000000000000', '')
2009
+ assert a.round(25) == Float('3.000000000000000000000000000', '')
2010
+ assert a.round(26) == Float('3.000000000000000000000000000', '')
2011
+ assert a.round(27) == Float('2.999999999999999999999999999', '')
2012
+ assert a.round(30) == Float('2.999999999999999999999999999', '')
2013
+
2014
+ # XXX: Should round set the precision of the result?
2015
+ # The previous version of the tests above is this but they only pass
2016
+ # because Floats with unequal precision compare equal:
2017
+ #
2018
+ # assert a.round(10) == Float('3.0000000000', '')
2019
+ # assert a.round(25) == Float('3.0000000000000000000000000', '')
2020
+ # assert a.round(26) == Float('3.00000000000000000000000000', '')
2021
+ # assert a.round(27) == Float('2.999999999999999999999999999', '')
2022
+ # assert a.round(30) == Float('2.999999999999999999999999999', '')
2023
+
2024
+ raises(TypeError, lambda: x.round())
2025
+ raises(TypeError, lambda: f(1).round())
2026
+
2027
+ # exact magnitude of 10
2028
+ assert str(S.One.round()) == '1'
2029
+ assert str(S(100).round()) == '100'
2030
+
2031
+ # applied to real and imaginary portions
2032
+ assert (2*pi + E*I).round() == 6 + 3*I
2033
+ assert (2*pi + I/10).round() == 6
2034
+ assert (pi/10 + 2*I).round() == 2*I
2035
+ # the lhs re and im parts are Float with dps of 2
2036
+ # and those on the right have dps of 15 so they won't compare
2037
+ # equal unless we use string or compare components (which will
2038
+ # then coerce the floats to the same precision) or re-create
2039
+ # the floats
2040
+ assert str((pi/10 + E*I).round(2)) == '0.31 + 2.72*I'
2041
+ assert str((pi/10 + E*I).round(2).as_real_imag()) == '(0.31, 2.72)'
2042
+ assert str((pi/10 + E*I).round(2)) == '0.31 + 2.72*I'
2043
+
2044
+ # issue 6914
2045
+ assert (I**(I + 3)).round(3) == Float('-0.208', '')*I
2046
+
2047
+ # issue 8720
2048
+ assert S(-123.6).round() == -124
2049
+ assert S(-1.5).round() == -2
2050
+ assert S(-100.5).round() == -100
2051
+ assert S(-1.5 - 10.5*I).round() == -2 - 10*I
2052
+
2053
+ # issue 7961
2054
+ assert str(S(0.006).round(2)) == '0.01'
2055
+ assert str(S(0.00106).round(4)) == '0.0011'
2056
+
2057
+ # issue 8147
2058
+ assert S.NaN.round() is S.NaN
2059
+ assert S.Infinity.round() is S.Infinity
2060
+ assert S.NegativeInfinity.round() is S.NegativeInfinity
2061
+ assert S.ComplexInfinity.round() is S.ComplexInfinity
2062
+
2063
+ # check that types match
2064
+ for i in range(2):
2065
+ fi = float(i)
2066
+ # 2 args
2067
+ assert all(type(round(i, p)) is int for p in (-1, 0, 1))
2068
+ assert all(S(i).round(p).is_Integer for p in (-1, 0, 1))
2069
+ assert all(type(round(fi, p)) is float for p in (-1, 0, 1))
2070
+ assert all(S(fi).round(p).is_Float for p in (-1, 0, 1))
2071
+ # 1 arg (p is None)
2072
+ assert type(round(i)) is int
2073
+ assert S(i).round().is_Integer
2074
+ assert type(round(fi)) is int
2075
+ assert S(fi).round().is_Integer
2076
+
2077
+
2078
+ def test_held_expression_UnevaluatedExpr():
2079
+ x = symbols("x")
2080
+ he = UnevaluatedExpr(1/x)
2081
+ e1 = x*he
2082
+
2083
+ assert isinstance(e1, Mul)
2084
+ assert e1.args == (x, he)
2085
+ assert e1.doit() == 1
2086
+ assert UnevaluatedExpr(Derivative(x, x)).doit(deep=False
2087
+ ) == Derivative(x, x)
2088
+ assert UnevaluatedExpr(Derivative(x, x)).doit() == 1
2089
+
2090
+ xx = Mul(x, x, evaluate=False)
2091
+ assert xx != x**2
2092
+
2093
+ ue2 = UnevaluatedExpr(xx)
2094
+ assert isinstance(ue2, UnevaluatedExpr)
2095
+ assert ue2.args == (xx,)
2096
+ assert ue2.doit() == x**2
2097
+ assert ue2.doit(deep=False) == xx
