Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/transformers/models/bert_japanese/__init__.py +29 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bert_japanese/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bert_japanese/__pycache__/tokenization_bert_japanese.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bert_japanese/tokenization_bert_japanese.py +980 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__init__.py +147 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/configuration_big_bird.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/convert_bigbird_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_big_bird.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_flax_big_bird.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/configuration_big_bird.py +175 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/convert_bigbird_original_tf_checkpoint_to_pytorch.py +70 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/modeling_big_bird.py +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/modeling_flax_big_bird.py +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird.py +322 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird_fast.py +230 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__init__.py +71 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__pycache__/configuration_bigbird_pegasus.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__pycache__/convert_bigbird_pegasus_tf_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +412 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/convert_bigbird_pegasus_tf_to_pytorch.py +170 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/image_processing_bridgetower.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/__init__.py +88 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/__pycache__/configuration_mobilenet_v2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/__pycache__/convert_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/__pycache__/feature_extraction_mobilenet_v2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/__pycache__/image_processing_mobilenet_v2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/__pycache__/modeling_mobilenet_v2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/configuration_mobilenet_v2.py +154 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/convert_original_tf_checkpoint_to_pytorch.py +178 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/feature_extraction_mobilenet_v2.py +33 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py +373 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +862 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/qdqbert/__init__.py +71 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/qdqbert/__pycache__/configuration_qdqbert.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/qdqbert/configuration_qdqbert.py +123 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/qdqbert/modeling_qdqbert.py +1737 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/rag/__init__.py +82 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/rag/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/rag/__pycache__/configuration_rag.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/rag/__pycache__/modeling_rag.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/rag/__pycache__/modeling_tf_rag.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/rag/__pycache__/retrieval_rag.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/rag/__pycache__/tokenization_rag.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/bert_japanese/__init__.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import _LazyModule
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {"tokenization_bert_japanese": ["BertJapaneseTokenizer", "CharacterTokenizer", "MecabTokenizer"]}
|
21 |
+
|
22 |
+
|
23 |
+
if TYPE_CHECKING:
|
24 |
+
from .tokenization_bert_japanese import BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer
|
25 |
+
|
26 |
+
else:
|
27 |
+
import sys
|
28 |
+
|
29 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bert_japanese/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (583 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bert_japanese/__pycache__/tokenization_bert_japanese.cpython-310.pyc
ADDED
Binary file (29.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bert_japanese/tokenization_bert_japanese.py
ADDED
@@ -0,0 +1,980 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections
|
19 |
+
import copy
|
20 |
+
import os
|
21 |
+
import unicodedata
|
22 |
+
from typing import Any, Dict, List, Optional, Tuple
|
23 |
+
|
24 |
+
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
25 |
+
from ...utils import is_sentencepiece_available, is_sudachi_projection_available, logging
|
26 |
+
|
27 |
+
|
28 |
+
if is_sentencepiece_available():
|
29 |
+
import sentencepiece as spm
|
30 |
+
else:
|
31 |
+
spm = None
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "spm_file": "spiece.model"}
|
36 |
+
|
37 |
+
SPIECE_UNDERLINE = "▁"
|
38 |
+
|
39 |
+
|
40 |
+
# Copied from transformers.models.bert.tokenization_bert.load_vocab
|
41 |
+
def load_vocab(vocab_file):
|
42 |
+
"""Loads a vocabulary file into a dictionary."""
|
43 |
+
vocab = collections.OrderedDict()
|
44 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
45 |
+
tokens = reader.readlines()
|
46 |
+
for index, token in enumerate(tokens):
|
47 |
+
token = token.rstrip("\n")
|
48 |
+
vocab[token] = index
|
49 |
+
return vocab
|
50 |
+
|
51 |
+
|
52 |
+
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
|
53 |
+
def whitespace_tokenize(text):
|
54 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
55 |
+
text = text.strip()
|
56 |
+
if not text:
|
57 |
+
return []
|
58 |
+
tokens = text.split()
|
59 |
+
return tokens
|
60 |
+
|
61 |
+
|
62 |
+
class BertJapaneseTokenizer(PreTrainedTokenizer):
|
63 |
+
r"""
|
64 |
+
Construct a BERT tokenizer for Japanese text.
|
65 |
+
|
66 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer
|
67 |
+
to: this superclass for more information regarding those methods.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
vocab_file (`str`):
|
71 |
+
Path to a one-wordpiece-per-line vocabulary file.
|
72 |
+
spm_file (`str`, *optional*):
|
73 |
+
Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm or .model
|
74 |
+
extension) that contains the vocabulary.
|
75 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
76 |
+
Whether to lower case the input. Only has an effect when do_basic_tokenize=True.
|
77 |
+
do_word_tokenize (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether to do word tokenization.
|
79 |
+
do_subword_tokenize (`bool`, *optional*, defaults to `True`):
|
80 |
+
Whether to do subword tokenization.
|
81 |
+
word_tokenizer_type (`str`, *optional*, defaults to `"basic"`):
|
82 |
+
Type of word tokenizer. Choose from ["basic", "mecab", "sudachi", "jumanpp"].
|
83 |
+
subword_tokenizer_type (`str`, *optional*, defaults to `"wordpiece"`):
|
84 |
+
Type of subword tokenizer. Choose from ["wordpiece", "character", "sentencepiece",].
|
85 |
+
mecab_kwargs (`dict`, *optional*):
|
86 |
+
Dictionary passed to the `MecabTokenizer` constructor.
|
87 |
+
sudachi_kwargs (`dict`, *optional*):
|
88 |
+
Dictionary passed to the `SudachiTokenizer` constructor.
|
89 |
+
jumanpp_kwargs (`dict`, *optional*):
|
90 |
+
Dictionary passed to the `JumanppTokenizer` constructor.
|
91 |
+
"""
|
92 |
+
|
93 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
94 |
+
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
vocab_file,
|
98 |
+
spm_file=None,
|
99 |
+
do_lower_case=False,
|
100 |
+
do_word_tokenize=True,
|
101 |
+
do_subword_tokenize=True,
|
102 |
+
word_tokenizer_type="basic",
|
103 |
+
subword_tokenizer_type="wordpiece",
|
104 |
+
never_split=None,
|
105 |
+
unk_token="[UNK]",
|
106 |
+
sep_token="[SEP]",
|
107 |
+
pad_token="[PAD]",
|
108 |
+
cls_token="[CLS]",
|
109 |
+
mask_token="[MASK]",
|
110 |
+
mecab_kwargs=None,
|
111 |
+
sudachi_kwargs=None,
|
112 |
+
jumanpp_kwargs=None,
|
113 |
+
**kwargs,
|
114 |
+
):
|
115 |
+
if subword_tokenizer_type == "sentencepiece":
|
116 |
+
if not os.path.isfile(spm_file):
|
117 |
+
raise ValueError(
|
118 |
+
f"Can't find a vocabulary file at path '{spm_file}'. To load the vocabulary from a Google"
|
119 |
+
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
120 |
+
)
|
121 |
+
self.spm_file = spm_file
|
122 |
+
else:
|
123 |
+
if not os.path.isfile(vocab_file):
|
124 |
+
raise ValueError(
|
125 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google"
|
126 |
+
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
127 |
+
)
|
128 |
+
self.vocab = load_vocab(vocab_file)
|
129 |
+
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
130 |
+
|
131 |
+
self.do_word_tokenize = do_word_tokenize
|
132 |
+
self.word_tokenizer_type = word_tokenizer_type
|
133 |
+
self.lower_case = do_lower_case
|
134 |
+
self.never_split = never_split
|
135 |
+
self.mecab_kwargs = copy.deepcopy(mecab_kwargs)
|
136 |
+
self.sudachi_kwargs = copy.deepcopy(sudachi_kwargs)
|
137 |
+
self.jumanpp_kwargs = copy.deepcopy(jumanpp_kwargs)
|
138 |
+
if do_word_tokenize:
|
139 |
+
if word_tokenizer_type == "basic":
|
140 |
+
self.word_tokenizer = BasicTokenizer(
|
141 |
+
do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=False
|
142 |
+
)
|
143 |
+
elif word_tokenizer_type == "mecab":
|
144 |
+
self.word_tokenizer = MecabTokenizer(
|
145 |
+
do_lower_case=do_lower_case, never_split=never_split, **(mecab_kwargs or {})
|
146 |
+
)
|
147 |
+
elif word_tokenizer_type == "sudachi":
|
148 |
+
self.word_tokenizer = SudachiTokenizer(
|
149 |
+
do_lower_case=do_lower_case, never_split=never_split, **(sudachi_kwargs or {})
|
150 |
+
)
|
151 |
+
elif word_tokenizer_type == "jumanpp":
|
152 |
+
self.word_tokenizer = JumanppTokenizer(
|
153 |
+
do_lower_case=do_lower_case, never_split=never_split, **(jumanpp_kwargs or {})
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
raise ValueError(f"Invalid word_tokenizer_type '{word_tokenizer_type}' is specified.")
|
157 |
+
|
158 |
+
self.do_subword_tokenize = do_subword_tokenize
|
159 |
+
self.subword_tokenizer_type = subword_tokenizer_type
|
160 |
+
if do_subword_tokenize:
|
161 |
+
if subword_tokenizer_type == "wordpiece":
|
162 |
+
self.subword_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
163 |
+
elif subword_tokenizer_type == "character":
|
164 |
+
self.subword_tokenizer = CharacterTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
165 |
+
elif subword_tokenizer_type == "sentencepiece":
|
166 |
+
self.subword_tokenizer = SentencepieceTokenizer(vocab=self.spm_file, unk_token=str(unk_token))
|
167 |
+
else:
|
168 |
+
raise ValueError(f"Invalid subword_tokenizer_type '{subword_tokenizer_type}' is specified.")
|
169 |
+
super().__init__(
|
170 |
+
spm_file=spm_file,
|
171 |
+
unk_token=unk_token,
|
172 |
+
sep_token=sep_token,
|
173 |
+
pad_token=pad_token,
|
174 |
+
cls_token=cls_token,
|
175 |
+
mask_token=mask_token,
|
176 |
+
do_lower_case=do_lower_case,
|
177 |
+
do_word_tokenize=do_word_tokenize,
|
178 |
+
do_subword_tokenize=do_subword_tokenize,
|
179 |
+
word_tokenizer_type=word_tokenizer_type,
|
180 |
+
subword_tokenizer_type=subword_tokenizer_type,
|
181 |
+
never_split=never_split,
|
182 |
+
mecab_kwargs=mecab_kwargs,
|
183 |
+
sudachi_kwargs=sudachi_kwargs,
|
184 |
+
jumanpp_kwargs=jumanpp_kwargs,
|
185 |
+
**kwargs,
|
186 |
+
)
|
187 |
+
|
188 |
+
@property
|
189 |
+
def do_lower_case(self):
|
190 |
+
return self.lower_case
|
191 |
+
|
192 |
+
def __getstate__(self):
|
193 |
+
state = dict(self.__dict__)
|
194 |
+
if self.word_tokenizer_type in ["mecab", "sudachi", "jumanpp"]:
|
195 |
+
del state["word_tokenizer"]
|
196 |
+
return state
|
197 |
+
|
198 |
+
def __setstate__(self, state):
|
199 |
+
self.__dict__ = state
|
200 |
+
if self.word_tokenizer_type == "mecab":
|
201 |
+
self.word_tokenizer = MecabTokenizer(
|
202 |
+
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.mecab_kwargs or {})
|
203 |
+
)
|
204 |
+
elif self.word_tokenizer_type == "sudachi":
|
205 |
+
self.word_tokenizer = SudachiTokenizer(
|
206 |
+
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.sudachi_kwargs or {})
|
207 |
+
)
|
208 |
+
elif self.word_tokenizer_type == "jumanpp":
|
209 |
+
self.word_tokenizer = JumanppTokenizer(
|
210 |
+
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.jumanpp_kwargs or {})
|
211 |
+
)
|
212 |
+
|
213 |
+
def _tokenize(self, text):
|
214 |
+
if self.do_word_tokenize:
|
215 |
+
tokens = self.word_tokenizer.tokenize(text, never_split=self.all_special_tokens)
|
216 |
+
else:
|
217 |
+
tokens = [text]
|
218 |
+
|
219 |
+
if self.do_subword_tokenize:
|
220 |
+
split_tokens = [sub_token for token in tokens for sub_token in self.subword_tokenizer.tokenize(token)]
|
221 |
+
else:
|
222 |
+
split_tokens = tokens
|
223 |
+
|
224 |
+
return split_tokens
|
225 |
+
|
226 |
+
@property
|
227 |
+
def vocab_size(self):
|
228 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
229 |
+
return len(self.subword_tokenizer.sp_model)
|
230 |
+
return len(self.vocab)
|
231 |
+
|
232 |
+
def get_vocab(self):
|
233 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
234 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
235 |
+
vocab.update(self.added_tokens_encoder)
|
236 |
+
return vocab
|
237 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
238 |
+
|
239 |
+
def _convert_token_to_id(self, token):
|
240 |
+
"""Converts a token (str) in an id using the vocab."""
|
241 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
242 |
+
return self.subword_tokenizer.sp_model.PieceToId(token)
|
243 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
244 |
+
|
245 |
+
def _convert_id_to_token(self, index):
|
246 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
247 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
248 |
+
return self.subword_tokenizer.sp_model.IdToPiece(index)
|
249 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
250 |
+
|
251 |
+
def convert_tokens_to_string(self, tokens):
|
252 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
253 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
254 |
+
return self.subword_tokenizer.sp_model.decode(tokens)
|
255 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
256 |
+
return out_string
|
257 |
+
|
258 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
|
259 |
+
def build_inputs_with_special_tokens(
|
260 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
261 |
+
) -> List[int]:
|
262 |
+
"""
|
263 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
264 |
+
adding special tokens. A BERT sequence has the following format:
|
265 |
+
|
266 |
+
- single sequence: `[CLS] X [SEP]`
|
267 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
268 |
+
|
269 |
+
Args:
|
270 |
+
token_ids_0 (`List[int]`):
|
271 |
+
List of IDs to which the special tokens will be added.
|
272 |
+
token_ids_1 (`List[int]`, *optional*):
|
273 |
+
Optional second list of IDs for sequence pairs.
|
274 |
+
|
275 |
+
Returns:
|
276 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
277 |
+
"""
|
278 |
+
if token_ids_1 is None:
|
279 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
280 |
+
cls = [self.cls_token_id]
|
281 |
+
sep = [self.sep_token_id]
|
282 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
283 |
+
|
284 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
|
285 |
+
def get_special_tokens_mask(
|
286 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
287 |
+
) -> List[int]:
|
288 |
+
"""
|
289 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
290 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
291 |
+
|
292 |
+
Args:
|
293 |
+
token_ids_0 (`List[int]`):
|
294 |
+
List of IDs.
|
295 |
+
token_ids_1 (`List[int]`, *optional*):
|
296 |
+
Optional second list of IDs for sequence pairs.
|
297 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
298 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
299 |
+
|
300 |
+
Returns:
|
301 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
302 |
+
"""
|
303 |
+
|
304 |
+
if already_has_special_tokens:
|
305 |
+
return super().get_special_tokens_mask(
|
306 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
307 |
+
)
|
308 |
+
|
309 |
+
if token_ids_1 is not None:
|
310 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
311 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
312 |
+
|
313 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
|
314 |
+
def create_token_type_ids_from_sequences(
|
315 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
316 |
+
) -> List[int]:
|
317 |
+
"""
|
318 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
319 |
+
pair mask has the following format:
|
320 |
+
|
321 |
+
```
|
322 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
323 |
+
| first sequence | second sequence |
|
324 |
+
```
|
325 |
+
|
326 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
327 |
+
|
328 |
+
Args:
|
329 |
+
token_ids_0 (`List[int]`):
|
330 |
+
List of IDs.
|
331 |
+
token_ids_1 (`List[int]`, *optional*):
|
332 |
+
Optional second list of IDs for sequence pairs.
|
333 |
+
|
334 |
+
Returns:
|
335 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
336 |
+
"""
|
337 |
+
sep = [self.sep_token_id]
|
338 |
+
cls = [self.cls_token_id]
|
339 |
+
if token_ids_1 is None:
|
340 |
+
return len(cls + token_ids_0 + sep) * [0]
|
341 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
342 |
+
|
343 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
344 |
+
if os.path.isdir(save_directory):
|
345 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
346 |
+
vocab_file = os.path.join(
|
347 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["spm_file"]
|
348 |
+
)
|
349 |
+
else:
|
350 |
+
vocab_file = os.path.join(
|
351 |
+
save_directory,
|
352 |
+
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"],
|
353 |
+
)
|
354 |
+
else:
|
355 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
356 |
+
|
357 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
358 |
+
with open(vocab_file, "wb") as writer:
|
359 |
+
content_spiece_model = self.subword_tokenizer.sp_model.serialized_model_proto()
|
360 |
+
writer.write(content_spiece_model)
|
361 |
+
else:
|
362 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
363 |
+
index = 0
|
364 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
365 |
+
if index != token_index:
|
366 |
+
logger.warning(
|
367 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
368 |
+
" Please check that the vocabulary is not corrupted!"
|
369 |
+
)
|
370 |
+
index = token_index
|
371 |
+
writer.write(token + "\n")
|
372 |
+
index += 1
|
373 |
+
return (vocab_file,)
|
374 |
+
|
375 |
+
|
376 |
+
class MecabTokenizer:
|
377 |
+
"""Runs basic tokenization with MeCab morphological parser."""
|
378 |
+
|
379 |
+
def __init__(
|
380 |
+
self,
|
381 |
+
do_lower_case=False,
|
382 |
+
never_split=None,
|
383 |
+
normalize_text=True,
|
384 |
+
mecab_dic: Optional[str] = "ipadic",
|
385 |
+
mecab_option: Optional[str] = None,
|
386 |
+
):
|
387 |
+
"""
|
388 |
+
Constructs a MecabTokenizer.
|
389 |
+
|
390 |
+
Args:
|
391 |
+
**do_lower_case**: (*optional*) boolean (default True)
|
392 |
+
Whether to lowercase the input.
|
393 |
+
**never_split**: (*optional*) list of str
|
394 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
395 |
+
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
|
396 |
+
**normalize_text**: (*optional*) boolean (default True)
|
397 |
+
Whether to apply unicode normalization to text before tokenization.
|
398 |
+
**mecab_dic**: (*optional*) string (default "ipadic")
|
399 |
+
Name of dictionary to be used for MeCab initialization. If you are using a system-installed dictionary,
|
400 |
+
set this option to `None` and modify *mecab_option*.
|
401 |
+
**mecab_option**: (*optional*) string
|
402 |
+
String passed to MeCab constructor.
|
403 |
+
"""
|
404 |
+
self.do_lower_case = do_lower_case
|
405 |
+
self.never_split = never_split if never_split is not None else []
|
406 |
+
self.normalize_text = normalize_text
|
407 |
+
|
408 |
+
try:
|
409 |
+
import fugashi
|
410 |
+
except ModuleNotFoundError as error:
|
411 |
+
raise error.__class__(
|
412 |
+
"You need to install fugashi to use MecabTokenizer. "
|
413 |
+
"See https://pypi.org/project/fugashi/ for installation."
|
414 |
+
)
|
415 |
+
|
416 |
+
mecab_option = mecab_option or ""
|
417 |
+
|
418 |
+
if mecab_dic is not None:
|
419 |
+
if mecab_dic == "ipadic":
|
420 |
+
try:
|
421 |
+
import ipadic
|
422 |
+
except ModuleNotFoundError as error:
|
423 |
+
raise error.__class__(
|
424 |
+
"The ipadic dictionary is not installed. "
|
425 |
+
"See https://github.com/polm/ipadic-py for installation."
|
426 |
+
)
|
427 |
+
|
428 |
+
dic_dir = ipadic.DICDIR
|
429 |
+
|
430 |
+
elif mecab_dic == "unidic_lite":
|
431 |
+
try:
|
432 |
+
import unidic_lite
|
433 |
+
except ModuleNotFoundError as error:
|
434 |
+
raise error.__class__(
|
435 |
+
"The unidic_lite dictionary is not installed. "
|
436 |
+
"See https://github.com/polm/unidic-lite for installation."
|
437 |
+
)
|
438 |
+
|
439 |
+
dic_dir = unidic_lite.DICDIR
|
440 |
+
|
441 |
+
elif mecab_dic == "unidic":
|
442 |
+
try:
|
443 |
+
import unidic
|
444 |
+
except ModuleNotFoundError as error:
|
445 |
+
raise error.__class__(
|
446 |
+
"The unidic dictionary is not installed. "
|
447 |
+
"See https://github.com/polm/unidic-py for installation."
|
448 |
+
)
|
449 |
+
|
450 |
+
dic_dir = unidic.DICDIR
|
451 |
+
if not os.path.isdir(dic_dir):
|
452 |
+
raise RuntimeError(
|
453 |
+
"The unidic dictionary itself is not found. "
|
454 |
+
"See https://github.com/polm/unidic-py for installation."
|
455 |
+
)
|
456 |
+
|
457 |
+
else:
|
458 |
+
raise ValueError("Invalid mecab_dic is specified.")
|
459 |
+
|
460 |
+
mecabrc = os.path.join(dic_dir, "mecabrc")
|
461 |
+
mecab_option = f'-d "{dic_dir}" -r "{mecabrc}" ' + mecab_option
|
462 |
+
|
463 |
+
self.mecab = fugashi.GenericTagger(mecab_option)
|
464 |
+
|
465 |
+
def tokenize(self, text, never_split=None, **kwargs):
|
466 |
+
"""Tokenizes a piece of text."""
|
467 |
+
if self.normalize_text:
|
468 |
+
text = unicodedata.normalize("NFKC", text)
|
469 |
+
|
470 |
+
never_split = self.never_split + (never_split if never_split is not None else [])
|
471 |
+
tokens = []
|
472 |
+
|
473 |
+
for word in self.mecab(text):
|
474 |
+
token = word.surface
|
475 |
+
|
476 |
+
if self.do_lower_case and token not in never_split:
|
477 |
+
token = token.lower()
|
478 |
+
|
479 |
+
tokens.append(token)
|
480 |
+
|
481 |
+
return tokens
|
482 |
+
|
483 |
+
|
484 |
+
class SudachiTokenizer:
|
485 |
+
"""Runs basic tokenization with Sudachi morphological parser."""
|
486 |
+
|
487 |
+
def __init__(
|
488 |
+
self,
|
489 |
+
do_lower_case=False,
|
490 |
+
never_split=None,
|
491 |
+
normalize_text=True,
|
492 |
+
trim_whitespace=False,
|
493 |
+
sudachi_split_mode="A",
|
494 |
+
sudachi_config_path=None,
|
495 |
+
sudachi_resource_dir=None,
|
496 |
+
sudachi_dict_type="core",
|
497 |
+
sudachi_projection=None,
|
498 |
+
):
|
499 |
+
"""
|
500 |
+
Constructs a SudachiTokenizer.
|
501 |
+
|
502 |
+
Args:
|
503 |
+
**do_lower_case**: (*optional*) boolean (default True)
|
504 |
+
Whether to lowercase the input.
|
505 |
+
**never_split**: (*optional*) list of str
|
506 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
507 |
+
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
|
508 |
+
**normalize_text**: (*optional*) boolean (default True)
|
509 |
+
Whether to apply unicode normalization to text before tokenization.
|
510 |
+
**trim_whitespace**: (*optional*) boolean (default False)
|
511 |
+
Whether to trim all whitespace, tab, newline from tokens.
|
512 |
+
**sudachi_split_mode**: (*optional*) string
|
513 |
+
Split mode of sudachi, choose from `["A", "B", "C"]`.
|
514 |
+
**sudachi_config_path**: (*optional*) string
|
515 |
+
**sudachi_resource_dir**: (*optional*) string
|
516 |
+
**sudachi_dict_type**: (*optional*) string
|
517 |
+
dict type of sudachi, choose from `["small", "core", "full"]`.
|
518 |
+
**sudachi_projection**: (*optional*) string
|
519 |
+
Word projection mode of sudachi, choose from `["surface", "normalized", "reading", "dictionary", "dictionary_and_surface", "normalized_and_surface", "normalized_nouns"]`.
|
520 |
+
"""
|
521 |
+
|
522 |
+
self.do_lower_case = do_lower_case
|
523 |
+
self.never_split = never_split if never_split is not None else []
|
524 |
+
self.normalize_text = normalize_text
|
525 |
+
self.trim_whitespace = trim_whitespace
|
526 |
+
|
527 |
+
try:
|
528 |
+
from sudachipy import dictionary, tokenizer
|
529 |
+
except ImportError:
|
530 |
+
raise ImportError(
|
531 |
+
"You need to install sudachipy to use SudachiTokenizer. "
|
532 |
+
"See https://github.com/WorksApplications/SudachiPy for installation."
|
533 |
+
)
|
534 |
+
|
535 |
+
if sudachi_split_mode == "A":
|
536 |
+
self.split_mode = tokenizer.Tokenizer.SplitMode.A
|
537 |
+
elif sudachi_split_mode == "B":
|
538 |
+
self.split_mode = tokenizer.Tokenizer.SplitMode.B
|
539 |
+
elif sudachi_split_mode == "C":
|
540 |
+
self.split_mode = tokenizer.Tokenizer.SplitMode.C
|
541 |
+
else:
|
542 |
+
raise ValueError("Invalid sudachi_split_mode is specified.")
|
543 |
+
|
544 |
+
self.projection = sudachi_projection
|
545 |
+
|
546 |
+
sudachi_dictionary = dictionary.Dictionary(
|
547 |
+
config_path=sudachi_config_path, resource_dir=sudachi_resource_dir, dict=sudachi_dict_type
|
548 |
+
)
|
549 |
+
if is_sudachi_projection_available():
|
550 |
+
self.sudachi = sudachi_dictionary.create(self.split_mode, projection=self.projection)
|
551 |
+
elif self.projection is not None:
|
552 |
+
raise ImportError("You need to install sudachipy>=0.6.8 to specify `projection` field in sudachi_kwargs.")
|
553 |
+
else:
|
554 |
+
self.sudachi = sudachi_dictionary.create(self.split_mode)
|
555 |
+
|
556 |
+
def tokenize(self, text, never_split=None, **kwargs):
|
557 |
+
"""Tokenizes a piece of text."""
|
558 |
+
if self.normalize_text:
|
559 |
+
text = unicodedata.normalize("NFKC", text)
|
560 |
+
|
561 |
+
never_split = self.never_split + (never_split if never_split is not None else [])
|
562 |
+
tokens = []
|
563 |
+
|
564 |
+
for word in self.sudachi.tokenize(text):
|
565 |
+
token = word.surface()
|
566 |
+
|
567 |
+
if self.do_lower_case and token not in never_split:
|
568 |
+
token = token.lower()
|
569 |
+
|
570 |
+
if self.trim_whitespace:
|
571 |
+
if token.strip() == "":
|
572 |
+
continue
|
573 |
+
else:
|
574 |
+
token = token.strip()
|
575 |
+
|
576 |
+
tokens.append(token)
|
577 |
+
|
578 |
+
return tokens
|
579 |
+
|
580 |
+
|
581 |
+
class JumanppTokenizer:
|
582 |
+
"""Runs basic tokenization with jumanpp morphological parser."""
|
583 |
+
|
584 |
+
def __init__(
|
585 |
+
self,
|
586 |
+
do_lower_case=False,
|
587 |
+
never_split=None,
|
588 |
+
normalize_text=True,
|
589 |
+
trim_whitespace=False,
|
590 |
+
):
|
591 |
+
"""
|
592 |
+
Constructs a JumanppTokenizer.
|
593 |
+
|
594 |
+
Args:
|
595 |
+
**do_lower_case**: (*optional*) boolean (default True)
|
596 |
+
Whether to lowercase the input.
|
597 |
+
**never_split**: (*optional*) list of str
|
598 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
599 |
+
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
|
600 |
+
**normalize_text**: (*optional*) boolean (default True)
|
601 |
+
Whether to apply unicode normalization to text before tokenization.
|
602 |
+
**trim_whitespace**: (*optional*) boolean (default False)
|
603 |
+
Whether to trim all whitespace, tab, newline from tokens.
|
604 |
+
"""
|
605 |
+
|
606 |
+
self.do_lower_case = do_lower_case
|
607 |
+
self.never_split = never_split if never_split is not None else []
|
608 |
+
self.normalize_text = normalize_text
|
609 |
+
self.trim_whitespace = trim_whitespace
|
610 |
+
|
611 |
+
try:
|
612 |
+
import rhoknp
|
613 |
+
except ImportError:
|
614 |
+
raise ImportError(
|
615 |
+
"You need to install rhoknp to use JumanppTokenizer. "
|
616 |
+
"See https://github.com/ku-nlp/rhoknp for installation."
|
617 |
+
)
|
618 |
+
|
619 |
+
self.juman = rhoknp.Jumanpp()
|
620 |
+
|
621 |
+
def tokenize(self, text, never_split=None, **kwargs):
|
622 |
+
"""Tokenizes a piece of text."""
|
623 |
+
if self.normalize_text:
|
624 |
+
text = unicodedata.normalize("NFKC", text)
|
625 |
+
|
626 |
+
text = text.strip()
|
627 |
+
|
628 |
+
never_split = self.never_split + (never_split if never_split is not None else [])
|
629 |
+
tokens = []
|
630 |
+
|
631 |
+
for mrph in self.juman.apply_to_sentence(text).morphemes:
|
632 |
+
token = mrph.text
|
633 |
+
|
634 |
+
if self.do_lower_case and token not in never_split:
|
635 |
+
token = token.lower()
|
636 |
+
|
637 |
+
if self.trim_whitespace:
|
638 |
+
if token.strip() == "":
|
639 |
+
continue
|
640 |
+
else:
|
641 |
+
token = token.strip()
|
642 |
+
|
643 |
+
tokens.append(token)
|
644 |
+
|
645 |
+
return tokens
|
646 |
+
|
647 |
+
|
648 |
+
class CharacterTokenizer:
|
649 |
+
"""Runs Character tokenization."""
|
650 |
+
|
651 |
+
def __init__(self, vocab, unk_token, normalize_text=True):
|
652 |
+
"""
|
653 |
+
Constructs a CharacterTokenizer.