2098
+
2099
+ x2 = UnevaluatedExpr(2)*2
2100
+ assert type(x2) is Mul
2101
+ assert x2.args == (2, UnevaluatedExpr(2))
2102
+
2103
+ def test_round_exception_nostr():
2104
+ # Don't use the string form of the expression in the round exception, as
2105
+ # it's too slow
2106
+ s = Symbol('bad')
2107
+ try:
2108
+ s.round()
2109
+ except TypeError as e:
2110
+ assert 'bad' not in str(e)
2111
+ else:
2112
+ # Did not raise
2113
+ raise AssertionError("Did not raise")
2114
+
2115
+
2116
+ def test_extract_branch_factor():
2117
+ assert exp_polar(2.0*I*pi).extract_branch_factor() == (1, 1)
2118
+
2119
+
2120
+ def test_identity_removal():
2121
+ assert Add.make_args(x + 0) == (x,)
2122
+ assert Mul.make_args(x*1) == (x,)
2123
+
2124
+
2125
+ def test_float_0():
2126
+ assert Float(0.0) + 1 == Float(1.0)
2127
+
2128
+
2129
+ @XFAIL
2130
+ def test_float_0_fail():
2131
+ assert Float(0.0)*x == Float(0.0)
2132
+ assert (x + Float(0.0)).is_Add
2133
+
2134
+
2135
+ def test_issue_6325():
2136
+ ans = (b**2 + z**2 - (b*(a + b*t) + z*(c + t*z))**2/(
2137
+ (a + b*t)**2 + (c + t*z)**2))/sqrt((a + b*t)**2 + (c + t*z)**2)
2138
+ e = sqrt((a + b*t)**2 + (c + z*t)**2)
2139
+ assert diff(e, t, 2) == ans
2140
+ assert e.diff(t, 2) == ans
2141
+ assert diff(e, t, 2, simplify=False) != ans
2142
+
2143
+
2144
+ def test_issue_7426():
2145
+ f1 = a % c
2146
+ f2 = x % z
2147
+ assert f1.equals(f2) is None
2148
+
2149
+
2150
+ def test_issue_11122():
2151
+ x = Symbol('x', extended_positive=False)
2152
+ assert unchanged(Gt, x, 0) # (x > 0)
2153
+ # (x > 0) should remain unevaluated after PR #16956
2154
+
2155
+ x = Symbol('x', positive=False, real=True)
2156
+ assert (x > 0) is S.false
2157
+
2158
+
2159
+ def test_issue_10651():
2160
+ x = Symbol('x', real=True)
2161
+ e1 = (-1 + x)/(1 - x)
2162
+ e3 = (4*x**2 - 4)/((1 - x)*(1 + x))
2163
+ e4 = 1/(cos(x)**2) - (tan(x))**2
2164
+ x = Symbol('x', positive=True)
2165
+ e5 = (1 + x)/x
2166
+ assert e1.is_constant() is None
2167
+ assert e3.is_constant() is None
2168
+ assert e4.is_constant() is None
2169
+ assert e5.is_constant() is False
2170
+
2171
+
2172
+ def test_issue_10161():
2173
+ x = symbols('x', real=True)
2174
+ assert x*abs(x)*abs(x) == x**3
2175
+
2176
+
2177
+ def test_issue_10755():
2178
+ x = symbols('x')
2179
+ raises(TypeError, lambda: int(log(x)))
2180
+ raises(TypeError, lambda: log(x).round(2))
2181
+
2182
+
2183
+ def test_issue_11877():
2184
+ x = symbols('x')
2185
+ assert integrate(log(S.Half - x), (x, 0, S.Half)) == Rational(-1, 2) -log(2)/2
2186
+
2187
+
2188
+ def test_normal():
2189
+ x = symbols('x')
2190
+ e = Mul(S.Half, 1 + x, evaluate=False)
2191
+ assert e.normal() == e
2192
+
2193
+
2194
+ def test_expr():
2195
+ x = symbols('x')
2196
+ raises(TypeError, lambda: tan(x).series(x, 2, oo, "+"))
2197
+
2198
+
2199
+ def test_ExprBuilder():
2200
+ eb = ExprBuilder(Mul)
2201
+ eb.args.extend([x, x])
2202
+ assert eb.build() == x**2
2203
+
2204
+
2205
+ def test_issue_22020():
2206
+ from sympy.parsing.sympy_parser import parse_expr
2207
+ x = parse_expr("log((2*V/3-V)/C)/-(R+r)*C")
2208
+ y = parse_expr("log((2*V/3-V)/C)/-(R+r)*2")
2209
+ assert x.equals(y) is False
2210
+
2211
+
2212
+ def test_non_string_equality():
2213
+ # Expressions should not compare equal to strings
2214
+ x = symbols('x')
2215
+ one = sympify(1)
2216
+ assert (x == 'x') is False
2217
+ assert (x != 'x') is True
2218
+ assert (one == '1') is False
2219
+ assert (one != '1') is True
2220
+ assert (x + 1 == 'x + 1') is False
2221
+ assert (x + 1 != 'x + 1') is True
2222
+
2223
+ # Make sure == doesn't try to convert the resulting expression to a string
2224
+ # (e.g., by calling sympify() instead of _sympify())
2225
+
2226
+ class BadRepr:
2227
+ def __repr__(self):
2228
+ raise RuntimeError
2229
+
2230
+ assert (x == BadRepr()) is False
2231
+ assert (x != BadRepr()) is True
2232
+
2233
+
2234
+ def test_21494():
2235
+ from sympy.testing.pytest import warns_deprecated_sympy
2236
+
2237
+ with warns_deprecated_sympy():
2238
+ assert x.expr_free_symbols == {x}
2239
+
2240
+ with warns_deprecated_sympy():
2241
+ assert Basic().expr_free_symbols == set()
2242
+
2243
+ with warns_deprecated_sympy():
2244
+ assert S(2).expr_free_symbols == {S(2)}
2245
+
2246
+ with warns_deprecated_sympy():
2247
+ assert Indexed("A", x).expr_free_symbols == {Indexed("A", x)}
2248
+
2249
+ with warns_deprecated_sympy():
2250
+ assert Subs(x, x, 0).expr_free_symbols == set()
2251
+
2252
+
2253
+ def test_Expr__eq__iterable_handling():
2254
+ assert x != range(3)
2255
+
2256
+
2257
+ def test_format():
2258
+ assert '{:1.2f}'.format(S.Zero) == '0.00'
2259
+ assert '{:+3.0f}'.format(S(3)) == ' +3'
2260
+ assert '{:23.20f}'.format(pi) == ' 3.14159265358979323846'
2261
+ assert '{:50.48f}'.format(exp(sin(1))) == '2.319776824715853173956590377503266813254904772376'
llmeval-env/lib/python3.10/site-packages/sympy/core/tests/test_exprtools.py ADDED
@@ -0,0 +1,493 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests for tools for manipulating of large commutative expressions. """
2
+
3
+ from sympy.concrete.summations import Sum
4
+ from sympy.core.add import Add
5
+ from sympy.core.basic import Basic
6
+ from sympy.core.containers import (Dict, Tuple)
7
+ from sympy.core.function import Function
8
+ from sympy.core.mul import Mul
9
+ from sympy.core.numbers import (I, Rational, oo)
10
+ from sympy.core.singleton import S
11
+ from sympy.core.symbol import (Dummy, Symbol, symbols)
12
+ from sympy.functions.elementary.exponential import (exp, log)
13
+ from sympy.functions.elementary.miscellaneous import (root, sqrt)
14
+ from sympy.functions.elementary.trigonometric import (cos, sin)
15
+ from sympy.integrals.integrals import Integral
16
+ from sympy.series.order import O
17
+ from sympy.sets.sets import Interval
18
+ from sympy.simplify.radsimp import collect
19
+ from sympy.simplify.simplify import simplify
20
+ from sympy.core.exprtools import (decompose_power, Factors, Term, _gcd_terms,
21
+ gcd_terms, factor_terms, factor_nc, _mask_nc,
22
+ _monotonic_sign)
23
+ from sympy.core.mul import _keep_coeff as _keep_coeff
24
+ from sympy.simplify.cse_opts import sub_pre
25
+ from sympy.testing.pytest import raises
26
+
27
+ from sympy.abc import a, b, t, x, y, z
28
+
29
+
30
+ def test_decompose_power():
31
+ assert decompose_power(x) == (x, 1)
32
+ assert decompose_power(x**2) == (x, 2)
33
+ assert decompose_power(x**(2*y)) == (x**y, 2)
34
+ assert decompose_power(x**(2*y/3)) == (x**(y/3), 2)
35
+ assert decompose_power(x**(y*Rational(2, 3))) == (x**(y/3), 2)
36
+
37
+
38
+ def test_Factors():
39
+ assert Factors() == Factors({}) == Factors(S.One)
40
+ assert Factors().as_expr() is S.One
41
+ assert Factors({x: 2, y: 3, sin(x): 4}).as_expr() == x**2*y**3*sin(x)**4
42
+ assert Factors(S.Infinity) == Factors({oo: 1})
43
+ assert Factors(S.NegativeInfinity) == Factors({oo: 1, -1: 1})
44
+ # issue #18059:
45
+ assert Factors((x**2)**S.Half).as_expr() == (x**2)**S.Half
46
+
47
+ a = Factors({x: 5, y: 3, z: 7})
48
+ b = Factors({ y: 4, z: 3, t: 10})
49
+
50
+ assert a.mul(b) == a*b == Factors({x: 5, y: 7, z: 10, t: 10})