|
654 |
+
|
655 |
+
Args:
|
656 |
+
**vocab**:
|
657 |
+
Vocabulary object.
|
658 |
+
**unk_token**: str
|
659 |
+
A special symbol for out-of-vocabulary token.
|
660 |
+
**normalize_text**: (`optional`) boolean (default True)
|
661 |
+
Whether to apply unicode normalization to text before tokenization.
|
662 |
+
"""
|
663 |
+
self.vocab = vocab
|
664 |
+
self.unk_token = unk_token
|
665 |
+
self.normalize_text = normalize_text
|
666 |
+
|
667 |
+
def tokenize(self, text):
|
668 |
+
"""
|
669 |
+
Tokenizes a piece of text into characters.
|
670 |
+
|
671 |
+
For example, `input = "apple""` wil return as output `["a", "p", "p", "l", "e"]`.
|
672 |
+
|
673 |
+
Args:
|
674 |
+
text: A single token or whitespace separated tokens.
|
675 |
+
This should have already been passed through *BasicTokenizer*.
|
676 |
+
|
677 |
+
Returns:
|
678 |
+
A list of characters.
|
679 |
+
"""
|
680 |
+
if self.normalize_text:
|
681 |
+
text = unicodedata.normalize("NFKC", text)
|
682 |
+
|
683 |
+
output_tokens = []
|
684 |
+
for char in text:
|
685 |
+
if char not in self.vocab:
|
686 |
+
output_tokens.append(self.unk_token)
|
687 |
+
continue
|
688 |
+
|
689 |
+
output_tokens.append(char)
|
690 |
+
|
691 |
+
return output_tokens
|
692 |
+
|
693 |
+
|
694 |
+
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
|
695 |
+
class BasicTokenizer(object):
|
696 |
+
"""
|
697 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
698 |
+
|
699 |
+
Args:
|
700 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
701 |
+
Whether or not to lowercase the input when tokenizing.
|
702 |
+
never_split (`Iterable`, *optional*):
|
703 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
704 |
+
`do_basic_tokenize=True`
|
705 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
706 |
+
Whether or not to tokenize Chinese characters.
|
707 |
+
|
708 |
+
This should likely be deactivated for Japanese (see this
|
709 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
710 |
+
strip_accents (`bool`, *optional*):
|
711 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
712 |
+
value for `lowercase` (as in the original BERT).
|
713 |
+
do_split_on_punc (`bool`, *optional*, defaults to `True`):
|
714 |
+
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
|
715 |
+
the full context of the words, such as contractions.
|
716 |
+
"""
|
717 |
+
|
718 |
+
def __init__(
|
719 |
+
self,
|
720 |
+
do_lower_case=True,
|
721 |
+
never_split=None,
|
722 |
+
tokenize_chinese_chars=True,
|
723 |
+
strip_accents=None,
|
724 |
+
do_split_on_punc=True,
|
725 |
+
):
|
726 |
+
if never_split is None:
|
727 |
+
never_split = []
|
728 |
+
self.do_lower_case = do_lower_case
|
729 |
+
self.never_split = set(never_split)
|
730 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
731 |
+
self.strip_accents = strip_accents
|
732 |
+
self.do_split_on_punc = do_split_on_punc
|
733 |
+
|
734 |
+
def tokenize(self, text, never_split=None):
|
735 |
+
"""
|
736 |
+
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
|
737 |
+
|
738 |
+
Args:
|
739 |
+
never_split (`List[str]`, *optional*)
|
740 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
741 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
742 |
+
"""
|
743 |
+
# union() returns a new set by concatenating the two sets.
|
744 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
745 |
+
text = self._clean_text(text)
|
746 |
+
|
747 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
748 |
+
# models. This is also applied to the English models now, but it doesn't
|
749 |
+
# matter since the English models were not trained on any Chinese data
|
750 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
751 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
752 |
+
# words in the English Wikipedia.).
|
753 |
+
if self.tokenize_chinese_chars:
|
754 |
+
text = self._tokenize_chinese_chars(text)
|
755 |
+
# prevents treating the same character with different unicode codepoints as different characters
|
756 |
+
unicode_normalized_text = unicodedata.normalize("NFC", text)
|
757 |
+
orig_tokens = whitespace_tokenize(unicode_normalized_text)
|
758 |
+
split_tokens = []
|
759 |
+
for token in orig_tokens:
|
760 |
+
if token not in never_split:
|
761 |
+
if self.do_lower_case:
|
762 |
+
token = token.lower()
|
763 |
+
if self.strip_accents is not False:
|
764 |
+
token = self._run_strip_accents(token)
|
765 |
+
elif self.strip_accents:
|
766 |
+
token = self._run_strip_accents(token)
|
767 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
768 |
+
|
769 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
770 |
+
return output_tokens
|
771 |
+
|
772 |
+
def _run_strip_accents(self, text):
|
773 |
+
"""Strips accents from a piece of text."""
|
774 |
+
text = unicodedata.normalize("NFD", text)
|
775 |
+
output = []
|
776 |
+
for char in text:
|
777 |
+
cat = unicodedata.category(char)
|
778 |
+
if cat == "Mn":
|
779 |
+
continue
|
780 |
+
output.append(char)
|
781 |
+
return "".join(output)
|
782 |
+
|
783 |
+
def _run_split_on_punc(self, text, never_split=None):
|
784 |
+
"""Splits punctuation on a piece of text."""
|
785 |
+
if not self.do_split_on_punc or (never_split is not None and text in never_split):
|
786 |
+
return [text]
|
787 |
+
chars = list(text)
|
788 |
+
i = 0
|
789 |
+
start_new_word = True
|
790 |
+
output = []
|
791 |
+
while i < len(chars):
|
792 |
+
char = chars[i]
|
793 |
+
if _is_punctuation(char):
|
794 |
+
output.append([char])
|
795 |
+
start_new_word = True
|
796 |
+
else:
|
797 |
+
if start_new_word:
|
798 |
+
output.append([])
|
799 |
+
start_new_word = False
|
800 |
+
output[-1].append(char)
|
801 |
+
i += 1
|
802 |
+
|
803 |
+
return ["".join(x) for x in output]
|
804 |
+
|
805 |
+
def _tokenize_chinese_chars(self, text):
|
806 |
+
"""Adds whitespace around any CJK character."""
|
807 |
+
output = []
|
808 |
+
for char in text:
|
809 |
+
cp = ord(char)
|
810 |
+
if self._is_chinese_char(cp):
|
811 |
+
output.append(" ")
|
812 |
+
output.append(char)
|
813 |
+
output.append(" ")
|
814 |
+
else:
|
815 |
+
output.append(char)
|
816 |
+
return "".join(output)
|
817 |
+
|
818 |
+
def _is_chinese_char(self, cp):
|
819 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
820 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
821 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
822 |
+
#
|
823 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
824 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
825 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
826 |
+
# space-separated words, so they are not treated specially and handled
|
827 |
+
# like the all of the other languages.
|
828 |
+
if (
|
829 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
830 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
831 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
832 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
833 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
834 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
835 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
836 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
837 |
+
): #
|
838 |
+
return True
|
839 |
+
|
840 |
+
return False
|
841 |
+
|
842 |
+
def _clean_text(self, text):
|
843 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
844 |
+
output = []
|
845 |
+
for char in text:
|
846 |
+
cp = ord(char)
|
847 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
848 |
+
continue
|
849 |
+
if _is_whitespace(char):
|
850 |
+
output.append(" ")
|
851 |
+
else:
|
852 |
+
output.append(char)
|
853 |
+
return "".join(output)
|
854 |
+
|
855 |
+
|
856 |
+
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
|
857 |
+
class WordpieceTokenizer(object):
|
858 |
+
"""Runs WordPiece tokenization."""
|
859 |
+
|
860 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
861 |
+
self.vocab = vocab
|
862 |
+
self.unk_token = unk_token
|
863 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
864 |
+
|
865 |
+
def tokenize(self, text):
|
866 |
+
"""
|
867 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
868 |
+
tokenization using the given vocabulary.
|
869 |
+
|
870 |
+
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
871 |
+
|
872 |
+
Args:
|
873 |
+
text: A single token or whitespace separated tokens. This should have
|
874 |
+
already been passed through *BasicTokenizer*.
|
875 |
+
|
876 |
+
Returns:
|
877 |
+
A list of wordpiece tokens.
|
878 |
+
"""
|
879 |
+
|
880 |
+
output_tokens = []
|
881 |
+
for token in whitespace_tokenize(text):
|
882 |
+
chars = list(token)
|
883 |
+
if len(chars) > self.max_input_chars_per_word:
|
884 |
+
output_tokens.append(self.unk_token)
|
885 |
+
continue
|
886 |
+
|
887 |
+
is_bad = False
|
888 |
+
start = 0
|
889 |
+
sub_tokens = []
|
890 |
+
while start < len(chars):
|
891 |
+
end = len(chars)
|
892 |
+
cur_substr = None
|
893 |
+
while start < end:
|
894 |
+
substr = "".join(chars[start:end])
|
895 |
+
if start > 0:
|
896 |
+
substr = "##" + substr
|
897 |
+
if substr in self.vocab:
|
898 |
+
cur_substr = substr
|
899 |
+
break
|
900 |
+
end -= 1
|
901 |
+
if cur_substr is None:
|
902 |
+
is_bad = True
|
903 |
+
break
|
904 |
+
sub_tokens.append(cur_substr)
|
905 |
+
start = end
|
906 |
+
|
907 |
+
if is_bad:
|
908 |
+
output_tokens.append(self.unk_token)
|
909 |
+
else:
|
910 |
+
output_tokens.extend(sub_tokens)
|
911 |
+
return output_tokens
|
912 |
+
|
913 |
+
|
914 |
+
class SentencepieceTokenizer(object):
|
915 |
+
"""
|
916 |
+
Runs sentencepiece tokenization. Based on transformers.models.albert.tokenization_albert.AlbertTokenizer.
|
917 |
+
"""
|
918 |
+
|
919 |
+
def __init__(
|
920 |
+
self,
|
921 |
+
vocab,
|
922 |
+
unk_token,
|
923 |
+
do_lower_case=False,
|
924 |
+
remove_space=True,
|
925 |
+
keep_accents=True,
|
926 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
927 |
+
):
|
928 |
+
self.vocab = vocab
|
929 |
+
self.unk_token = unk_token
|
930 |
+
self.do_lower_case = do_lower_case
|
931 |
+
self.remove_space = remove_space
|
932 |
+
self.keep_accents = keep_accents
|
933 |
+
|
934 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
935 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
936 |
+
self.sp_model.Load(self.vocab)
|
937 |
+
|
938 |
+
def preprocess_text(self, inputs):
|
939 |
+
if self.remove_space:
|
940 |
+
outputs = " ".join(inputs.strip().split())
|
941 |
+
else:
|
942 |
+
outputs = inputs
|
943 |
+
outputs = outputs.replace("``", '"').replace("''", '"')
|
944 |
+
|
945 |
+
if not self.keep_accents:
|
946 |
+
outputs = unicodedata.normalize("NFKD", outputs)
|
947 |
+
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
|
948 |
+
if self.do_lower_case:
|
949 |
+
outputs = outputs.lower()
|
950 |
+
|
951 |
+
return outputs
|
952 |
+
|
953 |
+
def tokenize(self, text):
|
954 |
+
"""
|
955 |
+
Tokenizes text by sentencepiece. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
956 |
+
Tokenization needs the given vocabulary.
|
957 |
+
|
958 |
+
Args:
|
959 |
+
text: A string needs to be tokenized.
|
960 |
+
|
961 |
+
Returns:
|
962 |
+
A list of sentencepiece tokens.
|
963 |
+
"""
|
964 |
+
text = self.preprocess_text(text)
|
965 |
+
pieces = self.sp_model.encode(text, out_type=str)
|
966 |
+
new_pieces = []
|
967 |
+
for piece in pieces:
|
968 |
+
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
|
969 |
+
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
|
970 |
+
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
|
971 |
+
if len(cur_pieces[0]) == 1:
|
972 |
+
cur_pieces = cur_pieces[1:]
|
973 |
+
else:
|
974 |
+
cur_pieces[0] = cur_pieces[0][1:]
|
975 |
+
cur_pieces.append(piece[-1])
|
976 |
+
new_pieces.extend(cur_pieces)
|
977 |
+
else:
|
978 |
+
new_pieces.append(piece)
|
979 |
+
|
980 |
+
return new_pieces
|
llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__init__.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_flax_available,
|
20 |
+
is_sentencepiece_available,
|
21 |
+
is_tf_available,
|
22 |
+
is_tokenizers_available,
|
23 |
+
is_torch_available,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
_import_structure = {
|
28 |
+
"configuration_big_bird": ["BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdConfig", "BigBirdOnnxConfig"],
|
29 |
+
}
|
30 |
+
|
31 |
+
try:
|
32 |
+
if not is_sentencepiece_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
_import_structure["tokenization_big_bird"] = ["BigBirdTokenizer"]
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_tokenizers_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
_import_structure["tokenization_big_bird_fast"] = ["BigBirdTokenizerFast"]
|
46 |
+
|
47 |
+
try:
|
48 |
+
if not is_torch_available():
|
49 |
+
raise OptionalDependencyNotAvailable()
|
50 |
+
except OptionalDependencyNotAvailable:
|
51 |
+
pass
|
52 |
+
else:
|
53 |
+
_import_structure["modeling_big_bird"] = [
|
54 |
+
"BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST",
|
55 |
+
"BigBirdForCausalLM",
|
56 |
+
"BigBirdForMaskedLM",
|
57 |
+
"BigBirdForMultipleChoice",
|
58 |
+
"BigBirdForPreTraining",
|
59 |
+
"BigBirdForQuestionAnswering",
|
60 |
+
"BigBirdForSequenceClassification",
|
61 |
+
"BigBirdForTokenClassification",
|
62 |
+
"BigBirdLayer",
|
63 |
+
"BigBirdModel",
|
64 |
+
"BigBirdPreTrainedModel",
|
65 |
+
"load_tf_weights_in_big_bird",
|
66 |
+
]
|
67 |
+
|
68 |
+
try:
|
69 |
+
if not is_flax_available():
|
70 |
+
raise OptionalDependencyNotAvailable()
|
71 |
+
except OptionalDependencyNotAvailable:
|
72 |
+
pass
|
73 |
+
else:
|
74 |
+
_import_structure["modeling_flax_big_bird"] = [
|
75 |
+
"FlaxBigBirdForCausalLM",
|
76 |
+
"FlaxBigBirdForMaskedLM",
|
77 |
+
"FlaxBigBirdForMultipleChoice",
|
78 |
+
"FlaxBigBirdForPreTraining",
|
79 |
+
"FlaxBigBirdForQuestionAnswering",
|
80 |
+
"FlaxBigBirdForSequenceClassification",
|
81 |
+
"FlaxBigBirdForTokenClassification",
|
82 |
+
"FlaxBigBirdModel",
|
83 |
+
"FlaxBigBirdPreTrainedModel",
|
84 |
+
]
|
85 |
+
|
86 |
+
if TYPE_CHECKING:
|
87 |
+
from .configuration_big_bird import BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdConfig, BigBirdOnnxConfig
|
88 |
+
|
89 |
+
try:
|
90 |
+
if not is_sentencepiece_available():
|
91 |
+
raise OptionalDependencyNotAvailable()
|
92 |
+
except OptionalDependencyNotAvailable:
|
93 |
+
pass
|
94 |
+
else:
|
95 |
+
from .tokenization_big_bird import BigBirdTokenizer
|
96 |
+
|
97 |
+
try:
|
98 |
+
if not is_tokenizers_available():
|
99 |
+
raise OptionalDependencyNotAvailable()
|
100 |
+
except OptionalDependencyNotAvailable:
|
101 |
+
pass
|
102 |
+
else:
|
103 |
+
from .tokenization_big_bird_fast import BigBirdTokenizerFast
|
104 |
+
|
105 |
+
try:
|
106 |
+
if not is_torch_available():
|
107 |
+
raise OptionalDependencyNotAvailable()
|
108 |
+
except OptionalDependencyNotAvailable:
|
109 |
+
pass
|
110 |
+
else:
|
111 |
+
from .modeling_big_bird import (
|
112 |
+
BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST,
|
113 |
+
BigBirdForCausalLM,
|
114 |
+
BigBirdForMaskedLM,
|
115 |
+
BigBirdForMultipleChoice,
|
116 |
+
BigBirdForPreTraining,
|
117 |
+
BigBirdForQuestionAnswering,
|
118 |
+
BigBirdForSequenceClassification,
|
119 |
+
BigBirdForTokenClassification,
|
120 |
+
BigBirdLayer,
|
121 |
+
BigBirdModel,
|
122 |
+
BigBirdPreTrainedModel,
|
123 |
+
load_tf_weights_in_big_bird,
|
124 |
+
)
|
125 |
+
|
126 |
+
try:
|
127 |
+
if not is_flax_available():
|
128 |
+
raise OptionalDependencyNotAvailable()
|
129 |
+
except OptionalDependencyNotAvailable:
|
130 |
+
pass
|
131 |
+
else:
|
132 |
+
from .modeling_flax_big_bird import (
|
133 |
+
FlaxBigBirdForCausalLM,
|
134 |
+
FlaxBigBirdForMaskedLM,
|
135 |
+
FlaxBigBirdForMultipleChoice,
|
136 |
+
FlaxBigBirdForPreTraining,
|
137 |
+
FlaxBigBirdForQuestionAnswering,
|
138 |
+
FlaxBigBirdForSequenceClassification,
|
139 |
+
FlaxBigBirdForTokenClassification,
|
140 |
+
FlaxBigBirdModel,
|
141 |
+
FlaxBigBirdPreTrainedModel,
|
142 |
+
)
|
143 |
+
|
144 |
+
else:
|
145 |
+
import sys
|
146 |
+
|
147 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.22 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/configuration_big_bird.cpython-310.pyc
ADDED
Binary file (7.05 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/convert_bigbird_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (1.64 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_big_bird.cpython-310.pyc
ADDED
Binary file (83.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/modeling_flax_big_bird.cpython-310.pyc
ADDED
Binary file (63.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/__pycache__/tokenization_big_bird_fast.cpython-310.pyc
ADDED
Binary file (8.95 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/configuration_big_bird.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" BigBird model configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Mapping
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...onnx import OnnxConfig
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
from ..deprecated._archive_maps import BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
28 |
+
|
29 |
+
|
30 |
+
class BigBirdConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`BigBirdModel`]. It is used to instantiate an
|
33 |
+
BigBird model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
34 |
+
with the defaults will yield a similar configuration to that of the BigBird
|
35 |
+
[google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) architecture.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 50358):
|
43 |
+
Vocabulary size of the BigBird model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`BigBirdModel`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
46 |
+
Dimension of the encoder layers and the pooler layer.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
48 |
+
Number of hidden layers in the Transformer encoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
52 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
53 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
54 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
55 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
56 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
57 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
58 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout ratio for the attention probabilities.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
61 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
62 |
+
just in case (e.g., 1024 or 2048 or 4096).
|
63 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
64 |
+
The vocabulary size of the `token_type_ids` passed when calling [`BigBirdModel`].
|
65 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
66 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
68 |
+
The epsilon used by the layer normalization layers.
|
69 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
70 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
71 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
73 |
+
relevant if `config.is_decoder=True`.
|
74 |
+
attention_type (`str`, *optional*, defaults to `"block_sparse"`)
|
75 |
+
Whether to use block sparse attention (with n complexity) as introduced in paper or original attention
|
76 |
+
layer (with n^2 complexity). Possible values are `"original_full"` and `"block_sparse"`.
|
77 |
+
use_bias (`bool`, *optional*, defaults to `True`)
|
78 |
+
Whether to use bias in query, key, value.
|
79 |
+
rescale_embeddings (`bool`, *optional*, defaults to `False`)
|
80 |
+
Whether to rescale embeddings with (hidden_size ** 0.5).
|
81 |
+
block_size (`int`, *optional*, defaults to 64)
|
82 |
+
Size of each block. Useful only when `attention_type == "block_sparse"`.
|
83 |
+
num_random_blocks (`int`, *optional*, defaults to 3)
|
84 |
+
Each query is going to attend these many number of random blocks. Useful only when `attention_type ==
|
85 |
+
"block_sparse"`.
|
86 |
+
classifier_dropout (`float`, *optional*):
|
87 |
+
The dropout ratio for the classification head.
|
88 |
+
|
89 |
+
Example:
|
90 |
+
|
91 |
+
```python
|
92 |
+
>>> from transformers import BigBirdConfig, BigBirdModel
|
93 |
+
|
94 |
+
>>> # Initializing a BigBird google/bigbird-roberta-base style configuration
|
95 |
+
>>> configuration = BigBirdConfig()
|
96 |
+
|
97 |
+
>>> # Initializing a model (with random weights) from the google/bigbird-roberta-base style configuration
|
98 |
+
>>> model = BigBirdModel(configuration)
|
99 |
+
|
100 |
+
>>> # Accessing the model configuration
|
101 |
+
>>> configuration = model.config
|
102 |
+
```"""
|
103 |
+
|
104 |
+
model_type = "big_bird"
|
105 |
+
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
vocab_size=50358,
|
109 |
+
hidden_size=768,
|
110 |
+
num_hidden_layers=12,
|
111 |
+
num_attention_heads=12,
|
112 |
+
intermediate_size=3072,
|
113 |
+
hidden_act="gelu_new",
|
114 |
+
hidden_dropout_prob=0.1,
|
115 |
+
attention_probs_dropout_prob=0.1,
|
116 |
+
max_position_embeddings=4096,
|
117 |
+
type_vocab_size=2,
|
118 |
+
initializer_range=0.02,
|
119 |
+
layer_norm_eps=1e-12,
|
120 |
+
use_cache=True,
|
121 |
+
pad_token_id=0,
|
122 |
+
bos_token_id=1,
|
123 |
+
eos_token_id=2,
|
124 |
+
sep_token_id=66,
|
125 |
+
attention_type="block_sparse",
|
126 |
+
use_bias=True,
|
127 |
+
rescale_embeddings=False,
|
128 |
+
block_size=64,
|
129 |
+
num_random_blocks=3,
|
130 |
+
classifier_dropout=None,
|
131 |
+
**kwargs,
|
132 |
+
):
|
133 |
+
super().__init__(
|
134 |
+
pad_token_id=pad_token_id,
|
135 |
+
bos_token_id=bos_token_id,
|
136 |
+
eos_token_id=eos_token_id,
|
137 |
+
sep_token_id=sep_token_id,
|
138 |
+
**kwargs,
|
139 |
+
)
|
140 |
+
|
141 |
+
self.vocab_size = vocab_size
|
142 |
+
self.max_position_embeddings = max_position_embeddings
|
143 |
+
self.hidden_size = hidden_size
|
144 |
+
self.num_hidden_layers = num_hidden_layers
|
145 |
+
self.num_attention_heads = num_attention_heads
|
146 |
+
self.intermediate_size = intermediate_size
|
147 |
+
self.hidden_act = hidden_act
|
148 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
149 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
150 |
+
self.initializer_range = initializer_range
|
151 |
+
self.type_vocab_size = type_vocab_size
|
152 |
+
self.layer_norm_eps = layer_norm_eps
|
153 |
+
self.use_cache = use_cache
|
154 |
+
|
155 |
+
self.rescale_embeddings = rescale_embeddings
|
156 |
+
self.attention_type = attention_type
|
157 |
+
self.use_bias = use_bias
|
158 |
+
self.block_size = block_size
|
159 |
+
self.num_random_blocks = num_random_blocks
|
160 |
+
self.classifier_dropout = classifier_dropout
|
161 |
+
|
162 |
+
|
163 |
+
class BigBirdOnnxConfig(OnnxConfig):
|
164 |
+
@property
|
165 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
166 |
+
if self.task == "multiple-choice":
|
167 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
168 |
+
else:
|
169 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
170 |
+
return OrderedDict(
|
171 |
+
[
|
172 |
+
("input_ids", dynamic_axis),
|
173 |
+
("attention_mask", dynamic_axis),
|
174 |
+
]
|
175 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/convert_bigbird_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert BigBird checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logging.set_verbosity_info()
|
25 |
+
|
26 |
+
|
27 |
+
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, big_bird_config_file, pytorch_dump_path, is_trivia_qa):
|
28 |
+
# Initialise PyTorch model
|
29 |
+
config = BigBirdConfig.from_json_file(big_bird_config_file)
|
30 |
+
print(f"Building PyTorch model from configuration: {config}")
|
31 |
+
|
32 |
+
if is_trivia_qa:
|
33 |
+
model = BigBirdForQuestionAnswering(config)
|
34 |
+
else:
|
35 |
+
model = BigBirdForPreTraining(config)
|
36 |
+
|
37 |
+
# Load weights from tf checkpoint
|
38 |
+
load_tf_weights_in_big_bird(model, tf_checkpoint_path, is_trivia_qa=is_trivia_qa)
|
39 |
+
|
40 |
+
# Save pytorch-model
|
41 |
+
print(f"Save PyTorch model to {pytorch_dump_path}")
|
42 |
+
model.save_pretrained(pytorch_dump_path)
|
43 |
+
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
parser = argparse.ArgumentParser()
|
47 |
+
# Required parameters
|
48 |
+
parser.add_argument(
|
49 |
+
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
50 |
+
)
|
51 |
+
parser.add_argument(
|
52 |
+
"--big_bird_config_file",
|
53 |
+
default=None,
|
54 |
+
type=str,
|
55 |
+
required=True,
|
56 |
+
help=(
|
57 |
+
"The config json file corresponding to the pre-trained BERT model. \n"
|
58 |
+
"This specifies the model architecture."
|
59 |
+
),
|
60 |
+
)
|
61 |
+
parser.add_argument(
|
62 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
63 |
+
)
|
64 |
+
parser.add_argument(
|
65 |
+
"--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head."
|
66 |
+
)
|
67 |
+
args = parser.parse_args()
|
68 |
+
convert_tf_checkpoint_to_pytorch(
|
69 |
+
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
|
70 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/modeling_big_bird.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/modeling_flax_big_bird.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird.py
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for BigBird."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
import re
|
20 |
+
from shutil import copyfile
|
21 |
+
from typing import Any, Dict, List, Optional, Tuple
|
22 |
+
|
23 |
+
import sentencepiece as spm
|
24 |
+
|
25 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
26 |
+
from ...utils import logging
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
32 |
+
|
33 |
+
|
34 |
+
class BigBirdTokenizer(PreTrainedTokenizer):
|
35 |
+
"""
|
36 |
+
Construct a BigBird tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
37 |
+
|
38 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
39 |
+
this superclass for more information regarding those methods.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_file (`str`):
|
43 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
44 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
45 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
46 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
47 |
+
token instead.
|
48 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
49 |
+
The begin of sequence token.
|
50 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
51 |
+
The end of sequence token.
|
52 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
53 |
+
The token used for padding, for example when batching sequences of different lengths.
|
54 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
55 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
56 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
57 |
+
token of a sequence built with special tokens.
|
58 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
59 |
+
The token used for masking values. This is the token used when training this model with masked language
|
60 |
+
modeling. This is the token which the model will try to predict.
|
61 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
62 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
63 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
64 |
+
sp_model_kwargs (`dict`, *optional*):
|
65 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
66 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
67 |
+
to set:
|
68 |
+
|
69 |
+
- `enable_sampling`: Enable subword regularization.
|
70 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
71 |
+
|
72 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
73 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
74 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
75 |
+
using forward-filtering-and-backward-sampling algorithm.
|
76 |
+
|
77 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
78 |
+
BPE-dropout.
|
79 |
+
"""
|
80 |
+
|
81 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
82 |
+
model_input_names = ["input_ids", "attention_mask"]
|
83 |
+
prefix_tokens: List[int] = []
|
84 |
+
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
vocab_file,
|
88 |
+
unk_token="<unk>",
|
89 |
+
bos_token="<s>",
|
90 |
+
eos_token="</s>",
|
91 |
+
pad_token="<pad>",
|
92 |
+
sep_token="[SEP]",
|
93 |
+
mask_token="[MASK]",
|
94 |
+
cls_token="[CLS]",
|
95 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
96 |
+
**kwargs,
|
97 |
+
) -> None:
|
98 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
99 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
100 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
101 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
102 |
+
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
|
103 |
+
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
|
104 |
+
|
105 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
106 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
107 |
+
|
108 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
109 |
+
|
110 |
+
self.vocab_file = vocab_file
|
111 |
+
|
112 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
113 |
+
self.sp_model.Load(vocab_file)
|
114 |
+
|
115 |
+
super().__init__(
|
116 |
+
bos_token=bos_token,
|
117 |
+
eos_token=eos_token,
|
118 |
+
unk_token=unk_token,
|
119 |
+
pad_token=pad_token,
|
120 |
+
sep_token=sep_token,
|
121 |
+
mask_token=mask_token,
|
122 |
+
cls_token=cls_token,
|
123 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
124 |
+
**kwargs,
|
125 |
+
)
|
126 |
+
|
127 |
+
@property
|
128 |
+
def vocab_size(self):
|
129 |
+
return self.sp_model.get_piece_size()
|
130 |
+
|
131 |
+
def get_vocab(self):
|
132 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
133 |
+
vocab.update(self.added_tokens_encoder)
|
134 |
+
return vocab
|
135 |
+
|
136 |
+
def __getstate__(self):
|
137 |
+
state = self.__dict__.copy()
|
138 |
+
state["sp_model"] = None
|
139 |
+
return state
|
140 |
+
|
141 |
+
def __setstate__(self, d):
|
142 |
+
self.__dict__ = d
|
143 |
+
|
144 |
+
# for backward compatibility
|
145 |
+
if not hasattr(self, "sp_model_kwargs"):
|
146 |
+
self.sp_model_kwargs = {}
|
147 |
+
|
148 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
149 |
+
self.sp_model.Load(self.vocab_file)
|
150 |
+
|
151 |
+
def _tokenize(self, text: str) -> List[str]:
|
152 |
+
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
|
153 |
+
return self.sp_model.encode(text, out_type=str)
|
154 |
+
|
155 |
+
def _convert_token_to_id(self, token):
|
156 |
+
"""Converts a token (str) in an id using the vocab."""