51
+
52
+ assert a.div(b) == divmod(a, b) == \
53
+ (Factors({x: 5, z: 4}), Factors({y: 1, t: 10}))
54
+ assert a.quo(b) == a/b == Factors({x: 5, z: 4})
55
+ assert a.rem(b) == a % b == Factors({y: 1, t: 10})
56
+
57
+ assert a.pow(3) == a**3 == Factors({x: 15, y: 9, z: 21})
58
+ assert b.pow(3) == b**3 == Factors({y: 12, z: 9, t: 30})
59
+
60
+ assert a.gcd(b) == Factors({y: 3, z: 3})
61
+ assert a.lcm(b) == Factors({x: 5, y: 4, z: 7, t: 10})
62
+
63
+ a = Factors({x: 4, y: 7, t: 7})
64
+ b = Factors({z: 1, t: 3})
65
+
66
+ assert a.normal(b) == (Factors({x: 4, y: 7, t: 4}), Factors({z: 1}))
67
+
68
+ assert Factors(sqrt(2)*x).as_expr() == sqrt(2)*x
69
+
70
+ assert Factors(-I)*I == Factors()
71
+ assert Factors({S.NegativeOne: S(3)})*Factors({S.NegativeOne: S.One, I: S(5)}) == \
72
+ Factors(I)
73
+ assert Factors(sqrt(I)*I) == Factors(I**(S(3)/2)) == Factors({I: S(3)/2})
74
+ assert Factors({I: S(3)/2}).as_expr() == I**(S(3)/2)
75
+
76
+ assert Factors(S(2)**x).div(S(3)**x) == \
77
+ (Factors({S(2): x}), Factors({S(3): x}))
78
+ assert Factors(2**(2*x + 2)).div(S(8)) == \
79
+ (Factors({S(2): 2*x + 2}), Factors({S(8): S.One}))
80
+
81
+ # coverage
82
+ # /!\ things break if this is not True
83
+ assert Factors({S.NegativeOne: Rational(3, 2)}) == Factors({I: S.One, S.NegativeOne: S.One})
84
+ assert Factors({I: S.One, S.NegativeOne: Rational(1, 3)}).as_expr() == I*(-1)**Rational(1, 3)
85
+
86
+ assert Factors(-1.) == Factors({S.NegativeOne: S.One, S(1.): 1})
87
+ assert Factors(-2.) == Factors({S.NegativeOne: S.One, S(2.): 1})
88
+ assert Factors((-2.)**x) == Factors({S(-2.): x})
89
+ assert Factors(S(-2)) == Factors({S.NegativeOne: S.One, S(2): 1})
90
+ assert Factors(S.Half) == Factors({S(2): -S.One})
91
+ assert Factors(Rational(3, 2)) == Factors({S(3): S.One, S(2): S.NegativeOne})
92
+ assert Factors({I: S.One}) == Factors(I)
93
+ assert Factors({-1.0: 2, I: 1}) == Factors({S(1.0): 1, I: 1})
94
+ assert Factors({S.NegativeOne: Rational(-3, 2)}).as_expr() == I
95
+ A = symbols('A', commutative=False)
96
+ assert Factors(2*A**2) == Factors({S(2): 1, A**2: 1})
97
+ assert Factors(I) == Factors({I: S.One})
98
+ assert Factors(x).normal(S(2)) == (Factors(x), Factors(S(2)))
99
+ assert Factors(x).normal(S.Zero) == (Factors(), Factors(S.Zero))
100
+ raises(ZeroDivisionError, lambda: Factors(x).div(S.Zero))
101
+ assert Factors(x).mul(S(2)) == Factors(2*x)
102
+ assert Factors(x).mul(S.Zero).is_zero
103
+ assert Factors(x).mul(1/x).is_one
104
+ assert Factors(x**sqrt(2)**3).as_expr() == x**(2*sqrt(2))
105
+ assert Factors(x)**Factors(S(2)) == Factors(x**2)
106
+ assert Factors(x).gcd(S.Zero) == Factors(x)
107
+ assert Factors(x).lcm(S.Zero).is_zero
108
+ assert Factors(S.Zero).div(x) == (Factors(S.Zero), Factors())
109
+ assert Factors(x).div(x) == (Factors(), Factors())
110
+ assert Factors({x: .2})/Factors({x: .2}) == Factors()
111
+ assert Factors(x) != Factors()
112
+ assert Factors(S.Zero).normal(x) == (Factors(S.Zero), Factors())
113
+ n, d = x**(2 + y), x**2
114
+ f = Factors(n)
115
+ assert f.div(d) == f.normal(d) == (Factors(x**y), Factors())
116
+ assert f.gcd(d) == Factors()
117
+ d = x**y
118
+ assert f.div(d) == f.normal(d) == (Factors(x**2), Factors())
119
+ assert f.gcd(d) == Factors(d)
120
+ n = d = 2**x
121
+ f = Factors(n)
122
+ assert f.div(d) == f.normal(d) == (Factors(), Factors())
123
+ assert f.gcd(d) == Factors(d)
124
+ n, d = 2**x, 2**y
125
+ f = Factors(n)
126
+ assert f.div(d) == f.normal(d) == (Factors({S(2): x}), Factors({S(2): y}))
127
+ assert f.gcd(d) == Factors()
128
+
129
+ # extraction of constant only
130
+ n = x**(x + 3)
131
+ assert Factors(n).normal(x**-3) == (Factors({x: x + 6}), Factors({}))
132
+ assert Factors(n).normal(x**3) == (Factors({x: x}), Factors({}))
133
+ assert Factors(n).normal(x**4) == (Factors({x: x}), Factors({x: 1}))
134
+ assert Factors(n).normal(x**(y - 3)) == \
135
+ (Factors({x: x + 6}), Factors({x: y}))
136
+ assert Factors(n).normal(x**(y + 3)) == (Factors({x: x}), Factors({x: y}))
137
+ assert Factors(n).normal(x**(y + 4)) == \
138
+ (Factors({x: x}), Factors({x: y + 1}))
139
+
140
+ assert Factors(n).div(x**-3) == (Factors({x: x + 6}), Factors({}))
141
+ assert Factors(n).div(x**3) == (Factors({x: x}), Factors({}))
142
+ assert Factors(n).div(x**4) == (Factors({x: x}), Factors({x: 1}))
143
+ assert Factors(n).div(x**(y - 3)) == \
144
+ (Factors({x: x + 6}), Factors({x: y}))
145
+ assert Factors(n).div(x**(y + 3)) == (Factors({x: x}), Factors({x: y}))
146
+ assert Factors(n).div(x**(y + 4)) == \
147
+ (Factors({x: x}), Factors({x: y + 1}))
148
+
149
+ assert Factors(3 * x / 2) == Factors({3: 1, 2: -1, x: 1})
150
+ assert Factors(x * x / y) == Factors({x: 2, y: -1})
151
+ assert Factors(27 * x / y**9) == Factors({27: 1, x: 1, y: -9})
152
+
153
+
154
+ def test_Term():
155
+ a = Term(4*x*y**2/z/t**3)
156
+ b = Term(2*x**3*y**5/t**3)
157
+
158
+ assert a == Term(4, Factors({x: 1, y: 2}), Factors({z: 1, t: 3}))
159
+ assert b == Term(2, Factors({x: 3, y: 5}), Factors({t: 3}))
160
+
161
+ assert a.as_expr() == 4*x*y**2/z/t**3
162
+ assert b.as_expr() == 2*x**3*y**5/t**3
163
+
164
+ assert a.inv() == \
165
+ Term(S.One/4, Factors({z: 1, t: 3}), Factors({x: 1, y: 2}))
166
+ assert b.inv() == Term(S.Half, Factors({t: 3}), Factors({x: 3, y: 5}))
167
+
168
+ assert a.mul(b) == a*b == \
169
+ Term(8, Factors({x: 4, y: 7}), Factors({z: 1, t: 6}))
170
+ assert a.quo(b) == a/b == Term(2, Factors({}), Factors({x: 2, y: 3, z: 1}))
171
+
172
+ assert a.pow(3) == a**3 == \
173
+ Term(64, Factors({x: 3, y: 6}), Factors({z: 3, t: 9}))
174
+ assert b.pow(3) == b**3 == Term(8, Factors({x: 9, y: 15}), Factors({t: 9}))
175
+
176
+ assert a.pow(-3) == a**(-3) == \
177
+ Term(S.One/64, Factors({z: 3, t: 9}), Factors({x: 3, y: 6}))
178
+ assert b.pow(-3) == b**(-3) == \
179
+ Term(S.One/8, Factors({t: 9}), Factors({x: 9, y: 15}))
180
+
181
+ assert a.gcd(b) == Term(2, Factors({x: 1, y: 2}), Factors({t: 3}))
182
+ assert a.lcm(b) == Term(4, Factors({x: 3, y: 5}), Factors({z: 1, t: 3}))
183
+
184
+ a = Term(4*x*y**2/z/t**3)
185
+ b = Term(2*x**3*y**5*t**7)
186
+
187
+ assert a.mul(b) == Term(8, Factors({x: 4, y: 7, t: 4}), Factors({z: 1}))
188
+
189
+ assert Term((2*x + 2)**3) == Term(8, Factors({x + 1: 3}), Factors({}))
190
+ assert Term((2*x + 2)*(3*x + 6)**2) == \
191
+ Term(18, Factors({x + 1: 1, x + 2: 2}), Factors({}))
192
+
193
+
194
+ def test_gcd_terms():
195
+ f = 2*(x + 1)*(x + 4)/(5*x**2 + 5) + (2*x + 2)*(x + 5)/(x**2 + 1)/5 + \
196
+ (2*x + 2)*(x + 6)/(5*x**2 + 5)
197
+
198
+ assert _gcd_terms(f) == ((Rational(6, 5))*((1 + x)/(1 + x**2)), 5 + x, 1)
199
+ assert _gcd_terms(Add.make_args(f)) == \
200
+ ((Rational(6, 5))*((1 + x)/(1 + x**2)), 5 + x, 1)
201
+
202
+ newf = (Rational(6, 5))*((1 + x)*(5 + x)/(1 + x**2))
203
+ assert gcd_terms(f) == newf
204
+ args = Add.make_args(f)
205
+ # non-Basic sequences of terms treated as terms of Add
206
+ assert gcd_terms(list(args)) == newf
207
+ assert gcd_terms(tuple(args)) == newf
208
+ assert gcd_terms(set(args)) == newf
209
+ # but a Basic sequence is treated as a container
210
+ assert gcd_terms(Tuple(*args)) != newf
211