|
157 |
+
return self.sp_model.piece_to_id(token)
|
158 |
+
|
159 |
+
def _convert_id_to_token(self, index):
|
160 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
161 |
+
token = self.sp_model.IdToPiece(index)
|
162 |
+
return token
|
163 |
+
|
164 |
+
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
|
165 |
+
def convert_tokens_to_string(self, tokens):
|
166 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
167 |
+
current_sub_tokens = []
|
168 |
+
out_string = ""
|
169 |
+
prev_is_special = False
|
170 |
+
for token in tokens:
|
171 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
172 |
+
if token in self.all_special_tokens:
|
173 |
+
if not prev_is_special:
|
174 |
+
out_string += " "
|
175 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
176 |
+
prev_is_special = True
|
177 |
+
current_sub_tokens = []
|
178 |
+
else:
|
179 |
+
current_sub_tokens.append(token)
|
180 |
+
prev_is_special = False
|
181 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
182 |
+
return out_string.strip()
|
183 |
+
|
184 |
+
def _decode(
|
185 |
+
self,
|
186 |
+
token_ids: List[int],
|
187 |
+
skip_special_tokens: bool = False,
|
188 |
+
clean_up_tokenization_spaces: bool = None,
|
189 |
+
spaces_between_special_tokens: bool = True,
|
190 |
+
**kwargs,
|
191 |
+
) -> str:
|
192 |
+
self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)
|
193 |
+
|
194 |
+
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
|
195 |
+
|
196 |
+
# To avoid mixing byte-level and unicode for byte-level BPT
|
197 |
+
# we need to build string separately for added tokens and byte-level tokens
|
198 |
+
# cf. https://github.com/huggingface/transformers/issues/1133
|
199 |
+
sub_texts = []
|
200 |
+
current_sub_text = []
|
201 |
+
for token in filtered_tokens:
|
202 |
+
if skip_special_tokens and token in self.all_special_ids:
|
203 |
+
continue
|
204 |
+
if token in self.added_tokens_encoder:
|
205 |
+
if current_sub_text:
|
206 |
+
sub_texts.append(self.convert_tokens_to_string(current_sub_text))
|
207 |
+
current_sub_text = []
|
208 |
+
sub_texts.append(token)
|
209 |
+
else:
|
210 |
+
current_sub_text.append(token)
|
211 |
+
if current_sub_text:
|
212 |
+
sub_texts.append(self.convert_tokens_to_string(current_sub_text))
|
213 |
+
|
214 |
+
# Mimic the behavior of the Rust tokenizer:
|
215 |
+
# No space before [MASK] and [SEP]
|
216 |
+
if spaces_between_special_tokens:
|
217 |
+
text = re.sub(r" (\[(MASK|SEP)\])", r"\1", " ".join(sub_texts))
|
218 |
+
else:
|
219 |
+
text = "".join(sub_texts)
|
220 |
+
|
221 |
+
clean_up_tokenization_spaces = (
|
222 |
+
clean_up_tokenization_spaces
|
223 |
+
if clean_up_tokenization_spaces is not None
|
224 |
+
else self.clean_up_tokenization_spaces
|
225 |
+
)
|
226 |
+
if clean_up_tokenization_spaces:
|
227 |
+
clean_text = self.clean_up_tokenization(text)
|
228 |
+
return clean_text
|
229 |
+
else:
|
230 |
+
return text
|
231 |
+
|
232 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
233 |
+
if not os.path.isdir(save_directory):
|
234 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
235 |
+
return
|
236 |
+
out_vocab_file = os.path.join(
|
237 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
238 |
+
)
|
239 |
+
|
240 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
241 |
+
copyfile(self.vocab_file, out_vocab_file)
|
242 |
+
elif not os.path.isfile(self.vocab_file):
|
243 |
+
with open(out_vocab_file, "wb") as fi:
|
244 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
245 |
+
fi.write(content_spiece_model)
|
246 |
+
|
247 |
+
return (out_vocab_file,)
|
248 |
+
|
249 |
+
def build_inputs_with_special_tokens(
|
250 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
251 |
+
) -> List[int]:
|
252 |
+
"""
|
253 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
254 |
+
adding special tokens. A Big Bird sequence has the following format:
|
255 |
+
|
256 |
+
- single sequence: `[CLS] X [SEP]`
|
257 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
258 |
+
|
259 |
+
Args:
|
260 |
+
token_ids_0 (`List[int]`):
|
261 |
+
List of IDs to which the special tokens will be added.
|
262 |
+
token_ids_1 (`List[int]`, *optional*):
|
263 |
+
Optional second list of IDs for sequence pairs.
|
264 |
+
|
265 |
+
Returns:
|
266 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
267 |
+
"""
|
268 |
+
if token_ids_1 is None:
|
269 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
270 |
+
cls = [self.cls_token_id]
|
271 |
+
sep = [self.sep_token_id]
|
272 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
273 |
+
|
274 |
+
def get_special_tokens_mask(
|
275 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
276 |
+
) -> List[int]:
|
277 |
+
"""
|
278 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
279 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
280 |
+
|
281 |
+
Args:
|
282 |
+
token_ids_0 (`List[int]`):
|
283 |
+
List of IDs.
|
284 |
+
token_ids_1 (`List[int]`, *optional*):
|
285 |
+
Optional second list of IDs for sequence pairs.
|
286 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
287 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
288 |
+
|
289 |
+
Returns:
|
290 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
291 |
+
"""
|
292 |
+
if already_has_special_tokens:
|
293 |
+
return super().get_special_tokens_mask(
|
294 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
295 |
+
)
|
296 |
+
|
297 |
+
if token_ids_1 is None:
|
298 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
299 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
300 |
+
|
301 |
+
def create_token_type_ids_from_sequences(
|
302 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
303 |
+
) -> List[int]:
|
304 |
+
"""
|
305 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
306 |
+
pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second
|
307 |
+
sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
308 |
+
|
309 |
+
Args:
|
310 |
+
token_ids_0 (`List[int]`):
|
311 |
+
List of IDs.
|
312 |
+
token_ids_1 (`List[int]`, *optional*):
|
313 |
+
Optional second list of IDs for sequence pairs.
|
314 |
+
|
315 |
+
Returns:
|
316 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
317 |
+
"""
|
318 |
+
sep = [self.sep_token_id]
|
319 |
+
cls = [self.cls_token_id]
|
320 |
+
if token_ids_1 is None:
|
321 |
+
return len(cls + token_ids_0 + sep) * [0]
|
322 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
llmeval-env/lib/python3.10/site-packages/transformers/models/big_bird/tokenization_big_bird_fast.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization classes for Big Bird model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import List, Optional, Tuple
|
21 |
+
|
22 |
+
from ...tokenization_utils import AddedToken
|
23 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
24 |
+
from ...utils import is_sentencepiece_available, logging
|
25 |
+
|
26 |
+
|
27 |
+
if is_sentencepiece_available():
|
28 |
+
from .tokenization_big_bird import BigBirdTokenizer
|
29 |
+
else:
|
30 |
+
BigBirdTokenizer = None
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
|
34 |
+
|
35 |
+
|
36 |
+
SPIECE_UNDERLINE = "▁"
|
37 |
+
|
38 |
+
|
39 |
+
class BigBirdTokenizerFast(PreTrainedTokenizerFast):
|
40 |
+
"""
|
41 |
+
Construct a "fast" BigBird tokenizer (backed by HuggingFace's *tokenizers* library). Based on
|
42 |
+
[Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This
|
43 |
+
tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to
|
44 |
+
this superclass for more information regarding those methods
|
45 |
+
|
46 |
+
Args:
|
47 |
+
vocab_file (`str`):
|
48 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
49 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
50 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
51 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
52 |
+
|
53 |
+
<Tip>
|
54 |
+
|
55 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
56 |
+
sequence. The token used is the `cls_token`.
|
57 |
+
|
58 |
+
</Tip>
|
59 |
+
|
60 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
61 |
+
The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token
|
62 |
+
that is used for the end of sequence. The token used is the `sep_token`.
|
63 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
64 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
65 |
+
token instead.
|
66 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
67 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
68 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
69 |
+
token of a sequence built with special tokens.
|
70 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
71 |
+
The token used for padding, for example when batching sequences of different lengths.
|
72 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
73 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
74 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
75 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
76 |
+
The token used for masking values. This is the token used when training this model with masked language
|
77 |
+
modeling. This is the token which the model will try to predict.
|
78 |
+
"""
|
79 |
+
|
80 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
81 |
+
slow_tokenizer_class = BigBirdTokenizer
|
82 |
+
model_input_names = ["input_ids", "attention_mask"]
|
83 |
+
prefix_tokens: List[int] = []
|
84 |
+
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
vocab_file=None,
|
88 |
+
tokenizer_file=None,
|
89 |
+
unk_token="<unk>",
|
90 |
+
bos_token="<s>",
|
91 |
+
eos_token="</s>",
|
92 |
+
pad_token="<pad>",
|
93 |
+
sep_token="[SEP]",
|
94 |
+
mask_token="[MASK]",
|
95 |
+
cls_token="[CLS]",
|
96 |
+
**kwargs,
|
97 |
+
):
|
98 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
99 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
100 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
101 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
102 |
+
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
|
103 |
+
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
|
104 |
+
|
105 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
106 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
107 |
+
|
108 |
+
super().__init__(
|
109 |
+
vocab_file,
|
110 |
+
tokenizer_file=tokenizer_file,
|
111 |
+
bos_token=bos_token,
|
112 |
+
eos_token=eos_token,
|
113 |
+
unk_token=unk_token,
|
114 |
+
sep_token=sep_token,
|
115 |
+
pad_token=pad_token,
|
116 |
+
cls_token=cls_token,
|
117 |
+
mask_token=mask_token,
|
118 |
+
**kwargs,
|
119 |
+
)
|
120 |
+
|
121 |
+
self.vocab_file = vocab_file
|
122 |
+
|
123 |
+
@property
|
124 |
+
def can_save_slow_tokenizer(self) -> bool:
|
125 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
126 |
+
|
127 |
+
def build_inputs_with_special_tokens(
|
128 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
129 |
+
) -> List[int]:
|
130 |
+
"""
|
131 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
132 |
+
adding special tokens. An BigBird sequence has the following format:
|
133 |
+
|
134 |
+
- single sequence: `[CLS] X [SEP]`
|
135 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
136 |
+
|
137 |
+
Args:
|
138 |
+
token_ids_0 (`List[int]`):
|
139 |
+
List of IDs to which the special tokens will be added
|
140 |
+
token_ids_1 (`List[int]`, *optional*):
|
141 |
+
Optional second list of IDs for sequence pairs.
|
142 |
+
|
143 |
+
Returns:
|
144 |
+
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
145 |
+
"""
|
146 |
+
sep = [self.sep_token_id]
|
147 |
+
cls = [self.cls_token_id]
|
148 |
+
if token_ids_1 is None:
|
149 |
+
return cls + token_ids_0 + sep
|
150 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
151 |
+
|
152 |
+
def get_special_tokens_mask(
|
153 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
154 |
+
) -> List[int]:
|
155 |
+
"""
|
156 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
157 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
token_ids_0 (`List[int]`):
|
161 |
+
List of ids.
|
162 |
+
token_ids_1 (`List[int]`, *optional*):
|
163 |
+
Optional second list of IDs for sequence pairs.
|
164 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
165 |
+
Set to True if the token list is already formatted with special tokens for the model
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
169 |
+
"""
|
170 |
+
|
171 |
+
if already_has_special_tokens:
|
172 |
+
if token_ids_1 is not None:
|
173 |
+
raise ValueError(
|
174 |
+
"You should not supply a second sequence if the provided sequence of "
|
175 |
+
"ids is already formatted with special tokens for the model."
|
176 |
+
)
|
177 |
+
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0]
|
178 |
+
|
179 |
+
if token_ids_1 is None:
|
180 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
181 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
182 |
+
|
183 |
+
def create_token_type_ids_from_sequences(
|
184 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
185 |
+
) -> List[int]:
|
186 |
+
"""
|
187 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
188 |
+
sequence pair mask has the following format:
|
189 |
+
|
190 |
+
```
|
191 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
192 |
+
| first sequence | second sequence |
|
193 |
+
```
|
194 |
+
|
195 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
196 |
+
|
197 |
+
Args:
|
198 |
+
token_ids_0 (`List[int]`):
|
199 |
+
List of ids.
|
200 |
+
token_ids_1 (`List[int]`, *optional*):
|
201 |
+
Optional second list of IDs for sequence pairs.
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
205 |
+
"""
|
206 |
+
sep = [self.sep_token_id]
|
207 |
+
cls = [self.cls_token_id]
|
208 |
+
|
209 |
+
if token_ids_1 is None:
|
210 |
+
return len(cls + token_ids_0 + sep) * [0]
|
211 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
212 |
+
|
213 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
214 |
+
if not self.can_save_slow_tokenizer:
|
215 |
+
raise ValueError(
|
216 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
217 |
+
"tokenizer."
|
218 |
+
)
|
219 |
+
|
220 |
+
if not os.path.isdir(save_directory):
|
221 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
222 |
+
return
|
223 |
+
out_vocab_file = os.path.join(
|
224 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
225 |
+
)
|
226 |
+
|
227 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
228 |
+
copyfile(self.vocab_file, out_vocab_file)
|
229 |
+
|
230 |
+
return (out_vocab_file,)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__init__.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_bigbird_pegasus": [
|
21 |
+
"BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"BigBirdPegasusConfig",
|
23 |
+
"BigBirdPegasusOnnxConfig",
|
24 |
+
],
|
25 |
+
}
|
26 |
+
|
27 |
+
try:
|
28 |
+
if not is_torch_available():
|
29 |
+
raise OptionalDependencyNotAvailable()
|
30 |
+
except OptionalDependencyNotAvailable:
|
31 |
+
pass
|
32 |
+
else:
|
33 |
+
_import_structure["modeling_bigbird_pegasus"] = [
|
34 |
+
"BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST",
|
35 |
+
"BigBirdPegasusForCausalLM",
|
36 |
+
"BigBirdPegasusForConditionalGeneration",
|
37 |
+
"BigBirdPegasusForQuestionAnswering",
|
38 |
+
"BigBirdPegasusForSequenceClassification",
|
39 |
+
"BigBirdPegasusModel",
|
40 |
+
"BigBirdPegasusPreTrainedModel",
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
if TYPE_CHECKING:
|
45 |
+
from .configuration_bigbird_pegasus import (
|
46 |
+
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
47 |
+
BigBirdPegasusConfig,
|
48 |
+
BigBirdPegasusOnnxConfig,
|
49 |
+
)
|
50 |
+
|
51 |
+
try:
|
52 |
+
if not is_torch_available():
|
53 |
+
raise OptionalDependencyNotAvailable()
|
54 |
+
except OptionalDependencyNotAvailable:
|
55 |
+
pass
|
56 |
+
else:
|
57 |
+
from .modeling_bigbird_pegasus import (
|
58 |
+
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
|
59 |
+
BigBirdPegasusForCausalLM,
|
60 |
+
BigBirdPegasusForConditionalGeneration,
|
61 |
+
BigBirdPegasusForQuestionAnswering,
|
62 |
+
BigBirdPegasusForSequenceClassification,
|
63 |
+
BigBirdPegasusModel,
|
64 |
+
BigBirdPegasusPreTrainedModel,
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
else:
|
69 |
+
import sys
|
70 |
+
|
71 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.16 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__pycache__/configuration_bigbird_pegasus.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/__pycache__/convert_bigbird_pegasus_tf_to_pytorch.cpython-310.pyc
ADDED
Binary file (5.34 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright Google Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" BigBirdPegasus model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Any, Mapping, Optional
|
19 |
+
|
20 |
+
from ... import PreTrainedTokenizer
|
21 |
+
from ...configuration_utils import PretrainedConfig
|
22 |
+
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
|
23 |
+
from ...onnx.utils import compute_effective_axis_dimension
|
24 |
+
from ...utils import TensorType, is_torch_available, logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
from ..deprecated._archive_maps import BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
31 |
+
|
32 |
+
|
33 |
+
class BigBirdPegasusConfig(PretrainedConfig):
|
34 |
+
r"""
|
35 |
+
This is the configuration class to store the configuration of a [`BigBirdPegasusModel`]. It is used to instantiate
|
36 |
+
an BigBirdPegasus model according to the specified arguments, defining the model architecture. Instantiating a
|
37 |
+
configuration with the defaults will yield a similar configuration to that of the BigBirdPegasus
|
38 |
+
[google/bigbird-pegasus-large-arxiv](https://huggingface.co/google/bigbird-pegasus-large-arxiv) architecture.
|
39 |
+
|
40 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
41 |
+
documentation from [`PretrainedConfig`] for more information.
|
42 |
+
|
43 |
+
|
44 |
+
Args:
|
45 |
+
vocab_size (`int`, *optional*, defaults to 96103):
|
46 |
+
Vocabulary size of the BigBirdPegasus model. Defines the number of different tokens that can be represented
|
47 |
+
by the `inputs_ids` passed when calling [`BigBirdPegasusModel`].
|
48 |
+
d_model (`int`, *optional*, defaults to 1024):
|
49 |
+
Dimension of the layers and the pooler layer.
|
50 |
+
encoder_layers (`int`, *optional*, defaults to 16):
|
51 |
+
Number of encoder layers.
|
52 |
+
decoder_layers (`int`, *optional*, defaults to 16):
|
53 |
+
Number of decoder layers.
|
54 |
+
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
55 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
56 |
+
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
57 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
58 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
59 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
60 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
61 |
+
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
|
62 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
63 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
64 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
65 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
66 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
67 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
68 |
+
The dropout ratio for the attention probabilities.
|
69 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
70 |
+
The dropout ratio for activations inside the fully connected layer.
|
71 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
72 |
+
The dropout ratio for classifier.
|
73 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
74 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
75 |
+
just in case (e.g., 1024 or 2048 or 4096).
|
76 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
77 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
78 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
79 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
80 |
+
for more details.
|
81 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
82 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
83 |
+
for more details.
|
84 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
85 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
86 |
+
attention_type (`str`, *optional*, defaults to `"block_sparse"`)
|
87 |
+
Whether to use block sparse attention (with n complexity) as introduced in paper or original attention
|
88 |
+
layer (with n^2 complexity) in encoder. Possible values are `"original_full"` and `"block_sparse"`.
|
89 |
+
use_bias (`bool`, *optional*, defaults to `False`)
|
90 |
+
Whether to use bias in query, key, value.
|
91 |
+
block_size (`int`, *optional*, defaults to 64)
|
92 |
+
Size of each block. Useful only when `attention_type == "block_sparse"`.
|
93 |
+
num_random_blocks (`int`, *optional*, defaults to 3)
|
94 |
+
Each query is going to attend these many number of random blocks. Useful only when `attention_type ==
|
95 |
+
"block_sparse"`.
|
96 |
+
scale_embeddings (`bool`, *optional*, defaults to `True`)
|
97 |
+
Whether to rescale embeddings with (hidden_size ** 0.5).
|
98 |
+
|
99 |
+
Example:
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import BigBirdPegasusConfig, BigBirdPegasusModel
|
103 |
+
|
104 |
+
>>> # Initializing a BigBirdPegasus bigbird-pegasus-base style configuration
|
105 |
+
>>> configuration = BigBirdPegasusConfig()
|
106 |
+
|
107 |
+
>>> # Initializing a model (with random weights) from the bigbird-pegasus-base style configuration
|
108 |
+
>>> model = BigBirdPegasusModel(configuration)
|
109 |
+
|
110 |
+
>>> # Accessing the model configuration
|
111 |
+
>>> configuration = model.config
|
112 |
+
```"""
|
113 |
+
|
114 |
+
model_type = "bigbird_pegasus"
|
115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
+
attribute_map = {
|
117 |
+
"num_attention_heads": "encoder_attention_heads",
|
118 |
+
"hidden_size": "d_model",
|
119 |
+
"attention_probs_dropout_prob": "attention_dropout",
|
120 |
+
}
|
121 |
+
|
122 |
+
def __init__(
|
123 |
+
self,
|
124 |
+
vocab_size=96103,
|
125 |
+
max_position_embeddings=4096,
|
126 |
+
encoder_layers=16,
|
127 |
+
encoder_ffn_dim=4096,
|
128 |
+
encoder_attention_heads=16,
|
129 |
+
decoder_layers=16,
|
130 |
+
decoder_ffn_dim=4096,
|
131 |
+
decoder_attention_heads=16,
|
132 |
+
encoder_layerdrop=0.0,
|
133 |
+
decoder_layerdrop=0.0,
|
134 |
+
use_cache=True,
|
135 |
+
is_encoder_decoder=True,
|
136 |
+
activation_function="gelu_new",
|
137 |
+
d_model=1024,
|
138 |
+
dropout=0.1,
|
139 |
+
attention_dropout=0.0,
|
140 |
+
activation_dropout=0.0,
|
141 |
+
init_std=0.02,
|
142 |
+
decoder_start_token_id=2,
|
143 |
+
classifier_dropout=0.0,
|
144 |
+
scale_embedding=True,
|
145 |
+
pad_token_id=0,
|
146 |
+
bos_token_id=2,
|
147 |
+
eos_token_id=1,
|
148 |
+
attention_type="block_sparse", # only for encoder
|
149 |
+
block_size=64,
|
150 |
+
num_random_blocks=3,
|
151 |
+
use_bias=False,
|
152 |
+
**kwargs,
|
153 |
+
):
|
154 |
+
self.vocab_size = vocab_size
|
155 |
+
self.max_position_embeddings = max_position_embeddings
|
156 |
+
self.d_model = d_model
|
157 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
158 |
+
self.encoder_layers = encoder_layers
|
159 |
+
self.encoder_attention_heads = encoder_attention_heads
|
160 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
161 |
+
self.decoder_layers = decoder_layers
|
162 |
+
self.decoder_attention_heads = decoder_attention_heads
|
163 |
+
self.dropout = dropout
|
164 |
+
self.attention_dropout = attention_dropout
|
165 |
+
self.activation_dropout = activation_dropout
|
166 |
+
self.activation_function = activation_function
|
167 |
+
self.init_std = init_std
|
168 |
+
self.encoder_layerdrop = encoder_layerdrop
|
169 |
+
self.decoder_layerdrop = decoder_layerdrop
|
170 |
+
self.classifier_dropout = classifier_dropout
|
171 |
+
self.use_cache = use_cache
|
172 |
+
self.num_hidden_layers = encoder_layers
|
173 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
174 |
+
|
175 |
+
# extra config
|
176 |
+
self.attention_type = attention_type
|
177 |
+
self.block_size = block_size
|
178 |
+
self.num_random_blocks = num_random_blocks
|
179 |
+
self.use_bias = use_bias
|
180 |
+
|
181 |
+
super().__init__(
|
182 |
+
pad_token_id=pad_token_id,
|
183 |
+
bos_token_id=bos_token_id,
|
184 |
+
eos_token_id=eos_token_id,
|
185 |
+
is_encoder_decoder=is_encoder_decoder,
|
186 |
+
decoder_start_token_id=decoder_start_token_id,
|
187 |
+
**kwargs,
|
188 |
+
)
|
189 |
+
|
190 |
+
|
191 |
+
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig
|
192 |
+
class BigBirdPegasusOnnxConfig(OnnxSeq2SeqConfigWithPast):
|
193 |
+
@property
|
194 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
195 |
+
if self.task in ["default", "seq2seq-lm"]:
|
196 |
+
common_inputs = OrderedDict(
|
197 |
+
[
|
198 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
199 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
200 |
+
]
|
201 |
+
)
|
202 |
+
|
203 |
+
if self.use_past:
|
204 |
+
common_inputs["decoder_input_ids"] = {0: "batch"}
|
205 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
|
206 |
+
else:
|
207 |
+
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
208 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
|
209 |
+
|
210 |
+
if self.use_past:
|
211 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
212 |
+
elif self.task == "causal-lm":
|
213 |
+
# TODO: figure this case out.
|
214 |
+
common_inputs = OrderedDict(
|
215 |
+
[
|
216 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
217 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
218 |
+
]
|
219 |
+
)
|
220 |
+
if self.use_past:
|
221 |
+
num_encoder_layers, _ = self.num_layers
|
222 |
+
for i in range(num_encoder_layers):
|
223 |
+
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
|
224 |
+
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
|
225 |
+
else:
|
226 |
+
common_inputs = OrderedDict(
|
227 |
+
[
|
228 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
229 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
230 |
+
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
|
231 |
+
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
|
232 |
+
]
|
233 |
+
)
|
234 |
+
|
235 |
+
return common_inputs
|
236 |
+
|
237 |
+
@property
|
238 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
239 |
+
if self.task in ["default", "seq2seq-lm"]:
|
240 |
+
common_outputs = super().outputs
|
241 |
+
else:
|
242 |
+
common_outputs = super(OnnxConfigWithPast, self).outputs
|
243 |
+
if self.use_past:
|
244 |
+
num_encoder_layers, _ = self.num_layers
|
245 |
+
for i in range(num_encoder_layers):
|
246 |
+
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
|
247 |
+
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
|
248 |
+
return common_outputs
|
249 |
+
|
250 |
+
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
|
251 |
+
self,
|
252 |
+
tokenizer: PreTrainedTokenizer,
|
253 |
+
batch_size: int = -1,
|
254 |
+
seq_length: int = -1,
|
255 |
+
is_pair: bool = False,
|
256 |
+
framework: Optional[TensorType] = None,
|
257 |
+
) -> Mapping[str, Any]:
|
258 |
+
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
259 |
+
tokenizer, batch_size, seq_length, is_pair, framework
|
260 |
+
)
|
261 |
+
|
262 |
+
# Generate decoder inputs
|
263 |
+
decoder_seq_length = seq_length if not self.use_past else 1
|
264 |
+
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
265 |
+
tokenizer, batch_size, decoder_seq_length, is_pair, framework
|
266 |
+
)
|
267 |
+
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
|
268 |
+
common_inputs = dict(**encoder_inputs, **decoder_inputs)
|
269 |
+
|
270 |
+
if self.use_past:
|
271 |
+
if not is_torch_available():
|
272 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
273 |
+
else:
|
274 |
+
import torch
|
275 |
+
batch, encoder_seq_length = common_inputs["input_ids"].shape
|
276 |
+
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
|
277 |
+
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
|
278 |
+
encoder_shape = (
|
279 |
+
batch,
|
280 |
+
num_encoder_attention_heads,
|
281 |
+
encoder_seq_length,
|
282 |
+
self._config.hidden_size // num_encoder_attention_heads,
|
283 |
+
)
|
284 |
+
decoder_past_length = decoder_seq_length + 3
|
285 |
+
decoder_shape = (
|
286 |
+
batch,
|
287 |
+
num_decoder_attention_heads,
|
288 |
+
decoder_past_length,
|
289 |
+
self._config.hidden_size // num_decoder_attention_heads,
|
290 |
+
)
|
291 |
+
|
292 |
+
common_inputs["decoder_attention_mask"] = torch.cat(
|
293 |
+
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
|
294 |
+
)
|
295 |
+
|
296 |
+
common_inputs["past_key_values"] = []
|
297 |
+
# If the number of encoder and decoder layers are present in the model configuration, both are considered
|
298 |
+
num_encoder_layers, num_decoder_layers = self.num_layers
|
299 |
+
min_num_layers = min(num_encoder_layers, num_decoder_layers)
|
300 |
+
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
|
301 |
+
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
|
302 |
+
|
303 |
+
for _ in range(min_num_layers):
|
304 |
+
common_inputs["past_key_values"].append(
|
305 |
+
(
|
306 |
+
torch.zeros(decoder_shape),
|
307 |
+
torch.zeros(decoder_shape),
|
308 |
+
torch.zeros(encoder_shape),
|
309 |
+
torch.zeros(encoder_shape),
|
310 |
+
)
|
311 |
+
)
|
312 |
+
# TODO: test this.
|
313 |
+
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
|
314 |
+
for _ in range(min_num_layers, max_num_layers):
|
315 |
+
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
|
316 |
+
return common_inputs
|
317 |
+
|
318 |
+
def _generate_dummy_inputs_for_causal_lm(
|
319 |
+
self,
|
320 |
+
tokenizer: PreTrainedTokenizer,
|
321 |
+
batch_size: int = -1,
|
322 |
+
seq_length: int = -1,
|
323 |
+
is_pair: bool = False,
|
324 |
+
framework: Optional[TensorType] = None,
|
325 |
+
) -> Mapping[str, Any]:
|
326 |
+
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
327 |
+
tokenizer, batch_size, seq_length, is_pair, framework
|
328 |
+
)
|
329 |
+
|
330 |
+
if self.use_past:
|
331 |
+
if not is_torch_available():
|
332 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
333 |
+
else:
|
334 |
+
import torch
|
335 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
336 |
+
# Not using the same length for past_key_values
|
337 |
+
past_key_values_length = seqlen + 2
|
338 |
+
num_encoder_layers, _ = self.num_layers
|
339 |
+
num_encoder_attention_heads, _ = self.num_attention_heads
|
340 |
+
past_shape = (
|
341 |
+
batch,
|
342 |
+
num_encoder_attention_heads,
|
343 |
+
past_key_values_length,
|
344 |
+
self._config.hidden_size // num_encoder_attention_heads,
|
345 |
+
)
|
346 |
+
|
347 |
+
mask_dtype = common_inputs["attention_mask"].dtype
|
348 |
+
common_inputs["attention_mask"] = torch.cat(
|
349 |
+
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
350 |
+
)
|
351 |
+
common_inputs["past_key_values"] = [
|
352 |
+
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
|
353 |
+
]
|
354 |
+
return common_inputs
|
355 |
+
|
356 |
+
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
357 |
+
self,
|
358 |
+
tokenizer: PreTrainedTokenizer,
|
359 |
+
batch_size: int = -1,
|
360 |
+
seq_length: int = -1,
|
361 |
+
is_pair: bool = False,
|
362 |
+
framework: Optional[TensorType] = None,
|
363 |
+
) -> Mapping[str, Any]:
|
364 |
+
# Copied from OnnxConfig.generate_dummy_inputs
|
365 |
+
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
|
366 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
367 |
+
batch_size = compute_effective_axis_dimension(
|
368 |
+
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
|
369 |
+
)
|
370 |
+
|
371 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
|
372 |
+
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
|
373 |
+
seq_length = compute_effective_axis_dimension(
|
374 |
+
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
|
375 |
+
)
|
376 |
+
|
377 |
+
# Generate dummy inputs according to compute batch and sequence
|
378 |
+
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
|
379 |
+
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
|
380 |
+
return common_inputs
|
381 |
+
|
382 |
+
def generate_dummy_inputs(
|
383 |
+
self,
|
384 |
+
tokenizer: PreTrainedTokenizer,
|
385 |
+
batch_size: int = -1,
|
386 |
+
seq_length: int = -1,
|
387 |
+
is_pair: bool = False,
|
388 |
+
framework: Optional[TensorType] = None,
|
389 |
+
) -> Mapping[str, Any]:
|
390 |
+
if self.task in ["default", "seq2seq-lm"]:
|
391 |
+
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
|
392 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
393 |
+
)
|
394 |
+
|
395 |
+
elif self.task == "causal-lm":
|
396 |
+
common_inputs = self._generate_dummy_inputs_for_causal_lm(
|
397 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
398 |
+
)
|
399 |
+
else:
|
400 |
+
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
401 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
402 |
+
)
|
403 |
+
|
404 |
+
return common_inputs
|
405 |
+
|
406 |
+
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
|
407 |
+
if self.task in ["default", "seq2seq-lm"]:
|
408 |
+
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
|
409 |
+
else:
|
410 |
+
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
|
411 |
+
flattened_output, name, idx, t
|
412 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/convert_bigbird_pegasus_tf_to_pytorch.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
from typing import Dict
|
18 |
+
|
19 |
+
import tensorflow as tf
|
20 |
+
import torch
|
21 |
+
from tqdm import tqdm
|
22 |
+
|
23 |
+
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
|
24 |
+
|
25 |
+
|
26 |
+
INIT_COMMON = [
|
27 |
+
# tf -> hf
|
28 |
+
("/", "."),
|
29 |
+
("layer_", "layers."),
|
30 |
+
("kernel", "weight"),
|
31 |
+
("beta", "bias"),
|
32 |
+
("gamma", "weight"),
|
33 |
+
("pegasus", "model"),
|
34 |
+
]
|
35 |
+
END_COMMON = [
|
36 |
+
(".output.dense", ".fc2"),
|
37 |
+
("intermediate.LayerNorm", "final_layer_norm"),
|
38 |
+
("intermediate.dense", "fc1"),
|
39 |
+
]
|
40 |
+
|
41 |
+
DECODER_PATTERNS = (
|
42 |
+
INIT_COMMON
|
43 |
+
+ [
|
44 |
+
("attention.self.LayerNorm", "self_attn_layer_norm"),
|
45 |
+
("attention.output.dense", "self_attn.out_proj"),
|
46 |
+
("attention.self", "self_attn"),
|
47 |
+
("attention.encdec.LayerNorm", "encoder_attn_layer_norm"),
|
48 |
+
("attention.encdec_output.dense", "encoder_attn.out_proj"),
|
49 |
+
("attention.encdec", "encoder_attn"),
|
50 |
+
("key", "k_proj"),
|
51 |
+
("value", "v_proj"),
|
52 |
+
("query", "q_proj"),
|
53 |
+
("decoder.LayerNorm", "decoder.layernorm_embedding"),
|
54 |
+
]
|
55 |
+
+ END_COMMON
|
56 |
+
)
|
57 |
+
|
58 |
+
REMAINING_PATTERNS = (
|
59 |
+
INIT_COMMON
|
60 |
+
+ [
|
61 |
+
("embeddings.word_embeddings", "shared.weight"),
|
62 |
+
("embeddings.position_embeddings", "embed_positions.weight"),
|
63 |
+
("attention.self.LayerNorm", "self_attn_layer_norm"),
|
64 |
+
("attention.output.dense", "self_attn.output"),
|
65 |
+
("attention.self", "self_attn.self"),
|
66 |
+
("encoder.LayerNorm", "encoder.layernorm_embedding"),
|
67 |
+
]
|
68 |
+
+ END_COMMON
|
69 |
+
)
|
70 |
+
|
71 |
+
KEYS_TO_IGNORE = [
|
72 |
+
"encdec/key/bias",
|
73 |
+
"encdec/query/bias",
|
74 |
+
"encdec/value/bias",
|
75 |
+
"self/key/bias",
|
76 |
+
"self/query/bias",
|
77 |
+
"self/value/bias",
|
78 |
+
"encdec_output/dense/bias",
|
79 |
+
"attention/output/dense/bias",
|
80 |
+
]
|
81 |
+
|
82 |
+
|
83 |
+
def rename_state_dict_key(k, patterns):
|
84 |
+
for tf_name, hf_name in patterns:
|
85 |
+
k = k.replace(tf_name, hf_name)
|
86 |
+
return k
|
87 |
+
|
88 |
+
|
89 |
+
def convert_bigbird_pegasus(tf_weights: dict, config_update: dict) -> BigBirdPegasusForConditionalGeneration:
|
90 |
+
cfg = BigBirdPegasusConfig(**config_update)
|
91 |
+
torch_model = BigBirdPegasusForConditionalGeneration(cfg)
|
92 |
+
state_dict = torch_model.state_dict()
|
93 |
+
mapping = {}
|
94 |
+
|
95 |
+
# separating decoder weights
|
96 |
+
decoder_weights = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder")}
|
97 |
+
remaining_weights = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder")}
|
98 |
+
|
99 |
+
for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion"):
|
100 |
+
conditions = [k.endswith(ending) for ending in KEYS_TO_IGNORE]
|
101 |
+
if any(conditions):
|
102 |
+
continue
|
103 |
+
patterns = DECODER_PATTERNS
|
104 |
+
new_k = rename_state_dict_key(k, patterns)
|
105 |
+
if new_k not in state_dict:
|
106 |
+
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})")
|
107 |
+
if any(True if i in k else False for i in ["dense", "query", "key", "value"]):
|
108 |
+
v = v.T
|
109 |
+
mapping[new_k] = torch.from_numpy(v)
|
110 |
+
assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"
|
111 |
+
|
112 |
+
for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion"):
|
113 |
+
conditions = [k.endswith(ending) for ending in KEYS_TO_IGNORE]
|
114 |
+
if any(conditions):
|
115 |
+
continue
|
116 |
+
patterns = REMAINING_PATTERNS
|
117 |
+
new_k = rename_state_dict_key(k, patterns)
|
118 |
+
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
|
119 |
+
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})")
|
120 |
+
if any(True if i in k else False for i in ["dense", "query", "key", "value"]):
|
121 |
+
v = v.T
|
122 |
+
mapping[new_k] = torch.from_numpy(v)
|
123 |
+
if k != "pegasus/embeddings/position_embeddings":
|
124 |
+
assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"
|
125 |
+
|
126 |
+
mapping["model.encoder.embed_positions.weight"] = mapping["model.embed_positions.weight"]
|
127 |
+
mapping["model.decoder.embed_positions.weight"] = mapping.pop("model.embed_positions.weight")
|
128 |
+
missing, extra = torch_model.load_state_dict(mapping, strict=False)
|
129 |
+
unexpected_missing = [
|
130 |
+
k
|
131 |
+
for k in missing
|
132 |
+
if k
|
133 |
+
not in [
|
134 |
+
"final_logits_bias",
|
135 |
+
"model.encoder.embed_tokens.weight",
|
136 |
+
"model.decoder.embed_tokens.weight",
|
137 |
+
"lm_head.weight",
|
138 |
+
]
|
139 |
+
]
|
140 |
+
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
|
141 |
+
assert extra == [], f"no matches found for the following tf keys {extra}"
|
142 |
+
return torch_model
|
143 |
+
|
144 |
+
|
145 |
+
def get_tf_weights_as_numpy(path) -> Dict:
|
146 |
+
init_vars = tf.train.list_variables(path)
|
147 |
+
tf_weights = {}
|
148 |
+
ignore_name = ["global_step"]
|
149 |
+
for name, shape in tqdm(init_vars, desc="converting tf checkpoint to dict"):
|
150 |
+
skip_key = any(pat in name for pat in ignore_name)
|
151 |
+
if skip_key:
|
152 |
+
continue
|
153 |
+
array = tf.train.load_variable(path, name)
|
154 |
+
tf_weights[name] = array
|
155 |
+
return tf_weights
|
156 |
+
|
157 |
+
|
158 |
+
def convert_bigbird_pegasus_ckpt_to_pytorch(ckpt_path: str, save_dir: str, config_update: dict):
|
159 |
+
tf_weights = get_tf_weights_as_numpy(ckpt_path)
|
160 |
+
torch_model = convert_bigbird_pegasus(tf_weights, config_update)
|
161 |
+
torch_model.save_pretrained(save_dir)
|
162 |
+
|
163 |
+
|
164 |
+
if __name__ == "__main__":
|
165 |
+
parser = argparse.ArgumentParser()
|
166 |
+
parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
|
167 |
+
parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.")
|
168 |
+
args = parser.parse_args()
|
169 |
+
config_update = {}
|
170 |
+
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.39 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/bridgetower/__pycache__/image_processing_bridgetower.cpython-310.pyc
ADDED
Binary file (21.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/__init__.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_mobilenet_v2": [
|
21 |
+
"MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"MobileNetV2Config",
|
23 |
+
"MobileNetV2OnnxConfig",
|
24 |
+
],
|
25 |
+
}
|
26 |
+
|
27 |
+
try:
|
28 |
+
if not is_vision_available():
|
29 |
+
raise OptionalDependencyNotAvailable()
|
30 |
+
except OptionalDependencyNotAvailable:
|
31 |
+
pass
|
32 |
+
else:
|
33 |
+
_import_structure["feature_extraction_mobilenet_v2"] = ["MobileNetV2FeatureExtractor"]
|
34 |
+
_import_structure["image_processing_mobilenet_v2"] = ["MobileNetV2ImageProcessor"]
|
35 |
+
|
36 |
+
|
37 |
+
try:
|
38 |
+
if not is_torch_available():
|
39 |
+
raise OptionalDependencyNotAvailable()
|
40 |
+
except OptionalDependencyNotAvailable:
|
41 |
+
pass
|
42 |
+
else:
|
43 |
+
_import_structure["modeling_mobilenet_v2"] = [
|
44 |
+
"MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
45 |
+
"MobileNetV2ForImageClassification",
|
46 |
+
"MobileNetV2ForSemanticSegmentation",
|
47 |
+
"MobileNetV2Model",
|
48 |
+
"MobileNetV2PreTrainedModel",
|
49 |
+
"load_tf_weights_in_mobilenet_v2",
|
50 |
+
]
|
51 |
+
|
52 |
+
|
53 |
+
if TYPE_CHECKING:
|
54 |
+
from .configuration_mobilenet_v2 import (
|
55 |
+
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
56 |
+
MobileNetV2Config,
|
57 |
+
MobileNetV2OnnxConfig,
|
58 |
+
)
|
59 |
+
|
60 |
+
try:
|
61 |
+
if not is_vision_available():
|
62 |
+
raise OptionalDependencyNotAvailable()
|
63 |
+
except OptionalDependencyNotAvailable:
|
64 |
+
pass
|
65 |
+
else:
|
66 |
+
from .feature_extraction_mobilenet_v2 import MobileNetV2FeatureExtractor
|
67 |
+
from .image_processing_mobilenet_v2 import MobileNetV2ImageProcessor
|
68 |
+
|
69 |
+
try:
|
70 |
+
if not is_torch_available():
|
71 |
+
raise OptionalDependencyNotAvailable()
|
72 |
+
except OptionalDependencyNotAvailable:
|
73 |
+
pass
|
74 |
+
else:
|
75 |
+
from .modeling_mobilenet_v2 import (
|
76 |
+
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
77 |
+
MobileNetV2ForImageClassification,
|
78 |
+
MobileNetV2ForSemanticSegmentation,
|
79 |
+
MobileNetV2Model,
|
80 |
+
MobileNetV2PreTrainedModel,
|
81 |
+
load_tf_weights_in_mobilenet_v2,
|
82 |
+
)
|
83 |
+
|
84 |
+
|
85 |
+
else:
|
86 |
+
import sys
|
87 |
+
|
88 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.42 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/__pycache__/configuration_mobilenet_v2.cpython-310.pyc
ADDED
Binary file (6.53 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/__pycache__/convert_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (4.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/__pycache__/feature_extraction_mobilenet_v2.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/__pycache__/image_processing_mobilenet_v2.cpython-310.pyc
ADDED
Binary file (14.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/__pycache__/modeling_mobilenet_v2.cpython-310.pyc
ADDED
Binary file (22 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/configuration_mobilenet_v2.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" MobileNetV2 model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from packaging import version
|
21 |
+
|
22 |
+
from ...configuration_utils import PretrainedConfig
|
23 |
+
from ...onnx import OnnxConfig
|
24 |
+
from ...utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
from ..deprecated._archive_maps import MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
31 |
+
|
32 |
+
|
33 |
+
class MobileNetV2Config(PretrainedConfig):
|
34 |
+
r"""
|
35 |
+
This is the configuration class to store the configuration of a [`MobileNetV2Model`]. It is used to instantiate a
|
36 |
+
MobileNetV2 model according to the specified arguments, defining the model architecture. Instantiating a
|
37 |
+
configuration with the defaults will yield a similar configuration to that of the MobileNetV2
|
38 |
+
[google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) architecture.
|
39 |
+
|
40 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
41 |
+
documentation from [`PretrainedConfig`] for more information.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
num_channels (`int`, *optional*, defaults to 3):
|
45 |
+
The number of input channels.
|
46 |
+
image_size (`int`, *optional*, defaults to 224):
|
47 |
+
The size (resolution) of each image.
|
48 |
+
depth_multiplier (`float`, *optional*, defaults to 1.0):
|
49 |
+
Shrinks or expands the number of channels in each layer. Default is 1.0, which starts the network with 32
|
50 |
+
channels. This is sometimes also called "alpha" or "width multiplier".
|
51 |
+
depth_divisible_by (`int`, *optional*, defaults to 8):
|
52 |
+
The number of channels in each layer will always be a multiple of this number.
|
53 |
+
min_depth (`int`, *optional*, defaults to 8):
|
54 |
+
All layers will have at least this many channels.
|
55 |
+
expand_ratio (`float`, *optional*, defaults to 6.0):
|
56 |
+
The number of output channels of the first layer in each block is input channels times expansion ratio.
|
57 |
+
output_stride (`int`, *optional*, defaults to 32):
|
58 |
+
The ratio between the spatial resolution of the input and output feature maps. By default the model reduces
|
59 |
+
the input dimensions by a factor of 32. If `output_stride` is 8 or 16, the model uses dilated convolutions
|
60 |
+
on the depthwise layers instead of regular convolutions, so that the feature maps never become more than 8x
|
61 |
+
or 16x smaller than the input image.
|
62 |
+
first_layer_is_expansion (`bool`, *optional*, defaults to `True`):
|
63 |
+
True if the very first convolution layer is also the expansion layer for the first expansion block.
|
64 |
+
finegrained_output (`bool`, *optional*, defaults to `True`):
|
65 |
+
If true, the number of output channels in the final convolution layer will stay large (1280) even if
|
66 |
+
`depth_multiplier` is less than 1.
|
67 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"relu6"`):
|
68 |
+
The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
|
69 |
+
tf_padding (`bool`, *optional*, defaults to `True`):
|
70 |
+
Whether to use TensorFlow padding rules on the convolution layers.
|
71 |
+
classifier_dropout_prob (`float`, *optional*, defaults to 0.8):
|
72 |
+
The dropout ratio for attached classifiers.
|
73 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
74 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
75 |
+
layer_norm_eps (`float`, *optional*, defaults to 0.001):
|
76 |
+
The epsilon used by the layer normalization layers.
|
77 |
+
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
|
78 |
+
The index that is ignored by the loss function of the semantic segmentation model.
|
79 |
+
|
80 |
+
Example:
|
81 |
+
|
82 |
+
```python
|
83 |
+
>>> from transformers import MobileNetV2Config, MobileNetV2Model
|
84 |
+
|
85 |
+
>>> # Initializing a "mobilenet_v2_1.0_224" style configuration
|
86 |
+
>>> configuration = MobileNetV2Config()
|
87 |
+
|
88 |
+
>>> # Initializing a model from the "mobilenet_v2_1.0_224" style configuration
|
89 |
+
>>> model = MobileNetV2Model(configuration)
|
90 |
+
|
91 |
+
>>> # Accessing the model configuration
|
92 |
+
>>> configuration = model.config
|
93 |
+
```"""
|
94 |
+
|
95 |
+
model_type = "mobilenet_v2"
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
num_channels=3,
|
100 |
+
image_size=224,
|
101 |
+
depth_multiplier=1.0,
|
102 |
+
depth_divisible_by=8,
|
103 |
+
min_depth=8,
|
104 |
+
expand_ratio=6.0,
|
105 |
+
output_stride=32,
|
106 |
+
first_layer_is_expansion=True,
|
107 |
+
finegrained_output=True,
|
108 |
+
hidden_act="relu6",
|
109 |
+
tf_padding=True,
|
110 |
+
classifier_dropout_prob=0.8,
|
111 |
+
initializer_range=0.02,
|
112 |
+
layer_norm_eps=0.001,
|
113 |
+
semantic_loss_ignore_index=255,
|
114 |
+
**kwargs,
|
115 |
+
):
|
116 |
+
super().__init__(**kwargs)
|
117 |
+
|
118 |
+
if depth_multiplier <= 0:
|
119 |
+
raise ValueError("depth_multiplier must be greater than zero.")
|
120 |
+
|
121 |
+
self.num_channels = num_channels
|
122 |
+
self.image_size = image_size
|
123 |
+
self.depth_multiplier = depth_multiplier
|
124 |
+
self.depth_divisible_by = depth_divisible_by
|
125 |
+
self.min_depth = min_depth
|
126 |
+
self.expand_ratio = expand_ratio
|
127 |
+
self.output_stride = output_stride
|
128 |
+
self.first_layer_is_expansion = first_layer_is_expansion
|
129 |
+
self.finegrained_output = finegrained_output
|
130 |
+
self.hidden_act = hidden_act
|
131 |
+
self.tf_padding = tf_padding
|
132 |
+
self.classifier_dropout_prob = classifier_dropout_prob
|
133 |
+
self.initializer_range = initializer_range
|
134 |
+
self.layer_norm_eps = layer_norm_eps
|
135 |
+
self.semantic_loss_ignore_index = semantic_loss_ignore_index
|
136 |
+
|
137 |
+
|
138 |
+
class MobileNetV2OnnxConfig(OnnxConfig):
|
139 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
140 |
+
|
141 |
+
@property
|
142 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
143 |
+
return OrderedDict([("pixel_values", {0: "batch"})])
|
144 |
+
|
145 |
+
@property
|
146 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
147 |
+
if self.task == "image-classification":
|
148 |
+
return OrderedDict([("logits", {0: "batch"})])
|
149 |
+
else:
|
150 |
+
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})])
|
151 |
+
|
152 |
+
@property
|
153 |
+
def atol_for_validation(self) -> float:
|
154 |
+
return 1e-4
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/convert_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert MobileNetV2 checkpoints from the tensorflow/models library."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
import re
|
21 |
+
from pathlib import Path
|
22 |
+
|
23 |
+
import requests
|
24 |
+
import torch
|
25 |
+
from huggingface_hub import hf_hub_download
|
26 |
+
from PIL import Image
|
27 |
+
|
28 |
+
from transformers import (
|
29 |
+
MobileNetV2Config,
|
30 |
+
MobileNetV2ForImageClassification,
|
31 |
+
MobileNetV2ForSemanticSegmentation,
|
32 |
+
MobileNetV2ImageProcessor,
|
33 |
+
load_tf_weights_in_mobilenet_v2,
|
34 |
+
)
|
35 |
+
from transformers.utils import logging
|
36 |
+
|
37 |
+
|
38 |
+
logging.set_verbosity_info()
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
|
42 |
+
def get_mobilenet_v2_config(model_name):
|
43 |
+
config = MobileNetV2Config(layer_norm_eps=0.001)
|
44 |
+
|
45 |
+
if "quant" in model_name:
|
46 |
+
raise ValueError("Quantized models are not supported.")
|
47 |
+
|
48 |
+
matches = re.match(r"^.*mobilenet_v2_([^_]*)_([^_]*)$", model_name)
|
49 |
+
if matches:
|
50 |
+
config.depth_multiplier = float(matches[1])
|
51 |
+
config.image_size = int(matches[2])
|
52 |
+
|
53 |
+
if model_name.startswith("deeplabv3_"):
|
54 |
+
config.output_stride = 8
|
55 |
+
config.num_labels = 21
|
56 |
+
filename = "pascal-voc-id2label.json"
|
57 |
+
else:
|
58 |
+
# The TensorFlow version of MobileNetV2 predicts 1001 classes instead
|
59 |
+
# of the usual 1000. The first class (index 0) is "background".
|
60 |
+
config.num_labels = 1001
|
61 |
+
filename = "imagenet-1k-id2label.json"
|
62 |
+
|
63 |
+
repo_id = "huggingface/label-files"
|
64 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
65 |
+
|
66 |
+
if config.num_labels == 1001:
|
67 |
+
id2label = {int(k) + 1: v for k, v in id2label.items()}
|
68 |
+
id2label[0] = "background"
|
69 |
+
else:
|
70 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
71 |
+
|
72 |
+
config.id2label = id2label
|
73 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
74 |
+
|
75 |
+
return config
|
76 |
+
|
77 |
+
|
78 |
+
# We will verify our results on an image of cute cats
|
79 |
+
def prepare_img():
|
80 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
81 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
82 |
+
return im
|
83 |
+
|
84 |
+
|
85 |
+
@torch.no_grad()
|
86 |
+
def convert_movilevit_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub=False):
|
87 |
+
"""
|
88 |
+
Copy/paste/tweak model's weights to our MobileNetV2 structure.
|
89 |
+
"""
|
90 |
+
config = get_mobilenet_v2_config(model_name)
|
91 |
+
|
92 |
+
# Load 🤗 model
|
93 |
+
if model_name.startswith("deeplabv3_"):
|
94 |
+
model = MobileNetV2ForSemanticSegmentation(config).eval()
|
95 |
+
else:
|
96 |
+
model = MobileNetV2ForImageClassification(config).eval()
|
97 |
+
|
98 |
+
# Load weights from TensorFlow checkpoint
|
99 |
+
load_tf_weights_in_mobilenet_v2(model, config, checkpoint_path)
|
100 |
+
|
101 |
+
# Check outputs on an image, prepared by MobileNetV2ImageProcessor
|
102 |
+
image_processor = MobileNetV2ImageProcessor(
|
103 |
+
crop_size={"width": config.image_size, "height": config.image_size},
|
104 |
+
size={"shortest_edge": config.image_size + 32},
|
105 |
+
)
|
106 |
+
encoding = image_processor(images=prepare_img(), return_tensors="pt")
|
107 |
+
outputs = model(**encoding)
|
108 |
+
logits = outputs.logits
|
109 |
+
|
110 |
+
if model_name.startswith("deeplabv3_"):
|
111 |
+
assert logits.shape == (1, 21, 65, 65)
|
112 |
+
|
113 |
+
if model_name == "deeplabv3_mobilenet_v2_1.0_513":
|
114 |
+
expected_logits = torch.tensor(
|
115 |
+
[
|
116 |
+
[[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]],
|
117 |
+
[[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]],
|
118 |
+
[[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]],
|
119 |
+
]
|
120 |
+
)
|
121 |
+
|
122 |
+
else:
|
123 |
+
raise ValueError(f"Unknown model name: {model_name}")
|
124 |
+
|
125 |
+
assert torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-4)
|
126 |
+
else:
|
127 |
+
assert logits.shape == (1, 1001)
|
128 |
+
|
129 |
+
if model_name == "mobilenet_v2_1.4_224":
|
130 |
+
expected_logits = torch.tensor([0.0181, -1.0015, 0.4688])
|
131 |
+
elif model_name == "mobilenet_v2_1.0_224":
|
132 |
+
expected_logits = torch.tensor([0.2445, -1.1993, 0.1905])
|
133 |
+
elif model_name == "mobilenet_v2_0.75_160":
|
134 |
+
expected_logits = torch.tensor([0.2482, 0.4136, 0.6669])
|
135 |
+
elif model_name == "mobilenet_v2_0.35_96":
|
136 |
+
expected_logits = torch.tensor([0.1451, -0.4624, 0.7192])
|
137 |
+
else:
|
138 |
+
expected_logits = None
|
139 |
+
|
140 |
+
if expected_logits is not None:
|
141 |
+
assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4)
|
142 |
+
|
143 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
144 |
+
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
|
145 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
146 |
+
print(f"Saving image processor to {pytorch_dump_folder_path}")
|
147 |
+
image_processor.save_pretrained(pytorch_dump_folder_path)
|
148 |
+
|
149 |
+
if push_to_hub:
|
150 |
+
print("Pushing to the hub...")
|
151 |
+
repo_id = "google/" + model_name
|
152 |
+
image_processor.push_to_hub(repo_id)
|
153 |
+
model.push_to_hub(repo_id)
|
154 |
+
|
155 |
+
|
156 |
+
if __name__ == "__main__":
|
157 |
+
parser = argparse.ArgumentParser()
|
158 |
+
# Required parameters
|
159 |
+
parser.add_argument(
|
160 |
+
"--model_name",
|
161 |
+
default="mobilenet_v2_1.0_224",
|
162 |
+
type=str,
|
163 |
+
help="Name of the MobileNetV2 model you'd like to convert. Should in the form 'mobilenet_v2_<depth>_<size>'.",
|
164 |
+
)
|
165 |
+
parser.add_argument(
|
166 |
+
"--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)."
|
167 |
+
)
|
168 |
+
parser.add_argument(
|
169 |
+
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
|
170 |
+
)
|
171 |
+
parser.add_argument(
|
172 |
+
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
|
173 |
+
)
|
174 |
+
|
175 |
+
args = parser.parse_args()
|
176 |
+
convert_movilevit_checkpoint(
|
177 |
+
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
|
178 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/feature_extraction_mobilenet_v2.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for MobileNetV2."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...utils import logging
|
20 |
+
from .image_processing_mobilenet_v2 import MobileNetV2ImageProcessor
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class MobileNetV2FeatureExtractor(MobileNetV2ImageProcessor):
|
27 |
+
def __init__(self, *args, **kwargs) -> None:
|
28 |
+
warnings.warn(
|
29 |
+
"The class MobileNetV2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."
|
30 |
+
" Please use MobileNetV2ImageProcessor instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
super().__init__(*args, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for MobileNetV2."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
+
from ...image_transforms import (
|
23 |
+
get_resize_output_image_size,
|
24 |
+
resize,
|
25 |
+
to_channel_dimension_format,
|
26 |
+
)
|
27 |
+
from ...image_utils import (
|
28 |
+
IMAGENET_STANDARD_MEAN,
|
29 |
+
IMAGENET_STANDARD_STD,
|
30 |
+
ChannelDimension,
|
31 |
+
ImageInput,
|
32 |
+
PILImageResampling,
|
33 |
+
infer_channel_dimension_format,
|
34 |
+
is_scaled_image,
|
35 |
+
make_list_of_images,
|
36 |
+
to_numpy_array,
|
37 |
+
valid_images,
|
38 |
+
validate_kwargs,
|
39 |
+
validate_preprocess_arguments,
|
40 |
+
)
|
41 |
+
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
|
42 |
+
|
43 |
+
|
44 |
+
if is_torch_available():
|
45 |
+
import torch
|
46 |
+
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__)
|
49 |
+
|
50 |
+
|
51 |
+
class MobileNetV2ImageProcessor(BaseImageProcessor):
|
52 |
+
r"""
|
53 |
+
Constructs a MobileNetV2 image processor.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
57 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
58 |
+
`do_resize` in the `preprocess` method.
|
59 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 256}`):
|
60 |
+
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
|
61 |
+
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
|
62 |
+
method.
|
63 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
64 |
+
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
|
65 |
+
`preprocess` method.
|
66 |
+
do_center_crop (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
|
68 |
+
is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
|
69 |
+
`preprocess` method.
|
70 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
|
71 |
+
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
|
72 |
+
Can be overridden by the `crop_size` parameter in the `preprocess` method.
|
73 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
74 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
|
75 |
+
parameter in the `preprocess` method.
|
76 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
77 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
|
78 |
+
`preprocess` method.
|
79 |
+
do_normalize:
|
80 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
81 |
+
method.
|
82 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
83 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
84 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
85 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
86 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
87 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
88 |
+
"""
|
89 |
+
|
90 |
+
model_input_names = ["pixel_values"]
|
91 |
+
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
do_resize: bool = True,
|
95 |
+
size: Optional[Dict[str, int]] = None,
|
96 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
97 |
+
do_center_crop: bool = True,
|
98 |
+
crop_size: Dict[str, int] = None,
|
99 |
+
do_rescale: bool = True,
|
100 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
101 |
+
do_normalize: bool = True,
|
102 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
103 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
104 |
+
**kwargs,
|
105 |
+
) -> None:
|
106 |
+
super().__init__(**kwargs)
|
107 |
+
size = size if size is not None else {"shortest_edge": 256}
|
108 |
+
size = get_size_dict(size, default_to_square=False)
|
109 |
+
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
110 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
111 |
+
self.do_resize = do_resize
|
112 |
+
self.size = size
|
113 |
+
self.resample = resample
|
114 |
+
self.do_center_crop = do_center_crop
|
115 |
+
self.crop_size = crop_size
|
116 |
+
self.do_rescale = do_rescale
|
117 |
+
self.rescale_factor = rescale_factor
|
118 |
+
self.do_normalize = do_normalize
|
119 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
120 |
+
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
121 |
+
self._valid_processor_keys = [
|
122 |
+
"images",
|
123 |
+
"do_resize",
|
124 |
+
"size",
|
125 |
+
"resample",
|
126 |
+
"do_center_crop",
|
127 |
+
"crop_size",
|
128 |
+
"do_rescale",
|
129 |
+
"rescale_factor",
|
130 |
+
"do_normalize",
|
131 |
+
"image_mean",
|
132 |
+
"image_std",
|
133 |
+
"return_tensors",
|
134 |
+
"data_format",
|
135 |
+
"input_data_format",
|
136 |
+
]
|
137 |
+
|
138 |
+
# Copied from transformers.models.mobilenet_v1.image_processing_mobilenet_v1.MobileNetV1ImageProcessor.resize
|
139 |
+
def resize(
|
140 |
+
self,
|
141 |
+
image: np.ndarray,
|
142 |
+
size: Dict[str, int],
|
143 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
144 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
145 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
146 |
+
**kwargs,
|
147 |
+
) -> np.ndarray:
|
148 |
+
"""
|
149 |
+
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
|
150 |
+
resized to keep the input aspect ratio.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
image (`np.ndarray`):
|
154 |
+
Image to resize.