+ assert gcd_terms(Basic(Tuple(S(1), 3*y + 3*x*y), Tuple(S(1), S(3)))) == \
212
+ Basic(Tuple(S(1), 3*y*(x + 1)), Tuple(S(1), S(3)))
213
+ # but we shouldn't change keys of a dictionary or some may be lost
214
+ assert gcd_terms(Dict((x*(1 + y), S(2)), (x + x*y, y + x*y))) == \
215
+ Dict({x*(y + 1): S(2), x + x*y: y*(1 + x)})
216
+
217
+ assert gcd_terms((2*x + 2)**3 + (2*x + 2)**2) == 4*(x + 1)**2*(2*x + 3)
218
+
219
+ assert gcd_terms(0) == 0
220
+ assert gcd_terms(1) == 1
221
+ assert gcd_terms(x) == x
222
+ assert gcd_terms(2 + 2*x) == Mul(2, 1 + x, evaluate=False)
223
+ arg = x*(2*x + 4*y)
224
+ garg = 2*x*(x + 2*y)
225
+ assert gcd_terms(arg) == garg
226
+ assert gcd_terms(sin(arg)) == sin(garg)
227
+
228
+ # issue 6139-like
229
+ alpha, alpha1, alpha2, alpha3 = symbols('alpha:4')
230
+ a = alpha**2 - alpha*x**2 + alpha + x**3 - x*(alpha + 1)
231
+ rep = (alpha, (1 + sqrt(5))/2 + alpha1*x + alpha2*x**2 + alpha3*x**3)
232
+ s = (a/(x - alpha)).subs(*rep).series(x, 0, 1)
233
+ assert simplify(collect(s, x)) == -sqrt(5)/2 - Rational(3, 2) + O(x)
234
+
235
+ # issue 5917
236
+ assert _gcd_terms([S.Zero, S.Zero]) == (0, 0, 1)
237
+ assert _gcd_terms([2*x + 4]) == (2, x + 2, 1)
238
+
239
+ eq = x/(x + 1/x)
240
+ assert gcd_terms(eq, fraction=False) == eq
241
+ eq = x/2/y + 1/x/y
242
+ assert gcd_terms(eq, fraction=True, clear=True) == \
243
+ (x**2 + 2)/(2*x*y)
244
+ assert gcd_terms(eq, fraction=True, clear=False) == \
245
+ (x**2/2 + 1)/(x*y)
246
+ assert gcd_terms(eq, fraction=False, clear=True) == \
247
+ (x + 2/x)/(2*y)
248
+ assert gcd_terms(eq, fraction=False, clear=False) == \
249
+ (x/2 + 1/x)/y
250
+
251
+
252
+ def test_factor_terms():
253
+ A = Symbol('A', commutative=False)
254
+ assert factor_terms(9*(x + x*y + 1) + (3*x + 3)**(2 + 2*x)) == \
255
+ 9*x*y + 9*x + _keep_coeff(S(3), x + 1)**_keep_coeff(S(2), x + 1) + 9
256
+ assert factor_terms(9*(x + x*y + 1) + (3)**(2 + 2*x)) == \
257
+ _keep_coeff(S(9), 3**(2*x) + x*y + x + 1)
258
+ assert factor_terms(3**(2 + 2*x) + a*3**(2 + 2*x)) == \
259
+ 9*3**(2*x)*(a + 1)
260
+ assert factor_terms(x + x*A) == \
261
+ x*(1 + A)
262
+ assert factor_terms(sin(x + x*A)) == \
263
+ sin(x*(1 + A))
264
+ assert factor_terms((3*x + 3)**((2 + 2*x)/3)) == \
265
+ _keep_coeff(S(3), x + 1)**_keep_coeff(Rational(2, 3), x + 1)
266
+ assert factor_terms(x + (x*y + x)**(3*x + 3)) == \
267
+ x + (x*(y + 1))**_keep_coeff(S(3), x + 1)
268
+ assert factor_terms(a*(x + x*y) + b*(x*2 + y*x*2)) == \
269
+ x*(a + 2*b)*(y + 1)
270
+ i = Integral(x, (x, 0, oo))
271
+ assert factor_terms(i) == i
272
+
273
+ assert factor_terms(x/2 + y) == x/2 + y
274
+ # fraction doesn't apply to integer denominators
275
+ assert factor_terms(x/2 + y, fraction=True) == x/2 + y
276
+ # clear *does* apply to the integer denominators
277
+ assert factor_terms(x/2 + y, clear=True) == Mul(S.Half, x + 2*y, evaluate=False)
278
+
279
+ # check radical extraction
280
+ eq = sqrt(2) + sqrt(10)
281
+ assert factor_terms(eq) == eq
282
+ assert factor_terms(eq, radical=True) == sqrt(2)*(1 + sqrt(5))
283
+ eq = root(-6, 3) + root(6, 3)
284
+ assert factor_terms(eq, radical=True) == 6**(S.One/3)*(1 + (-1)**(S.One/3))
285
+
286
+ eq = [x + x*y]
287
+ ans = [x*(y + 1)]
288
+ for c in [list, tuple, set]:
289
+ assert factor_terms(c(eq)) == c(ans)
290
+ assert factor_terms(Tuple(x + x*y)) == Tuple(x*(y + 1))
291
+ assert factor_terms(Interval(0, 1)) == Interval(0, 1)
292
+ e = 1/sqrt(a/2 + 1)
293
+ assert factor_terms(e, clear=False) == 1/sqrt(a/2 + 1)
294
+ assert factor_terms(e, clear=True) == sqrt(2)/sqrt(a + 2)
295
+
296