|
155 |
+
size (`Dict[str, int]`):
|
156 |
+
Size of the output image.
|
157 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
158 |
+
Resampling filter to use when resiizing the image.
|
159 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
160 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
161 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
162 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
163 |
+
"""
|
164 |
+
default_to_square = True
|
165 |
+
if "shortest_edge" in size:
|
166 |
+
size = size["shortest_edge"]
|
167 |
+
default_to_square = False
|
168 |
+
elif "height" in size and "width" in size:
|
169 |
+
size = (size["height"], size["width"])
|
170 |
+
else:
|
171 |
+
raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
|
172 |
+
|
173 |
+
output_size = get_resize_output_image_size(
|
174 |
+
image,
|
175 |
+
size=size,
|
176 |
+
default_to_square=default_to_square,
|
177 |
+
input_data_format=input_data_format,
|
178 |
+
)
|
179 |
+
return resize(
|
180 |
+
image,
|
181 |
+
size=output_size,
|
182 |
+
resample=resample,
|
183 |
+
data_format=data_format,
|
184 |
+
input_data_format=input_data_format,
|
185 |
+
**kwargs,
|
186 |
+
)
|
187 |
+
|
188 |
+
def preprocess(
|
189 |
+
self,
|
190 |
+
images: ImageInput,
|
191 |
+
do_resize: Optional[bool] = None,
|
192 |
+
size: Dict[str, int] = None,
|
193 |
+
resample: PILImageResampling = None,
|
194 |
+
do_center_crop: bool = None,
|
195 |
+
crop_size: Dict[str, int] = None,
|
196 |
+
do_rescale: Optional[bool] = None,
|
197 |
+
rescale_factor: Optional[float] = None,
|
198 |
+
do_normalize: Optional[bool] = None,
|
199 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
200 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
201 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
202 |
+
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
|
203 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
204 |
+
**kwargs,
|
205 |
+
):
|
206 |
+
"""
|
207 |
+
Preprocess an image or batch of images.
|
208 |
+
|
209 |
+
Args:
|
210 |
+
images (`ImageInput`):
|
211 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
212 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
213 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
214 |
+
Whether to resize the image.
|
215 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
216 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
217 |
+
the longest edge resized to keep the input aspect ratio.
|
218 |
+
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
|
219 |
+
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
|
220 |
+
an effect if `do_resize` is set to `True`.
|
221 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
222 |
+
Whether to center crop the image.
|
223 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
224 |
+
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
|
225 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
226 |
+
Whether to rescale the image values between [0 - 1].
|
227 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
228 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
229 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
230 |
+
Whether to normalize the image.
|
231 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
232 |
+
Image mean to use if `do_normalize` is set to `True`.
|
233 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
234 |
+
Image standard deviation to use if `do_normalize` is set to `True`.
|
235 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
236 |
+
The type of tensors to return. Can be one of:
|
237 |
+
- Unset: Return a list of `np.ndarray`.
|
238 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
239 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
240 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
241 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
242 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
243 |
+
The channel dimension format for the output image. Can be one of:
|
244 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
245 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
246 |
+
- Unset: Use the channel dimension format of the input image.
|
247 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
248 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
249 |
+
from the input image. Can be one of:
|
250 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
251 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
252 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
253 |
+
"""
|
254 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
255 |
+
size = size if size is not None else self.size
|
256 |
+
size = get_size_dict(size, default_to_square=False)
|
257 |
+
resample = resample if resample is not None else self.resample
|
258 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
259 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
260 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
261 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
262 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
263 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
264 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
265 |
+
image_std = image_std if image_std is not None else self.image_std
|
266 |
+
|
267 |
+
images = make_list_of_images(images)
|
268 |
+
|
269 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
270 |
+
|
271 |
+
if not valid_images(images):
|
272 |
+
raise ValueError(
|
273 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
274 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
275 |
+
)
|
276 |
+
validate_preprocess_arguments(
|
277 |
+
do_rescale=do_rescale,
|
278 |
+
rescale_factor=rescale_factor,
|
279 |
+
do_normalize=do_normalize,
|
280 |
+
image_mean=image_mean,
|
281 |
+
image_std=image_std,
|
282 |
+
do_center_crop=do_center_crop,
|
283 |
+
crop_size=crop_size,
|
284 |
+
do_resize=do_resize,
|
285 |
+
size=size,
|
286 |
+
resample=resample,
|
287 |
+
)
|
288 |
+
# All transformations expect numpy arrays.
|
289 |
+
images = [to_numpy_array(image) for image in images]
|
290 |
+
|
291 |
+
if is_scaled_image(images[0]) and do_rescale:
|
292 |
+
logger.warning_once(
|
293 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
294 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
295 |
+
)
|
296 |
+
|
297 |
+
if input_data_format is None:
|
298 |
+
# We assume that all images have the same channel dimension format.
|
299 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
300 |
+
|
301 |
+
if do_resize:
|
302 |
+
images = [
|
303 |
+
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
304 |
+
for image in images
|
305 |
+
]
|
306 |
+
|
307 |
+
if do_center_crop:
|
308 |
+
images = [
|
309 |
+
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
|
310 |
+
]
|
311 |
+
|
312 |
+
if do_rescale:
|
313 |
+
images = [
|
314 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
315 |
+
for image in images
|
316 |
+
]
|
317 |
+
|
318 |
+
if do_normalize:
|
319 |
+
images = [
|
320 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
321 |
+
for image in images
|
322 |
+
]
|
323 |
+
|
324 |
+
images = [
|
325 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
326 |
+
]
|
327 |
+
|
328 |
+
data = {"pixel_values": images}
|
329 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
330 |
+
|
331 |
+
# Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.post_process_semantic_segmentation with Beit->MobileNetV2
|
332 |
+
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
|
333 |
+
"""
|
334 |
+
Converts the output of [`MobileNetV2ForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
|
335 |
+
|
336 |
+
Args:
|
337 |
+
outputs ([`MobileNetV2ForSemanticSegmentation`]):
|
338 |
+
Raw outputs of the model.
|
339 |
+
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
|
340 |
+
List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
|
341 |
+
predictions will not be resized.
|
342 |
+
|
343 |
+
Returns:
|
344 |
+
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
|
345 |
+
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
|
346 |
+
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
|
347 |
+
"""
|
348 |
+
# TODO: add support for other frameworks
|
349 |
+
logits = outputs.logits
|
350 |
+
|
351 |
+
# Resize logits and compute semantic segmentation maps
|
352 |
+
if target_sizes is not None:
|
353 |
+
if len(logits) != len(target_sizes):
|
354 |
+
raise ValueError(
|
355 |
+
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
|
356 |
+
)
|
357 |
+
|
358 |
+
if is_torch_tensor(target_sizes):
|
359 |
+
target_sizes = target_sizes.numpy()
|
360 |
+
|
361 |
+
semantic_segmentation = []
|
362 |
+
|
363 |
+
for idx in range(len(logits)):
|
364 |
+
resized_logits = torch.nn.functional.interpolate(
|
365 |
+
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
|
366 |
+
)
|
367 |
+
semantic_map = resized_logits[0].argmax(dim=0)
|
368 |
+
semantic_segmentation.append(semantic_map)
|
369 |
+
else:
|
370 |
+
semantic_segmentation = logits.argmax(dim=1)
|
371 |
+
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
|
372 |
+
|
373 |
+
return semantic_segmentation
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mobilenet_v2/modeling_mobilenet_v2.py
ADDED
@@ -0,0 +1,862 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch MobileNetV2 model."""
|
16 |
+
|
17 |
+
|
18 |
+
from typing import Optional, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import nn
|
22 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
23 |
+
|
24 |
+
from ...activations import ACT2FN
|
25 |
+
from ...modeling_outputs import (
|
26 |
+
BaseModelOutputWithPoolingAndNoAttention,
|
27 |
+
ImageClassifierOutputWithNoAttention,
|
28 |
+
SemanticSegmenterOutput,
|
29 |
+
)
|
30 |
+
from ...modeling_utils import PreTrainedModel
|
31 |
+
from ...utils import (
|
32 |
+
add_code_sample_docstrings,
|
33 |
+
add_start_docstrings,
|
34 |
+
add_start_docstrings_to_model_forward,
|
35 |
+
logging,
|
36 |
+
replace_return_docstrings,
|
37 |
+
)
|
38 |
+
from .configuration_mobilenet_v2 import MobileNetV2Config
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
|
44 |
+
# General docstring
|
45 |
+
_CONFIG_FOR_DOC = "MobileNetV2Config"
|
46 |
+
|
47 |
+
# Base docstring
|
48 |
+
_CHECKPOINT_FOR_DOC = "google/mobilenet_v2_1.0_224"
|
49 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 1280, 7, 7]
|
50 |
+
|
51 |
+
# Image classification docstring
|
52 |
+
_IMAGE_CLASS_CHECKPOINT = "google/mobilenet_v2_1.0_224"
|
53 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
54 |
+
|
55 |
+
|
56 |
+
from ..deprecated._archive_maps import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
57 |
+
|
58 |
+
|
59 |
+
def _build_tf_to_pytorch_map(model, config, tf_weights=None):
|
60 |
+
"""
|
61 |
+
A map of modules from TF to PyTorch.
|
62 |
+
"""
|
63 |
+
|
64 |
+
tf_to_pt_map = {}
|
65 |
+
|
66 |
+
if isinstance(model, (MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation)):
|
67 |
+
backbone = model.mobilenet_v2
|
68 |
+
else:
|
69 |
+
backbone = model
|
70 |
+
|
71 |
+
# Use the EMA weights if available
|
72 |
+
def ema(x):
|
73 |
+
return x + "/ExponentialMovingAverage" if x + "/ExponentialMovingAverage" in tf_weights else x
|
74 |
+
|
75 |
+
prefix = "MobilenetV2/Conv/"
|
76 |
+
tf_to_pt_map[ema(prefix + "weights")] = backbone.conv_stem.first_conv.convolution.weight
|
77 |
+
tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_stem.first_conv.normalization.bias
|
78 |
+
tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_stem.first_conv.normalization.weight
|
79 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.first_conv.normalization.running_mean
|
80 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.first_conv.normalization.running_var
|
81 |
+
|
82 |
+
prefix = "MobilenetV2/expanded_conv/depthwise/"
|
83 |
+
tf_to_pt_map[ema(prefix + "depthwise_weights")] = backbone.conv_stem.conv_3x3.convolution.weight
|
84 |
+
tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_stem.conv_3x3.normalization.bias
|
85 |
+
tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_stem.conv_3x3.normalization.weight
|
86 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.conv_3x3.normalization.running_mean
|
87 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.conv_3x3.normalization.running_var
|
88 |
+
|
89 |
+
prefix = "MobilenetV2/expanded_conv/project/"
|
90 |
+
tf_to_pt_map[ema(prefix + "weights")] = backbone.conv_stem.reduce_1x1.convolution.weight
|
91 |
+
tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_stem.reduce_1x1.normalization.bias
|
92 |
+
tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_stem.reduce_1x1.normalization.weight
|
93 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.reduce_1x1.normalization.running_mean
|
94 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.reduce_1x1.normalization.running_var
|
95 |
+
|
96 |
+
for i in range(16):
|
97 |
+
tf_index = i + 1
|
98 |
+
pt_index = i
|
99 |
+
pointer = backbone.layer[pt_index]
|
100 |
+
|
101 |
+
prefix = f"MobilenetV2/expanded_conv_{tf_index}/expand/"
|
102 |
+
tf_to_pt_map[ema(prefix + "weights")] = pointer.expand_1x1.convolution.weight
|
103 |
+
tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = pointer.expand_1x1.normalization.bias
|
104 |
+
tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = pointer.expand_1x1.normalization.weight
|
105 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.expand_1x1.normalization.running_mean
|
106 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.expand_1x1.normalization.running_var
|
107 |
+
|
108 |
+
prefix = f"MobilenetV2/expanded_conv_{tf_index}/depthwise/"
|
109 |
+
tf_to_pt_map[ema(prefix + "depthwise_weights")] = pointer.conv_3x3.convolution.weight
|
110 |
+
tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = pointer.conv_3x3.normalization.bias
|
111 |
+
tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = pointer.conv_3x3.normalization.weight
|
112 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.conv_3x3.normalization.running_mean
|
113 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.conv_3x3.normalization.running_var
|
114 |
+
|
115 |
+
prefix = f"MobilenetV2/expanded_conv_{tf_index}/project/"
|
116 |
+
tf_to_pt_map[ema(prefix + "weights")] = pointer.reduce_1x1.convolution.weight
|
117 |
+
tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = pointer.reduce_1x1.normalization.bias
|
118 |
+
tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = pointer.reduce_1x1.normalization.weight
|
119 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.reduce_1x1.normalization.running_mean
|
120 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.reduce_1x1.normalization.running_var
|
121 |
+
|
122 |
+
prefix = "MobilenetV2/Conv_1/"
|
123 |
+
tf_to_pt_map[ema(prefix + "weights")] = backbone.conv_1x1.convolution.weight
|
124 |
+
tf_to_pt_map[ema(prefix + "BatchNorm/beta")] = backbone.conv_1x1.normalization.bias
|
125 |
+
tf_to_pt_map[ema(prefix + "BatchNorm/gamma")] = backbone.conv_1x1.normalization.weight
|
126 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_1x1.normalization.running_mean
|
127 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_1x1.normalization.running_var
|
128 |
+
|
129 |
+
if isinstance(model, MobileNetV2ForImageClassification):
|
130 |
+
prefix = "MobilenetV2/Logits/Conv2d_1c_1x1/"
|
131 |
+
tf_to_pt_map[ema(prefix + "weights")] = model.classifier.weight
|
132 |
+
tf_to_pt_map[ema(prefix + "biases")] = model.classifier.bias
|
133 |
+
|
134 |
+
if isinstance(model, MobileNetV2ForSemanticSegmentation):
|
135 |
+
prefix = "image_pooling/"
|
136 |
+
tf_to_pt_map[prefix + "weights"] = model.segmentation_head.conv_pool.convolution.weight
|
137 |
+
tf_to_pt_map[prefix + "BatchNorm/beta"] = model.segmentation_head.conv_pool.normalization.bias
|
138 |
+
tf_to_pt_map[prefix + "BatchNorm/gamma"] = model.segmentation_head.conv_pool.normalization.weight
|
139 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = model.segmentation_head.conv_pool.normalization.running_mean
|
140 |
+
tf_to_pt_map[
|
141 |
+
prefix + "BatchNorm/moving_variance"
|
142 |
+
] = model.segmentation_head.conv_pool.normalization.running_var
|
143 |
+
|
144 |
+
prefix = "aspp0/"
|
145 |
+
tf_to_pt_map[prefix + "weights"] = model.segmentation_head.conv_aspp.convolution.weight
|
146 |
+
tf_to_pt_map[prefix + "BatchNorm/beta"] = model.segmentation_head.conv_aspp.normalization.bias
|
147 |
+
tf_to_pt_map[prefix + "BatchNorm/gamma"] = model.segmentation_head.conv_aspp.normalization.weight
|
148 |
+
tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = model.segmentation_head.conv_aspp.normalization.running_mean
|
149 |
+
tf_to_pt_map[
|
150 |
+
prefix + "BatchNorm/moving_variance"
|
151 |
+
] = model.segmentation_head.conv_aspp.normalization.running_var
|
152 |
+
|
153 |
+
prefix = "concat_projection/"
|
154 |
+
tf_to_pt_map[prefix + "weights"] = model.segmentation_head.conv_projection.convolution.weight
|
155 |
+
tf_to_pt_map[prefix + "BatchNorm/beta"] = model.segmentation_head.conv_projection.normalization.bias
|
156 |
+
tf_to_pt_map[prefix + "BatchNorm/gamma"] = model.segmentation_head.conv_projection.normalization.weight
|
157 |
+
tf_to_pt_map[
|
158 |
+
prefix + "BatchNorm/moving_mean"
|
159 |
+
] = model.segmentation_head.conv_projection.normalization.running_mean
|
160 |
+
tf_to_pt_map[
|
161 |
+
prefix + "BatchNorm/moving_variance"
|
162 |
+
] = model.segmentation_head.conv_projection.normalization.running_var
|
163 |
+
|
164 |
+
prefix = "logits/semantic/"
|
165 |
+
tf_to_pt_map[ema(prefix + "weights")] = model.segmentation_head.classifier.convolution.weight
|
166 |
+
tf_to_pt_map[ema(prefix + "biases")] = model.segmentation_head.classifier.convolution.bias
|
167 |
+
|
168 |
+
return tf_to_pt_map
|
169 |
+
|
170 |
+
|
171 |
+
def load_tf_weights_in_mobilenet_v2(model, config, tf_checkpoint_path):
|
172 |
+
"""Load TensorFlow checkpoints in a PyTorch model."""
|
173 |
+
try:
|
174 |
+
import numpy as np
|
175 |
+
import tensorflow as tf
|
176 |
+
except ImportError:
|
177 |
+
logger.error(
|
178 |
+
"Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
|
179 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
180 |
+
)
|
181 |
+
raise
|
182 |
+
|
183 |
+
# Load weights from TF model
|
184 |
+
init_vars = tf.train.list_variables(tf_checkpoint_path)
|
185 |
+
tf_weights = {}
|
186 |
+
for name, shape in init_vars:
|
187 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
188 |
+
array = tf.train.load_variable(tf_checkpoint_path, name)
|
189 |
+
tf_weights[name] = array
|
190 |
+
|
191 |
+
# Build TF to PyTorch weights loading map
|
192 |
+
tf_to_pt_map = _build_tf_to_pytorch_map(model, config, tf_weights)
|
193 |
+
|
194 |
+
for name, pointer in tf_to_pt_map.items():
|
195 |
+
logger.info(f"Importing {name}")
|
196 |
+
if name not in tf_weights:
|
197 |
+
logger.info(f"{name} not in tf pre-trained weights, skipping")
|
198 |
+
continue
|
199 |
+
|
200 |
+
array = tf_weights[name]
|
201 |
+
|
202 |
+
if "depthwise_weights" in name:
|
203 |
+
logger.info("Transposing depthwise")
|
204 |
+
array = np.transpose(array, (2, 3, 0, 1))
|
205 |
+
elif "weights" in name:
|
206 |
+
logger.info("Transposing")
|
207 |
+
if len(pointer.shape) == 2: # copying into linear layer
|
208 |
+
array = array.squeeze().transpose()
|
209 |
+
else:
|
210 |
+
array = np.transpose(array, (3, 2, 0, 1))
|
211 |
+
|
212 |
+
if pointer.shape != array.shape:
|
213 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
214 |
+
|
215 |
+
logger.info(f"Initialize PyTorch weight {name} {array.shape}")
|
216 |
+
pointer.data = torch.from_numpy(array)
|
217 |
+
|
218 |
+
tf_weights.pop(name, None)
|
219 |
+
tf_weights.pop(name + "/RMSProp", None)
|
220 |
+
tf_weights.pop(name + "/RMSProp_1", None)
|
221 |
+
tf_weights.pop(name + "/ExponentialMovingAverage", None)
|
222 |
+
tf_weights.pop(name + "/Momentum", None)
|
223 |
+
|
224 |
+
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}")
|
225 |
+
return model
|
226 |
+
|
227 |
+
|
228 |
+
def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int:
|
229 |
+
"""
|
230 |
+
Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the
|
231 |
+
original TensorFlow repo. It can be seen here:
|
232 |
+
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
233 |
+
"""
|
234 |
+
if min_value is None:
|
235 |
+
min_value = divisor
|
236 |
+
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
|
237 |
+
# Make sure that round down does not go down by more than 10%.
|
238 |
+
if new_value < 0.9 * value:
|
239 |
+
new_value += divisor
|
240 |
+
return int(new_value)
|
241 |
+
|
242 |
+
|
243 |
+
def apply_depth_multiplier(config: MobileNetV2Config, channels: int) -> int:
|
244 |
+
return make_divisible(int(round(channels * config.depth_multiplier)), config.depth_divisible_by, config.min_depth)
|
245 |
+
|
246 |
+
|
247 |
+
def apply_tf_padding(features: torch.Tensor, conv_layer: nn.Conv2d) -> torch.Tensor:
|
248 |
+
"""
|
249 |
+
Apply TensorFlow-style "SAME" padding to a convolution layer. See the notes at:
|
250 |
+
https://www.tensorflow.org/api_docs/python/tf/nn#notes_on_padding_2
|
251 |
+
"""
|
252 |
+
in_height = int(features.shape[-2])
|
253 |
+
in_width = int(features.shape[-1])
|
254 |
+
stride_height, stride_width = conv_layer.stride
|
255 |
+
kernel_height, kernel_width = conv_layer.kernel_size
|
256 |
+
dilation_height, dilation_width = conv_layer.dilation
|
257 |
+
|
258 |
+
if in_height % stride_height == 0:
|
259 |
+
pad_along_height = max(kernel_height - stride_height, 0)
|
260 |
+
else:
|
261 |
+
pad_along_height = max(kernel_height - (in_height % stride_height), 0)
|
262 |
+
|
263 |
+
if in_width % stride_width == 0:
|
264 |
+
pad_along_width = max(kernel_width - stride_width, 0)
|
265 |
+
else:
|
266 |
+
pad_along_width = max(kernel_width - (in_width % stride_width), 0)
|
267 |
+
|
268 |
+
pad_left = pad_along_width // 2
|
269 |
+
pad_right = pad_along_width - pad_left
|
270 |
+
pad_top = pad_along_height // 2
|
271 |
+
pad_bottom = pad_along_height - pad_top
|
272 |
+
|
273 |
+
padding = (
|
274 |
+
pad_left * dilation_width,
|
275 |
+
pad_right * dilation_width,
|
276 |
+
pad_top * dilation_height,
|
277 |
+
pad_bottom * dilation_height,
|
278 |
+
)
|
279 |
+
return nn.functional.pad(features, padding, "constant", 0.0)
|
280 |
+
|
281 |
+
|
282 |
+
class MobileNetV2ConvLayer(nn.Module):
|
283 |
+
def __init__(
|
284 |
+
self,
|
285 |
+
config: MobileNetV2Config,
|
286 |
+
in_channels: int,
|
287 |
+
out_channels: int,
|
288 |
+
kernel_size: int,
|
289 |
+
stride: int = 1,
|
290 |
+
groups: int = 1,
|
291 |
+
bias: bool = False,
|
292 |
+
dilation: int = 1,
|
293 |
+
use_normalization: bool = True,
|
294 |
+
use_activation: Union[bool, str] = True,
|
295 |
+
layer_norm_eps: Optional[float] = None,
|
296 |
+
) -> None:
|
297 |
+
super().__init__()
|
298 |
+
self.config = config
|
299 |
+
|
300 |
+
if in_channels % groups != 0:
|
301 |
+
raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.")
|
302 |
+
if out_channels % groups != 0:
|
303 |
+
raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.")
|
304 |
+
|
305 |
+
padding = 0 if config.tf_padding else int((kernel_size - 1) / 2) * dilation
|
306 |
+
|
307 |
+
self.convolution = nn.Conv2d(
|
308 |
+
in_channels=in_channels,
|
309 |
+
out_channels=out_channels,
|
310 |
+
kernel_size=kernel_size,
|
311 |
+
stride=stride,
|
312 |
+
padding=padding,
|
313 |
+
dilation=dilation,
|
314 |
+
groups=groups,
|
315 |
+
bias=bias,
|
316 |
+
padding_mode="zeros",
|
317 |
+
)
|
318 |
+
|
319 |
+
if use_normalization:
|
320 |
+
self.normalization = nn.BatchNorm2d(
|
321 |
+
num_features=out_channels,
|
322 |
+
eps=config.layer_norm_eps if layer_norm_eps is None else layer_norm_eps,
|
323 |
+
momentum=0.997,
|
324 |
+
affine=True,
|
325 |
+
track_running_stats=True,
|
326 |
+
)
|
327 |
+
else:
|
328 |
+
self.normalization = None
|
329 |
+
|
330 |
+
if use_activation:
|
331 |
+
if isinstance(use_activation, str):
|
332 |
+
self.activation = ACT2FN[use_activation]
|
333 |
+
elif isinstance(config.hidden_act, str):
|
334 |
+
self.activation = ACT2FN[config.hidden_act]
|
335 |
+
else:
|
336 |
+
self.activation = config.hidden_act
|
337 |
+
else:
|
338 |
+
self.activation = None
|
339 |
+
|
340 |
+
def forward(self, features: torch.Tensor) -> torch.Tensor:
|
341 |
+
if self.config.tf_padding:
|
342 |
+
features = apply_tf_padding(features, self.convolution)
|
343 |
+
features = self.convolution(features)
|
344 |
+
if self.normalization is not None:
|
345 |
+
features = self.normalization(features)
|
346 |
+
if self.activation is not None:
|
347 |
+
features = self.activation(features)
|
348 |
+
return features
|
349 |
+
|
350 |
+
|
351 |
+
class MobileNetV2InvertedResidual(nn.Module):
|
352 |
+
def __init__(
|
353 |
+
self, config: MobileNetV2Config, in_channels: int, out_channels: int, stride: int, dilation: int = 1
|
354 |
+
) -> None:
|
355 |
+
super().__init__()
|
356 |
+
|
357 |
+
expanded_channels = make_divisible(
|
358 |
+
int(round(in_channels * config.expand_ratio)), config.depth_divisible_by, config.min_depth
|
359 |
+
)
|
360 |
+
|
361 |
+
if stride not in [1, 2]:
|
362 |
+
raise ValueError(f"Invalid stride {stride}.")
|
363 |
+
|
364 |
+
self.use_residual = (stride == 1) and (in_channels == out_channels)
|
365 |
+
|
366 |
+
self.expand_1x1 = MobileNetV2ConvLayer(
|
367 |
+
config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1
|
368 |
+
)
|
369 |
+
|
370 |
+
self.conv_3x3 = MobileNetV2ConvLayer(
|
371 |
+
config,
|
372 |
+
in_channels=expanded_channels,
|
373 |
+
out_channels=expanded_channels,
|
374 |
+
kernel_size=3,
|
375 |
+
stride=stride,
|
376 |
+
groups=expanded_channels,
|
377 |
+
dilation=dilation,
|
378 |
+
)
|
379 |
+
|
380 |
+
self.reduce_1x1 = MobileNetV2ConvLayer(
|
381 |
+
config,
|
382 |
+
in_channels=expanded_channels,
|
383 |
+
out_channels=out_channels,
|
384 |
+
kernel_size=1,
|
385 |
+
use_activation=False,
|
386 |
+
)
|
387 |
+
|
388 |
+
def forward(self, features: torch.Tensor) -> torch.Tensor:
|
389 |
+
residual = features
|
390 |
+
|
391 |
+
features = self.expand_1x1(features)
|
392 |
+
features = self.conv_3x3(features)
|
393 |
+
features = self.reduce_1x1(features)
|
394 |
+
|
395 |
+
return residual + features if self.use_residual else features
|
396 |
+
|
397 |
+
|
398 |
+
class MobileNetV2Stem(nn.Module):
|
399 |
+
def __init__(self, config: MobileNetV2Config, in_channels: int, expanded_channels: int, out_channels: int) -> None:
|
400 |
+
super().__init__()
|
401 |
+
|
402 |
+
# The very first layer is a regular 3x3 convolution with stride 2 that expands to 32 channels.
|
403 |
+
# All other expansion layers use the expansion factor to compute the number of output channels.
|
404 |
+
self.first_conv = MobileNetV2ConvLayer(
|
405 |
+
config,
|
406 |
+
in_channels=in_channels,
|
407 |
+
out_channels=expanded_channels,
|
408 |
+
kernel_size=3,
|
409 |
+
stride=2,
|
410 |
+
)
|
411 |
+
|
412 |
+
if config.first_layer_is_expansion:
|
413 |
+
self.expand_1x1 = None
|
414 |
+
else:
|
415 |
+
self.expand_1x1 = MobileNetV2ConvLayer(
|
416 |
+
config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=1
|
417 |
+
)
|
418 |
+
|
419 |
+
self.conv_3x3 = MobileNetV2ConvLayer(
|
420 |
+
config,
|
421 |
+
in_channels=expanded_channels,
|
422 |
+
out_channels=expanded_channels,
|
423 |
+
kernel_size=3,
|
424 |
+
stride=1,
|
425 |
+
groups=expanded_channels,
|
426 |
+
)
|
427 |
+
|
428 |
+
self.reduce_1x1 = MobileNetV2ConvLayer(
|
429 |
+
config,
|
430 |
+
in_channels=expanded_channels,
|
431 |
+
out_channels=out_channels,
|
432 |
+
kernel_size=1,
|
433 |
+
use_activation=False,
|
434 |
+
)
|
435 |
+
|
436 |
+
def forward(self, features: torch.Tensor) -> torch.Tensor:
|
437 |
+
features = self.first_conv(features)
|
438 |
+
if self.expand_1x1 is not None:
|
439 |
+
features = self.expand_1x1(features)
|
440 |
+
features = self.conv_3x3(features)
|
441 |
+
features = self.reduce_1x1(features)
|
442 |
+
return features
|
443 |
+
|
444 |
+
|
445 |
+
class MobileNetV2PreTrainedModel(PreTrainedModel):
|
446 |
+
"""
|
447 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
448 |
+
models.
|
449 |
+
"""
|
450 |
+
|
451 |
+
config_class = MobileNetV2Config
|
452 |
+
load_tf_weights = load_tf_weights_in_mobilenet_v2
|
453 |
+
base_model_prefix = "mobilenet_v2"
|
454 |
+
main_input_name = "pixel_values"
|
455 |
+
supports_gradient_checkpointing = False
|
456 |
+
|
457 |
+
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d]) -> None:
|
458 |
+
"""Initialize the weights"""
|
459 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
460 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
461 |
+
if module.bias is not None:
|
462 |
+
module.bias.data.zero_()
|
463 |
+
elif isinstance(module, nn.BatchNorm2d):
|
464 |
+
module.bias.data.zero_()
|
465 |
+
module.weight.data.fill_(1.0)
|
466 |
+
|
467 |
+
|
468 |
+
MOBILENET_V2_START_DOCSTRING = r"""
|
469 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
470 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
471 |
+
behavior.
|
472 |
+
|
473 |
+
Parameters:
|
474 |
+
config ([`MobileNetV2Config`]): Model configuration class with all the parameters of the model.
|
475 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
476 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
477 |
+
"""
|
478 |
+
|
479 |
+
MOBILENET_V2_INPUTS_DOCSTRING = r"""
|
480 |
+
Args:
|
481 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
482 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
483 |
+
[`MobileNetV2ImageProcessor.__call__`] for details.
|
484 |
+
output_hidden_states (`bool`, *optional*):
|
485 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
486 |
+
more detail.
|
487 |
+
return_dict (`bool`, *optional*):
|
488 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
489 |
+
"""
|
490 |
+
|
491 |
+
|
492 |
+
@add_start_docstrings(
|
493 |
+
"The bare MobileNetV2 model outputting raw hidden-states without any specific head on top.",
|
494 |
+
MOBILENET_V2_START_DOCSTRING,
|
495 |
+
)
|
496 |
+
class MobileNetV2Model(MobileNetV2PreTrainedModel):
|
497 |
+
def __init__(self, config: MobileNetV2Config, add_pooling_layer: bool = True):
|
498 |
+
super().__init__(config)
|
499 |
+
self.config = config
|
500 |
+
|
501 |
+
# Output channels for the projection layers
|
502 |
+
channels = [16, 24, 24, 32, 32, 32, 64, 64, 64, 64, 96, 96, 96, 160, 160, 160, 320]
|
503 |
+
channels = [apply_depth_multiplier(config, x) for x in channels]
|
504 |
+
|
505 |
+
# Strides for the depthwise layers
|
506 |
+
strides = [2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1]
|
507 |
+
|
508 |
+
self.conv_stem = MobileNetV2Stem(
|
509 |
+
config,
|
510 |
+
in_channels=config.num_channels,
|
511 |
+
expanded_channels=apply_depth_multiplier(config, 32),
|
512 |
+
out_channels=channels[0],
|
513 |
+
)
|
514 |
+
|
515 |
+
current_stride = 2 # first conv layer has stride 2
|
516 |
+
dilation = 1
|
517 |
+
|
518 |
+
self.layer = nn.ModuleList()
|
519 |
+
for i in range(16):
|
520 |
+
# Keep making the feature maps smaller or use dilated convolution?
|
521 |
+
if current_stride == config.output_stride:
|
522 |
+
layer_stride = 1
|
523 |
+
layer_dilation = dilation
|
524 |
+
dilation *= strides[i] # larger dilation starts in next block
|
525 |
+
else:
|
526 |
+
layer_stride = strides[i]
|
527 |
+
layer_dilation = 1
|
528 |
+
current_stride *= layer_stride
|
529 |
+
|
530 |
+
self.layer.append(
|
531 |
+
MobileNetV2InvertedResidual(
|
532 |
+
config,
|
533 |
+
in_channels=channels[i],
|
534 |
+
out_channels=channels[i + 1],
|
535 |
+
stride=layer_stride,
|
536 |
+
dilation=layer_dilation,
|
537 |
+
)
|
538 |
+
)
|
539 |
+
|
540 |
+
if config.finegrained_output and config.depth_multiplier < 1.0:
|
541 |
+
output_channels = 1280
|
542 |
+
else:
|
543 |
+
output_channels = apply_depth_multiplier(config, 1280)
|
544 |
+
|
545 |
+
self.conv_1x1 = MobileNetV2ConvLayer(
|
546 |
+
config,
|
547 |
+
in_channels=channels[-1],
|
548 |
+
out_channels=output_channels,
|
549 |
+
kernel_size=1,
|
550 |
+
)
|
551 |
+
|
552 |
+
self.pooler = nn.AdaptiveAvgPool2d((1, 1)) if add_pooling_layer else None
|
553 |
+
|
554 |
+
# Initialize weights and apply final processing
|
555 |
+
self.post_init()
|
556 |
+
|
557 |
+
def _prune_heads(self, heads_to_prune):
|
558 |
+
raise NotImplementedError
|
559 |
+
|
560 |
+
@add_start_docstrings_to_model_forward(MOBILENET_V2_INPUTS_DOCSTRING)
|
561 |
+
@add_code_sample_docstrings(
|
562 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
563 |
+
output_type=BaseModelOutputWithPoolingAndNoAttention,
|
564 |
+
config_class=_CONFIG_FOR_DOC,
|
565 |
+
modality="vision",
|
566 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
567 |
+
)
|
568 |
+
def forward(
|
569 |
+
self,
|
570 |
+
pixel_values: Optional[torch.Tensor] = None,
|
571 |
+
output_hidden_states: Optional[bool] = None,
|
572 |
+
return_dict: Optional[bool] = None,
|
573 |
+
) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
|
574 |
+
output_hidden_states = (
|
575 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
576 |
+
)
|
577 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
578 |
+
|
579 |
+
if pixel_values is None:
|
580 |
+
raise ValueError("You have to specify pixel_values")
|
581 |
+
|
582 |
+
hidden_states = self.conv_stem(pixel_values)
|
583 |
+
|
584 |
+
all_hidden_states = () if output_hidden_states else None
|
585 |
+
|
586 |
+
for i, layer_module in enumerate(self.layer):
|
587 |
+
hidden_states = layer_module(hidden_states)
|
588 |
+
|
589 |
+
if output_hidden_states:
|
590 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
591 |
+
|
592 |
+
last_hidden_state = self.conv_1x1(hidden_states)
|
593 |
+
|
594 |
+
if self.pooler is not None:
|
595 |
+
pooled_output = torch.flatten(self.pooler(last_hidden_state), start_dim=1)
|
596 |
+
else:
|
597 |
+
pooled_output = None
|
598 |
+
|
599 |
+
if not return_dict:
|
600 |
+
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None)
|
601 |
+
|
602 |
+
return BaseModelOutputWithPoolingAndNoAttention(
|
603 |
+
last_hidden_state=last_hidden_state,
|
604 |
+
pooler_output=pooled_output,
|
605 |
+
hidden_states=all_hidden_states,
|
606 |
+
)
|
607 |
+
|
608 |
+
|
609 |
+
@add_start_docstrings(
|
610 |
+
"""
|
611 |
+
MobileNetV2 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
|
612 |
+
ImageNet.
|
613 |
+
""",
|
614 |
+
MOBILENET_V2_START_DOCSTRING,
|
615 |
+
)
|
616 |
+
class MobileNetV2ForImageClassification(MobileNetV2PreTrainedModel):
|
617 |
+
def __init__(self, config: MobileNetV2Config) -> None:
|
618 |
+
super().__init__(config)
|
619 |
+
|
620 |
+
self.num_labels = config.num_labels
|
621 |
+
self.mobilenet_v2 = MobileNetV2Model(config)
|
622 |
+
|
623 |
+
last_hidden_size = self.mobilenet_v2.conv_1x1.convolution.out_channels
|
624 |
+
|
625 |
+
# Classifier head
|
626 |
+
self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True)
|
627 |
+
self.classifier = nn.Linear(last_hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
628 |
+
|
629 |
+
# Initialize weights and apply final processing
|
630 |
+
self.post_init()
|
631 |
+
|
632 |
+
@add_start_docstrings_to_model_forward(MOBILENET_V2_INPUTS_DOCSTRING)
|
633 |
+
@add_code_sample_docstrings(
|
634 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
635 |
+
output_type=ImageClassifierOutputWithNoAttention,
|
636 |
+
config_class=_CONFIG_FOR_DOC,
|
637 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
638 |
+
)
|
639 |
+
def forward(
|
640 |
+
self,
|
641 |
+
pixel_values: Optional[torch.Tensor] = None,
|
642 |
+
output_hidden_states: Optional[bool] = None,
|
643 |
+
labels: Optional[torch.Tensor] = None,
|
644 |
+
return_dict: Optional[bool] = None,
|
645 |
+
) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
|
646 |
+
r"""
|
647 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
648 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
649 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If
|
650 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
651 |
+
"""
|
652 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
653 |
+
|
654 |
+
outputs = self.mobilenet_v2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
655 |
+
|
656 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
657 |
+
|
658 |
+
logits = self.classifier(self.dropout(pooled_output))
|
659 |
+
|
660 |
+
loss = None
|
661 |
+
if labels is not None:
|
662 |
+
if self.config.problem_type is None:
|
663 |
+
if self.num_labels == 1:
|
664 |
+
self.config.problem_type = "regression"
|
665 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
666 |
+
self.config.problem_type = "single_label_classification"
|
667 |
+
else:
|
668 |
+
self.config.problem_type = "multi_label_classification"
|
669 |
+
|
670 |
+
if self.config.problem_type == "regression":
|
671 |
+
loss_fct = MSELoss()
|
672 |
+
if self.num_labels == 1:
|
673 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
674 |
+
else:
|
675 |
+
loss = loss_fct(logits, labels)
|
676 |
+
elif self.config.problem_type == "single_label_classification":
|
677 |
+
loss_fct = CrossEntropyLoss()
|
678 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
679 |
+
elif self.config.problem_type == "multi_label_classification":
|
680 |
+
loss_fct = BCEWithLogitsLoss()
|
681 |
+
loss = loss_fct(logits, labels)
|
682 |
+
|
683 |
+
if not return_dict:
|
684 |
+
output = (logits,) + outputs[2:]
|
685 |
+
return ((loss,) + output) if loss is not None else output
|
686 |
+
|
687 |
+
return ImageClassifierOutputWithNoAttention(
|
688 |
+
loss=loss,
|
689 |
+
logits=logits,
|
690 |
+
hidden_states=outputs.hidden_states,
|
691 |
+
)
|
692 |
+
|
693 |
+
|
694 |
+
class MobileNetV2DeepLabV3Plus(nn.Module):
|
695 |
+
"""
|
696 |
+
The neural network from the paper "Encoder-Decoder with Atrous Separable Convolution for Semantic Image
|
697 |
+
Segmentation" https://arxiv.org/abs/1802.02611
|
698 |
+
"""
|
699 |
+
|
700 |
+
def __init__(self, config: MobileNetV2Config) -> None:
|
701 |
+
super().__init__()
|
702 |
+
|
703 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(output_size=1)
|
704 |
+
|
705 |
+
self.conv_pool = MobileNetV2ConvLayer(
|
706 |
+
config,
|
707 |
+
in_channels=apply_depth_multiplier(config, 320),
|
708 |
+
out_channels=256,
|
709 |
+
kernel_size=1,
|
710 |
+
stride=1,
|
711 |
+
use_normalization=True,
|
712 |
+
use_activation="relu",
|
713 |
+
layer_norm_eps=1e-5,
|
714 |
+
)
|
715 |
+
|
716 |
+
self.conv_aspp = MobileNetV2ConvLayer(
|
717 |
+
config,
|
718 |
+
in_channels=apply_depth_multiplier(config, 320),
|
719 |
+
out_channels=256,
|
720 |
+
kernel_size=1,
|
721 |
+
stride=1,
|
722 |
+
use_normalization=True,
|
723 |
+
use_activation="relu",
|
724 |
+
layer_norm_eps=1e-5,
|
725 |
+
)
|
726 |
+
|
727 |
+
self.conv_projection = MobileNetV2ConvLayer(
|
728 |
+
config,
|
729 |
+
in_channels=512,
|
730 |
+
out_channels=256,
|
731 |
+
kernel_size=1,
|
732 |
+
stride=1,
|
733 |
+
use_normalization=True,
|
734 |
+
use_activation="relu",
|
735 |
+
layer_norm_eps=1e-5,
|
736 |
+
)
|
737 |
+
|
738 |
+
self.dropout = nn.Dropout2d(config.classifier_dropout_prob)
|
739 |
+
|
740 |
+
self.classifier = MobileNetV2ConvLayer(
|
741 |
+
config,
|
742 |
+
in_channels=256,
|
743 |
+
out_channels=config.num_labels,
|
744 |
+
kernel_size=1,
|
745 |
+
use_normalization=False,
|
746 |
+
use_activation=False,
|
747 |
+
bias=True,
|
748 |
+
)
|
749 |
+
|
750 |
+
def forward(self, features: torch.Tensor) -> torch.Tensor:
|
751 |
+
spatial_size = features.shape[-2:]
|
752 |
+
|
753 |
+
features_pool = self.avg_pool(features)
|
754 |
+
features_pool = self.conv_pool(features_pool)
|
755 |
+
features_pool = nn.functional.interpolate(
|
756 |
+
features_pool, size=spatial_size, mode="bilinear", align_corners=True
|
757 |
+
)
|
758 |
+
|
759 |
+
features_aspp = self.conv_aspp(features)
|
760 |
+
|
761 |
+
features = torch.cat([features_pool, features_aspp], dim=1)
|
762 |
+
|
763 |
+
features = self.conv_projection(features)
|
764 |
+
features = self.dropout(features)
|
765 |
+
features = self.classifier(features)
|
766 |
+
return features
|
767 |
+
|
768 |
+
|
769 |
+
@add_start_docstrings(
|
770 |
+
"""
|
771 |
+
MobileNetV2 model with a semantic segmentation head on top, e.g. for Pascal VOC.
|
772 |
+
""",
|
773 |
+
MOBILENET_V2_START_DOCSTRING,
|
774 |
+
)
|
775 |
+
class MobileNetV2ForSemanticSegmentation(MobileNetV2PreTrainedModel):
|
776 |
+
def __init__(self, config: MobileNetV2Config) -> None:
|
777 |
+
super().__init__(config)
|
778 |
+
|
779 |
+
self.num_labels = config.num_labels
|
780 |
+
self.mobilenet_v2 = MobileNetV2Model(config, add_pooling_layer=False)
|
781 |
+
self.segmentation_head = MobileNetV2DeepLabV3Plus(config)
|
782 |
+
|
783 |
+
# Initialize weights and apply final processing
|
784 |
+
self.post_init()
|
785 |
+
|
786 |
+
@add_start_docstrings_to_model_forward(MOBILENET_V2_INPUTS_DOCSTRING)
|
787 |
+
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
|
788 |
+
def forward(
|
789 |
+
self,
|
790 |
+
pixel_values: Optional[torch.Tensor] = None,
|
791 |
+
labels: Optional[torch.Tensor] = None,
|
792 |
+
output_hidden_states: Optional[bool] = None,
|
793 |
+
return_dict: Optional[bool] = None,
|
794 |
+
) -> Union[tuple, SemanticSegmenterOutput]:
|
795 |
+
r"""
|
796 |
+
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
|
797 |
+
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
|
798 |
+
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
|
799 |
+
|
800 |
+
Returns:
|
801 |
+
|
802 |
+
Examples:
|
803 |
+
|
804 |
+
```python
|
805 |
+
>>> from transformers import AutoImageProcessor, MobileNetV2ForSemanticSegmentation
|
806 |
+
>>> from PIL import Image
|
807 |
+
>>> import requests
|
808 |
+
|
809 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
810 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
811 |
+
|
812 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513")
|
813 |
+
>>> model = MobileNetV2ForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513")
|
814 |
+
|
815 |
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
816 |
+
|
817 |
+
>>> with torch.no_grad():
|
818 |
+
... outputs = model(**inputs)
|
819 |
+
|
820 |
+
>>> # logits are of shape (batch_size, num_labels, height, width)
|
821 |
+
>>> logits = outputs.logits
|
822 |
+
```"""
|
823 |
+
output_hidden_states = (
|
824 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
825 |
+
)
|
826 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
827 |
+
|
828 |
+
outputs = self.mobilenet_v2(
|
829 |
+
pixel_values,
|
830 |
+
output_hidden_states=True, # we need the intermediate hidden states
|
831 |
+
return_dict=return_dict,
|
832 |
+
)
|
833 |
+
|
834 |
+
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
835 |
+
|
836 |
+
logits = self.segmentation_head(encoder_hidden_states[-1])
|
837 |
+
|
838 |
+
loss = None
|
839 |
+
if labels is not None:
|
840 |
+
if self.config.num_labels == 1:
|
841 |
+
raise ValueError("The number of labels should be greater than one")
|
842 |
+
else:
|
843 |
+
# upsample logits to the images' original size
|
844 |
+
upsampled_logits = nn.functional.interpolate(
|
845 |
+
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
|
846 |
+
)
|
847 |
+
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
|
848 |
+
loss = loss_fct(upsampled_logits, labels)
|
849 |
+
|
850 |
+
if not return_dict:
|
851 |
+
if output_hidden_states:
|
852 |
+
output = (logits,) + outputs[1:]
|
853 |
+
else:
|
854 |
+
output = (logits,) + outputs[2:]
|
855 |
+
return ((loss,) + output) if loss is not None else output
|
856 |
+
|
857 |
+
return SemanticSegmenterOutput(
|
858 |
+
loss=loss,
|
859 |
+
logits=logits,
|
860 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
861 |
+
attentions=None,
|
862 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/qdqbert/__init__.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {"configuration_qdqbert": ["QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "QDQBertConfig"]}
|
20 |
+
|
21 |
+
try:
|
22 |
+
if not is_torch_available():
|
23 |
+
raise OptionalDependencyNotAvailable()
|
24 |
+
except OptionalDependencyNotAvailable:
|
25 |
+
pass
|
26 |
+
else:
|
27 |
+
_import_structure["modeling_qdqbert"] = [
|
28 |
+
"QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
29 |
+
"QDQBertForMaskedLM",
|
30 |
+
"QDQBertForMultipleChoice",
|
31 |
+
"QDQBertForNextSentencePrediction",
|
32 |
+
"QDQBertForQuestionAnswering",
|
33 |
+
"QDQBertForSequenceClassification",
|
34 |
+
"QDQBertForTokenClassification",
|
35 |
+
"QDQBertLayer",
|
36 |
+
"QDQBertLMHeadModel",
|
37 |
+
"QDQBertModel",
|
38 |
+
"QDQBertPreTrainedModel",
|
39 |
+
"load_tf_weights_in_qdqbert",
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
if TYPE_CHECKING:
|
44 |
+
from .configuration_qdqbert import QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, QDQBertConfig
|
45 |
+
|
46 |
+
try:
|
47 |
+
if not is_torch_available():
|
48 |
+
raise OptionalDependencyNotAvailable()
|
49 |
+
except OptionalDependencyNotAvailable:
|
50 |
+
pass
|
51 |
+
else:
|
52 |
+
from .modeling_qdqbert import (
|
53 |
+
QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
54 |
+
QDQBertForMaskedLM,
|
55 |
+
QDQBertForMultipleChoice,
|
56 |
+
QDQBertForNextSentencePrediction,
|
57 |
+
QDQBertForQuestionAnswering,
|
58 |
+
QDQBertForSequenceClassification,
|
59 |
+
QDQBertForTokenClassification,
|
60 |
+
QDQBertLayer,
|
61 |
+
QDQBertLMHeadModel,
|
62 |
+
QDQBertModel,
|
63 |
+
QDQBertPreTrainedModel,
|
64 |
+
load_tf_weights_in_qdqbert,
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
else:
|
69 |
+
import sys
|
70 |
+
|
71 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/qdqbert/__pycache__/configuration_qdqbert.cpython-310.pyc
ADDED
Binary file (5.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/qdqbert/configuration_qdqbert.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" QDQBERT model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class QDQBertConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`QDQBertModel`]. It is used to instantiate an
|
30 |
+
QDQBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
31 |
+
with the defaults will yield a similar configuration to that of the BERT
|
32 |
+
[google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
40 |
+
Vocabulary size of the QDQBERT model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`QDQBertModel`].
|
42 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
43 |
+
Dimension of the encoder layers and the pooler layer.
|
44 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
45 |
+
Number of hidden layers in the Transformer encoder.
|
46 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
47 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
48 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
49 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
50 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
51 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
52 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
53 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
54 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
55 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
56 |
+
The dropout ratio for the attention probabilities.
|
57 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
58 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
59 |
+
just in case (e.g., 512 or 1024 or 2048).
|
60 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
61 |
+
The vocabulary size of the `token_type_ids` passed when calling [`QDQBertModel`].
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
65 |
+
The epsilon used by the layer normalization layers.
|
66 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
67 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
68 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
70 |
+
relevant if `config.is_decoder=True`.
|
71 |
+
|
72 |
+
Examples:
|
73 |
+
|
74 |
+
```python
|
75 |
+
>>> from transformers import QDQBertModel, QDQBertConfig
|
76 |
+
|
77 |
+
>>> # Initializing a QDQBERT google-bert/bert-base-uncased style configuration
|
78 |
+
>>> configuration = QDQBertConfig()
|
79 |
+
|
80 |
+
>>> # Initializing a model from the google-bert/bert-base-uncased style configuration
|
81 |
+
>>> model = QDQBertModel(configuration)
|
82 |
+
|
83 |
+
>>> # Accessing the model configuration
|
84 |
+
>>> configuration = model.config
|
85 |
+
```"""
|
86 |
+
|
87 |
+
model_type = "qdqbert"
|
88 |
+
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
vocab_size=30522,
|
92 |
+
hidden_size=768,
|
93 |
+
num_hidden_layers=12,
|
94 |
+
num_attention_heads=12,
|
95 |
+
intermediate_size=3072,
|
96 |
+
hidden_act="gelu",
|
97 |
+
hidden_dropout_prob=0.1,
|
98 |
+
attention_probs_dropout_prob=0.1,
|
99 |
+
max_position_embeddings=512,
|
100 |
+
type_vocab_size=2,
|
101 |
+
initializer_range=0.02,
|
102 |
+
layer_norm_eps=1e-12,
|
103 |
+
use_cache=True,
|
104 |
+
pad_token_id=1,
|
105 |
+
bos_token_id=0,
|
106 |
+
eos_token_id=2,
|
107 |
+
**kwargs,
|
108 |
+
):
|
109 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
110 |
+
|
111 |
+
self.vocab_size = vocab_size
|
112 |
+
self.max_position_embeddings = max_position_embeddings
|
113 |
+
self.hidden_size = hidden_size
|
114 |
+
self.num_hidden_layers = num_hidden_layers
|
115 |
+
self.num_attention_heads = num_attention_heads
|
116 |
+
self.intermediate_size = intermediate_size
|
117 |
+
self.hidden_act = hidden_act
|
118 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
119 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
120 |
+
self.initializer_range = initializer_range
|
121 |
+
self.type_vocab_size = type_vocab_size
|
122 |
+
self.layer_norm_eps = layer_norm_eps
|
123 |
+
self.use_cache = use_cache
|
llmeval-env/lib/python3.10/site-packages/transformers/models/qdqbert/modeling_qdqbert.py
ADDED
@@ -0,0 +1,1737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 NVIDIA Corporation and The HuggingFace Team.
|
3 |
+
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" PyTorch QDQBERT model."""
|
17 |
+
|
18 |
+
|
19 |
+
import math
|
20 |
+
import os
|
21 |
+
import warnings
|
22 |
+
from typing import Dict, List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
|
29 |
+
from ...activations import ACT2FN
|
30 |
+
from ...modeling_outputs import (
|
31 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
32 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
33 |
+
CausalLMOutputWithCrossAttentions,
|
34 |
+
MaskedLMOutput,
|
35 |
+
MultipleChoiceModelOutput,
|
36 |
+
NextSentencePredictorOutput,
|
37 |
+
QuestionAnsweringModelOutput,
|
38 |
+
SequenceClassifierOutput,
|
39 |
+
TokenClassifierOutput,
|
40 |
+
)
|
41 |
+
from ...modeling_utils import PreTrainedModel
|
42 |
+
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
43 |
+
from ...utils import (
|
44 |
+
add_code_sample_docstrings,
|
45 |
+
add_start_docstrings,
|
46 |
+
add_start_docstrings_to_model_forward,
|
47 |
+
is_pytorch_quantization_available,
|
48 |
+
logging,
|
49 |
+
replace_return_docstrings,
|
50 |
+
requires_backends,
|
51 |
+
)
|
52 |
+
from .configuration_qdqbert import QDQBertConfig
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
# soft dependency
|
58 |
+
if is_pytorch_quantization_available():
|
59 |
+
try:
|
60 |
+
from pytorch_quantization import nn as quant_nn
|
61 |
+
from pytorch_quantization.nn.modules.tensor_quantizer import TensorQuantizer
|
62 |
+
except OSError:
|
63 |
+
logger.error(
|
64 |
+
"QDQBERT model are not usable since `pytorch_quantization` can't be loaded. Please try to reinstall it"
|
65 |
+
" following the instructions here:"
|
66 |
+
" https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization."
|
67 |
+
)
|
68 |
+
|
69 |
+
_CHECKPOINT_FOR_DOC = "google-bert/bert-base-uncased"
|
70 |
+
_CONFIG_FOR_DOC = "QDQBertConfig"
|
71 |
+
|
72 |
+
|
73 |
+
from ..deprecated._archive_maps import QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
74 |
+
|
75 |
+
|
76 |
+
def load_tf_weights_in_qdqbert(model, tf_checkpoint_path):
|
77 |
+
"""Load tf checkpoints in a pytorch model."""
|
78 |
+
try:
|
79 |
+
import re
|
80 |
+
|
81 |
+
import numpy as np
|
82 |
+
import tensorflow as tf
|
83 |
+
except ImportError:
|
84 |
+
logger.error(
|
85 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
86 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
87 |
+
)
|
88 |
+
raise
|
89 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
90 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
91 |
+
# Load weights from TF model
|
92 |
+
init_vars = tf.train.list_variables(tf_path)
|
93 |
+
names = []
|
94 |
+
arrays = []
|
95 |
+
for name, shape in init_vars:
|
96 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
97 |
+
array = tf.train.load_variable(tf_path, name)
|
98 |
+
names.append(name)
|
99 |
+
arrays.append(array)
|
100 |
+
|
101 |
+
for name, array in zip(names, arrays):
|
102 |
+
name = name.split("/")
|
103 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
104 |
+
# which are not required for using pretrained model
|
105 |
+
if any(
|
106 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
107 |
+
for n in name
|
108 |
+
):
|
109 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
110 |
+
continue
|
111 |
+
pointer = model
|
112 |
+
for m_name in name:
|
113 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
114 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
115 |
+
else:
|
116 |
+
scope_names = [m_name]
|
117 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
118 |
+
pointer = getattr(pointer, "weight")
|
119 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
120 |
+
pointer = getattr(pointer, "bias")
|
121 |
+
elif scope_names[0] == "output_weights":
|
122 |
+
pointer = getattr(pointer, "weight")
|
123 |
+
elif scope_names[0] == "squad":
|
124 |
+
pointer = getattr(pointer, "classifier")
|
125 |
+
else:
|
126 |
+
try:
|
127 |
+
pointer = getattr(pointer, scope_names[0])
|
128 |
+
except AttributeError:
|
129 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
130 |
+
continue
|
131 |
+
if len(scope_names) >= 2:
|
132 |
+
num = int(scope_names[1])
|
133 |
+
pointer = pointer[num]
|
134 |
+
if m_name[-11:] == "_embeddings":
|
135 |
+
pointer = getattr(pointer, "weight")
|
136 |
+
elif m_name == "kernel":
|
137 |
+
array = np.transpose(array)
|
138 |
+
try:
|
139 |
+
if pointer.shape != array.shape:
|
140 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
141 |
+
except AssertionError as e:
|
142 |
+
e.args += (pointer.shape, array.shape)
|
143 |
+
raise
|
144 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
145 |
+
pointer.data = torch.from_numpy(array)
|
146 |
+
return model
|
147 |
+
|
148 |
+
|
149 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert -> QDQBert
|
150 |
+
class QDQBertEmbeddings(nn.Module):
|
151 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
152 |
+
|
153 |
+
def __init__(self, config):
|
154 |
+
super().__init__()
|
155 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
156 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
157 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
158 |
+
|
159 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
160 |
+
# any TensorFlow checkpoint file
|
161 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
162 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
163 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
164 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
165 |
+
self.register_buffer(
|
166 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
167 |
+
)
|
168 |
+
self.register_buffer(
|
169 |
+
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
170 |
+
)
|
171 |
+
|
172 |
+
def forward(
|
173 |
+
self,
|
174 |
+
input_ids: Optional[torch.LongTensor] = None,
|
175 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
176 |
+
position_ids: Optional[torch.LongTensor] = None,
|
177 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
178 |
+
past_key_values_length: int = 0,
|
179 |
+
) -> torch.Tensor:
|
180 |
+
if input_ids is not None:
|
181 |
+
input_shape = input_ids.size()
|
182 |
+
else:
|
183 |
+
input_shape = inputs_embeds.size()[:-1]
|
184 |
+
|
185 |
+
seq_length = input_shape[1]
|
186 |
+
|
187 |
+
if position_ids is None:
|
188 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
189 |
+
|
190 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
191 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
192 |
+
# issue #5664
|
193 |
+
if token_type_ids is None:
|
194 |
+
if hasattr(self, "token_type_ids"):
|
195 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
196 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
197 |
+
token_type_ids = buffered_token_type_ids_expanded
|
198 |
+
else:
|
199 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
200 |
+
|
201 |
+
if inputs_embeds is None:
|
202 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
203 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
204 |
+
|
205 |
+
embeddings = inputs_embeds + token_type_embeddings
|
206 |
+
if self.position_embedding_type == "absolute":
|
207 |
+
position_embeddings = self.position_embeddings(position_ids)
|
208 |
+
embeddings += position_embeddings
|
209 |
+
embeddings = self.LayerNorm(embeddings)
|
210 |
+
embeddings = self.dropout(embeddings)
|
211 |
+
return embeddings
|
212 |
+
|
213 |
+
|
214 |
+
class QDQBertSelfAttention(nn.Module):
|
215 |
+
def __init__(self, config):
|
216 |
+
super().__init__()
|
217 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
218 |
+
raise ValueError(
|
219 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
220 |
+
f"heads ({config.num_attention_heads})"
|
221 |
+
)
|
222 |
+
|
223 |
+
self.num_attention_heads = config.num_attention_heads
|
224 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
225 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
226 |
+
|
227 |
+
self.query = quant_nn.QuantLinear(config.hidden_size, self.all_head_size)
|
228 |
+
self.key = quant_nn.QuantLinear(config.hidden_size, self.all_head_size)
|
229 |
+
self.value = quant_nn.QuantLinear(config.hidden_size, self.all_head_size)
|
230 |
+
|
231 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
232 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
233 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
234 |
+
self.max_position_embeddings = config.max_position_embeddings
|
235 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
236 |
+
|
237 |
+
self.is_decoder = config.is_decoder
|
238 |
+
|
239 |
+
self.matmul_q_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input)
|
240 |
+
self.matmul_k_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input)
|
241 |
+
self.matmul_v_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input)
|
242 |
+
self.matmul_a_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input)
|
243 |
+
|
244 |
+
def transpose_for_scores(self, x):
|
245 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
246 |
+
x = x.view(*new_x_shape)
|
247 |
+
return x.permute(0, 2, 1, 3)
|
248 |
+
|
249 |
+
def forward(
|
250 |
+
self,
|
251 |
+
hidden_states,
|
252 |
+
attention_mask=None,
|
253 |
+
head_mask=None,
|
254 |
+
encoder_hidden_states=None,
|
255 |
+
encoder_attention_mask=None,
|
256 |
+
past_key_value=None,
|
257 |
+
output_attentions=False,
|
258 |
+
):
|
259 |
+
mixed_query_layer = self.query(hidden_states)