+ eq = x/(x + 1/x) + 1/(x**2 + 1)
297
+ assert factor_terms(eq, fraction=False) == eq
298
+ assert factor_terms(eq, fraction=True) == 1
299
+
300
+ assert factor_terms((1/(x**3 + x**2) + 2/x**2)*y) == \
301
+ y*(2 + 1/(x + 1))/x**2
302
+
303
+ # if not True, then processesing for this in factor_terms is not necessary
304
+ assert gcd_terms(-x - y) == -x - y
305
+ assert factor_terms(-x - y) == Mul(-1, x + y, evaluate=False)
306
+
307
+ # if not True, then "special" processesing in factor_terms is not necessary
308
+ assert gcd_terms(exp(Mul(-1, x + 1))) == exp(-x - 1)
309
+ e = exp(-x - 2) + x
310
+ assert factor_terms(e) == exp(Mul(-1, x + 2, evaluate=False)) + x
311
+ assert factor_terms(e, sign=False) == e
312
+ assert factor_terms(exp(-4*x - 2) - x) == -x + exp(Mul(-2, 2*x + 1, evaluate=False))
313
+
314
+ # sum/integral tests
315
+ for F in (Sum, Integral):
316
+ assert factor_terms(F(x, (y, 1, 10))) == x * F(1, (y, 1, 10))
317
+ assert factor_terms(F(x, (y, 1, 10)) + x) == x * (1 + F(1, (y, 1, 10)))
318
+ assert factor_terms(F(x*y + x*y**2, (y, 1, 10))) == x*F(y*(y + 1), (y, 1, 10))
319
+
320
+ # expressions involving Pow terms with base 0
321
+ assert factor_terms(0**(x - 2) - 1) == 0**(x - 2) - 1
322
+ assert factor_terms(0**(x + 2) - 1) == 0**(x + 2) - 1
323
+ assert factor_terms((0**(x + 2) - 1).subs(x,-2)) == 0
324
+
325
+
326
+ def test_xreplace():
327
+ e = Mul(2, 1 + x, evaluate=False)
328
+ assert e.xreplace({}) == e
329
+ assert e.xreplace({y: x}) == e
330
+
331
+
332
+ def test_factor_nc():
333
+ x, y = symbols('x,y')
334
+ k = symbols('k', integer=True)
335
+ n, m, o = symbols('n,m,o', commutative=False)
336
+
337
+ # mul and multinomial expansion is needed
338
+ from sympy.core.function import _mexpand
339
+ e = x*(1 + y)**2
340
+ assert _mexpand(e) == x + x*2*y + x*y**2
341
+
342
+ def factor_nc_test(e):
343
+ ex = _mexpand(e)
344
+ assert ex.is_Add
345
+ f = factor_nc(ex)
346
+ assert not f.is_Add and _mexpand(f) == ex
347
+
348
+ factor_nc_test(x*(1 + y))
349
+ factor_nc_test(n*(x + 1))
350
+ factor_nc_test(n*(x + m))
351
+ factor_nc_test((x + m)*n)
352
+ factor_nc_test(n*m*(x*o + n*o*m)*n)
353
+ s = Sum(x, (x, 1, 2))
354
+ factor_nc_test(x*(1 + s))
355
+ factor_nc_test(x*(1 + s)*s)
356
+ factor_nc_test(x*(1 + sin(s)))
357
+ factor_nc_test((1 + n)**2)
358
+
359
+ factor_nc_test((x + n)*(x + m)*(x + y))
360
+ factor_nc_test(x*(n*m + 1))
361
+ factor_nc_test(x*(n*m + x))
362
+ factor_nc_test(x*(x*n*m + 1))
363
+ factor_nc_test(n*(m/x + o))
364
+ factor_nc_test(m*(n + o/2))
365
+ factor_nc_test(x*n*(x*m + 1))
366
+ factor_nc_test(x*(m*n + x*n*m))
367
+ factor_nc_test(n*(1 - m)*n**2)
368
+
369
+ factor_nc_test((n + m)**2)
370
+ factor_nc_test((n - m)*(n + m)**2)
371
+ factor_nc_test((n + m)**2*(n - m))
372
+ factor_nc_test((m - n)*(n + m)**2*(n - m))
373
+
374
+ assert factor_nc(n*(n + n*m)) == n**2*(1 + m)
375
+ assert factor_nc(m*(m*n + n*m*n**2)) == m*(m + n*m*n)*n
376
+ eq = m*sin(n) - sin(n)*m
377
+ assert factor_nc(eq) == eq
378
+
379
+ # for coverage:
380
+ from sympy.physics.secondquant import Commutator
381
+ from sympy.polys.polytools import factor
382
+ eq = 1 + x*Commutator(m, n)
383
+ assert factor_nc(eq) == eq
384
+ eq = x*Commutator(m, n) + x*Commutator(m, o)*Commutator(m, n)
385
+ assert factor(eq) == x*(1 + Commutator(m, o))*Commutator(m, n)
386
+
387
+ # issue 6534
388
+ assert (2*n + 2*m).factor() == 2*(n + m)
389
+
390
+ # issue 6701
391
+ _n = symbols('nz', zero=False, commutative=False)
392
+ assert factor_nc(_n**k + _n**(k + 1)) == _n**k*(1 + _n)
393
+ assert factor_nc((m*n)**k + (m*n)**(k + 1)) == (1 + m*n)*(m*n)**k