|
260 |
+
|
261 |
+
# If this is instantiated as a cross-attention module, the keys
|
262 |
+
# and values come from an encoder; the attention mask needs to be
|
263 |
+
# such that the encoder's padding tokens are not attended to.
|
264 |
+
is_cross_attention = encoder_hidden_states is not None
|
265 |
+
|
266 |
+
if is_cross_attention and past_key_value is not None:
|
267 |
+
# reuse k,v, cross_attentions
|
268 |
+
key_layer = past_key_value[0]
|
269 |
+
value_layer = past_key_value[1]
|
270 |
+
attention_mask = encoder_attention_mask
|
271 |
+
elif is_cross_attention:
|
272 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
273 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
274 |
+
attention_mask = encoder_attention_mask
|
275 |
+
elif past_key_value is not None:
|
276 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
277 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
278 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
279 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
280 |
+
else:
|
281 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
282 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
283 |
+
|
284 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
285 |
+
|
286 |
+
if self.is_decoder:
|
287 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
288 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
289 |
+
# key/value_states (first "if" case)
|
290 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
291 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
292 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
293 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
294 |
+
past_key_value = (key_layer, value_layer)
|
295 |
+
|
296 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
297 |
+
attention_scores = torch.matmul(
|
298 |
+
self.matmul_q_input_quantizer(query_layer), self.matmul_k_input_quantizer(key_layer.transpose(-1, -2))
|
299 |
+
)
|
300 |
+
|
301 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
302 |
+
seq_length = hidden_states.size()[1]
|
303 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
304 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
305 |
+
distance = position_ids_l - position_ids_r
|
306 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
307 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
308 |
+
|
309 |
+
if self.position_embedding_type == "relative_key":
|
310 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
311 |
+
attention_scores = attention_scores + relative_position_scores
|
312 |
+
elif self.position_embedding_type == "relative_key_query":
|
313 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
314 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
315 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
316 |
+
|
317 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
318 |
+
if attention_mask is not None:
|
319 |
+
# Apply the attention mask is (precomputed for all layers in QDQBertModel forward() function)
|
320 |
+
attention_scores = attention_scores + attention_mask
|
321 |
+
|
322 |
+
# Normalize the attention scores to probabilities.
|
323 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
324 |
+
|
325 |
+
# This is actually dropping out entire tokens to attend to, which might
|
326 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
327 |
+
attention_probs = self.dropout(attention_probs)
|
328 |
+
|
329 |
+
# Mask heads if we want to
|
330 |
+
if head_mask is not None:
|
331 |
+
attention_probs = attention_probs * head_mask
|
332 |
+
|
333 |
+
context_layer = torch.matmul(
|
334 |
+
self.matmul_a_input_quantizer(attention_probs), self.matmul_v_input_quantizer(value_layer)
|
335 |
+
)
|
336 |
+
|
337 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
338 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
339 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
340 |
+
|
341 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
342 |
+
|
343 |
+
if self.is_decoder:
|
344 |
+
outputs = outputs + (past_key_value,)
|
345 |
+
return outputs
|
346 |
+
|
347 |
+
|
348 |
+
class QDQBertSelfOutput(nn.Module):
|
349 |
+
def __init__(self, config):
|
350 |
+
super().__init__()
|
351 |
+
# Quantize Linear layer
|
352 |
+
self.dense = quant_nn.QuantLinear(config.hidden_size, config.hidden_size)
|
353 |
+
|
354 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
355 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
356 |
+
|
357 |
+
# Quantize the inputs to the residual add
|
358 |
+
self.add_local_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input)
|
359 |
+
self.add_residual_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input)
|
360 |
+
|
361 |
+
def forward(self, hidden_states, input_tensor):
|
362 |
+
hidden_states = self.dense(hidden_states)
|
363 |
+
hidden_states = self.dropout(hidden_states)
|
364 |
+
# Quantize the inputs to the residual add
|
365 |
+
add_local = self.add_local_input_quantizer(hidden_states)
|
366 |
+
add_residual = self.add_residual_input_quantizer(input_tensor)
|
367 |
+
hidden_states = self.LayerNorm(add_local + add_residual)
|
368 |
+
return hidden_states
|
369 |
+
|
370 |
+
|
371 |
+
# Based on transformers.models.bert.modeling_bert.BertAttention with Bert -> QDQBert
|
372 |
+
class QDQBertAttention(nn.Module):
|
373 |
+
def __init__(self, config):
|
374 |
+
super().__init__()
|
375 |
+
self.self = QDQBertSelfAttention(config)
|
376 |
+
self.output = QDQBertSelfOutput(config)
|
377 |
+
self.pruned_heads = set()
|
378 |
+
|
379 |
+
def prune_heads(self, heads):
|
380 |
+
if len(heads) == 0:
|
381 |
+
return
|
382 |
+
heads, index = find_pruneable_heads_and_indices(
|
383 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
384 |
+
)
|
385 |
+
|
386 |
+
# Prune linear layers
|
387 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
388 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
389 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
390 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
391 |
+
|
392 |
+
# Update hyper params and store pruned heads
|
393 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
394 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
395 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
396 |
+
|
397 |
+
def forward(
|
398 |
+
self,
|
399 |
+
hidden_states,
|
400 |
+
attention_mask=None,
|
401 |
+
head_mask=None,
|
402 |
+
encoder_hidden_states=None,
|
403 |
+
encoder_attention_mask=None,
|
404 |
+
past_key_value=None,
|
405 |
+
output_attentions=False,
|
406 |
+
):
|
407 |
+
self_outputs = self.self(
|
408 |
+
hidden_states,
|
409 |
+
attention_mask,
|
410 |
+
head_mask,
|
411 |
+
encoder_hidden_states,
|
412 |
+
encoder_attention_mask,
|
413 |
+
past_key_value,
|
414 |
+
output_attentions,
|
415 |
+
)
|
416 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
417 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
418 |
+
return outputs
|
419 |
+
|
420 |
+
|
421 |
+
class QDQBertIntermediate(nn.Module):
|
422 |
+
def __init__(self, config):
|
423 |
+
super().__init__()
|
424 |
+
# Quantize Linear layer
|
425 |
+
self.dense = quant_nn.QuantLinear(config.hidden_size, config.intermediate_size)
|
426 |
+
if isinstance(config.hidden_act, str):
|
427 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
428 |
+
else:
|
429 |
+
self.intermediate_act_fn = config.hidden_act
|
430 |
+
|
431 |
+
def forward(self, hidden_states):
|
432 |
+
hidden_states = self.dense(hidden_states)
|
433 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
434 |
+
return hidden_states
|
435 |
+
|
436 |
+
|
437 |
+
class QDQBertOutput(nn.Module):
|
438 |
+
def __init__(self, config):
|
439 |
+
super().__init__()
|
440 |
+
# Quantize Linear layer
|
441 |
+
self.dense = quant_nn.QuantLinear(config.intermediate_size, config.hidden_size)
|
442 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
443 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
444 |
+
|
445 |
+
# Quantize the inputs to the residual add
|
446 |
+
self.add_local_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input)
|
447 |
+
self.add_residual_input_quantizer = TensorQuantizer(quant_nn.QuantLinear.default_quant_desc_input)
|
448 |
+
|
449 |
+
def forward(self, hidden_states, input_tensor):
|
450 |
+
hidden_states = self.dense(hidden_states)
|
451 |
+
hidden_states = self.dropout(hidden_states)
|
452 |
+
# Quantize the inputs to the residual add
|
453 |
+
add_local = self.add_local_input_quantizer(hidden_states)
|
454 |
+
add_residual = self.add_residual_input_quantizer(input_tensor)
|
455 |
+
hidden_states = self.LayerNorm(add_local + add_residual)
|
456 |
+
return hidden_states
|
457 |
+
|
458 |
+
|
459 |
+
# Based on transformers.models.bert.modeling_bert.BertLayer with Bert -> QDQBert
|
460 |
+
class QDQBertLayer(nn.Module):
|
461 |
+
def __init__(self, config):
|
462 |
+
super().__init__()
|
463 |
+
self.seq_len_dim = 1
|
464 |
+
self.attention = QDQBertAttention(config)
|
465 |
+
self.is_decoder = config.is_decoder
|
466 |
+
self.add_cross_attention = config.add_cross_attention
|
467 |
+
if self.add_cross_attention:
|
468 |
+
if not self.is_decoder:
|
469 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
470 |
+
self.crossattention = QDQBertAttention(config)
|
471 |
+
self.intermediate = QDQBertIntermediate(config)
|
472 |
+
self.output = QDQBertOutput(config)
|
473 |
+
|
474 |
+
def forward(
|
475 |
+
self,
|
476 |
+
hidden_states,
|
477 |
+
attention_mask=None,
|
478 |
+
head_mask=None,
|
479 |
+
encoder_hidden_states=None,
|
480 |
+
encoder_attention_mask=None,
|
481 |
+
past_key_value=None,
|
482 |
+
output_attentions=False,
|
483 |
+
):
|
484 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
485 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
486 |
+
self_attention_outputs = self.attention(
|
487 |
+
hidden_states,
|
488 |
+
attention_mask,
|
489 |
+
head_mask,
|
490 |
+
output_attentions=output_attentions,
|
491 |
+
past_key_value=self_attn_past_key_value,
|
492 |
+
)
|
493 |
+
attention_output = self_attention_outputs[0]
|
494 |
+
|
495 |
+
# if decoder, the last output is tuple of self-attn cache
|
496 |
+
if self.is_decoder:
|
497 |
+
outputs = self_attention_outputs[1:-1]
|
498 |
+
present_key_value = self_attention_outputs[-1]
|
499 |
+
else:
|
500 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
501 |
+
|
502 |
+
cross_attn_present_key_value = None
|
503 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
504 |
+
if not hasattr(self, "crossattention"):
|
505 |
+
raise ValueError(
|
506 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
507 |
+
" by setting `config.add_cross_attention=True`"
|
508 |
+
)
|
509 |
+
|
510 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
511 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
512 |
+
cross_attention_outputs = self.crossattention(
|
513 |
+
attention_output,
|
514 |
+
attention_mask,
|
515 |
+
head_mask,
|
516 |
+
encoder_hidden_states,
|
517 |
+
encoder_attention_mask,
|
518 |
+
cross_attn_past_key_value,
|
519 |
+
output_attentions,
|
520 |
+
)
|
521 |
+
attention_output = cross_attention_outputs[0]
|
522 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
523 |
+
|
524 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
525 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
526 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
527 |
+
|
528 |
+
layer_output = self.feed_forward_chunk(attention_output)
|
529 |
+
outputs = (layer_output,) + outputs
|
530 |
+
|
531 |
+
# if decoder, return the attn key/values as the last output
|
532 |
+
if self.is_decoder:
|
533 |
+
outputs = outputs + (present_key_value,)
|
534 |
+
|
535 |
+
return outputs
|
536 |
+
|
537 |
+
def feed_forward_chunk(self, attention_output):
|
538 |
+
intermediate_output = self.intermediate(attention_output)
|
539 |
+
layer_output = self.output(intermediate_output, attention_output)
|
540 |
+
return layer_output
|
541 |
+
|
542 |
+
|
543 |
+
# Based on transformers.models.bert.modeling_bert.BertEncoder with Bert -> QDQBert
|
544 |
+
class QDQBertEncoder(nn.Module):
|
545 |
+
def __init__(self, config):
|
546 |
+
super().__init__()
|
547 |
+
self.config = config
|
548 |
+
self.layer = nn.ModuleList([QDQBertLayer(config) for _ in range(config.num_hidden_layers)])
|
549 |
+
self.gradient_checkpointing = False
|
550 |
+
|
551 |
+
def forward(
|
552 |
+
self,
|
553 |
+
hidden_states,
|
554 |
+
attention_mask=None,
|
555 |
+
head_mask=None,
|
556 |
+
encoder_hidden_states=None,
|
557 |
+
encoder_attention_mask=None,
|
558 |
+
past_key_values=None,
|
559 |
+
use_cache=None,
|
560 |
+
output_attentions=False,
|
561 |
+
output_hidden_states=False,
|
562 |
+
return_dict=True,
|
563 |
+
):
|
564 |
+
all_hidden_states = () if output_hidden_states else None
|
565 |
+
all_self_attentions = () if output_attentions else None
|
566 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
567 |
+
|
568 |
+
next_decoder_cache = () if use_cache else None
|
569 |
+
for i, layer_module in enumerate(self.layer):
|
570 |
+
if output_hidden_states:
|
571 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
572 |
+
|
573 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
574 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
575 |
+
|
576 |
+
if self.gradient_checkpointing and self.training:
|
577 |
+
if use_cache:
|
578 |
+
logger.warning_once(
|
579 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
580 |
+
)
|
581 |
+
use_cache = False
|
582 |
+
layer_outputs = self._gradient_checkpointing_func(
|
583 |
+
layer_module.__call__,
|
584 |
+
hidden_states,
|
585 |
+
attention_mask,
|
586 |
+
layer_head_mask,
|
587 |
+
encoder_hidden_states,
|
588 |
+
encoder_attention_mask,
|
589 |
+
past_key_value,
|
590 |
+
output_attentions,
|
591 |
+
)
|
592 |
+
else:
|
593 |
+
layer_outputs = layer_module(
|
594 |
+
hidden_states,
|
595 |
+
attention_mask,
|
596 |
+
layer_head_mask,
|
597 |
+
encoder_hidden_states,
|
598 |
+
encoder_attention_mask,
|
599 |
+
past_key_value,
|
600 |
+
output_attentions,
|
601 |
+
)
|
602 |
+
|
603 |
+
hidden_states = layer_outputs[0]
|
604 |
+
if use_cache:
|
605 |
+
next_decoder_cache += (layer_outputs[-1],)
|
606 |
+
if output_attentions:
|
607 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
608 |
+
if self.config.add_cross_attention:
|
609 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
610 |
+
|
611 |
+
if output_hidden_states:
|
612 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
613 |
+
|
614 |
+
if not return_dict:
|
615 |
+
return tuple(
|
616 |
+
v
|
617 |
+
for v in [
|
618 |
+
hidden_states,
|
619 |
+
next_decoder_cache,
|
620 |
+
all_hidden_states,
|
621 |
+
all_self_attentions,
|
622 |
+
all_cross_attentions,
|
623 |
+
]
|
624 |
+
if v is not None
|
625 |
+
)
|
626 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
627 |
+
last_hidden_state=hidden_states,
|
628 |
+
past_key_values=next_decoder_cache,
|
629 |
+
hidden_states=all_hidden_states,
|
630 |
+
attentions=all_self_attentions,
|
631 |
+
cross_attentions=all_cross_attentions,
|
632 |
+
)
|
633 |
+
|
634 |
+
|
635 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert -> QDQBert
|
636 |
+
class QDQBertPooler(nn.Module):
|
637 |
+
def __init__(self, config):
|
638 |
+
super().__init__()
|
639 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
640 |
+
self.activation = nn.Tanh()
|
641 |
+
|
642 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
643 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
644 |
+
# to the first token.
|
645 |
+
first_token_tensor = hidden_states[:, 0]
|
646 |
+
pooled_output = self.dense(first_token_tensor)
|
647 |
+
pooled_output = self.activation(pooled_output)
|
648 |
+
return pooled_output
|
649 |
+
|
650 |
+
|
651 |
+
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert -> QDQBert
|
652 |
+
class QDQBertPredictionHeadTransform(nn.Module):
|
653 |
+
def __init__(self, config):
|
654 |
+
super().__init__()
|
655 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
656 |
+
if isinstance(config.hidden_act, str):
|
657 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
658 |
+
else:
|
659 |
+
self.transform_act_fn = config.hidden_act
|
660 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
661 |
+
|
662 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
663 |
+
hidden_states = self.dense(hidden_states)
|
664 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
665 |
+
hidden_states = self.LayerNorm(hidden_states)
|
666 |
+
return hidden_states
|
667 |
+
|
668 |
+
|
669 |
+
# Based on transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert -> QDQBert
|
670 |
+
class QDQBertLMPredictionHead(nn.Module):
|
671 |
+
def __init__(self, config):
|
672 |
+
super().__init__()
|
673 |
+
self.transform = QDQBertPredictionHeadTransform(config)
|
674 |
+
|
675 |
+
# The output weights are the same as the input embeddings, but there is
|
676 |
+
# an output-only bias for each token.
|
677 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
678 |
+
|
679 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
680 |
+
|
681 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
682 |
+
self.decoder.bias = self.bias
|
683 |
+
|
684 |
+
def forward(self, hidden_states):
|
685 |
+
hidden_states = self.transform(hidden_states)
|
686 |
+
hidden_states = self.decoder(hidden_states)
|
687 |
+
return hidden_states
|
688 |
+
|
689 |
+
|
690 |
+
# Based on transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert -> QDQBert
|
691 |
+
class QDQBertOnlyMLMHead(nn.Module):
|
692 |
+
def __init__(self, config):
|
693 |
+
super().__init__()
|
694 |
+
self.predictions = QDQBertLMPredictionHead(config)
|
695 |
+
|
696 |
+
def forward(self, sequence_output):
|
697 |
+
prediction_scores = self.predictions(sequence_output)
|
698 |
+
return prediction_scores
|
699 |
+
|
700 |
+
|
701 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert -> QDQBert
|
702 |
+
class QDQBertOnlyNSPHead(nn.Module):
|
703 |
+
def __init__(self, config):
|
704 |
+
super().__init__()
|
705 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
706 |
+
|
707 |
+
def forward(self, pooled_output):
|
708 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
709 |
+
return seq_relationship_score
|
710 |
+
|
711 |
+
|
712 |
+
# Based on transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert -> QDQBert
|
713 |
+
class QDQBertPreTrainingHeads(nn.Module):
|
714 |
+
def __init__(self, config):
|
715 |
+
super().__init__()
|
716 |
+
self.predictions = QDQBertLMPredictionHead(config)
|
717 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
718 |
+
|
719 |
+
def forward(self, sequence_output, pooled_output):
|
720 |
+
prediction_scores = self.predictions(sequence_output)
|
721 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
722 |
+
return prediction_scores, seq_relationship_score
|
723 |
+
|
724 |
+
|
725 |
+
# Based on transformers.models.bert.modeling_bert.BertPreTrainedModel with Bert -> QDQBert
|
726 |
+
class QDQBertPreTrainedModel(PreTrainedModel):
|
727 |
+
"""
|
728 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
729 |
+
models.
|
730 |
+
"""
|
731 |
+
|
732 |
+
config_class = QDQBertConfig
|
733 |
+
load_tf_weights = load_tf_weights_in_qdqbert
|
734 |
+
base_model_prefix = "bert"
|
735 |
+
supports_gradient_checkpointing = True
|
736 |
+
|
737 |
+
def _init_weights(self, module):
|
738 |
+
"""Initialize the weights"""
|
739 |
+
if isinstance(module, nn.Linear):
|
740 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
741 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
742 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
743 |
+
if module.bias is not None:
|
744 |
+
module.bias.data.zero_()
|
745 |
+
elif isinstance(module, nn.Embedding):
|
746 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
747 |
+
if module.padding_idx is not None:
|
748 |
+
module.weight.data[module.padding_idx].zero_()
|
749 |
+
elif isinstance(module, nn.LayerNorm):
|
750 |
+
module.bias.data.zero_()
|
751 |
+
module.weight.data.fill_(1.0)
|
752 |
+
|
753 |
+
|
754 |
+
QDQBERT_START_DOCSTRING = r"""
|
755 |
+
|
756 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
757 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
758 |
+
etc.)
|
759 |
+
|
760 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
761 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
762 |
+
and behavior.
|
763 |
+
|
764 |
+
Parameters:
|
765 |
+
config ([`QDQBertConfig`]): Model configuration class with all the parameters of the model.
|
766 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
767 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
768 |
+
"""
|
769 |
+
|
770 |
+
QDQBERT_INPUTS_DOCSTRING = r"""
|
771 |
+
Args:
|
772 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
773 |
+
Indices of input sequence tokens in the vocabulary.
|
774 |
+
|
775 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
776 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
777 |
+
|
778 |
+
[What are input IDs?](../glossary#input-ids)
|
779 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
780 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
781 |
+
|
782 |
+
- 1 for tokens that are **not masked**,
|
783 |
+
- 0 for tokens that are **masked**.
|
784 |
+
|
785 |
+
[What are attention masks?](../glossary#attention-mask)
|
786 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
787 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
788 |
+
1]`:
|
789 |
+
|
790 |
+
- 0 corresponds to a *sentence A* token,
|
791 |
+
- 1 corresponds to a *sentence B* token.
|
792 |
+
|
793 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
794 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
795 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
796 |
+
config.max_position_embeddings - 1]`.
|
797 |
+
|
798 |
+
[What are position IDs?](../glossary#position-ids)
|
799 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
800 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
801 |
+
|
802 |
+
- 1 indicates the head is **not masked**,
|
803 |
+
- 0 indicates the head is **masked**.
|
804 |
+
|
805 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
806 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
807 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
808 |
+
model's internal embedding lookup matrix.
|
809 |
+
output_attentions (`bool`, *optional*):
|
810 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
811 |
+
tensors for more detail.
|
812 |
+
output_hidden_states (`bool`, *optional*):
|
813 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
814 |
+
more detail.
|
815 |
+
return_dict (`bool`, *optional*):
|
816 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
817 |
+
"""
|
818 |
+
|
819 |
+
|
820 |
+
@add_start_docstrings(
|
821 |
+
"The bare QDQBERT Model transformer outputting raw hidden-states without any specific head on top.",
|
822 |
+
QDQBERT_START_DOCSTRING,
|
823 |
+
)
|
824 |
+
class QDQBertModel(QDQBertPreTrainedModel):
|
825 |
+
"""
|
826 |
+
|
827 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
828 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
829 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
830 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
831 |
+
|
832 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
833 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
834 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
835 |
+
"""
|
836 |
+
|
837 |
+
def __init__(self, config, add_pooling_layer: bool = True):
|
838 |
+
requires_backends(self, "pytorch_quantization")
|
839 |
+
super().__init__(config)
|
840 |
+
self.config = config
|
841 |
+
|
842 |
+
self.embeddings = QDQBertEmbeddings(config)
|
843 |
+
self.encoder = QDQBertEncoder(config)
|
844 |
+
|
845 |
+
self.pooler = QDQBertPooler(config) if add_pooling_layer else None
|
846 |
+
|
847 |
+
# Initialize weights and apply final processing
|
848 |
+
self.post_init()
|
849 |
+
|
850 |
+
def get_input_embeddings(self):
|
851 |
+
return self.embeddings.word_embeddings
|
852 |
+
|
853 |
+
def set_input_embeddings(self, value):
|
854 |
+
self.embeddings.word_embeddings = value
|
855 |
+
|
856 |
+
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]):
|
857 |
+
"""
|
858 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
859 |
+
class PreTrainedModel
|
860 |
+
"""
|
861 |
+
for layer, heads in heads_to_prune.items():
|
862 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
863 |
+
|
864 |
+
@add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
865 |
+
@add_code_sample_docstrings(
|
866 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
867 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
868 |
+
config_class=_CONFIG_FOR_DOC,
|
869 |
+
)
|
870 |
+
def forward(
|
871 |
+
self,
|
872 |
+
input_ids: Optional[torch.LongTensor] = None,
|
873 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
874 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
875 |
+
position_ids: Optional[torch.LongTensor] = None,
|
876 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
877 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
878 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
879 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
880 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
881 |
+
use_cache: Optional[bool] = None,
|
882 |
+
output_attentions: Optional[bool] = None,
|
883 |
+
output_hidden_states: Optional[bool] = None,
|
884 |
+
return_dict: Optional[bool] = None,
|
885 |
+
) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]:
|
886 |
+
r"""
|
887 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
888 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
889 |
+
the model is configured as a decoder.
|
890 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
891 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
892 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
893 |
+
|
894 |
+
- 1 for tokens that are **not masked**,
|
895 |
+
- 0 for tokens that are **masked**.
|
896 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
897 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
898 |
+
|
899 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
900 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
901 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
902 |
+
use_cache (`bool`, *optional*):
|
903 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
904 |
+
`past_key_values`).
|
905 |
+
"""
|
906 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
907 |
+
output_hidden_states = (
|
908 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
909 |
+
)
|
910 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
911 |
+
|
912 |
+
if self.config.is_decoder:
|
913 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
914 |
+
else:
|
915 |
+
use_cache = False
|
916 |
+
|
917 |
+
if input_ids is not None and inputs_embeds is not None:
|
918 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
919 |
+
elif input_ids is not None:
|
920 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
921 |
+
input_shape = input_ids.size()
|
922 |
+
batch_size, seq_length = input_shape
|
923 |
+
elif inputs_embeds is not None:
|
924 |
+
input_shape = inputs_embeds.size()[:-1]
|
925 |
+
batch_size, seq_length = input_shape
|
926 |
+
else:
|
927 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
928 |
+
|
929 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
930 |
+
|
931 |
+
# past_key_values_length
|
932 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
933 |
+
|
934 |
+
if attention_mask is None:
|
935 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
936 |
+
|
937 |
+
if token_type_ids is None:
|
938 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
939 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
940 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
941 |
+
token_type_ids = buffered_token_type_ids_expanded
|
942 |
+
else:
|
943 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
944 |
+
|
945 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
946 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
947 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
948 |
+
|
949 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
950 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
951 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
952 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
953 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
954 |
+
if encoder_attention_mask is None:
|
955 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
956 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
957 |
+
else:
|
958 |
+
encoder_extended_attention_mask = None
|
959 |
+
|
960 |
+
# Prepare head mask if needed
|
961 |
+
# 1.0 in head_mask indicate we keep the head
|
962 |
+
# attention_probs has shape bsz x n_heads x N x N
|
963 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
964 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
965 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
966 |
+
|
967 |
+
embedding_output = self.embeddings(
|
968 |
+
input_ids=input_ids,
|
969 |
+
position_ids=position_ids,
|
970 |
+
token_type_ids=token_type_ids,
|
971 |
+
inputs_embeds=inputs_embeds,
|
972 |
+
past_key_values_length=past_key_values_length,
|
973 |
+
)
|
974 |
+
encoder_outputs = self.encoder(
|
975 |
+
embedding_output,
|
976 |
+
attention_mask=extended_attention_mask,
|
977 |
+
head_mask=head_mask,
|
978 |
+
encoder_hidden_states=encoder_hidden_states,
|
979 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
980 |
+
past_key_values=past_key_values,
|
981 |
+
use_cache=use_cache,
|
982 |
+
output_attentions=output_attentions,
|
983 |
+
output_hidden_states=output_hidden_states,
|
984 |
+
return_dict=return_dict,
|
985 |
+
)
|
986 |
+
sequence_output = encoder_outputs[0]
|
987 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
988 |
+
|
989 |
+
if not return_dict:
|
990 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
991 |
+
|
992 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
993 |
+
last_hidden_state=sequence_output,
|
994 |
+
pooler_output=pooled_output,
|
995 |
+
past_key_values=encoder_outputs.past_key_values,
|
996 |
+
hidden_states=encoder_outputs.hidden_states,
|
997 |
+
attentions=encoder_outputs.attentions,
|
998 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
999 |
+
)
|
1000 |
+
|
1001 |
+
|
1002 |
+
@add_start_docstrings(
|
1003 |
+
"""QDQBERT Model with a `language modeling` head on top for CLM fine-tuning.""", QDQBERT_START_DOCSTRING
|
1004 |
+
)
|
1005 |
+
class QDQBertLMHeadModel(QDQBertPreTrainedModel):
|
1006 |
+
_tied_weights_keys = ["predictions.decoder.weight", "predictions.decoder.bias"]
|
1007 |
+
|
1008 |
+
def __init__(self, config):
|
1009 |
+
super().__init__(config)
|
1010 |
+
|
1011 |
+
if not config.is_decoder:
|
1012 |
+
logger.warning("If you want to use `QDQBertLMHeadModel` as a standalone, add `is_decoder=True.`")
|
1013 |
+
|
1014 |
+
self.bert = QDQBertModel(config, add_pooling_layer=False)
|
1015 |
+
self.cls = QDQBertOnlyMLMHead(config)
|
1016 |
+
|
1017 |
+
# Initialize weights and apply final processing
|
1018 |
+
self.post_init()
|
1019 |
+
|
1020 |
+
def get_output_embeddings(self):
|
1021 |
+
return self.cls.predictions.decoder
|
1022 |
+
|
1023 |
+
def set_output_embeddings(self, new_embeddings):
|
1024 |
+
self.cls.predictions.decoder = new_embeddings
|
1025 |
+
|
1026 |
+
@add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1027 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
1028 |
+
def forward(
|
1029 |
+
self,
|
1030 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1031 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1032 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1033 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1034 |
+
head_mask: Optional[torch.Tensor] = None,
|
1035 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1036 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1037 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1038 |
+
labels: Optional[torch.LongTensor] = None,
|
1039 |
+
past_key_values: Optional[Tuple[Tuple[torch.LongTensor]]] = None,
|
1040 |
+
use_cache: Optional[bool] = None,
|
1041 |
+
output_attentions: Optional[bool] = None,
|
1042 |
+
output_hidden_states: Optional[bool] = None,
|
1043 |
+
return_dict: Optional[bool] = None,
|
1044 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
1045 |
+
r"""
|
1046 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1047 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1048 |
+
the model is configured as a decoder.
|
1049 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1050 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1051 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1052 |
+
|
1053 |
+
- 1 for tokens that are **not masked**,
|
1054 |
+
- 0 for tokens that are **masked**.
|
1055 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1056 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1057 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
1058 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
|
1059 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1060 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1061 |
+
|
1062 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1063 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1064 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1065 |
+
use_cache (`bool`, *optional*):
|
1066 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1067 |
+
`past_key_values`).
|
1068 |
+
|
1069 |
+
Returns:
|
1070 |
+
|
1071 |
+
Example:
|
1072 |
+
|
1073 |
+
```python
|
1074 |
+
>>> from transformers import AutoTokenizer, QDQBertLMHeadModel, QDQBertConfig
|
1075 |
+
>>> import torch
|
1076 |
+
|
1077 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")
|
1078 |
+
>>> config = QDQBertConfig.from_pretrained("google-bert/bert-base-cased")
|
1079 |
+
>>> config.is_decoder = True
|
1080 |
+
>>> model = QDQBertLMHeadModel.from_pretrained("google-bert/bert-base-cased", config=config)
|
1081 |
+
|
1082 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1083 |
+
>>> outputs = model(**inputs)
|
1084 |
+
|
1085 |
+
>>> prediction_logits = outputs.logits
|
1086 |
+
```"""
|
1087 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1088 |
+
if labels is not None:
|
1089 |
+
use_cache = False
|
1090 |
+
|
1091 |
+
outputs = self.bert(
|
1092 |
+
input_ids,
|
1093 |
+
attention_mask=attention_mask,
|
1094 |
+
token_type_ids=token_type_ids,
|
1095 |
+
position_ids=position_ids,
|
1096 |
+
head_mask=head_mask,
|
1097 |
+
inputs_embeds=inputs_embeds,
|
1098 |
+
encoder_hidden_states=encoder_hidden_states,
|
1099 |
+
encoder_attention_mask=encoder_attention_mask,
|
1100 |
+
past_key_values=past_key_values,
|
1101 |
+
use_cache=use_cache,
|
1102 |
+
output_attentions=output_attentions,
|
1103 |
+
output_hidden_states=output_hidden_states,
|
1104 |
+
return_dict=return_dict,
|
1105 |
+
)
|
1106 |
+
|
1107 |
+
sequence_output = outputs[0]
|
1108 |
+
prediction_scores = self.cls(sequence_output)
|
1109 |
+
|
1110 |
+
lm_loss = None
|
1111 |
+
if labels is not None:
|
1112 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1113 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1114 |
+
labels = labels[:, 1:].contiguous()
|
1115 |
+
loss_fct = CrossEntropyLoss()
|
1116 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1117 |
+
|
1118 |
+
if not return_dict:
|
1119 |
+
output = (prediction_scores,) + outputs[2:]
|
1120 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1121 |
+
|
1122 |
+
return CausalLMOutputWithCrossAttentions(
|
1123 |
+
loss=lm_loss,
|
1124 |
+
logits=prediction_scores,
|
1125 |
+
past_key_values=outputs.past_key_values,
|
1126 |
+
hidden_states=outputs.hidden_states,
|
1127 |
+
attentions=outputs.attentions,
|
1128 |
+
cross_attentions=outputs.cross_attentions,
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
def prepare_inputs_for_generation(
|
1132 |
+
self,
|
1133 |
+
input_ids: Optional[torch.LongTensor],
|
1134 |
+
past_key_values=None,
|
1135 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1136 |
+
**model_kwargs,
|
1137 |
+
):
|
1138 |
+
input_shape = input_ids.shape
|
1139 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1140 |
+
if attention_mask is None:
|
1141 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1142 |
+
|
1143 |
+
# cut decoder_input_ids if past_key_values is used
|
1144 |
+
if past_key_values is not None:
|
1145 |
+
past_length = past_key_values[0][0].shape[2]
|
1146 |
+
|
1147 |
+
# Some generation methods already pass only the last input ID
|
1148 |
+
if input_ids.shape[1] > past_length:
|
1149 |
+
remove_prefix_length = past_length
|
1150 |
+
else:
|
1151 |
+
# Default to old behavior: keep only final ID
|
1152 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1153 |
+
|
1154 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1155 |
+
|
1156 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
|
1157 |
+
|
1158 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1159 |
+
reordered_past = ()
|
1160 |
+
for layer_past in past_key_values:
|
1161 |
+
reordered_past += (
|
1162 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1163 |
+
)
|
1164 |
+
return reordered_past
|
1165 |
+
|
1166 |
+
|
1167 |
+
@add_start_docstrings("""QDQBERT Model with a `language modeling` head on top.""", QDQBERT_START_DOCSTRING)
|
1168 |
+
class QDQBertForMaskedLM(QDQBertPreTrainedModel):
|
1169 |
+
_tied_weights_keys = ["predictions.decoder.weight", "predictions.decoder.bias"]
|
1170 |
+
|
1171 |
+
def __init__(self, config):
|
1172 |
+
super().__init__(config)
|
1173 |
+
|
1174 |
+
if config.is_decoder:
|
1175 |
+
logger.warning(
|
1176 |
+
"If you want to use `QDQBertForMaskedLM` make sure `config.is_decoder=False` for "
|
1177 |
+
"bi-directional self-attention."
|
1178 |
+
)
|
1179 |
+
|
1180 |
+
self.bert = QDQBertModel(config, add_pooling_layer=False)
|
1181 |
+
self.cls = QDQBertOnlyMLMHead(config)
|
1182 |
+
|
1183 |
+
# Initialize weights and apply final processing
|
1184 |
+
self.post_init()
|
1185 |
+
|
1186 |
+
def get_output_embeddings(self):
|
1187 |
+
return self.cls.predictions.decoder
|
1188 |
+
|
1189 |
+
def set_output_embeddings(self, new_embeddings):
|
1190 |
+
self.cls.predictions.decoder = new_embeddings
|
1191 |
+
|
1192 |
+
@add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1193 |
+
@add_code_sample_docstrings(
|
1194 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1195 |
+
output_type=MaskedLMOutput,
|
1196 |
+
config_class=_CONFIG_FOR_DOC,
|
1197 |
+
)
|
1198 |
+
def forward(
|
1199 |
+
self,
|
1200 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1201 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1202 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1203 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1204 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1205 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1206 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1207 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1208 |
+
labels: Optional[torch.LongTensor] = None,
|
1209 |
+
output_attentions: Optional[bool] = None,
|
1210 |
+
output_hidden_states: Optional[bool] = None,
|
1211 |
+
return_dict: Optional[bool] = None,
|
1212 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
1213 |
+
r"""
|
1214 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1215 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1216 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1217 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1218 |
+
"""
|
1219 |
+
|
1220 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1221 |
+
|
1222 |
+
outputs = self.bert(
|
1223 |
+
input_ids,
|
1224 |
+
attention_mask=attention_mask,
|
1225 |
+
token_type_ids=token_type_ids,
|
1226 |
+
position_ids=position_ids,
|
1227 |
+
head_mask=head_mask,
|
1228 |
+
inputs_embeds=inputs_embeds,
|
1229 |
+
encoder_hidden_states=encoder_hidden_states,
|
1230 |
+
encoder_attention_mask=encoder_attention_mask,
|
1231 |
+
output_attentions=output_attentions,
|
1232 |
+
output_hidden_states=output_hidden_states,
|
1233 |
+
return_dict=return_dict,
|
1234 |
+
)
|
1235 |
+
|
1236 |
+
sequence_output = outputs[0]
|
1237 |
+
prediction_scores = self.cls(sequence_output)
|
1238 |
+
|
1239 |
+
masked_lm_loss = None
|
1240 |
+
if labels is not None:
|
1241 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1242 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1243 |
+
|
1244 |
+
if not return_dict:
|
1245 |
+
output = (prediction_scores,) + outputs[2:]
|
1246 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1247 |
+
|
1248 |
+
return MaskedLMOutput(
|
1249 |
+
loss=masked_lm_loss,
|
1250 |
+
logits=prediction_scores,
|
1251 |
+
hidden_states=outputs.hidden_states,
|
1252 |
+
attentions=outputs.attentions,
|
1253 |
+
)
|
1254 |
+
|
1255 |
+
def prepare_inputs_for_generation(
|
1256 |
+
self, input_ids: torch.LongTensor, attention_mask: Optional[torch.FloatTensor] = None, **model_kwargs
|
1257 |
+
):
|
1258 |
+
input_shape = input_ids.shape
|
1259 |
+
effective_batch_size = input_shape[0]
|
1260 |
+
|
1261 |
+
# add a dummy token
|
1262 |
+
if self.config.pad_token_id is None:
|
1263 |
+
raise ValueError("The PAD token should be defined for generation")
|
1264 |
+
|
1265 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
1266 |
+
dummy_token = torch.full(
|
1267 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
1268 |
+
)
|
1269 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1270 |
+
|
1271 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1272 |
+
|
1273 |
+
|
1274 |
+
@add_start_docstrings(
|
1275 |
+
"""Bert Model with a `next sentence prediction (classification)` head on top.""",
|
1276 |
+
QDQBERT_START_DOCSTRING,
|
1277 |
+
)
|
1278 |
+
class QDQBertForNextSentencePrediction(QDQBertPreTrainedModel):
|
1279 |
+
def __init__(self, config):
|
1280 |
+
super().__init__(config)
|
1281 |
+
|
1282 |
+
self.bert = QDQBertModel(config)
|
1283 |
+
self.cls = QDQBertOnlyNSPHead(config)
|
1284 |
+
|
1285 |
+
# Initialize weights and apply final processing
|
1286 |
+
self.post_init()
|
1287 |
+
|
1288 |
+
@add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1289 |
+
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
|
1290 |
+
def forward(
|
1291 |
+
self,
|
1292 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1293 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1294 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1295 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1296 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1297 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1298 |
+
labels: Optional[torch.LongTensor] = None,
|
1299 |
+
output_attentions: Optional[bool] = None,
|
1300 |
+
output_hidden_states: Optional[bool] = None,
|
1301 |
+
return_dict: Optional[bool] = None,
|
1302 |
+
**kwargs,
|
1303 |
+
) -> Union[Tuple, NextSentencePredictorOutput]:
|
1304 |
+
r"""
|
1305 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1306 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1307 |
+
(see `input_ids` docstring). Indices should be in `[0, 1]`:
|
1308 |
+
|
1309 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1310 |
+
- 1 indicates sequence B is a random sequence.
|
1311 |
+
|
1312 |
+
Returns:
|
1313 |
+
|
1314 |
+
Example:
|
1315 |
+
|
1316 |
+
```python
|
1317 |
+
>>> from transformers import AutoTokenizer, QDQBertForNextSentencePrediction
|
1318 |
+
>>> import torch
|
1319 |
+
|
1320 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
1321 |
+
>>> model = QDQBertForNextSentencePrediction.from_pretrained("google-bert/bert-base-uncased")
|
1322 |
+
|
1323 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1324 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
1325 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
|
1326 |
+
|
1327 |
+
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
|
1328 |
+
>>> logits = outputs.logits
|
1329 |
+
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
|
1330 |
+
```"""
|
1331 |
+
|
1332 |
+
if "next_sentence_label" in kwargs:
|
1333 |
+
warnings.warn(
|
1334 |
+
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
|
1335 |
+
" `labels` instead.",
|
1336 |
+
FutureWarning,
|
1337 |
+
)
|
1338 |
+
labels = kwargs.pop("next_sentence_label")
|
1339 |
+
|
1340 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1341 |
+
|
1342 |
+
outputs = self.bert(
|
1343 |
+
input_ids,
|
1344 |
+
attention_mask=attention_mask,
|
1345 |
+
token_type_ids=token_type_ids,
|
1346 |
+
position_ids=position_ids,
|
1347 |
+
head_mask=head_mask,
|
1348 |
+
inputs_embeds=inputs_embeds,
|
1349 |
+
output_attentions=output_attentions,
|
1350 |
+
output_hidden_states=output_hidden_states,
|
1351 |
+
return_dict=return_dict,
|
1352 |
+
)
|
1353 |
+
|
1354 |
+
pooled_output = outputs[1]
|
1355 |
+
|
1356 |
+
seq_relationship_scores = self.cls(pooled_output)
|
1357 |
+
|
1358 |
+
next_sentence_loss = None
|
1359 |
+
if labels is not None:
|
1360 |
+
loss_fct = CrossEntropyLoss()
|
1361 |
+
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
|
1362 |
+
|
1363 |
+
if not return_dict:
|
1364 |
+
output = (seq_relationship_scores,) + outputs[2:]
|
1365 |
+
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
|
1366 |
+
|
1367 |
+
return NextSentencePredictorOutput(
|
1368 |
+
loss=next_sentence_loss,
|
1369 |
+
logits=seq_relationship_scores,
|
1370 |
+
hidden_states=outputs.hidden_states,
|
1371 |
+
attentions=outputs.attentions,
|
1372 |
+
)
|
1373 |
+
|
1374 |
+
|
1375 |
+
@add_start_docstrings(
|
1376 |
+
"""
|
1377 |
+
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1378 |
+
output) e.g. for GLUE tasks.
|
1379 |
+
""",
|
1380 |
+
QDQBERT_START_DOCSTRING,
|
1381 |
+
)
|
1382 |
+
class QDQBertForSequenceClassification(QDQBertPreTrainedModel):
|
1383 |
+
def __init__(self, config):
|
1384 |
+
super().__init__(config)
|
1385 |
+
self.num_labels = config.num_labels
|
1386 |
+
self.config = config
|
1387 |
+
|
1388 |
+
self.bert = QDQBertModel(config)
|
1389 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1390 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1391 |
+
# Initialize weights and apply final processing
|
1392 |
+
self.post_init()
|
1393 |
+
|
1394 |
+
@add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1395 |
+
@add_code_sample_docstrings(
|
1396 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1397 |
+
output_type=SequenceClassifierOutput,
|
1398 |
+
config_class=_CONFIG_FOR_DOC,
|
1399 |
+
)
|
1400 |
+
def forward(
|
1401 |
+
self,
|
1402 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1403 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1404 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1405 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1406 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1407 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1408 |
+
labels: Optional[torch.LongTensor] = None,
|
1409 |
+
output_attentions: Optional[bool] = None,
|
1410 |
+
output_hidden_states: Optional[bool] = None,
|
1411 |
+
return_dict: Optional[bool] = None,
|
1412 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1413 |
+
r"""
|
1414 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1415 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1416 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1417 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1418 |
+
"""
|
1419 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1420 |
+
|
1421 |
+
outputs = self.bert(
|
1422 |
+
input_ids,
|
1423 |
+
attention_mask=attention_mask,
|
1424 |
+
token_type_ids=token_type_ids,
|
1425 |
+
position_ids=position_ids,
|
1426 |
+
head_mask=head_mask,
|
1427 |
+
inputs_embeds=inputs_embeds,
|
1428 |
+
output_attentions=output_attentions,
|
1429 |
+
output_hidden_states=output_hidden_states,
|
1430 |
+
return_dict=return_dict,
|
1431 |
+
)
|
1432 |
+
|
1433 |
+
pooled_output = outputs[1]
|
1434 |
+
|
1435 |
+
pooled_output = self.dropout(pooled_output)
|
1436 |
+
logits = self.classifier(pooled_output)
|
1437 |
+
|
1438 |
+
loss = None
|
1439 |
+
if labels is not None:
|
1440 |
+
if self.config.problem_type is None:
|
1441 |
+
if self.num_labels == 1:
|
1442 |
+
self.config.problem_type = "regression"
|
1443 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1444 |
+
self.config.problem_type = "single_label_classification"
|
1445 |
+
else:
|
1446 |
+
self.config.problem_type = "multi_label_classification"
|
1447 |
+
|
1448 |
+
if self.config.problem_type == "regression":
|
1449 |
+
loss_fct = MSELoss()
|
1450 |
+
if self.num_labels == 1:
|
1451 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1452 |
+
else:
|
1453 |
+
loss = loss_fct(logits, labels)
|
1454 |
+
elif self.config.problem_type == "single_label_classification":
|
1455 |
+
loss_fct = CrossEntropyLoss()
|
1456 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1457 |
+
elif self.config.problem_type == "multi_label_classification":
|
1458 |
+
loss_fct = BCEWithLogitsLoss()
|
1459 |
+
loss = loss_fct(logits, labels)
|
1460 |
+
if not return_dict:
|
1461 |
+
output = (logits,) + outputs[2:]
|
1462 |
+
return ((loss,) + output) if loss is not None else output
|
1463 |
+
|
1464 |
+
return SequenceClassifierOutput(
|
1465 |
+
loss=loss,
|
1466 |
+
logits=logits,
|
1467 |
+
hidden_states=outputs.hidden_states,
|
1468 |
+
attentions=outputs.attentions,
|
1469 |
+
)
|
1470 |
+
|
1471 |
+
|
1472 |
+
@add_start_docstrings(
|
1473 |
+
"""
|
1474 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1475 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1476 |
+
""",
|
1477 |
+
QDQBERT_START_DOCSTRING,
|
1478 |
+
)
|
1479 |
+
class QDQBertForMultipleChoice(QDQBertPreTrainedModel):
|
1480 |
+
def __init__(self, config):
|
1481 |
+
super().__init__(config)
|
1482 |
+
|
1483 |
+
self.bert = QDQBertModel(config)
|
1484 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1485 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1486 |
+
|
1487 |
+
# Initialize weights and apply final processing
|
1488 |
+
self.post_init()
|
1489 |
+
|
1490 |
+
@add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1491 |
+
@add_code_sample_docstrings(
|
1492 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1493 |
+
output_type=MultipleChoiceModelOutput,
|
1494 |
+
config_class=_CONFIG_FOR_DOC,
|
1495 |
+
)
|
1496 |
+
def forward(
|
1497 |
+
self,
|
1498 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1499 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1500 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1501 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1502 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1503 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1504 |
+
labels: Optional[torch.LongTensor] = None,
|
1505 |
+
output_attentions: Optional[bool] = None,
|
1506 |
+
output_hidden_states: Optional[bool] = None,
|
1507 |
+
return_dict: Optional[bool] = None,
|
1508 |
+
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
1509 |
+
r"""
|
1510 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1511 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1512 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1513 |
+
`input_ids` above)
|
1514 |
+
"""
|
1515 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1516 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1517 |
+
|
1518 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1519 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1520 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1521 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1522 |
+
inputs_embeds = (
|
1523 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1524 |
+
if inputs_embeds is not None
|
1525 |
+
else None
|
1526 |
+
)
|
1527 |
+
|
1528 |
+
outputs = self.bert(
|
1529 |
+
input_ids,
|
1530 |
+
attention_mask=attention_mask,
|
1531 |
+
token_type_ids=token_type_ids,
|
1532 |
+
position_ids=position_ids,
|
1533 |
+
head_mask=head_mask,
|
1534 |
+
inputs_embeds=inputs_embeds,
|
1535 |
+
output_attentions=output_attentions,
|
1536 |
+
output_hidden_states=output_hidden_states,
|
1537 |
+
return_dict=return_dict,
|
1538 |
+
)
|
1539 |
+
|
1540 |
+
pooled_output = outputs[1]
|
1541 |
+
|
1542 |
+
pooled_output = self.dropout(pooled_output)
|
1543 |
+
logits = self.classifier(pooled_output)
|
1544 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1545 |
+
|
1546 |
+
loss = None
|
1547 |
+
if labels is not None:
|
1548 |
+
loss_fct = CrossEntropyLoss()
|
1549 |
+
loss = loss_fct(reshaped_logits, labels)
|
1550 |
+
|
1551 |
+
if not return_dict:
|
1552 |
+
output = (reshaped_logits,) + outputs[2:]
|
1553 |
+
return ((loss,) + output) if loss is not None else output
|
1554 |
+
|
1555 |
+
return MultipleChoiceModelOutput(
|
1556 |
+
loss=loss,
|
1557 |
+
logits=reshaped_logits,
|
1558 |
+
hidden_states=outputs.hidden_states,
|
1559 |
+
attentions=outputs.attentions,
|
1560 |
+
)
|
1561 |
+
|
1562 |
+
|
1563 |
+
@add_start_docstrings(
|
1564 |
+
"""
|
1565 |
+
QDQBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1566 |
+
Named-Entity-Recognition (NER) tasks.
|
1567 |
+
""",
|
1568 |
+
QDQBERT_START_DOCSTRING,
|
1569 |
+
)
|
1570 |
+
class QDQBertForTokenClassification(QDQBertPreTrainedModel):
|
1571 |
+
def __init__(self, config):
|
1572 |
+
super().__init__(config)
|
1573 |
+
self.num_labels = config.num_labels
|
1574 |
+
|
1575 |
+
self.bert = QDQBertModel(config, add_pooling_layer=False)
|
1576 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1577 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1578 |
+
|
1579 |
+
# Initialize weights and apply final processing
|
1580 |
+
self.post_init()
|
1581 |
+
|
1582 |
+
@add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1583 |
+
@add_code_sample_docstrings(
|
1584 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1585 |
+
output_type=TokenClassifierOutput,
|
1586 |
+
config_class=_CONFIG_FOR_DOC,
|
1587 |
+
)
|
1588 |
+
def forward(
|
1589 |
+
self,
|
1590 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1591 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1592 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1593 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1594 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1595 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1596 |
+
labels: Optional[torch.LongTensor] = None,
|
1597 |
+
output_attentions: Optional[bool] = None,
|
1598 |
+
output_hidden_states: Optional[bool] = None,
|
1599 |
+
return_dict: Optional[bool] = None,
|
1600 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1601 |
+
r"""
|
1602 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1603 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1604 |
+
"""
|
1605 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1606 |
+
|
1607 |
+
outputs = self.bert(
|
1608 |
+
input_ids,
|
1609 |
+
attention_mask=attention_mask,
|
1610 |
+
token_type_ids=token_type_ids,
|
1611 |
+
position_ids=position_ids,
|
1612 |
+
head_mask=head_mask,
|
1613 |
+
inputs_embeds=inputs_embeds,
|
1614 |
+
output_attentions=output_attentions,
|
1615 |
+
output_hidden_states=output_hidden_states,
|
1616 |
+
return_dict=return_dict,
|
1617 |
+
)
|
1618 |
+
|
1619 |
+
sequence_output = outputs[0]
|
1620 |
+
|
1621 |
+
sequence_output = self.dropout(sequence_output)
|
1622 |
+
logits = self.classifier(sequence_output)
|
1623 |
+
|
1624 |
+
loss = None
|
1625 |
+
if labels is not None:
|
1626 |
+
loss_fct = CrossEntropyLoss()
|
1627 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1628 |
+
|
1629 |
+
if not return_dict:
|
1630 |
+
output = (logits,) + outputs[2:]
|
1631 |
+
return ((loss,) + output) if loss is not None else output
|
1632 |
+
|
1633 |
+
return TokenClassifierOutput(
|
1634 |
+
loss=loss,
|
1635 |
+
logits=logits,
|
1636 |
+
hidden_states=outputs.hidden_states,
|
1637 |
+
attentions=outputs.attentions,
|
1638 |
+
)
|
1639 |
+
|
1640 |
+
|
1641 |
+
@add_start_docstrings(
|
1642 |
+
"""
|
1643 |
+
QDQBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1644 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1645 |
+
""",
|
1646 |
+
QDQBERT_START_DOCSTRING,
|
1647 |
+
)
|
1648 |
+
class QDQBertForQuestionAnswering(QDQBertPreTrainedModel):
|
1649 |
+
def __init__(self, config):
|
1650 |
+
super().__init__(config)
|
1651 |
+
self.num_labels = config.num_labels
|
1652 |
+
|
1653 |
+
self.bert = QDQBertModel(config, add_pooling_layer=False)
|
1654 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1655 |
+
|
1656 |
+
# Initialize weights and apply final processing
|
1657 |
+
self.post_init()
|
1658 |
+
|
1659 |
+
@add_start_docstrings_to_model_forward(QDQBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1660 |
+
@add_code_sample_docstrings(
|
1661 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1662 |
+
output_type=QuestionAnsweringModelOutput,
|
1663 |
+
config_class=_CONFIG_FOR_DOC,
|
1664 |
+
)
|
1665 |
+
def forward(
|
1666 |
+
self,
|
1667 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1668 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1669 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1670 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1671 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1672 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1673 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1674 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1675 |
+
output_attentions: Optional[bool] = None,
|
1676 |
+
output_hidden_states: Optional[bool] = None,
|
1677 |
+
return_dict: Optional[bool] = None,
|
1678 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1679 |
+
r"""
|
1680 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1681 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1682 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1683 |
+
are not taken into account for computing the loss.
|
1684 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1685 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1686 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1687 |
+
are not taken into account for computing the loss.
|
1688 |
+
"""
|
1689 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1690 |
+
|
1691 |
+
outputs = self.bert(
|
1692 |
+
input_ids,
|
1693 |
+
attention_mask=attention_mask,
|
1694 |
+
token_type_ids=token_type_ids,
|
1695 |
+
position_ids=position_ids,
|
1696 |
+
head_mask=head_mask,
|
1697 |
+
inputs_embeds=inputs_embeds,
|
1698 |
+
output_attentions=output_attentions,
|
1699 |
+
output_hidden_states=output_hidden_states,
|
1700 |
+
return_dict=return_dict,
|
1701 |
+
)
|
1702 |
+
|
1703 |
+
sequence_output = outputs[0]
|
1704 |
+
|
1705 |
+
logits = self.qa_outputs(sequence_output)
|
1706 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1707 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1708 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1709 |
+
|
1710 |
+
total_loss = None
|
1711 |
+
if start_positions is not None and end_positions is not None:
|
1712 |
+
# If we are on multi-GPU, split add a dimension
|
1713 |
+
if len(start_positions.size()) > 1:
|
1714 |
+
start_positions = start_positions.squeeze(-1)
|
1715 |
+
if len(end_positions.size()) > 1:
|
1716 |
+
end_positions = end_positions.squeeze(-1)
|
1717 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1718 |
+
ignored_index = start_logits.size(1)
|
1719 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1720 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1721 |
+
|
1722 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1723 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1724 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1725 |
+
total_loss = (start_loss + end_loss) / 2
|
1726 |
+
|
1727 |
+
if not return_dict:
|
1728 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1729 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1730 |
+
|
1731 |
+
return QuestionAnsweringModelOutput(
|
1732 |
+
loss=total_loss,
|
1733 |
+
start_logits=start_logits,
|
1734 |
+
end_logits=end_logits,
|
1735 |
+
hidden_states=outputs.hidden_states,
|
1736 |
+
attentions=outputs.attentions,
|
1737 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/rag/__init__.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_rag": ["RagConfig"],
|
22 |
+
"retrieval_rag": ["RagRetriever"],
|
23 |
+
"tokenization_rag": ["RagTokenizer"],
|
24 |
+
}
|
25 |
+
|
26 |
+
try:
|
27 |
+
if not is_torch_available():
|
28 |
+
raise OptionalDependencyNotAvailable()
|
29 |
+
except OptionalDependencyNotAvailable:
|
30 |
+
pass
|
31 |
+
else:
|
32 |
+
_import_structure["modeling_rag"] = [
|
33 |
+
"RagModel",
|
34 |
+
"RagPreTrainedModel",
|
35 |
+
"RagSequenceForGeneration",
|
36 |
+
"RagTokenForGeneration",
|
37 |
+
]
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_tf_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
_import_structure["modeling_tf_rag"] = [
|
46 |
+
"TFRagModel",
|
47 |
+
"TFRagPreTrainedModel",
|
48 |
+
"TFRagSequenceForGeneration",
|
49 |
+
"TFRagTokenForGeneration",
|
50 |
+
]
|
51 |
+
|
52 |
+
|
53 |
+
if TYPE_CHECKING:
|
54 |
+
from .configuration_rag import RagConfig
|
55 |
+
from .retrieval_rag import RagRetriever
|
56 |
+
from .tokenization_rag import RagTokenizer
|
57 |
+
|
58 |
+
try:
|
59 |
+
if not is_torch_available():
|
60 |
+
raise OptionalDependencyNotAvailable()
|
61 |
+
except OptionalDependencyNotAvailable:
|
62 |
+
pass
|
63 |
+
else:
|
64 |
+
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
|
65 |
+
|
66 |
+
try:
|
67 |
+
if not is_tf_available():
|
68 |
+
raise OptionalDependencyNotAvailable()
|
69 |
+
except OptionalDependencyNotAvailable:
|
70 |
+
pass
|
71 |
+
else:
|
72 |
+
from .modeling_tf_rag import (
|
73 |
+
TFRagModel,
|
74 |
+
TFRagPreTrainedModel,
|
75 |
+
TFRagSequenceForGeneration,
|
76 |
+
TFRagTokenForGeneration,
|
77 |
+
)
|
78 |
+
|
79 |
+
else:
|
80 |
+
import sys
|
81 |
+
|
82 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/rag/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.27 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/rag/__pycache__/configuration_rag.cpython-310.pyc
ADDED
Binary file (6.76 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/rag/__pycache__/modeling_rag.cpython-310.pyc
ADDED
Binary file (63.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/rag/__pycache__/modeling_tf_rag.cpython-310.pyc
ADDED
Binary file (64.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/rag/__pycache__/retrieval_rag.cpython-310.pyc
ADDED
Binary file (26.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/rag/__pycache__/tokenization_rag.cpython-310.pyc
ADDED
Binary file (3.68 kB). View file
|
|