394
+
395
+ # issue 6918
396
+ assert factor_nc(-n*(2*x**2 + 2*x)) == -2*n*x*(x + 1)
397
+
398
+
399
+ def test_issue_6360():
400
+ a, b = symbols("a b")
401
+ apb = a + b
402
+ eq = apb + apb**2*(-2*a - 2*b)
403
+ assert factor_terms(sub_pre(eq)) == a + b - 2*(a + b)**3
404
+
405
+
406
+ def test_issue_7903():
407
+ a = symbols(r'a', real=True)
408
+ t = exp(I*cos(a)) + exp(-I*sin(a))
409
+ assert t.simplify()
410
+
411
+ def test_issue_8263():
412
+ F, G = symbols('F, G', commutative=False, cls=Function)
413
+ x, y = symbols('x, y')
414
+ expr, dummies, _ = _mask_nc(F(x)*G(y) - G(y)*F(x))
415
+ for v in dummies.values():
416
+ assert not v.is_commutative
417
+ assert not expr.is_zero
418
+
419
+ def test_monotonic_sign():
420
+ F = _monotonic_sign
421
+ x = symbols('x')
422
+ assert F(x) is None
423
+ assert F(-x) is None
424
+ assert F(Dummy(prime=True)) == 2
425
+ assert F(Dummy(prime=True, odd=True)) == 3
426
+ assert F(Dummy(composite=True)) == 4
427
+ assert F(Dummy(composite=True, odd=True)) == 9
428
+ assert F(Dummy(positive=True, integer=True)) == 1
429
+ assert F(Dummy(positive=True, even=True)) == 2
430
+ assert F(Dummy(positive=True, even=True, prime=False)) == 4
431
+ assert F(Dummy(negative=True, integer=True)) == -1
432
+ assert F(Dummy(negative=True, even=True)) == -2
433
+ assert F(Dummy(zero=True)) == 0
434
+ assert F(Dummy(nonnegative=True)) == 0
435
+ assert F(Dummy(nonpositive=True)) == 0
436
+
437
+ assert F(Dummy(positive=True) + 1).is_positive
438
+ assert F(Dummy(positive=True, integer=True) - 1).is_nonnegative
439
+ assert F(Dummy(positive=True) - 1) is None
440
+ assert F(Dummy(negative=True) + 1) is None
441
+ assert F(Dummy(negative=True, integer=True) - 1).is_nonpositive
442
+ assert F(Dummy(negative=True) - 1).is_negative
443
+ assert F(-Dummy(positive=True) + 1) is None
444
+ assert F(-Dummy(positive=True, integer=True) - 1).is_negative
445
+ assert F(-Dummy(positive=True) - 1).is_negative
446
+ assert F(-Dummy(negative=True) + 1).is_positive
447
+ assert F(-Dummy(negative=True, integer=True) - 1).is_nonnegative
448
+ assert F(-Dummy(negative=True) - 1) is None
449
+ x = Dummy(negative=True)
450
+ assert F(x**3).is_nonpositive
451
+ assert F(x**3 + log(2)*x - 1).is_negative
452
+ x = Dummy(positive=True)
453
+ assert F(-x**3).is_nonpositive
454
+
455
+ p = Dummy(positive=True)
456
+ assert F(1/p).is_positive
457
+ assert F(p/(p + 1)).is_positive
458
+ p = Dummy(nonnegative=True)
459
+ assert F(p/(p + 1)).is_nonnegative
460
+ p = Dummy(positive=True)
461
+ assert F(-1/p).is_negative
462
+ p = Dummy(nonpositive=True)
463
+ assert F(p/(-p + 1)).is_nonpositive
464
+
465
+ p = Dummy(positive=True, integer=True)
466
+ q = Dummy(positive=True, integer=True)
467
+ assert F(-2/p/q).is_negative
468
+ assert F(-2/(p - 1)/q) is None
469
+
470
+ assert F((p - 1)*q + 1).is_positive
471
+ assert F(-(p - 1)*q - 1).is_negative
472
+
473
+ def test_issue_17256():
474
+ from sympy.sets.fancysets import Range
475
+ x = Symbol('x')
476
+ s1 = Sum(x + 1, (x, 1, 9))
477
+ s2 = Sum(x + 1, (x, Range(1, 10)))
478
+ a = Symbol('a')
479
+ r1 = s1.xreplace({x:a})
480
+ r2 = s2.xreplace({x:a})
481
+
482
+ assert r1.doit() == r2.doit()
483
+ s1 = Sum(x + 1, (x, 0, 9))
484
+ s2 = Sum(x + 1, (x, Range(10)))
485
+ a = Symbol('a')
486
+ r1 = s1.xreplace({x:a})
487
+ r2 = s2.xreplace({x:a})
488
+ assert r1 == r2
489
+
490
+ def test_issue_21623():
491
+ from sympy.matrices.expressions.matexpr import MatrixSymbol
492
+ M = MatrixSymbol('X', 2, 2)
493
+ assert gcd_terms(M[0,0], 1) == M[0,0]